input
stringlengths
33
5k
output
stringlengths
32
5k
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class BaseImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"]) class BaseVideoProcessor(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class BaseImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, type='ATSS', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='ATSSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, type='ATSS', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='ATSSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
"""Hybrid Fusion Retriever Pack.""" import os from typing import Any, Dict, List from llama_index.core import Settings from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import QueryFusionRetriever from llama_index.core.schema import Document, TextNode from llama_index.retrievers.bm25 import BM25Retriever class HybridFusionRetrieverPack(BaseLlamaPack): """ Hybrid fusion retriever pack. Ensembles vector and bm25 retrievers using fusion. """ def __init__( self, nodes: List[TextNode] = None, chunk_size: int = 256, mode: str = "reciprocal_rerank", vector_similarity_top_k: int = 2, bm25_similarity_top_k: int = 2, fusion_similarity_top_k: int = 2, num_queries: int = 4, documents: List[Document] = None, cache_dir: str = None, **kwargs: Any, ) -> None: """Init params.""" Settings.chunk_size = chunk_size if cache_dir is not None and os.path.exists(cache_dir): # Load from cache from llama_index import StorageContext, load_index_from_storage # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir=cache_dir) # load index index = load_index_from_storage(storage_context) elif documents is not None: index = VectorStoreIndex.from_documents(documents=documents) else: index = VectorStoreIndex(nodes) if cache_dir is not None and not os.path.exists(cache_dir): index.storage_context.persist(persist_dir=cache_dir) self.vector_retriever = index.as_retriever( similarity_top_k=vector_similarity_top_k ) self.bm25_retriever = BM25Retriever.from_defaults( docstore=index.docstore, similarity_top_k=bm25_similarity_top_k ) self.fusion_retriever = QueryFusionRetriever( [self.vector_retriever, self.bm25_retriever], similarity_top_k=fusion_similarity_top_k, num_queries=num_queries, # set this to 1 to disable query generation mode=mode, use_async=True, verbose=True, # query_gen_prompt="...", # we could override the query generation prompt here ) self.query_engine = RetrieverQueryEngine.from_args(self.fusion_retriever) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "vector_retriever": self.vector_retriever, "bm25_retriever": self.bm25_retriever, "fusion_retriever": self.fusion_retriever, "query_engine": self.query_engine, } def retrieve(self, query_str: str) -> Any: """Retrieve.""" return self.fusion_retriever.retrieve(query_str) def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
"""Hybrid Fusion Retriever Pack.""" import os from typing import Any, Dict, List from llama_index.core import Settings from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import QueryFusionRetriever from llama_index.core.schema import Document, TextNode from llama_index.retrievers.bm25 import BM25Retriever class HybridFusionRetrieverPack(BaseLlamaPack): """Hybrid fusion retriever pack. Ensembles vector and bm25 retrievers using fusion. """ def __init__( self, nodes: List[TextNode] = None, chunk_size: int = 256, mode: str = "reciprocal_rerank", vector_similarity_top_k: int = 2, bm25_similarity_top_k: int = 2, fusion_similarity_top_k: int = 2, num_queries: int = 4, documents: List[Document] = None, cache_dir: str = None, **kwargs: Any, ) -> None: """Init params.""" Settings.chunk_size = chunk_size if cache_dir is not None and os.path.exists(cache_dir): # Load from cache from llama_index import StorageContext, load_index_from_storage # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir=cache_dir) # load index index = load_index_from_storage(storage_context) elif documents is not None: index = VectorStoreIndex.from_documents(documents=documents) else: index = VectorStoreIndex(nodes) if cache_dir is not None and not os.path.exists(cache_dir): index.storage_context.persist(persist_dir=cache_dir) self.vector_retriever = index.as_retriever( similarity_top_k=vector_similarity_top_k ) self.bm25_retriever = BM25Retriever.from_defaults( docstore=index.docstore, similarity_top_k=bm25_similarity_top_k ) self.fusion_retriever = QueryFusionRetriever( [self.vector_retriever, self.bm25_retriever], similarity_top_k=fusion_similarity_top_k, num_queries=num_queries, # set this to 1 to disable query generation mode=mode, use_async=True, verbose=True, # query_gen_prompt="...", # we could override the query generation prompt here ) self.query_engine = RetrieverQueryEngine.from_args(self.fusion_retriever) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "vector_retriever": self.vector_retriever, "bm25_retriever": self.bm25_retriever, "fusion_retriever": self.fusion_retriever, "query_engine": self.query_engine, } def retrieve(self, query_str: str) -> Any: """Retrieve.""" return self.fusion_retriever.retrieve(query_str) def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
import unittest import torch import torchaudio.functional as F from parameterized import parameterized from torchaudio_unittest.common_utils import ( PytorchTestCase, skipIfNoSox, TorchaudioTestCase, ) from .functional_impl import Functional, FunctionalCPUOnly class TestFunctionalFloat32(Functional, FunctionalCPUOnly, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") @unittest.expectedFailure def test_lfilter_9th_order_filter_stability(self): super().test_lfilter_9th_order_filter_stability() class TestFunctionalFloat64(Functional, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu") @skipIfNoSox class TestApplyCodec(TorchaudioTestCase): backend = "sox_io" def _smoke_test(self, format, compression, check_num_frames): """ The purpose of this test suite is to verify that apply_codec functionalities do not exhibit abnormal behaviors. """ torch.random.manual_seed(42) sample_rate = 8000 num_frames = 3 * sample_rate num_channels = 2 waveform = torch.rand(num_channels, num_frames) augmented = F.apply_codec(waveform, sample_rate, format, True, compression) assert augmented.dtype == waveform.dtype assert augmented.shape[0] == num_channels if check_num_frames: assert augmented.shape[1] == num_frames def test_wave(self): self._smoke_test("wav", compression=None, check_num_frames=True) @parameterized.expand([(96,), (128,), (160,), (192,), (224,), (256,), (320,)]) def test_mp3(self, compression): self._smoke_test("mp3", compression, check_num_frames=False) @parameterized.expand([(0,), (1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,)]) def test_flac(self, compression): self._smoke_test("flac", compression, check_num_frames=False) @parameterized.expand([(-1,), (0,), (1,), (2,), (3,), (3.6,), (5,), (10,)]) def test_vorbis(self, compression): self._smoke_test("vorbis", compression, check_num_frames=False)
import unittest import torch import torchaudio.functional as F from parameterized import parameterized from torchaudio_unittest.common_utils import PytorchTestCase, TorchaudioTestCase, skipIfNoSox from .functional_impl import Functional, FunctionalCPUOnly class TestFunctionalFloat32(Functional, FunctionalCPUOnly, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") @unittest.expectedFailure def test_lfilter_9th_order_filter_stability(self): super().test_lfilter_9th_order_filter_stability() class TestFunctionalFloat64(Functional, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu") @skipIfNoSox class TestApplyCodec(TorchaudioTestCase): backend = "sox_io" def _smoke_test(self, format, compression, check_num_frames): """ The purpose of this test suite is to verify that apply_codec functionalities do not exhibit abnormal behaviors. """ torch.random.manual_seed(42) sample_rate = 8000 num_frames = 3 * sample_rate num_channels = 2 waveform = torch.rand(num_channels, num_frames) augmented = F.apply_codec(waveform, sample_rate, format, True, compression) assert augmented.dtype == waveform.dtype assert augmented.shape[0] == num_channels if check_num_frames: assert augmented.shape[1] == num_frames def test_wave(self): self._smoke_test("wav", compression=None, check_num_frames=True) @parameterized.expand([(96,), (128,), (160,), (192,), (224,), (256,), (320,)]) def test_mp3(self, compression): self._smoke_test("mp3", compression, check_num_frames=False) @parameterized.expand([(0,), (1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,)]) def test_flac(self, compression): self._smoke_test("flac", compression, check_num_frames=False) @parameterized.expand([(-1,), (0,), (1,), (2,), (3,), (3.6,), (5,), (10,)]) def test_vorbis(self, compression): self._smoke_test("vorbis", compression, check_num_frames=False)
import numpy as np import torch from docarray import BaseDocument, DocumentArray, Image, Text from docarray.typing import ( AnyEmbedding, AnyTensor, AnyUrl, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(BaseDocument): image: Image text: Text class MySUperDoc(BaseDocument): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class NestedDoc(BaseDocument): tensor: NdArray class MyDoc(BaseDocument): img_url: ImageUrl txt_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: AnyTensor generic_torch_tensor: AnyTensor embedding: AnyEmbedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] nested_docs: DocumentArray[NestedDoc] doc = MyDoc( img_url='test.png', txt_url='test.txt', mesh_url='test.obj', point_cloud_url='test.obj', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), nested_docs=DocumentArray[NestedDoc]([NestedDoc(tensor=np.zeros((128,)))]), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.mesh_url == 'test.obj' assert doc.point_cloud_url == 'test.obj' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
import numpy as np import torch from docarray import BaseDocument, DocumentArray, Image, Text from docarray.typing import ( AnyTensor, AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(BaseDocument): image: Image text: Text class MySUperDoc(BaseDocument): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class NestedDoc(BaseDocument): tensor: NdArray class MyDoc(BaseDocument): img_url: ImageUrl txt_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: AnyTensor generic_torch_tensor: AnyTensor embedding: Embedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] nested_docs: DocumentArray[NestedDoc] doc = MyDoc( img_url='test.png', txt_url='test.txt', mesh_url='test.obj', point_cloud_url='test.obj', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), nested_docs=DocumentArray[NestedDoc]([NestedDoc(tensor=np.zeros((128,)))]), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.mesh_url == 'test.obj' assert doc.point_cloud_url == 'test.obj' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.convnext import ConvNeXtBase as ConvNeXtBase from keras.src.applications.convnext import ConvNeXtLarge as ConvNeXtLarge from keras.src.applications.convnext import ConvNeXtSmall as ConvNeXtSmall from keras.src.applications.convnext import ConvNeXtTiny as ConvNeXtTiny from keras.src.applications.convnext import ConvNeXtXLarge as ConvNeXtXLarge from keras.src.applications.convnext import ( decode_predictions as decode_predictions, ) from keras.src.applications.convnext import preprocess_input as preprocess_input
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.convnext import ConvNeXtBase from keras.src.applications.convnext import ConvNeXtLarge from keras.src.applications.convnext import ConvNeXtSmall from keras.src.applications.convnext import ConvNeXtTiny from keras.src.applications.convnext import ConvNeXtXLarge from keras.src.applications.convnext import decode_predictions from keras.src.applications.convnext import preprocess_input
""" Computes embeddings """ import numpy as np from sentence_transformers import SentenceTransformer from sentence_transformers.util import get_device_name def test_encode_token_embeddings(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: """ Test that encode(output_value='token_embeddings') works :return: """ model = paraphrase_distilroberta_base_v1_model sent = [ "Hello Word, a test sentence", "Here comes another sentence", "My final sentence", "Sentences", "Sentence five five five five five five five", ] emb = model.encode(sent, output_value="token_embeddings", batch_size=2) assert len(emb) == len(sent) device = get_device_name() if device == "hpu": for s, e in zip(sent, emb): assert len(model.tokenize([s])["input_ids"][0]) == model.get_max_seq_length() else: for s, e in zip(sent, emb): assert len(model.tokenize([s])["input_ids"][0]) == e.shape[0] def test_encode_single_sentences(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: model = paraphrase_distilroberta_base_v1_model # Single sentence emb = model.encode("Hello Word, a test sentence") assert emb.shape == (768,) assert abs(np.sum(emb) - 7.9811716) < 0.002 # Single sentence as list emb = model.encode(["Hello Word, a test sentence"]) assert emb.shape == (1, 768) assert abs(np.sum(emb) - 7.9811716) < 0.002 # Sentence list emb = model.encode( [ "Hello Word, a test sentence", "Here comes another sentence", "My final sentence", ] ) assert emb.shape == (3, 768) assert abs(np.sum(emb) - 22.968266) < 0.007 def test_encode_normalize(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: model = paraphrase_distilroberta_base_v1_model emb = model.encode( [ "Hello Word, a test sentence", "Here comes another sentence", "My final sentence", ], normalize_embeddings=True, ) assert emb.shape == (3, 768) for norm in np.linalg.norm(emb, axis=1): assert abs(norm - 1) < 0.001 def test_encode_tuple_sentences(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: model = paraphrase_distilroberta_base_v1_model # Input a sentence tuple emb = model.encode([("Hello Word, a test sentence", "Second input for model")]) assert emb.shape == (1, 768) assert abs(np.sum(emb) - 9.503508) < 0.002 # List of sentence tuples emb = model.encode( [ ("Hello Word, a test sentence", "Second input for model"), ("My second tuple", "With two inputs"), ("Final tuple", "final test"), ] ) assert emb.shape == (3, 768) assert abs(np.sum(emb) - 32.14627) < 0.002
""" Computes embeddings """ import numpy as np from sentence_transformers import SentenceTransformer def test_encode_token_embeddings(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: """ Test that encode(output_value='token_embeddings') works :return: """ model = paraphrase_distilroberta_base_v1_model sent = [ "Hello Word, a test sentence", "Here comes another sentence", "My final sentence", "Sentences", "Sentence five five five five five five five", ] emb = model.encode(sent, output_value="token_embeddings", batch_size=2) assert len(emb) == len(sent) for s, e in zip(sent, emb): assert len(model.tokenize([s])["input_ids"][0]) == e.shape[0] def test_encode_single_sentences(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: model = paraphrase_distilroberta_base_v1_model # Single sentence emb = model.encode("Hello Word, a test sentence") assert emb.shape == (768,) assert abs(np.sum(emb) - 7.9811716) < 0.001 # Single sentence as list emb = model.encode(["Hello Word, a test sentence"]) assert emb.shape == (1, 768) assert abs(np.sum(emb) - 7.9811716) < 0.001 # Sentence list emb = model.encode( [ "Hello Word, a test sentence", "Here comes another sentence", "My final sentence", ] ) assert emb.shape == (3, 768) assert abs(np.sum(emb) - 22.968266) < 0.001 def test_encode_normalize(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: model = paraphrase_distilroberta_base_v1_model emb = model.encode( [ "Hello Word, a test sentence", "Here comes another sentence", "My final sentence", ], normalize_embeddings=True, ) assert emb.shape == (3, 768) for norm in np.linalg.norm(emb, axis=1): assert abs(norm - 1) < 0.001 def test_encode_tuple_sentences(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: model = paraphrase_distilroberta_base_v1_model # Input a sentence tuple emb = model.encode([("Hello Word, a test sentence", "Second input for model")]) assert emb.shape == (1, 768) assert abs(np.sum(emb) - 9.503508) < 0.001 # List of sentence tuples emb = model.encode( [ ("Hello Word, a test sentence", "Second input for model"), ("My second tuple", "With two inputs"), ("Final tuple", "final test"), ] ) assert emb.shape == (3, 768) assert abs(np.sum(emb) - 32.14627) < 0.001
""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from scipy.sparse import issparse from ..base import TransformerMixin from ..utils import metadata_routing from ..utils.deprecation import _deprecate_Xt_in_inverse_transform from ..utils.validation import check_is_fitted, validate_data ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface. """ # This prevents ``set_split_inverse_transform`` to be generated for the # non-standard ``Xt`` arg on ``inverse_transform``. # TODO(1.7): remove when Xt is removed for inverse_transform. __metadata_request__inverse_transform = {"Xt": metadata_routing.UNUSED} def transform(self, X): """ Transform a new matrix using the built clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns ------- Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,) The pooled values for each feature cluster. """ check_is_fitted(self) X = validate_data(self, X, reset=False) if self.pooling_func == np.mean and not issparse(X): size = np.bincount(self.labels_) n_samples = X.shape[0] # a fast way to compute the mean of grouped features nX = np.array( [np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)] ) else: nX = [ self.pooling_func(X[:, self.labels_ == l], axis=1) for l in np.unique(self.labels_) ] nX = np.array(nX).T return nX def inverse_transform(self, X=None, *, Xt=None): """ Inverse the transformation and return a vector of size `n_features`. Parameters ---------- X : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. Xt : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. .. deprecated:: 1.5 `Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead. Returns ------- X : ndarray of shape (n_samples, n_features) or (n_features,) A vector of size `n_samples` with the values of `Xred` assigned to each of the cluster of samples. """ X = _deprecate_Xt_in_inverse_transform(X, Xt) check_is_fitted(self) unil, inverse = np.unique(self.labels_, return_inverse=True) return X[..., inverse]
""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from scipy.sparse import issparse from ..base import TransformerMixin from ..utils import metadata_routing from ..utils.deprecation import _deprecate_Xt_in_inverse_transform from ..utils.validation import check_is_fitted ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface. """ # This prevents ``set_split_inverse_transform`` to be generated for the # non-standard ``Xt`` arg on ``inverse_transform``. # TODO(1.7): remove when Xt is removed for inverse_transform. __metadata_request__inverse_transform = {"Xt": metadata_routing.UNUSED} def transform(self, X): """ Transform a new matrix using the built clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns ------- Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,) The pooled values for each feature cluster. """ check_is_fitted(self) X = self._validate_data(X, reset=False) if self.pooling_func == np.mean and not issparse(X): size = np.bincount(self.labels_) n_samples = X.shape[0] # a fast way to compute the mean of grouped features nX = np.array( [np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)] ) else: nX = [ self.pooling_func(X[:, self.labels_ == l], axis=1) for l in np.unique(self.labels_) ] nX = np.array(nX).T return nX def inverse_transform(self, X=None, *, Xt=None): """ Inverse the transformation and return a vector of size `n_features`. Parameters ---------- X : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. Xt : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. .. deprecated:: 1.5 `Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead. Returns ------- X : ndarray of shape (n_samples, n_features) or (n_features,) A vector of size `n_samples` with the values of `Xred` assigned to each of the cluster of samples. """ X = _deprecate_Xt_in_inverse_transform(X, Xt) check_is_fitted(self) unil, inverse = np.unique(self.labels_, return_inverse=True) return X[..., inverse]
import pytest @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests."""
import pytest @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests.""" pass
#!/usr/bin/env python3 # Owner(s): ["oncall: distributed"] import contextlib import copyreg import os import sys import torch import torch.distributed as dist if not dist.is_available(): print("Distributed not available, skipping tests", file=sys.stderr) sys.exit(0) import torch.distributed.rpc as rpc import torch.multiprocessing.reductions as TorchMpReductions from torch import multiprocessing from torch.distributed.rpc.api import _use_rpc_pickler from torch.distributed.rpc.internal import _InternalRPCPickler from torch.testing._internal.common_utils import run_tests, TestCase @contextlib.contextmanager def fs_sharing(): prev_strategy = multiprocessing.get_sharing_strategy() multiprocessing.set_sharing_strategy("file_system") try: yield finally: multiprocessing.set_sharing_strategy(prev_strategy) class ShareMemoryRPCPickler(_InternalRPCPickler): def __init__(self) -> None: super().__init__() self._dispatch_table # pyre-fixme[4]: Attribute must be annotated. self._dispatch_table = copyreg.dispatch_table.copy() for t in torch._storage_classes: self._dispatch_table[t] = TorchMpReductions.reduce_storage for t in torch._tensor_classes: self._dispatch_table[t] = TorchMpReductions.reduce_tensor self._dispatch_table[torch.Tensor] = TorchMpReductions.reduce_tensor self._dispatch_table[torch.nn.parameter.Parameter] = ( TorchMpReductions.reduce_tensor ) def worker_loop(a): rpc.init_rpc("worker1", rank=1, world_size=2) rpc.shutdown() def worker_fn(m): pass class TestRPCPickler(TestCase): def test_case(self): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" with fs_sharing(): r = multiprocessing.spawn(worker_loop, join=False) try: with _use_rpc_pickler(ShareMemoryRPCPickler()): rpc.init_rpc("worker0", rank=0, world_size=2) m = torch.nn.Linear(1, 2) m.share_memory() rref = rpc.remote("worker1", worker_fn, args=(m,)) rref.to_here() finally: rpc.shutdown() r.join() if __name__ == "__main__": run_tests()
#!/usr/bin/env python3 # Owner(s): ["oncall: distributed"] import contextlib import copyreg import os import sys import torch import torch.distributed as dist if not dist.is_available(): print("Distributed not available, skipping tests", file=sys.stderr) sys.exit(0) import torch.distributed.rpc as rpc import torch.multiprocessing.reductions as TorchMpReductions from torch import multiprocessing from torch.distributed.rpc.api import _use_rpc_pickler from torch.distributed.rpc.internal import _InternalRPCPickler from torch.testing._internal.common_utils import run_tests, TestCase @contextlib.contextmanager def fs_sharing(): prev_strategy = multiprocessing.get_sharing_strategy() multiprocessing.set_sharing_strategy("file_system") try: yield finally: multiprocessing.set_sharing_strategy(prev_strategy) class ShareMemoryRPCPickler(_InternalRPCPickler): def __init__(self) -> None: super().__init__() self._dispatch_table # pyre-fixme[4]: Attribute must be annotated. self._dispatch_table = copyreg.dispatch_table.copy() for t in torch._storage_classes: self._dispatch_table[t] = TorchMpReductions.reduce_storage for t in torch._tensor_classes: self._dispatch_table[t] = TorchMpReductions.reduce_tensor self._dispatch_table[torch.Tensor] = TorchMpReductions.reduce_tensor self._dispatch_table[ torch.nn.parameter.Parameter ] = TorchMpReductions.reduce_tensor def worker_loop(a): rpc.init_rpc("worker1", rank=1, world_size=2) rpc.shutdown() def worker_fn(m): pass class TestRPCPickler(TestCase): def test_case(self): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" with fs_sharing(): r = multiprocessing.spawn(worker_loop, join=False) try: with _use_rpc_pickler(ShareMemoryRPCPickler()): rpc.init_rpc("worker0", rank=0, world_size=2) m = torch.nn.Linear(1, 2) m.share_memory() rref = rpc.remote("worker1", worker_fn, args=(m,)) rref.to_here() finally: rpc.shutdown() r.join() if __name__ == "__main__": run_tests()
from pathlib import Path from typing import Any, Callable, Optional, Tuple import PIL.Image from .folder import make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class RenderedSST2(VisionDataset): """`The Rendered SST2 Dataset <https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md>`_. Rendered SST2 is an image classification dataset used to evaluate the models capability on optical character recognition. This dataset was generated by rendering sentences in the Standford Sentiment Treebank v2 dataset. This dataset contains two classes (positive and negative) and is divided in three splits: a train split containing 6920 images (3610 positive and 3310 negative), a validation split containing 872 images (444 positive and 428 negative), and a test split containing 1821 images (909 positive and 912 negative). Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), `"val"` and ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "https://openaipublic.azureedge.net/clip/data/rendered-sst2.tgz" _MD5 = "2384d08e9dcfa4bd55b324e610496ee5" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._split_to_folder = {"train": "train", "val": "valid", "test": "test"} self._base_folder = Path(self.root) / "rendered-sst2" self.classes = ["negative", "positive"] self.class_to_idx = {"negative": 0, "positive": 1} if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._samples = make_dataset(str(self._base_folder / self._split_to_folder[self._split]), extensions=("png",)) def __len__(self) -> int: return len(self._samples) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._samples[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_exists(self) -> bool: for class_label in set(self.classes): if not (self._base_folder / self._split_to_folder[self._split] / class_label).is_dir(): return False return True def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
from pathlib import Path from typing import Any, Callable, Optional, Tuple import PIL.Image from .folder import make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class RenderedSST2(VisionDataset): """`The Rendered SST2 Dataset <https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md>`_. Rendered SST2 is an image classification dataset used to evaluate the models capability on optical character recognition. This dataset was generated by rendering sentences in the Standford Sentiment Treebank v2 dataset. This dataset contains two classes (positive and negative) and is divided in three splits: a train split containing 6920 images (3610 positive and 3310 negative), a validation split containing 872 images (444 positive and 428 negative), and a test split containing 1821 images (909 positive and 912 negative). Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), `"val"` and ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "https://openaipublic.azureedge.net/clip/data/rendered-sst2.tgz" _MD5 = "2384d08e9dcfa4bd55b324e610496ee5" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._split_to_folder = {"train": "train", "val": "valid", "test": "test"} self._base_folder = Path(self.root) / "rendered-sst2" self.classes = ["negative", "positive"] self.class_to_idx = {"negative": 0, "positive": 1} if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._samples = make_dataset(str(self._base_folder / self._split_to_folder[self._split]), extensions=("png",)) def __len__(self) -> int: return len(self._samples) def __getitem__(self, idx) -> Tuple[Any, Any]: image_file, label = self._samples[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_exists(self) -> bool: for class_label in set(self.classes): if not (self._base_folder / self._split_to_folder[self._split] / class_label).is_dir(): return False return True def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
"""Test Anthropic API wrapper.""" from typing import List from langchain_core.callbacks import ( CallbackManager, ) from langchain_core.messages import AIMessage, BaseMessage, HumanMessage from langchain_core.outputs import ChatGeneration, LLMResult from langchain_community.chat_models.litellm import ChatLiteLLM from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler def test_litellm_call() -> None: """Test valid call to litellm.""" chat = ChatLiteLLM( model="test", ) message = HumanMessage(content="Hello") response = chat.invoke([message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_litellm_generate() -> None: """Test generate method of anthropic.""" chat = ChatLiteLLM(model="test") chat_messages: List[List[BaseMessage]] = [ [HumanMessage(content="How many toes do dogs have?")] ] messages_copy = [messages.copy() for messages in chat_messages] result: LLMResult = chat.generate(chat_messages) assert isinstance(result, LLMResult) for response in result.generations[0]: assert isinstance(response, ChatGeneration) assert isinstance(response.text, str) assert response.text == response.message.content assert chat_messages == messages_copy def test_litellm_streaming() -> None: """Test streaming tokens from anthropic.""" chat = ChatLiteLLM(model="test", streaming=True) message = HumanMessage(content="Hello") response = chat.invoke([message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_litellm_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = ChatLiteLLM( model="test", streaming=True, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Write me a sentence with 10 words.") chat.invoke([message]) assert callback_handler.llm_streams > 1
"""Test Anthropic API wrapper.""" from typing import List from langchain_core.callbacks import ( CallbackManager, ) from langchain_core.messages import AIMessage, BaseMessage, HumanMessage from langchain_core.outputs import ChatGeneration, LLMResult from langchain_community.chat_models.litellm import ChatLiteLLM from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler def test_litellm_call() -> None: """Test valid call to litellm.""" chat = ChatLiteLLM( # type: ignore[call-arg] model="test", ) message = HumanMessage(content="Hello") response = chat.invoke([message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_litellm_generate() -> None: """Test generate method of anthropic.""" chat = ChatLiteLLM(model="test") # type: ignore[call-arg] chat_messages: List[List[BaseMessage]] = [ [HumanMessage(content="How many toes do dogs have?")] ] messages_copy = [messages.copy() for messages in chat_messages] result: LLMResult = chat.generate(chat_messages) assert isinstance(result, LLMResult) for response in result.generations[0]: assert isinstance(response, ChatGeneration) assert isinstance(response.text, str) assert response.text == response.message.content assert chat_messages == messages_copy def test_litellm_streaming() -> None: """Test streaming tokens from anthropic.""" chat = ChatLiteLLM(model="test", streaming=True) # type: ignore[call-arg] message = HumanMessage(content="Hello") response = chat.invoke([message]) assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_litellm_streaming_callback() -> None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = ChatLiteLLM( # type: ignore[call-arg] model="test", streaming=True, callback_manager=callback_manager, verbose=True, ) message = HumanMessage(content="Write me a sentence with 10 words.") chat.invoke([message]) assert callback_handler.llm_streams > 1
from dataclasses import dataclass, field from typing import Any, Dict, Type import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.abstract import BaseDocIndex from docarray.typing import NdArray pytestmark = pytest.mark.index class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class FakeQueryBuilder: ... @dataclass class DBConfig(BaseDocIndex.DBConfig): work_dir: str = '.' other: int = 5 @dataclass class RuntimeConfig(BaseDocIndex.RuntimeConfig): default_column_config: Dict[Type, Dict[str, Any]] = field( default_factory=lambda: { str: { 'dim': 128, 'space': 'l2', }, } ) default_ef: int = 50 def _identity(*x, **y): return x, y class DummyDocIndex(BaseDocIndex): DBConfig = DBConfig RuntimeConfig = RuntimeConfig def python_type_to_db_type(self, x): return str _index = _identity num_docs = _identity _del_items = _identity _get_items = _identity execute_query = _identity _find = _identity _find_batched = _identity _filter = _identity _filter_batched = _identity _text_search = _identity _text_search_batched = _identity def test_defaults(): store = DummyDocIndex[SimpleDoc]() assert store._db_config.other == 5 assert store._db_config.work_dir == '.' assert store._runtime_config.default_column_config[str] == { 'dim': 128, 'space': 'l2', } def test_set_by_class(): # change all settings store = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi', other=10)) assert store._db_config.other == 10 assert store._db_config.work_dir == 'hi' store.configure(RuntimeConfig(default_column_config={}, default_ef=10)) assert store._runtime_config.default_column_config == {} # change only some settings store = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi')) assert store._db_config.other == 5 assert store._db_config.work_dir == 'hi' store.configure(RuntimeConfig(default_column_config={})) assert store._runtime_config.default_column_config == {} def test_set_by_kwargs(): # change all settings store = DummyDocIndex[SimpleDoc](work_dir='hi', other=10) assert store._db_config.other == 10 assert store._db_config.work_dir == 'hi' store.configure(default_column_config={}, default_ef=10) assert store._runtime_config.default_column_config == {} # change only some settings store = DummyDocIndex[SimpleDoc](work_dir='hi') assert store._db_config.other == 5 assert store._db_config.work_dir == 'hi' store.configure(default_column_config={}) assert store._runtime_config.default_column_config == {} def test_default_column_config(): store = DummyDocIndex[SimpleDoc]() assert store._runtime_config.default_column_config == { str: { 'dim': 128, 'space': 'l2', }, }
from dataclasses import dataclass, field from typing import Any, Dict, Type import pytest from pydantic import Field from docarray import BaseDocument from docarray.index.abstract import BaseDocumentIndex from docarray.typing import NdArray pytestmark = pytest.mark.index class SimpleDoc(BaseDocument): tens: NdArray[10] = Field(dim=1000) class FakeQueryBuilder: ... @dataclass class DBConfig(BaseDocumentIndex.DBConfig): work_dir: str = '.' other: int = 5 @dataclass class RuntimeConfig(BaseDocumentIndex.RuntimeConfig): default_column_config: Dict[Type, Dict[str, Any]] = field( default_factory=lambda: { str: { 'dim': 128, 'space': 'l2', }, } ) default_ef: int = 50 def _identity(*x, **y): return x, y class DummyDocIndex(BaseDocumentIndex): DBConfig = DBConfig RuntimeConfig = RuntimeConfig def python_type_to_db_type(self, x): return str _index = _identity num_docs = _identity _del_items = _identity _get_items = _identity execute_query = _identity _find = _identity _find_batched = _identity _filter = _identity _filter_batched = _identity _text_search = _identity _text_search_batched = _identity def test_defaults(): store = DummyDocIndex[SimpleDoc]() assert store._db_config.other == 5 assert store._db_config.work_dir == '.' assert store._runtime_config.default_column_config[str] == { 'dim': 128, 'space': 'l2', } def test_set_by_class(): # change all settings store = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi', other=10)) assert store._db_config.other == 10 assert store._db_config.work_dir == 'hi' store.configure(RuntimeConfig(default_column_config={}, default_ef=10)) assert store._runtime_config.default_column_config == {} # change only some settings store = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi')) assert store._db_config.other == 5 assert store._db_config.work_dir == 'hi' store.configure(RuntimeConfig(default_column_config={})) assert store._runtime_config.default_column_config == {} def test_set_by_kwargs(): # change all settings store = DummyDocIndex[SimpleDoc](work_dir='hi', other=10) assert store._db_config.other == 10 assert store._db_config.work_dir == 'hi' store.configure(default_column_config={}, default_ef=10) assert store._runtime_config.default_column_config == {} # change only some settings store = DummyDocIndex[SimpleDoc](work_dir='hi') assert store._db_config.other == 5 assert store._db_config.work_dir == 'hi' store.configure(default_column_config={}) assert store._runtime_config.default_column_config == {} def test_default_column_config(): store = DummyDocIndex[SimpleDoc]() assert store._runtime_config.default_column_config == { str: { 'dim': 128, 'space': 'l2', }, }
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch from .sampling_result import SamplingResult class BaseSampler(metaclass=ABCMeta): """Base class of samplers.""" def __init__(self, num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): self.num = num self.pos_fraction = pos_fraction self.neg_pos_ub = neg_pos_ub self.add_gt_as_proposals = add_gt_as_proposals self.pos_sampler = self self.neg_sampler = self @abstractmethod def _sample_pos(self, assign_result, num_expected, **kwargs): """Sample positive samples.""" pass @abstractmethod def _sample_neg(self, assign_result, num_expected, **kwargs): """Sample negative samples.""" pass def sample(self, assign_result, bboxes, gt_bboxes, gt_labels=None, **kwargs): """Sample positive and negative bboxes. This is a simple implementation of bbox sampling given candidates, assigning results and ground truth bboxes. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. bboxes (Tensor): Boxes to be sampled from. gt_bboxes (Tensor): Ground truth bboxes. gt_labels (Tensor, optional): Class labels of ground truth bboxes. Returns: :obj:`SamplingResult`: Sampling result. Example: >>> from mmdet.core.bbox import RandomSampler >>> from mmdet.core.bbox import AssignResult >>> from mmdet.core.bbox.demodata import ensure_rng, random_boxes >>> rng = ensure_rng(None) >>> assign_result = AssignResult.random(rng=rng) >>> bboxes = random_boxes(assign_result.num_preds, rng=rng) >>> gt_bboxes = random_boxes(assign_result.num_gts, rng=rng) >>> gt_labels = None >>> self = RandomSampler(num=32, pos_fraction=0.5, neg_pos_ub=-1, >>> add_gt_as_proposals=False) >>> self = self.sample(assign_result, bboxes, gt_bboxes, gt_labels) """ if len(bboxes.shape) < 2: bboxes = bboxes[None, :] bboxes = bboxes[:, :4] gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8) if self.add_gt_as_proposals and len(gt_bboxes) > 0: if gt_labels is None: raise ValueError( 'gt_labels must be given when add_gt_as_proposals is True') bboxes = torch.cat([gt_bboxes, bboxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int(self.num * self.pos_fraction) pos_inds = self.pos_sampler._sample_pos( assign_result, num_expected_pos, bboxes=bboxes, **kwargs) # We found that sampled indices have duplicated items occasionally. # (may be a bug of PyTorch) pos_inds = pos_inds.unique() num_sampled_pos = pos_inds.numel() num_expected_neg = self.num - num_sampled_pos if self.neg_pos_ub >= 0: _pos = max(1, num_sampled_pos) neg_upper_bound = int(self.neg_pos_ub * _pos) if num_expected_neg > neg_upper_bound: num_expected_neg = neg_upper_bound neg_inds = self.neg_sampler._sample_neg( assign_result, num_expected_neg, bboxes=bboxes, **kwargs) neg_inds = neg_inds.unique() sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags) return sampling_result
from abc import ABCMeta, abstractmethod import torch from .sampling_result import SamplingResult class BaseSampler(metaclass=ABCMeta): """Base class of samplers.""" def __init__(self, num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): self.num = num self.pos_fraction = pos_fraction self.neg_pos_ub = neg_pos_ub self.add_gt_as_proposals = add_gt_as_proposals self.pos_sampler = self self.neg_sampler = self @abstractmethod def _sample_pos(self, assign_result, num_expected, **kwargs): """Sample positive samples.""" pass @abstractmethod def _sample_neg(self, assign_result, num_expected, **kwargs): """Sample negative samples.""" pass def sample(self, assign_result, bboxes, gt_bboxes, gt_labels=None, **kwargs): """Sample positive and negative bboxes. This is a simple implementation of bbox sampling given candidates, assigning results and ground truth bboxes. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. bboxes (Tensor): Boxes to be sampled from. gt_bboxes (Tensor): Ground truth bboxes. gt_labels (Tensor, optional): Class labels of ground truth bboxes. Returns: :obj:`SamplingResult`: Sampling result. Example: >>> from mmdet.core.bbox import RandomSampler >>> from mmdet.core.bbox import AssignResult >>> from mmdet.core.bbox.demodata import ensure_rng, random_boxes >>> rng = ensure_rng(None) >>> assign_result = AssignResult.random(rng=rng) >>> bboxes = random_boxes(assign_result.num_preds, rng=rng) >>> gt_bboxes = random_boxes(assign_result.num_gts, rng=rng) >>> gt_labels = None >>> self = RandomSampler(num=32, pos_fraction=0.5, neg_pos_ub=-1, >>> add_gt_as_proposals=False) >>> self = self.sample(assign_result, bboxes, gt_bboxes, gt_labels) """ if len(bboxes.shape) < 2: bboxes = bboxes[None, :] bboxes = bboxes[:, :4] gt_flags = bboxes.new_zeros((bboxes.shape[0], ), dtype=torch.uint8) if self.add_gt_as_proposals and len(gt_bboxes) > 0: if gt_labels is None: raise ValueError( 'gt_labels must be given when add_gt_as_proposals is True') bboxes = torch.cat([gt_bboxes, bboxes], dim=0) assign_result.add_gt_(gt_labels) gt_ones = bboxes.new_ones(gt_bboxes.shape[0], dtype=torch.uint8) gt_flags = torch.cat([gt_ones, gt_flags]) num_expected_pos = int(self.num * self.pos_fraction) pos_inds = self.pos_sampler._sample_pos( assign_result, num_expected_pos, bboxes=bboxes, **kwargs) # We found that sampled indices have duplicated items occasionally. # (may be a bug of PyTorch) pos_inds = pos_inds.unique() num_sampled_pos = pos_inds.numel() num_expected_neg = self.num - num_sampled_pos if self.neg_pos_ub >= 0: _pos = max(1, num_sampled_pos) neg_upper_bound = int(self.neg_pos_ub * _pos) if num_expected_neg > neg_upper_bound: num_expected_neg = neg_upper_bound neg_inds = self.neg_sampler._sample_neg( assign_result, num_expected_neg, bboxes=bboxes, **kwargs) neg_inds = neg_inds.unique() sampling_result = SamplingResult(pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags) return sampling_result
"""Google Trends API Toolkit.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.google_trends.tool import GoogleTrendsQueryRun # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleTrendsQueryRun": "langchain_community.tools.google_trends.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleTrendsQueryRun", ]
"""Google Trends API Toolkit.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.google_trends.tool import GoogleTrendsQueryRun # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleTrendsQueryRun": "langchain_community.tools.google_trends.tool" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleTrendsQueryRun", ]
import logging import time from abc import ABC, abstractmethod from typing import ClassVar from backend.data.model import OAuth2Credentials logger = logging.getLogger(__name__) class BaseOAuthHandler(ABC): # --8<-- [start:BaseOAuthHandler1] PROVIDER_NAME: ClassVar[str] DEFAULT_SCOPES: ClassVar[list[str]] = [] # --8<-- [end:BaseOAuthHandler1] @abstractmethod # --8<-- [start:BaseOAuthHandler2] def __init__(self, client_id: str, client_secret: str, redirect_uri: str): ... # --8<-- [end:BaseOAuthHandler2] @abstractmethod # --8<-- [start:BaseOAuthHandler3] def get_login_url(self, scopes: list[str], state: str) -> str: # --8<-- [end:BaseOAuthHandler3] """Constructs a login URL that the user can be redirected to""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler4] def exchange_code_for_tokens( self, code: str, scopes: list[str] ) -> OAuth2Credentials: # --8<-- [end:BaseOAuthHandler4] """Exchanges the acquired authorization code from login for a set of tokens""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler5] def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # --8<-- [end:BaseOAuthHandler5] """Implements the token refresh mechanism""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler6] def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # --8<-- [end:BaseOAuthHandler6] """Revokes the given token at provider, returns False provider does not support it""" ... def refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: if credentials.provider != self.PROVIDER_NAME: raise ValueError( f"{self.__class__.__name__} can not refresh tokens " f"for other provider '{credentials.provider}'" ) return self._refresh_tokens(credentials) def get_access_token(self, credentials: OAuth2Credentials) -> str: """Returns a valid access token, refreshing it first if needed""" if self.needs_refresh(credentials): credentials = self.refresh_tokens(credentials) return credentials.access_token.get_secret_value() def needs_refresh(self, credentials: OAuth2Credentials) -> bool: """Indicates whether the given tokens need to be refreshed""" return ( credentials.access_token_expires_at is not None and credentials.access_token_expires_at < int(time.time()) + 300 ) def handle_default_scopes(self, scopes: list[str]) -> list[str]: """Handles the default scopes for the provider""" # If scopes are empty, use the default scopes for the provider if not scopes: logger.debug(f"Using default scopes for provider {self.PROVIDER_NAME}") scopes = self.DEFAULT_SCOPES return scopes
import logging import time from abc import ABC, abstractmethod from typing import ClassVar from autogpt_libs.supabase_integration_credentials_store import OAuth2Credentials logger = logging.getLogger(__name__) class BaseOAuthHandler(ABC): # --8<-- [start:BaseOAuthHandler1] PROVIDER_NAME: ClassVar[str] DEFAULT_SCOPES: ClassVar[list[str]] = [] # --8<-- [end:BaseOAuthHandler1] @abstractmethod # --8<-- [start:BaseOAuthHandler2] def __init__(self, client_id: str, client_secret: str, redirect_uri: str): ... # --8<-- [end:BaseOAuthHandler2] @abstractmethod # --8<-- [start:BaseOAuthHandler3] def get_login_url(self, scopes: list[str], state: str) -> str: # --8<-- [end:BaseOAuthHandler3] """Constructs a login URL that the user can be redirected to""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler4] def exchange_code_for_tokens( self, code: str, scopes: list[str] ) -> OAuth2Credentials: # --8<-- [end:BaseOAuthHandler4] """Exchanges the acquired authorization code from login for a set of tokens""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler5] def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # --8<-- [end:BaseOAuthHandler5] """Implements the token refresh mechanism""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler6] def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # --8<-- [end:BaseOAuthHandler6] """Revokes the given token at provider, returns False provider does not support it""" ... def refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: if credentials.provider != self.PROVIDER_NAME: raise ValueError( f"{self.__class__.__name__} can not refresh tokens " f"for other provider '{credentials.provider}'" ) return self._refresh_tokens(credentials) def get_access_token(self, credentials: OAuth2Credentials) -> str: """Returns a valid access token, refreshing it first if needed""" if self.needs_refresh(credentials): credentials = self.refresh_tokens(credentials) return credentials.access_token.get_secret_value() def needs_refresh(self, credentials: OAuth2Credentials) -> bool: """Indicates whether the given tokens need to be refreshed""" return ( credentials.access_token_expires_at is not None and credentials.access_token_expires_at < int(time.time()) + 300 ) def handle_default_scopes(self, scopes: list[str]) -> list[str]: """Handles the default scopes for the provider""" # If scopes are empty, use the default scopes for the provider if not scopes: logger.debug(f"Using default scopes for provider {self.PROVIDER_NAME}") scopes = self.DEFAULT_SCOPES return scopes
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=4, # simply change this from 2 to 16 for 50e - 400e training. dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox', format_only=False, backend_args=backend_args) test_evaluator = val_evaluator max_epochs = 25 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=5) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # optimizer assumes bs=64 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.067, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[22, 24], gamma=0.1) ] # only keep latest 2 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) file_client_args = dict(backend='disk') # comment out the code below to use different file client # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=4, # simply change this from 2 to 16 for 50e - 400e training. dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox', format_only=False) test_evaluator = val_evaluator max_epochs = 25 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=5) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # optimizer assumes bs=64 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.067, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[22, 24], gamma=0.1) ] # only keep latest 2 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
from __future__ import annotations __all__ = ["Array", "DType", "Device"] _all_ignore = ["cp"] from typing import TYPE_CHECKING import cupy as cp from cupy import ndarray as Array from cupy.cuda.device import Device if TYPE_CHECKING: # NumPy 1.x on Python 3.10 fails to parse np.dtype[] DType = cp.dtype[ cp.intp | cp.int8 | cp.int16 | cp.int32 | cp.int64 | cp.uint8 | cp.uint16 | cp.uint32 | cp.uint64 | cp.float32 | cp.float64 | cp.complex64 | cp.complex128 | cp.bool_ ] else: DType = cp.dtype
from __future__ import annotations __all__ = [ "ndarray", "Device", "Dtype", ] import sys from typing import ( Union, TYPE_CHECKING, ) from cupy import ( ndarray, dtype, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float32, float64, ) from cupy.cuda.device import Device if TYPE_CHECKING or sys.version_info >= (3, 9): Dtype = dtype[Union[ int8, int16, int32, int64, uint8, uint16, uint32, uint64, float32, float64, ]] else: Dtype = dtype
from typing import Union from fastapi import FastAPI, Query app = FastAPI() @app.get("/items/") async def read_items(q: Union[str, None] = Query(min_length=3)): results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results
from typing import Union from fastapi import FastAPI, Query app = FastAPI() @app.get("/items/") async def read_items(q: Union[str, None] = Query(default=..., min_length=3)): results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results
from torch.utils.data import Dataset from typing import List from ..readers.InputExample import InputExample import numpy as np from transformers.utils.import_utils import is_nltk_available, NLTK_IMPORT_ERROR class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. Args: sentences: A list of sentences noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: List[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import word_tokenize, TreebankWordDetokenizer words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
from torch.utils.data import Dataset from typing import List from ..readers.InputExample import InputExample import numpy as np from transformers.utils.import_utils import is_nltk_available, NLTK_IMPORT_ERROR class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. :param sentences: A list of sentences :param noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: List[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import word_tokenize, TreebankWordDetokenizer words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
from typing import TYPE_CHECKING, Any, Dict, List, Type if TYPE_CHECKING: from docarray import BaseDocument def _is_access_path_valid(doc_type: Type['BaseDocument'], access_path: str) -> bool: """ Check if a given access path ("__"-separated) is a valid path for a given Document class. """ from docarray import BaseDocument field, _, remaining = access_path.partition('__') if len(remaining) == 0: return access_path in doc_type.__fields__.keys() else: valid_field = field in doc_type.__fields__.keys() if not valid_field: return False else: d = doc_type._get_field_type(field) if not issubclass(d, BaseDocument): return False else: return _is_access_path_valid(d, remaining) def _all_access_paths_valid( doc_type: Type['BaseDocument'], access_paths: List[str] ) -> List[bool]: """ Check if all access paths ("__"-separated) are valid for a given Document class. """ return [_is_access_path_valid(doc_type, path) for path in access_paths] def _access_path_to_dict(access_path: str, value) -> Dict[str, Any]: """ Convert an access path ("__"-separated) and its value to a (potentially) nested dict. EXAMPLE USAGE .. code-block:: python assert access_path_to_dict('image__url', 'img.png') == {'image': {'url': 'img.png'}} """ fields = access_path.split('__') for field in reversed(fields): result = {field: value} value = result return result def _access_path_dict_to_nested_dict(access_path2val: Dict[str, Any]) -> Dict[Any, Any]: """ Convert a dict, where the keys are access paths ("__"-separated) to a nested dictionary. EXAMPLE USAGE .. code-block:: python access_path2val = {'image__url': 'some.png'} assert access_path_dict_to_nested_dict(access_path2val) == { 'image': {'url': 'some.png'} } :param access_path2val: dict with access_paths as keys :return: nested dict where the access path keys are split into separate field names and nested keys """ nested_dict: Dict[Any, Any] = {} for access_path, value in access_path2val.items(): field2val = _access_path_to_dict( access_path=access_path, value=value if value not in ['', 'None'] else None, ) _update_nested_dicts(to_update=nested_dict, update_with=field2val) return nested_dict def _dict_to_access_paths(d: dict) -> Dict[str, Any]: """ Convert a (nested) dict to a Dict[access_path, value]. Access paths are defined as a path of field(s) separated by "__". EXAMPLE USAGE .. code-block:: python assert dict_to_access_paths({'image': {'url': 'img.png'}}) == {'image__url', 'img.png'} """ result = {} for k, v in d.items(): if isinstance(v, dict): v = _dict_to_access_paths(v) for nested_k, nested_v in v.items(): new_key = '__'.join([k, nested_k]) result[new_key] = nested_v else: result[k] = v return result def _update_nested_dicts( to_update: Dict[Any, Any], update_with: Dict[Any, Any] ) -> None: """ Update a dict with another one, while considering shared nested keys. EXAMPLE USAGE: .. code-block:: python d1 = {'image': {'tensor': None}, 'title': 'hello'} d2 = {'image': {'url': 'some.png'}} update_nested_dicts(d1, d2) assert d1 == {'image': {'tensor': None, 'url': 'some.png'}, 'title': 'hello'} :param to_update: dict that should be updated :param update_with: dict to update with :return: merged dict """ for k, v in update_with.items(): if k not in to_update.keys(): to_update[k] = v else: _update_nested_dicts(to_update[k], update_with[k])
from typing import TYPE_CHECKING, Any, Dict, Type if TYPE_CHECKING: from docarray import BaseDocument def is_access_path_valid(doc: Type['BaseDocument'], access_path: str) -> bool: """ Check if a given access path ("__"-separated) is a valid path for a given Document class. """ from docarray import BaseDocument field, _, remaining = access_path.partition('__') if len(remaining) == 0: return access_path in doc.__fields__.keys() else: valid_field = field in doc.__fields__.keys() if not valid_field: return False else: d = doc._get_field_type(field) if not issubclass(d, BaseDocument): return False else: return is_access_path_valid(d, remaining) def _access_path_to_dict(access_path: str, value) -> Dict[str, Any]: """ Convert an access path ("__"-separated) and its value to a (potentially) nested dict. EXAMPLE USAGE .. code-block:: python assert access_path_to_dict('image__url', 'img.png') == {'image': {'url': 'img.png'}} """ fields = access_path.split('__') for field in reversed(fields): result = {field: value} value = result return result def _dict_to_access_paths(d: dict) -> Dict[str, Any]: """ Convert a (nested) dict to a Dict[access_path, value]. Access paths are defined as a path of field(s) separated by "__". EXAMPLE USAGE .. code-block:: python assert dict_to_access_paths({'image': {'url': 'img.png'}}) == {'image__url', 'img.png'} """ result = {} for k, v in d.items(): if isinstance(v, dict): v = _dict_to_access_paths(v) for nested_k, nested_v in v.items(): new_key = '__'.join([k, nested_k]) result[new_key] = nested_v else: result[k] = v return result def _update_nested_dicts( to_update: Dict[Any, Any], update_with: Dict[Any, Any] ) -> None: """ Update a dict with another one, while considering shared nested keys. EXAMPLE USAGE: .. code-block:: python d1 = {'image': {'tensor': None}, 'title': 'hello'} d2 = {'image': {'url': 'some.png'}} update_nested_dicts(d1, d2) assert d1 == {'image': {'tensor': None, 'url': 'some.png'}, 'title': 'hello'} :param to_update: dict that should be updated :param update_with: dict to update with :return: merged dict """ for k, v in update_with.items(): if k not in to_update.keys(): to_update[k] = v else: _update_nested_dicts(to_update[k], update_with[k])
# TODO: enable ruff qa on this file when we figure out why it thinks weaviate_client is # redefined at each test that fixture # ruff: noqa import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.backends.weaviate import WeaviateDocumentIndex from tests.index.weaviate.fixture_weaviate import ( # noqa: F401 start_storage, weaviate_client, ) pytestmark = [pytest.mark.slow, pytest.mark.index] def test_column_config(weaviate_client): def get_text_field_data_type(index, index_name): props = index._client.schema.get(index_name)["properties"] text_field = [p for p in props if p["name"] == "text"][0] return text_field["dataType"][0] class TextDoc(BaseDoc): text: str = Field() class StringDoc(BaseDoc): text: str = Field(col_type="string") dbconfig = WeaviateDocumentIndex.DBConfig(index_name="TextDoc") index = WeaviateDocumentIndex[TextDoc](db_config=dbconfig) assert get_text_field_data_type(index, "TextDoc") == "text" dbconfig = WeaviateDocumentIndex.DBConfig(index_name="StringDoc") index = WeaviateDocumentIndex[StringDoc](db_config=dbconfig) assert get_text_field_data_type(index, "StringDoc") == "string" def test_index_name(): class TextDoc(BaseDoc): text: str = Field() class StringDoc(BaseDoc): text: str = Field(col_type="string") index = WeaviateDocumentIndex[TextDoc]() assert index.index_name == TextDoc.__name__ index = WeaviateDocumentIndex[StringDoc]() assert index.index_name == StringDoc.__name__ index = WeaviateDocumentIndex[StringDoc](index_name='BaseDoc') assert index.index_name == 'BaseDoc' index = WeaviateDocumentIndex[StringDoc](index_name='index_name') assert index.index_name == 'Index_name'
# TODO: enable ruff qa on this file when we figure out why it thinks weaviate_client is # redefined at each test that fixture # ruff: noqa import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.backends.weaviate import WeaviateDocumentIndex from tests.index.weaviate.fixture_weaviate import ( # noqa: F401 start_storage, weaviate_client, ) pytestmark = [pytest.mark.slow, pytest.mark.index] def test_column_config(weaviate_client): def get_text_field_data_type(index, index_name): props = index._client.schema.get(index_name)["properties"] text_field = [p for p in props if p["name"] == "text"][0] return text_field["dataType"][0] class TextDoc(BaseDoc): text: str = Field() class StringDoc(BaseDoc): text: str = Field(col_type="string") dbconfig = WeaviateDocumentIndex.DBConfig(index_name="TextDoc") index = WeaviateDocumentIndex[TextDoc](db_config=dbconfig) assert get_text_field_data_type(index, "TextDoc") == "text" dbconfig = WeaviateDocumentIndex.DBConfig(index_name="StringDoc") index = WeaviateDocumentIndex[StringDoc](db_config=dbconfig) assert get_text_field_data_type(index, "StringDoc") == "string" def test_index_name(): class TextDoc(BaseDoc): text: str = Field() class StringDoc(BaseDoc): text: str = Field(col_type="string") index = WeaviateDocumentIndex[TextDoc]() assert index.index_name == TextDoc.__name__ index = WeaviateDocumentIndex[StringDoc]() assert index.index_name == StringDoc.__name__
import csv import os from pathlib import Path from typing import Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "wavs", "url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", "checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", } } class LJSPEECH(Dataset): """Create a Dataset for *LJSpeech-1.1* [:footcite:`ljspeech17`]. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"wavs"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) basename = os.path.basename(url) archive = root / basename basename = Path(basename.split(".tar.bz2")[0]) folder_in_archive = basename / folder_in_archive self._path = root / folder_in_archive self._metadata_path = root / basename / "metadata.csv" if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) with open(self._metadata_path, "r", newline="") as metadata: flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) self._flist = list(flist) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, str): ``(waveform, sample_rate, transcript, normalized_transcript)`` """ line = self._flist[n] fileid, transcript, normalized_transcript = line fileid_audio = self._path / (fileid + ".wav") # Load audio waveform, sample_rate = torchaudio.load(fileid_audio) return ( waveform, sample_rate, transcript, normalized_transcript, ) def __len__(self) -> int: return len(self._flist)
import csv import os from pathlib import Path from typing import Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "wavs", "url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", "checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", } } class LJSPEECH(Dataset): """Create a Dataset for LJSpeech-1.1. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"wavs"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) basename = os.path.basename(url) archive = root / basename basename = Path(basename.split(".tar.bz2")[0]) folder_in_archive = basename / folder_in_archive self._path = root / folder_in_archive self._metadata_path = root / basename / "metadata.csv" if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) with open(self._metadata_path, "r", newline="") as metadata: flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) self._flist = list(flist) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, str): ``(waveform, sample_rate, transcript, normalized_transcript)`` """ line = self._flist[n] fileid, transcript, normalized_transcript = line fileid_audio = self._path / (fileid + ".wav") # Load audio waveform, sample_rate = torchaudio.load(fileid_audio) return ( waveform, sample_rate, transcript, normalized_transcript, ) def __len__(self) -> int: return len(self._flist)
from ._hdemucs import HDemucs, hdemucs_high, hdemucs_low, hdemucs_medium from .conformer import Conformer from .conv_tasnet import conv_tasnet_base, ConvTasNet from .deepspeech import DeepSpeech from .emformer import Emformer from .rnnt import emformer_rnnt_base, emformer_rnnt_model, RNNT from .rnnt_decoder import Hypothesis, RNNTBeamSearch from .tacotron2 import Tacotron2 from .wav2letter import Wav2Letter from .wav2vec2 import ( hubert_base, hubert_large, hubert_pretrain_base, hubert_pretrain_large, hubert_pretrain_model, hubert_pretrain_xlarge, hubert_xlarge, HuBERTPretrainModel, wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, wav2vec2_model, Wav2Vec2Model, ) from .wavernn import WaveRNN __all__ = [ "Wav2Letter", "WaveRNN", "ConvTasNet", "conv_tasnet_base", "DeepSpeech", "Wav2Vec2Model", "HuBERTPretrainModel", "wav2vec2_model", "wav2vec2_base", "wav2vec2_large", "wav2vec2_large_lv60k", "hubert_base", "hubert_large", "hubert_xlarge", "hubert_pretrain_model", "hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge", "Tacotron2", "Conformer", "Emformer", "Hypothesis", "RNNT", "RNNTBeamSearch", "emformer_rnnt_base", "emformer_rnnt_model", "HDemucs", "hdemucs_low", "hdemucs_medium", "hdemucs_high", ]
from ._hdemucs import HDemucs, hdemucs_high, hdemucs_low, hdemucs_medium from .conformer import Conformer from .conv_tasnet import ConvTasNet from .deepspeech import DeepSpeech from .emformer import Emformer from .rnnt import emformer_rnnt_base, emformer_rnnt_model, RNNT from .rnnt_decoder import Hypothesis, RNNTBeamSearch from .tacotron2 import Tacotron2 from .wav2letter import Wav2Letter from .wav2vec2 import ( hubert_base, hubert_large, hubert_pretrain_base, hubert_pretrain_large, hubert_pretrain_model, hubert_pretrain_xlarge, hubert_xlarge, HuBERTPretrainModel, wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, wav2vec2_model, Wav2Vec2Model, ) from .wavernn import WaveRNN __all__ = [ "Wav2Letter", "WaveRNN", "ConvTasNet", "DeepSpeech", "Wav2Vec2Model", "HuBERTPretrainModel", "wav2vec2_model", "wav2vec2_base", "wav2vec2_large", "wav2vec2_large_lv60k", "hubert_base", "hubert_large", "hubert_xlarge", "hubert_pretrain_model", "hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge", "Tacotron2", "Conformer", "Emformer", "Hypothesis", "RNNT", "RNNTBeamSearch", "emformer_rnnt_base", "emformer_rnnt_model", "HDemucs", "hdemucs_low", "hdemucs_medium", "hdemucs_high", ]
import warnings from typing import Any, List, Union import torch from torchvision import datapoints from torchvision.transforms import functional as _F @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `to_dtype(..., dtype=torch.float32, scale=True)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import warnings from typing import Any, List, Union import torch from torchvision import datapoints from torchvision.transforms import functional as _F @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `to_dtype(..., dtype=torch.float32, scale=True)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import os import pypdf import pytest import tempfile from fpdf import FPDF from llama_index.readers.file import PDFReader from pathlib import Path from typing import Dict @pytest.fixture() def multi_page_pdf() -> FPDF: pdf = FPDF() pdf.add_page() pdf.set_font("Helvetica", size=12) pdf.cell(200, 10, text="Page 1 Content", align="C") pdf.add_page() pdf.set_font("Helvetica", size=12) pdf.cell(200, 10, text="Page 2 Content", align="C") return pdf @pytest.fixture() def extra_info() -> Dict[str, str]: return {"ABC": "abc", "DEF": "def"} def test_pdfreader_loads_data_into_full_document(multi_page_pdf: FPDF) -> None: with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".pdf" ) as temp_file: multi_page_pdf.output(temp_file.name) temp_file_path = Path(temp_file.name) reader = PDFReader(return_full_document=True) docs = reader.load_data(temp_file_path) assert len(docs) == 1 assert docs[0].text == "\n".join( f"Page {page + 1} Content" for page in range(multi_page_pdf.pages_count) ) os.remove(temp_file.name) def test_pdfreader_loads_data_into_multiple_documents(multi_page_pdf: FPDF) -> None: with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".pdf" ) as temp_file: multi_page_pdf.output(temp_file.name) temp_file_path = Path(temp_file.name) reader = PDFReader(return_full_document=False) docs = reader.load_data(temp_file_path) assert len(docs) == multi_page_pdf.pages_count for page in range(multi_page_pdf.pages_count): assert docs[page].text == f"Page {page + 1} Content" os.remove(temp_file.name) def test_pdfreader_loads_metadata_into_full_document( multi_page_pdf: FPDF, extra_info: Dict[str, str] ) -> None: with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".pdf" ) as temp_file: multi_page_pdf.output(temp_file.name) temp_file_path = Path(temp_file.name) expected_metadata = {"file_name": temp_file_path.name} expected_metadata.update(extra_info) reader = PDFReader(return_full_document=True) docs = reader.load_data(temp_file_path, extra_info) assert len(docs) == 1 assert docs[0].metadata == expected_metadata os.remove(temp_file.name) def test_pdfreader_loads_metadata_into_multiple_documents( multi_page_pdf: FPDF, extra_info: Dict[str, str] ) -> None: with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".pdf" ) as temp_file: multi_page_pdf.output(temp_file.name) temp_file_path = Path(temp_file.name) expected_metadata = {"file_name": temp_file_path.name} expected_metadata.update(extra_info) reader = PDFReader(return_full_document=False) docs = reader.load_data(temp_file_path, extra_info) pypdf_pdf = pypdf.PdfReader(temp_file_path) assert len(docs) == multi_page_pdf.pages_count for page in range(multi_page_pdf.pages_count): expected_metadata["page_label"] = pypdf_pdf.page_labels[page] assert docs[page].metadata == expected_metadata os.remove(temp_file.name)
import os import pypdf import pytest import tempfile from fpdf import FPDF from llama_index.readers.file import PDFReader from pathlib import Path from typing import Dict @pytest.fixture() def multi_page_pdf() -> FPDF: pdf = FPDF() pdf.add_page() pdf.set_font("Helvetica", size=12) pdf.cell(200, 10, text="Page 1 Content", align="C") pdf.add_page() pdf.set_font("Helvetica", size=12) pdf.cell(200, 10, text="Page 2 Content", align="C") return pdf @pytest.fixture() def extra_info() -> Dict[str, str]: return {"ABC": "abc", "DEF": "def"} def test_pdfreader_loads_data_into_full_document(multi_page_pdf: FPDF) -> None: with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".pdf" ) as temp_file: multi_page_pdf.output(temp_file.name) temp_file_path = Path(temp_file.name) reader = PDFReader(return_full_document=True) docs = reader.load_data(temp_file_path) assert len(docs) == 1 assert docs[0].text == "\n".join( f"Page {page+1} Content" for page in range(multi_page_pdf.pages_count) ) os.remove(temp_file.name) def test_pdfreader_loads_data_into_multiple_documents(multi_page_pdf: FPDF) -> None: with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".pdf" ) as temp_file: multi_page_pdf.output(temp_file.name) temp_file_path = Path(temp_file.name) reader = PDFReader(return_full_document=False) docs = reader.load_data(temp_file_path) assert len(docs) == multi_page_pdf.pages_count for page in range(multi_page_pdf.pages_count): assert docs[page].text == f"Page {page+1} Content" os.remove(temp_file.name) def test_pdfreader_loads_metadata_into_full_document( multi_page_pdf: FPDF, extra_info: Dict[str, str] ) -> None: with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".pdf" ) as temp_file: multi_page_pdf.output(temp_file.name) temp_file_path = Path(temp_file.name) expected_metadata = {"file_name": temp_file_path.name} expected_metadata.update(extra_info) reader = PDFReader(return_full_document=True) docs = reader.load_data(temp_file_path, extra_info) assert len(docs) == 1 assert docs[0].metadata == expected_metadata os.remove(temp_file.name) def test_pdfreader_loads_metadata_into_multiple_documents( multi_page_pdf: FPDF, extra_info: Dict[str, str] ) -> None: with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".pdf" ) as temp_file: multi_page_pdf.output(temp_file.name) temp_file_path = Path(temp_file.name) expected_metadata = {"file_name": temp_file_path.name} expected_metadata.update(extra_info) reader = PDFReader(return_full_document=False) docs = reader.load_data(temp_file_path, extra_info) pypdf_pdf = pypdf.PdfReader(temp_file_path) assert len(docs) == multi_page_pdf.pages_count for page in range(multi_page_pdf.pages_count): expected_metadata["page_label"] = pypdf_pdf.page_labels[page] assert docs[page].metadata == expected_metadata os.remove(temp_file.name)
from urllib.parse import urlparse, urlunparse import pytest from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface from llama_index.postprocessor.nvidia_rerank.utils import BASE_URL import respx @pytest.fixture() def mock_v1_local_models2(respx_mock: respx.MockRouter, base_url: str) -> None: parsed = urlparse(base_url) normalized_path = parsed.path.rstrip("/") if not normalized_path.endswith("/v1"): normalized_path += "/v1" base_url = urlunparse( (parsed.scheme, parsed.netloc, normalized_path, None, None, None) ) # Intercept GET call for retrieving models using httpx. respx_mock.get(f"{base_url}/models").respond( json={ "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", }, ] } ) # Updated test for non-hosted URLs that may need normalization. @pytest.mark.parametrize( "base_url", [ "http://0.0.0.0:8888/rankings", "http://0.0.0.0:8888/ranking", "http://test_url/.../v1", "https://test_url/.../v1", ], ) def test_base_url_invalid_not_hosted( base_url: str, mock_v1_local_models2: None ) -> None: parsed = urlparse(base_url) normalized_path = parsed.path.rstrip("/") # Expect a warning if the URL does NOT already end with "/v1" if not normalized_path.endswith("/v1"): with pytest.warns(UserWarning, match="does not end in /v1"): client = Interface(base_url=base_url) else: client = Interface(base_url=base_url) # Assert that the client's base_url is normalized to end with '/v1' assert client.base_url.endswith("/v1") # Updated test for valid non-hosted URL. @pytest.mark.parametrize( "base_url", [ "http://0.0.0.0:8888/v1", ], ) def test_base_url_valid_not_hosted(base_url: str, mock_v1_local_models2: None) -> None: # The default model warning is expected in non-hosted mode with pytest.warns(UserWarning, match="Default model is set") as record: client = Interface(base_url=base_url) # Also verify the base_url remains normalized (unchanged in this case) assert client.base_url.endswith("/v1") # Updated test for hosted base URL. @pytest.mark.parametrize( "base_url", [BASE_URL], ) def test_base_url_valid_hosted(base_url: str, mock_v1_local_models2: None) -> None: client = Interface(base_url=base_url, api_key="BOGUS") assert client._is_hosted # Hosted client should use the provided base_url exactly. assert client.base_url == base_url # Updated test for proxy base URLs. @pytest.mark.parametrize( "base_url", [ "http://host/path0/path1/path2/v1", "http://host:123/path0/path1/path2/v1", ], ) def test_proxy_base_url(base_url: str, mock_v1_local_models2: None) -> None: client = Interface(api_key="NO_API_KEY_PROVIDED", base_url=base_url) assert not client._is_hosted # Since the URL is already normalized, verify it remains unchanged. assert client.base_url == base_url @pytest.mark.parametrize( "base_url", [ "bogus", "http:/", "http://", "http:/oops", ], ) def test_param_base_url_negative(base_url: str, monkeypatch) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") with pytest.raises(ValueError) as e: Interface(model="model1", base_url=base_url) assert "Invalid base_url" in str(e.value)
from urllib.parse import urlparse, urlunparse import pytest from requests_mock import Mocker from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface @pytest.fixture() def mock_v1_local_models2(requests_mock: Mocker, base_url: str) -> None: parsed = urlparse(base_url) normalized_path = parsed.path.rstrip("/") if not normalized_path.endswith("/v1"): normalized_path += "/v1" base_url = urlunparse( (parsed.scheme, parsed.netloc, normalized_path, None, None, None) ) requests_mock.get( f"{base_url}/models", json={ "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", }, ] }, ) # test case for invalid base_url @pytest.mark.parametrize( "base_url", [ "http://0.0.0.0:8888/rankings", "http://0.0.0.0:8888/ranking", "http://test_url/.../v1", "https://test_url/.../v1", ], ) def test_base_url_invalid_not_hosted( base_url: str, mock_v1_local_models2: None ) -> None: Interface(base_url=base_url) @pytest.mark.parametrize( "base_url", [ "http://0.0.0.0:8888/v1", ], ) def test_base_url_valid_not_hosted(base_url: str, mock_v1_local_models2: None) -> None: with pytest.warns(UserWarning) as record: Interface(base_url=base_url) assert "Default model is set" in str(record[0].message) @pytest.mark.parametrize( "base_url", ["https://ai.api.nvidia.com/v1"], ) def test_base_url_valid_hosted(base_url: str, mock_v1_local_models2: None) -> None: Interface(base_url=base_url, api_key="BOGUS") @pytest.mark.parametrize( "base_url", [ "bogus", "http:/", "http://", "http:/oops", ], ) def test_param_base_url_negative(base_url: str, monkeypatch) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") with pytest.raises(ValueError) as e: Interface(model="model1", base_url=base_url) assert "Invalid base_url" in str(e.value) @pytest.mark.parametrize( "base_url", [ "http://host/path0/path1/path2/v1", "http://host:123/path0/path1/path2/v1", ], ) def test_proxy_base_url(base_url: str, mock_v1_local_models2: None) -> None: client = Interface(api_key="NO_API_KEY_PROVIDED", base_url=base_url) assert not client._is_hosted assert base_url.startswith(client.base_url)
from enum import Enum from typing import TYPE_CHECKING, Union, overload import numpy as np if TYPE_CHECKING: import torch class Pooling(str, Enum): """Enum of possible pooling choices with pooling behaviors.""" CLS = "cls" MEAN = "mean" LAST = "last" # last token pooling def __call__(self, array: np.ndarray) -> np.ndarray: if self == self.CLS: return self.cls_pooling(array) elif self == self.LAST: return self.last_pooling(array) return self.mean_pooling(array) @classmethod @overload def cls_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def cls_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def cls_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, 0] if len(array.shape) == 2: return array[0] raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod def mean_pooling(cls, array: np.ndarray) -> np.ndarray: if len(array.shape) == 3: return array.mean(axis=1) if len(array.shape) == 2: return array.mean(axis=0) raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod @overload def last_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def last_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def last_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, -1] if len(array.shape) == 2: return array[-1] raise NotImplementedError(f"Unhandled shape {array.shape}.")
from enum import Enum from typing import TYPE_CHECKING, Union, overload import numpy as np if TYPE_CHECKING: import torch class Pooling(str, Enum): """Enum of possible pooling choices with pooling behaviors.""" CLS = "cls" MEAN = "mean" LAST = "last" # last token pooling def __call__(self, array: np.ndarray) -> np.ndarray: if self == self.CLS: return self.cls_pooling(array) elif self == self.LAST: return self.last_pooling(array) return self.mean_pooling(array) @classmethod @overload def cls_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def cls_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def cls_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, 0] if len(array.shape) == 2: return array[0] raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod def mean_pooling(cls, array: np.ndarray) -> np.ndarray: if len(array.shape) == 3: return array.mean(axis=1) if len(array.shape) == 2: return array.mean(axis=0) raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod @overload def last_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def last_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def last_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, -1] if len(array.shape) == 2: return array[-1] raise NotImplementedError(f"Unhandled shape {array.shape}.")
_base_ = ['../_base_/models/retinanet_r50_fpn.py', '../common/ms_3x_coco.py'] # optimizer model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py' ] # optimizer model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.22.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.22.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import polar from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import rms_normalization from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparse_sigmoid from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink from keras.src.ops.nn import threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import polar from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import rms_normalization from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink from keras.src.ops.nn import threshold
import base64 import email from typing import Dict, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool from langchain_community.tools.gmail.utils import clean_email_body class SearchArgsSchema(BaseModel): """Input for GetMessageTool.""" message_id: str = Field( ..., description="The unique ID of the email message, retrieved from a search.", ) class GmailGetMessage(GmailBaseTool): """Tool that gets a message by ID from Gmail.""" name: str = "get_gmail_message" description: str = ( "Use this tool to fetch an email by message ID." " Returns the thread ID, snippet, body, subject, and sender." ) args_schema: Type[SearchArgsSchema] = SearchArgsSchema def _run( self, message_id: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Dict: """Run the tool.""" query = ( self.api_resource.users() .messages() .get(userId="me", format="raw", id=message_id) ) message_data = query.execute() raw_message = base64.urlsafe_b64decode(message_data["raw"]) email_msg = email.message_from_bytes(raw_message) subject = email_msg["Subject"] sender = email_msg["From"] message_body = "" if email_msg.is_multipart(): for part in email_msg.walk(): ctype = part.get_content_type() cdispo = str(part.get("Content-Disposition")) if ctype == "text/plain" and "attachment" not in cdispo: message_body = part.get_payload(decode=True).decode("utf-8") # type: ignore[union-attr] break else: message_body = email_msg.get_payload(decode=True).decode("utf-8") # type: ignore[union-attr] body = clean_email_body(message_body) return { "id": message_id, "threadId": message_data["threadId"], "snippet": message_data["snippet"], "body": body, "subject": subject, "sender": sender, }
import base64 import email from typing import Dict, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool from langchain_community.tools.gmail.utils import clean_email_body class SearchArgsSchema(BaseModel): """Input for GetMessageTool.""" message_id: str = Field( ..., description="The unique ID of the email message, retrieved from a search.", ) class GmailGetMessage(GmailBaseTool): # type: ignore[override, override] """Tool that gets a message by ID from Gmail.""" name: str = "get_gmail_message" description: str = ( "Use this tool to fetch an email by message ID." " Returns the thread ID, snippet, body, subject, and sender." ) args_schema: Type[SearchArgsSchema] = SearchArgsSchema def _run( self, message_id: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Dict: """Run the tool.""" query = ( self.api_resource.users() .messages() .get(userId="me", format="raw", id=message_id) ) message_data = query.execute() raw_message = base64.urlsafe_b64decode(message_data["raw"]) email_msg = email.message_from_bytes(raw_message) subject = email_msg["Subject"] sender = email_msg["From"] message_body = "" if email_msg.is_multipart(): for part in email_msg.walk(): ctype = part.get_content_type() cdispo = str(part.get("Content-Disposition")) if ctype == "text/plain" and "attachment" not in cdispo: message_body = part.get_payload(decode=True).decode("utf-8") # type: ignore[union-attr] break else: message_body = email_msg.get_payload(decode=True).decode("utf-8") # type: ignore[union-attr] body = clean_email_body(message_body) return { "id": message_id, "threadId": message_data["threadId"], "snippet": message_data["snippet"], "body": body, "subject": subject, "sender": sender, }
import numpy as np import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDocument): text: str tensor: NdArray da = DocumentArray( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocumentArray[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDocument): text: TextDoc image: ImageDoc da = DocumentArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocumentArray[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDocument): text: TextDoc image: ImageDoc da = DocumentArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocumentArray.from_protobuf(da.to_protobuf())
import numpy as np import pytest from docarray import BaseDocument, DocumentArray from docarray.array.stacked.array_stacked import DocumentArrayStacked from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDocument): text: str tensor: NdArray da = DocumentArray( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocumentArray[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDocument): text: TextDoc image: ImageDoc da = DocumentArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocumentArray[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDocument): text: TextDoc image: ImageDoc da = DocumentArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocumentArray.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_stacked_proto(): class CustomDocument(BaseDocument): image: NdArray da = DocumentArray[CustomDocument]( [CustomDocument(image=np.zeros((3, 224, 224))) for _ in range(10)] ).stack() da2 = DocumentArrayStacked.from_protobuf(da.to_protobuf()) assert isinstance(da2, DocumentArrayStacked)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.17' mmcv_maximum_version = '1.6.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.17' mmcv_maximum_version = '1.5.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.cnn import is_norm from torch.nn.modules import GroupNorm from mmdet.models.utils import InvertedResidual, SELayer def test_inverted_residual(): with pytest.raises(AssertionError): # stride must be in [1, 2] InvertedResidual(16, 16, 32, stride=3) with pytest.raises(AssertionError): # se_cfg must be None or dict InvertedResidual(16, 16, 32, se_cfg=list()) with pytest.raises(AssertionError): # in_channeld and mid_channels must be the same if # with_expand_conv is False InvertedResidual(16, 16, 32, with_expand_conv=False) # Test InvertedResidual forward, stride=1 block = InvertedResidual(16, 16, 32, stride=1) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert getattr(block, 'se', None) is None assert block.with_res_shortcut assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward, stride=2 block = InvertedResidual(16, 16, 32, stride=2) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert not block.with_res_shortcut assert x_out.shape == torch.Size((1, 16, 28, 28)) # Test InvertedResidual forward with se layer se_cfg = dict(channels=32) block = InvertedResidual(16, 16, 32, stride=1, se_cfg=se_cfg) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert isinstance(block.se, SELayer) assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward, with_expand_conv=False block = InvertedResidual(32, 16, 32, with_expand_conv=False) x = torch.randn(1, 32, 56, 56) x_out = block(x) assert getattr(block, 'expand_conv', None) is None assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward with GroupNorm block = InvertedResidual( 16, 16, 32, norm_cfg=dict(type='GN', num_groups=2)) x = torch.randn(1, 16, 56, 56) x_out = block(x) for m in block.modules(): if is_norm(m): assert isinstance(m, GroupNorm) assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward with HSigmoid block = InvertedResidual(16, 16, 32, act_cfg=dict(type='HSigmoid')) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward with checkpoint block = InvertedResidual(16, 16, 32, with_cp=True) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert block.with_cp assert x_out.shape == torch.Size((1, 16, 56, 56))
import pytest import torch from mmcv.cnn import is_norm from torch.nn.modules import GroupNorm from mmdet.models.utils import InvertedResidual, SELayer def test_inverted_residual(): with pytest.raises(AssertionError): # stride must be in [1, 2] InvertedResidual(16, 16, 32, stride=3) with pytest.raises(AssertionError): # se_cfg must be None or dict InvertedResidual(16, 16, 32, se_cfg=list()) with pytest.raises(AssertionError): # in_channeld and mid_channels must be the same if # with_expand_conv is False InvertedResidual(16, 16, 32, with_expand_conv=False) # Test InvertedResidual forward, stride=1 block = InvertedResidual(16, 16, 32, stride=1) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert getattr(block, 'se', None) is None assert block.with_res_shortcut assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward, stride=2 block = InvertedResidual(16, 16, 32, stride=2) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert not block.with_res_shortcut assert x_out.shape == torch.Size((1, 16, 28, 28)) # Test InvertedResidual forward with se layer se_cfg = dict(channels=32) block = InvertedResidual(16, 16, 32, stride=1, se_cfg=se_cfg) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert isinstance(block.se, SELayer) assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward, with_expand_conv=False block = InvertedResidual(32, 16, 32, with_expand_conv=False) x = torch.randn(1, 32, 56, 56) x_out = block(x) assert getattr(block, 'expand_conv', None) is None assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward with GroupNorm block = InvertedResidual( 16, 16, 32, norm_cfg=dict(type='GN', num_groups=2)) x = torch.randn(1, 16, 56, 56) x_out = block(x) for m in block.modules(): if is_norm(m): assert isinstance(m, GroupNorm) assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward with HSigmoid block = InvertedResidual(16, 16, 32, act_cfg=dict(type='HSigmoid')) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert x_out.shape == torch.Size((1, 16, 56, 56)) # Test InvertedResidual forward with checkpoint block = InvertedResidual(16, 16, 32, with_cp=True) x = torch.randn(1, 16, 56, 56) x_out = block(x) assert block.with_cp assert x_out.shape == torch.Size((1, 16, 56, 56))
# training schedule for 1x train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
# training schedule for 1x train_cfg = dict(by_epoch=True, max_epochs=12) val_cfg = dict(interval=1) test_cfg = dict() # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
# coding: utf-8 from pathlib import Path import pandas as pd import lightgbm as lgb if lgb.compat.MATPLOTLIB_INSTALLED: import matplotlib.pyplot as plt else: raise ImportError('You need to install matplotlib and restart your session for plot_example.py.') print('Loading data...') # load or create your dataset regression_example_dir = Path(__file__).absolute().parents[1] / 'regression' df_train = pd.read_csv(str(regression_example_dir / 'regression.train'), header=None, sep='\t') df_test = pd.read_csv(str(regression_example_dir / 'regression.test'), header=None, sep='\t') y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = { 'num_leaves': 5, 'metric': ('l1', 'l2'), 'verbose': 0 } evals_result = {} # to record eval results for plotting print('Starting training...') # train gbm = lgb.train(params, lgb_train, num_boost_round=100, valid_sets=[lgb_train, lgb_test], feature_name=[f'f{i + 1}' for i in range(X_train.shape[-1])], categorical_feature=[21], evals_result=evals_result, callbacks=[lgb.log_evaluation(10)]) print('Plotting metrics recorded during training...') ax = lgb.plot_metric(evals_result, metric='l1') plt.show() print('Plotting feature importances...') ax = lgb.plot_importance(gbm, max_num_features=10) plt.show() print('Plotting split value histogram...') ax = lgb.plot_split_value_histogram(gbm, feature='f26', bins='auto') plt.show() print('Plotting 54th tree...') # one tree use categorical feature to split ax = lgb.plot_tree(gbm, tree_index=53, figsize=(15, 15), show_info=['split_gain']) plt.show() print('Plotting 54th tree with graphviz...') graph = lgb.create_tree_digraph(gbm, tree_index=53, name='Tree54') graph.render(view=True)
# coding: utf-8 from pathlib import Path import pandas as pd import lightgbm as lgb if lgb.compat.MATPLOTLIB_INSTALLED: import matplotlib.pyplot as plt else: raise ImportError('You need to install matplotlib and restart your session for plot_example.py.') print('Loading data...') # load or create your dataset regression_example_dir = Path(__file__).absolute().parents[1] / 'regression' df_train = pd.read_csv(str(regression_example_dir / 'regression.train'), header=None, sep='\t') df_test = pd.read_csv(str(regression_example_dir / 'regression.test'), header=None, sep='\t') y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = { 'num_leaves': 5, 'metric': ('l1', 'l2'), 'verbose': 0 } evals_result = {} # to record eval results for plotting print('Starting training...') # train gbm = lgb.train(params, lgb_train, num_boost_round=100, valid_sets=[lgb_train, lgb_test], feature_name=[f'f{i + 1}' for i in range(X_train.shape[-1])], categorical_feature=[21], evals_result=evals_result, verbose_eval=10) print('Plotting metrics recorded during training...') ax = lgb.plot_metric(evals_result, metric='l1') plt.show() print('Plotting feature importances...') ax = lgb.plot_importance(gbm, max_num_features=10) plt.show() print('Plotting split value histogram...') ax = lgb.plot_split_value_histogram(gbm, feature='f26', bins='auto') plt.show() print('Plotting 54th tree...') # one tree use categorical feature to split ax = lgb.plot_tree(gbm, tree_index=53, figsize=(15, 15), show_info=['split_gain']) plt.show() print('Plotting 54th tree with graphviz...') graph = lgb.create_tree_digraph(gbm, tree_index=53, name='Tree54') graph.render(view=True)
_base_ = './htc_without_semantic_r50_fpn_1x_coco.py' model = dict( data_preprocessor=dict(pad_seg=True), roi_head=dict( semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, seg_scale_factor=1 / 8, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2)))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict( dataset=dict( data_prefix=dict(img='train2017/', seg='stuffthingmaps/train2017/'), pipeline=train_pipeline))
_base_ = './htc_without_semantic_r50_fpn_1x_coco.py' model = dict( roi_head=dict( semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=183, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=0.2)))) data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='SegRescale', scale_factor=1 / 8), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict( seg_prefix=data_root + 'stuffthingmaps/train2017/', pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import List import numpy as np import pytest from jina import Document, DocumentArray, Flow from paddle_image import ImagePaddlehubEncoder @pytest.mark.parametrize( 'arr_in', [ (np.ones((3, 224, 224), dtype=np.float32)), (np.ones((3, 100, 100), dtype=np.float32)), (np.ones((3, 50, 40), dtype=np.float32)), ], ) def test_paddle_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=DocumentArray([Document(blob=arr_in)]), return_results=True, ) assert len(results[0].docs) == 1 assert results[0].docs[0].embedding.shape == (2048,) def test_paddle_batch(): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=( Document(blob=np.ones((3, 224, 224), dtype=np.float32)) for _ in range(25) ), return_results=True, ) assert len(results[0].docs.get_attributes('embedding')) == 25 assert results[0].docs.get_attributes('embedding')[0].shape == (2048,) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [['r', 10], ['c', 0], ['cc', 0]], 'r'), ( pytest.lazy_fixture('docs_with_chunk_blobs'), [['r', 0], ['c', 10], ['cc', 0]], 'c', ), ( pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [['r', 0], ['c', 0], ['cc', 10]], 'cc', ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: str ): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_paths]}, return_results=True, ) for path, count in docs_per_path: embeddings = ( DocumentArray(results[0].docs) .traverse_flat([path]) .get_attributes('embedding') ) assert len([em for em in embeddings if em is not None]) == count @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import List import numpy as np import pytest from jina import Document, DocumentArray, Flow from ...paddle_image import ImagePaddlehubEncoder @pytest.mark.parametrize( 'arr_in', [ (np.ones((3, 224, 224), dtype=np.float32)), (np.ones((3, 100, 100), dtype=np.float32)), (np.ones((3, 50, 40), dtype=np.float32)), ], ) def test_paddle_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=DocumentArray([Document(blob=arr_in)]), return_results=True, ) assert len(results[0].docs) == 1 assert results[0].docs[0].embedding.shape == (2048,) def test_paddle_batch(): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=( Document(blob=np.ones((3, 224, 224), dtype=np.float32)) for _ in range(25) ), return_results=True, ) assert len(results[0].docs.get_attributes('embedding')) == 25 assert results[0].docs.get_attributes('embedding')[0].shape == (2048,) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [['r', 10], ['c', 0], ['cc', 0]], 'r'), ( pytest.lazy_fixture('docs_with_chunk_blobs'), [['r', 0], ['c', 10], ['cc', 0]], 'c', ), ( pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [['r', 0], ['c', 0], ['cc', 10]], 'cc', ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: str ): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_paths]}, return_results=True, ) for path, count in docs_per_path: embeddings = ( DocumentArray(results[0].docs) .traverse_flat([path]) .get_attributes('embedding') ) assert len([em for em in embeddings if em is not None]) == count @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, )
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .config import * from .data import * from .dataset import * from .device import * from .fileio import * from .hooks import * from .logging import * from .registry import * from .runner import * from .utils import * from .version import __version__, version_info from .visualization import *
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .config import * from .data import * from .dataset import * from .device import * from .fileio import * from .hooks import * from .logging import * from .registry import * from .runner import * from .utils import * from .visualization import *
from typing import overload, TYPE_CHECKING, Union, Callable, Optional, Tuple if TYPE_CHECKING: from docarray import DocumentArray from docarray.typing import AnyDNN, T, ArrayType import numpy as np class SingletonSugarMixin: """Provide sugary syntax for :class:`Document` by inheriting methods from :class:`DocumentArray`""" @overload def match( self: 'T', darray: 'DocumentArray', metric: Union[ str, Callable[['ArrayType', 'ArrayType'], 'np.ndarray'] ] = 'cosine', limit: Optional[Union[int, float]] = 20, normalization: Optional[Tuple[float, float]] = None, metric_name: Optional[str] = None, batch_size: Optional[int] = None, exclude_self: bool = False, only_id: bool = False, use_scipy: bool = False, num_worker: Optional[int] = 1, ) -> 'T': """Matching the current Document against a set of Documents. The result will be stored in :attr:`.matches`. .. note:: When you want to match a set Documents (let's call it set `A`) against another set of Documents (set `B`), where you want to find for each element in `A` what are its nearest neighbours in `B`. Then you need :meth:`DocumentArray.match` :param darray: the other DocumentArray to match against :param metric: the distance metric :param limit: the maximum number of matches, when not given defaults to 20. :param normalization: a tuple [a, b] to be used with min-max normalization, the min distance will be rescaled to `a`, the max distance will be rescaled to `b` all values will be rescaled into range `[a, b]`. :param metric_name: if provided, then match result will be marked with this string. :param batch_size: if provided, then ``darray`` is loaded in batches, where each of them is at most ``batch_size`` elements. When `darray` is big, this can significantly speedup the computation. :param exclude_self: if set, Documents in ``darray`` with same ``id`` as the left-hand values will not be considered as matches. :param only_id: if set, then returning matches will only contain ``id`` :param use_scipy: if set, use ``scipy`` as the computation backend. Note, ``scipy`` does not support distance on sparse matrix. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. .. note:: This argument is only effective when ``batch_size`` is set. """ ... def match(self: 'T', *args, **kwargs) -> 'T': from docarray import DocumentArray _tmp = DocumentArray(self) _tmp.match(*args, **kwargs) return self @overload def embed( self: 'T', embed_model: 'AnyDNN', device: str = 'cpu', batch_size: int = 256, ) -> 'T': """Fill the embedding of Documents inplace by using `embed_model` :param embed_model: the embedding model written in Keras/Pytorch/Paddle :param device: the computational device for `embed_model`, can be either `cpu` or `cuda`. :param batch_size: number of Documents in a batch for embedding """ def embed(self: 'T', *args, **kwargs) -> 'T': from docarray import DocumentArray _tmp = DocumentArray(self) _tmp.embed(*args, **kwargs) return self def post(self: 'T', *args, **kwargs) -> 'T': from docarray import DocumentArray _tmp = DocumentArray(self) return _tmp.post(*args, **kwargs)[0]
from typing import overload, TYPE_CHECKING, Union, Callable, Optional, Tuple if TYPE_CHECKING: from ... import DocumentArray from ...typing import AnyDNN, T, ArrayType import numpy as np class SingletonSugarMixin: """Provide sugary syntax for :class:`Document` by inheriting methods from :class:`DocumentArray`""" @overload def match( self: 'T', darray: 'DocumentArray', metric: Union[ str, Callable[['ArrayType', 'ArrayType'], 'np.ndarray'] ] = 'cosine', limit: Optional[Union[int, float]] = 20, normalization: Optional[Tuple[float, float]] = None, metric_name: Optional[str] = None, batch_size: Optional[int] = None, exclude_self: bool = False, only_id: bool = False, use_scipy: bool = False, num_worker: Optional[int] = 1, ) -> 'T': """Matching the current Document against a set of Documents. The result will be stored in :attr:`.matches`. .. note:: When you want to match a set Documents (let's call it set `A`) against another set of Documents (set `B`), where you want to find for each element in `A` what are its nearest neighbours in `B`. Then you need :meth:`DocumentArray.match` :param darray: the other DocumentArray to match against :param metric: the distance metric :param limit: the maximum number of matches, when not given defaults to 20. :param normalization: a tuple [a, b] to be used with min-max normalization, the min distance will be rescaled to `a`, the max distance will be rescaled to `b` all values will be rescaled into range `[a, b]`. :param metric_name: if provided, then match result will be marked with this string. :param batch_size: if provided, then ``darray`` is loaded in batches, where each of them is at most ``batch_size`` elements. When `darray` is big, this can significantly speedup the computation. :param exclude_self: if set, Documents in ``darray`` with same ``id`` as the left-hand values will not be considered as matches. :param only_id: if set, then returning matches will only contain ``id`` :param use_scipy: if set, use ``scipy`` as the computation backend. Note, ``scipy`` does not support distance on sparse matrix. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. .. note:: This argument is only effective when ``batch_size`` is set. """ ... def match(self: 'T', *args, **kwargs) -> 'T': from ... import DocumentArray _tmp = DocumentArray(self) _tmp.match(*args, **kwargs) return self @overload def embed( self: 'T', embed_model: 'AnyDNN', device: str = 'cpu', batch_size: int = 256, ) -> 'T': """Fill the embedding of Documents inplace by using `embed_model` :param embed_model: the embedding model written in Keras/Pytorch/Paddle :param device: the computational device for `embed_model`, can be either `cpu` or `cuda`. :param batch_size: number of Documents in a batch for embedding """ def embed(self: 'T', *args, **kwargs) -> 'T': from ... import DocumentArray _tmp = DocumentArray(self) _tmp.embed(*args, **kwargs) return self def post(self: 'T', *args, **kwargs) -> 'T': from ... import DocumentArray _tmp = DocumentArray(self) return _tmp.post(*args, **kwargs)[0]
import json import os import pytest from hubble.executor import HubExecutor from hubble.executor.hubio import HubIO from jina import __version__ from jina.orchestrate.deployments.config.helper import ( get_base_executor_version, get_image_name, to_compatible_name, ) @pytest.mark.parametrize('is_master', (True, False)) def test_version(is_master, requests_mock): if is_master: count = 0 else: # current version is published already count = 3 requests_mock.get( 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags', text=json.dumps( { 'count': count, 'next': 'abc', 'previous': 'def', 'results': [{'a': 'b', 'c': 'd'}], } ), ) v = get_base_executor_version() if is_master: assert v == 'master' else: assert v == __version__ def test_to_compatible_name(): assert to_compatible_name('executor/hey-ha_HO') == 'executor-hey-ha-ho' @pytest.mark.skip('jinahub not available') @pytest.mark.parametrize('uses', ['jinaai://jina-ai/DummyExecutor']) def test_get_image_name(mocker, monkeypatch, uses): mock = mocker.Mock() def _mock_fetch( name, *args, **kwargs, ): mock( name=name, rebuild_image=kwargs.get( 'rebuild_image', args[2] if len(args) >= 3 else True ), ) return ( HubExecutor( uuid='hello', name=name, tag='v0', image_name=f'jinahub/{name}', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) image_name = get_image_name(uses) assert image_name in {'jinahub/DummyExecutor', 'jinahub/jina-ai/DummyExecutor'} _, mock_kwargs = mock.call_args_list[0] assert mock_kwargs['rebuild_image'] is True # default value must be True os.environ['JINA_HUB_NO_IMAGE_REBUILD'] = '1' get_image_name(uses) del os.environ['JINA_HUB_NO_IMAGE_REBUILD'] _, mock_kwargs = mock.call_args_list[1] assert mock_kwargs['rebuild_image'] is False # env var is set, so it must be False
import json import os import pytest from hubble.executor import HubExecutor from hubble.executor.hubio import HubIO from jina import __version__ from jina.orchestrate.deployments.config.helper import ( get_base_executor_version, get_image_name, to_compatible_name, ) @pytest.mark.parametrize('is_master', (True, False)) def test_version(is_master, requests_mock): if is_master: count = 0 else: # current version is published already count = 3 requests_mock.get( 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags', text=json.dumps( { 'count': count, 'next': 'abc', 'previous': 'def', 'results': [{'a': 'b', 'c': 'd'}], } ), ) v = get_base_executor_version() if is_master: assert v == 'master' else: assert v == __version__ def test_to_compatible_name(): assert to_compatible_name('executor/hey-ha_HO') == 'executor-hey-ha-ho' @pytest.mark.parametrize('uses', ['jinaai://jina-ai/DummyExecutor']) def test_get_image_name(mocker, monkeypatch, uses): mock = mocker.Mock() def _mock_fetch( name, *args, **kwargs, ): mock( name=name, rebuild_image=kwargs.get( 'rebuild_image', args[2] if len(args) >= 3 else True ), ) return ( HubExecutor( uuid='hello', name=name, tag='v0', image_name=f'jinahub/{name}', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) image_name = get_image_name(uses) assert image_name in {'jinahub/DummyExecutor', 'jinahub/jina-ai/DummyExecutor'} _, mock_kwargs = mock.call_args_list[0] assert mock_kwargs['rebuild_image'] is True # default value must be True os.environ['JINA_HUB_NO_IMAGE_REBUILD'] = '1' get_image_name(uses) del os.environ['JINA_HUB_NO_IMAGE_REBUILD'] _, mock_kwargs = mock.call_args_list[1] assert mock_kwargs['rebuild_image'] is False # env var is set, so it must be False
# Copyright (c) OpenMMLab. All rights reserved. from ._fast_stop_training_hook import FastStopTrainingHook # noqa: F401,F403 from ._utils import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results, get_detector_cfg, get_roi_head_cfg) __all__ = [ 'demo_mm_inputs', 'get_detector_cfg', 'get_roi_head_cfg', 'demo_mm_proposals', 'demo_mm_sampling_results' ]
# Copyright (c) OpenMMLab. All rights reserved. from ._utils import (demo_mm_inputs, demo_mm_proposals, demo_mm_sampling_results, get_detector_cfg, get_roi_head_cfg) __all__ = [ 'demo_mm_inputs', 'get_detector_cfg', 'get_roi_head_cfg', 'demo_mm_proposals', 'demo_mm_sampling_results' ]
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] vis_backends = [dict(type='LocalVisBackend'), dict(type='WandbVisBackend')] visualizer = dict(vis_backends=vis_backends) # MMEngine support the following two ways, users can choose # according to convenience # default_hooks = dict(checkpoint=dict(interval=4)) _base_.default_hooks.checkpoint.interval = 4 # train_cfg = dict(val_interval=2) _base_.train_cfg.val_interval = 2
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] vis_backends = [dict(type='LocalVisBackend'), dict(type='WandBVisBackend')] visualizer = dict(vis_backends=vis_backends) # MMEngine support the following two ways, users can choose # according to convenience # default_hooks = dict(checkpoint=dict(interval=4)) _base_.default_hooks.checkpoint.interval = 4 # train_cfg = dict(val_interval=2) _base_.train_cfg.val_interval = 2
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache # noqa F401 from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.18' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.17' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from langchain_core.document_loaders import BaseBlobParser, BaseLoader __all__ = ["BaseBlobParser", "BaseLoader"]
from langchain_core.document_loaders import BaseBlobParser, BaseLoader __all__ = ["BaseLoader", "BaseBlobParser"]
"""Utilities to route metadata within scikit-learn estimators.""" # This module is not a separate sub-folder since that would result in a circular # import issue. # # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._metadata_requests import ( # noqa: F401 UNCHANGED, UNUSED, WARN, MetadataRequest, MetadataRouter, MethodMapping, _MetadataRequester, _raise_for_params, _raise_for_unsupported_routing, _routing_enabled, _RoutingNotSupportedMixin, get_routing_for_object, process_routing, )
"""Utilities to route metadata within scikit-learn estimators.""" # This module is not a separate sub-folder since that would result in a circular # import issue. # # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._metadata_requests import WARN, UNUSED, UNCHANGED # noqa from ._metadata_requests import get_routing_for_object # noqa from ._metadata_requests import MetadataRouter # noqa from ._metadata_requests import MetadataRequest # noqa from ._metadata_requests import MethodMapping # noqa from ._metadata_requests import process_routing # noqa from ._metadata_requests import _MetadataRequester # noqa from ._metadata_requests import _routing_enabled # noqa from ._metadata_requests import _raise_for_params # noqa from ._metadata_requests import _RoutingNotSupportedMixin # noqa from ._metadata_requests import _raise_for_unsupported_routing # noqa
from functools import partial from typing import Any, Optional import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"] class AlexNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class AlexNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 61100840, "min_size": (63, 63), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "_metrics": { "ImageNet-1K": { "acc@1": 56.522, "acc@5": 79.066, } }, "_ops": 0.714, "_file_size": 233.087, "_docs": """ These weights reproduce closely the results of the paper using a simplified training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1)) def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet: """AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__. .. note:: AlexNet was originally introduced in the `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__ paper. Our implementation is based instead on the "One weird trick" paper above. Args: weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.AlexNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.AlexNet_Weights :members: """ weights = AlexNet_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = AlexNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model # The dictionary below is internal implementation detail and will be removed in v0.15 from ._utils import _ModelURLs model_urls = _ModelURLs( { "alexnet": AlexNet_Weights.IMAGENET1K_V1.url, } )
from functools import partial from typing import Any, Optional import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"] class AlexNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class AlexNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 61100840, "min_size": (63, 63), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "_metrics": { "ImageNet-1K": { "acc@1": 56.522, "acc@5": 79.066, } }, "_ops": 0.714, "_weight_size": 233.087, "_docs": """ These weights reproduce closely the results of the paper using a simplified training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1)) def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet: """AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__. .. note:: AlexNet was originally introduced in the `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__ paper. Our implementation is based instead on the "One weird trick" paper above. Args: weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.AlexNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.AlexNet_Weights :members: """ weights = AlexNet_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = AlexNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model # The dictionary below is internal implementation detail and will be removed in v0.15 from ._utils import _ModelURLs model_urls = _ModelURLs( { "alexnet": AlexNet_Weights.IMAGENET1K_V1.url, } )
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[BETA] Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. v2betastatus:: ToTensor transform .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``v2.Compose([transforms.ToImageTensor(), v2.ToDtype(torch.float32, scale=True)])``. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `v2.Compose([transforms.ToImageTensor(), v2.ToDtype(torch.float32, scale=True)])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[BETA] Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. v2betastatus:: ToTensor transform .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])``. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import warnings from mmcv import Config, DictAction from mmdet.utils import replace_cfg_vals, update_data_root def parse_args(): parser = argparse.ArgumentParser(description='Print the whole config') parser.add_argument('config', help='config file path') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): args = parse_args() cfg = Config.fromfile(args.config) # replace the ${key} with the value of cfg.key cfg = replace_cfg_vals(cfg) # update data root according to MMDET_DATASETS update_data_root(cfg) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) print(f'Config:\n{cfg.pretty_text}') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import warnings from mmcv import Config, DictAction from mmdet.utils import update_data_root def parse_args(): parser = argparse.ArgumentParser(description='Print the whole config') parser.add_argument('config', help='config file path') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): args = parse_args() cfg = Config.fromfile(args.config) # update data root according to MMDET_DATASETS update_data_root(cfg) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) print(f'Config:\n{cfg.pretty_text}') if __name__ == '__main__': main()
import argparse import functools import traceback from typing import Callable, List, Optional, Tuple from torch.utils.jit.log_extract import ( extract_ir, load_graph_and_inputs, run_baseline_no_fusion, run_nnc, run_nvfuser, ) """ Usage: 1. Run your script and pipe into a log file PYTORCH_JIT_LOG_LEVEL=">>graph_fuser" python3 my_test.py &> log.txt 2. Run log_extract: log_extract.py log.txt --nvfuser --nnc-dynamic --nnc-static You can also extract the list of extracted IR: log_extract.py log.txt --output Passing in --graphs 0 2 will only run graphs 0 and 2 """ def test_runners( graphs: List[str], runners: List[Tuple[str, Callable]], graph_set: Optional[List[int]], ): for i, ir in enumerate(graphs): _, inputs = load_graph_and_inputs(ir) if graph_set and i not in graph_set: continue print(f"Running Graph {i}") prev_result = None prev_runner_name = None for runner in runners: runner_name, runner_fn = runner try: result = runner_fn(ir, inputs) if prev_result: improvement = (prev_result / result - 1) * 100 print( f"{runner_name} : {result:.6f} ms improvement over {prev_runner_name}: improvement: {improvement:.2f}%" ) else: print(f"{runner_name} : {result:.6f} ms") prev_result = result prev_runner_name = runner_name except RuntimeError: print(f" Graph {i} failed for {runner_name} :", traceback.format_exc()) def run(): parser = argparse.ArgumentParser( description="Extracts torchscript IR from log files and, optionally, benchmarks it or outputs the IR" ) parser.add_argument("filename", help="Filename of log file") parser.add_argument( "--nvfuser", dest="nvfuser", action="store_true", help="benchmark nvfuser" ) parser.add_argument( "--no-nvfuser", dest="nvfuser", action="store_false", help="DON'T benchmark nvfuser", ) parser.set_defaults(nvfuser=False) parser.add_argument( "--nnc-static", dest="nnc_static", action="store_true", help="benchmark nnc static", ) parser.add_argument( "--no-nnc-static", dest="nnc_static", action="store_false", help="DON'T benchmark nnc static", ) parser.set_defaults(nnc_static=False) parser.add_argument( "--nnc-dynamic", dest="nnc_dynamic", action="store_true", help="nnc with dynamic shapes", ) parser.add_argument( "--no-nnc-dynamic", dest="nnc_dynamic", action="store_false", help="don't benchmark nnc with dynamic shapes", ) parser.set_defaults(nnc_dynamic=False) parser.add_argument( "--baseline", dest="baseline", action="store_true", help="benchmark baseline" ) parser.add_argument( "--no-baseline", dest="baseline", action="store_false", help="DON'T benchmark baseline", ) parser.set_defaults(baseline=False) parser.add_argument( "--output", dest="output", action="store_true", help="Output graph IR" ) parser.add_argument( "--no-output", dest="output", action="store_false", help="DON'T output graph IR" ) parser.set_defaults(output=False) parser.add_argument( "--graphs", nargs="+", type=int, help="Run only specified graph indices" ) args = parser.parse_args() graphs = extract_ir(args.filename) graph_set = args.graphs graph_set = graph_set if graph_set else None options = [] if args.baseline: options.append(("Baseline no fusion", run_baseline_no_fusion)) if args.nnc_dynamic: options.append(("NNC Dynamic", functools.partial(run_nnc, dynamic=True))) if args.nnc_static: options.append(("NNC Static", functools.partial(run_nnc, dynamic=False))) if args.nvfuser: options.append(("NVFuser", run_nvfuser)) test_runners(graphs, options, graph_set) if args.output: quoted = [] for i, ir in enumerate(graphs): if graph_set and i not in graph_set: continue quoted.append('"""' + ir + '"""') print("[" + ", ".join(quoted) + "]") if __name__ == "__main__": run()
import argparse import functools import traceback from typing import Callable, List, Optional, Tuple from torch.utils.jit.log_extract import ( extract_ir, load_graph_and_inputs, run_baseline_no_fusion, run_nnc, run_nvfuser, ) """ Usage: 1. Run your script and pipe into a log file PYTORCH_JIT_LOG_LEVEL=">>graph_fuser" python3 my_test.py &> log.txt 2. Run log_extract: log_extract.py log.txt --nvfuser --nnc-dynamic --nnc-static You can also extract the list of extracted IR: log_extract.py log.txt --output Passing in --graphs 0 2 will only run graphs 0 and 2 """ def test_runners( graphs: List[str], runners: List[Tuple[str, Callable]], graph_set: Optional[List[int]], ): for i, ir in enumerate(graphs): _, inputs = load_graph_and_inputs(ir) if graph_set and i not in graph_set: continue print(f"Running Graph {i}") prev_result = None prev_runner_name = None for runner in runners: runner_name, runner_fn = runner try: result = runner_fn(ir, inputs) if prev_result: improvement = (prev_result / result - 1) * 100 print( f"{runner_name} : {result:.6f} ms improvement over {prev_runner_name}: improvement: {improvement:.2f}%" ) else: print(f"{runner_name} : {result:.6f} ms") prev_result = result prev_runner_name = runner_name except RuntimeError: print(f" Graph {i} failed for {runner_name} :", traceback.format_exc()) def run(): parser = argparse.ArgumentParser( description="Extracts torchscript IR from log files and, optionally, benchmarks it or outputs the IR" ) parser.add_argument("filename", help="Filename of log file") parser.add_argument( "--nvfuser", dest="nvfuser", action="store_true", help="benchmark nvfuser" ) parser.add_argument( "--no-nvfuser", dest="nvfuser", action="store_false", help="DON'T benchmark nvfuser", ) parser.set_defaults(nvfuser=False) parser.add_argument( "--nnc-static", dest="nnc_static", action="store_true", help="benchmark nnc static", ) parser.add_argument( "--no-nnc-static", dest="nnc_static", action="store_false", help="DON'T benchmark nnc static", ) parser.set_defaults(nnc_static=False) parser.add_argument( "--nnc-dynamic", dest="nnc_dynamic", action="store_true", help="nnc with dynamic shapes", ) parser.add_argument( "--no-nnc-dynamic", dest="nnc_dynamic", action="store_false", help="DONT't benchmark nnc with dynamic shapes", ) parser.set_defaults(nnc_dynamic=False) parser.add_argument( "--baseline", dest="baseline", action="store_true", help="benchmark baseline" ) parser.add_argument( "--no-baseline", dest="baseline", action="store_false", help="DON'T benchmark baseline", ) parser.set_defaults(baseline=False) parser.add_argument( "--output", dest="output", action="store_true", help="Output graph IR" ) parser.add_argument( "--no-output", dest="output", action="store_false", help="DON'T output graph IR" ) parser.set_defaults(output=False) parser.add_argument( "--graphs", nargs="+", type=int, help="Run only specified graph indices" ) args = parser.parse_args() graphs = extract_ir(args.filename) graph_set = args.graphs graph_set = graph_set if graph_set else None options = [] if args.baseline: options.append(("Baseline no fusion", run_baseline_no_fusion)) if args.nnc_dynamic: options.append(("NNC Dynamic", functools.partial(run_nnc, dynamic=True))) if args.nnc_static: options.append(("NNC Static", functools.partial(run_nnc, dynamic=False))) if args.nvfuser: options.append(("NVFuser", run_nvfuser)) test_runners(graphs, options, graph_set) if args.output: quoted = [] for i, ir in enumerate(graphs): if graph_set and i not in graph_set: continue quoted.append('"""' + ir + '"""') print("[" + ", ".join(quoted) + "]") if __name__ == "__main__": run()
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class ATSS(SingleStageDetector): """Implementation of `ATSS <https://arxiv.org/abs/1912.02424>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class ATSS(SingleStageDetector): """Implementation of `ATSS <https://arxiv.org/abs/1912.02424>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(ATSS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from __future__ import annotations from typing import Any, Optional, Union import torch from ._tv_tensor import TVTensor class Video(TVTensor): """:class:`torch.Tensor` subclass for videos. Args: data (tensor-like): Any data that can be turned into a tensor with :func:`torch.as_tensor`. dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the video is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Video: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if data.ndim < 4: raise ValueError return tensor.as_subclass(cls) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr()
from __future__ import annotations from typing import Any, Optional, Union import torch from ._tv_tensor import TVTensor class Video(TVTensor): """[BETA] :class:`torch.Tensor` subclass for videos. Args: data (tensor-like): Any data that can be turned into a tensor with :func:`torch.as_tensor`. dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the video is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Video: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if data.ndim < 4: raise ValueError return tensor.as_subclass(cls) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr()
""" ================================================= Novelty detection with Local Outlier Factor (LOF) ================================================= The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly detection method which computes the local density deviation of a given data point with respect to its neighbors. It considers as outliers the samples that have a substantially lower density than their neighbors. This example shows how to use LOF for novelty detection. Note that when LOF is used for novelty detection you MUST not use predict, decision_function and score_samples on the training set as this would lead to wrong results. You must only use these methods on new unseen data (which are not in the training set). See :ref:`User Guide <outlier_detection>`: for details on the difference between outlier detection and novelty detection and how to use LOF for outlier detection. The number of neighbors considered, (parameter n_neighbors) is typically set 1) greater than the minimum number of samples a cluster has to contain, so that other samples can be local outliers relative to this cluster, and 2) smaller than the maximum number of close by samples that can potentially be local outliers. In practice, such information is generally not available, and taking n_neighbors=20 appears to work well in general. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np from sklearn.neighbors import LocalOutlierFactor np.random.seed(42) xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate normal (not abnormal) training observations X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate new normal (not abnormal) observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model for novelty detection (novelty=True) clf = LocalOutlierFactor(n_neighbors=20, novelty=True, contamination=0.1) clf.fit(X_train) # DO NOT use predict, decision_function and score_samples on X_train as this # would give wrong results but only on new unseen data (not used in X_train), # e.g. X_test, X_outliers or the meshgrid y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the learned frontier, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection with LOF") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="darkred") plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors="palevioletred") s = 40 b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k") b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k") c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k") plt.axis("tight") plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend( [mlines.Line2D([], [], color="darkred"), b1, b2, c], [ "learned frontier", "training observations", "new regular observations", "new abnormal observations", ], loc=(1.05, 0.4), prop=matplotlib.font_manager.FontProperties(size=11), ) plt.xlabel( "errors novel regular: %d/40 ; errors novel abnormal: %d/40" % (n_error_test, n_error_outliers) ) plt.tight_layout() plt.show()
""" ================================================= Novelty detection with Local Outlier Factor (LOF) ================================================= The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly detection method which computes the local density deviation of a given data point with respect to its neighbors. It considers as outliers the samples that have a substantially lower density than their neighbors. This example shows how to use LOF for novelty detection. Note that when LOF is used for novelty detection you MUST not use predict, decision_function and score_samples on the training set as this would lead to wrong results. You must only use these methods on new unseen data (which are not in the training set). See :ref:`User Guide <outlier_detection>`: for details on the difference between outlier detection and novelty detection and how to use LOF for outlier detection. The number of neighbors considered, (parameter n_neighbors) is typically set 1) greater than the minimum number of samples a cluster has to contain, so that other samples can be local outliers relative to this cluster, and 2) smaller than the maximum number of close by samples that can potentially be local outliers. In practice, such information is generally not available, and taking n_neighbors=20 appears to work well in general. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np from sklearn.neighbors import LocalOutlierFactor np.random.seed(42) xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate normal (not abnormal) training observations X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate new normal (not abnormal) observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model for novelty detection (novelty=True) clf = LocalOutlierFactor(n_neighbors=20, novelty=True, contamination=0.1) clf.fit(X_train) # DO NOT use predict, decision_function and score_samples on X_train as this # would give wrong results but only on new unseen data (not used in X_train), # e.g. X_test, X_outliers or the meshgrid y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the learned frontier, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection with LOF") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="darkred") plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors="palevioletred") s = 40 b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k") b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k") c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k") plt.axis("tight") plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend( [mlines.Line2D([], [], color="darkred"), b1, b2, c], [ "learned frontier", "training observations", "new regular observations", "new abnormal observations", ], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11), ) plt.xlabel( "errors novel regular: %d/40 ; errors novel abnormal: %d/40" % (n_error_test, n_error_outliers) ) plt.show()
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch import Tensor from mmdet.core.utils.typing import MultiConfig, OptConfigType from mmdet.models.utils import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS @MODELS.register_module() class GlobalContextHead(BaseModule): """Global context head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: num_convs (int, optional): number of convolutional layer in GlbCtxHead. Defaults to 4. in_channels (int, optional): number of input channels. Defaults to 256. conv_out_channels (int, optional): number of output channels before classification layer. Defaults to 256. num_classes (int, optional): number of classes. Defaults to 80. loss_weight (float, optional): global context loss weight. Defaults to 1. conv_cfg (dict, optional): config to init conv layer. Defaults to None. norm_cfg (dict, optional): config to init norm layer. Defaults to None. conv_to_res (bool, optional): if True, 2 convs will be grouped into 1 `SimplifiedBasicBlock` using a skip connection. Defaults to False. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`]): Initialization config dict. Defaults to dict(type='Normal', std=0.01, override=dict(name='fc')). """ def __init__( self, num_convs: int = 4, in_channels: int = 256, conv_out_channels: int = 256, num_classes: int = 80, loss_weight: float = 1.0, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, conv_to_res: bool = False, init_cfg: MultiConfig = dict( type='Normal', std=0.01, override=dict(name='fc')) ) -> None: super().__init__(init_cfg=init_cfg) self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.loss_weight = loss_weight self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.conv_to_res = conv_to_res self.fp16_enabled = False if self.conv_to_res: num_res_blocks = num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks else: self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(conv_out_channels, num_classes) self.criterion = nn.BCEWithLogitsLoss() def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function. Args: feats (Tuple[Tensor]): Multi-scale feature maps. Returns: Tuple[Tensor]: - mc_pred (Tensor): Multi-class prediction. - x (Tensor): Global context feature. """ x = feats[-1] for i in range(self.num_convs): x = self.convs[i](x) x = self.pool(x) # multi-class prediction mc_pred = x.reshape(x.size(0), -1) mc_pred = self.fc(mc_pred) return mc_pred, x def loss(self, pred: Tensor, labels: List[Tensor]) -> Tensor: """Loss function. Args: pred (Tensor): Logits. labels (list[Tensor]): Grouth truths. Returns: Tensor: Loss. """ labels = [lbl.unique() for lbl in labels] targets = pred.new_zeros(pred.size()) for i, label in enumerate(labels): targets[i, label] = 1.0 loss = self.loss_weight * self.criterion(pred, targets) return loss
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule, auto_fp16, force_fp32 from mmdet.models.utils import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS @MODELS.register_module() class GlobalContextHead(BaseModule): """Global context head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: num_convs (int, optional): number of convolutional layer in GlbCtxHead. Default: 4. in_channels (int, optional): number of input channels. Default: 256. conv_out_channels (int, optional): number of output channels before classification layer. Default: 256. num_classes (int, optional): number of classes. Default: 80. loss_weight (float, optional): global context loss weight. Default: 1. conv_cfg (dict, optional): config to init conv layer. Default: None. norm_cfg (dict, optional): config to init norm layer. Default: None. conv_to_res (bool, optional): if True, 2 convs will be grouped into 1 `SimplifiedBasicBlock` using a skip connection. Default: False. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_weight=1.0, conv_cfg=None, norm_cfg=None, conv_to_res=False, init_cfg=dict( type='Normal', std=0.01, override=dict(name='fc'))): super(GlobalContextHead, self).__init__(init_cfg) self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.loss_weight = loss_weight self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.conv_to_res = conv_to_res self.fp16_enabled = False if self.conv_to_res: num_res_blocks = num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks else: self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(conv_out_channels, num_classes) self.criterion = nn.BCEWithLogitsLoss() @auto_fp16() def forward(self, feats): """Forward function.""" x = feats[-1] for i in range(self.num_convs): x = self.convs[i](x) x = self.pool(x) # multi-class prediction mc_pred = x.reshape(x.size(0), -1) mc_pred = self.fc(mc_pred) return mc_pred, x @force_fp32(apply_to=('pred', )) def loss(self, pred, labels): """Loss function.""" labels = [lbl.unique() for lbl in labels] targets = pred.new_zeros(pred.size()) for i, label in enumerate(labels): targets[i, label] = 1.0 loss = self.loss_weight * self.criterion(pred, targets) return loss
import json import os from typing import List import torch from torch import nn class LSTM(nn.Module): """Bidirectional LSTM running over word embeddings.""" def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin")) model = LSTM(**config) model.load_state_dict(weights) return model
import torch from torch import nn from typing import List import os import json class LSTM(nn.Module): """ Bidirectional LSTM running over word embeddings. """ def __init__(self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True): nn.Module.__init__(self) self.config_keys = ['word_embedding_dimension', 'hidden_dim', 'num_layers', 'dropout', 'bidirectional'] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM(word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True) def forward(self, features): token_embeddings = features['token_embeddings'] sentence_lengths = torch.clamp(features['sentence_lengths'], min=1) packed = nn.utils.rnn.pack_padded_sequence(token_embeddings, sentence_lengths, batch_first=True, enforce_sorted=False) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({'token_embeddings': unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, 'lstm_config.json'), 'w') as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin')) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, 'lstm_config.json'), 'r') as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, 'pytorch_model.bin')) model = LSTM(**config) model.load_state_dict(weights) return model
_base_ = './rtmdet_s_8xb32-300e_coco.py' checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa model = dict( backbone=dict( deepen_factor=0.167, widen_factor=0.375, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1), bbox_head=dict(in_channels=96, feat_channels=96, exp_on_reg=False)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='CachedMosaic', img_scale=(640, 640), pad_val=114.0, max_cached_images=20, random_pop=False), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=10, random_pop=False, pad_val=(114, 114, 114), prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './rtmdet_s_8xb32-300e_coco.py' checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa model = dict( backbone=dict( deepen_factor=0.167, widen_factor=0.375, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1), bbox_head=dict(in_channels=96, feat_channels=96, exp_on_reg=False)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='CachedMosaic', img_scale=(640, 640), pad_val=114.0, max_cached_images=20, random_pop=False), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=10, random_pop=False, pad_val=(114, 114, 114), prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
import json import multiprocessing import os import time import pytest from docarray import DocumentArray from jina import Executor, requests from jina.helper import random_port from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import ( _validate_custom_gateway_process, _validate_dummy_custom_gateway_response, ) from tests.unit.yaml.dummy_gateway import DummyGateway cur_dir = os.path.dirname(os.path.abspath(__file__)) _dummy_gateway_yaml_path = os.path.join(cur_dir, '../../yaml/test-custom-gateway.yml') class ProcessExecutor(Executor): @requests(on='/') def process(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = doc.text + 'world' doc.tags['processed'] = True def _create_gateway_runtime(port, uses, uses_with, worker_port): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' deployments_metadata = '{"pod0": {"key1": "value1", "key2": "value2"}}' with GatewayRuntime( set_gateway_parser().parse_args( [ '--port', str(port), '--uses', uses, '--uses-with', json.dumps(uses_with), '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--deployments-metadata', deployments_metadata, ] ) ) as runtime: runtime.run_forever() def _start_gateway_runtime(uses, uses_with, worker_port): port = random_port() p = multiprocessing.Process( target=_create_gateway_runtime, args=(port, uses, uses_with, worker_port), daemon=True, ) p.start() time.sleep(1) return port, p def _create_worker_runtime(port, uses): args = set_pod_parser().parse_args(['--uses', uses, '--port', str(port)]) with WorkerRuntime(args) as runtime: runtime.run_forever() def _start_worker_runtime(uses): port = random_port() p = multiprocessing.Process( target=_create_worker_runtime, args=(port, uses), daemon=True, ) p.start() time.sleep(1) return port, p @pytest.mark.parametrize( 'uses,uses_with,expected', [ ('DummyGateway', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}), ( _dummy_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ], ) def test_custom_gateway_no_executors(uses, uses_with, expected): worker_port, worker_process = _start_worker_runtime('ProcessExecutor') gateway_port, gateway_process = _start_gateway_runtime(uses, uses_with, worker_port) _validate_dummy_custom_gateway_response(gateway_port, expected) _validate_custom_gateway_process( gateway_port, 'hello', {'text': 'helloworld', 'tags': {'processed': True}} ) gateway_process.terminate() gateway_process.join() worker_process.terminate() worker_process.join() assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import json import multiprocessing import os import time import pytest from docarray import DocumentArray from jina import Executor, requests from jina.helper import random_port from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import ( _validate_custom_gateway_process, _validate_dummy_custom_gateway_response, ) from tests.unit.yaml.dummy_gateway import DummyGateway cur_dir = os.path.dirname(os.path.abspath(__file__)) _dummy_gateway_yaml_path = os.path.join(cur_dir, '../../yaml/test-custom-gateway.yml') class ProcessExecutor(Executor): @requests(on='/') def process(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = doc.text + 'world' doc.tags['processed'] = True def _create_gateway_runtime(port, uses, uses_with, worker_port): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' with GatewayRuntime( set_gateway_parser().parse_args( [ '--port', str(port), '--uses', uses, '--uses-with', json.dumps(uses_with), '--graph-description', graph_description, '--deployments-addresses', pod_addresses, ] ) ) as runtime: runtime.run_forever() def _start_gateway_runtime(uses, uses_with, worker_port): port = random_port() p = multiprocessing.Process( target=_create_gateway_runtime, args=(port, uses, uses_with, worker_port), daemon=True, ) p.start() time.sleep(1) return port, p def _create_worker_runtime(port, uses): args = set_pod_parser().parse_args(['--uses', uses, '--port', str(port)]) with WorkerRuntime(args) as runtime: runtime.run_forever() def _start_worker_runtime(uses): port = random_port() p = multiprocessing.Process( target=_create_worker_runtime, args=(port, uses), daemon=True, ) p.start() time.sleep(1) return port, p @pytest.mark.parametrize( 'uses,uses_with,expected', [ ('DummyGateway', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}), ( _dummy_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ], ) def test_custom_gateway_no_executors(uses, uses_with, expected): worker_port, worker_process = _start_worker_runtime('ProcessExecutor') gateway_port, gateway_process = _start_gateway_runtime(uses, uses_with, worker_port) _validate_dummy_custom_gateway_response(gateway_port, expected) _validate_custom_gateway_process( gateway_port, 'hello', {'text': 'helloworld', 'tags': {'processed': True}} ) gateway_process.terminate() gateway_process.join() worker_process.terminate() worker_process.join() assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import gc import unittest import numpy as np import pytest import torch from diffusers import FluxPipeline, FluxPriorReduxPipeline from diffusers.utils import load_image from diffusers.utils.testing_utils import ( Expectations, backend_empty_cache, numpy_cosine_similarity_distance, require_big_accelerator, slow, torch_device, ) @slow @require_big_accelerator @pytest.mark.big_gpu_with_torch_cuda class FluxReduxSlowTests(unittest.TestCase): pipeline_class = FluxPriorReduxPipeline repo_id = "black-forest-labs/FLUX.1-Redux-dev" base_pipeline_class = FluxPipeline base_repo_id = "black-forest-labs/FLUX.1-schnell" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, seed=0): init_image = load_image( "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png" ) return {"image": init_image} def get_base_pipeline_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) return { "num_inference_steps": 2, "guidance_scale": 2.0, "output_type": "np", "generator": generator, } def test_flux_redux_inference(self): pipe_redux = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) pipe_base = self.base_pipeline_class.from_pretrained( self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None ) pipe_redux.to(torch_device) pipe_base.enable_model_cpu_offload(device=torch_device) inputs = self.get_inputs(torch_device) base_pipeline_inputs = self.get_base_pipeline_inputs(torch_device) redux_pipeline_output = pipe_redux(**inputs) image = pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0] image_slice = image[0, :10, :10] expected_slices = Expectations( { ("cuda", 7): np.array( [ 0.30078125, 0.37890625, 0.46875, 0.28125, 0.36914062, 0.47851562, 0.28515625, 0.375, 0.4765625, 0.28125, 0.375, 0.48046875, 0.27929688, 0.37695312, 0.47851562, 0.27734375, 0.38085938, 0.4765625, 0.2734375, 0.38085938, 0.47265625, 0.27539062, 0.37890625, 0.47265625, 0.27734375, 0.37695312, 0.47070312, 0.27929688, 0.37890625, 0.47460938, ], dtype=np.float32, ), ("xpu", 3): np.array( [ 0.20507812, 0.30859375, 0.3984375, 0.18554688, 0.30078125, 0.41015625, 0.19921875, 0.3125, 0.40625, 0.19726562, 0.3125, 0.41601562, 0.19335938, 0.31445312, 0.4140625, 0.1953125, 0.3203125, 0.41796875, 0.19726562, 0.32421875, 0.41992188, 0.19726562, 0.32421875, 0.41992188, 0.20117188, 0.32421875, 0.41796875, 0.203125, 0.32617188, 0.41796875, ], dtype=np.float32, ), } ) expected_slice = expected_slices.get_expectation() max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4
import gc import unittest import numpy as np import pytest import torch from diffusers import FluxPipeline, FluxPriorReduxPipeline from diffusers.utils import load_image from diffusers.utils.testing_utils import ( backend_empty_cache, numpy_cosine_similarity_distance, require_big_accelerator, slow, torch_device, ) @slow @require_big_accelerator @pytest.mark.big_gpu_with_torch_cuda class FluxReduxSlowTests(unittest.TestCase): pipeline_class = FluxPriorReduxPipeline repo_id = "YiYiXu/yiyi-redux" # update to "black-forest-labs/FLUX.1-Redux-dev" once PR is merged base_pipeline_class = FluxPipeline base_repo_id = "black-forest-labs/FLUX.1-schnell" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, seed=0): init_image = load_image( "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png" ) return {"image": init_image} def get_base_pipeline_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) return { "num_inference_steps": 2, "guidance_scale": 2.0, "output_type": "np", "generator": generator, } def test_flux_redux_inference(self): pipe_redux = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) pipe_base = self.base_pipeline_class.from_pretrained( self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None ) pipe_redux.to(torch_device) pipe_base.enable_model_cpu_offload(device=torch_device) inputs = self.get_inputs(torch_device) base_pipeline_inputs = self.get_base_pipeline_inputs(torch_device) redux_pipeline_output = pipe_redux(**inputs) image = pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0] image_slice = image[0, :10, :10] expected_slice = np.array( [ 0.30078125, 0.37890625, 0.46875, 0.28125, 0.36914062, 0.47851562, 0.28515625, 0.375, 0.4765625, 0.28125, 0.375, 0.48046875, 0.27929688, 0.37695312, 0.47851562, 0.27734375, 0.38085938, 0.4765625, 0.2734375, 0.38085938, 0.47265625, 0.27539062, 0.37890625, 0.47265625, 0.27734375, 0.37695312, 0.47070312, 0.27929688, 0.37890625, 0.47460938, ], dtype=np.float32, ) max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch from mmengine.utils.dl_utils import torch_meshgrid def test_torch_meshgrid(): # torch_meshgrid should not throw warning with warnings.catch_warnings(): warnings.simplefilter('error') x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) grid_x, grid_y = torch_meshgrid(x, y)
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmengine.utils.dl_utils import torch_meshgrid def test_torch_meshgrid(): # torch_meshgrid should not throw warning with pytest.warns(None) as record: x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) grid_x, grid_y = torch_meshgrid(x, y) assert len(record) == 0
"""Utilities for the CI.""" import os from datetime import datetime, timedelta from functools import wraps from typing import Any, Callable, Dict, TypedDict, TypeVar, Union class DirectoryExcursion: def __init__(self, path: Union[os.PathLike, str]) -> None: self.path = path self.curdir = os.path.normpath(os.path.abspath(os.path.curdir)) def __enter__(self) -> None: os.chdir(self.path) def __exit__(self, *args: Any) -> None: os.chdir(self.curdir) R = TypeVar("R") def cd(path: Union[os.PathLike, str]) -> Callable: """Decorator for changing directory temporarily.""" def chdir(func: Callable[..., R]) -> Callable[..., R]: @wraps(func) def inner(*args: Any, **kwargs: Any) -> R: with DirectoryExcursion(path): return func(*args, **kwargs) return inner return chdir Record = TypedDict("Record", {"count": int, "total": timedelta}) timer: Dict[str, Record] = {} def record_time(func: Callable[..., R]) -> Callable[..., R]: """Decorator for recording function runtime.""" global timer @wraps(func) def inner(*args: Any, **kwargs: Any) -> R: if func.__name__ not in timer: timer[func.__name__] = {"count": 0, "total": timedelta(0)} s = datetime.now() try: r = func(*args, **kwargs) finally: e = datetime.now() timer[func.__name__]["count"] += 1 timer[func.__name__]["total"] += e - s return r return inner def print_time() -> None: """Print all recorded items by :py:func:`record_time`.""" global timer for k, v in timer.items(): print( "Name:", k, "Called:", v["count"], "Elapsed:", f"{v['total'].seconds} secs", ) ROOT = os.path.normpath( os.path.join( os.path.dirname(os.path.abspath(__file__)), os.path.pardir, os.path.pardir ) ) R_PACKAGE = os.path.join(ROOT, "R-package") JVM_PACKAGES = os.path.join(ROOT, "jvm-packages") PY_PACKAGE = os.path.join(ROOT, "python-package")
"""Utilities for the CI.""" import os from datetime import datetime, timedelta from functools import wraps from typing import Any, Callable, Dict, TypedDict, TypeVar, Union class DirectoryExcursion: def __init__(self, path: Union[os.PathLike, str]) -> None: self.path = path self.curdir = os.path.normpath(os.path.abspath(os.path.curdir)) def __enter__(self) -> None: os.chdir(self.path) def __exit__(self, *args: Any) -> None: os.chdir(self.curdir) R = TypeVar("R") def cd(path: Union[os.PathLike, str]) -> Callable: """Decorator for changing directory temporarily.""" def chdir(func: Callable[..., R]) -> Callable[..., R]: @wraps(func) def inner(*args: Any, **kwargs: Any) -> R: with DirectoryExcursion(path): return func(*args, **kwargs) return inner return chdir Record = TypedDict("Record", {"count": int, "total": timedelta}) timer: Dict[str, Record] = {} def record_time(func: Callable[..., R]) -> Callable[..., R]: """Decorator for recording function runtime.""" global timer @wraps(func) def inner(*args: Any, **kwargs: Any) -> R: if func.__name__ not in timer: timer[func.__name__] = {"count": 0, "total": timedelta(0)} s = datetime.now() try: r = func(*args, **kwargs) finally: e = datetime.now() timer[func.__name__]["count"] += 1 timer[func.__name__]["total"] += e - s return r return inner def print_time() -> None: """Print all recorded items by :py:func:`record_time`.""" global timer for k, v in timer.items(): print( "Name:", k, "Called:", v["count"], "Elapsed:", f"{v['total'].seconds} secs", ) ROOT = os.path.normpath( os.path.join( os.path.dirname(os.path.abspath(__file__)), os.path.pardir, os.path.pardir ) ) R_PACKAGE = os.path.join(ROOT, "R-package") JVM_PACKAGES = os.path.join(ROOT, "jvm-packages") PY_PACKAGE = os.path.join(ROOT, "python-package")
from typing import ( TYPE_CHECKING, Sequence, ) import numpy as np from docarray.helper import typename if TYPE_CHECKING: from docarray.typing import ( DocumentArrayIndexType, ) class DelItemMixin: """Provide help function to enable advanced indexing in `__delitem__`""" def __delitem__(self, index: 'DocumentArrayIndexType'): self._update_subindices_del(index) if isinstance(index, (int, np.generic)) and not isinstance(index, bool): self._del_doc_by_offset(int(index)) elif isinstance(index, str): if index.startswith('@'): raise NotImplementedError( 'Delete elements along traversal paths is not implemented' ) else: self._del_doc(index) elif isinstance(index, slice): self._del_docs_by_slice(index) elif index is Ellipsis: self._del_all_docs() elif isinstance(index, Sequence): if ( isinstance(index, tuple) and len(index) == 2 and ( isinstance(index[0], (slice, Sequence, str, int)) or index[0] is Ellipsis ) and isinstance(index[1], (str, Sequence)) ): # TODO: add support for cases such as da[1, ['text', 'id']]? if isinstance(index[0], (str, int)) and isinstance(index[1], str): # ambiguity only comes from the second string if index[1] in self: del self[index[0]] del self[index[1]] else: self._set_doc_attr_by_id(index[0], index[1], None) elif isinstance(index[0], (slice, Sequence)): _attrs = index[1] if isinstance(_attrs, str): _attrs = (index[1],) for _d in self[index[0]]: for _aa in _attrs: self._set_doc_attr_by_id(_d.id, _aa, None) _d.pop(_aa) elif isinstance(index[0], bool): self._del_docs_by_mask(index) elif isinstance(index[0], int): for t in sorted(index, reverse=True): del self[t] elif isinstance(index[0], str): for t in index: del self[t] elif isinstance(index, np.ndarray): index = index.squeeze() if index.ndim == 1: del self[index.tolist()] else: raise IndexError( f'When using np.ndarray as index, its `ndim` must =1. However, receiving ndim={index.ndim}' ) else: raise IndexError(f'Unsupported index type {typename(index)}: {index}')
from typing import ( TYPE_CHECKING, Sequence, ) import numpy as np from docarray.helper import typename if TYPE_CHECKING: from docarray.typing import ( DocumentArrayIndexType, ) class DelItemMixin: """Provide help function to enable advanced indexing in `__delitem__`""" def __delitem__(self, index: 'DocumentArrayIndexType'): if isinstance(index, (int, np.generic)) and not isinstance(index, bool): self._del_doc_by_offset(int(index)) elif isinstance(index, str): if index.startswith('@'): raise NotImplementedError( 'Delete elements along traversal paths is not implemented' ) else: self._del_doc(index) elif isinstance(index, slice): self._del_docs_by_slice(index) elif index is Ellipsis: self._del_all_docs() elif isinstance(index, Sequence): if ( isinstance(index, tuple) and len(index) == 2 and ( isinstance(index[0], (slice, Sequence, str, int)) or index[0] is Ellipsis ) and isinstance(index[1], (str, Sequence)) ): # TODO: add support for cases such as da[1, ['text', 'id']]? if isinstance(index[0], (str, int)) and isinstance(index[1], str): # ambiguity only comes from the second string if index[1] in self: del self[index[0]] del self[index[1]] else: self._set_doc_attr_by_id(index[0], index[1], None) elif isinstance(index[0], (slice, Sequence)): _attrs = index[1] if isinstance(_attrs, str): _attrs = (index[1],) for _d in self[index[0]]: for _aa in _attrs: self._set_doc_attr_by_id(_d.id, _aa, None) _d.pop(_aa) elif isinstance(index[0], bool): self._del_docs_by_mask(index) elif isinstance(index[0], int): for t in sorted(index, reverse=True): del self[t] elif isinstance(index[0], str): for t in index: del self[t] elif isinstance(index, np.ndarray): index = index.squeeze() if index.ndim == 1: del self[index.tolist()] else: raise IndexError( f'When using np.ndarray as index, its `ndim` must =1. However, receiving ndim={index.ndim}' ) else: raise IndexError(f'Unsupported index type {typename(index)}: {index}')
"""Bedrock Retriever.""" from typing import List, Optional, Dict, Any from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode from llama_index.core.utilities.aws_utils import get_aws_service_client class AmazonKnowledgeBasesRetriever(BaseRetriever): """ `Amazon Bedrock Knowledge Bases` retrieval. See https://aws.amazon.com/bedrock/knowledge-bases for more info. Args: knowledge_base_id: Knowledge Base ID. retrieval_config: Configuration for retrieval. profile_name: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. region_name: The aws region e.g., `us-west-2`. Fallback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config. aws_access_key_id: The aws access key id. aws_secret_access_key: The aws secret access key. aws_session_token: AWS temporary session token. Example: .. code-block:: python from llama_index.retrievers.bedrock import AmazonKnowledgeBasesRetriever retriever = AmazonKnowledgeBasesRetriever( knowledge_base_id="<knowledge-base-id>", retrieval_config={ "vectorSearchConfiguration": { "numberOfResults": 4, "overrideSearchType": "SEMANTIC", "filter": { "equals": { "key": "tag", "value": "space" } } } }, ) """ def __init__( self, knowledge_base_id: str, retrieval_config: Optional[Dict[str, Any]] = None, profile_name: Optional[str] = None, region_name: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_session_token: Optional[str] = None, callback_manager: Optional[CallbackManager] = None, ): self._client = get_aws_service_client( service_name="bedrock-agent-runtime", profile_name=profile_name, region_name=region_name, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, ) self.knowledge_base_id = knowledge_base_id self.retrieval_config = retrieval_config super().__init__(callback_manager) def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: query = query_bundle.query_str response = self._client.retrieve( retrievalQuery={"text": query.strip()}, knowledgeBaseId=self.knowledge_base_id, retrievalConfiguration=self.retrieval_config, ) results = response["retrievalResults"] node_with_score = [] for result in results: metadata = {} if "location" in result: metadata["location"] = result["location"] if "metadata" in result: metadata["sourceMetadata"] = result["metadata"] node_with_score.append( NodeWithScore( node=TextNode( text=result["content"]["text"], metadata=metadata, ), score=result["score"] if "score" in result else 0, ) ) return node_with_score
"""Bedrock Retriever.""" from typing import List, Optional, Dict, Any from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode from llama_index.core.utilities.aws_utils import get_aws_service_client class AmazonKnowledgeBasesRetriever(BaseRetriever): """`Amazon Bedrock Knowledge Bases` retrieval. See https://aws.amazon.com/bedrock/knowledge-bases for more info. Args: knowledge_base_id: Knowledge Base ID. retrieval_config: Configuration for retrieval. profile_name: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. region_name: The aws region e.g., `us-west-2`. Fallback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config. aws_access_key_id: The aws access key id. aws_secret_access_key: The aws secret access key. aws_session_token: AWS temporary session token. Example: .. code-block:: python from llama_index.retrievers.bedrock import AmazonKnowledgeBasesRetriever retriever = AmazonKnowledgeBasesRetriever( knowledge_base_id="<knowledge-base-id>", retrieval_config={ "vectorSearchConfiguration": { "numberOfResults": 4, "overrideSearchType": "SEMANTIC", "filter": { "equals": { "key": "tag", "value": "space" } } } }, ) """ def __init__( self, knowledge_base_id: str, retrieval_config: Optional[Dict[str, Any]] = None, profile_name: Optional[str] = None, region_name: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_session_token: Optional[str] = None, callback_manager: Optional[CallbackManager] = None, ): self._client = get_aws_service_client( service_name="bedrock-agent-runtime", profile_name=profile_name, region_name=region_name, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, ) self.knowledge_base_id = knowledge_base_id self.retrieval_config = retrieval_config super().__init__(callback_manager) def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: query = query_bundle.query_str response = self._client.retrieve( retrievalQuery={"text": query.strip()}, knowledgeBaseId=self.knowledge_base_id, retrievalConfiguration=self.retrieval_config, ) results = response["retrievalResults"] node_with_score = [] for result in results: metadata = {} if "location" in result: metadata["location"] = result["location"] if "metadata" in result: metadata["sourceMetadata"] = result["metadata"] node_with_score.append( NodeWithScore( node=TextNode( text=result["content"]["text"], metadata=metadata, ), score=result["score"] if "score" in result else 0, ) ) return node_with_score
_base_ = './retinanet_r50_fpn_8xb8-amp-lsj-200e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
_base_ = './retinanet_r50_fpn_lsj_200e_8x8_fp16_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
"""Pydantic output parser.""" import json from typing import Any, Generic, List, Optional, Type from llama_index.core.output_parsers.base import ChainableOutputParser from llama_index.core.output_parsers.utils import extract_json_str from llama_index.core.types import Model PYDANTIC_FORMAT_TMPL = """ Here's a JSON schema to follow: {schema} Output a valid JSON object but do not repeat the schema. """ class PydanticOutputParser(ChainableOutputParser, Generic[Model]): """ Pydantic Output Parser. Args: output_cls (BaseModel): Pydantic output class. """ def __init__( self, output_cls: Type[Model], excluded_schema_keys_from_format: Optional[List] = None, pydantic_format_tmpl: str = PYDANTIC_FORMAT_TMPL, ) -> None: """Init params.""" self._output_cls = output_cls self._excluded_schema_keys_from_format = excluded_schema_keys_from_format or [] self._pydantic_format_tmpl = pydantic_format_tmpl @property def output_cls(self) -> Type[Model]: return self._output_cls @property def format_string(self) -> str: """Format string.""" return self.get_format_string(escape_json=True) def get_format_string(self, escape_json: bool = True) -> str: """Format string.""" schema_dict = self._output_cls.model_json_schema() for key in self._excluded_schema_keys_from_format: del schema_dict[key] schema_str = json.dumps(schema_dict) output_str = self._pydantic_format_tmpl.format(schema=schema_str) if escape_json: return output_str.replace("{", "{{").replace("}", "}}") else: return output_str def parse(self, text: str) -> Any: """Parse, validate, and correct errors programmatically.""" json_str = extract_json_str(text) return self._output_cls.model_validate_json(json_str) def format(self, query: str) -> str: """Format a query with structured output formatting instructions.""" return query + "\n\n" + self.get_format_string(escape_json=True)
"""Pydantic output parser.""" import json from typing import Any, Generic, List, Optional, Type from llama_index.core.output_parsers.base import ChainableOutputParser from llama_index.core.output_parsers.utils import extract_json_str from llama_index.core.types import Model PYDANTIC_FORMAT_TMPL = """ Here's a JSON schema to follow: {schema} Output a valid JSON object but do not repeat the schema. """ class PydanticOutputParser(ChainableOutputParser, Generic[Model]): """Pydantic Output Parser. Args: output_cls (BaseModel): Pydantic output class. """ def __init__( self, output_cls: Type[Model], excluded_schema_keys_from_format: Optional[List] = None, pydantic_format_tmpl: str = PYDANTIC_FORMAT_TMPL, ) -> None: """Init params.""" self._output_cls = output_cls self._excluded_schema_keys_from_format = excluded_schema_keys_from_format or [] self._pydantic_format_tmpl = pydantic_format_tmpl @property def output_cls(self) -> Type[Model]: return self._output_cls @property def format_string(self) -> str: """Format string.""" return self.get_format_string(escape_json=True) def get_format_string(self, escape_json: bool = True) -> str: """Format string.""" schema_dict = self._output_cls.model_json_schema() for key in self._excluded_schema_keys_from_format: del schema_dict[key] schema_str = json.dumps(schema_dict) output_str = self._pydantic_format_tmpl.format(schema=schema_str) if escape_json: return output_str.replace("{", "{{").replace("}", "}}") else: return output_str def parse(self, text: str) -> Any: """Parse, validate, and correct errors programmatically.""" json_str = extract_json_str(text) return self._output_cls.model_validate_json(json_str) def format(self, query: str) -> str: """Format a query with structured output formatting instructions.""" return query + "\n\n" + self.get_format_string(escape_json=True)
class WorkflowValidationError(Exception): pass class WorkflowTimeoutError(Exception): pass class WorkflowRuntimeError(Exception): pass class WorkflowDone(Exception): pass class WorkflowCancelledByUser(Exception): pass class WorkflowStepDoesNotExistError(Exception): pass class WorkflowConfigurationError(Exception): pass
class WorkflowValidationError(Exception): pass class WorkflowTimeoutError(Exception): pass class WorkflowRuntimeError(Exception): pass class WorkflowDone(Exception): pass class WorkflowCancelledByUser(Exception): pass class WorkflowStepDoesNotExistError(Exception): pass
from collections import defaultdict from time import time import numpy as np from numpy import random as nr from sklearn.cluster import KMeans, MiniBatchKMeans def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) chunk = 100 max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print("==============================") print("Iteration %03d of %03d" % (it, max_it)) print("==============================") print() data = nr.randint(-50, 51, (n_samples, n_features)) print("K-Means") tstart = time() kmeans = KMeans(init="k-means++", n_clusters=10).fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.5f" % kmeans.inertia_) print() results["kmeans_speed"].append(delta) results["kmeans_quality"].append(kmeans.inertia_) print("Fast K-Means") # let's prepare the data in small chunks mbkmeans = MiniBatchKMeans( init="k-means++", n_clusters=10, batch_size=chunk ) tstart = time() mbkmeans.fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %f" % mbkmeans.inertia_) print() print() results["MiniBatchKMeans Speed"].append(delta) results["MiniBatchKMeans Quality"].append(mbkmeans.inertia_) return results def compute_bench_2(chunks): results = defaultdict(lambda: []) n_features = 50000 means = np.array( [ [1, 1], [-1, -1], [1, -1], [-1, 1], [0.5, 0.5], [0.75, -0.5], [-1, 0.75], [1, 0], ] ) X = np.empty((0, 2)) for i in range(8): X = np.r_[X, means[i] + 0.8 * np.random.randn(n_features, 2)] max_it = len(chunks) it = 0 for chunk in chunks: it += 1 print("==============================") print("Iteration %03d of %03d" % (it, max_it)) print("==============================") print() print("Fast K-Means") tstart = time() mbkmeans = MiniBatchKMeans(init="k-means++", n_clusters=8, batch_size=chunk) mbkmeans.fit(X) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.3fs" % mbkmeans.inertia_) print() results["MiniBatchKMeans Speed"].append(delta) results["MiniBatchKMeans Quality"].append(mbkmeans.inertia_) return results if __name__ == "__main__": import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d # register the 3d projection # noqa: F401 samples_range = np.linspace(50, 150, 5).astype(int) features_range = np.linspace(150, 50000, 5).astype(int) chunks = np.linspace(500, 10000, 15).astype(int) results = compute_bench(samples_range, features_range) results_2 = compute_bench_2(chunks) max_time = max( [max(i) for i in [t for (label, t) in results.items() if "speed" in label]] ) max_inertia = max( [max(i) for i in [t for (label, t) in results.items() if "speed" not in label]] ) fig = plt.figure("scikit-learn K-Means benchmark results") for c, (label, timings) in zip("brcy", sorted(results.items())): if "speed" in label: ax = fig.add_subplot(2, 2, 1, projection="3d") ax.set_zlim3d(0.0, max_time * 1.1) else: ax = fig.add_subplot(2, 2, 2, projection="3d") ax.set_zlim3d(0.0, max_inertia * 1.1) X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.5) ax.set_xlabel("n_samples") ax.set_ylabel("n_features") i = 0 for c, (label, timings) in zip("br", sorted(results_2.items())): i += 1 ax = fig.add_subplot(2, 2, i + 2) y = np.asarray(timings) ax.plot(chunks, y, color=c, alpha=0.8) ax.set_xlabel("Chunks") ax.set_ylabel(label) plt.show()
from collections import defaultdict from time import time import numpy as np from numpy import random as nr from sklearn.cluster import KMeans, MiniBatchKMeans def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) chunk = 100 max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print("==============================") print("Iteration %03d of %03d" % (it, max_it)) print("==============================") print() data = nr.randint(-50, 51, (n_samples, n_features)) print("K-Means") tstart = time() kmeans = KMeans(init="k-means++", n_clusters=10).fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.5f" % kmeans.inertia_) print() results["kmeans_speed"].append(delta) results["kmeans_quality"].append(kmeans.inertia_) print("Fast K-Means") # let's prepare the data in small chunks mbkmeans = MiniBatchKMeans( init="k-means++", n_clusters=10, batch_size=chunk ) tstart = time() mbkmeans.fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %f" % mbkmeans.inertia_) print() print() results["MiniBatchKMeans Speed"].append(delta) results["MiniBatchKMeans Quality"].append(mbkmeans.inertia_) return results def compute_bench_2(chunks): results = defaultdict(lambda: []) n_features = 50000 means = np.array( [ [1, 1], [-1, -1], [1, -1], [-1, 1], [0.5, 0.5], [0.75, -0.5], [-1, 0.75], [1, 0], ] ) X = np.empty((0, 2)) for i in range(8): X = np.r_[X, means[i] + 0.8 * np.random.randn(n_features, 2)] max_it = len(chunks) it = 0 for chunk in chunks: it += 1 print("==============================") print("Iteration %03d of %03d" % (it, max_it)) print("==============================") print() print("Fast K-Means") tstart = time() mbkmeans = MiniBatchKMeans(init="k-means++", n_clusters=8, batch_size=chunk) mbkmeans.fit(X) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.3fs" % mbkmeans.inertia_) print() results["MiniBatchKMeans Speed"].append(delta) results["MiniBatchKMeans Quality"].append(mbkmeans.inertia_) return results if __name__ == "__main__": from mpl_toolkits.mplot3d import axes3d # noqa register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(50, 150, 5).astype(int) features_range = np.linspace(150, 50000, 5).astype(int) chunks = np.linspace(500, 10000, 15).astype(int) results = compute_bench(samples_range, features_range) results_2 = compute_bench_2(chunks) max_time = max( [max(i) for i in [t for (label, t) in results.items() if "speed" in label]] ) max_inertia = max( [max(i) for i in [t for (label, t) in results.items() if "speed" not in label]] ) fig = plt.figure("scikit-learn K-Means benchmark results") for c, (label, timings) in zip("brcy", sorted(results.items())): if "speed" in label: ax = fig.add_subplot(2, 2, 1, projection="3d") ax.set_zlim3d(0.0, max_time * 1.1) else: ax = fig.add_subplot(2, 2, 2, projection="3d") ax.set_zlim3d(0.0, max_inertia * 1.1) X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.5) ax.set_xlabel("n_samples") ax.set_ylabel("n_features") i = 0 for c, (label, timings) in zip("br", sorted(results_2.items())): i += 1 ax = fig.add_subplot(2, 2, i + 2) y = np.asarray(timings) ax.plot(chunks, y, color=c, alpha=0.8) ax.set_xlabel("Chunks") ax.set_ylabel(label) plt.show()
""" =================================== How to write your own v2 transforms =================================== .. note:: Try on `Colab <https://colab.research.google.com/github/pytorch/vision/blob/gh-pages/main/_generated_ipynb_notebooks/plot_custom_transforms.ipynb>`_ or :ref:`go to the end <sphx_glr_download_auto_examples_transforms_plot_custom_transforms.py>` to download the full example code. This guide explains how to write transforms that are compatible with the torchvision transforms V2 API. """ # %% import torch from torchvision import tv_tensors from torchvision.transforms import v2 # %% # Just create a ``nn.Module`` and override the ``forward`` method # =============================================================== # # In most cases, this is all you're going to need, as long as you already know # the structure of the input that your transform will expect. For example if # you're just doing image classification, your transform will typically accept a # single image as input, or a ``(img, label)`` input. So you can just hard-code # your ``forward`` method to accept just that, e.g. # # .. code:: python # # class MyCustomTransform(torch.nn.Module): # def forward(self, img, label): # # Do some transformations # return new_img, new_label # # .. note:: # # This means that if you have a custom transform that is already compatible # with the V1 transforms (those in ``torchvision.transforms``), it will # still work with the V2 transforms without any change! # # We will illustrate this more completely below with a typical detection case, # where our samples are just images, bounding boxes and labels: class MyCustomTransform(torch.nn.Module): def forward(self, img, bboxes, label): # we assume inputs are always structured like this print( f"I'm transforming an image of shape {img.shape} " f"with bboxes = {bboxes}\n{label = }" ) # Do some transformations. Here, we're just passing though the input return img, bboxes, label transforms = v2.Compose([ MyCustomTransform(), v2.RandomResizedCrop((224, 224), antialias=True), v2.RandomHorizontalFlip(p=1), v2.Normalize(mean=[0, 0, 0], std=[1, 1, 1]) ]) H, W = 256, 256 img = torch.rand(3, H, W) bboxes = tv_tensors.BoundingBoxes( torch.tensor([[0, 10, 10, 20], [50, 50, 70, 70]]), format="XYXY", canvas_size=(H, W) ) label = 3 out_img, out_bboxes, out_label = transforms(img, bboxes, label) # %% print(f"Output image shape: {out_img.shape}\nout_bboxes = {out_bboxes}\n{out_label = }") # %% # .. note:: # While working with TVTensor classes in your code, make sure to # familiarize yourself with this section: # :ref:`tv_tensor_unwrapping_behaviour` # # Supporting arbitrary input structures # ===================================== # # In the section above, we have assumed that you already know the structure of # your inputs and that you're OK with hard-coding this expected structure in # your code. If you want your custom transforms to be as flexible as possible, # this can be a bit limiting. # # A key feature of the builtin Torchvision V2 transforms is that they can accept # arbitrary input structure and return the same structure as output (with # transformed entries). For example, transforms can accept a single image, or a # tuple of ``(img, label)``, or an arbitrary nested dictionary as input: structured_input = { "img": img, "annotations": (bboxes, label), "something_that_will_be_ignored": (1, "hello") } structured_output = v2.RandomHorizontalFlip(p=1)(structured_input) assert isinstance(structured_output, dict) assert structured_output["something_that_will_be_ignored"] == (1, "hello") print(f"The transformed bboxes are:\n{structured_output['annotations'][0]}") # %% # If you want to reproduce this behavior in your own transform, we invite you to # look at our `code # <https://github.com/pytorch/vision/blob/main/torchvision/transforms/v2/_transform.py>`_ # and adapt it to your needs. # # In brief, the core logic is to unpack the input into a flat list using `pytree # <https://github.com/pytorch/pytorch/blob/main/torch/utils/_pytree.py>`_, and # then transform only the entries that can be transformed (the decision is made # based on the **class** of the entries, as all TVTensors are # tensor-subclasses) plus some custom logic that is out of score here - check the # code for details. The (potentially transformed) entries are then repacked and # returned, in the same structure as the input. # # We do not provide public dev-facing tools to achieve that at this time, but if # this is something that would be valuable to you, please let us know by opening # an issue on our `GitHub repo <https://github.com/pytorch/vision/issues>`_.
""" =================================== How to write your own v2 transforms =================================== .. note:: Try on `collab <https://colab.research.google.com/github/pytorch/vision/blob/gh-pages/main/_generated_ipynb_notebooks/plot_custom_transforms.ipynb>`_ or :ref:`go to the end <sphx_glr_download_auto_examples_transforms_plot_custom_transforms.py>` to download the full example code. This guide explains how to write transforms that are compatible with the torchvision transforms V2 API. """ # %% import torch from torchvision import tv_tensors from torchvision.transforms import v2 # %% # Just create a ``nn.Module`` and override the ``forward`` method # =============================================================== # # In most cases, this is all you're going to need, as long as you already know # the structure of the input that your transform will expect. For example if # you're just doing image classification, your transform will typically accept a # single image as input, or a ``(img, label)`` input. So you can just hard-code # your ``forward`` method to accept just that, e.g. # # .. code:: python # # class MyCustomTransform(torch.nn.Module): # def forward(self, img, label): # # Do some transformations # return new_img, new_label # # .. note:: # # This means that if you have a custom transform that is already compatible # with the V1 transforms (those in ``torchvision.transforms``), it will # still work with the V2 transforms without any change! # # We will illustrate this more completely below with a typical detection case, # where our samples are just images, bounding boxes and labels: class MyCustomTransform(torch.nn.Module): def forward(self, img, bboxes, label): # we assume inputs are always structured like this print( f"I'm transforming an image of shape {img.shape} " f"with bboxes = {bboxes}\n{label = }" ) # Do some transformations. Here, we're just passing though the input return img, bboxes, label transforms = v2.Compose([ MyCustomTransform(), v2.RandomResizedCrop((224, 224), antialias=True), v2.RandomHorizontalFlip(p=1), v2.Normalize(mean=[0, 0, 0], std=[1, 1, 1]) ]) H, W = 256, 256 img = torch.rand(3, H, W) bboxes = tv_tensors.BoundingBoxes( torch.tensor([[0, 10, 10, 20], [50, 50, 70, 70]]), format="XYXY", canvas_size=(H, W) ) label = 3 out_img, out_bboxes, out_label = transforms(img, bboxes, label) # %% print(f"Output image shape: {out_img.shape}\nout_bboxes = {out_bboxes}\n{out_label = }") # %% # .. note:: # While working with TVTensor classes in your code, make sure to # familiarize yourself with this section: # :ref:`tv_tensor_unwrapping_behaviour` # # Supporting arbitrary input structures # ===================================== # # In the section above, we have assumed that you already know the structure of # your inputs and that you're OK with hard-coding this expected structure in # your code. If you want your custom transforms to be as flexible as possible, # this can be a bit limiting. # # A key feature of the builtin Torchvision V2 transforms is that they can accept # arbitrary input structure and return the same structure as output (with # transformed entries). For example, transforms can accept a single image, or a # tuple of ``(img, label)``, or an arbitrary nested dictionary as input: structured_input = { "img": img, "annotations": (bboxes, label), "something_that_will_be_ignored": (1, "hello") } structured_output = v2.RandomHorizontalFlip(p=1)(structured_input) assert isinstance(structured_output, dict) assert structured_output["something_that_will_be_ignored"] == (1, "hello") print(f"The transformed bboxes are:\n{structured_output['annotations'][0]}") # %% # If you want to reproduce this behavior in your own transform, we invite you to # look at our `code # <https://github.com/pytorch/vision/blob/main/torchvision/transforms/v2/_transform.py>`_ # and adapt it to your needs. # # In brief, the core logic is to unpack the input into a flat list using `pytree # <https://github.com/pytorch/pytorch/blob/main/torch/utils/_pytree.py>`_, and # then transform only the entries that can be transformed (the decision is made # based on the **class** of the entries, as all TVTensors are # tensor-subclasses) plus some custom logic that is out of score here - check the # code for details. The (potentially transformed) entries are then repacked and # returned, in the same structure as the input. # # We do not provide public dev-facing tools to achieve that at this time, but if # this is something that would be valuable to you, please let us know by opening # an issue on our `GitHub repo <https://github.com/pytorch/vision/issues>`_.
# Copyright (c) OpenMMLab. All rights reserved. import logging from typing import Any, List, Optional, Sequence, Tuple import torch from torch.nn.parameter import Parameter from torch.nn.utils import clip_grad from mmengine.data import BaseDataSample from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataSample]]] @HOOKS.register_module() class OptimizerHook(Hook): """A hook contains custom operations for the optimizer. Args: grad_clip (dict, optional): A config dict to control the clip_grad. Defaults to None. detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with ``loss`` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. """ priority = 'HIGH' def __init__(self, grad_clip: Optional[dict] = None, detect_anomalous_params: bool = False) -> None: self.grad_clip = grad_clip self.detect_anomalous_params = detect_anomalous_params def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]: """Clip the gradients of parameters. Args: params (list[Parameter]): Model's parameters. Returns: Optional[torch.Tensor]: Total norm of the parameters if there is at least one param requiring gradient, else None. """ params = list( filter(lambda p: p.requires_grad and p.grad is not None, params)) if len(params) > 0: return clip_grad.clip_grad_norm_(params, **self.grad_clip) return None def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """All operations need to be finished after each training iteration. This function will finish following 3 operations: - Detect any anomalous parameters which are not included in the training graph. (optional) - Compute the gradient of model parameters. - Clip the gradients of each parameter. (optional) - Update model parameters with gradients. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``outputs`` here. Defaults to None. """ runner.optimizer.zero_grad() if self.detect_anomalous_params: self.detect_anomalous_parameters(runner.outputs['loss'], runner) runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update({'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) runner.optimizer.step() def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None: """Detect anomalous parameters that are not included in the graph. Args: loss (torch.Tensor): The loss of current iteration. runner (Runner): The runner of the training process. """ logger = runner.logger parameters_in_graph = set() visited = set() def traverse(grad_fn): if grad_fn is None: return if grad_fn not in visited: visited.add(grad_fn) if hasattr(grad_fn, 'variable'): parameters_in_graph.add(grad_fn.variable) parents = grad_fn.next_functions if parents is not None: for parent in parents: grad_fn = parent[0] traverse(grad_fn) traverse(loss.grad_fn) for n, p in runner.model.named_parameters(): if p not in parameters_in_graph and p.requires_grad: logger.log( level=logging.ERROR, msg=f'{n} with shape {p.size()} is not ' f'in the computational graph \n')
# Copyright (c) OpenMMLab. All rights reserved. import logging from typing import Any, List, Optional, Sequence, Tuple import torch from torch.nn.parameter import Parameter from torch.nn.utils import clip_grad from mmengine.data import BaseDataSample from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataSample]]] @HOOKS.register_module() class OptimizerHook(Hook): """A hook contains custom operations for the optimizer. Args: grad_clip (dict, optional): A config dict to control the clip_grad. Defaults to None. detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with ``loss`` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. """ priority = 'HIGH' def __init__(self, grad_clip: Optional[dict] = None, detect_anomalous_params: bool = False) -> None: self.grad_clip = grad_clip self.detect_anomalous_params = detect_anomalous_params def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]: """Clip the gradients of parameters. Args: params (list[Parameter]): Model's parameters. Returns: Optional[torch.Tensor]: Total norm of the parameters if there is at least one param requiring gradient, else None. """ params = list( filter(lambda p: p.requires_grad and p.grad is not None, params)) if len(params) > 0: return clip_grad.clip_grad_norm_(params, **self.grad_clip) return None def after_train_iter(self, runner, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """All operations need to be finished after each training iteration. This function will finish following 3 operations: - Detect any anomalous parameters which are not included in the training graph. (optional) - Compute the gradient of model parameters. - Clip the gradidents of each parameters. (optional) - Update model parameters with gradients. Args: runner (Runner): The runner of the training process. data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``outputs`` here. Defaults to None. """ runner.optimizer.zero_grad() if self.detect_anomalous_params: self.detect_anomalous_parameters(runner.outputs['loss'], runner) runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update({'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) runner.optimizer.step() def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None: """Detect anomalous parameters that are not included in the graph. Args: loss (torch.Tensor): The loss of current iteration. runner (Runner): The runner of the training process. """ logger = runner.logger parameters_in_graph = set() visited = set() def traverse(grad_fn): if grad_fn is None: return if grad_fn not in visited: visited.add(grad_fn) if hasattr(grad_fn, 'variable'): parameters_in_graph.add(grad_fn.variable) parents = grad_fn.next_functions if parents is not None: for parent in parents: grad_fn = parent[0] traverse(grad_fn) traverse(loss.grad_fn) for n, p in runner.model.named_parameters(): if p not in parameters_in_graph and p.requires_grad: logger.log( level=logging.ERROR, msg=f'{n} with shape {p.size()} is not ' f'in the computational graph \n')
DEEPSEEK_MODEL_TO_CONTEXT_WINDOW = { "deepseek-chat": 64000, "deepseek-reasoner": 64000, } FUNCTION_CALLING_MODELS = {"deepseek-chat"} def get_context_window(model: str) -> int: return DEEPSEEK_MODEL_TO_CONTEXT_WINDOW.get(model, 64000)
DEEPSEEK_MODEL_TO_CONTEXT_WINDOW = { "deepseek-chat": 64000, "deepseek-reasoner": 64000, } def get_context_window(model: str) -> int: return DEEPSEEK_MODEL_TO_CONTEXT_WINDOW.get(model, 64000)
from typing import Any, Optional from typing_inspect import get_args, is_union_type from docarray.typing.tensor.abstract_tensor import AbstractTensor def is_type_tensor(type_: Any) -> bool: """Return True if type is a type Tensor or an Optional Tensor type.""" return isinstance(type_, type) and issubclass(type_, AbstractTensor) def is_tensor_union(type_: Any) -> bool: """Return True if type is a Union of type Tensors.""" is_union = is_union_type(type_) if is_union is None: return False else: return is_union and all( (is_type_tensor(t) or issubclass(t, type(None))) for t in get_args(type_) ) def change_cls_name(cls: type, new_name: str, scope: Optional[dict] = None) -> None: """Change the name of a class. :param cls: the class to change the name of :param new_name: the new name :param scope: the scope in which the class is defined """ if scope: scope[new_name] = cls cls.__qualname__ = cls.__qualname__[: -len(cls.__name__)] + new_name cls.__name__ = new_name
from typing import Any from typing_inspect import get_args, is_union_type from docarray.typing.tensor.abstract_tensor import AbstractTensor def is_type_tensor(type_: Any) -> bool: """Return True if type is a type Tensor or an Optional Tensor type.""" return isinstance(type_, type) and issubclass(type_, AbstractTensor) def is_tensor_union(type_: Any) -> bool: """Return True if type is a Union of type Tensors.""" is_union = is_union_type(type_) if is_union is None: return False else: return is_union and all( (is_type_tensor(t) or issubclass(t, type(None))) for t in get_args(type_) )
from typing import List, Iterable import collections import string import os import json import logging from .WordTokenizer import WordTokenizer, ENGLISH_STOP_WORDS from transformers.utils.import_utils import is_nltk_available, NLTK_IMPORT_ERROR logger = logging.getLogger(__name__) class PhraseTokenizer(WordTokenizer): """Tokenizes the text with respect to existent phrases in the vocab. This tokenizers respects phrases that are in the vocab. Phrases are separated with 'ngram_separator', for example, in Google News word2vec file, ngrams are separated with a _ like New_York. These phrases are detected in text and merged as one special token. (New York is the ... => [New_York, is, the]) """ def __init__( self, vocab: Iterable[str] = [], stop_words: Iterable[str] = ENGLISH_STOP_WORDS, do_lower_case: bool = False, ngram_separator: str = "_", max_ngram_length: int = 5, ): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.stop_words = set(stop_words) self.do_lower_case = do_lower_case self.ngram_separator = ngram_separator self.max_ngram_length = max_ngram_length self.set_vocab(vocab) def get_vocab(self): return self.vocab def set_vocab(self, vocab: Iterable[str]): self.vocab = vocab self.word2idx = collections.OrderedDict([(word, idx) for idx, word in enumerate(vocab)]) # Check for ngram in vocab self.ngram_lookup = set() self.ngram_lengths = set() for word in vocab: if self.ngram_separator is not None and self.ngram_separator in word: # Sum words might me malformed in e.g. google news word2vec, containing two or more _ after each other ngram_count = word.count(self.ngram_separator) + 1 if self.ngram_separator + self.ngram_separator not in word and ngram_count <= self.max_ngram_length: self.ngram_lookup.add(word) self.ngram_lengths.add(ngram_count) if len(vocab) > 0: logger.info("PhraseTokenizer - Phrase ngram lengths: {}".format(self.ngram_lengths)) logger.info("PhraseTokenizer - Num phrases: {}".format(len(self.ngram_lookup))) def tokenize(self, text: str, **kwargs) -> List[int]: from nltk import word_tokenize tokens = word_tokenize(text, preserve_line=True) # phrase detection for ngram_len in sorted(self.ngram_lengths, reverse=True): idx = 0 while idx <= len(tokens) - ngram_len: ngram = self.ngram_separator.join(tokens[idx : idx + ngram_len]) if ngram in self.ngram_lookup: tokens[idx : idx + ngram_len] = [ngram] elif ngram.lower() in self.ngram_lookup: tokens[idx : idx + ngram_len] = [ngram.lower()] idx += 1 # Map tokens to idx, filter stop words tokens_filtered = [] for token in tokens: if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.lower() if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.strip(string.punctuation) if token in self.stop_words: continue elif len(token) > 0 and token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue return tokens_filtered def save(self, output_path: str): with open(os.path.join(output_path, "phrasetokenizer_config.json"), "w") as fOut: json.dump( { "vocab": list(self.word2idx.keys()), "stop_words": list(self.stop_words), "do_lower_case": self.do_lower_case, "ngram_separator": self.ngram_separator, "max_ngram_length": self.max_ngram_length, }, fOut, ) @staticmethod def load(input_path: str): with open(os.path.join(input_path, "phrasetokenizer_config.json"), "r") as fIn: config = json.load(fIn) return PhraseTokenizer(**config)
from typing import List, Iterable import collections import string import os import json import logging from .WordTokenizer import WordTokenizer, ENGLISH_STOP_WORDS from transformers.utils.import_utils import is_nltk_available, NLTK_IMPORT_ERROR logger = logging.getLogger(__name__) class PhraseTokenizer(WordTokenizer): """Tokenizes the text with respect to existent phrases in the vocab. This tokenizers respects phrases that are in the vocab. Phrases are separated with 'ngram_separator', for example, in Google News word2vec file, ngrams are separated with a _ like New_York. These phrases are detected in text and merged as one special token. (New York is the ... => [New_York, is, the]) """ def __init__( self, vocab: Iterable[str] = [], stop_words: Iterable[str] = ENGLISH_STOP_WORDS, do_lower_case: bool = False, ngram_separator: str = "_", max_ngram_length: int = 5, ): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.stop_words = set(stop_words) self.do_lower_case = do_lower_case self.ngram_separator = ngram_separator self.max_ngram_length = max_ngram_length self.set_vocab(vocab) def get_vocab(self): return self.vocab def set_vocab(self, vocab: Iterable[str]): self.vocab = vocab self.word2idx = collections.OrderedDict([(word, idx) for idx, word in enumerate(vocab)]) # Check for ngram in vocab self.ngram_lookup = set() self.ngram_lengths = set() for word in vocab: if self.ngram_separator is not None and self.ngram_separator in word: # Sum words might me malformed in e.g. google news word2vec, containing two or more _ after each other ngram_count = word.count(self.ngram_separator) + 1 if self.ngram_separator + self.ngram_separator not in word and ngram_count <= self.max_ngram_length: self.ngram_lookup.add(word) self.ngram_lengths.add(ngram_count) if len(vocab) > 0: logger.info("PhraseTokenizer - Phrase ngram lengths: {}".format(self.ngram_lengths)) logger.info("PhraseTokenizer - Num phrases: {}".format(len(self.ngram_lookup))) def tokenize(self, text: str) -> List[int]: from nltk import word_tokenize tokens = word_tokenize(text, preserve_line=True) # phrase detection for ngram_len in sorted(self.ngram_lengths, reverse=True): idx = 0 while idx <= len(tokens) - ngram_len: ngram = self.ngram_separator.join(tokens[idx : idx + ngram_len]) if ngram in self.ngram_lookup: tokens[idx : idx + ngram_len] = [ngram] elif ngram.lower() in self.ngram_lookup: tokens[idx : idx + ngram_len] = [ngram.lower()] idx += 1 # Map tokens to idx, filter stop words tokens_filtered = [] for token in tokens: if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.lower() if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.strip(string.punctuation) if token in self.stop_words: continue elif len(token) > 0 and token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue return tokens_filtered def save(self, output_path: str): with open(os.path.join(output_path, "phrasetokenizer_config.json"), "w") as fOut: json.dump( { "vocab": list(self.word2idx.keys()), "stop_words": list(self.stop_words), "do_lower_case": self.do_lower_case, "ngram_separator": self.ngram_separator, "max_ngram_length": self.max_ngram_length, }, fOut, ) @staticmethod def load(input_path: str): with open(os.path.join(input_path, "phrasetokenizer_config.json"), "r") as fIn: config = json.load(fIn) return PhraseTokenizer(**config)
from typing import Union from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers.openai_tools import PydanticToolsParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import convert_pydantic_to_openai_function from pydantic import BaseModel _EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \ in the following passage together with their properties. If a property is not present and is not required in the function parameters, do not include it in the output.""" # noqa: E501 @deprecated( since="0.1.14", message=( "LangChain has introduced a method called `with_structured_output` that" "is available on ChatModels capable of tool calling." "You can read more about the method here: " "<https://python.langchain.com/docs/modules/model_io/chat/structured_output/>. " "Please follow our extraction use case documentation for more guidelines" "on how to do information extraction with LLMs." "<https://python.langchain.com/docs/use_cases/extraction/>. " "with_structured_output does not currently support a list of pydantic schemas. " "If this is a blocker or if you notice other issues, please provide " "feedback here:" "<https://github.com/langchain-ai/langchain/discussions/18154>" ), removal="1.0", alternative=( """ from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") # Or any other chat model that supports tools. # Please reference to to the documentation of structured_output # to see an up to date list of which models support # with_structured_output. model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) structured_llm = model.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats. Make sure to call the Joke function.") """ ), ) def create_extraction_chain_pydantic( pydantic_schemas: Union[list[type[BaseModel]], type[BaseModel]], llm: BaseLanguageModel, system_message: str = _EXTRACTION_TEMPLATE, ) -> Runnable: """Creates a chain that extracts information from a passage. Args: pydantic_schemas: The schema of the entities to extract. llm: The language model to use. system_message: The system message to use for extraction. Returns: A runnable that extracts information from a passage. """ if not isinstance(pydantic_schemas, list): pydantic_schemas = [pydantic_schemas] prompt = ChatPromptTemplate.from_messages( [ ("system", system_message), ("user", "{input}"), ] ) functions = [convert_pydantic_to_openai_function(p) for p in pydantic_schemas] tools = [{"type": "function", "function": d} for d in functions] model = llm.bind(tools=tools) return prompt | model | PydanticToolsParser(tools=pydantic_schemas)
from typing import Union from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers.openai_tools import PydanticToolsParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import convert_pydantic_to_openai_function from pydantic import BaseModel _EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \ in the following passage together with their properties. If a property is not present and is not required in the function parameters, do not include it in the output.""" # noqa: E501 @deprecated( since="0.1.14", message=( "LangChain has introduced a method called `with_structured_output` that" "is available on ChatModels capable of tool calling." "You can read more about the method here: " "<https://python.langchain.com/docs/modules/model_io/chat/structured_output/>. " "Please follow our extraction use case documentation for more guidelines" "on how to do information extraction with LLMs." "<https://python.langchain.com/docs/use_cases/extraction/>. " "with_structured_output does not currently support a list of pydantic schemas. " "If this is a blocker or if you notice other issues, please provide " "feedback here:" "<https://github.com/langchain-ai/langchain/discussions/18154>" ), removal="1.0", alternative=( """ from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") # Or any other chat model that supports tools. # Please reference to to the documentation of structured_output # to see an up to date list of which models support # with_structured_output. model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) structured_llm = model.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats. Make sure to call the Joke function.") """ ), ) def create_extraction_chain_pydantic( pydantic_schemas: Union[list[type[BaseModel]], type[BaseModel]], llm: BaseLanguageModel, system_message: str = _EXTRACTION_TEMPLATE, ) -> Runnable: """Creates a chain that extracts information from a passage. Args: pydantic_schemas: The schema of the entities to extract. llm: The language model to use. system_message: The system message to use for extraction. Returns: A runnable that extracts information from a passage. """ if not isinstance(pydantic_schemas, list): pydantic_schemas = [pydantic_schemas] prompt = ChatPromptTemplate.from_messages( [ ("system", system_message), ("user", "{input}"), ] ) functions = [convert_pydantic_to_openai_function(p) for p in pydantic_schemas] tools = [{"type": "function", "function": d} for d in functions] model = llm.bind(tools=tools) chain = prompt | model | PydanticToolsParser(tools=pydantic_schemas) return chain
""" Quantile Regression =================== .. versionadded:: 2.0.0 The script is inspired by this awesome example in sklearn: https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html .. note:: The feature is only supported using the Python, R, and C packages. In addition, quantile crossing can happen due to limitation in the algorithm. """ import argparse from typing import Dict import numpy as np from sklearn.model_selection import train_test_split import xgboost as xgb def f(x: np.ndarray) -> np.ndarray: """The function to predict.""" return x * np.sin(x) def quantile_loss(args: argparse.Namespace) -> None: """Train a quantile regression model.""" rng = np.random.RandomState(1994) # Generate a synthetic dataset for demo, the generate process is from the sklearn # example. X = np.atleast_2d(rng.uniform(0, 10.0, size=1000)).T expected_y = f(X).ravel() sigma = 0.5 + X.ravel() / 10.0 noise = rng.lognormal(sigma=sigma) - np.exp(sigma**2.0 / 2.0) y = expected_y + noise # Train on 0.05 and 0.95 quantiles. The model is similar to multi-class and # multi-target models. alpha = np.array([0.05, 0.5, 0.95]) evals_result: Dict[str, Dict] = {} X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng) # We will be using the `hist` tree method, quantile DMatrix can be used to preserve # memory. # Do not use the `exact` tree method for quantile regression, otherwise the # performance might drop. Xy = xgb.QuantileDMatrix(X, y) # use Xy as a reference Xy_test = xgb.QuantileDMatrix(X_test, y_test, ref=Xy) booster = xgb.train( { # Use the quantile objective function. "objective": "reg:quantileerror", "tree_method": "hist", "quantile_alpha": alpha, # Let's try not to overfit. "learning_rate": 0.04, "max_depth": 5, }, Xy, num_boost_round=32, early_stopping_rounds=2, # The evaluation result is a weighted average across multiple quantiles. evals=[(Xy, "Train"), (Xy_test, "Test")], evals_result=evals_result, ) xx = np.atleast_2d(np.linspace(0, 10, 1000)).T scores = booster.inplace_predict(xx) # dim 1 is the quantiles assert scores.shape[0] == xx.shape[0] assert scores.shape[1] == alpha.shape[0] y_lower = scores[:, 0] # alpha=0.05 y_med = scores[:, 1] # alpha=0.5, median y_upper = scores[:, 2] # alpha=0.95 # Train a mse model for comparison booster = xgb.train( { "objective": "reg:squarederror", "tree_method": "hist", # Let's try not to overfit. "learning_rate": 0.04, "max_depth": 5, }, Xy, num_boost_round=32, early_stopping_rounds=2, evals=[(Xy, "Train"), (Xy_test, "Test")], evals_result=evals_result, ) xx = np.atleast_2d(np.linspace(0, 10, 1000)).T y_pred = booster.inplace_predict(xx) if args.plot: from matplotlib import pyplot as plt fig = plt.figure(figsize=(10, 10)) plt.plot(xx, f(xx), "g:", linewidth=3, label=r"$f(x) = x\,\sin(x)$") plt.plot(X_test, y_test, "b.", markersize=10, label="Test observations") plt.plot(xx, y_med, "r-", label="Predicted median") plt.plot(xx, y_pred, "m-", label="Predicted mean") plt.plot(xx, y_upper, "k-") plt.plot(xx, y_lower, "k-") plt.fill_between( xx.ravel(), y_lower, y_upper, alpha=0.4, label="Predicted 90% interval" ) plt.xlabel("$x$") plt.ylabel("$f(x)$") plt.ylim(-10, 25) plt.legend(loc="upper left") plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--plot", action="store_true", help="Specify it to enable plotting the outputs.", ) args = parser.parse_args() quantile_loss(args)
""" Quantile Regression =================== .. versionadded:: 2.0.0 The script is inspired by this awesome example in sklearn: https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html .. note:: The feature is only supported using the Python package. In addition, quantile crossing can happen due to limitation in the algorithm. """ import argparse from typing import Dict import numpy as np from sklearn.model_selection import train_test_split import xgboost as xgb def f(x: np.ndarray) -> np.ndarray: """The function to predict.""" return x * np.sin(x) def quantile_loss(args: argparse.Namespace) -> None: """Train a quantile regression model.""" rng = np.random.RandomState(1994) # Generate a synthetic dataset for demo, the generate process is from the sklearn # example. X = np.atleast_2d(rng.uniform(0, 10.0, size=1000)).T expected_y = f(X).ravel() sigma = 0.5 + X.ravel() / 10.0 noise = rng.lognormal(sigma=sigma) - np.exp(sigma**2.0 / 2.0) y = expected_y + noise # Train on 0.05 and 0.95 quantiles. The model is similar to multi-class and # multi-target models. alpha = np.array([0.05, 0.5, 0.95]) evals_result: Dict[str, Dict] = {} X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng) # We will be using the `hist` tree method, quantile DMatrix can be used to preserve # memory. # Do not use the `exact` tree method for quantile regression, otherwise the # performance might drop. Xy = xgb.QuantileDMatrix(X, y) # use Xy as a reference Xy_test = xgb.QuantileDMatrix(X_test, y_test, ref=Xy) booster = xgb.train( { # Use the quantile objective function. "objective": "reg:quantileerror", "tree_method": "hist", "quantile_alpha": alpha, # Let's try not to overfit. "learning_rate": 0.04, "max_depth": 5, }, Xy, num_boost_round=32, early_stopping_rounds=2, # The evaluation result is a weighted average across multiple quantiles. evals=[(Xy, "Train"), (Xy_test, "Test")], evals_result=evals_result, ) xx = np.atleast_2d(np.linspace(0, 10, 1000)).T scores = booster.inplace_predict(xx) # dim 1 is the quantiles assert scores.shape[0] == xx.shape[0] assert scores.shape[1] == alpha.shape[0] y_lower = scores[:, 0] # alpha=0.05 y_med = scores[:, 1] # alpha=0.5, median y_upper = scores[:, 2] # alpha=0.95 # Train a mse model for comparison booster = xgb.train( { "objective": "reg:squarederror", "tree_method": "hist", # Let's try not to overfit. "learning_rate": 0.04, "max_depth": 5, }, Xy, num_boost_round=32, early_stopping_rounds=2, evals=[(Xy, "Train"), (Xy_test, "Test")], evals_result=evals_result, ) xx = np.atleast_2d(np.linspace(0, 10, 1000)).T y_pred = booster.inplace_predict(xx) if args.plot: from matplotlib import pyplot as plt fig = plt.figure(figsize=(10, 10)) plt.plot(xx, f(xx), "g:", linewidth=3, label=r"$f(x) = x\,\sin(x)$") plt.plot(X_test, y_test, "b.", markersize=10, label="Test observations") plt.plot(xx, y_med, "r-", label="Predicted median") plt.plot(xx, y_pred, "m-", label="Predicted mean") plt.plot(xx, y_upper, "k-") plt.plot(xx, y_lower, "k-") plt.fill_between( xx.ravel(), y_lower, y_upper, alpha=0.4, label="Predicted 90% interval" ) plt.xlabel("$x$") plt.ylabel("$f(x)$") plt.ylim(-10, 25) plt.legend(loc="upper left") plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--plot", action="store_true", help="Specify it to enable plotting the outputs.", ) args = parser.parse_args() quantile_loss(args)
from keras.src import tree from keras.src.api_export import keras_export from keras.src.backend import KerasTensor from keras.src.layers.layer import Layer @keras_export("keras.layers.Identity") class Identity(Layer): """Identity layer. This layer should be used as a placeholder when no operation is to be performed. The layer just returns its `inputs` argument as output. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.supports_masking = True self.built = True def call(self, inputs): return inputs def compute_output_shape(self, input_shape): return input_shape def compute_output_spec(self, inputs): return tree.map_structure( lambda x: KerasTensor(x.shape, dtype=x.dtype, sparse=x.sparse), inputs, )
from keras.src import tree from keras.src.api_export import keras_export from keras.src.backend import KerasTensor from keras.src.layers.layer import Layer @keras_export("keras.layers.Identity") class Identity(Layer): """Identity layer. This layer should be used as a placeholder when no operation is to be performed. The layer just returns its `inputs` argument as output. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.supports_masking = True def call(self, inputs): return inputs def compute_output_shape(self, input_shape): return input_shape def compute_output_spec(self, inputs): return tree.map_structure( lambda x: KerasTensor(x.shape, dtype=x.dtype, sparse=x.sparse), inputs, )
from __future__ import annotations from pathlib import Path import torch from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.models import IDF from tests.sparse_encoder.utils import sparse_allclose def test_idf_padding_ignored(inference_free_splade_bert_tiny_model: SparseEncoder) -> None: model = inference_free_splade_bert_tiny_model input_texts = ["This is a test input", "This is a considerably longer test input to check padding behavior."] # Encode the input texts batch_embeddings = model.encode_query(input_texts, save_to_cpu=True) single_embeddings = [model.encode_query(text, save_to_cpu=True) for text in input_texts] single_embeddings = torch.stack(single_embeddings) # Check that the batch embeddings match the single embeddings assert sparse_allclose( batch_embeddings, single_embeddings, atol=1e-6 ), "Batch encoding does not match single encoding." def test_idf_save_load(inference_free_splade_bert_tiny_model: SparseEncoder, tmp_path: Path) -> None: model = inference_free_splade_bert_tiny_model # Define test inputs test_inputs = ["This is a simple test.", "Another example text for testing."] # Get embeddings before saving original_embeddings = model.encode_query(test_inputs, save_to_cpu=True) # Save the model save_path = tmp_path / "test_idf_model" model.save_pretrained(save_path) # Load the model loaded_model = SparseEncoder(str(save_path)) # Get embeddings after loading loaded_embeddings = loaded_model.encode_query(test_inputs, save_to_cpu=True) # Check if embeddings are the same before and after save/load assert sparse_allclose(original_embeddings, loaded_embeddings, atol=1e-6), "Embeddings changed after save and load" # Check if IDF weights are maintained after loading assert isinstance(loaded_model[0].query_0_IDF, IDF), "IDF component missing after loading" assert torch.allclose( model[0].query_0_IDF.weight, loaded_model[0].query_0_IDF.weight ), "IDF weights changed after save and load"
from __future__ import annotations import torch from sentence_transformers import SparseEncoder from tests.sparse_encoder.utils import sparse_allclose def test_idf_padding_ignored(inference_free_splade_bert_tiny_model: SparseEncoder): model = inference_free_splade_bert_tiny_model input_texts = ["This is a test input", "This is a considerably longer test input to check padding behavior."] # Encode the input texts batch_embeddings = model.encode_query(input_texts, save_to_cpu=True) single_embeddings = [model.encode_query(text, save_to_cpu=True) for text in input_texts] single_embeddings = torch.stack(single_embeddings) # Check that the batch embeddings match the single embeddings assert sparse_allclose( batch_embeddings, single_embeddings, atol=1e-6 ), "Batch encoding does not match single encoding."
""" PostgresML index. An index that is built on top of PostgresML. """ import logging from typing import Any, List, Optional, Dict from llama_index.core.async_utils import run_async_tasks from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode from llama_index.indices.managed.postgresml.base import PostgresMLIndex _logger = logging.getLogger(__name__) class PostgresMLRetriever(BaseRetriever): """ PostgresML Retriever. Args: index (PostgresMLIndex): the PostgresML Index """ def __init__( self, index: PostgresMLIndex, callback_manager: Optional[CallbackManager] = None, pgml_query: Optional[Dict[str, Any]] = None, limit: Optional[int] = 5, rerank: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: """Initialize params.""" self._index = index self._pgml_query = pgml_query self._limit = limit self._rerank = rerank super().__init__(callback_manager) def _retrieve( self, query_bundle: Optional[QueryBundle] = None, **kwargs: Any, ) -> List[NodeWithScore]: return run_async_tasks([self._aretrieve(query_bundle, **kwargs)])[0] async def _aretrieve( self, query_bundle: Optional[QueryBundle] = None, ) -> List[NodeWithScore]: async def do_vector_search(): if self._pgml_query: return await self._index.collection.vector_search( self._pgml_query, self._index.pipeline, ) else: if not query_bundle: raise Exception( "Must provide either query or query_bundle to retrieve and aretrieve" ) if self._rerank is not None: self._rerank = self._rerank | {"query": query_bundle.query_str} return await self._index.collection.vector_search( { "query": { "fields": { "content": { "query": query_bundle.query_str, "parameters": {"prompt": "query: "}, } } }, "rerank": self._rerank, "limit": self._limit, }, self._index.pipeline, ) results = await do_vector_search() return [ NodeWithScore( node=TextNode( id_=r["document"]["id"], text=r["chunk"], metadata=r["document"]["metadata"], ), score=r["score"], ) if self._rerank is None else NodeWithScore( node=TextNode( id_=r["document"]["id"], text=r["chunk"], metadata=r["document"]["metadata"], ), score=r["rerank_score"], ) for r in results ]
"""PostgresML index. An index that is built on top of PostgresML. """ import logging from typing import Any, List, Optional, Dict from llama_index.core.async_utils import run_async_tasks from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode from llama_index.indices.managed.postgresml.base import PostgresMLIndex _logger = logging.getLogger(__name__) class PostgresMLRetriever(BaseRetriever): """PostgresML Retriever. Args: index (PostgresMLIndex): the PostgresML Index """ def __init__( self, index: PostgresMLIndex, callback_manager: Optional[CallbackManager] = None, pgml_query: Optional[Dict[str, Any]] = None, limit: Optional[int] = 5, rerank: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: """Initialize params.""" self._index = index self._pgml_query = pgml_query self._limit = limit self._rerank = rerank super().__init__(callback_manager) def _retrieve( self, query_bundle: Optional[QueryBundle] = None, **kwargs: Any, ) -> List[NodeWithScore]: return run_async_tasks([self._aretrieve(query_bundle, **kwargs)])[0] async def _aretrieve( self, query_bundle: Optional[QueryBundle] = None, ) -> List[NodeWithScore]: async def do_vector_search(): if self._pgml_query: return await self._index.collection.vector_search( self._pgml_query, self._index.pipeline, ) else: if not query_bundle: raise Exception( "Must provide either query or query_bundle to retrieve and aretrieve" ) if self._rerank is not None: self._rerank = self._rerank | {"query": query_bundle.query_str} return await self._index.collection.vector_search( { "query": { "fields": { "content": { "query": query_bundle.query_str, "parameters": {"prompt": "query: "}, } } }, "rerank": self._rerank, "limit": self._limit, }, self._index.pipeline, ) results = await do_vector_search() return [ NodeWithScore( node=TextNode( id_=r["document"]["id"], text=r["chunk"], metadata=r["document"]["metadata"], ), score=r["score"], ) if self._rerank is None else NodeWithScore( node=TextNode( id_=r["document"]["id"], text=r["chunk"], metadata=r["document"]["metadata"], ), score=r["rerank_score"], ) for r in results ]
import pytest from typing import Dict, List from llama_index.core.llms import ChatMessage, MessageRole, TextBlock, AudioBlock from llama_index.voice_agents.elevenlabs.utils import ( callback_agent_message, callback_agent_message_correction, callback_latency_measurement, callback_user_message, get_messages_from_chat, ) data = b"fake_audio_data" @pytest.fixture() def messages() -> Dict[int, List[ChatMessage]]: return { 1: [ ChatMessage(role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data)]), ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")]), ] } @pytest.fixture() def latencies() -> List[int]: return [1, 3] def test_agent_message(messages: Dict[int, List[ChatMessage]]): local_messages = messages.copy() callback_agent_message(messages=local_messages, message_id=1, text="Hello") assert { 1: [ ChatMessage( role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data), TextBlock(text="Hello")], ), ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")]), ] } == local_messages callback_agent_message(messages=local_messages, message_id=2, text="Hello") assert { 1: [ ChatMessage( role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data), TextBlock(text="Hello")], ), ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")]), ], 2: [ChatMessage(role=MessageRole.ASSISTANT, blocks=[TextBlock(text="Hello")])], } == local_messages callback_agent_message(messages=local_messages, message_id=2, audio=data) assert { 1: [ ChatMessage( role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data), TextBlock(text="Hello")], ), ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")]), ], 2: [ ChatMessage( role=MessageRole.ASSISTANT, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ) ], } == local_messages def test_user_message(messages: Dict[int, List[ChatMessage]]): local_messages = messages.copy() callback_user_message(messages=local_messages, message_id=1, audio=data) assert { 1: [ ChatMessage(role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data)]), ChatMessage( role=MessageRole.USER, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ), ] } == local_messages callback_user_message(messages=local_messages, message_id=2, text="Hello") assert { 1: [ ChatMessage(role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data)]), ChatMessage( role=MessageRole.USER, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ), ], 2: [ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")])], } == local_messages callback_user_message(messages=local_messages, message_id=2, audio=data) assert { 1: [ ChatMessage(role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data)]), ChatMessage( role=MessageRole.USER, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ), ], 2: [ ChatMessage( role=MessageRole.USER, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ) ], } == local_messages def test_agent_message_correction(messages: Dict[int, List[ChatMessage]]): local_messages = messages.copy() local_messages[1][0].blocks.append(TextBlock(text="Hell")) callback_agent_message_correction( messages=local_messages, message_id=1, text="Hello" ) assert local_messages[1][0].blocks[1].text == "Hello" def test_latencies(latencies: List[int]): local_lats = latencies.copy() callback_latency_measurement(local_lats, 3) callback_latency_measurement(local_lats, 9) assert local_lats == [*latencies, 3, 9] def test_get_messages_from_chat(messages: Dict[int, List[ChatMessage]]) -> None: assert get_messages_from_chat(messages) == messages[1]
import pytest from typing import Dict, List from llama_index.core.llms import ChatMessage, MessageRole, TextBlock, AudioBlock from llama_index.voice_agents.elevenlabs.utils import ( callback_agent_message, callback_agent_message_correction, callback_latency_measurement, callback_user_message, ) data = b"fake_audio_data" @pytest.fixture() def messages() -> Dict[int, List[ChatMessage]]: return { 1: [ ChatMessage(role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data)]), ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")]), ] } @pytest.fixture() def latencies() -> List[int]: return [1, 3] def test_agent_message(messages: Dict[int, List[ChatMessage]]): local_messages = messages.copy() callback_agent_message(messages=local_messages, message_id=1, text="Hello") assert { 1: [ ChatMessage( role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data), TextBlock(text="Hello")], ), ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")]), ] } == local_messages callback_agent_message(messages=local_messages, message_id=2, text="Hello") assert { 1: [ ChatMessage( role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data), TextBlock(text="Hello")], ), ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")]), ], 2: [ChatMessage(role=MessageRole.ASSISTANT, blocks=[TextBlock(text="Hello")])], } == local_messages callback_agent_message(messages=local_messages, message_id=2, audio=data) assert { 1: [ ChatMessage( role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data), TextBlock(text="Hello")], ), ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")]), ], 2: [ ChatMessage( role=MessageRole.ASSISTANT, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ) ], } == local_messages def test_user_message(messages: Dict[int, List[ChatMessage]]): local_messages = messages.copy() callback_user_message(messages=local_messages, message_id=1, audio=data) assert { 1: [ ChatMessage(role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data)]), ChatMessage( role=MessageRole.USER, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ), ] } == local_messages callback_user_message(messages=local_messages, message_id=2, text="Hello") assert { 1: [ ChatMessage(role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data)]), ChatMessage( role=MessageRole.USER, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ), ], 2: [ChatMessage(role=MessageRole.USER, blocks=[TextBlock(text="Hello")])], } == local_messages callback_user_message(messages=local_messages, message_id=2, audio=data) assert { 1: [ ChatMessage(role=MessageRole.ASSISTANT, blocks=[AudioBlock(audio=data)]), ChatMessage( role=MessageRole.USER, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ), ], 2: [ ChatMessage( role=MessageRole.USER, blocks=[TextBlock(text="Hello"), AudioBlock(audio=data)], ) ], } == local_messages def test_agent_message_correction(messages: Dict[int, List[ChatMessage]]): local_messages = messages.copy() local_messages[1][0].blocks.append(TextBlock(text="Hell")) callback_agent_message_correction( messages=local_messages, message_id=1, text="Hello" ) assert local_messages[1][0].blocks[1].text == "Hello" def test_latencies(latencies: List[int]): local_lats = latencies.copy() callback_latency_measurement(local_lats, 3) callback_latency_measurement(local_lats, 9) assert local_lats == [*latencies, 3, 9]
from typing import Dict, Type from llama_index.core.node_parser.file.html import HTMLNodeParser from llama_index.core.node_parser.file.json import JSONNodeParser from llama_index.core.node_parser.file.markdown import MarkdownNodeParser from llama_index.core.node_parser.file.simple_file import SimpleFileNodeParser from llama_index.core.node_parser.interface import NodeParser from llama_index.core.node_parser.relational.hierarchical import ( HierarchicalNodeParser, ) from llama_index.core.node_parser.text.code import CodeSplitter from llama_index.core.node_parser.text.sentence import SentenceSplitter from llama_index.core.node_parser.text.sentence_window import ( SentenceWindowNodeParser, ) from llama_index.core.node_parser.text.token import TokenTextSplitter all_node_parsers: Dict[str, Type[NodeParser]] = { HTMLNodeParser.class_name(): HTMLNodeParser, JSONNodeParser.class_name(): JSONNodeParser, MarkdownNodeParser.class_name(): MarkdownNodeParser, SimpleFileNodeParser.class_name(): SimpleFileNodeParser, HierarchicalNodeParser.class_name(): HierarchicalNodeParser, CodeSplitter.class_name(): CodeSplitter, SentenceSplitter.class_name(): SentenceSplitter, TokenTextSplitter.class_name(): TokenTextSplitter, SentenceWindowNodeParser.class_name(): SentenceWindowNodeParser, } def load_parser( data: dict, ) -> NodeParser: if isinstance(data, NodeParser): return data parser_name = data.get("class_name") if parser_name is None: raise ValueError("Parser loading requires a class_name") if parser_name not in all_node_parsers: raise ValueError(f"Invalid parser name: {parser_name}") else: return all_node_parsers[parser_name].from_dict(data)
from typing import Dict, Type from llama_index.core.node_parser.file.html import HTMLNodeParser from llama_index.core.node_parser.file.json import JSONNodeParser from llama_index.core.node_parser.file.markdown import MarkdownNodeParser from llama_index.core.node_parser.file.simple_file import SimpleFileNodeParser from llama_index.core.node_parser.interface import NodeParser from llama_index.core.node_parser.relational.hierarchical import ( HierarchicalNodeParser, ) from llama_index.core.node_parser.text.code import CodeSplitter from llama_index.core.node_parser.text.sentence import SentenceSplitter from llama_index.core.node_parser.text.sentence_window import ( SentenceWindowNodeParser, ) from llama_index.core.node_parser.text.token import TokenTextSplitter all_node_parsers: Dict[str, Type[NodeParser]] = { HTMLNodeParser.class_name(): HTMLNodeParser, JSONNodeParser.class_name(): JSONNodeParser, MarkdownNodeParser.class_name(): MarkdownNodeParser, SimpleFileNodeParser.class_name(): SimpleFileNodeParser, HierarchicalNodeParser.class_name(): HierarchicalNodeParser, CodeSplitter.class_name(): CodeSplitter, SentenceSplitter.class_name(): SentenceSplitter, TokenTextSplitter.class_name(): TokenTextSplitter, SentenceWindowNodeParser.class_name(): SentenceWindowNodeParser, } def load_parser( data: dict, ) -> NodeParser: if isinstance(data, NodeParser): return data parser_name = data.get("class_name", None) if parser_name is None: raise ValueError("Parser loading requires a class_name") if parser_name not in all_node_parsers: raise ValueError(f"Invalid parser name: {parser_name}") else: return all_node_parsers[parser_name].from_dict(data)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil import time from unittest import TestCase from unittest.mock import Mock import torch from mmengine.structures import InstanceData from mmdet.engine.hooks import DetVisualizationHook from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w) tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h) br_x = ((cx * w) + (w * bw / 2)).clamp(0, w) br_y = ((cy * h) + (h * bh / 2)).clamp(0, h) bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=0).T return bboxes class TestVisualizationHook(TestCase): def setUp(self) -> None: DetLocalVisualizer.get_instance('current_visualizer') pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(5, 10, 12) pred_instances.labels = torch.randint(0, 2, (5, )) pred_instances.scores = torch.rand((5, )) pred_det_data_sample = DetDataSample() pred_det_data_sample.set_metainfo({ 'img_path': osp.join(osp.dirname(__file__), '../../data/color.jpg') }) pred_det_data_sample.pred_instances = pred_instances self.outputs = [pred_det_data_sample] * 2 def test_after_val_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook() hook.after_val_iter(runner, 1, {}, self.outputs) def test_after_test_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook(draw=True) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertEqual(hook._test_index, 2) # test timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) test_out_dir = timestamp + '1' runner.work_dir = timestamp runner.timestamp = '1' hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}')) hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}')) shutil.rmtree(f'{timestamp}')
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil import time from unittest import TestCase from unittest.mock import Mock import torch from mmengine.structures import InstanceData from mmdet.engine.hooks import DetVisualizationHook from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w) tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h) br_x = ((cx * w) + (w * bw / 2)).clamp(0, w) br_y = ((cy * h) + (h * bh / 2)).clamp(0, h) bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=0).T return bboxes class TestVisualizationHook(TestCase): def setUp(self) -> None: DetLocalVisualizer.get_instance('visualizer') pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(5, 10, 12) pred_instances.labels = torch.randint(0, 2, (5, )) pred_instances.scores = torch.rand((5, )) pred_det_data_sample = DetDataSample() pred_det_data_sample.set_metainfo({ 'img_path': osp.join(osp.dirname(__file__), '../../data/color.jpg') }) pred_det_data_sample.pred_instances = pred_instances self.outputs = [pred_det_data_sample] * 2 def test_after_val_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook() hook.after_val_iter(runner, 1, {}, self.outputs) def test_after_test_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook(draw=True) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertEqual(hook._test_index, 2) # test timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) test_out_dir = timestamp + '1' runner.work_dir = timestamp runner.timestamp = '1' hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}')) hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}')) shutil.rmtree(f'{timestamp}')
from datetime import datetime import pytest from autogpt_libs.supabase_integration_credentials_store.store import openai_credentials from prisma.models import UserBlockCredit from backend.blocks.llm import AITextGeneratorBlock from backend.data.credit import UserCredit from backend.data.user import DEFAULT_USER_ID from backend.util.test import SpinTestServer REFILL_VALUE = 1000 user_credit = UserCredit(REFILL_VALUE) @pytest.mark.asyncio(scope="session") async def test_block_credit_usage(server: SpinTestServer): current_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) spending_amount_1 = await user_credit.spend_credits( DEFAULT_USER_ID, current_credit, AITextGeneratorBlock().id, { "model": "gpt-4-turbo", "credentials": { "id": openai_credentials.id, "provider": openai_credentials.provider, "type": openai_credentials.type, }, }, 0.0, 0.0, validate_balance=False, ) assert spending_amount_1 > 0 spending_amount_2 = await user_credit.spend_credits( DEFAULT_USER_ID, current_credit, AITextGeneratorBlock().id, {"model": "gpt-4-turbo", "api_key": "owned_api_key"}, 0.0, 0.0, validate_balance=False, ) assert spending_amount_2 == 0 new_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert new_credit == current_credit - spending_amount_1 - spending_amount_2 @pytest.mark.asyncio(scope="session") async def test_block_credit_top_up(server: SpinTestServer): current_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) await user_credit.top_up_credits(DEFAULT_USER_ID, 100) new_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert new_credit == current_credit + 100 @pytest.mark.asyncio(scope="session") async def test_block_credit_reset(server: SpinTestServer): month1 = datetime(2022, 1, 15) month2 = datetime(2022, 2, 15) user_credit.time_now = lambda: month2 month2credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) # Month 1 result should only affect month 1 user_credit.time_now = lambda: month1 month1credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) await user_credit.top_up_credits(DEFAULT_USER_ID, 100) assert await user_credit.get_or_refill_credit(DEFAULT_USER_ID) == month1credit + 100 # Month 2 balance is unaffected user_credit.time_now = lambda: month2 assert await user_credit.get_or_refill_credit(DEFAULT_USER_ID) == month2credit @pytest.mark.asyncio(scope="session") async def test_credit_refill(server: SpinTestServer): # Clear all transactions within the month await UserBlockCredit.prisma().update_many( where={ "userId": DEFAULT_USER_ID, "createdAt": { "gte": datetime(2022, 2, 1), "lt": datetime(2022, 3, 1), }, }, data={"isActive": False}, ) user_credit.time_now = lambda: datetime(2022, 2, 15) balance = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert balance == REFILL_VALUE
from datetime import datetime import pytest from prisma.models import UserBlockCredit from backend.blocks.llm import AITextGeneratorBlock from backend.data.credit import UserCredit from backend.data.user import DEFAULT_USER_ID from backend.util.test import SpinTestServer REFILL_VALUE = 1000 user_credit = UserCredit(REFILL_VALUE) @pytest.mark.asyncio(scope="session") async def test_block_credit_usage(server: SpinTestServer): current_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) spending_amount_1 = await user_credit.spend_credits( DEFAULT_USER_ID, current_credit, AITextGeneratorBlock().id, {"model": "gpt-4-turbo"}, 0.0, 0.0, validate_balance=False, ) assert spending_amount_1 > 0 spending_amount_2 = await user_credit.spend_credits( DEFAULT_USER_ID, current_credit, AITextGeneratorBlock().id, {"model": "gpt-4-turbo", "api_key": "owned_api_key"}, 0.0, 0.0, validate_balance=False, ) assert spending_amount_2 == 0 new_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert new_credit == current_credit - spending_amount_1 - spending_amount_2 @pytest.mark.asyncio(scope="session") async def test_block_credit_top_up(server: SpinTestServer): current_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) await user_credit.top_up_credits(DEFAULT_USER_ID, 100) new_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert new_credit == current_credit + 100 @pytest.mark.asyncio(scope="session") async def test_block_credit_reset(server: SpinTestServer): month1 = datetime(2022, 1, 15) month2 = datetime(2022, 2, 15) user_credit.time_now = lambda: month2 month2credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) # Month 1 result should only affect month 1 user_credit.time_now = lambda: month1 month1credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) await user_credit.top_up_credits(DEFAULT_USER_ID, 100) assert await user_credit.get_or_refill_credit(DEFAULT_USER_ID) == month1credit + 100 # Month 2 balance is unaffected user_credit.time_now = lambda: month2 assert await user_credit.get_or_refill_credit(DEFAULT_USER_ID) == month2credit @pytest.mark.asyncio(scope="session") async def test_credit_refill(server: SpinTestServer): # Clear all transactions within the month await UserBlockCredit.prisma().update_many( where={ "userId": DEFAULT_USER_ID, "createdAt": { "gte": datetime(2022, 2, 1), "lt": datetime(2022, 3, 1), }, }, data={"isActive": False}, ) user_credit.time_now = lambda: datetime(2022, 2, 15) balance = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert balance == REFILL_VALUE
from typing import Any import pytest from langchain_tests.conftest import CustomPersister, CustomSerializer from langchain_tests.conftest import _base_vcr_config as _base_vcr_config from vcr import VCR # type: ignore[import-untyped] def remove_request_headers(request: Any) -> Any: for k in request.headers: request.headers[k] = "**REDACTED**" return request def remove_response_headers(response: dict) -> dict: for k in response["headers"]: response["headers"][k] = "**REDACTED**" return response @pytest.fixture(scope="session") def vcr_config(_base_vcr_config: dict) -> dict: # noqa: F811 """Extend the default configuration coming from langchain_tests.""" config = _base_vcr_config.copy() config["before_record_request"] = remove_request_headers config["before_record_response"] = remove_response_headers config["serializer"] = "yaml.gz" config["path_transformer"] = VCR.ensure_suffix(".yaml.gz") return config def pytest_recording_configure(config: dict, vcr: VCR) -> None: vcr.register_persister(CustomPersister()) vcr.register_serializer("yaml.gz", CustomSerializer())
from typing import Any import pytest from langchain_tests.conftest import CustomPersister, CustomSerializer from langchain_tests.conftest import _base_vcr_config as _base_vcr_config from vcr import VCR # type: ignore[import-untyped] def remove_request_headers(request: Any) -> Any: for k in request.headers: request.headers[k] = "**REDACTED**" return request def remove_response_headers(response: dict) -> dict: for k in response["headers"]: response["headers"][k] = "**REDACTED**" return response @pytest.fixture(scope="session") def vcr_config(_base_vcr_config: dict) -> dict: # noqa: F811 """ Extend the default configuration coming from langchain_tests. """ config = _base_vcr_config.copy() config["before_record_request"] = remove_request_headers config["before_record_response"] = remove_response_headers config["serializer"] = "yaml.gz" config["path_transformer"] = VCR.ensure_suffix(".yaml.gz") return config def pytest_recording_configure(config: dict, vcr: VCR) -> None: vcr.register_persister(CustomPersister()) vcr.register_serializer("yaml.gz", CustomSerializer())
from typing import TYPE_CHECKING from .compass import CompassWebhookManager from .github import GithubWebhooksManager from .slant3d import Slant3DWebhooksManager if TYPE_CHECKING: from ..providers import ProviderName from ._base import BaseWebhooksManager # --8<-- [start:WEBHOOK_MANAGERS_BY_NAME] WEBHOOK_MANAGERS_BY_NAME: dict["ProviderName", type["BaseWebhooksManager"]] = { handler.PROVIDER_NAME: handler for handler in [ CompassWebhookManager, GithubWebhooksManager, Slant3DWebhooksManager, ] } # --8<-- [end:WEBHOOK_MANAGERS_BY_NAME] __all__ = ["WEBHOOK_MANAGERS_BY_NAME"]
from typing import TYPE_CHECKING from .github import GithubWebhooksManager from .slant3d import Slant3DWebhooksManager if TYPE_CHECKING: from ..providers import ProviderName from .base import BaseWebhooksManager # --8<-- [start:WEBHOOK_MANAGERS_BY_NAME] WEBHOOK_MANAGERS_BY_NAME: dict["ProviderName", type["BaseWebhooksManager"]] = { handler.PROVIDER_NAME: handler for handler in [ GithubWebhooksManager, Slant3DWebhooksManager, ] } # --8<-- [end:WEBHOOK_MANAGERS_BY_NAME] __all__ = ["WEBHOOK_MANAGERS_BY_NAME"]
""" This script downloads the WikiMatrix corpus (https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix) and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The WikiMatrix mined parallel sentences from Wikipedia in various languages. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import os import sentence_transformers.util import gzip source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to num_dev_sentences = 1000 # Number of sentences we want to use for development threshold = 1.075 # Only use sentences with a LASER similarity score above the threshold download_url = "https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/" download_folder = "../datasets/WikiMatrix/" parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(download_folder), exist_ok=True) os.makedirs(parallel_sentences_folder, exist_ok=True) for source_lang in source_languages: for target_lang in target_languages: filename_train = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-train.tsv.gz".format(source_lang, target_lang) ) filename_dev = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-dev.tsv.gz".format(source_lang, target_lang) ) if not os.path.exists(filename_train) and not os.path.exists(filename_dev): langs_ordered = sorted([source_lang, target_lang]) wikimatrix_filename = "WikiMatrix.{}-{}.tsv.gz".format(*langs_ordered) wikimatrix_filepath = os.path.join(download_folder, wikimatrix_filename) if not os.path.exists(wikimatrix_filepath): print("Download", download_url + wikimatrix_filename) try: sentence_transformers.util.http_get(download_url + wikimatrix_filename, wikimatrix_filepath) except Exception: print("Was not able to download", download_url + wikimatrix_filename) continue if not os.path.exists(wikimatrix_filepath): continue train_sentences = [] dev_sentences = [] dev_sentences_set = set() extract_dev_sentences = True with gzip.open(wikimatrix_filepath, "rt", encoding="utf8") as fIn: for line in fIn: score, sent1, sent2 = line.strip().split("\t") sent1 = sent1.strip() sent2 = sent2.strip() score = float(score) if score < threshold: break if sent1 == sent2: continue if langs_ordered.index(source_lang) == 1: # Swap, so that src lang is sent1 sent1, sent2 = sent2, sent1 # Avoid duplicates in development set if sent1 in dev_sentences_set or sent2 in dev_sentences_set: continue if extract_dev_sentences: dev_sentences.append([sent1, sent2]) dev_sentences_set.add(sent1) dev_sentences_set.add(sent2) if len(dev_sentences) >= num_dev_sentences: extract_dev_sentences = False else: train_sentences.append([sent1, sent2]) print("Write", len(dev_sentences), "dev sentences", filename_dev) with gzip.open(filename_dev, "wt", encoding="utf8") as fOut: for sents in dev_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("Write", len(train_sentences), "train sentences", filename_train) with gzip.open(filename_train, "wt", encoding="utf8") as fOut: for sents in train_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("---DONE---")
""" This script downloads the WikiMatrix corpus (https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix) and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The WikiMatrix mined parallel sentences from Wikipedia in various languages. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import os import sentence_transformers.util import gzip source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to num_dev_sentences = 1000 # Number of sentences we want to use for development threshold = 1.075 # Only use sentences with a LASER similarity score above the threshold download_url = "https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/" download_folder = "../datasets/WikiMatrix/" parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(download_folder), exist_ok=True) os.makedirs(parallel_sentences_folder, exist_ok=True) for source_lang in source_languages: for target_lang in target_languages: filename_train = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-train.tsv.gz".format(source_lang, target_lang) ) filename_dev = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-dev.tsv.gz".format(source_lang, target_lang) ) if not os.path.exists(filename_train) and not os.path.exists(filename_dev): langs_ordered = sorted([source_lang, target_lang]) wikimatrix_filename = "WikiMatrix.{}-{}.tsv.gz".format(*langs_ordered) wikimatrix_filepath = os.path.join(download_folder, wikimatrix_filename) if not os.path.exists(wikimatrix_filepath): print("Download", download_url + wikimatrix_filename) try: sentence_transformers.util.http_get(download_url + wikimatrix_filename, wikimatrix_filepath) except Exception: print("Was not able to download", download_url + wikimatrix_filename) continue if not os.path.exists(wikimatrix_filepath): continue train_sentences = [] dev_sentences = [] dev_sentences_set = set() extract_dev_sentences = True with gzip.open(wikimatrix_filepath, "rt", encoding="utf8") as fIn: for line in fIn: score, sent1, sent2 = line.strip().split("\t") sent1 = sent1.strip() sent2 = sent2.strip() score = float(score) if score < threshold: break if sent1 == sent2: continue if langs_ordered.index(source_lang) == 1: # Swap, so that src lang is sent1 sent1, sent2 = sent2, sent1 # Avoid duplicates in development set if sent1 in dev_sentences_set or sent2 in dev_sentences_set: continue if extract_dev_sentences: dev_sentences.append([sent1, sent2]) dev_sentences_set.add(sent1) dev_sentences_set.add(sent2) if len(dev_sentences) >= num_dev_sentences: extract_dev_sentences = False else: train_sentences.append([sent1, sent2]) print("Write", len(dev_sentences), "dev sentences", filename_dev) with gzip.open(filename_dev, "wt", encoding="utf8") as fOut: for sents in dev_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("Write", len(train_sentences), "train sentences", filename_train) with gzip.open(filename_train, "wt", encoding="utf8") as fOut: for sents in train_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("---DONE---")
""" Wrapper script to run a command inside a Docker container """ import argparse import grp import itertools import os import pathlib import pwd import subprocess import sys import textwrap OPS_DIR = pathlib.Path(__file__).expanduser().resolve().parent PROJECT_ROOT_DIR = OPS_DIR.parent LINEWIDTH = 88 TEXT_WRAPPER = textwrap.TextWrapper( width=LINEWIDTH, initial_indent="", subsequent_indent=" ", break_long_words=False, break_on_hyphens=False, ) def parse_run_args(*, raw_run_args: str) -> list[str]: return [x for x in raw_run_args.split() if x] def get_user_ids() -> dict[str, str]: uid = os.getuid() gid = os.getgid() return { "CI_BUILD_UID": str(uid), "CI_BUILD_USER": pwd.getpwuid(uid).pw_name, "CI_BUILD_GID": str(gid), "CI_BUILD_GROUP": grp.getgrgid(gid).gr_name, } def fancy_print_cli_args(*, cli_args: list[str]) -> None: print( "=" * LINEWIDTH + "\n" + " \\\n".join(TEXT_WRAPPER.wrap(" ".join(cli_args))) + "\n" + "=" * LINEWIDTH + "\n", flush=True, ) def docker_run( *, container_tag: str, command_args: list[str], use_gpus: bool, workdir: pathlib.Path, user_ids: dict[str, str], extra_args: list[str], ) -> None: # Command-line arguments to be passed to `docker run` docker_run_cli_args = ["--rm", "--pid=host"] if use_gpus: docker_run_cli_args.extend(["--gpus", "all"]) docker_run_cli_args.extend(["-v", f"{workdir}:/workspace", "-w", "/workspace"]) docker_run_cli_args.extend( itertools.chain.from_iterable([["-e", f"{k}={v}"] for k, v in user_ids.items()]) ) docker_run_cli_args.extend(extra_args) docker_run_cli_args.append(container_tag) docker_run_cli_args.extend(command_args) cli_args = ["docker", "run"] + docker_run_cli_args fancy_print_cli_args(cli_args=cli_args) subprocess.run(cli_args, check=True, encoding="utf-8") def main(*, args: argparse.Namespace) -> None: run_args = parse_run_args(raw_run_args=args.run_args) user_ids = get_user_ids() if args.use_gpus: print("Using NVIDIA GPUs for `docker run`") if args.interactive: print("Using interactive mode for `docker run`") run_args.append("-it") docker_run( container_tag=args.container_tag, command_args=args.command_args, use_gpus=args.use_gpus, workdir=args.workdir, user_ids=user_ids, extra_args=run_args, ) if __name__ == "__main__": parser = argparse.ArgumentParser( usage=( f"{sys.argv[0]} --container-tag CONTAINER_TAG [--use-gpus] [--interactive] " "[--workdir WORKDIR] [--run-args RUN_ARGS] -- COMMAND_ARG " "[COMMAND_ARG ...]" ), description="Run tasks inside a Docker container", ) parser.add_argument( "--container-tag", type=str, required=True, help=( "Container tag to identify the container, e.g. " "492475357299.dkr.ecr.us-west-2.amazonaws.com/xgb-ci.gpu:main" ), ) parser.add_argument( "--use-gpus", action="store_true", help=( "Grant the container access to NVIDIA GPUs; requires the NVIDIA " "Container Toolkit." ), ) parser.add_argument( "--interactive", action="store_true", help=( "Run the container in the interactive mode; requires an interactive shell " "(TTY). With this flag, you can use Ctrl-C to interrupt an long-running " "command." ), ) parser.add_argument( "--workdir", type=lambda p: pathlib.Path(p).expanduser().resolve(), default=PROJECT_ROOT_DIR, help="Path to working directory; if unset, use the project's root", ) parser.add_argument( "--run-args", type=str, default="", help=( "Argument(s) to be passed to `docker run`. When passing multiple " "arguments, use single quotes to wrap them. Example: " "--run-args '--cap-add SYS_PTRACE --shm-size=4g'" ), ) parser.add_argument( "command_args", metavar="COMMAND_ARG", type=str, nargs="+", help=( "Argument(s) for the command to execute. NOTE. Make sure to specify " "double-dash (--) to clearly distinguish between the command and the " "preceding parameters. Example: --run-args '--cap-add SYS_PTRACE " "--shm-size=4g' -- ./myprog" ), ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) parsed_args = parser.parse_args() main(args=parsed_args)
""" Wrapper script to run a command inside a Docker container """ import argparse import grp import itertools import os import pathlib import pwd import subprocess import sys import textwrap OPS_DIR = pathlib.Path(__file__).expanduser().resolve().parent PROJECT_ROOT_DIR = OPS_DIR.parent LINEWIDTH = 88 TEXT_WRAPPER = textwrap.TextWrapper( width=LINEWIDTH, initial_indent="", subsequent_indent=" ", break_long_words=False, break_on_hyphens=False, ) def parse_run_args(raw_run_args: str) -> list[str]: return [x for x in raw_run_args.split() if x] def get_user_ids() -> dict[str, str]: uid = os.getuid() gid = os.getgid() return { "CI_BUILD_UID": str(uid), "CI_BUILD_USER": pwd.getpwuid(uid).pw_name, "CI_BUILD_GID": str(gid), "CI_BUILD_GROUP": grp.getgrgid(gid).gr_name, } def fancy_print_cli_args(cli_args: list[str]) -> None: print( "=" * LINEWIDTH + "\n" + " \\\n".join(TEXT_WRAPPER.wrap(" ".join(cli_args))) + "\n" + "=" * LINEWIDTH + "\n", flush=True, ) def docker_run( container_id: str, command_args: list[str], *, use_gpus: bool, workdir: pathlib.Path, user_ids: dict[str, str], extra_args: list[str], ) -> None: # Command-line arguments to be passed to `docker run` docker_run_cli_args = ["--rm", "--pid=host"] if use_gpus: docker_run_cli_args.extend(["--gpus", "all"]) docker_run_cli_args.extend(["-v", f"{workdir}:/workspace", "-w", "/workspace"]) docker_run_cli_args.extend( itertools.chain.from_iterable([["-e", f"{k}={v}"] for k, v in user_ids.items()]) ) docker_run_cli_args.extend(extra_args) docker_run_cli_args.append(container_id) docker_run_cli_args.extend(command_args) cli_args = ["docker", "run"] + docker_run_cli_args fancy_print_cli_args(cli_args) subprocess.run(cli_args, check=True, encoding="utf-8") def main(args: argparse.Namespace) -> None: run_args = parse_run_args(args.run_args) user_ids = get_user_ids() if args.use_gpus: print("Using NVIDIA GPUs for `docker run`") if args.interactive: print("Using interactive mode for `docker run`") run_args.append("-it") docker_run( args.container_id, args.command_args, use_gpus=args.use_gpus, workdir=args.workdir, user_ids=user_ids, extra_args=run_args, ) if __name__ == "__main__": parser = argparse.ArgumentParser( usage=( f"{sys.argv[0]} --container-id CONTAINER_ID [--use-gpus] [--interactive] " "[--workdir WORKDIR] [--run-args RUN_ARGS] -- COMMAND_ARG " "[COMMAND_ARG ...]" ), description="Run tasks inside a Docker container", ) parser.add_argument( "--container-id", type=str, required=True, help="String ID of the container to run.", ) parser.add_argument( "--use-gpus", action="store_true", help=( "Grant the container access to NVIDIA GPUs; requires the NVIDIA " "Container Toolkit." ), ) parser.add_argument( "--interactive", action="store_true", help=( "Run the container in the interactive mode; requires an interactive shell " "(TTY). With this flag, you can use Ctrl-C to interrupt an long-running " "command." ), ) parser.add_argument( "--workdir", type=lambda p: pathlib.Path(p).expanduser().resolve(), default=PROJECT_ROOT_DIR, help="Path to working directory; if unset, use the project's root", ) parser.add_argument( "--run-args", type=str, default="", help=( "Argument(s) to be passed to `docker run`. When passing multiple " "arguments, use single quotes to wrap them. Example: " "--run-args '--cap-add SYS_PTRACE --shm-size=4g'" ), ) parser.add_argument( "command_args", metavar="COMMAND_ARG", type=str, nargs="+", help=( "Argument(s) for the command to execute. NOTE. Make sure to specify " "double-dash (--) to clearly distinguish between the command and the " "preceding parameters. Example: --run-args '--cap-add SYS_PTRACE " "--shm-size=4g' -- ./myprog" ), ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) parsed_args = parser.parse_args() main(parsed_args)
from __future__ import annotations from typing import Any, Dict, Iterator, List from urllib.parse import urlparse from langchain_core.embeddings import Embeddings from pydantic import BaseModel, PrivateAttr def _chunk(texts: List[str], size: int) -> Iterator[List[str]]: for i in range(0, len(texts), size): yield texts[i : i + size] class MlflowEmbeddings(Embeddings, BaseModel): """Embedding LLMs in MLflow. To use, you should have the `mlflow[genai]` python package installed. For more information, see https://mlflow.org/docs/latest/llms/deployments. Example: .. code-block:: python from langchain_community.embeddings import MlflowEmbeddings embeddings = MlflowEmbeddings( target_uri="http://localhost:5000", endpoint="embeddings", ) """ endpoint: str """The endpoint to use.""" target_uri: str """The target URI to use.""" _client: Any = PrivateAttr() """The parameters to use for queries.""" query_params: Dict[str, str] = {} """The parameters to use for documents.""" documents_params: Dict[str, str] = {} def __init__(self, **kwargs: Any): super().__init__(**kwargs) self._validate_uri() try: from mlflow.deployments import get_deploy_client self._client = get_deploy_client(self.target_uri) except ImportError as e: raise ImportError( "Failed to create the client. " f"Please run `pip install mlflow{self._mlflow_extras}` to install " "required dependencies." ) from e @property def _mlflow_extras(self) -> str: return "[genai]" def _validate_uri(self) -> None: if self.target_uri == "databricks": return allowed = ["http", "https", "databricks"] if urlparse(self.target_uri).scheme not in allowed: raise ValueError( f"Invalid target URI: {self.target_uri}. " f"The scheme must be one of {allowed}." ) def embed(self, texts: List[str], params: Dict[str, str]) -> List[List[float]]: embeddings: List[List[float]] = [] for txt in _chunk(texts, 20): resp = self._client.predict( endpoint=self.endpoint, inputs={"input": txt, **params}, ) embeddings.extend(r["embedding"] for r in resp["data"]) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: return self.embed(texts, params=self.documents_params) def embed_query(self, text: str) -> List[float]: return self.embed([text], params=self.query_params)[0] class MlflowCohereEmbeddings(MlflowEmbeddings): """Cohere embedding LLMs in MLflow.""" query_params: Dict[str, str] = {"input_type": "search_query"} documents_params: Dict[str, str] = {"input_type": "search_document"}
from __future__ import annotations from typing import Any, Dict, Iterator, List from urllib.parse import urlparse from langchain_core.embeddings import Embeddings from pydantic import BaseModel, PrivateAttr def _chunk(texts: List[str], size: int) -> Iterator[List[str]]: for i in range(0, len(texts), size): yield texts[i : i + size] class MlflowEmbeddings(Embeddings, BaseModel): """Embedding LLMs in MLflow. To use, you should have the `mlflow[genai]` python package installed. For more information, see https://mlflow.org/docs/latest/llms/deployments. Example: .. code-block:: python from langchain_community.embeddings import MlflowEmbeddings embeddings = MlflowEmbeddings( target_uri="http://localhost:5000", endpoint="embeddings", ) """ endpoint: str """The endpoint to use.""" target_uri: str """The target URI to use.""" _client: Any = PrivateAttr() """The parameters to use for queries.""" query_params: Dict[str, str] = {} """The parameters to use for documents.""" documents_params: Dict[str, str] = {} def __init__(self, **kwargs: Any): super().__init__(**kwargs) self._validate_uri() try: from mlflow.deployments import get_deploy_client self._client = get_deploy_client(self.target_uri) except ImportError as e: raise ImportError( "Failed to create the client. " f"Please run `pip install mlflow{self._mlflow_extras}` to install " "required dependencies." ) from e @property def _mlflow_extras(self) -> str: return "[genai]" def _validate_uri(self) -> None: if self.target_uri == "databricks": return allowed = ["http", "https", "databricks"] if urlparse(self.target_uri).scheme not in allowed: raise ValueError( f"Invalid target URI: {self.target_uri}. " f"The scheme must be one of {allowed}." ) def embed(self, texts: List[str], params: Dict[str, str]) -> List[List[float]]: embeddings: List[List[float]] = [] for txt in _chunk(texts, 20): resp = self._client.predict( endpoint=self.endpoint, inputs={"input": txt, **params}, # type: ignore[arg-type] ) embeddings.extend(r["embedding"] for r in resp["data"]) return embeddings def embed_documents(self, texts: List[str]) -> List[List[float]]: return self.embed(texts, params=self.documents_params) def embed_query(self, text: str) -> List[float]: return self.embed([text], params=self.query_params)[0] class MlflowCohereEmbeddings(MlflowEmbeddings): """Cohere embedding LLMs in MLflow.""" query_params: Dict[str, str] = {"input_type": "search_query"} documents_params: Dict[str, str] = {"input_type": "search_document"}
import json from typing import Dict import pytest from jina.orchestrate.deployments.config.k8slib.kubernetes_tools import get_yaml @pytest.mark.parametrize( ['template', 'params'], [ ('namespace', {'name': 'test-ns'}), ('service', {'name': 'test-svc'}), ('deployment-executor', {'name': 'test-dep'}), ( 'configmap', { 'name': 'test-configmap-executor', 'namespace': 'test-configmap', 'data': {'k1': 'v1', 'k2': 'v2'}, }, ), ], ) def test_get(template: str, params: Dict): config = get_yaml(template=template, params=params) for v in params.values(): if isinstance(v, str): assert v in json.dumps(config) elif isinstance(v, dict): for sub_key, sub_v in v.items(): assert config['data'][sub_key] == sub_v @pytest.mark.parametrize('template', ['deployment-executor']) def test_get_deployment_with_device_plugin(template, monkeypatch): params = { 'name': 'test-name', 'namespace': 'test-namespace', 'image': 'test-image', 'replicas': 1, 'command': 'test-command', 'args': 'test-args', 'port': 1234, 'port_out': 1234, 'port_ctrl': 1234, 'pull_policy': 1234, 'device_plugins': {'hardware-vendor.example/foo': 2, 'nvidia.com/gpu:': 3}, } config = get_yaml(template, params) assert config['spec']['template']['spec']['containers'][0]['resources'] == { 'limits': {'hardware-vendor.example/foo': 2, 'nvidia.com/gpu:': 3} }
import json from typing import Dict import pytest from jina.orchestrate.deployments.config.k8slib.kubernetes_tools import get_yaml @pytest.mark.parametrize( ['template', 'params'], [ ('namespace', {'name': 'test-ns'}), ('service', {'name': 'test-svc'}), ('deployment', {'name': 'test-dep'}), ( 'configmap', { 'name': 'test-configmap-executor', 'namespace': 'test-configmap', 'data': {'k1': 'v1', 'k2': 'v2'}, }, ), ], ) def test_get(template: str, params: Dict): config = get_yaml(template=template, params=params) for v in params.values(): if isinstance(v, str): assert v in json.dumps(config) elif isinstance(v, dict): for sub_key, sub_v in v.items(): assert config['data'][sub_key] == sub_v @pytest.mark.parametrize('template', ['deployment']) def test_get_deployment_with_device_plugin(template, monkeypatch): params = { 'name': 'test-name', 'namespace': 'test-namespace', 'image': 'test-image', 'replicas': 1, 'command': 'test-command', 'args': 'test-args', 'port': 1234, 'port': 1234, 'port_out': 1234, 'port_ctrl': 1234, 'pull_policy': 1234, 'device_plugins': {'hardware-vendor.example/foo': 2, 'nvidia.com/gpu:': 3}, } config = get_yaml(template, params) assert config['spec']['template']['spec']['containers'][0]['resources'] == { 'limits': {'hardware-vendor.example/foo': 2, 'nvidia.com/gpu:': 3} }
from sentence_transformers import SentenceTransformer from . import SentenceEvaluator from typing import Dict, Iterable class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): """ Initializes a SequentialEvaluator object. Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluation, "primary_metric"): scores.append(evaluation[evaluation.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from sentence_transformers import SentenceTransformer from . import SentenceEvaluator from typing import Dict, Iterable class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluation, "primary_metric"): scores.append(evaluation[evaluation.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDocument): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) doc_2.video_tensor.save(file_path='file_2.mp4') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDocument): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.wav') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load()) doc_2.video_tensor.save(file_path='file_2.wav') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.utilities.opaqueprompts import desanitize, sanitize # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "sanitize": "langchain_community.utilities.opaqueprompts", "desanitize": "langchain_community.utilities.opaqueprompts", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "desanitize", "sanitize", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.utilities.opaqueprompts import desanitize, sanitize # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "sanitize": "langchain_community.utilities.opaqueprompts", "desanitize": "langchain_community.utilities.opaqueprompts", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "sanitize", "desanitize", ]
# Copyright (c) OpenMMLab. All rights reserved. import ast import os.path as osp import re import warnings from typing import Tuple from mmengine.fileio import load from mmengine.utils import check_file_exist PKG2PROJECT = { 'mmcls': 'mmcls', 'mmdet': 'mmdet', 'mmdet3d': 'mmdet3d', 'mmseg': 'mmsegmentation', 'mmaction2': 'mmaction2', 'mmtrack': 'mmtrack', 'mmpose': 'mmpose', 'mmedit': 'mmedit', 'mmocr': 'mmocr', 'mmgen': 'mmgen', 'mmfewshot': 'mmfewshot', 'mmrazor': 'mmrazor', 'mmflow': 'mmflow', 'mmhuman3d': 'mmhuman3d', 'mmrotate': 'mmrotate', 'mmselfsup': 'mmselfsup', } def _get_cfg_metainfo(package_path: str, cfg_path: str) -> dict: """Get target meta information from all 'metafile.yml' defined in `mode- index.yml` of external package. Args: package_path (str): Path of external package. cfg_path (str): Name of experiment config. Returns: dict: Meta information of target experiment. """ meta_index_path = osp.join(package_path, '.mim', 'model-index.yml') meta_index = load(meta_index_path) cfg_dict = dict() for meta_path in meta_index['Import']: meta_path = osp.join(package_path, '.mim', meta_path) cfg_meta = load(meta_path) for model_cfg in cfg_meta['Models']: if 'Config' not in model_cfg: warnings.warn(f'There is not `Config` define in {model_cfg}') continue cfg_name = model_cfg['Config'].partition('/')[-1] # Some config could have multiple weights, we only pick the # first one. if cfg_name in cfg_dict: continue cfg_dict[cfg_name] = model_cfg if cfg_path not in cfg_dict: raise ValueError(f'Expected configs: {cfg_dict.keys()}, but got ' f'{cfg_path}') return cfg_dict[cfg_path] def _get_external_cfg_path(package_path: str, cfg_file: str) -> str: """Get config path of external package. Args: package_path (str): Path of external package. cfg_file (str): Name of experiment config. Returns: str: Absolute config path from external package. """ cfg_file = cfg_file.split('.')[0] model_cfg = _get_cfg_metainfo(package_path, cfg_file) cfg_path = osp.join(package_path, model_cfg['Config']) check_file_exist(cfg_path) return cfg_path def _get_external_cfg_base_path(package_path: str, cfg_name: str) -> str: """Get base config path of external package. Args: package_path (str): Path of external package. cfg_name (str): External relative config path with 'package::'. Returns: str: Absolute config path from external package. """ cfg_path = osp.join(package_path, '.mim', 'configs', cfg_name) check_file_exist(cfg_path) return cfg_path def _get_package_and_cfg_path(cfg_path: str) -> Tuple[str, str]: """Get package name and relative config path. Args: cfg_path (str): External relative config path with 'package::'. Returns: Tuple[str, str]: Package name and config path. """ if re.match(r'\w*::\w*/\w*', cfg_path) is None: raise ValueError( '`_get_package_and_cfg_path` is used for get external package, ' 'please specify the package name and relative config path, just ' 'like `mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py`') package_cfg = cfg_path.split('::') if len(package_cfg) > 2: raise ValueError('`::` should only be used to separate package and ' 'config name, but found multiple `::` in ' f'{cfg_path}') package, cfg_path = package_cfg assert package in PKG2PROJECT, 'mmengine does not support to load ' \ f'{package} config.' package = PKG2PROJECT[package] return package, cfg_path class RemoveAssignFromAST(ast.NodeTransformer): """Remove Assign node if the target's name match the key. Args: key (str): The target name of the Assign node. """ def __init__(self, key): self.key = key def visit_Assign(self, node): if (isinstance(node.targets[0], ast.Name) and node.targets[0].id == self.key): return None else: return node
# Copyright (c) OpenMMLab. All rights reserved. import ast import os.path as osp import re import warnings from typing import Tuple from mmengine.fileio import load from mmengine.utils import check_file_exist PKG2PROJECT = { 'mmcls': 'mmcls', 'mmdet': 'mmdet', 'mmdet3d': 'mmdet3d', 'mmseg': 'mmsegmentation', 'mmaction2': 'mmaction2', 'mmtrack': 'mmtrack', 'mmpose': 'mmpose', 'mmedit': 'mmedit', 'mmocr': 'mmocr', 'mmgen': 'mmgen', 'mmfewshot': 'mmfewshot', 'mmrazor': 'mmrazor', 'mmflow': 'mmflow', 'mmhuman3d': 'mmhuman3d', 'mmrotate': 'mmrotate', 'mmselfsup': 'mmselfsup', } def _get_cfg_metainfo(package_path: str, cfg_path: str) -> dict: """Get target meta information from all 'metafile.yml' defined in `mode- index.yml` of external package. Args: package_path (str): Path of external package. cfg_path (str): Name of experiment config. Returns: dict: Meta information of target experiment. """ meta_index_path = osp.join(package_path, '.mim', 'model-index.yml') meta_index = load(meta_index_path) cfg_dict = dict() for meta_path in meta_index['Import']: meta_path = osp.join(package_path, '.mim', meta_path) cfg_meta = load(meta_path) for model_cfg in cfg_meta['Models']: if 'Config' not in model_cfg: warnings.warn(f'There is not `Config` define in {model_cfg}') continue cfg_name = model_cfg['Config'].partition('/')[-1] # Some config could have multiple weights, we only pick the # first one. if cfg_name in cfg_dict: continue cfg_dict[cfg_name] = model_cfg if cfg_path not in cfg_dict: raise ValueError(f'Expected configs: {cfg_dict.keys()}, but got ' f'{cfg_path}') return cfg_dict[cfg_path] def _get_external_cfg_path(package_path: str, cfg_file: str) -> str: """Get config path of external package. Args: package_path (str): Path of external package. cfg_file (str): Name of experiment config. Returns: str: Absolute config path from external package. """ cfg_file = cfg_file.split('.')[0] model_cfg = _get_cfg_metainfo(package_path, cfg_file) cfg_path = osp.join(package_path, model_cfg['Config']) check_file_exist(cfg_path) return cfg_path def _get_external_cfg_base_path(package_path: str, cfg_name: str) -> str: """Get base config path of external package. Args: package_path (str): Path of external package. cfg_name (str): External relative config path with 'package::'. Returns: str: Absolute config path from external package. """ cfg_path = osp.join(package_path, '.mim', 'configs', cfg_name) check_file_exist(cfg_path) return cfg_path def _get_package_and_cfg_path(cfg_path: str) -> Tuple[str, str]: """Get package name and relative config path. Args: cfg_path (str): External relative config path with 'package::'. Returns: Tuple[str, str]: Package name and config path. """ if re.match(r'\w*::\w*/\w*', cfg_path) is None: raise ValueError( '`_get_package_and_cfg_path` is used for get external package, ' 'please specify the package name and relative config path, just ' 'like `mmdet::faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py`') package_cfg = cfg_path.split('::') if len(package_cfg) > 2: raise ValueError('`::` should only be used to separate package and ' 'config name, but found multiple `::` in ' f'{cfg_path}') package, cfg_path = package_cfg assert package in PKG2PROJECT, 'mmengine does not support to load ' \ f'{package} config.' package = PKG2PROJECT[package] return package, cfg_path class RemoveAssignFromAST(ast.NodeTransformer): """Remove Assign node if the target's name match the key. Args: key (str): The target name of the Assign node. """ def __init__(self, key): self.key = key def visit_Assign(self, node): if (isinstance(node.targets[0], ast.Name) and node.targets[0].id == self.key): return None else: return node
from llama_index.core import Document import asyncio import pytest from llama_index.graph_rag.cognee import CogneeGraphRAG @pytest.mark.asyncio() async def test_add_data(monkeypatch): # Instantiate cognee GraphRAG cogneeGraphRAG = CogneeGraphRAG( llm_api_key="", llm_provider="openai", llm_model="gpt-4o-mini", graph_db_provider="networkx", vector_db_provider="lancedb", relational_db_provider="sqlite", relational_db_name="cognee_db", ) async def mock_add_return(add, dataset_name): return True import cognee monkeypatch.setattr(cognee, "add", mock_add_return) # Gather documents to add to GraphRAG documents = [ Document( text="Jessica Miller, Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams." ), Document( text="David Thompson, Creative Graphic Designer with over 8 years of experience in visual design and branding." ), ] await cogneeGraphRAG.add(documents, "test") await cogneeGraphRAG.add(documents[0], "test") if __name__ == "__main__": asyncio.run(test_add_data())
from llama_index.core import Document import asyncio import pytest from llama_index.graph_rag.cognee import CogneeGraphRAG @pytest.mark.asyncio() async def test_add_data(monkeypatch): # Instantiate cognee GraphRAG cogneeGraphRAG = CogneeGraphRAG( llm_api_key="", llm_provider="openai", llm_model="gpt-4o-mini", graph_db_provider="networkx", vector_db_provider="lancedb", relational_db_provider="sqlite", db_name="cognee_db", ) # Mock logging to graphistry async def mock_add_return(add, dataset_name): return True import cognee monkeypatch.setattr(cognee, "add", mock_add_return) # Gather documents to add to GraphRAG documents = [ Document( text="Jessica Miller, Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams." ), Document( text="David Thompson, Creative Graphic Designer with over 8 years of experience in visual design and branding." ), ] await cogneeGraphRAG.add(documents, "test") await cogneeGraphRAG.add(documents[0], "test") if __name__ == "__main__": asyncio.run(test_add_data())
""" This script trains sentence transformers with a triplet loss function. As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. """ import traceback from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import TripletEvaluator from sentence_transformers.losses import TripletLoss from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from datetime import datetime from datasets import load_dataset import logging # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = "distilbert-base-uncased" batch_size = 16 num_train_epochs = 1 output_dir = "output/training-wikipedia-sections-" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # If we want, we can limit the maximum sequence length for the model # model.max_seq_length = 75 logging.info(model) # 2. Load the Wikipedia-Sections dataset: https://huggingface.co/datasets/sentence-transformers/wikipedia-sections train_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="train").select( range(10_000) ) eval_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="validation").select( range(1000) ) test_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="test").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss # TripletLoss (https://sbert.net/docs/package_reference/losses.html#tripletloss) needs three text columns train_loss = TripletLoss(model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = TripletEvaluator( anchors=eval_dataset[:1000]["anchor"], positives=eval_dataset[:1000]["positive"], negatives=eval_dataset[:1000]["negative"], name="wikipedia-sections-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="wikipedia-sections-triplet", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = TripletEvaluator( anchors=test_dataset["anchor"], positives=test_dataset["positive"], negatives=test_dataset["negative"], name="wikipedia-sections-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-wikipedia-sections-triplet") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-wikipedia-sections-triplet')`." )
""" This script trains sentence transformers with a triplet loss function. As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. """ from sentence_transformers import SentenceTransformer, InputExample, LoggingHandler, losses, models, util from torch.utils.data import DataLoader from sentence_transformers.evaluation import TripletEvaluator from datetime import datetime from zipfile import ZipFile import csv import logging import os logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = "distilbert-base-uncased" dataset_path = "datasets/wikipedia-sections" if not os.path.exists(dataset_path): os.makedirs(dataset_path, exist_ok=True) filepath = os.path.join(dataset_path, "wikipedia-sections-triplets.zip") util.http_get("https://sbert.net/datasets/wikipedia-sections-triplets.zip", filepath) with ZipFile(filepath, "r") as zip: zip.extractall(dataset_path) ### Create a torch.DataLoader that passes training batch instances to our model train_batch_size = 16 output_path = "output/training-wikipedia-sections-" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") num_epochs = 1 ### Configure sentence transformers for training and train on the provided dataset # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) logger.info("Read Triplet train dataset") train_examples = [] with open(os.path.join(dataset_path, "train.csv"), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=",", quoting=csv.QUOTE_MINIMAL) for row in reader: train_examples.append(InputExample(texts=[row["Sentence1"], row["Sentence2"], row["Sentence3"]], label=0)) train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size) train_loss = losses.TripletLoss(model=model) logger.info("Read Wikipedia Triplet dev dataset") dev_examples = [] with open(os.path.join(dataset_path, "validation.csv"), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=",", quoting=csv.QUOTE_MINIMAL) for row in reader: dev_examples.append(InputExample(texts=[row["Sentence1"], row["Sentence2"], row["Sentence3"]])) if len(dev_examples) >= 1000: break evaluator = TripletEvaluator.from_input_examples(dev_examples, name="dev") warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) # 10% of train data # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=output_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## logger.info("Read test examples") test_examples = [] with open(os.path.join(dataset_path, "test.csv"), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=",", quoting=csv.QUOTE_MINIMAL) for row in reader: test_examples.append(InputExample(texts=[row["Sentence1"], row["Sentence2"], row["Sentence3"]])) model = SentenceTransformer(output_path) test_evaluator = TripletEvaluator.from_input_examples(test_examples, name="test") test_evaluator(model, output_path=output_path)
# DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import Sequential from keras.api import StatelessScope from keras.api import SymbolicScope from keras.api import Variable from keras.api import __version__ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version from keras.api import visualization from keras.api import wrappers # END DO NOT EDIT. import os # isort: skip # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
# DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import Sequential from keras.api import StatelessScope from keras.api import SymbolicScope from keras.api import Variable from keras.api import __version__ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version from keras.api import visualization # END DO NOT EDIT. import os # isort: skip # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
from typing import NamedTuple, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D T = TypeVar('T', bound='Mesh3DUrl') class Mesh3DLoadResult(NamedTuple): vertices: NdArray faces: NdArray @_register_proto(proto_type_name='mesh_url') class Mesh3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing 3D mesh information. Can be remote (web) URL, or a local file path. """ def load(self: T) -> Mesh3DLoadResult: """ Load the data from the url into a named tuple of two NdArrays containing vertices and faces information. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument import numpy as np from docarray.typing import Mesh3DUrl class MyDoc(BaseDocument): mesh_url: Mesh3DUrl doc = MyDoc(mesh_url="toydata/tetrahedron.obj") vertices, faces = doc.mesh_url.load() assert isinstance(vertices, np.ndarray) assert isinstance(faces, np.ndarray) :return: named tuple of two NdArrays representing the mesh's vertices and faces """ mesh = self._load_trimesh_instance(force='mesh') vertices = parse_obj_as(NdArray, mesh.vertices.view(np.ndarray)) faces = parse_obj_as(NdArray, mesh.faces.view(np.ndarray)) return Mesh3DLoadResult(vertices=vertices, faces=faces)
from typing import NamedTuple, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing import NdArray from docarray.typing.proto_register import _register_proto from docarray.typing.url.url_3d.url_3d import Url3D T = TypeVar('T', bound='Mesh3DUrl') class Mesh3DLoadResult(NamedTuple): vertices: NdArray faces: NdArray @_register_proto(proto_type_name='mesh_url') class Mesh3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing 3D mesh information. Can be remote (web) URL, or a local file path. """ def load(self: T) -> Mesh3DLoadResult: """ Load the data from the url into a named tuple of two NdArrays containing vertices and faces information. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument import numpy as np from docarray.typing import Mesh3DUrl class MyDoc(BaseDocument): mesh_url: Mesh3DUrl doc = MyDoc(mesh_url="toydata/tetrahedron.obj") vertices, faces = doc.mesh_url.load() assert isinstance(vertices, np.ndarray) assert isinstance(faces, np.ndarray) :return: named tuple of two NdArrays representing the mesh's vertices and faces """ mesh = self._load_trimesh_instance(force='mesh') vertices = parse_obj_as(NdArray, mesh.vertices.view(np.ndarray)) faces = parse_obj_as(NdArray, mesh.faces.view(np.ndarray)) return Mesh3DLoadResult(vertices=vertices, faces=faces)
from typing import List, Sequence from llama_index.core.agent.workflow.base_agent import BaseWorkflowAgent from llama_index.core.agent.workflow.workflow_events import ( AgentInput, AgentOutput, AgentStream, ToolCallResult, ) from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.llms import ChatMessage from llama_index.core.memory import BaseMemory from llama_index.core.tools import AsyncBaseTool from llama_index.core.workflow import Context class FunctionAgent(BaseWorkflowAgent): """Function calling agent implementation.""" scratchpad_key: str = "scratchpad" async def take_step( self, ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory, ) -> AgentOutput: """Take a single step with the function calling agent.""" if not self.llm.metadata.is_function_calling_model: raise ValueError("LLM must be a FunctionCallingLLM") scratchpad: List[ChatMessage] = await ctx.get(self.scratchpad_key, default=[]) current_llm_input = [*llm_input, *scratchpad] ctx.write_event_to_stream( AgentInput(input=current_llm_input, current_agent_name=self.name) ) response = await self.llm.astream_chat_with_tools( # type: ignore tools, chat_history=current_llm_input, allow_parallel_tool_calls=True ) async for r in response: tool_calls = self.llm.get_tool_calls_from_response( # type: ignore r, error_on_no_tool_call=False ) raw = r.raw.model_dump() if isinstance(r.raw, BaseModel) else r.raw ctx.write_event_to_stream( AgentStream( delta=r.delta or "", response=r.message.content or "", tool_calls=tool_calls or [], raw=raw, current_agent_name=self.name, ) ) tool_calls = self.llm.get_tool_calls_from_response( # type: ignore r, error_on_no_tool_call=False ) # only add to scratchpad if we didn't select the handoff tool scratchpad.append(r.message) await ctx.set(self.scratchpad_key, scratchpad) raw = r.raw.model_dump() if isinstance(r.raw, BaseModel) else r.raw return AgentOutput( response=r.message, tool_calls=tool_calls or [], raw=raw, current_agent_name=self.name, ) async def handle_tool_call_results( self, ctx: Context, results: List[ToolCallResult], memory: BaseMemory ) -> None: """Handle tool call results for function calling agent.""" scratchpad: List[ChatMessage] = await ctx.get(self.scratchpad_key, default=[]) for tool_call_result in results: scratchpad.append( ChatMessage( role="tool", content=str(tool_call_result.tool_output.content), additional_kwargs={"tool_call_id": tool_call_result.tool_id}, ) ) if ( tool_call_result.return_direct and tool_call_result.tool_name != "handoff" ): scratchpad.append( ChatMessage( role="assistant", content=str(tool_call_result.tool_output.content), additional_kwargs={"tool_call_id": tool_call_result.tool_id}, ) ) break await ctx.set(self.scratchpad_key, scratchpad) async def finalize( self, ctx: Context, output: AgentOutput, memory: BaseMemory ) -> AgentOutput: """Finalize the function calling agent. Adds all in-progress messages to memory. """ scratchpad: List[ChatMessage] = await ctx.get(self.scratchpad_key, default=[]) for msg in scratchpad: await memory.aput(msg) # reset scratchpad await ctx.set(self.scratchpad_key, []) return output
from typing import List, Sequence from llama_index.core.agent.workflow.base_agent import BaseWorkflowAgent from llama_index.core.agent.workflow.workflow_events import ( AgentInput, AgentOutput, AgentStream, ToolCallResult, ) from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.llms import ChatMessage from llama_index.core.memory import BaseMemory from llama_index.core.tools import AsyncBaseTool from llama_index.core.workflow import Context class FunctionAgent(BaseWorkflowAgent): """Function calling agent implementation.""" scratchpad_key: str = "scratchpad" async def take_step( self, ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory, ) -> AgentOutput: """Take a single step with the function calling agent.""" if not self.llm.metadata.is_function_calling_model: raise ValueError("LLM must be a FunctionCallingLLM") scratchpad: List[ChatMessage] = await ctx.get(self.scratchpad_key, default=[]) current_llm_input = [*llm_input, *scratchpad] ctx.write_event_to_stream( AgentInput(input=current_llm_input, current_agent_name=self.name) ) response = await self.llm.astream_chat_with_tools( # type: ignore tools, chat_history=current_llm_input, allow_parallel_tool_calls=True ) async for r in response: tool_calls = self.llm.get_tool_calls_from_response( # type: ignore r, error_on_no_tool_call=False ) raw = r.raw.model_dump() if isinstance(r.raw, BaseModel) else r.raw ctx.write_event_to_stream( AgentStream( delta=r.delta or "", response=r.message.content or "", tool_calls=tool_calls or [], raw=raw, current_agent_name=self.name, ) ) tool_calls = self.llm.get_tool_calls_from_response( # type: ignore r, error_on_no_tool_call=False ) # only add to scratchpad if we didn't select the handoff tool scratchpad.append(r.message) await ctx.set(self.scratchpad_key, scratchpad) raw = r.raw.model_dump() if isinstance(r.raw, BaseModel) else r.raw return AgentOutput( response=r.message, tool_calls=tool_calls or [], raw=raw, current_agent_name=self.name, ) async def handle_tool_call_results( self, ctx: Context, results: List[ToolCallResult], memory: BaseMemory ) -> None: """Handle tool call results for function calling agent.""" scratchpad: List[ChatMessage] = await ctx.get(self.scratchpad_key, default=[]) for tool_call_result in results: scratchpad.append( ChatMessage( role="tool", content=str(tool_call_result.tool_output.content), additional_kwargs={"tool_call_id": tool_call_result.tool_id}, ) ) if tool_call_result.return_direct: scratchpad.append( ChatMessage( role="assistant", content=str(tool_call_result.tool_output.content), additional_kwargs={"tool_call_id": tool_call_result.tool_id}, ) ) break await ctx.set(self.scratchpad_key, scratchpad) async def finalize( self, ctx: Context, output: AgentOutput, memory: BaseMemory ) -> AgentOutput: """Finalize the function calling agent. Adds all in-progress messages to memory. """ scratchpad: List[ChatMessage] = await ctx.get(self.scratchpad_key, default=[]) for msg in scratchpad: await memory.aput(msg) # reset scratchpad await ctx.set(self.scratchpad_key, []) return output
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.resnet_v2 import ResNet50V2 as ResNet50V2 from keras.src.applications.resnet_v2 import ResNet101V2 as ResNet101V2 from keras.src.applications.resnet_v2 import ResNet152V2 as ResNet152V2 from keras.src.applications.resnet_v2 import ( decode_predictions as decode_predictions, ) from keras.src.applications.resnet_v2 import ( preprocess_input as preprocess_input, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.resnet_v2 import ResNet50V2 from keras.src.applications.resnet_v2 import ResNet101V2 from keras.src.applications.resnet_v2 import ResNet152V2 from keras.src.applications.resnet_v2 import decode_predictions from keras.src.applications.resnet_v2 import preprocess_input
import numpy as np import pytest from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.computation.tensorflow_backend import TensorFlowCompBackend from docarray.typing import TensorFlowTensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'shape,result', [ ((5), 1), ((1, 5), 2), ((5, 5), 2), ((), 0), ], ) def test_n_dim(shape, result): array = TensorFlowTensor(tf.zeros(shape)) assert TensorFlowCompBackend.n_dim(array) == result @pytest.mark.tensorflow @pytest.mark.parametrize( 'shape,result', [ ((10,), (10,)), ((5, 5), (5, 5)), ((), ()), ], ) def test_shape(shape, result): array = TensorFlowTensor(tf.zeros(shape)) shape = TensorFlowCompBackend.shape(array) assert shape == result assert type(shape) == tuple @pytest.mark.tensorflow def test_to_device(): array = TensorFlowTensor(tf.constant([1, 2, 3])) array = TensorFlowCompBackend.to_device(array, 'CPU:0') assert array.tensor.device.endswith('CPU:0') @pytest.mark.tensorflow @pytest.mark.parametrize( 'dtype,result_type', [ ('int64', 'int64'), ('float64', 'float64'), ('int8', 'int8'), ('double', 'float64'), ], ) def test_dtype(dtype, result_type): array = TensorFlowTensor(tf.constant([1, 2, 3], dtype=getattr(tf, dtype))) assert TensorFlowCompBackend.dtype(array) == result_type @pytest.mark.tensorflow def test_empty(): array = TensorFlowCompBackend.empty((10, 3)) assert array.tensor.shape == (10, 3) @pytest.mark.tensorflow def test_empty_dtype(): tf_tensor = TensorFlowCompBackend.empty((10, 3), dtype=tf.int32) assert tf_tensor.tensor.shape == (10, 3) assert tf_tensor.tensor.dtype == tf.int32 @pytest.mark.tensorflow def test_empty_device(): tensor = TensorFlowCompBackend.empty((10, 3), device='CPU:0') assert tensor.tensor.shape == (10, 3) assert tensor.tensor.device.endswith('CPU:0') @pytest.mark.tensorflow def test_squeeze(): tensor = TensorFlowTensor(tf.zeros(shape=(1, 1, 3, 1))) squeezed = TensorFlowCompBackend.squeeze(tensor) assert squeezed.tensor.shape == (3,) @pytest.mark.tensorflow @pytest.mark.parametrize( 'data_input,t_range,x_range,data_result', [ ( [0, 1, 2, 3, 4, 5], (0, 10), None, [0, 2, 4, 6, 8, 10], ), ( [0, 1, 2, 3, 4, 5], (0, 10), (0, 10), [0, 1, 2, 3, 4, 5], ), ( [[0.0, 1.0], [0.0, 1.0]], (0, 10), None, [[0.0, 10.0], [0.0, 10.0]], ), ], ) def test_minmax_normalize(data_input, t_range, x_range, data_result): array = TensorFlowTensor(tf.constant(data_input)) output = TensorFlowCompBackend.minmax_normalize( tensor=array, t_range=t_range, x_range=x_range ) assert np.allclose(output.tensor, tf.constant(data_result)) @pytest.mark.tensorflow def test_reshape(): tensor = TensorFlowTensor(tf.zeros((3, 224, 224))) reshaped = TensorFlowCompBackend.reshape(tensor, (224, 224, 3)) assert reshaped.tensor.shape == (224, 224, 3) @pytest.mark.tensorflow def test_stack(): t0 = TensorFlowTensor(tf.zeros((3, 224, 224))) t1 = TensorFlowTensor(tf.ones((3, 224, 224))) stacked1 = TensorFlowCompBackend.stack([t0, t1], dim=0) assert isinstance(stacked1, TensorFlowTensor) assert stacked1.tensor.shape == (2, 3, 224, 224) stacked2 = TensorFlowCompBackend.stack([t0, t1], dim=-1) assert isinstance(stacked2, TensorFlowTensor) assert stacked2.tensor.shape == (3, 224, 224, 2)
import numpy as np import pytest from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.computation.tensorflow_backend import TensorFlowCompBackend from docarray.typing import TensorFlowTensor @pytest.mark.tensorflow @pytest.mark.parametrize( 'shape,result', [ ((5), 1), ((1, 5), 2), ((5, 5), 2), ((), 0), ], ) def test_n_dim(shape, result): array = TensorFlowTensor(tf.zeros(shape)) assert TensorFlowCompBackend.n_dim(array) == result @pytest.mark.tensorflow @pytest.mark.parametrize( 'shape,result', [ ((10,), (10,)), ((5, 5), (5, 5)), ((), ()), ], ) def test_shape(shape, result): array = TensorFlowTensor(tf.zeros(shape)) shape = TensorFlowCompBackend.shape(array) assert shape == result assert type(shape) == tuple @pytest.mark.tensorflow def test_to_device(): array = TensorFlowTensor(tf.constant([1, 2, 3])) array = TensorFlowCompBackend.to_device(array, 'CPU:0') assert array.tensor.device.endswith('CPU:0') @pytest.mark.tensorflow @pytest.mark.parametrize( 'dtype,result_type', [ ('int64', 'int64'), ('float64', 'float64'), ('int8', 'int8'), ('double', 'float64'), ], ) def test_dtype(dtype, result_type): array = TensorFlowTensor(tf.constant([1, 2, 3], dtype=getattr(tf, dtype))) assert TensorFlowCompBackend.dtype(array) == result_type @pytest.mark.tensorflow def test_empty(): array = TensorFlowCompBackend.empty((10, 3)) assert array.tensor.shape == (10, 3) @pytest.mark.tensorflow def test_empty_dtype(): tf_tensor = TensorFlowCompBackend.empty((10, 3), dtype=tf.int32) assert tf_tensor.tensor.shape == (10, 3) assert tf_tensor.tensor.dtype == tf.int32 @pytest.mark.tensorflow def test_empty_device(): tensor = TensorFlowCompBackend.empty((10, 3), device='CPU:0') assert tensor.tensor.shape == (10, 3) assert tensor.tensor.device.endswith('CPU:0') @pytest.mark.tensorflow def test_squeeze(): tensor = TensorFlowTensor(tf.zeros(shape=(1, 1, 3, 1))) squeezed = TensorFlowCompBackend.squeeze(tensor) assert squeezed.tensor.shape == (3,) @pytest.mark.tensorflow @pytest.mark.parametrize( 'data_input,t_range,x_range,data_result', [ ( [0, 1, 2, 3, 4, 5], (0, 10), None, [0, 2, 4, 6, 8, 10], ), ( [0, 1, 2, 3, 4, 5], (0, 10), (0, 10), [0, 1, 2, 3, 4, 5], ), ( [[0.0, 1.0], [0.0, 1.0]], (0, 10), None, [[0.0, 10.0], [0.0, 10.0]], ), ], ) def test_minmax_normalize(data_input, t_range, x_range, data_result): array = TensorFlowTensor(tf.constant(data_input)) output = TensorFlowCompBackend.minmax_normalize( tensor=array, t_range=t_range, x_range=x_range ) assert np.allclose(output.tensor, tf.constant(data_result)) @pytest.mark.tensorflow def test_reshape(): tensor = TensorFlowTensor(tf.zeros((3, 224, 224))) reshaped = TensorFlowCompBackend.reshape(tensor, (224, 224, 3)) assert reshaped.tensor.shape == (224, 224, 3) @pytest.mark.tensorflow def test_stack(): t0 = TensorFlowTensor(tf.zeros((3, 224, 224))) t1 = TensorFlowTensor(tf.ones((3, 224, 224))) stacked1 = TensorFlowCompBackend.stack([t0, t1], dim=0) assert isinstance(stacked1, TensorFlowTensor) assert stacked1.tensor.shape == (2, 3, 224, 224) stacked2 = TensorFlowCompBackend.stack([t0, t1], dim=-1) assert isinstance(stacked2, TensorFlowTensor) assert stacked2.tensor.shape == (3, 224, 224, 2)