input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.config import Config from mmengine.structures import InstanceData from mmdet.models.dense_heads import YOLOV3Head class TestYOLOV3Head(TestCase): def test_yolo_head_loss(self): """Tests YOLO head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] head = YOLOV3Head( num_classes=4, in_channels=[1, 1, 1], out_channels=[1, 1, 1], train_cfg=Config( dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)))) head.init_weights() # YOLO head expects a multiple levels of features per image feats = [ torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in head.prior_generator.strides ] predmaps, = head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas) # When there is no truth, the conf loss should be nonzero but # cls loss and xy&wh loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']).item() empty_conf_loss = sum(empty_gt_losses['loss_conf']).item() empty_xy_loss = sum(empty_gt_losses['loss_xy']).item() empty_wh_loss = sum(empty_gt_losses['loss_wh']).item() self.assertGreater(empty_conf_loss, 0, 'conf loss should be non-zero') self.assertEqual( empty_cls_loss, 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_xy_loss, 0, 'there should be no xy loss when there are no true boxes') self.assertEqual( empty_wh_loss, 0, 'there should be no wh loss when there are no true boxes') # When truth is non-empty then all conf, cls loss and xywh loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas) one_gt_cls_loss = sum(one_gt_losses['loss_cls']).item() one_gt_conf_loss = sum(one_gt_losses['loss_conf']).item() one_gt_xy_loss = sum(one_gt_losses['loss_xy']).item() one_gt_wh_loss = sum(one_gt_losses['loss_wh']).item() self.assertGreater(one_gt_conf_loss, 0, 'conf loss should be non-zero') self.assertGreater(one_gt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(one_gt_xy_loss, 0, 'xy loss should be non-zero') self.assertGreater(one_gt_wh_loss, 0, 'wh loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.config import Config from mmengine.data import InstanceData from mmdet.models.dense_heads import YOLOV3Head class TestYOLOV3Head(TestCase): def test_yolo_head_loss(self): """Tests YOLO head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] head = YOLOV3Head( num_classes=4, in_channels=[1, 1, 1], out_channels=[1, 1, 1], train_cfg=Config( dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)))) head.init_weights() # YOLO head expects a multiple levels of features per image feats = [ torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in head.prior_generator.strides ] predmaps, = head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas) # When there is no truth, the conf loss should be nonzero but # cls loss and xy&wh loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']).item() empty_conf_loss = sum(empty_gt_losses['loss_conf']).item() empty_xy_loss = sum(empty_gt_losses['loss_xy']).item() empty_wh_loss = sum(empty_gt_losses['loss_wh']).item() self.assertGreater(empty_conf_loss, 0, 'conf loss should be non-zero') self.assertEqual( empty_cls_loss, 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_xy_loss, 0, 'there should be no xy loss when there are no true boxes') self.assertEqual( empty_wh_loss, 0, 'there should be no wh loss when there are no true boxes') # When truth is non-empty then all conf, cls loss and xywh loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas) one_gt_cls_loss = sum(one_gt_losses['loss_cls']).item() one_gt_conf_loss = sum(one_gt_losses['loss_conf']).item() one_gt_xy_loss = sum(one_gt_losses['loss_xy']).item() one_gt_wh_loss = sum(one_gt_losses['loss_wh']).item() self.assertGreater(one_gt_conf_loss, 0, 'conf loss should be non-zero') self.assertGreater(one_gt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(one_gt_xy_loss, 0, 'xy loss should be non-zero') self.assertGreater(one_gt_wh_loss, 0, 'wh loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class CornerNet(SingleStageDetector): """CornerNet. This detector is the implementation of the paper `CornerNet: Detecting Objects as Paired Keypoints <https://arxiv.org/abs/1808.01244>`_ . """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class CornerNet(SingleStageDetector): """CornerNet. This detector is the implementation of the paper `CornerNet: Detecting Objects as Paired Keypoints <https://arxiv.org/abs/1808.01244>`_ . """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
"""Hypothetical Document Embeddings. https://arxiv.org/abs/2212.10496 """ from __future__ import annotations import logging from typing import Any, Optional from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.embeddings import Embeddings from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import BasePromptTemplate from langchain_core.runnables import Runnable from pydantic import ConfigDict from langchain.chains.base import Chain from langchain.chains.hyde.prompts import PROMPT_MAP from langchain.chains.llm import LLMChain logger = logging.getLogger(__name__) class HypotheticalDocumentEmbedder(Chain, Embeddings): """Generate hypothetical document for query, and then embed that. Based on https://arxiv.org/abs/2212.10496 """ base_embeddings: Embeddings llm_chain: Runnable model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Input keys for Hyde's LLM chain.""" return self.llm_chain.input_schema.model_json_schema()["required"] @property def output_keys(self) -> list[str]: """Output keys for Hyde's LLM chain.""" if isinstance(self.llm_chain, LLMChain): return self.llm_chain.output_keys else: return ["text"] def embed_documents(self, texts: list[str]) -> list[list[float]]: """Call the base embeddings.""" return self.base_embeddings.embed_documents(texts) def combine_embeddings(self, embeddings: list[list[float]]) -> list[float]: """Combine embeddings into final embeddings.""" try: import numpy as np return list(np.array(embeddings).mean(axis=0)) except ImportError: logger.warning( "NumPy not found in the current Python environment. " "HypotheticalDocumentEmbedder will use a pure Python implementation " "for internal calculations, which may significantly impact " "performance, especially for large datasets. For optimal speed and " "efficiency, consider installing NumPy: pip install numpy" ) if not embeddings: return [] num_vectors = len(embeddings) return [sum(dim_values) / num_vectors for dim_values in zip(*embeddings)] def embed_query(self, text: str) -> list[float]: """Generate a hypothetical document and embedded it.""" var_name = self.input_keys[0] result = self.llm_chain.invoke({var_name: text}) if isinstance(self.llm_chain, LLMChain): documents = [result[self.output_keys[0]]] else: documents = [result] embeddings = self.embed_documents(documents) return self.combine_embeddings(embeddings) def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, str]: """Call the internal llm chain.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() return self.llm_chain.invoke( inputs, config={"callbacks": _run_manager.get_child()} ) @classmethod def from_llm( cls, llm: BaseLanguageModel, base_embeddings: Embeddings, prompt_key: Optional[str] = None, custom_prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> HypotheticalDocumentEmbedder: """Load and use LLMChain with either a specific prompt key or custom prompt.""" if custom_prompt is not None: prompt = custom_prompt elif prompt_key is not None and prompt_key in PROMPT_MAP: prompt = PROMPT_MAP[prompt_key] else: raise ValueError( f"Must specify prompt_key if custom_prompt not provided. Should be one " f"of {list(PROMPT_MAP.keys())}." ) llm_chain = prompt | llm | StrOutputParser() return cls(base_embeddings=base_embeddings, llm_chain=llm_chain, **kwargs) @property def _chain_type(self) -> str: return "hyde_chain"
"""Hypothetical Document Embeddings. https://arxiv.org/abs/2212.10496 """ from __future__ import annotations import logging from typing import Any, Dict, List, Optional from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.embeddings import Embeddings from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import BasePromptTemplate from langchain_core.runnables import Runnable from pydantic import ConfigDict from langchain.chains.base import Chain from langchain.chains.hyde.prompts import PROMPT_MAP from langchain.chains.llm import LLMChain logger = logging.getLogger(__name__) class HypotheticalDocumentEmbedder(Chain, Embeddings): """Generate hypothetical document for query, and then embed that. Based on https://arxiv.org/abs/2212.10496 """ base_embeddings: Embeddings llm_chain: Runnable model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> List[str]: """Input keys for Hyde's LLM chain.""" return self.llm_chain.input_schema.model_json_schema()["required"] @property def output_keys(self) -> List[str]: """Output keys for Hyde's LLM chain.""" if isinstance(self.llm_chain, LLMChain): return self.llm_chain.output_keys else: return ["text"] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call the base embeddings.""" return self.base_embeddings.embed_documents(texts) def combine_embeddings(self, embeddings: List[List[float]]) -> List[float]: """Combine embeddings into final embeddings.""" try: import numpy as np return list(np.array(embeddings).mean(axis=0)) except ImportError: logger.warning( "NumPy not found in the current Python environment. " "HypotheticalDocumentEmbedder will use a pure Python implementation " "for internal calculations, which may significantly impact " "performance, especially for large datasets. For optimal speed and " "efficiency, consider installing NumPy: pip install numpy" ) if not embeddings: return [] num_vectors = len(embeddings) return [sum(dim_values) / num_vectors for dim_values in zip(*embeddings)] def embed_query(self, text: str) -> List[float]: """Generate a hypothetical document and embedded it.""" var_name = self.input_keys[0] result = self.llm_chain.invoke({var_name: text}) if isinstance(self.llm_chain, LLMChain): documents = [result[self.output_keys[0]]] else: documents = [result] embeddings = self.embed_documents(documents) return self.combine_embeddings(embeddings) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Call the internal llm chain.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() return self.llm_chain.invoke( inputs, config={"callbacks": _run_manager.get_child()} ) @classmethod def from_llm( cls, llm: BaseLanguageModel, base_embeddings: Embeddings, prompt_key: Optional[str] = None, custom_prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> HypotheticalDocumentEmbedder: """Load and use LLMChain with either a specific prompt key or custom prompt.""" if custom_prompt is not None: prompt = custom_prompt elif prompt_key is not None and prompt_key in PROMPT_MAP: prompt = PROMPT_MAP[prompt_key] else: raise ValueError( f"Must specify prompt_key if custom_prompt not provided. Should be one " f"of {list(PROMPT_MAP.keys())}." ) llm_chain = prompt | llm | StrOutputParser() return cls(base_embeddings=base_embeddings, llm_chain=llm_chain, **kwargs) @property def _chain_type(self) -> str: return "hyde_chain"
from langchain_core._api.deprecation import ( LangChainDeprecationWarning, LangChainPendingDeprecationWarning, deprecated, suppress_langchain_deprecation_warning, surface_langchain_deprecation_warnings, warn_deprecated, ) AGENT_DEPRECATION_WARNING = ( "LangChain agents will continue to be supported, but it is recommended for new " "use cases to be built with LangGraph. LangGraph offers a more flexible and " "full-featured framework for building agents, including support for " "tool-calling, persistence of state, and human-in-the-loop workflows. For " "details, refer to the " "`LangGraph documentation <https://langchain-ai.github.io/langgraph/>`_" " as well as guides for " "`Migrating from AgentExecutor <https://python.langchain.com/docs/how_to/migrate_agent/>`_" " and LangGraph's " "`Pre-built ReAct agent <https://langchain-ai.github.io/langgraph/how-tos/create-react-agent/>`_." ) __all__ = [ "AGENT_DEPRECATION_WARNING", "LangChainDeprecationWarning", "LangChainPendingDeprecationWarning", "deprecated", "suppress_langchain_deprecation_warning", "surface_langchain_deprecation_warnings", "warn_deprecated", ]
from langchain_core._api.deprecation import ( LangChainDeprecationWarning, LangChainPendingDeprecationWarning, deprecated, suppress_langchain_deprecation_warning, surface_langchain_deprecation_warnings, warn_deprecated, ) AGENT_DEPRECATION_WARNING = ( "LangChain agents will continue to be supported, but it is recommended for new " "use cases to be built with LangGraph. LangGraph offers a more flexible and " "full-featured framework for building agents, including support for " "tool-calling, persistence of state, and human-in-the-loop workflows. For " "details, refer to the " "`LangGraph documentation <https://langchain-ai.github.io/langgraph/>`_" " as well as guides for " "`Migrating from AgentExecutor <https://python.langchain.com/docs/how_to/migrate_agent/>`_" # noqa: E501 " and LangGraph's " "`Pre-built ReAct agent <https://langchain-ai.github.io/langgraph/how-tos/create-react-agent/>`_." # noqa: E501 ) __all__ = [ "AGENT_DEPRECATION_WARNING", "LangChainDeprecationWarning", "LangChainPendingDeprecationWarning", "deprecated", "suppress_langchain_deprecation_warning", "warn_deprecated", "surface_langchain_deprecation_warnings", ]
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import InformationRetrievalEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator): def __init__( self, queries: dict[str, str], # qid => query corpus: dict[str, str], # cid => doc relevant_docs: dict[str, set[str]], # qid => Set[cid] corpus_chunk_size: int = 50000, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None, main_score_function: str | SimilarityFunction | None = None, query_prompt: str | None = None, query_prompt_name: str | None = None, corpus_prompt: str | None = None, corpus_prompt_name: str | None = None, ) -> None: return super().__init__( queries=queries, corpus=corpus, relevant_docs=relevant_docs, corpus_chunk_size=corpus_chunk_size, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, query_prompt=query_prompt, query_prompt_name=query_prompt_name, corpus_prompt=corpus_prompt, corpus_prompt_name=corpus_prompt_name, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def compute_metrices( self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None ) -> dict[str, float]: return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, prompt_name: str | None = None, prompt: str | None = None, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim embeddings = model.encode( sentences, prompt_name=prompt_name, prompt=prompt, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, save_on_cpu=True, **kwargs, ) sparsity_infos = model.get_sparsity_stats(embeddings) if ( sparsity_infos["num_rows"] == self.queries_info["length_of_queries"] and "sparsity_infos" not in self.queries_info.keys() ): self.queries_info["sparsity_infos"] = model.get_sparsity_stats(embeddings) else: self.corpus_info["sparsity_infos"] = model.get_sparsity_stats(embeddings) return embeddings def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import InformationRetrievalEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator): def __init__( self, queries: dict[str, str], # qid => query corpus: dict[str, str], # cid => doc relevant_docs: dict[str, set[str]], # qid => Set[cid] corpus_chunk_size: int = 50000, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None, main_score_function: str | SimilarityFunction | None = None, query_prompt: str | None = None, query_prompt_name: str | None = None, corpus_prompt: str | None = None, corpus_prompt_name: str | None = None, ) -> None: return super().__init__( queries=queries, corpus=corpus, relevant_docs=relevant_docs, corpus_chunk_size=corpus_chunk_size, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, query_prompt=query_prompt, query_prompt_name=query_prompt_name, corpus_prompt=corpus_prompt, corpus_prompt_name=corpus_prompt_name, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def compute_metrices( self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None ) -> dict[str, float]: return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, prompt_name: str | None = None, prompt: str | None = None, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim embeddings = model.encode( sentences, prompt_name=prompt_name, prompt=prompt, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, save_on_cpu=True, **kwargs, ) sparsity_infos = model.get_sparsity_stats(embeddings) if sparsity_infos["num_rows"] == self.queries_info["lenght_of_queries"]: self.queries_info["sparsity_infos"] = model.get_sparsity_stats(embeddings) else: self.corpus_info["sparsity_infos"] = model.get_sparsity_stats(embeddings) return embeddings def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
""" This script showcases a recommended approach to perform semantic search using quantized embeddings with FAISS and usearch. In particular, it uses binary search with int8 rescoring. The binary search is highly efficient, and its index can be kept in memory even for massive datasets: it takes (num_dimensions * num_documents / 8) bytes, i.e. 1.19GB for 10 million embeddings. """ import json import os import time import faiss import numpy as np from usearch.index import Index from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings # We use usearch as it can efficiently load int8 vectors from disk. # Load the model # NOTE: Because we are only comparing questions here, we will use the "query" prompt for everything. # Normally you don't use this prompt for documents, but only for the queries model = SentenceTransformer( "mixedbread-ai/mxbai-embed-large-v1", prompts={"query": "Represent this sentence for searching relevant passages: "}, default_prompt_name="query", ) # Load a corpus with texts dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # Apply some default query query = "How do I become a good programmer?" # Try to load the precomputed binary and int8 indices if os.path.exists("quora_faiss_ubinary.index"): binary_index: faiss.IndexBinaryFlat = faiss.read_index_binary("quora_faiss_ubinary.index") int8_view = Index.restore("quora_usearch_int8.index", view=True) else: # Encode the corpus using the full precision full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # Convert the embeddings to "ubinary" for efficient FAISS search ubinary_embeddings = quantize_embeddings(full_corpus_embeddings, "ubinary") binary_index = faiss.IndexBinaryFlat(1024) binary_index.add(ubinary_embeddings) faiss.write_index_binary(binary_index, "quora_faiss_ubinary.index") # Convert the embeddings to "int8" for efficiently loading int8 indices with usearch int8_embeddings = quantize_embeddings(full_corpus_embeddings, "int8") index = Index(ndim=1024, metric="ip", dtype="i8") index.add(np.arange(len(int8_embeddings)), int8_embeddings) index.save("quora_usearch_int8.index") del index # Load the int8 index as a view, which does not cost any memory int8_view = Index.restore("quora_usearch_int8.index", view=True) def search(query, top_k: int = 10, rescore_multiplier: int = 4): # 1. Embed the query as float32 start_time = time.time() query_embedding = model.encode(query) embed_time = time.time() - start_time # 2. Quantize the query to ubinary start_time = time.time() query_embedding_ubinary = quantize_embeddings(query_embedding.reshape(1, -1), "ubinary") quantize_time = time.time() - start_time # 3. Search the binary index start_time = time.time() _scores, binary_ids = binary_index.search(query_embedding_ubinary, top_k * rescore_multiplier) binary_ids = binary_ids[0] search_time = time.time() - start_time # 4. Load the corresponding int8 embeddings start_time = time.time() int8_embeddings = int8_view[binary_ids].astype(int) load_time = time.time() - start_time # 5. Rescore the top_k * rescore_multiplier using the float32 query embedding and the int8 document embeddings start_time = time.time() scores = query_embedding @ int8_embeddings.T rescore_time = time.time() - start_time # 6. Sort the scores and return the top_k start_time = time.time() indices = (-scores).argsort()[:top_k] top_k_indices = binary_ids[indices] top_k_scores = scores[indices] sort_time = time.time() - start_time return ( top_k_scores.tolist(), top_k_indices.tolist(), { "Embed Time": f"{embed_time:.4f} s", "Quantize Time": f"{quantize_time:.4f} s", "Search Time": f"{search_time:.4f} s", "Load Time": f"{load_time:.4f} s", "Rescore Time": f"{rescore_time:.4f} s", "Sort Time": f"{sort_time:.4f} s", "Total Retrieval Time": f"{quantize_time + search_time + load_time + rescore_time + sort_time:.4f} s", }, ) while True: scores, indices, timings = search(query) # Output the results print(f"Timings:\n{json.dumps(timings, indent=2)}") print(f"Query: {query}") for score, index in zip(scores, indices): print(f"(Score: {score:.4f}) {corpus[index]}") print("") # 10. Prompt for more queries query = input("Please enter a question: ")
""" This script showcases a recommended approach to perform semantic search using quantized embeddings with FAISS and usearch. In particular, it uses binary search with int8 rescoring. The binary search is highly efficient, and its index can be kept in memory even for massive datasets: it takes (num_dimensions * num_documents / 8) bytes, i.e. 1.19GB for 10 million embeddings. """ import json import os import time import numpy as np from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings from datasets import load_dataset import faiss from usearch.index import Index # We use usearch as it can efficiently load int8 vectors from disk. # Load the model # NOTE: Because we are only comparing questions here, we will use the "query" prompt for everything. # Normally you don't use this prompt for documents, but only for the queries model = SentenceTransformer( "mixedbread-ai/mxbai-embed-large-v1", prompts={"query": "Represent this sentence for searching relevant passages: "}, default_prompt_name="query", ) # Load a corpus with texts dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # Apply some default query query = "How do I become a good programmer?" # Try to load the precomputed binary and int8 indices if os.path.exists("quora_faiss_ubinary.index"): binary_index: faiss.IndexBinaryFlat = faiss.read_index_binary("quora_faiss_ubinary.index") int8_view = Index.restore("quora_usearch_int8.index", view=True) else: # Encode the corpus using the full precision full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # Convert the embeddings to "ubinary" for efficient FAISS search ubinary_embeddings = quantize_embeddings(full_corpus_embeddings, "ubinary") binary_index = faiss.IndexBinaryFlat(1024) binary_index.add(ubinary_embeddings) faiss.write_index_binary(binary_index, "quora_faiss_ubinary.index") # Convert the embeddings to "int8" for efficiently loading int8 indices with usearch int8_embeddings = quantize_embeddings(full_corpus_embeddings, "int8") index = Index(ndim=1024, metric="ip", dtype="i8") index.add(np.arange(len(int8_embeddings)), int8_embeddings) index.save("quora_usearch_int8.index") del index # Load the int8 index as a view, which does not cost any memory int8_view = Index.restore("quora_usearch_int8.index", view=True) def search(query, top_k: int = 10, rescore_multiplier: int = 4): # 1. Embed the query as float32 start_time = time.time() query_embedding = model.encode(query) embed_time = time.time() - start_time # 2. Quantize the query to ubinary start_time = time.time() query_embedding_ubinary = quantize_embeddings(query_embedding.reshape(1, -1), "ubinary") quantize_time = time.time() - start_time # 3. Search the binary index start_time = time.time() _scores, binary_ids = binary_index.search(query_embedding_ubinary, top_k * rescore_multiplier) binary_ids = binary_ids[0] search_time = time.time() - start_time # 4. Load the corresponding int8 embeddings start_time = time.time() int8_embeddings = int8_view[binary_ids].astype(int) load_time = time.time() - start_time # 5. Rescore the top_k * rescore_multiplier using the float32 query embedding and the int8 document embeddings start_time = time.time() scores = query_embedding @ int8_embeddings.T rescore_time = time.time() - start_time # 6. Sort the scores and return the top_k start_time = time.time() indices = (-scores).argsort()[:top_k] top_k_indices = binary_ids[indices] top_k_scores = scores[indices] sort_time = time.time() - start_time return ( top_k_scores.tolist(), top_k_indices.tolist(), { "Embed Time": f"{embed_time:.4f} s", "Quantize Time": f"{quantize_time:.4f} s", "Search Time": f"{search_time:.4f} s", "Load Time": f"{load_time:.4f} s", "Rescore Time": f"{rescore_time:.4f} s", "Sort Time": f"{sort_time:.4f} s", "Total Retrieval Time": f"{quantize_time + search_time + load_time + rescore_time + sort_time:.4f} s", }, ) while True: scores, indices, timings = search(query) # Output the results print(f"Timings:\n{json.dumps(timings, indent=2)}") print(f"Query: {query}") for score, index in zip(scores, indices): print(f"(Score: {score:.4f}) {corpus[index]}") print("") # 10. Prompt for more queries query = input("Please enter a question: ")
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .sparse_rcnn import SparseRCNN @MODELS.register_module() class QueryInst(SparseRCNN): r"""Implementation of `Instances as Queries <http://arxiv.org/abs/2105.01928>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(QueryInst, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .sparse_rcnn import SparseRCNN @DETECTORS.register_module() class QueryInst(SparseRCNN): r"""Implementation of `Instances as Queries <http://arxiv.org/abs/2105.01928>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(QueryInst, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
# Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from subprocess import check_output from typing import List import pytest from datasets.packaged_modules import _PACKAGED_DATASETS_MODULES from datasets.utils.logging import get_logger from datasets.utils.metadata import DatasetMetadata from datasets.utils.readme import ReadMe from .utils import slow repo_path = Path.cwd() logger = get_logger(__name__) def get_changed_datasets(repo_path: Path) -> List[Path]: diff_output = check_output(["git", "diff", "--name-only", "origin/main...HEAD"], cwd=repo_path) changed_files = [Path(repo_path, f) for f in diff_output.decode().splitlines()] datasets_dir_path = repo_path / "datasets" changed_datasets = { f.resolve().relative_to(datasets_dir_path).parts[0] for f in changed_files if f.exists() and str(f.resolve()).startswith(str(datasets_dir_path)) and not f.name == "dummy_data.zip" } return sorted(dataset_name for dataset_name in changed_datasets if dataset_name not in _PACKAGED_DATASETS_MODULES) def get_all_datasets(repo_path: Path) -> List[Path]: dataset_names = [ path.parts[-1] for path in (repo_path / "datasets").iterdir() if path.is_dir() and (path / path.name).with_suffix(".py").is_file() ] return [dataset_name for dataset_name in dataset_names if dataset_name not in _PACKAGED_DATASETS_MODULES] @pytest.mark.parametrize("dataset_name", get_changed_datasets(repo_path)) def test_changed_dataset_card(dataset_name): """Validate the content of the dataset cards that were changed""" card_path = repo_path / "datasets" / dataset_name / "README.md" assert card_path.exists() error_messages = [] try: ReadMe.from_readme(card_path) except Exception as readme_parsing_error: error_messages.append( f"The following issues have been found in the dataset cards:\nREADME Parsing:\n{readme_parsing_error}" ) try: ReadMe.from_readme(card_path, suppress_parsing_errors=True) except Exception as readme_validation_error: error_messages.append( f"The following issues have been found in the dataset cards:\nREADME Validation:\n{readme_validation_error}" ) try: metadata = DatasetMetadata.from_readme(card_path) assert metadata, "empty metadata" except Exception as metadata_error: error_messages.append( f"The following issues have been found in the dataset cards:\nYAML tags:\n{metadata_error}" ) if error_messages: raise ValueError("\n".join(error_messages)) @pytest.mark.parametrize("dataset_name", get_all_datasets(repo_path)) def test_dataset_card_yaml_structure(dataset_name): """ Just check that the dataset cards have valid YAML. It doesn't validate the content. """ card_path = repo_path / "datasets" / dataset_name / "README.md" assert card_path.exists() metadata_dict = DatasetMetadata.from_readme(card_path) assert len(metadata_dict) > 0 @slow @pytest.mark.parametrize("dataset_name", get_all_datasets(repo_path)) def test_dataset_card(dataset_name): """Validate the content of the dataset cards""" card_path = repo_path / "datasets" / dataset_name / "README.md" assert card_path.exists() error_messages = [] try: readme = ReadMe.from_readme(card_path) except Exception as readme_parsing_error: error_messages.append( f"The following issues have been found in the dataset cards:\nREADME Parsing:\n{readme_parsing_error}" ) try: readme = ReadMe.from_readme(card_path, suppress_parsing_errors=True) readme.validate() except Exception as readme_validation_error: error_messages.append( f"The following issues have been found in the dataset cards:\nREADME Validation:\n{readme_validation_error}" ) try: metadata = DatasetMetadata.from_readme(card_path) assert metadata except Exception as metadata_error: error_messages.append( f"The following issues have been found in the dataset cards:\nYAML tags:\n{metadata_error}" ) if error_messages: raise ValueError("\n".join(error_messages))
# Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from subprocess import check_output from typing import List import pytest from datasets.packaged_modules import _PACKAGED_DATASETS_MODULES from datasets.utils.logging import get_logger from datasets.utils.metadata import DatasetMetadata, validate_metadata_type, yaml_block_from_readme from datasets.utils.readme import ReadMe from .utils import slow repo_path = Path.cwd() logger = get_logger(__name__) def get_changed_datasets(repo_path: Path) -> List[Path]: diff_output = check_output(["git", "diff", "--name-only", "origin/main...HEAD"], cwd=repo_path) changed_files = [Path(repo_path, f) for f in diff_output.decode().splitlines()] datasets_dir_path = repo_path / "datasets" changed_datasets = { f.resolve().relative_to(datasets_dir_path).parts[0] for f in changed_files if f.exists() and str(f.resolve()).startswith(str(datasets_dir_path)) and not f.name == "dummy_data.zip" } return sorted(dataset_name for dataset_name in changed_datasets if dataset_name not in _PACKAGED_DATASETS_MODULES) def get_all_datasets(repo_path: Path) -> List[Path]: dataset_names = [path.parts[-1] for path in (repo_path / "datasets").iterdir() if path.is_dir()] return [dataset_name for dataset_name in dataset_names if dataset_name not in _PACKAGED_DATASETS_MODULES] @pytest.mark.parametrize("dataset_name", get_changed_datasets(repo_path)) def test_changed_dataset_card(dataset_name): """Validate the content of the dataset cards that were changed""" card_path = repo_path / "datasets" / dataset_name / "README.md" assert card_path.exists() error_messages = [] try: readme = ReadMe.from_readme(card_path) except Exception as readme_parsing_error: error_messages.append( f"The following issues have been found in the dataset cards:\nREADME Parsing:\n{readme_parsing_error}" ) try: readme = ReadMe.from_readme(card_path, suppress_parsing_errors=True) readme.validate() except Exception as readme_validation_error: error_messages.append( f"The following issues have been found in the dataset cards:\nREADME Validation:\n{readme_validation_error}" ) try: metadata = DatasetMetadata.from_readme(card_path) metadata.validate() except Exception as metadata_error: error_messages.append( f"The following issues have been found in the dataset cards:\nYAML tags:\n{metadata_error}" ) if error_messages: raise ValueError("\n".join(error_messages)) @pytest.mark.parametrize("dataset_name", get_all_datasets(repo_path)) def test_dataset_card_yaml_structure(dataset_name): """ Just check that the dataset cards have valid YAML. It doesn't validate the content. """ card_path = repo_path / "datasets" / dataset_name / "README.md" assert card_path.exists() yaml_string = yaml_block_from_readme(card_path) metadata_dict = DatasetMetadata._metadata_dict_from_yaml_string(yaml_string) assert len(metadata_dict) > 0 validate_metadata_type(metadata_dict) @slow @pytest.mark.parametrize("dataset_name", get_all_datasets(repo_path)) def test_dataset_card(dataset_name): """Validate the content of the dataset cards""" card_path = repo_path / "datasets" / dataset_name / "README.md" assert card_path.exists() error_messages = [] try: readme = ReadMe.from_readme(card_path) except Exception as readme_parsing_error: error_messages.append( f"The following issues have been found in the dataset cards:\nREADME Parsing:\n{readme_parsing_error}" ) try: readme = ReadMe.from_readme(card_path, suppress_parsing_errors=True) readme.validate() except Exception as readme_validation_error: error_messages.append( f"The following issues have been found in the dataset cards:\nREADME Validation:\n{readme_validation_error}" ) try: metadata = DatasetMetadata.from_readme(card_path) metadata.validate() except Exception as metadata_error: error_messages.append( f"The following issues have been found in the dataset cards:\nYAML tags:\n{metadata_error}" ) if error_messages: raise ValueError("\n".join(error_messages))
_base_ = 'ssj_270k_coco-instance.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None # Standard Scale Jittering (SSJ) resizes and crops an image # with a resize range of 0.8 to 1.25 of the original image size. load_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.25), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=image_size), ] train_pipeline = [ dict(type='CopyPaste', max_num_pasted=100), dict(type='PackDetInputs') ] train_dataloader = dict( dataset=dict( _delete_=True, type='MultiImageMixDataset', dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=load_pipeline, backend_args=backend_args), pipeline=train_pipeline))
_base_ = 'ssj_270k_coco-instance.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) file_client_args = dict(backend='disk') # comment out the code below to use different file client # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) # Standard Scale Jittering (SSJ) resizes and crops an image # with a resize range of 0.8 to 1.25 of the original image size. load_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.25), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=image_size), ] train_pipeline = [ dict(type='CopyPaste', max_num_pasted=100), dict(type='PackDetInputs') ] train_dataloader = dict( dataset=dict( _delete_=True, type='MultiImageMixDataset', dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=load_pipeline), pipeline=train_pipeline))
import json from json import JSONDecodeError from typing import Union from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.messages import ( AIMessage, BaseMessage, ) from langchain_core.outputs import ChatGeneration, Generation from langchain.agents.agent import AgentOutputParser class OpenAIFunctionsAgentOutputParser(AgentOutputParser): """Parses a message into agent action/finish. Is meant to be used with OpenAI models, as it relies on the specific function_call parameter from OpenAI to convey what tools to use. If a function_call parameter is passed, then that is used to get the tool and tool input. If one is not passed, then the AIMessage is assumed to be the final output. """ @property def _type(self) -> str: return "openai-functions-agent" @staticmethod def _parse_ai_message(message: BaseMessage) -> Union[AgentAction, AgentFinish]: """Parse an AI message.""" if not isinstance(message, AIMessage): msg = f"Expected an AI message got {type(message)}" raise TypeError(msg) function_call = message.additional_kwargs.get("function_call", {}) if function_call: function_name = function_call["name"] try: if len(function_call["arguments"].strip()) == 0: # OpenAI returns an empty string for functions containing no args _tool_input = {} else: # otherwise it returns a json object _tool_input = json.loads(function_call["arguments"], strict=False) except JSONDecodeError: msg = ( f"Could not parse tool input: {function_call} because " f"the `arguments` is not valid JSON." ) raise OutputParserException(msg) # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. if "__arg1" in _tool_input: tool_input = _tool_input["__arg1"] else: tool_input = _tool_input content_msg = f"responded: {message.content}\n" if message.content else "\n" log = f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n" return AgentActionMessageLog( tool=function_name, tool_input=tool_input, log=log, message_log=[message], ) return AgentFinish( return_values={"output": message.content}, log=str(message.content) ) def parse_result( self, result: list[Generation], *, partial: bool = False ) -> Union[AgentAction, AgentFinish]: if not isinstance(result[0], ChatGeneration): msg = "This output parser only works on ChatGeneration output" raise ValueError(msg) message = result[0].message return self._parse_ai_message(message) def parse(self, text: str) -> Union[AgentAction, AgentFinish]: msg = "Can only parse messages" raise ValueError(msg)
import json from json import JSONDecodeError from typing import Union from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.messages import ( AIMessage, BaseMessage, ) from langchain_core.outputs import ChatGeneration, Generation from langchain.agents.agent import AgentOutputParser class OpenAIFunctionsAgentOutputParser(AgentOutputParser): """Parses a message into agent action/finish. Is meant to be used with OpenAI models, as it relies on the specific function_call parameter from OpenAI to convey what tools to use. If a function_call parameter is passed, then that is used to get the tool and tool input. If one is not passed, then the AIMessage is assumed to be the final output. """ @property def _type(self) -> str: return "openai-functions-agent" @staticmethod def _parse_ai_message(message: BaseMessage) -> Union[AgentAction, AgentFinish]: """Parse an AI message.""" if not isinstance(message, AIMessage): raise TypeError(f"Expected an AI message got {type(message)}") function_call = message.additional_kwargs.get("function_call", {}) if function_call: function_name = function_call["name"] try: if len(function_call["arguments"].strip()) == 0: # OpenAI returns an empty string for functions containing no args _tool_input = {} else: # otherwise it returns a json object _tool_input = json.loads(function_call["arguments"], strict=False) except JSONDecodeError: raise OutputParserException( f"Could not parse tool input: {function_call} because " f"the `arguments` is not valid JSON." ) # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. if "__arg1" in _tool_input: tool_input = _tool_input["__arg1"] else: tool_input = _tool_input content_msg = f"responded: {message.content}\n" if message.content else "\n" log = f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n" return AgentActionMessageLog( tool=function_name, tool_input=tool_input, log=log, message_log=[message], ) return AgentFinish( return_values={"output": message.content}, log=str(message.content) ) def parse_result( self, result: list[Generation], *, partial: bool = False ) -> Union[AgentAction, AgentFinish]: if not isinstance(result[0], ChatGeneration): raise ValueError("This output parser only works on ChatGeneration output") message = result[0].message return self._parse_ai_message(message) def parse(self, text: str) -> Union[AgentAction, AgentFinish]: raise ValueError("Can only parse messages")
from keras.src.api_export import keras_export from keras.src.optimizers.adadelta import Adadelta from keras.src.optimizers.adafactor import Adafactor from keras.src.optimizers.adagrad import Adagrad from keras.src.optimizers.adam import Adam from keras.src.optimizers.adamax import Adamax from keras.src.optimizers.adamw import AdamW from keras.src.optimizers.ftrl import Ftrl from keras.src.optimizers.lion import Lion from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.muon import Muon from keras.src.optimizers.nadam import Nadam from keras.src.optimizers.optimizer import Optimizer from keras.src.optimizers.rmsprop import RMSprop from keras.src.optimizers.sgd import SGD from keras.src.saving import serialization_lib ALL_OBJECTS = { Optimizer, Adam, SGD, RMSprop, Adadelta, AdamW, Adagrad, Adamax, Adafactor, Nadam, Ftrl, Lion, LossScaleOptimizer, } ALL_OBJECTS_DICT = {cls.__name__.lower(): cls for cls in ALL_OBJECTS} @keras_export("keras.optimizers.serialize") def serialize(optimizer): """Returns the optimizer configuration as a Python dict. Args: optimizer: An `Optimizer` instance to serialize. Returns: Python dict which contains the configuration of the optimizer. """ return serialization_lib.serialize_keras_object(optimizer) @keras_export("keras.optimizers.deserialize") def deserialize(config, custom_objects=None): """Returns a Keras optimizer object via its configuration. Args: config: Optimizer configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization. Returns: A Keras Optimizer instance. """ # Make deserialization case-insensitive for built-in optimizers. if config["class_name"].lower() in ALL_OBJECTS_DICT: config["class_name"] = config["class_name"].lower() return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.optimizers.get") def get(identifier): """Retrieves a Keras Optimizer instance. Args: identifier: Optimizer identifier, one of: - String: name of an optimizer - Dictionary: configuration dictionary. - Keras Optimizer instance (it will be returned unchanged). Returns: A Keras Optimizer instance. """ if identifier is None: return None elif isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): config = {"class_name": identifier, "config": {}} obj = deserialize(config) else: obj = identifier if isinstance(obj, Optimizer): return obj raise ValueError(f"Could not interpret optimizer identifier: {identifier}") # We will add this temporarily so that tensorflow packages that depend on # estimators will continue to import (there are a large number). Note that # Keras 3 will not work with the estimators API. @keras_export( [ "keras.optimizers.legacy.Adagrad", "keras.optimizers.legacy.Adam", "keras.optimizers.legacy.Ftrl", "keras.optimizers.legacy.RMSprop", "keras.optimizers.legacy.SGD", "keras.optimizers.legacy.Optimizer", ] ) class LegacyOptimizerWarning: def __init__(self, *args, **kwargs): raise ImportError( "`keras.optimizers.legacy` is not supported in Keras 3. When using " "`tf.keras`, to continue using a `tf.keras.optimizers.legacy` " "optimizer, you can install the `tf_keras` package (Keras 2) and " "set the environment variable `TF_USE_LEGACY_KERAS=True` to " "configure TensorFlow to use `tf_keras` when accessing `tf.keras`." )
from keras.src.api_export import keras_export from keras.src.optimizers.adadelta import Adadelta from keras.src.optimizers.adafactor import Adafactor from keras.src.optimizers.adagrad import Adagrad from keras.src.optimizers.adam import Adam from keras.src.optimizers.adamax import Adamax from keras.src.optimizers.adamw import AdamW from keras.src.optimizers.ftrl import Ftrl from keras.src.optimizers.lion import Lion from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.nadam import Nadam from keras.src.optimizers.optimizer import Optimizer from keras.src.optimizers.rmsprop import RMSprop from keras.src.optimizers.sgd import SGD from keras.src.saving import serialization_lib ALL_OBJECTS = { Optimizer, Adam, SGD, RMSprop, Adadelta, AdamW, Adagrad, Adamax, Adafactor, Nadam, Ftrl, Lion, LossScaleOptimizer, } ALL_OBJECTS_DICT = {cls.__name__.lower(): cls for cls in ALL_OBJECTS} @keras_export("keras.optimizers.serialize") def serialize(optimizer): """Returns the optimizer configuration as a Python dict. Args: optimizer: An `Optimizer` instance to serialize. Returns: Python dict which contains the configuration of the optimizer. """ return serialization_lib.serialize_keras_object(optimizer) @keras_export("keras.optimizers.deserialize") def deserialize(config, custom_objects=None): """Returns a Keras optimizer object via its configuration. Args: config: Optimizer configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization. Returns: A Keras Optimizer instance. """ # Make deserialization case-insensitive for built-in optimizers. if config["class_name"].lower() in ALL_OBJECTS_DICT: config["class_name"] = config["class_name"].lower() return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.optimizers.get") def get(identifier): """Retrieves a Keras Optimizer instance. Args: identifier: Optimizer identifier, one of: - String: name of an optimizer - Dictionary: configuration dictionary. - Keras Optimizer instance (it will be returned unchanged). Returns: A Keras Optimizer instance. """ if identifier is None: return None elif isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): config = {"class_name": identifier, "config": {}} obj = deserialize(config) else: obj = identifier if isinstance(obj, Optimizer): return obj raise ValueError(f"Could not interpret optimizer identifier: {identifier}") # We will add this temporarily so that tensorflow packages that depend on # estimators will continue to import (there are a large number). Note that # Keras 3 will not work with the estimators API. @keras_export( [ "keras.optimizers.legacy.Adagrad", "keras.optimizers.legacy.Adam", "keras.optimizers.legacy.Ftrl", "keras.optimizers.legacy.RMSprop", "keras.optimizers.legacy.SGD", "keras.optimizers.legacy.Optimizer", ] ) class LegacyOptimizerWarning: def __init__(self, *args, **kwargs): raise ImportError( "`keras.optimizers.legacy` is not supported in Keras 3. When using " "`tf.keras`, to continue using a `tf.keras.optimizers.legacy` " "optimizer, you can install the `tf_keras` package (Keras 2) and " "set the environment variable `TF_USE_LEGACY_KERAS=True` to " "configure TensorFlow to use `tf_keras` when accessing `tf.keras`." )
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import tqdm as _tqdm # _tqdm is the module from .experimental import experimental from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .tqdm import ( are_progress_bars_disabled, disable_progress_bars, enable_progress_bars, tqdm, ) from .version import Version
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ruff: noqa from . import tqdm as _tqdm # _tqdm is the module from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental from .tqdm import ( disable_progress_bars, enable_progress_bars, are_progress_bars_disabled, tqdm, )
"""DashScope api utils.""" from http import HTTPStatus from typing import Any, Dict, List, Sequence from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ) def dashscope_response_to_completion_response( response: Any, stream: bool = False ) -> CompletionResponse: if response["status_code"] == HTTPStatus.OK: content = response["output"]["choices"][0]["message"]["content"] if not content: content = "" return CompletionResponse(text=content, raw=response) else: return CompletionResponse(text="", raw=response) def dashscope_response_to_chat_response( response: Any, ) -> ChatResponse: if response["status_code"] == HTTPStatus.OK: content = response["output"]["choices"][0]["message"]["content"] if not content: content = "" role = response["output"]["choices"][0]["message"]["role"] additional_kwargs = response["output"]["choices"][0]["message"] return ChatResponse( message=ChatMessage( role=role, content=content, additional_kwargs=additional_kwargs ), raw=response, ) else: return ChatResponse(message=ChatMessage(), raw=response) def chat_message_to_dashscope_messages( chat_messages: Sequence[ChatMessage], ) -> List[Dict]: messages = [] for msg in chat_messages: additional_kwargs = msg.additional_kwargs if msg.role == "assistant": messages.append( { "role": msg.role.value, "content": msg.content, "tool_calls": additional_kwargs.get("tool_calls", []), } ) elif msg.role == "tool": messages.append( { "role": msg.role.value, "content": msg.content, "tool_call_id": additional_kwargs.get("tool_call_id", ""), "name": additional_kwargs.get("name", ""), } ) else: messages.append({"role": msg.role.value, "content": msg.content}) return messages
"""DashScope api utils.""" from http import HTTPStatus from typing import Any, Dict, List, Sequence from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ) def dashscope_response_to_completion_response( response: Any, stream: bool = False ) -> CompletionResponse: if response["status_code"] == HTTPStatus.OK: content = response["output"]["choices"][0]["message"]["content"] if not content: content = "" return CompletionResponse(text=content, raw=response) else: return CompletionResponse(text="", raw=response) def dashscope_response_to_chat_response( response: Any, ) -> ChatResponse: if response["status_code"] == HTTPStatus.OK: content = response["output"]["choices"][0]["message"]["content"] if not content: content = "" role = response["output"]["choices"][0]["message"]["role"] additional_kwargs = response["output"]["choices"][0]["message"] return ChatResponse( message=ChatMessage( role=role, content=content, additional_kwargs=additional_kwargs ), raw=response, ) else: return ChatResponse(message=ChatMessage(), raw=response) def chat_message_to_dashscope_messages( chat_messages: Sequence[ChatMessage], ) -> List[Dict]: messages = [] for msg in chat_messages: messages.append({"role": msg.role.value, "content": msg.content}) return messages
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_instructblipvideo import * from .image_processing_instructblipvideo import * from .modeling_instructblipvideo import * from .processing_instructblipvideo import * from .video_processing_instructblipvideo import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_instructblipvideo import * from .image_processing_instructblipvideo import * from .modeling_instructblipvideo import * from .processing_instructblipvideo import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod class BaseAssigner(metaclass=ABCMeta): """Base assigner that assigns boxes to ground truth boxes.""" @abstractmethod def assign(self, pred_instances, gt_instances, gt_instances_ignore=None, **kwargs): """Assign boxes to either a ground truth boxes or a negative boxes."""
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod class BaseAssigner(metaclass=ABCMeta): """Base assigner that assigns boxes to ground truth boxes.""" @abstractmethod def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): """Assign boxes to either a ground truth boxes or a negative boxes."""
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils.misc import is_torch_available T = TypeVar('T', bound='Image') torch_available = is_torch_available() if torch_available: import torch class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor T = TypeVar('T', bound='Image') try: import torch torch_available = True except ImportError: torch_available = False class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'DefaultScope' ]
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISUALIZERS, WEIGHT_INITIALIZERS, WRITERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'WRITERS', 'VISUALIZERS', 'DefaultScope' ]
from langchain_core.messages import __all__ EXPECTED_ALL = [ "MessageLikeRepresentation", "_message_from_dict", "AIMessage", "AIMessageChunk", "AnyMessage", "BaseMessage", "BaseMessageChunk", "ChatMessage", "ChatMessageChunk", "FunctionMessage", "FunctionMessageChunk", "HumanMessage", "HumanMessageChunk", "InvalidToolCall", "SystemMessage", "SystemMessageChunk", "ToolCall", "ToolCallChunk", "ToolMessage", "ToolMessageChunk", "RemoveMessage", "convert_to_messages", "get_buffer_string", "is_data_content_block", "merge_content", "message_chunk_to_message", "message_to_dict", "messages_from_dict", "messages_to_dict", "filter_messages", "merge_message_runs", "trim_messages", "convert_to_openai_image_block", "convert_to_openai_messages", ] def test_all_imports() -> None: assert set(__all__) == set(EXPECTED_ALL)
from langchain_core.messages import __all__ EXPECTED_ALL = [ "MessageLikeRepresentation", "_message_from_dict", "AIMessage", "AIMessageChunk", "AnyMessage", "BaseMessage", "BaseMessageChunk", "ChatMessage", "ChatMessageChunk", "FunctionMessage", "FunctionMessageChunk", "HumanMessage", "HumanMessageChunk", "InvalidToolCall", "SystemMessage", "SystemMessageChunk", "ToolCall", "ToolCallChunk", "ToolMessage", "ToolMessageChunk", "RemoveMessage", "convert_to_messages", "get_buffer_string", "merge_content", "message_chunk_to_message", "message_to_dict", "messages_from_dict", "messages_to_dict", "filter_messages", "merge_message_runs", "trim_messages", "convert_to_openai_messages", ] def test_all_imports() -> None: assert set(__all__) == set(EXPECTED_ALL)
_base_ = './ms_rcnn_x101_64x4d_fpn_1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './ms_rcnn_x101_64x4d_fpn_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import MLMTransformer, SpladePooling def main(): # Initialize the SPLADE model model_name = "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill" # "naver/efficient-splade-V-large-doc" # "prithivida/Splade_PP_en_v1" # "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}") # Compute similarity matrix similarity_matrix = model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() # Save the model model.push_to_hub( "splade_example", private=True, ) # Load the model loaded_model = SparseEncoder("arthurbresnu/splade_example") print(f"Loaded model: {loaded_model}") # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = loaded_model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding shape and sparsity print(f"Embedding shape: {embeddings.shape}") print(f"Embedding sparsity: {loaded_model.get_sparsity_stats(embeddings)}%") # Compute similarity matrix similarity_matrix = loaded_model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() if __name__ == "__main__": main()
import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import MLMTransformer, SpladePooling def main(): # Initialize the SPLADE model model_name = "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill" # "naver/efficient-splade-V-large-doc" # "prithivida/Splade_PP_en_v1" # "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding shape and sparsity print(f"Embedding shape: {embeddings.shape}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}%") # Compute similarity matrix similarity_matrix = model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() if __name__ == "__main__": main()
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import export_dump_streaming from ...faiss_searcher import FaissSearcher def _get_docs_from_vecs(queries): docs = DocumentArray() for q in queries: doc = Document(embedding=q) docs.append(doc) return docs @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] metas['name'] = 'faiss_idx' yield metas del os.environ['TEST_WORKSPACE'] def test_train_and_index(metas, tmpdir): vec_idx = np.random.randint(0, high=512, size=[512]).astype(str) vec = np.array(np.random.random([512, 10]), dtype=np.float32) query = np.array(np.random.random([10, 10]), dtype=np.float32) query_docs = _get_docs_from_vecs(query) train_data_file = os.path.join(os.environ['TEST_WORKSPACE'], 'train.npy') train_data = np.array(np.random.random([1024, 10]), dtype=np.float32) np.save(train_data_file, train_data) trained_index_file = os.path.join(os.environ['TEST_WORKSPACE'], 'faiss.index') export_dump_streaming( os.path.join(tmpdir, 'dump'), 1, len(vec_idx), zip(vec_idx, vec, [b'' for _ in range(len(vec))]), ) dump_path = os.path.join(tmpdir, 'dump') f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, }, ) with f: # the trained index will be dumped to "faiss.index" f.post(on='/train', parameters={'train_data_file': train_data_file}) f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, 'dump_path': dump_path, }, ) with f: result = f.post( on='/search', data=query_docs, return_results=True, parameters={'top_k': 4} )[0].docs assert len(result[0].matches) == 4 for d in result: assert ( d.matches[0].scores['euclidean'].value <= d.matches[1].scores['euclidean'].value ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import export_dump_streaming from ...faiss_searcher import FaissSearcher def _get_docs_from_vecs(queries): docs = DocumentArray() for q in queries: doc = Document(embedding=q) docs.append(doc) return docs @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] metas['name'] = 'faiss_idx' yield metas del os.environ['TEST_WORKSPACE'] def test_train_and_index(metas, tmpdir): vec_idx = np.random.randint(0, high=512, size=[512]).astype(str) vec = np.array(np.random.random([512, 10]), dtype=np.float32) query = np.array(np.random.random([10, 10]), dtype=np.float32) query_docs = _get_docs_from_vecs(query) train_data_file = os.path.join(os.environ['TEST_WORKSPACE'], 'train.npy') train_data = np.array(np.random.random([1024, 10]), dtype=np.float32) np.save(train_data_file, train_data) trained_index_file = os.path.join(os.environ['TEST_WORKSPACE'], 'faiss.index') export_dump_streaming( os.path.join(tmpdir, 'dump'), 1, len(vec_idx), zip(vec_idx, vec, [b'' for _ in range(len(vec))]), ) dump_path = os.path.join(tmpdir, 'dump') f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, }, ) with f: # the trained index will be dumped to "faiss.index" f.post(on='/train', parameters={'train_data_file': train_data_file}) f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF10_HNSW32,PQ2', 'trained_index_file': trained_index_file, 'dump_path': dump_path, }, ) with f: result = f.post( on='/search', data=query_docs, return_results=True, parameters={'top_k': 4} )[0].docs assert len(result[0].matches) == 4 for d in result: assert d.matches[0].scores['l2'].value >= d.matches[1].scores['l2'].value @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', ], timeout=30, check=True, )
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .config import * from .dataset import * from .data import * from .fileio import * from .registry import * from .utils import *
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .config import * from .dataset import * from .fileio import * from .registry import * from .utils import *
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train", trust_remote_code=True).map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # 2. Come up with some queries queries = [ "How do I become a good programmer?", "How do I become a good data scientist?", ] # 3. Load the model sparse_model = SparseEncoder("sparse-embedding/splade_example") # 5. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True) corpus_index = None while True: # 6. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 7. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=10, output_index=True, ) # 8. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train", trust_remote_code=True).map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # 2. Come up with some queries queries = [ "How do I become a good programmer?", "How do I become a good data scientist?", ] # 3. Load the model sparse_model = SparseEncoder("sparse-embedding/splade_example") # 5. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True) corpus_index = None while True: # 6. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 7. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=10, output_index=True, ) # 8. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
"""Transformers for missing value imputation.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import typing from ._base import MissingIndicator, SimpleImputer from ._knn import KNNImputer if typing.TYPE_CHECKING: # Avoid errors in type checkers (e.g. mypy) for experimental estimators. # TODO: remove this check once the estimator is no longer experimental. from ._iterative import IterativeImputer # noqa: F401 __all__ = ["KNNImputer", "MissingIndicator", "SimpleImputer"] # TODO: remove this check once the estimator is no longer experimental. def __getattr__(name): if name == "IterativeImputer": raise ImportError( f"{name} is experimental and the API might change without any " "deprecation cycle. To use it, you need to explicitly import " "enable_iterative_imputer:\n" "from sklearn.experimental import enable_iterative_imputer" ) raise AttributeError(f"module {__name__} has no attribute {name}")
"""Transformers for missing value imputation.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import typing from ._base import MissingIndicator, SimpleImputer from ._knn import KNNImputer if typing.TYPE_CHECKING: # Avoid errors in type checkers (e.g. mypy) for experimental estimators. # TODO: remove this check once the estimator is no longer experimental. from ._iterative import IterativeImputer # noqa __all__ = ["KNNImputer", "MissingIndicator", "SimpleImputer"] # TODO: remove this check once the estimator is no longer experimental. def __getattr__(name): if name == "IterativeImputer": raise ImportError( f"{name} is experimental and the API might change without any " "deprecation cycle. To use it, you need to explicitly import " "enable_iterative_imputer:\n" "from sklearn.experimental import enable_iterative_imputer" ) raise AttributeError(f"module {__name__} has no attribute {name}")
from typing import Dict def get_default_metas() -> Dict: """ Get a copy of default meta variables. NOTE: DO NOT ADD MORE ENTRIES HERE! :return: a deep copy of the default metas in a new dict """ # NOTE: DO NOT ADD MORE ENTRIES HERE! return { 'name': '', #: a string, the name of the executor 'description': '', #: a string, the description of this executor. It will be used in automatics docs UI 'workspace': '', #: a string, the workspace of the executor 'py_modules': '', #: a list of strings, the python dependencies of the executor } def get_executor_taboo(): """ Returns a set of executor meta variables :return: set of executor meta variables """ taboo = {'self', 'args', 'kwargs', 'metas', 'requests', 'runtime_args'} _defaults = get_default_metas() taboo.update(_defaults.keys()) return taboo
from typing import Dict def get_default_metas() -> Dict: """ Get a copy of default meta variables. NOTE: DO NOT ADD MORE ENTRIES HERE! :return: a deep copy of the default metas in a new dict """ # NOTE: DO NOT ADD MORE ENTRIES HERE! return { 'name': '', #: a string, the name of the executor 'description': '', #: a string, the description of this executor. It will be used in automatics docs UI 'workspace': '', #: a string, the workspace of the executor 'py_modules': '', #: a list of strings, the python dependencies of the executor }
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'SOLOHead', 'DecoupledSOLOHead', 'CenterNetHead', 'YOLOXHead', 'DecoupledSOLOLightHead', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'SOLOHead', 'DecoupledSOLOHead', 'CenterNetHead', 'YOLOXHead', 'DecoupledSOLOLightHead', 'LADHead', 'TOODHead', 'MaskFormerHead' ]
from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from torchaudio.prototype.models import conv_tasnet_base, hdemucs_high @dataclass class SourceSeparationBundle: """torchaudio.prototype.pipelines.SourceSeparationBundle() Dataclass that bundles components for performing source separation. Example >>> import torchaudio >>> from torchaudio.prototype.pipelines import CONVTASNET_BASE_LIBRI2MIX >>> import torch >>> >>> # Build the separation model. >>> model = CONVTASNET_BASE_LIBRI2MIX.get_model() >>> 100%|███████████████████████████████|19.1M/19.1M [00:04<00:00, 4.93MB/s] >>> >>> # Instantiate the test set of Libri2Mix dataset. >>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test") >>> >>> # Apply source separation on mixture audio. >>> for i, data in enumerate(dataset): >>> sample_rate, mixture, clean_sources = data >>> # Make sure the shape of input suits the model requirement. >>> mixture = mixture.reshape(1, 1, -1) >>> estimated_sources = model(mixture) >>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration >>> print(f"Si-SNR score is : {score}.) >>> break >>> Si-SNR score is : 16.24. >>> """ _model_path: str _model_factory_func: Callable[[], torch.nn.Module] _sample_rate: int @property def sample_rate(self) -> int: """Sample rate of the audio that the model is trained on. :type: int """ return self._sample_rate def get_model(self) -> torch.nn.Module: """Construct the model and load the pretrained weight.""" model = self._model_factory_func() path = torchaudio.utils.download_asset(self._model_path) state_dict = torch.load(path) model.load_state_dict(state_dict) model.eval() return model CONVTASNET_BASE_LIBRI2MIX = SourceSeparationBundle( _model_path="models/conv_tasnet_base_libri2mix.pt", _model_factory_func=partial(conv_tasnet_base, num_sources=2), _sample_rate=8000, ) CONVTASNET_BASE_LIBRI2MIX.__doc__ = """Pre-trained *ConvTasNet* [:footcite:`Luo_2019`] pipeline for source separation. The underlying model is constructed by :py:func:`torchaudio.prototyoe.models.conv_tasnet_base` and utilizes weights trained on *Libri2Mix dataset* [:footcite:`cosentino2020librimix`] using training script ``lightning_train.py`` `here <https://github.com/pytorch/audio/tree/release/0.12/examples/source_separation/>`__ with default arguments. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB_PLUS = SourceSeparationBundle( _model_path="models/hdemucs_high_trained.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"], sample_rate=44100), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB_PLUS.__doc__ = """Pre-trained *Hybrid Demucs* [:footcite:`defossez2021hybrid`] pipeline for music source separation. The underlying model is constructed by :py:func:`torchaudio.prototyoe.models.hdemucs_high` and utilizes weights trained on MUSDB-HQ [:footcite:`MUSDB18HQ`] and internal extra training data, all at the same sample rate of 44.1 kHZ. The model separates mixture music into “drums”, “base”, “vocals”, and “other” sources. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. """
from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from torchaudio.prototype.models import conv_tasnet_base @dataclass class SourceSeparationBundle: """torchaudio.prototype.pipelines.SourceSeparationBundle() Dataclass that bundles components for performing source separation. Example >>> import torchaudio >>> from torchaudio.prototype.pipelines import CONVTASNET_BASE_LIBRI2MIX >>> import torch >>> >>> # Build the separation model. >>> model = CONVTASNET_BASE_LIBRI2MIX.get_model() >>> 100%|███████████████████████████████|19.1M/19.1M [00:04<00:00, 4.93MB/s] >>> >>> # Instantiate the test set of Libri2Mix dataset. >>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test") >>> >>> # Apply source separation on mixture audio. >>> for i, data in enumerate(dataset): >>> sample_rate, mixture, clean_sources = data >>> # Make sure the shape of input suits the model requirement. >>> mixture = mixture.reshape(1, 1, -1) >>> estimated_sources = model(mixture) >>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration >>> print(f"Si-SNR score is : {score}.) >>> break >>> Si-SNR score is : 16.24. >>> """ _model_path: str _model_factory_func: Callable[[], torch.nn.Module] _sample_rate: int @property def sample_rate(self) -> int: """Sample rate of the audio that the model is trained on. :type: int """ return self._sample_rate def get_model(self) -> torch.nn.Module: """Construct the model and load the pretrained weight.""" model = self._model_factory_func() path = torchaudio.utils.download_asset(self._model_path) state_dict = torch.load(path) model.load_state_dict(state_dict) model.eval() return model CONVTASNET_BASE_LIBRI2MIX = SourceSeparationBundle( _model_path="models/conv_tasnet_base_libri2mix.pt", _model_factory_func=partial(conv_tasnet_base, num_sources=2), _sample_rate=8000, ) CONVTASNET_BASE_LIBRI2MIX.__doc__ = """Pre-trained *ConvTasNet* [:footcite:`Luo_2019`] pipeline for source separation. The underlying model is constructed by :py:func:`torchaudio.prototyoe.models.conv_tasnet_base` and utilizes weights trained on *Libri2Mix dataset* [:footcite:`cosentino2020librimix`] using training script ``lightning_train.py`` `here <https://github.com/pytorch/audio/tree/release/0.12/examples/source_separation/>`__ with default arguments. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """
""" ======================================================= Label Propagation circles: Learning a complex structure ======================================================= Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # We generate a dataset with two concentric circles. In addition, a label # is associated with each sample of the dataset that is: 0 (belonging to # the outer circle), 1 (belonging to the inner circle), and -1 (unknown). # Here, all labels but two are tagged as unknown. import numpy as np from sklearn.datasets import make_circles n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = np.full(n_samples, -1.0) labels[0] = outer labels[-1] = inner # %% # Plot raw data import matplotlib.pyplot as plt plt.figure(figsize=(4, 4)) plt.scatter( X[labels == outer, 0], X[labels == outer, 1], color="navy", marker="s", lw=0, label="outer labeled", s=10, ) plt.scatter( X[labels == inner, 0], X[labels == inner, 1], color="c", marker="s", lw=0, label="inner labeled", s=10, ) plt.scatter( X[labels == -1, 0], X[labels == -1, 1], color="darkorange", marker=".", label="unlabeled", ) plt.legend(scatterpoints=1, shadow=False, loc="center") _ = plt.title("Raw data (2 classes=outer and inner)") # %% # # The aim of :class:`~sklearn.semi_supervised.LabelSpreading` is to associate # a label to sample where the label is initially unknown. from sklearn.semi_supervised import LabelSpreading label_spread = LabelSpreading(kernel="knn", alpha=0.8) label_spread.fit(X, labels) # %% # Now, we can check which labels have been associated with each sample # when the label was unknown. output_labels = label_spread.transduction_ output_label_array = np.asarray(output_labels) outer_numbers = (output_label_array == outer).nonzero()[0] inner_numbers = (output_label_array == inner).nonzero()[0] plt.figure(figsize=(4, 4)) plt.scatter( X[outer_numbers, 0], X[outer_numbers, 1], color="navy", marker="s", lw=0, s=10, label="outer learned", ) plt.scatter( X[inner_numbers, 0], X[inner_numbers, 1], color="c", marker="s", lw=0, s=10, label="inner learned", ) plt.legend(scatterpoints=1, shadow=False, loc="center") plt.title("Labels learned with Label Spreading (KNN)") plt.show()
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # We generate a dataset with two concentric circles. In addition, a label # is associated with each sample of the dataset that is: 0 (belonging to # the outer circle), 1 (belonging to the inner circle), and -1 (unknown). # Here, all labels but two are tagged as unknown. import numpy as np from sklearn.datasets import make_circles n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = np.full(n_samples, -1.0) labels[0] = outer labels[-1] = inner # %% # Plot raw data import matplotlib.pyplot as plt plt.figure(figsize=(4, 4)) plt.scatter( X[labels == outer, 0], X[labels == outer, 1], color="navy", marker="s", lw=0, label="outer labeled", s=10, ) plt.scatter( X[labels == inner, 0], X[labels == inner, 1], color="c", marker="s", lw=0, label="inner labeled", s=10, ) plt.scatter( X[labels == -1, 0], X[labels == -1, 1], color="darkorange", marker=".", label="unlabeled", ) plt.legend(scatterpoints=1, shadow=False, loc="center") _ = plt.title("Raw data (2 classes=outer and inner)") # %% # # The aim of :class:`~sklearn.semi_supervised.LabelSpreading` is to associate # a label to sample where the label is initially unknown. from sklearn.semi_supervised import LabelSpreading label_spread = LabelSpreading(kernel="knn", alpha=0.8) label_spread.fit(X, labels) # %% # Now, we can check which labels have been associated with each sample # when the label was unknown. output_labels = label_spread.transduction_ output_label_array = np.asarray(output_labels) outer_numbers = (output_label_array == outer).nonzero()[0] inner_numbers = (output_label_array == inner).nonzero()[0] plt.figure(figsize=(4, 4)) plt.scatter( X[outer_numbers, 0], X[outer_numbers, 1], color="navy", marker="s", lw=0, s=10, label="outer learned", ) plt.scatter( X[inner_numbers, 0], X[inner_numbers, 1], color="c", marker="s", lw=0, s=10, label="inner learned", ) plt.legend(scatterpoints=1, shadow=False, loc="center") plt.title("Labels learned with Label Spreading (KNN)") plt.show()
# mypy: allow-untyped-defs import functools from typing import Optional import torch from torch._C import _len_torch_function_stack from torch.overrides import _pop_mode, _push_mode, TorchFunctionMode from torch.utils._contextlib import context_decorator CURRENT_DEVICE: Optional[torch.device] = None @functools.lru_cache(1) def _device_constructors(): return { # standard ones torch.empty, torch.empty_permuted, torch.empty_strided, torch.empty_quantized, torch.ones, torch.arange, torch.bartlett_window, torch.blackman_window, torch.eye, torch.fft.fftfreq, torch.fft.rfftfreq, torch.full, torch.hamming_window, torch.hann_window, torch.kaiser_window, torch.linspace, torch.logspace, torch.nested.nested_tensor, # This function doesn't actually take a device argument # torch.normal, torch.rand, torch.randn, torch.randint, torch.randperm, torch.range, torch.sparse_coo_tensor, torch.sparse_compressed_tensor, torch.sparse_csr_tensor, torch.sparse_csc_tensor, torch.sparse_bsr_tensor, torch.sparse_bsc_tensor, torch.tril_indices, torch.triu_indices, torch.zeros, torch.asarray, # weird ones torch.tensor, torch.as_tensor, torch.scalar_tensor, } # NB: This is directly called from C++ in torch/csrc/Device.cpp class DeviceContext(TorchFunctionMode): def __init__(self, device): self.device = torch.device(device) def __enter__(self): global CURRENT_DEVICE self.old_device = CURRENT_DEVICE CURRENT_DEVICE = self.device # We need to put the device at the bottom of the stack # If we set default device within a function mode context # exiting that context mode will pop the device function mode off # of the stack incorrectly cur_stack = [_pop_mode() for _ in range(_len_torch_function_stack())] _push_mode(self) for mode in reversed(cur_stack): _push_mode(mode) def __exit__(self, exc_type, exc_val, exc_tb): global CURRENT_DEVICE CURRENT_DEVICE = self.old_device cur_stack = [] # Invariant: there should only be one DeviceContext on the stack at any time # (At the bottom), pop all modes until we hit the bottom, assert it's a DeviceContext # or else someone else has popped it! for _ in range(_len_torch_function_stack() - 1): mode = _pop_mode() assert not isinstance(mode, DeviceContext) cur_stack.append(mode) if _len_torch_function_stack() > 0: mode = _pop_mode() assert isinstance(mode, DeviceContext) for mode in reversed(cur_stack): _push_mode(mode) def __torch_function__(self, func, types, args=(), kwargs=None): kwargs = kwargs or {} if func in _device_constructors() and kwargs.get("device") is None: kwargs["device"] = self.device return func(*args, **kwargs) # NB: This is directly called from C++ in torch/csrc/Device.cpp def device_decorator(device, func): return context_decorator(lambda: device, func) def set_device(device): """ Set the default device inside of the wrapped function by decorating it with this function. If you would like to use this as a context manager, use device as a context manager directly, e.g., ``with torch.device(device)``. """ return lambda func: device_decorator(torch.device(device), func)
# mypy: allow-untyped-defs import functools from typing import Optional import torch from torch._C import _len_torch_function_stack from torch.overrides import _pop_mode, _push_mode, TorchFunctionMode from torch.utils._contextlib import context_decorator CURRENT_DEVICE: Optional[torch.device] = None @functools.lru_cache(1) def _device_constructors(): return { # standard ones torch.empty, torch.empty_permuted, torch.empty_strided, torch.empty_quantized, torch.ones, torch.arange, torch.bartlett_window, torch.blackman_window, torch.eye, torch.fft.fftfreq, torch.fft.rfftfreq, torch.full, torch.hamming_window, torch.hann_window, torch.kaiser_window, torch.linspace, torch.logspace, torch.nested.nested_tensor, # This function doesn't actually take a device argument # torch.normal, torch.rand, torch.randn, torch.randint, torch.randperm, torch.range, torch.sparse_coo_tensor, torch.sparse_compressed_tensor, torch.sparse_csr_tensor, torch.sparse_csc_tensor, torch.sparse_bsr_tensor, torch.sparse_bsc_tensor, torch.tril_indices, torch.triu_indices, torch.zeros, torch.asarray, # weird ones torch.tensor, torch.as_tensor, torch.scalar_tensor, } # NB: This is directly called from C++ in torch/csrc/Device.cpp class DeviceContext(TorchFunctionMode): def __init__(self, device): self.device = torch.device(device) def __enter__(self): global CURRENT_DEVICE self.old_device = CURRENT_DEVICE CURRENT_DEVICE = self.device # We need to put the device at the bottom of the stack # If we set default device within a function mode context # exiting that context mode will pop the device function mode off # of the stack incorrectly cur_stack = [_pop_mode() for _ in range(_len_torch_function_stack())] _push_mode(self) for mode in reversed(cur_stack): _push_mode(mode) def __exit__(self, exc_type, exc_val, exc_tb): global CURRENT_DEVICE CURRENT_DEVICE = self.old_device cur_stack = [] # Invariant: there should only be one DeviceContext on the stack at any time # (At the bottom), pop all mdoes until we hit the bottom, assert it's a DeviceContext # or else someone else has popped it! for _ in range(_len_torch_function_stack() - 1): mode = _pop_mode() assert not isinstance(mode, DeviceContext) cur_stack.append(mode) if _len_torch_function_stack() > 0: mode = _pop_mode() assert isinstance(mode, DeviceContext) for mode in reversed(cur_stack): _push_mode(mode) def __torch_function__(self, func, types, args=(), kwargs=None): kwargs = kwargs or {} if func in _device_constructors() and kwargs.get("device") is None: kwargs["device"] = self.device return func(*args, **kwargs) # NB: This is directly called from C++ in torch/csrc/Device.cpp def device_decorator(device, func): return context_decorator(lambda: device, func) def set_device(device): """ Set the default device inside of the wrapped function by decorating it with this function. If you would like to use this as a context manager, use device as a context manager directly, e.g., ``with torch.device(device)``. """ return lambda func: device_decorator(torch.device(device), func)
""" Wrapper script to run a command inside a Docker container """ import argparse import grp import itertools import os import pathlib import pwd import subprocess import sys import textwrap OPS_DIR = pathlib.Path(__file__).expanduser().resolve().parent PROJECT_ROOT_DIR = OPS_DIR.parent LINEWIDTH = 88 TEXT_WRAPPER = textwrap.TextWrapper( width=LINEWIDTH, initial_indent="", subsequent_indent=" ", break_long_words=False, break_on_hyphens=False, ) def parse_run_args(*, raw_run_args: str) -> list[str]: return [x for x in raw_run_args.split() if x] def get_user_ids() -> dict[str, str]: uid = os.getuid() gid = os.getgid() return { "CI_BUILD_UID": str(uid), "CI_BUILD_USER": pwd.getpwuid(uid).pw_name, "CI_BUILD_GID": str(gid), "CI_BUILD_GROUP": grp.getgrgid(gid).gr_name, } def fancy_print_cli_args(*, cli_args: list[str]) -> None: print( "=" * LINEWIDTH + "\n" + " \\\n".join(TEXT_WRAPPER.wrap(" ".join(cli_args))) + "\n" + "=" * LINEWIDTH + "\n", flush=True, ) def docker_run( *, image_uri: str, command_args: list[str], use_gpus: bool, workdir: pathlib.Path, user_ids: dict[str, str], extra_args: list[str], ) -> None: # Command-line arguments to be passed to `docker run` docker_run_cli_args = ["--rm", "--pid=host"] if use_gpus: docker_run_cli_args.extend(["--gpus", "all"]) docker_run_cli_args.extend(["-v", f"{workdir}:/workspace", "-w", "/workspace"]) docker_run_cli_args.extend( itertools.chain.from_iterable([["-e", f"{k}={v}"] for k, v in user_ids.items()]) ) docker_run_cli_args.extend(extra_args) docker_run_cli_args.append(image_uri) docker_run_cli_args.extend(command_args) cli_args = ["docker", "run"] + docker_run_cli_args fancy_print_cli_args(cli_args=cli_args) subprocess.run(cli_args, check=True, encoding="utf-8") def main(*, args: argparse.Namespace) -> None: run_args = parse_run_args(raw_run_args=args.run_args) user_ids = get_user_ids() if args.use_gpus: print("Using NVIDIA GPUs for `docker run`") if args.interactive: print("Using interactive mode for `docker run`") run_args.append("-it") docker_run( image_uri=args.image_uri, command_args=args.command_args, use_gpus=args.use_gpus, workdir=args.workdir, user_ids=user_ids, extra_args=run_args, ) if __name__ == "__main__": parser = argparse.ArgumentParser( usage=( f"{sys.argv[0]} --image-uri IMAGE_URI [--use-gpus] [--interactive] " "[--workdir WORKDIR] [--run-args RUN_ARGS] -- COMMAND_ARG " "[COMMAND_ARG ...]" ), description="Run tasks inside a Docker container", ) parser.add_argument( "--image-uri", type=str, required=True, help=( "Fully qualified image URI to identify the container, e.g. " "492475357299.dkr.ecr.us-west-2.amazonaws.com/xgb-ci.gpu:main" ), ) parser.add_argument( "--use-gpus", action="store_true", help=( "Grant the container access to NVIDIA GPUs; requires the NVIDIA " "Container Toolkit." ), ) parser.add_argument( "--interactive", action="store_true", help=( "Run the container in the interactive mode; requires an interactive shell " "(TTY). With this flag, you can use Ctrl-C to interrupt an long-running " "command." ), ) parser.add_argument( "--workdir", type=lambda p: pathlib.Path(p).expanduser().resolve(), default=PROJECT_ROOT_DIR, help="Path to working directory; if unset, use the project's root", ) parser.add_argument( "--run-args", type=str, default="", help=( "Argument(s) to be passed to `docker run`. When passing multiple " "arguments, use single quotes to wrap them. Example: " "--run-args '--cap-add SYS_PTRACE --shm-size=4g'" ), ) parser.add_argument( "command_args", metavar="COMMAND_ARG", type=str, nargs="+", help=( "Argument(s) for the command to execute. NOTE. Make sure to specify " "double-dash (--) to clearly distinguish between the command and the " "preceding parameters. Example: --run-args '--cap-add SYS_PTRACE " "--shm-size=4g' -- ./myprog" ), ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) parsed_args = parser.parse_args() main(args=parsed_args)
""" Wrapper script to run a command inside a Docker container """ import argparse import grp import itertools import os import pathlib import pwd import subprocess import sys import textwrap OPS_DIR = pathlib.Path(__file__).expanduser().resolve().parent PROJECT_ROOT_DIR = OPS_DIR.parent LINEWIDTH = 88 TEXT_WRAPPER = textwrap.TextWrapper( width=LINEWIDTH, initial_indent="", subsequent_indent=" ", break_long_words=False, break_on_hyphens=False, ) def parse_run_args(*, raw_run_args: str) -> list[str]: return [x for x in raw_run_args.split() if x] def get_user_ids() -> dict[str, str]: uid = os.getuid() gid = os.getgid() return { "CI_BUILD_UID": str(uid), "CI_BUILD_USER": pwd.getpwuid(uid).pw_name, "CI_BUILD_GID": str(gid), "CI_BUILD_GROUP": grp.getgrgid(gid).gr_name, } def fancy_print_cli_args(*, cli_args: list[str]) -> None: print( "=" * LINEWIDTH + "\n" + " \\\n".join(TEXT_WRAPPER.wrap(" ".join(cli_args))) + "\n" + "=" * LINEWIDTH + "\n", flush=True, ) def docker_run( *, image_uri: str, command_args: list[str], use_gpus: bool, workdir: pathlib.Path, user_ids: dict[str, str], extra_args: list[str], ) -> None: # Command-line arguments to be passed to `docker run` docker_run_cli_args = ["--rm", "--pid=host"] if use_gpus: docker_run_cli_args.extend(["--gpus", "all"]) docker_run_cli_args.extend(["-v", f"{workdir}:/workspace", "-w", "/workspace"]) docker_run_cli_args.extend( itertools.chain.from_iterable([["-e", f"{k}={v}"] for k, v in user_ids.items()]) ) docker_run_cli_args.extend(["-e", "NCCL_RAS_ENABLE=0"]) docker_run_cli_args.extend(extra_args) docker_run_cli_args.append(image_uri) docker_run_cli_args.extend(command_args) cli_args = ["docker", "run"] + docker_run_cli_args fancy_print_cli_args(cli_args=cli_args) subprocess.run(cli_args, check=True, encoding="utf-8") def main(*, args: argparse.Namespace) -> None: run_args = parse_run_args(raw_run_args=args.run_args) user_ids = get_user_ids() if args.use_gpus: print("Using NVIDIA GPUs for `docker run`") if args.interactive: print("Using interactive mode for `docker run`") run_args.append("-it") docker_run( image_uri=args.image_uri, command_args=args.command_args, use_gpus=args.use_gpus, workdir=args.workdir, user_ids=user_ids, extra_args=run_args, ) if __name__ == "__main__": parser = argparse.ArgumentParser( usage=( f"{sys.argv[0]} --image-uri IMAGE_URI [--use-gpus] [--interactive] " "[--workdir WORKDIR] [--run-args RUN_ARGS] -- COMMAND_ARG " "[COMMAND_ARG ...]" ), description="Run tasks inside a Docker container", ) parser.add_argument( "--image-uri", type=str, required=True, help=( "Fully qualified image URI to identify the container, e.g. " "492475357299.dkr.ecr.us-west-2.amazonaws.com/xgb-ci.gpu:main" ), ) parser.add_argument( "--use-gpus", action="store_true", help=( "Grant the container access to NVIDIA GPUs; requires the NVIDIA " "Container Toolkit." ), ) parser.add_argument( "--interactive", action="store_true", help=( "Run the container in the interactive mode; requires an interactive shell " "(TTY). With this flag, you can use Ctrl-C to interrupt an long-running " "command." ), ) parser.add_argument( "--workdir", type=lambda p: pathlib.Path(p).expanduser().resolve(), default=PROJECT_ROOT_DIR, help="Path to working directory; if unset, use the project's root", ) parser.add_argument( "--run-args", type=str, default="", help=( "Argument(s) to be passed to `docker run`. When passing multiple " "arguments, use single quotes to wrap them. Example: " "--run-args '--cap-add SYS_PTRACE --shm-size=4g'" ), ) parser.add_argument( "command_args", metavar="COMMAND_ARG", type=str, nargs="+", help=( "Argument(s) for the command to execute. NOTE. Make sure to specify " "double-dash (--) to clearly distinguish between the command and the " "preceding parameters. Example: --run-args '--cap-add SYS_PTRACE " "--shm-size=4g' -- ./myprog" ), ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) parsed_args = parser.parse_args() main(args=parsed_args)
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.transforms import LoadImageFromFile from mmdet.datasets.transforms import LoadAnnotations, LoadPanopticAnnotations from mmdet.registry import TRANSFORMS def get_loading_pipeline(pipeline): """Only keep loading image and annotations related configuration. Args: pipeline (list[dict]): Data pipeline configs. Returns: list[dict]: The new pipeline list with only keep loading image and annotations related configuration. Examples: >>> pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True), ... dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), ... dict(type='RandomFlip', flip_ratio=0.5), ... dict(type='Normalize', **img_norm_cfg), ... dict(type='Pad', size_divisor=32), ... dict(type='DefaultFormatBundle'), ... dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ... ] >>> expected_pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True) ... ] >>> assert expected_pipelines ==\ ... get_loading_pipeline(pipelines) """ loading_pipeline_cfg = [] for cfg in pipeline: obj_cls = TRANSFORMS.get(cfg['type']) # TODO:use more elegant way to distinguish loading modules if obj_cls is not None and obj_cls in (LoadImageFromFile, LoadAnnotations, LoadPanopticAnnotations): loading_pipeline_cfg.append(cfg) assert len(loading_pipeline_cfg) == 2, \ 'The data pipeline in your config file must include ' \ 'loading image and annotations related pipeline.' return loading_pipeline_cfg
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.transforms import LoadImageFromFile from mmdet.datasets.transforms import LoadAnnotations, LoadPanopticAnnotations from mmdet.registry import TRANSFORMS def get_loading_pipeline(pipeline): """Only keep loading image and annotations related configuration. Args: pipeline (list[dict]): Data pipeline configs. Returns: list[dict]: The new pipeline list with only keep loading image and annotations related configuration. Examples: >>> pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True), ... dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), ... dict(type='RandomFlip', flip_ratio=0.5), ... dict(type='Normalize', **img_norm_cfg), ... dict(type='Pad', size_divisor=32), ... dict(type='DefaultFormatBundle'), ... dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ... ] >>> expected_pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True) ... ] >>> assert expected_pipelines ==\ ... get_loading_pipeline(pipelines) """ loading_pipeline_cfg = [] for cfg in pipeline: obj_cls = TRANSFORMS.get(cfg['type']) # TODO:use more elegant way to distinguish loading modules if obj_cls is not None and obj_cls in (LoadImageFromFile, LoadAnnotations, LoadPanopticAnnotations): loading_pipeline_cfg.append(cfg) assert len(loading_pipeline_cfg) == 2, \ 'The data pipeline in your config file must include ' \ 'loading image and annotations related pipeline.' return loading_pipeline_cfg
# Copyright 2025 Kakao Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UnCLIPTextProjModel(ModelMixin, ConfigMixin): """ Utility class for CLIP embeddings. Used to combine the image and text embeddings into a format usable by the decoder. For more details, see the original paper: https://huggingface.co/papers/2204.06125 section 2.1 """ @register_to_config def __init__( self, *, clip_extra_context_tokens: int = 4, clip_embeddings_dim: int = 768, time_embed_dim: int, cross_attention_dim, ): super().__init__() self.learned_classifier_free_guidance_embeddings = nn.Parameter(torch.zeros(clip_embeddings_dim)) # parameters for additional clip time embeddings self.embedding_proj = nn.Linear(clip_embeddings_dim, time_embed_dim) self.clip_image_embeddings_project_to_time_embeddings = nn.Linear(clip_embeddings_dim, time_embed_dim) # parameters for encoder hidden states self.clip_extra_context_tokens = clip_extra_context_tokens self.clip_extra_context_tokens_proj = nn.Linear( clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim ) self.encoder_hidden_states_proj = nn.Linear(clip_embeddings_dim, cross_attention_dim) self.text_encoder_hidden_states_norm = nn.LayerNorm(cross_attention_dim) def forward(self, *, image_embeddings, prompt_embeds, text_encoder_hidden_states, do_classifier_free_guidance): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings image_embeddings_batch_size = image_embeddings.shape[0] classifier_free_guidance_embeddings = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) classifier_free_guidance_embeddings = classifier_free_guidance_embeddings.expand( image_embeddings_batch_size, -1 ) image_embeddings = torch.cat([classifier_free_guidance_embeddings, image_embeddings], dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] batch_size = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... time_projected_prompt_embeds = self.embedding_proj(prompt_embeds) time_projected_image_embeddings = self.clip_image_embeddings_project_to_time_embeddings(image_embeddings) additive_clip_time_embeddings = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" clip_extra_context_tokens = self.clip_extra_context_tokens_proj(image_embeddings) clip_extra_context_tokens = clip_extra_context_tokens.reshape(batch_size, -1, self.clip_extra_context_tokens) clip_extra_context_tokens = clip_extra_context_tokens.permute(0, 2, 1) text_encoder_hidden_states = self.encoder_hidden_states_proj(text_encoder_hidden_states) text_encoder_hidden_states = self.text_encoder_hidden_states_norm(text_encoder_hidden_states) text_encoder_hidden_states = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states], dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
# Copyright 2024 Kakao Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UnCLIPTextProjModel(ModelMixin, ConfigMixin): """ Utility class for CLIP embeddings. Used to combine the image and text embeddings into a format usable by the decoder. For more details, see the original paper: https://huggingface.co/papers/2204.06125 section 2.1 """ @register_to_config def __init__( self, *, clip_extra_context_tokens: int = 4, clip_embeddings_dim: int = 768, time_embed_dim: int, cross_attention_dim, ): super().__init__() self.learned_classifier_free_guidance_embeddings = nn.Parameter(torch.zeros(clip_embeddings_dim)) # parameters for additional clip time embeddings self.embedding_proj = nn.Linear(clip_embeddings_dim, time_embed_dim) self.clip_image_embeddings_project_to_time_embeddings = nn.Linear(clip_embeddings_dim, time_embed_dim) # parameters for encoder hidden states self.clip_extra_context_tokens = clip_extra_context_tokens self.clip_extra_context_tokens_proj = nn.Linear( clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim ) self.encoder_hidden_states_proj = nn.Linear(clip_embeddings_dim, cross_attention_dim) self.text_encoder_hidden_states_norm = nn.LayerNorm(cross_attention_dim) def forward(self, *, image_embeddings, prompt_embeds, text_encoder_hidden_states, do_classifier_free_guidance): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings image_embeddings_batch_size = image_embeddings.shape[0] classifier_free_guidance_embeddings = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) classifier_free_guidance_embeddings = classifier_free_guidance_embeddings.expand( image_embeddings_batch_size, -1 ) image_embeddings = torch.cat([classifier_free_guidance_embeddings, image_embeddings], dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] batch_size = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... time_projected_prompt_embeds = self.embedding_proj(prompt_embeds) time_projected_image_embeddings = self.clip_image_embeddings_project_to_time_embeddings(image_embeddings) additive_clip_time_embeddings = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" clip_extra_context_tokens = self.clip_extra_context_tokens_proj(image_embeddings) clip_extra_context_tokens = clip_extra_context_tokens.reshape(batch_size, -1, self.clip_extra_context_tokens) clip_extra_context_tokens = clip_extra_context_tokens.permute(0, 2, 1) text_encoder_hidden_states = self.encoder_hidden_states_proj(text_encoder_hidden_states) text_encoder_hidden_states = self.text_encoder_hidden_states_norm(text_encoder_hidden_states) text_encoder_hidden_states = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states], dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: docarray.proto """Generated protocol buffer code.""" from google.protobuf.internal import builder as _builder from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile( b'\n\x0e\x64ocarray.proto\x12\x08\x64ocarray\x1a\x1cgoogle/protobuf/struct.proto\"A\n\x11\x44\x65nseNdArrayProto\x12\x0e\n\x06\x62uffer\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x03(\r\x12\r\n\x05\x64type\x18\x03 \x01(\t\"g\n\x0cNdArrayProto\x12*\n\x05\x64\x65nse\x18\x01 \x01(\x0b\x32\x1b.docarray.DenseNdArrayProto\x12+\n\nparameters\x18\x02 \x01(\x0b\x32\x17.google.protobuf.Struct\"Z\n\x0cKeyValuePair\x12#\n\x03key\x18\x01 \x01(\x0b\x32\x16.google.protobuf.Value\x12%\n\x05value\x18\x02 \x01(\x0b\x32\x16.google.protobuf.Value\";\n\x10GenericDictValue\x12\'\n\x07\x65ntries\x18\x01 \x03(\x0b\x32\x16.docarray.KeyValuePair\"\xcb\x03\n\tNodeProto\x12\x0e\n\x04text\x18\x01 \x01(\tH\x00\x12\x11\n\x07integer\x18\x02 \x01(\x05H\x00\x12\x0f\n\x05\x66loat\x18\x03 \x01(\x01H\x00\x12\x11\n\x07\x62oolean\x18\x04 \x01(\x08H\x00\x12\x0e\n\x04\x62lob\x18\x05 \x01(\x0cH\x00\x12)\n\x07ndarray\x18\x06 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12+\n\x08\x64ocument\x18\x07 \x01(\x0b\x32\x17.docarray.DocumentProtoH\x00\x12\x36\n\x0e\x64ocument_array\x18\x08 \x01(\x0b\x32\x1c.docarray.DocumentArrayProtoH\x00\x12*\n\x04list\x18\t \x01(\x0b\x32\x1a.google.protobuf.ListValueH\x00\x12)\n\x03set\x18\n \x01(\x0b\x32\x1a.google.protobuf.ListValueH\x00\x12+\n\x05tuple\x18\x0b \x01(\x0b\x32\x1a.google.protobuf.ListValueH\x00\x12\'\n\x04\x64ict\x18\x0c \x01(\x0b\x32\x17.google.protobuf.StructH\x00\x12\x0e\n\x04type\x18\r \x01(\tH\x01\x42\t\n\x07\x63ontentB\x0f\n\rdocarray_type\"\x82\x01\n\rDocumentProto\x12/\n\x04\x64\x61ta\x18\x01 \x03(\x0b\x32!.docarray.DocumentProto.DataEntry\x1a@\n\tDataEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\"\n\x05value\x18\x02 \x01(\x0b\x32\x13.docarray.NodeProto:\x02\x38\x01\";\n\x12\x44ocumentArrayProto\x12%\n\x04\x64ocs\x18\x01 \x03(\x0b\x32\x17.docarray.DocumentProto\"\x86\x01\n\x0fUnionArrayProto\x12=\n\x0e\x64ocument_array\x18\x01 \x01(\x0b\x32#.docarray.DocumentArrayStackedProtoH\x00\x12)\n\x07ndarray\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x42\t\n\x07\x63ontent\"\xd6\x01\n\x19\x44ocumentArrayStackedProto\x12+\n\x05list_\x18\x01 \x01(\x0b\x32\x1c.docarray.DocumentArrayProto\x12\x41\n\x07\x63olumns\x18\x02 \x03(\x0b\x32\x30.docarray.DocumentArrayStackedProto.ColumnsEntry\x1aI\n\x0c\x43olumnsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12(\n\x05value\x18\x02 \x01(\x0b\x32\x19.docarray.UnionArrayProto:\x02\x38\x01\x62\x06proto3' ) _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'docarray_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _DOCUMENTPROTO_DATAENTRY._options = None _DOCUMENTPROTO_DATAENTRY._serialized_options = b'8\001' _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._options = None _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_options = b'8\001' _DENSENDARRAYPROTO._serialized_start = 58 _DENSENDARRAYPROTO._serialized_end = 123 _NDARRAYPROTO._serialized_start = 125 _NDARRAYPROTO._serialized_end = 228 _KEYVALUEPAIR._serialized_start = 230 _KEYVALUEPAIR._serialized_end = 320 _GENERICDICTVALUE._serialized_start = 322 _GENERICDICTVALUE._serialized_end = 381 _NODEPROTO._serialized_start = 384 _NODEPROTO._serialized_end = 843 _DOCUMENTPROTO._serialized_start = 846 _DOCUMENTPROTO._serialized_end = 976 _DOCUMENTPROTO_DATAENTRY._serialized_start = 912 _DOCUMENTPROTO_DATAENTRY._serialized_end = 976 _DOCUMENTARRAYPROTO._serialized_start = 978 _DOCUMENTARRAYPROTO._serialized_end = 1037 _UNIONARRAYPROTO._serialized_start = 1040 _UNIONARRAYPROTO._serialized_end = 1174 _DOCUMENTARRAYSTACKEDPROTO._serialized_start = 1177 _DOCUMENTARRAYSTACKEDPROTO._serialized_end = 1391 _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_start = 1318 _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_end = 1391 # @@protoc_insertion_point(module_scope)
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: docarray.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile( b'\n\x0e\x64ocarray.proto\x12\x08\x64ocarray\x1a\x1cgoogle/protobuf/struct.proto\"A\n\x11\x44\x65nseNdArrayProto\x12\x0e\n\x06\x62uffer\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x03(\r\x12\r\n\x05\x64type\x18\x03 \x01(\t\"g\n\x0cNdArrayProto\x12*\n\x05\x64\x65nse\x18\x01 \x01(\x0b\x32\x1b.docarray.DenseNdArrayProto\x12+\n\nparameters\x18\x02 \x01(\x0b\x32\x17.google.protobuf.Struct\"\xe7\x01\n\tNodeProto\x12\x0e\n\x04\x62lob\x18\x01 \x01(\x0cH\x00\x12)\n\x07ndarray\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x0e\n\x04text\x18\x03 \x01(\tH\x00\x12+\n\x08\x64ocument\x18\x04 \x01(\x0b\x32\x17.docarray.DocumentProtoH\x00\x12\x36\n\x0e\x64ocument_array\x18\x05 \x01(\x0b\x32\x1c.docarray.DocumentArrayProtoH\x00\x12\x0e\n\x04type\x18\x06 \x01(\tH\x01\x42\t\n\x07\x63ontentB\x0f\n\rdocarray_type\"\x82\x01\n\rDocumentProto\x12/\n\x04\x64\x61ta\x18\x01 \x03(\x0b\x32!.docarray.DocumentProto.DataEntry\x1a@\n\tDataEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\"\n\x05value\x18\x02 \x01(\x0b\x32\x13.docarray.NodeProto:\x02\x38\x01\";\n\x12\x44ocumentArrayProto\x12%\n\x04\x64ocs\x18\x01 \x03(\x0b\x32\x17.docarray.DocumentProto\"\x86\x01\n\x0fUnionArrayProto\x12=\n\x0e\x64ocument_array\x18\x01 \x01(\x0b\x32#.docarray.DocumentArrayStackedProtoH\x00\x12)\n\x07ndarray\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x42\t\n\x07\x63ontent\"\xd6\x01\n\x19\x44ocumentArrayStackedProto\x12+\n\x05list_\x18\x01 \x01(\x0b\x32\x1c.docarray.DocumentArrayProto\x12\x41\n\x07\x63olumns\x18\x02 \x03(\x0b\x32\x30.docarray.DocumentArrayStackedProto.ColumnsEntry\x1aI\n\x0c\x43olumnsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12(\n\x05value\x18\x02 \x01(\x0b\x32\x19.docarray.UnionArrayProto:\x02\x38\x01\x62\x06proto3' ) _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'docarray_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _DOCUMENTPROTO_DATAENTRY._options = None _DOCUMENTPROTO_DATAENTRY._serialized_options = b'8\001' _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._options = None _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_options = b'8\001' _DENSENDARRAYPROTO._serialized_start = 58 _DENSENDARRAYPROTO._serialized_end = 123 _NDARRAYPROTO._serialized_start = 125 _NDARRAYPROTO._serialized_end = 228 _NODEPROTO._serialized_start = 231 _NODEPROTO._serialized_end = 462 _DOCUMENTPROTO._serialized_start = 465 _DOCUMENTPROTO._serialized_end = 595 _DOCUMENTPROTO_DATAENTRY._serialized_start = 531 _DOCUMENTPROTO_DATAENTRY._serialized_end = 595 _DOCUMENTARRAYPROTO._serialized_start = 597 _DOCUMENTARRAYPROTO._serialized_end = 656 _UNIONARRAYPROTO._serialized_start = 659 _UNIONARRAYPROTO._serialized_end = 793 _DOCUMENTARRAYSTACKEDPROTO._serialized_start = 796 _DOCUMENTARRAYSTACKEDPROTO._serialized_end = 1010 _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_start = 937 _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_end = 1010 # @@protoc_insertion_point(module_scope)
_base_ = './cascade-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './cascade_rcnn_r50_fpn_lsj_200e_8x8_fp16_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
""" This script downloads the parallel sentences corpus and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The parallel sentences corpus is a crawl of transcripts from talks, which are translated to 100+ languages. The parallel sentences corpus cannot be downloaded automatically. It is available for research purposes only (CC-BY-NC). The training procedure can be found in the files make_multilingual.py. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import csv import gzip import os from tqdm.autonotebook import tqdm import sentence_transformers.util source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to dev_sentences = 1000 # Number of sentences we want to use for development download_url = "https://sbert.net/datasets/parallel-sentences.tsv.gz" # Specify parallel sentences URL here parallel_sentences_path = "../datasets/parallel-sentences.tsv.gz" # Path of the parallel-sentences.tsv.gz file. parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(parallel_sentences_path), exist_ok=True) if not os.path.exists(parallel_sentences_path): print("parallel-sentences.tsv.gz does not exists. Try to download from server") sentence_transformers.util.http_get(download_url, parallel_sentences_path) os.makedirs(parallel_sentences_folder, exist_ok=True) train_files = [] dev_files = [] files_to_create = [] for source_lang in source_languages: for target_lang in target_languages: output_filename_train = os.path.join( parallel_sentences_folder, "talks-{}-{}-train.tsv.gz".format(source_lang, target_lang) ) output_filename_dev = os.path.join( parallel_sentences_folder, "talks-{}-{}-dev.tsv.gz".format(source_lang, target_lang) ) train_files.append(output_filename_train) dev_files.append(output_filename_dev) if not os.path.exists(output_filename_train) or not os.path.exists(output_filename_dev): files_to_create.append( { "src_lang": source_lang, "trg_lang": target_lang, "fTrain": gzip.open(output_filename_train, "wt", encoding="utf8"), "fDev": gzip.open(output_filename_dev, "wt", encoding="utf8"), "devCount": 0, } ) if len(files_to_create) > 0: print( "Parallel sentences files {} do not exist. Create these files now".format( ", ".join(map(lambda x: x["src_lang"] + "-" + x["trg_lang"], files_to_create)) ) ) with gzip.open(parallel_sentences_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for line in tqdm(reader, desc="Sentences"): for outfile in files_to_create: src_text = line[outfile["src_lang"]].strip() trg_text = line[outfile["trg_lang"]].strip() if src_text != "" and trg_text != "": if outfile["devCount"] < dev_sentences: outfile["devCount"] += 1 fOut = outfile["fDev"] else: fOut = outfile["fTrain"] fOut.write("{}\t{}\n".format(src_text, trg_text)) for outfile in files_to_create: outfile["fTrain"].close() outfile["fDev"].close() print("---DONE---")
""" This script downloads the parallel sentences corpus and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The parallel sentences corpus is a crawl of transcripts from talks, which are translated to 100+ languages. The parallel sentences corpus cannot be downloaded automatically. It is available for research purposes only (CC-BY-NC). The training procedure can be found in the files make_multilingual.py. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import os import sentence_transformers.util import gzip import csv from tqdm.autonotebook import tqdm source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to dev_sentences = 1000 # Number of sentences we want to use for development download_url = "https://sbert.net/datasets/parallel-sentences.tsv.gz" # Specify parallel sentences URL here parallel_sentences_path = "../datasets/parallel-sentences.tsv.gz" # Path of the parallel-sentences.tsv.gz file. parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(parallel_sentences_path), exist_ok=True) if not os.path.exists(parallel_sentences_path): print("parallel-sentences.tsv.gz does not exists. Try to download from server") sentence_transformers.util.http_get(download_url, parallel_sentences_path) os.makedirs(parallel_sentences_folder, exist_ok=True) train_files = [] dev_files = [] files_to_create = [] for source_lang in source_languages: for target_lang in target_languages: output_filename_train = os.path.join( parallel_sentences_folder, "talks-{}-{}-train.tsv.gz".format(source_lang, target_lang) ) output_filename_dev = os.path.join( parallel_sentences_folder, "talks-{}-{}-dev.tsv.gz".format(source_lang, target_lang) ) train_files.append(output_filename_train) dev_files.append(output_filename_dev) if not os.path.exists(output_filename_train) or not os.path.exists(output_filename_dev): files_to_create.append( { "src_lang": source_lang, "trg_lang": target_lang, "fTrain": gzip.open(output_filename_train, "wt", encoding="utf8"), "fDev": gzip.open(output_filename_dev, "wt", encoding="utf8"), "devCount": 0, } ) if len(files_to_create) > 0: print( "Parallel sentences files {} do not exist. Create these files now".format( ", ".join(map(lambda x: x["src_lang"] + "-" + x["trg_lang"], files_to_create)) ) ) with gzip.open(parallel_sentences_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for line in tqdm(reader, desc="Sentences"): for outfile in files_to_create: src_text = line[outfile["src_lang"]].strip() trg_text = line[outfile["trg_lang"]].strip() if src_text != "" and trg_text != "": if outfile["devCount"] < dev_sentences: outfile["devCount"] += 1 fOut = outfile["fDev"] else: fOut = outfile["fTrain"] fOut.write("{}\t{}\n".format(src_text, trg_text)) for outfile in files_to_create: outfile["fTrain"].close() outfile["fDev"].close() print("---DONE---")
from ..extension import _load_library try: _load_library("gpu_decoder") _HAS_GPU_VIDEO_DECODER = True except (ImportError, OSError): _HAS_GPU_VIDEO_DECODER = False
from ..extension import _load_library try: _load_library("Decoder") _HAS_GPU_VIDEO_DECODER = True except (ImportError, OSError): _HAS_GPU_VIDEO_DECODER = False
"""Utilities for JSON Schema.""" from __future__ import annotations from copy import deepcopy from typing import TYPE_CHECKING, Any, Optional if TYPE_CHECKING: from collections.abc import Sequence def _retrieve_ref(path: str, schema: dict) -> dict: components = path.split("/") if components[0] != "#": msg = ( "ref paths are expected to be URI fragments, meaning they should start " "with #." ) raise ValueError(msg) out = schema for component in components[1:]: if component in out: out = out[component] elif component.isdigit() and int(component) in out: out = out[int(component)] else: msg = f"Reference '{path}' not found." raise KeyError(msg) return deepcopy(out) def _dereference_refs_helper( obj: Any, full_schema: dict[str, Any], skip_keys: Sequence[str], processed_refs: Optional[set[str]] = None, ) -> Any: if processed_refs is None: processed_refs = set() if isinstance(obj, dict): obj_out = {} for k, v in obj.items(): if k in skip_keys: obj_out[k] = v elif k == "$ref": if v in processed_refs: continue processed_refs.add(v) ref = _retrieve_ref(v, full_schema) full_ref = _dereference_refs_helper( ref, full_schema, skip_keys, processed_refs ) processed_refs.remove(v) return full_ref elif isinstance(v, (list, dict)): obj_out[k] = _dereference_refs_helper( v, full_schema, skip_keys, processed_refs ) else: obj_out[k] = v return obj_out if isinstance(obj, list): return [ _dereference_refs_helper(el, full_schema, skip_keys, processed_refs) for el in obj ] return obj def _infer_skip_keys( obj: Any, full_schema: dict, processed_refs: Optional[set[str]] = None ) -> list[str]: if processed_refs is None: processed_refs = set() keys = [] if isinstance(obj, dict): for k, v in obj.items(): if k == "$ref": if v in processed_refs: continue processed_refs.add(v) ref = _retrieve_ref(v, full_schema) keys.append(v.split("/")[1]) keys += _infer_skip_keys(ref, full_schema, processed_refs) elif isinstance(v, (list, dict)): keys += _infer_skip_keys(v, full_schema, processed_refs) elif isinstance(obj, list): for el in obj: keys += _infer_skip_keys(el, full_schema, processed_refs) return keys def dereference_refs( schema_obj: dict, *, full_schema: Optional[dict] = None, skip_keys: Optional[Sequence[str]] = None, ) -> dict: """Try to substitute $refs in JSON Schema. Args: schema_obj: The schema object to dereference. full_schema: The full schema object. Defaults to None. skip_keys: The keys to skip. Defaults to None. Returns: The dereferenced schema object. """ full_schema = full_schema or schema_obj skip_keys = ( skip_keys if skip_keys is not None else _infer_skip_keys(schema_obj, full_schema) ) return _dereference_refs_helper(schema_obj, full_schema, skip_keys)
"""Utilities for JSON Schema.""" from __future__ import annotations from copy import deepcopy from typing import TYPE_CHECKING, Any, Optional if TYPE_CHECKING: from collections.abc import Sequence def _retrieve_ref(path: str, schema: dict) -> dict: components = path.split("/") if components[0] != "#": msg = ( "ref paths are expected to be URI fragments, meaning they should start " "with #." ) raise ValueError(msg) out = schema for component in components[1:]: if component in out: out = out[component] elif component.isdigit() and int(component) in out: out = out[int(component)] else: msg = f"Reference '{path}' not found." raise KeyError(msg) return deepcopy(out) def _dereference_refs_helper( obj: Any, full_schema: dict[str, Any], skip_keys: Sequence[str], processed_refs: Optional[set[str]] = None, ) -> Any: if processed_refs is None: processed_refs = set() if isinstance(obj, dict): obj_out = {} for k, v in obj.items(): if k in skip_keys: obj_out[k] = v elif k == "$ref": if v in processed_refs: continue processed_refs.add(v) ref = _retrieve_ref(v, full_schema) full_ref = _dereference_refs_helper( ref, full_schema, skip_keys, processed_refs ) processed_refs.remove(v) return full_ref elif isinstance(v, (list, dict)): obj_out[k] = _dereference_refs_helper( v, full_schema, skip_keys, processed_refs ) else: obj_out[k] = v return obj_out elif isinstance(obj, list): return [ _dereference_refs_helper(el, full_schema, skip_keys, processed_refs) for el in obj ] else: return obj def _infer_skip_keys( obj: Any, full_schema: dict, processed_refs: Optional[set[str]] = None ) -> list[str]: if processed_refs is None: processed_refs = set() keys = [] if isinstance(obj, dict): for k, v in obj.items(): if k == "$ref": if v in processed_refs: continue processed_refs.add(v) ref = _retrieve_ref(v, full_schema) keys.append(v.split("/")[1]) keys += _infer_skip_keys(ref, full_schema, processed_refs) elif isinstance(v, (list, dict)): keys += _infer_skip_keys(v, full_schema, processed_refs) elif isinstance(obj, list): for el in obj: keys += _infer_skip_keys(el, full_schema, processed_refs) return keys def dereference_refs( schema_obj: dict, *, full_schema: Optional[dict] = None, skip_keys: Optional[Sequence[str]] = None, ) -> dict: """Try to substitute $refs in JSON Schema. Args: schema_obj: The schema object to dereference. full_schema: The full schema object. Defaults to None. skip_keys: The keys to skip. Defaults to None. Returns: The dereferenced schema object. """ full_schema = full_schema or schema_obj skip_keys = ( skip_keys if skip_keys is not None else _infer_skip_keys(schema_obj, full_schema) ) return _dereference_refs_helper(schema_obj, full_schema, skip_keys)
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. TSDAE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_tsdae_from_file.py path/to/sentences.txt """ import gzip import logging import sys from datetime import datetime import tqdm from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, SentenceTransformer, datasets, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Train Parameters model_name = "bert-base-uncased" batch_size = 8 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_tsdae{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("{} train sentences".format(len(train_sentences))) ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name) # Apply **cls** pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls") model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train and evaluate the model (it needs about 1 hour for one epoch of AskUbuntu) ################# # We wrap our training sentences in the DenoisingAutoEncoderDataset to add deletion noise on the fly train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, scheduler="constantlr", optimizer_params={"lr": 3e-5}, show_progress_bar=True, checkpoint_path=model_output_path, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. TSDAE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_tsdae_from_file.py path/to/sentences.txt """ from sentence_transformers import SentenceTransformer, LoggingHandler from sentence_transformers import models, datasets, losses import logging import gzip from torch.utils.data import DataLoader from datetime import datetime import sys import tqdm #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Train Parameters model_name = 'bert-base-uncased' batch_size = 8 #Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = '' if len(sys.argv) >= 3: output_name = "-"+sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = 'output/train_tsdae{}-{}'.format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, 'rt', encoding='utf8') if filepath.endswith('.gz') else open(filepath, encoding='utf8') as fIn: for line in tqdm.tqdm(fIn, desc='Read file'): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("{} train sentences".format(len(train_sentences))) ################# Intialize an SBERT model ################# word_embedding_model = models.Transformer(model_name) # Apply **cls** pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls') model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train and evaluate the model (it needs about 1 hour for one epoch of AskUbuntu) ################# # We wrap our training sentences in the DenoisingAutoEncoderDataset to add deletion noise on the fly train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, scheduler='constantlr', optimizer_params={'lr': 3e-5}, show_progress_bar=True, checkpoint_path=model_output_path, use_amp=False #Set to True, if your GPU supports FP16 cores )
import torch from torch import Tensor def sgd_out_of_place(param, grad, weight_decay, lr, maximize) -> Tensor: """ Computes a single step of SGD on a single parameter Tensor with grad. Assumes: - param and grad are the same shape and are 1D. - param and grad are float and on CPU Args: param: a 1D tensor of floats grad: a 1D tensor of floats weight_decay: a python double between 0 and 1 lr: a python double Returns: a 1D float Tensor the same shape as param """ return torch.ops.libtorch_agnostic.sgd_out_of_place.default( param, grad, weight_decay, lr, maximize ) def identity(t) -> Tensor: """ Returns the input tensor Args: t: any Tensor Returns: a Tensor, the same as input. """ return torch.ops.libtorch_agnostic.identity.default(t) def my_abs(t) -> Tensor: """ Returns abs on the input tensor, outputs a new Tensor Args: t: any Tensor Returns: a Tensor """ return torch.ops.libtorch_agnostic.my_abs.default(t) def my_ones_like(tensor, device) -> Tensor: """ Returns a new Tensor like the input tensor, but with all ones Args: tensor: any Tensor device: a device string Returns: a ones Tensor with the same dtype and shape and other attributes like the input tensor """ return torch.ops.libtorch_agnostic.my_ones_like.default(tensor, device) def exp_neg_is_leaf(t1, t2, t3) -> tuple[Tensor, Tensor, bool]: """ Returns a Tensor, Tensor, bool tuple corresponding to the respective inputs t1, t2, and t3. Args: t1: Tensor t2: Tensor t3: Tensor Returns: (exp(t1), neg(t2), is_leaf(t3)) """ return torch.ops.libtorch_agnostic.exp_neg_is_leaf.default(t1, t2, t3) def neg_exp(t) -> Tensor: """ Returns a Tensor composing neg of exp Args: t: Tensor Returns: neg(exp(t)) """ return torch.ops.libtorch_agnostic.neg_exp.default(t) def divide_neg_exp(t) -> Tensor: """ Returns a Tensor division of neg and exp Args: t: Tensor Returns: divide(neg(t), exp(t)) """ return torch.ops.libtorch_agnostic.divide_neg_exp.default(t) def is_contiguous(t) -> bool: """ Returns a bool indicating if the input tensor is contiguous Args: t: Tensor Returns: is_contiguous(t) """ return torch.ops.libtorch_agnostic.is_contiguous.default(t)
import torch from torch import Tensor def sgd_out_of_place(param, grad, weight_decay, lr, maximize) -> Tensor: """ Computes a single step of SGD on a single parameter Tensor with grad. Assumes: - param and grad are the same shape and are 1D. - param and grad are float and on CPU Args: param: a 1D tensor of floats grad: a 1D tensor of floats weight_decay: a python double between 0 and 1 lr: a python double Returns: a 1D float Tensor the same shape as param """ return torch.ops.libtorch_agnostic.sgd_out_of_place.default( param, grad, weight_decay, lr, maximize ) def identity(t) -> Tensor: """ Returns the input tensor Args: t: any Tensor Returns: a Tensor, the same as input. """ return torch.ops.libtorch_agnostic.identity.default(t) def my_abs(t) -> Tensor: """ Returns abs on the input tensor, outputs a new Tensor Args: t: any Tensor Returns: a Tensor """ return torch.ops.libtorch_agnostic.my_abs.default(t) def my_ones_like(tensor, device) -> Tensor: """ Returns a new Tensor like the input tensor, but with all ones Args: tensor: any Tensor device: a device string Returns: a ones Tensor with the same dtype and shape and other attributes like the input tensor """ return torch.ops.libtorch_agnostic.my_ones_like.default(tensor, device) def exp_neg_is_leaf(t1, t2, t3) -> tuple[Tensor, Tensor, bool]: """ Returns a Tensor, Tensor, bool tuple corresponding to the respective inputs t1, t2, and t3. Args: t1: Tensor t2: Tensor t3: Tensor Returns: (exp(t1), neg(t2), is_leaf(t3)) """ return torch.ops.libtorch_agnostic.exp_neg_is_leaf.default(t1, t2, t3) def neg_exp(t) -> Tensor: """ Returns a Tensor composing neg of exp Args: t: Tensor Returns: neg(exp(t)) """ return torch.ops.libtorch_agnostic.neg_exp.default(t) def divide_neg_exp(t) -> Tensor: """ Returns a Tensor division of neg and exp Args: t: Tensor Returns: divide(neg(t), exp(t)) """ return torch.ops.libtorch_agnostic.divide_neg_exp.default(t)
from dataclasses import dataclass from typing import Callable, Optional import datasets @dataclass class GeneratorConfig(datasets.BuilderConfig): generator: Optional[Callable] = None gen_kwargs: Optional[dict] = None features: Optional[datasets.Features] = None split: datasets.NamedSplit = datasets.Split.TRAIN def __post_init__(self): super().__post_init__() if self.generator is None: raise ValueError("generator must be specified") if self.gen_kwargs is None: self.gen_kwargs = {} class Generator(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = GeneratorConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=self.config.split, gen_kwargs=self.config.gen_kwargs)] def _generate_examples(self, **gen_kwargs): for idx, ex in enumerate(self.config.generator(**gen_kwargs)): yield idx, ex
from dataclasses import dataclass from typing import Callable, Optional import datasets @dataclass class GeneratorConfig(datasets.BuilderConfig): generator: Optional[Callable] = None gen_kwargs: Optional[dict] = None features: Optional[datasets.Features] = None def __post_init__(self): super().__post_init__() if self.generator is None: raise ValueError("generator must be specified") if self.gen_kwargs is None: self.gen_kwargs = {} class Generator(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = GeneratorConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=self.config.gen_kwargs)] def _generate_examples(self, **gen_kwargs): for idx, ex in enumerate(self.config.generator(**gen_kwargs)): yield idx, ex
_base_ = './fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py' model = dict( data_preprocessor=dict( mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py' model = dict( data_preprocessor=dict( mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
"""Test tool spec.""" from typing import List, Tuple, Union import pytest from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.core.tools.types import ToolMetadata from llama_index.core.workflow import Context class FooSchema(BaseModel): arg1: str arg2: int class BarSchema(BaseModel): arg1: bool class AbcSchema(BaseModel): arg1: str class TestToolSpec(BaseToolSpec): spec_functions: List[Union[str, Tuple[str, str]]] = ["foo", "bar", "abc", "abc_with_ctx"] def foo(self, arg1: str, arg2: int) -> str: """Foo.""" return f"foo {arg1} {arg2}" def bar(self, arg1: bool) -> str: """Bar.""" return f"bar {arg1}" async def afoo(self, arg1: str, arg2: int) -> str: """Afoo.""" return self.foo(arg1=arg1, arg2=arg2) async def abar(self, arg1: bool) -> str: """Abar.""" return self.bar(arg1=arg1) def abc(self, arg1: str) -> str: # NOTE: no docstring return f"bar {arg1}" def abc_with_ctx(self, arg1: str, ctx: Context) -> str: return f"bar {arg1}" def unused_function(self, arg1: str) -> str: return f"unused {arg1}" def test_tool_spec() -> None: """Test tool spec.""" tool_spec = TestToolSpec() # first is foo, second is bar tools = tool_spec.to_tool_list() assert len(tools) == 4 assert tools[0].metadata.name == "foo" assert tools[0].metadata.description == "foo(arg1: str, arg2: int) -> str\nFoo." assert tools[0].fn("hello", 1) == "foo hello 1" assert tools[0].ctx_param_name is None assert not tools[0].requires_context assert tools[1].metadata.name == "bar" assert tools[1].metadata.description == "bar(arg1: bool) -> str\nBar." assert str(tools[1](True)) == "bar True" assert tools[1].ctx_param_name is None assert not tools[1].requires_context assert tools[2].metadata.name == "abc" assert tools[2].metadata.description == "abc(arg1: str) -> str\n" assert tools[2].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"] assert tools[2].ctx_param_name is None assert not tools[2].requires_context assert tools[3].metadata.name == "abc_with_ctx" assert tools[3].metadata.description == "abc_with_ctx(arg1: str) -> str\n" assert tools[3].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"] assert tools[3].ctx_param_name == "ctx" assert tools[3].requires_context # test metadata mapping tools = tool_spec.to_tool_list( func_to_metadata_mapping={ "foo": ToolMetadata( "foo_description", name="foo_name", fn_schema=FooSchema ), } ) assert len(tools) == 4 assert tools[0].metadata.name == "foo_name" assert tools[0].metadata.description == "foo_description" assert tools[0].metadata.fn_schema is not None fn_schema = tools[0].metadata.fn_schema.model_json_schema() print(fn_schema) assert fn_schema["properties"]["arg1"]["type"] == "string" assert fn_schema["properties"]["arg2"]["type"] == "integer" assert tools[1].metadata.name == "bar" assert tools[1].metadata.description == "bar(arg1: bool) -> str\nBar." assert tools[1].metadata.fn_schema is not None fn_schema = tools[1].metadata.fn_schema.model_json_schema() assert fn_schema["properties"]["arg1"]["type"] == "boolean" @pytest.mark.asyncio async def test_tool_spec_async() -> None: """Test async_fn of tool spec.""" tool_spec = TestToolSpec() tools = tool_spec.to_tool_list() assert len(tools) == 4 assert await tools[0].async_fn("hello", 1) == "foo hello 1" assert str(await tools[1].acall(True)) == "bar True" def test_async_patching() -> None: # test sync patching of async function tool_spec = TestToolSpec() tool_spec.spec_functions = ["afoo"] tools = tool_spec.to_tool_list() assert len(tools) == 1 assert tools[0].fn("hello", 1) == "foo hello 1" def test_tool_spec_subset() -> None: """Test tool spec subset.""" tool_spec = TestToolSpec() tools = tool_spec.to_tool_list(spec_functions=["abc"]) assert len(tools) == 1 assert tools[0].metadata.name == "abc" assert tools[0].metadata.description == "abc(arg1: str) -> str\n" assert tools[0].metadata.fn_schema.model_json_schema()["properties"] == AbcSchema.model_json_schema()["properties"]
"""Test tool spec.""" from typing import List, Optional, Tuple, Type, Union import pytest from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.core.tools.types import ToolMetadata class FooSchema(BaseModel): arg1: str arg2: int class BarSchema(BaseModel): arg1: bool class AbcSchema(BaseModel): arg1: str class TestToolSpec(BaseToolSpec): spec_functions: List[Union[str, Tuple[str, str]]] = ["foo", "bar", "abc"] def foo(self, arg1: str, arg2: int) -> str: """Foo.""" return f"foo {arg1} {arg2}" def bar(self, arg1: bool) -> str: """Bar.""" return f"bar {arg1}" async def afoo(self, arg1: str, arg2: int) -> str: """Afoo.""" return self.foo(arg1=arg1, arg2=arg2) async def abar(self, arg1: bool) -> str: """Abar.""" return self.bar(arg1=arg1) def abc(self, arg1: str) -> str: # NOTE: no docstring return f"bar {arg1}" def get_fn_schema_from_fn_name( self, fn_name: str, spec_functions: Optional[List[Union[str, Tuple[str, str]]]] = None, ) -> Type[BaseModel]: """Return map from function name.""" spec_functions = spec_functions or self.spec_functions if fn_name == "foo": return FooSchema elif fn_name == "afoo": return FooSchema elif fn_name == "bar": return BarSchema elif fn_name == "abc": return AbcSchema else: raise ValueError(f"Invalid function name: {fn_name}") def test_tool_spec() -> None: """Test tool spec.""" tool_spec = TestToolSpec() # first is foo, second is bar tools = tool_spec.to_tool_list() assert len(tools) == 3 assert tools[0].metadata.name == "foo" assert tools[0].metadata.description == "foo(arg1: str, arg2: int) -> str\nFoo." assert tools[0].fn("hello", 1) == "foo hello 1" assert tools[1].metadata.name == "bar" assert tools[1].metadata.description == "bar(arg1: bool) -> str\nBar." assert str(tools[1](True)) == "bar True" assert tools[2].metadata.name == "abc" assert tools[2].metadata.description == "abc(arg1: str) -> str\n" assert tools[2].metadata.fn_schema == AbcSchema # test metadata mapping tools = tool_spec.to_tool_list( func_to_metadata_mapping={ "foo": ToolMetadata( "foo_description", name="foo_name", fn_schema=FooSchema ), } ) assert len(tools) == 3 assert tools[0].metadata.name == "foo_name" assert tools[0].metadata.description == "foo_description" assert tools[0].metadata.fn_schema is not None fn_schema = tools[0].metadata.fn_schema.model_json_schema() print(fn_schema) assert fn_schema["properties"]["arg1"]["type"] == "string" assert fn_schema["properties"]["arg2"]["type"] == "integer" assert tools[1].metadata.name == "bar" assert tools[1].metadata.description == "bar(arg1: bool) -> str\nBar." assert tools[1].metadata.fn_schema is not None fn_schema = tools[1].metadata.fn_schema.model_json_schema() assert fn_schema["properties"]["arg1"]["type"] == "boolean" @pytest.mark.asyncio async def test_tool_spec_async() -> None: """Test async_fn of tool spec.""" tool_spec = TestToolSpec() tools = tool_spec.to_tool_list() assert len(tools) == 3 assert await tools[0].async_fn("hello", 1) == "foo hello 1" assert str(await tools[1].acall(True)) == "bar True" def test_async_patching() -> None: # test sync patching of async function tool_spec = TestToolSpec() tool_spec.spec_functions = ["afoo"] tools = tool_spec.to_tool_list() assert len(tools) == 1 assert tools[0].fn("hello", 1) == "foo hello 1" def test_tool_spec_schema() -> None: """Test tool spec schemas match.""" tool_spec = TestToolSpec() # first is foo, second is bar schema1 = tool_spec.get_fn_schema_from_fn_name("foo") assert schema1 == FooSchema schema2 = tool_spec.get_fn_schema_from_fn_name("bar") assert schema2 == BarSchema def test_tool_spec_subset() -> None: """Test tool spec subset.""" tool_spec = TestToolSpec() tools = tool_spec.to_tool_list(spec_functions=["abc"]) assert len(tools) == 1 assert tools[0].metadata.name == "abc" assert tools[0].metadata.description == "abc(arg1: str) -> str\n" assert tools[0].metadata.fn_schema == AbcSchema
"""This modules defines all kinds of exceptions raised in Jina.""" from typing import Set, Union import grpc.aio from jina.serve.helper import extract_trailing_metadata class BaseJinaException(BaseException): """A base class for all exceptions raised by Jina""" class RuntimeFailToStart(SystemError, BaseJinaException): """When pod/deployment is failed to started.""" class RuntimeTerminated(KeyboardInterrupt, BaseJinaException): """The event loop of BasePod ends.""" class FlowTopologyError(Exception, BaseJinaException): """Flow exception when the topology is ambiguous.""" class FlowMissingDeploymentError(Exception, BaseJinaException): """Flow exception when a deployment can not be found in the flow.""" class FlowBuildLevelError(Exception, BaseJinaException): """Flow exception when required build level is higher than the current build level.""" class BadConfigSource(FileNotFoundError, BaseJinaException): """The yaml config file is bad, not loadable or not exist.""" class BadServerFlow(Exception, BaseJinaException): """A wrongly defined Flow on the server side""" class BadClient(Exception, BaseJinaException): """A wrongly defined client, can not communicate with jina server correctly.""" class BadServer(Exception, BaseJinaException): """Error happens on the server side.""" class BadClientCallback(BadClient, BaseJinaException): """Error in the callback function on the client side.""" class BadClientInput(BadClient, BaseJinaException): """Error in the request generator function on the client side.""" class BadRequestType(TypeError, BaseJinaException): """Exception when can not construct a request object from given data.""" class BadImageNameError(Exception, BaseJinaException): """Exception when an image name can not be found either local & remote""" class BadYAMLVersion(Exception, BaseJinaException): """Exception when YAML config specifies a wrong version number.""" class NotSupportedError(Exception, BaseJinaException): """Exception when user accidentally using a retired argument.""" class RuntimeRunForeverEarlyError(Exception, BaseJinaException): """Raised when an error occurs when starting the run_forever of Runtime""" class DockerVersionError(SystemError, BaseJinaException): """Raised when the docker version is incompatible""" class NoContainerizedError(Exception, BaseJinaException): """Raised when trying to use non-containerized Executor in K8s or Docker Compose""" class PortAlreadyUsed(RuntimeError, BaseJinaException): """Raised when trying to use a port which is already used""" class EstablishGrpcConnectionError(Exception, BaseJinaException): """Raised when Exception occurs when establishing or resetting gRPC connection""" class InternalNetworkError(grpc.aio.AioRpcError, BaseJinaException): """ Raised when communication between microservices fails. Needed to propagate information about the root cause event, such as request_id and dest_addr. """ def __init__( self, og_exception: grpc.aio.AioRpcError, request_id: str = '', dest_addr: Union[str, Set[str]] = {''}, details: str = '', ): """ :param og_exception: the original exception that caused the network error :param request_id: id of the request that caused the error :param dest_addr: destination (microservice) address(es) of the problematic network call(s) :param details: details of the error """ self.og_exception = og_exception self.request_id = request_id self.dest_addr = dest_addr self._details = details super().__init__( og_exception.code(), og_exception.initial_metadata(), og_exception.trailing_metadata(), self.details(), og_exception.debug_error_string(), ) def __str__(self): return self.details() def __repr__(self): return self.__str__() def code(self): """ :return: error code of this exception """ return self.og_exception.code() def details(self): """ :return: details of this exception """ if self._details: trailing_metadata = extract_trailing_metadata(self.og_exception) if trailing_metadata: return f'{self._details}\n{trailing_metadata}' else: return self._details return self.og_exception.details()
"""This modules defines all kinds of exceptions raised in Jina.""" from typing import Set, Union import grpc.aio class BaseJinaException(BaseException): """A base class for all exceptions raised by Jina""" class RuntimeFailToStart(SystemError, BaseJinaException): """When pod/deployment is failed to started.""" class RuntimeTerminated(KeyboardInterrupt, BaseJinaException): """The event loop of BasePod ends.""" class FlowTopologyError(Exception, BaseJinaException): """Flow exception when the topology is ambiguous.""" class FlowMissingDeploymentError(Exception, BaseJinaException): """Flow exception when a deployment can not be found in the flow.""" class FlowBuildLevelError(Exception, BaseJinaException): """Flow exception when required build level is higher than the current build level.""" class BadConfigSource(FileNotFoundError, BaseJinaException): """The yaml config file is bad, not loadable or not exist.""" class BadServerFlow(Exception, BaseJinaException): """A wrongly defined Flow on the server side""" class BadClient(Exception, BaseJinaException): """A wrongly defined client, can not communicate with jina server correctly.""" class BadServer(Exception, BaseJinaException): """Error happens on the server side.""" class BadClientCallback(BadClient, BaseJinaException): """Error in the callback function on the client side.""" class BadClientInput(BadClient, BaseJinaException): """Error in the request generator function on the client side.""" class BadRequestType(TypeError, BaseJinaException): """Exception when can not construct a request object from given data.""" class BadImageNameError(Exception, BaseJinaException): """Exception when an image name can not be found either local & remote""" class BadYAMLVersion(Exception, BaseJinaException): """Exception when YAML config specifies a wrong version number.""" class NotSupportedError(Exception, BaseJinaException): """Exception when user accidentally using a retired argument.""" class RuntimeRunForeverEarlyError(Exception, BaseJinaException): """Raised when an error occurs when starting the run_forever of Runtime""" class DockerVersionError(SystemError, BaseJinaException): """Raised when the docker version is incompatible""" class NoContainerizedError(Exception, BaseJinaException): """Raised when trying to use non-containerized Executor in K8s or Docker Compose""" class PortAlreadyUsed(RuntimeError, BaseJinaException): """Raised when trying to use a port which is already used""" class EstablishGrpcConnectionError(Exception, BaseJinaException): """Raised when Exception occurs when establishing or resetting gRPC connection""" class InternalNetworkError(grpc.aio.AioRpcError, BaseJinaException): """ Raised when communication between microservices fails. Needed to propagate information about the root cause event, such as request_id and dest_addr. """ def __init__( self, og_exception: grpc.aio.AioRpcError, request_id: str = '', dest_addr: Union[str, Set[str]] = {''}, details: str = '', ): """ :param og_exception: the original exception that caused the network error :param request_id: id of the request that caused the error :param dest_addr: destination (microservice) address(es) of the problematic network call(s) :param details: details of the error """ self.og_exception = og_exception self.request_id = request_id self.dest_addr = dest_addr self._details = details super().__init__( og_exception.code(), og_exception.initial_metadata(), og_exception.trailing_metadata(), self.details(), og_exception.debug_error_string(), ) def __str__(self): return self.details() def __repr__(self): return self.__str__() def code(self): """ :return: error code of this exception """ return self.og_exception.code() def details(self): """ :return: details of this exception """ return self._details if self._details else self.og_exception.details()
"""Loads Microsoft Excel files.""" from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredXMLLoader(UnstructuredFileLoader): """Load `XML` file using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredXMLLoader loader = UnstructuredXMLLoader( "example.xml", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-xml """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): file_path = str(file_path) validate_unstructured_version(min_unstructured_version="0.6.7") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.xml import partition_xml return partition_xml(filename=self.file_path, **self.unstructured_kwargs)
"""Loads Microsoft Excel files.""" from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredXMLLoader(UnstructuredFileLoader): """Load `XML` file using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredXMLLoader loader = UnstructuredXMLLoader( "example.xml", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-xml """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): file_path = str(file_path) validate_unstructured_version(min_unstructured_version="0.6.7") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.xml import partition_xml return partition_xml(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type]
"""Documents module. **Document** module is a collection of classes that handle documents and their transformations. """ from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from .base import Document from .compressor import BaseDocumentCompressor from .transformers import BaseDocumentTransformer __all__ = ("BaseDocumentCompressor", "BaseDocumentTransformer", "Document") _dynamic_imports = { "Document": "base", "BaseDocumentCompressor": "compressor", "BaseDocumentTransformer": "transformers", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Documents module. **Document** module is a collection of classes that handle documents and their transformations. """ from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from .base import Document from .compressor import BaseDocumentCompressor from .transformers import BaseDocumentTransformer __all__ = ("Document", "BaseDocumentTransformer", "BaseDocumentCompressor") _dynamic_imports = { "Document": "base", "BaseDocumentCompressor": "compressor", "BaseDocumentTransformer": "transformers", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
# Copyright (c) OpenMMLab. All rights reserved. from .base_data_element import BaseDataElement from .base_data_sample import BaseDataSample from .sampler import DefaultSampler, InfiniteSampler __all__ = [ 'BaseDataElement', 'BaseDataSample', 'DefaultSampler', 'InfiniteSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .sampler import DefaultSampler, InfiniteSampler __all__ = ['DefaultSampler', 'InfiniteSampler']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.roi_heads.mask_heads import FCNMaskHead, MaskIoUHead from .utils import _dummy_bbox_sampling def test_mask_head_loss(): """Test mask head loss when mask target is empty.""" self = FCNMaskHead( num_convs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, num_classes=8) # Dummy proposals proposal_list = [ torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]), ] gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels) # create dummy mask import numpy as np from mmdet.core import BitmapMasks dummy_mask = np.random.randint(0, 2, (1, 160, 240), dtype=np.uint8) gt_masks = [BitmapMasks(dummy_mask, 160, 240)] # create dummy train_cfg train_cfg = mmcv.Config(dict(mask_size=12, mask_thr_binary=0.5)) # Create dummy features "extracted" for each sampled bbox num_sampled = sum(len(res.bboxes) for res in sampling_results) dummy_feats = torch.rand(num_sampled, 8, 6, 6) mask_pred = self.forward(dummy_feats) mask_targets = self.get_targets(sampling_results, gt_masks, train_cfg) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) loss_mask = self.loss(mask_pred, mask_targets, pos_labels) onegt_mask_loss = sum(loss_mask['loss_mask']) assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' # test mask_iou_head mask_iou_head = MaskIoUHead( num_convs=1, num_fcs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, fc_out_channels=8, num_classes=8) pos_mask_pred = mask_pred[range(mask_pred.size(0)), pos_labels] mask_iou_pred = mask_iou_head(dummy_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_targets = mask_iou_head.get_targets(sampling_results, gt_masks, pos_mask_pred, mask_targets, train_cfg) loss_mask_iou = mask_iou_head.loss(pos_mask_iou_pred, mask_iou_targets) onegt_mask_iou_loss = loss_mask_iou['loss_mask_iou'].sum() assert onegt_mask_iou_loss.item() >= 0
import mmcv import torch from mmdet.models.roi_heads.mask_heads import FCNMaskHead, MaskIoUHead from .utils import _dummy_bbox_sampling def test_mask_head_loss(): """Test mask head loss when mask target is empty.""" self = FCNMaskHead( num_convs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, num_classes=8) # Dummy proposals proposal_list = [ torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]), ] gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels) # create dummy mask import numpy as np from mmdet.core import BitmapMasks dummy_mask = np.random.randint(0, 2, (1, 160, 240), dtype=np.uint8) gt_masks = [BitmapMasks(dummy_mask, 160, 240)] # create dummy train_cfg train_cfg = mmcv.Config(dict(mask_size=12, mask_thr_binary=0.5)) # Create dummy features "extracted" for each sampled bbox num_sampled = sum(len(res.bboxes) for res in sampling_results) dummy_feats = torch.rand(num_sampled, 8, 6, 6) mask_pred = self.forward(dummy_feats) mask_targets = self.get_targets(sampling_results, gt_masks, train_cfg) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) loss_mask = self.loss(mask_pred, mask_targets, pos_labels) onegt_mask_loss = sum(loss_mask['loss_mask']) assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' # test mask_iou_head mask_iou_head = MaskIoUHead( num_convs=1, num_fcs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, fc_out_channels=8, num_classes=8) pos_mask_pred = mask_pred[range(mask_pred.size(0)), pos_labels] mask_iou_pred = mask_iou_head(dummy_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_targets = mask_iou_head.get_targets(sampling_results, gt_masks, pos_mask_pred, mask_targets, train_cfg) loss_mask_iou = mask_iou_head.loss(pos_mask_iou_pred, mask_iou_targets) onegt_mask_iou_loss = loss_mask_iou['loss_mask_iou'].sum() assert onegt_mask_iou_loss.item() >= 0
# Copyright (c) OpenMMLab. All rights reserved. from .lr_scheduler import (ConstantLR, CosineAnnealingLR, ExponentialLR, LinearLR, MultiStepLR, PolyLR, StepLR) from .momentum_scheduler import (ConstantMomentum, CosineAnnealingMomentum, ExponentialMomentum, LinearMomentum, MultiStepMomentum, PolyMomentum, StepMomentum) from .param_scheduler import (ConstantParamScheduler, CosineAnnealingParamScheduler, ExponentialParamScheduler, LinearParamScheduler, MultiStepParamScheduler, PolyParamScheduler, StepParamScheduler, _ParamScheduler) __all__ = [ 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'PolyParamScheduler', 'PolyLR', 'PolyMomentum' ]
# Copyright (c) OpenMMLab. All rights reserved. from .lr_scheduler import (ConstantLR, CosineAnnealingLR, ExponentialLR, LinearLR, MultiStepLR, StepLR) from .momentum_scheduler import (ConstantMomentum, CosineAnnealingMomentum, ExponentialMomentum, LinearMomentum, MultiStepMomentum, StepMomentum) from .param_scheduler import (ConstantParamScheduler, CosineAnnealingParamScheduler, ExponentialParamScheduler, LinearParamScheduler, MultiStepParamScheduler, StepParamScheduler, _ParamScheduler) __all__ = [ 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_dataset import BaseDataset, Compose, force_full_init from .dataset_wrapper import ClassBalancedDataset, ConcatDataset, RepeatDataset from .sampler import DefaultSampler, InfiniteSampler from .utils import pseudo_collate, worker_init_fn __all__ = [ 'BaseDataset', 'Compose', 'force_full_init', 'ClassBalancedDataset', 'ConcatDataset', 'RepeatDataset', 'DefaultSampler', 'InfiniteSampler', 'worker_init_fn', 'pseudo_collate' ]
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .base_dataset import BaseDataset, Compose, force_full_init from .dataset_wrapper import ClassBalancedDataset, ConcatDataset, RepeatDataset
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=4, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=4, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
from __future__ import annotations from typing_extensions import deprecated from sentence_transformers import InputExample from sentence_transformers.cross_encoder.evaluation.CEClassificationEvaluator import CEClassificationEvaluator @deprecated( "This evaluator has been deprecated in favor of the more general CEClassificationEvaluator. " "Please use CEClassificationEvaluator instead, which supports both binary and multi-class " "evaluation. It accepts approximately the same inputs as this evaluator." ) class CESoftmaxAccuracyEvaluator(CEClassificationEvaluator): """ This evaluator has been deprecated in favor of the more general CEClassificationEvaluator. """ @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs)
from __future__ import annotations import csv import logging import os import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CESoftmaxAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 2 or more outputs. It measure the accuracy of the predict class vs. the gold labels. """ def __init__(self, sentence_pairs: list[list[str]], labels: list[int], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.csv_file = "CESoftmaxAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = f" after epoch {epoch}:" else: out_txt = f" in epoch {epoch} after {steps} steps:" else: out_txt = ":" logger.info("CESoftmaxAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = np.argmax(pred_scores, axis=1) assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info(f"Accuracy: {acc * 100:.2f}") if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='ImageTensorFlowTensor') @_register_proto(proto_type_name='image_tensorflow_tensor') class ImageTensorFlowTensor( TensorFlowTensor, AbstractImageTensor, metaclass=metaTensorFlow ): """ Subclass of [`TensorFlowTensor`][docarray.typing.TensorFlowTensor], to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTensorFlowTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTensorFlowTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor, metaTensorFlow T = TypeVar('T', bound='ImageTensorFlowTensor') @_register_proto(proto_type_name='image_tensorflow_tensor') class ImageTensorFlowTensor( TensorFlowTensor, AbstractImageTensor, metaclass=metaTensorFlow ): """ Subclass of TensorFlowTensor, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTensorFlowTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTensorFlowTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
"""All minimum dependencies for scikit-learn.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse from collections import defaultdict # scipy and cython should by in sync with pyproject.toml NUMPY_MIN_VERSION = "1.22.0" SCIPY_MIN_VERSION = "1.8.0" JOBLIB_MIN_VERSION = "1.2.0" THREADPOOLCTL_MIN_VERSION = "3.1.0" PYTEST_MIN_VERSION = "7.1.2" CYTHON_MIN_VERSION = "3.0.10" # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma separated tags) dependent_packages = { "numpy": (NUMPY_MIN_VERSION, "build, install"), "scipy": (SCIPY_MIN_VERSION, "build, install"), "joblib": (JOBLIB_MIN_VERSION, "install"), "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"), "cython": (CYTHON_MIN_VERSION, "build"), "meson-python": ("0.16.0", "build"), "matplotlib": ("3.5.0", "benchmark, docs, examples, tests"), "scikit-image": ("0.19.0", "docs, examples, tests"), "pandas": ("1.4.0", "benchmark, docs, examples, tests"), "seaborn": ("0.9.0", "docs, examples"), "memory_profiler": ("0.57.0", "benchmark, docs"), "pytest": (PYTEST_MIN_VERSION, "tests"), "pytest-cov": ("2.9.0", "tests"), "ruff": ("0.5.1", "tests"), "black": ("24.3.0", "tests"), "mypy": ("1.9", "tests"), "pyamg": ("5.0.0", "tests"), "polars": ("0.20.30", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("7.3.7", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), "sphinx-gallery": ("0.17.1", "docs"), "numpydoc": ("1.2.0", "docs, tests"), "Pillow": ("8.4.0", "docs"), "pooch": ("1.6.0", "docs, examples, tests"), "sphinx-prompt": ("1.4.0", "docs"), "sphinxext-opengraph": ("0.9.1", "docs"), "plotly": ("5.14.0", "docs, examples"), "sphinxcontrib-sass": ("0.3.4", "docs"), "sphinx-remove-toctrees": ("1.0.0.post1", "docs"), "sphinx-design": ("0.6.0", "docs"), "pydata-sphinx-theme": ("0.15.3", "docs"), "towncrier": ("24.8.0", "docs"), # XXX: Pin conda-lock to the latest released version (needs manual update # from time to time) "conda-lock": ("2.5.7", "maintenance"), } # create inverse mapping for setuptools tag_to_packages: dict = defaultdict(list) for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(", "): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get min dependencies for a package") parser.add_argument("package", choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
"""All minimum dependencies for scikit-learn.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse from collections import defaultdict # scipy and cython should by in sync with pyproject.toml NUMPY_MIN_VERSION = "1.19.5" SCIPY_MIN_VERSION = "1.6.0" JOBLIB_MIN_VERSION = "1.2.0" THREADPOOLCTL_MIN_VERSION = "3.1.0" PYTEST_MIN_VERSION = "7.1.2" CYTHON_MIN_VERSION = "3.0.10" # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma separated tags) dependent_packages = { "numpy": (NUMPY_MIN_VERSION, "build, install"), "scipy": (SCIPY_MIN_VERSION, "build, install"), "joblib": (JOBLIB_MIN_VERSION, "install"), "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"), "cython": (CYTHON_MIN_VERSION, "build"), "meson-python": ("0.16.0", "build"), "matplotlib": ("3.3.4", "benchmark, docs, examples, tests"), "scikit-image": ("0.17.2", "docs, examples, tests"), "pandas": ("1.2.0", "benchmark, docs, examples, tests"), "seaborn": ("0.9.0", "docs, examples"), "memory_profiler": ("0.57.0", "benchmark, docs"), "pytest": (PYTEST_MIN_VERSION, "tests"), "pytest-cov": ("2.9.0", "tests"), "ruff": ("0.5.1", "tests"), "black": ("24.3.0", "tests"), "mypy": ("1.9", "tests"), "pyamg": ("4.0.0", "tests"), "polars": ("0.20.30", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("7.3.7", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), "sphinx-gallery": ("0.17.1", "docs"), "numpydoc": ("1.2.0", "docs, tests"), "Pillow": ("7.1.2", "docs"), "pooch": ("1.6.0", "docs, examples, tests"), "sphinx-prompt": ("1.4.0", "docs"), "sphinxext-opengraph": ("0.9.1", "docs"), "plotly": ("5.14.0", "docs, examples"), "sphinxcontrib-sass": ("0.3.4", "docs"), "sphinx-remove-toctrees": ("1.0.0.post1", "docs"), "sphinx-design": ("0.6.0", "docs"), "pydata-sphinx-theme": ("0.15.3", "docs"), "towncrier": ("24.8.0", "docs"), # XXX: Pin conda-lock to the latest released version (needs manual update # from time to time) "conda-lock": ("2.5.7", "maintenance"), } # create inverse mapping for setuptools tag_to_packages: dict = defaultdict(list) for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(", "): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get min dependencies for a package") parser.add_argument("package", choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
"""Toolkit for interacting with a vector store.""" from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit from langchain_core.vectorstores import VectorStore from pydantic import BaseModel, ConfigDict, Field class VectorStoreInfo(BaseModel): """Information about a VectorStore.""" vectorstore: VectorStore = Field(exclude=True) name: str description: str model_config = ConfigDict( arbitrary_types_allowed=True, ) class VectorStoreToolkit(BaseToolkit): """Toolkit for interacting with a Vector Store.""" vectorstore_info: VectorStoreInfo = Field(exclude=True) llm: BaseLanguageModel model_config = ConfigDict( arbitrary_types_allowed=True, ) def get_tools(self) -> list[BaseTool]: """Get the tools in the toolkit.""" try: from langchain_community.tools.vectorstore.tool import ( VectorStoreQATool, VectorStoreQAWithSourcesTool, ) except ImportError: raise ImportError( "You need to install langchain-community to use this toolkit." ) description = VectorStoreQATool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_tool = VectorStoreQATool( name=self.vectorstore_info.name, description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) description = VectorStoreQAWithSourcesTool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_with_sources_tool = VectorStoreQAWithSourcesTool( name=f"{self.vectorstore_info.name}_with_sources", description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) return [qa_tool, qa_with_sources_tool] class VectorStoreRouterToolkit(BaseToolkit): """Toolkit for routing between Vector Stores.""" vectorstores: list[VectorStoreInfo] = Field(exclude=True) llm: BaseLanguageModel model_config = ConfigDict( arbitrary_types_allowed=True, ) def get_tools(self) -> list[BaseTool]: """Get the tools in the toolkit.""" tools: list[BaseTool] = [] try: from langchain_community.tools.vectorstore.tool import ( VectorStoreQATool, ) except ImportError: raise ImportError( "You need to install langchain-community to use this toolkit." ) for vectorstore_info in self.vectorstores: description = VectorStoreQATool.get_description( vectorstore_info.name, vectorstore_info.description ) qa_tool = VectorStoreQATool( name=vectorstore_info.name, description=description, vectorstore=vectorstore_info.vectorstore, llm=self.llm, ) tools.append(qa_tool) return tools
"""Toolkit for interacting with a vector store.""" from typing import List from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit from langchain_core.vectorstores import VectorStore from pydantic import BaseModel, ConfigDict, Field class VectorStoreInfo(BaseModel): """Information about a VectorStore.""" vectorstore: VectorStore = Field(exclude=True) name: str description: str model_config = ConfigDict( arbitrary_types_allowed=True, ) class VectorStoreToolkit(BaseToolkit): """Toolkit for interacting with a Vector Store.""" vectorstore_info: VectorStoreInfo = Field(exclude=True) llm: BaseLanguageModel model_config = ConfigDict( arbitrary_types_allowed=True, ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" try: from langchain_community.tools.vectorstore.tool import ( VectorStoreQATool, VectorStoreQAWithSourcesTool, ) except ImportError: raise ImportError( "You need to install langchain-community to use this toolkit." ) description = VectorStoreQATool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_tool = VectorStoreQATool( name=self.vectorstore_info.name, description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) description = VectorStoreQAWithSourcesTool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_with_sources_tool = VectorStoreQAWithSourcesTool( name=f"{self.vectorstore_info.name}_with_sources", description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) return [qa_tool, qa_with_sources_tool] class VectorStoreRouterToolkit(BaseToolkit): """Toolkit for routing between Vector Stores.""" vectorstores: List[VectorStoreInfo] = Field(exclude=True) llm: BaseLanguageModel model_config = ConfigDict( arbitrary_types_allowed=True, ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools: List[BaseTool] = [] try: from langchain_community.tools.vectorstore.tool import ( VectorStoreQATool, ) except ImportError: raise ImportError( "You need to install langchain-community to use this toolkit." ) for vectorstore_info in self.vectorstores: description = VectorStoreQATool.get_description( vectorstore_info.name, vectorstore_info.description ) qa_tool = VectorStoreQATool( name=vectorstore_info.name, description=description, vectorstore=vectorstore_info.vectorstore, llm=self.llm, ) tools.append(qa_tool) return tools
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components and prompt values. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate """ # noqa: E501 from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.prompts.base import ( BasePromptTemplate, aformat_document, format_document, ) from langchain_core.prompts.chat import ( AIMessagePromptTemplate, BaseChatPromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.prompts.dict import DictPromptTemplate from langchain_core.prompts.few_shot import ( FewShotChatMessagePromptTemplate, FewShotPromptTemplate, ) from langchain_core.prompts.few_shot_with_templates import ( FewShotPromptWithTemplates, ) from langchain_core.prompts.loading import load_prompt from langchain_core.prompts.pipeline import PipelinePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( StringPromptTemplate, check_valid_template, get_template_variables, jinja2_formatter, validate_jinja2, ) __all__ = ( "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "DictPromptTemplate", "FewShotChatMessagePromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "aformat_document", "check_valid_template", "format_document", "get_template_variables", "jinja2_formatter", "load_prompt", "validate_jinja2", ) _dynamic_imports = { "BasePromptTemplate": "base", "format_document": "base", "aformat_document": "base", "AIMessagePromptTemplate": "chat", "BaseChatPromptTemplate": "chat", "ChatMessagePromptTemplate": "chat", "ChatPromptTemplate": "chat", "DictPromptTemplate": "dict", "HumanMessagePromptTemplate": "chat", "MessagesPlaceholder": "chat", "SystemMessagePromptTemplate": "chat", "FewShotChatMessagePromptTemplate": "few_shot", "FewShotPromptTemplate": "few_shot", "FewShotPromptWithTemplates": "few_shot_with_templates", "load_prompt": "loading", "PipelinePromptTemplate": "pipeline", "PromptTemplate": "prompt", "StringPromptTemplate": "string", "check_valid_template": "string", "get_template_variables": "string", "jinja2_formatter": "string", "validate_jinja2": "string", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components and prompt values. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate """ # noqa: E501 from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.prompts.base import ( BasePromptTemplate, aformat_document, format_document, ) from langchain_core.prompts.chat import ( AIMessagePromptTemplate, BaseChatPromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.prompts.dict import DictPromptTemplate from langchain_core.prompts.few_shot import ( FewShotChatMessagePromptTemplate, FewShotPromptTemplate, ) from langchain_core.prompts.few_shot_with_templates import ( FewShotPromptWithTemplates, ) from langchain_core.prompts.loading import load_prompt from langchain_core.prompts.pipeline import PipelinePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( StringPromptTemplate, check_valid_template, get_template_variables, jinja2_formatter, validate_jinja2, ) __all__ = ( "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "DictPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "format_document", "aformat_document", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ) _dynamic_imports = { "BasePromptTemplate": "base", "format_document": "base", "aformat_document": "base", "AIMessagePromptTemplate": "chat", "BaseChatPromptTemplate": "chat", "ChatMessagePromptTemplate": "chat", "ChatPromptTemplate": "chat", "DictPromptTemplate": "dict", "HumanMessagePromptTemplate": "chat", "MessagesPlaceholder": "chat", "SystemMessagePromptTemplate": "chat", "FewShotChatMessagePromptTemplate": "few_shot", "FewShotPromptTemplate": "few_shot", "FewShotPromptWithTemplates": "few_shot_with_templates", "load_prompt": "loading", "PipelinePromptTemplate": "pipeline", "PromptTemplate": "prompt", "StringPromptTemplate": "string", "check_valid_template": "string", "get_template_variables": "string", "jinja2_formatter": "string", "validate_jinja2": "string", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
from typing import Dict, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim): """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(CoSENTLoss, self).__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self): return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
import torch from torch import nn, Tensor from typing import Iterable, Dict from ..SentenceTransformer import SentenceTransformer from .. import util class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim): """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. :param model: SentenceTransformerModel :param similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. :param scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, losses from sentence_transformers.readers import InputExample model = SentenceTransformer('bert-base-uncased') train_examples = [InputExample(texts=['My first sentence', 'My second sentence'], label=1.0), InputExample(texts=['My third sentence', 'Unrelated sentence'], label=0.3)] train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CoSENTLoss(model=model) """ super(CoSENTLoss, self).__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self): return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__}
from docarray import DocumentArray from jina import Executor, requests from jina.parsers import set_pod_parser class ProcessExecutor(Executor): @requests(on='/') def process(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = doc.text + 'world' doc.tags['processed'] = True def _validate_dummy_custom_gateway_response(port, expected): import requests resp = requests.get(f'http://127.0.0.1:{port}/').json() assert resp == expected def _validate_custom_gateway_process(port, text, expected): import requests resp = requests.get(f'http://127.0.0.1:{port}/stream?text={text}').json() assert resp == expected # set_pod_parser returns a parser for worker runtime, which expects list of ports (because external executors # can provide multiple ports and hosts). However this parser is not compatible with ContainerPod, Pod and worker runtime. # Should we add a seperate parser for Pod? def _generate_pod_args(cli_split: list = []): args = set_pod_parser().parse_args(cli_split) args.host = args.host[0] args.port_monitoring = args.port_monitoring[0] return args
from docarray import DocumentArray from jina import Executor, requests from jina.parsers import set_pod_parser class ProcessExecutor(Executor): @requests(on='/') def process(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = doc.text + 'world' doc.tags['processed'] = True def _validate_dummy_custom_gateway_response(port, expected): import requests resp = requests.get(f'http://127.0.0.1:{port}/').json() assert resp == expected def _validate_custom_gateway_process(port, text, expected): import requests resp = requests.get(f'http://127.0.0.1:{port}/stream?text={text}').json() assert resp == expected # set_pod_parser returns a parser for worker runtime, which expects list of ports (because external executors # can provide multiple ports and hosts). However this parser is not compatible with ContainerPod, Pod and worker runtime. # Should we add a seperate parser for Pod? def _generate_pod_args(cli_split: list = []): args = set_pod_parser().parse_args(cli_split) args.host = args.host[0] args.port = args.port[0] args.port_monitoring = args.port_monitoring[0] return args
# Copyright (c) OpenMMLab. All rights reserved. from .csp_darknet import CSPDarknet from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .efficientnet import EfficientNet from .hourglass import HourglassNet from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .pvt import PyramidVisionTransformer, PyramidVisionTransformerV2 from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .swin import SwinTransformer from .trident_resnet import TridentResNet __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet', 'SwinTransformer', 'PyramidVisionTransformer', 'PyramidVisionTransformerV2', 'EfficientNet' ]
# Copyright (c) OpenMMLab. All rights reserved. from .csp_darknet import CSPDarknet from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .hourglass import HourglassNet from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .pvt import PyramidVisionTransformer, PyramidVisionTransformerV2 from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .swin import SwinTransformer from .trident_resnet import TridentResNet __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet', 'SwinTransformer', 'PyramidVisionTransformer', 'PyramidVisionTransformerV2' ]
from docarray import BaseDoc from docarray.typing import ID def test_set_id(): class MyDocument(BaseDoc): id: ID d = MyDocument(id="123") assert isinstance(d.id, ID) assert d.id == "123"
from docarray import BaseDoc from docarray.typing import ID def test_set_id(): class MyDocument(BaseDoc): id: ID d = MyDocument(id="123") assert isinstance(d.id, ID) assert d.id == "123"
import multiprocessing import socket import sys from threading import Thread import numpy as np import pytest import xgboost as xgb from xgboost import RabitTracker, build_info, federated from xgboost import testing as tm def run_rabit_worker(rabit_env, world_size): with xgb.collective.CommunicatorContext(**rabit_env): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == socket.gethostname() ret = xgb.collective.broadcast("test1234", 0) assert str(ret) == "test1234" ret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(ret, np.asarray([2, 4, 6])) def test_rabit_communicator() -> None: world_size = 2 tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size) tracker.start() workers = [] for _ in range(world_size): worker = multiprocessing.Process( target=run_rabit_worker, args=(tracker.worker_args(), world_size) ) workers.append(worker) worker.start() for worker in workers: worker.join() assert worker.exitcode == 0 def run_federated_worker(port: int, world_size: int, rank: int) -> None: with xgb.collective.CommunicatorContext( dmlc_communicator="federated", federated_server_address=f"localhost:{port}", federated_world_size=world_size, federated_rank=rank, ): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == f"rank:{rank}" bret = xgb.collective.broadcast("test1234", 0) assert str(bret) == "test1234" aret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(aret, np.asarray([2, 4, 6])) @pytest.mark.skipif(**tm.skip_win()) def test_federated_communicator(): if not build_info()["USE_FEDERATED"]: pytest.skip("XGBoost not built with federated learning enabled") port = 9091 world_size = 2 tracker = multiprocessing.Process( target=federated.run_federated_server, kwargs={"port": port, "n_workers": world_size}, ) tracker.start() if not tracker.is_alive(): raise Exception("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = multiprocessing.Process( target=run_federated_worker, args=(port, world_size, rank) ) workers.append(worker) worker.start() for worker in workers: worker.join() assert worker.exitcode == 0
import multiprocessing import socket import sys import time import numpy as np import pytest import xgboost as xgb from xgboost import RabitTracker, build_info, federated if sys.platform.startswith("win"): pytest.skip("Skipping collective tests on Windows", allow_module_level=True) def run_rabit_worker(rabit_env, world_size): with xgb.collective.CommunicatorContext(**rabit_env): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == socket.gethostname() ret = xgb.collective.broadcast('test1234', 0) assert str(ret) == 'test1234' ret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(ret, np.asarray([2, 4, 6])) def test_rabit_communicator(): world_size = 2 tracker = RabitTracker(host_ip='127.0.0.1', n_workers=world_size) tracker.start(world_size) workers = [] for _ in range(world_size): worker = multiprocessing.Process(target=run_rabit_worker, args=(tracker.worker_envs(), world_size)) workers.append(worker) worker.start() for worker in workers: worker.join() assert worker.exitcode == 0 def run_federated_worker(port, world_size, rank): with xgb.collective.CommunicatorContext(xgboost_communicator='federated', federated_server_address=f'localhost:{port}', federated_world_size=world_size, federated_rank=rank): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == f'rank{rank}' ret = xgb.collective.broadcast('test1234', 0) assert str(ret) == 'test1234' ret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(ret, np.asarray([2, 4, 6])) def test_federated_communicator(): if not build_info()["USE_FEDERATED"]: pytest.skip("XGBoost not built with federated learning enabled") port = 9091 world_size = 2 server = multiprocessing.Process(target=xgb.federated.run_federated_server, args=(port, world_size)) server.start() time.sleep(1) if not server.is_alive(): raise Exception("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = multiprocessing.Process(target=run_federated_worker, args=(port, world_size, rank)) workers.append(worker) worker.start() for worker in workers: worker.join() assert worker.exitcode == 0 server.terminate()
import functools from typing import ( Optional, TYPE_CHECKING, Iterable, Callable, Dict, ) from docarray.array.storage.base.backend import BaseBackendMixin from docarray import Document if TYPE_CHECKING: from docarray.typing import ( DocumentArraySourceType, ) def needs_id2offset_rebuild(func) -> Callable: # self._id2offset needs to be rebuilt after every insert or delete # this flag allows to do it lazily and cache the result @functools.wraps(func) def wrapper(self, *args, **kwargs): self._needs_id2offset_rebuild = True return func(self, *args, **kwargs) return wrapper class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" @property def _id2offset(self) -> Dict[str, int]: """Return the `_id_to_index` map :return: a Python dict. """ if self._needs_id2offset_rebuild: self._rebuild_id2offset() return self._id_to_index def _rebuild_id2offset(self) -> None: """Update the id_to_index map by enumerating all Documents in self._data. Very costy! Only use this function when self._data is dramtically changed. """ self._id_to_index = { d.id: i for i, d in enumerate(self._data) } # type: Dict[str, int] self._needs_id2offset_rebuild = False @needs_id2offset_rebuild def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, copy: bool = False, *args, **kwargs ): from docarray.array.memory import DocumentArrayInMemory super()._init_storage(_docs, copy=copy, *args, **kwargs) self._data = [] self._id_to_index = {} if _docs is None: return elif isinstance( _docs, Iterable, ): if copy: self._data = [Document(d, copy=True) for d in _docs] elif isinstance(_docs, DocumentArrayInMemory): self._data = _docs._data self._id_to_index = _docs._id2offset self._needs_id2offset_rebuild = _docs._needs_id2offset_rebuild else: self.extend(_docs) else: if isinstance(_docs, Document): if copy: self.append(Document(_docs, copy=True)) else: self.append(_docs)
import functools from typing import ( Optional, TYPE_CHECKING, Iterable, Callable, Dict, ) from ..base.backend import BaseBackendMixin from .... import Document if TYPE_CHECKING: from ....typing import ( DocumentArraySourceType, ) def needs_id2offset_rebuild(func) -> Callable: # self._id2offset needs to be rebuilt after every insert or delete # this flag allows to do it lazily and cache the result @functools.wraps(func) def wrapper(self, *args, **kwargs): self._needs_id2offset_rebuild = True return func(self, *args, **kwargs) return wrapper class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" @property def _id2offset(self) -> Dict[str, int]: """Return the `_id_to_index` map :return: a Python dict. """ if self._needs_id2offset_rebuild: self._rebuild_id2offset() return self._id_to_index def _rebuild_id2offset(self) -> None: """Update the id_to_index map by enumerating all Documents in self._data. Very costy! Only use this function when self._data is dramtically changed. """ self._id_to_index = { d.id: i for i, d in enumerate(self._data) } # type: Dict[str, int] self._needs_id2offset_rebuild = False @needs_id2offset_rebuild def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, copy: bool = False, *args, **kwargs ): from docarray.array.memory import DocumentArrayInMemory super()._init_storage(_docs, copy=copy, *args, **kwargs) self._data = [] self._id_to_index = {} if _docs is None: return elif isinstance( _docs, Iterable, ): if copy: self._data = [Document(d, copy=True) for d in _docs] elif isinstance(_docs, DocumentArrayInMemory): self._data = _docs._data self._id_to_index = _docs._id2offset self._needs_id2offset_rebuild = _docs._needs_id2offset_rebuild else: self.extend(_docs) else: if isinstance(_docs, Document): if copy: self.append(Document(_docs, copy=True)) else: self.append(_docs)
from pathlib import Path import pytest from jina import Document, DocumentArray, Executor from jina.excepts import BadDocType from ...vad_speech_segmenter import VADSpeechSegmenter def test_load(): segmenter = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert type(segmenter).__name__ == 'VADSpeechSegmenter' @pytest.mark.parametrize('_type', ['wav', 'mp3', 'blob', '', None]) def test_segment(build_da, segmenter, _type): if _type == '': with pytest.raises( BadDocType, match='doc needs to have either a blob or a wav/mp3 uri' ): segmenter.segment(DocumentArray(Document())) return elif _type is None: segmenter.segment(DocumentArray()) return docs = build_da(_type) segmenter.segment(docs) # assert doc has 4 chunks for doc in docs: assert len(doc.chunks) == 4 file_paths = [ f'doc_{_type}_original.wav', f'chunk_{_type}_0_56500.wav', f'chunk_{_type}_69500_92000.wav', f'chunk_{_type}_94500_213000.wav', f'chunk_{_type}_223500_270500.wav', ] # assert dumped files exist for file_path in file_paths: assert (Path(segmenter.workspace) / f'audio/{file_path}').is_file() # assert exception is raised when doc blob is provided by sample rate is not if _type == 'blob': docs[0].tags.pop('sample_rate') with pytest.raises( BadDocType, match='data is blob but sample rate is not provided' ): segmenter.segment(docs) docs[0].tags['sample_rate'] = 0 with pytest.raises(BadDocType, match='sample rate cannot be 0'): segmenter.segment(docs)
from pathlib import Path import pytest from jina import Executor, DocumentArray, Document from jina.excepts import BadDocType from ...vad_speech_segmenter import VADSpeechSegmenter def test_load(): segmenter = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert type(segmenter).__name__ == 'VADSpeechSegmenter' @pytest.mark.parametrize('_type', ['wav', 'mp3', 'blob', '', None]) def test_segment(build_da, segmenter, _type): if _type == '': with pytest.raises( BadDocType, match='doc needs to have either a blob or a wav/mp3 uri' ): segmenter.segment(DocumentArray(Document())) return elif _type is None: segmenter.segment(DocumentArray()) return docs = build_da(_type) segmenter.segment(docs) # assert doc has 4 chunks for doc in docs: assert len(doc.chunks) == 4 file_paths = [ f'doc_{_type}_original.wav', f'chunk_{_type}_0_56500.wav', f'chunk_{_type}_69500_92000.wav', f'chunk_{_type}_94500_213000.wav', f'chunk_{_type}_223500_270500.wav', ] # assert dumped files exist for file_path in file_paths: assert (Path(segmenter.workspace) / f'audio/{file_path}').is_file() # assert exception is raised when doc blob is provided by sample rate is not if _type == 'blob': docs[0].tags.pop('sample_rate') with pytest.raises( BadDocType, match='data is blob but sample rate is not provided' ): segmenter.segment(docs) docs[0].tags['sample_rate'] = 0 with pytest.raises(BadDocType, match='sample rate cannot be 0'): segmenter.segment(docs)
from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.helper import ( _access_path_dict_to_nested_dict, _access_path_to_dict, _dict_to_access_paths, _is_access_path_valid, _update_nested_dicts, get_paths, ) @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] da: DocumentArray[Inner] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())), da=DocumentArray[Inner]([Inner(img=ImageDoc(url='test.png'))]), ) return doc def test_is_access_path_valid(nested_doc): assert _is_access_path_valid(nested_doc.__class__, 'img') assert _is_access_path_valid(nested_doc.__class__, 'middle__img') assert _is_access_path_valid(nested_doc.__class__, 'middle__inner__img') assert _is_access_path_valid(nested_doc.__class__, 'middle') assert _is_access_path_valid(nested_doc.__class__, 'da__img__url') def test_is_access_path_not_valid(nested_doc): assert not _is_access_path_valid(nested_doc.__class__, 'inner') assert not _is_access_path_valid(nested_doc.__class__, 'some__other__path') assert not _is_access_path_valid(nested_doc.__class__, 'middle.inner') def test_get_access_paths(): class Painting(BaseDocument): title: str img: ImageDoc access_paths = Painting._get_access_paths() assert access_paths == [ 'id', 'title', 'img__id', 'img__url', 'img__tensor', 'img__embedding', 'img__bytes_', ] def test_dict_to_access_paths(): d = { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } casted = _dict_to_access_paths(d) assert casted == { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } def test_access_path_to_dict(): access_path = 'a__b__c__d__e' value = 1 result = {'a': {'b': {'c': {'d': {'e': value}}}}} assert _access_path_to_dict(access_path, value) == result def test_access_path_dict_to_nested_dict(): d = { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } casted = _access_path_dict_to_nested_dict(d) assert casted == { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } def test_update_nested_dict(): d1 = {'text': 'hello', 'image': {'tensor': None}} d2 = {'image': {'url': 'some.png'}} _update_nested_dicts(d1, d2) assert d1 == {'text': 'hello', 'image': {'tensor': None, 'url': 'some.png'}} def test_get_paths(): paths = list(get_paths(patterns='*.py')) for path in paths: assert path.endswith('.py') def test_get_paths_recursive(): paths_rec = list(get_paths(patterns='**', recursive=True)) paths_not_rec = list(get_paths(patterns='**', recursive=False)) assert len(paths_rec) > len(paths_not_rec) def test_get_paths_exclude(): paths = list(get_paths(patterns='*.py')) paths_wo_init = list(get_paths(patterns='*.py', exclude_regex='__init__.[a-z]*')) assert len(paths_wo_init) <= len(paths) assert '__init__.py' not in paths_wo_init
from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.helper import ( _access_path_dict_to_nested_dict, _access_path_to_dict, _dict_to_access_paths, _is_access_path_valid, _update_nested_dicts, ) @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] da: DocumentArray[Inner] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())), da=DocumentArray[Inner]([Inner(img=ImageDoc(url='test.png'))]), ) return doc def test_is_access_path_valid(nested_doc): assert _is_access_path_valid(nested_doc.__class__, 'img') assert _is_access_path_valid(nested_doc.__class__, 'middle__img') assert _is_access_path_valid(nested_doc.__class__, 'middle__inner__img') assert _is_access_path_valid(nested_doc.__class__, 'middle') assert _is_access_path_valid(nested_doc.__class__, 'da__img__url') def test_is_access_path_not_valid(nested_doc): assert not _is_access_path_valid(nested_doc.__class__, 'inner') assert not _is_access_path_valid(nested_doc.__class__, 'some__other__path') assert not _is_access_path_valid(nested_doc.__class__, 'middle.inner') def test_get_access_paths(): class Painting(BaseDocument): title: str img: ImageDoc access_paths = Painting._get_access_paths() assert access_paths == [ 'id', 'title', 'img__id', 'img__url', 'img__tensor', 'img__embedding', 'img__bytes_', ] def test_dict_to_access_paths(): d = { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } casted = _dict_to_access_paths(d) assert casted == { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } def test_access_path_to_dict(): access_path = 'a__b__c__d__e' value = 1 result = {'a': {'b': {'c': {'d': {'e': value}}}}} assert _access_path_to_dict(access_path, value) == result def test_access_path_dict_to_nested_dict(): d = { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } casted = _access_path_dict_to_nested_dict(d) assert casted == { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } def test_update_nested_dict(): d1 = {'text': 'hello', 'image': {'tensor': None}} d2 = {'image': {'url': 'some.png'}} _update_nested_dicts(d1, d2) assert d1 == {'text': 'hello', 'image': {'tensor': None, 'url': 'some.png'}}
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formating import (Collect, DefaultFormatBundle, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .instaboost import InstaBoost from .loading import (LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug' ]
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formating import (Collect, DefaultFormatBundle, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .instaboost import InstaBoost from .loading import (LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine' ]
""" ========================= Tensor transforms and JIT ========================= .. note:: Try on `collab <https://colab.research.google.com/github/pytorch/vision/blob/gh-pages/main/_generated_ipynb_notebooks/plot_scripted_tensor_transforms.ipynb>`_ or :ref:`go to the end <sphx_glr_download_auto_examples_others_plot_scripted_tensor_transforms.py>` to download the full example code. This example illustrates various features that are now supported by the :ref:`image transformations <transforms>` on Tensor images. In particular, we show how image transforms can be performed on GPU, and how one can also script them using JIT compilation. Prior to v0.8.0, transforms in torchvision have traditionally been PIL-centric and presented multiple limitations due to that. Now, since v0.8.0, transforms implementations are Tensor and PIL compatible, and we can achieve the following new features: - transform multi-band torch tensor images (with more than 3-4 channels) - torchscript transforms together with your model for deployment - support for GPU acceleration - batched transformation such as for videos - read and decode data directly as torch tensor with torchscript support (for PNG and JPEG image formats) .. note:: These features are only possible with **Tensor** images. """ from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch import torchvision.transforms as T from torchvision.io import read_image plt.rcParams["savefig.bbox"] = 'tight' torch.manual_seed(1) def show(imgs): fix, axs = plt.subplots(ncols=len(imgs), squeeze=False) for i, img in enumerate(imgs): img = T.ToPILImage()(img.to('cpu')) axs[0, i].imshow(np.asarray(img)) axs[0, i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[]) # %% # The :func:`~torchvision.io.read_image` function allows to read an image and # directly load it as a tensor dog1 = read_image(str(Path('../assets') / 'dog1.jpg')) dog2 = read_image(str(Path('../assets') / 'dog2.jpg')) show([dog1, dog2]) # %% # Transforming images on GPU # -------------------------- # Most transforms natively support tensors on top of PIL images (to visualize # the effect of the transforms, you may refer to see # :ref:`sphx_glr_auto_examples_others_plot_transforms.py`). # Using tensor images, we can run the transforms on GPUs if cuda is available! import torch.nn as nn transforms = torch.nn.Sequential( T.RandomCrop(224), T.RandomHorizontalFlip(p=0.3), ) device = 'cuda' if torch.cuda.is_available() else 'cpu' dog1 = dog1.to(device) dog2 = dog2.to(device) transformed_dog1 = transforms(dog1) transformed_dog2 = transforms(dog2) show([transformed_dog1, transformed_dog2]) # %% # Scriptable transforms for easier deployment via torchscript # ----------------------------------------------------------- # We now show how to combine image transformations and a model forward pass, # while using ``torch.jit.script`` to obtain a single scripted module. # # Let's define a ``Predictor`` module that transforms the input tensor and then # applies an ImageNet model on it. from torchvision.models import resnet18, ResNet18_Weights class Predictor(nn.Module): def __init__(self): super().__init__() weights = ResNet18_Weights.DEFAULT self.resnet18 = resnet18(weights=weights, progress=False).eval() self.transforms = weights.transforms() def forward(self, x: torch.Tensor) -> torch.Tensor: with torch.no_grad(): x = self.transforms(x) y_pred = self.resnet18(x) return y_pred.argmax(dim=1) # %% # Now, let's define scripted and non-scripted instances of ``Predictor`` and # apply it on multiple tensor images of the same size predictor = Predictor().to(device) scripted_predictor = torch.jit.script(predictor).to(device) batch = torch.stack([dog1, dog2]).to(device) res = predictor(batch) res_scripted = scripted_predictor(batch) # %% # We can verify that the prediction of the scripted and non-scripted models are # the same: import json with open(Path('../assets') / 'imagenet_class_index.json') as labels_file: labels = json.load(labels_file) for i, (pred, pred_scripted) in enumerate(zip(res, res_scripted)): assert pred == pred_scripted print(f"Prediction for Dog {i + 1}: {labels[str(pred.item())]}") # %% # Since the model is scripted, it can be easily dumped on disk and re-used import tempfile with tempfile.NamedTemporaryFile() as f: scripted_predictor.save(f.name) dumped_scripted_predictor = torch.jit.load(f.name) res_scripted_dumped = dumped_scripted_predictor(batch) assert (res_scripted_dumped == res_scripted).all()
""" ========================= Tensor transforms and JIT ========================= This example illustrates various features that are now supported by the :ref:`image transformations <transforms>` on Tensor images. In particular, we show how image transforms can be performed on GPU, and how one can also script them using JIT compilation. Prior to v0.8.0, transforms in torchvision have traditionally been PIL-centric and presented multiple limitations due to that. Now, since v0.8.0, transforms implementations are Tensor and PIL compatible, and we can achieve the following new features: - transform multi-band torch tensor images (with more than 3-4 channels) - torchscript transforms together with your model for deployment - support for GPU acceleration - batched transformation such as for videos - read and decode data directly as torch tensor with torchscript support (for PNG and JPEG image formats) .. note:: These features are only possible with **Tensor** images. """ from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch import torchvision.transforms as T from torchvision.io import read_image plt.rcParams["savefig.bbox"] = 'tight' torch.manual_seed(1) def show(imgs): fix, axs = plt.subplots(ncols=len(imgs), squeeze=False) for i, img in enumerate(imgs): img = T.ToPILImage()(img.to('cpu')) axs[0, i].imshow(np.asarray(img)) axs[0, i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[]) # %% # The :func:`~torchvision.io.read_image` function allows to read an image and # directly load it as a tensor dog1 = read_image(str(Path('../assets') / 'dog1.jpg')) dog2 = read_image(str(Path('../assets') / 'dog2.jpg')) show([dog1, dog2]) # %% # Transforming images on GPU # -------------------------- # Most transforms natively support tensors on top of PIL images (to visualize # the effect of the transforms, you may refer to see # :ref:`sphx_glr_auto_examples_others_plot_transforms.py`). # Using tensor images, we can run the transforms on GPUs if cuda is available! import torch.nn as nn transforms = torch.nn.Sequential( T.RandomCrop(224), T.RandomHorizontalFlip(p=0.3), ) device = 'cuda' if torch.cuda.is_available() else 'cpu' dog1 = dog1.to(device) dog2 = dog2.to(device) transformed_dog1 = transforms(dog1) transformed_dog2 = transforms(dog2) show([transformed_dog1, transformed_dog2]) # %% # Scriptable transforms for easier deployment via torchscript # ----------------------------------------------------------- # We now show how to combine image transformations and a model forward pass, # while using ``torch.jit.script`` to obtain a single scripted module. # # Let's define a ``Predictor`` module that transforms the input tensor and then # applies an ImageNet model on it. from torchvision.models import resnet18, ResNet18_Weights class Predictor(nn.Module): def __init__(self): super().__init__() weights = ResNet18_Weights.DEFAULT self.resnet18 = resnet18(weights=weights, progress=False).eval() self.transforms = weights.transforms() def forward(self, x: torch.Tensor) -> torch.Tensor: with torch.no_grad(): x = self.transforms(x) y_pred = self.resnet18(x) return y_pred.argmax(dim=1) # %% # Now, let's define scripted and non-scripted instances of ``Predictor`` and # apply it on multiple tensor images of the same size predictor = Predictor().to(device) scripted_predictor = torch.jit.script(predictor).to(device) batch = torch.stack([dog1, dog2]).to(device) res = predictor(batch) res_scripted = scripted_predictor(batch) # %% # We can verify that the prediction of the scripted and non-scripted models are # the same: import json with open(Path('../assets') / 'imagenet_class_index.json') as labels_file: labels = json.load(labels_file) for i, (pred, pred_scripted) in enumerate(zip(res, res_scripted)): assert pred == pred_scripted print(f"Prediction for Dog {i + 1}: {labels[str(pred.item())]}") # %% # Since the model is scripted, it can be easily dumped on disk and re-used import tempfile with tempfile.NamedTemporaryFile() as f: scripted_predictor.save(f.name) dumped_scripted_predictor = torch.jit.load(f.name) res_scripted_dumped = dumped_scripted_predictor(batch) assert (res_scripted_dumped == res_scripted).all()
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import Lumina2Transformer2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class Lumina2Transformer2DModelTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = Lumina2Transformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 # N num_channels = 4 # C height = width = 16 # H, W embedding_dim = 32 # D sequence_length = 16 # L hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.rand(size=(batch_size,)).to(torch_device) attention_mask = torch.ones(size=(batch_size, sequence_length), dtype=torch.bool).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "encoder_attention_mask": attention_mask, } @property def input_shape(self): return (4, 16, 16) @property def output_shape(self): return (4, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 16, "patch_size": 2, "in_channels": 4, "hidden_size": 24, "num_layers": 2, "num_refiner_layers": 1, "num_attention_heads": 3, "num_kv_heads": 1, "multiple_of": 2, "ffn_dim_multiplier": None, "norm_eps": 1e-5, "scaling_factor": 1.0, "axes_dim_rope": (4, 2, 2), "axes_lens": (128, 128, 128), "cap_feat_dim": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"Lumina2Transformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import Lumina2Transformer2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class Lumina2Transformer2DModelTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = Lumina2Transformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 # N num_channels = 4 # C height = width = 16 # H, W embedding_dim = 32 # D sequence_length = 16 # L hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.rand(size=(batch_size,)).to(torch_device) attention_mask = torch.ones(size=(batch_size, sequence_length), dtype=torch.bool).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "attention_mask": attention_mask, } @property def input_shape(self): return (4, 16, 16) @property def output_shape(self): return (4, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 16, "patch_size": 2, "in_channels": 4, "hidden_size": 24, "num_layers": 2, "num_refiner_layers": 1, "num_attention_heads": 3, "num_kv_heads": 1, "multiple_of": 2, "ffn_dim_multiplier": None, "norm_eps": 1e-5, "scaling_factor": 1.0, "axes_dim_rope": (4, 2, 2), "axes_lens": (128, 128, 128), "cap_feat_dim": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"Lumina2Transformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
from typing import Any, Mapping, Optional from llama_index.readers.airbyte_cdk.base import AirbyteCDKReader, RecordHandler class AirbyteGongReader(AirbyteCDKReader): """ AirbyteGongReader reader. Retrieve documents from Gong Args: config: The config object for the gong source. """ def __init__( self, config: Mapping[str, Any], record_handler: Optional[RecordHandler] = None, ) -> None: """Initialize with parameters.""" import source_gong super().__init__( source_class=source_gong.SourceGong, config=config, record_handler=record_handler, )
from typing import Any, Mapping, Optional from llama_index.readers.airbyte_cdk.base import AirbyteCDKReader, RecordHandler class AirbyteGongReader(AirbyteCDKReader): """AirbyteGongReader reader. Retrieve documents from Gong Args: config: The config object for the gong source. """ def __init__( self, config: Mapping[str, Any], record_handler: Optional[RecordHandler] = None, ) -> None: """Initialize with parameters.""" import source_gong super().__init__( source_class=source_gong.SourceGong, config=config, record_handler=record_handler, )
import csv import logging import os from typing import List import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CESoftmaxAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 2 or more outputs. It measure the accuracy of the predict class vs. the gold labels. """ def __init__(self, sentence_pairs: List[List[str]], labels: List[int], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.csv_file = "CESoftmaxAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CESoftmaxAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = np.argmax(pred_scores, axis=1) assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
import logging import os import csv from typing import List from ... import InputExample import numpy as np logger = logging.getLogger(__name__) class CESoftmaxAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 2 or more outputs. It measure the accuracy of the predict class vs. the gold labels. """ def __init__(self, sentence_pairs: List[List[str]], labels: List[int], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.csv_file = "CESoftmaxAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CESoftmaxAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = np.argmax(pred_scores, axis=1) assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
__version__ = '0.16.4' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.16.3' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from docarray import BaseDoc from docarray.typing import AnyEmbedding def test_set_embedding(): class MyDocument(BaseDoc): embedding: AnyEmbedding d = MyDocument(embedding=np.zeros((3, 224, 224))) assert isinstance(d.embedding, np.ndarray) assert (d.embedding == np.zeros((3, 224, 224))).all()
import numpy as np from docarray import BaseDoc from docarray.typing import AnyEmbedding def test_set_embedding(): class MyDocument(BaseDoc): embedding: AnyEmbedding d = MyDocument(embedding=np.zeros((3, 224, 224))) assert isinstance(d.embedding, np.ndarray) assert (d.embedding == np.zeros((3, 224, 224))).all()
__version__ = '0.13.5' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.13.4' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
from typing import Iterable, Dict, Sequence from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayElastic``""" MAX_ES_RETURNED_DOCS = 10000 def _document_to_elastic(self, doc: 'Document') -> Dict: extra_columns = { col: doc.tags.get(col) for col, _ in self._config.columns.items() } request = { '_op_type': 'index', '_id': doc.id, '_index': self._config.index_name, 'embedding': self._map_embedding(doc.embedding), 'blob': doc.to_base64(), **extra_columns, } if self._config.tag_indices: for index in self._config.tag_indices: request[index] = doc.tags.get(index) if doc.text: request['text'] = doc.text return request def _getitem(self, doc_id: str) -> 'Document': """Helper method for getting item with elastic as storage :param doc_id: id of the document :raises KeyError: raise error when elastic id does not exist in storage :return: Document """ try: result = self._client.get(index=self._config.index_name, id=doc_id) doc = Document.from_base64(result['_source']['blob']) return doc except Exception as ex: raise KeyError(doc_id) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from elastic """ return self._getitem(_id) def _get_docs_by_ids(self, ids: Sequence[str]) -> Iterable['Document']: """Concrete implementation of base class' ``_get_docs_by_ids`` :param ids: ids of the document :return: Iterable[Document] """ accumulated_docs = [] accumulated_docs_id_not_found = [] if not ids: return accumulated_docs # Handle if doc len is more than MAX_ES_RETURNED_DOCS for pos in range(0, len(ids), self.MAX_ES_RETURNED_DOCS): es_docs = self._client.mget( index=self._config.index_name, ids=ids[pos : pos + self.MAX_ES_RETURNED_DOCS], )['docs'] for doc in es_docs: if doc['found']: accumulated_docs.append( Document.from_base64(doc['_source']['blob']) ) else: accumulated_docs_id_not_found.append(doc['_id']) if accumulated_docs_id_not_found: raise KeyError(accumulated_docs_id_not_found, accumulated_docs) return accumulated_docs def _set_doc_by_id(self, _id: str, value: 'Document'): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) request = [self._document_to_elastic(value)] self._send_requests(request) self._refresh(self._config.index_name) def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc) self._refresh(self._config.index_name) def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ if self._doc_id_exists(_id): self._client.delete(index=self._config.index_name, id=_id) self._refresh(self._config.index_name) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" self._client.indices.delete(index=self._config.index_name) def _load_offset2ids(self): if self._list_like: ids = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids, list_like=self._list_like) else: self._offset2ids = Offset2ID([], list_like=self._list_like) def _save_offset2ids(self): if self._list_like: self._update_offset2ids_meta()
from typing import Iterable, Dict, Sequence from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayElastic``""" MAX_ES_RETURNED_DOCS = 10000 def _document_to_elastic(self, doc: 'Document') -> Dict: extra_columns = { col: doc.tags.get(col) for col, _ in self._config.columns.items() } request = { '_op_type': 'index', '_id': doc.id, '_index': self._config.index_name, 'embedding': self._map_embedding(doc.embedding), 'blob': doc.to_base64(), **extra_columns, } if self._config.tag_indices: for index in self._config.tag_indices: request[index] = doc.tags.get(index) if doc.text: request['text'] = doc.text return request def _getitem(self, doc_id: str) -> 'Document': """Helper method for getting item with elastic as storage :param doc_id: id of the document :raises KeyError: raise error when elastic id does not exist in storage :return: Document """ try: result = self._client.get(index=self._config.index_name, id=doc_id) doc = Document.from_base64(result['_source']['blob']) return doc except Exception as ex: raise KeyError(doc_id) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from elastic """ return self._getitem(_id) def _get_docs_by_ids(self, ids: Sequence[str]) -> Iterable['Document']: """Concrete implementation of base class' ``_get_docs_by_ids`` :param ids: ids of the document :return: Iterable[Document] """ accumulated_docs = [] accumulated_docs_id_not_found = [] if not ids: return accumulated_docs # Handle if doc len is more than MAX_ES_RETURNED_DOCS for pos in range(0, len(ids), self.MAX_ES_RETURNED_DOCS): es_docs = self._client.mget( index=self._config.index_name, ids=ids[pos : pos + self.MAX_ES_RETURNED_DOCS], )['docs'] for doc in es_docs: if doc['found']: accumulated_docs.append( Document.from_base64(doc['_source']['blob']) ) else: accumulated_docs_id_not_found.append(doc['_id']) if accumulated_docs_id_not_found: raise KeyError(accumulated_docs_id_not_found, accumulated_docs) return accumulated_docs def _set_doc_by_id(self, _id: str, value: 'Document'): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) request = [self._document_to_elastic(value)] self._send_requests(request) self._refresh(self._config.index_name) def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc) self._refresh(self._config.index_name) def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ if self._doc_id_exists(_id): self._client.delete(index=self._config.index_name, id=_id) self._refresh(self._config.index_name) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" self._client.indices.delete(index=self._config.index_name) def _load_offset2ids(self): ids = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids) def _save_offset2ids(self): self._update_offset2ids_meta()
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth' # noqa model = dict( type='LAD', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), # student backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) optim_wrapper = dict(type='AmpOptimWrapper', optimizer=dict(lr=0.01))
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth' # noqa model = dict( type='LAD', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), # student backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) optim_wrapper = dict(type='AmpOptimWrapper', optimizer=dict(lr=0.01)) # TODO: MMEngine does not support fp16 yet. # fp16 = dict(loss_scale=512.)
from contextlib import contextmanager from functools import partial from unittest.mock import patch import torch from parameterized import parameterized from torchaudio._internal.module_utils import is_module_available from torchaudio_unittest.common_utils import skipIfNoModule, TorchaudioTestCase from .utils import MockCustomDataset, MockDataloader, MockSentencePieceProcessor if is_module_available("pytorch_lightning", "sentencepiece"): from asr.emformer_rnnt.tedlium3.lightning import TEDLIUM3RNNTModule class MockTEDLIUM: def __init__(self, *args, **kwargs): pass def __getitem__(self, n: int): return ( torch.rand(1, 32640), 16000, "sup", 2, 3, 4, ) def __len__(self): return 10 @contextmanager def get_lightning_module(): with patch("sentencepiece.SentencePieceProcessor", new=partial(MockSentencePieceProcessor, num_symbols=500)), patch( "asr.emformer_rnnt.tedlium3.lightning.GlobalStatsNormalization", new=torch.nn.Identity ), patch("torchaudio.datasets.TEDLIUM", new=MockTEDLIUM), patch( "asr.emformer_rnnt.tedlium3.lightning.CustomDataset", new=MockCustomDataset ), patch( "torch.utils.data.DataLoader", new=MockDataloader ): yield TEDLIUM3RNNTModule( tedlium_path="tedlium_path", sp_model_path="sp_model_path", global_stats_path="global_stats_path", ) @skipIfNoModule("pytorch_lightning") @skipIfNoModule("sentencepiece") class TestTEDLIUM3RNNTModule(TorchaudioTestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() @parameterized.expand( [ ("training_step", "train_dataloader"), ("validation_step", "val_dataloader"), ("test_step", "test_dataloader"), ] ) def test_step(self, step_fname, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) getattr(lightning_module, step_fname)(batch, 0) @parameterized.expand( [ ("val_dataloader",), ] ) def test_forward(self, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) lightning_module(batch)
from contextlib import contextmanager from functools import partial from unittest.mock import patch import torch from parameterized import parameterized from torchaudio._internal.module_utils import is_module_available from torchaudio_unittest.common_utils import skipIfNoModule, TorchaudioTestCase from .utils import MockCustomDataset, MockDataloader, MockSentencePieceProcessor if is_module_available("pytorch_lightning", "sentencepiece"): from asr.emformer_rnnt.tedlium3.lightning import TEDLIUM3RNNTModule class MockTEDLIUM: def __init__(self, *args, **kwargs): pass def __getitem__(self, n: int): return ( torch.rand(1, 32640), 16000, "sup", 2, 3, 4, ) def __len__(self): return 10 @contextmanager def get_lightning_module(): with patch("sentencepiece.SentencePieceProcessor", new=partial(MockSentencePieceProcessor, num_symbols=500)), patch( "asr.emformer_rnnt.tedlium3.lightning.GlobalStatsNormalization", new=torch.nn.Identity ), patch("torchaudio.datasets.TEDLIUM", new=MockTEDLIUM), patch( "asr.emformer_rnnt.tedlium3.lightning.CustomDataset", new=MockCustomDataset ), patch( "torch.utils.data.DataLoader", new=MockDataloader ): yield TEDLIUM3RNNTModule( tedlium_path="tedlium_path", sp_model_path="sp_model_path", global_stats_path="global_stats_path", ) @skipIfNoModule("pytorch_lightning") @skipIfNoModule("sentencepiece") class TestTEDLIUM3RNNTModule(TorchaudioTestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() torch.random.manual_seed(31) @parameterized.expand( [ ("training_step", "train_dataloader"), ("validation_step", "val_dataloader"), ("test_step", "test_dataloader"), ] ) def test_step(self, step_fname, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) getattr(lightning_module, step_fname)(batch, 0) @parameterized.expand( [ ("val_dataloader",), ] ) def test_forward(self, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) lightning_module(batch)
# Copyright (c) OpenMMLab. All rights reserved. import importlib import os.path as osp import subprocess import pkg_resources from pkg_resources import get_distribution def is_installed(package: str) -> bool: """Check package whether installed. Args: package (str): Name of package to be checked. """ # refresh the pkg_resources # more datails at https://github.com/pypa/setuptools/issues/373 importlib.reload(pkg_resources) try: get_distribution(package) return True except pkg_resources.DistributionNotFound: return False def get_installed_path(package: str) -> str: """Get installed path of package. Args: package (str): Name of package. Example: >>> get_installed_path('mmcls') >>> '.../lib/python3.7/site-packages/mmcls' """ # if the package name is not the same as module name, module name should be # inferred. For example, mmcv-full is the package name, but mmcv is module # name. If we want to get the installed path of mmcv-full, we should concat # the pkg.location and module name pkg = get_distribution(package) possible_path = osp.join(pkg.location, package) if osp.exists(possible_path): return possible_path else: return osp.join(pkg.location, package2module(package)) def package2module(package: str): """Infer module name from package. Args: package (str): Package to infer module name. """ pkg = get_distribution(package) if pkg.has_metadata('top_level.txt'): module_name = pkg.get_metadata('top_level.txt').split('\n')[0] return module_name else: raise ValueError(f'can not infer the module name of {package}') def call_command(cmd: list) -> None: try: subprocess.check_call(cmd) except Exception as e: raise e # type: ignore def install_package(package: str): if not is_installed(package): call_command(['python', '-m', 'pip', 'install', package])
# Copyright (c) OpenMMLab. All rights reserved. import importlib import os.path as osp import subprocess import pkg_resources from pkg_resources import get_distribution def is_installed(package: str) -> bool: """Check package whether installed. Args: package (str): Name of package to be checked. """ # refresh the pkg_resources # more datails at https://github.com/pypa/setuptools/issues/373 importlib.reload(pkg_resources) try: get_distribution(package) return True except pkg_resources.DistributionNotFound: return False def get_installed_path(package: str) -> str: """Get installed path of package. Args: package (str): Name of package. Example: >>> get_installed_path('mmcls') >>> '.../lib/python3.7/site-packages/mmcls' """ # if the package name is not the same as module name, module name should be # inferred. For example, mmcv-full is the package name, but mmcv is module # name. If we want to get the installed path of mmcv-full, we should concat # the pkg.location and module name pkg = get_distribution(package) possible_path = osp.join(pkg.location, package) if osp.exists(possible_path): return possible_path else: return osp.join(pkg.location, package2module(package)) def package2module(package: str): """Infer module name from package. Args: package (str): Package to infer module name. """ pkg = get_distribution(package) if pkg.has_metadata('top_level.txt'): module_name = pkg.get_metadata('top_level.txt').split('\n')[0] return module_name else: raise ValueError(f'can not infer the module name of {package}') def call_command(cmd: list) -> None: try: subprocess.check_call(cmd) except Exception as e: raise e # type: ignore def check_install_package(package: str): if not is_installed(package): call_command(['python', '-m', 'pip', 'install', package])
from typing import Generator, Optional import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc from docarray.typing import ImageUrl, NdArray from docarray.utils.map import map_docs, map_docs_batched from tests.units.typing.test_bytes import IMAGE_PATHS N_DOCS = 2 def load_from_doc(d: ImageDoc) -> ImageDoc: if d.url is not None: d.tensor = d.url.load() return d @pytest.fixture() def da(): da = DocArray[ImageDoc]([ImageDoc(url=IMAGE_PATHS['png']) for _ in range(N_DOCS)]) return da @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map(da, backend): for tensor in da.tensor: assert tensor is None docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for doc in docs: assert doc.tensor is not None def test_map_multiprocessing_lambda_func_raise_exception(da): with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=lambda x: x, backend='process')) def test_map_multiprocessing_local_func_raise_exception(da): def local_func(x): return x with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=local_func, backend='process')) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_check_order(backend): da = DocArray[ImageDoc]([ImageDoc(id=i) for i in range(N_DOCS)]) docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for i, doc in enumerate(docs): assert doc.id == str(i) def load_from_da(da: DocArray) -> DocArray: for doc in da: doc.tensor = doc.url.load() return da class MyImage(BaseDoc): tensor: Optional[NdArray] url: ImageUrl @pytest.mark.slow @pytest.mark.parametrize('n_docs,batch_size', [(10, 5), (10, 8)]) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map_docs_batched(n_docs, batch_size, backend): da = DocArray[MyImage]([MyImage(url=IMAGE_PATHS['png']) for _ in range(n_docs)]) it = map_docs_batched( da=da, func=load_from_da, batch_size=batch_size, backend=backend ) assert isinstance(it, Generator) for batch in it: assert isinstance(batch, DocArray[MyImage])
from typing import Generator, Optional import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc from docarray.typing import ImageUrl, NdArray from docarray.utils.map import map_docs, map_docs_batch from tests.units.typing.test_bytes import IMAGE_PATHS N_DOCS = 2 def load_from_doc(d: ImageDoc) -> ImageDoc: if d.url is not None: d.tensor = d.url.load() return d @pytest.fixture() def da(): da = DocArray[ImageDoc]([ImageDoc(url=IMAGE_PATHS['png']) for _ in range(N_DOCS)]) return da @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map(da, backend): for tensor in da.tensor: assert tensor is None docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for doc in docs: assert doc.tensor is not None def test_map_multiprocessing_lambda_func_raise_exception(da): with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=lambda x: x, backend='process')) def test_map_multiprocessing_local_func_raise_exception(da): def local_func(x): return x with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=local_func, backend='process')) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_check_order(backend): da = DocArray[ImageDoc]([ImageDoc(id=i) for i in range(N_DOCS)]) docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for i, doc in enumerate(docs): assert doc.id == str(i) def load_from_da(da: DocArray) -> DocArray: for doc in da: doc.tensor = doc.url.load() return da class MyImage(BaseDoc): tensor: Optional[NdArray] url: ImageUrl @pytest.mark.slow @pytest.mark.parametrize('n_docs,batch_size', [(10, 5), (10, 8)]) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map_docs_batch(n_docs, batch_size, backend): da = DocArray[MyImage]([MyImage(url=IMAGE_PATHS['png']) for _ in range(n_docs)]) it = map_docs_batch( da=da, func=load_from_da, batch_size=batch_size, backend=backend ) assert isinstance(it, Generator) for batch in it: assert isinstance(batch, DocArray[MyImage])
from typing import Optional from llama_index.core.storage.docstore.keyval_docstore import KVDocumentStore from llama_index.core.storage.docstore.types import DEFAULT_BATCH_SIZE from llama_index.storage.kvstore.elasticsearch import ElasticsearchKVStore class ElasticsearchDocumentStore(KVDocumentStore): """ Elasticsearch Document (Node) store. An Elasticsearch store for Document and Node objects. Args: elasticsearch_kvstore (ElasticsearchKVStore): Elasticsearch key-value store namespace (str): namespace for the docstore """ def __init__( self, elasticsearch_kvstore: ElasticsearchKVStore, namespace: Optional[str] = None, node_collection_index: str = None, ref_doc_collection_index: str = None, metadata_collection_index: str = None, batch_size: int = DEFAULT_BATCH_SIZE, ) -> None: """Init a ElasticsearchDocumentStore.""" super().__init__( elasticsearch_kvstore, namespace=namespace, batch_size=batch_size ) if node_collection_index: self._node_collection = node_collection_index else: self._node_collection = f"llama_index-docstore.data-{self._namespace}" if ref_doc_collection_index: self._ref_doc_collection = ref_doc_collection_index else: self._ref_doc_collection = ( f"llama_index-docstore.ref_doc_info-{self._namespace}" ) if metadata_collection_index: self._metadata_collection = metadata_collection_index else: self._metadata_collection = ( f"llama_index-docstore.metadata-{self._namespace}" )
from typing import Optional from llama_index.core.storage.docstore.keyval_docstore import KVDocumentStore from llama_index.core.storage.docstore.types import DEFAULT_BATCH_SIZE from llama_index.storage.kvstore.elasticsearch import ElasticsearchKVStore class ElasticsearchDocumentStore(KVDocumentStore): """Elasticsearch Document (Node) store. An Elasticsearch store for Document and Node objects. Args: elasticsearch_kvstore (ElasticsearchKVStore): Elasticsearch key-value store namespace (str): namespace for the docstore """ def __init__( self, elasticsearch_kvstore: ElasticsearchKVStore, namespace: Optional[str] = None, node_collection_index: str = None, ref_doc_collection_index: str = None, metadata_collection_index: str = None, batch_size: int = DEFAULT_BATCH_SIZE, ) -> None: """Init a ElasticsearchDocumentStore.""" super().__init__( elasticsearch_kvstore, namespace=namespace, batch_size=batch_size ) if node_collection_index: self._node_collection = node_collection_index else: self._node_collection = f"llama_index-docstore.data-{self._namespace}" if ref_doc_collection_index: self._ref_doc_collection = ref_doc_collection_index else: self._ref_doc_collection = ( f"llama_index-docstore.ref_doc_info-{self._namespace}" ) if metadata_collection_index: self._metadata_collection = metadata_collection_index else: self._metadata_collection = ( f"llama_index-docstore.metadata-{self._namespace}" )
from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="2.8.0.dev0", author="Nils Reimers", author_email="info@nils-reimers.de", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), include_package_data=True, python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", "datasets", "accelerate>=0.20.3", ], extras_require={ "dev": [ "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="2.8.0.dev0", author="Nils Reimers", author_email="info@nils-reimers.de", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], extras_require={ "dev": [ "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.models.roi_heads import StandardRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg class TestCascadeRoIHead(TestCase): @parameterized.expand( ['cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): """Test init standard RoI head.""" # Normal Cascade Mask R-CNN RoI head roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask @parameterized.expand( ['cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py']) def test_cascade_roi_head_loss(self, cfg_file): """Tests standard roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs img_shape_list = [img_meta['img_shape'] for img_meta in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100) packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(s, s, 3)], num_items=[1], num_classes=4, with_mask=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # When there is no truth, the cls loss should be nonzero but # there should be no box and mask loss. proposal_list = demo_mm_proposals(img_shape_list, 100) packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(s, s, 3)], num_items=[0], num_classes=4, with_mask=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss_cls' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') elif 'loss_bbox' in name or 'loss_mask' in name: self.assertEqual(value.sum(), 0)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.data import InstanceData from parameterized import parameterized from mmdet.models.roi_heads import StandardRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, get_detector_cfg def _fake_roi_head(cfg_file): """Set a fake roi head config.""" model = get_detector_cfg(cfg_file) roi_head = model.roi_head rcnn_train_cfg = model.train_cfg.rcnn if model.train_cfg is not None \ else None roi_head.update(train_cfg=rcnn_train_cfg) return roi_head def _fake_proposals(img_metas, proposal_len): """Create a fake proposal list.""" results = [] for i in range(len(img_metas)): result = InstanceData(metainfo=img_metas[i]) proposal = torch.randn(proposal_len, 4).to(device='cuda') result.bboxes = proposal results.append(result) return results class TestCascadeRoIHead(TestCase): @parameterized.expand( ['cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): """Test init standard RoI head.""" # Normal Cascade Mask R-CNN RoI head roi_head_cfg = _fake_roi_head(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask @parameterized.expand( ['cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py']) def test_cascade_roi_head_loss(self, cfg_file): """Tests standard roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = _fake_roi_head(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs proposal_list = _fake_proposals(img_metas, 100) packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(s, s, 3)], num_items=[1], num_classes=4, with_mask=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # When there is no truth, the cls loss should be nonzero but # there should be no box and mask loss. proposal_list = _fake_proposals(img_metas, 100) packed_inputs = demo_mm_inputs( batch_size=1, image_shapes=[(s, s, 3)], num_items=[0], num_classes=4, with_mask=True) batch_data_samples = [] for i in range(len(packed_inputs)): batch_data_samples.append( packed_inputs[i]['data_sample'].to(device='cuda')) out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss_cls' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') elif 'loss_bbox' in name or 'loss_mask' in name: self.assertEqual(value.sum(), 0)
# Copyright (c) OpenMMLab. All rights reserved. import torch from ..builder import BBOX_SAMPLERS from .base_sampler import BaseSampler from .sampling_result import SamplingResult @BBOX_SAMPLERS.register_module() class PseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result, bboxes, gt_bboxes, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Assigned results bboxes (torch.Tensor): Bounding boxes gt_bboxes (torch.Tensor): Ground truth boxes Returns: :obj:`SamplingResult`: sampler results """ pos_inds = torch.nonzero( assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = bboxes.new_zeros(bboxes.shape[0], dtype=torch.uint8) sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags) return sampling_result
import torch from ..builder import BBOX_SAMPLERS from .base_sampler import BaseSampler from .sampling_result import SamplingResult @BBOX_SAMPLERS.register_module() class PseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result, bboxes, gt_bboxes, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Assigned results bboxes (torch.Tensor): Bounding boxes gt_bboxes (torch.Tensor): Ground truth boxes Returns: :obj:`SamplingResult`: sampler results """ pos_inds = torch.nonzero( assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = bboxes.new_zeros(bboxes.shape[0], dtype=torch.uint8) sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags) return sampling_result
# Copyright (c) OpenMMLab. All rights reserved. import warnings import mmcv from ..builder import PIPELINES from .compose import Compose @PIPELINES.register_module() class MultiScaleFlipAug: """Test-time augmentation with multiple scales and flipping. An example configuration is as followed: .. code-block:: img_scale=[(1333, 400), (1333, 800)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed: .. code-block:: dict( img=[...], img_shape=[...], scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] flip=[False, True, False, True] ... ) Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (tuple | list[tuple] | None): Images scales for resizing. scale_factor (float | list[float] | None): Scale factors for resizing. flip (bool): Whether apply flip augmentation. Default: False. flip_direction (str | list[str]): Flip augmentation directions, options are "horizontal", "vertical" and "diagonal". If flip_direction is a list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: "horizontal". """ def __init__(self, transforms, img_scale=None, scale_factor=None, flip=False, flip_direction='horizontal'): self.transforms = Compose(transforms) assert (img_scale is None) ^ (scale_factor is None), ( 'Must have but only one variable can be set') if img_scale is not None: self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] self.scale_key = 'scale' assert mmcv.is_list_of(self.img_scale, tuple) else: self.img_scale = scale_factor if isinstance( scale_factor, list) else [scale_factor] self.scale_key = 'scale_factor' self.flip = flip self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str) if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([t['type'] == 'RandomFlip' for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to apply test time augment transforms on results. Args: results (dict): Result dict contains the data to transform. Returns: dict[str: list]: The augmented data, where each value is wrapped into a list. """ aug_data = [] flip_args = [(False, None)] if self.flip: flip_args += [(True, direction) for direction in self.flip_direction] for scale in self.img_scale: for flip, direction in flip_args: _results = results.copy() _results[self.scale_key] = scale _results['flip'] = flip _results['flip_direction'] = direction data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' repr_str += f'flip_direction={self.flip_direction})' return repr_str
# Copyright (c) OpenMMLab. All rights reserved. import warnings import mmcv from ..builder import PIPELINES from .compose import Compose @PIPELINES.register_module() class MultiScaleFlipAug: """Test-time augmentation with multiple scales and flipping. An example configuration is as followed: .. code-block:: img_scale=[(1333, 400), (1333, 800)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed: .. code-block:: dict( img=[...], img_shape=[...], scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] flip=[False, True, False, True] ... ) Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (tuple | list[tuple] | None): Images scales for resizing. scale_factor (float | list[float] | None): Scale factors for resizing. flip (bool): Whether apply flip augmentation. Default: False. flip_direction (str | list[str]): Flip augmentation directions, options are "horizontal", "vertical" and "diagonal". If flip_direction is a list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: "horizontal". """ def __init__(self, transforms, img_scale=None, scale_factor=None, flip=False, flip_direction='horizontal'): self.transforms = Compose(transforms) assert (img_scale is None) ^ (scale_factor is None), ( 'Must have but only one variable can be setted') if img_scale is not None: self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] self.scale_key = 'scale' assert mmcv.is_list_of(self.img_scale, tuple) else: self.img_scale = scale_factor if isinstance( scale_factor, list) else [scale_factor] self.scale_key = 'scale_factor' self.flip = flip self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str) if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([t['type'] == 'RandomFlip' for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to apply test time augment transforms on results. Args: results (dict): Result dict contains the data to transform. Returns: dict[str: list]: The augmented data, where each value is wrapped into a list. """ aug_data = [] flip_args = [(False, None)] if self.flip: flip_args += [(True, direction) for direction in self.flip_direction] for scale in self.img_scale: for flip, direction in flip_args: _results = results.copy() _results[self.scale_key] = scale _results['flip'] = flip _results['flip_direction'] = direction data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' repr_str += f'flip_direction={self.flip_direction})' return repr_str
from pathlib import Path from typing import Callable, Optional from .folder import ImageFolder from .utils import download_and_extract_archive, verify_str_arg class Country211(ImageFolder): """`The Country211 Data Set <https://github.com/openai/CLIP/blob/main/data/country211.md>`_ from OpenAI. This dataset was built by filtering the images from the YFCC100m dataset that have GPS coordinate corresponding to a ISO-3166 country code. The dataset is balanced by sampling 150 train images, 50 validation images, and 100 test images for each country. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"valid"`` and ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/country211/``. If dataset is already downloaded, it is not downloaded again. """ _URL = "https://openaipublic.azureedge.net/clip/data/country211.tgz" _MD5 = "84988d7644798601126c29e9877aab6a" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "valid", "test")) root = Path(root).expanduser() self.root = str(root) self._base_folder = root / "country211" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") super().__init__(str(self._base_folder / self._split), transform=transform, target_transform=target_transform) self.root = str(root) def _check_exists(self) -> bool: return self._base_folder.exists() and self._base_folder.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
from pathlib import Path from typing import Callable, Optional from .folder import ImageFolder from .utils import download_and_extract_archive, verify_str_arg class Country211(ImageFolder): """`The Country211 Data Set <https://github.com/openai/CLIP/blob/main/data/country211.md>`_ from OpenAI. This dataset was built by filtering the images from the YFCC100m dataset that have GPS coordinate corresponding to a ISO-3166 country code. The dataset is balanced by sampling 150 train images, 50 validation images, and 100 test images for each country. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"valid"`` and ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/country211/``. If dataset is already downloaded, it is not downloaded again. """ _URL = "https://openaipublic.azureedge.net/clip/data/country211.tgz" _MD5 = "84988d7644798601126c29e9877aab6a" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "valid", "test")) root = Path(root).expanduser() self.root = str(root) self._base_folder = root / "country211" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") super().__init__(str(self._base_folder / self._split), transform=transform, target_transform=target_transform) self.root = str(root) def _check_exists(self) -> bool: return self._base_folder.exists() and self._base_folder.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
import os from time import time import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.typing import NdArray from docarray.utils.map import map_docs, map_docs_batched from tests.units.typing.test_bytes import IMAGE_PATHS pytestmark = [pytest.mark.benchmark, pytest.mark.slow] class MyMatrix(BaseDoc): matrix: NdArray def cpu_intensive(doc: MyMatrix) -> MyMatrix: # some cpu intensive function for i in range(3000): sqrt_matrix = np.sqrt(doc.matrix) doc.matrix = sqrt_matrix return doc def test_map_docs_multiprocessing(): if os.cpu_count() > 1: def time_multiprocessing(num_workers: int) -> float: n_docs = 10 rng = np.random.RandomState(0) matrices = [rng.random(size=(100, 100)) for _ in range(n_docs)] da = DocList[MyMatrix]([MyMatrix(matrix=m) for m in matrices]) start_time = time() list( map_docs( docs=da, func=cpu_intensive, backend='process', num_worker=num_workers, ) ) return time() - start_time time_1_cpu = time_multiprocessing(num_workers=1) time_2_cpu = time_multiprocessing(num_workers=2) assert time_2_cpu < time_1_cpu def cpu_intensive_batch(da: DocList[MyMatrix]) -> DocList[MyMatrix]: # some cpu intensive function for doc in da: for i in range(3000): sqrt_matrix = np.sqrt(doc.matrix) doc.matrix = sqrt_matrix return da def test_map_docs_batched_multiprocessing(): if os.cpu_count() > 1: def time_multiprocessing(num_workers: int) -> float: n_docs = 16 rng = np.random.RandomState(0) matrices = [rng.random(size=(100, 100)) for _ in range(n_docs)] da = DocList[MyMatrix]([MyMatrix(matrix=m) for m in matrices]) start_time = time() list( map_docs_batched( docs=da, func=cpu_intensive_batch, batch_size=8, backend='process', num_worker=num_workers, ) ) return time() - start_time time_1_cpu = time_multiprocessing(num_workers=1) time_2_cpu = time_multiprocessing(num_workers=2) assert time_2_cpu < time_1_cpu def io_intensive(img: ImageDoc) -> ImageDoc: # some io intensive function: load and set image url img.tensor = img.url.load() return img def test_map_docs_multithreading(): def time_multithreading(num_workers: int) -> float: n_docs = 100 da = DocList[ImageDoc]( [ImageDoc(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) start_time = time() list( map_docs( docs=da, func=io_intensive, backend='thread', num_worker=num_workers ) ) return time() - start_time time_1_thread = time_multithreading(num_workers=1) time_2_thread = time_multithreading(num_workers=2) assert time_2_thread < time_1_thread def io_intensive_batch(da: DocList[ImageDoc]) -> DocList[ImageDoc]: # some io intensive function: load and set image url for doc in da: doc.tensor = doc.url.load() return da def test_map_docs_batched_multithreading(): def time_multithreading_batch(num_workers: int) -> float: n_docs = 100 da = DocList[ImageDoc]( [ImageDoc(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) start_time = time() list( map_docs_batched( docs=da, func=io_intensive_batch, backend='thread', num_worker=num_workers, batch_size=10, ) ) return time() - start_time time_1_thread = time_multithreading_batch(num_workers=1) time_2_thread = time_multithreading_batch(num_workers=2) assert time_2_thread < time_1_thread
import os from time import time import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.typing import NdArray from docarray.utils.map import map_docs, map_docs_batched from tests.units.typing.test_bytes import IMAGE_PATHS pytestmark = [pytest.mark.benchmark, pytest.mark.slow] class MyMatrix(BaseDoc): matrix: NdArray def cpu_intensive(doc: MyMatrix) -> MyMatrix: # some cpu intensive function for i in range(3000): sqrt_matrix = np.sqrt(doc.matrix) doc.matrix = sqrt_matrix return doc def test_map_docs_multiprocessing(): if os.cpu_count() > 1: def time_multiprocessing(num_workers: int) -> float: n_docs = 5 rng = np.random.RandomState(0) matrices = [rng.random(size=(1000, 1000)) for _ in range(n_docs)] da = DocList[MyMatrix]([MyMatrix(matrix=m) for m in matrices]) start_time = time() list( map_docs( docs=da, func=cpu_intensive, backend='process', num_worker=num_workers, ) ) return time() - start_time time_1_cpu = time_multiprocessing(num_workers=1) time_2_cpu = time_multiprocessing(num_workers=2) assert time_2_cpu < time_1_cpu def cpu_intensive_batch(da: DocList[MyMatrix]) -> DocList[MyMatrix]: # some cpu intensive function for doc in da: for i in range(3000): sqrt_matrix = np.sqrt(doc.matrix) doc.matrix = sqrt_matrix return da def test_map_docs_batched_multiprocessing(): if os.cpu_count() > 1: def time_multiprocessing(num_workers: int) -> float: n_docs = 16 rng = np.random.RandomState(0) matrices = [rng.random(size=(1000, 1000)) for _ in range(n_docs)] da = DocList[MyMatrix]([MyMatrix(matrix=m) for m in matrices]) start_time = time() list( map_docs_batched( docs=da, func=cpu_intensive_batch, batch_size=8, backend='process', num_worker=num_workers, ) ) return time() - start_time time_1_cpu = time_multiprocessing(num_workers=1) time_2_cpu = time_multiprocessing(num_workers=2) assert time_2_cpu < time_1_cpu def io_intensive(img: ImageDoc) -> ImageDoc: # some io intensive function: load and set image url img.tensor = img.url.load() return img def test_map_docs_multithreading(): def time_multithreading(num_workers: int) -> float: n_docs = 100 da = DocList[ImageDoc]( [ImageDoc(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) start_time = time() list( map_docs( docs=da, func=io_intensive, backend='thread', num_worker=num_workers ) ) return time() - start_time time_1_thread = time_multithreading(num_workers=1) time_2_thread = time_multithreading(num_workers=2) assert time_2_thread < time_1_thread def io_intensive_batch(da: DocList[ImageDoc]) -> DocList[ImageDoc]: # some io intensive function: load and set image url for doc in da: doc.tensor = doc.url.load() return da def test_map_docs_batched_multithreading(): def time_multithreading_batch(num_workers: int) -> float: n_docs = 100 da = DocList[ImageDoc]( [ImageDoc(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) start_time = time() list( map_docs_batched( docs=da, func=io_intensive_batch, backend='thread', num_worker=num_workers, batch_size=10, ) ) return time() - start_time time_1_thread = time_multithreading_batch(num_workers=1) time_2_thread = time_multithreading_batch(num_workers=2) assert time_2_thread < time_1_thread
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '3.0.0' short_version = __version__ def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '3.0.0rc6' short_version = __version__ def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
from pathlib import Path from typing import Any, Callable, Optional, Union from .folder import default_loader from .utils import download_and_extract_archive from .vision import VisionDataset class SUN397(VisionDataset): """`The SUN397 Data Set <https://vision.princeton.edu/projects/2010/SUN/>`_. The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of 397 categories with 108'754 images. Args: root (str or ``pathlib.Path``): Root directory of the dataset. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ _DATASET_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz" _DATASET_MD5 = "8ca2778205c41d23104230ba66911c7a" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Callable[[Union[str, Path]], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._data_dir = Path(self.root) / "SUN397" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") with open(self._data_dir / "ClassName.txt") as f: self.classes = [c[3:].strip() for c in f] self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._image_files = list(self._data_dir.rglob("sun_*.jpg")) self._labels = [ self.class_to_idx["/".join(path.relative_to(self._data_dir).parts[1:-1])] for path in self._image_files ] self.loader = loader def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = self.loader(image_file) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def _check_exists(self) -> bool: return self._data_dir.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._DATASET_URL, download_root=self.root, md5=self._DATASET_MD5)
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader from .utils import download_and_extract_archive from .vision import VisionDataset class SUN397(VisionDataset): """`The SUN397 Data Set <https://vision.princeton.edu/projects/2010/SUN/>`_. The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of 397 categories with 108'754 images. Args: root (str or ``pathlib.Path``): Root directory of the dataset. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ _DATASET_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz" _DATASET_MD5 = "8ca2778205c41d23104230ba66911c7a" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Callable[[Union[str, Path]], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._data_dir = Path(self.root) / "SUN397" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") with open(self._data_dir / "ClassName.txt") as f: self.classes = [c[3:].strip() for c in f] self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._image_files = list(self._data_dir.rglob("sun_*.jpg")) self._labels = [ self.class_to_idx["/".join(path.relative_to(self._data_dir).parts[1:-1])] for path in self._image_files ] self.loader = loader def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = self.loader(image_file) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def _check_exists(self) -> bool: return self._data_dir.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._DATASET_URL, download_root=self.root, md5=self._DATASET_MD5)
# mypy: allow-untyped-defs import torch from torch import Tensor aten = torch.ops.aten import inspect import warnings from typing import Callable, Optional, TypeVar from typing_extensions import ParamSpec from torch.types import Number decomposition_table: dict[str, torch.jit.ScriptFunction] = {} function_name_set: set[str] = set() _T = TypeVar("_T") _P = ParamSpec("_P") def check_decomposition_has_type_annotations(f): inspect_empty = inspect._empty # type: ignore[attr-defined] sig = inspect.signature(f) for param in sig.parameters.values(): assert param.annotation != inspect_empty, ( f"No signature on param {param.name} for function {f.name}" ) assert sig.return_annotation != inspect_empty, ( f"No return annotation for function {f.name}" ) def signatures_match(decomposition_sig, torch_op_sig): decomp_params = decomposition_sig.parameters op_params = torch_op_sig.parameters if len(decomp_params) != len(op_params): return False for decomp_param, op_param in zip(decomp_params.values(), op_params.values()): # can't check full equality yet because not all fields are correctly deduced # in the torch_op_sig - like default value # can't check 'kind' bc # kwarg-only values with defaults not yet supported in TS inspect_empty = inspect._empty # type: ignore[attr-defined] for field in ["name", "annotation"]: if field == "name" and decomp_param.name == "self": warnings.warn("PyTorch uses 'input' instead of 'self' on public api") if getattr(decomp_param, field) != getattr(op_param, field): return False decomp_default = decomp_param.default op_default = op_param.default # default value not always correctly inferred as being present on torch schema, # but if specified on both they should be equal if decomp_default != inspect_empty and op_default != inspect_empty: if decomp_default != op_default: return False return decomposition_sig.return_annotation == torch_op_sig.return_annotation def register_decomposition( aten_op: torch._ops.OpOverload, registry: Optional[dict[str, torch.jit.ScriptFunction]] = None, ) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]: def decomposition_decorator(f: Callable[_P, _T]) -> Callable[_P, _T]: nonlocal registry if registry is None: registry = decomposition_table assert isinstance(aten_op, torch._ops.OpOverload) # Need unique name for jit function serialization assert f.__name__ not in function_name_set, ( f"Duplicated function name {f.__name__}" ) function_name_set.add(f.__name__) scripted_func = torch.jit.script(f) torch._C._jit_pass_inline(scripted_func.graph) for _ in range(2): torch._C._jit_pass_peephole(scripted_func.graph) torch._C._jit_pass_constant_propagation(scripted_func.graph) registry[str(aten_op._schema)] = scripted_func return f return decomposition_decorator # TODO: replace torch.sigmoid -> aten.sigmoid @register_decomposition(aten.var.correction) def var_decomposition( input: Tensor, dim: Optional[list[int]] = None, correction: Optional[Number] = None, keepdim: bool = False, ) -> Tensor: if dim is None: dim_i: list[int] = [] dim = dim_i if isinstance(dim, (tuple, list)) and len(dim) == 0: n = input.numel() else: n = 1 for dim_i in dim: # type: ignore[assignment] n *= input.shape[dim_i] # type: ignore[call-overload] mean = aten.mean(input, dim, True) sub = input - mean sq = sub * sub sum = aten.sum(sq, dim, keepdim) if correction is None: denom = float(n - 1) else: if isinstance(correction, int): denom = float(n - correction) elif isinstance(correction, float): denom = float(n) - correction else: raise RuntimeError("correction must be int or float") return sum / max(0, denom) @register_decomposition(aten.var.default) def var(input: Tensor, unbiased: bool = True) -> Tensor: return var_decomposition(input, correction=(1 if unbiased else 0))
# mypy: allow-untyped-defs import torch from torch import Tensor aten = torch.ops.aten import inspect import warnings from typing import Callable, Optional, TypeVar from typing_extensions import ParamSpec from torch.types import Number decomposition_table: dict[str, torch.jit.ScriptFunction] = {} function_name_set: set[str] = set() _T = TypeVar("_T") _P = ParamSpec("_P") def check_decomposition_has_type_annotations(f): inspect_empty = inspect._empty # type: ignore[attr-defined] sig = inspect.signature(f) for param in sig.parameters.values(): assert param.annotation != inspect_empty, ( f"No signature on param {param.name} for function {f.name}" ) assert sig.return_annotation != inspect_empty, ( f"No return annotation for function {f.name}" ) def signatures_match(decomposition_sig, torch_op_sig): decomp_params = decomposition_sig.parameters op_params = torch_op_sig.parameters if len(decomp_params) != len(op_params): return False for decomp_param, op_param in zip(decomp_params.values(), op_params.values()): # can't check full equality yet because not all fields are correcly deduced # in the torch_op_sig - like default value # can't check 'kind' bc # kwarg-only values with defaults not yet supported in TS inspect_empty = inspect._empty # type: ignore[attr-defined] for field in ["name", "annotation"]: if field == "name" and decomp_param.name == "self": warnings.warn("PyTorch uses 'input' instead of 'self' on public api") if getattr(decomp_param, field) != getattr(op_param, field): return False decomp_default = decomp_param.default op_default = op_param.default # default value not always correctly inferred as being present on torch schema, # but if specified on both they should be equal if decomp_default != inspect_empty and op_default != inspect_empty: if decomp_default != op_default: return False return decomposition_sig.return_annotation == torch_op_sig.return_annotation def register_decomposition( aten_op: torch._ops.OpOverload, registry: Optional[dict[str, torch.jit.ScriptFunction]] = None, ) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]: def decomposition_decorator(f: Callable[_P, _T]) -> Callable[_P, _T]: nonlocal registry if registry is None: registry = decomposition_table assert isinstance(aten_op, torch._ops.OpOverload) # Need unique name for jit function serialization assert f.__name__ not in function_name_set, ( f"Duplicated function name {f.__name__}" ) function_name_set.add(f.__name__) scripted_func = torch.jit.script(f) torch._C._jit_pass_inline(scripted_func.graph) for _ in range(2): torch._C._jit_pass_peephole(scripted_func.graph) torch._C._jit_pass_constant_propagation(scripted_func.graph) registry[str(aten_op._schema)] = scripted_func return f return decomposition_decorator # TODO: replace torch.sigmoid -> aten.sigmoid @register_decomposition(aten.var.correction) def var_decomposition( input: Tensor, dim: Optional[list[int]] = None, correction: Optional[Number] = None, keepdim: bool = False, ) -> Tensor: if dim is None: dim_i: list[int] = [] dim = dim_i if isinstance(dim, (tuple, list)) and len(dim) == 0: n = input.numel() else: n = 1 for dim_i in dim: # type: ignore[assignment] n *= input.shape[dim_i] # type: ignore[call-overload] mean = aten.mean(input, dim, True) sub = input - mean sq = sub * sub sum = aten.sum(sq, dim, keepdim) if correction is None: denom = float(n - 1) else: if isinstance(correction, int): denom = float(n - correction) elif isinstance(correction, float): denom = float(n) - correction else: raise RuntimeError("correction must be int or float") return sum / max(0, denom) @register_decomposition(aten.var.default) def var(input: Tensor, unbiased: bool = True) -> Tensor: return var_decomposition(input, correction=(1 if unbiased else 0))
# coding: utf-8 import logging import numpy as np import lightgbm as lgb def test_register_logger(tmp_path): logger = logging.getLogger("LightGBM") logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(levelname)s | %(message)s') log_filename = tmp_path / "LightGBM_test_logger.log" file_handler = logging.FileHandler(log_filename, mode="w", encoding="utf-8") file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(formatter) logger.addHandler(file_handler) def dummy_metric(_, __): logger.debug('In dummy_metric') return 'dummy_metric', 1, True lgb.register_logger(logger) X = np.array([[1, 2, 3], [1, 2, 4], [1, 2, 4], [1, 2, 3]], dtype=np.float32) y = np.array([0, 1, 1, 0]) lgb_data = lgb.Dataset(X, y) eval_records = {} callbacks = [ lgb.record_evaluation(eval_records), lgb.log_evaluation(2), lgb.early_stopping(4) ] lgb.train({'objective': 'binary', 'metric': ['auc', 'binary_error']}, lgb_data, num_boost_round=10, feval=dummy_metric, valid_sets=[lgb_data], categorical_feature=[1], callbacks=callbacks) lgb.plot_metric(eval_records) expected_log = r""" INFO | [LightGBM] [Warning] There are no meaningful features which satisfy the provided configuration. Decreasing Dataset parameters min_data_in_bin or min_data_in_leaf and re-constructing Dataset might resolve this warning. INFO | [LightGBM] [Info] Number of positive: 2, number of negative: 2 INFO | [LightGBM] [Info] Total Bins 0 INFO | [LightGBM] [Info] Number of data points in the train set: 4, number of used features: 0 INFO | [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | Training until validation scores don't improve for 4 rounds INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [2] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [4] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [6] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [8] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [10] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | Did not meet early stopping. Best iteration is: [1] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 WARNING | More than one metric available, picking one to plot. """.strip() gpu_lines = [ "INFO | [LightGBM] [Info] This is the GPU trainer", "INFO | [LightGBM] [Info] Using GPU Device:", "INFO | [LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...", "INFO | [LightGBM] [Info] GPU programs have been built", "INFO | [LightGBM] [Warning] GPU acceleration is disabled because no non-trivial dense features can be found", "INFO | [LightGBM] [Warning] Using sparse features with CUDA is currently not supported.", "INFO | [LightGBM] [Warning] CUDA currently requires double precision calculations.", "INFO | [LightGBM] [Info] LightGBM using CUDA trainer with DP float!!" ] with open(log_filename, "rt", encoding="utf-8") as f: actual_log = f.read().strip() actual_log_wo_gpu_stuff = [] for line in actual_log.split("\n"): if not any(line.startswith(gpu_line) for gpu_line in gpu_lines): actual_log_wo_gpu_stuff.append(line) assert "\n".join(actual_log_wo_gpu_stuff) == expected_log
# coding: utf-8 import logging import numpy as np import lightgbm as lgb def test_register_logger(tmp_path): logger = logging.getLogger("LightGBM") logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(levelname)s | %(message)s') log_filename = tmp_path / "LightGBM_test_logger.log" file_handler = logging.FileHandler(log_filename, mode="w", encoding="utf-8") file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(formatter) logger.addHandler(file_handler) def dummy_metric(_, __): logger.debug('In dummy_metric') return 'dummy_metric', 1, True lgb.register_logger(logger) X = np.array([[1, 2, 3], [1, 2, 4], [1, 2, 4], [1, 2, 3]], dtype=np.float32) y = np.array([0, 1, 1, 0]) lgb_data = lgb.Dataset(X, y) eval_records = {} callbacks = [ lgb.record_evaluation(eval_records), lgb.log_evaluation(2), lgb.early_stopping(4) ] lgb.train({'objective': 'binary', 'metric': ['auc', 'binary_error']}, lgb_data, num_boost_round=10, feval=dummy_metric, valid_sets=[lgb_data], categorical_feature=[1], callbacks=callbacks) lgb.plot_metric(eval_records) expected_log = r""" INFO | [LightGBM] [Warning] There are no meaningful features, as all feature values are constant. INFO | [LightGBM] [Info] Number of positive: 2, number of negative: 2 INFO | [LightGBM] [Info] Total Bins 0 INFO | [LightGBM] [Info] Number of data points in the train set: 4, number of used features: 0 INFO | [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | Training until validation scores don't improve for 4 rounds INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [2] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [4] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [6] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [8] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [LightGBM] [Warning] Stopped training because there are no more leaves that meet the split requirements DEBUG | In dummy_metric INFO | [10] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 INFO | Did not meet early stopping. Best iteration is: [1] training's auc: 0.5 training's binary_error: 0.5 training's dummy_metric: 1 WARNING | More than one metric available, picking one to plot. """.strip() gpu_lines = [ "INFO | [LightGBM] [Info] This is the GPU trainer", "INFO | [LightGBM] [Info] Using GPU Device:", "INFO | [LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...", "INFO | [LightGBM] [Info] GPU programs have been built", "INFO | [LightGBM] [Warning] GPU acceleration is disabled because no non-trivial dense features can be found", "INFO | [LightGBM] [Warning] Using sparse features with CUDA is currently not supported.", "INFO | [LightGBM] [Warning] CUDA currently requires double precision calculations.", "INFO | [LightGBM] [Info] LightGBM using CUDA trainer with DP float!!" ] with open(log_filename, "rt", encoding="utf-8") as f: actual_log = f.read().strip() actual_log_wo_gpu_stuff = [] for line in actual_log.split("\n"): if not any(line.startswith(gpu_line) for gpu_line in gpu_lines): actual_log_wo_gpu_stuff.append(line) assert "\n".join(actual_log_wo_gpu_stuff) == expected_log
from __future__ import annotations import csv import logging import os import numpy as np from sklearn.metrics import ndcg_score logger = logging.getLogger(__name__) class CERerankingEvaluator: """ This class evaluates a CrossEncoder model for the task of re-ranking. Given a query and a list of documents, it computes the score [query, doc_i] for all possible documents and sorts them in decreasing order. Then, MRR@10 and NDCG@10 are computed to measure the quality of the ranking. Args: samples (List[Dict, str, Union[str, List[str]]): Must be a list and each element is of the form: {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents. at_k (int): The evaluation is done at k. Default is 10. name (str): Name of the dataset. Used for logging and saving the results to a CSV file. write_csv (bool): Whether to write the results to a CSV file. Default is True. mrr_at_k (int): Deprecated. Use `at_k` instead. """ def __init__( self, samples, at_k: int = 10, name: str = "", write_csv: bool = True, mrr_at_k: int | None = None, ): self.samples = samples self.name = name if mrr_at_k is not None: logger.warning(f"The `mrr_at_k` parameter has been deprecated; please use `at_k={mrr_at_k}` instead.") self.at_k = mrr_at_k else: self.at_k = at_k if isinstance(self.samples, dict): self.samples = list(self.samples.values()) self.csv_file = "CERerankingEvaluator" + ("_" + name if name else "") + f"_results_@{self.at_k}.csv" self.csv_headers = [ "epoch", "steps", f"MRR@{self.at_k}", f"NDCG@{self.at_k}", ] self.write_csv = write_csv def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = f" after epoch {epoch}:" else: out_txt = f" in epoch {epoch} after {steps} steps:" else: out_txt = ":" logger.info("CERerankingEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) all_mrr_scores = [] all_ndcg_scores = [] num_queries = 0 num_positives = [] num_negatives = [] for instance in self.samples: query = instance["query"] positive = list(instance["positive"]) negative = list(instance["negative"]) docs = positive + negative is_relevant = [1] * len(positive) + [0] * len(negative) if len(positive) == 0 or len(negative) == 0: continue num_queries += 1 num_positives.append(len(positive)) num_negatives.append(len(negative)) model_input = [[query, doc] for doc in docs] pred_scores = model.predict(model_input, convert_to_numpy=True, show_progress_bar=False) pred_scores_argsort = np.argsort(-pred_scores) # Sort in decreasing order mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0 : self.at_k]): if is_relevant[index]: mrr_score = 1 / (rank + 1) break all_mrr_scores.append(mrr_score) all_ndcg_scores.append(ndcg_score([is_relevant], [pred_scores], k=self.at_k)) mean_mrr = np.mean(all_mrr_scores) mean_ndcg = np.mean(all_ndcg_scores) logger.info( f"Queries: {num_queries} \t Positives: Min {np.min(num_positives):.1f}, Mean {np.mean(num_positives):.1f}, Max {np.max(num_positives):.1f} \t Negatives: Min {np.min(num_negatives):.1f}, Mean {np.mean(num_negatives):.1f}, Max {np.max(num_negatives):.1f}" ) logger.info(f"MRR@{self.at_k}: {mean_mrr * 100:.2f}") logger.info(f"NDCG@{self.at_k}: {mean_ndcg * 100:.2f}") if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mean_mrr, mean_ndcg]) return mean_mrr
from __future__ import annotations import csv import logging import os import numpy as np from sklearn.metrics import ndcg_score logger = logging.getLogger(__name__) class CERerankingEvaluator: """ This class evaluates a CrossEncoder model for the task of re-ranking. Given a query and a list of documents, it computes the score [query, doc_i] for all possible documents and sorts them in decreasing order. Then, MRR@10 and NDCG@10 are computed to measure the quality of the ranking. Args: samples (List[Dict, str, Union[str, List[str]]): Must be a list and each element is of the form: {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents. """ def __init__(self, samples, at_k: int = 10, name: str = "", write_csv: bool = True, mrr_at_k: int | None = None): self.samples = samples self.name = name if mrr_at_k is not None: logger.warning(f"The `mrr_at_k` parameter has been deprecated; please use `at_k={mrr_at_k}` instead.") self.at_k = mrr_at_k else: self.at_k = at_k if isinstance(self.samples, dict): self.samples = list(self.samples.values()) self.csv_file = "CERerankingEvaluator" + ("_" + name if name else "") + f"_results_@{self.at_k}.csv" self.csv_headers = [ "epoch", "steps", f"MRR@{self.at_k}", f"NDCG@{self.at_k}", ] self.write_csv = write_csv def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = f" after epoch {epoch}:" else: out_txt = f" in epoch {epoch} after {steps} steps:" else: out_txt = ":" logger.info("CERerankingEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) all_mrr_scores = [] all_ndcg_scores = [] num_queries = 0 num_positives = [] num_negatives = [] for instance in self.samples: query = instance["query"] positive = list(instance["positive"]) negative = list(instance["negative"]) docs = positive + negative is_relevant = [1] * len(positive) + [0] * len(negative) if len(positive) == 0 or len(negative) == 0: continue num_queries += 1 num_positives.append(len(positive)) num_negatives.append(len(negative)) model_input = [[query, doc] for doc in docs] pred_scores = model.predict(model_input, convert_to_numpy=True, show_progress_bar=False) pred_scores_argsort = np.argsort(-pred_scores) # Sort in decreasing order mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0 : self.at_k]): if is_relevant[index]: mrr_score = 1 / (rank + 1) break all_mrr_scores.append(mrr_score) all_ndcg_scores.append(ndcg_score([is_relevant], [pred_scores], k=self.at_k)) mean_mrr = np.mean(all_mrr_scores) mean_ndcg = np.mean(all_ndcg_scores) logger.info( f"Queries: {num_queries} \t Positives: Min {np.min(num_positives):.1f}, Mean {np.mean(num_positives):.1f}, Max {np.max(num_positives):.1f} \t Negatives: Min {np.min(num_negatives):.1f}, Mean {np.mean(num_negatives):.1f}, Max {np.max(num_negatives):.1f}" ) logger.info(f"MRR@{self.at_k}: {mean_mrr * 100:.2f}") logger.info(f"NDCG@{self.at_k}: {mean_ndcg * 100:.2f}") if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mean_mrr, mean_ndcg]) return mean_mrr
from prisma.models import User from backend.blocks.basic import AgentInputBlock, PrintToConsoleBlock from backend.blocks.text import FillTextTemplateBlock from backend.data import graph from backend.data.graph import create_graph from backend.data.user import get_or_create_user from backend.util.test import SpinTestServer, wait_execution async def create_test_user(alt_user: bool = False) -> User: if alt_user: test_user_data = { "sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1b", "email": "testuser2#example.com", "name": "Test User 2", } else: test_user_data = { "sub": "ef3b97d7-1161-4eb4-92b2-10c24fb154c1", "email": "testuser#example.com", "name": "Test User", } user = await get_or_create_user(test_user_data) return user def create_test_graph() -> graph.Graph: """ InputBlock \ ---- FillTextTemplateBlock ---- PrintToConsoleBlock / InputBlock """ nodes = [ graph.Node( block_id=AgentInputBlock().id, input_default={"name": "input_1"}, ), graph.Node( block_id=AgentInputBlock().id, input_default={"name": "input_2"}, ), graph.Node( block_id=FillTextTemplateBlock().id, input_default={ "format": "{{a}}, {{b}}{{c}}", "values_#_c": "!!!", }, ), graph.Node(block_id=PrintToConsoleBlock().id), ] links = [ graph.Link( source_id=nodes[0].id, sink_id=nodes[2].id, source_name="result", sink_name="values_#_a", ), graph.Link( source_id=nodes[1].id, sink_id=nodes[2].id, source_name="result", sink_name="values_#_b", ), graph.Link( source_id=nodes[2].id, sink_id=nodes[3].id, source_name="output", sink_name="text", ), ] return graph.Graph( name="TestGraph", description="Test graph", nodes=nodes, links=links, ) async def sample_agent(): async with SpinTestServer() as server: test_user = await create_test_user() test_graph = await create_graph(create_test_graph(), test_user.id) input_data = {"input_1": "Hello", "input_2": "World"} response = await server.agent_server.test_execute_graph( test_graph.id, test_graph.version, input_data, test_user.id ) print(response) result = await wait_execution(test_user.id, test_graph.id, response["id"], 10) print(result) if __name__ == "__main__": import asyncio asyncio.run(sample_agent())
from prisma.models import User from backend.blocks.basic import AgentInputBlock, PrintToConsoleBlock from backend.blocks.text import FillTextTemplateBlock from backend.data import graph from backend.data.graph import create_graph from backend.data.user import get_or_create_user from backend.util.test import SpinTestServer, wait_execution async def create_test_user() -> User: test_user_data = { "sub": "ef3b97d7-1161-4eb4-92b2-10c24fb154c1", "email": "testuser#example.com", "name": "Test User", } user = await get_or_create_user(test_user_data) return user def create_test_graph() -> graph.Graph: """ InputBlock \ ---- FillTextTemplateBlock ---- PrintToConsoleBlock / InputBlock """ nodes = [ graph.Node( block_id=AgentInputBlock().id, input_default={"name": "input_1"}, ), graph.Node( block_id=AgentInputBlock().id, input_default={"name": "input_2"}, ), graph.Node( block_id=FillTextTemplateBlock().id, input_default={ "format": "{{a}}, {{b}}{{c}}", "values_#_c": "!!!", }, ), graph.Node(block_id=PrintToConsoleBlock().id), ] links = [ graph.Link( source_id=nodes[0].id, sink_id=nodes[2].id, source_name="result", sink_name="values_#_a", ), graph.Link( source_id=nodes[1].id, sink_id=nodes[2].id, source_name="result", sink_name="values_#_b", ), graph.Link( source_id=nodes[2].id, sink_id=nodes[3].id, source_name="output", sink_name="text", ), ] return graph.Graph( name="TestGraph", description="Test graph", nodes=nodes, links=links, ) async def sample_agent(): async with SpinTestServer() as server: test_user = await create_test_user() test_graph = await create_graph(create_test_graph(), test_user.id) input_data = {"input_1": "Hello", "input_2": "World"} response = await server.agent_server.test_execute_graph( test_graph.id, input_data, test_user.id ) print(response) result = await wait_execution(test_user.id, test_graph.id, response["id"], 10) print(result) if __name__ == "__main__": import asyncio asyncio.run(sample_agent())
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import polar from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink from keras.src.ops.nn import threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink from keras.src.ops.nn import threshold
from __future__ import annotations import math from pathlib import Path import pytest from packaging.version import Version, parse from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec from model2vec import __version__ as M2V_VERSION except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) output = static_embedding_model(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding_model: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding_model.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding_model.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) expected_shape = (29525 if parse(M2V_VERSION) >= Version("0.5.0") else 29528, 32) assert model.embedding.weight.shape == expected_shape @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from __future__ import annotations import math from pathlib import Path import numpy as np import pytest from packaging.version import Version, parse from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec from model2vec import __version__ as M2V_VERSION except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) expected_shape = (29525 if parse(M2V_VERSION) >= Version("0.5.0") else 29528, 32) assert model.embedding.weight.shape == expected_shape @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from llama_index.readers.web import RssReader def test_rss_reader_non_strict_sources(): default_reader = RssReader() documents = default_reader.load_data(urls=["https://news.ycombinator.com/rss"]) assert len(documents) > 0 def test_rss_reader_user_agent(): reader = RssReader(user_agent="MyApp/1.0 +http://example.com/") documents = reader.load_data(urls=["https://news.ycombinator.com/rss"]) assert len(documents) > 0
from llama_index.readers.web import RssReader def test_rss_reader_non_strict_sources(): default_reader = RssReader() documents = default_reader.load_data(urls=["https://news.ycombinator.com/rss"]) assert len(documents) > 0 def test_rss_reader_rsshub(): default_reader = RssReader() documents = default_reader.load_data(urls=["https://rsshub.app/hackernews/newest"]) assert len(documents) == 0 def test_rss_reader_user_agent(): reader = RssReader(user_agent="MyApp/1.0 +http://example.com/") documents = reader.load_data(urls=["https://rsshub.app/hackernews/newest"]) assert len(documents) > 0
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn import backend.data.block import backend.data.db import backend.data.graph import backend.data.user import backend.server.routers.v1 import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() await backend.data.graph.fix_llm_provider_credentials() yield await backend.data.db.disconnect() def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(500, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"]) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return await backend.server.routers.v1.execute_graph( graph_id, node_input, user_id ) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, is_template=False, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_status( graph_id, graph_exec_id, user_id ) @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn import backend.data.block import backend.data.db import backend.data.user import backend.server.routers.v1 import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() yield await backend.data.db.disconnect() def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(500, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"]) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return await backend.server.routers.v1.execute_graph( graph_id, node_input, user_id ) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, is_template=False, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_status( graph_id, graph_exec_id, user_id ) @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
import contextlib import os import shutil import time from jina import DocumentArray, Flow cur_dir = os.path.dirname(os.path.abspath(__file__)) @contextlib.contextmanager def _update_file(input_file_path, output_file_path, temp_path): backup_file = os.path.join(temp_path, 'backup.py') try: shutil.copy2(output_file_path, backup_file) shutil.copy(input_file_path, output_file_path) time.sleep(2.0) yield finally: shutil.copy2(backup_file, output_file_path) time.sleep(2.0) def test_reload_simple_executor(tmpdir): from tests.integration.hot_reload.exec1.my_executor1 import MyExecutorToReload1 f = Flow().add(uses=MyExecutorToReload1, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(cur_dir, 'my_executor_1_new.py'), os.path.join(cur_dir, 'exec1/my_executor1.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' def test_reload_helper(tmpdir): from tests.integration.hot_reload.exec2.my_executor2 import MyExecutorToReload2 f = Flow().add(uses=MyExecutorToReload2, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(cur_dir, 'helper2.py'), os.path.join(cur_dir, 'exec2/helper.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' def test_reload_with_inheritance(tmpdir): from tests.integration.hot_reload.exec3.my_executor3 import A, EnhancedExecutor f = Flow().add(uses=A, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'ABeforeReload' with _update_file( os.path.join(cur_dir, 'my_executor_3_new.py'), os.path.join(cur_dir, 'exec3/my_executor3.py'), str(tmpdir), ): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'AAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'ABeforeReload'
import os import time import shutil import contextlib from jina import Flow, DocumentArray cur_dir = os.path.dirname(os.path.abspath(__file__)) @contextlib.contextmanager def _update_file(input_file_path, output_file_path, temp_path): backup_file = os.path.join(temp_path, 'backup.py') try: shutil.copy2(output_file_path, backup_file) shutil.copy(input_file_path, output_file_path) time.sleep(2.0) yield finally: shutil.copy2(backup_file, output_file_path) time.sleep(2.0) def test_reload_simple_executor(tmpdir): from tests.integration.hot_reload.exec1.my_executor1 import MyExecutorToReload1 f = Flow().add(uses=MyExecutorToReload1, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file(os.path.join(cur_dir, 'my_executor_1_new.py'), os.path.join(cur_dir, 'exec1/my_executor1.py'), str(tmpdir)): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' def test_reload_helper(tmpdir): from tests.integration.hot_reload.exec2.my_executor2 import MyExecutorToReload2 f = Flow().add(uses=MyExecutorToReload2, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file(os.path.join(cur_dir, 'helper2.py'), os.path.join(cur_dir, 'exec2/helper.py'), str(tmpdir)): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' def test_reload_with_inheritance(tmpdir): from tests.integration.hot_reload.exec3.my_executor3 import A, EnhancedExecutor f = Flow().add(uses=A, reload=True) with f: res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'ABeforeReload' with _update_file(os.path.join(cur_dir, 'my_executor_3_new.py'), os.path.join(cur_dir, 'exec3/my_executor3.py'), str(tmpdir)): res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'AAfterReload' res = f.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'ABeforeReload'
_base_ = './htc_x101-32x4d_fpn_16xb1-20e_coco.py' model = dict( backbone=dict( type='ResNeXt', groups=64, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
_base_ = './htc_x101_32x4d_fpn_16x1_20e_coco.py' model = dict( backbone=dict( type='ResNeXt', groups=64, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
import time from functools import partial from huggingface_hub import HfApi, hf_hub_url from packaging import version from requests import HTTPError from .. import config from . import logging logger = logging.get_logger(__name__) # Retry `preupload_lfs_files` in `huggingface_hub<0.20.0` on the "500 (Internal Server Error)" and "503 (Service Unavailable)" HTTP errors if config.HF_HUB_VERSION < version.parse("0.20.0"): def preupload_lfs_files(hf_api: HfApi, **kwargs): max_retries = 5 base_wait_time = 1 max_wait_time = 8 status_codes = [500, 503] retry = 0 while True: try: hf_api.preupload_lfs_files(**kwargs) except (RuntimeError, HTTPError) as err: if isinstance(err, RuntimeError) and isinstance(err.__cause__, HTTPError): err = err.__cause__ if retry >= max_retries or err.response.status_code not in status_codes: raise err else: sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff logger.info( f"{hf_api.preupload_lfs_files} timed out, retrying in {sleep_time}s... [{retry/max_retries}]" ) time.sleep(sleep_time) retry += 1 else: break else: def preupload_lfs_files(hf_api: HfApi, **kwargs): hf_api.preupload_lfs_files(**kwargs) # bakckward compatibility hf_hub_url = partial(hf_hub_url, repo_type="dataset")
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def hf_hub_url(repo_id: str, path: str, revision: Optional[str] = None) -> str: if version.parse(hfh.__version__).release < version.parse("0.11.0").release: # old versions of hfh don't url-encode the file path path = quote(path) return hfh.hf_hub_url(repo_id, path, repo_type="dataset", revision=revision)
"""An internal script to process `new_failures_with_bad_commit.json` produced by `utils/check_bad_commit.py`. This is used by `.github/workflows/check_failed_model_tests.yml` to produce a slack report of the following form ``` <{url}|New failed tests> { "GH_ydshieh": { "vit": 1 } } ``` """ import json import os from collections import Counter from copy import deepcopy from get_previous_daily_ci import get_last_daily_ci_run from huggingface_hub import HfApi if __name__ == "__main__": api = HfApi() job_name = os.environ.get("JOB_NAME") with open("new_failures_with_bad_commit.json") as fp: data = json.load(fp) with open(f"ci_results_{job_name}/job_links.json") as fp: job_links = json.load(fp) # TODO: extend team_members = [ "ydshieh", "zucchini-nlp", "ArthurZucker", "gante", "LysandreJik", "molbap", "qubvel", "Rocketknight1", "muellerzr", "SunMarc", ] # Counting the number of failures grouped by authors new_data = {} for model, model_result in data.items(): for device, failed_tests in model_result.items(): for failed_test in failed_tests: author = failed_test["author"] if author not in team_members: author = failed_test["merged_by"] if author not in new_data: new_data[author] = Counter() new_data[author].update([model]) for author in new_data: new_data[author] = dict(new_data[author]) # Group by author new_data_full = {author: deepcopy(data) for author in new_data} for author, _data in new_data_full.items(): for model, model_result in _data.items(): for device, failed_tests in model_result.items(): # prepare job_link and add it to each entry of new failed test information. # need to change from `single-gpu` to `single` and same for `multi-gpu` to match `job_link`. key = model if list(job_links.keys()) == [job_name]: key = job_name job_link = job_links[key][device.replace("-gpu", "")] failed_tests = [x for x in failed_tests if x["author"] == author or x["merged_by"] == author] for x in failed_tests: x.update({"job_link": job_link}) model_result[device] = failed_tests _data[model] = {k: v for k, v in model_result.items() if len(v) > 0} new_data_full[author] = {k: v for k, v in _data.items() if len(v) > 0} # Upload to Hub and get the url # if it is not a scheduled run, upload the reports to a subfolder under `report_repo_folder` report_repo_subfolder = "" if os.getenv("GITHUB_EVENT_NAME") != "schedule": report_repo_subfolder = f"{os.getenv('GITHUB_RUN_NUMBER')}-{os.getenv('GITHUB_RUN_ID')}" report_repo_subfolder = f"runs/{report_repo_subfolder}" workflow_run = get_last_daily_ci_run( token=os.environ["ACCESS_REPO_INFO_TOKEN"], workflow_run_id=os.getenv("GITHUB_RUN_ID") ) workflow_run_created_time = workflow_run["created_at"] report_repo_folder = workflow_run_created_time.split("T")[0] if report_repo_subfolder: report_repo_folder = f"{report_repo_folder}/{report_repo_subfolder}" report_repo_id = os.getenv("REPORT_REPO_ID") with open("new_failures_with_bad_commit_grouped_by_authors.json", "w") as fp: json.dump(new_data_full, fp, ensure_ascii=False, indent=4) commit_info = api.upload_file( path_or_fileobj="new_failures_with_bad_commit_grouped_by_authors.json", path_in_repo=f"{report_repo_folder}/ci_results_{job_name}/new_failures_with_bad_commit_grouped_by_authors.json", repo_id=report_repo_id, repo_type="dataset", token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None), ) url = f"https://huggingface.co/datasets/{report_repo_id}/raw/{commit_info.oid}/{report_repo_folder}/ci_results_{job_name}/new_failures_with_bad_commit_grouped_by_authors.json" # Add `GH_` prefix as keyword mention output = {} for author, item in new_data.items(): author = f"GH_{author}" output[author] = item report = f"<{url}|New failed tests>\\n\\n" report += json.dumps(output, indent=4).replace('"', '\\"').replace("\n", "\\n") print(report)
"""An internal script to process `new_model_failures_with_bad_commit.json` produced by `utils/check_bad_commit.py`. This is used by `.github/workflows/check_failed_model_tests.yml` to produce a slack report of the following form ``` <{url}|New failed tests> { "GH_ydshieh": { "vit": 1 } } ``` """ import json import os from collections import Counter from copy import deepcopy from get_previous_daily_ci import get_last_daily_ci_run from huggingface_hub import HfApi if __name__ == "__main__": api = HfApi() with open("new_model_failures_with_bad_commit.json") as fp: data = json.load(fp) with open("ci_results_run_models_gpu/model_job_links.json") as fp: model_job_links = json.load(fp) # TODO: extend team_members = [ "ydshieh", "zucchini-nlp", "ArthurZucker", "gante", "LysandreJik", "molbap", "qubvel", "Rocketknight1", "muellerzr", "SunMarc", ] # Counting the number of failures grouped by authors new_data = {} for model, model_result in data.items(): for device, failed_tests in model_result.items(): for failed_test in failed_tests: author = failed_test["author"] if author not in team_members: author = failed_test["merged_by"] if author not in new_data: new_data[author] = Counter() new_data[author].update([model]) for author in new_data: new_data[author] = dict(new_data[author]) # Group by author new_data_full = {author: deepcopy(data) for author in new_data} for author, _data in new_data_full.items(): for model, model_result in _data.items(): for device, failed_tests in model_result.items(): # prepare job_link and add it to each entry of new failed test information. # need to change from `single-gpu` to `single` and same for `multi-gpu` to match `job_link`. job_link = model_job_links[model][device.replace("-gpu", "")] failed_tests = [x for x in failed_tests if x["author"] == author or x["merged_by"] == author] for x in failed_tests: x.update({"job_link": job_link}) model_result[device] = failed_tests _data[model] = {k: v for k, v in model_result.items() if len(v) > 0} new_data_full[author] = {k: v for k, v in _data.items() if len(v) > 0} # Upload to Hub and get the url # if it is not a scheduled run, upload the reports to a subfolder under `report_repo_folder` report_repo_subfolder = "" if os.getenv("GITHUB_EVENT_NAME") != "schedule": report_repo_subfolder = f"{os.getenv('GITHUB_RUN_NUMBER')}-{os.getenv('GITHUB_RUN_ID')}" report_repo_subfolder = f"runs/{report_repo_subfolder}" workflow_run = get_last_daily_ci_run( token=os.environ["ACCESS_REPO_INFO_TOKEN"], workflow_run_id=os.getenv("GITHUB_RUN_ID") ) workflow_run_created_time = workflow_run["created_at"] report_repo_folder = workflow_run_created_time.split("T")[0] if report_repo_subfolder: report_repo_folder = f"{report_repo_folder}/{report_repo_subfolder}" with open("new_model_failures_with_bad_commit_grouped_by_authors.json", "w") as fp: json.dump(new_data_full, fp, ensure_ascii=False, indent=4) commit_info = api.upload_file( path_or_fileobj="new_model_failures_with_bad_commit_grouped_by_authors.json", path_in_repo=f"{report_repo_folder}/ci_results_run_models_gpu/new_model_failures_with_bad_commit_grouped_by_authors.json", repo_id="hf-internal-testing/transformers_daily_ci", repo_type="dataset", token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None), ) url = f"https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/{commit_info.oid}/{report_repo_folder}/ci_results_run_models_gpu/new_model_failures_with_bad_commit_grouped_by_authors.json" # Add `GH_` prefix as keyword mention output = {} for author, item in new_data.items(): author = f"GH_{author}" output[author] = item report = f"<{url}|New failed tests>\\n\\n" report += json.dumps(output, indent=4).replace('"', '\\"').replace("\n", "\\n") print(report)
_base_ = [ '../_base_/models/cascade-mask-rcnn_r50_fpn.py', '../_base_/datasets/lvis_v1_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), roi_head=dict( bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) train_cfg = dict(val_interval=24)
_base_ = [ '../_base_/models/cascade-mask-rcnn_r50_fpn.py', '../_base_/datasets/lvis_v1_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), roi_head=dict( bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) train_cfg = dict(val_interval=24)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import ZepChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ZepChatMessageHistory": "langchain_community.chat_message_histories", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ZepChatMessageHistory", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import ZepChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ZepChatMessageHistory": "langchain_community.chat_message_histories" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ZepChatMessageHistory", ]
import numpy as np import pytest from keras.src import backend from keras.src import initializers from keras.src import layers from keras.src import models from keras.src import testing class SpectralNormalizationTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_basic_spectralnorm(self): self.run_layer_test( layers.SpectralNormalization, init_kwargs={"layer": layers.Dense(2)}, input_data=np.random.uniform(size=(10, 3, 4)), expected_output_shape=(10, 3, 2), expected_num_trainable_weights=2, expected_num_non_trainable_weights=1, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, ) self.run_layer_test( layers.SpectralNormalization, init_kwargs={"layer": layers.Embedding(10, 4)}, input_data=np.random.randint(10, size=(10,)).astype("float32"), expected_output_shape=(10, 4), expected_num_trainable_weights=1, expected_num_non_trainable_weights=1, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, run_training_check=False, ) def test_invalid_power_iterations(self): with self.assertRaisesRegex( ValueError, "`power_iterations` should be greater than zero." ): layers.SpectralNormalization(layers.Dense(2), power_iterations=0) def test_invalid_layer(self): layer = layers.SpectralNormalization(layers.ReLU()) inputs = np.ones(shape=(4, 2)) with self.assertRaisesRegex( ValueError, "object has no attribute 'kernel' nor 'embeddings'" ): layer(inputs) def test_apply_layer(self): if backend.config.image_data_format() == "channels_last": images = np.ones((1, 2, 2, 1)) else: images = np.ones((1, 1, 2, 2)) sn_wrapper = layers.SpectralNormalization( layers.Conv2D( 1, (2, 2), kernel_initializer=initializers.Constant(value=1) ), power_iterations=8, ) result = sn_wrapper(images, training=False) result_train = sn_wrapper(images, training=True) expected_output = np.array([[[[4.0]]]], dtype=np.float32) self.assertAllClose(result, expected_output) # max eigen value of 2x2 matrix of ones is 2 self.assertAllClose(result_train, expected_output / 2) @pytest.mark.requires_trainable_backend def test_end_to_end(self): sn_wrapper = layers.SpectralNormalization( layers.Conv2D( 3, (2, 2), padding="same", data_format="channels_last" ), power_iterations=2, ) model = models.Sequential([sn_wrapper]) model.compile("rmsprop", loss="mse") x = np.random.random((4, 8, 8, 3)) y = np.random.random((4, 8, 8, 3)) model.fit(x, y)
import numpy as np import pytest from keras.src import backend from keras.src import initializers from keras.src import layers from keras.src import models from keras.src import testing class SpectralNormalizationTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_basic_spectralnorm(self): self.run_layer_test( layers.SpectralNormalization, init_kwargs={"layer": layers.Dense(2)}, input_data=np.random.uniform(size=(10, 3, 4)), expected_output_shape=(10, 3, 2), expected_num_trainable_weights=2, expected_num_non_trainable_weights=1, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, ) self.run_layer_test( layers.SpectralNormalization, init_kwargs={"layer": layers.Embedding(10, 4)}, input_data=np.random.randint(10, size=(10,)), expected_output_shape=(10, 4), expected_num_trainable_weights=1, expected_num_non_trainable_weights=1, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, run_training_check=False, ) def test_invalid_power_iterations(self): with self.assertRaisesRegex( ValueError, "`power_iterations` should be greater than zero." ): layers.SpectralNormalization(layers.Dense(2), power_iterations=0) def test_invalid_layer(self): layer = layers.SpectralNormalization(layers.ReLU()) inputs = np.ones(shape=(4, 2)) with self.assertRaisesRegex( ValueError, "object has no attribute 'kernel' nor 'embeddings'" ): layer(inputs) def test_apply_layer(self): if backend.config.image_data_format() == "channels_last": images = np.ones((1, 2, 2, 1)) else: images = np.ones((1, 1, 2, 2)) sn_wrapper = layers.SpectralNormalization( layers.Conv2D( 1, (2, 2), kernel_initializer=initializers.Constant(value=1) ), power_iterations=8, ) result = sn_wrapper(images, training=False) result_train = sn_wrapper(images, training=True) expected_output = np.array([[[[4.0]]]], dtype=np.float32) self.assertAllClose(result, expected_output) # max eigen value of 2x2 matrix of ones is 2 self.assertAllClose(result_train, expected_output / 2) @pytest.mark.requires_trainable_backend def test_end_to_end(self): sn_wrapper = layers.SpectralNormalization( layers.Conv2D( 3, (2, 2), padding="same", data_format="channels_last" ), power_iterations=2, ) model = models.Sequential([sn_wrapper]) model.compile("rmsprop", loss="mse") x = np.random.random((4, 8, 8, 3)) y = np.random.random((4, 8, 8, 3)) model.fit(x, y)