input
stringlengths
33
5k
output
stringlengths
32
5k
import numpy as np import orjson import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.document.io.json import orjson_dumps from docarray.typing import NdArray def test_proto_tensor(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) tensor._to_node_protobuf() def test_from_list(): tensor = parse_obj_as(NdArray, [[0.0, 0.0], [0.0, 0.0]]) assert (tensor == np.zeros((2, 2))).all() def test_json_schema(): schema_json_of(NdArray) def test_dump_json(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) orjson_dumps(tensor) def test_load_json(): tensor = parse_obj_as(NdArray, np.zeros((2, 2))) json = orjson_dumps(tensor) print(json) print(type(json)) new_tensor = orjson.loads(json) assert (new_tensor == tensor).all() def test_unwrap(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) ndarray = tensor.unwrap() assert not isinstance(ndarray, NdArray) assert isinstance(ndarray, np.ndarray) assert isinstance(tensor, NdArray) assert (ndarray == np.zeros((3, 224, 224))).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(NdArray[128], np.zeros(128)) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(NdArray[3, 224, 224], np.zeros((224, 224)))
import numpy as np import orjson from pydantic.tools import parse_obj_as, schema_json_of from docarray.document.io.json import orjson_dumps from docarray.typing import NdArray def test_proto_tensor(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) tensor._to_node_protobuf() def test_from_list(): tensor = parse_obj_as(NdArray, [[0.0, 0.0], [0.0, 0.0]]) assert (tensor == np.zeros((2, 2))).all() def test_json_schema(): schema_json_of(NdArray) def test_dump_json(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) orjson_dumps(tensor) def test_load_json(): tensor = parse_obj_as(NdArray, np.zeros((2, 2))) json = orjson_dumps(tensor) print(json) print(type(json)) new_tensor = orjson.loads(json) assert (new_tensor == tensor).all() def test_unwrap(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) ndarray = tensor.unwrap() assert not isinstance(ndarray, NdArray) assert isinstance(ndarray, np.ndarray) assert isinstance(tensor, NdArray) assert (ndarray == np.zeros((3, 224, 224))).all()
""" Make.com API wrapper. Currently cannot load documents. """ from typing import Any, List, Optional import requests from llama_index.core.base.response.schema import Response from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document, NodeWithScore, TextNode class MakeWrapper(BaseReader): """Make reader.""" def load_data(self, *args: Any, **load_kwargs: Any) -> List[Document]: """ Load data from the input directory. NOTE: This is not implemented. """ raise NotImplementedError("Cannot load documents from Make.com API.") def pass_response_to_webhook( self, webhook_url: str, response: Response, query: Optional[str] = None ) -> None: """ Pass response object to webhook. Args: webhook_url (str): Webhook URL. response (Response): Response object. query (Optional[str]): Query. Defaults to None. """ response_text = response.response source_nodes = [n.dict() for n in response.source_nodes] json_dict = { "response": response_text, "source_nodes": source_nodes, "query": query, } r = requests.post(webhook_url, json=json_dict) r.raise_for_status() if __name__ == "__main__": wrapper = MakeWrapper() test_response = Response( response="test response", source_nodes=[NodeWithScore(node=TextNode(text="test source", id_="test id"))], ) wrapper.pass_response_to_webhook( "https://hook.us1.make.com/asdfadsfasdfasdfd", test_response, "Test query", )
"""Make.com API wrapper. Currently cannot load documents. """ from typing import Any, List, Optional import requests from llama_index.core.base.response.schema import Response from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document, NodeWithScore, TextNode class MakeWrapper(BaseReader): """Make reader.""" def load_data(self, *args: Any, **load_kwargs: Any) -> List[Document]: """Load data from the input directory. NOTE: This is not implemented. """ raise NotImplementedError("Cannot load documents from Make.com API.") def pass_response_to_webhook( self, webhook_url: str, response: Response, query: Optional[str] = None ) -> None: """Pass response object to webhook. Args: webhook_url (str): Webhook URL. response (Response): Response object. query (Optional[str]): Query. Defaults to None. """ response_text = response.response source_nodes = [n.dict() for n in response.source_nodes] json_dict = { "response": response_text, "source_nodes": source_nodes, "query": query, } r = requests.post(webhook_url, json=json_dict) r.raise_for_status() if __name__ == "__main__": wrapper = MakeWrapper() test_response = Response( response="test response", source_nodes=[NodeWithScore(node=TextNode(text="test source", id_="test id"))], ) wrapper.pass_response_to_webhook( "https://hook.us1.make.com/asdfadsfasdfasdfd", test_response, "Test query", )
_base_ = '../fast_rcnn/fast-rcnn_r50-caffe_fpn_1x_coco.py' model = dict( roi_head=dict( bbox_head=dict( bbox_coder=dict(target_stds=[0.04, 0.04, 0.08, 0.08]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.5), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rcnn=dict( assigner=dict( pos_iou_thr=0.65, neg_iou_thr=0.65, min_pos_iou=0.65), sampler=dict(num=256))), test_cfg=dict(rcnn=dict(score_thr=1e-3))) # MMEngine support the following two ways, users can choose # according to convenience # train_dataloader = dict(dataset=dict(proposal_file='proposals/crpn_r50_caffe_fpn_1x_train2017.pkl')) # noqa _base_.train_dataloader.dataset.proposal_file = 'proposals/crpn_r50_caffe_fpn_1x_train2017.pkl' # noqa # val_dataloader = dict(dataset=dict(proposal_file='proposals/crpn_r50_caffe_fpn_1x_val2017.pkl')) # noqa # test_dataloader = val_dataloader _base_.val_dataloader.dataset.proposal_file = 'proposals/crpn_r50_caffe_fpn_1x_val2017.pkl' # noqa test_dataloader = _base_.val_dataloader optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
_base_ = '../fast_rcnn/fast-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), roi_head=dict( bbox_head=dict( bbox_coder=dict(target_stds=[0.04, 0.04, 0.08, 0.08]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.5), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rcnn=dict( assigner=dict( pos_iou_thr=0.65, neg_iou_thr=0.65, min_pos_iou=0.65), sampler=dict(num=256))), test_cfg=dict(rcnn=dict(score_thr=1e-3))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=300), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=300), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['proposals']), dict( type='ToDataContainer', fields=[dict(key='proposals', stack=False)]), dict(type='Collect', keys=['img', 'proposals']), ]) ] # TODO support proposals input data = dict( train=dict( proposal_file=data_root + 'proposals/crpn_r50_caffe_fpn_1x_train2017.pkl', pipeline=train_pipeline), val=dict( proposal_file=data_root + 'proposals/crpn_r50_caffe_fpn_1x_val2017.pkl', pipeline=test_pipeline), test=dict( proposal_file=data_root + 'proposals/crpn_r50_caffe_fpn_1x_val2017.pkl', pipeline=test_pipeline)) optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
import pytest from llama_index.core.llms import ChatMessage from llama_index.core.tools import ToolSelection from llama_index.core.bridge.pydantic import BaseModel, ValidationError from llama_index.core.agent.workflow.workflow_events import ( AgentWorkflowStartEvent, AgentOutput, PydanticConversionWarning, ) from llama_index.core.memory import Memory @pytest.fixture() def example_agent_output() -> dict: return { "response": ChatMessage(role="user", content="30 times 2 is 60."), "tool_calls": [ ToolSelection( tool_id="1", tool_name="multiply", tool_kwargs={"i": 30, "j": 2} ) ], "raw": '{"role": "user", "content": "30 times 2 is 60."}', "structured_response": {"operation": "30 times 2", "result": 60}, "current_agent_name": "CalculatorAgent", } class MathResult(BaseModel): operation: str result: int class WrongMathResult(BaseModel): operation: str result: str def test_agent_workflow_start_event(): event = AgentWorkflowStartEvent( user_msg="Hello, world!", chat_history=[ChatMessage(role="user", content="Hello, world!")], max_iterations=10, ) assert event.user_msg == "Hello, world!" assert event.chat_history[0].role.value == "user" assert event.chat_history[0].content == "Hello, world!" assert event.max_iterations == 10 def test_agent_workflow_start_event_with_dict(): event = AgentWorkflowStartEvent( user_msg="Hello, world!", chat_history=[{"role": "user", "content": "Hello, world!"}], max_iterations=10, ) assert event.user_msg == "Hello, world!" assert event.chat_history[0].role.value == "user" assert event.chat_history[0].content == "Hello, world!" assert event.max_iterations == 10 def test_agent_workflow_start_event_to_dict(): event = AgentWorkflowStartEvent( user_msg="Hello, world!", chat_history=[ChatMessage(role="user", content="Hello, world!")], max_iterations=10, memory=Memory.from_defaults(), ) # Memory is not included in the dump dump = event.model_dump() assert len(dump) == 3 assert dump["user_msg"] == "Hello, world!" assert dump["chat_history"][0]["role"] == "user" assert dump["chat_history"][0]["blocks"][0]["text"] == "Hello, world!" assert dump["max_iterations"] == 10 def test_agent_output_with_structured_response(example_agent_output: dict) -> None: try: agent_output = AgentOutput.model_validate(example_agent_output) success = True except ValidationError: success = False assert success assert agent_output.get_pydantic_model(MathResult) == MathResult.model_validate( example_agent_output["structured_response"] ) with pytest.warns(PydanticConversionWarning): a = agent_output.get_pydantic_model(WrongMathResult) assert a is None
from llama_index.core.llms import ChatMessage from llama_index.core.agent.workflow.workflow_events import AgentWorkflowStartEvent from llama_index.core.memory import Memory def test_agent_workflow_start_event(): event = AgentWorkflowStartEvent( user_msg="Hello, world!", chat_history=[ChatMessage(role="user", content="Hello, world!")], max_iterations=10, ) assert event.user_msg == "Hello, world!" assert event.chat_history[0].role.value == "user" assert event.chat_history[0].content == "Hello, world!" assert event.max_iterations == 10 def test_agent_workflow_start_event_with_dict(): event = AgentWorkflowStartEvent( user_msg="Hello, world!", chat_history=[{"role": "user", "content": "Hello, world!"}], max_iterations=10, ) assert event.user_msg == "Hello, world!" assert event.chat_history[0].role.value == "user" assert event.chat_history[0].content == "Hello, world!" assert event.max_iterations == 10 def test_agent_workflow_start_event_to_dict(): event = AgentWorkflowStartEvent( user_msg="Hello, world!", chat_history=[ChatMessage(role="user", content="Hello, world!")], max_iterations=10, memory=Memory.from_defaults(), ) # Memory is not included in the dump dump = event.model_dump() assert len(dump) == 3 assert dump["user_msg"] == "Hello, world!" assert dump["chat_history"][0]["role"] == "user" assert dump["chat_history"][0]["blocks"][0]["text"] == "Hello, world!" assert dump["max_iterations"] == 10
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .atss_vlfusion_head import ATSSVLFusionHead from .autoassign_head import AutoAssignHead from .boxinst_head import BoxInstBboxHead, BoxInstMaskHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .conditional_detr_head import ConditionalDETRHead from .corner_head import CornerHead from .dab_detr_head import DABDETRHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .dino_head import DINOHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead', 'BoxInstBboxHead', 'BoxInstMaskHead', 'ConditionalDETRHead', 'DINOHead', 'ATSSVLFusionHead', 'DABDETRHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .boxinst_head import BoxInstBboxHead, BoxInstMaskHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .conditional_detr_head import ConditionalDETRHead from .corner_head import CornerHead from .dab_detr_head import DABDETRHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .dino_head import DINOHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead', 'BoxInstBboxHead', 'BoxInstMaskHead', 'ConditionalDETRHead', 'DINOHead', 'DABDETRHead' ]
# Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import SanaTransformer2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class SanaTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = SanaTransformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True model_split_percents = [0.7, 0.7, 0.9] @property def dummy_input(self): batch_size = 2 num_channels = 4 height = 32 width = 32 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 1, "in_channels": 4, "out_channels": 4, "num_layers": 1, "attention_head_dim": 4, "num_attention_heads": 2, "num_cross_attention_heads": 2, "cross_attention_head_dim": 4, "cross_attention_dim": 8, "caption_channels": 8, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"SanaTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import SanaTransformer2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class SanaTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = SanaTransformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True model_split_percents = [0.7, 0.7, 0.9] @property def dummy_input(self): batch_size = 2 num_channels = 4 height = 32 width = 32 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 1, "in_channels": 4, "out_channels": 4, "num_layers": 1, "attention_head_dim": 4, "num_attention_heads": 2, "num_cross_attention_heads": 2, "cross_attention_head_dim": 4, "cross_attention_dim": 8, "caption_channels": 8, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"SanaTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn import torch.nn.functional as F from sentence_transformers.sparse_encoder import SparseEncoder def normalized_mean_squared_error(reconstruction: torch.Tensor, original_input: torch.Tensor) -> torch.Tensor: """ :param reconstruction: output of Autoencoder.decode (shape: [batch, n_inputs]) :param original_input: input of Autoencoder.encode (shape: [batch, n_inputs]) :return: normalized mean squared error (shape: [1]) """ return (((reconstruction - original_input) ** 2).mean(dim=1) / (original_input**2).mean(dim=1)).mean() class CSRReconstructionLoss(nn.Module): def __init__(self, model: SparseEncoder, beta: float = 1.0) -> None: """ CSRReconstructionLoss implements the reconstruction loss component for Contrastive Sparse Representation (CSR) models. This loss ensures that the sparse encoding can accurately reconstruct the original model embeddings through three components: 1. A primary reconstruction loss (L_k) that measures the error between the original embedding and its reconstruction using the top-k sparse components. 2. A secondary reconstruction loss (L_4k) that measures the error using the top-4k sparse components. 3. An auxiliary loss (L_aux) that helps to learn residual information. Args: model: SparseEncoder model with autoencoder components beta: Weight for the auxiliary loss component (L_aux) References: - For more details, see the paper "Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation" https://arxiv.org/abs/2503.01776 Requirements: 1. The model must be configured to output the necessary reconstruction components 2. Used with SparseEncoder models that implement compositional sparse autoencoding Relations: - Used as a component within :class:`CSRLoss` combined with a contrastive loss Example: :: - This loss is never used standalone, but instead used within the :class:`CSRLoss` class. See that loss for more details. """ super().__init__() self.model = model self.beta = beta def forward(self, sentence_features: Iterable[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(outputs) def compute_loss_from_embeddings(self, outputs: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Compute the CSRReconstruction loss from embeddings. Args: outputs: List of dictionaries containing sentence embeddings and their sparse representations Returns: total_loss: The total reconstruction loss value """ # Initialize loss components total_L_k = 0.0 total_L_4k = 0.0 total_L_aux = 0.0 # Process each sentence feature for features in outputs: x = features["sentence_embedding_backbone"] recons_k = features["decoded_embedding_k"] recons_4k = features["decoded_embedding_4k"] recons_aux = features["decoded_embedding_aux"] reconsk_pre_bias = features["decoded_embedding_k_pre_bias"] # L(k) = ||f(x) - f(dx)_k||₂² L_k = F.mse_loss(x, recons_k) # L(4k) = ||f(x) - f(dx)_4k||₂² L_4k = F.mse_loss(x, recons_4k) # L_aux = ||e - ê||₂² L_aux = normalized_mean_squared_error(recons_aux, x - reconsk_pre_bias) # Accumulate losses total_L_k += L_k total_L_4k += L_4k total_L_aux += L_aux # Average losses over batch batch_size = len(outputs) if batch_size > 0: total_L_k /= batch_size total_L_4k /= batch_size total_L_aux /= batch_size # Total loss: L_recon = L(k) + L(4k)/8 + β*L_aux total_loss = total_L_k + total_L_4k / 8 + self.beta * total_L_aux return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"beta": self.beta}
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn import torch.nn.functional as F from sentence_transformers.sparse_encoder import SparseEncoder def normalized_mean_squared_error(reconstruction: torch.Tensor, original_input: torch.Tensor) -> torch.Tensor: """ :param reconstruction: output of Autoencoder.decode (shape: [batch, n_inputs]) :param original_input: input of Autoencoder.encode (shape: [batch, n_inputs]) :return: normalized mean squared error (shape: [1]) """ return (((reconstruction - original_input) ** 2).mean(dim=1) / (original_input**2).mean(dim=1)).mean() class CSRReconstructionLoss(nn.Module): def __init__(self, model: SparseEncoder, beta: float = 1.0) -> None: """ CSRReconstructionLoss implements the reconstruction loss component for Contrastive Sparse Representation (CSR) models. This loss ensures that the sparse encoding can accurately reconstruct the original model embeddings through three components: 1. A primary reconstruction loss (L_k) that measures the error between the original embedding and its reconstruction using the top-k sparse components. 2. A secondary reconstruction loss (L_4k) that measures the error using the top-4k sparse components. 3. An auxiliary loss (L_aux) that helps to learn residual information. Args: model: SparseEncoder model with autoencoder components beta: Weight for the auxiliary loss component (L_aux) References: - For more details, see the paper "Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation" https://arxiv.org/abs/2503.01776 Requirements: 1. The model must be configured to output the necessary reconstruction components 2. Used with SparseEncoder models that implement compositional sparse autoencoding Relations: - Used as a component within :class:`CSRLoss` combined with a contrastive loss Example: :: This loss is typically used within the :class:`CSRLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.beta = beta def forward(self, sentence_features: Iterable[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Forward pass of the CSRReconstruction Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings and their sparse representations Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(outputs) def compute_loss_from_embeddings(self, outputs: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Compute the CSRReconstruction loss from embeddings. Args: outputs: List of dictionaries containing sentence embeddings and their sparse representations Returns: Dictionary containing the total loss and individual loss components """ # Initialize loss components total_L_k = 0.0 total_L_4k = 0.0 total_L_aux = 0.0 # Process each sentence feature for features in outputs: x = features["sentence_embedding_backbone"] recons_k = features["decoded_embedding_k"] recons_4k = features["decoded_embedding_4k"] recons_aux = features["decoded_embedding_aux"] reconsk_pre_bias = features["decoded_embedding_k_pre_bias"] # L(k) = ||f(x) - f(dx)_k||₂² L_k = F.mse_loss(x, recons_k) # L(4k) = ||f(x) - f(dx)_4k||₂² L_4k = F.mse_loss(x, recons_4k) # L_aux = ||e - ê||₂² L_aux = normalized_mean_squared_error(recons_aux, x - reconsk_pre_bias) # Accumulate losses total_L_k += L_k total_L_4k += L_4k total_L_aux += L_aux # Average losses over batch batch_size = len(outputs) if batch_size > 0: total_L_k /= batch_size total_L_4k /= batch_size total_L_aux /= batch_size # Total loss: L_recon = L(k) + L(4k)/8 + β*L_aux total_loss = total_L_k + total_L_4k / 8 + self.beta * total_L_aux return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"beta": self.beta}
from typing import Any, Optional, Sequence from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType, PromptMixinType from tonic_validate.metrics.answer_consistency_metric import ( AnswerConsistencyMetric, ) from tonic_validate.services.openai_service import OpenAIService class AnswerConsistencyEvaluator(BaseEvaluator): """ Tonic Validate's answer consistency metric. The output score is a float between 0.0 and 1.0. See https://docs.tonic.ai/validate/ for more details. Args: openai_service(OpenAIService): The OpenAI service to use. Specifies the chat completion model to use as the LLM evaluator. Defaults to "gpt-4". """ def __init__(self, openai_service: Optional[Any] = None): if openai_service is None: openai_service = OpenAIService("gpt-4") self.openai_service = openai_service self.metric = AnswerConsistencyMetric() async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any ) -> EvaluationResult: from tonic_validate.classes.benchmark import BenchmarkItem from tonic_validate.classes.llm_response import LLMResponse benchmark_item = BenchmarkItem(question=query) llm_response = LLMResponse( llm_answer=response, llm_context_list=contexts, benchmark_item=benchmark_item, ) score = self.metric.score(llm_response, self.openai_service) return EvaluationResult( query=query, contexts=contexts, response=response, score=score ) def _get_prompts(self) -> PromptDictType: return {} def _get_prompt_modules(self) -> PromptMixinType: return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: return
from typing import Any, Optional, Sequence from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType, PromptMixinType from tonic_validate.metrics.answer_consistency_metric import ( AnswerConsistencyMetric, ) from tonic_validate.services.openai_service import OpenAIService class AnswerConsistencyEvaluator(BaseEvaluator): """Tonic Validate's answer consistency metric. The output score is a float between 0.0 and 1.0. See https://docs.tonic.ai/validate/ for more details. Args: openai_service(OpenAIService): The OpenAI service to use. Specifies the chat completion model to use as the LLM evaluator. Defaults to "gpt-4". """ def __init__(self, openai_service: Optional[Any] = None): if openai_service is None: openai_service = OpenAIService("gpt-4") self.openai_service = openai_service self.metric = AnswerConsistencyMetric() async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any ) -> EvaluationResult: from tonic_validate.classes.benchmark import BenchmarkItem from tonic_validate.classes.llm_response import LLMResponse benchmark_item = BenchmarkItem(question=query) llm_response = LLMResponse( llm_answer=response, llm_context_list=contexts, benchmark_item=benchmark_item, ) score = self.metric.score(llm_response, self.openai_service) return EvaluationResult( query=query, contexts=contexts, response=response, score=score ) def _get_prompts(self) -> PromptDictType: return {} def _get_prompt_modules(self) -> PromptMixinType: return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: return
# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import SSDHead class TestSSDHead(TestCase): def test_ssd_head_loss(self): """Tests ssd head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), sampler=dict(type='PseudoSampler'), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False)) ssd_head = SSDHead( num_classes=4, in_channels=(1, 1, 1, 1, 1, 1), stacked_convs=1, feat_channels=1, use_depthwise=True, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=s, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), train_cfg=cfg) # SSD head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in ssd_head.prior_generator.strides) cls_scores, bbox_preds = ssd_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = ssd_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, cls_loss and box_loss should all be zero. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertEqual( empty_cls_loss.item(), 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = ssd_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import SSDHead class TestSSDHead(TestCase): def test_ssd_head_loss(self): """Tests ssd head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), sampler=dict(type='PseudoSampler'), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False)) ssd_head = SSDHead( num_classes=4, in_channels=(1, 1, 1, 1, 1, 1), stacked_convs=1, feat_channels=1, use_depthwise=True, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=s, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), train_cfg=cfg) # SSD head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in ssd_head.prior_generator.strides) cls_scores, bbox_preds = ssd_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = ssd_head.loss(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, cls_loss and box_loss should all be zero. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertEqual( empty_cls_loss.item(), 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = ssd_head.loss(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.random.random import beta as beta from keras.src.random.random import binomial as binomial from keras.src.random.random import categorical as categorical from keras.src.random.random import dropout as dropout from keras.src.random.random import gamma as gamma from keras.src.random.random import normal as normal from keras.src.random.random import randint as randint from keras.src.random.random import shuffle as shuffle from keras.src.random.random import truncated_normal as truncated_normal from keras.src.random.random import uniform as uniform from keras.src.random.seed_generator import SeedGenerator as SeedGenerator
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.random.random import beta from keras.src.random.random import binomial from keras.src.random.random import categorical from keras.src.random.random import dropout from keras.src.random.random import gamma from keras.src.random.random import normal from keras.src.random.random import randint from keras.src.random.random import shuffle from keras.src.random.random import truncated_normal from keras.src.random.random import uniform from keras.src.random.seed_generator import SeedGenerator
import asyncio import os import random import string import tempfile import time import pytest from jina import helper @pytest.fixture(scope='function') def random_workspace_name(): """Generate a random workspace name with digits and letters.""" rand = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6)) return f'JINA_TEST_WORKSPACE_{rand}' @pytest.fixture(scope='function') def test_metas(tmpdir, random_workspace_name): from jina.serve.executors.metas import get_default_metas os.environ[random_workspace_name] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ[random_workspace_name] yield metas del os.environ[random_workspace_name] @pytest.fixture() def docker_compose(request): os.system( f"docker-compose -f {request.param} --project-directory . up --build -d --remove-orphans" ) time.sleep(10) yield os.system( f"docker-compose -f {request.param} --project-directory . down --remove-orphans" ) @pytest.fixture(scope='function') def port_generator(): generated_ports = set() def random_port(): port = helper.random_port() while port in generated_ports: port = helper.random_port() generated_ports.add(port) return port return random_port @pytest.fixture(autouse=True) def test_log_level(monkeypatch): monkeypatch.setenv('JINA_LOG_LEVEL', 'DEBUG') @pytest.fixture(autouse=True) def test_grpc_fork_support_false(monkeypatch): monkeypatch.setenv('GRPC_ENABLE_FORK_SUPPORT', 'false') @pytest.fixture(autouse=True) def test_timeout_ctrl_time(monkeypatch): monkeypatch.setenv('JINA_DEFAULT_TIMEOUT_CTRL', '500') @pytest.fixture(autouse=True) def test_disable_telemetry(monkeypatch): monkeypatch.setenv('JINA_OPTOUT_TELEMETRY', 'True') @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'jina_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def event_loop(request): """ Valid only for `pytest.mark.asyncio` tests """ loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close()
import asyncio import os import random import string import tempfile import time import pytest from jina import helper @pytest.fixture(scope='function') def random_workspace_name(): """Generate a random workspace name with digits and letters.""" rand = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6)) return f'JINA_TEST_WORKSPACE_{rand}' @pytest.fixture(scope='function') def test_metas(tmpdir, random_workspace_name): from jina.serve.executors.metas import get_default_metas os.environ[random_workspace_name] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ[random_workspace_name] yield metas del os.environ[random_workspace_name] @pytest.fixture() def docker_compose(request): os.system( f"docker-compose -f {request.param} --project-directory . up --build -d --remove-orphans" ) time.sleep(10) yield os.system( f"docker-compose -f {request.param} --project-directory . down --remove-orphans" ) @pytest.fixture(scope='function') def port_generator(): generated_ports = set() def random_port(): port = helper.random_port() while port in generated_ports: port = helper.random_port() generated_ports.add(port) return port return random_port @pytest.fixture(scope='function') def test_envs(tmpdir): os.environ['JINA_HUB_ROOT'] = str(tmpdir) os.environ['JINA_HUB_CACHE_DIR'] = str(tmpdir) yield None del os.environ['JINA_HUB_ROOT'] del os.environ['JINA_HUB_CACHE_DIR'] @pytest.fixture(autouse=True) def test_log_level(monkeypatch): monkeypatch.setenv('JINA_LOG_LEVEL', 'DEBUG') @pytest.fixture(autouse=True) def test_grpc_fork_support_false(monkeypatch): monkeypatch.setenv('GRPC_ENABLE_FORK_SUPPORT', 'false') @pytest.fixture(autouse=True) def test_timeout_ctrl_time(monkeypatch): monkeypatch.setenv('JINA_DEFAULT_TIMEOUT_CTRL', '500') @pytest.fixture(autouse=True) def test_disable_telemetry(monkeypatch): monkeypatch.setenv('JINA_OPTOUT_TELEMETRY', 'True') @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'jina_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def event_loop(request): """ Valid only for `pytest.mark.asyncio` tests """ loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close()
from typing import Literal from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ToolsIntegrationTests from langchain_tests.unit_tests import ToolsUnitTests class ParrotMultiplyTool(BaseTool): name: str = "ParrotMultiplyTool" description: str = ( "Multiply two numbers like a parrot. Parrots always add eighty for their matey." ) def _run(self, a: int, b: int) -> int: return a * b + 80 class ParrotMultiplyArtifactTool(BaseTool): name: str = "ParrotMultiplyArtifactTool" description: str = ( "Multiply two numbers like a parrot. Parrots always add eighty for their matey." ) response_format: Literal["content_and_artifact"] = "content_and_artifact" def _run(self, a: int, b: int) -> tuple[int, str]: return a * b + 80, "parrot artifact" class TestParrotMultiplyToolUnit(ToolsUnitTests): @property def tool_constructor(self) -> type[ParrotMultiplyTool]: return ParrotMultiplyTool @property def tool_constructor_params(self) -> dict: # if your tool constructor instead required initialization arguments like # `def __init__(self, some_arg: int):`, you would return those here # as a dictionary, e.g.: `return {'some_arg': 42}` return {} @property def tool_invoke_params_example(self) -> dict: """Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3} class TestParrotMultiplyToolIntegration(ToolsIntegrationTests): @property def tool_constructor(self) -> type[ParrotMultiplyTool]: return ParrotMultiplyTool @property def tool_constructor_params(self) -> dict: # if your tool constructor instead required initialization arguments like # `def __init__(self, some_arg: int):`, you would return those here # as a dictionary, e.g.: `return {'some_arg': 42}` return {} @property def tool_invoke_params_example(self) -> dict: """Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3} class TestParrotMultiplyArtifactToolIntegration(ToolsIntegrationTests): @property def tool_constructor(self) -> type[ParrotMultiplyArtifactTool]: return ParrotMultiplyArtifactTool @property def tool_constructor_params(self) -> dict: # if your tool constructor instead required initialization arguments like # `def __init__(self, some_arg: int):`, you would return those here # as a dictionary, e.g.: `return {'some_arg': 42}` return {} @property def tool_invoke_params_example(self) -> dict: """Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3}
from typing import Literal from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ToolsIntegrationTests from langchain_tests.unit_tests import ToolsUnitTests class ParrotMultiplyTool(BaseTool): name: str = "ParrotMultiplyTool" description: str = ( "Multiply two numbers like a parrot. Parrots always add eighty for their matey." ) def _run(self, a: int, b: int) -> int: return a * b + 80 class ParrotMultiplyArtifactTool(BaseTool): name: str = "ParrotMultiplyArtifactTool" description: str = ( "Multiply two numbers like a parrot. Parrots always add eighty for their matey." ) response_format: Literal["content_and_artifact"] = "content_and_artifact" def _run(self, a: int, b: int) -> tuple[int, str]: return a * b + 80, "parrot artifact" class TestParrotMultiplyToolUnit(ToolsUnitTests): @property def tool_constructor(self) -> type[ParrotMultiplyTool]: return ParrotMultiplyTool @property def tool_constructor_params(self) -> dict: # if your tool constructor instead required initialization arguments like # `def __init__(self, some_arg: int):`, you would return those here # as a dictionary, e.g.: `return {'some_arg': 42}` return {} @property def tool_invoke_params_example(self) -> dict: """ Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3} class TestParrotMultiplyToolIntegration(ToolsIntegrationTests): @property def tool_constructor(self) -> type[ParrotMultiplyTool]: return ParrotMultiplyTool @property def tool_constructor_params(self) -> dict: # if your tool constructor instead required initialization arguments like # `def __init__(self, some_arg: int):`, you would return those here # as a dictionary, e.g.: `return {'some_arg': 42}` return {} @property def tool_invoke_params_example(self) -> dict: """ Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3} class TestParrotMultiplyArtifactToolIntegration(ToolsIntegrationTests): @property def tool_constructor(self) -> type[ParrotMultiplyArtifactTool]: return ParrotMultiplyArtifactTool @property def tool_constructor_params(self) -> dict: # if your tool constructor instead required initialization arguments like # `def __init__(self, some_arg: int):`, you would return those here # as a dictionary, e.g.: `return {'some_arg': 42}` return {} @property def tool_invoke_params_example(self) -> dict: """ Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3}
import os from typing import Any, Optional from llama_index.llms.openai_like import OpenAILike class NetmindLLM(OpenAILike): """ Netmind LLM. Examples: `pip install llama-index-llms-netmind` ```python from llama_index.llms.netmind import NetmindLLM # set api key in env or in llm # import os # os.environ["NETMIND_API_KEY"] = "your api key" llm = NetmindLLM( model="meta-llama/Llama-3.3-70B-Instruct", api_key="your_api_key" ) resp = llm.complete("Who is Paul Graham?") print(resp) ``` """ def __init__( self, model: str, api_key: Optional[str] = None, api_base: str = "https://api.netmind.ai/inference-api/openai/v1", is_chat_model: bool = True, **kwargs: Any, ) -> None: api_key = api_key or os.environ.get("NETMIND_API_KEY", None) super().__init__( model=model, api_key=api_key, api_base=api_base, is_chat_model=is_chat_model, **kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "NetmindLLM"
import os from typing import Any, Optional from llama_index.llms.openai_like import OpenAILike class NetmindLLM(OpenAILike): """Netmind LLM. Examples: `pip install llama-index-llms-netmind` ```python from llama_index.llms.netmind import NetmindLLM # set api key in env or in llm # import os # os.environ["NETMIND_API_KEY"] = "your api key" llm = NetmindLLM( model="meta-llama/Llama-3.3-70B-Instruct", api_key="your_api_key" ) resp = llm.complete("Who is Paul Graham?") print(resp) ``` """ def __init__( self, model: str, api_key: Optional[str] = None, api_base: str = "https://api.netmind.ai/inference-api/openai/v1", is_chat_model: bool = True, **kwargs: Any, ) -> None: api_key = api_key or os.environ.get("NETMIND_API_KEY", None) super().__init__( model=model, api_key=api_key, api_base=api_base, is_chat_model=is_chat_model, **kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "NetmindLLM"
"""Oxylabs Web Reader.""" import asyncio from typing import Any, Dict, List, Optional, TYPE_CHECKING from platform import architecture, python_version from importlib.metadata import version from llama_index.core.bridge.pydantic import Field from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from markdownify import markdownify from llama_index.readers.web.oxylabs_web.utils import strip_html, json_to_markdown if TYPE_CHECKING: from oxylabs.internal.api import AsyncAPI, RealtimeAPI def get_default_config() -> dict[str, Any]: from oxylabs.utils.utils import prepare_config return prepare_config(async_integration=True) class OxylabsWebReader(BasePydanticReader): """ Scrape any website with Oxylabs Scraper. Oxylabs API documentation: https://developers.oxylabs.io/scraper-apis/web-scraper-api/other-websites Args: username: Oxylabs username. password: Oxylabs password. Example: .. code-block:: python from llama_index.readers.web.oxylabs_web.base import OxylabsWebReader reader = OxylabsWebReader( username=os.environ["OXYLABS_USERNAME"], password=os.environ["OXYLABS_PASSWORD"] ) docs = reader.load_data( [ "https://sandbox.oxylabs.io/products/1", "https://sandbox.oxylabs.io/products/2" ], { "parse": True, } ) print(docs[0].text) """ timeout_s: int = 100 oxylabs_scraper_url: str = "https://realtime.oxylabs.io/v1/queries" api: "RealtimeAPI" async_api: "AsyncAPI" default_config: dict[str, Any] = Field(default_factory=get_default_config) def __init__(self, username: str, password: str, **kwargs) -> None: from oxylabs.internal.api import AsyncAPI, APICredentials, RealtimeAPI credentials = APICredentials(username=username, password=password) bits, _ = architecture() sdk_type = ( f"oxylabs-llama-index-web-sdk-python/" f"{version('llama-index-readers-web')} " f"({python_version()}; {bits})" ) api = RealtimeAPI(credentials, sdk_type=sdk_type) async_api = AsyncAPI(credentials, sdk_type=sdk_type) super().__init__(api=api, async_api=async_api, **kwargs) @classmethod def class_name(cls) -> str: return "OxylabsWebReader" def _get_document_from_response(self, response: dict[str, Any]) -> Document: content = response["results"][0]["content"] if isinstance(content, (dict, list)): text = json_to_markdown(content) else: striped_html = strip_html(str(content)) text = markdownify(striped_html) return Document( metadata={"oxylabs_job": response["job"]}, text=text, ) async def aload_data( self, urls: list[str], additional_params: Optional[Dict[str, Any]] = None, ) -> List[Document]: """ Asynchronously load data from urls. Args: urls: List of URLs to load. additional_params: Dictionary with the scraper parameters. Accepts the values from the additional parameters described here: https://developers.oxylabs.io/scraper-apis/web-scraper-api/targets/generic-target#additional """ if additional_params is None: additional_params = {} responses = await asyncio.gather( *[ self.async_api.get_response( {**additional_params, "url": url}, self.default_config, ) for url in urls ] ) return [ self._get_document_from_response(response) for response in responses if response ] def load_data( self, urls: list[str], additional_params: Optional[Dict[str, Any]] = None, ) -> List[Document]: """ Load data from urls. Args: urls: List of URLs to load. additional_params: Dictionary with the scraper parameters. Accepts the values from the additional parameters described here: https://developers.oxylabs.io/scraper-apis/web-scraper-api/targets/generic-target#additional """ if additional_params is None: additional_params = {} responses = [ self.api.get_response( {**additional_params, "url": url}, self.default_config, ) for url in urls ] return [ self._get_document_from_response(response) for response in responses if response ]
"""Oxylabs Web Reader.""" import asyncio from typing import Any, List from platform import architecture, python_version from importlib.metadata import version from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from markdownify import markdownify from llama_index.readers.web.oxylabs_web.utils import strip_html, json_to_markdown from oxylabs.utils.utils import prepare_config from oxylabs.internal.api import AsyncAPI, APICredentials, RealtimeAPI class OxylabsWebReader(BasePydanticReader): """ Scrape any website with Oxylabs Scraper. Oxylabs API documentation: https://developers.oxylabs.io/scraper-apis/web-scraper-api/other-websites Args: username: Oxylabs username. password: Oxylabs password. Example: .. code-block:: python from llama_index.readers.web.oxylabs_web.base import OxylabsWebReader reader = OxylabsWebReader( username=os.environ["OXYLABS_USERNAME"], password=os.environ["OXYLABS_PASSWORD"] ) docs = reader.load_data( [ "https://sandbox.oxylabs.io/products/1", "https://sandbox.oxylabs.io/products/2" ], { "parse": True, } ) print(docs[0].text) """ timeout_s: int = 100 oxylabs_scraper_url: str = "https://realtime.oxylabs.io/v1/queries" api: RealtimeAPI async_api: AsyncAPI default_config: dict[str, Any] = prepare_config(async_integration=True) def __init__(self, username: str, password: str, **kwargs) -> None: credentials = APICredentials(username=username, password=password) bits, _ = architecture() sdk_type = ( f"oxylabs-llama-index-web-sdk-python/" f"{version('llama-index-readers-web')} " f"({python_version()}; {bits})" ) api = RealtimeAPI(credentials, sdk_type=sdk_type) async_api = AsyncAPI(credentials, sdk_type=sdk_type) super().__init__(api=api, async_api=async_api, **kwargs) @classmethod def class_name(cls) -> str: return "OxylabsWebReader" def _get_document_from_response(self, response: dict[str, Any]) -> Document: content = response["results"][0]["content"] if isinstance(content, (dict, list)): text = json_to_markdown(content) else: striped_html = strip_html(str(content)) text = markdownify(striped_html) return Document( metadata={"oxylabs_job": response["job"]}, text=text, ) async def aload_data( self, urls: list[str], additional_params: dict[str, Any] | None = None, ) -> List[Document]: """ Asynchronously load data from urls. Args: urls: List of URLs to load. additional_params: Dictionary with the scraper parameters. Accepts the values from the additional parameters described here: https://developers.oxylabs.io/scraper-apis/web-scraper-api/targets/generic-target#additional """ if additional_params is None: additional_params = {} responses = await asyncio.gather( *[ self.async_api.get_response( {**additional_params, "url": url}, self.default_config, ) for url in urls ] ) return [ self._get_document_from_response(response) for response in responses if response ] def load_data( self, urls: list[str], additional_params: dict[str, Any] | None = None, ) -> List[Document]: """ Load data from urls. Args: urls: List of URLs to load. additional_params: Dictionary with the scraper parameters. Accepts the values from the additional parameters described here: https://developers.oxylabs.io/scraper-apis/web-scraper-api/targets/generic-target#additional """ if additional_params is None: additional_params = {} responses = [ self.api.get_response( {**additional_params, "url": url}, self.default_config, ) for url in urls ] return [ self._get_document_from_response(response) for response in responses if response ]
import re from typing import Any, Dict, Union from sentence_transformers import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __init__(self): self.greater_is_better = True # TODO: Add better `primary_metrics` support def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Union[float, Dict[str, float]]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. :param model: the model to evaluate :param output_path: path where predictions and metrics are written to :param epoch the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. :param steps the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. :return: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: Dict[str, float], name: str): if not name: return metrics metrics = {name + "_" + key: value for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data(self, model: "SentenceTransformer", metrics: Dict[str, Any]) -> None: model.model_card_data.set_evaluation_metrics(self, metrics) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Remove "Evaluator" from the class name 2. Add a space before every capital letter """ class_name = self.__class__.__name__ try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", "\g<1> \g<2>", class_name)
from sentence_transformers import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __call__(self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. :param model: the model to evaluate :param output_path: path where predictions and metrics are written to :param epoch the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. :param steps the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. :return: a score for the evaluation with a higher score indicating a better result """ pass
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from .folder import default_loader from .utils import download_and_extract_archive from .vision import VisionDataset class SUN397(VisionDataset): """`The SUN397 Data Set <https://vision.princeton.edu/projects/2010/SUN/>`_. The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of 397 categories with 108'754 images. Args: root (str or ``pathlib.Path``): Root directory of the dataset. transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader, and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ _DATASET_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz" _DATASET_MD5 = "8ca2778205c41d23104230ba66911c7a" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Callable[[Union[str, Path]], Any] = default_loader, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._data_dir = Path(self.root) / "SUN397" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") with open(self._data_dir / "ClassName.txt") as f: self.classes = [c[3:].strip() for c in f] self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._image_files = list(self._data_dir.rglob("sun_*.jpg")) self._labels = [ self.class_to_idx["/".join(path.relative_to(self._data_dir).parts[1:-1])] for path in self._image_files ] self.loader = loader def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = self.loader(image_file) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def _check_exists(self) -> bool: return self._data_dir.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._DATASET_URL, download_root=self.root, md5=self._DATASET_MD5)
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import PIL.Image from .utils import download_and_extract_archive from .vision import VisionDataset class SUN397(VisionDataset): """`The SUN397 Data Set <https://vision.princeton.edu/projects/2010/SUN/>`_. The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of 397 categories with 108'754 images. Args: root (str or ``pathlib.Path``): Root directory of the dataset. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ _DATASET_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz" _DATASET_MD5 = "8ca2778205c41d23104230ba66911c7a" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._data_dir = Path(self.root) / "SUN397" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") with open(self._data_dir / "ClassName.txt") as f: self.classes = [c[3:].strip() for c in f] self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._image_files = list(self._data_dir.rglob("sun_*.jpg")) self._labels = [ self.class_to_idx["/".join(path.relative_to(self._data_dir).parts[1:-1])] for path in self._image_files ] def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def _check_exists(self) -> bool: return self._data_dir.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._DATASET_URL, download_root=self.root, md5=self._DATASET_MD5)
from PIL import Image from sentence_transformers import SentenceTransformer, models, util ########### image = Image.open("two_dogs_in_snow.jpg") from transformers import CLIPModel, CLIPProcessor model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(text=["a cat", "a dog"], images=[image], return_tensors="pt", padding=True) output = model(**inputs) # vision_outputs = model.vision_model(pixel_values=inputs['pixel_values']) # image_embeds = model.visual_projection(vision_outputs[1]) # print(image_embeds.shape) # exit() # Load CLIP model clip = models.CLIPModel() model = SentenceTransformer(modules=[clip]) model.save("tmp-clip-model") model = SentenceTransformer("tmp-clip-model") # Encode an image: img_emb = model.encode(Image.open("two_dogs_in_snow.jpg")) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores)
from PIL import Image from sentence_transformers import SentenceTransformer, models, util ########### image = Image.open("two_dogs_in_snow.jpg") from transformers import CLIPModel, CLIPProcessor model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(texts=["a cat", "a dog"], images=[image], return_tensors="pt", padding=True) output = model(**inputs) # vision_outputs = model.vision_model(pixel_values=inputs['pixel_values']) # image_embeds = model.visual_projection(vision_outputs[1]) # print(image_embeds.shape) # exit() # Load CLIP model clip = models.CLIPModel() model = SentenceTransformer(modules=[clip]) model.save("tmp-clip-model") model = SentenceTransformer("tmp-clip-model") # Encode an image: img_emb = model.encode(Image.open("two_dogs_in_snow.jpg")) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores)
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`, :class:`~sentence_transformers.sampler.DefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.DefaultBatchSampler`]], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`, :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`]], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
# Copyright (c) OpenMMLab. All rights reserved. from .base_roi_head import BaseRoIHead from .bbox_heads import (BBoxHead, ConvFCBBoxHead, DIIHead, DoubleConvFCBBoxHead, SABLHead, SCNetBBoxHead, Shared2FCBBoxHead, Shared4Conv1FCBBoxHead) from .cascade_roi_head import CascadeRoIHead from .double_roi_head import DoubleHeadRoIHead from .dynamic_roi_head import DynamicRoIHead from .grid_roi_head import GridRoIHead from .htc_roi_head import HybridTaskCascadeRoIHead from .mask_heads import (CoarseMaskHead, FCNMaskHead, FeatureRelayHead, FusedSemanticHead, GlobalContextHead, GridHead, HTCMaskHead, MaskIoUHead, MaskPointHead, SCNetMaskHead, SCNetSemanticHead) from .mask_scoring_roi_head import MaskScoringRoIHead from .pisa_roi_head import PISARoIHead from .point_rend_roi_head import PointRendRoIHead from .roi_extractors import (BaseRoIExtractor, GenericRoIExtractor, SingleRoIExtractor) from .scnet_roi_head import SCNetRoIHead from .shared_heads import ResLayer from .sparse_roi_head import SparseRoIHead from .standard_roi_head import StandardRoIHead from .trident_roi_head import TridentRoIHead __all__ = [ 'BaseRoIHead', 'CascadeRoIHead', 'DoubleHeadRoIHead', 'MaskScoringRoIHead', 'HybridTaskCascadeRoIHead', 'GridRoIHead', 'ResLayer', 'BBoxHead', 'ConvFCBBoxHead', 'DIIHead', 'SABLHead', 'Shared2FCBBoxHead', 'StandardRoIHead', 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', 'FCNMaskHead', 'HTCMaskHead', 'FusedSemanticHead', 'GridHead', 'MaskIoUHead', 'BaseRoIExtractor', 'GenericRoIExtractor', 'SingleRoIExtractor', 'PISARoIHead', 'PointRendRoIHead', 'MaskPointHead', 'CoarseMaskHead', 'DynamicRoIHead', 'SparseRoIHead', 'TridentRoIHead', 'SCNetRoIHead', 'SCNetMaskHead', 'SCNetSemanticHead', 'SCNetBBoxHead', 'FeatureRelayHead', 'GlobalContextHead' ]
from .base_roi_head import BaseRoIHead from .bbox_heads import (BBoxHead, ConvFCBBoxHead, DIIHead, DoubleConvFCBBoxHead, SABLHead, SCNetBBoxHead, Shared2FCBBoxHead, Shared4Conv1FCBBoxHead) from .cascade_roi_head import CascadeRoIHead from .double_roi_head import DoubleHeadRoIHead from .dynamic_roi_head import DynamicRoIHead from .grid_roi_head import GridRoIHead from .htc_roi_head import HybridTaskCascadeRoIHead from .mask_heads import (CoarseMaskHead, FCNMaskHead, FeatureRelayHead, FusedSemanticHead, GlobalContextHead, GridHead, HTCMaskHead, MaskIoUHead, MaskPointHead, SCNetMaskHead, SCNetSemanticHead) from .mask_scoring_roi_head import MaskScoringRoIHead from .pisa_roi_head import PISARoIHead from .point_rend_roi_head import PointRendRoIHead from .roi_extractors import (BaseRoIExtractor, GenericRoIExtractor, SingleRoIExtractor) from .scnet_roi_head import SCNetRoIHead from .shared_heads import ResLayer from .sparse_roi_head import SparseRoIHead from .standard_roi_head import StandardRoIHead from .trident_roi_head import TridentRoIHead __all__ = [ 'BaseRoIHead', 'CascadeRoIHead', 'DoubleHeadRoIHead', 'MaskScoringRoIHead', 'HybridTaskCascadeRoIHead', 'GridRoIHead', 'ResLayer', 'BBoxHead', 'ConvFCBBoxHead', 'DIIHead', 'SABLHead', 'Shared2FCBBoxHead', 'StandardRoIHead', 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', 'FCNMaskHead', 'HTCMaskHead', 'FusedSemanticHead', 'GridHead', 'MaskIoUHead', 'BaseRoIExtractor', 'GenericRoIExtractor', 'SingleRoIExtractor', 'PISARoIHead', 'PointRendRoIHead', 'MaskPointHead', 'CoarseMaskHead', 'DynamicRoIHead', 'SparseRoIHead', 'TridentRoIHead', 'SCNetRoIHead', 'SCNetMaskHead', 'SCNetSemanticHead', 'SCNetBBoxHead', 'FeatureRelayHead', 'GlobalContextHead' ]
from collections.abc import Sequence from typing import Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser def create_openai_tools_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, strict: Optional[bool] = None, ) -> Runnable: """Create an agent that uses OpenAI tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Raises: ValueError: If the prompt is missing required variables. Example: .. code-block:: python from langchain import hub from langchain_community.chat_models import ChatOpenAI from langchain.agents import AgentExecutor, create_openai_tools_agent prompt = hub.pull("hwchase17/openai-tools-agent") model = ChatOpenAI() tools = ... agent = create_openai_tools_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"input": "hi"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. Here's an example: .. code-block:: python from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), MessagesPlaceholder("chat_history", optional=True), ("human", "{input}"), MessagesPlaceholder("agent_scratchpad"), ] ) """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables) ) if missing_vars: raise ValueError(f"Prompt missing required variables: {missing_vars}") llm_with_tools = llm.bind( tools=[convert_to_openai_tool(tool, strict=strict) for tool in tools] ) agent = ( RunnablePassthrough.assign( agent_scratchpad=lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ) ) | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) return agent
from typing import Optional, Sequence from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser def create_openai_tools_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, strict: Optional[bool] = None, ) -> Runnable: """Create an agent that uses OpenAI tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Raises: ValueError: If the prompt is missing required variables. Example: .. code-block:: python from langchain import hub from langchain_community.chat_models import ChatOpenAI from langchain.agents import AgentExecutor, create_openai_tools_agent prompt = hub.pull("hwchase17/openai-tools-agent") model = ChatOpenAI() tools = ... agent = create_openai_tools_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"input": "hi"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. Here's an example: .. code-block:: python from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), MessagesPlaceholder("chat_history", optional=True), ("human", "{input}"), MessagesPlaceholder("agent_scratchpad"), ] ) """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables) ) if missing_vars: raise ValueError(f"Prompt missing required variables: {missing_vars}") llm_with_tools = llm.bind( tools=[convert_to_openai_tool(tool, strict=strict) for tool in tools] ) agent = ( RunnablePassthrough.assign( agent_scratchpad=lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ) ) | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) return agent
"""Test Ollama Chat API wrapper.""" from typing import Any from unittest.mock import patch from langchain_ollama import OllamaLLM MODEL_NAME = "llama3.1" def test_initialization() -> None: """Test integration initialization.""" OllamaLLM(model=MODEL_NAME) def test_model_params() -> None: # Test standard tracing params llm = OllamaLLM(model=MODEL_NAME) ls_params = llm._get_ls_params() assert ls_params == { "ls_provider": "ollama", "ls_model_type": "llm", "ls_model_name": MODEL_NAME, } llm = OllamaLLM(model=MODEL_NAME, num_predict=3) ls_params = llm._get_ls_params() assert ls_params == { "ls_provider": "ollama", "ls_model_type": "llm", "ls_model_name": MODEL_NAME, "ls_max_tokens": 3, } @patch("langchain_ollama.llms.validate_model") def test_validate_model_on_init(mock_validate_model: Any) -> None: """Test that the model is validated on initialization when requested.""" # Test that validate_model is called when validate_model_on_init=True OllamaLLM(model=MODEL_NAME, validate_model_on_init=True) mock_validate_model.assert_called_once() mock_validate_model.reset_mock() # Test that validate_model is NOT called when validate_model_on_init=False OllamaLLM(model=MODEL_NAME, validate_model_on_init=False) mock_validate_model.assert_not_called() # Test that validate_model is NOT called by default OllamaLLM(model=MODEL_NAME) mock_validate_model.assert_not_called()
"""Test Ollama Chat API wrapper.""" from typing import Any from unittest.mock import patch from langchain_ollama import OllamaLLM MODEL_NAME = "llama3.1" def test_initialization() -> None: """Test integration initialization.""" OllamaLLM(model="llama3") def test_model_params() -> None: # Test standard tracing params llm = OllamaLLM(model="llama3") ls_params = llm._get_ls_params() assert ls_params == { "ls_provider": "ollama", "ls_model_type": "llm", "ls_model_name": "llama3", } llm = OllamaLLM(model="llama3", num_predict=3) ls_params = llm._get_ls_params() assert ls_params == { "ls_provider": "ollama", "ls_model_type": "llm", "ls_model_name": "llama3", "ls_max_tokens": 3, } @patch("langchain_ollama.llms.validate_model") def test_validate_model_on_init(mock_validate_model: Any) -> None: """Test that the model is validated on initialization when requested.""" # Test that validate_model is called when validate_model_on_init=True OllamaLLM(model=MODEL_NAME, validate_model_on_init=True) mock_validate_model.assert_called_once() mock_validate_model.reset_mock() # Test that validate_model is NOT called when validate_model_on_init=False OllamaLLM(model=MODEL_NAME, validate_model_on_init=False) mock_validate_model.assert_not_called() # Test that validate_model is NOT called by default OllamaLLM(model=MODEL_NAME) mock_validate_model.assert_not_called()
from typing import TypeVar from fastapi import Depends, FastAPI from fastapi.testclient import TestClient from typing_extensions import Annotated app = FastAPI() T = TypeVar("T") Dep = Annotated[T, Depends()] class A: pass class B: pass @app.get("/a") async def a(dep: Dep[A]): return {"cls": dep.__class__.__name__} @app.get("/b") async def b(dep: Dep[B]): return {"cls": dep.__class__.__name__} client = TestClient(app) def test_generic_parameterless_depends(): response = client.get("/a") assert response.status_code == 200, response.text assert response.json() == {"cls": "A"} response = client.get("/b") assert response.status_code == 200, response.text assert response.json() == {"cls": "B"} def test_openapi_schema(): response = client.get("/openapi.json") assert response.status_code == 200, response.text assert response.json() == { "info": {"title": "FastAPI", "version": "0.1.0"}, "openapi": "3.1.0", "paths": { "/a": { "get": { "operationId": "a_a_get", "responses": { "200": { "content": {"application/json": {"schema": {}}}, "description": "Successful Response", } }, "summary": "A", } }, "/b": { "get": { "operationId": "b_b_get", "responses": { "200": { "content": {"application/json": {"schema": {}}}, "description": "Successful Response", } }, "summary": "B", } }, }, }
from typing import TypeVar from fastapi import Depends, FastAPI from fastapi.testclient import TestClient from typing_extensions import Annotated app = FastAPI() T = TypeVar("T") Dep = Annotated[T, Depends()] class A: pass class B: pass @app.get("/a") async def a(dep: Dep[A]): return {"cls": dep.__class__.__name__} @app.get("/b") async def b(dep: Dep[B]): return {"cls": dep.__class__.__name__} client = TestClient(app) def test_generic_parameterless_depends(): response = client.get("/a") assert response.status_code == 200, response.text assert response.json() == {"cls": "A"} response = client.get("/b") assert response.status_code == 200, response.text assert response.json() == {"cls": "B"} def test_openapi_schema(): response = client.get("/openapi.json") assert response.status_code == 200, response.text assert response.json() == { "info": {"title": "FastAPI", "version": "0.1.0"}, "openapi": "3.1.0", "paths": { "/a": { "get": { "operationId": "a_a_get", "responses": { "200": { "content": {"application/json": {"schema": {}}}, "description": "Successful " "Response", } }, "summary": "A", } }, "/b": { "get": { "operationId": "b_b_get", "responses": { "200": { "content": {"application/json": {"schema": {}}}, "description": "Successful " "Response", } }, "summary": "B", } }, }, }
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """label_image for tflite.""" import argparse import time import numpy as np from PIL import Image from tensorflow.lite.python import lite def load_labels(filename): with open(filename, 'r') as f: return [line.strip() for line in f.readlines()] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '-i', '--image', default='/tmp/grace_hopper.bmp', help='image to be classified') parser.add_argument( '-m', '--model_file', default='/tmp/mobilenet_v1_1.0_224_quant.tflite', help='.tflite model to be executed') parser.add_argument( '-l', '--label_file', default='/tmp/labels.txt', help='name of file containing labels') parser.add_argument( '--input_mean', default=127.5, type=float, help='input_mean') parser.add_argument( '--input_std', default=127.5, type=float, help='input standard deviation') parser.add_argument( '--num_threads', default=None, type=int, help='number of threads') parser.add_argument( '-e', '--ext_delegate', help='external_delegate_library path') parser.add_argument( '-o', '--ext_delegate_options', help='external delegate options, \ format: "option1: value1; option2: value2"') args = parser.parse_args() ext_delegate = None ext_delegate_options = {} # parse extenal delegate options if args.ext_delegate_options is not None: options = args.ext_delegate_options.split(';') for o in options: kv = o.split(':') if (len(kv) == 2): ext_delegate_options[kv[0].strip()] = kv[1].strip() else: raise RuntimeError('Error parsing delegate option: ' + o) # load external delegate if args.ext_delegate is not None: print('Loading external delegate from {} with args: {}'.format( args.ext_delegate, ext_delegate_options)) ext_delegate = [ tflite.load_delegate(args.ext_delegate, ext_delegate_options) ] interpreter = lite.Interpreter( model_path=args.model_file, experimental_delegates=ext_delegate, num_threads=args.num_threads) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # check the type of the input tensor floating_model = input_details[0]['dtype'] == np.float32 # NxHxWxC, H:1, W:2 height = input_details[0]['shape'][1] width = input_details[0]['shape'][2] img = Image.open(args.image).resize((width, height)) # add N dim input_data = np.expand_dims(img, axis=0) if floating_model: input_data = (np.float32(input_data) - args.input_mean) / args.input_std interpreter.set_tensor(input_details[0]['index'], input_data) start_time = time.time() interpreter.invoke() stop_time = time.time() output_data = interpreter.get_tensor(output_details[0]['index']) results = np.squeeze(output_data) top_k = results.argsort()[-5:][::-1] labels = load_labels(args.label_file) for i in top_k: if floating_model: print('{:08.6f}: {}'.format(float(results[i]), labels[i])) else: print('{:08.6f}: {}'.format(float(results[i] / 255.0), labels[i])) print('time: {:.3f}ms'.format((stop_time - start_time) * 1000))
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """label_image for tflite.""" import argparse import time import numpy as np from PIL import Image import tensorflow as tf def load_labels(filename): with open(filename, 'r') as f: return [line.strip() for line in f.readlines()] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '-i', '--image', default='/tmp/grace_hopper.bmp', help='image to be classified') parser.add_argument( '-m', '--model_file', default='/tmp/mobilenet_v1_1.0_224_quant.tflite', help='.tflite model to be executed') parser.add_argument( '-l', '--label_file', default='/tmp/labels.txt', help='name of file containing labels') parser.add_argument( '--input_mean', default=127.5, type=float, help='input_mean') parser.add_argument( '--input_std', default=127.5, type=float, help='input standard deviation') parser.add_argument( '--num_threads', default=None, type=int, help='number of threads') parser.add_argument( '-e', '--ext_delegate', help='external_delegate_library path') parser.add_argument( '-o', '--ext_delegate_options', help='external delegate options, \ format: "option1: value1; option2: value2"') args = parser.parse_args() ext_delegate = None ext_delegate_options = {} # parse extenal delegate options if args.ext_delegate_options is not None: options = args.ext_delegate_options.split(';') for o in options: kv = o.split(':') if (len(kv) == 2): ext_delegate_options[kv[0].strip()] = kv[1].strip() else: raise RuntimeError('Error parsing delegate option: ' + o) # load external delegate if args.ext_delegate is not None: print('Loading external delegate from {} with args: {}'.format( args.ext_delegate, ext_delegate_options)) ext_delegate = [ tflite.load_delegate(args.ext_delegate, ext_delegate_options) ] interpreter = tf.lite.Interpreter( model_path=args.model_file, experimental_delegates=ext_delegate, num_threads=args.num_threads) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # check the type of the input tensor floating_model = input_details[0]['dtype'] == np.float32 # NxHxWxC, H:1, W:2 height = input_details[0]['shape'][1] width = input_details[0]['shape'][2] img = Image.open(args.image).resize((width, height)) # add N dim input_data = np.expand_dims(img, axis=0) if floating_model: input_data = (np.float32(input_data) - args.input_mean) / args.input_std interpreter.set_tensor(input_details[0]['index'], input_data) start_time = time.time() interpreter.invoke() stop_time = time.time() output_data = interpreter.get_tensor(output_details[0]['index']) results = np.squeeze(output_data) top_k = results.argsort()[-5:][::-1] labels = load_labels(args.label_file) for i in top_k: if floating_model: print('{:08.6f}: {}'.format(float(results[i]), labels[i])) else: print('{:08.6f}: {}'.format(float(results[i] / 255.0), labels[i])) print('time: {:.3f}ms'.format((stop_time - start_time) * 1000))
from keras.src import backend from keras.src.utils.module_utils import tensorflow as tf def get_tensor_spec(t, dynamic_batch=False, name=None): """Returns a `TensorSpec` given a single `Tensor` or `TensorSpec`.""" if isinstance(t, tf.TypeSpec): spec = t elif isinstance(t, tf.__internal__.CompositeTensor): # Check for ExtensionTypes spec = t._type_spec elif hasattr(t, "shape") and hasattr(t, "dtype"): spec = tf.TensorSpec(shape=t.shape, dtype=t.dtype, name=name) else: return None # Allow non-Tensors to pass through. if not dynamic_batch: return spec shape = spec.shape if shape.rank is None or shape.rank == 0: return spec shape_list = shape.as_list() shape_list[0] = None shape = tf.TensorShape(shape_list) spec._shape = shape return spec def ensure_tensor(inputs, dtype=None): """Ensures the input is a Tensor, SparseTensor or RaggedTensor.""" if not isinstance(inputs, (tf.Tensor, tf.SparseTensor, tf.RaggedTensor)): if backend.backend() == "torch" and backend.is_tensor(inputs): # Plain `np.asarray()` conversion fails with PyTorch. inputs = backend.convert_to_numpy(inputs) inputs = tf.convert_to_tensor(inputs, dtype) if dtype is not None and inputs.dtype != dtype: inputs = tf.cast(inputs, dtype) return inputs def is_ragged_tensor(x): return "ragged_tensor.RaggedTensor" in str(type(x)) def sparse_bincount(inputs, depth, binary_output, dtype, count_weights=None): """Apply binary or count encoding to an input and return a sparse tensor.""" result = tf.sparse.bincount( inputs, weights=count_weights, minlength=depth, maxlength=depth, axis=-1, binary_output=binary_output, ) result = tf.cast(result, dtype) if inputs.shape.rank == 1: output_shape = (depth,) else: batch_size = tf.shape(result)[0] output_shape = (batch_size, depth) result = tf.SparseTensor( indices=result.indices, values=result.values, dense_shape=output_shape ) return result def dense_bincount(inputs, depth, binary_output, dtype, count_weights=None): """Apply binary or count encoding to an input.""" result = tf.math.bincount( inputs, weights=count_weights, minlength=depth, maxlength=depth, dtype=dtype, axis=-1, binary_output=binary_output, ) if inputs.shape.rank == 1: result.set_shape(tf.TensorShape((depth,))) else: batch_size = inputs.shape.as_list()[0] result.set_shape(tf.TensorShape((batch_size, depth))) return result def expand_dims(inputs, axis): """Expand dims on sparse, ragged, or dense tensors.""" if isinstance(inputs, tf.SparseTensor): return tf.sparse.expand_dims(inputs, axis) return tf.expand_dims(inputs, axis) def tf_encode_categorical_inputs( inputs, output_mode, depth, dtype="float32", sparse=False, count_weights=None, idf_weights=None, ): """Encodes categorical inputs according to output_mode. Faster method that relies on bincount. """ if output_mode == "int": return tf.identity(tf.cast(inputs, dtype)) original_shape = inputs.shape # In all cases, we should uprank scalar input to a single sample. if inputs.shape.rank == 0: inputs = expand_dims(inputs, -1) # One hot will unprank only if the final output dimension is not already 1. if output_mode == "one_hot": if inputs.shape[-1] != 1: inputs = expand_dims(inputs, -1) if inputs.shape.rank > 2: raise ValueError( "When output_mode is not `'int'`, maximum supported output rank " f"is 2. Received output_mode {output_mode} and input shape " f"{original_shape}, " f"which would result in output rank {inputs.shape.rank}." ) binary_output = output_mode in ("multi_hot", "one_hot") if sparse: bincounts = sparse_bincount( inputs, depth, binary_output, dtype, count_weights ) else: bincounts = dense_bincount( inputs, depth, binary_output, dtype, count_weights ) bincounts = tf.cast(bincounts, dtype) if output_mode != "tf_idf": return bincounts if idf_weights is None: raise ValueError( "When output mode is `'tf_idf'`, idf_weights must be provided. " f"Received: output_mode={output_mode} and idf_weights={idf_weights}" ) if sparse: value_weights = tf.gather(idf_weights, bincounts.indices[:, -1]) return tf.SparseTensor( bincounts.indices, value_weights * bincounts.values, bincounts.dense_shape, ) else: return tf.multiply(bincounts, idf_weights)
from keras.src import backend from keras.src.utils.module_utils import tensorflow as tf def get_tensor_spec(t, dynamic_batch=False, name=None): """Returns a `TensorSpec` given a single `Tensor` or `TensorSpec`.""" if isinstance(t, tf.TypeSpec): spec = t elif isinstance(t, tf.__internal__.CompositeTensor): # Check for ExtensionTypes spec = t._type_spec elif hasattr(t, "shape") and hasattr(t, "dtype"): spec = tf.TensorSpec(shape=t.shape, dtype=t.dtype, name=name) else: return None # Allow non-Tensors to pass through. if not dynamic_batch: return spec shape = spec.shape if shape.rank is None or shape.rank == 0: return spec shape_list = shape.as_list() shape_list[0] = None shape = tf.TensorShape(shape_list) spec._shape = shape return spec def ensure_tensor(inputs, dtype=None): """Ensures the input is a Tensor, SparseTensor or RaggedTensor.""" if not isinstance(inputs, (tf.Tensor, tf.SparseTensor, tf.RaggedTensor)): if backend.backend() == "torch" and backend.is_tensor(inputs): # Plain `np.asarray()` conversion fails with PyTorch. inputs = backend.convert_to_numpy(inputs) inputs = tf.convert_to_tensor(inputs, dtype) if dtype is not None and inputs.dtype != dtype: inputs = tf.cast(inputs, dtype) return inputs def is_ragged_tensor(x): return "ragged_tensor.RaggedTensor" in str(type(x))
import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.typing import NdArray @pytest.mark.parametrize('shuffle', [False, True]) @pytest.mark.parametrize('stack', [False, True]) @pytest.mark.parametrize('batch_size,n_batches', [(16, 7), (10, 10)]) def test_batch(shuffle, stack, batch_size, n_batches): class MyDoc(BaseDoc): id: int tensor: NdArray t_shape = (32, 32) da = DocList[MyDoc]( [ MyDoc( id=str(i), tensor=np.zeros(t_shape), ) for i in range(100) ] ) if stack: da = da.to_doc_vec() batches = list(da._batch(batch_size=batch_size, shuffle=shuffle)) assert len(batches) == n_batches for i, batch in enumerate(batches): if i < n_batches - 1: assert len(batch) == batch_size if stack: assert batch.tensor.shape == (batch_size, *t_shape) else: assert len(batch) <= batch_size non_shuffled_ids = [ i for i in range(i * batch_size, min((i + 1) * batch_size, len(da))) ] if not shuffle: assert batch.id == non_shuffled_ids else: assert not (batch.id == non_shuffled_ids)
import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.typing import NdArray @pytest.mark.parametrize('shuffle', [False, True]) @pytest.mark.parametrize('stack', [False, True]) @pytest.mark.parametrize('batch_size,n_batches', [(16, 7), (10, 10)]) def test_batch(shuffle, stack, batch_size, n_batches): class MyDoc(BaseDoc): id: int tensor: NdArray t_shape = (32, 32) da = DocList[MyDoc]( [ MyDoc( id=i, tensor=np.zeros(t_shape), ) for i in range(100) ] ) if stack: da = da.to_doc_vec() batches = list(da._batch(batch_size=batch_size, shuffle=shuffle)) assert len(batches) == n_batches for i, batch in enumerate(batches): if i < n_batches - 1: assert len(batch) == batch_size if stack: assert batch.tensor.shape == (batch_size, *t_shape) else: assert len(batch) <= batch_size non_shuffled_ids = [ i for i in range(i * batch_size, min((i + 1) * batch_size, len(da))) ] if not shuffle: assert batch.id == non_shuffled_ids else: assert not (batch.id == non_shuffled_ids)
import sys import pytest from hypothesis import given, settings, strategies from xgboost.testing import no_cupy sys.path.append("tests/python") from test_data_iterator import run_data_iterator from test_data_iterator import test_single_batch as cpu_single_batch def test_gpu_single_batch() -> None: cpu_single_batch("gpu_hist") @pytest.mark.skipif(**no_cupy()) @given( strategies.integers(0, 1024), strategies.integers(1, 7), strategies.integers(0, 8), strategies.booleans(), strategies.booleans(), strategies.booleans(), ) @settings(deadline=None, max_examples=16, print_blob=True) def test_gpu_data_iterator( n_samples_per_batch: int, n_features: int, n_batches: int, subsample: bool, use_cupy: bool, on_host: bool, ) -> None: run_data_iterator( n_samples_per_batch, n_features, n_batches, "hist", subsample=subsample, device="cuda", use_cupy=use_cupy, on_host=on_host, ) def test_cpu_data_iterator() -> None: """Make sure CPU algorithm can handle GPU inputs""" run_data_iterator( 1024, 2, 3, "approx", device="cuda", subsample=False, use_cupy=True, on_host=False, )
import sys import pytest from hypothesis import given, settings, strategies from xgboost.testing import no_cupy sys.path.append("tests/python") from test_data_iterator import run_data_iterator from test_data_iterator import test_single_batch as cpu_single_batch def test_gpu_single_batch() -> None: cpu_single_batch("gpu_hist") @pytest.mark.skipif(**no_cupy()) @given( strategies.integers(0, 1024), strategies.integers(1, 7), strategies.integers(0, 8), strategies.booleans(), strategies.booleans(), ) @settings(deadline=None, max_examples=10, print_blob=True) def test_gpu_data_iterator( n_samples_per_batch: int, n_features: int, n_batches: int, subsample: bool, use_cupy: bool, ) -> None: run_data_iterator( n_samples_per_batch, n_features, n_batches, "gpu_hist", subsample, use_cupy ) def test_cpu_data_iterator() -> None: """Make sure CPU algorithm can handle GPU inputs""" run_data_iterator(1024, 2, 3, "approx", False, True)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class MaskRCNN(TwoStageDetector): """Implementation of `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(MaskRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, img_norm_cfg=img_norm_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class MaskRCNN(TwoStageDetector): """Implementation of `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(MaskRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, img_norm_cfg=img_norm_cfg)
# coding: utf-8 from pathlib import Path import numpy as np preds = [np.loadtxt(str(name)) for name in Path(__file__).absolute().parent.glob("*.pred")] np.testing.assert_allclose(preds[0], preds[1])
# coding: utf-8 from pathlib import Path import numpy as np preds = [np.loadtxt(str(name)) for name in Path(__file__).absolute().parent.glob('*.pred')] np.testing.assert_allclose(preds[0], preds[1])
import warnings from typing import Any, Callable, Dict, List, Optional, Sequence, Union import torch from torch import nn from torchvision import transforms as _transforms from torchvision.prototype.transforms import Transform class Compose(Transform): def __init__(self, transforms: Sequence[Callable]) -> None: super().__init__() if not isinstance(transforms, Sequence): raise TypeError("Argument transforms should be a sequence of callables") self.transforms = transforms def forward(self, *inputs: Any) -> Any: sample = inputs if len(inputs) > 1 else inputs[0] for transform in self.transforms: sample = transform(sample) return sample def extra_repr(self) -> str: format_string = [] for t in self.transforms: format_string.append(f" {t}") return "\n".join(format_string) class RandomApply(Transform): _v1_transform_cls = _transforms.RandomApply def __init__(self, transforms: Union[Sequence[Callable], nn.ModuleList], p: float = 0.5) -> None: super().__init__() if not isinstance(transforms, (Sequence, nn.ModuleList)): raise TypeError("Argument transforms should be a sequence of callables or a `nn.ModuleList`") self.transforms = transforms if not (0.0 <= p <= 1.0): raise ValueError("`p` should be a floating point value in the interval [0.0, 1.0].") self.p = p def _extract_params_for_v1_transform(self) -> Dict[str, Any]: return {"transforms": self.transforms, "p": self.p} def forward(self, *inputs: Any) -> Any: sample = inputs if len(inputs) > 1 else inputs[0] if torch.rand(1) >= self.p: return sample for transform in self.transforms: sample = transform(sample) return sample def extra_repr(self) -> str: format_string = [] for t in self.transforms: format_string.append(f" {t}") return "\n".join(format_string) class RandomChoice(Transform): def __init__( self, transforms: Sequence[Callable], probabilities: Optional[List[float]] = None, p: Optional[List[float]] = None, ) -> None: if not isinstance(transforms, Sequence): raise TypeError("Argument transforms should be a sequence of callables") if p is not None: warnings.warn( "Argument p is deprecated and will be removed in a future release. " "Please use probabilities argument instead." ) probabilities = p if probabilities is None: probabilities = [1] * len(transforms) elif len(probabilities) != len(transforms): raise ValueError( f"The number of probabilities doesn't match the number of transforms: " f"{len(probabilities)} != {len(transforms)}" ) super().__init__() self.transforms = transforms total = sum(probabilities) self.probabilities = [prob / total for prob in probabilities] def forward(self, *inputs: Any) -> Any: idx = int(torch.multinomial(torch.tensor(self.probabilities), 1)) transform = self.transforms[idx] return transform(*inputs) class RandomOrder(Transform): def __init__(self, transforms: Sequence[Callable]) -> None: if not isinstance(transforms, Sequence): raise TypeError("Argument transforms should be a sequence of callables") super().__init__() self.transforms = transforms def forward(self, *inputs: Any) -> Any: sample = inputs if len(inputs) > 1 else inputs[0] for idx in torch.randperm(len(self.transforms)): transform = self.transforms[idx] sample = transform(sample) return sample
import warnings from typing import Any, Callable, List, Optional, Sequence, Union import torch from torch import nn from torchvision.prototype.transforms import Transform class Compose(Transform): def __init__(self, transforms: Sequence[Callable]) -> None: super().__init__() if not isinstance(transforms, Sequence): raise TypeError("Argument transforms should be a sequence of callables") self.transforms = transforms def forward(self, *inputs: Any) -> Any: sample = inputs if len(inputs) > 1 else inputs[0] for transform in self.transforms: sample = transform(sample) return sample def extra_repr(self) -> str: format_string = [] for t in self.transforms: format_string.append(f" {t}") return "\n".join(format_string) class RandomApply(Transform): def __init__(self, transforms: Union[Sequence[Callable], nn.ModuleList], p: float = 0.5) -> None: super().__init__() if not isinstance(transforms, (Sequence, nn.ModuleList)): raise TypeError("Argument transforms should be a sequence of callables or a `nn.ModuleList`") self.transforms = transforms if not (0.0 <= p <= 1.0): raise ValueError("`p` should be a floating point value in the interval [0.0, 1.0].") self.p = p def forward(self, *inputs: Any) -> Any: sample = inputs if len(inputs) > 1 else inputs[0] if torch.rand(1) >= self.p: return sample for transform in self.transforms: sample = transform(sample) return sample def extra_repr(self) -> str: format_string = [] for t in self.transforms: format_string.append(f" {t}") return "\n".join(format_string) class RandomChoice(Transform): def __init__( self, transforms: Sequence[Callable], probabilities: Optional[List[float]] = None, p: Optional[List[float]] = None, ) -> None: if not isinstance(transforms, Sequence): raise TypeError("Argument transforms should be a sequence of callables") if p is not None: warnings.warn( "Argument p is deprecated and will be removed in a future release. " "Please use probabilities argument instead." ) probabilities = p if probabilities is None: probabilities = [1] * len(transforms) elif len(probabilities) != len(transforms): raise ValueError( f"The number of probabilities doesn't match the number of transforms: " f"{len(probabilities)} != {len(transforms)}" ) super().__init__() self.transforms = transforms total = sum(probabilities) self.probabilities = [prob / total for prob in probabilities] def forward(self, *inputs: Any) -> Any: idx = int(torch.multinomial(torch.tensor(self.probabilities), 1)) transform = self.transforms[idx] return transform(*inputs) class RandomOrder(Transform): def __init__(self, transforms: Sequence[Callable]) -> None: if not isinstance(transforms, Sequence): raise TypeError("Argument transforms should be a sequence of callables") super().__init__() self.transforms = transforms def forward(self, *inputs: Any) -> Any: sample = inputs if len(inputs) > 1 else inputs[0] for idx in torch.randperm(len(self.transforms)): transform = self.transforms[idx] sample = transform(sample) return sample
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Optional, Sequence, Union from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class IterTimerHook(Hook): """A hook that logs the time spent during iteration. E.g. ``data_time`` for loading data and ``time`` for a model train step. """ priority = 'NORMAL' def __init__(self): self.time_sec_tot = 0 self.start_iter = 0 def before_run(self, runner) -> None: """Synchronize the number of iterations with the runner. Args: runner: The runner of the training, validation or testing process. """ self.start_iter = runner.iter def _before_epoch(self, runner, mode: str = 'train') -> None: """Record timestamp before start an epoch. Args: runner (Runner): The runner of the training validation and testing process. mode (str): Current mode of runner. Defaults to 'train'. """ self.t = time.time() def _before_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, mode: str = 'train') -> None: """Calculating time for loading data and updating "data_time" ``HistoryBuffer`` of ``runner.message_hub``. Args: runner (Runner): The runner of the training, validation and testing process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # Update data loading time in `runner.message_hub`. runner.message_hub.update_scalar(f'{mode}/data_time', time.time() - self.t) def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Calculating time for an iteration and updating "time" ``HistoryBuffer`` of ``runner.message_hub``. Args: runner (Runner): The runner of the training validation and testing process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # Update iteration time in `runner.message_hub`. message_hub = runner.message_hub message_hub.update_scalar(f'{mode}/time', time.time() - self.t) self.t = time.time() window_size = runner.log_processor.window_size # Calculate eta every `window_size` iterations. Since test and val # loop will not update runner.iter, use `every_n_innter_iters`to check # the interval. if self.every_n_inner_iters(batch_idx, window_size): iter_time = message_hub.get_scalar(f'{mode}/time').mean( window_size) if mode == 'train': self.time_sec_tot += iter_time * window_size # Calculate average iterative time. time_sec_avg = self.time_sec_tot / ( runner.iter - self.start_iter + 1) # Calculate eta. eta_sec = time_sec_avg * ( runner.train_loop.max_iters - runner.iter - 1) runner.message_hub.update_info('eta', eta_sec) else: if mode == 'val': cur_dataloader = runner.val_loop.dataloader else: cur_dataloader = runner.test_loop.dataloader eta_sec = iter_time * (len(cur_dataloader) - batch_idx - 1) runner.message_hub.update_info('eta', eta_sec)
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Any, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]] @HOOKS.register_module() class IterTimerHook(Hook): """A hook that logs the time spent during iteration. E.g. ``data_time`` for loading data and ``time`` for a model train step. """ priority = 'NORMAL' def __init__(self): self.time_sec_tot = 0 self.start_iter = 0 def before_run(self, runner) -> None: """Synchronize the number of iterations with the runner. Args: runner: The runner of the training, validation or testing process. """ self.start_iter = runner.iter def _before_epoch(self, runner, mode: str = 'train') -> None: """Record timestamp before start an epoch. Args: runner (Runner): The runner of the training validation and testing process. mode (str): Current mode of runner. Defaults to 'train'. """ self.t = time.time() def _before_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, mode: str = 'train') -> None: """Calculating time for loading data and updating "data_time" ``HistoryBuffer`` of ``runner.message_hub``. Args: runner (Runner): The runner of the training, validation and testing process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # Update data loading time in `runner.message_hub`. runner.message_hub.update_scalar(f'{mode}/data_time', time.time() - self.t) def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Calculating time for an iteration and updating "time" ``HistoryBuffer`` of ``runner.message_hub``. Args: runner (Runner): The runner of the training validation and testing process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # Update iteration time in `runner.message_hub`. message_hub = runner.message_hub message_hub.update_scalar(f'{mode}/time', time.time() - self.t) self.t = time.time() window_size = runner.log_processor.window_size # Calculate eta every `window_size` iterations. Since test and val # loop will not update runner.iter, use `every_n_innter_iters`to check # the interval. if self.every_n_inner_iters(batch_idx, window_size): iter_time = message_hub.get_scalar(f'{mode}/time').mean( window_size) if mode == 'train': self.time_sec_tot += iter_time * window_size # Calculate average iterative time. time_sec_avg = self.time_sec_tot / ( runner.iter - self.start_iter + 1) # Calculate eta. eta_sec = time_sec_avg * ( runner.train_loop.max_iters - runner.iter - 1) runner.message_hub.update_info('eta', eta_sec) else: if mode == 'val': cur_dataloader = runner.val_loop.dataloader else: cur_dataloader = runner.test_loop.dataloader eta_sec = iter_time * (len(cur_dataloader) - batch_idx - 1) runner.message_hub.update_info('eta', eta_sec)
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn class _BatchNormXd(nn.modules.batchnorm._BatchNorm): """A general BatchNorm layer without input dimension check. Reproduced from @kapily's work: (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547) The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc is `_check_input_dim` that is designed for tensor sanity checks. The check has been bypassed in this class for the convenience of converting SyncBatchNorm. """ def _check_input_dim(self, input: torch.Tensor): return def revert_sync_batchnorm(module: nn.Module) -> nn.Module: """Helper function to convert all `SyncBatchNorm` (SyncBN) and `mmcv.ops.sync_bn.SyncBatchNorm`(MMSyncBN) layers in the model to `BatchNormXd` layers. Adapted from @kapily's work: (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547) Args: module (nn.Module): The module containing `SyncBatchNorm` layers. Returns: module_output: The converted module with `BatchNormXd` layers. """ module_output = module module_checklist = [torch.nn.modules.batchnorm.SyncBatchNorm] try: import mmcv except ImportError: pass else: if hasattr(mmcv, 'ops'): module_checklist.append(mmcv.ops.SyncBatchNorm) if isinstance(module, tuple(module_checklist)): module_output = _BatchNormXd(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats) if module.affine: # no_grad() may not be needed here but # just to be consistent with `convert_sync_batchnorm()` with torch.no_grad(): module_output.weight = module.weight module_output.bias = module.bias module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = module.num_batches_tracked module_output.training = module.training # qconfig exists in quantized models if hasattr(module, 'qconfig'): module_output.qconfig = module.qconfig for name, child in module.named_children(): module_output.add_module(name, revert_sync_batchnorm(child)) del module return module_output
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn class _BatchNormXd(nn.modules.batchnorm._BatchNorm): """A general BatchNorm layer without input dimension check. Reproduced from @kapily's work: (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547) The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc is `_check_input_dim` that is designed for tensor sanity checks. The check has been bypassed in this class for the convenience of converting SyncBatchNorm. """ def _check_input_dim(self, input: torch.Tensor): return def revert_sync_batchnorm(module: nn.Module) -> nn.Module: """Helper function to convert all `SyncBatchNorm` (SyncBN) and `mmcv.ops.sync_bn.SyncBatchNorm`(MMSyncBN) layers in the model to `BatchNormXd` layers. Adapted from @kapily's work: (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547) Args: module (nn.Module): The module containing `SyncBatchNorm` layers. Returns: module_output: The converted module with `BatchNormXd` layers. """ module_output = module module_checklist = [torch.nn.modules.batchnorm.SyncBatchNorm] if isinstance(module, tuple(module_checklist)): module_output = _BatchNormXd(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats) if module.affine: # no_grad() may not be needed here but # just to be consistent with `convert_sync_batchnorm()` with torch.no_grad(): module_output.weight = module.weight module_output.bias = module.bias module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = module.num_batches_tracked module_output.training = module.training # qconfig exists in quantized models if hasattr(module, 'qconfig'): module_output.qconfig = module.qconfig for name, child in module.named_children(): module_output.add_module(name, revert_sync_batchnorm(child)) del module return module_output
PREFIX = """Respond to the human as helpfully and accurately as possible. You have access to the following tools:""" # noqa: E501 FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input). Valid "action" values: "Final Answer" or {tool_names} Provide only ONE action per $JSON_BLOB, as shown: ``` {{{{ "action": $TOOL_NAME, "action_input": $INPUT }}}} ``` Follow this format: Question: input question to answer Thought: consider previous and subsequent steps Action: ``` $JSON_BLOB ``` Observation: action result ... (repeat Thought/Action/Observation N times) Thought: I know what to respond Action: ``` {{{{ "action": "Final Answer", "action_input": "Final response to human" }}}} ```""" # noqa: E501 SUFFIX = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:. Thought:""" # noqa: E501
# flake8: noqa PREFIX = """Respond to the human as helpfully and accurately as possible. You have access to the following tools:""" FORMAT_INSTRUCTIONS = """Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input). Valid "action" values: "Final Answer" or {tool_names} Provide only ONE action per $JSON_BLOB, as shown: ``` {{{{ "action": $TOOL_NAME, "action_input": $INPUT }}}} ``` Follow this format: Question: input question to answer Thought: consider previous and subsequent steps Action: ``` $JSON_BLOB ``` Observation: action result ... (repeat Thought/Action/Observation N times) Thought: I know what to respond Action: ``` {{{{ "action": "Final Answer", "action_input": "Final response to human" }}}} ```""" SUFFIX = """Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:. Thought:"""
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import PLUGIN_LAYERS eps = 1e-6 @PLUGIN_LAYERS.register_module() class DropBlock(nn.Module): """Randomly drop some regions of feature maps. Please refer to the method proposed in `DropBlock <https://arxiv.org/abs/1810.12890>`_ for details. Args: drop_prob (float): The probability of dropping each block. block_size (int): The size of dropped blocks. warmup_iters (int): The drop probability will linearly increase from `0` to `drop_prob` during the first `warmup_iters` iterations. Default: 2000. """ def __init__(self, drop_prob, block_size, warmup_iters=2000, **kwargs): super(DropBlock, self).__init__() assert block_size % 2 == 1 assert 0 < drop_prob <= 1 assert warmup_iters >= 0 self.drop_prob = drop_prob self.block_size = block_size self.warmup_iters = warmup_iters self.iter_cnt = 0 def forward(self, x): """ Args: x (Tensor): Input feature map on which some areas will be randomly dropped. Returns: Tensor: The tensor after DropBlock layer. """ if not self.training: return x self.iter_cnt += 1 N, C, H, W = list(x.shape) gamma = self._compute_gamma((H, W)) mask_shape = (N, C, H - self.block_size + 1, W - self.block_size + 1) mask = torch.bernoulli(torch.full(mask_shape, gamma, device=x.device)) mask = F.pad(mask, [self.block_size // 2] * 4, value=0) mask = F.max_pool2d( input=mask, stride=(1, 1), kernel_size=(self.block_size, self.block_size), padding=self.block_size // 2) mask = 1 - mask x = x * mask * mask.numel() / (eps + mask.sum()) return x def _compute_gamma(self, feat_size): """Compute the value of gamma according to paper. gamma is the parameter of bernoulli distribution, which controls the number of features to drop. gamma = (drop_prob * fm_area) / (drop_area * keep_area) Args: feat_size (tuple[int, int]): The height and width of feature map. Returns: float: The value of gamma. """ gamma = (self.drop_prob * feat_size[0] * feat_size[1]) gamma /= ((feat_size[0] - self.block_size + 1) * (feat_size[1] - self.block_size + 1)) gamma /= (self.block_size**2) factor = (1.0 if self.iter_cnt > self.warmup_iters else self.iter_cnt / self.warmup_iters) return gamma * factor def extra_repr(self): return (f'drop_prob={self.drop_prob}, block_size={self.block_size}, ' f'warmup_iters={self.warmup_iters}')
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import PLUGIN_LAYERS eps = 1e-6 @PLUGIN_LAYERS.register_module() class DropBlock(nn.Module): """Randomly drop some regions of feature maps. Please refer to the method proposed in `DropBlock <https://arxiv.org/abs/1810.12890>`_ for details. Args: drop_prob (float): The probability of dropping each block. block_size (int): The size of dropped blocks. warmup_iters (int): The drop probability will linearly increase from `0` to `drop_prob` during the first `warmup_iters` iterations. Default: 2000. """ def __init__(self, drop_prob, block_size, warmup_iters=2000, **kwargs): super(DropBlock, self).__init__() assert block_size % 2 == 1 assert 0 < drop_prob <= 1 assert warmup_iters >= 0 self.drop_prob = drop_prob self.block_size = block_size self.warmup_iters = warmup_iters self.iter_cnt = 0 def forward(self, x): """ Args: x (Tensor): Input feature map on which some areas will be randomly dropped. Returns: Tensor: The tensor after DropBlock layer. """ if not self.training: return x self.iter_cnt += 1 N, C, H, W = list(x.shape) gamma = self._compute_gamma((H, W)) mask_shape = (N, C, H - self.block_size + 1, W - self.block_size + 1) mask = torch.bernoulli(torch.full(mask_shape, gamma, device=x.device)) mask = F.pad(mask, [self.block_size // 2] * 4, value=0) mask = F.max_pool2d( input=mask, stride=(1, 1), kernel_size=(self.block_size, self.block_size), padding=self.block_size // 2) mask = 1 - mask x = x * mask * mask.numel() / (eps + mask.sum()) return x def _compute_gamma(self, feat_size): """Compute the value of gamma according to paper. gamma is the parameter of bernoulli distribution, which controls the number of features to drop. gamma = (drop_prob * fm_area) / (drop_area * keep_area) Args: feat_size (tuple[int, int]): The height and width of feature map. Returns: float: The value of gamma. """ gamma = (self.drop_prob * feat_size[0] * feat_size[1]) gamma /= ((feat_size[0] - self.block_size + 1) * (feat_size[1] - self.block_size + 1)) gamma /= (self.block_size**2) factor = (1.0 if self.iter_cnt > self.warmup_iters else self.iter_cnt / self.warmup_iters) return gamma * factor
checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] # disable opencv multithreading to avoid system being overloaded opencv_num_threads = 0 # set multi-process start method as `fork` to speed up the training mp_start_method = 'fork'
checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)]
import logging from typing import Optional, cast from autogpt_libs.auth.models import DEFAULT_USER_ID from autogpt_libs.supabase_integration_credentials_store.types import ( UserIntegrations, UserMetadata, UserMetadataRaw, ) from fastapi import HTTPException from prisma import Json from prisma.models import User from backend.data.db import prisma from backend.util.encryption import JSONCryptor logger = logging.getLogger(__name__) async def get_or_create_user(user_data: dict) -> User: user_id = user_data.get("sub") if not user_id: raise HTTPException(status_code=401, detail="User ID not found in token") user_email = user_data.get("email") if not user_email: raise HTTPException(status_code=401, detail="Email not found in token") user = await prisma.user.find_unique(where={"id": user_id}) if not user: user = await prisma.user.create( data={ "id": user_id, "email": user_email, "name": user_data.get("user_metadata", {}).get("name"), } ) return User.model_validate(user) async def get_user_by_id(user_id: str) -> Optional[User]: user = await prisma.user.find_unique(where={"id": user_id}) return User.model_validate(user) if user else None async def create_default_user() -> Optional[User]: user = await prisma.user.find_unique(where={"id": DEFAULT_USER_ID}) if not user: user = await prisma.user.create( data={ "id": DEFAULT_USER_ID, "email": "default@example.com", "name": "Default User", } ) return User.model_validate(user) async def get_user_metadata(user_id: str) -> UserMetadata: user = await User.prisma().find_unique_or_raise( where={"id": user_id}, ) metadata = cast(UserMetadataRaw, user.metadata) return UserMetadata.model_validate(metadata) async def update_user_metadata(user_id: str, metadata: UserMetadata): await User.prisma().update( where={"id": user_id}, data={"metadata": Json(metadata.model_dump())}, ) async def get_user_integrations(user_id: str) -> UserIntegrations: user = await User.prisma().find_unique_or_raise( where={"id": user_id}, ) encrypted_integrations = user.integrations if not encrypted_integrations: return UserIntegrations() else: return UserIntegrations.model_validate( JSONCryptor().decrypt(encrypted_integrations) ) async def update_user_integrations(user_id: str, data: UserIntegrations): encrypted_data = JSONCryptor().encrypt(data.model_dump()) await User.prisma().update( where={"id": user_id}, data={"integrations": encrypted_data}, ) async def migrate_and_encrypt_user_integrations(): """Migrate integration credentials and OAuth states from metadata to integrations column.""" users = await User.prisma().find_many( where={ "metadata": { "path": ["integration_credentials"], "not": Json({"a": "yolo"}), # bogus value works to check if key exists } # type: ignore } ) logger.info(f"Migrating integration credentials for {len(users)} users") for user in users: raw_metadata = cast(UserMetadataRaw, user.metadata) metadata = UserMetadata.model_validate(raw_metadata) # Get existing integrations data integrations = await get_user_integrations(user_id=user.id) # Copy credentials and oauth states from metadata if they exist if metadata.integration_credentials and not integrations.credentials: integrations.credentials = metadata.integration_credentials if metadata.integration_oauth_states: integrations.oauth_states = metadata.integration_oauth_states # Save to integrations column await update_user_integrations(user_id=user.id, data=integrations) # Remove from metadata raw_metadata = dict(raw_metadata) raw_metadata.pop("integration_credentials", None) raw_metadata.pop("integration_oauth_states", None) # Update metadata without integration data await User.prisma().update( where={"id": user.id}, data={"metadata": Json(raw_metadata)}, )
import logging from typing import Optional, cast from autogpt_libs.supabase_integration_credentials_store.types import ( UserIntegrations, UserMetadata, UserMetadataRaw, ) from fastapi import HTTPException from prisma import Json from prisma.models import User from backend.data.db import prisma from backend.util.encryption import JSONCryptor logger = logging.getLogger(__name__) DEFAULT_USER_ID = "3e53486c-cf57-477e-ba2a-cb02dc828e1a" DEFAULT_EMAIL = "default@example.com" async def get_or_create_user(user_data: dict) -> User: user_id = user_data.get("sub") if not user_id: raise HTTPException(status_code=401, detail="User ID not found in token") user_email = user_data.get("email") if not user_email: raise HTTPException(status_code=401, detail="Email not found in token") user = await prisma.user.find_unique(where={"id": user_id}) if not user: user = await prisma.user.create( data={ "id": user_id, "email": user_email, "name": user_data.get("user_metadata", {}).get("name"), } ) return User.model_validate(user) async def get_user_by_id(user_id: str) -> Optional[User]: user = await prisma.user.find_unique(where={"id": user_id}) return User.model_validate(user) if user else None async def create_default_user() -> Optional[User]: user = await prisma.user.find_unique(where={"id": DEFAULT_USER_ID}) if not user: user = await prisma.user.create( data={ "id": DEFAULT_USER_ID, "email": "default@example.com", "name": "Default User", } ) return User.model_validate(user) async def get_user_metadata(user_id: str) -> UserMetadata: user = await User.prisma().find_unique_or_raise( where={"id": user_id}, ) metadata = cast(UserMetadataRaw, user.metadata) return UserMetadata.model_validate(metadata) async def update_user_metadata(user_id: str, metadata: UserMetadata): await User.prisma().update( where={"id": user_id}, data={"metadata": Json(metadata.model_dump())}, ) async def get_user_integrations(user_id: str) -> UserIntegrations: user = await User.prisma().find_unique_or_raise( where={"id": user_id}, ) encrypted_integrations = user.integrations if not encrypted_integrations: return UserIntegrations() else: return UserIntegrations.model_validate( JSONCryptor().decrypt(encrypted_integrations) ) async def update_user_integrations(user_id: str, data: UserIntegrations): encrypted_data = JSONCryptor().encrypt(data.model_dump()) await User.prisma().update( where={"id": user_id}, data={"integrations": encrypted_data}, ) async def migrate_and_encrypt_user_integrations(): """Migrate integration credentials and OAuth states from metadata to integrations column.""" users = await User.prisma().find_many( where={ "metadata": { "path": ["integration_credentials"], "not": Json({"a": "yolo"}), # bogus value works to check if key exists } # type: ignore } ) logger.info(f"Migrating integration credentials for {len(users)} users") for user in users: raw_metadata = cast(UserMetadataRaw, user.metadata) metadata = UserMetadata.model_validate(raw_metadata) # Get existing integrations data integrations = await get_user_integrations(user_id=user.id) # Copy credentials and oauth states from metadata if they exist if metadata.integration_credentials and not integrations.credentials: integrations.credentials = metadata.integration_credentials if metadata.integration_oauth_states: integrations.oauth_states = metadata.integration_oauth_states # Save to integrations column await update_user_integrations(user_id=user.id, data=integrations) # Remove from metadata raw_metadata = dict(raw_metadata) raw_metadata.pop("integration_credentials", None) raw_metadata.pop("integration_oauth_states", None) # Update metadata without integration data await User.prisma().update( where={"id": user.id}, data={"metadata": Json(raw_metadata)}, )
from typing import Dict, List import numpy as np import pytest from orjson import orjson from docarray import DocList from docarray.base_doc import AnyDoc, BaseDoc from docarray.base_doc.io.json import orjson_dumps_and_decode from docarray.typing import NdArray from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.pydantic import is_pydantic_v2 def test_any_doc(): class InnerDocument(BaseDoc): text: str tensor: NdArray class CustomDoc(BaseDoc): inner: InnerDocument text: str doc = CustomDoc( text='bye', inner=InnerDocument(text='hello', tensor=np.zeros((3, 224, 224))) ) any_doc = AnyDoc(**doc.__dict__) assert any_doc.text == doc.text assert any_doc.inner.text == doc.inner.text assert (any_doc.inner.tensor == doc.inner.tensor).all() @pytest.mark.parametrize('protocol', ['proto', 'json']) def test_any_document_from_to(protocol): class InnerDoc(BaseDoc): text: str t: Dict[str, str] class DocTest(BaseDoc): text: str tags: Dict[str, int] l_: List[int] d: InnerDoc ld: DocList[InnerDoc] inner_doc = InnerDoc(text='I am inner', t={'a': 'b'}) da = DocList[DocTest]( [ DocTest( text='type1', tags={'type': 1}, l_=[1, 2], d=inner_doc, ld=DocList[InnerDoc]([inner_doc]), ), DocTest( text='type2', tags={'type': 2}, l_=[1, 2], d=inner_doc, ld=DocList[InnerDoc]([inner_doc]), ), ] ) from docarray.base_doc import AnyDoc if protocol == 'proto': aux = DocList[AnyDoc].from_protobuf(da.to_protobuf()) else: aux = DocList[AnyDoc].from_json(da.to_json()) assert len(aux) == 2 assert len(aux.id) == 2 for i, d in enumerate(aux): assert d.tags['type'] == i + 1 assert d.text == f'type{i + 1}' assert d.l_ == [1, 2] if protocol == 'proto': assert isinstance(d.d, AnyDoc) assert d.d.text == 'I am inner' # inner Document is a Dict assert d.d.t == {'a': 'b'} else: assert isinstance(d.d, dict) assert d.d['text'] == 'I am inner' # inner Document is a Dict assert d.d['t'] == {'a': 'b'} assert len(d.ld) == 1 if protocol == 'proto': assert isinstance(d.ld[0], AnyDoc) assert d.ld[0].text == 'I am inner' assert d.ld[0].t == {'a': 'b'} else: assert isinstance(d.ld[0], dict) assert d.ld[0]['text'] == 'I am inner' assert d.ld[0]['t'] == {'a': 'b'} @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_subclass_config(): class MyDoc(BaseDoc): x: str class Config(BaseDoc.Config): arbitrary_types_allowed = True # just an example setting assert MyDoc.Config.json_loads == orjson.loads assert MyDoc.Config.json_dumps == orjson_dumps_and_decode assert ( MyDoc.Config.json_encoders[AbstractTensor](3) == 3 ) # dirty check that it is identity assert MyDoc.Config.validate_assignment assert not MyDoc.Config._load_extra_fields_from_protobuf assert MyDoc.Config.arbitrary_types_allowed
from typing import Dict, List import numpy as np import pytest from orjson import orjson from docarray import DocList from docarray.base_doc import AnyDoc, BaseDoc from docarray.base_doc.io.json import orjson_dumps_and_decode from docarray.typing import NdArray from docarray.typing.tensor.abstract_tensor import AbstractTensor def test_any_doc(): class InnerDocument(BaseDoc): text: str tensor: NdArray class CustomDoc(BaseDoc): inner: InnerDocument text: str doc = CustomDoc( text='bye', inner=InnerDocument(text='hello', tensor=np.zeros((3, 224, 224))) ) any_doc = AnyDoc(**doc.__dict__) assert any_doc.text == doc.text assert any_doc.inner.text == doc.inner.text assert (any_doc.inner.tensor == doc.inner.tensor).all() @pytest.mark.parametrize('protocol', ['proto', 'json']) def test_any_document_from_to(protocol): class InnerDoc(BaseDoc): text: str t: Dict[str, str] class DocTest(BaseDoc): text: str tags: Dict[str, int] l_: List[int] d: InnerDoc ld: DocList[InnerDoc] inner_doc = InnerDoc(text='I am inner', t={'a': 'b'}) da = DocList[DocTest]( [ DocTest( text='type1', tags={'type': 1}, l_=[1, 2], d=inner_doc, ld=DocList[InnerDoc]([inner_doc]), ), DocTest( text='type2', tags={'type': 2}, l_=[1, 2], d=inner_doc, ld=DocList[InnerDoc]([inner_doc]), ), ] ) from docarray.base_doc import AnyDoc if protocol == 'proto': aux = DocList[AnyDoc].from_protobuf(da.to_protobuf()) else: aux = DocList[AnyDoc].from_json(da.to_json()) assert len(aux) == 2 assert len(aux.id) == 2 for i, d in enumerate(aux): assert d.tags['type'] == i + 1 assert d.text == f'type{i + 1}' assert d.l_ == [1, 2] if protocol == 'proto': assert isinstance(d.d, AnyDoc) assert d.d.text == 'I am inner' # inner Document is a Dict assert d.d.t == {'a': 'b'} else: assert isinstance(d.d, dict) assert d.d['text'] == 'I am inner' # inner Document is a Dict assert d.d['t'] == {'a': 'b'} assert len(d.ld) == 1 if protocol == 'proto': assert isinstance(d.ld[0], AnyDoc) assert d.ld[0].text == 'I am inner' assert d.ld[0].t == {'a': 'b'} else: assert isinstance(d.ld[0], dict) assert d.ld[0]['text'] == 'I am inner' assert d.ld[0]['t'] == {'a': 'b'} def test_subclass_config(): class MyDoc(BaseDoc): x: str class Config(BaseDoc.Config): arbitrary_types_allowed = True # just an example setting assert MyDoc.Config.json_loads == orjson.loads assert MyDoc.Config.json_dumps == orjson_dumps_and_decode assert ( MyDoc.Config.json_encoders[AbstractTensor](3) == 3 ) # dirty check that it is identity assert MyDoc.Config.validate_assignment assert not MyDoc.Config._load_extra_fields_from_protobuf assert MyDoc.Config.arbitrary_types_allowed
from contextlib import contextmanager from functools import partial from unittest.mock import patch import torch from parameterized import parameterized from torchaudio._internal.module_utils import is_module_available from torchaudio_unittest.common_utils import skipIfNoModule, TorchaudioTestCase from .utils import MockCustomDataset, MockDataloader, MockSentencePieceProcessor if is_module_available("pytorch_lightning", "sentencepiece"): from asr.emformer_rnnt.mustc.lightning import MuSTCRNNTModule class MockMUSTC: def __init__(self, *args, **kwargs): pass def __getitem__(self, n: int): return ( torch.rand(1, 32640), "sup", ) def __len__(self): return 10 @contextmanager def get_lightning_module(): with patch("sentencepiece.SentencePieceProcessor", new=partial(MockSentencePieceProcessor, num_symbols=500)), patch( "asr.emformer_rnnt.mustc.lightning.GlobalStatsNormalization", new=torch.nn.Identity ), patch("asr.emformer_rnnt.mustc.lightning.MUSTC", new=MockMUSTC), patch( "asr.emformer_rnnt.mustc.lightning.CustomDataset", new=MockCustomDataset ), patch( "torch.utils.data.DataLoader", new=MockDataloader ): yield MuSTCRNNTModule( mustc_path="mustc_path", sp_model_path="sp_model_path", global_stats_path="global_stats_path", ) @skipIfNoModule("pytorch_lightning") @skipIfNoModule("sentencepiece") class TestMuSTCRNNTModule(TorchaudioTestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() @parameterized.expand( [ ("training_step", "train_dataloader"), ("validation_step", "val_dataloader"), ("test_step", "test_common_dataloader"), ("test_step", "test_he_dataloader"), ] ) def test_step(self, step_fname, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) getattr(lightning_module, step_fname)(batch, 0) @parameterized.expand( [ ("val_dataloader",), ] ) def test_forward(self, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) lightning_module(batch)
from contextlib import contextmanager from functools import partial from unittest.mock import patch import torch from parameterized import parameterized from torchaudio._internal.module_utils import is_module_available from torchaudio_unittest.common_utils import skipIfNoModule, TorchaudioTestCase from .utils import MockCustomDataset, MockDataloader, MockSentencePieceProcessor if is_module_available("pytorch_lightning", "sentencepiece"): from asr.emformer_rnnt.mustc.lightning import MuSTCRNNTModule class MockMUSTC: def __init__(self, *args, **kwargs): pass def __getitem__(self, n: int): return ( torch.rand(1, 32640), "sup", ) def __len__(self): return 10 @contextmanager def get_lightning_module(): with patch("sentencepiece.SentencePieceProcessor", new=partial(MockSentencePieceProcessor, num_symbols=500)), patch( "asr.emformer_rnnt.mustc.lightning.GlobalStatsNormalization", new=torch.nn.Identity ), patch("asr.emformer_rnnt.mustc.lightning.MUSTC", new=MockMUSTC), patch( "asr.emformer_rnnt.mustc.lightning.CustomDataset", new=MockCustomDataset ), patch( "torch.utils.data.DataLoader", new=MockDataloader ): yield MuSTCRNNTModule( mustc_path="mustc_path", sp_model_path="sp_model_path", global_stats_path="global_stats_path", ) @skipIfNoModule("pytorch_lightning") @skipIfNoModule("sentencepiece") class TestMuSTCRNNTModule(TorchaudioTestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() torch.random.manual_seed(31) @parameterized.expand( [ ("training_step", "train_dataloader"), ("validation_step", "val_dataloader"), ("test_step", "test_common_dataloader"), ("test_step", "test_he_dataloader"), ] ) def test_step(self, step_fname, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) getattr(lightning_module, step_fname)(batch, 0) @parameterized.expand( [ ("val_dataloader",), ] ) def test_forward(self, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) lightning_module(batch)
import numpy as np import torch from docarray import BaseDocument from docarray.document import AnyDocument from docarray.typing import ( AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchTensor, ) def test_proto_all_types(): class Mymmdoc(BaseDocument): tensor: NdArray torch_tensor: TorchTensor embedding: Embedding any_url: AnyUrl image_url: ImageUrl text_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl doc = Mymmdoc( tensor=np.zeros((3, 224, 224)), torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((100, 1)), any_url='http://jina.ai', image_url='http://jina.ai/bla.jpg', text_url='http://jina.ai', mesh_url='http://jina.ai/mesh.obj', point_cloud_url='http://jina.ai/mesh.obj', ) new_doc = AnyDocument.from_protobuf(doc.to_protobuf()) for field, value in new_doc: if field == 'embedding': # embedding is a Union type, not supported by isinstance assert isinstance(value, np.ndarray) or isinstance(value, torch.Tensor) else: assert isinstance(value, doc._get_nested_document_class(field))
import numpy as np import torch from docarray import Document from docarray.document import AnyDocument from docarray.typing import ( AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchTensor, ) def test_proto_all_types(): class Mymmdoc(Document): tensor: NdArray torch_tensor: TorchTensor embedding: Embedding any_url: AnyUrl image_url: ImageUrl text_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl doc = Mymmdoc( tensor=np.zeros((3, 224, 224)), torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((100, 1)), any_url='http://jina.ai', image_url='http://jina.ai/bla.jpg', text_url='http://jina.ai', mesh_url='http://jina.ai/mesh.obj', point_cloud_url='http://jina.ai/mesh.obj', ) new_doc = AnyDocument.from_protobuf(doc.to_protobuf()) for field, value in new_doc: if field == 'embedding': # embedding is a Union type, not supported by isinstance assert isinstance(value, np.ndarray) or isinstance(value, torch.Tensor) else: assert isinstance(value, doc._get_nested_document_class(field))
# Copyright (c) OpenMMLab. All rights reserved. from .base_panoptic_fusion_head import \ BasePanopticFusionHead # noqa: F401,F403 from .heuristic_fusion_head import HeuristicFusionHead # noqa: F401,F403 from .maskformer_fusion_head import MaskFormerFusionHead # noqa: F401,F403
# Copyright (c) OpenMMLab. All rights reserved. from .base_panoptic_fusion_head import \ BasePanopticFusionHead # noqa: F401,F403 from .heuristic_fusion_head import HeuristicFusionHead # noqa: F401,F403
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import uuid import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import NdArray pytestmark = [pytest.mark.slow, pytest.mark.index] cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml_v7 = os.path.abspath(os.path.join(cur_dir, 'v7/docker-compose.yml')) compose_yml_v8 = os.path.abspath(os.path.join(cur_dir, 'v8/docker-compose.yml')) @pytest.fixture(scope='module', autouse=True) def start_storage_v7(): os.system(f"docker-compose -f {compose_yml_v7} up -d --remove-orphans") _wait_for_es() yield os.system(f"docker-compose -f {compose_yml_v7} down --remove-orphans") @pytest.fixture(scope='module', autouse=True) def start_storage_v8(): os.system(f"docker-compose -f {compose_yml_v8} up -d --remove-orphans") _wait_for_es() yield os.system(f"docker-compose -f {compose_yml_v8} down --remove-orphans") def _wait_for_es(): from elasticsearch import Elasticsearch es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dims=1000) class FlatDoc(BaseDoc): tens_one: NdArray = Field(dims=10) tens_two: NdArray = Field(dims=50) class NestedDoc(BaseDoc): d: SimpleDoc class DeepNestedDoc(BaseDoc): d: NestedDoc class MyImageDoc(ImageDoc): embedding: NdArray = Field(dims=128) @pytest.fixture(scope='function') def ten_simple_docs(): return [SimpleDoc(tens=np.random.randn(10)) for _ in range(10)] @pytest.fixture(scope='function') def ten_flat_docs(): return [ FlatDoc(tens_one=np.random.randn(10), tens_two=np.random.randn(50)) for _ in range(10) ] @pytest.fixture(scope='function') def ten_nested_docs(): return [NestedDoc(d=SimpleDoc(tens=np.random.randn(10))) for _ in range(10)] @pytest.fixture(scope='function') def ten_deep_nested_docs(): return [ DeepNestedDoc(d=NestedDoc(d=SimpleDoc(tens=np.random.randn(10)))) for _ in range(10) ] @pytest.fixture(scope='function') def tmp_index_name(): return uuid.uuid4().hex
import os import time import uuid import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import NdArray pytestmark = [pytest.mark.slow, pytest.mark.index] cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml_v7 = os.path.abspath(os.path.join(cur_dir, 'v7/docker-compose.yml')) compose_yml_v8 = os.path.abspath(os.path.join(cur_dir, 'v8/docker-compose.yml')) @pytest.fixture(scope='module', autouse=True) def start_storage_v7(): os.system(f"docker-compose -f {compose_yml_v7} up -d --remove-orphans") _wait_for_es() yield os.system(f"docker-compose -f {compose_yml_v7} down --remove-orphans") @pytest.fixture(scope='module', autouse=True) def start_storage_v8(): os.system(f"docker-compose -f {compose_yml_v8} up -d --remove-orphans") _wait_for_es() yield os.system(f"docker-compose -f {compose_yml_v8} down --remove-orphans") def _wait_for_es(): from elasticsearch import Elasticsearch es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dims=1000) class FlatDoc(BaseDoc): tens_one: NdArray = Field(dims=10) tens_two: NdArray = Field(dims=50) class NestedDoc(BaseDoc): d: SimpleDoc class DeepNestedDoc(BaseDoc): d: NestedDoc class MyImageDoc(ImageDoc): embedding: NdArray = Field(dims=128) @pytest.fixture(scope='function') def ten_simple_docs(): return [SimpleDoc(tens=np.random.randn(10)) for _ in range(10)] @pytest.fixture(scope='function') def ten_flat_docs(): return [ FlatDoc(tens_one=np.random.randn(10), tens_two=np.random.randn(50)) for _ in range(10) ] @pytest.fixture(scope='function') def ten_nested_docs(): return [NestedDoc(d=SimpleDoc(tens=np.random.randn(10))) for _ in range(10)] @pytest.fixture(scope='function') def ten_deep_nested_docs(): return [ DeepNestedDoc(d=NestedDoc(d=SimpleDoc(tens=np.random.randn(10)))) for _ in range(10) ] @pytest.fixture(scope='function') def tmp_index_name(): return uuid.uuid4().hex
from backend.blocks.nvidia._auth import ( NvidiaCredentials, NvidiaCredentialsField, NvidiaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests from backend.util.type import MediaFileType class NvidiaDeepfakeDetectBlock(Block): class Input(BlockSchema): credentials: NvidiaCredentialsInput = NvidiaCredentialsField() image_base64: MediaFileType = SchemaField( description="Image to analyze for deepfakes", ) return_image: bool = SchemaField( description="Whether to return the processed image with markings", default=False, ) class Output(BlockSchema): status: str = SchemaField( description="Detection status (SUCCESS, ERROR, CONTENT_FILTERED)", ) image: MediaFileType = SchemaField( description="Processed image with detection markings (if return_image=True)", ) is_deepfake: float = SchemaField( description="Probability that the image is a deepfake (0-1)", ) def __init__(self): super().__init__( id="8c7d0d67-e79c-44f6-92a1-c2600c8aac7f", description="Detects potential deepfakes in images using Nvidia's AI API", categories={BlockCategory.SAFETY}, input_schema=NvidiaDeepfakeDetectBlock.Input, output_schema=NvidiaDeepfakeDetectBlock.Output, ) async def run( self, input_data: Input, *, credentials: NvidiaCredentials, **kwargs ) -> BlockOutput: url = "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection" headers = { "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } image_data = f"data:image/jpeg;base64,{input_data.image_base64}" payload = { "input": [image_data], "return_image": input_data.return_image, } try: response = await Requests().post(url, headers=headers, json=payload) data = response.json() result = data.get("data", [{}])[0] # Get deepfake probability from first bounding box if any deepfake_prob = 0.0 if result.get("bounding_boxes"): deepfake_prob = result["bounding_boxes"][0].get("is_deepfake", 0.0) yield "status", result.get("status", "ERROR") yield "is_deepfake", deepfake_prob if input_data.return_image: image_data = result.get("image", "") output_data = f"data:image/jpeg;base64,{image_data}" yield "image", output_data else: yield "image", "" except Exception as e: yield "error", str(e) yield "status", "ERROR" yield "is_deepfake", 0.0 yield "image", ""
from backend.blocks.nvidia._auth import ( NvidiaCredentials, NvidiaCredentialsField, NvidiaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests from backend.util.type import MediaFileType class NvidiaDeepfakeDetectBlock(Block): class Input(BlockSchema): credentials: NvidiaCredentialsInput = NvidiaCredentialsField() image_base64: MediaFileType = SchemaField( description="Image to analyze for deepfakes", ) return_image: bool = SchemaField( description="Whether to return the processed image with markings", default=False, ) class Output(BlockSchema): status: str = SchemaField( description="Detection status (SUCCESS, ERROR, CONTENT_FILTERED)", ) image: MediaFileType = SchemaField( description="Processed image with detection markings (if return_image=True)", ) is_deepfake: float = SchemaField( description="Probability that the image is a deepfake (0-1)", ) def __init__(self): super().__init__( id="8c7d0d67-e79c-44f6-92a1-c2600c8aac7f", description="Detects potential deepfakes in images using Nvidia's AI API", categories={BlockCategory.SAFETY}, input_schema=NvidiaDeepfakeDetectBlock.Input, output_schema=NvidiaDeepfakeDetectBlock.Output, ) def run( self, input_data: Input, *, credentials: NvidiaCredentials, **kwargs ) -> BlockOutput: url = "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection" headers = { "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } image_data = f"data:image/jpeg;base64,{input_data.image_base64}" payload = { "input": [image_data], "return_image": input_data.return_image, } try: response = Requests().post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() result = data.get("data", [{}])[0] # Get deepfake probability from first bounding box if any deepfake_prob = 0.0 if result.get("bounding_boxes"): deepfake_prob = result["bounding_boxes"][0].get("is_deepfake", 0.0) yield "status", result.get("status", "ERROR") yield "is_deepfake", deepfake_prob if input_data.return_image: image_data = result.get("image", "") output_data = f"data:image/jpeg;base64,{image_data}" yield "image", output_data else: yield "image", "" except Exception as e: yield "error", str(e) yield "status", "ERROR" yield "is_deepfake", 0.0 yield "image", ""
# Owner(s): ["module: inductor"] import unittest import torch from torch._inductor import config from torch._inductor.test_case import run_tests, TestCase from torch.testing._internal.common_cuda import TEST_CUDA class MatMulModule(torch.nn.Module): def __init__(self): super().__init__() self.matrix = torch.nn.Parameter(torch.eye(128, 128) * 2, requires_grad=True) def forward(self, x): return torch.matmul(x, self.matrix) # torch.add performs better than torch.mm and got chosen during tuning def matmul_cpu(a: torch.Tensor, b: torch.Tensor, out: torch.Tensor) -> None: torch.add(a, b, out=out) def matmul_dup(a: torch.Tensor, b: torch.Tensor, out: torch.Tensor) -> None: torch.add(a, b, out=out) def matmul_cuda(a: torch.Tensor, b: torch.Tensor, out: torch.Tensor) -> None: torch.add(a, b, out=out) class TestInductorExternalCallable(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls._saved_config = config.save_config() def tearDown(self): super().tearDown() config.load_config(self._saved_config) def test_matmul_cpu(self): # 2I + 2I == (2I)(2I) x = torch.eye(128, 128) * 2 opt_fn = torch.compile( MatMulModule(), options={"max_autotune": True, "external_matmul": [matmul_cpu]}, ) opt_fn_golden = torch.compile(MatMulModule(), options={"max_autotune": True}) torch.testing.assert_close( opt_fn(x), opt_fn_golden(x), msg=f"torch.compile(..., external_matmul = {matmul_cpu}) failed", ) def test_matmul_dup(self): # 2I + 2I == (2I)(2I) x = torch.eye(128, 128) * 2 # This should only register the first external call opt_fn = torch.compile( MatMulModule(), options={"max_autotune": True, "external_matmul": [matmul_dup, matmul_dup]}, ) opt_fn_golden = torch.compile(MatMulModule(), options={"max_autotune": True}) torch.testing.assert_close( opt_fn(x), opt_fn_golden(x), msg=f"torch.compile(..., external_matmul = {matmul_dup}) failed", ) @unittest.skipIf(not TEST_CUDA, "CUDA not found") @unittest.skipIf( torch.cuda.is_available() and torch.cuda.get_device_capability() < (7, 0), "Triton does not support device capability < 7.0", ) def test_matmul_cuda(self): device = torch.device("cuda") x = (torch.eye(128, 128) * 2).to(device=device) opt_fn = torch.compile( MatMulModule().to(device), options={"max_autotune": True, "external_matmul": [matmul_cuda]}, ) opt_fn_golden = torch.compile( MatMulModule().to(device), options={"max_autotune": True} ) torch.testing.assert_close( opt_fn(x), opt_fn_golden(x), msg=f"torch.compile(..., external_matmul = {matmul_cuda}) failed", ) if __name__ == "__main__": run_tests()
# Owner(s): ["module: inductor"] import unittest import torch from torch._inductor import config from torch._inductor.test_case import run_tests, TestCase from torch.testing._internal.common_cuda import TEST_CUDA class MatMulModule(torch.nn.Module): def __init__(self): super().__init__() self.matrix = torch.nn.Parameter(torch.eye(128, 128) * 2, requires_grad=True) def forward(self, x): return torch.matmul(x, self.matrix) # torch.add performs better than torch.mm and got choosed during tuning def matmul_cpu(a: torch.Tensor, b: torch.Tensor, out: torch.Tensor) -> None: torch.add(a, b, out=out) def matmul_dup(a: torch.Tensor, b: torch.Tensor, out: torch.Tensor) -> None: torch.add(a, b, out=out) def matmul_cuda(a: torch.Tensor, b: torch.Tensor, out: torch.Tensor) -> None: torch.add(a, b, out=out) class TestInductorExternalCallable(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls._saved_config = config.save_config() def tearDown(self): super().tearDown() config.load_config(self._saved_config) def test_matmul_cpu(self): # 2I + 2I == (2I)(2I) x = torch.eye(128, 128) * 2 opt_fn = torch.compile( MatMulModule(), options={"max_autotune": True, "external_matmul": [matmul_cpu]}, ) opt_fn_golden = torch.compile(MatMulModule(), options={"max_autotune": True}) torch.testing.assert_close( opt_fn(x), opt_fn_golden(x), msg=f"torch.compile(..., external_matmul = {matmul_cpu}) failed", ) def test_matmul_dup(self): # 2I + 2I == (2I)(2I) x = torch.eye(128, 128) * 2 # This should only register the first external call opt_fn = torch.compile( MatMulModule(), options={"max_autotune": True, "external_matmul": [matmul_dup, matmul_dup]}, ) opt_fn_golden = torch.compile(MatMulModule(), options={"max_autotune": True}) torch.testing.assert_close( opt_fn(x), opt_fn_golden(x), msg=f"torch.compile(..., external_matmul = {matmul_dup}) failed", ) @unittest.skipIf(not TEST_CUDA, "CUDA not found") @unittest.skipIf( torch.cuda.is_available() and torch.cuda.get_device_capability() < (7, 0), "Triton does not support device capability < 7.0", ) def test_matmul_cuda(self): device = torch.device("cuda") x = (torch.eye(128, 128) * 2).to(device=device) opt_fn = torch.compile( MatMulModule().to(device), options={"max_autotune": True, "external_matmul": [matmul_cuda]}, ) opt_fn_golden = torch.compile( MatMulModule().to(device), options={"max_autotune": True} ) torch.testing.assert_close( opt_fn(x), opt_fn_golden(x), msg=f"torch.compile(..., external_matmul = {matmul_cuda}) failed", ) if __name__ == "__main__": run_tests()
from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 from .source_separation_pipeline import CONVTASNET_BASE_LIBRI2MIX __all__ = [ "CONVTASNET_BASE_LIBRI2MIX", "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", ]
from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 __all__ = [ "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", ]
from typing import Iterable, Dict from docarray.array.storage.annlite.helper import OffsetMapping from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray.array.memory import DocumentArrayInMemory from docarray import Document, DocumentArray class GetSetDelMixin(BaseGetSetDelMixin): """Implement required and derived functions that power `getitem`, `setitem`, `delitem`""" # essential methods start def _get_doc_by_id(self, _id: str) -> 'Document': doc = self._annlite.get_doc_by_id(_id) if doc is None: raise KeyError(f'Can not find Document with id=`{_id}`') return doc def _set_doc_by_id(self, _id: str, value: 'Document'): if _id != value.id: self._del_doc_by_id(_id) value.embedding = self._map_embedding(value.embedding) docs = DocumentArrayInMemory([value]) self._annlite.update(docs) def _del_doc_by_id(self, _id: str): # delete the root document self._del_docs_by_ids([_id]) def _clear_storage(self): self._annlite.clear() def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): for _id, doc in zip(ids, docs): doc.embedding = self._map_embedding(doc.embedding) self._set_doc_by_id(_id, doc) def _del_docs_by_ids(self, ids): self._annlite.delete(ids) def __del__(self) -> None: self._annlite.close() def _load_offset2ids(self): self._offsetmapping = OffsetMapping( data_path=self._config.data_path, in_memory=False ) self._offsetmapping.create_table() self._offset2ids = Offset2ID(self._offsetmapping.get_all_ids()) def _save_offset2ids(self): self._offsetmapping.drop() self._offsetmapping.create_table() self._offsetmapping._insert( [(i, doc_id) for i, doc_id in enumerate(self._offset2ids.ids)] )
from typing import Iterable, Dict from docarray.array.storage.annlite.helper import OffsetMapping from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray.array.memory import DocumentArrayInMemory from docarray import Document, DocumentArray class GetSetDelMixin(BaseGetSetDelMixin): """Implement required and derived functions that power `getitem`, `setitem`, `delitem`""" # essential methods start def _get_doc_by_id(self, _id: str) -> 'Document': doc = self._annlite.get_doc_by_id(_id) if doc is None: raise KeyError(f'Can not find Document with id=`{_id}`') return doc def _set_doc_by_id(self, _id: str, value: 'Document'): if _id != value.id: self._del_doc_by_id(_id) value.embedding = self._map_embedding(value.embedding) docs = DocumentArrayInMemory([value]) self._annlite.update(docs) def _del_doc_by_id(self, _id: str): # delete the root document self._del_docs_by_ids([_id]) def _clear_storage(self): self._annlite.clear() def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): for _id, doc in zip(ids, docs): doc.embedding = self._map_embedding(doc.embedding) self._set_doc_by_id(_id, doc) def _del_docs_by_ids(self, ids): self._annlite.delete(ids) def __del__(self) -> None: if not self._persist: self._offset2ids.clear() self._annlite.clear() self._annlite.close() super().__del__() def _load_offset2ids(self): self._offsetmapping = OffsetMapping( data_path=self._config.data_path, in_memory=False ) self._offsetmapping.create_table() self._offset2ids = Offset2ID(self._offsetmapping.get_all_ids()) def _save_offset2ids(self): self._offsetmapping.drop() self._offsetmapping.create_table() self._offsetmapping._insert( [(i, doc_id) for i, doc_id in enumerate(self._offset2ids.ids)] )
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class DETR(SingleStageDetector): r"""Implementation of `DETR: End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_""" def __init__(self, backbone: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=None, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class DETR(SingleStageDetector): r"""Implementation of `DETR: End-to-End Object Detection with Transformers <https://arxiv.org/pdf/2005.12872>`_""" def __init__(self, backbone, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(DETR, self).__init__(backbone, None, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) # over-write `forward_dummy` because: # the forward of bbox_head requires img_metas def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ warnings.warn('Warning! MultiheadAttention in DETR does not ' 'support flops computation! Do not use the ' 'results in your papers!') batch_size, _, height, width = img.shape dummy_img_metas = [ dict( batch_input_shape=(height, width), img_shape=(height, width, 3)) for _ in range(batch_size) ] x = self.extract_feat(img) outs = self.bbox_head(x, dummy_img_metas) return outs # over-write `onnx_export` because: # (1) the forward of bbox_head requires img_metas # (2) the different behavior (e.g. construction of `masks`) between # torch and ONNX model, during the forward of bbox_head def onnx_export(self, img, img_metas): """Test function for exporting to ONNX, without test time augmentation. Args: img (torch.Tensor): input images. img_metas (list[dict]): List of image information. Returns: tuple[Tensor, Tensor]: dets of shape [N, num_det, 5] and class labels of shape [N, num_det]. """ x = self.extract_feat(img) # forward of this head requires img_metas outs = self.bbox_head.forward_onnx(x, img_metas) # get shape as tensor img_shape = torch._shape_as_tensor(img)[2:] img_metas[0]['img_shape_for_onnx'] = img_shape det_bboxes, det_labels = self.bbox_head.onnx_export(*outs, img_metas) return det_bboxes, det_labels
from typing import Any, Dict from backend.data.block import Block from backend.util.request import Requests from ._api import Color, CustomerDetails, OrderItem, Profile class Slant3DBlockBase(Block): """Base block class for Slant3D API interactions""" BASE_URL = "https://www.slant3dapi.com/api" def _get_headers(self, api_key: str) -> Dict[str, str]: return {"api-key": api_key, "Content-Type": "application/json"} async def _make_request( self, method: str, endpoint: str, api_key: str, **kwargs ) -> Dict: url = f"{self.BASE_URL}/{endpoint}" response = await Requests().request( method=method, url=url, headers=self._get_headers(api_key), **kwargs ) resp = response.json() if not response.ok: error_msg = resp.get("error", "Unknown error") raise RuntimeError(f"API request failed: {error_msg}") return resp async def _check_valid_color( self, profile: Profile, color: Color, api_key: str ) -> str: response = await self._make_request( "GET", "filament", api_key, params={"profile": profile.value, "color": color.value}, ) if profile == Profile.PLA: color_tag = color.value else: color_tag = f"{profile.value.lower()}{color.value.capitalize()}" valid_tags = [filament["colorTag"] for filament in response["filaments"]] if color_tag not in valid_tags: raise ValueError( f"""Invalid color profile combination {color_tag}. Valid colors for {profile.value} are: {','.join([filament['colorTag'].replace(profile.value.lower(), '') for filament in response['filaments'] if filament['profile'] == profile.value])} """ ) return color_tag async def _convert_to_color( self, profile: Profile, color: Color, api_key: str ) -> str: return await self._check_valid_color(profile, color, api_key) async def _format_order_data( self, customer: CustomerDetails, order_number: str, items: list[OrderItem], api_key: str, ) -> list[dict[str, Any]]: """Helper function to format order data for API requests""" orders = [] for item in items: color_tag = await self._convert_to_color(item.profile, item.color, api_key) order_data = { "email": customer.email, "phone": customer.phone, "name": customer.name, "orderNumber": order_number, "filename": item.file_url, "fileURL": item.file_url, "bill_to_street_1": customer.address, "bill_to_city": customer.city, "bill_to_state": customer.state, "bill_to_zip": customer.zip, "bill_to_country_as_iso": customer.country_iso, "bill_to_is_US_residential": str(customer.is_residential).lower(), "ship_to_name": customer.name, "ship_to_street_1": customer.address, "ship_to_city": customer.city, "ship_to_state": customer.state, "ship_to_zip": customer.zip, "ship_to_country_as_iso": customer.country_iso, "ship_to_is_US_residential": str(customer.is_residential).lower(), "order_item_name": item.file_url, "order_quantity": item.quantity, "order_image_url": "", "order_sku": "NOT_USED", "order_item_color": color_tag, "profile": item.profile.value, } orders.append(order_data) return orders
from typing import Any, Dict from backend.data.block import Block from backend.util.request import Requests from ._api import Color, CustomerDetails, OrderItem, Profile class Slant3DBlockBase(Block): """Base block class for Slant3D API interactions""" BASE_URL = "https://www.slant3dapi.com/api" def _get_headers(self, api_key: str) -> Dict[str, str]: return {"api-key": api_key, "Content-Type": "application/json"} def _make_request(self, method: str, endpoint: str, api_key: str, **kwargs) -> Dict: url = f"{self.BASE_URL}/{endpoint}" response = Requests().request( method=method, url=url, headers=self._get_headers(api_key), **kwargs ) if not response.ok: error_msg = response.json().get("error", "Unknown error") raise RuntimeError(f"API request failed: {error_msg}") return response.json() def _check_valid_color(self, profile: Profile, color: Color, api_key: str) -> str: response = self._make_request( "GET", "filament", api_key, params={"profile": profile.value, "color": color.value}, ) if profile == Profile.PLA: color_tag = color.value else: color_tag = f"{profile.value.lower()}{color.value.capitalize()}" valid_tags = [filament["colorTag"] for filament in response["filaments"]] if color_tag not in valid_tags: raise ValueError( f"""Invalid color profile combination {color_tag}. Valid colors for {profile.value} are: {','.join([filament['colorTag'].replace(profile.value.lower(), '') for filament in response['filaments'] if filament['profile'] == profile.value])} """ ) return color_tag def _convert_to_color(self, profile: Profile, color: Color, api_key: str) -> str: return self._check_valid_color(profile, color, api_key) def _format_order_data( self, customer: CustomerDetails, order_number: str, items: list[OrderItem], api_key: str, ) -> list[dict[str, Any]]: """Helper function to format order data for API requests""" orders = [] for item in items: order_data = { "email": customer.email, "phone": customer.phone, "name": customer.name, "orderNumber": order_number, "filename": item.file_url, "fileURL": item.file_url, "bill_to_street_1": customer.address, "bill_to_city": customer.city, "bill_to_state": customer.state, "bill_to_zip": customer.zip, "bill_to_country_as_iso": customer.country_iso, "bill_to_is_US_residential": str(customer.is_residential).lower(), "ship_to_name": customer.name, "ship_to_street_1": customer.address, "ship_to_city": customer.city, "ship_to_state": customer.state, "ship_to_zip": customer.zip, "ship_to_country_as_iso": customer.country_iso, "ship_to_is_US_residential": str(customer.is_residential).lower(), "order_item_name": item.file_url, "order_quantity": item.quantity, "order_image_url": "", "order_sku": "NOT_USED", "order_item_color": self._convert_to_color( item.profile, item.color, api_key ), "profile": item.profile.value, } orders.append(order_data) return orders
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np from mmengine.registry import init_default_scope from mmdet.registry import TASK_UTILS class TestInterpolateTracklets(TestCase): @classmethod def setUpClass(cls): init_default_scope('mmdet') cls.cfg = dict( type='InterpolateTracklets', min_num_frames=5, max_num_frames=20, use_gsi=True, smooth_tau=10) def test_init(self): interpolation = TASK_UTILS.build(self.cfg) assert interpolation.min_num_frames == 5 assert interpolation.max_num_frames == 20 assert interpolation.use_gsi assert interpolation.smooth_tau == 10 def test_forward(self): pred_track = np.random.randn(5, 7) # set frame_id and target_id pred_track[:, 0] = np.array([1, 2, 5, 6, 7]) pred_track[:, 1] = 1 interpolation = TASK_UTILS.build(self.cfg) linked_track = interpolation.forward(pred_track) assert isinstance(linked_track, np.ndarray) assert linked_track.shape == (5, 7)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import numpy as np from mmdet.registry import TASK_UTILS from mmdet.utils import register_all_modules class TestInterpolateTracklets(TestCase): @classmethod def setUpClass(cls): register_all_modules() cls.cfg = dict( type='InterpolateTracklets', min_num_frames=5, max_num_frames=20, use_gsi=True, smooth_tau=10) def test_init(self): interpolation = TASK_UTILS.build(self.cfg) assert interpolation.min_num_frames == 5 assert interpolation.max_num_frames == 20 assert interpolation.use_gsi assert interpolation.smooth_tau == 10 def test_forward(self): pred_track = np.random.randn(5, 7) # set frame_id and target_id pred_track[:, 0] = np.array([1, 2, 5, 6, 7]) pred_track[:, 1] = 1 interpolation = TASK_UTILS.build(self.cfg) linked_track = interpolation.forward(pred_track) assert isinstance(linked_track, np.ndarray) assert linked_track.shape == (5, 7)
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for MobileNetV2.""" from typing import Optional from ...image_processing_utils_fast import BaseImageProcessorFast from ...image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, PILImageResampling from ...utils import auto_docstring, is_torch_available, is_torch_tensor if is_torch_available(): import torch @auto_docstring class MobileNetV2ImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BILINEAR image_mean = IMAGENET_STANDARD_MEAN image_std = IMAGENET_STANDARD_STD size = {"shortest_edge": 256} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = None def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[list[tuple]] = None): """ Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MobileNetV2ForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`list[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `list[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation __all__ = ["MobileNetV2ImageProcessorFast"]
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for MobileNetV2.""" from typing import List, Optional, Tuple from ...image_processing_utils_fast import BaseImageProcessorFast from ...image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, PILImageResampling from ...utils import auto_docstring, is_torch_available, is_torch_tensor if is_torch_available(): import torch @auto_docstring class MobileNetV2ImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BILINEAR image_mean = IMAGENET_STANDARD_MEAN image_std = IMAGENET_STANDARD_STD size = {"shortest_edge": 256} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = None def post_process_semantic_segmentation(self, outputs, target_sizes: Optional[List[Tuple]] = None): """ Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MobileNetV2ForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation __all__ = ["MobileNetV2ImageProcessorFast"]
""" In SecGPT, all messages exchanged among spokes conform to predefined formats, encapsulated within the Message class. """ import json class Message: @staticmethod def function_probe_request(spoke_id, function): """ Create a function probe request message. Args: spoke_id (str): The ID of the spoke sending the request. function (str): The functionality being requested. Returns: bytes: The JSON-encoded function probe request message. """ message = {} message["message_type"] = "function_probe_request" message["spoke_id"] = spoke_id message["requested_functionality"] = function # functionality name str return json.dumps(message).encode("utf-8") @staticmethod def function_probe_response(spoke_id, function): """ Create a function probe response message. Args: spoke_id (str): The ID of the spoke sending the response. function (str): The functionality being offered (in JSON format). Returns: bytes: The JSON-encoded function probe response message. """ message = {} message["message_type"] = "function_probe_response" message["spoke_id"] = spoke_id message["functionality_offered"] = function # should be a json format return json.dumps(message).encode("utf-8") @staticmethod def app_request(spoke_id, function, functionality_request): """ Create an application request message. Args: spoke_id (str): The ID of the spoke sending the request. function (str): The functionality being requested. functionality_request (str): The request body formatted in JSON. Returns: bytes: The JSON-encoded application request message. """ message = {} message["message_type"] = "app_request" message["spoke_id"] = spoke_id message["functionality_request"] = function message["request_body"] = functionality_request # format the request with json return json.dumps(message).encode("utf-8") @staticmethod def app_response(spoke_id, functionality_response): """ Create an application response message. Args: spoke_id (str): The ID of the spoke sending the response. functionality_response (str): The response body. Returns: bytes: The JSON-encoded application response message. """ message = {} message["message_type"] = "app_response" message["spoke_id"] = spoke_id message["response"] = functionality_response return json.dumps(message).encode("utf-8") @staticmethod def final_response(spoke_id, final_response): """ Create a final response message. Args: spoke_id (str): The ID of the spoke sending the final response. final_response (str): The final response body. Returns: bytes: The JSON-encoded final response message. """ message = {} message["message_type"] = "final_response" message["spoke_id"] = spoke_id message["response"] = final_response return json.dumps(message).encode("utf-8") @staticmethod def no_functionality_response(spoke_id, functionality_request): """ Create a no functionality response message indicating the requested functionality was not found. Args: spoke_id (str): The ID of the spoke sending the response. functionality_request (str): The functionality request that was not found. Returns: bytes: The JSON-encoded no functionality response message. """ message = {} message["message_type"] = "no_functionality_response" message["spoke_id"] = spoke_id message["response"] = functionality_request + " not found" return json.dumps(message).encode("utf-8") @staticmethod def functionality_denial_response(spoke_id, functionality_request): """ Create a functionality denial response message indicating the requested functionality refuses to respond. Args: spoke_id (str): The ID of the spoke sending the response. functionality_request (str): The functionality request that is being denied. Returns: bytes: The JSON-encoded functionality denial response message. """ message = {} message["message_type"] = "functionality_denial_response" message["spoke_id"] = spoke_id message["response"] = functionality_request + " refuses to respond" return json.dumps(message).encode("utf-8")
""" In SecGPT, all messages exchanged among spokes conform to predefined formats, encapsulated within the Message class. """ import json class Message: @staticmethod def function_probe_request(spoke_id, function): """ Create a function probe request message. Args: spoke_id (str): The ID of the spoke sending the request. function (str): The functionality being requested. Returns: bytes: The JSON-encoded function probe request message. """ message = {} message["message_type"] = "function_probe_request" message["spoke_id"] = spoke_id message["requested_functionality"] = function # functionality name str return json.dumps(message).encode("utf-8") @staticmethod def function_probe_response(spoke_id, function): """ Create a function probe response message. Args: spoke_id (str): The ID of the spoke sending the response. function (str): The functionality being offered (in JSON format). Returns: bytes: The JSON-encoded function probe response message. """ message = {} message["message_type"] = "function_probe_response" message["spoke_id"] = spoke_id message["functionality_offered"] = function # should be a json format return json.dumps(message).encode("utf-8") @staticmethod def app_request(spoke_id, function, functionality_request): """ Create an application request message. Args: spoke_id (str): The ID of the spoke sending the request. function (str): The functionality being requested. functionality_request (str): The request body formatted in JSON. Returns: bytes: The JSON-encoded application request message. """ message = {} message["message_type"] = "app_request" message["spoke_id"] = spoke_id message["functionality_request"] = function message["request_body"] = functionality_request # format the request with json return json.dumps(message).encode("utf-8") @staticmethod def app_response(spoke_id, functionality_response): """ Create an application response message. Args: spoke_id (str): The ID of the spoke sending the response. functionality_response (str): The response body. Returns: bytes: The JSON-encoded application response message. """ message = {} message["message_type"] = "app_response" message["spoke_id"] = spoke_id message["response"] = functionality_response return json.dumps(message).encode("utf-8") @staticmethod def final_response(spoke_id, final_response): """ Create a final response message. Args: spoke_id (str): The ID of the spoke sending the final response. final_response (str): The final response body. Returns: bytes: The JSON-encoded final response message. """ message = {} message["message_type"] = "final_response" message["spoke_id"] = spoke_id message["response"] = final_response return json.dumps(message).encode("utf-8") @staticmethod def no_functionality_response(spoke_id, functionality_request): """ Create a no functionality response message indicating the requested functionality was not found. Args: spoke_id (str): The ID of the spoke sending the response. functionality_request (str): The functionality request that was not found. Returns: bytes: The JSON-encoded no functionality response message. """ message = {} message["message_type"] = "no_functionality_response" message["spoke_id"] = spoke_id message["response"] = functionality_request + " not found" return json.dumps(message).encode("utf-8") @staticmethod def functionality_denial_response(spoke_id, functionality_request): """ Create a functionality denial response message indicating the requested functionality refuses to respond. Args: spoke_id (str): The ID of the spoke sending the response. functionality_request (str): The functionality request that is being denied. Returns: bytes: The JSON-encoded functionality denial response message. """ message = {} message["message_type"] = "functionality_denial_response" message["spoke_id"] = spoke_id message["response"] = functionality_request + " refuses to respond" return json.dumps(message).encode("utf-8")
import json import os from typing import Dict from torch import Tensor, nn class Dropout(nn.Module): """Dropout layer. Args: dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super(Dropout, self).__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: Dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dropout": self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = Dropout(**config) return model
import torch from torch import Tensor from torch import nn from typing import Dict import os import json class Dropout(nn.Module): """Dropout layer. :param dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super(Dropout, self).__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: Dict[str, Tensor]): features.update({'sentence_embedding': self.dropout_layer(features['sentence_embedding'])}) return features def save(self, output_path): with open(os.path.join(output_path, 'config.json'), 'w') as fOut: json.dump({'dropout': self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, 'config.json')) as fIn: config = json.load(fIn) model = Dropout(**config) return model
_base_ = [ '../_base_/models/cascade_mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optim_wrapper = dict( optimizer=dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
_base_ = [ '../_base_/models/cascade_mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optimizer = dict( _delete_=True, type='AdamW', lr=0.0002, weight_decay=0.05, paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../common/lsj_100e_coco_instance.py' ] image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.slack.base import SlackBaseTool class SendMessageSchema(BaseModel): """Input for SendMessageTool.""" message: str = Field( ..., description="The message to be sent.", ) channel: str = Field( ..., description="The channel, private group, or IM channel to send message to.", ) class SlackSendMessage(SlackBaseTool): """Tool for sending a message in Slack.""" name: str = "send_message" description: str = ( "Use this tool to send a message with the provided message fields." ) args_schema: Type[SendMessageSchema] = SendMessageSchema def _run( self, message: str, channel: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: result = self.client.chat_postMessage(channel=channel, text=message) output = "Message sent: " + str(result) return output except Exception as e: return "Error creating conversation: {}".format(e)
from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.slack.base import SlackBaseTool class SendMessageSchema(BaseModel): """Input for SendMessageTool.""" message: str = Field( ..., description="The message to be sent.", ) channel: str = Field( ..., description="The channel, private group, or IM channel to send message to.", ) class SlackSendMessage(SlackBaseTool): # type: ignore[override, override] """Tool for sending a message in Slack.""" name: str = "send_message" description: str = ( "Use this tool to send a message with the provided message fields." ) args_schema: Type[SendMessageSchema] = SendMessageSchema def _run( self, message: str, channel: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: result = self.client.chat_postMessage(channel=channel, text=message) output = "Message sent: " + str(result) return output except Exception as e: return "Error creating conversation: {}".format(e)
from .conv_emformer import ConvEmformer from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "ConvEmformer", ]
from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", ]
from typing import Any from typing_inspect import get_args, is_union_type from docarray.typing.tensor.abstract_tensor import AbstractTensor def is_type_tensor(type_: Any) -> bool: """Return True if type is a type Tensor or an Optional Tensor type.""" return isinstance(type_, type) and issubclass(type_, AbstractTensor) def is_tensor_union(type_: Any) -> bool: """Return True if type is a Union of type Tensors.""" is_union = is_union_type(type_) if is_union is None: return False else: return is_union and all( (is_type_tensor(t) or issubclass(t, type(None))) for t in get_args(type_) )
from typing import Any, get_args from typing_inspect import is_union_type from docarray.typing.tensor.abstract_tensor import AbstractTensor def is_type_tensor(type_: Any) -> bool: """Return True if type is a type Tensor or an Optional Tensor type.""" return isinstance(type_, type) and issubclass(type_, AbstractTensor) def is_tensor_union(type_: Any) -> bool: """Return True if type is a Union of type Tensors.""" is_union = is_union_type(type_) if is_union is None: return False else: return is_union and all( (is_type_tensor(t) or issubclass(t, type(None))) for t in get_args(type_) )
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from mmengine.registry import MODELS from parameterized import parameterized from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules register_all_modules() class TestSemiBase(TestCase): @parameterized.expand([ 'soft_teacher/' 'soft-teacher_faster-rcnn_r50-caffe_fpn_180k_semi-0.1-coco.py', ]) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.detector.backbone.depth = 18 model.detector.neck.in_channels = [64, 128, 256, 512] model.detector.backbone.init_cfg = None model = MODELS.build(model) self.assertTrue(model.teacher.backbone) self.assertTrue(model.teacher.neck) self.assertTrue(model.teacher.rpn_head) self.assertTrue(model.teacher.roi_head) self.assertTrue(model.student.backbone) self.assertTrue(model.student.neck) self.assertTrue(model.student.rpn_head) self.assertTrue(model.student.roi_head)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from mmengine.registry import MODELS from parameterized import parameterized from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules register_all_modules() class TestSemiBase(TestCase): @parameterized.expand([ 'soft_teacher/' 'semi_base_faster-rcnn_r50_caffe_fpn_180k_partial_coco.py', ]) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.detector.backbone.depth = 18 model.detector.neck.in_channels = [64, 128, 256, 512] model.detector.backbone.init_cfg = None model = MODELS.build(model) self.assertTrue(model.teacher.backbone) self.assertTrue(model.teacher.neck) self.assertTrue(model.teacher.rpn_head) self.assertTrue(model.teacher.roi_head) self.assertTrue(model.student.backbone) self.assertTrue(model.student.neck) self.assertTrue(model.student.rpn_head) self.assertTrue(model.student.roi_head)
from torch.utils.data import IterableDataset import numpy as np from typing import List from ..readers import InputExample import logging logger = logging.getLogger(__name__) class SentenceLabelDataset(IterableDataset): """ This dataset can be used for some specific Triplet Losses like BATCH_HARD_TRIPLET_LOSS which requires multiple examples with the same label in a batch. It draws n consecutive, random and unique samples from one label at a time. This is repeated for each label. Labels with fewer than n unique samples are ignored. This also applied to drawing without replacement, once less than n samples remain for a label, it is skipped. This *DOES NOT* check if there are more labels than the batch is large or if the batch size is divisible by the samples drawn per label. """ def __init__(self, examples: List[InputExample], samples_per_label: int = 2, with_replacement: bool = False): """ Creates a LabelSampler for a SentenceLabelDataset. Args: examples (List[InputExample]): A list of InputExamples. samples_per_label (int, optional): The number of consecutive, random, and unique samples drawn per label. The batch size should be a multiple of samples_per_label. Defaults to 2. with_replacement (bool, optional): If True, each sample is drawn at most once (depending on the total number of samples per label). If False, one sample can be drawn in multiple draws, but not multiple times in the same drawing. Defaults to False. """ super().__init__() self.samples_per_label = samples_per_label # Group examples by label label2ex = {} for example in examples: if example.label not in label2ex: label2ex[example.label] = [] label2ex[example.label].append(example) # Include only labels with at least 2 examples self.grouped_inputs = [] self.groups_right_border = [] num_labels = 0 for label, label_examples in label2ex.items(): if len(label_examples) >= self.samples_per_label: self.grouped_inputs.extend(label_examples) self.groups_right_border.append( len(self.grouped_inputs) ) # At which position does this label group / bucket end? num_labels += 1 self.label_range = np.arange(num_labels) self.with_replacement = with_replacement np.random.shuffle(self.label_range) logger.info( "SentenceLabelDataset: {} examples, from which {} examples could be used (those labels appeared at least {} times). {} different labels found.".format( len(examples), len(self.grouped_inputs), self.samples_per_label, num_labels ) ) def __iter__(self): label_idx = 0 count = 0 already_seen = {} while count < len(self.grouped_inputs): label = self.label_range[label_idx] if label not in already_seen: already_seen[label] = set() left_border = 0 if label == 0 else self.groups_right_border[label - 1] right_border = self.groups_right_border[label] if self.with_replacement: selection = np.arange(left_border, right_border) else: selection = [i for i in np.arange(left_border, right_border) if i not in already_seen[label]] if len(selection) >= self.samples_per_label: for element_idx in np.random.choice(selection, self.samples_per_label, replace=False): count += 1 already_seen[label].add(element_idx) yield self.grouped_inputs[element_idx] label_idx += 1 if label_idx >= len(self.label_range): label_idx = 0 already_seen = {} np.random.shuffle(self.label_range) def __len__(self): return len(self.grouped_inputs)
""" """ from torch.utils.data import IterableDataset import numpy as np from typing import List from ..readers import InputExample import logging logger = logging.getLogger(__name__) class SentenceLabelDataset(IterableDataset): """ This dataset can be used for some specific Triplet Losses like BATCH_HARD_TRIPLET_LOSS which requires multiple examples with the same label in a batch. It draws n consecutive, random and unique samples from one label at a time. This is repeated for each label. Labels with fewer than n unique samples are ignored. This also applied to drawing without replacement, once less than n samples remain for a label, it is skipped. This *DOES NOT* check if there are more labels than the batch is large or if the batch size is divisible by the samples drawn per label. """ def __init__(self, examples: List[InputExample], samples_per_label: int = 2, with_replacement: bool = False): """ Creates a LabelSampler for a SentenceLabelDataset. :param examples: a list with InputExamples :param samples_per_label: the number of consecutive, random and unique samples drawn per label. Batch size should be a multiple of samples_per_label :param with_replacement: if this is True, then each sample is drawn at most once (depending on the total number of samples per label). if this is False, then one sample can be drawn in multiple draws, but still not multiple times in the same drawing. """ super().__init__() self.samples_per_label = samples_per_label # Group examples by label label2ex = {} for example in examples: if example.label not in label2ex: label2ex[example.label] = [] label2ex[example.label].append(example) # Include only labels with at least 2 examples self.grouped_inputs = [] self.groups_right_border = [] num_labels = 0 for label, label_examples in label2ex.items(): if len(label_examples) >= self.samples_per_label: self.grouped_inputs.extend(label_examples) self.groups_right_border.append( len(self.grouped_inputs) ) # At which position does this label group / bucket end? num_labels += 1 self.label_range = np.arange(num_labels) self.with_replacement = with_replacement np.random.shuffle(self.label_range) logger.info( "SentenceLabelDataset: {} examples, from which {} examples could be used (those labels appeared at least {} times). {} different labels found.".format( len(examples), len(self.grouped_inputs), self.samples_per_label, num_labels ) ) def __iter__(self): label_idx = 0 count = 0 already_seen = {} while count < len(self.grouped_inputs): label = self.label_range[label_idx] if label not in already_seen: already_seen[label] = set() left_border = 0 if label == 0 else self.groups_right_border[label - 1] right_border = self.groups_right_border[label] if self.with_replacement: selection = np.arange(left_border, right_border) else: selection = [i for i in np.arange(left_border, right_border) if i not in already_seen[label]] if len(selection) >= self.samples_per_label: for element_idx in np.random.choice(selection, self.samples_per_label, replace=False): count += 1 already_seen[label].add(element_idx) yield self.grouped_inputs[element_idx] label_idx += 1 if label_idx >= len(self.label_range): label_idx = 0 already_seen = {} np.random.shuffle(self.label_range) def __len__(self): return len(self.grouped_inputs)
_base_ = './tood_r50_fpn_ms-2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './tood_r50_fpn_mstrain_2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
from typing import Dict, Type from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.embeddings.mock_embed_model import MockEmbedding RECOGNIZED_EMBEDDINGS: Dict[str, Type[BaseEmbedding]] = { MockEmbedding.class_name(): MockEmbedding, } # conditionals for llama-cloud support try: from llama_index.embeddings.openai import OpenAIEmbedding # pants: no-infer-dep RECOGNIZED_EMBEDDINGS[OpenAIEmbedding.class_name()] = OpenAIEmbedding except ImportError: pass try: from llama_index.embeddings.azure_openai import ( AzureOpenAIEmbedding, ) # pants: no-infer-dep RECOGNIZED_EMBEDDINGS[AzureOpenAIEmbedding.class_name()] = AzureOpenAIEmbedding except ImportError: pass try: from llama_index.embeddings.huggingface_api import ( HuggingFaceInferenceAPIEmbedding, ) # pants: no-infer-dep RECOGNIZED_EMBEDDINGS[ HuggingFaceInferenceAPIEmbedding.class_name() ] = HuggingFaceInferenceAPIEmbedding except ImportError: pass def load_embed_model(data: dict) -> BaseEmbedding: """Load Embedding by name.""" if isinstance(data, BaseEmbedding): return data name = data.get("class_name") if name is None: raise ValueError("Embedding loading requires a class_name") if name not in RECOGNIZED_EMBEDDINGS: raise ValueError(f"Invalid Embedding name: {name}") return RECOGNIZED_EMBEDDINGS[name].from_dict(data)
from typing import Dict, Type from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.embeddings.mock_embed_model import MockEmbedding RECOGNIZED_EMBEDDINGS: Dict[str, Type[BaseEmbedding]] = { MockEmbedding.class_name(): MockEmbedding, } # conditionals for llama-cloud support try: from llama_index.embeddings.openai import OpenAIEmbedding # pants: no-infer-dep RECOGNIZED_EMBEDDINGS[OpenAIEmbedding.class_name()] = OpenAIEmbedding except ImportError: pass try: from llama_index.embeddings.azure_openai import ( AzureOpenAIEmbedding, ) # pants: no-infer-dep RECOGNIZED_EMBEDDINGS[AzureOpenAIEmbedding.class_name()] = AzureOpenAIEmbedding except ImportError: pass try: from llama_index.embeddings.huggingface_api import ( HuggingFaceInferenceAPIEmbedding, ) # pants: no-infer-dep RECOGNIZED_EMBEDDINGS[ HuggingFaceInferenceAPIEmbedding.class_name() ] = HuggingFaceInferenceAPIEmbedding except ImportError: pass def load_embed_model(data: dict) -> BaseEmbedding: """Load Embedding by name.""" if isinstance(data, BaseEmbedding): return data name = data.get("class_name", None) if name is None: raise ValueError("Embedding loading requires a class_name") if name not in RECOGNIZED_EMBEDDINGS: raise ValueError(f"Invalid Embedding name: {name}") return RECOGNIZED_EMBEDDINGS[name].from_dict(data)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pydantic import parse_obj_as from docarray.typing import ImageBytes, ImageTensor, ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } def test_bytes_load(): url = parse_obj_as(ImageUrl, IMAGE_PATHS['png']) tensor = parse_obj_as(ImageTensor, url.load()) bytes_ = parse_obj_as(ImageBytes, tensor.to_bytes()) tensor_new = parse_obj_as(ImageTensor, bytes_.load()) assert (tensor_new == tensor).all()
import os from pydantic import parse_obj_as from docarray.typing import ImageBytes, ImageTensor, ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } def test_bytes_load(): url = parse_obj_as(ImageUrl, IMAGE_PATHS['png']) tensor = parse_obj_as(ImageTensor, url.load()) bytes_ = parse_obj_as(ImageBytes, tensor.to_bytes()) tensor_new = parse_obj_as(ImageTensor, bytes_.load()) assert (tensor_new == tensor).all()
import gzip import logging import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, evaluation, losses, models, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Some training parameters. We use a batch size of 16, for every positive example we include 8-1=7 negative examples # Sentences are truncated to 75 word pieces ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 epochs = 1 max_seq_length = 75 ################# Download AskUbuntu and extract training corpus ################# askubuntu_folder = "askubuntu" output_path = "output/train_askubuntu_ct-improved-{}-{}-{}".format( model_name, batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) ## Download the AskUbuntu dataset from https://github.com/taolei87/askubuntu for filename in ["text_tokenized.txt.gz", "dev.txt", "test.txt", "train_random.txt"]: filepath = os.path.join(askubuntu_folder, filename) if not os.path.exists(filepath): util.http_get("https://github.com/taolei87/askubuntu/raw/master/" + filename, filepath) # Read the corpus corpus = {} dev_test_ids = set() with gzip.open(os.path.join(askubuntu_folder, "text_tokenized.txt.gz"), "rt", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") id = splits[0] title = splits[1] corpus[id] = title # Read dev & test dataset def read_eval_dataset(filepath): dataset = [] with open(filepath) as fIn: for line in fIn: query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") if len(relevant_id) == 0: # Skip examples without relevant entries continue relevant_id = relevant_id.split(" ") candidate_ids = candidate_ids.split(" ") negative_ids = set(candidate_ids) - set(relevant_id) dataset.append( { "query": corpus[query_id], "positive": [corpus[pid] for pid in relevant_id], "negative": [corpus[pid] for pid in negative_ids], } ) dev_test_ids.add(query_id) dev_test_ids.update(candidate_ids) return dataset dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "dev.txt")) test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "test.txt")) ## Now we need a list of train sentences. ## In this example we simply use all sentences that don't appear in the train/dev set train_sentences = [] for id, sentence in corpus.items(): if id not in dev_test_ids: train_sentences.append(InputExample(texts=[sentence, sentence])) logging.info(f"{len(train_sentences)} train sentences") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train the model ################# # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLossInBatchNegatives(model) # Create a dev evaluator dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name="AskUbuntu dev") test_evaluator = evaluation.RerankingEvaluator(test_dataset, name="AskUbuntu test") logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, evaluation_steps=100, epochs=1, warmup_steps=100, use_amp=True, # Set to True, if your GPU has optimized FP16 cores ) latest_output_path = output_path + "-latest" model.save(latest_output_path) ### Run test evaluation on the latest model. This is equivalent to not having a dev dataset model = SentenceTransformer(latest_output_path) test_evaluator(model)
import gzip import logging import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, evaluation, losses, models, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Some training parameters. We use a batch size of 16, for every positive example we include 8-1=7 negative examples # Sentences are truncated to 75 word pieces ## Training parameters model_name = "distilbert-base-uncased" batch_size = 128 epochs = 1 max_seq_length = 75 ################# Download AskUbuntu and extract training corpus ################# askubuntu_folder = "askubuntu" output_path = "output/train_askubuntu_ct-improved-{}-{}-{}".format( model_name, batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) ## Download the AskUbuntu dataset from https://github.com/taolei87/askubuntu for filename in ["text_tokenized.txt.gz", "dev.txt", "test.txt", "train_random.txt"]: filepath = os.path.join(askubuntu_folder, filename) if not os.path.exists(filepath): util.http_get("https://github.com/taolei87/askubuntu/raw/master/" + filename, filepath) # Read the corpus corpus = {} dev_test_ids = set() with gzip.open(os.path.join(askubuntu_folder, "text_tokenized.txt.gz"), "rt", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") id = splits[0] title = splits[1] corpus[id] = title # Read dev & test dataset def read_eval_dataset(filepath): dataset = [] with open(filepath) as fIn: for line in fIn: query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") if len(relevant_id) == 0: # Skip examples without relevant entries continue relevant_id = relevant_id.split(" ") candidate_ids = candidate_ids.split(" ") negative_ids = set(candidate_ids) - set(relevant_id) dataset.append( { "query": corpus[query_id], "positive": [corpus[pid] for pid in relevant_id], "negative": [corpus[pid] for pid in negative_ids], } ) dev_test_ids.add(query_id) dev_test_ids.update(candidate_ids) return dataset dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "dev.txt")) test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "test.txt")) ## Now we need a list of train sentences. ## In this example we simply use all sentences that don't appear in the train/dev set train_sentences = [] for id, sentence in corpus.items(): if id not in dev_test_ids: train_sentences.append(InputExample(texts=[sentence, sentence])) logging.info("{} train sentences".format(len(train_sentences))) ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train the model ################# # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = DataLoader(train_sentences, batch_size=batch_size, shuffle=True, drop_last=True) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLossInBatchNegatives(model) # Create a dev evaluator dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name="AskUbuntu dev") test_evaluator = evaluation.RerankingEvaluator(test_dataset, name="AskUbuntu test") logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, evaluation_steps=100, epochs=1, warmup_steps=100, use_amp=True, # Set to True, if your GPU has optimized FP16 cores ) latest_output_path = output_path + "-latest" model.save(latest_output_path) ### Run test evaluation on the latest model. This is equivalent to not having a dev dataset model = SentenceTransformer(latest_output_path) test_evaluator(model)
import torch from mmdet.models.task_modules import embed_similarity def test_embed_similarity(): """Test embed similarity.""" embeds = torch.rand(2, 3) similarity = embed_similarity(embeds, embeds) assert similarity.shape == (2, 2)
import torch from mmdet.models.task_modules import embed_similarity def test_embed_similarity(): """Test embed similarity.""" embeds = torch.rand(2, 3) similarity = embed_similarity(embeds, embeds) assert similarity.shape == (2, 2) assert torch.allclose(similarity, torch.eye(2))
from ._dsp import ( adsr_envelope, extend_pitch, filter_waveform, frequency_impulse_response, oscillator_bank, sinc_impulse_response, ) from .functional import barkscale_fbanks __all__ = [ "adsr_envelope", "barkscale_fbanks", "extend_pitch", "filter_waveform", "frequency_impulse_response", "oscillator_bank", "sinc_impulse_response", ]
from ._dsp import ( adsr_envelope, extend_pitch, filter_waveform, frequency_impulse_response, oscillator_bank, sinc_impulse_response, ) from .functional import add_noise, barkscale_fbanks, convolve, deemphasis, fftconvolve, preemphasis, speed __all__ = [ "add_noise", "adsr_envelope", "barkscale_fbanks", "convolve", "deemphasis", "extend_pitch", "fftconvolve", "filter_waveform", "frequency_impulse_response", "oscillator_bank", "preemphasis", "sinc_impulse_response", "speed", ]
"""Standard LangChain interface tests""" import os from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import AzureChatOpenAI OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], "model": "gpt-4o-mini", "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def supports_image_inputs(self) -> bool: return True @property def supports_image_urls(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @property def enable_vcr_tests(self) -> bool: return True class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): """Test a legacy model.""" @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def structured_output_kwargs(self) -> dict: return {"method": "function_calling"} @property def enable_vcr_tests(self) -> bool: return True
"""Standard LangChain interface tests""" import os from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import AzureChatOpenAI OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], "model": "gpt-4o-mini", "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def supports_image_inputs(self) -> bool: return True @property def supports_image_urls(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): """Test a legacy model.""" @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def structured_output_kwargs(self) -> dict: return {"method": "function_calling"}
from backend.app import run_processes from backend.executor import DatabaseManager, ExecutionScheduler from backend.server.rest_api import AgentServer def main(): """ Run all the processes required for the AutoGPT-server REST API. """ run_processes( DatabaseManager(), ExecutionScheduler(), AgentServer(), ) if __name__ == "__main__": main()
from backend.app import run_processes from backend.executor import ExecutionScheduler from backend.server.rest_api import AgentServer def main(): """ Run all the processes required for the AutoGPT-server REST API. """ run_processes( ExecutionScheduler(), AgentServer(), ) if __name__ == "__main__": main()
import random import torch from processing import bits_to_normalized_waveform, normalized_waveform_to_bits from torch.utils.data.dataset import random_split from torchaudio.datasets import LIBRITTS, LJSPEECH from torchaudio.transforms import MuLawEncoding class MapMemoryCache(torch.utils.data.Dataset): r"""Wrap a dataset so that, whenever a new item is returned, it is saved to memory.""" def __init__(self, dataset): self.dataset = dataset self._cache = [None] * len(dataset) def __getitem__(self, n): if self._cache[n] is not None: return self._cache[n] item = self.dataset[n] self._cache[n] = item return item def __len__(self): return len(self.dataset) class Processed(torch.utils.data.Dataset): def __init__(self, dataset, transforms): self.dataset = dataset self.transforms = transforms def __getitem__(self, key): item = self.dataset[key] return self.process_datapoint(item) def __len__(self): return len(self.dataset) def process_datapoint(self, item): specgram = self.transforms(item[0]) return item[0].squeeze(0), specgram def split_process_dataset(args, transforms): if args.dataset == "ljspeech": data = LJSPEECH(root=args.file_path, download=False) val_length = int(len(data) * args.val_ratio) lengths = [len(data) - val_length, val_length] train_dataset, val_dataset = random_split(data, lengths) elif args.dataset == "libritts": train_dataset = LIBRITTS(root=args.file_path, url="train-clean-100", download=False) val_dataset = LIBRITTS(root=args.file_path, url="dev-clean", download=False) else: raise ValueError(f"Expected dataset: `ljspeech` or `libritts`, but found {args.dataset}") train_dataset = Processed(train_dataset, transforms) val_dataset = Processed(val_dataset, transforms) train_dataset = MapMemoryCache(train_dataset) val_dataset = MapMemoryCache(val_dataset) return train_dataset, val_dataset def collate_factory(args): def raw_collate(batch): pad = (args.kernel_size - 1) // 2 # input waveform length wave_length = args.hop_length * args.seq_len_factor # input spectrogram length spec_length = args.seq_len_factor + pad * 2 # max start postion in spectrogram max_offsets = [x[1].shape[-1] - (spec_length + pad * 2) for x in batch] # random start postion in spectrogram spec_offsets = [random.randint(0, offset) for offset in max_offsets] # random start postion in waveform wave_offsets = [(offset + pad) * args.hop_length for offset in spec_offsets] waveform_combine = [x[0][wave_offsets[i] : wave_offsets[i] + wave_length + 1] for i, x in enumerate(batch)] specgram = [x[1][:, spec_offsets[i] : spec_offsets[i] + spec_length] for i, x in enumerate(batch)] specgram = torch.stack(specgram) waveform_combine = torch.stack(waveform_combine) waveform = waveform_combine[:, :wave_length] target = waveform_combine[:, 1:] # waveform: [-1, 1], target: [0, 2**bits-1] if loss = 'crossentropy' if args.loss == "crossentropy": if args.mulaw: mulaw_encode = MuLawEncoding(2**args.n_bits) waveform = mulaw_encode(waveform) target = mulaw_encode(target) waveform = bits_to_normalized_waveform(waveform, args.n_bits) else: target = normalized_waveform_to_bits(target, args.n_bits) return waveform.unsqueeze(1), specgram.unsqueeze(1), target.unsqueeze(1) return raw_collate
import random import torch from processing import bits_to_normalized_waveform, normalized_waveform_to_bits from torch.utils.data.dataset import random_split from torchaudio.datasets import LJSPEECH, LIBRITTS from torchaudio.transforms import MuLawEncoding class MapMemoryCache(torch.utils.data.Dataset): r"""Wrap a dataset so that, whenever a new item is returned, it is saved to memory.""" def __init__(self, dataset): self.dataset = dataset self._cache = [None] * len(dataset) def __getitem__(self, n): if self._cache[n] is not None: return self._cache[n] item = self.dataset[n] self._cache[n] = item return item def __len__(self): return len(self.dataset) class Processed(torch.utils.data.Dataset): def __init__(self, dataset, transforms): self.dataset = dataset self.transforms = transforms def __getitem__(self, key): item = self.dataset[key] return self.process_datapoint(item) def __len__(self): return len(self.dataset) def process_datapoint(self, item): specgram = self.transforms(item[0]) return item[0].squeeze(0), specgram def split_process_dataset(args, transforms): if args.dataset == "ljspeech": data = LJSPEECH(root=args.file_path, download=False) val_length = int(len(data) * args.val_ratio) lengths = [len(data) - val_length, val_length] train_dataset, val_dataset = random_split(data, lengths) elif args.dataset == "libritts": train_dataset = LIBRITTS(root=args.file_path, url="train-clean-100", download=False) val_dataset = LIBRITTS(root=args.file_path, url="dev-clean", download=False) else: raise ValueError(f"Expected dataset: `ljspeech` or `libritts`, but found {args.dataset}") train_dataset = Processed(train_dataset, transforms) val_dataset = Processed(val_dataset, transforms) train_dataset = MapMemoryCache(train_dataset) val_dataset = MapMemoryCache(val_dataset) return train_dataset, val_dataset def collate_factory(args): def raw_collate(batch): pad = (args.kernel_size - 1) // 2 # input waveform length wave_length = args.hop_length * args.seq_len_factor # input spectrogram length spec_length = args.seq_len_factor + pad * 2 # max start postion in spectrogram max_offsets = [x[1].shape[-1] - (spec_length + pad * 2) for x in batch] # random start postion in spectrogram spec_offsets = [random.randint(0, offset) for offset in max_offsets] # random start postion in waveform wave_offsets = [(offset + pad) * args.hop_length for offset in spec_offsets] waveform_combine = [x[0][wave_offsets[i] : wave_offsets[i] + wave_length + 1] for i, x in enumerate(batch)] specgram = [x[1][:, spec_offsets[i] : spec_offsets[i] + spec_length] for i, x in enumerate(batch)] specgram = torch.stack(specgram) waveform_combine = torch.stack(waveform_combine) waveform = waveform_combine[:, :wave_length] target = waveform_combine[:, 1:] # waveform: [-1, 1], target: [0, 2**bits-1] if loss = 'crossentropy' if args.loss == "crossentropy": if args.mulaw: mulaw_encode = MuLawEncoding(2**args.n_bits) waveform = mulaw_encode(waveform) target = mulaw_encode(target) waveform = bits_to_normalized_waveform(waveform, args.n_bits) else: target = normalized_waveform_to_bits(target, args.n_bits) return waveform.unsqueeze(1), specgram.unsqueeze(1), target.unsqueeze(1) return raw_collate
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959) Precision with Cosine-Similarity: 54.15 Recall with Cosine-Similarity: 89.13 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.89 Accuracy with Dot-Product: 76.50 (Threshold: 24.3460) F1 with Dot-Product: 66.93 (Threshold: 20.0762) Precision with Dot-Product: 57.62 Recall with Dot-Product: 79.81 Average Precision with Dot-Product: 65.94 Matthews Correlation with Dot-Product: 48.82 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062) F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993) F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 Model Sparsity: Active Dimensions: 63.1, Sparsity Ratio: 0.9979 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseBinaryClassificationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with two text columns and a class label column (https://huggingface.co/datasets/sentence-transformers/quora-duplicates) eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) """ Accuracy with Cosine-Similarity: 74.90 (Threshold: 0.8668) F1 with Cosine-Similarity: 67.37 (Threshold: 0.5959) Precision with Cosine-Similarity: 54.15 Recall with Cosine-Similarity: 89.13 Average Precision with Cosine-Similarity: 67.81 Matthews Correlation with Cosine-Similarity: 49.89 Accuracy with Dot-Product: 76.50 (Threshold: 24.3460) F1 with Dot-Product: 66.93 (Threshold: 20.0762) Precision with Dot-Product: 57.62 Recall with Dot-Product: 79.81 Average Precision with Dot-Product: 65.94 Matthews Correlation with Dot-Product: 48.82 Accuracy with Euclidean-Distance: 67.70 (Threshold: -10.0062) F1 with Euclidean-Distance: 48.60 (Threshold: -0.2346) Precision with Euclidean-Distance: 32.13 Recall with Euclidean-Distance: 99.69 Average Precision with Euclidean-Distance: 20.52 Matthews Correlation with Euclidean-Distance: -4.59 Accuracy with Manhattan-Distance: 67.70 (Threshold: -103.1993) F1 with Manhattan-Distance: 48.60 (Threshold: -1.1565) Precision with Manhattan-Distance: 32.13 Recall with Manhattan-Distance: 99.69 Average Precision with Manhattan-Distance: 21.05 Matthews Correlation with Manhattan-Distance: -4.59 Model Sparsity Stats: Row Non-Zero Mean: 63.13884735107422, Row Sparsity Mean: 0.9979313611984253 """ # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") # => Primary metric: quora_duplicates_dev_max_ap print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6781
import torch from keras.src.backend import config from keras.src.backend import standardize_dtype from keras.src.backend.common import dtypes from keras.src.backend.torch.core import cast from keras.src.backend.torch.core import convert_to_tensor def cholesky(x): return torch.linalg.cholesky(x) def det(x): return torch.det(x) def eig(x): return torch.linalg.eig(x) def eigh(x): return torch.linalg.eigh(x) def inv(x): return torch.linalg.inv(x) def lu_factor(x): LU, pivots = torch.linalg.lu_factor(x) # torch returns pivots with 1-based indexing return LU, pivots - 1 def norm(x, ord=None, axis=None, keepdims=False): x = convert_to_tensor(x) if standardize_dtype(x.dtype) == "int64": dtype = config.floatx() else: dtype = dtypes.result_type(x.dtype, float) x = cast(x, dtype) return torch.linalg.norm(x, ord=ord, dim=axis, keepdim=keepdims) def qr(x, mode="reduced"): if mode not in {"reduced", "complete"}: raise ValueError( "`mode` argument value not supported. " "Expected one of {'reduced', 'complete'}. " f"Received: mode={mode}" ) return torch.linalg.qr(x, mode=mode) def solve(a, b): return torch.linalg.solve(a, b) def solve_triangular(a, b, lower=False): if b.ndim == a.ndim - 1: b = torch.unsqueeze(b, axis=-1) return torch.linalg.solve_triangular(a, b, upper=not lower).squeeze( axis=-1 ) return torch.linalg.solve_triangular(a, b, upper=not lower) def svd(x, full_matrices=True, compute_uv=True): if not compute_uv: return torch.linalg.svdvals(x) return torch.linalg.svd(x, full_matrices=full_matrices) def lstsq(a, b, rcond=None): a = convert_to_tensor(a) b = convert_to_tensor(b) return torch.linalg.lstsq(a, b, rcond=rcond)[0]
import torch from keras.src.backend import config from keras.src.backend import standardize_dtype from keras.src.backend.common import dtypes from keras.src.backend.torch.core import cast from keras.src.backend.torch.core import convert_to_tensor def cholesky(x): return torch.linalg.cholesky(x) def det(x): return torch.det(x) def eig(x): return torch.linalg.eig(x) def eigh(x): return torch.linalg.eigh(x) def inv(x): return torch.linalg.inv(x) def lu_factor(x): LU, pivots = torch.linalg.lu_factor(x) # torch retuns pivots with 1-based indexing return LU, pivots - 1 def norm(x, ord=None, axis=None, keepdims=False): x = convert_to_tensor(x) if standardize_dtype(x.dtype) == "int64": dtype = config.floatx() else: dtype = dtypes.result_type(x.dtype, float) x = cast(x, dtype) return torch.linalg.norm(x, ord=ord, dim=axis, keepdim=keepdims) def qr(x, mode="reduced"): if mode not in {"reduced", "complete"}: raise ValueError( "`mode` argument value not supported. " "Expected one of {'reduced', 'complete'}. " f"Received: mode={mode}" ) return torch.linalg.qr(x, mode=mode) def solve(a, b): return torch.linalg.solve(a, b) def solve_triangular(a, b, lower=False): if b.ndim == a.ndim - 1: b = torch.unsqueeze(b, axis=-1) return torch.linalg.solve_triangular(a, b, upper=not lower).squeeze( axis=-1 ) return torch.linalg.solve_triangular(a, b, upper=not lower) def svd(x, full_matrices=True, compute_uv=True): if not compute_uv: return torch.linalg.svdvals(x) return torch.linalg.svd(x, full_matrices=full_matrices) def lstsq(a, b, rcond=None): a = convert_to_tensor(a) b = convert_to_tensor(b) return torch.linalg.lstsq(a, b, rcond=rcond)[0]
"""Init file of LlamaIndex.""" __version__ = "0.12.22" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Init file of LlamaIndex.""" __version__ = "0.12.21" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
import argparse import json import os from datetime import date from pathlib import Path from slack_sdk import WebClient from tabulate import tabulate MAX_LEN_MESSAGE = 2900 # slack endpoint has a limit of 3001 characters parser = argparse.ArgumentParser() parser.add_argument("--slack_channel_name", default="diffusers-ci-nightly") def main(slack_channel_name=None): failed = [] passed = [] group_info = [] total_num_failed = 0 empty_file = False or len(list(Path().glob("*.log"))) == 0 total_empty_files = [] for log in Path().glob("*.log"): section_num_failed = 0 i = 0 with open(log) as f: for line in f: line = json.loads(line) i += 1 if line.get("nodeid", "") != "": test = line["nodeid"] if line.get("duration", None) is not None: duration = f"{line['duration']:.4f}" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 else: passed.append([test, duration, log.name.split("_")[0]]) empty_file = i == 0 group_info.append([str(log), section_num_failed, failed]) total_empty_files.append(empty_file) os.remove(log) failed = [] text = ( "🌞 There were no failures!" if not any(total_empty_files) else "Something went wrong there is at least one empty file - please check GH action results." ) no_error_payload = { "type": "section", "text": { "type": "plain_text", "text": text, "emoji": True, }, } message = "" payload = [ { "type": "header", "text": { "type": "plain_text", "text": "🤗 Results of the Diffusers scheduled nightly tests.", }, }, ] if total_num_failed > 0: for i, (name, num_failed, failed_tests) in enumerate(group_info): if num_failed > 0: if num_failed == 1: message += f"*{name}: {num_failed} failed test*\n" else: message += f"*{name}: {num_failed} failed tests*\n" failed_table = [] for test in failed_tests: failed_table.append(test[0].split("::")) failed_table = tabulate( failed_table, headers=["Test Location", "Test Case", "Test Name"], showindex="always", tablefmt="grid", maxcolwidths=[12, 12, 12], ) message += "\n```\n" + failed_table + "\n```" if total_empty_files[i]: message += f"\n*{name}: Warning! Empty file - please check the GitHub action job *\n" print(f"### {message}") else: payload.append(no_error_payload) if len(message) > MAX_LEN_MESSAGE: print(f"Truncating long message from {len(message)} to {MAX_LEN_MESSAGE}") message = message[:MAX_LEN_MESSAGE] + "..." if len(message) != 0: md_report = { "type": "section", "text": {"type": "mrkdwn", "text": message}, } payload.append(md_report) action_button = { "type": "section", "text": {"type": "mrkdwn", "text": "*For more details:*"}, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/diffusers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) date_report = { "type": "context", "elements": [ { "type": "plain_text", "text": f"Nightly test results for {date.today()}", }, ], } payload.append(date_report) print(payload) client = WebClient(token=os.environ.get("SLACK_API_TOKEN")) client.chat_postMessage(channel=f"#{slack_channel_name}", text=message, blocks=payload) if __name__ == "__main__": args = parser.parse_args() main(args.slack_channel_name)
import argparse import json import os from datetime import date from pathlib import Path from slack_sdk import WebClient from tabulate import tabulate MAX_LEN_MESSAGE = 2900 # slack endpoint has a limit of 3001 characters parser = argparse.ArgumentParser() parser.add_argument("--slack_channel_name", default="diffusers-ci-nightly") def main(slack_channel_name=None): failed = [] passed = [] group_info = [] total_num_failed = 0 empty_file = False or len(list(Path().glob("*.log"))) == 0 total_empty_files = [] for log in Path().glob("*.log"): section_num_failed = 0 i = 0 with open(log) as f: for line in f: line = json.loads(line) i += 1 if line.get("nodeid", "") != "": test = line["nodeid"] if line.get("duration", None) is not None: duration = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 else: passed.append([test, duration, log.name.split("_")[0]]) empty_file = i == 0 group_info.append([str(log), section_num_failed, failed]) total_empty_files.append(empty_file) os.remove(log) failed = [] text = ( "🌞 There were no failures!" if not any(total_empty_files) else "Something went wrong there is at least one empty file - please check GH action results." ) no_error_payload = { "type": "section", "text": { "type": "plain_text", "text": text, "emoji": True, }, } message = "" payload = [ { "type": "header", "text": { "type": "plain_text", "text": "🤗 Results of the Diffusers scheduled nightly tests.", }, }, ] if total_num_failed > 0: for i, (name, num_failed, failed_tests) in enumerate(group_info): if num_failed > 0: if num_failed == 1: message += f"*{name}: {num_failed} failed test*\n" else: message += f"*{name}: {num_failed} failed tests*\n" failed_table = [] for test in failed_tests: failed_table.append(test[0].split("::")) failed_table = tabulate( failed_table, headers=["Test Location", "Test Case", "Test Name"], showindex="always", tablefmt="grid", maxcolwidths=[12, 12, 12], ) message += "\n```\n" + failed_table + "\n```" if total_empty_files[i]: message += f"\n*{name}: Warning! Empty file - please check the GitHub action job *\n" print(f"### {message}") else: payload.append(no_error_payload) if len(message) > MAX_LEN_MESSAGE: print(f"Truncating long message from {len(message)} to {MAX_LEN_MESSAGE}") message = message[:MAX_LEN_MESSAGE] + "..." if len(message) != 0: md_report = { "type": "section", "text": {"type": "mrkdwn", "text": message}, } payload.append(md_report) action_button = { "type": "section", "text": {"type": "mrkdwn", "text": "*For more details:*"}, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/diffusers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) date_report = { "type": "context", "elements": [ { "type": "plain_text", "text": f"Nightly test results for {date.today()}", }, ], } payload.append(date_report) print(payload) client = WebClient(token=os.environ.get("SLACK_API_TOKEN")) client.chat_postMessage(channel=f"#{slack_channel_name}", text=message, blocks=payload) if __name__ == "__main__": args = parser.parse_args() main(args.slack_channel_name)
from langchain_core.utils.aiter import NoLock, Tee, py_anext __all__ = ["NoLock", "Tee", "py_anext"]
from langchain_core.utils.aiter import NoLock, Tee, py_anext __all__ = ["py_anext", "NoLock", "Tee"]
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn import torch.nn.functional as F from mmdet.registry import MODELS from .utils import weighted_loss @weighted_loss def knowledge_distillation_kl_div_loss(pred, soft_label, T, detach_target=True): r"""Loss function for knowledge distilling using KL divergence. Args: pred (Tensor): Predicted logits with shape (N, n + 1). soft_label (Tensor): Target logits with shape (N, N + 1). T (int): Temperature for distillation. detach_target (bool): Remove soft_label from automatic differentiation Returns: torch.Tensor: Loss tensor with shape (N,). """ assert pred.size() == soft_label.size() target = F.softmax(soft_label / T, dim=1) if detach_target: target = target.detach() kd_loss = F.kl_div( F.log_softmax(pred / T, dim=1), target, reduction='none').mean(1) * ( T * T) return kd_loss @MODELS.register_module() class KnowledgeDistillationKLDivLoss(nn.Module): """Loss function for knowledge distilling using KL divergence. Args: reduction (str): Options are `'none'`, `'mean'` and `'sum'`. loss_weight (float): Loss weight of current loss. T (int): Temperature for distillation. """ def __init__(self, reduction='mean', loss_weight=1.0, T=10): super(KnowledgeDistillationKLDivLoss, self).__init__() assert T >= 1 self.reduction = reduction self.loss_weight = loss_weight self.T = T def forward(self, pred, soft_label, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (Tensor): Predicted logits with shape (N, n + 1). soft_label (Tensor): Target logits with shape (N, N + 1). weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_kd = self.loss_weight * knowledge_distillation_kl_div_loss( pred, soft_label, weight, reduction=reduction, avg_factor=avg_factor, T=self.T) return loss_kd
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch.nn as nn import torch.nn.functional as F from mmdet.registry import MODELS from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def knowledge_distillation_kl_div_loss(pred, soft_label, T, detach_target=True): r"""Loss function for knowledge distilling using KL divergence. Args: pred (Tensor): Predicted logits with shape (N, n + 1). soft_label (Tensor): Target logits with shape (N, N + 1). T (int): Temperature for distillation. detach_target (bool): Remove soft_label from automatic differentiation Returns: torch.Tensor: Loss tensor with shape (N,). """ assert pred.size() == soft_label.size() target = F.softmax(soft_label / T, dim=1) if detach_target: target = target.detach() kd_loss = F.kl_div( F.log_softmax(pred / T, dim=1), target, reduction='none').mean(1) * ( T * T) return kd_loss @MODELS.register_module() class KnowledgeDistillationKLDivLoss(nn.Module): """Loss function for knowledge distilling using KL divergence. Args: reduction (str): Options are `'none'`, `'mean'` and `'sum'`. loss_weight (float): Loss weight of current loss. T (int): Temperature for distillation. """ def __init__(self, reduction='mean', loss_weight=1.0, T=10): super(KnowledgeDistillationKLDivLoss, self).__init__() assert T >= 1 self.reduction = reduction self.loss_weight = loss_weight self.T = T def forward(self, pred, soft_label, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (Tensor): Predicted logits with shape (N, n + 1). soft_label (Tensor): Target logits with shape (N, N + 1). weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_kd = self.loss_weight * knowledge_distillation_kl_div_loss( pred, soft_label, weight, reduction=reduction, avg_factor=avg_factor, T=self.T) return loss_kd
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, SparseCachedGISTEmbedLoss, SparseCachedMultipleNegativesRankingLoss, SparseCoSENTLoss, SparseCosineSimilarityLoss, SparseGISTEmbedLoss, SparseMarginMSELoss, SparseMultipleNegativesRankingLoss, SparseTripletLoss, ) from sentence_transformers.sparse_encoder.models import ( CSRSparsity, MLMTransformer, SpladePooling, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Ask Update to TOM on loss to implement # TODO : Add the equivalent of the quantization file for the sparse encoder
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.models import CSRSparsity, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Ask Update to TOM on loss to implement # TODO : Add the equivalent of the quantization file for the sparse encoder
from __future__ import annotations from collections.abc import Generator import torch from torch import Tensor, nn from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.util import fullname class MultipleNegativesRankingLoss(nn.Module): def __init__( self, model: CrossEncoder, num_negatives: int | None = 4, scale: int = 20.0, activation_fct: nn.Module | None = nn.Tanh(), ) -> None: super().__init__() self.model = model self.num_negatives = num_negatives self.scale = scale self.activation_fct = activation_fct self.cross_entropy_loss = nn.CrossEntropyLoss() if self.model.num_labels != 1: raise ValueError( f"{self.__class__.__name__} expects a model with 1 output label, " f"but got a model with {self.model.num_labels} output labels." ) def call_model_with_columns(self, anchors: list[str], candidates: list[str]) -> Tensor: pairs = list(zip(anchors, candidates)) return self.call_model_with_pairs(pairs) def call_model_with_pairs(self, pairs: list[list[str]]) -> Tensor: tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0] return logits.squeeze(1) def get_in_batch_negatives( self, anchors: list[str], candidates: list[list[str]] ) -> Generator[list[str], None, None]: batch_size = len(anchors) num_candidates = len(candidates) # Given N anchors, we want to select num_negatives negatives for each anchor candidates_flattened = [candidate for sublist in candidates for candidate in sublist] if self.num_negatives is not None: # Create a mask for each anchor to each candidate index, where the matching positive # and hard negatives are masked out. From the remaining options, we randomly select # num_negatives indices. mask = ~torch.eye(batch_size, dtype=torch.bool).repeat(1, num_candidates) negative_indices = torch.multinomial(mask.float(), self.num_negatives) else: # If num_negatives is None, we select all negatives negative_indices = torch.arange(len(candidates[0])).repeat(len(candidates), 1) for negative_indices_row in negative_indices.T: yield [candidates_flattened[negative_idx] for negative_idx in negative_indices_row] def calculate_loss(self, logits: Tensor, batch_size: int) -> Tensor: # (bsz, 1 + num_rand_negatives + num_hard_negatives) logits = torch.cat(logits, dim=0).reshape(-1, batch_size).T # Apply the post-processing on the logits if self.activation_fct: logits = self.activation_fct(logits) if self.scale: logits = logits * self.scale # For each sample in the batch, the first label is the positive, the rest are negatives labels = torch.zeros(batch_size, device=logits.device, dtype=torch.long) loss = self.cross_entropy_loss(logits, labels) return loss def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: anchors = inputs[0] positives = inputs[1] batch_size = len(anchors) scores = [self.call_model_with_columns(anchors, positives)] # In-batch negatives: for negatives in self.get_in_batch_negatives(anchors, inputs[1:]): scores.append(self.call_model_with_columns(anchors, negatives)) # Hard negatives: for negatives in inputs[2:]: scores.append(self.call_model_with_columns(anchors, negatives)) return self.calculate_loss(scores, batch_size) def get_config_dict(self) -> dict[str, float]: return { "scale": self.scale, "num_negatives": self.num_negatives, "activation_fct": fullname(self.activation_fct), }
from __future__ import annotations from collections.abc import Generator import torch from torch import Tensor, nn from sentence_transformers.cross_encoder import CrossEncoder class MultipleNegativesRankingLoss(nn.Module): def __init__( self, model: CrossEncoder, num_negatives: int | None = 4, scale: int = 20.0, activation_fct: nn.Module | None = nn.Tanh(), ) -> None: super().__init__() self.model = model self.num_negatives = num_negatives self.scale = scale self.activation_fct = activation_fct self.cross_entropy_loss = nn.CrossEntropyLoss() if self.model.num_labels != 1: raise ValueError( f"{self.__class__.__name__} expects a model with 1 output label, " f"but got a model with {self.model.num_labels} output labels." ) def call_model_with_columns(self, anchors: list[str], candidates: list[str]) -> Tensor: pairs = list(zip(anchors, candidates)) return self.call_model_with_pairs(pairs) def call_model_with_pairs(self, pairs: list[list[str]]) -> Tensor: tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0] return logits.squeeze(1) def get_in_batch_negatives( self, anchors: list[str], candidates: list[list[str]] ) -> Generator[list[str], None, None]: batch_size = len(anchors) num_candidates = len(candidates) # Given N anchors, we want to select num_negatives negatives for each anchor candidates_flattened = [candidate for sublist in candidates for candidate in sublist] if self.num_negatives is not None: # Create a mask for each anchor to each candidate index, where the matching positive # and hard negatives are masked out. From the remaining options, we randomly select # num_negatives indices. mask = ~torch.eye(batch_size, dtype=torch.bool).repeat(1, num_candidates) negative_indices = torch.multinomial(mask.float(), self.num_negatives) else: # If num_negatives is None, we select all negatives negative_indices = torch.arange(len(candidates[0])).repeat(len(candidates), 1) for negative_indices_row in negative_indices.T: yield [candidates_flattened[negative_idx] for negative_idx in negative_indices_row] def calculate_loss(self, logits: Tensor, batch_size: int) -> Tensor: # (bsz, 1 + num_rand_negatives + num_hard_negatives) logits = torch.cat(logits, dim=0).reshape(-1, batch_size).T # Apply the post-processing on the logits if self.activation_fct: logits = self.activation_fct(logits) if self.scale: logits = logits * self.scale # For each sample in the batch, the first label is the positive, the rest are negatives labels = torch.zeros(batch_size, device=logits.device, dtype=torch.long) loss = self.cross_entropy_loss(logits, labels) return loss def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: anchors = inputs[0] positives = inputs[1] batch_size = len(anchors) scores = [self.call_model_with_columns(anchors, positives)] # In-batch negatives: for negatives in self.get_in_batch_negatives(anchors, inputs[1:]): scores.append(self.call_model_with_columns(anchors, negatives)) # Hard negatives: for negatives in inputs[2:]: scores.append(self.call_model_with_columns(anchors, negatives)) return self.calculate_loss(scores, batch_size) def get_config_dict(self) -> dict[str, float]: return {"scale": self.scale, "num_negatives": self.num_negatives}
from xgboost.testing.parse_tree import ( run_split_value_histograms, run_tree_to_df_categorical, ) def test_tree_to_df_categorical() -> None: run_tree_to_df_categorical("hist", "cuda") def test_split_value_histograms() -> None: run_split_value_histograms("hist", "cuda")
import sys sys.path.append("tests/python") from test_parse_tree import TestTreesToDataFrame def test_tree_to_df_categorical(): cputest = TestTreesToDataFrame() cputest.run_tree_to_df_categorical("gpu_hist") def test_split_value_histograms(): cputest = TestTreesToDataFrame() cputest.run_split_value_histograms("gpu_hist")
from typing import Dict, Optional, Sequence import torch from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator from transformers import CLIPModel, CLIPTokenizer class CLIPTextEncoder(Executor): """Encode text into embeddings using the CLIP model.""" def __init__( self, pretrained_model_name_or_path: str = 'openai/clip-vit-base-patch32', base_tokenizer_model: Optional[str] = None, max_length: int = 77, device: str = 'cpu', traversal_paths: Sequence[str] = ['r'], batch_size: int = 32, *args, **kwargs, ): """ :param pretrained_model_name_or_path: Can be either: - A string, the model id of a pretrained CLIP model hosted inside a model repo on huggingface.co, e.g., 'openai/clip-vit-base-patch32' - A path to a directory containing model weights saved, e.g. `./my_model_directory/` :param base_tokenizer_model: Base tokenizer model. Defaults to ``pretrained_model_name_or_path`` if None :param max_length: Max length argument for the tokenizer. All CLIP models use 77 as the max length :param device: Pytorch device to put the model on, e.g. 'cpu', 'cuda', 'cuda:1' :param traversal_paths: Default traversal paths for encoding, used if the traversal path is not passed as a parameter with the request. :param batch_size: Default batch size for encoding, used if the batch size is not passed as a parameter with the request. """ super().__init__(*args, **kwargs) self.default_traversal_paths = traversal_paths self.default_batch_size = batch_size self.pretrained_model_name_or_path = pretrained_model_name_or_path self.base_tokenizer_model = ( base_tokenizer_model or pretrained_model_name_or_path ) self.max_length = max_length self.device = device self.tokenizer = CLIPTokenizer.from_pretrained(self.base_tokenizer_model) self.model = CLIPModel.from_pretrained(self.pretrained_model_name_or_path) self.model.eval().to(device) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode all documents with the `text` attribute and store the embeddings in the `embedding` attribute. :param docs: DocumentArray containing the Documents to be encoded :param parameters: A dictionary that contains parameters to control encoding. The accepted keys are ``traversal_paths`` and ``batch_size`` - in their absence their corresponding default values are used. """ for docs_batch in get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ): text_batch = docs_batch.get_attributes('text') with torch.no_grad(): input_tokens = self._generate_input_tokens(text_batch) embeddings = self.model.get_text_features(**input_tokens).cpu().numpy() for doc, embedding in zip(docs_batch, embeddings): doc.embedding = embedding def _generate_input_tokens(self, texts: Sequence[str]): input_tokens = self.tokenizer( texts, max_length=self.max_length, padding='longest', truncation=True, return_tensors='pt', ) input_tokens = {k: v.to(self.device) for k, v in input_tokens.items()} return input_tokens
from typing import Dict, Optional, Sequence import torch from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator from transformers import CLIPModel, CLIPTokenizer class CLIPTextEncoder(Executor): """Encode text into embeddings using a CLIP model. :param pretrained_model_name_or_path: Can be either: - A string, the model id of a pretrained CLIP model hosted inside a model repo on huggingface.co, e.g., 'openai/clip-vit-base-patch32' - A path to a directory containing model weights saved, e.g., ./my_model_directory/ :param base_tokenizer_model: Base tokenizer model. Defaults to ``pretrained_model_name_or_path`` if None :param max_length: Max length argument for the tokenizer. All CLIP models use 77 as the max length :param device: Device to be used. Use 'cuda' for GPU. :param default_traversal_paths: Default traversal paths for encoding, used if the traversal path is not passed as a parameter with the request. :param default_batch_size: Default batch size for encoding, used if the batch size is not passed as a parameter with the request. :param args: Arguments :param kwargs: Keyword Arguments """ def __init__( self, pretrained_model_name_or_path: str = 'openai/clip-vit-base-patch32', base_tokenizer_model: Optional[str] = None, max_length: Optional[int] = 77, device: str = 'cpu', default_traversal_paths: Sequence[str] = ['r'], default_batch_size: int = 32, *args, **kwargs, ): super().__init__(*args, **kwargs) self.default_traversal_paths = default_traversal_paths self.default_batch_size = default_batch_size self.pretrained_model_name_or_path = pretrained_model_name_or_path self.base_tokenizer_model = ( base_tokenizer_model or pretrained_model_name_or_path ) self.max_length = max_length self.device = device self.tokenizer = CLIPTokenizer.from_pretrained(self.base_tokenizer_model) self.model = CLIPModel.from_pretrained(self.pretrained_model_name_or_path) self.model.eval().to(device) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode text data into a ndarray of `D` as dimension, and fill the embedding attribute of the docs. :param docs: DocumentArray containing text :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional key value arguments. """ for docs_batch in get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ): text_batch = docs_batch.get_attributes('text') with torch.no_grad(): input_tokens = self._generate_input_tokens(text_batch) embeddings = self.model.get_text_features(**input_tokens).cpu().numpy() for doc, embedding in zip(docs_batch, embeddings): doc.embedding = embedding def _generate_input_tokens(self, texts: Sequence[str]): input_tokens = self.tokenizer( texts, max_length=self.max_length, padding='longest', truncation=True, return_tensors='pt', ) input_tokens = {k: v.to(self.device) for k, v in input_tokens.items()} return input_tokens
_base_ = './fovea_r50_fpn_4xb4-2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './fovea_r50_fpn_4x4_2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional, Union from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class BitNetHfQuantizer(HfQuantizer): """ 1.58-bit quantization from BitNet quantization method: Before loading: it converts the linear layers into BitLinear layers during loading. Check out the paper introducing this method: https://huggingface.co/papers/2402.17764 """ requires_parameters_quantization = False requires_calibration = True required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Loading ternary weights from tf/flax is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): logger.warning_once( "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" ) return device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." "This is not supported. Please remove the CPU or disk device from the device_map." ) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[list[str]] = None, **kwargs, ): from ..integrations import replace_with_bitnet_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_bitnet_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def adjust_max_memory(self, max_memory: dict[str, Union[int, str]]) -> dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": target_dtype = torch.int8 return target_dtype def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" ) @property def is_qat_trainable(self) -> bool: """Flag indicating whether the quantized model can carry out quantization aware training""" return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" )
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict, List, Optional, Union from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class BitNetHfQuantizer(HfQuantizer): """ 1.58-bit quantization from BitNet quantization method: Before loading: it converts the linear layers into BitLinear layers during loading. Check out the paper introducing this method: https://huggingface.co/papers/2402.17764 """ requires_parameters_quantization = False requires_calibration = True required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Loading ternary weights from tf/flax is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): logger.warning_once( "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" ) return device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." "This is not supported. Please remove the CPU or disk device from the device_map." ) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_bitnet_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_bitnet_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": target_dtype = torch.int8 return target_dtype def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" ) @property def is_qat_trainable(self) -> bool: """Flag indicating whether the quantized model can carry out quantization aware training""" return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" )
from __future__ import annotations import collections import json import os import string from typing import Iterable from .WordTokenizer import ENGLISH_STOP_WORDS, WordTokenizer class WhitespaceTokenizer(WordTokenizer): """ Simple and fast white-space tokenizer. Splits sentence based on white spaces. Punctuation are stripped from tokens. """ def __init__( self, vocab: Iterable[str] = [], stop_words: Iterable[str] = ENGLISH_STOP_WORDS, do_lower_case: bool = False ): self.stop_words = set(stop_words) self.do_lower_case = do_lower_case self.set_vocab(vocab) def get_vocab(self): return self.vocab def set_vocab(self, vocab: Iterable[str]): self.vocab = vocab self.word2idx = collections.OrderedDict([(word, idx) for idx, word in enumerate(vocab)]) def tokenize(self, text: str, **kwargs) -> list[int]: if self.do_lower_case: text = text.lower() tokens = text.split() tokens_filtered = [] for token in tokens: if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.strip(string.punctuation) if token in self.stop_words: continue elif len(token) > 0 and token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.lower() if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue return tokens_filtered def save(self, output_path: str): with open(os.path.join(output_path, "whitespacetokenizer_config.json"), "w") as fOut: json.dump( { "vocab": list(self.word2idx.keys()), "stop_words": list(self.stop_words), "do_lower_case": self.do_lower_case, }, fOut, ) @staticmethod def load(input_path: str): with open(os.path.join(input_path, "whitespacetokenizer_config.json")) as fIn: config = json.load(fIn) return WhitespaceTokenizer(**config)
from __future__ import annotations import collections import json import os import string from typing import Iterable from .WordTokenizer import ENGLISH_STOP_WORDS, WordTokenizer class WhitespaceTokenizer(WordTokenizer): """ Simple and fast white-space tokenizer. Splits sentence based on white spaces. Punctuation are stripped from tokens. """ def __init__( self, vocab: Iterable[str] = [], stop_words: Iterable[str] = ENGLISH_STOP_WORDS, do_lower_case: bool = False ): self.stop_words = set(stop_words) self.do_lower_case = do_lower_case self.set_vocab(vocab) def get_vocab(self): return self.vocab def set_vocab(self, vocab: Iterable[str]): self.vocab = vocab self.word2idx = collections.OrderedDict([(word, idx) for idx, word in enumerate(vocab)]) def tokenize(self, text: str, **kwargs) -> list[int]: if self.do_lower_case: text = text.lower() tokens = text.split() tokens_filtered = [] for token in tokens: if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.strip(string.punctuation) if token in self.stop_words: continue elif len(token) > 0 and token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue token = token.lower() if token in self.stop_words: continue elif token in self.word2idx: tokens_filtered.append(self.word2idx[token]) continue return tokens_filtered def save(self, output_path: str): with open(os.path.join(output_path, "whitespacetokenizer_config.json"), "w") as fOut: json.dump( { "vocab": list(self.word2idx.keys()), "stop_words": list(self.stop_words), "do_lower_case": self.do_lower_case, }, fOut, ) @staticmethod def load(input_path: str): with open(os.path.join(input_path, "whitespacetokenizer_config.json"), "r") as fIn: config = json.load(fIn) return WhitespaceTokenizer(**config)
from io import BytesIO from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image import ImageNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from PIL import Image as PILImage from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='ImageBytes') @_register_proto(proto_type_name='image_bytes') class ImageBytes(bytes, AbstractType): """ Bytes that store an image and that can be load into an image tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load_pil( self, ) -> 'PILImage.Image': """ Load the image from the bytes into a `PIL.Image.Image` instance --- ```python from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import ImageUrl img_url = "https://upload.wikimedia.org/wikipedia/commons/8/80/Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" img_url = parse_obj_as(ImageUrl, img_url) img = img_url.load_pil() from PIL.Image import Image assert isinstance(img, Image) ``` --- :return: a Pillow image """ PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage return PILImage.open(BytesIO(self)) def load( self, width: Optional[int] = None, height: Optional[int] = None, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C'), ) -> ImageNdArray: """ Load the image from the ImageBytes into an ImageNdArray --- ```python from docarray import BaseDoc from docarray.typing import ImageNdArray, ImageUrl class MyDoc(BaseDoc): img_url: ImageUrl doc = MyDoc( img_url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" ) img_tensor = doc.img_url.load() assert isinstance(img_tensor, ImageNdArray) img_tensor = doc.img_url.load(height=224, width=224) assert img_tensor.shape == (224, 224, 3) layout = ('C', 'W', 'H') img_tensor = doc.img_url.load(height=100, width=200, axis_layout=layout) assert img_tensor.shape == (3, 200, 100) ``` --- :param width: width of the image tensor. :param height: height of the image tensor. :param axis_layout: ordering of the different image axes. 'H' = height, 'W' = width, 'C' = color channel :return: ImageNdArray representing the image as RGB values """ raw_img = self.load_pil() if width or height: new_width = width or raw_img.width new_height = height or raw_img.height raw_img = raw_img.resize((new_width, new_height)) try: tensor = np.array(raw_img.convert('RGB')) except Exception: tensor = np.array(raw_img) img = self._move_channel_axis(tensor, axis_layout=axis_layout) return parse_obj_as(ImageNdArray, img) @staticmethod def _move_channel_axis( tensor: np.ndarray, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C') ) -> np.ndarray: """Moves channel axis around.""" channel_to_offset = {'H': 0, 'W': 1, 'C': 2} permutation = tuple(channel_to_offset[axis] for axis in axis_layout) return np.transpose(tensor, permutation)
from io import BytesIO from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from PIL import Image as PILImage from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='ImageBytes') @_register_proto(proto_type_name='image_bytes') class ImageBytes(bytes, AbstractType): """ Bytes that store an image and that can be load into an image tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load_pil( self, ) -> 'PILImage.Image': """ Load the image from the bytes into a `PIL.Image.Image` instance --- ```python from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import ImageUrl img_url = "https://upload.wikimedia.org/wikipedia/commons/8/80/Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" img_url = parse_obj_as(ImageUrl, img_url) img = img_url.load_pil() from PIL.Image import Image assert isinstance(img, Image) ``` --- :return: a Pillow image """ PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage return PILImage.open(BytesIO(self)) def load( self, width: Optional[int] = None, height: Optional[int] = None, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C'), ) -> np.ndarray: """ Load the image from the bytes into a numpy.ndarray image tensor --- ```python from docarray import BaseDoc from docarray.typing import ImageUrl import numpy as np class MyDoc(BaseDoc): img_url: ImageUrl doc = MyDoc( img_url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" ) img_tensor = doc.img_url.load() assert isinstance(img_tensor, np.ndarray) img_tensor = doc.img_url.load(height=224, width=224) assert img_tensor.shape == (224, 224, 3) layout = ('C', 'W', 'H') img_tensor = doc.img_url.load(height=100, width=200, axis_layout=layout) assert img_tensor.shape == (3, 200, 100) ``` --- :param width: width of the image tensor. :param height: height of the image tensor. :param axis_layout: ordering of the different image axes. 'H' = height, 'W' = width, 'C' = color channel :return: np.ndarray representing the image as RGB values """ raw_img = self.load_pil() if width or height: new_width = width or raw_img.width new_height = height or raw_img.height raw_img = raw_img.resize((new_width, new_height)) try: tensor = np.array(raw_img.convert('RGB')) except Exception: tensor = np.array(raw_img) return self._move_channel_axis(tensor, axis_layout=axis_layout) @staticmethod def _move_channel_axis( tensor: np.ndarray, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C') ) -> np.ndarray: """Moves channel axis around.""" channel_to_offset = {'H': 0, 'W': 1, 'C': 2} permutation = tuple(channel_to_offset[axis] for axis in axis_layout) return np.transpose(tensor, permutation)
from __future__ import annotations import torch.nn as nn from sentence_transformers.losses.CosineSimilarityLoss import CosineSimilarityLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCosineSimilarityLoss(CosineSimilarityLoss): def __init__( self, model: SparseEncoder, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ SparseCosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SparseEncoder model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: # TODO: Not yet for sparse might want it ? - `Training Examples > Semantic Textual Similarity <../../../examples/sentence_transformer/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, SparseCoSENTLoss is recommended. - :class:`SparseAnglELoss` is :class:`SparseCoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than SparseCosineSimilarityLoss. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SparseCosineSimilarityLoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, loss_fct=loss_fct, cos_score_transformation=cos_score_transformation)
from __future__ import annotations import torch.nn as nn from sentence_transformers.losses.CosineSimilarityLoss import CosineSimilarityLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCosineSimilarityLoss(CosineSimilarityLoss): def __init__( self, model: SparseEncoder, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ SparseCosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SparseEncoder model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: # TODO: Not yet for sparse might want it ? - `Training Examples > Semantic Textual Similarity <../../../examples/sentence_transformer/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, SparseCoSENTLoss is recommended. - :class:`SparseAnglELoss` is :class:`SparseCoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than SparseCosineSimilarityLoss. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SparseCosineSimilarityLoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, loss_fct=loss_fct, cos_score_transformation=cos_score_transformation)
import types from typing import TYPE_CHECKING from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 __all__ = [] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
from docarray.index.backends.elastic import ElasticV7DocIndex from docarray.index.backends.hnswlib import HnswDocumentIndex __all__ = ['HnswDocumentIndex', 'ElasticV7DocIndex']
import time import unittest from parameterized import parameterized from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from transformers.testing_utils import require_flash_attn, require_torch_gpu, slow _TEST_PROMPTS = [ "A man is a walking his dog down the street, and a the turn he sees", "Describe a fruit that is of orange color and round. It is a sweet fruit and a great source of Vitamine C. The fruit I'm thinking of is an", "A plane is flying high in the sky, out of the window are clouds and mountains. Where could the plane be located?", "Please fill in the form to", "For safety reasons, the train is stopped in the middle of the", ] _EXPECTED_OUTPUTS = [ "a woman standing on the sidewalk, looking at him. He is immediately drawn to her and feels a strong attraction. He walks up to her and strikes up a conversation, and they quickly discover that they have a lot in common. They exchange numbers and", "orange.\n\n## Step 1: Identify the key characteristics of the fruit\nThe fruit is described as being orange in color and round in shape.\n\n## Step 2: Determine the taste and nutritional value of the fruit\nThe fruit is described as sweet", "This riddle is a classic example of a lateral thinking puzzle, which requires the test-taker to think creatively and consider multiple possibilities. The answer is not a straightforward one, and it requires some lateral thinking to arrive at the correct solution.", "get in touch with us. We will respond to your message as soon as possible.\n\n[Your Name]\n[Your Email]\n[Your Phone Number]\n[Your Message]\n\nWe are looking forward to hearing from you!\n\n[Insert Contact Information]\n\nNote:", "track. The train is stopped for 30 minutes. The train is moving at a speed of 60 km/h. How many kilometers does the train travel in 30 minutes?\n## Step 1: Convert the speed from km/h to km/min", ] @slow @require_torch_gpu @require_flash_attn class TestBatchGeneration(unittest.TestCase): @classmethod def setUpClass(cls): cls.model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-3.2-3b-Instruct", torch_dtype="bfloat16", device_map="auto" ).eval() cls.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3b-Instruct", padding_side="left") if cls.tokenizer.pad_token is None: cls.tokenizer.pad_token = cls.tokenizer.eos_token cls.model.config.pad_token_id = cls.model.config.eos_token_id cls.model.use_cache = False @parameterized.expand( [ ("eager_paged", 64, 128, 64), ("sdpa_paged", 32, 256, 128), ("paged_attention", 16, 512, 256), ("flex_paged", 64, 128, 64), ] ) def test_generate_batch_consistency(self, attn_impl, num_blocks, block_size, max_batch_tokens): self.model.config.attn_implementation = attn_impl generation_config = GenerationConfig( max_new_tokens=50, top_k=0, eos_token_id=self.tokenizer.eos_token_id, pad_token_id=self.tokenizer.pad_token_id, use_cache=False, num_blocks=num_blocks, block_size=block_size, max_batch_tokens=max_batch_tokens, ) tokenized = self.tokenizer(_TEST_PROMPTS, truncation=True, max_length=512) batch_inputs = list(tokenized["input_ids"]) start = time.time() batch_outputs = self.model.generate_batch( inputs=batch_inputs, generation_config=generation_config, ) end = time.time() print( f"\n[{attn_impl}] Batch took {end - start:.2f}s with config: blocks={num_blocks}, block_size={block_size}, max_batch_tokens={max_batch_tokens}" ) for i, req_id in enumerate(batch_outputs): generated = self.tokenizer.decode(batch_outputs[req_id].static_outputs, skip_special_tokens=False).strip() expected = _EXPECTED_OUTPUTS[i].strip() self.assertTrue( generated.startswith(expected), msg=f"[{attn_impl}] Mismatch in request {i}:\nExpected start: {expected}\nGot: {generated}", )
import time import unittest from parameterized import parameterized from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from transformers.testing_utils import require_flash_attn, require_torch_gpu, run_slow _TEST_PROMPTS = [ "A man is a walking his dog down the street, and a the turn he sees", "Describe a fruit that is of orange color and round. It is a sweet fruit and a great source of Vitamine C. The fruit I'm thinking of is an", "A plane is flying high in the sky, out of the window are clouds and mountains. Where could the plane be located?", "Please fill in the form to", "For safety reasons, the train is stopped in the middle of the", ] _EXPECTED_OUTPUTS = [ "a woman standing on the sidewalk, looking at him. He is immediately drawn to her and feels a strong attraction. He walks up to her and strikes up a conversation, and they quickly discover that they have a lot in common. They exchange numbers and", "orange.\n\n## Step 1: Identify the key characteristics of the fruit\nThe fruit is described as being orange in color and round in shape.\n\n## Step 2: Determine the taste and nutritional value of the fruit\nThe fruit is described as sweet", "This riddle is a classic example of a lateral thinking puzzle, which requires the test-taker to think creatively and consider multiple possibilities. The answer is not a straightforward one, and it requires some lateral thinking to arrive at the correct solution.", "get in touch with us. We will respond to your message as soon as possible.\n\n[Your Name]\n[Your Email]\n[Your Phone Number]\n[Your Message]\n\nWe are looking forward to hearing from you!\n\n[Insert Contact Information]\n\nNote:", "track. The train is stopped for 30 minutes. The train is moving at a speed of 60 km/h. How many kilometers does the train travel in 30 minutes?\n## Step 1: Convert the speed from km/h to km/min", ] @run_slow @require_torch_gpu @require_flash_attn class TestBatchGeneration(unittest.TestCase): @classmethod def setUpClass(cls): cls.model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-3.2-3b-Instruct", torch_dtype="bfloat16", device_map="auto" ).eval() cls.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3b-Instruct", padding_side="left") if cls.tokenizer.pad_token is None: cls.tokenizer.pad_token = cls.tokenizer.eos_token cls.model.config.pad_token_id = cls.model.config.eos_token_id cls.model.use_cache = False @parameterized.expand( [ ("eager_paged", 64, 128, 64), ("sdpa_paged", 32, 256, 128), ("paged_attention", 16, 512, 256), ("flex_paged", 64, 128, 64), ] ) def test_generate_batch_consistency(self, attn_impl, num_blocks, block_size, max_batch_tokens): self.model.config.attn_implementation = attn_impl generation_config = GenerationConfig( max_new_tokens=50, top_k=0, eos_token_id=self.tokenizer.eos_token_id, pad_token_id=self.tokenizer.pad_token_id, use_cache=False, num_blocks=num_blocks, block_size=block_size, max_batch_tokens=max_batch_tokens, ) tokenized = self.tokenizer(_TEST_PROMPTS, truncation=True, max_length=512) batch_inputs = list(tokenized["input_ids"]) start = time.time() batch_outputs = self.model.generate_batch( inputs=batch_inputs, generation_config=generation_config, ) end = time.time() print( f"\n[{attn_impl}] Batch took {end - start:.2f}s with config: blocks={num_blocks}, block_size={block_size}, max_batch_tokens={max_batch_tokens}" ) for i, req_id in enumerate(batch_outputs): generated = self.tokenizer.decode(batch_outputs[req_id].static_outputs, skip_special_tokens=False).strip() expected = _EXPECTED_OUTPUTS[i].strip() self.assertTrue( generated.startswith(expected), msg=f"[{attn_impl}] Mismatch in request {i}:\nExpected start: {expected}\nGot: {generated}", )
__version__ = '0.14.9' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.14.8' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np from jina import Document, Flow, DocumentArray from ...custom_image_torch_encoder import CustomImageTorchEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_video_torch_encoder(): model_state_dict_path = os.path.join(cur_dir, '../model/model_state_dict.pth') input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(blob=test_img), Document(blob=test_img)]) f = Flow().add(uses={'jtype': 'CustomImageTorchEncoder', 'with': {'model_state_dict_path': model_state_dict_path, 'layer_name': 'conv1', 'model_definition_file': os.path.join(cur_dir, '../model/external_model.py'), 'model_class_name': 'ExternalModel'}}) with f: resp = f.post(on='/test', inputs=docs, return_results=True) assert resp[0].docs[0].embedding.shape == (10,) assert resp[0].docs[1].embedding.shape == (10,)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np from jina import Document, Flow, DocumentArray try: from custom_image_torch_encoder import CustomImageTorchEncoder except: from jinahub.encoder.custom_image_torch_encoder import CustomImageTorchEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_video_torch_encoder(): model_state_dict_path = os.path.join(cur_dir, '../model/model_state_dict.pth') input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(blob=test_img), Document(blob=test_img)]) f = Flow().add(uses={'jtype': 'CustomImageTorchEncoder', 'with': {'model_state_dict_path': model_state_dict_path, 'layer_name': 'conv1', 'model_definition_file': os.path.join(cur_dir, '../model/external_model.py'), 'model_class_name': 'ExternalModel'}}) with f: resp = f.post(on='/test', inputs=docs, return_results=True) assert resp[0].docs[0].embedding.shape == (10,) assert resp[0].docs[1].embedding.shape == (10,)
"""Standard LangChain interface tests""" import os from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import AzureChatOpenAI OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], "model": "gpt-4o-mini", "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def supports_image_inputs(self) -> bool: return True @property def supports_image_urls(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): """Test a legacy model.""" @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def structured_output_kwargs(self) -> dict: return {"method": "function_calling"}
"""Standard LangChain interface tests""" import os from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import AzureChatOpenAI OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], "model": "gpt-4o-mini", "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): """Test a legacy model.""" @property def chat_model_class(self) -> type[BaseChatModel]: return AzureChatOpenAI @property def chat_model_params(self) -> dict: return { "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, "stream_usage": True, } @property def structured_output_kwargs(self) -> dict: return {"method": "function_calling"}
from docarray.typing.embedding import Embedding from docarray.typing.id import ID from docarray.typing.tensor import Tensor from docarray.typing.url import AnyUrl, ImageUrl __all__ = ['Tensor', 'Embedding', 'ImageUrl', 'AnyUrl', 'ID']
from docarray.document.base_node import BaseNode from docarray.typing.ndarray import Embedding, Tensor from docarray.typing.url import ImageUrl __all__ = ['Tensor', 'Embedding', 'BaseNode', 'ImageUrl']
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] data_preprocessor = dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True) # model settings model = dict( type='CornerNet', data_preprocessor=data_preprocessor, backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CentripetalHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=0, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1), loss_guiding_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=0.05), loss_centripetal_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( # The cropped images are padded into squares during training, # but may be smaller than crop_size. type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, mean=data_preprocessor['mean'], std=data_preprocessor['std'], # Image data is not converted to rgb. to_rgb=data_preprocessor['bgr_to_rgb']), dict(type='Resize', scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] # TODO: mstest is not currently implemented test_pipeline = [ dict( type='LoadImageFromFile', to_float32=True, backend_args={{_base_.backend_args}}), # don't need Resize dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], mean=data_preprocessor['mean'], std=data_preprocessor['std'], # Image data is not converted to rgb. to_rgb=data_preprocessor['bgr_to_rgb']), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border')) ] train_dataloader = dict( batch_size=6, num_workers=3, batch_sampler=None, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.0005), clip_grad=dict(max_norm=35, norm_type=2)) max_epochs = 210 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[190], gamma=0.1) ] train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (16 GPUs) x (6 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] data_preprocessor = dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True) # model settings model = dict( type='CornerNet', data_preprocessor=data_preprocessor, backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CentripetalHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=0, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1), loss_guiding_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=0.05), loss_centripetal_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( # The cropped images are padded into squares during training, # but may be smaller than crop_size. type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, mean=data_preprocessor['mean'], std=data_preprocessor['std'], # Image data is not converted to rgb. to_rgb=data_preprocessor['bgr_to_rgb']), dict(type='Resize', scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] # TODO: mstest is not currently implemented test_pipeline = [ dict( type='LoadImageFromFile', to_float32=True, file_client_args={{_base_.file_client_args}}), # don't need Resize dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], mean=data_preprocessor['mean'], std=data_preprocessor['std'], # Image data is not converted to rgb. to_rgb=data_preprocessor['bgr_to_rgb']), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border')) ] train_dataloader = dict( batch_size=6, num_workers=3, batch_sampler=None, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.0005), clip_grad=dict(max_norm=35, norm_type=2)) max_epochs = 210 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[190], gamma=0.1) ] train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (16 GPUs) x (6 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink from keras.src.ops.nn import threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink
from langchain_core.tracers import schemas from langchain_core.tracers.schemas import __all__ as schemas_all def test_public_api() -> None: """Test for changes in the public API.""" expected_all = [ "BaseRun", "ChainRun", "LLMRun", "Run", "RunTypeEnum", "ToolRun", "TracerSession", "TracerSessionBase", "TracerSessionV1", "TracerSessionV1Base", "TracerSessionV1Create", ] assert sorted(schemas_all) == expected_all # Assert that the object is actually present in the schema module for module_name in expected_all: assert hasattr(schemas, module_name) assert getattr(schemas, module_name) is not None
import langchain_core.tracers.schemas as schemas from langchain_core.tracers.schemas import __all__ as schemas_all def test_public_api() -> None: """Test for changes in the public API.""" expected_all = [ "BaseRun", "ChainRun", "LLMRun", "Run", "RunTypeEnum", "ToolRun", "TracerSession", "TracerSessionBase", "TracerSessionV1", "TracerSessionV1Base", "TracerSessionV1Create", ] assert sorted(schemas_all) == expected_all # Assert that the object is actually present in the schema module for module_name in expected_all: assert hasattr(schemas, module_name) assert getattr(schemas, module_name) is not None
import numpy as np from docarray.proto import DocumentProto, NodeProto from docarray.typing import NdArray def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): original_ndarray = np.zeros((3, 224, 224)) custom_ndarray = NdArray._docarray_from_native(original_ndarray) tensor = NdArray.from_protobuf(custom_ndarray.to_protobuf()) assert (tensor == original_ndarray).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') ndarray = NdArray._docarray_from_native(np.zeros((3, 224, 224))) nd_proto = ndarray.to_protobuf() nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
import numpy as np from docarray.proto import DocumentProto, NodeProto from docarray.typing import NdArray def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): original_ndarray = np.zeros((3, 224, 224)) custom_ndarray = NdArray.__docarray_from_native__(original_ndarray) tensor = NdArray.from_protobuf(custom_ndarray.to_protobuf()) assert (tensor == original_ndarray).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') ndarray = NdArray.__docarray_from_native__(np.zeros((3, 224, 224))) nd_proto = ndarray.to_protobuf() nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict, Iterable, List, Union import numpy as np import tensorflow as tf from jina import DocumentArray, Executor, requests from jina.logging.logger import JinaLogger from jina_commons.batching import get_docs_batch_generator class ImageTFEncoder(Executor): """ :class:`ImageTFEncoder` encodes ``Document`` content from a ndarray, potentially B x (Height x Width x Channel) into a ndarray of `B x D`. Where `B` is the batch size and `D` is the Dimension. The :class:`ImageTFEncoder` wraps the models from `tensorflow.keras.applications`. <https://www.tensorflow.org/api_docs/python/tf/keras/applications>`_ """ def __init__( self, model_name: str = 'MobileNetV2', img_shape: int = 336, pool_strategy: str = 'max', default_batch_size: int = 32, default_traversal_paths: Union[List[str], str] = None, device: str = '/CPU:0', *args, **kwargs, ): """ :param model_name: the name of the model. Supported models include ``DenseNet121``, ``DenseNet169``, ``DenseNet201``, ``InceptionResNetV2``, ``InceptionV3``, ``MobileNet``, ``MobileNetV2``, ``NASNetLarge``, ``NASNetMobile``, ``ResNet101``, ``ResNet152``, ``ResNet50``, ``ResNet101V2``, ``ResNet152V2``, ``ResNet50V2``, ``VGG16``, ``VGG19``, ``Xception`` and etc. A full list can be find at <https://www.tensorflow.org/api_docs/python/tf/keras/applications#functions>`_ :param img_shape: The shape of the image to be encoded. :param pool_strategy: the pooling strategy. Options are: - `None`: Means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg`: ;eans that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max`: Means that global max pooling will be applied. :param default_batch_size: size of each batch :param default_traversal_paths: traversal path of the Documents, (e.g. 'r', 'c') :param device: Device ('/CPU:0', '/GPU:0', '/GPU:X') """ super().__init__(*args, **kwargs) if default_traversal_paths is None: default_traversal_paths = ['r'] self.model_name = model_name self.pool_strategy = pool_strategy self.img_shape = img_shape self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths self.logger = JinaLogger(self.__class__.__name__) gpus = tf.config.experimental.list_physical_devices(device_type='GPU') if 'GPU' in device: gpu_index = 0 if 'GPU:' not in device else int(device.split(':')[-1]) if len(gpus) < gpu_index + 1: raise RuntimeError(f'Device {device} not found on your system!') self.device = tf.device(device) with self.device: model = getattr(tf.keras.applications, self.model_name)( input_shape=(self.img_shape, self.img_shape, 3), include_top=False, pooling=self.pool_strategy, weights='imagenet', ) model.trainable = False self.model = model @requests def encode(self, docs: DocumentArray, parameters: Dict, **kwargs): """ Encode document content into a ndarray of `B x D`. ` B` is the batch size and `D` is the Dimension. :param docs: DocumentArray containing blob as image data. :param parameters: parameters dictionary. :param kwargs: additional keyword arguments. :return: Encoded result as a `BatchSize x D` numpy ``ndarray``, `D` is the output dimension """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='blob', ) self._create_embeddings(document_batches_generator) def _create_embeddings(self, document_batches_generator: Iterable): for document_batch in document_batches_generator: blob_batch = np.stack([d.blob for d in document_batch]) with self.device: embedding_batch = self.model(blob_batch) for document, embedding in zip(document_batch, embedding_batch): document.embedding = np.array(embedding)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict, Iterable, List, Union import numpy as np import tensorflow as tf from jina import DocumentArray, Executor, requests from jina.logging.logger import JinaLogger from jina_commons.batching import get_docs_batch_generator class ImageTFEncoder(Executor): """ :class:`ImageTFEncoder` encodes ``Document`` content from a ndarray, potentially B x (Height x Width x Channel) into a ndarray of `B x D`. Where `B` is the batch size and `D` is the Dimension. The :class:`ImageTFEncoder` wraps the models from `tensorflow.keras.applications`. <https://www.tensorflow.org/api_docs/python/tf/keras/applications>`_ :param model_name: the name of the model. Supported models include ``DenseNet121``, ``DenseNet169``, ``DenseNet201``, ``InceptionResNetV2``, ``InceptionV3``, ``MobileNet``, ``MobileNetV2``, ``NASNetLarge``, ``NASNetMobile``, ``ResNet101``, ``ResNet152``, ``ResNet50``, ``ResNet101V2``, ``ResNet152V2``, ``ResNet50V2``, ``VGG16``, ``VGG19``, ``Xception`` and etc. A full list can be find at <https://www.tensorflow.org/api_docs/python/tf/keras/applications#functions>`_ :param img_shape: The shape of the image to be encoded. :param pool_strategy: the pooling strategy. Options are: - `None`: Means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg`: ;eans that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max`: Means that global max pooling will be applied. :param default_batch_size: size of each batch :param default_traversal_paths: traversal path of the Documents, (e.g. 'r', 'c') :param device: Device ('/CPU:0', '/GPU:0', '/GPU:X') :param args: additional positional arguments. :param kwargs: additional positional arguments. """ def __init__( self, model_name: str = 'MobileNetV2', img_shape: int = 336, pool_strategy: str = 'max', default_batch_size: int = 32, default_traversal_paths: Union[List[str], str] = None, device: str = '/CPU:0', *args, **kwargs, ): super().__init__(*args, **kwargs) if default_traversal_paths is None: default_traversal_paths = ['r'] self.model_name = model_name self.pool_strategy = pool_strategy self.img_shape = img_shape self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths self.logger = JinaLogger(self.__class__.__name__) gpus = tf.config.experimental.list_physical_devices(device_type='GPU') if 'GPU' in device: gpu_index = 0 if 'GPU:' not in device else int(device.split(':')[-1]) if len(gpus) < gpu_index + 1: raise RuntimeError(f'Device {device} not found on your system!') self.device = tf.device(device) with self.device: model = getattr(tf.keras.applications, self.model_name)( input_shape=(self.img_shape, self.img_shape, 3), include_top=False, pooling=self.pool_strategy, weights='imagenet', ) model.trainable = False self.model = model @requests def encode(self, docs: DocumentArray, parameters: Dict, **kwargs): """ Encode document content into a ndarray of `B x D`. ` B` is the batch size and `D` is the Dimension. :param docs: DocumentArray containing blob as image data. :param args: additional positional arguments. :param kwargs: additional positional arguments. :return: Encoded result as a `BatchSize x D` numpy ``ndarray``, `D` is the output dimension """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='blob', ) self._create_embeddings(document_batches_generator) def _create_embeddings(self, document_batches_generator: Iterable): for document_batch in document_batches_generator: blob_batch = np.stack([d.blob for d in document_batch]) with self.device: embedding_batch = self.model(blob_batch) for document, embedding in zip(document_batch, embedding_batch): document.embedding = np.array(embedding)
import logging import os from argparse import ArgumentParser import sentencepiece as spm from average_checkpoints import ensemble from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.strategies import DDPStrategy from transforms import get_data_module def get_trainer(args): seed_everything(1) checkpoint = ModelCheckpoint( dirpath=os.path.join(args.exp_dir, args.experiment_name) if args.exp_dir else None, monitor="monitoring_step", mode="max", save_last=True, filename="{epoch}", save_top_k=10, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, lr_monitor, ] return Trainer( sync_batchnorm=True, default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.num_nodes, devices=args.gpus, accelerator="gpu", strategy=DDPStrategy(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, resume_from_checkpoint=args.resume_from_checkpoint, ) def get_lightning_module(args): sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) if args.md == "av": from lightning_av import AVConformerRNNTModule model = AVConformerRNNTModule(args, sp_model) else: from lightning import ConformerRNNTModule model = ConformerRNNTModule(args, sp_model) return model def parse_args(): parser = ArgumentParser() parser.add_argument( "--md", type=str, help="Modality", required=True, ) parser.add_argument( "--mode", type=str, help="Perform online or offline recognition.", required=True, ) parser.add_argument( "--root-dir", type=str, help="Root directory to LRS3 audio-visual datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=str, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--pretrained-model-path", type=str, help="Path to Pretraned model.", ) parser.add_argument( "--exp-dir", type=str, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--experiment-name", type=str, help="Experiment name", ) parser.add_argument( "--num-nodes", default=8, type=int, help="Number of nodes to use for training. (Default: 8)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=55, type=int, help="Number of epochs to train for. (Default: 55)", ) parser.add_argument( "--resume-from-checkpoint", default=None, type=str, help="Path to the checkpoint to resume from" ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) model = get_lightning_module(args) data_module = get_data_module(args, str(args.sp_model_path)) trainer = get_trainer(args) trainer.fit(model, data_module) ensemble(args) if __name__ == "__main__": cli_main()
import logging import os from argparse import ArgumentParser import sentencepiece as spm from average_checkpoints import ensemble from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.strategies import DDPStrategy from transforms import get_data_module def get_trainer(args): seed_everything(1) checkpoint = ModelCheckpoint( dirpath=os.path.join(args.exp_dir, args.experiment_name) if args.exp_dir else None, monitor="monitoring_step", mode="max", save_last=True, filename="{{epoch}}", save_top_k=10, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, lr_monitor, ] return Trainer( sync_batchnorm=True, default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.num_nodes, devices=args.gpus, accelerator="gpu", strategy=DDPStrategy(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, resume_from_checkpoint=args.resume_from_checkpoint, ) def get_lightning_module(args): sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) if args.md == "av": from lightning_av import AVConformerRNNTModule model = AVConformerRNNTModule(args, sp_model) else: from lightning import ConformerRNNTModule model = ConformerRNNTModule(args, sp_model) return model def parse_args(): parser = ArgumentParser() parser.add_argument( "--md", type=str, help="Modality", required=True, ) parser.add_argument( "--mode", type=str, help="Perform online or offline recognition.", required=True, ) parser.add_argument( "--dataset-path", type=str, help="Path to LRW audio-visual datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=str, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--pretrained-model-path", type=str, help="Path to Pretraned model.", ) parser.add_argument( "--exp-dir", type=str, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--experiment-name", default="online_avsr_public_test", type=str, help="Experiment name", ) parser.add_argument( "--num-nodes", default=8, type=int, help="Number of nodes to use for training. (Default: 8)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=55, type=int, help="Number of epochs to train for. (Default: 55)", ) parser.add_argument( "--resume-from-checkpoint", default=None, type=str, help="Path to the checkpoint to resume from" ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) model = get_lightning_module(args) data_module = get_data_module(args, str(args.sp_model_path)) trainer = get_trainer(args) trainer.fit(model, data_module) ensemble(args) if __name__ == "__main__": cli_main()
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.0', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'qdrant-client~=0.7.3', 'elasticsearch>=8.0.1', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.0', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.0.1', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'elasticsearch>=8.0.1', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
from langchain_core.tracers.langchain import ( LangChainTracer, get_client, log_error_once, wait_for_all_tracers, ) __all__ = ["LangChainTracer", "get_client", "log_error_once", "wait_for_all_tracers"]
from langchain_core.tracers.langchain import ( LangChainTracer, get_client, log_error_once, wait_for_all_tracers, ) __all__ = ["log_error_once", "wait_for_all_tracers", "get_client", "LangChainTracer"]
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://contrib/resnet50_gn')), neck=dict(norm_cfg=norm_cfg), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( norm_cfg=norm_cfg, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://contrib/resnet50_gn')), neck=dict(norm_cfg=norm_cfg), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero (active) elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero (active) elements in the embeddings. If specified, only embeddings with more than this number of non-zero (active) elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise NotImplementedError( "FlopsLoss is not intended to be used directly. Use it as a regulizer within the SpladeLoss class." ) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor]) -> torch.Tensor: if self.threshold is not None: l0_norm = (embeddings != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings = embeddings * mask.unsqueeze(1) return torch.sum(torch.mean(embeddings, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero elements in the embeddings. If specified, only embeddings with more than this number of non-zero elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise NotImplementedError( "FlopsLoss is not intended to be used directly. Use it as a regulizer within the SpladeLoss class." ) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor]) -> torch.Tensor: if self.threshold is not None: l0_norm = (embeddings != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings = embeddings * mask.unsqueeze(1) return torch.sum(torch.mean(embeddings, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for the tf.test.benchmark.""" import os from google.protobuf import json_format from tensorflow.core.util import test_log_pb2 from tensorflow.python.platform import benchmark from tensorflow.python.platform import test class BenchmarkTest(test.TestCase, benchmark.TensorFlowBenchmark): def testReportBenchmark(self): output_dir = self.get_temp_dir() + os.path.sep os.environ['TEST_REPORT_FILE_PREFIX'] = output_dir proto_file_path = os.path.join(output_dir, 'BenchmarkTest.testReportBenchmark') if os.path.exists(proto_file_path): os.remove(proto_file_path) self.report_benchmark( iters=2000, wall_time=1000, name='testReportBenchmark', metrics=[{'name': 'metric_name_1', 'value': 0, 'min_value': 1}, {'name': 'metric_name_2', 'value': 90, 'min_value': 0, 'max_value': 95}]) with open(proto_file_path, 'rb') as f: benchmark_entries = test_log_pb2.BenchmarkEntries() benchmark_entries.ParseFromString(f.read()) actual_result = json_format.MessageToDict( benchmark_entries, preserving_proto_field_name=True, always_print_fields_with_no_presence=True)['entry'][0] os.remove(proto_file_path) expected_result = { 'name': 'BenchmarkTest.testReportBenchmark', # google.protobuf.json_format.MessageToDict() will convert # int64 field to string. 'iters': '2000', 'wall_time': 1000, 'cpu_time': 0, 'throughput': 0, 'extras': {}, 'metrics': [ { 'name': 'metric_name_1', 'value': 0, 'min_value': 1 }, { 'name': 'metric_name_2', 'value': 90, 'min_value': 0, 'max_value': 95 } ] } self.assertEqual(2000, benchmark_entries.entry[0].iters) self.assertDictEqual(expected_result, actual_result) if __name__ == '__main__': test.main()
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for the tf.test.benchmark.""" import os from google.protobuf import json_format from tensorflow.core.util import test_log_pb2 from tensorflow.python.platform import benchmark from tensorflow.python.platform import test class BenchmarkTest(test.TestCase, benchmark.TensorFlowBenchmark): def testReportBenchmark(self): output_dir = self.get_temp_dir() + os.path.sep os.environ['TEST_REPORT_FILE_PREFIX'] = output_dir proto_file_path = os.path.join(output_dir, 'BenchmarkTest.testReportBenchmark') if os.path.exists(proto_file_path): os.remove(proto_file_path) self.report_benchmark( iters=2000, wall_time=1000, name='testReportBenchmark', metrics=[{'name': 'metric_name_1', 'value': 0, 'min_value': 1}, {'name': 'metric_name_2', 'value': 90, 'min_value': 0, 'max_value': 95}]) with open(proto_file_path, 'rb') as f: benchmark_entries = test_log_pb2.BenchmarkEntries() benchmark_entries.ParseFromString(f.read()) actual_result = json_format.MessageToDict( benchmark_entries, preserving_proto_field_name=True, including_default_value_fields=True)['entry'][0] os.remove(proto_file_path) expected_result = { 'name': 'BenchmarkTest.testReportBenchmark', # google.protobuf.json_format.MessageToDict() will convert # int64 field to string. 'iters': '2000', 'wall_time': 1000, 'cpu_time': 0, 'throughput': 0, 'extras': {}, 'metrics': [ { 'name': 'metric_name_1', 'value': 0, 'min_value': 1 }, { 'name': 'metric_name_2', 'value': 90, 'min_value': 0, 'max_value': 95 } ] } self.assertEqual(2000, benchmark_entries.entry[0].iters) self.assertDictEqual(expected_result, actual_result) if __name__ == '__main__': test.main()
""" Given a dataset with parallel sentences, one "english" column and one "non_english" column, this script evaluates a model on the translation task. Given a sentence in the "english" column, the model should find the correct translation in the "non_english" column, based on just the embeddings. It then computes an accuracy over all possible source sentences src_i. Equivalently, it computes also the accuracy for the other direction. A high accuracy score indicates that the model is able to find the correct translation out of a large pool with sentences. Good options for datasets are: * sentence-transformers/parallel-sentences-wikimatrix * sentence-transformers/parallel-sentences-tatoeba * sentence-transformers/parallel-sentences-talks As these have development sets. Usage: python examples/sentence_transformer/evaluation/evaluation_translation_matching.py [model_name_or_path] [dataset_name] [subset1] [subset2] ... For example: python examples/sentence_transformer/evaluation/evaluation_translation_matching.py distiluse-base-multilingual-cased sentence-transformers/parallel-sentences-tatoeba en-ar en-de en-nl """ import logging import sys from datasets import load_dataset from sentence_transformers import SentenceTransformer, evaluation # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] dataset_name = sys.argv[2] subsets = sys.argv[3:] inference_batch_size = 32 model = SentenceTransformer(model_name) for subset in subsets: dataset = load_dataset(dataset_name, subset) datasets = {} if dataset.column_names == ["train"]: num_samples = min(5000, len(dataset["train"])) datasets[f"train[:{num_samples}]"].append(dataset["train"].select(range(num_samples))) else: for split, sub_dataset in dataset.items(): if split != "train": datasets[split] = sub_dataset for split, sub_dataset in datasets.items(): logging.info(f"{dataset_name}, subset={subset}, split={split}, num_samples={len(sub_dataset)}") translation_evaluator = evaluation.TranslationEvaluator( sub_dataset["english"], sub_dataset["non_english"], name=f"{dataset_name}-{subset}-{split}", batch_size=inference_batch_size, ) translation_evaluator(model)
""" Given a dataset with parallel sentences, one "english" column and one "non_english" column, this script evaluates a model on the translation task. Given a sentence in the "english" column, the model should find the correct translation in the "non_english" column, based on just the embeddings. It then computes an accuracy over all possible source sentences src_i. Equivalently, it computes also the accuracy for the other direction. A high accuracy score indicates that the model is able to find the correct translation out of a large pool with sentences. Good options for datasets are: * sentence-transformers/parallel-sentences-wikimatrix * sentence-transformers/parallel-sentences-tatoeba * sentence-transformers/parallel-sentences-talks As these have development sets. Usage: python examples/evaluation/evaluation_translation_matching.py [model_name_or_path] [dataset_name] [subset1] [subset2] ... For example: python examples/evaluation/evaluation_translation_matching.py distiluse-base-multilingual-cased sentence-transformers/parallel-sentences-tatoeba en-ar en-de en-nl """ import logging import sys from datasets import load_dataset from sentence_transformers import SentenceTransformer, evaluation # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] dataset_name = sys.argv[2] subsets = sys.argv[3:] inference_batch_size = 32 model = SentenceTransformer(model_name) for subset in subsets: dataset = load_dataset(dataset_name, subset) datasets = {} if dataset.column_names == ["train"]: num_samples = min(5000, len(dataset["train"])) datasets[f"train[:{num_samples}]"].append(dataset["train"].select(range(num_samples))) else: for split, sub_dataset in dataset.items(): if split != "train": datasets[split] = sub_dataset for split, sub_dataset in datasets.items(): logging.info(f"{dataset_name}, subset={subset}, split={split}, num_samples={len(sub_dataset)}") translation_evaluator = evaluation.TranslationEvaluator( sub_dataset["english"], sub_dataset["non_english"], name=f"{dataset_name}-{subset}-{split}", batch_size=inference_batch_size, ) translation_evaluator(model)
# pylint: disable=invalid-name,unused-import """For compatibility and optional dependencies.""" import importlib.util import logging import sys import types from typing import Any, Sequence, cast import numpy as np from ._typing import _T assert sys.version_info[0] == 3, "Python 2 is no longer supported." def py_str(x: bytes | None) -> str: """convert c string back to python string""" assert x is not None # ctypes might return None return x.decode("utf-8") # type: ignore def lazy_isinstance(instance: Any, module: str, name: str) -> bool: """Use string representation to identify a type.""" # Notice, we use .__class__ as opposed to type() in order # to support object proxies such as weakref.proxy cls = instance.__class__ is_same_module = cls.__module__ == module has_same_name = cls.__name__ == name return is_same_module and has_same_name # pandas try: from pandas import DataFrame, Series PANDAS_INSTALLED = True except ImportError: DataFrame = object Series = object PANDAS_INSTALLED = False # sklearn try: from sklearn import __version__ as _sklearn_version from sklearn.base import BaseEstimator as XGBModelBase from sklearn.base import ClassifierMixin as XGBClassifierBase from sklearn.base import RegressorMixin as XGBRegressorBase try: from sklearn.model_selection import StratifiedKFold as XGBStratifiedKFold except ImportError: from sklearn.cross_validation import StratifiedKFold as XGBStratifiedKFold # sklearn.utils Tags types can be imported unconditionally once # xgboost's minimum scikit-learn version is 1.6 or higher try: from sklearn.utils import Tags as _sklearn_Tags except ImportError: _sklearn_Tags = object SKLEARN_INSTALLED = True except ImportError: SKLEARN_INSTALLED = False # used for compatibility without sklearn class XGBModelBase: # type: ignore[no-redef] """Dummy class for sklearn.base.BaseEstimator.""" class XGBClassifierBase: # type: ignore[no-redef] """Dummy class for sklearn.base.ClassifierMixin.""" class XGBRegressorBase: # type: ignore[no-redef] """Dummy class for sklearn.base.RegressorMixin.""" XGBStratifiedKFold = None _sklearn_Tags = object _sklearn_version = object _logger = logging.getLogger(__name__) def is_cudf_available() -> bool: """Check cuDF package available or not""" if importlib.util.find_spec("cudf") is None: return False try: import cudf return True except ImportError: _logger.exception("Importing cuDF failed, use DMatrix instead of QDM") return False def is_cupy_available() -> bool: """Check cupy package available or not""" if importlib.util.find_spec("cupy") is None: return False try: import cupy return True except ImportError: return False def import_cupy() -> types.ModuleType: """Import cupy.""" if not is_cupy_available(): raise ImportError("`cupy` is required for handling CUDA buffer.") import cupy return cupy try: import scipy.sparse as scipy_sparse from scipy.sparse import csr_matrix as scipy_csr except ImportError: scipy_sparse = False scipy_csr = object def concat(value: Sequence[_T]) -> _T: # pylint: disable=too-many-return-statements """Concatenate row-wise.""" if isinstance(value[0], np.ndarray): value_arr = cast(Sequence[np.ndarray], value) return np.concatenate(value_arr, axis=0) if scipy_sparse and isinstance(value[0], scipy_sparse.csr_matrix): return scipy_sparse.vstack(value, format="csr") if scipy_sparse and isinstance(value[0], scipy_sparse.csc_matrix): return scipy_sparse.vstack(value, format="csc") if scipy_sparse and isinstance(value[0], scipy_sparse.spmatrix): # other sparse format will be converted to CSR. return scipy_sparse.vstack(value, format="csr") if PANDAS_INSTALLED and isinstance(value[0], (DataFrame, Series)): from pandas import concat as pd_concat return pd_concat(value, axis=0) if lazy_isinstance(value[0], "cudf.core.dataframe", "DataFrame") or lazy_isinstance( value[0], "cudf.core.series", "Series" ): from cudf import concat as CUDF_concat return CUDF_concat(value, axis=0) from .data import _is_cupy_alike if _is_cupy_alike(value[0]): import cupy # pylint: disable=c-extension-no-member,no-member d = cupy.cuda.runtime.getDevice() for v in value: arr = cast(cupy.ndarray, v) d_v = arr.device.id assert d_v == d, "Concatenating arrays on different devices." return cupy.concatenate(value, axis=0) raise TypeError(f"Unknown type: {type(value[0])}")
# pylint: disable=invalid-name,unused-import """For compatibility and optional dependencies.""" import importlib.util import logging import sys import types from typing import Any, Sequence, cast import numpy as np from ._typing import _T assert sys.version_info[0] == 3, "Python 2 is no longer supported." def py_str(x: bytes | None) -> str: """convert c string back to python string""" assert x is not None # ctypes might return None return x.decode("utf-8") # type: ignore def lazy_isinstance(instance: Any, module: str, name: str) -> bool: """Use string representation to identify a type.""" # Notice, we use .__class__ as opposed to type() in order # to support object proxies such as weakref.proxy cls = instance.__class__ is_same_module = cls.__module__ == module has_same_name = cls.__name__ == name return is_same_module and has_same_name # pandas try: from pandas import DataFrame, Series PANDAS_INSTALLED = True except ImportError: DataFrame = object Series = object PANDAS_INSTALLED = False # sklearn try: from sklearn import __version__ as _sklearn_version from sklearn.base import BaseEstimator as XGBModelBase from sklearn.base import ClassifierMixin as XGBClassifierBase from sklearn.base import RegressorMixin as XGBRegressorBase try: from sklearn.model_selection import StratifiedKFold as XGBStratifiedKFold except ImportError: from sklearn.cross_validation import StratifiedKFold as XGBStratifiedKFold # sklearn.utils Tags types can be imported unconditionally once # xgboost's minimum scikit-learn version is 1.6 or higher try: from sklearn.utils import Tags as _sklearn_Tags except ImportError: _sklearn_Tags = object SKLEARN_INSTALLED = True except ImportError: SKLEARN_INSTALLED = False # used for compatibility without sklearn class XGBModelBase: # type: ignore[no-redef] """Dummy class for sklearn.base.BaseEstimator.""" class XGBClassifierBase: # type: ignore[no-redef] """Dummy class for sklearn.base.ClassifierMixin.""" class XGBRegressorBase: # type: ignore[no-redef] """Dummy class for sklearn.base.RegressorMixin.""" XGBStratifiedKFold = None _sklearn_Tags = object _sklearn_version = object _logger = logging.getLogger(__name__) def is_cudf_available() -> bool: """Check cuDF package available or not""" if importlib.util.find_spec("cudf") is None: return False try: import cudf return True except ImportError: _logger.exception("Importing cuDF failed, use DMatrix instead of QDM") return False def is_cupy_available() -> bool: """Check cupy package available or not""" if importlib.util.find_spec("cupy") is None: return False try: import cupy return True except ImportError: return False def import_cupy() -> types.ModuleType: """Import cupy.""" if not is_cupy_available(): raise ImportError("`cupy` is required for handling CUDA buffer.") import cupy return cupy try: import scipy.sparse as scipy_sparse from scipy.sparse import csr_matrix as scipy_csr except ImportError: scipy_sparse = False scipy_csr = object def concat(value: Sequence[_T]) -> _T: # pylint: disable=too-many-return-statements """Concatenate row-wise.""" if isinstance(value[0], np.ndarray): value_arr = cast(Sequence[np.ndarray], value) return np.concatenate(value_arr, axis=0) if scipy_sparse and isinstance(value[0], scipy_sparse.csr_matrix): return scipy_sparse.vstack(value, format="csr") if scipy_sparse and isinstance(value[0], scipy_sparse.csc_matrix): return scipy_sparse.vstack(value, format="csc") if scipy_sparse and isinstance(value[0], scipy_sparse.spmatrix): # other sparse format will be converted to CSR. return scipy_sparse.vstack(value, format="csr") if PANDAS_INSTALLED and isinstance(value[0], (DataFrame, Series)): from pandas import concat as pd_concat return pd_concat(value, axis=0) if lazy_isinstance(value[0], "cudf.core.dataframe", "DataFrame") or lazy_isinstance( value[0], "cudf.core.series", "Series" ): from cudf import concat as CUDF_concat return CUDF_concat(value, axis=0) from .data import _is_cupy_alike if _is_cupy_alike(value[0]): import cupy # pylint: disable=c-extension-no-member,no-member d = cupy.cuda.runtime.getDevice() for v in value: arr = cast(cupy.ndarray, v) d_v = arr.device.id assert d_v == d, "Concatenating arrays on different devices." return cupy.concatenate(value, axis=0) raise TypeError("Unknown type.")