input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from packaging import version from .. import __version__ from .constants import ( CONFIG_NAME, DEPRECATED_REVISION_ARGS, DIFFUSERS_DYNAMIC_MODULE_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MIN_PEFT_VERSION, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .deprecation_utils import deprecate from .doc_utils import replace_example_docstring from .dynamic_modules_utils import get_class_from_dynamic_module from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video from .hub_utils import ( PushToHubMixin, _add_variant, _get_checkpoint_shard_files, _get_model_file, extract_commit_hash, http_user_agent, ) from .import_utils import ( BACKENDS_MAPPING, DIFFUSERS_SLOW_IMPORT, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_accelerate_available, is_accelerate_version, is_bitsandbytes_available, is_bitsandbytes_version, is_bs4_available, is_flax_available, is_ftfy_available, is_google_colab, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_matplotlib_available, is_note_seq_available, is_onnx_available, is_peft_available, is_peft_version, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_tensorboard_available, is_timm_available, is_torch_available, is_torch_npu_available, is_torch_version, is_torch_xla_available, is_torch_xla_version, is_torchao_available, is_torchsde_available, is_torchvision_available, is_transformers_available, is_transformers_version, is_unidecode_available, is_wandb_available, is_xformers_available, requires_backends, ) from .loading_utils import get_module_from_name, load_image, load_video from .logging import get_logger from .outputs import BaseOutput from .peft_utils import ( check_peft_version, delete_adapter_layers, get_adapter_name, get_peft_kwargs, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, unscale_lora_layers, ) from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil from .state_dict_utils import ( convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, ) logger = get_logger(__name__) def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace diffusers (see " "`https://huggingface.co/docs/diffusers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError(error_message)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from packaging import version from .. import __version__ from .constants import ( CONFIG_NAME, DEPRECATED_REVISION_ARGS, DIFFUSERS_DYNAMIC_MODULE_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MIN_PEFT_VERSION, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .deprecation_utils import deprecate from .doc_utils import replace_example_docstring from .dynamic_modules_utils import get_class_from_dynamic_module from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video from .hub_utils import ( PushToHubMixin, _add_variant, _get_checkpoint_shard_files, _get_model_file, extract_commit_hash, http_user_agent, ) from .import_utils import ( BACKENDS_MAPPING, DIFFUSERS_SLOW_IMPORT, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_accelerate_available, is_accelerate_version, is_bitsandbytes_available, is_bitsandbytes_version, is_bs4_available, is_flax_available, is_ftfy_available, is_google_colab, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_matplotlib_available, is_note_seq_available, is_onnx_available, is_peft_available, is_peft_version, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_tensorboard_available, is_timm_available, is_torch_available, is_torch_npu_available, is_torch_version, is_torch_xla_available, is_torch_xla_version, is_torchsde_available, is_torchvision_available, is_transformers_available, is_transformers_version, is_unidecode_available, is_wandb_available, is_xformers_available, requires_backends, ) from .loading_utils import get_module_from_name, load_image, load_video from .logging import get_logger from .outputs import BaseOutput from .peft_utils import ( check_peft_version, delete_adapter_layers, get_adapter_name, get_peft_kwargs, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, unscale_lora_layers, ) from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil from .state_dict_utils import ( convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, ) logger = get_logger(__name__) def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace diffusers (see " "`https://huggingface.co/docs/diffusers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError(error_message)
import warnings from typing import List, Optional import torchaudio from . import utils # TODO: Once legacy global backend is removed, move this to torchaudio.__init__ def _init_backend(): torchaudio.info = utils.get_info_func() torchaudio.load = utils.get_load_func() torchaudio.save = utils.get_save_func() def list_audio_backends() -> List[str]: return list(utils.get_available_backends().keys()) # Temporary until global backend is removed def get_audio_backend() -> Optional[str]: warnings.warn("I/O Dispatcher is enabled. There is no global audio backend.", stacklevel=2) return None # Temporary until global backend is removed def set_audio_backend(_: Optional[str]): warnings.warn("I/O Dispatcher is enabled. set_audio_backend is a no-op", stacklevel=2)
from .utils import get_info_func, get_load_func, get_save_func info = get_info_func() load = get_load_func() save = get_save_func()
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, PointCloud3DUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore T = TypeVar('T', bound='PointCloud3D') class PointCloud3D(BaseDocument): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), an AnyTensor (`PointCloud3D.tensor`), and an AnyEmbedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) You can extend this Document: .. code-block:: python from docarray.documents import PointCloud3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[AnyEmbedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) pc.second_embedding = model(pc.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import PointCloud3D, Text # compose it class MultiModalDoc(BaseDocument): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensor = mmdoc.point_cloud.url.load(samples=100) # or mmdoc.point_cloud.bytes = mmdoc.point_cloud.url.load_bytes() """ url: Optional[PointCloud3DUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, PointCloud3DUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils.misc import is_torch_available torch_available = is_torch_available() if torch_available: import torch T = TypeVar('T', bound='PointCloud3D') class PointCloud3D(BaseDocument): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), an AnyTensor (`PointCloud3D.tensor`), and an AnyEmbedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) You can extend this Document: .. code-block:: python from docarray.documents import PointCloud3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[AnyEmbedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) pc.second_embedding = model(pc.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import PointCloud3D, Text # compose it class MultiModalDoc(BaseDocument): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensor = mmdoc.point_cloud.url.load(samples=100) # or mmdoc.point_cloud.bytes = mmdoc.point_cloud.url.load_bytes() """ url: Optional[PointCloud3DUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
""" Using rmm on a single node device ================================= """ import rmm from sklearn.datasets import make_classification import xgboost as xgb # Initialize RMM pool allocator rmm.reinitialize(pool_allocator=True) # Optionally force XGBoost to use RMM for all GPU memory allocation, see ./README.md # xgb.set_config(use_rmm=True) X, y = make_classification(n_samples=10000, n_informative=5, n_classes=3) dtrain = xgb.DMatrix(X, label=y) params = { "max_depth": 8, "eta": 0.01, "objective": "multi:softprob", "num_class": 3, "tree_method": "hist", "device": "cuda", } # XGBoost will automatically use the RMM pool allocator bst = xgb.train(params, dtrain, num_boost_round=100, evals=[(dtrain, "train")])
""" Using rmm on a single node device ================================= """ import rmm from sklearn.datasets import make_classification import xgboost as xgb # Initialize RMM pool allocator rmm.reinitialize(pool_allocator=True) # Optionally force XGBoost to use RMM for all GPU memory allocation, see ./README.md # xgb.set_config(use_rmm=True) X, y = make_classification(n_samples=10000, n_informative=5, n_classes=3) dtrain = xgb.DMatrix(X, label=y) params = { "max_depth": 8, "eta": 0.01, "objective": "multi:softprob", "num_class": 3, "tree_method": "hist", "device": "cuda", } # XGBoost will automatically use the RMM pool allocator bst = xgb.train(params, dtrain, num_boost_round=100, evals=[(dtrain, "train")])
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTripletEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load triplets from the AllNLI dataset # The dataset contains triplets of (anchor, positive, negative) sentences dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # Initialize the SparseTripletEvaluator evaluator = SparseTripletEvaluator( anchors=dataset[:1000]["anchor"], positives=dataset[:1000]["positive"], negatives=dataset[:1000]["negative"], name="all_nli_dev", batch_size=32, show_progress_bar=True, ) # Run the evaluation results = evaluator(model) """ TripletEvaluator: Evaluating the model on the all_nli_dev dataset: Accuracy Dot Similarity: 85.10% Model Anchor Sparsity: Active Dimensions: 105.5, Sparsity Ratio: 0.9965 Model Positive Sparsity: Active Dimensions: 69.8, Sparsity Ratio: 0.9977 Model Negative Sparsity: Active Dimensions: 68.6, Sparsity Ratio: 0.9978 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: all_nli_dev_dot_accuracy print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8510
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTripletEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load triplets from the AllNLI dataset # The dataset contains triplets of (anchor, positive, negative) sentences dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # Initialize the SparseTripletEvaluator evaluator = SparseTripletEvaluator( anchors=dataset[:1000]["anchor"], positives=dataset[:1000]["positive"], negatives=dataset[:1000]["negative"], name="all_nli_dev", batch_size=32, show_progress_bar=True, ) # Run the evaluation results = evaluator(model, ".") """ TripletEvaluator: Evaluating the model on the all_nli_dev dataset: Accuracy Dot Similarity: 85.10% Model Sparsity Stats Query : Row Non-Zero Mean: 105.4530029296875, Row Sparsity Mean: 0.9965449571609497 Model Sparsity Stats Corpus : Row Non-Zero Mean: 69.18349838256836, Row Sparsity Mean: 0.9977333247661591 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: all_nli_dev_dot_accuracy print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8510
from typing import TYPE_CHECKING from .github import GithubWebhooksManager from .slant3d import Slant3DWebhooksManager if TYPE_CHECKING: from ..providers import ProviderName from .base import BaseWebhooksManager # --8<-- [start:WEBHOOK_MANAGERS_BY_NAME] WEBHOOK_MANAGERS_BY_NAME: dict["ProviderName", type["BaseWebhooksManager"]] = { handler.PROVIDER_NAME: handler for handler in [ GithubWebhooksManager, Slant3DWebhooksManager, ] } # --8<-- [end:WEBHOOK_MANAGERS_BY_NAME] __all__ = ["WEBHOOK_MANAGERS_BY_NAME"]
from typing import TYPE_CHECKING from .github import GithubWebhooksManager from .slant3d import Slant3DWebhooksManager if TYPE_CHECKING: from .base import BaseWebhooksManager # --8<-- [start:WEBHOOK_MANAGERS_BY_NAME] WEBHOOK_MANAGERS_BY_NAME: dict[str, type["BaseWebhooksManager"]] = { handler.PROVIDER_NAME: handler for handler in [ GithubWebhooksManager, Slant3DWebhooksManager, ] } # --8<-- [end:WEBHOOK_MANAGERS_BY_NAME] __all__ = ["WEBHOOK_MANAGERS_BY_NAME"]
from llama_index.vector_stores.redis.base import RedisVectorStore, TokenEscaper __all__ = ["RedisVectorStore", "TokenEscaper"]
from llama_index.vector_stores.redis.base import RedisVectorStore __all__ = ["RedisVectorStore"]
from __future__ import annotations from .MLMTransformer import MLMTransformer from .SparseAutoEncoder import SparseAutoEncoder from .SparseStaticEmbedding import SparseStaticEmbedding from .SpladePooling import SpladePooling __all__ = ["SparseAutoEncoder", "MLMTransformer", "SpladePooling", "SparseStaticEmbedding"]
from __future__ import annotations from .IDF import IDF from .MLMTransformer import MLMTransformer from .SparseAutoEncoder import SparseAutoEncoder from .SpladePooling import SpladePooling __all__ = ["SparseAutoEncoder", "MLMTransformer", "SpladePooling", "IDF"]
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/debug', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/debug', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def teardown(self): await super().teardown() await self.server.shutdown() async def stop_server(self): self.server.should_exit = True @property def should_exit(self) -> bool: return self.server.should_exit
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import E2BDataAnalysisTool from langchain_community.tools.e2b_data_analysis.tool import ( E2BDataAnalysisToolArguments, UploadedFile, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UploadedFile": "langchain_community.tools.e2b_data_analysis.tool", "E2BDataAnalysisToolArguments": "langchain_community.tools.e2b_data_analysis.tool", "E2BDataAnalysisTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "E2BDataAnalysisTool", "E2BDataAnalysisToolArguments", "UploadedFile", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import E2BDataAnalysisTool from langchain_community.tools.e2b_data_analysis.tool import ( E2BDataAnalysisToolArguments, UploadedFile, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UploadedFile": "langchain_community.tools.e2b_data_analysis.tool", "E2BDataAnalysisToolArguments": "langchain_community.tools.e2b_data_analysis.tool", "E2BDataAnalysisTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "UploadedFile", "E2BDataAnalysisToolArguments", "E2BDataAnalysisTool", ]
import csv import os from pathlib import Path from typing import Dict, List, Tuple, Union import torchaudio from torch import Tensor from torch.utils.data import Dataset def load_commonvoice_item( line: List[str], header: List[str], path: str, folder_audio: str, ext_audio: str ) -> Tuple[Tensor, int, Dict[str, str]]: # Each line as the following data: # client_id, path, sentence, up_votes, down_votes, age, gender, accent if header[1] != "path": raise ValueError(f"expect `header[1]` to be 'path', but got {header[1]}") fileid = line[1] filename = os.path.join(path, folder_audio, fileid) if not filename.endswith(ext_audio): filename += ext_audio waveform, sample_rate = torchaudio.load(filename) dic = dict(zip(header, line)) return waveform, sample_rate, dic class COMMONVOICE(Dataset): """Create a Dataset for *CommonVoice* :cite:`ardila2020common`. Args: root (str or Path): Path to the directory where the dataset is located. (Where the ``tsv`` file is present.) tsv (str, optional): The name of the tsv file used to construct the metadata, such as ``"train.tsv"``, ``"test.tsv"``, ``"dev.tsv"``, ``"invalidated.tsv"``, ``"validated.tsv"`` and ``"other.tsv"``. (default: ``"train.tsv"``) """ _ext_txt = ".txt" _ext_audio = ".mp3" _folder_audio = "clips" def __init__(self, root: Union[str, Path], tsv: str = "train.tsv") -> None: # Get string representation of 'root' in case Path object is passed self._path = os.fspath(root) self._tsv = os.path.join(self._path, tsv) with open(self._tsv, "r") as tsv_: walker = csv.reader(tsv_, delimiter="\t") self._header = next(walker) self._walker = list(walker) def __getitem__(self, n: int) -> Tuple[Tensor, int, Dict[str, str]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, Dict[str, str]): ``(waveform, sample_rate, dictionary)``, where dictionary is built from the TSV file with the following keys: ``client_id``, ``path``, ``sentence``, ``up_votes``, ``down_votes``, ``age``, ``gender`` and ``accent``. """ line = self._walker[n] return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio) def __len__(self) -> int: return len(self._walker)
import csv import os from pathlib import Path from typing import Dict, List, Tuple, Union import torchaudio from torch import Tensor from torch.utils.data import Dataset def load_commonvoice_item( line: List[str], header: List[str], path: str, folder_audio: str, ext_audio: str ) -> Tuple[Tensor, int, Dict[str, str]]: # Each line as the following data: # client_id, path, sentence, up_votes, down_votes, age, gender, accent if header[1] != "path": raise ValueError(f"expect `header[1]` to be 'path', but got {header[1]}") fileid = line[1] filename = os.path.join(path, folder_audio, fileid) if not filename.endswith(ext_audio): filename += ext_audio waveform, sample_rate = torchaudio.load(filename) dic = dict(zip(header, line)) return waveform, sample_rate, dic class COMMONVOICE(Dataset): """Create a Dataset for *CommonVoice* [:footcite:`ardila2020common`]. Args: root (str or Path): Path to the directory where the dataset is located. (Where the ``tsv`` file is present.) tsv (str, optional): The name of the tsv file used to construct the metadata, such as ``"train.tsv"``, ``"test.tsv"``, ``"dev.tsv"``, ``"invalidated.tsv"``, ``"validated.tsv"`` and ``"other.tsv"``. (default: ``"train.tsv"``) """ _ext_txt = ".txt" _ext_audio = ".mp3" _folder_audio = "clips" def __init__(self, root: Union[str, Path], tsv: str = "train.tsv") -> None: # Get string representation of 'root' in case Path object is passed self._path = os.fspath(root) self._tsv = os.path.join(self._path, tsv) with open(self._tsv, "r") as tsv_: walker = csv.reader(tsv_, delimiter="\t") self._header = next(walker) self._walker = list(walker) def __getitem__(self, n: int) -> Tuple[Tensor, int, Dict[str, str]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, Dict[str, str]): ``(waveform, sample_rate, dictionary)``, where dictionary is built from the TSV file with the following keys: ``client_id``, ``path``, ``sentence``, ``up_votes``, ``down_votes``, ``age``, ``gender`` and ``accent``. """ line = self._walker[n] return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio) def __len__(self) -> int: return len(self._walker)
# dataset settings dataset_type = 'OpenImagesDataset' data_root = 'data/OpenImages/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1024, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1024, 800), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), # TODO: find a better way to collect image_level_labels dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances', 'image_level_labels')) ] train_dataloader = dict( batch_size=2, num_workers=0, # workers_per_gpu > 0 may occur out of memory persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/oidv6-train-annotations-bbox.csv', data_prefix=dict(img='OpenImages/train/'), label_file='annotations/class-descriptions-boxable.csv', hierarchy_file='annotations/bbox_labels_600_hierarchy.json', meta_file='annotations/train-image-metas.pkl', pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=0, persistent_workers=False, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/validation-annotations-bbox.csv', data_prefix=dict(img='OpenImages/validation/'), label_file='annotations/class-descriptions-boxable.csv', hierarchy_file='annotations/bbox_labels_600_hierarchy.json', meta_file='annotations/validation-image-metas.pkl', image_level_ann_file='annotations/validation-' 'annotations-human-imagelabels-boxable.csv', pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='OpenImagesMetric', iou_thrs=0.5, ioa_thrs=0.5, use_group_of=True, get_supercategory=True) test_evaluator = val_evaluator
# dataset settings dataset_type = 'OpenImagesDataset' data_root = 'data/OpenImages/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1024, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1024, 800), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), # TODO: find a better way to collect image_level_labels dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances', 'image_level_labels')) ] train_dataloader = dict( batch_size=2, num_workers=0, # workers_per_gpu > 0 may occur out of memory persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/oidv6-train-annotations-bbox.csv', data_prefix=dict(img='OpenImages/train/'), label_file='annotations/class-descriptions-boxable.csv', hierarchy_file='annotations/bbox_labels_600_hierarchy.json', meta_file='annotations/train-image-metas.pkl', pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=0, persistent_workers=False, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/validation-annotations-bbox.csv', data_prefix=dict(img='OpenImages/validation/'), label_file='annotations/class-descriptions-boxable.csv', hierarchy_file='annotations/bbox_labels_600_hierarchy.json', meta_file='annotations/validation-image-metas.pkl', image_level_ann_file='annotations/validation-' 'annotations-human-imagelabels-boxable.csv', pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='OpenImagesMetric', iou_thr=0.5, ioa_thr=0.5, use_group_of=True, get_supercategory=True) test_evaluator = val_evaluator
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler from mmdet.core.utils import sync_random_seed from mmdet.registry import DATA_SAMPLERS from mmdet.utils import get_device @DATA_SAMPLERS.register_module() class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # In distributed sampling, different ranks should sample # non-overlapped data in the dataset. Therefore, this function # is used to make sure that each rank shuffles the data indices # in the same order based on the same seed. Then different ranks # could use different indices to select non-overlapped data from the # same data list. device = get_device() self.seed = sync_random_seed(seed, device) def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() # When :attr:`shuffle=True`, this ensures all replicas # use a different random ordering for each epoch. # Otherwise, the next iteration of this sampler will # yield the same ordering. g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler from mmdet.core.utils import sync_random_seed from mmdet.utils import get_device class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # In distributed sampling, different ranks should sample # non-overlapped data in the dataset. Therefore, this function # is used to make sure that each rank shuffles the data indices # in the same order based on the same seed. Then different ranks # could use different indices to select non-overlapped data from the # same data list. device = get_device() self.seed = sync_random_seed(seed, device) def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() # When :attr:`shuffle=True`, this ensures all replicas # use a different random ordering for each epoch. # Otherwise, the next iteration of this sampler will # yield the same ordering. g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
import pytest from backend.data import db from backend.executor.scheduler import SchedulerClient from backend.server.model import CreateGraph from backend.usecases.sample import create_test_graph, create_test_user from backend.util.service import get_service_client from backend.util.test import SpinTestServer @pytest.mark.asyncio(loop_scope="session") async def test_agent_schedule(server: SpinTestServer): await db.connect() test_user = await create_test_user() test_graph = await server.agent_server.test_create_graph( create_graph=CreateGraph(graph=create_test_graph()), user_id=test_user.id, ) scheduler = get_service_client(SchedulerClient) schedules = await scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 0 schedule = await scheduler.add_execution_schedule( graph_id=test_graph.id, user_id=test_user.id, graph_version=1, cron="0 0 * * *", input_data={"input": "data"}, input_credentials={}, ) assert schedule schedules = await scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 1 assert schedules[0].cron == "0 0 * * *" await scheduler.delete_schedule(schedule.id, user_id=test_user.id) schedules = await scheduler.get_execution_schedules( test_graph.id, user_id=test_user.id ) assert len(schedules) == 0
import pytest from backend.data import db from backend.executor.scheduler import SchedulerClient from backend.server.model import CreateGraph from backend.usecases.sample import create_test_graph, create_test_user from backend.util.service import get_service_client from backend.util.test import SpinTestServer @pytest.mark.asyncio(loop_scope="session") async def test_agent_schedule(server: SpinTestServer): await db.connect() test_user = await create_test_user() test_graph = await server.agent_server.test_create_graph( create_graph=CreateGraph(graph=create_test_graph()), user_id=test_user.id, ) scheduler = get_service_client(SchedulerClient) schedules = await scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 0 schedule = await scheduler.add_execution_schedule( graph_id=test_graph.id, user_id=test_user.id, graph_version=1, cron="0 0 * * *", input_data={"input": "data"}, ) assert schedule schedules = await scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 1 assert schedules[0].cron == "0 0 * * *" await scheduler.delete_schedule(schedule.id, user_id=test_user.id) schedules = await scheduler.get_execution_schedules( test_graph.id, user_id=test_user.id ) assert len(schedules) == 0
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import _generate_pod_args def _create_worker_runtime(port, name='', executor=None): args = _generate_pod_args() args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): with GatewayRuntime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), '--protocol', protocol, ] ) ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['http']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime def _create_worker_runtime(port, name='', executor=None): args = set_pod_parser().parse_args([]) args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): with GatewayRuntime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), '--protocol', protocol, ] ) ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['http']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import FileChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "FileChatMessageHistory": "langchain_community.chat_message_histories", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "FileChatMessageHistory", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import FileChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "FileChatMessageHistory": "langchain_community.chat_message_histories" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "FileChatMessageHistory", ]
# Copyright (c) OpenMMLab. All rights reserved. from .onnx_helper import (add_dummy_nms_for_onnx, dynamic_clip_for_onnx, get_k_for_topk) from .pytorch2onnx import (build_model_from_cfg, generate_inputs_and_wrap_model, preprocess_example_input) __all__ = [ 'build_model_from_cfg', 'generate_inputs_and_wrap_model', 'preprocess_example_input', 'get_k_for_topk', 'add_dummy_nms_for_onnx', 'dynamic_clip_for_onnx' ]
from .onnx_helper import (add_dummy_nms_for_onnx, dynamic_clip_for_onnx, get_k_for_topk) from .pytorch2onnx import (build_model_from_cfg, generate_inputs_and_wrap_model, preprocess_example_input) __all__ = [ 'build_model_from_cfg', 'generate_inputs_and_wrap_model', 'preprocess_example_input', 'get_k_for_topk', 'add_dummy_nms_for_onnx', 'dynamic_clip_for_onnx' ]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Iterable, Optional import torch from jina import DocumentArray, Executor, requests from jina.logging.logger import JinaLogger from laserembeddings import Laser class LaserEncoder(Executor): """ LaserEncoder is a text encoder based on Facebook Research's LASER encoder. :class:`LaserEncoder` is a encoder based on Facebook Research's LASER (Language-Agnostic SEntence Representations) to compute multilingual sentence embeddings: https://github.com/facebookresearch/LASER This encoder is suitable for producing multi-lingual sentence embeddings, enabling you to have sentences from multiple languages in the same latent space. """ def __init__( self, path_to_bpe_codes: Optional[str] = None, path_to_bpe_vocab: Optional[str] = None, path_to_encoder: Optional[str] = None, download_data: bool = True, language: str = 'en', traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs, ): """ :param path_to_bpe_codes: path to bpe codes from Laser. Defaults to ``Laser.DEFAULT_BPE_CODES_FILE.`` :param path_to_bpe_vocab: path to bpe vocabs from Laser. Defaults to ``Laser.DEFAULT_BPE_VOCAB_FILE``. :param path_to_encoder: path to the encoder from Laser. Defaults to ``Laser.DEFAULT_ENCODER_FILE``. :param download_data: Whether data should be downloaded on initialization. This is convenient when just trying out the encoder, but should be turned off in a production setting (where you should already have the data on disk), as it can lead to large startup times. :param language: The default language of the text. Can be overriden by a request parameter. The full list of possible values can be found at [LASER](https://github.com/facebookresearch/LASER#supported-languages) with the language code ([ISO 639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes)) :param traversal_paths: traversal path of the Documents, (e.g. 'r', 'c') :param batch_size: size of each batch :param device: Device string ('cpu'/'cuda'/'cuda:2') """ super().__init__(*args, **kwargs) self.logger = JinaLogger(self.__class__.__name__) self._path_to_bpe_codes = path_to_bpe_codes self._path_to_bpe_vocab = path_to_bpe_vocab self._path_to_encoder = path_to_encoder self.device = device self.batch_size = batch_size self.traversal_paths = traversal_paths self.language = language if download_data: self.logger.info("Downloading data for the Laser model") subprocess.run( ['python', '-m', 'laserembeddings', 'download-models'], check=True ) self.model = Laser( bpe_codes=self._path_to_bpe_codes, bpe_vocab=self._path_to_bpe_vocab, encoder=self._path_to_encoder, embedding_options={'cpu': self.device == 'cpu'}, ) self.device = torch.device(device) self.model.bpeSentenceEmbedding.encoder.encoder.to(self.device) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path``, the ``batch_size`` and ``language``. For example, ``{'traversal_paths': ['r'], 'batch_size': 10}``. This will override the default parameters set at init. """ if docs is None: return document_batches_generator = docs.traverse_flat( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), filter_fn=lambda doc:len(doc.text)>0 ).batch( batch_size=parameters.get('batch_size', self.batch_size), ) for document_batch in document_batches_generator: text_batch = document_batch.texts language = parameters.get('language', self.language) embeddings = self.model.embed_sentences(text_batch, lang=language) for document, embedding in zip(document_batch, embeddings): document.embedding = embedding
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Iterable, Optional import torch from jina import DocumentArray, Executor, requests from jina.logging.logger import JinaLogger from laserembeddings import Laser class LaserEncoder(Executor): """ LaserEncoder is a text encoder based on Facebook Research's LASER encoder. :class:`LaserEncoder` is a encoder based on Facebook Research's LASER (Language-Agnostic SEntence Representations) to compute multilingual sentence embeddings: https://github.com/facebookresearch/LASER This encoder is suitable for producing multi-lingual sentence embeddings, enabling you to have sentences from multiple languages in the same latent space. """ def __init__( self, path_to_bpe_codes: Optional[str] = None, path_to_bpe_vocab: Optional[str] = None, path_to_encoder: Optional[str] = None, download_data: bool = True, language: str = 'en', traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs, ): """ :param path_to_bpe_codes: path to bpe codes from Laser. Defaults to ``Laser.DEFAULT_BPE_CODES_FILE.`` :param path_to_bpe_vocab: path to bpe vocabs from Laser. Defaults to ``Laser.DEFAULT_BPE_VOCAB_FILE``. :param path_to_encoder: path to the encoder from Laser. Defaults to ``Laser.DEFAULT_ENCODER_FILE``. :param download_data: Whether data should be downloaded on initialization. This is convenient when just trying out the encoder, but should be turned off in a production setting (where you should already have the data on disk), as it can lead to large startup times. :param language: The default language of the text. Can be overriden by a request parameter. The full list of possible values can be found at [LASER](https://github.com/facebookresearch/LASER#supported-languages) with the language code ([ISO 639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes)) :param traversal_paths: traversal path of the Documents, (e.g. 'r', 'c') :param batch_size: size of each batch :param device: Device string ('cpu'/'cuda'/'cuda:2') """ super().__init__(*args, **kwargs) self.logger = JinaLogger(self.__class__.__name__) self._path_to_bpe_codes = path_to_bpe_codes self._path_to_bpe_vocab = path_to_bpe_vocab self._path_to_encoder = path_to_encoder self.device = device self.batch_size = batch_size self.traversal_paths = traversal_paths self.language = language if download_data: self.logger.info("Downloading data for the Laser model") subprocess.run( ['python', '-m', 'laserembeddings', 'download-models'], check=True ) self.model = Laser( bpe_codes=self._path_to_bpe_codes, bpe_vocab=self._path_to_bpe_vocab, encoder=self._path_to_encoder, embedding_options={'cpu': self.device == 'cpu'}, ) self.device = torch.device(device) self.model.bpeSentenceEmbedding.encoder.encoder.to(self.device) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path``, the ``batch_size`` and ``language``. For example, ``{'traversal_paths': ['r'], 'batch_size': 10}``. This will override the default parameters set at init. """ if docs is None: return document_batches_generator = docs.batch( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), require_attr='text', ) for document_batch in document_batches_generator: text_batch = document_batch.texts language = parameters.get('language', self.language) embeddings = self.model.embed_sentences(text_batch, lang=language) for document, embedding in zip(document_batch, embeddings): document.embedding = embedding
from keras.src import backend def is_in_jax_tracing_scope(x=None): if backend.backend() == "jax": if x is None: x = backend.numpy.ones(()) for c in x.__class__.__mro__: if c.__name__ == "Tracer" and c.__module__.startswith("jax"): return True return False
from keras.src import backend def is_in_jax_tracing_scope(x=None): if backend.backend() == "jax": if x is None: x = backend.numpy.ones(()) if x.__class__.__name__ == "DynamicJaxprTracer": return True return False
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from typing import Dict import pytest import torch import numpy as np from torchvision.models.mobilenetv2 import model_urls from PIL import Image from jina import DocumentArray, Document @pytest.fixture() def test_dir() -> str: return os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def mobilenet_weights(tmpdir: str) -> str: weights_file = os.path.join(tmpdir, 'w.pth') torch.hub.download_url_to_file( url=model_urls['mobilenet_v2'], dst=weights_file, progress=False ) return weights_file @pytest.fixture() def docs_with_blobs() -> DocumentArray: return DocumentArray( [Document(blob=np.ones((10, 10, 3), dtype=np.uint8)) for _ in range(11)] ) @pytest.fixture() def docs_with_chunk_blobs() -> DocumentArray: return DocumentArray( [ Document(chunks=[Document(blob=np.ones((10, 10, 3), dtype=np.uint8))]) for _ in range(11) ] ) @pytest.fixture() def docs_with_chunk_chunk_blobs() -> DocumentArray: return DocumentArray( [ Document( chunks=[ Document( chunks=[ Document(blob=np.ones((10, 10, 3), dtype=np.uint8)) for _ in range(11) ] ) ] ) ] ) @pytest.fixture() def test_images(test_dir: str) -> Dict[str, np.ndarray]: def get_path(file_name_no_suffix: str) -> str: return os.path.join(test_dir, 'test_data', file_name_no_suffix + '.png') image_dict = { file_name: np.array(Image.open(get_path(file_name)))[:, :, 0:3] for file_name in ['airplane', 'banana1', 'banana2', 'satellite', 'studio'] } return image_dict
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from typing import Dict import pytest import torch import numpy as np from torchvision.models.mobilenetv2 import model_urls from PIL import Image from jina import DocumentArray, Document @pytest.fixture() def test_dir() -> str: return os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def mobilenet_weights(tmpdir: str) -> str: weights_file = os.path.join(tmpdir, 'w.pth') torch.hub.download_url_to_file(url=model_urls['mobilenet_v2'], dst=weights_file) return weights_file @pytest.fixture() def docs_with_blobs() -> DocumentArray: return DocumentArray([ Document(blob=np.ones((10, 10, 3), dtype=np.uint8)) for _ in range(11) ]) @pytest.fixture() def docs_with_chunk_blobs() -> DocumentArray: return DocumentArray([ Document( chunks=[Document(blob=np.ones((10, 10, 3), dtype=np.uint8))]) for _ in range(11) ]) @pytest.fixture() def docs_with_chunk_chunk_blobs() -> DocumentArray: return DocumentArray([ Document( chunks=[Document( chunks=[Document(blob=np.ones((10, 10, 3), dtype=np.uint8)) for _ in range(11)])]) ]) @pytest.fixture() def test_images(test_dir: str) -> Dict[str, np.ndarray]: def get_path(file_name_no_suffix: str) -> str: return os.path.join(test_dir, 'test_data', file_name_no_suffix + '.png') image_dict = { file_name: np.array(Image.open(get_path(file_name)))[:, :, 0:3] for file_name in [ 'airplane', 'banana1', 'banana2', 'satellite', 'studio' ] } return image_dict
from ._dsp import ( adsr_envelope, exp_sigmoid, extend_pitch, filter_waveform, frequency_impulse_response, oscillator_bank, sinc_impulse_response, ) from ._rir import simulate_rir_ism from .functional import barkscale_fbanks, chroma_filterbank __all__ = [ "adsr_envelope", "exp_sigmoid", "barkscale_fbanks", "chroma_filterbank", "extend_pitch", "filter_waveform", "frequency_impulse_response", "oscillator_bank", "sinc_impulse_response", "simulate_rir_ism", ]
from ._dsp import ( adsr_envelope, exp_sigmoid, extend_pitch, filter_waveform, frequency_impulse_response, oscillator_bank, sinc_impulse_response, ) from ._rir import simulate_rir_ism from .functional import barkscale_fbanks __all__ = [ "adsr_envelope", "exp_sigmoid", "barkscale_fbanks", "extend_pitch", "filter_waveform", "frequency_impulse_response", "oscillator_bank", "sinc_impulse_response", "simulate_rir_ism", ]
from typing import ( TYPE_CHECKING, TypeVar, Sequence, List, Dict, Optional, ) import numpy as np from .... import Document, DocumentArray from ....math import ndarray from ....math.helper import EPSILON from ....math.ndarray import to_numpy_array from ....score import NamedScore if TYPE_CHECKING: import tensorflow import torch WeaviateArrayType = TypeVar( 'WeaviateArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: def _find_similar_vectors( self, query: 'WeaviateArrayType', limit=10, filter: Optional[Dict] = None ): query = to_numpy_array(query) is_all_zero = np.all(query == 0) if is_all_zero: query = query + EPSILON query_dict = {'vector': query} query_builder = ( self._client.query.get(self._class_name, '_serialized') .with_additional(['id', 'certainty']) .with_limit(limit) .with_near_vector(query_dict) ) if filter: query_builder = query_builder.with_where(filter) results = query_builder.do() docs = [] if 'errors' in results: errors = '\n'.join(map(lambda error: error['message'], results['errors'])) raise ValueError( f'find failed, please check your filter query. Errors: \n{errors}' ) found_results = ( results.get('data', {}).get('Get', {}).get(self._class_name, []) or [] ) # The serialized document is stored in results['data']['Get'][self._class_name] for result in found_results: doc = Document.from_base64(result['_serialized'], **self._serialize_config) certainty = result['_additional']['certainty'] doc.scores['weaviate_certainty'] = NamedScore(value=certainty) if certainty is None: doc.scores['cosine_similarity'] = NamedScore(value=None) else: doc.scores['cosine_similarity'] = NamedScore(value=2 * certainty - 1) doc.tags['wid'] = result['_additional']['id'] docs.append(doc) return DocumentArray(docs) def _find( self, query: 'WeaviateArrayType', limit: int = 10, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be stored in Weaviate. This includes any from the list '[np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float]]' :param limit: number of retrieved items :param filter: filter query used for pre-filtering :return: DocumentArray containing the closest documents to the query if it is a single query, otherwise a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. Note: Weaviate returns `certainty` values. To get cosine similarities one needs to use `cosine_sim = 2*certainty - 1` as explained here: https://www.semi.technology/developers/weaviate/current/more-resources/faq.html#q-how-do-i-get-the-cosine-similarity-from-weaviates-certainty """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [self._find_similar_vectors(query, limit=limit, filter=filter)] else: closest_docs = [] for q in query: da = self._find_similar_vectors(q, limit=limit, filter=filter) closest_docs.append(da) return closest_docs
from typing import ( TYPE_CHECKING, TypeVar, Sequence, List, ) import numpy as np from .... import Document, DocumentArray from ....math import ndarray from ....math.helper import EPSILON from ....math.ndarray import to_numpy_array from ....score import NamedScore if TYPE_CHECKING: import tensorflow import torch WeaviateArrayType = TypeVar( 'WeaviateArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: def _find_similar_vectors(self, query: 'WeaviateArrayType', limit=10): query = to_numpy_array(query) is_all_zero = np.all(query == 0) if is_all_zero: query = query + EPSILON query_dict = {'vector': query} results = ( self._client.query.get( self._class_name, ['_serialized', '_additional {certainty}', '_additional {id}'], ) .with_limit(limit) .with_near_vector(query_dict) .do() ) docs = [] # The serialized document is stored in results['data']['Get'][self._class_name] for result in results.get('data', {}).get('Get', {}).get(self._class_name, []): doc = Document.from_base64(result['_serialized'], **self._serialize_config) certainty = result['_additional']['certainty'] doc.scores['weaviate_certainty'] = NamedScore(value=certainty) if certainty is None: doc.scores['cosine_similarity'] = NamedScore(value=None) else: doc.scores['cosine_similarity'] = NamedScore(value=2 * certainty - 1) doc.tags['wid'] = result['_additional']['id'] docs.append(doc) return DocumentArray(docs) def _find( self, query: 'WeaviateArrayType', limit: int = 10, **kwargs ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be stored in Weaviate. This includes any from the list '[np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float]]' :param limit: number of retrieved items :return: DocumentArray containing the closest documents to the query if it is a single query, otherwise a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. Note: Weaviate returns `certainty` values. To get cosine similarities one needs to use `cosine_sim = 2*certainty - 1` as explained here: https://www.semi.technology/developers/weaviate/current/more-resources/faq.html#q-how-do-i-get-the-cosine-similarity-from-weaviates-certainty """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [self._find_similar_vectors(query, limit=limit)] else: closest_docs = [] for q in query: da = self._find_similar_vectors(q, limit=limit) closest_docs.append(da) return closest_docs
from typing import Optional import numpy as np import pytest import torch from docarray import DocumentArray from docarray.base_document import BaseDocument from docarray.typing import NdArray, TorchTensor @pytest.mark.proto def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() @pytest.mark.proto def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf())
from typing import Optional import numpy as np import torch from docarray import DocumentArray from docarray.base_document import BaseDocument from docarray.typing import NdArray, TorchTensor def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf())
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import ImageToTensor, PackDetInputs, ToTensor, Transpose from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .transforms import (Albu, CachedMixUp, CachedMosaic, CopyPaste, CutOut, Expand, FixShapeResize, MinIoURandomCrop, MixUp, Mosaic, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, ProposalBroadcaster, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder', 'CachedMosaic', 'CachedMixUp', 'FixShapeResize', 'ProposalBroadcaster' ]
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import ImageToTensor, PackDetInputs, ToTensor, Transpose from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .transforms import (Albu, CachedMixUp, CachedMosaic, CopyPaste, CutOut, Expand, FixShapeResize, MinIoURandomCrop, MixUp, Mosaic, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder', 'CachedMosaic', 'CachedMixUp', 'FixShapeResize' ]
import multiprocessing import time import grpc import pytest import requests from jina import __version__ from jina.constants import __jina_env__ from jina.proto import jina_pb2, jina_pb2_grpc from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.servers import BaseServer from jina.serve.runtimes.worker.request_handling import WorkerRequestHandler from tests.helper import _generate_pod_args from .test_runtimes import _create_gateway_runtime, _create_head_runtime def _create_worker_runtime(port, name='', executor=None): args = _generate_pod_args() args.port = [port] args.name = name if executor: args.uses = executor with AsyncNewLoopRuntime(args, req_handler_cls=WorkerRequestHandler) as runtime: runtime.run_forever() def _create_worker(port): # create a single worker runtime p = multiprocessing.Process(target=_create_worker_runtime, args=(port,)) p.start() time.sleep(0.1) return p def _create_gateway(port, graph, pod_addr, protocol): # create a single worker runtime # create a single gateway runtime p = multiprocessing.Process( target=_create_gateway_runtime, args=(graph, pod_addr, port, protocol), ) p.start() time.sleep(0.1) return p def _create_head(port, connection_list_dict, polling='ANY'): p = multiprocessing.Process( target=_create_head_runtime, args=(port, connection_list_dict, 'head', polling) ) p.start() time.sleep(0.1) return p @pytest.mark.parametrize('runtime', ['head', 'worker', 'gateway']) def test_jina_info_grpc_based_runtimes(runtime, port_generator): port = port_generator() connection_list_dict = {} graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{port}"]}}' if runtime == 'head': p = _create_head(port, connection_list_dict) elif runtime == 'gateway': p = _create_gateway(port, graph_description, pod_addresses, 'grpc') else: p = _create_worker(port) try: BaseServer.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) channel = grpc.insecure_channel(f'localhost:{port}') stub = jina_pb2_grpc.JinaInfoRPCStub(channel) res = stub._status( jina_pb2.google_dot_protobuf_dot_empty__pb2.Empty(), ) assert res.jina['jina'] == __version__ for env_var in __jina_env__: assert env_var in res.envs except Exception: assert False finally: p.terminate() p.join() @pytest.mark.parametrize('protocol', ['http', 'websocket']) def test_jina_info_gateway_http(protocol, port_generator): port = port_generator() graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{port}"]}}' p = _create_gateway(port, graph_description, pod_addresses, protocol) try: BaseServer.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) x = requests.get(f'http://localhost:{port}/status') resp = x.json() assert 'jina' in resp assert 'envs' in resp assert resp['jina']['jina'] == __version__ for env_var in __jina_env__: assert env_var in resp['envs'] except Exception: assert False finally: p.terminate() p.join()
import multiprocessing import time import grpc import pytest import requests from jina import __version__ from jina.constants import __jina_env__ from jina.proto import jina_pb2, jina_pb2_grpc from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import _generate_pod_args from .test_runtimes import _create_gateway_runtime, _create_head_runtime def _create_worker_runtime(port, name='', executor=None): args = _generate_pod_args() args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_worker(port): # create a single worker runtime p = multiprocessing.Process(target=_create_worker_runtime, args=(port,)) p.start() time.sleep(0.1) return p def _create_gateway(port, graph, pod_addr, protocol): # create a single worker runtime # create a single gateway runtime p = multiprocessing.Process( target=_create_gateway_runtime, args=(graph, pod_addr, port, protocol), ) p.start() time.sleep(0.1) return p def _create_head(port, connection_list_dict, polling='ANY'): p = multiprocessing.Process( target=_create_head_runtime, args=(port, connection_list_dict, 'head', polling) ) p.start() time.sleep(0.1) return p @pytest.mark.parametrize('runtime', ['head', 'worker', 'gateway']) def test_jina_info_grpc_based_runtimes(runtime, port_generator): port = port_generator() connection_list_dict = {} graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{port}"]}}' if runtime == 'head': p = _create_head(port, connection_list_dict) elif runtime == 'gateway': p = _create_gateway(port, graph_description, pod_addresses, 'grpc') else: p = _create_worker(port) try: AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) channel = grpc.insecure_channel(f'localhost:{port}') stub = jina_pb2_grpc.JinaInfoRPCStub(channel) res = stub._status( jina_pb2.google_dot_protobuf_dot_empty__pb2.Empty(), ) assert res.jina['jina'] == __version__ for env_var in __jina_env__: assert env_var in res.envs except Exception: assert False finally: p.terminate() p.join() @pytest.mark.parametrize('protocol', ['http', 'websocket']) def test_jina_info_gateway_http(protocol, port_generator): port = port_generator() graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{port}"]}}' p = _create_gateway(port, graph_description, pod_addresses, protocol) try: AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) x = requests.get(f'http://localhost:{port}/status') resp = x.json() assert 'jina' in resp assert 'envs' in resp assert resp['jina']['jina'] == __version__ for env_var in __jina_env__: assert env_var in resp['envs'] except Exception: assert False finally: p.terminate() p.join()
# coding=utf-8 # Copyright 2025 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import DiffusionPipeline from diffusers.utils.testing_utils import backend_empty_cache, require_torch_gpu, slow, torch_device @require_torch_gpu @slow class QuantCompileTests(unittest.TestCase): quantization_config = None def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) torch.compiler.reset() def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) torch.compiler.reset() def _init_pipeline(self, quantization_config, torch_dtype): pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", quantization_config=quantization_config, torch_dtype=torch_dtype, ) return pipe def _test_torch_compile(self, quantization_config, torch_dtype=torch.bfloat16): pipe = self._init_pipeline(quantization_config, torch_dtype).to("cuda") # import to ensure fullgraph True pipe.transformer.compile(fullgraph=True) for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256) def _test_torch_compile_with_cpu_offload(self, quantization_config, torch_dtype=torch.bfloat16): pipe = self._init_pipeline(quantization_config, torch_dtype) pipe.enable_model_cpu_offload() pipe.transformer.compile() for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256) def _test_torch_compile_with_group_offload(self, quantization_config, torch_dtype=torch.bfloat16): torch._dynamo.config.cache_size_limit = 10000 pipe = self._init_pipeline(quantization_config, torch_dtype) group_offload_kwargs = { "onload_device": torch.device("cuda"), "offload_device": torch.device("cpu"), "offload_type": "leaf_level", "use_stream": True, "non_blocking": True, } pipe.transformer.enable_group_offload(**group_offload_kwargs) pipe.transformer.compile() for name, component in pipe.components.items(): if name != "transformer" and isinstance(component, torch.nn.Module): if torch.device(component.device).type == "cpu": component.to("cuda") for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256)
# coding=utf-8 # Copyright 2024 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import DiffusionPipeline from diffusers.utils.testing_utils import backend_empty_cache, require_torch_gpu, slow, torch_device @require_torch_gpu @slow class QuantCompileTests(unittest.TestCase): quantization_config = None def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) torch.compiler.reset() def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) torch.compiler.reset() def _init_pipeline(self, quantization_config, torch_dtype): pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", quantization_config=quantization_config, torch_dtype=torch_dtype, ) return pipe def _test_torch_compile(self, quantization_config, torch_dtype=torch.bfloat16): pipe = self._init_pipeline(quantization_config, torch_dtype).to("cuda") # import to ensure fullgraph True pipe.transformer.compile(fullgraph=True) for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256) def _test_torch_compile_with_cpu_offload(self, quantization_config, torch_dtype=torch.bfloat16): pipe = self._init_pipeline(quantization_config, torch_dtype) pipe.enable_model_cpu_offload() pipe.transformer.compile() for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256) def _test_torch_compile_with_group_offload(self, quantization_config, torch_dtype=torch.bfloat16): torch._dynamo.config.cache_size_limit = 10000 pipe = self._init_pipeline(quantization_config, torch_dtype) group_offload_kwargs = { "onload_device": torch.device("cuda"), "offload_device": torch.device("cpu"), "offload_type": "leaf_level", "use_stream": True, "non_blocking": True, } pipe.transformer.enable_group_offload(**group_offload_kwargs) pipe.transformer.compile() for name, component in pipe.components.items(): if name != "transformer" and isinstance(component, torch.nn.Module): if torch.device(component.device).type == "cpu": component.to("cuda") for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.models.utils import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS from .fused_semantic_head import FusedSemanticHead @MODELS.register_module() class SCNetSemanticHead(FusedSemanticHead): """Mask head for `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: conv_to_res (bool, optional): if True, change the conv layers to ``SimplifiedBasicBlock``. """ def __init__(self, conv_to_res: bool = True, **kwargs) -> None: super().__init__(**kwargs) self.conv_to_res = conv_to_res if self.conv_to_res: num_res_blocks = self.num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, self.in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.models.utils import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS from .fused_semantic_head import FusedSemanticHead @MODELS.register_module() class SCNetSemanticHead(FusedSemanticHead): """Mask head for `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: conv_to_res (bool, optional): if True, change the conv layers to ``SimplifiedBasicBlock``. """ def __init__(self, conv_to_res=True, **kwargs): super(SCNetSemanticHead, self).__init__(**kwargs) self.conv_to_res = conv_to_res if self.conv_to_res: num_res_blocks = self.num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, self.in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks
"""python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): if "libs/cli/" in path: continue print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) subprocess.run( "poetry lock --no-update; poetry install --with lint; poetry run ruff format .; poetry run ruff --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) completed = subprocess.run( "poetry lock --no-update; poetry install --with lint, typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry lock --no-update; poetry install --with lint; poetry run ruff format .; poetry run ruff --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main()
"""python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): if "libs/cli/" in path: continue print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) subprocess.run( "poetry lock --no-update; poetry install --with lint; poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) completed = subprocess.run( "poetry lock --no-update; poetry install --with lint, typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry lock --no-update; poetry install --with lint; poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main()
import os from functools import lru_cache from typing import Union import ffmpeg import numpy as np import torch import torch.nn.functional as F from .utils import exact_div # hard-coded audio hyperparameters SAMPLE_RATE = 16000 N_FFT = 400 N_MELS = 80 HOP_LENGTH = 160 CHUNK_LENGTH = 30 N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk N_FRAMES = exact_div( N_SAMPLES, HOP_LENGTH ) # 3000: number of frames in a mel spectrogram input N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2 FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token def load_audio(file: str, sr: int = SAMPLE_RATE): """ Open an audio file and read as mono waveform, resampling as necessary Parameters ---------- file: str The audio file to open sr: int The sample rate to resample the audio if necessary Returns ------- A NumPy array containing the audio waveform, in float32 dtype. """ try: # This launches a subprocess to decode audio while down-mixing and resampling as necessary. # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. out, _ = ( ffmpeg.input(file, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except ffmpeg.Error as e: raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): """ Pad or trim the audio array to N_SAMPLES, as expected by the encoder. """ if torch.is_tensor(array): if array.shape[axis] > length: array = array.index_select( dim=axis, index=torch.arange(length, device=array.device) ) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) else: if array.shape[axis] > length: array = array.take(indices=range(length), axis=axis) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = np.pad(array, pad_widths) return array @lru_cache(maxsize=None) def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels == 80, f"Unsupported n_mels: {n_mels}" with np.load( os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz") ) as f: return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) def log_mel_spectrogram( audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS ): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, torch.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 is supported Returns ------- torch.Tensor, shape = (80, n_frames) A Tensor that contains the Mel spectrogram """ if not torch.is_tensor(audio): if isinstance(audio, str): audio = load_audio(audio) audio = torch.from_numpy(audio) window = torch.hann_window(N_FFT).to(audio.device) stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 filters = mel_filters(audio.device, n_mels) mel_spec = filters @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec
import os from functools import lru_cache from typing import Union import ffmpeg import numpy as np import torch import torch.nn.functional as F from .utils import exact_div # hard-coded audio hyperparameters SAMPLE_RATE = 16000 N_FFT = 400 N_MELS = 80 HOP_LENGTH = 160 CHUNK_LENGTH = 30 N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2 FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 100 mel frames in 1s (10ms each) TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 50 audio tokens in 1s (20ms each) def load_audio(file: str, sr: int = SAMPLE_RATE): """ Open an audio file and read as mono waveform, resampling as necessary Parameters ---------- file: str The audio file to open sr: int The sample rate to resample the audio if necessary Returns ------- A NumPy array containing the audio waveform, in float32 dtype. """ try: # This launches a subprocess to decode audio while down-mixing and resampling as necessary. # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. out, _ = ( ffmpeg.input(file, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except ffmpeg.Error as e: raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): """ Pad or trim the audio array to N_SAMPLES, as expected by the encoder. """ if torch.is_tensor(array): if array.shape[axis] > length: array = array.index_select(dim=axis, index=torch.arange(length, device=array.device)) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) else: if array.shape[axis] > length: array = array.take(indices=range(length), axis=axis) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = np.pad(array, pad_widths) return array @lru_cache(maxsize=None) def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels == 80, f"Unsupported n_mels: {n_mels}" with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f: return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, torch.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 is supported Returns ------- torch.Tensor, shape = (80, n_frames) A Tensor that contains the Mel spectrogram """ if not torch.is_tensor(audio): if isinstance(audio, str): audio = load_audio(audio) audio = torch.from_numpy(audio) window = torch.hann_window(N_FFT).to(audio.device) stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 filters = mel_filters(audio.device, n_mels) mel_spec = filters @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec
from typing import Any, Union from langchain_core.utils.json import parse_json_markdown from langchain.evaluation.schema import StringEvaluator class JsonSchemaEvaluator(StringEvaluator): """An evaluator that validates a JSON prediction against a JSON schema reference. This evaluator checks if a given JSON prediction conforms to the provided JSON schema. If the prediction is valid, the score is True (no errors). Otherwise, the score is False (error occurred). Attributes: requires_input (bool): Whether the evaluator requires input. requires_reference (bool): Whether the evaluator requires reference. evaluation_name (str): The name of the evaluation. Examples: evaluator = JsonSchemaEvaluator() result = evaluator.evaluate_strings( prediction='{"name": "John", "age": 30}', reference={ "type": "object", "properties": { "name": {"type": "string"}, "age": {"type": "integer"} } } ) assert result["score"] is not None """ # noqa: E501 def __init__(self, **kwargs: Any) -> None: """Initializes the JsonSchemaEvaluator. Args: kwargs: Additional keyword arguments. Raises: ImportError: If the jsonschema package is not installed. """ super().__init__() try: import jsonschema # noqa: F401 except ImportError: msg = ( "The JsonSchemaEvaluator requires the jsonschema package." " Please install it with `pip install jsonschema`." ) raise ImportError(msg) @property def requires_input(self) -> bool: """Returns whether the evaluator requires input.""" return False @property def requires_reference(self) -> bool: """Returns whether the evaluator requires reference.""" return True @property def evaluation_name(self) -> str: """Returns the name of the evaluation.""" return "json_schema_validation" def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: if isinstance(node, str): return parse_json_markdown(node) elif hasattr(node, "schema") and callable(getattr(node, "schema")): # Pydantic model return getattr(node, "schema")() return node def _validate(self, prediction: Any, schema: Any) -> dict: from jsonschema import ValidationError, validate try: validate(instance=prediction, schema=schema) return { "score": True, } except ValidationError as e: return {"score": False, "reasoning": repr(e)} def _evaluate_strings( self, prediction: Union[str, Any], input: Union[str, Any] = None, reference: Union[str, Any] = None, **kwargs: Any, ) -> dict: parsed_prediction = self._parse_json(prediction) schema = self._parse_json(reference) return self._validate(parsed_prediction, schema)
from typing import Any, Union from langchain_core.utils.json import parse_json_markdown from langchain.evaluation.schema import StringEvaluator class JsonSchemaEvaluator(StringEvaluator): """An evaluator that validates a JSON prediction against a JSON schema reference. This evaluator checks if a given JSON prediction conforms to the provided JSON schema. If the prediction is valid, the score is True (no errors). Otherwise, the score is False (error occurred). Attributes: requires_input (bool): Whether the evaluator requires input. requires_reference (bool): Whether the evaluator requires reference. evaluation_name (str): The name of the evaluation. Examples: evaluator = JsonSchemaEvaluator() result = evaluator.evaluate_strings( prediction='{"name": "John", "age": 30}', reference={ "type": "object", "properties": { "name": {"type": "string"}, "age": {"type": "integer"} } } ) assert result["score"] is not None """ # noqa: E501 def __init__(self, **kwargs: Any) -> None: """Initializes the JsonSchemaEvaluator. Args: kwargs: Additional keyword arguments. Raises: ImportError: If the jsonschema package is not installed. """ super().__init__() try: import jsonschema # noqa: F401 except ImportError: raise ImportError( "The JsonSchemaEvaluator requires the jsonschema package." " Please install it with `pip install jsonschema`." ) @property def requires_input(self) -> bool: """Returns whether the evaluator requires input.""" return False @property def requires_reference(self) -> bool: """Returns whether the evaluator requires reference.""" return True @property def evaluation_name(self) -> str: """Returns the name of the evaluation.""" return "json_schema_validation" def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: if isinstance(node, str): return parse_json_markdown(node) elif hasattr(node, "schema") and callable(getattr(node, "schema")): # Pydantic model return getattr(node, "schema")() return node def _validate(self, prediction: Any, schema: Any) -> dict: from jsonschema import ValidationError, validate try: validate(instance=prediction, schema=schema) return { "score": True, } except ValidationError as e: return {"score": False, "reasoning": repr(e)} def _evaluate_strings( self, prediction: Union[str, Any], input: Union[str, Any] = None, reference: Union[str, Any] = None, **kwargs: Any, ) -> dict: parsed_prediction = self._parse_json(prediction) schema = self._parse_json(reference) return self._validate(parsed_prediction, schema)
_base_ = './mask2former_r50_8xb2-lsj-50e_coco-panoptic.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './mask2former_r50_lsj_8x2_50e_coco-panoptic.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
__all__ = ['reduce', 'reduce_all'] from typing import Dict, List, Optional from docarray import DocList def reduce( left: DocList, right: DocList, left_id_map: Optional[Dict] = None ) -> 'DocList': """ Reduces left and right DocList into one DocList in-place. Changes are applied to the left DocList. Reducing 2 DocLists consists in adding Documents in the second DocList to the first DocList if they do not exist. If a Document exists in both DocLists (identified by ID), the data properties are merged with priority to the left Document. Nested DocLists are also reduced in the same way. :param left: First DocList to be reduced. Changes will be applied to it in-place :param right: Second DocList to be reduced :param left_id_map: Optional parameter to be passed in repeated calls for optimizations, keeping a map of the Document ID to its offset in the DocList :return: Reduced DocList """ left_id_map = left_id_map or {doc.id: i for i, doc in enumerate(left)} for doc in right: if doc.id in left_id_map: left[left_id_map[doc.id]].update(doc) else: left.append(doc) return left def reduce_all(docs: List[DocList]) -> DocList: """ Reduces a list of DocLists into one DocList. Changes are applied to the first DocList in-place. The resulting DocList contains Documents of all DocLists. If a Document exists (identified by their ID) in many DocLists, data properties are merged with priority to the left-most DocLists (that is, if a data attribute is set in a Document belonging to many DocLists, the attribute value of the left-most DocList is kept). Nested DocLists belonging to many DocLists are also reduced in the same way. !!! note - Nested DocLists order does not follow any specific rule. You might want to re-sort them in a later step. - The final result depends on the order of DocLists when applying reduction. :param docs: List of DocLists to be reduced :return: the resulting DocList """ if len(docs) <= 1: raise Exception( 'In order to reduce DocLists' ' we should have more than one DocList' ) left = docs[0] others = docs[1:] left_id_map = {doc.id: i for i, doc in enumerate(left)} for other_docs in others: reduce(left, other_docs, left_id_map) return left
__all__ = ['reduce', 'reduce_all'] from typing import Dict, List, Optional from docarray import DocList def reduce( left: DocList, right: DocList, left_id_map: Optional[Dict] = None ) -> 'DocList': """ Reduces left and right DocList into one DocList in-place. Changes are applied to the left DocList. Reducing 2 DocLists consists in adding Documents in the second DocList to the first DocList if they do not exist. If a Document exists in both DocLists (identified by ID), the data properties are merged with priority to the left Document. Nested DocLists are also reduced in the same way. :param left: First DocList to be reduced. Changes will be applied to it in-place :param right: Second DocList to be reduced :param left_id_map: Optional parameter to be passed in repeated calls for optimizations, keeping a map of the Document ID to its offset in the DocList :return: Reduced DocList """ left_id_map = left_id_map or {doc.id: i for i, doc in enumerate(left)} for doc in right: if doc.id in left_id_map: left[left_id_map[doc.id]].update(doc) else: left.append(doc) return left def reduce_all(docarrays: List[DocList]) -> DocList: """ Reduces a list of DocLists into one DocList. Changes are applied to the first DocList in-place. The resulting DocList contains Documents of all DocLists. If a Document exists (identified by their ID) in many DocLists, data properties are merged with priority to the left-most DocLists (that is, if a data attribute is set in a Document belonging to many DocLists, the attribute value of the left-most DocList is kept). Nested DocLists belonging to many DocLists are also reduced in the same way. .. note:: - Nested DocLists order does not follow any specific rule. You might want to re-sort them in a later step. - The final result depends on the order of DocLists when applying reduction. :param docarrays: List of DocLists to be reduced :return: the resulting DocList """ if len(docarrays) <= 1: raise Exception( 'In order to reduce DocLists' ' we should have more than one DocList' ) left = docarrays[0] others = docarrays[1:] left_id_map = {doc.id: i for i, doc in enumerate(left)} for docs in others: reduce(left, docs, left_id_map) return left
import pytest from jina import Flow num_calls = 0 @pytest.fixture(scope='function', autouse=True) def patched_path_import(mocker): from jina.importer import _path_import def _wrapped_path_import(absolute_path: str): global num_calls num_calls += 1 assert num_calls < 2 return _path_import(absolute_path) mocker.patch( 'jina.importer._path_import', new_callable=lambda: _wrapped_path_import ) def test_single_import(patched_path_import): flow = Flow().add( uses='ExecutorImportedOnce', py_modules=['executors/executor_fails_import_twice.py'], ) with flow: pass def test_single_import_metas(patched_path_import): flow = Flow().add( uses='ExecutorImportedOnce', py_modules=['executors/executor_fails_import_twice.py'], ) with flow: pass
import pytest from jina import Flow num_calls = 0 @pytest.fixture(scope='function', autouse=True) def patched_path_import(mocker): from jina.importer import _path_import def _wrapped_path_import(absolute_path: str): global num_calls num_calls += 1 assert num_calls < 2 return _path_import(absolute_path) mocker.patch( 'jina.importer._path_import', new_callable=lambda: _wrapped_path_import ) def test_single_import(patched_path_import): flow = Flow().add( uses='ExecutorImportedOnce', py_modules=['executors/executor_fails_import_twice.py'], ) with flow: pass def test_single_import_metas(patched_path_import): flow = Flow().add( uses='ExecutorImportedOnce', uses_metas=dict(py_modules=['executors/executor_fails_import_twice.py']), ) with flow: pass
from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") guide = SparseEncoder("prithivida/Splade_PP_en_v1") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SparseGISTEmbedLoss(model, guide=guide) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() # TODO: Investigate if it's working with a test seems to have wrong hparam
from datasets import Dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseEncoderTrainer, SparseGISTEmbedLoss, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create a small toy dataset train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) # Initialize the sparse loss with a guide model guide = SparseEncoder( modules=[ MLMTransformer("prithivida/Splade_PP_en_v1"), SpladePooling(pooling_strategy="max"), ], device="cuda:0", ) loss = SparseGISTEmbedLoss(model, guide=guide) # Create the trainer trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) # Train the model trainer.train()
import importlib import pytest from fastapi.testclient import TestClient from ...utils import needs_py39 @pytest.fixture( name="client", params=[ "tutorial008b", "tutorial008b_an", pytest.param("tutorial008b_an_py39", marks=needs_py39), ], ) def get_client(request: pytest.FixtureRequest): mod = importlib.import_module(f"docs_src.dependencies.{request.param}") client = TestClient(mod.app) return client def test_get_no_item(client: TestClient): response = client.get("/items/foo") assert response.status_code == 404, response.text assert response.json() == {"detail": "Item not found"} def test_owner_error(client: TestClient): response = client.get("/items/plumbus") assert response.status_code == 400, response.text assert response.json() == {"detail": "Owner error: Rick"} def test_get_item(client: TestClient): response = client.get("/items/portal-gun") assert response.status_code == 200, response.text assert response.json() == {"description": "Gun to create portals", "owner": "Rick"}
from fastapi.testclient import TestClient from docs_src.dependencies.tutorial008b import app client = TestClient(app) def test_get_no_item(): response = client.get("/items/foo") assert response.status_code == 404, response.text assert response.json() == {"detail": "Item not found"} def test_owner_error(): response = client.get("/items/plumbus") assert response.status_code == 400, response.text assert response.json() == {"detail": "Owner error: Rick"} def test_get_item(): response = client.get("/items/portal-gun") assert response.status_code == 200, response.text assert response.json() == {"description": "Gun to create portals", "owner": "Rick"}
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import (HorizontalBoxes, bbox2distance, distance2bbox, get_box_tensor) from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class DistancePointBBoxCoder(BaseBBoxCoder): """Distance Point BBox coder. This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, right) and decode it back to the original. Args: clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. """ def __init__(self, clip_border=True, **kwargs): super().__init__(**kwargs) self.clip_border = clip_border def encode(self, points, gt_bboxes, max_dis=None, eps=0.1): """Encode bounding box to distances. Args: points (Tensor): Shape (N, 2), The format is [x, y]. gt_bboxes (Tensor or :obj:`BaseBoxes`): Shape (N, 4), The format is "xyxy" max_dis (float): Upper bound of the distance. Default None. eps (float): a small value to ensure target < max_dis, instead <=. Default 0.1. Returns: Tensor: Box transformation deltas. The shape is (N, 4). """ gt_bboxes = get_box_tensor(gt_bboxes) assert points.size(0) == gt_bboxes.size(0) assert points.size(-1) == 2 assert gt_bboxes.size(-1) == 4 return bbox2distance(points, gt_bboxes, max_dis, eps) def decode(self, points, pred_bboxes, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Union[Tensor, :obj:`BaseBoxes`]: Boxes with shape (N, 4) or (B, N, 4) """ assert points.size(0) == pred_bboxes.size(0) assert points.size(-1) == 2 assert pred_bboxes.size(-1) == 4 if self.clip_border is False: max_shape = None bboxes = distance2bbox(points, pred_bboxes, max_shape) if self.use_box_type: bboxes = HorizontalBoxes(bboxes) return bboxes
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.models.utils.misc import get_box_tensor from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import HorizontalBoxes, bbox2distance, distance2bbox from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class DistancePointBBoxCoder(BaseBBoxCoder): """Distance Point BBox coder. This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, right) and decode it back to the original. Args: clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. """ def __init__(self, clip_border=True, **kwargs): super().__init__(**kwargs) self.clip_border = clip_border def encode(self, points, gt_bboxes, max_dis=None, eps=0.1): """Encode bounding box to distances. Args: points (Tensor): Shape (N, 2), The format is [x, y]. gt_bboxes (Tensor or :obj:`BaseBoxes`): Shape (N, 4), The format is "xyxy" max_dis (float): Upper bound of the distance. Default None. eps (float): a small value to ensure target < max_dis, instead <=. Default 0.1. Returns: Tensor: Box transformation deltas. The shape is (N, 4). """ gt_bboxes = get_box_tensor(gt_bboxes) assert points.size(0) == gt_bboxes.size(0) assert points.size(-1) == 2 assert gt_bboxes.size(-1) == 4 return bbox2distance(points, gt_bboxes, max_dis, eps) def decode(self, points, pred_bboxes, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Union[Tensor, :obj:`BaseBoxes`]: Boxes with shape (N, 4) or (B, N, 4) """ assert points.size(0) == pred_bboxes.size(0) assert points.size(-1) == 2 assert pred_bboxes.size(-1) == 4 if self.clip_border is False: max_shape = None bboxes = distance2bbox(points, pred_bboxes, max_shape) if self.use_box_type: bboxes = HorizontalBoxes(bboxes) return bboxes
import os from jina import Executor, requests, DocumentArray import socket class TestExecutor(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) from jina.logging.logger import JinaLogger self.logger = JinaLogger(self.__class__.__name__) self._name = self.runtime_args.name @requests(on='/debug') def debug(self, docs: DocumentArray, **kwargs): self.logger.debug( f'Received doc array in test-executor {self._name} with length {len(docs)}.' ) key = 'traversed-executors' for doc in docs: if key not in doc.tags: doc.tags[key] = [] traversed = list(doc.tags.get(key)) traversed.append(self._name) doc.tags[key] = traversed doc.tags['parallel'] = self.runtime_args.replicas doc.tags['shards'] = self.runtime_args.shards doc.tags['shard_id'] = self.runtime_args.shard_id doc.tags['hostname'] = socket.gethostname() @requests(on='/env') def env(self, docs: DocumentArray, **kwargs): self.logger.debug( f'Received doc array in test-executor {self._name} with length {len(docs)}.' ) for doc in docs: doc.tags['k1'] = os.environ.get('k1') doc.tags['k2'] = os.environ.get('k2') doc.tags['JINA_LOG_LEVEL'] = os.environ.get('JINA_LOG_LEVEL') doc.tags['env'] = {'k1': os.environ.get('k1'), 'k2': os.environ.get('k2')} doc.tags['SECRET_USERNAME'] = os.environ.get('SECRET_USERNAME') doc.tags['SECRET_PASSWORD'] = os.environ.get('SECRET_PASSWORD') @requests(on='/cuda') def cuda(self, docs: DocumentArray, **kwargs): self.logger.debug( f'Received doc array in test-executor {self._name} with length {len(docs)}.' ) import kubernetes from kubernetes import client api_client = client.ApiClient() core_client = client.CoreV1Api(api_client=api_client) try: # try loading kube config from disk first kubernetes.config.load_kube_config() except kubernetes.config.config_exception.ConfigException: # if the config could not be read from disk, try loading in cluster config # this works if we are running inside k8s kubernetes.config.load_incluster_config() pods = core_client.list_namespaced_pod('test-gpu') # List[V1Pod] pod_spec = pods[0].spec # V1PodSpec pod_container = pod_spec.containers[0] # V1Container pod_resources = pod_container.resources # V1ResourceRequirements for doc in docs: doc.tags['resources']['limits'] = pod_resources.limits @requests(on='/workspace') def foo_workspace(self, docs: DocumentArray, **kwargs): self.logger.debug( f'Received doc array in test-executor {self._name} with length {len(docs)}.' ) self.logger.debug(f'Workspace {self.workspace}.') for doc in docs: doc.tags['workspace'] = self.workspace
import os from jina import Executor, requests, DocumentArray import socket class TestExecutor(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) from jina.logging.logger import JinaLogger self.logger = JinaLogger(self.__class__.__name__) self._name = self.runtime_args.name @requests(on='/debug') def debug(self, docs: DocumentArray, **kwargs): self.logger.debug( f'Received doc array in test-executor {self._name} with length {len(docs)}.' ) key = 'traversed-executors' for doc in docs: if key not in doc.tags: doc.tags[key] = [] traversed = list(doc.tags.get(key)) traversed.append(self._name) doc.tags[key] = traversed doc.tags['parallel'] = self.runtime_args.replicas doc.tags['shards'] = self.runtime_args.shards doc.tags['shard_id'] = self.runtime_args.shard_id doc.tags['hostname'] = socket.gethostname() @requests(on='/env') def env(self, docs: DocumentArray, **kwargs): self.logger.debug( f'Received doc array in test-executor {self._name} with length {len(docs)}.' ) for doc in docs: doc.tags['k1'] = os.environ.get('k1') doc.tags['k2'] = os.environ.get('k2') doc.tags['JINA_LOG_LEVEL'] = os.environ.get('JINA_LOG_LEVEL') doc.tags['env'] = {'k1': os.environ.get('k1'), 'k2': os.environ.get('k2')} @requests(on='/cuda') def cuda(self, docs: DocumentArray, **kwargs): self.logger.debug( f'Received doc array in test-executor {self._name} with length {len(docs)}.' ) import kubernetes from kubernetes import client api_client = client.ApiClient() core_client = client.CoreV1Api(api_client=api_client) try: # try loading kube config from disk first kubernetes.config.load_kube_config() except kubernetes.config.config_exception.ConfigException: # if the config could not be read from disk, try loading in cluster config # this works if we are running inside k8s kubernetes.config.load_incluster_config() pods = core_client.list_namespaced_pod('test-gpu') # List[V1Pod] pod_spec = pods[0].spec # V1PodSpec pod_container = pod_spec.containers[0] # V1Container pod_resources = pod_container.resources # V1ResourceRequirements for doc in docs: doc.tags['resources']['limits'] = pod_resources.limits @requests(on='/workspace') def foo_workspace(self, docs: DocumentArray, **kwargs): self.logger.debug( f'Received doc array in test-executor {self._name} with length {len(docs)}.' ) self.logger.debug(f'Workspace {self.workspace}.') for doc in docs: doc.tags['workspace'] = self.workspace
from typing import Union, Iterable, Dict, List import warnings from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with Elastic as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses Elastic as storage :return: the length of this :class:`DocumentArrayElastic` object """ try: return self._client.count(index=self._config.index_name)["count"] except: return 0 def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with Elastic storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._doc_id_exists(x) elif isinstance(x, Document): return self._doc_id_exists(x.id) else: return False def __del__(self): """Delete this :class:`DocumentArrayElastic` object""" self._save_offset2ids() # if not self._persist: # self._offset2ids.clear() def __repr__(self): """Return the string representation of :class:`DocumentArrayElastic` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' @staticmethod def _parse_index_ids_from_bulk_info( accumulated_info: List[Dict], ) -> Dict[str, List[int]]: """Parse ids from bulk info of failed send request to ES operation :param accumulated_info: accumulated info of failed operation :return: dict containing failed index ids of each operation type """ parsed_ids = {} for info in accumulated_info: for _op_type in info.keys(): if '_id' in info[_op_type]: if _op_type not in parsed_ids: parsed_ids[_op_type] = [] parsed_ids[_op_type].append(info[_op_type]['_id']) return parsed_ids def _upload_batch(self, docs: Iterable['Document'], **kwargs) -> List[int]: requests = [self._document_to_elastic(doc) for doc in docs] accumulated_info = self._send_requests(requests, **kwargs) self._refresh(self._config.index_name) successful_ids = self._parse_index_ids_from_bulk_info(accumulated_info) if 'index' not in successful_ids: return [] return successful_ids['index'] def extend(self, docs: Iterable['Document'], **kwargs): docs = list(docs) successful_indexed_ids = self._upload_batch(docs, **kwargs) self._offset2ids.extend( [_id for _id in successful_indexed_ids if _id not in self._offset2ids.ids] ) if len(successful_indexed_ids) != len(docs): doc_ids = [doc.id for doc in docs] failed_index_ids = set(doc_ids) - set(successful_indexed_ids) err_msg = f'fail to add Documents with ids: {failed_index_ids}' warnings.warn(err_msg) raise IndexError(err_msg)
from typing import Union, Iterable, Dict, List import warnings from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with Elastic as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses Elastic as storage :return: the length of this :class:`DocumentArrayElastic` object """ try: return self._client.count(index=self._config.index_name)["count"] except: return 0 def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with Elastic storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._doc_id_exists(x) elif isinstance(x, Document): return self._doc_id_exists(x.id) else: return False def __del__(self): """Delete this :class:`DocumentArrayElastic` object""" self._save_offset2ids() # if not self._persist: # self._offset2ids.clear() def __repr__(self): """Return the string representation of :class:`DocumentArrayElastic` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' @staticmethod def _parse_index_ids_from_bulk_info( accumulated_info: List[Dict], ) -> Dict[str, List[int]]: """Parse ids from bulk info of failed send request to ES operation :param accumulated_info: accumulated info of failed operation :return: dict containing failed index ids of each operation type """ parsed_ids = {} for info in accumulated_info: for _op_type in info.keys(): if '_id' in info[_op_type]: if _op_type not in parsed_ids: parsed_ids[_op_type] = [] parsed_ids[_op_type].append(info[_op_type]['_id']) return parsed_ids def _upload_batch(self, docs: Iterable['Document']) -> List[int]: batch = [] accumulated_info = [] for doc in docs: batch.append(self._document_to_elastic(doc)) if len(batch) > self._config.batch_size: accumulated_info.extend(self._send_requests(batch)) self._refresh(self._config.index_name) batch = [] if len(batch) > 0: accumulated_info.extend(self._send_requests(batch)) self._refresh(self._config.index_name) successful_ids = self._parse_index_ids_from_bulk_info(accumulated_info) if 'index' not in successful_ids: return [] return successful_ids['index'] def extend(self, docs: Iterable['Document']): docs = list(docs) successful_indexed_ids = self._upload_batch(docs) self._offset2ids.extend( [_id for _id in successful_indexed_ids if _id not in self._offset2ids.ids] ) if len(successful_indexed_ids) != len(docs): doc_ids = [doc.id for doc in docs] failed_index_ids = set(doc_ids) - set(successful_indexed_ids) err_msg = f'fail to add Documents with ids: {failed_index_ids}' warnings.warn(err_msg) raise IndexError(err_msg)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.utils.image_utils import array_to_img as array_to_img from keras.src.utils.image_utils import img_to_array as img_to_array from keras.src.utils.image_utils import load_img as load_img from keras.src.utils.image_utils import save_img as save_img from keras.src.utils.image_utils import smart_resize as smart_resize
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.utils.image_utils import array_to_img from keras.src.utils.image_utils import img_to_array from keras.src.utils.image_utils import load_img from keras.src.utils.image_utils import save_img from keras.src.utils.image_utils import smart_resize
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _FillType, _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_pure_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_pure_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_bounding_box_format( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = datapoints.wrap(inpt[params["is_valid"]], like=inpt) elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.wrap( F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), like=inpt, ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _FillType, _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_pure_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_pure_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = datapoints.wrap(inpt[params["is_valid"]], like=inpt) elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.wrap( F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), like=inpt, ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from functools import lru_cache import numpy as np import torch try: import triton import triton.language as tl except ImportError: raise RuntimeError("triton import failed; try `pip install --pre triton`") @triton.jit def dtw_kernel( cost, trace, x, x_stride, cost_stride, trace_stride, N, M, BLOCK_SIZE: tl.constexpr ): offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < M for k in range(1, N + M + 1): # k = i + j tl.debug_barrier() p0 = cost + (k - 1) * cost_stride p1 = cost + k * cost_stride p2 = cost + k * cost_stride + 1 c0 = tl.load(p0 + offsets, mask=mask) c1 = tl.load(p1 + offsets, mask=mask) c2 = tl.load(p2 + offsets, mask=mask) x_row = tl.load(x + (k - 1) * x_stride + offsets, mask=mask, other=0) cost_row = x_row + tl.minimum(tl.minimum(c0, c1), c2) cost_ptr = cost + (k + 1) * cost_stride + 1 tl.store(cost_ptr + offsets, cost_row, mask=mask) trace_ptr = trace + (k + 1) * trace_stride + 1 tl.store(trace_ptr + offsets, 2, mask=mask & (c2 <= c0) & (c2 <= c1)) tl.store(trace_ptr + offsets, 1, mask=mask & (c1 <= c0) & (c1 <= c2)) tl.store(trace_ptr + offsets, 0, mask=mask & (c0 <= c1) & (c0 <= c2)) @lru_cache(maxsize=None) def median_kernel(filter_width: int): @triton.jit def kernel( y, x, x_stride, y_stride, BLOCK_SIZE: tl.constexpr ): # x.shape[-1] == filter_width row_idx = tl.program_id(0) offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < y_stride x_ptr = x + row_idx * x_stride # noqa: F841 y_ptr = y + row_idx * y_stride LOAD_ALL_ROWS_HERE # noqa: F821 BUBBLESORT_HERE # noqa: F821 tl.store(y_ptr + offsets, MIDDLE_ROW_HERE, mask=mask) # noqa: F821 kernel = triton.JITFunction(kernel.fn) kernel.src = kernel.src.replace( " LOAD_ALL_ROWS_HERE", "\n".join( [ f" row{i} = tl.load(x_ptr + offsets + {i}, mask=mask)" for i in range(filter_width) ] ), ) kernel.src = kernel.src.replace( " BUBBLESORT_HERE", "\n\n".join( [ "\n\n".join( [ "\n".join( [ f" smaller = tl.where(row{j} < row{j + 1}, row{j}, row{j + 1})", f" larger = tl.where(row{j} > row{j + 1}, row{j}, row{j + 1})", f" row{j} = smaller", f" row{j + 1} = larger", ] ) for j in range(filter_width - i - 1) ] ) for i in range(filter_width // 2 + 1) ] ), ) kernel.src = kernel.src.replace("MIDDLE_ROW_HERE", f"row{filter_width // 2}") return kernel def median_filter_cuda(x: torch.Tensor, filter_width: int): """Apply a median filter of given width along the last dimension of x""" slices = x.contiguous().unfold(-1, filter_width, 1) grid = np.prod(slices.shape[:-2]) kernel = median_kernel(filter_width) y = torch.empty_like(slices[..., 0]) BLOCK_SIZE = 1 << (y.stride(-2) - 1).bit_length() kernel[(grid,)](y, x, x.stride(-2), y.stride(-2), BLOCK_SIZE=BLOCK_SIZE) return y
import math import numpy as np import torch from functools import lru_cache try: import triton import triton.language as tl except ImportError: raise RuntimeError("triton import failed; try `pip install --pre triton`") @triton.jit def dtw_kernel(cost, trace, x, x_stride, cost_stride, trace_stride, N, M, BLOCK_SIZE: tl.constexpr): offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < M for k in range(1, N + M + 1): # k = i + j tl.debug_barrier() p0 = cost + (k - 1) * cost_stride p1 = cost + k * cost_stride p2 = cost + k * cost_stride + 1 c0 = tl.load(p0 + offsets, mask=mask) c1 = tl.load(p1 + offsets, mask=mask) c2 = tl.load(p2 + offsets, mask=mask) x_row = tl.load(x + (k - 1) * x_stride + offsets, mask=mask, other=0) cost_row = x_row + tl.minimum(tl.minimum(c0, c1), c2) cost_ptr = cost + (k + 1) * cost_stride + 1 tl.store(cost_ptr + offsets, cost_row, mask=mask) trace_ptr = trace + (k + 1) * trace_stride + 1 tl.store(trace_ptr + offsets, 2, mask=mask & (c2 <= c0) & (c2 <= c1)) tl.store(trace_ptr + offsets, 1, mask=mask & (c1 <= c0) & (c1 <= c2)) tl.store(trace_ptr + offsets, 0, mask=mask & (c0 <= c1) & (c0 <= c2)) @lru_cache(maxsize=None) def median_kernel(filter_width: int): @triton.jit def kernel(y, x, x_stride, y_stride, BLOCK_SIZE: tl.constexpr): # x.shape[-1] == filter_width row_idx = tl.program_id(0) offsets = tl.arange(0, BLOCK_SIZE) mask = offsets < y_stride x_ptr = x + row_idx * x_stride y_ptr = y + row_idx * y_stride LOAD_ALL_ROWS_HERE BUBBLESORT_HERE tl.store(y_ptr + offsets, MIDDLE_ROW_HERE, mask=mask) kernel = triton.JITFunction(kernel.fn) kernel.src = kernel.src.replace(" LOAD_ALL_ROWS_HERE", "\n".join([ f" row{i} = tl.load(x_ptr + offsets + {i}, mask=mask)" for i in range(filter_width) ])) kernel.src = kernel.src.replace(" BUBBLESORT_HERE", "\n\n".join([ "\n\n".join([ "\n".join([ f" smaller = tl.where(row{j} < row{j + 1}, row{j}, row{j + 1})", f" larger = tl.where(row{j} > row{j + 1}, row{j}, row{j + 1})", f" row{j} = smaller", f" row{j + 1} = larger", ]) for j in range(filter_width - i - 1) ]) for i in range(filter_width // 2 + 1) ])) kernel.src = kernel.src.replace("MIDDLE_ROW_HERE", f"row{filter_width // 2}") return kernel def median_filter_cuda(x: torch.Tensor, filter_width: int): """Apply a median filter of given width along the last dimension of x""" slices = x.contiguous().unfold(-1, filter_width, 1) grid = np.prod(slices.shape[:-2]) kernel = median_kernel(filter_width) y = torch.empty_like(slices[..., 0]) BLOCK_SIZE = 1 << (y.stride(-2) - 1).bit_length() kernel[(grid,)](y, x, x.stride(-2), y.stride(-2), BLOCK_SIZE=BLOCK_SIZE) return y
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) file_client_args = dict(backend='disk') # comment out the code below to use different file client # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=4, # simply change this from 2 to 16 for 50e - 400e training. dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox', format_only=False) test_evaluator = val_evaluator max_epochs = 25 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=5) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # optimizer assumes bs=64 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.067, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[22, 24], gamma=0.1) ] # only keep latest 2 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) file_client_args = dict(backend='disk') # comment out the code below to use different file client # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=4, # simply change this from 2 to 16 for 50e - 400e training. dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox', format_only=False) test_evaluator = val_evaluator max_epochs = 25 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=5) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # optimizer assumes bs=64 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.067, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[22, 24], gamma=0.1) ] # only keep latest 2 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from packaging import version from .. import __version__ from .constants import ( CONFIG_NAME, DEPRECATED_REVISION_ARGS, DIFFUSERS_DYNAMIC_MODULE_NAME, FLAX_WEIGHTS_NAME, GGUF_FILE_EXTENSION, HF_MODULES_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MIN_PEFT_VERSION, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .deprecation_utils import deprecate from .doc_utils import replace_example_docstring from .dynamic_modules_utils import get_class_from_dynamic_module from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video from .hub_utils import ( PushToHubMixin, _add_variant, _get_checkpoint_shard_files, _get_model_file, extract_commit_hash, http_user_agent, ) from .import_utils import ( BACKENDS_MAPPING, DIFFUSERS_SLOW_IMPORT, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_accelerate_available, is_accelerate_version, is_better_profanity_available, is_bitsandbytes_available, is_bitsandbytes_version, is_bs4_available, is_cosmos_guardrail_available, is_flax_available, is_ftfy_available, is_gguf_available, is_gguf_version, is_google_colab, is_hf_hub_version, is_hpu_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_matplotlib_available, is_nltk_available, is_note_seq_available, is_onnx_available, is_opencv_available, is_optimum_quanto_available, is_optimum_quanto_version, is_peft_available, is_peft_version, is_pytorch_retinaface_available, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_tensorboard_available, is_timm_available, is_torch_available, is_torch_npu_available, is_torch_version, is_torch_xla_available, is_torch_xla_version, is_torchao_available, is_torchao_version, is_torchsde_available, is_torchvision_available, is_transformers_available, is_transformers_version, is_unidecode_available, is_wandb_available, is_xformers_available, requires_backends, ) from .loading_utils import get_module_from_name, get_submodule_by_name, load_image, load_video from .logging import get_logger from .outputs import BaseOutput from .peft_utils import ( check_peft_version, delete_adapter_layers, get_adapter_name, get_peft_kwargs, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, unscale_lora_layers, ) from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil from .remote_utils import remote_decode from .state_dict_utils import ( convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, state_dict_all_zero, ) from .typing_utils import _get_detailed_type, _is_valid_type logger = get_logger(__name__) def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace diffusers (see " "`https://huggingface.co/docs/diffusers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError(error_message)
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from packaging import version from .. import __version__ from .constants import ( CONFIG_NAME, DEPRECATED_REVISION_ARGS, DIFFUSERS_DYNAMIC_MODULE_NAME, FLAX_WEIGHTS_NAME, GGUF_FILE_EXTENSION, HF_MODULES_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MIN_PEFT_VERSION, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_FILE_EXTENSION, SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .deprecation_utils import deprecate from .doc_utils import replace_example_docstring from .dynamic_modules_utils import get_class_from_dynamic_module from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video from .hub_utils import ( PushToHubMixin, _add_variant, _get_checkpoint_shard_files, _get_model_file, extract_commit_hash, http_user_agent, ) from .import_utils import ( BACKENDS_MAPPING, DIFFUSERS_SLOW_IMPORT, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_accelerate_available, is_accelerate_version, is_bitsandbytes_available, is_bitsandbytes_version, is_bs4_available, is_flax_available, is_ftfy_available, is_gguf_available, is_gguf_version, is_google_colab, is_hf_hub_version, is_hpu_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_matplotlib_available, is_note_seq_available, is_onnx_available, is_opencv_available, is_optimum_quanto_available, is_optimum_quanto_version, is_peft_available, is_peft_version, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_tensorboard_available, is_timm_available, is_torch_available, is_torch_npu_available, is_torch_version, is_torch_xla_available, is_torch_xla_version, is_torchao_available, is_torchao_version, is_torchsde_available, is_torchvision_available, is_transformers_available, is_transformers_version, is_unidecode_available, is_wandb_available, is_xformers_available, requires_backends, ) from .loading_utils import get_module_from_name, get_submodule_by_name, load_image, load_video from .logging import get_logger from .outputs import BaseOutput from .peft_utils import ( check_peft_version, delete_adapter_layers, get_adapter_name, get_peft_kwargs, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, unscale_lora_layers, ) from .pil_utils import PIL_INTERPOLATION, make_image_grid, numpy_to_pil, pt_to_pil from .remote_utils import remote_decode from .state_dict_utils import ( convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, state_dict_all_zero, ) from .typing_utils import _get_detailed_type, _is_valid_type logger = get_logger(__name__) def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace diffusers (see " "`https://huggingface.co/docs/diffusers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError(error_message)
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .logger import get_root_logger __all__ = ['get_root_logger', 'collect_env']
from .collect_env import collect_env from .logger import get_root_logger __all__ = ['get_root_logger', 'collect_env']
"""Prompts for comparing the outputs of two models for a given question. This prompt is used to compare two responses and evaluate which one best follows the instructions and answers the question. The prompt is based on the paper from Zheng, et. al. https://arxiv.org/abs/2306.05685 """ # noqa: E501 from langchain_core.prompts.chat import ChatPromptTemplate SYSTEM_MESSAGE = 'Please act as an impartial judge and evaluate the quality \ of the responses provided by two AI assistants to the user question displayed below. \ You should choose the assistant that follows the user\'s instructions \ and answers \the user\'s question better. \ Your evaluation should consider factors such as the \ helpfulness, relevance, accuracy, depth, creativity, \ and level of detail of their responses. \ Begin your evaluation by comparing the two responses and provide a short explanation. \ Avoid any position biases and ensure that the order in which \ the responses were presented does not influence your decision. \ Do not allow the length of the responses to influence your evaluation. \ Do not favor certain names of the assistants. Be as objective as possible. \ After providing your explanation, output your final verdict by strictly following \ this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, \ and "[[C]]" for a tie.' CRITERIA_INSTRUCTIONS = ( "For this evaluation, you should primarily consider the following criteria:\n" ) COMPARISON_TEMPLATE = ChatPromptTemplate.from_messages( [ ("system", SYSTEM_MESSAGE), ( "human", "{criteria}[User Question]\n{input}\n\n\ [The Start of Assistant A's Answer]\n{prediction}\n\ [The End of Assistant A's Answer]\ \n\n[The Start of Assistant B's Answer]\n{prediction_b}\n\ [The End of Assistant B's Answer]", ), ] ) COMPARISON_TEMPLATE_WITH_REFERENCE = ChatPromptTemplate.from_messages( [ ("system", SYSTEM_MESSAGE), ( "human", "{criteria}\n\nTo help you evaluate the responses, \ here is a reference answer to the user's question:\n\ {reference}\ [User Question]\n{input}\n\n\ [The Start of Assistant A's Answer]\n{prediction}\n\ [The End of Assistant A's Answer]\ \n\n[The Start of Assistant B's Answer]\n{prediction_b}\n\ [The End of Assistant B's Answer]", ), ] )
"""Prompts for comparing the outputs of two models for a given question. This prompt is used to compare two responses and evaluate which one best follows the instructions and answers the question. The prompt is based on the paper from Zheng, et. al. https://arxiv.org/abs/2306.05685 """ # flake8: noqa from langchain_core.prompts.chat import ChatPromptTemplate SYSTEM_MESSAGE = 'Please act as an impartial judge and evaluate the quality \ of the responses provided by two AI assistants to the user question displayed below. \ You should choose the assistant that follows the user\'s instructions \ and answers \the user\'s question better. \ Your evaluation should consider factors such as the \ helpfulness, relevance, accuracy, depth, creativity, \ and level of detail of their responses. \ Begin your evaluation by comparing the two responses and provide a short explanation. \ Avoid any position biases and ensure that the order in which \ the responses were presented does not influence your decision. \ Do not allow the length of the responses to influence your evaluation. \ Do not favor certain names of the assistants. Be as objective as possible. \ After providing your explanation, output your final verdict by strictly following \ this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, \ and "[[C]]" for a tie.' CRITERIA_INSTRUCTIONS = ( "For this evaluation, you should primarily consider the following criteria:\n" ) COMPARISON_TEMPLATE = ChatPromptTemplate.from_messages( [ ("system", SYSTEM_MESSAGE), ( "human", "{criteria}[User Question]\n{input}\n\n\ [The Start of Assistant A's Answer]\n{prediction}\n\ [The End of Assistant A's Answer]\ \n\n[The Start of Assistant B's Answer]\n{prediction_b}\n\ [The End of Assistant B's Answer]", ), ] ) COMPARISON_TEMPLATE_WITH_REFERENCE = ChatPromptTemplate.from_messages( [ ("system", SYSTEM_MESSAGE), ( "human", "{criteria}\n\nTo help you evaluate the responses, \ here is a reference answer to the user's question:\n\ {reference}\ [User Question]\n{input}\n\n\ [The Start of Assistant A's Answer]\n{prediction}\n\ [The End of Assistant A's Answer]\ \n\n[The Start of Assistant B's Answer]\n{prediction_b}\n\ [The End of Assistant B's Answer]", ), ] )
from torchaudio import ( # noqa: F401 _extension, compliance, datasets, functional, io, kaldi_io, models, pipelines, sox_effects, transforms, utils, ) from torchaudio.backend import get_audio_backend, list_audio_backends, set_audio_backend try: from .version import __version__, git_version # noqa: F401 except ImportError: pass __all__ = [ "io", "compliance", "datasets", "functional", "models", "pipelines", "kaldi_io", "utils", "sox_effects", "transforms", "list_audio_backends", "get_audio_backend", "set_audio_backend", ]
from torchaudio import _extension # noqa: F401 from torchaudio import ( io, compliance, datasets, functional, models, pipelines, kaldi_io, utils, sox_effects, transforms, ) from torchaudio.backend import ( list_audio_backends, get_audio_backend, set_audio_backend, ) try: from .version import __version__, git_version # noqa: F401 except ImportError: pass __all__ = [ "io", "compliance", "datasets", "functional", "models", "pipelines", "kaldi_io", "utils", "sox_effects", "transforms", "list_audio_backends", "get_audio_backend", "set_audio_backend", ]
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.9.0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.8.1.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# Copyright (c) OpenMMLab. All rights reserved. import warnings from mmdet.registry import TASK_UTILS MATCH_COST = TASK_UTILS def build_match_cost(cfg, default_args=None): """Builder of IoU calculator.""" warnings.warn('``build_match_cost`` would be deprecated soon, please use ' '``mmdet.registry.TASK_UTILS.build()`` ') return TASK_UTILS.build(cfg, default_args=default_args)
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.utils import Registry, build_from_cfg MATCH_COST = Registry('Match Cost') def build_match_cost(cfg, default_args=None): """Builder of IoU calculator.""" return build_from_cfg(cfg, MATCH_COST, default_args)
import csv import os from pathlib import Path from typing import Dict, List, Tuple, Union import torchaudio from torch import Tensor from torch.utils.data import Dataset def load_commonvoice_item( line: List[str], header: List[str], path: str, folder_audio: str, ext_audio: str ) -> Tuple[Tensor, int, Dict[str, str]]: # Each line as the following data: # client_id, path, sentence, up_votes, down_votes, age, gender, accent assert header[1] == "path" fileid = line[1] filename = os.path.join(path, folder_audio, fileid) if not filename.endswith(ext_audio): filename += ext_audio waveform, sample_rate = torchaudio.load(filename) dic = dict(zip(header, line)) return waveform, sample_rate, dic class COMMONVOICE(Dataset): """Create a Dataset for *CommonVoice* [:footcite:`ardila2020common`]. Args: root (str or Path): Path to the directory where the dataset is located. (Where the ``tsv`` file is present.) tsv (str, optional): The name of the tsv file used to construct the metadata, such as ``"train.tsv"``, ``"test.tsv"``, ``"dev.tsv"``, ``"invalidated.tsv"``, ``"validated.tsv"`` and ``"other.tsv"``. (default: ``"train.tsv"``) """ _ext_txt = ".txt" _ext_audio = ".mp3" _folder_audio = "clips" def __init__(self, root: Union[str, Path], tsv: str = "train.tsv") -> None: # Get string representation of 'root' in case Path object is passed self._path = os.fspath(root) self._tsv = os.path.join(self._path, tsv) with open(self._tsv, "r") as tsv_: walker = csv.reader(tsv_, delimiter="\t") self._header = next(walker) self._walker = list(walker) def __getitem__(self, n: int) -> Tuple[Tensor, int, Dict[str, str]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, Dict[str, str]): ``(waveform, sample_rate, dictionary)``, where dictionary is built from the TSV file with the following keys: ``client_id``, ``path``, ``sentence``, ``up_votes``, ``down_votes``, ``age``, ``gender`` and ``accent``. """ line = self._walker[n] return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio) def __len__(self) -> int: return len(self._walker)
import csv import os from pathlib import Path from typing import List, Dict, Tuple, Union import torchaudio from torch import Tensor from torch.utils.data import Dataset def load_commonvoice_item( line: List[str], header: List[str], path: str, folder_audio: str, ext_audio: str ) -> Tuple[Tensor, int, Dict[str, str]]: # Each line as the following data: # client_id, path, sentence, up_votes, down_votes, age, gender, accent assert header[1] == "path" fileid = line[1] filename = os.path.join(path, folder_audio, fileid) if not filename.endswith(ext_audio): filename += ext_audio waveform, sample_rate = torchaudio.load(filename) dic = dict(zip(header, line)) return waveform, sample_rate, dic class COMMONVOICE(Dataset): """Create a Dataset for *CommonVoice* [:footcite:`ardila2020common`]. Args: root (str or Path): Path to the directory where the dataset is located. (Where the ``tsv`` file is present.) tsv (str, optional): The name of the tsv file used to construct the metadata, such as ``"train.tsv"``, ``"test.tsv"``, ``"dev.tsv"``, ``"invalidated.tsv"``, ``"validated.tsv"`` and ``"other.tsv"``. (default: ``"train.tsv"``) """ _ext_txt = ".txt" _ext_audio = ".mp3" _folder_audio = "clips" def __init__(self, root: Union[str, Path], tsv: str = "train.tsv") -> None: # Get string representation of 'root' in case Path object is passed self._path = os.fspath(root) self._tsv = os.path.join(self._path, tsv) with open(self._tsv, "r") as tsv_: walker = csv.reader(tsv_, delimiter="\t") self._header = next(walker) self._walker = list(walker) def __getitem__(self, n: int) -> Tuple[Tensor, int, Dict[str, str]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, Dict[str, str]): ``(waveform, sample_rate, dictionary)``, where dictionary is built from the TSV file with the following keys: ``client_id``, ``path``, ``sentence``, ``up_votes``, ``down_votes``, ``age``, ``gender`` and ``accent``. """ line = self._walker[n] return load_commonvoice_item(line, self._header, self._path, self._folder_audio, self._ext_audio) def __len__(self) -> int: return len(self._walker)
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.13.1.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.13.0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# Copyright (c) OpenMMLab. All rights reserved. import time import pytest import mmengine def test_timer_init(): timer = mmengine.Timer(start=False) assert not timer.is_running timer.start() assert timer.is_running timer = mmengine.Timer() assert timer.is_running def test_timer_run(): timer = mmengine.Timer() time.sleep(1) # In Windows, the error could be larger than 20ms. More details in # https://stackoverflow.com/questions/11657734/sleep-for-exact-time-in-python. # noqa: E501 assert abs(timer.since_start() - 1) < 3e-2 time.sleep(1) assert abs(timer.since_last_check() - 1) < 3e-2 assert abs(timer.since_start() - 2) < 3e-2 timer = mmengine.Timer(False) with pytest.raises(mmengine.TimerError): timer.since_start() with pytest.raises(mmengine.TimerError): timer.since_last_check() def test_timer_context(capsys): with mmengine.Timer(): time.sleep(1) out, _ = capsys.readouterr() # In Windows, the error could be larger than 20ms. More details in # https://stackoverflow.com/questions/11657734/sleep-for-exact-time-in-python. # noqa: E501 assert abs(float(out) - 1) < 3e-2 with mmengine.Timer(print_tmpl='time: {:.1f}s'): time.sleep(1) out, _ = capsys.readouterr() assert out == 'time: 1.0s\n'
# Copyright (c) OpenMMLab. All rights reserved. import time import pytest import mmengine def test_timer_init(): timer = mmengine.Timer(start=False) assert not timer.is_running timer.start() assert timer.is_running timer = mmengine.Timer() assert timer.is_running def test_timer_run(): timer = mmengine.Timer() time.sleep(1) assert abs(timer.since_start() - 1) < 1e-2 time.sleep(1) assert abs(timer.since_last_check() - 1) < 1e-2 assert abs(timer.since_start() - 2) < 1e-2 timer = mmengine.Timer(False) with pytest.raises(mmengine.TimerError): timer.since_start() with pytest.raises(mmengine.TimerError): timer.since_last_check() def test_timer_context(capsys): with mmengine.Timer(): time.sleep(1) out, _ = capsys.readouterr() assert abs(float(out) - 1) < 1e-2 with mmengine.Timer(print_tmpl='time: {:.1f}s'): time.sleep(1) out, _ = capsys.readouterr() assert out == 'time: 1.0s\n'
import os import pytest import requests from jina import Flow from tests.helper import ( ProcessExecutor, _validate_custom_gateway_process, _validate_dummy_custom_gateway_response, ) from tests.unit.yaml.dummy_gateway import DummyGateway from tests.unit.yaml.dummy_gateway_get_streamer import DummyGatewayGetStreamer cur_dir = os.path.dirname(os.path.abspath(__file__)) _dummy_gateway_yaml_path = os.path.join( cur_dir, '../../../yaml/test-custom-gateway.yml' ) _dummy_fastapi_gateway_yaml_path = os.path.join( cur_dir, '../../../yaml/test-fastapi-gateway.yml' ) _flow_with_dummy_gateway_yaml_path = os.path.join( cur_dir, '../../../yaml/test-flow-custom-gateway-nested-config.yml' ) @pytest.mark.parametrize( 'uses,uses_with,expected', [ (DummyGateway, {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}), ( DummyGatewayGetStreamer, {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( DummyGateway, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( DummyGatewayGetStreamer, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( DummyGateway, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( DummyGatewayGetStreamer, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ], ) def test_flow_custom_gateway_no_executor(uses, uses_with, expected): flow = ( Flow().config_gateway(uses=uses, uses_with=uses_with).add(uses=ProcessExecutor) ) with flow: _validate_dummy_custom_gateway_response(flow.port, expected) _validate_custom_gateway_process( flow.port, 'hello', {'text': 'helloworld', 'tags': {'processed': True}} ) def test_flow_custom_gateway_nested_config(): flow = Flow.load_config(_flow_with_dummy_gateway_yaml_path) with flow: _validate_dummy_custom_gateway_response( flow.port, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'} ) def test_flow_custom_gateway_via_flow_uses_disabled(): uses_with = {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'} flow = Flow(uses='DummyGateway', uses_with=uses_with) # the uses parameter is ignored here and not be applied on the gateway, therefore, the gateway # is just a GRPC gateway with pytest.raises(requests.ConnectionError): with flow: _ = requests.get(f'http://127.0.0.1:{flow.port}/').json()
import os import pytest import requests from jina import Flow from tests.helper import ( ProcessExecutor, _validate_custom_gateway_process, _validate_dummy_custom_gateway_response, ) from tests.unit.yaml.dummy_gateway import DummyGateway cur_dir = os.path.dirname(os.path.abspath(__file__)) _dummy_gateway_yaml_path = os.path.join( cur_dir, '../../../yaml/test-custom-gateway.yml' ) _dummy_fastapi_gateway_yaml_path = os.path.join( cur_dir, '../../../yaml/test-fastapi-gateway.yml' ) _flow_with_dummy_gateway_yaml_path = os.path.join( cur_dir, '../../../yaml/test-flow-custom-gateway-nested-config.yml' ) @pytest.mark.parametrize( 'uses,uses_with,expected', [ ('DummyGateway', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}), ( _dummy_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ], ) def test_flow_custom_gateway_no_executor(uses, uses_with, expected): flow = ( Flow() .config_gateway(uses=uses, uses_with=uses_with) .add(uses='ProcessExecutor') ) with flow: _validate_dummy_custom_gateway_response(flow.port, expected) _validate_custom_gateway_process( flow.port, 'hello', {'text': 'helloworld', 'tags': {'processed': True}} ) def test_flow_custom_gateway_nested_config(): flow = Flow.load_config(_flow_with_dummy_gateway_yaml_path) with flow: _validate_dummy_custom_gateway_response( flow.port, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'} ) def test_flow_custom_gateway_via_flow_uses_disabled(): uses_with = {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'} flow = Flow(uses='DummyGateway', uses_with=uses_with) # the uses parameter is ignored here and not be applied on the gateway, therefore, the gateway # is just a GRPC gateway with pytest.raises(requests.ConnectionError): with flow: _ = requests.get(f'http://127.0.0.1:{flow.port}/').json()
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor T = TypeVar('T', bound='Image') try: import torch torch_available = True except ImportError: torch_available = False class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor T = TypeVar('T', bound='Image') try: import torch torch_available = True except ImportError: torch_available = False class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() """ url: Optional[ImageUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
"""Dappier Real Time Search tool spec.""" import os from typing import Optional from llama_index.core.tools.tool_spec.base import BaseToolSpec class DappierRealTimeSearchToolSpec(BaseToolSpec): """Dappier Real Time Search tool spec.""" spec_functions = ["search_real_time_data", "search_stock_market_data"] def __init__(self, api_key: Optional[str] = None) -> None: """ Initialize the Dappier Real Time Search tool spec. To obtain an API key, visit: https://platform.dappier.com/profile/api-keys """ from dappier import Dappier self.api_key = api_key or os.environ.get("DAPPIER_API_KEY") if not self.api_key: raise ValueError( "API key is required. Provide it as a parameter or set DAPPIER_API_KEY in environment variables.\n" "To obtain an API key, visit: https://platform.dappier.com/profile/api-keys" ) self.client = Dappier(api_key=self.api_key) def search_real_time_data(self, query: str) -> str: """ Performs a real-time data search. Args: query (str): The user-provided input string for retrieving real-time google web search results including the latest news, weather, travel, deals and more. Returns: str: A response message containing the real-time data results. """ ai_model_id = "am_01j0rzq4tvfscrgzwac7jv1p4c" response = self.client.search_real_time_data( query=query, ai_model_id=ai_model_id ) return response.message if response else "No real-time data found." def search_stock_market_data(self, query: str) -> str: """ Performs a stock market data search. Args: query (str): The user-provided input string for retrieving real-time financial news, stock prices, and trades from polygon.io, with AI-powered insights and up-to-the-minute updates to keep you informed on all your financial interests. Returns: str: A response message containing the stock market data results. """ ai_model_id = "am_01j749h8pbf7ns8r1bq9s2evrh" response = self.client.search_real_time_data( query=query, ai_model_id=ai_model_id ) return response.message if response else "No stock market data found."
"""Dappier Real Time Search tool spec.""" import os from typing import Optional from llama_index.core.tools.tool_spec.base import BaseToolSpec class DappierRealTimeSearchToolSpec(BaseToolSpec): """Dappier Real Time Search tool spec.""" spec_functions = ["search_real_time_data", "search_stock_market_data"] def __init__(self, api_key: Optional[str] = None) -> None: """Initialize the Dappier Real Time Search tool spec. To obtain an API key, visit: https://platform.dappier.com/profile/api-keys """ from dappier import Dappier self.api_key = api_key or os.environ.get("DAPPIER_API_KEY") if not self.api_key: raise ValueError( "API key is required. Provide it as a parameter or set DAPPIER_API_KEY in environment variables.\n" "To obtain an API key, visit: https://platform.dappier.com/profile/api-keys" ) self.client = Dappier(api_key=self.api_key) def search_real_time_data(self, query: str) -> str: """ Performs a real-time data search. Args: query (str): The user-provided input string for retrieving real-time google web search results including the latest news, weather, travel, deals and more. Returns: str: A response message containing the real-time data results. """ ai_model_id = "am_01j0rzq4tvfscrgzwac7jv1p4c" response = self.client.search_real_time_data( query=query, ai_model_id=ai_model_id ) return response.message if response else "No real-time data found." def search_stock_market_data(self, query: str) -> str: """ Performs a stock market data search. Args: query (str): The user-provided input string for retrieving real-time financial news, stock prices, and trades from polygon.io, with AI-powered insights and up-to-the-minute updates to keep you informed on all your financial interests. Returns: str: A response message containing the stock market data results. """ ai_model_id = "am_01j749h8pbf7ns8r1bq9s2evrh" response = self.client.search_real_time_data( query=query, ai_model_id=ai_model_id ) return response.message if response else "No stock market data found."
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import numpy as np import pytest from jina import Document, DocumentArray, Flow from ...audioclip_image import AudioCLIPImageEncoder @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [ Document(blob=np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(50) ] ) with Flow(return_results=True).add(uses=AudioCLIPImageEncoder) as flow: resp = flow.post( on="/index", inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', '--volumes=.cache:/workdir/.cache', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', '--volumes=.cache:/workdir/.cache', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Callable import numpy as np import pytest from jina import Document, DocumentArray, Flow from ...audioclip_image import AudioCLIPImageEncoder @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [ Document(blob=np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(50) ] ) with Flow(return_results=True).add(uses=AudioCLIPImageEncoder) as flow: resp = flow.post( on="/index", inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,)
"""Loads word documents.""" import os import tempfile from abc import ABC from pathlib import Path from typing import Any, List, Union from urllib.parse import urlparse import requests from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class Docx2txtLoader(BaseLoader, ABC): """Load `DOCX` file using `docx2txt` and chunks at character level. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion """ def __init__(self, file_path: Union[str, Path]): """Initialize with file path.""" self.file_path = str(file_path) self.original_file_path = self.file_path if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close() def load(self) -> List[Document]: """Load given path as single page.""" import docx2txt return [ Document( page_content=docx2txt.process(self.file_path), metadata={"source": self.original_file_path}, ) ] @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) class UnstructuredWordDocumentLoader(UnstructuredFileLoader): """Load `Microsoft Word` file using `Unstructured`. Works with both .docx and .doc files. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader( "example.docx", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-docx """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): """ Args: file_path: The path to the Word file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ file_path = str(file_path) super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.file_utils.filetype import FileType, detect_filetype # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_doc = detect_filetype(self.file_path) == FileType.DOC except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_doc = extension == ".doc" if is_doc: validate_unstructured_version("0.4.11") if is_doc: from unstructured.partition.doc import partition_doc return partition_doc(filename=self.file_path, **self.unstructured_kwargs) else: from unstructured.partition.docx import partition_docx return partition_docx(filename=self.file_path, **self.unstructured_kwargs)
"""Loads word documents.""" import os import tempfile from abc import ABC from pathlib import Path from typing import Any, List, Union from urllib.parse import urlparse import requests from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class Docx2txtLoader(BaseLoader, ABC): """Load `DOCX` file using `docx2txt` and chunks at character level. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion """ def __init__(self, file_path: Union[str, Path]): """Initialize with file path.""" self.file_path = str(file_path) self.original_file_path = self.file_path if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close() def load(self) -> List[Document]: """Load given path as single page.""" import docx2txt return [ Document( page_content=docx2txt.process(self.file_path), metadata={"source": self.original_file_path}, ) ] @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) class UnstructuredWordDocumentLoader(UnstructuredFileLoader): """Load `Microsoft Word` file using `Unstructured`. Works with both .docx and .doc files. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples -------- from langchain_community.document_loaders import UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader( "example.docx", mode="elements", strategy="fast", ) docs = loader.load() References ---------- https://unstructured-io.github.io/unstructured/bricks.html#partition-docx """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): """ Args: file_path: The path to the Word file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ file_path = str(file_path) super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.file_utils.filetype import FileType, detect_filetype # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_doc = detect_filetype(self.file_path) == FileType.DOC # type: ignore[arg-type] except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_doc = extension == ".doc" if is_doc: validate_unstructured_version("0.4.11") if is_doc: from unstructured.partition.doc import partition_doc return partition_doc(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type] else: from unstructured.partition.docx import partition_docx return partition_docx(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type]
from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ReLU") class ReLU(Layer): """Rectified Linear Unit activation function layer. Formula: ``` python f(x) = max(x,0) f(x) = max_value if x >= max_value f(x) = x if threshold <= x < max_value f(x) = negative_slope * (x - threshold) otherwise ``` Example: ``` python relu_layer = keras.layers.activations.ReLU( max_value=10, negative_slope=0.5, threshold=0, ) input = np.array([-10, -5, 0.0, 5, 10]) result = relu_layer(input) # result = [-5. , -2.5, 0. , 5. , 10.] ``` Args: max_value: Float >= 0. Maximum activation value. None means unlimited. Defaults to `None`. negative_slope: Float >= 0. Negative slope coefficient. Defaults to `0.0`. threshold: Float >= 0. Threshold value for thresholded activation. Defaults to `0.0`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__( self, max_value=None, negative_slope=0.0, threshold=0.0, **kwargs ): super().__init__(**kwargs) if max_value is not None and max_value < 0.0: raise ValueError( "max_value of a ReLU layer cannot be a negative " f"value. Received: max_value={max_value}" ) if negative_slope is None or negative_slope < 0.0: raise ValueError( "negative_slope of a ReLU layer cannot be a negative " f"value. Received: negative_slope={negative_slope}" ) if threshold is None or threshold < 0.0: raise ValueError( "threshold of a ReLU layer cannot be a negative " f"value. Received: threshold={threshold}" ) self.max_value = max_value self.negative_slope = negative_slope self.threshold = threshold self.supports_masking = True self.built = True def call(self, inputs): return activations.relu( inputs, negative_slope=self.negative_slope, max_value=self.max_value, threshold=self.threshold, ) def get_config(self): config = super().get_config() config.update( { "max_value": self.max_value, "negative_slope": self.negative_slope, "threshold": self.threshold, } ) return config def compute_output_shape(self, input_shape): return input_shape
from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ReLU") class ReLU(Layer): """Rectified Linear Unit activation function layer. Formula: ``` python f(x) = max(x,0) f(x) = max_value if x >= max_value f(x) = x if threshold <= x < max_value f(x) = negative_slope * (x - threshold) otherwise ``` Example: ``` python relu_layer = keras.layers.activations.ReLU( max_value=10, negative_slope=0.5, threshold=0, ) input = np.array([-10, -5, 0.0, 5, 10]) result = relu_layer(input) # result = [-5. , -2.5, 0. , 5. , 10.] ``` Args: max_value: Float >= 0. Maximum activation value. None means unlimited. Defaults to `None`. negative_slope: Float >= 0. Negative slope coefficient. Defaults to `0.0`. threshold: Float >= 0. Threshold value for thresholded activation. Defaults to `0.0`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__( self, max_value=None, negative_slope=0.0, threshold=0.0, **kwargs ): super().__init__(**kwargs) if max_value is not None and max_value < 0.0: raise ValueError( "max_value of a ReLU layer cannot be a negative " f"value. Received: max_value={max_value}" ) if negative_slope is None or negative_slope < 0.0: raise ValueError( "negative_slope of a ReLU layer cannot be a negative " f"value. Received: negative_slope={negative_slope}" ) if threshold is None or threshold < 0.0: raise ValueError( "threshold of a ReLU layer cannot be a negative " f"value. Received: threshold={threshold}" ) self.supports_masking = True self.max_value = max_value self.negative_slope = negative_slope self.threshold = threshold def call(self, inputs): return activations.relu( inputs, negative_slope=self.negative_slope, max_value=self.max_value, threshold=self.threshold, ) def get_config(self): config = super().get_config() config.update( { "max_value": self.max_value, "negative_slope": self.negative_slope, "threshold": self.threshold, } ) return config def compute_output_shape(self, input_shape): return input_shape
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.ainetwork.base import AINBaseTool, OperationType # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "OperationType": "langchain_community.tools.ainetwork.base", "AINBaseTool": "langchain_community.tools.ainetwork.base", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AINBaseTool", "OperationType", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.ainetwork.base import AINBaseTool, OperationType # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "OperationType": "langchain_community.tools.ainetwork.base", "AINBaseTool": "langchain_community.tools.ainetwork.base", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "OperationType", "AINBaseTool", ]
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference_default_pndm(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( "botp/stable-diffusion-v1-5-inpainting", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_inference_k_lms(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lms_scheduler = LMSDiscreteScheduler.from_pretrained( "botp/stable-diffusion-v1-5-inpainting", subfolder="scheduler", revision="onnx" ) pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( "botp/stable-diffusion-v1-5-inpainting", revision="onnx", scheduler=lms_scheduler, safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=20, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class OnnxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): @property def gpu_provider(self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def gpu_options(self): options = ort.SessionOptions() options.enable_mem_pattern = False return options def test_inference_default_pndm(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( "botp/stable-diffusion-v1-5-inpainting", revision="onnx", safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=10, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_inference_k_lms(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lms_scheduler = LMSDiscreteScheduler.from_pretrained( "botp/stable-diffusion-v1-5-inpainting", subfolder="scheduler", revision="onnx" ) pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained( "botp/stable-diffusion-v1-5-inpainting", revision="onnx", scheduler=lms_scheduler, safety_checker=None, feature_extractor=None, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=None) prompt = "A red cat sitting on a park bench" generator = np.random.RandomState(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, guidance_scale=7.5, num_inference_steps=20, generator=generator, output_type="np", ) images = output.images image_slice = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) expected_slice = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os from huggingface_hub.constants import HF_HOME from packaging import version from ..dependency_versions_check import dep_version_check from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available MIN_PEFT_VERSION = "0.6.0" MIN_TRANSFORMERS_VERSION = "4.34.0" _CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.bin.index.json" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.safetensors.index.json" SAFETENSORS_FILE_EXTENSION = "safetensors" GGUF_FILE_EXTENSION = "gguf" ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb" HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules")) DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"] # Below should be `True` if the current version of `peft` and `transformers` are compatible with # PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are # available. # For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0. _required_peft_version = is_peft_available() and version.parse( version.parse(importlib.metadata.version("peft")).base_version ) >= version.parse(MIN_PEFT_VERSION) _required_transformers_version = is_transformers_available() and version.parse( version.parse(importlib.metadata.version("transformers")).base_version ) >= version.parse(MIN_TRANSFORMERS_VERSION) USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version if USE_PEFT_BACKEND and _CHECK_PEFT: dep_version_check("peft")
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os from huggingface_hub.constants import HF_HOME from packaging import version from ..dependency_versions_check import dep_version_check from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available MIN_PEFT_VERSION = "0.6.0" MIN_TRANSFORMERS_VERSION = "4.34.0" _CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.bin.index.json" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.safetensors.index.json" SAFETENSORS_FILE_EXTENSION = "safetensors" GGUF_FILE_EXTENSION = "gguf" ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb" HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules")) DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"] # Below should be `True` if the current version of `peft` and `transformers` are compatible with # PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are # available. # For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0. _required_peft_version = is_peft_available() and version.parse( version.parse(importlib.metadata.version("peft")).base_version ) >= version.parse(MIN_PEFT_VERSION) _required_transformers_version = is_transformers_available() and version.parse( version.parse(importlib.metadata.version("transformers")).base_version ) >= version.parse(MIN_TRANSFORMERS_VERSION) USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version if USE_PEFT_BACKEND and _CHECK_PEFT: dep_version_check("peft")
from langchain_huggingface.chat_models.huggingface import ( # type: ignore[import-not-found] TGI_MESSAGE, TGI_RESPONSE, ChatHuggingFace, _convert_dict_to_message, ) __all__ = ["ChatHuggingFace", "_convert_dict_to_message", "TGI_MESSAGE", "TGI_RESPONSE"]
from langchain_huggingface.chat_models.huggingface import ( # type: ignore[import-not-found] TGI_MESSAGE, TGI_RESPONSE, ChatHuggingFace, _convert_message_to_chat_message, _convert_TGI_message_to_LC_message, ) __all__ = [ "ChatHuggingFace", "_convert_message_to_chat_message", "_convert_TGI_message_to_LC_message", "TGI_MESSAGE", "TGI_RESPONSE", ]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
_base_ = './fast-rcnn_r50_fpn_1x_coco.py' train_cfg = dict(max_epochs=24) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fast-rcnn_r50_fpn_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
"""Base tool spec class.""" import asyncio from inspect import signature from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, Type, Union from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import ToolMetadata AsyncCallable = Callable[..., Awaitable[Any]] # TODO: deprecate the Tuple (there's no use for it) SPEC_FUNCTION_TYPE = Union[str, Tuple[str, str]] class BaseToolSpec: """Base tool spec class.""" # list of functions that you'd want to convert to spec spec_functions: List[SPEC_FUNCTION_TYPE] def get_fn_schema_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[Type[BaseModel]]: """ NOTE: This function is deprecated and kept only for backwards compatibility. Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ return None def get_metadata_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[ToolMetadata]: """ NOTE: This function is deprecated and kept only for backwards compatibility. Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ schema = self.get_fn_schema_from_fn_name(fn_name, spec_functions=spec_functions) if schema is None: return None func = getattr(self, fn_name) name = fn_name docstring = func.__doc__ or "" description = f"{name}{signature(func)}\n{docstring}" fn_schema = self.get_fn_schema_from_fn_name( fn_name, spec_functions=spec_functions ) return ToolMetadata(name=name, description=description, fn_schema=fn_schema) def to_tool_list( self, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None, func_to_metadata_mapping: Optional[Dict[str, ToolMetadata]] = None, ) -> List[FunctionTool]: """Convert tool spec to list of tools.""" spec_functions = spec_functions or self.spec_functions func_to_metadata_mapping = func_to_metadata_mapping or {} tool_list = [] for func_spec in spec_functions: func_sync = None func_async = None if isinstance(func_spec, str): func = getattr(self, func_spec) if asyncio.iscoroutinefunction(func): func_async = func else: func_sync = func metadata = func_to_metadata_mapping.get(func_spec, None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec) elif isinstance(func_spec, tuple) and len(func_spec) == 2: func_sync = getattr(self, func_spec[0]) func_async = getattr(self, func_spec[1]) metadata = func_to_metadata_mapping.get(func_spec[0], None) if metadata is None: metadata = func_to_metadata_mapping.get(func_spec[1], None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec[0]) else: raise ValueError( "spec_functions must be of type: List[Union[str, Tuple[str, str]]]" ) tool = FunctionTool.from_defaults( fn=func_sync, async_fn=func_async, tool_metadata=metadata, ) tool_list.append(tool) return tool_list
"""Base tool spec class.""" import asyncio from inspect import signature from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, Type, Union from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import ToolMetadata AsyncCallable = Callable[..., Awaitable[Any]] # TODO: deprecate the Tuple (there's no use for it) SPEC_FUNCTION_TYPE = Union[str, Tuple[str, str]] class BaseToolSpec: """Base tool spec class.""" # list of functions that you'd want to convert to spec spec_functions: List[SPEC_FUNCTION_TYPE] def get_fn_schema_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[Type[BaseModel]]: """ NOTE: This function is deprecated and kept only for backwards compatibility. Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ return None def get_metadata_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[ToolMetadata]: """ NOTE: This function is deprecated and kept only for backwards compatibility. Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ schema = self.get_fn_schema_from_fn_name(fn_name, spec_functions=spec_functions) if schema is None: return None func = getattr(self, fn_name) name = fn_name docstring = func.__doc__ or "" description = f"{name}{signature(func)}\n{docstring}" fn_schema = self.get_fn_schema_from_fn_name( fn_name, spec_functions=spec_functions ) return ToolMetadata(name=name, description=description, fn_schema=fn_schema) def to_tool_list( self, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None, func_to_metadata_mapping: Optional[Dict[str, ToolMetadata]] = None, ) -> List[FunctionTool]: """Convert tool spec to list of tools.""" spec_functions = spec_functions or self.spec_functions func_to_metadata_mapping = func_to_metadata_mapping or {} tool_list = [] for func_spec in spec_functions: func_sync = None func_async = None if isinstance(func_spec, str): func = getattr(self, func_spec) if asyncio.iscoroutinefunction(func): func_async = func else: func_sync = func metadata = func_to_metadata_mapping.get(func_spec, None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec) elif isinstance(func_spec, tuple) and len(func_spec) == 2: func_sync = getattr(self, func_spec[0]) func_async = getattr(self, func_spec[1]) metadata = func_to_metadata_mapping.get(func_spec[0], None) if metadata is None: metadata = func_to_metadata_mapping.get(func_spec[1], None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec[0]) else: raise ValueError( "spec_functions must be of type: List[Union[str, Tuple[str, str]]]" ) if func_sync is None: if func_async is not None: func_sync = patch_sync(func_async) else: raise ValueError( f"Could not retrieve a function for spec: {func_spec}" ) tool = FunctionTool.from_defaults( fn=func_sync, async_fn=func_async, tool_metadata=metadata, ) tool_list.append(tool) return tool_list def patch_sync(func_async: AsyncCallable) -> Callable: """Patch sync function from async function.""" def patched_sync(*args: Any, **kwargs: Any) -> Any: try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(func_async(*args, **kwargs)) return patched_sync
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import tanh_shrink
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy
import inspect import threading from typing import Awaitable, Callable, ParamSpec, TypeVar, cast, overload P = ParamSpec("P") R = TypeVar("R") @overload def thread_cached(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[R]]: ... @overload def thread_cached(func: Callable[P, R]) -> Callable[P, R]: ... def thread_cached( func: Callable[P, R] | Callable[P, Awaitable[R]], ) -> Callable[P, R] | Callable[P, Awaitable[R]]: thread_local = threading.local() def _clear(): if hasattr(thread_local, "cache"): del thread_local.cache if inspect.iscoroutinefunction(func): async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} key = (args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = await cast(Callable[P, Awaitable[R]], func)( *args, **kwargs ) return cache[key] setattr(async_wrapper, "clear_cache", _clear) return async_wrapper else: def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} key = (args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] setattr(sync_wrapper, "clear_cache", _clear) return sync_wrapper def clear_thread_cache(func: Callable) -> None: if clear := getattr(func, "clear_cache", None): clear()
import inspect import threading from typing import Any, Awaitable, Callable, ParamSpec, TypeVar, cast, overload P = ParamSpec("P") R = TypeVar("R") @overload def thread_cached(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[R]]: ... @overload def thread_cached(func: Callable[P, R]) -> Callable[P, R]: ... def thread_cached( func: Callable[P, R] | Callable[P, Awaitable[R]], ) -> Callable[P, R] | Callable[P, Awaitable[R]]: thread_local = threading.local() if inspect.iscoroutinefunction(func): async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} key = (args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = await cast(Callable[P, Awaitable[R]], func)( *args, **kwargs ) return cache[key] return async_wrapper else: def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> R: cache = getattr(thread_local, "cache", None) if cache is None: cache = thread_local.cache = {} # Include function in the key to prevent collisions between different functions key = (args, tuple(sorted(kwargs.items()))) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return sync_wrapper def clear_thread_cache(func: Callable[..., Any]) -> None: """Clear the cache for a thread-cached function.""" thread_local = threading.local() cache = getattr(thread_local, "cache", None) if cache is not None: # Clear all entries that match the function for key in list(cache.keys()): if key and len(key) > 0 and key[0] == func: del cache[key]
import logging from typing import Any from autogpt_libs.utils.cache import thread_cached from backend.data.block import ( Block, BlockCategory, BlockInput, BlockOutput, BlockSchema, BlockType, get_block, ) from backend.data.execution import ExecutionStatus from backend.data.model import SchemaField from backend.util import json logger = logging.getLogger(__name__) @thread_cached def get_executor_manager_client(): from backend.executor import ExecutionManager from backend.util.service import get_service_client return get_service_client(ExecutionManager) @thread_cached def get_event_bus(): from backend.data.execution import RedisExecutionEventBus return RedisExecutionEventBus() class AgentExecutorBlock(Block): class Input(BlockSchema): user_id: str = SchemaField(description="User ID") graph_id: str = SchemaField(description="Graph ID") graph_version: int = SchemaField(description="Graph Version") data: BlockInput = SchemaField(description="Input data for the graph") input_schema: dict = SchemaField(description="Input schema for the graph") output_schema: dict = SchemaField(description="Output schema for the graph") @classmethod def get_input_schema(cls, data: BlockInput) -> dict[str, Any]: return data.get("input_schema", {}) @classmethod def get_input_defaults(cls, data: BlockInput) -> BlockInput: return data.get("data", {}) @classmethod def get_missing_input(cls, data: BlockInput) -> set[str]: required_fields = cls.get_input_schema(data).get("required", []) return set(required_fields) - set(data) @classmethod def get_mismatch_error(cls, data: BlockInput) -> str | None: return json.validate_with_jsonschema(cls.get_input_schema(data), data) class Output(BlockSchema): pass def __init__(self): super().__init__( id="e189baac-8c20-45a1-94a7-55177ea42565", description="Executes an existing agent inside your agent", input_schema=AgentExecutorBlock.Input, output_schema=AgentExecutorBlock.Output, block_type=BlockType.AGENT, categories={BlockCategory.AGENT}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: executor_manager = get_executor_manager_client() event_bus = get_event_bus() graph_exec = executor_manager.add_execution( graph_id=input_data.graph_id, graph_version=input_data.graph_version, user_id=input_data.user_id, data=input_data.data, ) log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.graph_exec_id}" logger.info(f"Starting execution of {log_id}") for event in event_bus.listen( user_id=graph_exec.user_id, graph_id=graph_exec.graph_id, graph_exec_id=graph_exec.graph_exec_id, ): logger.info( f"Execution {log_id} produced input {event.input_data} output {event.output_data}" ) if not event.node_id: if event.status in [ ExecutionStatus.COMPLETED, ExecutionStatus.TERMINATED, ExecutionStatus.FAILED, ]: logger.info(f"Execution {log_id} ended with status {event.status}") break else: continue if not event.block_id: logger.warning(f"{log_id} received event without block_id {event}") continue block = get_block(event.block_id) if not block or block.block_type != BlockType.OUTPUT: continue output_name = event.input_data.get("name") if not output_name: logger.warning(f"{log_id} produced an output with no name {event}") continue for output_data in event.output_data.get("output", []): logger.info(f"Execution {log_id} produced {output_name}: {output_data}") yield output_name, output_data
import logging from typing import Any from autogpt_libs.utils.cache import thread_cached from backend.data.block import ( Block, BlockCategory, BlockInput, BlockOutput, BlockSchema, BlockType, get_block, ) from backend.data.execution import ExecutionStatus from backend.data.model import SchemaField from backend.util import json logger = logging.getLogger(__name__) @thread_cached def get_executor_manager_client(): from backend.executor import ExecutionManager from backend.util.service import get_service_client return get_service_client(ExecutionManager) @thread_cached def get_event_bus(): from backend.data.execution import RedisExecutionEventBus return RedisExecutionEventBus() class AgentExecutorBlock(Block): class Input(BlockSchema): user_id: str = SchemaField(description="User ID") graph_id: str = SchemaField(description="Graph ID") graph_version: int = SchemaField(description="Graph Version") data: BlockInput = SchemaField(description="Input data for the graph") input_schema: dict = SchemaField(description="Input schema for the graph") output_schema: dict = SchemaField(description="Output schema for the graph") @classmethod def get_input_schema(cls, data: BlockInput) -> dict[str, Any]: return data.get("input_schema", {}) @classmethod def get_input_defaults(cls, data: BlockInput) -> BlockInput: return data.get("data", {}) @classmethod def get_missing_input(cls, data: BlockInput) -> set[str]: required_fields = cls.get_input_schema(data).get("required", []) return set(required_fields) - set(data) @classmethod def get_mismatch_error(cls, data: BlockInput) -> str | None: return json.validate_with_jsonschema(cls.get_input_schema(data), data) class Output(BlockSchema): pass def __init__(self): super().__init__( id="e189baac-8c20-45a1-94a7-55177ea42565", description="Executes an existing agent inside your agent", input_schema=AgentExecutorBlock.Input, output_schema=AgentExecutorBlock.Output, block_type=BlockType.AGENT, categories={BlockCategory.AGENT}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: executor_manager = get_executor_manager_client() event_bus = get_event_bus() graph_exec = executor_manager.add_execution( graph_id=input_data.graph_id, graph_version=input_data.graph_version, user_id=input_data.user_id, data=input_data.data, ) log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.graph_exec_id}" logger.info(f"Starting execution of {log_id}") for event in event_bus.listen( graph_id=graph_exec.graph_id, graph_exec_id=graph_exec.graph_exec_id ): logger.info( f"Execution {log_id} produced input {event.input_data} output {event.output_data}" ) if not event.node_id: if event.status in [ ExecutionStatus.COMPLETED, ExecutionStatus.TERMINATED, ExecutionStatus.FAILED, ]: logger.info(f"Execution {log_id} ended with status {event.status}") break else: continue if not event.block_id: logger.warning(f"{log_id} received event without block_id {event}") continue block = get_block(event.block_id) if not block or block.block_type != BlockType.OUTPUT: continue output_name = event.input_data.get("name") if not output_name: logger.warning(f"{log_id} produced an output with no name {event}") continue for output_data in event.output_data.get("output", []): logger.info(f"Execution {log_id} produced {output_name}: {output_data}") yield output_name, output_data
# Copyright 2025 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ...configuration_utils import ConfigMixin, register_to_config from ...utils.torch_utils import randn_tensor from ..scheduling_utils import SchedulerMixin class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin): """ `ScoreSdeVpScheduler` is a variance preserving stochastic differential equation (SDE) scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 2000): The number of diffusion steps to train the model. beta_min (`int`, defaults to 0.1): beta_max (`int`, defaults to 20): sampling_eps (`int`, defaults to 1e-3): The end value of sampling where timesteps decrease progressively from 1 to epsilon. """ order = 1 @register_to_config def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3): self.sigmas = None self.discrete_sigmas = None self.timesteps = None def set_timesteps(self, num_inference_steps, device: Union[str, torch.device] = None): """ Sets the continuous timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps, device=device) def step_pred(self, score, x, t, generator=None): """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: score (): x (): t (): generator (`torch.Generator`, *optional*): A random number generator. """ if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score log_mean_coeff = -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min std = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) std = std.flatten() while len(std.shape) < len(score.shape): std = std.unsqueeze(-1) score = -score / std # compute dt = -1.0 / len(self.timesteps) beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) beta_t = beta_t.flatten() while len(beta_t.shape) < len(x.shape): beta_t = beta_t.unsqueeze(-1) drift = -0.5 * beta_t * x diffusion = torch.sqrt(beta_t) drift = drift - diffusion**2 * score x_mean = x + drift * dt # add noise noise = randn_tensor(x.shape, layout=x.layout, generator=generator, device=x.device, dtype=x.dtype) x = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__(self): return self.config.num_train_timesteps
# Copyright 2024 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ...configuration_utils import ConfigMixin, register_to_config from ...utils.torch_utils import randn_tensor from ..scheduling_utils import SchedulerMixin class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin): """ `ScoreSdeVpScheduler` is a variance preserving stochastic differential equation (SDE) scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 2000): The number of diffusion steps to train the model. beta_min (`int`, defaults to 0.1): beta_max (`int`, defaults to 20): sampling_eps (`int`, defaults to 1e-3): The end value of sampling where timesteps decrease progressively from 1 to epsilon. """ order = 1 @register_to_config def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3): self.sigmas = None self.discrete_sigmas = None self.timesteps = None def set_timesteps(self, num_inference_steps, device: Union[str, torch.device] = None): """ Sets the continuous timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps, device=device) def step_pred(self, score, x, t, generator=None): """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: score (): x (): t (): generator (`torch.Generator`, *optional*): A random number generator. """ if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score log_mean_coeff = -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min std = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) std = std.flatten() while len(std.shape) < len(score.shape): std = std.unsqueeze(-1) score = -score / std # compute dt = -1.0 / len(self.timesteps) beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) beta_t = beta_t.flatten() while len(beta_t.shape) < len(x.shape): beta_t = beta_t.unsqueeze(-1) drift = -0.5 * beta_t * x diffusion = torch.sqrt(beta_t) drift = drift - diffusion**2 * score x_mean = x + drift * dt # add noise noise = randn_tensor(x.shape, layout=x.layout, generator=generator, device=x.device, dtype=x.dtype) x = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__(self): return self.config.num_train_timesteps
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, GIoULoss, IoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .mse_loss import MSELoss, mse_loss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss' ]
from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, GIoULoss, IoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .mse_loss import MSELoss, mse_loss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss' ]
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import RerankingEvaluator from sentence_transformers.util import cos_sim if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseRerankingEvaluator(RerankingEvaluator): def __init__( self, samples: list[dict[str, str | list[str]]], at_k: int = 10, name: str = "", write_csv: bool = True, similarity_fct: Callable[[Tensor, Tensor], Tensor] = cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True, truncate_dim: int | None = None, mrr_at_k: int | None = None, ): return super().__init__( samples=samples, at_k=at_k, name=name, write_csv=write_csv, similarity_fct=similarity_fct, batch_size=batch_size, show_progress_bar=show_progress_bar, use_batched_encoding=use_batched_encoding, truncate_dim=truncate_dim, mrr_at_k=mrr_at_k, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def compute_metrices(self, model: SparseEncoder): return super().compute_metrices(model) def compute_metrices_batched(self, model: SparseEncoder): return super().compute_metrices_batched(model) def compute_metrices_individual(self, model: SparseEncoder): return super().compute_metrices_individual(model) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, show_progress_bar: bool | None = None, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=show_progress_bar, convert_to_sparse_tensor=True, convert_to_tensor=False, # as we are using slicing on sparse tensors that is not supported so we want to keep a list of sparse tensors **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import RerankingEvaluator from sentence_transformers.util import cos_sim if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseRerankingEvaluator(RerankingEvaluator): def __init__( self, samples: list[dict[str, str | list[str]]], at_k: int = 10, name: str = "", write_csv: bool = True, similarity_fct: Callable[[Tensor, Tensor], Tensor] = cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True, truncate_dim: int | None = None, mrr_at_k: int | None = None, ): return super().__init__( samples=samples, at_k=at_k, name=name, write_csv=write_csv, similarity_fct=similarity_fct, batch_size=batch_size, show_progress_bar=show_progress_bar, use_batched_encoding=use_batched_encoding, truncate_dim=truncate_dim, mrr_at_k=mrr_at_k, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def compute_metrices(self, model: SparseEncoder): return super().compute_metrices(model) def compute_metrices_batched(self, model: SparseEncoder): return super().compute_metrices_batched(model) def compute_metrices_individual(self, model: SparseEncoder): return super().compute_metrices_individual(model) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, show_progress_bar: bool | None = None, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=show_progress_bar, convert_to_sparse_tensor=True, convert_to_tensor=False, # as we are using slicing on sparse tensors that is not supported so we want to keep a list of sparse tensors **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
"""DeepMemory Retrieval Pack.""" from typing import Any, Dict, List, Optional from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.schema import TextNode from llama_index.core.storage.storage_context import StorageContext from llama_index.vector_stores.deeplake import DeepLakeVectorStore class DeepMemoryRetrieverPack(BaseLlamaPack): """DeepMemory retriever pack.""" def __init__( self, dataset_path: str = "llama_index", token: Optional[str] = None, read_only: Optional[bool] = False, overwrite: bool = False, verbose: bool = True, nodes: Optional[List[TextNode]] = None, top_k: int = 4, **kwargs: Any, ): self._vector_store = DeepLakeVectorStore( dataset_path=dataset_path, token=token, read_only=read_only, overwrite=overwrite, verbose=verbose, ) if nodes is not None: self._storage_context = StorageContext.from_defaults( vector_store=self._vector_store ) self._index = VectorStoreIndex( nodes, storage_context=self._storage_context, **kwargs ) else: self._index = VectorStoreIndex.from_vector_store( self._vector_store, **kwargs ) self._storage_context = self._index.storage_context self.retriever = self._index.as_retriever( similarity_top_k=top_k, vector_store_kwargs={"deep_memory": True} ) self.query_engine = RetrieverQueryEngine.from_args(retriever=self.retriever) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "vector_store": self._vector_store, "storage_context": self._storage_context, "index": self._index, "retriever": self.retriever, "query_engine": self.query_engine, } def retrieve(self, query_str: str) -> Any: """Retrieve.""" return self.retriever.retrieve(query_str) def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
"""DeepMemory Retrieval Pack.""" from typing import Any, Dict, List, Optional from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.schema import TextNode from llama_index.core.storage.storage_context import StorageContext from llama_index.vector_stores.deeplake import DeepLakeVectorStore class DeepMemoryRetrieverPack(BaseLlamaPack): """DeepMemory retriever pack.""" def __init__( self, dataset_path: str = "llama_index", token: Optional[str] = None, read_only: Optional[bool] = False, overwrite: bool = False, verbose: bool = True, nodes: Optional[List[TextNode]] = None, top_k: int = 4, **kwargs: Any, ): self._vector_store = DeepLakeVectorStore( dataset_path=dataset_path, token=token, read_only=read_only, overwrite=overwrite, verbose=verbose, ) if nodes is not None: self._storage_context = StorageContext.from_defaults( vector_store=self._vector_store ) self._index = VectorStoreIndex( nodes, storage_context=self._storage_context, **kwargs ) else: self._index = VectorStoreIndex.from_vector_store( self._vector_store, **kwargs ) self._storage_context = self._index.storage_context self.retriever = self._index.as_retriever( similarity_top_k=top_k, vector_store_kwargs={"deep_memory": True} ) self.query_engine = RetrieverQueryEngine.from_args(retriever=self.retriever) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "vector_store": self._vector_store, "storage_context": self._storage_context, "index": self._index, "retriever": self.retriever, "query_engine": self.query_engine, } def retrieve(self, query_str: str) -> Any: """Retrieve.""" return self.retriever.retrieve(query_str) def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
from fastapi import FastAPI from fastapi.openapi.docs import ( get_redoc_html, get_swagger_ui_html, get_swagger_ui_oauth2_redirect_html, ) app = FastAPI(docs_url=None, redoc_url=None) @app.get("/docs", include_in_schema=False) async def custom_swagger_ui_html(): return get_swagger_ui_html( openapi_url=app.openapi_url, title=app.title + " - Swagger UI", oauth2_redirect_url=app.swagger_ui_oauth2_redirect_url, swagger_js_url="https://unpkg.com/swagger-ui-dist@5/swagger-ui-bundle.js", swagger_css_url="https://unpkg.com/swagger-ui-dist@5/swagger-ui.css", ) @app.get(app.swagger_ui_oauth2_redirect_url, include_in_schema=False) async def swagger_ui_redirect(): return get_swagger_ui_oauth2_redirect_html() @app.get("/redoc", include_in_schema=False) async def redoc_html(): return get_redoc_html( openapi_url=app.openapi_url, title=app.title + " - ReDoc", redoc_js_url="https://unpkg.com/redoc@2/bundles/redoc.standalone.js", ) @app.get("/users/{username}") async def read_user(username: str): return {"message": f"Hello {username}"}
from fastapi import FastAPI from fastapi.openapi.docs import ( get_redoc_html, get_swagger_ui_html, get_swagger_ui_oauth2_redirect_html, ) app = FastAPI(docs_url=None, redoc_url=None) @app.get("/docs", include_in_schema=False) async def custom_swagger_ui_html(): return get_swagger_ui_html( openapi_url=app.openapi_url, title=app.title + " - Swagger UI", oauth2_redirect_url=app.swagger_ui_oauth2_redirect_url, swagger_js_url="https://unpkg.com/swagger-ui-dist@5/swagger-ui-bundle.js", swagger_css_url="https://unpkg.com/swagger-ui-dist@5/swagger-ui.css", ) @app.get(app.swagger_ui_oauth2_redirect_url, include_in_schema=False) async def swagger_ui_redirect(): return get_swagger_ui_oauth2_redirect_html() @app.get("/redoc", include_in_schema=False) async def redoc_html(): return get_redoc_html( openapi_url=app.openapi_url, title=app.title + " - ReDoc", redoc_js_url="https://unpkg.com/redoc@next/bundles/redoc.standalone.js", ) @app.get("/users/{username}") async def read_user(username: str): return {"message": f"Hello {username}"}
# Copyright (c) OpenMMLab. All rights reserved. # from mmengine.dist import get_dist_info, all_reduce from collections import OrderedDict from typing import Generator, List from unittest.mock import MagicMock, Mock import torch from torch._utils import (_flatten_dense_tensors, _take_tensors, _unflatten_dense_tensors) from mmengine.registry import HOOKS from .hook import Hook # TODO, replace with import mmengine.dist as dist dist = Mock() dist.IS_DIST = MagicMock(return_value=True) # TODO, replace with mmengine.dist.get_dist_info get_dist_info = MagicMock(return_value=(0, 1)) # TODO, replace with mmengine.dist.all_reduce all_reduce = MagicMock() # TODO, may need to move to dist.utils after implementing dist module def _allreduce_coalesced(tensors: List[torch.Tensor], world_size: int, bucket_size_mb: int = -1) -> None: """All-reduce a sequence of tensors as a whole. Args: tensors (List[torch.Tensor]): A sequence of tensors to be all-reduced. world_size (int): The world size of the process group. bucket_size_mb (int): The limit of each chunk in megabytes for grouping tensors into chunks. Defaults to -1. """ if bucket_size_mb > 0: bucket_size_bytes = bucket_size_mb * 1024 * 1024 buckets = _take_tensors(tensors, bucket_size_bytes) else: buckets = OrderedDict() for tensor in tensors: tp = tensor.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(tensor) buckets = buckets.values() for bucket in buckets: flat_tensors = _flatten_dense_tensors(bucket) all_reduce(flat_tensors) flat_tensors.div_(world_size) for tensor, synced in zip( bucket, _unflatten_dense_tensors(flat_tensors, bucket)): tensor.copy_(synced) def allreduce_params(params: Generator[torch.Tensor, None, None], coalesce: bool = True, bucket_size_mb: int = -1) -> None: """All-reduce parameters. Args: params (Generator[torch.Tensor, None, None]): List of parameters or buffers of a model. coalesce (bool, optional): Whether to reduce parameters as a whole. Defaults to True. bucket_size_mb (int, optional): Size of bucket, the unit is MB. Defaults to -1. """ _, world_size = get_dist_info() if world_size == 1: return params_data = [param.data for param in params] if coalesce: _allreduce_coalesced(params_data, world_size, bucket_size_mb) else: for tensor in params_data: all_reduce(tensor.div_(world_size)) @HOOKS.register_module() class SyncBuffersHook(Hook): """Synchronize model buffers such as running_mean and running_var in BN at the end of each epoch.""" priority = 'NORMAL' def __init__(self) -> None: self.distributed = dist.IS_DIST def after_train_epoch(self, runner) -> None: """All-reduce model buffers at the end of each epoch. Args: runner (Runner): The runner of the training process. """ if self.distributed: allreduce_params(runner.model.buffers())
# Copyright (c) OpenMMLab. All rights reserved. # from mmengine.dist import get_dist_info, all_reduce from collections import OrderedDict from typing import Generator, List from unittest.mock import MagicMock, Mock import torch from torch._utils import (_flatten_dense_tensors, _take_tensors, _unflatten_dense_tensors) from mmengine.registry import HOOKS from .hook import Hook # TODO, replace with import mmengine.dist as dist dist = Mock() dist.IS_DIST = MagicMock(return_value=True) # TODO, replace with mmengine.dist.get_dist_info get_dist_info = MagicMock(return_value=(0, 1)) # TODO, replace with mmengine.dist.all_reduce all_reduce = MagicMock() # TODO, may need to move to dist.utils after implementing dist module def _allreduce_coalesced(tensors: List[torch.Tensor], world_size: int, bucket_size_mb: int = -1) -> None: """All-reduce a sequence of tensors as a whole. Args: tensors (List[torch.Tensor]): A sequence of tensors to be all-reduced. world_size (int): The world size of the process group. bucket_size_mb (int): The limit of each chunk in megabytes for grouping tensors into chunks. Defaults to -1. """ if bucket_size_mb > 0: bucket_size_bytes = bucket_size_mb * 1024 * 1024 buckets = _take_tensors(tensors, bucket_size_bytes) else: buckets = OrderedDict() for tensor in tensors: tp = tensor.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(tensor) buckets = buckets.values() for bucket in buckets: flat_tensors = _flatten_dense_tensors(bucket) all_reduce(flat_tensors) flat_tensors.div_(world_size) for tensor, synced in zip( bucket, _unflatten_dense_tensors(flat_tensors, bucket)): tensor.copy_(synced) def allreduce_params(params: Generator[torch.Tensor, None, None], coalesce: bool = True, bucket_size_mb: int = -1) -> None: """All-reduce parameters. Args: params (Generator[torch.Tensor, None, None]): List of parameters or buffers of a model. coalesce (bool, optional): Whether to reduce parameters as a whole. Defaults to True. bucket_size_mb (int, optional): Size of bucket, the unit is MB. Defaults to -1. """ _, world_size = get_dist_info() if world_size == 1: return params_data = [param.data for param in params] if coalesce: _allreduce_coalesced(params_data, world_size, bucket_size_mb) else: for tensor in params_data: all_reduce(tensor.div_(world_size)) @HOOKS.register_module() class SyncBuffersHook(Hook): """Synchronize model buffers such as running_mean and running_var in BN at the end of each epoch.""" priority = 'NORMAL' def __init__(self) -> None: self.distributed = dist.IS_DIST def after_epoch(self, runner) -> None: """All-reduce model buffers at the end of each epoch. Args: runner (Runner): The runner of the training process. """ if self.distributed: allreduce_params(runner.model.buffers())
_base_ = 'ssd300_coco.py' # model settings input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.1, 0.9), strides=[8, 16, 32, 64, 128, 256, 512], ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = 'ssd300_coco.py' # model settings input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.1, 0.9), strides=[8, 16, 32, 64, 128, 256, 512], ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
import subprocess import pytest from flair_text import FlairTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 100 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=FlairTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"cuda"', ], timeout=30, check=True, )
import subprocess import pytest from flair_text import FlairTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 100 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=FlairTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Sequence, Tuple import torch import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from mmdet.registry import MODELS from mmdet.utils import OptMultiConfig @MODELS.register_module() class CTResNetNeck(BaseModule): """The neck used in `CenterNet <https://arxiv.org/abs/1904.07850>`_ for object classification and box regression. Args: in_channels (int): Number of input channels. num_deconv_filters (tuple[int]): Number of filters per stage. num_deconv_kernels (tuple[int]): Number of kernels per stage. use_dcn (bool): If True, use DCNv2. Defaults to True. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`], optional): Initialization config dict. """ def __init__(self, in_channels: int, num_deconv_filters: Tuple[int, ...], num_deconv_kernels: Tuple[int, ...], use_dcn: bool = True, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) assert len(num_deconv_filters) == len(num_deconv_kernels) self.fp16_enabled = False self.use_dcn = use_dcn self.in_channels = in_channels self.deconv_layers = self._make_deconv_layer(num_deconv_filters, num_deconv_kernels) def _make_deconv_layer( self, num_deconv_filters: Tuple[int, ...], num_deconv_kernels: Tuple[int, ...]) -> nn.Sequential: """use deconv layers to upsample backbone's output.""" layers = [] for i in range(len(num_deconv_filters)): feat_channels = num_deconv_filters[i] conv_module = ConvModule( self.in_channels, feat_channels, 3, padding=1, conv_cfg=dict(type='DCNv2') if self.use_dcn else None, norm_cfg=dict(type='BN')) layers.append(conv_module) upsample_module = ConvModule( feat_channels, feat_channels, num_deconv_kernels[i], stride=2, padding=1, conv_cfg=dict(type='deconv'), norm_cfg=dict(type='BN')) layers.append(upsample_module) self.in_channels = feat_channels return nn.Sequential(*layers) def init_weights(self) -> None: """Initialize the parameters.""" for m in self.modules(): if isinstance(m, nn.ConvTranspose2d): # In order to be consistent with the source code, # reset the ConvTranspose2d initialization parameters m.reset_parameters() # Simulated bilinear upsampling kernel w = m.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * ( 1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # self.use_dcn is False elif not self.use_dcn and isinstance(m, nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x: Sequence[torch.Tensor]) -> Tuple[torch.Tensor]: """model forward.""" assert isinstance(x, (list, tuple)) outs = self.deconv_layers(x[-1]) return outs,
# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Sequence, Tuple import torch import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from mmdet.core.utils import OptMultiConfig from mmdet.registry import MODELS @MODELS.register_module() class CTResNetNeck(BaseModule): """The neck used in `CenterNet <https://arxiv.org/abs/1904.07850>`_ for object classification and box regression. Args: in_channels (int): Number of input channels. num_deconv_filters (tuple[int]): Number of filters per stage. num_deconv_kernels (tuple[int]): Number of kernels per stage. use_dcn (bool): If True, use DCNv2. Defaults to True. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`], optional): Initialization config dict. """ def __init__(self, in_channels: int, num_deconv_filters: Tuple[int, ...], num_deconv_kernels: Tuple[int, ...], use_dcn: bool = True, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) assert len(num_deconv_filters) == len(num_deconv_kernels) self.fp16_enabled = False self.use_dcn = use_dcn self.in_channels = in_channels self.deconv_layers = self._make_deconv_layer(num_deconv_filters, num_deconv_kernels) def _make_deconv_layer( self, num_deconv_filters: Tuple[int, ...], num_deconv_kernels: Tuple[int, ...]) -> nn.Sequential: """use deconv layers to upsample backbone's output.""" layers = [] for i in range(len(num_deconv_filters)): feat_channels = num_deconv_filters[i] conv_module = ConvModule( self.in_channels, feat_channels, 3, padding=1, conv_cfg=dict(type='DCNv2') if self.use_dcn else None, norm_cfg=dict(type='BN')) layers.append(conv_module) upsample_module = ConvModule( feat_channels, feat_channels, num_deconv_kernels[i], stride=2, padding=1, conv_cfg=dict(type='deconv'), norm_cfg=dict(type='BN')) layers.append(upsample_module) self.in_channels = feat_channels return nn.Sequential(*layers) def init_weights(self) -> None: """Initialize the parameters.""" for m in self.modules(): if isinstance(m, nn.ConvTranspose2d): # In order to be consistent with the source code, # reset the ConvTranspose2d initialization parameters m.reset_parameters() # Simulated bilinear upsampling kernel w = m.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * ( 1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # self.use_dcn is False elif not self.use_dcn and isinstance(m, nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x: Sequence[torch.Tensor]) -> Tuple[torch.Tensor]: """model forward.""" assert isinstance(x, (list, tuple)) outs = self.deconv_layers(x[-1]) return outs,
""" This example uses average word embeddings (for example from GloVe). It adds two fully-connected feed-forward layers (dense layers) to create a Deep Averaging Network (DAN). If 'glove.6B.300d.txt.gz' does not exist, it tries to download it from our server. See https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/ for available word embeddings files """ import traceback from datasets import load_dataset from sentence_transformers import models, losses from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) num_train_epochs = 1 batch_size = 32 output_dir = "output/training_stsbenchmark_avg_word_embeddings-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 2. Define the model # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file("glove.6B.300d.txt.gz") # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode="mean", ) # Add two trainable feed-forward networks (DAN) sent_embeddings_dimension = pooling_model.get_sentence_embedding_dimension() dan1 = models.Dense(in_features=sent_embeddings_dimension, out_features=sent_embeddings_dimension) dan2 = models.Dense(in_features=sent_embeddings_dimension, out_features=sent_embeddings_dimension) model = SentenceTransformer(modules=[word_embedding_model, pooling_model, dan1, dan2]) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/losses.html#cosentloss) needs two text columns and # one similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="glove-mean-pooling-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = "glove-mean-pooling-sts" try: model.push_to_hub(model_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}')`." )
""" This example uses average word embeddings (for example from GloVe). It adds two fully-connected feed-forward layers (dense layers) to create a Deep Averaging Network (DAN). If 'glove.6B.300d.txt.gz' does not exist, it tries to download it from our server. See https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/ for available word embeddings files """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses, util from sentence_transformers import LoggingHandler, SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import os import csv import gzip #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Read the dataset batch_size = 32 model_save_path = "output/training_stsbenchmark_avg_word_embeddings-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file("glove.6B.300d.txt.gz") # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) # Add two trainable feed-forward networks (DAN) sent_embeddings_dimension = pooling_model.get_sentence_embedding_dimension() dan1 = models.Dense(in_features=sent_embeddings_dimension, out_features=sent_embeddings_dimension) dan2 = models.Dense(in_features=sent_embeddings_dimension, out_features=sent_embeddings_dimension) model = SentenceTransformer(modules=[word_embedding_model, pooling_model, dan1, dan2]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training num_epochs = 10 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") model.evaluate(test_evaluator)
from docarray.documents.text import Text def test_text_document_operators(): doc = Text(text='text', url='url.com') assert doc == 'text' assert doc != 'url.com' doc2 = Text(id=doc.id, text='text', url='url.com') assert doc == doc2 doc3 = Text(id='other-id', text='text', url='url.com') assert doc != doc3 assert 't' in doc assert 'a' not in doc t = Text(text='this is my text document') assert 'text' in t assert 'docarray' not in t text = Text() assert text is not None assert text.text is None
from docarray.documents.text import Text def test_text_document_operators(): doc = Text(text='text', url='url.com') assert doc == 'text' assert doc != 'url.com' doc2 = Text(id=doc.id, text='text', url='url.com') assert doc == doc2 doc3 = Text(id='other-id', text='text', url='url.com') assert doc != doc3 assert 't' in doc assert 'a' not in doc t = Text(text='this is my text document') assert 'text' in t assert 'docarray' not in t
_base_ = './retinanet_r50-caffe_fpn_ms-3x_coco.py' # learning policy model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = './retinanet_r50-caffe_fpn_ms-3x_coco.py' # learning policy model = dict( pretrained='open-mmlab://detectron2/resnet101_caffe', backbone=dict(depth=101))
from llama_index_instrumentation.span import active_span_id from llama_index_instrumentation.span.base import BaseSpan from llama_index_instrumentation.span.simple import SimpleSpan __all__ = ["BaseSpan", "SimpleSpan", "active_span_id"]
from contextvars import ContextVar from typing import Optional from llama_index.core.instrumentation.span.base import BaseSpan from llama_index.core.instrumentation.span.simple import SimpleSpan # ContextVar for managing active spans active_span_id: ContextVar[Optional[str]] = ContextVar("active_span_id", default=None) active_span_id.set(None) __all__ = ["BaseSpan", "SimpleSpan", "active_span_id"]
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False, backend_args=backend_args) test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=2, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file=data_root + 'annotations/image_info_test-dev2017.json', # data_prefix=dict(img='test2017/'), # test_mode=True, # pipeline=test_pipeline)) # test_evaluator = dict( # type='CocoMetric', # metric=['bbox', 'segm'], # format_only=True, # ann_file=data_root + 'annotations/image_info_test-dev2017.json', # outfile_prefix='./work_dirs/coco_instance/test')
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=2, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file=data_root + 'annotations/image_info_test-dev2017.json', # data_prefix=dict(img='test2017/'), # test_mode=True, # pipeline=test_pipeline)) # test_evaluator = dict( # type='CocoMetric', # metric=['bbox', 'segm'], # format_only=True, # ann_file=data_root + 'annotations/image_info_test-dev2017.json', # outfile_prefix='./work_dirs/coco_instance/test')
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput, SchedulerMixin, UNet2DModel class CustomLocalPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet: UNet2DModel, scheduler: SchedulerMixin): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=image), "This is a local test"
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class CustomLocalPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=image), "This is a local test"
__version__ = '0.30.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
__version__ = '0.30.0' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .ddq_detr_aux_loss import DDQAuxLoss from .dice_loss import DiceLoss from .eqlv2_loss import EQLV2Loss from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, EIoULoss, GIoULoss, IoULoss, SIoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .l2_loss import L2Loss from .margin_loss import MarginL2Loss from .mse_loss import MSELoss, mse_loss from .multipos_cross_entropy_loss import MultiPosCrossEntropyLoss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .triplet_loss import TripletLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'EIoULoss', 'SIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss', 'EQLV2Loss', 'MarginL2Loss', 'MultiPosCrossEntropyLoss', 'L2Loss', 'TripletLoss', 'DDQAuxLoss' ]
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .dice_loss import DiceLoss from .eqlv2_loss import EQLV2Loss from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, EIoULoss, GIoULoss, IoULoss, SIoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .l2_loss import L2Loss from .margin_loss import MarginL2Loss from .mse_loss import MSELoss, mse_loss from .multipos_cross_entropy_loss import MultiPosCrossEntropyLoss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .triplet_loss import TripletLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'EIoULoss', 'SIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss', 'EQLV2Loss', 'MarginL2Loss', 'MultiPosCrossEntropyLoss', 'L2Loss', 'TripletLoss' ]
from collections.abc import Sequence from inspect import signature from typing import Optional, Union from langchain_core.callbacks import Callbacks from langchain_core.documents import ( BaseDocumentCompressor, BaseDocumentTransformer, Document, ) from pydantic import ConfigDict class DocumentCompressorPipeline(BaseDocumentCompressor): """Document compressor that uses a pipeline of Transformers.""" transformers: list[Union[BaseDocumentTransformer, BaseDocumentCompressor]] """List of document filters that are chained together and run in sequence.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Transform a list of documents.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): accepts_callbacks = ( signature(_transformer.compress_documents).parameters.get( "callbacks" ) is not None ) if accepts_callbacks: documents = _transformer.compress_documents( documents, query, callbacks=callbacks ) else: documents = _transformer.compress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = _transformer.transform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress retrieved documents given the query context.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): accepts_callbacks = ( signature(_transformer.acompress_documents).parameters.get( "callbacks" ) is not None ) if accepts_callbacks: documents = await _transformer.acompress_documents( documents, query, callbacks=callbacks ) else: documents = await _transformer.acompress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = await _transformer.atransform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents
from collections.abc import Sequence from inspect import signature from typing import Optional, Union from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import ( BaseDocumentCompressor, BaseDocumentTransformer, Document, ) from pydantic import ConfigDict class DocumentCompressorPipeline(BaseDocumentCompressor): """Document compressor that uses a pipeline of Transformers.""" transformers: list[Union[BaseDocumentTransformer, BaseDocumentCompressor]] """List of document filters that are chained together and run in sequence.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Transform a list of documents.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): accepts_callbacks = ( signature(_transformer.compress_documents).parameters.get( "callbacks" ) is not None ) if accepts_callbacks: documents = _transformer.compress_documents( documents, query, callbacks=callbacks ) else: documents = _transformer.compress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = _transformer.transform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress retrieved documents given the query context.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): accepts_callbacks = ( signature(_transformer.acompress_documents).parameters.get( "callbacks" ) is not None ) if accepts_callbacks: documents = await _transformer.acompress_documents( documents, query, callbacks=callbacks ) else: documents = await _transformer.acompress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = await _transformer.atransform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents
from __future__ import annotations from typing import TYPE_CHECKING, Any, Optional, Tuple, Type from langchain_core.tools import BaseTool from langchain_core.utils import guard_import from pydantic import model_validator if TYPE_CHECKING: from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser else: try: # We do this so pydantic can resolve the types when instantiating from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser except ImportError: pass def lazy_import_playwright_browsers() -> Tuple[Type[AsyncBrowser], Type[SyncBrowser]]: """ Lazy import playwright browsers. Returns: Tuple[Type[AsyncBrowser], Type[SyncBrowser]]: AsyncBrowser and SyncBrowser classes. """ return ( guard_import(module_name="playwright.async_api").Browser, guard_import(module_name="playwright.sync_api").Browser, ) class BaseBrowserTool(BaseTool): """Base class for browser tools.""" sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None @model_validator(mode="before") @classmethod def validate_browser_provided(cls, values: dict) -> Any: """Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: raise ValueError("Either async_browser or sync_browser must be specified.") return values @classmethod def from_browser( cls, sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None, ) -> BaseBrowserTool: """Instantiate the tool.""" lazy_import_playwright_browsers() return cls(sync_browser=sync_browser, async_browser=async_browser) # type: ignore[call-arg]
from __future__ import annotations from typing import TYPE_CHECKING, Any, Optional, Tuple, Type from langchain_core.tools import BaseTool from langchain_core.utils import guard_import from pydantic import model_validator if TYPE_CHECKING: from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser else: try: # We do this so pydantic can resolve the types when instantiating from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser except ImportError: pass def lazy_import_playwright_browsers() -> Tuple[Type[AsyncBrowser], Type[SyncBrowser]]: """ Lazy import playwright browsers. Returns: Tuple[Type[AsyncBrowser], Type[SyncBrowser]]: AsyncBrowser and SyncBrowser classes. """ return ( guard_import(module_name="playwright.async_api").Browser, guard_import(module_name="playwright.sync_api").Browser, ) class BaseBrowserTool(BaseTool): # type: ignore[override] """Base class for browser tools.""" sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None @model_validator(mode="before") @classmethod def validate_browser_provided(cls, values: dict) -> Any: """Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: raise ValueError("Either async_browser or sync_browser must be specified.") return values @classmethod def from_browser( cls, sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None, ) -> BaseBrowserTool: """Instantiate the tool.""" lazy_import_playwright_browsers() return cls(sync_browser=sync_browser, async_browser=async_browser) # type: ignore[call-arg]
import os from source_separation.utils.dataset import wsj0mix from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase _FILENAMES = [ "012c0207_1.9952_01cc0202_-1.9952.wav", "01co0302_1.63_014c020q_-1.63.wav", "01do0316_0.24011_205a0104_-0.24011.wav", "01lc020x_1.1301_027o030r_-1.1301.wav", "01mc0202_0.34056_205o0106_-0.34056.wav", "01nc020t_0.53821_018o030w_-0.53821.wav", "01po030f_2.2136_40ko031a_-2.2136.wav", "01ra010o_2.4098_403a010f_-2.4098.wav", "01xo030b_0.22377_016o031a_-0.22377.wav", "02ac020x_0.68566_01ec020b_-0.68566.wav", "20co010m_0.82801_019c0212_-0.82801.wav", "20da010u_1.2483_017c0211_-1.2483.wav", "20oo010d_1.0631_01ic020s_-1.0631.wav", "20sc0107_2.0222_20fo010h_-2.0222.wav", "20tc010f_0.051456_404a0110_-0.051456.wav", "407c0214_1.1712_02ca0113_-1.1712.wav", "40ao030w_2.4697_20vc010a_-2.4697.wav", "40pa0101_1.1087_40ea0107_-1.1087.wav", ] def _mock_dataset(root_dir, num_speaker): dirnames = ["mix"] + [f"s{i+1}" for i in range(num_speaker)] for dirname in dirnames: os.makedirs(os.path.join(root_dir, dirname), exist_ok=True) seed = 0 sample_rate = 8000 expected = [] for filename in _FILENAMES: mix = None src = [] for dirname in dirnames: waveform = get_whitenoise(sample_rate=8000, duration=1, n_channels=1, dtype="int16", seed=seed) seed += 1 path = os.path.join(root_dir, dirname, filename) save_wav(path, waveform, sample_rate) waveform = normalize_wav(waveform) if dirname == "mix": mix = waveform else: src.append(waveform) expected.append((sample_rate, mix, src)) return expected class TestWSJ0Mix2(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 2) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=2, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected) class TestWSJ0Mix3(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 3) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=3, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[2], expected_src[2], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected)
import os from source_separation.utils.dataset import wsj0mix from torchaudio_unittest.common_utils import ( get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase, ) _FILENAMES = [ "012c0207_1.9952_01cc0202_-1.9952.wav", "01co0302_1.63_014c020q_-1.63.wav", "01do0316_0.24011_205a0104_-0.24011.wav", "01lc020x_1.1301_027o030r_-1.1301.wav", "01mc0202_0.34056_205o0106_-0.34056.wav", "01nc020t_0.53821_018o030w_-0.53821.wav", "01po030f_2.2136_40ko031a_-2.2136.wav", "01ra010o_2.4098_403a010f_-2.4098.wav", "01xo030b_0.22377_016o031a_-0.22377.wav", "02ac020x_0.68566_01ec020b_-0.68566.wav", "20co010m_0.82801_019c0212_-0.82801.wav", "20da010u_1.2483_017c0211_-1.2483.wav", "20oo010d_1.0631_01ic020s_-1.0631.wav", "20sc0107_2.0222_20fo010h_-2.0222.wav", "20tc010f_0.051456_404a0110_-0.051456.wav", "407c0214_1.1712_02ca0113_-1.1712.wav", "40ao030w_2.4697_20vc010a_-2.4697.wav", "40pa0101_1.1087_40ea0107_-1.1087.wav", ] def _mock_dataset(root_dir, num_speaker): dirnames = ["mix"] + [f"s{i+1}" for i in range(num_speaker)] for dirname in dirnames: os.makedirs(os.path.join(root_dir, dirname), exist_ok=True) seed = 0 sample_rate = 8000 expected = [] for filename in _FILENAMES: mix = None src = [] for dirname in dirnames: waveform = get_whitenoise(sample_rate=8000, duration=1, n_channels=1, dtype="int16", seed=seed) seed += 1 path = os.path.join(root_dir, dirname, filename) save_wav(path, waveform, sample_rate) waveform = normalize_wav(waveform) if dirname == "mix": mix = waveform else: src.append(waveform) expected.append((sample_rate, mix, src)) return expected class TestWSJ0Mix2(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 2) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=2, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected) class TestWSJ0Mix3(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 3) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=3, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[2], expected_src[2], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected)
# Owner(s): ["module: dynamo"] import torch import torch._dynamo import torch._dynamo.test_case @torch._dynamo.config.patch("capture_scalar_outputs", True) class ViewTests(torch._dynamo.test_case.TestCase): def test_view_to_2d(self): @torch.compile(fullgraph=True, backend="eager") def f(t, _u0): u0 = t[0].item() u1 = t[1].item() torch._check_is_size(u0) torch._check_is_size(u1) n = u0 * u1 a = torch.randn(n) return a.view(-1, _u0) t = torch.tensor([2, 4], dtype=torch.int32) f(t, 2) def test_view_to_1d(self): @torch.compile(fullgraph=True, backend="eager") def f(t, _n): u0 = t[0].item() u1 = t[1].item() torch._check_is_size(u0) torch._check_is_size(u1) a = torch.randn(u0, u1) return a.view(_n) t = torch.tensor([2, 4], dtype=torch.int32) f(t, 8) def test_view_with_tensor_shape_params(self): # Test for issue #156720: aten.view.default with tensor shape parameters class TestModel(torch.nn.Module): def forward(self, x, shape_params): return torch.ops.aten.view.default(x, shape_params) x = torch.randn(24) shape_params = [ torch.tensor(2, dtype=torch.int32), torch.tensor(3, dtype=torch.int32), torch.tensor(4, dtype=torch.int32), ] model = TestModel() expected = model(x, shape_params) compiled_model = torch.compile(model, backend="eager") result = compiled_model(x, shape_params) torch.testing.assert_close(result, expected) def test_tensor_view_with_tensor_shape_params(self): # Test tensor.view() method with tensor shape parameters (list version) class TestModel(torch.nn.Module): def forward(self, x, shape_params): return x.view(shape_params) x = torch.randn(24) shape_params = ( torch.tensor(2, dtype=torch.int32), torch.tensor(3, dtype=torch.int32), torch.tensor(4, dtype=torch.int32), ) model = TestModel() expected = model(x, shape_params) compiled_model = torch.compile(model, backend="eager") result = compiled_model(x, shape_params) torch.testing.assert_close(result, expected) def test_tensor_view_with_tensor_args(self): # Test tensor.view() method with individual tensor arguments class TestModel(torch.nn.Module): def forward(self, x, dim1, dim2, dim3): return x.view(dim1, dim2, dim3) x = torch.randn(24) dim1 = torch.tensor(2, dtype=torch.int32) dim2 = torch.tensor(3, dtype=torch.int32) dim3 = torch.tensor(4, dtype=torch.int32) model = TestModel() expected = model(x, dim1, dim2, dim3) compiled_model = torch.compile(model, backend="eager") result = compiled_model(x, dim1, dim2, dim3) torch.testing.assert_close(result, expected) def test_torch_reshape_with_tensor_shape_params(self): # Test torch.reshape() function with tensor shape parameters def test_fn(x, shape_params): return torch.reshape(x, shape_params) x = torch.randn(24) shape_params = [ torch.tensor(2, dtype=torch.int32), torch.tensor(3, dtype=torch.int32), torch.tensor(4, dtype=torch.int32), ] expected = test_fn(x, shape_params) compiled_fn = torch.compile(test_fn, backend="eager") result = compiled_fn(x, shape_params) torch.testing.assert_close(result, expected) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
# Owner(s): ["module: dynamo"] import torch import torch._dynamo import torch._dynamo.test_case @torch._dynamo.config.patch("capture_scalar_outputs", True) class ViewTests(torch._dynamo.test_case.TestCase): def test_view_to_2d(self): @torch.compile(fullgraph=True, backend="eager") def f(t, _u0): u0 = t[0].item() u1 = t[1].item() torch._check_is_size(u0) torch._check_is_size(u1) n = u0 * u1 a = torch.randn(n) return a.view(-1, _u0) t = torch.tensor([2, 4], dtype=torch.int32) f(t, 2) def test_view_to_1d(self): @torch.compile(fullgraph=True, backend="eager") def f(t, _n): u0 = t[0].item() u1 = t[1].item() torch._check_is_size(u0) torch._check_is_size(u1) a = torch.randn(u0, u1) return a.view(_n) t = torch.tensor([2, 4], dtype=torch.int32) f(t, 8) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
import pathlib from argparse import ArgumentParser import sentencepiece as spm from lightning import ConformerRNNTModule from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DDPPlugin from transforms import get_data_module def run_train(args): seed_everything(1) checkpoint_dir = args.exp_dir / "checkpoints" checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) train_checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/train_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, train_checkpoint, lr_monitor, ] trainer = Trainer( default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.nodes, gpus=args.gpus, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, gradient_clip_val=10.0, ) sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) model = ConformerRNNTModule(sp_model) data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path)) trainer.fit(model, data_module, ckpt_path=args.checkpoint_path) def cli_main(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", default=None, type=pathlib.Path, help="Path to checkpoint to use for evaluation.", ) parser.add_argument( "--exp-dir", default=pathlib.Path("./exp"), type=pathlib.Path, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--global-stats-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="Path to JSON file containing feature means and stddevs.", ) parser.add_argument( "--librispeech-path", type=pathlib.Path, help="Path to LibriSpeech datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=pathlib.Path, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=120, type=int, help="Number of epochs to train for. (Default: 120)", ) args = parser.parse_args() run_train(args) if __name__ == "__main__": cli_main()
import pathlib from argparse import ArgumentParser import sentencepiece as spm from lightning import ConformerRNNTModule from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DDPPlugin from transforms import get_data_module def run_train(args): seed_everything(1) checkpoint_dir = args.exp_dir / "checkpoints" checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) train_checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/train_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, train_checkpoint, lr_monitor, ] trainer = Trainer( default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.nodes, gpus=args.gpus, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, ) sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) model = ConformerRNNTModule(sp_model) data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path)) trainer.fit(model, data_module, ckpt_path=args.checkpoint_path) def cli_main(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", default=None, type=pathlib.Path, help="Path to checkpoint to use for evaluation.", ) parser.add_argument( "--exp-dir", default=pathlib.Path("./exp"), type=pathlib.Path, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--global-stats-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="Path to JSON file containing feature means and stddevs.", ) parser.add_argument( "--librispeech-path", type=pathlib.Path, help="Path to LibriSpeech datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=pathlib.Path, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=120, type=int, help="Number of epochs to train for. (Default: 120)", ) args = parser.parse_args() run_train(args) if __name__ == "__main__": cli_main()
from typing import Any, Optional from langchain_core.runnables.base import RunnableBindingBase from langchain_core.runnables.utils import Input, Output class HubRunnable(RunnableBindingBase[Input, Output]): """ An instance of a runnable stored in the LangChain Hub. """ owner_repo_commit: str def __init__( self, owner_repo_commit: str, *, api_url: Optional[str] = None, api_key: Optional[str] = None, **kwargs: Any, ) -> None: from langchain.hub import pull pulled = pull(owner_repo_commit, api_url=api_url, api_key=api_key) super_kwargs = { "kwargs": {}, "config": {}, **kwargs, "bound": pulled, "owner_repo_commit": owner_repo_commit, } super().__init__(**super_kwargs)
from typing import Any, Optional from langchain_core.runnables.base import Input, Output, RunnableBindingBase class HubRunnable(RunnableBindingBase[Input, Output]): """ An instance of a runnable stored in the LangChain Hub. """ owner_repo_commit: str def __init__( self, owner_repo_commit: str, *, api_url: Optional[str] = None, api_key: Optional[str] = None, **kwargs: Any, ) -> None: from langchain.hub import pull pulled = pull(owner_repo_commit, api_url=api_url, api_key=api_key) super_kwargs = { "kwargs": {}, "config": {}, **kwargs, "bound": pulled, "owner_repo_commit": owner_repo_commit, } super().__init__(**super_kwargs)
# Copyright (c) OpenMMLab. All rights reserved. from .hook import Hook from .iter_timer_hook import IterTimerHook from .sampler_seed_hook import DistSamplerSeedHook from .param_scheduler_hook import ParamSchedulerHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .hook import Hook from .iter_timer_hook import IterTimerHook from .sampler_seed_hook import DistSamplerSeedHook __all__ = ['Hook', 'IterTimerHook', 'DistSamplerSeedHook']
_base_ = './fcos_hrnetv2p-w32-gn-head_ms-640-800-4xb4-2x_coco.py' model = dict( backbone=dict( extra=dict( stage2=dict(num_channels=(18, 36)), stage3=dict(num_channels=(18, 36, 72)), stage4=dict(num_channels=(18, 36, 72, 144))), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')), neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
_base_ = './fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py' model = dict( backbone=dict( extra=dict( stage2=dict(num_channels=(18, 36)), stage3=dict(num_channels=(18, 36, 72)), stage4=dict(num_channels=(18, 36, 72, 144))), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')), neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
from typing import Dict, Optional, Tuple import torch import torchaudio from torchaudio.backend.common import AudioMetaData # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _info_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, ): i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) if sinfo[5] == 0: waveform, _ = _load_audio(s) num_frames = waveform.size(1) else: num_frames = sinfo[5] return AudioMetaData( int(sinfo[8]), num_frames, sinfo[9], sinfo[6], sinfo[1].upper(), ) def info_audio( src: str, format: Optional[str], ) -> AudioMetaData: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _info_audio(s) def info_audio_fileobj( src, format: Optional[str], ) -> AudioMetaData: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, 4096) return _info_audio(s) def _get_load_filter( frame_offset: int = 0, num_frames: int = -1, convert: bool = True, ) -> Optional[str]: if frame_offset < 0: raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset)) if num_frames == 0 or num_frames < -1: raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames)) # All default values -> no filter if frame_offset == 0 and num_frames == -1 and not convert: return None # Only convert aformat = "aformat=sample_fmts=fltp" if frame_offset == 0 and num_frames == -1 and convert: return aformat # At least one of frame_offset or num_frames has non-default value if num_frames > 0: atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames) else: atrim = "atrim=start_sample={}".format(frame_offset) if not convert: return atrim return "{},{}".format(atrim, aformat) # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _load_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, ) -> Tuple[torch.Tensor, int]: i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) sample_rate = int(sinfo[8]) option: Dict[str, str] = {} s.add_audio_stream(i, -1, -1, _get_load_filter(frame_offset, num_frames, convert), None, option) s.process_all_packets() waveform = s.pop_chunks()[0] if waveform is None: raise RuntimeError("Failed to decode audio.") assert waveform is not None if channels_first: waveform = waveform.T return waveform, sample_rate def load_audio( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _load_audio(s, frame_offset, num_frames, convert, channels_first) def load_audio_fileobj( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, 4096) return _load_audio(s, frame_offset, num_frames, convert, channels_first)
from typing import Dict, Optional, Tuple import torch import torchaudio from torchaudio.backend.common import AudioMetaData # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _info_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, ): i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) return AudioMetaData( int(sinfo[8]), sinfo[5], sinfo[9], sinfo[6], sinfo[1].upper(), ) def info_audio( src: str, format: Optional[str], ) -> AudioMetaData: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _info_audio(s) def info_audio_fileobj( src, format: Optional[str], ) -> AudioMetaData: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, 4096) return _info_audio(s) def _get_load_filter( frame_offset: int = 0, num_frames: int = -1, convert: bool = True, ) -> Optional[str]: if frame_offset < 0: raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset)) if num_frames == 0 or num_frames < -1: raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames)) # All default values -> no filter if frame_offset == 0 and num_frames == -1 and not convert: return None # Only convert aformat = "aformat=sample_fmts=fltp" if frame_offset == 0 and num_frames == -1 and convert: return aformat # At least one of frame_offset or num_frames has non-default value if num_frames > 0: atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames) else: atrim = "atrim=start_sample={}".format(frame_offset) if not convert: return atrim return "{},{}".format(atrim, aformat) # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _load_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, ) -> Tuple[torch.Tensor, int]: i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) sample_rate = int(sinfo[8]) option: Dict[str, str] = {} s.add_audio_stream(i, -1, -1, _get_load_filter(frame_offset, num_frames, convert), None, option) s.process_all_packets() waveform = s.pop_chunks()[0] if waveform is None: raise RuntimeError("Failed to decode audio.") assert waveform is not None if channels_first: waveform = waveform.T return waveform, sample_rate def load_audio( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _load_audio(s, frame_offset, num_frames, convert, channels_first) def load_audio_fileobj( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, 4096) return _load_audio(s, frame_offset, num_frames, convert, channels_first)
from pathlib import Path import pytest from torchaudio.datasets import dr_vctk from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase _SUBSETS = ["train", "test"] _CONDITIONS = ["clean", "device-recorded"] _SOURCES = ["DR-VCTK_Office1_ClosedWindow", "DR-VCTK_Office1_OpenedWindow"] _SPEAKER_IDS = range(226, 230) _CHANNEL_IDS = range(1, 6) def get_mock_dataset(root_dir): """ root_dir: root directory of the mocked data """ mocked_samples = {} dataset_dir = Path(root_dir) / "DR-VCTK" / "DR-VCTK" dataset_dir.mkdir(parents=True, exist_ok=True) config_dir = dataset_dir / "configurations" config_dir.mkdir(parents=True, exist_ok=True) sample_rate = 16000 seed = 0 for subset in _SUBSETS: mocked_samples[subset] = [] for condition in _CONDITIONS: audio_dir = dataset_dir / f"{condition}_{subset}set_wav_16k" audio_dir.mkdir(parents=True, exist_ok=True) config_filepath = config_dir / f"{subset}_ch_log.txt" with open(config_filepath, "w") as f: if subset == "train": f.write("\n") f.write("File Name\tMain Source\tChannel Idx\n") for speaker_id in _SPEAKER_IDS: utterance_id = 1 for source in _SOURCES: for channel_id in _CHANNEL_IDS: filename = f"p{speaker_id}_{utterance_id:03d}.wav" f.write(f"{filename}\t{source}\t{channel_id}\n") data = {} for condition in _CONDITIONS: data[condition] = get_whitenoise( sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed ) audio_dir = dataset_dir / f"{condition}_{subset}set_wav_16k" audio_file_path = audio_dir / filename save_wav(audio_file_path, data[condition], sample_rate) seed += 1 sample = ( data[_CONDITIONS[0]], sample_rate, data[_CONDITIONS[1]], sample_rate, "p" + str(speaker_id), f"{utterance_id:03d}", source, channel_id, ) mocked_samples[subset].append(sample) utterance_id += 1 return mocked_samples class TestDRVCTK(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = {} @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_dr_vctk(self, dataset, subset): num_samples = 0 for i, ( waveform_clean, sample_rate_clean, waveform_dr, sample_rate_dr, speaker_id, utterance_id, source, channel_id, ) in enumerate(dataset): self.assertEqual(waveform_clean, self.samples[subset][i][0], atol=5e-5, rtol=1e-8) assert sample_rate_clean == self.samples[subset][i][1] self.assertEqual(waveform_dr, self.samples[subset][i][2], atol=5e-5, rtol=1e-8) assert sample_rate_dr == self.samples[subset][i][3] assert speaker_id == self.samples[subset][i][4] assert utterance_id == self.samples[subset][i][5] assert source == self.samples[subset][i][6] assert channel_id == self.samples[subset][i][7] num_samples += 1 assert num_samples == len(self.samples[subset]) def test_dr_vctk_train_str(self): subset = "train" dataset = dr_vctk.DR_VCTK(self.root_dir, subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_test_str(self): subset = "test" dataset = dr_vctk.DR_VCTK(self.root_dir, subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_train_path(self): subset = "train" dataset = dr_vctk.DR_VCTK(Path(self.root_dir), subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_test_path(self): subset = "test" dataset = dr_vctk.DR_VCTK(Path(self.root_dir), subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_invalid_subset(self): subset = "invalid" with pytest.raises(RuntimeError, match=f"The subset '{subset}' does not match any of the supported subsets"): dr_vctk.DR_VCTK(self.root_dir, subset=subset)
from pathlib import Path import pytest from torchaudio.datasets import dr_vctk from torchaudio_unittest.common_utils import ( get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase, ) _SUBSETS = ["train", "test"] _CONDITIONS = ["clean", "device-recorded"] _SOURCES = ["DR-VCTK_Office1_ClosedWindow", "DR-VCTK_Office1_OpenedWindow"] _SPEAKER_IDS = range(226, 230) _CHANNEL_IDS = range(1, 6) def get_mock_dataset(root_dir): """ root_dir: root directory of the mocked data """ mocked_samples = {} dataset_dir = Path(root_dir) / "DR-VCTK" / "DR-VCTK" dataset_dir.mkdir(parents=True, exist_ok=True) config_dir = dataset_dir / "configurations" config_dir.mkdir(parents=True, exist_ok=True) sample_rate = 16000 seed = 0 for subset in _SUBSETS: mocked_samples[subset] = [] for condition in _CONDITIONS: audio_dir = dataset_dir / f"{condition}_{subset}set_wav_16k" audio_dir.mkdir(parents=True, exist_ok=True) config_filepath = config_dir / f"{subset}_ch_log.txt" with open(config_filepath, "w") as f: if subset == "train": f.write("\n") f.write("File Name\tMain Source\tChannel Idx\n") for speaker_id in _SPEAKER_IDS: utterance_id = 1 for source in _SOURCES: for channel_id in _CHANNEL_IDS: filename = f"p{speaker_id}_{utterance_id:03d}.wav" f.write(f"{filename}\t{source}\t{channel_id}\n") data = {} for condition in _CONDITIONS: data[condition] = get_whitenoise( sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed ) audio_dir = dataset_dir / f"{condition}_{subset}set_wav_16k" audio_file_path = audio_dir / filename save_wav(audio_file_path, data[condition], sample_rate) seed += 1 sample = ( data[_CONDITIONS[0]], sample_rate, data[_CONDITIONS[1]], sample_rate, "p" + str(speaker_id), f"{utterance_id:03d}", source, channel_id, ) mocked_samples[subset].append(sample) utterance_id += 1 return mocked_samples class TestDRVCTK(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = {} @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_dr_vctk(self, dataset, subset): num_samples = 0 for i, ( waveform_clean, sample_rate_clean, waveform_dr, sample_rate_dr, speaker_id, utterance_id, source, channel_id, ) in enumerate(dataset): self.assertEqual(waveform_clean, self.samples[subset][i][0], atol=5e-5, rtol=1e-8) assert sample_rate_clean == self.samples[subset][i][1] self.assertEqual(waveform_dr, self.samples[subset][i][2], atol=5e-5, rtol=1e-8) assert sample_rate_dr == self.samples[subset][i][3] assert speaker_id == self.samples[subset][i][4] assert utterance_id == self.samples[subset][i][5] assert source == self.samples[subset][i][6] assert channel_id == self.samples[subset][i][7] num_samples += 1 assert num_samples == len(self.samples[subset]) def test_dr_vctk_train_str(self): subset = "train" dataset = dr_vctk.DR_VCTK(self.root_dir, subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_test_str(self): subset = "test" dataset = dr_vctk.DR_VCTK(self.root_dir, subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_train_path(self): subset = "train" dataset = dr_vctk.DR_VCTK(Path(self.root_dir), subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_test_path(self): subset = "test" dataset = dr_vctk.DR_VCTK(Path(self.root_dir), subset=subset) self._test_dr_vctk(dataset, subset) def test_dr_vctk_invalid_subset(self): subset = "invalid" with pytest.raises(RuntimeError, match=f"The subset '{subset}' does not match any of the supported subsets"): dr_vctk.DR_VCTK(self.root_dir, subset=subset)
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then agglomerative clustering with a threshold is applied. """ from sentence_transformers import SentenceTransformer from sklearn.cluster import AgglomerativeClustering embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Some models don't automatically normalize the embeddings, in which case you should normalize the embeddings: # corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True) # Perform kmean clustering clustering_model = AgglomerativeClustering( n_clusters=None, distance_threshold=1.5 ) # , affinity='cosine', linkage='average', distance_threshold=0.4) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = {} for sentence_id, cluster_id in enumerate(cluster_assignment): if cluster_id not in clustered_sentences: clustered_sentences[cluster_id] = [] clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in clustered_sentences.items(): print("Cluster ", i + 1) print(cluster) print("")
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then agglomerative clustering with a threshold is applied. """ from sentence_transformers import SentenceTransformer from sklearn.cluster import AgglomerativeClustering import numpy as np embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Normalize the embeddings to unit length corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True) # Perform kmean clustering clustering_model = AgglomerativeClustering( n_clusters=None, distance_threshold=1.5 ) # , affinity='cosine', linkage='average', distance_threshold=0.4) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = {} for sentence_id, cluster_id in enumerate(cluster_assignment): if cluster_id not in clustered_sentences: clustered_sentences[cluster_id] = [] clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in clustered_sentences.items(): print("Cluster ", i + 1) print(cluster) print("")
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/debug', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.host = self.runtime_args.host self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/debug', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class TOOD(SingleStageDetector): r"""Implementation of `TOOD: Task-aligned One-stage Object Detection. <https://arxiv.org/abs/2108.07755>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class TOOD(SingleStageDetector): r"""Implementation of `TOOD: Task-aligned One-stage Object Detection. <https://arxiv.org/abs/2108.07755>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(TOOD, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) def set_epoch(self, epoch): self.bbox_head.epoch = epoch
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.25.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.24.1' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
from contextlib import contextmanager from threading import Lock from typing import TYPE_CHECKING, Any from expiringdict import ExpiringDict if TYPE_CHECKING: from redis import Redis from redis.lock import Lock as RedisLock class RedisKeyedMutex: """ This class provides a mutex that can be locked and unlocked by a specific key, using Redis as a distributed locking provider. It uses an ExpiringDict to automatically clear the mutex after a specified timeout, in case the key is not unlocked for a specified duration, to prevent memory leaks. """ def __init__(self, redis: "Redis", timeout: int | None = 60): self.redis = redis self.timeout = timeout self.locks: dict[Any, "RedisLock"] = ExpiringDict( max_len=6000, max_age_seconds=self.timeout ) self.locks_lock = Lock() @contextmanager def locked(self, key: Any): lock = self.acquire(key) try: yield finally: if lock.locked() and lock.owned(): lock.release() def acquire(self, key: Any) -> "RedisLock": """Acquires and returns a lock with the given key""" with self.locks_lock: if key not in self.locks: self.locks[key] = self.redis.lock( str(key), self.timeout, thread_local=False ) lock = self.locks[key] lock.acquire() return lock def release(self, key: Any): if (lock := self.locks.get(key)) and lock.locked() and lock.owned(): lock.release() def release_all_locks(self): """Call this on process termination to ensure all locks are released""" self.locks_lock.acquire(blocking=False) for lock in self.locks.values(): if lock.locked() and lock.owned(): lock.release()
from contextlib import contextmanager from threading import Lock from typing import TYPE_CHECKING, Any from expiringdict import ExpiringDict if TYPE_CHECKING: from redis import Redis from redis.lock import Lock as RedisLock class RedisKeyedMutex: """ This class provides a mutex that can be locked and unlocked by a specific key, using Redis as a distributed locking provider. It uses an ExpiringDict to automatically clear the mutex after a specified timeout, in case the key is not unlocked for a specified duration, to prevent memory leaks. """ def __init__(self, redis: "Redis", timeout: int | None = 60): self.redis = redis self.timeout = timeout self.locks: dict[Any, "RedisLock"] = ExpiringDict( max_len=6000, max_age_seconds=self.timeout ) self.locks_lock = Lock() @contextmanager def locked(self, key: Any): lock = self.acquire(key) try: yield finally: if lock.locked(): lock.release() def acquire(self, key: Any) -> "RedisLock": """Acquires and returns a lock with the given key""" with self.locks_lock: if key not in self.locks: self.locks[key] = self.redis.lock( str(key), self.timeout, thread_local=False ) lock = self.locks[key] lock.acquire() return lock def release(self, key: Any): if (lock := self.locks.get(key)) and lock.locked() and lock.owned(): lock.release() def release_all_locks(self): """Call this on process termination to ensure all locks are released""" self.locks_lock.acquire(blocking=False) for lock in self.locks.values(): if lock.locked() and lock.owned(): lock.release()