input
stringlengths
33
5k
output
stringlengths
32
5k
from backend.blocks.jina._auth import ( JinaCredentials, JinaCredentialsField, JinaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class JinaEmbeddingBlock(Block): class Input(BlockSchema): texts: list = SchemaField(description="List of texts to embed") credentials: JinaCredentialsInput = JinaCredentialsField() model: str = SchemaField( description="Jina embedding model to use", default="jina-embeddings-v2-base-en", ) class Output(BlockSchema): embeddings: list = SchemaField(description="List of embeddings") def __init__(self): super().__init__( id="7c56b3ab-62e7-43a2-a2dc-4ec4245660b6", description="Generates embeddings using Jina AI", categories={BlockCategory.AI}, input_schema=JinaEmbeddingBlock.Input, output_schema=JinaEmbeddingBlock.Output, ) def run( self, input_data: Input, *, credentials: JinaCredentials, **kwargs ) -> BlockOutput: url = "https://api.jina.ai/v1/embeddings" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } data = {"input": input_data.texts, "model": input_data.model} response = requests.post(url, headers=headers, json=data) embeddings = [e["embedding"] for e in response.json()["data"]] yield "embeddings", embeddings
import requests from backend.blocks.jina._auth import ( JinaCredentials, JinaCredentialsField, JinaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class JinaEmbeddingBlock(Block): class Input(BlockSchema): texts: list = SchemaField(description="List of texts to embed") credentials: JinaCredentialsInput = JinaCredentialsField() model: str = SchemaField( description="Jina embedding model to use", default="jina-embeddings-v2-base-en", ) class Output(BlockSchema): embeddings: list = SchemaField(description="List of embeddings") def __init__(self): super().__init__( id="7c56b3ab-62e7-43a2-a2dc-4ec4245660b6", description="Generates embeddings using Jina AI", categories={BlockCategory.AI}, input_schema=JinaEmbeddingBlock.Input, output_schema=JinaEmbeddingBlock.Output, ) def run( self, input_data: Input, *, credentials: JinaCredentials, **kwargs ) -> BlockOutput: url = "https://api.jina.ai/v1/embeddings" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } data = {"input": input_data.texts, "model": input_data.model} response = requests.post(url, headers=headers, json=data) embeddings = [e["embedding"] for e in response.json()["data"]] yield "embeddings", embeddings
from typing import IO, TYPE_CHECKING, Callable, Optional from docarray.utils._internal.misc import import_library def _compress_bytes(data: bytes, algorithm: Optional[str] = None) -> bytes: if algorithm == 'lz4': if TYPE_CHECKING: from lz4 import frame else: lz4 = import_library('lz4', raise_error=True) # noqa: F841 from lz4 import frame data = frame.compress(data) elif algorithm == 'bz2': import bz2 data = bz2.compress(data) elif algorithm == 'lzma': import lzma data = lzma.compress(data) elif algorithm == 'zlib': import zlib data = zlib.compress(data) elif algorithm == 'gzip': import gzip data = gzip.compress(data) return data def _decompress_bytes(data: bytes, algorithm: Optional[str] = None) -> bytes: if algorithm == 'lz4': if TYPE_CHECKING: from lz4 import frame else: lz4 = import_library('lz4', raise_error=True) # noqa: F841 from lz4 import frame data = frame.decompress(data) elif algorithm == 'bz2': import bz2 data = bz2.decompress(data) elif algorithm == 'lzma': import lzma data = lzma.decompress(data) elif algorithm == 'zlib': import zlib data = zlib.decompress(data) elif algorithm == 'gzip': import gzip data = gzip.decompress(data) return data def _get_compress_ctx(algorithm: Optional[str] = None) -> Optional[Callable]: if algorithm == 'lz4': if TYPE_CHECKING: from lz4 import frame else: lz4 = import_library('lz4', raise_error=True) # noqa: F841 from lz4 import frame def _fun(x: IO[bytes]): return frame.LZ4FrameFile(x, 'wb') compress_ctx = _fun elif algorithm == 'gzip': import gzip def _fun(x: IO[bytes]): return gzip.GzipFile(fileobj=x, mode='wb') compress_ctx = _fun elif algorithm == 'bz2': import bz2 def _fun(x: IO[bytes]): return bz2.BZ2File(filename=x, mode='wb') compress_ctx = _fun elif algorithm == 'lzma': import lzma def _fun(x: IO[bytes]): return lzma.LZMAFile(filename=x, mode='wb') compress_ctx = _fun else: compress_ctx = None return compress_ctx
from typing import IO, Callable, Optional def _compress_bytes(data: bytes, algorithm: Optional[str] = None) -> bytes: if algorithm == 'lz4': import lz4.frame # type: ignore data = lz4.frame.compress(data) elif algorithm == 'bz2': import bz2 data = bz2.compress(data) elif algorithm == 'lzma': import lzma data = lzma.compress(data) elif algorithm == 'zlib': import zlib data = zlib.compress(data) elif algorithm == 'gzip': import gzip data = gzip.compress(data) return data def _decompress_bytes(data: bytes, algorithm: Optional[str] = None) -> bytes: if algorithm == 'lz4': import lz4.frame # type: ignore data = lz4.frame.decompress(data) elif algorithm == 'bz2': import bz2 data = bz2.decompress(data) elif algorithm == 'lzma': import lzma data = lzma.decompress(data) elif algorithm == 'zlib': import zlib data = zlib.decompress(data) elif algorithm == 'gzip': import gzip data = gzip.decompress(data) return data def _get_compress_ctx(algorithm: Optional[str] = None) -> Optional[Callable]: if algorithm == 'lz4': import lz4.frame # type: ignore def _fun(x: IO[bytes]): return lz4.frame.LZ4FrameFile(x, 'wb') compress_ctx = _fun elif algorithm == 'gzip': import gzip def _fun(x: IO[bytes]): return gzip.GzipFile(fileobj=x, mode='wb') compress_ctx = _fun elif algorithm == 'bz2': import bz2 def _fun(x: IO[bytes]): return bz2.BZ2File(filename=x, mode='wb') compress_ctx = _fun elif algorithm == 'lzma': import lzma def _fun(x: IO[bytes]): return lzma.LZMAFile(filename=x, mode='wb') compress_ctx = _fun else: compress_ctx = None return compress_ctx
import copy import sqlite3 import warnings from dataclasses import dataclass, field from tempfile import NamedTemporaryFile from typing import Iterable, Dict, Optional, TYPE_CHECKING, Union from docarray.array.storage.sqlite.helper import initialize_table from docarray.array.storage.base.backend import BaseBackendMixin from docarray.helper import random_identity, dataclass_from_dict if TYPE_CHECKING: # pragma: no cover from docarray.typing import DocumentArraySourceType def _sanitize_table_name(table_name: str, raise_warning=True) -> str: ret = ''.join(c for c in table_name if c.isalnum() or c == '_') if ret != table_name and raise_warning: warnings.warn(f'The table name is changed to {ret} due to illegal characters') return ret @dataclass class SqliteConfig: connection: Optional[Union[str, 'sqlite3.Connection']] = None table_name: Optional[str] = None serialize_config: Dict = field(default_factory=dict) conn_config: Dict = field(default_factory=dict) journal_mode: str = 'WAL' synchronous: str = 'OFF' class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" schema_version = '0' def _sql(self, *args, **kwargs) -> 'sqlite3.Cursor': return self._cursor.execute(*args, **kwargs) def _commit(self): self._connection.commit() @property def _cursor(self) -> 'sqlite3.Cursor': return self._connection.cursor() def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[SqliteConfig, Dict]] = None, **kwargs, ): config = copy.deepcopy(config) if not config: config = SqliteConfig() if isinstance(config, dict): config = dataclass_from_dict(SqliteConfig, config) from docarray import Document sqlite3.register_adapter( Document, lambda d: d.to_bytes(**config.serialize_config) ) sqlite3.register_converter( 'Document', lambda x: Document.from_bytes(x, **config.serialize_config) ) _conn_kwargs = dict() _conn_kwargs.update(config.conn_config) if config.connection is None: config.connection = NamedTemporaryFile().name if isinstance(config.connection, str): self._connection = sqlite3.connect( config.connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, ) elif isinstance(config.connection, sqlite3.Connection): self._connection = config.connection else: raise TypeError( f'connection argument must be None or a string or a sqlite3.Connection, not `{type(config.connection)}`' ) self._connection.execute(f'PRAGMA synchronous={config.synchronous}') self._connection.execute(f'PRAGMA journal_mode={config.journal_mode}') self._table_name = ( _sanitize_table_name(self.__class__.__name__ + random_identity()) if config.table_name is None else _sanitize_table_name(config.table_name) ) config.table_name = self._table_name initialize_table( self._table_name, self.__class__.__name__, self.schema_version, self._cursor ) self._connection.commit() self._config = config super()._init_storage() if _docs is None: return elif isinstance(_docs, Iterable): self.clear() self.extend(_docs) else: self.clear() if isinstance(_docs, Document): self.append(_docs) def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: if 'table_name' not in config_subindex: subindex_table_name = _sanitize_table_name( config_joined['table_name'] + 'subindex' + subindex_name, raise_warning=False, ) config_joined['table_name'] = subindex_table_name return config_joined def __getstate__(self): d = dict(self.__dict__) del d['_connection'] return d def __setstate__(self, state): self.__dict__ = state _conn_kwargs = dict() _conn_kwargs.update(state['_config'].conn_config) self._connection = sqlite3.connect( state['_config'].connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, )
import sqlite3 import warnings from dataclasses import dataclass, field from tempfile import NamedTemporaryFile from typing import Iterable, Dict, Optional, TYPE_CHECKING, Union from docarray.array.storage.sqlite.helper import initialize_table from docarray.array.storage.base.backend import BaseBackendMixin from docarray.helper import random_identity, dataclass_from_dict if TYPE_CHECKING: # pragma: no cover from docarray.typing import DocumentArraySourceType def _sanitize_table_name(table_name: str, raise_warning=True) -> str: ret = ''.join(c for c in table_name if c.isalnum() or c == '_') if ret != table_name and raise_warning: warnings.warn(f'The table name is changed to {ret} due to illegal characters') return ret @dataclass class SqliteConfig: connection: Optional[Union[str, 'sqlite3.Connection']] = None table_name: Optional[str] = None serialize_config: Dict = field(default_factory=dict) conn_config: Dict = field(default_factory=dict) journal_mode: str = 'WAL' synchronous: str = 'OFF' class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" schema_version = '0' def _sql(self, *args, **kwargs) -> 'sqlite3.Cursor': return self._cursor.execute(*args, **kwargs) def _commit(self): self._connection.commit() @property def _cursor(self) -> 'sqlite3.Cursor': return self._connection.cursor() def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[SqliteConfig, Dict]] = None, **kwargs, ): if not config: config = SqliteConfig() if isinstance(config, dict): config = dataclass_from_dict(SqliteConfig, config) from docarray import Document sqlite3.register_adapter( Document, lambda d: d.to_bytes(**config.serialize_config) ) sqlite3.register_converter( 'Document', lambda x: Document.from_bytes(x, **config.serialize_config) ) _conn_kwargs = dict() _conn_kwargs.update(config.conn_config) if config.connection is None: config.connection = NamedTemporaryFile().name if isinstance(config.connection, str): self._connection = sqlite3.connect( config.connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, ) elif isinstance(config.connection, sqlite3.Connection): self._connection = config.connection else: raise TypeError( f'connection argument must be None or a string or a sqlite3.Connection, not `{type(config.connection)}`' ) self._connection.execute(f'PRAGMA synchronous={config.synchronous}') self._connection.execute(f'PRAGMA journal_mode={config.journal_mode}') self._table_name = ( _sanitize_table_name(self.__class__.__name__ + random_identity()) if config.table_name is None else _sanitize_table_name(config.table_name) ) config.table_name = self._table_name initialize_table( self._table_name, self.__class__.__name__, self.schema_version, self._cursor ) self._connection.commit() self._config = config super()._init_storage() if _docs is None: return elif isinstance(_docs, Iterable): self.clear() self.extend(_docs) else: self.clear() if isinstance(_docs, Document): self.append(_docs) def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: if 'table_name' not in config_subindex: subindex_table_name = _sanitize_table_name( config_joined['table_name'] + 'subindex' + subindex_name, raise_warning=False, ) config_joined['table_name'] = subindex_table_name return config_joined def __getstate__(self): d = dict(self.__dict__) del d['_connection'] return d def __setstate__(self, state): self.__dict__ = state _conn_kwargs = dict() _conn_kwargs.update(state['_config'].conn_config) self._connection = sqlite3.connect( state['_config'].connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, )
import contextlib from collections.abc import Iterable from pathlib import Path from typing import Any from tomlkit import dump, inline_table, load from tomlkit.items import InlineTable def _get_dep_inline_table(path: Path) -> InlineTable: dep = inline_table() dep.update({"path": str(path), "develop": True}) return dep def add_dependencies_to_pyproject_toml( pyproject_toml: Path, local_editable_dependencies: Iterable[tuple[str, Path]] ) -> None: """Add dependencies to pyproject.toml.""" with open(pyproject_toml, encoding="utf-8") as f: # tomlkit types aren't amazing - treat as Dict instead pyproject: dict[str, Any] = load(f) pyproject["tool"]["poetry"]["dependencies"].update( { name: _get_dep_inline_table(loc.relative_to(pyproject_toml.parent)) for name, loc in local_editable_dependencies } ) with open(pyproject_toml, "w", encoding="utf-8") as f: dump(pyproject, f) def remove_dependencies_from_pyproject_toml( pyproject_toml: Path, local_editable_dependencies: Iterable[str] ) -> None: """Remove dependencies from pyproject.toml.""" with open(pyproject_toml, encoding="utf-8") as f: pyproject: dict[str, Any] = load(f) # tomlkit types aren't amazing - treat as Dict instead dependencies = pyproject["tool"]["poetry"]["dependencies"] for name in local_editable_dependencies: with contextlib.suppress(KeyError): del dependencies[name] with open(pyproject_toml, "w", encoding="utf-8") as f: dump(pyproject, f)
from collections.abc import Iterable from pathlib import Path from typing import Any from tomlkit import dump, inline_table, load from tomlkit.items import InlineTable def _get_dep_inline_table(path: Path) -> InlineTable: dep = inline_table() dep.update({"path": str(path), "develop": True}) return dep def add_dependencies_to_pyproject_toml( pyproject_toml: Path, local_editable_dependencies: Iterable[tuple[str, Path]] ) -> None: """Add dependencies to pyproject.toml.""" with open(pyproject_toml, encoding="utf-8") as f: # tomlkit types aren't amazing - treat as Dict instead pyproject: dict[str, Any] = load(f) pyproject["tool"]["poetry"]["dependencies"].update( { name: _get_dep_inline_table(loc.relative_to(pyproject_toml.parent)) for name, loc in local_editable_dependencies } ) with open(pyproject_toml, "w", encoding="utf-8") as f: dump(pyproject, f) def remove_dependencies_from_pyproject_toml( pyproject_toml: Path, local_editable_dependencies: Iterable[str] ) -> None: """Remove dependencies from pyproject.toml.""" with open(pyproject_toml, encoding="utf-8") as f: pyproject: dict[str, Any] = load(f) # tomlkit types aren't amazing - treat as Dict instead dependencies = pyproject["tool"]["poetry"]["dependencies"] for name in local_editable_dependencies: try: del dependencies[name] except KeyError: pass with open(pyproject_toml, "w", encoding="utf-8") as f: dump(pyproject, f)
import sys from jina.parsers import set_gateway_parser from jina.parsers.helper import _update_gateway_args from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway.request_handling import GatewayRequestHandler def run(*args, **kwargs): runtime_args = set_gateway_parser().parse_args(args) _update_gateway_args(runtime_args) with AsyncNewLoopRuntime( runtime_args, req_handler_cls=GatewayRequestHandler ) as runtime: runtime.run_forever() if __name__ == '__main__': run(*sys.argv[1:])
import sys from jina.parsers import set_gateway_parser from jina.parsers.helper import _update_gateway_args from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway.request_handling import GatewayRequestHandler def run(*args, **kwargs): runtime_args = set_gateway_parser().parse_args(args) _update_gateway_args(runtime_args) with AsyncNewLoopRuntime(runtime_args, req_handler_cls=GatewayRequestHandler) as runtime: runtime.run_forever() if __name__ == '__main__': run(*sys.argv[1:])
_base_ = 'faster-rcnn_r50_fpn_crop640-50e_coco.py' norm_cfg = dict(type='BN', requires_grad=True) model = dict( neck=dict(out_channels=128, inter_channels=128), rpn_head=dict(in_channels=128), roi_head=dict( bbox_roi_extractor=dict(out_channels=128), bbox_head=dict(in_channels=128)))
_base_ = 'faster_rcnn_r50_fpg_crop640_50e_coco.py' norm_cfg = dict(type='BN', requires_grad=True) model = dict( neck=dict(out_channels=128, inter_channels=128), rpn_head=dict(in_channels=128), roi_head=dict( bbox_roi_extractor=dict(out_channels=128), bbox_head=dict(in_channels=128)))
from unittest import TestCase import numpy as np from mmengine.testing import assert_allclose from mmdet.structures.mask import BitmapMasks, PolygonMasks class TestMaskStructures(TestCase): def test_bitmap_translate_same_size(self): mask_array = np.zeros((5, 10, 10), dtype=np.uint8) mask_array[:, 0:5, 0:5] = 1 mask_target = np.zeros((5, 10, 10), dtype=np.uint8) mask_target[:, 0:5, 5:10] = 1 mask = BitmapMasks(mask_array, 10, 10) mask = mask.translate((10, 10), 5) assert mask.masks.shape == (5, 10, 10) assert_allclose(mask_target, mask.masks) def test_bitmap_translate_diff_size(self): # test out shape larger mask_array = np.zeros((5, 10, 10), dtype=np.uint8) mask_array[:, 0:5, 0:5] = 1 mask_target = np.zeros((5, 20, 20), dtype=np.uint8) mask_target[:, 0:5, 5:10] = 1 mask = BitmapMasks(mask_array, 10, 10) mask = mask.translate((20, 20), 5) assert mask.masks.shape == (5, 20, 20) assert_allclose(mask_target, mask.masks) # test out shape smaller mask_array = np.zeros((5, 10, 10), dtype=np.uint8) mask_array[:, 0:5, 0:5] = 1 mask_target = np.zeros((5, 20, 8), dtype=np.uint8) mask_target[:, 0:5, 5:] = 1 mask = BitmapMasks(mask_array, 10, 10) mask = mask.translate((20, 8), 5) assert mask.masks.shape == (5, 20, 8) assert_allclose(mask_target, mask.masks) def test_bitmap_cat(self): # test invalid inputs with self.assertRaises(AssertionError): BitmapMasks.cat(BitmapMasks.random(4)) with self.assertRaises(ValueError): BitmapMasks.cat([]) with self.assertRaises(AssertionError): BitmapMasks.cat([BitmapMasks.random(2), PolygonMasks.random(3)]) masks = [BitmapMasks.random(num_masks=3) for _ in range(5)] cat_mask = BitmapMasks.cat(masks) assert len(cat_mask) == 3 * 5 for i, m in enumerate(masks): assert_allclose(m.masks, cat_mask.masks[i * 3:(i + 1) * 3]) def test_polygon_cat(self): # test invalid inputs with self.assertRaises(AssertionError): PolygonMasks.cat(PolygonMasks.random(4)) with self.assertRaises(ValueError): PolygonMasks.cat([]) with self.assertRaises(AssertionError): PolygonMasks.cat([BitmapMasks.random(2), PolygonMasks.random(3)]) masks = [PolygonMasks.random(num_masks=3) for _ in range(5)] cat_mask = PolygonMasks.cat(masks) assert len(cat_mask) == 3 * 5 for i, m in enumerate(masks): assert_allclose(m.masks, cat_mask.masks[i * 3:(i + 1) * 3])
from unittest import TestCase import numpy as np from mmengine.testing import assert_allclose from mmdet.structures.mask import BitmapMasks class TestMaskStructures(TestCase): def test_bitmap_translate_same_size(self): mask_array = np.zeros((5, 10, 10), dtype=np.uint8) mask_array[:, 0:5, 0:5] = 1 mask_target = np.zeros((5, 10, 10), dtype=np.uint8) mask_target[:, 0:5, 5:10] = 1 mask = BitmapMasks(mask_array, 10, 10) mask = mask.translate((10, 10), 5) assert mask.masks.shape == (5, 10, 10) assert_allclose(mask_target, mask.masks) def test_bitmap_translate_diff_size(self): # test out shape larger mask_array = np.zeros((5, 10, 10), dtype=np.uint8) mask_array[:, 0:5, 0:5] = 1 mask_target = np.zeros((5, 20, 20), dtype=np.uint8) mask_target[:, 0:5, 5:10] = 1 mask = BitmapMasks(mask_array, 10, 10) mask = mask.translate((20, 20), 5) assert mask.masks.shape == (5, 20, 20) assert_allclose(mask_target, mask.masks) # test out shape smaller mask_array = np.zeros((5, 10, 10), dtype=np.uint8) mask_array[:, 0:5, 0:5] = 1 mask_target = np.zeros((5, 20, 8), dtype=np.uint8) mask_target[:, 0:5, 5:] = 1 mask = BitmapMasks(mask_array, 10, 10) mask = mask.translate((20, 8), 5) assert mask.masks.shape == (5, 20, 8) assert_allclose(mask_target, mask.masks)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestRPN(TestCase): def setUp(self): register_all_modules() @parameterized.expand(['rpn/rpn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.registry import MODELS detector = MODELS.build(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.bbox_head) # if rpn.num_classes > 1, force set rpn.num_classes = 1 model.rpn_head.num_classes = 2 detector = MODELS.build(model) self.assertEqual(detector.bbox_head.num_classes, 1) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_loss_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.registry import MODELS assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = MODELS.build(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, True) # Test forward train losses = detector.forward(**data, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_predict_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.registry import MODELS assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = MODELS.build(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_tensor_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.registry import MODELS assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = MODELS.build(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, False) batch_results = detector.forward(**data, mode='tensor') self.assertIsInstance(batch_results, tuple)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestRPN(TestCase): def setUp(self): register_all_modules() @parameterized.expand(['rpn/rpn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.bbox_head) # if rpn.num_classes > 1, force set rpn.num_classes = 1 model.rpn_head.num_classes = 2 detector = build_detector(model) self.assertEqual(detector.bbox_head.num_classes, 1) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_loss_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, True) # Test forward train losses = detector.forward(**data, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_predict_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample) @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_tensor_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, False) batch_results = detector.forward(**data, mode='tensor') self.assertIsInstance(batch_results, tuple)
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then agglomerative clustering with a threshold is applied. """ from sklearn.cluster import AgglomerativeClustering from sentence_transformers import SentenceTransformer embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Some models don't automatically normalize the embeddings, in which case you should normalize the embeddings: # corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True) # Perform agglomerative clustering clustering_model = AgglomerativeClustering( n_clusters=None, distance_threshold=1.5 ) # , affinity='cosine', linkage='average', distance_threshold=0.4) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = {} for sentence_id, cluster_id in enumerate(cluster_assignment): if cluster_id not in clustered_sentences: clustered_sentences[cluster_id] = [] clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in clustered_sentences.items(): print("Cluster ", i + 1) print(cluster) print("")
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then agglomerative clustering with a threshold is applied. """ from sentence_transformers import SentenceTransformer from sklearn.cluster import AgglomerativeClustering embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Some models don't automatically normalize the embeddings, in which case you should normalize the embeddings: # corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True) # Perform agglomerative clustering clustering_model = AgglomerativeClustering( n_clusters=None, distance_threshold=1.5 ) # , affinity='cosine', linkage='average', distance_threshold=0.4) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = {} for sentence_id, cluster_id in enumerate(cluster_assignment): if cluster_id not in clustered_sentences: clustered_sentences[cluster_id] = [] clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in clustered_sentences.items(): print("Cluster ", i + 1) print(cluster) print("")
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from executor.torch_encoder import ImageTorchEncoder from pytest_mock import MockerFixture from torch import hub def test_load_from_url(tmpdir: str, mocker: MockerFixture) -> None: os.environ['TORCH_HOME'] = str(tmpdir) spy = mocker.spy(hub, 'urlopen') _ = ImageTorchEncoder(model_name='mobilenet_v2') assert os.path.isfile( os.path.join(tmpdir, 'hub', 'checkpoints', 'mobilenet_v2-b0353104.pth') ) assert spy.call_count == 1
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from pytest_mock import MockerFixture from torch import hub from ...torch_encoder import ImageTorchEncoder def test_load_from_url(tmpdir: str, mocker: MockerFixture) -> None: os.environ['TORCH_HOME'] = str(tmpdir) spy = mocker.spy(hub, 'urlopen') _ = ImageTorchEncoder(model_name='mobilenet_v2') assert os.path.isfile( os.path.join(tmpdir, 'hub', 'checkpoints', 'mobilenet_v2-b0353104.pth') ) assert spy.call_count == 1
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.11.0', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.10.0', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import pytest import random import string import logging from llama_index.core.schema import ( TextNode, RelatedNodeInfo, NodeRelationship, ) from llama_index.vector_stores.lindorm import ( LindormVectorStore, LindormVectorClient, ) from llama_index.core.vector_stores.types import ( VectorStoreQuery, VectorStoreQueryMode, MetadataFilters, MetadataFilter, FilterOperator, FilterCondition, ) logger = logging.getLogger(__name__) def _get_lindorm_vector_store(): # Lindorm instance info, please replace with your own host = "<ld-bp******jm*******-proxy-search-pub.lindorm.aliyuncs.com>" port = 30070 username = "<your username>" password = "<your password>" index_name = "<lindorm_pytest_index>" nprobe = "2" reorder_factor = "10" # Check if placeholder values exist, skip if they do if "<" in host or "<" in username or "<" in password or "<" in index_name: return None # Create a client and vector store instance client = LindormVectorClient( host=host, port=port, username=username, password=password, index=index_name, dimension=5, nprobe=nprobe, reorder_factor=reorder_factor, ) return LindormVectorStore(client) @pytest.fixture(scope="module") def vector_store(): store = _get_lindorm_vector_store() if not store: pytest.skip("No Lindorm config, skipping test case!") return store @pytest.fixture(scope="session") def nodes(): nodes = [] for i in range(1000): vector = [random.random() for _ in range(5)] characters = string.ascii_letters + string.digits random_string = "".join(random.choices(characters, k=5)) new_node = TextNode( embedding=vector, text=random_string + " " + str(i), relationships={ NodeRelationship.SOURCE: RelatedNodeInfo(node_id="test-" + str(i)) }, metadata={ "author": "test " + random_string, "mark_id": i, }, ) nodes.append(new_node) return nodes def test_add_nodes(vector_store, nodes): added_ids = vector_store.add(nodes) assert len(added_ids) == len(nodes) assert all(id_ for id_ in added_ids) def test_simple_query(vector_store): query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] simple_query = VectorStoreQuery(query_embedding=query_embedding, similarity_top_k=5) result = vector_store.query(simple_query) assert len(result.nodes) > 0 def test_query_with_metadata_filter(vector_store): query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] filter1 = MetadataFilter(key="mark_id", value=0, operator=FilterOperator.GTE) filter2 = MetadataFilter(key="mark_id", value=500, operator=FilterOperator.LTE) filters = MetadataFilters(filters=[filter1, filter2], condition=FilterCondition.AND) filter_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=5, filters=filters ) result = vector_store.query(filter_query) assert len(result.nodes) > 0 def test_lexical_query(vector_store): query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] lexical_query = VectorStoreQuery( mode=VectorStoreQueryMode.TEXT_SEARCH, query_embedding=query_embedding, similarity_top_k=5, # your query str match the field "content"(text you stored in), # and note the minimum search granularity of query str is one token. query_str="your query str", ) result = vector_store.query(lexical_query) assert len(result.nodes) > 0 def test_hybrid_query(vector_store): query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] hybrid_query = VectorStoreQuery( mode=VectorStoreQueryMode.HYBRID, query_embedding=query_embedding, similarity_top_k=5, # your query str match the field "content"(text you stored in), # and note the minimum search granularity of query str is one token. query_str="your query str", ) result = vector_store.query(hybrid_query) assert len(result.nodes) > 0 def test_delete_node(vector_store): vector_store.delete(ref_doc_id="test-0") query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] filter_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=5, filters=MetadataFilters( filters=[ MetadataFilter( key="relationships.SOURCE.node_id", value="test-0", operator=FilterOperator.EQ, ) ], condition=FilterCondition.AND, ), ) result = vector_store.query(filter_query) assert len(result.nodes) == 0
import pytest import random import string import logging from llama_index.core.schema import ( TextNode, RelatedNodeInfo, NodeRelationship, ) from llama_index.vector_stores.lindorm import ( LindormVectorStore, LindormVectorClient, ) from llama_index.core.vector_stores.types import ( VectorStoreQuery, VectorStoreQueryMode, MetadataFilters, MetadataFilter, FilterOperator, FilterCondition, ) logger = logging.getLogger(__name__) def _get_lindorm_vector_store(): # Lindorm instance info, please replace with your own host = "<ld-bp******jm*******-proxy-search-pub.lindorm.aliyuncs.com>" port = 30070 username = "<your username>" password = "<your password>" index_name = "<lindorm_pytest_index>" nprobe = "2" reorder_factor = "10" # Check if placeholder values exist, skip if they do if "<" in host or "<" in username or "<" in password or "<" in index_name: return None # Create a client and vector store instance client = LindormVectorClient( host=host, port=port, username=username, password=password, index=index_name, dimension=5, nprobe=nprobe, reorder_factor=reorder_factor, ) return LindormVectorStore(client) @pytest.fixture(scope="module") def vector_store(): store = _get_lindorm_vector_store() if not store: pytest.skip("No Lindorm config, skipping test case!") return store @pytest.fixture(scope="session") def nodes(): nodes = [] for i in range(1000): vector = [random.random() for _ in range(5)] characters = string.ascii_letters + string.digits random_string = "".join(random.choices(characters, k=5)) new_node = TextNode( embedding=vector, text=random_string + " " + str(i), relationships={ NodeRelationship.SOURCE: RelatedNodeInfo(node_id="test-" + str(i)) }, metadata={ "author": "test " + random_string, "mark_id": i, }, ) nodes.append(new_node) return nodes def test_add_nodes(vector_store, nodes): added_ids = vector_store.add(nodes) assert len(added_ids) == len(nodes) assert all(id_ for id_ in added_ids) def test_simple_query(vector_store): query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] simple_query = VectorStoreQuery(query_embedding=query_embedding, similarity_top_k=5) result = vector_store.query(simple_query) assert len(result.nodes) > 0 def test_query_with_metadata_filter(vector_store): query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] filter1 = MetadataFilter(key="mark_id", value=0, operator=FilterOperator.GTE) filter2 = MetadataFilter(key="mark_id", value=500, operator=FilterOperator.LTE) filters = MetadataFilters(filters=[filter1, filter2], condition=FilterCondition.AND) filter_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=5, filters=filters ) result = vector_store.query(filter_query) assert len(result.nodes) > 0 def test_lexical_query(vector_store): query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] lexical_query = VectorStoreQuery( mode=VectorStoreQueryMode.TEXT_SEARCH, query_embedding=query_embedding, similarity_top_k=5, # your query str match the field "content"(text you stored in), # and note the the minimum search granularity of query str is one token. query_str="your query str", ) result = vector_store.query(lexical_query) assert len(result.nodes) > 0 def test_hybrid_query(vector_store): query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] hybrid_query = VectorStoreQuery( mode=VectorStoreQueryMode.HYBRID, query_embedding=query_embedding, similarity_top_k=5, # your query str match the field "content"(text you stored in), # and note the the minimum search granularity of query str is one token. query_str="your query str", ) result = vector_store.query(hybrid_query) assert len(result.nodes) > 0 def test_delete_node(vector_store): vector_store.delete(ref_doc_id="test-0") query_embedding = [1.0, 1.0, 1.0, 1.0, 1.0] filter_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=5, filters=MetadataFilters( filters=[ MetadataFilter( key="relationships.SOURCE.node_id", value="test-0", operator=FilterOperator.EQ, ) ], condition=FilterCondition.AND, ), ) result = vector_store.query(filter_query) assert len(result.nodes) == 0
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_loaders.langsmith import ( LangSmithDatasetChatLoader, LangSmithRunChatLoader, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "LangSmithRunChatLoader": "langchain_community.chat_loaders.langsmith", "LangSmithDatasetChatLoader": "langchain_community.chat_loaders.langsmith", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LangSmithDatasetChatLoader", "LangSmithRunChatLoader", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_loaders.langsmith import ( LangSmithDatasetChatLoader, LangSmithRunChatLoader, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "LangSmithRunChatLoader": "langchain_community.chat_loaders.langsmith", "LangSmithDatasetChatLoader": "langchain_community.chat_loaders.langsmith", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LangSmithRunChatLoader", "LangSmithDatasetChatLoader", ]
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule, auto_fp16, force_fp32 from mmdet.models.utils import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS @MODELS.register_module() class GlobalContextHead(BaseModule): """Global context head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: num_convs (int, optional): number of convolutional layer in GlbCtxHead. Default: 4. in_channels (int, optional): number of input channels. Default: 256. conv_out_channels (int, optional): number of output channels before classification layer. Default: 256. num_classes (int, optional): number of classes. Default: 80. loss_weight (float, optional): global context loss weight. Default: 1. conv_cfg (dict, optional): config to init conv layer. Default: None. norm_cfg (dict, optional): config to init norm layer. Default: None. conv_to_res (bool, optional): if True, 2 convs will be grouped into 1 `SimplifiedBasicBlock` using a skip connection. Default: False. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_weight=1.0, conv_cfg=None, norm_cfg=None, conv_to_res=False, init_cfg=dict( type='Normal', std=0.01, override=dict(name='fc'))): super(GlobalContextHead, self).__init__(init_cfg) self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.loss_weight = loss_weight self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.conv_to_res = conv_to_res self.fp16_enabled = False if self.conv_to_res: num_res_blocks = num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks else: self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(conv_out_channels, num_classes) self.criterion = nn.BCEWithLogitsLoss() @auto_fp16() def forward(self, feats): """Forward function.""" x = feats[-1] for i in range(self.num_convs): x = self.convs[i](x) x = self.pool(x) # multi-class prediction mc_pred = x.reshape(x.size(0), -1) mc_pred = self.fc(mc_pred) return mc_pred, x @force_fp32(apply_to=('pred', )) def loss(self, pred, labels): """Loss function.""" labels = [lbl.unique() for lbl in labels] targets = pred.new_zeros(pred.size()) for i, label in enumerate(labels): targets[i, label] = 1.0 loss = self.loss_weight * self.criterion(pred, targets) return loss
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule, auto_fp16, force_fp32 from mmdet.models.builder import HEADS from mmdet.models.utils import ResLayer, SimplifiedBasicBlock @HEADS.register_module() class GlobalContextHead(BaseModule): """Global context head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: num_convs (int, optional): number of convolutional layer in GlbCtxHead. Default: 4. in_channels (int, optional): number of input channels. Default: 256. conv_out_channels (int, optional): number of output channels before classification layer. Default: 256. num_classes (int, optional): number of classes. Default: 80. loss_weight (float, optional): global context loss weight. Default: 1. conv_cfg (dict, optional): config to init conv layer. Default: None. norm_cfg (dict, optional): config to init norm layer. Default: None. conv_to_res (bool, optional): if True, 2 convs will be grouped into 1 `SimplifiedBasicBlock` using a skip connection. Default: False. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_weight=1.0, conv_cfg=None, norm_cfg=None, conv_to_res=False, init_cfg=dict( type='Normal', std=0.01, override=dict(name='fc'))): super(GlobalContextHead, self).__init__(init_cfg) self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.loss_weight = loss_weight self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.conv_to_res = conv_to_res self.fp16_enabled = False if self.conv_to_res: num_res_blocks = num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks else: self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(conv_out_channels, num_classes) self.criterion = nn.BCEWithLogitsLoss() @auto_fp16() def forward(self, feats): """Forward function.""" x = feats[-1] for i in range(self.num_convs): x = self.convs[i](x) x = self.pool(x) # multi-class prediction mc_pred = x.reshape(x.size(0), -1) mc_pred = self.fc(mc_pred) return mc_pred, x @force_fp32(apply_to=('pred', )) def loss(self, pred, labels): """Loss function.""" labels = [lbl.unique() for lbl in labels] targets = pred.new_zeros(pred.size()) for i, label in enumerate(labels): targets[i, label] = 1.0 loss = self.loss_weight * self.criterion(pred, targets) return loss
# Copyright (c) OpenMMLab. All rights reserved. from torch import Tensor from mmdet.data_elements import SampleList from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .faster_rcnn import FasterRCNN @MODELS.register_module() class TridentFasterRCNN(FasterRCNN): """Implementation of `TridentNet <https://arxiv.org/abs/1901.01892>`_""" def __init__(self, backbone: ConfigType, rpn_head: ConfigType, roi_head: ConfigType, train_cfg: ConfigType, test_cfg: ConfigType, neck: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg) assert self.backbone.num_branch == self.roi_head.num_branch assert self.backbone.test_branch_idx == self.roi_head.test_branch_idx self.num_branch = self.backbone.num_branch self.test_branch_idx = self.backbone.test_branch_idx def _forward(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> tuple: """copy the ``batch_data_samples`` to fit multi-branch.""" num_branch = self.num_branch \ if self.training or self.test_branch_idx == -1 else 1 trident_data_samples = batch_data_samples * num_branch return super()._forward( batch_inputs=batch_inputs, batch_data_samples=trident_data_samples) def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> dict: """copy the ``batch_data_samples`` to fit multi-branch.""" num_branch = self.num_branch \ if self.training or self.test_branch_idx == -1 else 1 trident_data_samples = batch_data_samples * num_branch return super().loss( batch_inputs=batch_inputs, batch_data_samples=trident_data_samples) def predict(self, batch_inputs: Tensor, batch_data_samples: SampleList, rescale: bool = True) -> SampleList: """copy the ``batch_data_samples`` to fit multi-branch.""" num_branch = self.num_branch \ if self.training or self.test_branch_idx == -1 else 1 trident_data_samples = batch_data_samples * num_branch return super().predict( batch_inputs=batch_inputs, batch_data_samples=trident_data_samples, rescale=rescale) # TODO need to refactor def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ x = self.extract_feats(imgs) num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = [img_metas * num_branch for img_metas in img_metas] proposal_list = self.rpn_head.aug_test_rpn(x, trident_img_metas) return self.roi_head.aug_test( x, proposal_list, img_metas, rescale=rescale)
# Copyright (c) OpenMMLab. All rights reserved. from torch import Tensor from mmdet.core import SampleList from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .faster_rcnn import FasterRCNN @MODELS.register_module() class TridentFasterRCNN(FasterRCNN): """Implementation of `TridentNet <https://arxiv.org/abs/1901.01892>`_""" def __init__(self, backbone: ConfigType, rpn_head: ConfigType, roi_head: ConfigType, train_cfg: ConfigType, test_cfg: ConfigType, neck: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg) assert self.backbone.num_branch == self.roi_head.num_branch assert self.backbone.test_branch_idx == self.roi_head.test_branch_idx self.num_branch = self.backbone.num_branch self.test_branch_idx = self.backbone.test_branch_idx def _forward(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> tuple: """copy the ``batch_data_samples`` to fit multi-branch.""" num_branch = self.num_branch \ if self.training or self.test_branch_idx == -1 else 1 trident_data_samples = batch_data_samples * num_branch return super()._forward( batch_inputs=batch_inputs, batch_data_samples=trident_data_samples) def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> dict: """copy the ``batch_data_samples`` to fit multi-branch.""" num_branch = self.num_branch \ if self.training or self.test_branch_idx == -1 else 1 trident_data_samples = batch_data_samples * num_branch return super().loss( batch_inputs=batch_inputs, batch_data_samples=trident_data_samples) def predict(self, batch_inputs: Tensor, batch_data_samples: SampleList, rescale: bool = True) -> SampleList: """copy the ``batch_data_samples`` to fit multi-branch.""" num_branch = self.num_branch \ if self.training or self.test_branch_idx == -1 else 1 trident_data_samples = batch_data_samples * num_branch return super().predict( batch_inputs=batch_inputs, batch_data_samples=trident_data_samples, rescale=rescale) # TODO need to refactor def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ x = self.extract_feats(imgs) num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = [img_metas * num_branch for img_metas in img_metas] proposal_list = self.rpn_head.aug_test_rpn(x, trident_img_metas) return self.roi_head.aug_test( x, proposal_list, img_metas, rescale=rescale)
from ._vggish_pipeline import VGGISH as _VGGISH, VGGishBundle from torchaudio._internal.module_utils import dropping_const_support VGGISH = dropping_const_support(_VGGISH, "VGGISH") __all__ = ["VGGISH", "VGGishBundle"]
from ._vggish_pipeline import VGGISH, VGGishBundle __all__ = ["VGGISH", "VGGishBundle"]
import os import torchaudio import torchvision from torch.utils.data import Dataset def _load_list(args, *filenames): output = [] length = [] for filename in filenames: filepath = os.path.join(args.root_dir, "labels", filename) for line in open(filepath).read().splitlines(): dataset, rel_path, input_length = line.split(",")[0], line.split(",")[1], line.split(",")[2] path = os.path.normpath(os.path.join(args.root_dir, dataset, rel_path[:-4] + ".mp4")) length.append(int(input_length)) output.append(path) return output, length def load_video(path): """ rtype: torch, T x C x H x W """ vid = torchvision.io.read_video(path, pts_unit="sec", output_format="THWC")[0] vid = vid.permute((0, 3, 1, 2)) return vid def load_audio(path): """ rtype: torch, T x 1 """ waveform, sample_rate = torchaudio.load(path, normalize=True) return waveform.transpose(1, 0) def load_transcript(path): transcript_path = path.replace("video_seg", "text_seg")[:-4] + ".txt" return open(transcript_path).read().splitlines()[0] def load_item(path, md): if md == "v": return (load_video(path), load_transcript(path)) if md == "a": return (load_audio(path), load_transcript(path)) if md == "av": return (load_audio(path), load_video(path), load_transcript(path)) class LRS3(Dataset): def __init__( self, args, subset: str = "train", ) -> None: if subset is not None and subset not in ["train", "val", "test"]: raise ValueError("When `subset` is not None, it must be one of ['train', 'val', 'test'].") self.args = args if subset == "train": self._filelist, self._lengthlist = _load_list(self.args, "lrs3_train_transcript_lengths_seg16s.csv") if subset == "val": self._filelist, self._lengthlist = _load_list(self.args, "lrs3_test_transcript_lengths_seg16s.csv") if subset == "test": self._filelist, self._lengthlist = _load_list(self.args, "lrs3_test_transcript_lengths_seg16s.csv") def __getitem__(self, n): path = self._filelist[n] return load_item(path, self.args.md) def __len__(self) -> int: return len(self._filelist)
import os import torchaudio import torchvision from torch.utils.data import Dataset def _load_list(args, *filenames): output = [] length = [] for filename in filenames: filepath = os.path.join(os.path.dirname(args.dataset_path), filename) for line in open(filepath).read().splitlines(): rel_path, input_length = line.split(",")[1:3] path = os.path.normpath(os.path.join(args.dataset_path, rel_path[:-4] + ".mp4")) length.append(int(input_length)) output.append(path) return output, length def load_video(path): """ rtype: torch, T x C x H x W """ vid = torchvision.io.read_video(path, pts_unit="sec", output_format="THWC")[0] vid = vid.permute((0, 3, 1, 2)) return vid def load_audio(path): """ rtype: torch, T x 1 """ waveform, sample_rate = torchaudio.load(path, normalize=True) return waveform.transpose(1, 0) def load_transcript(path): transcript_path = path.replace("video_seg", "text_seg")[:-4] + ".txt" return open(transcript_path).read().splitlines()[0] def load_item(path, md): if md == "v": return (load_video(path), load_transcript(path)) if md == "a": return (load_audio(path), load_transcript(path)) if md == "av": return (load_audio(path), load_video(path), load_transcript(path)) class LRS3(Dataset): def __init__( self, args, subset: str = "train", ) -> None: if subset is not None and subset not in ["train", "val", "test"]: raise ValueError("When `subset` is not None, it must be one of ['train', 'val', 'test'].") self.args = args if subset == "train": self._filelist, self._lengthlist = _load_list(self.args, "train_transcript_lengths_seg16s.csv") if subset == "val": self._filelist, self._lengthlist = _load_list(self.args, "test_transcript_lengths_seg16s.csv") if subset == "test": self._filelist, self._lengthlist = _load_list(self.args, "test_transcript_lengths_seg16s.csv") def __getitem__(self, n): path = self._filelist[n] return load_item(path, self.args.md) def __len__(self) -> int: return len(self._filelist)
import math from typing import List, Optional from llama_index.core.agent.react.types import ( BaseReasoningStep, ResponseReasoningStep, ) from llama_index.core.bridge.pydantic import Field, BaseModel from llama_index.core.prompts import PromptTemplate # taken from the paper DEFAULT_REFLECTION_PROMPT_STR = """\ Given a query and a conversation trajectory, evaluate two things regarding whether the conversation answers the question: - **correctness**: Whether the thoughts and actions so far are correctly answering the query, even if the answer is not found yet. Rate from 1-10, where 1 is incorrect and 10 is correct. - **completeness**: Whether the answer is found yet. Provide your reasoning and analysis in detail. Focus on the latest thought, action, and observation. Incomplete trajectories can be correct if the thoughts and actions so far are correct, \ even if the answer is not found yet. Do not generate additional thoughts or actions. Query: {query} Conversation History: {conversation_history} """ DEFAULT_REFLECTION_PROMPT = PromptTemplate(DEFAULT_REFLECTION_PROMPT_STR) DEFAULT_CANDIDATES_PROMPT_STR = """\ Given a query and a conversation trajectory, provide a list of candidates {num_candidates} for the next reasoning step. Focus on the latest thought, action, and observation. Do not generate additional thoughts or actions. Query: {query} Conversation History: {conversation_history} """ DEFAULT_CANDIDATES_PROMPT = PromptTemplate(DEFAULT_CANDIDATES_PROMPT_STR) class Candidates(BaseModel): """Candidates for the next reasoning step.""" candidates: List[str] class Evaluation(BaseModel): """Evaluation of a given node.""" score: int = Field( description="Score of the reflection indicating **correctness**. Integer from 1-10", lte=10, gte=0, ) is_done: bool = Field( False, description="Whether the answer is found yet (**completeness**)." ) reasoning: str = Field( default="", description="Reasoning and justification for the evaluation." ) class SearchNode(BaseModel): """ Search node. Named differently from `Node` which is a core module in LlamaIndex. """ current_reasoning: List[BaseReasoningStep] = Field( ..., description="Current reasoning." ) parent: Optional["SearchNode"] = Field(default=None, description="Parent node.") children: List["SearchNode"] = Field( default_factory=list, description="Children nodes." ) evaluation: Evaluation = Field(..., description="Evaluation of the node.") visits: int = Field(default=0, description="Number of visits to the node.") @property def answer(self) -> Optional[str]: """Answer.""" if not self.current_reasoning: return None if isinstance(self.current_reasoning[-1], ResponseReasoningStep): return self.current_reasoning[-1].response else: return self.current_reasoning[-1].get_content() @property def is_done(self) -> bool: """Is the node done.""" return self.evaluation.is_done @property def score(self) -> float: """Score of the node.""" return self.evaluation.score @property def upper_confidence_bound(self) -> float: """Upper confidence bound.""" return self.score + 1.0 * math.sqrt(math.log(self.parent.visits) / self.visits) def backpropagate(self, reward: float) -> None: """Backpropagate the reward.""" cur_node = self while cur_node is not None: cur_node.visits += 1 cur_node.evaluation.score = ( reward + (cur_node.visits - 1) * cur_node.score ) / cur_node.visits cur_node = cur_node.parent def get_best_leaf(self) -> "SearchNode": """ Get best leaf node. Get best leaf node across any children nodes. """ # only get children that aren't done yet free_children = [c for c in self.children if not c.is_done] if not free_children: return self best_child = max(free_children, key=lambda x: x.upper_confidence_bound) return best_child.get_best_leaf()
import math from typing import List, Optional from llama_index.core.agent.react.types import ( BaseReasoningStep, ResponseReasoningStep, ) from llama_index.core.bridge.pydantic import Field, BaseModel from llama_index.core.prompts import PromptTemplate # taken from the paper DEFAULT_REFLECTION_PROMPT_STR = """\ Given a query and a conversation trajectory, evaluate two things regarding whether the conversation answers the question: - **correctness**: Whether the thoughts and actions so far are correctly answering the query, even if the answer is not found yet. Rate from 1-10, where 1 is incorrect and 10 is correct. - **completeness**: Whether the answer is found yet. Provide your reasoning and analysis in detail. Focus on the latest thought, action, and observation. Incomplete trajectories can be correct if the thoughts and actions so far are correct, \ even if the answer is not found yet. Do not generate additional thoughts or actions. Query: {query} Conversation History: {conversation_history} """ DEFAULT_REFLECTION_PROMPT = PromptTemplate(DEFAULT_REFLECTION_PROMPT_STR) DEFAULT_CANDIDATES_PROMPT_STR = """\ Given a query and a conversation trajectory, provide a list of candidates {num_candidates} for the next reasoning step. Focus on the latest thought, action, and observation. Do not generate additional thoughts or actions. Query: {query} Conversation History: {conversation_history} """ DEFAULT_CANDIDATES_PROMPT = PromptTemplate(DEFAULT_CANDIDATES_PROMPT_STR) class Candidates(BaseModel): """Candidates for the next reasoning step.""" candidates: List[str] class Evaluation(BaseModel): """Evaluation of a given node.""" score: int = Field( description="Score of the reflection indicating **correctness**. Integer from 1-10", lte=10, gte=0, ) is_done: bool = Field( False, description="Whether the answer is found yet (**completeness**)." ) reasoning: str = Field( default="", description="Reasoning and justification for the evaluation." ) class SearchNode(BaseModel): """Search node. Named differently from `Node` which is a core module in LlamaIndex. """ current_reasoning: List[BaseReasoningStep] = Field( ..., description="Current reasoning." ) parent: Optional["SearchNode"] = Field(default=None, description="Parent node.") children: List["SearchNode"] = Field( default_factory=list, description="Children nodes." ) evaluation: Evaluation = Field(..., description="Evaluation of the node.") visits: int = Field(default=0, description="Number of visits to the node.") @property def answer(self) -> Optional[str]: """Answer.""" if not self.current_reasoning: return None if isinstance(self.current_reasoning[-1], ResponseReasoningStep): return self.current_reasoning[-1].response else: return self.current_reasoning[-1].get_content() @property def is_done(self) -> bool: """Is the node done.""" return self.evaluation.is_done @property def score(self) -> float: """Score of the node.""" return self.evaluation.score @property def upper_confidence_bound(self) -> float: """Upper confidence bound.""" return self.score + 1.0 * math.sqrt(math.log(self.parent.visits) / self.visits) def backpropagate(self, reward: float) -> None: """Backpropagate the reward.""" cur_node = self while cur_node is not None: cur_node.visits += 1 cur_node.evaluation.score = ( reward + (cur_node.visits - 1) * cur_node.score ) / cur_node.visits cur_node = cur_node.parent def get_best_leaf(self) -> "SearchNode": """Get best leaf node. Get best leaf node across any children nodes. """ # only get children that aren't done yet free_children = [c for c in self.children if not c.is_done] if not free_children: return self best_child = max(free_children, key=lambda x: x.upper_confidence_bound) return best_child.get_best_leaf()
from typing import TYPE_CHECKING from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from google.protobuf import __version__ as __pb__version__ else: protobuf = import_library('google.protobuf', raise_error=True) __pb__version__ = protobuf.__version__ if __pb__version__.startswith('4'): from docarray.proto.pb.docarray_pb2 import ( DictOfAnyProto, DocArrayStackedProto, DocumentArrayProto, DocumentProto, ListOfAnyProto, ListOfDocArrayProto, NdArrayProto, NodeProto, ) else: from docarray.proto.pb2.docarray_pb2 import ( DictOfAnyProto, DocArrayStackedProto, DocumentArrayProto, DocumentProto, ListOfAnyProto, ListOfDocArrayProto, NdArrayProto, NodeProto, ) __all__ = [ 'DocumentArrayProto', 'DocumentProto', 'NdArrayProto', 'NodeProto', 'DocArrayStackedProto', 'DocumentArrayProto', 'ListOfDocArrayProto', 'ListOfAnyProto', 'DictOfAnyProto', ]
from google.protobuf import __version__ as __pb__version__ if __pb__version__.startswith('4'): from docarray.proto.pb.docarray_pb2 import ( DictOfAnyProto, DocArrayStackedProto, DocumentArrayProto, DocumentProto, ListOfAnyProto, ListOfDocArrayProto, NdArrayProto, NodeProto, ) else: from docarray.proto.pb2.docarray_pb2 import ( DictOfAnyProto, DocArrayStackedProto, DocumentArrayProto, DocumentProto, ListOfAnyProto, ListOfDocArrayProto, NdArrayProto, NodeProto, ) __all__ = [ 'DocumentArrayProto', 'DocumentProto', 'NdArrayProto', 'NodeProto', 'DocArrayStackedProto', 'DocumentArrayProto', 'ListOfDocArrayProto', 'ListOfAnyProto', 'DictOfAnyProto', ]
from __future__ import annotations from typing import Any from langchain_text_splitters.base import TextSplitter class NLTKTextSplitter(TextSplitter): """Splitting text using NLTK package.""" def __init__( self, separator: str = "\n\n", language: str = "english", *, use_span_tokenize: bool = False, **kwargs: Any, ) -> None: """Initialize the NLTK splitter.""" super().__init__(**kwargs) self._separator = separator self._language = language self._use_span_tokenize = use_span_tokenize if self._use_span_tokenize and self._separator != "": raise ValueError("When use_span_tokenize is True, separator should be ''") try: import nltk if self._use_span_tokenize: self._tokenizer = nltk.tokenize._get_punkt_tokenizer(self._language) else: self._tokenizer = nltk.tokenize.sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) def split_text(self, text: str) -> list[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. if self._use_span_tokenize: spans = list(self._tokenizer.span_tokenize(text)) splits = [] for i, (start, end) in enumerate(spans): if i > 0: prev_end = spans[i - 1][1] sentence = text[prev_end:start] + text[start:end] else: sentence = text[start:end] splits.append(sentence) else: splits = self._tokenizer(text, language=self._language) return self._merge_splits(splits, self._separator)
from __future__ import annotations from typing import Any, List from langchain_text_splitters.base import TextSplitter class NLTKTextSplitter(TextSplitter): """Splitting text using NLTK package.""" def __init__( self, separator: str = "\n\n", language: str = "english", *, use_span_tokenize: bool = False, **kwargs: Any, ) -> None: """Initialize the NLTK splitter.""" super().__init__(**kwargs) self._separator = separator self._language = language self._use_span_tokenize = use_span_tokenize if self._use_span_tokenize and self._separator != "": raise ValueError("When use_span_tokenize is True, separator should be ''") try: import nltk if self._use_span_tokenize: self._tokenizer = nltk.tokenize._get_punkt_tokenizer(self._language) else: self._tokenizer = nltk.tokenize.sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. if self._use_span_tokenize: spans = list(self._tokenizer.span_tokenize(text)) splits = [] for i, (start, end) in enumerate(spans): if i > 0: prev_end = spans[i - 1][1] sentence = text[prev_end:start] + text[start:end] else: sentence = text[start:end] splits.append(sentence) else: splits = self._tokenizer(text, language=self._language) return self._merge_splits(splits, self._separator)
import textwrap import pyarrow as pa import pytest from datasets import Features, Image from datasets.builder import InvalidConfigName from datasets.data_files import DataFilesList from datasets.packaged_modules.text.text import Text, TextConfig from ..utils import require_pil @pytest.fixture def text_file(tmp_path): filename = tmp_path / "text.txt" data = textwrap.dedent( """\ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Second paragraph: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. """ ) with open(filename, "w", encoding="utf-8") as f: f.write(data) return str(filename) @pytest.fixture def text_file_with_image(tmp_path, image_file): filename = tmp_path / "text_with_image.txt" with open(filename, "w", encoding="utf-8") as f: f.write(image_file) return str(filename) def test_config_raises_when_invalid_name() -> None: with pytest.raises(InvalidConfigName, match="Bad characters"): _ = TextConfig(name="name-with-*-invalid-character") @pytest.mark.parametrize("data_files", ["str_path", ["str_path"], DataFilesList(["str_path"], [()])]) def test_config_raises_when_invalid_data_files(data_files) -> None: with pytest.raises(ValueError, match="Expected a DataFilesDict"): _ = TextConfig(name="name", data_files=data_files) @pytest.mark.parametrize("keep_linebreaks", [True, False]) def test_text_linebreaks(text_file, keep_linebreaks): with open(text_file, encoding="utf-8") as f: expected_content = f.read().splitlines(keepends=keep_linebreaks) text = Text(keep_linebreaks=keep_linebreaks, encoding="utf-8") generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content @require_pil def test_text_cast_image(text_file_with_image): with open(text_file_with_image, encoding="utf-8") as f: image_file = f.read().splitlines()[0] text = Text(encoding="utf-8", features=Features({"image": Image()})) generator = text._generate_tables([[text_file_with_image]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("image").type == Image()() generated_content = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] @pytest.mark.parametrize("sample_by", ["line", "paragraph", "document"]) def test_text_sample_by(sample_by, text_file): with open(text_file, encoding="utf-8") as f: expected_content = f.read() if sample_by == "line": expected_content = expected_content.splitlines() elif sample_by == "paragraph": expected_content = expected_content.split("\n\n") elif sample_by == "document": expected_content = [expected_content] text = Text(sample_by=sample_by, encoding="utf-8", chunksize=100) generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content
import textwrap import pyarrow as pa import pytest from datasets import Features, Image from datasets.packaged_modules.text.text import Text from ..utils import require_pil @pytest.fixture def text_file(tmp_path): filename = tmp_path / "text.txt" data = textwrap.dedent( """\ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Second paragraph: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. """ ) with open(filename, "w", encoding="utf-8") as f: f.write(data) return str(filename) @pytest.fixture def text_file_with_image(tmp_path, image_file): filename = tmp_path / "text_with_image.txt" with open(filename, "w", encoding="utf-8") as f: f.write(image_file) return str(filename) @pytest.mark.parametrize("keep_linebreaks", [True, False]) def test_text_linebreaks(text_file, keep_linebreaks): with open(text_file, encoding="utf-8") as f: expected_content = f.read().splitlines(keepends=keep_linebreaks) text = Text(keep_linebreaks=keep_linebreaks, encoding="utf-8") generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content @require_pil def test_text_cast_image(text_file_with_image): with open(text_file_with_image, encoding="utf-8") as f: image_file = f.read().splitlines()[0] text = Text(encoding="utf-8", features=Features({"image": Image()})) generator = text._generate_tables([[text_file_with_image]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("image").type == Image()() generated_content = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] @pytest.mark.parametrize("sample_by", ["line", "paragraph", "document"]) def test_text_sample_by(sample_by, text_file): with open(text_file, encoding="utf-8") as f: expected_content = f.read() if sample_by == "line": expected_content = expected_content.splitlines() elif sample_by == "paragraph": expected_content = expected_content.split("\n\n") elif sample_by == "document": expected_content = [expected_content] text = Text(sample_by=sample_by, encoding="utf-8", chunksize=100) generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content
from keras.src import ops from keras.src.api_export import keras_export from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer @keras_export("keras.layers.Permute") class Permute(Layer): """Permutes the dimensions of the input according to a given pattern. Useful e.g. connecting RNNs and convnets. Args: dims: Tuple of integers. Permutation pattern does not include the batch dimension. Indexing starts at 1. For instance, `(1, 3, 2)` permutes the second and third dimensions of the input. Input shape: Arbitrary. Output shape: Same as the input shape, but with the dimensions re-ordered according to the specified pattern. Example: >>> x = keras.Input(shape=(10, 64)) >>> y = keras.layers.Permute((2, 1))(x) >>> y.shape (None, 64, 10) """ def __init__(self, dims, **kwargs): super().__init__(**kwargs) self.dims = tuple(dims) if sorted(dims) != list(range(1, len(dims) + 1)): raise ValueError( "Invalid permutation argument `dims` for Permute Layer. " "The set of indices in `dims` must be consecutive and start " f"from 1. Received dims={dims}" ) self.input_spec = InputSpec(ndim=len(self.dims) + 1) def compute_output_shape(self, input_shape): output_shape = [input_shape[0]] for dim in self.dims: output_shape.append(input_shape[dim]) return tuple(output_shape) def compute_output_spec(self, inputs): output_shape = self.compute_output_shape(inputs.shape) return KerasTensor( shape=output_shape, dtype=inputs.dtype, sparse=inputs.sparse ) def call(self, inputs): return ops.transpose(inputs, axes=(0,) + self.dims) def get_config(self): config = {"dims": self.dims} base_config = super().get_config() return {**base_config, **config}
from keras.src import ops from keras.src.api_export import keras_export from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer @keras_export("keras.layers.Permute") class Permute(Layer): """Permutes the dimensions of the input according to a given pattern. Useful e.g. connecting RNNs and convnets. Args: dims: Tuple of integers. Permutation pattern does not include the batch dimension. Indexing starts at 1. For instance, `(2, 1)` permutes the first and second dimensions of the input. Input shape: Arbitrary. Output shape: Same as the input shape, but with the dimensions re-ordered according to the specified pattern. Example: >>> x = keras.Input(shape=(10, 64)) >>> y = keras.layers.Permute((2, 1))(x) >>> y.shape (None, 64, 10) """ def __init__(self, dims, **kwargs): super().__init__(**kwargs) self.dims = tuple(dims) if sorted(dims) != list(range(1, len(dims) + 1)): raise ValueError( "Invalid permutation argument `dims` for Permute Layer. " "The set of indices in `dims` must be consecutive and start " f"from 1. Received dims={dims}" ) self.input_spec = InputSpec(ndim=len(self.dims) + 1) def compute_output_shape(self, input_shape): output_shape = [input_shape[0]] for dim in self.dims: output_shape.append(input_shape[dim]) return tuple(output_shape) def compute_output_spec(self, inputs): output_shape = self.compute_output_shape(inputs.shape) return KerasTensor( shape=output_shape, dtype=inputs.dtype, sparse=inputs.sparse ) def call(self, inputs): return ops.transpose(inputs, axes=(0,) + self.dims) def get_config(self): config = {"dims": self.dims} base_config = super().get_config() return {**base_config, **config}
from __future__ import annotations from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SparseTripletLoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin)
from __future__ import annotations from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SparseTripletLoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin)
from __future__ import annotations from enum import Enum from typing import Any, Mapping, Optional, Sequence, Tuple, Union import torch from torch.utils._pytree import tree_flatten from ._tv_tensor import TVTensor class BoundingBoxFormat(Enum): """Coordinate format of a bounding box. Available formats are * ``XYXY`` * ``XYWH`` * ``CXCYWH`` """ XYXY = "XYXY" XYWH = "XYWH" CXCYWH = "CXCYWH" class BoundingBoxes(TVTensor): """:class:`torch.Tensor` subclass for bounding boxes. .. note:: There should be only one :class:`~torchvision.tv_tensors.BoundingBoxes` instance per sample e.g. ``{"img": img, "bbox": BoundingBoxes(...)}``, although one :class:`~torchvision.tv_tensors.BoundingBoxes` object can contain multiple bounding boxes. Args: data: Any data that can be turned into a tensor with :func:`torch.as_tensor`. format (BoundingBoxFormat, str): Format of the bounding box. canvas_size (two-tuple of ints): Height and width of the corresponding image or video. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ format: BoundingBoxFormat canvas_size: Tuple[int, int] @classmethod def _wrap(cls, tensor: torch.Tensor, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], check_dims: bool = True) -> BoundingBoxes: # type: ignore[override] if check_dims: if tensor.ndim == 1: tensor = tensor.unsqueeze(0) elif tensor.ndim != 2: raise ValueError(f"Expected a 1D or 2D tensor, got {tensor.ndim}D") if isinstance(format, str): format = BoundingBoxFormat[format.upper()] bounding_boxes = tensor.as_subclass(cls) bounding_boxes.format = format bounding_boxes.canvas_size = canvas_size return bounding_boxes def __new__( cls, data: Any, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> BoundingBoxes: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, format=format, canvas_size=canvas_size) @classmethod def _wrap_output( cls, output: torch.Tensor, args: Sequence[Any] = (), kwargs: Optional[Mapping[str, Any]] = None, ) -> BoundingBoxes: # If there are BoundingBoxes instances in the output, their metadata got lost when we called # super().__torch_function__. We need to restore the metadata somehow, so we choose to take # the metadata from the first bbox in the parameters. # This should be what we want in most cases. When it's not, it's probably a mis-use anyway, e.g. # something like some_xyxy_bbox + some_xywh_bbox; we don't guard against those cases. flat_params, _ = tree_flatten(args + (tuple(kwargs.values()) if kwargs else ())) # type: ignore[operator] first_bbox_from_args = next(x for x in flat_params if isinstance(x, BoundingBoxes)) format, canvas_size = first_bbox_from_args.format, first_bbox_from_args.canvas_size if isinstance(output, torch.Tensor) and not isinstance(output, BoundingBoxes): output = BoundingBoxes._wrap(output, format=format, canvas_size=canvas_size, check_dims=False) elif isinstance(output, (tuple, list)): output = type(output)( BoundingBoxes._wrap(part, format=format, canvas_size=canvas_size, check_dims=False) for part in output ) return output def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr(format=self.format, canvas_size=self.canvas_size)
from __future__ import annotations from enum import Enum from typing import Any, Mapping, Optional, Sequence, Tuple, Union import torch from torch.utils._pytree import tree_flatten from ._tv_tensor import TVTensor class BoundingBoxFormat(Enum): """[BETA] Coordinate format of a bounding box. Available formats are * ``XYXY`` * ``XYWH`` * ``CXCYWH`` """ XYXY = "XYXY" XYWH = "XYWH" CXCYWH = "CXCYWH" class BoundingBoxes(TVTensor): """[BETA] :class:`torch.Tensor` subclass for bounding boxes. .. note:: There should be only one :class:`~torchvision.tv_tensors.BoundingBoxes` instance per sample e.g. ``{"img": img, "bbox": BoundingBoxes(...)}``, although one :class:`~torchvision.tv_tensors.BoundingBoxes` object can contain multiple bounding boxes. Args: data: Any data that can be turned into a tensor with :func:`torch.as_tensor`. format (BoundingBoxFormat, str): Format of the bounding box. canvas_size (two-tuple of ints): Height and width of the corresponding image or video. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ format: BoundingBoxFormat canvas_size: Tuple[int, int] @classmethod def _wrap(cls, tensor: torch.Tensor, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], check_dims: bool = True) -> BoundingBoxes: # type: ignore[override] if check_dims: if tensor.ndim == 1: tensor = tensor.unsqueeze(0) elif tensor.ndim != 2: raise ValueError(f"Expected a 1D or 2D tensor, got {tensor.ndim}D") if isinstance(format, str): format = BoundingBoxFormat[format.upper()] bounding_boxes = tensor.as_subclass(cls) bounding_boxes.format = format bounding_boxes.canvas_size = canvas_size return bounding_boxes def __new__( cls, data: Any, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> BoundingBoxes: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, format=format, canvas_size=canvas_size) @classmethod def _wrap_output( cls, output: torch.Tensor, args: Sequence[Any] = (), kwargs: Optional[Mapping[str, Any]] = None, ) -> BoundingBoxes: # If there are BoundingBoxes instances in the output, their metadata got lost when we called # super().__torch_function__. We need to restore the metadata somehow, so we choose to take # the metadata from the first bbox in the parameters. # This should be what we want in most cases. When it's not, it's probably a mis-use anyway, e.g. # something like some_xyxy_bbox + some_xywh_bbox; we don't guard against those cases. flat_params, _ = tree_flatten(args + (tuple(kwargs.values()) if kwargs else ())) # type: ignore[operator] first_bbox_from_args = next(x for x in flat_params if isinstance(x, BoundingBoxes)) format, canvas_size = first_bbox_from_args.format, first_bbox_from_args.canvas_size if isinstance(output, torch.Tensor) and not isinstance(output, BoundingBoxes): output = BoundingBoxes._wrap(output, format=format, canvas_size=canvas_size, check_dims=False) elif isinstance(output, (tuple, list)): output = type(output)( BoundingBoxes._wrap(part, format=format, canvas_size=canvas_size, check_dims=False) for part in output ) return output def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr(format=self.format, canvas_size=self.canvas_size)
"""Argparser module for Deployment runtimes""" import argparse from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.remote import _mixin_http_server_parser def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) gp.add_argument( '--grpc-metadata', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The metadata to be passed to the gRPC request.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help=( 'The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS ), ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', ) _mixin_http_server_parser(gp)
"""Argparser module for Deployment runtimes""" import argparse from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.remote import _mixin_http_server_parser def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) gp.add_argument( '--grpc-metadata', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The metadata to be passed to the gRPC request.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', ) _mixin_http_server_parser(gp)
import wave from typing import Union, BinaryIO, TYPE_CHECKING import numpy as np if TYPE_CHECKING: from docarray.typing import T class AudioDataMixin: """Provide helper functions for :class:`Document` to support audio data.""" def save_audio_tensor_to_file( self: 'T', file: Union[str, BinaryIO], sample_rate: int = 44100, sample_width: int = 2, ) -> 'T': """Save :attr:`.tensor` into an wav file. Mono/stereo is preserved. :param file: if file is a string, open the file by that name, otherwise treat it as a file-like object. :param sample_rate: sampling frequency :param sample_width: sample width in bytes :return: Document itself after processed """ # Convert to (little-endian) 16 bit integers. max_int16 = 2**15 tensor = (self.tensor * max_int16).astype('<h') n_channels = 2 if self.tensor.ndim > 1 else 1 with wave.open(file, 'w') as f: # 2 Channels. f.setnchannels(n_channels) # 2 bytes per sample. f.setsampwidth(sample_width) f.setframerate(sample_rate) f.writeframes(tensor.tobytes()) return self def load_uri_to_audio_tensor(self: 'T') -> 'T': """Convert an audio :attr:`.uri` into :attr:`.tensor` inplace :return: Document itself after processed """ ifile = wave.open( self.uri ) #: note wave is Python built-in module https://docs.python.org/3/library/wave.html samples = ifile.getnframes() audio = ifile.readframes(samples) # Convert buffer to float32 using NumPy audio_as_np_int16 = np.frombuffer(audio, dtype=np.int16) audio_as_np_float32 = audio_as_np_int16.astype(np.float32) # Normalise float32 array so that values are between -1.0 and +1.0 max_int16 = 2**15 audio_normalised = audio_as_np_float32 / max_int16 channels = ifile.getnchannels() if channels == 2: # 1 for mono, 2 for stereo audio_stereo = np.empty((int(len(audio_normalised) / channels), channels)) audio_stereo[:, 0] = audio_normalised[range(0, len(audio_normalised), 2)] audio_stereo[:, 1] = audio_normalised[range(1, len(audio_normalised), 2)] self.tensor = audio_stereo else: self.tensor = audio_normalised return self
import wave from typing import Union, BinaryIO, TYPE_CHECKING import numpy as np if TYPE_CHECKING: from ...typing import T class AudioDataMixin: """Provide helper functions for :class:`Document` to support audio data.""" def save_audio_tensor_to_file( self: 'T', file: Union[str, BinaryIO], sample_rate: int = 44100, sample_width: int = 2, ) -> 'T': """Save :attr:`.tensor` into an wav file. Mono/stereo is preserved. :param file: if file is a string, open the file by that name, otherwise treat it as a file-like object. :param sample_rate: sampling frequency :param sample_width: sample width in bytes :return: Document itself after processed """ # Convert to (little-endian) 16 bit integers. max_int16 = 2**15 tensor = (self.tensor * max_int16).astype('<h') n_channels = 2 if self.tensor.ndim > 1 else 1 with wave.open(file, 'w') as f: # 2 Channels. f.setnchannels(n_channels) # 2 bytes per sample. f.setsampwidth(sample_width) f.setframerate(sample_rate) f.writeframes(tensor.tobytes()) return self def load_uri_to_audio_tensor(self: 'T') -> 'T': """Convert an audio :attr:`.uri` into :attr:`.tensor` inplace :return: Document itself after processed """ ifile = wave.open( self.uri ) #: note wave is Python built-in module https://docs.python.org/3/library/wave.html samples = ifile.getnframes() audio = ifile.readframes(samples) # Convert buffer to float32 using NumPy audio_as_np_int16 = np.frombuffer(audio, dtype=np.int16) audio_as_np_float32 = audio_as_np_int16.astype(np.float32) # Normalise float32 array so that values are between -1.0 and +1.0 max_int16 = 2**15 audio_normalised = audio_as_np_float32 / max_int16 channels = ifile.getnchannels() if channels == 2: # 1 for mono, 2 for stereo audio_stereo = np.empty((int(len(audio_normalised) / channels), channels)) audio_stereo[:, 0] = audio_normalised[range(0, len(audio_normalised), 2)] audio_stereo[:, 1] = audio_normalised[range(1, len(audio_normalised), 2)] self.tensor = audio_stereo else: self.tensor = audio_normalised return self
from typing import TYPE_CHECKING, Dict, Iterable from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): """ Initializes a SequentialEvaluator object. Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluator, "primary_metric"): scores.append(evaluation[evaluator.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from typing import TYPE_CHECKING, Dict, Iterable from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): """ Initializes a SequentialEvaluator object. Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluation, "primary_metric"): scores.append(evaluation[evaluation.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from __future__ import annotations import pytest from torch.utils.data import BatchSampler, ConcatDataset, SequentialSampler from sentence_transformers.sampler import RoundRobinBatchSampler from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import Dataset else: pytest.skip( reason='Sentence Transformers was not installed with the `["train"]` extra.', allow_module_level=True, ) DATASET_LENGTH = 25 @pytest.fixture def dummy_concat_dataset() -> ConcatDataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ... , 23, 24, 100, 101, ..., 123, 124], "label": [0, 1, 0, 1, ..., 0, 1], } """ values_1 = list(range(DATASET_LENGTH)) labels = [x % 2 for x in values_1] dataset_1 = Dataset.from_dict({"data": values_1, "label": labels}) values_2 = [x + 100 for x in values_1] + [x + 200 for x in values_1] dataset_2 = Dataset.from_dict({"data": values_2, "label": labels + labels}) return ConcatDataset([dataset_1, dataset_2]) def test_round_robin_batch_sampler(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[0]))), batch_size=batch_size, drop_last=True ) batch_sampler_2 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[1]))), batch_size=batch_size, drop_last=True ) sampler = RoundRobinBatchSampler(dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2]) batches = list(iter(sampler)) # Despite the second dataset being larger (2 * DATASET_LENGTH), we still only sample DATASET_LENGTH // batch_size batches from each dataset # because the RoundRobinBatchSampler should stop sampling once it has sampled all elements from one dataset assert len(batches) == 2 * DATASET_LENGTH // batch_size assert len(sampler) == len(batches) # Assert that batches are produced in a round-robin fashion for i in range(0, len(batches), 2): # Batch from the first part of the dataset batch_1 = batches[i] assert all( dummy_concat_dataset[idx]["data"] < 100 for idx in batch_1 ), f"Batch {i} contains data from the second part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_1]}" # Batch from the second part of the dataset batch_2 = batches[i + 1] assert all( dummy_concat_dataset[idx]["data"] >= 100 for idx in batch_2 ), f"Batch {i+1} contains data from the first part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_2]}" def test_round_robin_batch_sampler_value_error(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_2 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_3 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) with pytest.raises( ValueError, match="The number of batch samplers must match the number of datasets in the ConcatDataset" ): RoundRobinBatchSampler( dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2, batch_sampler_3] )
from __future__ import annotations import pytest from datasets import Dataset from torch.utils.data import BatchSampler, ConcatDataset, SequentialSampler from sentence_transformers.sampler import RoundRobinBatchSampler DATASET_LENGTH = 25 @pytest.fixture def dummy_concat_dataset() -> ConcatDataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ... , 23, 24, 100, 101, ..., 123, 124], "label": [0, 1, 0, 1, ..., 0, 1], } """ values_1 = list(range(DATASET_LENGTH)) labels = [x % 2 for x in values_1] dataset_1 = Dataset.from_dict({"data": values_1, "label": labels}) values_2 = [x + 100 for x in values_1] + [x + 200 for x in values_1] dataset_2 = Dataset.from_dict({"data": values_2, "label": labels + labels}) return ConcatDataset([dataset_1, dataset_2]) def test_round_robin_batch_sampler(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[0]))), batch_size=batch_size, drop_last=True ) batch_sampler_2 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[1]))), batch_size=batch_size, drop_last=True ) sampler = RoundRobinBatchSampler(dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2]) batches = list(iter(sampler)) # Despite the second dataset being larger (2 * DATASET_LENGTH), we still only sample DATASET_LENGTH // batch_size batches from each dataset # because the RoundRobinBatchSampler should stop sampling once it has sampled all elements from one dataset assert len(batches) == 2 * DATASET_LENGTH // batch_size assert len(sampler) == len(batches) # Assert that batches are produced in a round-robin fashion for i in range(0, len(batches), 2): # Batch from the first part of the dataset batch_1 = batches[i] assert all( dummy_concat_dataset[idx]["data"] < 100 for idx in batch_1 ), f"Batch {i} contains data from the second part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_1]}" # Batch from the second part of the dataset batch_2 = batches[i + 1] assert all( dummy_concat_dataset[idx]["data"] >= 100 for idx in batch_2 ), f"Batch {i+1} contains data from the first part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_2]}" def test_round_robin_batch_sampler_value_error(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_2 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_3 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) with pytest.raises( ValueError, match="The number of batch samplers must match the number of datasets in the ConcatDataset" ): RoundRobinBatchSampler( dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2, batch_sampler_3] )
import pytest from docarray import DocumentArray from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.storage.weaviate import WeaviateConfig from docarray.array.weaviate import DocumentArrayWeaviate from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.redis import DocumentArrayRedis, RedisConfig @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128)), ], ) def test_sample(da_cls, config, start_storage): if config: da = da_cls.empty(100, config=config) else: da = da_cls.empty(100) sampled = da.sample(1) assert len(sampled) == 1 sampled = da.sample(5) assert len(sampled) == 5 assert isinstance(sampled, DocumentArray) with pytest.raises(ValueError): da.sample(101) # can not sample with k greater than lenth of document array. @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128)), ], ) def test_sample_with_seed(da_cls, config, start_storage): if config: da = da_cls.empty(100, config=config) else: da = da_cls.empty(100) sampled_1 = da.sample(5, seed=1) sampled_2 = da.sample(5, seed=1) sampled_3 = da.sample(5, seed=2) assert len(sampled_1) == len(sampled_2) == len(sampled_3) == 5 assert sampled_1 == sampled_2 assert sampled_1 != sampled_3 @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128)), ], ) def test_shuffle(da_cls, config, start_storage): if config: da = da_cls.empty(100, config=config) else: da = da_cls.empty(100) shuffled = da.shuffle() assert len(shuffled) == len(da) assert isinstance(shuffled, DocumentArray) ids_before_shuffle = [d.id for d in da] ids_after_shuffle = [d.id for d in shuffled] assert ids_before_shuffle != ids_after_shuffle assert sorted(ids_before_shuffle) == sorted(ids_after_shuffle) @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128)), ], ) def test_shuffle_with_seed(da_cls, config, start_storage): if config: da = da_cls.empty(100, config=config) else: da = da_cls.empty(100) shuffled_1 = da.shuffle(seed=1) shuffled_2 = da.shuffle(seed=1) shuffled_3 = da.shuffle(seed=2) assert len(shuffled_1) == len(shuffled_2) == len(shuffled_3) == len(da) assert shuffled_1 == shuffled_2 assert shuffled_1 != shuffled_3
import pytest from docarray import DocumentArray from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.storage.weaviate import WeaviateConfig from docarray.array.weaviate import DocumentArrayWeaviate from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.redis import DocumentArrayRedis, RedisConfig @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128, flush=True)), ], ) def test_sample(da_cls, config, start_storage): if config: da = da_cls.empty(100, config=config) else: da = da_cls.empty(100) sampled = da.sample(1) assert len(sampled) == 1 sampled = da.sample(5) assert len(sampled) == 5 assert isinstance(sampled, DocumentArray) with pytest.raises(ValueError): da.sample(101) # can not sample with k greater than lenth of document array. @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128, flush=True)), ], ) def test_sample_with_seed(da_cls, config, start_storage): if config: da = da_cls.empty(100, config=config) else: da = da_cls.empty(100) sampled_1 = da.sample(5, seed=1) sampled_2 = da.sample(5, seed=1) sampled_3 = da.sample(5, seed=2) assert len(sampled_1) == len(sampled_2) == len(sampled_3) == 5 assert sampled_1 == sampled_2 assert sampled_1 != sampled_3 @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128, flush=True)), ], ) def test_shuffle(da_cls, config, start_storage): if config: da = da_cls.empty(100, config=config) else: da = da_cls.empty(100) shuffled = da.shuffle() assert len(shuffled) == len(da) assert isinstance(shuffled, DocumentArray) ids_before_shuffle = [d.id for d in da] ids_after_shuffle = [d.id for d in shuffled] assert ids_before_shuffle != ids_after_shuffle assert sorted(ids_before_shuffle) == sorted(ids_after_shuffle) @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128, flush=True)), ], ) def test_shuffle_with_seed(da_cls, config, start_storage): if config: da = da_cls.empty(100, config=config) else: da = da_cls.empty(100) shuffled_1 = da.shuffle(seed=1) shuffled_2 = da.shuffle(seed=1) shuffled_3 = da.shuffle(seed=2) assert len(shuffled_1) == len(shuffled_2) == len(shuffled_3) == len(da) assert shuffled_1 == shuffled_2 assert shuffled_1 != shuffled_3
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmcv.runner import BaseModule from torch.utils.checkpoint import checkpoint from ..builder import NECKS @NECKS.register_module() class HRFPN(BaseModule): """HRFPN (High Resolution Feature Pyramids) paper: `High-Resolution Representations for Labeling Pixels and Regions <https://arxiv.org/abs/1904.04514>`_. Args: in_channels (list): number of channels for each branch. out_channels (int): output channels of feature pyramids. num_outs (int): number of output stages. pooling_type (str): pooling for generating feature pyramids from {MAX, AVG}. conv_cfg (dict): dictionary to construct and config conv layer. norm_cfg (dict): dictionary to construct and config norm layer. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. stride (int): stride of 3x3 convolutional layers init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, num_outs=5, pooling_type='AVG', conv_cfg=None, norm_cfg=None, with_cp=False, stride=1, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')): super(HRFPN, self).__init__(init_cfg) assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.with_cp = with_cp self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.reduction_conv = ConvModule( sum(in_channels), out_channels, kernel_size=1, conv_cfg=self.conv_cfg, act_cfg=None) self.fpn_convs = nn.ModuleList() for i in range(self.num_outs): self.fpn_convs.append( ConvModule( out_channels, out_channels, kernel_size=3, padding=1, stride=stride, conv_cfg=self.conv_cfg, act_cfg=None)) if pooling_type == 'MAX': self.pooling = F.max_pool2d else: self.pooling = F.avg_pool2d def forward(self, inputs): """Forward function.""" assert len(inputs) == self.num_ins outs = [inputs[0]] for i in range(1, self.num_ins): outs.append( F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear')) out = torch.cat(outs, dim=1) if out.requires_grad and self.with_cp: out = checkpoint(self.reduction_conv, out) else: out = self.reduction_conv(out) outs = [out] for i in range(1, self.num_outs): outs.append(self.pooling(out, kernel_size=2**i, stride=2**i)) outputs = [] for i in range(self.num_outs): if outs[i].requires_grad and self.with_cp: tmp_out = checkpoint(self.fpn_convs[i], outs[i]) else: tmp_out = self.fpn_convs[i](outs[i]) outputs.append(tmp_out) return tuple(outputs)
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmcv.runner import BaseModule from torch.utils.checkpoint import checkpoint from ..builder import NECKS @NECKS.register_module() class HRFPN(BaseModule): """HRFPN (High Resolution Feature Pyramids) paper: `High-Resolution Representations for Labeling Pixels and Regions <https://arxiv.org/abs/1904.04514>`_. Args: in_channels (list): number of channels for each branch. out_channels (int): output channels of feature pyramids. num_outs (int): number of output stages. pooling_type (str): pooling for generating feature pyramids from {MAX, AVG}. conv_cfg (dict): dictionary to construct and config conv layer. norm_cfg (dict): dictionary to construct and config norm layer. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. stride (int): stride of 3x3 convolutional layers init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, num_outs=5, pooling_type='AVG', conv_cfg=None, norm_cfg=None, with_cp=False, stride=1, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')): super(HRFPN, self).__init__(init_cfg) assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.with_cp = with_cp self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.reduction_conv = ConvModule( sum(in_channels), out_channels, kernel_size=1, conv_cfg=self.conv_cfg, act_cfg=None) self.fpn_convs = nn.ModuleList() for i in range(self.num_outs): self.fpn_convs.append( ConvModule( out_channels, out_channels, kernel_size=3, padding=1, stride=stride, conv_cfg=self.conv_cfg, act_cfg=None)) if pooling_type == 'MAX': self.pooling = F.max_pool2d else: self.pooling = F.avg_pool2d def forward(self, inputs): """Forward function.""" assert len(inputs) == self.num_ins outs = [inputs[0]] for i in range(1, self.num_ins): outs.append( F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear')) out = torch.cat(outs, dim=1) if out.requires_grad and self.with_cp: out = checkpoint(self.reduction_conv, out) else: out = self.reduction_conv(out) outs = [out] for i in range(1, self.num_outs): outs.append(self.pooling(out, kernel_size=2**i, stride=2**i)) outputs = [] for i in range(self.num_outs): if outs[i].requires_grad and self.with_cp: tmp_out = checkpoint(self.fpn_convs[i], outs[i]) else: tmp_out = self.fpn_convs[i](outs[i]) outputs.append(tmp_out) return tuple(outputs)
from typing import Any, Dict, Optional from llama_index.core.storage.kvstore.types import BaseKVStore from llama_index.storage.kvstore.azurecosmosnosql import AzureCosmosNoSqlKVStore DEFAULT_INDEX_DATABASE = "IndexStoreDB" DEFAULT_INDEX_CONTAINER = "IndexStoreContainer" class AzureCosmosNoSqlIndexStore(BaseKVStore): """Creates an Azure Cosmos DB NoSql Index Store.""" def __init__( self, azure_cosmos_nosql_kvstore: AzureCosmosNoSqlKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Initializes the Azure Cosmos NoSql Index Store.""" super().__init__(azure_cosmos_nosql_kvstore, namespace, collection_suffix) @classmethod def from_connection_string( cls, connection_string: str, index_db_name: str = DEFAULT_INDEX_DATABASE, index_container_name: str = DEFAULT_INDEX_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlIndexStore": """Creates an instance of Azure Cosmos DB NoSql KV Store using a connection string.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_connection_string( connection_string, index_db_name, index_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = index_db_name + "." + index_container_name return cls(azure_cosmos_nosql_kvstore, namespace) @classmethod def from_account_and_key( cls, endpoint: str, key: str, index_db_name: str = DEFAULT_INDEX_DATABASE, index_container_name: str = DEFAULT_INDEX_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlIndexStore": """Creates an instance of Azure Cosmos DB NoSql KV Store using an account endpoint and key.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_account_and_key( endpoint, key, index_db_name, index_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = index_db_name + "." + index_container_name return cls(azure_cosmos_nosql_kvstore, namespace) @classmethod def from_aad_token( cls, endpoint: str, index_db_name: str = DEFAULT_INDEX_DATABASE, index_container_name: str = DEFAULT_INDEX_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlIndexStore": """Creates an instance of Azure Cosmos DB NoSql KV Store using an aad token.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_aad_token( endpoint, index_db_name, index_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = index_db_name + "." + index_container_name return cls(azure_cosmos_nosql_kvstore, namespace)
from typing import Any, Dict, Optional from llama_index.core.storage.index_store.keyval_index_store import KVIndexStore from llama_index.storage.kvstore.azurecosmosnosql import AzureCosmosNoSqlKVStore DEFAULT_INDEX_DATABASE = "IndexStoreDB" DEFAULT_INDEX_CONTAINER = "IndexStoreContainer" class AzureCosmosNoSqlIndexStore(KVIndexStore): """Creates an Azure Cosmos DB NoSql Index Store.""" def __init__( self, azure_cosmos_nosql_kvstore: AzureCosmosNoSqlKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Initializes the Azure Cosmos NoSql Index Store.""" super().__init__(azure_cosmos_nosql_kvstore, namespace, collection_suffix) @classmethod def from_connection_string( cls, connection_string: str, index_db_name: str = DEFAULT_INDEX_DATABASE, index_container_name: str = DEFAULT_INDEX_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlIndexStore": """Creates an instance of Azure Cosmos DB NoSql KV Store using a connection string.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_connection_string( connection_string, index_db_name, index_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = index_db_name + "." + index_container_name return cls(azure_cosmos_nosql_kvstore, namespace) @classmethod def from_account_and_key( cls, endpoint: str, key: str, index_db_name: str = DEFAULT_INDEX_DATABASE, index_container_name: str = DEFAULT_INDEX_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlIndexStore": """Creates an instance of Azure Cosmos DB NoSql KV Store using an account endpoint and key.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_account_and_key( endpoint, key, index_db_name, index_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = index_db_name + "." + index_container_name return cls(azure_cosmos_nosql_kvstore, namespace) @classmethod def from_aad_token( cls, endpoint: str, index_db_name: str = DEFAULT_INDEX_DATABASE, index_container_name: str = DEFAULT_INDEX_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlIndexStore": """Creates an instance of Azure Cosmos DB NoSql KV Store using an aad token.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_aad_token( endpoint, index_db_name, index_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = index_db_name + "." + index_container_name return cls(azure_cosmos_nosql_kvstore, namespace)
from .autograd_utils import use_deterministic_algorithms from .case_utils import ( disabledInCI, HttpServerMixin, PytorchTestCase, skipIfCudaSmallMemory, skipIfNoAudioDevice, skipIfNoCtcDecoder, skipIfNoCuCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoHWAccel, skipIfNoMacOS, skipIfNoModule, skipIfNoQengine, skipIfNoRIR, skipIfNoSox, skipIfNoSoxDecoder, skipIfNoSoxEncoder, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "skipIfNoAudioDevice", "skipIfNoCtcDecoder", "skipIfNoCuCtcDecoder", "skipIfNoCuda", "skipIfCudaSmallMemory", "skipIfNoExec", "skipIfNoMacOS", "skipIfNoModule", "skipIfNoRIR", "skipIfNoSox", "skipIfNoSoxDecoder", "skipIfNoSoxEncoder", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfNoHWAccel", "skipIfPy310", "disabledInCI", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "use_deterministic_algorithms", "zip_equal", ]
from .autograd_utils import use_deterministic_algorithms from .backend_utils import set_audio_backend from .case_utils import ( disabledInCI, HttpServerMixin, PytorchTestCase, skipIfCudaSmallMemory, skipIfNoAudioDevice, skipIfNoCtcDecoder, skipIfNoCuCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoHWAccel, skipIfNoMacOS, skipIfNoModule, skipIfNoQengine, skipIfNoRIR, skipIfNoSox, skipIfNoSoxDecoder, skipIfNoSoxEncoder, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "skipIfNoAudioDevice", "skipIfNoCtcDecoder", "skipIfNoCuCtcDecoder", "skipIfNoCuda", "skipIfCudaSmallMemory", "skipIfNoExec", "skipIfNoMacOS", "skipIfNoModule", "skipIfNoRIR", "skipIfNoSox", "skipIfNoSoxDecoder", "skipIfNoSoxEncoder", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfNoHWAccel", "skipIfPy310", "disabledInCI", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "use_deterministic_algorithms", "zip_equal", ]
from pathlib import Path import dask.array as da import numpy as np from distributed import Client, LocalCluster from sklearn.datasets import load_svmlight_file import lightgbm as lgb if __name__ == "__main__": print("loading data") rank_example_dir = Path(__file__).absolute().parents[2] / "lambdarank" X, y = load_svmlight_file(str(rank_example_dir / "rank.train")) group = np.loadtxt(str(rank_example_dir / "rank.train.query")) print("initializing a Dask cluster") cluster = LocalCluster(n_workers=2) client = Client(cluster) print("created a Dask LocalCluster") print("distributing training data on the Dask cluster") # split training data into two partitions rows_in_part1 = int(np.sum(group[:100])) rows_in_part2 = X.shape[0] - rows_in_part1 num_features = X.shape[1] # make this array dense because we're splitting across # a sparse boundary to partition the data X = X.toarray() dX = da.from_array(x=X, chunks=[(rows_in_part1, rows_in_part2), (num_features,)]) dy = da.from_array( x=y, chunks=[ (rows_in_part1, rows_in_part2), ], ) dg = da.from_array(x=group, chunks=[(100, group.size - 100)]) print("beginning training") dask_model = lgb.DaskLGBMRanker(n_estimators=10) dask_model.fit(dX, dy, group=dg) assert dask_model.fitted_ print("done training")
from pathlib import Path import dask.array as da import numpy as np from distributed import Client, LocalCluster from sklearn.datasets import load_svmlight_file import lightgbm as lgb if __name__ == "__main__": print("loading data") rank_example_dir = Path(__file__).absolute().parents[2] / 'lambdarank' X, y = load_svmlight_file(str(rank_example_dir / 'rank.train')) group = np.loadtxt(str(rank_example_dir / 'rank.train.query')) print("initializing a Dask cluster") cluster = LocalCluster(n_workers=2) client = Client(cluster) print("created a Dask LocalCluster") print("distributing training data on the Dask cluster") # split training data into two partitions rows_in_part1 = int(np.sum(group[:100])) rows_in_part2 = X.shape[0] - rows_in_part1 num_features = X.shape[1] # make this array dense because we're splitting across # a sparse boundary to partition the data X = X.toarray() dX = da.from_array( x=X, chunks=[ (rows_in_part1, rows_in_part2), (num_features,) ] ) dy = da.from_array( x=y, chunks=[ (rows_in_part1, rows_in_part2), ] ) dg = da.from_array( x=group, chunks=[ (100, group.size - 100) ] ) print("beginning training") dask_model = lgb.DaskLGBMRanker(n_estimators=10) dask_model.fit(dX, dy, group=dg) assert dask_model.fitted_ print("done training")
"""**sys_info** prints information about the system and langchain packages for debugging purposes.""" # noqa: E501 from collections.abc import Sequence def _get_sub_deps(packages: Sequence[str]) -> list[str]: """Get any specified sub-dependencies.""" from importlib import metadata sub_deps = set() _underscored_packages = {pkg.replace("-", "_") for pkg in packages} for pkg in packages: try: required = metadata.requires(pkg) except metadata.PackageNotFoundError: continue if not required: continue for req in required: try: cleaned_req = req.split(" ")[0] except Exception: # In case parsing of requirement spec fails continue if cleaned_req.replace("-", "_") not in _underscored_packages: sub_deps.add(cleaned_req) return sorted(sub_deps, key=lambda x: x.lower()) def print_sys_info(*, additional_pkgs: Sequence[str] = ()) -> None: """Print information about the environment for debugging purposes. Args: additional_pkgs: Additional packages to include in the output. """ import pkgutil import platform import sys from importlib import metadata, util # Packages that do not start with "langchain" prefix. other_langchain_packages = [ "langserve", "langsmith", ] langchain_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langchain") ] langgraph_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langgraph") ] all_packages = sorted( set( langchain_pkgs + langgraph_pkgs + other_langchain_packages + list(additional_pkgs) ) ) # Always surface these packages to the top order_by = ["langchain_core", "langchain", "langchain_community", "langsmith"] for pkg in reversed(order_by): if pkg in all_packages: all_packages.remove(pkg) all_packages = [pkg] + list(all_packages) system_info = { "OS": platform.system(), "OS Version": platform.version(), "Python Version": sys.version, } print() # noqa: T201 print("System Information") # noqa: T201 print("------------------") # noqa: T201 print("> OS: ", system_info["OS"]) # noqa: T201 print("> OS Version: ", system_info["OS Version"]) # noqa: T201 print("> Python Version: ", system_info["Python Version"]) # noqa: T201 # Print out only langchain packages print() # noqa: T201 print("Package Information") # noqa: T201 print("-------------------") # noqa: T201 not_installed = [] for pkg in all_packages: try: found_package = util.find_spec(pkg) except Exception: found_package = None if found_package is None: not_installed.append(pkg) continue # Package version try: package_version = metadata.version(pkg) except Exception: package_version = None # Print package with version if package_version is not None: print(f"> {pkg}: {package_version}") # noqa: T201 else: print(f"> {pkg}: Installed. No version info available.") # noqa: T201 if not_installed: print() # noqa: T201 print("Optional packages not installed") # noqa: T201 print("-------------------------------") # noqa: T201 for pkg in not_installed: print(f"> {pkg}") # noqa: T201 sub_dependencies = _get_sub_deps(all_packages) if sub_dependencies: print() # noqa: T201 print("Other Dependencies") # noqa: T201 print("------------------") # noqa: T201 for dep in sub_dependencies: try: dep_version = metadata.version(dep) print(f"> {dep}: {dep_version}") # noqa: T201 except Exception: print(f"> {dep}: Installed. No version info available.") # noqa: T201 if __name__ == "__main__": print_sys_info()
"""**sys_info** prints information about the system and langchain packages for debugging purposes. """ from collections.abc import Sequence def _get_sub_deps(packages: Sequence[str]) -> list[str]: """Get any specified sub-dependencies.""" from importlib import metadata sub_deps = set() _underscored_packages = {pkg.replace("-", "_") for pkg in packages} for pkg in packages: try: required = metadata.requires(pkg) except metadata.PackageNotFoundError: continue if not required: continue for req in required: try: cleaned_req = req.split(" ")[0] except Exception: # In case parsing of requirement spec fails continue if cleaned_req.replace("-", "_") not in _underscored_packages: sub_deps.add(cleaned_req) return sorted(sub_deps, key=lambda x: x.lower()) def print_sys_info(*, additional_pkgs: Sequence[str] = ()) -> None: """Print information about the environment for debugging purposes. Args: additional_pkgs: Additional packages to include in the output. """ import pkgutil import platform import sys from importlib import metadata, util # Packages that do not start with "langchain" prefix. other_langchain_packages = [ "langserve", "langsmith", ] langchain_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langchain") ] langgraph_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langgraph") ] all_packages = sorted( set( langchain_pkgs + langgraph_pkgs + other_langchain_packages + list(additional_pkgs) ) ) # Always surface these packages to the top order_by = ["langchain_core", "langchain", "langchain_community", "langsmith"] for pkg in reversed(order_by): if pkg in all_packages: all_packages.remove(pkg) all_packages = [pkg] + list(all_packages) system_info = { "OS": platform.system(), "OS Version": platform.version(), "Python Version": sys.version, } print() # noqa: T201 print("System Information") # noqa: T201 print("------------------") # noqa: T201 print("> OS: ", system_info["OS"]) # noqa: T201 print("> OS Version: ", system_info["OS Version"]) # noqa: T201 print("> Python Version: ", system_info["Python Version"]) # noqa: T201 # Print out only langchain packages print() # noqa: T201 print("Package Information") # noqa: T201 print("-------------------") # noqa: T201 not_installed = [] for pkg in all_packages: try: found_package = util.find_spec(pkg) except Exception: found_package = None if found_package is None: not_installed.append(pkg) continue # Package version try: package_version = metadata.version(pkg) except Exception: package_version = None # Print package with version if package_version is not None: print(f"> {pkg}: {package_version}") # noqa: T201 else: print(f"> {pkg}: Installed. No version info available.") # noqa: T201 if not_installed: print() # noqa: T201 print("Optional packages not installed") # noqa: T201 print("-------------------------------") # noqa: T201 for pkg in not_installed: print(f"> {pkg}") # noqa: T201 sub_dependencies = _get_sub_deps(all_packages) if sub_dependencies: print() # noqa: T201 print("Other Dependencies") # noqa: T201 print("------------------") # noqa: T201 for dep in sub_dependencies: try: dep_version = metadata.version(dep) print(f"> {dep}: {dep_version}") # noqa: T201 except Exception: print(f"> {dep}: Installed. No version info available.") # noqa: T201 if __name__ == "__main__": print_sys_info()
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Define our Cross-Encoder train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base as base model and set num_labels=1, which predicts a continuous score between 0 and 1 model = CrossEncoder("distilroberta-base", num_labels=1) # Read STSb dataset logger.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) else: # As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) train_samples.append(InputExample(texts=[row["sentence2"], row["sentence1"]], label=score)) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ##### Load model and eval on test set model = CrossEncoder(model_save_path) evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(test_samples, name="sts-test") evaluator(model)
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Define our Cross-Encoder train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base as base model and set num_labels=1, which predicts a continuous score between 0 and 1 model = CrossEncoder("distilroberta-base", num_labels=1) # Read STSb dataset logger.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) else: # As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) train_samples.append(InputExample(texts=[row["sentence2"], row["sentence1"]], label=score)) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ##### Load model and eval on test set model = CrossEncoder(model_save_path) evaluator = CECorrelationEvaluator.from_input_examples(test_samples, name="sts-test") evaluator(model)
from typing import TYPE_CHECKING, Union import numpy as np if TYPE_CHECKING: # pragma: no cover from docarray.typing import T import trimesh class Mesh: FILE_EXTENSIONS = [ 'glb', 'obj', 'ply', ] VERTICES = 'vertices' FACES = 'faces' class MeshDataMixin: """Provide helper functions for :class:`Document` to support 3D mesh data and point cloud.""" def _load_mesh( self, force: str = None ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """Load a trimesh.Mesh or trimesh.Scene object from :attr:`.uri`. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse import trimesh scheme = urllib.parse.urlparse(self.uri).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self.uri, force=force) return mesh def load_uri_to_point_cloud_tensor( self: 'T', samples: int, as_chunks: bool = False ) -> 'T': """Convert a 3d mesh-like :attr:`.uri` into :attr:`.tensor` :param samples: number of points to sample from the mesh :param as_chunks: when multiple geometry stored in one mesh file, then store each geometry into different :attr:`.chunks` :return: itself after processed """ if as_chunks: import trimesh from docarray.document import Document # try to coerce everything into a scene scene = self._load_mesh(force='scene') for geo in scene.geometry.values(): geo: trimesh.Trimesh self.chunks.append(Document(tensor=np.array(geo.sample(samples)))) else: # combine a scene into a single mesh mesh = self._load_mesh(force='mesh') self.tensor = np.array(mesh.sample(samples)) return self def load_uri_to_vertices_and_faces(self: 'T') -> 'T': """Convert a 3d mesh-like :attr:`.uri` into :attr:`.chunks` as vertices and faces :return: itself after processed """ from docarray.document import Document mesh = self._load_mesh(force='mesh') vertices = mesh.vertices.view(np.ndarray) faces = mesh.faces.view(np.ndarray) self.chunks = [ Document(name=Mesh.VERTICES, tensor=vertices), Document(name=Mesh.FACES, tensor=faces), ] return self def load_vertices_and_faces_to_point_cloud(self: 'T', samples: int) -> 'T': """Convert a 3d mesh of vertices and faces from :attr:`.chunks` into point cloud :attr:`.tensor` :param samples: number of points to sample from the mesh :return: itself after processed """ vertices = None faces = None for chunk in self.chunks: if chunk.tags['name'] == Mesh.VERTICES: vertices = chunk.tensor if chunk.tags['name'] == Mesh.FACES: faces = chunk.tensor if vertices is not None and faces is not None: import trimesh mesh = trimesh.Trimesh(vertices=vertices, faces=faces) self.tensor = np.array(mesh.sample(samples)) else: raise AttributeError( 'Point cloud tensor can not be set, since vertices and faces chunk tensor have not been set.' ) return self def load_uris_to_rgbd_tensor(self: 'T') -> 'T': """Load RGB image from :attr:`.uri` of :attr:`.chunks[0]` and depth image from :attr:`.uri` of :attr:`.chunks[1]` and merge them into :attr:`.tensor`. :return: itself after processed """ from PIL import Image if len(self.chunks) != 2: raise ValueError( f'The provided Document does not have two chunks but instead {len(self.chunks)}. To load uris to RGBD tensor, the Document needs to have two chunks, with the first one providing the RGB image uri, and the second one providing the depth image uri.' ) for chunk in self.chunks: if chunk.uri == '': raise ValueError( 'A chunk of the given Document does not provide a uri.' ) rgb_img = np.array(Image.open(self.chunks[0].uri).convert('RGB')) depth_img = np.array(Image.open(self.chunks[1].uri)) if rgb_img.shape[0:2] != depth_img.shape: raise ValueError( f'The provided RGB image and depth image are not of the same shapes: {rgb_img.shape[0:2]} != {depth_img.shape}' ) self.tensor = np.concatenate( (rgb_img, np.expand_dims(depth_img, axis=2)), axis=-1 ) return self
from typing import TYPE_CHECKING, Union import numpy as np if TYPE_CHECKING: # pragma: no cover from docarray.typing import T import trimesh class Mesh: FILE_EXTENSIONS = [ 'glb', 'obj', 'ply', ] VERTICES = 'vertices' FACES = 'faces' class MeshDataMixin: """Provide helper functions for :class:`Document` to support 3D mesh data and point cloud.""" def _load_mesh( self, force: str = None ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """Load a trimesh.Mesh or trimesh.Scene object from :attr:`.uri`. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse import trimesh scheme = urllib.parse.urlparse(self.uri).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self.uri, force=force) return mesh def load_uri_to_point_cloud_tensor( self: 'T', samples: int, as_chunks: bool = False ) -> 'T': """Convert a 3d mesh-like :attr:`.uri` into :attr:`.tensor` :param samples: number of points to sample from the mesh :param as_chunks: when multiple geometry stored in one mesh file, then store each geometry into different :attr:`.chunks` :return: itself after processed """ if as_chunks: import trimesh from docarray.document import Document # try to coerce everything into a scene scene = self._load_mesh(force='scene') for geo in scene.geometry.values(): geo: trimesh.Trimesh self.chunks.append(Document(tensor=np.array(geo.sample(samples)))) else: # combine a scene into a single mesh mesh = self._load_mesh(force='mesh') self.tensor = np.array(mesh.sample(samples)) return self def load_uri_to_vertices_and_faces(self: 'T') -> 'T': """Convert a 3d mesh-like :attr:`.uri` into :attr:`.chunks` as vertices and faces :return: itself after processed """ from docarray.document import Document mesh = self._load_mesh(force='mesh') vertices = mesh.vertices.view(np.ndarray) faces = mesh.faces.view(np.ndarray) self.chunks = [ Document(name=Mesh.VERTICES, tensor=vertices), Document(name=Mesh.FACES, tensor=faces), ] return self def load_vertices_and_faces_to_point_cloud(self: 'T', samples: int) -> 'T': """Convert a 3d mesh of vertices and faces from :attr:`.chunks` into point cloud :attr:`.tensor` :param samples: number of points to sample from the mesh :return: itself after processed """ vertices = None faces = None for chunk in self.chunks: if chunk.tags['name'] == Mesh.VERTICES: vertices = chunk.tensor if chunk.tags['name'] == Mesh.FACES: faces = chunk.tensor if vertices is not None and faces is not None: import trimesh mesh = trimesh.Trimesh(vertices=vertices, faces=faces) self.tensor = np.array(mesh.sample(samples)) else: raise AttributeError( 'Point cloud tensor can not be set, since vertices and faces chunk tensor have not been set.' ) return self
# mypy: allow-untyped-defs from typing import Callable, Optional, Union import torch from .base_structured_sparsifier import BaseStructuredSparsifier __all__ = ["FPGMPruner"] class FPGMPruner(BaseStructuredSparsifier): r"""Filter Pruning via Geometric Median (FPGM) Structured Pruner This sparsifier prune filter (row) in a tensor according to distances among filters according to `Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration <https://arxiv.org/abs/1811.00250>`_. This sparsifier is controlled by three variables: 1. `sparsity_level` defines the number of filters (rows) that are zeroed-out. 2. `dist` defines the distance measurement type. Default: 3 (L2 distance). Available options are: [1, 2, (custom callable distance function)]. Note:: Inputs should be a 4D convolutional tensor of shape (N, C, H, W). - N: output channels size - C: input channels size - H: height of kernel - W: width of kernel """ def __init__( self, sparsity_level: float = 0.5, dist: Optional[Union[Callable, int]] = None ): defaults = { "sparsity_level": sparsity_level, } if dist is None: dist = 2 if callable(dist): self.dist_fn = dist elif dist == 1: self.dist_fn = lambda x: torch.cdist(x, x, p=1) elif dist == 2: self.dist_fn = lambda x: torch.cdist(x, x, p=2) else: raise NotImplementedError("Distance function is not yet implemented.") super().__init__(defaults=defaults) def _compute_distance(self, t): r"""Compute distance across all entries in tensor `t` along all dimension except for the one identified by dim. Args: t (torch.Tensor): tensor representing the parameter to prune Returns: distance (torch.Tensor): distance computed across filtters """ dim = 0 # prune filter (row) size = t.size(dim) slc = [slice(None)] * t.dim() # flatten the tensor along the dimension t_flatten = [ t[tuple(slc[:dim] + [slice(i, i + 1)] + slc[dim + 1 :])].reshape(-1) for i in range(size) ] t_flatten = torch.stack(t_flatten) # distance measurement dist_matrix = self.dist_fn(t_flatten) # more similar with other filter indicates large in the sum of row distance = torch.sum(torch.abs(dist_matrix), 1) return distance def update_mask( # type: ignore[override] self, module, tensor_name, sparsity_level, **kwargs ): tensor_weight = getattr(module, tensor_name) mask = getattr(module.parametrizations, tensor_name)[0].mask if sparsity_level <= 0: mask.data = torch.ones_like(mask).bool() elif sparsity_level >= 1.0: mask.data = torch.zeros_like(mask).bool() else: distance = self._compute_distance(tensor_weight) tensor_size = tensor_weight.shape[0] # prune filter (row) nparams_toprune = round(sparsity_level * tensor_size) nparams_toprune = min( max(nparams_toprune, 0), tensor_size ) # clamp to [0, tensor_size] topk = torch.topk(distance, k=nparams_toprune, largest=False) mask[topk.indices] = False
# mypy: allow-untyped-defs from typing import Callable, Optional, Union import torch from .base_structured_sparsifier import BaseStructuredSparsifier __all__ = ["FPGMPruner"] class FPGMPruner(BaseStructuredSparsifier): r"""Filter Pruning via Geometric Median (FPGM) Structured Pruner This sparsifier prune fliter (row) in a tensor according to distances among filters according to `Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration <https://arxiv.org/abs/1811.00250>`_. This sparsifier is controlled by three variables: 1. `sparsity_level` defines the number of filters (rows) that are zeroed-out. 2. `dist` defines the distance measurement type. Default: 3 (L2 distance). Available options are: [1, 2, (custom callable distance function)]. Note:: Inputs should be a 4D convolutional tensor of shape (N, C, H, W). - N: output channels size - C: input channels size - H: height of kernel - W: width of kernel """ def __init__( self, sparsity_level: float = 0.5, dist: Optional[Union[Callable, int]] = None ): defaults = { "sparsity_level": sparsity_level, } if dist is None: dist = 2 if callable(dist): self.dist_fn = dist elif dist == 1: self.dist_fn = lambda x: torch.cdist(x, x, p=1) elif dist == 2: self.dist_fn = lambda x: torch.cdist(x, x, p=2) else: raise NotImplementedError("Distance function is not yet implemented.") super().__init__(defaults=defaults) def _compute_distance(self, t): r"""Compute distance across all entries in tensor `t` along all dimension except for the one identified by dim. Args: t (torch.Tensor): tensor representing the parameter to prune Returns: distance (torch.Tensor): distance computed across filtters """ dim = 0 # prune filter (row) size = t.size(dim) slc = [slice(None)] * t.dim() # flatten the tensor along the dimension t_flatten = [ t[tuple(slc[:dim] + [slice(i, i + 1)] + slc[dim + 1 :])].reshape(-1) for i in range(size) ] t_flatten = torch.stack(t_flatten) # distance measurement dist_matrix = self.dist_fn(t_flatten) # more similar with other filter indicates large in the sum of row distance = torch.sum(torch.abs(dist_matrix), 1) return distance def update_mask( # type: ignore[override] self, module, tensor_name, sparsity_level, **kwargs ): tensor_weight = getattr(module, tensor_name) mask = getattr(module.parametrizations, tensor_name)[0].mask if sparsity_level <= 0: mask.data = torch.ones_like(mask).bool() elif sparsity_level >= 1.0: mask.data = torch.zeros_like(mask).bool() else: distance = self._compute_distance(tensor_weight) tensor_size = tensor_weight.shape[0] # prune filter (row) nparams_toprune = round(sparsity_level * tensor_size) nparams_toprune = min( max(nparams_toprune, 0), tensor_size ) # clamp to [0, tensor_size] topk = torch.topk(distance, k=nparams_toprune, largest=False) mask[topk.indices] = False
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.spark_sql.base import create_spark_sql_agent # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "create_spark_sql_agent": "langchain_community.agent_toolkits.spark_sql.base", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "create_spark_sql_agent", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.spark_sql.base import create_spark_sql_agent # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "create_spark_sql_agent": "langchain_community.agent_toolkits.spark_sql.base" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "create_spark_sql_agent", ]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DecodeRaw op from parsing_ops.""" import gzip import io import zlib import zstandard as zstd from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test class DecodeCompressedOpTest(test.TestCase): def _compress(self, bytes_in, compression_type): if not compression_type: return bytes_in elif compression_type == "ZLIB": return zlib.compress(bytes_in) elif compression_type == "ZSTD": return zstd.compress(bytes_in) else: out = io.BytesIO() with gzip.GzipFile(fileobj=out, mode="wb") as f: f.write(bytes_in) return out.getvalue() def testDecompressShapeInference(self): with ops.Graph().as_default(): for compression_type in ["ZLIB", "GZIP", "ZSTD", ""]: with self.cached_session(): in_bytes = array_ops.placeholder(dtypes.string, shape=[2]) decompressed = parsing_ops.decode_compressed( in_bytes, compression_type=compression_type) self.assertEqual([2], decompressed.get_shape().as_list()) def testDecompress(self): for compression_type in ["ZLIB", "GZIP", "ZSTD", ""]: with self.cached_session(): def decode(in_bytes, compression_type=compression_type): return parsing_ops.decode_compressed( in_bytes, compression_type=compression_type) in_val = [self._compress(b"AaAA", compression_type), self._compress(b"bBbb", compression_type)] result = self.evaluate(decode(in_val)) self.assertAllEqual([b"AaAA", b"bBbb"], result) def testDecompressWithRaw(self): for compression_type in ["ZLIB", "GZIP", "ZSTD", ""]: with self.cached_session(): def decode(in_bytes, compression_type=compression_type): decompressed = parsing_ops.decode_compressed(in_bytes, compression_type) return parsing_ops.decode_raw(decompressed, out_type=dtypes.int16) result = self.evaluate( decode([self._compress(b"AaBC", compression_type)])) self.assertAllEqual( [[ord("A") + ord("a") * 256, ord("B") + ord("C") * 256]], result) if __name__ == "__main__": test.main()
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DecodeRaw op from parsing_ops.""" import gzip import io import zlib from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test class DecodeCompressedOpTest(test.TestCase): def _compress(self, bytes_in, compression_type): if not compression_type: return bytes_in elif compression_type == "ZLIB": return zlib.compress(bytes_in) else: out = io.BytesIO() with gzip.GzipFile(fileobj=out, mode="wb") as f: f.write(bytes_in) return out.getvalue() def testDecompressShapeInference(self): with ops.Graph().as_default(): for compression_type in ["ZLIB", "GZIP", ""]: with self.cached_session(): in_bytes = array_ops.placeholder(dtypes.string, shape=[2]) decompressed = parsing_ops.decode_compressed( in_bytes, compression_type=compression_type) self.assertEqual([2], decompressed.get_shape().as_list()) def testDecompress(self): for compression_type in ["ZLIB", "GZIP", ""]: with self.cached_session(): def decode(in_bytes, compression_type=compression_type): return parsing_ops.decode_compressed( in_bytes, compression_type=compression_type) in_val = [self._compress(b"AaAA", compression_type), self._compress(b"bBbb", compression_type)] result = self.evaluate(decode(in_val)) self.assertAllEqual([b"AaAA", b"bBbb"], result) def testDecompressWithRaw(self): for compression_type in ["ZLIB", "GZIP", ""]: with self.cached_session(): def decode(in_bytes, compression_type=compression_type): decompressed = parsing_ops.decode_compressed(in_bytes, compression_type) return parsing_ops.decode_raw(decompressed, out_type=dtypes.int16) result = self.evaluate( decode([self._compress(b"AaBC", compression_type)])) self.assertAllEqual( [[ord("A") + ord("a") * 256, ord("B") + ord("C") * 256]], result) if __name__ == "__main__": test.main()
from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, List, Tuple, ) import numpy as np from docarray.array.storage.base.backend import BaseBackendMixin, TypeMap from docarray.helper import dataclass_from_dict, filter_dict, _safe_cast_int if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None ef_construction: Optional[int] = None ef_search: Optional[int] = None max_connection: Optional[int] = None n_components: Optional[int] = None columns: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" TYPE_MAP = { 'str': TypeMap(type='str', converter=str), 'float': TypeMap(type='float', converter=float), 'int': TypeMap(type='int', converter=_safe_cast_int), } def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from docarray.math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _normalize_columns(self, columns): columns = super()._normalize_columns(columns) for key in columns.keys(): columns[key] = self._map_type(columns[key]) return columns def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: import os if 'data_path' not in config_subindex: config_joined['data_path'] = os.path.join( config_joined['data_path'], 'subindex_' + subindex_name ) return config_joined def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, subindex_configs: Optional[Dict] = None, **kwargs, ): from docarray import Document if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) self._persist = bool(config.data_path) if not self._persist: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config self._config.columns = self._normalize_columns(self._config.columns) config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **filter_dict(config)) super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **filter_dict(config)) def __len__(self): return self._annlite.index_size
from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, List, Tuple, ) import numpy as np from docarray.array.storage.base.backend import BaseBackendMixin, TypeMap from docarray.helper import dataclass_from_dict, filter_dict, _safe_cast_int if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None ef_construction: Optional[int] = None ef_search: Optional[int] = None max_connection: Optional[int] = None columns: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" TYPE_MAP = { 'str': TypeMap(type='str', converter=str), 'float': TypeMap(type='float', converter=float), 'int': TypeMap(type='int', converter=_safe_cast_int), } def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from docarray.math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _normalize_columns(self, columns): columns = super()._normalize_columns(columns) for key in columns.keys(): columns[key] = self._map_type(columns[key]) return columns def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: import os if 'data_path' not in config_subindex: config_joined['data_path'] = os.path.join( config_joined['data_path'], 'subindex_' + subindex_name ) return config_joined def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, subindex_configs: Optional[Dict] = None, **kwargs, ): from docarray import Document if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) self._persist = bool(config.data_path) if not self._persist: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config self._config.columns = self._normalize_columns(self._config.columns) config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **filter_dict(config)) super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **filter_dict(config)) def __len__(self): return self._annlite.index_size
import logging import typing import autogpt_libs.auth.depends import autogpt_libs.auth.middleware import fastapi import prisma import backend.data.graph import backend.integrations.creds_manager import backend.integrations.webhooks.graph_lifecycle_hooks import backend.server.v2.library.db import backend.server.v2.library.model logger = logging.getLogger(__name__) router = fastapi.APIRouter() integration_creds_manager = ( backend.integrations.creds_manager.IntegrationCredentialsManager() ) @router.get( "/agents", tags=["library", "private"], dependencies=[fastapi.Depends(autogpt_libs.auth.middleware.auth_middleware)], ) async def get_library_agents( user_id: typing.Annotated[ str, fastapi.Depends(autogpt_libs.auth.depends.get_user_id) ] ) -> typing.Sequence[backend.server.v2.library.model.LibraryAgent]: """ Get all agents in the user's library, including both created and saved agents. """ try: agents = await backend.server.v2.library.db.get_library_agents(user_id) return agents except Exception: logger.exception("Exception occurred whilst getting library agents") raise fastapi.HTTPException( status_code=500, detail="Failed to get library agents" ) @router.post( "/agents/{store_listing_version_id}", tags=["library", "private"], dependencies=[fastapi.Depends(autogpt_libs.auth.middleware.auth_middleware)], status_code=201, ) async def add_agent_to_library( store_listing_version_id: str, user_id: typing.Annotated[ str, fastapi.Depends(autogpt_libs.auth.depends.get_user_id) ], ) -> fastapi.Response: """ Add an agent from the store to the user's library. Args: store_listing_version_id (str): ID of the store listing version to add user_id (str): ID of the authenticated user Returns: fastapi.Response: 201 status code on success Raises: HTTPException: If there is an error adding the agent to the library """ try: # Get the graph from the store listing store_listing_version = ( await prisma.models.StoreListingVersion.prisma().find_unique( where={"id": store_listing_version_id}, include={"Agent": True} ) ) if not store_listing_version or not store_listing_version.Agent: raise fastapi.HTTPException( status_code=404, detail=f"Store listing version {store_listing_version_id} not found", ) agent = store_listing_version.Agent if agent.userId == user_id: raise fastapi.HTTPException( status_code=400, detail="Cannot add own agent to library" ) # Create a new graph from the template graph = await backend.data.graph.get_graph( agent.id, agent.version, user_id=user_id ) if not graph: raise fastapi.HTTPException( status_code=404, detail=f"Agent {agent.id} not found" ) # Create a deep copy with new IDs graph.version = 1 graph.is_template = False graph.is_active = True graph.reassign_ids(user_id=user_id, reassign_graph_id=True) # Save the new graph graph = await backend.data.graph.create_graph(graph, user_id=user_id) graph = ( await backend.integrations.webhooks.graph_lifecycle_hooks.on_graph_activate( graph, get_credentials=lambda id: integration_creds_manager.get(user_id, id), ) ) return fastapi.Response(status_code=201) except Exception: logger.exception("Exception occurred whilst adding agent to library") raise fastapi.HTTPException( status_code=500, detail="Failed to add agent to library" )
import logging import typing import autogpt_libs.auth.depends import autogpt_libs.auth.middleware import fastapi import prisma import backend.data.graph import backend.integrations.creds_manager import backend.integrations.webhooks.graph_lifecycle_hooks import backend.server.v2.library.db import backend.server.v2.library.model logger = logging.getLogger(__name__) router = fastapi.APIRouter() integration_creds_manager = ( backend.integrations.creds_manager.IntegrationCredentialsManager() ) @router.get( "/agents", tags=["library", "private"], dependencies=[fastapi.Depends(autogpt_libs.auth.middleware.auth_middleware)], ) async def get_library_agents( user_id: typing.Annotated[ str, fastapi.Depends(autogpt_libs.auth.depends.get_user_id) ] ) -> typing.Sequence[backend.server.v2.library.model.LibraryAgent]: """ Get all agents in the user's library, including both created and saved agents. """ try: agents = await backend.server.v2.library.db.get_library_agents(user_id) return agents except Exception: logger.exception("Exception occurred whilst getting library agents") raise fastapi.HTTPException( status_code=500, detail="Failed to get library agents" ) @router.post( "/agents/{store_listing_version_id}", tags=["library", "private"], dependencies=[fastapi.Depends(autogpt_libs.auth.middleware.auth_middleware)], status_code=201, ) async def add_agent_to_library( store_listing_version_id: str, user_id: typing.Annotated[ str, fastapi.Depends(autogpt_libs.auth.depends.get_user_id) ], ) -> fastapi.Response: """ Add an agent from the store to the user's library. Args: store_listing_version_id (str): ID of the store listing version to add user_id (str): ID of the authenticated user Returns: fastapi.Response: 201 status code on success Raises: HTTPException: If there is an error adding the agent to the library """ try: # Get the graph from the store listing store_listing_version = ( await prisma.models.StoreListingVersion.prisma().find_unique( where={"id": store_listing_version_id}, include={"Agent": True} ) ) if not store_listing_version or not store_listing_version.Agent: raise fastapi.HTTPException( status_code=404, detail=f"Store listing version {store_listing_version_id} not found", ) agent = store_listing_version.Agent if agent.userId == user_id: raise fastapi.HTTPException( status_code=400, detail="Cannot add own agent to library" ) # Create a new graph from the template graph = await backend.data.graph.get_graph( agent.id, agent.version, template=True, user_id=user_id ) if not graph: raise fastapi.HTTPException( status_code=404, detail=f"Agent {agent.id} not found" ) # Create a deep copy with new IDs graph.version = 1 graph.is_template = False graph.is_active = True graph.reassign_ids(user_id=user_id, reassign_graph_id=True) # Save the new graph graph = await backend.data.graph.create_graph(graph, user_id=user_id) graph = ( await backend.integrations.webhooks.graph_lifecycle_hooks.on_graph_activate( graph, get_credentials=lambda id: integration_creds_manager.get(user_id, id), ) ) return fastapi.Response(status_code=201) except Exception: logger.exception("Exception occurred whilst adding agent to library") raise fastapi.HTTPException( status_code=500, detail="Failed to add agent to library" )
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='YOLOF', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(3, ), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet50_caffe')), neck=dict( type='DilatedEncoder', in_channels=2048, out_channels=512, block_mid_channels=128, num_residual_blocks=4), bbox_head=dict( type='YOLOFHead', num_classes=80, in_channels=512, reg_decoded_bbox=True, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[1, 2, 4, 8, 16], strides=[32]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1., 1., 1., 1.], add_ctr_clamp=True, ctr_clamp=32), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict( type='UniformAssigner', pos_ignore_thr=0.15, neg_ignore_thr=0.7), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optimizer = dict( type='SGD', lr=0.12, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict( norm_decay_mult=0., custom_keys={'backbone': dict(lr_mult=1. / 3)})) lr_config = dict(warmup_iters=1500, warmup_ratio=0.00066667) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='RandomShift', shift_ratio=0.5, max_shift_px=32), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=8, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='YOLOF', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(3, ), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet50_caffe')), neck=dict( type='DilatedEncoder', in_channels=2048, out_channels=512, block_mid_channels=128, num_residual_blocks=4), bbox_head=dict( type='YOLOFHead', num_classes=80, in_channels=512, reg_decoded_bbox=True, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[1, 2, 4, 8, 16], strides=[32]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1., 1., 1., 1.], add_ctr_clamp=True, ctr_clamp=32), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict( type='UniformAssigner', pos_ignore_thr=0.15, neg_ignore_thr=0.7), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optimizer = dict( type='SGD', lr=0.12, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict( norm_decay_mult=0., custom_keys={'backbone': dict(lr_mult=1. / 3)})) lr_config = dict(warmup_iters=1500, warmup_ratio=0.00066667) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='RandomShift', shift_ratio=0.5, max_shift_px=32), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=8, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = 'ssd300_coco.py' # model settings input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.1, 0.9), strides=[8, 16, 32, 64, 128, 256, 512], ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = 'ssd300_coco.py' # model settings input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.1, 0.9), strides=[8, 16, 32, 64, 128, 256, 512], ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # TODO support auto_scale_lr # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) # auto_scale_lr = dict(base_batch_size=64)
_base_ = './reppoints-moment_r50_fpn-gn_head-gn_2x_coco.py' model = dict( backbone=dict( depth=101, dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py' model = dict( backbone=dict( depth=101, dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
from typing import Iterable, Union from docarray import Document, DocumentArray from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with Redis as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DA are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.client_info() == other._client.client_info() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses Redis as storage :return: the length of this :class:`DocumentArrayRedis` object """ if self._list_like: return len(self._offset2ids) try: lua_script = f'return #redis.pcall("keys", "{self._config.index_name}:*")' cmd = self._client.register_script(lua_script) return cmd() except: return 0 def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with Redis storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._doc_id_exists(x) elif isinstance(x, Document): return self._doc_id_exists(x.id) else: return False def __repr__(self): """Return the string representation of :class:`DocumentArrayRedis` object :return: string representation of this object """ return f'<DocumentArray[Redis] (length={len(self)}) at {id(self)}>' def _upload_batch(self, batch_of_docs: Iterable['Document']): pipe = self._client.pipeline() for doc in batch_of_docs: payload = self._document_to_redis(doc) pipe.hset(self._doc_prefix + doc.id, mapping=payload) pipe.execute() def _extend(self, docs: Iterable['Document']): da = DocumentArray(docs) for batch_of_docs in da.batch(self._config.batch_size): self._upload_batch(batch_of_docs) if self._list_like: self._offset2ids.extend(batch_of_docs[:, 'id'])
from typing import Iterable, Union from docarray import Document, DocumentArray from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with Redis as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DA are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.client_info() == other._client.client_info() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses Redis as storage :return: the length of this :class:`DocumentArrayRedis` object """ try: return len(self._offset2ids) except: return 0 def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with Redis storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._doc_id_exists(x) elif isinstance(x, Document): return self._doc_id_exists(x.id) else: return False def __repr__(self): """Return the string representation of :class:`DocumentArrayRedis` object :return: string representation of this object """ return f'<DocumentArray[Redis] (length={len(self)}) at {id(self)}>' def _upload_batch(self, batch_of_docs: Iterable['Document']): pipe = self._client.pipeline() for doc in batch_of_docs: payload = self._document_to_redis(doc) pipe.hset(self._doc_prefix + doc.id, mapping=payload) pipe.execute() def _extend(self, docs: Iterable['Document']): da = DocumentArray(docs) for batch_of_docs in da.batch(self._config.batch_size): self._upload_batch(batch_of_docs) if self._list_like: self._offset2ids.extend(batch_of_docs[:, 'id'])
"""langchain-core version information and utilities.""" VERSION = "0.3.64"
"""langchain-core version information and utilities.""" VERSION = "0.3.63"
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='ATSS', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=128), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=[ dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), dict( type='DyHead', in_channels=256, out_channels=256, num_blocks=6, # disable zero_init_offset to follow official implementation zero_init_offset=False) ], bbox_head=dict( type='ATSSHead', num_classes=80, in_channels=256, pred_kernel_size=1, # follow DyHead official implementation stacked_convs=0, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128], center_offset=0.5), # follow DyHead official implementation bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend='pillow'), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='ATSS', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=128), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=[ dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), dict( type='DyHead', in_channels=256, out_channels=256, num_blocks=6, # disable zero_init_offset to follow official implementation zero_init_offset=False) ], bbox_head=dict( type='ATSSHead', num_classes=80, in_channels=256, pred_kernel_size=1, # follow DyHead official implementation stacked_convs=0, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128], center_offset=0.5), # follow DyHead official implementation bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend='pillow'), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
import re import sys meetup_svg = '.github/images/meetup.svg' readme_md = 'README.md' conf_py = 'docs/conf.py' def rm_announce(): # remove all announcement with open(readme_md, encoding='utf-8') as fp: _old = fp.read() _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>\g<2>', _old, flags=re.DOTALL, ) with open(readme_md, 'w', encoding='utf-8') as fp: fp.write(_new) with open(conf_py, encoding='utf-8') as fp: _old = fp.read() _new = re.sub( r'(# start-announce\s*?\n).*(\n\s*?# end-announce)', rf'\g<1>\g<2>', _old, flags=re.DOTALL, ) with open(conf_py, 'w', encoding='utf-8') as fp: fp.write(_new) if len(sys.argv) < 3: rm_announce() else: text = sys.argv[1] url = sys.argv[2] if not text or not url: rm_announce() else: announce_url = f''' "announcement": \'\'\' <a href="{url}">{text}</a> \'\'\', ''' meetup_svg_url = f'<a href="{url}"><img src="https://github.com/jina-ai/jina/blob/master/{meetup_svg}?raw=true"></a>' # update meetup_svg with open(meetup_svg, encoding='utf-8') as fp: _old = fp.read() _new = re.sub(r'(<a href=").*(")', rf'\g<1>{url}\g<2>', _old) _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>{text}\g<2>', _new, flags=re.DOTALL, ) with open(meetup_svg, 'w', encoding='utf-8') as fp: fp.write(_new) # update readme_md with open(readme_md, encoding='utf-8') as fp: _old = fp.read() _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>{meetup_svg_url}\g<2>', _old, flags=re.DOTALL, ) with open(readme_md, 'w', encoding='utf-8') as fp: fp.write(_new) # update conf with open(conf_py, encoding='utf-8') as fp: _old = fp.read() _new = re.sub( r'(# start-announce\s*?\n).*(\n\s*?# end-announce)', rf'\g<1>{announce_url}\g<2>', _old, flags=re.DOTALL, ) with open(conf_py, 'w', encoding='utf-8') as fp: fp.write(_new)
import re import sys meetup_svg = '.github/images/meetup.svg' readme_md = 'README.md' conf_py = 'docs/conf.py' def rm_announce(): # remove all announcement with open(readme_md) as fp: _old = fp.read() _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>\g<2>', _old, flags=re.DOTALL, ) with open(readme_md, 'w') as fp: fp.write(_new) with open(conf_py) as fp: _old = fp.read() _new = re.sub( r'(# start-announce\s*?\n).*(\n\s*?# end-announce)', rf'\g<1>\g<2>', _old, flags=re.DOTALL, ) with open(conf_py, 'w') as fp: fp.write(_new) if len(sys.argv) < 3: rm_announce() else: text = sys.argv[1] url = sys.argv[2] if not text or not url: rm_announce() else: announce_url = f''' "announcement": \'\'\' <a href="{url}">{text}</a> \'\'\', ''' meetup_svg_url = f'<a href="{url}"><img src="https://github.com/jina-ai/jina/blob/master/{meetup_svg}?raw=true"></a>' # update meetup_svg with open(meetup_svg) as fp: _old = fp.read() _new = re.sub(r'(<a href=").*(")', rf'\g<1>{url}\g<2>', _old) _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>{text}\g<2>', _new, flags=re.DOTALL, ) with open(meetup_svg, 'w') as fp: fp.write(_new) # update readme_md with open(readme_md) as fp: _old = fp.read() _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>{meetup_svg_url}\g<2>', _old, flags=re.DOTALL, ) with open(readme_md, 'w') as fp: fp.write(_new) # update conf with open(conf_py) as fp: _old = fp.read() _new = re.sub( r'(# start-announce\s*?\n).*(\n\s*?# end-announce)', rf'\g<1>{announce_url}\g<2>', _old, flags=re.DOTALL, ) with open(conf_py, 'w') as fp: fp.write(_new)
"""langchain-core version information and utilities.""" VERSION = "0.3.60"
"""langchain-core version information and utilities.""" VERSION = "0.3.59"
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: ``` pip install elasticsearch ``` This script was created for `elasticsearch` v8.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus print("Start encoding corpus...") start_time = time.time() corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using Elasticsearch results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: ``` pip install elasticsearch ``` This script was created for `elasticsearch` v8.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus print("Start encoding corpus...") start_time = time.time() corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using Elasticsearch results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings_decoded, corpus_index=corpus_index, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.jaxarray import JaxArray, metaJax from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoJaxArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_jaxarray') class VideoJaxArray(JaxArray, VideoTensorMixin, metaclass=metaJax): """ """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.jaxarray import JaxArray, metaJax from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoJaxArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_jaxarray') class VideoJaxArray(JaxArray, VideoTensorMixin, metaclass=metaJax): """ """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
import pytest from langchain_core.utils.iter import batch_iterate @pytest.mark.parametrize( "input_size, input_iterable, expected_output", [ (2, [1, 2, 3, 4, 5], [[1, 2], [3, 4], [5]]), (3, [10, 20, 30, 40, 50], [[10, 20, 30], [40, 50]]), (1, [100, 200, 300], [[100], [200], [300]]), (4, [], []), ], ) def test_batch_iterate( input_size: int, input_iterable: list[str], expected_output: list[str], ) -> None: """Test batching function.""" assert list(batch_iterate(input_size, input_iterable)) == expected_output
import pytest from langchain_core.utils.iter import batch_iterate @pytest.mark.parametrize( "input_size, input_iterable, expected_output", [ (2, [1, 2, 3, 4, 5], [[1, 2], [3, 4], [5]]), (3, [10, 20, 30, 40, 50], [[10, 20, 30], [40, 50]]), (1, [100, 200, 300], [[100], [200], [300]]), (4, [], []), ], ) def test_batch_iterate( input_size: int, input_iterable: list[str], expected_output: list[str] ) -> None: """Test batching function.""" assert list(batch_iterate(input_size, input_iterable)) == expected_output
from __future__ import annotations import sys from .classification import CrossEncoderClassificationEvaluator from .correlation import CrossEncoderCorrelationEvaluator from .deprecated import ( CEBinaryAccuracyEvaluator, CEBinaryClassificationEvaluator, CECorrelationEvaluator, CEF1Evaluator, CERerankingEvaluator, CESoftmaxAccuracyEvaluator, ) from .nano_beir import CrossEncoderNanoBEIREvaluator from .reranking import CrossEncoderRerankingEvaluator # Ensure that imports using deprecated paths still work # Although importing via `from sentence_transformers.cross_encoder.evaluation import ...` is recommended deprecated_modules = [ "sentence_transformers.cross_encoder.evaluation.CEBinaryAccuracyEvaluator", "sentence_transformers.cross_encoder.evaluation.CEBinaryClassificationEvaluator", "sentence_transformers.cross_encoder.evaluation.CEF1Evaluator", "sentence_transformers.cross_encoder.evaluation.CESoftmaxAccuracyEvaluator", "sentence_transformers.cross_encoder.evaluation.CECorrelationEvaluator", "sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator", ] for module in deprecated_modules: sys.modules[module] = sys.modules["sentence_transformers.cross_encoder.evaluation.deprecated"] __all__ = [ "CrossEncoderClassificationEvaluator", "CrossEncoderCorrelationEvaluator", "CrossEncoderRerankingEvaluator", "CrossEncoderNanoBEIREvaluator", # Deprecated: "CERerankingEvaluator", "CECorrelationEvaluator", "CEBinaryAccuracyEvaluator", "CEBinaryClassificationEvaluator", "CEF1Evaluator", "CESoftmaxAccuracyEvaluator", ]
from __future__ import annotations # TODO: Consider renaming all evaluators to CrossEncoder..., e.g. CrossEncoderNanoBEIREvaluator, CrossEncoderClassificationEvaluator, etc. from .CEBinaryAccuracyEvaluator import CEBinaryAccuracyEvaluator from .CEBinaryClassificationEvaluator import CEBinaryClassificationEvaluator from .CEClassificationEvaluator import CEClassificationEvaluator from .CECorrelationEvaluator import CECorrelationEvaluator from .CEF1Evaluator import CEF1Evaluator from .CENanoBEIREvaluator import CENanoBEIREvaluator from .CERerankingEvaluator import CERerankingEvaluator from .CESoftmaxAccuracyEvaluator import CESoftmaxAccuracyEvaluator __all__ = [ "CEClassificationEvaluator", "CECorrelationEvaluator", "CERerankingEvaluator", "CENanoBEIREvaluator", "CEBinaryAccuracyEvaluator", # Deprecated "CEBinaryClassificationEvaluator", # Deprecated "CEF1Evaluator", # Deprecated "CESoftmaxAccuracyEvaluator", # Deprecated ]
_base_ = './cascade-rcnn_r50_fpn_20e_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
_base_ = './cascade_rcnn_r50_fpn_20e_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class PAA(SingleStageDetector): """Implementation of `PAA <https://arxiv.org/pdf/2007.08103.pdf>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(PAA, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class PAA(SingleStageDetector): """Implementation of `PAA <https://arxiv.org/pdf/2007.08103.pdf>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(PAA, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
_base_ = [ '../_base_/models/faster-rcnn_r50-caffe-c4.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ]
_base_ = [ '../_base_/models/faster-rcnn_r50-caffe-c4.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
"""Dump objects to json.""" import json from typing import Any from pydantic import BaseModel from langchain_core.load.serializable import Serializable, to_json_not_implemented def default(obj: Any) -> Any: """Return a default value for an object. Args: obj: The object to serialize to json if it is a Serializable object. Returns: A json serializable object or a SerializedNotImplemented object. """ if isinstance(obj, Serializable): return obj.to_json() return to_json_not_implemented(obj) def _dump_pydantic_models(obj: Any) -> Any: from langchain_core.messages import AIMessage from langchain_core.outputs import ChatGeneration if ( isinstance(obj, ChatGeneration) and isinstance(obj.message, AIMessage) and (parsed := obj.message.additional_kwargs.get("parsed")) and isinstance(parsed, BaseModel) ): obj_copy = obj.model_copy(deep=True) obj_copy.message.additional_kwargs["parsed"] = parsed.model_dump() return obj_copy return obj def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str: """Return a json string representation of an object. Args: obj: The object to dump. pretty: Whether to pretty print the json. If true, the json will be indented with 2 spaces (if no indent is provided as part of kwargs). Default is False. kwargs: Additional arguments to pass to json.dumps Returns: A json string representation of the object. Raises: ValueError: If `default` is passed as a kwarg. """ if "default" in kwargs: msg = "`default` should not be passed to dumps" raise ValueError(msg) try: obj = _dump_pydantic_models(obj) if pretty: indent = kwargs.pop("indent", 2) return json.dumps(obj, default=default, indent=indent, **kwargs) return json.dumps(obj, default=default, **kwargs) except TypeError: if pretty: indent = kwargs.pop("indent", 2) return json.dumps(to_json_not_implemented(obj), indent=indent, **kwargs) return json.dumps(to_json_not_implemented(obj), **kwargs) def dumpd(obj: Any) -> Any: """Return a dict representation of an object. Note: Unfortunately this function is not as efficient as it could be because it first dumps the object to a json string and then loads it back into a dictionary. Args: obj: The object to dump. Returns: dictionary that can be serialized to json using json.dumps """ return json.loads(dumps(obj))
"""Dump objects to json.""" import json from typing import Any from pydantic import BaseModel from langchain_core.load.serializable import Serializable, to_json_not_implemented def default(obj: Any) -> Any: """Return a default value for an object. Args: obj: The object to serialize to json if it is a Serializable object. Returns: A json serializable object or a SerializedNotImplemented object. """ if isinstance(obj, Serializable): return obj.to_json() else: return to_json_not_implemented(obj) def _dump_pydantic_models(obj: Any) -> Any: from langchain_core.messages import AIMessage from langchain_core.outputs import ChatGeneration if ( isinstance(obj, ChatGeneration) and isinstance(obj.message, AIMessage) and (parsed := obj.message.additional_kwargs.get("parsed")) and isinstance(parsed, BaseModel) ): obj_copy = obj.model_copy(deep=True) obj_copy.message.additional_kwargs["parsed"] = parsed.model_dump() return obj_copy else: return obj def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str: """Return a json string representation of an object. Args: obj: The object to dump. pretty: Whether to pretty print the json. If true, the json will be indented with 2 spaces (if no indent is provided as part of kwargs). Default is False. kwargs: Additional arguments to pass to json.dumps Returns: A json string representation of the object. Raises: ValueError: If `default` is passed as a kwarg. """ if "default" in kwargs: msg = "`default` should not be passed to dumps" raise ValueError(msg) try: obj = _dump_pydantic_models(obj) if pretty: indent = kwargs.pop("indent", 2) return json.dumps(obj, default=default, indent=indent, **kwargs) else: return json.dumps(obj, default=default, **kwargs) except TypeError: if pretty: indent = kwargs.pop("indent", 2) return json.dumps(to_json_not_implemented(obj), indent=indent, **kwargs) else: return json.dumps(to_json_not_implemented(obj), **kwargs) def dumpd(obj: Any) -> Any: """Return a dict representation of an object. Note: Unfortunately this function is not as efficient as it could be because it first dumps the object to a json string and then loads it back into a dictionary. Args: obj: The object to dump. Returns: dictionary that can be serialized to json using json.dumps """ return json.loads(dumps(obj))
import json from jina.logging.logger import JinaLogger from jina.parsers import set_gateway_parser from jina.serve.runtimes.gateway.http_fastapi_app import get_fastapi_app from jina.serve.runtimes.gateway.streamer import GatewayStreamer JINA_LOGO_URL = 'https://api.jina.ai/logo/logo-product/jina-core/horizontal-layout/colored/Product%20logo_Core_vertical_colorful%402x-margin.png' GATEWAY_SCHEMA_FILENAME = 'gateway.json' args = set_gateway_parser().parse_args([]) logger = JinaLogger('') graph_description = json.loads(args.graph_description) graph_conditions = json.loads(args.graph_conditions) deployments_addresses = json.loads(args.deployments_addresses) deployments_no_reduce = json.loads(args.deployments_no_reduce) streamer = GatewayStreamer( graph_representation=graph_description, executor_addresses=deployments_addresses, graph_conditions=graph_conditions, deployments_no_reduce=deployments_no_reduce, timeout_send=args.timeout_send, retries=args.retries, compression=args.compression, runtime_name=args.name, prefetch=args.prefetch, logger=logger, ) gateway_app = get_fastapi_app( streamer=streamer, title=args.title, description=args.description, no_debug_endpoints=args.no_debug_endpoints, no_crud_endpoints=args.no_crud_endpoints, expose_endpoints=args.expose_endpoints, expose_graphql_endpoint=args.expose_graphql_endpoint, cors=args.cors, logger=logger, ) gateway_schema = gateway_app.openapi() gateway_schema['info']['x-logo'] = {'url': JINA_LOGO_URL} gateway_schema['servers'] = [] gateway_schema['servers'].append( {'url': f'http://localhost:{args.port}', 'description': 'Local Jina gateway'} ) with open(GATEWAY_SCHEMA_FILENAME, 'w', encoding='utf-8') as f: json.dump(gateway_schema, f)
import json from jina.logging.logger import JinaLogger from jina.parsers import set_gateway_parser from jina.serve.runtimes.gateway.http_fastapi_app import get_fastapi_app from jina.serve.runtimes.gateway.streamer import GatewayStreamer JINA_LOGO_URL = 'https://api.jina.ai/logo/logo-product/jina-core/horizontal-layout/colored/Product%20logo_Core_vertical_colorful%402x-margin.png' GATEWAY_SCHEMA_FILENAME = 'gateway.json' args = set_gateway_parser().parse_args([]) logger = JinaLogger('') graph_description = json.loads(args.graph_description) graph_conditions = json.loads(args.graph_conditions) deployments_addresses = json.loads(args.deployments_addresses) deployments_no_reduce = json.loads(args.deployments_no_reduce) streamer = GatewayStreamer( graph_representation=graph_description, executor_addresses=deployments_addresses, graph_conditions=graph_conditions, deployments_no_reduce=deployments_no_reduce, timeout_send=args.timeout_send, retries=args.retries, compression=args.compression, runtime_name=args.name, prefetch=args.prefetch, logger=logger, ) gateway_app = get_fastapi_app( streamer=streamer, title=args.title, description=args.description, no_debug_endpoints=args.no_debug_endpoints, no_crud_endpoints=args.no_crud_endpoints, expose_endpoints=args.expose_endpoints, expose_graphql_endpoint=args.expose_graphql_endpoint, cors=args.cors, logger=logger, ) gateway_schema = gateway_app.openapi() gateway_schema['info']['x-logo'] = {'url': JINA_LOGO_URL} gateway_schema['servers'] = [] gateway_schema['servers'].append( {'url': f'http://localhost:{args.port}', 'description': 'Local Jina gateway'} ) with open(GATEWAY_SCHEMA_FILENAME, 'w') as f: json.dump(gateway_schema, f)
_base_ = './htc_hrnetv2p_w40_20e_coco.py' # learning policy max_epochs = 28 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[24, 27], gamma=0.1) ]
_base_ = './htc_hrnetv2p_w40_20e_coco.py' # learning policy lr_config = dict(step=[24, 27]) runner = dict(type='EpochBasedRunner', max_epochs=28)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['reduce', 'reduce_all'] from typing import Dict, List, Optional from docarray import DocList def reduce( left: DocList, right: DocList, left_id_map: Optional[Dict] = None ) -> 'DocList': """ Reduces left and right DocList into one DocList in-place. Changes are applied to the left DocList. Reducing 2 DocLists consists in adding Documents in the second DocList to the first DocList if they do not exist. If a Document exists in both DocLists (identified by ID), the data properties are merged with priority to the left Document. Nested DocLists are also reduced in the same way. :param left: First DocList to be reduced. Changes will be applied to it in-place :param right: Second DocList to be reduced :param left_id_map: Optional parameter to be passed in repeated calls for optimizations, keeping a map of the Document ID to its offset in the DocList :return: Reduced DocList """ left_id_map = left_id_map or {doc.id: i for i, doc in enumerate(left)} for doc in right: if doc.id in left_id_map: left[left_id_map[doc.id]].update(doc) else: casted = left.doc_type(**doc.__dict__) left.append(casted) return left def reduce_all(docs: List[DocList]) -> DocList: """ Reduces a list of DocLists into one DocList. Changes are applied to the first DocList in-place. The resulting DocList contains Documents of all DocLists. If a Document exists (identified by their ID) in many DocLists, data properties are merged with priority to the left-most DocLists (that is, if a data attribute is set in a Document belonging to many DocLists, the attribute value of the left-most DocList is kept). Nested DocLists belonging to many DocLists are also reduced in the same way. !!! note - Nested DocLists order does not follow any specific rule. You might want to re-sort them in a later step. - The final result depends on the order of DocLists when applying reduction. :param docs: List of DocLists to be reduced :return: the resulting DocList """ if len(docs) <= 1: raise Exception( 'In order to reduce DocLists' ' we should have more than one DocList' ) left = docs[0] others = docs[1:] left_id_map = {doc.id: i for i, doc in enumerate(left)} for other_docs in others: reduce(left, other_docs, left_id_map) return left
__all__ = ['reduce', 'reduce_all'] from typing import Dict, List, Optional from docarray import DocList def reduce( left: DocList, right: DocList, left_id_map: Optional[Dict] = None ) -> 'DocList': """ Reduces left and right DocList into one DocList in-place. Changes are applied to the left DocList. Reducing 2 DocLists consists in adding Documents in the second DocList to the first DocList if they do not exist. If a Document exists in both DocLists (identified by ID), the data properties are merged with priority to the left Document. Nested DocLists are also reduced in the same way. :param left: First DocList to be reduced. Changes will be applied to it in-place :param right: Second DocList to be reduced :param left_id_map: Optional parameter to be passed in repeated calls for optimizations, keeping a map of the Document ID to its offset in the DocList :return: Reduced DocList """ left_id_map = left_id_map or {doc.id: i for i, doc in enumerate(left)} for doc in right: if doc.id in left_id_map: left[left_id_map[doc.id]].update(doc) else: casted = left.doc_type(**doc.__dict__) left.append(casted) return left def reduce_all(docs: List[DocList]) -> DocList: """ Reduces a list of DocLists into one DocList. Changes are applied to the first DocList in-place. The resulting DocList contains Documents of all DocLists. If a Document exists (identified by their ID) in many DocLists, data properties are merged with priority to the left-most DocLists (that is, if a data attribute is set in a Document belonging to many DocLists, the attribute value of the left-most DocList is kept). Nested DocLists belonging to many DocLists are also reduced in the same way. !!! note - Nested DocLists order does not follow any specific rule. You might want to re-sort them in a later step. - The final result depends on the order of DocLists when applying reduction. :param docs: List of DocLists to be reduced :return: the resulting DocList """ if len(docs) <= 1: raise Exception( 'In order to reduce DocLists' ' we should have more than one DocList' ) left = docs[0] others = docs[1:] left_id_map = {doc.id: i for i, doc in enumerate(left)} for other_docs in others: reduce(left, other_docs, left_id_map) return left
"""**OutputParser** classes parse the output of an LLM call. **Class hierarchy:** .. code-block:: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser **Main helpers:** .. code-block:: Serializable, Generation, PromptValue """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.output_parsers.base import ( BaseGenerationOutputParser, BaseLLMOutputParser, BaseOutputParser, ) from langchain_core.output_parsers.json import ( JsonOutputParser, SimpleJsonOutputParser, ) from langchain_core.output_parsers.list import ( CommaSeparatedListOutputParser, ListOutputParser, MarkdownListOutputParser, NumberedListOutputParser, ) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, JsonOutputToolsParser, PydanticToolsParser, ) from langchain_core.output_parsers.pydantic import PydanticOutputParser from langchain_core.output_parsers.string import StrOutputParser from langchain_core.output_parsers.transform import ( BaseCumulativeTransformOutputParser, BaseTransformOutputParser, ) from langchain_core.output_parsers.xml import XMLOutputParser __all__ = [ "BaseLLMOutputParser", "BaseGenerationOutputParser", "BaseOutputParser", "ListOutputParser", "CommaSeparatedListOutputParser", "NumberedListOutputParser", "MarkdownListOutputParser", "StrOutputParser", "BaseTransformOutputParser", "BaseCumulativeTransformOutputParser", "SimpleJsonOutputParser", "XMLOutputParser", "JsonOutputParser", "PydanticOutputParser", "JsonOutputToolsParser", "JsonOutputKeyToolsParser", "PydanticToolsParser", ] _dynamic_imports = { "BaseLLMOutputParser": "base", "BaseGenerationOutputParser": "base", "BaseOutputParser": "base", "JsonOutputParser": "json", "SimpleJsonOutputParser": "json", "ListOutputParser": "list", "CommaSeparatedListOutputParser": "list", "MarkdownListOutputParser": "list", "NumberedListOutputParser": "list", "JsonOutputKeyToolsParser": "openai_tools", "JsonOutputToolsParser": "openai_tools", "PydanticToolsParser": "openai_tools", "PydanticOutputParser": "pydantic", "StrOutputParser": "string", "BaseTransformOutputParser": "transform", "BaseCumulativeTransformOutputParser": "transform", "XMLOutputParser": "xml", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**OutputParser** classes parse the output of an LLM call. **Class hierarchy:** .. code-block:: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser **Main helpers:** .. code-block:: Serializable, Generation, PromptValue """ # noqa: E501 from langchain_core.output_parsers.base import ( BaseGenerationOutputParser, BaseLLMOutputParser, BaseOutputParser, ) from langchain_core.output_parsers.json import JsonOutputParser, SimpleJsonOutputParser from langchain_core.output_parsers.list import ( CommaSeparatedListOutputParser, ListOutputParser, MarkdownListOutputParser, NumberedListOutputParser, ) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, JsonOutputToolsParser, PydanticToolsParser, ) from langchain_core.output_parsers.pydantic import PydanticOutputParser from langchain_core.output_parsers.string import StrOutputParser from langchain_core.output_parsers.transform import ( BaseCumulativeTransformOutputParser, BaseTransformOutputParser, ) from langchain_core.output_parsers.xml import XMLOutputParser __all__ = [ "BaseLLMOutputParser", "BaseGenerationOutputParser", "BaseOutputParser", "ListOutputParser", "CommaSeparatedListOutputParser", "NumberedListOutputParser", "MarkdownListOutputParser", "StrOutputParser", "BaseTransformOutputParser", "BaseCumulativeTransformOutputParser", "SimpleJsonOutputParser", "XMLOutputParser", "JsonOutputParser", "PydanticOutputParser", "JsonOutputToolsParser", "JsonOutputKeyToolsParser", "PydanticToolsParser", ]
import json from typing import Any, Callable, Iterator, List, Mapping, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document RecordHandler = Callable[[Any, Optional[str]], Document] class AirbyteCDKReader(BaseReader): """ AirbyteCDKReader reader. Retrieve documents from an Airbyte source implemented using the CDK. Args: source_class: The Airbyte source class. config: The config object for the Airbyte source. """ def __init__( self, source_class: Any, config: Mapping[str, Any], record_handler: Optional[RecordHandler] = None, ) -> None: """Initialize with parameters.""" from airbyte_cdk.models.airbyte_protocol import AirbyteRecordMessage from airbyte_cdk.sources.embedded.base_integration import ( BaseEmbeddedIntegration, ) from airbyte_cdk.sources.embedded.runner import CDKRunner class CDKIntegration(BaseEmbeddedIntegration): def _handle_record( self, record: AirbyteRecordMessage, id: Optional[str] ) -> Document: if record_handler: return record_handler(record, id) return Document( doc_id=id, text=json.dumps(record.data), extra_info=record.data ) self._integration = CDKIntegration( config=config, runner=CDKRunner(source=source_class(), name=source_class.__name__), ) def load_data(self, *args: Any, **kwargs: Any) -> List[Document]: return list(self.lazy_load_data(*args, **kwargs)) def lazy_load_data(self, *args: Any, **kwargs: Any) -> Iterator[Document]: return self._integration._load_data(*args, **kwargs) @property def last_state(self): return self._integration.last_state
import json from typing import Any, Callable, Iterator, List, Mapping, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document RecordHandler = Callable[[Any, Optional[str]], Document] class AirbyteCDKReader(BaseReader): """AirbyteCDKReader reader. Retrieve documents from an Airbyte source implemented using the CDK. Args: source_class: The Airbyte source class. config: The config object for the Airbyte source. """ def __init__( self, source_class: Any, config: Mapping[str, Any], record_handler: Optional[RecordHandler] = None, ) -> None: """Initialize with parameters.""" from airbyte_cdk.models.airbyte_protocol import AirbyteRecordMessage from airbyte_cdk.sources.embedded.base_integration import ( BaseEmbeddedIntegration, ) from airbyte_cdk.sources.embedded.runner import CDKRunner class CDKIntegration(BaseEmbeddedIntegration): def _handle_record( self, record: AirbyteRecordMessage, id: Optional[str] ) -> Document: if record_handler: return record_handler(record, id) return Document( doc_id=id, text=json.dumps(record.data), extra_info=record.data ) self._integration = CDKIntegration( config=config, runner=CDKRunner(source=source_class(), name=source_class.__name__), ) def load_data(self, *args: Any, **kwargs: Any) -> List[Document]: return list(self.lazy_load_data(*args, **kwargs)) def lazy_load_data(self, *args: Any, **kwargs: Any) -> Iterator[Document]: return self._integration._load_data(*args, **kwargs) @property def last_state(self): return self._integration.last_state
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class Translation: """`Feature` for translations with fixed languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to string translations. Example: ```python >>> # At construction time: >>> datasets.features.Translation(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': 'le chat', ... 'de': 'die katze' ... } ``` """ languages: list[str] id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="Translation", init=False, repr=False) def __call__(self): return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def flatten(self) -> Union["FeatureType", dict[str, "FeatureType"]]: """Flatten the Translation feature into a dictionary.""" from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class TranslationVariableLanguages: """`Feature` for translations with variable languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to one or more string translations. The languages present may vary from example to example. Returns: - `language` or `translation` (variable-length 1D `tf.Tensor` of `tf.string`): Language codes sorted in ascending order or plain text translations, sorted to align with language codes. Example: ```python >>> # At construction time: >>> datasets.features.TranslationVariableLanguages(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': ['le chat', 'la chatte,'] ... 'de': 'die katze' ... } >>> # Tensor returned : >>> { ... 'language': ['en', 'de', 'fr', 'fr'], ... 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], ... } ``` """ languages: Optional[list] = None num_languages: Optional[int] = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) def __post_init__(self): self.languages = sorted(set(self.languages)) if self.languages else None self.num_languages = len(self.languages) if self.languages else None def __call__(self): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def encode_example(self, translation_dict): lang_set = set(self.languages) if set(translation_dict) == {"language", "translation"}: return translation_dict elif self.languages and set(translation_dict) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({', '.join(lang_set)})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. translation_tuples = [] for lang, text in translation_dict.items(): if isinstance(text, str): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. languages, translations = zip(*sorted(translation_tuples)) return {"language": languages, "translation": translations} def flatten(self) -> Union["FeatureType", dict[str, "FeatureType"]]: """Flatten the TranslationVariableLanguages feature into a dictionary.""" from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class Translation: """`Feature` for translations with fixed languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to string translations. Example: ```python >>> # At construction time: >>> datasets.features.Translation(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': 'le chat', ... 'de': 'die katze' ... } ``` """ languages: List[str] id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="Translation", init=False, repr=False) def __call__(self): return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the Translation feature into a dictionary.""" from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class TranslationVariableLanguages: """`Feature` for translations with variable languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to one or more string translations. The languages present may vary from example to example. Returns: - `language` or `translation` (variable-length 1D `tf.Tensor` of `tf.string`): Language codes sorted in ascending order or plain text translations, sorted to align with language codes. Example: ```python >>> # At construction time: >>> datasets.features.TranslationVariableLanguages(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': ['le chat', 'la chatte,'] ... 'de': 'die katze' ... } >>> # Tensor returned : >>> { ... 'language': ['en', 'de', 'fr', 'fr'], ... 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], ... } ``` """ languages: Optional[List] = None num_languages: Optional[int] = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) def __post_init__(self): self.languages = sorted(set(self.languages)) if self.languages else None self.num_languages = len(self.languages) if self.languages else None def __call__(self): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def encode_example(self, translation_dict): lang_set = set(self.languages) if set(translation_dict) == {"language", "translation"}: return translation_dict elif self.languages and set(translation_dict) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({', '.join(lang_set)})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. translation_tuples = [] for lang, text in translation_dict.items(): if isinstance(text, str): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. languages, translations = zip(*sorted(translation_tuples)) return {"language": languages, "translation": translations} def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the TranslationVariableLanguages feature into a dictionary.""" from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
import datasets from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class VideoFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """BuilderConfig for ImageFolder.""" drop_labels: bool = None drop_metadata: bool = None def __post_init__(self): super().__post_init__() class VideoFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Video BASE_COLUMN_NAME = "video" BUILDER_CONFIG_CLASS = VideoFolderConfig EXTENSIONS: list[str] # definition at the bottom of the script # TODO: initial list, we should check the compatibility of other formats VIDEO_EXTENSIONS = [ ".mkv", ".mp4", ".avi", ".mpeg", ".mov", ] VideoFolder.EXTENSIONS = VIDEO_EXTENSIONS
from typing import List import datasets from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class VideoFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """BuilderConfig for ImageFolder.""" drop_labels: bool = None drop_metadata: bool = None def __post_init__(self): super().__post_init__() class VideoFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Video BASE_COLUMN_NAME = "video" BUILDER_CONFIG_CLASS = VideoFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script # TODO: initial list, we should check the compatibility of other formats VIDEO_EXTENSIONS = [ ".mkv", ".mp4", ".avi", ".mpeg", ".mov", ] VideoFolder.EXTENSIONS = VIDEO_EXTENSIONS
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for CLIP.""" from ...image_processing_utils_fast import BaseImageProcessorFast from ...image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, PILImageResampling from ...utils import auto_docstring @auto_docstring class CLIPImageProcessorFast(BaseImageProcessorFast): # To be checked against the slow image processor # None values left after checking can be removed resample = PILImageResampling.BICUBIC image_mean = OPENAI_CLIP_MEAN image_std = OPENAI_CLIP_STD size = {"shortest_edge": 224} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = True __all__ = ["CLIPImageProcessorFast"]
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for CLIP.""" from ...image_processing_utils_fast import BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BaseImageProcessorFast from ...image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, PILImageResampling from ...utils import add_start_docstrings @add_start_docstrings( "Constructs a fast CLIP image processor.", BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, ) class CLIPImageProcessorFast(BaseImageProcessorFast): # To be checked against the slow image processor # None values left after checking can be removed resample = PILImageResampling.BICUBIC image_mean = OPENAI_CLIP_MEAN image_std = OPENAI_CLIP_STD size = {"shortest_edge": 224} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = True __all__ = ["CLIPImageProcessorFast"]
import weakref from keras.src.backend.common import global_state def set_tensor_attr(tensor, attr, value): try: setattr(tensor, attr, value) except AttributeError: attr_dict = global_state.get_global_attribute(f"{attr}_dict") if attr_dict is None: if value is None: return attr_dict = weakref.WeakValueDictionary() global_state.set_global_attribute(f"{attr}_dict", attr_dict) if value is not None: attr_dict[id(tensor)] = value elif id(tensor) in attr_dict: del attr_dict[id(tensor)] def get_tensor_attr(tensor, attr): if not hasattr(tensor, attr): attr_dict = global_state.get_global_attribute(f"{attr}_dict") if attr_dict is not None: return attr_dict.get(id(tensor), None) else: return None return getattr(tensor, attr, None)
import weakref from keras.src.backend.common import global_state def set_tensor_attr(tensor, attr, value): try: setattr(tensor, attr, value) except AttributeError: if value is None: return attr_dict = global_state.get_global_attribute(f"{attr}_dict") if attr_dict is None: attr_dict = weakref.WeakValueDictionary() global_state.set_global_attribute(f"{attr}_dict", attr_dict) attr_dict[id(tensor)] = value def get_tensor_attr(tensor, attr): if not hasattr(tensor, attr): attr_dict = global_state.get_global_attribute(f"{attr}_dict") if attr_dict is not None: return attr_dict.get(id(tensor), None) return getattr(tensor, attr, None)
from typing import TYPE_CHECKING, Optional, Type, TypeVar from pydantic import AnyUrl as BaseAnyUrl from pydantic import errors, parse_obj_as from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto if TYPE_CHECKING: from pydantic.networks import Parts from docarray.proto import NodeProto T = TypeVar('T', bound='AnyUrl') @_register_proto(proto_type_name='any_url') class AnyUrl(BaseAnyUrl, AbstractType): host_required = ( False # turn off host requirement to allow passing of local paths as URL ) def _to_node_protobuf(self) -> 'NodeProto': """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(text=str(self), type=self._proto_type_name) @classmethod def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': """ A method used to validate parts of a URL. Our URLs should be able to function both in local and remote settings. Therefore, we allow missing `scheme`, making it possible to pass a file path without prefix. If `scheme` is missing, we assume it is a local file path. """ scheme = parts['scheme'] if scheme is None: # allow missing scheme, unlike pydantic pass elif cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) if validate_port: cls._validate_port(parts['port']) user = parts['user'] if cls.user_required and user is None: raise errors.UrlUserInfoError() return parts @classmethod def build( cls, *, scheme: str, user: Optional[str] = None, password: Optional[str] = None, host: str, port: Optional[str] = None, path: Optional[str] = None, query: Optional[str] = None, fragment: Optional[str] = None, **_kwargs: str, ) -> str: """ Build a URL from its parts. The only difference from the pydantic implementation is that we allow missing `scheme`, making it possible to pass a file path without prefix. """ # allow missing scheme, unlike pydantic scheme_ = scheme if scheme is not None else '' url = super().build( scheme=scheme_, user=user, password=password, host=host, port=port, path=path, query=query, fragment=fragment, **_kwargs, ) if scheme is None and url.startswith('://'): # remove the `://` prefix, since scheme is missing url = url[3:] return url @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read url from a proto msg :param pb_msg: :return: url """ return parse_obj_as(cls, pb_msg)
from typing import TYPE_CHECKING, Optional, Type, TypeVar from pydantic import AnyUrl as BaseAnyUrl from pydantic import errors, parse_obj_as from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic.networks import Parts from docarray.proto import NodeProto T = TypeVar('T', bound='AnyUrl') class AnyUrl(BaseAnyUrl, AbstractType): host_required = ( False # turn off host requirement to allow passing of local paths as URL ) def _to_node_protobuf(self) -> 'NodeProto': """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(any_url=str(self)) @classmethod def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': """ A method used to validate parts of a URL. Our URLs should be able to function both in local and remote settings. Therefore, we allow missing `scheme`, making it possible to pass a file path without prefix. If `scheme` is missing, we assume it is a local file path. """ scheme = parts['scheme'] if scheme is None: # allow missing scheme, unlike pydantic pass elif cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) if validate_port: cls._validate_port(parts['port']) user = parts['user'] if cls.user_required and user is None: raise errors.UrlUserInfoError() return parts @classmethod def build( cls, *, scheme: str, user: Optional[str] = None, password: Optional[str] = None, host: str, port: Optional[str] = None, path: Optional[str] = None, query: Optional[str] = None, fragment: Optional[str] = None, **_kwargs: str, ) -> str: """ Build a URL from its parts. The only difference from the pydantic implementation is that we allow missing `scheme`, making it possible to pass a file path without prefix. """ # allow missing scheme, unlike pydantic scheme_ = scheme if scheme is not None else '' url = super().build( scheme=scheme_, user=user, password=password, host=host, port=port, path=path, query=query, fragment=fragment, **_kwargs, ) if scheme is None and url.startswith('://'): # remove the `://` prefix, since scheme is missing url = url[3:] return url @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read url from a proto msg :param pb_msg: :return: url """ return parse_obj_as(cls, pb_msg)
import csv import os from pathlib import Path from typing import Dict, List, Tuple, Union import torchaudio from torch import Tensor from torch.utils.data import Dataset def load_commonvoice_item( line: List[str], header: List[str], path: str, folder_audio: str, ext_audio: str ) -> Tuple[Tensor, int, Dict[str, str]]: # Each line as the following data: # client_id, path, sentence, up_votes, down_votes, age, gender, accent if header[1] != "path": raise ValueError(f"expect `header[1]` to be 'path', but got {header[1]}") fileid = line[1] filename = os.path.join(path, folder_audio, fileid) if not filename.endswith(ext_audio): filename += ext_audio waveform, sample_rate = torchaudio.load(filename) dic = dict(zip(header, line)) return waveform, sample_rate, dic class COMMONVOICE(Dataset): """*CommonVoice* :cite:`ardila2020common` dataset. Args: root (str or Path): Path to the directory where the dataset is located. (Where the ``tsv`` file is present.) tsv (str, optional): The name of the tsv file used to construct the metadata, such as ``"train.tsv"``, ``"test.tsv"``, ``"dev.tsv"``, ``"invalidated.tsv"``, ``"validated.tsv"`` and ``"other.tsv"``. (default: ``"train.tsv"``) """ _ext_txt = ".txt" _ext_audio = ".mp3" _folder_audio = "clips" def __init__(self, root: Union[str, Path], tsv: str = "train.tsv") -> None: # Get string representation of 'root' in case Path object is passed self._path = os.fspath(root) self._tsv = os.path.join(self._path, tsv) with open(self._tsv, "r") as tsv_: walker = csv.reader(tsv_, delimiter="\t") self._header = next(walker) self._walker = list(walker) def __getitem__(self, n: int) -> Tuple[Tensor, int, Dict[str, str]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate Dict[str, str]: Dictionary containing the following items from the corresponding TSV file; * ``"client_id"`` * ``"path"`` * ``"sentence"`` * ``"up_votes"`` * ``"down_votes"`` * ``"age"`` * ``"gender"`` * ``"accent"`` """ line = self._walker[n] return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio) def __len__(self) -> int: return len(self._walker)
import csv import os from pathlib import Path from typing import Dict, List, Tuple, Union import torchaudio from torch import Tensor from torch.utils.data import Dataset def load_commonvoice_item( line: List[str], header: List[str], path: str, folder_audio: str, ext_audio: str ) -> Tuple[Tensor, int, Dict[str, str]]: # Each line as the following data: # client_id, path, sentence, up_votes, down_votes, age, gender, accent if header[1] != "path": raise ValueError(f"expect `header[1]` to be 'path', but got {header[1]}") fileid = line[1] filename = os.path.join(path, folder_audio, fileid) if not filename.endswith(ext_audio): filename += ext_audio waveform, sample_rate = torchaudio.load(filename) dic = dict(zip(header, line)) return waveform, sample_rate, dic class COMMONVOICE(Dataset): """Create a Dataset for *CommonVoice* :cite:`ardila2020common`. Args: root (str or Path): Path to the directory where the dataset is located. (Where the ``tsv`` file is present.) tsv (str, optional): The name of the tsv file used to construct the metadata, such as ``"train.tsv"``, ``"test.tsv"``, ``"dev.tsv"``, ``"invalidated.tsv"``, ``"validated.tsv"`` and ``"other.tsv"``. (default: ``"train.tsv"``) """ _ext_txt = ".txt" _ext_audio = ".mp3" _folder_audio = "clips" def __init__(self, root: Union[str, Path], tsv: str = "train.tsv") -> None: # Get string representation of 'root' in case Path object is passed self._path = os.fspath(root) self._tsv = os.path.join(self._path, tsv) with open(self._tsv, "r") as tsv_: walker = csv.reader(tsv_, delimiter="\t") self._header = next(walker) self._walker = list(walker) def __getitem__(self, n: int) -> Tuple[Tensor, int, Dict[str, str]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, Dict[str, str]): ``(waveform, sample_rate, dictionary)``, where dictionary is built from the TSV file with the following keys: ``client_id``, ``path``, ``sentence``, ``up_votes``, ``down_votes``, ``age``, ``gender`` and ``accent``. """ line = self._walker[n] return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio) def __len__(self) -> int: return len(self._walker)
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. SimCSE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_simcse_from_file.py path/to/sentences.txt """ import gzip import logging import math import sys from datetime import datetime import tqdm from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Training parameters model_name = "distilroberta-base" train_batch_size = 128 max_seq_length = 32 num_epochs = 1 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print(f"Run this script with: python {sys.argv[0]} path/to/sentences.txt") exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_simcse{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Hugging Face/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_samples = [] with ( gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open(filepath, encoding="utf8") as fIn ): for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_samples.append(InputExample(texts=[line, line])) logging.info(f"Train sentences: {len(train_samples)}") # We train our model using the MultipleNegativesRankingLoss train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size, drop_last=True) train_loss = losses.MultipleNegativesRankingLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. SimCSE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_simcse_from_file.py path/to/sentences.txt """ import gzip import logging import math import sys from datetime import datetime import tqdm from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, losses, models #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Training parameters model_name = "distilroberta-base" train_batch_size = 128 max_seq_length = 32 num_epochs = 1 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print(f"Run this script with: python {sys.argv[0]} path/to/sentences.txt") exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_simcse{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Use Hugging Face/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Read the train corpus ################# train_samples = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_samples.append(InputExample(texts=[line, line])) logging.info(f"Train sentences: {len(train_samples)}") # We train our model using the MultipleNegativesRankingLoss train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size, drop_last=True) train_loss = losses.MultipleNegativesRankingLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=warmup_steps, optimizer_params={"lr": 5e-5}, checkpoint_path=model_output_path, show_progress_bar=True, use_amp=False, # Set to True, if your GPU supports FP16 cores )
import copy from typing import Dict, Tuple from jina.serve.runtimes.request_handlers.data_request_handler import DataRequestHandler _SPECIFIC_EXECUTOR_SEPARATOR = '__' def _spit_key_and_executor_name(key_name: str) -> Tuple[str]: """Split a specific key into a key, name pair ex: 'key__my_executor' will be split into 'key', 'my_executor' :param key_name: key name of the param :return: return the split 'key', 'executor_name' for the key_name """ key_split = key_name.split(_SPECIFIC_EXECUTOR_SEPARATOR) new_key_name = key_split.pop(-1) executor_name = ''.join(key_split) return new_key_name, executor_name def _get_name_from_replicas_name(name: str) -> Tuple[str]: """return the original name without the replicas ex: 'exec1/rep-0' will be transform into 'exec1' :param name: name of the DataRequest :return: return the original name without the replicas """ return name.split('/')[0] def _is_param_for_specific_executor(key_name: str) -> bool: """Tell if a key is for a specific Executor ex: 'key' is for every Executor whereas 'my_executor__key' is only for 'my_executor' :param key_name: key name of the param :return: return True if key_name is for specific Executor, False otherwise """ if _SPECIFIC_EXECUTOR_SEPARATOR in key_name: if key_name.startswith(_SPECIFIC_EXECUTOR_SEPARATOR) or key_name.endswith( _SPECIFIC_EXECUTOR_SEPARATOR ): return False return True else: return False def _parse_specific_params(parameters: Dict, executor_name: str): """Parse the parameters dictionary to filter executor specific parameters :param parameters: dictionary container the parameters :param executor_name: name of the Executor :returns: the parsed parameters after applying filtering for the specific Executor """ parsed_params = copy.deepcopy(parameters) for key in parameters: if _is_param_for_specific_executor(key): ( key_name, key_executor_name, ) = _spit_key_and_executor_name(key) if key_executor_name == executor_name: parsed_params[key_name] = parameters[key] del parsed_params[key] specific_parameters = parameters.get(executor_name, None) if specific_parameters: parsed_params.update(**specific_parameters) return parsed_params
import copy from typing import Dict, Tuple from jina.serve.runtimes.request_handlers.data_request_handler import DataRequestHandler _SPECIFIC_EXECUTOR_SEPARATOR = '__' def _spit_key_and_executor_name(key_name: str) -> Tuple[str]: """Split a specific key into a key, name pair ex: 'key__my_executor' will be split into 'key', 'my_executor' :param key_name: key name of the param :return: return the split 'key', 'executor_name' for the key_name """ key_split = key_name.split(_SPECIFIC_EXECUTOR_SEPARATOR) new_key_name = key_split.pop(-1) executor_name = ''.join(key_split) return new_key_name, executor_name def _get_name_from_replicas_name(name: str) -> Tuple[str]: """return the original name without the replicas ex: 'exec1/rep-0' will be transform into 'exec1' :param name: name of the DataRequest :return: return the original name without the replicas """ return name.split('/')[0] def _is_param_for_specific_executor(key_name: str) -> bool: """Tell if a key is for a specific Executor ex: 'key' is for every Executor whereas 'key__my_executor' is only for 'my_executor' :param key_name: key name of the param :return: return True if key_name is for specific Executor, False otherwise """ if _SPECIFIC_EXECUTOR_SEPARATOR in key_name: if key_name.startswith(_SPECIFIC_EXECUTOR_SEPARATOR) or key_name.endswith( _SPECIFIC_EXECUTOR_SEPARATOR ): return False return True else: return False def _parse_specific_params(parameters: Dict, executor_name: str): """Parse the parameters dictionary to filter executor specific parameters :param parameters: dictionary container the parameters :param executor_name: name of the Executor :returns: the parsed parameters after applying filtering for the specific Executor """ parsed_params = copy.deepcopy(parameters) for key in parameters: if _is_param_for_specific_executor(key): ( key_name, key_executor_name, ) = _spit_key_and_executor_name(key) if key_executor_name == executor_name: parsed_params[key_name] = parameters[key] del parsed_params[key] specific_parameters = parameters.get(executor_name, None) if specific_parameters: parsed_params.update(**specific_parameters) return parsed_params
from abc import abstractmethod from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, TypeVar, Union from docarray import Document, DocumentArray from docarray.math import ndarray from docarray.score import NamedScore from qdrant_client.http import models as rest from qdrant_client.http.models.models import Distance if TYPE_CHECKING: # pragma: no cover import numpy as np import tensorflow import torch from qdrant_client import QdrantClient QdrantArrayType = TypeVar( 'QdrantArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: @property @abstractmethod def client(self) -> 'QdrantClient': raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def serialize_config(self) -> dict: raise NotImplementedError() @property @abstractmethod def distance(self) -> 'Distance': raise NotImplementedError() def _find_similar_vectors( self, q: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, search_params: Optional[Dict] = None, **kwargs, ): query_vector = self._map_embedding(q) search_result = self.client.search( self.collection_name, query_vector=query_vector, query_filter=filter, search_params=None if not search_params else rest.SearchParams(**search_params), limit=limit, append_payload=['_serialized'], ) docs = [] for hit in search_result: doc = Document.from_base64( hit.payload['_serialized'], **self.serialize_config ) doc.scores[f'{self.distance.lower()}_similarity'] = NamedScore( value=hit.score ) docs.append(doc) return DocumentArray(docs) def _find( self, query: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, search_params: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be used in Qdrant. :param limit: number of retrieved items :param filter: filter query used for pre-filtering :param search_params: additional parameters of the search :return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [ self._find_similar_vectors( query, limit=limit, filter=filter, search_params=search_params ) ] else: closest_docs = [] for q in query: da = self._find_similar_vectors( q, limit=limit, filter=filter, search_params=search_params ) closest_docs.append(da) return closest_docs def _find_with_filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ): list_of_points, _offset = self.client.scroll( collection_name=self.collection_name, scroll_filter=rest.Filter(**filter), with_payload=True, limit=limit, ) da = DocumentArray() for result in list_of_points[:limit]: doc = Document.from_base64( result.payload['_serialized'], **self.serialize_config ) da.append(doc) return da def _filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (`Qdrant` filter).. :param limit: number of retrieved items :param filter: filter query used for filtering. For more information: https://docarray.jina.ai/advanced/document-store/qdrant/#qdrant :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ return self._find_with_filter(filter, limit=limit)
from abc import abstractmethod from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, TypeVar, Union from docarray import Document, DocumentArray from docarray.math import ndarray from docarray.score import NamedScore from qdrant_client.http import models as rest from qdrant_client.http.models.models import Distance if TYPE_CHECKING: # pragma: no cover import numpy as np import tensorflow import torch from qdrant_client import QdrantClient QdrantArrayType = TypeVar( 'QdrantArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: @property @abstractmethod def client(self) -> 'QdrantClient': raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def serialize_config(self) -> dict: raise NotImplementedError() @property @abstractmethod def distance(self) -> 'Distance': raise NotImplementedError() def _find_similar_vectors( self, q: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, search_params: Optional[Dict] = None, **kwargs, ): query_vector = self._map_embedding(q) search_result = self.client.search( self.collection_name, query_vector=query_vector, query_filter=filter, search_params=None if not search_params else rest.SearchParams(**search_params), top=limit, append_payload=['_serialized'], ) docs = [] for hit in search_result: doc = Document.from_base64( hit.payload['_serialized'], **self.serialize_config ) doc.scores[f'{self.distance.lower()}_similarity'] = NamedScore( value=hit.score ) docs.append(doc) return DocumentArray(docs) def _find( self, query: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, search_params: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be used in Qdrant. :param limit: number of retrieved items :param filter: filter query used for pre-filtering :param search_params: additional parameters of the search :return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [ self._find_similar_vectors( query, limit=limit, filter=filter, search_params=search_params ) ] else: closest_docs = [] for q in query: da = self._find_similar_vectors( q, limit=limit, filter=filter, search_params=search_params ) closest_docs.append(da) return closest_docs def _find_with_filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ): list_of_points, _offset = self.client.scroll( collection_name=self.collection_name, scroll_filter=filter, with_payload=True, limit=limit, ) da = DocumentArray() for result in list_of_points[:limit]: doc = Document.from_base64( result.payload['_serialized'], **self.serialize_config ) da.append(doc) return da def _filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (`Qdrant` filter).. :param limit: number of retrieved items :param filter: filter query used for filtering. For more information: https://docarray.jina.ai/advanced/document-store/qdrant/#qdrant :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ return self._find_with_filter(filter, limit=limit)
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, select_single_mlvl, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk', 'sync_random_seed' ]
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, select_single_mlvl, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk' ]
from typing import TYPE_CHECKING if TYPE_CHECKING: from ..providers import ProviderName from ._base import BaseWebhooksManager _WEBHOOK_MANAGERS: dict["ProviderName", type["BaseWebhooksManager"]] = {} # --8<-- [start:load_webhook_managers] def load_webhook_managers() -> dict["ProviderName", type["BaseWebhooksManager"]]: if _WEBHOOK_MANAGERS: return _WEBHOOK_MANAGERS from .compass import CompassWebhookManager from .generic import GenericWebhooksManager from .github import GithubWebhooksManager from .slant3d import Slant3DWebhooksManager _WEBHOOK_MANAGERS.update( { handler.PROVIDER_NAME: handler for handler in [ CompassWebhookManager, GithubWebhooksManager, Slant3DWebhooksManager, GenericWebhooksManager, ] } ) return _WEBHOOK_MANAGERS # --8<-- [end:load_webhook_managers] def get_webhook_manager(provider_name: "ProviderName") -> "BaseWebhooksManager": return load_webhook_managers()[provider_name]() def supports_webhooks(provider_name: "ProviderName") -> bool: return provider_name in load_webhook_managers() __all__ = ["get_webhook_manager", "supports_webhooks"]
from typing import TYPE_CHECKING if TYPE_CHECKING: from ..providers import ProviderName from ._base import BaseWebhooksManager _WEBHOOK_MANAGERS: dict["ProviderName", type["BaseWebhooksManager"]] = {} # --8<-- [start:load_webhook_managers] def load_webhook_managers() -> dict["ProviderName", type["BaseWebhooksManager"]]: if _WEBHOOK_MANAGERS: return _WEBHOOK_MANAGERS from .compass import CompassWebhookManager from .github import GithubWebhooksManager from .slant3d import Slant3DWebhooksManager _WEBHOOK_MANAGERS.update( { handler.PROVIDER_NAME: handler for handler in [ CompassWebhookManager, GithubWebhooksManager, Slant3DWebhooksManager, ] } ) return _WEBHOOK_MANAGERS # --8<-- [end:load_webhook_managers] def get_webhook_manager(provider_name: "ProviderName") -> "BaseWebhooksManager": return load_webhook_managers()[provider_name]() def supports_webhooks(provider_name: "ProviderName") -> bool: return provider_name in load_webhook_managers() __all__ = ["get_webhook_manager", "supports_webhooks"]
# Copyright (c) OpenMMLab. All rights reserved. import glob import os import os.path as osp import warnings from typing import Union from mmengine.config import Config, ConfigDict from mmengine.logging import print_log def find_latest_checkpoint(path, suffix='pth'): """Find the latest checkpoint from the working directory. Args: path(str): The path to find checkpoints. suffix(str): File extension. Defaults to pth. Returns: latest_path(str | None): File path of the latest checkpoint. References: .. [1] https://github.com/microsoft/SoftTeacher /blob/main/ssod/utils/patch.py """ if not osp.exists(path): warnings.warn('The path of checkpoints does not exist.') return None if osp.exists(osp.join(path, f'latest.{suffix}')): return osp.join(path, f'latest.{suffix}') checkpoints = glob.glob(osp.join(path, f'*.{suffix}')) if len(checkpoints) == 0: warnings.warn('There are no checkpoints in the path.') return None latest = -1 latest_path = None for checkpoint in checkpoints: count = int(osp.basename(checkpoint).split('_')[-1].split('.')[0]) if count > latest: latest = count latest_path = checkpoint return latest_path def update_data_root(cfg, logger=None): """Update data root according to env MMDET_DATASETS. If set env MMDET_DATASETS, update cfg.data_root according to MMDET_DATASETS. Otherwise, using cfg.data_root as default. Args: cfg (:obj:`Config`): The model config need to modify logger (logging.Logger | str | None): the way to print msg """ assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' if 'MMDET_DATASETS' in os.environ: dst_root = os.environ['MMDET_DATASETS'] print_log(f'MMDET_DATASETS has been set to be {dst_root}.' f'Using {dst_root} as data root.') else: return assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' def update(cfg, src_str, dst_str): for k, v in cfg.items(): if isinstance(v, ConfigDict): update(cfg[k], src_str, dst_str) if isinstance(v, str) and src_str in v: cfg[k] = v.replace(src_str, dst_str) update(cfg.data, cfg.data_root, dst_root) cfg.data_root = dst_root def get_test_pipeline_cfg(cfg: Union[str, ConfigDict]) -> ConfigDict: """Get the test dataset pipeline from entire config. Args: cfg (str or :obj:`ConfigDict`): the entire config. Can be a config file or a ``ConfigDict``. Returns: :obj:`ConfigDict`: the config of test dataset. """ if isinstance(cfg, str): cfg = Config.fromfile(cfg) def _get_test_pipeline_cfg(dataset_cfg): if 'pipeline' in dataset_cfg: return dataset_cfg.pipeline # handle dataset wrapper elif 'dataset' in dataset_cfg: return _get_test_pipeline_cfg(dataset_cfg.dataset) # handle dataset wrappers like ConcatDataset elif 'datasets' in dataset_cfg: return _get_test_pipeline_cfg(dataset_cfg.datasets[0]) raise RuntimeError('Cannot find `pipeline` in `test_dataloader`') return _get_test_pipeline_cfg(cfg.test_dataloader.dataset)
# Copyright (c) OpenMMLab. All rights reserved. import glob import os import os.path as osp import warnings from mmengine.config import Config, ConfigDict from mmengine.logging import print_log def find_latest_checkpoint(path, suffix='pth'): """Find the latest checkpoint from the working directory. Args: path(str): The path to find checkpoints. suffix(str): File extension. Defaults to pth. Returns: latest_path(str | None): File path of the latest checkpoint. References: .. [1] https://github.com/microsoft/SoftTeacher /blob/main/ssod/utils/patch.py """ if not osp.exists(path): warnings.warn('The path of checkpoints does not exist.') return None if osp.exists(osp.join(path, f'latest.{suffix}')): return osp.join(path, f'latest.{suffix}') checkpoints = glob.glob(osp.join(path, f'*.{suffix}')) if len(checkpoints) == 0: warnings.warn('There are no checkpoints in the path.') return None latest = -1 latest_path = None for checkpoint in checkpoints: count = int(osp.basename(checkpoint).split('_')[-1].split('.')[0]) if count > latest: latest = count latest_path = checkpoint return latest_path def update_data_root(cfg, logger=None): """Update data root according to env MMDET_DATASETS. If set env MMDET_DATASETS, update cfg.data_root according to MMDET_DATASETS. Otherwise, using cfg.data_root as default. Args: cfg (:obj:`Config`): The model config need to modify logger (logging.Logger | str | None): the way to print msg """ assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' if 'MMDET_DATASETS' in os.environ: dst_root = os.environ['MMDET_DATASETS'] print_log(f'MMDET_DATASETS has been set to be {dst_root}.' f'Using {dst_root} as data root.') else: return assert isinstance(cfg, Config), \ f'cfg got wrong type: {type(cfg)}, expected mmengine.Config' def update(cfg, src_str, dst_str): for k, v in cfg.items(): if isinstance(v, ConfigDict): update(cfg[k], src_str, dst_str) if isinstance(v, str) and src_str in v: cfg[k] = v.replace(src_str, dst_str) update(cfg.data, cfg.data_root, dst_root) cfg.data_root = dst_root
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm']) test_evaluator = val_evaluator
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm']) test_evaluator = val_evaluator
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import (ImageToTensor, PackDetInputs, ToDataContainer, ToTensor, Transpose) from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder' ]
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import (ImageToTensor, PackDetInputs, ToDataContainer, ToTensor, Transpose) from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations' ]
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='VFNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='VFNetHead', num_classes=80, in_channels=256, stacked_convs=3, feat_channels=256, strides=[8, 16, 32, 64, 128], center_sampling=False, dcn_on_last_conv=False, use_atss=True, use_vfl=True, loss_cls=dict( type='VarifocalLoss', use_sigmoid=True, alpha=0.75, gamma=2.0, iou_weighted=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.5), loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # data setting train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( optimizer=dict(lr=0.01), paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), clip_grad=None) # learning rate max_epochs = 12 param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='VFNet', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='VFNetHead', num_classes=80, in_channels=256, stacked_convs=3, feat_channels=256, strides=[8, 16, 32, 64, 128], center_sampling=False, dcn_on_last_conv=False, use_atss=True, use_vfl=True, loss_cls=dict( type='VarifocalLoss', use_sigmoid=True, alpha=0.75, gamma=2.0, iou_weighted=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.5), loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # data setting dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.1, step=[8, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12)
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause def check_matplotlib_support(caller_name): """Raise ImportError with detailed error message if mpl is not installed. Plot utilities like any of the Display's plotting functions should lazily import matplotlib and call this helper before any computation. Parameters ---------- caller_name : str The name of the caller that requires matplotlib. """ try: import matplotlib # noqa: F401 except ImportError as e: raise ImportError( "{} requires matplotlib. You can install matplotlib with " "`pip install matplotlib`".format(caller_name) ) from e def check_pandas_support(caller_name): """Raise ImportError with detailed error message if pandas is not installed. Plot utilities like :func:`fetch_openml` should lazily import pandas and call this helper before any computation. Parameters ---------- caller_name : str The name of the caller that requires pandas. Returns ------- pandas The pandas package. """ try: import pandas return pandas except ImportError as e: raise ImportError("{} requires pandas.".format(caller_name)) from e
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause def check_matplotlib_support(caller_name): """Raise ImportError with detailed error message if mpl is not installed. Plot utilities like any of the Display's plotting functions should lazily import matplotlib and call this helper before any computation. Parameters ---------- caller_name : str The name of the caller that requires matplotlib. """ try: import matplotlib # noqa except ImportError as e: raise ImportError( "{} requires matplotlib. You can install matplotlib with " "`pip install matplotlib`".format(caller_name) ) from e def check_pandas_support(caller_name): """Raise ImportError with detailed error message if pandas is not installed. Plot utilities like :func:`fetch_openml` should lazily import pandas and call this helper before any computation. Parameters ---------- caller_name : str The name of the caller that requires pandas. Returns ------- pandas The pandas package. """ try: import pandas return pandas except ImportError as e: raise ImportError("{} requires pandas.".format(caller_name)) from e
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../common/lsj-200e_coco-detection.py' ] image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict(data_preprocessor=dict(batch_augments=batch_augments)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.02 * 4, momentum=0.9, weight_decay=0.00004)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../common/lsj_200e_coco_detection.py' ] image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict(data_preprocessor=dict(batch_augments=batch_augments)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.02 * 4, momentum=0.9, weight_decay=0.00004)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
from __future__ import annotations import json import logging from typing import Any, Dict, List, Literal, Optional import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env from pydantic import Field, SecretStr from langchain_community.llms.utils import enforce_stop_tokens logger = logging.getLogger(__name__) class YiLLM(LLM): """Yi large language models.""" model: str = "yi-large" temperature: float = 0.3 top_p: float = 0.95 timeout: int = 60 model_kwargs: Dict[str, Any] = Field(default_factory=dict) yi_api_key: Optional[SecretStr] = None region: Literal["auto", "domestic", "international"] = "auto" yi_api_url_domestic: str = "https://api.lingyiwanwu.com/v1/chat/completions" yi_api_url_international: str = "https://api.01.ai/v1/chat/completions" def __init__(self, **kwargs: Any): kwargs["yi_api_key"] = convert_to_secret_str( get_from_dict_or_env(kwargs, "yi_api_key", "YI_API_KEY") ) super().__init__(**kwargs) @property def _default_params(self) -> Dict[str, Any]: return { "model": self.model, "temperature": self.temperature, "top_p": self.top_p, **self.model_kwargs, } def _post(self, request: Any) -> Any: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.yi_api_key.get_secret_value()}", # type: ignore[union-attr] } urls = [] if self.region == "domestic": urls = [self.yi_api_url_domestic] elif self.region == "international": urls = [self.yi_api_url_international] else: # auto urls = [self.yi_api_url_domestic, self.yi_api_url_international] for url in urls: try: response = requests.post( url, headers=headers, json=request, timeout=self.timeout, ) if response.status_code == 200: parsed_json = json.loads(response.text) return parsed_json["choices"][0]["message"]["content"] elif ( response.status_code != 403 ): # If not a permission error, raise immediately response.raise_for_status() except requests.RequestException as e: if url == urls[-1]: # If this is the last URL to try raise ValueError(f"An error has occurred: {e}") else: logger.warning(f"Failed to connect to {url}, trying next URL") continue raise ValueError("Failed to connect to all available URLs") def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: request = self._default_params request["messages"] = [{"role": "user", "content": prompt}] request.update(kwargs) text = self._post(request) if stop is not None: text = enforce_stop_tokens(text, stop) return text @property def _llm_type(self) -> str: """Return type of chat_model.""" return "yi-llm"
from __future__ import annotations import json import logging from typing import Any, Dict, List, Literal, Optional import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env from pydantic import Field, SecretStr from langchain_community.llms.utils import enforce_stop_tokens logger = logging.getLogger(__name__) class YiLLM(LLM): """Yi large language models.""" model: str = "yi-large" temperature: float = 0.3 top_p: float = 0.95 timeout: int = 60 model_kwargs: Dict[str, Any] = Field(default_factory=dict) yi_api_key: Optional[SecretStr] = None region: Literal["auto", "domestic", "international"] = "auto" yi_api_url_domestic: str = "https://api.lingyiwanwu.com/v1/chat/completions" yi_api_url_international: str = "https://api.01.ai/v1/chat/completions" def __init__(self, **kwargs: Any): kwargs["yi_api_key"] = convert_to_secret_str( get_from_dict_or_env(kwargs, "yi_api_key", "YI_API_KEY") ) super().__init__(**kwargs) @property def _default_params(self) -> Dict[str, Any]: return { "model": self.model, "temperature": self.temperature, "top_p": self.top_p, **self.model_kwargs, } def _post(self, request: Any) -> Any: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.yi_api_key.get_secret_value()}", # type: ignore } urls = [] if self.region == "domestic": urls = [self.yi_api_url_domestic] elif self.region == "international": urls = [self.yi_api_url_international] else: # auto urls = [self.yi_api_url_domestic, self.yi_api_url_international] for url in urls: try: response = requests.post( url, headers=headers, json=request, timeout=self.timeout, ) if response.status_code == 200: parsed_json = json.loads(response.text) return parsed_json["choices"][0]["message"]["content"] elif ( response.status_code != 403 ): # If not a permission error, raise immediately response.raise_for_status() except requests.RequestException as e: if url == urls[-1]: # If this is the last URL to try raise ValueError(f"An error has occurred: {e}") else: logger.warning(f"Failed to connect to {url}, trying next URL") continue raise ValueError("Failed to connect to all available URLs") def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: request = self._default_params request["messages"] = [{"role": "user", "content": prompt}] request.update(kwargs) text = self._post(request) if stop is not None: text = enforce_stop_tokens(text, stop) return text @property def _llm_type(self) -> str: """Return type of chat_model.""" return "yi-llm"
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict, Optional, Tuple import numpy as np import paddlehub as hub from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator class TextPaddleEncoder(Executor): """ Encode an array of string in size `B` into an ndarray in size `B x D` The ndarray potentially is BatchSize x (Channel x Height x Width) Internally, :class:`TextPaddlehubEncoder` wraps the Ernie module from paddlehub. https://github.com/PaddlePaddle/PaddleHub For models' details refer to https://www.paddlepaddle.org.cn/hublist?filter=en_category&value=SemanticModel """ def __init__( self, model_name: Optional[str] = 'ernie_tiny', on_gpu: bool = False, default_batch_size: int = 32, default_traversal_paths: Tuple[str] = ('r',), *args, **kwargs, ): """ :param model_name: the name of the model. Supported models include ``ernie``, ``ernie_tiny``, ``ernie_v2_eng_base``, ``ernie_v2_eng_large``, ``bert_chinese_L-12_H-768_A-12``, ``bert_multi_cased_L-12_H-768_A-12``, ``bert_multi_uncased_L-12_H-768_A-12``, ``bert_uncased_L-12_H-768_A-12``, ``bert_uncased_L-24_H-1024_A-16``, ``chinese-bert-wwm``, ``chinese-bert-wwm-ext``, ``chinese-electra-base``, ``chinese-electra-small``, ``chinese-roberta-wwm-ext``, ``chinese-roberta-wwm-ext-large``, ``rbt3``, ``rbtl3`` :param on_gpu: If use gpu to get the output. :param default_batch_size: fallback batch size in case there is not batch size sent in the request :param default_traversal_paths: fallback traversal path in case there is not traversal path sent in the request """ super().__init__(*args, **kwargs) self.on_gpu = on_gpu self.model = hub.Module(name=model_name) self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths @requests def encode(self, docs: DocumentArray, parameters: Dict, **kwargs): """Encode doc content into vector representation. :param docs: `DocumentArray` passed from the previous ``Executor``. :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional key value arguments. """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ) for batch_of_docs in document_batches_generator: pooled_features = [] contents = [[doc.content] for doc in batch_of_docs] results = self.model.get_embedding(contents, use_gpu=self.on_gpu) for pooled_feature, _ in results: pooled_features.append(pooled_feature) for doc, feature in zip(batch_of_docs, pooled_features): doc.embedding = np.asarray(feature)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict, Optional, Tuple import numpy as np import paddlehub as hub from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator class TextPaddleEncoder(Executor): """ Encode an array of string in size `B` into an ndarray in size `B x D` The ndarray potentially is BatchSize x (Channel x Height x Width) Internally, :class:`TextPaddlehubEncoder` wraps the Ernie module from paddlehub. https://github.com/PaddlePaddle/PaddleHub For models' details refer to https://www.paddlepaddle.org.cn/hublist?filter=en_category&value=SemanticModel :param model_name: the name of the model. Supported models include ``ernie``, ``ernie_tiny``, ``ernie_v2_eng_base``, ``ernie_v2_eng_large``, ``bert_chinese_L-12_H-768_A-12``, ``bert_multi_cased_L-12_H-768_A-12``, ``bert_multi_uncased_L-12_H-768_A-12``, ``bert_uncased_L-12_H-768_A-12``, ``bert_uncased_L-24_H-1024_A-16``, ``chinese-bert-wwm``, ``chinese-bert-wwm-ext``, ``chinese-electra-base``, ``chinese-electra-small``, ``chinese-roberta-wwm-ext``, ``chinese-roberta-wwm-ext-large``, ``rbt3``, ``rbtl3`` :param on_gpu: If use gpu to get the output. :param default_batch_size: fallback batch size in case there is not batch size sent in the request :param default_traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param args: Additional positional arguments :param kwargs: Additional keyword arguments """ def __init__( self, model_name: Optional[str] = 'ernie_tiny', on_gpu: bool = False, default_batch_size: int = 32, default_traversal_paths: Tuple[str] = ('r',), *args, **kwargs, ): super().__init__(*args, **kwargs) self.on_gpu = on_gpu self.model = hub.Module(name=model_name) self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths @requests def encode(self, docs: DocumentArray, parameters: Dict, **kwargs): """Encode doc content into vector representation. :param docs: `DocumentArray` passed from the previous ``Executor``. :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional key value arguments. """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ) for batch_of_docs in document_batches_generator: pooled_features = [] contents = [[doc.content] for doc in batch_of_docs] results = self.model.get_embedding(contents, use_gpu=self.on_gpu) for pooled_feature, _ in results: pooled_features.append(pooled_feature) for doc, feature in zip(batch_of_docs, pooled_features): doc.embedding = np.asarray(feature)
from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ChatResponseAsyncGen, ChatResponseGen, CompletionResponse, CompletionResponseAsyncGen, CompletionResponseGen, ImageBlock, LLMMetadata, MessageRole, TextBlock, AudioBlock, ) from llama_index.core.llms.custom import CustomLLM from llama_index.core.llms.llm import LLM from llama_index.core.llms.mock import MockLLM __all__ = [ "CustomLLM", "LLM", "ChatMessage", "ChatResponse", "ChatResponseAsyncGen", "ChatResponseGen", "CompletionResponse", "CompletionResponseAsyncGen", "CompletionResponseGen", "LLMMetadata", "MessageRole", "MockLLM", "ImageBlock", "TextBlock", "AudioBlock", ]
from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ChatResponseAsyncGen, ChatResponseGen, CompletionResponse, CompletionResponseAsyncGen, CompletionResponseGen, ImageBlock, LLMMetadata, MessageRole, TextBlock, ) from llama_index.core.llms.custom import CustomLLM from llama_index.core.llms.llm import LLM from llama_index.core.llms.mock import MockLLM __all__ = [ "CustomLLM", "LLM", "ChatMessage", "ChatResponse", "ChatResponseAsyncGen", "ChatResponseGen", "CompletionResponse", "CompletionResponseAsyncGen", "CompletionResponseGen", "LLMMetadata", "MessageRole", "MockLLM", "ImageBlock", "TextBlock", ]
import os import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp from docarray.typing.tensor.audio import AudioTensorFlowTensor @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), AudioTorchTensor, torch.Tensor), (np.zeros((1000, 2)), AudioNdArray, np.ndarray), ], ) def test_set_audio_tensor(tensor, cls_audio_tensor, cls_tensor): class MyAudioDoc(BaseDoc): tensor: cls_audio_tensor doc = MyAudioDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.tensorflow def test_set_audio_tensorflow_tensor(): class MyAudioDoc(BaseDoc): tensor: AudioTensorFlowTensor doc = MyAudioDoc(tensor=tf.zeros((1000, 2))) assert isinstance(doc.tensor, AudioTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) assert tnp.allclose(doc.tensor.tensor, tf.zeros((1000, 2))) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, np.zeros((1000, 2))), (AudioTorchTensor, torch.zeros(1000, 2)), (AudioTorchTensor, np.zeros((1000, 2))), ], ) def test_validation(cls_tensor, tensor): arr = parse_obj_as(cls_tensor, tensor) assert isinstance(arr, cls_tensor) @pytest.mark.tensorflow def test_validation_tensorflow(): arr = parse_obj_as(AudioTensorFlowTensor, tf.zeros((1000, 2))) assert isinstance(arr, AudioTensorFlowTensor) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, torch.zeros(1000, 2)), (AudioNdArray, 'hello'), (AudioTorchTensor, 'hello'), ], ) def test_illegal_validation(cls_tensor, tensor): match = str(cls_tensor).split('.')[-1][:-2] with pytest.raises(ValueError, match=match): parse_obj_as(cls_tensor, tensor) @pytest.mark.proto @pytest.mark.parametrize( 'cls_tensor,tensor,proto_key', [ (AudioTorchTensor, torch.zeros(1000, 2), AudioTorchTensor._proto_type_name), (AudioNdArray, np.zeros((1000, 2)), AudioNdArray._proto_type_name), ], ) def test_proto_tensor(cls_tensor, tensor, proto_key): tensor = parse_obj_as(cls_tensor, tensor) proto = tensor._to_node_protobuf() assert proto_key in str(proto) @pytest.mark.tensorflow def test_proto_tensor_tensorflow(): tensor = parse_obj_as(AudioTensorFlowTensor, tf.zeros((1000, 2))) proto = tensor._to_node_protobuf() assert AudioTensorFlowTensor._proto_type_name in str(proto) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioTorchTensor, torch.zeros(1000, 2)), (AudioNdArray, np.zeros((1000, 2))), ], ) def test_save_audio_tensor_to_wav_file(cls_tensor, tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.wav') audio_tensor = parse_obj_as(cls_tensor, tensor) audio_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.tensorflow def test_save_audio_tensorflow_tensor_to_wav_file(tmpdir): tmp_file = str(tmpdir / 'tmp.wav') audio_tensor = parse_obj_as(AudioTensorFlowTensor, tf.zeros((1000, 2))) audio_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.parametrize( 'audio_tensor', [ parse_obj_as(AudioTorchTensor, torch.zeros(1000, 2)), parse_obj_as(AudioNdArray, np.zeros((1000, 2))), ], ) def test_save_audio_tensor_to_bytes(audio_tensor): b = audio_tensor.to_bytes() isinstance(b, bytes) isinstance(b, AudioBytes)
import os import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp from docarray.typing.tensor.audio import AudioTensorFlowTensor @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), AudioTorchTensor, torch.Tensor), (np.zeros((1000, 2)), AudioNdArray, np.ndarray), ], ) def test_set_audio_tensor(tensor, cls_audio_tensor, cls_tensor): class MyAudioDoc(BaseDoc): tensor: cls_audio_tensor doc = MyAudioDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.tensorflow def test_set_audio_tensorflow_tensor(): class MyAudioDoc(BaseDoc): tensor: AudioTensorFlowTensor doc = MyAudioDoc(tensor=tf.zeros((1000, 2))) assert isinstance(doc.tensor, AudioTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) assert tnp.allclose(doc.tensor.tensor, tf.zeros((1000, 2))) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, np.zeros((1000, 2))), (AudioTorchTensor, torch.zeros(1000, 2)), (AudioTorchTensor, np.zeros((1000, 2))), ], ) def test_validation(cls_tensor, tensor): arr = parse_obj_as(cls_tensor, tensor) assert isinstance(arr, cls_tensor) @pytest.mark.tensorflow def test_validation_tensorflow(): arr = parse_obj_as(AudioTensorFlowTensor, tf.zeros((1000, 2))) assert isinstance(arr, AudioTensorFlowTensor) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, torch.zeros(1000, 2)), (AudioNdArray, 'hello'), (AudioTorchTensor, 'hello'), ], ) def test_illegal_validation(cls_tensor, tensor): match = str(cls_tensor).split('.')[-1][:-2] with pytest.raises(ValueError, match=match): parse_obj_as(cls_tensor, tensor) @pytest.mark.proto @pytest.mark.parametrize( 'cls_tensor,tensor,proto_key', [ (AudioTorchTensor, torch.zeros(1000, 2), AudioTorchTensor._proto_type_name), (AudioNdArray, np.zeros((1000, 2)), AudioNdArray._proto_type_name), ], ) def test_proto_tensor(cls_tensor, tensor, proto_key): tensor = parse_obj_as(cls_tensor, tensor) proto = tensor._to_node_protobuf() assert proto_key in str(proto) @pytest.mark.tensorflow def test_proto_tensor_tensorflow(): tensor = parse_obj_as(AudioTensorFlowTensor, tf.zeros((1000, 2))) proto = tensor._to_node_protobuf() assert AudioTensorFlowTensor._proto_type_name in str(proto) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioTorchTensor, torch.zeros(1000, 2)), (AudioNdArray, np.zeros((1000, 2))), ], ) def test_save_audio_tensor_to_wav_file(cls_tensor, tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.wav') audio_tensor = parse_obj_as(cls_tensor, tensor) audio_tensor.save(tmp_file) assert os.path.isfile(tmp_file) @pytest.mark.tensorflow def test_save_audio_tensorflow_tensor_to_wav_file(tmpdir): tmp_file = str(tmpdir / 'tmp.wav') audio_tensor = parse_obj_as(AudioTensorFlowTensor, tf.zeros((1000, 2))) audio_tensor.save(tmp_file) assert os.path.isfile(tmp_file)
from docarray import BaseDoc, DocList def test_instance_and_equivalence(): class MyDoc(BaseDoc): text: str docs = DocList[MyDoc]([MyDoc(text='hello')]) assert issubclass(DocList[MyDoc], DocList[MyDoc]) assert issubclass(docs.__class__, DocList[MyDoc]) assert isinstance(docs, DocList[MyDoc]) def test_subclassing(): class MyDoc(BaseDoc): text: str class MyDocList(DocList[MyDoc]): pass docs = MyDocList([MyDoc(text='hello')]) assert issubclass(MyDocList, DocList[MyDoc]) assert issubclass(docs.__class__, DocList[MyDoc]) assert isinstance(docs, MyDocList) assert isinstance(docs, DocList[MyDoc]) assert issubclass(MyDoc, BaseDoc) assert not issubclass(DocList[MyDoc], DocList[BaseDoc]) assert not issubclass(MyDocList, DocList[BaseDoc])
from docarray import BaseDoc, DocArray def test_instance_and_equivalence(): class MyDoc(BaseDoc): text: str docs = DocArray[MyDoc]([MyDoc(text='hello')]) assert issubclass(DocArray[MyDoc], DocArray[MyDoc]) assert issubclass(docs.__class__, DocArray[MyDoc]) assert isinstance(docs, DocArray[MyDoc]) def test_subclassing(): class MyDoc(BaseDoc): text: str class MyDocArray(DocArray[MyDoc]): pass docs = MyDocArray([MyDoc(text='hello')]) assert issubclass(MyDocArray, DocArray[MyDoc]) assert issubclass(docs.__class__, DocArray[MyDoc]) assert isinstance(docs, MyDocArray) assert isinstance(docs, DocArray[MyDoc]) assert issubclass(MyDoc, BaseDoc) assert not issubclass(DocArray[MyDoc], DocArray[BaseDoc]) assert not issubclass(MyDocArray, DocArray[BaseDoc])
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src import testing def squared_l2_norm(x): x = backend.convert_to_numpy(x) return np.sum(x**2) class UnitNormalizationTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_un_basics(self): self.run_layer_test( layers.UnitNormalization, init_kwargs={"axis": -1}, input_shape=(2, 3), expected_output_shape=(2, 3), supports_masking=True, assert_built_after_instantiation=True, ) self.run_layer_test( layers.UnitNormalization, init_kwargs={"axis": (1, 2)}, input_shape=(1, 3, 3), expected_output_shape=(1, 3, 3), supports_masking=True, assert_built_after_instantiation=True, ) def test_invalid_axis(self): with self.assertRaisesRegex( TypeError, ( "Invalid value for `axis` argument: expected an int or a " "list/tuple of ints." ), ): layers.UnitNormalization(axis={"axis": -1}) def test_correctness(self): layer = layers.UnitNormalization(axis=-1) inputs = np.random.normal(size=(2, 3)) outputs = layer(inputs) self.assertAllClose(squared_l2_norm(outputs[0, :]), 1.0) self.assertAllClose(squared_l2_norm(outputs[1, :]), 1.0) layer = layers.UnitNormalization(axis=(1, 2)) inputs = np.random.normal(size=(2, 3, 3)) outputs = layer(inputs) self.assertAllClose(squared_l2_norm(outputs[0, :, :]), 1.0) self.assertAllClose(squared_l2_norm(outputs[1, :, :]), 1.0) layer = layers.UnitNormalization(axis=1) inputs = np.random.normal(size=(2, 3, 2)) outputs = layer(inputs) self.assertAllClose(squared_l2_norm(outputs[0, :, 0]), 1.0) self.assertAllClose(squared_l2_norm(outputs[1, :, 0]), 1.0) self.assertAllClose(squared_l2_norm(outputs[0, :, 1]), 1.0) self.assertAllClose(squared_l2_norm(outputs[1, :, 1]), 1.0)
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src import testing def squared_l2_norm(x): x = backend.convert_to_numpy(x) return np.sum(x**2) class UnitNormalizationTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_un_basics(self): self.run_layer_test( layers.UnitNormalization, init_kwargs={"axis": -1}, input_shape=(2, 3), expected_output_shape=(2, 3), supports_masking=True, ) self.run_layer_test( layers.UnitNormalization, init_kwargs={"axis": (1, 2)}, input_shape=(1, 3, 3), expected_output_shape=(1, 3, 3), supports_masking=True, ) def test_invalid_axis(self): with self.assertRaisesRegex( TypeError, ( "Invalid value for `axis` argument: expected an int or a " "list/tuple of ints." ), ): layers.UnitNormalization(axis={"axis": -1}) def test_correctness(self): layer = layers.UnitNormalization(axis=-1) inputs = np.random.normal(size=(2, 3)) outputs = layer(inputs) self.assertAllClose(squared_l2_norm(outputs[0, :]), 1.0) self.assertAllClose(squared_l2_norm(outputs[1, :]), 1.0) layer = layers.UnitNormalization(axis=(1, 2)) inputs = np.random.normal(size=(2, 3, 3)) outputs = layer(inputs) self.assertAllClose(squared_l2_norm(outputs[0, :, :]), 1.0) self.assertAllClose(squared_l2_norm(outputs[1, :, :]), 1.0) layer = layers.UnitNormalization(axis=1) inputs = np.random.normal(size=(2, 3, 2)) outputs = layer(inputs) self.assertAllClose(squared_l2_norm(outputs[0, :, 0]), 1.0) self.assertAllClose(squared_l2_norm(outputs[1, :, 0]), 1.0) self.assertAllClose(squared_l2_norm(outputs[0, :, 1]), 1.0) self.assertAllClose(squared_l2_norm(outputs[1, :, 1]), 1.0)
import warnings from abc import ABC from typing import Any, BinaryIO, Dict, TypeVar, Union from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils.misc import is_notebook T = TypeVar('T', bound='AbstractAudioTensor') MAX_INT_16 = 2**15 class AbstractAudioTensor(AbstractTensor, ABC): def to_bytes(self): """ Convert audio tensor to bytes. """ tensor = self.get_comp_backend().to_numpy(self) tensor = (tensor * MAX_INT_16).astype('<h') return tensor.tobytes() def save( self: 'T', file_path: Union[str, BinaryIO], format: str = 'wav', frame_rate: int = 44100, sample_width: int = 2, pydub_args: Dict[str, Any] = {}, ) -> None: """ Save audio tensor to an audio file. Mono/stereo is preserved. :param file_path: path to an audio file. If file is a string, open the file by that name, otherwise treat it as a file-like object. :param format: format for the audio file ('mp3', 'wav', 'raw', 'ogg' or other ffmpeg/avconv supported files) :param frame_rate: sampling frequency :param sample_width: sample width in bytes :param pydub_args: dictionary of additional arguments for pydub.AudioSegment.export function """ from pydub import AudioSegment # type: ignore comp_backend = self.get_comp_backend() channels = 2 if comp_backend.n_dim(array=self) > 1 else 1 # type: ignore segment = AudioSegment( self.to_bytes(), frame_rate=frame_rate, sample_width=sample_width, channels=channels, ) segment.export(file_path, format=format, **pydub_args) def display(self, rate=44100): """ Play audio data from tensor in notebook. """ if is_notebook(): from IPython.display import Audio, display audio_np = self.get_comp_backend().to_numpy(self) display(Audio(audio_np, rate=rate)) else: warnings.warn('Display of audio is only possible in a notebook.')
import warnings import wave from abc import ABC from typing import BinaryIO, TypeVar, Union from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils.misc import is_notebook T = TypeVar('T', bound='AbstractAudioTensor') MAX_INT_16 = 2**15 class AbstractAudioTensor(AbstractTensor, ABC): def to_bytes(self): """ Convert audio tensor to bytes. """ tensor = self.get_comp_backend().to_numpy(self) tensor = (tensor * MAX_INT_16).astype('<h') return tensor.tobytes() def save_to_wav_file( self: 'T', file_path: Union[str, BinaryIO], sample_rate: int = 44100, sample_width: int = 2, ) -> None: """ Save audio tensor to a .wav file. Mono/stereo is preserved. :param file_path: path to a .wav file. If file is a string, open the file by that name, otherwise treat it as a file-like object. :param sample_rate: sampling frequency :param sample_width: sample width in bytes """ comp_backend = self.get_comp_backend() n_channels = 2 if comp_backend.n_dim(array=self) > 1 else 1 # type: ignore with wave.open(file_path, 'w') as f: f.setnchannels(n_channels) f.setsampwidth(sample_width) f.setframerate(sample_rate) f.writeframes(self.to_bytes()) def display(self, rate=44100): """ Play audio data from tensor in notebook. """ if is_notebook(): from IPython.display import Audio, display audio_np = self.get_comp_backend().to_numpy(self) display(Audio(audio_np, rate=rate)) else: warnings.warn('Display of audio is only possible in a notebook.')
import pytest from llama_index.embeddings.nvidia import NVIDIAEmbedding as Interface from pytest_httpx import HTTPXMock from requests_mock import Mocker from contextlib import contextmanager import os from typing import Generator, Any @pytest.fixture() def mock_local_models(httpx_mock: HTTPXMock, base_url: str): mock_response = { "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", } ] } httpx_mock.add_response( url=f"{base_url}/models", method="GET", json=mock_response, status_code=200, ) def test_create_without_base_url(public_class: type, monkeypatch) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") monkeypatch.delenv("NVIDIA_BASE_URL", raising=False) x = public_class() assert x.base_url == "https://integrate.api.nvidia.com/v1" assert str(x._client.base_url) == "https://integrate.api.nvidia.com/v1/" # https.Url def test_base_url_priority(public_class: type, monkeypatch) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") ENV_URL = "https://ENV/v1" NV_PARAM_URL = "https://NV_PARAM/v1" PARAM_URL = "https://PARAM/v1" def get_base_url(**kwargs: Any) -> str: return public_class(model="NV-Embed-QA", **kwargs).base_url with no_env_var("NVIDIA_BASE_URL"): os.environ["NVIDIA_BASE_URL"] = ENV_URL assert get_base_url() == ENV_URL assert get_base_url(base_url=NV_PARAM_URL) == NV_PARAM_URL assert get_base_url(base_url=PARAM_URL) == PARAM_URL # marking as skip because base_url validation is removed @pytest.mark.skip(reason="base_url validation is removed") @pytest.mark.parametrize( "base_url", [ "bogus", "http:/", "http://", "http:/oops", ], ) def test_param_base_url_negative( public_class: type, base_url: str, monkeypatch ) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") monkeypatch.delenv("NVIDIA_BASE_URL", raising=False) with pytest.raises(ValueError) as e: public_class(model="model1", base_url=base_url) assert "Invalid base_url" in str(e.value) # marking as skip because base_url validation is removed @pytest.mark.skip(reason="base_url validation is removed") @pytest.mark.parametrize( "base_url", [ "http://localhost:8888/embeddings", "http://0.0.0.0:8888/rankings", "http://localhost:8888/embeddings/", "http://0.0.0.0:8888/rankings/", "http://localhost:8888/chat/completions", "http://localhost:8080/v1/embeddings", "http://0.0.0.0:8888/v1/rankings", ], ) def test_expect_warn(public_class: type, base_url: str) -> None: with pytest.warns(UserWarning) as record: public_class(model="model1", base_url=base_url) assert len(record) == 1 assert "does not end in /v1" in str(record[0].message) @pytest.mark.parametrize( "base_url", [ "http://localhost:8080/v1", ], ) def test_base_url_valid_not_hosted(base_url: str, mock_local_models: None) -> None: with pytest.warns(UserWarning): cls = Interface(base_url=base_url) assert cls._is_hosted is False assert cls.model == "model1" @contextmanager def no_env_var(var: str) -> Generator[None, None, None]: try: if val := os.environ.get(var, None): del os.environ[var] yield finally: if val: os.environ[var] = val else: if var in os.environ: del os.environ[var] @pytest.mark.parametrize( "base_url", [ "http://host/path0/path1/path2/v1", "http://host:123/path0/path1/path2/v1/", ], ) def test_proxy_base_url( public_class: type, base_url: str, requests_mock: Mocker ) -> None: with no_env_var("NVIDIA_BASE_URL"): client = public_class( api_key="NO_API_KEY_PROVIDED", model="NV-Embed-QA", base_url=base_url ) assert base_url.startswith(client.base_url)
import pytest from llama_index.embeddings.nvidia import NVIDIAEmbedding as Interface from pytest_httpx import HTTPXMock from requests_mock import Mocker from contextlib import contextmanager import os from typing import Generator, Any @pytest.fixture() def mock_local_models(httpx_mock: HTTPXMock, base_url: str): mock_response = { "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", } ] } httpx_mock.add_response( url=f"{base_url}/models", method="GET", json=mock_response, status_code=200, ) def test_create_without_base_url(public_class: type, monkeypatch) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") monkeypatch.delenv("NVIDIA_BASE_URL", raising=False) x = public_class() assert x.base_url == "https://integrate.api.nvidia.com/v1" assert str(x._client.base_url) == "https://integrate.api.nvidia.com/v1/" # https.Url def test_base_url_priority(public_class: type, monkeypatch) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") ENV_URL = "https://ENV/v1" NV_PARAM_URL = "https://NV_PARAM/v1" PARAM_URL = "https://PARAM/v1" def get_base_url(**kwargs: Any) -> str: return public_class(model="NV-Embed-QA", **kwargs).base_url with no_env_var("NVIDIA_BASE_URL"): os.environ["NVIDIA_BASE_URL"] = ENV_URL assert get_base_url() == ENV_URL assert get_base_url(base_url=NV_PARAM_URL) == NV_PARAM_URL assert get_base_url(base_url=PARAM_URL) == PARAM_URL @pytest.mark.parametrize( "base_url", [ "bogus", "http:/", "http://", "http:/oops", ], ) def test_param_base_url_negative( public_class: type, base_url: str, monkeypatch ) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") monkeypatch.delenv("NVIDIA_BASE_URL", raising=False) with pytest.raises(ValueError) as e: public_class(model="model1", base_url=base_url) assert "Invalid base_url" in str(e.value) @pytest.mark.parametrize( "base_url", [ "http://localhost:8888/embeddings", "http://0.0.0.0:8888/rankings", "http://localhost:8888/embeddings/", "http://0.0.0.0:8888/rankings/", "http://localhost:8888/chat/completions", "http://localhost:8080/v1/embeddings", "http://0.0.0.0:8888/v1/rankings", ], ) def test_expect_warn(public_class: type, base_url: str) -> None: with pytest.warns(UserWarning) as record: public_class(model="model1", base_url=base_url) assert len(record) == 1 assert "does not end in /v1" in str(record[0].message) @pytest.mark.parametrize( "base_url", [ "http://localhost:8080/v1", ], ) def test_base_url_valid_not_hosted(base_url: str, mock_local_models: None) -> None: with pytest.warns(UserWarning): cls = Interface(base_url=base_url) assert cls._is_hosted is False assert cls.model == "model1" @contextmanager def no_env_var(var: str) -> Generator[None, None, None]: try: if val := os.environ.get(var, None): del os.environ[var] yield finally: if val: os.environ[var] = val else: if var in os.environ: del os.environ[var] @pytest.mark.parametrize( "base_url", [ "http://host/path0/path1/path2/v1", "http://host:123/path0/path1/path2/v1/", ], ) def test_proxy_base_url( public_class: type, base_url: str, requests_mock: Mocker ) -> None: with no_env_var("NVIDIA_BASE_URL"): client = public_class( api_key="NO_API_KEY_PROVIDED", model="NV-Embed-QA", base_url=base_url ) assert base_url.startswith(client.base_url)
"""Build configuration""" import dataclasses from typing import Any, Dict, List, Optional @dataclasses.dataclass class BuildConfiguration: # pylint: disable=R0902 """Configurations use when building libxgboost""" # Whether to hide C++ symbols in libxgboost.so hide_cxx_symbols: bool = True # Whether to enable OpenMP use_openmp: bool = True # Whether to enable CUDA use_cuda: bool = False # Whether to enable NCCL use_nccl: bool = False # Whether to load nccl dynamically use_dlopen_nccl: bool = False # Whether to enable federated learning plugin_federated: bool = False # Whether to enable rmm support plugin_rmm: bool = False # Special option: See explanation below use_system_libxgboost: bool = False def _set_config_setting(self, config_settings: Dict[str, Any]) -> None: for field_name in config_settings: setattr( self, field_name, (config_settings[field_name].lower() in ["true", "1", "on"]), ) def update(self, config_settings: Optional[Dict[str, Any]]) -> None: """Parse config_settings from Pip (or other PEP 517 frontend)""" if config_settings is not None: self._set_config_setting(config_settings) def get_cmake_args(self) -> List[str]: """Convert build configuration to CMake args""" cmake_args = [] for field_name in [x.name for x in dataclasses.fields(self)]: if field_name in ["use_system_libxgboost"]: continue cmake_option = field_name.upper() cmake_value = "ON" if getattr(self, field_name) is True else "OFF" cmake_args.append(f"-D{cmake_option}={cmake_value}") return cmake_args
"""Build configuration""" import dataclasses from typing import Any, Dict, List, Optional @dataclasses.dataclass class BuildConfiguration: # pylint: disable=R0902 """Configurations use when building libxgboost""" # Whether to hide C++ symbols in libxgboost.so hide_cxx_symbols: bool = True # Whether to enable OpenMP use_openmp: bool = True # Whether to enable CUDA use_cuda: bool = False # Whether to enable NCCL use_nccl: bool = False # Whether to load nccl dynamically use_dlopen_nccl: bool = False # Whether to enable HDFS use_hdfs: bool = False # Whether to enable Azure Storage use_azure: bool = False # Whether to enable AWS S3 use_s3: bool = False # Whether to enable the dense parser plugin plugin_dense_parser: bool = False # Special option: See explanation below use_system_libxgboost: bool = False def _set_config_setting(self, config_settings: Dict[str, Any]) -> None: for field_name in config_settings: setattr( self, field_name, (config_settings[field_name].lower() in ["true", "1", "on"]), ) def update(self, config_settings: Optional[Dict[str, Any]]) -> None: """Parse config_settings from Pip (or other PEP 517 frontend)""" if config_settings is not None: self._set_config_setting(config_settings) def get_cmake_args(self) -> List[str]: """Convert build configuration to CMake args""" cmake_args = [] for field_name in [x.name for x in dataclasses.fields(self)]: if field_name in ["use_system_libxgboost"]: continue cmake_option = field_name.upper() cmake_value = "ON" if getattr(self, field_name) is True else "OFF" cmake_args.append(f"-D{cmake_option}={cmake_value}") return cmake_args
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class HfFileSystem(AbstractFileSystem): """Interface to files in a Hugging face repository""" root_marker = "" protocol = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self, repo_info: Optional[DatasetInfo] = None, token: Optional[str] = None, **kwargs, ): """ The file system can be instantiated using a huggingface_hub.hf_api.DatasetInfo object, and can be used to list and open files from a Hugging Face dataset repository with fsspec. Args: repo_info (:obj:``DatasetInfo``, `optional`): Dataset repository info from huggingface_hub.HfApi().dataset_info(...) token (:obj:``str``, `optional`): Hugging Face token. Will default to the locally saved token if not provided. """ super().__init__(self, **kwargs) self.repo_info = repo_info self.token = token self.dir_cache = None def _get_dirs(self): if self.dir_cache is None: self.dir_cache = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes self.dir_cache[hf_file.rfilename] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(d): {"name": str(d), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] } ) def _open( self, path: str, mode: str = "rb", **kwargs, ): if not isinstance(self.repo_info, DatasetInfo): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}") url = hf_hub_url(self.repo_info.id, path, revision=self.repo_info.sha) return fsspec.open( url, mode=mode, headers=get_authentication_headers_for_url(url, use_auth_token=self.token), client_kwargs={"trust_env": True}, # Enable reading proxy env variables. ).open() def info(self, path, **kwargs): self._get_dirs() path = self._strip_protocol(path) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(path) def ls(self, path, detail=False, **kwargs): self._get_dirs() path = PurePosixPath(path.strip("/")) paths = {} for p, f in self.dir_cache.items(): p = PurePosixPath(p.strip("/")) root = p.parent if root == path: paths[str(p)] = f out = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class HfFileSystem(AbstractFileSystem): """Interface to files in a Hugging face repository""" root_marker = "" protocol = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self, repo_info: Optional[DatasetInfo] = None, token: Optional[str] = None, **kwargs, ): """ The file system can be instantiated using a huggingface_hub.hf_api.DatasetInfo object, and can be used to list and open files from a Hugging Face dataset repository with fsspec. Args: repo_info (:obj:``DatasetInfo``, `optional`): Dataset repository info from huggingface_hub.HfApi().dataset_info(...) token (:obj:``str``, `optional`): Hugging Face token. Will default to the locally saved token if not provided. """ super().__init__(self, **kwargs) self.repo_info = repo_info self.token = token self.dir_cache = None def _get_dirs(self): if self.dir_cache is None: self.dir_cache = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes self.dir_cache[hf_file.rfilename] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(d): {"name": str(d), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] } ) def _open( self, path: str, mode: str = "rb", **kwargs, ): if not isinstance(self.repo_info, DatasetInfo): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}") url = hf_hub_url(self.repo_info.id, path, revision=self.repo_info.sha) return fsspec.open( url, mode=mode, headers=get_authentication_headers_for_url(url, use_auth_token=self.token), ).open() def info(self, path, **kwargs): self._get_dirs() path = self._strip_protocol(path) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(path) def ls(self, path, detail=False, **kwargs): self._get_dirs() path = PurePosixPath(path.strip("/")) paths = {} for p, f in self.dir_cache.items(): p = PurePosixPath(p.strip("/")) root = p.parent if root == path: paths[str(p)] = f out = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
import subprocess import sys import pytest from pytest_benchmark.fixture import BenchmarkFixture # type: ignore @pytest.mark.parametrize( "import_path", [ pytest.param( "from langchain_core.messages import HumanMessage", id="HumanMessage" ), pytest.param("from langchain_core.tools import tool", id="tool"), pytest.param( "from langchain_core.callbacks import CallbackManager", id="CallbackManager" ), pytest.param("from langchain_core.runnables import Runnable", id="Runnable"), pytest.param( "from langchain_core.language_models import BaseChatModel", id="BaseChatModel", ), pytest.param( "from langchain_core.prompts import ChatPromptTemplate", id="ChatPromptTemplate", ), pytest.param("from langchain_core.documents import Document", id="Document"), pytest.param( "from langchain_core.vectorstores import InMemoryVectorStore", id="InMemoryVectorStore", ), pytest.param( "from langchain_core.runnables import RunnableLambda", id="RunnableLambda", ), pytest.param( "from langchain_core.tracers import LangChainTracer", id="LangChainTracer", ), pytest.param( "from langchain_core.output_parsers import PydanticOutputParser", id="PydanticOutputParser", ), pytest.param( "from langchain_core.rate_limiters import InMemoryRateLimiter", id="InMemoryRateLimiter", ), ], ) @pytest.mark.benchmark def test_import_time(benchmark: BenchmarkFixture, import_path: str) -> None: @benchmark def import_in_subprocess() -> None: subprocess.run([sys.executable, "-c", import_path], check=False)
import subprocess import sys import pytest from pytest_benchmark.fixture import BenchmarkFixture # type: ignore @pytest.mark.parametrize( "import_path", [ pytest.param( "from langchain_core.messages import HumanMessage", id="HumanMessage" ), pytest.param("from langchain_core.tools import tool", id="tool"), pytest.param( "from langchain_core.callbacks import CallbackManager", id="CallbackManager" ), pytest.param("from langchain_core.runnables import Runnable", id="Runnable"), pytest.param( "from langchain_core.language_models import BaseChatModel", id="BaseChatModel", ), pytest.param( "from langchain_core.prompts import ChatPromptTemplate", id="PromChatPromptTemplateptTemplate", ), pytest.param("from langchain_core.documents import Document", id="Document"), pytest.param( "from langchain_core.vectorstores import InMemoryVectorStore", id="InMemoryVectorStore", ), ], ) @pytest.mark.benchmark def test_import_time(benchmark: BenchmarkFixture, import_path: str) -> None: @benchmark def import_in_subprocess() -> None: subprocess.run([sys.executable, "-c", import_path], check=False)
"""Decision tree based models for classification and regression.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._classes import ( BaseDecisionTree, DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor, ) from ._export import export_graphviz, export_text, plot_tree __all__ = [ "BaseDecisionTree", "DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor", "export_graphviz", "export_text", "plot_tree", ]
"""Decision tree based models for classification and regression.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._classes import ( BaseDecisionTree, DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor, ) from ._export import export_graphviz, export_text, plot_tree __all__ = [ "BaseDecisionTree", "DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor", "export_graphviz", "plot_tree", "export_text", ]
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.0', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.fixture(scope='session') def basic_encoder() -> LaserEncoder: return LaserEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_language == 'en' def test_no_document(basic_encoder: LaserEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: LaserEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: LaserEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(basic_encoder: LaserEncoder): docs = DocumentArray([Document(text='hello there')]) basic_encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'language, sentence', [ ('en', 'Today is a nice day'), ('es', 'hoy es un buen día'), ('ru', 'сегодня хороший день'), ], ) def test_languages(language: str, sentence: str, basic_encoder: LaserEncoder): docs = DocumentArray([Document(text=sentence)]) basic_encoder.encode(docs, {'language': language}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: LaserEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: LaserEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: LaserEncoder): docs = DocumentArray( [ # Different than usual example - because embeddings suck (manually verified # using the laserembedings module) Document(id='A', text='car'), Document(id='B', text='truck'), Document(id='C', text='radio'), Document(id='D', text='TV'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from ...laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.fixture(scope='session') def basic_encoder() -> LaserEncoder: return LaserEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_language == 'en' def test_no_document(basic_encoder: LaserEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: LaserEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: LaserEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(basic_encoder: LaserEncoder): docs = DocumentArray([Document(text='hello there')]) basic_encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'language, sentence', [ ('en', 'Today is a nice day'), ('es', 'hoy es un buen día'), ('ru', 'сегодня хороший день'), ], ) def test_languages(language: str, sentence: str, basic_encoder: LaserEncoder): docs = DocumentArray([Document(text=sentence)]) basic_encoder.encode(docs, {'language': language}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: LaserEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: LaserEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: LaserEncoder): docs = DocumentArray( [ # Different than usual example - because embeddings suck (manually verified # using the laserembedings module) Document(id='A', text='car'), Document(id='B', text='truck'), Document(id='C', text='radio'), Document(id='D', text='TV'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask2former import Mask2Former from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .scnet import SCNet from .single_stage import SingleStageDetector from .solo import SOLO from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer', 'Mask2Former' ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .scnet import SCNet from .single_stage import SingleStageDetector from .solo import SOLO from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer' ]
from typing import Annotated, Any, Literal, Optional, TypedDict from uuid import uuid4 from pydantic import BaseModel, Field, SecretStr, field_serializer class _BaseCredentials(BaseModel): id: str = Field(default_factory=lambda: str(uuid4())) provider: str title: Optional[str] @field_serializer("*") def dump_secret_strings(value: Any, _info): if isinstance(value, SecretStr): return value.get_secret_value() return value class OAuth2Credentials(_BaseCredentials): type: Literal["oauth2"] = "oauth2" username: Optional[str] """Username of the third-party service user that these credentials belong to""" access_token: SecretStr access_token_expires_at: Optional[int] """Unix timestamp (seconds) indicating when the access token expires (if at all)""" refresh_token: Optional[SecretStr] refresh_token_expires_at: Optional[int] """Unix timestamp (seconds) indicating when the refresh token expires (if at all)""" scopes: list[str] metadata: dict[str, Any] = Field(default_factory=dict) def bearer(self) -> str: return f"Bearer {self.access_token.get_secret_value()}" class APIKeyCredentials(_BaseCredentials): type: Literal["api_key"] = "api_key" api_key: SecretStr expires_at: Optional[int] """Unix timestamp (seconds) indicating when the API key expires (if at all)""" def bearer(self) -> str: return f"Bearer {self.api_key.get_secret_value()}" Credentials = Annotated[ OAuth2Credentials | APIKeyCredentials, Field(discriminator="type"), ] CredentialsType = Literal["api_key", "oauth2"] class OAuthState(BaseModel): token: str provider: str expires_at: int scopes: list[str] """Unix timestamp (seconds) indicating when this OAuth state expires""" class UserMetadata(BaseModel): integration_credentials: list[Credentials] = Field(default_factory=list) integration_oauth_states: list[OAuthState] = Field(default_factory=list) class UserMetadataRaw(TypedDict, total=False): integration_credentials: list[dict] integration_oauth_states: list[dict] class UserIntegrations(BaseModel): credentials: list[Credentials] = Field(default_factory=list) oauth_states: list[OAuthState] = Field(default_factory=list)
from typing import Annotated, Any, Literal, Optional, TypedDict from uuid import uuid4 from pydantic import BaseModel, Field, SecretStr, field_serializer class _BaseCredentials(BaseModel): id: str = Field(default_factory=lambda: str(uuid4())) provider: str title: Optional[str] @field_serializer("*") def dump_secret_strings(value: Any, _info): if isinstance(value, SecretStr): return value.get_secret_value() return value class OAuth2Credentials(_BaseCredentials): type: Literal["oauth2"] = "oauth2" username: Optional[str] """Username of the third-party service user that these credentials belong to""" access_token: SecretStr access_token_expires_at: Optional[int] """Unix timestamp (seconds) indicating when the access token expires (if at all)""" refresh_token: Optional[SecretStr] refresh_token_expires_at: Optional[int] """Unix timestamp (seconds) indicating when the refresh token expires (if at all)""" scopes: list[str] metadata: dict[str, Any] = Field(default_factory=dict) def bearer(self) -> str: return f"Bearer {self.access_token.get_secret_value()}" class APIKeyCredentials(_BaseCredentials): type: Literal["api_key"] = "api_key" api_key: SecretStr expires_at: Optional[int] """Unix timestamp (seconds) indicating when the API key expires (if at all)""" def bearer(self) -> str: return f"Bearer {self.api_key.get_secret_value()}" Credentials = Annotated[ OAuth2Credentials | APIKeyCredentials, Field(discriminator="type"), ] CredentialsType = Literal["api_key", "oauth2"] class OAuthState(BaseModel): token: str provider: str expires_at: int scopes: list[str] """Unix timestamp (seconds) indicating when this OAuth state expires""" class UserMetadata(BaseModel): integration_credentials: list[Credentials] = Field(default_factory=list) integration_oauth_states: list[OAuthState] = Field(default_factory=list) class UserMetadataRaw(BaseModel): integration_credentials: list[dict] = Field(default_factory=list) integration_oauth_states: list[dict] = Field(default_factory=list)
_base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py' # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import pytest import torch from mmengine.data import LabelData class TestLabelData(TestCase): def test_label_to_onehot(self): item = torch.tensor([1], dtype=torch.int64) num_classes = 10 onehot = LabelData.label_to_onehot(label=item, num_classes=num_classes) assert tuple(onehot.shape) == (num_classes, ) assert onehot.device == item.device # item is not onehot with self.assertRaises(AssertionError): LabelData.label_to_onehot(label='item', num_classes=num_classes) # item'max bigger than num_classes with self.assertRaises(AssertionError): LabelData.label_to_onehot( torch.tensor([11], dtype=torch.int64), num_classes) onehot = LabelData.label_to_onehot( label=torch.tensor([], dtype=torch.int64), num_classes=num_classes) assert (onehot == torch.zeros((num_classes, ), dtype=torch.int64)).all() def test_onehot_to_label(self): # item is not onehot with self.assertRaisesRegex( ValueError, 'input is not one-hot and can not convert to label'): LabelData.onehot_to_label( onehot=torch.tensor([2], dtype=torch.int64)) with self.assertRaises(AssertionError): LabelData.onehot_to_label(onehot='item') item = torch.arange(0, 9) onehot = LabelData.label_to_onehot(item, num_classes=10) label = LabelData.onehot_to_label(onehot) assert (label == item).all() assert label.device == item.device @pytest.mark.skipif( not torch.cuda.is_available(), reason='GPU is required!') def test_cuda(self): item = torch.arange(0, 9).cuda() onehot = LabelData.label_to_onehot(item, num_classes=10) assert item.device == onehot.device label = LabelData.onehot_to_label(onehot) assert label.device == onehot.device
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import LabelData class TestLabelData(TestCase): def test_label_to_onehot(self): item = torch.tensor([1], dtype=torch.int64) num_classes = 10 onehot = LabelData.label_to_onehot(label=item, num_classes=num_classes) assert tuple(onehot.shape) == (num_classes, ) # item is not onehot with self.assertRaises(AssertionError): LabelData.label_to_onehot(label='item', num_classes=num_classes) # item'max bigger than num_classes with self.assertRaises(AssertionError): LabelData.label_to_onehot( torch.tensor([11], dtype=torch.int64), num_classes) def test_onehot_to_label(self): # item is not onehot with self.assertRaisesRegex( ValueError, 'input is not one-hot and can not convert to label'): LabelData.onehot_to_label( onehot=torch.tensor([2], dtype=torch.int64)) with self.assertRaises(AssertionError): LabelData.onehot_to_label(onehot='item') item = torch.arange(0, 9) onehot = LabelData.label_to_onehot(item, num_classes=10) label = LabelData.onehot_to_label(onehot) assert (label == item).all()
_base_ = [ '../_base_/models/faster_rcnn_r50_caffe_c4.py', '../_base_/schedules/schedule_1x.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 480), (1333, 512), (1333, 544), (1333, 576), (1333, 608), (1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( sampler=dict(type='InfiniteSampler', shuffle=True), dataset=dict( _delete_=True, type='ConcatDataset', datasets=[ dict( type='VOCDataset', data_root={{_base_.data_root}}, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline), dict( type='VOCDataset', data_root={{_base_.data_root}}, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline) ])) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # training schedule for 18k max_iter = 18000 train_cfg = dict( _delete_=True, type='IterBasedTrainLoop', max_iters=max_iter, val_interval=3000) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=100), dict( type='MultiStepLR', begin=0, end=max_iter, by_epoch=False, milestones=[12000, 16000], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) default_hooks = dict(checkpoint=dict(by_epoch=False, interval=3000)) log_processor = dict(by_epoch=False)
_base_ = [ '../_base_/models/faster_rcnn_r50_caffe_c4.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) # dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 480), (1333, 512), (1333, 544), (1333, 576), (1333, 608), (1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=[ data_root + 'VOC2007/ImageSets/Main/trainval.txt', data_root + 'VOC2012/ImageSets/Main/trainval.txt' ], img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'], pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt', img_prefix=data_root + 'VOC2007/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt', img_prefix=data_root + 'VOC2007/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=100, warmup_ratio=0.001, step=[12000, 16000]) # Runner type runner = dict(type='IterBasedRunner', max_iters=18000) checkpoint_config = dict(interval=3000) evaluation = dict(interval=3000, metric='mAP')
from typing import Union, Iterable, Dict from ..base.seqlike import BaseSequenceLikeMixin from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with Elastic as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses Elastic as storage :return: the length of this :class:`DocumentArrayElastic` object """ try: return self._client.count(index=self._config.index_name)["count"] except: return 0 def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with Elastic storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._doc_id_exists(x) elif isinstance(x, Document): return self._doc_id_exists(x.id) else: return False def __del__(self): """Delete this :class:`DocumentArrayElastic` object""" self._save_offset2ids() # if not self._persist: # self._offset2ids.clear() def __repr__(self): """Return the string representation of :class:`DocumentArrayElastic` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def _upload_batch(self, docs: Iterable['Document']): batch = [] for doc in docs: batch.append(self._document_to_elastic(doc)) if len(batch) > self._config.batch_size: self._send_requests(batch) self._refresh(self._config.index_name) batch = [] if len(batch) > 0: self._send_requests(batch) self._refresh(self._config.index_name) def extend(self, docs: Iterable['Document']): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend( [doc.id for doc in docs if doc.id not in self._offset2ids.ids] )
from typing import Union, Iterable, Dict from ..base.seqlike import BaseSequenceLikeMixin from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with Elastic as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses Elastic as storage :return: the length of this :class:`DocumentArrayElastic` object """ try: return self._client.count(index=self._config.index_name)["count"] except: return 0 def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with Elastic storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._doc_id_exists(x) elif isinstance(x, Document): return self._doc_id_exists(x.id) else: return False def __del__(self): """Delete this :class:`DocumentArrayElastic` object""" self._save_offset2ids() # if not self._persist: # self._offset2ids.clear() def __repr__(self): """Return the string representation of :class:`DocumentArrayElastic` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def _upload_batch(self, docs: Iterable['Document']): batch = [] for doc in docs: batch.append(self._document_to_elastic(doc)) if len(batch) > self._config.batch_size: self._send_requests(batch) self._refresh(self._config.index_name) batch = [] if len(batch) > 0: self._send_requests(batch) self._refresh(self._config.index_name) def extend(self, docs: Iterable['Document']): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
class DataAdapter: """Base class for input data adapters. The purpose of a DataAdapter is to provide a unfied interface to iterate over input data provided in a variety of formats -- such as NumPy arrays, tf.Tensors, tf.data.Datasets, Keras PyDatasets, etc. """ def get_numpy_iterator(self): """Get a Python iterable for the `DataAdapter`, that yields NumPy arrays. Returns: A Python iterator. """ raise NotImplementedError def get_tf_dataset(self): """Get a `tf.data.Dataset` instance for the DataAdapter. Note that the dataset returned does not repeat for epoch, so caller might need to create new iterator for the same dataset at the beginning of the epoch. This behavior might change in the future. Returns: A `tf.data.Dataset`. Caller might use the dataset in different context, e.g. iter(dataset) in eager to get the value directly, or in graph mode, provide the iterator tensor to Keras model function. """ raise NotImplementedError def get_jax_iterator(self): """Get a Python iterable for the `DataAdapter`, that yields JAX arrays. Returns: A Python iterator. """ raise NotImplementedError def get_torch_dataloader(self): """Get a Torch `DataLoader` for the `DataAdapter`. Returns: A Torch `DataLoader`. """ raise NotImplementedError @property def num_batches(self): """Return the size (number of batches) for the dataset created. For certain type of the data input, the number of batches is known, eg for Numpy data, the size is same as (number_of_element / batch_size). Whereas for dataset or python generator, the size is unknown since it may or may not have an end state. Returns: int, the number of batches for the dataset, or None if it is unknown. The caller could use this to control the loop of training, show progress bar, or handle unexpected StopIteration error. """ raise NotImplementedError @property def batch_size(self): """Return the batch size of the dataset created. For certain type of the data input, the batch size is known, and even required, like numpy array. Whereas for dataset, the batch is unknown unless we take a peek. Returns: int, the batch size of the dataset, or None if it is unknown. """ raise NotImplementedError @property def has_partial_batch(self): """Whether the dataset has partial batch at the end.""" raise NotImplementedError @property def partial_batch_size(self): """The size of the final partial batch for dataset. Will return None if has_partial_batch is False or batch_size is None. """ raise NotImplementedError def on_epoch_end(self): """A hook called after each epoch.""" pass
class DataAdapter(object): """Base class for input data adapters. The purpose of a DataAdapter is to provide a unfied interface to iterate over input data provided in a variety of formats -- such as NumPy arrays, tf.Tensors, tf.data.Datasets, Keras PyDatasets, etc. """ def get_numpy_iterator(self): """Get a Python iterable for the `DataAdapter`, that yields NumPy arrays. Returns: A Python iterator. """ raise NotImplementedError def get_tf_dataset(self): """Get a `tf.data.Dataset` instance for the DataAdapter. Note that the dataset returned does not repeat for epoch, so caller might need to create new iterator for the same dataset at the beginning of the epoch. This behavior might change in the future. Returns: A `tf.data.Dataset`. Caller might use the dataset in different context, e.g. iter(dataset) in eager to get the value directly, or in graph mode, provide the iterator tensor to Keras model function. """ raise NotImplementedError def get_jax_iterator(self): """Get a Python iterable for the `DataAdapter`, that yields JAX arrays. Returns: A Python iterator. """ raise NotImplementedError def get_torch_dataloader(self): """Get a Torch `DataLoader` for the `DataAdapter`. Returns: A Torch `DataLoader`. """ raise NotImplementedError @property def num_batches(self): """Return the size (number of batches) for the dataset created. For certain type of the data input, the number of batches is known, eg for Numpy data, the size is same as (number_of_element / batch_size). Whereas for dataset or python generator, the size is unknown since it may or may not have an end state. Returns: int, the number of batches for the dataset, or None if it is unknown. The caller could use this to control the loop of training, show progress bar, or handle unexpected StopIteration error. """ raise NotImplementedError @property def batch_size(self): """Return the batch size of the dataset created. For certain type of the data input, the batch size is known, and even required, like numpy array. Whereas for dataset, the batch is unknown unless we take a peek. Returns: int, the batch size of the dataset, or None if it is unknown. """ raise NotImplementedError @property def has_partial_batch(self): """Whether the dataset has partial batch at the end.""" raise NotImplementedError @property def partial_batch_size(self): """The size of the final partial batch for dataset. Will return None if has_partial_batch is False or batch_size is None. """ raise NotImplementedError def on_epoch_end(self): """A hook called after each epoch.""" pass