repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
nccgroup/depthcharge
|
python/depthcharge/stratagem.py
|
Stratagem.from_json_file
|
python
|
def from_json_file(cls, filename: str):
with open(filename, "r") as infile:
data = infile.read()
return cls.from_json(data)
|
Create a Stratagem object from the contents of the specified JSON file.
|
https://github.com/nccgroup/depthcharge/blob/9b66d1c2a80b9398ac561c83173ebd748aef018d/python/depthcharge/stratagem.py#L220-L226
|
import json
from copy import copy
from datetime import datetime
from .operation import Operation
from .version import __version__
class StratagemRequired(TypeError):
def __init__(self, name):
msg = name + ' requires a Stratagem in order to perform the requested operation'
super(StratagemRequired, self).__init__(msg)
class StratagemNotRequired(Exception):
class StratagemCreationFailed(Exception):
class Stratagem:
def __init__(self, op_class, capacity: int = -1, **kwargs):
self._op = op_class .__name__
self._spec = op_class.get_stratagem_spec()
if capacity > 0:
self._list = capacity * [None]
else:
self._list = []
self.comment = kwargs.get('comment', '')
self.timestamp = kwargs.get('timestamp', datetime.now().isoformat())
def entries(self):
for entry in self._list:
yield copy(entry)
def __getitem__(self, index):
return copy(self._list[index])
def _process_entry(self, entry: dict):
for key in entry:
expected_type = self._spec[key]
if expected_type is int and isinstance(entry[key], str):
entry[key] = int(entry[key], 0)
else:
entry[key] = expected_type(entry[key])
return entry
def __setitem__(self, index, entry):
self._process_entry(entry)
self._list[index] = entry
@property
def operation_name(self) -> str:
return self._op
def append(self, entry: dict = None, **kwargs):
if isinstance(entry, list):
for e in entry:
self.append(e)
return
if entry is None:
entry = {}
else:
entry = copy(entry)
for key in kwargs:
entry[key] = kwargs[key]
self._list.append(self._process_entry(entry))
def __len__(self):
return len(self._list)
@property
def total_operations(self):
count = 0
for entry in self._list:
try:
count += entry['iterations']
except KeyError:
count += 1
return count
def __str__(self):
return self.to_json(indent=4)
@classmethod
def from_json(cls, json_str: str):
tmp = json.loads(json_str)
try:
op_name = tmp['operation']
op_class = Operation.get_implementation(op_name)
except KeyError:
raise ValueError('Invalid Operation name encountered: ' + op_name)
key_spec = op_class.get_stratagem_spec()
if key_spec is None:
raise StratagemNotRequired(op_name + ' does not require the use of Stratagem objects')
stratagem = Stratagem(op_class,
comment=tmp.get('comment', ''),
timestamp=tmp.get('timestamp', ''))
for entry in tmp['entries']:
stratagem.append(entry)
return stratagem
@classmethod
|
BSD 3-Clause New or Revised License
|
jarryshaw/pypcapkit
|
pcapkit/protocols/protocol.py
|
Protocol.length
|
python
|
def length(self):
|
Header length of current protocol.
:rtype: int
|
https://github.com/jarryshaw/pypcapkit/blob/cfa778f606a111b2dc6eb57d1af054ba2689b578/pcapkit/protocols/protocol.py#L103-L107
|
import abc
import collections
import contextlib
import enum
import functools
import importlib
import io
import numbers
import os
import re
import shutil
import string
import struct
import textwrap
import urllib
import aenum
import chardet
from pcapkit.corekit.infoclass import Info
from pcapkit.corekit.protochain import ProtoChain
from pcapkit.utilities.compat import cached_property
from pcapkit.utilities.decorators import beholder, seekset
from pcapkit.utilities.exceptions import (ProtocolNotFound, ProtocolNotImplemented, ProtocolUnbound,
StructError)
from pcapkit.utilities.logging import logger
__all__ = ['Protocol']
readable = [ord(char) for char in filter(lambda char: not char.isspace(), string.printable)]
class Protocol(metaclass=abc.ABCMeta):
__layer__ = None
__proto__ = collections.defaultdict(lambda: ('pcapkit.protocols.raw', 'Raw'))
@property
@abc.abstractmethod
def name(self):
@property
def alias(self):
return self.__class__.__name__
@property
def info(self):
return self._info
@property
def data(self):
return self._data
@property
@abc.abstractmethod
|
BSD 3-Clause New or Revised License
|
openwisp/openwisp-users
|
openwisp_users/admin.py
|
RequiredInlineFormSet._construct_form
|
python
|
def _construct_form(self, i, **kwargs):
form = super()._construct_form(i, **kwargs)
form.empty_permitted = self.instance.is_superuser
return form
|
Override the method to change the form attribute empty_permitted
|
https://github.com/openwisp/openwisp-users/blob/6c083027ed7bb467351f8f05ac201fa60d9bdc24/openwisp_users/admin.py#L74-L81
|
import logging
from copy import deepcopy
from allauth import app_settings as allauth_settings
from allauth.account.models import EmailAddress
from django import forms
from django.apps import apps
from django.conf import settings
from django.contrib import admin, messages
from django.contrib.admin.actions import delete_selected
from django.contrib.admin.sites import NotRegistered
from django.contrib.admin.utils import model_ngettext
from django.contrib.auth import get_user_model
from django.contrib.auth.admin import GroupAdmin as BaseGroupAdmin
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.contrib.auth.forms import UserChangeForm as BaseUserChangeForm
from django.contrib.auth.forms import UserCreationForm as BaseUserCreationForm
from django.core.exceptions import ValidationError
from django.forms.models import BaseInlineFormSet
from django.http import HttpResponseRedirect
from django.template.response import TemplateResponse
from django.urls import reverse
from django.utils.translation import ngettext
from django.utils.translation import ugettext_lazy as _
from openwisp_utils.admin import UUIDAdmin
from organizations.base_admin import (
BaseOrganizationAdmin,
BaseOrganizationOwnerAdmin,
BaseOrganizationUserAdmin,
)
from organizations.exceptions import OwnershipRequired
from phonenumber_field.formfields import PhoneNumberField
from swapper import load_model
from . import settings as app_settings
from .multitenancy import MultitenantAdminMixin
from .utils import BaseAdmin
Group = load_model('openwisp_users', 'Group')
Organization = load_model('openwisp_users', 'Organization')
OrganizationOwner = load_model('openwisp_users', 'OrganizationOwner')
OrganizationUser = load_model('openwisp_users', 'OrganizationUser')
User = get_user_model()
logger = logging.getLogger(__name__)
class EmailAddressInline(admin.StackedInline):
model = EmailAddress
extra = 0
readonly_fields = ['email']
def has_add_permission(self, *args, **kwargs):
return False
def has_change_permission(self, request, obj=None):
if user_not_allowed_to_change_owner(request.user, obj):
self.can_delete = False
return False
return super().has_change_permission(request, obj)
class RequiredInlineFormSet(BaseInlineFormSet):
|
BSD 3-Clause New or Revised License
|
onicagroup/runway
|
runway/env_mgr/tfenv.py
|
TFEnvManager.parse_version_string
|
python
|
def parse_version_string(cls, version: str) -> VersionTuple:
match = re.search(cls.VERSION_REGEX, version)
if not match:
raise ValueError(
f"provided version doesn't conform to regex: {cls.VERSION_REGEX}"
)
return VersionTuple(
major=int(match.group("major")),
minor=int(match.group("minor")),
patch=int(match.group("patch")),
prerelease=match.group("prerelease") or None,
prerelease_number=int(match.group("prerelease_number") or 0) or None,
)
|
Parse version string into a :class:`VersionTuple`.
Args:
version: Version string to parse. Must be in the format of
``<major>.<minor>.<patch>`` with an optional ``-<prerelease>``.
|
https://github.com/onicagroup/runway/blob/6e0d543512325a92265c140f386c163f6be410b4/runway/env_mgr/tfenv.py#L448-L467
|
from __future__ import annotations
import hashlib
import json
import logging
import os
import platform
import re
import shutil
import subprocess
import sys
import tempfile
import zipfile
from distutils.version import LooseVersion
from typing import (
TYPE_CHECKING,
Any,
Dict,
Generator,
List,
NamedTuple,
Optional,
Union,
cast,
overload,
)
from urllib.error import URLError
from urllib.request import urlretrieve
import hcl
import hcl2
import requests
from typing_extensions import Final
from ..compat import cached_property
from ..exceptions import HclParserError
from ..utils import FileHash, get_hash_for_filename, merge_dicts
from . import EnvManager, handle_bin_download_error
if TYPE_CHECKING:
from pathlib import Path
from types import ModuleType
from .._logging import RunwayLogger
LOGGER = cast("RunwayLogger", logging.getLogger(__name__))
TF_VERSION_FILENAME = ".terraform-version"
def download_tf_release(
version: str,
versions_dir: Path,
command_suffix: str,
tf_platform: Optional[str] = None,
arch: Optional[str] = None,
) -> None:
version_dir = versions_dir / version
if arch is None:
arch = os.getenv("TFENV_ARCH", "amd64")
if tf_platform:
tfver_os = tf_platform + "_" + arch
else:
if platform.system().startswith("Darwin"):
tfver_os = f"darwin_{arch}"
elif platform.system().startswith("Windows") or (
platform.system().startswith("MINGW64")
or (
platform.system().startswith("MSYS_NT")
or platform.system().startswith("CYGWIN_NT")
)
):
tfver_os = f"windows_{arch}"
else:
tfver_os = f"linux_{arch}"
download_dir = tempfile.mkdtemp()
filename = f"terraform_{version}_{tfver_os}.zip"
shasums_name = f"terraform_{version}_SHA256SUMS"
tf_url = "https://releases.hashicorp.com/terraform/" + version
try:
LOGGER.verbose("downloading Terraform from %s...", tf_url)
for i in [filename, shasums_name]:
urlretrieve(tf_url + "/" + i, os.path.join(download_dir, i))
except URLError as exc:
handle_bin_download_error(exc, "Terraform")
tf_hash = get_hash_for_filename(filename, os.path.join(download_dir, shasums_name))
checksum = FileHash(hashlib.sha256())
checksum.add_file(os.path.join(download_dir, filename))
if tf_hash != checksum.hexdigest:
LOGGER.error(
"downloaded Terraform %s does not match sha256 %s", filename, tf_hash
)
sys.exit(1)
with zipfile.ZipFile(os.path.join(download_dir, filename)) as tf_zipfile:
version_dir.mkdir(parents=True, exist_ok=True)
tf_zipfile.extractall(str(version_dir))
shutil.rmtree(download_dir)
result = version_dir / ("terraform" + command_suffix)
result.chmod(result.stat().st_mode | 0o0111)
def get_available_tf_versions(include_prerelease: bool = False) -> List[str]:
tf_releases = json.loads(
requests.get("https://releases.hashicorp.com/index.json").text
)["terraform"]
tf_versions = sorted(
[k for k, _v in tf_releases["versions"].items()],
key=LooseVersion,
reverse=True,
)
if include_prerelease:
return [i for i in tf_versions if i]
return [i for i in tf_versions if i and "-" not in i]
def get_latest_tf_version(include_prerelease: bool = False) -> str:
return get_available_tf_versions(include_prerelease)[0]
def load_terraform_module(parser: ModuleType, path: Path) -> Dict[str, Any]:
result: Dict[str, Any] = {}
LOGGER.debug("using %s parser to load module: %s", parser.__name__.upper(), path)
for tf_file in path.glob("*.tf"):
try:
tf_config = parser.loads(tf_file.read_text())
result = merge_dicts(result, cast(Dict[str, Any], tf_config))
except Exception as exc:
raise HclParserError(exc, tf_file, parser) from None
return result
class VersionTuple(NamedTuple):
major: int
minor: int
patch: int
prerelease: Optional[str] = None
prerelease_number: Optional[int] = None
def __str__(self) -> str:
result = f"{self.major}.{self.minor}.{self.patch}"
if self.prerelease:
result += f"-{self.prerelease}"
if self.prerelease_number:
result += str(self.prerelease_number)
return result
class TFEnvManager(EnvManager):
VERSION_REGEX: Final[str] = (
r"^(?P<major>[0-9]*)\.(?P<minor>[0-9]*)\.(?P<patch>[0-9]*)"
r"(\-(?P<prerelease>alpha|beta|oci|rc)(?P<prerelease_number>[0-9]*)?)?"
)
VERSION_OUTPUT_REGEX: Final[
str
] = r"^Terraform v(?P<version>[0-9]*\.[0-9]*\.[0-9]*)(?P<suffix>-.*)?"
def __init__(self, path: Optional[Path] = None) -> None:
super().__init__("terraform", "tfenv", path)
@cached_property
def backend(self) -> Dict[str, Any]:
return [
{"type": k, "config": v}
for k, v in self.terraform_block.get(
"backend", {None: cast(Dict[str, str], {})}
).items()
][0]
@cached_property
def terraform_block(self) -> Dict[str, Any]:
@overload
def _flatten_lists(data: Dict[str, Any]) -> Dict[str, Any]:
...
@overload
def _flatten_lists(data: List[Any]) -> List[Any]:
...
@overload
def _flatten_lists(data: str) -> str:
...
def _flatten_lists(
data: Union[Dict[str, Any], List[Any], Any]
) -> Union[Dict[str, Any], Any]:
if not isinstance(data, dict):
return data
copy_data = cast(Dict[str, Any], data.copy())
for attr, val in copy_data.items():
if isinstance(val, list):
if len(cast(List[Any], val)) == 1:
data[attr] = _flatten_lists(cast(Any, val[0]))
else:
data[attr] = [_flatten_lists(v) for v in cast(List[Any], val)]
elif isinstance(val, dict):
data[attr] = _flatten_lists(cast(Dict[str, Any], val))
return data
try:
result: Union[Dict[str, Any], List[Dict[str, Any]]] = load_terraform_module(
hcl2, self.path
).get("terraform", cast(Dict[str, Any], {}))
except HclParserError as exc:
LOGGER.warning(exc)
LOGGER.warning("failed to parse as HCL2; trying HCL...")
try:
result = load_terraform_module(hcl, self.path).get(
"terraform", cast(Dict[str, Any], {})
)
except HclParserError as exc:
LOGGER.warning(exc)
result = {}
if isinstance(result, list):
return _flatten_lists({k: v for i in result for k, v in i.items()})
return _flatten_lists(result)
@cached_property
def version(self) -> Optional[VersionTuple]:
version_requested = self.current_version or self.get_version_from_file()
if not version_requested:
return None
if re.match(r"^min-required$", version_requested):
LOGGER.debug("tfenv: detecting minimal required version")
version_requested = self.get_min_required()
if re.match(r"^latest:.*$", version_requested):
regex = re.search(r"latest:(.*)", version_requested).group(
1
)
include_prerelease_versions = False
elif re.match(r"^latest$", version_requested):
regex = r"^[0-9]+\.[0-9]+\.[0-9]+$"
include_prerelease_versions = False
else:
regex = f"^{version_requested}$"
include_prerelease_versions = True
if (self.versions_dir / version_requested).is_dir():
self.current_version = version_requested
return self.parse_version_string(self.current_version)
try:
version = next(
i
for i in get_available_tf_versions(include_prerelease_versions)
if re.match(regex, i)
)
except StopIteration:
LOGGER.error("unable to find a Terraform version matching regex: %s", regex)
sys.exit(1)
self.current_version = version
return self.parse_version_string(self.current_version)
@cached_property
def version_file(self) -> Optional[Path]:
for path in [self.path, self.path.parent]:
test_path = path / TF_VERSION_FILENAME
if test_path.is_file():
LOGGER.debug("using version file: %s", test_path)
return test_path
return None
def get_min_required(self) -> str:
version = self.terraform_block.get("required_version")
if version:
if re.match(r"^!=.+", version):
LOGGER.error(
"min required Terraform version is a negation (%s) "
"- unable to determine required version",
version,
)
sys.exit(1)
else:
version = re.search(r"[0-9]*\.[0-9]*(?:\.[0-9]*)?", version)
if version:
LOGGER.debug("detected minimum Terraform version is %s", version)
return version.group(0)
LOGGER.error(
"Terraform version specified as min-required, but unable to "
"find a specified version requirement in this module's tf files"
)
sys.exit(1)
def get_version_from_file(self, file_path: Optional[Path] = None) -> Optional[str]:
file_path = file_path or self.version_file
if file_path and file_path.is_file():
return file_path.read_text().strip()
LOGGER.debug("file path not provided and version file could not be found")
return None
def install(self, version_requested: Optional[str] = None) -> str:
if version_requested:
self.set_version(version_requested)
if not self.version:
raise ValueError(
f"version not provided and unable to find a {TF_VERSION_FILENAME} file"
)
if (self.versions_dir / str(self.version)).is_dir():
LOGGER.verbose(
"Terraform version %s already installed; using it...", self.version
)
return str(self.bin)
LOGGER.info("downloading and using Terraform version %s ...", self.version)
download_tf_release(str(self.version), self.versions_dir, self.command_suffix)
LOGGER.verbose("downloaded Terraform %s successfully", self.version)
return str(self.bin)
def list_installed(self) -> Generator[Path, None, None]:
LOGGER.verbose("checking %s for Terraform versions...", self.versions_dir)
return self.versions_dir.rglob("*.*.*")
def set_version(self, version: str) -> None:
if self.current_version == version:
return
self.current_version = version
try:
del self.version
except Exception:
pass
@classmethod
def get_version_from_executable(
cls,
bin_path: Union[Path, str],
*,
cwd: Optional[Union[Path, str]] = None,
env: Optional[Dict[str, str]] = None,
) -> Optional[VersionTuple]:
output = subprocess.check_output(
[str(bin_path), "-version"], cwd=cwd, env=env
).decode()
match = re.search(cls.VERSION_OUTPUT_REGEX, output)
if not match:
return None
return cls.parse_version_string(match.group("version"))
@classmethod
|
Apache License 2.0
|
krahets/codingsolution
|
leetcode_python/28. Implement strStr().py
|
Solution.strStr
|
python
|
def strStr(self, haystack, needle):
if not needle: return 0
l_h, l_n = len(haystack), len(needle)
for i in range(l_h + 1):
for j in range(l_n + 1):
if j == l_n: return i
if i + j == l_h: return -1
if haystack[i+j] != needle[j]: break
|
:type haystack: str
:type needle: str
:rtype: int
|
https://github.com/krahets/codingsolution/blob/16f57a541292631ad77368caad948eba10e24660/leetcode_python/28. Implement strStr().py#L2-L14
|
class Solution(object):
|
MIT License
|
app-registry/appr
|
appr/api/impl/builder.py
|
show_file
|
python
|
def show_file(package, filepath, version_query=None, endpoint=DEFAULT_ENDPOINT):
k = Kub(package, version=version_query, endpoint=endpoint)
return k.package.file(filepath)
|
Returns the content of any file inside a package.
Useful to navigate and inspect a package from a web-browser
Args:
package (:obj:`str`): package name in the format `namespace/name` or `domain.com/name`
filepath (:obj:`str`): filepath relative to the package, eg: `templates/svc.yaml`
version_query (:obj:`str`): a version query, eg: ">=1.5,<2.0"
endpoint (:obj:`str`): the appr-registry server
Returns:
:obj:`str`: the file content
See Also:
* :obj:`appr.api.builder.show_file`
|
https://github.com/app-registry/appr/blob/37ff9a487a54ad41b59855ecd76ee092fe206a84/appr/api/impl/builder.py#L51-L70
|
from appr.formats.appr.kpm import Kpm as Kub
DEFAULT_ENDPOINT = "http://localhost:5000"
def build(package, version_query=None, namespace="default", variables={}, shards=None,
endpoint=DEFAULT_ENDPOINT):
variables['namespace'] = namespace
k = Kub(package, endpoint=endpoint, variables=variables, namespace=namespace,
version=version_query, shards=shards)
return k
|
Apache License 2.0
|
mindspore-ai/mindinsight
|
mindinsight/mindconverter/graph_based_converter/third_party_graph/base.py
|
GraphNode._get_raw_params
|
python
|
def _get_raw_params(self, node):
|
Get params in onnx.
|
https://github.com/mindspore-ai/mindinsight/blob/253a210719dbb1e55b826f2e489322f402d66676/mindinsight/mindconverter/graph_based_converter/third_party_graph/base.py#L503-L504
|
import abc
from collections import OrderedDict
from typing import List
from mindinsight.mindconverter.common.log import logger as log
from mindinsight.mindconverter.graph_based_converter.constant import InputType
from mindinsight.mindconverter.common.exceptions import NodeInputTypeNotSupportError
class GraphParser(metaclass=abc.ABCMeta):
@classmethod
@abc.abstractmethod
def parse(cls, model_path: str, **kwargs):
class BaseGraph(metaclass=abc.ABCMeta):
_REQUIRED_PARAM_OF_MODEL = "model"
@abc.abstractmethod
def build(self):
@abc.abstractmethod
def sub_graph_merging(self):
@staticmethod
@abc.abstractmethod
def load_checkpoint(ckpt_path: str) -> dict:
@staticmethod
@abc.abstractmethod
def load_metadata(**kwargs):
@staticmethod
@abc.abstractmethod
def load_graph(graph_path: str, **kwargs):
@classmethod
@abc.abstractmethod
def load(cls, model_path: str, **kwargs):
def __new__(cls, *args, **kwargs):
model_param = args[0] if args else kwargs.get(
cls._REQUIRED_PARAM_OF_MODEL)
if not model_param:
error = ValueError(f"`{cls._REQUIRED_PARAM_OF_MODEL}` "
f"can not be None.")
log.error(str(error))
log.exception(error)
raise error
return super(BaseGraph, cls).__new__(cls)
class Graph(BaseGraph, abc.ABC):
sorted = False
def __init__(self, model, model_path, **kwargs):
super(Graph, self).__init__()
self.model = model
self.model_path = model_path
self._raw_input_nodes = kwargs.get("input_nodes")
self._raw_output_nodes = kwargs.get("output_nodes")
self._nodes_collection = OrderedDict()
self._nodes_record = dict()
self._shape_dict = dict()
self._input_nodes = []
self._output_nodes = []
self._topological_order = []
self._input_shape = dict()
self._is_multi_opt_graph = False
@property
def user_provided_input_nodes(self) -> List[str]:
return list(self._raw_input_nodes.keys())
def get_input_shape(self, name):
return self._input_shape.get(name)
def get_output_shape(self, name):
return self._shape_dict.get(name)
def get_input_shape_from_input(self, name):
return self._input_shape.get(name)
@property
def nodes_in_topological_order(self):
if not self.sorted:
self._topological_sort()
return self._topological_order
def _reset_topological_order(self):
self._topological_order = self._input_nodes[:]
self.sorted = False
def get_node(self, node_name):
prefix = node_name
if prefix not in self._nodes_collection:
return None
return self._nodes_collection[prefix]
def build(self):
self._collect_ipt_and_opt_nodes()
self._topological_sort()
def _collect_ipt_and_opt_nodes(self):
for name, node in self._nodes_collection.items():
if node.in_degree == 0:
self._input_nodes.append(name)
if node.out_degree == 0:
self._output_nodes.append(name)
def _topological_sort(self):
self._reset_topological_order()
def is_connected(src, dst):
for precursor in dst.precursor_nodes:
if src == precursor:
return 1
return 0
idx = 0
while idx < len(self._topological_order):
cur_node_name = self._topological_order[idx]
cur_node = self.get_node(cur_node_name)
for scsr_name in cur_node.successor_nodes:
scsr_node = self.get_node(scsr_name)
scsr_node.cur_in_degree -= is_connected(cur_node_name,
scsr_node)
if scsr_node.cur_in_degree == 0:
self._topological_order.append(scsr_name)
idx += 1
self.sorted = True
def sub_graph_merging(self):
raise NotImplementedError
@staticmethod
def load_checkpoint(ckpt_path: str) -> dict:
raise NotImplementedError
@staticmethod
def load_metadata(**kwargs):
raise NotImplementedError
@staticmethod
def load_graph(graph_path: str, **kwargs):
raise NotImplementedError
@classmethod
def load(cls, model_path: str, **kwargs) -> BaseGraph:
src_graph = cls.load_graph(graph_path=model_path, **kwargs)
return cls(src_graph, model_path, **kwargs)
class GraphNode(abc.ABC):
transformed = False
def __init__(self, node):
self.precursor_nodes = []
self.successor_nodes = []
self._deleted_in_edge = 0
self._src_node = node if node else None
self._op_name = None
self._op_params = dict()
self._scope_name = None
self._op_shape = None
self._node_type = None
self._args_in_code = dict()
self._hash_key = None
self._ipt_shape = None
self._opt_shape = None
self._weight = None
self._ipt_var_names = list()
self._opt_var_names = list()
self._is_in_multi_opt_graph = False
@property
def ir_node_name(self):
return self._src_node.name
@property
def ir_node_operation(self):
return self._src_node.op_type
@property
def ir_node_inputs(self):
return list(self._src_node.input_name_list)
@property
def ir_node_outputs(self):
return list(self._src_node.output_name_list)
@property
def ir_node_precursor(self):
return [
v.name for _, v in self._src_node.precursor_onnx_node_dict.items()
]
@property
def ir_node_successor(self):
return [
v.name for _, v in self._src_node.successor_onnx_node_dict.items()
]
@property
def weight(self):
return self._weight
@property
def ipt_var_names(self):
return self._ipt_var_names
@ipt_var_names.setter
def ipt_var_names(self, var_names):
self._ipt_var_names = var_names
@property
def opt_var_names(self):
return self._opt_var_names
@opt_var_names.setter
def opt_var_names(self, var_names):
self._opt_var_names = var_names
@staticmethod
def get_opt_var_name(variable_name):
return f"{variable_name}_opt"
@property
def args_in_code(self):
return self._args_in_code
@args_in_code.setter
def args_in_code(self, args):
self._args_in_code = args
@property
def input_shape(self):
return self._ipt_shape
@property
def output_shape(self):
return self._opt_shape
def is_empty(self):
return not self._src_node
@property
def node_type(self):
return self._node_type
@node_type.setter
def node_type(self, m):
self._node_type = m
@property
def scope_name(self):
return self._scope_name
@scope_name.setter
def scope_name(self, name):
self._scope_name = name
@property
def node_params(self):
return self._op_params
@property
def cur_in_degree(self):
return self.in_degree - self._deleted_in_edge
@cur_in_degree.setter
def cur_in_degree(self, e):
self._deleted_in_edge += self.cur_in_degree - e
@property
def in_degree(self):
return len(self.precursor_nodes)
@property
def out_degree(self):
return len(self.successor_nodes)
@property
@abc.abstractmethod
def hash_key(self):
@abc.abstractmethod
|
Apache License 2.0
|
fzh0917/stmtrack
|
videoanalyst/data/sampler/sampler_base.py
|
SamplerBase.__getitem__
|
python
|
def __getitem__(self, item) -> Dict:
|
r"""
An interface to sample data
|
https://github.com/fzh0917/stmtrack/blob/61730c19ec0eaea393fa3119b8d71023e1173d5b/videoanalyst/data/sampler/sampler_base.py#L83-L86
|
from abc import ABCMeta
from typing import Dict, List
import numpy as np
from loguru import logger
from videoanalyst.utils import Registry
from ..dataset.dataset_base import DatasetBase
TRACK_SAMPLERS = Registry('TRACK_SAMPLERS')
VOS_SAMPLERS = Registry('VOS_SAMPLERS')
TASK_SAMPLERS = dict(
track=TRACK_SAMPLERS,
vos=VOS_SAMPLERS,
)
class SamplerBase:
__metaclass__ = ABCMeta
default_hyper_params = dict()
def __init__(self, datasets: List[DatasetBase] = [], seed: int = 0) -> None:
self._hyper_params = self.default_hyper_params
self._state = dict()
self._state["rng"] = np.random.RandomState(seed)
self.datasets = datasets
for d in datasets:
dataset_name = type(d).__name__
logger.info("Sampler's underlying datasets: {}, length {}".format(
dataset_name, len(d)))
def get_hps(self) -> Dict:
return self._hyper_params
def set_hps(self, hps: Dict) -> None:
for key in hps:
if key not in self._hyper_params:
raise KeyError
self._hyper_params[key] = hps[key]
def update_params(self) -> None:
|
BSD 3-Clause New or Revised License
|
neurodata/ndstore
|
ndramon/batchAnnotation.py
|
BatchAnnotation.update
|
python
|
def update ( self, cursor ):
self.updateBase ( ANNO_ANNOTATION, cursor )
|
Set type and update base class.
|
https://github.com/neurodata/ndstore/blob/32ca33626ae54ee73c4309033b3172dd4da6bfea/ndramon/batchAnnotation.py#L136-L139
|
import numpy as np
import cStringIO
import MySQLdb
import sys
from collections import defaultdict
from ndwserror import NDWSError
import logging
logger=logging.getLogger("neurodata")
ANNO_ANNOTATION = 1
ANNO_SYNAPSE = 2
ANNO_SEED = 3
ANNO_SEGMENT = 4
ANNO_NEURON = 5
ANNO_ORGANELLE = 6
anno_dbtables = { 'annotation':'annotations', 'kvpairs':'kvpairs', 'synapse':'synapses', 'segment':'segments', 'synseg':'synseg', 'organelle':'organelles', 'seed':'seeds' }
class BatchAnnotation:
def __init__ ( self, annodb ):
self.annodb = annodb
self.annidList = []
self.statusList = [0]
self.confidenceList = [0.0]
self.authorList = [""]
self.kvpairs = defaultdict(list)
def setID ( self, db ):
if len(self.annidList) == 0:
self.annidList.append( db.nextID() )
else:
db.setBatchID( self.annidList )
def getField ( self, field ):
if field == 'status':
return self.statusList
elif field == 'confidence':
return self.confidenceList
elif field == 'author':
return self.authorList
elif self.kvpairs.get(field):
return self.kvpairs[field]
else:
logger.warning ( "getField: No such field %s" % (field))
raise NDWSError ( "getField: No such field %s" % (field))
def setField ( self, field, value ):
if field == 'status':
self.statusList.append( value )
elif field == 'confidence':
self.confidenceList.append( value )
elif field == 'author':
self.authorList = ( value )
else:
self.kvpairs[field]=value
def store ( self, cursor, annotype=ANNO_ANNOTATION ):
sql = "INSERT INTO {} VALUES ( %s, %s, %s, %s )".format( anno_dbtables['annotation'] )
data = zip( self.annidList, len(self.annidList)*[annotype] , self.confidenceList, self.statusList )
try:
cursor.executemany (sql, data)
except MySQLdb.Error, e:
logger.warning ( "Error inserting annotation %d: %s. sql=%s" % (e.args[0], e.args[1], sql))
raise NDWSError ( "Error inserting annotation: %d: %s. sql=%s" % (e.args[0], e.args[1], sql))
if self.author != "":
self.kvpairs['ann_author'] = self.author
if len(self.kvpairs) != 0:
try:
kvclause = ','.join(['(' + str(self.annid) +',\'' + k + '\',\'' + v +'\')' for (k,v) in self.kvpairs.iteritems()])
except:
raise NDWSError ( "Improperly formatted key/value csv string:" + kvclause )
sql = "INSERT INTO %s VALUES %s" % ( anno_dbtables['kvpairs'], kvclause )
try:
cursor.execute(sql)
except MySQLdb.Error, e:
logger.warning ( "Error inserting kvpairs %d: %s. sql=%s" % (e.args[0], e.args[1], sql))
raise NDWSError ( "Error inserting kvpairs: %d: %s. sql=%s" % (e.args[0], e.args[1], sql))
|
Apache License 2.0
|
ibm/power-up
|
scripts/python/lib/utilities.py
|
get_file_path
|
python
|
def get_file_path(filename='/home'):
print(bold('\nFile search hints:'))
print('/home/user1/abc.* Search for abc.* under home/user1/')
print('/home/user1/**/abc.* Search recursively for abc.* under '
'/home/user1/')
print('/home/user1/myfile[56].2 Search for myfile5.2 or myfile6.2 under '
'/home/user1/')
print('/home/user1/*/ List directories under /home/user1')
print()
maxl = 10
while True:
print("Enter a file name to search for ('L' to leave without making a "
"selction): ")
filename = rlinput(bold("File: "), filename)
print()
if filename == 'L' or filename == "'L'":
return None
files = glob(filename, recursive=True)
if files:
print(bold(f'Found {len(files)} matching'))
if len(files) > maxl:
print(f'\nSearch returned more than {maxl} items. Showing '
f'first {maxl}')
files = files[:40]
choices = [str(i + 1) for i in range(len(files))]
choices.append('S')
choices.append('L')
files.append('Search again')
files.append('Leave without selecting')
ch, item = get_selection(files, choices)
print()
if item is not None and os.path.isfile(item):
print(f'\n{item}')
if get_yesno("Confirm selection: ", default='y'):
return item
else:
item = 'Search again'
elif item == 'Leave without selecting':
return None
if item != 'Search again':
filename = item
|
Interactive search and selection of a file path.
Returns:
path to file or None
|
https://github.com/ibm/power-up/blob/53a1db7e86726cf6d1783afaf083c9b7dcabdef8/scripts/python/lib/utilities.py#L974-L1018
|
from glob import glob
import os
import re
import sys
import datetime
import subprocess
import fileinput
import readline
from shutil import copy2, copyfile
from subprocess import Popen, PIPE
from netaddr import IPNetwork, IPAddress, IPSet
from tabulate import tabulate
from textwrap import dedent
import hashlib
from distro import linux_distribution
from lib.config import Config
import lib.logger as logger
from lib.exception import UserException
PATTERN_DHCP = r"^\|_*\s+(.+):(.+)"
PATTERN_MAC = r'([\da-fA-F]{2}:){5}[\da-fA-F]{2}'
PATTERN_IP = (r'^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}'
r'(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$')
PATTERN_EMBEDDED_IP = (r'(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}'
r'(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)')
CalledProcessError = subprocess.CalledProcessError
LOG = logger.getlogger()
DHCP_SERVER_CMD = "sudo nmap --script broadcast-dhcp-discover -e {0}"
def parse_dhcp_servers(nmap_response):
matches = re.findall(PATTERN_DHCP, nmap_response, re.MULTILINE)
data = {a: b.strip() for a, b in matches}
return data
def get_dhcp_servers(interface):
cmd = DHCP_SERVER_CMD.format(interface)
output = ""
data = None
try:
output = bash_cmd(cmd)
except Exception as e:
LOG.error("{0}".format(e))
raise e
else:
data = parse_dhcp_servers(output)
return data
def has_dhcp_servers(interface):
try:
dct = get_dhcp_servers(interface)
return 'DHCPOFFER' in dct['DHCP Message Type']
except:
pass
return False
def scan_subnet(cidr):
cmd = f'sudo nmap -sn {cidr}'
res, err, rc = sub_proc_exec(cmd)
items = []
if rc != 0:
LOG.error(f'Error while scanning subnet {cidr}, rc: {rc}')
for line in res.split('Nmap scan report'):
match = re.search(PATTERN_EMBEDDED_IP, line)
if match:
ip = match.group(0)
match2 = re.search(PATTERN_MAC, line)
if match2:
mac = match2.group(0)
else:
mac = ''
items += [(ip, mac)]
return items
def scan_subnet_for_port_open(cidr, port):
if isinstance(cidr, list):
cidr = ' '.join(cidr)
cmd = f'sudo nmap -p {port} {cidr}'
res, err, rc = sub_proc_exec(cmd)
items = []
if rc != 0:
LOG.error(f'Error while scanning subnet {cidr}, rc: {rc}')
for line in res.split('Nmap scan report'):
match = re.search(PATTERN_EMBEDDED_IP, line)
if match:
ip = match.group(0)
match2 = re.search(r'\d+/tcp\s+open.+' + rf'({PATTERN_MAC})', line,
re.DOTALL)
if match2:
mac = match2.group(1)
if match2:
items += [(ip, mac)]
return items
def is_ipaddr(ip):
if re.search(PATTERN_IP, ip):
return True
def is_netmask(mask):
from netaddr import AddrFormatError
try:
if IPAddress(mask).is_netmask():
res = True
else:
res = False
except AddrFormatError:
res = False
return res
def get_network_addr(ipaddr, prefix):
return str(IPNetwork(f'{ipaddr}/{prefix}').network)
def get_netmask(prefix):
return str(IPNetwork(f'0.0.0.0/{prefix}').netmask)
def get_prefix(netmask):
return IPAddress(netmask).netmask_bits()
def get_network_size(cidr):
return IPNetwork(cidr).size
def add_offset_to_address(addr, offset):
addr_ = IPNetwork(addr)
addr_.value += offset
return str(addr_.ip)
def is_overlapping_addr(subnet1, subnet2):
if IPSet([subnet1]).intersection(IPSet([subnet2])):
return True
else:
return False
def bash_cmd(cmd):
log = logger.getlogger()
_cmd = ['bash', '-c', cmd]
log.debug('Run subprocess: %s' % ' '.join(_cmd))
output = subprocess.check_output(_cmd, universal_newlines=True,
stderr=subprocess.STDOUT)
try:
output = output.decode('utf-8')
except AttributeError:
pass
log.debug(output)
return output
def backup_file(path, suffix='.orig', multi=True):
log = logger.getlogger()
backup_path = path + suffix
version = 0
while os.path.exists(backup_path) and multi:
version += 1
backup_path += "." + str(version)
log.debug('Make backup copy of orignal file: \'%s\'' % backup_path)
copy2(path, backup_path)
os.chmod(backup_path, 0o444)
def append_line(path, line, check_exists=True):
log = logger.getlogger()
log.debug('Add line \'%s\' to file \'%s\'' % (line, path))
if not line.endswith('\n'):
line += '\n'
exists = False
if check_exists:
with open(path, 'r') as file_in:
for read_line in file_in:
if read_line == line:
exists = True
if not exists:
with open(path, 'a') as file_out:
file_out.write(line)
def remove_line(path, regex):
log = logger.getlogger()
log.debug('Remove lines containing regex \'%s\' from file \'%s\'' %
(regex, path))
for line in fileinput.input(path, inplace=1):
if not re.match(regex, line):
print(line, end='')
def line_in_file(path, regex, replace, backup=None):
if os.path.isfile(path):
if backup:
backup_file(path, multi=False)
try:
with open(path, 'r') as f:
data = f.read()
except FileNotFoundError as exc:
print(f'File not found: {path}. Err: {exc}')
else:
data = data.splitlines()
in_file = False
with open(path, 'r+') as f:
for line in data:
in_line = re.search(regex, line)
if in_line:
line = re.sub(regex, replace, line)
in_file = True
f.write(line + '\n')
if not in_file:
f.write(replace + '\n')
def replace_regex(path, regex, replace):
log = logger.getlogger()
log.debug('Replace regex \'%s\' with \'%s\' in file \'%s\'' %
(regex, replace, path))
for line in fileinput.input(path, inplace=1):
print(re.sub(regex, replace, line), end='')
def copy_file(source, dest, metadata=True):
log = logger.getlogger()
log.debug(f'Copy file, source:{source} dest:{dest} metadata:{metadata}')
if metadata:
copy2(source, dest)
else:
if os.path.isdir(dest):
basename = os.path.basename(source)
dest = os.path.join(dest, basename)
copyfile(source, dest)
def sub_proc_launch(cmd, stdout=PIPE, stderr=PIPE):
log = logger.getlogger()
log.debug(f"sub_proc_launch cmd='{cmd}' stdout='{stdout}' stderr='{stderr}'")
proc = Popen(cmd.split(), stdout=stdout, stderr=stderr)
return proc
def sub_proc_exec(cmd, stdout=PIPE, stderr=PIPE, shell=False, env=None):
log = logger.getlogger()
log.debug(f"sub_proc_exec cmd='{cmd}' stdout='{stdout}' stderr='{stderr}' "
f"shell='{shell}' env='{env}'")
if not shell:
cmd = cmd.split()
proc = Popen(cmd, stdout=stdout, stderr=stderr, shell=shell, env=env)
stdout, stderr = proc.communicate()
try:
stdout = stdout.decode('utf-8')
except AttributeError:
pass
try:
stderr = stderr.decode('utf-8')
except AttributeError:
pass
log.debug(f"sub_proc_exec stdout='{stdout}' stderr='{stderr}' "
f"rc='{proc.returncode}'")
return stdout, stderr, proc.returncode
def sub_proc_display(cmd, stdout=None, stderr=None, shell=False, env=None):
log = logger.getlogger()
log.debug(f"sub_proc_display cmd='{cmd}' stdout='{stdout}' "
f"stderr='{stderr}' shell='{shell}' env='{env}'")
if not shell:
cmd = cmd.split()
proc = Popen(cmd, stdout=stdout, stderr=stderr, shell=shell, env=env)
proc.wait()
rc = proc.returncode
log.debug(f"sub_proc_display rc='{rc}'")
return rc
def sub_proc_wait(proc):
log = logger.getlogger()
cnt = 0
rc = None
while rc is None:
rc = proc.poll()
print('\rwaiting for process to finish. Time elapsed: {:2}:{:2}:{:2}'.
format(cnt // 3600, cnt % 3600 // 60, cnt % 60), end="")
sys.stdout.flush()
cnt += 1
print('\n')
resp, err = proc.communicate()
log.debug(f"results: resp='{resp}' err='{err}' rc='{rc}'")
print(resp)
return rc
class Color:
black = '\033[90m'
red = '\033[91m'
green = '\033[92m'
yellow = '\033[33m'
brt_yellow = '\033[93m'
blue = '\033[94m'
purple = '\033[95m'
cyan = '\033[96m'
white = '\033[37m'
brt_white = '\033[97m'
bold = '\033[1m'
underline = '\033[4m'
sol = '\033[1G'
clr_to_eol = '\033[K'
clr_to_bot = '\033[J'
scroll_five = '\n\n\n\n\n'
scroll_ten = '\n\n\n\n\n\n\n\n\n\n'
up_one = '\033[1A'
up_five = '\033[5A'
up_ten = '\033[10A'
header1 = ' ' + bold + underline
endc = '\033[0m'
def heading1(text='-', width=79, indent=10):
ind = ''.join([' ' for i in range(indent)])
text1 = f'{ind}{Color.bold}{Color.underline}{text}{Color.endc}'
print(f'\n{text1: <{width + 8}}')
def bold(text):
return Color.bold + text + Color.endc
def rlinput(prompt, prefill=''):
log = logger.getlogger()
log.debug(f"prompt='{repr(prompt)}' prefill='{prefill}'")
readline.set_startup_hook(lambda: readline.insert_text(prefill))
try:
user_input = input(prompt)
log.debug(f"user_input='{user_input}'")
return user_input
finally:
readline.set_startup_hook()
def files_present(url, fileglobs, _all=True):
log = logger.getlogger()
any_present = False
all_present = True
fileglobsstr = ','.join(fileglobs)
if fileglobs:
cmd = (f'wget -r -l 10 -nd -np --spider --accept={fileglobsstr} {url}')
reply, err, rc = sub_proc_exec(cmd)
err = err.replace('%2B', '+')
if rc == 0:
for fileglob in fileglobs:
regx = fileglob_to_regx(fileglob)
res = re.findall(regx, err)
log.debug(f"fileglob='{fileglob}' regx='{regx}' res='{res}'")
if len(res) == 0:
all_present = False
log.warning(f"File not found in repo: {fileglob}")
else:
any_present = True
if not fileglobs:
return True
if _all:
return all_present
else:
return any_present
def fileglob_to_regx(fileglob):
regx = fileglob.replace('.', r'\.')
regx = regx.replace('+', r'\+')
regx = regx.replace(']*', '][0-9]{0,3}')
regx = regx.replace('*', '.*')
regx = 'http.+' + regx
return regx
def get_url(url='http://', fileglob='', prompt_name='', repo_chk='',
contains=[], excludes=[], filelist=[]):
from lib.genesis import GEN_SOFTWARE_PATH
print(f'Enter {prompt_name} URL. ("sss" at end of URL to skip)')
if fileglob:
print('Do not include filenames in the URL. A search of the URL')
print('will be made up to 10 levels deep')
while True:
url = rlinput(f'Enter URL: ', url)
if url.endswith('sss'):
url = None
break
if 'artifactory.swg' in url:
fnd_creds = False
while not fnd_creds:
path = os.path.join(GEN_SOFTWARE_PATH, 'artifactory.credentials')
if os.path.isfile(path):
with open(path, 'r') as f:
creds = f.read().rstrip('\n')
fnd_creds = True
else:
print('No artifactory credentials file found')
r = get_selection('Retry\nTerminate Sofware install',
('R', 'T'))
if r == 'T':
sys.exit('PowerUp software install terminated by user')
url = f'https://{creds}{url}'
break
if repo_chk:
url = url if url.endswith('/') else url + '/'
try:
cmd = f'curl --max-time 2 -I {url}'
url_info, err, rc = sub_proc_exec(cmd)
except:
pass
else:
if 'http:' in url or 'https:' in url:
response = re.search(r'HTTP\/\d+.\d+\s+200\s+ok', url_info,
re.IGNORECASE)
if response:
repo_mrkr = {'yum': '/repodata/', 'ana': 'repodata.json',
'pypi': '/simple/'}
print(response.group(0))
if repo_chk:
ss = repo_mrkr[repo_chk]
elif fileglob:
ss = fileglob
elif url[-1] != '/':
ss = os.path.basename(url)
url = os.path.dirname(url)
cmd = ('wget -r -l 10 -nd -np --spider '
f'--accept={ss} {url}')
reply, err, rc = sub_proc_exec(cmd)
err = err.replace('%2B', '+')
if rc == 0:
if repo_chk:
regx = 'http.+' + repo_mrkr[repo_chk]
elif fileglob:
regx = fileglob_to_regx(fileglob)
_found = re.findall(regx, err)
_found = list(set(_found))
found = []
if repo_chk:
for _url in _found:
if (any([item for item in contains if item in
_url]) and not any([item for item in
excludes if item
in _url])):
found.append(_url)
if found:
_list = found
elif _found:
_list = _found
if repo_chk:
print(bold('\nWarning. The following url(s) '
'were found but do not match the '
'search criteria'))
else:
_list = []
if _list:
ch, sel = get_selection(_list, allow_none=True)
if ch != 'N':
if repo_chk:
sel = sel.rstrip('/')
url = os.path.dirname(sel)
if files_present(url, filelist):
break
else:
print('\nChosen URL does not appear '
'to be valid. File check '
'failed.')
if get_yesno('Use selection anyway'):
break
else:
url = sel
break
else:
print('No match found.')
else:
print(f'Error reading url. {reply}')
else:
print('Invalid url')
err = re.search('curl: .+', err)
if err:
print(err.group(0))
tmp = re.search(r'HTTP\/\d+.\d+\s+.+', url_info)
if tmp:
print(tmp.group(0))
elif 'file:///' in url:
response = re.search(r'Content-Length:\s+\d+', url_info)
if response:
if repo_chk == 'yum':
ss = '/repodata'
elif repo_chk == 'ana':
ss = '/repodata.json'
elif repo_chk == 'pypi':
ss = '/simple'
if repo_chk:
ss = url + ss
elif fileglob:
ss = url + fileglob
ss = '/' + ss.lstrip('file:/')
files = glob(ss, recursive=True)
if files:
ch, sel = get_selection(files, allow_none=True)
if ch != 'N':
url = 'file://' + os.path.dirname(sel) + '/'
break
else:
print('No match found.')
elif 'file:' in url:
print('Proper file url format: "file:///path/to/file')
response = ''
else:
response = ''
return url
def get_yesno(prompt='', yesno='[y]/n', default=''):
log = logger.getlogger()
log.debug(f"prompt='{repr(prompt)}' yesno='{yesno}' default='{default}'")
try:
def_resp = yesno[1 + yesno.index('['):yesno.index(']')]
except ValueError:
def_resp = ''
yn = yesno.replace('[', '')
yn = yn.replace(']', '')
yn = yn.split('/')
while True:
r = rlinput(f'{prompt}({yesno})? ', default)
if def_resp and not r.strip():
ret = True if def_resp == yn[0] else False
return ret
elif r == yn[0]:
return True
elif r == yn[-1]:
return False
def get_dir(src_dir):
rows = 10
if not src_dir:
path = os.path.abspath('.')
else:
path = src_dir
while True:
path = rlinput(f'Enter an absolute directory location (S to skip): ',
path)
if path == 'S':
return None
if os.path.exists(path):
rpm_filelist = []
non_rpm_filelist = []
print()
top, dirs, files = next(os.walk(path))
files.sort()
rpm_cnt = 0
non_rpm_cnt = 0
for f in files:
if f.endswith('.rpm'):
rpm_filelist.append(f)
rpm_cnt += 1
else:
non_rpm_filelist.append(f)
non_rpm_cnt += 1
cnt = min(10, max(rpm_cnt, non_rpm_cnt))
rpm_filelist += rows * ['']
list1 = rpm_filelist[:cnt]
non_rpm_filelist += rows * ['']
list2 = non_rpm_filelist[:cnt]
print('\n' + bold(path))
print(tabulate(list(zip(list1, list2)),
headers=[bold('RPM Files'),
bold('Other files')], tablefmt='psql'))
if rpm_cnt > 0:
print(bold(f'{rpm_cnt} rpm files found'))
print(f'including the {min(10, rpm_cnt)} files above.\n')
else:
print(bold('No rpm files found\n'))
if non_rpm_cnt > 0:
print(bold(f'{non_rpm_cnt} other files found'))
print(f'including the {min(10, non_rpm_cnt)} files above.')
else:
print(bold('No non rpm files found'))
print('\nSub directories of the entered directory: ')
dirs.sort()
print(dirs)
print(f'\nThe entered path was: {top}')
if get_yesno('Use the entered path '):
return path
def scan_ping_network(network_type='all', config_path=None):
cfg = Config(config_path)
type_ = cfg.get_depl_netw_client_type()
if network_type == 'pxe' or network_type == 'all':
net_type = 'pxe'
idx = type_.index(net_type)
cip = cfg.get_depl_netw_client_cont_ip()[idx]
netprefix = cfg.get_depl_netw_client_prefix()[idx]
cidr_cip = IPNetwork(cip + '/' + str(netprefix))
net_c = str(IPNetwork(cidr_cip).network)
cmd = 'fping -a -r0 -g ' + net_c + '/' + str(netprefix)
result, err, rc = sub_proc_exec(cmd)
print(result)
if network_type == 'ipmi' or network_type == 'all':
net_type = 'ipmi'
idx = type_.index(net_type)
cip = cfg.get_depl_netw_client_cont_ip()[idx]
netprefix = cfg.get_depl_netw_client_prefix()[idx]
cidr_cip = IPNetwork(cip + '/' + str(netprefix))
net_c = str(IPNetwork(cidr_cip).network)
cmd = 'fping -a -r0 -g ' + net_c + '/' + str(netprefix)
result, err, rc = sub_proc_exec(cmd)
print(result)
def get_selection(items, choices=None, prompt='Enter a selection: ', sep='\n',
allow_none=False, allow_retry=False):
log = logger.getlogger()
log.debug(f"items='{repr(items)}' choices='{repr(choices)}' "
f"prompt='{repr(prompt)}' sep='{repr(sep)}' "
f"allow_none='{allow_none}' allow_retry='{allow_retry}'")
if not items:
return None, None
if not isinstance(items, (list, tuple)):
items = items.rstrip(sep)
items = items.split(sep)
if not choices:
choices = [str(i) for i in range(1, 1 + len(items))]
if not isinstance(choices, (list, tuple)):
choices = choices.rstrip(sep)
choices = choices.split(sep)
if allow_none:
choices.append('N')
items.append('Return without making a selection.')
if allow_retry:
choices.append('R')
items.append('Retry the search.')
if len(choices) == 1:
return choices[0], items[0]
maxw = 1
for ch in choices:
maxw = max(maxw, len(ch))
print()
for i in range(min(len(choices), len(items))):
print(bold(f'{choices[i]: <{maxw}}') + ' - ' + items[i])
print()
ch = ' '
while not (ch in choices or ch in items):
ch = input(f'{Color.bold}{prompt}{Color.endc}')
if not (ch in choices or ch in items):
print('Not a valid selection')
print(f'Choose from {choices}')
ch = ' '
if ch not in choices:
ch = choices[items.index(ch)]
item = items[choices.index(ch)]
if item == 'Return without making a selection.':
item = None
print()
log.debug(f"results: ch='{ch}' item='{item}'")
return ch, item
def get_src_path(src_name):
log = logger.getlogger()
while True:
cmd = (f'find /home -name {src_name}')
resp1, err, rc1 = sub_proc_exec(cmd)
if rc1 != 0:
log.error(f'Error searching for {src_name}')
cmd = (f'find /root -name {src_name}')
resp2, err, rc2 = sub_proc_exec(cmd)
if rc2 != 0:
log.error(f'Error searching for {src_name}')
if rc1 != 0 and rc2 != 0:
return None
resp = resp1 + resp2
if not resp:
cmd = (f'find / -name {src_name}')
resp, err, rc = sub_proc_exec(cmd)
if rc != 0:
log.error(f'Error searching for {src_name}')
return None
if not resp:
print(f'Source file {src_name} not found')
if not get_yesno('Search again', 'y/no', default='y'):
log.error(f'Source file {src_name} not found.\n '
f'{src_name} is not setup in the POWER-Up '
'software server.')
return None
else:
ch, src_path = get_selection(resp,
prompt='Select a source file: ',
allow_none=True, allow_retry=True)
if ch != 'R':
return src_path
else:
ch, src_path = get_selection(resp, prompt='Select a source file: ',
allow_none=True, allow_retry=True)
if ch != 'R':
return src_path
|
Apache License 2.0
|
sdispater/eloquent
|
eloquent/query/builder.py
|
QueryBuilder.having_raw
|
python
|
def having_raw(self, sql, bindings=None, boolean='and'):
type = 'raw'
self.havings.append({
'type': type,
'sql': sql,
'boolean': boolean
})
self.add_binding(bindings, 'having')
return self
|
Add a raw having clause to the query
:param sql: The raw query
:type sql: str
:param bindings: The query bindings
:type bindings: list
:param boolean: Boolean joiner type
:type boolean: str
:return: The current QueryBuilder instance
:rtype: QueryBuilder
|
https://github.com/sdispater/eloquent/blob/0638b688d5fd0c1a46b7471dd465eeb4c2f84666/eloquent/query/builder.py#L694-L720
|
import re
from itertools import chain
from collections import OrderedDict
from .expression import QueryExpression
from .join_clause import JoinClause
from ..support.collection import Collection
from ..utils import basestring, Null
from ..exceptions import ArgumentError
class QueryBuilder(object):
_operators = [
'=', '<', '>', '<=', '>=', '<>', '!=',
'like', 'like binary', 'not like', 'between', 'ilike',
'&', '|', '^', '<<', '>>',
'rlike', 'regexp', 'not regexp',
'~', '~*', '!~', '!~*', 'similar to',
'not similar to',
]
def __init__(self, connection, grammar, processor):
self._grammar = grammar
self._processor = processor
self._connection = connection
self._bindings = OrderedDict()
for type in ['select', 'join', 'where', 'having', 'order']:
self._bindings[type] = []
self.aggregate_ = None
self.columns = []
self.distinct_ = False
self.from__ = ''
self.joins = []
self.wheres = []
self.groups = []
self.havings = []
self.orders = []
self.limit_ = None
self.offset_ = None
self.unions = []
self.union_limit = None
self.union_offset = None
self.union_orders = []
self.lock_ = None
self._backups = []
self._use_write_connection = False
def select(self, *columns):
if not columns:
columns = ['*']
self.columns = columns
return self
def select_raw(self, expression, bindings=None):
self.add_select(QueryExpression(expression))
if bindings:
self.add_binding(bindings, 'select')
return self
def select_sub(self, query, as_):
if isinstance(query, QueryBuilder):
bindings = query.get_bindings()
query = query.to_sql()
elif isinstance(query, basestring):
bindings = []
else:
raise ArgumentError('Invalid subselect')
return self.select_raw('(%s) AS %s' % (query, self._grammar.wrap(as_)), bindings)
def add_select(self, *column):
if not column:
column = []
self.columns += column
return self
def distinct(self):
self.distinct_ = True
return self
def from_(self, table):
self.from__ = table
return self
def join(self, table, one=None,
operator=None, two=None, type='inner', where=False):
if isinstance(table, JoinClause):
self.joins.append(table)
else:
if one is None:
raise ArgumentError('Missing "one" argument')
join = JoinClause(table, type)
self.joins.append(join.on(
one, operator, two, 'and', where
))
return self
def join_where(self, table, one, operator, two, type='inner'):
return self.join(table, one, operator, two, type, True)
def left_join(self, table, one=None, operator=None, two=None):
if isinstance(table, JoinClause):
table.type = 'left'
return self.join(table, one, operator, two, 'left')
def left_join_where(self, table, one, operator, two):
return self.join_where(table, one, operator, two, 'left')
def right_join(self, table, one=None, operator=None, two=None):
if isinstance(table, JoinClause):
table.type = 'right'
return self.join(table, one, operator, two, 'right')
def right_join_where(self, table, one, operator, two):
return self.join_where(table, one, operator, two, 'right')
def where(self, column, operator=Null(), value=None, boolean='and'):
if isinstance(column, dict):
nested = self.new_query()
for key, value in column.items():
nested.where(key, '=', value)
return self.where_nested(nested, boolean)
if isinstance(column, QueryBuilder):
return self.where_nested(column, boolean)
if value is None:
if not isinstance(operator, Null):
value = operator
operator = '='
else:
raise ArgumentError('Value must be provided')
if operator not in self._operators:
value = operator
operator = '='
if isinstance(value, QueryBuilder):
return self._where_sub(column, operator, value, boolean)
if value is None:
return self.where_null(column, boolean, operator != '=')
type = 'basic'
self.wheres.append({
'type': type,
'column': column,
'operator': operator,
'value': value,
'boolean': boolean
})
if not isinstance(value, QueryExpression):
self.add_binding(value, 'where')
return self
def or_where(self, column, operator=None, value=None):
return self.where(column, operator, value, 'or')
def _invalid_operator_and_value(self, operator, value):
is_operator = operator in self._operators
return is_operator and operator != '=' and value is None
def where_raw(self, sql, bindings=None, boolean='and'):
type = 'raw'
self.wheres.append({
'type': type,
'sql': sql,
'boolean': boolean
})
self.add_binding(bindings, 'where')
return self
def or_where_raw(self, sql, bindings=None):
return self.where_raw(sql, bindings, 'or')
def where_between(self, column, values, boolean='and', negate=False):
type = 'between'
self.wheres.append({
'column': column,
'type': type,
'boolean': boolean,
'not': negate
})
self.add_binding(values, 'where')
return self
def or_where_between(self, column, values):
return self.where_between(column, values, 'or')
def where_not_between(self, column, values, boolean='and'):
return self.where_between(column, values, boolean, True)
def or_where_not_between(self, column, values):
return self.where_not_between(column, values, 'or')
def where_nested(self, query, boolean='and'):
query.from_(self.from__)
return self.add_nested_where_query(query, boolean)
def add_nested_where_query(self, query, boolean='and'):
if len(query.wheres):
type = 'nested'
self.wheres.append({
'type': type,
'query': query,
'boolean': boolean
})
self.merge_bindings(query)
return self
def _where_sub(self, column, operator, query, boolean):
type = 'sub'
self.wheres.append({
'type': type,
'column': column,
'operator': operator,
'query': query,
'boolean': boolean
})
self.merge_bindings(query)
return self
def where_exists(self, query, boolean='and', negate=False):
if negate:
type = 'not_exists'
else:
type = 'exists'
self.wheres.append({
'type': type,
'query': query,
'boolean': boolean
})
self.merge_bindings(query)
return self
def or_where_exists(self, callback, negate=False):
return self.where_exists(callback, 'or', negate)
def where_not_exists(self, callback, boolean='and'):
return self.where_exists(callback, boolean, True)
def or_where_not_exists(self, callback):
self.or_where_exists(callback, True)
def where_in(self, column, values, boolean='and', negate=False):
if negate:
type = 'not_in'
else:
type = 'in'
if isinstance(values, QueryBuilder):
return self._where_in_sub(column, values, boolean, negate)
self.wheres.append({
'type': type,
'column': column,
'values': values,
'boolean': boolean
})
self.add_binding(values, 'where')
return self
def or_where_in(self, column, values):
return self.where_in(column, values, 'or')
def where_not_in(self, column, values, boolean='and'):
return self.where_in(column, values, boolean, True)
def or_where_not_in(self, column, values):
return self.where_not_in(column, values, 'or')
def _where_in_sub(self, column, query, boolean, negate=False):
if negate:
type = 'not_in_sub'
else:
type = 'in_sub'
self.wheres.append({
'type': type,
'column': column,
'query': query,
'boolean': boolean
})
self.merge_bindings(query)
return self
def where_null(self, column, boolean='and', negate=False):
if negate:
type = 'not_null'
else:
type = 'null'
self.wheres.append({
'type': type,
'column': column,
'boolean': boolean
})
return self
def or_where_null(self, column):
return self.where_null(column, 'or')
def where_not_null(self, column, boolean='and'):
return self.where_null(column, boolean, True)
def or_where_not_null(self, column):
return self.where_not_null(column, 'or')
def where_date(self, column, operator, value, boolean='and'):
return self._add_date_based_where('date', column, operator, value, boolean)
def where_day(self, column, operator, value, boolean='and'):
return self._add_date_based_where('day', column, operator, value, boolean)
def where_month(self, column, operator, value, boolean='and'):
return self._add_date_based_where('month', column, operator, value, boolean)
def where_year(self, column, operator, value, boolean='and'):
return self._add_date_based_where('year', column, operator, value, boolean)
def _add_date_based_where(self, type, column, operator, value, boolean='and'):
self.wheres.append({
'type': type,
'column': column,
'boolean': boolean,
'operator': operator,
'value': value
})
self.add_binding(value, 'where')
def dynamic_where(self, method):
finder = method[6:]
def dynamic_where(*parameters):
segments = re.split('_(and|or)_(?=[a-z])', finder, 0, re.I)
connector = 'and'
index = 0
for segment in segments:
if segment.lower() != 'and' and segment.lower() != 'or':
self._add_dynamic(segment, connector, parameters, index)
index += 1
else:
connector = segment
return self
return dynamic_where
def _add_dynamic(self, segment, connector, parameters, index):
self.where(segment, '=', parameters[index], connector)
def group_by(self, *columns):
for column in columns:
self.groups.append(column)
return self
def having(self, column, operator=None, value=None, boolean='and'):
type = 'basic'
self.havings.append({
'type': type,
'column': column,
'operator': operator,
'value': value,
'boolean': boolean
})
if not isinstance(value, QueryExpression):
self.add_binding(value, 'having')
return self
def or_having(self, column, operator=None, value=None):
return self.having(column, operator, value, 'or')
|
MIT License
|
hyangwinter/flownet3d_pytorch
|
util.py
|
PointNetSetUpConv.forward
|
python
|
def forward(self, pos1, pos2, feature1, feature2):
pos1_t = pos1.permute(0, 2, 1).contiguous()
pos2_t = pos2.permute(0, 2, 1).contiguous()
B,C,N = pos1.shape
if self.knn:
_, idx = pointutils.knn(self.nsample, pos1_t, pos2_t)
else:
idx, _ = query_ball_point(self.radius, self.nsample, pos2_t, pos1_t)
pos2_grouped = pointutils.grouping_operation(pos2, idx)
pos_diff = pos2_grouped - pos1.view(B, -1, N, 1)
feat2_grouped = pointutils.grouping_operation(feature2, idx)
feat_new = torch.cat([feat2_grouped, pos_diff], dim = 1)
for conv in self.mlp1_convs:
feat_new = conv(feat_new)
feat_new = feat_new.max(-1)[0]
if feature1 is not None:
feat_new = torch.cat([feat_new, feature1], dim=1)
for conv in self.mlp2_convs:
feat_new = conv(feat_new)
return feat_new
|
Feature propagation from xyz2 (less points) to xyz1 (more points)
Inputs:
xyz1: (batch_size, 3, npoint1)
xyz2: (batch_size, 3, npoint2)
feat1: (batch_size, channel1, npoint1) features for xyz1 points (earlier layers, more points)
feat2: (batch_size, channel1, npoint2) features for xyz2 points
Output:
feat1_new: (batch_size, npoint2, mlp[-1] or mlp2[-1] or channel1+3)
TODO: Add support for skip links. Study how delta(XYZ) plays a role in feature updating.
|
https://github.com/hyangwinter/flownet3d_pytorch/blob/ae0847d242d3582b3f6f115e64f61e637ef80355/util.py#L350-L388
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from time import time
import numpy as np
from lib import pointnet2_utils as pointutils
def quat2mat(quat):
x, y, z, w = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w*x, w*y, w*z
xy, xz, yz = x*y, x*z, y*z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).reshape(B, 3, 3)
return rotMat
def transform_point_cloud(point_cloud, rotation, translation):
if len(rotation.size()) == 2:
rot_mat = quat2mat(rotation)
else:
rot_mat = rotation
return torch.matmul(rot_mat, point_cloud) + translation.unsqueeze(2)
def npmat2euler(mats, seq='zyx'):
eulers = []
for i in range(mats.shape[0]):
r = Rotation.from_dcm(mats[i])
eulers.append(r.as_euler(seq, degrees=True))
return np.asarray(eulers, dtype='float32')
def timeit(tag, t):
print("{}: {}s".format(tag, time() - t))
return time()
def pc_normalize(pc):
l = pc.shape[0]
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
def square_distance(src, dst):
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src ** 2, -1).view(B, N, 1)
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
return dist
def index_points(points, idx):
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
new_points = points[batch_indices, idx, :]
return new_points
def farthest_point_sample(xyz, npoint):
device = xyz.device
B, N, C = xyz.shape
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
distance = torch.ones(B, N).to(device) * 1e10
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
batch_indices = torch.arange(B, dtype=torch.long).to(device)
for i in range(npoint):
centroids[:, i] = farthest
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
dist = torch.sum((xyz - centroid) ** 2, -1)
mask = dist < distance
distance[mask] = dist[mask]
farthest = torch.max(distance, -1)[1]
return centroids
def knn_point(k, pos1, pos2):
B, N, C = pos1.shape
M = pos2.shape[1]
pos1 = pos1.view(B,1,N,-1).repeat(1,M,1,1)
pos2 = pos2.view(B,M,1,-1).repeat(1,1,N,1)
dist = torch.sum(-(pos1-pos2)**2,-1)
val,idx = dist.topk(k=k,dim = -1)
return torch.sqrt(-val), idx
def query_ball_point(radius, nsample, xyz, new_xyz):
device = xyz.device
B, N, C = xyz.shape
_, S, _ = new_xyz.shape
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
sqrdists = square_distance(new_xyz, xyz)
group_idx[sqrdists > radius ** 2] = N
mask = group_idx != N
cnt = mask.sum(dim=-1)
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
mask = group_idx == N
group_idx[mask] = group_first[mask]
return group_idx, cnt
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False):
B, N, C = xyz.shape
S = npoint
fps_idx = farthest_point_sample(xyz, npoint)
new_xyz = index_points(xyz, fps_idx)
idx, _ = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = index_points(xyz, idx)
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
if points is not None:
grouped_points = index_points(points, idx)
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1)
else:
new_points = grouped_xyz_norm
if returnfps:
return new_xyz, new_points, grouped_xyz, fps_idx
else:
return new_xyz, new_points
def sample_and_group_all(xyz, points):
device = xyz.device
B, N, C = xyz.shape
new_xyz = torch.zeros(B, 1, C).to(device)
grouped_xyz = xyz.view(B, 1, N, C)
if points is not None:
new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1)
else:
new_points = grouped_xyz
return new_xyz, new_points
class PointNetSetAbstraction(nn.Module):
def __init__(self, npoint, radius, nsample, in_channel, mlp, mlp2 = None, group_all = False):
super(PointNetSetAbstraction, self).__init__()
self.npoint = npoint
self.radius = radius
self.nsample = nsample
self.group_all = group_all
self.mlp_convs = nn.ModuleList()
self.mlp_bns = nn.ModuleList()
self.mlp2_convs = nn.ModuleList()
last_channel = in_channel+3
for out_channel in mlp:
self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1, bias = False))
self.mlp_bns.append(nn.BatchNorm2d(out_channel))
last_channel = out_channel
for out_channel in mlp2:
self.mlp2_convs.append(nn.Sequential(nn.Conv1d(last_channel, out_channel, 1, bias=False),
nn.BatchNorm1d(out_channel)))
last_channel = out_channel
if group_all:
self.queryandgroup = pointutils.GroupAll()
else:
self.queryandgroup = pointutils.QueryAndGroup(radius, nsample)
def forward(self, xyz, points):
device = xyz.device
B, C, N = xyz.shape
xyz_t = xyz.permute(0, 2, 1).contiguous()
if self.group_all == False:
fps_idx = pointutils.furthest_point_sample(xyz_t, self.npoint)
new_xyz = pointutils.gather_operation(xyz, fps_idx)
else:
new_xyz = xyz
new_points = self.queryandgroup(xyz_t, new_xyz.transpose(2, 1).contiguous(), points)
for i, conv in enumerate(self.mlp_convs):
bn = self.mlp_bns[i]
new_points = F.relu(bn(conv(new_points)))
new_points = torch.max(new_points, -1)[0]
for i, conv in enumerate(self.mlp2_convs):
new_points = F.relu(conv(new_points))
return new_xyz, new_points
class FlowEmbedding(nn.Module):
def __init__(self, radius, nsample, in_channel, mlp, pooling='max', corr_func='concat', knn = True):
super(FlowEmbedding, self).__init__()
self.radius = radius
self.nsample = nsample
self.knn = knn
self.pooling = pooling
self.corr_func = corr_func
self.mlp_convs = nn.ModuleList()
self.mlp_bns = nn.ModuleList()
if corr_func is 'concat':
last_channel = in_channel*2+3
for out_channel in mlp:
self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1, bias=False))
self.mlp_bns.append(nn.BatchNorm2d(out_channel))
last_channel = out_channel
def forward(self, pos1, pos2, feature1, feature2):
pos1_t = pos1.permute(0, 2, 1).contiguous()
pos2_t = pos2.permute(0, 2, 1).contiguous()
B, N, C = pos1_t.shape
if self.knn:
_, idx = pointutils.knn(self.nsample, pos1_t, pos2_t)
else:
idx, cnt = query_ball_point(self.radius, self.nsample, pos2_t, pos1_t)
_, idx_knn = pointutils.knn(self.nsample, pos1_t, pos2_t)
cnt = cnt.view(B, -1, 1).repeat(1, 1, self.nsample)
idx = idx_knn[cnt > (self.nsample-1)]
pos2_grouped = pointutils.grouping_operation(pos2, idx)
pos_diff = pos2_grouped - pos1.view(B, -1, N, 1)
feat2_grouped = pointutils.grouping_operation(feature2, idx)
if self.corr_func=='concat':
feat_diff = torch.cat([feat2_grouped, feature1.view(B, -1, N, 1).repeat(1, 1, 1, self.nsample)], dim = 1)
feat1_new = torch.cat([pos_diff, feat_diff], dim = 1)
for i, conv in enumerate(self.mlp_convs):
bn = self.mlp_bns[i]
feat1_new = F.relu(bn(conv(feat1_new)))
feat1_new = torch.max(feat1_new, -1)[0]
return pos1, feat1_new
class PointNetSetUpConv(nn.Module):
def __init__(self, nsample, radius, f1_channel, f2_channel, mlp, mlp2, knn = True):
super(PointNetSetUpConv, self).__init__()
self.nsample = nsample
self.radius = radius
self.knn = knn
self.mlp1_convs = nn.ModuleList()
self.mlp2_convs = nn.ModuleList()
last_channel = f2_channel+3
for out_channel in mlp:
self.mlp1_convs.append(nn.Sequential(nn.Conv2d(last_channel, out_channel, 1, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU(inplace=False)))
last_channel = out_channel
if len(mlp) is not 0:
last_channel = mlp[-1] + f1_channel
else:
last_channel = last_channel + f1_channel
for out_channel in mlp2:
self.mlp2_convs.append(nn.Sequential(nn.Conv1d(last_channel, out_channel, 1, bias=False),
nn.BatchNorm1d(out_channel),
nn.ReLU(inplace=False)))
last_channel = out_channel
|
MIT License
|
getmetamapper/metamapper
|
utils/postgres/querysets.py
|
PostgresQuerySet.on_conflict
|
python
|
def on_conflict(self, fields, action=ConflictAction, index_predicate=None):
self.conflict_target = fields
self.conflict_action = action
self.index_predicate = index_predicate
return self
|
Sets the action to take when conflicts arise when attempting to
insert/create a new row.
Arguments:
fields:
The fields the conflicts can occur in.
action:
The action to take when the conflict occurs.
index_predicate:
The index predicate to satisfy an arbiter partial index
(i.e. what partial index to use for checking conflicts)
|
https://github.com/getmetamapper/metamapper/blob/0b2f67eec03fbf7ece35ff9f58ea9bb2dde4d85f/utils/postgres/querysets.py#L68-L84
|
from itertools import chain
from django.core.exceptions import SuspiciousOperation
from django.db import models, router
from django.db.models.fields import NOT_PROVIDED
from utils.postgres.sql import PostgresInsertQuery, PostgresQuery
from utils.postgres.types import ConflictAction
class PostgresQuerySet(models.QuerySet):
def __init__(self, model=None, query=None, using=None, hints=None):
super().__init__(model, query, using, hints)
self.query = query or PostgresQuery(self.model)
self.conflict_target = None
self.conflict_action = None
self.index_predicate = None
def annotate(self, **annotations):
fields = {
field.name: field
for field in self.model._meta.get_fields()
}
new_annotations = {}
renames = {}
for name, value in annotations.items():
if name in fields:
new_name = "%s_new" % name
new_annotations[new_name] = value
renames[new_name] = name
else:
new_annotations[name] = value
result = super().annotate(**new_annotations)
result.rename_annotations(**renames)
return result
def rename_annotations(self, **annotations):
self.query.rename_annotations(annotations)
return self
|
BSD 2-Clause Simplified License
|
openstack/solum
|
solum/api/handlers/workflow_handler.py
|
WorkflowHandler.get
|
python
|
def get(self, id):
wf = objects.registry.Workflow.get_by_uuid(self.context, id)
assembly = objects.registry.Assembly.get_by_id(self.context,
wf.assembly)
wf.status = assembly.status
return wf
|
Return a workflow.
|
https://github.com/openstack/solum/blob/0a744883ca00a0ee80e1b6840ac42a78fc397450/solum/api/handlers/workflow_handler.py#L94-L102
|
import datetime
import json
from oslo_config import cfg
from oslo_utils import uuidutils
from solum.api.handlers import handler
from solum.common import exception
from solum.common import repo_utils
from solum import objects
from solum.objects import image
from solum.objects.sqlalchemy import workflow
from solum.worker import api as worker_api
API_SERVICE_OPTS = [
cfg.StrOpt('image_format',
default='qcow2',
help='The format of the image to output'),
cfg.StrOpt('source_format',
default='heroku',
help='The format of source repository'),
cfg.StrOpt('rebuild_phrase',
default='solum retry tests',
help='Comment phrase to trigger rebuilding'),
cfg.IntOpt('max_instances_per_app',
default=100,
help='Application scale limit'),
]
def list_opts():
yield 'api', API_SERVICE_OPTS
CONF = cfg.CONF
CONF.register_opts(API_SERVICE_OPTS, group='api')
IMAGE_STATES = image.States
class WorkflowHandler(handler.Handler):
def _update_app_scale_config(self, app, data):
scale_config = dict()
target = data.get('scale_target', '1')
try:
target = int(target)
except ValueError:
msg = "Must provide integer value for scale target."
raise exception.BadRequest(reason=msg)
if target <= 0:
msg = "Scale target must be greater than zero."
raise exception.BadRequest(reason=msg)
if target > cfg.CONF.api.max_instances_per_app:
msg = "Target scale '%s' exceeds maximum scale limit '%s'." % (
target, cfg.CONF.api.max_instances_per_app)
raise exception.ResourceLimitExceeded(reason=msg)
current_config = app.scale_config
if current_config:
current_config[app.name]['target'] = str(target)
scale_config['scale_config'] = current_config
else:
config_data = dict()
config_data['target'] = str(target)
app_scale_config = dict()
app_scale_config[app.name] = config_data
scale_config = dict()
scale_config['scale_config'] = app_scale_config
objects.registry.App.update_and_save(self.context, app.id,
scale_config)
|
Apache License 2.0
|
napalm-automation/napalm-yang
|
napalm_yang/models/openconfig/interfaces/interface/routed_vlan/ipv6/addresses/address/vrrp/vrrp_group/state/__init__.py
|
state._set_advertisement_interval
|
python
|
def _set_advertisement_interval(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int,
restriction_dict={"range": ["0..65535"]},
int_size=16,
),
restriction_dict={"range": ["1..4095"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
100
),
is_leaf=True,
yang_name="advertisement-interval",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """advertisement_interval must be of a type compatible with uint16""",
"defined-type": "uint16",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4095']}), default=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16)(100), is_leaf=True, yang_name="advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint16', is_config=False)""",
}
)
self.__advertisement_interval = t
if hasattr(self, "_set"):
self._set()
|
Setter method for advertisement_interval, mapped from YANG variable /interfaces/interface/routed_vlan/ipv6/addresses/address/vrrp/vrrp_group/state/advertisement_interval (uint16)
If this variable is read-only (config: false) in the
source YANG file, then _set_advertisement_interval is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_advertisement_interval() directly.
YANG Description: Sets the interval between successive VRRP
advertisements -- RFC 5798 defines this as a 12-bit
value expressed as 0.1 seconds, with default 100, i.e.,
1 second. Several implementation express this in units of
seconds
|
https://github.com/napalm-automation/napalm-yang/blob/9148e015b086ebe311c07deb92e168ea36fd7771/napalm_yang/models/openconfig/interfaces/interface/routed_vlan/ipv6/addresses/address/vrrp/vrrp_group/state/__init__.py#L777-L831
|
from operator import attrgetter
from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType
from pyangbind.lib.yangtypes import RestrictedClassType
from pyangbind.lib.yangtypes import TypedListType
from pyangbind.lib.yangtypes import YANGBool
from pyangbind.lib.yangtypes import YANGListType
from pyangbind.lib.yangtypes import YANGDynClass
from pyangbind.lib.yangtypes import ReferenceType
from pyangbind.lib.base import PybindBase
from collections import OrderedDict
from decimal import Decimal
from bitarray import bitarray
import six
if six.PY3:
import builtins as __builtin__
long = int
elif six.PY2:
import __builtin__
class state(PybindBase):
__slots__ = (
"_path_helper",
"_extmethods",
"__virtual_router_id",
"__virtual_address",
"__priority",
"__preempt",
"__preempt_delay",
"__accept_mode",
"__advertisement_interval",
"__current_priority",
"__virtual_link_local",
)
_yang_name = "state"
_pybind_generated_by = "container"
def __init__(self, *args, **kwargs):
self._path_helper = False
self._extmethods = False
self.__virtual_router_id = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
restriction_dict={"range": ["1..255"]},
),
is_leaf=True,
yang_name="virtual-router-id",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
self.__virtual_address = YANGDynClass(
base=TypedListType(
allowed_type=[
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?"
},
),
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?"
},
),
]
),
is_leaf=False,
yang_name="virtual-address",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="inet:ip-address",
is_config=False,
)
self.__priority = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
restriction_dict={"range": ["1..254"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
)(
100
),
is_leaf=True,
yang_name="priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
self.__preempt = YANGDynClass(
base=YANGBool,
default=YANGBool("true"),
is_leaf=True,
yang_name="preempt",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
self.__preempt_delay = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
),
restriction_dict={"range": ["0..3600"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
0
),
is_leaf=True,
yang_name="preempt-delay",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
self.__accept_mode = YANGDynClass(
base=YANGBool,
default=YANGBool("false"),
is_leaf=True,
yang_name="accept-mode",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
self.__advertisement_interval = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
),
restriction_dict={"range": ["1..4095"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
100
),
is_leaf=True,
yang_name="advertisement-interval",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
self.__current_priority = YANGDynClass(
base=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
is_leaf=True,
yang_name="current-priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
self.__virtual_link_local = YANGDynClass(
base=[
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?"
},
),
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?"
},
),
],
is_leaf=True,
yang_name="virtual-link-local",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="inet:ip-address",
is_config=False,
)
load = kwargs.pop("load", None)
if args:
if len(args) > 1:
raise TypeError("cannot create a YANG container with >1 argument")
all_attr = True
for e in self._pyangbind_elements:
if not hasattr(args[0], e):
all_attr = False
break
if not all_attr:
raise ValueError("Supplied object did not have the correct attributes")
for e in self._pyangbind_elements:
nobj = getattr(args[0], e)
if nobj._changed() is False:
continue
setmethod = getattr(self, "_set_%s" % e)
if load is None:
setmethod(getattr(args[0], e))
else:
setmethod(getattr(args[0], e), load=load)
def _path(self):
if hasattr(self, "_parent"):
return self._parent._path() + [self._yang_name]
else:
return [
"interfaces",
"interface",
"routed-vlan",
"ipv6",
"addresses",
"address",
"vrrp",
"vrrp-group",
"state",
]
def _get_virtual_router_id(self):
return self.__virtual_router_id
def _set_virtual_router_id(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int,
restriction_dict={"range": ["0..255"]},
int_size=8,
),
restriction_dict={"range": ["1..255"]},
),
is_leaf=True,
yang_name="virtual-router-id",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """virtual_router_id must be of a type compatible with uint8""",
"defined-type": "uint8",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['1..255']}), is_leaf=True, yang_name="virtual-router-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint8', is_config=False)""",
}
)
self.__virtual_router_id = t
if hasattr(self, "_set"):
self._set()
def _unset_virtual_router_id(self):
self.__virtual_router_id = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
restriction_dict={"range": ["1..255"]},
),
is_leaf=True,
yang_name="virtual-router-id",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
def _get_virtual_address(self):
return self.__virtual_address
def _set_virtual_address(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=TypedListType(
allowed_type=[
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?"
},
),
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?"
},
),
]
),
is_leaf=False,
yang_name="virtual-address",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="inet:ip-address",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """virtual_address must be of a type compatible with inet:ip-address""",
"defined-type": "inet:ip-address",
"generated-type": """YANGDynClass(base=TypedListType(allowed_type=[RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}),RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}),]), is_leaf=False, yang_name="virtual-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='inet:ip-address', is_config=False)""",
}
)
self.__virtual_address = t
if hasattr(self, "_set"):
self._set()
def _unset_virtual_address(self):
self.__virtual_address = YANGDynClass(
base=TypedListType(
allowed_type=[
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?"
},
),
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?"
},
),
]
),
is_leaf=False,
yang_name="virtual-address",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="inet:ip-address",
is_config=False,
)
def _get_priority(self):
return self.__priority
def _set_priority(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int,
restriction_dict={"range": ["0..255"]},
int_size=8,
),
restriction_dict={"range": ["1..254"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
)(
100
),
is_leaf=True,
yang_name="priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """priority must be of a type compatible with uint8""",
"defined-type": "uint8",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['1..254']}), default=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8)(100), is_leaf=True, yang_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint8', is_config=False)""",
}
)
self.__priority = t
if hasattr(self, "_set"):
self._set()
def _unset_priority(self):
self.__priority = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
restriction_dict={"range": ["1..254"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
)(
100
),
is_leaf=True,
yang_name="priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
def _get_preempt(self):
return self.__preempt
def _set_preempt(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=YANGBool,
default=YANGBool("true"),
is_leaf=True,
yang_name="preempt",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """preempt must be of a type compatible with boolean""",
"defined-type": "boolean",
"generated-type": """YANGDynClass(base=YANGBool, default=YANGBool("true"), is_leaf=True, yang_name="preempt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='boolean', is_config=False)""",
}
)
self.__preempt = t
if hasattr(self, "_set"):
self._set()
def _unset_preempt(self):
self.__preempt = YANGDynClass(
base=YANGBool,
default=YANGBool("true"),
is_leaf=True,
yang_name="preempt",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
def _get_preempt_delay(self):
return self.__preempt_delay
def _set_preempt_delay(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int,
restriction_dict={"range": ["0..65535"]},
int_size=16,
),
restriction_dict={"range": ["0..3600"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
0
),
is_leaf=True,
yang_name="preempt-delay",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """preempt_delay must be of a type compatible with uint16""",
"defined-type": "uint16",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['0..3600']}), default=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16)(0), is_leaf=True, yang_name="preempt-delay", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint16', is_config=False)""",
}
)
self.__preempt_delay = t
if hasattr(self, "_set"):
self._set()
def _unset_preempt_delay(self):
self.__preempt_delay = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
),
restriction_dict={"range": ["0..3600"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
0
),
is_leaf=True,
yang_name="preempt-delay",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
def _get_accept_mode(self):
return self.__accept_mode
def _set_accept_mode(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=YANGBool,
default=YANGBool("false"),
is_leaf=True,
yang_name="accept-mode",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """accept_mode must be of a type compatible with boolean""",
"defined-type": "boolean",
"generated-type": """YANGDynClass(base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="accept-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='boolean', is_config=False)""",
}
)
self.__accept_mode = t
if hasattr(self, "_set"):
self._set()
def _unset_accept_mode(self):
self.__accept_mode = YANGDynClass(
base=YANGBool,
default=YANGBool("false"),
is_leaf=True,
yang_name="accept-mode",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
def _get_advertisement_interval(self):
return self.__advertisement_interval
|
Apache License 2.0
|
lyft/toasted-marshmallow
|
toastedmarshmallow/jit.py
|
attr_str
|
python
|
def attr_str(attr_name):
if keyword.iskeyword(attr_name):
return 'getattr(obj, "{0}")'.format(attr_name)
return 'obj.{0}'.format(attr_name)
|
Gets the string to use when accessing an attribute on an object.
Handles case where the attribute name collides with a keyword and would
therefore be illegal to access with dot notation.
|
https://github.com/lyft/toasted-marshmallow/blob/00a8e76198e45a5731a664d3fec31e138ee4035c/toastedmarshmallow/jit.py#L38-L47
|
import base64
import keyword
import re
from abc import ABCMeta, abstractmethod
from collections import Mapping
import attr
from six import exec_, iteritems, add_metaclass, text_type, string_types
from marshmallow import missing, Schema, fields
from marshmallow.base import SchemaABC
from .compat import is_overridden
from .utils import IndentedString
_VALID_IDENTIFIER = re.compile(r'[a-zA-Z_][a-zA-Z0-9_]*')
if False:
from typing import Any, Callable, Dict, Optional, Tuple, Union, Set
def field_symbol_name(field_name):
if not _VALID_IDENTIFIER.match(field_name):
field_name = str(base64.b64encode(
field_name.encode('utf-8')).decode('utf-8').strip('='))
return '_field_{field_name}'.format(field_name=field_name)
|
Apache License 2.0
|
weinbe58/quspin
|
quspin/operators/hamiltonian_core.py
|
hamiltonian.nbytes
|
python
|
def nbytes(self):
nbytes = 0
if _sp.issparse(self._static):
nbytes += self._static.data.nbytes
nbytes += self._static.indices.nbytes
nbytes += self._static.indptr.nbytes
else:
nbytes += self._static.nbytes
for Hd in itervalues(self._dynamic):
if _sp.issparse(Hd):
nbytes += Hd.data.nbytes
nbytes += Hd.indices.nbytes
nbytes += Hd.indptr.nbytes
else:
nbytes += Hd.nbytes
return nbytes
|
float: Total bytes consumed by the elements of the `hamiltonian` array.
|
https://github.com/weinbe58/quspin/blob/5bbc3204dbf5c227a87a44f0dacf39509cba580c/quspin/operators/hamiltonian_core.py#L543-L561
|
from __future__ import print_function, division, absolute_import
from ..basis import spin_basis_1d as _default_basis
from ..basis import isbasis as _isbasis
from ..tools.evolution import evolve
from ..tools.matvec import _matvec
from ..tools.matvec import _get_matvec_function
from ._make_hamiltonian import make_static
from ._make_hamiltonian import make_dynamic
from ._make_hamiltonian import test_function
from ._make_hamiltonian import _check_almost_zero
from ._functions import function
import scipy
import scipy.sparse.linalg as _sla
import scipy.linalg as _la
import scipy.sparse as _sp
import numpy as _np
from operator import mul
import functools
from six import iteritems,itervalues,viewkeys
try:
from itertools import izip as zip
except ImportError:
pass
try:
from functools import reduce as reduce
except ImportError:
pass
import warnings
__all__ = ["commutator","anti_commutator","hamiltonian","ishamiltonian"]
def commutator(H1,H2):
if ishamiltonian(H1) or ishamiltonian(H2):
return H1*H2 - H2*H1
else:
return H1.dot(H2) - H2.dot(H1)
def anti_commutator(H1,H2):
if ishamiltonian(H1) or ishamiltonian(H2):
return H1*H2 + H2*H1
else:
return H1.dot(H2) + H2.dot(H1)
class HamiltonianEfficiencyWarning(Warning):
pass
supported_dtypes=tuple([_np.float32, _np.float64, _np.complex64, _np.complex128])
def _check_static(sub_list):
if (type(sub_list) in [list,tuple]) and (len(sub_list) == 2):
if type(sub_list[0]) is not str: raise TypeError('expecting string type for opstr')
if type(sub_list[1]) in [list,tuple]:
for sub_sub_list in sub_list[1]:
if (type(sub_sub_list) in [list,tuple]) and (len(sub_sub_list) > 0):
for element in sub_sub_list:
if not _np.isscalar(element): raise TypeError('expecting scalar elements of indx')
else: raise TypeError('expecting list for indx')
else: raise TypeError('expecting a list of one or more indx')
return True
else:
return False
def _check_dynamic(sub_list):
if (type(sub_list) in [list,tuple]):
if (len(sub_list) == 4):
if type(sub_list[0]) is not str: raise TypeError('expecting string type for opstr')
if type(sub_list[1]) in [list,tuple]:
for sub_sub_list in sub_list[1]:
if (type(sub_sub_list) in [list,tuple]) and (len(sub_sub_list) > 0):
for element in sub_sub_list:
if not _np.isscalar(element): raise TypeError('expecting scalar elements of indx')
else: raise TypeError('expecting list for indx')
else: raise TypeError('expecting a list of one or more indx')
if not hasattr(sub_list[2],"__call__"): raise TypeError('expecting callable object for driving function')
if type(sub_list[3]) not in [list,tuple]: raise TypeError('expecting list for function arguments')
return True
elif (len(sub_list) == 3):
if not hasattr(sub_list[1],"__call__"): raise TypeError('expecting callable object for driving function')
if type(sub_list[2]) not in [list,tuple]: raise TypeError('expecting list for function arguments')
return False
elif (len(sub_list) == 2):
if not hasattr(sub_list[1],"__call__"): raise TypeError('expecting callable object for driving function')
return False
else:
raise TypeError('expecting list with object, driving function, and function arguments')
def _hamiltonian_dot(hamiltonian,time,v):
return hamiltonian.dot(v,time=time,check=False)
class hamiltonian(object):
def __init__(self,static_list,dynamic_list,N=None,basis=None,shape=None,dtype=_np.complex128,static_fmt=None,dynamic_fmt=None,copy=True,check_symm=True,check_herm=True,check_pcon=True,**basis_kwargs):
self._is_dense = False
self._ndim = 2
self._basis = basis
if not (dtype in supported_dtypes):
raise TypeError('hamiltonian does not support type: '+str(dtype))
else:
self._dtype=dtype
if type(static_list) in [list,tuple]:
static_opstr_list=[]
static_other_list=[]
for ele in static_list:
if _check_static(ele):
static_opstr_list.append(ele)
else:
static_other_list.append(ele)
else:
raise TypeError('expecting list/tuple of lists/tuples containing opstr and list of indx')
if type(dynamic_list) in [list,tuple]:
dynamic_opstr_list=[]
dynamic_other_list=[]
for ele in dynamic_list:
if _check_dynamic(ele):
dynamic_opstr_list.append(ele)
else:
dynamic_other_list.append(ele)
else:
raise TypeError('expecting list/tuple of lists/tuples containing opstr and list of indx, functions, and function args')
self._static_opstr_list = static_opstr_list
self._dynamic_opstr_list = dynamic_opstr_list
if static_opstr_list or dynamic_opstr_list:
if self._basis is not None:
if len(basis_kwargs) > 0:
wrong_keys = set(basis_kwargs.keys())
temp = ", ".join(["{}" for key in wrong_keys])
raise ValueError(("unexpected optional argument(s): "+temp).format(*wrong_keys))
if self._basis is None:
if N is None:
raise Exception('if opstrs in use, argument N needed for basis class')
if type(N) is not int:
raise TypeError('argument N must be integer')
self._basis=_default_basis(N,**basis_kwargs)
elif not _isbasis(self._basis):
raise TypeError('expecting instance of basis class for argument: basis')
if check_herm:
self._basis.check_hermitian(static_opstr_list, dynamic_opstr_list)
if check_symm:
self._basis.check_symm(static_opstr_list,dynamic_opstr_list)
if check_pcon:
self._basis.check_pcon(static_opstr_list,dynamic_opstr_list)
self._static=make_static(self._basis,static_opstr_list,dtype)
self._dynamic=make_dynamic(self._basis,dynamic_opstr_list,dtype)
self._shape = self._static.shape
if static_other_list or dynamic_other_list:
if not hasattr(self,"_shape"):
found = False
if shape is None:
for i,O in enumerate(static_other_list):
try:
shape = O.shape
found = True
break
except AttributeError:
continue
if not found:
for tup in dynamic_other_list:
if len(tup) == 2:
O,_ = tup
else:
O,_,_ = tup
try:
shape = O.shape
found = True
break
except AttributeError:
continue
else:
found = True
if not found:
raise ValueError('missing argument shape')
if shape[0] != shape[1]:
raise ValueError('hamiltonian must be square matrix')
self._shape=shape
self._static = _sp.dia_matrix(self._shape,dtype=self._dtype)
self._dynamic = {}
for O in static_other_list:
if _sp.issparse(O):
self._mat_checks(O)
if self._static is None:
self._static = O.astype(self._dtype,copy=copy)
continue
try:
self._static += O.astype(self._dtype)
except NotImplementedError:
self._static = self._static + O.astype(self._dtype)
else:
O = _np.asarray(O,dtype=self._dtype)
self._mat_checks(O)
self._is_dense=True
if self._static is None:
self._static = O.astype(self._dtype,copy=copy)
continue
try:
self._static += O
except NotImplementedError:
self._static = self._static + O.astype(self._dtype)
if not _sp.issparse(self._static):
self._static = _np.asarray(self._static)
try:
self._static.sum_duplicates()
self._static.eliminate_zeros()
except: pass
for tup in dynamic_other_list:
if len(tup) == 2:
O,func = tup
else:
O,f,f_args = tup
test_function(f,f_args,self._dtype)
func = function(f,tuple(f_args))
if _sp.issparse(O):
self._mat_checks(O)
O = O.astype(self._dtype,copy=copy)
else:
O = _np.array(O,copy=copy,dtype=self._dtype)
self._mat_checks(O)
self._is_dense=True
if func in self._dynamic:
try:
self._dynamic[func] += O
except:
self._dynamic[func] = self._dynamic[func] + O
else:
self._dynamic[func] = O
else:
if not hasattr(self,"_shape"):
if shape is None:
if self._basis is None:
if N is None:
raise Exception("argument N or shape needed to create empty hamiltonian")
if type(N) is not int:
raise TypeError('argument N must be integer')
self._basis=_default_basis(N,**basis_kwargs)
elif not _isbasis(self._basis):
raise TypeError('expecting instance of basis class for argument: basis')
shape = (self._basis.Ns,self._basis.Ns)
else:
self._basis=basis_kwargs.get('basis')
if not basis is None:
raise ValueError("empty hamiltonian only accepts basis or shape, not both")
if len(shape) != 2:
raise ValueError('expecting ndim = 2')
if shape[0] != shape[1]:
raise ValueError('hamiltonian must be square matrix')
self._shape=shape
self._static = _sp.dia_matrix(self._shape,dtype=self._dtype)
self._dynamic = {}
self.update_matrix_formats(static_fmt,dynamic_fmt)
self._Ns = self._shape[0]
@property
def basis(self):
if self._basis is not None:
return self._basis
else:
raise AttributeError("object has no attribute 'basis'")
@property
def ndim(self):
return self._ndim
@property
def Ns(self):
return self._Ns
@property
def shape(self):
return self._shape
@property
def get_shape(self):
return self._shape
@property
def is_dense(self):
return self._is_dense
@property
def dtype(self):
return _np.dtype(self._dtype).name
@property
def static(self):
return self._static
@property
def dynamic(self):
return self._dynamic
@property
def T(self):
return self.transpose()
@property
def H(self):
return self.getH()
@property
|
BSD 3-Clause New or Revised License
|
thetruefuss/elmer
|
users/api/serializers.py
|
ProfileRetrieveSerializer.get_has_followed
|
python
|
def get_has_followed(self, obj):
user = None
request = self.context.get('request')
if request and hasattr(request, 'user'):
user = request.user
if user in obj.profile.followers.all():
return True
return False
|
Check if requester has followed the user.
:return: boolean
|
https://github.com/thetruefuss/elmer/blob/753ec3b5a38f4f5d15bd451400b0374f7ffcdfa6/users/api/serializers.py#L240-L252
|
from django.contrib.auth import get_user_model
from django.db.models import Q
from rest_framework import serializers
from rest_framework_jwt.settings import api_settings
jwt_payload_handler = api_settings.JWT_PAYLOAD_HANDLER
jwt_encode_handler = api_settings.JWT_ENCODE_HANDLER
jwt_response_payload_handler = api_settings.JWT_RESPONSE_PAYLOAD_HANDLER
User = get_user_model()
class CurrentUserDetailSerializer(serializers.ModelSerializer):
screen_name = serializers.SerializerMethodField()
profile_picture = serializers.SerializerMethodField()
class Meta:
model = User
fields = [
'username',
'screen_name',
'profile_picture',
]
def get_screen_name(self, obj):
return obj.profile.screen_name()
def get_profile_picture(self, obj):
request = self.context.get('request')
profile_picture_url = obj.profile.get_picture()
return request.build_absolute_uri(profile_picture_url)
class UserDetailSerializer(serializers.ModelSerializer):
screen_name = serializers.SerializerMethodField()
class Meta:
model = User
fields = ['screen_name', 'username']
def get_screen_name(self, obj):
return obj.profile.screen_name()
class UserLoginSerializer(serializers.ModelSerializer):
token = serializers.CharField(allow_blank=True, read_only=True)
username = serializers.CharField()
class Meta:
model = User
fields = ['username', 'password', 'token']
extra_kwargs = {"password": {"write_only": True}}
def validate(self, data):
username = data['username']
password = data['password']
user_qs = User.objects.filter(Q(username__iexact=username) | Q(email__iexact=username)).distinct()
if user_qs.exists() and user_qs.count() == 1:
user_obj = user_qs.first()
if user_obj.check_password(password):
user = user_obj
payload = jwt_payload_handler(user)
token = jwt_encode_handler(payload)
data['token'] = token
else:
raise serializers.ValidationError("Incorrect password.")
else:
raise serializers.ValidationError("The user with this username does not exists.")
return data
class UserSerializerWithToken(serializers.ModelSerializer):
token = serializers.SerializerMethodField()
password = serializers.CharField(write_only=True)
def get_token(self, obj):
payload = jwt_payload_handler(obj)
token = jwt_encode_handler(payload)
return token
def create(self, validated_data):
password = validated_data.pop('password', None)
instance = self.Meta.model(**validated_data)
if password is not None:
instance.set_password(password)
instance.save()
return instance
class Meta:
model = User
fields = [
'token',
'username',
'email',
'password',
]
class ProfileRetrieveSerializer(serializers.ModelSerializer):
profile_picture_url = serializers.SerializerMethodField()
screen_name = serializers.SerializerMethodField()
requester_in_contact_list = serializers.SerializerMethodField()
requester_in_pending_list = serializers.SerializerMethodField()
has_followed = serializers.SerializerMethodField()
is_requesters_profile = serializers.SerializerMethodField()
created_boards_count = serializers.SerializerMethodField()
posted_subjects_count = serializers.SerializerMethodField()
boards_subsribed_count = serializers.SerializerMethodField()
member_since = serializers.SerializerMethodField()
class Meta:
model = User
fields = [
'profile_picture_url',
'screen_name',
'requester_in_contact_list',
'requester_in_pending_list',
'has_followed',
'is_requesters_profile',
'created_boards_count',
'posted_subjects_count',
'boards_subsribed_count',
'member_since',
]
def get_profile_picture_url(self, obj):
request = self.context.get('request')
profile_picture_url = obj.profile.get_picture()
return request.build_absolute_uri(profile_picture_url)
def get_screen_name(self, obj):
return obj.profile.screen_name()
def get_requester_in_contact_list(self, obj):
user = None
request = self.context.get('request')
if request and hasattr(request, 'user'):
user = request.user
if user in obj.profile.contact_list.all():
return True
return False
def get_requester_in_pending_list(self, obj):
user = None
request = self.context.get('request')
if request and hasattr(request, 'user'):
user = request.user
if user in obj.profile.pending_list.all():
return True
return False
def get_is_requesters_profile(self, obj):
user = None
request = self.context.get('request')
if request and hasattr(request, 'user'):
user = request.user
if user == obj:
return True
return False
|
MIT License
|
gsi-upm/soil
|
soil/simulation.py
|
Simulation.run_gen
|
python
|
def run_gen(self, *args, parallel=False, dry_run=False,
exporters=[default, ], stats=[defaultStats], outdir=None, exporter_params={},
stats_params={}, log_level=None,
**kwargs):
if log_level:
logger.setLevel(log_level)
logger.info('Using exporters: %s', exporters or [])
logger.info('Output directory: %s', outdir)
exporters = serialization.deserialize_all(exporters,
simulation=self,
known_modules=['soil.exporters',],
dry_run=dry_run,
outdir=outdir,
**exporter_params)
stats = serialization.deserialize_all(simulation=self,
names=stats,
known_modules=['soil.stats',],
**stats_params)
with utils.timer('simulation {}'.format(self.name)):
for stat in stats:
stat.start()
for exporter in exporters:
exporter.start()
for env in self._run_sync_or_async(*args,
parallel=parallel,
log_level=log_level,
**kwargs):
collected = list(stat.trial(env) for stat in stats)
saved = self.save_stats(collected, t_step=env.now, trial_id=env.name)
for exporter in exporters:
exporter.trial(env, saved)
yield env
collected = list(stat.end() for stat in stats)
saved = self.save_stats(collected)
for exporter in exporters:
exporter.end(saved)
|
Run the simulation and yield the resulting environments.
|
https://github.com/gsi-upm/soil/blob/e860bdb922a22da2987fba07dffb81351c0272e5/soil/simulation.py#L161-L206
|
import os
import time
import importlib
import sys
import yaml
import traceback
import logging
import networkx as nx
from networkx.readwrite import json_graph
from multiprocessing import Pool
from functools import partial
import pickle
from . import serialization, utils, basestring, agents
from .environment import Environment
from .utils import logger
from .exporters import default
from .stats import defaultStats
from .history import History
class Simulation:
def __init__(self, name=None, group=None, topology=None, network_params=None,
network_agents=None, agent_type=None, states=None,
default_state=None, interval=1, num_trials=1,
max_time=100, load_module=None, seed=None,
dir_path=None, environment_agents=None,
environment_params=None, environment_class=None,
**kwargs):
self.load_module = load_module
self.network_params = network_params
self.name = name or 'Unnamed'
self.seed = str(seed or name)
self._id = '{}_{}'.format(self.name, time.strftime("%Y-%m-%d_%H.%M.%S"))
self.group = group or ''
self.num_trials = num_trials
self.max_time = max_time
self.default_state = default_state or {}
self.dir_path = dir_path or os.getcwd()
self.interval = interval
sys.path += list(x for x in [os.getcwd(), self.dir_path] if x not in sys.path)
if topology is None:
topology = serialization.load_network(network_params,
dir_path=self.dir_path)
elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology)
self.topology = nx.Graph(topology)
self.environment_params = environment_params or {}
self.environment_class = serialization.deserialize(environment_class,
known_modules=['soil.environment', ]) or Environment
environment_agents = environment_agents or []
self.environment_agents = agents._convert_agent_types(environment_agents,
known_modules=[self.load_module])
distro = agents.calculate_distribution(network_agents,
agent_type)
self.network_agents = agents._convert_agent_types(distro,
known_modules=[self.load_module])
self.states = agents._validate_states(states,
self.topology)
self._history = History(name=self.name,
backup=False)
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
def run(self, *args, **kwargs):
return list(self.run_gen(*args, **kwargs))
def _run_sync_or_async(self, parallel=False, *args, **kwargs):
if parallel:
p = Pool()
func = partial(self.run_trial_exceptions,
*args,
**kwargs)
for i in p.imap_unordered(func, range(self.num_trials)):
if isinstance(i, Exception):
logger.error('Trial failed:\n\t%s', i.message)
continue
yield i
else:
for i in range(self.num_trials):
yield self.run_trial(*args,
**kwargs)
|
Apache License 2.0
|
jniediek/combinato
|
combinato/guisort/sessions.py
|
Sessions.save
|
python
|
def save(self):
for group_id, group in self.groupsById.items():
idx_type = self.type_table[:, 0] == group_id
self.type_table[idx_type, 1] = group.group_type
for cluster in group.clusters:
idx_cl = self.group_table[:, 0] == cluster.name
self.group_table[idx_cl, 1] = group_id
self.sorting_manager.save_groups_and_types(self.group_table,
self.type_table)
|
save the sorting result to file
|
https://github.com/jniediek/combinato/blob/12cdf7d8e8b9b5f43873f1a8b7263aa7bf25fc27/combinato/guisort/sessions.py#L84-L99
|
from __future__ import print_function, division, absolute_import
import numpy as np
from scipy.io import savemat
from .cluster import Cluster
from .group_list_model import GroupListModel
from .. import GROUP_ART, GROUP_NOCLASS, TYPE_MU, TYPE_ART, TYPE_NO
class Sessions(object):
def __init__(self, parent=None):
self.dirty = False
self.sorting_manager = parent.sorting_manager
self.group_table = self.sorting_manager.get_group_table()
self.type_table = self.sorting_manager.get_type_table()
self.start_time = np.inf
self.stop_time = 0
self.groupsById = {}
self._init_clusters()
def _init_clusters(self):
groups = self.sorting_manager.get_groups()
if GROUP_ART not in groups:
print('Adding empty artifact group')
model = GroupListModel('Artifacts', GROUP_ART, [], TYPE_ART)
self.groupsById[GROUP_ART] = model
self.type_table = np.vstack(([GROUP_ART, TYPE_ART],
self.type_table))
if GROUP_NOCLASS not in groups:
print('Adding empty noclass group')
model = GroupListModel('Unassigned', GROUP_NOCLASS, [], TYPE_NO)
self.groupsById[GROUP_NOCLASS] = model
for gid, data in groups.items():
if not len(data):
continue
group_type = self.sorting_manager.get_group_type(gid)
if gid == GROUP_ART:
name = 'Artifacts'
elif gid == GROUP_NOCLASS:
name = 'Unassigned'
else:
name = str(gid)
model = GroupListModel(name, gid, [], group_type)
tmp_clusters = []
for clid, clus in data.items():
times = clus['times']
spikes = clus['spikes']
fname = clus['image']
clu = Cluster(clid, fname, spikes, times)
tmp_clusters.append(clu)
self.start_time = min(self.start_time, times[0])
self.stop_time = max(self.stop_time, times[-1])
model.addClusters(tmp_clusters)
self.groupsById[gid] = model
self.updateGroupsByName()
def updateGroupsByName(self):
self.groupsByName = {}
for group in self.groupsById.values():
self.groupsByName[group.name] = group
|
MIT License
|
personads/synvae
|
magenta/music/pianoroll_encoder_decoder.py
|
PianorollEncoderDecoder.class_index_to_event
|
python
|
def class_index_to_event(self, class_index, events):
assert class_index < self.num_classes
event = []
for i in range(self.input_size):
if class_index % 2:
event.append(i)
class_index >>= 1
assert class_index == 0
return tuple(event)
|
Returns the event for the given class index.
This is the reverse process of the self.events_to_label method.
Args:
class_index: An integer in the range [0, self.num_classes).
events: A list-like sequence of events. This object is not used in this
implementation.
Returns:
An PianorollSequence event value.
|
https://github.com/personads/synvae/blob/2b75697286d775e449d505195e3aa5c693187465/magenta/music/pianoroll_encoder_decoder.py#L87-L107
|
from __future__ import division
from magenta.music import encoder_decoder
import numpy as np
class PianorollEncoderDecoder(encoder_decoder.EventSequenceEncoderDecoder):
def __init__(self, input_size=88):
self._input_size = input_size
@property
def input_size(self):
return self._input_size
@property
def num_classes(self):
return 2 ** self.input_size
@property
def default_event_label(self):
return 0
def _event_to_label(self, event):
label = 0
for pitch in event:
label += 2**pitch
return label
def _event_to_input(self, event):
input_ = np.zeros(self.input_size, np.float32)
input_[list(event)] = 1
return input_
def events_to_input(self, events, position):
return self._event_to_input(events[position])
def events_to_label(self, events, position):
return self._event_to_label(events[position])
|
MIT License
|
kriaga/health-checker
|
HealthChecker/venv/Lib/site-packages/nltk/translate/ibm2.py
|
IBMModel2.prob_alignment_point
|
python
|
def prob_alignment_point(self, i, j, src_sentence, trg_sentence):
l = len(src_sentence) - 1
m = len(trg_sentence) - 1
s = src_sentence[i]
t = trg_sentence[j]
return self.translation_table[t][s] * self.alignment_table[i][j][l][m]
|
Probability that position j in ``trg_sentence`` is aligned to
position i in the ``src_sentence``
|
https://github.com/kriaga/health-checker/blob/3d9ce933f131bcbb897103b0f509cc45393cae4a/HealthChecker/venv/Lib/site-packages/nltk/translate/ibm2.py#L218-L227
|
from __future__ import division
from collections import defaultdict
from nltk.translate import AlignedSent
from nltk.translate import Alignment
from nltk.translate import IBMModel
from nltk.translate import IBMModel1
from nltk.translate.ibm_model import Counts
import warnings
class IBMModel2(IBMModel):
def __init__(self, sentence_aligned_corpus, iterations,
probability_tables=None):
super(IBMModel2, self).__init__(sentence_aligned_corpus)
if probability_tables is None:
ibm1 = IBMModel1(sentence_aligned_corpus, 2 * iterations)
self.translation_table = ibm1.translation_table
self.set_uniform_probabilities(sentence_aligned_corpus)
else:
self.translation_table = probability_tables['translation_table']
self.alignment_table = probability_tables['alignment_table']
for n in range(0, iterations):
self.train(sentence_aligned_corpus)
self.align_all(sentence_aligned_corpus)
def set_uniform_probabilities(self, sentence_aligned_corpus):
l_m_combinations = set()
for aligned_sentence in sentence_aligned_corpus:
l = len(aligned_sentence.mots)
m = len(aligned_sentence.words)
if (l, m) not in l_m_combinations:
l_m_combinations.add((l, m))
initial_prob = 1 / (l + 1)
if initial_prob < IBMModel.MIN_PROB:
warnings.warn("A source sentence is too long (" + str(l) +
" words). Results may be less accurate.")
for i in range(0, l + 1):
for j in range(1, m + 1):
self.alignment_table[i][j][l][m] = initial_prob
def train(self, parallel_corpus):
counts = Model2Counts()
for aligned_sentence in parallel_corpus:
src_sentence = [None] + aligned_sentence.mots
trg_sentence = ['UNUSED'] + aligned_sentence.words
l = len(aligned_sentence.mots)
m = len(aligned_sentence.words)
total_count = self.prob_all_alignments(src_sentence, trg_sentence)
for j in range(1, m + 1):
t = trg_sentence[j]
for i in range(0, l + 1):
s = src_sentence[i]
count = self.prob_alignment_point(
i, j, src_sentence, trg_sentence)
normalized_count = count / total_count[t]
counts.update_lexical_translation(normalized_count, s, t)
counts.update_alignment(normalized_count, i, j, l, m)
self.maximize_lexical_translation_probabilities(counts)
self.maximize_alignment_probabilities(counts)
def maximize_alignment_probabilities(self, counts):
MIN_PROB = IBMModel.MIN_PROB
for i, j_s in counts.alignment.items():
for j, src_sentence_lengths in j_s.items():
for l, trg_sentence_lengths in src_sentence_lengths.items():
for m in trg_sentence_lengths:
estimate = (counts.alignment[i][j][l][m] /
counts.alignment_for_any_i[j][l][m])
self.alignment_table[i][j][l][m] = max(estimate,
MIN_PROB)
def prob_all_alignments(self, src_sentence, trg_sentence):
alignment_prob_for_t = defaultdict(lambda: 0.0)
for j in range(1, len(trg_sentence)):
t = trg_sentence[j]
for i in range(0, len(src_sentence)):
alignment_prob_for_t[t] += self.prob_alignment_point(
i, j, src_sentence, trg_sentence)
return alignment_prob_for_t
|
MIT License
|
google-research/noisystudent
|
efficientnet_model.py
|
Model.__init__
|
python
|
def __init__(self, blocks_args=None, global_params=None, use_adv_bn=False, is_teacher=False):
super(Model, self).__init__()
if not isinstance(blocks_args, list):
raise ValueError('blocks_args should be a list.')
self._global_params = global_params
self._blocks_args = blocks_args
self._relu_fn = global_params.relu_fn or tf.nn.swish
self.endpoints = None
self.use_adv_bn = use_adv_bn
self.is_teacher = is_teacher
self._build()
|
Initializes an `Model` instance.
Args:
blocks_args: A list of BlockArgs to construct block modules.
global_params: GlobalParams, a set of global parameters.
Raises:
ValueError: when blocks_args is not specified as a list.
|
https://github.com/google-research/noisystudent/blob/aac52bf02448f6e45aee6c418f3e588803e4fa43/efficientnet_model.py#L336-L357
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import numpy as np
import six
from six.moves import xrange
import tensorflow as tf
from absl import flags
import utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.tpu import tpu_function
from tensorflow.python.ops import nn
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras.engine.input_spec import InputSpec
from tensorflow.python.ops import variables as tf_variables
GlobalParams = collections.namedtuple('GlobalParams', [
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'data_format',
'num_classes', 'width_coefficient', 'depth_coefficient',
'depth_divisor', 'min_depth', 'stochastic_depth_rate', 'relu_fn',
])
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs = collections.namedtuple('BlockArgs', [
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
'expand_ratio', 'id_skip', 'strides', 'se_ratio', 'conv_type',
])
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
FLAGS = flags.FLAGS
def batchnorm(use_adv_bn=False, is_teacher=False, **kwargs):
return utils.TpuBatchNormalization(**kwargs)
def conv_kernel_initializer(shape, dtype=None, partition_info=None):
del partition_info
kernel_height, kernel_width, _, out_filters = shape
fan_out = int(kernel_height * kernel_width * out_filters)
return tf.random_normal(
shape, mean=0.0, stddev=np.sqrt(2.0 / fan_out), dtype=dtype)
def dense_kernel_initializer(shape, dtype=None, partition_info=None):
del partition_info
init_range = 1.0 / np.sqrt(shape[1])
return tf.random_uniform(shape, -init_range, init_range, dtype=dtype)
def round_filters(filters, global_params):
orig_f = filters
multiplier = global_params.width_coefficient
divisor = global_params.depth_divisor
min_depth = global_params.min_depth
if not multiplier:
return filters
filters *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters:
new_filters += divisor
tf.logging.info('round_filter input={} output={}'.format(orig_f, new_filters))
return int(new_filters)
def round_repeats(repeats, global_params):
multiplier = global_params.depth_coefficient
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
class MBConvBlock(object):
def __init__(self, block_args, global_params, trainable, use_adv_bn, is_teacher):
self._block_args = block_args
self._batch_norm_momentum = global_params.batch_norm_momentum
self._batch_norm_epsilon = global_params.batch_norm_epsilon
self._data_format = global_params.data_format
if self._data_format == 'channels_first':
self._channel_axis = 1
self._spatial_dims = [2, 3]
else:
self._channel_axis = -1
self._spatial_dims = [1, 2]
self._relu_fn = global_params.relu_fn or tf.nn.swish
self._has_se = (self._block_args.se_ratio is not None) and (
self._block_args.se_ratio > 0) and (self._block_args.se_ratio <= 1)
self.use_adv_bn = use_adv_bn
self.is_teacher = is_teacher
self.endpoints = None
self.trainable = trainable
self._build()
def block_args(self):
return self._block_args
def _build(self):
filters = self._block_args.input_filters * self._block_args.expand_ratio
if self._block_args.expand_ratio != 1:
self._expand_conv = tf.layers.Conv2D(
filters,
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
data_format=self._data_format,
use_bias=False,
trainable=self.trainable)
self._bn0 = batchnorm(
axis=self._channel_axis,
momentum=self._batch_norm_momentum,
epsilon=self._batch_norm_epsilon,
trainable=self.trainable,
use_adv_bn=self.use_adv_bn,
is_teacher=self.is_teacher)
kernel_size = self._block_args.kernel_size
self._depthwise_conv = utils.DepthwiseConv2D(
[kernel_size, kernel_size],
strides=self._block_args.strides,
depthwise_initializer=conv_kernel_initializer,
padding='same',
data_format=self._data_format,
use_bias=False,
trainable=self.trainable)
self._bn1 = batchnorm(
axis=self._channel_axis,
momentum=self._batch_norm_momentum,
epsilon=self._batch_norm_epsilon,
trainable=self.trainable,
use_adv_bn=self.use_adv_bn,
is_teacher=self.is_teacher)
if self._has_se:
num_reduced_filters = max(
1, int(self._block_args.input_filters * self._block_args.se_ratio))
self._se_reduce = tf.layers.Conv2D(
num_reduced_filters,
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
data_format=self._data_format,
use_bias=True,
trainable=self.trainable)
self._se_expand = tf.layers.Conv2D(
filters,
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
data_format=self._data_format,
use_bias=True,
trainable=self.trainable)
filters = self._block_args.output_filters
self._project_conv = tf.layers.Conv2D(
filters,
kernel_size=[1, 1],
strides=[1, 1],
kernel_initializer=conv_kernel_initializer,
padding='same',
data_format=self._data_format,
use_bias=False,
trainable=self.trainable)
self._bn2 = batchnorm(
axis=self._channel_axis,
momentum=self._batch_norm_momentum,
epsilon=self._batch_norm_epsilon,
trainable=self.trainable,
use_adv_bn=self.use_adv_bn,
is_teacher=self.is_teacher)
def _call_se(self, input_tensor):
se_tensor = tf.reduce_mean(input_tensor, self._spatial_dims, keepdims=True)
se_tensor = self._se_expand(self._relu_fn(self._se_reduce(se_tensor)))
tf.logging.info('Built Squeeze and Excitation with tensor shape: %s' %
(se_tensor.shape))
return tf.sigmoid(se_tensor) * input_tensor
def call(self, inputs, training=True, stochastic_depth_rate=None):
tf.logging.info('Block input: %s shape: %s' % (inputs.name, inputs.shape))
if self._block_args.expand_ratio != 1:
x = self._relu_fn(self._bn0(self._expand_conv(inputs),
training=training and self.trainable))
else:
x = inputs
tf.logging.info('Expand: %s shape: %s' % (x.name, x.shape))
x = self._relu_fn(self._bn1(self._depthwise_conv(x),
training=training and self.trainable))
tf.logging.info('DWConv: %s shape: %s' % (x.name, x.shape))
if self._has_se:
with tf.variable_scope('se'):
x = self._call_se(x)
self.endpoints = {'expansion_output': x}
x = self._bn2(self._project_conv(x),
training=training and self.trainable)
if self._block_args.id_skip:
if all(
s == 1 for s in self._block_args.strides
) and self._block_args.input_filters == self._block_args.output_filters:
if stochastic_depth_rate:
x = utils.stochastic_depth(
x,
training and self.trainable,
stochastic_depth_rate)
x = tf.add(x, inputs)
tf.logging.info('Project: %s shape: %s' % (x.name, x.shape))
return x
class Model(tf.keras.Model):
|
Apache License 2.0
|
lanpa/tensorboardx
|
tensorboardX/caffe2_graph.py
|
_get_blob_names
|
python
|
def _get_blob_names(ops):
names = set()
for op in ops:
names.update(op.input)
names.update(op.output)
return {name: name for name in names}
|
Get all the operator input and output blobs and perform dedup on their names.
Args:
ops: List of Caffe2 operators to extract inputs and outputs from
Returns:
set containing distinct inputs and outputs from 'ops'
|
https://github.com/lanpa/tensorboardx/blob/054f1f3aa5e8313be42450f5e9ce1fc1799252a7/tensorboardX/caffe2_graph.py#L138-L152
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
import logging
import os
import re
import six
from builtins import bytes
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from .proto.graph_pb2 import GraphDef
from .proto.node_def_pb2 import NodeDef
from .proto.tensor_shape_pb2 import TensorShapeProto
def _make_unique_name(seen, name, min_version=0):
assert name is not None
i = min_version
x = '%s_%d' % (name, i) if i else name
while x in seen:
i += 1
x = '%s_%d' % (name, i)
seen.add(x)
return x
def _rename_tensorflow_style(shapes, blob_name_tracker, ops):
WEIGHT = re.compile(r"(_w)$")
WEIGHT_ = re.compile(r"(_w_)")
BN = re.compile(r"(_bn)$")
BN_ = re.compile(r"(_bn_)")
BIAS = re.compile(r"(_b)$")
BIAS_ = re.compile(r"(_b_)")
SCALE = re.compile(r"(_s)$")
SCALE_ = re.compile(r"(_s_)")
SUM = re.compile(r"(_sum)$")
SUM_ = re.compile(r"(_sum_)")
BRANCH = re.compile(r"(_branch)")
def f(name):
inter_name = WEIGHT_.sub('/weight_', WEIGHT.sub('/weight', name))
inter_name = BN_.sub('/batchnorm_', BN.sub('/batchnorm', inter_name))
inter_name = BIAS_.sub('/bias_', BIAS.sub('/bias', inter_name))
inter_name = SCALE_.sub('/scale_', SCALE.sub('/scale', inter_name))
inter_name = SUM_.sub('/sum_', SUM.sub('/sum', inter_name))
new_name = BRANCH.sub('/branch', inter_name)
return new_name
_rename_all(shapes, blob_name_tracker, ops, f)
def _convert_to_ssa(shapes, blob_name_tracker, ops):
ir = core.IR(ops)
seen = set()
versioned = {}
new_shapes = {}
new_blob_name_tracker = {}
def ssa_name(name, versions):
assert name in versions
version = versions[name]
if (name, version) in versioned:
return versioned[(name, version)]
new_name = _make_unique_name(seen, name, min_version=version)
versioned[(name, version)] = new_name
if name in shapes:
new_shapes[new_name] = shapes[name]
if blob_name_tracker and name in blob_name_tracker:
new_blob_name_tracker[new_name] = blob_name_tracker[name]
return new_name
for (op, ssa) in zip(ops, ir.ssa):
assert op is ssa.op
inputs = list(op.input)
outputs = list(op.output)
del op.input[:]
del op.output[:]
op.input.extend(ssa_name(name, ssa.in_versions) for name in inputs)
op.output.extend(ssa_name(name, ssa.out_versions) for name in outputs)
shapes.clear()
shapes.update(new_shapes)
if blob_name_tracker:
blob_name_tracker.clear()
blob_name_tracker.update(new_blob_name_tracker)
|
MIT License
|
jaraco/jaraco.windows
|
jaraco/windows/dpapi.py
|
CryptUnprotectData
|
python
|
def CryptUnprotectData(data, optional_entropy=None, prompt_struct=None, flags=0):
data_in = DATA_BLOB(data)
entropy = DATA_BLOB(optional_entropy) if optional_entropy else None
data_out = DATA_BLOB()
ptr_description = wintypes.LPWSTR()
res = _CryptUnprotectData(
data_in,
ctypes.byref(ptr_description),
entropy,
None,
prompt_struct,
flags | CRYPTPROTECT_UI_FORBIDDEN,
data_out,
)
handle_nonzero_success(res)
description = ptr_description.value
if ptr_description.value is not None:
ctypes.windll.kernel32.LocalFree(ptr_description)
res = data_out.get_data()
data_out.free()
return description, res
|
Returns a tuple of (description, data) where description is the
the description that was passed to the CryptProtectData call and
data is the decrypted result.
|
https://github.com/jaraco/jaraco.windows/blob/e858172b4d5ee91233a8cc5319de99f17848f090/jaraco/windows/dpapi.py#L118-L143
|
import ctypes
from ctypes import wintypes
from jaraco.windows.error import handle_nonzero_success
__import__('jaraco.windows.api.memory')
class DATA_BLOB(ctypes.Structure):
_fields_ = [('data_size', wintypes.DWORD), ('data', ctypes.c_void_p)]
def __init__(self, data=None):
super(DATA_BLOB, self).__init__()
self.set_data(data)
def set_data(self, data):
if data is None:
self.data_size = 0
self.data = None
return
self.data_size = len(data)
self.data = ctypes.cast(ctypes.create_string_buffer(data), ctypes.c_void_p)
def get_data(self):
array = ctypes.POINTER(ctypes.c_char * len(self))
return ctypes.cast(self.data, array).contents.raw
def __len__(self):
return self.data_size
def __str__(self):
return self.get_data()
def free(self):
ctypes.windll.kernel32.LocalFree(self.data)
p_DATA_BLOB = ctypes.POINTER(DATA_BLOB)
_CryptProtectData = ctypes.windll.crypt32.CryptProtectData
_CryptProtectData.argtypes = [
p_DATA_BLOB,
wintypes.LPCWSTR,
p_DATA_BLOB,
ctypes.c_void_p,
ctypes.c_void_p,
wintypes.DWORD,
p_DATA_BLOB,
]
_CryptProtectData.restype = wintypes.BOOL
_CryptUnprotectData = ctypes.windll.crypt32.CryptUnprotectData
_CryptUnprotectData.argtypes = [
p_DATA_BLOB,
ctypes.POINTER(wintypes.LPWSTR),
p_DATA_BLOB,
ctypes.c_void_p,
ctypes.c_void_p,
wintypes.DWORD,
p_DATA_BLOB,
]
_CryptUnprotectData.restype = wintypes.BOOL
CRYPTPROTECT_UI_FORBIDDEN = 0x01
def CryptProtectData(
data, description=None, optional_entropy=None, prompt_struct=None, flags=0
):
data_in = DATA_BLOB(data)
entropy = DATA_BLOB(optional_entropy) if optional_entropy else None
data_out = DATA_BLOB()
res = _CryptProtectData(
data_in, description, entropy, None, prompt_struct, flags, data_out
)
handle_nonzero_success(res)
res = data_out.get_data()
data_out.free()
return res
|
MIT License
|
nescau-ufla/fuzzingtool
|
src/fuzzingtool/conn/RequestParser.py
|
RequestParser.__getAjustedContentByIndexes
|
python
|
def __getAjustedContentByIndexes(self, content: dict) -> str:
ajustedContent = content['content']
for i in content['fuzzingIndexes']:
head = ajustedContent[:i]
tail = ajustedContent[(i+1):]
ajustedContent = head + self.__payload + tail
return ajustedContent
|
Put the payload into the given content
@type content: dict
@param content: The target content dictionary
@returns str: The new content
|
https://github.com/nescau-ufla/fuzzingtool/blob/d0dbe3ee4c17ec8ee72423bf7fabce6849e01807/src/fuzzingtool/conn/RequestParser.py#L90-L102
|
from ..utils.consts import *
def checkForSubdomainFuzz(url: str) -> bool:
if ('.' in url and FUZZING_MARK in url) and url.index(FUZZING_MARK) < url.index('.'):
return True
return False
class RequestParser:
def __init__(self):
self.__payload = ''
def getMethod(self, method: dict) -> str:
return method['content'] if not method['fuzzingIndexes'] else self.__getAjustedContentByIndexes(method)
def getUrl(self, url: dict) -> str:
return url['content'] if not url['fuzzingIndexes'] else self.__getAjustedContentByIndexes(url)
def getHeader(self, headers: dict) -> dict:
return headers['content'] if not headers['payloadKeys'] else self.__getAjustedHeader(headers)
def getData(self, data: dict) -> dict:
return {
'PARAM': {} if not data['PARAM'] else self.__getAjustedData(data['PARAM']),
'BODY': {} if not data['BODY'] else self.__getAjustedData(data['BODY'])
}
def setPayload(self, payload: str) -> None:
self.__payload = payload
|
MIT License
|
jbalogh/glow
|
vendor/lib/python/hbase/Hbase.py
|
Iface.deleteTable
|
python
|
def deleteTable(self, tableName):
pass
|
Deletes a table
@throws IOError if table doesn't exist on server or there was some other
problem
Parameters:
- tableName: name of table to delete
|
https://github.com/jbalogh/glow/blob/776671773749e8d2352d3da71916cf60824f8782/vendor/lib/python/hbase/Hbase.py#L108-L118
|
from thrift.Thrift import *
from ttypes import *
from thrift.Thrift import TProcessor
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol, TProtocol
try:
from thrift.protocol import fastbinary
except:
fastbinary = None
class Iface:
def enableTable(self, tableName):
pass
def disableTable(self, tableName):
pass
def isTableEnabled(self, tableName):
pass
def compact(self, tableNameOrRegionName):
pass
def majorCompact(self, tableNameOrRegionName):
pass
def getTableNames(self, ):
pass
def getColumnDescriptors(self, tableName):
pass
def getTableRegions(self, tableName):
pass
def createTable(self, tableName, columnFamilies):
pass
|
BSD 3-Clause New or Revised License
|
sametmax/django--an-app-at-a-time
|
ignore_this_directory/django/contrib/admin/options.py
|
ModelAdmin.get_changelist_form
|
python
|
def get_changelist_form(self, request, **kwargs):
defaults = {
'formfield_callback': partial(self.formfield_for_dbfield, request=request),
**kwargs,
}
if defaults.get('fields') is None and not modelform_defines_fields(defaults.get('form')):
defaults['fields'] = forms.ALL_FIELDS
return modelform_factory(self.model, **defaults)
|
Return a Form class for use in the Formset on the changelist page.
|
https://github.com/sametmax/django--an-app-at-a-time/blob/99eddf12ead76e6dfbeb09ce0bae61e282e22f8a/ignore_this_directory/django/contrib/admin/options.py#L762-L773
|
import copy
import json
import operator
import re
from collections import OrderedDict
from functools import partial, reduce, update_wrapper
from urllib.parse import quote as urlquote
from django import forms
from django.conf import settings
from django.contrib import messages
from django.contrib.admin import helpers, widgets
from django.contrib.admin.checks import (
BaseModelAdminChecks, InlineModelAdminChecks, ModelAdminChecks,
)
from django.contrib.admin.exceptions import DisallowedModelAdminToField
from django.contrib.admin.templatetags.admin_urls import add_preserved_filters
from django.contrib.admin.utils import (
NestedObjects, construct_change_message, flatten_fieldsets,
get_deleted_objects, lookup_needs_distinct, model_format_dict,
model_ngettext, quote, unquote,
)
from django.contrib.admin.views.autocomplete import AutocompleteJsonView
from django.contrib.admin.widgets import (
AutocompleteSelect, AutocompleteSelectMultiple,
)
from django.contrib.auth import get_permission_codename
from django.core.exceptions import (
FieldDoesNotExist, FieldError, PermissionDenied, ValidationError,
)
from django.core.paginator import Paginator
from django.db import models, router, transaction
from django.db.models.constants import LOOKUP_SEP
from django.db.models.fields import BLANK_CHOICE_DASH
from django.forms.formsets import DELETION_FIELD_NAME, all_valid
from django.forms.models import (
BaseInlineFormSet, inlineformset_factory, modelform_defines_fields,
modelform_factory, modelformset_factory,
)
from django.forms.widgets import CheckboxSelectMultiple, SelectMultiple
from django.http import HttpResponseRedirect
from django.http.response import HttpResponseBase
from django.template.response import SimpleTemplateResponse, TemplateResponse
from django.urls import reverse
from django.utils.decorators import method_decorator
from django.utils.html import format_html
from django.utils.http import urlencode
from django.utils.inspect import get_func_args
from django.utils.safestring import mark_safe
from django.utils.text import capfirst, format_lazy, get_text_list
from django.utils.translation import gettext as _, ngettext
from django.views.decorators.csrf import csrf_protect
from django.views.generic import RedirectView
IS_POPUP_VAR = '_popup'
TO_FIELD_VAR = '_to_field'
HORIZONTAL, VERTICAL = 1, 2
def get_content_type_for_model(obj):
from django.contrib.contenttypes.models import ContentType
return ContentType.objects.get_for_model(obj, for_concrete_model=False)
def get_ul_class(radio_style):
return 'radiolist' if radio_style == VERTICAL else 'radiolist inline'
class IncorrectLookupParameters(Exception):
pass
FORMFIELD_FOR_DBFIELD_DEFAULTS = {
models.DateTimeField: {
'form_class': forms.SplitDateTimeField,
'widget': widgets.AdminSplitDateTime
},
models.DateField: {'widget': widgets.AdminDateWidget},
models.TimeField: {'widget': widgets.AdminTimeWidget},
models.TextField: {'widget': widgets.AdminTextareaWidget},
models.URLField: {'widget': widgets.AdminURLFieldWidget},
models.IntegerField: {'widget': widgets.AdminIntegerFieldWidget},
models.BigIntegerField: {'widget': widgets.AdminBigIntegerFieldWidget},
models.CharField: {'widget': widgets.AdminTextInputWidget},
models.ImageField: {'widget': widgets.AdminFileWidget},
models.FileField: {'widget': widgets.AdminFileWidget},
models.EmailField: {'widget': widgets.AdminEmailInputWidget},
models.UUIDField: {'widget': widgets.AdminUUIDInputWidget},
}
csrf_protect_m = method_decorator(csrf_protect)
class BaseModelAdmin(metaclass=forms.MediaDefiningClass):
autocomplete_fields = ()
raw_id_fields = ()
fields = None
exclude = None
fieldsets = None
form = forms.ModelForm
filter_vertical = ()
filter_horizontal = ()
radio_fields = {}
prepopulated_fields = {}
formfield_overrides = {}
readonly_fields = ()
ordering = None
sortable_by = None
view_on_site = True
show_full_result_count = True
checks_class = BaseModelAdminChecks
def check(self, **kwargs):
return self.checks_class().check(self, **kwargs)
def __init__(self):
overrides = copy.deepcopy(FORMFIELD_FOR_DBFIELD_DEFAULTS)
for k, v in self.formfield_overrides.items():
overrides.setdefault(k, {}).update(v)
self.formfield_overrides = overrides
def formfield_for_dbfield(self, db_field, request, **kwargs):
if db_field.choices:
return self.formfield_for_choice_field(db_field, request, **kwargs)
if isinstance(db_field, (models.ForeignKey, models.ManyToManyField)):
if db_field.__class__ in self.formfield_overrides:
kwargs = {**self.formfield_overrides[db_field.__class__], **kwargs}
if isinstance(db_field, models.ForeignKey):
formfield = self.formfield_for_foreignkey(db_field, request, **kwargs)
elif isinstance(db_field, models.ManyToManyField):
formfield = self.formfield_for_manytomany(db_field, request, **kwargs)
if formfield and db_field.name not in self.raw_id_fields:
related_modeladmin = self.admin_site._registry.get(db_field.remote_field.model)
wrapper_kwargs = {}
if related_modeladmin:
wrapper_kwargs.update(
can_add_related=related_modeladmin.has_add_permission(request),
can_change_related=related_modeladmin.has_change_permission(request),
can_delete_related=related_modeladmin.has_delete_permission(request),
can_view_related=related_modeladmin.has_view_permission(request),
)
formfield.widget = widgets.RelatedFieldWidgetWrapper(
formfield.widget, db_field.remote_field, self.admin_site, **wrapper_kwargs
)
return formfield
for klass in db_field.__class__.mro():
if klass in self.formfield_overrides:
kwargs = {**copy.deepcopy(self.formfield_overrides[klass]), **kwargs}
return db_field.formfield(**kwargs)
return db_field.formfield(**kwargs)
def formfield_for_choice_field(self, db_field, request, **kwargs):
if db_field.name in self.radio_fields:
if 'widget' not in kwargs:
kwargs['widget'] = widgets.AdminRadioSelect(attrs={
'class': get_ul_class(self.radio_fields[db_field.name]),
})
if 'choices' not in kwargs:
kwargs['choices'] = db_field.get_choices(
include_blank=db_field.blank,
blank_choice=[('', _('None'))]
)
return db_field.formfield(**kwargs)
def get_field_queryset(self, db, db_field, request):
related_admin = self.admin_site._registry.get(db_field.remote_field.model)
if related_admin is not None:
ordering = related_admin.get_ordering(request)
if ordering is not None and ordering != ():
return db_field.remote_field.model._default_manager.using(db).order_by(*ordering)
return None
def formfield_for_foreignkey(self, db_field, request, **kwargs):
db = kwargs.get('using')
if 'widget' not in kwargs:
if db_field.name in self.get_autocomplete_fields(request):
kwargs['widget'] = AutocompleteSelect(db_field.remote_field, self.admin_site, using=db)
elif db_field.name in self.raw_id_fields:
kwargs['widget'] = widgets.ForeignKeyRawIdWidget(db_field.remote_field, self.admin_site, using=db)
elif db_field.name in self.radio_fields:
kwargs['widget'] = widgets.AdminRadioSelect(attrs={
'class': get_ul_class(self.radio_fields[db_field.name]),
})
kwargs['empty_label'] = _('None') if db_field.blank else None
if 'queryset' not in kwargs:
queryset = self.get_field_queryset(db, db_field, request)
if queryset is not None:
kwargs['queryset'] = queryset
return db_field.formfield(**kwargs)
def formfield_for_manytomany(self, db_field, request, **kwargs):
if not db_field.remote_field.through._meta.auto_created:
return None
db = kwargs.get('using')
autocomplete_fields = self.get_autocomplete_fields(request)
if db_field.name in autocomplete_fields:
kwargs['widget'] = AutocompleteSelectMultiple(db_field.remote_field, self.admin_site, using=db)
elif db_field.name in self.raw_id_fields:
kwargs['widget'] = widgets.ManyToManyRawIdWidget(db_field.remote_field, self.admin_site, using=db)
elif db_field.name in [*self.filter_vertical, *self.filter_horizontal]:
kwargs['widget'] = widgets.FilteredSelectMultiple(
db_field.verbose_name,
db_field.name in self.filter_vertical
)
if 'queryset' not in kwargs:
queryset = self.get_field_queryset(db, db_field, request)
if queryset is not None:
kwargs['queryset'] = queryset
form_field = db_field.formfield(**kwargs)
if (isinstance(form_field.widget, SelectMultiple) and
not isinstance(form_field.widget, (CheckboxSelectMultiple, AutocompleteSelectMultiple))):
msg = _('Hold down "Control", or "Command" on a Mac, to select more than one.')
help_text = form_field.help_text
form_field.help_text = format_lazy('{} {}', help_text, msg) if help_text else msg
return form_field
def get_autocomplete_fields(self, request):
return self.autocomplete_fields
def get_view_on_site_url(self, obj=None):
if obj is None or not self.view_on_site:
return None
if callable(self.view_on_site):
return self.view_on_site(obj)
elif self.view_on_site and hasattr(obj, 'get_absolute_url'):
return reverse('admin:view_on_site', kwargs={
'content_type_id': get_content_type_for_model(obj).pk,
'object_id': obj.pk
})
def get_empty_value_display(self):
try:
return mark_safe(self.empty_value_display)
except AttributeError:
return mark_safe(self.admin_site.empty_value_display)
def get_exclude(self, request, obj=None):
return self.exclude
def get_fields(self, request, obj=None):
if self.fields:
return self.fields
form = self._get_form_for_get_fields(request, obj)
return [*form.base_fields, *self.get_readonly_fields(request, obj)]
def get_fieldsets(self, request, obj=None):
if self.fieldsets:
return self.fieldsets
return [(None, {'fields': self.get_fields(request, obj)})]
def get_ordering(self, request):
return self.ordering or ()
def get_readonly_fields(self, request, obj=None):
return self.readonly_fields
def get_prepopulated_fields(self, request, obj=None):
return self.prepopulated_fields
def get_queryset(self, request):
qs = self.model._default_manager.get_queryset()
ordering = self.get_ordering(request)
if ordering:
qs = qs.order_by(*ordering)
return qs
def get_sortable_by(self, request):
return self.sortable_by if self.sortable_by is not None else self.get_list_display(request)
def lookup_allowed(self, lookup, value):
from django.contrib.admin.filters import SimpleListFilter
model = self.model
for fk_lookup in model._meta.related_fkey_lookups:
if callable(fk_lookup):
fk_lookup = fk_lookup()
if (lookup, value) in widgets.url_params_from_lookup_dict(fk_lookup).items():
return True
relation_parts = []
prev_field = None
for part in lookup.split(LOOKUP_SEP):
try:
field = model._meta.get_field(part)
except FieldDoesNotExist:
break
if not prev_field or (prev_field.is_relation and
field not in prev_field.get_path_info()[-1].target_fields):
relation_parts.append(part)
if not getattr(field, 'get_path_info', None):
break
prev_field = field
model = field.get_path_info()[-1].to_opts.model
if len(relation_parts) <= 1:
return True
valid_lookups = {self.date_hierarchy}
for filter_item in self.list_filter:
if isinstance(filter_item, type) and issubclass(filter_item, SimpleListFilter):
valid_lookups.add(filter_item.parameter_name)
elif isinstance(filter_item, (list, tuple)):
valid_lookups.add(filter_item[0])
else:
valid_lookups.add(filter_item)
return not {
LOOKUP_SEP.join(relation_parts),
LOOKUP_SEP.join(relation_parts + [part])
}.isdisjoint(valid_lookups)
def to_field_allowed(self, request, to_field):
opts = self.model._meta
try:
field = opts.get_field(to_field)
except FieldDoesNotExist:
return False
if field.primary_key:
return True
for many_to_many in opts.many_to_many:
if many_to_many.m2m_target_field_name() == to_field:
return True
registered_models = set()
for model, admin in self.admin_site._registry.items():
registered_models.add(model)
for inline in admin.inlines:
registered_models.add(inline.model)
related_objects = (
f for f in opts.get_fields(include_hidden=True)
if (f.auto_created and not f.concrete)
)
for related_object in related_objects:
related_model = related_object.related_model
remote_field = related_object.field.remote_field
if (any(issubclass(model, related_model) for model in registered_models) and
hasattr(remote_field, 'get_related_field') and
remote_field.get_related_field() == field):
return True
return False
def has_add_permission(self, request):
opts = self.opts
codename = get_permission_codename('add', opts)
return request.user.has_perm("%s.%s" % (opts.app_label, codename))
def has_change_permission(self, request, obj=None):
opts = self.opts
codename = get_permission_codename('change', opts)
return request.user.has_perm("%s.%s" % (opts.app_label, codename))
def has_delete_permission(self, request, obj=None):
opts = self.opts
codename = get_permission_codename('delete', opts)
return request.user.has_perm("%s.%s" % (opts.app_label, codename))
def has_view_permission(self, request, obj=None):
opts = self.opts
codename_view = get_permission_codename('view', opts)
codename_change = get_permission_codename('change', opts)
return (
request.user.has_perm('%s.%s' % (opts.app_label, codename_view)) or
request.user.has_perm('%s.%s' % (opts.app_label, codename_change))
)
def has_view_or_change_permission(self, request, obj=None):
return self.has_view_permission(request, obj) or self.has_change_permission(request, obj)
def has_module_permission(self, request):
return request.user.has_module_perms(self.opts.app_label)
class ModelAdmin(BaseModelAdmin):
list_display = ('__str__',)
list_display_links = ()
list_filter = ()
list_select_related = False
list_per_page = 100
list_max_show_all = 200
list_editable = ()
search_fields = ()
date_hierarchy = None
save_as = False
save_as_continue = True
save_on_top = False
paginator = Paginator
preserve_filters = True
inlines = []
add_form_template = None
change_form_template = None
change_list_template = None
delete_confirmation_template = None
delete_selected_confirmation_template = None
object_history_template = None
popup_response_template = None
actions = []
action_form = helpers.ActionForm
actions_on_top = True
actions_on_bottom = False
actions_selection_counter = True
checks_class = ModelAdminChecks
def __init__(self, model, admin_site):
self.model = model
self.opts = model._meta
self.admin_site = admin_site
super().__init__()
def __str__(self):
return "%s.%s" % (self.model._meta.app_label, self.__class__.__name__)
def get_inline_instances(self, request, obj=None):
inline_instances = []
for inline_class in self.inlines:
inline = inline_class(self.model, self.admin_site)
if request:
inline_has_add_permission = inline._has_add_permission(request, obj)
if not (inline.has_view_or_change_permission(request, obj) or
inline_has_add_permission or
inline.has_delete_permission(request, obj)):
continue
if not inline_has_add_permission:
inline.max_num = 0
inline_instances.append(inline)
return inline_instances
def get_urls(self):
from django.urls import path
def wrap(view):
def wrapper(*args, **kwargs):
return self.admin_site.admin_view(view)(*args, **kwargs)
wrapper.model_admin = self
return update_wrapper(wrapper, view)
info = self.model._meta.app_label, self.model._meta.model_name
urlpatterns = [
path('', wrap(self.changelist_view), name='%s_%s_changelist' % info),
path('add/', wrap(self.add_view), name='%s_%s_add' % info),
path('autocomplete/', wrap(self.autocomplete_view), name='%s_%s_autocomplete' % info),
path('<path:object_id>/history/', wrap(self.history_view), name='%s_%s_history' % info),
path('<path:object_id>/delete/', wrap(self.delete_view), name='%s_%s_delete' % info),
path('<path:object_id>/change/', wrap(self.change_view), name='%s_%s_change' % info),
path('<path:object_id>/', wrap(RedirectView.as_view(
pattern_name='%s:%s_%s_change' % ((self.admin_site.name,) + info)
))),
]
return urlpatterns
@property
def urls(self):
return self.get_urls()
@property
def media(self):
extra = '' if settings.DEBUG else '.min'
js = [
'vendor/jquery/jquery%s.js' % extra,
'jquery.init.js',
'core.js',
'admin/RelatedObjectLookups.js',
'actions%s.js' % extra,
'urlify.js',
'prepopulate%s.js' % extra,
'vendor/xregexp/xregexp%s.js' % extra,
]
return forms.Media(js=['admin/js/%s' % url for url in js])
def get_model_perms(self, request):
return {
'add': self.has_add_permission(request),
'change': self.has_change_permission(request),
'delete': self.has_delete_permission(request),
'view': self.has_view_permission(request),
}
def _get_form_for_get_fields(self, request, obj):
return self.get_form(request, obj, fields=None)
def get_form(self, request, obj=None, change=False, **kwargs):
if 'fields' in kwargs:
fields = kwargs.pop('fields')
else:
fields = flatten_fieldsets(self.get_fieldsets(request, obj))
excluded = self.get_exclude(request, obj)
exclude = [] if excluded is None else list(excluded)
readonly_fields = self.get_readonly_fields(request, obj)
exclude.extend(readonly_fields)
if change and hasattr(request, 'user') and not self.has_change_permission(request, obj):
exclude.extend(fields)
if excluded is None and hasattr(self.form, '_meta') and self.form._meta.exclude:
exclude.extend(self.form._meta.exclude)
exclude = exclude or None
new_attrs = OrderedDict.fromkeys(
f for f in readonly_fields
if f in self.form.declared_fields
)
form = type(self.form.__name__, (self.form,), new_attrs)
defaults = {
'form': form,
'fields': fields,
'exclude': exclude,
'formfield_callback': partial(self.formfield_for_dbfield, request=request),
**kwargs,
}
if defaults['fields'] is None and not modelform_defines_fields(defaults['form']):
defaults['fields'] = forms.ALL_FIELDS
try:
return modelform_factory(self.model, **defaults)
except FieldError as e:
raise FieldError(
'%s. Check fields/fieldsets/exclude attributes of class %s.'
% (e, self.__class__.__name__)
)
def get_changelist(self, request, **kwargs):
from django.contrib.admin.views.main import ChangeList
return ChangeList
def get_changelist_instance(self, request):
list_display = self.get_list_display(request)
list_display_links = self.get_list_display_links(request, list_display)
if self.get_actions(request):
list_display = ['action_checkbox', *list_display]
sortable_by = self.get_sortable_by(request)
ChangeList = self.get_changelist(request)
return ChangeList(
request,
self.model,
list_display,
list_display_links,
self.get_list_filter(request),
self.date_hierarchy,
self.get_search_fields(request),
self.get_list_select_related(request),
self.list_per_page,
self.list_max_show_all,
self.list_editable,
self,
sortable_by,
)
def get_object(self, request, object_id, from_field=None):
queryset = self.get_queryset(request)
model = queryset.model
field = model._meta.pk if from_field is None else model._meta.get_field(from_field)
try:
object_id = field.to_python(object_id)
return queryset.get(**{field.name: object_id})
except (model.DoesNotExist, ValidationError, ValueError):
return None
|
MIT License
|
open-telemetry/opentelemetry-python
|
opentelemetry-api/src/opentelemetry/trace/__init__.py
|
Tracer.start_as_current_span
|
python
|
def start_as_current_span(
self,
name: str,
context: Optional[Context] = None,
kind: SpanKind = SpanKind.INTERNAL,
attributes: types.Attributes = None,
links: _Links = None,
start_time: Optional[int] = None,
record_exception: bool = True,
set_status_on_exception: bool = True,
end_on_exit: bool = True,
) -> Iterator["Span"]:
|
Context manager for creating a new span and set it
as the current span in this tracer's context.
Exiting the context manager will call the span's end method,
as well as return the current span to its previous value by
returning to the previous context.
Example::
with tracer.start_as_current_span("one") as parent:
parent.add_event("parent's event")
with trace.start_as_current_span("two") as child:
child.add_event("child's event")
trace.get_current_span() # returns child
trace.get_current_span() # returns parent
trace.get_current_span() # returns previously active span
This is a convenience method for creating spans attached to the
tracer's context. Applications that need more control over the span
lifetime should use :meth:`start_span` instead. For example::
with tracer.start_as_current_span(name) as span:
do_work()
is equivalent to::
span = tracer.start_span(name)
with opentelemetry.trace.use_span(span, end_on_exit=True):
do_work()
Args:
name: The name of the span to be created.
context: An optional Context containing the span's parent. Defaults to the
global context.
kind: The span's kind (relationship to parent). Note that is
meaningful even if there is no parent.
attributes: The span's attributes.
links: Links span to other spans
start_time: Sets the start time of a span
record_exception: Whether to record any exceptions raised within the
context as error event on the span.
set_status_on_exception: Only relevant if the returned span is used
in a with/context manager. Defines wether the span status will
be automatically set to ERROR when an uncaught exception is
raised in the span with block. The span status won't be set by
this mechanism if it was previously set manually.
end_on_exit: Whether to end the span automatically when leaving the
context manager.
Yields:
The newly-created span.
|
https://github.com/open-telemetry/opentelemetry-python/blob/65528f7534f1f5f2e8adc7520b6e696a84569c7d/opentelemetry-api/src/opentelemetry/trace/__init__.py#L318-L381
|
import os
import typing
from abc import ABC, abstractmethod
from contextlib import contextmanager
from enum import Enum
from logging import getLogger
from typing import Iterator, Optional, Sequence, cast
from opentelemetry import context as context_api
from opentelemetry.attributes import BoundedAttributes
from opentelemetry.context.context import Context
from opentelemetry.environment_variables import OTEL_PYTHON_TRACER_PROVIDER
from opentelemetry.trace.propagation import (
_SPAN_KEY,
get_current_span,
set_span_in_context,
)
from opentelemetry.trace.span import (
DEFAULT_TRACE_OPTIONS,
DEFAULT_TRACE_STATE,
INVALID_SPAN,
INVALID_SPAN_CONTEXT,
INVALID_SPAN_ID,
INVALID_TRACE_ID,
NonRecordingSpan,
Span,
SpanContext,
TraceFlags,
TraceState,
format_span_id,
format_trace_id,
)
from opentelemetry.trace.status import Status, StatusCode
from opentelemetry.util import types
from opentelemetry.util._once import Once
from opentelemetry.util._providers import _load_provider
logger = getLogger(__name__)
class _LinkBase(ABC):
def __init__(self, context: "SpanContext") -> None:
self._context = context
@property
def context(self) -> "SpanContext":
return self._context
@property
@abstractmethod
def attributes(self) -> types.Attributes:
pass
class Link(_LinkBase):
def __init__(
self,
context: "SpanContext",
attributes: types.Attributes = None,
) -> None:
super().__init__(context)
self._attributes = BoundedAttributes(
attributes=attributes
)
@property
def attributes(self) -> types.Attributes:
return self._attributes
_Links = Optional[Sequence[Link]]
class SpanKind(Enum):
INTERNAL = 0
SERVER = 1
CLIENT = 2
PRODUCER = 3
CONSUMER = 4
class TracerProvider(ABC):
@abstractmethod
def get_tracer(
self,
instrumenting_module_name: str,
instrumenting_library_version: typing.Optional[str] = None,
schema_url: typing.Optional[str] = None,
) -> "Tracer":
class _DefaultTracerProvider(TracerProvider):
def get_tracer(
self,
instrumenting_module_name: str,
instrumenting_library_version: typing.Optional[str] = None,
schema_url: typing.Optional[str] = None,
) -> "Tracer":
return _DefaultTracer()
class ProxyTracerProvider(TracerProvider):
def get_tracer(
self,
instrumenting_module_name: str,
instrumenting_library_version: typing.Optional[str] = None,
schema_url: typing.Optional[str] = None,
) -> "Tracer":
if _TRACER_PROVIDER:
return _TRACER_PROVIDER.get_tracer(
instrumenting_module_name,
instrumenting_library_version,
schema_url,
)
return ProxyTracer(
instrumenting_module_name,
instrumenting_library_version,
schema_url,
)
class Tracer(ABC):
@abstractmethod
def start_span(
self,
name: str,
context: Optional[Context] = None,
kind: SpanKind = SpanKind.INTERNAL,
attributes: types.Attributes = None,
links: _Links = None,
start_time: Optional[int] = None,
record_exception: bool = True,
set_status_on_exception: bool = True,
) -> "Span":
@contextmanager
@abstractmethod
|
Apache License 2.0
|
xuefeng-xu/cs229-fall-2018-problem-solutions
|
PS3/code/src/p04_gmm.py
|
run_em
|
python
|
def run_em(x, w, phi, mu, sigma):
eps = 1e-3
max_iter = 1000
it = 0
ll = prev_ll = None
while it < max_iter and (prev_ll is None or np.abs(ll - prev_ll) >= eps):
for i in range(K):
w[:, i] = np.exp(-0.5 * ((x-mu[i]).dot(np.linalg.inv(sigma[i])) * (x-mu[i])).sum(axis=1)) / (np.linalg.det(sigma[i])**0.5) * phi[i]
w /= w.sum(axis=1)[:, None]
phi = np.mean(w, axis=0)
for i in range(K):
mu[i] = x.T.dot(w[:, i]) / sum(w[:, i])
sigma[i] = (w[:, i][:, None] * (x-mu[i])).T.dot(x-mu[i]) / sum(w[:, i])
it += 1
prev_ll = ll
p_xz = np.zeros(w.shape)
for i in range(K):
p_xz[:, i] = np.exp(-0.5 * ((x-mu[i]).dot(np.linalg.inv(sigma[i])) * (x-mu[i])).sum(axis=1)) / (np.linalg.det(sigma[i])**0.5) * phi[i]
ll = np.sum(np.log(p_xz))
print(f'Number of iterations:{it}')
return w
|
Problem 3(d): EM Algorithm (unsupervised).
See inline comments for instructions.
Args:
x: Design matrix of shape (m, n).
w: Initial weight matrix of shape (m, k).
phi: Initial mixture prior, of shape (k,).
mu: Initial cluster means, list of k arrays of shape (n,).
sigma: Initial cluster covariances, list of k arrays of shape (n, n).
Returns:
Updated weight matrix of shape (m, k) resulting from EM algorithm.
More specifically, w[i, j] should contain the probability of
example x^(i) belonging to the j-th Gaussian in the mixture.
|
https://github.com/xuefeng-xu/cs229-fall-2018-problem-solutions/blob/cc7a04ecf20c2e8b171a51b0cfd8520af3097695/PS3/code/src/p04_gmm.py#L68-L122
|
import matplotlib.pyplot as plt
import numpy as np
import os
PLOT_COLORS = ['red', 'green', 'blue', 'orange']
K = 4
NUM_TRIALS = 3
UNLABELED = -1
def main(is_semi_supervised, trial_num):
print('Running {} EM algorithm...'
.format('semi-supervised' if is_semi_supervised else 'unsupervised'))
train_path = os.path.join('..', 'data', 'ds4_train.csv')
x, z = load_gmm_dataset(train_path)
x_tilde = None
if is_semi_supervised:
labeled_idxs = (z != UNLABELED).squeeze()
x_tilde = x[labeled_idxs, :]
z = z[labeled_idxs, :]
x = x[~labeled_idxs, :]
m = x.shape[0]
idx = np.random.permutation(m)
group_member= int(m / K)
mu = []
sigma = []
for i in range(K):
if i!=K-1:
x_temp = x[idx[i*group_member: (i+1)*group_member], :]
else:
x_temp = x[idx[i*group_member: m], :]
mu_temp = np.mean(x_temp, axis=0)
mu.append(mu_temp)
sigma.append((x_temp-mu_temp).T.dot(x_temp-mu_temp) / x_temp.shape[0])
phi = np.ones(K) / K
w = np.ones((m, K)) / K
if is_semi_supervised:
w = run_semi_supervised_em(x, x_tilde, z, w, phi, mu, sigma)
else:
w = run_em(x, w, phi, mu, sigma)
z_pred = np.zeros(m)
if w is not None:
for i in range(m):
z_pred[i] = np.argmax(w[i])
plot_gmm_preds(x, z_pred, is_semi_supervised, plot_id=trial_num)
|
MIT License
|
marselester/json-log-formatter
|
json_log_formatter/__init__.py
|
JSONFormatter.to_json
|
python
|
def to_json(self, record):
try:
return self.json_lib.dumps(record, default=_json_serializable)
except TypeError:
try:
return self.json_lib.dumps(record)
except TypeError:
return '{}'
|
Converts record dict to a JSON string.
It makes best effort to serialize a record (represents an object as a string)
instead of raising TypeError if json library supports default argument.
Note, ujson doesn't support it.
Override this method to change the way dict is converted to JSON.
|
https://github.com/marselester/json-log-formatter/blob/0b3eb4d5b623882ae5a00609286279a93daee829/json_log_formatter/__init__.py#L73-L90
|
import logging
from datetime import datetime
import json
BUILTIN_ATTRS = {
'args',
'asctime',
'created',
'exc_info',
'exc_text',
'filename',
'funcName',
'levelname',
'levelno',
'lineno',
'module',
'msecs',
'message',
'msg',
'name',
'pathname',
'process',
'processName',
'relativeCreated',
'stack_info',
'thread',
'threadName',
}
class JSONFormatter(logging.Formatter):
json_lib = json
def format(self, record):
message = record.getMessage()
extra = self.extra_from_record(record)
json_record = self.json_record(message, extra, record)
mutated_record = self.mutate_json_record(json_record)
if mutated_record is None:
mutated_record = json_record
return self.to_json(mutated_record)
|
MIT License
|
purestorage-openconnect/py-pure-client
|
pypureclient/flasharray/FA_2_5/models/protection_group_snapshot_transfer.py
|
ProtectionGroupSnapshotTransfer.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, ProtectionGroupSnapshotTransfer):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_5/models/protection_group_snapshot_transfer.py#L138-L143
|
import pprint
import re
import six
import typing
from ....properties import Property
if typing.TYPE_CHECKING:
from pypureclient.flasharray.FA_2_5 import models
class ProtectionGroupSnapshotTransfer(object):
swagger_types = {
'name': 'str',
'destroyed': 'bool',
'started': 'int',
'progress': 'float',
'completed': 'int',
'data_transferred': 'int',
'physical_bytes_written': 'int'
}
attribute_map = {
'name': 'name',
'destroyed': 'destroyed',
'started': 'started',
'progress': 'progress',
'completed': 'completed',
'data_transferred': 'data_transferred',
'physical_bytes_written': 'physical_bytes_written'
}
required_args = {
}
def __init__(
self,
name=None,
destroyed=None,
started=None,
progress=None,
completed=None,
data_transferred=None,
physical_bytes_written=None,
):
if name is not None:
self.name = name
if destroyed is not None:
self.destroyed = destroyed
if started is not None:
self.started = started
if progress is not None:
self.progress = progress
if completed is not None:
self.completed = completed
if data_transferred is not None:
self.data_transferred = data_transferred
if physical_bytes_written is not None:
self.physical_bytes_written = physical_bytes_written
def __setattr__(self, key, value):
if key not in self.attribute_map:
raise KeyError("Invalid key `{}` for `ProtectionGroupSnapshotTransfer`".format(key))
self.__dict__[key] = value
def __getattribute__(self, item):
value = object.__getattribute__(self, item)
if isinstance(value, Property):
raise AttributeError
else:
return value
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
if hasattr(self, attr):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(ProtectionGroupSnapshotTransfer, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
BSD 2-Clause Simplified License
|
cbrnr/sleepecg
|
examples/benchmark/utils.py
|
reader_dispatch
|
python
|
def reader_dispatch(data_dir: str, db_slug: str) -> Iterator[ECGRecord]:
readers = {
'gudb': sleepecg.io.read_gudb,
'ltdb': sleepecg.io.read_ltdb,
'mitdb': sleepecg.io.read_mitdb,
}
if db_slug not in readers:
raise ValueError(f'Invalid db_slug: {db_slug}')
yield from readers[db_slug](data_dir)
|
Read ECG records from mitdb, ltdb or gudb.
Parameters
----------
data_dir : str
Directory where all datasets are stored.
db_slug : str
Short identifier of a dataset, e.g. `'mitdb'`.
Yields
------
ECGRecord
Each element in the generator is of type `ECGRecord` and contains
the ECG signal (`.ecg`), sampling frequency (`.fs`), annotated beat
indices (`.annotations`), `.lead`, and `.id`.
|
https://github.com/cbrnr/sleepecg/blob/93e8181b2562ffa15ea57bfbb9cbfe2ddf72afd5/examples/benchmark/utils.py#L23-L48
|
import time
from typing import Any, Dict, Iterator
import biosppy
import ecgdetectors
import heartpy
import heartpy.exceptions
import mne
import neurokit2
import numpy as np
import wfdb.processing
import sleepecg
from sleepecg.io.ecg_readers import ECGRecord
|
BSD 3-Clause New or Revised License
|
mpicard/pyvas
|
src/pyvas/client.py
|
Client.get_report_format
|
python
|
def get_report_format(self, uuid):
return self._get("report_format", uuid=uuid)
|
Get report format with uuid.
|
https://github.com/mpicard/pyvas/blob/a0563a29bb39d4481facd9a4f18bf52c75abf631/src/pyvas/client.py#L185-L187
|
from __future__ import unicode_literals, print_function
import os
import socket
import ssl
import six
from lxml import etree
from .response import Response
from .utils import dict_to_lxml
from .utils import lxml_to_dict
from .exceptions import AuthenticationError
from .exceptions import HTTPError
from .exceptions import ElementNotFound
DEFAULT_PORT = os.environ.get("OPENVASMD_PORT", 9390)
DEFAULT_SCANNER_NAME = "OpenVAS Default"
def print_xml(element):
print(etree.tostring(element, pretty_print=True))
class Client(object):
def __init__(self, host, username=None, password=None, port=DEFAULT_PORT):
self.host = host
self.port = port
self.username = username
self.password = password
self.socket = None
self.session = None
def open(self, username=None, password=None):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.socket = sock = ssl.wrap_socket(sock)
sock.connect((self.host, self.port))
self.authenticate(username, password)
def close(self):
self.socket.close()
self.socket = None
def authenticate(self, username=None, password=None):
if self.socket is None:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.socket = sock = ssl.wrap_socket(sock)
sock.connect((self.host, self.port))
if username is None:
username = self.username
if password is None:
password = self.password
request = dict_to_lxml(
"authenticate",
{"credentials": {
"username": username,
"password": password
}}
)
try:
return self._command(request)
except HTTPError:
raise AuthenticationError(username)
def list_port_lists(self, **kwargs):
return self._list("port_list", **kwargs)
def get_port_list(self, uuid):
return self._get("port_list", uuid=uuid)
def create_port_list(self, name, port_range, comment=None):
if comment is None:
comment = ""
data = {"name": name, "port_range": port_range, "comment": comment}
request = dict_to_lxml(
"create_port_list",
data
)
return self._create(request)
def delete_port_list(self, uuid):
return self._delete("port_list", uuid=uuid)
def list_targets(self, **kwargs):
return self._list("target", **kwargs)
def get_target(self, uuid):
return self._get("target", uuid=uuid)
def create_target(self, name, hosts, port_list=None, ssh_credential=None, alive_tests=None, comment=None):
if comment is None:
comment = ""
data = {"name": name, "hosts": hosts, "comment": comment}
if port_list:
data.update({"port_list": {'@id': port_list}})
if alive_tests:
data.update({"alive_tests": alive_tests})
if ssh_credential:
data.update({"ssh_credential": {'@id': ssh_credential}})
request = dict_to_lxml(
"create_target",
data
)
return self._create(request)
def modify_target(self, uuid, **kwargs):
return self._modify('target', uuid=uuid, exclude_hosts=None, **kwargs)
def delete_target(self, uuid):
return self._delete("target", uuid=uuid)
def list_configs(self, **kwargs):
return self._list("config", **kwargs)
def get_config(self, uuid):
return self._get("config", uuid=uuid)
def create_config(self, name, copy_uuid=None, **kwargs):
data = {"name": name}
if copy_uuid is not None:
data["copy"] = copy_uuid
data.update(kwargs)
request = dict_to_lxml("create_config", data)
return self._create(request)
def delete_config(self, uuid):
return self._delete("config", uuid=uuid)
def list_scanners(self, **kwargs):
return self._list("scanner", **kwargs)
def get_scanner(self, uuid):
return self._get("scanner", uuid=uuid)
def list_report_formats(self, **kwargs):
return self._list("report_format", **kwargs)
|
MIT License
|
materials-consortia/optimade-python-tools
|
optimade/filtertransformers/mongo.py
|
MongoTransformer._apply_mongo_date_filter
|
python
|
def _apply_mongo_date_filter(self, filter_: dict) -> dict:
def check_for_timestamp_field(prop, _):
if self.mapper is not None:
prop = self.mapper.get_optimade_field(prop)
return prop == "last_modified"
def replace_str_date_with_datetime(subdict, prop, expr):
import bson.json_util
for operator in subdict[prop]:
query_datetime = bson.json_util.loads(
bson.json_util.dumps({"$date": subdict[prop][operator]}),
json_options=bson.json_util.DEFAULT_JSON_OPTIONS.with_options(
tz_aware=True, tzinfo=bson.tz_util.utc
),
)
if query_datetime.microsecond != 0:
warnings.warn(
f"Query for timestamp {subdict[prop][operator]!r} for field {prop!r} contained microseconds, which is not RFC3339 compliant. "
"This may cause undefined behaviour for the underlying database.",
TimestampNotRFCCompliant,
)
subdict[prop][operator] = query_datetime
return subdict
return recursive_postprocessing(
filter_, check_for_timestamp_field, replace_str_date_with_datetime
)
|
This method loops through the query and replaces any operations
on suspected timestamp properties with the corresponding operation
on a BSON `DateTime` type.
|
https://github.com/materials-consortia/optimade-python-tools/blob/bb1baa87e6eb7a23e45eb308853665f51c56c4d2/optimade/filtertransformers/mongo.py#L530-L566
|
import copy
import warnings
import itertools
from typing import Dict, List, Any
from lark import v_args, Token
from optimade.filtertransformers.base_transformer import BaseTransformer, Quantity
from optimade.server.exceptions import BadRequest
from optimade.server.warnings import TimestampNotRFCCompliant
__all__ = ("MongoTransformer",)
class MongoTransformer(BaseTransformer):
operator_map = {
"<": "$lt",
"<=": "$lte",
">": "$gt",
">=": "$gte",
"!=": "$ne",
"=": "$eq",
}
inverse_operator_map = {
"$lt": "$gte",
"$lte": "$gt",
"$gt": "$lte",
"$gte": "$lt",
"$ne": "$eq",
"$eq": "$ne",
"$in": "$nin",
"$nin": "$in",
}
def postprocess(self, query: Dict[str, Any]):
query = self._apply_relationship_filtering(query)
query = self._apply_length_operators(query)
query = self._apply_unknown_or_null_filter(query)
query = self._apply_has_only_filter(query)
query = self._apply_mongo_id_filter(query)
query = self._apply_mongo_date_filter(query)
return query
def value_list(self, arg):
for value in arg:
if str(value) in self.operator_map.keys():
raise NotImplementedError(
f"OPERATOR {value} inside value_list {arg} not implemented."
)
return arg
def value_zip(self, arg):
raise NotImplementedError("Correlated list queries are not supported.")
def value_zip_list(self, arg):
raise NotImplementedError("Correlated list queries are not supported.")
def expression(self, arg):
return {"$or": arg} if len(arg) > 1 else arg[0]
def expression_clause(self, arg):
return {"$and": arg} if len(arg) > 1 else arg[0]
def expression_phrase(self, arg):
return self._recursive_expression_phrase(arg)
@v_args(inline=True)
def property_first_comparison(self, quantity, query):
if "$ne" in query:
return {"$and": [{quantity: query}, {quantity: {"$ne": None}}]}
if "$size" in query:
if (
getattr(self.backend_mapping.get(quantity), "length_quantity", None)
is not None
):
size_query = {
self.backend_mapping[
quantity
].length_quantity.backend_field: query.pop("$size")
}
final_query = {}
if query:
final_query = {quantity: query}
for q in size_query:
if q in final_query:
final_query[q].update(size_query[q])
else:
final_query[q] = size_query[q]
return final_query
return {quantity: query}
def constant_first_comparison(self, arg):
return {
arg[2]: {self.operator_map[self._reversed_operator_map[arg[1]]]: arg[0]}
}
@v_args(inline=True)
def value_op_rhs(self, operator, value):
return {self.operator_map[operator]: value}
def known_op_rhs(self, arg):
return {"#known": arg[1] == "KNOWN"}
def fuzzy_string_op_rhs(self, arg):
if isinstance(arg[1], Token) and arg[1].type == "WITH":
pattern = arg[2]
else:
pattern = arg[1]
if arg[0] == "CONTAINS":
regex = f"{pattern}"
elif arg[0] == "STARTS":
regex = f"^{pattern}"
elif arg[0] == "ENDS":
regex = f"{pattern}$"
return {"$regex": regex}
def set_op_rhs(self, arg):
if len(arg) == 2:
return {"$in": arg[1:]}
if arg[1] == "ALL":
return {"$all": arg[2]}
if arg[1] == "ANY":
return {"$in": arg[2]}
if arg[1] == "ONLY":
return {"#only": arg[2]}
raise NotImplementedError(
f"set_op_rhs not implemented for use with OPERATOR. Given: {arg}"
)
def property(self, args):
quantity = super().property(args)
if isinstance(quantity, Quantity):
quantity = quantity.backend_field
return ".".join([quantity] + args[1:])
def length_op_rhs(self, arg):
if len(arg) == 2 or (len(arg) == 3 and arg[1] == "="):
return {"$size": arg[-1]}
if arg[1] in self.operator_map and arg[1] != "!=":
return {"$size": {self.operator_map[arg[1]]: arg[-1]}}
raise NotImplementedError(
f"Operator {arg[1]} not implemented for LENGTH filter."
)
def set_zip_op_rhs(self, arg):
raise NotImplementedError("Correlated list queries are not supported.")
def property_zip_addon(self, arg):
raise NotImplementedError("Correlated list queries are not supported.")
def _recursive_expression_phrase(self, arg: List) -> Dict[str, Any]:
def handle_not_and(arg: Dict[str, List]) -> Dict[str, List]:
expr1 = arg["$and"][0]
expr2 = arg["$and"][1]
if expr1.keys() == expr2.keys():
key = list(expr1.keys())[0]
for e, f in itertools.permutations((expr1, expr2)):
if e.get(key) == {"$ne": None}:
return self._recursive_expression_phrase(["NOT", f])
return {
"$or": [
self._recursive_expression_phrase(["NOT", subdict])
for subdict in arg["$and"]
]
}
def handle_not_or(arg: Dict[str, List]) -> Dict[str, List]:
return {
"$and": [
self._recursive_expression_phrase(["NOT", subdict])
for subdict in arg["$or"]
]
}
if len(arg) == 1:
return arg[0]
if "$or" in arg[1]:
return handle_not_or(arg[1])
if "$and" in arg[1]:
return handle_not_and(arg[1])
prop, expr = next(iter(arg[1].items()))
operator, value = next(iter(expr.items()))
if operator == "$not":
return {prop: value}
if operator in self.inverse_operator_map:
filter_ = {prop: {self.inverse_operator_map[operator]: value}}
if operator in ("$in", "$eq"):
filter_ = {"$and": [filter_, {prop: {"$ne": None}}]}
return filter_
filter_ = {prop: {"$not": expr}}
if "#known" in expr:
return filter_
return {"$and": [filter_, {prop: {"$ne": None}}]}
def _apply_length_operators(self, filter_: dict) -> dict:
def check_for_length_op_filter(_, expr):
return (
isinstance(expr, dict)
and "$size" in expr
and isinstance(expr["$size"], dict)
)
def apply_length_op(subdict, prop, expr):
operator, value = list(expr["$size"].items())[0]
if operator in self.operator_map.values() and operator != "$ne":
_prop = None
existence = None
if operator == "$gt":
_prop = f"{prop}.{value + 1}"
existence = True
elif operator == "$gte":
_prop = f"{prop}.{value}"
existence = True
elif operator == "$lt":
_prop = f"{prop}.{value}"
existence = False
elif operator == "$lte":
_prop = f"{prop}.{value + 1}"
existence = False
if _prop is not None:
subdict.pop(prop)
subdict[_prop] = {"$exists": existence}
return subdict
return recursive_postprocessing(
filter_,
check_for_length_op_filter,
apply_length_op,
)
def _apply_relationship_filtering(self, filter_: dict) -> dict:
def check_for_entry_type(prop, _):
return str(prop).count(".") == 1 and str(prop).split(".")[0] in (
"structures",
"references",
)
def replace_with_relationship(subdict, prop, expr):
_prop, _field = str(prop).split(".")
if _field != "id":
raise NotImplementedError(
f'Cannot filter relationships by field "{_field}", only "id" is supported.'
)
subdict[f"relationships.{_prop}.data.{_field}"] = expr
subdict.pop(prop)
return subdict
return recursive_postprocessing(
filter_, check_for_entry_type, replace_with_relationship
)
def _apply_has_only_filter(self, filter_: dict) -> dict:
def check_for_only_filter(_, expr):
return isinstance(expr, dict) and ("#only" in expr)
def replace_only_filter(subdict: dict, prop: str, expr: dict):
if "$and" not in subdict:
subdict["$and"] = []
if prop.startswith("relationships."):
if prop not in (
"relationships.references.data.id",
"relationships.structures.data.id",
):
raise BadRequest(f"Unable to query on unrecognised field {prop}.")
first_part_prop = ".".join(prop.split(".")[:-1])
subdict["$and"].append(
{
first_part_prop: {
"$not": {"$elemMatch": {"id": {"$nin": expr["#only"]}}}
}
}
)
subdict["$and"].append({first_part_prop + ".0": {"$exists": True}})
else:
subdict["$and"].append(
{prop: {"$not": {"$elemMatch": {"$nin": expr["#only"]}}}}
)
subdict["$and"].append({prop + ".0": {"$exists": True}})
subdict.pop(prop)
return subdict
return recursive_postprocessing(
filter_, check_for_only_filter, replace_only_filter
)
def _apply_unknown_or_null_filter(self, filter_: dict) -> dict:
def check_for_known_filter(_, expr):
return isinstance(expr, dict) and (
"#known" in expr or "#known" in expr.get("$not", {})
)
def replace_known_filter_with_or(subdict, prop, expr):
not_ = set(expr.keys()) == {"$not"}
if not_:
expr = expr["$not"]
exists = expr["#known"] ^ not_
top_level_key = "$or"
comparison_operator = "$eq"
if exists:
top_level_key = "$and"
comparison_operator = "$ne"
if top_level_key not in subdict:
subdict[top_level_key] = []
subdict[top_level_key].append({prop: {"$exists": exists}})
subdict[top_level_key].append({prop: {comparison_operator: None}})
subdict.pop(prop)
return subdict
return recursive_postprocessing(
filter_, check_for_known_filter, replace_known_filter_with_or
)
def _apply_mongo_id_filter(self, filter_: dict) -> dict:
def check_for_id_key(prop, _):
return prop == "_id"
def replace_str_id_with_objectid(subdict, prop, expr):
from bson import ObjectId
for operator in subdict[prop]:
val = subdict[prop][operator]
if operator not in ("$eq", "$ne"):
if self.mapper is not None:
prop = self.mapper.get_optimade_field(prop)
raise NotImplementedError(
f"Operator {operator} not supported for query on field {prop!r}, can only test for equality"
)
if isinstance(val, str):
subdict[prop][operator] = ObjectId(val)
return subdict
return recursive_postprocessing(
filter_, check_for_id_key, replace_str_id_with_objectid
)
|
MIT License
|
packtpublishing/generative-adversarial-networks-projects
|
Chapter02/run.py
|
plotAndSaveVoxel
|
python
|
def plotAndSaveVoxel(file_path, voxel):
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_aspect('equal')
ax.voxels(voxel, edgecolor="red")
plt.savefig(file_path)
|
Plot a voxel
|
https://github.com/packtpublishing/generative-adversarial-networks-projects/blob/ccfbf5ea809b8b147c92a7646ea1e3a716744c94/Chapter02/run.py#L134-L143
|
import glob
import os
import time
import numpy as np
import scipy.io as io
import scipy.ndimage as nd
import tensorflow as tf
from keras import Sequential
from keras.callbacks import TensorBoard
from keras.layers import Input
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv3D, Deconv3D
from keras.layers.core import Activation
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.optimizers import Adam
from mpl_toolkits.mplot3d import Axes3D
import matplotlib
import matplotlib.pyplot as plt
def build_generator():
z_size = 200
gen_filters = [512, 256, 128, 64, 1]
gen_kernel_sizes = [4, 4, 4, 4, 4]
gen_strides = [1, 2, 2, 2, 2]
gen_input_shape = (1, 1, 1, z_size)
gen_activations = ['relu', 'relu', 'relu', 'relu', 'sigmoid']
gen_convolutional_blocks = 5
input_layer = Input(shape=gen_input_shape)
a = Deconv3D(filters=gen_filters[0],
kernel_size=gen_kernel_sizes[0],
strides=gen_strides[0])(input_layer)
a = BatchNormalization()(a, training=True)
a = Activation(activation='relu')(a)
for i in range(gen_convolutional_blocks - 1):
a = Deconv3D(filters=gen_filters[i + 1],
kernel_size=gen_kernel_sizes[i + 1],
strides=gen_strides[i + 1], padding='same')(a)
a = BatchNormalization()(a, training=True)
a = Activation(activation=gen_activations[i + 1])(a)
gen_model = Model(inputs=[input_layer], outputs=[a])
return gen_model
def build_discriminator():
dis_input_shape = (64, 64, 64, 1)
dis_filters = [64, 128, 256, 512, 1]
dis_kernel_sizes = [4, 4, 4, 4, 4]
dis_strides = [2, 2, 2, 2, 1]
dis_paddings = ['same', 'same', 'same', 'same', 'valid']
dis_alphas = [0.2, 0.2, 0.2, 0.2, 0.2]
dis_activations = ['leaky_relu', 'leaky_relu', 'leaky_relu',
'leaky_relu', 'sigmoid']
dis_convolutional_blocks = 5
dis_input_layer = Input(shape=dis_input_shape)
a = Conv3D(filters=dis_filters[0],
kernel_size=dis_kernel_sizes[0],
strides=dis_strides[0],
padding=dis_paddings[0])(dis_input_layer)
a = LeakyReLU(dis_alphas[0])(a)
for i in range(dis_convolutional_blocks - 1):
a = Conv3D(filters=dis_filters[i + 1],
kernel_size=dis_kernel_sizes[i + 1],
strides=dis_strides[i + 1],
padding=dis_paddings[i + 1])(a)
a = BatchNormalization()(a, training=True)
if dis_activations[i + 1] == 'leaky_relu':
a = LeakyReLU(dis_alphas[i + 1])(a)
elif dis_activations[i + 1] == 'sigmoid':
a = Activation(activation='sigmoid')(a)
dis_model = Model(inputs=[dis_input_layer], outputs=[a])
return dis_model
def write_log(callback, name, value, batch_no):
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value
summary_value.tag = name
callback.writer.add_summary(summary, batch_no)
callback.writer.flush()
def get3DImages(data_dir):
all_files = np.random.choice(glob.glob(data_dir), size=10)
all_volumes = np.asarray([getVoxelsFromMat(f) for f in all_files], dtype=np.bool)
return all_volumes
def getVoxelsFromMat(path, cube_len=64):
voxels = io.loadmat(path)['instance']
voxels = np.pad(voxels, (1, 1), 'constant', constant_values=(0, 0))
if cube_len != 32 and cube_len == 64:
voxels = nd.zoom(voxels, (2, 2, 2), mode='constant', order=0)
return voxels
def saveFromVoxels(voxels, path):
z, x, y = voxels.nonzero()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, -z, zdir='z', c='red')
plt.savefig(path)
|
MIT License
|
juju/charm-helpers
|
charmhelpers/contrib/charmsupport/nrpe.py
|
remove_deprecated_check
|
python
|
def remove_deprecated_check(nrpe, deprecated_services):
for dep_svc in deprecated_services:
log('Deprecated service: {}'.format(dep_svc))
nrpe.remove_check(shortname=dep_svc)
|
Remove checks for deprecated services in list
:param nrpe: NRPE object to remove check from
:type nrpe: NRPE
:param deprecated_services: List of deprecated services that are removed
:type deprecated_services: list
|
https://github.com/juju/charm-helpers/blob/25b740578385d15b38f11bed8e4b6e732bdfb7c6/charmhelpers/contrib/charmsupport/nrpe.py#L511-L522
|
import glob
import grp
import os
import pwd
import re
import shlex
import shutil
import subprocess
import yaml
from charmhelpers.core.hookenv import (
config,
hook_name,
local_unit,
log,
relation_get,
relation_ids,
relation_set,
relations_of_type,
)
from charmhelpers.core.host import service
from charmhelpers.core import host
class CheckException(Exception):
pass
class Check(object):
shortname_re = '[A-Za-z0-9-_.@]+$'
service_template = ("""
#---------------------------------------------------
# This file is Juju managed
#---------------------------------------------------
define service {{
use active-service
host_name {nagios_hostname}
service_description {nagios_hostname}[{shortname}] """
"""{description}
check_command check_nrpe!{command}
servicegroups {nagios_servicegroup}
{service_config_overrides}
}}
""")
def __init__(self, shortname, description, check_cmd, max_check_attempts=None):
super(Check, self).__init__()
if not re.match(self.shortname_re, shortname):
raise CheckException("shortname must match {}".format(
Check.shortname_re))
self.shortname = shortname
self.command = "check_{}".format(shortname)
self.description = description
self.check_cmd = self._locate_cmd(check_cmd)
self.max_check_attempts = max_check_attempts
def _get_check_filename(self):
return os.path.join(NRPE.nrpe_confdir, '{}.cfg'.format(self.command))
def _get_service_filename(self, hostname):
return os.path.join(NRPE.nagios_exportdir,
'service__{}_{}.cfg'.format(hostname, self.command))
def _locate_cmd(self, check_cmd):
search_path = (
'/usr/lib/nagios/plugins',
'/usr/local/lib/nagios/plugins',
)
parts = shlex.split(check_cmd)
for path in search_path:
if os.path.exists(os.path.join(path, parts[0])):
command = os.path.join(path, parts[0])
if len(parts) > 1:
command += " " + " ".join(parts[1:])
return command
log('Check command not found: {}'.format(parts[0]))
return ''
def _remove_service_files(self):
if not os.path.exists(NRPE.nagios_exportdir):
return
for f in os.listdir(NRPE.nagios_exportdir):
if f.endswith('_{}.cfg'.format(self.command)):
os.remove(os.path.join(NRPE.nagios_exportdir, f))
def remove(self, hostname):
nrpe_check_file = self._get_check_filename()
if os.path.exists(nrpe_check_file):
os.remove(nrpe_check_file)
self._remove_service_files()
def write(self, nagios_context, hostname, nagios_servicegroups):
nrpe_check_file = self._get_check_filename()
with open(nrpe_check_file, 'w') as nrpe_check_config:
nrpe_check_config.write("# check {}\n".format(self.shortname))
if nagios_servicegroups:
nrpe_check_config.write(
"# The following header was added automatically by juju\n")
nrpe_check_config.write(
"# Modifying it will affect nagios monitoring and alerting\n")
nrpe_check_config.write(
"# servicegroups: {}\n".format(nagios_servicegroups))
nrpe_check_config.write("command[{}]={}\n".format(
self.command, self.check_cmd))
if not os.path.exists(NRPE.nagios_exportdir):
log('Not writing service config as {} is not accessible'.format(
NRPE.nagios_exportdir))
else:
self.write_service_config(nagios_context, hostname,
nagios_servicegroups)
def write_service_config(self, nagios_context, hostname,
nagios_servicegroups):
self._remove_service_files()
if self.max_check_attempts:
service_config_overrides = ' max_check_attempts {}'.format(
self.max_check_attempts
)
else:
service_config_overrides = ''
templ_vars = {
'nagios_hostname': hostname,
'nagios_servicegroup': nagios_servicegroups,
'description': self.description,
'shortname': self.shortname,
'command': self.command,
'service_config_overrides': service_config_overrides,
}
nrpe_service_text = Check.service_template.format(**templ_vars)
nrpe_service_file = self._get_service_filename(hostname)
with open(nrpe_service_file, 'w') as nrpe_service_config:
nrpe_service_config.write(str(nrpe_service_text))
def run(self):
subprocess.call(self.check_cmd)
class NRPE(object):
nagios_logdir = '/var/log/nagios'
nagios_exportdir = '/var/lib/nagios/export'
nrpe_confdir = '/etc/nagios/nrpe.d'
homedir = '/var/lib/nagios'
def __init__(self, hostname=None, primary=True):
super(NRPE, self).__init__()
self.config = config()
self.primary = primary
self.nagios_context = self.config['nagios_context']
if 'nagios_servicegroups' in self.config and self.config['nagios_servicegroups']:
self.nagios_servicegroups = self.config['nagios_servicegroups']
else:
self.nagios_servicegroups = self.nagios_context
self.unit_name = local_unit().replace('/', '-')
if hostname:
self.hostname = hostname
else:
nagios_hostname = get_nagios_hostname()
if nagios_hostname:
self.hostname = nagios_hostname
else:
self.hostname = "{}-{}".format(self.nagios_context, self.unit_name)
self.checks = []
relation = relation_ids('nrpe-external-master')
if relation:
log("Setting charm primary status {}".format(primary))
for rid in relation:
relation_set(relation_id=rid, relation_settings={'primary': self.primary})
self.remove_check_queue = set()
@classmethod
def does_nrpe_conf_dir_exist(cls):
return os.path.isdir(cls.nrpe_confdir)
def add_check(self, *args, **kwargs):
shortname = None
if kwargs.get('shortname') is None:
if len(args) > 0:
shortname = args[0]
else:
shortname = kwargs['shortname']
self.checks.append(Check(*args, **kwargs))
try:
self.remove_check_queue.remove(shortname)
except KeyError:
pass
def remove_check(self, *args, **kwargs):
if kwargs.get('shortname') is None:
raise ValueError('shortname of check must be specified')
if kwargs.get('check_cmd') is None:
kwargs['check_cmd'] = 'check_disk'
if kwargs.get('description') is None:
kwargs['description'] = ''
check = Check(*args, **kwargs)
check.remove(self.hostname)
self.remove_check_queue.add(kwargs['shortname'])
def write(self):
try:
nagios_uid = pwd.getpwnam('nagios').pw_uid
nagios_gid = grp.getgrnam('nagios').gr_gid
except Exception:
log("Nagios user not set up, nrpe checks not updated")
return
if not os.path.exists(NRPE.nagios_logdir):
os.mkdir(NRPE.nagios_logdir)
os.chown(NRPE.nagios_logdir, nagios_uid, nagios_gid)
nrpe_monitors = {}
monitors = {"monitors": {"remote": {"nrpe": nrpe_monitors}}}
if not self.does_nrpe_conf_dir_exist():
return
for nrpecheck in self.checks:
nrpecheck.write(self.nagios_context, self.hostname,
self.nagios_servicegroups)
nrpe_monitors[nrpecheck.shortname] = {
"command": nrpecheck.command,
}
if nrpecheck.max_check_attempts is not None:
nrpe_monitors[nrpecheck.shortname]['max_check_attempts'] = nrpecheck.max_check_attempts
if not hook_name() == 'update-status':
service('restart', 'nagios-nrpe-server')
monitor_ids = relation_ids("local-monitors") + relation_ids("nrpe-external-master")
for rid in monitor_ids:
reldata = relation_get(unit=local_unit(), rid=rid)
if 'monitors' in reldata:
old_monitors = yaml.safe_load(reldata['monitors'])
old_nrpe_monitors = old_monitors['monitors']['remote']['nrpe']
old_nrpe_monitors = {k: v for k, v in old_nrpe_monitors.items()
if k not in self.remove_check_queue}
old_nrpe_monitors.update(nrpe_monitors)
old_monitors['monitors']['remote']['nrpe'] = old_nrpe_monitors
relation_set(relation_id=rid, monitors=yaml.dump(old_monitors))
else:
relation_set(relation_id=rid, monitors=yaml.dump(monitors))
self.remove_check_queue.clear()
def get_nagios_hostcontext(relation_name='nrpe-external-master'):
for rel in relations_of_type(relation_name):
if 'nagios_host_context' in rel:
return rel['nagios_host_context']
def get_nagios_hostname(relation_name='nrpe-external-master'):
for rel in relations_of_type(relation_name):
if 'nagios_hostname' in rel:
return rel['nagios_hostname']
def get_nagios_unit_name(relation_name='nrpe-external-master'):
host_context = get_nagios_hostcontext(relation_name)
if host_context:
unit = "%s:%s" % (host_context, local_unit())
else:
unit = local_unit()
return unit
def add_init_service_checks(nrpe, services, unit_name, immediate_check=True):
for svc in services:
if svc in ['ext-port', 'os-charm-phy-nic-mtu']:
next
upstart_init = '/etc/init/%s.conf' % svc
sysv_init = '/etc/init.d/%s' % svc
if host.init_is_systemd(service_name=svc):
nrpe.add_check(
shortname=svc,
description='process check {%s}' % unit_name,
check_cmd='check_systemd.py %s' % svc
)
elif os.path.exists(upstart_init):
nrpe.add_check(
shortname=svc,
description='process check {%s}' % unit_name,
check_cmd='check_upstart_job %s' % svc
)
elif os.path.exists(sysv_init):
cronpath = '/etc/cron.d/nagios-service-check-%s' % svc
checkpath = '%s/service-check-%s.txt' % (nrpe.homedir, svc)
croncmd = (
'/usr/local/lib/nagios/plugins/check_exit_status.pl '
'-e -s /etc/init.d/%s status' % svc
)
cron_file = '*/5 * * * * root %s > %s\n' % (croncmd, checkpath)
f = open(cronpath, 'w')
f.write(cron_file)
f.close()
nrpe.add_check(
shortname=svc,
description='service check {%s}' % unit_name,
check_cmd='check_status_file.py -f %s' % checkpath,
)
if immediate_check and os.path.isdir(nrpe.homedir):
f = open(checkpath, 'w')
subprocess.call(
croncmd.split(),
stdout=f,
stderr=subprocess.STDOUT
)
f.close()
os.chmod(checkpath, 0o644)
def copy_nrpe_checks(nrpe_files_dir=None):
NAGIOS_PLUGINS = '/usr/local/lib/nagios/plugins'
if nrpe_files_dir is None:
for segment in ['.', 'hooks']:
nrpe_files_dir = os.path.abspath(os.path.join(
os.getenv('CHARM_DIR'),
segment,
'charmhelpers',
'contrib',
'openstack',
'files'))
if os.path.isdir(nrpe_files_dir):
break
else:
raise RuntimeError("Couldn't find charmhelpers directory")
if not os.path.exists(NAGIOS_PLUGINS):
os.makedirs(NAGIOS_PLUGINS)
for fname in glob.glob(os.path.join(nrpe_files_dir, "check_*")):
if os.path.isfile(fname):
shutil.copy2(fname,
os.path.join(NAGIOS_PLUGINS, os.path.basename(fname)))
def add_haproxy_checks(nrpe, unit_name):
nrpe.add_check(
shortname='haproxy_servers',
description='Check HAProxy {%s}' % unit_name,
check_cmd='check_haproxy.sh')
nrpe.add_check(
shortname='haproxy_queue',
description='Check HAProxy queue depth {%s}' % unit_name,
check_cmd='check_haproxy_queue_depth.sh')
|
Apache License 2.0
|
sunblaze-ucb/rl-generalization
|
examples/ppo2_baselines/train.py
|
train
|
python
|
def train(
env_id,
total_episodes,
seed,
ncpu,
policy,
lr,
nsteps,
nminibatches,
):
from baselines.common import set_global_seeds
from baselines.common.vec_env.vec_normalize import VecNormalize
import gym
import tensorflow as tf
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=ncpu,
inter_op_parallelism_threads=ncpu)
tf.Session(config=config).__enter__()
if ncpu == 1:
def make_env():
env = base.make_env(env_id, outdir=logger.get_dir())
env.seed(seed)
env = bench.Monitor(env, logger.get_dir())
return env
env = DummyVecEnv([make_env])
else:
def make_env(rank):
def _thunk():
env = base.make_env(env_id, process_idx=rank, outdir=logger.get_dir())
env.seed(seed + rank)
if logger.get_dir():
env = bench.Monitor(env, os.path.join(logger.get_dir(), 'train-{}.monitor.json'.format(rank)))
return env
return _thunk
env = SubprocVecEnv([make_env(i) for i in range(ncpu)])
env = VecNormalize(env)
'''
# Set inside set_global_seeds:
import numpy as np; import random
np.random.seed(seed)
random.seed(seed)
tf.set_random_seed(seed)
# Other possible RNGs (don't seem to matter):
gym.utils.seeding.np_random(seed)
from gym import spaces
spaces.prng.seed(seed)
'''
set_global_seeds(seed)
" Note that currently the architecture is fixed for each type of policy regardless of environment "
if policy=='mlp':
policy_fn = base.mlp_policy
elif policy=='lstm':
policy_fn = base.lstm_policy
else:
raise NotImplementedError
if 'Breakout' in env_id or 'SpaceInvaders' in env_id:
raise NotImplementedError
else:
ppo2_episodes.learn(
save_interval=10,
policy=policy_fn,
env=env,
nsteps=nsteps,
nminibatches=nminibatches,
lam=0.95,
gamma=0.99,
noptepochs=10,
log_interval=1,
ent_coef=0.0,
lr=lr,
cliprange=0.2,
total_episodes=total_episodes,
)
|
# Set inside set_global_seeds:
import numpy as np; import random
np.random.seed(seed)
random.seed(seed)
tf.set_random_seed(seed)
# Other possible RNGs (don't seem to matter):
gym.utils.seeding.np_random(seed)
from gym import spaces
spaces.prng.seed(seed)
|
https://github.com/sunblaze-ucb/rl-generalization/blob/5e05aa108aeadd4cf21f45d56128e9da3bddc14c/examples/ppo2_baselines/train.py#L15-L116
|
import argparse
import os
import random
from baselines.common.cmd_util import mujoco_arg_parser
from baselines import bench, logger
from gym.utils.seeding import create_seed
from . import base
from . import ppo2_episodes
import sunblaze_envs
|
MIT License
|
wildmeorg/wildbook-ia
|
wbia/init/sysres.py
|
get_args_dbdir
|
python
|
def get_args_dbdir(defaultdb=None, allow_newdir=False, db=None, dbdir=None):
if not ut.QUIET and ut.VERBOSE:
logger.info('[sysres] get_args_dbdir: parsing commandline for dbdir')
logger.info('[sysres] defaultdb=%r, allow_newdir=%r' % (defaultdb, allow_newdir))
logger.info('[sysres] db=%r, dbdir=%r' % (db, dbdir))
def prioritize(dbdir_, db_):
invalid = ['', ' ', '.', 'None']
if dbdir_ in invalid:
dbdir_ = None
if db_ in invalid:
db_ = None
if dbdir_ is not None:
return realpath(dbdir_)
if db_ is not None:
return db_to_dbdir(db_, allow_newdir=allow_newdir)
return None
dbdir = prioritize(dbdir, db)
if dbdir is not None:
return dbdir
dbdir_arg = ut.get_argval('--dbdir', default=None)
db_arg = ut.get_argval('--db', default=None)
dbdir = prioritize(dbdir_arg, db_arg)
if dbdir is not None:
return dbdir
if defaultdb is None:
raise ValueError('Must specify at least db, dbdir, or defaultdb')
elif defaultdb == 'cache':
return get_default_dbdir()
else:
return db_to_dbdir(defaultdb, allow_newdir=allow_newdir)
|
r"""
Machinery for finding a database directory using the following priorities.
The function first defaults to the specified function arguments. If those
are not specified, then command line arguments are used. In all other
circumstances the defaultdb is used. If defaultdb='cache' then the most
recently used database directory is returned.
Args:
defaultdb (None): database return if none other is specified
allow_newdir (bool): raises error if True and directory not found
db (None): specification using workdir priority
dbdir (None): specification using normal directory priority
cache_priority (bool): (default = False)
Returns:
str: dbdir
CommandLine:
python -m wbia.init.sysres get_args_dbdir
Example:
>>> # ENABLE_DOCTEST
>>> from wbia.init.sysres import * # NOQA
>>> dir1 = get_args_dbdir(None, False, 'testdb1', None)
>>> print('dir1 = %r' % (dir1,))
>>> dir2 = get_args_dbdir(None, False, dir1, None)
>>> print('dir2 = %r' % (dir2,))
>>> ut.assert_raises(ValueError, get_args_dbdir)
>>> print('dir3 = %r' % (dir2,))
|
https://github.com/wildmeorg/wildbook-ia/blob/017057cfd3a2a7ea22f575842c9473e121c66ea4/wbia/init/sysres.py#L303-L372
|
import logging
import os
from functools import lru_cache
from os.path import exists, join, realpath
from pathlib import Path
import utool as ut
import ubelt as ub
from wbia import constants as const
from wbia.dtool.copy_sqlite_to_postgres import copy_sqlite_to_postgres
(print, rrr, profile) = ut.inject2(__name__)
logger = logging.getLogger('wbia')
WORKDIR_CACHEID = 'work_directory_cache_id'
DEFAULTDB_CAHCEID = 'cached_dbdir'
LOGDIR_CACHEID = ut.logdir_cacheid
__APPNAME__ = 'wbia'
ALLOW_GUI = ut.WIN32 or os.environ.get('DISPLAY', None) is not None
def get_wbia_resource_dir():
return ub.ensure_app_cache_dir('wbia')
def _wbia_cache_dump():
ut.global_cache_dump(appname=__APPNAME__)
def _wbia_cache_write(key, val):
logger.info('[sysres] set %s=%r' % (key, val))
ut.global_cache_write(key, val, appname=__APPNAME__)
def _wbia_cache_read(key, **kwargs):
return ut.global_cache_read(key, appname=__APPNAME__, **kwargs)
def get_wbia_db_uri(db_dir: str = None):
return ut.get_argval('--db-uri', default=None)
def set_default_dbdir(dbdir):
if ut.DEBUG2:
logger.info('[sysres] SETTING DEFAULT DBDIR: %r' % dbdir)
_wbia_cache_write(DEFAULTDB_CAHCEID, dbdir)
def get_default_dbdir():
dbdir = _wbia_cache_read(DEFAULTDB_CAHCEID, default=None)
if ut.DEBUG2:
logger.info('[sysres] READING DEFAULT DBDIR: %r' % dbdir)
return dbdir
def get_workdir(allow_gui=True):
work_dir = _wbia_cache_read(WORKDIR_CACHEID, default='.')
logger.info('[wbia.sysres.get_workdir] work_dir = {!r}'.format(work_dir))
if work_dir != '.' and exists(work_dir):
return work_dir
if allow_gui:
work_dir = set_workdir()
return get_workdir(allow_gui=False)
return None
def set_workdir(work_dir=None, allow_gui=ALLOW_GUI):
if work_dir is None:
if allow_gui:
try:
work_dir = guiselect_workdir()
except ImportError:
allow_gui = False
if not allow_gui:
work_dir = ut.truepath(input('specify a workdir: '))
if work_dir is None or not exists(work_dir):
raise AssertionError('invalid workdir=%r' % work_dir)
_wbia_cache_write(WORKDIR_CACHEID, work_dir)
def set_logdir(log_dir):
from os.path import realpath, expanduser
log_dir = realpath(expanduser(log_dir))
ut.ensuredir(log_dir, verbose=True)
ut.stop_logging()
_wbia_cache_write(LOGDIR_CACHEID, log_dir)
ut.start_logging(appname=__APPNAME__)
def get_logdir_global():
return _wbia_cache_read(LOGDIR_CACHEID, default=ut.get_logging_dir(appname='wbia'))
def get_rawdir():
workdir = get_workdir()
rawdir = ut.truepath(join(workdir, '../raw'))
return rawdir
def guiselect_workdir():
from wbia import guitool
guitool.ensure_qtapp()
work_dir = guitool.select_directory('Select a work directory')
if not exists(work_dir):
try_again = guitool.user_option(
paremt=None,
msg='Directory %r does not exist.' % work_dir,
title='get work dir failed',
options=['Try Again'],
use_cache=False,
)
if try_again == 'Try Again':
return guiselect_workdir()
return work_dir
def get_dbalias_dict():
dbalias_dict = {}
if ut.is_developer():
dbalias_dict.update(
{
'NAUTS': 'NAUT_Dan',
'WD': 'WD_Siva',
'LF': 'LF_all',
'GZ': 'GZ_ALL',
'MOTHERS': 'PZ_MOTHERS',
'FROGS': 'Frogs',
'TOADS': 'WY_Toads',
'SEALS_SPOTTED': 'Seals',
'OXFORD': 'Oxford_Buildings',
'PARIS': 'Paris_Buildings',
'JAG_KELLY': 'JAG_Kelly',
'JAG_KIERYN': 'JAG_Kieryn',
'WILDEBEAST': 'Wildebeast',
'WDOGS': 'WD_Siva',
'PZ': 'PZ_FlankHack',
'PZ2': 'PZ-Sweatwater',
'PZ_MARIANNE': 'PZ_Marianne',
'PZ_DANEXT_TEST': 'PZ_DanExt_Test',
'PZ_DANEXT_ALL': 'PZ_DanExt_All',
'LF_ALL': 'LF_all',
'WS_HARD': 'WS_hard',
'SONOGRAMS': 'sonograms',
}
)
dbalias_dict['JAG'] = dbalias_dict['JAG_KELLY']
return dbalias_dict
def delete_dbdir(dbname):
ut.delete(join(get_workdir(), dbname), ignore_errors=False)
def db_to_dbdir(db, allow_newdir=False, extra_workdirs=[]):
if ut.VERBOSE:
logger.info('[sysres] db_to_dbdir: db=%r, allow_newdir=%r' % (db, allow_newdir))
if db is None:
raise ValueError('db is None')
work_dir = get_workdir()
dbalias_dict = get_dbalias_dict()
workdir_list = []
for extra_dir in extra_workdirs:
if exists(extra_dir):
workdir_list.append(extra_dir)
workdir_list.append(work_dir)
for _dir in workdir_list:
dbdir = realpath(join(_dir, db))
if not exists(dbdir) and db.upper() in dbalias_dict:
dbdir = join(_dir, dbalias_dict[db.upper()])
if exists(dbdir):
break
if allow_newdir:
ut.ensuredir(dbdir, verbose=True)
if not exists(dbdir):
logger.info('!!!')
logger.info('[sysres] WARNING: db=%r not found in work_dir=%r' % (db, work_dir))
fname_list = os.listdir(work_dir)
lower_list = [fname.lower() for fname in fname_list]
index = ut.listfind(lower_list, db.lower())
if index is not None:
logger.info('[sysres] WARNING: db capitalization seems to be off')
if not ut.STRICT:
logger.info('[sysres] attempting to fix it')
db = fname_list[index]
dbdir = join(work_dir, db)
logger.info('[sysres] dbdir=%r' % dbdir)
logger.info('[sysres] db=%r' % db)
if not exists(dbdir):
msg = '[sysres!] ERROR: Database does not exist and allow_newdir=False'
logger.info('<!!!>')
logger.info(msg)
logger.info(
'[sysres!] Here is a list of valid dbs: '
+ ut.indentjoin(sorted(fname_list), '\n * ')
)
logger.info('[sysres!] dbdir=%r' % dbdir)
logger.info('[sysres!] db=%r' % db)
logger.info('[sysres!] work_dir=%r' % work_dir)
logger.info('</!!!>')
raise AssertionError(msg)
logger.info('!!!')
return dbdir
|
Apache License 2.0
|
hrnet/hrformer
|
pose/mmpose/utils/logger.py
|
get_root_logger
|
python
|
def get_root_logger(log_file=None, log_level=logging.INFO):
return get_logger(__name__.split('.')[0], log_file, log_level)
|
Use `get_logger` method in mmcv to get the root logger.
The logger will be initialized if it has not been initialized. By default a
StreamHandler will be added. If `log_file` is specified, a FileHandler will
also be added. The name of the root logger is the top-level package name,
e.g., "mmpose".
Args:
log_file (str | None): The log filename. If specified, a FileHandler
will be added to the root logger.
log_level (int): The root logger level. Note that only the process of
rank 0 is affected, while other processes will set the level to
"Error" and be silent most of the time.
Returns:
logging.Logger: The root logger.
|
https://github.com/hrnet/hrformer/blob/94aaf06d02ab0bd05575c85803439dc13941de5a/pose/mmpose/utils/logger.py#L6-L24
|
import logging
from mmcv.utils import get_logger
|
MIT License
|
apache/allura
|
Allura/allura/model/artifact.py
|
Artifact.type_name
|
python
|
def type_name(self):
return self.type_s.lower()
|
:return: a presentation name for this type of artifact
:rtype: str
|
https://github.com/apache/allura/blob/04f14f15a9a9364e18c61f68acdaa241a470186b/Allura/allura/model/artifact.py#L347-L352
|
from __future__ import unicode_literals
from __future__ import absolute_import
import logging
from collections import defaultdict
from datetime import datetime
import typing
import pymongo
from tg import tmpl_context as c, app_globals as g
from tg import request
from ming import schema as S
from ming.orm import state, session
from ming.orm import FieldProperty, ForeignIdProperty, RelationProperty
from ming.orm.declarative import MappedClass
from ming.utils import LazyProperty
import feedgenerator as FG
from allura.lib import helpers as h
from allura.lib import security
from allura.lib import utils
from allura.lib import plugin
from allura.lib import exceptions as forge_exc
from allura.lib.decorators import memoize
from allura.lib.search import SearchIndexable
from .session import main_orm_session
from .session import project_orm_session
from .session import artifact_orm_session
from .index import ArtifactReference
from .types import ACL, MarkdownCache
from .project import AppConfig
from .notification import MailFooter
from .filesystem import File
import six
if typing.TYPE_CHECKING:
from ming.odm.mapper import Query
log = logging.getLogger(__name__)
class Artifact(MappedClass, SearchIndexable):
class __mongometa__:
session = artifact_orm_session
name = str('artifact')
indexes = [
('app_config_id', 'labels'),
]
def before_save(data):
_session = artifact_orm_session._get()
skip_mod_date = getattr(_session, 'skip_mod_date', False)
skip_last_updated = getattr(_session, 'skip_last_updated', False)
if not skip_mod_date:
data['mod_date'] = datetime.utcnow()
else:
log.debug('Not updating mod_date')
if c.project and not skip_last_updated:
c.project.last_updated = datetime.utcnow()
query: 'Query[Artifact]'
type_s = 'Generic Artifact'
_id = FieldProperty(S.ObjectId)
mod_date = FieldProperty(datetime, if_missing=datetime.utcnow)
app_config_id = ForeignIdProperty(
'AppConfig', if_missing=lambda: c.app.config._id)
plugin_verson = FieldProperty(S.Deprecated)
tool_version = FieldProperty(S.Deprecated)
acl = FieldProperty(ACL)
tags = FieldProperty(S.Deprecated)
labels = FieldProperty([str])
references = FieldProperty(S.Deprecated)
backreferences = FieldProperty(S.Deprecated)
app_config = RelationProperty('AppConfig')
import_id = FieldProperty(None, if_missing=None)
deleted = FieldProperty(bool, if_missing=False)
def __json__(self, posts_limit=None, is_export=False, user=None):
return dict(
_id=str(self._id),
mod_date=self.mod_date,
labels=list(self.labels),
related_artifacts=[a.url() for a in self.related_artifacts(user=user or c.user)],
discussion_thread=self.discussion_thread.__json__(limit=posts_limit, is_export=is_export),
discussion_thread_url=h.absurl('/rest%s' %
self.discussion_thread.url()),
)
def parent_security_context(self):
return self.app_config
@classmethod
def attachment_class(cls):
raise NotImplementedError('attachment_class')
@LazyProperty
def ref(self):
return ArtifactReference.from_artifact(self)
@LazyProperty
def refs(self):
return self.ref.references
@LazyProperty
def backrefs(self):
q = ArtifactReference.query.find(dict(references=self.index_id()))
return [aref._id for aref in q]
def related_artifacts(self, user=None):
related_artifacts = []
for ref_id in self.refs + self.backrefs:
ref = ArtifactReference.query.get(_id=ref_id)
if ref is None:
continue
artifact = ref.artifact
if artifact is None:
continue
artifact = artifact.primary()
if artifact is None:
continue
if hasattr(artifact, 'app_config') and artifact.app_config is None:
continue
try:
if user and not h.has_access(artifact, 'read', user):
continue
except Exception:
log.debug('Error doing permission check on related artifacts of {}, '
'probably because the "artifact" is a Commit not a real artifact'.format(self.index_id()),
exc_info=True)
if artifact.type_s == 'Commit' and not artifact.repo:
ac = AppConfig.query.get(_id=ref.artifact_reference['app_config_id'])
app = ac.project.app_instance(ac) if ac else None
if app:
artifact.set_context(app.repo)
if artifact not in related_artifacts and (getattr(artifact, 'deleted', False) is False):
related_artifacts.append(artifact)
return sorted(related_artifacts, key=lambda a: a.url())
def subscribe(self, user=None, topic=None, type='direct', n=1, unit='day'):
from allura.model import Mailbox
if user is None:
user = c.user
return Mailbox.subscribe(
user_id=user._id,
project_id=self.app_config.project_id,
app_config_id=self.app_config._id,
artifact=self, topic=topic,
type=type, n=n, unit=unit)
def unsubscribe(self, user=None):
from allura.model import Mailbox
if user is None:
user = c.user
Mailbox.unsubscribe(
user_id=user._id,
project_id=self.app_config.project_id,
app_config_id=self.app_config._id,
artifact_index_id=self.index_id())
@memoize
def subscribed(self, user=None, include_parents=True):
from allura.model import Mailbox
if user is None:
user = c.user
user_proj_app_q = dict(user_id=user._id,
project_id=self.app_config.project_id,
app_config_id=self.app_config._id)
art_subscribed = Mailbox.subscribed(artifact=self, **user_proj_app_q)
if art_subscribed:
return True
if include_parents:
tool_subscribed = Mailbox.subscribed(**user_proj_app_q)
if tool_subscribed:
return True
return False
def primary(self):
return self
@classmethod
def artifacts_labeled_with(cls, label, app_config):
return cls.query.find({'labels': label, 'app_config_id': app_config._id})
def email_link(self, subject='artifact'):
if subject:
return 'mailto:%s?subject=[%s:%s:%s] Re: %s' % (
self.email_address,
self.app_config.project.shortname,
self.app_config.options.mount_point,
self.shorthand_id(),
subject)
else:
return 'mailto:%s' % self.email_address
@property
def email_domain(self):
url = self.app.url[1:-1].split('/')
return '.'.join(reversed(url)).replace('_', '-')
@property
def project(self):
return getattr(self.app_config, 'project', None)
@property
def project_id(self):
return self.app_config.project_id
@LazyProperty
def app(self):
if not self.app_config:
return None
if getattr(c, 'app', None) and c.app.config._id == self.app_config._id:
return c.app
else:
return self.app_config.load()(self.project, self.app_config)
def index(self):
project = self.project
return dict(
id=self.index_id(),
mod_date_dt=self.mod_date,
title='Artifact %s' % self._id,
project_id_s=str(project._id),
project_name_t=project.name,
project_shortname_t=project.shortname,
tool_name_s=self.app_config.tool_name,
mount_point_s=self.app_config.options.mount_point,
is_history_b=False,
url_s=self.url(),
type_s=self.type_s,
labels_t=' '.join(l for l in self.labels),
snippet_s='',
deleted_b=self.deleted)
@property
|
Apache License 2.0
|
purestorage-openconnect/py-pure-client
|
pypureclient/flasharray/FA_2_5/models/directory_performance.py
|
DirectoryPerformance.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, DirectoryPerformance):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_5/models/directory_performance.py#L213-L218
|
import pprint
import re
import six
import typing
from ....properties import Property
if typing.TYPE_CHECKING:
from pypureclient.flasharray.FA_2_5 import models
class DirectoryPerformance(object):
swagger_types = {
'id': 'str',
'name': 'str',
'bytes_per_op': 'int',
'bytes_per_read': 'int',
'bytes_per_write': 'int',
'others_per_sec': 'int',
'read_bytes_per_sec': 'int',
'reads_per_sec': 'int',
'time': 'int',
'usec_per_other_op': 'int',
'usec_per_read_op': 'int',
'usec_per_write_op': 'int',
'write_bytes_per_sec': 'int',
'writes_per_sec': 'int'
}
attribute_map = {
'id': 'id',
'name': 'name',
'bytes_per_op': 'bytes_per_op',
'bytes_per_read': 'bytes_per_read',
'bytes_per_write': 'bytes_per_write',
'others_per_sec': 'others_per_sec',
'read_bytes_per_sec': 'read_bytes_per_sec',
'reads_per_sec': 'reads_per_sec',
'time': 'time',
'usec_per_other_op': 'usec_per_other_op',
'usec_per_read_op': 'usec_per_read_op',
'usec_per_write_op': 'usec_per_write_op',
'write_bytes_per_sec': 'write_bytes_per_sec',
'writes_per_sec': 'writes_per_sec'
}
required_args = {
}
def __init__(
self,
id=None,
name=None,
bytes_per_op=None,
bytes_per_read=None,
bytes_per_write=None,
others_per_sec=None,
read_bytes_per_sec=None,
reads_per_sec=None,
time=None,
usec_per_other_op=None,
usec_per_read_op=None,
usec_per_write_op=None,
write_bytes_per_sec=None,
writes_per_sec=None,
):
if id is not None:
self.id = id
if name is not None:
self.name = name
if bytes_per_op is not None:
self.bytes_per_op = bytes_per_op
if bytes_per_read is not None:
self.bytes_per_read = bytes_per_read
if bytes_per_write is not None:
self.bytes_per_write = bytes_per_write
if others_per_sec is not None:
self.others_per_sec = others_per_sec
if read_bytes_per_sec is not None:
self.read_bytes_per_sec = read_bytes_per_sec
if reads_per_sec is not None:
self.reads_per_sec = reads_per_sec
if time is not None:
self.time = time
if usec_per_other_op is not None:
self.usec_per_other_op = usec_per_other_op
if usec_per_read_op is not None:
self.usec_per_read_op = usec_per_read_op
if usec_per_write_op is not None:
self.usec_per_write_op = usec_per_write_op
if write_bytes_per_sec is not None:
self.write_bytes_per_sec = write_bytes_per_sec
if writes_per_sec is not None:
self.writes_per_sec = writes_per_sec
def __setattr__(self, key, value):
if key not in self.attribute_map:
raise KeyError("Invalid key `{}` for `DirectoryPerformance`".format(key))
if key == "bytes_per_op" and value is not None:
if value < 0:
raise ValueError("Invalid value for `bytes_per_op`, must be a value greater than or equal to `0`")
if key == "bytes_per_read" and value is not None:
if value < 0:
raise ValueError("Invalid value for `bytes_per_read`, must be a value greater than or equal to `0`")
if key == "bytes_per_write" and value is not None:
if value < 0:
raise ValueError("Invalid value for `bytes_per_write`, must be a value greater than or equal to `0`")
if key == "others_per_sec" and value is not None:
if value < 0:
raise ValueError("Invalid value for `others_per_sec`, must be a value greater than or equal to `0`")
if key == "read_bytes_per_sec" and value is not None:
if value < 0:
raise ValueError("Invalid value for `read_bytes_per_sec`, must be a value greater than or equal to `0`")
if key == "reads_per_sec" and value is not None:
if value < 0:
raise ValueError("Invalid value for `reads_per_sec`, must be a value greater than or equal to `0`")
if key == "usec_per_other_op" and value is not None:
if value < 0:
raise ValueError("Invalid value for `usec_per_other_op`, must be a value greater than or equal to `0`")
if key == "usec_per_read_op" and value is not None:
if value < 0:
raise ValueError("Invalid value for `usec_per_read_op`, must be a value greater than or equal to `0`")
if key == "usec_per_write_op" and value is not None:
if value < 0:
raise ValueError("Invalid value for `usec_per_write_op`, must be a value greater than or equal to `0`")
if key == "write_bytes_per_sec" and value is not None:
if value < 0:
raise ValueError("Invalid value for `write_bytes_per_sec`, must be a value greater than or equal to `0`")
if key == "writes_per_sec" and value is not None:
if value < 0:
raise ValueError("Invalid value for `writes_per_sec`, must be a value greater than or equal to `0`")
self.__dict__[key] = value
def __getattribute__(self, item):
value = object.__getattribute__(self, item)
if isinstance(value, Property):
raise AttributeError
else:
return value
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
if hasattr(self, attr):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(DirectoryPerformance, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
BSD 2-Clause Simplified License
|
sectorlabs/django-localized-fields
|
localized_fields/widgets.py
|
LocalizedFieldWidget.decompress
|
python
|
def decompress(self, value: LocalizedValue) -> List[str]:
result = []
for lang_code, _ in settings.LANGUAGES:
if value:
result.append(value.get(lang_code))
else:
result.append(None)
return result
|
Decompresses the specified value so it can be spread over the
internal widgets.
Arguments:
value:
The :see:LocalizedValue to display in this
widget.
Returns:
All values to display in the inner widgets.
|
https://github.com/sectorlabs/django-localized-fields/blob/f024e4feb50a3aac2cdfd965243f48dcf1628aa5/localized_fields/widgets.py#L32-L52
|
import copy
from typing import List
from django import forms
from django.conf import settings
from django.contrib.admin import widgets
from .value import LocalizedValue
class LocalizedFieldWidget(forms.MultiWidget):
template_name = "localized_fields/multiwidget.html"
widget = forms.Textarea
def __init__(self, *args, **kwargs):
initial_widgets = [copy.copy(self.widget) for _ in settings.LANGUAGES]
super().__init__(initial_widgets, *args, **kwargs)
for ((lang_code, lang_name), widget) in zip(
settings.LANGUAGES, self.widgets
):
widget.attrs["lang"] = lang_code
widget.lang_code = lang_code
widget.lang_name = lang_name
|
MIT License
|
martlgap/faceidlight
|
FaceIDLight/tools.py
|
FaceDetection.__stage1
|
python
|
def __stage1(self, image, scales: list, stage_status: StageStatus):
total_boxes = np.empty((0, 9))
status = stage_status
for scale in scales:
scaled_image = self.__scale_image(image, scale)
img_x = np.expand_dims(scaled_image, 0)
img_y = np.transpose(img_x, (0, 2, 1, 3))
out = tflite_inference(self.p_net, img_y)
out0 = np.transpose(out[0], (0, 2, 1, 3))
out1 = np.transpose(out[1], (0, 2, 1, 3))
boxes, _ = self.__generate_bounding_box(
out1[0, :, :, 1].copy(),
out0[0, :, :, :].copy(),
scale,
self._steps_threshold[0],
)
pick = self.__nms(boxes.copy(), 0.5, "Union")
if boxes.size > 0 and pick.size > 0:
boxes = boxes[pick, :]
total_boxes = np.append(total_boxes, boxes, axis=0)
numboxes = total_boxes.shape[0]
if numboxes > 0:
pick = self.__nms(total_boxes.copy(), 0.7, "Union")
total_boxes = total_boxes[pick, :]
regw = total_boxes[:, 2] - total_boxes[:, 0]
regh = total_boxes[:, 3] - total_boxes[:, 1]
qq1 = total_boxes[:, 0] + total_boxes[:, 5] * regw
qq2 = total_boxes[:, 1] + total_boxes[:, 6] * regh
qq3 = total_boxes[:, 2] + total_boxes[:, 7] * regw
qq4 = total_boxes[:, 3] + total_boxes[:, 8] * regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:, 4]]))
total_boxes = self.__rerec(total_boxes.copy())
total_boxes[:, 0:4] = np.fix(total_boxes[:, 0:4]).astype(np.int32)
status = StageStatus(
self.__pad(total_boxes.copy(), stage_status.width, stage_status.height),
width=stage_status.width,
height=stage_status.height,
)
return total_boxes, status
|
First stage of the MTCNN.
:param image:
:param scales:
:param stage_status:
:return:
|
https://github.com/martlgap/faceidlight/blob/3eed10a4cd65dc54509be71a298996beb61123ca/FaceIDLight/tools.py#L449-L508
|
import tflite_runtime.interpreter as tflite
import cv2
import numpy as np
import os
import glob
from skimage.transform import SimilarityTransform
from FaceIDLight.helper import get_file
from scipy.spatial import distance
from sklearn.metrics.pairwise import cosine_distances
BASE_URL = "https://github.com/Martlgap/FaceIDLight/releases/download/v.0.1/"
FILE_HASHES = {
"o_net": "768385d570300648b7b881acbd418146522b79b4771029bb2e684bdd8c764b9f",
"p_net": "530183192e24f7cc86b6706e1eb600482c4ed4306399ac939c472e3957bae15e",
"r_net": "5ec33b065eb2802bc4c2575d21feff1a56958d854785bc3e2907d3b7ace861a2",
"mobileNet": "6c19b789f661caa8da735566490bfd8895beffb2a1ec97a56b126f0539991aa6",
"resNet50": "f4d8b0194957a3ad766135505fc70a91343660151a8103bbb6c3b8ac34dbb4e2",
"sample_gallery": "9f43a83c89a8099e1f3aab75ed9531f932f1b392bea538d6afe52509587438d4",
}
class FaceID:
def __init__(self, gal_dir: str = None):
self.detector = FaceDetection()
self.recognizer = FaceRecognition()
self.gal_embs = []
self.gal_names = []
self.gal_faces = []
self.gal_dir = (
gal_dir
if gal_dir is not None
else get_file(BASE_URL + "sample_gallery.zip", FILE_HASHES["sample_gallery"], is_zip=True)
)
self.update_gallery()
def update_gallery(self):
files = glob.glob("{}/*.jpg".format(self.gal_dir)) + glob.glob("{}/*.png".format(self.gal_dir))
for file in files:
img = cv2.imread(file)
detections = self.detector.detect_faces(img)
if not detections:
continue
_, points, _ = detections[0]
self.gal_names.append(os.path.basename(file).split(".")[0])
face = self.detector.get_face(img, points)
self.gal_faces.append(
cv2.cvtColor(face.astype(np.float32) / 255, cv2.COLOR_BGR2RGB)
)
self.gal_embs = self.recognizer.get_emb(np.asarray(self.gal_faces))[0]
def recognize_faces(self, img):
detections = self.detector.detect_faces(img)
if not detections:
return []
faces = []
for detection in detections:
bbox, points, conf = detection
face = self.detector.get_face(img, points)
faces.append(cv2.cvtColor(face.astype(np.float32) / 255, cv2.COLOR_BGR2RGB))
embs = self.recognizer.get_emb(np.asarray(faces))[0]
ids = []
for i in range(embs.shape[0]):
pred, dist, conf = self.recognizer.identify(np.expand_dims(embs[i], axis=0), self.gal_embs, thresh=0.6)
ids.append(
[
self.gal_names[pred] if pred is not None else "Other",
cv2.cvtColor(self.gal_faces[pred] * 255, cv2.COLOR_RGB2BGR) if pred is not None else None,
dist,
conf,
]
)
faces_ = []
for face in faces:
faces_.append(cv2.cvtColor(face * 255, cv2.COLOR_RGB2BGR))
out = [i for i in zip(faces_, detections, ids)]
return out
def tflite_inference(model, img):
input_details = model.get_input_details()
output_details = model.get_output_details()
model.resize_tensor_input(input_details[0]["index"], img.shape)
model.allocate_tensors()
model.set_tensor(input_details[0]["index"], img.astype(np.float32))
model.invoke()
return [model.get_tensor(elem["index"]) for elem in output_details]
class FaceRecognition:
def __init__(
self,
model_path: str = None,
model_type: str = "mobileNet",
):
if model_path is None:
model_path = get_file(BASE_URL + model_type + ".tflite", FILE_HASHES[model_type])
self.face_recognizer = tflite.Interpreter(model_path=model_path)
def get_emb(self, img):
return tflite_inference(self.face_recognizer, img)
@staticmethod
def verify(emb1, emb2, thresh):
dist = distance.cosine(emb1, emb2)
prediction = thresh > np.squeeze(dist, axis=-1)
confidence = (
((thresh - dist) / thresh) / 2 + 0.5 if prediction else ((dist - thresh) / (1.4 - thresh)) / 2 + 0.5
)
return prediction, np.squeeze(dist, axis=-1), confidence
@staticmethod
def identify(emb_src, embs_gal, thresh=None):
dists = cosine_distances(emb_src, embs_gal)[0]
pred = np.argmin(dists)
if thresh and dists[pred] > thresh:
idx = np.argsort(dists)
conf = (dists[idx[0]] - thresh) / (1.4 - thresh)
dist = dists[idx[0]]
pred = None
else:
idx = np.argsort(dists)
conf = (dists[idx[1]] - dists[pred]) / 1.4
dist = dists[pred]
return pred, dist, conf
class StageStatus:
def __init__(self, pad_result: tuple = None, width=0, height=0):
self.width = width
self.height = height
self.dy = self.edy = self.dx = self.edx = self.y = self.ey = self.x = self.ex = self.tmp_w = self.tmp_h = []
if pad_result is not None:
self.update(pad_result)
def update(self, pad_result: tuple):
s = self
s.dy, s.edy, s.dx, s.edx, s.y, s.ey, s.x, s.ex, s.tmp_w, s.tmp_h = pad_result
class FaceDetection:
def __init__(
self,
min_face_size: int = 40,
steps_threshold: list = None,
scale_factor: float = 0.7,
):
if steps_threshold is None:
steps_threshold = [0.6, 0.7, 0.7]
self._min_face_size = min_face_size
self._steps_threshold = steps_threshold
self._scale_factor = scale_factor
self.p_net = tflite.Interpreter(model_path=get_file(BASE_URL + "p_net.tflite", FILE_HASHES["p_net"]))
self.r_net = tflite.Interpreter(model_path=get_file(BASE_URL + "r_net.tflite", FILE_HASHES["r_net"]))
self.o_net = tflite.Interpreter(model_path=get_file(BASE_URL + "o_net.tflite", FILE_HASHES["o_net"]))
def detect_faces(self, img):
height, width, _ = img.shape
stage_status = StageStatus(width=width, height=height)
m = 12 / self._min_face_size
min_layer = np.amin([height, width]) * m
scales = self.__compute_scale_pyramid(m, min_layer)
total_boxes, stage_status = self.__stage1(img, scales, stage_status)
total_boxes, stage_status = self.__stage2(img, total_boxes, stage_status)
bboxes, points = self.__stage3(img, total_boxes, stage_status)
detections = []
for i in range(bboxes.shape[0]):
bboxes_c = np.reshape(bboxes[i, :-1], [2, 2]).astype(np.float32)
points_c = np.reshape(points[i], [2, 5]).transpose().astype(np.float32)
conf = bboxes[i, -1].astype(np.float32)
detections.append([bboxes_c, points_c, conf])
return detections
def __compute_scale_pyramid(self, m, min_layer):
scales = []
factor_count = 0
while min_layer >= 12:
scales += [m * np.power(self._scale_factor, factor_count)]
min_layer = min_layer * self._scale_factor
factor_count += 1
return scales
@staticmethod
def __scale_image(image, scale: float):
height, width, _ = image.shape
width_scaled = int(np.ceil(width * scale))
height_scaled = int(np.ceil(height * scale))
im_data = cv2.resize(image, (width_scaled, height_scaled), interpolation=cv2.INTER_AREA)
im_data_normalized = (im_data - 127.5) * 0.0078125
return im_data_normalized
@staticmethod
def __generate_bounding_box(imap, reg, scale, t):
stride = 2
cellsize = 12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:, :, 0])
dy1 = np.transpose(reg[:, :, 1])
dx2 = np.transpose(reg[:, :, 2])
dy2 = np.transpose(reg[:, :, 3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y, x)]
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
if reg.size == 0:
reg = np.empty(shape=(0, 3))
bb = np.transpose(np.vstack([y, x]))
q1 = np.fix((stride * bb + 1) / scale)
q2 = np.fix((stride * bb + cellsize) / scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
return boundingbox, reg
@staticmethod
def __nms(boxes, threshold, method):
if boxes.size == 0:
return np.empty((0, 3))
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
s = boxes[:, 4]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
sorted_s = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while sorted_s.size > 0:
i = sorted_s[-1]
pick[counter] = i
counter += 1
idx = sorted_s[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if method == "Min":
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
sorted_s = sorted_s[np.where(o <= threshold)]
pick = pick[0:counter]
return pick
@staticmethod
def __pad(total_boxes, w, h):
tmp_w = (total_boxes[:, 2] - total_boxes[:, 0] + 1).astype(np.int32)
tmp_h = (total_boxes[:, 3] - total_boxes[:, 1] + 1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones(numbox, dtype=np.int32)
dy = np.ones(numbox, dtype=np.int32)
edx = tmp_w.copy().astype(np.int32)
edy = tmp_h.copy().astype(np.int32)
x = total_boxes[:, 0].copy().astype(np.int32)
y = total_boxes[:, 1].copy().astype(np.int32)
ex = total_boxes[:, 2].copy().astype(np.int32)
ey = total_boxes[:, 3].copy().astype(np.int32)
tmp = np.where(ex > w)
edx.flat[tmp] = np.expand_dims(-ex[tmp] + w + tmp_w[tmp], 1)
ex[tmp] = w
tmp = np.where(ey > h)
edy.flat[tmp] = np.expand_dims(-ey[tmp] + h + tmp_h[tmp], 1)
ey[tmp] = h
tmp = np.where(x < 1)
dx.flat[tmp] = np.expand_dims(2 - x[tmp], 1)
x[tmp] = 1
tmp = np.where(y < 1)
dy.flat[tmp] = np.expand_dims(2 - y[tmp], 1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmp_w, tmp_h
@staticmethod
def __rerec(bbox):
height = bbox[:, 3] - bbox[:, 1]
width = bbox[:, 2] - bbox[:, 0]
max_side_length = np.maximum(width, height)
bbox[:, 0] = bbox[:, 0] + width * 0.5 - max_side_length * 0.5
bbox[:, 1] = bbox[:, 1] + height * 0.5 - max_side_length * 0.5
bbox[:, 2:4] = bbox[:, 0:2] + np.transpose(np.tile(max_side_length, (2, 1)))
return bbox
@staticmethod
def __bbreg(boundingbox, reg):
if reg.shape[1] == 1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:, 2] - boundingbox[:, 0] + 1
h = boundingbox[:, 3] - boundingbox[:, 1] + 1
b1 = boundingbox[:, 0] + reg[:, 0] * w
b2 = boundingbox[:, 1] + reg[:, 1] * h
b3 = boundingbox[:, 2] + reg[:, 2] * w
b4 = boundingbox[:, 3] + reg[:, 3] * h
boundingbox[:, 0:4] = np.transpose(np.vstack([b1, b2, b3, b4]))
return boundingbox
|
MIT License
|
tensortrade-org/tensortrade
|
tensortrade/feed/core/base.py
|
Stream.placeholder
|
python
|
def placeholder(dtype: str = None) -> "Stream[T]":
return Placeholder(dtype=dtype)
|
Creates a placholder stream for data to provided to at a later date.
Parameters
----------
dtype : str
The data type that will be provided.
Returns
-------
`Stream[T]`
A stream representing a placeholder.
|
https://github.com/tensortrade-org/tensortrade/blob/65151a72090ab372ed7a33edc673e45b53d2f763/tensortrade/feed/core/base.py#L339-L352
|
import inspect
from abc import abstractmethod
from typing import (
Generic,
Iterable,
TypeVar,
Dict,
Any,
Callable,
List,
Tuple
)
from tensortrade.core import Observable
from tensortrade.feed.core.accessors import CachedAccessor
from tensortrade.feed.core.mixins import DataTypeMixin
T = TypeVar("T")
class Named:
generic_name: str = "generic"
namespaces: List[str] = []
names: Dict[str, int] = {}
def __init__(self, name: str = None):
if not name:
name = self.generic_name
if name in Stream.names.keys():
Stream.names[name] += 1
name += ":/" + str(Stream.names[name] - 1)
else:
Stream.names[name] = 0
self.name = name
def rename(self, name: str, sep: str = ":/") -> "Named":
if len(Named.namespaces) > 0:
name = Named.namespaces[-1] + sep + name
self.name = name
return self
class NameSpace(Named):
def __init__(self, name: str) -> None:
super().__init__(name)
def __enter__(self) -> None:
Named.namespaces += [self.name]
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
Named.namespaces.pop()
class Stream(Generic[T], Named, Observable):
_mixins: "Dict[str, DataTypeMixin]" = {}
_accessors: "List[CachedAccessor]" = []
generic_name: str = "stream"
def __new__(cls, *args, **kwargs):
dtype = kwargs.get("dtype")
instance = super().__new__(cls)
if dtype in Stream._mixins.keys():
mixin = Stream._mixins[dtype]
instance = Stream.extend_instance(instance, mixin)
return instance
def __init__(self, name: str = None, dtype: str = None):
Named.__init__(self, name)
Observable.__init__(self)
self.dtype = dtype
self.inputs = []
self.value = None
def __call__(self, *inputs) -> "Stream[T]":
self.inputs = inputs
return self
def run(self) -> None:
self.value = self.forward()
for listener in self.listeners:
listener.on_next(self.value)
@abstractmethod
def forward(self) -> T:
raise NotImplementedError()
@abstractmethod
def has_next(self) -> bool:
raise NotImplementedError()
def astype(self, dtype: str) -> "Stream[T]":
self.dtype = dtype
mixin = Stream._mixins[dtype]
return Stream.extend_instance(self, mixin)
def reset(self) -> None:
for listener in self.listeners:
if hasattr(listener, "reset"):
listener.reset()
for stream in self.inputs:
stream.reset()
self.value = None
def gather(self) -> "List[Tuple[Stream, Stream]]":
return self._gather(self, [], [])
@staticmethod
def source(iterable: "Iterable[T]", dtype: str = None) -> "Stream[T]":
return IterableStream(iterable, dtype=dtype)
@staticmethod
def group(streams: "List[Stream[T]]") -> "Stream[dict]":
return Group()(*streams)
@staticmethod
def sensor(obj: "Any",
func: "Callable[[Any], T]",
dtype: str = None) -> "Stream[T]":
return Sensor(obj, func, dtype=dtype)
@staticmethod
def select(streams: "List[Stream[T]]",
func: "Callable[[Stream[T]], bool]") -> "Stream[T]":
for s in streams:
if func(s):
return s
raise Exception("No stream satisfies selector condition.")
@staticmethod
def constant(value: "T", dtype: str = None) -> "Stream[T]":
return Constant(value, dtype=dtype)
@staticmethod
|
Apache License 2.0
|
wchill/ffmpy3
|
ffmpy3.py
|
FFmpeg.wait
|
python
|
async def wait(self):
if not self.process:
return
exitcode = await self.process.wait()
if exitcode != 0:
raise FFRuntimeError(self.cmd, exitcode)
return exitcode
|
Asynchronously wait for the process to complete execution.
Raises
-------
FFRuntimeError
The process exited with an error.
Returns
--------
int or None
0 if the process finished successfully, or None if it has not been started
|
https://github.com/wchill/ffmpy3/blob/b22049746ddc5f18c934df9cf1f5f6943a95d03f/ffmpy3.py#L196-L214
|
import errno
import shlex
import asyncio
import subprocess
__version__ = '0.2.4'
__license__ = 'MIT'
class FFmpeg(object):
def __init__(self, executable='ffmpeg', global_options=None, inputs=None, outputs=None):
self.executable = executable
self._cmd = [executable]
global_options = global_options or []
if _is_sequence(global_options):
normalized_global_options = []
for opt in global_options:
normalized_global_options += shlex.split(opt)
else:
normalized_global_options = shlex.split(global_options)
self._cmd += normalized_global_options
self._cmd += _merge_args_opts(inputs, add_input_option=True)
self._cmd += _merge_args_opts(outputs)
self.cmd = subprocess.list2cmdline(self._cmd)
self.process = None
def __repr__(self):
return '<{0!r} {1!r}>'.format(self.__class__.__name__, self.cmd)
def run(self, input_data=None, stdout=None, stderr=None):
try:
self.process = subprocess.Popen(
self._cmd,
stdin=subprocess.PIPE,
stdout=stdout,
stderr=stderr
)
except OSError as e:
if e.errno == errno.ENOENT:
raise FFExecutableNotFoundError("Executable '{0}' not found".format(self.executable))
else:
raise
out = self.process.communicate(input=input_data)
if self.process.returncode != 0:
raise FFRuntimeError(self.cmd, self.process.returncode, out[0], out[1])
return out
async def run_async(self, input_data=None, stdout=None, stderr=None):
try:
if input_data:
stdin = asyncio.subprocess.PIPE
else:
stdin = None
self.process = await asyncio.create_subprocess_exec(
*self._cmd,
stdin=stdin,
stdout=stdout,
stderr=stderr
)
except OSError as e:
if e.errno == errno.ENOENT:
raise FFExecutableNotFoundError("Executable '{0}' not found".format(self.executable))
else:
raise
if input_data:
self.process.stdin.write(input_data)
return self.process
|
MIT License
|
google-research/disentanglement_lib
|
disentanglement_lib/evaluation/metrics/modularity_explicitness.py
|
compute_modularity_explicitness
|
python
|
def compute_modularity_explicitness(ground_truth_data,
representation_function,
random_state,
artifact_dir=None,
num_train=gin.REQUIRED,
num_test=gin.REQUIRED,
batch_size=16):
del artifact_dir
scores = {}
mus_train, ys_train = utils.generate_batch_factor_code(
ground_truth_data, representation_function, num_train,
random_state, batch_size)
mus_test, ys_test = utils.generate_batch_factor_code(
ground_truth_data, representation_function, num_test,
random_state, batch_size)
discretized_mus = utils.make_discretizer(mus_train)
mutual_information = utils.discrete_mutual_info(discretized_mus, ys_train)
assert mutual_information.shape[0] == mus_train.shape[0]
assert mutual_information.shape[1] == ys_train.shape[0]
scores["modularity_score"] = modularity(mutual_information)
explicitness_score_train = np.zeros([ys_train.shape[0], 1])
explicitness_score_test = np.zeros([ys_test.shape[0], 1])
mus_train_norm, mean_mus, stddev_mus = utils.normalize_data(mus_train)
mus_test_norm, _, _ = utils.normalize_data(mus_test, mean_mus, stddev_mus)
for i in range(ys_train.shape[0]):
explicitness_score_train[i], explicitness_score_test[i] = explicitness_per_factor(mus_train_norm, ys_train[i, :],
mus_test_norm, ys_test[i, :])
scores["explicitness_score_train"] = np.mean(explicitness_score_train)
scores["explicitness_score_test"] = np.mean(explicitness_score_test)
return scores
|
Computes the modularity metric according to Sec 3.
Args:
ground_truth_data: GroundTruthData to be sampled from.
representation_function: Function that takes observations as input and
outputs a dim_representation sized representation for each observation.
random_state: Numpy random state used for randomness.
artifact_dir: Optional path to directory where artifacts can be saved.
num_train: Number of points used for training.
num_test: Number of points used for testing.
batch_size: Batch size for sampling.
Returns:
Dictionary with average modularity score and average explicitness
(train and test).
|
https://github.com/google-research/disentanglement_lib/blob/86a644d4ed35c771560dc3360756363d35477357/disentanglement_lib/evaluation/metrics/modularity_explicitness.py#L37-L84
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from disentanglement_lib.evaluation.metrics import utils
import numpy as np
from six.moves import range
from sklearn import linear_model
from sklearn import metrics
from sklearn import preprocessing
import gin.tf
@gin.configurable(
"modularity_explicitness",
blacklist=["ground_truth_data", "representation_function", "random_state",
"artifact_dir"])
|
Apache License 2.0
|
angr/angr
|
angr/knowledge_plugins/key_definitions/uses.py
|
Uses.get_uses
|
python
|
def get_uses(self, definition: 'Definition'):
return self._uses_by_definition.get(definition, set())
|
Retrieve the uses of a given definition.
:param definition: The definition for which we get the uses.
|
https://github.com/angr/angr/blob/94de0f468df0c0d27428301dae93d94f935ade9b/angr/knowledge_plugins/key_definitions/uses.py#L28-L34
|
from typing import Dict, Set, TYPE_CHECKING
from collections import defaultdict
from ...code_location import CodeLocation
if TYPE_CHECKING:
from .definition import Definition
class Uses:
__slots__ = ('_uses_by_definition', '_uses_by_location' )
def __init__(self):
self._uses_by_definition: Dict['Definition',Set[CodeLocation]] = defaultdict(set)
self._uses_by_location: Dict[CodeLocation, Set['Definition']] = defaultdict(set)
def add_use(self, definition, codeloc: CodeLocation):
self._uses_by_definition[definition].add(codeloc)
self._uses_by_location[codeloc].add(definition)
|
BSD 2-Clause Simplified License
|
huntfx/vfxwindow
|
vfxwindow/blender.py
|
BlenderWindow.addCallbackGameBefore
|
python
|
def addCallbackGameBefore(self, func, persistent=True, group=None):
self._addApplicationHandler('game_pre', func, persistent=persistent, group=group)
|
On starting the game engine.
|
https://github.com/huntfx/vfxwindow/blob/eb54cb6f50f8b7b53b26de0f7155e0dbd62517a5/vfxwindow/blender.py#L147-L149
|
from __future__ import absolute_import
import sys
from collections import defaultdict
from Qt import QtWidgets
import bpy
from .utils import setCoordinatesToScreen, hybridmethod
from .standalone import StandaloneWindow
VERSION = bpy.app.version_string
class BlenderWindow(StandaloneWindow):
def __init__(self, parent=None, **kwargs):
super(BlenderWindow, self).__init__(parent, **kwargs)
self.blender = True
self.standalone = False
def saveWindowPosition(self):
if 'blender' not in self.windowSettings:
self.windowSettings['blender'] = {}
settings = self.windowSettings['blender']
key = self._getSettingsKey()
if key not in settings:
settings[key] = {}
settings[key]['width'] = self.width()
settings[key]['height'] = self.height()
settings[key]['x'] = self.x()
settings[key]['y'] = self.y()
super(BlenderWindow, self).saveWindowPosition()
def loadWindowPosition(self):
key = self._getSettingsKey()
try:
x = self.windowSettings['blender'][key]['x']
y = self.windowSettings['blender'][key]['y']
width = self.windowSettings['blender'][key]['width']
height = self.windowSettings['blender'][key]['height']
except KeyError:
super(BlenderWindow, self).loadWindowPosition()
else:
x, y = setCoordinatesToScreen(x, y, width, height, padding=5)
self.resize(width, height)
self.move(x, y)
@hybridmethod
def show(cls, self, *args, **kwargs):
if self is not cls:
return super(BlenderWindow, self).show()
try:
cls.clearWindowInstance(cls.ID)
except AttributeError:
pass
kwargs['instance'] = True
kwargs['exec_'] = False
return super(BlenderWindow, cls).show(*args, **kwargs)
@hybridmethod
def removeCallbacks(cls, self, group=None, windowInstance=None, windowID=None):
if self is cls:
if windowInstance is None and windowID is not None:
windowInstance = cls.windowInstance(windowID)
if windowInstance is None:
raise ValueError('windowInstance or windowID parameter is required for classmethod')
elif windowInstance is None:
windowInstance = self.windowInstance()
if group is None:
groups = windowInstance['callback'].keys()
else:
if group not in windowInstance['callback']:
return 0
groups = [group]
numEvents = 0
for group in groups:
for callback_attr, callbacks in windowInstance['callback'][group].items():
callback_list = getattr(bpy.app.handlers, callback_attr)
for func in callbacks:
callback_list.remove(func)
numEvents += 1
del windowInstance['callback'][group]
return numEvents
def _addBlenderCallbackGroup(self, group):
windowInstance = self.windowInstance()
if group in windowInstance['callback']:
return
windowInstance['callback'][group] = defaultdict(list)
def _addApplicationHandler(self, handler, func, persistent=True, group=None):
self._addBlenderCallbackGroup(group)
isPersistent = hasattr(func, '_bpy_persistent')
if persistent and not isPersistent:
func = bpy.app.handlers.persistent(func)
elif not persistent and isPersistent:
del func._bpy_persistent
getattr(bpy.app.handlers, handler).append(func)
self.windowInstance()['callback'][group][handler].append(func)
def addCallbackFrameChangeAfter(self, func, persistent=True, group=None):
self._addApplicationHandler('frame_change_post', func, persistent=persistent, group=group)
def addCallbackFrameChangeBefore(self, func, persistent=True, group=None):
self._addApplicationHandler('frame_change_pre', func, persistent=persistent, group=group)
def addCallbackGameAfter(self, func, persistent=True, group=None):
self._addApplicationHandler('game_post', func, persistent=persistent, group=group)
|
MIT License
|
spotify/luigi
|
luigi/parameter.py
|
_DateParameterBase.parse
|
python
|
def parse(self, s):
return datetime.datetime.strptime(s, self.date_format).date()
|
Parses a date string formatted like ``YYYY-MM-DD``.
|
https://github.com/spotify/luigi/blob/ad5ddc9875e54cca8209863a8ec7bcc5d13ece8a/luigi/parameter.py#L367-L371
|
import abc
import datetime
import warnings
from enum import IntEnum
import json
from json import JSONEncoder
import operator
from ast import literal_eval
from configparser import NoOptionError, NoSectionError
from luigi import date_interval
from luigi import task_register
from luigi import configuration
from luigi.cmdline_parser import CmdlineParser
from .freezing import recursively_freeze, FrozenOrderedDict
_no_value = object()
class ParameterVisibility(IntEnum):
PUBLIC = 0
HIDDEN = 1
PRIVATE = 2
@classmethod
def has_value(cls, value):
return any(value == item.value for item in cls)
def serialize(self):
return self.value
class ParameterException(Exception):
pass
class MissingParameterException(ParameterException):
pass
class UnknownParameterException(ParameterException):
pass
class DuplicateParameterException(ParameterException):
pass
class Parameter:
_counter = 0
def __init__(self, default=_no_value, is_global=False, significant=True, description=None,
config_path=None, positional=True, always_in_help=False, batch_method=None,
visibility=ParameterVisibility.PUBLIC):
self._default = default
self._batch_method = batch_method
if is_global:
warnings.warn("is_global support is removed. Assuming positional=False",
DeprecationWarning,
stacklevel=2)
positional = False
self.significant = significant
self.positional = positional
self.visibility = visibility if ParameterVisibility.has_value(visibility) else ParameterVisibility.PUBLIC
self.description = description
self.always_in_help = always_in_help
if config_path is not None and ('section' not in config_path or 'name' not in config_path):
raise ParameterException('config_path must be a hash containing entries for section and name')
self._config_path = config_path
self._counter = Parameter._counter
Parameter._counter += 1
def _get_value_from_config(self, section, name):
conf = configuration.get_config()
try:
value = conf.get(section, name)
except (NoSectionError, NoOptionError, KeyError):
return _no_value
return self.parse(value)
def _get_value(self, task_name, param_name):
for value, warn in self._value_iterator(task_name, param_name):
if value != _no_value:
if warn:
warnings.warn(warn, DeprecationWarning)
return value
return _no_value
def _value_iterator(self, task_name, param_name):
cp_parser = CmdlineParser.get_instance()
if cp_parser:
dest = self._parser_global_dest(param_name, task_name)
found = getattr(cp_parser.known_args, dest, None)
yield (self._parse_or_no_value(found), None)
yield (self._get_value_from_config(task_name, param_name), None)
if self._config_path:
yield (self._get_value_from_config(self._config_path['section'], self._config_path['name']),
'The use of the configuration [{}] {} is deprecated. Please use [{}] {}'.format(
self._config_path['section'], self._config_path['name'], task_name, param_name))
yield (self._default, None)
def has_task_value(self, task_name, param_name):
return self._get_value(task_name, param_name) != _no_value
def task_value(self, task_name, param_name):
value = self._get_value(task_name, param_name)
if value == _no_value:
raise MissingParameterException("No default specified")
else:
return self.normalize(value)
def _is_batchable(self):
return self._batch_method is not None
def parse(self, x):
return x
def _parse_list(self, xs):
if not self._is_batchable():
raise NotImplementedError('No batch method found')
elif not xs:
raise ValueError('Empty parameter list passed to parse_list')
else:
return self._batch_method(map(self.parse, xs))
def serialize(self, x):
return str(x)
def _warn_on_wrong_param_type(self, param_name, param_value):
if self.__class__ != Parameter:
return
if not isinstance(param_value, str):
warnings.warn('Parameter "{}" with value "{}" is not of type string.'.format(param_name, param_value))
def normalize(self, x):
return x
def next_in_enumeration(self, _value):
return None
def _parse_or_no_value(self, x):
if not x:
return _no_value
else:
return self.parse(x)
@staticmethod
def _parser_global_dest(param_name, task_name):
return task_name + '_' + param_name
@classmethod
def _parser_kwargs(cls, param_name, task_name=None):
return {
"action": "store",
"dest": cls._parser_global_dest(param_name, task_name) if task_name else param_name,
}
class OptionalParameter(Parameter):
def serialize(self, x):
if x is None:
return ''
else:
return str(x)
def parse(self, x):
return x or None
def _warn_on_wrong_param_type(self, param_name, param_value):
if self.__class__ != OptionalParameter:
return
if not isinstance(param_value, str) and param_value is not None:
warnings.warn('OptionalParameter "{}" with value "{}" is not of type string or None.'.format(
param_name, param_value))
_UNIX_EPOCH = datetime.datetime.utcfromtimestamp(0)
class _DateParameterBase(Parameter):
def __init__(self, interval=1, start=None, **kwargs):
super(_DateParameterBase, self).__init__(**kwargs)
self.interval = interval
self.start = start if start is not None else _UNIX_EPOCH.date()
@property
@abc.abstractmethod
def date_format(self):
pass
|
Apache License 2.0
|
numba/numba
|
numba/cuda/cuda_paths.py
|
get_cuda_home
|
python
|
def get_cuda_home(*subdirs):
cuda_home = os.environ.get('CUDA_HOME')
if cuda_home is None:
cuda_home = os.environ.get('CUDA_PATH')
if cuda_home is not None:
return os.path.join(cuda_home, *subdirs)
|
Get paths of CUDA_HOME.
If *subdirs* are the subdirectory name to be appended in the resulting
path.
|
https://github.com/numba/numba/blob/8d4559a83b7b12da9121c030b8e3780874204a34/numba/cuda/cuda_paths.py#L121-L131
|
import sys
import re
import os
from collections import defaultdict, namedtuple
from numba.core.config import IS_WIN32, IS_OSX
from numba.misc.findlib import find_lib, find_file
_env_path_tuple = namedtuple('_env_path_tuple', ['by', 'info'])
def _find_valid_path(options):
for by, data in options:
if data is not None:
return by, data
else:
return '<unknown>', None
def _get_libdevice_path_decision():
options = [
('Conda environment', get_conda_ctk()),
('CUDA_HOME', get_cuda_home('nvvm', 'libdevice')),
('System', get_system_ctk('nvvm', 'libdevice')),
('Debian package', get_debian_pkg_libdevice()),
]
by, libdir = _find_valid_path(options)
return by, libdir
def _nvvm_lib_dir():
if IS_WIN32:
return 'nvvm', 'bin'
elif IS_OSX:
return 'nvvm', 'lib'
else:
return 'nvvm', 'lib64'
def _get_nvvm_path_decision():
options = [
('Conda environment', get_conda_ctk()),
('CUDA_HOME', get_cuda_home(*_nvvm_lib_dir())),
('System', get_system_ctk(*_nvvm_lib_dir())),
]
by, path = _find_valid_path(options)
return by, path
def _get_libdevice_paths():
by, libdir = _get_libdevice_path_decision()
pat = r'libdevice(\.(?P<arch>compute_\d+))?(\.\d+)*\.bc$'
candidates = find_file(re.compile(pat), libdir)
out = defaultdict(list)
for path in candidates:
m = re.search(pat, path)
arch = m.group('arch')
out[arch].append(path)
out = {k: max(v) for k, v in out.items()}
return _env_path_tuple(by, out)
def _cudalib_path():
if IS_WIN32:
return 'bin'
elif IS_OSX:
return 'lib'
else:
return 'lib64'
def _get_cudalib_dir_path_decision():
options = [
('Conda environment', get_conda_ctk()),
('CUDA_HOME', get_cuda_home(_cudalib_path())),
('System', get_system_ctk(_cudalib_path())),
]
by, libdir = _find_valid_path(options)
return by, libdir
def _get_cudalib_dir():
by, libdir = _get_cudalib_dir_path_decision()
return _env_path_tuple(by, libdir)
def get_system_ctk(*subdirs):
if sys.platform.startswith('linux'):
base = '/usr/local/cuda'
if os.path.exists(base):
return os.path.join(base, *subdirs)
def get_conda_ctk():
is_conda_env = os.path.exists(os.path.join(sys.prefix, 'conda-meta'))
if not is_conda_env:
return
paths = find_lib('nvvm')
if not paths:
return
return os.path.dirname(max(paths))
|
BSD 2-Clause Simplified License
|
strinking/futaba
|
futaba/cogs/settings/core.py
|
Settings.tracker_blacklist_remove
|
python
|
async def tracker_blacklist_remove(
self, ctx, *, user_or_channel: Union[MemberConv, TextChannelConv]
):
logger.info(
"Removing %s '%s' (%d) from the tracking blacklist for guild '%s' (%d)",
"user" if isinstance(user_or_channel, discord.abc.User) else "channel",
user_or_channel.name,
user_or_channel.id,
ctx.guild.name,
ctx.guild.id,
)
with self.bot.sql.transaction():
self.bot.sql.settings.remove_from_tracking_blacklist(
ctx.guild, user_or_channel
)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = (
f"Removed {user_or_channel.mention} from the tracking blacklist"
)
await ctx.send(embed=embed)
|
Remove a user or channel from the tracking blacklist.
|
https://github.com/strinking/futaba/blob/6b1ae13b529843b04cfbf7641dc43f8213d78448/futaba/cogs/settings/core.py#L704-L728
|
import logging
import re
from itertools import chain
from typing import Union
import discord
from discord.ext import commands
from futaba import permissions
from futaba.converters import MemberConv, RoleConv, TextChannelConv
from futaba.emojis import ICONS
from futaba.exceptions import CommandFailed, ManualCheckFailure, SendHelp
from futaba.permissions import admin_perm, mod_perm
from futaba.str_builder import StringBuilder
from futaba.utils import plural
from ..abc import AbstractCog
logger = logging.getLogger(__name__)
__all__ = ["Settings"]
class Settings(AbstractCog):
__slots__ = ("journal",)
def __init__(self, bot):
super().__init__(bot)
self.journal = bot.get_broadcaster("/settings")
def setup(self):
for guild in self.bot.guilds:
self.bot.sql.settings.get_special_roles(guild)
self.bot.sql.settings.get_reapply_roles(guild)
@commands.command(name="prefix")
async def prefix(self, ctx, *, prefix: str = None):
if prefix is None:
bot_prefix = self.bot.prefix(ctx.guild)
embed = discord.Embed(colour=discord.Colour.dark_teal())
if ctx.guild is None:
embed.description = "No command prefix, all messages are commands"
else:
embed.description = f"Prefix for {ctx.guild.name} is `{bot_prefix}`"
elif ctx.guild is None and prefix is not None:
embed = discord.Embed(colour=discord.Colour.red())
embed.description = "Cannot set a command prefix outside of a server!"
raise CommandFailed(embed=embed)
elif not mod_perm(ctx):
embed = discord.Embed(colour=discord.Colour.red())
embed.description = "You do not have permission to set the prefix"
raise ManualCheckFailure(embed=embed)
elif prefix == "_":
with self.bot.sql.transaction():
self.bot.sql.settings.set_prefix(ctx.guild, None)
bot_prefix = self.bot.prefix(ctx.guild)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = (
f"Unset prefix for {ctx.guild.name}. (Default prefix: `{bot_prefix}`)"
)
self.journal.send(
"prefix",
ctx.guild,
"Unset bot command prefix",
icon="settings",
prefix=None,
default_prefix=self.bot.config.default_prefix,
)
else:
bot_prefix = re.sub(r"_$", " ", prefix)
with self.bot.sql.transaction():
self.bot.sql.settings.set_prefix(ctx.guild, bot_prefix)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = f"Set prefix for {ctx.guild.name} to `{bot_prefix}`"
self.journal.send(
"prefix",
ctx.guild,
"Unset bot command prefix",
icon="settings",
prefix=bot_prefix,
default_prefix=self.bot.config.default_prefix,
)
await ctx.send(embed=embed)
@commands.command(name="maxdelete", aliases=["maxdeletemsg"])
@commands.guild_only()
async def max_delete(self, ctx, count: int = None):
if count is None:
max_delete_messages = self.bot.sql.settings.get_max_delete_messages(
ctx.guild
)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = f"Maximum number of messages that can be deleted in bulk is `{max_delete_messages}`"
elif not admin_perm(ctx):
embed = discord.Embed(colour=discord.Colour.red())
embed.description = (
"You do not have permission to set the maximum deletable messages"
)
raise ManualCheckFailure(embed=embed)
elif count <= 0:
embed = discord.Embed(colour=discord.Colour.red())
embed.description = "This value must be a positive, non-zero integer"
raise CommandFailed(embed=embed)
elif count >= 2 ** 32 - 1:
embed = discord.Embed(colour=discord.Colour.red())
embed.description = (
"This value is way too high. Try a more reasonable value."
)
raise CommandFailed(embed=embed)
else:
with self.bot.sql.transaction():
self.bot.sql.settings.set_max_delete_messages(ctx.guild, count)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = f"Set maximum deletable messages to `{count}`"
await ctx.send(embed=embed)
@commands.command(name="warnmanual")
@commands.guild_only()
async def warn_manual_mod_action(self, ctx, value: bool = None):
if value is None:
warn_manual_mod_action = self.bot.sql.settings.get_warn_manual_mod_action(
ctx.guild
)
embed = discord.Embed(colour=discord.Colour.dark_teal())
state = "enabled" if warn_manual_mod_action else "disabled"
embed.description = f"Warning moderators about performing mod actions manually is **{state}**"
elif not admin_perm(ctx):
embed = discord.Embed(colour=discord.Colour.red())
embed.description = "You do not have permission to enable or disable manual mod action warning"
raise ManualCheckFailure(embed=embed)
else:
with self.bot.sql.transaction():
self.bot.sql.settings.set_warn_manual_mod_action(ctx.guild, value)
embed = discord.Embed(colour=discord.Colour.teal())
embed.description = f"Set warning moderators about performing mod actions manually to `{value}`"
await ctx.send(embed=embed)
@commands.command(name="removeother", aliases=["rmother"])
@commands.guild_only()
async def remove_other_roles_on_punish(self, ctx, value: bool = None):
if value is None:
remove_other_roles = self.bot.sql.settings.get_remove_other_roles(ctx.guild)
embed = discord.Embed(colour=discord.Colour.dark_teal())
state = "are removed" if remove_other_roles else "are kept"
embed.description = (
f"When punishment roles are added other roles **{state}**"
)
elif not admin_perm(ctx):
embed = discord.Embed(colour=discord.Colour.red())
embed.description = "You do not have permissions to change the removal of non-punishment roles"
raise ManualCheckFailure(embed=embed)
else:
with self.bot.sql.transaction():
self.bot.sql.settings.set_remove_other_roles(ctx.guild, value)
embed = discord.Embed(colour=discord.Colour.teal())
embed.description = (
f"Set removal of other non-punishment roles to `{value}`"
)
await ctx.send(embed=embed)
@commands.command(name="specroles", aliases=["sroles"])
@commands.guild_only()
async def special_roles(self, ctx):
logger.info(
"Sending list of all configured roles for guild '%s' (%d)",
ctx.guild.name,
ctx.guild.id,
)
def mention(role):
return getattr(role, "mention", "(none)")
roles = self.bot.sql.settings.get_special_roles(ctx.guild)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = "\n".join(
(
f'{ICONS["member"]} Member: {mention(roles.member)}',
f'{ICONS["guest"]} Guest: {mention(roles.guest)}',
f'{ICONS["mute"]} Mute: {mention(roles.mute)}',
f'{ICONS["jail"]} Jail: {mention(roles.jail)}',
f'{ICONS["focus"]} Focus: {mention(roles.focus)}',
)
)
await ctx.send(embed=embed)
async def check_role(self, ctx, role):
embed = discord.Embed(colour=discord.Colour.red())
if role.is_default():
embed.description = "@everyone role cannot be assigned for this purpose"
raise CommandFailed(embed=embed)
special_roles = self.bot.sql.settings.get_special_roles(ctx.guild)
if role in special_roles:
embed.description = "Cannot assign the same role for multiple purposes"
raise CommandFailed(embed=embed)
embed = permissions.elevated_role_embed(ctx.guild, role, "warning")
if embed is not None:
await ctx.send(embed=embed)
@commands.command(name="setmember")
@commands.guild_only()
@permissions.check_mod()
async def set_member_role(self, ctx, *, role: RoleConv = None):
logger.info(
"Setting member role for guild '%s' (%d) to '%s'",
ctx.guild.name,
ctx.guild.id,
role,
)
if role is not None:
await self.check_role(ctx, role)
with self.bot.sql.transaction():
self.bot.sql.settings.set_special_roles(ctx.guild, member=role)
embed = discord.Embed(colour=discord.Colour.green())
if role:
embed.description = f"Set member role to {role.mention}"
content = f"Set member role to {role.mention}"
else:
embed.description = "Unset member role"
content = "Unset the member role"
await ctx.send(embed=embed)
self.journal.send(
"roles/member", ctx.guild, content, icon="settings", role=role
)
@commands.command(name="setguest")
@commands.guild_only()
@permissions.check_mod()
async def set_guest_role(self, ctx, *, role: RoleConv = None):
logger.info(
"Setting guest role for guild '%s' (%d) to '%s'",
ctx.guild.name,
ctx.guild.id,
role,
)
if role is not None:
await self.check_role(ctx, role)
with self.bot.sql.transaction():
self.bot.sql.settings.set_special_roles(ctx.guild, guest=role)
embed = discord.Embed(colour=discord.Colour.green())
if role:
embed.description = f"Set guest role to {role.mention}"
content = f"Set the guest role to {role.mention}"
else:
embed.description = "Unset guest role"
content = "Unset the guest role"
await ctx.send(embed=embed)
self.journal.send("roles/guest", ctx.guild, content, icon="settings", role=role)
@commands.command(name="setmute")
@commands.guild_only()
@permissions.check_mod()
async def set_mute_role(self, ctx, *, role: RoleConv = None):
logger.info(
"Setting mute role for guild '%s' (%d) to '%s'",
ctx.guild.name,
ctx.guild.id,
role,
)
if role is not None:
await self.check_role(ctx, role)
with self.bot.sql.transaction():
self.bot.sql.settings.set_special_roles(ctx.guild, mute=role)
embed = discord.Embed(colour=discord.Colour.green())
if role:
embed.description = f"Set mute role to {role.mention}"
content = f"Set the mute role to {role.mention}"
else:
embed.description = "Unset mute role"
content = "Unset the mute role"
await ctx.send(embed=embed)
self.journal.send("roles/mute", ctx.guild, content, icon="settings", role=role)
@commands.command(name="setjail")
@commands.guild_only()
@permissions.check_mod()
async def set_jail_role(self, ctx, *, role: RoleConv = None):
logger.info(
"Setting mute role for guild '%s' (%d) to '%s'",
ctx.guild.name,
ctx.guild.id,
role,
)
if role is not None:
await self.check_role(ctx, role)
with self.bot.sql.transaction():
self.bot.sql.settings.set_special_roles(ctx.guild, jail=role)
embed = discord.Embed(colour=discord.Colour.green())
if role:
embed.description = f"Set jail role to {role.mention}"
content = f"Set the jail role to {role.mention}"
else:
embed.description = "Unset jail role"
content = "Unset the jail role"
await ctx.send(embed=embed)
self.journal.send("roles/jail", ctx.guild, content, icon="settings", role=role)
@commands.command(name="setfocus")
@commands.guild_only()
@permissions.check_mod()
async def set_focus_role(self, ctx, *, role: RoleConv = None):
logger.info(
"Setting focus role for guild '%s' (%d) to '%s'",
ctx.guild.name,
ctx.guild.id,
role,
)
if role is not None:
await self.check_role(ctx, role)
with self.bot.sql.transaction():
self.bot.sql.settings.set_special_roles(ctx.guild, focus=role)
embed = discord.Embed(colour=discord.Colour.green())
if role:
embed.description = f"Set focus role to {role.mention}"
content = f"Set the focus role to {role.mention}"
else:
embed.description = "Unset focus role"
content = "Unset the focus role"
await ctx.send(embed=embed)
self.journal.send("roles/focus", ctx.guild, content, icon="settings", role=role)
@commands.command(name="setnonpurge")
@commands.guild_only()
@permissions.check_mod()
async def set_nonpurge_role(self, ctx, *, role: RoleConv = None):
logger.info(
"Setting nonpurge role for guild '%s' (%d) to '%s'",
ctx.guild.name,
ctx.guild.id,
role,
)
if role is not None:
await self.check_role(ctx, role)
with self.bot.sql.transaction():
self.bot.sql.settings.set_special_roles(ctx.guild, nonpurge=role)
embed = discord.Embed(colour=discord.Colour.green())
if role:
embed.description = f"Set nonpurge role to {role.mention}"
content = f"Set the nonpurge role to {role.mention}"
else:
embed.description = "Unset nonpurge role"
content = "Unset the nonpurge role"
await ctx.send(embed=embed)
self.journal.send("roles/nonpurge", ctx.guild, content, icon="settings", role=role)
@commands.group(name="reapply", aliases=["reapp"])
@commands.guild_only()
async def reapply(self, ctx):
if ctx.invoked_subcommand is None:
raise SendHelp()
@reapply.command(name="add", aliases=["append", "extend", "new", "register", "set"])
@commands.guild_only()
async def reapply_add(self, ctx, *roles: RoleConv):
warning = StringBuilder()
roles = set(roles)
special_roles = self.bot.sql.settings.get_special_roles(ctx.guild)
if ctx.guild.default_role in roles:
warning.writeln("You should not make @everyone reappliable.")
roles.remove(ctx.guild.default_role)
if special_roles.guest_role in roles:
warning.writeln(
f"You should not make {special_roles.guest_role.mention} reappliable."
)
if special_roles.member_role in roles:
warning.writeln(
f"You should not make {special_roles.member_role.mention} reappliable."
)
if special_roles.mute_role in roles:
warning.writeln(
f"The {special_roles.mute_role.mention} is always reappliable."
)
if special_roles.jail_role in roles:
warning.writeln(
f"The {special_roles.jail_role.mention} is always reappliable."
)
if "SelfAssignableRoles" in self.bot.cogs:
assignable_roles = self.bot.sql.roles.get_assignable_roles(ctx.guild)
else:
assignable_roles = ()
for role in roles:
if role in assignable_roles:
warning.writeln(
f"The {role.mention} is already reappliable since it is self-assignable."
)
if warning:
embed = discord.Embed(colour=discord.Colour.dark_purple())
embed.description = str(warning)
await ctx.send(embed=embed)
logger.info(
"Setting roles as 'reappliable': [%s]",
", ".join(role.name for role in roles),
)
with self.bot.sql.transaction():
self.bot.sql.settings.update_reapply_roles(ctx.guild, roles, True)
@reapply.command(
name="remove", aliases=["rm", "delete", "del", "unregister", "unset"]
)
@commands.guild_only()
async def reapply_remove(self, ctx, *roles: RoleConv):
logger.info(
"Unsetting roles as 'reappliable': [%s]",
", ".join(role.name for role in roles),
)
with self.bot.sql.transaction():
self.bot.sql.settings.update_reapply_roles(ctx.guild, set(roles), False)
@reapply.command(name="show", aliases=["display", "list", "ls"])
@commands.guild_only()
async def reapply_show(self, ctx):
reapply_roles = self.bot.sql.settings.get_reapply_roles(ctx.guild)
special_roles = self.bot.sql.settings.get_special_roles(ctx.guild)
embed = discord.Embed(colour=discord.Colour.dark_teal())
descr = StringBuilder(sep=", ")
has_roles = False
for role in sorted(reapply_roles, key=lambda r: r.name):
descr.write(role.mention)
if descr:
embed.add_field(name="Manually designated", value=str(descr))
has_roles = True
else:
embed.add_field(name="Manually designated", value="(none)")
descr.clear()
if special_roles.mute_role is not None:
descr.write(special_roles.mute_role.mention)
if special_roles.jail_role is not None:
descr.write(special_roles.jail_role.mention)
if descr:
embed.add_field(name="Punishment roles", value=str(descr))
has_roles = True
if "SelfAssignableRoles" in self.bot.cogs:
assignable_roles = self.bot.sql.roles.get_assignable_roles(ctx.guild)
if assignable_roles:
embed.add_field(
name="Self-assignable roles",
value=", ".join(
role.mention
for role in sorted(assignable_roles, key=lambda r: r.name)
),
)
has_roles = True
if has_roles:
embed.title = "\N{MILITARY MEDAL} Roles which are automatically reapplied"
else:
embed.colour = discord.Colour.dark_purple()
await ctx.send(embed=embed)
@reapply.command(name="auto", aliases=["automatic"])
@commands.guild_only()
async def reapply_auto(self, ctx, value: bool = None):
if value is None:
reapply = self.bot.sql.settings.get_auto_reapply(ctx.guild)
embed = discord.Embed(colour=discord.Colour.dark_teal())
enabled = "enabled" if reapply else "disabled"
embed.description = (
f"Automatic role reapplication is **{enabled}** on this server"
)
elif not admin_perm(ctx):
embed = discord.Embed(colour=discord.Colour.red())
embed.description = (
"You do not have permission to set automatic role reapplication"
)
raise ManualCheckFailure(embed=embed)
else:
with self.bot.sql.transaction():
self.bot.sql.settings.set_auto_reapply(ctx.guild, value)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = (
f"{'Enabled' if value else 'Disabled'} automatic role reapplication"
)
await ctx.send(embed=embed)
@commands.command(name="mentionprefix", aliases=["mprefix", "menpfx"])
@commands.guild_only()
async def mentionable_prefix(self, ctx, value: int = None):
if value is None:
value = self.bot.sql.settings.get_mentionable_name_prefix(ctx.guild)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = (
f"Names must begin with at least {value} typeable character{plural(value)}"
if value
else "No guild requirement for mentionable names"
)
elif not mod_perm(ctx):
embed = discord.Embed(colour=discord.Colour.red())
embed.description = (
"You do not have permission to set the mentionable name prefix"
)
raise ManualCheckFailure(embed=embed)
else:
if value < 0 or value > 32:
embed = discord.Embed()
embed.colour = discord.Colour.red()
embed.description = "Prefix lengths must be between `0` and `32`."
raise CommandFailed(embed=embed)
with self.bot.sql.transaction():
self.bot.sql.settings.set_mentionable_name_prefix(ctx.guild, value)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = (
f"Set mentionable prefix to {value} character{plural(value)}"
if value
else "Disabled mentionable prefix requirement"
)
await ctx.send(embed=embed)
@commands.group(name="trackerblacklist", aliases=["trackerbl", "trkbl"])
@commands.guild_only()
async def tracker_blacklist(self, ctx):
if ctx.invoked_subcommand is None:
raise SendHelp()
@tracker_blacklist.command(name="add", aliases=["append", "extend"])
@commands.guild_only()
@permissions.check_mod()
async def tracker_blacklist_add(
self, ctx, *, user_or_channel: Union[MemberConv, TextChannelConv]
):
logger.info(
"Adding %s '%s' (%d) to the tracking blacklist for guild '%s' (%d)",
"user" if isinstance(user_or_channel, discord.abc.User) else "channel",
user_or_channel.name,
user_or_channel.id,
ctx.guild.name,
ctx.guild.id,
)
with self.bot.sql.transaction():
self.bot.sql.settings.add_to_tracking_blacklist(ctx.guild, user_or_channel)
embed = discord.Embed(colour=discord.Colour.dark_teal())
embed.description = f"Added {user_or_channel.mention} to the tracking blacklist"
await ctx.send(embed=embed)
@tracker_blacklist.command(name="remove", aliases=["rm", "delete", "del"])
@commands.guild_only()
@permissions.check_mod()
|
MIT License
|
azure/azure-devops-cli-extension
|
azure-devops/azext_devops/devops_sdk/v5_0/build/build_client.py
|
BuildClient.queue_build
|
python
|
def queue_build(self, build, project, ignore_warnings=None, check_in_ticket=None, source_build_id=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if ignore_warnings is not None:
query_parameters['ignoreWarnings'] = self._serialize.query('ignore_warnings', ignore_warnings, 'bool')
if check_in_ticket is not None:
query_parameters['checkInTicket'] = self._serialize.query('check_in_ticket', check_in_ticket, 'str')
if source_build_id is not None:
query_parameters['sourceBuildId'] = self._serialize.query('source_build_id', source_build_id, 'int')
content = self._serialize.body(build, 'Build')
response = self._send(http_method='POST',
location_id='0cd358e1-9217-4d94-8269-1c1ee6f93dcf',
version='5.0',
route_values=route_values,
query_parameters=query_parameters,
content=content)
return self._deserialize('Build', response)
|
QueueBuild.
Queues a build
:param :class:`<Build> <azure.devops.v5_0.build.models.Build>` build:
:param str project: Project ID or project name
:param bool ignore_warnings:
:param str check_in_ticket:
:param int source_build_id:
:rtype: :class:`<Build> <azure.devops.v5_0.build.models.Build>`
|
https://github.com/azure/azure-devops-cli-extension/blob/5f33f7d81a9c2d2990044fbd9ffa6b535cbda528/azure-devops/azext_devops/devops_sdk/v5_0/build/build_client.py#L448-L475
|
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class BuildClient(Client):
def __init__(self, base_url=None, creds=None):
super(BuildClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = '965220d5-5bb9-42cf-8d67-9b146df2a5a4'
def create_artifact(self, artifact, project, build_id):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
content = self._serialize.body(artifact, 'BuildArtifact')
response = self._send(http_method='POST',
location_id='1db06c96-014e-44e1-ac91-90b2d4b3e984',
version='5.0',
route_values=route_values,
content=content)
return self._deserialize('BuildArtifact', response)
def get_artifact(self, project, build_id, artifact_name):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
query_parameters = {}
if artifact_name is not None:
query_parameters['artifactName'] = self._serialize.query('artifact_name', artifact_name, 'str')
response = self._send(http_method='GET',
location_id='1db06c96-014e-44e1-ac91-90b2d4b3e984',
version='5.0',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('BuildArtifact', response)
def get_artifact_content_zip(self, project, build_id, artifact_name, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
query_parameters = {}
if artifact_name is not None:
query_parameters['artifactName'] = self._serialize.query('artifact_name', artifact_name, 'str')
response = self._send(http_method='GET',
location_id='1db06c96-014e-44e1-ac91-90b2d4b3e984',
version='5.0',
route_values=route_values,
query_parameters=query_parameters,
accept_media_type='application/zip')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_artifacts(self, project, build_id):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
response = self._send(http_method='GET',
location_id='1db06c96-014e-44e1-ac91-90b2d4b3e984',
version='5.0',
route_values=route_values)
return self._deserialize('[BuildArtifact]', self._unwrap_collection(response))
def get_file(self, project, build_id, artifact_name, file_id, file_name, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
query_parameters = {}
if artifact_name is not None:
query_parameters['artifactName'] = self._serialize.query('artifact_name', artifact_name, 'str')
if file_id is not None:
query_parameters['fileId'] = self._serialize.query('file_id', file_id, 'str')
if file_name is not None:
query_parameters['fileName'] = self._serialize.query('file_name', file_name, 'str')
response = self._send(http_method='GET',
location_id='1db06c96-014e-44e1-ac91-90b2d4b3e984',
version='5.0',
route_values=route_values,
query_parameters=query_parameters,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_attachments(self, project, build_id, type):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
if type is not None:
route_values['type'] = self._serialize.url('type', type, 'str')
response = self._send(http_method='GET',
location_id='f2192269-89fa-4f94-baf6-8fb128c55159',
version='5.0-preview.2',
route_values=route_values)
return self._deserialize('[Attachment]', self._unwrap_collection(response))
def get_attachment(self, project, build_id, timeline_id, record_id, type, name, **kwargs):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
if timeline_id is not None:
route_values['timelineId'] = self._serialize.url('timeline_id', timeline_id, 'str')
if record_id is not None:
route_values['recordId'] = self._serialize.url('record_id', record_id, 'str')
if type is not None:
route_values['type'] = self._serialize.url('type', type, 'str')
if name is not None:
route_values['name'] = self._serialize.url('name', name, 'str')
response = self._send(http_method='GET',
location_id='af5122d3-3438-485e-a25a-2dbbfde84ee6',
version='5.0-preview.2',
route_values=route_values,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def authorize_project_resources(self, resources, project):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
content = self._serialize.body(resources, '[DefinitionResourceReference]')
response = self._send(http_method='PATCH',
location_id='398c85bc-81aa-4822-947c-a194a05f0fef',
version='5.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('[DefinitionResourceReference]', self._unwrap_collection(response))
def get_project_resources(self, project, type=None, id=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if type is not None:
query_parameters['type'] = self._serialize.query('type', type, 'str')
if id is not None:
query_parameters['id'] = self._serialize.query('id', id, 'str')
response = self._send(http_method='GET',
location_id='398c85bc-81aa-4822-947c-a194a05f0fef',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[DefinitionResourceReference]', self._unwrap_collection(response))
def list_branches(self, project, provider_name, service_endpoint_id=None, repository=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if provider_name is not None:
route_values['providerName'] = self._serialize.url('provider_name', provider_name, 'str')
query_parameters = {}
if service_endpoint_id is not None:
query_parameters['serviceEndpointId'] = self._serialize.query('service_endpoint_id', service_endpoint_id, 'str')
if repository is not None:
query_parameters['repository'] = self._serialize.query('repository', repository, 'str')
response = self._send(http_method='GET',
location_id='e05d4403-9b81-4244-8763-20fde28d1976',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[str]', self._unwrap_collection(response))
def get_build_badge(self, project, repo_type, repo_id=None, branch_name=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if repo_type is not None:
route_values['repoType'] = self._serialize.url('repo_type', repo_type, 'str')
query_parameters = {}
if repo_id is not None:
query_parameters['repoId'] = self._serialize.query('repo_id', repo_id, 'str')
if branch_name is not None:
query_parameters['branchName'] = self._serialize.query('branch_name', branch_name, 'str')
response = self._send(http_method='GET',
location_id='21b3b9ce-fad5-4567-9ad0-80679794e003',
version='5.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('BuildBadge', response)
def get_build_badge_data(self, project, repo_type, repo_id=None, branch_name=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if repo_type is not None:
route_values['repoType'] = self._serialize.url('repo_type', repo_type, 'str')
query_parameters = {}
if repo_id is not None:
query_parameters['repoId'] = self._serialize.query('repo_id', repo_id, 'str')
if branch_name is not None:
query_parameters['branchName'] = self._serialize.query('branch_name', branch_name, 'str')
response = self._send(http_method='GET',
location_id='21b3b9ce-fad5-4567-9ad0-80679794e003',
version='5.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('str', response)
def delete_build(self, project, build_id):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
self._send(http_method='DELETE',
location_id='0cd358e1-9217-4d94-8269-1c1ee6f93dcf',
version='5.0',
route_values=route_values)
def get_build(self, project, build_id, property_filters=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
if build_id is not None:
route_values['buildId'] = self._serialize.url('build_id', build_id, 'int')
query_parameters = {}
if property_filters is not None:
query_parameters['propertyFilters'] = self._serialize.query('property_filters', property_filters, 'str')
response = self._send(http_method='GET',
location_id='0cd358e1-9217-4d94-8269-1c1ee6f93dcf',
version='5.0',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('Build', response)
def get_builds(self, project, definitions=None, queues=None, build_number=None, min_time=None, max_time=None, requested_for=None, reason_filter=None, status_filter=None, result_filter=None, tag_filters=None, properties=None, top=None, continuation_token=None, max_builds_per_definition=None, deleted_filter=None, query_order=None, branch_name=None, build_ids=None, repository_id=None, repository_type=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
query_parameters = {}
if definitions is not None:
definitions = ",".join(map(str, definitions))
query_parameters['definitions'] = self._serialize.query('definitions', definitions, 'str')
if queues is not None:
queues = ",".join(map(str, queues))
query_parameters['queues'] = self._serialize.query('queues', queues, 'str')
if build_number is not None:
query_parameters['buildNumber'] = self._serialize.query('build_number', build_number, 'str')
if min_time is not None:
query_parameters['minTime'] = self._serialize.query('min_time', min_time, 'iso-8601')
if max_time is not None:
query_parameters['maxTime'] = self._serialize.query('max_time', max_time, 'iso-8601')
if requested_for is not None:
query_parameters['requestedFor'] = self._serialize.query('requested_for', requested_for, 'str')
if reason_filter is not None:
query_parameters['reasonFilter'] = self._serialize.query('reason_filter', reason_filter, 'str')
if status_filter is not None:
query_parameters['statusFilter'] = self._serialize.query('status_filter', status_filter, 'str')
if result_filter is not None:
query_parameters['resultFilter'] = self._serialize.query('result_filter', result_filter, 'str')
if tag_filters is not None:
tag_filters = ",".join(tag_filters)
query_parameters['tagFilters'] = self._serialize.query('tag_filters', tag_filters, 'str')
if properties is not None:
properties = ",".join(properties)
query_parameters['properties'] = self._serialize.query('properties', properties, 'str')
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if continuation_token is not None:
query_parameters['continuationToken'] = self._serialize.query('continuation_token', continuation_token, 'str')
if max_builds_per_definition is not None:
query_parameters['maxBuildsPerDefinition'] = self._serialize.query('max_builds_per_definition', max_builds_per_definition, 'int')
if deleted_filter is not None:
query_parameters['deletedFilter'] = self._serialize.query('deleted_filter', deleted_filter, 'str')
if query_order is not None:
query_parameters['queryOrder'] = self._serialize.query('query_order', query_order, 'str')
if branch_name is not None:
query_parameters['branchName'] = self._serialize.query('branch_name', branch_name, 'str')
if build_ids is not None:
build_ids = ",".join(map(str, build_ids))
query_parameters['buildIds'] = self._serialize.query('build_ids', build_ids, 'str')
if repository_id is not None:
query_parameters['repositoryId'] = self._serialize.query('repository_id', repository_id, 'str')
if repository_type is not None:
query_parameters['repositoryType'] = self._serialize.query('repository_type', repository_type, 'str')
response = self._send(http_method='GET',
location_id='0cd358e1-9217-4d94-8269-1c1ee6f93dcf',
version='5.0',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[Build]', self._unwrap_collection(response))
|
MIT License
|
aydanomachado/mlclass
|
04_ReinforcementLearning/ple/games/monsterkong/board.py
|
Board.__init__
|
python
|
def __init__(self, width, height, rewards, rng, _dir):
self.__width = width
self.__actHeight = height
self.__height = self.__actHeight + 10
self.score = 0
self.rng = rng
self.rewards = rewards
self.cycles = 0
self.direction = 0
self._dir = _dir
self.IMAGES = {
"still": pygame.image.load(os.path.join(_dir, 'assets/still.png')).convert_alpha(),
"monster0": pygame.image.load(os.path.join(_dir, 'assets/monster0.png')).convert_alpha(),
"princess": pygame.image.load(os.path.join(_dir, 'assets/princess.png')).convert_alpha(),
"fireballright": pygame.image.load(os.path.join(_dir, 'assets/fireballright.png')).convert_alpha(),
"coin1": pygame.image.load(os.path.join(_dir, 'assets/coin1.png')).convert_alpha(),
"wood_block": pygame.image.load(os.path.join(_dir, 'assets/wood_block.png')).convert_alpha(),
"ladder": pygame.image.load(os.path.join(_dir, 'assets/ladder.png')).convert_alpha()
}
self.white = (255, 255, 255)
'''
The map is essentially an array of 30x80 in which we store what each block on our map is.
1 represents a wall, 2 for a ladder and 3 for a coin.
'''
self.map = []
self.Players = []
self.Enemies = []
self.Allies = []
self.Coins = []
self.Walls = []
self.Ladders = []
self.Fireballs = []
self.Boards = []
self.FireballEndpoints = []
self.resetGroups()
self.fireballGroup = pygame.sprite.RenderPlain(self.Fireballs)
self.playerGroup = pygame.sprite.RenderPlain(self.Players)
self.enemyGroup = pygame.sprite.RenderPlain(self.Enemies)
self.wallGroup = pygame.sprite.RenderPlain(self.Walls)
self.ladderGroup = pygame.sprite.RenderPlain(self.Ladders)
self.coinGroup = pygame.sprite.RenderPlain(self.Coins)
self.allyGroup = pygame.sprite.RenderPlain(self.Allies)
self.fireballEndpointsGroup = pygame.sprite.RenderPlain(
self.FireballEndpoints)
|
The map is essentially an array of 30x80 in which we store what each block on our map is.
1 represents a wall, 2 for a ladder and 3 for a coin.
|
https://github.com/aydanomachado/mlclass/blob/b6d2cadbc57030b7af8bcad8c14bc0ec86febefa/04_ReinforcementLearning/ple/games/monsterkong/board.py#L22-L75
|
__author__ = 'Batchu Vishal'
import pygame
import math
import sys
import os
from .person import Person
from .onBoard import OnBoard
from .coin import Coin
from .player import Player
from .fireball import Fireball
from .monsterPerson import MonsterPerson
class Board(object):
|
MIT License
|
vincent-lg/tsunami
|
src/secondaires/navigation/commandes/loch/__init__.py
|
CmdLoch.__init__
|
python
|
def __init__(self):
Commande.__init__(self, "loch", "log")
self.nom_categorie = "navire"
self.aide_courte = "manipule le loch"
self.aide_longue = "Cette commande permet d'utiliser le loch présent dans la " "salle pour estimer la vitesse du navire."
|
Constructeur de la commande
|
https://github.com/vincent-lg/tsunami/blob/36b3b974f6eefbf15cd5d5f099fc14630e66570b/src/secondaires/navigation/commandes/loch/__init__.py#L39-L46
|
from primaires.interpreteur.commande.commande import Commande
class CmdLoch(Commande):
|
BSD 3-Clause New or Revised License
|
open-risk/concentrationmetrics
|
concentrationMetrics/model.py
|
Index.graph_density
|
python
|
def graph_density(self, adjacency_matrix):
pass
|
Calculate the Graph Density of an Adjacency Matrix.
:param adjacency_matrix:
:type adjacency_matrix: matrix
:return: D (Float)
`Open Risk Manual Entry for Graph Density <https://www.openriskmanual.org/wiki/Graph_Density>`_
|
https://github.com/open-risk/concentrationmetrics/blob/9f606b858109db210668bb01588843e72d8e3723/concentrationMetrics/model.py#L537-L546
|
import os
import numpy as np
import pandas as pd
package_name = 'concentrationMetrics'
module_path = os.path.dirname(__file__)
source_path = module_path
dataset_path = source_path + "/datasets/"
class Index(object):
def __init__(self, data=None, index=None, *args):
if data is not None:
self.data = data
self.index = index
self.arguments = args
self.results = None
results = []
for i in range(data.shape[0]):
calc = self.call_method(index, data[i, :], *args)
results.append(calc)
self.results = results
def print(self, cols=None):
print(self.index)
print('--------')
if cols is None:
for i in self.results:
print(i)
else:
for i in self.results[:cols]:
print(i)
def call_method(self, name, data, *args):
return getattr(self, name)(data, *args)
def total_size(self, data):
return np.sum(data)
def get_weights(self, data):
if len(data.shape) > 1:
data = data[:, 0]
if not (data >= 0).all():
raise ValueError('Input data vector must have positive values')
else:
ts = self.total_size(data)
if not ts > 0:
raise ValueError('Input data vector must have some non-zero values')
else:
return np.true_divide(data, ts)
def cr(self, data, n):
if n < 0 or n > data.size:
raise ValueError('n must be an positive integer smaller than the data size')
else:
data = np.array(sorted(data, reverse=True))
weights = self.get_weights(data)
return weights[:n].sum()
def berger_parker(self, data):
return self.cr(data, 1)
def hhi(self, data, normalized=True, ci=None, samples=None):
weights = self.get_weights(data)
n = weights.size
if n == 0:
return 0
else:
h = np.square(weights).sum()
if normalized:
return (h - 1.0 / n) / (1.0 - 1.0 / n)
else:
return h
def simpson(self, data):
return 1.0 - self.hhi(data, normalized=False, ci=None, samples=None)
def invsimpson(self, data):
return 1.0 / self.hhi(data, normalized=False, ci=None, samples=None)
def hk(self, data, a):
weights = self.get_weights(data)
n = weights.size
if n == 0:
return 0
else:
if a <= 0:
raise ValueError('Alpha must be strictly positive')
elif a == 1:
weights_nz = weights[weights != 0]
log_weights = np.log(weights_nz)
h = np.multiply(weights_nz, log_weights).sum()
return np.exp(h)
else:
h1 = np.power(weights, a).sum()
h2 = np.power(h1, 1.0 / (a - 1.0))
return h2
def hoover(self, data):
weights = self.get_weights(data)
n = weights.size
if n == 0:
return 0
else:
return 0.5 * np.absolute(weights - 1.0 / n).sum()
def hti(self, data):
data = np.array(sorted(data, reverse=True))
weights = self.get_weights(data)
n = weights.size
if n == 0:
return 0
else:
i = np.arange(1, n + 1)
return 1.0 / (2.0 * np.multiply(i, weights).sum() - 1.0)
def gini(self, data):
data = np.array(sorted(data, reverse=True))
weights = self.get_weights(data)
n = weights.size
if n == 0:
return 0
else:
i = np.arange(1, n + 1)
return 1.0 + (1.0 - 2.0 * np.multiply(i, weights).sum()) / n
def shannon(self, data, normalized=False):
weights = self.get_weights(data)
weights_nz = weights[weights != 0]
n = weights_nz.size
if n == 0:
return 0
else:
log_weights = np.log(weights_nz)
h = - np.multiply(weights_nz, log_weights).sum()
if normalized:
return 1.0 - h / np.log(n)
else:
return h
def atkinson(self, data, epsilon):
weights = self.get_weights(data)
n = weights.size
if n == 0:
return 0
else:
if epsilon <= 0:
raise ValueError('Epsilon must be strictly positive (>0.0)')
elif epsilon == 1:
weights_nz = weights[weights != 0]
n = weights_nz.size
log_weights = np.log(weights_nz)
h = log_weights.sum() / n
return 1 - n * np.exp(h)
else:
n2 = np.power(n, epsilon / (epsilon - 1.0))
h1 = np.power(weights, 1.0 - epsilon).sum()
h2 = np.power(h1, 1.0 / (1.0 - epsilon))
return 1 - n2 * h2
def gei(self, data, alpha):
weights = self.get_weights(data)
n = weights.size
if n == 0:
return 0
else:
if alpha == 0:
weights_nz = weights[weights != 0]
n = weights_nz.size
log_weights = np.log(weights_nz)
h = log_weights.sum() / n
index = - (np.log(n) + h)
elif alpha == 1:
weights_nz = weights[weights != 0]
n = weights_nz.size
log_weights = np.log(weights_nz)
h = np.multiply(weights_nz, log_weights).sum()
index = np.log(n) + h
else:
n2 = np.power(n, alpha)
h1 = n2 * np.power(weights, alpha).sum() - n
index = h1 / n / alpha / (alpha - 1.0)
return index
def theil(self, data):
weights = self.get_weights(data)
return self.gei(weights, 1)
def kolm(self, data, alpha):
n = data.size
if n == 0:
return 0
else:
mu = data.mean()
weights = self.get_weights(data) - mu
n_weights = np.multiply(alpha, weights)
h = np.exp(n_weights).sum()
return (np.log(h) - np.log(n)) / alpha
def ellison_glaeser(self, data, na, ni):
area_groups = data.groupby(['Area']).sum()
area_totals = area_groups['Exposure'].values
total_exposure = area_totals.sum()
xa = area_totals / total_exposure
hhi_g = self.hhi(area_totals, normalized=False)
industry_groups = data.groupby(['Industry'])
hhi_i = []
industry_totals = []
total = 0
eg_indexes = []
s = np.zeros((ni, na))
for industry_index, group in industry_groups:
x = group['Exposure'].values
i_total = x.sum()
total += i_total
industry_totals.append(i_total)
hhi_i_val = self.hhi(x, normalized=False)
hhi_i.append(hhi_i_val)
industry_group = pd.DataFrame(group).groupby('Area').sum()
ig_values = industry_group.values[:, 0]
ai = list(industry_group.index)
for a in range(len(ai)):
share = ig_values[a] / i_total
s[industry_index, ai[a]] = share
egi = 0
for a in range(len(ai)):
egi += (s[industry_index, a] - xa[a]) ** 2
val = hhi_i[industry_index]
gi = egi / (1.0 - hhi_g) / (1 - val)
eg_indexes.append(gi)
return eg_indexes
def compute(self, data, *args, ci=None, samples=None, index='hhi'):
value = self.call_method(index, data, *args)
if ci is not None:
sample_values = []
for s in range(samples):
sample_data = np.random.choice(data, size=len(data), replace=True)
sample_values.append(self.call_method(index, sample_data, *args))
values = np.array(sample_values)
values.sort()
lower_bound_index = int((1.0 - ci) * samples)
upper_bound_index = int(ci * samples)
lower_bound = values[lower_bound_index]
upper_bound = values[upper_bound_index]
return lower_bound, value, upper_bound
else:
return value
def describe(self, index):
print(index)
return
def margalev(self, data):
n = len(data)
s = len(list(set(data)))
if n == 0:
return 0
else:
return (s - 1) / np.log(n)
def tango(self, data):
pass
|
MIT License
|
rootpy/rootpy
|
rootpy/memory/deletion.py
|
monitor_deletion
|
python
|
def monitor_deletion():
monitors = {}
def set_deleted(x):
def _(weakref):
del monitors[x]
return _
def monitor(item, name):
monitors[name] = ref(item, set_deleted(name))
def is_alive(name):
return monitors.get(name, None) is not None
return monitor, is_alive
|
Function for checking for correct deletion of weakref-able objects.
Example usage::
monitor, is_alive = monitor_deletion()
obj = set()
monitor(obj, "obj")
assert is_alive("obj") # True because there is a ref to `obj` is_alive
del obj
assert not is_alive("obj") # True because there `obj` is deleted
|
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/memory/deletion.py#L25-L52
|
from __future__ import absolute_import
from weakref import ref
import ctypes
from ctypes import CFUNCTYPE, py_object, addressof, c_int
from .. import compiled as C
from .. import QROOT, log
from ..utils.cinterface import callback, objectproxy_realaddress
__all__ = [
'monitor_deletion',
'monitor_object_deletion',
]
|
BSD 3-Clause New or Revised License
|
sage-bionetworks/synapsepythonclient
|
synapseutils/walk.py
|
walk
|
python
|
def walk(syn, synId):
return _helpWalk(syn, synId)
|
Traverse through the hierarchy of files and folders stored under the synId. Has the same behavior as os.walk()
:param syn: A synapse object: syn = synapseclient.login()- Must be logged into synapse
:param synId: A synapse ID of a folder or project
Example::
walkedPath = walk(syn, "syn1234")
for dirpath, dirname, filename in walkedPath:
print(dirpath)
print(dirname) #All the folders in the directory path
print(filename) #All the files in the directory path
|
https://github.com/sage-bionetworks/synapsepythonclient/blob/c75185c01f648d3c5c2b797876835b1ec05356c6/synapseutils/walk.py#L5-L23
|
from synapseclient.entity import is_container
import os
|
Apache License 2.0
|
ml-tooling/lazydocs
|
src/lazydocs/generation.py
|
MarkdownGenerator.module2md
|
python
|
def module2md(self, module: types.ModuleType, depth: int = 1) -> str:
if _is_object_ignored(module):
return ""
modname = module.__name__
doc = _doc2md(module)
summary = _get_doc_summary(module)
path = self._get_src_path(module)
found = []
self.generated_objects.append(
{
"type": "module",
"name": modname,
"full_name": modname,
"module": modname,
"anchor_tag": _get_anchor_tag("module-" + modname),
"description": summary,
}
)
classes: List[str] = []
line_nos: List[int] = []
for name, obj in inspect.getmembers(module, inspect.isclass):
found.append(name)
if (
not name.startswith("_")
and hasattr(obj, "__module__")
and obj.__module__ == modname
):
class_markdown = self.class2md(obj, depth=depth + 1)
if class_markdown:
classes.append(_SEPARATOR + class_markdown)
line_nos.append(_get_line_no(obj) or 0)
classes = _order_by_line_nos(classes, line_nos)
functions: List[str] = []
line_nos = []
for name, obj in inspect.getmembers(module, inspect.isfunction):
found.append(name)
if (
not name.startswith("_")
and hasattr(obj, "__module__")
and obj.__module__ == modname
):
function_md = self.func2md(obj, depth=depth + 1)
if function_md:
functions.append(_SEPARATOR + function_md)
line_nos.append(_get_line_no(obj) or 0)
functions = _order_by_line_nos(functions, line_nos)
variables: List[str] = []
line_nos = []
for name, obj in module.__dict__.items():
if not name.startswith("_") and name not in found:
if hasattr(obj, "__module__") and obj.__module__ != modname:
continue
if hasattr(obj, "__name__") and not obj.__name__.startswith(modname):
continue
comments = inspect.getcomments(obj)
comments = ": %s" % comments if comments else ""
variables.append("- **%s**%s" % (name, comments))
line_nos.append(_get_line_no(obj) or 0)
variables = _order_by_line_nos(variables, line_nos)
if variables:
new_list = ["\n**Global Variables**", "---------------", *variables]
variables = new_list
markdown = _MODULE_TEMPLATE.format(
header=modname,
section="#" * depth,
doc=doc,
global_vars="\n".join(variables) if variables else "",
functions="\n".join(functions) if functions else "",
classes="".join(classes) if classes else "",
)
if path:
markdown = _SOURCE_BADGE_TEMPLATE.format(path=path) + markdown
return markdown
|
Takes an imported module object and create a Markdown string containing functions and classes.
Args:
module (types.ModuleType): Selected module for markdown generation.
depth (int, optional): Number of # to append before module heading. Defaults to 1.
Returns:
str: Markdown documentation for selected module.
|
https://github.com/ml-tooling/lazydocs/blob/f19810ef020684abc7cac8e705ca1258478cdcbb/src/lazydocs/generation.py#L720-L813
|
import datetime
import importlib
import importlib.util
import inspect
import os
import pkgutil
import re
import subprocess
import types
from pydoc import locate
from typing import Any, Callable, Dict, List, Optional
_RE_BLOCKSTART_LIST = re.compile(
r"(Args:|Arg:|Arguments:|Parameters:|Kwargs:|Attributes:|Returns:|Yields:|Kwargs:|Raises:).{0,2}$",
re.IGNORECASE,
)
_RE_BLOCKSTART_TEXT = re.compile(r"(Examples:|Example:|Todo:).{0,2}$", re.IGNORECASE)
_RE_QUOTE_TEXT = re.compile(r"(Notes:|Note:).{0,2}$", re.IGNORECASE)
_RE_TYPED_ARGSTART = re.compile(r"([\w\[\]_]{1,}?)\s*?\((.*?)\):(.{2,})", re.IGNORECASE)
_RE_ARGSTART = re.compile(r"(.{1,}?):(.{2,})", re.IGNORECASE)
_IGNORE_GENERATION_INSTRUCTION = "lazydocs: ignore"
_SOURCE_BADGE_TEMPLATE = """
<a href="{path}"><img align="right" style="float:right;" src="https://img.shields.io/badge/-source-cccccc?style=flat-square"></a>
"""
_SEPARATOR = """
---
"""
_FUNC_TEMPLATE = """
{section} <kbd>{func_type}</kbd> `{header}`
```python
{funcdef}
```
{doc}
"""
_CLASS_TEMPLATE = """
{section} <kbd>class</kbd> `{header}`
{doc}
{init}
{variables}
{handlers}
{methods}
"""
_MODULE_TEMPLATE = """
{section} <kbd>module</kbd> `{header}`
{doc}
{global_vars}
{functions}
{classes}
"""
_OVERVIEW_TEMPLATE = """
# API Overview
## Modules
{modules}
## Classes
{classes}
## Functions
{functions}
"""
_WATERMARK_TEMPLATE = """
---
_This file was automatically generated via [lazydocs](https://github.com/ml-tooling/lazydocs)._
"""
_MKDOCS_PAGES_TEMPLATE = """title: API Reference
nav:
- Overview: {overview_file}
- ...
"""
def _get_function_signature(
function: Callable,
owner_class: Any = None,
show_module: bool = False,
ignore_self: bool = False,
wrap_arguments: bool = False,
remove_package: bool = False,
) -> str:
isclass = inspect.isclass(function)
name_parts = []
if show_module:
name_parts.append(function.__module__)
if owner_class:
name_parts.append(owner_class.__name__)
if hasattr(function, "__name__"):
name_parts.append(function.__name__)
else:
name_parts.append(type(function).__name__)
name_parts.append("__call__")
function = function.__call__
name = ".".join(name_parts)
if isclass:
function = getattr(function, "__init__", None)
arguments = []
return_type = ""
if hasattr(inspect, "signature"):
parameters = inspect.signature(function).parameters
if inspect.signature(function).return_annotation != inspect.Signature.empty:
return_type = str(inspect.signature(function).return_annotation)
if return_type.startswith("<class"):
try:
return_type = inspect.signature(function).return_annotation.__name__
except Exception:
pass
return_type = return_type.replace("typing.", "")
if remove_package:
return_type = re.sub(r"([a-zA-Z0-9_]*?\.)", "", return_type)
for parameter in parameters:
argument = str(parameters[parameter])
if ignore_self and argument == "self":
continue
argument = re.sub(r"Union\[(.*?), NoneType\]", r"Optional[\1]", argument)
if remove_package:
if "=" not in argument:
argument = re.sub(r"([a-zA-Z0-9_]*?\.)", "", argument)
else:
argument_split = argument.split("=")
argument_split[0] = re.sub(
r"([a-zA-Z0-9_]*?\.)", "", argument_split[0]
)
argument = "=".join(argument_split)
arguments.append(argument)
else:
print("Seems like function " + name + " does not have any signature")
signature = name + "("
if wrap_arguments:
for i, arg in enumerate(arguments):
signature += "\n " + arg
signature += "," if i is not len(arguments) - 1 else "\n"
else:
signature += ", ".join(arguments)
signature += ")" + ((" → " + return_type) if return_type else "")
return signature
def _order_by_line_nos(objs: Any, line_nos: List[int]) -> List[str]:
ordering = sorted(range(len(line_nos)), key=line_nos.__getitem__)
return [objs[i] for i in ordering]
def to_md_file(
markdown_str: str,
filename: str,
out_path: str = ".",
watermark: bool = True,
disable_markdownlint: bool = True,
) -> None:
if not markdown_str:
return
md_file = filename
if not filename.endswith(".md"):
md_file = filename + ".md"
if disable_markdownlint:
markdown_str = "<!-- markdownlint-disable -->\n" + markdown_str
if watermark:
markdown_str += _WATERMARK_TEMPLATE.format(
date=datetime.date.today().strftime("%d %b %Y")
)
print("Writing {}.".format(md_file))
with open(os.path.join(out_path, md_file), "w", encoding="utf-8") as f:
f.write(markdown_str)
def _code_snippet(snippet: str) -> str:
result = "```python\n"
result += snippet + "\n"
result += "```\n\n"
return result
def _get_line_no(obj: Any) -> Optional[int]:
try:
return inspect.getsourcelines(obj)[1]
except Exception:
return None
def _get_class_that_defined_method(meth: Any) -> Any:
if inspect.ismethod(meth):
for cls in inspect.getmro(meth.__self__.__class__):
if cls.__dict__.get(meth.__name__) is meth:
return cls
meth = meth.__func__
if inspect.isfunction(meth):
mod = inspect.getmodule(meth)
if mod is None:
return None
cls = getattr(
inspect.getmodule(meth),
meth.__qualname__.split(".<locals>", 1)[0].rsplit(".", 1)[0],
)
if isinstance(cls, type):
return cls
return getattr(meth, "__objclass__", None)
def _get_docstring(obj: Any) -> str:
return "" if obj.__doc__ is None else inspect.getdoc(obj) or ""
def _is_object_ignored(obj: Any) -> bool:
if (
_IGNORE_GENERATION_INSTRUCTION.replace(" ", "").lower()
in _get_docstring(obj).replace(" ", "").lower()
):
return True
return False
def _is_module_ignored(module_name: str, ignored_modules: List[str]) -> bool:
if module_name.split(".")[-1].startswith("_"):
return True
for ignored_module in ignored_modules:
if module_name == ignored_module:
return True
if module_name.startswith(ignored_module + "."):
return True
return False
def _get_src_root_path(obj: Any) -> str:
module = obj
if not isinstance(obj, types.ModuleType):
module = inspect.getmodule(obj)
root_package = module.__name__.split(".")[0]
return module.__file__.split(root_package)[0] + root_package
def _get_doc_summary(obj: Any) -> str:
return _get_docstring(obj).split("\n")[0]
def _get_anchor_tag(header: str) -> str:
anchor_tag = header.strip().lower()
anchor_tag = re.compile(r"\s").sub("-", anchor_tag)
anchor_tag = re.compile(r"[^a-zA-Z0-9-_]").sub("", anchor_tag)
return anchor_tag
def _doc2md(obj: Any) -> str:
doc = _get_docstring(obj)
blockindent = 0
argindent = 1
out = []
arg_list = False
literal_block = False
md_code_snippet = False
quote_block = False
for line in doc.split("\n"):
indent = len(line) - len(line.lstrip())
if not md_code_snippet and not literal_block:
line = line.lstrip()
if line.startswith(">>>"):
line = line.replace(">>>", "```") + "```"
if (
_RE_BLOCKSTART_LIST.match(line)
or _RE_BLOCKSTART_TEXT.match(line)
or _RE_QUOTE_TEXT.match(line)
):
blockindent = indent
if quote_block:
quote_block = False
if literal_block:
out.append("```\n")
literal_block = False
out.append("\n\n**{}**\n".format(line.strip()))
arg_list = bool(_RE_BLOCKSTART_LIST.match(line))
if _RE_QUOTE_TEXT.match(line):
quote_block = True
out.append("\n>")
elif line.strip().startswith("```"):
if md_code_snippet:
md_code_snippet = False
else:
md_code_snippet = True
out.append(line)
elif line.strip().endswith("::"):
literal_block = True
out.append(line.replace("::", ":\n```"))
elif quote_block:
out.append(line.strip())
elif line.strip().startswith("-"):
out.append("\n" + (" " * indent) + line)
elif indent > blockindent:
if arg_list and not literal_block and _RE_TYPED_ARGSTART.match(line):
out.append(
"\n"
+ " " * blockindent
+ " - "
+ _RE_TYPED_ARGSTART.sub(r"<b>`\1`</b> (\2): \3", line)
)
argindent = indent
elif arg_list and not literal_block and _RE_ARGSTART.match(line):
out.append(
"\n"
+ " " * blockindent
+ " - "
+ _RE_ARGSTART.sub(r"<b>`\1`</b>: \2", line)
)
argindent = indent
elif indent > argindent:
out.append(" " + line)
else:
out.append(line)
else:
if line.strip() and literal_block:
line = "```\n" + line
literal_block = False
out.append(line)
if md_code_snippet:
out.append("\n")
elif not line and not quote_block:
out.append("\n\n")
elif not line and quote_block:
out.append("\n>")
else:
out.append(" ")
return "".join(out)
class MarkdownGenerator(object):
def __init__(
self,
src_root_path: Optional[str] = None,
src_base_url: Optional[str] = None,
remove_package_prefix: bool = False,
):
self.src_root_path = src_root_path
self.src_base_url = src_base_url
self.remove_package_prefix = remove_package_prefix
self.generated_objects: List[Dict] = []
def _get_src_path(self, obj: Any, append_base: bool = True) -> str:
src_root_path = None
if self.src_root_path:
src_root_path = os.path.abspath(self.src_root_path)
else:
return ""
try:
path = os.path.abspath(inspect.getsourcefile(obj))
except Exception:
return ""
assert isinstance(path, str)
if src_root_path not in path:
if hasattr(obj, "__module__"):
path = "%s.%s" % (obj.__module__, obj.__name__)
else:
path = obj.__name__
assert isinstance(path, str)
path = path.replace(".", "/")
relative_path = os.path.relpath(path, src_root_path)
lineno = _get_line_no(obj)
lineno_hashtag = "" if lineno is None else "#L{}".format(lineno)
relative_path = relative_path + lineno_hashtag
if append_base and self.src_base_url:
relative_path = os.path.join(self.src_base_url, relative_path)
return relative_path
def func2md(self, func: Callable, clsname: str = "", depth: int = 3) -> str:
if _is_object_ignored(func):
return ""
section = "#" * depth
funcname = func.__name__
modname = None
if hasattr(func, "__module__"):
modname = func.__module__
escfuncname = (
"%s" % funcname if funcname.startswith("_") else funcname
)
full_name = "%s%s" % ("%s." % clsname if clsname else "", escfuncname)
header = full_name
if self.remove_package_prefix:
header = escfuncname
path = self._get_src_path(func)
doc = _doc2md(func)
summary = _get_doc_summary(func)
funcdef = _get_function_signature(
func, ignore_self=True, remove_package=self.remove_package_prefix
)
lmax = 80
if len(funcdef) > lmax:
funcdef = _get_function_signature(
func,
ignore_self=True,
wrap_arguments=True,
remove_package=self.remove_package_prefix,
)
if inspect.ismethod(func):
func_type = "classmethod"
else:
if _get_class_that_defined_method(func) is None:
func_type = "function"
else:
func_type = "method"
self.generated_objects.append(
{
"type": func_type,
"name": header,
"full_name": full_name,
"module": modname,
"anchor_tag": _get_anchor_tag(func_type + "-" + header),
"description": summary,
}
)
markdown = _FUNC_TEMPLATE.format(
section=section,
header=header,
funcdef=funcdef,
func_type=func_type,
doc=doc if doc else "*No documentation found.*",
)
if path:
markdown = _SOURCE_BADGE_TEMPLATE.format(path=path) + markdown
return markdown
def class2md(self, cls: Any, depth: int = 2) -> str:
if _is_object_ignored(cls):
return ""
section = "#" * depth
subsection = "#" * (depth + 2)
clsname = cls.__name__
modname = cls.__module__
header = clsname
path = self._get_src_path(cls)
doc = _doc2md(cls)
summary = _get_doc_summary(cls)
self.generated_objects.append(
{
"type": "class",
"name": header,
"full_name": header,
"module": modname,
"anchor_tag": _get_anchor_tag("class-" + header),
"description": summary,
}
)
try:
if (
hasattr(cls.__init__, "__module__")
and cls.__init__.__module__ == modname
):
init = self.func2md(cls.__init__, clsname=clsname)
else:
init = ""
except (ValueError, TypeError):
init = ""
variables = []
for name, obj in inspect.getmembers(
cls, lambda a: not (inspect.isroutine(a) or inspect.ismethod(a))
):
if not name.startswith("_") and type(obj) == property:
comments = _doc2md(obj) or inspect.getcomments(obj)
comments = "\n\n%s" % comments if comments else ""
property_name = f"{clsname}.{name}"
if self.remove_package_prefix:
property_name = name
variables.append(
_SEPARATOR
+ "\n%s <kbd>property</kbd> %s%s\n"
% (subsection, property_name, comments)
)
handlers = []
for name, obj in inspect.getmembers(cls, inspect.ismethoddescriptor):
if (
not name.startswith("_")
and hasattr(obj, "__module__")
and obj.__module__ == modname
):
handler_name = f"{clsname}.{name}"
if self.remove_package_prefix:
handler_name = name
handlers.append(
_SEPARATOR
+ "\n%s <kbd>handler</kbd> %s\n" % (subsection, handler_name)
)
methods = []
for name, obj in inspect.getmembers(
cls, lambda a: inspect.ismethod(a) or inspect.isfunction(a)
):
if (
not name.startswith("_")
and hasattr(obj, "__module__")
and name not in handlers
and obj.__module__ == modname
):
function_md = self.func2md(obj, clsname=clsname, depth=depth + 1)
if function_md:
methods.append(_SEPARATOR + function_md)
markdown = _CLASS_TEMPLATE.format(
section=section,
header=header,
doc=doc if doc else "",
init=init,
variables="".join(variables),
handlers="".join(handlers),
methods="".join(methods),
)
if path:
markdown = _SOURCE_BADGE_TEMPLATE.format(path=path) + markdown
return markdown
|
MIT License
|
reservoirpy/reservoirpy
|
reservoirpy/_esn.py
|
ESN.train
|
python
|
def train(self,
inputs: Data,
teachers: Data,
wash_nr_time_step: int = 0,
workers: int = -1,
seed: int = None,
verbose: bool = False,
backend=None,
use_memmap=None,
return_states: bool = False) -> Sequence[np.ndarray]:
inputs, teachers = check_input_lists(inputs, self.dim_in,
teachers, self.dim_out)
self._dim_out = teachers[0].shape[1]
self.model.initialize(self.N, self.dim_out)
lengths = [i.shape[0] for i in inputs]
steps = sum(lengths)
if verbose:
print(f"Training on {len(inputs)} inputs ({steps} steps) "
f"-- wash: {wash_nr_time_step} steps")
def train_fn(*, x, y, pbar):
s = self._compute_states(x, y, seed=seed, pbar=pbar)
self.model.partial_fit(s[wash_nr_time_step:], y)
return s
_, states = parallelize(self, train_fn, workers, lengths, return_states,
pbar_text="Train", verbose=verbose,
x=inputs, y=teachers)
self.Wout = self.model.fit()
return states
|
Train the ESN model on set of input sequences.
Parameters
----------
inputs: list of numpy.ndarray
List of inputs.
Note that it should always be a list of sequences, i.e. if
only one sequence (array with rows representing time axis)
of inputs is used, it should be alone in a list.
teachers: list of numpy.ndarray
List of ground truths.
Note that is should always be a list of
sequences of the same length than the `inputs`, i.e. if
only one sequence of inputs is used, it should be alone in a
list.
wash_nr_time_step: int
Number of states to considered as transient when training. Transient
states will be discarded when computing readout matrix. By default,
no states are removes.
workers: int, optional
If n >= 1, will enable parallelization of states computation with
n threads/processes, if possible. If n = -1, will use all available
resources for parallelization. By default, -1.
return_states: bool, False by default
If `True`, the function will return all the internal states computed
during the training. Be warned that this may be too heavy for the
memory of your computer.
backend:
kept for compatibility with previous versions.
use_memmap:
kept for compatibility with previous versions.
verbose: bool, optional
Returns
-------
list of numpy.ndarray
All states computed, for all inputs.
Note
----
If only one input sequence is provided ("continuous time" inputs),
workers should be 1, because parallelization is impossible. In other
cases, if using large NumPy arrays during computation (which is often
the case), prefer using `threading` backend to avoid huge overhead.
Multiprocess is a good idea only in very specific cases, and this code
is not (yet) well suited for this.
|
https://github.com/reservoirpy/reservoirpy/blob/4321ea2a1317362ee4190188ab64d3b4ec6ad2ce/reservoirpy/_esn.py#L217-L301
|
import time
import warnings
from typing import Sequence, Callable, Tuple, Union
from pathlib import Path
from functools import partial
import numpy as np
from joblib import Parallel, delayed
from tqdm import tqdm
from numpy.random import default_rng, SeedSequence, Generator
from .utils.parallel import ParallelProgressQueue, get_joblib_backend, parallelize
from .utils.validation import _check_values, add_bias, check_input_lists
from .utils.save import _save
from .utils.types import Weights, Data, Activation
from .regression_models import RidgeRegression, SklearnLinearModel
from ._base import _ESNBase
def _get_offline_model(ridge: float = 0.0,
sklearn_model: Callable = None,
dtype: np.dtype = np.float64):
if ridge > 0.0 and sklearn_model is not None:
raise ValueError("Parameters 'ridge' and 'sklearn_model' can not be "
"defined at the same time.")
elif sklearn_model is not None:
return SklearnLinearModel(sklearn_model, dtype=dtype)
else:
return RidgeRegression(ridge, dtype=dtype)
class ESN(_ESNBase):
def __init__(self,
lr: float,
W: np.ndarray,
Win: np.ndarray,
input_bias: bool = True,
reg_model: Callable = None,
ridge: float = 0.0,
Wfb: np.ndarray = None,
fbfunc: Callable = lambda x: x,
noise_in: float = 0.0,
noise_rc: float = 0.0,
noise_out: float = 0.0,
activation: Activation = np.tanh,
seed: int = None,
typefloat: np.dtype = np.float64):
super(ESN, self).__init__(lr,
W,
Win,
input_bias=input_bias,
activation=activation,
Wfb=Wfb,
fbfunc=fbfunc,
Wout=None,
noise_in=noise_in,
noise_rc=noise_rc,
noise_out=noise_out,
seed=seed,
typefloat=typefloat)
self.model = _get_offline_model(ridge, reg_model, dtype=typefloat)
@property
def ridge(self):
return getattr(self.model, "ridge", None)
@ridge.setter
def ridge(self, value):
if hasattr(self.model, "ridge"):
self.model.ridge = value
def fit_readout(self,
states: Data,
teachers: Data,
reg_model: Callable = None,
ridge: float = None,
force_pinv: bool = False,
verbose: bool = False) -> np.ndarray:
states, teachers = check_input_lists(states, self.N, teachers, self.dim_out)
if (ridge is not None) or (reg_model is not None):
offline_model = _get_offline_model(ridge, reg_model, dtype=self.typefloat)
elif force_pinv:
offline_model = _get_offline_model(ridge=0.0)
else:
offline_model = self.model
_check_values(array_or_list=states, value=None)
if verbose:
tic = time.time()
print("Linear regression...")
self.Wout = offline_model.fit(X=states, Y=teachers)
if verbose:
toc = time.time()
print(f"Linear regression done! (in {toc - tic} sec)")
return self.Wout
|
MIT License
|
amanchadha/iperceive
|
iPerceiveVideoQA/preprocessing.py
|
clean_str
|
python
|
def clean_str(string):
string = re.sub(r"[^A-Za-z0-9(),!?:.\'`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r"\'m", " \'m", string)
string = re.sub(r":", " : ", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\.\.\.", " . ", string)
string = re.sub(r"\.", " . ", string)
string = re.sub(r"\(", " ", string)
string = re.sub(r"\)", " ", string)
string = re.sub(r"\?", " ? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip()
|
Tokenization/string cleaning for strings.
Taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
|
https://github.com/amanchadha/iperceive/blob/7e85bbddfa926b36b7bad97bf459d83d12d72de5/iPerceiveVideoQA/preprocessing.py#L55-L76
|
__author__ = "Jie Lei"
import os
import sys
import re
import math
import json
import glob
import copy
import pysrt
import numpy as np
from tqdm import tqdm
from utils import read_json_lines, load_json, save_json
def merge_list_dicts(list_dicts):
z = list_dicts[0].copy()
for i in range(1, len(list_dicts)):
z.update(list_dicts[i])
return z
def get_vidname2cnt_per_show(base_path):
subdirs = [name for name in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, name))]
vidname2cnt = {}
for ele in tqdm(subdirs):
cur_subdir_path = os.path.join(base_path, ele)
cur_files = glob.glob(os.path.join(cur_subdir_path, "*jpg"))
vidname2cnt[ele] = len(cur_files)
return vidname2cnt
def get_vidname2cnt_all(frame_root_path, vidname2cnt_cache_path):
if os.path.exists(vidname2cnt_cache_path):
print("Found frame cnt cache, loading ...")
return load_json(vidname2cnt_cache_path)
show_names = ["bbt", "friends", "grey", "met", "castle", "house"]
vidname2cnt_list = []
for sn in show_names:
print("Count frames in %s" % sn)
cur_base_path = os.path.join(frame_root_path, "%s_frames" % sn)
vidname2cnt_list.append(get_vidname2cnt_per_show(cur_base_path))
vidname2cnt = merge_list_dicts(vidname2cnt_list)
save_json(vidname2cnt, vidname2cnt_cache_path)
return
|
MIT License
|
napalm-automation/napalm-yang
|
napalm_yang/models/openconfig/interfaces/interface/ethernet/state/counters/__init__.py
|
counters._set_in_fragment_frames
|
python
|
def _set_in_fragment_frames(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-fragment-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """in_fragment_frames must be of a type compatible with yang:counter64""",
"defined-type": "yang:counter64",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..18446744073709551615']}, int_size=64), is_leaf=True, yang_name="in-fragment-frames", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ethernet', defining_module='openconfig-if-ethernet', yang_type='yang:counter64', is_config=False)""",
}
)
self.__in_fragment_frames = t
if hasattr(self, "_set"):
self._set()
|
Setter method for in_fragment_frames, mapped from YANG variable /interfaces/interface/ethernet/state/counters/in_fragment_frames (yang:counter64)
If this variable is read-only (config: false) in the
source YANG file, then _set_in_fragment_frames is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_in_fragment_frames() directly.
YANG Description: Number of fragment frames received on the interface.
|
https://github.com/napalm-automation/napalm-yang/blob/9148e015b086ebe311c07deb92e168ea36fd7771/napalm_yang/models/openconfig/interfaces/interface/ethernet/state/counters/__init__.py#L556-L598
|
from operator import attrgetter
from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType
from pyangbind.lib.yangtypes import RestrictedClassType
from pyangbind.lib.yangtypes import TypedListType
from pyangbind.lib.yangtypes import YANGBool
from pyangbind.lib.yangtypes import YANGListType
from pyangbind.lib.yangtypes import YANGDynClass
from pyangbind.lib.yangtypes import ReferenceType
from pyangbind.lib.base import PybindBase
from collections import OrderedDict
from decimal import Decimal
from bitarray import bitarray
import six
if six.PY3:
import builtins as __builtin__
long = int
elif six.PY2:
import __builtin__
class counters(PybindBase):
__slots__ = (
"_path_helper",
"_extmethods",
"__in_mac_control_frames",
"__in_mac_pause_frames",
"__in_oversize_frames",
"__in_jabber_frames",
"__in_fragment_frames",
"__in_8021q_frames",
"__in_crc_errors",
"__out_mac_control_frames",
"__out_mac_pause_frames",
"__out_8021q_frames",
)
_yang_name = "counters"
_pybind_generated_by = "container"
def __init__(self, *args, **kwargs):
self._path_helper = False
self._extmethods = False
self.__in_mac_control_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-mac-control-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__in_mac_pause_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-mac-pause-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__in_oversize_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-oversize-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__in_jabber_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-jabber-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__in_fragment_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-fragment-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__in_8021q_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-8021q-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__in_crc_errors = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-crc-errors",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__out_mac_control_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="out-mac-control-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__out_mac_pause_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="out-mac-pause-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
self.__out_8021q_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="out-8021q-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
load = kwargs.pop("load", None)
if args:
if len(args) > 1:
raise TypeError("cannot create a YANG container with >1 argument")
all_attr = True
for e in self._pyangbind_elements:
if not hasattr(args[0], e):
all_attr = False
break
if not all_attr:
raise ValueError("Supplied object did not have the correct attributes")
for e in self._pyangbind_elements:
nobj = getattr(args[0], e)
if nobj._changed() is False:
continue
setmethod = getattr(self, "_set_%s" % e)
if load is None:
setmethod(getattr(args[0], e))
else:
setmethod(getattr(args[0], e), load=load)
def _path(self):
if hasattr(self, "_parent"):
return self._parent._path() + [self._yang_name]
else:
return ["interfaces", "interface", "ethernet", "state", "counters"]
def _get_in_mac_control_frames(self):
return self.__in_mac_control_frames
def _set_in_mac_control_frames(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-mac-control-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """in_mac_control_frames must be of a type compatible with yang:counter64""",
"defined-type": "yang:counter64",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..18446744073709551615']}, int_size=64), is_leaf=True, yang_name="in-mac-control-frames", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ethernet', defining_module='openconfig-if-ethernet', yang_type='yang:counter64', is_config=False)""",
}
)
self.__in_mac_control_frames = t
if hasattr(self, "_set"):
self._set()
def _unset_in_mac_control_frames(self):
self.__in_mac_control_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-mac-control-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
def _get_in_mac_pause_frames(self):
return self.__in_mac_pause_frames
def _set_in_mac_pause_frames(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-mac-pause-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """in_mac_pause_frames must be of a type compatible with yang:counter64""",
"defined-type": "yang:counter64",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..18446744073709551615']}, int_size=64), is_leaf=True, yang_name="in-mac-pause-frames", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ethernet', defining_module='openconfig-if-ethernet', yang_type='yang:counter64', is_config=False)""",
}
)
self.__in_mac_pause_frames = t
if hasattr(self, "_set"):
self._set()
def _unset_in_mac_pause_frames(self):
self.__in_mac_pause_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-mac-pause-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
def _get_in_oversize_frames(self):
return self.__in_oversize_frames
def _set_in_oversize_frames(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-oversize-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """in_oversize_frames must be of a type compatible with yang:counter64""",
"defined-type": "yang:counter64",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..18446744073709551615']}, int_size=64), is_leaf=True, yang_name="in-oversize-frames", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ethernet', defining_module='openconfig-if-ethernet', yang_type='yang:counter64', is_config=False)""",
}
)
self.__in_oversize_frames = t
if hasattr(self, "_set"):
self._set()
def _unset_in_oversize_frames(self):
self.__in_oversize_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-oversize-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
def _get_in_jabber_frames(self):
return self.__in_jabber_frames
def _set_in_jabber_frames(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-jabber-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """in_jabber_frames must be of a type compatible with yang:counter64""",
"defined-type": "yang:counter64",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..18446744073709551615']}, int_size=64), is_leaf=True, yang_name="in-jabber-frames", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ethernet', defining_module='openconfig-if-ethernet', yang_type='yang:counter64', is_config=False)""",
}
)
self.__in_jabber_frames = t
if hasattr(self, "_set"):
self._set()
def _unset_in_jabber_frames(self):
self.__in_jabber_frames = YANGDynClass(
base=RestrictedClassType(
base_type=long,
restriction_dict={"range": ["0..18446744073709551615"]},
int_size=64,
),
is_leaf=True,
yang_name="in-jabber-frames",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ethernet",
defining_module="openconfig-if-ethernet",
yang_type="yang:counter64",
is_config=False,
)
def _get_in_fragment_frames(self):
return self.__in_fragment_frames
|
Apache License 2.0
|
pitthsls/pycounter
|
pycounter/test/conftest.py
|
jr1_report_xlsx
|
python
|
def jr1_report_xlsx(request):
return parsedata(request.param)
|
Excel formatted JR1 reports.
|
https://github.com/pitthsls/pycounter/blob/35772d31a4eb12378e3a9821125acce53fee2ba2/pycounter/test/conftest.py#L47-L49
|
import os
import pytest
from pycounter import csvhelper
from pycounter import report
import pycounter.sushi
def parsedata(filename):
return report.parse(os.path.join(os.path.dirname(__file__), "data", filename))
@pytest.fixture(params=["csvC4JR1", "C4JR1.csv", "C4JR1_bad.csv", "C4JR1GOA.csv"])
def csv_jr1_report(request):
return parsedata(request.param)
@pytest.fixture(params=["simpleJR1.tsv", "tsvC4JR1", "issue_14.tsv"])
def tsv_jr1(request):
return parsedata(request.param)
@pytest.fixture(params=["csvC4JR1", "C4JR1.csv", "C4JR1_bad.csv"])
def csv_jr1_report_std(request):
return parsedata(request.param)
@pytest.fixture(params=["csvC4JR1", "C4JR1.csv"])
def csv_jr1_report_common_data(request):
return parsedata(request.param)
@pytest.fixture(params=["csvC4JR1", "C4JR1.csv", "C4JR1_bad.csv"])
def csv_jr1_r4_report(request):
return parsedata(request.param)
@pytest.fixture(params=["JR1.xlsx", "JR1_bad.xlsx", "xlsxJR1"])
|
MIT License
|
openpathsampling/openpathsampling
|
openpathsampling/treelogic.py
|
TreeMixin.__len__
|
python
|
def __len__(self):
if self._len is None:
self._len = len(list(iter(self)))
return self._len
|
Returns the total number of Changes mad in a move.
Returns
-------
int
the number of (Sub)MoveChanges in this MoveChange
|
https://github.com/openpathsampling/openpathsampling/blob/dcee878247bdf627aae96ccbc65d2857d5d155b9/openpathsampling/treelogic.py#L93-L106
|
__author__ = 'Jan-Hendrik Prinz'
class TreeMixin(object):
@staticmethod
def _indent(s):
spl = s.split('\n')
spl = [' | ' + p if p[0] == ' ' else ' +- ' + p for p in spl]
return '\n'.join(spl)
@property
def _subnodes(self):
return []
def __iter__(self):
yield self
for subchange in self._subnodes:
for change in subchange:
yield change
def __getitem__(self, item):
if type(item) is int:
return self._subnodes[item]
if type(item) is list:
if self._default_match(item[0], self):
if len(item) > 1:
for ch in self._subnodes:
r = ch[item[1]]
if r is not None:
return r
return None
else:
return self
else:
return None
def __reversed__(self):
for subchange in self._subnodes:
for change in reversed(subchange):
yield change
yield self
|
MIT License
|
sean-public/python-hashes
|
hashes/simhash.py
|
simhash.create_hash
|
python
|
def create_hash(self, tokens):
if type(tokens) == str:
tokens = tokens.split()
v = [0]*self.hashbits
for t in [self._string_hash(x) for x in tokens]:
bitmask = 0
for i in range(self.hashbits):
bitmask = 1 << i
if t & bitmask:
v[i] += 1
else:
v[i] -= 1
fingerprint = 0
for i in range(self.hashbits):
if v[i] >= 0:
fingerprint += 1 << i
self.hash = fingerprint
return fingerprint
|
Calculates a Charikar simhash with appropriate bitlength.
Input can be any iterable, but for strings it will automatically
break it into words first, assuming you don't want to iterate
over the individual characters. Returns fingerprint so it can be used
for temporary use without initializing a new object.
Reference used: http://dsrg.mff.cuni.cz/~holub/sw/shash
|
https://github.com/sean-public/python-hashes/blob/65bf88df1cc8cc72d09b7b358bdb36d6844f5f27/hashes/simhash.py#L14-L40
|
from .hashtype import hashtype
class simhash(hashtype):
|
MIT License
|
maxim5/hyper-engine
|
hyperengine/model/data_set.py
|
IterableDataProvider.next_batch
|
python
|
def next_batch(self, batch_size):
raise NotImplementedError
|
Returns the next `batch_size` examples from this data set.
|
https://github.com/maxim5/hyper-engine/blob/743344afa52032d7b2b4a2cfb25caf2190c1a8ac/hyperengine/model/data_set.py#L73-L77
|
__author__ = 'maxim'
import numpy as np
class DataProvider(object):
pass
class IterableDataProvider(DataProvider):
def __init__(self):
super(IterableDataProvider, self).__init__()
self._size = 0
self._step = 0
self._epochs_completed = 0
self._index_in_epoch = 0
self._just_completed = False
@property
def size(self):
return self._size
@property
def step(self):
return self._step
@property
def index(self):
return self._epochs_completed * self._size + self._index_in_epoch
@property
def index_in_epoch(self):
return self._index_in_epoch
@property
def epochs_completed(self):
return self._epochs_completed
@property
def just_completed(self):
return self._just_completed
def reset_counters(self):
self._step = 0
self._epochs_completed = 0
self._index_in_epoch = 0
self._just_completed = False
|
Apache License 2.0
|
opendatacube/odc-tools
|
apps/dc_tools/odc/apps/dc_tools/export_md.py
|
get_properties
|
python
|
def get_properties(dataset, property_offsets=None):
props = dict()
props["datetime"] = dataset.center_time
props["odc:processing_datetime"] = dataset.indexed_time
return {"properties": props}
|
Extract properties and return values in a dictionary:
{
'properties':
{
'datetime': time,
'odc:creation_datetime': creation_time,
...
}
}
|
https://github.com/opendatacube/odc-tools/blob/23bf317e2798e793f228532ea6e31865fc533fde/apps/dc_tools/odc/apps/dc_tools/export_md.py#L291-L307
|
from pathlib import Path
import yaml
import click
import logging
from datacube.testutils.io import native_geobox
from datacube.storage import BandInfo
from datacube import Datacube
_LOG = logging.getLogger(__name__)
@click.group(help=__doc__)
@click.option(
"--datacube-config",
"-c",
help="Pass the configuration file to access the database",
type=click.Path(exists=True),
)
@click.pass_context
def cli(ctx, datacube_config):
ctx.obj = Datacube(config=datacube_config).index
@cli.command()
@click.option("--product", required=True, help="Which product?")
@click.option(
"--config", required=True, help="The configuration file for transformation"
)
@click.option(
"--output-dir", required=True, help="New metadata yaml file is written to this dir"
)
@click.option("--limit", help="maximum number of datasets to process")
@click.pass_obj
def transform(index, product, config, output_dir, limit):
dataset_type = index.products.get_by_name(product)
with open(config, "r") as config_file:
cfg = yaml.load(config_file) or dict()
if dataset_type.grid_spec is not None:
transform_ingested_datasets(index, product, cfg, Path(output_dir), limit)
else:
transform_indexed_datasets(index, product, cfg, Path(output_dir), limit)
def transform_ingested_datasets(index, product, config, output_dir, limit):
dataset_ids = index.datasets.search_returning(
limit=limit, field_names=("id",), product=product
)
grids_done = False
for dataset_id in dataset_ids:
dataset = index.datasets.get(dataset_id.id, include_sources=True)
if not dataset.uris:
_LOG.warn("Empty uris or No uris (skippins): %s", dataset_id)
continue
if not grids_done:
grids = get_grids(dataset, config.get("grids"))
grids_done = all(
[[1, 1] != grid["shape"] for _, grid in grids["grids"].items()]
)
dataset_sections = (grids,) + _variable_sections_of_metadata(dataset, config)
_make_and_write_dataset(get_output_file(dataset, output_dir), *dataset_sections)
def transform_indexed_datasets(index, product, config, output_dir, limit):
for dataset_id in index.datasets.search_returning(
limit=limit, field_names=("id",), product=product
):
dataset = index.datasets.get(dataset_id.id, include_sources=True)
if not dataset.uris:
_LOG.warn("Empty or No uris (skipping): %s", dataset_id)
continue
grids = get_grids(dataset, config.get("grids"))
dataset_sections = (grids,) + _variable_sections_of_metadata(dataset, config)
_make_and_write_dataset(get_output_file(dataset, output_dir), *dataset_sections)
def get_output_file(dataset, output_dir):
out_file_name = str(dataset.id) + "-metadata.yaml"
return output_dir / out_file_name
def _variable_sections_of_metadata(dataset, config):
new_dataset = {
"id": str(dataset.id),
"crs": "EPSG:" + str(dataset.crs.epsg),
"location": [uri for uri in dataset.uris],
"file_format": dataset.metadata_doc.get("format", ""),
}
return (
new_dataset,
get_geometry(dataset),
get_measurements(dataset, config.get("grids")),
get_properties(dataset),
get_lineage(dataset),
)
def _make_and_write_dataset(out_file_name, *args):
dataset = dict()
for arg in args:
dataset.update(arg)
with open(out_file_name, "w") as out_file:
yaml.dump(dataset, out_file, default_flow_style=False)
def get_geometry(dataset):
valid_data = dataset._gs.get("valid_data")
return {"geometry": valid_data} if valid_data else dict()
def get_grids(dataset, band_grids=None):
if not band_grids:
shape, trans = get_shape_and_transform(dataset, dataset.measurements)
return {"grids": {"default": {"shape": list(shape), "transform": list(trans)}}}
else:
grids = dict()
for grid_name in band_grids:
shape, trans = get_shape_and_transform(dataset, band_grids[grid_name])
grids[grid_name] = {"shape": list(shape), "transform": list(trans)}
if not band_grids.get("default"):
specified_bands = set()
for grid in band_grids:
specified_bands.update(band_grids[grid])
all_bands = set(list(dataset.measurements))
default_bands = all_bands - specified_bands
if bool(default_bands):
shape, trans = get_shape_and_transform(dataset, default_bands)
grids["default"] = {"shape": list(shape), "transform": list(trans)}
return {"grids": grids}
def get_shape_and_transform(dataset, measurements):
for m in measurements:
try:
geo = native_geobox(dataset, [m])
except Exception:
_LOG.warn("Failed to compute shape and transform %s", m)
continue
return geo.shape, geo.transform
_LOG.warn("All measurements failed to compute shape and transform %s", measurements)
return [1, 1], dataset.transform
def get_measurements(dataset, band_grids=None):
grids_map = (
{m: grid for grid in band_grids for m in band_grids[grid] if grid != "default"}
if band_grids
else dict()
)
measurements = dict()
for m in dataset.measurements:
if m not in dataset.type.measurements:
_LOG.warn("Measurement not in product definition (skipping): %s", m)
continue
band_info = BandInfo(dataset, m)
measurements[m] = {"path": dataset.measurements[m]["path"]}
if band_info.band and band_info.band != 1:
measurements[m]["band"] = band_info.band
if band_info.layer is not None:
measurements[m]["layer"] = band_info.layer
if grids_map.get(m):
measurements[m]["grid"] = grids_map[m]
return {"measurements": measurements}
|
Apache License 2.0
|
mvantellingen/django-healthchecks
|
src/django_healthchecks/models.py
|
HeartbeatMonitorQuerySet.status_by_name
|
python
|
def status_by_name(self):
t = now()
monitors = self.annotate_expires_at().values_list("name", "expires_at")
return {name: (expires_at < t) for name, expires_at in monitors}
|
Return the expired status for every heartbeat.
|
https://github.com/mvantellingen/django-healthchecks/blob/69a38929737610ba488df1bc496952b81ac9b43b/src/django_healthchecks/models.py#L40-L47
|
from datetime import timedelta
from django.conf import settings
from django.db import models
from django.db.models import ExpressionWrapper, F
from django.utils.timezone import now
from django.utils.translation import gettext_lazy as _
EXPIRES_COLUMN_TYPE = models.DateTimeField()
IS_EXPIRED_COLUMN_TYPE = models.BooleanField()
def _get_default_timeout():
return getattr(
settings, "HEALTHCHECKS_DEFAULT_HEARTBEAT_TIMEOUT", timedelta(days=1)
)
class HeartbeatMonitorQuerySet(models.QuerySet):
def enabled(self):
return self.filter(enabled=True)
def annotate_expires_at(self):
return self.annotate(
expires_at=ExpressionWrapper(
(F("last_beat") + F("timeout")), output_field=EXPIRES_COLUMN_TYPE
)
)
def expired(self):
return self.annotate_expires_at().filter(expires_at__lt=now())
def expired_names(self):
return list(self.expired().values_list("name", flat=True))
|
MIT License
|
sberbank-ai-lab/lightautoml
|
lightautoml/text/dl_transformers.py
|
BertEmbedder.freeze
|
python
|
def freeze(self):
for param in self.transformer.parameters():
param.requires_grad = False
|
Freeze module parameters.
|
https://github.com/sberbank-ai-lab/lightautoml/blob/51a4e2bd0ebffbe0817fb50434280f8e7c40fa4c/lightautoml/text/dl_transformers.py#L437-L441
|
import gc
from copy import deepcopy
from typing import Any
from typing import Dict
from typing import Optional
from typing import Sequence
import numpy as np
import torch
import torch.nn as nn
from sklearn.base import TransformerMixin
from torch.utils.data import DataLoader
from tqdm import tqdm
try:
from transformers import AutoModel
except:
import warnings
warnings.warn("'transformers' - package isn't installed")
from .dp_utils import CustomDataParallel
from .sentence_pooling import SequenceAvgPooler
from .sentence_pooling import SequenceClsPooler
from .sentence_pooling import SequenceIndentityPooler
from .sentence_pooling import SequenceMaxPooler
from .sentence_pooling import SequenceSumPooler
from .utils import _dtypes_mapping
from .utils import collate_dict
from .utils import parse_devices
from .utils import seed_everything
from .utils import single_text_hash
pooling_by_name = {
"mean": SequenceAvgPooler,
"sum": SequenceSumPooler,
"max": SequenceMaxPooler,
"cls": SequenceClsPooler,
"none": SequenceIndentityPooler,
}
class DLTransformer(TransformerMixin):
_model_params = {
"embed_size": 300,
"hidden_size": 256,
"pooling": "mean",
"num_layers": 1,
}
_loader_params = {"batch_size": 1024, "shuffle": False, "num_workers": 4}
_dataset_params = {"embedding_model": None, "max_length": 200, "embed_size": 300}
_embedding_model_params = {"model_name": "bert-base-cased"}
def _infer_params(self):
self.model_params = deepcopy(self._model_params)
self.loader_params = deepcopy(self._loader_params)
self.dataset_params = deepcopy(self._dataset_params)
self.embedding_model_params = deepcopy(self._embedding_model_params)
def __init__(
self,
model,
model_params: Dict,
dataset,
dataset_params: Dict,
loader_params: Dict,
device: str = "cuda",
random_state: int = 42,
embedding_model: Optional = None,
embedding_model_params: Dict[str, Dict] = None,
multigpu: bool = False,
verbose: bool = False,
):
super(DLTransformer, self).__init__()
self._infer_params()
self.device, self.device_ids = parse_devices(device, multigpu)
self.random_state = random_state
self.verbose = verbose
seed_everything(random_state)
self.model_params.update(model_params)
self.model = model(**self.model_params)
self.embedding_model = None
if embedding_model is not None:
if embedding_model_params is not None:
self.embedding_model_params.update(embedding_model_params)
self.embedding_model = embedding_model(**self.embedding_model_params)
self.dataset = dataset
self.dataset_params.update(dataset_params)
self.loader_params.update(loader_params)
def get_name(self) -> str:
if self.embedding_model is None:
name = self.model.get_name()
else:
name = self.model.get_name() + "_" + self.embedding_model.get_name()
return name
def get_out_shape(self) -> int:
return self.model.get_out_shape()
def fit(self, data: Any):
return self
@torch.no_grad()
def transform(self, data: Sequence[str]) -> np.ndarray:
dataset = self.dataset(data, **self.dataset_params)
loader = DataLoader(dataset, collate_fn=collate_dict, **self.loader_params)
result = []
if self.verbose:
loader = tqdm(loader)
self.model = self.model.to(self.device)
if self.device_ids is not None:
self.model = CustomDataParallel(self.model, device_ids=self.device_ids)
self.model.eval()
if self.embedding_model is not None:
self.embedding_model.to(self.device)
if self.device_ids is not None:
self.embedding_model = CustomDataParallel(self.embedding_model, device_ids=self.device_ids)
self.embedding_model.eval()
for sample in loader:
data = {
i: sample[i].long().to(self.device) if _dtypes_mapping[i] == "long" else sample[i].to(self.device)
for i in sample.keys()
}
if self.embedding_model is not None:
embed = self.embedding_model(data)
if "attention_mask" in data:
length = torch.sum(data["attention_mask"], dim=1)
else:
length = (torch.ones(len(embed)) * self.dataset_params["max_length"]).to(self.device).long()
data = {"text": embed, "length": length}
embed = self.model(data).detach().cpu().numpy()
result.append(embed.astype(np.float32))
result = np.vstack(result)
self.model.to(torch.device("cpu"))
if isinstance(self.model, CustomDataParallel):
self.model = self.model.module
if self.embedding_model is not None:
self.embedding_model.to(torch.device("cpu"))
if isinstance(self.embedding_model, CustomDataParallel):
self.embedding_model = self.embedding_model.module
del loader, dataset, data
gc.collect()
torch.cuda.empty_cache()
return result
def position_encoding_init(n_pos: int, embed_size: int) -> torch.Tensor:
position_enc = np.array(
[
[pos / np.power(10000, 2 * (j // 2) / embed_size) for j in range(embed_size)]
if pos != 0
else np.zeros(embed_size)
for pos in range(n_pos)
]
)
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])
return torch.from_numpy(position_enc).float()
class BOREP(nn.Module):
name = "BOREP"
_poolers = {"max", "mean", "sum"}
def __init__(
self,
embed_size: int = 300,
proj_size: int = 300,
pooling: str = "mean",
max_length: int = 200,
init: str = "orthogonal",
pos_encoding: bool = False,
**kwargs: Any
):
super(BOREP, self).__init__()
self.embed_size = embed_size
self.proj_size = proj_size
self.pos_encoding = pos_encoding
seed_everything(42)
if self.pos_encoding:
self.pos_code = position_encoding_init(max_length, self.embed_size).view(1, max_length, self.embed_size)
self.pooling = pooling_by_name[pooling]()
self.proj = nn.Linear(self.embed_size, self.proj_size, bias=False)
if init == "orthogonal":
nn.init.orthogonal_(self.proj.weight)
elif init == "normal":
nn.init.normal_(self.proj.weight, std=0.1)
elif init == "uniform":
nn.init.uniform_(self.proj.weight, a=-0.1, b=0.1)
elif init == "kaiming":
nn.init.kaiming_uniform_(self.proj.weight)
elif init == "xavier":
nn.init.xavier_uniform_(self.proj.weight)
def get_out_shape(self) -> int:
return self.proj_size
def get_name(self) -> str:
return self.name
@torch.no_grad()
def forward(self, inp: Dict[str, torch.Tensor]) -> torch.Tensor:
x = inp["text"]
batch_size, batch_max_length = x.shape[0], x.shape[1]
if self.pos_encoding:
x = x + self.pos_code[:, :batch_max_length, :].to(x.device)
x = x.contiguous().view(batch_size * batch_max_length, -1)
x = self.proj(x)
out = x.contiguous().view(batch_size, batch_max_length, -1)
x_length = (torch.arange(out.shape[1])[None, :].to(out.device) < inp["length"][:, None])[:, :, None]
out = self.pooling(out, x_length)
return out
class RandomLSTM(nn.Module):
name = "RandomLSTM"
_poolers = ("max", "mean", "sum")
def __init__(
self, embed_size: int = 300, hidden_size: int = 256, pooling: str = "mean", num_layers: int = 1, **kwargs: Any
):
super(RandomLSTM, self).__init__()
if pooling not in self._poolers:
raise ValueError("pooling - {} - not in the list of available types {}".format(pooling, self._poolers))
seed_everything(42)
self.hidden_size = hidden_size
self.lstm = nn.LSTM(
embed_size,
hidden_size,
num_layers=num_layers,
bidirectional=True,
batch_first=True,
)
self.pooling = pooling_by_name[pooling]()
def get_out_shape(self) -> int:
return self.hidden_size * 2
def get_name(self) -> str:
return self.name
@torch.no_grad()
def forward(self, inp: Dict[str, torch.Tensor]) -> torch.Tensor:
out, _ = self.lstm(inp["text"])
x_length = (torch.arange(out.shape[1])[None, :].to(out.device) < inp["length"][:, None])[:, :, None]
out = self.pooling(out, x_length)
return out
class BertEmbedder(nn.Module):
name = "BertEmb"
_poolers = {"cls", "max", "mean", "sum", "none"}
def __init__(self, model_name: str, pooling: str = "none", **kwargs: Any):
super(BertEmbedder, self).__init__()
if pooling not in self._poolers:
raise ValueError("pooling - {} - not in the list of available types {}".format(pooling, self._poolers))
self.pooling = pooling_by_name[pooling]()
self.model_name = model_name
self.transformer = AutoModel.from_pretrained(model_name)
def forward(self, inp: Dict[str, torch.Tensor]) -> torch.Tensor:
encoded_layers, _ = self.transformer(
input_ids=inp["input_ids"],
attention_mask=inp["attention_mask"],
token_type_ids=inp.get("token_type_ids"),
return_dict=False,
)
encoded_layers = self.pooling(encoded_layers, inp["attention_mask"].unsqueeze(-1).bool())
return encoded_layers
|
Apache License 2.0
|
akb89/pyfn
|
pyfn/marshalling/marshallers/semeval.py
|
marshall_annosets
|
python
|
def marshall_annosets(annosets, output_filepath, excluded_frames,
excluded_sentences, excluded_annosets):
logger.info('Marshalling pyfn.AnnotationSet objects to SEMEVAL XML...')
if not annosets:
raise InvalidParameterError('Input pyfn.AnnotationSet list is empty')
logger.info('Saving output to {}'.format(output_filepath))
_marshall_annosets(annosets, output_filepath, excluded_frames,
excluded_sentences, excluded_annosets)
|
Marshall a list of pyfn.AnnotationSet objects to SEMEVAL XML.
annosets: a list of annosets to marshall.
output_filepath: the absolute path to the output .xml file
excluded_frames: a list of frame #id to exclude from the output
excluded_sentences: a list of sentence #id to exclude from the output
excluded_annosets: a list of annotationset #id to exclude from the output
|
https://github.com/akb89/pyfn/blob/848091d55aaa9dbb1eb939cd6c551876f9f4d6f7/pyfn/marshalling/marshallers/semeval.py#L113-L128
|
import datetime
import logging
import pytz
import lxml.etree as etree
import pyfn.utils.filter as f_utils
from pyfn.exceptions.parameter import InvalidParameterError
__all__ = ['marshall_annosets']
logger = logging.getLogger(__name__)
def _add_fe_labels(layers_tag, layer_id, annoset, label_id):
fe_layer = etree.SubElement(layers_tag, 'layer')
fe_layer.set('ID', str(layer_id))
fe_layer.set('name', 'FE')
fe_label_tags = etree.SubElement(fe_layer, 'labels')
if 'FE' in annoset.labelstore.labels_by_layer_name:
for fe_label in annoset.labelstore.labels_by_layer_name['FE']:
if fe_label.start != -1 and fe_label.end != -1:
fe_label_tag = etree.SubElement(fe_label_tags, 'label')
fe_label_tag.set('ID', str(label_id))
label_id += 1
fe_label_tag.set('name', fe_label.name)
fe_label_tag.set('start', str(fe_label.start))
fe_label_tag.set('end', str(fe_label.end))
return label_id
def _has_fe_labels(annoset):
return 'FE' in annoset.labelstore.labels_by_layer_name
def _add_target_labels(layers_tag, layer_id, annoset, label_id):
target_layer = etree.SubElement(layers_tag, 'layer')
target_layer.set('ID', str(layer_id))
target_layer.set('name', 'Target')
target_labels = etree.SubElement(target_layer, 'labels')
for target_index in annoset.target.indexes:
target_label = etree.SubElement(target_labels, 'label')
target_label.set('ID', str(label_id))
target_label.set('name', 'Target')
label_id += 1
target_label.set('start', str(target_index[0]))
target_label.set('end', str(target_index[1]))
return label_id
def _get_annoset_tag(annosets_tag, annoset, annoset_id):
annoset_tag = etree.SubElement(annosets_tag, 'annotationSet')
annoset_tag.set('ID', str(annoset_id))
annoset_tag.set('frameName', annoset.target.lexunit.frame.name)
return annoset_tag
def _get_sentence_tag(annoset, sentences_tag, sent_id):
sentence_tag = etree.SubElement(sentences_tag, 'sentence')
sentence_tag.set('ID', str(sent_id))
text = etree.SubElement(sentence_tag, 'text')
text.text = annoset.sentence.text
return sentence_tag
def _marshall_annosets(annosets, output_filepath, excluded_frames,
excluded_sentences, excluded_annosets):
if not annosets:
raise InvalidParameterError('No input annosets to marshall. Check '
'input parameters and try again.')
root = etree.Element('corpus')
root.set('XMLCreated', datetime.datetime.now(
pytz.utc).strftime('%a %b %d %H:%M:%S %Z %Y'))
documents_tag = etree.SubElement(root, 'documents')
document_tag = etree.SubElement(documents_tag, 'document')
paragraphs_tag = etree.SubElement(document_tag, 'paragraphs')
paragraph_tag = etree.SubElement(paragraphs_tag, 'paragraph')
sentences_tag = etree.SubElement(paragraph_tag, 'sentences')
sent_text = ''
sent_id = 0
annoset_id = 1
layer_id = 1
label_id = 1
for annoset in f_utils.filter_and_sort_annosets(annosets, [],
excluded_frames,
excluded_sentences,
excluded_annosets):
if annoset.sentence.text != sent_text:
sentence = _get_sentence_tag(annoset, sentences_tag, sent_id)
sent_id += 1
sent_text = annoset.sentence.text
annosets_tag = etree.SubElement(sentence, 'annotationSets')
annoset_tag = _get_annoset_tag(annosets_tag, annoset, annoset_id)
annoset_id += 1
layers_tag = etree.SubElement(annoset_tag, 'layers')
label_id = _add_target_labels(layers_tag, layer_id, annoset, label_id)
layer_id += 1
if _has_fe_labels(annoset):
label_id = _add_fe_labels(layers_tag, layer_id, annoset, label_id)
layer_id += 1
tree = etree.ElementTree(root)
tree.write(output_filepath, encoding='UTF-8', xml_declaration=True,
pretty_print=True)
|
MIT License
|
aspose-words-cloud/aspose-words-cloud-python
|
asposewordscloud/models/fixed_page_save_options_data.py
|
FixedPageSaveOptionsData.dml_effects_rendering_mode
|
python
|
def dml_effects_rendering_mode(self):
return self._dml_effects_rendering_mode
|
Gets the dml_effects_rendering_mode of this FixedPageSaveOptionsData. # noqa: E501
Gets or sets the value determining how DrawingML effects are rendered. { Simplified | None | Fine }. # noqa: E501
:return: The dml_effects_rendering_mode of this FixedPageSaveOptionsData. # noqa: E501
:rtype: str
|
https://github.com/aspose-words-cloud/aspose-words-cloud-python/blob/abf8fccfed40aa2b09c6cdcaf3f2723e1f412d85/asposewordscloud/models/fixed_page_save_options_data.py#L242-L250
|
import pprint
import re
import datetime
import six
import json
class FixedPageSaveOptionsData(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'allow_embedding_post_script_fonts': 'bool',
'custom_time_zone_info_data': 'TimeZoneInfoData',
'dml3_d_effects_rendering_mode': 'str',
'dml_effects_rendering_mode': 'str',
'dml_rendering_mode': 'str',
'file_name': 'str',
'flat_opc_xml_mapping_only': 'bool',
'iml_rendering_mode': 'str',
'save_format': 'str',
'update_created_time_property': 'bool',
'update_fields': 'bool',
'update_last_printed_property': 'bool',
'update_last_saved_time_property': 'bool',
'update_sdt_content': 'bool',
'zip_output': 'bool',
'color_mode': 'str',
'jpeg_quality': 'int',
'metafile_rendering_options': 'MetafileRenderingOptionsData',
'numeral_format': 'str',
'optimize_output': 'bool',
'page_count': 'int',
'page_index': 'int'
}
attribute_map = {
'allow_embedding_post_script_fonts': 'AllowEmbeddingPostScriptFonts',
'custom_time_zone_info_data': 'CustomTimeZoneInfoData',
'dml3_d_effects_rendering_mode': 'Dml3DEffectsRenderingMode',
'dml_effects_rendering_mode': 'DmlEffectsRenderingMode',
'dml_rendering_mode': 'DmlRenderingMode',
'file_name': 'FileName',
'flat_opc_xml_mapping_only': 'FlatOpcXmlMappingOnly',
'iml_rendering_mode': 'ImlRenderingMode',
'save_format': 'SaveFormat',
'update_created_time_property': 'UpdateCreatedTimeProperty',
'update_fields': 'UpdateFields',
'update_last_printed_property': 'UpdateLastPrintedProperty',
'update_last_saved_time_property': 'UpdateLastSavedTimeProperty',
'update_sdt_content': 'UpdateSdtContent',
'zip_output': 'ZipOutput',
'color_mode': 'ColorMode',
'jpeg_quality': 'JpegQuality',
'metafile_rendering_options': 'MetafileRenderingOptions',
'numeral_format': 'NumeralFormat',
'optimize_output': 'OptimizeOutput',
'page_count': 'PageCount',
'page_index': 'PageIndex'
}
def __init__(self, allow_embedding_post_script_fonts=None, custom_time_zone_info_data=None, dml3_d_effects_rendering_mode=None, dml_effects_rendering_mode=None, dml_rendering_mode=None, file_name=None, flat_opc_xml_mapping_only=None, iml_rendering_mode=None, save_format=None, update_created_time_property=None, update_fields=None, update_last_printed_property=None, update_last_saved_time_property=None, update_sdt_content=None, zip_output=None, color_mode=None, jpeg_quality=None, metafile_rendering_options=None, numeral_format=None, optimize_output=None, page_count=None, page_index=None):
self._allow_embedding_post_script_fonts = None
self._custom_time_zone_info_data = None
self._dml3_d_effects_rendering_mode = None
self._dml_effects_rendering_mode = None
self._dml_rendering_mode = None
self._file_name = None
self._flat_opc_xml_mapping_only = None
self._iml_rendering_mode = None
self._save_format = None
self._update_created_time_property = None
self._update_fields = None
self._update_last_printed_property = None
self._update_last_saved_time_property = None
self._update_sdt_content = None
self._zip_output = None
self._color_mode = None
self._jpeg_quality = None
self._metafile_rendering_options = None
self._numeral_format = None
self._optimize_output = None
self._page_count = None
self._page_index = None
self.discriminator = None
if allow_embedding_post_script_fonts is not None:
self.allow_embedding_post_script_fonts = allow_embedding_post_script_fonts
if custom_time_zone_info_data is not None:
self.custom_time_zone_info_data = custom_time_zone_info_data
if dml3_d_effects_rendering_mode is not None:
self.dml3_d_effects_rendering_mode = dml3_d_effects_rendering_mode
if dml_effects_rendering_mode is not None:
self.dml_effects_rendering_mode = dml_effects_rendering_mode
if dml_rendering_mode is not None:
self.dml_rendering_mode = dml_rendering_mode
if file_name is not None:
self.file_name = file_name
if flat_opc_xml_mapping_only is not None:
self.flat_opc_xml_mapping_only = flat_opc_xml_mapping_only
if iml_rendering_mode is not None:
self.iml_rendering_mode = iml_rendering_mode
if save_format is not None:
self.save_format = save_format
if update_created_time_property is not None:
self.update_created_time_property = update_created_time_property
if update_fields is not None:
self.update_fields = update_fields
if update_last_printed_property is not None:
self.update_last_printed_property = update_last_printed_property
if update_last_saved_time_property is not None:
self.update_last_saved_time_property = update_last_saved_time_property
if update_sdt_content is not None:
self.update_sdt_content = update_sdt_content
if zip_output is not None:
self.zip_output = zip_output
if color_mode is not None:
self.color_mode = color_mode
if jpeg_quality is not None:
self.jpeg_quality = jpeg_quality
if metafile_rendering_options is not None:
self.metafile_rendering_options = metafile_rendering_options
if numeral_format is not None:
self.numeral_format = numeral_format
if optimize_output is not None:
self.optimize_output = optimize_output
if page_count is not None:
self.page_count = page_count
if page_index is not None:
self.page_index = page_index
@property
def allow_embedding_post_script_fonts(self):
return self._allow_embedding_post_script_fonts
@allow_embedding_post_script_fonts.setter
def allow_embedding_post_script_fonts(self, allow_embedding_post_script_fonts):
self._allow_embedding_post_script_fonts = allow_embedding_post_script_fonts
@property
def custom_time_zone_info_data(self):
return self._custom_time_zone_info_data
@custom_time_zone_info_data.setter
def custom_time_zone_info_data(self, custom_time_zone_info_data):
self._custom_time_zone_info_data = custom_time_zone_info_data
@property
def dml3_d_effects_rendering_mode(self):
return self._dml3_d_effects_rendering_mode
@dml3_d_effects_rendering_mode.setter
def dml3_d_effects_rendering_mode(self, dml3_d_effects_rendering_mode):
allowed_values = ["Basic", "Advanced"]
if not dml3_d_effects_rendering_mode.isdigit():
if dml3_d_effects_rendering_mode not in allowed_values:
raise ValueError(
"Invalid value for `dml3_d_effects_rendering_mode` ({0}), must be one of {1}"
.format(dml3_d_effects_rendering_mode, allowed_values))
self._dml3_d_effects_rendering_mode = dml3_d_effects_rendering_mode
else:
self._dml3_d_effects_rendering_mode = allowed_values[int(dml3_d_effects_rendering_mode) if six.PY3 else long(dml3_d_effects_rendering_mode)]
@property
|
MIT License
|
pytorchrl/pytorchrl
|
pytorchrl/agent/storages/on_policy/ppod_buffer.py
|
PPODBuffer.check_demo_buffer_capacity
|
python
|
def check_demo_buffer_capacity(self):
total_demos = len(self.reward_demos) + len(self.value_demos)
if total_demos > self.max_demos:
for _ in range(min(total_demos - self.max_demos, len(self.value_demos))):
del self.value_demos[np.array([p["MaxValue"] for p in self.value_demos]).argmin()]
if len(self.reward_demos) > self.max_demos:
for _ in range(len(self.reward_demos) - self.max_demos):
del self.reward_demos[self.num_loaded_demos]
|
Check total amount of demos_6_actions. If total amount of demos_6_actions exceeds
self.max_demos, pop demos_6_actions.
|
https://github.com/pytorchrl/pytorchrl/blob/1ea781580f31cf3bbe5b38b8cceca939ed713241/pytorchrl/agent/storages/on_policy/ppod_buffer.py#L538-L563
|
import os
import glob
import copy
import uuid
import torch
import numpy as np
from collections import defaultdict
import pytorchrl as prl
from pytorchrl.agent.storages.on_policy.gae_buffer import GAEBuffer as B
class PPODBuffer(B):
on_policy_data_fields = prl.OnPolicyDataKeys
demos_data_fields = prl.DemosDataKeys
def __init__(self, size, device, actor, algorithm, envs, frame_stack=1, frame_skip=0,
initial_demos_dir=None, target_demos_dir=None, rho=0.1, phi=0.3, gae_lambda=0.95,
alpha=10, max_demos=51, save_demo_frequency=10, num_saved_demos=10):
super(PPODBuffer, self).__init__(
size=size,
envs=envs,
actor=actor,
device=device,
algorithm=algorithm,
gae_lambda=gae_lambda,
)
self.rho = rho
self.phi = phi
self.alpha = alpha
self.initial_rho = rho
self.initial_phi = phi
self.max_demos = max_demos
self.initial_demos_dir = initial_demos_dir
self.target_demos_dir = target_demos_dir
self.frame_stack = frame_stack
self.frame_skip = frame_skip
self.reward_demos = []
self.value_demos = []
if initial_demos_dir:
self.load_initial_demos()
self.reward_threshold = min([d["TotalReward"] for d in self.reward_demos]) if len(
self.reward_demos) > 0 else - np.inf
else:
self.reward_threshold = - np.inf
self.potential_demos_val = {"env{}".format(i + 1): - np.inf for i in range(self.num_envs)}
self.potential_demos = {"env{}".format(i + 1): defaultdict(list) for i in range(self.num_envs)}
self.demos_in_progress = {
"env{}".format(i + 1): {
"ID": None,
"Demo": None,
"Step": 0,
"DemoLength": -1,
"MaxValue": - np.inf,
prl.RHS: None,
} for i in range(self.num_envs)}
self.iter = 0
self.save_demos_every = save_demo_frequency
self.num_saved_demos = num_saved_demos
@classmethod
def create_factory(cls,
size,
initial_demos_dir=None,
target_demos_dir=None,
frame_stack=1,
frame_skip=0,
rho=0.1,
phi=0.3,
gae_lambda=0.95,
alpha=10,
max_demos=51,
save_demo_frequency=10,
num_saved_demos=10):
def create_buffer_instance(device, actor, algorithm, envs):
return cls(size, device, actor, algorithm, envs, frame_stack,
frame_skip, initial_demos_dir, target_demos_dir, rho,
phi, gae_lambda, alpha, max_demos, save_demo_frequency, num_saved_demos)
return create_buffer_instance
def before_gradients(self):
print("\nREWARD DEMOS {}, VALUE DEMOS {}, RHO {}, PHI {}, REWARD THRESHOLD {}\n".format(
len(self.reward_demos), len(self.value_demos), self.rho, self.phi, self.reward_threshold))
last_tensors = {}
step = self.step if self.step != 0 else -1
for k in (prl.OBS, prl.RHS, prl.DONE):
if isinstance(self.data[k], dict):
last_tensors[k] = {x: self.data[k][x][step] for x in self.data[k]}
else:
last_tensors[k] = self.data[k][step]
with torch.no_grad():
_ = self.actor.get_action(last_tensors[prl.OBS], last_tensors[prl.RHS], last_tensors[prl.DONE])
value_dict = self.actor.get_value(last_tensors[prl.OBS], last_tensors[prl.RHS], last_tensors[prl.DONE])
next_value = value_dict.get("value_net1")
next_rhs = value_dict.get("rhs")
self.data[prl.VAL][step].copy_(next_value)
if isinstance(next_rhs, dict):
for x in self.data[prl.RHS]:
self.data[prl.RHS][x][step].copy_(next_rhs[x])
else:
self.data[prl.RHS][step].copy_(next_rhs)
self.compute_returns()
self.compute_advantages()
self.iter += 1
if self.iter % self.save_demos_every == 0:
self.save_demos()
def get_num_channels_obs(self, sample):
self.num_channels_obs = int(sample[prl.OBS][0].shape[0] // self.frame_stack)
def insert_transition(self, sample):
if self.size == 0 and self.data[prl.OBS] is None:
self.init_tensors(sample)
self.get_num_channels_obs(sample)
for k in sample:
if k not in self.storage_tensors:
continue
if k in (prl.OBS, prl.RHS, prl.DONE):
pos = self.step + 1
sample_k = "Next" + k
else:
pos = self.step
sample_k = k
if isinstance(sample[k], dict):
for x, v in sample[k].items():
self.data[k][x][pos].copy_(sample[sample_k][x])
else:
self.data[k][pos].copy_(sample[sample_k])
self.track_potential_demos(sample)
for i in range(self.num_envs):
if self.demos_in_progress["env{}".format(i + 1)]["Demo"]:
demo_step = self.demos_in_progress["env{}".format(i + 1)]["Step"]
obs = self.data[prl.OBS][self.step][i].unsqueeze(0)
if self.demos_in_progress["env{}".format(i + 1)][prl.RHS]:
rhs = self.demos_in_progress["env{}".format(i + 1)][prl.RHS]
done = torch.zeros(1, 1).to(self.device)
else:
obs, rhs, done = self.actor.actor_initial_states(obs)
_, _, rhs2, algo_data = self.algo.acting_step(obs, rhs, done)
self.data[prl.ACT][self.step][i].copy_(self.demos_in_progress["env{}".format(
i + 1)]["Demo"][prl.ACT][demo_step])
self.data[prl.REW][self.step][i].copy_(self.demos_in_progress["env{}".format(
i + 1)]["Demo"][prl.REW][demo_step])
self.data[prl.LOGP][self.step][i].copy_(torch.zeros(1))
self.data[prl.VAL][self.step][i].copy_(algo_data[prl.VAL].squeeze())
self.demos_in_progress["env{}".format(i + 1)]["Step"] += 1
self.demos_in_progress["env{}".format(i + 1)][prl.RHS] = rhs2
self.demos_in_progress["env{}".format(i + 1)]["MaxValue"] = max(
[algo_data[prl.VAL].item(), self.demos_in_progress["env{}".format(i + 1)]["MaxValue"]])
if demo_step == self.demos_in_progress["env{}".format(i + 1)]["DemoLength"] - 1:
if "MaxValue" in self.demos_in_progress["env{}".format(i + 1)]["Demo"].keys():
for value_demo in self.value_demos:
if self.demos_in_progress["env{}".format(i + 1)]["Demo"]["ID"] == value_demo["ID"]:
value_demo["MaxValue"] = self.demos_in_progress["env{}".format(i + 1)]["MaxValue"]
self.sample_demo(env_id=i)
else:
self.data[prl.DONE][self.step + 1][i].copy_(torch.zeros(1))
obs2 = torch.roll(obs, -self.num_channels_obs, dims=1).squeeze(0)
obs2[-self.num_channels_obs:].copy_(
self.demos_in_progress["env{}".format(i + 1)]["Demo"][prl.OBS][demo_step + 1].to(self.device))
self.data[prl.OBS][self.step + 1][i].copy_(obs2)
for k in self.data[prl.RHS]:
self.data[prl.RHS][k][self.step + 1][i].copy_(rhs2[k].squeeze())
elif sample[prl.DONE2][i] == 1.0:
self.sample_demo(env_id=i)
self.step = (self.step + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def track_potential_demos(self, sample):
for i in range(self.num_envs):
for tensor in self.demos_data_fields:
if tensor in (prl.OBS):
self.potential_demos["env{}".format(i + 1)][tensor].append(
copy.deepcopy(sample[tensor][i, -self.num_channels_obs:]).cpu().numpy())
else:
self.potential_demos["env{}".format(i + 1)][tensor].append(
copy.deepcopy(sample[tensor][i]).cpu().numpy())
self.potential_demos_val[i] = max([self.potential_demos_val["env{}".format(
i + 1)], sample[prl.VAL][i].item()])
if sample[prl.DONE2][i] == 1.0:
potential_demo = {}
for tensor in self.demos_data_fields:
potential_demo[tensor] = torch.Tensor(np.stack(
self.potential_demos["env{}".format(i + 1)][tensor]))
episode_reward = potential_demo[prl.REW].sum().item()
potential_demo["ID"] = str(uuid.uuid4())
potential_demo["TotalReward"] = episode_reward
potential_demo["DemoLength"] = potential_demo[prl.ACT].shape[0]
if episode_reward >= self.reward_threshold:
self.reward_demos.append(potential_demo)
self.check_demo_buffer_capacity()
self.anneal_parameters()
else:
potential_demo["MaxValue"] = self.potential_demos_val[i]
total_demos = len(self.reward_demos) + len(self.value_demos)
value_thresh = - np.float("Inf") if len(self.value_demos) == 0 else min([p["MaxValue"] for p in self.value_demos])
if self.potential_demos_val["env{}".format(i + 1)] >= value_thresh or total_demos < self.max_demos:
self.value_demos.append(potential_demo)
self.check_demo_buffer_capacity()
for tensor in self.demos_data_fields:
self.potential_demos["env{}".format(i + 1)][tensor] = []
self.potential_demos_val["env{}".format(i + 1)] = - np.inf
def load_initial_demos(self):
num_loaded_demos = 0
initial_demos = glob.glob(self.initial_demos_dir + '/*.npz')
if len(initial_demos) > self.max_demos:
raise ValueError("demo dir contains more than self.max_demos demonstrations")
for demo_file in initial_demos:
try:
demo = np.load(demo_file)
new_demo = {k: {} for k in self.demos_data_fields}
if demo["FrameSkip"] != self.frame_skip:
raise ValueError(
"Env and demo with different frame skip!")
demo_act = torch.FloatTensor(demo[prl.ACT])
new_demo[prl.ACT] = demo_act
demo_obs = torch.FloatTensor(demo[prl.OBS])
new_demo[prl.OBS] = demo_obs
demo_rew = torch.FloatTensor(demo[prl.REW])
new_demo[prl.REW] = demo_rew
new_demo.update({
"ID": str(uuid.uuid4()),
"DemoLength": demo[prl.ACT].shape[0],
"TotalReward": demo_rew.sum().item()})
self.reward_demos.append(new_demo)
num_loaded_demos += 1
except Exception:
print("Failed to load demo!")
self.num_loaded_demos = num_loaded_demos
print("\nLOADED {} DEMOS".format(num_loaded_demos))
def sample_demo(self, env_id):
self.demos_in_progress["env{}".format(env_id + 1)]["Step"] = 0
self.demos_in_progress["env{}".format(env_id + 1)][prl.RHS] = None
episode_source = np.random.choice(["reward_demo", "value_demo", "env"],
p=[self.rho, self.phi, 1.0 - self.rho - self.phi])
if episode_source == "reward_demo" and len(self.reward_demos) > 0:
selected = np.random.choice(range(len(self.reward_demos)))
demo = copy.deepcopy(self.reward_demos[selected])
elif episode_source == "value_demo" and len(self.value_demos) > 0:
probs = np.array([p["MaxValue"] for p in self.value_demos]) ** self.alpha
probs = probs / probs.sum()
selected = np.random.choice(range(len(self.value_demos)), p=probs)
demo = copy.deepcopy(self.value_demos[selected])
else:
demo = None
self.demos_in_progress["env{}".format(env_id + 1)]["Demo"] = demo
self.data[prl.DONE][self.step + 1][env_id].copy_(torch.ones(1).to(self.device))
for k in self.data[prl.RHS]:
self.data[prl.RHS][k][self.step + 1][env_id].fill_(0.0)
if demo:
self.demos_in_progress["env{}".format(env_id + 1)]["DemoLength"] = demo["DemoLength"]
self.demos_in_progress["env{}".format(env_id + 1)]["MaxValue"] = - np.Inf
for k in range(self.frame_stack):
self.data[prl.OBS][self.step + 1][env_id][
k * self.num_channels_obs:(k + 1) * self.num_channels_obs].copy_(
self.demos_in_progress["env{}".format(env_id + 1)]["Demo"][prl.OBS][0].to(self.device))
else:
self.data[prl.OBS][self.step + 1][env_id].copy_(self.envs.reset_single_env(env_id=env_id).squeeze())
for tensor in self.demos_data_fields:
self.potential_demos["env{}".format(env_id + 1)][tensor] = []
self.potential_demos_val["env{}".format(env_id + 1)] = - np.inf
def anneal_parameters(self):
if 0.0 < self.rho < 1.0 and len(self.value_demos) > 0:
self.rho += self.initial_phi / len(self.value_demos)
self.rho = np.clip(self.rho, 0.0, self.initial_rho + self.initial_phi)
if 0.0 < self.phi < 1.0 and len(self.value_demos) > 0:
self.phi -= self.initial_phi / len(self.value_demos)
self.phi = np.clip(self.phi, 0.0, self.initial_rho + self.initial_phi)
|
MIT License
|
academysoftwarefoundation/opencue
|
pycue/opencue/wrappers/filter.py
|
Action.value
|
python
|
def value(self):
valueType = self.data.value_type
if valueType == filter_pb2.GROUP_TYPE:
return self.data.group_value
if valueType == filter_pb2.STRING_TYPE:
return self.data.string_value
if valueType == filter_pb2.INTEGER_TYPE:
return self.data.integer_value
if valueType == filter_pb2.FLOAT_TYPE:
return self.data.float_value
if valueType == filter_pb2.BOOLEAN_TYPE:
return self.data.boolean_value
return None
|
Returns the value of the action; what will happen if the filter is matched.
Type of value returned depends on the action's value_type.
:rtype: str/int/float/bool
:return: value of the action
|
https://github.com/academysoftwarefoundation/opencue/blob/da28ae905b81e7d1125db2073a369fdc0ae9acd4/pycue/opencue/wrappers/filter.py#L329-L348
|
import enum
from opencue import Cuebot
from opencue.compiled_proto import filter_pb2
from opencue.compiled_proto import job_pb2
from opencue.compiled_proto.filter_pb2 import Action as ActionData
from opencue.compiled_proto.filter_pb2 import ActionType
from opencue.compiled_proto.filter_pb2 import ActionValueType
from opencue.compiled_proto.filter_pb2 import Filter as FilterData
from opencue.compiled_proto.filter_pb2 import FilterType
from opencue.compiled_proto.filter_pb2 import MatchSubject
from opencue.compiled_proto.filter_pb2 import MatchType
from opencue.compiled_proto.filter_pb2 import Matcher as MatcherData
import opencue.wrappers.group
__all__ = ["Filter", "Action", "Matcher",
"FilterData", "ActionData", "MatcherData",
"FilterType", "ActionType", "MatchType",
"ActionValueType", "MatchSubject"]
class Filter(object):
class FilterType(enum.IntEnum):
MATCH_ANY = filter_pb2.MATCH_ANY
MATCH_ALL = filter_pb2.MATCH_ALL
def __init__(self, filter=None):
self.data = filter
self.stub = Cuebot.getStub('filter')
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return self.data == other.data
def delete(self):
self.stub.Delete(filter_pb2.FilterDeleteRequest(filter=self.data), timeout=Cuebot.Timeout)
def createMatcher(self, subject, matchType, query):
matcher = MatcherData(
subject=subject,
type=matchType,
input=query.replace(' ', '')
)
return Matcher(self.stub.CreateMatcher(
filter_pb2.FilterCreateMatcherRequest(filter=self.data, data=matcher),
timeout=Cuebot.Timeout).matcher)
def createAction(self, actionType, value):
action = ActionData(
type=actionType,
group_value=None,
string_value=None,
integer_value=0,
float_value=0.0,
boolean_value=False
)
if isinstance(value, opencue.wrappers.group.Group):
action.value_type = filter_pb2.GROUP_TYPE
action.group_value = value.id()
elif isinstance(value, str):
action.value_type = filter_pb2.STRING_TYPE
action.string_value = value
elif isinstance(value, bool):
action.value_type = filter_pb2.BOOLEAN_TYPE
action.boolean_value = value
elif isinstance(value, int):
action.value_type = filter_pb2.INTEGER_TYPE
action.integer_value = value
elif isinstance(value, float):
action.value_type = filter_pb2.FLOAT_TYPE
action.float_value = value
else:
action.value_type = filter_pb2.NONE_TYPE
return Action(self.stub.CreateAction(
filter_pb2.FilterCreateActionRequest(filter=self.data, data=action),
timeout=Cuebot.Timeout).action)
def getActions(self):
response = self.stub.GetActions(filter_pb2.FilterGetActionsRequest(filter=self.data),
timeout=Cuebot.Timeout)
return [Action(action) for action in response.actions.actions]
def getMatchers(self):
response = self.stub.GetMatchers(filter_pb2.FilterGetMatchersRequest(filter=self.data),
timeout=Cuebot.Timeout)
return [Matcher(matcher) for matcher in response.matchers.matchers]
def lowerOrder(self):
self.stub.LowerOrder(filter_pb2.FilterLowerOrderRequest(filter=self.data),
timeout=Cuebot.Timeout)
def raiseOrder(self):
self.stub.RaiseOrder(filter_pb2.FilterRaiseOrderRequest(filter=self.data),
timeout=Cuebot.Timeout)
def orderFirst(self):
self.stub.OrderFirst(filter_pb2.FilterOrderFirstRequest(filter=self.data),
timeout=Cuebot.Timeout)
def orderLast(self):
self.stub.OrderLast(filter_pb2.FilterOrderLastRequest(filter=self.data),
timeout=Cuebot.Timeout)
def runFilterOnGroup(self, group):
self.stub.RunFilterOnGroup(
filter_pb2.FilterRunFilterOnGroupRequest(filter=self.data, group=group.data),
timeout=Cuebot.Timeout)
def runFilterOnJobs(self, jobs):
jobSeq = job_pb2.JobSeq(jobs=[job.data for job in jobs])
self.stub.RunFilterOnJobs(
filter_pb2.FilterRunFilterOnJobsRequest(filter=self.data, jobs=jobSeq),
timeout=Cuebot.Timeout)
def setEnabled(self, value):
self.stub.SetEnabled(filter_pb2.FilterSetEnabledRequest(filter=self.data, enabled=value),
timeout=Cuebot.Timeout)
def setName(self, name):
self.stub.SetName(filter_pb2.FilterSetNameRequest(filter=self.data, name=name),
timeout=Cuebot.Timeout)
def setType(self, filterType):
self.stub.SetType(filter_pb2.FilterSetTypeRequest(filter=self.data, type=filterType),
timeout=Cuebot.Timeout)
def setOrder(self, order):
self.stub.SetOrder(filter_pb2.FilterSetOrderRequest(filter=self.data, order=order),
timeout=Cuebot.Timeout)
def name(self):
return self.data.name
def type(self):
return self.data.type
def order(self):
return self.data.order
def isEnabled(self):
return self.data.enabled
def id(self):
return self.data.id
class Action(object):
class ActionType(enum.IntEnum):
MOVE_JOB_TO_GROUP = filter_pb2.MOVE_JOB_TO_GROUP
PAUSE_JOB = filter_pb2.PAUSE_JOB
SET_JOB_MIN_CORES = filter_pb2.SET_JOB_MIN_CORES
SET_JOB_MAX_CORES = filter_pb2.SET_JOB_MAX_CORES
STOP_PROCESSING = filter_pb2.STOP_PROCESSING
SET_JOB_PRIORITY = filter_pb2.SET_JOB_PRIORITY
SET_ALL_RENDER_LAYER_TAGS = filter_pb2.SET_ALL_RENDER_LAYER_TAGS
SET_ALL_RENDER_LAYER_MEMORY = filter_pb2.SET_ALL_RENDER_LAYER_MEMORY
SET_ALL_RENDER_LAYER_CORES = filter_pb2.SET_ALL_RENDER_LAYER_CORES
SET_MEMORY_OPTIMIZER = filter_pb2.SET_MEMORY_OPTIMIZER
class ActionValueType(enum.IntEnum):
GROUP_TYPE = filter_pb2.GROUP_TYPE
STRING_TYPE = filter_pb2.STRING_TYPE
INTEGER_TYPE = filter_pb2.INTEGER_TYPE
FLOAT_TYPE = filter_pb2.FLOAT_TYPE
BOOLEAN_TYPE = filter_pb2.BOOLEAN_TYPE
NONE_TYPE = filter_pb2.NONE_TYPE
def __init__(self, action=None):
self.data = action
self.stub = Cuebot.getStub('action')
def getParentFilter(self):
response = self.stub.GetParentFilter(
filter_pb2.ActionGetParentFilterRequest(action=self.data),
timeout=Cuebot.Timeout)
return Filter(response.filter)
def delete(self):
self.stub.Delete(filter_pb2.ActionDeleteRequest(action=self.data), timeout=Cuebot.Timeout)
def commit(self):
if self.isNew():
raise Exception(
"unable to commit action that has not been created, proxy does not exist")
self.stub.Commit(filter_pb2.ActionCommitRequest(action=self.data), timeout=Cuebot.Timeout)
def isNew(self):
return self.data is None
def name(self):
if self.value() is None:
return "%s" % ActionType.Name(self.type())
return "%s %s" % (ActionType.Name(self.type()), self.value())
|
Apache License 2.0
|
azogue/hass_config
|
custom_components/media_player/mykodi.py
|
KodiDevice.async_get_albums
|
python
|
def async_get_albums(self, artist_id=None):
if artist_id is None:
return (yield from self.server.AudioLibrary.GetAlbums())
return (yield from self.server.AudioLibrary.GetAlbums(
{"filter": {"artistid": int(artist_id)}}))
|
Get albums list.
|
https://github.com/azogue/hass_config/blob/86113e4f1db0e785fa9a095add241f423efb8403/custom_components/media_player/mykodi.py#L863-L869
|
import asyncio
from collections import OrderedDict
from functools import wraps
import logging
import urllib
import re
import os
import aiohttp
import voluptuous as vol
from homeassistant.config import load_yaml_config_file
from homeassistant.components.media_player import (
SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PREVIOUS_TRACK, SUPPORT_SEEK,
SUPPORT_PLAY_MEDIA, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, SUPPORT_STOP,
SUPPORT_TURN_OFF, SUPPORT_PLAY, SUPPORT_VOLUME_STEP, SUPPORT_SHUFFLE_SET,
MediaPlayerDevice, PLATFORM_SCHEMA, MEDIA_TYPE_MUSIC, MEDIA_TYPE_TVSHOW,
MEDIA_TYPE_VIDEO, MEDIA_TYPE_PLAYLIST, MEDIA_PLAYER_SCHEMA, DOMAIN,
SUPPORT_TURN_ON)
from homeassistant.const import (
STATE_IDLE, STATE_OFF, STATE_PAUSED, STATE_PLAYING, CONF_HOST, CONF_NAME,
CONF_PORT, CONF_PROXY_SSL, CONF_USERNAME, CONF_PASSWORD,
CONF_TIMEOUT, EVENT_HOMEASSISTANT_STOP)
from homeassistant.core import callback
from homeassistant.helpers.aiohttp_client import async_get_clientsession
from homeassistant.helpers import script, config_validation as cv
from homeassistant.helpers.template import Template
from homeassistant.util.yaml import dump
REQUIREMENTS = ['jsonrpc-async==0.6', 'jsonrpc-websocket==0.5']
_LOGGER = logging.getLogger(__name__)
EVENT_KODI_CALL_METHOD_RESULT = 'kodi_call_method_result'
CONF_USE_OFF = 'use_off_mode'
CONF_TCP_PORT = 'tcp_port'
CONF_TURN_ON_ACTION = 'turn_on_action'
CONF_TURN_OFF_ACTION = 'turn_off_action'
CONF_ENABLE_WEBSOCKET = 'enable_websocket'
DEFAULT_NAME = 'Kodi'
DEFAULT_PORT = 8080
DEFAULT_TCP_PORT = 9090
DEFAULT_TIMEOUT = 5
DEFAULT_PROXY_SSL = False
DEFAULT_ENABLE_WEBSOCKET = True
DEPRECATED_TURN_OFF_ACTIONS = {
None: None,
'quit': 'Application.Quit',
'hibernate': 'System.Hibernate',
'suspend': 'System.Suspend',
'reboot': 'System.Reboot',
'shutdown': 'System.Shutdown'
}
MEDIA_TYPES = {
'music': MEDIA_TYPE_MUSIC,
'artist': MEDIA_TYPE_MUSIC,
'album': MEDIA_TYPE_MUSIC,
'song': MEDIA_TYPE_MUSIC,
'video': MEDIA_TYPE_VIDEO,
'set': MEDIA_TYPE_PLAYLIST,
'musicvideo': MEDIA_TYPE_VIDEO,
'movie': MEDIA_TYPE_VIDEO,
'tvshow': MEDIA_TYPE_TVSHOW,
'season': MEDIA_TYPE_TVSHOW,
'episode': MEDIA_TYPE_TVSHOW,
}
SUPPORT_KODI = SUPPORT_PAUSE | SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_SEEK | SUPPORT_PLAY_MEDIA | SUPPORT_STOP | SUPPORT_SHUFFLE_SET | SUPPORT_PLAY | SUPPORT_VOLUME_STEP
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_HOST): cv.string,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port,
vol.Optional(CONF_TCP_PORT, default=DEFAULT_TCP_PORT): cv.port,
vol.Optional(CONF_PROXY_SSL, default=DEFAULT_PROXY_SSL): cv.boolean,
vol.Optional(CONF_TURN_ON_ACTION, default=None): cv.SCRIPT_SCHEMA,
vol.Optional(CONF_TURN_OFF_ACTION):
vol.Any(cv.SCRIPT_SCHEMA, vol.In(DEPRECATED_TURN_OFF_ACTIONS)),
vol.Optional(CONF_USE_OFF, default=False): cv.boolean,
vol.Optional(CONF_TIMEOUT, default=DEFAULT_TIMEOUT): cv.positive_int,
vol.Inclusive(CONF_USERNAME, 'auth'): cv.string,
vol.Inclusive(CONF_PASSWORD, 'auth'): cv.string,
vol.Optional(CONF_ENABLE_WEBSOCKET, default=DEFAULT_ENABLE_WEBSOCKET):
cv.boolean,
})
SERVICE_ADD_MEDIA = 'kodi_add_to_playlist'
SERVICE_CALL_METHOD = 'kodi_call_method'
DATA_KODI = 'kodi'
ATTR_MEDIA_TYPE = 'media_type'
ATTR_MEDIA_NAME = 'media_name'
ATTR_MEDIA_ARTIST_NAME = 'artist_name'
ATTR_MEDIA_ID = 'media_id'
ATTR_METHOD = 'method'
MEDIA_PLAYER_ADD_MEDIA_SCHEMA = MEDIA_PLAYER_SCHEMA.extend({
vol.Required(ATTR_MEDIA_TYPE): cv.string,
vol.Optional(ATTR_MEDIA_ID): cv.string,
vol.Optional(ATTR_MEDIA_NAME): cv.string,
vol.Optional(ATTR_MEDIA_ARTIST_NAME): cv.string,
})
MEDIA_PLAYER_CALL_METHOD_SCHEMA = MEDIA_PLAYER_SCHEMA.extend({
vol.Required(ATTR_METHOD): cv.string,
}, extra=vol.ALLOW_EXTRA)
SERVICE_TO_METHOD = {
SERVICE_ADD_MEDIA: {
'method': 'async_add_media_to_playlist',
'schema': MEDIA_PLAYER_ADD_MEDIA_SCHEMA},
SERVICE_CALL_METHOD: {
'method': 'async_call_method',
'schema': MEDIA_PLAYER_CALL_METHOD_SCHEMA},
}
def _check_deprecated_turn_off(hass, turn_off_action):
if isinstance(turn_off_action, str):
method = DEPRECATED_TURN_OFF_ACTIONS[turn_off_action]
new_config = OrderedDict(
[('service', '{}.{}'.format(DOMAIN, SERVICE_CALL_METHOD)),
('data_template', OrderedDict(
[('entity_id', '{{ entity_id }}'),
('method', method)]))])
example_conf = dump(OrderedDict(
[(CONF_TURN_OFF_ACTION, new_config)]))
_LOGGER.warning(
"The '%s' action for turn off Kodi is deprecated and "
"will cease to function in a future release. You need to "
"change it for a generic Home Assistant script sequence, "
"which is, for this turn_off action, like this:\n%s",
turn_off_action, example_conf)
new_config['data_template'] = OrderedDict(
[(key, Template(value, hass))
for key, value in new_config['data_template'].items()])
turn_off_action = [new_config]
return turn_off_action
@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
if DATA_KODI not in hass.data:
hass.data[DATA_KODI] = []
name = config.get(CONF_NAME)
host = config.get(CONF_HOST)
port = config.get(CONF_PORT)
tcp_port = config.get(CONF_TCP_PORT)
encryption = config.get(CONF_PROXY_SSL)
websocket = config.get(CONF_ENABLE_WEBSOCKET)
entity = KodiDevice(
hass,
name=name,
host=host, port=port, tcp_port=tcp_port, encryption=encryption,
username=config.get(CONF_USERNAME),
password=config.get(CONF_PASSWORD),
turn_on_action=config.get(CONF_TURN_ON_ACTION),
turn_off_action=config.get(CONF_TURN_OFF_ACTION),
use_off_mode=config.get(CONF_USE_OFF),
timeout=config.get(CONF_TIMEOUT), websocket=websocket)
hass.data[DATA_KODI].append(entity)
async_add_devices([entity], update_before_add=True)
@asyncio.coroutine
def async_service_handler(service):
method = SERVICE_TO_METHOD.get(service.service)
if not method:
return
params = {key: value for key, value in service.data.items()
if key != 'entity_id'}
entity_ids = service.data.get('entity_id')
if entity_ids:
target_players = [player for player in hass.data[DATA_KODI]
if player.entity_id in entity_ids]
else:
target_players = hass.data[DATA_KODI]
update_tasks = []
for player in target_players:
yield from getattr(player, method['method'])(**params)
for player in target_players:
if player.should_poll:
update_coro = player.async_update_ha_state(True)
update_tasks.append(update_coro)
if update_tasks:
yield from asyncio.wait(update_tasks, loop=hass.loop)
if hass.services.has_service(DOMAIN, SERVICE_ADD_MEDIA):
return
descriptions = yield from hass.async_add_job(
load_yaml_config_file, os.path.join(
os.path.dirname(__file__), 'services.yaml'))
for service in SERVICE_TO_METHOD:
schema = SERVICE_TO_METHOD[service]['schema']
hass.services.async_register(
DOMAIN, service, async_service_handler,
description=descriptions.get(service), schema=schema)
def cmd(func):
@wraps(func)
@asyncio.coroutine
def wrapper(obj, *args, **kwargs):
import jsonrpc_base
try:
yield from func(obj, *args, **kwargs)
except jsonrpc_base.jsonrpc.TransportError as exc:
if obj.state == STATE_OFF:
log_function = _LOGGER.info
else:
log_function = _LOGGER.error
log_function("Error calling %s on entity %s: %r",
func.__name__, obj.entity_id, exc)
return wrapper
class KodiDevice(MediaPlayerDevice):
def __init__(self, hass, name, host, port, tcp_port, encryption=False,
username=None, password=None,
turn_on_action=None, turn_off_action=None, use_off_mode=False,
timeout=DEFAULT_TIMEOUT, websocket=True):
import jsonrpc_async
import jsonrpc_websocket
self.hass = hass
self._name = name
kwargs = {
'timeout': timeout,
'session': async_get_clientsession(hass),
}
if username is not None:
kwargs['auth'] = aiohttp.BasicAuth(username, password)
image_auth_string = "{}:{}@".format(username, password)
else:
image_auth_string = ""
http_protocol = 'https' if encryption else 'http'
ws_protocol = 'wss' if encryption else 'ws'
self._http_url = '{}://{}:{}/jsonrpc'.format(http_protocol, host, port)
self._image_url = '{}://{}{}:{}/image'.format(
http_protocol, image_auth_string, host, port)
self._ws_url = '{}://{}:{}/jsonrpc'.format(ws_protocol, host, tcp_port)
self._http_server = jsonrpc_async.Server(self._http_url, **kwargs)
if websocket:
self._ws_server = jsonrpc_websocket.Server(self._ws_url, **kwargs)
self._ws_server.Player.OnPause = self.async_on_speed_event
self._ws_server.Player.OnPlay = self.async_on_speed_event
self._ws_server.Player.OnSpeedChanged = self.async_on_speed_event
self._ws_server.Player.OnStop = self.async_on_stop
self._ws_server.Application.OnVolumeChanged = self.async_on_volume_changed
self._ws_server.System.OnQuit = self.async_on_quit
self._ws_server.System.OnRestart = self.async_on_quit
self._ws_server.System.OnSleep = self.async_on_quit
def on_hass_stop(event):
self.hass.async_add_job(self._ws_server.close())
self.hass.bus.async_listen_once(
EVENT_HOMEASSISTANT_STOP, on_hass_stop)
else:
self._ws_server = None
if turn_on_action is not None:
turn_on_action = script.Script(
self.hass, turn_on_action,
"{} turn ON script".format(self.name),
self.async_update_ha_state(True))
if turn_off_action is not None:
turn_off_action = script.Script(
self.hass, _check_deprecated_turn_off(hass, turn_off_action),
"{} turn OFF script".format(self.name))
self._turn_on_action = turn_on_action
self._turn_off_action = turn_off_action
self._use_off_mode = use_off_mode
self._flag_switch_off = False
self._enable_websocket = websocket
self._players = list()
self._properties = {}
self._item = {}
self._app_properties = {}
@callback
def async_on_speed_event(self, sender, data):
self._properties['speed'] = data['player']['speed']
if not hasattr(data['item'], 'id'):
force_refresh = True
else:
force_refresh = data['item']['id'] != self._item.get('id')
self.async_schedule_update_ha_state(force_refresh)
@callback
def async_on_stop(self, sender, data):
if self._players is None:
return
self._players = []
self._properties = {}
self._item = {}
self.async_schedule_update_ha_state()
@callback
def async_on_volume_changed(self, sender, data):
self._app_properties['volume'] = data['volume']
self._app_properties['muted'] = data['muted']
self.async_schedule_update_ha_state()
@callback
def async_on_quit(self, sender, data):
self._flag_switch_off = True
self._players = None
self._properties = {}
self._item = {}
self._app_properties = {}
self.hass.async_add_job(self._ws_server.close())
@asyncio.coroutine
def _get_players(self):
import jsonrpc_base
try:
return (yield from self.server.Player.GetActivePlayers())
except jsonrpc_base.jsonrpc.TransportError:
if self._players is not None:
_LOGGER.info("Unable to fetch kodi data")
_LOGGER.debug("Unable to fetch kodi data", exc_info=True)
return None
@property
def state(self):
if self._players is None:
return STATE_OFF
if not self._players and self._flag_switch_off and self._use_off_mode:
return STATE_OFF
elif not self._players:
return STATE_IDLE
self._flag_switch_off = False
if self._properties['speed'] == 0 and not self._properties['live']:
return STATE_PAUSED
return STATE_PLAYING
@asyncio.coroutine
def async_ws_connect(self):
import jsonrpc_base
try:
ws_loop_future = yield from self._ws_server.ws_connect()
except jsonrpc_base.jsonrpc.TransportError:
_LOGGER.info("Unable to connect to Kodi via websocket")
_LOGGER.debug(
"Unable to connect to Kodi via websocket", exc_info=True)
return
@asyncio.coroutine
def ws_loop_wrapper():
try:
yield from ws_loop_future
except jsonrpc_base.TransportError:
pass
self.async_schedule_update_ha_state()
self.hass.loop.create_task(ws_loop_wrapper())
@asyncio.coroutine
def async_update(self):
self._players = yield from self._get_players()
if self._players is None:
self._properties = {}
self._item = {}
self._app_properties = {}
return
if self._enable_websocket and not self._ws_server.connected:
self.hass.async_add_job(self.async_ws_connect())
self._app_properties = yield from self.server.Application.GetProperties(
['volume', 'muted']
)
if self._players:
player_id = self._players[0]['playerid']
assert isinstance(player_id, int)
self._properties = yield from self.server.Player.GetProperties(
player_id,
['time', 'totaltime', 'speed', 'live']
)
self._item = (yield from self.server.Player.GetItem(
player_id,
['title', 'file', 'uniqueid', 'thumbnail', 'artist',
'albumartist', 'showtitle', 'album', 'season', 'episode']
))['item']
else:
self._properties = {}
self._item = {}
self._app_properties = {}
@property
def server(self):
if self._enable_websocket and self._ws_server.connected:
return self._ws_server
return self._http_server
@property
def name(self):
return self._name
@property
def should_poll(self):
return not (self._enable_websocket and self._ws_server.connected)
@property
def volume_level(self):
if 'volume' in self._app_properties:
return self._app_properties['volume'] / 100.0
@property
def is_volume_muted(self):
return self._app_properties.get('muted')
@property
def media_content_id(self):
return self._item.get('uniqueid', None)
@property
def media_content_type(self):
return MEDIA_TYPES.get(self._item.get('type'))
@property
def media_duration(self):
if self._properties.get('live'):
return None
total_time = self._properties.get('totaltime')
if total_time is None:
return None
return (
total_time['hours'] * 3600 +
total_time['minutes'] * 60 +
total_time['seconds'])
@property
def media_image_url(self):
thumbnail = self._item.get('thumbnail')
if thumbnail is None:
return None
url_components = urllib.parse.urlparse(thumbnail)
if url_components.scheme == 'image':
return '{}/{}'.format(
self._image_url,
urllib.parse.quote_plus(thumbnail))
@property
def media_title(self):
return self._item.get(
'title', self._item.get('label', self._item.get('file')))
@property
def media_series_title(self):
return self._item.get('showtitle')
@property
def media_season(self):
return self._item.get('season')
@property
def media_episode(self):
return self._item.get('episode')
@property
def media_album_name(self):
return self._item.get('album')
@property
def media_artist(self):
artists = self._item.get('artist', [])
if artists:
return artists[0]
return None
@property
def media_album_artist(self):
artists = self._item.get('albumartist', [])
if artists:
return artists[0]
return None
@property
def supported_features(self):
supported_features = SUPPORT_KODI
if self._turn_on_action is not None:
supported_features |= SUPPORT_TURN_ON
if self._turn_off_action is not None:
supported_features |= SUPPORT_TURN_OFF
return supported_features
@cmd
@asyncio.coroutine
def async_turn_on(self):
if self._turn_on_action is not None:
yield from self._turn_on_action.async_run(
variables={"entity_id": self.entity_id})
else:
_LOGGER.warning("turn_on requested but turn_on_action is none")
if self._use_off_mode:
self._flag_switch_off = False
self.async_schedule_update_ha_state()
@cmd
@asyncio.coroutine
def async_turn_off(self):
if self._turn_off_action is not None:
yield from self._turn_off_action.async_run(
variables={"entity_id": self.entity_id})
else:
_LOGGER.warning("turn_off requested but turn_off_action is none")
if self._use_off_mode:
self._flag_switch_off = True
self.async_schedule_update_ha_state()
@cmd
@asyncio.coroutine
def async_volume_up(self):
assert (
yield from self.server.Input.ExecuteAction('volumeup')) == 'OK'
@cmd
@asyncio.coroutine
def async_volume_down(self):
assert (
yield from self.server.Input.ExecuteAction('volumedown')) == 'OK'
@cmd
def async_set_volume_level(self, volume):
return self.server.Application.SetVolume(int(volume * 100))
@cmd
def async_mute_volume(self, mute):
return self.server.Application.SetMute(mute)
@asyncio.coroutine
def async_set_play_state(self, state):
players = yield from self._get_players()
if players is not None and players:
yield from self.server.Player.PlayPause(
players[0]['playerid'], state)
@cmd
def async_media_play_pause(self):
return self.async_set_play_state('toggle')
@cmd
def async_media_play(self):
return self.async_set_play_state(True)
@cmd
def async_media_pause(self):
return self.async_set_play_state(False)
@cmd
@asyncio.coroutine
def async_media_stop(self):
players = yield from self._get_players()
if players:
yield from self.server.Player.Stop(players[0]['playerid'])
@asyncio.coroutine
def _goto(self, direction):
players = yield from self._get_players()
if players:
if direction == 'previous':
yield from self.server.Player.Seek(players[0]['playerid'], 0)
yield from self.server.Player.GoTo(
players[0]['playerid'], direction)
@cmd
def async_media_next_track(self):
return self._goto('next')
@cmd
def async_media_previous_track(self):
return self._goto('previous')
@cmd
@asyncio.coroutine
def async_media_seek(self, position):
players = yield from self._get_players()
time = {}
time['milliseconds'] = int((position % 1) * 1000)
position = int(position)
time['seconds'] = int(position % 60)
position /= 60
time['minutes'] = int(position % 60)
position /= 60
time['hours'] = int(position)
if players:
yield from self.server.Player.Seek(players[0]['playerid'], time)
@cmd
def async_play_media(self, media_type, media_id, **kwargs):
if media_type == "CHANNEL":
return self.server.Player.Open(
{"item": {"channelid": int(media_id)}})
elif media_type == "PLAYLIST":
return self.server.Player.Open(
{"item": {"playlistid": int(media_id)}})
return self.server.Player.Open(
{"item": {"file": str(media_id)}})
@asyncio.coroutine
def async_set_shuffle(self, shuffle):
if len(self._players) < 1:
raise RuntimeError("Error: No active player.")
yield from self.server.Player.SetShuffle(
{"playerid": self._players[0]['playerid'], "shuffle": shuffle})
@asyncio.coroutine
def async_call_method(self, method, **kwargs):
import jsonrpc_base
_LOGGER.debug("Run API method %s, kwargs=%s", method, kwargs)
result_ok = False
try:
result = yield from getattr(self.server, method)(**kwargs)
result_ok = True
except jsonrpc_base.jsonrpc.ProtocolError as exc:
result = exc.args[2]['error']
_LOGGER.error("Run API method %s.%s(%s) error: %s",
self.entity_id, method, kwargs, result)
except jsonrpc_base.jsonrpc.TransportError:
result = None
_LOGGER.warning("TransportError trying to run API method "
"%s.%s(%s)", self.entity_id, method, kwargs)
if isinstance(result, dict):
event_data = {'entity_id': self.entity_id,
'result': result,
'result_ok': result_ok,
'input': {'method': method, 'params': kwargs}}
_LOGGER.debug("EVENT kodi_call_method_result: %s", event_data)
self.hass.bus.async_fire(EVENT_KODI_CALL_METHOD_RESULT,
event_data=event_data)
return result
@asyncio.coroutine
def async_add_media_to_playlist(
self, media_type, media_id=None, media_name='ALL', artist_name=''):
import jsonrpc_base
params = {"playlistid": 0}
if media_type == "SONG":
if media_id is None:
media_id = yield from self.async_find_song(
media_name, artist_name)
if media_id:
params["item"] = {"songid": int(media_id)}
elif media_type == "ALBUM":
if media_id is None:
if media_name == "ALL":
yield from self.async_add_all_albums(artist_name)
return
media_id = yield from self.async_find_album(
media_name, artist_name)
if media_id:
params["item"] = {"albumid": int(media_id)}
else:
raise RuntimeError("Unrecognized media type.")
if media_id is not None:
try:
yield from self.server.Playlist.Add(params)
except jsonrpc_base.jsonrpc.ProtocolError as exc:
result = exc.args[2]['error']
_LOGGER.error("Run API method %s.Playlist.Add(%s) error: %s",
self.entity_id, media_type, result)
except jsonrpc_base.jsonrpc.TransportError:
_LOGGER.warning("TransportError trying to add playlist to %s",
self.entity_id)
else:
_LOGGER.warning("No media detected for Playlist.Add")
@asyncio.coroutine
def async_add_all_albums(self, artist_name):
artist_id = yield from self.async_find_artist(artist_name)
albums = yield from self.async_get_albums(artist_id)
for alb in albums['albums']:
yield from self.server.Playlist.Add(
{"playlistid": 0, "item": {"albumid": int(alb['albumid'])}})
@asyncio.coroutine
def async_clear_playlist(self):
return self.server.Playlist.Clear({"playlistid": 0})
@asyncio.coroutine
def async_get_artists(self):
return (yield from self.server.AudioLibrary.GetArtists())
@asyncio.coroutine
|
MIT License
|
tatumdmortimer/popgen-stats
|
snpEffSummary.py
|
get_args
|
python
|
def get_args():
parser = argparse.ArgumentParser(description='Summarize snpEff output')
parser.add_argument("vcf", help="annotated vcf file", action=FullPaths,
type=is_file)
parser.add_argument("gene", help="genes output file", action=FullPaths,
type=is_file)
return parser.parse_args()
|
Parse command line arguments
|
https://github.com/tatumdmortimer/popgen-stats/blob/eecdc4b10ea860cfd49e4fd21daa3b93b009350d/snpEffSummary.py#L38-L45
|
import sys, os, argparse
import pandas
import vcf
from datetime import datetime
class FullPaths(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest,
os.path.abspath(os.path.expanduser(values)))
def listdir_fullpath(d):
return [os.path.join(d, f) for f in os.listdir(d)]
def is_dir(dirname):
if not os.path.isdir(dirname):
msg = "{0} is not a directory".format(dirname)
raise argparse.ArgumentTypeError(msg)
else:
return dirname
def is_file(filename):
if not os.path.isfile(filename):
msg = "{0} is not a file".format(filename)
raise argparse.ArgumentTypeError(msg)
else:
return filename
|
MIT License
|
christabor/moal
|
MOAL/data_structures/trees/splay_trees.py
|
SplayTree.right_rotate
|
python
|
def right_rotate(self, node):
node_left_child = node.left_child
if node_left_child:
node.left_child = node_left_child.right_child
if node_left_child.right_child:
node_left_child.right_child.parent = node
node_left_child.parent = node.parent
if not node.parent:
self.root = node_left_child
elif node == node.parent.left_child:
node.parent.left_child = node_left_child
else:
node.parent.right_child = node_left_child
if node_left_child:
node_left_child.right = node
node.parent = node_left_child
|
Right rotation along a node
|
https://github.com/christabor/moal/blob/7d3062f6a49e45147172b7d577472b1e2aa084fa/MOAL/data_structures/trees/splay_trees.py#L66-L85
|
__author__ = """Chris Tabor (dxdstudio@gmail.com)"""
if __name__ == '__main__':
from os import getcwd
from os import sys
sys.path.append(getcwd())
from MOAL.data_structures.trees.avl_trees import AVLTree
from MOAL.data_structures.trees.binary_search_trees import Node
from MOAL.data_structures.trees.binary_search_trees import recurse_bst
from MOAL.data_structures.trees.binary_search_trees import populate_bst
from MOAL.helpers.display import Section
DEBUG = True
class SplayNode(Node):
pass
class SplayTree(AVLTree):
def _put(self, *args, **kwargs):
self.put(*args, **kwargs)
def subtree_minimum(self, node):
while node.left_child:
node = node.left_child
return node
def subtree_maximum(self, node):
while node.right_child:
node = node.right_child
return node
def has_grandparent(self, node):
return node.parent.parent is not None
def left_rotate(self, node):
node_right_child = node.right_child
if node_right_child:
node.right_child = node_right_child.left_child
if node_right_child.left_child:
node_right_child.left_child.parent = node
node_right_child.parent = node.parent
if not node.parent:
self.root = node_right_child
elif node == node.parent.left_child:
node.parent.left_child = node_right_child
else:
node.parent.right_child = node_right_child
if node_right_child:
node_right_child.left_child = node
node.parent = node_right_child
|
Apache License 2.0
|
felix-hilden/pyfactor
|
pyfactor/_cli.py
|
infer_graph_from_sources
|
python
|
def infer_graph_from_sources(sources: List[str]) -> Path:
parts = [make_absolute(Path(s)).stem for s in sources]
return Path('-'.join(parts)).with_suffix('.gv')
|
Infer graph name from sources.
|
https://github.com/felix-hilden/pyfactor/blob/c07c4f4369a9fa3678a0103670484a6fdf1b56b0/pyfactor/_cli.py#L128-L131
|
from argparse import ArgumentParser
from pathlib import Path
from typing import List, Optional
parser = ArgumentParser(
allow_abbrev=False, description='Script dependency visualiser.'
)
group_mode = parser.add_argument_group('Source and output')
group_mode.add_argument('sources', nargs='*', help=(
'source file names. If sources was disabled by providing no names, '
'--graph is used as direct input for rendering. Disabling two or more of '
'SOURCES, --graph and --output will return with an error code 1.'
))
group_mode.add_argument('--graph', '-g', nargs='?', default='-', const=None, help=(
'write or read intermediate graph file. Graph output is disabled by default. '
'If a value is specified, it is used as the file name. '
'If no value is provided, the name is inferred from combining SOURCES. '
'See SOURCES for more information.'
))
group_mode.add_argument('--output', '-o', help=(
'render file name. By default the name is inferred from --graph. '
'If the name is a single hyphen, render output is disabled '
'and a graph is written to --graph. See SOURCES for more information. '
'NOTE: --format is appended to the name'
))
group_mode.add_argument('--format', '-f', default='svg', help=(
'render file format, appended to all render file names (default: %(default)s) '
'NOTE: displaying docstring tooltips is only available in svg and cmap formats'
))
group_mode.add_argument(
'--legend', nargs='?', default=None, const='pyfactor-legend', help=(
'render a legend, optionally specify a file name (default: %(const)s)'
)
)
group_parse = parser.add_argument_group('Parsing options')
group_parse.add_argument(
'--imports', '-i', default='interface', help=(
'duplicate or resolve import nodes. '
'Valid values are duplicate, interface and resolve (default: %(default)s). '
'Duplicating produces a node for each import in the importing source. '
'Resolving imports links edges directly to the original definitions instead. '
'"interface" leaves import nodes that reference definitions directly below '
'the import in the module hierarchy and resolves others.'
)
)
group_parse.add_argument(
'--skip-external', '-se', action='store_true', help=(
'do not visualise imports to external modules'
)
)
group_parse.add_argument(
'--exclude', '-e', action='append', help='exclude nodes in the source'
)
group_parse.add_argument(
'--collapse-waypoints', '-cw', action='store_true', help=(
'remove children of waypoint nodes and mark them as collapsed'
)
)
group_parse.add_argument(
'--collapse-exclude', '-ce', action='append', help=(
'exclude waypoint nodes from being collapsed'
'when --collapse-waypoints is set'
)
)
group_parse.add_argument(
'--root', '-r', default=None, help=(
'only show root and its children in the graph '
'NOTE: does not affect graph coloring'
)
)
group_graph = parser.add_argument_group('Graph appearance')
group_graph.add_argument(
'--stagger', type=int, default=2, help='max Graphviz unflatten stagger'
)
group_graph.add_argument(
'--no-fanout', action='store_true', help='disable Graphviz unflatten fanout'
)
group_graph.add_argument(
'--chain', type=int, default=1, help='max Graphviz unflatten chain'
)
group_graph.add_argument(
'--graph-attr', '-ga', action='append', help=(
'Graphviz graph attributes as colon-separated name-value pairs '
'(e.g. -ga overlap:false) NOTE: overrided by Pyfactor'
)
)
group_graph.add_argument(
'--node-attr', '-na', action='append', help=(
'Graphviz node attributes as colon-separated name-value pairs '
'(e.g. -na style:filled,rounded) NOTE: overrided by Pyfactor'
)
)
group_graph.add_argument(
'--edge-attr', '-ea', action='append', help=(
'Graphviz edge attributes as colon-separated name-value pairs '
'(e.g. -ea arrowsize:2) NOTE: overrided by Pyfactor'
)
)
group_graph.add_argument('--engine', help='Graphviz layout engine')
group_misc = parser.add_argument_group('Miscellaneous options')
group_misc.add_argument('--view', action='store_true', help=(
'open result in default application after rendering'
))
group_misc.add_argument(
'--renderer', help='Graphviz output renderer'
)
group_misc.add_argument(
'--formatter', help='Graphviz output formatter'
)
group_misc.add_argument(
'--version', '-v', action='store_true', help='display version number and exit'
)
class ArgumentError(RuntimeError):
def make_absolute(path: Path) -> Path:
return path if path.is_absolute() else Path.cwd() / path
|
MIT License
|
haaleo/swarmlib
|
swarmlib/abc/main.py
|
configure_parser
|
python
|
def configure_parser(sub_parsers):
parser = sub_parsers.add_parser(
'bees',
description='Solving an minimization problem using the artificial bee colony algorithm',
help='artificial bee colony algorithm for minimization problem')
parser.add_argument(
'-f',
'--function',
type=str,
default='michalewicz',
help='''Choose the function that is used for searching the minimum.
Choices are any of the 2D or nD single objective functions available
in the 'landscapes' package (https://git.io/JTSFv). Example arguments:
'michalewicz', 'ackley', 'rastrigin'.''',
choices=[*FUNCTIONS],
metavar='')
parser.add_argument(
'-u',
'--upper-boundary',
type=float,
default=4.,
help='Upper boundary of the function (default 4)')
parser.add_argument(
'-l',
'--lower-boundary',
type=float,
default=0.,
help='Lower boundary of the function (default 0)')
parser.add_argument(
'-n',
'--iteration-number',
type=int,
default=30,
help='Number of iterations to execute (default 30)')
parser.add_argument(
'-t',
'--trials',
type=int,
default=3,
help='Maximum number of trials a bee tries to find a new, better food source before it becomes exhausted.')
parser.add_argument(
'-a',
'--alpha',
type=float,
default=1.,
help='Scaling parameter used for levy flight step. (default 1)')
parser.add_argument(
'-la',
'--lambda',
type=float,
default=1.5,
help='Randomization parameter used for the levy flights distribution. (default 1.5)')
parser.add_argument(
'bees',
type=int,
help='Number of employed bees used for solving')
parser.set_defaults(func=_run_abc)
|
Get the argument parser for artificial bee colony
|
https://github.com/haaleo/swarmlib/blob/044b10be5694359900495403cc9f0e84d38a9e88/swarmlib/abc/main.py#L23-L87
|
import logging
from .abc_problem import ABCProblem
from ..util.functions import FUNCTIONS
LOGGER = logging.getLogger(__name__)
def _run_abc(args):
LOGGER.info('Start artificial bee colony with parameters="%s"', args)
args['function'] = FUNCTIONS[args['function']]
problem = ABCProblem(**args)
problem.solve()
problem.replay()
|
BSD 3-Clause New or Revised License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/scene/hunterdouglas_powerview.py
|
PowerViewScene.name
|
python
|
def name(self):
return self._scene.name
|
Return the name of the scene.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/scene/hunterdouglas_powerview.py#L86-L88
|
import asyncio
import logging
import voluptuous as vol
from homeassistant.components.scene import Scene, DOMAIN
from homeassistant.const import CONF_PLATFORM
from homeassistant.helpers.aiohttp_client import async_get_clientsession
import homeassistant.helpers.config_validation as cv
from homeassistant.helpers.entity import async_generate_entity_id
_LOGGER = logging.getLogger(__name__)
REQUIREMENTS = ['aiopvapi==1.5.4']
ENTITY_ID_FORMAT = DOMAIN + '.{}'
HUB_ADDRESS = 'address'
PLATFORM_SCHEMA = vol.Schema({
vol.Required(CONF_PLATFORM): 'hunterdouglas_powerview',
vol.Required(HUB_ADDRESS): cv.string,
})
SCENE_DATA = 'sceneData'
ROOM_DATA = 'roomData'
SCENE_NAME = 'name'
ROOM_NAME = 'name'
SCENE_ID = 'id'
ROOM_ID = 'id'
ROOM_ID_IN_SCENE = 'roomId'
STATE_ATTRIBUTE_ROOM_NAME = 'roomName'
@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
from aiopvapi.scenes import Scenes
from aiopvapi.rooms import Rooms
from aiopvapi.resources.scene import Scene as PvScene
hub_address = config.get(HUB_ADDRESS)
websession = async_get_clientsession(hass)
_scenes = yield from Scenes(
hub_address, hass.loop, websession).get_resources()
_rooms = yield from Rooms(
hub_address, hass.loop, websession).get_resources()
if not _scenes or not _rooms:
_LOGGER.error(
"Unable to initialize PowerView hub: %s", hub_address)
return
pvscenes = (PowerViewScene(hass,
PvScene(_raw_scene, hub_address, hass.loop,
websession), _rooms)
for _raw_scene in _scenes[SCENE_DATA])
async_add_devices(pvscenes)
class PowerViewScene(Scene):
def __init__(self, hass, scene, room_data):
self._scene = scene
self.hass = hass
self._room_name = None
self._sync_room_data(room_data)
self.entity_id = async_generate_entity_id(
ENTITY_ID_FORMAT, str(self._scene.id), hass=hass)
def _sync_room_data(self, room_data):
room = next((room for room in room_data[ROOM_DATA]
if room[ROOM_ID] == self._scene.room_id), {})
self._room_name = room.get(ROOM_NAME, '')
@property
|
MIT License
|
dpressel/mead-baseline
|
layers/eight_mile/tf/serialize.py
|
save_tlm_output_npz
|
python
|
def save_tlm_output_npz(tlm: tf.keras.layers.Layer, npz: str, embeddings_keys: List[str] = None, name: str = "TLM", verbose: bool = False):
d = to_tlm_array(tlm, embeddings_keys, name)
if hasattr(tlm, 'output'):
d.update(to_weight_array(tlm.output, name=f'{name}/output'))
elif hasattr(tlm, 'output_layer'):
d.update(to_weight_array(tlm.output_layer, name=f'{name}/output'))
if verbose:
print(d.keys())
np.savez(npz, **d)
|
Save a TLM to an NPZ file with an output layer
:param tlm: A Transformer LM-type module
:param npz: A file to save
:param embeddings_keys: A key to get embeddings from. Defaults to `None`, in which case, all embeddings are written
:param name: A name for this TLM
:param verbose: whether output
:return: None
|
https://github.com/dpressel/mead-baseline/blob/ee6a7c154293be0f0d7d637e41efe9aabd3bbf80/layers/eight_mile/tf/serialize.py#L397-L414
|
import numpy as np
from typing import Dict, List
from eight_mile.tf.layers import (
TransformerEncoderStack,
TransformerEncoder,
TransformerDecoderStack,
TransformerDecoder,
MultiHeadedAttention,
PassThru,
FFN,
SingleHeadReduction,
SpatialGatingUnit,
GatedMLPEncoder,
GatedMLPEncoderStack
)
from eight_mile.tf.embeddings import LookupTableEmbeddings, LearnedPositionalLookupTableEmbeddingsWithBias, LearnedPositionalLookupTableEmbeddings
import tensorflow as tf
def to_weight_array(tf_layer: tf.keras.layers.Layer, name: str) -> Dict:
weights, bias = tf_layer.get_weights()
return {f"{name}/weights": weights.T, f"{name}/bias": bias}
def from_weight_array(tf_layer: tf.keras.layers.Layer, d: Dict, name: str):
weights = d[f"{name}/weights"]
bias = d[f"{name}/bias"]
tf_layer.set_weights([weights.T, bias])
def to_ffn_array(tf_ffn: FFN, name: str) -> Dict:
d = {}
d.update(to_weight_array(tf_ffn.expansion, f"{name}/expansion"))
d.update(to_weight_array(tf_ffn.squeeze, f"{name}/squeeze"))
return d
def from_ffn_array(tf_ffn: FFN, d: Dict, name: str):
from_weight_array(tf_ffn.expansion, d, f"{name}/expansion")
from_weight_array(tf_ffn.squeeze, d, f"{name}/squeeze")
def to_attn_array(tf_attn: tf.keras.layers.Layer, name: str) -> Dict:
d = {}
d.update(to_weight_array(tf_attn.w_Q, f"{name}/w_Q"))
d.update(to_weight_array(tf_attn.w_K, f"{name}/w_K"))
d.update(to_weight_array(tf_attn.w_V, f"{name}/w_V"))
if hasattr(tf_attn, 'w_O'):
d.update(to_weight_array(tf_attn.w_O, f"{name}/w_O"))
if hasattr(tf_attn, 'rpr_key'):
rpr_key_weights = tf_attn.rpr_key.get_weights()[0]
d.update({f"{name}/rpr_key": rpr_key_weights})
if hasattr(tf_attn, 'rpr_value'):
rpr_value_weights = tf_attn.rpr_value.get_weights()[0]
d.update({f"{name}/rpr_value": rpr_value_weights})
return d
def from_attn_array(tf_attn: tf.keras.layers.Layer, d: Dict, name: str):
from_weight_array(tf_attn.w_Q, d, f"{name}/w_Q")
from_weight_array(tf_attn.w_K, d, f"{name}/w_K")
from_weight_array(tf_attn.w_V, d, f"{name}/w_V")
if hasattr(tf_attn, 'w_O'):
from_weight_array(tf_attn.w_O, d, f"{name}/w_O")
if hasattr(tf_attn, 'rpr_key'):
tf_attn.rpr_key.set_weights([d[f"{name}/rpr_key"]])
if hasattr(tf_attn, 'rpr_value'):
tf_attn.rpr_value.set_weights([d[f"{name}/rpr_value"]])
def to_sgu_array(tf_sgu: SpatialGatingUnit, name: str) -> Dict:
d = {}
d.update(to_weight_array(tf_sgu.norm, f"{name}/norm"))
d.update(to_weight_array(tf_sgu.proj, f"{name}/proj"))
return d
def to_gmlp_encoder_array(tf_encoder: GatedMLPEncoder, name: str) -> Dict:
d = {}
d.update(to_weight_array(tf_encoder.to_ffn, f"{name}/to_ffn"))
d.update(to_weight_array(tf_encoder.from_sgu, f"{name}/from_sgu"))
d.update(to_weight_array(tf_encoder.norm, f"{name}/norm"))
d.update(to_sgu_array(tf_encoder.spatial_gating_unit, f"{name}/spatial_gating_unit"))
return d
def to_encoder_array(tf_encoder: TransformerEncoder, name: str) -> Dict:
d = {}
d.update(to_weight_array(tf_encoder.ln1, f"{name}/ln1"))
d.update(to_weight_array(tf_encoder.ln2, f"{name}/ln2"))
d.update(to_attn_array(tf_encoder.self_attn, f"{name}/attn"))
d.update(to_ffn_array(tf_encoder.ffn, f"{name}/ffn"))
return d
def from_encoder_array(tf_encoder: TransformerEncoder, d: Dict, name: str):
from_weight_array(tf_encoder.ln1, d, f"{name}/ln1")
from_weight_array(tf_encoder.ln2, d, f"{name}/ln2")
from_attn_array(tf_encoder.self_attn, d, f"{name}/attn")
from_ffn_array(tf_encoder.ffn, d, f"{name}/ffn")
def to_decoder_array(tf_decoder: TransformerDecoder, name: str) -> Dict:
d = {}
d.update(to_weight_array(tf_decoder.ln1, f"{name}/ln1"))
d.update(to_weight_array(tf_decoder.ln2, f"{name}/ln2"))
d.update(to_weight_array(tf_decoder.ln3, f"{name}/ln3"))
d.update(to_attn_array(tf_decoder.self_attn, f"{name}/self_attn"))
d.update(to_attn_array(tf_decoder.src_attn, f"{name}/src_attn"))
d.update(to_ffn_array(tf_decoder.ffn, f"{name}/ffn"))
return d
def to_embed_array(tf_embed: tf.keras.layers.Layer, name: str) -> Dict:
d = {}
if hasattr(tf_embed, 'pos'):
pos_weights = tf.keras.backend.get_value(tf_embed.pos)
d.update({f"{name}/pos_weights": pos_weights})
if hasattr(tf_embed, 'bias'):
bias = tf.keras.backend.get_value(tf_embed.bias)
d.update({f"{name}/bias": bias.squeeze()})
weights = tf.keras.backend.get_value(tf_embed.W)
d.update({f"{name}/weights": weights})
return d
def from_embed_array(tf_embed: tf.keras.layers.Layer, d: Dict, name: str, bias=None):
weights = [d[f"{name}/weights"]]
if hasattr(tf_embed, 'pos'):
pos_weights = d[f"{name}/pos_weights"]
weights = [pos_weights] + weights
if hasattr(tf_embed, 'bias') and bias is not None:
weights = weights + [bias.reshape(1, -1)]
tf_embed.set_weights(weights)
def to_gmlp_encoder_stack_array(
tf_encoder_stack: GatedMLPEncoderStack, name: str = "GatedMLPEncoderStack"
) -> Dict:
d = {}
if isinstance(tf_encoder_stack.ln, tf.keras.layers.LayerNormalization):
d.update(to_weight_array(tf_encoder_stack.ln, f"{name}/ln"))
for i, enc_tf in enumerate(tf_encoder_stack.encoders):
d.update(to_gmlp_encoder_array(enc_tf, f"{name}/{i}"))
return d
def to_encoder_stack_array(
tf_encoder_stack: TransformerEncoderStack, name: str = "TransformerEncoderStack"
) -> Dict:
d = {}
if isinstance(tf_encoder_stack.ln, tf.keras.layers.LayerNormalization):
d.update(to_weight_array(tf_encoder_stack.ln, f"{name}/ln"))
for i, enc_tf in enumerate(tf_encoder_stack.encoders):
d.update(to_encoder_array(enc_tf, f"{name}/{i}"))
return d
def from_encoder_stack_array(tf_encoder_stack: TransformerEncoderStack, d: Dict, name: str = "TransformerEncoderStack"):
if isinstance(tf_encoder_stack.ln, tf.keras.layers.LayerNormalization):
from_weight_array(tf_encoder_stack.ln, d, f"{name}/ln")
for i, enc_tf in enumerate(tf_encoder_stack.encoders):
from_encoder_array(enc_tf, d, f"{name}/{i}")
def to_decoder_stack_array(
tf_decoder_stack: TransformerDecoderStack, name: str = "TransformerDecoderStack"
) -> Dict:
d = {}
if isinstance(tf_decoder_stack.ln, tf.keras.layers.LayerNormalization):
d.update(to_weight_array(tf_decoder_stack.ln, f"{name}/ln"))
for i, dec_tf in enumerate(tf_decoder_stack.decoders):
d.update(to_decoder_array(dec_tf, f"{name}/{i}"))
return d
def from_decoder_array(tf_decoder: TransformerDecoder, d: Dict, name: str):
from_weight_array(tf_decoder.ln1, d, f"{name}/ln1")
from_weight_array(tf_decoder.ln2, d, f"{name}/ln2")
from_weight_array(tf_decoder.ln3, d, f"{name}/ln3")
from_attn_array(tf_decoder.src_attn, d, f"{name}/src_attn")
from_attn_array(tf_decoder.self_attn, d, f"{name}/self_attn")
from_ffn_array(tf_decoder.ffn, d, f"{name}/ffn")
def from_decoder_stack_array(
tf_decoder_stack: TransformerDecoderStack, d: Dict, name: str = "TransformerDecoderStack"
):
if isinstance(tf_decoder_stack.ln, tf.keras.layers.LayerNormalization):
from_weight_array(tf_decoder_stack.ln, d, f"{name}/ln")
for i, dec_pyt in enumerate(tf_decoder_stack.decoders):
from_decoder_array(dec_pyt, d, f"{name}/{i}")
def to_tlm_array(tf_tlm: tf.keras.layers.Layer, embeddings_keys: List[str] = None, name: str = "TLM") -> Dict:
d = {}
transformer = tf_tlm.transformer if hasattr(tf_tlm, 'transformer') else tf_tlm.generator
if isinstance(transformer, GatedMLPEncoderStack):
d.update(to_gmlp_encoder_stack_array(transformer, name=f"{name}/GatedMLPEncoderStack"))
else:
d.update(to_encoder_stack_array(transformer, name=f"{name}/TransformerEncoderStack"))
keys_to_write = embeddings_keys if embeddings_keys else list(tf_tlm.embeddings.keys())
for embeddings_key in keys_to_write:
d.update(to_embed_array(tf_tlm.embeddings[embeddings_key], name=f"{name}/Embeddings/{embeddings_key}"))
if hasattr(tf_tlm.embeddings.reduction, 'ln'):
d.update(to_weight_array(tf_tlm.embeddings.reduction.ln, name=f"{name}/Embeddings/reduction/ln"))
return d
def from_tlm_array(tf_tlm: tf.keras.layers.Layer, d: Dict, embeddings_keys: List[str] = None, name: str = "TLM"):
transformer = tf_tlm.transformer if hasattr(tf_tlm, 'transformer') else tf_tlm.generator
from_encoder_stack_array(transformer, d, name=f"{name}/TransformerEncoderStack")
keys_to_restore = embeddings_keys if embeddings_keys else list(tf_tlm.embeddings.keys())
for embeddings_key in keys_to_restore:
if isinstance(tf_tlm.embeddings[embeddings_key], LearnedPositionalLookupTableEmbeddingsWithBias):
bias = d[f"{name}/Embeddings/tt/weights"][0]
from_embed_array(tf_tlm.embeddings[embeddings_key], d, f"{name}/Embeddings/{embeddings_key}", bias)
else:
from_embed_array(tf_tlm.embeddings[embeddings_key], d, f"{name}/Embeddings/{embeddings_key}")
if hasattr(tf_tlm.embeddings.reduction, 'ln'):
from_weight_array(tf_tlm.embeddings.reduction.ln, d, f"{name}/Embeddings/reduction/ln")
def save_tlm_npz(tf_tlm: tf.keras.layers.Layer, npz: str, embeddings_keys: List[str] = None, name: str = "TLM", verbose: bool = False):
d = to_tlm_array(tf_tlm, embeddings_keys, name)
if verbose:
print(d.keys())
np.savez(npz, **d)
|
Apache License 2.0
|
rajammanabrolu/worldgeneration
|
evennia-engine/evennia/evennia/utils/dbserialize.py
|
unpack_dbobj
|
python
|
def unpack_dbobj(item):
_init_globals()
try:
obj = item[3] and _TO_MODEL_MAP[item[1]].objects.get(id=item[3])
except ObjectDoesNotExist:
return None
except TypeError:
if hasattr(item, "pk"):
return item
return None
if item[1] in _IGNORE_DATETIME_MODELS:
return obj
else:
return _TO_DATESTRING(obj) == item[2] and obj or None
|
Check and convert internal representations back to Django database
models.
Args:
item (packed_dbobj): The fact that item is a packed dbobj
should be checked before this call.
Returns:
unpacked (any): Either the original input or converts the
internal store back to a database representation (its
typeclass is returned if applicable).
|
https://github.com/rajammanabrolu/worldgeneration/blob/5e97df013399e1a401d0a7ec184c4b9eb3100edd/evennia-engine/evennia/evennia/utils/dbserialize.py#L442-L473
|
from functools import update_wrapper
from collections import defaultdict, MutableSequence, MutableSet, MutableMapping
from collections import OrderedDict, deque
try:
from pickle import dumps, loads
except ImportError:
from pickle import dumps, loads
from django.core.exceptions import ObjectDoesNotExist
from django.contrib.contenttypes.models import ContentType
from django.utils.safestring import SafeString, SafeBytes
from evennia.utils.utils import uses_database, is_iter, to_str, to_bytes
from evennia.utils import logger
__all__ = ("to_pickle", "from_pickle", "do_pickle", "do_unpickle", "dbserialize", "dbunserialize")
PICKLE_PROTOCOL = 2
_ERROR_DELETED_ATTR = (
"{cls_name} {obj} has had its root Attribute deleted. "
"It must be cast to a {non_saver_name} before it can be modified further."
)
def _get_mysql_db_version():
from django.db import connection
conn = connection.cursor()
conn.execute("SELECT VERSION()")
version = conn.fetchone()
return version and str(version[0]) or ""
_GA = object.__getattribute__
_SA = object.__setattr__
_FROM_MODEL_MAP = None
_TO_MODEL_MAP = None
_IGNORE_DATETIME_MODELS = None
_SESSION_HANDLER = None
def _IS_PACKED_DBOBJ(o):
return isinstance(o, tuple) and len(o) == 4 and o[0] == "__packed_dbobj__"
def _IS_PACKED_SESSION(o):
return isinstance(o, tuple) and len(o) == 3 and o[0] == "__packed_session__"
if uses_database("mysql") and _get_mysql_db_version() < "5.6.4":
_DATESTRING = "%Y:%m:%d-%H:%M:%S:000000"
else:
_DATESTRING = "%Y:%m:%d-%H:%M:%S:%f"
def _TO_DATESTRING(obj):
try:
return _GA(obj, "db_date_created").strftime(_DATESTRING)
except AttributeError:
try:
obj.save()
except AttributeError:
return None
return _GA(obj, "db_date_created").strftime(_DATESTRING)
def _init_globals():
global _FROM_MODEL_MAP, _TO_MODEL_MAP, _SESSION_HANDLER, _IGNORE_DATETIME_MODELS
if not _FROM_MODEL_MAP:
_FROM_MODEL_MAP = defaultdict(str)
_FROM_MODEL_MAP.update(dict((c.model, c.natural_key()) for c in ContentType.objects.all()))
if not _TO_MODEL_MAP:
from django.conf import settings
_TO_MODEL_MAP = defaultdict(str)
_TO_MODEL_MAP.update(
dict((c.natural_key(), c.model_class()) for c in ContentType.objects.all())
)
_IGNORE_DATETIME_MODELS = []
for src_key, dst_key in settings.ATTRIBUTE_STORED_MODEL_RENAME:
_TO_MODEL_MAP[src_key] = _TO_MODEL_MAP.get(dst_key, None)
_IGNORE_DATETIME_MODELS.append(src_key)
if not _SESSION_HANDLER:
from evennia.server.sessionhandler import SESSION_HANDLER as _SESSION_HANDLER
def _save(method):
def save_wrapper(self, *args, **kwargs):
self.__doc__ = method.__doc__
ret = method(self, *args, **kwargs)
self._save_tree()
return ret
return update_wrapper(save_wrapper, method)
class _SaverMutable(object):
def __init__(self, *args, **kwargs):
self._parent = kwargs.pop("_parent", None)
self._db_obj = kwargs.pop("_db_obj", None)
self._data = None
def __bool__(self):
return bool(self._data)
def _save_tree(self):
if self._parent:
self._parent._save_tree()
elif self._db_obj:
if not self._db_obj.pk:
cls_name = self.__class__.__name__
try:
non_saver_name = cls_name.split("_Saver", 1)[1].lower()
except IndexError:
non_saver_name = cls_name
raise ValueError(
_ERROR_DELETED_ATTR.format(
cls_name=cls_name, obj=self, non_saver_name=non_saver_name
)
)
self._db_obj.value = self
else:
logger.log_err("_SaverMutable %s has no root Attribute to save to." % self)
def _convert_mutables(self, data):
def process_tree(item, parent):
dtype = type(item)
if dtype in (str, int, float, bool, tuple):
return item
elif dtype == list:
dat = _SaverList(_parent=parent)
dat._data.extend(process_tree(val, dat) for val in item)
return dat
elif dtype == dict:
dat = _SaverDict(_parent=parent)
dat._data.update((key, process_tree(val, dat)) for key, val in item.items())
return dat
elif dtype == set:
dat = _SaverSet(_parent=parent)
dat._data.update(process_tree(val, dat) for val in item)
return dat
return item
return process_tree(data, self)
def __repr__(self):
return self._data.__repr__()
def __len__(self):
return self._data.__len__()
def __iter__(self):
return self._data.__iter__()
def __getitem__(self, key):
return self._data.__getitem__(key)
def __eq__(self, other):
return self._data == other
def __ne__(self, other):
return self._data != other
@_save
def __setitem__(self, key, value):
self._data.__setitem__(key, self._convert_mutables(value))
@_save
def __delitem__(self, key):
self._data.__delitem__(key)
class _SaverList(_SaverMutable, MutableSequence):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._data = list()
@_save
def __iadd__(self, otherlist):
self._data = self._data.__add__(otherlist)
return self._data
def __add__(self, otherlist):
return list(self._data) + otherlist
@_save
def insert(self, index, value):
self._data.insert(index, self._convert_mutables(value))
def __eq__(self, other):
try:
return list(self._data) == list(other)
except TypeError:
return False
def __ne__(self, other):
try:
return list(self._data) != list(other)
except TypeError:
return True
def index(self, value, *args):
return self._data.index(value, *args)
class _SaverDict(_SaverMutable, MutableMapping):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._data = dict()
def has_key(self, key):
return key in self._data
class _SaverSet(_SaverMutable, MutableSet):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._data = set()
def __contains__(self, value):
return self._data.__contains__(value)
@_save
def add(self, value):
self._data.add(self._convert_mutables(value))
@_save
def discard(self, value):
self._data.discard(value)
class _SaverOrderedDict(_SaverMutable, MutableMapping):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._data = OrderedDict()
def has_key(self, key):
return key in self._data
class _SaverDeque(_SaverMutable):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._data = deque()
@_save
def append(self, *args, **kwargs):
self._data.append(*args, **kwargs)
@_save
def appendleft(self, *args, **kwargs):
self._data.appendleft(*args, **kwargs)
@_save
def clear(self):
self._data.clear()
@_save
def extendleft(self, *args, **kwargs):
self._data.extendleft(*args, **kwargs)
def _getmaxlen(self):
return self._data.maxlen
def _setmaxlen(self, value):
self._data.maxlen = value
def _delmaxlen(self):
del self._data.maxlen
maxlen = property(_getmaxlen, _setmaxlen, _delmaxlen)
@_save
def pop(self, *args, **kwargs):
return self._data.pop(*args, **kwargs)
@_save
def popleft(self, *args, **kwargs):
return self._data.popleft(*args, **kwargs)
@_save
def reverse(self):
self._data.reverse()
@_save
def rotate(self, *args):
self._data.rotate(*args)
_DESERIALIZE_MAPPING = {
_SaverList.__name__: list,
_SaverDict.__name__: dict,
_SaverSet.__name__: set,
_SaverOrderedDict.__name__: OrderedDict,
_SaverDeque.__name__: deque,
}
def deserialize(obj):
def _iter(obj):
typ = type(obj)
tname = typ.__name__
if tname in ("_SaverDict", "dict"):
return {_iter(key): _iter(val) for key, val in obj.items()}
elif tname in _DESERIALIZE_MAPPING:
return _DESERIALIZE_MAPPING[tname](_iter(val) for val in obj)
elif is_iter(obj):
return typ(_iter(val) for val in obj)
return obj
return _iter(obj)
def pack_dbobj(item):
_init_globals()
obj = item
natural_key = _FROM_MODEL_MAP[
hasattr(obj, "id")
and hasattr(obj, "db_date_created")
and hasattr(obj, "__dbclass__")
and obj.__dbclass__.__name__.lower()
]
return (
natural_key
and ("__packed_dbobj__", natural_key, _TO_DATESTRING(obj), _GA(obj, "id"))
or item
)
|
MIT License
|
rebiocoder/bioforum
|
venv/Lib/site-packages/django/contrib/gis/geos/point.py
|
Point.z
|
python
|
def z(self):
return self._cs.getOrdinate(2, 0) if self.hasz else None
|
Return the Z component of the Point.
|
https://github.com/rebiocoder/bioforum/blob/08c8ff2f07ae667d37ce343f537e878d78ac8fe2/venv/Lib/site-packages/django/contrib/gis/geos/point.py#L128-L130
|
from ctypes import c_uint
from django.contrib.gis import gdal
from django.contrib.gis.geos import prototypes as capi
from django.contrib.gis.geos.error import GEOSException
from django.contrib.gis.geos.geometry import GEOSGeometry
class Point(GEOSGeometry):
_minlength = 2
_maxlength = 3
has_cs = True
def __init__(self, x=None, y=None, z=None, srid=None):
if x is None:
coords = []
elif isinstance(x, (tuple, list)):
coords = x
elif isinstance(x, (float, int)) and isinstance(y, (float, int)):
if isinstance(z, (float, int)):
coords = [x, y, z]
else:
coords = [x, y]
else:
raise TypeError('Invalid parameters given for Point initialization.')
point = self._create_point(len(coords), coords)
super().__init__(point, srid=srid)
def _ogr_ptr(self):
return gdal.geometries.Point._create_empty() if self.empty else super()._ogr_ptr()
@classmethod
def _create_empty(cls):
return cls._create_point(None, None)
@classmethod
def _create_point(cls, ndim, coords):
if not ndim:
return capi.create_point(None)
if ndim < 2 or ndim > 3:
raise TypeError('Invalid point dimension: %s' % ndim)
cs = capi.create_cs(c_uint(1), c_uint(ndim))
i = iter(coords)
capi.cs_setx(cs, 0, next(i))
capi.cs_sety(cs, 0, next(i))
if ndim == 3:
capi.cs_setz(cs, 0, next(i))
return capi.create_point(cs)
def _set_list(self, length, items):
ptr = self._create_point(length, items)
if ptr:
capi.destroy_geom(self.ptr)
self._ptr = ptr
self._post_init()
else:
raise GEOSException('Geometry resulting from slice deletion was invalid.')
def _set_single(self, index, value):
self._cs.setOrdinate(index, 0, value)
def __iter__(self):
for i in range(len(self)):
yield self[i]
def __len__(self):
if self.empty:
return 0
if self.hasz:
return 3
else:
return 2
def _get_single_external(self, index):
if index == 0:
return self.x
elif index == 1:
return self.y
elif index == 2:
return self.z
_get_single_internal = _get_single_external
@property
def x(self):
return self._cs.getOrdinate(0, 0)
@x.setter
def x(self, value):
self._cs.setOrdinate(0, 0, value)
@property
def y(self):
return self._cs.getOrdinate(1, 0)
@y.setter
def y(self, value):
self._cs.setOrdinate(1, 0, value)
@property
|
MIT License
|
trentm/cmdln
|
examples/svn.py
|
MySVN.do_propset
|
python
|
def do_propset(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
|
Set PROPNAME to PROPVAL on files, dirs, or revisions.
usage:
1. propset PROPNAME [PROPVAL | -F VALFILE] PATH...
2. propset PROPNAME --revprop -r REV [PROPVAL | -F VALFILE] [URL]
1. Creates a versioned, local propchange in working copy.
2. Creates an unversioned, remote propchange on repos revision.
Note: svn recognizes the following special versioned properties
but will store any arbitrary properties set:
svn:ignore - A newline separated list of file patterns to ignore.
svn:keywords - Keywords to be expanded. Valid keywords are:
URL, HeadURL - The URL for the head version of the object.
Author, LastChangedBy - The last person to modify the file.
Date, LastChangedDate - The date/time the object was last modified.
Rev, Revision, - The last revision the object changed.
LastChangedRevision
Id - A compressed summary of the previous
4 keywords.
svn:executable - If present, make the file executable. This
property cannot be set on a directory. A non-recursive attempt
will fail, and a recursive attempt will set the property only
on the file children of the directory.
svn:eol-style - One of 'native', 'LF', 'CR', 'CRLF'.
svn:mime-type - The mimetype of the file. Used to determine
whether to merge the file, and how to serve it from Apache.
A mimetype beginning with 'text/' (or an absent mimetype) is
treated as text. Anything else is treated as binary.
svn:externals - A newline separated list of module specifiers,
each of which consists of a relative directory path, optional
revision flags, and an URL. For example
foo http://example.com/repos/zig
foo/bar -r 1234 http://example.com/repos/zag
${cmd_option_list}
|
https://github.com/trentm/cmdln/blob/e3cb9b26f3b5427b3f545e3ae34ee22bac36f31d/examples/svn.py#L868-L907
|
import sys
import cmdln
class MySVN(cmdln.Cmdln):
name = "svn"
def __init__(self, *args, **kwargs):
cmdln.Cmdln.__init__(self, *args, **kwargs)
cmdln.Cmdln.do_help.aliases.append("h")
@cmdln.option("--no-auto-props", action='store_true',
help='disable automatic properties')
@cmdln.option("--auto-props", action='store_true',
help='enable automatic properties')
@cmdln.option("--force", action='store_true',
help='force operation to run')
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-N", "--non-recursive", action='store_true',
help='operate on single directory only')
@cmdln.option("--targets", metavar='ARG',
help='pass contents of file ARG as additional args')
def do_add(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("praise", "annotate", "ann")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("-v", "--verbose", action='store_true',
help='print extra information')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_blame(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_cat(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("co")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("-N", "--non-recursive", action='store_true',
help='operate on single directory only')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_checkout(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--diff3-cmd", metavar='ARG',
help='use ARG as merge command')
def do_cleanup(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("ci")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--encoding", metavar='ARG',
help='treat value as being in charset encoding ARG')
@cmdln.option("--editor-cmd", metavar='ARG',
help='use ARG as external editor')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--force-log", action='store_true',
help='force validity of log message source')
@cmdln.option("--targets", metavar='ARG',
help='pass contents of file ARG as additional args')
@cmdln.option("-N", "--non-recursive", action='store_true',
help='operate on single directory only')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-F", "--file", metavar='ARG',
help='read data from file ARG')
@cmdln.option("-m", "--message", metavar='ARG',
help='specify commit message ARG')
def do_commit(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("cp")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--encoding", metavar='ARG',
help='treat value as being in charset encoding ARG')
@cmdln.option("--editor-cmd", metavar='ARG',
help='use ARG as external editor')
@cmdln.option("--force-log", action='store_true',
help='force validity of log message source')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
@cmdln.option("-F", "--file", metavar='ARG',
help='read data from file ARG')
@cmdln.option("-m", "--message", metavar='ARG',
help='specify commit message ARG')
def do_copy(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("del", "remove", "rm")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--encoding", metavar='ARG',
help='treat value as being in charset encoding ARG')
@cmdln.option("--editor-cmd", metavar='ARG',
help='use ARG as external editor')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--targets", metavar='ARG',
help='pass contents of file ARG as additional args')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-F", "--file", metavar='ARG',
help='read data from file ARG')
@cmdln.option("-m", "--message", metavar='ARG',
help='specify commit message ARG')
@cmdln.option("--force-log", action='store_true',
help='force validity of log message source')
@cmdln.option("--force", action='store_true',
help='force operation to run')
def do_delete(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("di")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--notice-ancestry", action='store_true',
help='notice ancestry when calculating differences')
@cmdln.option("--no-diff-deleted", action='store_true',
help='do not print differences for deleted files')
@cmdln.option("--diff-cmd", metavar='ARG',
help='use ARG as diff command')
@cmdln.option("-N", "--non-recursive", action='store_true',
help='operate on single directory only')
@cmdln.option("-x", "--extensions", metavar='ARG',
help='pass ARG as bundled options to GNU diff')
@cmdln.option("--new", metavar='ARG',
help='use ARG as the newer target')
@cmdln.option("--old", metavar='ARG',
help='use ARG as the older target')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_diff(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.option("--native-eol", metavar='ARG',
help="use a different EOL marker than the standard\nsystem marker for files with a native svn:eol-style\nproperty. ARG may be one of 'LF', 'CR', 'CRLF'")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--force", action='store_true',
help='force operation to run')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_export(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.option("--no-auto-props", action='store_true',
help='disable automatic properties')
@cmdln.option("--auto-props", action='store_true',
help='enable automatic properties')
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--encoding", metavar='ARG',
help='treat value as being in charset encoding ARG')
@cmdln.option("--editor-cmd", metavar='ARG',
help='use ARG as external editor')
@cmdln.option("--force-log", action='store_true',
help='force validity of log message source')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("-N", "--non-recursive", action='store_true',
help='operate on single directory only')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-F", "--file", metavar='ARG',
help='read data from file ARG')
@cmdln.option("-m", "--message", metavar='ARG',
help='specify commit message ARG')
def do_import(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("-R", "--recursive", action='store_true',
help='descend recursively')
@cmdln.option("--targets", metavar='ARG',
help='pass contents of file ARG as additional args')
def do_info(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("ls")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("-R", "--recursive", action='store_true',
help='descend recursively')
@cmdln.option("-v", "--verbose", action='store_true',
help='print extra information')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_list(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--xml", action='store_true',
help='output in XML')
@cmdln.option("--incremental", action='store_true',
help='give output suitable for concatenation')
@cmdln.option("--stop-on-copy", action='store_true',
help='do not cross copies while traversing history')
@cmdln.option("--targets", metavar='ARG',
help='pass contents of file ARG as additional args')
@cmdln.option("-v", "--verbose", action='store_true',
help='print extra information')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_log(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--ignore-ancestry", action='store_true',
help='ignore ancestry when calculating merges')
@cmdln.option("--diff3-cmd", metavar='ARG',
help='use ARG as merge command')
@cmdln.option("--dry-run", action='store_true',
help='try operation but make no changes')
@cmdln.option("--force", action='store_true',
help='force operation to run')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-N", "--non-recursive", action='store_true',
help='operate on single directory only')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_merge(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--force-log", action='store_true',
help='force validity of log message source')
@cmdln.option("--encoding", metavar='ARG',
help='treat value as being in charset encoding ARG')
@cmdln.option("--editor-cmd", metavar='ARG',
help='use ARG as external editor')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-F", "--file", metavar='ARG',
help='read data from file ARG')
@cmdln.option("-m", "--message", metavar='ARG',
help='specify commit message ARG')
def do_mkdir(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("mv", "rename", "ren")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--force-log", action='store_true',
help='force validity of log message source')
@cmdln.option("--encoding", metavar='ARG',
help='treat value as being in charset encoding ARG')
@cmdln.option("--editor-cmd", metavar='ARG',
help='use ARG as external editor')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--force", action='store_true',
help='force operation to run')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
@cmdln.option("-F", "--file", metavar='ARG',
help='read data from file ARG')
@cmdln.option("-m", "--message", metavar='ARG',
help='specify commit message ARG')
def do_move(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("pdel", "pd")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--revprop", action='store_true',
help='operate on a revision property (use with -r)')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
@cmdln.option("-R", "--recursive", action='store_true',
help='descend recursively')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
def do_propdel(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("pedit", "pe")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--force", action='store_true',
help='force operation to run')
@cmdln.option("--editor-cmd", metavar='ARG',
help='use ARG as external editor')
@cmdln.option("--encoding", metavar='ARG',
help='treat value as being in charset encoding ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--revprop", action='store_true',
help='operate on a revision property (use with -r)')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
def do_propedit(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("pget", "pg")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--strict", action='store_true',
help='use strict semantics')
@cmdln.option("--revprop", action='store_true',
help='operate on a revision property (use with -r)')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
@cmdln.option("-R", "--recursive", action='store_true',
help='descend recursively')
def do_propget(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("plist", "pl")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--revprop", action='store_true',
help='operate on a revision property (use with -r)')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
@cmdln.option("-R", "--recursive", action='store_true',
help='descend recursively')
@cmdln.option("-v", "--verbose", action='store_true',
help='print extra information')
def do_proplist(self, subcmd, opts, *args):
print "'svn %s' opts: %s" % (subcmd, opts)
print "'svn %s' args: %s" % (subcmd, args)
@cmdln.alias("pset", "ps")
@cmdln.option("--config-dir", metavar='ARG',
help='read user configuration files from directory ARG')
@cmdln.option("--force", action='store_true',
help='force operation to run')
@cmdln.option("--encoding", metavar='ARG',
help='treat value as being in charset encoding ARG')
@cmdln.option("--non-interactive", action='store_true',
help='do no interactive prompting')
@cmdln.option("--no-auth-cache", action='store_true',
help='do not cache authentication tokens')
@cmdln.option("--password", metavar='ARG',
help='specify a password ARG')
@cmdln.option("--username", metavar='ARG',
help='specify a username ARG')
@cmdln.option("--revprop", action='store_true',
help='operate on a revision property (use with -r)')
@cmdln.option("-R", "--recursive", action='store_true',
help='descend recursively')
@cmdln.option("--targets", metavar='ARG',
help='pass contents of file ARG as additional args')
@cmdln.option("-r", "--revision", metavar='ARG',
help='ARG (some commands also take ARG1:ARG2 range)\nA revision argument can be one of:\n NUMBER revision number\n "{" DATE "}" revision at start of the date\n "HEAD" latest in repository\n "BASE" base rev of item\'s working copy\n "COMMITTED" last commit at or before BASE\n "PREV" revision just before COMMITTED')
@cmdln.option("-q", "--quiet", action='store_true',
help='print as little as possible')
@cmdln.option("-F", "--file", metavar='ARG',
help='read data from file ARG')
|
MIT License
|
qiskit-partners/mthree
|
mthree/mitigation.py
|
M3Mitigation.readout_fidelity
|
python
|
def readout_fidelity(self, qubits=None):
if self.single_qubit_cals is None:
raise M3Error('Mitigator is not calibrated')
if qubits is None:
qubits = range(self.num_qubits)
else:
outliers = [kk for kk in qubits if kk >= self.num_qubits]
if any(outliers):
raise M3Error('One or more qubit indices out of range: {}'.format(outliers))
fids = []
for kk in qubits:
qubit = self.single_qubit_cals[kk]
if qubit is not None:
fids.append(np.mean(qubit.diagonal()))
else:
fids.append(None)
return fids
|
Compute readout fidelity for calibrated qubits.
Parameters:
qubits (array_like): Qubits to compute over, default is all.
Returns:
list: List of qubit fidelities.
Raises:
M3Error: Mitigator is not calibrated.
M3Error: Qubit indices out of range.
|
https://github.com/qiskit-partners/mthree/blob/a24b06da2b6c6c8e86de2456e1e0d9b3f4b0b6e8/mthree/mitigation.py#L649-L678
|
import warnings
from time import perf_counter
import psutil
import numpy as np
import scipy.linalg as la
import scipy.sparse.linalg as spla
import orjson
from qiskit import QuantumCircuit, transpile, execute
from qiskit.providers import BaseBackend
from mthree.matrix import _reduced_cal_matrix, sdd_check
from mthree.utils import counts_to_vector, vector_to_quasiprobs
from mthree.norms import ainv_onenorm_est_lu, ainv_onenorm_est_iter
from mthree.matvec import M3MatVec
from mthree.exceptions import M3Error
from mthree.classes import QuasiCollection
def _tensor_meas_states(qubit, num_qubits, initial_reset=False):
qc0 = QuantumCircuit(num_qubits, 1)
if initial_reset:
qc0.reset(qubit)
qc0.measure(qubit, 0)
qc1 = QuantumCircuit(num_qubits, 1)
if initial_reset:
qc1.reset(qubit)
qc1.x(qubit)
qc1.measure(qubit, 0)
return [qc0, qc1]
def _marg_meas_states(num_qubits, initial_reset=False):
qc0 = QuantumCircuit(num_qubits)
if initial_reset:
qc0.reset(range(num_qubits))
qc0.measure_all()
qc1 = QuantumCircuit(num_qubits)
if initial_reset:
qc1.reset(range(num_qubits))
qc1.x(range(num_qubits))
qc1.measure_all()
return [qc0, qc1]
def _balanced_cal_strings(num_qubits):
strings = []
for rep in range(1, num_qubits+1):
str1 = ''
str2 = ''
for jj in range(int(np.ceil(num_qubits / rep))):
str1 += str(jj % 2) * rep
str2 += str((jj+1) % 2) * rep
strings.append(str1[:num_qubits])
strings.append(str2[:num_qubits])
return strings
def _balanced_cal_circuits(cal_strings, initial_reset=False):
num_qubits = len(cal_strings[0])
circs = []
for string in cal_strings:
qc = QuantumCircuit(num_qubits)
if initial_reset:
qc.reset(range(num_qubits))
for idx, bit in enumerate(string[::-1]):
if bit == '1':
qc.x(idx)
qc.measure_all()
circs.append(qc)
return circs
class M3Mitigation():
def __init__(self, system=None, iter_threshold=4096):
self.system = system
self.single_qubit_cals = None
self.num_qubits = system.configuration().num_qubits if system else None
self.iter_threshold = iter_threshold
self.cal_shots = None
self.cal_method = 'balanced'
self.rep_delay = None
def _form_cals(self, qubits):
qubits = np.asarray(qubits, dtype=int)
cals = np.zeros(4*qubits.shape[0], dtype=float)
for kk, qubit in enumerate(qubits[::-1]):
cals[4*kk:4*kk+4] = self.single_qubit_cals[qubit].ravel()
return cals
def _check_sdd(self, counts, qubits, distance=None):
num_bits = len(qubits)
if distance is None:
distance = num_bits
bitstring_len = len(next(iter(counts)))
if bitstring_len != num_bits:
raise M3Error('Bitstring length ({}) does not match'.format(bitstring_len) +
' number of qubits ({})'.format(num_bits))
cals = self._form_cals(qubits)
return sdd_check(counts, cals, num_bits, distance)
def tensored_cals_from_system(self, qubits=None, shots=8192, method='balanced',
rep_delay=None, cals_file=None):
warnings.warn("This method is deprecated, use 'cals_from_system' instead.")
self.cals_from_system(qubits=qubits, shots=shots, method=method,
rep_delay=rep_delay,
cals_file=cals_file)
def cals_from_system(self, qubits=None, shots=8192, method='balanced',
initial_reset=False, rep_delay=None, cals_file=None):
if qubits is None:
qubits = range(self.num_qubits)
self.cal_method = method
self.rep_delay = rep_delay
self._grab_additional_cals(qubits, shots=shots, method=method,
rep_delay=rep_delay, initial_reset=initial_reset)
if cals_file:
with open(cals_file, 'wb') as fd:
fd.write(orjson.dumps(self.single_qubit_cals,
option=orjson.OPT_SERIALIZE_NUMPY))
def cals_from_file(self, cals_file):
with open(cals_file, 'r', encoding='utf-8') as fd:
self.single_qubit_cals = [np.asarray(cal) if cal else None
for cal in orjson.loads(fd.read())]
def tensored_cals_from_file(self, cals_file):
warnings.warn("This method is deprecated, use 'cals_from_file' instead.")
self.cals_from_file(cals_file)
def _grab_additional_cals(self, qubits, shots=8192, method='balanced', rep_delay=None,
initial_reset=False):
if self.system is None:
raise M3Error("System is not set. Use 'cals_from_file'.")
if self.single_qubit_cals is None:
self.single_qubit_cals = [None]*self.num_qubits
if self.cal_shots is None:
self.cal_shots = shots
if self.rep_delay is None:
self.rep_delay = rep_delay
if method not in ['independent', 'balanced', 'marginal']:
raise M3Error('Invalid calibration method.')
if isinstance(qubits, dict):
qubits = list(qubits)
elif isinstance(qubits, list):
if isinstance(qubits[0], dict):
_qubits = []
for item in qubits:
_qubits.extend(list(item))
qubits = list(set(_qubits))
num_cal_qubits = len(qubits)
if method == 'marginal':
circs = _marg_meas_states(num_cal_qubits, initial_reset=initial_reset)
trans_qcs = transpile(circs, self.system,
initial_layout=qubits, optimization_level=0)
elif method == 'balanced':
cal_strings = _balanced_cal_strings(num_cal_qubits)
circs = _balanced_cal_circuits(cal_strings, initial_reset=initial_reset)
trans_qcs = transpile(circs, self.system,
initial_layout=qubits, optimization_level=0)
else:
circs = []
for kk in qubits:
circs.extend(_tensor_meas_states(kk, self.num_qubits,
initial_reset=initial_reset))
trans_qcs = transpile(circs, self.system, optimization_level=0)
if isinstance(self.system, BaseBackend):
job = execute(trans_qcs, self.system, optimization_level=0,
shots=self.cal_shots, rep_delay=self.rep_delay)
else:
job = self.system.run(trans_qcs, shots=self.cal_shots, rep_delay=self.rep_delay)
counts = job.result().get_counts()
bad_list = []
if method == 'independent':
for idx, qubit in enumerate(qubits):
self.single_qubit_cals[qubit] = np.zeros((2, 2), dtype=float)
prep0_counts = counts[2*idx]
P10 = prep0_counts.get('1', 0) / self.cal_shots
P00 = 1-P10
self.single_qubit_cals[qubit][:, 0] = [P00, P10]
prep1_counts = counts[2*idx+1]
P01 = prep1_counts.get('0', 0) / self.cal_shots
P11 = 1-P01
self.single_qubit_cals[qubit][:, 1] = [P01, P11]
if P01 >= P00:
bad_list.append(qubit)
elif method == 'marginal':
prep0_counts = counts[0]
prep1_counts = counts[1]
for idx, qubit in enumerate(qubits):
self.single_qubit_cals[qubit] = np.zeros((2, 2), dtype=float)
count_vals = 0
index = num_cal_qubits-idx-1
for key, val in prep0_counts.items():
if key[index] == '0':
count_vals += val
P00 = count_vals / self.cal_shots
P10 = 1-P00
self.single_qubit_cals[qubit][:, 0] = [P00, P10]
count_vals = 0
for key, val in prep1_counts.items():
if key[index] == '1':
count_vals += val
P11 = count_vals / self.cal_shots
P01 = 1-P11
self.single_qubit_cals[qubit][:, 1] = [P01, P11]
if P01 >= P00:
bad_list.append(qubit)
else:
cals = [np.zeros((2, 2), dtype=float) for kk in range(num_cal_qubits)]
for idx, count in enumerate(counts):
target = cal_strings[idx][::-1]
good_prep = np.zeros(num_cal_qubits, dtype=float)
denom = self.cal_shots * num_cal_qubits
for key, val in count.items():
key = key[::-1]
for kk in range(num_cal_qubits):
if key[kk] == target[kk]:
good_prep[kk] += val
for kk, cal in enumerate(cals):
if target[kk] == '0':
cal[0, 0] += good_prep[kk] / denom
else:
cal[1, 1] += good_prep[kk] / denom
for jj, cal in enumerate(cals):
cal[1, 0] = 1.0 - cal[0, 0]
cal[0, 1] = 1.0 - cal[1, 1]
if cal[0, 1] >= cal[0, 0]:
bad_list.append(qubits[jj])
for idx, cal in enumerate(cals):
self.single_qubit_cals[qubits[idx]] = cal
if any(bad_list):
raise M3Error('Faulty qubits detected: {}'.format(bad_list))
def apply_correction(self, counts, qubits, distance=None,
method='auto',
max_iter=25, tol=1e-5,
return_mitigation_overhead=False,
details=False):
given_list = False
if isinstance(counts, (list, np.ndarray)):
given_list = True
if not given_list:
counts = [counts]
if isinstance(qubits, dict):
qubits = [list(qubits)]
elif not any(isinstance(qq, (list, tuple, np.ndarray, dict)) for qq in qubits):
qubits = [qubits]*len(counts)
else:
if isinstance(qubits[0], dict):
qubits = [list(qu) for qu in qubits]
if len(qubits) != len(counts):
raise M3Error('Length of counts does not match length of qubits.')
quasi_out = []
for idx, cnts in enumerate(counts):
quasi_out.append(
self._apply_correction(cnts, qubits=qubits[idx],
distance=distance,
method=method,
max_iter=max_iter, tol=tol,
return_mitigation_overhead=return_mitigation_overhead,
details=details)
)
if not given_list:
return quasi_out[0]
return QuasiCollection(quasi_out)
def _apply_correction(self, counts, qubits, distance=None,
method='auto',
max_iter=25, tol=1e-5,
return_mitigation_overhead=False,
details=False):
counts = dict(counts)
shots = sum(counts.values())
num_bits = len(qubits)
num_elems = len(counts)
if distance is None:
distance = num_bits
bitstring_len = len(next(iter(counts)))
if bitstring_len != num_bits:
raise M3Error('Bitstring length ({}) does not match'.format(bitstring_len) +
' number of qubits ({})'.format(num_bits))
if self.single_qubit_cals is None:
warnings.warn('No calibration data. Calibrating: {}'.format(qubits))
self._grab_additional_cals(qubits, method=self.cal_method)
missing_qubits = [qq for qq in qubits if self.single_qubit_cals[qq] is None]
if any(missing_qubits):
warnings.warn('Computing missing calibrations for qubits: {}'.format(missing_qubits))
self._grab_additional_cals(missing_qubits, method=self.cal_method)
if method == 'auto':
current_free_mem = psutil.virtual_memory().available / 1024**3
if num_elems <= self.iter_threshold and ((num_elems**2+num_elems)*8/1024**3 < current_free_mem/2):
method = 'direct'
else:
method = 'iterative'
if method == 'direct':
st = perf_counter()
mit_counts, col_norms, gamma = self._direct_solver(counts, qubits, distance,
return_mitigation_overhead)
dur = perf_counter()-st
mit_counts.shots = shots
if gamma is not None:
mit_counts.mitigation_overhead = gamma * gamma
if details:
info = {'method': 'direct', 'time': dur, 'dimension': num_elems}
info['col_norms'] = col_norms
return mit_counts, info
return mit_counts
elif method == 'iterative':
iter_count = np.zeros(1, dtype=int)
def callback(_):
iter_count[0] += 1
if details:
st = perf_counter()
mit_counts, col_norms, gamma = self._matvec_solver(counts,
qubits,
distance,
tol,
max_iter,
1,
callback,
return_mitigation_overhead)
dur = perf_counter()-st
mit_counts.shots = shots
if gamma is not None:
mit_counts.mitigation_overhead = gamma * gamma
info = {'method': 'iterative', 'time': dur, 'dimension': num_elems}
info['iterations'] = iter_count[0]
info['col_norms'] = col_norms
return mit_counts, info
mit_counts, gamma = self._matvec_solver(counts, qubits, distance, tol,
max_iter, 0, None,
return_mitigation_overhead)
mit_counts.shots = shots
if gamma is not None:
mit_counts.mitigation_overhead = gamma * gamma
return mit_counts
else:
raise M3Error('Invalid method: {}'.format(method))
def reduced_cal_matrix(self, counts, qubits, distance=None):
counts = dict(counts)
num_bits = len(qubits)
if distance is None:
distance = num_bits
bitstring_len = len(next(iter(counts)))
if bitstring_len != num_bits:
raise M3Error('Bitstring length ({}) does not match'.format(bitstring_len) +
' number of qubits ({})'.format(num_bits))
cals = self._form_cals(qubits)
A, counts, _ = _reduced_cal_matrix(counts, cals, num_bits, distance)
return A, counts
def _direct_solver(self, counts, qubits, distance=None,
return_mitigation_overhead=False):
cals = self._form_cals(qubits)
num_bits = len(qubits)
A, sorted_counts, col_norms = _reduced_cal_matrix(counts, cals, num_bits, distance)
vec = counts_to_vector(sorted_counts)
LU = la.lu_factor(A, check_finite=False)
x = la.lu_solve(LU, vec, check_finite=False)
gamma = None
if return_mitigation_overhead:
gamma = ainv_onenorm_est_lu(A, LU)
out = vector_to_quasiprobs(x, sorted_counts)
return out, col_norms, gamma
def _matvec_solver(self, counts, qubits, distance, tol=1e-5, max_iter=25,
details=0, callback=None,
return_mitigation_overhead=False):
cals = self._form_cals(qubits)
M = M3MatVec(dict(counts), cals, distance)
L = spla.LinearOperator((M.num_elems, M.num_elems),
matvec=M.matvec, rmatvec=M.rmatvec)
diags = M.get_diagonal()
def precond_matvec(x):
out = x / diags
return out
P = spla.LinearOperator((M.num_elems, M.num_elems), precond_matvec)
vec = counts_to_vector(M.sorted_counts)
out, error = spla.gmres(L, vec, tol=tol, atol=tol, maxiter=max_iter,
M=P, callback=callback)
if error:
raise M3Error('GMRES did not converge: {}'.format(error))
gamma = None
if return_mitigation_overhead:
gamma = ainv_onenorm_est_iter(M, tol=tol, max_iter=max_iter)
quasi = vector_to_quasiprobs(out, M.sorted_counts)
if details:
return quasi, M.get_col_norms(), gamma
return quasi, gamma
|
Apache License 2.0
|
molssi/qcelemental
|
qcelemental/util/gph_uno_bipartite.py
|
_formDirected
|
python
|
def _formDirected(g, match):
import networkx as nx
d = nx.DiGraph()
for ee in g.edges():
if ee in match or (ee[1], ee[0]) in match:
if g.nodes[ee[0]]["bipartite"] == 0:
d.add_edge(ee[0], ee[1])
else:
d.add_edge(ee[1], ee[0])
else:
if g.nodes[ee[0]]["bipartite"] == 0:
d.add_edge(ee[1], ee[0])
else:
d.add_edge(ee[0], ee[1])
return d
|
r"""Form directed graph D from G and matching M.
Parameters
----------
g :
Undirected bipartite graph. Nodes are separated by their
'bipartite' attribute.
match :
List of edges forming a matching of `g`.
Returns
-------
networkx.DiGraph
Directed graph, with edges in `match` pointing from set-0
(bipartite attribute==0) to set-1 (bipartite attrbiute==1), and
the other edges in `g` but not in `match` pointing from set-1 to
set-0.
|
https://github.com/molssi/qcelemental/blob/a5885ee4421bd1e411f08c23653ff949036e88c2/qcelemental/util/gph_uno_bipartite.py#L34-L70
|
import numpy as np
|
BSD 3-Clause New or Revised License
|
hack4impact-upenn/idle-free-philly
|
app/main/messaging.py
|
set_cookie
|
python
|
def set_cookie(resp, key, val, expiration=1):
expires = datetime.utcnow() + timedelta(hours=expiration)
expires_str = expires.strftime('%a, %d %b %Y %H:%M:%S GMT')
resp.set_cookie(key, value=val, expires=expires_str)
|
Sets a expiring cookie in the response.
|
https://github.com/hack4impact-upenn/idle-free-philly/blob/42c8362eff19f2b131c31d83db4ac0cb665f5e12/app/main/messaging.py#L389-L393
|
import string
import itertools
from flask import request, make_response, current_app
from flask.ext.rq import get_queue
from . import main
from .. import db
from ..utils import (
geocode,
upload_image,
attach_image_to_incident_report,
url_for_external
)
from ..models import Agency, IncidentReport, Location, User
from ..reports.forms import IncidentReportForm
from datetime import datetime, timedelta
import twilio.twiml
from twilio.rest import TwilioRestClient
STEP_INIT = 0
STEP_LOCATION = 1
STEP_AGENCY = 2
STEP_OTHER_AGENCY = 3
STEP_LICENSE_PLATE = 4
STEP_VEHICLE_ID = 5
STEP_DURATION = 6
STEP_DESCRIPTION = 7
STEP_PICTURE = 8
@main.route('/report_incident', methods=['GET'])
def handle_message():
body = str(request.values.get('Body')).lower().strip()
num_media = int(request.values.get('NumMedia'))
twilio_hosted_media_url = str(request.values.get('MediaUrl0')) if num_media > 0 else None
message_sid = str(request.values.get('MessageSid'))
phone_number = str(request.values.get('From'))
twiml = twilio.twiml.Response()
step = int(request.cookies.get('messagecount', 0))
vehicle_id = str(request.cookies.get('vehicle_id', ''))
agency_name = str(request.cookies.get('agency_name', ''))
license_plate = str(request.cookies.get('license_plate', ''))
duration = int(request.cookies.get('duration', 0))
description = str(request.cookies.get('description', ''))
location = str(request.cookies.get('location', ''))
picture_url = str(request.cookies.get('picture_url', ''))
if 'report' == body.lower():
vehicle_id = ''
agency_name = ''
license_plate = ''
duration = 0
description = ''
location = ''
picture_url = ''
step = handle_start_report(twiml)
elif step == STEP_LOCATION:
location, step = handle_location_step(body, step, twiml)
elif step == STEP_AGENCY:
agency_name, step = handle_agency_step(body, step, twiml)
elif step == STEP_OTHER_AGENCY:
agency_name, step = handle_other_agency_step(body, step, twiml)
elif step == STEP_LICENSE_PLATE:
license_plate, step = handle_license_plate_step(body, step, twiml)
elif step == STEP_VEHICLE_ID:
vehicle_id, step = handle_vehicle_id_step(body, step, twiml)
elif step == STEP_DURATION:
duration, step = handle_duration_step(body, step, twiml)
elif step == STEP_DESCRIPTION:
description, step = handle_description_step(body, step, twiml)
elif step == STEP_PICTURE:
step, image_job_id = handle_picture_step(step, message_sid,
twilio_hosted_media_url)
new_incident = handle_create_report(agency_name, description, duration,
license_plate, location,
picture_url, vehicle_id,
phone_number)
twiml.message('Thanks! See your report on the map at {}'
.format(url_for_external('main.index')))
if new_incident.user is None:
twiml.message('Want to keep track of all your reports? Create an '
'account at {}'
.format(url_for_external('account.register')))
else:
twiml.message('See all your reports at {}'
.format(url_for_external('reports.view_my_reports')))
if image_job_id is not None:
get_queue().enqueue(
attach_image_to_incident_report,
depends_on=image_job_id,
incident_report=new_incident,
image_job_id=image_job_id,
)
step = STEP_INIT
else:
twiml.message('Welcome to {}! Please reply "report" to report an '
'idling incident.'
.format(current_app.config['APP_NAME']))
response = make_response(str(twiml))
set_cookie(response, 'messagecount', str(step))
set_cookie(response, 'agency_name', agency_name)
set_cookie(response, 'vehicle_id', vehicle_id)
set_cookie(response, 'license_plate', license_plate)
set_cookie(response, 'duration', str(duration))
set_cookie(response, 'description', description)
set_cookie(response, 'location', location)
set_cookie(response, 'picture_url', picture_url)
return response
def handle_create_report(agency_name, description, duration, license_plate,
location, picture_url, vehicle_id, phone_number):
lat, lon = geocode(location)
agency = Agency.get_agency_by_name(agency_name)
if agency is None:
agency = Agency(name=agency_name, is_official=False,
is_public=True)
db.session.add(agency)
db.session.commit()
new_incident = IncidentReport(
agency=agency,
vehicle_id=vehicle_id,
license_plate=license_plate if license_plate else None,
duration=timedelta(minutes=duration),
description=description,
location=Location(
latitude=lat,
longitude=lon,
original_user_text=location
),
picture_url=picture_url if picture_url else None,
user=User.query.filter_by(phone_number=phone_number).first()
)
db.session.add(new_incident)
db.session.commit()
return new_incident
def handle_start_report(twiml):
step = STEP_LOCATION
twiml.message('What is your location? Be specific! (e.g. "34th and '
'Spruce in Philadelphia PA")')
return step
def handle_location_step(body, step, twiml):
validator_form = IncidentReportForm()
errors = data_errors(form=validator_form, field=validator_form.location,
data=body)
if len(errors) == 0:
location = body
step = STEP_AGENCY
agencies = Agency.query.filter_by(is_official=True).order_by(
Agency.name).all()
letters = all_strings(len(agencies) + 1)
agencies_listed = get_agencies_listed(agencies, letters)
twiml.message('Which agency operates the vehicle you see idling? '
'Select from the following list or enter {} for Other.'
.format(letters[-1]))
twiml.message(agencies_listed)
else:
location = ''
reply_with_errors(errors, twiml, 'location')
return location, step
def handle_agency_step(body_upper, step, twiml):
body_upper = body_upper.upper()
agencies = Agency.query.filter_by(is_official=True).order_by(
Agency.name).all()
letters = all_strings(len(agencies) + 1)
letters_to_agency = dict(zip(letters, agencies))
if body_upper == letters[-1]:
step = STEP_OTHER_AGENCY
agency_name = ''
twiml.message('You selected Other. What is the name of the agency '
'which operates the vehicle?')
elif body_upper in letters_to_agency.keys():
step = STEP_LICENSE_PLATE
agency_name = letters_to_agency[body_upper].name
twiml.message('What is the license plate number? Reply "no" to skip. '
'(e.g. MG1234E)')
else:
agency_name = ''
twiml.message('Please enter a letter A through {}.'
.format(letters[-1]))
return agency_name, step
def handle_other_agency_step(body, step, twiml):
agency_name = body
step = STEP_LICENSE_PLATE
twiml.message('What is the license plate number? Reply "no" to skip. '
'(e.g. MG1234E)')
return agency_name, step
def handle_license_plate_step(body, step, twiml):
if body.lower() == 'no':
body = ''
validator_form = IncidentReportForm()
errors = data_errors(
form=validator_form,
field=validator_form.license_plate,
data=body
)
if len(errors) == 0:
license_plate = body
step = STEP_VEHICLE_ID
twiml.message('What is the Vehicle ID? This is usually on the back or '
'side of the vehicle. (e.g. 105014)')
else:
license_plate = ''
reply_with_errors(errors, twiml, 'license plate')
return license_plate, step
def handle_vehicle_id_step(body, step, twiml):
validator_form = IncidentReportForm()
errors = data_errors(form=validator_form, field=validator_form.vehicle_id,
data=body)
if len(errors) == 0:
vehicle_id = body
step = STEP_DURATION
twiml.message('How many minutes have you observed the vehicle idling? '
'(e.g. 10)')
else:
vehicle_id = ''
reply_with_errors(errors, twiml, 'vehicle ID')
return vehicle_id, step
def handle_duration_step(body, step, twiml):
errors = []
try:
body = int(body)
except ValueError:
errors.append('Please enter a valid integer.')
if len(errors) == 0:
duration = body
step = STEP_DESCRIPTION
twiml.message('Please describe the situation (e.g. The driver is '
'sleeping)')
else:
duration = 0
reply_with_errors(errors, twiml, 'duration')
return duration, step
def handle_description_step(body, step, twiml):
validator_form = IncidentReportForm()
errors = data_errors(form=validator_form, field=validator_form.description,
data=body)
if len(errors) == 0:
description = body
step = STEP_PICTURE
twiml.message('Last, can you take a photo of the vehicle and text '
'it back? Reply "no" to skip.')
else:
description = ''
reply_with_errors(errors, twiml, 'description')
return description, step
def handle_picture_step(step, message_sid, twilio_hosted_media_url):
image_job_id = None
if twilio_hosted_media_url is not None:
account_sid = current_app.config['TWILIO_ACCOUNT_SID']
auth_token = current_app.config['TWILIO_AUTH_TOKEN']
image_job_id = get_queue().enqueue(
upload_image,
imgur_client_id=current_app.config['IMGUR_CLIENT_ID'],
imgur_client_secret=current_app.config['IMGUR_CLIENT_SECRET'],
app_name=current_app.config['APP_NAME'],
image_url=twilio_hosted_media_url
).id
get_queue().enqueue(
delete_mms,
depends_on=image_job_id,
account_sid=account_sid,
auth_token=auth_token,
message_sid=message_sid
)
return step, image_job_id
def reply_with_errors(errors, twiml, field_name):
twiml.message('Sorry, there were some errors with your response. '
'Please enter the {} again.'.format(field_name))
twiml.message('Errors:\n{}'.format('\n'.join(errors)))
def delete_mms(account_sid, auth_token, message_sid):
client = TwilioRestClient(account_sid, auth_token)
for media in client.messages.get(message_sid).media_list.list():
media.delete()
def get_agencies_listed(agencies, letters):
agencies_listed = '\n'.join(
'{}: {}'.format(l, ag.name) for l, ag in zip(letters, agencies)
)
agencies_listed += '\n{}: Other'.format(letters[-1])
return agencies_listed
def all_strings(max_count):
repeat_size = 1
count = 0
ret = []
while True:
for s in itertools.product(string.ascii_uppercase, repeat=repeat_size):
count += 1
if count > max_count:
return ret
ret.append(''.join(s))
repeat_size += 1
|
MIT License
|
influxdata/influxdb-python
|
influxdb/influxdb08/client.py
|
InfluxDBClient.create_scheduled_delete
|
python
|
def create_scheduled_delete(self, json_body):
raise NotImplementedError()
|
Create schedule delete from database.
2013-11-08: This endpoint has not been implemented yet in ver0.0.8,
but it is documented in http://influxdb.org/docs/api/http.html.
See also: src/api/http/api.go:l57
|
https://github.com/influxdata/influxdb-python/blob/7cb565698c88bfbf9f4804650231bd28d09e2e6d/influxdb/influxdb08/client.py#L378-L386
|
import warnings
import json
import socket
import requests
import requests.exceptions
from six.moves import xrange
from six.moves.urllib.parse import urlparse
from influxdb import chunked_json
session = requests.Session()
class InfluxDBClientError(Exception):
def __init__(self, content, code=-1):
super(InfluxDBClientError, self).__init__(
"{0}: {1}".format(code, content))
self.content = content
self.code = code
class InfluxDBClient(object):
def __init__(self,
host='localhost',
port=8086,
username='root',
password='root',
database=None,
ssl=False,
verify_ssl=False,
timeout=None,
retries=3,
use_udp=False,
udp_port=4444):
self._host = host
self._port = port
self._username = username
self._password = password
self._database = database
self._timeout = timeout
self._retries = retries
self._verify_ssl = verify_ssl
self._use_udp = use_udp
self._udp_port = udp_port
if use_udp:
self.udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self._scheme = "http"
if ssl is True:
self._scheme = "https"
self._baseurl = "{0}://{1}:{2}".format(
self._scheme,
self._host,
self._port)
self._headers = {
'Content-type': 'application/json',
'Accept': 'text/plain'}
@staticmethod
def from_dsn(dsn, **kwargs):
init_args = {}
conn_params = urlparse(dsn)
scheme_info = conn_params.scheme.split('+')
if len(scheme_info) == 1:
scheme = scheme_info[0]
modifier = None
else:
modifier, scheme = scheme_info
if scheme != 'influxdb':
raise ValueError('Unknown scheme "{0}".'.format(scheme))
if modifier:
if modifier == 'udp':
init_args['use_udp'] = True
elif modifier == 'https':
init_args['ssl'] = True
else:
raise ValueError('Unknown modifier "{0}".'.format(modifier))
if conn_params.hostname:
init_args['host'] = conn_params.hostname
if conn_params.port:
init_args['port'] = conn_params.port
if conn_params.username:
init_args['username'] = conn_params.username
if conn_params.password:
init_args['password'] = conn_params.password
if conn_params.path and len(conn_params.path) > 1:
init_args['database'] = conn_params.path[1:]
init_args.update(kwargs)
return InfluxDBClient(**init_args)
def switch_database(self, database):
self._database = database
def switch_db(self, database):
warnings.warn(
"switch_db is deprecated, and will be removed "
"in future versions. Please use "
"``InfluxDBClient.switch_database(database)`` instead.",
FutureWarning)
return self.switch_database(database)
def switch_user(self, username, password):
self._username = username
self._password = password
def request(self, url, method='GET', params=None, data=None,
expected_response_code=200):
url = "{0}/{1}".format(self._baseurl, url)
if params is None:
params = {}
auth = {
'u': self._username,
'p': self._password
}
params.update(auth)
if data is not None and not isinstance(data, str):
data = json.dumps(data)
retry = True
_try = 0
while retry:
try:
response = session.request(
method=method,
url=url,
params=params,
data=data,
headers=self._headers,
verify=self._verify_ssl,
timeout=self._timeout
)
break
except (requests.exceptions.ConnectionError,
requests.exceptions.Timeout):
_try += 1
if self._retries != 0:
retry = _try < self._retries
else:
raise requests.exceptions.ConnectionError
if response.status_code == expected_response_code:
return response
else:
raise InfluxDBClientError(response.content, response.status_code)
def write(self, data):
self.request(
url="write",
method='POST',
params=None,
data=data,
expected_response_code=200
)
return True
def write_points(self, data, time_precision='s', *args, **kwargs):
def list_chunks(data_list, n):
for i in xrange(0, len(data_list), n):
yield data_list[i:i + n]
batch_size = kwargs.get('batch_size')
if batch_size and batch_size > 0:
for item in data:
name = item.get('name')
columns = item.get('columns')
point_list = item.get('points', [])
for batch in list_chunks(point_list, batch_size):
item = [{
"points": batch,
"name": name,
"columns": columns
}]
self._write_points(
data=item,
time_precision=time_precision)
return True
return self._write_points(data=data,
time_precision=time_precision)
def write_points_with_precision(self, data, time_precision='s'):
warnings.warn(
"write_points_with_precision is deprecated, and will be removed "
"in future versions. Please use "
"``InfluxDBClient.write_points(time_precision='..')`` instead.",
FutureWarning)
return self._write_points(data=data, time_precision=time_precision)
def _write_points(self, data, time_precision):
if time_precision not in ['s', 'm', 'ms', 'u']:
raise Exception(
"Invalid time precision is given. (use 's', 'm', 'ms' or 'u')")
if self._use_udp and time_precision != 's':
raise Exception(
"InfluxDB only supports seconds precision for udp writes"
)
url = "db/{0}/series".format(self._database)
params = {
'time_precision': time_precision
}
if self._use_udp:
self.send_packet(data)
else:
self.request(
url=url,
method='POST',
params=params,
data=data,
expected_response_code=200
)
return True
def delete_points(self, name):
url = "db/{0}/series/{1}".format(self._database, name)
self.request(
url=url,
method='DELETE',
expected_response_code=204
)
return True
|
MIT License
|
avigad/boole
|
boole/core/info.py
|
default_str
|
python
|
def default_str(expr):
return expr.to_string()
|
The default printer for expressions.
Simply call the to_string method.
Arguments:
- `expr`: an expression
|
https://github.com/avigad/boole/blob/2a436c2967dbc968f6a5877c220b9757c3bc17c3/boole/core/info.py#L95-L102
|
class ExprInfo(object):
def __init__(self, name, info):
self.name = name
self.info = info
def __getitem__(self, key):
return self.info.__getitem__(key)
def __getattr__(self, name):
try:
return self.info[name]
except KeyError:
return None
def __setitem__(self, key, elt):
self.info.__setitem__(key, elt)
def __delitem__(self, key):
return self.info.__delitem__(key)
def __str__(self):
return self.name
def update(self, info):
self.name = info.name
for k in info.info:
self.info[k] = info.info[k]
|
Apache License 2.0
|
meanpug/django-gsheets
|
gsheets/decorators.py
|
full_jitter
|
python
|
def full_jitter(value):
return random.uniform(0, value)
|
Jitter the value across the full range (0 to value).
This corresponds to the "Full Jitter" algorithm specified in the
AWS blog's post on the performance of various jitter algorithms.
(http://www.awsarchitectureblog.com/2015/03/backoff.html)
Args:
value: The unadulterated backoff value.
|
https://github.com/meanpug/django-gsheets/blob/9349995144b9e23fb7179a960f51e3350fc6aac8/gsheets/decorators.py#L90-L100
|
from __future__ import unicode_literals
import functools
import operator
import logging
import random
import time
import traceback
import sys
logger = logging.getLogger(__name__)
def expo(base=2, factor=1, max_value=None):
n = 0
while True:
a = factor * base ** n
if max_value is None or a < max_value:
yield a
n += 1
else:
yield max_value
def fibo(max_value=None):
a = 1
b = 1
while True:
if max_value is None or a < max_value:
yield a
a, b = b, a + b
else:
yield max_value
def constant(interval=1):
while True:
yield interval
def random_jitter(value):
return value + random.random()
|
MIT License
|
prajdabre/yanmtt
|
transformers/src/transformers/testing_utils.py
|
get_gpu_count
|
python
|
def get_gpu_count():
if is_torch_available():
import torch
return torch.cuda.device_count()
elif is_tf_available():
import tensorflow as tf
return len(tf.config.list_physical_devices("GPU"))
else:
return 0
|
Return the number of available gpus (regardless of whether torch or tf is used)
|
https://github.com/prajdabre/yanmtt/blob/4d329c3bcb81ca432d5947bb4673897086ee7f32/transformers/src/transformers/testing_utils.py#L384-L397
|
import inspect
import logging
import os
import re
import shutil
import sys
import tempfile
import unittest
from distutils.util import strtobool
from io import StringIO
from pathlib import Path
from .file_utils import (
is_datasets_available,
is_faiss_available,
is_flax_available,
is_pandas_available,
is_scatter_available,
is_sentencepiece_available,
is_soundfile_availble,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_torch_tpu_available,
)
from .integrations import is_optuna_available, is_ray_available
SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy"
DUMMY_UNKWOWN_IDENTIFIER = "julien-c/dummy-unknown"
DUMMY_DIFF_TOKENIZER_IDENTIFIER = "julien-c/dummy-diff-tokenizer"
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
except KeyError:
_value = default
else:
try:
_value = strtobool(value)
except ValueError:
raise ValueError("If set, {} must be yes or no.".format(key))
return _value
def parse_int_from_env(key, default=None):
try:
value = os.environ[key]
except KeyError:
_value = default
else:
try:
_value = int(value)
except ValueError:
raise ValueError("If set, {} must be a int.".format(key))
return _value
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
_run_pt_tf_cross_tests = parse_flag_from_env("RUN_PT_TF_CROSS_TESTS", default=False)
_run_custom_tokenizers = parse_flag_from_env("RUN_CUSTOM_TOKENIZERS", default=False)
_run_pipeline_tests = parse_flag_from_env("RUN_PIPELINE_TESTS", default=False)
_run_git_lfs_tests = parse_flag_from_env("RUN_GIT_LFS_TESTS", default=False)
_tf_gpu_memory_limit = parse_int_from_env("TF_GPU_MEMORY_LIMIT", default=None)
def is_pt_tf_cross_test(test_case):
if not _run_pt_tf_cross_tests or not is_torch_available() or not is_tf_available():
return unittest.skip("test is PT+TF test")(test_case)
else:
try:
import pytest
except ImportError:
return test_case
else:
return pytest.mark.is_pt_tf_cross_test()(test_case)
def is_pipeline_test(test_case):
if not _run_pipeline_tests:
return unittest.skip("test is pipeline test")(test_case)
else:
try:
import pytest
except ImportError:
return test_case
else:
return pytest.mark.is_pipeline_test()(test_case)
def slow(test_case):
if not _run_slow_tests:
return unittest.skip("test is slow")(test_case)
else:
return test_case
def custom_tokenizers(test_case):
if not _run_custom_tokenizers:
return unittest.skip("test of custom tokenizers")(test_case)
else:
return test_case
def require_git_lfs(test_case):
if not _run_git_lfs_tests:
return unittest.skip("test of git lfs workflow")(test_case)
else:
return test_case
def require_torch(test_case):
if not is_torch_available():
return unittest.skip("test requires PyTorch")(test_case)
else:
return test_case
def require_torch_scatter(test_case):
if not is_scatter_available():
return unittest.skip("test requires PyTorch scatter")(test_case)
else:
return test_case
def require_tf(test_case):
if not is_tf_available():
return unittest.skip("test requires TensorFlow")(test_case)
else:
return test_case
def require_flax(test_case):
if not is_flax_available():
test_case = unittest.skip("test requires JAX & Flax")(test_case)
return test_case
def require_sentencepiece(test_case):
if not is_sentencepiece_available():
return unittest.skip("test requires SentencePiece")(test_case)
else:
return test_case
def require_tokenizers(test_case):
if not is_tokenizers_available():
return unittest.skip("test requires tokenizers")(test_case)
else:
return test_case
def require_pandas(test_case):
if not is_pandas_available():
return unittest.skip("test requires pandas")(test_case)
else:
return test_case
def require_scatter(test_case):
if not is_scatter_available():
return unittest.skip("test requires PyTorch Scatter")(test_case)
else:
return test_case
def require_torch_multi_gpu(test_case):
if not is_torch_available():
return unittest.skip("test requires PyTorch")(test_case)
import torch
if torch.cuda.device_count() < 2:
return unittest.skip("test requires multiple GPUs")(test_case)
else:
return test_case
def require_torch_non_multi_gpu(test_case):
if not is_torch_available():
return unittest.skip("test requires PyTorch")(test_case)
import torch
if torch.cuda.device_count() > 1:
return unittest.skip("test requires 0 or 1 GPU")(test_case)
else:
return test_case
require_torch_non_multi_gpu_but_fix_me = require_torch_non_multi_gpu
def require_torch_tpu(test_case):
if not is_torch_tpu_available():
return unittest.skip("test requires PyTorch TPU")
else:
return test_case
if is_torch_available():
import torch
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
else:
torch_device = None
def require_torch_gpu(test_case):
if torch_device != "cuda":
return unittest.skip("test requires CUDA")(test_case)
else:
return test_case
def require_datasets(test_case):
if not is_datasets_available():
return unittest.skip("test requires `datasets`")(test_case)
else:
return test_case
def require_faiss(test_case):
if not is_faiss_available():
return unittest.skip("test requires `faiss`")(test_case)
else:
return test_case
def require_optuna(test_case):
if not is_optuna_available():
return unittest.skip("test requires optuna")(test_case)
else:
return test_case
def require_ray(test_case):
if not is_ray_available():
return unittest.skip("test requires Ray/tune")(test_case)
else:
return test_case
def require_soundfile(test_case):
if not is_soundfile_availble():
return unittest.skip("test requires soundfile")(test_case)
else:
return test_case
|
MIT License
|
trusted-ai/adversarial-robustness-toolbox
|
art/utils.py
|
load_cifar10
|
python
|
def load_cifar10(
raw: bool = False,
) -> DATASET_TYPE:
def load_batch(fpath: str) -> Tuple[np.ndarray, np.ndarray]:
with open(fpath, "rb") as file_:
if sys.version_info < (3,):
content = six.moves.cPickle.load(file_)
else:
content = six.moves.cPickle.load(file_, encoding="bytes")
content_decoded = {}
for key, value in content.items():
content_decoded[key.decode("utf8")] = value
content = content_decoded
data = content["data"]
labels = content["labels"]
data = data.reshape(data.shape[0], 3, 32, 32)
return data, labels
path = get_file(
"cifar-10-batches-py",
extract=True,
path=config.ART_DATA_PATH,
url="https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz",
)
num_train_samples = 50000
x_train = np.zeros((num_train_samples, 3, 32, 32), dtype=np.uint8)
y_train = np.zeros((num_train_samples,), dtype=np.uint8)
for i in range(1, 6):
fpath = os.path.join(path, "data_batch_" + str(i))
data, labels = load_batch(fpath)
x_train[(i - 1) * 10000 : i * 10000, :, :, :] = data
y_train[(i - 1) * 10000 : i * 10000] = labels
fpath = os.path.join(path, "test_batch")
x_test, y_test = load_batch(fpath)
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
x_train = x_train.transpose((0, 2, 3, 1))
x_test = x_test.transpose((0, 2, 3, 1))
min_, max_ = 0.0, 255.0
if not raw:
min_, max_ = 0.0, 1.0
x_train, y_train = preprocess(x_train, y_train, clip_values=(0, 255))
x_test, y_test = preprocess(x_test, y_test, clip_values=(0, 255))
return (x_train, y_train), (x_test, y_test), min_, max_
|
Loads CIFAR10 dataset from config.CIFAR10_PATH or downloads it if necessary.
:param raw: `True` if no preprocessing should be applied to the data. Otherwise, data is normalized to 1.
:return: `(x_train, y_train), (x_test, y_test), min, max`
|
https://github.com/trusted-ai/adversarial-robustness-toolbox/blob/564f46f99b3cb0406fe3570919b8e71a4c5bba9d/art/utils.py#L728-L793
|
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import math
import os
import shutil
import sys
import tarfile
import warnings
import zipfile
from functools import wraps
from inspect import signature
from typing import TYPE_CHECKING, Callable, List, Optional, Tuple, Union
import numpy as np
import six
from scipy.special import gammainc
from tqdm.auto import tqdm
from art import config
if TYPE_CHECKING:
import torch
logger = logging.getLogger(__name__)
DATASET_TYPE = Tuple[
Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray], float, float
]
CLIP_VALUES_TYPE = Tuple[Union[int, float, np.ndarray], Union[int, float, np.ndarray]]
if TYPE_CHECKING:
from art.defences.preprocessor.preprocessor import Preprocessor
PREPROCESSING_TYPE = Optional[
Union[
Tuple[Union[int, float, np.ndarray], Union[int, float, np.ndarray]], Preprocessor, Tuple[Preprocessor, ...]
]
]
from art.estimators.classification.blackbox import BlackBoxClassifier
from art.estimators.classification.catboost import CatBoostARTClassifier
from art.estimators.classification.classifier import (
Classifier,
ClassifierClassLossGradients,
ClassifierDecisionTree,
ClassifierLossGradients,
ClassifierNeuralNetwork,
)
from art.estimators.classification.detector_classifier import DetectorClassifier
from art.estimators.classification.ensemble import EnsembleClassifier
from art.estimators.classification.GPy import GPyGaussianProcessClassifier
from art.estimators.classification.keras import KerasClassifier
from art.estimators.classification.lightgbm import LightGBMClassifier
from art.estimators.classification.mxnet import MXClassifier
from art.estimators.classification.pytorch import PyTorchClassifier
from art.estimators.classification.query_efficient_bb import QueryEfficientGradientEstimationClassifier
from art.estimators.classification.scikitlearn import (
ScikitlearnAdaBoostClassifier,
ScikitlearnBaggingClassifier,
ScikitlearnClassifier,
ScikitlearnDecisionTreeClassifier,
ScikitlearnDecisionTreeRegressor,
ScikitlearnExtraTreeClassifier,
ScikitlearnExtraTreesClassifier,
ScikitlearnGradientBoostingClassifier,
ScikitlearnLogisticRegression,
ScikitlearnRandomForestClassifier,
ScikitlearnSVC,
)
from art.estimators.classification.tensorflow import TensorFlowClassifier, TensorFlowV2Classifier
from art.estimators.classification.xgboost import XGBoostClassifier
from art.estimators.object_detection.object_detector import ObjectDetector
from art.estimators.object_detection.python_object_detector import PyTorchObjectDetector
from art.estimators.object_detection.pytorch_faster_rcnn import PyTorchFasterRCNN
from art.estimators.object_detection.tensorflow_faster_rcnn import TensorFlowFasterRCNN
from art.estimators.pytorch import PyTorchEstimator
from art.estimators.regression.scikitlearn import ScikitlearnRegressor
from art.estimators.speech_recognition.pytorch_deep_speech import PyTorchDeepSpeech
from art.estimators.speech_recognition.tensorflow_lingvo import TensorFlowLingvoASR
from art.estimators.tensorflow import TensorFlowV2Estimator
CLASSIFIER_LOSS_GRADIENTS_TYPE = Union[
ClassifierLossGradients,
EnsembleClassifier,
GPyGaussianProcessClassifier,
KerasClassifier,
MXClassifier,
PyTorchClassifier,
ScikitlearnLogisticRegression,
ScikitlearnSVC,
TensorFlowClassifier,
TensorFlowV2Classifier,
QueryEfficientGradientEstimationClassifier,
]
CLASSIFIER_CLASS_LOSS_GRADIENTS_TYPE = Union[
ClassifierClassLossGradients,
EnsembleClassifier,
GPyGaussianProcessClassifier,
KerasClassifier,
MXClassifier,
PyTorchClassifier,
ScikitlearnLogisticRegression,
ScikitlearnSVC,
TensorFlowClassifier,
TensorFlowV2Classifier,
]
CLASSIFIER_NEURALNETWORK_TYPE = Union[
ClassifierNeuralNetwork,
DetectorClassifier,
EnsembleClassifier,
KerasClassifier,
MXClassifier,
PyTorchClassifier,
TensorFlowClassifier,
TensorFlowV2Classifier,
]
CLASSIFIER_DECISION_TREE_TYPE = Union[
ClassifierDecisionTree,
LightGBMClassifier,
ScikitlearnDecisionTreeClassifier,
ScikitlearnExtraTreesClassifier,
ScikitlearnGradientBoostingClassifier,
ScikitlearnRandomForestClassifier,
XGBoostClassifier,
]
CLASSIFIER_TYPE = Union[
Classifier,
BlackBoxClassifier,
CatBoostARTClassifier,
DetectorClassifier,
EnsembleClassifier,
GPyGaussianProcessClassifier,
KerasClassifier,
LightGBMClassifier,
MXClassifier,
PyTorchClassifier,
ScikitlearnClassifier,
ScikitlearnDecisionTreeClassifier,
ScikitlearnExtraTreeClassifier,
ScikitlearnAdaBoostClassifier,
ScikitlearnBaggingClassifier,
ScikitlearnExtraTreesClassifier,
ScikitlearnGradientBoostingClassifier,
ScikitlearnRandomForestClassifier,
ScikitlearnLogisticRegression,
ScikitlearnSVC,
TensorFlowClassifier,
TensorFlowV2Classifier,
XGBoostClassifier,
CLASSIFIER_NEURALNETWORK_TYPE,
]
REGRESSOR_TYPE = Union[ScikitlearnRegressor, ScikitlearnDecisionTreeRegressor]
PYTORCH_ESTIMATOR_TYPE = Union[
PyTorchClassifier,
PyTorchDeepSpeech,
PyTorchEstimator,
PyTorchObjectDetector,
PyTorchFasterRCNN,
]
OBJECT_DETECTOR_TYPE = Union[
ObjectDetector,
PyTorchObjectDetector,
PyTorchFasterRCNN,
TensorFlowFasterRCNN,
]
SPEECH_RECOGNIZER_TYPE = Union[
PyTorchDeepSpeech,
TensorFlowLingvoASR,
]
TENSORFLOWV2_ESTIMATOR_TYPE = Union[
TensorFlowV2Classifier,
TensorFlowV2Estimator,
]
class _Deprecated:
_instance = None
def __new__(cls):
if _Deprecated._instance is None:
_Deprecated._instance = object.__new__(cls)
return _Deprecated._instance
Deprecated = _Deprecated()
def deprecated(end_version: str, *, reason: str = "", replaced_by: str = "") -> Callable:
def decorator(function):
reason_msg = "\n" + reason if reason else reason
replaced_msg = f" It will be replaced by '{replaced_by}'." if replaced_by else replaced_by
deprecated_msg = (
f"Function '{function.__name__}' is deprecated and will be removed in future release {end_version}."
)
@wraps(function)
def wrapper(*args, **kwargs):
warnings.simplefilter("always", category=DeprecationWarning)
warnings.warn(
deprecated_msg + replaced_msg + reason_msg,
category=DeprecationWarning,
stacklevel=2,
)
warnings.simplefilter("default", category=DeprecationWarning)
return function(*args, **kwargs)
return wrapper
return decorator
def deprecated_keyword_arg(identifier: str, end_version: str, *, reason: str = "", replaced_by: str = "") -> Callable:
def decorator(function):
reason_msg = "\n" + reason if reason else reason
replaced_msg = f" It will be replaced by '{replaced_by}'." if replaced_by else replaced_by
deprecated_msg = (
f"Keyword argument '{identifier}' in '{function.__name__}' is deprecated and will be removed in"
f" future release {end_version}."
)
@wraps(function)
def wrapper(*args, **kwargs):
params = signature(function).bind(*args, **kwargs)
params.apply_defaults()
if params.signature.parameters[identifier].default is not Deprecated:
raise ValueError("Deprecated keyword argument must default to the Decorator singleton.")
if replaced_by != "" and replaced_by not in params.arguments:
raise ValueError("Deprecated keyword replacement not found in function signature.")
if params.arguments[identifier] is not Deprecated:
warnings.simplefilter("always", category=DeprecationWarning)
warnings.warn(deprecated_msg + replaced_msg + reason_msg, category=DeprecationWarning, stacklevel=2)
warnings.simplefilter("default", category=DeprecationWarning)
return function(*args, **kwargs)
return wrapper
return decorator
def projection(values: np.ndarray, eps: Union[int, float, np.ndarray], norm_p: Union[int, float, str]) -> np.ndarray:
tol = 10e-8
values_tmp = values.reshape((values.shape[0], -1))
if norm_p == 2:
if isinstance(eps, np.ndarray):
raise NotImplementedError("The parameter `eps` of type `np.ndarray` is not supported to use with norm 2.")
values_tmp = values_tmp * np.expand_dims(
np.minimum(1.0, eps / (np.linalg.norm(values_tmp, axis=1) + tol)), axis=1
)
elif norm_p == 1:
if isinstance(eps, np.ndarray):
raise NotImplementedError("The parameter `eps` of type `np.ndarray` is not supported to use with norm 1.")
values_tmp = values_tmp * np.expand_dims(
np.minimum(1.0, eps / (np.linalg.norm(values_tmp, axis=1, ord=1) + tol)),
axis=1,
)
elif norm_p in [np.inf, "inf"]:
if isinstance(eps, np.ndarray):
eps = eps * np.ones_like(values)
eps = eps.reshape([eps.shape[0], -1])
values_tmp = np.sign(values_tmp) * np.minimum(abs(values_tmp), eps)
else:
raise NotImplementedError(
'Values of `norm_p` different from 1, 2, `np.inf` and "inf" are currently not ' "supported."
)
values = values_tmp.reshape(values.shape)
return values
def random_sphere(
nb_points: int,
nb_dims: int,
radius: Union[int, float, np.ndarray],
norm: Union[int, float, str],
) -> np.ndarray:
if norm == 1:
if isinstance(radius, np.ndarray):
raise NotImplementedError(
"The parameter `radius` of type `np.ndarray` is not supported to use with norm 1."
)
a_tmp = np.zeros(shape=(nb_points, nb_dims + 1))
a_tmp[:, -1] = np.sqrt(np.random.uniform(0, radius ** 2, nb_points))
for i in range(nb_points):
a_tmp[i, 1:-1] = np.sort(np.random.uniform(0, a_tmp[i, -1], nb_dims - 1))
res = (a_tmp[:, 1:] - a_tmp[:, :-1]) * np.random.choice([-1, 1], (nb_points, nb_dims))
elif norm == 2:
if isinstance(radius, np.ndarray):
raise NotImplementedError(
"The parameter `radius` of type `np.ndarray` is not supported to use with norm 2."
)
a_tmp = np.random.randn(nb_points, nb_dims)
s_2 = np.sum(a_tmp ** 2, axis=1)
base = gammainc(nb_dims / 2.0, s_2 / 2.0) ** (1 / nb_dims) * radius / np.sqrt(s_2)
res = a_tmp * (np.tile(base, (nb_dims, 1))).T
elif norm in [np.inf, "inf"]:
if isinstance(radius, np.ndarray):
radius = radius * np.ones(shape=(nb_points, nb_dims))
res = np.random.uniform(-radius, radius, (nb_points, nb_dims))
else:
raise NotImplementedError("Norm {} not supported".format(norm))
return res
def original_to_tanh(
x_original: np.ndarray,
clip_min: Union[float, np.ndarray],
clip_max: Union[float, np.ndarray],
tanh_smoother: float = 0.999999,
) -> np.ndarray:
x_tanh = np.clip(x_original, clip_min, clip_max)
x_tanh = (x_tanh - clip_min) / (clip_max - clip_min)
x_tanh = np.arctanh(((x_tanh * 2) - 1) * tanh_smoother)
return x_tanh
def tanh_to_original(
x_tanh: np.ndarray,
clip_min: Union[float, np.ndarray],
clip_max: Union[float, np.ndarray],
) -> np.ndarray:
return (np.tanh(x_tanh) + 1.0) / 2.0 * (clip_max - clip_min) + clip_min
def to_categorical(labels: Union[np.ndarray, List[float]], nb_classes: Optional[int] = None) -> np.ndarray:
labels = np.array(labels, dtype=np.int32)
if nb_classes is None:
nb_classes = np.max(labels) + 1
categorical = np.zeros((labels.shape[0], nb_classes), dtype=np.float32)
categorical[np.arange(labels.shape[0]), np.squeeze(labels)] = 1
return categorical
def float_to_categorical(labels: np.ndarray, nb_classes: Optional[int] = None):
labels = np.array(labels)
unique = np.unique(labels)
unique.sort()
indexes = [np.where(unique == value)[0] for value in labels]
if nb_classes is None:
nb_classes = len(unique)
categorical = np.zeros((labels.shape[0], nb_classes), dtype=np.float32)
categorical[np.arange(labels.shape[0]), np.squeeze(indexes)] = 1
return categorical
def floats_to_one_hot(labels: np.ndarray):
labels = np.array(labels)
for feature in labels.T:
unique = np.unique(feature)
unique.sort()
for index, value in enumerate(unique):
feature[feature == value] = index
return labels.astype(np.float32)
def check_and_transform_label_format(
labels: np.ndarray, nb_classes: Optional[int] = None, return_one_hot: bool = True
) -> np.ndarray:
if labels is not None:
if len(labels.shape) == 2 and labels.shape[1] > 1:
if not return_one_hot:
labels = np.argmax(labels, axis=1)
elif len(labels.shape) == 2 and labels.shape[1] == 1 and nb_classes is not None and nb_classes > 2:
labels = np.squeeze(labels)
if return_one_hot:
labels = to_categorical(labels, nb_classes)
elif len(labels.shape) == 2 and labels.shape[1] == 1 and nb_classes is not None and nb_classes == 2:
pass
elif len(labels.shape) == 1:
if return_one_hot:
if nb_classes == 2:
labels = np.expand_dims(labels, axis=1)
else:
labels = to_categorical(labels, nb_classes)
else:
raise ValueError(
"Shape of labels not recognised."
"Please provide labels in shape (nb_samples,) or (nb_samples, nb_classes)"
)
return labels
def random_targets(labels: np.ndarray, nb_classes: int) -> np.ndarray:
if len(labels.shape) > 1:
labels = np.argmax(labels, axis=1)
result = np.zeros(labels.shape)
for class_ind in range(nb_classes):
other_classes = list(range(nb_classes))
other_classes.remove(class_ind)
in_cl = labels == class_ind
result[in_cl] = np.random.choice(other_classes)
return to_categorical(result, nb_classes)
def least_likely_class(x: np.ndarray, classifier: "CLASSIFIER_TYPE") -> np.ndarray:
return to_categorical(np.argmin(classifier.predict(x), axis=1), nb_classes=classifier.nb_classes)
def second_most_likely_class(x: np.ndarray, classifier: "CLASSIFIER_TYPE") -> np.ndarray:
return to_categorical(
np.argpartition(classifier.predict(x), -2, axis=1)[:, -2],
nb_classes=classifier.nb_classes,
)
def get_label_conf(y_vec: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
assert len(y_vec.shape) == 2
confs, labels = np.amax(y_vec, axis=1), np.argmax(y_vec, axis=1)
return confs, labels
def get_labels_np_array(preds: np.ndarray) -> np.ndarray:
if len(preds.shape) >= 2:
preds_max = np.amax(preds, axis=1, keepdims=True)
else:
preds_max = np.round(preds)
y = preds == preds_max
y = y.astype(np.uint8)
return y
def compute_success_array(
classifier: "CLASSIFIER_TYPE",
x_clean: np.ndarray,
labels: np.ndarray,
x_adv: np.ndarray,
targeted: bool = False,
batch_size: int = 1,
) -> float:
adv_preds = classifier.predict(x_adv, batch_size=batch_size)
if len(adv_preds.shape) >= 2:
adv_preds = np.argmax(adv_preds, axis=1)
else:
adv_preds = np.round(adv_preds)
if targeted:
attack_success = adv_preds == np.argmax(labels, axis=1)
else:
preds = classifier.predict(x_clean, batch_size=batch_size)
if len(preds.shape) >= 2:
preds = np.argmax(preds, axis=1)
else:
preds = np.round(preds)
attack_success = adv_preds != preds
return attack_success
def compute_success(
classifier: "CLASSIFIER_TYPE",
x_clean: np.ndarray,
labels: np.ndarray,
x_adv: np.ndarray,
targeted: bool = False,
batch_size: int = 1,
) -> float:
attack_success = compute_success_array(classifier, x_clean, labels, x_adv, targeted, batch_size)
return np.sum(attack_success) / x_adv.shape[0]
def compute_accuracy(preds: np.ndarray, labels: np.ndarray, abstain: bool = True) -> Tuple[np.ndarray, int]:
has_pred = np.sum(preds, axis=1)
idx_pred = np.where(has_pred)[0]
labels = np.argmax(labels[idx_pred], axis=1)
num_correct = np.sum(np.argmax(preds[idx_pred], axis=1) == labels)
coverage_rate = len(idx_pred) / preds.shape[0]
if abstain:
acc_rate = num_correct / preds[idx_pred].shape[0]
else:
acc_rate = num_correct / preds.shape[0]
return acc_rate, coverage_rate
|
MIT License
|
cober2019/network-automation
|
NETCONF-YANG/InterfaceQoS/Interfaces QoS.py
|
parse_stats
|
python
|
def parse_stats(config) -> None:
key = is_key(config)
policies = collections.defaultdict(list)
if config.get("diffserv-target-entry", {}).get("direction", {}):
print(
f"\n-------------------------\n{key}\nPolicy Direction: {config.get('diffserv-target-entry', {}).get('direction', {})}")
print(
f"Policy Name: {config.get('diffserv-target-entry', {}).get('policy-name', {})}\n-------------------------\n")
for stat in config.get("diffserv-target-entry", {}).get("diffserv-target-classifier-statistics", {}):
queue = []
queue.append(f"{stat.get('classifier-entry-name', {}):<20}")
queue.append(f'{stat.get("classifier-entry-statistics", {}).get("classified-rate", {}):<20}')
queue.append(f"{stat.get('classifier-entry-statistics', {}).get('classified-bytes', {}):20}")
queue.append(f"{stat.get('classifier-entry-statistics', {}).get('classified-pkts', {}):20}")
queue.append(f"{stat.get('queuing-statistics', {}).get('output-bytes', {}):20}")
queue.append(f"{stat.get('queuing-statistics', {}).get('output-pkts', {}):20}")
queue.append(f"{stat.get('queuing-statistics', {}).get('drop-pkts', {}):20}")
queue.append(f"{stat.get('queuing-statistics', {}).get('drop-bytes', {}):20}")
queue.append(f"{stat.get('queuing-statistics', {}).get('wred-stats', {}).get('early-drop-pkts', {}):20}")
queue.append(f"{stat.get('queuing-statistics', {}).get('wred-stats', {}).get('early-drop-bytes', {}):20}")
policies[config.get('diffserv-target-entry', {}).get('policy-name', {})].append(queue)
print_queues(policies)
|
Search key value pairs, print policy, queues, stats
|
https://github.com/cober2019/network-automation/blob/796b7760ca1f1e496a841c613eaff05ddba71b16/NETCONF-YANG/InterfaceQoS/Interfaces QoS.py#L72-L99
|
from ncclient import manager
import xmltodict
import collections
all_ints = f"""<filter>
<interfaces-state xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
<interface>
</interface>
</interfaces-state>
</filter>"""
def is_instance(list_or_dict) -> list:
if isinstance(list_or_dict, list):
make_list = list_or_dict
else:
make_list = [list_or_dict]
return make_list
def create_netconf_connection(username, password, host) -> manager:
try:
netconf_session = manager.connect(host=host, port=830, username=username,
password=password,
device_params={'name': 'csr'})
except manager.operations.errors.TimeoutExpiredError:
raise ConnectionError(f"Connection to {host} failed")
except manager.transport.AuthenticationError:
raise ConnectionError(f"Invalid Credentials")
return netconf_session
def print_queues(policies) -> None:
cat = ("Queue ->", "Class Rate ->",
"Class Pkts ->", "Class Bytes ->",
"Out Bytes ->", "Out Pkts ->",
"Drop Bytes ->", "Drop Pkts ->",
"WRED Pkts ->", "WRED Bytes ->")
for v in policies.values():
queue = (list(zip(*v)))
for b, i in zip(cat, queue):
print(f"{b} {' '.join(i)}")
def is_key(config) -> list:
try:
int_type = config.get('name', {}).get('#text', {})
except AttributeError:
int_type = config['name']
return int_type
|
MIT License
|
wavefronthq/python-client
|
wavefront_api_client/models/timeseries.py
|
Timeseries.data
|
python
|
def data(self):
return self._data
|
Gets the data of this Timeseries. # noqa: E501
Data returned by this time series. This is returned as a list of points, where each point is represented as a two-element list with 1st element being the timestamp in epoch SECONDS and the 2nd element being the numeric value of the series at the timestamp # noqa: E501
:return: The data of this Timeseries. # noqa: E501
:rtype: list[list[float]]
|
https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/timeseries.py#L71-L79
|
import pprint
import re
import six
from wavefront_api_client.configuration import Configuration
class Timeseries(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'data': 'list[list[float]]',
'host': 'str',
'label': 'str',
'tags': 'dict(str, str)'
}
attribute_map = {
'data': 'data',
'host': 'host',
'label': 'label',
'tags': 'tags'
}
def __init__(self, data=None, host=None, label=None, tags=None, _configuration=None):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._data = None
self._host = None
self._label = None
self._tags = None
self.discriminator = None
if data is not None:
self.data = data
if host is not None:
self.host = host
if label is not None:
self.label = label
if tags is not None:
self.tags = tags
@property
|
Apache License 2.0
|
jeffh/yacs
|
fabfile.py
|
deploy
|
python
|
def deploy(upgrade=1):
upload_monit_conf()
clean()
with cd('/www/yacs/'):
if not exists('virtualenv'):
puts('Creating Virtual Environment...')
sudo('virtualenv --distribute virtualenv', user=USER)
puts('Uploading to remote...')
with settings(warn_only=True):
run('rm -rf tmp')
run('mkdir tmp')
upload_project(remote_dir='tmp')
yacs_dirname = sudo('ls tmp').strip()
sudo('mv -f tmp/%s /www/yacs/tmp' % yacs_dirname)
sudo('chown -R %s /www/yacs/tmp' % USER)
sudo('chgrp -R %s /www/yacs/tmp' % GROUP)
run('rm -rf tmp')
with cd('/www/yacs/'):
puts('Replacing remote codebase...')
sudo('rm -rf django', user=USER)
sudo('mv -f tmp django', user=USER)
with cd('/www/yacs/django'):
puts('Removing extra files...')
with settings(warn_only=True):
sudo('find . -name ".*" | xargs rm -r', user=USER)
sudo('rm yacs.db', user=USER)
puts('Installing dependencies...')
pip_prefix = '--upgrade'
if not int(upgrade):
pip_prefix = ''
sudo(PIP + ' install %s -r requirements.txt' % pip_prefix, user=USER)
envs = remote_vars('YACS_ENV', 'YACS_SECRET_KEY', 'YACS_DATABASE_URL')
puts('Running migrations...')
managepy('syncdb --noinput', envs)
managepy('migrate --noinput', envs)
puts('Gathering static files...')
managepy('collectstatic --noinput', envs)
puts("Clearing caches...")
sudo('service memcached restart')
managepy('clear_cache', envs)
puts('Restarting gunicorn...')
sudo('service monit restart')
sudo('monit restart yacs')
update_crontab()
puts('Done!')
|
Deploys to the given system.
Use salt, chef, or puppet to configure the outside packages.
Things required to be set up:
- python
- database driver
- virtualenv
- coffeescript
- java
- pip
- database (postgres; postgres user)
- created database & user
- webserver (nginx; www-data user)
- webserver config to proxypass to gunicorn (nginx)
- memcached
|
https://github.com/jeffh/yacs/blob/6bdb2299905f6321be5de788f16a9464a70a4206/fabfile.py#L74-L135
|
import time
import urllib2
from fabric.api import run, local, settings, cd, sudo, task, output, puts
from fabric.contrib.project import upload_project
from fabric.contrib.files import upload_template
APPS = 'api courses courses_viz scheduler'.split(' ')
USER = 'www-data'
GROUP = 'www-data'
PYTHON = '/www/yacs/virtualenv/bin/python'
PIP = '/www/yacs/virtualenv/bin/pip'
@task
def verbose():
output['everything'] = True
def exists(name):
with settings(warn_only=True):
return not run('[ -e "%s" ]' % name).failed
def remote_vars(*keys):
sb = []
for key in keys:
value = run('echo $' + key).strip()
sb.append('='.join([key, '"%s"' % value.replace('"', '\\"')]))
return ' '.join(sb)
def upload_monit_conf():
if not exists('/etc/monit/conf.d/'):
puts('monit missing... skipping')
return
puts('Uploading monit config...')
context = dict(
projectpath='/www/yacs/django/',
user=USER,
gunicorn='/www/yacs/virtualenv/bin/gunicorn',
workers=4,
logs='/www/yacs/logs/',
wsgi='yacs.wsgi:application',
pid='/tmp/yacs.pid',
env=remote_vars('YACS_DATABASE_URL', 'YACS_SECRET_KEY'),
)
upload_template('yacs.monit', '/etc/monit/conf.d/yacs.conf',
context=context, use_sudo=True, backup=False)
def update_crontab():
context = dict(
projectpath='/www/yacs/django/',
python='/www/yacs/virtualenv/bin/python',
user=USER,
logpath='/www/yacs/logs/',
)
upload_template('yacs.cron', 'yacs_cron', context=context, backup=False)
sudo('crontab -u {0} yacs_cron'.format(USER))
sudo('rm -f yacs_cron')
def managepy(command, prefix_cmd=''):
sudo('%s %s manage.py %s' % (prefix_cmd, PYTHON, command), user=USER)
@task
|
MIT License
|
joke2k/faker
|
faker/providers/isbn/isbn.py
|
ISBN10._check_digit
|
python
|
def _check_digit(self) -> str:
weights = range(1, 10)
body = "".join([part for part in [self.group, self.registrant, self.publication] if part is not None])
remainder = sum(int(b) * w for b, w in zip(body, weights)) % 11
check_digit = "X" if remainder == 10 else str(remainder)
return str(check_digit)
|
Calculate the check digit for ISBN-10.
See https://en.wikipedia.org/wiki/International_Standard_Book_Number
for calculation.
|
https://github.com/joke2k/faker/blob/3818045332f4cb2911e5ac18f69e385bf0c51af0/faker/providers/isbn/isbn.py#L63-L72
|
from typing import Any, Optional
class ISBN:
MAX_LENGTH = 13
def __init__(
self,
ean: Optional[str] = None,
group: Optional[str] = None,
registrant: Optional[str] = None,
publication: Optional[str] = None,
) -> None:
self.ean = ean
self.group = group
self.registrant = registrant
self.publication = publication
class ISBN13(ISBN):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.check_digit = self._check_digit()
def _check_digit(self) -> str:
weights = (1 if x % 2 == 0 else 3 for x in range(12))
body = "".join([part for part in [self.ean, self.group, self.registrant, self.publication] if part is not None])
remainder = sum(int(b) * w for b, w in zip(body, weights)) % 10
diff = 10 - remainder
check_digit = 0 if diff == 10 else diff
return str(check_digit)
def format(self, separator: str = "") -> str:
return separator.join(
[
part
for part in [
self.ean,
self.group,
self.registrant,
self.publication,
self.check_digit,
]
if part is not None
]
)
class ISBN10(ISBN):
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.check_digit = self._check_digit()
|
MIT License
|
wavefronthq/python-client
|
wavefront_api_client/models/specific_data.py
|
SpecificData.fast_reader_builder
|
python
|
def fast_reader_builder(self):
return self._fast_reader_builder
|
Gets the fast_reader_builder of this SpecificData. # noqa: E501
:return: The fast_reader_builder of this SpecificData. # noqa: E501
:rtype: FastReaderBuilder
|
https://github.com/wavefronthq/python-client/blob/e410ce0dd8a2334e995456f4f3d44e0f04664a3a/wavefront_api_client/models/specific_data.py#L113-L120
|
import pprint
import re
import six
from wavefront_api_client.configuration import Configuration
class SpecificData(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'class_loader': 'ClassLoader',
'conversions': 'list[ConversionObject]',
'fast_reader_builder': 'FastReaderBuilder',
'fast_reader_enabled': 'bool'
}
attribute_map = {
'class_loader': 'classLoader',
'conversions': 'conversions',
'fast_reader_builder': 'fastReaderBuilder',
'fast_reader_enabled': 'fastReaderEnabled'
}
def __init__(self, class_loader=None, conversions=None, fast_reader_builder=None, fast_reader_enabled=None, _configuration=None):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._class_loader = None
self._conversions = None
self._fast_reader_builder = None
self._fast_reader_enabled = None
self.discriminator = None
if class_loader is not None:
self.class_loader = class_loader
if conversions is not None:
self.conversions = conversions
if fast_reader_builder is not None:
self.fast_reader_builder = fast_reader_builder
if fast_reader_enabled is not None:
self.fast_reader_enabled = fast_reader_enabled
@property
def class_loader(self):
return self._class_loader
@class_loader.setter
def class_loader(self, class_loader):
self._class_loader = class_loader
@property
def conversions(self):
return self._conversions
@conversions.setter
def conversions(self, conversions):
self._conversions = conversions
@property
|
Apache License 2.0
|
openml/automlbenchmark
|
amlb/benchmarks/file.py
|
load_file_benchmark
|
python
|
def load_file_benchmark(name: str, benchmark_definition_dirs: List[str]) -> Tuple[str, Optional[str], List[Namespace]]:
benchmark_file = _find_local_benchmark_definition(name, benchmark_definition_dirs)
log.info("Loading benchmark definitions from %s.", benchmark_file)
tasks = config_load(benchmark_file)
benchmark_name, _ = os.path.splitext(os.path.basename(benchmark_file))
return benchmark_name, benchmark_file, tasks
|
Loads benchmark from a local file.
|
https://github.com/openml/automlbenchmark/blob/6e0296b097455caf18d754e79a2bd85e85d01548/amlb/benchmarks/file.py#L26-L32
|
import logging
import os
from typing import List, Tuple, Optional
from amlb.utils import config_load, Namespace
log = logging.getLogger(__name__)
def _find_local_benchmark_definition(name: str, benchmark_definition_dirs: List[str]) -> str:
if os.path.exists(name):
return name
for bd in benchmark_definition_dirs:
bf = os.path.join(bd, f"{name}.yaml")
if os.path.exists(bf):
return bf
raise ValueError(f"Incorrect benchmark name or path `{name}`, name not available in {benchmark_definition_dirs}.")
|
MIT License
|
iexcloud/pyex
|
pyEX/metadata/__init__.py
|
queryMetadata
|
python
|
def queryMetadata(
id="", key="", subkey="", token="", version="stable", filter="", format="json"
):
url = "metadata/time-series"
if not id and key:
id = "*"
if id:
url += "/{}".format(id)
if key:
url += "/{}".format(key)
if subkey:
url += "/{}".format(subkey)
return _get(url, token=token, version=version, filter=filter, format=format)
|
Get inventory of available time series endpoints
Args:
id (str): Timeseries ID
key (str): Timeseries Key
subkey (str): Timeseries Subkey
token (str): Access token
version (str): API version
filter (str): https://iexcloud.io/docs/api/#filter-results
format (str): output format
|
https://github.com/iexcloud/pyex/blob/48223a046d120703e8cc8f6c57f8a1450ee3f835/pyEX/metadata/__init__.py#L15-L38
|
from functools import wraps
import pandas as pd
from ..common import _get
|
Apache License 2.0
|
mila-iqia/myia
|
myia/opt/dde.py
|
ValuePropagator.run
|
python
|
def run(self, root):
for p in root.parameters:
self.add_value(p, WILDCARD, ANYTHING)
for ct in self.manager.all_nodes:
if ct.is_constant():
if isinstance(ct.value, tuple):
self.add_value(ct, WILDCARD, ANYTHING)
else:
self.add_value(ct, ANYTHING, ct.value)
self.add_need(root.return_, ANYTHING)
while self.todo:
nxt = self.todo.pop()
self.process_node(nxt)
|
Run the algorithm.
|
https://github.com/mila-iqia/myia/blob/56774a39579b4ec4123f44843ad4ca688acc859b/myia/opt/dde.py#L57-L70
|
from collections import defaultdict
from .. import abstract, xtype
from ..abstract import ANYTHING, DEAD, PartialApplication
from ..ir import Constant, Graph
from ..operations import Primitive, primitives as P
from ..utils import Named, Registry, newenv, tracer, untested
WILDCARD = Named("WILDCARD")
MAX_NEED_DEPTH = 5
class ValuePropagator:
def __init__(self, resources, root):
self.resources = resources
self.manager = resources.opt_manager
self.need = defaultdict(set)
self.flow = defaultdict(set)
self.backflow = defaultdict(set)
self.results = defaultdict(lambda: defaultdict(set))
self.todo = set()
self.run(root)
|
MIT License
|
ulordchain/uwallet-client-pro
|
gui/qt/__init__.py
|
UWalletGui.start_new_window
|
python
|
def start_new_window(self, path, uri):
for w in self.windows:
if w.wallet.storage.path == path:
w.bring_to_top()
break
else:
wallet = self.daemon.load_wallet(path)
if not wallet:
wizard = InstallWizard(self.config, self.app, self.plugins, self.daemon.network, path)
wallet = wizard.run_and_get_wallet()
if not wallet:
return
self.daemon.add_wallet(wallet)
w = self.create_window_for_wallet(wallet)
if uri:
w.pay_to_URI(uri)
return w
|
Raises the window for the wallet if it is open. Otherwise
opens the wallet and creates a new window for it.
|
https://github.com/ulordchain/uwallet-client-pro/blob/103a3f7cf4e566e87f366739774f688339aea398/gui/qt/__init__.py#L174-L194
|
import sys
import os
import signal
try:
import PyQt4
except Exception:
sys.exit("Error: Could not import PyQt4 on Linux systems, you may try 'sudo apt-get install python-qt4'")
from PyQt4.QtGui import *
from PyQt4.QtCore import *
import PyQt4.QtCore as QtCore
from uwallet.i18n import _, set_language
from uwallet.plugins import run_hook
from uwallet import SimpleConfig, Wallet, WalletStorage
from uwallet.paymentrequest import InvoiceStore
from uwallet.contacts import Contacts
from uwallet.synchronizer import Synchronizer
from uwallet.verifier import SPV
from uwallet.util import DebugMem
from uwallet.wallet import Abstract_Wallet
from installwizard import InstallWizard
try:
import icons_rc
except Exception:
sys.exit("Error: Could not import icons_rc.py, please generate it with: 'pyrcc4 icons.qrc -o gui/qt/icons_rc.py'")
from util import *
from main_window import UWalletWindow
class OpenFileEventFilter(QObject):
def __init__(self, windows):
self.windows = windows
super(OpenFileEventFilter, self).__init__()
def eventFilter(self, obj, event):
if event.type() == QtCore.QEvent.FileOpen:
if len(self.windows) >= 1:
self.windows[0].pay_to_URI(event.url().toEncoded())
return True
return False
class UWalletGui:
def __init__(self, config, daemon, plugins):
set_language(config.get('language','zh_CN'))
self.config = config
self.daemon = daemon
self.plugins = plugins
self.windows = []
self.efilter = OpenFileEventFilter(self.windows)
self.app = QApplication(sys.argv)
self.app.installEventFilter(self.efilter)
self.timer = Timer()
self.invoices = InvoiceStore(self.config)
self.contacts = Contacts(self.config)
self.dark_icon = self.config.get("dark_icon", False)
self.tray = QSystemTrayIcon(self.tray_icon(), None)
self.tray.setToolTip('UWalletLite')
self.tray.activated.connect(self.tray_activated)
self.build_tray_menu()
self.tray.show()
self.app.connect(self.app, QtCore.SIGNAL('new_window'), self.start_new_window)
run_hook('init_qt', self)
def build_tray_menu(self):
self.old_menu = self.tray.contextMenu()
m = QMenu()
for window in self.windows:
submenu = m.addMenu(window.wallet.basename())
submenu.addAction(_("Show/Hide"), window.show_or_hide)
submenu.addAction(_("Close"), window.close)
m.addSeparator()
m.addAction(_("Exit UWalletLite"), self.close)
self.tray.setContextMenu(m)
def tray_icon(self):
if self.dark_icon:
return QIcon(':icons/electrum_dark_icon.png')
else:
return QIcon(':icons/electrum_light_icon.png')
def toggle_tray_icon(self):
self.dark_icon = not self.dark_icon
self.config.set_key("dark_icon", self.dark_icon, True)
self.tray.setIcon(self.tray_icon())
def tray_activated(self, reason):
if reason == QSystemTrayIcon.DoubleClick:
if all([w.is_hidden() for w in self.windows]):
for w in self.windows:
w.bring_to_top()
else:
for w in self.windows:
w.hide()
def close(self):
for window in self.windows:
window.close()
def new_window(self, path, uri=None):
self.app.emit(SIGNAL('new_window'), path, uri)
def create_window_for_wallet(self, wallet):
w = UWalletWindow(self, wallet)
self.windows.append(w)
self.build_tray_menu()
run_hook('on_new_window', w)
return w
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.