|
--- |
|
license: other |
|
license_name: lo-license |
|
license_link: >- |
|
https://customers.livingoptics.com/hubfs/Outbound/Legal/Living%20Optics%20EULA.pdf |
|
task_categories: |
|
- image-segmentation |
|
- image-classification |
|
language: |
|
- en |
|
tags: |
|
- forensics |
|
- blood detection |
|
- blood classification |
|
- hyperspectral |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# Living Optics Forensics Dataset |
|
|
|
 |
|
|
|
## Overview |
|
|
|
This dataset contains **224 images** captured during a **forensics application investigation** using the **Living Optics Camera**. |
|
|
|
The data includes: |
|
- **RGB images** |
|
- **Sparse spectral samples** |
|
- **Instance segmentation masks** |
|
- **White reference spectra** |
|
- **Libary spectra** |
|
|
|
It is derived from over **200 unique raw files**, corresponding to 224 frames. The dataset has **not** been split into training/validation sets — the choice of split is left to the developer. |
|
|
|
Annotation example can be seen below: |
|
|
|
 |
|
|
|
|
|
### Contents |
|
- **249 instances** of horse blood captured on various surfaces. |
|
- **167 instances** of blood confusers (e.g., fake blood, ketchup) across **22 different surfaces**. |
|
- A **total of 416 labeled instances**. |
|
|
|
Additionally, the dataset contains **library spectra** captured with a spectrometer covering the wavelength range **350–1000 nm**, sampled at a higher resolution than the Living Optics camera. |
|
These spectra can be used for: |
|
- Spectral lookup–style algorithms |
|
- Outlier filtering |
|
- **Negative sampling** when spectra do not fall within labeled segmentation masks |
|
|
|
Extra **unlabeled data** is available upon request. |
|
|
|
## Classes |
|
|
|
The dataset contains **25 classes**: |
|
|
|
| ID | Class Name | |
|
|-------|------------| |
|
| 104 | Horse blood (sample) | |
|
| 103 | Tomato ketchup (sample) | |
|
| 106 | Red food dye (sample) | |
|
| 107 | Fake blood (sample) | |
|
| 1015 | 100% Cotton Shirt (White) (surface) | |
|
| 1013 | 100% Cotton Shirt (Black) (surface) | |
|
| 1012 | Light Fabric Lined Plywood (EF64) – 3 mm (surface) | |
|
| 1010 | PVC (EF9) Black Plywood – 3 mm (surface) | |
|
| 1007 | PVC (EF50) Light Woodgrain Plywood – 3 mm (surface) | |
|
| 1016 | 100% Cotton Shirt (Brown) (surface) | |
|
| 1011 | Normal Plywood – 3 mm (surface) | |
|
| 1008 | PVC Walnut Woodgrain Plywood (EF326) – 3 mm (surface) | |
|
| 1006 | PVC Leather (Black) (surface) | |
|
| 1005 | PVC Leather (White) (surface) | |
|
| 1004 | PVC Leather (Brown) (surface) | |
|
| 1003 | PVC Leather (Red) (surface) | |
|
| 1019 | Skinny Jeans (Light Blue) (surface) | |
|
| 1024 | Dri-fit Shirt (Brown) (surface) | |
|
| 1022 | Dri-fit Shirt (White) (surface) | |
|
| 1018 | Skinny Jeans (Black) (surface) | |
|
| 1017 | Skinny Jeans (Grey) (surface) | |
|
| 1021 | Dri-fit Shirt (Red) (surface) | |
|
| 1020 | Skinny Jeans (Dark Blue) (surface) | |
|
| 1009 | PVC White Plywood – 3 mm (surface) | |
|
| 1023 | Dri-fit Shirt (Black) (surface) | |
|
| 1014 | 100% Cotton Shirt (Maroon) (surface) | |
|
|
|
Unlabeled or background regions can be grouped into a single `"background"` class. |
|
|
|
## Visualization |
|
|
|
 |
|
|
|
## Requirements |
|
|
|
- [lo-sdk](https://cloud.livingoptics.com/) |
|
- [datareader](https://github.com/livingoptics/datareader.git) |
|
|
|
|
|
## Download instructions |
|
|
|
You can access this dataset via the [Living Optics Cloud Portal](https://cloud.livingoptics.com/shared-resources?downloadFile=data%2Fannotated-datasets%2FForensics-Dataset.zip). |
|
|
|
See our [Spatial Spectral ML](https://github.com/livingoptics/spatial-spectral-ml) project for an example of how to train and run a segmentation and spectral classification algoirthm using this dataset. |
|
|
|
## Usage |
|
|
|
```python |
|
import os |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from lo_dataset_reader import DatasetReader, spectral_coordinate_indices_in_mask, rle_to_mask |
|
|
|
os.environ["QT_QPA_PLATFORM"] = "xcb" |
|
|
|
dataset_path = "/path/to/dataset" |
|
dataset = DatasetReader(dataset_path, display_fig=True) |
|
|
|
for idx, ((info, scene, spectra, unit, images_extern), (converted_spectra, converted_unit), annotations, library_spectra, labels) in enumerate(dataset): |
|
for ann_idx, annotation in enumerate(annotations): |
|
annotation["labels"] = labels |
|
|
|
# Visualise the annotation on the scene |
|
dataset.save_annotation_visualisation(scene, annotation, images_extern, ann_idx) |
|
|
|
# Get spectrum stats from annotation |
|
stats = annotation.get("extern", {}).get("stats", {}) |
|
label = stats.get("category") |
|
mean_radiance_spectrum = stats.get("mean_radiance_spectrum") |
|
mean_reflectance_spectrum = stats.get("mean_reflectance_spectrum") |
|
|
|
# Get mask and spectral indices |
|
mask = rle_to_mask(annotation["segmentation"], scene.shape) |
|
spectral_indices = spectral_coordinate_indices_in_mask(mask, info.sampling_coordinates) |
|
|
|
# Extract spectra and converted spectra |
|
spec = spectra[spectral_indices, :] |
|
if converted_spectra is not None: |
|
conv_spec = converted_spectra[spectral_indices, :] |
|
else: |
|
conv_spec = None |
|
|
|
# X-axis based on band index or wavelengths (optional) |
|
x = np.arange(spec.shape[1]) |
|
if stats.get("wavelength_min") is not None and stats.get("wavelength_max") is not None: |
|
x = np.linspace(stats["wavelength_min"], stats["wavelength_max"], spec.shape[1]) |
|
|
|
# Determine plot layout |
|
if converted_spectra is not None: |
|
fig, axs = plt.subplots(2, 2, figsize=(12, 8)) |
|
axs_top = axs[0] |
|
axs_bottom = axs[1] |
|
else: |
|
fig, axs_top = plt.subplots(1, 2, figsize=(12, 4)) |
|
print(f"Warning: No converted_spectra for annotation '{label}'") |
|
|
|
unit_label = unit.capitalize() if unit else "Radiance" |
|
|
|
# (1,1) Individual spectra |
|
for s in spec: |
|
axs_top[0].plot(x, s, alpha=0.3) |
|
axs_top[0].set_title(f"{unit_label.capitalize()} Spectra") |
|
axs_top[0].set_xlabel("Wavelength") |
|
axs_top[0].set_ylabel(f"{unit_label.capitalize()}") |
|
|
|
# (1,2) Mean + Min/Max (Before conversion) |
|
if mean_radiance_spectrum is not None: |
|
spec_min = np.min(spec, axis=0) |
|
spec_max = np.max(spec, axis=0) |
|
axs_top[1].fill_between(x, spec_min, spec_max, color='lightblue', alpha=0.5, label='Min-Max Range') |
|
axs_top[1].plot(x, mean_radiance_spectrum, color='blue', label=f'Mean {unit_label.capitalize()}') |
|
axs_top[1].set_title(f"Extern Mean ± Range ({unit_label.capitalize()})") |
|
axs_top[1].set_xlabel("Wavelength") |
|
axs_top[1].set_ylabel(f"{unit_label.capitalize()}") |
|
axs_top[1].legend() |
|
|
|
# (2,1) and (2,2) Only if converted_spectra is available |
|
if converted_spectra is not None and conv_spec is not None: |
|
for s in conv_spec: |
|
axs_bottom[0].plot(x, s, alpha=0.3) |
|
axs_bottom[0].set_title(f"{converted_unit} Spectra") |
|
axs_bottom[0].set_xlabel("Wavelength") |
|
axs_bottom[0].set_ylabel(f"{converted_unit}") |
|
|
|
if mean_reflectance_spectrum is not None: |
|
conv_min = np.min(conv_spec, axis=0) |
|
conv_max = np.max(conv_spec, axis=0) |
|
axs_bottom[1].fill_between(x, conv_min, conv_max, color='lightgreen', alpha=0.5, label='Min-Max Range') |
|
axs_bottom[1].plot(x, mean_reflectance_spectrum, color='green', label=f'Mean {converted_unit}') |
|
axs_bottom[1].set_title(f"Extern Mean ± Range ({converted_unit})") |
|
axs_bottom[1].set_xlabel("Wavelength") |
|
axs_bottom[1].set_ylabel(f"{converted_unit}") |
|
axs_bottom[1].legend() |
|
|
|
fig.suptitle(f"Annotation {label}", fontsize=16) |
|
plt.tight_layout() |
|
plt.show() |
|
``` |
|
|
|
For more details on the dataset format and reader see: [dataset format](https://github.com/livingoptics/datareader/blob/main/docs/lo_format_dataset.md) |
|
|
|
## Citation |
|
|
|
Raw data is available by request |