Dataset Viewer
Auto-converted to Parquet
id
int64
599M
3.26B
number
int64
1
7.7k
title
stringlengths
1
290
body
stringlengths
0
228k
state
stringclasses
2 values
html_url
stringlengths
46
51
created_at
timestamp[s]date
2020-04-14 10:18:02
2025-07-23 08:04:53
updated_at
timestamp[s]date
2020-04-27 16:04:17
2025-07-23 18:53:44
closed_at
timestamp[s]date
2020-04-14 12:01:40
2025-07-23 16:44:42
user
dict
labels
listlengths
0
4
is_pull_request
bool
2 classes
comments
listlengths
0
0
3,255,350,916
7,698
NotImplementedError when using streaming=True in Google Colab environment
### Describe the bug When attempting to load a large dataset (like tiiuae/falcon-refinedweb or allenai/c4) using streaming=True in a standard Google Colab notebook, the process fails with a NotImplementedError: Loading a streaming dataset cached in a LocalFileSystem is not supported yet. This issue persists even after upgrading datasets and huggingface_hub and restarting the session. ### Steps to reproduce the bug Open a new Google Colab notebook. (Optional but recommended) Run !pip install --upgrade datasets huggingface_hub and restart the runtime. Run the following code: Python from datasets import load_dataset try: print("Attempting to load a stream...") streaming_dataset = load_dataset('tiiuae/falcon-refinedweb', streaming=True) print("Success!") except Exception as e: print(e) ### Expected behavior The load_dataset command should return a StreamingDataset object without raising an error, allowing iteration over the dataset. Actual Behavior The code fails and prints the following error traceback: [PASTE THE FULL ERROR TRACEBACK HERE] (Note: Copy the entire error message you received, from Traceback... to the final error line, and paste it in this section.) ### Environment info Platform: Google Colab datasets version: [Run !pip show datasets in Colab and paste the version here] huggingface_hub version: [Run !pip show huggingface_hub and paste the version here] Python version: [Run !python --version and paste the version here]
open
https://github.com/huggingface/datasets/issues/7698
2025-07-23T08:04:53
2025-07-23T15:06:23
null
{ "login": "Aniket17200", "id": 100470741, "type": "User" }
[]
false
[]
3,254,526,399
7,697
How to solve "Spaces stuck in Building" problems
### Describe the bug Reopen #7530 My problem spaces are: https://huggingface.co/spaces/Genius-Society/url_shortner https://huggingface.co/spaces/Genius-Society/translator Please help troubleshoot the problem ### Steps to reproduce the bug <img width="303" height="266" alt="Image" src="https://github.com/user-attachments/assets/e1833cf8-bcf8-42b0-862c-ef41bf220e17" /> <img width="170" height="82" alt="Image" src="https://github.com/user-attachments/assets/2a9d2e44-ce93-4065-85e1-29100b9b0a48" /> ### Expected behavior unblock the spaces ### Environment info huggingface online space platform
open
https://github.com/huggingface/datasets/issues/7697
2025-07-23T01:30:32
2025-07-23T01:30:32
null
{ "login": "kakamond", "id": 44517413, "type": "User" }
[]
false
[]
3,253,433,350
7,696
load_dataset() in 4.0.0 returns different audio samples compared to earlier versions breaking reproducibility
### Describe the bug In datasets 4.0.0 release, `load_dataset()` returns different audio samples compared to earlier versions, this breaks integration tests that depend on consistent sample data across different environments (first and second envs specified below). ### Steps to reproduce the bug ```python from datasets import Audio, load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", Audio(24000)) sample= ds[0]["audio"]["array"] print(sample) # sample in 3.6.0 [0.00231914 0.00245417 0.00187414 ... 0.00061956 0.00101157 0.00076325] # sample in 4.0.0 array([0.00238037, 0.00220794, 0.00198703, ..., 0.00057983, 0.00085863, 0.00115309], dtype=float32) ``` ### Expected behavior The same dataset should load identical samples across versions to maintain reproducibility. ### Environment info First env: - datasets version: 3.6.0 - Platform: Windows-10-10.0.26100-SP0 - Python: 3.11.0 Second env: - datasets version: 4.0.0 - Platform: Linux-6.1.123+-x86_64-with-glibc2.35 - Python: 3.11.13
open
https://github.com/huggingface/datasets/issues/7696
2025-07-22T17:02:17
2025-07-22T17:03:24
null
{ "login": "Manalelaidouni", "id": 25346345, "type": "User" }
[]
false
[]
3,251,904,843
7,695
Support downloading specific splits in load_dataset
This PR builds on #6832 by @mariosasko. May close - #4101, #2538 Discussion - https://github.com/huggingface/datasets/pull/7648#issuecomment-3084050130 --- ### Note - This PR is under work and frequent changes will be pushed.
open
https://github.com/huggingface/datasets/pull/7695
2025-07-22T09:33:54
2025-07-23T18:53:44
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,247,600,408
7,694
Dataset.to_json consumes excessive memory, appears to not be a streaming operation
### Describe the bug When exporting a Dataset object to a JSON Lines file using the .to_json(lines=True) method, the process consumes a very large amount of memory. The memory usage is proportional to the size of the entire Dataset object being saved, rather than being a low, constant memory operation. This behavior is unexpected, as the JSONL format is line-oriented and ideally suited for streaming writes. This issue can easily lead to Out-of-Memory (OOM) errors when exporting large datasets, especially in memory-constrained environments like Docker containers. <img width="1343" height="329" alt="Image" src="https://github.com/user-attachments/assets/518b4263-ad12-422d-9672-28ffe97240ce" /> ### Steps to reproduce the bug ``` import os from datasets import load_dataset, Dataset from loguru import logger # A public dataset to test with REPO_ID = "adam89/TinyStoriesChinese" SUBSET = "default" SPLIT = "train" NUM_ROWS_TO_LOAD = 10 # Use a reasonably large number to see the memory spike def run_test(): """Loads data into memory and then saves it, triggering the memory issue.""" logger.info("Step 1: Loading data into an in-memory Dataset object...") # Create an in-memory Dataset object from a stream # This simulates having a processed dataset ready to be saved iterable_dataset = load_dataset(REPO_ID, name=SUBSET, split=SPLIT, streaming=True) limited_stream = iterable_dataset.take(NUM_ROWS_TO_LOAD) in_memory_dataset = Dataset.from_generator(limited_stream.__iter__) logger.info(f"Dataset with {len(in_memory_dataset)} rows created in memory.") output_path = "./test_output.jsonl" logger.info(f"Step 2: Saving the dataset to {output_path} using .to_json()...") logger.info("Please monitor memory usage during this step.") # This is the step that causes the massive memory allocation in_memory_dataset.to_json(output_path, force_ascii=False) logger.info("Save operation complete.") os.remove(output_path) if __name__ == "__main__": # To see the memory usage clearly, run this script with a memory profiler: # python -m memray run your_script_name.py # python -m memray tree xxx.bin run_test() ``` ### Expected behavior I would expect the .to_json(lines=True) method to be a memory-efficient, streaming operation. The memory usage should remain low and relatively constant, as data is converted and written to the file line-by-line or in small batches. The memory footprint should not be proportional to the total number of rows in the in_memory_dataset. ### Environment info datasets version:3.6.0 Python version:3.9.18 os:macOS 15.3.1 (arm64)
open
https://github.com/huggingface/datasets/issues/7694
2025-07-21T07:51:25
2025-07-21T07:51:25
null
{ "login": "ycq0125", "id": 49603999, "type": "User" }
[]
false
[]
3,246,369,678
7,693
Dataset scripts are no longer supported, but found superb.py
### Describe the bug Hello, I'm trying to follow the [Hugging Face Pipelines tutorial](https://huggingface.co/docs/transformers/main_classes/pipelines) but the tutorial seems to work only on old datasets versions. I then get the error : ``` -------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[65], [line 1](vscode-notebook-cell:?execution_count=65&line=1) ----> [1](vscode-notebook-cell:?execution_count=65&line=1) dataset = datasets.load_dataset("superb", name="asr", split="test") 3 # KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item 4 # as we're not interested in the *target* part of the dataset. For sentence pair use KeyPairDataset 5 for out in tqdm(pipe(KeyDataset(dataset, "file"))): File ~/Desktop/debug/llm_course/.venv/lib/python3.11/site-packages/datasets/load.py:1392, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, **config_kwargs) 1387 verification_mode = VerificationMode( 1388 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 1389 ) 1391 # Create a dataset builder -> [1392](https://file+.vscode-resource.vscode-cdn.net/home/edwin/Desktop/debug/llm_course/~/Desktop/debug/llm_course/.venv/lib/python3.11/site-packages/datasets/load.py:1392) builder_instance = load_dataset_builder( 1393 path=path, 1394 name=name, 1395 data_dir=data_dir, 1396 data_files=data_files, 1397 cache_dir=cache_dir, 1398 features=features, 1399 download_config=download_config, 1400 download_mode=download_mode, 1401 revision=revision, 1402 token=token, 1403 storage_options=storage_options, 1404 **config_kwargs, 1405 ) 1407 # Return iterable dataset in case of streaming 1408 if streaming: File ~/Desktop/debug/llm_course/.venv/lib/python3.11/site-packages/datasets/load.py:1132, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, **config_kwargs) 1130 if features is not None: 1131 features = _fix_for_backward_compatible_features(features) -> [1132](https://file+.vscode-resource.vscode-cdn.net/home/edwin/Desktop/debug/llm_course/~/Desktop/debug/llm_course/.venv/lib/python3.11/site-packages/datasets/load.py:1132) dataset_module = dataset_module_factory( 1133 path, 1134 revision=revision, 1135 download_config=download_config, 1136 download_mode=download_mode, 1137 data_dir=data_dir, 1138 data_files=data_files, 1139 cache_dir=cache_dir, 1140 ) 1141 # Get dataset builder class 1142 builder_kwargs = dataset_module.builder_kwargs File ~/Desktop/debug/llm_course/.venv/lib/python3.11/site-packages/datasets/load.py:1031, in dataset_module_factory(path, revision, download_config, download_mode, data_dir, data_files, cache_dir, **download_kwargs) 1026 if isinstance(e1, FileNotFoundError): 1027 raise FileNotFoundError( 1028 f"Couldn't find any data file at {relative_to_absolute_path(path)}. " 1029 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" 1030 ) from None -> [1031](https://file+.vscode-resource.vscode-cdn.net/home/edwin/Desktop/debug/llm_course/~/Desktop/debug/llm_course/.venv/lib/python3.11/site-packages/datasets/load.py:1031) raise e1 from None 1032 else: 1033 raise FileNotFoundError(f"Couldn't find any data file at {relative_to_absolute_path(path)}.") File ~/Desktop/debug/llm_course/.venv/lib/python3.11/site-packages/datasets/load.py:989, in dataset_module_factory(path, revision, download_config, download_mode, data_dir, data_files, cache_dir, **download_kwargs) 981 try: 982 api.hf_hub_download( 983 repo_id=path, 984 filename=filename, (...) 987 proxies=download_config.proxies, 988 ) --> [989](https://file+.vscode-resource.vscode-cdn.net/home/edwin/Desktop/debug/llm_course/~/Desktop/debug/llm_course/.venv/lib/python3.11/site-packages/datasets/load.py:989) raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}") 990 except EntryNotFoundError: 991 # Use the infos from the parquet export except in some cases: 992 if data_dir or data_files or (revision and revision != "main"): RuntimeError: Dataset scripts are no longer supported, but found superb.py ``` NB : I tried to replace "superb" by "anton-l/superb_demo" but I get a 'torchcodec' importing error. Maybe I misunderstood something. ### Steps to reproduce the bug ``` import datasets from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset from tqdm.auto import tqdm pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0) dataset = datasets.load_dataset("superb", name="asr", split="test") # KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item # as we're not interested in the *target* part of the dataset. For sentence pair use KeyPairDataset for out in tqdm(pipe(KeyDataset(dataset, "file"))): print(out) # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"} # {"text": ....} # .... ``` ### Expected behavior Get the tutorial expected results ### Environment info --- SYSTEM INFO --- Operating System: Ubuntu 24.10 Kernel: Linux 6.11.0-29-generic Architecture: x86-64 --- PYTHON --- Python 3.11.13 --- VENV INFO ---- datasets=4.0.0 transformers=4.53 tqdm=4.67.1
open
https://github.com/huggingface/datasets/issues/7693
2025-07-20T13:48:06
2025-07-22T17:11:00
null
{ "login": "edwinzajac", "id": 114297534, "type": "User" }
[]
false
[]
3,246,268,635
7,692
xopen: invalid start byte for streaming dataset with trust_remote_code=True
### Describe the bug I am trying to load YODAS2 dataset with datasets==3.6.0 ``` from datasets import load_dataset next(iter(load_dataset('espnet/yodas2', name='ru000', split='train', streaming=True, trust_remote_code=True))) ``` And get `UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa8 in position 1: invalid start byte` The cause of the error is the following: ``` from datasets.utils.file_utils import xopen filepath = 'https://huggingface.co/datasets/espnet/yodas2/resolve/c9674490249665d658f527e2684848377108d82c/data/ru000/text/00000000.json' xopen(filepath, 'r').read() >>> UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa8 in position 1: invalid start byte ``` And the cause of this is the following: ``` import fsspec fsspec.open( 'hf://datasets/espnet/yodas2@c9674490249665d658f527e2684848377108d82c/data/ru000/text/00000000.json', mode='r', hf={'token': None, 'endpoint': 'https://huggingface.co'}, ).open().read() >>> UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa8 in position 1: invalid start byte ``` Is it true that streaming=True loading is not supported anymore for trust_remote_code=True, even with datasets==3.6.0? This breaks backward compatibility. ### Steps to reproduce the bug ``` from datasets import load_dataset next(iter(load_dataset('espnet/yodas2', name='ru000', split='train', streaming=True))) ``` ### Expected behavior No errors expected ### Environment info datasets==3.6.0, ubuntu 24.04
open
https://github.com/huggingface/datasets/issues/7692
2025-07-20T11:08:20
2025-07-20T11:08:20
null
{ "login": "sedol1339", "id": 5188731, "type": "User" }
[]
false
[]
3,245,547,170
7,691
Large WebDataset: pyarrow.lib.ArrowCapacityError on load() even with streaming
### Describe the bug I am creating a large WebDataset-format dataset for sign language processing research, and a number of the videos are over 2GB. The instant I hit one of the shards with one of those videos, I get a ArrowCapacityError, even with streaming. I made a config for the dataset that specifically includes just one problem shard, and the error triggers the instant you even run load_dataset(), even with streaming=True ``` ds = load_dataset("bible-nlp/sign-bibles", "ase_chronological_bible_translation_in_american_sign_language_119_introductions_and_passages_debugging_problem_shard", streaming=True, split="train") ``` This gives: ``` File "/opt/home/cleong/projects/semantic_and_visual_similarity/sign-bibles-dataset/sign_bibles_dataset/tasks/test_iteration.py", line 13, in iterate_keys ds = load_dataset("bible-nlp/sign-bibles", language_subset, streaming=True, split="train") File "/opt/home/cleong/envs/sign-bibles-dataset/lib/python3.13/site-packages/datasets/load.py", line 1409, in load_dataset return builder_instance.as_streaming_dataset(split=split) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^ File "/opt/home/cleong/envs/sign-bibles-dataset/lib/python3.13/site-packages/datasets/builder.py", line 1225, in as_streaming_dataset splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)} ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^ File "/opt/home/cleong/envs/sign-bibles-dataset/lib/python3.13/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 88, in _split_generators pa.Table.from_pylist(cast_to_python_objects([example], only_1d_for_numpy=True)) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/table.pxi", line 2046, in pyarrow.lib._Tabular.from_pylist File "pyarrow/table.pxi", line 6431, in pyarrow.lib._from_pylist File "pyarrow/table.pxi", line 4893, in pyarrow.lib.Table.from_arrays File "pyarrow/table.pxi", line 1607, in pyarrow.lib._sanitize_arrays File "pyarrow/table.pxi", line 1588, in pyarrow.lib._schema_from_arrays File "pyarrow/array.pxi", line 375, in pyarrow.lib.array File "pyarrow/array.pxi", line 45, in pyarrow.lib._sequence_to_array File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowCapacityError: array cannot contain more than 2147483646 bytes, have 3980158992 ``` ### Steps to reproduce the bug ```python #!/usr/bin/env python import argparse from datasets import get_dataset_config_names, load_dataset from tqdm import tqdm from pyarrow.lib import ArrowCapacityError, ArrowInvalid def iterate_keys(language_subset: str) -> None: """Iterate over all samples in the Sign Bibles dataset and print idx and sample key.""" # https://huggingface.co/docs/datasets/v4.0.0/en/package_reference/loading_methods#datasets.load_dataset ds = load_dataset("bible-nlp/sign-bibles", language_subset, streaming=True, split="train") print(f"\n==> Loaded dataset config '{language_subset}'") idx = 0 estimated_shard_index = 0 samples_per_shard = 5 with tqdm(desc=f"{language_subset} samples") as pbar: iterator = iter(ds) while True: try: if idx % samples_per_shard == 0 and idx > 0: # 5 samples per shard: 0, 1, 2, 3, 4 print(f"Estimated Shard idx (starting at 0, {samples_per_shard}/shard): {estimated_shard_index}") estimated_shard_index += 1 sample = next(iterator) sample_key = sample.get("__key__", "missing-key") print(f"[{language_subset}] idx={idx}, key={sample_key}") idx += 1 pbar.update(1) except StopIteration: print(f"Finished iterating through {idx} samples of {language_subset}") break except (ArrowCapacityError, ArrowInvalid) as e: print(f"PyArrow error on idx={idx}, config={language_subset}: {e}") idx += 1 pbar.update(1) continue except KeyError as e: print(f"Missing key error on idx={idx}, config={language_subset}: {e}") idx += 1 pbar.update(1) continue def main(): configs = get_dataset_config_names("bible-nlp/sign-bibles") print(f"Available configs: {configs}") configs = [ "ase_chronological_bible_translation_in_american_sign_language_119_introductions_and_passages_debugging_problem_shard" ] for language_subset in configs: print(f"TESTING CONFIG {language_subset}") iterate_keys(language_subset) # try: # except (ArrowCapacityError, ArrowInvalid) as e: # print(f"PyArrow error at config level for {language_subset}: {e}") # continue # except RuntimeError as e: # print(f"RuntimeError at config level for {language_subset}: {e}") # continue if __name__ == "__main__": parser = argparse.ArgumentParser(description="Iterate through Sign Bibles dataset and print sample keys.") args = parser.parse_args() main() ``` ### Expected behavior I expect, when I load with streaming=True, that there should not be any data loaded or anything like that. https://huggingface.co/docs/datasets/main/en/package_reference/loading_methods#datasets.load_dataset says that with streaming=true, I did expect to have some trouble with large files, but that the streaming mode would not actually try to load them unless requested, e.g. with sample["mp4"] >In the streaming case: > Don’t download or cache anything. Instead, the dataset is lazily loaded and will be streamed on-the-fly when iterating on it. ### Environment info Local setup: Conda environment on Ubuntu, pip list includes the following datasets 4.0.0 pyarrow 20.0.0 Verified on Colab: https://colab.research.google.com/drive/1HdN8stlROWrLSYXUoNeV0vQ9pClhIVM8?usp=sharing, though there it crashes by using up all available RAM
open
https://github.com/huggingface/datasets/issues/7691
2025-07-19T18:40:27
2025-07-21T19:17:33
null
{ "login": "cleong110", "id": 122366389, "type": "User" }
[]
false
[]
3,244,380,691
7,690
HDF5 support
This PR adds support for tabular HDF5 file(s) by converting each row to an Arrow table. It supports columns with the usual dtypes including up to 5-dimensional arrays as well as support for complex/compound types by splitting them into several columns. All datasets within the HDF5 file should have rows on the first dimension (groups/subgroups are still allowed). Closes #3113. Replaces #7625 which only supports a relatively small subset of HDF5.
open
https://github.com/huggingface/datasets/pull/7690
2025-07-18T21:09:41
2025-07-23T02:54:11
null
{ "login": "klamike", "id": 17013474, "type": "User" }
[]
true
[]
3,242,580,301
7,689
BadRequestError for loading dataset?
### Describe the bug Up until a couple days ago I was having no issues loading `Helsinki-NLP/europarl` and `Helsinki-NLP/un_pc`, but now suddenly I get the following error: ``` huggingface_hub.errors.BadRequestError: (Request ID: ...) Bad request: * Invalid input: expected array, received string * at paths * Invalid input: expected boolean, received string * at expand ✖ Invalid input: expected array, received string → at paths ✖ Invalid input: expected boolean, received string → at expand ``` I tried with both `4.0.0` and `3.5.1` since this dataset uses `trust_remote_code`, but I get the same error with both. What can I do to load the dataset? I checked the documentation and GitHub issues here, but couldn't find a solution. ### Steps to reproduce the bug ```python import datasets ds = datasets.load_dataset("Helsinki-NLP/europarl", "en-fr", streaming=True, trust_remote_code=True)["train"] ``` ### Expected behavior That the dataset loads as it did a couple days ago. ### Environment info - `datasets` version: 3.5.1 - Platform: Linux-4.18.0-513.24.1.el8_9.x86_64-x86_64-with-glibc2.28 - Python version: 3.11.11 - `huggingface_hub` version: 0.30.2 - PyArrow version: 20.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1
closed
https://github.com/huggingface/datasets/issues/7689
2025-07-18T09:30:04
2025-07-18T11:59:51
2025-07-18T11:52:29
{ "login": "WPoelman", "id": 45011687, "type": "User" }
[]
false
[]
3,238,851,443
7,688
No module named "distributed"
### Describe the bug hello, when I run the command "from datasets.distributed import split_dataset_by_node", I always met the bug "No module named 'datasets.distributed" in different version like 4.0.0, 2.21.0 and so on. How can I solve this? ### Steps to reproduce the bug 1. pip install datasets 2. from datasets.distributed import split_dataset_by_node ### Expected behavior expecting the command "from datasets.distributed import split_dataset_by_node" can be ran successfully ### Environment info python: 3.12
open
https://github.com/huggingface/datasets/issues/7688
2025-07-17T09:32:35
2025-07-21T13:50:27
null
{ "login": "yingtongxiong", "id": 45058324, "type": "User" }
[]
false
[]
3,238,760,301
7,687
Datasets keeps rebuilding the dataset every time i call the python script
### Describe the bug Every time it runs, somehow, samples increase. This can cause a 12mb dataset to have other built versions of 400 mbs+ <img width="363" height="481" alt="Image" src="https://github.com/user-attachments/assets/766ce958-bd2b-41bc-b950-86710259bfdc" /> ### Steps to reproduce the bug `from datasets import load_dataset s = load_dataset('~/.cache/huggingface/datasets/databricks___databricks-dolly-15k')['train'] ` 1. A dataset needs to be available in the .cache folder 2. Run the code multiple times, and every time it runs, more versions are created ### Expected behavior The number of samples increases every time the script runs ### Environment info - `datasets` version: 3.6.0 - Platform: Windows-11-10.0.26100-SP0 - Python version: 3.13.3 - `huggingface_hub` version: 0.32.3 - PyArrow version: 20.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2025.3.0
open
https://github.com/huggingface/datasets/issues/7687
2025-07-17T09:03:38
2025-07-17T09:03:38
null
{ "login": "CALEB789", "id": 58883113, "type": "User" }
[]
false
[]
3,237,201,090
7,686
load_dataset does not check .no_exist files in the hub cache
### Describe the bug I'm not entirely sure if this should be submitted as a bug in the `datasets` library or the `huggingface_hub` library, given it could be fixed at different levels of the stack. The fundamental issue is that the `load_datasets` api doesn't use the `.no_exist` files in the hub cache unlike other wrapper APIs that do. This is because the `utils.file_utils.cached_path` used directly calls `hf_hub_download` instead of using `file_download.try_to_load_from_cache` from `huggingface_hub` (see `transformers` library `utils.hub.cached_files` for one alternate example). This results in unnecessary metadata HTTP requests occurring for files that don't exist on every call. It won't generate the .no_exist cache files, nor will it use them. ### Steps to reproduce the bug Run the following snippet as one example (setting cache dirs to clean paths for clarity) `env HF_HOME=~/local_hf_hub python repro.py` ``` from datasets import load_dataset import huggingface_hub # monkeypatch to print out metadata requests being made original_get_hf_file_metadata = huggingface_hub.file_download.get_hf_file_metadata def get_hf_file_metadata_wrapper(*args, **kwargs): print("File metadata request made (get_hf_file_metadata):", args, kwargs) return original_get_hf_file_metadata(*args, **kwargs) # Apply the patch huggingface_hub.file_download.get_hf_file_metadata = get_hf_file_metadata_wrapper dataset = load_dataset( "Salesforce/wikitext", "wikitext-2-v1", split="test", trust_remote_code=True, cache_dir="~/local_datasets", revision="b08601e04326c79dfdd32d625aee71d232d685c3", ) ``` This may be called over and over again, and you will see the same calls for files that don't exist: ``` File metadata request made (get_hf_file_metadata): () {'url': 'https://huggingface.co/datasets/Salesforce/wikitext/resolve/b08601e04326c79dfdd32d625aee71d232d685c3/wikitext.py', 'proxies': None, 'timeout': 10, 'headers': {'user-agent': 'datasets/3.6.0; hf_hub/0.33.2; python/3.12.11; torch/2.7.0; huggingface_hub/0.33.2; pyarrow/20.0.0; jax/0.5.3'}, 'token': None} File metadata request made (get_hf_file_metadata): () {'url': 'https://huggingface.co/datasets/Salesforce/wikitext/resolve/b08601e04326c79dfdd32d625aee71d232d685c3/.huggingface.yaml', 'proxies': None, 'timeout': 10, 'headers': {'user-agent': 'datasets/3.6.0; hf_hub/0.33.2; python/3.12.11; torch/2.7.0; huggingface_hub/0.33.2; pyarrow/20.0.0; jax/0.5.3'}, 'token': None} File metadata request made (get_hf_file_metadata): () {'url': 'https://huggingface.co/datasets/Salesforce/wikitext/resolve/b08601e04326c79dfdd32d625aee71d232d685c3/dataset_infos.json', 'proxies': None, 'timeout': 10, 'headers': {'user-agent': 'datasets/3.6.0; hf_hub/0.33.2; python/3.12.11; torch/2.7.0; huggingface_hub/0.33.2; pyarrow/20.0.0; jax/0.5.3'}, 'token': None} ``` And you can see that the .no_exist folder is never created ``` $ ls ~/local_hf_hub/hub/datasets--Salesforce--wikitext/ blobs refs snapshots ``` ### Expected behavior The expected behavior is for the print "File metadata request made" to stop after the first call, and for .no_exist directory & files to be populated under ~/local_hf_hub/hub/datasets--Salesforce--wikitext/ ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.5.13-65-650-4141-22041-coreweave-amd64-85c45edc-x86_64-with-glibc2.35 - Python version: 3.12.11 - `huggingface_hub` version: 0.33.2 - PyArrow version: 20.0.0 - Pandas version: 2.3.1 - `fsspec` version: 2024.9.0
open
https://github.com/huggingface/datasets/issues/7686
2025-07-16T20:04:00
2025-07-16T20:04:00
null
{ "login": "jmaccarl", "id": 3627235, "type": "User" }
[]
false
[]
3,236,979,340
7,685
Inconsistent range request behavior for parquet REST api
### Describe the bug First off, I do apologize if this is not the correct repo for submitting this issue. Please direct me to another one if it's more appropriate elsewhere. The datasets rest api is inconsistently giving `416 Range Not Satisfiable` when using a range request to get portions of the parquet files. More often than not, I am seeing 416, but other times for an identical request, it gives me the data along with `206 Partial Content` as expected. ### Steps to reproduce the bug repeating this request multiple times will return either 416 or 206. ```sh $ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" ``` Note: this is not limited to just the above file, I tried with many different datasets and am able to consistently reproduce issue across multiple datasets. when the 416 is returned, I get the following headers ``` < HTTP/2 416 < content-type: text/html < content-length: 49 < server: CloudFront < date: Wed, 16 Jul 2025 14:58:43 GMT < expires: Wed, 16 Jul 2025 14:58:43 GMT < content-range: bytes */177 < x-cache: Error from cloudfront < via: 1.1 873527676a354c5998cad133525df9c0.cloudfront.net (CloudFront) < ``` this suggests to me that there is likely a CDN/caching/routing issue happening and the request is not getting routed properly. Full verbose output via curl. <details> ❯ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Host huggingface.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.102.96, 18.160.102.110, 18.160.102.4, 18.160.102.86 * Trying 18.160.102.96:443... * Connected to huggingface.co (18.160.102.96) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [319 bytes data] * CAfile: /etc/ssl/cert.pem * CApath: none * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3821 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=huggingface.co * start date: Apr 13 00:00:00 2025 GMT * expire date: May 12 23:59:59 2026 GMT * subjectAltName: host "huggingface.co" matched cert's "huggingface.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: huggingface.co] * [HTTP/2] [1] [:path: /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 416 < content-type: text/html < content-length: 49 < server: CloudFront < date: Wed, 16 Jul 2025 14:58:41 GMT < expires: Wed, 16 Jul 2025 14:58:41 GMT < content-range: bytes */177 < x-cache: Error from cloudfront < via: 1.1 e2f1bed2f82641d6d5439eac20a790ba.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: Mo8hn-EZLJqE_hoBday8DdhmVXhV3v9-Wg-EEHI6gX_fNlkanVIUBA== < { [49 bytes data] 100 49 100 49 0 0 2215 0 --:--:-- --:--:-- --:--:-- 2227 * Connection #0 to host huggingface.co left intact (.venv) Daft main*​* ≡❯ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Host huggingface.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.102.96, 18.160.102.110, 18.160.102.4, 18.160.102.86 * Trying 18.160.102.96:443... * Connected to huggingface.co (18.160.102.96) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [319 bytes data] * CAfile: /etc/ssl/cert.pem * CApath: none * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3821 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=huggingface.co * start date: Apr 13 00:00:00 2025 GMT * expire date: May 12 23:59:59 2026 GMT * subjectAltName: host "huggingface.co" matched cert's "huggingface.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: huggingface.co] * [HTTP/2] [1] [:path: /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 416 < content-type: text/html < content-length: 49 < server: CloudFront < date: Wed, 16 Jul 2025 14:58:42 GMT < expires: Wed, 16 Jul 2025 14:58:42 GMT < content-range: bytes */177 < x-cache: Error from cloudfront < via: 1.1 bb352451e1eacf85f8786ee3ecd07eca.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: 9xy-CX9KvlS8Ye4eFr8jXMDobZHFkvdyvkLJGmK_qiwZQywCCwfq7Q== < { [49 bytes data] 100 49 100 49 0 0 2381 0 --:--:-- --:--:-- --:--:-- 2450 * Connection #0 to host huggingface.co left intact (.venv) Daft main*​* ≡❯ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Host huggingface.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.102.96, 18.160.102.110, 18.160.102.4, 18.160.102.86 * Trying 18.160.102.96:443... * Connected to huggingface.co (18.160.102.96) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [319 bytes data] * CAfile: /etc/ssl/cert.pem * CApath: none * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3821 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=huggingface.co * start date: Apr 13 00:00:00 2025 GMT * expire date: May 12 23:59:59 2026 GMT * subjectAltName: host "huggingface.co" matched cert's "huggingface.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: huggingface.co] * [HTTP/2] [1] [:path: /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 416 < content-type: text/html < content-length: 49 < server: CloudFront < date: Wed, 16 Jul 2025 14:58:43 GMT < expires: Wed, 16 Jul 2025 14:58:43 GMT < content-range: bytes */177 < x-cache: Error from cloudfront < via: 1.1 873527676a354c5998cad133525df9c0.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: wtBgwY4u4YJ2pD1ovM8UV770UiJoqWfs7i7VzschDyoLv5g7swGGmw== < { [49 bytes data] 100 49 100 49 0 0 2273 0 --:--:-- --:--:-- --:--:-- 2333 * Connection #0 to host huggingface.co left intact (.venv) Daft main*​* ≡❯ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Host huggingface.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.102.96, 18.160.102.110, 18.160.102.4, 18.160.102.86 * Trying 18.160.102.96:443... * Connected to huggingface.co (18.160.102.96) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [319 bytes data] * CAfile: /etc/ssl/cert.pem * CApath: none * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3821 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=huggingface.co * start date: Apr 13 00:00:00 2025 GMT * expire date: May 12 23:59:59 2026 GMT * subjectAltName: host "huggingface.co" matched cert's "huggingface.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: huggingface.co] * [HTTP/2] [1] [:path: /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 302 < content-type: text/plain; charset=utf-8 < content-length: 177 < location: https://huggingface.co/datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet < date: Wed, 16 Jul 2025 14:58:44 GMT < x-powered-by: huggingface-moon < cross-origin-opener-policy: same-origin < referrer-policy: strict-origin-when-cross-origin < x-request-id: Root=1-6877be24-476860f03849cb1a1570c9d8 < access-control-allow-origin: https://huggingface.co < access-control-expose-headers: X-Repo-Commit,X-Request-Id,X-Error-Code,X-Error-Message,X-Total-Count,ETag,Link,Accept-Ranges,Content-Range,X-Linked-Size,X-Linked-ETag,X-Xet-Hash < set-cookie: token=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT; Secure; SameSite=None < set-cookie: token=; Domain=huggingface.co; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT; Secure; SameSite=Lax < x-cache: Miss from cloudfront < via: 1.1 dd5af138aa8a11d8a70d5ef690ad1a2a.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: xuSi0X5RpH1OZqQOM8gGQLQLU8eOM6Gbkk-bgIX_qBnTTaa1VNkExA== < * Ignoring the response-body 100 177 100 177 0 0 2021 0 --:--:-- --:--:-- --:--:-- 2034 * Connection #0 to host huggingface.co left intact * Issue another request to this URL: 'https://huggingface.co/datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet' * Found bundle for host: 0x600002d54570 [can multiplex] * Re-using existing connection with host huggingface.co * [HTTP/2] [3] OPENED stream for https://huggingface.co/datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet * [HTTP/2] [3] [:method: GET] * [HTTP/2] [3] [:scheme: https] * [HTTP/2] [3] [:authority: huggingface.co] * [HTTP/2] [3] [:path: /datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet] * [HTTP/2] [3] [user-agent: curl/8.7.1] * [HTTP/2] [3] [accept: */*] * [HTTP/2] [3] [range: bytes=217875070-218006142] > GET /datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 302 < content-type: text/plain; charset=utf-8 < content-length: 1317 < location: https://cas-bridge.xethub.hf.co/xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC < date: Wed, 16 Jul 2025 14:58:44 GMT < x-powered-by: huggingface-moon < cross-origin-opener-policy: same-origin < referrer-policy: strict-origin-when-cross-origin < x-request-id: Root=1-6877be24-4f628b292dc8a7a5339c41d3 < access-control-allow-origin: https://huggingface.co < vary: Origin, Accept < access-control-expose-headers: X-Repo-Commit,X-Request-Id,X-Error-Code,X-Error-Message,X-Total-Count,ETag,Link,Accept-Ranges,Content-Range,X-Linked-Size,X-Linked-ETag,X-Xet-Hash < set-cookie: token=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT; Secure; SameSite=None < set-cookie: token=; Domain=huggingface.co; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT; Secure; SameSite=Lax < x-repo-commit: 712df366ffbc959d9f4279bf2da579230b7ca5d8 < accept-ranges: bytes < x-linked-size: 218006142 < x-linked-etag: "01736bf26d0046ddec4ab8900fba3f0dc6500b038314b44d0edb73a7c88dec07" < x-xet-hash: cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9 < link: <https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/xet-read-token/712df366ffbc959d9f4279bf2da579230b7ca5d8>; rel="xet-auth", <https://cas-server.xethub.hf.co/reconstruction/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9>; rel="xet-reconstruction-info" < x-cache: Miss from cloudfront < via: 1.1 dd5af138aa8a11d8a70d5ef690ad1a2a.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: 0qXw2sJGrWCLVt7c-Vtn09uE3nu6CrJw9RmAKvNr_flG75muclvlIg== < * Ignoring the response-body 100 1317 100 1317 0 0 9268 0 --:--:-- --:--:-- --:--:-- 9268 * Connection #0 to host huggingface.co left intact * Issue another request to this URL: 'https://cas-bridge.xethub.hf.co/xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC' * Host cas-bridge.xethub.hf.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.181.55, 18.160.181.54, 18.160.181.52, 18.160.181.88 * Trying 18.160.181.55:443... * Connected to cas-bridge.xethub.hf.co (18.160.181.55) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [328 bytes data] * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3818 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=cas-bridge.xethub.hf.co * start date: Jun 4 00:00:00 2025 GMT * expire date: Jul 3 23:59:59 2026 GMT * subjectAltName: host "cas-bridge.xethub.hf.co" matched cert's "cas-bridge.xethub.hf.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M04 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://cas-bridge.xethub.hf.co/xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: cas-bridge.xethub.hf.co] * [HTTP/2] [1] [:path: /xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC HTTP/2 > Host: cas-bridge.xethub.hf.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 206 < content-length: 131072 < date: Mon, 14 Jul 2025 08:40:28 GMT < x-request-id: 01K041FDPVA03RR2PRXDZSN30G < content-disposition: inline; filename*=UTF-8''0000.parquet; filename="0000.parquet"; < cache-control: public, max-age=31536000 < etag: "cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9" < access-control-allow-origin: * < access-control-allow-headers: Content-Range, Content-Type, Content-Disposition, ETag < access-control-expose-headers: Accept-Ranges, Content-Range, Content-Type, Content-Disposition, ETag, X-Cache < x-cache: Hit from cloudfront < via: 1.1 1c857e24a4dc84d2d9c78d5b3463bed6.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P2 < x-amz-cf-id: 3SxFmQa5wLeeXbNiwaAo0_RwoR_n7-SivjsLjDLG-Pwn5UhG2oiEQA== < age: 195496 < content-security-policy: default-src 'none'; sandbox < content-range: bytes 217875070-218006141/218006142 < { [8192 bytes data] 100 128k 100 128k 0 0 769k 0 --:--:-- --:--:-- --:--:-- 769k * Connection #1 to host cas-bridge.xethub.hf.co left intact </details> ### Expected behavior always get back a `206` ### Environment info n/a
open
https://github.com/huggingface/datasets/issues/7685
2025-07-16T18:39:44
2025-07-16T18:41:53
null
{ "login": "universalmind303", "id": 21327470, "type": "User" }
[]
false
[]
3,231,680,474
7,684
fix audio cast storage from array + sampling_rate
fix https://github.com/huggingface/datasets/issues/7682
closed
https://github.com/huggingface/datasets/pull/7684
2025-07-15T10:13:42
2025-07-15T10:24:08
2025-07-15T10:24:07
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,231,553,161
7,683
Convert to string when needed + faster .zstd
for https://huggingface.co/datasets/allenai/olmo-mix-1124
closed
https://github.com/huggingface/datasets/pull/7683
2025-07-15T09:37:44
2025-07-15T10:13:58
2025-07-15T10:13:56
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,229,687,253
7,682
Fail to cast Audio feature for numpy arrays in datasets 4.0.0
### Describe the bug Casting features with Audio for numpy arrays - done here with `ds.map(gen_sine, features=features)` fails in version 4.0.0 but not in version 3.6.0 ### Steps to reproduce the bug The following `uv script` should be able to reproduce the bug in version 4.0.0 and pass in version 3.6.0 on a macOS Sequoia 15.5 ```python # /// script # requires-python = ">=3.13" # dependencies = [ # "datasets[audio]==4.0.0", # "librosa>=0.11.0", # ] # /// # NAME # create_audio_dataset.py - create an audio dataset of sine waves # # SYNOPSIS # uv run create_audio_dataset.py # # DESCRIPTION # Create an audio dataset using the Hugging Face [datasets] library. # Illustrates how to create synthetic audio datasets using the [map] # datasets function. # # The strategy is to first create a dataset with the input to the # generation function, then execute the map function that generates # the result, and finally cast the final features. # # BUG # Casting features with Audio for numpy arrays - # done here with `ds.map(gen_sine, features=features)` fails # in version 4.0.0 but not in version 3.6.0 # # This happens both in cases where --extra audio is provided and where is not. # When audio is not provided i've installed the latest compatible version # of soundfile. # # The error when soundfile is installed but the audio --extra is not # indicates that the array values do not have the `.T` property, # whilst also indicating that the value is a list instead of a numpy array. # # Last lines of error report when for datasets + soundfile case # ... # # File "/Users/luasantilli/.cache/uv/archive-v0/tc_5IhQe7Zpw8ZXgQWpnl/lib/python3.13/site-packages/datasets/features/audio.py", line 239, in cast_storage # storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()]) # ~~~~~~~~~~~~~~~~~~~~~~^^^ # File "/Users/luasantilli/.cache/uv/archive-v0/tc_5IhQe7Zpw8ZXgQWpnl/lib/python3.13/site-packages/datasets/features/audio.py", line 122, in encode_example # sf.write(buffer, value["array"].T, value["sampling_rate"], format="wav") # ^^^^^^^^^^^^^^^^ # AttributeError: 'list' object has no attribute 'T' # ... # # For the case of datasets[audio] without explicit adding soundfile I get an FFmpeg # error. # # Last lines of error report: # # ... # RuntimeError: Could not load libtorchcodec. Likely causes: # 1. FFmpeg is not properly installed in your environment. We support # versions 4, 5, 6 and 7. # 2. The PyTorch version (2.7.1) is not compatible with # this version of TorchCodec. Refer to the version compatibility # table: # https://github.com/pytorch/torchcodec?tab=readme-ov-file#installing-torchcodec. # 3. Another runtime dependency; see exceptions below. # The following exceptions were raised as we tried to load libtorchcodec: # # [start of libtorchcodec loading traceback] # FFmpeg version 7: dlopen(/Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder7.dylib, 0x0006): Library not loaded: @rpath/libavutil.59.dylib # Referenced from: <6DB21246-F28A-31A6-910A-D8F3355D1064> /Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder7.dylib # Reason: no LC_RPATH's found # FFmpeg version 6: dlopen(/Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder6.dylib, 0x0006): Library not loaded: @rpath/libavutil.58.dylib # Referenced from: <BD3B44FC-E14B-3ABF-800F-BB54B6CCA3B1> /Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder6.dylib # Reason: no LC_RPATH's found # FFmpeg version 5: dlopen(/Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder5.dylib, 0x0006): Library not loaded: @rpath/libavutil.57.dylib # Referenced from: <F06EBF8A-238C-3A96-BFBB-B34E0BBDABF0> /Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder5.dylib # Reason: no LC_RPATH's found # FFmpeg version 4: dlopen(/Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder4.dylib, 0x0006): Library not loaded: @rpath/libavutil.56.dylib # Referenced from: <6E59F017-C703-3AF6-A271-6277DD5F8170> /Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder4.dylib # Reason: no LC_RPATH's found # ... # # This is strange because the the same error does not happen when using version 3.6.0 with datasets[audio]. # # The same error appears in python3.12 ## Imports import numpy as np from datasets import Dataset, Features, Audio, Value ## Parameters NUM_WAVES = 128 SAMPLE_RATE = 16_000 DURATION = 1.0 ## Input dataset arguments freqs = np.linspace(100, 2000, NUM_WAVES).tolist() ds = Dataset.from_dict({"frequency": freqs}) ## Features for the final dataset features = Features( {"frequency": Value("float32"), "audio": Audio(sampling_rate=SAMPLE_RATE)} ) ## Generate audio sine waves and cast features def gen_sine(example): t = np.linspace(0, DURATION, int(SAMPLE_RATE * DURATION), endpoint=False) wav = np.sin(2 * np.pi * example["frequency"] * t) return { "frequency": example["frequency"], "audio": {"array": wav, "sampling_rate": SAMPLE_RATE}, } ds = ds.map(gen_sine, features=features) print(ds) print(ds.features) ``` ### Expected behavior I expect the result of version `4.0.0` to be the same of that in version `3.6.0`. Switching the value of the script above to `3.6.0` I get the following, expected, result: ``` $ uv run bug_report.py Map: 100%|███████████████████████████████████████████████████████| 128/128 [00:00<00:00, 204.58 examples/s] Dataset({ features: ['frequency', 'audio'], num_rows: 128 }) {'frequency': Value(dtype='float32', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None)} ``` ### Environment info - `datasets` version: 4.0.0 - Platform: macOS-15.5-arm64-arm-64bit-Mach-O - Python version: 3.13.1 - `huggingface_hub` version: 0.33.4 - PyArrow version: 20.0.0 - Pandas version: 2.3.1 - `fsspec` version: 2025.3.0
closed
https://github.com/huggingface/datasets/issues/7682
2025-07-14T18:41:02
2025-07-15T12:10:39
2025-07-15T10:24:08
{ "login": "luatil-cloud", "id": 163345686, "type": "User" }
[]
false
[]
3,227,112,736
7,681
Probabilistic High Memory Usage and Freeze on Python 3.10
### Describe the bug A probabilistic issue encountered when processing datasets containing PIL.Image columns using the huggingface/datasets library on Python 3.10. The process occasionally experiences a sudden and significant memory spike, reaching 100% utilization, leading to a complete freeze. During this freeze, the process becomes unresponsive, cannot be forcefully terminated, and does not throw any exceptions. I have attempted to mitigate this issue by setting `datasets.config.IN_MEMORY_MAX_SIZE`, but it had no effect. In fact, based on the document of `load_dataset`, I suspect that setting `IN_MEMORY_MAX_SIZE` might even have a counterproductive effect. This bug is not consistently reproducible, but its occurrence rate significantly decreases or disappears entirely when upgrading Python to version 3.11 or higher. Therefore, this issue also serves to share a potential solution for others who might encounter similar problems. ### Steps to reproduce the bug Due to the probabilistic nature of this bug, consistent reproduction cannot be guaranteed for every run. However, in my environment, processing large datasets like timm/imagenet-1k-wds(whether reading, casting, or mapping operations) almost certainly triggers the issue at some point. The probability of the issue occurring drastically increases when num_proc is set to a value greater than 1 during operations. When the issue occurs, my system logs repeatedly show the following warnings: ``` WARN: very high memory utilization: 57.74GiB / 57.74GiB (100 %) WARN: container is unhealthy: triggered memory limits (OOM) WARN: container is unhealthy: triggered memory limits (OOM) WARN: container is unhealthy: triggered memory limits (OOM) ``` ### Expected behavior The dataset should be read and processed normally without memory exhaustion or freezing. If an unrecoverable error occurs, an appropriate exception should be raised. I have found that upgrading Python to version 3.11 or above completely resolves this issue. On Python 3.11, when memory usage approaches 100%, it suddenly drops before slowly increasing again. I suspect this behavior is due to an expected memory management action, possibly involving writing to disk cache, which prevents the complete freeze observed in Python 3.10. ### Environment info - `datasets` version: 4.0.0 - Platform: Linux-5.15.0-71-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.33.4 - PyArrow version: 20.0.0 - Pandas version: 2.3.1 - `fsspec` version: 2025.3.0
open
https://github.com/huggingface/datasets/issues/7681
2025-07-14T01:57:16
2025-07-14T01:57:16
null
{ "login": "ryan-minato", "id": 82735346, "type": "User" }
[]
false
[]
3,224,824,151
7,680
Question about iterable dataset and streaming
In the doc, I found the following example: https://github.com/huggingface/datasets/blob/611f5a592359ebac6f858f515c776aa7d99838b2/docs/source/stream.mdx?plain=1#L65-L78 I am confused, 1. If we have already loaded the dataset, why doing `to_iterable_dataset`? Does it go through the dataset faster than map-style dataset? 2. `load_dataset(streaming=True)` is useful for huge dataset, but the speed is slow. How to make it comparable to `to_iterable_dataset` without loading the whole dataset into RAM?
open
https://github.com/huggingface/datasets/issues/7680
2025-07-12T04:48:30
2025-07-15T13:39:38
null
{ "login": "Tavish9", "id": 73541181, "type": "User" }
[]
false
[]
3,220,787,371
7,679
metric glue breaks with 4.0.0
### Describe the bug worked fine with 3.6.0, and with 4.0.0 `eval_metric = metric.compute()` in HF Accelerate breaks. The code that fails is: https://huggingface.co/spaces/evaluate-metric/glue/blob/v0.4.0/glue.py#L84 ``` def simple_accuracy(preds, labels): print(preds, labels) print(f"{preds==labels}") return float((preds == labels).mean()) ``` data: ``` Column([1, 0, 0, 1, 1]) Column([1, 0, 0, 1, 0]) False ``` ``` [rank0]: return float((preds == labels).mean()) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^ [rank0]: AttributeError: 'bool' object has no attribute 'mean' ``` Some behavior has changed in this new major release of `datasets` and requires updating HF accelerate and perhaps the glue metric code, all belong to HF. ### Environment info datasets=4.0.0
closed
https://github.com/huggingface/datasets/issues/7679
2025-07-10T21:39:50
2025-07-11T17:42:01
2025-07-11T17:42:01
{ "login": "stas00", "id": 10676103, "type": "User" }
[]
false
[]
3,218,625,544
7,678
To support decoding audio data, please install 'torchcodec'.
In the latest version of datasets==4.0.0, i cannot print the audio data on the Colab notebook. But it works on the 3.6.0 version. !pip install -q -U datasets huggingface_hub fsspec from datasets import load_dataset downloaded_dataset = load_dataset("ymoslem/MediaSpeech", "tr", split="train") print(downloaded_dataset["audio"][0]) --------------------------------------------------------------------------- ImportError Traceback (most recent call last) [/tmp/ipython-input-4-90623240.py](https://localhost:8080/#) in <cell line: 0>() ----> 1 downloaded_dataset["audio"][0] 10 frames [/usr/local/lib/python3.11/dist-packages/datasets/features/audio.py](https://localhost:8080/#) in decode_example(self, value, token_per_repo_id) 170 from ._torchcodec import AudioDecoder 171 else: --> 172 raise ImportError("To support decoding audio data, please install 'torchcodec'.") 173 174 if not self.decode: ImportError: To support decoding audio data, please install 'torchcodec'. ### Environment info - `datasets` version: 4.0.0 - Platform: Linux-6.1.123+-x86_64-with-glibc2.35 - Python version: 3.11.13 - `huggingface_hub` version: 0.33.2 - PyArrow version: 18.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2025.3.0
closed
https://github.com/huggingface/datasets/issues/7678
2025-07-10T09:43:13
2025-07-22T03:46:52
2025-07-11T05:05:42
{ "login": "alpcansoydas", "id": 48163702, "type": "User" }
[]
false
[]
3,218,044,656
7,677
Toxicity fails with datasets 4.0.0
### Describe the bug With the latest 4.0.0 release, huggingface toxicity evaluation module fails with error: `ValueError: text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples).` ### Steps to reproduce the bug Repro: ``` >>> toxicity.compute(predictions=["This is a response"]) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/evaluate/module.py", line 467, in compute output = self._compute(**inputs, **compute_kwargs) File "/Users/serena.ruan/.cache/huggingface/modules/evaluate_modules/metrics/evaluate-measurement--toxicity/2390290fa0bf6d78480143547c6b08f3d4f8805b249df8c7a8e80d0ce8e3778b/toxicity.py", line 135, in _compute scores = toxicity(predictions, self.toxic_classifier, toxic_label) File "/Users/serena.ruan/.cache/huggingface/modules/evaluate_modules/metrics/evaluate-measurement--toxicity/2390290fa0bf6d78480143547c6b08f3d4f8805b249df8c7a8e80d0ce8e3778b/toxicity.py", line 103, in toxicity for pred_toxic in toxic_classifier(preds): File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/pipelines/text_classification.py", line 159, in __call__ result = super().__call__(*inputs, **kwargs) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/pipelines/base.py", line 1431, in __call__ return self.run_single(inputs, preprocess_params, forward_params, postprocess_params) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/pipelines/base.py", line 1437, in run_single model_inputs = self.preprocess(inputs, **preprocess_params) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/pipelines/text_classification.py", line 183, in preprocess return self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 2867, in __call__ encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 2927, in _call_one raise ValueError( ValueError: text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples). ``` ### Expected behavior This works before 4.0.0 release ### Environment info - `datasets` version: 4.0.0 - Platform: macOS-15.5-arm64-arm-64bit - Python version: 3.10.16 - `huggingface_hub` version: 0.33.0 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
closed
https://github.com/huggingface/datasets/issues/7677
2025-07-10T06:15:22
2025-07-11T04:40:59
2025-07-11T04:40:59
{ "login": "serena-ruan", "id": 82044803, "type": "User" }
[]
false
[]
3,216,857,559
7,676
Many things broken since the new 4.0.0 release
### Describe the bug The new changes in 4.0.0 are breaking many datasets, including those from lm-evaluation-harness. I am trying to revert back to older versions, like 3.6.0 to make the eval work but I keep getting: ``` Python File /venv/main/lib/python3.12/site-packages/datasets/features/features.py:1474, in generate_from_dict(obj) 1471 class_type = _FEATURE_TYPES.get(_type, None) or globals().get(_type, None) 1473 if class_type is None: -> 1474 raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}") 1476 if class_type == LargeList: 1477 feature = obj.pop("feature") ValueError: Feature type 'List' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'Sequence', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf'] ``` ### Steps to reproduce the bug ``` Python import lm_eval model_eval = lm_eval.models.huggingface.HFLM(pretrained=model, tokenizer=tokenizer) lm_eval.evaluator.simple_evaluate(model_eval, tasks=["winogrande"], num_fewshot=5, batch_size=1) ``` ### Expected behavior Older `datasets` versions should work just fine as before ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.8.0-60-generic-x86_64-with-glibc2.39 - Python version: 3.12.11 - `huggingface_hub` version: 0.33.1 - PyArrow version: 20.0.0 - Pandas version: 2.3.1 - `fsspec` version: 2025.3.0
open
https://github.com/huggingface/datasets/issues/7676
2025-07-09T18:59:50
2025-07-21T10:38:01
null
{ "login": "mobicham", "id": 37179323, "type": "User" }
[]
false
[]
3,216,699,094
7,675
common_voice_11_0.py failure in dataset library
### Describe the bug I tried to download dataset but have got this error: from datasets import load_dataset load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[8], line 4 1 from datasets import load_dataset ----> 4 load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True) File c:\Users\ege_g\AppData\Local\Programs\Python\Python312\Lib\site-packages\datasets\load.py:1392, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, **config_kwargs) 1387 verification_mode = VerificationMode( 1388 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 1389 ) 1391 # Create a dataset builder -> 1392 builder_instance = load_dataset_builder( 1393 path=path, 1394 name=name, 1395 data_dir=data_dir, 1396 data_files=data_files, 1397 cache_dir=cache_dir, 1398 features=features, 1399 download_config=download_config, 1400 download_mode=download_mode, 1401 revision=revision, 1402 token=token, 1403 storage_options=storage_options, 1404 **config_kwargs, 1405 ) 1407 # Return iterable dataset in case of streaming 1408 if streaming: File c:\Users\ege_g\AppData\Local\Programs\Python\Python312\Lib\site-packages\datasets\load.py:1132, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, **config_kwargs) 1130 if features is not None: 1131 features = _fix_for_backward_compatible_features(features) -> 1132 dataset_module = dataset_module_factory( 1133 path, 1134 revision=revision, 1135 download_config=download_config, 1136 download_mode=download_mode, 1137 data_dir=data_dir, 1138 data_files=data_files, 1139 cache_dir=cache_dir, 1140 ) 1141 # Get dataset builder class 1142 builder_kwargs = dataset_module.builder_kwargs File c:\Users\ege_g\AppData\Local\Programs\Python\Python312\Lib\site-packages\datasets\load.py:1031, in dataset_module_factory(path, revision, download_config, download_mode, data_dir, data_files, cache_dir, **download_kwargs) 1026 if isinstance(e1, FileNotFoundError): 1027 raise FileNotFoundError( 1028 f"Couldn't find any data file at {relative_to_absolute_path(path)}. " 1029 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" 1030 ) from None -> 1031 raise e1 from None 1032 else: 1033 raise FileNotFoundError(f"Couldn't find any data file at {relative_to_absolute_path(path)}.") File c:\Users\ege_g\AppData\Local\Programs\Python\Python312\Lib\site-packages\datasets\load.py:989, in dataset_module_factory(path, revision, download_config, download_mode, data_dir, data_files, cache_dir, **download_kwargs) 981 try: 982 api.hf_hub_download( 983 repo_id=path, 984 filename=filename, (...) 987 proxies=download_config.proxies, 988 ) --> 989 raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}") 990 except EntryNotFoundError: 991 # Use the infos from the parquet export except in some cases: 992 if data_dir or data_files or (revision and revision != "main"): RuntimeError: Dataset scripts are no longer supported, but found common_voice_11_0.py ### Steps to reproduce the bug from datasets import load_dataset load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True) ### Expected behavior its supposed to download this dataset. ### Environment info Python 3.12 , Windows 11
open
https://github.com/huggingface/datasets/issues/7675
2025-07-09T17:47:59
2025-07-22T09:35:42
null
{ "login": "egegurel", "id": 98793855, "type": "User" }
[]
false
[]
3,216,251,069
7,674
set dev version
null
closed
https://github.com/huggingface/datasets/pull/7674
2025-07-09T15:01:25
2025-07-09T15:04:01
2025-07-09T15:01:33
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,216,075,633
7,673
Release: 4.0.0
null
closed
https://github.com/huggingface/datasets/pull/7673
2025-07-09T14:03:16
2025-07-09T14:36:19
2025-07-09T14:36:18
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,215,287,164
7,672
Fix double sequence
```python >>> Features({"a": Sequence(Sequence({"c": Value("int64")}))}) {'a': List({'c': List(Value('int64'))})} ``` instead of `{'a': {'c': List(List(Value('int64')))}}`
closed
https://github.com/huggingface/datasets/pull/7672
2025-07-09T09:53:39
2025-07-09T09:56:29
2025-07-09T09:56:28
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,213,223,886
7,671
Mapping function not working if the first example is returned as None
### Describe the bug https://github.com/huggingface/datasets/blob/8a19de052e3d79f79cea26821454bbcf0e9dcd68/src/datasets/arrow_dataset.py#L3652C29-L3652C37 Here we can see the writer is initialized on `i==0`. However, there can be cases where in the user mapping function, the first example is filtered out (length constraints, etc). In this case, the writer would be a `None` type and the code will report `NoneType has no write function`. A simple fix is available, simply change line 3652 from `if i == 0:` to `if writer is None:` ### Steps to reproduce the bug Prepare a dataset have this function ``` import datasets def make_map_fn(split, max_prompt_tokens=3): def process_fn(example, idx): question = example['question'] reasoning_steps = example['reasoning_steps'] label = example['label'] answer_format = "" for i in range(len(reasoning_steps)): system_message = "Dummy" all_steps_formatted = [] content = f"""Dummy""" prompt = [ {"role": "system", "content": system_message}, {"role": "user", "content": content}, ] tokenized = tokenizer.apply_chat_template(prompt, return_tensors="pt", truncation=False) if tokenized.shape[1] > max_prompt_tokens: return None # skip overly long examples data = { "dummy": "dummy" } return data return process_fn ... # load your dataset ... train = train.map(function=make_map_fn('train'), with_indices=True) ``` ### Expected behavior The dataset mapping shall behave even when the first example is filtered out. ### Environment info I am using `datasets==3.6.0` but I have observed this issue in the github repo too: https://github.com/huggingface/datasets/blob/8a19de052e3d79f79cea26821454bbcf0e9dcd68/src/datasets/arrow_dataset.py#L3652C29-L3652C37
closed
https://github.com/huggingface/datasets/issues/7671
2025-07-08T17:07:47
2025-07-09T12:30:32
2025-07-09T12:30:32
{ "login": "dnaihao", "id": 46325823, "type": "User" }
[]
false
[]
3,208,962,372
7,670
Fix audio bytes
null
closed
https://github.com/huggingface/datasets/pull/7670
2025-07-07T13:05:15
2025-07-07T13:07:47
2025-07-07T13:05:33
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,203,541,091
7,669
How can I add my custom data to huggingface datasets
I want to add my custom dataset in huggingface dataset. Please guide me how to achieve that.
open
https://github.com/huggingface/datasets/issues/7669
2025-07-04T19:19:54
2025-07-05T18:19:37
null
{ "login": "xiagod", "id": 219205504, "type": "User" }
[]
false
[]
3,199,039,322
7,668
Broken EXIF crash the whole program
### Describe the bug When parsing this image in the ImageNet1K dataset, the `datasets` crashs whole training process just because unable to parse an invalid EXIF tag. ![Image](https://github.com/user-attachments/assets/3c840203-ac8c-41a0-9cf7-45f64488037d) ### Steps to reproduce the bug Use the `datasets.Image.decode_example` method to decode the aforementioned image could reproduce the bug. The decoding function will throw an unhandled exception at the `image.getexif()` method call due to invalid utf-8 stream in EXIF tags. ``` File lib/python3.12/site-packages/datasets/features/image.py:188, in Image.decode_example(self, value, token_per_repo_id) 186 image = PIL.Image.open(BytesIO(bytes_)) 187 image.load() # to avoid "Too many open files" errors --> 188 if image.getexif().get(PIL.Image.ExifTags.Base.Orientation) is not None: 189 image = PIL.ImageOps.exif_transpose(image) 190 if self.mode and self.mode != image.mode: File lib/python3.12/site-packages/PIL/Image.py:1542, in Image.getexif(self) 1540 xmp_tags = self.info.get("XML:com.adobe.xmp") 1541 if not xmp_tags and (xmp_tags := self.info.get("xmp")): -> 1542 xmp_tags = xmp_tags.decode("utf-8") 1543 if xmp_tags: 1544 match = re.search(r'tiff:Orientation(="|>)([0-9])', xmp_tags) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa8 in position 4312: invalid start byte ``` ### Expected behavior The invalid EXIF tag should simply be ignored or issue a warning message, instead of crash the whole program at once. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.5.0-18-generic-x86_64-with-glibc2.35 - Python version: 3.12.11 - `huggingface_hub` version: 0.33.0 - PyArrow version: 20.0.0 - Pandas version: 2.3.0 - `fsspec` version: 2025.3.0
open
https://github.com/huggingface/datasets/issues/7668
2025-07-03T11:24:15
2025-07-03T12:27:16
null
{ "login": "Seas0", "id": 30485844, "type": "User" }
[]
false
[]
3,196,251,707
7,667
Fix infer list of images
cc @kashif
closed
https://github.com/huggingface/datasets/pull/7667
2025-07-02T15:07:58
2025-07-02T15:10:28
2025-07-02T15:08:03
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,196,220,722
7,666
Backward compat list feature
cc @kashif
closed
https://github.com/huggingface/datasets/pull/7666
2025-07-02T14:58:00
2025-07-02T15:00:37
2025-07-02T14:59:40
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,193,239,955
7,665
Function load_dataset() misinterprets string field content as part of dataset schema when dealing with `.jsonl` files
### Describe the bug When loading a `.jsonl` file using `load_dataset("json", data_files="data.jsonl", split="train")`, the function misinterprets the content of a string field as if it were part of the dataset schema. In my case there is a field `body:` with a string value ``` "### Describe the bug (...) ,action: string, datetime: timestamp[s], author: string, (...) Pandas version: 1.3.4" ``` As a result, I got an exception ``` "TypeError: Couldn't cast array of type timestamp[s] to null". ``` Full stack-trace in the attached file below. I also attach a minimized dataset (data.json, a single entry) that reproduces the error. **Observations**(on the minimal example): - if I remove _all fields before_ `body`, a different error appears, - if I remove _all fields after_ `body`, yet another error appears, - if `body` is _the only field_, the error disappears. So this might be one complex bug or several edge cases interacting. I haven’t dug deeper. Also changing the file extension to `.json` or `.txt` avoids the problem. This suggests **a possible workaround** for the general case: convert `.jsonl` to `.json`. Though I haven’t verified correctness of that workaround yet. Anyway my understanding is that `load_dataset` with first argument set to "json" should properly handle `.jsonl` files. Correct me if I'm wrong. [stack_trace.txt](https://github.com/user-attachments/files/21004153/stack_trace.txt) [data.json](https://github.com/user-attachments/files/21004164/data.json) P.S. I discovered this while going through the HuggingFace tutorial. Specifically [this part](https://huggingface.co/learn/llm-course/chapter5/5?fw=pt).I will try to inform the tutorial team about this issue, as it can be a showstopper for young 🤗 adepts. ### Steps to reproduce the bug 1. Download attached [data.json](https://github.com/user-attachments/files/21004164/data.json) file. 2. Run the following code which should work correctly: ``` from datasets import load_dataset load_dataset("json", data_files="data.json", split="train") ``` 3. Change extension of the `data` file to `.jsonl` and run: ``` from datasets import load_dataset load_dataset("json", data_files="data.jsonl", split="train") ``` This will trigger an error like the one in the attached [stack_trace.txt](https://github.com/user-attachments/files/21004153/stack_trace.txt). One can also try removing fields before the `body` field and after it. These actions give different errors. ### Expected behavior Parsing data in `.jsonl` format should yield the same result as parsing the same data in `.json` format. In any case, the content of a string field should never be interpreted as part of the dataset schema. ### Environment info datasets version: _3.6.0_ pyarrow version: _20.0.0_ Python version: _3.11.9_ platform version: _macOS-15.5-arm64-arm-64bit_
closed
https://github.com/huggingface/datasets/issues/7665
2025-07-01T17:14:53
2025-07-01T17:17:48
2025-07-01T17:17:48
{ "login": "zdzichukowalski", "id": 1151198, "type": "User" }
[]
false
[]
3,193,239,035
7,664
Function load_dataset() misinterprets string field content as part of dataset schema when dealing with `.jsonl` files
### Describe the bug When loading a `.jsonl` file using `load_dataset("json", data_files="data.jsonl", split="train")`, the function misinterprets the content of a string field as if it were part of the dataset schema. In my case there is a field `body:` with a string value ``` "### Describe the bug (...) ,action: string, datetime: timestamp[s], author: string, (...) Pandas version: 1.3.4" ``` As a result, I got an exception ``` "TypeError: Couldn't cast array of type timestamp[s] to null". ``` Full stack-trace in the attached file below. I also attach a minimized dataset (data.json, a single entry) that reproduces the error. **Observations**(on the minimal example): - if I remove _all fields before_ `body`, a different error appears, - if I remove _all fields after_ `body`, yet another error appears, - if `body` is _the only field_, the error disappears. So this might be one complex bug or several edge cases interacting. I haven’t dug deeper. Also changing the file extension to `.json` or `.txt` avoids the problem. This suggests **a possible workaround** for the general case: convert `.jsonl` to `.json`. Though I haven’t verified correctness of that workaround yet. Anyway my understanding is that `load_dataset` with first argument set to "json" should properly handle `.jsonl` files. Correct me if I'm wrong. [stack_trace.txt](https://github.com/user-attachments/files/21004153/stack_trace.txt) [data.json](https://github.com/user-attachments/files/21004164/data.json) P.S. I discovered this while going through the HuggingFace tutorial. Specifically [this part](https://huggingface.co/learn/llm-course/chapter5/5?fw=pt). I will try to inform the tutorial team about this issue, as it can be a showstopper for young 🤗 adepts. ### Steps to reproduce the bug 1. Download attached [data.json](https://github.com/user-attachments/files/21004164/data.json) file. 2. Run the following code which should work correctly: ``` from datasets import load_dataset load_dataset("json", data_files="data.json", split="train") ``` 3. Change extension of the `data` file to `.jsonl` and run: ``` from datasets import load_dataset load_dataset("json", data_files="data.jsonl", split="train") ``` This will trigger an error like the one in the attached [stack_trace.txt](https://github.com/user-attachments/files/21004153/stack_trace.txt). One can also try removing fields before the `body` field and after it. These actions give different errors. ### Expected behavior Parsing data in `.jsonl` format should yield the same result as parsing the same data in `.json` format. In any case, the content of a string field should never be interpreted as part of the dataset schema. ### Environment info datasets version: _3.6.0_ pyarrow version: _20.0.0_ Python version: _3.11.9_ platform version: _macOS-15.5-arm64-arm-64bit_
open
https://github.com/huggingface/datasets/issues/7664
2025-07-01T17:14:32
2025-07-09T13:14:11
null
{ "login": "zdzichukowalski", "id": 1151198, "type": "User" }
[]
false
[]
3,192,582,371
7,663
Custom metadata filenames
example: https://huggingface.co/datasets/lhoestq/overlapping-subsets-imagefolder/tree/main To make multiple subsets for an imagefolder (one metadata file per subset), e.g. ```yaml configs: - config_name: default metadata_filenames: - metadata.csv - config_name: other metadata_filenames: - metadata2.csv ```
closed
https://github.com/huggingface/datasets/pull/7663
2025-07-01T13:50:36
2025-07-01T13:58:41
2025-07-01T13:58:39
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,190,805,531
7,662
Applying map after transform with multiprocessing will cause OOM
### Describe the bug I have a 30TB dataset. When I perform add_column and cast_column operations on it and then execute a multiprocessing map, it results in an OOM (Out of Memory) error. However, if I skip the add_column and cast_column steps and directly run the map, there is no OOM. After debugging step by step, I found that the OOM is caused at this point, and I suspect it’s because the add_column and cast_column operations are not cached, which causes the entire dataset to be loaded in each subprocess, leading to the OOM. The critical line of code is: https://github.com/huggingface/datasets/blob/e71b0b19d79c7531f9b9bea7c09916b5f6157f42/src/datasets/utils/py_utils.py#L607 Note num_process=1 would not cause OOM. I'm confused. ### Steps to reproduce the bug For reproduce, you can load dataset and set cache_dir (for caching): amphion/Emilia-Dataset which is a veru large datasets that RAM can not fits. And apply the map with multiprocessing after a transform operation (e.g. add_column, cast_column). As long as num_process>1, it must cause OOM. ### Expected behavior It should not cause OOM. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-5.10.134-16.101.al8.x86_64-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.33.1 - PyArrow version: 20.0.0 - Pandas version: 2.3.0 - `fsspec` version: 2024.6.1
open
https://github.com/huggingface/datasets/issues/7662
2025-07-01T05:45:57
2025-07-10T06:17:40
null
{ "login": "JunjieLl", "id": 26482910, "type": "User" }
[]
false
[]
3,190,408,237
7,661
fix del tqdm lock error
fixes https://github.com/huggingface/datasets/issues/7660
open
https://github.com/huggingface/datasets/pull/7661
2025-07-01T02:04:02
2025-07-08T01:38:46
null
{ "login": "Hypothesis-Z", "id": 44766273, "type": "User" }
[]
true
[]
3,189,028,251
7,660
AttributeError: type object 'tqdm' has no attribute '_lock'
### Describe the bug `AttributeError: type object 'tqdm' has no attribute '_lock'` It occurs when I'm trying to load datasets in thread pool. Issue https://github.com/huggingface/datasets/issues/6066 and PR https://github.com/huggingface/datasets/pull/6067 https://github.com/huggingface/datasets/pull/6068 tried to fix this. ### Steps to reproduce the bug Will have to try several times to reproduce the error because it is concerned with threads. 1. save some datasets for test ```pythonfrom datasets import Dataset, DatasetDict import os os.makedirs("test_dataset_shards", exist_ok=True) for i in range(10): data = Dataset.from_dict({"text": [f"example {j}" for j in range(1000000)]}) data = DatasetDict({'train': data}) data.save_to_disk(f"test_dataset_shards/shard_{i}") ``` 2. load them in a thread pool ```python from datasets import load_from_disk from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor, as_completed import glob datas = glob.glob('test_dataset_shards/shard_*') with ThreadPoolExecutor(max_workers=10) as pool: futures = [pool.submit(load_from_disk, it) for it in datas] datas = [] for future in tqdm(as_completed(futures), total=len(futures)): datas.append(future.result()) ``` ### Expected behavior no exception raised ### Environment info datasets==2.19.0 python==3.10
open
https://github.com/huggingface/datasets/issues/7660
2025-06-30T15:57:16
2025-07-03T15:14:27
null
{ "login": "Hypothesis-Z", "id": 44766273, "type": "User" }
[]
false
[]
3,187,882,217
7,659
Update the beans dataset link in Preprocess
In the Preprocess tutorial, the to "the beans dataset" is incorrect. Fixed.
closed
https://github.com/huggingface/datasets/pull/7659
2025-06-30T09:58:44
2025-07-07T08:38:19
2025-07-01T14:01:42
{ "login": "HJassar", "id": 5434867, "type": "User" }
[]
true
[]
3,187,800,504
7,658
Fix: Prevent loss of info.features and column_names in IterableDatasetDict.map when features is None
This PR fixes a bug where calling `IterableDatasetDict.map()` or `IterableDataset.map()` with the default `features=None` argument would overwrite the existing `info.features` attribute with `None`. This, in turn, caused the resulting dataset to lose its schema, breaking downstream usage of attributes like `column_names`. Why Previously, the code would always set `info.features = features`, even if `features` was `None`. When mapping with removal of columns or other transformations, this led to the destruction of the schema and caused failures in code that relied on the dataset schema being present. How We now update `info.features` only if `features` is not `None`. This preserves the original schema unless the user explicitly provides a new one. Reference Fixes #7568
closed
https://github.com/huggingface/datasets/pull/7658
2025-06-30T09:31:12
2025-07-01T16:26:30
2025-07-01T16:26:12
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,186,036,016
7,657
feat: add subset_name as alias for name in load_dataset
fixes #7637 This PR introduces subset_name as a user-facing alias for the name (previously `config_name`) argument in load_dataset. It aligns terminology with the Hugging Face Hub UI (which shows “Subset”), reducing confusion for new users. Supports `subset_name` in `load_dataset()` Adds `.subset_name` property to DatasetBuilder Maintains full backward compatibility Raises clear error if name and `subset_name` conflict
open
https://github.com/huggingface/datasets/pull/7657
2025-06-29T10:39:00
2025-07-18T17:45:41
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,185,865,686
7,656
fix(iterable): ensure MappedExamplesIterable supports state_dict for resume
Fixes #7630 ### Problem When calling `.map()` on an `IterableDataset`, resuming from a checkpoint skips a large number of samples. This is because `MappedExamplesIterable` did not implement `state_dict()` or `load_state_dict()`, so checkpointing was not properly delegated to the underlying iterable. ### What This PR Does This patch adds: ```python def state_dict(self): return self.ex_iterable.state_dict() def load_state_dict(self, state): self.ex_iterable.load_state_dict(state) ``` to MappedExamplesIterable, so the wrapped base iterable's state can be saved and restored as expected. Result Using .map() no longer causes sample skipping after checkpoint resume. Let me know if a dedicated test case is required — happy to add one!
open
https://github.com/huggingface/datasets/pull/7656
2025-06-29T07:50:13
2025-06-29T07:50:13
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,185,382,105
7,655
Added specific use cases in Improve Performace
Fixes #2494
open
https://github.com/huggingface/datasets/pull/7655
2025-06-28T19:00:32
2025-06-28T19:00:32
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,184,770,992
7,654
fix(load): strip deprecated use_auth_token from config_kwargs
Fixes #7504 This PR resolves a compatibility error when loading datasets via `load_dataset()` using outdated arguments like `use_auth_token`. **What was happening:** Users passing `use_auth_token` in `load_dataset(..., use_auth_token=...)` encountered a `ValueError`: BuilderConfig ParquetConfig(...) doesn't have a 'use_auth_token' key. **Why:** `use_auth_token` has been deprecated and removed from config definitions (replaced by `token`), but the `load_dataset()` function still forwarded it via `**config_kwargs` to BuilderConfigs, leading to unrecognized key errors. **Fix:** We now intercept and strip `use_auth_token` from `config_kwargs` inside `load_dataset`, replacing it with a warning: ```python if "use_auth_token" in config_kwargs: logger.warning("The 'use_auth_token' argument is deprecated. Please use 'token' instead.") config_kwargs.pop("use_auth_token") ``` This ensures legacy compatibility while guiding users to switch to the token argument. Let me know if you'd prefer a deprecation error instead of a warning. Thanks!
open
https://github.com/huggingface/datasets/pull/7654
2025-06-28T09:20:21
2025-06-28T09:20:21
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,184,746,093
7,653
feat(load): fallback to `load_from_disk()` when loading a saved dataset directory
### Related Issue Fixes #7503 Partially addresses #5044 by allowing `load_dataset()` to auto-detect and gracefully delegate to `load_from_disk()` for locally saved datasets. --- ### What does this PR do? This PR introduces a minimal fallback mechanism in `load_dataset()` that detects when the provided `path` points to a dataset saved using `save_to_disk()`, and automatically redirects to `load_from_disk()`. #### 🐛 Before (unexpected metadata-only rows): ```python ds = load_dataset("/path/to/saved_dataset") # → returns rows with only internal metadata (_data_files, _fingerprint, etc.) ```` #### ✅ After (graceful fallback): ```python ds = load_dataset("/path/to/saved_dataset") # → logs a warning and internally switches to load_from_disk() ``` --- ### Why is this useful? * Prevents confusion when reloading local datasets saved via `save_to_disk()`. * Enables smoother compatibility with frameworks (e.g., TRL, `lighteval`) that rely on `load_dataset()` calls. * Fully backward-compatible — hub-based loading, custom builders, and streaming remain untouched.
open
https://github.com/huggingface/datasets/pull/7653
2025-06-28T08:47:36
2025-06-28T08:47:36
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,183,372,055
7,652
Add columns support to JSON loader for selective key filtering
Fixes #7594 This PR adds support for filtering specific columns when loading datasets from .json or .jsonl files — similar to how the columns=... argument works for Parquet. As suggested, support for the `columns=...` argument (previously available for Parquet) has now been extended to **JSON and JSONL** loading via `load_dataset(...)`. You can now load only specific keys/columns and skip the rest — which should help in cases where some fields are unclean, inconsistent, or just unnecessary. ### Example: ```python from datasets import load_dataset dataset = load_dataset("json", data_files="your_data.jsonl", columns=["id", "title"]) print(dataset["train"].column_names) # Output: ['id', 'title'] ``` ### Summary of changes: * Added `columns: Optional[List[str]]` to `JsonConfig` * Updated `_generate_tables()` to filter selected columns * Forwarded `columns` argument from `load_dataset()` to the config * Added test for validation(should be fine!) Let me know if you'd like the same to be added for CSV or others as a follow-up — happy to help.
open
https://github.com/huggingface/datasets/pull/7652
2025-06-27T16:18:42
2025-07-14T10:41:53
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,182,792,775
7,651
fix: Extended metadata file names for folder_based_builder
Fixes #7650. The metadata files generated by the `DatasetDict.save_to_file` function are not included in the folder_based_builder's metadata list, causing issues when only 1 actual data file is present, as described in issue #7650. This PR adds these filenames to the builder, allowing correct loading.
open
https://github.com/huggingface/datasets/pull/7651
2025-06-27T13:12:11
2025-06-30T08:19:37
null
{ "login": "iPieter", "id": 6965756, "type": "User" }
[]
true
[]
3,182,745,315
7,650
`load_dataset` defaults to json file format for datasets with 1 shard
### Describe the bug I currently have multiple datasets (train+validation) saved as 50MB shards. For one dataset the validation pair is small enough to fit into a single shard and this apparently causes problems when loading the dataset. I created the datasets using a DatasetDict, saved them as 50MB arrow files for streaming and then load each dataset. I have no problem loading any of the other datasets with more than 1 arrow file/shard. The error indicates the training set got loaded in arrow format (correct) and the validation set in json (incorrect). This seems to be because some of the metadata files are considered as dataset files. ``` Error loading /nfs/dataset_pt-uk: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('validation'): ('json', {})} ``` ![Image](https://github.com/user-attachments/assets/f6e7596a-dd53-46a9-9a23-4e9cac2ac049) Concretely, there is a mismatch between the metadata created by the `DatasetDict.save_to_file` and the builder for `datasets.load_dataset`: https://github.com/huggingface/datasets/blob/e71b0b19d79c7531f9b9bea7c09916b5f6157f42/src/datasets/data_files.py#L107 The `folder_based_builder` lists all files and with 1 arrow file the json files (that are actually metadata) are in the majority. https://github.com/huggingface/datasets/blob/e71b0b19d79c7531f9b9bea7c09916b5f6157f42/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py#L58 ### Steps to reproduce the bug Create a dataset with metadata and 1 arrow file in validation and multiple arrow files in the training set, following the above description. In my case, I saved the files via: ```python dataset = DatasetDict({ 'train': train_dataset, 'validation': val_dataset }) dataset.save_to_disk(output_path, max_shard_size="50MB") ``` ### Expected behavior The dataset would get loaded. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.14.0-22-generic-x86_64-with-glibc2.41 - Python version: 3.12.7 - `huggingface_hub` version: 0.31.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
open
https://github.com/huggingface/datasets/issues/7650
2025-06-27T12:54:25
2025-06-27T12:54:25
null
{ "login": "iPieter", "id": 6965756, "type": "User" }
[]
false
[]
3,181,481,444
7,649
Enable parallel shard upload in push_to_hub() using num_proc
Fixes #7591 ### Add num_proc support to `push_to_hub()` for parallel shard upload This PR adds support for parallel upload of dataset shards via the `num_proc` argument in `Dataset.push_to_hub()`. 📌 While the `num_proc` parameter was already present in the `push_to_hub()` signature and correctly passed to `_push_parquet_shards_to_hub()`, it was not being used to parallelize the upload. 🔧 This PR updates the internal `_push_parquet_shards_to_hub()` function to: - Use `multiprocessing.Pool` and `iflatmap_unordered()` for concurrent shard upload when `num_proc > 1` - Preserve original serial upload behavior if `num_proc` is `None` or ≤ 1 - Keep tqdm progress and commit behavior unchanged Let me know if any test coverage or further changes are needed!
closed
https://github.com/huggingface/datasets/pull/7649
2025-06-27T05:59:03
2025-07-07T18:13:53
2025-07-07T18:13:52
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,181,409,736
7,648
Fix misleading add_column() usage example in docstring
Fixes #7611 This PR fixes the usage example in the Dataset.add_column() docstring, which previously implied that add_column() modifies the dataset in-place. Why: The method returns a new dataset with the additional column, and users must assign the result to a variable to preserve the change. This should make the behavior clearer for users. @lhoestq @davanstrien
closed
https://github.com/huggingface/datasets/pull/7648
2025-06-27T05:27:04
2025-07-20T16:07:49
2025-07-17T13:14:17
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,178,952,517
7,647
loading mozilla-foundation--common_voice_11_0 fails
### Describe the bug Hello everyone, i am trying to load `mozilla-foundation--common_voice_11_0` and it fails. Reproducer ``` import datasets datasets.load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True, trust_remote_code=True) ``` and it fails with ``` File ~/opt/envs/.../lib/python3.10/site-packages/datasets/utils/file_utils.py:827, in _add_retries_to_file_obj_read_method.<locals>.read_with_retries(*args, **kwargs) 825 for retry in range(1, max_retries + 1): 826 try: --> 827 out = read(*args, **kwargs) 828 break 829 except ( 830 _AiohttpClientError, 831 asyncio.TimeoutError, 832 requests.exceptions.ConnectionError, 833 requests.exceptions.Timeout, 834 ) as err: File /usr/lib/python3.10/codecs.py:322, in BufferedIncrementalDecoder.decode(self, input, final) 319 def decode(self, input, final=False): 320 # decode input (taking the buffer into account) 321 data = self.buffer + input --> 322 (result, consumed) = self._buffer_decode(data, self.errors, final) 323 # keep undecoded input until the next call 324 self.buffer = data[consumed:] UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte ``` When i remove streaming then everything is good but i need `streaming=True` ### Steps to reproduce the bug ``` import datasets datasets.load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True, trust_remote_code=True) ``` ### Expected behavior Expected that it will download dataset ### Environment info datasets==3.6.0 python3.10 on all platforms linux/win/mac
open
https://github.com/huggingface/datasets/issues/7647
2025-06-26T12:23:48
2025-07-10T14:49:30
null
{ "login": "pavel-esir", "id": 5703039, "type": "User" }
[]
false
[]
3,178,036,854
7,646
Introduces automatic subset-level grouping for folder-based dataset builders #7066
Fixes #7066 This PR introduces automatic **subset-level grouping** for folder-based dataset builders by: 1. Adding a utility function `group_files_by_subset()` that clusters files by root name (ignoring digits and shard suffixes). 2. Integrating this logic into `FolderBasedBuilder._split_generators()` to yield one split per subset. 3. Adding unit tests for the grouping function. 4. Updating the documentation to describe this new behavior under `docs/source/repository_structure.mdx`. --- ### Motivation Datasets with files like: ``` train0.jsonl train1.jsonl animals.jsonl metadata.jsonl ``` will now be **automatically grouped** as: - `"train"` subset → `train0.jsonl`, `train1.jsonl` - `"animals"` subset → `animals.jsonl` - `"metadata"` subset → `metadata.jsonl` This enables structured multi-subset loading even when the dataset doesn't follow traditional `train/validation/test` split conventions. --- ### Files Changed - `src/datasets/data_files.py`: added `group_files_by_subset()` utility - `src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py`: grouped files before yielding splits - `tests/test_data_files.py`: added unit test `test_group_files_by_subset` - `docs/source/repository_structure.mdx`: documented subset grouping for maintainers and users --- ### Benefits - More flexible and robust dataset split logic - Enables logical grouping of user-uploaded files without nested folder structure - Backward-compatible with all existing folder-based configs --- Ready for review ✅
open
https://github.com/huggingface/datasets/pull/7646
2025-06-26T07:01:37
2025-07-14T10:42:56
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,176,810,164
7,645
`ClassLabel` docs: Correct value for unknown labels
This small change fixes the documentation to to be compliant with what happens in `encode_example`. https://github.com/huggingface/datasets/blob/e71b0b19d79c7531f9b9bea7c09916b5f6157f42/src/datasets/features/features.py#L1126-L1129
open
https://github.com/huggingface/datasets/pull/7645
2025-06-25T20:01:35
2025-06-25T20:01:35
null
{ "login": "l-uuz", "id": 56924246, "type": "User" }
[]
true
[]
3,176,363,492
7,644
fix sequence ci
fix error from https://github.com/huggingface/datasets/pull/7643
closed
https://github.com/huggingface/datasets/pull/7644
2025-06-25T17:07:55
2025-06-25T17:10:30
2025-06-25T17:08:01
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,176,354,431
7,643
Backward compat sequence instance
useful to still get `isinstance(Sequence(Value("int64")), Sequence)`for downstream libs like evaluate
closed
https://github.com/huggingface/datasets/pull/7643
2025-06-25T17:05:09
2025-06-25T17:07:40
2025-06-25T17:05:44
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,176,025,890
7,642
fix length for ci
null
closed
https://github.com/huggingface/datasets/pull/7642
2025-06-25T15:10:38
2025-06-25T15:11:53
2025-06-25T15:11:51
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,175,953,405
7,641
update docs and docstrings
null
closed
https://github.com/huggingface/datasets/pull/7641
2025-06-25T14:48:58
2025-06-25T14:51:46
2025-06-25T14:49:33
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,175,914,924
7,640
better features repr
following the addition of List in #7634 before: ```python In [3]: ds.features Out[3]: {'json': {'id': Value(dtype='string', id=None), 'metadata:transcript': [{'end': Value(dtype='float64', id=None), 'start': Value(dtype='float64', id=None), 'transcript': Value(dtype='string', id=None), 'words': [{'end': Value(dtype='float64', id=None), 'score': Value(dtype='float64', id=None), 'start': Value(dtype='float64', id=None), 'word': Value(dtype='string', id=None)}]}], 'metadata:vad': [{'end': Value(dtype='float64', id=None), 'start': Value(dtype='float64', id=None)}]}, 'mp4': Value(dtype='binary', id=None), 'npz': {'boxes_and_keypoints:box': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'boxes_and_keypoints:is_valid_box': Sequence(feature=Value(dtype='bool', id=None), length=-1, id=None), 'boxes_and_keypoints:keypoints': Sequence(feature=Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), length=-1, id=None), 'movement:EmotionArousalToken': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:EmotionValenceToken': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:FAUToken': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:FAUValue': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:alignment_head_rotation': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:alignment_translation': Sequence(feature=Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), length=-1, id=None), 'movement:emotion_arousal': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:emotion_scores': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:emotion_valence': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:expression': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:frame_latent': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:gaze_encodings': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:head_encodings': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:hypernet_features': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'movement:is_valid': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'smplh:body_pose': Sequence(feature=Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), length=-1, id=None), 'smplh:global_orient': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), 'smplh:is_valid': Sequence(feature=Value(dtype='bool', id=None), length=-1, id=None), 'smplh:left_hand_pose': Sequence(feature=Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), length=-1, id=None), 'smplh:right_hand_pose': Sequence(feature=Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None), length=-1, id=None), 'smplh:translation': Sequence(feature=Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), length=-1, id=None)}, 'wav': Audio(sampling_rate=None, mono=True, decode=True, id=None), '__key__': Value(dtype='string', id=None), '__url__': Value(dtype='string', id=None)} ``` after: ```python In [3]: ds.features Out[3]: {'json': {'id': Value('string'), 'metadata:transcript': List({'end': Value('float64'), 'start': Value('float64'), 'transcript': Value('string'), 'words': List({'end': Value('float64'), 'score': Value('float64'), 'start': Value('float64'), 'word': Value('string')})}), 'metadata:vad': List({'end': Value('float64'), 'start': Value('float64')})}, 'mp4': Value('binary'), 'npz': {'boxes_and_keypoints:box': List(List(Value('float32'))), 'boxes_and_keypoints:is_valid_box': List(Value('bool')), 'boxes_and_keypoints:keypoints': List(List(List(Value('float32')))), 'movement:EmotionArousalToken': List(List(Value('float32'))), 'movement:EmotionValenceToken': List(List(Value('float32'))), 'movement:FAUToken': List(List(Value('float32'))), 'movement:FAUValue': List(List(Value('float32'))), 'movement:alignment_head_rotation': List(List(Value('float32'))), 'movement:alignment_translation': List(List(List(Value('float32')))), 'movement:emotion_arousal': List(List(Value('float32'))), 'movement:emotion_scores': List(List(Value('float32'))), 'movement:emotion_valence': List(List(Value('float32'))), 'movement:expression': List(List(Value('float32'))), 'movement:frame_latent': List(List(Value('float32'))), 'movement:gaze_encodings': List(List(Value('float32'))), 'movement:head_encodings': List(List(Value('float32'))), 'movement:hypernet_features': List(List(Value('float32'))), 'movement:is_valid': List(List(Value('float32'))), 'smplh:body_pose': List(List(List(Value('float32')))), 'smplh:global_orient': List(List(Value('float32'))), 'smplh:is_valid': List(Value('bool')), 'smplh:left_hand_pose': List(List(List(Value('float32')))), 'smplh:right_hand_pose': List(List(List(Value('float32')))), 'smplh:translation': List(List(Value('float32')))}, 'wav': Audio(sampling_rate=None, decode=True, stream_index=None), '__key__': Value('string'), '__url__': Value('string')} ```
closed
https://github.com/huggingface/datasets/pull/7640
2025-06-25T14:37:32
2025-06-25T14:46:47
2025-06-25T14:46:45
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,175,616,169
7,639
fix save_infos
null
closed
https://github.com/huggingface/datasets/pull/7639
2025-06-25T13:16:26
2025-06-25T13:19:33
2025-06-25T13:16:33
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,172,645,391
7,638
Add ignore_decode_errors option to Image feature for robust decoding #7612
This PR implements support for robust image decoding in the `Image` feature, as discussed in issue #7612. ## 🔧 What was added - A new boolean field: `ignore_decode_errors` (default: `False`) - If set to `True`, any exceptions during decoding will be caught, and `None` will be returned instead of raising an error ```python features = Features({ "image": Image(decode=True, ignore_decode_errors=True), }) ```` This enables robust iteration over potentially corrupted datasets — especially useful when streaming datasets like WebDataset or image-heavy public sets where sample corruption is common. ## 🧪 Behavior * If `ignore_decode_errors=False` (default), decoding behaves exactly as before * If `True`, decoding errors are caught, and a warning is emitted: ``` [Image.decode_example] Skipped corrupted image: ... ``` ## 🧵 Linked issue Closes #7612 Let me know if you'd like a follow-up test PR. Happy to write one!
open
https://github.com/huggingface/datasets/pull/7638
2025-06-24T16:47:51
2025-07-04T07:07:30
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,171,883,522
7,637
Introduce subset_name as an alias of config_name
### Feature request Add support for `subset_name` as an alias for `config_name` in the datasets library and related tools (such as loading scripts, documentation, and metadata). ### Motivation The Hugging Face Hub dataset viewer displays a column named **"Subset"**, which refers to what is currently technically called config_name in the datasets library. This inconsistency has caused confusion for many users, especially those unfamiliar with the internal terminology. I have repeatedly received questions from users trying to understand what "config" means, and why it doesn’t match what they see as "subset" on the Hub. Renaming everything to `subset_name` might be too disruptive, but introducing subset_name as a clear alias for config_name could significantly improve user experience without breaking backward compatibility. This change would: - Align terminology across the Hub UI and datasets codebase - Reduce user confusion, especially for newcomers - Make documentation and examples more intuitive
open
https://github.com/huggingface/datasets/issues/7637
2025-06-24T12:49:01
2025-07-01T16:08:33
null
{ "login": "albertvillanova", "id": 8515462, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,170,878,167
7,636
"open" in globals()["__builtins__"], an error occurs: "TypeError: argument of type 'module' is not iterable"
When I run the following code, an error occurs: "TypeError: argument of type 'module' is not iterable" ```python print("open" in globals()["__builtins__"]) ``` Traceback (most recent call last): File "./main.py", line 2, in <module> print("open" in globals()["__builtins__"]) ^^^^^^^^^^^^^^^^^^^^^^ TypeError: argument of type 'module' is not iterable But this code runs fine in datasets, I don't understand why [src/datasets/utils/patching.py#L96](https://github.com/huggingface/datasets/blob/3.6.0/src/datasets/utils/patching.py#L96)
open
https://github.com/huggingface/datasets/issues/7636
2025-06-24T08:09:39
2025-07-10T04:13:16
null
{ "login": "kuanyan9527", "id": 51187979, "type": "User" }
[]
false
[]
3,170,486,408
7,635
Fix: Preserve float columns in JSON loader when values are integer-like (e.g. 0.0, 1.0)
This PR fixes a bug in the JSON loader where columns containing float values like `[0.0, 1.0, 2.0]` were being implicitly coerced to `int`, due to pandas or Arrow type inference. This caused issues downstream in statistics computation (e.g., dataset-viewer) where such columns were incorrectly labeled as `"int"` instead of `"float"`. ### 🔍 What was happening: When the JSON loader falls back to `pandas_read_json()` (after `pa.read_json()` fails), pandas/Arrow can coerce float values to integers if all values are integer-like (e.g., `0.0 == 0`). ### ✅ What this PR does: - Adds a check in the fallback path of `_generate_tables()` - Ensures that columns made entirely of floats are preserved as `"float64"` even if they are integer-like (e.g. `0.0`, `1.0`) - This prevents loss of float semantics when creating the Arrow table ### 🧪 Reproducible Example: ```json [{"col": 0.0}, {"col": 1.0}, {"col": 2.0}] ```` Previously loaded as: * `int` Now correctly loaded as: * `float` Fixes #6937
open
https://github.com/huggingface/datasets/pull/7635
2025-06-24T06:16:48
2025-06-24T06:16:48
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,169,389,653
7,634
Replace Sequence by List
Sequence is just a utility that we need to keep for backward compatibility. And `[ ]` was used instead but doesn't allow passing the length of the list. This PR removes most mentions of Sequence and usage of `[ ]` and defines a proper List type instead. before: `Sequence(Value("int64"))` or `[Value("int64")]` now: `List(Value("int64"))` This PR conserves full backward compatibility. And it's a good occasion with the release of 4.0.0
closed
https://github.com/huggingface/datasets/pull/7634
2025-06-23T20:35:48
2025-06-25T13:59:13
2025-06-25T13:59:11
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,168,399,637
7,633
Proposal: Small Tamil Discourse Coherence Dataset.
I’m a beginner from NIT Srinagar proposing a dataset of 50 Tamil text pairs for discourse coherence (coherent/incoherent labels) to support NLP research in low-resource languages. - Size: 50 samples - Format: CSV with columns (text1, text2, label) - Use case: Training NLP models for coherence I’ll use GitHub’s web editor and Google Colab. Please confirm if this fits.
open
https://github.com/huggingface/datasets/issues/7633
2025-06-23T14:24:40
2025-06-23T14:24:40
null
{ "login": "bikkiNitSrinagar", "id": 66418501, "type": "User" }
[]
false
[]
3,168,283,589
7,632
Graceful Error Handling for cast_column("image", Image(decode=True)) in Hugging Face Datasets
### Feature request Currently, when using dataset.cast_column("image", Image(decode=True)), the pipeline throws an error and halts if any image in the dataset is invalid or corrupted (e.g., truncated files, incorrect formats, unreachable URLs). This behavior disrupts large-scale processing where a few faulty samples are common. reference : https://discuss.huggingface.co/t/handle-errors-when-loading-images-404-corrupted-etc/50318/5 https://discuss.huggingface.co/t/handling-non-existing-url-in-image-dataset-while-cast-column/69185 Proposed Feature Introduce a mechanism (e.g., a continue_on_error=True flag or global error handling mode) in Image(decode=True) that: Skips invalid images and sets them as None, or Logs the error but allows the rest of the dataset to be processed without interruption. Example Usage from datasets import load_dataset, Image dataset = load_dataset("my_dataset") dataset = dataset.cast_column("image", Image(decode=True, continue_on_error=True)) Benefits Ensures robust large-scale image dataset processing. Improves developer productivity by avoiding custom retry/error-handling code. Aligns with best practices in dataset preprocessing pipelines that tolerate minor data corruption. Potential Implementation Options Internally wrap the decoding in a try/except block. Return None or a placeholder on failure. Optionally allow custom error callbacks or logging. ### Motivation Robustness: Large-scale image datasets often contain a small fraction of corrupt files or unreachable URLs. Halting on the first error forces users to write custom workarounds or preprocess externally. Simplicity: A built-in flag removes boilerplate try/except logic around every decode step. Performance: Skipping invalid samples inline is more efficient than a two-pass approach (filter then decode). ### Your contribution 1. API Change Extend datasets.features.Image(decode=True) to accept continue_on_error: bool = False. 2. Behavior If continue_on_error=False (default), maintain current behavior: any decode error raises an exception. If continue_on_error=True, wrap decode logic in try/except: On success: store the decoded image. On failure: log a warning (e.g., via logging.warning) and set the field to None (or a sentinel value). 3. Optional Enhancements Allow a callback hook: Image(decode=True, continue_on_error=True, on_error=lambda idx, url, exc: ...) Emit metrics or counts of skipped images.
open
https://github.com/huggingface/datasets/issues/7632
2025-06-23T13:49:24
2025-07-08T06:52:53
null
{ "login": "ganiket19", "id": 37377515, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,165,127,657
7,631
Pass user-agent from DownloadConfig into fsspec storage_options
Fixes part of issue #6046 ### Problem The `user-agent` defined in `DownloadConfig` was not passed down to fsspec-based filesystems like `HfFileSystem`, which prevents proper identification/tracking of client requests. ### Solution Added support for injecting the `user-agent` into `storage_options["headers"]` within `_prepare_single_hop_path_and_storage_options()` based on the `protocol`. Now, when using `hf://`, `http://`, or `https://`, the custom user-agent is passed automatically. ### Code Location Modified: - `src/datasets/utils/file_utils.py` Used `get_datasets_user_agent(...)` to ensure proper formatting and fallback logic.
open
https://github.com/huggingface/datasets/pull/7631
2025-06-21T14:22:25
2025-06-21T14:25:28
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,164,650,900
7,630
[bug] resume from ckpt skips samples if .map is applied
### Describe the bug resume from ckpt skips samples if .map is applied Maybe related: https://github.com/huggingface/datasets/issues/7538 ### Steps to reproduce the bug ```python from datasets import Dataset from datasets.distributed import split_dataset_by_node # Create dataset with map transformation def create_dataset(): ds = Dataset.from_dict({"id": list(range(100))}) ds = ds.to_iterable_dataset(num_shards=4) ds = ds.map(lambda x: x) #comment it out to get desired behavior ds = split_dataset_by_node(ds, rank=0, world_size=2) return ds ds = create_dataset() # Iterate and save checkpoint after 10 samples it = iter(ds) for idx, sample in enumerate(it): if idx == 9: # Checkpoint after 10 samples checkpoint = ds.state_dict() print(f"Checkpoint saved at sample: {sample['id']}") break # Continue with original iterator original_next_samples = [] for idx, sample in enumerate(it): original_next_samples.append(sample["id"]) if idx >= 4: break # Resume from checkpoint ds_new = create_dataset() ds_new.load_state_dict(checkpoint) # Get samples from resumed iterator it_new = iter(ds_new) resumed_next_samples = [] for idx, sample in enumerate(it_new): resumed_next_samples.append(sample["id"]) if idx >= 4: break print(f"\nExpected next samples: {original_next_samples}") print(f"Actual next samples: {resumed_next_samples}") print( f"\n❌ BUG: {resumed_next_samples[0] - original_next_samples[0]} samples were skipped!" ) ``` With map ``` Checkpoint saved at sample: 9 Expected next samples: [10, 11, 12, 13, 14] Actual next samples: [50, 51, 52, 53, 54] ❌ BUG: 40 samples were skipped! ``` ### Expected behavior without map ``` Expected next samples: [10, 11, 12, 13, 14] Actual next samples: [10, 11, 12, 13, 14] ❌ BUG: 0 samples were skipped! ``` ### Environment info datasets == 3.6.0
open
https://github.com/huggingface/datasets/issues/7630
2025-06-21T01:50:03
2025-06-29T07:51:32
null
{ "login": "felipemello1", "id": 23004953, "type": "User" }
[]
false
[]
3,161,169,782
7,629
Add test for `as_iterable_dataset()` method in DatasetBuilder
This PR adds a test for the new `as_iterable_dataset()` method introduced in PR #7628. The test: - Loads a builder using `load_dataset_builder("c4", "en")` - Runs `download_and_prepare()` - Streams examples using `builder.as_iterable_dataset(split="train[:100]")` - Verifies streamed examples contain the "text" field This ensures that the builder correctly streams data from cached Arrow files.
open
https://github.com/huggingface/datasets/pull/7629
2025-06-19T19:23:55
2025-06-19T19:23:55
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,161,156,461
7,628
Add `as_iterable_dataset()` method to DatasetBuilder for streaming from cached Arrow files
This PR implements `builder.as_iterable_dataset(split=...)` as discussed in #5481. It allows users to load an `IterableDataset` directly from cached Arrow files (using ArrowReader and ArrowExamplesIterable), without loading the full dataset into memory. This is useful for large-scale training scenarios where memory is constrained. A test has also been added in `test_builder.py`. Related to: #5481
open
https://github.com/huggingface/datasets/pull/7628
2025-06-19T19:15:41
2025-06-19T19:15:41
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,160,544,390
7,627
Creating a HF Dataset from lakeFS with S3 storage takes too much time!
Hi, I’m new to HF dataset and I tried to create datasets based on data versioned in **lakeFS** _(**MinIO** S3 bucket as storage backend)_ Here I’m using ±30000 PIL image from MNIST data however it is taking around 12min to execute, which is a lot! From what I understand, it is loading the images into cache then building the dataset. – Please find bellow the execution screenshot – Is there a way to optimize this or am I doing something wrong? Thanks! ![Image](https://github.com/user-attachments/assets/c79257c8-f023-42a9-9e6f-0898b3ea93fe)
closed
https://github.com/huggingface/datasets/issues/7627
2025-06-19T14:28:41
2025-06-23T12:39:10
2025-06-23T12:39:10
{ "login": "Thunderhead-exe", "id": 118734142, "type": "User" }
[]
false
[]
3,159,322,138
7,626
feat(map): reuse unchanged columns when input_columns specified to reduce disk usage (#6013)
## Summary This PR addresses [#6013](https://github.com/huggingface/datasets/issues/6013) by reusing unchanged columns from the original dataset in the `map()` method when `input_columns` is specified. ## What’s Implemented - Injected logic at the end of `Dataset.map()` to: - Identify untouched columns not in `input_columns` or `remove_columns` - Select those columns from the original dataset - Concatenate them with the transformed result using `pyarrow.concat_tables` ## Example Behavior ```python ds = Dataset.from_dict({"a": [1, 2], "b": [3, 4]}) ds2 = ds.map(lambda x: {"c": x["a"] + 10}, input_columns=["a"], remove_columns=["a"]) print(ds2.column_names) # Output: ['b', 'c'] ```` Column `b` is reused from the original dataset. ## Notes * This keeps disk usage and caching minimal by avoiding full dataset duplication. * Only triggered when `input_columns` is set. --- cc @lhoestq @mariosasko for review 🙂
open
https://github.com/huggingface/datasets/pull/7626
2025-06-19T07:41:45
2025-07-18T17:36:35
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,159,016,001
7,625
feat: Add h5folder dataset loader for HDF5 support
### Related Issue Closes #3113 ### What does this PR do? This PR introduces a new dataset loader module called **`h5folder`** to support loading datasets stored in **HDF5 (.h5)** format. It allows users to do: ```python from datasets import load_dataset dataset = load_dataset("h5folder", data_dir="path/to/") ```` ### 🧩 Design Overview * Implemented inside `datasets/packaged_modules/h5folder/h5folder.py` * Based on the `GeneratorBasedBuilder` API * Uses `h5py` to read HDF5 files and yield examples * Expects datasets such as `id`, `data`, and `label` inside `data.h5` * Converts numpy arrays to Python types before yielding ### 🧪 Example `.h5` Structure (for local testing) ```python import h5py import numpy as np with h5py.File("data.h5", "w") as f: f.create_dataset("id", data=np.arange(100)) f.create_dataset("data", data=np.random.randn(100, 10)) f.create_dataset("label", data=np.random.randint(0, 2, size=100)) ``` ### ✅ Testing - The loader logic follows the structure of existing modules like `imagefolder` - Will rely on Hugging Face CI to validate integration - Manually testing planned once merged or during feedback ### 📁 Files Added * `datasets/src/datasets/packaged_modules/h5folder/h5folder.py` ### 📌 Component(s) Affected * `area/datasets` * `area/load` ### 📦 Release Note Classification * `rn/feature` – Adds support for loading `.h5` datasets via `load_dataset("h5folder", ...)` --- Let me know if any changes or improvements are needed — happy to iterate. Thanks for reviewing!
open
https://github.com/huggingface/datasets/pull/7625
2025-06-19T05:39:10
2025-06-26T05:44:26
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,156,136,624
7,624
#Dataset Make "image" column appear first in dataset preview UI
Hi! #Dataset I’m currently uploading a dataset that includes an `"image"` column (PNG files), along with some metadata columns. The dataset is loaded from a .jsonl file. My goal is to have the "image" column appear as the first column in the dataset card preview UI on the :hugs: Hub. However, at the moment, the `"image"` column is not the first—in fact, it appears last, which is not ideal for the presentation I’d like to achieve. I have a couple of questions: Is there a way to force the dataset card to display the `"image"` column first? Is there currently any way to control or influence the column order in the dataset preview UI? Does the order of keys in the .jsonl file or the features argument affect the display order? Thanks again for your time and help! :blush:
closed
https://github.com/huggingface/datasets/issues/7624
2025-06-18T09:25:19
2025-06-20T07:46:43
2025-06-20T07:46:43
{ "login": "jcerveto", "id": 98875217, "type": "User" }
[]
false
[]
3,154,519,684
7,623
fix: raise error in FolderBasedBuilder when data_dir and data_files are missing
### Related Issues/PRs Fixes #6152 --- ### What changes are proposed in this pull request? This PR adds a dedicated validation check in the `_info()` method of the `FolderBasedBuilder` class to ensure that users provide either `data_dir` or `data_files` when loading folder-based datasets (such as `audiofolder`, `imagefolder`, etc.). --- ### Why this change? Previously, when calling: ```python load_dataset("audiofolder") ```` without specifying `data_dir` or `data_files`, the loader would silently fallback to the **current working directory**, leading to: * Long loading times * Unexpected behavior (e.g., scanning unrelated files) This behavior was discussed in issue #6152. As suggested by maintainers, the fix has now been implemented directly inside the `FolderBasedBuilder._info()` method — keeping the logic localized to the specific builder instead of a generic loader function. --- ### How is this PR tested? * ✅ Manually tested by calling `load_dataset("audiofolder")` with no `data_dir` or `data_files` → a `ValueError` is now raised early. * ✅ Existing functionality (with valid input) remains unaffected. --- ### Does this PR require documentation update? * [x] No --- ### Release Notes #### Is this a user-facing change? * [x] Yes > Folder-based datasets now raise an explicit error if neither `data_dir` nor `data_files` are specified, preventing unintended fallback to the current working directory. --- #### What component(s) does this PR affect? * [x] `area/datasets` * [x] `area/load` --- <a name="release-note-category"></a> #### How should the PR be classified? * [x] `rn/bug-fix` - A user-facing bug fix --- #### Should this be included in the next patch release? * [x] Yes
closed
https://github.com/huggingface/datasets/pull/7623
2025-06-17T19:16:34
2025-06-18T14:18:41
2025-06-18T14:18:41
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,154,398,557
7,622
Guard against duplicate builder_kwargs/config_kwargs in load_dataset_…
…builder (#4910 ) ### What does this PR do? Fixes edge case in `load_dataset_builder` by raising a `TypeError` if the same key exists in both `builder_kwargs` and `config_kwargs`. ### Implementation details - Added a guard clause in `load_dataset_builder` to detect duplicate keys between `builder_kwargs` and `config_kwargs` - Wrote a unit test in `tests/test_load_duplicate_keys.py` to verify the exception is raised correctly ### Fixes Closes #4910 ### Reviewers @zach-huggingface @SunMarc Would appreciate your review if you have time - thanks!
closed
https://github.com/huggingface/datasets/pull/7622
2025-06-17T18:28:35
2025-07-23T14:06:20
2025-07-23T14:06:20
{ "login": "Shohail-Ismail", "id": 149825575, "type": "User" }
[]
true
[]
3,153,780,963
7,621
minor docs data aug
null
closed
https://github.com/huggingface/datasets/pull/7621
2025-06-17T14:46:57
2025-06-17T14:50:28
2025-06-17T14:47:11
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,153,565,183
7,620
Fixes in docs
before release 4.0 (I also did minor improvements to `features` to not show their `id=None` in their `__repr__()`)
closed
https://github.com/huggingface/datasets/pull/7620
2025-06-17T13:41:54
2025-06-17T13:58:26
2025-06-17T13:58:24
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,153,058,517
7,619
`from_list` fails while `from_generator` works for large datasets
### Describe the bug I am constructing a large time series dataset and observed that first constructing a list of entries and then using `Dataset.from_list` led to a crash as the number of items became large. However, this is not a problem when using `Dataset.from_generator`. ### Steps to reproduce the bug #### Snippet A (crashes) ```py from tqdm.auto import tqdm import numpy as np import datasets def data_generator(): for i in tqdm(range(10_000_000)): length = np.random.randint(2048) series = np.random.rand(length) yield {"target": series, "item_id": str(i), "start": np.datetime64("2000", "ms")} data_list = list(data_generator()) ds = datasets.Dataset.from_list(data_list) ``` The last line crashes with ``` ArrowInvalid: Value 2147483761 too large to fit in C integer type ``` #### Snippet B (works) ```py from tqdm.auto import tqdm import numpy as np import datasets def data_generator(): for i in tqdm(range(10_000_000)): length = np.random.randint(2048) series = np.random.rand(length) yield {"target": series, "item_id": str(i), "start": np.datetime64("2000", "ms")} ds = datasets.Dataset.from_generator(data_generator) ``` ### Expected behavior I expected both the approaches to work or to fail similarly. ### Environment info ``` - `datasets` version: 3.6.0 - Platform: Linux-6.8.0-1029-aws-x86_64-with-glibc2.35 - Python version: 3.11.11 - `huggingface_hub` version: 0.32.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2025.3.0 ```
open
https://github.com/huggingface/datasets/issues/7619
2025-06-17T10:58:55
2025-06-29T16:34:44
null
{ "login": "abdulfatir", "id": 4028948, "type": "User" }
[]
false
[]
3,148,912,897
7,618
fix: raise error when folder-based datasets are loaded without data_dir or data_files
### Related Issues/PRs <!-- Uncomment 'Resolve' if this PR can close the linked items. --> <!-- Resolve --> #6152 --- ### What changes are proposed in this pull request? This PR adds an early validation step for folder-based datasets (like `audiofolder`) to prevent silent fallback behavior. **Before this fix**: - When `data_dir` or `data_files` were not provided, the loader defaulted to the current working directory. - This caused unexpected behavior like: - Long loading times - Scanning unintended local files **Now**: - If both `data_dir` and `data_files` are missing, a `ValueError` is raised early with a helpful message. --- ### How is this PR tested? - [x] Manual test via `load_dataset("audiofolder")` with missing `data_dir` - [ ] Existing unit tests (should not break any) - [ ] New tests (if needed, maintainers can guide) --- ### Does this PR require documentation update? - [x] No. You can skip the rest of this section. --- ### Release Notes #### Is this a user-facing change? - [x] Yes. Give a description of this change to be included in the release notes for users. > Adds early error handling for folder-based datasets when neither `data_dir` nor `data_files` is specified, avoiding unintended resolution to the current directory. #### What component(s), interfaces, languages, and integrations does this PR affect? Components: - [x] `area/datasets` - [x] `area/load` --- <a name="release-note-category"></a> #### How should the PR be classified in the release notes? Choose one: - [x] `rn/bug-fix` - A user-facing bug fix worth mentioning in the release notes --- #### Should this PR be included in the next patch release? - [x] Yes (this PR will be cherry-picked and included in the next patch release)
open
https://github.com/huggingface/datasets/pull/7618
2025-06-16T07:43:59
2025-06-16T12:13:26
null
{ "login": "ArjunJagdale", "id": 142811259, "type": "User" }
[]
true
[]
3,148,102,085
7,617
Unwanted column padding in nested lists of dicts
```python from datasets import Dataset dataset = Dataset.from_dict({ "messages": [ [ {"a": "...",}, {"b": "...",}, ], ] }) print(dataset[0]) ``` What I get: ``` {'messages': [{'a': '...', 'b': None}, {'a': None, 'b': '...'}]} ``` What I want: ``` {'messages': [{'a': '...'}, {'b': '...'}]} ``` Is there an easy way to automatically remove these auto-filled null/none values? If not, I probably need a recursive none exclusion function, don't I? Datasets 3.6.0
closed
https://github.com/huggingface/datasets/issues/7617
2025-06-15T22:06:17
2025-06-16T13:43:31
2025-06-16T13:43:31
{ "login": "qgallouedec", "id": 45557362, "type": "User" }
[]
false
[]
3,144,506,665
7,616
Torchcodec decoding
Closes #7607 ## New signatures ### Audio ```python Audio(sampling_rate: Optional[int] = None, mono: bool = True, decode: bool = True, stream_index: Optional[int] = None) Audio.encode_example(self, value: Union[str, bytes, bytearray, dict, "AudioDecoder"]) -> dict Audio.decode_example(self, value: dict, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None) -> "AudioDecoder": ``` ### Video ```python Video(decode: bool = True, stream_index: Optional[int] = None, dimension_order: Literal['NCHW', 'NHWC'] = 'NCHW', num_ffmpeg_threads: int = 1, device: Optional[Union[str, "torch.device"]] = 'cpu', seek_mode: Literal['exact', 'approximate'] = 'exact') Video.encode_example(self, value: Union[str, bytes, bytearray, Example, np.ndarray, "VideoDecoder"]) -> Example: Video.decode_example(self, value: Union[str, Example], token_per_repo_id: Optional[dict[str, Union[bool, str]]] = None, ) -> "VideoDecoder": ``` ## Notes Audio features constructor takes in 1 new optional param stream_index which is passed to the AudioDecoder constructor to select the stream index of a file. Audio feature can now take in torchcodec.decoders.AudioDecoder as input to encode_example() Audio feature decode_example() returns torchcodec.decoders.AudioDecoder Video feature constructor takes in 5 new optional params stream_index, dimension_order, num_ffmpeg_threads, device, seek_mode all of which are passed to VideoDecoder constructor Video feature decode_example() returns torchcodec.decoders.VideoDecoder Video feature can now take in torchcodec.decoders.VideoDecoder as input to encode_example() All test cases have been updated to reflect these changes All documentation has also been updated to reflect these changes. Both VideoDecoder and AudioDecoder when formatted with (np_formatter, tf_formatter, etc) will ignore the type and return themselves. Formatting test cases were updated accordingly to reflect this. (Pretty simple to make this not the case if we want though) ## Errors This test case from `tests/packaged_modules/test_audiofolder.py` ```python @require_librosa @require_sndfile @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_archives(streaming, cache_dir, data_files_with_zip_archives): audiofolder = AudioFolder(data_files=data_files_with_zip_archives, cache_dir=cache_dir) audiofolder.download_and_prepare() datasets = audiofolder.as_streaming_dataset() if streaming else audiofolder.as_dataset() for split, data_files in data_files_with_zip_archives.items(): num_of_archives = len(data_files) # the metadata file is inside the archive expected_num_of_audios = 2 * num_of_archives assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_audios # make sure each sample has its own audio (all arrays are different) and metadata assert ( sum(np.array_equal(dataset[0]["audio"].get_all_samples().data.numpy(), example["audio"].get_all_samples().data.numpy()) for example in dataset[1:]) == 0 ) assert len({example["text"] for example in dataset}) == expected_num_of_audios assert all(example["text"] is not None for example in dataset) ``` Fails now because AudioDecoder needs to access the files after the lines below are run, but there seems to be some context issues. The file the decoder is trying to read is closed before the decoder gets the chance to decode it. ```python audiofolder.download_and_prepare() datasets = audiofolder.as_streaming_dataset() if streaming else audiofolder.as_dataset() ```
closed
https://github.com/huggingface/datasets/pull/7616
2025-06-13T19:06:07
2025-06-19T18:25:49
2025-06-19T18:25:49
{ "login": "TyTodd", "id": 49127578, "type": "User" }
[]
true
[]
3,143,443,498
7,615
remove unused code
null
closed
https://github.com/huggingface/datasets/pull/7615
2025-06-13T12:37:30
2025-06-13T12:39:59
2025-06-13T12:37:40
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,143,381,638
7,614
Lazy column
Same as https://github.com/huggingface/datasets/pull/7564 but for `Dataset`, cc @TopCoder2K FYI e.g. `ds[col]` now returns a lazy Column instead of a list This way calling `ds[col][idx]` only loads the required data in memory (bonus: also supports subfields access with `ds[col][subcol][idx]`) the breaking change will be for the next major release, which also includes removal of dataset scripts support close https://github.com/huggingface/datasets/issues/4180
closed
https://github.com/huggingface/datasets/pull/7614
2025-06-13T12:12:57
2025-06-17T13:08:51
2025-06-17T13:08:49
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,142,819,991
7,613
fix parallel push_to_hub in dataset_dict
null
closed
https://github.com/huggingface/datasets/pull/7613
2025-06-13T09:02:24
2025-06-13T12:30:23
2025-06-13T12:30:22
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,141,905,049
7,612
Provide an option of robust dataset iterator with error handling
### Feature request Adding an option to skip corrupted data samples. Currently the datasets behavior is throwing errors if the data sample if corrupted and let user aware and handle the data corruption. When I tried to try-catch the error at user level, the iterator will raise StopIteration when I called next() again. The way I try to do error handling is: (This doesn't work, unfortunately) ``` # Load the dataset with streaming enabled dataset = load_dataset( "pixparse/cc12m-wds", split="train", streaming=True ) # Get an iterator from the dataset iterator = iter(dataset) while True: try: # Try to get the next example example = next(iterator) # Try to access and process the image image = example["jpg"] pil_image = Image.fromarray(np.array(image)) pil_image.verify() # Verify it's a valid image file except StopIteration: # Code path 1 print("\nStopIteration was raised! Reach the end of dataset") raise StopIteration except Exception as e: # Code path 2 errors += 1 print("Error! Skip this sample") cotinue else: successful += 1 ``` This is because the `IterableDataset` already throws an error (reaches Code path 2). And if I continue call next(), it will hit Code path 1. This is because the inner iterator of `IterableDataset`([code](https://github.com/huggingface/datasets/blob/89bd1f971402acb62805ef110bc1059c38b1c8c6/src/datasets/iterable_dataset.py#L2242)) as been stopped, so calling next() on it will raise StopIteration. So I can not skip the corrupted data sample in this way. Would also love to hear any suggestions about creating a robust dataloader. Thanks for your help in advance! ### Motivation ## Public dataset corruption might be common A lot of users would use public dataset, and the public dataset might contains some corrupted data, especially for dataset with image / video etc. I totally understand it's dataset owner and user's responsibility to ensure the data integrity / run data cleaning or preprocessing, but it would be easier for developers who would use the dataset ## Use cases For example, a robust dataloader would be easy for users who want to try quick tests on different dataset, and chose one dataset which fits their needs. So user could use IterableDataloader with `stream=True` to use the dataset easily without downloading and removing corrupted data samples from the dataset. ### Your contribution The error handling might not trivial and might need more careful design.
open
https://github.com/huggingface/datasets/issues/7612
2025-06-13T00:40:48
2025-06-24T16:52:30
null
{ "login": "wwwjn", "id": 40016222, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,141,383,940
7,611
Code example for dataset.add_column() does not reflect correct way to use function
https://github.com/huggingface/datasets/blame/38d4d0e11e22fdbc4acf373d2421d25abeb43439/src/datasets/arrow_dataset.py#L5925C10-L5925C10 The example seems to suggest that dataset.add_column() can add column inplace, however, this is wrong -- it cannot. It returns a new dataset with the column added to it.
closed
https://github.com/huggingface/datasets/issues/7611
2025-06-12T19:42:29
2025-07-17T13:14:18
2025-07-17T13:14:18
{ "login": "shaily99", "id": 31388649, "type": "User" }
[]
false
[]
3,141,281,560
7,610
i cant confirm email
### Describe the bug This is dificult, I cant confirm email because I'm not get any email! I cant post forum because I cant confirm email! I can send help desk because... no exist on web page. paragraph 44 ### Steps to reproduce the bug rthjrtrt ### Expected behavior ewtgfwetgf ### Environment info sdgfswdegfwe
open
https://github.com/huggingface/datasets/issues/7610
2025-06-12T18:58:49
2025-06-27T14:36:47
null
{ "login": "lykamspam", "id": 187984415, "type": "User" }
[]
false
[]
3,140,373,128
7,609
Update `_dill.py` to use `co_linetable` for Python 3.10+ in place of `co_lnotab`
Not 100% about this one, but it seems to be recommended. ``` /fsx/qgallouedec/miniconda3/envs/trl/lib/python3.12/site-packages/datasets/utils/_dill.py:385: DeprecationWarning: co_lnotab is deprecated, use co_lines instead. ``` Tests pass locally. And the warning is gone with this change. https://peps.python.org/pep-0626/#backwards-compatibility
closed
https://github.com/huggingface/datasets/pull/7609
2025-06-12T13:47:01
2025-06-16T12:14:10
2025-06-16T12:14:08
{ "login": "qgallouedec", "id": 45557362, "type": "User" }
[]
true
[]
3,137,564,259
7,608
Tests typing and fixes for push_to_hub
todo: - [x] fix TestPushToHub.test_push_dataset_dict_to_hub_iterable_num_proc
closed
https://github.com/huggingface/datasets/pull/7608
2025-06-11T17:13:52
2025-06-12T21:15:23
2025-06-12T21:15:21
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,135,722,560
7,607
Video and audio decoding with torchcodec
### Feature request Pytorch is migrating video processing to torchcodec and it's pretty cool. It would be nice to migrate both the audio and video features to use torchcodec instead of torchaudio/video. ### Motivation My use case is I'm working on a multimodal AV model, and what's nice about torchcodec is I can extract the audio tensors directly from MP4 files. Also, I can easily resample video data to whatever fps I like on the fly. I haven't found an easy/efficient way to do this with torchvision. ### Your contribution I’m modifying the Video dataclass to use torchcodec in place of the current backend, starting from a stable commit for a project I’m working on. If it ends up working well, I’m happy to open a PR on main.
closed
https://github.com/huggingface/datasets/issues/7607
2025-06-11T07:02:30
2025-06-19T18:25:49
2025-06-19T18:25:49
{ "login": "TyTodd", "id": 49127578, "type": "User" }
[ { "name": "enhancement", "color": "a2eeef" } ]
false
[]
3,133,848,546
7,606
Add `num_proc=` to `.push_to_hub()` (Dataset and IterableDataset)
null
closed
https://github.com/huggingface/datasets/pull/7606
2025-06-10T14:35:10
2025-06-11T16:47:28
2025-06-11T16:47:25
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,131,636,882
7,605
Make `push_to_hub` atomic (#7600)
null
closed
https://github.com/huggingface/datasets/pull/7605
2025-06-09T22:29:38
2025-06-23T19:32:08
2025-06-23T19:32:08
{ "login": "sharvil", "id": 391004, "type": "User" }
[]
true
[]
3,130,837,169
7,604
Docs and more methods for IterableDataset: push_to_hub, to_parquet...
to_csv, to_json, to_sql, to_pandas, to_polars, to_dict, to_list
closed
https://github.com/huggingface/datasets/pull/7604
2025-06-09T16:44:40
2025-06-10T13:15:23
2025-06-10T13:15:21
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,130,394,563
7,603
No TF in win tests
null
closed
https://github.com/huggingface/datasets/pull/7603
2025-06-09T13:56:34
2025-06-09T15:33:31
2025-06-09T15:33:30
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
3,128,758,924
7,602
Enhance error handling and input validation across multiple modules
This PR improves the robustness and user experience by: 1. **Audio Module**: - Added clear error messages when required fields ('path' or 'bytes') are missing in audio encoding 2. **DatasetDict**: - Enhanced key access error messages to show available splits when an invalid key is accessed 3. **NonMutableDict**: - Added input validation for the update() method to ensure proper mapping types 4. **Arrow Reader**: - Improved error messages for small dataset percentage splits with suggestions for alternatives 5. **FaissIndex**: - Strengthened input validation with descriptive error messages - Added proper type checking and shape validation for search queries These changes make the code more maintainable and user-friendly by providing actionable feedback when issues arise.
open
https://github.com/huggingface/datasets/pull/7602
2025-06-08T23:01:06
2025-06-08T23:01:06
null
{ "login": "mohiuddin-khan-shiam", "id": 147746955, "type": "User" }
[]
true
[]
3,127,296,182
7,600
`push_to_hub` is not concurrency safe (dataset schema corruption)
### Describe the bug Concurrent processes modifying and pushing a dataset can overwrite each others' dataset card, leaving the dataset unusable. Consider this scenario: - we have an Arrow dataset - there are `N` configs of the dataset - there are `N` independent processes operating on each of the individual configs (e.g. adding a column, `new_col`) - each process calls `push_to_hub` on their particular config when they're done processing - all calls to `push_to_hub` succeed - the `README.md` now has some configs with `new_col` added and some with `new_col` missing Any attempt to load a config (using `load_dataset`) where `new_col` is missing will fail because of a schema mismatch between `README.md` and the Arrow files. Fixing the dataset requires updating `README.md` by hand with the correct schema for the affected config. In effect, `push_to_hub` is doing a `git push --force` (I found this behavior quite surprising). We have hit this issue every time we run processing jobs over our datasets and have to fix corrupted schemas by hand. Reading through the code, it seems that specifying a [`parent_commit`](https://github.com/huggingface/huggingface_hub/blob/v0.32.4/src/huggingface_hub/hf_api.py#L4587) hash around here https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L5794 would get us to a normal, non-forced git push, and avoid schema corruption. I'm not familiar enough with the code to know how to determine the commit hash from which the in-memory dataset card was loaded. ### Steps to reproduce the bug See above. ### Expected behavior Concurrent edits to disjoint configs of a dataset should never corrupt the dataset schema. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-5.15.0-118-generic-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.2 - `fsspec` version: 2023.9.0
closed
https://github.com/huggingface/datasets/issues/7600
2025-06-07T17:28:56
2025-06-23T19:36:37
2025-06-23T19:36:37
{ "login": "sharvil", "id": 391004, "type": "User" }
[]
false
[]
3,125,620,119
7,599
My already working dataset (when uploaded few months ago) now is ignoring metadata.jsonl
### Describe the bug Hi everyone, I uploaded my dataset https://huggingface.co/datasets/PRAIG/SMB a few months ago while I was waiting for a conference acceptance response. Without modifying anything in the dataset repository now the Dataset viewer is not rendering the metadata.jsonl annotations, neither it is being downloaded when using load_dataset. Can you please help? Thank you in advance. ### Steps to reproduce the bug from datasets import load_dataset ds = load_dataset("PRAIG/SMB") ds = ds["train"] ### Expected behavior It is expected to have all the metadata available in the jsonl file. Fields like: "score_id", "original_width", "original_height", "regions"... among others. ### Environment info datasets==3.6.0, python 3.13.3 (but he problem is already in the huggingface dataset page)
closed
https://github.com/huggingface/datasets/issues/7599
2025-06-06T18:59:00
2025-06-16T15:18:00
2025-06-16T15:18:00
{ "login": "JuanCarlosMartinezSevilla", "id": 97530443, "type": "User" }
[]
false
[]
3,125,184,457
7,598
fix string_to_dict usage for windows
null
closed
https://github.com/huggingface/datasets/pull/7598
2025-06-06T15:54:29
2025-06-06T16:12:22
2025-06-06T16:12:21
{ "login": "lhoestq", "id": 42851186, "type": "User" }
[]
true
[]
End of preview. Expand in Data Studio

This dataset was created as part of Hugging Face Laern tutorial.

Downloads last month
8