repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
666dzy666/micronet
|
micronet/compression/quantization/wbwtab/quantize.py
|
BinaryActivation.backward
|
python
|
def backward(self, grad_output):
(input,) = self.saved_tensors
grad_input = grad_output.clone()
grad_input[input.ge(1.0)] = 0
grad_input[input.le(-1.0)] = 0
return grad_input
|
#******************soft_ste*****************
size = input.size()
zeros = torch.zeros(size).cuda()
grad = torch.max(zeros, 1 - torch.abs(input))
grad_input = grad_output * grad
|
https://github.com/666dzy666/micronet/blob/c31cdd28ed72376e861704addf718ac485919621/micronet/compression/quantization/wbwtab/quantize.py#L22-L36
|
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
class BinaryActivation(Function):
@staticmethod
def forward(self, input):
self.save_for_backward(input)
output = torch.sign(input)
output[output == 0] = 1
return output
@staticmethod
|
MIT License
|
onshape-public/onshape-clients
|
python/onshape_client/oas/models/bt_parameter_spec_reference_table1520.py
|
BTParameterSpecReferenceTable1520.__init__
|
python
|
def __init__(
self,
_check_type=True,
_from_server=False,
_path_to_item=(),
_configuration=None,
**kwargs
):
self._data_store = {}
self._check_type = _check_type
self._from_server = _from_server
self._path_to_item = _path_to_item
self._configuration = _configuration
constant_args = {
"_check_type": _check_type,
"_path_to_item": _path_to_item,
"_from_server": _from_server,
"_configuration": _configuration,
}
required_args = {}
required_arg_names = list(required_args.keys())
for required_arg_name in required_arg_names:
if required_args[required_arg_name] is nulltype.Null:
del required_args[required_arg_name]
model_args = {}
model_args.update(required_args)
model_args.update(kwargs)
composed_info = validate_get_composed_info(constant_args, model_args, self)
self._composed_instances = composed_info[0]
self._var_name_to_model_instances = composed_info[1]
self._additional_properties_model_instances = composed_info[2]
unused_args = composed_info[3]
for var_name, var_value in required_args.items():
setattr(self, var_name, var_value)
for var_name, var_value in six.iteritems(kwargs):
if (
var_name in unused_args
and self._configuration is not None
and self._configuration.discard_unknown_keys
and not self._additional_properties_model_instances
):
continue
setattr(self, var_name, var_value)
|
bt_parameter_spec_reference_table1520.BTParameterSpecReferenceTable1520 - a model defined in OpenAPI
Keyword Args:
_check_type (bool): if True, values for parameters in openapi_types
will be type checked and a TypeError will be
raised if the wrong type is input.
Defaults to True
_path_to_item (tuple/list): This is a list of keys or values to
drill down to the model in received_data
when deserializing a response
_from_server (bool): True if the data is from the server
False if the data is from the client (default)
_configuration (Configuration): the instance to use when
deserializing a file_type parameter.
If passed, type conversion is attempted
If omitted no type conversion is done.
bt_type (str): [optional] # noqa: E501
additional_localized_strings (int): [optional] # noqa: E501
column_name (str): [optional] # noqa: E501
default_value (btm_parameter1.BTMParameter1): [optional] # noqa: E501
icon_uri (str): [optional] # noqa: E501
localizable_name (str): [optional] # noqa: E501
localized_name (str): [optional] # noqa: E501
parameter_id (str): [optional] # noqa: E501
parameter_name (str): [optional] # noqa: E501
strings_to_localize ([str]): [optional] # noqa: E501
ui_hint (str): [optional] # noqa: E501
ui_hints ([str]): [optional] # noqa: E501
visibility_condition (bt_parameter_visibility_condition177.BTParameterVisibilityCondition177): [optional] # noqa: E501
|
https://github.com/onshape-public/onshape-clients/blob/20843a00c628e516e7219e17a23ec4ef2bf9f16f/python/onshape_client/oas/models/bt_parameter_spec_reference_table1520.py#L178-L255
|
from __future__ import absolute_import
import re
import sys
import six
import nulltype
from onshape_client.oas.model_utils import (
ModelComposed,
ModelNormal,
ModelSimple,
date,
datetime,
file_type,
int,
none_type,
str,
validate_get_composed_info,
)
try:
from onshape_client.oas.models import bt_configured_feature_column_info1014_all_of
except ImportError:
bt_configured_feature_column_info1014_all_of = sys.modules[
"onshape_client.oas.models.bt_configured_feature_column_info1014_all_of"
]
try:
from onshape_client.oas.models import bt_parameter_spec_reference_blob1367
except ImportError:
bt_parameter_spec_reference_blob1367 = sys.modules[
"onshape_client.oas.models.bt_parameter_spec_reference_blob1367"
]
try:
from onshape_client.oas.models import bt_parameter_visibility_condition177
except ImportError:
bt_parameter_visibility_condition177 = sys.modules[
"onshape_client.oas.models.bt_parameter_visibility_condition177"
]
try:
from onshape_client.oas.models import btm_parameter1
except ImportError:
btm_parameter1 = sys.modules["onshape_client.oas.models.btm_parameter1"]
class BTParameterSpecReferenceTable1520(ModelComposed):
allowed_values = {
("ui_hints",): {
"OPPOSITE_DIRECTION": "OPPOSITE_DIRECTION",
"ALWAYS_HIDDEN": "ALWAYS_HIDDEN",
"SHOW_CREATE_SELECTION": "SHOW_CREATE_SELECTION",
"CONTROL_VISIBILITY": "CONTROL_VISIBILITY",
"NO_PREVIEW_PROVIDED": "NO_PREVIEW_PROVIDED",
"REMEMBER_PREVIOUS_VALUE": "REMEMBER_PREVIOUS_VALUE",
"DISPLAY_SHORT": "DISPLAY_SHORT",
"ALLOW_FEATURE_SELECTION": "ALLOW_FEATURE_SELECTION",
"MATE_CONNECTOR_AXIS_TYPE": "MATE_CONNECTOR_AXIS_TYPE",
"PRIMARY_AXIS": "PRIMARY_AXIS",
"SHOW_EXPRESSION": "SHOW_EXPRESSION",
"OPPOSITE_DIRECTION_CIRCULAR": "OPPOSITE_DIRECTION_CIRCULAR",
"SHOW_LABEL": "SHOW_LABEL",
"HORIZONTAL_ENUM": "HORIZONTAL_ENUM",
"UNCONFIGURABLE": "UNCONFIGURABLE",
"MATCH_LAST_ARRAY_ITEM": "MATCH_LAST_ARRAY_ITEM",
"COLLAPSE_ARRAY_ITEMS": "COLLAPSE_ARRAY_ITEMS",
"INITIAL_FOCUS_ON_EDIT": "INITIAL_FOCUS_ON_EDIT",
"INITIAL_FOCUS": "INITIAL_FOCUS",
"DISPLAY_CURRENT_VALUE_ONLY": "DISPLAY_CURRENT_VALUE_ONLY",
"READ_ONLY": "READ_ONLY",
"PREVENT_CREATING_NEW_MATE_CONNECTORS": "PREVENT_CREATING_NEW_MATE_CONNECTORS",
"FIRST_IN_ROW": "FIRST_IN_ROW",
"ALLOW_QUERY_ORDER": "ALLOW_QUERY_ORDER",
"PREVENT_ARRAY_REORDER": "PREVENT_ARRAY_REORDER",
"UNKNOWN": "UNKNOWN",
},
}
validations = {}
additional_properties_type = None
@staticmethod
def openapi_types():
return {
"bt_type": (str,),
"additional_localized_strings": (int,),
"column_name": (str,),
"default_value": (btm_parameter1.BTMParameter1,),
"icon_uri": (str,),
"localizable_name": (str,),
"localized_name": (str,),
"parameter_id": (str,),
"parameter_name": (str,),
"strings_to_localize": ([str],),
"ui_hint": (str,),
"ui_hints": ([str],),
"visibility_condition": (
bt_parameter_visibility_condition177.BTParameterVisibilityCondition177,
),
}
@staticmethod
def discriminator():
return None
attribute_map = {
"bt_type": "btType",
"additional_localized_strings": "additionalLocalizedStrings",
"column_name": "columnName",
"default_value": "defaultValue",
"icon_uri": "iconUri",
"localizable_name": "localizableName",
"localized_name": "localizedName",
"parameter_id": "parameterId",
"parameter_name": "parameterName",
"strings_to_localize": "stringsToLocalize",
"ui_hint": "uiHint",
"ui_hints": "uiHints",
"visibility_condition": "visibilityCondition",
}
required_properties = set(
[
"_data_store",
"_check_type",
"_from_server",
"_path_to_item",
"_configuration",
"_composed_instances",
"_var_name_to_model_instances",
"_additional_properties_model_instances",
]
)
|
MIT License
|
bpython/curtsies
|
curtsies/formatstringarray.py
|
FSArray.height
|
python
|
def height(self) -> int:
return len(self.rows)
|
The number of rows
|
https://github.com/bpython/curtsies/blob/a6019a45eb9a9897f68b1a404245076cbd74492c/curtsies/formatstringarray.py#L109-L111
|
import itertools
import sys
import logging
from .formatstring import fmtstr
from .formatstring import normalize_slice
from .formatstring import FmtStr
from typing import (
Any,
Union,
List,
Sequence,
overload,
Tuple,
cast,
no_type_check,
)
logger = logging.getLogger(__name__)
def slicesize(s: slice) -> int:
return int((s.stop - s.start) / (s.step if s.step else 1))
class FSArray(Sequence):
def __init__(
self, num_rows: int, num_columns: int, *args: Any, **kwargs: Any
) -> None:
self.saved_args, self.saved_kwargs = args, kwargs
self.rows: List[FmtStr] = [fmtstr("", *args, **kwargs) for _ in range(num_rows)]
self.num_columns = num_columns
@overload
def __getitem__(self, slicetuple: int) -> FmtStr:
pass
@overload
def __getitem__(self, slicetuple: slice) -> List[FmtStr]:
pass
@overload
def __getitem__(
self, slicetuple: Tuple[Union[slice, int], Union[slice, int]]
) -> List[FmtStr]:
pass
def __getitem__(
self, slicetuple: Union[int, slice, Tuple[Union[int, slice], Union[int, slice]]]
) -> Union[FmtStr, List[FmtStr]]:
if isinstance(slicetuple, int):
if slicetuple < 0:
slicetuple = len(self.rows) - slicetuple
if slicetuple < 0 or slicetuple >= len(self.rows):
raise IndexError("out of bounds")
return self.rows[slicetuple]
if isinstance(slicetuple, slice):
rowslice = normalize_slice(len(self.rows), slicetuple)
return self.rows[rowslice]
(
row_slice_or_int,
col_slice_or_int,
) = slicetuple
rowslice = normalize_slice(len(self.rows), row_slice_or_int)
colslice = normalize_slice(self.num_columns, col_slice_or_int)
return [fs[colslice] for fs in self.rows[rowslice]]
def __len__(self) -> int:
return len(self.rows)
@property
def shape(self) -> Tuple[int, int]:
return len(self.rows), self.num_columns
@property
|
MIT License
|
yelp/paasta
|
paasta_tools/smartstack_tools.py
|
MesosSmartstackEnvoyReplicationChecker.get_allowed_locations_and_hosts
|
python
|
def get_allowed_locations_and_hosts(
self, instance_config: LongRunningServiceConfig
) -> Dict[str, Sequence[DiscoveredHost]]:
discover_location_type = marathon_tools.load_service_namespace_config(
service=instance_config.service,
namespace=instance_config.get_nerve_namespace(),
soa_dir=instance_config.soa_dir,
).get_discover()
attribute_to_slaves = mesos_tools.get_mesos_slaves_grouped_by_attribute(
slaves=self._mesos_slaves, attribute=discover_location_type
)
ret: Dict[str, Sequence[DiscoveredHost]] = {}
for attr, slaves in attribute_to_slaves.items():
ret[attr] = [
DiscoveredHost(
hostname=slave["hostname"], pool=slave["attributes"]["pool"]
)
for slave in slaves
]
return ret
|
Returns a dict of locations and lists of corresponding mesos slaves
where deployment of the instance is allowed.
:param instance_config: An instance of MarathonServiceConfig
:returns: A dict {"uswest1-prod": [DiscoveredHost(), DiscoveredHost(), ...]}
|
https://github.com/yelp/paasta/blob/bc1716253bbe003cec01bd02016010910c2b039c/paasta_tools/smartstack_tools.py#L688-L713
|
import abc
import collections
import csv
import logging
import socket
from typing import Any
from typing import cast
from typing import Collection
from typing import DefaultDict
from typing import Dict
from typing import Iterable
from typing import List
from typing import MutableMapping
from typing import NamedTuple
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import TypeVar
from typing import Union
import requests
from kubernetes.client import V1Node
from kubernetes.client import V1Pod
from mypy_extensions import TypedDict
from paasta_tools import envoy_tools
from paasta_tools import kubernetes_tools
from paasta_tools import marathon_tools
from paasta_tools import mesos_tools
from paasta_tools.long_running_service_tools import LongRunningServiceConfig
from paasta_tools.mesos.exceptions import NoSlavesAvailableError
from paasta_tools.monitoring_tools import ReplicationChecker
from paasta_tools.utils import compose_job_id
from paasta_tools.utils import DEFAULT_SOA_DIR
from paasta_tools.utils import DeployBlacklist
from paasta_tools.utils import get_user_agent
from paasta_tools.utils import SystemPaastaConfig
class HaproxyBackend(TypedDict, total=False):
check_code: str
check_duration: str
check_status: str
lastchg: str
pxname: str
svname: str
status: str
log = logging.getLogger(__name__)
def retrieve_haproxy_csv(
synapse_host: str, synapse_port: int, synapse_haproxy_url_format: str, scope: str
) -> Iterable[Dict[str, str]]:
synapse_uri = synapse_haproxy_url_format.format(
host=synapse_host, port=synapse_port, scope=scope
)
haproxy_request = requests.Session()
haproxy_request.headers.update({"User-Agent": get_user_agent()})
haproxy_request.mount("http://", requests.adapters.HTTPAdapter(max_retries=3))
haproxy_request.mount("https://", requests.adapters.HTTPAdapter(max_retries=3))
haproxy_response = haproxy_request.get(synapse_uri, timeout=1)
haproxy_data = haproxy_response.text
reader = csv.DictReader(haproxy_data.splitlines())
return reader
def get_backends(
service: str, synapse_host: str, synapse_port: int, synapse_haproxy_url_format: str
) -> List[HaproxyBackend]:
if service:
services = [service]
else:
services = None
return get_multiple_backends(
services,
synapse_host=synapse_host,
synapse_port=synapse_port,
synapse_haproxy_url_format=synapse_haproxy_url_format,
)
def get_multiple_backends(
services: Optional[Collection[str]],
synapse_host: str,
synapse_port: int,
synapse_haproxy_url_format: str,
) -> List[HaproxyBackend]:
if services is not None and len(services) == 1:
(scope,) = services
else:
scope = ""
reader = retrieve_haproxy_csv(
synapse_host,
synapse_port,
synapse_haproxy_url_format=synapse_haproxy_url_format,
scope=scope,
)
backends = []
for line in reader:
line["pxname"] = line.pop("# pxname")
line.pop("")
ha_slave, ha_service = line["svname"], line["pxname"]
if (services is None or ha_service in services) and ha_slave not in (
"FRONTEND",
"BACKEND",
):
backends.append(cast(HaproxyBackend, line))
return backends
def load_smartstack_info_for_service(
service: str,
namespace: str,
blacklist: DeployBlacklist,
system_paasta_config: SystemPaastaConfig,
soa_dir: str = DEFAULT_SOA_DIR,
) -> Dict[str, Dict[str, int]]:
service_namespace_config = marathon_tools.load_service_namespace_config(
service=service, namespace=namespace, soa_dir=soa_dir
)
discover_location_type = service_namespace_config.get_discover()
return get_smartstack_replication_for_attribute(
attribute=discover_location_type,
service=service,
namespace=namespace,
blacklist=blacklist,
system_paasta_config=system_paasta_config,
)
def get_smartstack_replication_for_attribute(
attribute: str,
service: str,
namespace: str,
blacklist: DeployBlacklist,
system_paasta_config: SystemPaastaConfig,
) -> Dict[str, Dict[str, int]]:
replication_info = {}
filtered_slaves = mesos_tools.get_all_slaves_for_blacklist_whitelist(
blacklist=blacklist, whitelist=None
)
if not filtered_slaves:
raise NoSlavesAvailableError
attribute_slave_dict = mesos_tools.get_mesos_slaves_grouped_by_attribute(
slaves=filtered_slaves, attribute=attribute
)
full_name = compose_job_id(service, namespace)
for value, hosts in attribute_slave_dict.items():
synapse_host = hosts[0]["hostname"]
repl_info = get_replication_for_services(
synapse_host=synapse_host,
synapse_port=system_paasta_config.get_synapse_port(),
synapse_haproxy_url_format=system_paasta_config.get_synapse_haproxy_url_format(),
services=[full_name],
)
replication_info[value] = repl_info
return replication_info
def get_replication_for_all_services(
synapse_host: str, synapse_port: int, synapse_haproxy_url_format: str
) -> Dict[str, int]:
backends = get_multiple_backends(
services=None,
synapse_host=synapse_host,
synapse_port=synapse_port,
synapse_haproxy_url_format=synapse_haproxy_url_format,
)
return collections.Counter([b["pxname"] for b in backends if backend_is_up(b)])
def get_replication_for_services(
synapse_host: str,
synapse_port: int,
synapse_haproxy_url_format: str,
services: Collection[str],
) -> Dict[str, int]:
backends = get_multiple_backends(
services=services,
synapse_host=synapse_host,
synapse_port=synapse_port,
synapse_haproxy_url_format=synapse_haproxy_url_format,
)
counter = collections.Counter([b["pxname"] for b in backends if backend_is_up(b)])
return {sn: counter[sn] for sn in services}
def backend_is_up(backend: HaproxyBackend) -> bool:
return str(backend["status"]).startswith("UP")
def ip_port_hostname_from_svname(svname: str) -> Tuple[str, int, str]:
parts = set(svname.split("_"))
ip_ports = {part for part in parts if len(part.split(":")) == 2}
hostname = parts.difference(ip_ports).pop()
ip, port = ip_ports.pop().split(":")
return ip, int(port), hostname
def get_registered_marathon_tasks(
synapse_host: str,
synapse_port: int,
synapse_haproxy_url_format: str,
service: str,
marathon_tasks: Iterable[marathon_tools.MarathonTask],
) -> List[marathon_tools.MarathonTask]:
backends = get_multiple_backends(
[service],
synapse_host=synapse_host,
synapse_port=synapse_port,
synapse_haproxy_url_format=synapse_haproxy_url_format,
)
healthy_tasks = []
for backend, task in match_backends_and_tasks(backends, marathon_tasks):
if (
backend is not None
and task is not None
and backend["status"].startswith("UP")
):
healthy_tasks.append(task)
return healthy_tasks
def are_services_up_on_ip_port(
synapse_host: str,
synapse_port: int,
synapse_haproxy_url_format: str,
services: Collection[str],
host_ip: str,
host_port: int,
) -> bool:
backends = get_multiple_backends(
services,
synapse_host=synapse_host,
synapse_port=synapse_port,
synapse_haproxy_url_format=synapse_haproxy_url_format,
)
backends_by_ip_port: DefaultDict[
Tuple[str, int], List[HaproxyBackend]
] = collections.defaultdict(list)
for backend in backends:
ip, port, _ = ip_port_hostname_from_svname(backend["svname"])
backends_by_ip_port[ip, port].append(backend)
backends_on_ip = backends_by_ip_port[host_ip, host_port]
services_with_atleast_one_backend_up = {service: False for service in services}
for service in services:
for be in backends_on_ip:
if be["pxname"] == service and backend_is_up(be):
services_with_atleast_one_backend_up[service] = True
return all(services_with_atleast_one_backend_up.values())
def match_backends_and_tasks(
backends: Iterable[HaproxyBackend], tasks: Iterable[marathon_tools.MarathonTask]
) -> List[Tuple[Optional[HaproxyBackend], Optional[marathon_tools.MarathonTask]]]:
backends_by_ip_port: DefaultDict[
Tuple[str, int], List[HaproxyBackend]
] = collections.defaultdict(list)
backend_task_pairs = []
for backend in backends:
ip, port, _ = ip_port_hostname_from_svname(backend["svname"])
backends_by_ip_port[ip, port].append(backend)
for task in tasks:
ip = socket.gethostbyname(task.host)
for port in task.ports:
for backend in backends_by_ip_port.pop((ip, port), [None]):
backend_task_pairs.append((backend, task))
for backends in backends_by_ip_port.values():
for backend in backends:
backend_task_pairs.append((backend, None))
return backend_task_pairs
def match_backends_and_pods(
backends: Iterable[HaproxyBackend], pods: Iterable[V1Pod]
) -> List[Tuple[Optional[HaproxyBackend], Optional[V1Pod]]]:
backends_by_ip: DefaultDict[str, List[HaproxyBackend]] = collections.defaultdict(
list
)
backend_pod_pairs = []
for backend in backends:
ip, port, _ = ip_port_hostname_from_svname(backend["svname"])
backends_by_ip[ip].append(backend)
for pod in pods:
ip = pod.status.pod_ip
for backend in backends_by_ip.pop(ip, [None]):
backend_pod_pairs.append((backend, pod))
for backends in backends_by_ip.values():
for backend in backends:
backend_pod_pairs.append((backend, None))
return backend_pod_pairs
_MesosSlaveDict = TypeVar(
"_MesosSlaveDict", bound=Dict
)
class DiscoveredHost(NamedTuple):
hostname: str
pool: str
class ServiceDiscoveryProvider(abc.ABC):
NAME = "..."
@abc.abstractmethod
def get_replication_for_all_services(self, hostname: str) -> Dict[str, int]:
...
class SmartstackServiceDiscovery(ServiceDiscoveryProvider):
NAME = "Smartstack"
def __init__(self, system_paasta_config: SystemPaastaConfig) -> None:
self._synapse_port = system_paasta_config.get_synapse_port()
self._synapse_haproxy_url_format = (
system_paasta_config.get_synapse_haproxy_url_format()
)
def get_replication_for_all_services(self, hostname: str) -> Dict[str, int]:
return get_replication_for_all_services(
synapse_host=hostname,
synapse_port=self._synapse_port,
synapse_haproxy_url_format=self._synapse_haproxy_url_format,
)
class EnvoyServiceDiscovery(ServiceDiscoveryProvider):
NAME = "Envoy"
def __init__(self, system_paasta_config: SystemPaastaConfig) -> None:
self._envoy_admin_port = system_paasta_config.get_envoy_admin_port()
self._envoy_admin_endpoint_format = (
system_paasta_config.get_envoy_admin_endpoint_format()
)
def get_replication_for_all_services(self, hostname: str) -> Dict[str, int]:
return envoy_tools.get_replication_for_all_services(
envoy_host=hostname,
envoy_admin_port=self._envoy_admin_port,
envoy_admin_endpoint_format=self._envoy_admin_endpoint_format,
)
def get_service_discovery_providers(
system_paasta_config: SystemPaastaConfig,
) -> List[ServiceDiscoveryProvider]:
providers: List[ServiceDiscoveryProvider] = []
for name, _ in system_paasta_config.get_service_discovery_providers().items():
if name == "smartstack":
providers.append(SmartstackServiceDiscovery(system_paasta_config))
elif name == "envoy":
providers.append(EnvoyServiceDiscovery(system_paasta_config))
else:
log.warn("unknown provider")
return providers
class BaseReplicationChecker(ReplicationChecker):
def __init__(
self,
system_paasta_config: SystemPaastaConfig,
service_discovery_providers: Iterable[ServiceDiscoveryProvider],
) -> None:
self._system_paasta_config = system_paasta_config
self._cache: Dict[Tuple[str, str], Dict[str, int]] = {}
self._service_discovery_providers = service_discovery_providers
@abc.abstractmethod
def get_allowed_locations_and_hosts(
self, instance_config: LongRunningServiceConfig
) -> Dict[str, Sequence[DiscoveredHost]]:
...
def get_replication_for_instance(
self, instance_config: LongRunningServiceConfig
) -> Dict[str, Dict[str, Dict[str, int]]]:
replication_infos = {}
for provider in self._service_discovery_providers:
replication_info = {}
attribute_host_dict = self.get_allowed_locations_and_hosts(instance_config)
instance_pool = instance_config.get_pool()
for location, hosts in attribute_host_dict.items():
hostnames = self.get_hostnames_in_pool(hosts, instance_pool)
for hostname in hostnames:
try:
replication_info[location] = self._get_replication_info(
location, hostname, instance_config, provider
)
break
except Exception as e:
log.warn(
f"Error while getting replication info for {location} from {hostname}: {e}"
)
if hostname == hostnames[-1]:
raise
replication_infos[provider.NAME] = replication_info
return replication_infos
def get_first_host_in_pool(self, hosts: Sequence[DiscoveredHost], pool: str) -> str:
for host in hosts:
if host.pool == pool:
return host.hostname
return hosts[0].hostname
def get_hostnames_in_pool(
self, hosts: Sequence[DiscoveredHost], pool: str
) -> Sequence[str]:
hostnames = []
for host in hosts:
if host.pool == pool:
hostnames.append(host.hostname)
if len(hostnames) == 0:
hostnames.append(hosts[0].hostname)
return hostnames
def _get_replication_info(
self,
location: str,
hostname: str,
instance_config: LongRunningServiceConfig,
provider: ServiceDiscoveryProvider,
) -> Dict[str, int]:
full_name = compose_job_id(instance_config.service, instance_config.instance)
key = (location, provider.NAME)
replication_info = self._cache.get(key)
if replication_info is None:
replication_info = provider.get_replication_for_all_services(hostname)
self._cache[key] = replication_info
return {full_name: replication_info[full_name]}
class MesosSmartstackEnvoyReplicationChecker(BaseReplicationChecker):
def __init__(
self,
mesos_slaves: List[_MesosSlaveDict],
system_paasta_config: SystemPaastaConfig,
) -> None:
self._mesos_slaves = mesos_slaves
super().__init__(
system_paasta_config=system_paasta_config,
service_discovery_providers=get_service_discovery_providers(
system_paasta_config
),
)
|
Apache License 2.0
|
sevagas/macro_pack
|
src/modules/payload_builder_factory.py
|
PayloadBuilderFactory._handleOfficeFormats
|
python
|
def _handleOfficeFormats(self, mpSession):
if MSTypes.XL in mpSession.outputFileType:
generator = ExcelGenerator(mpSession)
elif MSTypes.WD in mpSession.outputFileType:
generator = WordGenerator(mpSession)
elif MSTypes.PPT in mpSession.outputFileType:
generator = PowerPointGenerator(mpSession)
elif MSTypes.MPP == mpSession.outputFileType:
generator = MSProjectGenerator(mpSession)
elif MSTypes.VSD in mpSession.outputFileType:
generator = VisioGenerator(mpSession)
elif MSTypes.ACC in mpSession.outputFileType:
generator = AccessGenerator(mpSession)
return generator
|
Handle MS Office output formats generation
|
https://github.com/sevagas/macro_pack/blob/38dd98076ac98fe92145f484e58ae6d2a871d5df/src/modules/payload_builder_factory.py#L31-L48
|
import sys
from modules.excel_gen import ExcelGenerator
from modules.word_gen import WordGenerator
from modules.ppt_gen import PowerPointGenerator
from modules.msproject_gen import MSProjectGenerator
from modules.vba_gen import VBAGenerator
from modules.vbs_gen import VBSGenerator
from modules.hta_gen import HTAGenerator
from modules.sct_gen import SCTGenerator
from modules.wsf_gen import WSFGenerator
from modules.visio_gen import VisioGenerator
from modules.access_gen import AccessGenerator
from modules.scf_gen import SCFGenerator
from modules.xsl_gen import XSLGenerator
from modules.url_gen import UrlShortcutGenerator
from modules.glk_gen import GlkGenerator
from modules.lnk_gen import LNKGenerator
from modules.settingsms_gen import SettingsShortcutGenerator
from modules.libraryms_gen import LibraryShortcutGenerator
from modules.inf_gen import InfGenerator
from modules.csproj_gen import CsProjGenerator
from modules.iqy_gen import IqyGenerator
from common.utils import MSTypes
class PayloadBuilderFactory():
|
Apache License 2.0
|
siviltaram/persona-dialogue-generation
|
parlai/agents/mlb_vqa/mlb_vqa.py
|
VqaDictionaryAgent.add_to_ans_dict
|
python
|
def add_to_ans_dict(self, token):
self.ansfreq[token] += 1
if token not in self.ans2ind:
index = len(self.ans2ind)
self.ans2ind[token] = index
self.ind2ans[index] = token
|
Builds dictionary from the list of provided tokens.
Only adds words contained in self.embedding_words, if not None.
|
https://github.com/siviltaram/persona-dialogue-generation/blob/3cc800ffe3c5a8d16ed26522cda839acfab8d417/parlai/agents/mlb_vqa/mlb_vqa.py#L158-L166
|
from parlai.core.agents import Agent
import torch.nn as nn
import torch
import os
from collections import defaultdict, Counter
import numpy as np
import re
from .mlb_modules import MlbAtt, MlbNoAtt
def escape(s):
return s.replace('\n', '\\n').replace('\t', '\\t').replace('\r', '\\r')
def unescape(s):
return s.replace('\\n', '\n').replace('\\t', '\t').replace('\\r', '\r')
class VqaDictionaryAgent(Agent):
@staticmethod
def add_cmdline_args(argparser):
dictionary = argparser.add_argument_group('Dictionary Arguments')
dictionary.add_argument(
'--dict-file',
help='if set, the dictionary will automatically save to this path' +
' during shutdown')
dictionary.add_argument(
'--dict-initpath',
help='path to a saved dictionary to load tokens / counts from to ' +
'seed the dictionary with initial tokens and/or frequencies')
dictionary.add_argument(
'--dict-maxexs', default=300000, type=int,
help='max number of examples to build dict on')
dictionary.add_argument('-smp', '--samplingans', type='bool', default=True)
dictionary.add_argument('--nans', type=int, default=2000)
dictionary.add_argument('--maxlength', type=int, default=16)
dictionary.add_argument('--minwcount', type=int, default=0)
dictionary.add_argument('--nlp', default='mcb')
def __init__(self, opt, shared=None):
super(VqaDictionaryAgent, self).__init__(opt)
self.id = 'VqaDictionary'
self.null_token = '__NULL__'
self.unk_token = '__UNK__'
if shared:
self.freq = shared.get('freq', {})
self.tok2ind = shared.get('tok2ind', {})
self.ind2tok = shared.get('ind2tok', {})
self.ans2ind = shared.get('ans2ind', {})
self.ind2ans = shared.get('ind2ans', {})
else:
self.freq = defaultdict(int)
self.ansfreq = defaultdict(int)
self.ans2ques = defaultdict(list)
self.tok2ind = {}
self.ind2tok = {}
self.ans2ind = {}
self.ind2ans = {}
if self.null_token:
self.tok2ind[self.null_token] = 0
self.ind2tok[0] = self.null_token
if self.unk_token:
index = len(self.tok2ind)
self.tok2ind[self.unk_token] = index
self.ind2tok[index] = self.unk_token
if opt.get('dict_file') and os.path.isfile(opt['dict_file']):
self.load(opt['dict_file'])
if not shared:
if self.null_token:
self.freq[self.null_token] = 1000000002
if self.unk_token:
self.freq[self.unk_token] = 1000000000
if opt.get('dict_file'):
self.save_path = opt['dict_file']
def __len__(self):
return len(self.tok2ind)
def add_to_ques_dict(self, tokens):
for token in tokens:
self.freq[token] += 1
if token not in self.tok2ind:
index = len(self.tok2ind)
self.tok2ind[token] = index
self.ind2tok[index] = token
|
MIT License
|
kartverket/midgard
|
midgard/parsers/_parser_rinex.py
|
RinexParser.time_of_last_obs
|
python
|
def time_of_last_obs(self) -> RinexHeader:
return RinexHeader(
marker="TIME OF LAST OBS",
fields={
"year": (0, 6),
"month": (6, 12),
"day": (12, 18),
"hour": (18, 24),
"minute": (24, 30),
"second": (30, 43),
"time_sys": (48, 51),
},
parser=self.parse_time_of_last_obs,
)
|
Parser definition for RINEX header label 'TIME OF LAST OBS'
Example:
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
2016 03 01 23 59 59.0000000 GPS TIME OF LAST OBS
|
https://github.com/kartverket/midgard/blob/faf8963c9e0e49255c90a60ba5671277912777fd/midgard/parsers/_parser_rinex.py#L661-L680
|
from datetime import datetime
import functools
import itertools
import pathlib
from typing import Any, Callable, cast, Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
from midgard.dev import exceptions
from midgard.dev import log
from midgard.parsers._parser import Parser
_FieldDef = Dict[str, Tuple[int, int]]
_FieldStr = Dict[str, str]
_FieldVal = Dict[str, Any]
_FieldCache = List[_FieldStr]
class RinexHeader(NamedTuple):
marker: str
fields: _FieldDef
parser: Callable[[_FieldStr], _FieldVal]
def parser_cache(
func: Callable[["RinexParser", _FieldStr, _FieldCache], _FieldVal],
) -> Callable[["RinexParser", _FieldStr], _FieldVal]:
func.cache = list()
@functools.wraps(func)
def wrapper_parser_cache(self: "RinexParser", fields: _FieldStr) -> _FieldVal:
value = func(self, fields, func.cache)
func.cache.append(fields)
return value
return wrapper_parser_cache
class RinexParser(Parser):
name = "Rinex"
def __init__(
self,
file_path: Union[str, pathlib.Path],
encoding: Optional[str] = None,
logger=print,
sampling_rate: Optional[int] = None,
strict: bool = False,
) -> None:
super().__init__(file_path, encoding)
self.meta["__kwargs__"] = dict(
file_path=file_path, encoding=encoding, sampling_rate=sampling_rate, strict=strict
)
self.header: Dict[str, Any] = dict()
self.samling_rate = sampling_rate
self.error = cast(Callable[[str], None], self._raise_error if strict else log.warn)
def _raise_error(self, text: str) -> None:
raise exceptions.ParserError(text)
def get_rinex_version_type(self) -> Dict[str, str]:
header_def = self.rinex_version__type
with open(self.file_path, mode="r", encoding=self.file_encoding) as fid:
for line in fid:
marker = line[60:80].strip()
if marker != header_def.marker:
self.error(f"Wrong marker {marker!r} before version information")
continue
return {k: line[slice(*v)].strip() for k, v in header_def.fields.items()}
raise exceptions.ParserError(f"No information about Rinex version found in {self.file_path}")
@property
def mandatory_headers(self) -> Tuple[RinexHeader, ...]:
raise NotImplementedError
@property
def optional_headers(self) -> Tuple[RinexHeader, ...]:
raise NotImplementedError
def read_data(self) -> None:
with open(self.file_path, mode="r", encoding=self.file_encoding) as fid:
self.read_header(fid)
self.read_epochs(fid)
self.structure_data()
def read_header(self, fid) -> None:
headers = {h.marker: h for h in self.mandatory_headers + self.optional_headers}
mandatory_markers = {h.marker for h in self.mandatory_headers}
for line in fid:
marker = line[60:80].strip()
if marker == "END OF HEADER":
break
if marker in headers:
header_def = headers[marker]
fields = {k: line[slice(*v)].strip() for k, v in header_def.fields.items()}
self.header.update(header_def.parser(fields))
if marker in mandatory_markers:
mandatory_markers.remove(marker)
else:
self.error(f"Unknown {self.name} header {marker!r}")
for marker in mandatory_markers:
self.error(f"Mandatory {self.name} header {marker!r} not found")
def read_epochs(self, fid) -> None:
sampling_rate = 400
prev_epoch = datetime.min
for epoch_line in fid:
num_data_lines, epoch_info = self.parse_epoch_line(epoch_line)
data_lines = itertools.islice(fid, num_data_lines)
if sampling_rate is not None:
epoch = epoch_info["epoch"]
if (epoch - prev_epoch).total_seconds() < sampling_rate:
for line in data_lines:
pass
continue
prev_epoch = epoch
data_info = self.parse_data_lines(data_lines, epoch_info)
def parse_epoch_line(self, line):
raise NotImplementedError
def parse_data_lines(self, lines, epoch_info):
raise NotImplementedError
def structure_data(self) -> None:
for system, sys_data in self.data.items():
self.data[system] = {k: np.array(v) for k, v in sys_data.items()}
def parse_approx_position(self, fields: _FieldStr) -> _FieldVal:
pos = np.array((float(fields["pos_x"]), float(fields["pos_y"]), float(fields["pos_z"])))
return dict(pos=pos)
def parse_comment(self, fields: _FieldStr) -> _FieldVal:
comment = self.header.setdefault("comment", [])
comment.append(fields["comment"])
return dict(comment=comment)
def parse_float(self, fields: _FieldStr) -> _FieldVal:
return {k: float(v) for k, v in fields.items() if v}
def parse_glonass_code_phase_bias(self, fields: _FieldStr) -> _FieldVal:
glonass_bias = self.header.setdefault("glonass_bias", {})
for field in fields.values():
if field:
type_, bias = field.split()[0:2]
glonass_bias.update({type_: float(bias)})
return glonass_bias
def parse_glonass_slot(self, fields: _FieldStr) -> _FieldVal:
glonass_slot = self.header.setdefault("glonass_slot", {})
if "num_satellite" in fields:
num_sat = fields["num_satellite"]
del fields["num_satellite"]
for field in fields.values():
if field:
slot, freq = field.split()[0:2]
glonass_slot.update({slot: int(freq)})
return glonass_slot
def parse_integer(self, fields: _FieldStr) -> _FieldVal:
return {k: int(v) for k, v in fields.items() if v}
def parse_leap_seconds(self, fields: _FieldStr) -> _FieldVal:
return dict(leap_seconds={k: v for k, v in fields.items() if v})
@parser_cache
def parse_phase_shift(self, fields: _FieldStr, cache: _FieldCache) -> _FieldVal:
phase_shift = self.header.setdefault("phase_shift", {})
if fields["sat_sys"]:
sat_sys = fields["sat_sys"]
obs_type = fields["obs_type"]
phase_shift.setdefault(sat_sys, {}).update({obs_type: {}})
else:
sat_sys, obs_type = next((c["sat_sys"], c["obs_type"]) for c in cache[::-1] if c["sat_sys"])
if fields["correction"]:
phase_shift[sat_sys][obs_type].update(
{"corr": float(fields["correction"]), "sat": fields["satellites"].split()}
)
return phase_shift
if fields["satellites"]:
phase_shift[sat_sys][obs_type]["sat"].extend(fields["satellites"].split())
return phase_shift
def parse_scale_factor(self, fields: _FieldStr) -> _FieldVal:
return NotImplementedError
def parse_string(self, fields: _FieldStr) -> _FieldVal:
return {k: v for k, v in fields.items() if v}
def parse_sys_dcbs_applied(self, fields: _FieldStr) -> _FieldVal:
return fields
@parser_cache
def parse_sys_obs_types(self, fields: _FieldStr, cache: _FieldCache) -> _FieldVal:
satellite_sys = fields["satellite_sys"]
prev_idx = -1
while not satellite_sys:
satellite_sys = cache[prev_idx]["satellite_sys"]
prev_idx -= 1
obs_types = self.header.get("obs_types", dict())
obs_list = obs_types.setdefault(satellite_sys, list())
for field in sorted([f for f in fields if f.startswith("type_")]):
if fields[field]:
obs_list.append(fields[field])
return dict(obs_types=obs_types)
def parse_sys_pcvs_applied(self, fields: _FieldStr) -> _FieldVal:
return fields
def parse_time_of_first_obs(self, fields: _FieldStr) -> _FieldVal:
return fields
def parse_time_of_last_obs(self, fields: _FieldStr) -> _FieldVal:
return fields
@property
def rinex_version__type(self) -> RinexHeader:
return RinexHeader(
marker="RINEX VERSION / TYPE",
fields={"rinex_version": (0, 20), "file_type": (20, 21), "sat_sys": (40, 41)},
parser=self.parse_string,
)
@property
def pgm__run_by__date(self) -> RinexHeader:
return RinexHeader(
marker="PGM / RUN BY / DATE",
fields={"program": (0, 20), "run_by": (20, 40), "file_created": (40, 60)},
parser=self.parse_string,
)
@property
def comment(self) -> RinexHeader:
return RinexHeader(marker="COMMENT", fields={"comment": (0, 60)}, parser=self.parse_comment)
@property
def marker_name(self) -> RinexHeader:
return RinexHeader(marker="MARKER NAME", fields={"marker_name": (0, 60)}, parser=self.parse_string)
@property
def marker_number(self) -> RinexHeader:
return RinexHeader(marker="MARKER NUMBER", fields={"marker_number": (0, 20)}, parser=self.parse_string)
@property
def marker_type(self) -> RinexHeader:
return RinexHeader(marker="MARKER TYPE", fields={"marker_type": (0, 20)}, parser=self.parse_string)
@property
def observer__agency(self) -> RinexHeader:
return RinexHeader(
marker="OBSERVER / AGENCY", fields={"observer": (0, 20), "agency": (20, 60)}, parser=self.parse_string
)
@property
def rec_num__type__vers(self) -> RinexHeader:
return RinexHeader(
marker="REC # / TYPE / VERS",
fields={"receiver_number": (0, 20), "receiver_type": (20, 40), "receiver_version": (40, 60)},
parser=self.parse_string,
)
@property
def ant_num__type(self) -> RinexHeader:
return RinexHeader(
marker="ANT # / TYPE",
fields={"antenna_number": (0, 20), "antenna_type": (20, 40)},
parser=self.parse_string,
)
@property
def approx_position_xyz(self) -> RinexHeader:
return RinexHeader(
marker="APPROX POSITION XYZ",
fields={"pos_x": (0, 14), "pos_y": (14, 28), "pos_z": (28, 42)},
parser=self.parse_approx_position,
)
@property
def antenna__delta_hen(self) -> RinexHeader:
return RinexHeader(
marker="ANTENNA: DELTA H/E/N",
fields={"antenna_height": (0, 14), "antenna_east": (14, 28), "antenna_north": (28, 42)},
parser=self.parse_float,
)
@property
def antenna__delta_xyz(self) -> RinexHeader:
return RinexHeader(
marker="ANTENNA: DELTA X/Y/Z",
fields={"ant_vehicle_x": (0, 14), "ant_vehicle_y": (14, 28), "ant_vehicle_z": (28, 42)},
parser=self.parse_float,
)
@property
def sys__num__obs_types(self) -> RinexHeader:
return RinexHeader(
marker="SYS / # / OBS TYPES",
fields={
"satellite_sys": (0, 1),
"num_obstypes": (3, 6),
"type_01": (7, 10),
"type_02": (11, 14),
"type_03": (15, 18),
"type_04": (19, 22),
"type_05": (23, 26),
"type_06": (27, 30),
"type_07": (31, 34),
"type_08": (35, 38),
"type_09": (39, 42),
"type_10": (43, 46),
"type_11": (47, 50),
"type_12": (51, 54),
"type_13": (55, 58),
},
parser=self.parse_sys_obs_types,
)
@property
def signal_strength_unit(self) -> RinexHeader:
return RinexHeader(
marker="SIGNAL STRENGTH UNIT", fields={"signal_strength_unit": (0, 20)}, parser=self.parse_string
)
@property
def interval(self) -> RinexHeader:
return RinexHeader(marker="INTERVAL", fields={"interval": (0, 10)}, parser=self.parse_float)
@property
def time_of_first_obs(self) -> RinexHeader:
return RinexHeader(
marker="TIME OF FIRST OBS",
fields={
"year": (0, 6),
"month": (6, 12),
"day": (12, 18),
"hour": (18, 24),
"minute": (24, 30),
"second": (30, 43),
"time_sys": (48, 51),
},
parser=self.parse_time_of_first_obs,
)
@property
|
MIT License
|
rucio/rucio
|
lib/rucio/api/config.py
|
sections
|
python
|
def sections(issuer=None, vo='def'):
kwargs = {'issuer': issuer}
if not permission.has_permission(issuer=issuer, vo=vo, action='config_sections', kwargs=kwargs):
raise exception.AccessDenied('%s cannot retrieve sections' % issuer)
return config.sections()
|
Return a list of the sections available.
:param issuer: The issuer account.
:param vo: The VO to act on.
:returns: ['section_name', ...]
|
https://github.com/rucio/rucio/blob/6a6092798bb8220dec07328d0e3f7f42d1b931cd/lib/rucio/api/config.py#L27-L39
|
from rucio.api import permission
from rucio.common import exception
from rucio.core import config
|
Apache License 2.0
|
protothis/python-synology
|
src/synology_dsm/api/surveillance_station/__init__.py
|
SynoSurveillanceStation.get_camera_live_view_path
|
python
|
def get_camera_live_view_path(self, camera_id, video_format=None):
if video_format:
return getattr(self._cameras_by_id[camera_id].live_view, video_format)
return self._cameras_by_id[camera_id].live_view
|
Return camera live view path matching camera_id.
Args:
camera_id: ID of the camera we want to get the live view path.
video_format: mjpeg_http | multicast | mxpeg_http | rtsp_http | rtsp.
|
https://github.com/protothis/python-synology/blob/645b818be2013231ac126c6962d2f9092a5c3aae/src/synology_dsm/api/surveillance_station/__init__.py#L64-L73
|
from .camera import SynoCamera
from .const import MOTION_DETECTION_BY_SURVEILLANCE
from .const import MOTION_DETECTION_DISABLED
class SynoSurveillanceStation:
API_KEY = "SYNO.SurveillanceStation.*"
INFO_API_KEY = "SYNO.SurveillanceStation.Info"
CAMERA_API_KEY = "SYNO.SurveillanceStation.Camera"
CAMERA_EVENT_API_KEY = "SYNO.SurveillanceStation.Camera.Event"
HOME_MODE_API_KEY = "SYNO.SurveillanceStation.HomeMode"
SNAPSHOT_API_KEY = "SYNO.SurveillanceStation.SnapShot"
def __init__(self, dsm):
self._dsm = dsm
self._cameras_by_id = {}
def update(self):
self._cameras_by_id = {}
list_data = self._dsm.get(self.CAMERA_API_KEY, "List", max_version=7)["data"]
for camera_data in list_data["cameras"]:
if camera_data["id"] in self._cameras_by_id:
self._cameras_by_id[camera_data["id"]].update(camera_data)
else:
self._cameras_by_id[camera_data["id"]] = SynoCamera(camera_data)
for camera_id in self._cameras_by_id:
self._cameras_by_id[camera_id].update_motion_detection(
self._dsm.get(
self.CAMERA_EVENT_API_KEY, "MotionEnum", {"camId": camera_id}
)["data"]
)
if not self._cameras_by_id:
return
live_view_datas = self._dsm.get(
self.CAMERA_API_KEY,
"GetLiveViewPath",
{"idList": ",".join(str(k) for k in self._cameras_by_id)},
)["data"]
for live_view_data in live_view_datas:
self._cameras_by_id[live_view_data["id"]].live_view.update(live_view_data)
def get_info(self):
return self._dsm.get(self.INFO_API_KEY, "GetInfo")
def get_all_cameras(self):
return self._cameras_by_id.values()
def get_camera(self, camera_id):
return self._cameras_by_id[camera_id]
|
MIT License
|
aerospike/aerospike-client-python
|
aerospike_helpers/operations/hll_operations.py
|
hll_fold
|
python
|
def hll_fold(bin_name, index_bit_count):
op_dict = {
OP_KEY: aerospike.OP_HLL_FOLD,
BIN_KEY: bin_name,
INDEX_BIT_COUNT_KEY: index_bit_count
}
return op_dict
|
Creates a hll_fold operation to be used with operate, or operate_ordered.
Servers folds index_bit_count to the specified value.
This can only be applied when minhash bit count on the HLL bin is 0.
Server does not return a value.
Args:
bin_name (str): The name of the bin to be operated on.
index_bit_count: number of index bits. Must be bewtween 4 and 16 inclusive.
|
https://github.com/aerospike/aerospike-client-python/blob/59fa0d36aa899a164282643fe49b27d12aaf323f/aerospike_helpers/operations/hll_operations.py#L202-L219
|
import aerospike
OP_KEY = "op"
BIN_KEY = "bin"
HLL_POLICY_KEY = "hll_policy"
INDEX_BIT_COUNT_KEY = "index_bit_count"
MH_BIT_COUNT_KEY = "mh_bit_count"
VALUE_LIST_KEY = "value_list"
def hll_add(bin_name, values, index_bit_count=None, mh_bit_count=None, policy=None):
op_dict = {
OP_KEY: aerospike.OP_HLL_ADD,
BIN_KEY: bin_name,
VALUE_LIST_KEY: values,
INDEX_BIT_COUNT_KEY: -1 if index_bit_count is None else index_bit_count,
MH_BIT_COUNT_KEY: -1 if mh_bit_count is None else mh_bit_count
}
if policy:
op_dict[HLL_POLICY_KEY] = policy
return op_dict
def hll_describe(bin_name):
op_dict = {
OP_KEY: aerospike.OP_HLL_DESCRIBE,
BIN_KEY: bin_name,
}
return op_dict
|
Apache License 2.0
|
ant4g0nist/lisa.py
|
lisa.py
|
FileExtract.push_offset_and_seek
|
python
|
def push_offset_and_seek(self, offset):
self.offsets.append(self.file.tell())
self.file.seek(offset, 0)
|
Push the current file offset and seek to "offset"
|
https://github.com/ant4g0nist/lisa.py/blob/2d1f81a1b1286852aac96f56f2807ea462e9f728/lisa.py#L587-L590
|
import io
import os
import re
import abc
import cmd
import sys
import lldb
import stat
import uuid
import fcntl
import shlex
import string
import struct
import fnmatch
import pathlib
import sqlite3
import termios
import capstone
import optparse
import platform
import functools
import subprocess
BLK = "\033[30m"
BLU = "\033[34m"
CYN = "\033[36m"
GRN = "\033[32m"
MAG = "\033[35m"
RED = "\033[31m"
RST = "\033[0m"
YEL = "\033[33m"
WHT = "\033[37m"
BASE00 = '#657b83'
VERTICAL_LINE = "\u2502"
HORIZONTAL_LINE = "\u2500"
__prompt__ = f"'(lisa:>) '"
MINIMUM_RECURSION_LENGTH = 300
NO_CHANGE = 0
CHANGE_TO_EXPLOITABLE = 1
CHANGE_TO_NOT_EXPLOITABLE = 2
CPU_TYPE_I386 = 7
CPU_ARCH_ABI64 = 0x1000000
CPU_TYPE_X86_64 = CPU_TYPE_I386 | CPU_ARCH_ABI64
CPU_TYPE_ARM = 12
CPU_TYPE_ARM64 = CPU_TYPE_ARM | CPU_ARCH_ABI64
dlog = lambda msg: print(f"{GRN}{msg}{RST}")
warnlog = lambda msg: print(f"{YEL}{msg}{RST}")
errlog = lambda msg: print(f"{RED}{msg}{RST}")
_, tty_columns = struct.unpack("hh", fcntl.ioctl(1, termios.TIOCGWINSZ, "1234"))
def contextTitle(m=None):
line_color= YEL
msg_color = GRN
if not m:
print(f"{line_color}{HORIZONTAL_LINE * (tty_columns)} {line_color}{RST}")
return
trail_len = int((tty_columns - len(m) - 4)/2)
title = f"{line_color}{'-'*(trail_len)}{GRN}[ {RED}{m} {GRN}]{line_color}{'-'*(trail_len)}{RST}"
print(title)
def get_host_pagesize():
host_machine = get_host_machine()
target_arch = get_target_triple().split('-')[0]
page_size = 0
if host_machine == target_arch:
page_size = run_shell_command('getconf PAGE_SIZE').stdout.rstrip()
elif host_machine=="arm64" and target_arch=="x86_64":
page_size = run_shell_command('arch -x86_64 getconf PAGE_SIZE').stdout.rstrip()
else:
errlog("get_host_pagesize failed")
return -1
return int(page_size)
def get_host_machine():
return platform.machine()
def get_host_arch():
if get_host_machine() == "arm64":
return CPU_TYPE_ARM64
elif get_host_machine() == "x86_64":
return CPU_TYPE_X86_64
def cpu_to_string(cpu):
if cpu == CPU_TYPE_X86_64:
return "x86_64"
elif cpu == CPU_TYPE_ARM64:
return "arm64"
def get_target_triple():
return lldb.debugger.GetSelectedTarget().triple
def get_target_arch():
arch = lldb.debugger.GetSelectedTarget().triple.split('-')[0]
if arch == "arm64" or arch=="arm64e":
return AARCH64()
elif arch == "x86_64":
return X8664()
else:
errlog(f"Architecture {arch} not supported")
def load_manual():
global inst_map
inst_map = {}
archs = ["arm", "x86_64"]
for arch in archs:
path = pathlib.Path(__file__).parent.absolute()
dbpath = os.path.join(path, "archs", arch + ".sql")
con = sqlite3.connect(":memory:")
con.text_factory = str
con.executescript(open(dbpath).read())
cur = con.cursor()
cur.execute("SELECT mnem, description FROM instructions")
con.commit()
rows = cur.fetchall()
for row in rows:
inst = row[0]
lines = row[1].replace("\r\n", "\n").split("\n")
inst_map[inst] = lines
con.close()
for (inst, data) in inst_map.items():
data = data[0]
if data[0:3] == "-R:":
ref = data[3:]
if ref in inst_map:
inst_map[inst] = inst_map[ref]
dlog(f"Manual loaded for architecture: {arch}")
return True
def run_shell_command(command, shell=True):
return subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell)
def make_run_command(command):
def runCommand(debugger, input, exe_ctx, result, _):
command.result = result
command.context = exe_ctx
splitInput = command.lex(input)
options = command.options()
if len(options) == 0:
if "--" not in splitInput:
splitInput.insert(0, "--")
parser = option_parser_for_command(command)
(options, args) = parser.parse_args(splitInput)
if len(args) > len(command.args()):
overhead = len(args) - len(command.args())
head = args[: overhead + 1]
args = [" ".join(head)] + args[-overhead:]
if validate_args_for_command(args, command):
command.run(args, options)
runCommand.__doc__ = help_for_command(command)
return runCommand
def load_command(module, command, filename):
func = make_run_command(command)
name = command.name()
key = filename + "_" + name
helpText = (
command.description().strip().splitlines()[0]
)
module._loadedFunctions[key] = func
functionName = "__" + key
lldb.debugger.HandleCommand(
"script "
+ functionName
+ " = sys.modules['"
+ module.__name__
+ "']._loadedFunctions['"
+ key
+ "']"
)
lldb.debugger.HandleCommand(
'command script add --help "{help}" --function {function} {name}'.format(
help=helpText.replace('"', '\\"'),
function=functionName,
name=name,
)
)
def validate_args_for_command(args, command):
if len(args) < len(command.args()):
defaultArgs = [arg.default for arg in command.args()]
defaultArgsToAppend = defaultArgs[len(args) :]
index = len(args)
for defaultArg in defaultArgsToAppend:
if defaultArg:
arg = command.args()[index]
print("Whoops! You are missing the <" + arg.argName + "> argument.")
print("\nUsage: " + usage_for_command(command))
return
index += 1
args.extend(defaultArgsToAppend)
return True
def option_parser_for_command(command):
parser = optparse.OptionParser()
for argument in command.options():
if argument.boolean:
parser.add_option(
argument.shortName,
argument.longName,
dest=argument.argName,
help=argument.help,
action=("store_false" if argument.default else "store_true"),
)
else:
parser.add_option(
argument.shortName,
argument.longName,
dest=argument.argName,
help=argument.help,
default=argument.default,
)
return parser
def help_for_command(command):
help = command.description()
argSyntax = ""
optionSyntax = ""
if command.args():
help += "\n\nArguments:"
for arg in command.args():
help += "\n <" + arg.argName + ">; "
if arg.argType:
help += "Type: " + arg.argType + "; "
help += arg.help
argSyntax += " <" + arg.argName + ">"
if command.options():
help += "\n\nOptions:"
for option in command.options():
if option.longName and option.shortName:
optionFlag = option.longName + "/" + option.shortName
elif option.longName:
optionFlag = option.longName
else:
optionFlag = option.shortName
help += "\n " + optionFlag + " "
if not option.boolean:
help += "<" + option.argName + ">; Type: " + option.argType
help += "; " + option.help
optionSyntax += " [{name}{arg}]".format(
name=(option.longName or option.shortName),
arg=("" if option.boolean else ("=" + option.argName)),
)
help += "\n\nSyntax: " + command.name() + optionSyntax + argSyntax
help += "\n\nThis command is implemented as %s" % (
command.__class__.__name__,
)
return help
def usage_for_command(command):
usage = command.name()
for arg in command.args():
if arg.default:
usage += " [" + arg.argName + "]"
else:
usage += " " + arg.argName
return usage
class CommandArgument:
def __init__(
self, short="", long="", arg="", type="", help="", default="", boolean=False):
self.shortName = short
self.longName = long
self.argName = arg
self.argType = type
self.help = help
self.default = default
self.boolean = boolean
class LLDBCommand:
def name(self):
return None
def options(self):
return []
def args(self):
return []
def description(self):
return ""
def lex(self, commandLine):
return shlex.split(commandLine)
def run(self, arguments, option):
pass
colormap = [
0x000000, 0x560000, 0x640000, 0x750000, 0x870000, 0x9b0000, 0xb00000, 0xc60000, 0xdd0000, 0xf50000, 0xff0f0f, 0xff2828, 0xff4343, 0xff5e5e, 0xff7979, 0xfe9595,
0x4c1600, 0x561900, 0x641e00, 0x752300, 0x872800, 0x9b2e00, 0xb03400, 0xc63b00, 0xdd4200, 0xf54900, 0xff570f, 0xff6928, 0xff7b43, 0xff8e5e, 0xffa179, 0xfeb595,
0x4c3900, 0x564000, 0x644b00, 0x755700, 0x876500, 0x9b7400, 0xb08400, 0xc69400, 0xdda600, 0xf5b800, 0xffc30f, 0xffc928, 0xffd043, 0xffd65e, 0xffdd79, 0xfee495,
0x4c4c00, 0x565600, 0x646400, 0x757500, 0x878700, 0x9b9b00, 0xb0b000, 0xc6c600, 0xdddd00, 0xf5f500, 0xffff0f, 0xffff28, 0xffff43, 0xffff5e, 0xffff79, 0xfffe95,
0x324c00, 0x395600, 0x426400, 0x4e7500, 0x5a8700, 0x679b00, 0x75b000, 0x84c600, 0x93dd00, 0xa3f500, 0xafff0f, 0xb7ff28, 0xc0ff43, 0xc9ff5e, 0xd2ff79, 0xdbfe95,
0x1f4c00, 0x235600, 0x296400, 0x307500, 0x388700, 0x409b00, 0x49b000, 0x52c600, 0x5cdd00, 0x66f500, 0x73ff0f, 0x82ff28, 0x91ff43, 0xa1ff5e, 0xb1ff79, 0xc1fe95,
0x004c00, 0x005600, 0x006400, 0x007500, 0x008700, 0x009b00, 0x00b000, 0x00c600, 0x00dd00, 0x00f500, 0x0fff0f, 0x28ff28, 0x43ff43, 0x5eff5e, 0x79ff79, 0x95fe95,
0x004c19, 0x00561c, 0x006421, 0x007527, 0x00872d, 0x009b33, 0x00b03a, 0x00c642, 0x00dd49, 0x00f551, 0x0fff5f, 0x28ff70, 0x43ff81, 0x5eff93, 0x79ffa6, 0x95feb8,
0x004c4c, 0x005656, 0x006464, 0x007575, 0x008787, 0x009b9b, 0x00b0b0, 0x00c6c6, 0x00dddd, 0x00f5f5, 0x0ffffe, 0x28fffe, 0x43fffe, 0x5efffe, 0x79ffff, 0x95fffe,
0x00394c, 0x004056, 0x004b64, 0x005775, 0x006587, 0x00749b, 0x0084b0, 0x0094c6, 0x00a6dd, 0x00b8f5, 0x0fc3ff, 0x28c9ff, 0x43d0ff, 0x5ed6ff, 0x79ddff, 0x95e4fe,
0x00264c, 0x002b56, 0x003264, 0x003a75, 0x004387, 0x004d9b, 0x0058b0, 0x0063c6, 0x006edd, 0x007af5, 0x0f87ff, 0x2893ff, 0x43a1ff, 0x5eaeff, 0x79bcff, 0x95cafe,
0x00134c, 0x001556, 0x001964, 0x001d75, 0x002187, 0x00269b, 0x002cb0, 0x0031c6, 0x0037dd, 0x003df5, 0x0f4bff, 0x285eff, 0x4372ff, 0x5e86ff, 0x799aff, 0x95b0fe,
0x19004c, 0x1c0056, 0x210064, 0x270075, 0x2d0087, 0x33009b, 0x3a00b0, 0x4200c6, 0x4900dd, 0x5100f5, 0x5f0fff, 0x7028ff, 0x8143ff, 0x935eff, 0xa679ff, 0xb895fe,
0x33004c, 0x390056, 0x420064, 0x4e0075, 0x5a0087, 0x67009b, 0x7500b0, 0x8400c6, 0x9300dd, 0xa300f5, 0xaf0fff, 0xb728ff, 0xc043ff, 0xc95eff, 0xd279ff, 0xdb95fe,
0x4c004c, 0x560056, 0x640064, 0x750075, 0x870087, 0x9b009b, 0xb000b0, 0xc600c6, 0xdd00dd, 0xf500f5, 0xfe0fff, 0xfe28ff, 0xfe43ff, 0xfe5eff, 0xfe79ff, 0xfe95fe,
0x4c0032, 0x560039, 0x640042, 0x75004e, 0x87005a, 0x9b0067, 0xb00075, 0xc60084, 0xdd0093, 0xf500a3, 0xff0faf, 0xff28b7, 0xff43c0, 0xff5ec9, 0xff79d2, 0xffffff,
]
def expand(v):
return ( ((v)>>16 & 0xFF), ((v)>>8 & 0xFF), ((v)>>0 & 0xFF) )
def format_offset(offset):
return '0x%5x%03x' % (offset >> 12, offset & 0xFFF)
def visual_hexdump(buffer, start=0, end=None, columns=64):
count = (end or -1) - start
read = 0
while read != count:
if end == None:
to_read = io.DEFAULT_BUFFER_SIZE
else:
to_read = min(count - read, io.DEFAULT_BUFFER_SIZE)
buf = buffer[read:read+to_read]
for i in range(0, len(buf), columns*2):
offset = start + read + i
print(format_offset(offset), end=' ')
for j in range(0, columns):
if i + j >= len(buf):
break
elif i + j + columns >= len(buf):
print('\x1B[0m\x1B[38;2;%d;%d;%dm▀' % expand(colormap[buf[i + j]]), end='')
else:
print('\x1B[38;2;%d;%d;%dm\x1B[48;2;%d;%d;%dm▀' % (expand(colormap[buf[i + j]]) + expand(colormap[buf[i + j + columns]])), end='')
print('\x1B[m')
read += len(buf)
HEADER = '┌────────────────┬─────────────────────────┬─────────────────────────┬────────┬────────┐'
FOOTER = RST+'└────────────────┴─────────────────────────┴─────────────────────────┴────────┴────────┘'
LINE_FORMATTER = '│' + '' + '{:016x}' + '│ {}' + '│{}' + '│' + RST
def hexmod(b: int) -> str:
return hex(b)[2:].rjust(2, '0')
def colored(b: int) -> (str, str):
ch = chr(b)
hx = hexmod(b)
if '\x00' == ch:
return RST + hx , RST + "."
elif ch in string.ascii_letters + string.digits + string.punctuation:
return CYN + hx, CYN + ch
elif ch in string.whitespace:
return GRN + hx, ' ' if ' ' == ch else GRN + '_'
return YEL + hx, YEL + '.'
def hexdump(buf, address):
cache = {hexmod(b): colored(b) for b in range(256)}
cache[' '] = (' ', ' ')
print(HEADER)
cur = 0
row = address
line = buf[cur:cur+16]
while line:
line_hex = line.hex().ljust(32)
hexbytes = ''
printable = ''
for i in range(0, len(line_hex), 2):
hbyte, abyte = cache[line_hex[i:i+2]]
hexbytes += hbyte + ' ' if i != 14 else hbyte + ' ┊ '
printable += abyte if i != 14 else abyte + '┊'
print(LINE_FORMATTER.format(row, hexbytes, printable))
row += 0x10
cur += 0x10
line = buf[cur:cur+16]
print(FOOTER)
def swap_unpack_char():
if struct.pack('H', 1).startswith("\x00"):
return '<'
return '>'
def dump_hex_bytes(addr, s, bytes_per_line=8):
i = 0
line = ''
for ch in s:
if (i % bytes_per_line) == 0:
if line:
print(line)
line = '%#8.8x: ' % (addr + i)
line += "%02x " % ch
i += 1
print(line)
def dump_hex_byte_string_diff(addr, a, b, bytes_per_line=16):
i = 0
line = ''
a_len = len(a)
b_len = len(b)
if a_len < b_len:
max_len = b_len
else:
max_len = a_len
tty_colors = TerminalColors(True)
for i in range(max_len):
ch = None
if i < a_len:
ch_a = a[i]
ch = ch_a
else:
ch_a = None
if i < b_len:
ch_b = b[i]
if not ch:
ch = ch_b
else:
ch_b = None
mismatch = ch_a != ch_b
if (i % bytes_per_line) == 0:
if line:
print(line)
line = '%#8.8x: ' % (addr + i)
if mismatch:
line += RED
line += "%02X " % ord(ch)
if mismatch:
line += RST
i += 1
print(line)
def evaluateInputExpression(expression, printErrors=True):
frame = (
lldb.debugger.GetSelectedTarget()
.GetProcess()
.GetSelectedThread()
.GetSelectedFrame()
)
options = lldb.SBExpressionOptions()
options.SetTrapExceptions(False)
value = frame.EvaluateExpression(expression, options)
error = value.GetError()
if printErrors and error.Fail():
errlog(error)
return value
class FileExtract:
def __init__(self, f, b='='):
self.file = f
self.byte_order = b
self.offsets = list()
def set_byte_order(self, b):
if b == 'big':
self.byte_order = '>'
elif b == 'little':
self.byte_order = '<'
elif b == 'swap':
self.byte_order = swap_unpack_char()
elif b == 'native':
self.byte_order = '='
elif b == '<' or b == '>' or b == '@' or b == '=':
self.byte_order = b
else:
print("error: invalid byte order specified: '%s'" % b)
def is_in_memory(self):
return False
def seek(self, offset, whence=0):
if self.file:
return self.file.seek(offset, whence)
raise ValueError
def tell(self):
if self.file:
return self.file.tell()
raise ValueError
def read_size(self, byte_size):
s = self.file.read(byte_size)
if len(s) != byte_size:
return None
return s
|
Apache License 2.0
|
daboross/screeps-starter-python
|
src/defs/classes/misc_obj.py
|
RoomObject.__init__
|
python
|
def __init__(self, effects: _Effect, pos: RoomPosition, room: Room) -> None:
self.effects = effects
self.pos = pos
self.room = room
|
WARNING: This constructor is purely for type completion, and does not exist in the game.
|
https://github.com/daboross/screeps-starter-python/blob/fe93bcd4eb3e757f0977627ce04f296c15fb51e6/src/defs/classes/misc_obj.py#L41-L47
|
from typing import Optional, Type, Union, Dict, List
from .memory import _Memory
from .room import Room, RoomPosition
from .structures import Structure
from .creep import Creep
class _Effect:
def __init__(self, effect: int, level: Optional[int], ticksRemaining: int):
self.effect = effect
self.level = level
self.ticksRemaining = ticksRemaining
_Effect = List[_Effect]
class RoomObject:
|
MIT License
|
forseti-security/forseti-security
|
google/cloud/forseti/scanner/audit/resource_rules_engine.py
|
ResourceRulesEngine.build_rule_book
|
python
|
def build_rule_book(self, global_configs=None):
self.rule_book = ResourceRuleBook(self._load_rule_definitions())
|
Build ResourceRuleBook from the rules definition file.
Args:
global_configs (dict): Global configurations.
|
https://github.com/forseti-security/forseti-security/blob/de5d0f4d047c293a2a72545a76c3783980865551/google/cloud/forseti/scanner/audit/resource_rules_engine.py#L51-L57
|
from builtins import object
import collections
from google.cloud.forseti.common.util import logger
from google.cloud.forseti.scanner.audit import base_rules_engine
from google.cloud.forseti.scanner.audit import errors
from google.cloud.forseti.services import utils
LOGGER = logger.get_logger(__name__)
_SUPPORTED_MODES = {'required'}
RuleViolation = collections.namedtuple(
'RuleViolation',
['resource_id', 'resource_name', 'resource_type', 'full_name', 'rule_index',
'rule_name', 'violation_type', 'violation_data', 'resource_data']
)
class ResourceRulesEngine(base_rules_engine.BaseRulesEngine):
def __init__(self, rules_file_path, snapshot_timestamp=None):
super(ResourceRulesEngine, self).__init__(
rules_file_path=rules_file_path)
self.rule_book = None
|
Apache License 2.0
|
xilinx/pyxir
|
python/pyxir/contrib/target/components/DPUCZDX8G/ultra96_op_support.py
|
upsampling_op_support
|
python
|
def upsampling_op_support(X, bXs, tXs):
method = X.attrs["method"]
return method == "nearest_neighbor"
|
Check whether we can execute the provided Upsampling2D operator
on the Ultra96 target
|
https://github.com/xilinx/pyxir/blob/bef661d6d77adcdbd2cf4163f2cf3a1d31d40406/python/pyxir/contrib/target/components/DPUCZDX8G/ultra96_op_support.py#L359-L366
|
import math
import logging
import pyxir
logger = logging.getLogger("pyxir")
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "BatchNorm")
def batchnorm_op_support(X, bXs, tXs):
axis = X.attrs["axis"]
channels = X.shapes[axis]
return channels >= 1 and channels <= 2560
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "BiasAdd")
def biasadd_op_support(X, bXs, tXs):
axis = X.attrs["axis"]
channels = X.shapes[axis]
return channels >= 1 and channels <= 2560
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Cast")
def cast_op_support(X, bXs, tXs):
dtype = X.attrs["dtype"]
return dtype == "float32"
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Concat")
def concat_op_support(X, bXs, tXs):
axis = X.attrs["axis"]
channels = X.shapes[axis]
return channels >= 1 and channels <= 2560
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Convolution")
def conv2d_op_support(X, bXs, tXs):
data_layout = X.attrs["data_layout"]
kernel_h, kernel_w = X.attrs["kernel_size"]
stride_h, stride_w = X.attrs["strides"]
dilation_h, dilation_w = X.attrs["dilation"]
padding_h, padding_w = (
X.attrs["padding"][data_layout.index("H")],
X.attrs["padding"][data_layout.index("W")],
)
padding_h_top, padding_h_bot = padding_h
padding_w_left, padding_w_right = padding_w
ch_in, ch_out = X.attrs["channels"]
groups = X.attrs["groups"]
return (
kernel_h >= 1
and kernel_h <= 16
and kernel_w >= 1
and kernel_w <= 16
and stride_h >= 1
and stride_h <= 4
and stride_w >= 1
and stride_w <= 4
and padding_h_top >= 0
and padding_h_top <= kernel_h - 1
and padding_h_bot >= 0
and padding_h_bot <= kernel_h - 1
and padding_w_left >= 0
and padding_w_left <= kernel_w - 1
and padding_w_right >= 0
and padding_w_right <= kernel_w - 1
and ch_in >= 1
and ch_in <= 2560
and ch_out >= 1
and ch_out <= 2560
and dilation_h * ch_in <= 2560
and (dilation_h == 1 or stride_h == 1)
and dilation_w * ch_in <= 2560
and (dilation_w == 1 or stride_w == 1)
)
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Conv2DTranspose")
def conv2d_transpose_op_support(X, bXs, tXs):
data_layout = X.attrs["data_layout"]
kernel_h, kernel_w = X.attrs["kernel_size"]
stride_h, stride_w = X.attrs["strides"]
dilation_h, dilation_w = X.attrs["dilation"]
padding_h, padding_w = (
X.attrs["padding"][data_layout.index("H")],
X.attrs["padding"][data_layout.index("W")],
)
padding_h_top, padding_h_bot = padding_h
padding_w_left, padding_w_right = padding_w
ch_in, ch_out = X.attrs["channels"]
groups = X.attrs["groups"]
return (
kernel_h >= 1
and kernel_h <= 16
and kernel_w >= 1
and kernel_w <= 16
and stride_w * ch_out >= 1
and stride_w * ch_out <= 2560
and stride_h >= 1
and padding_h_top >= 0
and padding_h_top <= kernel_h - 1
and padding_h_bot >= 0
and padding_h_bot <= kernel_h - 1
and padding_w_left >= 0
and padding_w_left <= kernel_w - 1
and padding_w_right >= 0
and padding_w_right <= kernel_w - 1
and ch_in >= 1
and ch_in <= 2560
and ch_out >= 1
and ch_out <= 2560
and dilation_h * ch_in <= 2560
and (dilation_h == 1 or stride_h == 1)
and dilation_w * ch_in <= 2560
and (dilation_w == 1 or stride_w == 1)
)
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "DPU")
def DPUCZDX8G_op_support(X, bXs, tXs):
return True
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Eltwise")
def eltwise_op_support(X, bXs, tXs):
return True
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Pad")
def pad_op_support(X, bXs, tXs):
if len(tXs) == 1 and tXs[0].type[0] in ["Pooling", "Convolution"]:
t_data_layout = tXs[0].attrs["data_layout"]
t_type = tXs[0].type[0]
padding_h, padding_w = (
X.attrs["padding"][t_data_layout.index("H")],
X.attrs["padding"][t_data_layout.index("W")],
)
padding_h_top, padding_h_bot = padding_h
padding_w_left, padding_w_right = padding_w
if t_type == "Pooling":
return (
padding_h_top >= 0
and padding_h_top <= 4
and padding_h_bot >= 0
and padding_h_bot <= 4
and padding_w_left >= 0
and padding_w_left <= 4
and padding_w_right >= 0
and padding_w_right <= 4
)
elif t_type == "Convolution":
t_kernel_h, t_kernel_w = tXs[0].attrs["kernel_size"]
return (
padding_h_top >= 0
and padding_h_top <= t_kernel_h - 1
and padding_h_bot >= 0
and padding_h_bot <= t_kernel_h - 1
and padding_w_left >= 0
and padding_w_left <= t_kernel_w - 1
and padding_w_right >= 0
and padding_w_right <= t_kernel_w - 1
)
return False
return False
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Pooling")
def pooling_op_support(X, bXs, tXs):
data_layout = X.attrs["data_layout"]
kernel_h, kernel_w = X.attrs["kernel_size"]
stride_h, stride_w = X.attrs["strides"]
padding_h, padding_w = (
X.attrs["padding"][data_layout.index("H")],
X.attrs["padding"][data_layout.index("W")],
)
padding_h_top, padding_h_bot = padding_h
padding_w_left, padding_w_right = padding_w
channels = X.shapes[data_layout.index("C")]
return (
kernel_h >= 1
and kernel_h <= 8
and kernel_w >= 1
and kernel_w <= 8
and stride_h >= 1
and stride_h <= 4
and stride_w >= 1
and stride_w <= 4
and padding_h_top >= 0
and padding_h_top <= 4
and padding_h_bot >= 0
and padding_h_bot <= 4
and padding_w_left >= 0
and padding_w_left <= 4
and padding_w_right >= 0
and padding_w_right <= 4
and channels >= 1
and channels <= 2560
)
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Mean")
def mean_op_support(X, bXs, tXs):
axes = X.attrs["axes"]
keepdims = X.attrs["keepdims"]
return len(axes) == 2 and keepdims
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "LeakyReLU")
def leaky_relu_op_support(X, bXs, tXs):
alpha = X.attrs["alpha"]
return math.isclose(alpha, 0.1, rel_tol=1e-5)
@pyxir.register_op_support_check('DPUCZDX8G-ultra96', 'ReLU')
def relu_op_support(X, bXs, tXs):
assert len(bXs) == 1
bX = bXs[0]
return bX.type[0] in set(
[
"Convolution",
"Conv2DTranspose",
"Eltwise",
"BatchNorm",
"BiasAdd",
"Scale",
"Pooling",
]
)
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "ReLU6")
def relu6_op_support(X, bXs, tXs):
return True
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Scale")
def scale_op_support(X, bXs, tXs):
axis = X.attrs["axis"]
channels = X.shapes[axis]
return channels > 1 and channels <= 2560
@pyxir.register_op_support_check("DPUCZDX8G-ultra96", "Upsampling2D")
|
Apache License 2.0
|
llnl/merlin
|
merlin/spec/specification.py
|
MerlinSpec.get_task_queues
|
python
|
def get_task_queues(self):
from merlin.config.configfile import CONFIG
steps = self.get_study_steps()
queues = {}
for step in steps:
if "task_queue" in step.run and CONFIG.celery.omit_queue_tag:
queues[step.name] = step.run["task_queue"]
elif "task_queue" in step.run:
queues[step.name] = CONFIG.celery.queue_tag + step.run["task_queue"]
return queues
|
Returns a dictionary of steps and their corresponding task queues.
|
https://github.com/llnl/merlin/blob/b03640006e156059b801fe2179f28760fb38029a/merlin/spec/specification.py#L330-L341
|
import logging
import os
import shlex
from io import StringIO
import yaml
from maestrowf.datastructures import YAMLSpecification
from merlin.spec import all_keys, defaults
LOG = logging.getLogger(__name__)
class MerlinSpec(YAMLSpecification):
def __init__(self):
super(MerlinSpec, self).__init__()
@property
def yaml_sections(self):
return {
"description": self.description,
"batch": self.batch,
"env": self.environment,
"study": self.study,
"global.parameters": self.globals,
"merlin": self.merlin,
}
@property
def sections(self):
return {
"description": self.description,
"batch": self.batch,
"environment": self.environment,
"study": self.study,
"globals": self.globals,
"merlin": self.merlin,
}
@classmethod
def load_specification(cls, filepath, suppress_warning=True):
spec = super(MerlinSpec, cls).load_specification(filepath)
with open(filepath, "r") as f:
spec.merlin = MerlinSpec.load_merlin_block(f)
spec.specroot = os.path.dirname(spec.path)
spec.process_spec_defaults()
if not suppress_warning:
spec.warn_unrecognized_keys()
return spec
@classmethod
def load_spec_from_string(cls, string):
spec = super(MerlinSpec, cls).load_specification_from_stream(StringIO(string))
spec.merlin = MerlinSpec.load_merlin_block(StringIO(string))
spec.specroot = None
spec.process_spec_defaults()
return spec
@staticmethod
def load_merlin_block(stream):
try:
merlin_block = yaml.safe_load(stream)["merlin"]
except KeyError:
merlin_block = {}
warning_msg: str = (
"Workflow specification missing \n "
"encouraged 'merlin' section! Run 'merlin example' for examples.\n"
"Using default configuration with no sampling."
)
LOG.warning(warning_msg)
return merlin_block
def process_spec_defaults(self):
for name, section in self.sections.items():
if section is None:
setattr(self, name, {})
MerlinSpec.fill_missing_defaults(self.batch, defaults.BATCH["batch"])
MerlinSpec.fill_missing_defaults(self.environment, defaults.ENV["env"])
MerlinSpec.fill_missing_defaults(
self.globals, defaults.PARAMETER["global.parameters"]
)
defaults.STUDY_STEP_RUN["shell"] = self.batch["shell"]
for step in self.study:
MerlinSpec.fill_missing_defaults(step["run"], defaults.STUDY_STEP_RUN)
MerlinSpec.fill_missing_defaults(self.merlin, defaults.MERLIN["merlin"])
if self.merlin["resources"]["workers"] is None:
self.merlin["resources"]["workers"] = {"default_worker": defaults.WORKER}
else:
for worker, vals in self.merlin["resources"]["workers"].items():
MerlinSpec.fill_missing_defaults(vals, defaults.WORKER)
if self.merlin["samples"] is not None:
MerlinSpec.fill_missing_defaults(self.merlin["samples"], defaults.SAMPLES)
@staticmethod
def fill_missing_defaults(object_to_update, default_dict):
def recurse(result, defaults):
if not isinstance(defaults, dict):
return
for key, val in defaults.items():
if (key not in result) or (
(result[key] is None) and (defaults[key] is not None)
):
result[key] = val
else:
recurse(result[key], val)
recurse(object_to_update, default_dict)
def warn_unrecognized_keys(self):
MerlinSpec.check_section("description", self.description, all_keys.DESCRIPTION)
MerlinSpec.check_section("batch", self.batch, all_keys.BATCH)
MerlinSpec.check_section("env", self.environment, all_keys.ENV)
for param, contents in self.globals.items():
MerlinSpec.check_section("global.parameters", contents, all_keys.PARAMETER)
for step in self.study:
MerlinSpec.check_section(step["name"], step, all_keys.STUDY_STEP)
MerlinSpec.check_section(
step["name"] + ".run", step["run"], all_keys.STUDY_STEP_RUN
)
MerlinSpec.check_section("merlin", self.merlin, all_keys.MERLIN)
MerlinSpec.check_section(
"merlin.resources", self.merlin["resources"], all_keys.MERLIN_RESOURCES
)
for worker, contents in self.merlin["resources"]["workers"].items():
MerlinSpec.check_section(
"merlin.resources.workers " + worker, contents, all_keys.WORKER
)
if self.merlin["samples"]:
MerlinSpec.check_section(
"merlin.samples", self.merlin["samples"], all_keys.SAMPLES
)
@staticmethod
def check_section(section_name, section, all_keys):
diff = set(section.keys()).difference(all_keys)
for extra in diff:
LOG.warn(
f"Unrecognized key '{extra}' found in spec section '{section_name}'."
)
def dump(self):
tab = 3 * " "
result = self._dict_to_yaml(self.yaml_sections, "", [], tab)
while "\n\n\n" in result:
result = result.replace("\n\n\n", "\n\n")
try:
yaml.safe_load(result)
except BaseException as e:
raise ValueError(f"Error parsing provenance spec:\n{e}")
return result
def _dict_to_yaml(self, obj, string, key_stack, tab, newline=True):
if obj is None:
return ""
lvl = len(key_stack) - 1
if isinstance(obj, str):
return self._process_string(obj, lvl, tab)
elif isinstance(obj, bool):
return str(obj).lower()
elif not (isinstance(obj, list) or isinstance(obj, dict)):
return obj
else:
return self._process_dict_or_list(obj, string, key_stack, lvl, tab)
def _process_string(self, obj, lvl, tab):
split = obj.splitlines()
if len(split) > 1:
obj = "|\n" + tab * (lvl + 1) + ("\n" + tab * (lvl + 1)).join(split)
return obj
def _process_dict_or_list(self, obj, string, key_stack, lvl, tab):
from copy import deepcopy
list_offset = 2 * " "
if isinstance(obj, list):
n = len(obj)
use_hyphens = key_stack[-1] in ["paths", "sources", "git", "study"]
if not use_hyphens:
string += "["
else:
string += "\n"
for i, elem in enumerate(obj):
key_stack = deepcopy(key_stack)
key_stack.append("elem")
if use_hyphens:
string += (
(lvl + 1) * tab
+ "- "
+ str(self._dict_to_yaml(elem, "", key_stack, tab))
+ "\n"
)
else:
string += str(
self._dict_to_yaml(elem, "", key_stack, tab, newline=(i != 0))
)
if n > 1 and i != len(obj) - 1:
string += ", "
key_stack.pop()
if not use_hyphens:
string += "]"
else:
if len(key_stack) > 0 and key_stack[-1] != "elem":
string += "\n"
i = 0
for k, v in obj.items():
key_stack = deepcopy(key_stack)
key_stack.append(k)
if len(key_stack) > 1 and key_stack[-2] == "elem" and i == 0:
string += ""
elif "elem" in key_stack:
string += list_offset + (tab * lvl)
else:
string += tab * (lvl + 1)
string += (
str(k)
+ ": "
+ str(self._dict_to_yaml(v, "", key_stack, tab))
+ "\n"
)
key_stack.pop()
i += 1
return string
|
MIT License
|
google/google-apputils
|
google/apputils/humanize.py
|
NaturalSortKey
|
python
|
def NaturalSortKey(data):
segments = DIGIT_SPLITTER(data)
for i, value in enumerate(segments):
if value.isdigit():
segments[i] = int(value)
return segments
|
Key function for "natural sort" ordering.
This key function results in a lexigraph sort. For example:
- ['1, '3', '20'] (not ['1', '20', '3']).
- ['Model 9', 'Model 70 SE', 'Model 70 SE2']
(not ['Model 70 SE', 'Model 70 SE2', 'Model 9']).
Usage:
new_list = sorted(old_list, key=humanize.NaturalSortKey)
or
list_sort_in_place.sort(key=humanize.NaturalSortKey)
Based on code by Steven Bazyl <sbazyl@google.com>.
Args:
data: str, The key being compared in a sort.
Returns:
A list which is comparable to other lists for the purpose of sorting.
|
https://github.com/google/google-apputils/blob/ce33c1bea34da107bf7d336798bd688bd87a42f5/google/apputils/humanize.py#L437-L462
|
import datetime
import math
import re
SIBILANT_ENDINGS = frozenset(['sh', 'ss', 'tch', 'ax', 'ix', 'ex'])
DIGIT_SPLITTER = re.compile(r'\d+|\D+').findall
SPECIAL_PLURALS = {
'index': 'indices',
'matrix': 'matrices',
'vertex': 'vertices',
}
VOWELS = frozenset('AEIOUaeiou')
def Commas(value):
if value < 0:
sign = '-'
value = -value
else:
sign = ''
result = []
while value >= 1000:
result.append('%03d' % (value % 1000))
value /= 1000
result.append('%d' % value)
return sign + ','.join(reversed(result))
def Plural(quantity, singular, plural=None):
return '%d %s' % (quantity, PluralWord(quantity, singular, plural))
def PluralWord(quantity, singular, plural=None):
if quantity == 1:
return singular
if plural:
return plural
if singular in SPECIAL_PLURALS:
return SPECIAL_PLURALS[singular]
for ending in SIBILANT_ENDINGS:
if singular.endswith(ending):
return '%ses' % singular
if singular.endswith('o') and singular[-2:-1] not in VOWELS:
return '%ses' % singular
if singular.endswith('y') and singular[-2:-1] not in VOWELS:
return '%sies' % singular[:-1]
return '%ss' % singular
def WordSeries(words, conjunction='and'):
num_words = len(words)
if num_words == 0:
return ''
elif num_words == 1:
return words[0]
elif num_words == 2:
return (' %s ' % conjunction).join(words)
else:
return '%s, %s %s' % (', '.join(words[:-1]), conjunction, words[-1])
def AddIndefiniteArticle(noun):
if not noun:
raise ValueError('argument must be a word: {!r}'.format(noun))
if noun[0] in VOWELS:
return 'an ' + noun
else:
return 'a ' + noun
def DecimalPrefix(quantity, unit, precision=1, min_scale=0, max_scale=None):
return _Prefix(quantity, unit, precision, DecimalScale, min_scale=min_scale,
max_scale=max_scale)
def BinaryPrefix(quantity, unit, precision=1):
return _Prefix(quantity, unit, precision, BinaryScale)
def _Prefix(quantity, unit, precision, scale_callable, **args):
separator = ' ' if unit else ''
if not quantity:
return '0%s%s' % (separator, unit)
if quantity in [float('inf'), float('-inf')] or math.isnan(quantity):
return '%f%s%s' % (quantity, separator, unit)
scaled_quantity, scaled_unit = scale_callable(quantity, unit, **args)
if scaled_unit:
separator = ' '
print_pattern = '%%.%df%%s%%s' % max(0, (precision - int(
math.log(abs(scaled_quantity), 10)) - 1))
return print_pattern % (scaled_quantity, separator, scaled_unit)
DECIMAL_PREFIXES = ('y', 'z', 'a', 'f', 'p', 'n', u'µ', 'm',
'', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')
DECIMAL_MIN_SCALE = -8
DECIMAL_MAX_SCALE = 8
def DecimalScale(quantity, unit, min_scale=0, max_scale=None):
if min_scale is None or min_scale < DECIMAL_MIN_SCALE:
min_scale = DECIMAL_MIN_SCALE
if max_scale is None or max_scale > DECIMAL_MAX_SCALE:
max_scale = DECIMAL_MAX_SCALE
powers = DECIMAL_PREFIXES[
min_scale - DECIMAL_MIN_SCALE:max_scale - DECIMAL_MIN_SCALE + 1]
return _Scale(quantity, unit, 1000, powers, min_scale)
def BinaryScale(quantity, unit):
return _Scale(quantity, unit, 1024,
('Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi', 'Yi'))
def _Scale(quantity, unit, multiplier, prefixes=None, min_scale=None):
if (not prefixes or not quantity or math.isnan(quantity) or
quantity in [float('inf'), float('-inf')]):
return float(quantity), unit
if min_scale is None:
min_scale = 0
prefixes = ('',) + tuple(prefixes)
value, prefix = quantity, ''
for power, prefix in enumerate(prefixes, min_scale):
value = float(quantity) * multiplier ** -power
if abs(value) < multiplier:
break
return value, prefix + unit
FRACTIONS = {
3: (None, u'⅓', u'⅔', None),
5: (None, u'⅕', u'⅖', u'⅗', u'⅘', None),
8: (None, u'⅛', u'¼', u'⅜', u'½', u'⅝', u'¾', u'⅞', None),
}
FRACTION_ROUND_DOWN = 1.0 / (max(FRACTIONS.keys()) * 2.0)
FRACTION_ROUND_UP = 1.0 - FRACTION_ROUND_DOWN
def PrettyFraction(number, spacer=''):
if number < -FRACTION_ROUND_DOWN:
return u'-%s' % PrettyFraction(-number)
number = abs(number)
rounded = int(number)
fract = number - rounded
if fract >= FRACTION_ROUND_UP:
return str(rounded + 1)
errors_fractions = []
for denominator, fraction_elements in FRACTIONS.items():
numerator = int(round(denominator * fract))
error = abs(fract - (float(numerator) / float(denominator)))
errors_fractions.append((error, fraction_elements[numerator]))
unused_error, fraction_text = min(errors_fractions)
if rounded and fraction_text:
return u'%d%s%s' % (rounded, spacer, fraction_text)
if rounded:
return str(rounded)
if fraction_text:
return fraction_text
return u'0'
def Duration(duration, separator=' '):
try:
delta = datetime.timedelta(seconds=duration)
except OverflowError:
return '>=' + TimeDelta(datetime.timedelta.max)
return TimeDelta(delta, separator=separator)
def TimeDelta(delta, separator=' '):
parts = []
seconds = delta.seconds
if delta.days:
parts.append('%dd' % delta.days)
if seconds >= 3600:
parts.append('%dh' % (seconds // 3600))
seconds %= 3600
if seconds >= 60:
parts.append('%dm' % (seconds // 60))
seconds %= 60
seconds += delta.microseconds / 1e6
if seconds or not parts:
parts.append('%gs' % seconds)
return separator.join(parts)
|
Apache License 2.0
|
google/containerregistry
|
client/v2_2/docker_digest_.py
|
SHA256
|
python
|
def SHA256(content, prefix='sha256:'):
return prefix + hashlib.sha256(content).hexdigest()
|
Return 'sha256:' + hex(sha256(content)).
|
https://github.com/google/containerregistry/blob/8a11dc8c53003ecf5b72ffaf035ba280109356ac/client/v2_2/docker_digest_.py#L25-L27
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import hashlib
|
Apache License 2.0
|
machine-learning-exchange/mlx
|
api/server/swagger_server/models/api_notebook.py
|
ApiNotebook.created_at
|
python
|
def created_at(self) -> datetime:
return self._created_at
|
Gets the created_at of this ApiNotebook.
:return: The created_at of this ApiNotebook.
:rtype: datetime
|
https://github.com/machine-learning-exchange/mlx/blob/be1503c45538dac1a8188560fbec4a07b2a367bf/api/server/swagger_server/models/api_notebook.py#L122-L129
|
from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from swagger_server.models.api_asset import ApiAsset
from swagger_server.models.api_metadata import ApiMetadata
from swagger_server.models.api_parameter import ApiParameter
from swagger_server import util
class ApiNotebook(ApiAsset):
def __init__(self, id: str=None, created_at: datetime=None, name: str=None, description: str=None, featured: bool=None, publish_approved: bool=None, related_assets: List[str]=None, filter_categories: Dict[str, str]=None, url: str=None, metadata: ApiMetadata=None, parameters: List[ApiParameter]=None):
self.swagger_types = {
'id': str,
'created_at': datetime,
'name': str,
'description': str,
'featured': bool,
'publish_approved': bool,
'related_assets': List[str],
'filter_categories': Dict[str, str],
'url': str,
'metadata': ApiMetadata,
'parameters': List[ApiParameter]
}
self.attribute_map = {
'id': 'id',
'created_at': 'created_at',
'name': 'name',
'description': 'description',
'featured': 'featured',
'publish_approved': 'publish_approved',
'related_assets': 'related_assets',
'filter_categories': 'filter_categories',
'url': 'url',
'metadata': 'metadata',
'parameters': 'parameters'
}
self._id = id
self._created_at = created_at
self._name = name
self._description = description
self._featured = featured
self._publish_approved = publish_approved
self._related_assets = related_assets
self._filter_categories = filter_categories
self._url = url
self._metadata = metadata
self._parameters = parameters
@classmethod
def from_dict(cls, dikt) -> 'ApiNotebook':
return util.deserialize_model(dikt, cls)
@property
def id(self) -> str:
return self._id
@id.setter
def id(self, id: str):
self._id = id
@property
|
Apache License 2.0
|
hyperledger/indy-plenum
|
plenum/server/consensus/view_change_storages.py
|
ViewChangeVotesForNode.view_change
|
python
|
def view_change(self) -> Optional[ViewChange]:
return self._view_change
|
Returns received view change
|
https://github.com/hyperledger/indy-plenum/blob/406afdeca1630be688f803a3cba15115faa20e2b/plenum/server/consensus/view_change_storages.py#L38-L42
|
from _sha256 import sha256
from collections import defaultdict
from typing import Optional, List, Tuple
from common.serializers.json_serializer import JsonSerializer
from plenum.common.messages.internal_messages import VoteForViewChange
from plenum.common.messages.node_messages import ViewChange, ViewChangeAck, NewView
from plenum.common.types import f
from plenum.server.consensus.utils import replica_name_to_node_name
def view_change_digest(msg: ViewChange) -> str:
msg_as_dict = msg._asdict()
serialized = JsonSerializer().dumps(msg_as_dict)
return sha256(serialized).hexdigest()
class ViewChangeVotesForNode:
def __init__(self, quorums):
self._view_change = None
self._digest = None
self._quorums = quorums
self._acks = defaultdict(set)
@property
def digest(self) -> Optional[str]:
return self._digest
@property
|
Apache License 2.0
|
pymir3/pymir3
|
mir3/lib/mir/features.py
|
energy
|
python
|
def energy(A):
return numpy.sum(A**2 , 0)
|
Energy of each frame
|
https://github.com/pymir3/pymir3/blob/c1bcca66a5ef1ff0ebd6373e3820e72dee6b0b70/mir3/lib/mir/features.py#L17-L19
|
import numpy
def flatness(A):
return numpy.exp( numpy.mean(numpy.log(numpy.maximum(A, 0.0001)), 0) ) / (numpy.mean(A, 0) + (10**(-6)))
|
MIT License
|
robinandeer/puzzle
|
tests/conftest.py
|
gemini_db_path
|
python
|
def gemini_db_path(request):
hapmap = "tests/fixtures/HapMapFew.db"
return hapmap
|
Return the path to the hapmap gemini db
|
https://github.com/robinandeer/puzzle/blob/9476f05b416d3a5135d25492cb31411fdf831c58/tests/conftest.py#L102-L105
|
import os
import shutil
import pytest
import logging
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from puzzle.models import (Variant, DotDict, Individual)
from puzzle.models.sql import BASE
from puzzle.models.sql import Case as SqlCase
from puzzle.plugins import VcfPlugin, SqlStore
from puzzle.utils import (get_cases, get_header)
from puzzle.log import configure_stream
root_logger = configure_stream()
logger = logging.getLogger(__name__)
@pytest.fixture
def vcf():
db = VcfPlugin()
return db
@pytest.fixture(scope='function')
def puzzle_dir(request, dir_path):
db_path = os.path.join(dir_path, 'puzzle_db.sqlite3')
logger.debug("db path is: {}".format(db_path))
resource_dir = os.path.join(dir_path, 'resources')
logger.debug("resource dir is: {}".format(resource_dir))
logger.debug("Create directory: {0}".format(resource_dir))
os.makedirs(resource_dir)
logger.debug('Directory created')
logger.debug('Connect to database and create tables')
store = SqlStore(db_path)
store.set_up(reset=False)
return dir_path
@pytest.fixture(scope='function')
def gemini_path(request):
gemini_db = "tests/fixtures/HapMapFew.db"
return gemini_db
@pytest.fixture(scope='function')
def vcf_file(request):
hapmap = "tests/fixtures/hapmap.vcf"
return hapmap
@pytest.fixture(scope='function')
def vcf_file_no_ind(request):
hapmap = "tests/fixtures/no_ind.vcf"
return hapmap
@pytest.fixture(scope='function')
def vcf_file_sv(request):
hapmap = "tests/fixtures/hapmap.sv.vep.vcf.gz"
return hapmap
@pytest.fixture(scope='function')
def compressed_vcf_file(request):
hapmap = "tests/fixtures/hapmap.vcf.gz"
return hapmap
@pytest.fixture(scope='function')
def indexed_vcf_file(request):
hapmap = "tests/fixtures/hapmap_pos.vcf.gz"
return hapmap
@pytest.fixture(scope='function')
def root_path(request):
root = "tests/fixtures/"
return root
@pytest.fixture(scope='function')
def ped_file(request):
hapmap = "tests/fixtures/hapmap.ped"
return hapmap
@pytest.fixture(scope='function')
|
MIT License
|
rajammanabrolu/worldgeneration
|
evennia-engine/evennia/evennia/contrib/turnbattle/tb_range.py
|
TBRangeTurnHandler.start_turn
|
python
|
def start_turn(self, character):
character.db.combat_actionsleft = ACTIONS_PER_TURN
character.msg("|wIt's your turn!|n")
combat_status_message(character)
|
Readies a character for the start of their turn by replenishing their
available actions and notifying them that their turn has come up.
Args:
character (obj): Character to be readied.
Notes:
In this example, characters are given two actions per turn. This allows
characters to both move and attack in the same turn (or, alternately,
move twice or attack twice).
|
https://github.com/rajammanabrolu/worldgeneration/blob/5e97df013399e1a401d0a7ec184c4b9eb3100edd/evennia-engine/evennia/evennia/contrib/turnbattle/tb_range.py#L684-L700
|
from random import randint
from evennia import DefaultCharacter, DefaultObject, Command, default_cmds, DefaultScript
from evennia.commands.default.help import CmdHelp
TURN_TIMEOUT = 30
ACTIONS_PER_TURN = 2
def roll_init(character):
return randint(1, 1000)
def get_attack(attacker, defender, attack_type):
attack_value = randint(1, 100)
if attack_type == "melee":
attack_value += 15
if attack_type == "ranged":
attack_value -= 15
return attack_value
def get_defense(attacker, defender, attack_type):
defense_value = 50
return defense_value
def get_damage(attacker, defender):
damage_value = randint(15, 25)
return damage_value
def apply_damage(defender, damage):
defender.db.hp -= damage
if defender.db.hp <= 0:
defender.db.hp = 0
def at_defeat(defeated):
defeated.location.msg_contents("%s has been defeated!" % defeated)
def resolve_attack(attacker, defender, attack_type, attack_value=None, defense_value=None):
if not attack_value:
attack_value = get_attack(attacker, defender, attack_type)
if not defense_value:
defense_value = get_defense(attacker, defender, attack_type)
if attack_value < defense_value:
attacker.location.msg_contents(
"%s's %s attack misses %s!" % (attacker, attack_type, defender)
)
else:
damage_value = get_damage(attacker, defender)
attacker.location.msg_contents(
"%s hits %s with a %s attack for %i damage!"
% (attacker, defender, attack_type, damage_value)
)
apply_damage(defender, damage_value)
if defender.db.hp <= 0:
at_defeat(defender)
def get_range(obj1, obj2):
if not obj1.db.combat_range:
return None
if not obj2.db.combat_range:
return None
if obj1 not in obj2.db.combat_range:
return None
if obj2 not in obj1.db.combat_range:
return None
return obj1.db.combat_range[obj2]
def distance_inc(mover, target):
mover.db.combat_range[target] += 1
target.db.combat_range[mover] = mover.db.combat_range[target]
if get_range(mover, target) > 2:
target.db.combat_range[mover] = 2
mover.db.combat_range[target] = 2
def approach(mover, target):
def distance_dec(mover, target):
mover.db.combat_range[target] -= 1
target.db.combat_range[mover] = mover.db.combat_range[target]
if get_range(mover, target) <= 0:
target.db.combat_range[mover] = 0
mover.db.combat_range = target.db.combat_range
for thing in mover.location.contents:
if thing != mover and thing != target:
thing.db.combat_range[mover] = thing.db.combat_range[target]
contents = mover.location.contents
for thing in contents:
if thing != mover and thing != target:
if get_range(mover, thing) > get_range(target, thing):
distance_dec(mover, thing)
if get_range(mover, thing) < get_range(target, thing):
distance_inc(mover, thing)
distance_dec(mover, target)
def withdraw(mover, target):
contents = mover.location.contents
for thing in contents:
if thing != mover and thing != target:
if get_range(mover, thing) >= get_range(target, thing) and get_range(
mover, thing
) < get_range(mover, target):
distance_inc(mover, thing)
if get_range(target, thing) == 0:
distance_inc(mover, thing)
if get_range(mover, thing) == 0:
distance_inc(mover, thing)
distance_inc(mover, target)
def combat_cleanup(character):
for attr in character.attributes.all():
if attr.key[:7] == "combat_":
character.attributes.remove(key=attr.key)
def is_in_combat(character):
return bool(character.db.combat_turnhandler)
def is_turn(character):
turnhandler = character.db.combat_turnhandler
currentchar = turnhandler.db.fighters[turnhandler.db.turn]
return bool(character == currentchar)
def spend_action(character, actions, action_name=None):
if action_name:
character.db.combat_lastaction = action_name
if actions == "all":
character.db.combat_actionsleft = 0
else:
character.db.combat_actionsleft -= actions
if character.db.combat_actionsleft < 0:
character.db.combat_actionsleft = 0
character.db.combat_turnhandler.turn_end_check(character)
def combat_status_message(fighter):
if not fighter.db.max_hp:
fighter.db.hp = 100
fighter.db.max_hp = 100
status_msg = "HP Remaining: %i / %i" % (fighter.db.hp, fighter.db.max_hp)
if not is_in_combat(fighter):
fighter.msg(status_msg)
return
engaged_obj = []
reach_obj = []
range_obj = []
for thing in fighter.db.combat_range:
if thing != fighter:
if fighter.db.combat_range[thing] == 0:
engaged_obj.append(thing)
if fighter.db.combat_range[thing] == 1:
reach_obj.append(thing)
if fighter.db.combat_range[thing] > 1:
range_obj.append(thing)
if engaged_obj:
status_msg += "|/Engaged targets: %s" % ", ".join(obj.key for obj in engaged_obj)
if reach_obj:
status_msg += "|/Reach targets: %s" % ", ".join(obj.key for obj in reach_obj)
if range_obj:
status_msg += "|/Ranged targets: %s" % ", ".join(obj.key for obj in range_obj)
fighter.msg(status_msg)
class TBRangeTurnHandler(DefaultScript):
def at_script_creation(self):
self.key = "Combat Turn Handler"
self.interval = 5
self.persistent = True
self.db.fighters = []
for thing in self.obj.contents:
if thing.db.hp:
self.db.fighters.append(thing)
for fighter in self.db.fighters:
self.initialize_for_combat(fighter)
self.obj.db.combat_turnhandler = self
for thing in self.obj.contents:
self.init_range(thing)
ordered_by_roll = sorted(self.db.fighters, key=roll_init, reverse=True)
self.db.fighters = ordered_by_roll
self.obj.msg_contents("Turn order is: %s " % ", ".join(obj.key for obj in self.db.fighters))
self.start_turn(self.db.fighters[0])
self.db.turn = 0
self.db.timer = TURN_TIMEOUT
def at_stop(self):
for thing in self.obj.contents:
combat_cleanup(thing)
self.obj.db.combat_turnhandler = None
def at_repeat(self):
currentchar = self.db.fighters[
self.db.turn
]
self.db.timer -= self.interval
if self.db.timer <= 0:
self.obj.msg_contents("%s's turn timed out!" % currentchar)
spend_action(
currentchar, "all", action_name="disengage"
)
return
elif self.db.timer <= 10 and not self.db.timeout_warning_given:
currentchar.msg("WARNING: About to time out!")
self.db.timeout_warning_given = True
def init_range(self, to_init):
rangedict = {}
objectlist = self.obj.contents
for thing in objectlist:
if thing == to_init:
rangedict.update({thing: 0})
else:
if thing.destination or to_init.destination:
rangedict.update({thing: 2})
else:
rangedict.update({thing: 1})
to_init.db.combat_range = rangedict
def join_rangefield(self, to_init, anchor_obj=None, add_distance=0):
contents = self.obj.contents
contents.remove(to_init)
if not anchor_obj:
anchor_obj = contents[randint(0, (len(contents) - 1))]
to_init.db.combat_range = anchor_obj.db.combat_range
for thing in contents:
new_objects_range = thing.db.combat_range[anchor_obj]
thing.db.combat_range.update({to_init: new_objects_range})
to_init.db.combat_range.update({to_init: 0})
for n in range(add_distance):
withdraw(to_init, anchor_obj)
def initialize_for_combat(self, character):
combat_cleanup(character)
character.db.combat_actionsleft = (
0
)
character.db.combat_turnhandler = (
self
)
character.db.combat_lastaction = "null"
|
MIT License
|
icfpc2016/icfpc2016-judge
|
hibiki/app/hibiki/model.py
|
get_problem_for_admin
|
python
|
def get_problem_for_admin(problem_id):
problem = _db.problems.find_one({'_id': problem_id})
if not problem:
raise KeyError('Problem not found: %s' % problem_id)
return problem
|
Returns a problem.
Args:
problem_id: Numeric ID of the problem.
Returns:
A problem dictionary.
Raises:
KeyError: If the specified problem was not found.
|
https://github.com/icfpc2016/icfpc2016-judge/blob/ece7a536fa480f141d0d305b090b1bfe195542f8/hibiki/app/hibiki/model.py#L773-L788
|
import hashlib
import json
import logging
import os
import bson.binary
import gflags
from passlib.hash import sha256_crypt
import pymongo
import pymongo.collection
import pymongo.errors
import ujson
from hibiki import misc_util
from hibiki import scoring
from hibiki import settings
from hibiki import storage
FLAGS = gflags.FLAGS
gflags.DEFINE_string(
'mongodb_url', 'mongodb://localhost',
'MongoDB URL to connect to.')
gflags.DEFINE_string(
'mongodb_db', 'icfpcontest2016',
'MongoDB database name.')
gflags.DEFINE_bool(
'mongodb_explain', False,
'Log MongoDB query explains.')
gflags.DEFINE_string(
'storage_gcs_bucket_name', None,
'Name of the GCS bucket used to storage large blobs.')
gflags.DEFINE_bool(
'disable_model_cache_for_testing', False,
'Disables model caching for testing.')
_client = None
_db = None
_cookie_master_secret = None
PASSWORDLESS_HASH = '*passwordless*'
def connect():
global _client
global _db
assert not _client, 'connect() called multiple times!'
_client = pymongo.MongoClient(FLAGS.mongodb_url)
_db = _client[FLAGS.mongodb_db]
server_version = tuple(_client.server_info()['version'].split('.'))
assert server_version >= (2, 6), (
'MongoDB server version is old. Please upgrade to 2.6+.')
if FLAGS.storage_gcs_bucket_name:
storage.connect(FLAGS.storage_gcs_bucket_name)
_init_model()
def _init_model():
_ensure_cookie_secret()
_ensure_indices()
_ensure_organizer_users()
def _ensure_cookie_secret():
global _cookie_master_secret
entry = _db.config.find_one({'_id': 'cookie_master_secret'})
if not entry:
tmp_cookie_master_secret = misc_util.generate_random_id(length=32)
try:
entry = {
'_id': 'cookie_master_secret',
'value': tmp_cookie_master_secret,
}
_db.config.insert_one(entry)
except pymongo.errors.DuplicateKeyError:
entry = _db.config.find_one({'_id': 'cookie_master_secret'})
assert entry
_cookie_master_secret = entry['value']
def _ensure_indices():
_db.users.create_index([
('create_time', pymongo.ASCENDING),
], background=True)
_db.users.create_index([
('api_key', pymongo.ASCENDING),
], background=True)
_db.problems.create_index([
('public', pymongo.ASCENDING),
('_id', pymongo.ASCENDING),
], background=True)
_db.problems.create_index([
('public', pymongo.ASCENDING),
('publish_time', pymongo.ASCENDING),
], background=True)
_db.problems.create_index([
('publish_time', pymongo.ASCENDING),
], background=True)
_db.problem_ranking_snapshots.create_index([
('problem_id', pymongo.ASCENDING),
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.problem_ranking_snapshots.create_index([
('public', pymongo.ASCENDING),
('problem_id', pymongo.ASCENDING),
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.problems.create_index([
('public', pymongo.ASCENDING),
('publish_time', pymongo.ASCENDING),
], background=True)
_db.problem_ranking_snapshots.create_index([
('problem_id', pymongo.ASCENDING),
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.solutions.create_index([
('problem_id', pymongo.ASCENDING),
('create_time', pymongo.ASCENDING),
], background=True)
_db.leaderboard_snapshots.create_index([
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.leaderboard_snapshots.create_index([
('public', pymongo.ASCENDING),
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.problem_ranking_snapshots.create_index([
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.leaderboard_snapshots.create_index([
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.public_contest_snapshots.create_index([
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.problem_ranking_snapshots.create_index([
('public', pymongo.ASCENDING),
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.leaderboard_snapshots.create_index([
('public', pymongo.ASCENDING),
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.public_contest_snapshots.create_index([
('snapshot_time', pymongo.ASCENDING),
], background=True)
_db.problems.create_index([
('owner', pymongo.ASCENDING),
], background=True)
_db.solutions.create_index([
('owner', pymongo.ASCENDING),
], background=True)
def _ensure_organizer_users():
try:
_db.config.insert_one(
{
'_id': 'user_counter',
'value': 10,
})
except pymongo.errors.DuplicateKeyError:
return
for i in xrange(10):
username = '%d' % (i + 1)
api_key = '%s-%s' % (username, misc_util.generate_random_id(32))
display_name = 'Contest Organizer Problem Set %s' % chr(ord('A') + i)
contact_email = 'organizer%d@example.com' % (i + 1)
member_names = 'N/A'
remote_host = '127.127.127.%d' % i
user = {
'_id': username,
'password_hash': PASSWORDLESS_HASH,
'api_key': api_key,
'display_name': display_name,
'contact_email': contact_email,
'member_names': member_names,
'create_time': misc_util.time(),
'register_remote_host': remote_host,
'organizer': True,
}
_db.users.insert_one(user)
def _maybe_explain_query(cursor):
if FLAGS.mongodb_explain:
logging.info(
'EXPLAIN: %s',
json.dumps(
cursor.explain()['queryPlanner']['winningPlan'], indent=2))
def _increment_atomic_counter(key):
try:
entry = _db.config.find_one_and_update(
{'_id': key},
{
'$setOnInsert': {'_id': key},
'$inc': {'value': 1},
},
upsert=True,
return_document=pymongo.collection.ReturnDocument.AFTER)
except pymongo.errors.DuplicateKeyError:
entry = _db.config.find_one_and_update(
{'_id': key},
{'$inc': {'value': 1}},
return_document=pymongo.collection.ReturnDocument.AFTER)
return entry['value']
def record_last_api_access_time(username):
now = misc_util.time()
try:
entry = _db.api_last_accesses.find_one_and_update(
{'_id': username},
{
'$setOnInsert': {'_id': username},
'$set': {'last_access_time': now},
},
upsert=True,
return_document=pymongo.collection.ReturnDocument.BEFORE)
except pymongo.errors.DuplicateKeyError:
entry = _db.api_last_accesses.find_one_and_update(
{'_id': username},
{'$set': {'last_access_time': now}},
return_document=pymongo.collection.ReturnDocument.BEFORE)
if not entry:
return 86400
return now - entry['last_access_time']
def increment_api_rate_limit_counter(username, action):
last_window_time = misc_util.align_timestamp(
misc_util.time(), FLAGS.contest_start_time, FLAGS.api_rate_limit_window_size)
key = '%s:%d:%s' % (action, last_window_time, username)
try:
entry = _db.api_rate_limits.find_one_and_update(
{'_id': key},
{
'$setOnInsert': {'_id': key},
'$inc': {'value': 1},
},
upsert=True,
return_document=pymongo.collection.ReturnDocument.AFTER)
except pymongo.errors.DuplicateKeyError:
entry = _db.api_rate_limits.find_one_and_update(
{'_id': key},
{'$inc': {'value': 1}},
return_document=pymongo.collection.ReturnDocument.AFTER)
return entry['value']
def decrement_web_rate_limit_counter(username):
while True:
current_time_millis = int(misc_util.time() * 1000)
entry = _db.web_rate_limits.find_one({'_id': username})
if not entry:
entry = {
'_id': username,
'last_access_time_millis': current_time_millis,
'tokens': FLAGS.web_rate_limit_allowed_burst_requests,
}
try:
_db.web_rate_limits.insert_one(entry)
except pymongo.errors.DuplicateKeyError:
entry = _db.web_rate_limits.find_one({'_id': username})
last_tokens = entry['tokens']
last_access_time_millis = entry['last_access_time_millis']
current_time_millis = int(misc_util.time() * 1000)
if last_access_time_millis >= current_time_millis:
break
delta_minutes = (current_time_millis - last_access_time_millis) / 60000.0
new_tokens = min(
FLAGS.web_rate_limit_allowed_burst_requests,
last_tokens + FLAGS.web_rate_limit_requests_per_minute * delta_minutes)
entry = _db.web_rate_limits.find_one_and_update(
{
'_id': username,
'last_access_time_millis': last_access_time_millis,
},
{
'$set': {
'last_access_time_millis': current_time_millis,
'tokens': new_tokens,
},
},
return_document=pymongo.collection.ReturnDocument.AFTER)
if entry:
break
entry = _db.web_rate_limits.find_one_and_update(
{
'_id': username,
'tokens': {'$gte': 1},
},
{
'$inc': {
'tokens': -1,
},
},
return_document=pymongo.collection.ReturnDocument.AFTER)
return bool(entry)
def get_cookie_master_secret():
assert _cookie_master_secret
if FLAGS.disable_model_cache_for_testing:
_ensure_cookie_secret()
return _cookie_master_secret
def perform_health_checks():
_increment_atomic_counter('test')
def save_blob(blob, mimetype):
if isinstance(blob, unicode):
blob = blob.encode('ascii')
assert isinstance(blob, str)
key = hashlib.sha1(blob).hexdigest()
if FLAGS.storage_gcs_bucket_name:
storage.save('blobs/%s' % key, blob, mimetype=mimetype)
else:
try:
_db.blobs.update_one(
{'_id': key},
{'$setOnInsert': {'_id': key, 'value': bson.binary.Binary(blob)}},
upsert=True)
except pymongo.errors.DuplicateKeyError:
pass
return key
def load_blob(key):
if FLAGS.storage_gcs_bucket_name:
return storage.load('blobs/%s' % key)
else:
entry = _db.blobs.find_one({'_id': key})
if not entry:
raise KeyError('Blob not found: %s' % key)
return str(entry['value'])
def get_signed_blob_url(key):
if not FLAGS.storage_gcs_bucket_name:
return None
return storage.get_signed_url('blobs/%s' % key)
def register_user(display_name, contact_email, member_names, nationalities, languages, source_url, remote_host):
team_id = _increment_atomic_counter('user_counter')
username = '%d' % team_id
password = misc_util.generate_password()
password_hash = sha256_crypt.encrypt(password)
api_key = '%s-%s' % (username, misc_util.generate_random_id(32))
user = {
'_id': username,
'password_hash': password_hash,
'api_key': api_key,
'display_name': display_name,
'contact_email': contact_email,
'member_names': member_names,
'nationalities': nationalities,
'languages': languages,
'source_url': source_url,
'create_time': misc_util.time(),
'register_remote_host': remote_host,
'organizer': False,
}
_db.users.insert_one(user)
return (username, password)
def update_user(
username, display_name=None, contact_email=None, member_names=None,
nationalities=None, languages=None, source_url=None):
update = {}
if display_name is not None:
update['display_name'] = display_name
if contact_email is not None:
update['contact_email'] = contact_email
if member_names is not None:
update['member_names'] = member_names
if nationalities is not None:
update['nationalities'] = nationalities
if languages is not None:
update['languages'] = languages
if source_url is not None:
update['source_url'] = source_url
if update:
_db.users.update_one({'_id': username}, {'$set': update})
def get_user(username):
user = _db.users.find_one({'_id': username})
if not user:
raise KeyError('User not found: %s' % username)
return user
def get_user_problems(username):
user = _db.users.find_one({'_id': username})
if not user:
raise KeyError('User not found: %s' % username)
cursor = _db.problems.find(
{
'owner': user['_id']
},
projection=('owner', 'problem_size', 'solution_size', 'public', '_id'))
problems = list(cursor)
enhance_problems_for_admin(problems)
return problems
def get_user_solutions(username):
user = _db.users.find_one({'_id': username})
if not user:
raise KeyError('User not found: %s' % username)
solutions = _db.solutions.find(
{
'owner': user['_id']
},
projection=('resemblance_int', 'solution_size', 'problem_id', '_id'))
table = {}
for solution in solutions:
problem_id = solution['problem_id']
if problem_id in table:
old_solution = table[problem_id]
if solution['resemblance_int'] > old_solution['resemblance_int'] or (solution['resemblance_int'] == old_solution['resemblance_int'] and solution['_id'] < old_solution['_id']):
table[problem_id] = solution
else:
table[problem_id] = solution
solutions = table.values()
solutions.sort(key=lambda solution: solution['problem_id'])
return solutions
def get_user_map(usernames):
users = list(_db.users.find({'_id': {'$in': list(set(usernames))}}))
return {user['_id']: user for user in users}
def get_user_by_api_key(api_key):
if not api_key:
raise KeyError('User not found by API key')
user = _db.users.find_one({'api_key': api_key})
if not user:
raise KeyError('User not found by API key')
return user
def get_all_users(**options):
cursor = _db.users.find(
{},
sort=[('create_time', pymongo.ASCENDING)],
**options)
return list(cursor)
def enqueue_problem(
owner, problem_spec, problem_size, solution_spec, solution_size,
create_time, publish_time, processing_time, publish_immediately):
assert isinstance(publish_time, int)
problem_spec_hash = save_blob(problem_spec, mimetype='text/plain')
solution_spec_hash = save_blob(solution_spec, mimetype='text/plain')
new_problem = {
'_id': _increment_atomic_counter('problem_counter'),
'create_time': create_time,
'owner': owner,
'problem_spec_hash': problem_spec_hash,
'problem_size': problem_size,
'solution_spec_hash': solution_spec_hash,
'solution_size': solution_size,
'public': publish_immediately,
'publish_time': publish_time,
'processing_time': processing_time,
}
_db.problems.insert_one(new_problem)
return new_problem
def get_public_problems(**options):
cursor = _db.problems.find(
{'public': True},
sort=[('_id', pymongo.ASCENDING)],
**options)
return list(cursor)
def count_public_problems():
cursor = _db.problems.find(
{'public': True},
sort=[('_id', pymongo.DESCENDING)])
return cursor.count()
def get_public_problem(problem_id):
problem = _db.problems.find_one({'_id': problem_id, 'public': True})
if not problem:
raise KeyError('Problem not found: %s' % problem_id)
return problem
def count_all_problems_for_admin():
return _db.problems.find({}).count()
def get_all_problems_for_admin(**options):
cursor = _db.problems.find(
{},
sort=[('_id', pymongo.ASCENDING)],
**options)
problems = list(cursor)
enhance_problems_for_admin(problems)
return problems
|
Apache License 2.0
|
bachili/diffvg
|
pydiffvg_tensorflow/device.py
|
set_cpu_device_id
|
python
|
def set_cpu_device_id(did: int):
global cpu_device_id
cpu_device_id = did
|
Set the cpu device id we are using.
|
https://github.com/bachili/diffvg/blob/e5955dbdcb4715ff3fc6cd7d74848a3aad87ec99/pydiffvg_tensorflow/device.py#L33-L38
|
import tensorflow as tf
use_gpu = tf.test.is_gpu_available(
cuda_only=True,
min_cuda_compute_capability=None
)
cpu_device_id = 0
gpu_device_id = 0
def get_device_name():
global use_gpu
global cpu_device_id
global gpu_device_id
return '/device:gpu:' + str(gpu_device_id) if use_gpu else '/device:cpu:' + str(cpu_device_id)
def set_use_gpu(v: bool):
global use_gpu
use_gpu = v
def get_use_gpu():
global use_gpu
return use_gpu
|
Apache License 2.0
|
formlio/forml
|
tests/io/dsl/_struct/test_frame.py
|
Queryable._condition
|
python
|
def _condition(
cls,
source: frame.Queryable,
handler: typing.Callable[[frame.Queryable, series.Expression], frame.Query],
target: typing.Callable[[frame.Query], series.Expression],
):
cls._expression(source, handler, target)
with pytest.raises(dsl.GrammarError):
handler(source, source.score + 1)
with pytest.raises(dsl.GrammarError):
handler(source, source.reference().score == 'foo')
|
Common condition testing routine.
|
https://github.com/formlio/forml/blob/fd070da74a0107e37c0c643dd8df8680618fef74/tests/io/dsl/_struct/test_frame.py#L104-L115
|
import abc
import typing
import cloudpickle
import pytest
from forml.io import dsl
from forml.io.dsl import _struct, function
from forml.io.dsl._struct import frame, kind, series
class Source(metaclass=abc.ABCMeta):
@staticmethod
@pytest.fixture(scope='session')
@abc.abstractmethod
def source() -> frame.Queryable:
def test_identity(self, source: frame.Source, school: frame.Table):
assert len({source, source, school}) == 2
def test_serilizable(self, source: frame.Source):
assert cloudpickle.loads(cloudpickle.dumps(source)) == source
def test_features(self, source: frame.Source, student: frame.Table):
assert student.surname in source.features
assert source.surname == student.surname
assert source['surname'] == student['surname']
assert source.birthday == student.birthday
assert source['birthday'] == student['birthday']
with pytest.raises(AttributeError):
_ = student.xyz
with pytest.raises(KeyError):
_ = student['xyz']
def test_schema(self, source: frame.Source):
assert issubclass(source.schema, _struct.Schema)
class Queryable(Source, metaclass=abc.ABCMeta):
def test_query(self, source: frame.Queryable):
assert isinstance(source.query, frame.Query)
def test_instance(self, source: frame.Source, student: frame.Table):
assert source.instance.query == student.query
def test_reference(self, source: frame.Queryable):
assert isinstance(source.reference(), frame.Reference)
def test_select(self, source: frame.Queryable):
assert source.select(source.score).selection[0] == source.score
assert source.select(source.score, source.surname).selection == (source.score, source.surname)
with pytest.raises(dsl.GrammarError):
source.select(source.reference().score)
@classmethod
def _expression(
cls,
source: frame.Queryable,
handler: typing.Callable[[frame.Queryable, series.Expression], frame.Query],
target: typing.Callable[[frame.Query], series.Expression],
):
score = source.query.source.score
with pytest.raises(dsl.GrammarError):
handler(source, (score > 2).alias('foobar'))
assert target(handler(source, score > 2)) == function.GreaterThan(score, series.Literal(2))
@classmethod
|
Apache License 2.0
|
osmr/imgclsmob
|
chainer_/chainercv2/models/bamresnet.py
|
bam_resnet18
|
python
|
def bam_resnet18(**kwargs):
return get_resnet(blocks=18, model_name="bam_resnet18", **kwargs)
|
BAM-ResNet-18 model from 'BAM: Bottleneck Attention Module,' https://arxiv.org/abs/1807.06514.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.chainer/models'
Location for keeping the model parameters.
|
https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/chainer_/chainercv2/models/bamresnet.py#L348-L359
|
__all__ = ['BamResNet', 'bam_resnet18', 'bam_resnet34', 'bam_resnet50', 'bam_resnet101', 'bam_resnet152']
import os
import chainer.functions as F
import chainer.links as L
from chainer import Chain
from functools import partial
from chainer.serializers import load_npz
from .common import SimpleSequential, conv1x1, conv1x1_block, conv3x3_block
from .resnet import ResInitBlock, ResUnit
class DenseBlock(Chain):
def __init__(self,
in_channels,
out_channels):
super(DenseBlock, self).__init__()
with self.init_scope():
self.fc = L.Linear(
in_size=in_channels,
out_size=out_channels)
self.bn = L.BatchNormalization(
size=out_channels,
eps=1e-5)
self.activ = F.relu
def __call__(self, x):
x = self.fc(x)
x = self.bn(x)
x = self.activ(x)
return x
class ChannelGate(Chain):
def __init__(self,
channels,
reduction_ratio=16,
num_layers=1):
super(ChannelGate, self).__init__()
mid_channels = channels // reduction_ratio
with self.init_scope():
self.init_fc = DenseBlock(
in_channels=channels,
out_channels=mid_channels)
self.main_fcs = SimpleSequential()
with self.main_fcs.init_scope():
for i in range(num_layers - 1):
setattr(self.main_fcs, "fc{}".format(i + 1), DenseBlock(
in_channels=mid_channels,
out_channels=mid_channels))
self.final_fc = L.Linear(
in_size=mid_channels,
out_size=channels)
def __call__(self, x):
input_shape = x.shape
x = F.average_pooling_2d(x, ksize=x.shape[2:])
x = F.reshape(x, shape=(x.shape[0], -1))
x = self.init_fc(x)
x = self.main_fcs(x)
x = self.final_fc(x)
x = F.broadcast_to(F.expand_dims(F.expand_dims(x, axis=2), axis=3), input_shape)
return x
class SpatialGate(Chain):
def __init__(self,
channels,
reduction_ratio=16,
num_dil_convs=2,
dilate=4):
super(SpatialGate, self).__init__()
mid_channels = channels // reduction_ratio
with self.init_scope():
self.init_conv = conv1x1_block(
in_channels=channels,
out_channels=mid_channels,
stride=1,
use_bias=True)
self.dil_convs = SimpleSequential()
with self.dil_convs.init_scope():
for i in range(num_dil_convs):
setattr(self.dil_convs, "conv{}".format(i + 1), conv3x3_block(
in_channels=mid_channels,
out_channels=mid_channels,
stride=1,
pad=dilate,
dilate=dilate,
use_bias=True))
self.final_conv = conv1x1(
in_channels=mid_channels,
out_channels=1,
stride=1,
use_bias=True)
def __call__(self, x):
input_shape = x.shape
x = self.init_conv(x)
x = self.dil_convs(x)
x = self.final_conv(x)
x = F.broadcast_to(x, input_shape)
return x
class BamBlock(Chain):
def __init__(self,
channels):
super(BamBlock, self).__init__()
with self.init_scope():
self.ch_att = ChannelGate(channels=channels)
self.sp_att = SpatialGate(channels=channels)
def __call__(self, x):
att = 1 + F.sigmoid(self.ch_att(x) * self.sp_att(x))
x = x * att
return x
class BamResUnit(Chain):
def __init__(self,
in_channels,
out_channels,
stride,
bottleneck):
super(BamResUnit, self).__init__()
self.use_bam = (stride != 1)
with self.init_scope():
if self.use_bam:
self.bam = BamBlock(channels=in_channels)
self.res_unit = ResUnit(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
bottleneck=bottleneck,
conv1_stride=False)
def __call__(self, x):
if self.use_bam:
x = self.bam(x)
x = self.res_unit(x)
return x
class BamResNet(Chain):
def __init__(self,
channels,
init_block_channels,
bottleneck,
in_channels=3,
in_size=(224, 224),
classes=1000):
super(BamResNet, self).__init__()
self.in_size = in_size
self.classes = classes
with self.init_scope():
self.features = SimpleSequential()
with self.features.init_scope():
setattr(self.features, "init_block", ResInitBlock(
in_channels=in_channels,
out_channels=init_block_channels))
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
stage = SimpleSequential()
with stage.init_scope():
for j, out_channels in enumerate(channels_per_stage):
stride = 2 if (j == 0) and (i != 0) else 1
setattr(stage, "unit{}".format(j + 1), BamResUnit(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
bottleneck=bottleneck))
in_channels = out_channels
setattr(self.features, "stage{}".format(i + 1), stage)
setattr(self.features, "final_pool", partial(
F.average_pooling_2d,
ksize=7,
stride=1))
self.output = SimpleSequential()
with self.output.init_scope():
setattr(self.output, "flatten", partial(
F.reshape,
shape=(-1, in_channels)))
setattr(self.output, "fc", L.Linear(
in_size=in_channels,
out_size=classes))
def __call__(self, x):
x = self.features(x)
x = self.output(x)
return x
def get_resnet(blocks,
model_name=None,
pretrained=False,
root=os.path.join("~", ".chainer", "models"),
**kwargs):
if blocks == 18:
layers = [2, 2, 2, 2]
elif blocks == 34:
layers = [3, 4, 6, 3]
elif blocks == 50:
layers = [3, 4, 6, 3]
elif blocks == 101:
layers = [3, 4, 23, 3]
elif blocks == 152:
layers = [3, 8, 36, 3]
else:
raise ValueError("Unsupported BAM-ResNet with number of blocks: {}".format(blocks))
init_block_channels = 64
if blocks < 50:
channels_per_layers = [64, 128, 256, 512]
bottleneck = False
else:
channels_per_layers = [256, 512, 1024, 2048]
bottleneck = True
channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)]
net = BamResNet(
channels=channels,
init_block_channels=init_block_channels,
bottleneck=bottleneck,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import get_model_file
load_npz(
file=get_model_file(
model_name=model_name,
local_model_store_dir_path=root),
obj=net)
return net
|
MIT License
|
facebookresearch/mtrl
|
mtrl/agent/components/actor.py
|
Actor.__init__
|
python
|
def __init__(
self,
env_obs_shape: List[int],
action_shape: List[int],
hidden_dim: int,
num_layers: int,
log_std_bounds: Tuple[float, float],
encoder_cfg: ConfigType,
multitask_cfg: ConfigType,
):
key = "type_to_select"
if key in encoder_cfg:
encoder_type_to_select = encoder_cfg[key]
encoder_cfg = encoder_cfg[encoder_type_to_select]
super().__init__(
env_obs_shape=env_obs_shape,
action_shape=action_shape,
encoder_cfg=encoder_cfg,
multitask_cfg=multitask_cfg,
)
self.log_std_bounds = log_std_bounds
self.should_use_multi_head_policy = check_if_should_use_multi_head_policy(
multitask_cfg=multitask_cfg
)
if self.should_use_multi_head_policy:
task_index_to_mask = torch.eye(multitask_cfg.num_envs)
self.moe_masks = moe_layer.MaskCache(
task_index_to_mask=task_index_to_mask,
**multitask_cfg.multi_head_policy_cfg.mask_cfg,
)
if check_if_should_use_task_encoder(multitask_cfg):
self.should_condition_model_on_task_info = False
self.should_condition_encoder_on_task_info = True
self.should_concatenate_task_info_with_encoder = True
if "actor_cfg" in multitask_cfg and multitask_cfg.actor_cfg:
self.should_condition_model_on_task_info = (
multitask_cfg.actor_cfg.should_condition_model_on_task_info
)
self.should_condition_encoder_on_task_info = (
multitask_cfg.actor_cfg.should_condition_encoder_on_task_info
)
self.should_concatenate_task_info_with_encoder = (
multitask_cfg.actor_cfg.should_concatenate_task_info_with_encoder
)
else:
self.should_condition_model_on_task_info = False
self.should_condition_encoder_on_task_info = False
self.should_concatenate_task_info_with_encoder = False
self.encoder = self._make_encoder(
env_obs_shape=env_obs_shape,
encoder_cfg=encoder_cfg,
multitask_cfg=multitask_cfg,
)
self.model = self.make_model(
action_shape=action_shape,
hidden_dim=hidden_dim,
num_layers=num_layers,
encoder_cfg=encoder_cfg,
multitask_cfg=multitask_cfg,
)
self.apply(agent_utils.weight_init)
|
Actor component for the agent.
Args:
env_obs_shape (List[int]): shape of the environment observation that the actor gets.
action_shape (List[int]): shape of the action vector that the actor produces.
hidden_dim (int): hidden dimensionality of the actor.
num_layers (int): number of layers in the actor.
log_std_bounds (Tuple[float, float]): bounds to clip log of standard deviation.
encoder_cfg (ConfigType): config for the encoder.
multitask_cfg (ConfigType): config for encoding the multitask knowledge.
|
https://github.com/facebookresearch/mtrl/blob/184c7d39db21acc505cf7094ed87cd28a1735105/mtrl/agent/components/actor.py#L132-L210
|
from typing import List, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from mtrl.agent import utils as agent_utils
from mtrl.agent.components import base as base_component
from mtrl.agent.components import encoder, moe_layer
from mtrl.agent.components.soft_modularization import SoftModularizedMLP
from mtrl.agent.ds.mt_obs import MTObs
from mtrl.agent.ds.task_info import TaskInfo
from mtrl.utils.types import ConfigType, ModelType, TensorType
def check_if_should_use_multi_head_policy(multitask_cfg: ConfigType) -> bool:
if "should_use_multi_head_policy" in multitask_cfg:
return multitask_cfg.should_use_multi_head_policy
return False
def check_if_should_use_task_encoder(multitask_cfg: ConfigType) -> bool:
if "should_use_task_encoder" in multitask_cfg:
return multitask_cfg.should_use_task_encoder
return False
def _gaussian_logprob(noise: TensorType, log_std: TensorType) -> TensorType:
residual = (-0.5 * noise.pow(2) - log_std).sum(-1, keepdim=True)
return residual - 0.5 * np.log(2 * np.pi) * noise.size(-1)
def _squash(
mu: TensorType, pi: TensorType, log_pi: TensorType
) -> Tuple[TensorType, TensorType, TensorType]:
mu = torch.tanh(mu)
if pi is not None:
pi = torch.tanh(pi)
if log_pi is not None:
log_pi -= torch.log(F.relu(1 - pi.pow(2)) + 1e-6).sum(-1, keepdim=True)
return mu, pi, log_pi
class BaseActor(base_component.Component):
def __init__(
self,
env_obs_shape: List[int],
action_shape: List[int],
encoder_cfg: ConfigType,
multitask_cfg: ConfigType,
*args,
**kwargs,
):
super().__init__()
self.multitask_cfg = multitask_cfg
def encode(self, mtobs: MTObs, detach: bool = False) -> TensorType:
raise NotImplementedError
def forward(
self,
mtobs: MTObs,
detach_encoder: bool = False,
) -> Tuple[TensorType, TensorType, TensorType, TensorType]:
raise NotImplementedError
class Actor(BaseActor):
|
MIT License
|
gehaxelt/python-rss2irc
|
bot.py
|
IRCBot.on_join
|
python
|
def on_join(self, connection, event):
if not self.__first_start:
self.send_msg(self.__config.CHANNEL, self.welcome_msg())
self.__on_connect_cb()
self.__first_start = True
|
Say hello to other people in the channel.
|
https://github.com/gehaxelt/python-rss2irc/blob/edf8782aa2a9d1c68c0818f30cc5494efc1c9cc8/bot.py#L59-L64
|
import ssl
import threading
import irc.bot
import irc.client
import irc.connection
import time
import re
import sys
import feedparser
import datetime
import dateutil.parser
import requests
from colour import Colours
from db import FeedDB
from config import Config
from feedupdater import FeedUpdater
class IRCBot(irc.bot.SingleServerIRCBot):
def __init__(self, config, db, on_connect_cb):
self.__config = config
self.__db = db
self.__on_connect_cb = on_connect_cb
self.__servers = [irc.bot.ServerSpec(self.__config.HOST, self.__config.PORT, self.__config.PASSWORD)]
self.__first_start = False
self.color_num = self.__config.num_col
self.color_feedname = self.__config.feedname
self.color_newstitle = self.__config.newstitle
self.color_url = self.__config.url
self.color_date = self.__config.date
self.shorturls = self.__config.shorturls
self.dateformat = self.__config.dateformat
self.filterkeywords = self.__config.filterkeywords
if self.__config.SSL:
ssl_factory = irc.connection.Factory(wrapper=ssl.wrap_socket)
print(datetime.datetime.now(), "Starting SSL connection.")
sys.stdout.flush()
super(IRCBot, self).__init__(self.__servers, self.__config.NICK, self.__config.NICK, connect_factory=ssl_factory)
else:
print(datetime.datetime.now(), "Starting connection.")
sys.stdout.flush()
super(IRCBot, self).__init__(self.__servers, self.__config.NICK, self.__config.NICK)
def on_welcome(self, connection, event):
if self.__config.NICKPASS:
print(datetime.datetime.now(), "Starting authentication.")
sys.stdout.flush()
self.send_msg("NickServ", "IDENTIFY {}".format(self.__config.NICKPASS))
"""Join the correct channel upon connecting"""
if irc.client.is_channel(self.__config.CHANNEL):
print(datetime.datetime.now(), "Joining to channel.")
sys.stdout.flush()
connection.join(self.__config.CHANNEL)
|
MIT License
|
amz-driverless/rbb_core
|
rbb_client/src/rbb_client/models/bag_summary.py
|
BagSummary.detail_type
|
python
|
def detail_type(self):
return self._detail_type
|
Gets the detail_type of this BagSummary.
:return: The detail_type of this BagSummary.
:rtype: str
|
https://github.com/amz-driverless/rbb_core/blob/618617270314af5335de30179072244e1f440c4c/rbb_client/src/rbb_client/models/bag_summary.py#L89-L97
|
from pprint import pformat
from six import iteritems
class BagSummary(object):
def __init__(self):
self.swagger_types = {
'detail_type': 'str',
'name': 'str',
'store_data': 'object',
'discovered': 'datetime',
'extraction_failure': 'bool',
'in_trash': 'bool',
'is_extracted': 'bool',
'meta_available': 'bool',
'size': 'int',
'start_time': 'datetime',
'end_time': 'datetime',
'duration': 'float',
'messages': 'int',
'tags': 'list[Tag]'
}
self.attribute_map = {
'detail_type': 'detail_type',
'name': 'name',
'store_data': 'store_data',
'discovered': 'discovered',
'extraction_failure': 'extraction_failure',
'in_trash': 'in_trash',
'is_extracted': 'is_extracted',
'meta_available': 'meta_available',
'size': 'size',
'start_time': 'start_time',
'end_time': 'end_time',
'duration': 'duration',
'messages': 'messages',
'tags': 'tags'
}
self._detail_type = None
self._name = None
self._store_data = None
self._discovered = None
self._extraction_failure = None
self._in_trash = None
self._is_extracted = None
self._meta_available = None
self._size = None
self._start_time = None
self._end_time = None
self._duration = None
self._messages = None
self._tags = None
@property
|
MIT License
|
mortazavilab/talon
|
src/talon/post/filter_talon_transcripts.py
|
merge_reads_with_novelty
|
python
|
def merge_reads_with_novelty(reads, novelty):
merged = pd.merge(reads, novelty, on = "transcript_ID", how = "left")
return merged
|
Given a data frame of reads and a transcript novelty data frame,
perform a left merge to annotate the reads with their novelty status.
|
https://github.com/mortazavilab/talon/blob/3824b55aad48aa1d2c8553f14c688eafe75aadb0/src/talon/post/filter_talon_transcripts.py#L226-L232
|
from optparse import OptionParser
import sqlite3
from pathlib import Path
from .. import query_utils as qutils
from talon.post import get_read_annotations as read_annot
import pandas as pd
import os
import warnings
def getOptions():
parser = OptionParser(description = ("talon_filter_transcripts is a "
"utility that filters the transcripts inside "
"a TALON database to produce a transcript whitelist. "
"This list can then be used by downstream analysis "
"tools to determine which transcripts and other "
"features should be reported (for example in a GTF file)"))
parser.add_option("--db", dest = "database",
help = "TALON database", metavar = "FILE", type = str)
parser.add_option("--annot", "-a", dest = "annot",
help = """Which annotation version to use. Will determine which
annotation transcripts are considered known or novel
relative to. Note: must be in the TALON database.""",
type = "string")
parser.add_option("--datasets", dest = "datasets", default = None,
help = ("Datasets to include. Can be provided as a "
"comma-delimited list on the command line, "
"or as a file with one dataset per line. "
"If this option is omitted, all datasets will "
"be included."))
parser.add_option("--maxFracA", dest = "max_frac_A", default = 0.5,
help = ("Maximum fraction of As to allow in the window "
"located immediately after any read assigned to "
"a novel transcript (helps to filter out internal "
"priming artifacts). Default = 0.5. Use 1 if you prefer"
"to not filter out internal priming events."),
type = float)
parser.add_option("--minCount", dest = "min_count", default = 5,
type = int,
help = ("Number of minimum occurrences required for a "
"novel transcript PER dataset. Default = 5"))
parser.add_option("--minDatasets", dest = "min_datasets", default = None,
type = int,
help = ("Minimum number of datasets novel transcripts "
"must be found in. Default = all datasets provided"))
parser.add_option("--allowGenomic", dest ="allow_genomic", action='store_true',
help = ("If this option is set, transcripts from the Genomic "
"novelty category will be permitted in the output "
"(provided they pass the thresholds). Default "
"behavior is to filter out genomic transcripts "
"since they are unlikely to be real novel isoforms."),
default = False)
parser.add_option("--o", dest = "outfile", help = "Outfile name",
metavar = "FILE", type = "string")
(options, args) = parser.parse_args()
return options
def get_known_transcripts(database, annot, datasets = None):
with sqlite3.connect(database) as conn:
query = """SELECT DISTINCT gene_ID, transcript_ID FROM observed
LEFT JOIN transcript_annotations AS ta
ON ta.ID = observed.transcript_ID
WHERE (ta.attribute = 'transcript_status'
AND ta.value = 'KNOWN'
AND ta.annot_name = '%s')""" % (annot)
if datasets != None:
datasets = qutils.format_for_IN(datasets)
query += " AND observed.dataset IN " + datasets
known = pd.read_sql_query(query, conn)
return known
def fetch_reads_in_datasets_fracA_cutoff(database, datasets, max_frac_A):
if datasets == None:
with sqlite3.connect(database) as conn:
query = """SELECT dataset_name
FROM dataset"""
iter_datasets = pd.read_sql_query(query, conn).dataset_name.tolist()
else:
iter_datasets = datasets
for dataset in iter_datasets:
with sqlite3.connect(database) as conn:
query = """SELECT read_name, gene_ID, transcript_ID, dataset, fraction_As
FROM observed WHERE dataset='{}' LIMIT 0, 10""".format(dataset)
data = pd.read_sql_query(query, conn)
nans = all(data.fraction_As.isna().tolist())
if nans and max_frac_A != 1:
print("Reads in dataset {} appear to be unlabelled. "
"Only known transcripts will pass the filter.".format(dataset))
with sqlite3.connect(database) as conn:
query = """SELECT read_name, gene_ID, transcript_ID, dataset, fraction_As
FROM observed
WHERE fraction_As <= %f""" % (max_frac_A)
if datasets != None:
datasets = qutils.format_for_IN(datasets)
query += " AND dataset IN " + datasets
data = pd.read_sql_query(query, conn)
if len(data.index) == 0:
print('No reads passed maxFracA cutoff. Is this expected?')
return data
def check_annot_validity(annot, database):
conn = sqlite3.connect(database)
cursor = conn.cursor()
cursor.execute("SELECT DISTINCT annot_name FROM gene_annotations")
annotations = [str(x[0]) for x in cursor.fetchall()]
conn.close()
if "TALON" in annotations:
annotations.remove("TALON")
if annot == None:
message = "Please provide a valid annotation name. " + "In this database, your options are: " + ", ".join(annotations)
raise ValueError(message)
if annot not in annotations:
message = "Annotation name '" + annot + "' not found in this database. Try one of the following: " + ", ".join(annotations)
raise ValueError(message)
return
def check_db_version(database):
conn = sqlite3.connect(database)
cursor = conn.cursor()
with sqlite3.connect(database) as conn:
query = """SELECT value
FROM run_info
WHERE item='schema_version'"""
ver = pd.read_sql_query(query, conn)
if ver.empty:
message = "Database version is not compatible with v5.0 filtering."
raise ValueError(message)
def parse_datasets(dataset_option, database):
if dataset_option == None:
print(("No dataset names specified, so filtering process will use all "
"datasets present in the database."))
return None
elif os.path.isfile(dataset_option):
print("Parsing datasets from file %s..." % (dataset_option))
datasets = []
with open(dataset_option) as f:
for line in f:
line = line.strip()
datasets.append(line)
else:
datasets = dataset_option.split(",")
with sqlite3.connect(database) as conn:
cursor = conn.cursor()
valid_datasets = qutils.fetch_all_datasets(cursor)
invalid_datasets = []
for dset in datasets:
if dset not in valid_datasets:
invalid_datasets.append(dset)
if len(invalid_datasets) > 0:
raise ValueError(("Problem parsing datasets. The following names are "
"not in the database: '%s'. \nValid dataset names: '%s'")
% (", ".join(invalid_datasets),
", ".join(valid_datasets)))
else:
print("Parsed the following dataset names successfully: %s" % (", ".join(datasets)))
return datasets
def get_novelty_df(database):
transcript_novelty_dict = read_annot.get_transcript_novelty(database)
transcript_novelty = pd.DataFrame.from_dict(transcript_novelty_dict,
orient='index')
transcript_novelty = transcript_novelty.reset_index()
transcript_novelty.columns = ['transcript_ID', 'transcript_novelty']
return transcript_novelty
|
MIT License
|
dvershinin/lastversion
|
lastversion/ProjectHolder.py
|
ProjectHolder.is_official_for_repo
|
python
|
def is_official_for_repo(cls, repo):
if repo.startswith(('https://', 'http://')):
for url in cls.KNOWN_REPO_URLS:
if repo.startswith((url, "https://{}".format(url), "http://{}".format(url))):
log.info('{} Starts with {}'.format(repo, url))
return cls.KNOWN_REPO_URLS[url]
else:
if repo.lower() in cls.KNOWN_REPOS_BY_NAME:
log.info('Selecting known repo {}'.format(repo))
return cls.KNOWN_REPOS_BY_NAME[repo.lower()]
return False
|
Check if repo is a known repo for this type of project holder.
|
https://github.com/dvershinin/lastversion/blob/debbf1d1682aa02241334a9deb5c33a862b502ad/lastversion/ProjectHolder.py#L99-L110
|
import logging
import os
import re
import requests
from packaging.version import InvalidVersion
from .Version import Version
from .__about__ import __version__
from .utils import asset_does_not_belong_to_machine
log = logging.getLogger(__name__)
class ProjectHolder(requests.Session):
"""List of odd repos where last char is part of version not beta level."""
LAST_CHAR_FIX_REQUIRED_ON = []
DEFAULT_HOSTNAME = None
DEFAULT_HOLDER = False
KNOWN_REPO_URLS = {}
KNOWN_REPOS_BY_NAME = {}
REPO_URL_PROJECT_COMPONENTS = 2
REPO_URL_PROJECT_OFFSET = 0
RELEASE_URL_FORMAT = None
SHORT_RELEASE_URL_FORMAT = None
def set_repo(self, repo):
self.repo = repo
self.name = repo.split('/')[-1]
def __init__(self):
super(ProjectHolder, self).__init__()
self.headers.update({'User-Agent': 'lastversion/{}'.format(__version__)})
log.info('Created instance of {}'.format(type(self).__name__))
self.branches = None
self.only = None
self.having_asset = None
self.hostname = None
self.repo = None
self.name = None
self.feed_url = None
def is_valid(self):
return self.feed_url or self.name
def set_branches(self, branches):
self.branches = branches
def set_only(self, only):
self.only = only
if only:
log.info('Only considering tags with "{}"'.format(only))
def set_having_asset(self, having_asset):
self.having_asset = having_asset
if having_asset:
log.info('Only considering releases with asset "{}"'.format(having_asset))
@classmethod
def get_host_repo_for_link(cls, repo):
hostname = None
if repo.startswith(('https://', 'http://')):
url_parts = repo.split('/')
hostname = url_parts[2]
offset = 3 + cls.REPO_URL_PROJECT_OFFSET
repo = "/".join(url_parts[offset:offset + cls.REPO_URL_PROJECT_COMPONENTS])
return hostname, repo
@classmethod
|
BSD 2-Clause Simplified License
|
danielfrg/jupyterhub-kubernetes_spawner
|
kubernetes_spawner/swagger_client/models/v1_flex_volume_source.py
|
V1FlexVolumeSource.secret_ref
|
python
|
def secret_ref(self, secret_ref):
self._secret_ref = secret_ref
|
Sets the secret_ref of this V1FlexVolumeSource.
Optional: SecretRef is reference to the authentication secret for User, default is empty.
:param secret_ref: The secret_ref of this V1FlexVolumeSource.
:type: V1LocalObjectReference
|
https://github.com/danielfrg/jupyterhub-kubernetes_spawner/blob/15a2b63ef719f8c3ff83221333f7de69c1495512/kubernetes_spawner/swagger_client/models/v1_flex_volume_source.py#L117-L125
|
from pprint import pformat
from six import iteritems
class V1FlexVolumeSource(object):
def __init__(self):
self.swagger_types = {
'driver': 'str',
'fs_type': 'str',
'secret_ref': 'V1LocalObjectReference',
'read_only': 'bool',
'options': 'str'
}
self.attribute_map = {
'driver': 'driver',
'fs_type': 'fsType',
'secret_ref': 'secretRef',
'read_only': 'readOnly',
'options': 'options'
}
self._driver = None
self._fs_type = None
self._secret_ref = None
self._read_only = None
self._options = None
@property
def driver(self):
return self._driver
@driver.setter
def driver(self, driver):
self._driver = driver
@property
def fs_type(self):
return self._fs_type
@fs_type.setter
def fs_type(self, fs_type):
self._fs_type = fs_type
@property
def secret_ref(self):
return self._secret_ref
@secret_ref.setter
|
Apache License 2.0
|
aws/aws-encryption-sdk-python
|
src/aws_encryption_sdk/streaming_client.py
|
_EncryptionStream.tell
|
python
|
def tell(self):
return self.bytes_read
|
Returns the current position in the stream.
|
https://github.com/aws/aws-encryption-sdk-python/blob/74af899221c8f40b268994607b421e6bf6c09240/src/aws_encryption_sdk/streaming_client.py#L280-L282
|
from __future__ import division
import abc
import hmac
import io
import logging
import math
import attr
import six
import aws_encryption_sdk.internal.utils
from aws_encryption_sdk.exceptions import (
ActionNotAllowedError,
AWSEncryptionSDKClientError,
CustomMaximumValueExceeded,
MasterKeyProviderError,
MaxEncryptedDataKeysExceeded,
NotSupportedError,
SerializationError,
)
from aws_encryption_sdk.identifiers import Algorithm, CommitmentPolicy, ContentType, SerializationVersion
from aws_encryption_sdk.internal.crypto.authentication import Signer, Verifier
from aws_encryption_sdk.internal.crypto.data_keys import calculate_commitment_key, derive_data_encryption_key
from aws_encryption_sdk.internal.crypto.encryption import Decryptor, Encryptor, decrypt
from aws_encryption_sdk.internal.crypto.iv import non_framed_body_iv
from aws_encryption_sdk.internal.defaults import FRAME_LENGTH, LINE_LENGTH, MAX_NON_FRAMED_SIZE, TYPE, VERSION
from aws_encryption_sdk.internal.formatting.deserialize import (
deserialize_footer,
deserialize_frame,
deserialize_header,
deserialize_header_auth,
deserialize_non_framed_values,
deserialize_tag,
validate_header,
)
from aws_encryption_sdk.internal.formatting.encryption_context import assemble_content_aad
from aws_encryption_sdk.internal.formatting.serialize import (
serialize_footer,
serialize_frame,
serialize_header,
serialize_header_auth,
serialize_non_framed_close,
serialize_non_framed_open,
)
from aws_encryption_sdk.internal.utils.commitment import (
validate_commitment_policy_on_decrypt,
validate_commitment_policy_on_encrypt,
)
from aws_encryption_sdk.internal.utils.signature import SignaturePolicy, validate_signature_policy_on_decrypt
from aws_encryption_sdk.key_providers.base import MasterKeyProvider
from aws_encryption_sdk.materials_managers import DecryptionMaterialsRequest, EncryptionMaterialsRequest
from aws_encryption_sdk.materials_managers.base import CryptoMaterialsManager
from aws_encryption_sdk.materials_managers.default import DefaultCryptoMaterialsManager
from aws_encryption_sdk.structures import MessageHeader
_LOGGER = logging.getLogger(__name__)
@attr.s(hash=True)
@six.add_metaclass(abc.ABCMeta)
class _ClientConfig(object):
source = attr.ib(hash=True, converter=aws_encryption_sdk.internal.utils.prep_stream_data)
commitment_policy = attr.ib(
hash=True,
validator=attr.validators.instance_of(CommitmentPolicy),
)
signature_policy = attr.ib(
hash=True,
default=SignaturePolicy.ALLOW_ENCRYPT_ALLOW_DECRYPT,
validator=attr.validators.instance_of(SignaturePolicy),
)
max_encrypted_data_keys = attr.ib(
hash=True, default=None, validator=attr.validators.optional(attr.validators.instance_of(int))
)
materials_manager = attr.ib(
hash=True, default=None, validator=attr.validators.optional(attr.validators.instance_of(CryptoMaterialsManager))
)
key_provider = attr.ib(
hash=True, default=None, validator=attr.validators.optional(attr.validators.instance_of(MasterKeyProvider))
)
source_length = attr.ib(
hash=True, default=None, validator=attr.validators.optional(attr.validators.instance_of(six.integer_types))
)
line_length = attr.ib(
hash=True, default=LINE_LENGTH, validator=attr.validators.instance_of(six.integer_types)
)
def __attrs_post_init__(self):
both_cmm_and_mkp_defined = self.materials_manager is not None and self.key_provider is not None
neither_cmm_nor_mkp_defined = self.materials_manager is None and self.key_provider is None
if both_cmm_and_mkp_defined or neither_cmm_nor_mkp_defined:
raise TypeError("Exactly one of materials_manager or key_provider must be provided")
if self.materials_manager is None:
self.materials_manager = DefaultCryptoMaterialsManager(master_key_provider=self.key_provider)
class _EncryptionStream(io.IOBase):
line_length = LINE_LENGTH
config = None
bytes_read = None
output_buffer = None
_message_prepped = None
source_stream = None
_stream_length = None
def __new__(cls, **kwargs):
if (
not (hasattr(cls, "_read_bytes") and callable(cls._read_bytes))
or not (hasattr(cls, "_prep_message") and callable(cls._read_bytes))
or not hasattr(cls, "_config_class")
):
raise TypeError("Can't instantiate abstract class {}".format(cls.__name__))
instance = super(_EncryptionStream, cls).__new__(cls)
config = kwargs.pop("config", None)
if not isinstance(config, instance._config_class):
config = instance._config_class(**kwargs)
instance.config = config
instance.bytes_read = 0
instance.output_buffer = b""
instance._message_prepped = False
instance.source_stream = instance.config.source
instance._stream_length = instance.config.source_length
return instance
@property
def stream_length(self):
if self._stream_length is None:
try:
current_position = self.source_stream.tell()
self.source_stream.seek(0, 2)
self._stream_length = self.source_stream.tell()
self.source_stream.seek(current_position, 0)
except Exception as error:
raise NotSupportedError(error)
return self._stream_length
@property
def header(self):
if not self._message_prepped:
self._prep_message()
return self._header
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
try:
self.close()
except AWSEncryptionSDKClientError:
_LOGGER.exception("Error on closing")
return False
def readable(self):
return not self.closed
def read(self, b=-1):
if b is None or b < 0:
b = -1
_LOGGER.debug("Stream read called, requesting %d bytes", b)
output = io.BytesIO()
if not self._message_prepped:
self._prep_message()
if self.closed:
raise ValueError("I/O operation on closed file")
if b >= 0:
self._read_bytes(b)
output.write(self.output_buffer[:b])
self.output_buffer = self.output_buffer[b:]
else:
while True:
line = self.readline()
if not line:
break
output.write(line)
self.bytes_read += output.tell()
_LOGGER.debug("Returning %d bytes of %d bytes requested", output.tell(), b)
return output.getvalue()
|
Apache License 2.0
|
ebellocchia/bip_utils
|
bip_utils/bip/bip32/bip32_path.py
|
Bip32PathParser.__ParseElem
|
python
|
def __ParseElem(path_elem: str) -> int:
path_elem = path_elem.strip()
is_hardened = path_elem.endswith(Bip32PathConst.HARDENED_CHARS)
if is_hardened:
path_elem = path_elem[:-1]
if not path_elem.isnumeric():
raise Bip32PathError(f"Invalid path element ({path_elem})")
return int(path_elem) if not is_hardened else Bip32Utils.HardenIndex(int(path_elem))
|
Parse path element and get the correspondent index.
Args:
path_elem (str): Path element
Returns:
int: Index of the element, None if the element is not a valid index
Raises:
Bip32PathError: If the path is not valid
|
https://github.com/ebellocchia/bip_utils/blob/b04f9ef493a5b57983412c0ce460a9ca05ee1f50/bip_utils/bip/bip32/bip32_path.py#L181-L209
|
from typing import Iterator, List, Optional, Sequence, Tuple, Union
from bip_utils.bip.bip32.bip32_ex import Bip32PathError
from bip_utils.bip.bip32.bip32_key_data import Bip32KeyIndex
from bip_utils.bip.bip32.bip32_utils import Bip32Utils
class Bip32PathConst:
HARDENED_CHARS: Tuple[str, str] = ("'", "p")
MASTER_CHAR: str = "m"
class Bip32Path:
m_elems: List[Bip32KeyIndex]
def __init__(self,
elems: Optional[Sequence[Union[int, Bip32KeyIndex]]] = None) -> None:
if elems is None:
elems = []
try:
self.m_elems = [Bip32KeyIndex(elem) if isinstance(elem, int) else elem for elem in elems]
except ValueError as ex:
raise Bip32PathError("The path contains some invalid key indexes") from ex
def Length(self) -> int:
return len(self.m_elems)
def ToList(self) -> List[int]:
return [int(elem) for elem in self.m_elems]
def ToStr(self) -> str:
path_str = ""
for elem in self.m_elems:
if not elem.IsHardened():
path_str += str(elem.ToInt()) + "/"
else:
path_str += str(Bip32Utils.UnhardenIndex(elem.ToInt())) + "'/"
return path_str[:-1]
def __str__(self) -> str:
return self.ToStr()
def __getitem__(self,
idx: int) -> Bip32KeyIndex:
return self.m_elems[idx]
def __iter__(self) -> Iterator[Bip32KeyIndex]:
yield from self.m_elems
class Bip32PathParser:
@staticmethod
def Parse(path: str) -> Bip32Path:
if path.endswith("/"):
path = path[:-1]
return Bip32PathParser.__ParseElements(path.split("/"))
@staticmethod
def __ParseElements(path_elems: List[str]) -> Bip32Path:
if len(path_elems) > 0 and path_elems[0] == Bip32PathConst.MASTER_CHAR:
path_elems = path_elems[1:]
parsed_elems = list(map(Bip32PathParser.__ParseElem, path_elems))
return Bip32Path(parsed_elems)
@staticmethod
|
MIT License
|
swaglyrics/swaglyrics-for-spotify
|
swaglyrics/__init__.py
|
user_data_dir
|
python
|
def user_data_dir(file_name):
if sys.platform.startswith("win"):
os_path = getenv("LOCALAPPDATA")
elif sys.platform.startswith("darwin"):
os_path = "~/Library/Application Support"
else:
os_path = getenv("XDG_DATA_HOME", "~/.local/share")
path = Path(os_path) / "SwagLyrics"
return path.expanduser() / file_name
|
r"""
Get OS specific data directory path for SwagLyrics.
Typical user data directories are:
macOS: ~/Library/Application Support/SwagLyrics
Unix: ~/.local/share/SwagLyrics # or in $XDG_DATA_HOME, if defined
Win 10: C:\Users\<username>\AppData\Local\SwagLyrics
For Unix, we follow the XDG spec and support $XDG_DATA_HOME if defined.
:param file_name: file to be fetched from the data dir
:return: full path to the user-specific data dir
|
https://github.com/swaglyrics/swaglyrics-for-spotify/blob/99fe764a9e45cac6cb9fcdf724c7d2f8cb4524fb/swaglyrics/__init__.py#L8-L32
|
import sys
from os import getenv
from pathlib import Path
|
MIT License
|
graphsense/graphsense-rest
|
openapi_server/models/stats_tool.py
|
StatsTool.__init__
|
python
|
def __init__(self, visible_name=None, id=None, version=None, titanium_replayable=None, responsible_for=None):
self.openapi_types = {
'visible_name': str,
'id': str,
'version': str,
'titanium_replayable': bool,
'responsible_for': List[str]
}
self.attribute_map = {
'visible_name': 'visible_name',
'id': 'id',
'version': 'version',
'titanium_replayable': 'titanium_replayable',
'responsible_for': 'responsible_for'
}
self._visible_name = visible_name
self._id = id
self._version = version
self._titanium_replayable = titanium_replayable
self._responsible_for = responsible_for
|
StatsTool - a model defined in OpenAPI
:param visible_name: The visible_name of this StatsTool. # noqa: E501
:type visible_name: str
:param id: The id of this StatsTool. # noqa: E501
:type id: str
:param version: The version of this StatsTool. # noqa: E501
:type version: str
:param titanium_replayable: The titanium_replayable of this StatsTool. # noqa: E501
:type titanium_replayable: bool
:param responsible_for: The responsible_for of this StatsTool. # noqa: E501
:type responsible_for: List[str]
|
https://github.com/graphsense/graphsense-rest/blob/2e4a9c20835e54d971e3fc3aae5780bc87d48647/openapi_server/models/stats_tool.py#L18-L52
|
from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from openapi_server.models.base_model_ import Model
from openapi_server import util
class StatsTool(Model):
|
MIT License
|
huntermcgushion/hyperparameter_hunter
|
hyperparameter_hunter/space/space_core.py
|
Space.distance
|
python
|
def distance(self, point_a, point_b):
distance = 0.0
for a, b, dim in zip(point_a, point_b, self.dimensions):
distance += dim.distance(a, b)
return distance
|
Compute distance between two points in this space. Both `point_a` and `point_b` are
expected to be of the same length as :attr:`dimensions`, with values corresponding to the
`Dimension` bounds of :attr:`dimensions`
Parameters
----------
point_a: List
First point
point_b: List
Second point
Returns
-------
Number
Distance between `point_a` and `point_b`
|
https://github.com/huntermcgushion/hyperparameter_hunter/blob/28b1d48e01a993818510811b82a677e0a7a232b2/hyperparameter_hunter/space/space_core.py#L429-L449
|
from hyperparameter_hunter.space.dimensions import Dimension, Real, Integer, Categorical
from hyperparameter_hunter.utils.general_utils import short_repr
from functools import reduce
import numbers
import numpy as np
from sys import maxsize
from sklearn.utils import check_random_state
from sklearn.utils.fixes import sp_version
NONE = object()
def check_dimension(dimension, transform=None):
if isinstance(dimension, Dimension):
return dimension
if not isinstance(dimension, (list, tuple, np.ndarray)):
raise ValueError("Dimension has to be a list or tuple")
kwargs = dict(transform=transform) if transform else {}
if len(dimension) == 1:
return Categorical(dimension, **kwargs)
if len(dimension) == 2:
if any([isinstance(d, (str, bool)) or isinstance(d, np.bool_) for d in dimension]):
return Categorical(dimension, **kwargs)
elif all([isinstance(dim, numbers.Integral) for dim in dimension]):
return Integer(*dimension, **kwargs)
elif any([isinstance(dim, numbers.Real) for dim in dimension]):
return Real(*dimension, **kwargs)
if len(dimension) == 3:
if any([isinstance(dim, (float, int)) for dim in dimension[:2]]) and dimension[2] in [
"uniform",
"log-uniform",
]:
return Real(*dimension, **kwargs)
else:
return Categorical(dimension, **kwargs)
if len(dimension) > 3:
return Categorical(dimension, **kwargs)
raise ValueError(f"Invalid `dimension` {dimension}. See documentation for supported types")
class Space:
def __init__(self, dimensions):
self.dimensions = [check_dimension(dim) for dim in dimensions]
def __eq__(self, other):
return all([a == b for a, b in zip(self.dimensions, other.dimensions)])
def __repr__(self):
dims = short_repr(self.dimensions, affix_size=15)
return "Space([{}])".format(",\n ".join(map(str, dims)))
def __iter__(self):
return iter(self.dimensions)
def __len__(self):
if any(isinstance(_, Real) for _ in self.dimensions):
search_space_size = maxsize
else:
search_space_size = reduce(
lambda x, y: x * y,
[
(_.high - _.low + 1) if isinstance(_, Integer) else len(_.bounds)
for _ in self.dimensions
],
1,
)
return search_space_size
def __contains__(self, point):
for component, dim in zip(point, self.dimensions):
if component not in dim:
return False
return True
def rvs(self, n_samples=1, random_state=None):
rng = check_random_state(random_state)
columns = []
for dim in self.dimensions:
new_val = None
try:
if sp_version < (0, 16):
new_val = dim.rvs(n_samples=n_samples)
else:
new_val = dim.rvs(n_samples=n_samples, random_state=rng)
except TypeError:
new_val = dim.rvs(n_samples=n_samples, random_state=rng)
finally:
columns.append(new_val)
rows = []
for i in range(n_samples):
r = []
for j in range(self.n_dims):
r.append(columns[j][i])
rows.append(r)
return rows
def transform(self, data):
columns = [[] for _ in self.dimensions]
for i in range(len(data)):
for j in range(self.n_dims):
columns[j].append(data[i][j])
for j in range(self.n_dims):
columns[j] = self.dimensions[j].transform(columns[j])
data_t = np.hstack([np.asarray(c).reshape((len(data), -1)) for c in columns])
return data_t
def inverse_transform(self, data_t):
columns = []
start = 0
for j in range(self.n_dims):
dim = self.dimensions[j]
offset = dim.transformed_size
if offset == 1:
columns.append(dim.inverse_transform(data_t[:, start]))
else:
columns.append(dim.inverse_transform(data_t[:, start : start + offset]))
start += offset
rows = []
for i in range(len(data_t)):
r = []
for j in range(self.n_dims):
r.append(columns[j][i])
rows.append(r)
return rows
@property
def n_dims(self) -> int:
return len(self.dimensions)
@property
def transformed_n_dims(self) -> int:
return sum([dim.transformed_size for dim in self.dimensions])
@property
def bounds(self):
b = []
for dim in self.dimensions:
if dim.size == 1:
b.append(dim.bounds)
else:
b.extend(dim.bounds)
return b
@property
def transformed_bounds(self):
b = []
for dim in self.dimensions:
if dim.transformed_size == 1:
b.append(dim.transformed_bounds)
else:
b.extend(dim.transformed_bounds)
return b
@property
def is_real(self):
return all([isinstance(dim, Real) for dim in self.dimensions])
@property
def is_categorical(self) -> bool:
return all([isinstance(dim, Categorical) for dim in self.dimensions])
def names(self, use_location=True):
names = []
for dimension in self.dimensions:
if use_location and hasattr(dimension, "location") and dimension.location:
names.append(dimension.location)
else:
names.append(dimension.name)
return names
def get_by_name(self, name, use_location=True, default=NONE):
for dimension in self.dimensions:
if use_location and getattr(dimension, "location", None) == name:
return dimension
elif dimension.name == name:
return dimension
if default != NONE:
return default
raise KeyError(f"{name} not found in dimensions")
|
MIT License
|
linkedin/detext
|
src/detext/layers/embedding_layer.py
|
EmbeddingLayer.embedding_lookup
|
python
|
def embedding_lookup(self, inputs):
return tf.nn.embedding_lookup(params=self.embedding, ids=inputs)
|
Returns the embedding of the inputs
:param inputs Tensor(dtype=int) Shape=[batch_size, sentence_len]
:return Tensor(dtype=float) Shape[batch_size, sentence_len, num_units]
|
https://github.com/linkedin/detext/blob/e99c5ddc241dfb27d03729c69f0172f4d845aa3d/src/detext/layers/embedding_layer.py#L149-L155
|
from abc import abstractmethod, ABC
import tensorflow as tf
import tensorflow_hub as hub
from absl import logging
from detext.utils.parsing_utils import InternalFtrType
from detext.layers import vocab_layer
from detext.layers.vocab_layer import create_vocab_layer
from detext.utils.layer_utils import init_word_embedding
class EmbeddingLayerBase(ABC, tf.keras.layers.Layer):
@tf.function
@abstractmethod
def tokenize_to_indices(self, inputs):
pass
@tf.function
@abstractmethod
def vocab_size(self):
pass
@tf.function
@abstractmethod
def embedding_lookup(self, inputs):
pass
@tf.function
@abstractmethod
def num_units(self):
pass
@tf.function(input_signature=[vocab_layer.INPUT_SIGNATURE])
def call(self, inputs):
inputs = self.tokenize_to_indices(inputs)
inputs[InternalFtrType.EMBEDDED] = self.embedding_lookup(inputs[InternalFtrType.TOKENIZED_IDS])
return inputs
def create_embedding_layer(embedding_layer_param, embedding_hub_url):
if embedding_hub_url:
logging.info(f'Loading pretrained embedding layer from {embedding_hub_url}')
embedding_layer = hub.KerasLayer(embedding_hub_url, trainable=embedding_layer_param['we_trainable'])
embedding_obj = embedding_layer.resolved_object
for method_name in ['__call__', 'tokenize_to_indices', 'num_units', 'vocab_size', 'embedding_lookup']:
setattr(embedding_layer, method_name, getattr(embedding_obj, method_name))
return embedding_layer
return EmbeddingLayer(**embedding_layer_param)
class EmbeddingLayer(EmbeddingLayerBase):
def __init__(self, vocab_layer_param, vocab_hub_url, we_file, we_trainable, num_units, name_prefix='w'):
super().__init__()
self.vocab_layer = create_vocab_layer(vocab_layer_param, vocab_hub_url=vocab_hub_url)
self._num_units = num_units
self._vocab_size = self.vocab_layer.vocab_size()
self.embedding = init_word_embedding(self._vocab_size, num_units, we_trainable, we_file, name_prefix)
@tf.function
def tokenize_to_indices(self, inputs):
return self.vocab_layer(inputs)
@tf.function(input_signature=[])
def vocab_size(self):
return self._vocab_size
@tf.function(input_signature=[])
def num_units(self):
return self._num_units
@tf.function(input_signature=[tf.TensorSpec(shape=(None, None), dtype=tf.dtypes.int32)])
|
BSD 2-Clause Simplified License
|
nastools/homeassistant
|
homeassistant/components/media_player/roku.py
|
RokuDevice.volume_up
|
python
|
def volume_up(self):
if self.current_app is not None:
self.roku.volume_up()
|
Volume up media player.
|
https://github.com/nastools/homeassistant/blob/7ca1180bd42713f2d77bbc3f0b27b231ba8784aa/homeassistant/components/media_player/roku.py#L202-L205
|
import logging
import voluptuous as vol
from homeassistant.components.media_player import (
MEDIA_TYPE_VIDEO, SUPPORT_NEXT_TRACK, SUPPORT_PLAY_MEDIA,
SUPPORT_PREVIOUS_TRACK, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET,
SUPPORT_SELECT_SOURCE, MediaPlayerDevice, PLATFORM_SCHEMA)
from homeassistant.const import (
CONF_HOST, STATE_IDLE, STATE_PLAYING, STATE_UNKNOWN, STATE_HOME)
import homeassistant.helpers.config_validation as cv
REQUIREMENTS = [
'https://github.com/bah2830/python-roku/archive/3.1.2.zip'
'#roku==3.1.2']
KNOWN_HOSTS = []
DEFAULT_PORT = 8060
_LOGGER = logging.getLogger(__name__)
SUPPORT_ROKU = SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_PLAY_MEDIA | SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | SUPPORT_SELECT_SOURCE
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Optional(CONF_HOST): cv.string,
})
def setup_platform(hass, config, add_devices, discovery_info=None):
hosts = []
if discovery_info and discovery_info in KNOWN_HOSTS:
return
if discovery_info is not None:
_LOGGER.debug('Discovered Roku: %s', discovery_info[0])
hosts.append(discovery_info[0])
elif CONF_HOST in config:
hosts.append(config.get(CONF_HOST))
rokus = []
for host in hosts:
new_roku = RokuDevice(host)
if new_roku.name is None:
_LOGGER.error("Unable to initialize roku at %s", host)
else:
rokus.append(RokuDevice(host))
KNOWN_HOSTS.append(host)
add_devices(rokus)
class RokuDevice(MediaPlayerDevice):
def __init__(self, host):
from roku import Roku
self.roku = Roku(host)
self.roku_name = None
self.ip_address = host
self.channels = []
self.current_app = None
self.update()
def update(self):
import requests.exceptions
try:
self.roku_name = "roku_" + self.roku.device_info.sernum
self.ip_address = self.roku.host
self.channels = self.get_source_list()
if self.roku.current_app is not None:
self.current_app = self.roku.current_app
else:
self.current_app = None
except (requests.exceptions.ConnectionError,
requests.exceptions.ReadTimeout):
pass
def get_source_list(self):
return ["Home"] + sorted(channel.name for channel in self.roku.apps)
@property
def should_poll(self):
return True
@property
def name(self):
return self.roku_name
@property
def state(self):
if self.current_app is None:
return STATE_UNKNOWN
if self.current_app.name in ["Power Saver", "Default screensaver"]:
return STATE_IDLE
elif self.current_app.name == "Roku":
return STATE_HOME
elif self.current_app.name is not None:
return STATE_PLAYING
return STATE_UNKNOWN
@property
def supported_media_commands(self):
return SUPPORT_ROKU
@property
def media_content_type(self):
if self.current_app is None:
return None
elif self.current_app.name == "Power Saver":
return None
elif self.current_app.name == "Roku":
return None
else:
return MEDIA_TYPE_VIDEO
@property
def media_image_url(self):
if self.current_app is None:
return None
elif self.current_app.name == "Roku":
return None
elif self.current_app.name == "Power Saver":
return None
elif self.current_app.id is None:
return None
return 'http://{0}:{1}/query/icon/{2}'.format(self.ip_address,
DEFAULT_PORT,
self.current_app.id)
@property
def app_name(self):
if self.current_app is not None:
return self.current_app.name
@property
def app_id(self):
if self.current_app is not None:
return self.current_app.id
@property
def source(self):
if self.current_app is not None:
return self.current_app.name
@property
def source_list(self):
return self.channels
def media_play_pause(self):
if self.current_app is not None:
self.roku.play()
def media_previous_track(self):
if self.current_app is not None:
self.roku.reverse()
def media_next_track(self):
if self.current_app is not None:
self.roku.forward()
def mute_volume(self, mute):
if self.current_app is not None:
self.roku.volume_mute()
|
MIT License
|
xiaomi/minos
|
supervisor/deployment/rpcinterface.py
|
DeploymentRPCInterface.start
|
python
|
def start(self, service, cluster, job, config_dict, instance_id=-1):
return self._do_start(service, cluster, job, instance_id, **config_dict)
|
Start the specified job
@param service the server name
@param cluster the cluster name
@param job the job name
@param instance_id the instance id
@param config_dict the config information dictionary
@return string 'OK' on success, otherwise, the error message
Note: config_dict must contain the following item:
1. start.sh
2. artifact
3. if any config files are needed, just put it in 'config_files' item
config_dict can also contain the following optional items:
1. http_url: the server's http service url
2. package_name: package_name, revision, timestamp should be specified
simultaneously, otherwise will be ignored
3. revision
4. timestamp
5. force_update
This is an example:
config_dict = {
'start.sh': $start_file_content,
'artifact': hadoop,
'config_files': {
'core-site.xml': $core_site_xml_content,
...
},
'http_url': 'http://10.235.3.67:11201',
}
|
https://github.com/xiaomi/minos/blob/510b6e30758f4900a72fee1a5e6258bdc7c83f17/supervisor/deployment/rpcinterface.py#L223-L257
|
import ConfigParser
import cStringIO
import subprocess
import os
import time
import urllib2
from exceptions import RuntimeError
from supervisor.datatypes import DEFAULT_EXPECTED_EXIT_CODE
from supervisor.http import NOT_DONE_YET
from supervisor.options import ClientOptions
from supervisor.rpcinterface import SupervisorNamespaceRPCInterface
from supervisor.states import STOPPED_STATES
from supervisor.supervisorctl import Controller
from supervisor.xmlrpc import Faults
from supervisor.xmlrpc import RPCError
DEFAULT_PACKAGE_ROOT = '/home/work/packages'
DEFAULT_APP_ROOT = '/home/work/app'
DEFAULT_LOG_ROOT = '/home/work/log'
DEFAULT_DATA_DIRS = '/home/work/data'
CONFIG_PATH = 'conf'
JOB_RUN_CONFIG = 'run.cfg'
SUCCESS_STATUS = 'OK'
class DeploymentRPCInterface:
def __init__(self, supervisord, **config):
self.supervisord = supervisord
self.global_config = config
self.supervisor_rpcinterface = SupervisorNamespaceRPCInterface(supervisord)
self.package_server = config.get('package_server')
self.download_package_uri = config.get('download_package_uri')
self.get_latest_package_info_uri = config.get('get_latest_package_info_uri')
def get_run_dir(self, service, cluster, job, instance_id=-1):
app_root = self.global_config.get('app_root', DEFAULT_APP_ROOT)
if instance_id == -1:
return '%s/%s/%s/%s' % (app_root, service, cluster, job)
else:
return '%s/%s/%s/%s/%s' % (app_root, service, cluster, job, instance_id)
def get_log_dir(self, service, cluster, job, instance_id=-1):
log_root = self.global_config.get('log_root', DEFAULT_LOG_ROOT)
if instance_id == -1:
return '%s/%s/%s/%s' % (log_root, service, cluster, job)
else:
return '%s/%s/%s/%s/%s' % (log_root, service, cluster, job, instance_id)
def get_stdout_dir(self, service, cluster, job, instance_id=-1):
run_dir = self.get_run_dir(service, cluster, job, instance_id)
return '%s/stdout' % run_dir
def get_available_data_dirs(self, service, cluster, job, instance_id=-1):
data_dirs = self.global_config.get('data_dirs', DEFAULT_DATA_DIRS)
if instance_id == -1:
return ['%s/%s/%s/%s' % (data_dir, service, cluster, job)
for data_dir in data_dirs.split(',')
]
else:
return ['%s/%s/%s/%s/%s' % (data_dir, service, cluster, job, instance_id)
for data_dir in data_dirs.split(',')
]
def get_data_dirs(self, service, cluster, job, instance_id=-1):
file_name = '%s/%s' % (self.get_run_dir(service, cluster, job, instance_id),
JOB_RUN_CONFIG)
if not os.path.exists(file_name):
return 'You should bootstrapped the job first'
data_dirs = self.get_available_data_dirs(service, cluster, job, instance_id)
run_config = ConfigParser.SafeConfigParser()
run_config.read([file_name])
data_dir_indexes = run_config.get('run_info', 'data_dir_indexes')
job_data_dirs = []
for i in data_dir_indexes.split(','):
job_data_dirs.append(data_dirs[int(i)])
return job_data_dirs
def get_package_dir(self, service, cluster, job, instance_id=-1):
return '%s/package' % self.get_run_dir(service, cluster, job, instance_id)
def get_real_package_dir(self, service, cluster, job, instance_id=-1):
return os.readlink(self.get_package_dir(service, cluster, job, instance_id))
def get_current_package_dir(self, service, cluster):
package_root = self.global_config.get('package_root')
return '%s/%s/%s/current' % (package_root, service, cluster)
def get_cleanup_token(self, service, cluster, job, instance_id=-1):
file_name = '%s/%s' % (self.get_run_dir(service, cluster, job, instance_id),
JOB_RUN_CONFIG)
if not os.path.exists(file_name):
return 'You should bootstrap the job first'
run_config = ConfigParser.SafeConfigParser()
run_config.read([file_name])
return run_config.get('run_info', 'cleanup_token')
def bootstrap(self, service, cluster, job, config_dict, instance_id=-1):
return self._do_bootstrap(service, cluster, job, instance_id, **config_dict)
|
Apache License 2.0
|
osmr/imgclsmob
|
chainer_/chainercv2/models/fpenet.py
|
get_fpenet
|
python
|
def get_fpenet(model_name=None,
pretrained=False,
root=os.path.join("~", ".chainer", "models"),
**kwargs):
width = 16
channels = [int(width * (2 ** i)) for i in range(3)]
init_block_channels = width
layers = [1, 3, 9]
meu_channels = [64, 32]
use_se = False
net = FPENet(
layers=layers,
channels=channels,
init_block_channels=init_block_channels,
meu_channels=meu_channels,
use_se=use_se,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import get_model_file
load_npz(
file=get_model_file(
model_name=model_name,
local_model_store_dir_path=root),
obj=net)
return net
|
Create FPENet model with specific parameters.
Parameters:
----------
model_name : str or None, default None
Model name for loading pretrained model.
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.chainer/models'
Location for keeping the model parameters.
|
https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/chainer_/chainercv2/models/fpenet.py#L337-L378
|
__all__ = ['FPENet', 'fpenet_cityscapes']
import os
import chainer.functions as F
from chainer import Chain
from chainer.serializers import load_npz
from .common import conv1x1, conv1x1_block, conv3x3_block, SEBlock, InterpolationBlock, SimpleSequential, MultiOutputSequential
class FPEBlock(Chain):
def __init__(self,
channels,
**kwargs):
super(FPEBlock, self).__init__(**kwargs)
dilates = [1, 2, 4, 8]
assert (channels % len(dilates) == 0)
mid_channels = channels // len(dilates)
with self.init_scope():
self.blocks = SimpleSequential()
with self.blocks.init_scope():
for i, dilate in enumerate(dilates):
setattr(self.blocks, "block{}".format(i + 1), conv3x3_block(
in_channels=mid_channels,
out_channels=mid_channels,
groups=mid_channels,
dilate=dilate,
pad=dilate))
def __call__(self, x):
xs = F.split_axis(x, indices_or_sections=len(self.blocks.layer_names), axis=1)
ys = []
for bni, xsi in zip(self.blocks.layer_names, xs):
bi = self.blocks[bni]
if len(ys) == 0:
ys.append(bi(xsi))
else:
ys.append(bi(xsi + ys[-1]))
x = F.concat(ys, axis=1)
return x
class FPEUnit(Chain):
def __init__(self,
in_channels,
out_channels,
stride,
bottleneck_factor,
use_se,
**kwargs):
super(FPEUnit, self).__init__(**kwargs)
self.resize_identity = (in_channels != out_channels) or (stride != 1)
self.use_se = use_se
mid1_channels = in_channels * bottleneck_factor
with self.init_scope():
self.conv1 = conv1x1_block(
in_channels=in_channels,
out_channels=mid1_channels,
stride=stride)
self.block = FPEBlock(channels=mid1_channels)
self.conv2 = conv1x1_block(
in_channels=mid1_channels,
out_channels=out_channels,
activation=None)
if self.use_se:
self.se = SEBlock(channels=out_channels)
if self.resize_identity:
self.identity_conv = conv1x1_block(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
activation=None)
self.activ = F.relu
def __call__(self, x):
if self.resize_identity:
identity = self.identity_conv(x)
else:
identity = x
x = self.conv1(x)
x = self.block(x)
x = self.conv2(x)
if self.use_se:
x = self.se(x)
x = x + identity
x = self.activ(x)
return x
class FPEStage(Chain):
def __init__(self,
in_channels,
out_channels,
layers,
use_se,
**kwargs):
super(FPEStage, self).__init__(**kwargs)
self.use_block = (layers > 1)
with self.init_scope():
if self.use_block:
self.down = FPEUnit(
in_channels=in_channels,
out_channels=out_channels,
stride=2,
bottleneck_factor=4,
use_se=use_se)
self.blocks = SimpleSequential()
with self.blocks.init_scope():
for i in range(layers - 1):
setattr(self.blocks, "block{}".format(i + 1), FPEUnit(
in_channels=out_channels,
out_channels=out_channels,
stride=1,
bottleneck_factor=1,
use_se=use_se))
else:
self.down = FPEUnit(
in_channels=in_channels,
out_channels=out_channels,
stride=1,
bottleneck_factor=1,
use_se=use_se)
def __call__(self, x):
x = self.down(x)
if self.use_block:
y = self.blocks(x)
x = x + y
return x
class MEUBlock(Chain):
def __init__(self,
in_channels_high,
in_channels_low,
out_channels,
**kwargs):
super(MEUBlock, self).__init__(**kwargs)
with self.init_scope():
self.conv_high = conv1x1_block(
in_channels=in_channels_high,
out_channels=out_channels,
activation=None)
self.conv_low = conv1x1_block(
in_channels=in_channels_low,
out_channels=out_channels,
activation=None)
self.conv_w_high = conv1x1(
in_channels=out_channels,
out_channels=out_channels)
self.conv_w_low = conv1x1(
in_channels=1,
out_channels=1)
self.sigmoid = F.sigmoid
self.relu = F.relu
self.up = InterpolationBlock(
scale_factor=2,
align_corners=True)
def __call__(self, x_high, x_low):
x_high = self.conv_high(x_high)
x_low = self.conv_low(x_low)
w_high = F.average_pooling_2d(x_high, ksize=x_high.shape[2:])
w_high = self.conv_w_high(w_high)
w_high = self.relu(w_high)
w_high = self.sigmoid(w_high)
w_low = x_low.mean(axis=1, keepdims=True)
w_low = self.conv_w_low(w_low)
w_low = self.sigmoid(w_low)
x_high = self.up(x_high)
x_high = x_high * w_low
x_low = x_low * w_high
out = x_high + x_low
return out
class FPENet(Chain):
def __init__(self,
layers,
channels,
init_block_channels,
meu_channels,
use_se,
aux=False,
fixed_size=False,
in_channels=3,
in_size=(1024, 2048),
classes=19,
**kwargs):
super(FPENet, self).__init__(**kwargs)
assert (aux is not None)
assert (fixed_size is not None)
assert ((in_size[0] % 8 == 0) and (in_size[1] % 8 == 0))
self.in_size = in_size
self.classes = classes
self.fixed_size = fixed_size
with self.init_scope():
self.stem = conv3x3_block(
in_channels=in_channels,
out_channels=init_block_channels,
stride=2)
in_channels = init_block_channels
self.encoder = MultiOutputSequential(return_last=False)
with self.encoder.init_scope():
for i, (layers_i, out_channels) in enumerate(zip(layers, channels)):
stage = FPEStage(
in_channels=in_channels,
out_channels=out_channels,
layers=layers_i,
use_se=use_se)
stage.do_output = True
setattr(self.encoder, "stage{}".format(i + 1), stage)
in_channels = out_channels
self.meu1 = MEUBlock(
in_channels_high=channels[-1],
in_channels_low=channels[-2],
out_channels=meu_channels[0])
self.meu2 = MEUBlock(
in_channels_high=meu_channels[0],
in_channels_low=channels[-3],
out_channels=meu_channels[1])
in_channels = meu_channels[1]
self.classifier = conv1x1(
in_channels=in_channels,
out_channels=classes,
use_bias=True)
self.up = InterpolationBlock(
scale_factor=2,
align_corners=True)
def __call__(self, x):
x = self.stem(x)
y = self.encoder(x)
x = self.meu1(y[2], y[1])
x = self.meu2(x, y[0])
x = self.classifier(x)
x = self.up(x)
return x
|
MIT License
|
dedsecinside/awesome-scripts
|
APIs/Telegram API/telethon/network/mtprotosender.py
|
MTProtoSender.__init__
|
python
|
def __init__(self, auth_key, *, loggers,
retries=5, delay=1, auto_reconnect=True, connect_timeout=None,
auth_key_callback=None,
update_callback=None, auto_reconnect_callback=None):
self._connection = None
self._loggers = loggers
self._log = loggers[__name__]
self._retries = retries
self._delay = delay
self._auto_reconnect = auto_reconnect
self._connect_timeout = connect_timeout
self._auth_key_callback = auth_key_callback
self._update_callback = update_callback
self._auto_reconnect_callback = auto_reconnect_callback
self._connect_lock = asyncio.Lock()
self._user_connected = False
self._reconnecting = False
self._disconnected = asyncio.get_event_loop().create_future()
self._disconnected.set_result(None)
self._send_loop_handle = None
self._recv_loop_handle = None
self.auth_key = auth_key or AuthKey(None)
self._state = MTProtoState(self.auth_key, loggers=self._loggers)
self._send_queue = MessagePacker(self._state, loggers=self._loggers)
self._pending_state = {}
self._pending_ack = set()
self._last_acks = collections.deque(maxlen=10)
self._handlers = {
RpcResult.CONSTRUCTOR_ID: self._handle_rpc_result,
MessageContainer.CONSTRUCTOR_ID: self._handle_container,
GzipPacked.CONSTRUCTOR_ID: self._handle_gzip_packed,
Pong.CONSTRUCTOR_ID: self._handle_pong,
BadServerSalt.CONSTRUCTOR_ID: self._handle_bad_server_salt,
BadMsgNotification.CONSTRUCTOR_ID: self._handle_bad_notification,
MsgDetailedInfo.CONSTRUCTOR_ID: self._handle_detailed_info,
MsgNewDetailedInfo.CONSTRUCTOR_ID: self._handle_new_detailed_info,
NewSessionCreated.CONSTRUCTOR_ID: self._handle_new_session_created,
MsgsAck.CONSTRUCTOR_ID: self._handle_ack,
FutureSalts.CONSTRUCTOR_ID: self._handle_future_salts,
MsgsStateReq.CONSTRUCTOR_ID: self._handle_state_forgotten,
MsgResendReq.CONSTRUCTOR_ID: self._handle_state_forgotten,
MsgsAllInfo.CONSTRUCTOR_ID: self._handle_msg_all,
}
|
Initialize a new client.
Args:
self: (todo): write your description
auth_key: (str): write your description
loggers: (todo): write your description
retries: (todo): write your description
delay: (float): write your description
auto_reconnect: (bool): write your description
connect_timeout: (float): write your description
auth_key_callback: (callable): write your description
update_callback: (todo): write your description
auto_reconnect_callback: (todo): write your description
|
https://github.com/dedsecinside/awesome-scripts/blob/856835e5ff5f8a6af2d74bb25800c620feb712e3/APIs/Telegram API/telethon/network/mtprotosender.py#L43-L124
|
import asyncio
import collections
import struct
from . import authenticator
from ..extensions.messagepacker import MessagePacker
from .mtprotoplainsender import MTProtoPlainSender
from .requeststate import RequestState
from .mtprotostate import MTProtoState
from ..tl.tlobject import TLRequest
from .. import helpers, utils
from ..errors import (
BadMessageError, InvalidBufferError, SecurityError,
TypeNotFoundError, rpc_message_to_error
)
from ..extensions import BinaryReader
from ..tl.core import RpcResult, MessageContainer, GzipPacked
from ..tl.functions.auth import LogOutRequest
from ..tl.types import (
MsgsAck, Pong, BadServerSalt, BadMsgNotification, FutureSalts,
MsgNewDetailedInfo, NewSessionCreated, MsgDetailedInfo, MsgsStateReq,
MsgsStateInfo, MsgsAllInfo, MsgResendReq, upload
)
from ..crypto import AuthKey
from ..helpers import retry_range
class MTProtoSender:
|
MIT License
|
packtpublishing/-learn-artificial-intelligence-with-tensorflow
|
section3/components.py
|
glove_embed
|
python
|
def glove_embed(features, embed_shape, vocab_path, projector_path=None):
with tf.variable_scope('glove_embed', values=[features]):
embedding_matrix = get_embedding_matrix(embed_shape, vocab_path)
embed_tensor = tf.get_variable(
name='embed_tensor',
initializer=tf.constant_initializer(embedding_matrix),
dtype=tf.float32,
trainable=False,
shape=embed_shape)
tf.summary.histogram('embed_tensor', embed_tensor)
embedded_features = tf.nn.embedding_lookup(embed_tensor, features)
if projector_path is not None:
tf.logging.info('Setting up TensorBoard Projector.')
init_embeddings_projector(
vocab_path=vocab_path,
tensor_name=embed_tensor.name,
logdir=projector_path)
return embedded_features
|
Loads and builds an embedding layer initialized with pre-trained
GloVe embeddings, using only the words given in `vocab_path`.
Args:
features: int64 Tensor with shape (batch_size, max_seq_len) containing
the integer ids we want to embed into vectors.
embed_size: (int) dimensionality of the embedding layer to build.
vocab_path: (str) full path to text file where each line contains
a single word, and the number of lines defines the size of the vocabulary.
projector_path (optional): path to store embedding information needed to
link TensorBoard projector with word labels.
Returns:
embedded_features: float32 Tensor with shape
(batch_size, max_seq_len, embed_size) containing the embedded `features`.
|
https://github.com/packtpublishing/-learn-artificial-intelligence-with-tensorflow/blob/98291ee60cab87757ee464282ee5966000437b73/section3/components.py#L46-L83
|
from tensorflow.contrib.tensorboard.plugins import projector
import tensorflow as tf
from util import glove
import numpy as np
from tensorflow.contrib.rnn import DropoutWrapper, LSTMCell, MultiRNNCell, LSTMStateTuple
def init_embeddings_projector(vocab_path, tensor_name, logdir):
config = projector.ProjectorConfig(embeddings=[projector.EmbeddingInfo(
tensor_name=tensor_name,
metadata_path=vocab_path)])
writer = tf.summary.FileWriter(logdir)
projector.visualize_embeddings(writer, config)
def get_embedding_matrix(embed_shape, vocab_path):
with open(vocab_path) as f:
vocabulary = list(map(str.strip, f.readlines()))
word_vec = glove.get_glove(dim=embed_shape[-1])
emb_matrix = np.zeros(embed_shape)
for i, word in enumerate(vocabulary):
embed_vec = word_vec.get(word)
if embed_vec is not None:
emb_matrix[i] = embed_vec
return emb_matrix
|
MIT License
|
azure/autorest.python
|
test/vanilla/version-tolerant/Expected/AcceptanceTests/BodyDateVersionTolerant/bodydateversiontolerant/aio/operations/_operations.py
|
DateOperations.get_invalid_date
|
python
|
async def get_invalid_date(self, **kwargs: Any) -> datetime.date:
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
request = build_date_get_invalid_date_request(
template_url=self.get_invalid_date.metadata["url"],
)
request.url = self._client.format_url(request.url)
pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
if response.content:
deserialized = response.json()
else:
deserialized = None
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
|
Get invalid date value.
:return: date
:rtype: ~datetime.date
:raises: ~azure.core.exceptions.HttpResponseError
|
https://github.com/azure/autorest.python/blob/90d60a965788e3b4c0809e6686bdc3525acac89c/test/vanilla/version-tolerant/Expected/AcceptanceTests/BodyDateVersionTolerant/bodydateversiontolerant/aio/operations/_operations.py#L95-L126
|
import datetime
import functools
from typing import Any, Callable, Dict, Generic, Optional, TypeVar
import warnings
from azure.core.exceptions import (
ClientAuthenticationError,
HttpResponseError,
ResourceExistsError,
ResourceNotFoundError,
map_error,
)
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import AsyncHttpResponse
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator_async import distributed_trace_async
from ...operations._operations import (
build_date_get_invalid_date_request,
build_date_get_max_date_request,
build_date_get_min_date_request,
build_date_get_null_request,
build_date_get_overflow_date_request,
build_date_get_underflow_date_request,
build_date_put_max_date_request,
build_date_put_min_date_request,
)
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
class DateOperations:
def __init__(self, client, config, serializer, deserializer) -> None:
self._client = client
self._serialize = serializer
self._deserialize = deserializer
self._config = config
@distributed_trace_async
async def get_null(self, **kwargs: Any) -> Optional[datetime.date]:
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
request = build_date_get_null_request(
template_url=self.get_null.metadata["url"],
)
request.url = self._client.format_url(request.url)
pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
if response.content:
deserialized = response.json()
else:
deserialized = None
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
get_null.metadata = {"url": "/date/null"}
@distributed_trace_async
|
MIT License
|
wavefronthq/python-client
|
wavefront_api_client/models/derived_metric_definition.py
|
DerivedMetricDefinition.tags
|
python
|
def tags(self, tags):
self._tags = tags
|
Sets the tags of this DerivedMetricDefinition.
:param tags: The tags of this DerivedMetricDefinition. # noqa: E501
:type: WFTags
|
https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/derived_metric_definition.py#L773-L781
|
import pprint
import re
import six
from wavefront_api_client.configuration import Configuration
class DerivedMetricDefinition(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'additional_information': 'str',
'create_user_id': 'str',
'created': 'int',
'created_epoch_millis': 'int',
'creator_id': 'str',
'deleted': 'bool',
'hosts_used': 'list[str]',
'id': 'str',
'in_trash': 'bool',
'include_obsolete_metrics': 'bool',
'last_error_message': 'str',
'last_failed_time': 'int',
'last_processed_millis': 'int',
'last_query_time': 'int',
'metrics_used': 'list[str]',
'minutes': 'int',
'name': 'str',
'points_scanned_at_last_query': 'int',
'process_rate_minutes': 'int',
'query': 'str',
'query_failing': 'bool',
'query_qb_enabled': 'bool',
'query_qb_serialization': 'str',
'status': 'list[str]',
'tagpaths': 'list[str]',
'tags': 'WFTags',
'update_user_id': 'str',
'updated': 'int',
'updated_epoch_millis': 'int',
'updater_id': 'str'
}
attribute_map = {
'additional_information': 'additionalInformation',
'create_user_id': 'createUserId',
'created': 'created',
'created_epoch_millis': 'createdEpochMillis',
'creator_id': 'creatorId',
'deleted': 'deleted',
'hosts_used': 'hostsUsed',
'id': 'id',
'in_trash': 'inTrash',
'include_obsolete_metrics': 'includeObsoleteMetrics',
'last_error_message': 'lastErrorMessage',
'last_failed_time': 'lastFailedTime',
'last_processed_millis': 'lastProcessedMillis',
'last_query_time': 'lastQueryTime',
'metrics_used': 'metricsUsed',
'minutes': 'minutes',
'name': 'name',
'points_scanned_at_last_query': 'pointsScannedAtLastQuery',
'process_rate_minutes': 'processRateMinutes',
'query': 'query',
'query_failing': 'queryFailing',
'query_qb_enabled': 'queryQBEnabled',
'query_qb_serialization': 'queryQBSerialization',
'status': 'status',
'tagpaths': 'tagpaths',
'tags': 'tags',
'update_user_id': 'updateUserId',
'updated': 'updated',
'updated_epoch_millis': 'updatedEpochMillis',
'updater_id': 'updaterId'
}
def __init__(self, additional_information=None, create_user_id=None, created=None, created_epoch_millis=None, creator_id=None, deleted=None, hosts_used=None, id=None, in_trash=None, include_obsolete_metrics=None, last_error_message=None, last_failed_time=None, last_processed_millis=None, last_query_time=None, metrics_used=None, minutes=None, name=None, points_scanned_at_last_query=None, process_rate_minutes=None, query=None, query_failing=None, query_qb_enabled=None, query_qb_serialization=None, status=None, tagpaths=None, tags=None, update_user_id=None, updated=None, updated_epoch_millis=None, updater_id=None, _configuration=None):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._additional_information = None
self._create_user_id = None
self._created = None
self._created_epoch_millis = None
self._creator_id = None
self._deleted = None
self._hosts_used = None
self._id = None
self._in_trash = None
self._include_obsolete_metrics = None
self._last_error_message = None
self._last_failed_time = None
self._last_processed_millis = None
self._last_query_time = None
self._metrics_used = None
self._minutes = None
self._name = None
self._points_scanned_at_last_query = None
self._process_rate_minutes = None
self._query = None
self._query_failing = None
self._query_qb_enabled = None
self._query_qb_serialization = None
self._status = None
self._tagpaths = None
self._tags = None
self._update_user_id = None
self._updated = None
self._updated_epoch_millis = None
self._updater_id = None
self.discriminator = None
if additional_information is not None:
self.additional_information = additional_information
if create_user_id is not None:
self.create_user_id = create_user_id
if created is not None:
self.created = created
if created_epoch_millis is not None:
self.created_epoch_millis = created_epoch_millis
if creator_id is not None:
self.creator_id = creator_id
if deleted is not None:
self.deleted = deleted
if hosts_used is not None:
self.hosts_used = hosts_used
if id is not None:
self.id = id
if in_trash is not None:
self.in_trash = in_trash
if include_obsolete_metrics is not None:
self.include_obsolete_metrics = include_obsolete_metrics
if last_error_message is not None:
self.last_error_message = last_error_message
if last_failed_time is not None:
self.last_failed_time = last_failed_time
if last_processed_millis is not None:
self.last_processed_millis = last_processed_millis
if last_query_time is not None:
self.last_query_time = last_query_time
if metrics_used is not None:
self.metrics_used = metrics_used
self.minutes = minutes
self.name = name
if points_scanned_at_last_query is not None:
self.points_scanned_at_last_query = points_scanned_at_last_query
if process_rate_minutes is not None:
self.process_rate_minutes = process_rate_minutes
self.query = query
if query_failing is not None:
self.query_failing = query_failing
if query_qb_enabled is not None:
self.query_qb_enabled = query_qb_enabled
if query_qb_serialization is not None:
self.query_qb_serialization = query_qb_serialization
if status is not None:
self.status = status
if tagpaths is not None:
self.tagpaths = tagpaths
if tags is not None:
self.tags = tags
if update_user_id is not None:
self.update_user_id = update_user_id
if updated is not None:
self.updated = updated
if updated_epoch_millis is not None:
self.updated_epoch_millis = updated_epoch_millis
if updater_id is not None:
self.updater_id = updater_id
@property
def additional_information(self):
return self._additional_information
@additional_information.setter
def additional_information(self, additional_information):
self._additional_information = additional_information
@property
def create_user_id(self):
return self._create_user_id
@create_user_id.setter
def create_user_id(self, create_user_id):
self._create_user_id = create_user_id
@property
def created(self):
return self._created
@created.setter
def created(self, created):
self._created = created
@property
def created_epoch_millis(self):
return self._created_epoch_millis
@created_epoch_millis.setter
def created_epoch_millis(self, created_epoch_millis):
self._created_epoch_millis = created_epoch_millis
@property
def creator_id(self):
return self._creator_id
@creator_id.setter
def creator_id(self, creator_id):
self._creator_id = creator_id
@property
def deleted(self):
return self._deleted
@deleted.setter
def deleted(self, deleted):
self._deleted = deleted
@property
def hosts_used(self):
return self._hosts_used
@hosts_used.setter
def hosts_used(self, hosts_used):
self._hosts_used = hosts_used
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def in_trash(self):
return self._in_trash
@in_trash.setter
def in_trash(self, in_trash):
self._in_trash = in_trash
@property
def include_obsolete_metrics(self):
return self._include_obsolete_metrics
@include_obsolete_metrics.setter
def include_obsolete_metrics(self, include_obsolete_metrics):
self._include_obsolete_metrics = include_obsolete_metrics
@property
def last_error_message(self):
return self._last_error_message
@last_error_message.setter
def last_error_message(self, last_error_message):
self._last_error_message = last_error_message
@property
def last_failed_time(self):
return self._last_failed_time
@last_failed_time.setter
def last_failed_time(self, last_failed_time):
self._last_failed_time = last_failed_time
@property
def last_processed_millis(self):
return self._last_processed_millis
@last_processed_millis.setter
def last_processed_millis(self, last_processed_millis):
self._last_processed_millis = last_processed_millis
@property
def last_query_time(self):
return self._last_query_time
@last_query_time.setter
def last_query_time(self, last_query_time):
self._last_query_time = last_query_time
@property
def metrics_used(self):
return self._metrics_used
@metrics_used.setter
def metrics_used(self, metrics_used):
self._metrics_used = metrics_used
@property
def minutes(self):
return self._minutes
@minutes.setter
def minutes(self, minutes):
if self._configuration.client_side_validation and minutes is None:
raise ValueError("Invalid value for `minutes`, must not be `None`")
self._minutes = minutes
@property
def name(self):
return self._name
@name.setter
def name(self, name):
if self._configuration.client_side_validation and name is None:
raise ValueError("Invalid value for `name`, must not be `None`")
self._name = name
@property
def points_scanned_at_last_query(self):
return self._points_scanned_at_last_query
@points_scanned_at_last_query.setter
def points_scanned_at_last_query(self, points_scanned_at_last_query):
self._points_scanned_at_last_query = points_scanned_at_last_query
@property
def process_rate_minutes(self):
return self._process_rate_minutes
@process_rate_minutes.setter
def process_rate_minutes(self, process_rate_minutes):
self._process_rate_minutes = process_rate_minutes
@property
def query(self):
return self._query
@query.setter
def query(self, query):
if self._configuration.client_side_validation and query is None:
raise ValueError("Invalid value for `query`, must not be `None`")
self._query = query
@property
def query_failing(self):
return self._query_failing
@query_failing.setter
def query_failing(self, query_failing):
self._query_failing = query_failing
@property
def query_qb_enabled(self):
return self._query_qb_enabled
@query_qb_enabled.setter
def query_qb_enabled(self, query_qb_enabled):
self._query_qb_enabled = query_qb_enabled
@property
def query_qb_serialization(self):
return self._query_qb_serialization
@query_qb_serialization.setter
def query_qb_serialization(self, query_qb_serialization):
self._query_qb_serialization = query_qb_serialization
@property
def status(self):
return self._status
@status.setter
def status(self, status):
self._status = status
@property
def tagpaths(self):
return self._tagpaths
@tagpaths.setter
def tagpaths(self, tagpaths):
self._tagpaths = tagpaths
@property
def tags(self):
return self._tags
@tags.setter
|
Apache License 2.0
|
jgorset/django-respite
|
respite/utils/parsers.py
|
parse_content_type
|
python
|
def parse_content_type(content_type):
if '; charset=' in content_type:
return tuple(content_type.split('; charset='))
else:
if 'text' in content_type:
encoding = 'ISO-8859-1'
else:
try:
format = formats.find_by_content_type(content_type)
except formats.UnknownFormat:
encoding = 'ISO-8859-1'
else:
encoding = format.default_encoding or 'ISO-8859-1'
return (content_type, encoding)
|
Return a tuple of content type and charset.
:param content_type: A string describing a content type.
|
https://github.com/jgorset/django-respite/blob/719469d11baf91d05917bab1623bd82adc543546/respite/utils/parsers.py#L10-L29
|
from django.http.multipartparser import MultiPartParser
from respite import formats
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
|
MIT License
|
lil-lab/atis
|
anonymization.py
|
Anonymizer.get_anon_id
|
python
|
def get_anon_id(self, token):
if self.is_anon_tok(token):
return self.entity_types.index(token.split(SEPARATOR)[0])
else:
return -1
|
Gets the entity index (unique ID) for a token.
Input:
token (str): The token to get the index from.
Returns:
int, the token ID if it is an anonymized token; otherwise -1.
|
https://github.com/lil-lab/atis/blob/08a17a7be8cd7b40d2f35e089947df4d543b3321/anonymization.py#L130-L142
|
import copy
import json
import util
ENTITY_NAME = "ENTITY"
CONSTANT_NAME = "CONSTANT"
TIME_NAME = "TIME"
SEPARATOR = "#"
def timeval(string):
if string.endswith("am") or string.endswith(
"pm") and string[:-2].isdigit():
numval = int(string[:-2])
if len(string) == 3 or len(string) == 4:
numval *= 100
if string.endswith("pm"):
numval += 1200
return str(numval)
return ""
def is_time(string):
if string.endswith("am") or string.endswith("pm"):
if string[:-2].isdigit():
return True
return False
def deanonymize(sequence, ent_dict, key):
new_sequence = []
for token in sequence:
if token in ent_dict:
new_sequence.extend(ent_dict[token][key])
else:
new_sequence.append(token)
return new_sequence
class Anonymizer:
def __init__(self, filename):
self.anonymization_map = []
self.entity_types = []
self.keys = set()
pairs = [json.loads(line) for line in open(filename).readlines()]
for pair in pairs:
for key in pair:
if key != "type":
self.keys.add(key)
self.anonymization_map.append(pair)
if pair["type"] not in self.entity_types:
self.entity_types.append(pair["type"])
self.entity_types.append(ENTITY_NAME)
self.entity_types.append(CONSTANT_NAME)
self.entity_types.append(TIME_NAME)
self.entity_set = set(self.entity_types)
def get_entity_type_from_token(self, token):
colon_loc = token.index(SEPARATOR)
entity_type = token[:colon_loc]
assert entity_type in self.entity_set
return entity_type
def is_anon_tok(self, token):
return token.split(SEPARATOR)[0] in self.entity_set
|
MIT License
|
briannemsick/barrage
|
barrage/api.py
|
RecordTransformer.network_params
|
python
|
def network_params(self) -> dict:
return self._network_params
|
Special params passed to the network builder.
|
https://github.com/briannemsick/barrage/blob/f86bd0723abc0ab94b0b8f2ca3ffa5e3b7541455/barrage/api.py#L119-L121
|
import abc
import enum
from typing import Any, Dict, List, Tuple, Union
import numpy as np
import pandas as pd
Record = Dict[str, Any]
Records = List[Record]
InputRecords = Union[Records, pd.DataFrame]
DataRecord = Tuple[Dict[str, Union[np.ndarray, float]], ...]
BatchDataRecords = Tuple[Dict[str, np.ndarray], ...]
RecordScore = Dict[str, np.ndarray]
BatchRecordScores = List[RecordScore]
class RecordMode(enum.Enum):
TRAIN = 0
VALIDATION = 1
SCORE = 2
class RecordLoader(abc.ABC):
def __init__(self, mode: RecordMode, **params):
self.mode = mode
def __call__(self, record: Record) -> DataRecord:
return self.load(record)
@abc.abstractmethod
def load(self, record: Record) -> DataRecord:
raise NotImplementedError()
class RecordTransformer(abc.ABC):
def __init__(self, mode: RecordMode, loader: RecordLoader, **params):
self.mode = mode
self.loader = loader
self._network_params = {}
@abc.abstractmethod
def fit(self, records: Records):
raise NotImplementedError()
@abc.abstractmethod
def transform(self, data_record: DataRecord) -> DataRecord:
raise NotImplementedError()
@abc.abstractmethod
def postprocess(self, score: RecordScore) -> RecordScore:
raise NotImplementedError()
@abc.abstractmethod
def load(self, path: str):
raise NotImplementedError()
@abc.abstractmethod
def save(self, path: str):
raise NotImplementedError()
@property
|
MIT License
|
michael-f-ellis/tbon
|
parser.py
|
MidiPreEvaluator.beat
|
python
|
def beat(self, node, children):
state = self.processing_state
mult, numer = TIMESIG_LUT[state['beatspec']]
beat_length = 4 * mult / numer
subbeat_length = beat_length/state['subbeats']
subbeats = []
for n in range(state['subbeats']):
subbeats.append(state['beat_index'] + (n * subbeat_length))
state['subbeat_starts'].append(tuple(subbeats))
state['subbeats'] = 0
state['beat_index'] += beat_length
state['bar_beat_count'] += 1
if state['beat_index'] == beat_length:
for m in self.meta_output:
if m[0] == 'T':
break
else:
self.insert_tempo_meta(state, index=0)
state['subbeat_lengths'].append(subbeat_length)
self.beat_lengths.append(beat_length)
|
Compute subbeat duration for current beat in current tempo.
DESIGN NOTE: tbon will not support changing the tempo within
a beat.
|
https://github.com/michael-f-ellis/tbon/blob/e98172443b73b8309a6963bffe9ccbc767766c54/parser.py#L284-L312
|
import keysigs
from parsimonious.grammar import Grammar
def parse(source):
grammar = Grammar(
"""
score = wsc* music*
music = (partswitch* bar+)+ wsc*
partswitch = "P=" partnum
wsc = comment / ws+
comment = ws* ~r"/\*.*?\*/"s ws*
bar = (wsc* (meta / beat) wsc+)+ barline
meta = beatspec / key / tempo /
relativetempo / velocity /
de_emphasis / channel / instrument
beatspec = "B=" ("2." / "2" / "4." / "4" / "8." / "8")
key = "K=" keyname
keyname = ~r"[a-gA-G](@|#)?"
tempo = "T=" floatnum
relativetempo = "t=" floatnum
velocity = "V=" floatnum
de_emphasis = "D=" floatnum
channel = "C=" chnum
partnum = ~r"[1-9][0-9]*"i
instrument = "I=" inum
inum = ~r"[1-9][0-9]*"i
floatnum = ~r"\d*\.?\d+"i
chnum = ~r"\d*\.?\d+"i
beat = subbeat+
barline = "|" / ":"
extendable = chord / roll / ornament / pitch / rest
pitch = octave* alteration? pitchname
chord = chordstart chorditem chorditem* rparen
chordstart = "("
chorditem = chordpitch / chordhold / chordrest
chordpitch = octave* alteration? pitchname
chordhold = '-'
chordrest = "_" / "z"
rparen = ")"
roll = rollstart pitch pitch+ rparen
rollstart = "(:"
ornament = ornamentstart pitch pitch+ rparen
ornamentstart = "(~"
subbeat = extendable / hold
rest = "_" / "z"
hold = "-"
octave = octave_up / octave_down
alteration = doublesharp / sharp / doubleflat / flat / natural
doublesharp = "𝄪" / "##"
sharp = "♯" / "#"
doubleflat = "𝄫" / "@@"
flat = "♭" / "@"
natural = "♮" / "%"
octave_up = "^"
octave_down = "/"
pitchname = ~"[a-g1-7]"i
ws = ~r"\s*"i
"""
)
return grammar.parse(source)
NOTE = 0
CHORD = 1
ROLL = 2
ORNAMENT = 3
TIMESIG_LUT = {
"2.":(3, 4),
"2":(1, 2),
"4.":(3, 8),
"4":(1, 4),
"8.":(3, 16),
"8":(1, 8),
}
def time_signature(beatspec, beatcount, index, part):
multiplier, numerator = TIMESIG_LUT[beatspec]
return ('M', index, multiplier*beatcount, numerator, part)
class MidiPreEvaluator():
def __init__(self):
self.first_tempo = 120
self.output = []
self.meta_output = []
self.beat_map = {1: []}
self.beat_lengths = []
self.subbeat_starts = []
self.subbeat_lengths = []
self.partstates = {0: self.new_part_state(0)}
self.processing_state = self.partstates[0]
self.current_part = 0
def eval(self, source, verbosity=2):
node = parse(source) if isinstance(source, str) else source
method = getattr(self, node.expr_name, lambda node, children: children)
method(node, [self.eval(n, verbosity) for n in node])
self.show_progress(node, verbosity)
return self.output
def show_progress(self, node, verbosity):
if verbosity <= 0:
return
if node.expr_name not in ('', 'ws', None):
print("Evaluated {}, '{}'".format(node.expr_name, node.text))
print("output={}".format(self.output))
if verbosity > 1:
print('state={}'.format(self.processing_state))
def score(self, node, children):
if len(self.partstates) == 1:
d = self.partstates[0]
self.subbeat_starts = d['subbeat_starts']
for n in d['subbeat_lengths']:
self.subbeat_lengths.append(n)
else:
for _, d in self.partstates.items():
self.subbeat_lengths.append(tuple(d['subbeat_lengths']))
self.subbeat_starts.append(d['subbeat_starts'])
def partswitch(self, node, children):
newpartnumber = int(node.children[1].text)
newpindex = newpartnumber - 1
try:
self.processing_state = self.partstates[newpindex]
except KeyError:
pstate = self.new_part_state(newpindex)
self.partstates[newpindex] = pstate
self.processing_state = self.partstates[newpindex]
self.current_part = newpindex
self.beat_map[newpartnumber] = []
def new_part_state(self, pindex):
return dict(
basetempo=self.first_tempo,
tempo=self.first_tempo,
beat_index=0,
bar_beat_count=0,
channel=1,
in_chord=False,
chord_tone_count=0,
subbeats=0,
beatspec="4",
timesig=('M', 0.0, 4, 4, pindex),
subbeat_lengths=[],
subbeat_starts=[],
)
def channel(self, node, children):
state = self.processing_state
newchannel = int(node.children[1].text)
if 1 <= newchannel <= 16:
state['channel'] = newchannel
else:
msg = ("\nInvalid channel number, {}. "
"Must be between 1 and 16, inclusive.")
raise ValueError(msg.format(newchannel))
def instrument(self, node, children):
state = self.processing_state
newinstrument = int(node.children[1].text)
if 1 <= newinstrument <= 128:
index = state['beat_index']
state['instrument'] = newinstrument
chan = state['channel']
part = self.current_part
self.meta_output.append(('I', index, newinstrument, part, chan))
else:
msg = ("\nInvalid instrument number, {}. "
"Must be between 1 and 128, inclusive.")
raise ValueError(msg.format(newinstrument))
def tempo(self, node, children):
if self.current_part == 0:
state = self.processing_state
newtempo = int(round(float(node.children[1].text)))
if newtempo > 1:
state['basetempo'] = state['tempo'] = newtempo
else:
msg = ("\nInvalid Tempo, {}. "
"Tempo must be greater than 1.")
raise ValueError(msg.format(newtempo))
self.insert_tempo_meta(state)
else:
print(
"Ignoring tempo spec in part {}.".format(self.current_part))
def key(self, node, children):
state = self.processing_state
keyname = node.children[1].text.strip()
if keyname in keysigs.KEYSIGS.keys():
self.processing_state['keyname'] = keyname
else:
msg = ("\n Invalid key name, '{}'. "
"Must be one of {}.")
validkeys = ', '.join(sorted(keysigs.KEYSIGS.keys()))
raise ValueError(msg.format(keyname, validkeys))
index = state['beat_index']
sig = keysigs.MIDISIGS[keyname]
part = self.current_part
self.meta_output.append(('K', index, sig, part))
def relativetempo(self, node, children):
if self.current_part == 0:
state = self.processing_state
xtempo = float(node.children[1].text)
if xtempo > 0.0:
state['tempo'] = int(round(xtempo * state['basetempo']))
else:
msg = ("\nInvalid relative tempo, {}. "
"Must be greater than 0.0")
raise ValueError(msg.format(xtempo))
self.insert_tempo_meta(state)
else:
print(
"Ignoring tempo spec in part {}.".format(self.current_part))
def beatspec(self, node, children):
state = self.processing_state
oldbeatspec = state['beatspec']
newbeatspec = node.children[1].text
if oldbeatspec != newbeatspec:
state['beatspec'] = newbeatspec
def subbeat(self, node, children):
state = self.processing_state
state['subbeats'] += 1
|
MIT License
|
qk4l/zabbix-cachet
|
zabbix-cachet.py
|
Cachet.new_components
|
python
|
def new_components(self, name, **kwargs):
params = {'name': name, 'link': '', 'description': '', 'status': '1', 'group_id': 0}
params.update(kwargs)
for i in ('link', 'description'):
if str(params[i]).strip() == '':
params.pop(i)
component = self.get_components(name)
if isinstance(component, list):
for i in component:
if i['group_id'] == params['group_id']:
return i
elif isinstance(component, dict):
if not component['id'] == 0 and component.get('group_id', None) == params['group_id']:
return component
url = 'components'
logging.debug('Creating Cachet component {name}...'.format(name=params['name']))
data = self._http_post(url, params)
logging.info('Component {name} was created in group id {group_id}.'.format(name=params['name'],
group_id=data['data'][
'group_id']))
return data['data']
|
Create new components
@param name: string
@param kwargs: various additional values =)
@return: dict of data
|
https://github.com/qk4l/zabbix-cachet/blob/4cb917a2182cfee7519f4534cde129b560ba45e0/zabbix-cachet.py#L316-L349
|
import sys
import os
import datetime
import json
import requests
import time
import threading
import logging
import yaml
import pytz
from pyzabbix import ZabbixAPI, ZabbixAPIException
from operator import itemgetter
__author__ = 'Artem Alexandrov <qk4l()tem4uk.ru>'
__license__ = """The MIT License (MIT)"""
__version__ = '1.3.7'
def client_http_error(url, code, message):
logging.error('ClientHttpError[%s, %s: %s]' % (url, code, message))
def cachetapiexception(message):
logging.error(message)
def pyzabbix_safe(fail_result=False):
def wrap(func):
def wrapperd_f(*args, **kwargs):
try:
return func(*args, **kwargs)
except (requests.ConnectionError, ZabbixAPIException) as e:
logging.error('Zabbix Error: {}'.format(e))
return fail_result
return wrapperd_f
return wrap
class Zabbix:
def __init__(self, server, user, password, verify=True):
self.server = server
self.user = user
self.password = password
s = requests.Session()
s.auth = (user, password)
self.zapi = ZabbixAPI(server, s)
self.zapi.session.verify = verify
self.zapi.login(user, password)
self.version = self.get_version()
@pyzabbix_safe()
def get_version(self):
version = self.zapi.apiinfo.version()
return version
@pyzabbix_safe({})
def get_trigger(self, triggerid):
trigger = self.zapi.trigger.get(
expandComment='true',
expandDescription='true',
triggerids=triggerid)
return trigger[0]
@pyzabbix_safe({})
def get_event(self, triggerid):
zbx_event = self.zapi.event.get(
select_acknowledges='extend',
expandDescription='true',
object=0,
value=1,
objectids=triggerid)
if len(zbx_event) >= 1:
return zbx_event[-1]
return zbx_event
@pyzabbix_safe([])
def get_itservices(self, root=None):
if root:
root_service = self.zapi.service.get(
selectDependencies='extend',
filter={'name': root})
try:
root_service = root_service[0]
except IndexError:
logging.error('Can not find "{}" service in Zabbix'.format(root))
sys.exit(1)
service_ids = []
for dependency in root_service['dependencies']:
service_ids.append(dependency['serviceid'])
services = self.zapi.service.get(
selectDependencies='extend',
serviceids=service_ids)
else:
services = self.zapi.service.get(
selectDependencies='extend',
output='extend')
if not services:
logging.error('Can not find any child service for "{}"'.format(root))
return []
known_ids = []
service_tree = [i for i in services if i['dependencies']]
for idx, service in enumerate(service_tree):
child_services_ids = []
for dependency in service['dependencies']:
child_services_ids.append(dependency['serviceid'])
child_services = self.zapi.service.get(
selectDependencies='extend',
serviceids=child_services_ids)
service_tree[idx]['dependencies'] = child_services
known_ids = known_ids + child_services_ids
known_ids.append(service['serviceid'])
singers_services = [i for i in services if i['serviceid'] not in known_ids]
if singers_services:
service_tree = service_tree + singers_services
return service_tree
class Cachet:
def __init__(self, server, token, verify=True):
self.server = server + '/api/v1/'
self.token = token
self.headers = {'X-Cachet-Token': self.token, 'Accept': 'application/json; indent=4'}
self.verify = verify
self.version = self.get_version()
def _http_post(self, url, params):
url = self.server + url
logging.debug("Sending to {url}: {param}".format(url=url,
param=json.dumps(params,
indent=4,
separators=(',', ': '))))
try:
r = requests.post(url=url, data=params, headers=self.headers, verify=self.verify)
except requests.exceptions.RequestException as e:
raise client_http_error(url, None, e)
if r.status_code != 200:
return client_http_error(url, r.status_code, r.text)
try:
r_json = json.loads(r.text)
except ValueError:
raise cachetapiexception(
"Unable to parse json: %s" % r.text
)
logging.debug("Response Body: %s", json.dumps(r_json,
indent=4,
separators=(',', ': ')))
return r_json
def _http_get(self, url, params=None):
if params is None:
params = {}
url = self.server + url
logging.debug("Sending to {url}: {param}".format(url=url,
param=json.dumps(params,
indent=4,
separators=(',', ': '))))
try:
r = requests.get(url=url, headers=self.headers, params=params, verify=self.verify)
except requests.exceptions.RequestException as e:
raise client_http_error(url, None, e)
if r.status_code != 200:
return client_http_error(url, r.status_code, json.loads(r.text)['errors'])
try:
r_json = json.loads(r.text)
except ValueError:
raise cachetapiexception(
"Unable to parse json: %s" % r.text
)
logging.debug("Response Body: %s", json.dumps(r_json,
indent=4,
separators=(',', ': ')))
return r_json
def _http_put(self, url, params):
url = self.server + url
logging.debug("Sending to {url}: {param}".format(url=url,
param=json.dumps(params,
indent=4,
separators=(',', ': '))))
try:
r = requests.put(url=url, json=params, headers=self.headers, verify=self.verify)
except requests.exceptions.RequestException as e:
raise client_http_error(url, None, e)
if r.status_code != 200:
return client_http_error(url, r.status_code, r.text)
try:
r_json = json.loads(r.text)
except ValueError:
raise cachetapiexception(
"Unable to parse json: %s" % r.text
)
logging.debug("Response Body: %s", json.dumps(r_json,
indent=4,
separators=(',', ': ')))
return r_json
def get_version(self):
url = 'version'
data = self._http_get(url)
return data['data']
def get_component(self, id):
url = 'components/' + str(id)
data = self._http_get(url)
return data
def get_components(self, name=None):
url = 'components'
data = self._http_get(url)
total_pages = int(data['meta']['pagination']['total_pages'])
if name:
components = []
for page in range(total_pages, 0, -1):
if page == 1:
data_page = data
else:
data_page = self._http_get(url, params={'page': page})
for component in data_page['data']:
if component['name'] == name:
components.append(component)
if len(components) < 1:
return {'id': 0, 'name': 'Does not exists'}
else:
return components
return data
|
MIT License
|
stevezheng23/sequence_labeling_tf
|
sequence_labeling/util/eval_logger.py
|
EvalLogger.update_extrinsic_eval
|
python
|
def update_extrinsic_eval(self,
eval_result_list,
basic_info):
self.extrinsic_eval = eval_result_list
self.extrinsic_eval_info = basic_info
|
update evaluation logger with extrinsic evaluation result
|
https://github.com/stevezheng23/sequence_labeling_tf/blob/05fcbec15e359e3db86af6c3798c13be8a6c58ee/sequence_labeling/util/eval_logger.py#L35-L40
|
import codecs
import collections
import os.path
import time
import json
import numpy as np
import tensorflow as tf
__all__ = ["BasicInfoEvalLog", "ExtrinsicEvalLog", "EvalLogger"]
class BasicInfoEvalLog(collections.namedtuple("BasicInfoEvalLog", ("epoch", "global_step"))):
pass
class ExtrinsicEvalLog(collections.namedtuple("ExtrinsicEvalLog", ("metric", "score", "sample_output", "sample_size"))):
pass
class EvalLogger(object):
def __init__(self,
output_dir):
self.extrinsic_eval = None
self.extrinsic_eval_info = None
self.extrinsic_eval_detail = None
self.extrinsic_eval_detail_info = None
"""initialize evaluation logger"""
self.output_dir = output_dir
if not tf.gfile.Exists(self.output_dir):
tf.gfile.MakeDirs(self.output_dir)
self.log_file = os.path.join(self.output_dir, "eval_{0}.log".format(time.time()))
self.log_writer = codecs.getwriter("utf-8")(tf.gfile.GFile(self.log_file, mode="a"))
|
Apache License 2.0
|
pennylaneai/pennylane-forest
|
pennylane_forest/wavefunction.py
|
WavefunctionDevice.bit2dec
|
python
|
def bit2dec(x):
y = 0
for i, j in enumerate(x[::-1]):
y += j << i
return y
|
Auxiliary method that converts a bitstring to a decimal integer
using the PennyLane convention of bit ordering.
Args:
x (Iterable): bit string
Returns:
int: decimal value of the bitstring
|
https://github.com/pennylaneai/pennylane-forest/blob/670c7e2527e8c3f3c5373dfffb10f14f7195880f/pennylane_forest/wavefunction.py#L94-L107
|
import itertools
import numpy as np
from numpy.linalg import eigh
from pennylane.wires import Wires
from pyquil.api import WavefunctionSimulator
from .device import ForestDevice
from ._version import __version__
I = np.identity(2)
X = np.array([[0, 1], [1, 0]])
Y = np.array([[0, -1j], [1j, 0]])
Z = np.array([[1, 0], [0, -1]])
H = np.array([[1, 1], [1, -1]]) / np.sqrt(2)
observable_map = {"PauliX": X, "PauliY": Y, "PauliZ": Z, "Identity": I, "Hadamard": H}
class WavefunctionDevice(ForestDevice):
name = "Forest Wavefunction Simulator Device"
short_name = "forest.wavefunction"
observables = {"PauliX", "PauliY", "PauliZ", "Hadamard", "Hermitian", "Identity"}
def __init__(self, wires, *, shots=None, **kwargs):
super().__init__(wires, shots, **kwargs)
self.connection = super()._get_connection(**kwargs)
self.qc = WavefunctionSimulator(connection=self.connection)
self._state = None
def apply(self, operations, **kwargs):
super().apply(operations, **kwargs)
self._state = self.qc.wavefunction(self.prog).amplitudes
self._state = self._state.reshape([2] * len(self._active_wires)).T.flatten()
self.expand_state()
@staticmethod
|
BSD 3-Clause New or Revised License
|
kakao/khaiii
|
train/transform_corpus.py
|
run
|
python
|
def run(args: Namespace):
random.seed(args.seed)
sentences = []
if args.input_format == 'sejong':
sentences = Sentence.load_sejong()
elif args.input_format == 'train':
sentences = Sentence.load_train(args.rsc_src)
else:
raise ValueError(f'invalid input format: {args.input_format}')
for sentence in sentences:
sentence.merge_words(args.merge_rate)
if args.output_format == 'raw':
print(sentence.raw())
elif args.output_format == 'khaiii':
print(str(sentence))
else:
raise ValueError(f'invalid output format: {args.output_format}')
|
run function which is the start point of program
Args:
args: program arguments
|
https://github.com/kakao/khaiii/blob/328d5a8af456a5941130383354c07d1cd0e47cf5/train/transform_corpus.py#L106-L129
|
from argparse import ArgumentParser, Namespace
import logging
import random
import sys
from typing import List
from khaiii.munjong.sejong_corpus import sents
from khaiii.resource.resource import Resource
from khaiii.train.dataset import PosDataset
class Sentence:
def __init__(self):
self.words = []
self.morphs = []
def merge_words(self, rate: float = 0.0):
if rate <= 0.0:
return
idx = 0
while idx < len(self.words)-1:
if random.random() >= rate:
idx += 1
continue
self.words[idx] += self.words[idx+1]
self.morphs[idx] += ' + ' + self.morphs[idx+1]
del self.words[idx+1]
del self.morphs[idx+1]
def __str__(self):
words_str = [f'{w}\t{m}' for w, m in zip(self.words, self.morphs)]
return '\n'.join(words_str) + '\n'
def raw(self):
return ' '.join(self.words)
@classmethod
def load_sejong(cls) -> List['Sentence']:
sentences = []
for sent in sents(sys.stdin):
sentence = Sentence()
for word in sent.words:
sentence.words.append(word.raw)
sentence.morphs.append(' + '.join([str(m) for m in word.morphs]))
sentences.append(sentence)
return sentences
@classmethod
def load_train(cls, rsc_src: str) -> List['Sentence']:
restore_dic = Resource.load_restore_dic(f'{rsc_src}/restore.dic')
sentences = []
for sent in PosDataset(None, restore_dic, sys.stdin):
sentence = Sentence()
for word in sent.pos_tagged_words:
sentence.words.append(word.raw)
sentence.morphs.append(' + '.join([str(m) for m in word.pos_tagged_morphs]))
sentences.append(sentence)
return sentences
|
Apache License 2.0
|
argoproj-labs/argo-client-python
|
argo/workflows/client/models/v1alpha1_workflow_status.py
|
V1alpha1WorkflowStatus.outputs
|
python
|
def outputs(self):
return self._outputs
|
Gets the outputs of this V1alpha1WorkflowStatus. # noqa: E501
:return: The outputs of this V1alpha1WorkflowStatus. # noqa: E501
:rtype: V1alpha1Outputs
|
https://github.com/argoproj-labs/argo-client-python/blob/993d684cab39a834770b296e028519cec035c7b5/argo/workflows/client/models/v1alpha1_workflow_status.py#L292-L299
|
import pprint
import re
import six
from argo.workflows.client.configuration import Configuration
class V1alpha1WorkflowStatus(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'compressed_nodes': 'str',
'conditions': 'list[V1alpha1Condition]',
'estimated_duration': 'int',
'finished_at': 'datetime',
'message': 'str',
'nodes': 'dict(str, V1alpha1NodeStatus)',
'offload_node_status_version': 'str',
'outputs': 'V1alpha1Outputs',
'persistent_volume_claims': 'list[V1Volume]',
'phase': 'str',
'progress': 'str',
'resources_duration': 'dict(str, int)',
'started_at': 'datetime',
'stored_templates': 'dict(str, V1alpha1Template)',
'stored_workflow_template_spec': 'V1alpha1WorkflowSpec',
'synchronization': 'V1alpha1SynchronizationStatus'
}
attribute_map = {
'compressed_nodes': 'compressedNodes',
'conditions': 'conditions',
'estimated_duration': 'estimatedDuration',
'finished_at': 'finishedAt',
'message': 'message',
'nodes': 'nodes',
'offload_node_status_version': 'offloadNodeStatusVersion',
'outputs': 'outputs',
'persistent_volume_claims': 'persistentVolumeClaims',
'phase': 'phase',
'progress': 'progress',
'resources_duration': 'resourcesDuration',
'started_at': 'startedAt',
'stored_templates': 'storedTemplates',
'stored_workflow_template_spec': 'storedWorkflowTemplateSpec',
'synchronization': 'synchronization'
}
def __init__(self, compressed_nodes=None, conditions=None, estimated_duration=None, finished_at=None, message=None, nodes=None, offload_node_status_version=None, outputs=None, persistent_volume_claims=None, phase=None, progress=None, resources_duration=None, started_at=None, stored_templates=None, stored_workflow_template_spec=None, synchronization=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._compressed_nodes = None
self._conditions = None
self._estimated_duration = None
self._finished_at = None
self._message = None
self._nodes = None
self._offload_node_status_version = None
self._outputs = None
self._persistent_volume_claims = None
self._phase = None
self._progress = None
self._resources_duration = None
self._started_at = None
self._stored_templates = None
self._stored_workflow_template_spec = None
self._synchronization = None
self.discriminator = None
if compressed_nodes is not None:
self.compressed_nodes = compressed_nodes
if conditions is not None:
self.conditions = conditions
if estimated_duration is not None:
self.estimated_duration = estimated_duration
if finished_at is not None:
self.finished_at = finished_at
if message is not None:
self.message = message
if nodes is not None:
self.nodes = nodes
if offload_node_status_version is not None:
self.offload_node_status_version = offload_node_status_version
if outputs is not None:
self.outputs = outputs
if persistent_volume_claims is not None:
self.persistent_volume_claims = persistent_volume_claims
if phase is not None:
self.phase = phase
if progress is not None:
self.progress = progress
if resources_duration is not None:
self.resources_duration = resources_duration
if started_at is not None:
self.started_at = started_at
if stored_templates is not None:
self.stored_templates = stored_templates
if stored_workflow_template_spec is not None:
self.stored_workflow_template_spec = stored_workflow_template_spec
if synchronization is not None:
self.synchronization = synchronization
@property
def compressed_nodes(self):
return self._compressed_nodes
@compressed_nodes.setter
def compressed_nodes(self, compressed_nodes):
self._compressed_nodes = compressed_nodes
@property
def conditions(self):
return self._conditions
@conditions.setter
def conditions(self, conditions):
self._conditions = conditions
@property
def estimated_duration(self):
return self._estimated_duration
@estimated_duration.setter
def estimated_duration(self, estimated_duration):
self._estimated_duration = estimated_duration
@property
def finished_at(self):
return self._finished_at
@finished_at.setter
def finished_at(self, finished_at):
self._finished_at = finished_at
@property
def message(self):
return self._message
@message.setter
def message(self, message):
self._message = message
@property
def nodes(self):
return self._nodes
@nodes.setter
def nodes(self, nodes):
self._nodes = nodes
@property
def offload_node_status_version(self):
return self._offload_node_status_version
@offload_node_status_version.setter
def offload_node_status_version(self, offload_node_status_version):
self._offload_node_status_version = offload_node_status_version
@property
|
Apache License 2.0
|
approxeng/approxeng.input
|
src/python/approxeng/input/__init__.py
|
ButtonPresses.__contains__
|
python
|
def __contains__(self, item):
return item in self.names
|
Contains check for a button sname
:param item:
The sname of the button to check
:return:
True if the button is in the set of pressed buttons, false otherwise
|
https://github.com/approxeng/approxeng.input/blob/5822ef47ca139078b3771cfa29032d76a3fe7503/src/python/approxeng/input/__init__.py#L991-L1000
|
import logging
from abc import ABC, abstractmethod
from math import sqrt
from time import time
from typing import Optional, Union, Tuple
import functools
from evdev import InputEvent, ff, ecodes
from approxeng.input.sys import sys_nodes
logger = logging.getLogger(name='approxeng.input')
def map_into_range(low, high, raw_value):
value = float(raw_value)
if low < high:
if value < low:
return 0
elif value > high:
return 1.0
elif low > high:
if value > low:
return 0
elif value < high:
return -1.0
return (value - low) / abs(high - low)
def map_single_axis(low, high, dead_zone, hot_zone, value):
input_range = high - low
corrected_low = low + input_range * dead_zone
corrected_high = high - input_range * hot_zone
return map_into_range(corrected_low, corrected_high, value)
def map_dual_axis(low, high, centre, dead_zone, hot_zone, value):
if value <= centre:
return map_single_axis(centre, low, dead_zone, hot_zone, value)
else:
return map_single_axis(centre, high, dead_zone, hot_zone, value)
class Controller(ABC):
def __init__(self, controls, node_mappings=None, dead_zone=None,
hot_zone=None, ff_device=None):
self.axes = Axes([control for control in controls if
isinstance(control, CentredAxis) or
isinstance(control, BinaryAxis) or
isinstance(control, TriggerAxis)])
self.buttons = Buttons([control for control in controls if
isinstance(control, Button) or
isinstance(control, BinaryAxis) or
isinstance(control, TriggerAxis)])
if dead_zone is not None:
for axis in self.axes.axes:
axis.dead_zone = dead_zone
if hot_zone is not None:
for axis in self.axes.axes:
axis.hot_zone = hot_zone
self.node_mappings = node_mappings
self.device_unique_name = None
self.exception = None
self.ff_device = ff_device
class ControllerStream(object):
def __init__(self, controller):
self.controller = controller
def __getitem__(self, item):
def generator():
while self.controller.connected:
yield self.controller.__getitem__(item)
return generator()
self.stream = ControllerStream(self)
@functools.lru_cache(maxsize=None)
def _build_effect(self, milliseconds=1000, strong_magnitude=0x0000, weak_magnitude=0xffff) -> int:
if self.ff_device:
logger.info('compiling new force feedback effect')
effect = ff.Effect(
ecodes.FF_RUMBLE, -1, 0,
ff.Trigger(0, 0),
ff.Replay(milliseconds, 0),
ff.EffectType(
ff_rumble_effect=ff.Rumble(strong_magnitude=strong_magnitude, weak_magnitude=weak_magnitude))
)
return self.ff_device.upload_effect(effect)
else:
raise ValueError('no force-feedback node, unable to compile effect')
def rumble(self, milliseconds=1000):
if self.ff_device:
logger.debug('controller go brrrr')
effect_id = self._build_effect(milliseconds=milliseconds)
repeat_count = 1
self.ff_device.write(ecodes.EV_FF, effect_id, repeat_count)
else:
logger.warning('no force-feedback node for this controller')
@property
def has_force_feedback(self):
return self.ff_device is not None
@property
def sys_nodes(self) -> {}:
if self.device_unique_name is not None:
return sys_nodes(self.device_unique_name)
return {}
def read_led_value(self, led_name) -> Optional[int]:
if self.device_unique_name is not None:
return sys.read_led_value(self.device_unique_name, led_name)
return None
def write_led_value(self, led_name: str, value: int):
if self.device_unique_name is not None:
sys.write_led_value(self.device_unique_name, led_name, value)
@property
def battery_level(self) -> Optional[float]:
if self.device_unique_name is not None:
return sys.read_power_level(self.device_unique_name)
return None
@staticmethod
@abstractmethod
def registration_ids() -> [Tuple[int, int]]:
pass
@property
def connected(self) -> bool:
if self.device_unique_name:
return True
return False
def __getitem__(self, item: Union[str, Tuple[str, ...]]) -> [Optional[float]]:
if isinstance(item, tuple):
return [self.__getattr__(single_item) for single_item in item]
return self.__getattr__(item)
def __getattr__(self, item: str) -> Optional[float]:
if item in self.axes:
return self.axes[item].value
elif item in self.buttons:
return self.buttons.held(item)
raise AttributeError
def __contains__(self, item: str) -> bool:
if item in self.axes:
return True
if item in self.buttons:
return True
return False
def check_presses(self) -> 'ButtonPresses':
return self.buttons.check_presses()
@property
def has_presses(self) -> bool:
return self.buttons.presses.has_presses
@property
def has_releases(self) -> bool:
return self.buttons.releases.has_presses
@property
def presses(self) -> 'ButtonPresses':
return self.buttons.presses
@property
def releases(self) -> 'ButtonPresses':
return self.buttons.releases
@property
def controls(self) -> {}:
return {'axes': self.axes.names,
'buttons': self.buttons.names}
def register_button_handler(self, button_handler, button_sname: str):
return self.buttons.register_button_handler(button_handler, self.buttons[button_sname])
def __str__(self) -> str:
return "{}, axes={}, buttons={}".format(self.__class__.__name__, self.axes, self.buttons)
class Axes(object):
def __init__(self, axes):
self.axes = axes
self.axes_by_code = {axis.axis_event_code: axis for axis in axes}
self.axes_by_sname = {axis.sname: axis for axis in axes}
def add_circular_axis(rootname):
xname = rootname + 'x'
yname = rootname + 'y'
if xname in self.axes_by_sname and yname in self.axes_by_sname:
self.axes_by_sname[rootname] = CircularCentredAxis(x=self.axes_by_sname[xname],
y=self.axes_by_sname[yname])
for prefix in ['l', 'r', 'd']:
add_circular_axis(prefix)
def axis_updated(self, event: InputEvent, prefix=None):
if prefix is not None:
axis = self.axes_by_code.get(prefix + str(event.code))
else:
axis = self.axes_by_code.get(event.code)
if axis is not None:
axis.receive_device_value(event.value)
else:
logger.debug('Unknown axis code {} ({}), value {}'.format(event.code, prefix, event.value))
def set_axis_centres(self, *args):
for axis in self.axes_by_code.values():
if isinstance(axis, CentredAxis):
axis.centre = axis.value
def reset_axis_calibration(self, *args):
for axis in self.axes:
axis.reset()
def __str__(self):
return list("{}={}".format(axis.name, axis.value) for axis in self.axes_by_code.values()).__str__()
@property
def names(self) -> [str]:
return sorted([name for name in self.axes_by_sname.keys() if name != ''])
@property
def active_axes(self) -> ['Axis']:
return [axis for axis in self.axes if axis.value != 0]
def __getitem__(self, sname: str) -> Optional['Axis']:
return self.axes_by_sname.get(sname)
def __getattr__(self, item) -> 'Axis':
if item in self.axes_by_sname:
return self.get(item)
raise AttributeError
def __contains__(self, item: str) -> bool:
return item in self.axes_by_sname
class Axis(ABC):
@property
@abstractmethod
def value(self) -> float:
pass
@abstractmethod
def receive_device_value(self, value: int):
pass
class TriggerAxis(Axis):
def __init__(self, name: str, min_raw_value: int, max_raw_value: int, axis_event_code: int, dead_zone=0.0,
hot_zone=0.0, sname: Optional[str] = None, button_sname: Optional[str] = None,
button_trigger_value=0.5):
self.name = name
self.max = 0.9
self.min = 0.1
self.__value = self.min
self.dead_zone = dead_zone
self.hot_zone = hot_zone
self.min_raw_value = min_raw_value
self.max_raw_value = max_raw_value
self.axis_event_code = axis_event_code
self.sname = sname
self.buttons = None
self.button_trigger_value = button_trigger_value
if button_sname is not None:
self.button = Button(name='{}_trigger_button'.format(name),
key_code='{}_trigger_button'.format(axis_event_code),
sname=button_sname)
else:
self.button = None
def _input_to_raw_value(self, value: int) -> float:
return (float(value) - self.min_raw_value) / self.max_raw_value
@property
def raw_value(self) -> float:
return self.__value
@property
def value(self) -> float:
return map_single_axis(self.min, self.max, self.dead_zone, self.hot_zone, self.__value)
def reset(self):
self.max = 0.9
self.min = 0.1
def receive_device_value(self, raw_value: int):
new_value = self._input_to_raw_value(raw_value)
if self.button is not None:
if new_value > (self.button_trigger_value + 0.05) > self.__value:
self.buttons.button_pressed(self.button.key_code)
elif new_value < (self.button_trigger_value - 0.05) < self.__value:
self.buttons.button_released(self.button.key_code)
self.__value = new_value
if new_value > self.max:
self.max = new_value
elif new_value < self.min:
self.min = new_value
def __str__(self):
return "TriggerAxis name={}, sname={}, corrected_value={}".format(self.name, self.sname, self.value)
class BinaryAxis(Axis):
def __init__(self, name, axis_event_code, b1name=None, b2name=None):
self.name = name
self.axis_event_code = axis_event_code
self.b1 = Button('{}_left_button'.format(name), key_code='{}_left'.format(axis_event_code), sname=b1name)
self.b2 = Button('{}_right_button'.format(name), key_code='{}_right'.format(axis_event_code), sname=b2name)
self.buttons = None
self.last_value = 0
self.sname = ''
self.__value = 0
def receive_device_value(self, raw_value: int):
self.__value = raw_value
if self.buttons is not None:
if self.last_value < 0:
self.buttons.button_released(self.b1.key_code)
elif self.last_value > 0:
self.buttons.button_released(self.b2.key_code)
self.last_value = raw_value
if raw_value < 0:
self.buttons.button_pressed(self.b1.key_code)
elif raw_value > 0:
self.buttons.button_pressed(self.b2.key_code)
@property
def value(self):
return self.__value
def __str__(self):
return "BinaryAxis name={}, sname={}, corrected_value={}".format(self.name, self.sname, self.value)
class CircularCentredAxis:
def __init__(self, x: "CentredAxis", y: "CentredAxis", dead_zone=0.1, hot_zone=0.1):
self.x = x
self.y = y
self.dead_zone = dead_zone
self.hot_zone = hot_zone
def _calculate_position(self, raw_x: float, raw_y: float):
if raw_x != 0 or raw_y != 0:
distance = sqrt(raw_x * raw_x + raw_y * raw_y)
else:
return 0.0, 0.0
if distance >= 1.0 - self.hot_zone:
return raw_x / distance, raw_y / distance
elif distance <= self.dead_zone:
return 0.0, 0.0
effective_distance = (distance - self.dead_zone) / (1.0 - (self.dead_zone + self.hot_zone))
scale = effective_distance / distance
return raw_x * scale, raw_y * scale
@property
def value(self) -> (float, float):
return self._calculate_position(raw_x=self.x.raw_value if not self.x.invert else -self.x.raw_value,
raw_y=self.y.raw_value if not self.y.invert else -self.y.raw_value)
class CentredAxis(Axis):
def __init__(self, name, min_raw_value, max_raw_value, axis_event_code, dead_zone=0.0, hot_zone=0.0,
sname=None):
self.name = name
self.centre = 0.0
self.max = 0.9
self.min = -0.9
self.__value = 0.0
self.invert = min_raw_value > max_raw_value
self.dead_zone = dead_zone
self.hot_zone = hot_zone
self.min_raw_value = float(min(min_raw_value, max_raw_value))
self.max_raw_value = float(max(min_raw_value, max_raw_value))
self.axis_event_code = axis_event_code
self.sname = sname
def _input_to_raw_value(self, value: int):
return (float(value) - self.min_raw_value) * (2 / (self.max_raw_value - self.min_raw_value)) - 1.0
@property
def raw_value(self) -> float:
return self.__value
@property
def value(self) -> float:
mapped_value = map_dual_axis(self.min, self.max, self.centre, self.dead_zone, self.hot_zone, self.__value)
if self.invert:
return -mapped_value
else:
return mapped_value
def reset(self):
self.centre = 0.0
self.max = 0.9
self.min = -0.9
def receive_device_value(self, raw_value: int):
new_value = self._input_to_raw_value(raw_value)
self.__value = new_value
if new_value > self.max:
self.max = new_value
elif new_value < self.min:
self.min = new_value
def __str__(self) -> str:
return "CentredAxis name={}, sname={}, corrected_value={}".format(self.name, self.sname, self.value)
class Button(object):
def __init__(self, name, key_code=None, sname=None):
self.name = name
self.key_code = key_code
self.sname = sname
def __repr__(self):
return "Button(name={}, code={}, sname={})".format(self.name, self.key_code, self.sname)
class ButtonPresses(object):
def __init__(self, buttons):
self.buttons = buttons
self.names = list([button.sname for button in buttons])
def __getitem__(self, item):
if isinstance(item, tuple):
return [(single_item in self.names) for single_item in item]
return item in self.names
def __getattr__(self, item):
return item in self.names
|
Apache License 2.0
|
phillipdupuis/pydantic-to-typescript
|
pydantic2ts/cli/script.py
|
import_module
|
python
|
def import_module(path: str) -> ModuleType:
try:
if os.path.exists(path):
name = uuid4().hex
spec = spec_from_file_location(name, path, submodule_search_locations=[])
module = module_from_spec(spec)
sys.modules[name] = module
spec.loader.exec_module(module)
return module
else:
return importlib.import_module(path)
except BaseException as e:
logger.error(
"The --module argument must be a module path separated by dots or a valid filepath"
)
raise e
|
Helper which allows modules to be specified by either dotted path notation or by filepath.
If we import by filepath, we must also assign a name to it and add it to sys.modules BEFORE
calling 'spec.loader.exec_module' because there is code in pydantic which requires that the
definition exist in sys.modules under that name.
|
https://github.com/phillipdupuis/pydantic-to-typescript/blob/a8f182d13ab279ec09b4a091abe018b63a1ae018/pydantic2ts/cli/script.py#L25-L47
|
import importlib
import inspect
import json
import logging
import os
import shutil
import sys
from importlib.util import spec_from_file_location, module_from_spec
from tempfile import mkdtemp
from types import ModuleType
from typing import Type, Dict, Any, List, Tuple
from uuid import uuid4
import click
from pydantic import BaseModel, Extra, create_model
try:
from pydantic.generics import GenericModel
except ImportError:
GenericModel = None
logger = logging.getLogger("pydantic2ts")
|
MIT License
|
google/openhtf
|
openhtf/plugs/usb/usb_handle.py
|
UsbHandle.is_closed
|
python
|
def is_closed(self):
|
Returns True if this handle has been closed, False otherwise.
|
https://github.com/google/openhtf/blob/4646aa6b9ba67532ce7e8743ce16d7bd4369ad3d/openhtf/plugs/usb/usb_handle.py#L190-L191
|
import abc
import functools
import logging
from future.utils import with_metaclass
from openhtf.plugs.usb import usb_exceptions
DEFAULT_TIMEOUT_MS = 5000
FLUSH_READ_SIZE = 1024 * 64
_LOG = logging.getLogger(__name__)
def requires_open_handle(method):
@functools.wraps(method)
def wrapper_requiring_open_handle(self, *args, **kwargs):
if self.is_closed():
raise usb_exceptions.HandleClosedError()
return method(self, *args, **kwargs)
return wrapper_requiring_open_handle
class UsbHandle(with_metaclass(abc.ABCMeta, object)):
def __init__(self, serial_number, name=None, default_timeout_ms=None):
self.serial_number = serial_number
self.name = name or ''
self._default_timeout_ms = default_timeout_ms or DEFAULT_TIMEOUT_MS
def __del__(self):
if not self.is_closed():
_LOG.error('!!!!!USB!!!!! %s not closed!', type(self).__name__)
def __str__(self):
return '<%s: (%s %s)>' % (type(self).__name__, self.name,
self.serial_number)
__repr__ = __str__
def _timeout_or_default(self, timeout_ms):
return int(
timeout_ms if timeout_ms is not None else self._default_timeout_ms)
def flush_buffers(self):
while True:
try:
self.read(FLUSH_READ_SIZE, timeout_ms=10)
except usb_exceptions.LibusbWrappingError as exception:
if exception.is_timeout():
break
raise
@abc.abstractmethod
def read(self, length, timeout_ms=None):
@abc.abstractmethod
def write(self, data, timeout_ms=None):
@abc.abstractmethod
def close(self):
@abc.abstractmethod
|
Apache License 2.0
|
conjure-up/conjure-up
|
conjureup/models/provider.py
|
MAAS._has_correct_api_key
|
python
|
def _has_correct_api_key(self):
field = self.form.field('maas-oauth')
key = (field.value or '').split(':')
if len(key) != 3:
return (
False,
"Could not determine tokens, usually indicates an "
"error with the format of the API KEY. That format "
"should be 'aaaaa:bbbbb:cccc'. Please visit your MAAS user "
"preferences page to grab the correct API Key: "
"http://<maas-server>:5240/MAAS/account/prefs/")
return (True, None)
|
Validates MAAS Api key
|
https://github.com/conjure-up/conjure-up/blob/d2bf8ab8e71ff01321d0e691a8d3e3833a047678/conjureup/models/provider.py#L315-L328
|
import ipaddress
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
from subprocess import CalledProcessError
from urllib.parse import urljoin, urlparse
from pkg_resources import parse_version
from ubuntui.widgets.input import PasswordEditor, StringEditor, YesNo
from urwid import Text
from conjureup import errors, utils
from conjureup.app_config import app
from conjureup.consts import cloud_types
from conjureup.juju import get_cloud
from conjureup.models.credential import CredentialManager
from conjureup.utils import arun, is_valid_hostname
from conjureup.vsphere import VSphereClient, VSphereInvalidLogin
class Field:
def __init__(self,
label=None,
widget=None,
key=None,
storable=True,
error=None,
required=True,
validator=None):
self.label = label
self.widget = widget
self.key = key
self.storable = storable
self.error = Text("")
self.required = required
self.validator = validator
def validate(self):
self.error.set_text("")
if self.required and not self.value:
self.error.set_text("This field is required and cannot be empty.")
return False
if self.validator and callable(self.validator):
is_valid, msg = self.validator()
if not is_valid:
self.error.set_text(msg)
return False
return True
@property
def value(self):
return self.widget.value
@value.setter
def value(self, value):
self.widget.value = value
class Form:
def __init__(self, widgets):
self._fields = []
for w in widgets:
key = w.key.replace('-', '_')
setattr(self, key, w)
self._fields.append(getattr(self, key))
def fields(self):
return self._fields
def field(self, key):
for w in self.fields():
if key == w.key:
return w
return None
class BaseProvider:
def __init__(self):
self.auth_type = None
self.endpoint = None
self.model = None
self.model_defaults = None
self.controller = None
self.cloud = None
self.cloud_type = None
self.regions = []
self.region = None
self.credential = None
self.client = None
self.authenticated = False
self.form = None
def is_valid(self):
validations = []
for f in self.form.fields():
validations.append(f.validate())
if not all(validations):
return False
return True
async def login(self):
pass
async def cloud_config(self):
raise NotImplementedError
@property
def default_region(self):
return None
async def configure_tools(self):
pass
def load(self, cloud_name):
try:
_cloud = get_cloud(cloud_name)
self.cloud = cloud_name
self.endpoint = _cloud.get('endpoint', None)
self.regions = sorted(_cloud.get('regions', {}).keys())
except LookupError:
raise errors.SchemaCloudError(cloud_name)
async def save_form(self):
for f in self.form.fields():
key = f.key.replace('-', '_')
setattr(self, key, f.widget.value)
class AWS(BaseProvider):
def __init__(self):
super().__init__()
self.auth_type = 'access-key'
self.cloud_type = cloud_types.AWS
self.form = Form([Field(label='AWS Access Key',
widget=StringEditor(),
key='access-key'),
Field(label='AWS Secret Key',
widget=StringEditor(),
key='secret-key')])
@property
def default_region(self):
return 'us-east-1'
async def configure_tools(self):
cred = CredentialManager.get_credential(self.cloud,
self.cloud_type,
self.credential)
try:
ret, _, _ = await arun(['aws', 'configure', 'list',
'--profile', self.credential], check=False)
if ret != 0:
await arun(['aws', 'configure', '--profile', self.credential],
input='{}\n{}\n\n\n'.format(cred.access_key,
cred.secret_key),
check=True)
except CalledProcessError as e:
app.log.error('Failed to configure AWS CLI profile: {}'.format(
e.stderr))
raise
class MAAS(BaseProvider):
def __init__(self):
super().__init__()
self.auth_type = 'oauth1'
self.cloud_type = cloud_types.MAAS
self.form = Form(
[
Field(
label='API Endpoint (http://example.com:5240/MAAS)',
widget=StringEditor(),
key='endpoint',
storable=False,
validator=partial(self._has_correct_endpoint)
),
Field(
label='API Key',
widget=StringEditor(),
key='maas-oauth',
validator=partial(self._has_correct_api_key))
]
)
async def cloud_config(self):
return {
'type': 'maas',
'auth-types': ['oauth1'],
'endpoint': self.endpoint
}
def _has_correct_endpoint(self):
field = self.form.field('endpoint')
endpoint = field.value
if endpoint.startswith('http'):
url = urlparse(endpoint)
if not url.netloc:
return (False,
"Unable to determine the web address, "
"please use the format of "
"http://maas-server.com:5240/MAAS")
else:
if 'MAAS' not in url.path:
field.value = urljoin(url.geturl(), "MAAS")
return (True, None)
elif is_valid_hostname(endpoint):
field.value = urljoin("http://{}:5240".format(endpoint),
"MAAS")
return (True, None)
else:
try:
ip = endpoint.split(':')
port = '5240'
if len(ip) == 2:
ip, port = ip
else:
ip = ip.pop()
ipaddress.ip_address(ip)
field.value = urljoin(
"http://{}:{}".format(ip, port), "MAAS")
return (True, None)
except ValueError:
pass
return (False,
"Unable to validate that this entry is "
"the correct format. Please use the format of "
"http://maas-server.com:5240/MAAS")
|
MIT License
|
datadotworld/data.world-py
|
datadotworld/client/_swagger/models/catalog_table_hydration_dto.py
|
CatalogTableHydrationDto.agentid
|
python
|
def agentid(self):
return self._agentid
|
Gets the agentid of this CatalogTableHydrationDto.
:return: The agentid of this CatalogTableHydrationDto.
:rtype: str
|
https://github.com/datadotworld/data.world-py/blob/7e5f474b655f4f0c88cc6862353e4d52c0e0bb31/datadotworld/client/_swagger/models/catalog_table_hydration_dto.py#L112-L119
|
from pprint import pformat
from six import iteritems
import re
class CatalogTableHydrationDto(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'agentid': 'str',
'catalogs': 'list[CatalogId]',
'created_by': 'AgentHydrationDto',
'description': 'str',
'entry_type_hierarchy': 'list[EntryType]',
'entry_type_label': 'str',
'id': 'str',
'referent': 'str',
'source_id': 'SourceId',
'tableid': 'str',
'title': 'str',
'type': 'str',
'updated': 'datetime'
}
attribute_map = {
'agentid': 'agentid',
'catalogs': 'catalogs',
'created_by': 'createdBy',
'description': 'description',
'entry_type_hierarchy': 'entryTypeHierarchy',
'entry_type_label': 'entryTypeLabel',
'id': 'id',
'referent': 'referent',
'source_id': 'sourceId',
'tableid': 'tableid',
'title': 'title',
'type': 'type',
'updated': 'updated'
}
def __init__(self, agentid=None, catalogs=None, created_by=None, description=None, entry_type_hierarchy=None, entry_type_label=None, id=None, referent=None, source_id=None, tableid=None, title=None, type=None, updated=None):
self._agentid = None
self._catalogs = None
self._created_by = None
self._description = None
self._entry_type_hierarchy = None
self._entry_type_label = None
self._id = None
self._referent = None
self._source_id = None
self._tableid = None
self._title = None
self._type = None
self._updated = None
if agentid is not None:
self.agentid = agentid
if catalogs is not None:
self.catalogs = catalogs
if created_by is not None:
self.created_by = created_by
if description is not None:
self.description = description
if entry_type_hierarchy is not None:
self.entry_type_hierarchy = entry_type_hierarchy
if entry_type_label is not None:
self.entry_type_label = entry_type_label
if id is not None:
self.id = id
if referent is not None:
self.referent = referent
if source_id is not None:
self.source_id = source_id
if tableid is not None:
self.tableid = tableid
if title is not None:
self.title = title
if type is not None:
self.type = type
if updated is not None:
self.updated = updated
@property
|
Apache License 2.0
|
tsutof/jetson-thermal-monitor
|
thermal_zone.py
|
get_thermal_zone_paths
|
python
|
def get_thermal_zone_paths():
return [os.path.join(THERMAL_PATH, m.group(0)) for m in [re.search('thermal_zone[0-9]', d) for d in os.listdir(THERMAL_PATH)] if m]
|
Returns a list of the thermal zone paths
|
https://github.com/tsutof/jetson-thermal-monitor/blob/50cf5ee89d9c6e804b99b2513038e4de0eea2288/thermal_zone.py#L32-L38
|
import os
import re
import subprocess
THERMAL_PATH = '/sys/devices/virtual/thermal/'
|
MIT License
|
arvehj/jvcprojectortools
|
plot.py
|
Plot.do_plot
|
python
|
def do_plot(self, *gamma, draw_speed=16, **kwargs):
self.tables.append((gamma, kwargs))
self.plot_table(*gamma, draw_speed=draw_speed, **kwargs)
|
Plot gamma table
|
https://github.com/arvehj/jvcprojectortools/blob/2361e5e569ec7a75407b42fff2934fa69de21fd1/plot.py#L309-L312
|
import math
import numbers
import queue
import threading
import turtle
from tkinter.font import Font
class PlotClosed(Exception):
pass
class Plot():
def __init__(self):
self.queue = queue.Queue(maxsize=1)
self.margin = [0, 0, 0, 0]
self.plot_area = (0, 0, 255, 1023)
self.min_size = (2, 8)
self.zoom_area = [*self.plot_area]
self.scale = 1
self.font = ('Ariel', 8)
self.closed = False
self.window_size = None
self.tables = []
try:
turtle.setup()
except turtle.Terminator:
turtle.setup()
def clear(self, lines=()):
self.enqueue(lambda: self.do_clear(lines))
def zoom(self, level=None, direction=(0, 0)):
self.enqueue(lambda: self.do_zoom(level, direction))
def plot(self, *gamma, colors=['red', 'green', 'blue'], draw_speed=16, scale_x=1):
self.enqueue(lambda: self.do_plot(*gamma, colors=colors, draw_speed=draw_speed,
scale_x=scale_x))
def close(self):
try:
self.enqueue(self.do_close)
except PlotClosed:
pass
def enqueue(self, func):
retry_count = 0
while True:
try:
if self.closed:
raise PlotClosed('Plot window closed')
self.queue.put(func, timeout=1)
return
except queue.Full:
retry_count += 1
if retry_count % 10 == 0:
print('queue full, waiting', retry_count)
def run(self):
if self.closed:
raise PlotClosed('Plot window closed')
opened = False
try:
while True:
try:
cmd = self.queue.get(timeout=1)
break
except queue.Empty:
pass
if cmd != self.do_close:
opened = True
self.do_zoom()
self.do_clear()
cmd()
turtle.ontimer(self.check_queue, 100)
turtle.mainloop()
except turtle.Terminator:
pass
except KeyboardInterrupt:
pass
finally:
self.closed = True
if opened:
try:
turtle.bye()
except turtle.Terminator:
pass
def check_queue(self):
try:
while True:
window_size = turtle.window_width(), turtle.window_height()
if self.window_size != window_size:
self.redraw()
turtle.ontimer(self.check_queue, 200)
break
cmd = self.queue.get_nowait()
cmd()
if cmd == self.do_close:
break
except queue.Empty:
turtle.ontimer(self.check_queue, 100)
except turtle.Terminator:
pass
except KeyboardInterrupt:
turtle.bye()
def do_close(self):
turtle.bye()
def do_clear(self, lines=()):
turtle.clear()
self.tables = []
self.lines = lines
self.draw_grid()
def redraw(self):
turtle.clear()
self.setworldcoordinates()
self.draw_grid()
for tables, kwargs in self.tables:
self.plot_table(*tables, draw_speed=1024, **kwargs)
def setworldcoordinates(self):
self.window_size = turtle.window_width(), turtle.window_height()
turtle.screensize(1, 1)
turtle.update()
turtle.setworldcoordinates(*(a + b * self.scale
for a, b in zip(self.zoom_area, self.margin)))
def do_zoom(self, level=None, direction=(0, 0)):
self.scale = 1
if level is None:
self.zoom_area = [*self.plot_area]
else:
for i in range(2):
l = self.zoom_area[i]
h = self.zoom_area[i + 2]
d = direction[i]/2 + 0.5
min_l = self.plot_area[i]
max_h = self.plot_area[i + 2]
max_size = max_h - min_l
size = h - l
new_size = size / level
if new_size < self.min_size[i]:
new_size = self.min_size[i]
if new_size > max_size:
new_size = max_size
new_l = max(min_l, l + (size - new_size) * d)
new_h = new_l + new_size
if new_h > max_h:
new_h = max_h
new_l = new_h - new_size
self.zoom_area[i], self.zoom_area[i + 2] = new_l, new_h
self.scale = new_size / max_size
self.setworldcoordinates()
def label_size(self, label):
font_family, font_size = self.font
font = Font(family=font_family, size=font_size)
width = 0
lines = 0
for line in label.split('\n'):
width = max(width, font.measure(line))
lines += 1
xscale = turtle.getscreen().xscale
yscale = turtle.getscreen().yscale
return width / xscale, font.metrics('linespace') * lines / yscale
def label_pos(self, pos, label=None, horizontal=False):
xscale = turtle.getscreen().xscale
yscale = turtle.getscreen().yscale
font_family, font_size = self.font
font = Font(family=font_family, size=font_size)
line_height = font.metrics('linespace') / yscale
height = (label.count('\n') + 1) * line_height
return -8 / xscale if horizontal else pos, pos - 0.5 * height if horizontal else -height - 6 / yscale
def draw_line(self, pos, horizontal=False, label=None,
color='gray90', label_color='gray35', **_):
if pos is None:
return
if pos < self.zoom_area[0 + horizontal] or pos > self.zoom_area[2 + horizontal]:
return
turtle.penup()
xscale = turtle.getscreen().xscale
yscale = turtle.getscreen().yscale
if label:
font_family, font_size = self.font
turtle.color(label_color)
turtle.setposition(*self.label_pos(pos=pos, label=label, horizontal=horizontal))
turtle.write(label, align='right' if horizontal else'center',
font=(font_family, font_size))
turtle.setposition(-4 / xscale if horizontal else pos,
pos if horizontal else -4 / yscale)
turtle.pendown()
turtle.setposition(1 / xscale if horizontal else pos,
pos if horizontal else 1 / yscale)
turtle.color(color)
turtle.pendown()
turtle.setposition(self.plot_area[2] if horizontal else pos,
pos if horizontal else self.plot_area[3])
turtle.penup()
def draw_grid(self):
turtle.tracer(0)
turtle.hideturtle()
turtle.speed(0)
turtle.penup()
turtle.color('gray75')
turtle.setposition(0, 0)
turtle.pendown()
turtle.setposition(255, 0)
turtle.setposition(255, 1023)
turtle.setposition(0, 1023)
turtle.setposition(0, 0)
turtle.penup()
turtle.color('gray90')
lines = [line.copy() for line in self.lines]
lines.sort(key=lambda x: x['pos'])
last = [None, None]
last_pos = [-math.inf, -math.inf]
margin_pad = 4 / turtle.getscreen().xscale, 4 / turtle.getscreen().yscale
margin_scale = 1 / self.scale, 1 / self.scale
margin = [sign * pad * scale
for sign in (-1, 1)
for pad, scale in zip(margin_pad, margin_scale)]
for i, line in enumerate(lines):
label = line.get('label')
if not label:
continue
h = line.get('horizontal', 0)
pos = line['pos']
if pos < self.zoom_area[0 + h] or pos > self.zoom_area[2 + h]:
del line['label']
continue
size = self.label_size(label)
label_pos = self.label_pos(pos=pos, label=label, horizontal=h)
label_pos = (label_pos[0] - size[0] / (1 if h else 2), label_pos[1])
for i, p in enumerate(label_pos):
pl = (p - margin_pad[i]) * margin_scale[i]
if pl < margin[i]:
margin[i] = pl
ph = (p + size[i] - self.plot_area[i + 2] + margin_pad[i]) * margin_scale[i]
if ph > margin[i + 2]:
margin[i + 2] = ph
resize = False
for i, p in enumerate(margin):
if p != self.margin[i] and i < 2:
self.margin[i] = p
resize = True
if p != self.margin[i] and i >= 2:
self.margin[i] = p
resize = True
if resize:
self.setworldcoordinates()
for i, line in enumerate(lines):
label = line.get('label')
if not label:
continue
h = line.get('horizontal', 0)
pos = line['pos']
size = self.label_size(label)
pad = size[h] * 0.6
if pos - pad < last_pos[h]:
if line.get('priority', 0) <= last[h].get('priority', 0):
del line['label']
continue
del last[h]['label']
last[h] = line
last_pos[h] = pos + pad
for line in lines:
if line is not None:
if isinstance(line, numbers.Number):
line = (line,)
self.draw_line(**line)
turtle.update()
|
Apache License 2.0
|
line/line-bot-sdk-python
|
linebot/models/events.py
|
LeaveEvent.__init__
|
python
|
def __init__(self, mode=None, timestamp=None, source=None, **kwargs):
super(LeaveEvent, self).__init__(
mode=mode, timestamp=timestamp, source=source, **kwargs
)
self.type = 'leave'
|
__init__ method.
:param str mode: Channel state
:param long timestamp: Time of the event in milliseconds
:param source: Source object
:type source: T <= :py:class:`linebot.models.sources.Source`
:param kwargs:
|
https://github.com/line/line-bot-sdk-python/blob/914a2d5520ffb68a2f0cc6894006902a42f66c71/linebot/models/events.py#L200-L213
|
from abc import ABCMeta
from future.utils import with_metaclass
from linebot.models.base import Base
from linebot.models.messages import (
TextMessage,
ImageMessage,
VideoMessage,
AudioMessage,
LocationMessage,
StickerMessage,
FileMessage
)
from linebot.models.sources import SourceUser, SourceGroup, SourceRoom
from linebot.models.things import (
DeviceUnlink,
DeviceLink,
ScenarioResult,
)
from linebot.models.things import Things
from linebot.models.unsend import Unsend
from linebot.models.video_play_complete import VideoPlayComplete
class Event(with_metaclass(ABCMeta, Base)):
def __init__(self, mode=None, timestamp=None, source=None, **kwargs):
super(Event, self).__init__(**kwargs)
self.type = None
self.mode = mode
self.timestamp = timestamp
self.source = self.get_or_new_from_json_dict_with_types(
source, {
'user': SourceUser,
'group': SourceGroup,
'room': SourceRoom,
}
)
class MessageEvent(Event):
def __init__(self, mode=None, timestamp=None, source=None, reply_token=None, message=None,
**kwargs):
super(MessageEvent, self).__init__(
mode=mode, timestamp=timestamp, source=source, **kwargs
)
self.type = 'message'
self.reply_token = reply_token
self.message = self.get_or_new_from_json_dict_with_types(
message, {
'text': TextMessage,
'image': ImageMessage,
'video': VideoMessage,
'audio': AudioMessage,
'location': LocationMessage,
'sticker': StickerMessage,
'file': FileMessage
}
)
class FollowEvent(Event):
def __init__(self, mode=None, timestamp=None, source=None, reply_token=None, **kwargs):
super(FollowEvent, self).__init__(
mode=mode, timestamp=timestamp, source=source, **kwargs
)
self.type = 'follow'
self.reply_token = reply_token
class UnfollowEvent(Event):
def __init__(self, mode=None, timestamp=None, source=None, **kwargs):
super(UnfollowEvent, self).__init__(
mode=mode, timestamp=timestamp, source=source, **kwargs
)
self.type = 'unfollow'
class JoinEvent(Event):
def __init__(self, mode=None, timestamp=None, source=None, reply_token=None, **kwargs):
super(JoinEvent, self).__init__(
mode=mode, timestamp=timestamp, source=source, **kwargs
)
self.type = 'join'
self.reply_token = reply_token
class LeaveEvent(Event):
|
Apache License 2.0
|
michaelbrooks/twitter-monitor
|
twitter_monitor/stream.py
|
DynamicTwitterStream.stop_stream
|
python
|
def stop_stream(self):
if self.stream is not None:
logger.warning("Stopping twitter stream...")
self.stream.disconnect()
self.stream = None
sleep(self.STOP_TIMEOUT)
|
Stops the current stream. Blocks until this is done.
|
https://github.com/michaelbrooks/twitter-monitor/blob/dc9846b2d70746c1f9dd5fbed015f6fcfb028c41/twitter_monitor/stream.py#L122-L136
|
from time import sleep, time
import logging
import tweepy
logger = logging.getLogger(__name__)
class DynamicTwitterStream(object):
STOP_TIMEOUT = 1
def __init__(self, auth, listener, term_checker, **options):
self.auth = auth
self.listener = listener
self.term_checker = term_checker
self.polling = False
self.stream = None
self.retry_count = options.get("retry_count", 5)
self.unfiltered = options.get('unfiltered', False)
self.languages = options.get('languages', None)
def start_polling(self, interval):
interval = float(interval)
self.polling = True
self.term_checker.reset()
logger.info("Starting polling for changes to the track list")
while self.polling:
loop_start = time()
self.update_stream()
self.handle_exceptions()
elapsed = time() - loop_start
sleep(max(0.1, interval - elapsed))
logger.warning("Term poll ceased!")
def stop_polling(self):
logger.info("Stopping polling loop")
self.polling = False
self.stop_stream()
def update_stream(self):
need_to_restart = False
if self.stream is not None and not self.stream.running:
logger.warning("Stream exists but isn't running")
self.listener.error = False
self.listener.streaming_exception = None
need_to_restart = True
if self.term_checker.check():
logger.info("Terms have changed")
need_to_restart = True
if self.stream is None and self.unfiltered:
need_to_restart = True
if not need_to_restart:
return
logger.info("Restarting stream...")
self.stop_stream()
self.start_stream()
def start_stream(self):
tracking_terms = self.term_checker.tracking_terms()
if len(tracking_terms) > 0 or self.unfiltered:
self.stream = tweepy.Stream(self.auth, self.listener,
stall_warnings=True,
timeout=90,
retry_count=self.retry_count)
if len(tracking_terms) > 0:
logger.info("Starting new twitter stream with %s terms:", len(tracking_terms))
logger.info(" %s", repr(tracking_terms))
self.stream.filter(track=tracking_terms, is_async=True, languages=self.languages)
else:
logger.info("Starting new unfiltered stream")
self.stream.sample(is_async=True, languages=self.languages)
|
MIT License
|
jhorey/ferry
|
ferry/config/spark/sparkconfig.py
|
SparkInitializer.apply
|
python
|
def apply(self, config, containers):
entry_point = { 'type' : 'spark' }
entry_point['ip'] = containers[0]['manage_ip']
config_dirs = []
new_config_dir = "/tmp/" + self._generate_config_dir(config.uuid)
try:
sh.mkdir('-p', new_config_dir)
except:
sys.stderr.write('could not create config dir ' + new_config_dir)
entry_point['instances'] = []
for server in containers:
entry_point['instances'].append([server['data_ip'], server['host_name']])
if not 'compute' in containers[0]:
slave_file = open(new_config_dir + '/slaves', 'w+')
entry_point['master'] = containers[0]['host_name']
entry_point['instances'] = []
master = entry_point['master']
for server in containers:
if server != master:
slave_file.write("%s\n" % server['host_name'])
slave_file.close()
else:
compute = containers[0]['compute'][0]
entry_point['master'] = compute['master']
for c in containers:
config_files = new_config_dir + '/*'
config_dirs.append([c['container'],
config_files,
config.config_directory])
return config_dirs, entry_point
|
Apply the configuration to the instances
|
https://github.com/jhorey/ferry/blob/bbaa047df08386e17130a939e20fde5e840d1ffa/ferry/config/spark/sparkconfig.py#L130-L173
|
import logging
import os
import sh
import sys
import time
from string import Template
class SparkInitializer(object):
def __init__(self, system):
self.template_dir = None
self.template_repo = None
self.container_data_dir = None
self.container_log_dir = SparkConfig.log_directory
def new_host_name(self, instance_id):
return 'spark' + str(instance_id)
def _execute_service(self, containers, entry_point, fabric, cmd):
all_output = {}
master = entry_point['master']
for c in containers:
if c.host_name == master:
output = fabric.cmd([c], '/service/sbin/startnode %s master' % cmd)
else:
output = fabric.cmd([c], '/service/sbin/startnode %s slave' % cmd)
all_output = dict(all_output.items() + output.items())
time.sleep(4)
return all_output
def start_service(self, containers, entry_point, fabric):
return self._execute_service(containers, entry_point, fabric, "start")
def restart_service(self, containers, entry_point, fabric):
return self._execute_service(containers, entry_point, fabric, "restart")
def stop_service(self, containers, entry_point, fabric):
return self._execute_service(containers, entry_point, fabric, "stop")
def _generate_config_dir(self, uuid):
return 'spark_' + str(uuid)
def get_public_ports(self, num_instances):
return []
def get_internal_ports(self, num_instances):
return ["0-65535"]
def get_working_ports(self, num_instances):
return [SparkConfig.WEBUI_DRIVER,
SparkConfig.WEBUI_HISTORY,
SparkConfig.WEBUI_MASTER,
SparkConfig.WEBUI_SLAVE,
SparkConfig.MASTER_PORT,
SparkConfig.SLAVE_PORT]
def get_total_instances(self, num_instances, layers):
instances = []
for i in range(num_instances):
instances.append('spark')
return instances
def generate(self, num):
return SparkConfig(num)
def _generate_spark_env(self, new_config_dir, master):
in_file = open(self.template_dir + '/spark_env.sh.template', 'r')
out_file = open(new_config_dir + '/spark_env.sh', 'w+')
changes = { "MASTER": master }
for line in in_file:
s = Template(line).substitute(changes)
out_file.write(s)
in_file.close()
out_file.close()
os.chmod(new_config_dir + '/spark_env.sh', 0755)
|
Apache License 2.0
|
lark-parser/lark
|
docs/ide/app/core.py
|
Widget._getSpellcheck
|
python
|
def _getSpellcheck(self):
return True if self.element.spellcheck == "true" else False
|
Specifies whether the element represents an element whose contents are subject to spell checking and grammar checking.
:returns: True | False
|
https://github.com/lark-parser/lark/blob/ee664b57201fb6e31bdb106d509ceab22ef1dd66/docs/ide/app/core.py#L408-L413
|
try:
from js import window, eval as jseval
document = window.document
except:
print("Emulation mode")
from xml.dom.minidom import parseString
jseval = None
window = None
document = parseString("<html><head /><body /></html>")
def domCreateAttribute(tag, ns=None):
uri = None
if ns == "SVG":
uri = "http://www.w3.org/2000/svg"
elif ns == "XBL":
uri = "http://www.mozilla.org/xbl"
elif ns == "XUL":
uri = "http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
if uri:
return document.createAttribute(uri, tag)
return document.createAttribute(tag)
def domCreateElement(tag, ns=None):
uri = None
if ns == "SVG":
uri = "http://www.w3.org/2000/svg"
elif ns == "XBL":
uri = "http://www.mozilla.org/xbl"
elif ns == "XUL":
uri = "http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
if uri:
return document.createElementNS(uri, tag)
return document.createElement(tag)
def domCreateTextNode(txt=""):
return document.createTextNode(txt)
def domGetElementById(idTag):
return document.getElementById(idTag)
def domElementFromPoint(x, y):
return document.elementFromPoint(x, y)
def domGetElementsByTagName(tag):
items = document.getElementsByTagName(tag)
return [items.item(i) for i in range(0, int(items.length))]
class TextNode(object):
def __init__(self, txt=None, *args, **kwargs):
super().__init__()
self._parent = None
self._children = []
self.element = domCreateTextNode(txt or "")
self._isAttached = False
def _setText(self, txt):
self.element.data = txt
def _getText(self):
return self.element.data
def __str__(self):
return self.element.data
def onAttach(self):
self._isAttached = True
def onDetach(self):
self._isAttached = False
def _setDisabled(self, disabled):
return
def _getDisabled(self):
return False
def children(self):
return []
class _WidgetClassWrapper(list):
def __init__(self, targetWidget):
super().__init__()
self.targetWidget = targetWidget
def _updateElem(self):
if len(self) == 0:
self.targetWidget.element.removeAttribute("class")
else:
self.targetWidget.element.setAttribute("class", " ".join(self))
def append(self, p_object):
list.append(self, p_object)
self._updateElem()
def clear(self):
list.clear(self)
self._updateElem()
def remove(self, value):
try:
list.remove(self, value)
except:
pass
self._updateElem()
def extend(self, iterable):
list.extend(self, iterable)
self._updateElem()
def insert(self, index, p_object):
list.insert(self, index, p_object)
self._updateElem()
def pop(self, index=None):
list.pop(self, index)
self._updateElem()
class _WidgetDataWrapper(dict):
def __init__(self, targetWidget):
super().__init__()
self.targetWidget = targetWidget
alldata = targetWidget.element
for data in dir(alldata.dataset):
dict.__setitem__(self, data, getattr(alldata.dataset, data))
def __setitem__(self, key, value):
dict.__setitem__(self, key, value)
self.targetWidget.element.setAttribute(str("data-" + key), value)
def update(self, E=None, **F):
dict.update(self, E, **F)
if E is not None and "keys" in dir(E):
for key in E:
self.targetWidget.element.setAttribute(str("data-" + key), E["data-" + key])
elif E:
for (key, val) in E:
self.targetWidget.element.setAttribute(str("data-" + key), "data-" + val)
for key in F:
self.targetWidget.element.setAttribute(str("data-" + key), F["data-" + key])
class _WidgetStyleWrapper(dict):
def __init__(self, targetWidget):
super().__init__()
self.targetWidget = targetWidget
style = targetWidget.element.style
for key in dir(style):
realKey = ""
for currChar in key:
if currChar.isupper():
realKey += "-"
realKey += currChar.lower()
val = style.getPropertyValue(realKey)
if val:
dict.__setitem__(self, realKey, val)
def __setitem__(self, key, value):
dict.__setitem__(self, key, value)
self.targetWidget.element.style.setProperty(key, value)
def update(self, E=None, **F):
dict.update(self, E, **F)
if E is not None and "keys" in dir(E):
for key in E:
self.targetWidget.element.style.setProperty(key, E[key])
elif E:
for (key, val) in E:
self.targetWidget.element.style.setProperty(key, val)
for key in F:
self.targetWidget.element.style.setProperty(key, F[key])
class Widget(object):
_tagName = None
_namespace = None
_parserTagName = None
style = []
def __init__(self, *args, appendTo=None, style=None, **kwargs):
if "_wrapElem" in kwargs.keys():
self.element = kwargs["_wrapElem"]
del kwargs["_wrapElem"]
else:
assert self._tagName is not None
self.element = domCreateElement(self._tagName, ns=self._namespace)
super().__init__()
self._widgetClassWrapper = _WidgetClassWrapper(self)
self.addClass(self.style)
if style:
self.addClass(style)
self._children = []
self._catchedEvents = {}
self._disabledState = 0
self._isAttached = False
self._parent = None
self._lastDisplayState = None
if args:
self.appendChild(*args, **kwargs)
if appendTo:
appendTo.appendChild(self)
def sinkEvent(self, *args):
for event_attrName in args:
event = event_attrName.lower()
if event_attrName in self._catchedEvents or event in ["onattach", "ondetach"]:
continue
eventFn = getattr(self, event_attrName, None)
assert eventFn and callable(eventFn), "{} must provide a {} method".format(str(self), event_attrName)
self._catchedEvents[event_attrName] = eventFn
if event.startswith("on"):
event = event[2:]
self.element.addEventListener(event, eventFn)
def unsinkEvent(self, *args):
for event_attrName in args:
event = event_attrName.lower()
if event_attrName not in self._catchedEvents:
continue
eventFn = self._catchedEvents[event_attrName]
del self._catchedEvents[event_attrName]
if event.startswith("on"):
event = event[2:]
self.element.removeEventListener(event, eventFn)
def disable(self):
if not self["disabled"]:
self["disabled"] = True
def enable(self):
if self["disabled"]:
self["disabled"] = False
def _getDisabled(self):
return bool(self._disabledState)
def _setDisabled(self, disable):
for child in self._children:
child._setDisabled(disable)
if disable:
self._disabledState += 1
self.addClass("is-disabled")
if isinstance(self, _attrDisabled):
self.element.disabled = True
elif self._disabledState:
self._disabledState -= 1
if not self._disabledState:
self.removeClass("is-disabled")
if isinstance(self, _attrDisabled):
self.element.disabled = False
def _getTargetfuncName(self, key, type):
assert type in ["get", "set"]
return "_{}{}{}".format(type, key[0].upper(), key[1:])
def __getitem__(self, key):
funcName = self._getTargetfuncName(key, "get")
if funcName in dir(self):
return getattr(self, funcName)()
return None
def __setitem__(self, key, value):
funcName = self._getTargetfuncName(key, "set")
if funcName in dir(self):
return getattr(self, funcName)(value)
raise ValueError("{} is no valid attribute for {}".format(key, (self._tagName or str(self))))
def __str__(self):
return str(self.__class__.__name__)
def __iter__(self):
return self._children.__iter__()
def _getData(self):
return _WidgetDataWrapper(self)
def _getTranslate(self):
return True if self.element.translate == "yes" else False
def _setTranslate(self, val):
self.element.translate = "yes" if val == True else "no"
def _getTitle(self):
return self.element.title
def _setTitle(self, val):
self.element.title = val
def _getTabindex(self):
return self.element.getAttribute("tabindex")
def _setTabindex(self, val):
self.element.setAttribute("tabindex", val)
|
MIT License
|
clusterhq/powerstrip
|
powerstrip/test/test_passthru.py
|
getProcessOutputPTY
|
python
|
def getProcessOutputPTY(executable, args=(), env={}, path=None, reactor=None,
errortoo=0, usePTY=False):
return _callProtocolWithDeferredPTY(lambda d:
_BackRelay(d, errortoo=errortoo),
executable, args, env, path,
reactor, usePTY=usePTY)
|
A version of getProcessOutput with a usePTY arg.
|
https://github.com/clusterhq/powerstrip/blob/b18dc7261b001720149849b8ed8f2a31880d76c1/powerstrip/test/test_passthru.py#L325-L333
|
import os
from twisted.internet import defer
from twisted.trial.unittest import TestCase
from ..testtools import GenerallyUsefulPowerstripTestMixin
def CompareDockerAndPowerstrip(test_case, cmd, usePTY=False,
expectDifferentResults=False):
DOCKER = b"unix:///var/run/docker.sock"
POWERSTRIP = b"tcp://localhost:%(proxyPort)d"
d = getProcessOutputPTY(b"/bin/bash", ["-c", cmd], { b"DOCKER_HOST": DOCKER },
errortoo=True, usePTY=usePTY)
def got_result(docker_result):
if not docker_result:
raise ValueError("Command did not produce any output when sent to "
"Docker daemon.")
d = getProcessOutputPTY(b"/bin/bash", ["-c", cmd],
{ b"DOCKER_HOST": POWERSTRIP % dict(proxyPort=test_case.proxyPort) },
errortoo=True, usePTY=usePTY)
def compare_result(powerstrip_result, docker_result):
if not expectDifferentResults:
test_case.assertEquals(docker_result, powerstrip_result)
return powerstrip_result, docker_result
d.addCallback(compare_result, docker_result)
return d
d.addCallback(got_result)
return d
class BasicTests(TestCase, GenerallyUsefulPowerstripTestMixin):
if "TEST_PASSTHRU" not in os.environ:
skip = "Skipping passthru tests."
def tearDown(self):
shutdowns = [
self.proxyServer.stopListening()]
if hasattr(self, "nullServer"):
shutdowns.append(self.nullServer.stopListening())
return defer.gatherResults(shutdowns)
def test_run(self):
self._configure("endpoints: {}\nadapters: {}", dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"docker run ubuntu echo hello")
def assertions((powerstrip, docker)):
self.assertNotIn("fatal", docker)
self.assertNotIn("fatal", powerstrip)
self.assertIn("hello", docker)
self.assertIn("hello", powerstrip)
d.addCallback(assertions)
return d
def test_run_post_hook(self):
self._configure("""
endpoints:
"POST /*/containers/*/attach":
post: [nothing]
adapters:
nothing: http://devnull/
""",
dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"docker run ubuntu echo hello")
def assertions((powerstrip, docker)):
self.assertNotIn("fatal", docker)
self.assertNotIn("fatal", powerstrip)
self.assertIn("hello", docker)
self.assertIn("hello", powerstrip)
d.addCallback(assertions)
return d
def test_run_post_hook_tty(self):
self._configure("""
endpoints:
"POST /*/containers/*/attach":
post: [nothing]
adapters:
nothing: http://devnull/
""",
dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"docker run -ti ubuntu echo hello", usePTY=True)
def assertions((powerstrip, docker)):
self.assertNotIn("fatal", docker)
self.assertNotIn("fatal", powerstrip)
self.assertIn("hello", docker)
self.assertIn("hello", powerstrip)
d.addCallback(assertions)
return d
def test_run_tty(self):
self._configure("endpoints: {}\nadapters: {}", dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"docker run -ti ubuntu echo hello", usePTY=True)
def assertions((powerstrip, docker)):
self.assertNotIn("fatal", docker)
self.assertNotIn("fatal", powerstrip)
self.assertIn("hello", docker)
self.assertIn("hello", powerstrip)
d.addCallback(assertions)
return d
def test_logs(self):
self._configure("""endpoints: {}\nadapters: {}""",
dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"""
id=$(docker run -d ubuntu bash -c \\
"for X in range {1..10000}; do echo \\$X; done");
docker wait $id >/dev/null; echo $id
""",
expectDifferentResults=True)
def extractDockerPS((powerstrip, docker)):
containerID = docker.split("\n")[0]
return CompareDockerAndPowerstrip(self,
"docker logs %s" % (containerID,))
d.addCallback(extractDockerPS)
return d
NULL_CONFIG = """
endpoints:
"* *":
pre: [nothing]
post: [nothing]
adapters:
nothing: http://localhost:%d/null-adapter
"""
NULL_TWICE_CONFIG = """
endpoints:
"* *":
pre: [nothing, nothing2]
post: [nothing, nothing2]
adapters:
nothing: http://localhost:%d/null-adapter
nothing2: http://localhost:%d/null-adapter
"""
def test_run_null_adapter(self):
self._getNullAdapter()
self._configure(self.NULL_CONFIG % (self.nullPort,),
dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"docker run -ti ubuntu echo hello", usePTY=True)
def assertions((powerstrip, docker)):
self.assertNotIn("fatal", docker)
self.assertNotIn("fatal", powerstrip)
self.assertIn("hello", docker)
self.assertIn("hello", powerstrip)
d.addCallback(assertions)
return d
def test_run_null_twice_adapter(self):
self._getNullAdapter()
self._configure(self.NULL_TWICE_CONFIG % (self.nullPort, self.nullPort),
dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"docker run -ti ubuntu echo hello", usePTY=True)
def assertions((powerstrip, docker)):
self.assertNotIn("fatal", docker)
self.assertNotIn("fatal", powerstrip)
self.assertIn("hello", docker)
self.assertIn("hello", powerstrip)
d.addCallback(assertions)
return d
def test_run_docker_pull(self):
self._getNullAdapter()
self._configure(self.NULL_CONFIG % (self.nullPort,),
dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"docker rmi busybox; docker pull busybox", usePTY=True,
expectDifferentResults=True)
def assertions((powerstrip, docker)):
self.assertNotIn("fatal", docker)
text = ["Downloaded newer image for busybox",
"Untagged",
"Deleted",
"Downloading",
"Extracting"]
for textLine in text:
self.assertIn(textLine, powerstrip)
self.assertIn(textLine, docker)
d.addCallback(assertions)
return d
def test_run_docker_build(self):
self._getNullAdapter()
self._configure(self.NULL_CONFIG % (self.nullPort,),
dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
d = CompareDockerAndPowerstrip(self,
"cd ../fixtures/free-dockerfile; docker build .", usePTY=True)
def assertions((powerstrip, docker)):
self.assertNotIn("fatal", docker)
d.addCallback(assertions)
return d
def test_run_stdin(self):
self._configure("endpoints: {}\nadapters: {}", dockerOnSocket=True,
realDockerSocket="/var/run/docker.sock")
self.config.read_and_parse()
return CompareDockerAndPowerstrip(self,
"echo hello |docker run -i ubuntu cat")
from twisted.internet.utils import _BackRelay
|
Apache License 2.0
|
mitmproxy/mitmproxy
|
mitmproxy/flow.py
|
Flow.backup
|
python
|
def backup(self, force=False):
if not self._backup:
self._backup = self.get_state()
|
Save a backup of this flow, which can be restored by calling `Flow.revert()`.
|
https://github.com/mitmproxy/mitmproxy/blob/667d4e04749a4bc2212f58fa2b8c31cd1d91fc7b/mitmproxy/flow.py#L178-L183
|
import time
import typing
import uuid
from mitmproxy import controller, connection
from mitmproxy import exceptions
from mitmproxy import stateobject
from mitmproxy import version
class Error(stateobject.StateObject):
msg: str
timestamp: float
KILLED_MESSAGE: typing.ClassVar[str] = "Connection killed."
def __init__(self, msg: str, timestamp: typing.Optional[float] = None) -> None:
self.msg = msg
self.timestamp = timestamp or time.time()
_stateobject_attributes = dict(
msg=str,
timestamp=float
)
def __str__(self):
return self.msg
def __repr__(self):
return self.msg
@classmethod
def from_state(cls, state):
f = cls(None)
f.set_state(state)
return f
class Flow(stateobject.StateObject):
client_conn: connection.Client
server_conn: connection.Server
error: typing.Optional[Error] = None
intercepted: bool
marked: str = ""
is_replay: typing.Optional[str]
def __init__(
self,
type: str,
client_conn: connection.Client,
server_conn: connection.Server,
live: bool = None
) -> None:
self.type = type
self.id = str(uuid.uuid4())
self.client_conn = client_conn
self.server_conn = server_conn
self.live = live
self.intercepted: bool = False
self._backup: typing.Optional[Flow] = None
self.reply: typing.Optional[controller.Reply] = None
self.marked: str = ""
self.is_replay: typing.Optional[str] = None
self.metadata: typing.Dict[str, typing.Any] = dict()
self.comment: str = ""
_stateobject_attributes = dict(
id=str,
error=Error,
client_conn=connection.Client,
server_conn=connection.Server,
type=str,
intercepted=bool,
is_replay=str,
marked=str,
metadata=typing.Dict[str, typing.Any],
comment=str,
)
def get_state(self):
d = super().get_state()
d.update(version=version.FLOW_FORMAT_VERSION)
if self._backup and self._backup != d:
d.update(backup=self._backup)
return d
def set_state(self, state):
state = state.copy()
state.pop("version")
if "backup" in state:
self._backup = state.pop("backup")
super().set_state(state)
@classmethod
def from_state(cls, state):
f = cls(None, None)
f.set_state(state)
return f
def copy(self):
f = super().copy()
f.live = False
if self.reply is not None:
f.reply = controller.DummyReply()
return f
def modified(self):
if self._backup:
return self._backup != self.get_state()
else:
return False
|
MIT License
|
alliefitter/boto3_type_annotations
|
boto3_type_annotations_with_docs/boto3_type_annotations/s3/service_resource.py
|
ServiceResource.BucketTagging
|
python
|
def BucketTagging(self, bucket_name: str = None) -> 'BucketTagging':
pass
|
Creates a BucketTagging resource.::
bucket_tagging = s3.BucketTagging('bucket_name')
:type bucket_name: string
:param bucket_name: The BucketTagging\'s bucket_name identifier. This **must** be set.
:rtype: :py:class:`S3.BucketTagging`
:returns: A BucketTagging resource
|
https://github.com/alliefitter/boto3_type_annotations/blob/2a88aa562b1aee6e8a6cc30402980884b3707fbb/boto3_type_annotations_with_docs/boto3_type_annotations/s3/service_resource.py#L116-L125
|
from boto3.s3.transfer import TransferConfig
from boto3.resources.collection import ResourceCollection
from typing import IO
from typing import List
from typing import Optional
from typing import Union
from botocore.client import BaseClient
from typing import Callable
from typing import Dict
from datetime import datetime
from boto3.resources import base
class ServiceResource(base.ServiceResource):
buckets: 'buckets'
def Bucket(self, name: str = None) -> 'Bucket':
pass
def BucketAcl(self, bucket_name: str = None) -> 'BucketAcl':
pass
def BucketCors(self, bucket_name: str = None) -> 'BucketCors':
pass
def BucketLifecycle(self, bucket_name: str = None) -> 'BucketLifecycle':
pass
def BucketLifecycleConfiguration(self, bucket_name: str = None) -> 'BucketLifecycleConfiguration':
pass
def BucketLogging(self, bucket_name: str = None) -> 'BucketLogging':
pass
def BucketNotification(self, bucket_name: str = None) -> 'BucketNotification':
pass
def BucketPolicy(self, bucket_name: str = None) -> 'BucketPolicy':
pass
def BucketRequestPayment(self, bucket_name: str = None) -> 'BucketRequestPayment':
pass
|
MIT License
|
vsjha18/nsetools
|
nse.py
|
Nse.get_bhavcopy_url
|
python
|
def get_bhavcopy_url(self, d):
d = mkdate(d)
day_of_month = d.strftime("%d")
mon = d.strftime("%b").upper()
year = d.year
url = self.bhavcopy_base_url % (year, mon, day_of_month, mon, year)
return url
|
take date and return bhavcopy url
|
https://github.com/vsjha18/nsetools/blob/b0e99c8decac0cba0bc19427428fd2d7b8836eaf/nse.py#L417-L424
|
import six
import ast
import re
import json
import zipfile
import io
from dateutil import parser
from nsetools.bases import AbstractBaseExchange
from nsetools.utils import byte_adaptor
from nsetools.utils import js_adaptor
if six.PY2:
from urllib2 import build_opener, HTTPCookieProcessor, Request
from urllib import urlencode
from cookielib import CookieJar
elif six.PY3:
from urllib.request import build_opener, HTTPCookieProcessor, Request
from urllib.parse import urlencode
from http.cookiejar import CookieJar
from nsetools.utils import byte_adaptor, js_adaptor
from nsetools.datemgr import mkdate
class Nse(AbstractBaseExchange):
__CODECACHE__ = None
def __init__(self):
self.opener = self.nse_opener()
self.headers = self.nse_headers()
self.get_quote_url = 'https://www1.nseindia.com/live_market/dynaContent/live_watch/get_quote/GetQuote.jsp?'
self.stocks_csv_url = 'http://www1.nseindia.com/content/equities/EQUITY_L.csv'
self.top_gainer_url = 'http://www1.nseindia.com/live_market/dynaContent/live_analysis/gainers/niftyGainers1.json'
self.top_loser_url = 'http://www1.nseindia.com/live_market/dynaContent/live_analysis/losers/niftyLosers1.json'
self.top_fno_gainer_url = 'https://www1.nseindia.com/live_market/dynaContent/live_analysis/gainers/fnoGainers1.json'
self.top_fno_loser_url = 'https://www1.nseindia.com/live_market/dynaContent/live_analysis/losers/fnoLosers1.json'
self.advances_declines_url = 'http://www1.nseindia.com/common/json/indicesAdvanceDeclines.json'
self.index_url="http://www1.nseindia.com/homepage/Indices1.json"
self.bhavcopy_base_url = "https://www1.nseindia.com/content/historical/EQUITIES/%s/%s/cm%s%s%sbhav.csv.zip"
self.bhavcopy_base_filename = "cm%s%s%sbhav.csv"
self.active_equity_monthly_url = "https://www1.nseindia.com/products/dynaContent/equities/equities/json/mostActiveMonthly.json"
self.year_high_url = "https://www1.nseindia.com/products/dynaContent/equities/equities/json/online52NewHigh.json"
self.year_low_url = "https://www1.nseindia.com/products/dynaContent/equities/equities/json/online52NewLow.json"
self.preopen_nifty_url = "https://www1.nseindia.com/live_market/dynaContent/live_analysis/pre_open/nifty.json"
self.preopen_fno_url = "https://www1.nseindia.com/live_market/dynaContent/live_analysis/pre_open/fo.json"
self.preopen_niftybank_url = "https://www1.nseindia.com/live_market/dynaContent/live_analysis/pre_open/niftybank.json"
self.fno_lot_size_url = "https://www1.nseindia.com/content/fo/fo_mktlots.csv"
def get_fno_lot_sizes(self, cached=True, as_json=False):
url = self.fno_lot_size_url
req = Request(url, None, self.headers)
res_dict = {}
if cached is not True or self.__CODECACHE__ is None:
res = self.opener.open(req)
if res is not None:
res = byte_adaptor(res)
for line in res.read().split('\n'):
if line != '' and re.search(',', line) and (line.casefold().find('symbol') == -1):
(code, name) = [x.strip() for x in line.split(',')[1:3]]
res_dict[code] = int(name)
else:
raise Exception('no response received')
self.__CODECACHE__ = res_dict
return self.render_response(self.__CODECACHE__, as_json)
def get_stock_codes(self, cached=True, as_json=False):
url = self.stocks_csv_url
req = Request(url, None, self.headers)
res_dict = {}
if cached is not True or self.__CODECACHE__ is None:
res = self.opener.open(req)
if res is not None:
res = byte_adaptor(res)
for line in res.read().split('\n'):
if line != '' and re.search(',', line):
(code, name) = line.split(',')[0:2]
res_dict[code] = name
else:
raise Exception('no response received')
self.__CODECACHE__ = res_dict
return self.render_response(self.__CODECACHE__, as_json)
def is_valid_code(self, code):
if code:
stock_codes = self.get_stock_codes()
if code.upper() in stock_codes.keys():
return True
else:
return False
def get_quote(self, code, as_json=False):
code = code.upper()
if self.is_valid_code(code):
url = self.build_url_for_quote(code)
req = Request(url, None, self.headers)
res = self.opener.open(req)
res = byte_adaptor(res)
res = res.read()
match = re.search( r'<div\s+id="responseDiv"\s+style="display:none">(.*?)</div>',
res, re.S
)
try:
buffer = match.group(1).strip()
response = self.clean_server_response(json.loads(buffer)['data'][0])
except SyntaxError as err:
raise Exception('ill formatted response')
else:
return self.render_response(response, as_json)
else:
return None
def get_top_gainers(self, as_json=False):
url = self.top_gainer_url
req = Request(url, None, self.headers)
res = self.opener.open(req)
res = byte_adaptor(res)
res_dict = json.load(res)
res_list = [self.clean_server_response(item) for item in res_dict['data']]
return self.render_response(res_list, as_json)
def get_top_losers(self, as_json=False):
url = self.top_loser_url
req = Request(url, None, self.headers)
res = self.opener.open(req)
res = byte_adaptor(res)
res_dict = json.load(res)
res_list = [self.clean_server_response(item)
for item in res_dict['data']]
return self.render_response(res_list, as_json)
def get_top_fno_gainers(self, as_json=False):
url = self.top_fno_gainer_url
req = Request(url, None, self.headers)
res = self.opener.open(req)
res = byte_adaptor(res)
res_dict = json.load(res)
res_list = [self.clean_server_response(item) for item in res_dict['data']]
return self.render_response(res_list, as_json)
def get_top_fno_losers(self, as_json=False):
url = self.top_fno_loser_url
req = Request(url, None, self.headers)
res = self.opener.open(req)
res = byte_adaptor(res)
res_dict = json.load(res)
res_list = [self.clean_server_response(item)
for item in res_dict['data']]
return self.render_response(res_list, as_json)
def get_advances_declines(self, as_json=False):
url = self.advances_declines_url
req = Request(url, None, self.headers)
resp = self.opener.open(req)
resp = byte_adaptor(resp)
resp_dict = json.load(resp)
resp_list = [self.clean_server_response(item)
for item in resp_dict['data']]
return self.render_response(resp_list, as_json)
def get_index_list(self, as_json=False):
url = self.index_url
req = Request(url, None, self.headers)
resp = self.opener.open(req)
resp = byte_adaptor(resp)
resp_list = json.load(resp)['data']
index_list = [str(item['name']) for item in resp_list]
return self.render_response(index_list, as_json)
def get_active_monthly(self, as_json=False):
return self._get_json_response_from_url(self.active_equity_monthly_url, as_json)
def get_year_high(self, as_json=False):
return self._get_json_response_from_url(self.year_high_url, as_json)
def get_year_low(self, as_json=False):
return self._get_json_response_from_url(self.year_low_url, as_json)
def get_preopen_nifty(self, as_json=False):
return self._get_json_response_from_url(self.preopen_nifty_url, as_json)
def get_preopen_niftybank(self, as_json=False):
return self._get_json_response_from_url(self.preopen_niftybank_url, as_json)
def get_preopen_fno(self, as_json=False):
return self._get_json_response_from_url(self.preopen_fno_url, as_json)
def _get_json_response_from_url(self, url, as_json):
req = Request(url, None, self.headers)
res = self.opener.open(req)
res = byte_adaptor(res)
res_dict = json.load(res)
res_list = [self.clean_server_response(item)
for item in res_dict['data']]
return self.render_response(res_list, as_json)
def is_valid_index(self, code):
index_list = self.get_index_list()
return True if code.upper() in index_list else False
def get_index_quote(self, code, as_json=False):
url = self.index_url
if self.is_valid_index(code):
req = Request(url, None, self.headers)
resp = self.opener.open(req)
resp = byte_adaptor(resp)
resp_list = json.load(resp)['data']
resp_list = [self.clean_server_response(item)
for item in resp_list]
search_flag = False
for item in resp_list:
if item['name'] == code.upper():
search_flag = True
break
return self.render_response(item, as_json) if search_flag else None
def nse_headers(self):
return {'Accept': '*/*',
'Accept-Language': 'en-US,en;q=0.5',
'Host': 'www1.nseindia.com',
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:28.0) Gecko/20100101 Firefox/28.0',
'X-Requested-With': 'XMLHttpRequest'
}
def nse_opener(self):
cj = CookieJar()
return build_opener(HTTPCookieProcessor(cj))
def build_url_for_quote(self, code):
if code is not None and type(code) is str:
encoded_args = urlencode([('symbol', code), ('illiquid', '0'), ('smeFlag', '0'), ('itpFlag', '0')])
return self.get_quote_url + encoded_args
else:
raise Exception('code must be string')
def clean_server_response(self, resp_dict):
d = {}
for key, value in resp_dict.items():
d[str(key)] = value
resp_dict = d
for key, value in resp_dict.items():
if type(value) is str or isinstance(value, six.string_types):
if re.match('-', value):
try:
if float(value) or int(value):
dataType = True
except ValueError:
resp_dict[key] = None
elif re.search(r'^[0-9,.]+$', value):
resp_dict[key] = float(re.sub(',', '', value))
else:
resp_dict[key] = str(value)
return resp_dict
def render_response(self, data, as_json=False):
if as_json is True:
return json.dumps(data)
else:
return data
|
MIT License
|
gigalixir/gigalixir-cli
|
gigalixir/__init__.py
|
ps_migrate
|
python
|
def ps_migrate(ctx, app_name, migration_app_name, ssh_opts, ssh_cmd):
gigalixir_app.migrate(ctx.obj['host'], app_name, migration_app_name, ssh_opts, ssh_cmd)
|
Run Ecto Migrations on a production node.
|
https://github.com/gigalixir/gigalixir-cli/blob/e45992394a0b332252d6be7e1e64ea4bff4a8829/gigalixir/__init__.py#L426-L430
|
from .shell import cast, call
from .routers.linux import LinuxRouter
from .routers.darwin import DarwinRouter
from .routers.windows import WindowsRouter
from .openers.linux import LinuxOpener
from .openers.darwin import DarwinOpener
from .openers.windows import WindowsOpener
from . import observer as gigalixir_observer
from . import user as gigalixir_user
from . import mfa as gigalixir_mfa
from . import app as gigalixir_app
from . import config as gigalixir_config
from . import permission as gigalixir_permission
from . import release as gigalixir_release
from . import app_activity as gigalixir_app_activity
from . import api_key as gigalixir_api_key
from . import ssh_key as gigalixir_ssh_key
from . import log_drain as gigalixir_log_drain
from . import payment_method as gigalixir_payment_method
from . import domain as gigalixir_domain
from . import invoice as gigalixir_invoice
from . import usage as gigalixir_usage
from . import database as gigalixir_database
from . import free_database as gigalixir_free_database
from . import canary as gigalixir_canary
from . import git
import click
import requests
import getpass
import stripe
import subprocess
import sys
import re
import uuid
import rollbar
import logging
import json
import netrc
import os
import platform
from functools import wraps
import pkg_resources
def _show_usage_error(self, file=None):
if file is None:
file = click._compat.get_text_stderr()
color = None
if self.ctx is not None:
color = self.ctx.color
click.echo(self.ctx.get_help() + '\n', file=file, color=color)
click.echo('Error: %s' % self.format_message(), file=file, color=color)
click.exceptions.UsageError.show = _show_usage_error
ROLLBAR_POST_CLIENT_ITEM = "40403cdd48904a12b6d8d27050b12343"
env = os.environ.get("GIGALIXIR_ENV", "prod")
if env == "prod":
rollbar.init(ROLLBAR_POST_CLIENT_ITEM, 'production', enabled=True, allow_logging_basic_config=False)
elif env == "dev":
rollbar.init(ROLLBAR_POST_CLIENT_ITEM, 'development', enabled=False, allow_logging_basic_config=False)
elif env == "test":
rollbar.init(ROLLBAR_POST_CLIENT_ITEM, 'test', enabled=False, allow_logging_basic_config=False)
else:
raise Exception("Invalid GIGALIXIR_ENV")
def detect_app_name(f):
@wraps(f)
def wrapper(*args, **kwds):
app_name = kwds['app_name']
if app_name is None:
app_name = detect_app()
kwds['app_name'] = app_name
f(*args, **kwds)
return wrapper
def report_errors(f):
@wraps(f)
def wrapper(*args, **kwds):
try:
f(*args, **kwds)
except:
version = pkg_resources.get_distribution("gigalixir").version
rollbar.report_exc_info(sys.exc_info(), payload_data={"version": version})
logging.getLogger("gigalixir-cli").error(sys.exc_info()[1])
sys.exit(1)
return wrapper
def rollbar_fingerprint(e):
return e[1].__str__()
CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help'])
def CatchAllExceptions(cls, handler):
class Cls(cls):
_original_args = None
def make_context(self, info_name, args, parent=None, **extra):
self._original_args = ' '.join(args)
try:
return super(Cls, self).make_context(
info_name, args, parent=parent, **extra)
except Exception as exc:
handler(self, info_name, exc)
raise
def invoke(self, ctx):
try:
return super(Cls, self).invoke(ctx)
except Exception as exc:
handler(self, ctx.info_name, exc)
raise
return Cls
def handle_exception(cmd, info_name, exc):
msg = 'command:{} {} error:{}'.format(info_name, cmd._original_args, exc)
rollbar.report_message(msg, 'warning')
class AliasedGroup(click.Group):
def get_command(self, ctx, cmd_name):
rv = click.Group.get_command(self, ctx, cmd_name)
if rv is not None:
return rv
aliases = {
"configs": "config",
"set_config": "deprecated:set_config",
"databases": "pg",
"scale_database": "pg:scale",
"delete_database": "pg:destroy",
"status": "ps",
"scale": "ps:scale",
"rollback": "releases:rollback",
"remote_console": "ps:remote_console",
"ssh": "ps:ssh",
"migrate": "ps:migrate",
"set_payment_method": "account:payment_method:set",
"payment_method": "account:payment_method",
"set_password": "account:password:set",
"change_password": "account:password:change",
"reset_api_key": "account:api_key:reset",
"upgrade": "account:upgrade",
"log_drains": "drains",
"delete_log_drain": "drains:remove",
"ssh_keys": "account:ssh_keys",
"add_log_drain": "drains:add",
"add_ssh_key": "account:ssh_keys:add",
"delete_ssh_key": "account:ssh_keys:remove",
"add_domain": "domains:add",
"send_email_confirmation_token": "account:confirmation:resend",
"send_reset_password_token": "account:password:reset",
"delete_app": "apps:destroy",
"delete_permission": "access:remove",
"permissions": "access",
"delete_free_database": "deprecated:delete_free_database",
"free_databases": "deprecated:free_databases",
"create_free_database": "deprecated:create_free_database",
"delete_domain": "domains:remove",
"delete_config": "config:unset",
"add_permission": "access:add",
"create_database": "pg:create",
"set_git_remote": "git:remote",
"invoices": "account:invoices",
"current_period_usage": "account:usage",
"observer": "ps:observer",
"create": "apps:create",
"restart": "ps:restart",
}
if cmd_name not in aliases:
return None
else:
return click.Group.get_command(self, ctx, aliases[cmd_name])
def detect_app():
try:
git.check_for_git()
remote = call("git remote -v")
repo_name = re.search('git.gigalixir.com/(.*) ', remote).group(1)
git_pos = repo_name.find(".git")
if git_pos >= 0:
repo_name = repo_name[:git_pos]
return repo_name
except (AttributeError, subprocess.CalledProcessError):
raise Exception("Could not detect app name. Try passing the app name explicitly with the `-a` flag or create an app with `gigalixir create`.")
@click.group(cls=AliasedGroup, context_settings=CONTEXT_SETTINGS)
@click.option('--env', envvar='GIGALIXIR_ENV', default='prod', help="GIGALIXIR environment [prod, dev, test].")
@click.pass_context
def cli(ctx, env):
ctx.obj = {}
logging.basicConfig(format='%(message)s')
logging.getLogger("gigalixir-cli").setLevel(logging.INFO)
if env == "prod":
stripe.api_key = 'pk_live_45dmSl66k4xLy4X4yfF3RVpd'
host = "https://api.gigalixir.com"
elif env == "dev":
stripe.api_key = 'pk_test_6tMDkFKTz4N0wIFQZHuzOUyW'
host = "http://localhost:4000"
elif env == "test":
stripe.api_key = 'pk_test_6tMDkFKTz4N0wIFQZHuzOUyW'
host = "https://api.gigalixir.com"
else:
raise Exception("Invalid GIGALIXIR_ENV")
ctx.obj['host'] = host
ctx.obj['env'] = env
PLATFORM = platform.system().lower()
if PLATFORM == "linux":
ctx.obj['router'] = LinuxRouter()
ctx.obj['opener'] = LinuxOpener()
elif PLATFORM == "darwin":
ctx.obj['router'] = DarwinRouter()
ctx.obj['opener'] = DarwinOpener()
elif PLATFORM == "windows":
try:
os.environ['HOME']
except KeyError:
os.environ['HOME'] = os.environ['USERPROFILE']
ctx.obj['router'] = WindowsRouter()
ctx.obj['opener'] = WindowsOpener()
else:
raise Exception("Unknown platform: %s" % PLATFORM)
def print_help(ctx, subcommand):
if subcommand is None:
click.echo(ctx.parent.get_help(), color=ctx.color)
else:
subcommand_obj = cli.get_command(ctx, subcommand)
if subcommand_obj is None:
click.echo("command %s not found" % subcommand)
else:
ctx.info_name = subcommand
click.echo(subcommand_obj.get_help(ctx))
@cli.command()
@click.argument('subcommand', required=False)
@click.pass_context
@report_errors
def help(ctx, subcommand):
print_help(ctx, subcommand)
@cli.command(name='ps')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.pass_context
@report_errors
@detect_app_name
def status(ctx, app_name):
gigalixir_app.status(ctx.obj['host'], app_name)
@cli.command(name='pg:scale')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.option('-d', '--database_id', required=True)
@click.option('-s', '--size', type=float, default=0.6, help='Size of the database can be 0.6, 1.7, 4, 8, 16, 32, 64, or 128.')
@click.pass_context
@report_errors
@detect_app_name
def scale_database(ctx, app_name, database_id, size):
gigalixir_database.scale(ctx.obj['host'], app_name, database_id, size)
@cli.command(name='ps:scale')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.option('-r', '--replicas', type=int, help='Number of replicas to run.')
@click.option('-s', '--size', type=float, help='Size of each replica between 0.5 and 128 in increments of 0.1.')
@click.pass_context
@report_errors
@detect_app_name
def scale(ctx, app_name, replicas, size):
if not app_name:
raise Exception("app_name is required")
gigalixir_app.scale(ctx.obj['host'], app_name, replicas, size)
@cli.command(name='releases:rollback')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.option('-r', '--version', default=None, help='The version of the release to revert to. Use gigalixir get releases to find the version. If omitted, this defaults to the second most recent release.')
@click.pass_context
@report_errors
@detect_app_name
def rollback(ctx, app_name, version):
gigalixir_app.rollback(ctx.obj['host'], app_name, version)
@cli.command(name='ps:remote_console')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.option('-o', '--ssh_opts', default="", help='Command-line options to pass to ssh.')
@click.option('-c', '--ssh_cmd', default="ssh", help='Which ssh command to use.')
@click.pass_context
@report_errors
@detect_app_name
def remote_console(ctx, app_name, ssh_opts, ssh_cmd):
gigalixir_app.remote_console(ctx.obj['host'], app_name, ssh_opts, ssh_cmd)
@cli.command(name='ps:run')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.argument('command', nargs=-1)
@click.option('-o', '--ssh_opts', default="", help='Command-line options to pass to ssh.')
@click.option('-c', '--ssh_cmd', default="ssh", help='Which ssh command to use.')
@click.pass_context
@report_errors
@detect_app_name
def ps_run(ctx, app_name, ssh_opts, ssh_cmd, command):
gigalixir_app.ps_run(ctx.obj['host'], app_name, ssh_opts, ssh_cmd, *command)
@cli.command(name='ps:ssh')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.argument('command', nargs=-1)
@click.option('-o', '--ssh_opts', default="", help='Command-line options to pass to ssh.')
@click.option('-c', '--ssh_cmd', default="ssh", help='Which ssh command to use.')
@click.pass_context
@report_errors
@detect_app_name
def ssh(ctx, app_name, ssh_opts, ssh_cmd, command):
gigalixir_app.ssh(ctx.obj['host'], app_name, ssh_opts, ssh_cmd, *command)
@cli.command(name='ps:distillery')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.argument('distillery_command', nargs=-1)
@click.option('-o', '--ssh_opts', default="", help='Command-line options to pass to ssh.')
@click.option('-c', '--ssh_cmd', default="ssh", help='Which ssh command to use.')
@click.pass_context
@report_errors
@detect_app_name
def distillery(ctx, app_name, ssh_opts, ssh_cmd, distillery_command):
gigalixir_app.distillery_command(ctx.obj['host'], app_name, ssh_opts, ssh_cmd, *distillery_command)
@cli.command(name='ps:restart')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.pass_context
@report_errors
@detect_app_name
def restart(ctx, app_name):
gigalixir_app.restart(ctx.obj['host'], app_name)
@cli.command()
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.argument('command', nargs=-1)
@click.pass_context
@report_errors
@detect_app_name
def run(ctx, app_name, command):
gigalixir_app.run(ctx.obj['host'], app_name, command)
@cli.command(name='ps:migrate')
@click.option('-a', '--app_name', envvar="GIGALIXIR_APP")
@click.option('-m', '--migration_app_name', default=None, help='For umbrella apps, specify which inner app to migrate.')
@click.option('-o', '--ssh_opts', default="", help='Command-line options to pass to ssh.')
@click.option('-c', '--ssh_cmd', default="ssh", help='Which ssh command to use.')
@click.pass_context
@report_errors
@detect_app_name
|
MIT License
|
sodacookie/anime
|
anime/core/rubberband.py
|
RubberBand.set_speed
|
python
|
def set_speed(self, name, speed):
self._filters[name].speed = speed
|
Override the set of the name's given filter
|
https://github.com/sodacookie/anime/blob/44546b5254a659a38bed744e81008d999a328fb2/anime/core/rubberband.py#L168-L170
|
from functools import reduce
from types import FunctionType, MethodType
from copy import deepcopy
from anime.core.filter import Filter
import anime.core.reducer as reducer
class RubberBand(object):
def __init__(self):
super().__init__()
object.__setattr__(self, "_reducers", {})
object.__setattr__(self, "_owner", None)
object.__setattr__(self, "_children", [])
object.__setattr__(self, "_dirty", False)
object.__setattr__(self, "_dirtied", set())
object.__setattr__(self, "_filters", {})
object.__setattr__(self, "_dest", {})
def __setattr__(self, name, value):
if hasattr(type(self), name) and isinstance(getattr(type(self), name), property):
object.__setattr__(self, name, value)
return
if hasattr(self, name):
if self._filters.get(name):
self._set_dirty(name)
self._dest[name] = value
else:
object.__setattr__(self, name, value)
else:
object.__setattr__(self, name, value)
if isinstance(value, (int, float, complex)):
self._reducers[name] = reducer.addition_reducer
else:
self._reducers[name] = reducer.top_level_reducer
def set_owner(self, owner):
object.__setattr__(self, '_owner', owner)
owner._children.append(self)
def get_owner(self):
return self._owner
def get_children(self):
return self._children
def get_dest(self, name):
return self._dest.get(name)
def set_filter(self, name, filter, speed=None, done=None):
if not hasattr(self, name):
raise ValueError("Does not contain the attribute %s" % name)
if isinstance(filter, FunctionType):
if speed is None:
speed = 0
self._filters[name] = Filter(filter, done, speed)
else:
cpy_filter = deepcopy(filter)
if speed is not None:
cpy_filter.speed = speed
self._filters[name] = cpy_filter
def get_filter(self, name):
return self._filters.get(name)
def remove_filter(self, name):
if self._dest.get(name):
object.__setattr__(self, name, self._dest[name])
self._set_clean(name)
del self._filters[name]
def set_reducer(self, name, reducer):
self._reducers[name] = reducer
def force_set(self, name, value):
object.__setattr__(self, name, value)
if self.is_attr_dirty(name):
self._set_clean(name)
def group_set(self, _setter=None, _quiet=False, **kwarg):
if not _setter:
_setter = {}
_setter.update(kwarg)
for key, value in _setter.items():
if hasattr(self, key):
setattr(self, key, value)
else:
if not _quiet:
raise AttributeError("Object has no attribute '%s'"%key)
def force_group_set(self, _setter=None, _quiet=False, **kwarg):
if not _setter:
_setter = {}
_setter.update(kwarg)
for key, value in _setter.items():
if hasattr(self, key):
self.force_set(key, value)
else:
if not _quiet:
raise AttributeError("Object has no attribute '%s'"%key)
def get_speed(self, name):
return self._filters[name].speed
|
MIT License
|
nipy/nipy
|
nipy/algorithms/graph/bipartite_graph.py
|
BipartiteGraph.__init__
|
python
|
def __init__(self, V, W, edges=None, weights=None):
V = int(V)
W = int(W)
if (V < 1) or (W < 1):
raise ValueError('cannot create graph with no vertex')
self.V = V
self.W = W
self.E = 0
if (edges is None) & (weights is None):
self.edges = np.array([], np.int)
self.weights = np.array([])
else:
if edges.shape[0] == np.size(weights):
E = edges.shape[0]
self.E = E
self.edges = - np.ones((E, 2), np.int)
self.set_edges(edges)
self.set_weights(weights)
else:
raise ValueError('Incompatible size of the edges and \
weights matrices')
|
Constructor
Parameters
----------
V (int), the number of vertices of subset 1
W (int), the number of vertices of subset 2
edges=None: array of shape (self.E, 2)
the edge array of the graph
weights=None: array of shape (self.E)
the asociated weights array
|
https://github.com/nipy/nipy/blob/d16d268938dcd5c15748ca051532c21f57cf8a22/nipy/algorithms/graph/bipartite_graph.py#L166-L197
|
from __future__ import absolute_import
import numpy as np
def check_feature_matrices(X, Y):
if np.size(X) == X.shape[0]:
X = np.reshape(X, (np.size(X), 1))
if np.size(Y) == Y.shape[0]:
Y = np.reshape(Y, (np.size(Y), 1))
if X.shape[1] != Y.shape[1]:
raise ValueError('X.shape[1] should = Y.shape[1]')
def bipartite_graph_from_coo_matrix(x):
i, j = x.nonzero()
edges = np.vstack((i, j)).T
weights = x.data
wg = BipartiteGraph(x.shape[0], x.shape[1], edges, weights)
return wg
def bipartite_graph_from_adjacency(x):
from scipy.sparse import coo_matrix
return bipartite_graph_from_coo_matrix(coo_matrix(x))
def cross_eps(X, Y, eps=1.):
from scipy.sparse import coo_matrix
check_feature_matrices(X, Y)
try:
eps = float(eps)
except:
if np.isnan(eps):
raise ValueError('eps is nan')
if np.isinf(eps):
raise ValueError('eps is inf')
ij = np.zeros((0, 2))
data = np.zeros(0)
for i, x in enumerate(X):
dist = np.sum((Y - x) ** 2, 1)
idx = np.asanyarray(np.where(dist < eps))
data = np.hstack((data, dist[idx.ravel()]))
ij = np.vstack((ij, np.hstack((
i * np.ones((idx.size, 1)), idx.T)))).astype(np.int)
data = np.maximum(data, 1.e-15)
adj = coo_matrix((data, ij.T), shape=(X.shape[0], Y.shape[0]))
return bipartite_graph_from_coo_matrix(adj)
def cross_knn(X, Y, k=1):
from scipy.sparse import coo_matrix
check_feature_matrices(X, Y)
try:
k = int(k)
except:
if np.isnan(k):
raise ValueError('k is nan')
if np.isinf(k):
raise ValueError('k is inf')
k = min(k, Y.shape[0] -1)
ij = np.zeros((0, 2))
data = np.zeros(0)
for i, x in enumerate(X):
dist = np.sum((Y - x) ** 2, 1)
idx = np.argsort(dist)[:k]
data = np.hstack((data, dist[idx]))
ij = np.vstack((ij, np.hstack((
i * np.ones((k, 1)), np.reshape(idx, (k, 1))))))
data = np.maximum(data, 1.e-15)
adj = coo_matrix((data, ij.T), shape=(X.shape[0], Y.shape[0]))
return bipartite_graph_from_coo_matrix(adj)
class BipartiteGraph(object):
|
BSD 3-Clause New or Revised License
|
microsoft/task_oriented_dialogue_as_dataflow_synthesis
|
src/dataflow/multiwoz/trade_dst/create_data.py
|
divideData
|
python
|
def divideData(data, output_dir):
testListFile = []
fin = open(os.path.join(output_dir, "multi-woz", "testListFile.json"), "r")
for line in fin:
testListFile.append(line[:-1])
fin.close()
valListFile = []
fin = open(os.path.join(output_dir, "multi-woz", "valListFile.json"), "r")
for line in fin:
valListFile.append(line[:-1])
fin.close()
trainListFile = open(os.path.join(output_dir, "trainListFile"), "w")
test_dials = []
val_dials = []
train_dials = []
count_train, count_val, count_test = 0, 0, 0
for dialogue_name in data:
dial_item = data[dialogue_name]
domains = []
for dom_k, dom_v in dial_item["goal"].items():
if (
dom_v and dom_k not in IGNORE_KEYS_IN_GOAL
):
domains.append(dom_k)
dial = get_dial(data[dialogue_name])
if dial:
dialogue = {}
dialogue["dialogue_idx"] = dialogue_name
dialogue["domains"] = list(
set(domains)
)
last_bs = []
dialogue["dialogue"] = []
for turn_i, turn in enumerate(dial):
turn_dialog = {}
turn_dialog["system_transcript"] = (
dial[turn_i - 1]["sys"] if turn_i > 0 else ""
)
turn_dialog["turn_idx"] = turn_i
turn_dialog["belief_state"] = [
{"slots": [s], "act": "inform"} for s in turn["bvs"]
]
turn_dialog["turn_label"] = [
bs["slots"][0]
for bs in turn_dialog["belief_state"]
if bs not in last_bs
]
turn_dialog["transcript"] = turn["usr"]
turn_dialog["system_acts"] = (
dial[turn_i - 1]["sys_a"] if turn_i > 0 else []
)
turn_dialog["domain"] = turn["domain"]
last_bs = turn_dialog["belief_state"]
dialogue["dialogue"].append(turn_dialog)
if dialogue_name in testListFile:
test_dials.append(dialogue)
count_test += 1
elif dialogue_name in valListFile:
val_dials.append(dialogue)
count_val += 1
else:
trainListFile.write(dialogue_name + "\n")
train_dials.append(dialogue)
count_train += 1
print(
"# of dialogues: Train {}, Val {}, Test {}".format(
count_train, count_val, count_test
)
)
with open(os.path.join(output_dir, "dev_dials.json"), "w") as f:
json.dump(val_dials, f, indent=4)
with open(os.path.join(output_dir, "test_dials.json"), "w") as f:
json.dump(test_dials, f, indent=4)
with open(os.path.join(output_dir, "train_dials.json"), "w") as f:
json.dump(train_dials, f, indent=4)
|
Given test and validation sets, divide
the data for three different sets
|
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/blob/e848243ff88f4b0d1a383b8df2612a1f3edb5300/src/dataflow/multiwoz/trade_dst/create_data.py#L516-L607
|
import argparse
import json
import os
import re
import shutil
from io import BytesIO
from zipfile import ZipFile
import numpy as np
import requests
from tqdm import tqdm
np.set_printoptions(precision=3)
np.random.seed(2)
MAX_LENGTH = 50
IGNORE_KEYS_IN_GOAL = ["eod", "topic", "messageLen", "message"]
MULTIWOZ_2_0_URL = "https://www.repository.cam.ac.uk/bitstream/handle/1810/280608/MULTIWOZ2.zip?sequence=3&isAllowed=y"
MULTIWOZ_2_1_URL = "https://www.repository.cam.ac.uk/bitstream/handle/1810/294507/MULTIWOZ2.1.zip?sequence=1&isAllowed=y"
def _create_replacement_pair(line):
tok_from, tok_to = line.replace("\n", "").split("\t")
return " " + tok_from + " ", " " + tok_to + " "
REPLACEMENTS = [
_create_replacement_pair(line)
for line in open(os.path.join(os.path.dirname(__file__), "mapping.pair"), "r")
]
def is_ascii(s):
return all(ord(c) < 128 for c in s)
def insertSpace(token, text):
sidx = 0
while True:
sidx = text.find(token, sidx)
if sidx == -1:
break
if (
sidx + 1 < len(text)
and re.match("[0-9]", text[sidx - 1])
and re.match("[0-9]", text[sidx + 1])
):
sidx += 1
continue
if text[sidx - 1] != " ":
text = text[:sidx] + " " + text[sidx:]
sidx += 1
if sidx + len(token) < len(text) and text[sidx + len(token)] != " ":
text = text[: sidx + 1] + " " + text[sidx + 1 :]
sidx += 1
return text
def normalize(text):
text = text.lower()
text = re.sub(r"^\s*|\s*$", "", text)
text = re.sub(r"b&b", "bed and breakfast", text)
text = re.sub(r"b and b", "bed and breakfast", text)
text = re.sub("(\u2018|\u2019)", "'", text)
text = text.replace(";", ",")
text = re.sub(r"$\/", "", text)
text = text.replace("/", " and ")
text = text.replace("-", " ")
text = re.sub(r'["\<>@\(\)]', "", text)
for token in ["?", ".", ",", "!"]:
text = insertSpace(token, text)
text = insertSpace("'s", text)
text = re.sub(r"^'", "", text)
text = re.sub(r"'$", "", text)
text = re.sub(r"'\s", " ", text)
text = re.sub(r"\s'", " ", text)
for fromx, tox in REPLACEMENTS:
text = " " + text + " "
text = text.replace(fromx, tox)[1:-1]
text = re.sub(" +", " ", text)
tokens = text.split()
i = 1
while i < len(tokens):
if re.match(r"^\d+$", tokens[i]) and re.match(r"\d+$", tokens[i - 1]):
tokens[i - 1] += tokens[i]
del tokens[i]
else:
i += 1
text = " ".join(tokens)
return text
def fixDelex(filename, data, data2, idx, idx_acts):
try:
turn = data2[filename.strip(".json")][str(idx_acts)]
except:
return data
if not isinstance(turn, str):
for k, _act in turn.items():
if "Attraction" in k:
if "restaurant_" in data["log"][idx]["text"]:
data["log"][idx]["text"] = data["log"][idx]["text"].replace(
"restaurant", "attraction"
)
if "hotel_" in data["log"][idx]["text"]:
data["log"][idx]["text"] = data["log"][idx]["text"].replace(
"hotel", "attraction"
)
if "Hotel" in k:
if "attraction_" in data["log"][idx]["text"]:
data["log"][idx]["text"] = data["log"][idx]["text"].replace(
"attraction", "hotel"
)
if "restaurant_" in data["log"][idx]["text"]:
data["log"][idx]["text"] = data["log"][idx]["text"].replace(
"restaurant", "hotel"
)
if "Restaurant" in k:
if "attraction_" in data["log"][idx]["text"]:
data["log"][idx]["text"] = data["log"][idx]["text"].replace(
"attraction", "restaurant"
)
if "hotel_" in data["log"][idx]["text"]:
data["log"][idx]["text"] = data["log"][idx]["text"].replace(
"hotel", "restaurant"
)
return data
def getDialogueAct(
filename, data, data2, idx, idx_acts
):
acts = []
try:
turn = data2[filename.strip(".json")][str(idx_acts)]
except:
return acts
if not isinstance(turn, str):
for k in turn.keys():
if k.split("-")[1].lower() == "request":
for a in turn[k]:
acts.append(a[0].lower())
elif k.split("-")[1].lower() == "inform":
for a in turn[k]:
acts.append([a[0].lower(), normalize(a[1].lower())])
return acts
def get_summary_bstate(bstate, get_domain=False):
domains = [
"taxi",
"restaurant",
"hospital",
"hotel",
"attraction",
"train",
"police",
]
summary_bstate = []
summary_bvalue = []
active_domain = []
for domain in domains:
domain_active = False
booking = []
for slot in sorted(bstate[domain]["book"].keys()):
if slot == "booked":
if len(bstate[domain]["book"]["booked"]) != 0:
booking.append(1)
else:
booking.append(0)
else:
if bstate[domain]["book"][slot] != "":
booking.append(1)
summary_bvalue.append(
[
"{}-book {}".format(domain, slot.strip().lower()),
normalize(bstate[domain]["book"][slot].strip().lower()),
]
)
else:
booking.append(0)
if domain == "train":
if "people" not in bstate[domain]["book"].keys():
booking.append(0)
if "ticket" not in bstate[domain]["book"].keys():
booking.append(0)
summary_bstate += booking
for slot in bstate[domain]["semi"]:
slot_enc = [0, 0, 0]
if bstate[domain]["semi"][slot] == "not mentioned":
slot_enc[0] = 1
elif bstate[domain]["semi"][slot] in [
"dont care",
"dontcare",
"don't care",
"do not care",
]:
slot_enc[1] = 1
summary_bvalue.append(
["{}-{}".format(domain, slot.strip().lower()), "dontcare"]
)
elif bstate[domain]["semi"][slot]:
summary_bvalue.append(
[
"{}-{}".format(domain, slot.strip().lower()),
normalize(bstate[domain]["semi"][slot].strip().lower()),
]
)
if slot_enc != [0, 0, 0]:
domain_active = True
summary_bstate += slot_enc
if domain_active:
summary_bstate += [1]
active_domain.append(domain)
else:
summary_bstate += [0]
assert len(summary_bstate) == 94
if get_domain:
return active_domain
else:
return summary_bstate, summary_bvalue
def analyze_dialogue(dialogue, maxlen):
d = dialogue
if len(d["log"]) % 2 != 0:
print("odd # of turns")
return None
d_pp = {}
d_pp["goal"] = d["goal"]
usr_turns = []
sys_turns = []
for i in range(len(d["log"])):
if len(d["log"][i]["text"].split()) > maxlen:
return None
if i % 2 == 0:
text = d["log"][i]["text"]
if not is_ascii(text):
return None
usr_turns.append(d["log"][i])
else:
text = d["log"][i]["text"]
if not is_ascii(text):
return None
belief_summary, belief_value_summary = get_summary_bstate(
d["log"][i]["metadata"]
)
d["log"][i]["belief_summary"] = str(belief_summary)
d["log"][i]["belief_value_summary"] = belief_value_summary
sys_turns.append(d["log"][i])
d_pp["usr_log"] = usr_turns
d_pp["sys_log"] = sys_turns
return d_pp
def get_dial(dialogue):
dial = []
d_orig = analyze_dialogue(dialogue, MAX_LENGTH)
if d_orig is None:
return None
usr = [t["text"] for t in d_orig["usr_log"]]
sys = [t["text"] for t in d_orig["sys_log"]]
sys_a = [t["dialogue_acts"] for t in d_orig["sys_log"]]
bvs = [t["belief_value_summary"] for t in d_orig["sys_log"]]
domain = [t["domain"] for t in d_orig["usr_log"]]
for item in zip(usr, sys, sys_a, domain, bvs):
dial.append(
{
"usr": item[0],
"sys": item[1],
"sys_a": item[2],
"domain": item[3],
"bvs": item[4],
}
)
return dial
def download_data(url):
r = requests.get(url, stream=True)
total_size = int(r.headers.get("content-length", 0))
block_size = 1024
t = tqdm(total=total_size, unit="B", unit_scale=True)
data = BytesIO()
for block in r.iter_content(block_size):
t.update(len(block))
data.write(block)
t.close()
if total_size != 0 and t.n != total_size:
raise ValueError(f"Unexpected error during downloading {url}")
return data
def loadData(output_dir, use_multiwoz_2_1=False):
data_url = os.path.join(output_dir, "multi-woz", "data.json")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
os.makedirs(os.path.join(output_dir, "multi-woz"))
if not os.path.exists(data_url):
print("Downloading and unzipping the MultiWOZ dataset")
if not use_multiwoz_2_1:
data = download_data(MULTIWOZ_2_0_URL)
subdir_name = "MULTIWOZ2 2"
else:
data = download_data(MULTIWOZ_2_1_URL)
subdir_name = "MULTIWOZ2.1"
zip_ref = ZipFile(data)
zip_ref.extractall(os.path.join(output_dir, "multi-woz"))
zip_ref.close()
shutil.copy(
os.path.join(output_dir, "multi-woz", subdir_name, "data.json"),
os.path.join(output_dir, "multi-woz"),
)
shutil.copy(
os.path.join(output_dir, "multi-woz", subdir_name, "valListFile.json"),
os.path.join(output_dir, "multi-woz"),
)
shutil.copy(
os.path.join(output_dir, "multi-woz", subdir_name, "testListFile.json"),
os.path.join(output_dir, "multi-woz"),
)
shutil.copy(
os.path.join(output_dir, "multi-woz", subdir_name, "dialogue_acts.json"),
os.path.join(output_dir, "multi-woz"),
)
def getDomain(idx, log, domains, last_domain):
if idx == 1:
active_domains = get_summary_bstate(log[idx]["metadata"], True)
crnt_doms = active_domains[0] if len(active_domains) != 0 else domains[0]
return crnt_doms
else:
ds_diff = get_ds_diff(log[idx - 2]["metadata"], log[idx]["metadata"])
if len(ds_diff.keys()) == 0:
crnt_doms = last_domain
else:
crnt_doms = list(ds_diff.keys())
return crnt_doms[0]
def get_ds_diff(prev_d, crnt_d):
diff = {}
if not prev_d or not crnt_d:
return diff
for ((k1, v1), (k2, v2)) in zip(prev_d.items(), crnt_d.items()):
assert k1 == k2
if v1 != v2:
diff[k2] = v2
return diff
def createData(output_dir, use_multiwoz_2_1=False):
loadData(output_dir, use_multiwoz_2_1)
delex_data = {}
fin1 = open(os.path.join(output_dir, "multi-woz", "data.json"), "r")
data = json.load(fin1)
fin2 = open(os.path.join(output_dir, "multi-woz", "dialogue_acts.json"), "r")
data2 = json.load(fin2)
print("Processing dialogues ...")
for _didx, dialogue_name in tqdm(enumerate(data), unit=" dialogues"):
dialogue = data[dialogue_name]
domains = []
for dom_k, dom_v in dialogue["goal"].items():
if (
dom_v and dom_k not in IGNORE_KEYS_IN_GOAL
):
domains.append(dom_k)
idx_acts = 1
last_domain, _last_slot_fill = "", []
for idx, turn in enumerate(dialogue["log"]):
origin_text = normalize(turn["text"])
dialogue["log"][idx]["text"] = origin_text
if idx % 2 == 1:
cur_domain = getDomain(idx, dialogue["log"], domains, last_domain)
last_domain = [cur_domain]
dialogue["log"][idx - 1]["domain"] = cur_domain
dialogue["log"][idx]["dialogue_acts"] = getDialogueAct(
dialogue_name, dialogue, data2, idx, idx_acts
)
idx_acts += 1
dialogue = fixDelex(dialogue_name, dialogue, data2, idx, idx_acts)
delex_data[dialogue_name] = dialogue
return delex_data
|
MIT License
|
castagnait/plugin.video.netflix
|
resources/lib/navigation/library.py
|
LibraryActionExecutor.check_autoupdate_device
|
python
|
def check_autoupdate_device(self, pathitems):
uuid = G.SHARED_DB.get_value('auto_update_device_uuid')
if uuid is None:
msg = common.get_local_string(30212)
else:
client_uuid = G.LOCAL_DB.get_value('client_uuid')
msg = common.get_local_string(30210 if client_uuid == uuid else 30211)
ui.show_notification(msg, time=8000)
|
Check if the current device manage the auto-updates of the shared-library (MySQL)
|
https://github.com/castagnait/plugin.video.netflix/blob/1c68c7d4c399603a5dcbeef1e7637de7a9036a72/resources/lib/navigation/library.py#L129-L137
|
import resources.lib.common as common
import resources.lib.kodi.ui as ui
import resources.lib.kodi.library_utils as lib_utils
from resources.lib.globals import G
from resources.lib.kodi.library import get_library_cls
from resources.lib.utils.logging import LOG
class LibraryActionExecutor:
def __init__(self, params):
LOG.debug('Initializing "LibraryActionExecutor" with params: {}', params)
self.params = params
@common.inject_video_id(path_offset=1)
def export(self, videoid):
get_library_cls().export_to_library(videoid)
common.container_refresh()
@common.inject_video_id(path_offset=1)
def remove(self, videoid):
if not ui.ask_for_confirmation(common.get_local_string(30030),
common.get_local_string(30124)):
return
get_library_cls().remove_from_library(videoid)
common.container_refresh(use_delay=True)
@common.inject_video_id(path_offset=1)
def update(self, videoid):
get_library_cls().update_library(videoid)
common.container_refresh()
def sync_mylist(self, pathitems):
if not ui.ask_for_confirmation(common.get_local_string(30122),
common.get_local_string(30123)):
return
get_library_cls().sync_library_with_mylist()
def auto_upd_run_now(self, pathitems):
if not ui.ask_for_confirmation(common.get_local_string(30065),
common.get_local_string(30231)):
return
get_library_cls().auto_update_library(False)
def sync_mylist_sel_profile(self, pathitems):
if _check_auto_update_running():
return
preselect_guid = G.SHARED_DB.get_value('sync_mylist_profile_guid',
G.LOCAL_DB.get_guid_owner_profile())
selected_guid = ui.show_profiles_dialog(title=common.get_local_string(30228),
preselect_guid=preselect_guid)
if not selected_guid:
return
G.SHARED_DB.set_value('sync_mylist_profile_guid', selected_guid)
def purge(self, pathitems):
if _check_auto_update_running():
return
if not ui.ask_for_confirmation(common.get_local_string(30125),
common.get_local_string(30126)):
return
get_library_cls().clear_library()
def import_library(self, pathitems):
if _check_auto_update_running():
return
path = ui.show_browse_dialog(common.get_local_string(651), default_path=G.DATA_PATH)
if path:
if not ui.ask_for_confirmation(common.get_local_string(30140),
common.get_local_string(20135)):
return
get_library_cls().import_library(path)
@common.inject_video_id(path_offset=1)
def export_new_episodes(self, videoid):
get_library_cls().export_to_library_new_episodes(videoid)
@common.inject_video_id(path_offset=1)
def exclude_from_auto_update(self, videoid):
lib_utils.set_show_excluded_from_auto_update(videoid, True)
common.container_refresh()
@common.inject_video_id(path_offset=1)
def include_in_auto_update(self, videoid):
lib_utils.set_show_excluded_from_auto_update(videoid, False)
common.container_refresh()
def mysql_test(self, pathitems):
def set_autoupdate_device(self, pathitems):
if _check_auto_update_running():
return
random_uuid = common.get_random_uuid()
G.LOCAL_DB.set_value('client_uuid', random_uuid)
G.SHARED_DB.set_value('auto_update_device_uuid', random_uuid)
ui.show_notification(common.get_local_string(30209), time=8000)
|
MIT License
|
aws-samples/aws-media-services-simple-live-workflow
|
CloudFormation/mediapackage_channel.py
|
create_channel
|
python
|
def create_channel(mediapackage, event, context, auto_id=True):
if auto_id:
channel_id = "%s-%s" % (resource_tools.stack_name(event), event["LogicalResourceId"])
else:
channel_id = event["PhysicalResourceId"]
channel = {
"Id": channel_id,
"Description": "CloudFormation Stack ID %s" % event["StackId"],
"HlsIngest": {}
}
try:
response = mediapackage.create_channel(
Id=channel_id,
Description="CloudFormation Stack ID %s" % event["StackId"]
)
print(json.dumps(response))
print(response["Arn"])
attributes = {
"Arn": response["Arn"],
"PrimaryUrl": response["HlsIngest"]["IngestEndpoints"][0]["Url"],
"PrimaryUsername": response["HlsIngest"]["IngestEndpoints"][0]["Username"],
"PrimaryPassword": response["HlsIngest"]["IngestEndpoints"][0]["Password"],
"SecondaryUrl": response["HlsIngest"]["IngestEndpoints"][1]["Url"],
"SecondaryUsername": response["HlsIngest"]["IngestEndpoints"][1]["Username"],
"SecondaryPassword": response["HlsIngest"]["IngestEndpoints"][1]["Password"]
}
print(attributes)
result = {
'Status': 'SUCCESS',
'Data': attributes,
'ResourceId': channel_id
}
except Exception as ex:
print(ex)
result = {
'Status': 'FAILED',
'Data': {"Exception": str(ex)},
'ResourceId': channel_id
}
return result
|
Create a MediaPackage channel
Return the channel URL, username and password generated by MediaPackage
|
https://github.com/aws-samples/aws-media-services-simple-live-workflow/blob/924375b8148dc4f3f521b5c463ee1d7ed39a13d2/CloudFormation/mediapackage_channel.py#L45-L93
|
from botocore.vendored import requests
import boto3
import json
import string
import random
import resource_tools
def event_handler(event, context):
print("Event Input: %s" % json.dumps(event))
try:
mediapackage = boto3.client('mediapackage')
if event["RequestType"] == "Create":
result = create_channel(mediapackage, event, context)
elif event["RequestType"] == "Update":
result = update_channel(mediapackage, event, context)
elif event["RequestType"] == "Delete":
result = delete_channel(mediapackage, event, context)
except Exception as exp:
print("Exception: %s" % exp)
result = {
'Status': 'FAILED',
'Data': {"Exception": str(exp)},
'ResourceId': None
}
resource_tools.send(event, context, result['Status'],
result['Data'], result['ResourceId'])
return
|
Apache License 2.0
|
aristoteleo/dynamo-release
|
dynamo/tools/recipes.py
|
velocity_N
|
python
|
def velocity_N(
adata,
group=None,
recalculate_pca=True,
recalculate_umap=True,
del_2nd_moments=None,
):
del_2nd_moments = DynamoAdataConfig.check_config_var(del_2nd_moments, DynamoAdataConfig.RECIPE_DEL_2ND_MOMENTS_KEY)
var_columns = adata.var.columns
layer_keys = adata.layers.keys()
if not np.all([i in layer_keys for i in ["X_new", "X_total"]]):
raise Exception(f"The `X_new`, `X_total` has to exist in your data before running velocity_N function.")
for i in ["M_t", "M_tt", "M_n", "M_tn", "M_nn", "velocity_N", "velocity_T"]:
if i in layer_keys:
del adata.layers[i]
for i in [
"alpha",
"beta",
"gamma",
"half_life",
"alpha_b",
"alpha_r2",
"gamma_b",
"gamma_r2",
"gamma_logLL",
"delta_b",
"delta_r2",
"bs",
"bf",
"uu0",
"ul0",
"su0",
"sl0",
"U0",
"S0",
"total0",
"beta_k",
"gamma_k",
]:
if i in var_columns:
del adata.var[i]
if group is not None:
group_prefixes = [group + "_" + str(i) + "_" for i in adata.obs[group].unique()]
for i in group_prefixes:
for j in [
"alpha",
"beta",
"gamma",
"half_life",
"alpha_b",
"alpha_r2",
"gamma_b",
"gamma_r2",
"gamma_logLL",
"delta_b",
"delta_r2",
"bs",
"bf",
"uu0",
"ul0",
"su0",
"sl0",
"U0",
"S0",
"total0",
"beta_k",
"gamma_k",
]:
if i + j in var_columns:
del adata.var[i + j]
if recalculate_pca:
pca(adata, np.log1p(adata[:, adata.var.use_for_pca].layers["X_new"]), pca_key="X_pca")
for i in ["spliced", "unspliced", "X_spliced", "X_unspliced"]:
if i in layer_keys:
del adata.layers[i]
if adata.uns["pp"]["experiment_type"] == "one-shot":
dynamics(
adata,
one_shot_method="sci_fate",
model="deterministic",
group=group,
del_2nd_moments=del_2nd_moments,
)
elif adata.uns["pp"]["experiment_type"] == "kin":
dynamics(
adata,
model="deterministic",
est_method="twostep",
group=group,
del_2nd_moments=del_2nd_moments,
)
else:
raise Exception(
f"velocity_N function only supports either the one-shot or kinetics (kin) metabolic labeling "
f"experiment."
)
if recalculate_umap:
reduceDimension(adata, enforce=True)
cell_velocities(
adata,
basis="pca",
X=adata.layers["M_n"],
V=adata.layers["velocity_N"],
enforce=True,
)
cell_velocities(
adata,
basis="umap",
X=adata.layers["M_n"],
V=adata.layers["velocity_N"],
enforce=True,
)
|
use new RNA based pca, umap, for velocity calculation and projection for kinetics or one-shot experiment.
Note that currently velocity_N function only considers labeling data and removes splicing data if they exist.
Parameters
----------
adata: :class:`~anndata.AnnData`
AnnData object that stores data for the the kinetics or one-shot experiment, must include `X_new, X_total`
layers.
group: `str` or None (default: None)
The cell group that will be used to calculate velocity in each separate group. This is useful if your data
comes from different labeling condition, etc.
recalculate_pca: `bool` (default: True)
Whether to recalculate pca with the new RNA data. If setting to be False, you need to make sure the pca is
already generated via new RNA.
recalculate_umap: `bool` (default: True)
Whether to recalculate umap with the new RNA data. If setting to be False, you need to make sure the umap is
already generated via new RNA.
del_2nd_moments: `None` or `bool`
Whether to remove second moments or covariances. Default it is `None` rgument used for `dynamics` function.
Returns
-------
Nothing but the adata object is updated with the low dimensional (umap or pca) velocity projections with the
new RNA or pca based RNA velocities.
|
https://github.com/aristoteleo/dynamo-release/blob/4e201df59e4d69ac642bc9de5a853cd038da891f/dynamo/tools/recipes.py#L728-L887
|
import numpy as np
from .moments import moments
from .connectivity import neighbors, normalize_knn_graph
from .dynamics import dynamics
from .dimension_reduction import reduceDimension
from .cell_velocities import cell_velocities
from .utils import set_transition_genes
from ..preprocessing.utils import pca
from ..configuration import DynamoAdataConfig
def recipe_kin_data(
adata,
tkey=None,
reset_X=True,
X_total_layers=False,
splicing_total_layers=False,
n_top_genes=1000,
keep_filtered_cells=None,
keep_filtered_genes=None,
keep_raw_layers=None,
del_2nd_moments=None,
ekey="M_t",
vkey="velocity_T",
basis="umap",
rm_kwargs={},
):
from ..preprocessing import recipe_monocle
from ..preprocessing.utils import pca, detect_datatype
keep_filtered_cells = DynamoAdataConfig.check_config_var(
keep_filtered_cells, DynamoAdataConfig.RECIPE_KEEP_FILTERED_CELLS_KEY
)
keep_filtered_genes = DynamoAdataConfig.check_config_var(
keep_filtered_genes, DynamoAdataConfig.RECIPE_KEEP_FILTERED_GENES_KEY
)
keep_raw_layers = DynamoAdataConfig.check_config_var(keep_raw_layers, DynamoAdataConfig.RECIPE_KEEP_RAW_LAYERS_KEY)
del_2nd_moments = DynamoAdataConfig.check_config_var(del_2nd_moments, DynamoAdataConfig.RECIPE_DEL_2ND_MOMENTS_KEY)
has_splicing, has_labeling, splicing_labeling, _ = detect_datatype(adata)
if has_splicing and has_labeling and splicing_labeling:
layers = ["X_new", "X_total", "X_uu", "X_ul", "X_su", "X_sl"]
elif has_labeling:
layers = ["X_new", "X_total"]
if not has_labeling:
raise Exception(
"This recipe is only applicable to kinetics experiment datasets that have "
"labeling data (at least either with `'uu', 'ul', 'su', 'sl'` or `'new', 'total'` "
"layers."
)
if has_splicing and has_labeling:
recipe_monocle(
adata,
tkey=tkey,
experiment_type="kin",
reset_X=reset_X,
X_total_layers=X_total_layers,
splicing_total_layers=splicing_total_layers,
n_top_genes=n_top_genes,
total_layers=True,
keep_filtered_cells=keep_filtered_cells,
keep_filtered_genes=keep_filtered_genes,
keep_raw_layers=keep_raw_layers,
**rm_kwargs,
)
tkey = adata.uns["pp"]["tkey"]
moments(adata, group=tkey, layers=layers)
CM = np.log1p(adata[:, adata.var.use_for_pca].layers["X_spliced"].A)
cm_genesums = CM.sum(axis=0)
valid_ind = np.logical_and(np.isfinite(cm_genesums), cm_genesums != 0)
valid_ind = np.array(valid_ind).flatten()
pca(adata, CM[:, valid_ind], pca_key="X_spliced_pca")
neighbors(adata, X_data=adata.obsm["X_spliced_pca"], layer="X_spliced")
conn = normalize_knn_graph(adata.obsp["connectivities"] > 0)
moments(adata, conn=conn, layers=["X_spliced", "X_unspliced"])
dynamics(
adata,
model="deterministic",
est_method="twostep",
del_2nd_moments=del_2nd_moments,
)
reduceDimension(adata, reduction_method=basis)
cell_velocities(adata, enforce=True, vkey=vkey, ekey=ekey, basis=basis)
else:
recipe_monocle(
adata,
tkey=tkey,
experiment_type="kin",
reset_X=reset_X,
X_total_layers=X_total_layers,
splicing_total_layers=splicing_total_layers,
n_top_genes=n_top_genes,
total_layers=True,
keep_filtered_cells=keep_filtered_cells,
keep_filtered_genes=keep_filtered_genes,
keep_raw_layers=keep_raw_layers,
**rm_kwargs,
)
dynamics(
adata,
model="deterministic",
est_method="twostep",
del_2nd_moments=del_2nd_moments,
)
reduceDimension(adata, reduction_method=basis)
cell_velocities(adata, basis=basis)
return adata
def recipe_deg_data(
adata,
tkey=None,
reset_X=True,
X_total_layers=False,
splicing_total_layers=False,
n_top_genes=1000,
keep_filtered_cells=None,
keep_filtered_genes=None,
keep_raw_layers=None,
del_2nd_moments=True,
fraction_for_deg=False,
ekey="M_s",
vkey="velocity_S",
basis="umap",
rm_kwargs={},
):
from ..preprocessing import recipe_monocle
from ..preprocessing.utils import pca, detect_datatype
keep_filtered_cells = DynamoAdataConfig.check_config_var(
keep_filtered_cells, DynamoAdataConfig.RECIPE_KEEP_FILTERED_CELLS_KEY
)
keep_filtered_genes = DynamoAdataConfig.check_config_var(
keep_filtered_genes, DynamoAdataConfig.RECIPE_KEEP_FILTERED_GENES_KEY
)
keep_raw_layers = DynamoAdataConfig.check_config_var(keep_raw_layers, DynamoAdataConfig.RECIPE_KEEP_RAW_LAYERS_KEY)
has_splicing, has_labeling, splicing_labeling, _ = detect_datatype(adata)
if has_splicing and has_labeling and splicing_labeling:
layers = ["X_new", "X_total", "X_uu", "X_ul", "X_su", "X_sl"]
elif has_labeling:
layers = ["X_new", "X_total"]
if not has_labeling:
raise Exception(
"This recipe is only applicable to kinetics experiment datasets that have "
"labeling data (at least either with `'uu', 'ul', 'su', 'sl'` or `'new', 'total'` "
"layers."
)
if has_splicing and has_labeling:
recipe_monocle(
adata,
tkey=tkey,
experiment_type="deg",
reset_X=reset_X,
X_total_layers=X_total_layers,
splicing_total_layers=splicing_total_layers,
n_top_genes=n_top_genes,
total_layers=True,
keep_filtered_cells=keep_filtered_cells,
keep_filtered_genes=keep_filtered_genes,
keep_raw_layers=keep_raw_layers,
**rm_kwargs,
)
tkey = adata.uns["pp"]["tkey"]
moments(adata, layers=["X_spliced", "X_unspliced"])
CM = np.log1p(adata[:, adata.var.use_for_pca].layers["X_total"].A)
cm_genesums = CM.sum(axis=0)
valid_ind = np.logical_and(np.isfinite(cm_genesums), cm_genesums != 0)
valid_ind = np.array(valid_ind).flatten()
pca(adata, CM[:, valid_ind], pca_key="X_total_pca")
neighbors(adata, X_data=adata.obsm["X_total_pca"], layer="X_total")
conn = normalize_knn_graph(adata.obsp["connectivities"] > 0)
moments(adata, conn=conn, group=tkey, layers=layers)
dynamics(
adata,
model="deterministic",
est_method="twostep",
del_2nd_moments=del_2nd_moments,
fraction_for_deg=fraction_for_deg,
)
reduceDimension(adata, reduction_method=basis)
try:
set_transition_genes(adata)
cell_velocities(adata, enforce=True, vkey=vkey, ekey=ekey, basis=basis)
except BaseException:
cell_velocities(
adata,
min_r2=adata.var.gamma_r2.min(),
enforce=True,
vkey=vkey,
ekey=ekey,
basis=basis,
)
else:
recipe_monocle(
adata,
tkey=tkey,
experiment_type="deg",
reset_X=reset_X,
X_total_layers=X_total_layers,
splicing_total_layers=splicing_total_layers,
n_top_genes=n_top_genes,
total_layers=True,
keep_filtered_cells=keep_filtered_cells,
keep_filtered_genes=keep_filtered_genes,
keep_raw_layers=keep_raw_layers,
**rm_kwargs,
)
dynamics(
adata,
model="deterministic",
del_2nd_moments=del_2nd_moments,
fraction_for_deg=fraction_for_deg,
)
reduceDimension(adata, reduction_method=basis)
return adata
def recipe_mix_kin_deg_data(
adata,
tkey=None,
reset_X=True,
X_total_layers=False,
splicing_total_layers=False,
n_top_genes=1000,
keep_filtered_cells=None,
keep_filtered_genes=None,
keep_raw_layers=None,
del_2nd_moments=None,
ekey="M_t",
vkey="velocity_T",
basis="umap",
rm_kwargs={},
):
from ..preprocessing import recipe_monocle
from ..preprocessing.utils import pca, detect_datatype
keep_filtered_cells = DynamoAdataConfig.check_config_var(
keep_filtered_cells, DynamoAdataConfig.RECIPE_KEEP_FILTERED_CELLS_KEY
)
keep_filtered_genes = DynamoAdataConfig.check_config_var(
keep_filtered_genes, DynamoAdataConfig.RECIPE_KEEP_FILTERED_GENES_KEY
)
keep_raw_layers = DynamoAdataConfig.check_config_var(keep_raw_layers, DynamoAdataConfig.RECIPE_KEEP_RAW_LAYERS_KEY)
del_2nd_moments = DynamoAdataConfig.check_config_var(del_2nd_moments, DynamoAdataConfig.RECIPE_DEL_2ND_MOMENTS_KEY)
has_splicing, has_labeling, splicing_labeling, _ = detect_datatype(adata)
if has_splicing and has_labeling and splicing_labeling:
layers = ["X_new", "X_total", "X_uu", "X_ul", "X_su", "X_sl"]
elif has_labeling:
layers = ["X_new", "X_total"]
if not has_labeling:
raise Exception(
"This recipe is only applicable to kinetics experiment datasets that have "
"labeling data (at least either with `'uu', 'ul', 'su', 'sl'` or `'new', 'total'` "
"layers."
)
if has_splicing and has_labeling:
recipe_monocle(
adata,
tkey=tkey,
experiment_type="mix_pulse_chase",
reset_X=reset_X,
X_total_layers=X_total_layers,
splicing_total_layers=splicing_total_layers,
n_top_genes=n_top_genes,
total_layers=True,
keep_filtered_cells=keep_filtered_cells,
keep_filtered_genes=keep_filtered_genes,
keep_raw_layers=keep_raw_layers,
**rm_kwargs,
)
tkey = adata.uns["pp"]["tkey"]
moments(adata, group=tkey, layers=layers)
CM = np.log1p(adata[:, adata.var.use_for_pca].layers["X_spliced"].A)
cm_genesums = CM.sum(axis=0)
valid_ind = np.logical_and(np.isfinite(cm_genesums), cm_genesums != 0)
valid_ind = np.array(valid_ind).flatten()
pca(adata, CM[:, valid_ind], pca_key="X_spliced_pca")
neighbors(adata, X_data=adata.obsm["X_spliced_pca"], layer="X_spliced")
conn = normalize_knn_graph(adata.obsp["connectivities"] > 0)
moments(adata, conn=conn, layers=["X_spliced", "X_unspliced"])
dynamics(
adata,
model="deterministic",
est_method="twostep",
del_2nd_moments=del_2nd_moments,
)
reduceDimension(adata, reduction_method=basis)
cell_velocities(adata, enforce=True, vkey=vkey, ekey=ekey, basis=basis)
else:
recipe_monocle(
adata,
tkey=tkey,
experiment_type="mix_pulse_chase",
reset_X=reset_X,
X_total_layers=X_total_layers,
splicing_total_layers=splicing_total_layers,
n_top_genes=n_top_genes,
total_layers=True,
keep_filtered_cells=keep_filtered_cells,
keep_filtered_genes=keep_filtered_genes,
keep_raw_layers=keep_raw_layers,
**rm_kwargs,
)
dynamics(
adata,
model="deterministic",
est_method="twostep",
del_2nd_moments=del_2nd_moments,
)
reduceDimension(adata, reduction_method=basis)
cell_velocities(adata, enforce=True, vkey=vkey, ekey=ekey, basis=basis)
return adata
def recipe_onde_shot_data(
adata,
tkey=None,
reset_X=True,
X_total_layers=False,
splicing_total_layers=False,
n_top_genes=1000,
keep_filtered_cells=None,
keep_filtered_genes=None,
keep_raw_layers=None,
one_shot_method="sci-fate",
del_2nd_moments=None,
ekey="M_t",
vkey="velocity_T",
basis="umap",
rm_kwargs={},
):
from ..preprocessing import recipe_monocle
from ..preprocessing.utils import pca, detect_datatype
keep_filtered_cells = DynamoAdataConfig.check_config_var(
keep_filtered_cells, DynamoAdataConfig.RECIPE_KEEP_FILTERED_CELLS_KEY
)
keep_filtered_genes = DynamoAdataConfig.check_config_var(
keep_filtered_genes, DynamoAdataConfig.RECIPE_KEEP_FILTERED_GENES_KEY
)
keep_raw_layers = DynamoAdataConfig.check_config_var(keep_raw_layers, DynamoAdataConfig.RECIPE_KEEP_RAW_LAYERS_KEY)
del_2nd_moments = DynamoAdataConfig.check_config_var(del_2nd_moments, DynamoAdataConfig.RECIPE_DEL_2ND_MOMENTS_KEY)
has_splicing, has_labeling, splicing_labeling, _ = detect_datatype(adata)
if has_splicing and has_labeling and splicing_labeling:
layers = ["X_new", "X_total", "X_uu", "X_ul", "X_su", "X_sl"]
elif has_labeling:
layers = ["X_new", "X_total"]
if not has_labeling:
raise Exception(
"This recipe is only applicable to kinetics experiment datasets that have "
"labeling data (at least either with `'uu', 'ul', 'su', 'sl'` or `'new', 'total'` "
"layers."
)
if has_splicing and has_labeling:
recipe_monocle(
adata,
tkey=tkey,
experiment_type="one-shot",
reset_X=reset_X,
X_total_layers=X_total_layers,
splicing_total_layers=splicing_total_layers,
n_top_genes=n_top_genes,
total_layers=True,
keep_filtered_cells=keep_filtered_cells,
keep_filtered_genes=keep_filtered_genes,
keep_raw_layers=keep_raw_layers,
**rm_kwargs,
)
tkey = adata.uns["pp"]["tkey"]
moments(adata, group=tkey, layers=layers)
CM = np.log1p(adata[:, adata.var.use_for_pca].layers["X_spliced"].A)
cm_genesums = CM.sum(axis=0)
valid_ind = np.logical_and(np.isfinite(cm_genesums), cm_genesums != 0)
valid_ind = np.array(valid_ind).flatten()
pca(adata, CM[:, valid_ind], pca_key="X_spliced_pca")
neighbors(adata, X_data=adata.obsm["X_spliced_pca"], layer="X_spliced")
conn = normalize_knn_graph(adata.obsp["connectivities"] > 0)
moments(adata, conn=conn, layers=["X_spliced", "X_unspliced"])
dynamics(
adata,
model="deterministic",
one_shot_method=one_shot_method,
del_2nd_moments=del_2nd_moments,
)
reduceDimension(adata, reduction_method=basis)
cell_velocities(adata, enforce=True, vkey=vkey, ekey=ekey, basis=basis)
else:
recipe_monocle(
adata,
tkey=tkey,
experiment_type="one-shot",
reset_X=reset_X,
X_total_layers=X_total_layers,
splicing_total_layers=splicing_total_layers,
n_top_genes=n_top_genes,
total_layers=True,
keep_filtered_cells=keep_filtered_cells,
keep_filtered_genes=keep_filtered_genes,
keep_raw_layers=keep_raw_layers,
**rm_kwargs,
)
dynamics(
adata,
model="deterministic",
one_shot_method=one_shot_method,
del_2nd_moments=del_2nd_moments,
)
reduceDimension(adata, reduction_method=basis)
cell_velocities(adata, enforce=True, vkey=vkey, ekey=ekey, basis=basis)
return adata
|
BSD 3-Clause New or Revised License
|
cutright/imrt-qa-data-miner
|
IQDM/utilities.py
|
moving_avg
|
python
|
def moving_avg(xyw, avg_len):
cumsum, moving_aves, x_final = [0], [], []
for i, y in enumerate(xyw['y'], 1):
cumsum.append(cumsum[i - 1] + y / xyw['w'][i - 1])
if i >= avg_len:
moving_ave = (cumsum[i] - cumsum[i - avg_len]) / avg_len
moving_aves.append(moving_ave)
x_final = [xyw['x'][i] for i in range(avg_len - 1, len(xyw['x']))]
return x_final, moving_aves
|
Calculate a moving average for a given averaging length
:param xyw: output from collapse_into_single_dates
:type xyw: dict
:param avg_len: average of these number of points, i.e., look-back window
:type avg_len: int
:return: list of x values, list of y values
:rtype: tuple
|
https://github.com/cutright/imrt-qa-data-miner/blob/85abf9dc66a139c02574c386377f46f0944c5893/IQDM/utilities.py#L120-L139
|
from os.path import isdir, join, splitext, normpath
from os import walk, listdir
import zipfile
from datetime import datetime
from dateutil.parser import parse as date_parser
import numpy as np
import codecs
DELIMITER = ','
ALTERNATE = '^'
def are_all_strings_in_text(text, list_of_strings):
for str_to_find in list_of_strings:
if str_to_find not in text:
return False
return True
def get_csv(data, columns):
clean_csv = [str(data[column]).replace(DELIMITER, ALTERNATE) for column in columns]
return DELIMITER.join(clean_csv)
def load_csv_file(file_path):
with codecs.open(file_path, 'r', encoding='utf-8', errors='ignore') as doc:
return [line.split(',') for line in doc]
def import_csv(file_path, day_first=False):
raw_data = load_csv_file(file_path)
keys = raw_data.pop(0)
keys = [key.strip() for key in keys if key.strip()] + ['file_name']
data = {key: [] for key in keys}
for row in raw_data:
for col, key in enumerate(keys):
data[key].append(row[col])
sorted_data = {key: [] for key in keys}
sorted_data['date_time_obj'] = []
date_time_objs = get_date_times(data, day_first=day_first)
for i in get_sorted_indices(date_time_objs):
for key in keys:
sorted_data[key].append(data[key][i])
sorted_data['date_time_obj'].append(date_time_objs[i])
return sorted_data
def get_file_names_from_csv_file(file_path):
raw_data = load_csv_file(file_path)
column_headers = raw_data.pop(0)
fp_start = len(column_headers)
file_names = []
for row in raw_data:
file_name_fields = [value for value in row[fp_start:]]
file_name = ','.join(file_name_fields)
file_names.append(normpath(file_name.strip()))
return file_names
def collapse_into_single_dates(x, y):
x_collapsed = [x[0]]
y_collapsed = [y[0]]
w_collapsed = [1]
for n in range(1, len(x)):
if x[n] == x_collapsed[-1]:
y_collapsed[-1] = (y_collapsed[-1] + y[n])
w_collapsed[-1] += 1
else:
x_collapsed.append(x[n])
y_collapsed.append(y[n])
w_collapsed.append(1)
return {'x': x_collapsed, 'y': y_collapsed, 'w': w_collapsed}
|
MIT License
|
nastools/homeassistant
|
homeassistant/components/light/demo.py
|
DemoLight.__init__
|
python
|
def __init__(
self, name, state, rgb=None, ct=None, brightness=180,
xy_color=(.5, .5), white=200, effect_list=None, effect=None):
self._name = name
self._state = state
self._rgb = rgb
self._ct = ct or random.choice(LIGHT_TEMPS)
self._brightness = brightness
self._xy_color = xy_color
self._white = white
self._effect_list = effect_list
self._effect = effect
|
Initialize the light.
|
https://github.com/nastools/homeassistant/blob/7ca1180bd42713f2d77bbc3f0b27b231ba8784aa/homeassistant/components/light/demo.py#L41-L53
|
import random
from homeassistant.components.light import (
ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT,
ATTR_RGB_COLOR, ATTR_WHITE_VALUE, ATTR_XY_COLOR, SUPPORT_BRIGHTNESS,
SUPPORT_COLOR_TEMP, SUPPORT_EFFECT, SUPPORT_RGB_COLOR, SUPPORT_WHITE_VALUE,
Light)
LIGHT_COLORS = [
[237, 224, 33],
[255, 63, 111],
]
LIGHT_EFFECT_LIST = ['rainbow', 'none']
LIGHT_TEMPS = [240, 380]
SUPPORT_DEMO = (SUPPORT_BRIGHTNESS | SUPPORT_COLOR_TEMP | SUPPORT_EFFECT |
SUPPORT_RGB_COLOR | SUPPORT_WHITE_VALUE)
def setup_platform(hass, config, add_devices_callback, discovery_info=None):
add_devices_callback([
DemoLight("Bed Light", False, effect_list=LIGHT_EFFECT_LIST,
effect=LIGHT_EFFECT_LIST[0]),
DemoLight("Ceiling Lights", True, LIGHT_COLORS[0], LIGHT_TEMPS[1]),
DemoLight("Kitchen Lights", True, LIGHT_COLORS[1], LIGHT_TEMPS[0])
])
class DemoLight(Light):
|
MIT License
|
minio/minio-py
|
minio/helpers.py
|
check_non_empty_string
|
python
|
def check_non_empty_string(string):
try:
if not string.strip():
raise ValueError()
except AttributeError as exc:
raise TypeError() from exc
|
Check whether given string is not empty.
|
https://github.com/minio/minio-py/blob/77c3e4086f4d4f3fc5f09b52efe03797ef418926/minio/helpers.py#L216-L222
|
from __future__ import absolute_import, division, unicode_literals
import base64
import errno
import hashlib
import math
import os
import re
import urllib.parse
from queue import Queue
from threading import BoundedSemaphore, Thread
from .sse import Sse, SseCustomerKey
from .time import to_iso8601utc
MAX_MULTIPART_COUNT = 10000
MAX_MULTIPART_OBJECT_SIZE = 5 * 1024 * 1024 * 1024 * 1024
MAX_PART_SIZE = 5 * 1024 * 1024 * 1024
MIN_PART_SIZE = 5 * 1024 * 1024
_VALID_BUCKETNAME_REGEX = re.compile(
'^[A-Za-z0-9][A-Za-z0-9\\.\\-\\_\\:]{1,61}[A-Za-z0-9]$')
_VALID_BUCKETNAME_STRICT_REGEX = re.compile(
'^[a-z0-9][a-z0-9\\.\\-]{1,61}[a-z0-9]$')
_VALID_IP_ADDRESS = re.compile(
r'^(\d+\.){3}\d+$')
_ALLOWED_HOSTNAME_REGEX = re.compile(
'^((?!-)(?!_)[A-Z_\\d-]{1,63}(?<!-)(?<!_)\\.)*((?!_)(?!-)' +
'[A-Z_\\d-]{1,63}(?<!-)(?<!_))$',
re.IGNORECASE)
_EXTRACT_REGION_REGEX = re.compile('s3[.-]?(.+?).amazonaws.com')
def quote(resource, safe='/', encoding=None, errors=None):
return urllib.parse.quote(
resource,
safe=safe,
encoding=encoding,
errors=errors,
).replace("%7E", "~")
def queryencode(query, safe='', encoding=None, errors=None):
return quote(query, safe, encoding, errors)
def headers_to_strings(headers, titled_key=False):
def _get_key(key):
return key.title() if titled_key else key
def _get_value(value):
return re.sub(
r"Credential=([^/]+)",
"Credential=*REDACTED*",
re.sub(
r"Signature=([0-9a-f]+)",
"Signature=*REDACTED*",
value if isinstance(value, str) else str(value),
),
) if titled_key else value
return "\n".join(
[
f"{_get_key(key)}: {_get_value(value)}"
for key, value in headers.items()
]
)
def _validate_sizes(object_size, part_size):
if part_size > 0:
if part_size < MIN_PART_SIZE:
raise ValueError(
f"part size {part_size} is not supported; minimum allowed 5MiB",
)
if part_size > MAX_PART_SIZE:
raise ValueError(
f"part size {part_size} is not supported; minimum allowed 5GiB",
)
if object_size >= 0:
if object_size > MAX_MULTIPART_OBJECT_SIZE:
raise ValueError(
f"object size {object_size} is not supported; "
f"maximum allowed 5TiB"
)
elif part_size <= 0:
raise ValueError(
"valid part size must be provided when object size is unknown",
)
def _get_part_info(object_size, part_size):
_validate_sizes(object_size, part_size)
if object_size < 0:
return part_size, -1
if part_size > 0:
part_size = min(part_size, object_size)
return part_size, math.ceil(object_size / part_size) if part_size else 1
part_size = math.ceil(
math.ceil(object_size / MAX_MULTIPART_COUNT) / MIN_PART_SIZE,
) * MIN_PART_SIZE
return part_size, math.ceil(object_size / part_size) if part_size else 1
def get_part_info(object_size, part_size):
part_size, part_count = _get_part_info(object_size, part_size)
if part_count > MAX_MULTIPART_COUNT:
raise ValueError(
f"object size {object_size} and part size {part_size} "
f"make more than {MAX_MULTIPART_COUNT} parts for upload"
)
return part_size, part_count
def read_part_data(stream, size, part_data=b'', progress=None):
size -= len(part_data)
while size:
data = stream.read(size)
if not data:
break
if not isinstance(data, bytes):
raise ValueError("read() must return 'bytes' object")
part_data += data
size -= len(data)
if progress:
progress.update(len(data))
return part_data
def makedirs(path):
try:
if path:
os.makedirs(path)
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
if not os.path.isdir(path):
raise ValueError(f"path {path} is not a directory") from exc
def check_bucket_name(bucket_name, strict=False):
bucket_name = str(bucket_name).strip()
if not bucket_name:
raise ValueError('Bucket name cannot be empty.')
if len(bucket_name) < 3:
raise ValueError('Bucket name cannot be less than'
' 3 characters.')
if len(bucket_name) > 63:
raise ValueError('Bucket name cannot be greater than'
' 63 characters.')
match = _VALID_IP_ADDRESS.match(bucket_name)
if match:
raise ValueError('Bucket name cannot be an ip address')
unallowed_successive_chars = ['..', '.-', '-.']
if any(x in bucket_name for x in unallowed_successive_chars):
raise ValueError('Bucket name contains invalid '
'successive chars '
+ str(unallowed_successive_chars) + '.')
if strict:
match = _VALID_BUCKETNAME_STRICT_REGEX.match(bucket_name)
if (not match) or match.end() != len(bucket_name):
raise ValueError('Bucket name contains invalid '
'characters (strictly enforced).')
match = _VALID_BUCKETNAME_REGEX.match(bucket_name)
if (not match) or match.end() != len(bucket_name):
raise ValueError(
f"Bucket name does not follow S3 standards. Bucket: {bucket_name}",
)
|
Apache License 2.0
|
aceinna/python-openimu
|
tools/bootloader.py
|
OpenIMU.set_fields
|
python
|
def set_fields(self, field_value_pairs, ws=False):
self.set_quiet()
num_fields = len(field_value_pairs)
C = [0x55, 0x55, ord('S'), ord('F'), num_fields * 4 + 1, num_fields]
FIELD = 0
VALUE = 1
for field_value in field_value_pairs:
if field_value[FIELD] == 1:
self.odr_setting = field_value[VALUE]
field_msb = (field_value[FIELD] & 0xFF00) >> 8
field_lsb = field_value[FIELD] & 0x00FF
value_msb = (field_value[VALUE] & 0xFF00) >> 8
value_lsb = field_value[VALUE] & 0x0FF
C.insert(len(C), field_msb)
C.insert(len(C), field_lsb)
C.insert(len(C), value_msb)
C.insert(len(C), value_lsb)
crc = self.calc_crc(C[2:C[4]+5])
crc_msb = (crc & 0xFF00) >> 8
crc_lsb = (crc & 0x00FF)
C.insert(len(C), crc_msb)
C.insert(len(C), crc_lsb)
self.write(C)
R = self.read(num_fields * 2 + 1 + 7)
data = []
if R[0] == 85 and R[1] == 85:
packet_crc = 256 * R[-2] + R[-1]
if self.calc_crc(R[2:R[4]+5]) == packet_crc:
if R[2] == 0 and R[3] == 0:
print('SET FIELD ERROR/FAILURE')
return
else:
self.packet_type = '{0:1c}'.format(
R[2]) + '{0:1c}'.format(R[3])
data = self.parse_packet(R[5:R[4]+5], ws)
return data
|
Executes 380 SF command for an array of fields, value pairs. SF Command sets Temporary setting for fields on 380
|
https://github.com/aceinna/python-openimu/blob/5cb6d35fb683d5847c0d268c71cdf63c895c5d34/tools/bootloader.py#L340-L378
|
import serial
import math
import string
import time
import sys
import collections
import glob
class OpenIMU:
def __init__(self, ws=False):
self.ws = ws
self.ser = None
self.synced = 0
self.stream_mode = 0
self.device_id = 0
self.connected = 0
self.odr_setting = 0
self.logging = 0
self.logger = None
self.packet_size = 0
self.packet_type = 0
self.elapsed_time_sec = 0
self.data = {}
self.filename = sys.argv[1]
self.ID = ''
self.port = 'none'
self.boot = 0
def find_device(self):
while not self.autobaud(self.find_ports()):
time.sleep(2)
def find_ports(self):
print('scanning ports')
if sys.platform.startswith('win'):
ports = ['COM%s' % (i + 1) for i in range(256)]
elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'):
ports = glob.glob('/dev/tty[A-Za-z]*')
elif sys.platform.startswith('darwin'):
ports = glob.glob('/dev/tty.*')
else:
raise EnvironmentError('Unsupported platform')
result = []
for port in ports:
try:
print('Trying: ' + port)
s = serial.Serial(port)
s.close()
result.append(port)
except (OSError, serial.SerialException):
pass
return result
def autobaud(self, ports):
for port in ports:
for baud in [230400, 115200, 57600, 38400]:
self.open(port, baud)
self.sync()
if self.stream_mode:
print('Connected Stream Mode ' +
'{0:d}'.format(baud) + ' ' + port)
break
else:
self.ser.close()
if self.stream_mode == 0:
for baud in [230400, 115200, 57600, 38400]:
self.open(port, baud)
self.device_id = self.get_id_str()
if self.device_id:
print('Connected Polled Mode ' + '{0:d}'.format(baud))
odr = self.read_fields([0x0001], 1)
if odr:
print('Saved ODR: ' + '{0:d}'.format(odr[0][1]))
self.odr_setting = odr[0][1]
self.connected = 1
self.port = port
return True
else:
self.close()
else:
odr = self.read_fields([0x0001], 1)
if odr:
print('Current ODR: ' + '{0:d}'.format(odr[0][1]))
self.odr_setting = odr[0][1]
self.device_id = self.get_id_str()
self.restore_odr()
self.connected = 1
return True
else:
print('failed to get id string')
return False
return False
def get_latest(self):
if self.stream_mode == 1:
return self.data
else:
return {'error': 'not streaming'}
def start_log(self, data):
self.logging = 1
self.logger = file_storage.LogIMU380Data(self, data)
if self.ws == False and self.odr_setting != 0:
self.connect()
def stop_log(self):
self.logging = 0
self.logger.close()
self.logger = None
def ping_test(self):
self.stream_mode = 0
C = [0x55, 0x55, 0x50, 0x4B, 0x00]
crc = self.calc_crc(C[2:4] + [0x00])
crc_msb = (crc & 0xFF00) >> 8
crc_lsb = (crc & 0x00FF)
C.insert(len(C), crc_msb)
C.insert(len(C), crc_lsb)
self.reset_buffer()
self.write(C)
R = self.read(7)
if R == bytearray(C):
return True
else:
return False
def get_fields(self, fields, ws=False):
self.set_quiet()
num_fields = len(fields)
C = [0x55, 0x55, ord('G'), ord('F'), num_fields * 2 + 1, num_fields]
for field in fields:
field_msb = (field & 0xFF00) >> 8
field_lsb = field & 0x00FF
C.insert(len(C), field_msb)
C.insert(len(C), field_lsb)
crc = self.calc_crc(C[2:C[4]+5])
crc_msb = (crc & 0xFF00) >> 8
crc_lsb = (crc & 0x00FF)
C.insert(len(C), crc_msb)
C.insert(len(C), crc_lsb)
self.write(C)
R = self.read(num_fields * 4 + 1 + 7)
data = []
if R and R[0] == 85 and R[1] == 85:
packet_crc = 256 * R[-2] + R[-1]
calc_crc = self.calc_crc(R[2:R[4]+5])
if packet_crc == calc_crc:
self.packet_type = '{0:1c}'.format(
R[2]) + '{0:1c}'.format(R[3])
data = self.parse_packet(R[5:R[4]+5], ws)
return data
def read_fields(self, fields, ws=False):
self.set_quiet()
num_fields = len(fields)
C = [0x55, 0x55, ord('R'), ord('F'), num_fields * 2 + 1, num_fields]
for field in fields:
field_msb = (field & 0xFF00) >> 8
field_lsb = field & 0x00FF
C.insert(len(C), field_msb)
C.insert(len(C), field_lsb)
crc = self.calc_crc(C[2:C[4]+5])
crc_msb = (crc & 0xFF00) >> 8
crc_lsb = (crc & 0x00FF)
C.insert(len(C), crc_msb)
C.insert(len(C), crc_lsb)
self.write(C)
R = self.read(num_fields * 4 + 1 + 7)
data = []
if len(R) and R[0] == 85 and R[1] == 85:
packet_crc = 256 * R[-2] + R[-1]
calc_crc = self.calc_crc(R[2:R[4]+5])
if packet_crc == calc_crc:
self.packet_type = '{0:1c}'.format(
R[2]) + '{0:1c}'.format(R[3])
data = self.parse_packet(R[5:R[4]+5], ws)
return data
def write_fields(self, field_value_pairs, ws=False):
self.set_quiet()
num_fields = len(field_value_pairs)
C = [0x55, 0x55, ord('W'), ord('F'), num_fields * 4 + 1, num_fields]
FIELD = 0
VALUE = 1
for field_value in field_value_pairs:
field_msb = (field_value[FIELD] & 0xFF00) >> 8
field_lsb = field_value[FIELD] & 0x00FF
if isinstance(field_value[VALUE], int):
value_msb = (field_value[VALUE] & 0xFF00) >> 8
value_lsb = field_value[VALUE] & 0x0FF
elif isinstance(field_value[VALUE], str):
value_msb = ord(field_value[VALUE][0])
value_lsb = ord(field_value[VALUE][1])
C.insert(len(C), field_msb)
C.insert(len(C), field_lsb)
C.insert(len(C), value_msb)
C.insert(len(C), value_lsb)
crc = self.calc_crc(C[2:C[4]+5])
crc_msb = (crc & 0xFF00) >> 8
crc_lsb = (crc & 0x00FF)
C.insert(len(C), crc_msb)
C.insert(len(C), crc_lsb)
self.write(C)
time.sleep(1.0)
R = self.read(num_fields * 2 + 1 + 7)
print(R)
data = []
if R[0] == 85 and R[1] == 85:
packet_crc = 256 * R[-2] + R[-1]
if self.calc_crc(R[2:R[4]+5]) == packet_crc:
if R[2] == 0 and R[3] == 0:
print('SET FIELD ERROR/FAILURE')
return
else:
self.packet_type = '{0:1c}'.format(
R[2]) + '{0:1c}'.format(R[3])
data = self.parse_packet(R[5:R[4]+5], ws)
return data
|
Apache License 2.0
|
itisfoundation/osparc-simcore
|
packages/postgres-database/src/simcore_postgres_database/cli.py
|
info
|
python
|
def info():
click.echo("Using alembic {}.{}.{}".format(*alembic_version))
cfg = _load_cache()
click.echo(f"Saved config: {hide_dict_pass(cfg)} @ {discovered_cache}")
config = _get_alembic_config_from_cache(cfg)
if config:
click.echo("Revisions history ------------")
alembic.command.history(config)
click.echo("Current version: -------------")
alembic.command.current(config, verbose=True)
|
Displays discovered config and other alembic infos
|
https://github.com/itisfoundation/osparc-simcore/blob/a50b61735381231abba2cfcd57f3314785c656b0/packages/postgres-database/src/simcore_postgres_database/cli.py#L233-L244
|
import json
import json.decoder
import logging
import os
import sys
from copy import deepcopy
from logging.config import fileConfig
from pathlib import Path
from typing import Dict, Optional
import alembic.command
import click
import docker
from alembic import __version__ as __alembic_version__
from alembic.config import Config as AlembicConfig
from simcore_postgres_database.models import *
from simcore_postgres_database.utils import (
build_url,
hide_dict_pass,
hide_url_pass,
raise_if_not_responsive,
)
from tenacity import Retrying, after_log, wait_fixed
alembic_version = tuple(int(v) for v in __alembic_version__.split(".")[0:3])
current_dir = Path(sys.argv[0] if __name__ == "__main__" else __file__).parent.resolve()
default_ini = current_dir / "alembic.ini"
migration_dir = current_dir / "migration"
discovered_cache = os.path.expanduser("~/.simcore_postgres_database_cache.json")
log = logging.getLogger("root")
if __name__ == "__main__":
fileConfig(default_ini)
def safe(if_fails_return=False):
def decorate(func):
def safe_func(*args, **kargs):
try:
res = func(*args, **kargs)
return res
except RuntimeError as err:
log.info(
"%s failed: %s",
func.__name__,
str(err),
exc_info=True,
stack_info=True,
)
except Exception:
log.info(
"%s failed unexpectedly",
func.__name__,
exc_info=True,
stack_info=True,
)
return deepcopy(if_fails_return)
return safe_func
return decorate
@safe(if_fails_return=None)
def _get_service_published_port(service_name: str) -> int:
client = docker.from_env()
services = [x for x in client.services.list() if service_name in x.name]
if not services:
raise RuntimeError(
"Cannot find published port for service '%s'. Probably services still not up"
% service_name
)
service_endpoint = services[0].attrs["Endpoint"]
if "Ports" not in service_endpoint or not service_endpoint["Ports"]:
raise RuntimeError(
"Cannot find published port for service '%s' in endpoint. Probably services still not up"
% service_name
)
published_port = service_endpoint["Ports"][0]["PublishedPort"]
return int(published_port)
def _get_alembic_config_from_cache(
force_cfg: Optional[Dict] = None,
) -> Optional[AlembicConfig]:
try:
if force_cfg:
cfg = force_cfg
else:
cfg = _load_cache(raise_if_error=True)
url = build_url(**cfg)
except Exception:
log.debug(
"Cannot open cache or cannot build URL", exc_info=True, stack_info=True
)
click.echo("Invalid database config, please run discover first", err=True)
_reset_cache()
return None
config = AlembicConfig(default_ini)
config.set_main_option("script_location", str(migration_dir))
config.set_main_option("sqlalchemy.url", str(url))
return config
def _load_cache(*, raise_if_error=False) -> Dict:
try:
with open(discovered_cache) as fh:
cfg = json.load(fh)
except (FileNotFoundError, json.decoder.JSONDecodeError):
if raise_if_error:
raise
return {}
return cfg
def _reset_cache():
if os.path.exists(discovered_cache):
os.remove(discovered_cache)
click.echo("Removed %s" % discovered_cache)
DEFAULT_HOST = "postgres"
DEFAULT_PORT = 5432
DEFAULT_DB = "simcoredb"
@click.group()
def main():
@main.command()
@click.option("--user", "-u")
@click.option("--password", "-p")
@click.option("--host")
@click.option("--port", type=int)
@click.option("--database", "-d")
def discover(**cli_inputs) -> Optional[Dict]:
click.echo("Discovering database ...")
cli_cfg = {key: value for key, value in cli_inputs.items() if value is not None}
def _test_cached() -> Dict:
cfg = _load_cache(raise_if_error=True)
cfg.update(cli_cfg)
return cfg
def _test_env() -> Dict:
cfg = {
"user": os.getenv("POSTGRES_USER"),
"password": os.getenv("POSTGRES_PASSWORD"),
"host": os.getenv("POSTGRES_HOST", DEFAULT_HOST),
"port": int(os.getenv("POSTGRES_PORT") or DEFAULT_PORT),
"database": os.getenv("POSTGRES_DB", DEFAULT_DB),
}
cfg.update(cli_cfg)
return cfg
def _test_swarm() -> Dict:
cfg = _test_env()
cfg["host"] = "127.0.0.1"
cfg["port"] = _get_service_published_port(cli_cfg.get("host", DEFAULT_HOST))
cfg.setdefault("database", DEFAULT_DB)
return cfg
for test in [_test_cached, _test_env, _test_swarm]:
try:
click.echo("-> {0.__name__}: {0.__doc__}".format(test))
cfg: Dict = test()
cfg.update(cli_cfg)
url = build_url(**cfg)
click.echo(f"ping {test.__name__}: {hide_url_pass(url)} ...")
raise_if_not_responsive(url, verbose=False)
print("Saving config ")
click.echo(f"Saving config at {discovered_cache}: {hide_dict_pass(cfg)}")
with open(discovered_cache, "wt") as fh:
json.dump(cfg, fh, sort_keys=True, indent=4)
print("Saving config at ")
click.secho(
f"{test.__name__} succeeded: {hide_url_pass(url)} is online",
blink=False,
bold=True,
fg="green",
)
return cfg
except Exception as err:
inline_msg = str(err).replace("\n", ". ")
click.echo(f"<- {test.__name__} failed : {inline_msg}")
_reset_cache()
click.secho("Sorry, database not found !!", blink=False, bold=True, fg="red")
return None
@main.command()
|
MIT License
|
phype/purei9_unofficial
|
src/purei9_unofficial/common.py
|
AbstractRobot.stopclean
|
python
|
def stopclean(self):
raise Exception("Not implemented")
|
Tell the Robot to stop cleaning
|
https://github.com/phype/purei9_unofficial/blob/fd07b1d637f9310a394e3290d9f9478078581155/src/purei9_unofficial/common.py#L92-L94
|
from enum import Enum
BatteryStatus = {
1: "Dead",
2: "CriticalLow",
3: "Low",
4: "Medium",
5: "Normal",
6: "High",
}
RobotStates = {
1: "Cleaning",
2: "Paused Cleaning",
3: "Spot Cleaning",
4: "Paused Spot Cleaning",
5: "Return",
6: "Paused Return",
7: "Return for Pitstop",
8: "Paused Return for Pitstop",
9: "Charging",
10: "Sleeping",
11: "Error",
12: "Pitstop",
13: "Manual Steering",
14: "Firmware Upgrade"
}
class PowerMode(Enum):
LOW = 1
MEDIUM = 2
HIGH = 3
class ZoneType(Enum):
clean = 0
avoid = 1
class CleaningSessionResult(Enum):
unknown0 = 0
unknown1 = 1
unknown2 = 2
unknown3 = 3
endedNotFindingCharger = 4
unknown5 = 4
unknown6 = 5
unknown7 = 6
unknown8 = 7
cleaningFinishedSuccessfulInCharger = 9
cleaningFinishedSuccessfulInStartPose = 10
abortedByUser = 11
unknown12 = 12
unknown13 = 13
unknown14 = 14
unknown15 = 15
unknown16 = 16
unknown17 = 17
class CleaningSession:
def __init__(self, starttime, duration, cleandearea, endstatus=None, imageurl=None, mapid=None, error=None):
self.starttime = starttime
self.duration = duration
self.cleandearea = cleandearea
self.endstatus = endstatus
self.imageurl = imageurl
self.mapid = mapid
self.error = error
class AbstractRobot:
def __init__(self):
pass
def getid(self):
raise Exception("Not implemented")
def getstatus(self):
raise Exception("Not implemented")
def getfirmware(self):
raise Exception("Not implemented")
def getname(self):
raise Exception("Not implemented")
def startclean(self):
raise Exception("Not implemented")
|
MIT License
|
edisonleeeee/graphgallery
|
graphgallery/gallery/trainer.py
|
Trainer.build
|
python
|
def build(self, **kwargs):
if self._graph is None:
raise RuntimeError("Please call 'trainer.setup_graph(graph)' first.")
use_tfn = kwargs.get("use_tfn", True)
if self.backend == "tensorflow":
with self.backend.device(self.device):
self.model, kwargs = gf.wrapper(self.model_step)(**kwargs)
if use_tfn:
self.model.use_tfn()
else:
kwargs.pop("use_tfn", None)
model, kwargs = gf.wrapper(self.model_step)(**kwargs)
self.model = model.to(self.device)
self.cfg.model.merge_from_dict(kwargs)
return self
|
This method is used for build your model, which
accepts only keyword arguments in your defined method 'model_step'.
Note:
-----
This method should be called after `process`.
Commonly used keyword arguments:
--------------------------------
hids: int or a list of them,
hidden units for each hidden layer.
acts: string or a list of them,
activation functions for each layer.
dropout: float scalar,
dropout used in the model.
lr: float scalar,
learning rate used for the model.
weight_decay: float scalar,
weight decay used for the model weights.
bias: bool,
whether to use bias in each layer.
use_tfn: bool,
this argument is only used for TensorFlow backend, if `True`, it will decorate
the model training and testing with `tf.function` (See `graphgallery.nn.modes.tf_engine.TFEngine`).
By default, it was `True`, which can accelerate the training and inference, by it may cause
several errors.
other arguments (if have) will be passed into your method 'model_step'.
|
https://github.com/edisonleeeee/graphgallery/blob/4eec9c5136bda14809bd22584b26cc346cdb633b/graphgallery/gallery/trainer.py#L161-L204
|
import os
import sys
import warnings
import importlib
import inspect
import os.path as osp
import numpy as np
from graphgallery.gallery.callbacks import ModelCheckpoint, CallbackList, EarlyStopping, ProgbarLogger, History
from torch.utils.data import DataLoader, Dataset
import graphgallery as gg
from graphgallery import functional as gf
from graphgallery.data.io import makedirs_from_filepath
from graphgallery.gallery import Model
from graphgallery.utils import Progbar
warnings.filterwarnings(
'ignore',
message='.*Converting sparse IndexedSlices to a dense Tensor of unknown shape.*')
warnings.filterwarnings(
'ignore', message='.*to a dense Tensor of unknown shape.*')
def format_doc(d):
msg = ""
for i, (k, v) in enumerate(d.items()):
if v != "UNSPECIDIED":
msg += f"({i + 1}) `{k}`, Default is `{v}` \n"
else:
msg += f"({i + 1}) `{k}`, UNSPECIDIED position argument\n"
return msg
def get_doc_dict(func):
ArgSpec = inspect.getfullargspec(func)
args = ArgSpec.args if ArgSpec.args else []
args = args[1:] if args[0] == "self" else args
defaults = ArgSpec.defaults if ArgSpec.defaults else []
delta_l = len(args) - len(defaults)
defaults = ["UNSPECIDIED"] * delta_l + list(defaults)
d = dict(zip(args, defaults))
return d
def make_docs(*func):
d = {}
for f in func:
d.update(get_doc_dict(f))
return format_doc(d)
def unravel_batch(batch):
inputs = labels = out_index = None
if isinstance(batch, (list, tuple)):
inputs = batch[0]
labels = batch[1]
if len(batch) > 2:
out_index = batch[-1]
else:
inputs = batch
if isinstance(labels, (list, tuple)) and len(labels) == 1:
labels = labels[0]
if isinstance(out_index, (list, tuple)) and len(out_index) == 1:
out_index = out_index[0]
return inputs, labels, out_index
class Trainer(Model):
def setup_cfg(self):
try:
task_module = self.__module__.split('.')[2]
gallery_module = '.'.join(__name__.split('.')[:-1])
except:
default_setup = gg.gallery.nodeclas.default
default_setup.default_cfg_setup(self.cfg)
print('Something error when finding default setup file. Using Node Classificatioon config as default', file=sys.stderr)
return
try:
default_setup = importlib.import_module(f".{task_module}.default", gallery_module)
except ModuleNotFoundError:
raise RuntimeError(f"default setup function `{gallery_module}.{task_module}.default.default_cfg_setup` not found!")
default_setup.default_cfg_setup(self.cfg)
@np.deprecate(old_name="make_data",
message=("the method `trainer.make_data` is currently deprecated from 0.9.0,"
" please use `trainer.setup_graph` instead."))
def make_data(self, *args, **kwargs):
return self.setup_graph(*args, **kwargs)
def setup_graph(self, graph, graph_transform=None, device=None, **kwargs):
self.empty_cache()
model = self.model
if model is not None and hasattr(model, 'empty_cache'):
model.empty_cache()
self.graph = gf.get(graph_transform)(graph)
cfg = self.cfg.data
if device is not None:
self.data_device = gf.device(device, self.backend)
else:
self.data_device = self.device
cfg.device = device
_, kwargs = gf.wrapper(self.data_step)(**kwargs)
kwargs['graph_transform'] = graph_transform
cfg.merge_from_dict(kwargs)
for k, v in kwargs.items():
if k.endswith("transform"):
setattr(self.transform, k, gf.get(v))
return self
def data_step(self, *args, **kwargs):
raise NotImplementedError
|
MIT License
|
ascribe/pyspool
|
spool/spool.py
|
Spool.__init__
|
python
|
def __init__(self, testnet=False, service='blockr', username='',
password='', host='', port='', fee=None, token=None):
self.testnet = testnet
self._netcode = 'XTN' if testnet else 'BTC'
self._t = Transactions(service=service, testnet=testnet, username=username,
password=password, host=host, port=port)
self._spents = Queue(maxsize=self.SPENTS_QUEUE_MAXSIZE)
self.fee = fee or self.FEE
self.token = token or self.TOKEN
|
Args:
testnet (bool): Whether to use the mainnet or testnet.
Defaults to the mainnet (:const:`False`).
service (str): Bitcoin communication interface: ``'blockr'``,
``'daemon'``, or ``'regtest'``. ``'blockr'`` refers to the
public api, whereas ``'daemon'`` and ``'regtest'`` refer
to the jsonrpc inteface. Defaults to ``'blockr'``.
username (str): username for jsonrpc communications
password (str): password for jsonrpc communications
hostname (str): hostname of the bitcoin node when using jsonrpc
port (str): port number of the bitcoin node when using jsonrpc
fee (int): transaction fee
token (int): token
|
https://github.com/ascribe/pyspool/blob/f8b10df1e7d2ea7950dde433c1cb6d5225112f4f/spool/spool.py#L71-L96
|
from __future__ import absolute_import, division, unicode_literals
from future import standard_library
standard_library.install_aliases()
from builtins import object, range
from past.utils import old_div
from queue import Queue
from transactions import Transactions
from .spoolverb import Spoolverb
from .utils import dispatch
class SpoolFundsError(Exception):
def __init__(self, message):
self.message = message
def __str__(self):
return self.message
class Spool(object):
FEE = 30000
TOKEN = 3000
SPENTS_QUEUE_MAXSIZE = 50
|
Apache License 2.0
|
f1ashhimself/uisoup
|
uisoup/interfaces/i_element.py
|
IElement.is_checked
|
python
|
def is_checked(self):
|
Indicates checked state.
|
https://github.com/f1ashhimself/uisoup/blob/c2e800ebabdbcef2dea8eecad1d01450bc636332/uisoup/interfaces/i_element.py#L100-L103
|
__author__ = 'f1ashhimself@gmail.com'
import re
from inspect import ismethod
from types import FunctionType
from abc import ABCMeta, abstractmethod, abstractproperty
import xml.dom.minidom
from ..utils.common import CommonUtils
if CommonUtils.is_python_3():
unicode = str
class IElement(object):
__metaclass__ = ABCMeta
@abstractmethod
def click(self, x_offset=None, y_offset=None):
@abstractmethod
def right_click(self, x_offset=None, y_offset=None):
@abstractmethod
def double_click(self, x_offset=None, y_offset=None):
@abstractmethod
def drag_to(self, x, y, x_offset=None, y_offset=None, smooth=True):
@abstractproperty
def proc_id(self):
@abstractproperty
def is_top_level_window(self):
@abstractproperty
def is_selected(self):
@abstractproperty
|
Apache License 2.0
|
nervanasystems/ngraph-neon
|
src/neon/util/generics.py
|
TypeMethods.get_handler
|
python
|
def get_handler(self, dispatch_type):
try:
return self.type_cache[dispatch_type]
except KeyError:
methods = []
for t in dispatch_type.__mro__:
f = self
while True:
method, next_method_arg = f.methods.get(t, (None, None))
if next_method_arg is None:
next_method_arg = f.next_method_arg
if method:
methods.append((next_method_arg, method))
extends = f.extends
if extends is not None:
f = extends.type_methods
else:
break
def make_wrapped_method(next_method_arg, next_method, method):
@wraps(method)
def wrapped_method(*args, **kwargs):
new_args = list(args[:next_method_arg])
new_args.append(next_method)
new_args.extend(args[next_method_arg:])
return method(*new_args, **kwargs)
return wrapped_method
def next_method(*args, **kwargs):
raise ValueError()
for next_method_arg, method in reversed(methods):
if next_method_arg is not None:
next_method = make_wrapped_method(next_method_arg, next_method, method)
else:
next_method = method
self.type_cache[dispatch_type] = next_method
return next_method
|
Returns the method to handle dispatch_value.
Args:
dispatch_value: The argument that controls method selection.
Returns:
A callable.
|
https://github.com/nervanasystems/ngraph-neon/blob/8988ab90ee81c8b219ea5c374702e56d7f383302/src/neon/util/generics.py#L114-L179
|
from functools import wraps
_use_default = object()
class TypeMethods(object):
def __init__(self,
dispatch_type_fun,
next_method_arg=None,
dispatch_base_type=object,
extends=None,
**kvargs):
super(TypeMethods, self).__init__(**kvargs)
self.methods = {}
self.type_cache = {}
self.extends = extends
self.super_type_methods = set()
if extends is not None:
self.extends.type_methods.super_type_methods.add(self)
self.dispatch_base_type = dispatch_base_type
self.dispatch_type_fun = dispatch_type_fun
self.next_method_arg = next_method_arg
def on_type_wrapper(self, generic_function, dispatch_type, next_method_arg):
if next_method_arg is _use_default:
next_method_arg = self.next_method_arg
def add_method(method):
if not issubclass(dispatch_type, self.dispatch_base_type):
raise ValueError("Dispatch type {} must be a subclass of `{}`"
.format(dispatch_type, self.dispatch_base_type))
self.methods[dispatch_type] = (method, next_method_arg)
self.clear_cache()
return generic_function
return add_method
def clear_cache(self):
self.type_cache = {}
for sup in self.super_type_methods:
sup.clear_cache()
self.__all_methods = None
|
Apache License 2.0
|
bemmu/pynamecheap
|
namecheap.py
|
Api.domains_getList
|
python
|
def domains_getList(self, ListType=None, SearchTerm=None, PageSize=None, SortBy=None):
extra_payload = {'Page': 1}
if ListType:
extra_payload['ListType'] = ListType
if SearchTerm:
extra_payload['SearchTerm'] = SearchTerm
if PageSize:
extra_payload['PageSize'] = PageSize
if SortBy:
extra_payload['SortBy'] = SortBy
payload, extra_payload = self._payload('namecheap.domains.getList', extra_payload)
return self.LazyGetListIterator(self, payload)
|
Returns an iterable of dicts. Each dict represents one
domain name the user has registered, for example
{
'Name': 'coolestfriends.com',
'Created': '04/11/2012',
'Expires': '04/11/2018',
'ID': '8385859',
'AutoRenew': 'false',
'IsLocked': 'false',
'User': 'Bemmu',
'IsExpired': 'false',
'WhoisGuard': 'NOTPRESENT'
}
|
https://github.com/bemmu/pynamecheap/blob/1657852993bb0a7bfdc07c44977c88409bc7753a/namecheap.py#L442-L471
|
import sys
import time
import requests
from xml.etree.ElementTree import fromstring
inPy3k = sys.version_info[0] == 3
ENDPOINTS = {
'sandbox': 'https://api.sandbox.namecheap.com/xml.response',
'production': 'https://api.namecheap.com/xml.response',
}
NAMESPACE = "http://api.namecheap.com/xml.response"
DEFAULT_ATTEMPTS_COUNT = 1
DEFAULT_ATTEMPTS_DELAY = 0.1
class ApiError(Exception):
def __init__(self, number, text):
Exception.__init__(self, '%s - %s' % (number, text))
self.number = number
self.text = text
class Api(object):
def __init__(self, ApiUser, ApiKey, UserName, ClientIP,
sandbox=True, debug=True,
attempts_count=DEFAULT_ATTEMPTS_COUNT,
attempts_delay=DEFAULT_ATTEMPTS_DELAY):
self.ApiUser = ApiUser
self.ApiKey = ApiKey
self.UserName = UserName
self.ClientIP = ClientIP
self.endpoint = ENDPOINTS['sandbox' if sandbox else 'production']
self.debug = debug
self.payload_limit = 10
self.attempts_count = attempts_count
self.attempts_delay = attempts_delay
def domains_create(
self,
DomainName, FirstName, LastName,
Address1, City, StateProvince, PostalCode, Country, Phone,
EmailAddress, Address2=None, years=1, WhoisGuard=False
):
contact_types = ['Registrant', 'Tech', 'Admin', 'AuxBilling']
extra_payload = {
'DomainName': DomainName,
'years': years
}
if WhoisGuard:
extra_payload.update({
'AddFreeWhoisguard': 'yes',
'WGEnabled': 'yes',
})
for contact_type in contact_types:
extra_payload.update({
'%sFirstName' % contact_type: FirstName,
'%sLastName' % contact_type: LastName,
'%sAddress1' % contact_type: Address1,
'%sCity' % contact_type: City,
'%sStateProvince' % contact_type: StateProvince,
'%sPostalCode' % contact_type: PostalCode,
'%sCountry' % contact_type: Country,
'%sPhone' % contact_type: Phone,
'%sEmailAddress' % contact_type: EmailAddress,
})
if Address2:
extra_payload['%sAddress2' % contact_type] = Address2
self._call('namecheap.domains.create', extra_payload)
def _payload(self, Command, extra_payload={}):
payload = {
'ApiUser': self.ApiUser,
'ApiKey': self.ApiKey,
'UserName': self.UserName,
'ClientIP': self.ClientIP,
'Command': Command,
}
if len(extra_payload) < self.payload_limit:
payload.update(extra_payload)
extra_payload = {}
return payload, extra_payload
def _fetch_xml(self, payload, extra_payload = None):
attempts_left = self.attempts_count
while attempts_left > 0:
if extra_payload:
r = requests.post(self.endpoint, params=payload, data=extra_payload)
else:
r = requests.post(self.endpoint, params=payload)
if 200 <= r.status_code <= 299:
break
if attempts_left <= 1:
raise ApiError('1', 'Did not receive 200 (Ok) response')
if self.debug:
print('Received status %d ... retrying ...' % (r.status_code))
time.sleep(self.attempts_delay)
attempts_left -= 1
if self.debug:
print("--- Request ---")
print(r.url)
print(extra_payload)
print("--- Response ---")
print(r.text)
xml = fromstring(r.text)
if xml.attrib['Status'] == 'ERROR':
xpath = './/{%(ns)s}Errors/{%(ns)s}Error' % {'ns': NAMESPACE}
error = xml.find(xpath)
raise ApiError(error.attrib['Number'], error.text)
return xml
def _call(self, Command, extra_payload={}):
payload, extra_payload = self._payload(Command, extra_payload)
xml = self._fetch_xml(payload, extra_payload)
return xml
class LazyGetListIterator(object):
def _get_more_results(self):
xml = self.api._fetch_xml(self.payload)
xpath = './/{%(ns)s}CommandResponse/{%(ns)s}DomainGetListResult/{%(ns)s}Domain' % {'ns': NAMESPACE}
domains = xml.findall(xpath)
for domain in domains:
self.results.append(domain.attrib)
self.payload['Page'] += 1
def __init__(self, api, payload):
self.api = api
self.payload = payload
self.results = []
self.i = -1
def __iter__(self):
return self
def __next__(self):
self.i += 1
if self.i >= len(self.results):
self._get_more_results()
if self.i >= len(self.results):
raise StopIteration
else:
return self.results[self.i]
next = __next__
def domains_dns_setDefault(self, domain):
sld, tld = domain.split(".")
self._call("namecheap.domains.dns.setDefault", {
'SLD': sld,
'TLD': tld
})
def domains_check(self, domains):
if not inPy3k:
if isinstance(domains, basestring):
return self.domains_check([domains]).items()[0][1]
else:
if isinstance(domains, str):
return list(self.domains_check([domains]).items())[0][1]
extra_payload = {'DomainList': ",".join(domains)}
xml = self._call('namecheap.domains.check', extra_payload)
xpath = './/{%(ns)s}CommandResponse/{%(ns)s}DomainCheckResult' % {'ns': NAMESPACE}
results = {}
for check_result in xml.findall(xpath):
results[check_result.attrib['Domain']] = check_result.attrib['Available'] == 'true'
return results
@classmethod
def _tag_without_namespace(cls, element):
return element.tag.replace("{%s}" % NAMESPACE, "")
@classmethod
def _list_of_dictionaries_to_numbered_payload(cls, l):
return dict(sum([
[(k + str(i + 1), v) for k, v in d.items()] for i, d in enumerate(l)
], []))
@classmethod
def _elements_names_fix(self, host_record):
conversion_map = [
("Name", "HostName"),
("Type", "RecordType")
]
for field in conversion_map:
if field[0] in host_record:
host_record[field[1]] = host_record[field[0]]
del(host_record[field[0]])
return host_record
def domains_getContacts(self, DomainName):
xml = self._call('namecheap.domains.getContacts', {'DomainName': DomainName})
xpath = './/{%(ns)s}CommandResponse/{%(ns)s}DomainContactsResult/*' % {'ns': NAMESPACE}
results = {}
for contact_type in xml.findall(xpath):
fields_for_one_contact_type = {}
for contact_detail in contact_type.findall('*'):
fields_for_one_contact_type[self._tag_without_namespace(contact_detail)] = contact_detail.text
results[self._tag_without_namespace(contact_type)] = fields_for_one_contact_type
return results
def domains_dns_setHosts(self, domain, host_records):
extra_payload = self._list_of_dictionaries_to_numbered_payload(host_records)
sld, tld = domain.split(".")
extra_payload.update({
'SLD': sld,
'TLD': tld
})
self._call("namecheap.domains.dns.setHosts", extra_payload)
def domains_dns_setCustom(self, domain, host_records):
extra_payload = host_records
sld, tld = domain.split(".")
extra_payload['SLD'] = sld
extra_payload['TLD'] = tld
self._call("namecheap.domains.dns.setCustom", extra_payload)
def domains_dns_getHosts(self, domain):
sld, tld = domain.split(".")
extra_payload = {
'SLD': sld,
'TLD': tld
}
xml = self._call("namecheap.domains.dns.getHosts", extra_payload)
xpath = './/{%(ns)s}CommandResponse/{%(ns)s}DomainDNSGetHostsResult/*' % {'ns': NAMESPACE}
results = []
for host in xml.findall(xpath):
results.append(host.attrib)
return results
def domains_dns_addHost(self, domain, host_record):
host_records_remote = self.domains_dns_getHosts(domain)
print("Remote: %i" % len(host_records_remote))
host_records_remote.append(host_record)
host_records_remote = [self._elements_names_fix(x) for x in host_records_remote]
print("To set: %i" % len(host_records_remote))
extra_payload = self._list_of_dictionaries_to_numbered_payload(host_records_remote)
sld, tld = domain.split(".")
extra_payload.update({
'SLD': sld,
'TLD': tld
})
self._call("namecheap.domains.dns.setHosts", extra_payload)
def domains_dns_delHost(self, domain, host_record):
host_records_remote = self.domains_dns_getHosts(domain)
print("Remote: %i" % len(host_records_remote))
host_records_new = []
for r in host_records_remote:
cond_type = r["Type"] == host_record["Type"]
cond_name = r["Name"] == host_record["Name"]
cond_addr = r["Address"] == host_record["Address"]
if cond_type and cond_name and cond_addr:
pass
else:
host_records_new.append(r)
host_records_new = [self._elements_names_fix(x) for x in host_records_new]
print("To set: %i" % len(host_records_new))
if len(host_records_remote) != len(host_records_new) + 1:
sys.stderr.write(
"Something went wrong while removing host record, delta > 1: %i -> %i, aborting API call.\n" % (
len(host_records_remote),
len(host_records_new)
)
)
return False
extra_payload = self._list_of_dictionaries_to_numbered_payload(host_records_new)
sld, tld = domain.split(".")
extra_payload.update({
'SLD': sld,
'TLD': tld
})
self._call("namecheap.domains.dns.setHosts", extra_payload)
|
MIT License
|
rigetti/reference-qvm
|
referenceqvm/qvm_stabilizer.py
|
QVM_Stabilizer._apply_phase
|
python
|
def _apply_phase(self, instruction):
qubit_label = [value_get(x) for x in instruction.qubits][0]
for i in range(2 * self.num_qubits):
self.tableau[i, -1] = self.tableau[i, -1] ^ (self.tableau[i, qubit_label] * self.tableau[i, qubit_label + self.num_qubits])
self.tableau[i, qubit_label + self.num_qubits] = self.tableau[i, qubit_label + self.num_qubits] ^ self.tableau[i, qubit_label]
|
Apply the phase gate instruction ot the tableau
:param instruction: pyquil abstract instruction.
|
https://github.com/rigetti/reference-qvm/blob/e4ca313928f72b3d2348a3f9abfec6607944c59e/referenceqvm/qvm_stabilizer.py#L412-L421
|
from functools import reduce
from pyquil.quil import Program, get_classical_addresses_from_program
from pyquil.quilbase import *
from pyquil.paulis import PauliTerm, sI, sZ, sX, sY
from pyquil.wavefunction import Wavefunction
from referenceqvm.qam import QAM
from referenceqvm.gates import stabilizer_gate_matrix
from referenceqvm.unitary_generator import value_get, tensor_up
from referenceqvm.stabilizer_utils import (project_stabilized_state,
symplectic_inner_product,
binary_stabilizer_to_pauli_stabilizer)
class QVM_Stabilizer(QAM):
def __init__(self, num_qubits=None, program=None, program_counter=None,
classical_memory=None, gate_set=stabilizer_gate_matrix,
defgate_set=None):
super(QVM_Stabilizer, self).__init__(num_qubits=num_qubits, program=program,
program_counter=program_counter,
classical_memory=classical_memory,
gate_set=gate_set,
defgate_set=defgate_set)
self.all_inst = False
if num_qubits is None:
self.tableau = None
else:
self.tableau = self._n_qubit_tableau(num_qubits)
def load_program(self, pyquil_program):
if not isinstance(pyquil_program, Program):
raise TypeError("I can only generate from pyQuil programs")
if self.all_inst is None:
raise NotImplementedError("QAM needs to be subclassed in order to "
"load program")
invalid = False
for instr in pyquil_program:
if isinstance(instr, Gate):
if not instr.name in self.gate_set.keys():
invalid = True
break
elif isinstance(instr, Measurement):
pass
else:
invalid = True
break
if invalid is True and self.all_inst is False:
raise TypeError("Some gates used are not allowed in this QAM")
self.program = pyquil_program
self.program_counter = 0
q_max, c_max = self.identify_bits()
if c_max <= 512:
c_max = 512
self.num_qubits = q_max
self.classical_memory = np.zeros(c_max).astype(bool)
def _n_qubit_tableau(self, num_qubits):
tableau = np.zeros((2 * num_qubits, (2 * num_qubits) + 1),
dtype=int)
for ii in range(2 * self.num_qubits):
tableau[ii, ii] = 1
return tableau
def transition(self, instruction):
self.pre()
self._transition(instruction)
self.post()
return self.program_counter == len(self.program)
def pre(self):
pass
def post(self):
pass
def _transition(self, instruction):
if isinstance(instruction, Measurement):
self._apply_measurement(instruction)
self.program_counter += 1
elif isinstance(instruction, Gate):
if instruction.name == 'H':
self._apply_hadamard(instruction)
elif instruction.name == 'S':
self._apply_phase(instruction)
elif instruction.name == 'CNOT':
self._apply_cnot(instruction)
elif instruction.name == 'I':
pass
else:
raise TypeError("We checked for correct gate types previously" +
" so the impossible has happened!")
self.program_counter += 1
elif isinstance(instruction, Jump):
self.program_counter = self.find_label(instruction.target)
elif isinstance(instruction, JumpTarget):
self.program_counter += 1
def run(self, pyquil_program, classical_addresses=None, trials=1):
self.load_program(pyquil_program)
if classical_addresses is None:
classical_addresses = get_classical_addresses_from_program(pyquil_program)
results = []
for _ in range(trials):
self.tableau = self._n_qubit_tableau(self.num_qubits)
self.kernel()
results.append(list(map(int, self.classical_memory[classical_addresses])))
assert results[-1] == [int(b) for b in self.classical_memory[classical_addresses]]
self.memory_reset()
self.program_counter = 0
return results
def density(self, pyquil_program):
self.load_program(pyquil_program)
self.tableau = self._n_qubit_tableau(self.num_qubits)
self.kernel()
stabilizers = binary_stabilizer_to_pauli_stabilizer(self.stabilizer_tableau())
pauli_ops = reduce(lambda x, y: x * y, [0.5 * (sI(0) + b) for b in stabilizers])
return tensor_up(pauli_ops, self.num_qubits)
def wavefunction(self, program):
self.load_program(program)
self.tableau = self._n_qubit_tableau(self.num_qubits)
self.kernel()
stabilizers = binary_stabilizer_to_pauli_stabilizer(self.stabilizer_tableau())
stabilizer_state = project_stabilized_state(stabilizers)
stabilizer_state = stabilizer_state.toarray()
return Wavefunction(stabilizer_state.flatten())
def stabilizer_tableau(self):
return self.tableau[self.num_qubits:, :]
def destabilizer_tableau(self):
return self.tableau[:self.num_qubits, :]
def _rowsum(self, h, i):
phase_accumulator = self._rowsum_phase_accumulator(h, i)
if phase_accumulator % 4 == 0:
self.tableau[h, -1] = 0
elif phase_accumulator % 4 == 2:
self.tableau[h, -1] = 1
else:
raise ValueError("An impossible value for the phase_accumulator has occurred")
for j in range(self.num_qubits):
self.tableau[h, j] = self.tableau[i, j] ^ self.tableau[h, j]
self.tableau[h, j + self.num_qubits] = self.tableau[i, j + self.num_qubits] ^ self.tableau[h, j + self.num_qubits]
def _rowsum_phase_accumulator(self, h, i):
phase_accumulator = 0
for j in range(self.num_qubits):
phase_accumulator += self._g_update(self.tableau[i, j],
self.tableau[i, self.num_qubits + j],
self.tableau[h, j],
self.tableau[h, self.num_qubits + j])
phase_accumulator += 2 * self.tableau[h, -1]
phase_accumulator += 2 * self.tableau[i, -1]
return phase_accumulator % 4
def _g_update(self, x1, z1, x2, z2):
if x1 == z1 == 0:
return 0
if x1 == z1 == 1:
return z2 - x2
if x1 == 1 and z1 == 0:
return z2 * (2 * x2 - 1)
if x1 == 0 and z1 == 1:
return x2 * (1 - 2 * z2)
raise ValueError("We were unable to multiply the pauli operators" +
" together!")
def _apply_cnot(self, instruction):
a, b = [value_get(x) for x in instruction.qubits]
for i in range(2 * self.num_qubits):
self.tableau[i, -1] = self._cnot_phase_update(i, a, b)
self.tableau[i, b] = self.tableau[i, b] ^ self.tableau[i, a]
self.tableau[i, a + self.num_qubits] = self.tableau[i, a + self.num_qubits] ^ self.tableau[i, b + self.num_qubits]
def _cnot_phase_update(self, i, c, t):
return self.tableau[i, -1] ^ (self.tableau[i, c] * self.tableau[i, t + self.num_qubits]) * (self.tableau[i, t] ^ self.tableau[i, c + self.num_qubits] ^ 1)
def _apply_hadamard(self, instruction):
qubit_label = [value_get(x) for x in instruction.qubits][0]
for i in range(2 * self.num_qubits):
self.tableau[i, -1] = self.tableau[i, -1] ^ (self.tableau[i, qubit_label] * self.tableau[i, qubit_label + self.num_qubits])
self.tableau[i, [qubit_label, qubit_label + self.num_qubits]] = self.tableau[i, [qubit_label + self.num_qubits, qubit_label]]
|
Apache License 2.0
|
tmm1/graphite
|
whisper/whisper.py
|
update_many
|
python
|
def update_many(path,points):
if not points: return
points = [ (int(t),float(v)) for (t,v) in points]
points.sort(key=lambda p: p[0],reverse=True)
fh = open(path,'r+b')
return file_update_many(fh, points)
|
update_many(path,points)
path is a string
points is a list of (timestamp,value) points
|
https://github.com/tmm1/graphite/blob/8f17c2c48412270b8f4e849b16bf55866f5084cb/whisper/whisper.py#L529-L539
|
import os, struct, time, operator, itertools
try:
import fcntl
CAN_LOCK = True
except ImportError:
CAN_LOCK = False
LOCK = False
CACHE_HEADERS = False
AUTOFLUSH = False
__headerCache = {}
longFormat = "!L"
longSize = struct.calcsize(longFormat)
floatFormat = "!f"
floatSize = struct.calcsize(floatFormat)
valueFormat = "!d"
valueSize = struct.calcsize(valueFormat)
pointFormat = "!Ld"
pointSize = struct.calcsize(pointFormat)
metadataFormat = "!2LfL"
metadataSize = struct.calcsize(metadataFormat)
archiveInfoFormat = "!3L"
archiveInfoSize = struct.calcsize(archiveInfoFormat)
aggregationTypeToMethod = dict({
1: 'average',
2: 'sum',
3: 'last',
4: 'max',
5: 'min'
})
aggregationMethodToType = dict([[v,k] for k,v in aggregationTypeToMethod.items()])
aggregationMethods = aggregationTypeToMethod.values()
debug = startBlock = endBlock = lambda *a,**k: None
UnitMultipliers = {
'seconds' : 1,
'minutes' : 60,
'hours' : 3600,
'days' : 86400,
'weeks' : 86400 * 7,
'years' : 86400 * 365
}
def getUnitString(s):
if 'seconds'.startswith(s): return 'seconds'
if 'minutes'.startswith(s): return 'minutes'
if 'hours'.startswith(s): return 'hours'
if 'days'.startswith(s): return 'days'
if 'weeks'.startswith(s): return 'weeks'
if 'years'.startswith(s): return 'years'
raise ValueError("Invalid unit '%s'" % s)
def parseRetentionDef(retentionDef):
import re
(precision, points) = retentionDef.strip().split(':')
if precision.isdigit():
precision = int(precision) * UnitMultipliers[getUnitString('s')]
else:
precision_re = re.compile(r'^(\d+)([a-z]+)$')
match = precision_re.match(precision)
if match:
precision = int(match.group(1)) * UnitMultipliers[getUnitString(match.group(2))]
else:
raise ValueError("Invalid precision specification '%s'" % precision)
if points.isdigit():
points = int(points)
else:
points_re = re.compile(r'^(\d+)([a-z]+)$')
match = points_re.match(points)
if match:
points = int(match.group(1)) * UnitMultipliers[getUnitString(match.group(2))] / precision
else:
raise ValueError("Invalid retention specification '%s'" % points)
return (precision, points)
class WhisperException(Exception):
class InvalidConfiguration(WhisperException):
class InvalidAggregationMethod(WhisperException):
class InvalidTimeInterval(WhisperException):
class TimestampNotCovered(WhisperException):
class CorruptWhisperFile(WhisperException):
def __init__(self, error, path):
Exception.__init__(self, error)
self.error = error
self.path = path
def __repr__(self):
return "<CorruptWhisperFile[%s] %s>" % (self.path, self.error)
def __str__(self):
return "%s (%s)" % (self.error, self.path)
def enableDebug():
global open, debug, startBlock, endBlock
class open(file):
def __init__(self,*args,**kwargs):
file.__init__(self,*args,**kwargs)
self.writeCount = 0
self.readCount = 0
def write(self,data):
self.writeCount += 1
debug('WRITE %d bytes #%d' % (len(data),self.writeCount))
return file.write(self,data)
def read(self,bytes):
self.readCount += 1
debug('READ %d bytes #%d' % (bytes,self.readCount))
return file.read(self,bytes)
def debug(message):
print 'DEBUG :: %s' % message
__timingBlocks = {}
def startBlock(name):
__timingBlocks[name] = time.time()
def endBlock(name):
debug("%s took %.5f seconds" % (name,time.time() - __timingBlocks.pop(name)))
def __readHeader(fh):
info = __headerCache.get(fh.name)
if info:
return info
originalOffset = fh.tell()
fh.seek(0)
packedMetadata = fh.read(metadataSize)
try:
(aggregationType,maxRetention,xff,archiveCount) = struct.unpack(metadataFormat,packedMetadata)
except:
raise CorruptWhisperFile("Unable to read header", fh.name)
archives = []
for i in xrange(archiveCount):
packedArchiveInfo = fh.read(archiveInfoSize)
try:
(offset,secondsPerPoint,points) = struct.unpack(archiveInfoFormat,packedArchiveInfo)
except:
raise CorruptWhisperFile("Unable to read archive%d metadata" % i, fh.name)
archiveInfo = {
'offset' : offset,
'secondsPerPoint' : secondsPerPoint,
'points' : points,
'retention' : secondsPerPoint * points,
'size' : points * pointSize,
}
archives.append(archiveInfo)
fh.seek(originalOffset)
info = {
'aggregationMethod' : aggregationTypeToMethod.get(aggregationType, 'average'),
'maxRetention' : maxRetention,
'xFilesFactor' : xff,
'archives' : archives,
}
if CACHE_HEADERS:
__headerCache[fh.name] = info
return info
def setAggregationMethod(path, aggregationMethod):
fh = open(path,'r+b')
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
packedMetadata = fh.read(metadataSize)
try:
(aggregationType,maxRetention,xff,archiveCount) = struct.unpack(metadataFormat,packedMetadata)
except:
raise CorruptWhisperFile("Unable to read header", fh.name)
try:
newAggregationType = struct.pack( longFormat, aggregationMethodToType[aggregationMethod] )
except KeyError:
raise InvalidAggregationMethod("Unrecognized aggregation method: %s" %
aggregationMethod)
fh.seek(0)
fh.write(newAggregationType)
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
if CACHE_HEADERS and fh.name in __headerCache:
del __headerCache[fh.name]
fh.close()
return aggregationTypeToMethod.get(aggregationType, 'average')
def validateArchiveList(archiveList):
if not archiveList:
raise InvalidConfiguration("You must specify at least one archive configuration!")
archiveList.sort(key=lambda a: a[0])
for i,archive in enumerate(archiveList):
if i == len(archiveList) - 1:
break
nextArchive = archiveList[i+1]
if not archive[0] < nextArchive[0]:
raise InvalidConfiguration("A Whisper database may not configured having"
"two archives with the same precision (archive%d: %s, archive%d: %s)" %
(i, archive, i + 1, nextArchive))
if nextArchive[0] % archive[0] != 0:
raise InvalidConfiguration("Higher precision archives' precision "
"must evenly divide all lower precision archives' precision "
"(archive%d: %s, archive%d: %s)" %
(i, archive[0], i + 1, nextArchive[0]))
retention = archive[0] * archive[1]
nextRetention = nextArchive[0] * nextArchive[1]
if not nextRetention > retention:
raise InvalidConfiguration("Lower precision archives must cover "
"larger time intervals than higher precision archives "
"(archive%d: %s seconds, archive%d: %s seconds)" %
(i, archive[1], i + 1, nextArchive[1]))
archivePoints = archive[1]
pointsPerConsolidation = nextArchive[0] / archive[0]
if not archivePoints >= pointsPerConsolidation:
raise InvalidConfiguration("Each archive must have at least enough points "
"to consolidate to the next archive (archive%d consolidates %d of "
"archive%d's points but it has only %d total points)" %
(i + 1, pointsPerConsolidation, i, archivePoints))
def create(path,archiveList,xFilesFactor=None,aggregationMethod=None,sparse=False):
if xFilesFactor is None:
xFilesFactor = 0.5
if aggregationMethod is None:
aggregationMethod = 'average'
validateArchiveList(archiveList)
if os.path.exists(path):
raise InvalidConfiguration("File %s already exists!" % path)
fh = open(path,'wb')
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
aggregationType = struct.pack( longFormat, aggregationMethodToType.get(aggregationMethod, 1) )
oldest = sorted([secondsPerPoint * points for secondsPerPoint,points in archiveList])[-1]
maxRetention = struct.pack( longFormat, oldest )
xFilesFactor = struct.pack( floatFormat, float(xFilesFactor) )
archiveCount = struct.pack(longFormat, len(archiveList))
packedMetadata = aggregationType + maxRetention + xFilesFactor + archiveCount
fh.write(packedMetadata)
headerSize = metadataSize + (archiveInfoSize * len(archiveList))
archiveOffsetPointer = headerSize
for secondsPerPoint,points in archiveList:
archiveInfo = struct.pack(archiveInfoFormat, archiveOffsetPointer, secondsPerPoint, points)
fh.write(archiveInfo)
archiveOffsetPointer += (points * pointSize)
if sparse:
fh.seek(archiveOffsetPointer - headerSize - 1)
fh.write("\0")
else:
remaining = archiveOffsetPointer - headerSize
chunksize = 16384
zeroes = '\x00' * chunksize
while remaining > chunksize:
fh.write(zeroes)
remaining -= chunksize
fh.write(zeroes[:remaining])
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
fh.close()
def __aggregate(aggregationMethod, knownValues):
if aggregationMethod == 'average':
return float(sum(knownValues)) / float(len(knownValues))
elif aggregationMethod == 'sum':
return float(sum(knownValues))
elif aggregationMethod == 'last':
return knownValues[len(knownValues)-1]
elif aggregationMethod == 'max':
return max(knownValues)
elif aggregationMethod == 'min':
return min(knownValues)
else:
raise InvalidAggregationMethod("Unrecognized aggregation method %s" %
aggregationMethod)
def __propagate(fh,header,timestamp,higher,lower):
aggregationMethod = header['aggregationMethod']
xff = header['xFilesFactor']
lowerIntervalStart = timestamp - (timestamp % lower['secondsPerPoint'])
lowerIntervalEnd = lowerIntervalStart + lower['secondsPerPoint']
fh.seek(higher['offset'])
packedPoint = fh.read(pointSize)
(higherBaseInterval,higherBaseValue) = struct.unpack(pointFormat,packedPoint)
if higherBaseInterval == 0:
higherFirstOffset = higher['offset']
else:
timeDistance = lowerIntervalStart - higherBaseInterval
pointDistance = timeDistance / higher['secondsPerPoint']
byteDistance = pointDistance * pointSize
higherFirstOffset = higher['offset'] + (byteDistance % higher['size'])
higherPoints = lower['secondsPerPoint'] / higher['secondsPerPoint']
higherSize = higherPoints * pointSize
relativeFirstOffset = higherFirstOffset - higher['offset']
relativeLastOffset = (relativeFirstOffset + higherSize) % higher['size']
higherLastOffset = relativeLastOffset + higher['offset']
fh.seek(higherFirstOffset)
if higherFirstOffset < higherLastOffset:
seriesString = fh.read(higherLastOffset - higherFirstOffset)
else:
higherEnd = higher['offset'] + higher['size']
seriesString = fh.read(higherEnd - higherFirstOffset)
fh.seek(higher['offset'])
seriesString += fh.read(higherLastOffset - higher['offset'])
byteOrder,pointTypes = pointFormat[0],pointFormat[1:]
points = len(seriesString) / pointSize
seriesFormat = byteOrder + (pointTypes * points)
unpackedSeries = struct.unpack(seriesFormat, seriesString)
neighborValues = [None] * points
currentInterval = lowerIntervalStart
step = higher['secondsPerPoint']
for i in xrange(0,len(unpackedSeries),2):
pointTime = unpackedSeries[i]
if pointTime == currentInterval:
neighborValues[i/2] = unpackedSeries[i+1]
currentInterval += step
knownValues = [v for v in neighborValues if v is not None]
if not knownValues:
return False
knownPercent = float(len(knownValues)) / float(len(neighborValues))
if knownPercent >= xff:
aggregateValue = __aggregate(aggregationMethod, knownValues)
myPackedPoint = struct.pack(pointFormat,lowerIntervalStart,aggregateValue)
fh.seek(lower['offset'])
packedPoint = fh.read(pointSize)
(lowerBaseInterval,lowerBaseValue) = struct.unpack(pointFormat,packedPoint)
if lowerBaseInterval == 0:
fh.seek(lower['offset'])
fh.write(myPackedPoint)
else:
timeDistance = lowerIntervalStart - lowerBaseInterval
pointDistance = timeDistance / lower['secondsPerPoint']
byteDistance = pointDistance * pointSize
lowerOffset = lower['offset'] + (byteDistance % lower['size'])
fh.seek(lowerOffset)
fh.write(myPackedPoint)
return True
else:
return False
def update(path,value,timestamp=None):
value = float(value)
fh = open(path,'r+b')
return file_update(fh, value, timestamp)
def file_update(fh, value, timestamp):
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
header = __readHeader(fh)
now = int( time.time() )
if timestamp is None:
timestamp = now
timestamp = int(timestamp)
diff = now - timestamp
if not ((diff < header['maxRetention']) and diff >= 0):
raise TimestampNotCovered("Timestamp not covered by any archives in "
"this database.")
for i,archive in enumerate(header['archives']):
if archive['retention'] < diff: continue
lowerArchives = header['archives'][i+1:]
break
myInterval = timestamp - (timestamp % archive['secondsPerPoint'])
myPackedPoint = struct.pack(pointFormat,myInterval,value)
fh.seek(archive['offset'])
packedPoint = fh.read(pointSize)
(baseInterval,baseValue) = struct.unpack(pointFormat,packedPoint)
if baseInterval == 0:
fh.seek(archive['offset'])
fh.write(myPackedPoint)
baseInterval,baseValue = myInterval,value
else:
timeDistance = myInterval - baseInterval
pointDistance = timeDistance / archive['secondsPerPoint']
byteDistance = pointDistance * pointSize
myOffset = archive['offset'] + (byteDistance % archive['size'])
fh.seek(myOffset)
fh.write(myPackedPoint)
higher = archive
for lower in lowerArchives:
if not __propagate(fh, header, myInterval, higher, lower):
break
higher = lower
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
fh.close()
|
Apache License 2.0
|
blacklight/platypush
|
platypush/plugins/covid19/__init__.py
|
Covid19Plugin.__init__
|
python
|
def __init__(self, country: Union[str, List[str]] = 'world', **kwargs):
super().__init__(**kwargs)
self.country = []
self.all_countries = requests.get('{}/countries'.format(self.base_url)).json()
self.country = self._get_countries(country)
|
:param country: Default country (or list of countries) to retrieve the stats for. It can either be the full
country name or the country code. Special values:
- ``world``: Get worldwide stats (default).
- ``all``: Get all the available stats.
|
https://github.com/blacklight/platypush/blob/a5f1dc2638d7c6308325e0ca39dc7d5e262836aa/platypush/plugins/covid19/__init__.py#L15-L26
|
from typing import Optional, Union, List, Dict, Any
import requests
from platypush.plugins import Plugin, action
class Covid19Plugin(Plugin):
base_url = 'https://api.covid19api.com'
|
MIT License
|
pg8wood/discord-voice-assistant-bot
|
bot/music.py
|
Music.set_next_song_ready
|
python
|
def set_next_song_ready(self):
self.bot.loop.call_soon_threadsafe(self.advance_queue_event.set)
|
Tells the queue the next song is ready to be played by setting the advance queue event's internal flag
|
https://github.com/pg8wood/discord-voice-assistant-bot/blob/a6e6eecc57be9616d85e8a8454d2a190e1b65a8c/bot/music.py#L29-L33
|
from asyncio import Queue, Event
import discord
from discord import ChannelType
from discord.ext import commands
from discord.voice_client import ProcessPlayer
import util
import validators
class Music:
def __init__(self, bot):
self.bot = bot
self.voice_channel = self.bot.voice_clients[0] if len(self.bot.voice_clients) > 0 else None
self.current_song = None
self.advance_queue_event = Event()
self.queue = Queue()
self.playlist_task_loop = self.bot.loop.create_task(self.playlist_task())
|
MIT License
|
rdflib/pyshacl
|
pyshacl/shapes_graph.py
|
ShapesGraph.__init__
|
python
|
def __init__(self, graph, logger=None):
assert isinstance(graph, (rdflib.Dataset, rdflib.ConjunctiveGraph, rdflib.Graph))
self.graph = graph
if isinstance(self.graph, rdflib.Dataset):
self.graph.default_union = True
if logger is None:
logger = logging.getLogger(__name__)
self.logger = logger
self._node_shape_cache = {}
self._shapes = None
self._custom_constraints = None
self._shacl_functions = {}
self._shacl_target_types = {}
self._use_js = False
self._add_system_triples()
|
ShapesGraph
:param graph:
:type graph: rdflib.Graph
:param logger:
:type logger: logging.Logger|None
|
https://github.com/rdflib/pyshacl/blob/48155756d14d607f4fe0ea049aa28f42c874e68d/pyshacl/shapes_graph.py#L36-L57
|
import logging
import warnings
import rdflib
from .constraints.constraint_component import CustomConstraintComponentFactory
from .constraints.core.logical_constraints import SH_and, SH_not, SH_or, SH_xone
from .constraints.core.shape_based_constraints import SH_qualifiedValueShape
from .consts import (
SH,
OWL_Class,
OWL_DatatypeProperty,
RDF_Property,
RDF_type,
RDFS_Class,
RDFS_subClassOf,
SH_ConstraintComponent,
SH_node,
SH_NodeShape,
SH_path,
SH_property,
SH_PropertyShape,
SH_targetClass,
SH_targetNode,
SH_targetObjectsOf,
SH_targetSubjectsOf,
)
from .errors import ShapeLoadError
from .shape import Shape
class ShapesGraph(object):
system_triples = [(OWL_Class, RDFS_subClassOf, RDFS_Class), (OWL_DatatypeProperty, RDFS_subClassOf, RDF_Property)]
|
Apache License 2.0
|
nuagenetworks/vspk-python
|
vspk/v5_0/nushuntlink.py
|
NUShuntLink.description
|
python
|
def description(self):
return self._description
|
Get description value.
Notes:
Extra information entered by the operator to define the Shunt Link.
|
https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v5_0/nushuntlink.py#L315-L323
|
from .fetchers import NUMetadatasFetcher
from .fetchers import NUAlarmsFetcher
from .fetchers import NUGlobalMetadatasFetcher
from bambou import NURESTObject
class NUShuntLink(NURESTObject):
__rest_name__ = "shuntlink"
__resource_name__ = "shuntlinks"
CONST_PERMITTED_ACTION_USE = "USE"
CONST_PERMITTED_ACTION_READ = "READ"
CONST_PERMITTED_ACTION_ALL = "ALL"
CONST_PERMITTED_ACTION_DEPLOY = "DEPLOY"
CONST_PERMITTED_ACTION_EXTEND = "EXTEND"
CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE"
CONST_PERMITTED_ACTION_INSTANTIATE = "INSTANTIATE"
CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL"
def __init__(self, **kwargs):
super(NUShuntLink, self).__init__()
self._vlan_peer1_id = None
self._vlan_peer2_id = None
self._name = None
self._last_updated_by = None
self._gateway_peer1_id = None
self._gateway_peer2_id = None
self._permitted_action = None
self._description = None
self._entity_scope = None
self._external_id = None
self.expose_attribute(local_name="vlan_peer1_id", remote_name="VLANPeer1ID", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="vlan_peer2_id", remote_name="VLANPeer2ID", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="gateway_peer1_id", remote_name="gatewayPeer1ID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="gateway_peer2_id", remote_name="gatewayPeer2ID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="permitted_action", remote_name="permittedAction", attribute_type=str, is_required=False, is_unique=False, choices=[u'ALL', u'DEPLOY', u'EXTEND', u'INSTANTIATE', u'READ', u'USE'])
self.expose_attribute(local_name="description", remote_name="description", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL'])
self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True)
self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.alarms = NUAlarmsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self._compute_args(**kwargs)
@property
def vlan_peer1_id(self):
return self._vlan_peer1_id
@vlan_peer1_id.setter
def vlan_peer1_id(self, value):
self._vlan_peer1_id = value
@property
def vlan_peer2_id(self):
return self._vlan_peer2_id
@vlan_peer2_id.setter
def vlan_peer2_id(self, value):
self._vlan_peer2_id = value
@property
def name(self):
return self._name
@name.setter
def name(self, value):
self._name = value
@property
def last_updated_by(self):
return self._last_updated_by
@last_updated_by.setter
def last_updated_by(self, value):
self._last_updated_by = value
@property
def gateway_peer1_id(self):
return self._gateway_peer1_id
@gateway_peer1_id.setter
def gateway_peer1_id(self, value):
self._gateway_peer1_id = value
@property
def gateway_peer2_id(self):
return self._gateway_peer2_id
@gateway_peer2_id.setter
def gateway_peer2_id(self, value):
self._gateway_peer2_id = value
@property
def permitted_action(self):
return self._permitted_action
@permitted_action.setter
def permitted_action(self, value):
self._permitted_action = value
@property
|
BSD 3-Clause New or Revised License
|
nervanasystems/neon
|
neon/callbacks/callbacks.py
|
MultiLabelStatsCallback.on_epoch_end
|
python
|
def on_epoch_end(self, callback_data, model, epoch):
if (epoch + 1) % self.epoch_freq == 0:
self.eval_set.reset()
running_stats = np.zeros_like(self.metric.outputs.get(), dtype=np.float32)
nbatch = 0
for x, t in self.eval_set:
x = model.fprop(x, inference=True)
self.metric(x, t)
running_stats += self.metric.outputs.get()
nbatch += 1
running_stats /= nbatch
for i, label in enumerate(self.labels):
metric_text = "["
for k, metric in enumerate(self.metric.metric_names):
metric_text += "%s: %d%% " % (metric, running_stats[i][k] * 100.0)
metric_text += "] -> %s\n" % label
sys.stdout.write(metric_text)
sys.stdout.flush()
|
Called when an epoch is about to end
Arguments:
callback_data (HDF5 dataset): shared data between callbacks
model (Model): model object
epoch (int): index of epoch that is ending
|
https://github.com/nervanasystems/neon/blob/8c3fb8a93b4a89303467b25817c60536542d08bd/neon/callbacks/callbacks.py#L904-L937
|
from __future__ import division
from builtins import map, str, zip
from future.utils import native
from collections import deque
import h5py
import inspect
import logging
import numpy as np
import os
import signal
import sys
import time
import math
from timeit import default_timer
import weakref
from neon import NervanaObject, logger as neon_logger
from neon.data import NervanaDataIterator, Ticker
from neon.util.compat import PY3
from neon.util.persist import load_obj, save_obj, load_class
from neon.layers import Convolution, BatchNorm, Multicost
from neon.transforms.cost import Metric
logger = logging.getLogger(__name__)
class Callbacks(NervanaObject):
def __init__(self, model,
train_set=None,
output_file=None,
eval_freq=None,
progress_bar=True,
save_path=None,
serialize=0,
history=1,
model_file=None,
eval_set=None,
metric=None,
log_token=None,
multicost=False):
if train_set is not None:
logger.warning("Deprecation warning. Callbacks class no longer "
"accepts train_set as a parameter. This argument will "
"be removed soon update your code.")
super(Callbacks, self).__init__(name=None)
self.callbacks = list()
self.epoch_marker = 0
self.output_file = output_file
if output_file is None:
if hasattr(self, 'callback_data'):
del self.callback_data
self.callback_data = h5py.File(self.name, driver='core', backing_store=False)
else:
if os.path.isfile(output_file):
logger.warn("Overwriting output file %s", output_file)
os.remove(output_file)
self.callback_data = h5py.File(output_file, "w")
self.model = weakref.ref(model)
self.model_file = model_file
if multicost is True:
self.add_callback(TrainMulticostCallback())
else:
self.add_callback(TrainCostCallback())
if progress_bar:
self.add_callback(ProgressBarCallback())
if eval_freq:
if not eval_set:
err_msg = 'Evaluation frequency specified but no eval set provided!'
logger.exception(err_msg)
raise ValueError(err_msg)
ecb = LossCallback(eval_set, eval_freq)
self.add_callback(ecb, insert_pos=0)
if metric:
ecb = MetricCallback(eval_set, metric, eval_freq)
self.add_callback(ecb, insert_pos=None)
self.save_path = save_path
if save_path:
serialize_interval = serialize if serialize > 1 else 1
scb = SerializeModelCallback(save_path, serialize_interval, history)
self.add_callback(scb)
self.add_callback(TrainLoggerCallback())
self.add_callback(RunTimerCallback())
try:
from cloud_metrics import CloudMetricsCallback
self.add_callback(CloudMetricsCallback(log_token, eval_freq, metric))
except ImportError:
pass
def __del__(self):
try:
self.callback_data.close()
except Exception:
pass
def serialize(self):
return self.get_description()
def get_description(self):
cdict = {}
cdict['epoch_marker'] = self.epoch_marker
cdict['output_file'] = self.output_file
cdict['callbacks'] = []
for callback in self.callbacks:
cdict['callbacks'].append(callback.get_description())
return cdict
@classmethod
def load_callbacks(cls, cdict, model, data=[]):
if type(native(cdict)) is str:
cdict = load_obj(cdict)
callbacks = cls(model, output_file=cdict['output_file'])
callbacks.epoch_marker = cdict['epoch_marker']
callbacks.callbacks = []
for cb in cdict['callbacks']:
module = load_class(cb['type'])
callbacks.callbacks.append(module(**cb['config']))
return callbacks
def add_deconv_callback(self, train_set, valid_set, max_fm=16, dataset_pct=25):
self.add_callback(DeconvCallback(train_set, valid_set,
max_fm=max_fm, dataset_pct=dataset_pct))
def add_save_best_state_callback(self, path):
self.add_callback(SaveBestStateCallback(path))
def add_watch_ticker_callback(self, valid):
self.callbacks.append(WatchTickerCallback(self.model, valid))
def add_early_stop_callback(self, stop_func):
self.add_callback(EarlyStopCallback(stop_func))
def add_hist_callback(self, plot_per_mini=False, filter_key=['W']):
self.callbacks.append(HistCallback(plot_per_mini=plot_per_mini, filter_key=filter_key))
def add_callback(self, callback, insert_pos=None):
if insert_pos is None:
self.callbacks.append(callback)
else:
self.callbacks.insert(insert_pos, callback)
def on_train_begin(self, epochs):
config = self.callback_data.create_group('config')
total_minibatches = math.ceil(self.model().ndata / self.be.bsz) * epochs
config.attrs['total_minibatches'] = total_minibatches
config.attrs['total_epochs'] = epochs
time_markers = self.callback_data.create_group("time_markers")
time_markers.create_dataset("minibatch", (epochs,))
if self.model_file:
self.model().load_params(self.model_file)
signal.signal(signal.SIGINT, self.on_sigint_catch)
for c in self.callbacks:
c.on_train_begin(self.callback_data, self.model(), epochs)
def on_train_end(self):
signal.signal(signal.SIGINT, signal.SIG_DFL)
for c in self.callbacks:
c.on_train_end(self.callback_data, self.model())
self.callback_data.close()
def on_epoch_begin(self, epoch):
for c in self.callbacks:
if c.should_fire(self.callback_data, self.model(), epoch, c.epoch_freq):
c.on_epoch_begin(self.callback_data, self.model(), epoch)
def on_epoch_end(self, epoch):
for c in self.callbacks:
if c.should_fire(self.callback_data, self.model(), epoch, c.epoch_freq):
c.on_epoch_end(self.callback_data, self.model(), epoch)
self.epoch_marker += self.epoch_minibatches
self.callback_data['time_markers/minibatch'][epoch] = self.epoch_marker
self.callback_data['time_markers'].attrs['epochs_complete'] = epoch + 1
self.callback_data['time_markers'].attrs['minibatches_complete'] = self.epoch_marker
self.callback_data.flush()
def on_minibatch_begin(self, epoch, minibatch):
for c in self.callbacks:
if c.should_fire(self.callback_data, self.model(), minibatch, c.minibatch_freq):
c.on_minibatch_begin(self.callback_data, self.model(), epoch, minibatch)
def on_minibatch_end(self, epoch, minibatch):
for c in self.callbacks:
if c.should_fire(self.callback_data, self.model(), minibatch, c.minibatch_freq):
c.on_minibatch_end(self.callback_data, self.model(), epoch, minibatch)
self.epoch_minibatches = minibatch + 1
def on_sigint_catch(self, epoch, minibatch):
signal.signal(signal.SIGINT, signal.SIG_DFL)
if self.save_path is not None:
save_obj(self.model().serialize(keep_states=True), self.save_path)
raise KeyboardInterrupt('Checkpoint file saved to {0}'.format(self.save_path))
else:
raise KeyboardInterrupt
class Callback(NervanaObject):
def __init__(self, epoch_freq=1, minibatch_freq=1):
self.epoch_freq = epoch_freq
self.minibatch_freq = minibatch_freq
self.costnm = None
def get_description(self):
keys = inspect.getargspec(self.__init__)[0]
keys.remove('self')
skip = []
for key in keys:
if isinstance(getattr(self, key), NervanaDataIterator):
skip.append(key)
pdict = super(Callback, self).get_description(skip=skip)
for datap in skip:
pdict['config'][datap] = {'type': 'Data', 'name': getattr(self, datap).name}
return pdict
def on_train_begin(self, callback_data, model, epochs):
pass
def on_train_end(self, callback_data, model):
pass
def on_epoch_begin(self, callback_data, model, epoch):
pass
def on_epoch_end(self, callback_data, model, epoch):
pass
def on_minibatch_begin(self, callback_data, model, epoch, minibatch):
pass
def on_minibatch_end(self, callback_data, model, epoch, minibatch):
pass
def should_fire(self, callback_data, model, time, freq):
t, f = time, freq
if ((type(f) is int and (t + 1) % f == 0) or (type(f) is list and t in f)):
return True
return False
def _get_cached_epoch_loss(self, callback_data, model, epoch, label):
if self.costnm is None:
self.costnm = "Loss"
if model.cost and hasattr(model.cost, 'costfunc'):
self.costnm = model.cost.costfunc.__class__.__name__ + " " + self.costnm
cost_key = 'cost/' + label
time_key = 'time/' + label
if cost_key not in callback_data:
return None
eval_freq = callback_data[cost_key].attrs['epoch_freq']
if (epoch + 1) % eval_freq == 0:
return dict(cost=callback_data[cost_key][epoch // eval_freq],
time=callback_data[time_key][epoch // eval_freq],
costnm=self.costnm)
class SerializeModelCallback(Callback):
def __init__(self, save_path, epoch_freq=1, history=1):
super(SerializeModelCallback, self).__init__(epoch_freq=epoch_freq)
self.save_path = save_path
self.history = history
self.checkpoint_files = deque()
def on_epoch_end(self, callback_data, model, epoch):
if self.history > 1:
self.save_history(epoch, model)
else:
save_obj(model.serialize(keep_states=True), self.save_path)
def save_history(self, epoch, model):
if len(self.checkpoint_files) > self.history:
fn = self.checkpoint_files.popleft()
try:
os.remove(fn)
logger.info('removed old checkpoint %s' % fn)
except OSError:
logger.warn('Could not delete old checkpoint file %s' % fn)
path_split = os.path.splitext(self.save_path)
save_path = '%s_%d%s' % (path_split[0], epoch, path_split[1])
self.checkpoint_files.append(save_path)
save_obj(model.serialize(keep_states=True), save_path)
try:
if os.path.islink(self.save_path):
os.remove(self.save_path)
os.symlink(os.path.split(save_path)[-1], self.save_path)
except OSError:
logger.warn('Could not create latest model symlink %s -> %s'
% (self.save_path, save_path))
class RunTimerCallback(Callback):
def __init__(self):
super(RunTimerCallback, self).__init__()
def on_train_begin(self, callback_data, model, epochs):
timing = callback_data.create_group("time/train")
timing.create_dataset("start_time", (1,), dtype='float64')
timing.create_dataset("end_time", (1,), dtype='float64')
timing['start_time'][0] = time.time()
timing['start_time'].attrs['units'] = 'seconds'
def on_train_end(self, callback_data, model):
callback_data['time/train/end_time'][0] = time.time()
callback_data['time/train/end_time'].attrs['units'] = 'seconds'
class TrainCostCallback(Callback):
def __init__(self, wsz=10):
super(TrainCostCallback, self).__init__(epoch_freq=1)
self.wsz = wsz
def on_train_begin(self, callback_data, model, epochs):
points = callback_data['config'].attrs['total_minibatches']
callback_data.create_dataset("cost/train", (points,))
self.wsz = min(points, self.wsz)
self.cost_history = deque([], maxlen=int(self.wsz))
callback_data['cost/train'].attrs['time_markers'] = 'minibatch'
def on_minibatch_end(self, callback_data, model, epoch, minibatch):
self.cost_history.append(model.cost.cost)
mean_cost = sum(self.cost_history) / len(self.cost_history)
mbstart = callback_data['time_markers/minibatch'][epoch - 1] if epoch > 0 else 0
callback_data['cost/train'][mbstart + minibatch] = mean_cost
class TrainMulticostCallback(Callback):
def __init__(self, wsz=10):
super(TrainMulticostCallback, self).__init__(epoch_freq=1)
self.wsz = wsz
def on_train_begin(self, callback_data, model, epochs):
assert isinstance(model.cost, Multicost), "Cost must be a Multicost"
self.ncosts = len(model.cost.costs)
self.ncosts_allbranches = sum([self.recursive_multicost_len(c) for c in model.cost.costs])
points = callback_data['config'].attrs['total_minibatches']
callback_data.create_dataset("multicost/train", (points, self.ncosts), dtype='float64')
callback_data.create_dataset("multicost/train_allbranches",
(points, self.ncosts_allbranches), dtype='float64')
self.wsz = min(points, self.wsz)
self.cost_history = deque([], maxlen=int(self.wsz))
callback_data['multicost/train'].attrs['time_markers'] = 'minibatch'
callback_data['multicost/train_allbranches'].attrs['time_markers'] = 'minibatch'
def on_minibatch_end(self, callback_data, model, epoch, minibatch):
costs = np.array([c.cost for c in model.cost.costs])
self.cost_history.append(costs)
mean_cost = sum(self.cost_history) / len(self.cost_history)
mbstart = callback_data['time_markers/minibatch'][epoch-1] if epoch > 0 else 0
callback_data['multicost/train'][mbstart + minibatch, :] = mean_cost.squeeze()
costs_allbranches = np.array([self.multicost_recurse(c) for c in model.cost.costs])
costs_allbranches = self.separate_branch_costs(costs_allbranches)
callback_data['multicost/train_allbranches'][mbstart + minibatch, :] = costs_allbranches.squeeze()
def multicost_recurse(self, x):
if type(x) == Multicost:
return [z for z in map(self.multicost_recurse, x.costs)]
else:
return x.cost
def separate_branch_costs(self, x):
x[0] -= np.sum([c[0] if type(c) == list else c for c in x[1:]])
for branch in x:
if type(branch) == list:
self.separate_branch_costs(branch)
return np.array([item for sublist in x for item in sublist])
def recursive_multicost_len(self, item):
if type(item) == Multicost:
return sum(self.recursive_multicost_len(subitem) for subitem in item.costs)
else:
return 1
class LossCallback(Callback):
def __init__(self, eval_set, epoch_freq=1):
super(LossCallback, self).__init__(epoch_freq=epoch_freq)
self.eval_set = eval_set
self.loss = self.be.zeros((1, 1), dtype=np.float32)
def on_train_begin(self, callback_data, model, epochs):
callback_data.create_dataset("cost/loss", (epochs // self.epoch_freq,))
callback_data.create_dataset("time/loss", (epochs // self.epoch_freq,))
callback_data["cost/loss"].attrs['time_markers'] = 'epoch_freq'
callback_data["cost/loss"].attrs['epoch_freq'] = self.epoch_freq
def on_epoch_end(self, callback_data, model, epoch):
start_loss = default_timer()
nprocessed = 0
self.loss[:] = 0
self.eval_set.reset()
for x, t in self.eval_set:
x = model.fprop(x, inference=True)
bsz = min(self.eval_set.ndata - nprocessed, self.be.bsz)
model.cost.get_cost(x, t)
nsteps = x.shape[1] // self.be.bsz if not isinstance(x, list) else x[0].shape[1] // self.be.bsz
costbuf = model.cost.outputs[:, :bsz * nsteps]
nprocessed += bsz
self.loss[:] = self.loss + self.be.sum(costbuf, axis=1) / nsteps
mean_cost = float(self.loss.get() / nprocessed)
callback_data["time/loss"][epoch // self.epoch_freq] = (default_timer() - start_loss)
callback_data["cost/loss"][epoch // self.epoch_freq] = mean_cost
class MetricCallback(Callback):
def __init__(self, eval_set, metric, epoch_freq=1):
super(MetricCallback, self).__init__(epoch_freq=epoch_freq)
if isinstance(metric, type) and issubclass(metric, Metric):
raise ValueError((
'metric passed in was the class {}. Pass an instance '
'of this class instead.'
).format(metric))
self.eval_set = eval_set
self.metric = metric
self.metric_cnt = len(self.metric.metric_names)
self.metric_desc = ", ".join(self.metric.metric_names)
def on_train_begin(self, callback_data, model, epochs):
if 'metrics' not in callback_data:
callback_data.create_group("metrics")
for met in self.metric.metric_names:
group_name = "metrics/%s" % met
callback_data.create_dataset(group_name, (epochs // self.epoch_freq,))
callback_data[group_name].attrs['time_markers'] = 'epoch_freq'
callback_data[group_name].attrs['epoch_freq'] = self.epoch_freq
def on_epoch_end(self, callback_data, model, epoch):
if (epoch + 1) % self.epoch_freq == 0:
self.eval_set.reset()
stats = model.eval(self.eval_set, metric=self.metric)
logger.info('%s: %s', self.metric_desc, ", ".join(map(str, stats.flatten())))
for ind, met in enumerate(self.metric.metric_names):
callback_data["metrics/%s" % met][epoch // self.epoch_freq] = stats[ind]
class MultiLabelStatsCallback(Callback):
def __init__(self, eval_set, labels, metric, epoch_freq=1):
super(MultiLabelStatsCallback, self).__init__(epoch_freq=epoch_freq)
self.eval_set = eval_set
self.metric = metric
self.labels = labels
self.metric_desc = ", ".join(self.metric.metric_names)
|
Apache License 2.0
|
yannforget/osmxtract
|
osmxtract/overpass.py
|
_bbox
|
python
|
def _bbox(lat_min, lon_min, lat_max, lon_max):
return f'({lat_min},{lon_min},{lat_max},{lon_max})'
|
Format bounding box as a string as expected by the Overpass API.
|
https://github.com/yannforget/osmxtract/blob/e8659d8a62c72220711e1454896ed3642b78e276/osmxtract/overpass.py#L33-L35
|
import requests
import geojson
from .errors import (
OverpassBadRequest,
OverpassMoved,
OverpassTooManyRequests,
OverpassGatewayTimeout
)
def _make_case_insensitive(value):
return f'[{ value[0].lower() }{ value[0].upper() }]{ value[1:] }'
|
MIT License
|
facelessuser/sublime-markdown-popups
|
st3/mdpopups/mdx/highlight.py
|
Highlight.get_extended_language
|
python
|
def get_extended_language(self, language):
return self.extend_pygments_lang.get(language, (language, {}))
|
Get extended language.
|
https://github.com/facelessuser/sublime-markdown-popups/blob/aeb7586da26fe46b7764cf1e2832336bc306195d/st3/mdpopups/mdx/highlight.py#L376-L379
|
import re
from ..markdown import Extension
from ..markdown.treeprocessors import Treeprocessor
import xml.etree.ElementTree as etree
import copy
from collections import OrderedDict
try:
from ..pygments import highlight
from ..pygments.lexers import get_lexer_by_name, guess_lexer
from ..pygments.formatters import find_formatter_class
HtmlFormatter = find_formatter_class('html')
pygments = True
except ImportError:
pygments = False
CODE_WRAP = '<pre%s><code%s%s%s>%s</code></pre>'
CODE_WRAP_ON_PRE = '<pre%s%s%s><code>%s</code></pre>'
CLASS_ATTR = ' class="%s"'
ID_ATTR = ' id="%s"'
DEFAULT_CONFIG = {
'use_pygments': [
True,
'Use Pygments to highlight code blocks. '
'Disable if using a JavaScript library. '
'Default: True'
],
'guess_lang': [
False,
"Automatic language detection - Default: False"
],
'css_class': [
'highlight',
"CSS class to apply to wrapper element."
],
'pygments_style': [
'default',
'Pygments HTML Formatter Style '
'(color scheme) - Default: default'
],
'noclasses': [
False,
'Use inline styles instead of CSS classes - '
'Default false'
],
'linenums': [
None,
'Display line numbers in block code output (not inline) - Default: False'
],
'linenums_style': [
'table',
'Line number style -Default: "table"'
],
'linenums_special': [
-1,
'Globally make nth line special - Default: -1'
],
'linenums_class': [
"linenums",
"Control the linenums class name when not using Pygments - Default: 'linenums'"
],
'extend_pygments_lang': [
[],
'Extend pygments language with special language entry - Default: {}'
],
'legacy_no_wrap_code': [
False,
'Do not wrap block code under pre elements with code elements - Default: False'
],
'language_prefix': [
'language-',
'Controls the language prefix for non-Pygments code blocks. - Defaults: "language-"'
],
'code_attr_on_pre': [
False,
"Attach attribute list values on pre element instead of code element - Default: False"
],
'_enabled': [
True,
'Used internally to communicate if extension has been explicitly enabled - Default: False'
]
}
multi_space = re.compile(r'(?<= ) {2,}')
def replace_nbsp(m):
return ' ' * len(m.group(0))
if pygments:
html_re = re.compile(
r'''(?x)
(?P<start><span [^<>]+>)|(?P<content>[^<>]+)|(?P<end></span>)
'''
)
class InlineHtmlFormatter(HtmlFormatter):
def wrap(self, source, outfile):
return self._wrap_code(source)
def _wrap_code(self, source):
yield 0, ''
for i, t in source:
yield i, t.strip()
yield 0, ''
class BlockHtmlFormatter(HtmlFormatter):
RE_SPAN_NUMS = re.compile(r'(<span[^>]*?)(class="[^"]*\blinenos?\b[^"]*)"([^>]*)>([^<]+)(</span>)')
RE_TABLE_NUMS = re.compile(r'(<pre[^>]*>)(?!<span></span>)')
def __init__(self, **options):
self.pymdownx_inline = options.get('linenos', False) == 'pymdownx-inline'
if self.pymdownx_inline:
options['linenos'] = 'inline'
HtmlFormatter.__init__(self, **options)
def _format_custom_line(self, m):
return (
m.group(1) +
m.group(2) +
'"' +
m.group(3) +
' data-linenos="' + m.group(4).rstrip() + ' ">' +
m.group(5)
)
def _wrap_customlinenums(self, inner):
for t, line in inner:
if t:
line = self.RE_SPAN_NUMS.sub(self._format_custom_line, line)
yield t, line
def wrap(self, source, outfile):
if self.linenos == 2 and self.pymdownx_inline:
source = self._wrap_customlinenums(source)
return HtmlFormatter.wrap(self, source, outfile)
def _wrap_tablelinenos(self, inner):
for t, line in HtmlFormatter._wrap_tablelinenos(self, inner):
yield t, self.RE_TABLE_NUMS.sub(r'\1<span></span>', line)
class SublimeInlineHtmlFormatter(HtmlFormatter):
def wrap(self, source, outfile):
return self._wrap_code(source)
def _wrap_code(self, source):
yield 0, ''
for i, t in source:
text = ''
matched = False
for m in html_re.finditer(t):
matched = True
if m.group(1):
text += m.group(1)
elif m.group(3):
text += m.group(3)
else:
text += multi_space.sub(
replace_nbsp, m.group(2).replace('\t', ' ' * 4)
)
if not matched:
text = multi_space.sub(
replace_nbsp, t.replace('\t', ' ' * 4)
)
yield i, text
yield 0, ''
class SublimeBlockFormatter(BlockHtmlFormatter):
def wrap(self, source, outfile):
if self.linenos == 2 and self.pymdownx_inline:
source = self._wrap_customlinenums(source)
return self._wrap_code(source)
def _wrap_code(self, source):
yield 0, '<div class="%s"><pre>' % self.cssclass
for i, t in source:
text = ''
matched = False
for m in html_re.finditer(t):
matched = True
if m.group(1):
text += m.group(1)
elif m.group(3):
text += m.group(3)
else:
text += m.group(2).replace('\t', ' ' * 4).replace(' ', ' ')
if not matched:
text = t.replace('\t', ' ' * 4).replace(' ', ' ')
if i == 1:
text += '<br>'
yield i, text
yield 0, '</pre></div>'
class SublimeWrapBlockFormatter(BlockHtmlFormatter):
def wrap(self, source, outfile):
if self.linenos == 2 and self.pymdownx_inline:
source = self._wrap_customlinenums(source)
return self._wrap_code(source)
def _wrap_code(self, source):
yield 0, '<div class="%s"><pre>' % self.cssclass
for i, t in source:
text = ''
matched = False
for m in html_re.finditer(t):
matched = True
if m.group(1):
text += m.group(1)
elif m.group(3):
text += m.group(3)
else:
text += multi_space.sub(
replace_nbsp, m.group(2).replace('\t', ' ' * 4)
)
if not matched:
text = multi_space.sub(
replace_nbsp, t.replace('\t', ' ' * 4)
)
if i == 1:
text += '<br>'
yield i, text
yield 0, '</pre></div>'
class Highlight(object):
def __init__(
self, guess_lang=False, pygments_style='default', use_pygments=True,
noclasses=False, extend_pygments_lang=None, linenums=None, linenums_special=-1,
linenums_style='table', linenums_class='linenums', wrapcode=True, language_prefix='language-',
code_attr_on_pre=False
):
self.guess_lang = guess_lang
self.pygments_style = pygments_style
self.use_pygments = use_pygments
self.noclasses = noclasses
self.linenums = linenums
self.linenums_style = linenums_style
self.linenums_special = linenums_special
self.linenums_class = linenums_class
self.wrapcode = wrapcode
self.language_prefix = language_prefix
self.code_attr_on_pre = code_attr_on_pre
self.sublime_hl = Highlight.sublime_hl
self.sublime_wrap = Highlight.sublime_wrap
if extend_pygments_lang is None:
extend_pygments_lang = []
self.extend_pygments_lang = {}
for language in extend_pygments_lang:
if isinstance(language, (dict, OrderedDict)):
name = language.get('name')
if name is not None and name not in self.extend_pygments_lang:
self.extend_pygments_lang[name] = [
language.get('lang'),
language.get('options', {})
]
@classmethod
def set_sublime_vars(cls, sublime_hl, sublime_wrap, plugin_map):
cls.sublime_hl = sublime_hl
cls.sublime_wrap = sublime_wrap
cls.plugin_map = plugin_map
|
MIT License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_csi_node.py
|
V1CSINode.spec
|
python
|
def spec(self):
return self._spec
|
Gets the spec of this V1CSINode. # noqa: E501
:return: The spec of this V1CSINode. # noqa: E501
:rtype: V1CSINodeSpec
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_csi_node.py#L137-L144
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1CSINode(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'api_version': 'str',
'kind': 'str',
'metadata': 'V1ObjectMeta',
'spec': 'V1CSINodeSpec'
}
attribute_map = {
'api_version': 'apiVersion',
'kind': 'kind',
'metadata': 'metadata',
'spec': 'spec'
}
def __init__(self, api_version=None, kind=None, metadata=None, spec=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._api_version = None
self._kind = None
self._metadata = None
self._spec = None
self.discriminator = None
if api_version is not None:
self.api_version = api_version
if kind is not None:
self.kind = kind
if metadata is not None:
self.metadata = metadata
self.spec = spec
@property
def api_version(self):
return self._api_version
@api_version.setter
def api_version(self, api_version):
self._api_version = api_version
@property
def kind(self):
return self._kind
@kind.setter
def kind(self, kind):
self._kind = kind
@property
def metadata(self):
return self._metadata
@metadata.setter
def metadata(self, metadata):
self._metadata = metadata
@property
|
Apache License 2.0
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/tests/components/binary_sensor/test_nx584.py
|
TestNX584SensorSetup.tearDown
|
python
|
def tearDown(self):
self.hass.stop()
self._mock_client.stop()
|
Stop everything that was started.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/tests/components/binary_sensor/test_nx584.py#L39-L42
|
import requests
import unittest
from unittest import mock
from nx584 import client as nx584_client
from homeassistant.components.binary_sensor import nx584
from homeassistant.setup import setup_component
from tests.common import get_test_home_assistant
class StopMe(Exception):
pass
class TestNX584SensorSetup(unittest.TestCase):
def setUp(self):
self.hass = get_test_home_assistant()
self._mock_client = mock.patch.object(nx584_client, 'Client')
self._mock_client.start()
self.fake_zones = [
{'name': 'front', 'number': 1},
{'name': 'back', 'number': 2},
{'name': 'inside', 'number': 3},
]
client = nx584_client.Client.return_value
client.list_zones.return_value = self.fake_zones
client.get_version.return_value = '1.1'
|
MIT License
|
lithops-cloud/lithops
|
lithops/invokers.py
|
FaaSInvoker._invoke_job
|
python
|
def _invoke_job(self, job):
if self.remote_invoker:
return self._invoke_job_remote(job)
if self.should_run is False:
self.running_workers = 0
self.should_run = True
self._start_async_invokers()
if self.running_workers < self.max_workers:
free_workers = self.max_workers - self.running_workers
total_direct = free_workers * job.chunksize
callids = range(job.total_calls)
callids_to_invoke_direct = callids[:total_direct]
callids_to_invoke_nondirect = callids[total_direct:]
ci = len(callids_to_invoke_direct)
cz = job.chunksize
consumed_workers = ci // cz + (ci % cz > 0)
self.running_workers += consumed_workers
logger.debug('ExecutorID {} | JobID {} - Free workers:'
' {} - Going to run {} activations in {} workers'
.format(job.executor_id, job.job_id, free_workers,
len(callids_to_invoke_direct), consumed_workers))
def _callback(future):
future.result()
invoke_futures = []
for call_ids_range in iterchunks(callids_to_invoke_direct, job.chunksize):
future = self.executor.submit(self._invoke_task, job, call_ids_range)
future.add_done_callback(_callback)
invoke_futures.append(future)
if self.sync:
[f.result() for f in invoke_futures]
if callids_to_invoke_nondirect:
logger.debug('ExecutorID {} | JobID {} - Putting remaining '
'{} function activations into pending queue'
.format(job.executor_id, job.job_id,
len(callids_to_invoke_nondirect)))
for call_ids_range in iterchunks(callids_to_invoke_nondirect, job.chunksize):
self.pending_calls_q.put((job, call_ids_range))
else:
logger.debug('ExecutorID {} | JobID {} - Reached maximum {} '
'workers, queuing {} function activations'
.format(job.executor_id, job.job_id,
self.max_workers, job.total_calls))
for call_ids_range in iterchunks(range(job.total_calls), job.chunksize):
self.pending_calls_q.put((job, call_ids_range))
|
Normal Invocation
Use local threads to perform all the function invocations
|
https://github.com/lithops-cloud/lithops/blob/a274a0bc423e22b9a68834cac5d63130666a4ee8/lithops/invokers.py#L408-L464
|
import os
import sys
import time
import random
import queue
import shutil
import logging
import threading
from concurrent.futures import ThreadPoolExecutor
from lithops.future import ResponseFuture
from lithops.config import extract_storage_config
from lithops.version import __version__ as lithops_version
from lithops.utils import version_str, is_lithops_worker, iterchunks
from lithops.constants import LOGGER_LEVEL, LOGS_DIR, LOCALHOST, SERVERLESS, STANDALONE
from lithops.util.metrics import PrometheusExporter
logger = logging.getLogger(__name__)
def create_invoker(config, executor_id, internal_storage,
compute_handler, job_monitor):
if compute_handler.get_backend_type() == 'batch':
return BatchInvoker(
config,
executor_id,
internal_storage,
compute_handler,
job_monitor
)
elif compute_handler.get_backend_type() == 'faas':
return FaaSInvoker(
config,
executor_id,
internal_storage,
compute_handler,
job_monitor
)
class Invoker:
def __init__(self, config, executor_id, internal_storage, compute_handler, job_monitor):
log_level = logger.getEffectiveLevel()
self.log_active = log_level != logging.WARNING
self.log_level = LOGGER_LEVEL if not self.log_active else log_level
self.config = config
self.executor_id = executor_id
self.storage_config = extract_storage_config(self.config)
self.internal_storage = internal_storage
self.compute_handler = compute_handler
self.is_lithops_worker = is_lithops_worker()
self.job_monitor = job_monitor
prom_enabled = self.config['lithops'].get('telemetry', False)
prom_config = self.config.get('prometheus', {})
self.prometheus = PrometheusExporter(prom_enabled, prom_config)
self.mode = self.config['lithops']['mode']
self.backend = self.config['lithops']['backend']
self.customized_runtime = self.config['lithops'].get('customized_runtime', False)
self.runtime_name = self.config[self.backend]['runtime']
self.max_workers = self.config[self.backend].get('max_workers')
logger.debug(f'ExecutorID {self.executor_id} - Invoker initialized.'
f' Max workers: {self.max_workers}')
def select_runtime(self, job_id, runtime_memory):
if self.mode == SERVERLESS:
runtime_memory = runtime_memory or self.config[self.backend].get('runtime_memory')
runtime_timeout = self.config[self.backend].get('runtime_timeout')
elif self.mode == STANDALONE:
runtime_memory = None
runtime_timeout = self.config[STANDALONE]['hard_dismantle_timeout']
elif self.mode == LOCALHOST:
runtime_memory = None
runtime_timeout = None
msg = ('ExecutorID {} | JobID {} - Selected Runtime: {} '
.format(self.executor_id, job_id, self.runtime_name))
msg = msg+'- {}MB'.format(runtime_memory) if runtime_memory else msg
logger.info(msg)
runtime_key = self.compute_handler.get_runtime_key(self.runtime_name, runtime_memory)
runtime_meta = self.internal_storage.get_runtime_meta(runtime_key)
if not runtime_meta:
msg = 'Runtime {}'.format(self.runtime_name)
msg = msg+' with {}MB'.format(runtime_memory) if runtime_memory else msg
logger.info(msg+' is not yet installed')
runtime_meta = self.compute_handler.create_runtime(self.runtime_name, runtime_memory, runtime_timeout)
runtime_meta['runtime_timeout'] = runtime_timeout
self.internal_storage.put_runtime_meta(runtime_key, runtime_meta)
if lithops_version != runtime_meta['lithops_version']:
raise Exception("Lithops version mismatch. Host version: {} - Runtime version: {}"
.format(lithops_version, runtime_meta['lithops_version']))
py_local_version = version_str(sys.version_info)
py_remote_version = runtime_meta['python_version']
if py_local_version != py_remote_version:
raise Exception(("The indicated runtime '{}' is running Python {} and it "
"is not compatible with the local Python version {}")
.format(self.runtime_name, py_remote_version, py_local_version))
return runtime_meta
def _create_payload(self, job):
payload = {'config': self.config,
'chunksize': job.chunksize,
'log_level': self.log_level,
'func_key': job.func_key,
'data_key': job.data_key,
'extra_env': job.extra_env,
'total_calls': job.total_calls,
'execution_timeout': job.execution_timeout,
'data_byte_ranges': job.data_byte_ranges,
'executor_id': job.executor_id,
'job_id': job.job_id,
'job_key': job.job_key,
'max_workers': self.max_workers,
'call_ids': None,
'host_submit_tstamp': time.time(),
'lithops_version': lithops_version,
'runtime_name': job.runtime_name,
'runtime_memory': job.runtime_memory,
'worker_processes': job.worker_processes}
return payload
def _run_job(self, job):
if self.customized_runtime:
logger.debug('ExecutorID {} | JobID {} - Customized runtime activated'
.format(job.executor_id, job.job_id))
job.runtime_name = self.runtime_name
extend_runtime(job, self.compute_handler, self.internal_storage)
self.runtime_name = job.runtime_name
logger.info('ExecutorID {} | JobID {} - Starting function '
'invocation: {}() - Total: {} activations'
.format(job.executor_id, job.job_id,
job.function_name, job.total_calls))
logger.debug('ExecutorID {} | JobID {} - Worker processes: {} - Chunksize: {}'
.format(job.executor_id, job.job_id, job.worker_processes, job.chunksize))
self.prometheus.send_metric(
name='job_total_calls',
value=job.total_calls,
type='counter',
labels=(
('job_id_', job.job_key),
('function_name', job.function_name)
)
)
self.prometheus.send_metric(
name='job_runtime_memory',
value=job.runtime_memory or 0,
type='counter',
labels=(
('job_id_', job.job_key),
('function_name', job.function_name)
)
)
try:
job.runtime_name = self.runtime_name
self._invoke_job(job)
except (KeyboardInterrupt, Exception) as e:
self.stop()
raise e
log_file = os.path.join(LOGS_DIR, job.job_key+'.log')
logger.info("ExecutorID {} | JobID {} - View execution logs at {}"
.format(job.executor_id, job.job_id, log_file))
futures = []
for i in range(job.total_calls):
call_id = "{:05d}".format(i)
fut = ResponseFuture(call_id, job,
job.metadata.copy(),
self.storage_config)
fut._set_state(ResponseFuture.State.Invoked)
futures.append(fut)
job.futures = futures
return futures
def stop(self):
pass
class BatchInvoker(Invoker):
def __init__(self, config, executor_id, internal_storage, compute_handler, job_monitor):
super().__init__(config, executor_id, internal_storage, compute_handler, job_monitor)
self.compute_handler.init()
def _invoke_job(self, job):
payload = self._create_payload(job)
payload['call_ids'] = ["{:05d}".format(i) for i in range(job.total_calls)]
start = time.time()
activation_id = self.compute_handler.invoke(payload)
roundtrip = time.time() - start
resp_time = format(round(roundtrip, 3), '.3f')
logger.debug('ExecutorID {} | JobID {} - Job invoked ({}s) - Activation ID: {}'
.format(job.executor_id, job.job_id, resp_time, activation_id or job.job_key))
def run_job(self, job):
total_workers = job.total_calls // job.chunksize + (job.total_calls % job.chunksize > 0)
if self.max_workers < total_workers:
job.chunksize = job.total_calls // self.max_workers + (job.total_calls % self.max_workers > 0)
futures = self._run_job(job)
self.job_monitor.start(futures)
return futures
class FaaSInvoker(Invoker):
ASYNC_INVOKERS = 2
def __init__(self, config, executor_id, internal_storage, compute_handler, job_monitor):
super().__init__(config, executor_id, internal_storage, compute_handler, job_monitor)
remote_invoker = self.config[self.backend].get('remote_invoker', False)
self.remote_invoker = remote_invoker if not is_lithops_worker() else False
self.invokers = []
self.ongoing_activations = 0
self.pending_calls_q = queue.Queue()
self.should_run = False
self.sync = is_lithops_worker()
invoke_pool_threads = self.config[self.backend]['invoke_pool_threads']
self.executor = ThreadPoolExecutor(invoke_pool_threads)
logger.debug('ExecutorID {} - Serverless invoker created'.format(self.executor_id))
def _start_async_invokers(self):
def invoker_process(inv_id):
logger.debug('ExecutorID {} - Async invoker {} started'
.format(self.executor_id, inv_id))
with ThreadPoolExecutor(max_workers=250) as executor:
while self.should_run:
try:
self.job_monitor.token_bucket_q.get()
job, call_ids_range = self.pending_calls_q.get()
except KeyboardInterrupt:
break
if self.should_run:
executor.submit(self._invoke_task, job, call_ids_range)
else:
break
logger.debug('ExecutorID {} - Async invoker {} finished'
.format(self.executor_id, inv_id))
for inv_id in range(self.ASYNC_INVOKERS):
p = threading.Thread(target=invoker_process, args=(inv_id,))
self.invokers.append(p)
p.daemon = True
p.start()
def stop(self):
if self.invokers:
logger.debug('ExecutorID {} - Stopping async invokers'
.format(self.executor_id))
self.should_run = False
while not self.pending_calls_q.empty():
try:
self.pending_calls_q.get(False)
except Exception:
pass
for invoker in self.invokers:
self.job_monitor.token_bucket_q.put('$')
self.pending_calls_q.put((None, None))
self.invokers = []
def _invoke_task(self, job, call_ids_range):
payload = self._create_payload(job)
call_ids = ["{:05d}".format(i) for i in call_ids_range]
payload['call_ids'] = call_ids
if job.data_key:
data_byte_ranges = [job.data_byte_ranges[int(call_id)] for call_id in call_ids]
payload['data_byte_ranges'] = data_byte_ranges
else:
del payload['data_byte_ranges']
payload['data_byte_strs'] = [job.data_byte_strs[int(call_id)] for call_id in call_ids]
start = time.time()
activation_id = self.compute_handler.invoke(payload)
roundtrip = time.time() - start
resp_time = format(round(roundtrip, 3), '.3f')
if not activation_id:
time.sleep(random.randint(0, 5))
self.pending_calls_q.put((job, call_ids_range))
self.job_monitor.token_bucket_q.put('#')
return
logger.debug('ExecutorID {} | JobID {} - Calls {} invoked ({}s) - Activation'
' ID: {}'.format(job.executor_id, job.job_id, ', '.join(call_ids),
resp_time, activation_id))
def _invoke_job_remote(self, job):
start = time.time()
payload = {}
payload['config'] = self.config
payload['log_level'] = self.log_level
payload['runtime_name'] = job.runtime_name
payload['runtime_memory'] = job.runtime_memory
payload['remote_invoker'] = True
payload['job'] = job.__dict__
activation_id = self.compute_handler.invoke(payload)
roundtrip = time.time() - start
resp_time = format(round(roundtrip, 3), '.3f')
if activation_id:
logger.debug('ExecutorID {} | JobID {} - Remote invoker call done ({}s) - Activation'
' ID: {}'.format(job.executor_id, job.job_id, resp_time, activation_id))
else:
raise Exception('Unable to spawn remote invoker')
|
Apache License 2.0
|
yxuansu/hcl
|
SABERT/transformer.py
|
LearnedPositionalEmbedding.forward
|
python
|
def forward(self, input, offset=0):
seq_len, bsz = input.size()
positions = (offset + torch.arange(seq_len))
if input.is_cuda:
positions = positions.cuda(input.get_device())
res = self.weights(positions).unsqueeze(1).expand(-1, bsz, -1)
return res
|
Input is expected to be of size [seq_len x bsz].
|
https://github.com/yxuansu/hcl/blob/b7a2871e8006d148958bb8dc65670d0491f6a446/SABERT/transformer.py#L225-L232
|
import torch
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F
import math
class TransformerLayer(nn.Module):
def __init__(self, embed_dim, ff_embed_dim, num_heads, dropout, with_external=False, weights_dropout = True):
super(TransformerLayer, self).__init__()
self.self_attn = MultiheadAttention(embed_dim, num_heads, dropout, weights_dropout)
self.fc1 = nn.Linear(embed_dim, ff_embed_dim)
self.fc2 = nn.Linear(ff_embed_dim, embed_dim)
self.attn_layer_norm = nn.LayerNorm(embed_dim)
self.ff_layer_norm = nn.LayerNorm(embed_dim)
self.with_external = with_external
self.dropout = dropout
if self.with_external:
self.external_attn = MultiheadAttention(embed_dim, num_heads, dropout, weights_dropout)
self.external_layer_norm = nn.LayerNorm(embed_dim)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.constant_(self.fc1.bias, 0.)
nn.init.constant_(self.fc2.bias, 0.)
def forward(self, x, kv = None,
self_padding_mask = None, self_attn_mask = None,
external_memories = None, external_padding_mask=None,
need_weights = False):
residual = x
if kv is None:
x, self_attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_padding_mask, attn_mask=self_attn_mask, need_weights = need_weights)
else:
x, self_attn = self.self_attn(query=x, key=kv, value=kv, key_padding_mask=self_padding_mask, attn_mask=self_attn_mask, need_weights = need_weights)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.attn_layer_norm(residual + x)
if self.with_external:
residual = x
x, external_attn = self.external_attn(query=x, key=external_memories, value=external_memories, key_padding_mask=external_padding_mask, need_weights = need_weights)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.external_layer_norm(residual + x)
else:
external_attn = None
residual = x
x = F.relu(self.fc1(x))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.ff_layer_norm(residual + x)
return x, self_attn, external_attn
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0., weights_dropout=True):
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim))
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim))
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.weights_dropout = weights_dropout
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.in_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
nn.init.constant_(self.in_proj_bias, 0.)
nn.init.constant_(self.out_proj.bias, 0.)
def forward(self, query, key, value, key_padding_mask=None, attn_mask=None, need_weights=False):
qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr()
kv_same = key.data_ptr() == value.data_ptr()
tgt_len, bsz, embed_dim = query.size()
assert key.size() == value.size()
if qkv_same:
q, k, v = self.in_proj_qkv(query)
elif kv_same:
q = self.in_proj_q(query)
k, v = self.in_proj_kv(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q *= self.scaling
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
src_len = k.size(1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_weights = attn_weights.masked_fill(
attn_mask.unsqueeze(0),
float('-inf')
)
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights.masked_fill_(
key_padding_mask.transpose(0, 1).unsqueeze(1).unsqueeze(2),
float('-inf')
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
if self.weights_dropout:
attn_weights = F.dropout(attn_weights, p=self.dropout, training=self.training)
attn = torch.bmm(attn_weights, v)
if not self.weights_dropout:
attn = F.dropout(attn, p=self.dropout, training=self.training)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights, _ = attn_weights.max(dim=1)
attn_weights = attn_weights.transpose(0, 1)
else:
attn_weights = None
return attn, (attn_weights, v)
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_kv(self, key):
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1)
def in_proj_q(self, query):
return self._in_proj(query, end=self.embed_dim)
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2 * self.embed_dim)
def _in_proj(self, input, start=0, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
weight = weight[start:end, :]
if bias is not None:
bias = bias[start:end]
return F.linear(input, weight, bias)
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Seg_Embedding(num_embeddings, embedding_dim):
m = nn.Embedding(num_embeddings, embedding_dim)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
return m
class SelfAttentionMask(nn.Module):
def __init__(self, init_size = 100, device = 0):
super(SelfAttentionMask, self).__init__()
self.weights = SelfAttentionMask.get_mask(init_size)
self.device = device
@staticmethod
def get_mask(size):
weights = torch.triu(torch.ones((size, size), dtype = torch.uint8), 1)
return weights
def forward(self, size):
if self.weights is None or size > self.weights.size(0):
self.weights = SelfAttentionMask.get_mask(size)
res = self.weights[:size,:size].cuda(self.device).detach()
return res
class LearnedPositionalEmbedding(nn.Module):
def __init__(self, embedding_dim, init_size=1024):
super(LearnedPositionalEmbedding, self).__init__()
self.weights = nn.Embedding(init_size, embedding_dim)
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weights.weight, std=0.02)
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.