repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
nttcom/eclcli
|
eclcli/bare/bareclient/v2/servers.py
|
ServerManager.add_fixed_ip
|
python
|
def add_fixed_ip(self, server, network_id):
self._action('addFixedIp', server, {'networkId': network_id})
|
Add an IP address on a network.
:param server: The :class:`Server` (or its ID) to add an IP to.
:param network_id: The ID of the network the IP should be on.
|
https://github.com/nttcom/eclcli/blob/25946165882b352c16df4077f5470d3c5e4b910e/eclcli/bare/bareclient/v2/servers.py#L612-L619
|
import base64
import os
try:
import json
except ImportError:
import simplejson as json
try:
from oslo_utils import encodeutils
except ImportError:
from oslo.utils import encodeutils
import six
from six.moves.urllib import parse
from .. import base
from .. import crypto
REBOOT_SOFT, REBOOT_HARD = 'SOFT', 'HARD'
class Server(base.Resource):
HUMAN_ID = True
def __repr__(self):
return '<Server: %s>' % getattr(self, 'name', 'unknown-name')
def delete(self):
self.manager.delete(self)
def update(self, name=None):
self.manager.update(self, name=name)
def get_console_output(self, length=None):
return self.manager.get_console_output(self, length)
def get_management_console(self):
return self.manager.get_management_console(self)
def get_vnc_console(self, console_type):
return self.manager.get_vnc_console(self, console_type)
def get_spice_console(self, console_type):
return self.manager.get_spice_console(self, console_type)
def get_rdp_console(self, console_type):
return self.manager.get_rdp_console(self, console_type)
def get_serial_console(self, console_type):
return self.manager.get_serial_console(self, console_type)
def get_password(self, private_key=None):
return self.manager.get_password(self, private_key)
def clear_password(self):
return self.manager.clear_password(self)
def add_fixed_ip(self, network_id):
self.manager.add_fixed_ip(self, network_id)
def add_floating_ip(self, address, fixed_address=None):
self.manager.add_floating_ip(self, address, fixed_address)
def remove_floating_ip(self, address):
self.manager.remove_floating_ip(self, address)
def stop(self):
self.manager.stop(self)
def force_delete(self):
self.manager.force_delete(self)
def restore(self):
self.manager.restore(self)
def start(self):
self.manager.start(self)
def pause(self):
self.manager.pause(self)
def unpause(self):
self.manager.unpause(self)
def lock(self):
self.manager.lock(self)
def unlock(self):
self.manager.unlock(self)
def suspend(self):
self.manager.suspend(self)
def resume(self):
self.manager.resume(self)
def rescue(self, password=None, image=None):
return self.manager.rescue(self, password, image)
def unrescue(self):
self.manager.unrescue(self)
def shelve(self):
self.manager.shelve(self)
def shelve_offload(self):
self.manager.shelve_offload(self)
def unshelve(self):
self.manager.unshelve(self)
def diagnostics(self):
return self.manager.diagnostics(self)
def migrate(self):
self.manager.migrate(self)
def remove_fixed_ip(self, address):
self.manager.remove_fixed_ip(self, address)
def change_password(self, password):
self.manager.change_password(self, password)
def reboot(self, reboot_type=REBOOT_SOFT):
self.manager.reboot(self, reboot_type)
def rebuild(self, image, password=None, preserve_ephemeral=False,
**kwargs):
return self.manager.rebuild(self, image, password=password,
preserve_ephemeral=preserve_ephemeral,
**kwargs)
def resize(self, flavor, **kwargs):
self.manager.resize(self, flavor, **kwargs)
def create_image(self, image_name, metadata=None):
return self.manager.create_image(self, image_name, metadata)
def backup(self, backup_name, backup_type, rotation):
self.manager.backup(self, backup_name, backup_type, rotation)
def confirm_resize(self):
self.manager.confirm_resize(self)
def revert_resize(self):
self.manager.revert_resize(self)
@property
def networks(self):
networks = {}
try:
for network_label, address_list in self.addresses.items():
networks[network_label] = [a['addr'] for a in address_list]
return networks
except Exception:
return {}
def live_migrate(self, host=None,
block_migration=False,
disk_over_commit=False):
self.manager.live_migrate(self, host,
block_migration,
disk_over_commit)
def reset_state(self, state='error'):
self.manager.reset_state(self, state)
def reset_network(self):
self.manager.reset_network(self)
def add_security_group(self, security_group):
self.manager.add_security_group(self, security_group)
def remove_security_group(self, security_group):
self.manager.remove_security_group(self, security_group)
def list_security_group(self):
return self.manager.list_security_group(self)
def evacuate(self, host=None, on_shared_storage=True, password=None):
return self.manager.evacuate(self, host, on_shared_storage, password)
def interface_list(self):
return self.manager.interface_list(self)
def interface_attach(self, port_id, net_id, fixed_ip):
return self.manager.interface_attach(self, port_id, net_id, fixed_ip)
def interface_detach(self, port_id):
return self.manager.interface_detach(self, port_id)
class ServerManager(base.BootingManagerWithFind):
resource_class = Server
def _boot(self, resource_url, response_key, name, image, flavor,
meta=None,
files=None,
userdata=None,
return_raw=False,
key_name=None,
availability_zone=None,
nics=None,
admin_pass=None,
disk_config=None, **kwargs):
body = {
"server": {
"name": name,
"flavorRef": str(base.getid(flavor)),
}
}
image = str(base.getid(image))
if image:
body['server'].update({'imageRef': image})
if userdata:
if os.path.exists(userdata):
with open(userdata, "r") as fuserdata:
userdata = fuserdata.read()
if six.PY3:
userdata = userdata.encode("utf-8")
else:
userdata = encodeutils.safe_encode(userdata)
userdata_b64 = base64.b64encode(userdata).decode('utf-8')
body["server"]["user_data"] = userdata_b64
if meta:
body["server"]["metadata"] = meta
if key_name:
body["server"]["key_name"] = key_name
if admin_pass:
body["server"]["adminPass"] = admin_pass
if files:
personality = body['server']['personality'] = []
for filepath, file_or_string in sorted(files.items(),
key=lambda x: x[0]):
if hasattr(file_or_string, 'read'):
data = file_or_string.read()
else:
data = file_or_string
if six.PY3 and isinstance(data, str):
data = data.encode('utf-8')
cont = base64.b64encode(data).decode('utf-8')
personality.append({
'path': filepath,
'contents': cont,
})
if availability_zone:
body["server"]["availability_zone"] = availability_zone
if nics is not None:
body['server']['networks'] = nics
if disk_config is not None:
disk_config_dict = json.loads(disk_config)
for k, v in disk_config_dict.items():
body['server'][k] = v
return self._create(resource_url, body, response_key,
return_raw=return_raw, **kwargs)
def get(self, server):
return self._get("/servers/%s" % base.getid(server), "server")
def list(self, detailed=True, search_opts=None, marker=None, limit=None,
sort_keys=None, sort_dirs=None):
if search_opts is None:
search_opts = {}
qparams = {}
for opt, val in six.iteritems(search_opts):
if val:
qparams[opt] = val
if marker:
qparams['marker'] = marker
if limit:
qparams['limit'] = limit
if qparams or sort_keys or sort_dirs:
items = list(qparams.items())
if sort_keys:
items.extend(('sort_key', sort_key) for sort_key in sort_keys)
if sort_dirs:
items.extend(('sort_dir', sort_dir) for sort_dir in sort_dirs)
new_qparams = sorted(items, key=lambda x: x[0])
query_string = "?%s" % parse.urlencode(new_qparams)
else:
query_string = ""
detail = ""
if detailed:
detail = "/detail"
return self._list("/servers%s%s" % (detail, query_string), "servers")
|
Apache License 2.0
|
gitpython-developers/smmap
|
smmap/util.py
|
MapRegion.__init__
|
python
|
def __init__(self, path_or_fd, ofs, size, flags=0):
self._b = ofs
self._size = 0
self._uc = 0
if isinstance(path_or_fd, int):
fd = path_or_fd
else:
fd = os.open(path_or_fd, os.O_RDONLY | getattr(os, 'O_BINARY', 0) | flags)
try:
kwargs = dict(access=ACCESS_READ, offset=ofs)
corrected_size = size
sizeofs = ofs
actual_size = min(os.fstat(fd).st_size - sizeofs, corrected_size)
self._mf = mmap(fd, actual_size, **kwargs)
self._size = len(self._mf)
finally:
if isinstance(path_or_fd, str):
os.close(fd)
self.increment_client_count()
|
Initialize a region, allocate the memory map
:param path_or_fd: path to the file to map, or the opened file descriptor
:param ofs: **aligned** offset into the file to be mapped
:param size: if size is larger then the file on disk, the whole file will be
allocated the the size automatically adjusted
:param flags: additional flags to be given when opening the file.
:raise Exception: if no memory can be allocated
|
https://github.com/gitpython-developers/smmap/blob/f2f2eb6ee9a406bfaa5f8be927ad8ab8367cdbb0/smmap/util.py#L99-L136
|
import os
import sys
from mmap import mmap, ACCESS_READ
from mmap import ALLOCATIONGRANULARITY
__all__ = ["align_to_mmap", "is_64_bit",
"MapWindow", "MapRegion", "MapRegionList", "ALLOCATIONGRANULARITY"]
def align_to_mmap(num, round_up):
res = (num // ALLOCATIONGRANULARITY) * ALLOCATIONGRANULARITY
if round_up and (res != num):
res += ALLOCATIONGRANULARITY
return res
def is_64_bit():
return sys.maxsize > (1 << 32) - 1
class MapWindow:
__slots__ = (
'ofs',
'size'
)
def __init__(self, offset, size):
self.ofs = offset
self.size = size
def __repr__(self):
return "MapWindow(%i, %i)" % (self.ofs, self.size)
@classmethod
def from_region(cls, region):
return cls(region._b, region.size())
def ofs_end(self):
return self.ofs + self.size
def align(self):
nofs = align_to_mmap(self.ofs, 0)
self.size += self.ofs - nofs
self.ofs = nofs
self.size = align_to_mmap(self.size, 1)
def extend_left_to(self, window, max_size):
rofs = self.ofs - window.ofs_end()
nsize = rofs + self.size
rofs -= nsize - min(nsize, max_size)
self.ofs = self.ofs - rofs
self.size += rofs
def extend_right_to(self, window, max_size):
self.size = min(self.size + (window.ofs - self.ofs_end()), max_size)
class MapRegion:
__slots__ = [
'_b',
'_mf',
'_uc',
'_size',
'__weakref__'
]
|
BSD 3-Clause New or Revised License
|
polycortex/pymuse
|
pymuse/pipeline.py
|
Pipeline.get_output_queue
|
python
|
def get_output_queue(self, queue_index=0) -> StoppableQueue:
return self._output_queues[queue_index]
|
Return a ref to the queue given by queue_index
|
https://github.com/polycortex/pymuse/blob/0b157eb7bdc03209207480711bc32657a88d0fa7/pymuse/pipeline.py#L27-L29
|
from pymuse.pipelinestages.pipeline_stage import PipelineStage
from pymuse.utils.stoppablequeue import StoppableQueue
from pymuse.signal import Signal
from pymuse.constants import PIPELINE_QUEUE_SIZE
class PipelineFork():
def __init__(self, *branches):
self.forked_branches: list = list(branches)
class Pipeline():
def __init__(self, input_signal: Signal, *stages):
self._output_queues = []
self._stages: list = list(stages)
self._link_stages(self._stages)
self._stages[0]._queue_in = input_signal.signal_queue
|
MIT License
|
cortex-lab/phy
|
phy/plot/gloo/globject.py
|
GLObject._update
|
python
|
def _update(self):
pass
|
Dummy update method
|
https://github.com/cortex-lab/phy/blob/9a330b9437a3d0b40a37a201d147224e6e7fb462/phy/plot/gloo/globject.py#L150-L153
|
import logging
log = logging.getLogger(__name__)
class GLObject(object):
_idcount = 0
def __init__(self):
self._handle = -1
self._target = None
self._need_setup = True
self._need_create = True
self._need_update = True
self._need_delete = False
GLObject._idcount += 1
self._id = GLObject._idcount
@property
def need_create(self):
return self._need_create
@property
def need_update(self):
return self._need_update
@property
def need_setup(self):
return self._need_setup
@property
def need_delete(self):
return self._need_delete
def delete(self):
self._delete()
self._handle = -1
self._need_setup = True
self._need_create = True
self._need_update = True
self._need_delete = False
def activate(self):
if hasattr(self, "base") and isinstance(self.base, GLObject):
self.base.activate()
return
if self.need_create:
self._create()
self._need_create = False
self._activate()
if self.need_setup:
self._setup()
self._need_setup = False
if self.need_update:
log.log(5, "%s need update" % self.handle)
self._update()
self._need_update = False
def deactivate(self):
if hasattr(self, "base") and isinstance(self.base, GLObject):
self.base.deactivate()
else:
self._deactivate()
@property
def handle(self):
if hasattr(self, "base") and isinstance(self.base, GLObject):
if hasattr(self.base, "_handle"):
return self.base._handle
return self._handle
@property
def target(self):
if hasattr(self, "base") and isinstance(self.base, GLObject):
return self.base._target
return self._target
def _create(self):
pass
def _delete(self):
pass
def _activate(self):
pass
def _deactivate(self):
pass
def _setup(self):
pass
|
BSD 3-Clause New or Revised License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_pod_spec.py
|
V1PodSpec.service_account
|
python
|
def service_account(self):
return self._service_account
|
Gets the service_account of this V1PodSpec. # noqa: E501
DeprecatedServiceAccount is a depreciated alias for ServiceAccountName. Deprecated: Use serviceAccountName instead. # noqa: E501
:return: The service_account of this V1PodSpec. # noqa: E501
:rtype: str
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_pod_spec.py#L814-L822
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1PodSpec(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'active_deadline_seconds': 'int',
'affinity': 'V1Affinity',
'automount_service_account_token': 'bool',
'containers': 'list[V1Container]',
'dns_config': 'V1PodDNSConfig',
'dns_policy': 'str',
'enable_service_links': 'bool',
'ephemeral_containers': 'list[V1EphemeralContainer]',
'host_aliases': 'list[V1HostAlias]',
'host_ipc': 'bool',
'host_network': 'bool',
'host_pid': 'bool',
'hostname': 'str',
'image_pull_secrets': 'list[V1LocalObjectReference]',
'init_containers': 'list[V1Container]',
'node_name': 'str',
'node_selector': 'dict(str, str)',
'overhead': 'dict(str, str)',
'preemption_policy': 'str',
'priority': 'int',
'priority_class_name': 'str',
'readiness_gates': 'list[V1PodReadinessGate]',
'restart_policy': 'str',
'runtime_class_name': 'str',
'scheduler_name': 'str',
'security_context': 'V1PodSecurityContext',
'service_account': 'str',
'service_account_name': 'str',
'share_process_namespace': 'bool',
'subdomain': 'str',
'termination_grace_period_seconds': 'int',
'tolerations': 'list[V1Toleration]',
'topology_spread_constraints': 'list[V1TopologySpreadConstraint]',
'volumes': 'list[V1Volume]'
}
attribute_map = {
'active_deadline_seconds': 'activeDeadlineSeconds',
'affinity': 'affinity',
'automount_service_account_token': 'automountServiceAccountToken',
'containers': 'containers',
'dns_config': 'dnsConfig',
'dns_policy': 'dnsPolicy',
'enable_service_links': 'enableServiceLinks',
'ephemeral_containers': 'ephemeralContainers',
'host_aliases': 'hostAliases',
'host_ipc': 'hostIPC',
'host_network': 'hostNetwork',
'host_pid': 'hostPID',
'hostname': 'hostname',
'image_pull_secrets': 'imagePullSecrets',
'init_containers': 'initContainers',
'node_name': 'nodeName',
'node_selector': 'nodeSelector',
'overhead': 'overhead',
'preemption_policy': 'preemptionPolicy',
'priority': 'priority',
'priority_class_name': 'priorityClassName',
'readiness_gates': 'readinessGates',
'restart_policy': 'restartPolicy',
'runtime_class_name': 'runtimeClassName',
'scheduler_name': 'schedulerName',
'security_context': 'securityContext',
'service_account': 'serviceAccount',
'service_account_name': 'serviceAccountName',
'share_process_namespace': 'shareProcessNamespace',
'subdomain': 'subdomain',
'termination_grace_period_seconds': 'terminationGracePeriodSeconds',
'tolerations': 'tolerations',
'topology_spread_constraints': 'topologySpreadConstraints',
'volumes': 'volumes'
}
def __init__(self, active_deadline_seconds=None, affinity=None, automount_service_account_token=None, containers=None, dns_config=None, dns_policy=None, enable_service_links=None, ephemeral_containers=None, host_aliases=None, host_ipc=None, host_network=None, host_pid=None, hostname=None, image_pull_secrets=None, init_containers=None, node_name=None, node_selector=None, overhead=None, preemption_policy=None, priority=None, priority_class_name=None, readiness_gates=None, restart_policy=None, runtime_class_name=None, scheduler_name=None, security_context=None, service_account=None, service_account_name=None, share_process_namespace=None, subdomain=None, termination_grace_period_seconds=None, tolerations=None, topology_spread_constraints=None, volumes=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._active_deadline_seconds = None
self._affinity = None
self._automount_service_account_token = None
self._containers = None
self._dns_config = None
self._dns_policy = None
self._enable_service_links = None
self._ephemeral_containers = None
self._host_aliases = None
self._host_ipc = None
self._host_network = None
self._host_pid = None
self._hostname = None
self._image_pull_secrets = None
self._init_containers = None
self._node_name = None
self._node_selector = None
self._overhead = None
self._preemption_policy = None
self._priority = None
self._priority_class_name = None
self._readiness_gates = None
self._restart_policy = None
self._runtime_class_name = None
self._scheduler_name = None
self._security_context = None
self._service_account = None
self._service_account_name = None
self._share_process_namespace = None
self._subdomain = None
self._termination_grace_period_seconds = None
self._tolerations = None
self._topology_spread_constraints = None
self._volumes = None
self.discriminator = None
if active_deadline_seconds is not None:
self.active_deadline_seconds = active_deadline_seconds
if affinity is not None:
self.affinity = affinity
if automount_service_account_token is not None:
self.automount_service_account_token = automount_service_account_token
self.containers = containers
if dns_config is not None:
self.dns_config = dns_config
if dns_policy is not None:
self.dns_policy = dns_policy
if enable_service_links is not None:
self.enable_service_links = enable_service_links
if ephemeral_containers is not None:
self.ephemeral_containers = ephemeral_containers
if host_aliases is not None:
self.host_aliases = host_aliases
if host_ipc is not None:
self.host_ipc = host_ipc
if host_network is not None:
self.host_network = host_network
if host_pid is not None:
self.host_pid = host_pid
if hostname is not None:
self.hostname = hostname
if image_pull_secrets is not None:
self.image_pull_secrets = image_pull_secrets
if init_containers is not None:
self.init_containers = init_containers
if node_name is not None:
self.node_name = node_name
if node_selector is not None:
self.node_selector = node_selector
if overhead is not None:
self.overhead = overhead
if preemption_policy is not None:
self.preemption_policy = preemption_policy
if priority is not None:
self.priority = priority
if priority_class_name is not None:
self.priority_class_name = priority_class_name
if readiness_gates is not None:
self.readiness_gates = readiness_gates
if restart_policy is not None:
self.restart_policy = restart_policy
if runtime_class_name is not None:
self.runtime_class_name = runtime_class_name
if scheduler_name is not None:
self.scheduler_name = scheduler_name
if security_context is not None:
self.security_context = security_context
if service_account is not None:
self.service_account = service_account
if service_account_name is not None:
self.service_account_name = service_account_name
if share_process_namespace is not None:
self.share_process_namespace = share_process_namespace
if subdomain is not None:
self.subdomain = subdomain
if termination_grace_period_seconds is not None:
self.termination_grace_period_seconds = termination_grace_period_seconds
if tolerations is not None:
self.tolerations = tolerations
if topology_spread_constraints is not None:
self.topology_spread_constraints = topology_spread_constraints
if volumes is not None:
self.volumes = volumes
@property
def active_deadline_seconds(self):
return self._active_deadline_seconds
@active_deadline_seconds.setter
def active_deadline_seconds(self, active_deadline_seconds):
self._active_deadline_seconds = active_deadline_seconds
@property
def affinity(self):
return self._affinity
@affinity.setter
def affinity(self, affinity):
self._affinity = affinity
@property
def automount_service_account_token(self):
return self._automount_service_account_token
@automount_service_account_token.setter
def automount_service_account_token(self, automount_service_account_token):
self._automount_service_account_token = automount_service_account_token
@property
def containers(self):
return self._containers
@containers.setter
def containers(self, containers):
if self.local_vars_configuration.client_side_validation and containers is None:
raise ValueError("Invalid value for `containers`, must not be `None`")
self._containers = containers
@property
def dns_config(self):
return self._dns_config
@dns_config.setter
def dns_config(self, dns_config):
self._dns_config = dns_config
@property
def dns_policy(self):
return self._dns_policy
@dns_policy.setter
def dns_policy(self, dns_policy):
self._dns_policy = dns_policy
@property
def enable_service_links(self):
return self._enable_service_links
@enable_service_links.setter
def enable_service_links(self, enable_service_links):
self._enable_service_links = enable_service_links
@property
def ephemeral_containers(self):
return self._ephemeral_containers
@ephemeral_containers.setter
def ephemeral_containers(self, ephemeral_containers):
self._ephemeral_containers = ephemeral_containers
@property
def host_aliases(self):
return self._host_aliases
@host_aliases.setter
def host_aliases(self, host_aliases):
self._host_aliases = host_aliases
@property
def host_ipc(self):
return self._host_ipc
@host_ipc.setter
def host_ipc(self, host_ipc):
self._host_ipc = host_ipc
@property
def host_network(self):
return self._host_network
@host_network.setter
def host_network(self, host_network):
self._host_network = host_network
@property
def host_pid(self):
return self._host_pid
@host_pid.setter
def host_pid(self, host_pid):
self._host_pid = host_pid
@property
def hostname(self):
return self._hostname
@hostname.setter
def hostname(self, hostname):
self._hostname = hostname
@property
def image_pull_secrets(self):
return self._image_pull_secrets
@image_pull_secrets.setter
def image_pull_secrets(self, image_pull_secrets):
self._image_pull_secrets = image_pull_secrets
@property
def init_containers(self):
return self._init_containers
@init_containers.setter
def init_containers(self, init_containers):
self._init_containers = init_containers
@property
def node_name(self):
return self._node_name
@node_name.setter
def node_name(self, node_name):
self._node_name = node_name
@property
def node_selector(self):
return self._node_selector
@node_selector.setter
def node_selector(self, node_selector):
self._node_selector = node_selector
@property
def overhead(self):
return self._overhead
@overhead.setter
def overhead(self, overhead):
self._overhead = overhead
@property
def preemption_policy(self):
return self._preemption_policy
@preemption_policy.setter
def preemption_policy(self, preemption_policy):
self._preemption_policy = preemption_policy
@property
def priority(self):
return self._priority
@priority.setter
def priority(self, priority):
self._priority = priority
@property
def priority_class_name(self):
return self._priority_class_name
@priority_class_name.setter
def priority_class_name(self, priority_class_name):
self._priority_class_name = priority_class_name
@property
def readiness_gates(self):
return self._readiness_gates
@readiness_gates.setter
def readiness_gates(self, readiness_gates):
self._readiness_gates = readiness_gates
@property
def restart_policy(self):
return self._restart_policy
@restart_policy.setter
def restart_policy(self, restart_policy):
self._restart_policy = restart_policy
@property
def runtime_class_name(self):
return self._runtime_class_name
@runtime_class_name.setter
def runtime_class_name(self, runtime_class_name):
self._runtime_class_name = runtime_class_name
@property
def scheduler_name(self):
return self._scheduler_name
@scheduler_name.setter
def scheduler_name(self, scheduler_name):
self._scheduler_name = scheduler_name
@property
def security_context(self):
return self._security_context
@security_context.setter
def security_context(self, security_context):
self._security_context = security_context
@property
|
Apache License 2.0
|
jwlodek/py_cui
|
py_cui/widget_set.py
|
WidgetSet.add_text_block
|
python
|
def add_text_block(self, title, row, column, row_span = 1, column_span = 1, padx = 1, pady = 0, initial_text = ''):
id = 'Widget{}'.format(len(self._widgets.keys()))
new_text_block = widgets.ScrollTextBlock(id,
title,
self._grid,
row,
column,
row_span,
column_span,
padx,
pady,
self._logger,
initial_text)
self._widgets[id] = new_text_block
if self._selected_widget is None:
self.set_selected_widget(id)
self._logger.info('Adding widget {} w/ ID {} of type {}'.format(title, id, str(type(new_text_block))))
return new_text_block
|
Function that adds a new text block to the CUI grid
Parameters
----------
title : str
The title of the text block
row : int
The row value, from the top down
column : int
The column value from the top down
row_span=1 : int
The number of rows to span accross
column_span=1 : int
the number of columns to span accross
padx=1 : int
number of padding characters in the x direction
pady=0 : int
number of padding characters in the y direction
initial_text='' : str
Initial text for the text block
Returns
-------
new_text_block : ScrollTextBlock
A reference to the created textblock object.
|
https://github.com/jwlodek/py_cui/blob/e5f86515bb12929073ec62d27f061092d8040c23/py_cui/widget_set.py#L239-L283
|
import shutil
import py_cui.widgets as widgets
import py_cui.grid as grid
import py_cui.controls as controls
class WidgetSet:
def __init__(self, num_rows, num_cols, logger, simulated_terminal=None):
self._widgets = {}
self._keybindings = {}
self._simulated_terminal = simulated_terminal
if self._simulated_terminal is None:
term_size = shutil.get_terminal_size()
height = term_size.lines
width = term_size.columns
else:
height = self._simulated_terminal[0]
width = self._simulated_terminal[1]
self._height = height
self._width = width
self._height = self._height - 4
self._grid = grid.Grid(num_rows, num_cols, self._height, self._width, logger)
self._selected_widget = None
self._logger = logger
def set_selected_widget(self, widget_id):
if widget_id in self._widgets.keys():
self._selected_widget = widget_id
def get_widgets(self):
return self._widgets
def add_key_command(self, key, command):
self._keybindings[key] = command
def add_scroll_menu(self, title, row, column, row_span = 1, column_span = 1, padx = 1, pady = 0):
id = 'Widget{}'.format(len(self._widgets.keys()))
new_scroll_menu = widgets.ScrollMenu(id,
title,
self._grid,
row,
column,
row_span,
column_span,
padx,
pady,
self._logger)
self._widgets[id] = new_scroll_menu
if self._selected_widget is None:
self.set_selected_widget(id)
self._logger.info('Adding widget {} w/ ID {} of type {}'.format(title, id, str(type(new_scroll_menu))))
return new_scroll_menu
def add_checkbox_menu(self, title, row, column, row_span=1, column_span=1, padx=1, pady=0, checked_char='X'):
id = 'Widget{}'.format(len(self._widgets.keys()))
new_checkbox_menu = widgets.CheckBoxMenu(id,
title,
self._grid,
row,
column,
row_span,
column_span,
padx,
pady,
self._logger,
checked_char)
self._widgets[id] = new_checkbox_menu
if self._selected_widget is None:
self.set_selected_widget(id)
self._logger.info('Adding widget {} w/ ID {} of type {}'.format(title, id, str(type(new_checkbox_menu))))
return new_checkbox_menu
def add_text_box(self, title, row, column, row_span = 1, column_span = 1, padx = 1, pady = 0, initial_text = '', password = False):
id = 'Widget{}'.format(len(self._widgets.keys()))
new_text_box = widgets.TextBox(id,
title,
self._grid,
row, column,
row_span,
column_span,
padx, pady,
self._logger,
initial_text,
password)
self._widgets[id] = new_text_box
if self._selected_widget is None:
self.set_selected_widget(id)
self._logger.info('Adding widget {} w/ ID {} of type {}'.format(title, id, str(type(new_text_box))))
return new_text_box
|
BSD 3-Clause New or Revised License
|
graviti-ai/tensorbay-python-sdk
|
tensorbay/geometry/vector.py
|
Vector2D.__new__
|
python
|
def __new__(
cls: Type[_V2], *args: float, **kwargs: float
) -> _V2:
obj: _V2 = object.__new__(cls)
return obj
|
Create a :class:`Vector2D` instance.
Arguments:
args: The coordinates of the 2D vector.
kwargs: The coordinates of the 2D vector.
Returns:
The created :class:`Vector2D` instance.
|
https://github.com/graviti-ai/tensorbay-python-sdk/blob/db60d259869d6a528ee1ad84103d2b9bab1bd72e/tensorbay/geometry/vector.py#L225-L239
|
from itertools import zip_longest
from math import hypot, sqrt
from sys import version_info
from typing import Dict, Iterable, Optional, Sequence, Tuple, Type, TypeVar, Union
from tensorbay.utility import ReprType, UserSequence
if version_info >= (3, 8):
_hypot_for_n_dimension = hypot
else:
def _hypot_for_n_dimension(*coordinates: float) -> float:
return sqrt(sum(x * x for x in coordinates))
_V = TypeVar("_V", bound="Vector")
_V2 = TypeVar("_V2", bound="Vector2D")
_V3 = TypeVar("_V3", bound="Vector3D")
_T = Union["Vector2D", "Vector3D"]
class Vector(UserSequence[float]):
_data: Tuple[float, ...]
_repr_type = ReprType.INSTANCE
_DIMENSION: Optional[int] = None
def __new__(
cls: Type[_V],
x: float,
y: float,
z: Optional[float] = None,
) -> _T:
ReturnType = Vector2D if z is None else Vector3D
obj: _T = object.__new__(ReturnType)
return obj
def __bool__(self) -> bool:
return any(self._data)
def __neg__(self: _V) -> _V:
result: _V = object.__new__(self.__class__)
result._data = tuple(-coordinate for coordinate in self._data)
return result
def __add__(self: _V, other: Iterable[float]) -> _V:
try:
result: _V = object.__new__(self.__class__)
result._data = tuple(i + j for i, j in zip_longest(self._data, other))
return result
except TypeError:
return NotImplemented
def __radd__(self: _V, other: Sequence[float]) -> _V:
return self.__add__(other)
def __sub__(self: _V, other: Iterable[float]) -> _V:
try:
result: _V = object.__new__(self.__class__)
result._data = tuple(i - j for i, j in zip_longest(self._data, other))
return result
except TypeError:
return NotImplemented
def __rsub__(self: _V, other: Iterable[float]) -> _V:
try:
result: _V = object.__new__(self.__class__)
result._data = tuple(i - j for i, j in zip_longest(other, self._data))
return result
except TypeError:
return NotImplemented
def __mul__(self: _V, other: float) -> _V:
try:
if isinstance(other, (int, float)):
result: _V = object.__new__(self.__class__)
result._data = tuple(i * other for i in self._data)
return result
except TypeError:
pass
return NotImplemented
def __rmul__(self: _V, other: float) -> _V:
return self.__mul__(other)
def __truediv__(self: _V, other: float) -> _V:
try:
if isinstance(other, (int, float)):
result: _V = object.__new__(self.__class__)
result._data = tuple(i / other for i in self._data)
return result
except TypeError:
pass
return NotImplemented
def __floordiv__(self: _V, other: float) -> _V:
try:
if isinstance(other, (int, float)):
result: _V = object.__new__(self.__class__)
result._data = tuple(i // other for i in self._data)
return result
except TypeError:
pass
return NotImplemented
def __abs__(self) -> float:
return _hypot_for_n_dimension(*self._data)
def _repr_head(self) -> str:
return f"{self.__class__.__name__}{self._data}"
@staticmethod
def loads(contents: Dict[str, float]) -> _T:
if "z" in contents:
return Vector3D.loads(contents)
return Vector2D.loads(contents)
class Vector2D(Vector):
_DIMENSION = 2
|
MIT License
|
tryolabs/luminoth
|
luminoth/models/ssd/utils.py
|
generate_anchors_reference
|
python
|
def generate_anchors_reference(ratios, scales, num_anchors, feature_map_shape):
heights = np.zeros(num_anchors)
widths = np.zeros(num_anchors)
if len(scales) > 1:
widths[0] = heights[0] = (np.sqrt(scales[0] * scales[1]) *
feature_map_shape[0])
else:
heights[0] = scales[0] * feature_map_shape[0] * 0.99
widths[0] = scales[0] * feature_map_shape[1] * 0.99
ratios = ratios[:num_anchors - 1]
heights[1:] = scales[0] / np.sqrt(ratios) * feature_map_shape[0]
widths[1:] = scales[0] * np.sqrt(ratios) * feature_map_shape[1]
x_center = y_center = 0.5
anchors = np.column_stack([
x_center - widths / 2,
y_center - heights / 2,
x_center + widths / 2,
y_center + heights / 2,
])
return anchors
|
Generate the default anchor for one feat map which we will later convolve
to generate all the anchors of that feat map.
|
https://github.com/tryolabs/luminoth/blob/9109d8b98bcbb0ad4e8e0c928da0b20627fa774f/luminoth/models/ssd/utils.py#L33-L72
|
import numpy as np
import tensorflow as tf
def adjust_bboxes(bboxes, old_height, old_width, new_height, new_width):
x_min = bboxes[:, 0] / old_width
y_min = bboxes[:, 1] / old_height
x_max = bboxes[:, 2] / old_width
y_max = bboxes[:, 3] / old_height
x_min = x_min * new_width
y_min = y_min * new_height
x_max = x_max * new_width
y_max = y_max * new_height
return np.stack([x_min, y_min, x_max, y_max], axis=1)
|
BSD 3-Clause New or Revised License
|
openstack/manila
|
manila/share/drivers/netapp/dataontap/cluster_mode/performance.py
|
PerformanceLibrary._init_counter_info
|
python
|
def _init_counter_info(self):
self.system_object_name = None
self.avg_processor_busy_base_counter_name = None
try:
if self.zapi_client.features.SYSTEM_CONSTITUENT_METRICS:
self.system_object_name = 'system:constituent'
self.avg_processor_busy_base_counter_name = (
self._get_base_counter_name('system:constituent',
'avg_processor_busy'))
elif self.zapi_client.features.SYSTEM_METRICS:
self.system_object_name = 'system'
self.avg_processor_busy_base_counter_name = (
self._get_base_counter_name('system',
'avg_processor_busy'))
except netapp_api.NaApiError:
if self.zapi_client.features.SYSTEM_CONSTITUENT_METRICS:
self.avg_processor_busy_base_counter_name = 'cpu_elapsed_time'
else:
self.avg_processor_busy_base_counter_name = 'cpu_elapsed_time1'
LOG.exception('Could not get performance base counter '
'name. Performance-based scheduler '
'functions may not be available.')
|
Set a few counter names based on Data ONTAP version.
|
https://github.com/openstack/manila/blob/34d209484366cd921e052d37c5f9daef5e97af20/manila/share/drivers/netapp/dataontap/cluster_mode/performance.py#L41-L65
|
import copy
from oslo_log import log as logging
from manila import exception
from manila.i18n import _
from manila.share.drivers.netapp.dataontap.client import api as netapp_api
LOG = logging.getLogger(__name__)
DEFAULT_UTILIZATION = 50
class PerformanceLibrary(object):
def __init__(self, zapi_client):
self.zapi_client = zapi_client
self.performance_counters = {}
self.pool_utilization = {}
self._init_counter_info()
|
Apache License 2.0
|
docusign/docusign-python-client
|
docusign_esign/models/chunked_upload_part.py
|
ChunkedUploadPart.to_dict
|
python
|
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(ChunkedUploadPart, dict):
for key, value in self.items():
result[key] = value
return result
|
Returns the model properties as a dict
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/chunked_upload_part.py#L104-L129
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class ChunkedUploadPart(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'sequence': 'str',
'size': 'str'
}
attribute_map = {
'sequence': 'sequence',
'size': 'size'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._sequence = None
self._size = None
self.discriminator = None
setattr(self, "_{}".format('sequence'), kwargs.get('sequence', None))
setattr(self, "_{}".format('size'), kwargs.get('size', None))
@property
def sequence(self):
return self._sequence
@sequence.setter
def sequence(self, sequence):
self._sequence = sequence
@property
def size(self):
return self._size
@size.setter
def size(self, size):
self._size = size
|
MIT License
|
hetznercloud/hcloud-python
|
hcloud/firewalls/client.py
|
FirewallsClient.get_all
|
python
|
def get_all(self, label_selector=None, name=None, sort=None):
return super(FirewallsClient, self).get_all(
label_selector=label_selector, name=name, sort=sort
)
|
Get all floating ips from this account
:param label_selector: str (optional)
Can be used to filter Firewalls by labels. The response will only contain Firewalls matching the label selector values.
:param name: str (optional)
Can be used to filter networks by their name.
:param sort: List[str] (optional)
Choices: id name created (You can add one of ":asc", ":desc" to modify sort order. ( ":asc" is default))
:return: List[:class:`BoundFirewall <hcloud.firewalls.client.BoundFirewall>`]
|
https://github.com/hetznercloud/hcloud-python/blob/fad870790a19621fd130fd28d564a8d6ba7a566c/hcloud/firewalls/client.py#L258-L272
|
from hcloud.actions.client import BoundAction
from hcloud.core.client import BoundModelBase, ClientEntityBase, GetEntityByNameMixin
from hcloud.core.domain import add_meta_to_result
from hcloud.firewalls.domain import (
Firewall,
CreateFirewallResponse,
FirewallRule,
FirewallResource,
FirewallResourceLabelSelector,
)
class BoundFirewall(BoundModelBase):
model = Firewall
def __init__(self, client, data, complete=True):
rules = data.get("rules", [])
if rules:
rules = [
FirewallRule(
direction=rule["direction"],
source_ips=rule["source_ips"],
destination_ips=rule["destination_ips"],
protocol=rule["protocol"],
port=rule["port"],
description=rule["description"],
)
for rule in rules
]
data["rules"] = rules
applied_to = data.get("applied_to", [])
if applied_to:
from hcloud.servers.client import BoundServer
ats = []
for a in applied_to:
if a["type"] == FirewallResource.TYPE_SERVER:
ats.append(
FirewallResource(
type=a["type"],
server=BoundServer(
client._client.servers, a["server"], complete=False
),
)
)
elif a["type"] == FirewallResource.TYPE_LABEL_SELECTOR:
ats.append(
FirewallResource(
type=a["type"],
label_selector=FirewallResourceLabelSelector(
selector=a["label_selector"]["selector"]
),
)
)
data["applied_to"] = ats
super(BoundFirewall, self).__init__(client, data, complete)
def get_actions_list(self, status=None, sort=None, page=None, per_page=None):
return self._client.get_actions_list(self, status, sort, page, per_page)
def get_actions(self, status=None, sort=None):
return self._client.get_actions(self, status, sort)
def update(self, name=None, labels=None):
return self._client.update(self, labels, name)
def delete(self):
return self._client.delete(self)
def set_rules(self, rules):
return self._client.set_rules(self, rules)
def apply_to_resources(self, resources):
return self._client.apply_to_resources(self, resources)
def remove_from_resources(self, resources):
return self._client.remove_from_resources(self, resources)
class FirewallsClient(ClientEntityBase, GetEntityByNameMixin):
results_list_attribute_name = "firewalls"
def get_actions_list(
self,
firewall,
status=None,
sort=None,
page=None,
per_page=None,
):
params = {}
if status is not None:
params["status"] = status
if sort is not None:
params["sort"] = sort
if page is not None:
params["page"] = page
if per_page is not None:
params["per_page"] = per_page
response = self._client.request(
url="/firewalls/{firewall_id}/actions".format(firewall_id=firewall.id),
method="GET",
params=params,
)
actions = [
BoundAction(self._client.actions, action_data)
for action_data in response["actions"]
]
return add_meta_to_result(actions, response, "actions")
def get_actions(
self,
firewall,
status=None,
sort=None,
):
return super(FirewallsClient, self).get_actions(
firewall, status=status, sort=sort
)
def get_by_id(self, id):
response = self._client.request(
url="/firewalls/{firewall_id}".format(firewall_id=id), method="GET"
)
return BoundFirewall(self, response["firewall"])
def get_list(
self,
label_selector=None,
page=None,
per_page=None,
name=None,
sort=None,
):
params = {}
if label_selector is not None:
params["label_selector"] = label_selector
if page is not None:
params["page"] = page
if per_page is not None:
params["per_page"] = per_page
if name is not None:
params["name"] = name
if sort is not None:
params["sort"] = sort
response = self._client.request(url="/firewalls", method="GET", params=params)
firewalls = [
BoundFirewall(self, firewall_data)
for firewall_data in response["firewalls"]
]
return self._add_meta_to_result(firewalls, response)
|
MIT License
|
autonomousvision/neat
|
aim_mt_2d/data.py
|
scale_and_crop_seg
|
python
|
def scale_and_crop_seg(image, scale=1, crop=256):
(width, height) = (int(image.width / scale), int(image.height / scale))
if scale != 1:
im_resized = image.resize((width, height), resample=Image.NEAREST)
else:
im_resized = image
im_resized = np.asarray(im_resized)
start_y = height//2 - crop//2
start_x = width//2 - crop//2
cropped_image = im_resized[start_y:start_y+crop, start_x:start_x+crop]
if len(cropped_image.shape)==2:
cropped_image = cropped_image.reshape((crop,crop,1))
cropped_image = np.transpose(cropped_image, (2,0,1))
return cropped_image
|
Scale and crop a seg image, returning a channels-first numpy array.
|
https://github.com/autonomousvision/neat/blob/686f4a0b5b5bf20c99f323e9542f5b68808df2de/aim_mt_2d/data.py#L337-L358
|
import os
import json
from PIL import Image
import numpy as np
import torch
from torch.utils.data import Dataset
class CARLA_waypoint(Dataset):
def __init__(self, root, config, points_per_batch=1024):
self.seq_len = config.seq_len
self.pred_len = config.pred_len
self.points_per_batch = points_per_batch
self.ignore_sides = config.ignore_sides
self.ignore_rear = config.ignore_rear
self.input_resolution = config.input_resolution
self.scale = config.scale
self.converter = np.uint8(config.converter)
self.front = []
self.left = []
self.right = []
self.rear = []
self.seg_front = []
self.seg_left = []
self.seg_right = []
self.seg_rear = []
self.depth_front = []
self.depth_left = []
self.depth_right = []
self.depth_rear = []
self.x = []
self.y = []
self.x_command = []
self.y_command = []
self.theta = []
self.steer = []
self.throttle = []
self.brake = []
self.command = []
self.velocity = []
for sub_root in root:
preload_file = os.path.join(sub_root, 'aim_multitask_pl_'+str(self.seq_len)+'_'+str(self.pred_len)+'.npy')
if not os.path.exists(preload_file):
preload_front = []
preload_left = []
preload_right = []
preload_rear = []
preload_seg_front = []
preload_seg_left = []
preload_seg_right = []
preload_seg_rear = []
preload_depth_front = []
preload_depth_left = []
preload_depth_right = []
preload_depth_rear = []
preload_x = []
preload_y = []
preload_x_command = []
preload_y_command = []
preload_theta = []
preload_steer = []
preload_throttle = []
preload_brake = []
preload_command = []
preload_velocity = []
root_files = os.listdir(sub_root)
routes = [folder for folder in root_files if not os.path.isfile(os.path.join(sub_root,folder))]
for route in routes:
route_dir = os.path.join(sub_root, route)
print(route_dir)
num_seq = (len(os.listdir(route_dir+"/rgb_front/"))-self.pred_len-2)//self.seq_len
for seq in range(num_seq):
fronts = []
lefts = []
rights = []
rears = []
seg_fronts = []
seg_lefts = []
seg_rights = []
seg_rears = []
depth_fronts = []
depth_lefts = []
depth_rights = []
depth_rears = []
xs = []
ys = []
thetas = []
for i in range(self.seq_len):
filename = f"{str(seq*self.seq_len+1+i).zfill(4)}.png"
fronts.append(route_dir+"/rgb_front/"+filename)
lefts.append(route_dir+"/rgb_left/"+filename)
rights.append(route_dir+"/rgb_right/"+filename)
rears.append(route_dir+"/rgb_rear/"+filename)
seg_fronts.append(route_dir+"/seg_front/"+filename)
seg_lefts.append(route_dir+"/seg_left/"+filename)
seg_rights.append(route_dir+"/seg_right/"+filename)
seg_rears.append(route_dir+"/seg_rear/"+filename)
depth_fronts.append(route_dir+"/depth_front/"+filename)
depth_lefts.append(route_dir+"/depth_left/"+filename)
depth_rights.append(route_dir+"/depth_right/"+filename)
depth_rears.append(route_dir+"/depth_rear/"+filename)
with open(route_dir + f"/measurements/{str(seq*self.seq_len+1+i).zfill(4)}.json", "r") as read_file:
data = json.load(read_file)
xs.append(data['x'])
ys.append(data['y'])
thetas.append(data['theta'])
preload_x_command.append(data['x_command'])
preload_y_command.append(data['y_command'])
preload_steer.append(data['steer'])
preload_throttle.append(data['throttle'])
preload_brake.append(data['brake'])
preload_command.append(data['command'])
preload_velocity.append(data['speed'])
for i in range(self.seq_len, self.seq_len + self.pred_len):
with open(route_dir + f"/measurements/{str(seq*self.seq_len+1+i).zfill(4)}.json", "r") as read_file:
data = json.load(read_file)
xs.append(data['x'])
ys.append(data['y'])
if np.isnan(data['theta']):
thetas.append(0)
else:
thetas.append(data['theta'])
preload_front.append(fronts)
preload_left.append(lefts)
preload_right.append(rights)
preload_rear.append(rears)
preload_seg_front.append(seg_fronts)
preload_seg_left.append(seg_lefts)
preload_seg_right.append(seg_rights)
preload_seg_rear.append(seg_rears)
preload_depth_front.append(depth_fronts)
preload_depth_left.append(depth_lefts)
preload_depth_right.append(depth_rights)
preload_depth_rear.append(depth_rears)
preload_x.append(xs)
preload_y.append(ys)
preload_theta.append(thetas)
preload_dict = {}
preload_dict['front'] = preload_front
preload_dict['left'] = preload_left
preload_dict['right'] = preload_right
preload_dict['rear'] = preload_rear
preload_dict['seg_front'] = preload_seg_front
preload_dict['seg_left'] = preload_seg_left
preload_dict['seg_right'] = preload_seg_right
preload_dict['seg_rear'] = preload_seg_rear
preload_dict['depth_front'] = preload_depth_front
preload_dict['depth_left'] = preload_depth_left
preload_dict['depth_right'] = preload_depth_right
preload_dict['depth_rear'] = preload_depth_rear
preload_dict['x'] = preload_x
preload_dict['y'] = preload_y
preload_dict['x_command'] = preload_x_command
preload_dict['y_command'] = preload_y_command
preload_dict['theta'] = preload_theta
preload_dict['steer'] = preload_steer
preload_dict['throttle'] = preload_throttle
preload_dict['brake'] = preload_brake
preload_dict['command'] = preload_command
preload_dict['velocity'] = preload_velocity
np.save(preload_file, preload_dict)
preload_dict = np.load(preload_file, allow_pickle=True)
self.front += preload_dict.item()['front']
self.left += preload_dict.item()['left']
self.right += preload_dict.item()['right']
self.rear += preload_dict.item()['rear']
self.seg_front += preload_dict.item()['seg_front']
self.seg_left += preload_dict.item()['seg_left']
self.seg_right += preload_dict.item()['seg_right']
self.seg_rear += preload_dict.item()['seg_rear']
self.depth_front += preload_dict.item()['depth_front']
self.depth_left += preload_dict.item()['depth_left']
self.depth_right += preload_dict.item()['depth_right']
self.depth_rear += preload_dict.item()['depth_rear']
self.x += preload_dict.item()['x']
self.y += preload_dict.item()['y']
self.x_command += preload_dict.item()['x_command']
self.y_command += preload_dict.item()['y_command']
self.theta += preload_dict.item()['theta']
self.steer += preload_dict.item()['steer']
self.throttle += preload_dict.item()['throttle']
self.brake += preload_dict.item()['brake']
self.command += preload_dict.item()['command']
self.velocity += preload_dict.item()['velocity']
print("Preloading " + str(len(preload_dict.item()['front'])) + " sequences from " + preload_file)
def __len__(self):
return len(self.front)
def __getitem__(self, index):
data = dict()
data['fronts'] = []
data['lefts'] = []
data['rights'] = []
data['rears'] = []
data['seg_fronts'] = []
data['seg_lefts'] = []
data['seg_rights'] = []
data['seg_rears'] = []
data['depth_fronts'] = []
data['depth_lefts'] = []
data['depth_rights'] = []
data['depth_rears'] = []
seq_fronts = self.front[index]
seq_lefts = self.left[index]
seq_rights = self.right[index]
seq_rears = self.rear[index]
seq_seg_fronts = self.seg_front[index]
seq_seg_lefts = self.seg_left[index]
seq_seg_rights = self.seg_right[index]
seq_seg_rears = self.seg_rear[index]
seq_depth_fronts = self.depth_front[index]
seq_depth_lefts = self.depth_left[index]
seq_depth_rights = self.depth_right[index]
seq_depth_rears = self.depth_rear[index]
seq_x = self.x[index]
seq_y = self.y[index]
seq_theta = self.theta[index]
for i in range(self.seq_len):
data['fronts'].append(torch.from_numpy(np.array(
scale_and_crop_image(Image.open(seq_fronts[i]), scale=self.scale, crop=self.input_resolution))))
if not self.ignore_sides:
data['lefts'].append(torch.from_numpy(np.array(
scale_and_crop_image(Image.open(seq_lefts[i]), scale=self.scale, crop=self.input_resolution))))
data['rights'].append(torch.from_numpy(np.array(
scale_and_crop_image(Image.open(seq_rights[i]), scale=self.scale, crop=self.input_resolution))))
if not self.ignore_rear:
data['rears'].append(torch.from_numpy(np.array(
scale_and_crop_image(Image.open(seq_rears[i]), scale=self.scale, crop=self.input_resolution))))
data['seg_fronts'].append(torch.from_numpy(self.converter[scale_and_crop_seg(Image.open(seq_seg_fronts[i]), scale=self.scale, crop=self.input_resolution)]))
if not self.ignore_sides:
data['seg_lefts'].append(torch.from_numpy(self.converter[scale_and_crop_seg(Image.open(seq_seg_lefts[i]), scale=self.scale, crop=self.input_resolution)]))
data['seg_rights'].append(torch.from_numpy(self.converter[scale_and_crop_seg(Image.open(seq_seg_rights[i]), scale=self.scale, crop=self.input_resolution)]))
if not self.ignore_rear:
data['seg_rears'].append(torch.from_numpy(self.converter[scale_and_crop_seg(Image.open(seq_seg_rears[i]), scale=self.scale, crop=self.input_resolution)]))
data['depth_fronts'].append(torch.from_numpy(get_depth(scale_and_crop_image(Image.open(seq_depth_fronts[i]), scale=self.scale, crop=self.input_resolution))))
if not self.ignore_sides:
data['depth_lefts'].append(torch.from_numpy(get_depth(scale_and_crop_image(Image.open(seq_depth_lefts[i]), scale=self.scale, crop=self.input_resolution))))
data['depth_rights'].append(torch.from_numpy(get_depth(scale_and_crop_image(Image.open(seq_depth_rights[i]), scale=self.scale, crop=self.input_resolution))))
if not self.ignore_rear:
data['depth_rears'].append(torch.from_numpy(get_depth(scale_and_crop_image(Image.open(seq_depth_rears[i]), scale=self.scale, crop=self.input_resolution))))
if np.isnan(seq_theta[i]):
seq_theta[i] = 0.
ego_x = seq_x[i]
ego_y = seq_y[i]
ego_theta = seq_theta[i]
waypoints = []
for i in range(self.seq_len + self.pred_len):
local_waypoint = transform_2d_points(np.zeros((1,3)),
np.pi/2-seq_theta[i], -seq_x[i], -seq_y[i], np.pi/2-ego_theta, -ego_x, -ego_y)
waypoints.append(tuple(local_waypoint[0,:2]))
data['waypoints'] = waypoints
R = np.array([
[np.cos(np.pi/2+ego_theta), -np.sin(np.pi/2+ego_theta)],
[np.sin(np.pi/2+ego_theta), np.cos(np.pi/2+ego_theta)]
])
local_command_point = np.array([self.x_command[index]-ego_x, self.y_command[index]-ego_y])
local_command_point = R.T.dot(local_command_point)
data['target_point'] = tuple(local_command_point)
data['steer'] = self.steer[index]
data['throttle'] = self.throttle[index]
data['brake'] = self.brake[index]
data['command'] = self.command[index]
data['velocity'] = self.velocity[index]
return data
def get_depth(data):
data = np.transpose(data, (1,2,0))
data = data.astype(np.float32)
normalized = np.dot(data, [65536.0, 256.0, 1.0])
normalized /= (256 * 256 * 256 - 1)
return normalized
|
MIT License
|
sap/ewm-cloud-robotics
|
python-modules/robcoewmordermanager/robcoewmordermanager/orderreservationcontroller.py
|
OrderReservationController.open_reservations
|
python
|
def open_reservations(self) -> DefaultDict[str, Dict]:
with self._open_reservations_lock:
return self._open_reservations
|
Return open_reservations defaultdict.
|
https://github.com/sap/ewm-cloud-robotics/blob/5a7eedc3d70743a882cf6a31497b3689a7991009/python-modules/robcoewmordermanager/robcoewmordermanager/orderreservationcontroller.py#L113-L116
|
import logging
from collections import defaultdict
from threading import RLock
from typing import DefaultDict, Dict, List
from cattr import structure
from robcoewmtypes.helper import get_sample_cr
from robcoewmtypes.auction import OrderReservationStatus
from robcoewmtypes.warehouseorder import WarehouseOrderIdent
from k8scrhandler.k8scrhandler import K8sCRHandler
_LOGGER = logging.getLogger(__name__)
class OrderReservationController(K8sCRHandler):
def __init__(self) -> None:
template_cr = get_sample_cr('orderreservation')
super().__init__(
'ewm.sap.com',
'v1alpha1',
'orderreservations',
'default',
template_cr,
{}
)
self._open_reservations: DefaultDict[str, Dict] = defaultdict(dict)
self._open_reservations_lock = RLock()
self.register_callback(
'GetOpenReservations', ['ADDED', 'MODIFIED', 'REPROCESS'],
self._get_open_reservations_cb)
self.register_callback(
'DeleteOpenReservations', ['DELETED'], self._delete_open_reservations_cb)
def get_reserved_warehouseorders(self) -> List[WarehouseOrderIdent]:
reserved_whos: List[WarehouseOrderIdent] = []
cr_resp = self.list_all_cr()
for custom_res in cr_resp:
if not custom_res.get('status'):
continue
status = structure(custom_res.get('status'), OrderReservationStatus)
if status.status not in OrderReservationStatus.IN_PROCESS_STATUS:
continue
for who in status.warehouseorders:
who_ident = WarehouseOrderIdent(lgnum=who.lgnum, who=who.who)
reserved_whos.append(who_ident)
return reserved_whos
def _delete_open_reservations_cb(self, name: str, custom_res: Dict) -> None:
with self._open_reservations_lock:
for res in self.open_reservations.values():
if name in res:
res.pop(name)
def _get_open_reservations_cb(self, name: str, custom_res: Dict) -> None:
with self._open_reservations_lock:
for res in self.open_reservations.values():
if name in res:
res.pop(name)
res_open = False
if not custom_res.get('status'):
res_open = True
else:
status = structure(custom_res.get('status'), OrderReservationStatus)
if status.status in OrderReservationStatus.IN_PROCESS_STATUS:
res_open = True
if res_open:
owner_refs = custom_res['metadata'].get('ownerReferences')
if owner_refs is not None:
for owner_ref in owner_refs:
if owner_ref['kind'] == 'Auctioneer':
self._open_reservations[owner_ref['name']][name] = True
@property
|
Apache License 2.0
|
jrief/django-websocket-redis
|
ws4redis/websocket.py
|
Header.encode_header
|
python
|
def encode_header(cls, fin, opcode, mask, length, flags):
first_byte = opcode
second_byte = 0
if six.PY2:
extra = ''
else:
extra = b''
if fin:
first_byte |= cls.FIN_MASK
if flags & cls.RSV0_MASK:
first_byte |= cls.RSV0_MASK
if flags & cls.RSV1_MASK:
first_byte |= cls.RSV1_MASK
if flags & cls.RSV2_MASK:
first_byte |= cls.RSV2_MASK
if length < 126:
second_byte += length
elif length <= 0xffff:
second_byte += 126
extra = struct.pack('!H', length)
elif length <= 0xffffffffffffffff:
second_byte += 127
extra = struct.pack('!Q', length)
else:
raise FrameTooLargeException
if mask:
second_byte |= cls.MASK_MASK
extra += mask
if six.PY3:
return bytes([first_byte, second_byte]) + extra
return chr(first_byte) + chr(second_byte) + extra
|
Encodes a WebSocket header.
:param fin: Whether this is the final frame for this opcode.
:param opcode: The opcode of the payload, see `OPCODE_*`
:param mask: Whether the payload is masked.
:param length: The length of the frame.
:param flags: The RSV* flags.
:return: A bytestring encoded header.
|
https://github.com/jrief/django-websocket-redis/blob/318dde37d0d8371c898c2341336f518192fd06db/ws4redis/websocket.py#L384-L425
|
import logging
import six
import struct
from socket import error as socket_error
from ws4redis.utf8validator import Utf8Validator
from ws4redis.exceptions import WebSocketError, FrameTooLargeException
logger = logging.getLogger('django.request')
if six.PY3:
xrange = range
class WebSocket(object):
__slots__ = ('_closed', 'stream', 'utf8validator', 'utf8validate_last')
OPCODE_CONTINUATION = 0x00
OPCODE_TEXT = 0x01
OPCODE_BINARY = 0x02
OPCODE_CLOSE = 0x08
OPCODE_PING = 0x09
OPCODE_PONG = 0x0a
def __init__(self, wsgi_input):
self._closed = False
self.stream = Stream(wsgi_input)
self.utf8validator = Utf8Validator()
self.utf8validate_last = None
def __del__(self):
try:
self.close()
except:
pass
def _decode_bytes(self, bytestring):
if not bytestring:
return u''
try:
return bytestring.decode('utf-8')
except UnicodeDecodeError:
self.close(1007)
raise
def _encode_bytes(self, text):
if isinstance(text, six.binary_type):
return text
if not isinstance(text, six.text_type):
text = six.text_type(text or '')
return text.encode('utf-8')
def _is_valid_close_code(self, code):
if code < 1000:
return False
if 1004 <= code <= 1006:
return False
if 1012 <= code <= 1016:
return False
if code == 1100:
return False
if 2000 <= code <= 2999:
return False
return True
def get_file_descriptor(self):
return self.stream.fileno
@property
def closed(self):
return self._closed
def handle_close(self, header, payload):
if not payload:
self.close(1000, None)
return
if len(payload) < 2:
raise WebSocketError('Invalid close frame: {0} {1}'.format(header, payload))
rv = payload[:2]
if six.PY2:
code = struct.unpack('!H', str(rv))[0]
else:
code = struct.unpack('!H', bytes(rv))[0]
payload = payload[2:]
if payload:
validator = Utf8Validator()
val = validator.validate(payload)
if not val[0]:
raise UnicodeError
if not self._is_valid_close_code(code):
raise WebSocketError('Invalid close code {0}'.format(code))
self.close(code, payload)
def handle_ping(self, header, payload):
self.send_frame(payload, self.OPCODE_PONG)
def handle_pong(self, header, payload):
pass
def read_frame(self):
header = Header.decode_header(self.stream)
if header.flags:
raise WebSocketError
if not header.length:
return header, ''
try:
payload = self.stream.read(header.length)
except socket_error:
payload = ''
except Exception:
logger.debug("{}: {}".format(type(e), six.text_type(e)))
payload = ''
if len(payload) != header.length:
raise WebSocketError('Unexpected EOF reading frame payload')
if header.mask:
payload = header.unmask_payload(payload)
return header, payload
def validate_utf8(self, payload):
self.utf8validate_last = self.utf8validator.validate(payload)
if not self.utf8validate_last[0]:
raise UnicodeError("Encountered invalid UTF-8 while processing "
"text message at payload octet index "
"{0:d}".format(self.utf8validate_last[3]))
def read_message(self):
opcode = None
message = None
while True:
header, payload = self.read_frame()
f_opcode = header.opcode
if f_opcode in (self.OPCODE_TEXT, self.OPCODE_BINARY):
if opcode:
raise WebSocketError("The opcode in non-fin frame is expected to be zero, got {0!r}".format(f_opcode))
self.utf8validator.reset()
self.utf8validate_last = (True, True, 0, 0)
opcode = f_opcode
elif f_opcode == self.OPCODE_CONTINUATION:
if not opcode:
raise WebSocketError("Unexpected frame with opcode=0")
elif f_opcode == self.OPCODE_PING:
self.handle_ping(header, payload)
continue
elif f_opcode == self.OPCODE_PONG:
self.handle_pong(header, payload)
continue
elif f_opcode == self.OPCODE_CLOSE:
self.handle_close(header, payload)
return
else:
raise WebSocketError("Unexpected opcode={0!r}".format(f_opcode))
if opcode == self.OPCODE_TEXT:
self.validate_utf8(payload)
if six.PY3:
payload = payload.decode()
if message is None:
message = six.text_type() if opcode == self.OPCODE_TEXT else six.binary_type()
message += payload
if header.fin:
break
if opcode == self.OPCODE_TEXT:
if six.PY2:
self.validate_utf8(message)
else:
self.validate_utf8(message.encode())
return message
else:
return bytearray(message)
def receive(self):
if self._closed:
raise WebSocketError("Connection is already closed")
try:
return self.read_message()
except UnicodeError as e:
logger.info('websocket.receive: UnicodeError {}'.format(e))
self.close(1007)
except WebSocketError as e:
logger.info('websocket.receive: WebSocketError {}'.format(e))
self.close(1002)
except Exception as e:
logger.info('websocket.receive: Unknown error {}'.format(e))
raise e
def flush(self):
pass
def send_frame(self, message, opcode):
if self._closed:
raise WebSocketError("Connection is already closed")
if opcode == self.OPCODE_TEXT:
message = self._encode_bytes(message)
elif opcode == self.OPCODE_BINARY:
message = six.binary_type(message)
header = Header.encode_header(True, opcode, '', len(message), 0)
try:
self.stream.write(header + message)
except socket_error:
raise WebSocketError("Socket is dead")
def send(self, message, binary=False):
if binary is None:
binary = not isinstance(message, six.string_types)
opcode = self.OPCODE_BINARY if binary else self.OPCODE_TEXT
try:
self.send_frame(message, opcode)
except WebSocketError:
raise WebSocketError("Socket is dead")
def close(self, code=1000, message=''):
try:
message = self._encode_bytes(message)
self.send_frame(
struct.pack('!H%ds' % len(message), code, message),
opcode=self.OPCODE_CLOSE)
except WebSocketError:
logger.debug("Failed to write closing frame -> closing socket")
finally:
logger.debug("Closed WebSocket")
self._closed = True
self.stream = None
class Stream(object):
__slots__ = ('read', 'write', 'fileno')
def __init__(self, wsgi_input):
if six.PY2:
self.read = wsgi_input._sock.recv
self.write = wsgi_input._sock.sendall
else:
self.read = wsgi_input.raw._sock.recv
self.write = wsgi_input.raw._sock.sendall
self.fileno = wsgi_input.fileno()
class Header(object):
__slots__ = ('fin', 'mask', 'opcode', 'flags', 'length')
FIN_MASK = 0x80
OPCODE_MASK = 0x0f
MASK_MASK = 0x80
LENGTH_MASK = 0x7f
RSV0_MASK = 0x40
RSV1_MASK = 0x20
RSV2_MASK = 0x10
HEADER_FLAG_MASK = RSV0_MASK | RSV1_MASK | RSV2_MASK
def __init__(self, fin=0, opcode=0, flags=0, length=0):
self.mask = ''
self.fin = fin
self.opcode = opcode
self.flags = flags
self.length = length
def mask_payload(self, payload):
payload = bytearray(payload)
mask = bytearray(self.mask)
for i in xrange(self.length):
payload[i] ^= mask[i % 4]
if six.PY3:
return bytes(payload)
return str(payload)
unmask_payload = mask_payload
def __repr__(self):
return ("<Header fin={0} opcode={1} length={2} flags={3} at "
"0x{4:x}>").format(self.fin, self.opcode, self.length,
self.flags, id(self))
@classmethod
def decode_header(cls, stream):
read = stream.read
data = read(2)
if len(data) != 2:
raise WebSocketError("Unexpected EOF while decoding header")
first_byte, second_byte = struct.unpack('!BB', data)
header = cls(
fin=first_byte & cls.FIN_MASK == cls.FIN_MASK,
opcode=first_byte & cls.OPCODE_MASK,
flags=first_byte & cls.HEADER_FLAG_MASK,
length=second_byte & cls.LENGTH_MASK)
has_mask = second_byte & cls.MASK_MASK == cls.MASK_MASK
if header.opcode > 0x07:
if not header.fin:
raise WebSocketError('Received fragmented control frame: {0!r}'.format(data))
if header.length > 125:
raise FrameTooLargeException('Control frame cannot be larger than 125 bytes: {0!r}'.format(data))
if header.length == 126:
data = read(2)
if len(data) != 2:
raise WebSocketError('Unexpected EOF while decoding header')
header.length = struct.unpack('!H', data)[0]
elif header.length == 127:
data = read(8)
if len(data) != 8:
raise WebSocketError('Unexpected EOF while decoding header')
header.length = struct.unpack('!Q', data)[0]
if has_mask:
mask = read(4)
if len(mask) != 4:
raise WebSocketError('Unexpected EOF while decoding header')
header.mask = mask
return header
@classmethod
|
MIT License
|
modoboa/modoboa
|
modoboa/admin/app_settings.py
|
AdminParametersForm.clean_dkim_keys_storage_dir
|
python
|
def clean_dkim_keys_storage_dir(self):
storage_dir = self.cleaned_data.get("dkim_keys_storage_dir", "")
if storage_dir:
if not os.path.isdir(storage_dir):
raise forms.ValidationError(
ugettext_lazy("Directory not found.")
)
code, output = exec_cmd("which openssl")
if code:
raise forms.ValidationError(
ugettext_lazy(
"openssl not found, please make sure it is installed.")
)
return storage_dir
|
Check that directory exists.
|
https://github.com/modoboa/modoboa/blob/ac93e1f9d7dfe434a428409b9a6478f97807f153/modoboa/admin/app_settings.py#L247-L261
|
import collections
import os
from django import forms
from django.conf import settings
from django.utils.encoding import force_text
from django.utils.translation import ugettext as _, ugettext_lazy
from django.forms.fields import GenericIPAddressField
from modoboa.lib.form_utils import SeparatorField, YesNoField
from modoboa.lib.sysutils import exec_cmd
from modoboa.parameters import forms as param_forms
from . import constants
class AdminParametersForm(param_forms.AdminParametersForm):
app = "admin"
dom_sep = SeparatorField(label=ugettext_lazy("Domains"))
enable_mx_checks = YesNoField(
label=ugettext_lazy("Enable MX checks"),
initial=True,
help_text=ugettext_lazy(
"Check that every domain has a valid MX record"
)
)
valid_mxs = forms.CharField(
label=ugettext_lazy("Valid MXs"),
initial="",
help_text=ugettext_lazy(
"A list of IP or network address every MX record should match."
" A warning will be sent if a record does not respect it."
),
widget=forms.Textarea,
required=False
)
domains_must_have_authorized_mx = YesNoField(
label=ugettext_lazy("New domains must use authorized MX(s)"),
initial=False,
help_text=ugettext_lazy(
"Prevent the creation of a new domain if its MX record does "
"not use one of the defined addresses."
)
)
enable_spf_checks = YesNoField(
label=ugettext_lazy("Enable SPF checks"),
initial=True,
help_text=ugettext_lazy(
"Check if every domain has a valid SPF record"
)
)
enable_dkim_checks = YesNoField(
label=ugettext_lazy("Enable DKIM checks"),
initial=True,
help_text=ugettext_lazy(
"Check if every domain with DKIM signin enabled has a valid DNS "
"record"
)
)
enable_dmarc_checks = YesNoField(
label=ugettext_lazy("Enable DMARC checks"),
initial=True,
help_text=ugettext_lazy(
"Check if every domain has a valid DMARC record"
)
)
enable_autoconfig_checks = YesNoField(
label=ugettext_lazy("Enable autoconfig checks"),
initial=True,
help_text=ugettext_lazy(
"Check if every domain has a valid records for autoconfiguration"
)
)
enable_dnsbl_checks = YesNoField(
label=ugettext_lazy("Enable DNSBL checks"),
initial=True,
help_text=ugettext_lazy(
"Check every domain against major DNSBL providers"
)
)
custom_dns_server = GenericIPAddressField(
label=ugettext_lazy("Custom DNS server"),
required=False,
help_text=ugettext_lazy(
"Use a custom DNS server instead of local server configuration"
)
)
dkim_keys_storage_dir = forms.CharField(
label=ugettext_lazy("DKIM keys storage directory"),
initial="",
help_text=ugettext_lazy(
"Absolute path of the directory where DKIM private keys will "
"be stored. Make sure this directory belongs to root user "
"and is not readable by the outside world."
),
required=False
)
dkim_default_key_length = forms.ChoiceField(
label=ugettext_lazy("Default DKIM key length"),
initial=2048,
choices=constants.DKIM_KEY_LENGTHS,
help_text=ugettext_lazy(
"Default length in bits for newly generated DKIM keys."
)
)
default_domain_quota = forms.IntegerField(
label=ugettext_lazy("Default domain quota"),
initial=0,
help_text=ugettext_lazy(
"Default quota (in MB) applied to freshly created domains with no "
"value specified. A value of 0 means no quota."
)
)
default_domain_message_limit = forms.IntegerField(
label=ugettext_lazy("Default domain sending limit"),
required=False,
help_text=ugettext_lazy(
"Number of messages freshly created domains will be "
"allowed to send per day. Leave empty for no limit."
)
)
mbsep = SeparatorField(label=ugettext_lazy("Mailboxes"))
handle_mailboxes = YesNoField(
label=ugettext_lazy("Handle mailboxes on filesystem"),
initial=False,
help_text=ugettext_lazy(
"Rename or remove mailboxes on the filesystem when they get"
" renamed or removed within Modoboa"
)
)
default_mailbox_quota = forms.IntegerField(
label=ugettext_lazy("Default mailbox quota"),
initial=0,
help_text=ugettext_lazy(
"Default mailbox quota (in MB) applied to freshly created "
"mailboxes with no value specified. A value of 0 means no quota."
)
)
default_mailbox_message_limit = forms.IntegerField(
label=ugettext_lazy("Default mailbox sending limit"),
required=False,
help_text=ugettext_lazy(
"Number of messages freshly created mailboxes will be "
"allowed to send per day. Leave empty for no limit."
)
)
auto_account_removal = YesNoField(
label=ugettext_lazy("Automatic account removal"),
initial=False,
help_text=ugettext_lazy(
"When a mailbox is removed, also remove the associated account")
)
auto_create_domain_and_mailbox = YesNoField(
label=ugettext_lazy("Automatic domain/mailbox creation"),
initial=True,
help_text=ugettext_lazy(
"Create a domain and a mailbox when an account is automatically "
"created."
)
)
create_alias_on_mbox_rename = YesNoField(
label=ugettext_lazy("Create an alias when a mailbox is renamed"),
initial=False,
help_text=ugettext_lazy(
"Create an alias using the old address when a mailbox is renamed."
)
)
visibility_rules = {
"valid_mxs": "enable_mx_checks=True",
"domains_must_have_authorized_mx": "enable_mx_checks=True"
}
def __init__(self, *args, **kwargs):
super(AdminParametersForm, self).__init__(*args, **kwargs)
self.field_widths = {
"default_domain_quota": 2,
"default_mailbox_quota": 2
}
hide_fields = False
dpath = None
code, output = exec_cmd("which dovecot")
if not code:
dpath = force_text(output).strip()
else:
known_paths = getattr(
settings, "DOVECOT_LOOKUP_PATH",
("/usr/sbin/dovecot", "/usr/local/sbin/dovecot")
)
for fpath in known_paths:
if os.path.isfile(fpath) and os.access(fpath, os.X_OK):
dpath = fpath
if dpath:
try:
code, version = exec_cmd("%s --version" % dpath)
except OSError:
hide_fields = True
else:
version = force_text(version)
if code or not version.strip().startswith("2"):
hide_fields = True
else:
hide_fields = True
if hide_fields:
del self.fields["handle_mailboxes"]
def clean_default_domain_quota(self):
if self.cleaned_data["default_domain_quota"] < 0:
raise forms.ValidationError(
ugettext_lazy("Must be a positive integer")
)
return self.cleaned_data["default_domain_quota"]
def clean_default_mailbox_quota(self):
if self.cleaned_data["default_mailbox_quota"] < 0:
raise forms.ValidationError(
ugettext_lazy("Must be a positive integer")
)
return self.cleaned_data["default_mailbox_quota"]
|
ISC License
|
openstack-archive/dragonflow
|
dragonflow/cli/utils.py
|
print_dict
|
python
|
def print_dict(dct, dict_property="Property", wrap=0):
pt = prettytable.PrettyTable([dict_property, 'Value'])
pt.align = 'l'
for k, v in dct.items():
if isinstance(v, dict):
v = six.text_type(keys_and_vals_to_strs(v))
if wrap > 0:
v = textwrap.fill(six.text_type(v), wrap)
if v and isinstance(v, six.string_types) and r'\n' in v:
lines = v.strip().split(r'\n')
col1 = k
for line in lines:
pt.add_row([col1, line])
col1 = ''
elif isinstance(v, list):
val = str([str(i) for i in v])
if val is None:
val = '-'
pt.add_row([k, val])
else:
if v is None:
v = '-'
pt.add_row([k, v])
if six.PY3:
print(encodeutils.safe_encode(pt.get_string()).decode())
else:
print(encodeutils.safe_encode(pt.get_string()))
|
Print a `dict` as a table of two columns.
:param dct: `dict` to print
:param dict_property: name of the first column
:param wrap: wrapping for the second column
|
https://github.com/openstack-archive/dragonflow/blob/4dc36ed6490e2ed53b47dece883cdbd78ea96033/dragonflow/cli/utils.py#L130-L166
|
from oslo_utils import encodeutils
import prettytable
import six
import textwrap
from dragonflow._i18n import _
from dragonflow.common import exceptions
def get_list_table_columns_and_formatters(fields, objs, exclude_fields=(),
filters=None):
if objs and isinstance(objs, list):
obj = objs[0]
else:
obj = None
fields = None
columns = []
formatters = {}
if fields:
non_existent_fields = []
exclude_fields = set(exclude_fields)
for field in fields:
if field not in obj:
non_existent_fields.append(field)
continue
if field in exclude_fields:
continue
field_title, formatter = make_field_formatter(field, filters)
columns.append(field_title)
formatters[field_title] = formatter
exclude_fields.add(field)
if non_existent_fields:
raise exceptions.CommandError(
non_existent_fields=non_existent_fields)
return columns, formatters
def keys_and_vals_to_strs(dictionary):
def to_str(k_or_v):
if isinstance(k_or_v, dict):
return keys_and_vals_to_strs(k_or_v)
elif isinstance(k_or_v, six.text_type):
return str(k_or_v)
else:
return k_or_v
return dict((to_str(k), to_str(v)) for k, v in dictionary.items())
def _format_field_name(attr):
parts = attr.rsplit(':', 1)
name = parts[-1].replace('_', ' ')
if name.isupper() or name.islower():
name = name.title()
parts[-1] = name
return ': '.join(parts)
def make_field_formatter(attr, filters=None):
filter_ = None
if filters:
filter_ = filters.get(attr)
def get_field(obj):
field = getattr(obj, attr, '')
if field and filter_:
field = filter_(field)
return field
name = _format_field_name(attr)
formatter = get_field
return name, formatter
|
Apache License 2.0
|
vida-nyu/reprozip
|
reprozip/reprozip/common.py
|
record_usage
|
python
|
def record_usage(**kwargs):
if _usage_report is not None:
_usage_report.note(kwargs)
|
Records some info in the current usage report.
|
https://github.com/vida-nyu/reprozip/blob/6bc445000c3d54875a2d96ac6ac89b47f7887bd0/reprozip/reprozip/common.py#L712-L716
|
from __future__ import division, print_function, unicode_literals
import atexit
import contextlib
import copy
from datetime import datetime
from distutils.version import LooseVersion
import functools
import gzip
import logging
import logging.handlers
import os
from rpaths import PosixPath, Path
import sys
import tarfile
import usagestats
import yaml
from .utils import iteritems, itervalues, unicode_, stderr, UniqueNames, escape, optional_return_type, isodatetime, hsize, join_root, copyfile
logger = logging.getLogger(__name__.split('.', 1)[0])
FILE_READ = 0x01
FILE_WRITE = 0x02
FILE_WDIR = 0x04
FILE_STAT = 0x08
FILE_LINK = 0x10
class File(object):
comment = None
def __init__(self, path, size=None):
self.path = path
self.size = size
def __eq__(self, other):
return (isinstance(other, File) and
self.path == other.path)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.path)
class Package(object):
def __init__(self, name, version, files=None, packfiles=True, size=None):
self.name = name
self.version = version
self.files = list(files) if files is not None else []
self.packfiles = packfiles
self.size = size
def __eq__(self, other):
return (isinstance(other, Package) and
self.name == other.name and
self.version == other.version)
def __ne__(self, other):
return not self.__eq__(other)
def add_file(self, file_):
self.files.append(file_)
def __unicode__(self):
return '%s (%s)' % (self.name, self.version)
__str__ = __unicode__
class RPZPack(object):
def __init__(self, pack):
self.pack = Path(pack)
self.tar = tarfile.open(str(self.pack), 'r:*')
f = self.tar.extractfile('METADATA/version')
version = f.read()
f.close()
if version.startswith(b'REPROZIP VERSION '):
try:
version = int(version[17:].rstrip())
except ValueError:
version = None
if version in (1, 2):
self.version = version
self.data_prefix = PosixPath(b'DATA')
else:
raise ValueError(
"Unknown format version %r (maybe you should upgrade "
"reprounzip? I only know versions 1 and 2" % version)
else:
raise ValueError("File doesn't appear to be a RPZ pack")
if self.version == 1:
self.data = self.tar
elif version == 2:
self.data = tarfile.open(
fileobj=self.tar.extractfile('DATA.tar.gz'),
mode='r:*')
else:
assert False
def remove_data_prefix(self, path):
if not isinstance(path, PosixPath):
path = PosixPath(path)
components = path.components[1:]
if not components:
return path.__class__('')
return path.__class__(*components)
def open_config(self):
return self.tar.extractfile('METADATA/config.yml')
def extract_config(self, target):
self._extract_file(self.tar.getmember('METADATA/config.yml'),
target)
def _extract_file(self, member, target):
member = copy.copy(member)
member.name = str(target.components[-1])
self.tar.extract(member,
path=str(Path.cwd() / target.parent))
target.chmod(0o644)
assert target.is_file()
def _extract_file_gz(self, member, target):
f_in = self.tar.extractfile(member)
f_in_gz = gzip.open(f_in)
f_out = target.open('wb')
try:
chunk = f_in_gz.read(4096)
while len(chunk) == 4096:
f_out.write(chunk)
chunk = f_in_gz.read(4096)
if chunk:
f_out.write(chunk)
finally:
f_out.close()
f_in_gz.close()
f_in.close()
@contextlib.contextmanager
def with_config(self):
fd, tmp = Path.tempfile(prefix='reprounzip_')
os.close(fd)
self.extract_config(tmp)
yield tmp
tmp.remove()
def extract_trace(self, target):
target = Path(target)
if self.version == 1:
member = self.tar.getmember('METADATA/trace.sqlite3')
self._extract_file(member, target)
elif self.version == 2:
try:
member = self.tar.getmember('METADATA/trace.sqlite3.gz')
except KeyError:
pass
else:
self._extract_file_gz(member, target)
return
member = self.tar.getmember('METADATA/trace.sqlite3')
self._extract_file(member, target)
else:
assert False
@contextlib.contextmanager
def with_trace(self):
fd, tmp = Path.tempfile(prefix='reprounzip_')
os.close(fd)
self.extract_trace(tmp)
yield tmp
tmp.remove()
def list_data(self):
return [copy.copy(m)
for m in self.data.getmembers()
if m.name.startswith('DATA/')]
def data_filenames(self):
return set(PosixPath(m.name[4:])
for m in self.data.getmembers()
if m.name.startswith('DATA/'))
def get_data(self, path):
path = PosixPath(path)
path = join_root(PosixPath(b'DATA'), path)
return copy.copy(self.data.getmember(path))
def extract_data(self, root, members):
self.data.extractall(str(root), members)
def copy_data_tar(self, target):
if self.version == 1:
self.pack.copyfile(target)
elif self.version == 2:
with target.open('wb') as fp:
data = self.tar.extractfile('DATA.tar.gz')
copyfile(data, fp)
data.close()
def close(self):
if self.data is not self.tar:
self.data.close()
self.tar.close()
self.data = self.tar = None
class InvalidConfig(ValueError):
def read_files(files, File=File):
if files is None:
return []
return [File(PosixPath(f)) for f in files]
def read_packages(packages, File=File, Package=Package):
if packages is None:
return []
new_pkgs = []
for pkg in packages:
pkg['files'] = read_files(pkg['files'], File)
new_pkgs.append(Package(**pkg))
return new_pkgs
Config = optional_return_type(['runs', 'packages', 'other_files'],
['inputs_outputs', 'additional_patterns',
'format_version'])
@functools.total_ordering
class InputOutputFile(object):
def __init__(self, path, read_runs, write_runs):
self.path = path
self.read_runs = read_runs
self.write_runs = write_runs
def __eq__(self, other):
return ((self.path, self.read_runs, self.write_runs) ==
(other.path, other.read_runs, other.write_runs))
def __lt__(self, other):
return self.path < other.path
def __repr__(self):
return "<InputOutputFile(path=%r, read_runs=%r, write_runs=%r)>" % (
self.path, self.read_runs, self.write_runs)
def load_iofiles(config, runs):
files_list = config.get('inputs_outputs') or []
if 'inputs_outputs' not in config:
for i, run in enumerate(runs):
for rkey, wkey in (('input_files', 'read_by_runs'),
('output_files', 'written_by_runs')):
for k, p in iteritems(run.pop(rkey, {})):
files_list.append({'name': k,
'path': p,
wkey: [i]})
files = {}
paths = {}
required_keys = set(['name', 'path'])
optional_keys = set(['read_by_runs', 'written_by_runs'])
uniquenames = UniqueNames()
for i, f in enumerate(files_list):
keys = set(f)
if (not keys.issubset(required_keys | optional_keys) or
not keys.issuperset(required_keys)):
raise InvalidConfig("File #%d has invalid keys")
name = f['name']
path = PosixPath(f['path'])
readers = sorted(f.get('read_by_runs', []))
writers = sorted(f.get('written_by_runs', []))
if (
not isinstance(readers, (tuple, list))
or not all(isinstance(e, int) for e in readers)
):
raise InvalidConfig("read_by_runs should be a list of integers")
if (
not isinstance(writers, (tuple, list))
or not all(isinstance(e, int) for e in writers)
):
raise InvalidConfig("written_by_runs should be a list of integers")
if name in files:
if files[name].path != path:
old_name, name = name, uniquenames(name)
logger.warning("File name appears multiple times: %s\n"
"Using name %s instead",
old_name, name)
else:
uniquenames.insert(name)
if path in paths:
if paths[path] == name:
logger.warning("File appears multiple times: %s", name)
else:
logger.warning("Two files have the same path (but different "
"names): %s, %s\nUsing name %s",
name, paths[path], paths[path])
name = paths[path]
files[name].read_runs.update(readers)
files[name].write_runs.update(writers)
else:
paths[path] = name
files[name] = InputOutputFile(path, readers, writers)
return files
def load_config(filename, canonical, File=File, Package=Package):
with filename.open(encoding='utf-8') as fp:
config = yaml.safe_load(fp)
ver = LooseVersion(config['version'])
keys_ = set(config)
if 'version' not in keys_:
raise InvalidConfig("Missing version")
elif not LooseVersion('0.2') <= ver < LooseVersion('0.9'):
pkgname = (__package__ or __name__).split('.', 1)[0]
raise InvalidConfig("Loading configuration file in unknown format %s; "
"this probably means that you should upgrade "
"%s" % (ver, pkgname))
unknown_keys = keys_ - set(['pack_id', 'version', 'runs',
'inputs_outputs',
'packages', 'other_files',
'additional_patterns',
'input_files', 'output_files'])
if unknown_keys:
logger.warning("Unrecognized sections in configuration: %s",
', '.join(unknown_keys))
runs = config.get('runs') or []
packages = read_packages(config.get('packages'), File, Package)
other_files = read_files(config.get('other_files'), File)
inputs_outputs = load_iofiles(config, runs)
for i, run in enumerate(runs):
run['input_files'] = dict((n, f.path)
for n, f in iteritems(inputs_outputs)
if i in f.read_runs)
run['output_files'] = dict((n, f.path)
for n, f in iteritems(inputs_outputs)
if i in f.write_runs)
for i, run in enumerate(runs):
if run.get('id') is None:
run['id'] = "run%d" % i
record_usage_package(runs, packages, other_files,
inputs_outputs,
pack_id=config.get('pack_id'))
kwargs = {'format_version': ver,
'inputs_outputs': inputs_outputs}
if canonical:
if 'additional_patterns' in config:
raise InvalidConfig("Canonical configuration file shouldn't have "
"additional_patterns key anymore")
else:
kwargs['additional_patterns'] = config.get('additional_patterns') or []
return Config(runs, packages, other_files,
**kwargs)
def write_file(fp, fi, indent=0):
fp.write("%s - \"%s\"%s\n" % (
" " * indent,
escape(unicode_(fi.path)),
' # %s' % fi.comment if fi.comment is not None else ''))
def write_package(fp, pkg, indent=0):
indent_str = " " * indent
fp.write("%s - name: \"%s\"\n" % (indent_str, escape(pkg.name)))
fp.write("%s version: \"%s\"\n" % (indent_str, escape(pkg.version)))
if pkg.size is not None:
fp.write("%s size: %d\n" % (indent_str, pkg.size))
fp.write("%s packfiles: %s\n" % (indent_str, 'true' if pkg.packfiles
else 'false'))
fp.write("%s files:\n"
"%s # Total files used: %s\n" % (
indent_str, indent_str,
hsize(sum(fi.size
for fi in pkg.files
if fi.size is not None))))
if pkg.size is not None:
fp.write("%s # Installed package size: %s\n" % (
indent_str, hsize(pkg.size)))
for fi in sorted(pkg.files, key=lambda fi_: fi_.path):
write_file(fp, fi, indent + 1)
def save_config(filename, runs, packages, other_files, reprozip_version,
inputs_outputs=None,
canonical=False, pack_id=None):
dump = lambda x: yaml.safe_dump(x, encoding='utf-8', allow_unicode=True)
with filename.open('w', encoding='utf-8', newline='\n') as fp:
fp.write("""\
# ReproZip configuration file
# This file was generated by reprozip {version} at {date}
{what}
# Run info{pack_id}
version: "{format!s}"
""".format(pack_id=(('\npack_id: "%s"' % pack_id) if pack_id is not None
else ''),
version=escape(reprozip_version),
format='0.8',
date=isodatetime(),
what=("# It was generated by the packer and you shouldn't need to "
"edit it" if canonical
else "# You might want to edit this file before running the "
"packer\n# See 'reprozip pack -h' for help")))
fp.write("runs:\n")
for i, run in enumerate(runs):
run = dict((k, v) for k, v in iteritems(run)
if k not in ('input_files', 'output_files'))
fp.write("# Run %d\n" % i)
fp.write(dump([run]).decode('utf-8'))
fp.write("\n")
fp.write("""\
# Input and output files
# Inputs are files that are only read by a run; reprounzip can replace these
# files on demand to run the experiment with custom data.
# Outputs are files that are generated by a run; reprounzip can extract these
# files from the experiment on demand, for the user to examine.
# The name field is the identifier the user will use to access these files.
inputs_outputs:""")
for n, f in iteritems(inputs_outputs):
fp.write("""\
- name: {name}
path: {path}
written_by_runs: {writers}
read_by_runs: {readers}""".format(name=n, path=unicode_(f.path),
readers=repr(f.read_runs),
writers=repr(f.write_runs)))
fp.write("""\
# Files to pack
# All the files below were used by the program; they will be included in the
# generated package
# These files come from packages; we can thus choose not to include them, as it
# will simply be possible to install that package on the destination system
# They are included anyway by default
packages:
""")
for pkg in sorted(packages, key=lambda p: p.name):
write_package(fp, pkg)
fp.write("""\
# These files do not appear to come with an installed package -- you probably
# want them packed
other_files:
""")
for f in sorted(other_files, key=lambda fi: fi.path):
write_file(fp, f)
if not canonical:
fp.write("""\
# If you want to include additional files in the pack, you can list additional
# patterns of files that will be included
additional_patterns:
# Example:
# - /etc/apache2/** # Everything under apache2/
# - /var/log/apache2/*.log # Log files directly under apache2/
# - /var/lib/lxc/*/rootfs/home/**/*.py # All Python files of all users in
# # that container
""")
class LoggingDateFormatter(logging.Formatter):
converter = datetime.fromtimestamp
def formatTime(self, record, datefmt=None):
ct = self.converter(record.created)
t = ct.strftime("%H:%M:%S")
s = "%s.%03d" % (t, record.msecs)
return s
def setup_logging(tag, verbosity):
levels = [logging.CRITICAL, logging.WARNING, logging.INFO, logging.DEBUG]
console_level = levels[min(verbosity, 3)]
file_level = logging.INFO
min_level = min(console_level, file_level)
fmt = "[%s] %%(asctime)s %%(levelname)s: %%(message)s" % tag
formatter = LoggingDateFormatter(fmt)
handler = logging.StreamHandler()
handler.setLevel(console_level)
handler.setFormatter(formatter)
rootlogger = logging.root
rootlogger.setLevel(min_level)
rootlogger.addHandler(handler)
if os.environ.get('REPROZIP_NO_LOGFILE', '').lower() in ('', 'false',
'0', 'off'):
dotrpz = Path('~/.reprozip').expand_user()
try:
if not dotrpz.is_dir():
dotrpz.mkdir()
filehandler = logging.handlers.RotatingFileHandler(
str(dotrpz / 'log'), mode='a',
delay=False, maxBytes=400000, backupCount=5)
except (IOError, OSError):
logger.warning("Couldn't create log file %s", dotrpz / 'log')
else:
filehandler.setFormatter(formatter)
filehandler.setLevel(file_level)
rootlogger.addHandler(filehandler)
filehandler.emit(logging.root.makeRecord(
__name__.split('.', 1)[0],
logging.INFO,
"(log start)", 0,
"Log opened %s %s",
(datetime.now().strftime("%Y-%m-%d"), sys.argv),
None))
logging.getLogger('urllib3').setLevel(logging.INFO)
_usage_report = None
def setup_usage_report(name, version):
global _usage_report
certificate_file = get_reprozip_ca_certificate()
_usage_report = usagestats.Stats(
'~/.reprozip/usage_stats',
usagestats.Prompt(enable='%s usage_report --enable' % name,
disable='%s usage_report --disable' % name),
os.environ.get('REPROZIP_USAGE_URL',
'https://stats.reprozip.org/'),
version='%s %s' % (name, version),
unique_user_id=True,
env_var='REPROZIP_USAGE_STATS',
ssl_verify=certificate_file.path)
try:
os.getcwd().encode('ascii')
except (UnicodeEncodeError, UnicodeDecodeError):
record_usage(cwd_ascii=False)
else:
record_usage(cwd_ascii=True)
def enable_usage_report(enable):
if enable:
_usage_report.enable_reporting()
stderr.write("Thank you, usage reports will be sent automatically "
"from now on.\n")
else:
_usage_report.disable_reporting()
stderr.write("Usage reports will not be collected nor sent.\n")
|
BSD 3-Clause New or Revised License
|
erigones/esdc-ce
|
api/vm/snapshot/utils.py
|
filter_snap_type
|
python
|
def filter_snap_type(query_filter, data):
stype = data.get('type', None)
if stype:
try:
stype = int(stype)
if stype not in dict(Snapshot.TYPE):
raise ValueError
query_filter['type'] = stype
except Exception:
raise InvalidInput('Invalid snapshot type')
return query_filter
|
Validate snapshot type and update dictionary used for queryset filtering
|
https://github.com/erigones/esdc-ce/blob/f83a62d0d430e3c8f9aac23d958583b0efce4312/api/vm/snapshot/utils.py#L87-L101
|
from api.exceptions import ObjectNotFound, InvalidInput, VmIsNotOperational
from vms.models import Vm, Snapshot
VM_STATUS_OPERATIONAL = frozenset([Vm.RUNNING, Vm.STOPPED, Vm.STOPPING])
def is_vm_operational(fun):
def wrap(view, vm, *args, **kwargs):
if vm.status not in VM_STATUS_OPERATIONAL:
raise VmIsNotOperational
return fun(view, vm, *args, **kwargs)
return wrap
def detail_dict(name, ser, data=None):
if data is None:
data = ser.detail_dict()
data['disk_id'] = ser.object.disk_id
data[name] = ser.object.name
return data
def get_disk_id(request, vm, data=None, key='disk_id', default=1, disk_id=None):
assert data is not None or disk_id is not None
if disk_id is None:
disk_id = data.get(key, default)
try:
disk_id = int(disk_id)
if not disk_id > 0:
raise ValueError
disk = vm.json_active_get_disks()[disk_id - 1]
zfs_filesystem = disk['zfs_filesystem']
real_disk_id = Snapshot.get_real_disk_id(disk)
except Exception:
raise InvalidInput('Invalid %s' % key)
return disk_id, real_disk_id, zfs_filesystem
def get_snapshots(request, vm, real_disk_id, data):
snapnames = data.get('snapnames', None)
if not (snapnames and isinstance(snapnames, (list, tuple))):
raise InvalidInput('Invalid snapnames')
snapnames = map(str, snapnames)
snaps = Snapshot.objects.select_related('vm').filter(vm=vm, disk_id=real_disk_id, name__in=snapnames)
if not snaps:
raise ObjectNotFound(model=Snapshot)
return snaps, snapnames
def filter_disk_id(vm, query_filter, data, default=None):
disk_id = data.get('disk_id', default)
if disk_id is not None:
try:
disk_id = int(disk_id)
if not disk_id > 0:
raise ValueError
if vm:
query_filter['disk_id'] = Snapshot.get_disk_id(vm, disk_id)
else:
query_filter['vm_disk_id'] = disk_id - 1
except Exception:
raise InvalidInput('Invalid disk_id')
return query_filter
|
Apache License 2.0
|
kozea/cairocffi
|
cairocffi/matrix.py
|
Matrix.copy
|
python
|
def copy(self):
return type(self)(*self.as_tuple())
|
Return a new copy of this matrix.
|
https://github.com/kozea/cairocffi/blob/2473d1bb82a52ca781edec595a95951509db2969/cairocffi/matrix.py#L71-L73
|
from . import _check_status, cairo, ffi
class Matrix(object):
def __init__(self, xx=1, yx=0, xy=0, yy=1, x0=0, y0=0):
self._pointer = ffi.new('cairo_matrix_t *')
cairo.cairo_matrix_init(self._pointer, xx, yx, xy, yy, x0, y0)
@classmethod
def init_rotate(cls, radians):
result = cls()
cairo.cairo_matrix_init_rotate(result._pointer, radians)
return result
def as_tuple(self):
ptr = self._pointer
return (ptr.xx, ptr.yx, ptr.xy, ptr.yy, ptr.x0, ptr.y0)
|
BSD 3-Clause New or Revised License
|
jonathanfeng/new_horizons
|
venv/lib/python3.7/site-packages/jinja2/filters.py
|
do_random
|
python
|
def do_random(context, seq):
try:
return random.choice(seq)
except IndexError:
return context.environment.undefined("No random item, sequence was empty.")
|
Return a random item from the sequence.
|
https://github.com/jonathanfeng/new_horizons/blob/0ec21c8f8423932611e1e0bf24548dcef912bc54/venv/lib/python3.7/site-packages/jinja2/filters.py#L534-L539
|
import math
import random
import re
import warnings
from collections import namedtuple
from itertools import chain
from itertools import groupby
from markupsafe import escape
from markupsafe import Markup
from markupsafe import soft_unicode
from ._compat import abc
from ._compat import imap
from ._compat import iteritems
from ._compat import string_types
from ._compat import text_type
from .exceptions import FilterArgumentError
from .runtime import Undefined
from .utils import htmlsafe_json_dumps
from .utils import pformat
from .utils import unicode_urlencode
from .utils import urlize
_word_re = re.compile(r"\w+", re.UNICODE)
_word_beginning_split_re = re.compile(r"([-\s\(\{\[\<]+)", re.UNICODE)
def contextfilter(f):
f.contextfilter = True
return f
def evalcontextfilter(f):
f.evalcontextfilter = True
return f
def environmentfilter(f):
f.environmentfilter = True
return f
def ignore_case(value):
return value.lower() if isinstance(value, string_types) else value
def make_attrgetter(environment, attribute, postprocess=None, default=None):
attribute = _prepare_attribute_parts(attribute)
def attrgetter(item):
for part in attribute:
item = environment.getitem(item, part)
if default and isinstance(item, Undefined):
item = default
if postprocess is not None:
item = postprocess(item)
return item
return attrgetter
def make_multi_attrgetter(environment, attribute, postprocess=None):
attribute_parts = (
attribute.split(",") if isinstance(attribute, string_types) else [attribute]
)
attribute = [
_prepare_attribute_parts(attribute_part) for attribute_part in attribute_parts
]
def attrgetter(item):
items = [None] * len(attribute)
for i, attribute_part in enumerate(attribute):
item_i = item
for part in attribute_part:
item_i = environment.getitem(item_i, part)
if postprocess is not None:
item_i = postprocess(item_i)
items[i] = item_i
return items
return attrgetter
def _prepare_attribute_parts(attr):
if attr is None:
return []
elif isinstance(attr, string_types):
return [int(x) if x.isdigit() else x for x in attr.split(".")]
else:
return [attr]
def do_forceescape(value):
if hasattr(value, "__html__"):
value = value.__html__()
return escape(text_type(value))
def do_urlencode(value):
if isinstance(value, string_types) or not isinstance(value, abc.Iterable):
return unicode_urlencode(value)
if isinstance(value, dict):
items = iteritems(value)
else:
items = iter(value)
return u"&".join(
"%s=%s" % (unicode_urlencode(k, for_qs=True), unicode_urlencode(v, for_qs=True))
for k, v in items
)
@evalcontextfilter
def do_replace(eval_ctx, s, old, new, count=None):
if count is None:
count = -1
if not eval_ctx.autoescape:
return text_type(s).replace(text_type(old), text_type(new), count)
if (
hasattr(old, "__html__")
or hasattr(new, "__html__")
and not hasattr(s, "__html__")
):
s = escape(s)
else:
s = soft_unicode(s)
return s.replace(soft_unicode(old), soft_unicode(new), count)
def do_upper(s):
return soft_unicode(s).upper()
def do_lower(s):
return soft_unicode(s).lower()
@evalcontextfilter
def do_xmlattr(_eval_ctx, d, autospace=True):
rv = u" ".join(
u'%s="%s"' % (escape(key), escape(value))
for key, value in iteritems(d)
if value is not None and not isinstance(value, Undefined)
)
if autospace and rv:
rv = u" " + rv
if _eval_ctx.autoescape:
rv = Markup(rv)
return rv
def do_capitalize(s):
return soft_unicode(s).capitalize()
def do_title(s):
return "".join(
[
item[0].upper() + item[1:].lower()
for item in _word_beginning_split_re.split(soft_unicode(s))
if item
]
)
def do_dictsort(value, case_sensitive=False, by="key", reverse=False):
if by == "key":
pos = 0
elif by == "value":
pos = 1
else:
raise FilterArgumentError('You can only sort by either "key" or "value"')
def sort_func(item):
value = item[pos]
if not case_sensitive:
value = ignore_case(value)
return value
return sorted(value.items(), key=sort_func, reverse=reverse)
@environmentfilter
def do_sort(environment, value, reverse=False, case_sensitive=False, attribute=None):
key_func = make_multi_attrgetter(
environment, attribute, postprocess=ignore_case if not case_sensitive else None
)
return sorted(value, key=key_func, reverse=reverse)
@environmentfilter
def do_unique(environment, value, case_sensitive=False, attribute=None):
getter = make_attrgetter(
environment, attribute, postprocess=ignore_case if not case_sensitive else None
)
seen = set()
for item in value:
key = getter(item)
if key not in seen:
seen.add(key)
yield item
def _min_or_max(environment, value, func, case_sensitive, attribute):
it = iter(value)
try:
first = next(it)
except StopIteration:
return environment.undefined("No aggregated item, sequence was empty.")
key_func = make_attrgetter(
environment, attribute, postprocess=ignore_case if not case_sensitive else None
)
return func(chain([first], it), key=key_func)
@environmentfilter
def do_min(environment, value, case_sensitive=False, attribute=None):
return _min_or_max(environment, value, min, case_sensitive, attribute)
@environmentfilter
def do_max(environment, value, case_sensitive=False, attribute=None):
return _min_or_max(environment, value, max, case_sensitive, attribute)
def do_default(value, default_value=u"", boolean=False):
if isinstance(value, Undefined) or (boolean and not value):
return default_value
return value
@evalcontextfilter
def do_join(eval_ctx, value, d=u"", attribute=None):
if attribute is not None:
value = imap(make_attrgetter(eval_ctx.environment, attribute), value)
if not eval_ctx.autoescape:
return text_type(d).join(imap(text_type, value))
if not hasattr(d, "__html__"):
value = list(value)
do_escape = False
for idx, item in enumerate(value):
if hasattr(item, "__html__"):
do_escape = True
else:
value[idx] = text_type(item)
if do_escape:
d = escape(d)
else:
d = text_type(d)
return d.join(value)
return soft_unicode(d).join(imap(soft_unicode, value))
def do_center(value, width=80):
return text_type(value).center(width)
@environmentfilter
def do_first(environment, seq):
try:
return next(iter(seq))
except StopIteration:
return environment.undefined("No first item, sequence was empty.")
@environmentfilter
def do_last(environment, seq):
try:
return next(iter(reversed(seq)))
except StopIteration:
return environment.undefined("No last item, sequence was empty.")
@contextfilter
|
MIT License
|
linkedin/oncall
|
src/oncall/api/v0/team_iris_escalate.py
|
on_post
|
python
|
def on_post(req, resp, team):
data = load_json_body(req)
plan = data.get('plan')
dynamic = False
if plan == URGENT:
plan_settings = iris.settings['urgent_plan']
dynamic = True
elif plan == MEDIUM:
plan_settings = iris.settings['medium_plan']
dynamic = True
elif plan == CUSTOM or plan is None:
connection = db.connect()
cursor = connection.cursor()
cursor.execute('SELECT iris_plan FROM team WHERE name = %s', team)
if cursor.rowcount == 0:
cursor.close()
connection.close()
raise HTTPBadRequest('Iris escalation failed', 'No escalation plan specified '
'and team has no custom escalation plan defined')
plan_name = cursor.fetchone()[0]
cursor.close()
connection.close()
else:
raise HTTPBadRequest('Iris escalation failed', 'Invalid escalation plan')
requester = req.context.get('user')
if not requester:
requester = req.context['app']
data['requester'] = requester
if 'description' not in data or data['description'] == '':
raise HTTPBadRequest('Iris escalation failed', 'Escalation cannot have an empty description')
try:
if dynamic:
plan_name = plan_settings['name']
targets = plan_settings['dynamic_targets']
for t in targets:
if 'target' not in t:
t['target'] = team
re = iris.client.post(iris.client.url + 'incidents',
json={'plan': plan_name, 'context': data, 'dynamic_targets': targets})
re.raise_for_status()
incident_id = re.json()
else:
incident_id = iris.client.incident(plan_name, context=data)
except (ValueError, ConnectionError, HTTPError) as e:
raise HTTPBadRequest('Iris escalation failed', 'Iris client error: %s' % e)
resp.body = str(incident_id)
|
Escalate to a team using Iris. Configured in the 'iris_plan_integration' section of
the configuration file. Escalation plan is specified via keyword, currently: 'urgent',
'medium', or 'custom'. These keywords correspond to the plan specified in the
iris_plan_integration urgent_plan key, the iris integration medium_plan key, and the team's
iris plan defined in the DB, respectively. If no plan is specified, the team's custom plan will be
used. If iris plan integration is not activated, this endpoint will be disabled.
**Example request:**
.. sourcecode:: http
POST /v0/events HTTP/1.1
Content-Type: application/json
{
"description": "Something bad happened!",
"plan": "urgent"
}
:statuscode 200: Incident created
:statuscode 400: Escalation failed, missing description/No escalation plan specified
for team/Iris client error.
|
https://github.com/linkedin/oncall/blob/36bdf087e1994c7733e11f290d23392003038965/src/oncall/api/v0/team_iris_escalate.py#L13-L87
|
from ... import db, iris
from ...utils import load_json_body
from ...auth import login_required
from ...constants import URGENT, MEDIUM, CUSTOM
from falcon import HTTPBadRequest
from requests import ConnectionError, HTTPError
@login_required
|
BSD 2-Clause Simplified License
|
sdispater/orator
|
orator/query/builder.py
|
QueryBuilder.where
|
python
|
def where(self, column, operator=Null(), value=None, boolean="and"):
if isinstance(column, dict):
nested = self.new_query()
for key, value in column.items():
nested.where(key, "=", value)
return self.where_nested(nested, boolean)
if isinstance(column, QueryBuilder):
return self.where_nested(column, boolean)
if isinstance(column, list):
nested = self.new_query()
for condition in column:
if isinstance(condition, list) and len(condition) == 3:
nested.where(condition[0], condition[1], condition[2])
else:
raise ArgumentError("Invalid conditions in where() clause")
return self.where_nested(nested, boolean)
if value is None:
if not isinstance(operator, Null):
value = operator
operator = "="
else:
raise ArgumentError("Value must be provided")
if operator not in self._operators:
value = operator
operator = "="
if isinstance(value, QueryBuilder):
return self._where_sub(column, operator, value, boolean)
if value is None:
return self.where_null(column, boolean, operator != "=")
type = "basic"
self.wheres.append(
{
"type": type,
"column": column,
"operator": operator,
"value": value,
"boolean": boolean,
}
)
if not isinstance(value, QueryExpression):
self.add_binding(value, "where")
return self
|
Add a where clause to the query
:param column: The column of the where clause, can also be a QueryBuilder instance for sub where
:type column: str or QueryBuilder
:param operator: The operator of the where clause
:type operator: str
:param value: The value of the where clause
:type value: mixed
:param boolean: The boolean of the where clause
:type boolean: str
:return: The current QueryBuilder instance
:rtype: QueryBuilder
|
https://github.com/sdispater/orator/blob/0666e522be914db285b6936e3c36801fc1a9c2e7/orator/query/builder.py#L346-L419
|
import re
import copy
import datetime
from itertools import chain
from collections import OrderedDict
from .expression import QueryExpression
from .join_clause import JoinClause
from ..pagination import Paginator, LengthAwarePaginator
from ..utils import basestring, Null
from ..exceptions import ArgumentError
from ..support import Collection
class QueryBuilder(object):
_operators = [
"=",
"<",
">",
"<=",
">=",
"<>",
"!=",
"like",
"like binary",
"not like",
"between",
"ilike",
"&",
"|",
"^",
"<<",
">>",
"rlike",
"regexp",
"not regexp",
"~",
"~*",
"!~",
"!~*",
"similar to",
"not similar to",
]
def __init__(self, connection, grammar, processor):
self._grammar = grammar
self._processor = processor
self._connection = connection
self._bindings = OrderedDict()
for type in ["select", "join", "where", "having", "order"]:
self._bindings[type] = []
self.aggregate_ = None
self.columns = []
self.distinct_ = False
self.from__ = ""
self.joins = []
self.wheres = []
self.groups = []
self.havings = []
self.orders = []
self.limit_ = None
self.offset_ = None
self.unions = []
self.union_limit = None
self.union_offset = None
self.union_orders = []
self.lock_ = None
self._backups = {}
self._use_write_connection = False
def select(self, *columns):
if not columns:
columns = ["*"]
self.columns = list(columns)
return self
def select_raw(self, expression, bindings=None):
self.add_select(QueryExpression(expression))
if bindings:
self.add_binding(bindings, "select")
return self
def select_sub(self, query, as_):
if isinstance(query, QueryBuilder):
bindings = query.get_bindings()
query = query.to_sql()
elif isinstance(query, basestring):
bindings = []
else:
raise ArgumentError("Invalid subselect")
return self.select_raw(
"(%s) AS %s" % (query, self._grammar.wrap(as_)), bindings
)
def add_select(self, *column):
if not column:
column = []
self.columns += list(column)
return self
def distinct(self):
self.distinct_ = True
return self
def from_(self, table):
self.from__ = table
return self
def join(self, table, one=None, operator=None, two=None, type="inner", where=False):
if isinstance(table, JoinClause):
self.joins.append(table)
else:
if one is None:
raise ArgumentError('Missing "one" argument')
join = JoinClause(table, type)
self.joins.append(join.on(one, operator, two, "and", where))
return self
def join_where(self, table, one, operator, two, type="inner"):
return self.join(table, one, operator, two, type, True)
def left_join(self, table, one=None, operator=None, two=None):
if isinstance(table, JoinClause):
table.type = "left"
return self.join(table, one, operator, two, "left")
def left_join_where(self, table, one, operator, two):
return self.join_where(table, one, operator, two, "left")
def right_join(self, table, one=None, operator=None, two=None):
if isinstance(table, JoinClause):
table.type = "right"
return self.join(table, one, operator, two, "right")
def right_join_where(self, table, one, operator, two):
return self.join_where(table, one, operator, two, "right")
|
MIT License
|
botfront/rasa-for-botfront
|
rasa/core/policies/policy.py
|
Policy.featurizer
|
python
|
def featurizer(self):
return self.__featurizer
|
Returns the policy's featurizer.
|
https://github.com/botfront/rasa-for-botfront/blob/6e0e48d0059e197b5f686df1e27935769c3641b7/rasa/core/policies/policy.py#L125-L127
|
import copy
import json
import logging
from enum import Enum
from pathlib import Path
from typing import (
Any,
List,
Optional,
Text,
Dict,
Callable,
Type,
Union,
Tuple,
TYPE_CHECKING,
)
import numpy as np
from rasa.core.exceptions import UnsupportedDialogueModelError
from rasa.shared.core.events import Event
import rasa.shared.utils.common
import rasa.utils.common
import rasa.shared.utils.io
from rasa.shared.core.domain import Domain
from rasa.core.featurizers.single_state_featurizer import SingleStateFeaturizer
from rasa.core.featurizers.tracker_featurizers import (
TrackerFeaturizer,
MaxHistoryTrackerFeaturizer,
FEATURIZER_FILE,
)
from rasa.shared.nlu.interpreter import NaturalLanguageInterpreter
from rasa.shared.core.trackers import DialogueStateTracker
from rasa.shared.core.generator import TrackerWithCachedStates
from rasa.core.constants import DEFAULT_POLICY_PRIORITY
from rasa.shared.core.constants import USER, SLOTS, PREVIOUS_ACTION, ACTIVE_LOOP
from rasa.shared.nlu.constants import ENTITIES, INTENT, TEXT, ACTION_TEXT, ACTION_NAME
from rasa.utils.tensorflow.constants import EPOCHS
if TYPE_CHECKING:
from rasa.shared.nlu.training_data.features import Features
logger = logging.getLogger(__name__)
class SupportedData(Enum):
ML_DATA = 1
RULE_DATA = 2
ML_AND_RULE_DATA = 3
@staticmethod
def trackers_for_policy(
policy: Union["Policy", Type["Policy"]],
trackers: Union[List[DialogueStateTracker], List[TrackerWithCachedStates]],
) -> Union[List[DialogueStateTracker], List[TrackerWithCachedStates]]:
supported_data = policy.supported_data()
if supported_data == SupportedData.RULE_DATA:
return [tracker for tracker in trackers if tracker.is_rule_tracker]
if supported_data == SupportedData.ML_DATA:
return [tracker for tracker in trackers if not tracker.is_rule_tracker]
return trackers
class Policy:
@staticmethod
def supported_data() -> SupportedData:
return SupportedData.ML_DATA
@staticmethod
def _standard_featurizer() -> MaxHistoryTrackerFeaturizer:
return MaxHistoryTrackerFeaturizer(SingleStateFeaturizer())
@classmethod
def _create_featurizer(
cls, featurizer: Optional[TrackerFeaturizer] = None
) -> TrackerFeaturizer:
if featurizer:
return copy.deepcopy(featurizer)
else:
return cls._standard_featurizer()
def __init__(
self,
featurizer: Optional[TrackerFeaturizer] = None,
priority: int = DEFAULT_POLICY_PRIORITY,
should_finetune: bool = False,
**kwargs: Any,
) -> None:
self.__featurizer = self._create_featurizer(featurizer)
self.priority = priority
self.finetune_mode = should_finetune
@property
|
Apache License 2.0
|
qiboteam/qibo
|
src/qibo/hamiltonians.py
|
XXZ
|
python
|
def XXZ(nqubits, delta=0.5, dense=True):
if dense:
condition = lambda i, j: i in {j % nqubits, (j+1) % nqubits}
hx = _build_spin_model(nqubits, matrices.X, condition)
hy = _build_spin_model(nqubits, matrices.Y, condition)
hz = _build_spin_model(nqubits, matrices.Z, condition)
matrix = hx + hy + delta * hz
return Hamiltonian(nqubits, matrix)
hx = K.np.kron(matrices.X, matrices.X)
hy = K.np.kron(matrices.Y, matrices.Y)
hz = K.np.kron(matrices.Z, matrices.Z)
matrix = hx + hy + delta * hz
terms = [HamiltonianTerm(matrix, i, i + 1) for i in range(nqubits - 1)]
terms.append(HamiltonianTerm(matrix, nqubits - 1, 0))
ham = SymbolicHamiltonian()
ham.terms = terms
return ham
|
Heisenberg XXZ model with periodic boundary conditions.
.. math::
H = \\sum _{i=0}^N \\left ( X_iX_{i + 1} + Y_iY_{i + 1} + \\delta Z_iZ_{i + 1} \\right ).
Args:
nqubits (int): number of quantum bits.
delta (float): coefficient for the Z component (default 0.5).
dense (bool): If ``True`` it creates the Hamiltonian as a
:class:`qibo.core.hamiltonians.Hamiltonian`, otherwise it creates
a :class:`qibo.core.hamiltonians.SymbolicHamiltonian`.
Example:
.. testcode::
from qibo.hamiltonians import XXZ
h = XXZ(3) # initialized XXZ model with 3 qubits
|
https://github.com/qiboteam/qibo/blob/d8bd2d3de0d8eb12a428a9125302e318480e982a/src/qibo/hamiltonians.py#L31-L66
|
from qibo import matrices, K
from qibo.config import raise_error
from qibo.core.hamiltonians import Hamiltonian, SymbolicHamiltonian, TrotterHamiltonian
from qibo.core.terms import HamiltonianTerm
def multikron(matrix_list):
h = 1
for m in matrix_list:
h = K.np.kron(h, m)
return h
def _build_spin_model(nqubits, matrix, condition):
h = sum(multikron(
(matrix if condition(i, j) else matrices.I for j in range(nqubits)))
for i in range(nqubits))
return h
|
Apache License 2.0
|
red-hat-storage/ocs-ci
|
ocs_ci/ocs/node.py
|
add_new_node_and_label_it
|
python
|
def add_new_node_and_label_it(machineset_name, num_nodes=1, mark_for_ocs_label=True):
initial_nodes = get_worker_nodes()
log.info(f"Current available worker nodes are {initial_nodes}")
machineset_replica_count = machine.get_replica_count(machineset_name)
log.info(f"{machineset_name} has replica count: {machineset_replica_count}")
log.info(f"Increasing the replica count by {num_nodes}")
machine.add_node(machineset_name, count=machineset_replica_count + num_nodes)
log.info(
f"{machineset_name} now has replica "
f"count: {machineset_replica_count + num_nodes}"
)
log.info("Waiting for the new node to be in ready state")
machine.wait_for_new_node_to_be_ready(machineset_name)
nodes_after_new_spun_node = get_worker_nodes()
new_spun_nodes = list(set(nodes_after_new_spun_node) - set(initial_nodes))
log.info(f"New spun nodes: {new_spun_nodes}")
if mark_for_ocs_label:
node_obj = ocp.OCP(kind="node")
for new_spun_node in new_spun_nodes:
if is_node_labeled(new_spun_node):
logging.info(
f"node {new_spun_node} is already labeled with the OCS storage label"
)
else:
node_obj.add_label(
resource_name=new_spun_node, label=constants.OPERATOR_NODE_LABEL
)
logging.info(
f"Successfully labeled {new_spun_node} with OCS storage label"
)
return new_spun_nodes
|
Add a new node for ipi and label it
Args:
machineset_name (str): Name of the machine set
num_nodes (int): number of nodes to add
mark_for_ocs_label (bool): True if label the new node
eg: add_new_node_and_label_it("new-tdesala-zlqzn-worker-us-east-2a")
Returns:
list: new spun node names
|
https://github.com/red-hat-storage/ocs-ci/blob/81bc3dd3c2bccbf875ffa8fa5fa2eb0ac9d52b7e/ocs_ci/ocs/node.py#L315-L370
|
import copy
import logging
import re
import time
from prettytable import PrettyTable
from collections import defaultdict
from operator import itemgetter
from subprocess import TimeoutExpired
from semantic_version import Version
from ocs_ci.ocs.machine import get_machine_objs
from ocs_ci.framework import config
from ocs_ci.ocs.exceptions import (
TimeoutExpiredError,
NotAllNodesCreated,
CommandFailed,
ResourceNotFoundError,
)
from ocs_ci.ocs.ocp import OCP
from ocs_ci.ocs.resources.ocs import OCS
from ocs_ci.ocs import constants, exceptions, ocp, defaults
from ocs_ci.utility.utils import TimeoutSampler, convert_device_size
from ocs_ci.ocs import machine
from ocs_ci.ocs.resources import pod
from ocs_ci.utility.utils import set_selinux_permissions
from ocs_ci.ocs.resources.pv import (
get_pv_objs_in_sc,
verify_new_pvs_available_in_sc,
delete_released_pvs_in_sc,
get_pv_size,
get_node_pv_objs,
)
log = logging.getLogger(__name__)
def get_node_objs(node_names=None):
nodes_obj = OCP(kind="node")
node_dicts = nodes_obj.get()["items"]
if not node_names:
nodes = [OCS(**node_obj) for node_obj in node_dicts]
else:
nodes = [
OCS(**node_obj)
for node_obj in node_dicts
if (node_obj.get("metadata").get("name") in node_names)
]
assert nodes, "Failed to get the nodes OCS objects"
return nodes
def get_nodes(node_type=constants.WORKER_MACHINE, num_of_nodes=None):
if (
config.ENV_DATA["platform"].lower() == constants.OPENSHIFT_DEDICATED_PLATFORM
and node_type == constants.WORKER_MACHINE
):
typed_nodes = [
node
for node in get_node_objs()
if node_type
in node.ocp.get_resource(resource_name=node.name, column="ROLES")
and constants.INFRA_MACHINE
not in node.ocp.get_resource(resource_name=node.name, column="ROLES")
]
else:
typed_nodes = [
node
for node in get_node_objs()
if node_type
in node.ocp.get_resource(resource_name=node.name, column="ROLES")
]
if num_of_nodes:
typed_nodes = typed_nodes[:num_of_nodes]
return typed_nodes
def get_all_nodes():
ocp_node_obj = ocp.OCP(kind=constants.NODE)
node_items = ocp_node_obj.get().get("items")
return [node["metadata"]["name"] for node in node_items]
def wait_for_nodes_status(node_names=None, status=constants.NODE_READY, timeout=180):
try:
if not node_names:
for sample in TimeoutSampler(60, 3, get_node_objs):
if sample:
node_names = [node.name for node in sample]
break
nodes_not_in_state = copy.deepcopy(node_names)
log.info(f"Waiting for nodes {node_names} to reach status {status}")
for sample in TimeoutSampler(timeout, 3, get_node_objs, nodes_not_in_state):
for node in sample:
if node.ocp.get_resource_status(node.name) == status:
log.info(f"Node {node.name} reached status {status}")
nodes_not_in_state.remove(node.name)
if not nodes_not_in_state:
break
log.info(f"The following nodes reached status {status}: {node_names}")
except TimeoutExpiredError:
log.error(
f"The following nodes haven't reached status {status}: "
f"{nodes_not_in_state}"
)
raise exceptions.ResourceWrongStatusException(
node_names, [n.describe() for n in get_node_objs(node_names)]
)
def unschedule_nodes(node_names):
ocp = OCP(kind="node")
node_names_str = " ".join(node_names)
log.info(f"Unscheduling nodes {node_names_str}")
ocp.exec_oc_cmd(f"adm cordon {node_names_str}")
wait_for_nodes_status(node_names, status=constants.NODE_READY_SCHEDULING_DISABLED)
def schedule_nodes(node_names):
ocp = OCP(kind="node")
node_names_str = " ".join(node_names)
ocp.exec_oc_cmd(f"adm uncordon {node_names_str}")
log.info(f"Scheduling nodes {node_names_str}")
wait_for_nodes_status(node_names)
def drain_nodes(node_names):
ocp = OCP(kind="node")
node_names_str = " ".join(node_names)
log.info(f"Draining nodes {node_names_str}")
try:
ocp.exec_oc_cmd(
f"adm drain {node_names_str} --force=true --ignore-daemonsets "
f"--delete-local-data",
timeout=1800,
)
except TimeoutExpired:
ct_pod = pod.get_ceph_tools_pod()
ceph_status = ct_pod.exec_cmd_on_pod("ceph status", out_yaml_format=False)
log.error(f"Drain command failed to complete. Ceph status: {ceph_status}")
raise
def get_typed_worker_nodes(os_id="rhcos"):
worker_nodes = get_nodes(node_type="worker")
return [
node
for node in worker_nodes
if node.get().get("metadata").get("labels").get("node.openshift.io/os_id")
== os_id
]
def remove_nodes(nodes):
ocp = OCP(kind="node")
node_names = [node.get().get("metadata").get("name") for node in nodes]
node_names_str = " ".join(node_names)
unschedule_nodes(node_names)
drain_nodes(node_names)
log.info(f"Deleting nodes {node_names_str}")
ocp.exec_oc_cmd(f"delete nodes {node_names_str}")
def get_node_ips(node_type="worker"):
ocp = OCP(kind=constants.NODE)
if node_type == "worker":
nodes = ocp.get(selector=constants.WORKER_LABEL).get("items")
if node_type == "master:":
nodes = ocp.get(selector=constants.MASTER_LABEL).get("items")
if config.ENV_DATA["platform"].lower() == constants.AWS_PLATFORM:
raise NotImplementedError
elif config.ENV_DATA["platform"].lower() == constants.VSPHERE_PLATFORM:
return [
each["address"]
for node in nodes
for each in node["status"]["addresses"]
if each["type"] == "ExternalIP"
]
else:
raise NotImplementedError
def get_node_ip_addresses(ipkind):
ocp = OCP(kind=constants.NODE)
masternodes = ocp.get(selector=constants.MASTER_LABEL).get("items")
workernodes = ocp.get(selector=constants.WORKER_LABEL).get("items")
nodes = masternodes + workernodes
return {
node["metadata"]["name"]: each["address"]
for node in nodes
for each in node["status"]["addresses"]
if each["type"] == ipkind
}
|
MIT License
|
zwicker-group/py-pde
|
pde/trackers/trackers.py
|
DataTracker.handle
|
python
|
def handle(self, field: FieldBase, t: float) -> None:
self.times.append(t)
if self._num_args == 1:
self.data.append(self._callback(field))
else:
self.data.append(self._callback(field, t))
|
handle data supplied to this tracker
Args:
field (:class:`~pde.fields.FieldBase`):
The current state of the simulation
t (float):
The associated time
|
https://github.com/zwicker-group/py-pde/blob/0549f7c74a52705e1d29e62d27b5578251c2054c/pde/trackers/trackers.py#L557-L570
|
import inspect
import os.path
import sys
import time
from datetime import timedelta
from pathlib import Path
from typing import List
from typing import IO, TYPE_CHECKING, Any, Callable, Dict, Optional, Union
import numpy as np
from ..fields import FieldCollection
from ..fields.base import FieldBase
from ..tools.docstrings import fill_in_docstring
from ..tools.misc import module_available
from ..tools.output import get_progress_bar_class
from ..tools.parse_duration import parse_duration
from ..tools.typing import Real
from .base import FinishedSimulation, InfoDict, TrackerBase
from .intervals import IntervalData, RealtimeIntervals
if TYPE_CHECKING:
import pandas
from ..visualization.movies import Movie
class CallbackTracker(TrackerBase):
@fill_in_docstring
def __init__(self, func: Callable, interval: IntervalData = 1):
super().__init__(interval=interval)
self._callback = func
self._num_args = len(inspect.signature(func).parameters)
if not 0 < self._num_args < 3:
raise ValueError(
"`func` must be a function accepting one or two arguments, not "
f"{self._num_args}"
)
def handle(self, field: FieldBase, t: float) -> None:
if self._num_args == 1:
self._callback(field)
else:
self._callback(field, t)
class ProgressTracker(TrackerBase):
name = "progress"
@fill_in_docstring
def __init__(
self, interval: IntervalData = None, ndigits: int = 5, leave: bool = True
):
if interval is None:
interval = RealtimeIntervals(duration=1)
super().__init__(interval=interval)
self.ndigits = ndigits
self.leave = leave
def initialize(self, field: FieldBase, info: InfoDict = None) -> float:
result = super().initialize(field, info)
controller_info = {} if info is None else info.get("controller", {})
pb_cls = get_progress_bar_class()
self.progress_bar = pb_cls(
total=controller_info.get("t_end"),
initial=controller_info.get("t_start", 0),
leave=self.leave,
)
self.progress_bar.set_description("Initializing")
return result
def handle(self, field: FieldBase, t: float) -> None:
if self.progress_bar.total:
t_new = min(t, self.progress_bar.total)
else:
t_new = t
self.progress_bar.n = round(t_new, self.ndigits)
self.progress_bar.set_description("")
def finalize(self, info: InfoDict = None) -> None:
super().finalize(info)
self.progress_bar.set_description("")
controller_info = {} if info is None else info.get("controller", {})
t_final = controller_info.get("t_final", -np.inf)
t_end = controller_info.get("t_end", -np.inf)
if t_final >= t_end and self.progress_bar.total:
self.progress_bar.n = self.progress_bar.total
self.progress_bar.refresh()
if (
controller_info.get("successful", False)
and self.leave
and hasattr(self.progress_bar, "sp")
):
try:
self.progress_bar.sp(bar_style="success")
except TypeError:
self.progress_bar.close()
else:
self.progress_bar.disable = True
else:
self.progress_bar.close()
def __del__(self):
if hasattr(self, "progress_bar") and not self.progress_bar.disable:
self.progress_bar.close()
class PrintTracker(TrackerBase):
name = "print"
@fill_in_docstring
def __init__(self, interval: IntervalData = 1, stream: IO[str] = sys.stdout):
super().__init__(interval=interval)
self.stream = stream
def handle(self, field: FieldBase, t: float) -> None:
data = f"c={field.data.mean():.3g}±{field.data.std():.3g}"
self.stream.write(f"t={t:g}, {data}\n")
self.stream.flush()
class PlotTracker(TrackerBase):
@fill_in_docstring
def __init__(
self,
interval: IntervalData = 1,
*,
title: Union[str, Callable] = "Time: {time:g}",
output_file: Optional[str] = None,
movie: Union[str, Path, "Movie"] = None,
show: bool = None,
max_fps: float = np.inf,
plot_args: Dict[str, Any] = None,
):
from ..visualization.movies import Movie
super().__init__(interval=interval)
self.title = title
self.output_file = output_file
self.max_fps = max_fps
self.plot_args = {} if plot_args is None else plot_args.copy()
self.plot_args["action"] = "create"
if movie is None:
self.movie: Optional[Movie] = None
self._save_movie = False
elif isinstance(movie, Movie):
self.movie = movie
self._save_movie = False
elif isinstance(movie, (str, Path)):
self.movie = Movie(filename=str(movie))
self._save_movie = True
else:
raise TypeError(f"Unknown type of `movie`: {movie.__class__.__name__}")
self._write_images = self._save_movie or self.output_file
if show is None:
self.show = not self._write_images
else:
self.show = show
def initialize(self, state: FieldBase, info: InfoDict = None) -> float:
from ..tools.plotting import get_plotting_context
self._context = get_plotting_context(title="Initializing...", show=self.show)
with self._context:
self._plot_reference = state.plot(**self.plot_args)
if self._context.supports_update:
if hasattr(state.plot, "update_method"):
if state.plot.update_method is None:
if state.plot.mpl_class == "axes":
self._update_method = "update_ax"
elif state.plot.mpl_class == "figure":
self._update_method = "update_fig"
else:
mpl_class = state.plot.mpl_class
raise RuntimeError(
f"Unknown mpl_class on plot method: {mpl_class}"
)
else:
self._update_method = "update_data"
else:
raise RuntimeError(
"PlotTracker does not work since the state of type "
f"{state.__class__.__name__} does not use the plot protocol of "
"`pde.tools.plotting`."
)
else:
self._update_method = "replot"
self._logger.info(f'Update method: "{self._update_method}"')
self._last_update = time.monotonic()
return super().initialize(state, info=info)
def handle(self, state: FieldBase, t: float) -> None:
if not self._write_images:
time_passed = time.monotonic() - self._last_update
if time_passed < 1 / self.max_fps:
return
if callable(self.title):
self._context.title = str(self.title(state, t))
else:
self._context.title = self.title.format(time=t)
with self._context:
if self._update_method == "update_data":
update_func = getattr(state, state.plot.update_method)
update_func(self._plot_reference)
elif self._update_method == "update_fig":
fig = self._context.fig
fig.clf()
state.plot(fig=fig, **self.plot_args)
elif self._update_method == "update_ax":
fig = self._context.fig
fig.clf()
ax = fig.add_subplot(1, 1, 1)
state.plot(ax=ax, **self.plot_args)
elif self._update_method == "replot":
state.plot(**self.plot_args)
else:
raise RuntimeError(f"Unknown update method `{self._update_method}`")
if self.output_file and self._context.fig is not None:
self._context.fig.savefig(self.output_file)
if self.movie:
self.movie.add_figure(self._context.fig)
self._last_update = time.monotonic()
def finalize(self, info: InfoDict = None) -> None:
super().finalize(info)
if self._save_movie:
self.movie.save()
self.movie._end()
if not self.show:
self._context.close()
class LivePlotTracker(PlotTracker):
name = "plot"
@fill_in_docstring
def __init__(
self,
interval: IntervalData = "0:03",
*,
show: bool = True,
max_fps: float = 2,
**kwargs,
):
super().__init__(interval=interval, show=show, max_fps=max_fps, **kwargs)
class DataTracker(CallbackTracker):
@fill_in_docstring
def __init__(
self, func: Callable, interval: IntervalData = 1, filename: str = None
):
super().__init__(func=func, interval=interval)
self.filename = filename
self.times: List[float] = []
self.data: List[Any] = []
|
MIT License
|
myriadrf/pylms7002soapy
|
pyLMS7002Soapy/LMS7002_CDS.py
|
LMS7002_CDS.CDS_MCLK1
|
python
|
def CDS_MCLK1(self):
return self._readReg('CFG0', 'CDS_MCLK1<1:0>')
|
Get the value of CDS_MCLK1<1:0>
|
https://github.com/myriadrf/pylms7002soapy/blob/4f828eb9282c302dc6b187d91df5e77c8a6f2d61/pyLMS7002Soapy/LMS7002_CDS.py#L44-L48
|
from pyLMS7002Soapy.LMS7002_base import LMS7002_base
class LMS7002_CDS(LMS7002_base):
__slots__ = []
def __init__(self, chip):
self.chip = chip
self.channel = None
self.prefix = "CDS_"
@property
def CDS_MCLK2(self):
return self._readReg('CFG0', 'CDS_MCLK2<1:0>')
@CDS_MCLK2.setter
def CDS_MCLK2(self, value):
if not (0 <= value <= 3):
raise ValueError("Value must be [0..3]")
self._writeReg('CFG0', 'CDS_MCLK2<1:0>', value)
@property
|
Apache License 2.0
|
amccaugh/phidl
|
phidl/device_layout.py
|
_GeometryHelper.y
|
python
|
def y(self, destination):
destination = (self.center[0], destination)
self.move(destination = destination, origin = self.center, axis = 'y')
|
Sets the y-coordinate of the center of the bounding box.
Parameters
----------
destination : int or float
y-coordinate of the bbox center.
|
https://github.com/amccaugh/phidl/blob/eae1cea6de172db72207e926c8a6500bc9dfcddf/phidl/device_layout.py#L519-L528
|
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import gdspy
from copy import deepcopy as _deepcopy
import numpy as np
from numpy import sqrt, mod, pi, sin, cos
from numpy.linalg import norm
import warnings
import hashlib
from phidl.constants import _CSS3_NAMES_TO_HEX
import gdspy.library
gdspy.library.use_current_library = False
__version__ = '1.6.0'
def _rotate_points(points, angle = 45, center = (0, 0)):
if angle == 0:
return points
angle = angle * pi/180
ca = cos(angle)
sa = sin(angle)
sa = np.array((-sa, sa))
c0 = np.array(center)
if np.asarray(points).ndim == 2:
return (points - c0)*ca + (points - c0)[:,::-1]*sa + c0
if np.asarray(points).ndim == 1:
return (points - c0)*ca + (points - c0)[::-1]*sa + c0
def _reflect_points(points, p1 = (0, 0), p2 = (1, 0)):
points = np.array(points); p1 = np.array(p1); p2 = np.array(p2)
if np.asarray(points).ndim == 1:
return 2*(p1 + (p2-p1)*np.dot((p2-p1),(points-p1))/norm(p2-p1)**2) - points
if np.asarray(points).ndim == 2:
return np.array([2*(p1 + (p2-p1)*np.dot((p2-p1),(p-p1))/norm(p2-p1)**2) - p for p in points])
def _is_iterable(items):
return isinstance(items, (list, tuple, set, np.ndarray))
def _parse_coordinate(c):
if isinstance(c, Port):
return c.midpoint
elif np.array(c).size == 2:
return c
else:
raise ValueError('[PHIDL] Could not parse coordinate, input should be array-like (e.g. [1.5,2.3] or a Port')
def _parse_move(origin, destination, axis):
if destination is None:
destination = origin
origin = [0,0]
d = _parse_coordinate(destination)
o = _parse_coordinate(origin)
if axis == 'x': d = (d[0], o[1])
if axis == 'y': d = (o[0], d[1])
dx,dy = np.array(d) - o
return dx,dy
def _distribute(elements, direction = 'x', spacing = 100, separation = True, edge = None):
if len(elements) == 0: return elements
if direction not in ({'x','y'}):
raise ValueError("[PHIDL] distribute(): 'direction' argument must be either 'x' or'y'")
if (direction == 'x') and (edge not in ({'x', 'xmin', 'xmax'})) and (separation == False):
raise ValueError("[PHIDL] distribute(): When `separation` == False and direction == 'x'," +
" the `edge` argument must be one of {'x', 'xmin', 'xmax'}")
if (direction == 'y') and (edge not in ({'y', 'ymin', 'ymax'})) and (separation == False):
raise ValueError("[PHIDL] distribute(): When `separation` == False and direction == 'y'," +
" the `edge` argument must be one of {'y', 'ymin', 'ymax'}")
if (direction == 'y'): sizes = [e.ysize for e in elements]
if (direction == 'x'): sizes = [e.xsize for e in elements]
spacing = np.array([spacing]*len(elements))
if separation == True:
if direction == 'x': edge = 'xmin'
if direction == 'y': edge = 'ymin'
else:
sizes = np.zeros(len(spacing))
start = elements[0].__getattribute__(edge)
positions = np.cumsum(np.concatenate(([start], (spacing + sizes))))
for n, e in enumerate(elements):
e.__setattr__(edge, positions[n])
return elements
def _align(elements, alignment = 'ymax'):
if len(elements) == 0: return elements
if alignment not in (['x','y','xmin', 'xmax', 'ymin','ymax']):
raise ValueError("[PHIDL] 'alignment' argument must be one of 'x','y','xmin', 'xmax', 'ymin','ymax'")
value = Group(elements).__getattribute__(alignment)
for e in elements:
e.__setattr__(alignment, value)
return elements
def _line_distances(points, start, end):
if np.all(start == end):
return np.linalg.norm(points - start, axis=1)
vec = end - start
cross = np.cross(vec, start - points)
return np.divide(abs(cross), np.linalg.norm(vec))
def _simplify(points, tolerance=0):
M = np.asarray(points)
start, end = M[0], M[-1]
dists = _line_distances(M, start, end)
index = np.argmax(dists)
dmax = dists[index]
if dmax > tolerance:
result1 = _simplify(M[:index + 1], tolerance)
result2 = _simplify(M[index:], tolerance)
result = np.vstack((result1[:-1], result2))
else:
result = np.array([start, end])
return result
def reset():
Layer.layer_dict = {}
Device._next_uid = 0
class LayerSet(object):
def __init__(self):
self._layers = {}
def add_layer(self, name = 'unnamed', gds_layer = 0, gds_datatype = 0,
description = None, color = None, inverted = False,
alpha = 0.6, dither = None):
new_layer = Layer(gds_layer = gds_layer, gds_datatype = gds_datatype,
name = name, description = description,
inverted = inverted, color = color, alpha = alpha,
dither = dither)
if name in self._layers:
raise ValueError('[PHIDL] LayerSet: Tried to add layer named '
'"%s"' % (name) + ', but a layer with that '
'name already exists in this LayerSet')
else:
self._layers[name] = new_layer
def __getitem__(self, val):
try:
return self._layers[val]
except:
raise ValueError('[PHIDL] LayerSet: Tried to access layer '
'named "%s"' % (val) + ' which does not exist')
def __repr__(self):
return ('LayerSet (%s layers total)' % (len(self._layers)))
class Layer(object):
layer_dict = {}
def __init__(self, gds_layer = 0, gds_datatype = 0, name = 'unnamed',
description = None, inverted = False,
color = None, alpha = 0.6, dither = None):
if isinstance(gds_layer, Layer):
l = gds_layer
gds_datatype = l.gds_datatype
name = l.name
description = l.description
alpha = l.alpha
dither = l.dither
inverted = l.inverted
gds_layer = l.gds_layer
self.gds_layer = gds_layer
self.gds_datatype = gds_datatype
self.name = name
self.description = description
self.inverted = inverted
self.alpha = alpha
self.dither = dither
try:
if color is None:
self.color = None
elif np.size(color) == 3:
color = np.array(color)
if np.any(color > 1) or np.any(color < 0): raise ValueError
color = np.array(np.round(color*255), dtype = int)
self.color = "#{:02x}{:02x}{:02x}".format(*color)
elif color[0] == '#':
if len(color) != 7: raise ValueError
int(color[1:],16)
self.color = color
else:
self.color = _CSS3_NAMES_TO_HEX[color.lower()]
except:
raise ValueError("[PHIDL] Layer() color must be specified as a " +
"0-1 RGB triplet, (e.g. [0.5, 0.1, 0.9]), an HTML hex color string " +
"(e.g. '#a31df4'), or a CSS3 color name (e.g. 'gold' or " +
"see http://www.w3schools.com/colors/colors_names.asp )")
Layer.layer_dict[(gds_layer, gds_datatype)] = self
def __repr__(self):
return ('Layer (name %s, GDS layer %s, GDS datatype %s, description %s, color %s)' % (self.name, self.gds_layer, self.gds_datatype, self.description, self.color))
def _parse_layer(layer):
if isinstance(layer, Layer):
gds_layer, gds_datatype = layer.gds_layer, layer.gds_datatype
elif np.shape(layer) == (2,):
gds_layer, gds_datatype = layer[0], layer[1]
elif np.shape(layer) == (1,):
gds_layer, gds_datatype = layer[0], 0
elif layer is None:
gds_layer, gds_datatype = 0, 0
elif isinstance(layer, (int, float)):
gds_layer, gds_datatype = layer, 0
else:
raise ValueError("""[PHIDL] _parse_layer() was passed something
that could not be interpreted as a layer: layer = %s""" % layer)
return (gds_layer, gds_datatype)
class _GeometryHelper(object):
@property
def center(self):
return np.sum(self.bbox,0)/2
@center.setter
def center(self, destination):
self.move(destination = destination, origin = self.center)
@property
def x(self):
return np.sum(self.bbox,0)[0]/2
@x.setter
def x(self, destination):
destination = (destination, self.center[1])
self.move(destination = destination, origin = self.center, axis = 'x')
@property
def y(self):
return np.sum(self.bbox,0)[1]/2
@y.setter
|
MIT License
|
maebert/shellcraft
|
src/shellcraft/grammar.py
|
Grammar.parse_grammar
|
python
|
def parse_grammar(self, grammar):
weight_re = r"%((?:[\d]*\.)?[\d]+)"
result = defaultdict(list)
for line in grammar.splitlines():
if "->" in line:
symbol, extension = line.split("->")
for extension in extension.split("|"):
weight = re.search(weight_re, extension)
if weight:
extension = re.sub(weight_re, "", extension)
weight = float(weight.group(1))
else:
weight = 1.0
result[symbol.strip()].append((extension.strip(), weight))
for symbol, extensions in result.items():
total_weight = sum(ext[1] for ext in extensions)
result[symbol] = [(ext[0], ext[1] / total_weight) for ext in extensions]
return dict(result)
|
Return a dictionary mapping symbols to extensions.
Example:
>>> grammar = '''
@s -> @n @v
@s -> @n @v @n
@n -> dog | cat
@v -> chases %3 | eats %2.0'''
>>> parse_grammar(grammar)
{
"@s": [
[ "@n @v", 0.3 ],
[ "@n @v @n", 0.7 ]
],
"@v": [
[ "chases", 0.75 ],
[ "eats", 0.25 ]
],
"@n": [
[ "dog", 0.5 ],
[ "cat", 0.5 ]
]
}
Args:
grammar: str
Returns:
dict
|
https://github.com/maebert/shellcraft/blob/bab16de366073d18327f6bf92294f42c5728cd25/src/shellcraft/grammar.py#L62-L112
|
from collections import defaultdict
import random
import re
import sys
import os
VERBS = {"research": "researching", "mine": "mining", "craft": "crafting"}
class MaximumDepthExceeded(Exception):
pass
class SymbolNotFound(Exception):
pass
class Grammar(object):
grammars = {}
def __init__(self, grammar_string):
self.grammar = self.parse_grammar(grammar_string)
@classmethod
def load(cls, grammar_file):
with open(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"data",
grammar_file + ".grammar",
)
) as f:
cls.grammars[grammar_file] = cls(f.read())
return cls.grammars[grammar_file]
def weighted_choice(self, options, weights):
target = random.random() * sum(weights)
acc = 0
for idx, weight in enumerate(weights):
acc += weight
if acc > target:
return options[idx]
|
MIT License
|
hpd/opensphericalcamera
|
python/osc/bubl.py
|
Bublcam.stream
|
python
|
def stream(self):
acquired = False
url = self._request("commands/execute")
body = json.dumps({"name": "camera._bublStream",
"parameters": {
"sessionId": self.sid
}})
try:
response = requests.post(url, data=body, stream=True)
except Exception, e:
self._httpError(e)
return acquired
if response.status_code == 200:
response = req.json()
bublStreamPort = response['_bublStreamPort']
bublStreamEndPoint = response['_bublStreamEndPoint']
else:
bublStreamPort = None
bublStreamEndPoint = None
self._oscError(response)
return (bublStreamPort, bublStreamEndPoint)
|
_bublStream
Return the port and end point to use for rtsp video streaming
Reference:
https://github.com/BublTechnology/osc-client/blob/master/lib/BublOscClient.js#L59
|
https://github.com/hpd/opensphericalcamera/blob/2456f6003777fe4403b41d39db1bb4ab7f3deffb/python/osc/bubl.py#L255-L287
|
import json
import requests
import timeit
import osc
__author__ = 'Haarm-Pieter Duiker'
__copyright__ = 'Copyright (C) 2016 - Duiker Research Corp'
__license__ = ''
__maintainer__ = 'Haarm-Pieter Duiker'
__email__ = 'support@duikerresearch.org'
__status__ = 'Production'
__major_version__ = '1'
__minor_version__ = '0'
__change_version__ = '0'
__version__ = '.'.join((__major_version__,
__minor_version__,
__change_version__))
__all__ = ['Bublcam']
class Bublcam(osc.OpenSphericalCamera):
def __init__(self, ip_base="192.168.0.100", httpPort=80):
osc.OpenSphericalCamera.__init__(self, ip_base, httpPort)
def updateFirmware(self, firmwareFilename):
url = self._request("_bublUpdate")
with open(firmwareFilename, 'rb') as handle:
body = handle.read()
try:
req = requests.post(url, data=body,
headers={'Content-Type': 'application/octet-stream'})
except Exception, e:
self._httpError(e)
return None
if req.status_code == 200:
response = req.json()
else:
self._oscError(req)
response = None
return response
def bublGetImage(self, fileUri):
acquired = False
if fileUri:
url = self._request("_bublGetImage/%s" % fileUri)
fileName = fileUri.split("/")[1]
try:
response = requests.get(url, stream=True)
except Exception, e:
self._httpError(e)
return acquired
if response.status_code == 200:
with open(fileName, 'wb') as handle:
for block in response.iter_content(1024):
handle.write(block)
acquired = True
else:
self._oscError(req)
return acquired
def stop(self, commandId):
url = self._request("commands/_bublStop")
body = json.dumps({
"id": commandId
})
try:
req = requests.post(url, data=body)
except Exception, e:
self._httpError(e)
return None
if req.status_code == 200:
response = req.json()
else:
self._oscError(req)
response = None
return response
def poll(self, commandId, fingerprint, waitTimeout):
url = self._request("commands/_bublPoll")
body = json.dumps({
"id": commandId,
"fingerprint" : fingerprint,
"waitTimeout" : waitTimeout
})
try:
req = requests.post(url, data=body)
except Exception, e:
self._httpError(e)
return None
if req.status_code == 200:
response = req.json()
else:
self._oscError(req)
response = None
return response
def captureVideo(self):
url = self._request("commands/execute")
body = json.dumps({"name": "camera._bublCaptureVideo",
"parameters": {
"sessionId": self.sid
}
})
try:
req = requests.post(url, data=body)
except Exception, e:
self._httpError(e)
return None
if req.status_code == 200:
response = req.json()
else:
self._oscError(req)
response = None
return response
def shutdown(self, shutdownDelay):
url = self._request("commands/execute")
body = json.dumps({"name": "camera._bublShutdown",
"parameters": {
"sessionId": self.sid,
"shutdownDelay" : shutdownDelay
}
})
try:
req = requests.post(url, data=body)
except Exception, e:
self._httpError(e)
return None
if req.status_code == 200:
response = req.json()
else:
self._oscError(req)
response = None
return response
|
MIT License
|
lukaabra/subcrawl
|
subtitles.py
|
SubtitleDownloader.download_from_opensubtitles
|
python
|
def download_from_opensubtitles(self):
with ServerProxy("https://api.opensubtitles.org/xml-rpc") as proxy:
self.opensubs_token = self.log_in_opensubtitles(proxy)
if self.opensubs_token != "error":
self.prompt_label.setText("Connected to OpenSubtitles database")
for payload_for_sub_search in (self._create_payload_for_subtitle_searching(entry)
for entry in self.interactor.retrieve("selected_movies")):
self._perform_query_and_store(payload_for_sub_search, proxy)
self.interactor.commit_and_renew_cursor()
self._perform_file_download(proxy)
self.interactor.clear_db("search_subs")
self.interactor.clear_db("download_subs")
self.prompt_label.setText("Finishing up ...")
proxy.LogOut(self.opensubs_token)
self.prompt_label.setText("Download finished! Downloaded {} files".format(self.downloaded_files))
self.downloaded_files = 0
|
Logs the user into the OpenSubtitles API. If the log in is successful then payloads are created for querying
the OpenSubtitles database. The query result is passed to the download function. Meanwhile the Prompt Label in
the GUI is updated with information.
After all the downloading and querying is finished, the user is logged out.
|
https://github.com/lukaabra/subcrawl/blob/85da48f513dceed2ed9f9c60f09914996357e7f9/subtitles.py#L224-L253
|
import json
import gzip
import os
import base64
from socket import gaierror
from http.client import ResponseNotReady
from xmlrpc.client import ServerProxy, ProtocolError, Fault, expat
class SubtitlePreference(object):
def __init__(self):
self.language_name = "Albanian"
self.language_iso2 = "sq"
self.language_iso3 = "alb"
self.sub_source_preference = ("OpenSubtitles", "SubDB")
def add_language(self, language_preference: str):
with open("resources/iso 639 2.json", "r") as languages_file:
languages_json = json.load(languages_file)
for language in languages_json:
if language_preference == language["English_Name"]:
self.language_name = language["English_Name"]
self.language_iso2 = language["Alpha2_Code"]
self.language_iso3 = language["Alpha3b_Code"]
def change_sub_source(self, sub_source_list: list):
self.sub_source_preference = tuple(sub_source_list)
def __str__(self):
return "Subtitle language preference:\t{0.language_name} - {0.language_iso2} - {0.language_iso3}\n" "Subtitle sources preference: {0.sub_source_preference}\n".format(self)
class SubtitleDownloader(object):
def __init__(self, subtitle_preference: SubtitlePreference, prompt_label, progress_bar, interactor):
self.preference = subtitle_preference
self.prompt_label = prompt_label
self.progress_bar = progress_bar
self.interactor = interactor
self.downloaded_files = 0
self.opensubs_token = None
self.sub_file_extensions = (".RAR", ".ZIP", ".SRT")
def _create_payload_for_subtitle_searching(self, entry: tuple) -> dict:
try:
entry_id = entry[0]
entry_title = entry[4]
movie_directory, _ = os.path.split(entry[2])
except KeyError:
payload_for_sub_search = dict()
else:
payload_for_sub_search = {"imdbid": entry_id,
"query": entry_title,
"sublanguageid": self.preference.language_iso3,
"movie directory": movie_directory}
return payload_for_sub_search
def _perform_query_and_store(self, payload_for_sub_search: dict, proxy: ServerProxy):
try:
query_result = proxy.SearchSubtitles(self.opensubs_token, [payload_for_sub_search], {"limit": 10})
except Fault:
self.prompt_label.setText("A fault has occurred")
except ProtocolError:
self.prompt_label.setText("A ProtocolError has occurred.")
else:
if query_result["status"] == "200 OK":
if query_result["data"]:
payload_for_download = self._create_download_data(query_result["data"], payload_for_sub_search)
self.interactor.add_subtitle_search_data_to_db(payload_for_download)
else:
self.prompt_label.setText("There is no subtitles in this language for {}".
format(payload_for_sub_search["query"]))
else:
self.prompt_label.setText("Wrong status code: {}".format(query_result["status"]))
def _create_download_data(self, query_results: dict, payload_for_sub_search: dict):
for result in query_results:
subtitle_name, download_link, sub_id = result["SubFileName"], result["SubDownloadLink"], result["IDSubtitleFile"]
movie_id = payload_for_sub_search["imdbid"]
movie_directory = payload_for_sub_search["movie directory"]
if subtitle_name.upper().endswith(self.sub_file_extensions):
payload_for_download = {"imdbid": movie_id,
"file name": subtitle_name,
"IDSubtitleFile": sub_id,
"movie directory": movie_directory}
return payload_for_download
def _perform_file_download(self, proxy):
subtitle_ids = [sub_id for sub_id, _, __, ___ in self.interactor.retrieve("search_subs")]
while len(subtitle_ids) >= 19:
self._download_file(proxy, subtitle_ids[:19])
subtitle_ids = subtitle_ids[19:]
print(len(subtitle_ids))
if subtitle_ids:
self._download_file(proxy, subtitle_ids)
def _download_file(self, proxy, subtitle_ids):
download_data = dict()
try:
download_data = proxy.DownloadSubtitles(self.opensubs_token, subtitle_ids)
except ProtocolError as e:
download_data["status"] = e
self.prompt_label.setText("There has been a ProtocolError during downloading")
except ResponseNotReady as e:
download_data["status"] = e
self.prompt_label.setText("There has been a ResponseNotReady Error during downloading")
if download_data["status"] == "200 OK":
self._store_byte_data_to_db(download_data)
self._get_stored_byte_data()
else:
self.prompt_label.setText("There was an error while trying to download your file: {}"
.format(download_data["status"]))
def _store_byte_data_to_db(self, download_data):
for individual_download_dict in download_data["data"]:
self.interactor.add_subtitle_download_data_to_db(tuple(individual_download_dict.values()))
self.interactor.commit_and_renew_cursor()
def _get_stored_byte_data(self):
for sub_id, byte_data in self.interactor.retrieve("download_subs"):
search_condition = ("subs_id", sub_id)
for _, __, sub_name, movie_directory in self.interactor.retrieve("search_subs", search_condition):
subtitle_path = movie_directory + "\\" + sub_name + ".gzip"
self._write_file(byte_data, subtitle_path)
break
def _write_file(self, byte_data: str, subtitle_path: str):
with open(subtitle_path, "wb") as subtitle_file:
subtitle_file.write(base64.decodebytes(byte_data.encode()))
with gzip.open(subtitle_path, 'rb') as gzip_file:
content = gzip_file.read()
with open(subtitle_path[:-4], 'wb') as srt_file:
srt_file.write(content)
self.downloaded_files += 1
os.remove(subtitle_path)
|
MIT License
|
sibirrer/lenstronomy
|
lenstronomy/Util/util.py
|
hyper2F2_array
|
python
|
def hyper2F2_array(a, b, c, d, x):
if isinstance(x, int) or isinstance(x, float):
out = mpmath.hyp2f2(a, b, c, d, x)
else:
n = len(x)
out = np.zeros(n)
for i in range(n):
out[i] = mpmath.hyp2f2(a, b, c, d, x[i])
return out
|
:param a:
:param b:
:param c:
:param d:
:param x:
:return:
|
https://github.com/sibirrer/lenstronomy/blob/e6d0e179a98ecb0c4db25cdf7cfb73e83c6aeded/lenstronomy/Util/util.py#L559-L576
|
__author__ = 'Simon Birrer'
import numpy as np
import mpmath
import itertools
from lenstronomy.Util.numba_util import jit
from lenstronomy.Util.package_util import exporter
export, __all__ = exporter()
@export
def merge_dicts(*dict_args):
result = {}
for dictionary in dict_args:
result.update(dictionary)
return result
@export
def approx_theta_E(ximg, yimg):
dis = []
xinds, yinds = [0, 0, 0, 1, 1, 2], [1, 2, 3, 2, 3, 3]
for (i, j) in zip(xinds, yinds):
dx, dy = ximg[i] - ximg[j], yimg[i] - yimg[j]
dr = (dx ** 2 + dy ** 2) ** 0.5
dis.append(dr)
dis = np.array(dis)
greatest = np.argmax(dis)
dr_greatest = dis[greatest]
dis[greatest] = 0
second_greatest = np.argmax(dis)
dr_second = dis[second_greatest]
return 0.5 * (dr_greatest * dr_second) ** 0.5
@export
def sort_image_index(ximg, yimg, xref, yref):
assert len(xref) == len(ximg)
ximg, yimg = np.array(ximg), np.array(yimg)
x_self = np.array(list(itertools.permutations(ximg)))
y_self = np.array(list(itertools.permutations(yimg)))
indexes = [0, 1, 2, 3]
index_iterations = list(itertools.permutations(indexes))
delta_r = []
for i in range(0, int(len(x_self))):
dr = 0
for j in range(0, int(len(x_self[0]))):
dr += (x_self[i][j] - xref[j]) ** 2 + (y_self[i][j] - yref[j]) ** 2
delta_r.append(dr ** .5)
min_indexes = np.array(index_iterations[np.argmin(delta_r)])
return min_indexes
@export
@jit()
def rotate(xcoords, ycoords, angle):
return xcoords * np.cos(angle) + ycoords * np.sin(angle), -xcoords * np.sin(angle) + ycoords * np.cos(angle)
@export
def map_coord2pix(ra, dec, x_0, y_0, M):
x, y = M.dot(np.array([ra, dec]))
return x + x_0, y + y_0
@export
def array2image(array, nx=0, ny=0):
if nx == 0 or ny == 0:
n = int(np.sqrt(len(array)))
if n ** 2 != len(array):
raise ValueError("lenght of input array given as %s is not square of integer number!" % (len(array)))
nx, ny = n, n
image = array.reshape(int(nx), int(ny))
return image
@export
def image2array(image):
nx, ny = image.shape
imgh = np.reshape(image, nx * ny)
return imgh
@export
def array2cube(array, n_1, n_23):
n = int(np.sqrt(n_23))
if n ** 2 != n_23:
raise ValueError("2nd and 3rd dims (%s) are not square of integer number!" % n_23)
n_2, n_3 = n, n
cube = array.reshape(n_1, n_2, n_3)
return cube
@export
def cube2array(cube):
n_1, n_2, n_3 = cube.shape
array = cube.reshape(n_1 * n_2 * n_3)
return array
@export
def make_grid(numPix, deltapix, subgrid_res=1, left_lower=False):
if isinstance(numPix, (tuple, list, np.ndarray)):
assert len(numPix) == 2
if any(x != round(x) for x in numPix):
raise ValueError("numPix contains non-integers: %s" % numPix)
numPix = np.asarray(numPix, dtype=np.int)
else:
if numPix != round(numPix):
raise ValueError("Attempt to specify non-int numPix: %s" % numPix)
numPix = np.array([numPix, numPix], dtype=np.int)
numPix_eff = (numPix * subgrid_res).astype(np.int)
deltapix_eff = deltapix / float(subgrid_res)
x_grid = np.tile(np.arange(numPix_eff[0]), numPix_eff[1]) * deltapix_eff
y_grid = np.repeat(np.arange(numPix_eff[1]), numPix_eff[0]) * deltapix_eff
if left_lower is True:
shift = -1. / 2 + 1. / (2 * subgrid_res) * np.array([1, 1])
else:
shift = deltapix_eff * (numPix_eff - 1) / 2
return x_grid - shift[0], y_grid - shift[1]
@export
def make_grid_transformed(numPix, Mpix2Angle):
x_grid, y_grid = make_grid(numPix, deltapix=1)
ra_grid, dec_grid = map_coord2pix(x_grid, y_grid, 0, 0, Mpix2Angle)
return ra_grid, dec_grid
@export
def make_grid_with_coordtransform(numPix, deltapix, subgrid_res=1, center_ra=0, center_dec=0, left_lower=False,
inverse=True):
numPix_eff = numPix * subgrid_res
deltapix_eff = deltapix / float(subgrid_res)
a = np.arange(numPix_eff)
matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2)
if inverse is True:
delta_x = -deltapix_eff
else:
delta_x = deltapix_eff
if left_lower is True:
ra_grid = matrix[:, 0] * delta_x
dec_grid = matrix[:, 1] * deltapix_eff
else:
ra_grid = (matrix[:, 0] - (numPix_eff - 1) / 2.) * delta_x
dec_grid = (matrix[:, 1] - (numPix_eff - 1) / 2.) * deltapix_eff
shift = (subgrid_res - 1) / (2. * subgrid_res) * deltapix
ra_grid -= shift + center_ra
dec_grid -= shift + center_dec
ra_at_xy_0 = ra_grid[0]
dec_at_xy_0 = dec_grid[0]
Mpix2coord = np.array([[delta_x, 0], [0, deltapix_eff]])
Mcoord2pix = np.linalg.inv(Mpix2coord)
x_at_radec_0, y_at_radec_0 = map_coord2pix(-ra_at_xy_0, -dec_at_xy_0, x_0=0, y_0=0, M=Mcoord2pix)
return ra_grid, dec_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0, y_at_radec_0, Mpix2coord, Mcoord2pix
@export
def grid_from_coordinate_transform(nx, ny, Mpix2coord, ra_at_xy_0, dec_at_xy_0):
a = np.arange(nx)
b = np.arange(ny)
matrix = np.dstack(np.meshgrid(a, b)).reshape(-1, 2)
x_grid = matrix[:, 0]
y_grid = matrix[:, 1]
ra_grid = x_grid * Mpix2coord[0, 0] + y_grid * Mpix2coord[0, 1] + ra_at_xy_0
dec_grid = x_grid * Mpix2coord[1, 0] + y_grid * Mpix2coord[1, 1] + dec_at_xy_0
return ra_grid, dec_grid
@export
def get_axes(x, y):
n = int(np.sqrt(len(x)))
if n ** 2 != len(x):
raise ValueError("lenght of input array given as %s is not square of integer number!" % (len(x)))
x_image = x.reshape(n, n)
y_image = y.reshape(n, n)
x_axes = x_image[0, :]
y_axes = y_image[:, 0]
return x_axes, y_axes
@export
def averaging(grid, numGrid, numPix):
Nbig = numGrid
Nsmall = numPix
small = grid.reshape([int(Nsmall), int(Nbig / Nsmall), int(Nsmall), int(Nbig / Nsmall)]).mean(3).mean(1)
return small
@export
def displaceAbs(x, y, sourcePos_x, sourcePos_y):
x_mapped = x - sourcePos_x
y_mapped = y - sourcePos_y
absmapped = np.sqrt(x_mapped ** 2 + y_mapped ** 2)
return absmapped
@export
def get_distance(x_mins, y_mins, x_true, y_true):
if len(x_mins) != len(x_true):
return 10 ** 10
dist = 0
x_true_list = np.array(x_true)
y_true_list = np.array(y_true)
for i in range(0, len(x_mins)):
dist_list = (x_mins[i] - x_true_list) ** 2 + (y_mins[i] - y_true_list) ** 2
dist += min(dist_list)
k = np.where(dist_list == min(dist_list))
if type(k) != int:
k = k[0]
x_true_list = np.delete(x_true_list, k)
y_true_list = np.delete(y_true_list, k)
return dist
@export
def compare_distance(x_mapped, y_mapped):
X2 = 0
for i in range(0, len(x_mapped) - 1):
for j in range(i + 1, len(x_mapped)):
dx = x_mapped[i] - x_mapped[j]
dy = y_mapped[i] - y_mapped[j]
X2 += dx ** 2 + dy ** 2
return X2
@export
def min_square_dist(x_1, y_1, x_2, y_2):
dist = np.zeros_like(x_1)
for i in range(len(x_1)):
dist[i] = np.min((x_1[i] - x_2) ** 2 + (y_1[i] - y_2) ** 2)
return dist
@export
def selectBest(array, criteria, numSelect, highest=True):
n = len(array)
m = len(criteria)
if n != m:
raise ValueError('Elements in array (%s) not equal to elements in criteria (%s)' % (n, m))
if n < numSelect:
return array
array_sorted = array[criteria.argsort()]
if highest:
result = array_sorted[n - numSelect:]
else:
result = array_sorted[0:numSelect]
return result[::-1]
@export
def select_best(array, criteria, num_select, highest=True):
n = len(array)
m = len(criteria)
if n != m:
raise ValueError('Elements in array (%s) not equal to elements in criteria (%s)' % (n, m))
if n < num_select:
return array
array = np.array(array)
if highest is True:
indexes = criteria.argsort()[::-1][:num_select]
else:
indexes = criteria.argsort()[::-1][n - num_select:]
return array[indexes]
@export
def points_on_circle(radius, num_points, connect_ends=True):
if connect_ends:
angle = np.linspace(0, 2 * np.pi, num_points)
else:
angle = np.linspace(0, 2 * np.pi * (1 - 1./num_points), num_points)
x_coord = np.cos(angle) * radius
y_coord = np.sin(angle) * radius
return x_coord, y_coord
@export
@jit()
def neighborSelect(a, x, y):
dim = int(np.sqrt(len(a)))
values = []
x_mins = []
y_mins = []
for i in range(dim + 1, len(a) - dim - 1):
if (a[i] < a[i - 1]
and a[i] < a[i + 1]
and a[i] < a[i - dim]
and a[i] < a[i + dim]
and a[i] < a[i - (dim - 1)]
and a[i] < a[i - (dim + 1)]
and a[i] < a[i + (dim - 1)]
and a[i] < a[i + (dim + 1)]):
if (a[i] < a[(i - 2 * dim - 1) % dim ** 2]
and a[i] < a[(i - 2 * dim + 1) % dim ** 2]
and a[i] < a[(i - dim - 2) % dim ** 2]
and a[i] < a[(i - dim + 2) % dim ** 2]
and a[i] < a[(i + dim - 2) % dim ** 2]
and a[i] < a[(i + dim + 2) % dim ** 2]
and a[i] < a[(i + 2 * dim - 1) % dim ** 2]
and a[i] < a[(i + 2 * dim + 1) % dim ** 2]
and a[i] < a[(i + 2 * dim) % dim ** 2]
and a[i] < a[(i - 2 * dim) % dim ** 2]
and a[i] < a[(i - 2) % dim ** 2]
and a[i] < a[(i + 2) % dim ** 2]):
x_mins.append(x[i])
y_mins.append(y[i])
values.append(a[i])
return np.array(x_mins), np.array(y_mins), np.array(values)
@export
def fwhm2sigma(fwhm):
sigma = fwhm / (2 * np.sqrt(2 * np.log(2)))
return sigma
@export
def sigma2fwhm(sigma):
fwhm = sigma * (2 * np.sqrt(2 * np.log(2)))
return fwhm
@export
|
MIT License
|
nvidia/apex
|
apex/contrib/optimizers/distributed_fused_adam_v2.py
|
DistributedFusedAdamV2.has_overflow
|
python
|
def has_overflow(self):
has_overflow = self._has_overflow
self._has_overflow = False
return has_overflow
|
Check if overflows were detected by any call to step(...) method.
Clears the overflow flag.
|
https://github.com/nvidia/apex/blob/14ccf5986401104121d0ef286a29386904af3bb7/apex/contrib/optimizers/distributed_fused_adam_v2.py#L497-L503
|
import math
import torch
import importlib
import amp_C
from apex.multi_tensor_apply import multi_tensor_applier
class DistributedFusedAdamV2(torch.optim.Optimizer):
def __init__(self, params,
lr=1e-3, bias_correction = True,
betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt = False,
weight_decay=0., max_grad_norm=0., amsgrad=False, use_mt=False,
amp_scale_adjustment=1.0, overlap_reductions=True, full_pipeline=True,
compute_L2_grad_norm=False, distributed_weight_update=0,
dwu_group_size=0, dwu_num_blocks=4, dwu_num_rs_pg=1, dwu_num_ar_pg=4,
dwu_num_ag_pg=0, revert_method=1, flat_mt=False,
dwu_num_chunks=4, predivide=True, e5m2_allgather=False,
do_not_flatten_model=False):
global fused_adam_cuda
fused_adam_cuda = importlib.import_module("fused_adam_cuda")
self._amp_scale_adjustment = amp_scale_adjustment
if use_mt:
raise RuntimeError('DistributedFusedAdam does not support use_mt.')
if amsgrad:
raise RuntimeError('DistributedFusedAdam does not support the AMSGrad variant.')
defaults = dict(lr=lr, bias_correction=bias_correction,
betas=betas, eps=eps, weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(DistributedFusedAdamV2, self).__init__(params, defaults)
self.eps_mode = 0 if eps_inside_sqrt else 1
self._overflow_buf = torch.cuda.IntTensor([0])
self._has_overflow = False
assert (len(self.param_groups) == 1), "More than one parameter group is not supported."
self._revert_method = revert_method
if self._revert_method > 1:
print("revert_method -> double buffer fp32 parameters, will consume more memory")
self._last_step = False
self._overlap_reductions = overlap_reductions
self._global_scale = None
self._num_blocks = dwu_num_blocks
self._num_chunks = dwu_num_chunks
self._predivide = predivide
self._e5m2_allgather = e5m2_allgather
self._do_not_flatten_model = do_not_flatten_model
self._full_pipeline = full_pipeline
self._compute_L2_grad_norm = compute_L2_grad_norm
self._L2_grad_norm = None
self._group_size = torch.cuda.device_count() if dwu_group_size <= 0 else dwu_group_size
self._world_size = torch.distributed.get_world_size()
self._num_groups = self._world_size // self._group_size
self._rank_in_group = torch.distributed.get_rank() % self._group_size
p_offset = 0
p_i = 0
self._param_state = None
self._model_params = []
self._grads_info = []
self._grad_accs = []
for group in self.param_groups:
self._param_group = group
prev = None
for p in group['params']:
torch.distributed.broadcast(p,0)
if not p.requires_grad:
continue
self._model_params.append(p)
state = self.state[p]
if len(state) == 0:
state['step'] = 0
if self._param_state is None:
self._param_state = state
p_grads_size = p.numel()
def wrapper(param, param_i, param_grads_size, param_offset):
param_tmp = param.expand_as(param)
grad_acc = param_tmp.grad_fn.next_functions[0][0]
def allreduce_hook(*unused):
self._do_overlapped_reduction(param_i, param_grads_size, param_offset, param)
grad_acc.register_hook(allreduce_hook)
self._grad_accs.append(grad_acc)
self._grads_info.append({"param_grads_size":p_grads_size, "param_offset":p_offset})
wrapper(p, p_i, p_grads_size, p_offset)
p_offset += p_grads_size
if prev is not None and (prev.data_ptr() + prev.numel() * prev.element_size() != p.data_ptr()):
p_offset = ((p_offset + 63) // 64) * 64
prev = p
p_i += 1
self._grads_generated = [False]*len(self._grads_info)
self._flat_mt = flat_mt
self._grads = []
if self._overlap_reductions:
self._current_block = self._num_blocks
self._net_total_param_size = p_offset
self._total_param_size = p_offset
dwu_min_page_size = 256 * self._num_blocks * self._num_chunks * self._group_size
self._total_param_size = ((self._total_param_size + dwu_min_page_size - 1) // dwu_min_page_size) * dwu_min_page_size
self._block_size = self._total_param_size // self._num_blocks
self._shard_size = self._block_size // self._group_size
self._chunk_size = self._shard_size // self._num_chunks
print("self._net_total_param_size=%d, self._total_param_size=%d, dwu_min_page_size=%d, self._block_size=%d, self._shard_size=%d, self._chunk_size=%d" % (self._net_total_param_size, self._total_param_size,dwu_min_page_size,self._block_size,self._shard_size,self._chunk_size))
self._low_param_i = [0]*self._num_blocks
for block_id in range(self._num_blocks-1,-1,-1):
p_i = len(self._grads_info)-1
while p_i > 0 and self._grads_info[p_i]["param_offset"] > block_id*self._block_size:
p_i -= 1
self._low_param_i[block_id] = p_i
print(self._low_param_i)
self._flat_grads = torch.zeros([self._total_param_size], dtype=torch.float16, device='cuda')
self._new_params = torch.zeros([self._total_param_size], dtype=torch.uint8 if self._e5m2_allgather else torch.float16, device='cuda')
self._mega_shard_size = self._num_blocks * self._num_chunks * self._chunk_size
self._fp32_p = torch.zeros([self._mega_shard_size], dtype=torch.float32, device='cuda')
self._fp32_m = torch.zeros([self._mega_shard_size], dtype=torch.float32, device='cuda')
self._fp32_v = torch.zeros([self._mega_shard_size], dtype=torch.float32, device='cuda')
self._fp16_p = torch.zeros([self._mega_shard_size], dtype=torch.uint8 if self._e5m2_allgather else torch.float16, device='cuda')
self._fp16_g = torch.zeros([self._mega_shard_size], dtype=torch.float16, device='cuda')
self._individual_flat_grads = []
for p_i, (grads_info, p) in enumerate(zip(self._grads_info, self._model_params)):
self._individual_flat_grads.append(self._flat_grads[grads_info["param_offset"]:grads_info["param_offset"]+grads_info["param_grads_size"]].view_as(p))
def _flat_split(p):
def __blockify(p):
return [p[block_id*self._block_size:(block_id+1)*self._block_size] for block_id in range(self._num_blocks)]
def __shardify(p):
return [p[shard_id*self._shard_size:(shard_id+1)*self._shard_size] for shard_id in range(self._group_size)]
def __chunkify(p):
return [p[chunk_id*self._chunk_size:(chunk_id+1)*self._chunk_size] for chunk_id in range(self._group_size)]
list_of_blocks = __blockify(self._flat_grads)
list_of_list_of_shards = [__shardify(block) for block in list_of_blocks]
list_of_list_of_list_of_chunks = [[__chunkify(shard) for shard in shards] for shards in list_of_list_of_shards]
return list_of_blocks, list_of_list_of_shards, list_of_list_of_list_of_chunks
self._flat_grads_blocks, self._flat_grads_shards, self._flat_grads_chunks = _flat_split(self._flat_grads)
def _full_packed_split(p):
def __shardify(p):
return [p[mega_shard*self._mega_shard_size:(mega_shard+1)*self._mega_shard_size] for mega_shard in range(self._group_size)]
def __blockify(p):
return [p[block_id*self._num_chunks*self._chunk_size:(block_id+1)*self._num_chunks*self._chunk_size] for block_id in range(self._num_blocks)]
def __chunkify(p):
return [p[chunk_id*self._chunk_size:(chunk_id+1)*self._chunk_size] for chunk_id in range(self._num_chunks)]
list_of_mega_shards = __shardify(p)
list_of_list_of_mega_blocks = [__blockify(mega_shard) for mega_shard in list_of_mega_shards]
list_of_list_of_list_of_mega_chunks = [[__chunkify(mega_block) for mega_block in mega_blocks] for mega_blocks in list_of_list_of_mega_blocks]
return list_of_mega_shards, list_of_list_of_mega_blocks, list_of_list_of_list_of_mega_chunks
self._new_params_mega_shards, self._new_params_mega_blocks, self._new_params_mega_chunks = _full_packed_split(self._new_params)
def _packed_split(p):
def __packed_blockify(p):
packed_block_size = self._num_chunks*self._chunk_size
return [p[block_id*packed_block_size:(block_id+1)*packed_block_size] for block_id in range(self._num_blocks)]
def __packed_chunkify(p):
return [p[chunk_id*self._chunk_size:(chunk_id+1)*self._chunk_size] for chunk_id in range(self._num_chunks)]
list_of_blocks = __packed_blockify(p)
list_of_list_of_chunks = [__packed_chunkify(block) for block in list_of_blocks]
return list_of_blocks, list_of_list_of_chunks
self._fp32_p_blocks, self._fp32_p_chunks = _packed_split(self._fp32_p)
self._fp32_m_blocks, self._fp32_m_chunks = _packed_split(self._fp32_m)
self._fp32_v_blocks, self._fp32_v_chunks = _packed_split(self._fp32_v)
self._fp16_p_blocks, self._fp16_p_chunks = _packed_split(self._fp16_p)
self._fp16_g_blocks, self._fp16_g_chunks = _packed_split(self._fp16_g)
self._packed_flat_to_model_params = []
for shard_id in range(self._group_size):
for block_id in range(self._num_blocks):
flat_shard_start = (block_id * self._group_size + shard_id) * self._shard_size
flat_shard_end = flat_shard_start + self._shard_size
for p, grads_info in zip(self._model_params, self._grads_info):
flat_grad_start = grads_info["param_offset"]
flat_grad_end = flat_grad_start + grads_info["param_grads_size"]
clipped_start = (lambda a,b: a if a > b else b)(flat_grad_start, flat_shard_start)
clipped_end = (lambda a,b: a if a < b else b)(flat_grad_end, flat_shard_end)
if clipped_start < clipped_end:
grad_offset = clipped_start - flat_grad_start
grad_length = clipped_end - clipped_start
shard_offset = clipped_start - flat_shard_start
model_param_fragment = p.view(-1)[grad_offset:grad_offset+grad_length]
new_param_packed_fragment = self._new_params_mega_blocks[shard_id][block_id][shard_offset:shard_offset+grad_length]
self._packed_flat_to_model_params.append( (new_param_packed_fragment, model_param_fragment) )
if shard_id == self._rank_in_group:
master_param_fragment = self._fp32_p_blocks[block_id][shard_offset:shard_offset+grad_length]
print("model_param_fragment.size()=%s, new_param_packed_fragment.size()=%s, master_param_fragment.size()=%s" % (str(model_param_fragment.size()), str(new_param_packed_fragment.size()), str(master_param_fragment.size())))
master_param_fragment.copy_(model_param_fragment)
p_in, p_out = zip(*self._packed_flat_to_model_params)
self._packed_flat_to_model_params = [p_in, p_out]
self._distributed_weight_update = distributed_weight_update
self._num_rs_pg = dwu_num_rs_pg
self._num_ar_pg = dwu_num_ar_pg
self._num_ag_pg = dwu_num_ag_pg
if self._num_groups > 1:
self._ar_pg = []
for dev_i in range(self._group_size):
ranks = [dev_i+j*self._group_size for j in range(self._num_groups)]
for i in range(self._num_ar_pg):
grp = torch.distributed.new_group(ranks=ranks)
if torch.distributed.get_rank() in ranks:
self._ar_pg.append(grp)
self._ar_st = [torch.cuda.Stream() for _ in range(self._num_ar_pg)]
for ar_pg in self._ar_pg:
torch.distributed.all_reduce(self._overflow_buf,group=ar_pg)
rs_ranks = []
for group_i in range(self._num_groups):
rs_ranks.append([group_i*self._group_size+j for j in range(self._group_size)])
self._rs_pg = []
for group_i in range(self._num_groups):
ranks = rs_ranks[group_i]
for i in range(self._num_rs_pg):
grp = torch.distributed.new_group(ranks=ranks)
if torch.distributed.get_rank() in ranks:
self._rs_pg.append(grp)
if self._compute_L2_grad_norm and torch.distributed.get_rank() in ranks:
self._l2_grad_norm_pg = torch.distributed.new_group(ranks=ranks)
torch.distributed.all_reduce(self._overflow_buf,group=self._l2_grad_norm_pg)
self._rs_st = [torch.cuda.Stream() for _ in range(self._num_rs_pg)]
for rs_pg in self._rs_pg:
torch.distributed.all_reduce(self._overflow_buf,group=rs_pg)
if self._num_ag_pg == 0:
self._ag_pg = self._rs_pg
self._ag_st = self._rs_st
self._num_ag_pg = self._num_rs_pg
else:
self._ag_pg = []
for group_i in range(self._num_groups):
ranks = rs_ranks[group_i]
for i in range(self._num_ag_pg):
grp = torch.distributed.new_group(ranks=ranks)
if torch.distributed.get_rank() in ranks:
self._ag_pg.append(grp)
self._ag_st = [torch.cuda.Stream() for _ in range(self._num_ag_pg)]
for ag_pg in self._ag_pg:
torch.distributed.all_reduce(self._overflow_buf,group=ag_pg)
self._l2_grad_norm_st = torch.cuda.Stream() if self._compute_L2_grad_norm else None
self._completion_st = torch.cuda.Stream()
self._reductions_works = [None]*self._num_blocks
self._allgather_works = [None]*self._num_blocks
import inspect
assert ('no_copy' in inspect.getfullargspec(torch.distributed.reduce_scatter).args), "This version of c10d does not support no_copy option"
def set_last_step(self, last_step):
self._last_step = last_step
def _get_flush_block(self):
flush_block = []
if self._current_block > 0 and self._grads_generated[self._low_param_i[self._current_block-1]]:
num_grads = len(self._grads_generated)
contiguous_idx = num_grads
while contiguous_idx > 0 and self._grads_generated[contiguous_idx-1]:
contiguous_idx -= 1
if contiguous_idx < num_grads and self._grads_info[contiguous_idx]["param_offset"] <= (self._current_block-1)*self._block_size:
self._current_block -= 1
start = self._current_block * self._block_size
end = (self._current_block+1) * self._block_size
flush_block = [start, end]
return flush_block
def _pipeline_block_reductions(self, block_id):
self._flatten_grad_mt(1.0/self._world_size if self._predivide else 1.0)
works = [None]*self._num_chunks
rs_stream = self._rs_st[block_id%self._num_rs_pg]
rs_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(rs_stream):
rs_work = torch.distributed.reduce_scatter(self._fp16_g_blocks[block_id],self._flat_grads_shards[block_id],group=self._rs_pg[block_id%self._num_rs_pg],async_op=True,no_copy=True)
for chunk_id in range(self._num_chunks):
works[chunk_id] = rs_work
if self._num_groups > 1:
for chunk_id in range(self._num_chunks):
glob_chunk_id = block_id * self._num_chunks + chunk_id
ar_stream = self._ar_st[glob_chunk_id%self._num_ar_pg]
with torch.cuda.stream(ar_stream):
rs_work.wait()
works[chunk_id] = torch.distributed.all_reduce(self._fp16_g_chunks[block_id][chunk_id],group=self._ar_pg[glob_chunk_id%self._num_ar_pg],async_op=True)
self._reductions_works[block_id] = works
if self._compute_L2_grad_norm and block_id == 0:
with torch.cuda.stream(self._l2_grad_norm_st):
for block_id in range(self._num_blocks):
for chunk_id in range(self._num_chunks):
self._reductions_works[block_id][chunk_id].wait()
l2_grad_norm_sq = torch.empty([1], device='cuda')
l2_grad_norm_sq = self._fp16_g.norm(dtype=torch.float32, p=2)**2
torch.distributed.all_reduce(l2_grad_norm_sq, group=self._l2_grad_norm_pg)
self._L2_grad_norm = l2_grad_norm_sq.sqrt().item()
def __launch_step_kernel(self, p, p_copy, m, v, g):
combined_scale = self._global_scale
if self._param_group['max_grad_norm'] > 0 and math.isfinite(self.L2_grad_norm):
combined_scale = self._param_group['max_grad_norm'] / (self.L2_grad_norm / self._global_scale + 1e-6)
combined_scale = self._global_scale / min(1, combined_scale)
bias_correction = 1 if self._param_group['bias_correction'] else 0
beta1, beta2 = self._param_group['betas']
fused_adam_cuda.reversible_adam(
p, p_copy, m, v, g,
self._param_group['lr'],
beta1,
beta2,
self._param_group['eps'],
combined_scale,
self._param_state['step']+1,
self.eps_mode,
bias_correction,
self._param_group['weight_decay'])
def _pipeline_block_step(self, block_id):
ag_stream = self._ag_st[block_id%self._num_ag_pg]
with torch.cuda.stream(ag_stream):
for chunk_id in range(self._num_chunks):
self._reductions_works[block_id][chunk_id].wait()
self.__launch_step_kernel(
self._fp32_p_blocks[block_id],
self._fp16_p_blocks[block_id],
self._fp32_m_blocks[block_id],
self._fp32_v_blocks[block_id],
self._fp16_g_blocks[block_id])
if block_id == 0:
for other_ag_stream in self._ag_st:
self._completion_st.wait_stream(other_ag_stream)
with torch.cuda.stream(self._completion_st):
torch.distributed.all_gather(self._new_params_mega_shards, self._fp16_p, group=self._ag_pg[0], no_copy=True)
def _pipeline_step(self):
with torch.cuda.stream(self._completion_st):
for block_id in range(self._num_blocks):
for chunk_id in range(self._num_chunks):
self._reductions_works[block_id][chunk_id].wait()
self.__launch_step_kernel(
self._fp32_p,
self._fp16_p,
self._fp32_m,
self._fp32_v,
self._fp16_g)
torch.distributed.all_gather(self._new_params_mega_shards, self._fp16_p, group=self._ag_pg[0], no_copy=True)
def _flatten_grad_mt(self, scale):
if self._flat_mt and len(self._grads) > 0:
self._overflow_buf.zero_()
multi_tensor_applier(
amp_C.multi_tensor_scale,
self._overflow_buf,
list(zip(*self._grads)),
scale)
self._grads = []
def _do_overlapped_reduction(self, param_i, param_grads_size, param_offset, param):
if self._flat_mt:
self._grads.append( (param.grad, self._individual_flat_grads[param_i]) )
else:
torch.div(param.grad, self._world_size if self._predivide else 1.0, out=self._individual_flat_grads[param_i])
self._grads_generated[param_i]=True
if not self._last_step:
if self._overlap_reductions:
flush_block = self._get_flush_block()
while flush_block:
block_id = flush_block[0] // self._block_size
self._pipeline_block_reductions(block_id)
if self._full_pipeline:
self._pipeline_block_step(block_id)
flush_block = self._get_flush_block()
def set_global_scale(self, global_scale):
self._global_scale = global_scale
@property
def global_scale(self):
return self._global_scale
@property
|
BSD 3-Clause New or Revised License
|
hyroai/gamla
|
gamla/functional.py
|
sort_by
|
python
|
def sort_by(key: Callable):
def sort_by(seq: Iterable):
return sorted(seq, key=key)
return sort_by
|
Return a new list containing all items from the iterable in ascending order, sorted by a key.
>>> sort_by(len)(["hi!", "my", "name", "is"])
['my', 'is', 'hi!', 'name']
|
https://github.com/hyroai/gamla/blob/371d895ecff2833ca68d13025b695b26cd68ac17/gamla/functional.py#L33-L42
|
import dataclasses
import functools
import hashlib
import heapq
import inspect
import itertools
import json
import random
from concurrent import futures
from operator import truediv
from typing import (
AbstractSet,
Any,
Callable,
Collection,
Dict,
Iterable,
List,
Sequence,
Text,
Tuple,
TypeVar,
Union,
)
import heapq_max
import toolz
from gamla import currying, excepts_decorator, operator
from gamla.optimized import sync
|
MIT License
|
renfredxh/pyllettown
|
tmx.py
|
ObjectLayer.collide
|
python
|
def collide(self, rect, propname):
r = []
for object in self.get_in_region(rect.left, rect.top, rect.right,
rect.bottom):
if propname in object or propname in self.properties:
r.append(object)
return r
|
Find all objects the rect is touching that have the indicated
property name set.
|
https://github.com/renfredxh/pyllettown/blob/dfbc1965ec84270565f8e95878abcc4b4c1e6b57/tmx.py#L589-L598
|
import sys
import struct
import pygame
from pygame.locals import *
from pygame import Rect
from xml.etree import ElementTree
from base64 import b64decode
from zlib import decompress
class Tile(object):
def __init__(self, gid, surface, tileset):
self.gid = gid
self.surface = surface
self.tile_width = tileset.tile_width
self.tile_height = tileset.tile_height
self.properties = {}
@classmethod
def fromSurface(cls, surface):
class ts:
tile_width, tile_height = surface.get_size()
return cls(0, surface, ts)
def loadxml(self, tag):
props = tag.find('properties')
if props is None:
return
for c in props.findall('property'):
name = c.attrib['name']
value = c.attrib['value']
if value.isdigit():
value = int(value)
self.properties[name] = value
def __repr__(self):
return '<Tile %d>' % self.gid
class Tileset(object):
def __init__(self, name, tile_width, tile_height, firstgid):
self.name = name
self.tile_width = tile_width
self.tile_height = tile_height
self.firstgid = firstgid
self.tiles = []
self.properties = {}
@classmethod
def fromxml(cls, tag, firstgid=None):
if 'source' in tag.attrib:
firstgid = int(tag.attrib['firstgid'])
with open(tag.attrib['source']) as f:
tileset = ElementTree.fromstring(f.read())
return cls.fromxml(tileset, firstgid)
name = tag.attrib['name']
if firstgid is None:
firstgid = int(tag.attrib['firstgid'])
tile_width = int(tag.attrib['tilewidth'])
tile_height = int(tag.attrib['tileheight'])
tileset = cls(name, tile_width, tile_height, firstgid)
for c in tag.getchildren():
if c.tag == "image":
tileset.add_image(c.attrib['source'])
elif c.tag == 'tile':
gid = tileset.firstgid + int(c.attrib['id'])
tileset.get_tile(gid).loadxml(c)
return tileset
def add_image(self, file):
image = pygame.image.load(file).convert_alpha()
if not image:
sys.exit("Error creating new Tileset: file %s not found" % file)
id = self.firstgid
for line in range(image.get_height() // self.tile_height):
for column in range(image.get_width() // self.tile_width):
pos = Rect(column * self.tile_width, line * self.tile_height,
self.tile_width, self.tile_height)
self.tiles.append(Tile(id, image.subsurface(pos), self))
id += 1
def get_tile(self, gid):
return self.tiles[gid - self.firstgid]
class Tilesets(dict):
def add(self, tileset):
for i, tile in enumerate(tileset.tiles):
i += tileset.firstgid
self[i] = tile
class Cell(object):
def __init__(self, x, y, px, py, tile):
self.x, self.y = x, y
self.px, self.py = px, py
self.tile = tile
self.topleft = (px, py)
self.left = px
self.right = px + tile.tile_width
self.top = py
self.bottom = py + tile.tile_height
self.center = (px + tile.tile_width // 2, py + tile.tile_height // 2)
self._added_properties = {}
self._deleted_properties = set()
def __repr__(self):
return '<Cell %s,%s %d>' % (self.px, self.py, self.tile.gid)
def __contains__(self, key):
if key in self._deleted_properties:
return False
return key in self._added_properties or key in self.tile.properties
def __getitem__(self, key):
if key in self._deleted_properties:
raise KeyError(key)
if key in self._added_properties:
return self._added_properties[key]
if key in self.tile.properties:
return self.tile.properties[key]
raise KeyError(key)
def __setitem__(self, key, value):
self._added_properties[key] = value
def __delitem__(self, key):
self._deleted_properties.add(key)
def intersects(self, other):
if self.px + self.tile.tile_width < other.x:
return False
if other.x + other.width - 1 < self.px:
return False
if self.py + self.tile.tile_height < other.y:
return False
if other.y + other.height - 1 < self.py:
return False
return True
class LayerIterator(object):
def __init__(self, layer):
self.layer = layer
self.i, self.j = 0, 0
def __next__(self):
if self.i == self.layer.width - 1:
self.j += 1
self.i = 0
if self.j == self.layer.height - 1:
raise StopIteration()
value = self.layer[self.i, self.j]
self.i += 1
return value
class Layer(object):
def __init__(self, name, visible, map):
self.name = name
self.visible = visible
self.position = (0, 0)
self.px_width = map.px_width
self.px_height = map.px_height
self.tile_width = map.tile_width
self.tile_height = map.tile_height
self.width = map.width
self.height = map.height
self.tilesets = map.tilesets
self.group = pygame.sprite.Group()
self.properties = {}
self.cells = {}
def __repr__(self):
return '<Layer "%s" at 0x%x>' % (self.name, id(self))
def __getitem__(self, pos):
return self.cells.get(pos)
def __setitem__(self, pos, tile):
x, y = pos
px = x * self.tile_width
py = y * self.tile_width
self.cells[pos] = Cell(x, y, px, py, tile)
def __iter__(self):
return LayerIterator(self)
@classmethod
def fromxml(cls, tag, map):
layer = cls(tag.attrib['name'], int(tag.attrib.get('visible', 1)), map)
data = tag.find('data')
if data is None:
raise ValueError('layer %s does not contain <data>' % layer.name)
data = data.text.strip()
data = data.encode()
data = decompress(b64decode(data))
data = struct.unpack('<%di' % (len(data)/4,), data)
assert len(data) == layer.width * layer.height
for i, gid in enumerate(data):
if gid < 1: continue
tile = map.tilesets[gid]
x = i % layer.width
y = i // layer.width
layer.cells[x,y] = Cell(x, y, x*map.tile_width, y*map.tile_height, tile)
return layer
def update(self, dt, *args):
pass
def set_view(self, x, y, w, h, viewport_ox=0, viewport_oy=0):
self.view_x, self.view_y = x, y
self.view_w, self.view_h = w, h
x -= viewport_ox
y -= viewport_oy
self.position = (x, y)
def draw(self, surface):
ox, oy = self.position
w, h = self.view_w, self.view_h
for x in range(ox, ox + w + self.tile_width, self.tile_width):
i = x // self.tile_width
for y in range(oy, oy + h + self.tile_height, self.tile_height):
j = y // self.tile_height
if (i, j) not in self.cells:
continue
cell = self.cells[i, j]
surface.blit(cell.tile.surface, (cell.px - ox, cell.py - oy))
def find(self, *properties):
r = []
for propname in properties:
for cell in list(self.cells.values()):
if cell and propname in cell:
r.append(cell)
return r
def match(self, **properties):
r = []
for propname in properties:
for cell in list(self.cells.values()):
if propname not in cell:
continue
if properties[propname] == cell[propname]:
r.append(cell)
return r
def collide(self, rect, propname):
r = []
for cell in self.get_in_region(rect.left, rect.top, rect.right,
rect.bottom):
if not cell.intersects(rect):
continue
if propname in cell:
r.append(cell)
return r
def get_in_region(self, x1, y1, x2, y2):
i1 = max(0, x1 // self.tile_width)
j1 = max(0, y1 // self.tile_height)
i2 = min(self.width, x2 // self.tile_width + 1)
j2 = min(self.height, y2 // self.tile_height + 1)
return [self.cells[i, j]
for i in range(int(i1), int(i2))
for j in range(int(j1), int(j2))
if (i, j) in self.cells]
def get_at(self, x, y):
i = x // self.tile_width
j = y // self.tile_height
return self.cells.get((i, j))
def neighbors(self, index):
i, j = index
n = []
if i < self.width - 1:
n.append((i + 1, j))
if i > 0:
n.append((i - 1, j))
if j < self.height - 1:
n.append((i, j + 1))
if j > 0:
n.append((i, j - 1))
return n
class Object(object):
def __init__(self, type, x, y, width=0, height=0, name=None,
gid=None, tile=None, visible=1):
self.type = type
self.px = x
self.left = x
if tile:
y -= tile.tile_height
width = tile.tile_width
height = tile.tile_height
self.py = y
self.top = y
self.width = width
self.right = x + width
self.height = height
self.bottom = y + height
self.name = name
self.gid = gid
self.tile = tile
self.visible = visible
self.properties = {}
self._added_properties = {}
self._deleted_properties = set()
def __repr__(self):
if self.tile:
return '<Object %s,%s %s,%s tile=%d>' % (self.px, self.py, self.width, self.height, self.gid)
else:
return '<Object %s,%s %s,%s>' % (self.px, self.py, self.width, self.height)
def __contains__(self, key):
if key in self._deleted_properties:
return False
if key in self._added_properties:
return True
if key in self.properties:
return True
return self.tile and key in self.tile.properties
def __getitem__(self, key):
if key in self._deleted_properties:
raise KeyError(key)
if key in self._added_properties:
return self._added_properties[key]
if key in self.properties:
return self.properties[key]
if self.tile and key in self.tile.properties:
return self.tile.properties[key]
raise KeyError(key)
def __setitem__(self, key, value):
self._added_properties[key] = value
def __delitem__(self, key):
self._deleted_properties.add(key)
def draw(self, surface, view_x, view_y):
if not self.visible:
return
x, y = (self.px - view_x, self.py - view_y)
if self.tile:
surface.blit(self.tile.surface, (x, y))
else:
r = pygame.Rect((x, y), (self.width, self.height))
pygame.draw.rect(surface, (255, 100, 100), r, 2)
@classmethod
def fromxml(cls, tag, map):
if 'gid' in tag.attrib:
gid = int(tag.attrib['gid'])
tile = map.tilesets[gid]
w = tile.tile_width
h = tile.tile_height
else:
gid = None
tile = None
w = int(tag.attrib['width'])
h = int(tag.attrib['height'])
o = cls(tag.attrib.get('type', 'rect'), int(tag.attrib['x']),
int(tag.attrib['y']), w, h, tag.attrib.get('name'), gid, tile,
int(tag.attrib.get('visible', 1)))
props = tag.find('properties')
if props is None:
return o
for c in props.findall('property'):
name = c.attrib['name']
value = c.attrib['value']
if value.isdigit():
value = int(value)
o.properties[name] = value
return o
def intersects(self, x1, y1, x2, y2):
if x2 < self.px:
return False
if y2 < self.py:
return False
if x1 > self.px + self.width:
return False
if y1 > self.py + self.height:
return False
return True
class ObjectLayer(object):
def __init__(self, name, color, objects, opacity=1,
visible=1, position=(0, 0)):
self.name = name
self.color = color
self.objects = objects
self.opacity = opacity
self.visible = visible
self.position = position
self.properties = {}
def __repr__(self):
return '<ObjectLayer "%s" at 0x%x>' % (self.name, id(self))
@classmethod
def fromxml(cls, tag, map):
layer = cls(tag.attrib['name'], tag.attrib.get('color'), [],
float(tag.attrib.get('opacity', 1)),
int(tag.attrib.get('visible', 1)))
for object in tag.findall('object'):
layer.objects.append(Object.fromxml(object, map))
for c in tag.findall('property'):
name = c.attrib['name']
value = c.attrib['value']
if value.isdigit():
value = int(value)
layer.properties[name] = value
return layer
def update(self, dt, *args):
pass
def set_view(self, x, y, w, h, viewport_ox=0, viewport_oy=0):
self.view_x, self.view_y = x, y
self.view_w, self.view_h = w, h
x -= viewport_ox
y -= viewport_oy
self.position = (x, y)
def draw(self, surface):
if not self.visible:
return
ox, oy = self.position
w, h = self.view_w, self.view_h
for object in self.objects:
object.draw(surface, self.view_x, self.view_y)
def find(self, *properties):
r = []
for propname in properties:
for object in self.objects:
if object and propname in object or propname in self.properties:
r.append(object)
return r
def match(self, **properties):
r = []
for propname in properties:
for object in self.objects:
if propname in object:
val = object[propname]
elif propname in self.properties:
val = self.properties[propname]
else:
continue
if properties[propname] == val:
r.append(object)
return r
|
MIT License
|
opsdroid/opsdroid
|
opsdroid/connector/matrix/connector.py
|
ensure_room_id_and_send
|
python
|
def ensure_room_id_and_send(func):
@functools.wraps(func)
async def ensure_room_id(self, event):
if not event.target.startswith(("!", "#")):
event.target = self.room_ids[event.target]
if not event.target.startswith("!"):
response = await self.connection.room_resolve_alias(event.target)
if isinstance(response, nio.RoomResolveAliasError):
_LOGGER.error(
f"Error resolving room id for {event.target}: {response.message} (status code {response.status_code})"
)
else:
event.target = response.room_id
try:
return_val = await func(self, event)
except aiohttp.client_exceptions.ServerDisconnectedError:
_LOGGER.debug(_("Server had disconnected, retrying send."))
return_val = await func(self, event)
if isinstance(return_val, nio.responses.ErrorResponse):
raise MatrixException(return_val)
return return_val
return ensure_room_id
|
Ensure that the target for the event is a matrix room id.
Also retry the function call if the server disconnects.
|
https://github.com/opsdroid/opsdroid/blob/9a48364869ded7cdd2420b43b0c2c153e846439e/opsdroid/connector/matrix/connector.py#L46-L79
|
import functools
import json
import logging
import re
from pathlib import Path
from urllib.parse import urlparse
import aiohttp
import nio
import nio.responses
import nio.exceptions
from opsdroid import const, events
from opsdroid.connector import Connector, register_event
from voluptuous import Inclusive, Required
from . import events as matrixevents
from .create_events import MatrixEventCreator
from .html_cleaner import clean
_LOGGER = logging.getLogger(__name__)
CONFIG_SCHEMA = {
Inclusive("mxid", "login"): str,
Inclusive("password", "login"): str,
"access_token": str,
Required("rooms"): dict,
"homeserver": str,
"nick": str,
"room_specific_nicks": bool,
"device_name": str,
"device_id": str,
"store_path": str,
"enable_encryption": bool,
}
__all__ = ["ConnectorMatrix"]
class MatrixException(Exception):
def __init__(self, nio_error):
self.nio_error = nio_error
|
Apache License 2.0
|
bihealth/sodar_core
|
projectroles/templatetags/projectroles_tags.py
|
get_backend_plugins
|
python
|
def get_backend_plugins():
return get_active_plugins('backend')
|
Get active backend plugins
|
https://github.com/bihealth/sodar_core/blob/4176f762b77fae4dfdf24d51328938b94d3a64ce/projectroles/templatetags/projectroles_tags.py#L49-L51
|
from django import template
from django.conf import settings
from django.urls import reverse
from django.utils import timezone
from projectroles.models import (
RoleAssignment,
RemoteProject,
SODAR_CONSTANTS,
PROJECT_TAG_STARRED,
)
from projectroles.plugins import get_active_plugins
from projectroles.project_tags import get_tag_state
from projectroles.templatetags.projectroles_common_tags import get_info_link
register = template.Library()
PROJECT_TYPE_PROJECT = SODAR_CONSTANTS['PROJECT_TYPE_PROJECT']
PROJECT_TYPE_CATEGORY = SODAR_CONSTANTS['PROJECT_TYPE_CATEGORY']
PROJECT_ROLE_OWNER = SODAR_CONSTANTS['PROJECT_ROLE_OWNER']
REMOTE_LEVEL_NONE = SODAR_CONSTANTS['REMOTE_LEVEL_NONE']
REMOTE_LEVEL_REVOKED = SODAR_CONSTANTS['REMOTE_LEVEL_REVOKED']
INDENT_PX = 25
ACTIVE_LEVEL_TYPES = [
SODAR_CONSTANTS['REMOTE_LEVEL_NONE'],
SODAR_CONSTANTS['REMOTE_LEVEL_READ_ROLES'],
]
@register.simple_tag
def sodar_constant(value):
return SODAR_CONSTANTS[value] if value in SODAR_CONSTANTS else None
@register.simple_tag
|
MIT License
|
doanguyen/lasotuvi
|
lasotuvi/DiaBan.py
|
diaBan.nhapDaiHan
|
python
|
def nhapDaiHan(self, cucSo, gioiTinh):
for cung in self.thapNhiCung:
khoangCach = khoangCachCung(cung.cungSo, self.cungMenh, gioiTinh)
cung.daiHan(cucSo + khoangCach * 10)
return self
|
Nhap dai han
Args:
cucSo (TYPE): Description
gioiTinh (TYPE): Description
Returns:
TYPE: Description
|
https://github.com/doanguyen/lasotuvi/blob/ace8379a3ea033674e8a9096f5b98a9e2041eace/lasotuvi/DiaBan.py#L153-L166
|
from lasotuvi.AmDuong import diaChi, dichCung, khoangCachCung
class cungDiaBan(object):
def __init__(self, cungID):
hanhCung = [None, "Thủy", "Thổ", "Mộc", "Mộc", "Thổ", "Hỏa",
"Hỏa", "Thổ", "Kim", "Kim", "Thổ", "Thủy"]
self.cungSo = cungID
self.hanhCung = hanhCung[cungID]
self.cungSao = []
self.cungAmDuong = -1 if (self.cungSo % 2 == 0) else 1
self.cungTen = diaChi[self.cungSo]['tenChi']
self.cungThan = False
def themSao(self, sao):
dacTinhSao(self.cungSo, sao)
self.cungSao.append(sao.__dict__)
return self
def cungChu(self, tenCungChu):
self.cungChu = tenCungChu
return self
def daiHan(self, daiHan):
self.cungDaiHan = daiHan
return self
def tieuHan(self, tieuHan):
self.cungTieuHan = diaChi[tieuHan + 1]['tenChi']
return self
def anCungThan(self):
self.cungThan = True
def anTuan(self):
self.tuanTrung = True
def anTriet(self):
self.trietLo = True
class diaBan(object):
def __init__(self, thangSinhAmLich, gioSinhAmLich):
super(diaBan, self).__init__()
self.thangSinhAmLich = thangSinhAmLich
self.gioSinhAmLich = gioSinhAmLich
self.thapNhiCung = [cungDiaBan(i) for i in range(13)]
self.nhapCungChu()
self.nhapCungThan()
def cungChu(self, thangSinhAmLich, gioSinhAmLich):
self.cungThan = dichCung(3, thangSinhAmLich - 1, gioSinhAmLich - 1)
self.cungMenh = dichCung(3, thangSinhAmLich - 1, - (gioSinhAmLich) + 1)
cungPhuMau = dichCung(self.cungMenh, 1)
cungPhucDuc = dichCung(self.cungMenh, 2)
cungDienTrach = dichCung(self.cungMenh, 3)
cungQuanLoc = dichCung(self.cungMenh, 4)
self.cungNoboc = dichCung(self.cungMenh, 5)
cungThienDi = dichCung(self.cungMenh, 6)
self.cungTatAch = dichCung(self.cungMenh, 7)
cungTaiBach = dichCung(self.cungMenh, 8)
cungTuTuc = dichCung(self.cungMenh, 9)
cungTheThiep = dichCung(self.cungMenh, 10)
cungHuynhDe = dichCung(self.cungMenh, 11)
cungChuThapNhiCung = [
{
'cungId': 1,
'tenCung': "Mệnh",
'cungSoDiaBan': self.cungMenh
},
{
'cungId': 2,
'tenCung': "Phụ mẫu",
'cungSoDiaBan': cungPhuMau
},
{
'cungId': 3,
'tenCung': "Phúc đức",
'cungSoDiaBan': cungPhucDuc
},
{
'cungId': 4,
'tenCung': "Điền trạch",
'cungSoDiaBan': cungDienTrach
},
{
'cungId': 5,
'tenCung': "Quan lộc",
'cungSoDiaBan': cungQuanLoc
},
{
'cungId': 6,
'tenCung': "Nô bộc",
'cungSoDiaBan': self.cungNoboc
},
{
'cungId': 7,
'tenCung': "Thiên di",
'cungSoDiaBan': cungThienDi
},
{
'cungId': 8,
'tenCung': "Tật Ách",
'cungSoDiaBan': self.cungTatAch
},
{
'cungId': 9,
'tenCung': "Tài Bạch",
'cungSoDiaBan': cungTaiBach
},
{
'cungId': 10,
'tenCung': "Tử tức",
'cungSoDiaBan': cungTuTuc
},
{
'cungId': 11,
'tenCung': "Phu thê",
'cungSoDiaBan': cungTheThiep
},
{
'cungId': 12,
'tenCung': "Huynh đệ",
'cungSoDiaBan': cungHuynhDe
}
]
return cungChuThapNhiCung
def nhapCungChu(self):
for cung in self.cungChu(self.thangSinhAmLich, self.gioSinhAmLich):
self.thapNhiCung[cung['cungSoDiaBan']].cungChu(cung['tenCung'])
return self
|
MIT License
|
redis-collections/redis-collections
|
redis_collections/dicts.py
|
Dict.__init__
|
python
|
def __init__(self, *args, **kwargs):
data = args[0] if args else kwargs.pop('data', None)
writeback = kwargs.pop('writeback', False)
super().__init__(**kwargs)
self.writeback = writeback
self.cache = {}
if data:
self.update(data)
|
Create a new Dict object.
If the first argument (*data*) is another mapping type, create the new
Dict with its items as the initial data.
Or, If the first argument is an iterable of ``(key, value)`` pairs,
create the new Dict with those items as the initial data.
Unlike Python's built-in :class:`dict` type, initial items cannot be
set using keyword arguments.
Keyword arguments are passed to the :class:`RedisCollection`
constructor.
:param data: Initial data.
:type data: iterable or mapping
:param redis: Redis client instance. If not provided, default Redis
connection is used.
:type redis: :class:`redis.StrictRedis`
:param key: Redis key for the collection. Collections with the same key
point to the same data. If not provided, a random
string is generated.
:type key: str
:param writeback: If ``True``, keep a local cache of changes for
storing modifications to mutable values. Changes will
be written to Redis after calling the ``sync``
method.
:type writeback: bool
|
https://github.com/redis-collections/redis-collections/blob/04af71c6bc5864ce5a7ce147c147e0bddee665ca/redis_collections/dicts.py#L53-L93
|
import collections.abc as collections_abc
import collections
import operator
from redis.client import Pipeline
from .base import RedisCollection
class Dict(RedisCollection, collections_abc.MutableMapping):
_pickle_key = RedisCollection._pickle_3
_unpickle_key = RedisCollection._unpickle
_pickle_value = RedisCollection._pickle_3
class __missing_value:
def __repr__(self):
return '<missing value>'
__marker = __missing_value()
|
ISC License
|
docusign/docusign-python-client
|
docusign_esign/models/bcc_email_archive.py
|
BccEmailArchive.__ne__
|
python
|
def __ne__(self, other):
if not isinstance(other, BccEmailArchive):
return True
return self.to_dict() != other.to_dict()
|
Returns true if both objects are not equal
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/bcc_email_archive.py#L358-L363
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class BccEmailArchive(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'account_id': 'str',
'bcc_email_archive_id': 'str',
'created': 'str',
'created_by': 'UserInfo',
'email': 'str',
'email_notification_id': 'str',
'modified': 'str',
'modified_by': 'UserInfo',
'status': 'str',
'uri': 'str'
}
attribute_map = {
'account_id': 'accountId',
'bcc_email_archive_id': 'bccEmailArchiveId',
'created': 'created',
'created_by': 'createdBy',
'email': 'email',
'email_notification_id': 'emailNotificationId',
'modified': 'modified',
'modified_by': 'modifiedBy',
'status': 'status',
'uri': 'uri'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._account_id = None
self._bcc_email_archive_id = None
self._created = None
self._created_by = None
self._email = None
self._email_notification_id = None
self._modified = None
self._modified_by = None
self._status = None
self._uri = None
self.discriminator = None
setattr(self, "_{}".format('account_id'), kwargs.get('account_id', None))
setattr(self, "_{}".format('bcc_email_archive_id'), kwargs.get('bcc_email_archive_id', None))
setattr(self, "_{}".format('created'), kwargs.get('created', None))
setattr(self, "_{}".format('created_by'), kwargs.get('created_by', None))
setattr(self, "_{}".format('email'), kwargs.get('email', None))
setattr(self, "_{}".format('email_notification_id'), kwargs.get('email_notification_id', None))
setattr(self, "_{}".format('modified'), kwargs.get('modified', None))
setattr(self, "_{}".format('modified_by'), kwargs.get('modified_by', None))
setattr(self, "_{}".format('status'), kwargs.get('status', None))
setattr(self, "_{}".format('uri'), kwargs.get('uri', None))
@property
def account_id(self):
return self._account_id
@account_id.setter
def account_id(self, account_id):
self._account_id = account_id
@property
def bcc_email_archive_id(self):
return self._bcc_email_archive_id
@bcc_email_archive_id.setter
def bcc_email_archive_id(self, bcc_email_archive_id):
self._bcc_email_archive_id = bcc_email_archive_id
@property
def created(self):
return self._created
@created.setter
def created(self, created):
self._created = created
@property
def created_by(self):
return self._created_by
@created_by.setter
def created_by(self, created_by):
self._created_by = created_by
@property
def email(self):
return self._email
@email.setter
def email(self, email):
self._email = email
@property
def email_notification_id(self):
return self._email_notification_id
@email_notification_id.setter
def email_notification_id(self, email_notification_id):
self._email_notification_id = email_notification_id
@property
def modified(self):
return self._modified
@modified.setter
def modified(self, modified):
self._modified = modified
@property
def modified_by(self):
return self._modified_by
@modified_by.setter
def modified_by(self, modified_by):
self._modified_by = modified_by
@property
def status(self):
return self._status
@status.setter
def status(self, status):
self._status = status
@property
def uri(self):
return self._uri
@uri.setter
def uri(self, uri):
self._uri = uri
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(BccEmailArchive, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
def __eq__(self, other):
if not isinstance(other, BccEmailArchive):
return False
return self.to_dict() == other.to_dict()
|
MIT License
|
foremast/foremast
|
src/foremast/version.py
|
get_version
|
python
|
def get_version():
version = 'Not installed.'
try:
version = pkg_resources.get_distribution(__package__).version
except pkg_resources.DistributionNotFound:
pass
return version
|
Retrieve package version.
|
https://github.com/foremast/foremast/blob/889f81b3d018301cb5f1640b14c115ae9d602cee/src/foremast/version.py#L5-L14
|
import pkg_resources
|
Apache License 2.0
|
uber-archive/plato-research-dialogue-system
|
plato/utilities/parser/data_parser.py
|
DataParser.initialize
|
python
|
def initialize(self, **kwargs):
pass
|
Initialize the internal structures of the data parser.
:param kwargs:
:return:
|
https://github.com/uber-archive/plato-research-dialogue-system/blob/1db30be390df6903be89fdf5a515debc7d7defb4/plato/utilities/parser/data_parser.py#L30-L38
|
__author__ = "Alexandros Papangelis"
from abc import ABC, abstractmethod
class DataParser(ABC):
@abstractmethod
|
Apache License 2.0
|
gtaylor/python-colormath
|
colormath/chromatic_adaptation.py
|
apply_chromatic_adaptation_on_color
|
python
|
def apply_chromatic_adaptation_on_color(color, targ_illum, adaptation="bradford"):
xyz_x = color.xyz_x
xyz_y = color.xyz_y
xyz_z = color.xyz_z
orig_illum = color.illuminant
targ_illum = targ_illum.lower()
observer = color.observer
adaptation = adaptation.lower()
color.xyz_x, color.xyz_y, color.xyz_z = apply_chromatic_adaptation(
xyz_x,
xyz_y,
xyz_z,
orig_illum,
targ_illum,
observer=observer,
adaptation=adaptation,
)
color.set_illuminant(targ_illum)
return color
|
Convenience function to apply an adaptation directly to a Color object.
|
https://github.com/gtaylor/python-colormath/blob/4a076831fd5136f685aa7143db81eba27b2cd19a/colormath/chromatic_adaptation.py#L101-L125
|
import logging
import numpy
from numpy.linalg import pinv
from colormath import color_constants
logger = logging.getLogger(__name__)
def _get_adaptation_matrix(wp_src, wp_dst, observer, adaptation):
m_sharp = color_constants.ADAPTATION_MATRICES[adaptation]
if isinstance(wp_src, str):
orig_illum = wp_src.lower()
wp_src = color_constants.ILLUMINANTS[observer][orig_illum]
elif hasattr(wp_src, "__iter__"):
wp_src = wp_src
if isinstance(wp_dst, str):
targ_illum = wp_dst.lower()
wp_dst = color_constants.ILLUMINANTS[observer][targ_illum]
elif hasattr(wp_dst, "__iter__"):
wp_dst = wp_dst
rgb_src = numpy.dot(m_sharp, wp_src)
rgb_dst = numpy.dot(m_sharp, wp_dst)
m_rat = numpy.diag(rgb_dst / rgb_src)
m_xfm = numpy.dot(numpy.dot(pinv(m_sharp), m_rat), m_sharp)
return m_xfm
def apply_chromatic_adaptation(
val_x, val_y, val_z, orig_illum, targ_illum, observer="2", adaptation="bradford"
):
adaptation = adaptation.lower()
if isinstance(orig_illum, str):
orig_illum = orig_illum.lower()
wp_src = color_constants.ILLUMINANTS[observer][orig_illum]
elif hasattr(orig_illum, "__iter__"):
wp_src = orig_illum
if isinstance(targ_illum, str):
targ_illum = targ_illum.lower()
wp_dst = color_constants.ILLUMINANTS[observer][targ_illum]
elif hasattr(targ_illum, "__iter__"):
wp_dst = targ_illum
logger.debug(" \\* Applying adaptation matrix: %s", adaptation)
transform_matrix = _get_adaptation_matrix(wp_src, wp_dst, observer, adaptation)
XYZ_matrix = numpy.array((val_x, val_y, val_z))
result_matrix = numpy.dot(transform_matrix, XYZ_matrix)
return result_matrix[0], result_matrix[1], result_matrix[2]
|
BSD 3-Clause New or Revised License
|
auroua/insightface_tf
|
nets/L_Resnet_E_IR_GBN.py
|
resnetse_v1_block_2
|
python
|
def resnetse_v1_block_2(scope, base_depth, num_units, stride, rate=1, unit_fn=None):
return Block(scope, unit_fn, [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': 1,
'rate': rate
}] * (num_units - 1) + [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': stride,
'rate': rate
}])
|
Helper function for creating a resnet_v1 bottleneck block.
Args:
scope: The scope of the block.
base_depth: The depth of the bottleneck layer for each unit.
num_units: The number of units in the block.
stride: The stride of the block, implemented as a stride in the last unit.
All other units have stride=1.
Returns:
A resnet_v1 bottleneck block.
|
https://github.com/auroua/insightface_tf/blob/6ffe4296460bdfea56f91521db6d6412a89249d9/nets/L_Resnet_E_IR_GBN.py#L265-L288
|
import tensorflow as tf
import tensorlayer as tl
from tensorflow.contrib.layers.python.layers import utils
import collections
from tensorlayer.layers import Layer, list_remove_repeat
from tl_layers_modify import GroupNormLayer
class ElementwiseLayer(Layer):
def __init__(
self,
layer = [],
combine_fn = tf.minimum,
name ='elementwise_layer',
act = None,
):
Layer.__init__(self, name=name)
if act:
print(" [TL] ElementwiseLayer %s: size:%s fn:%s, act:%s" % (
self.name, layer[0].outputs.get_shape(), combine_fn.__name__, act.__name__))
else:
print(" [TL] ElementwiseLayer %s: size:%s fn:%s" % (
self.name, layer[0].outputs.get_shape(), combine_fn.__name__))
self.outputs = layer[0].outputs
for l in layer[1:]:
self.outputs = combine_fn(self.outputs, l.outputs, name=name)
if act:
self.outputs = act(self.outputs)
self.all_layers = list(layer[0].all_layers)
self.all_params = list(layer[0].all_params)
self.all_drop = dict(layer[0].all_drop)
for i in range(1, len(layer)):
self.all_layers.extend(list(layer[i].all_layers))
self.all_params.extend(list(layer[i].all_params))
self.all_drop.update(dict(layer[i].all_drop))
self.all_layers = list_remove_repeat(self.all_layers)
self.all_params = list_remove_repeat(self.all_params)
def subsample(inputs, factor, scope=None):
if factor == 1:
return inputs
else:
return tl.layers.MaxPool2d(inputs, [1, 1], strides=(factor, factor), name=scope)
def conv2d_same(inputs, num_outputs, kernel_size, strides, rate=1, w_init=None, scope=None, trainable=None):
if strides == 1:
if rate == 1:
nets = tl.layers.Conv2d(inputs, n_filter=num_outputs, filter_size=(kernel_size, kernel_size), b_init=None,
strides=(strides, strides), W_init=w_init, act=None, padding='SAME', name=scope,
use_cudnn_on_gpu=True)
nets = GroupNormLayer(layer=nets, act=tf.identity, name=scope+'_bn/GroupNorm')
else:
nets = tl.layers.AtrousConv2dLayer(inputs, n_filter=num_outputs, filter_size=(kernel_size, kernel_size),
rate=rate, act=None, W_init=w_init, padding='SAME', name=scope)
nets = GroupNormLayer(layer=nets, act=tf.identity, name=scope+'_bn/GroupNorm')
return nets
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
inputs = tl.layers.PadLayer(inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]], name='padding_%s' % scope)
if rate == 1:
nets = tl.layers.Conv2d(inputs, n_filter=num_outputs, filter_size=(kernel_size, kernel_size), b_init=None,
strides=(strides, strides), W_init=w_init, act=None, padding='VALID', name=scope,
use_cudnn_on_gpu=True)
nets = GroupNormLayer(layer=nets, act=tf.identity, name=scope+'_bn/GroupNorm')
else:
nets = tl.layers.AtrousConv2dLayer(inputs, n_filter=num_outputs, filter_size=(kernel_size, kernel_size), b_init=None,
rate=rate, act=None, W_init=w_init, padding='SAME', name=scope)
nets = GroupNormLayer(layer=nets, act=tf.identity, name=scope+'_bn/GroupNorm')
return nets
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, scope=None):
with tf.variable_scope(scope, 'bottleneck_v1') as sc:
depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = subsample(inputs, stride, 'shortcut')
else:
shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
b_init=None, name='shortcut_conv')
shortcut = GroupNormLayer(layer=shortcut, act=tf.identity, name='shortcut_bn/BatchNorm')
residual = tl.layers.Conv2d(inputs, depth_bottleneck, filter_size=(1, 1), strides=(1, 1), act=None, b_init=None,
name='conv1')
residual = GroupNormLayer(layer=residual, act=tf.nn.relu, name='conv1_bn/BatchNorm')
residual = conv2d_same(residual, depth_bottleneck, kernel_size=3, strides= stride, rate=rate, scope='conv2')
residual = tl.layers.Conv2d(residual, depth, filter_size=(1, 1), strides=(1, 1), act=None, b_init=None,
name='conv3')
residual = GroupNormLayer(layer=residual, act=tf.identity, name='conv3_bn/BatchNorm',
scale_init=tf.constant_initializer(0.0))
output = ElementwiseLayer(layer=[shortcut, residual],
combine_fn=tf.add,
name='combine_layer',
act=tf.nn.relu)
return output
def bottleneck_IR(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
with tf.variable_scope(scope, 'bottleneck_v1') as sc:
depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = subsample(inputs, stride, 'shortcut')
else:
shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
shortcut = GroupNormLayer(layer=shortcut, act=tf.identity, name='shortcut_bn/BatchNorm')
residual = GroupNormLayer(layer=inputs, act=tf.identity, name='conv1_bn1')
residual = tl.layers.Conv2d(residual, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
residual = GroupNormLayer(layer=residual, act=tf.identity, name='conv1_bn2')
residual = tl.layers.PReluLayer(residual)
residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
output = ElementwiseLayer(layer=[shortcut, residual],
combine_fn=tf.add,
name='combine_layer',
act=None)
return output
def bottleneck_IR_SE(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
with tf.variable_scope(scope, 'bottleneck_v1') as sc:
depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = subsample(inputs, stride, 'shortcut')
else:
shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
shortcut = GroupNormLayer(layer=shortcut, act=tf.identity, name='shortcut_bn/BatchNorm')
residual = GroupNormLayer(layer=inputs, act=tf.identity, name='conv1_bn1')
residual = tl.layers.Conv2d(residual, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
residual = GroupNormLayer(layer=residual, act=tf.identity, name='conv1_bn2')
residual = tl.layers.PReluLayer(residual)
residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
squeeze = tl.layers.InputLayer(tf.reduce_mean(residual.outputs, axis=[1, 2]), name='squeeze_layer')
excitation1 = tl.layers.DenseLayer(squeeze, n_units=int(depth/16.0), act=tf.nn.relu,
W_init=w_init, name='excitation_1')
excitation2 = tl.layers.DenseLayer(excitation1, n_units=depth, act=tf.nn.sigmoid,
W_init=w_init, name='excitation_2')
scale = tl.layers.ReshapeLayer(excitation2, shape=[tf.shape(excitation2.outputs)[0], 1, 1, depth], name='excitation_reshape')
residual_se = ElementwiseLayer(layer=[residual, scale],
combine_fn=tf.multiply,
name='scale_layer',
act=None)
output = ElementwiseLayer(layer=[shortcut, residual_se],
combine_fn=tf.add,
name='combine_layer',
act=tf.nn.relu)
return output
def resnet(inputs, bottle_neck, blocks, w_init=None, trainable=None, scope=None):
with tf.variable_scope(scope):
net_inputs = tl.layers.InputLayer(inputs, name='input_layer')
if bottle_neck:
net = tl.layers.Conv2d(net_inputs, n_filter=64, filter_size=(3, 3), strides=(1, 1),
act=None, W_init=w_init, b_init=None, name='conv1', use_cudnn_on_gpu=True)
net = GroupNormLayer(layer=net, act=tf.identity, name='group_norm_0')
net = tl.layers.PReluLayer(net, name='prelu0')
else:
raise ValueError('The standard resnet must support the bottleneck layer')
for block in blocks:
with tf.variable_scope(block.scope):
for i, var in enumerate(block.args):
with tf.variable_scope('unit_%d' % (i+1)):
net = block.unit_fn(net, depth=var['depth'], depth_bottleneck=var['depth_bottleneck'],
w_init=w_init, stride=var['stride'], rate=var['rate'], scope=None,
trainable=trainable)
net = GroupNormLayer(layer=net, act=tf.identity, name='E_GN_0')
net = tl.layers.DropoutLayer(net, keep=0.4, name='E_Dropout')
net_shape = net.outputs.get_shape()
net = tl.layers.ReshapeLayer(net, shape=[-1, net_shape[1]*net_shape[2]*net_shape[3]], name='E_Reshapelayer')
net = tl.layers.DenseLayer(net, n_units=512, W_init=w_init, name='E_DenseLayer')
return net
class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])):
def resnetse_v1_block(scope, base_depth, num_units, stride, rate=1, unit_fn=None):
return Block(scope, unit_fn, [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': stride,
'rate': rate
}] + [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': 1,
'rate': rate
}] * (num_units - 1))
|
MIT License
|
deepmipt/intent_classifier
|
intent_model/multiclass.py
|
KerasMulticlassModel.infer_on_batch
|
python
|
def infer_on_batch(self, batch, labels=None):
texts = batch
if labels:
features = self.texts2vec(texts)
onehot_labels = labels2onehot(labels, classes=self.classes)
metrics_values = self.model.test_on_batch(features, onehot_labels.reshape(-1, self.n_classes))
return metrics_values
else:
features = self.texts2vec(texts)
predictions = self.model.predict(features)
return predictions
|
Method infers the model on the given batch
Args:
batch - list of texts
labels - list of labels
Returns:
loss and metrics values on the given batch, if labels are given
predictions, otherwise
|
https://github.com/deepmipt/intent_classifier/blob/3192644110f0ff1b032eab448ac3197ef52326a7/intent_model/multiclass.py#L142-L162
|
import json
import copy
import sys
from pathlib import Path
import numpy as np
import keras.metrics
import keras.optimizers
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from keras.models import Model
from keras.layers import Dense, Input, concatenate, Activation
from keras.layers.pooling import GlobalMaxPooling1D, MaxPooling1D
from keras.layers.convolutional import Conv1D
from keras.layers.core import Dropout
from keras.layers.normalization import BatchNormalization
from keras.regularizers import l2
from intent_model.embedding_inferable import EmbeddingInferableModel
from intent_model import metrics as metrics_file
from intent_model.utils import labels2onehot, log_metrics
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = '0'
set_session(tf.Session(config=config))
class KerasMulticlassModel(object):
def __init__(self, opt, *args, **kwargs):
self.opt = copy.deepcopy(opt)
self.model_path_ = Path(self.opt["model_path"])
self.confident_threshold = self.opt['confident_threshold']
if 'add_metrics' in self.opt.keys():
self.add_metrics = self.opt['add_metrics'].split(' ')
self.add_metrics_values = len(self.add_metrics) * [0.]
else:
self.add_metrics = None
self.opt["module"] = opt.get("module")
if self.opt['fasttext_model'] is not None:
if Path(self.opt['fasttext_model']).is_file():
self.fasttext_model = EmbeddingInferableModel(embedding_fname=self.opt['fasttext_model'],
embedding_dim=self.opt['embedding_size'],
module=self.opt["module"])
else:
self.fasttext_model = EmbeddingInferableModel(embedding_fname=self.opt['fasttext_model'],
embedding_dim=self.opt['embedding_size'],
embedding_url='http://lnsigo.mipt.ru/export/embeddings/reddit_fasttext_model.bin',
module=self.opt["module"])
else:
raise IOError("Error: FastText intent_model file path is not given")
if self.opt['model_from_saved']:
self.model = self.load(model_name=self.opt['model_name'],
fname=self.model_path_,
optimizer_name=self.opt['optimizer'],
lr=self.opt['lear_rate'],
decay=self.opt['lear_rate_decay'],
loss_name=self.opt['loss'],
metrics_names=self.opt['lear_metrics'],
add_metrics_file=metrics_file)
else:
self.classes = np.array(self.opt['classes'].split(" "))
self.n_classes = self.classes.shape[0]
self.model = self.init_model_from_scratch(model_name=self.opt['model_name'],
optimizer_name=self.opt['optimizer'],
lr=self.opt['lear_rate'],
decay=self.opt['lear_rate_decay'],
loss_name=self.opt['loss'],
metrics_names=self.opt['lear_metrics'],
add_metrics_file=metrics_file)
self.metrics_names = self.model.metrics_names
self.metrics_values = len(self.metrics_names) * [0.]
def texts2vec(self, sentences):
embeddings_batch = []
for sen in sentences:
embeddings = []
tokens = sen.split(' ')
tokens = [el for el in tokens if el != '']
if len(tokens) > self.opt['text_size']:
tokens = tokens[:self.opt['text_size']]
for tok in tokens:
embeddings.append(self.fasttext_model.infer(tok))
if len(tokens) < self.opt['text_size']:
pads = [np.zeros(self.opt['embedding_size'])
for _ in range(self.opt['text_size'] - len(tokens))]
embeddings = pads + embeddings
embeddings = np.asarray(embeddings)
embeddings_batch.append(embeddings)
embeddings_batch = np.asarray(embeddings_batch)
return embeddings_batch
def train_on_batch(self, batch):
texts = list(batch[0])
labels = list(batch[1])
features = self.texts2vec(texts)
onehot_labels = labels2onehot(labels, classes=self.classes)
metrics_values = self.model.train_on_batch(features, onehot_labels)
return metrics_values
|
Apache License 2.0
|
mrcagney/kml2geojson
|
kml2geojson/main.py
|
build_feature_collection
|
python
|
def build_feature_collection(node, name=None):
geojson = {
'type': 'FeatureCollection',
'features': [],
}
for placemark in get(node, 'Placemark'):
feature = build_feature(placemark)
if feature is not None:
geojson['features'].append(feature)
if name is not None:
geojson['name'] = name
return geojson
|
Build and return a (decoded) GeoJSON FeatureCollection corresponding to this KML DOM node (typically a KML Folder).
If a name is given, store it in the FeatureCollection's ``'name'`` attribute.
|
https://github.com/mrcagney/kml2geojson/blob/ac571420262dd2ed88fbaa24cca22a51f37d6684/kml2geojson/main.py#L465-L486
|
import shutil
import xml.dom.minidom as md
import re
import pathlib as pl
import json
GEOTYPES = [
'Polygon',
'LineString',
'Point',
'Track',
'gx:Track',
]
STYLE_TYPES = [
'svg',
'leaflet',
]
SPACE = re.compile(r'\s+')
def get(node, name):
return node.getElementsByTagName(name)
def get1(node, name):
s = get(node, name)
if s:
return s[0]
else:
return None
def attr(node, name):
return node.getAttribute(name)
def val(node):
try:
node.normalize()
return node.firstChild.wholeText.strip()
except AttributeError:
return ''
def valf(node):
try:
return float(val(node))
except ValueError:
return None
def numarray(a):
return [float(aa) for aa in a]
def coords1(s):
return numarray(re.sub(SPACE, '', s).split(','))
def coords(s):
s = s.split()
return [coords1(ss) for ss in s]
def gx_coords1(s):
return numarray(s.split(' '))
def gx_coords(node):
els = get(node, 'gx:coord')
coordinates = []
times = []
coordinates = [gx_coords1(val(el)) for el in els]
time_els = get(node, 'when')
times = [val(t) for t in time_els]
return {
'coordinates': coordinates,
'times': times,
}
def disambiguate(names, mark='1'):
names_seen = set()
new_names = []
for name in names:
new_name = name
while new_name in names_seen:
new_name += mark
new_names.append(new_name)
names_seen.add(new_name)
return new_names
def to_filename(s):
s = re.sub(r'(?u)[^-\w. ]', '', s)
s = s.strip().replace(' ', '_')
return s
def build_rgb_and_opacity(s):
color = '000000'
opacity = 1
if s.startswith('#'):
s = s[1:]
if len(s) == 8:
color = s[6:8] + s[4:6] + s[2:4]
opacity = round(int(s[0:2], 16)/256, 2)
elif len(s) == 6:
color = s[4:6] + s[2:4] + s[0:2]
elif len(s) == 3:
color = s[::-1]
return '#' + color, opacity
def build_svg_style(node):
d = {}
for item in get(node, 'Style'):
style_id = '#' + attr(item, 'id')
props = {}
for x in get(item, 'PolyStyle'):
color = val(get1(x, 'color'))
if color:
rgb, opacity = build_rgb_and_opacity(color)
props['fill'] = rgb
props['fill-opacity'] = opacity
props['stroke'] = rgb
props['stroke-opacity'] = opacity
props['stroke-width'] = 1
fill = valf(get1(x, 'fill'))
if fill == 0:
props['fill-opacity'] = fill
elif fill == 1 and 'fill-opacity' not in props:
props['fill-opacity'] = fill
outline = valf(get1(x, 'outline'))
if outline == 0:
props['stroke-opacity'] = outline
elif outline == 1 and 'stroke-opacity' not in props:
props['stroke-opacity'] = outline
for x in get(item, 'LineStyle'):
color = val(get1(x, 'color'))
if color:
rgb, opacity = build_rgb_and_opacity(color)
props['stroke'] = rgb
props['stroke-opacity'] = opacity
width = valf(get1(x, 'width'))
if width is not None:
props['stroke-width'] = width
for x in get(item, 'IconStyle'):
icon = get1(x, 'Icon')
if not icon:
continue
props = {}
props['iconUrl'] = val(get1(icon, 'href'))
d[style_id] = props
return d
def build_leaflet_style(node):
d = {}
for item in get(node, 'Style'):
style_id = '#' + attr(item, 'id')
props = {}
for x in get(item, 'PolyStyle'):
color = val(get1(x, 'color'))
if color:
rgb, opacity = build_rgb_and_opacity(color)
props['fillColor'] = rgb
props['fillOpacity'] = opacity
props['color'] = rgb
props['opacity'] = opacity
props['weight'] = 1
fill = valf(get1(x, 'fill'))
if fill == 0:
props['fillOpacity'] = fill
elif fill == 1 and 'fillOpacity' not in props:
props['fillOpacity'] = fill
outline = valf(get1(x, 'outline'))
if outline == 0:
props['opacity'] = outline
elif outline == 1 and 'opacity' not in props:
props['opacity'] = outline
for x in get(item, 'LineStyle'):
color = val(get1(x, 'color'))
if color:
rgb, opacity = build_rgb_and_opacity(color)
props['color'] = rgb
props['opacity'] = opacity
width = valf(get1(x, 'width'))
if width is not None:
props['weight'] = width
for x in get(item, 'IconStyle'):
icon = get1(x, 'Icon')
if not icon:
continue
props = {}
props['iconUrl'] = val(get1(icon, 'href'))
d[style_id] = props
return d
def build_geometry(node):
geoms = []
times = []
if get1(node, 'MultiGeometry'):
return build_geometry(get1(node, 'MultiGeometry'))
if get1(node, 'MultiTrack'):
return build_geometry(get1(node, 'MultiTrack'))
if get1(node, 'gx:MultiTrack'):
return build_geometry(get1(node, 'gx:MultiTrack'))
for geotype in GEOTYPES:
geonodes = get(node, geotype)
if not geonodes:
continue
for geonode in geonodes:
if geotype == 'Point':
geoms.append({
'type': 'Point',
'coordinates': coords1(val(get1(
geonode, 'coordinates')))
})
elif geotype == 'LineString':
geoms.append({
'type': 'LineString',
'coordinates': coords(val(get1(
geonode, 'coordinates')))
})
elif geotype == 'Polygon':
rings = get(geonode, 'LinearRing')
coordinates = [coords(val(get1(ring, 'coordinates')))
for ring in rings]
geoms.append({
'type': 'Polygon',
'coordinates': coordinates,
})
elif geotype in ['Track', 'gx:Track']:
track = gx_coords(geonode)
geoms.append({
'type': 'LineString',
'coordinates': track['coordinates'],
})
if track['times']:
times.append(track['times'])
return {'geoms': geoms, 'times': times}
def build_feature(node):
geoms_and_times = build_geometry(node)
if not geoms_and_times['geoms']:
return None
props = {}
for x in get(node, 'name')[:1]:
name = val(x)
if name:
props['name'] = val(x)
for x in get(node, 'description')[:1]:
desc = val(x)
if desc:
props['description'] = desc
for x in get(node, 'styleUrl')[:1]:
style_url = val(x)
if style_url[0] != '#':
style_url = '#' + style_url
props['styleUrl'] = style_url
for x in get(node, 'PolyStyle')[:1]:
color = val(get1(x, 'color'))
if color:
rgb, opacity = build_rgb_and_opacity(color)
props['fill'] = rgb
props['fill-opacity'] = opacity
props['stroke'] = rgb
props['stroke-opacity'] = opacity
props['stroke-width'] = 1
fill = valf(get1(x, 'fill'))
if fill == 0:
props['fill-opacity'] = fill
elif fill == 1 and 'fill-opacity' not in props:
props['fill-opacity'] = fill
outline = valf(get1(x, 'outline'))
if outline == 0:
props['stroke-opacity'] = outline
elif outline == 1 and 'stroke-opacity' not in props:
props['stroke-opacity'] = outline
for x in get(node, 'LineStyle')[:1]:
color = val(get1(x, 'color'))
if color:
rgb, opacity = build_rgb_and_opacity(color)
props['stroke'] = rgb
props['stroke-opacity'] = opacity
width = valf(get1(x, 'width'))
if width:
props['stroke-width'] = width
for x in get(node, 'ExtendedData')[:1]:
datas = get(x, 'Data')
for data in datas:
props[attr(data, 'name')] = val(get1(data, 'value'))
simple_datas = get(x, 'SimpleData')
for simple_data in simple_datas:
props[attr(simple_data, 'name')] = val(simple_data)
for x in get(node, 'TimeSpan')[:1]:
begin = val(get1(x, 'begin'))
end = val(get1(x, 'end'))
props['timeSpan'] = {'begin': begin, 'end': end}
if geoms_and_times['times']:
times = geoms_and_times['times']
if len(times) == 1:
props['times'] = times[0]
else:
props['times'] = times
feature = {
'type': 'Feature',
'properties': props,
}
geoms = geoms_and_times['geoms']
if len(geoms) == 1:
feature['geometry'] = geoms[0]
else:
feature['geometry'] = {
'type': 'GeometryCollection',
'geometries': geoms,
}
if attr(node, 'id'):
feature['id'] = attr(node, 'id')
return feature
|
MIT License
|
jiaweisheng/faan
|
modules.py
|
ScaledDotProductAttention.forward
|
python
|
def forward(self, q, k, v, scale=None, attn_mask=None):
attn = torch.bmm(q, k.transpose(1, 2))
if scale:
attn = attn * scale
if attn_mask:
attn = attn.masked_fill_(attn_mask, -np.inf)
attn = self.softmax(attn)
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn
|
:param attn_mask: [batch, time]
:param scale:
:param q: [batch, time, dim]
:param k: [batch, time, dim]
:param v: [batch, time, dim]
:return:
|
https://github.com/jiaweisheng/faan/blob/b439b829506c4e2e9044a6b2ab7f3d844f445a95/modules.py#L72-L89
|
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import math
from torch.autograd import Variable
class AttentionSelectContext(nn.Module):
def __init__(self, dim, dropout=0.0):
super(AttentionSelectContext, self).__init__()
self.Bilinear = nn.Bilinear(dim, dim, 1, bias=False)
self.Linear_tail = nn.Linear(dim, dim, bias=False)
self.Linear_head = nn.Linear(dim, dim, bias=False)
self.layer_norm = nn.LayerNorm(dim)
self.dropout = nn.Dropout(dropout)
def intra_attention(self, head, rel, tail, mask):
head = head.unsqueeze(1).repeat(1, rel.size(1), 1)
score = self.Bilinear(head, rel).squeeze(2)
score = score.masked_fill_(mask, -np.inf)
att = torch.softmax(score, dim=1).unsqueeze(dim=1)
head = torch.bmm(att, tail).squeeze(1)
return head
def forward(self, left, right, mask_left=None, mask_right=None):
head_left, rel_left, tail_left = left
head_right, rel_right, tail_right = right
weak_rel = head_right - head_left
left = self.intra_attention(weak_rel, rel_left, tail_left, mask_left)
right = self.intra_attention(weak_rel, rel_right, tail_right, mask_right)
left = torch.relu(self.Linear_tail(left) + self.Linear_head(head_left))
right = torch.relu(self.Linear_tail(right) + self.Linear_head(head_right))
left = self.dropout(left)
right = self.dropout(right)
left = self.layer_norm(left + head_left)
right = self.layer_norm(right + head_right)
return left, right
class ScaledDotProductAttention(nn.Module):
def __init__(self, attn_dropout=0.0):
super(ScaledDotProductAttention, self).__init__()
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(dim=2)
|
MIT License
|
chrism2671/pytrendfollow
|
trading/portfolio.py
|
Portfolio.instrument_stats
|
python
|
def instrument_stats(self):
with closing(Pool()) as pool:
df = pd.DataFrame(dict(pool.map(lambda x: (x.name, x.curve().stats_list()),
self.valid_instruments().values()))).transpose()
return df
|
Returns individual metrics for every Instrument in the Portfolio. Not used for trading, just for research.
|
https://github.com/chrism2671/pytrendfollow/blob/439232aed4d67ccf339e782b7c8b96f2dd961d43/trading/portfolio.py#L80-L87
|
import numpy as np
import pandas as pd
from functools import lru_cache
import sys
try:
import config.strategy
except ImportError:
print("You need to set up the strategy file at config/strategy.py.")
sys.exit()
try:
import config.settings
except ImportError:
print("You need to set up the settings file at config/settings.py.")
sys.exit()
from core.instrument import Instrument
from core.utility import draw_sample, sharpe
from trading.accountcurve import accountCurve
import trading.bootstrap_portfolio as bp
import seaborn
import pyprind
from multiprocessing_on_dill import Pool
from contextlib import closing
from core.logger import get_logger
logger = get_logger('portfolio')
class Portfolio(object):
def __init__(self, weights=1, instruments=None):
self.instruments = Instrument.load(instruments)
self.weights = pd.Series(config.strategy.portfolio_weights)
self.weights = self.weights[self.weights.index.isin(instruments)]
self.inst_blacklist = []
def __repr__(self):
return str(len(self.valid_instruments())) + " instruments"
@lru_cache(maxsize=8)
def curve(self, **kw):
kw2={'portfolio_weights': self.valid_weights()}
kw2.update(kw)
return accountCurve(list(self.valid_instruments().values()), **kw2)
def valid_instruments(self):
return dict([i for i in self.instruments.items() if i[1].name not in self.inst_blacklist])
def valid_weights(self):
return self.weights[~self.weights.index.isin(self.inst_blacklist)]
def validate(self):
import concurrent.futures
bar = pyprind.ProgBar(len(self.instruments.values()), title='Validating instruments')
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
dl = {executor.submit(x.validate): x.name for x in self.instruments.values()}
d = {}
for fut in concurrent.futures.as_completed(dl):
bar.update(item_id=dl[fut])
d[dl[fut]] = fut.result()
d = pd.DataFrame(d).transpose()
self.inst_blacklist = d[d['is_valid'] == False].index.tolist()
return d
|
MIT License
|
operator-framework/operator-courier
|
operatorcourier/verified_manifest.py
|
VerifiedManifest.get_validation_dict_from_manifests
|
python
|
def get_validation_dict_from_manifests(self, manifests, ui_validate_io=False,
repository=None):
bundle_dict = None
validation_dict = ValidateCmd(ui_validate_io).validation_json
for version, manifest_files_info in manifests.items():
bundle_dict = BuildCmd().build_bundle(manifest_files_info)
if version != FLAT_KEY:
logger.info("Parsing version: %s", version)
_, validation_dict_temp = ValidateCmd(ui_validate_io, self.nested) .validate(bundle_dict, repository)
for log_level, msg_list in validation_dict_temp.items():
validation_dict[log_level].extend(msg_list)
if not self.nested:
self.bundle_dict = bundle_dict
return validation_dict
|
Given a dict of manifest files where the key is the version of the manifest
(or FLAT_KEY if the manifest files are not grouped by version), the function
returns a dict containing validation info (warnings/errors).
:param manifests: a dict of manifest files where the key is the version
of the manifest (or FLAT_KEY if the manifest files are not grouped by version)
:param ui_validate_io: the ui_validate_io flag specified from CLI
:param repository: the repository value specified from CLI
:return: a dict containing validation info (warnings/errors).
|
https://github.com/operator-framework/operator-courier/blob/4f1a4ea3db3ba901c0c492f346ffa3cdc1102649/operatorcourier/verified_manifest.py#L105-L133
|
import os
import copy
import logging
import json
from operatorcourier.build import BuildCmd
from operatorcourier.validate import ValidateCmd
from operatorcourier.errors import OpCourierBadBundle
from operatorcourier.format import format_bundle
from operatorcourier.manifest_parser import is_manifest_folder, get_csvs_pkg_info_from_root, get_crd_csv_files_info
logger = logging.getLogger(__name__)
FLAT_KEY = '__flat__'
class VerifiedManifest:
@property
def bundle(self):
if self.nested:
raise AttributeError('VerifiedManifest does not have the bundle property '
'in nested cases.')
return format_bundle(self.bundle_dict)
@property
def validation_dict(self):
return copy.deepcopy(self.__validation_dict)
def __init__(self, source_dir, yamls, ui_validate_io, repository):
self.nested = False
if yamls:
yaml_strings_with_metadata = self._set_empty_filepaths(yamls)
manifests = {FLAT_KEY: yaml_strings_with_metadata}
else:
manifests = self.get_manifests_info(source_dir)
self.bundle_dict = None
self.__validation_dict = self.get_validation_dict_from_manifests(manifests, ui_validate_io, repository)
self.is_valid = False if self.__validation_dict['errors'] else True
def _set_empty_filepaths(self, yamls):
yaml_strings_with_metadata = []
for yaml_string in yamls:
yaml_tuple = ("", yaml_string)
yaml_strings_with_metadata.append(yaml_tuple)
return yaml_strings_with_metadata
def get_manifests_info(self, source_dir):
manifests = {}
root_path, dir_names, root_dir_files = next(os.walk(source_dir))
csvs_path_and_content, pkg_path_and_content = get_csvs_pkg_info_from_root(source_dir)
dir_paths = [os.path.join(source_dir, dir_name) for dir_name in dir_names]
manifest_paths = list(filter(lambda x: is_manifest_folder(x), dir_paths))
if manifest_paths:
logger.info('The source directory is in nested structure.')
self.nested = True
for manifest_path in manifest_paths:
manifest_dir_name = os.path.basename(manifest_path)
crd_files_info, csv_files_info = get_crd_csv_files_info(manifest_path)
manifests[manifest_dir_name] = crd_files_info + csv_files_info
for manifest_dir_name in manifests:
manifests[manifest_dir_name].append(pkg_path_and_content)
elif pkg_path_and_content and csvs_path_and_content:
logger.info('The source directory is in flat structure.')
crd_files_info, csv_files_info = get_crd_csv_files_info(root_path)
files_info = [pkg_path_and_content]
files_info.extend(crd_files_info + csv_files_info)
manifests[FLAT_KEY] = files_info
else:
msg = 'The source directory structure is not in valid flat or nested format,' 'because no valid CSV file is found in root or manifest directories.'
logger.error(msg)
raise OpCourierBadBundle(msg, {})
return manifests
|
Apache License 2.0
|
rajammanabrolu/worldgeneration
|
evennia-engine/evennia/evennia/server/portal/webclient_ajax.py
|
AjaxWebClientSession.data_out
|
python
|
def data_out(self, **kwargs):
self.sessionhandler.data_out(self, **kwargs)
|
Data Evennia -> User
Kwargs:
kwargs (any): Options to the protocol
|
https://github.com/rajammanabrolu/worldgeneration/blob/5e97df013399e1a401d0a7ec184c4b9eb3100edd/evennia-engine/evennia/evennia/server/portal/webclient_ajax.py#L381-L388
|
import json
import re
import time
import html
from twisted.web import server, resource
from twisted.internet.task import LoopingCall
from django.utils.functional import Promise
from django.conf import settings
from evennia.utils.ansi import parse_ansi
from evennia.utils import utils
from evennia.utils.utils import to_bytes, to_str
from evennia.utils.text2html import parse_html
from evennia.server import session
_CLIENT_SESSIONS = utils.mod_import(settings.SESSION_ENGINE).SessionStore
_RE_SCREENREADER_REGEX = re.compile(
r"%s" % settings.SCREENREADER_REGEX_STRIP, re.DOTALL + re.MULTILINE
)
_SERVERNAME = settings.SERVERNAME
_KEEPALIVE = 30
class LazyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, Promise):
return str(obj)
return super().default(obj)
def jsonify(obj):
return to_bytes(json.dumps(obj, ensure_ascii=False, cls=LazyEncoder))
class AjaxWebClient(resource.Resource):
isLeaf = True
allowedMethods = ("POST",)
def __init__(self):
self.requests = {}
self.databuffer = {}
self.last_alive = {}
self.keep_alive = None
def _responseFailed(self, failure, csessid, request):
try:
del self.requests[csessid]
except KeyError:
pass
def _keepalive(self):
now = time.time()
to_remove = []
keep_alives = (
(csessid, remove)
for csessid, (t, remove) in self.last_alive.items()
if now - t > _KEEPALIVE
)
for csessid, remove in keep_alives:
if remove:
to_remove.append(csessid)
else:
self.last_alive[csessid] = (now, True)
self.lineSend(csessid, ["ajax_keepalive", [], {}])
for csessid in to_remove:
sessions = self.sessionhandler.sessions_from_csessid(csessid)
for sess in sessions:
sess.disconnect()
self.last_alive.pop(csessid, None)
if not self.last_alive:
self.keep_alive.stop()
self.keep_alive = None
def get_client_sessid(self, request):
return html.escape(request.args[b"csessid"][0].decode("utf-8"))
def at_login(self):
pass
def lineSend(self, csessid, data):
request = self.requests.get(csessid)
if request:
request.write(jsonify(data))
request.finish()
del self.requests[csessid]
else:
dataentries = self.databuffer.get(csessid, [])
dataentries.append(jsonify(data))
self.databuffer[csessid] = dataentries
def client_disconnect(self, csessid):
if csessid in self.requests:
self.requests[csessid].finish()
del self.requests[csessid]
if csessid in self.databuffer:
del self.databuffer[csessid]
def mode_init(self, request):
csessid = self.get_client_sessid(request)
remote_addr = request.getClientIP()
host_string = "%s (%s:%s)" % (
_SERVERNAME,
request.getRequestHostname(),
request.getHost().port,
)
sess = AjaxWebClientSession()
sess.client = self
sess.init_session("ajax/comet", remote_addr, self.sessionhandler)
sess.csessid = csessid
csession = _CLIENT_SESSIONS(session_key=sess.csessid)
uid = csession and csession.get("webclient_authenticated_uid", False)
if uid:
sess.uid = uid
sess.logged_in = True
self.last_alive[csessid] = (time.time(), False)
if not self.keep_alive:
self.keep_alive = LoopingCall(self._keepalive)
self.keep_alive.start(_KEEPALIVE, now=False)
sess.sessionhandler.connect(sess)
return jsonify({"msg": host_string, "csessid": csessid})
def mode_keepalive(self, request):
csessid = self.get_client_sessid(request)
self.last_alive[csessid] = (time.time(), False)
return b'""'
def mode_input(self, request):
csessid = self.get_client_sessid(request)
self.last_alive[csessid] = (time.time(), False)
cmdarray = json.loads(request.args.get(b"data")[0])
for sess in self.sessionhandler.sessions_from_csessid(csessid):
sess.data_in(**{cmdarray[0]: [cmdarray[1], cmdarray[2]]})
return b'""'
def mode_receive(self, request):
csessid = html.escape(request.args[b"csessid"][0].decode("utf-8"))
self.last_alive[csessid] = (time.time(), False)
dataentries = self.databuffer.get(csessid)
if dataentries:
return dataentries.pop(0)
else:
request.notifyFinish().addErrback(self._responseFailed, csessid, request)
if csessid in self.requests:
self.requests[csessid].finish()
self.requests[csessid] = request
return server.NOT_DONE_YET
def mode_close(self, request):
csessid = self.get_client_sessid(request)
try:
sess = self.sessionhandler.sessions_from_csessid(csessid)[0]
sess.sessionhandler.disconnect(sess)
except IndexError:
self.client_disconnect(csessid)
return b'""'
def render_POST(self, request):
dmode = request.args.get(b"mode", [b"None"])[0].decode("utf-8")
if dmode == "init":
return self.mode_init(request)
elif dmode == "input":
return self.mode_input(request)
elif dmode == "receive":
return self.mode_receive(request)
elif dmode == "close":
return self.mode_close(request)
elif dmode == "keepalive":
return self.mode_keepalive(request)
else:
return b'""'
class AjaxWebClientSession(session.Session):
def __init__(self, *args, **kwargs):
self.protocol_key = "webclient/ajax"
super().__init__(*args, **kwargs)
def get_client_session(self):
if self.csessid:
return _CLIENT_SESSIONS(session_key=self.csessid)
def disconnect(self, reason="Server disconnected."):
csession = self.get_client_session()
if csession:
csession["webclient_authenticated_uid"] = None
csession.save()
self.logged_in = False
self.client.lineSend(self.csessid, ["connection_close", [reason], {}])
self.client.client_disconnect(self.csessid)
self.sessionhandler.disconnect(self)
def at_login(self):
csession = self.get_client_session()
if csession:
csession["webclient_authenticated_uid"] = self.uid
csession.save()
def data_in(self, **kwargs):
self.sessionhandler.data_in(self, **kwargs)
|
MIT License
|
compas-dev/compas
|
src/compas/files/_xml/xml_cli.py
|
CLRXMLTreeParser._start_element
|
python
|
def _start_element(self, reader):
attributes = {}
name = self._get_expanded_tag(reader)
while reader.MoveToNextAttribute():
attributes[reader.Name] = reader.Value
reader.MoveToElement()
self._target.start(name, attributes)
if reader.IsEmptyElement:
self._target.end(name)
|
Notify the tree builder that a start element has been
encountered.
|
https://github.com/compas-dev/compas/blob/d795a8bfe9f21ffa124d09e37e9c0ed2e3520057/src/compas/files/_xml/xml_cli.py#L208-L221
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import xml.etree.ElementTree as ET
from urllib import addinfourl
import compas
from compas.files._xml.xml_shared import shared_xml_from_file
from compas.files._xml.xml_shared import shared_xml_from_string
__all__ = [
'xml_from_file',
'xml_from_string',
'prettify_string',
]
if compas.IPY:
import clr
clr.AddReference('System.Xml')
from System.IO import MemoryStream
from System.IO import StreamReader
from System.IO import StringReader
from System.Text import Encoding
from System.Text.RegularExpressions import Regex
from System.Text.RegularExpressions import RegexOptions
from System.Xml import DtdProcessing
from System.Xml import Formatting
from System.Xml import ValidationType
from System.Xml import XmlDocument
from System.Xml import XmlNodeType
from System.Xml import XmlReader
from System.Xml import XmlReaderSettings
from System.Xml import XmlTextWriter
CRE_ENCODING = Regex("encoding=['\"](?<enc_name>.*?)['\"]",
RegexOptions.Compiled)
def prettify_string(rough_string):
mStream = MemoryStream()
writer = XmlTextWriter(mStream, Encoding.UTF8)
document = XmlDocument()
document.LoadXml(rough_string)
writer.Formatting = Formatting.Indented
writer.WriteStartDocument()
document.WriteContentTo(writer)
writer.Flush()
mStream.Flush()
mStream.Position = 0
sReader = StreamReader(mStream)
formattedXml = sReader.ReadToEnd()
return formattedXml
def xml_from_file(source, tree_parser=None):
tree_parser = tree_parser or CLRXMLTreeParser
return shared_xml_from_file(source, tree_parser, addinfourl)
def xml_from_string(text, tree_parser=None):
tree_parser = tree_parser or CLRXMLTreeParser
return shared_xml_from_string(text, tree_parser)
class CLRXMLTreeParser(ET.XMLParser):
def __init__(self, target=None, validating=False):
if not compas.IPY:
raise Exception('CLRXMLTreeParser can only be used from IronPython')
settings = XmlReaderSettings()
settings.IgnoreComments = True
settings.IgnoreProcessingInstructions = True
settings.IgnoreWhitespace = True
if not validating:
settings.DtdProcessing = DtdProcessing.Ignore
settings.ValidationType = getattr(ValidationType, 'None')
else:
settings.DtdProcessing = DtdProcessing.Parse
settings.ValidationType = ValidationType.DTD
self.settings = settings
self._target = target or ET.TreeBuilder()
self._buffer = []
self._document_encoding = 'UTF-8'
def feed(self, data):
self._buffer.append(data)
def close(self):
xml_string = "".join(self._buffer)
self._buffer = None
reader = XmlReader.Create(StringReader(xml_string), self.settings)
while reader.Read():
if reader.IsStartElement():
self._start_element(reader)
elif reader.NodeType in [XmlNodeType.Text, XmlNodeType.CDATA]:
self._target.data(reader.Value.decode(self._document_encoding))
elif reader.NodeType == XmlNodeType.EndElement:
self._target.end(self._get_expanded_tag(reader))
elif reader.NodeType == XmlNodeType.XmlDeclaration:
self._parse_xml_declaration(reader.Value)
return self._target.close()
def _get_expanded_tag(self, reader):
if not reader.NamespaceURI:
return reader.LocalName
return '{{{}}}{}'.format(reader.NamespaceURI, reader.LocalName)
def _parse_xml_declaration(self, xml_decl):
enc_name = CRE_ENCODING.Match(xml_decl).Groups['enc_name'].Value
if enc_name:
self._document_encoding = enc_name
|
MIT License
|
edinburgh-genome-foundry/dnafeaturesviewer
|
dna_features_viewer/BiopythonTranslator/BiopythonTranslatorBase.py
|
BiopythonTranslatorBase.translate_feature
|
python
|
def translate_feature(self, feature):
properties = dict(
label=self.compute_feature_label(feature),
color=self.compute_feature_color(feature),
html=self.compute_feature_html(feature),
fontdict=self.compute_feature_fontdict(feature),
box_linewidth=self.compute_feature_box_linewidth(feature),
box_color=self.compute_feature_box_color(feature),
linewidth=self.compute_feature_linewidth(feature),
label_link_color=self.compute_feature_label_link_color(feature),
legend_text=self.compute_feature_legend_text(feature),
)
if self.features_properties is not None:
other_properties = self.features_properties
if hasattr(other_properties, "__call__"):
other_properties = other_properties(feature)
properties.update(other_properties)
return GraphicFeature(
start=feature.location.start,
end=feature.location.end,
strand=feature.location.strand,
**properties
)
|
Translate a Biopython feature into a Dna Features Viewer feature.
|
https://github.com/edinburgh-genome-foundry/dnafeaturesviewer/blob/1833d9e428713e02cb9c25c1d867d020ad50aec9/dna_features_viewer/BiopythonTranslator/BiopythonTranslatorBase.py#L32-L56
|
from ..biotools import load_record
from ..GraphicRecord import GraphicRecord
from ..CircularGraphicRecord import CircularGraphicRecord
from ..GraphicFeature import GraphicFeature
class BiopythonTranslatorBase:
graphic_record_parameters = {}
def __init__(self, features_filters=(), features_properties=None):
self.features_filters = features_filters
self.features_properties = features_properties
|
MIT License
|
leokarlin/laso
|
oneshot/setops_models/resnet.py
|
resnet50_ids_pre_v3
|
python
|
def resnet50_ids_pre_v3(
num_attributes: int=40,
ids_embedding_size: int=512,
latent_dim: int=1024,
attr_layer_num: int=0,
ids_layer_num: int=0,
dropout_ratio: float=0,
pretrained: bool=False,
**kwargs):
model = zoo.resnet50(pretrained=pretrained)
if pretrained:
for param in model.parameters():
param.requires_grad = False
model = nn.Sequential(*list(model.children())[:-2])
input_dim = 512 * Bottleneck.expansion
classifier_attr = AttrsClassifier(
input_dim=512 * Bottleneck.expansion,
num_attributes=num_attributes,
latent_dim=latent_dim,
layers_num=attr_layer_num,
dropout_ratio=dropout_ratio,
apply_spatial=True,
**kwargs)
embedding_ids = IDsEmbedding(
input_dim=512 * Bottleneck.expansion,
embedding_size=ids_embedding_size,
latent_dim=latent_dim,
layers_num=ids_layer_num,
dropout_ratio=dropout_ratio,
apply_avgpool=True,
** kwargs)
return model, classifier_attr, embedding_ids
|
Constructs a ResNet-34 model.
|
https://github.com/leokarlin/laso/blob/8941bdc9316361ad03dbc2bcabd4bf9922c0ecc7/oneshot/setops_models/resnet.py#L418-L458
|
import math
import torch.nn as nn
from torchvision.models.resnet import BasicBlock, Bottleneck, model_urls
import torchvision.models as zoo
import torch.utils.model_zoo as model_zoo
class ResNet(nn.Module):
def __init__(self, block, layers, avgpool_kernel=7, **kwargs):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(avgpool_kernel, stride=1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResNetClassifier(nn.Module):
def __init__(self, block, num_classes=1000, **kwargs):
super(ResNetClassifier, self).__init__()
self.fc = nn.Linear(512 * block.expansion, num_classes)
def forward(self, x):
x = x.view(x.size(0), -1)
return self.fc(x)
def resnet18(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
classifier = ResNetClassifier(BasicBlock, **kwargs)
if pretrained:
state_dict = model_zoo.load_url(model_urls['resnet18'])
model.load_state_dict(
{k: v for k, v in state_dict.items() if k in model.state_dict()}
)
return model, classifier
def resnet18_ids(num_attributes, ids_embedding_size, pretrained=False, **kwargs):
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
classifier = ResNetClassifier(BasicBlock, num_classes=num_attributes, **kwargs)
classifier_ids = ResNetClassifier(BasicBlock, num_classes=ids_embedding_size, **kwargs)
if pretrained:
state_dict = model_zoo.load_url(model_urls['resnet18'])
model.load_state_dict(
{k: v for k, v in state_dict.items() if k in model.state_dict()}
)
return model, classifier, classifier_ids
def resnet34(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
classifier = ResNetClassifier(BasicBlock, **kwargs)
if pretrained:
state_dict = model_zoo.load_url(model_urls['resnet34'])
model.load_state_dict(
{k: v for k, v in state_dict.items() if k in model.state_dict()}
)
return model, classifier
def resnet50(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
classifier = ResNetClassifier(Bottleneck, **kwargs)
if pretrained:
state_dict = model_zoo.load_url(model_urls['resnet50'])
model.load_state_dict(
{k: v for k, v in state_dict.items() if k in model.state_dict()}
)
return model, classifier
def resnet101(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
classifier = ResNetClassifier(Bottleneck, **kwargs)
if pretrained:
state_dict = model_zoo.load_url(model_urls['resnet101'])
model.load_state_dict(
{k: v for k, v in state_dict.items() if k in model.state_dict()}
)
return model, classifier
def resnet152(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
classifier = ResNetClassifier(Bottleneck, **kwargs)
if pretrained:
state_dict = model_zoo.load_url(model_urls['resnet152'])
model.load_state_dict(
{k: v for k, v in state_dict.items() if k in model.state_dict()}
)
return model, classifier
def resnet34_ids(num_attributes, ids_embedding_size, pretrained=False, **kwargs):
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
classifier = ResNetClassifier(BasicBlock, num_classes=num_attributes, **kwargs)
classifier_ids = ResNetClassifier(BasicBlock, num_classes=ids_embedding_size, **kwargs)
if pretrained:
raise NotImplemented("pretrained parameter not implemented.")
return model, classifier, classifier_ids
def resnet34_v2(
num_attributes: int=40,
latent_dim: int=1024,
attr_layer_num: int=0,
dropout_ratio: float=0,
pretrained: bool=False,
**kwargs):
model = zoo.resnet34(pretrained=pretrained)
if pretrained:
for param in model.parameters():
param.requires_grad = False
model = nn.Sequential(*list(model.children())[:-1])
input_dim = 512 * BasicBlock.expansion
classifier_attr = AttrsClassifier_v2(
input_dim=512 * BasicBlock.expansion,
num_attributes=num_attributes,
latent_dim=latent_dim,
layers_num=attr_layer_num,
dropout_ratio=dropout_ratio,
**kwargs)
return model, classifier_attr
def resnet34_ids_pre(num_attributes, ids_embedding_size, **kwargs):
model = zoo.resnet34(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model = nn.Sequential(*list(model.children())[:-1])
classifier_attr = ResNetClassifier(BasicBlock, num_classes=num_attributes, **kwargs)
classifier_ids = ResNetClassifier(BasicBlock, num_classes=ids_embedding_size, **kwargs)
return model, classifier_attr, classifier_ids
def resnet34_ids_pre_v2(
num_attributes: int,
ids_embedding_size: int,
latent_dim: int=1024,
attr_layer_num: int=0,
ids_layer_num: int=0,
dropout_ratio: float=0,
pretrained: bool=True,
**kwargs):
model = zoo.resnet34(pretrained=True)
if pretrained:
for param in model.parameters():
param.requires_grad = False
model = nn.Sequential(*list(model.children())[:-1])
input_dim = 512 * BasicBlock.expansion
classifier_attr = TopLayer(
input_dim=input_dim,
latent_dim=latent_dim,
output_dim=num_attributes,
layers_num=attr_layer_num,
dropout_ratio=dropout_ratio,
**kwargs)
embedding_ids = TopLayer(
input_dim=input_dim,
latent_dim=latent_dim,
output_dim=ids_embedding_size,
layers_num=ids_layer_num,
dropout_ratio=dropout_ratio,
** kwargs)
return model, classifier_attr, embedding_ids
def resnet18_ids_pre_v2(
num_attributes: int,
ids_embedding_size: int,
latent_dim: int=1024,
attr_layer_num: int=0,
ids_layer_num: int=0,
dropout_ratio: float=0,
**kwargs):
model = zoo.resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model = nn.Sequential(*list(model.children())[:-1])
input_dim = 512 * BasicBlock.expansion
classifier_attr = TopLayer(
input_dim=input_dim,
latent_dim=latent_dim,
output_dim=num_attributes,
layers_num=attr_layer_num,
dropout_ratio=dropout_ratio,
**kwargs)
embedding_ids = TopLayer(
input_dim=input_dim,
latent_dim=latent_dim,
output_dim=ids_embedding_size,
layers_num=ids_layer_num,
dropout_ratio=dropout_ratio,
** kwargs)
return model, classifier_attr, embedding_ids
def resnet18_ids_pre_v3(
num_attributes: int=40,
ids_embedding_size: int=512,
latent_dim: int=1024,
attr_layer_num: int=0,
ids_layer_num: int=0,
dropout_ratio: float=0,
pretrained: bool=False,
**kwargs):
model = zoo.resnet18(pretrained=pretrained)
if pretrained:
for param in model.parameters():
param.requires_grad = False
model = nn.Sequential(*list(model.children())[:-2])
input_dim = 512 * BasicBlock.expansion
classifier_attr = AttrsClassifier(
input_dim=512 * BasicBlock.expansion,
num_attributes=num_attributes,
latent_dim=latent_dim,
layers_num=attr_layer_num,
dropout_ratio=dropout_ratio,
apply_spatial=True,
**kwargs)
embedding_ids = IDsEmbedding(
input_dim=512 * BasicBlock.expansion,
embedding_size=ids_embedding_size,
latent_dim=latent_dim,
layers_num=ids_layer_num,
dropout_ratio=dropout_ratio,
apply_avgpool=True,
** kwargs)
return model, classifier_attr, embedding_ids
def resnet34_ids_pre_v3(
num_attributes: int=40,
ids_embedding_size: int=512,
latent_dim: int=1024,
attr_layer_num: int=0,
ids_layer_num: int=0,
dropout_ratio: float=0,
pretrained: bool=False,
**kwargs):
model = zoo.resnet34(pretrained=pretrained)
if pretrained:
for param in model.parameters():
param.requires_grad = False
model = nn.Sequential(*list(model.children())[:-2])
input_dim = 512 * BasicBlock.expansion
classifier_attr = AttrsClassifier(
input_dim=512 * BasicBlock.expansion,
num_attributes=num_attributes,
latent_dim=latent_dim,
layers_num=attr_layer_num,
dropout_ratio=dropout_ratio,
apply_spatial=True,
**kwargs)
embedding_ids = IDsEmbedding(
input_dim=512 * BasicBlock.expansion,
embedding_size=ids_embedding_size,
latent_dim=latent_dim,
layers_num=ids_layer_num,
dropout_ratio=dropout_ratio,
apply_avgpool=True,
** kwargs)
return model, classifier_attr, embedding_ids
|
BSD 3-Clause New or Revised License
|
csernazs/pytest-httpserver
|
pytest_httpserver/httpserver.py
|
RequestHandler.respond_with_response
|
python
|
def respond_with_response(self, response: Response):
self.request_handler = lambda request: response
|
Registers a respond handler function which responds the specified response object.
:param response: the response object which will be responded
|
https://github.com/csernazs/pytest-httpserver/blob/e910ebadb2e434c1db74c00d3d0c21dda9910178/pytest_httpserver/httpserver.py#L499-L506
|
import queue
import threading
import json
import time
import re
from collections import defaultdict
from enum import Enum
from contextlib import suppress, contextmanager
from copy import copy
from typing import Any, Callable, List, Mapping, Optional, Tuple, Union, Pattern
from ssl import SSLContext
import abc
from werkzeug.http import parse_authorization_header
from werkzeug.serving import make_server
from werkzeug.wrappers import Request
from werkzeug.wrappers import Response
import werkzeug.urls
from werkzeug.datastructures import MultiDict
URI_DEFAULT = ""
METHOD_ALL = "__ALL"
class Undefined:
def __repr__(self):
return "<UNDEFINED>"
UNDEFINED = Undefined()
class Error(Exception):
pass
class NoHandlerError(Error):
pass
class HTTPServerError(Error):
pass
class NoMethodFoundForMatchingHeaderValueError(Error):
pass
class WaitingSettings:
def __init__(self, raise_assertions: bool = True, stop_on_nohandler: bool = True, timeout: float = 5):
self.raise_assertions = raise_assertions
self.stop_on_nohandler = stop_on_nohandler
self.timeout = timeout
class Waiting:
def __init__(self):
self._result = None
self._start = time.monotonic()
self._stop = None
def complete(self, result: bool):
self._result = result
self._stop = time.monotonic()
@property
def result(self) -> bool:
return self._result
@property
def elapsed_time(self) -> float:
return self._stop - self._start
class HeaderValueMatcher:
DEFAULT_MATCHERS: Mapping[str, Callable[[Optional[str], str], bool]] = {}
def __init__(self, matchers: Optional[Mapping[str, Callable[[Optional[str], str], bool]]] = None):
self.matchers = self.DEFAULT_MATCHERS if matchers is None else matchers
@staticmethod
def authorization_header_value_matcher(actual: Optional[str], expected: str) -> bool:
return parse_authorization_header(actual) == parse_authorization_header(expected)
@staticmethod
def default_header_value_matcher(actual: Optional[str], expected: str) -> bool:
return actual == expected
def __call__(self, header_name: str, actual: Optional[str], expected: str) -> bool:
try:
matcher = self.matchers[header_name]
except KeyError:
raise NoMethodFoundForMatchingHeaderValueError(
"No method found for matching header value: {}".format(header_name))
return matcher(actual, expected)
HeaderValueMatcher.DEFAULT_MATCHERS = defaultdict(
lambda: HeaderValueMatcher.default_header_value_matcher,
{'Authorization': HeaderValueMatcher.authorization_header_value_matcher}
)
class QueryMatcher(abc.ABC):
def match(self, request_query_string: bytes) -> bool:
values = self.get_comparing_values(request_query_string)
return values[0] == values[1]
@abc.abstractmethod
def get_comparing_values(self, request_query_string: bytes) -> tuple:
pass
class StringQueryMatcher(QueryMatcher):
def __init__(self, query_string: Union[bytes, str]):
if not isinstance(query_string, (str, bytes)):
raise TypeError("query_string must be a string, or a bytes-like object")
self.query_string = query_string
def get_comparing_values(self, request_query_string: bytes) -> tuple:
if isinstance(self.query_string, str):
query_string = self.query_string.encode()
elif isinstance(self.query_string, bytes):
query_string = self.query_string
else:
raise TypeError("query_string must be a string, or a bytes-like object")
return (request_query_string, query_string)
class MappingQueryMatcher(QueryMatcher):
def __init__(self, query_dict: Union[Mapping, MultiDict]):
self.query_dict = query_dict
def get_comparing_values(self, request_query_string: bytes) -> tuple:
query = werkzeug.urls.url_decode(request_query_string)
if isinstance(self.query_dict, MultiDict):
return (query, self.query_dict)
else:
return (query.to_dict(), dict(self.query_dict))
class BooleanQueryMatcher(QueryMatcher):
def __init__(self, result: bool):
self.result = result
def get_comparing_values(self, request_query_string):
if self.result:
return (True, True)
else:
return (True, False)
def _create_query_matcher(query_string: Union[None, QueryMatcher, str, bytes, Mapping]) -> QueryMatcher:
if isinstance(query_string, QueryMatcher):
return query_string
if query_string is None:
return BooleanQueryMatcher(True)
if isinstance(query_string, (str, bytes)):
return StringQueryMatcher(query_string)
if isinstance(query_string, Mapping):
return MappingQueryMatcher(query_string)
raise TypeError("Unable to cast this type to QueryMatcher: {!r}".format(type(query_string)))
class URIPattern(abc.ABC):
@abc.abstractmethod
def match(self, uri: str) -> bool:
pass
class RequestMatcher:
def __init__(
self,
uri: Union[str, URIPattern, Pattern[str]],
method: str = METHOD_ALL,
data: Union[str, bytes, None] = None,
data_encoding: str = "utf-8",
headers: Optional[Mapping[str, str]] = None,
query_string: Union[None, QueryMatcher, str, bytes, Mapping] = None,
header_value_matcher: Optional[HeaderValueMatcher] = None,
json: Any = UNDEFINED):
if json is not UNDEFINED and data is not None:
raise ValueError("data and json parameters are mutually exclusive")
self.uri = uri
self.method = method
self.query_string = query_string
self.query_matcher = _create_query_matcher(self.query_string)
self.json = json
self.headers: Mapping[str, str] = {}
if headers is not None:
self.headers = headers
if isinstance(data, str):
data = data.encode(data_encoding)
self.data = data
self.data_encoding = data_encoding
self.header_value_matcher = HeaderValueMatcher() if header_value_matcher is None else header_value_matcher
def __repr__(self):
class_name = self.__class__.__name__
retval = "<{} ".format(class_name)
retval += "uri={uri!r} method={method!r} query_string={query_string!r} headers={headers!r} data={data!r} json={json!r}>".format_map(
self.__dict__)
return retval
def match_data(self, request: Request) -> bool:
if self.data is None:
return True
return request.data == self.data
def match_uri(self, request: Request) -> bool:
path = request.path
if isinstance(self.uri, URIPattern):
return self.uri.match(path)
elif isinstance(self.uri, re.compile("").__class__):
return bool(self.uri.match(path))
else:
return self.uri == URI_DEFAULT or path == self.uri
def match_json(self, request: Request) -> bool:
if self.json is UNDEFINED:
return True
try:
json_received = json.loads(request.data.decode(self.data_encoding))
except json.JSONDecodeError:
return False
except UnicodeDecodeError:
return False
return json_received == self.json
def difference(self, request: Request) -> List[Tuple]:
retval: List[Tuple] = []
if not self.match_uri(request):
retval.append(("uri", request.path, self.uri))
if self.method != METHOD_ALL and self.method != request.method:
retval.append(("method", request.method, self.method))
if not self.query_matcher.match(request.query_string):
retval.append(("query_string", request.query_string, self.query_string))
request_headers = {}
expected_headers = {}
for key, value in self.headers.items():
if not self.header_value_matcher(key, request.headers.get(key), value):
request_headers[key] = request.headers.get(key)
expected_headers[key] = value
if request_headers and expected_headers:
retval.append(("headers", request_headers, expected_headers))
if not self.match_data(request):
retval.append(("data", request.data, self.data))
if not self.match_json(request):
retval.append(("json", request.data, self.json))
return retval
def match(self, request: Request) -> bool:
difference = self.difference(request)
return not difference
class RequestHandler:
def __init__(self, matcher: RequestMatcher):
self.matcher = matcher
self.request_handler: Optional[Callable[[Request], Response]] = None
def respond(self, request: Request) -> Response:
if self.request_handler is None:
raise NoHandlerError("No handler found for request: {} {}".format(request.method, request.path))
else:
return self.request_handler(request)
def respond_with_json(
self,
response_json,
status: int = 200,
headers: Optional[Mapping[str, str]] = None,
content_type: str = "application/json"):
response_data = json.dumps(response_json, indent=4)
self.respond_with_data(response_data, status, headers, content_type=content_type)
def respond_with_data(
self,
response_data: Union[str, bytes] = "",
status: int = 200,
headers: Optional[Mapping[str, str]] = None,
mimetype: Optional[str] = None,
content_type: Optional[str] = None):
def handler(request):
return Response(response_data, status, headers, mimetype, content_type)
self.request_handler = handler
|
MIT License
|
argoproj-labs/argo-client-python
|
argo/workflows/client/api/cluster_workflow_template_service_api.py
|
ClusterWorkflowTemplateServiceApi.list_cluster_workflow_templates
|
python
|
def list_cluster_workflow_templates(self, **kwargs):
kwargs['_return_http_data_only'] = True
return self.list_cluster_workflow_templates_with_http_info(**kwargs)
|
list_cluster_workflow_templates # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.list_cluster_workflow_templates(async_req=True)
>>> result = thread.get()
:param async_req bool: execute request asynchronously
:param str list_options_label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. +optional.
:param str list_options_field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. +optional.
:param bool list_options_watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. +optional.
:param bool list_options_allow_watch_bookmarks: allowWatchBookmarks requests watch events with type \"BOOKMARK\". Servers that do not implement bookmarks may ignore this flag and bookmarks are sent at the server's discretion. Clients should not assume bookmarks are returned at any specific interval, nor may they assume the server will send any BOOKMARK event during a session. If this is not a watch, this field is ignored. If the feature gate WatchBookmarks is not enabled in apiserver, this field is ignored. +optional.
:param str list_options_resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. +optional.
:param str list_options_timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. +optional.
:param str list_options_limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned.
:param str list_options_continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications.
:param _preload_content: if False, the urllib3.HTTPResponse object will
be returned without reading/decoding response
data. Default is True.
:param _request_timeout: timeout setting for this request. If one
number provided, it will be total request
timeout. It can also be a pair (tuple) of
(connection, read) timeouts.
:return: V1alpha1ClusterWorkflowTemplateList
If the method is called asynchronously,
returns the request thread.
|
https://github.com/argoproj-labs/argo-client-python/blob/993d684cab39a834770b296e028519cec035c7b5/argo/workflows/client/api/cluster_workflow_template_service_api.py#L531-L560
|
from __future__ import absolute_import
import re
import six
from argo.workflows.client.api_client import ApiClient
from argo.workflows.client.exceptions import (
ApiTypeError,
ApiValueError
)
class ClusterWorkflowTemplateServiceApi(object):
def __init__(self, api_client=None):
if api_client is None:
api_client = ApiClient()
self.api_client = api_client
def create_cluster_workflow_template(self, body, **kwargs):
kwargs['_return_http_data_only'] = True
return self.create_cluster_workflow_template_with_http_info(body, **kwargs)
def create_cluster_workflow_template_with_http_info(self, body, **kwargs):
local_var_params = locals()
all_params = [
'body'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method create_cluster_workflow_template" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if self.api_client.client_side_validation and ('body' not in local_var_params or
local_var_params['body'] is None):
raise ApiValueError("Missing the required parameter `body` when calling `create_cluster_workflow_template`")
collection_formats = {}
path_params = {}
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'body' in local_var_params:
body_params = local_var_params['body']
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/v1/cluster-workflow-templates', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='V1alpha1ClusterWorkflowTemplate',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
def delete_cluster_workflow_template(self, name, **kwargs):
kwargs['_return_http_data_only'] = True
return self.delete_cluster_workflow_template_with_http_info(name, **kwargs)
def delete_cluster_workflow_template_with_http_info(self, name, **kwargs):
local_var_params = locals()
all_params = [
'name',
'delete_options_grace_period_seconds',
'delete_options_preconditions_uid',
'delete_options_preconditions_resource_version',
'delete_options_orphan_dependents',
'delete_options_propagation_policy',
'delete_options_dry_run'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method delete_cluster_workflow_template" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if self.api_client.client_side_validation and ('name' not in local_var_params or
local_var_params['name'] is None):
raise ApiValueError("Missing the required parameter `name` when calling `delete_cluster_workflow_template`")
collection_formats = {}
path_params = {}
if 'name' in local_var_params:
path_params['name'] = local_var_params['name']
query_params = []
if 'delete_options_grace_period_seconds' in local_var_params and local_var_params['delete_options_grace_period_seconds'] is not None:
query_params.append(('deleteOptions.gracePeriodSeconds', local_var_params['delete_options_grace_period_seconds']))
if 'delete_options_preconditions_uid' in local_var_params and local_var_params['delete_options_preconditions_uid'] is not None:
query_params.append(('deleteOptions.preconditions.uid', local_var_params['delete_options_preconditions_uid']))
if 'delete_options_preconditions_resource_version' in local_var_params and local_var_params['delete_options_preconditions_resource_version'] is not None:
query_params.append(('deleteOptions.preconditions.resourceVersion', local_var_params['delete_options_preconditions_resource_version']))
if 'delete_options_orphan_dependents' in local_var_params and local_var_params['delete_options_orphan_dependents'] is not None:
query_params.append(('deleteOptions.orphanDependents', local_var_params['delete_options_orphan_dependents']))
if 'delete_options_propagation_policy' in local_var_params and local_var_params['delete_options_propagation_policy'] is not None:
query_params.append(('deleteOptions.propagationPolicy', local_var_params['delete_options_propagation_policy']))
if 'delete_options_dry_run' in local_var_params and local_var_params['delete_options_dry_run'] is not None:
query_params.append(('deleteOptions.dryRun', local_var_params['delete_options_dry_run']))
collection_formats['deleteOptions.dryRun'] = 'multi'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/v1/cluster-workflow-templates/{name}', 'DELETE',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='object',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
def get_cluster_workflow_template(self, name, **kwargs):
kwargs['_return_http_data_only'] = True
return self.get_cluster_workflow_template_with_http_info(name, **kwargs)
def get_cluster_workflow_template_with_http_info(self, name, **kwargs):
local_var_params = locals()
all_params = [
'name',
'get_options_resource_version'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method get_cluster_workflow_template" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if self.api_client.client_side_validation and ('name' not in local_var_params or
local_var_params['name'] is None):
raise ApiValueError("Missing the required parameter `name` when calling `get_cluster_workflow_template`")
collection_formats = {}
path_params = {}
if 'name' in local_var_params:
path_params['name'] = local_var_params['name']
query_params = []
if 'get_options_resource_version' in local_var_params and local_var_params['get_options_resource_version'] is not None:
query_params.append(('getOptions.resourceVersion', local_var_params['get_options_resource_version']))
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/v1/cluster-workflow-templates/{name}', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='V1alpha1ClusterWorkflowTemplate',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
def lint_cluster_workflow_template(self, body, **kwargs):
kwargs['_return_http_data_only'] = True
return self.lint_cluster_workflow_template_with_http_info(body, **kwargs)
def lint_cluster_workflow_template_with_http_info(self, body, **kwargs):
local_var_params = locals()
all_params = [
'body'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method lint_cluster_workflow_template" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if self.api_client.client_side_validation and ('body' not in local_var_params or
local_var_params['body'] is None):
raise ApiValueError("Missing the required parameter `body` when calling `lint_cluster_workflow_template`")
collection_formats = {}
path_params = {}
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'body' in local_var_params:
body_params = local_var_params['body']
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/v1/cluster-workflow-templates/lint', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='V1alpha1ClusterWorkflowTemplate',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
|
Apache License 2.0
|
uwdata/termite-visualizations
|
web2py/gluon/restricted.py
|
RestrictedError.__init__
|
python
|
def __init__(
self,
layer='',
code='',
output='',
environment=None,
):
if environment is None:
environment = {}
self.layer = layer
self.code = code
self.output = output
self.environment = environment
if layer:
try:
self.traceback = traceback.format_exc()
except:
self.traceback = 'no traceback because template parsing error'
try:
self.snapshot = snapshot(context=10, code=code,
environment=self.environment)
except:
self.snapshot = {}
else:
self.traceback = '(no error)'
self.snapshot = {}
|
layer here is some description of where in the system the exception
occurred.
|
https://github.com/uwdata/termite-visualizations/blob/79da58bc607893bbd5db703f7d87a89b5e97c311/web2py/gluon/restricted.py#L118-L147
|
import sys
import cPickle
import traceback
import types
import os
import logging
from storage import Storage
from http import HTTP
from html import BEAUTIFY, XML
logger = logging.getLogger("web2py")
__all__ = ['RestrictedError', 'restricted', 'TicketStorage', 'compile2']
class TicketStorage(Storage):
def __init__(
self,
db=None,
tablename='web2py_ticket'
):
Storage.__init__(self)
self.db = db
self.tablename = tablename
def store(self, request, ticket_id, ticket_data):
if self.db:
self._store_in_db(request, ticket_id, ticket_data)
else:
self._store_on_disk(request, ticket_id, ticket_data)
def _store_in_db(self, request, ticket_id, ticket_data):
self.db._adapter.reconnect()
try:
table = self._get_table(self.db, self.tablename, request.application)
id = table.insert(ticket_id=ticket_id,
ticket_data=cPickle.dumps(ticket_data),
created_datetime=request.now)
self.db.commit()
message = 'In FILE: %(layer)s\n\n%(traceback)s\n'
except Exception, e:
self.db.rollback()
message =' Unable to store in FILE: %(layer)s\n\n%(traceback)s\n'
self.db.close()
logger.error(message % ticket_data)
def _store_on_disk(self, request, ticket_id, ticket_data):
ef = self._error_file(request, ticket_id, 'wb')
try:
cPickle.dump(ticket_data, ef)
finally:
ef.close()
def _error_file(self, request, ticket_id, mode, app=None):
root = request.folder
if app:
root = os.path.join(os.path.join(root, '..'), app)
errors_folder = os.path.abspath(
os.path.join(root, 'errors'))
return open(os.path.join(errors_folder, ticket_id), mode)
def _get_table(self, db, tablename, app):
tablename = tablename + '_' + app
table = db.get(tablename)
if not table:
table = db.define_table(
tablename,
db.Field('ticket_id', length=100),
db.Field('ticket_data', 'text'),
db.Field('created_datetime', 'datetime'))
return table
def load(
self,
request,
app,
ticket_id,
):
if not self.db:
try:
ef = self._error_file(request, ticket_id, 'rb', app)
except IOError:
return {}
try:
return cPickle.load(ef)
finally:
ef.close()
else:
table = self._get_table(self.db, self.tablename, app)
rows = self.db(table.ticket_id == ticket_id).select()
return cPickle.loads(rows[0].ticket_data) if rows else {}
class RestrictedError(Exception):
|
BSD 3-Clause New or Revised License
|
nuitka/nuitka
|
nuitka/nodes/ExpressionBases.py
|
ExpressionBase.mayRaiseExceptionImportName
|
python
|
def mayRaiseExceptionImportName(exception_type, import_name):
return True
|
Unless we are told otherwise, everything may raise for name import.
|
https://github.com/nuitka/nuitka/blob/4c5161620ea8f0f1c93a1d6be79e7e6eda7161d4/nuitka/nodes/ExpressionBases.py#L744-L747
|
from abc import abstractmethod
from nuitka import Options
from nuitka.__past__ import long
from nuitka.Constants import isCompileTimeConstantValue
from nuitka.PythonVersions import python_version
from .NodeBases import ChildrenHavingMixin, NodeBase
from .NodeMakingHelpers import (
getComputationResult,
makeConstantReplacementNode,
makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue,
wrapExpressionWithNodeSideEffects,
wrapExpressionWithSideEffects,
)
from .shapes.BuiltinTypeShapes import tshape_dict, tshape_str, tshape_unicode
from .shapes.StandardShapes import tshape_unknown
class ExpressionBase(NodeBase):
__slots__ = ("code_generated",)
@staticmethod
def getTypeShape():
return tshape_unknown
def getValueShape(self):
return self
@staticmethod
def isCompileTimeConstant():
return False
@staticmethod
def getTruthValue():
return None
@staticmethod
def getComparisonValue():
return None
@staticmethod
def isKnownToBeIterable(count):
return False
@staticmethod
def isKnownToBeIterableAtMin(count):
return False
def getIterationLength(self):
return None
def getIterationMinLength(self):
return self.getIterationLength()
@staticmethod
def getStringValue():
return None
def getStrValue(self):
string_value = self.getStringValue()
if string_value is not None:
return makeConstantReplacementNode(
node=self, constant=string_value, user_provided=False
)
return None
def getTypeValue(self):
from .TypeNodes import ExpressionBuiltinType1
return ExpressionBuiltinType1(
value=self.makeClone(), source_ref=self.source_ref
)
def getIterationHandle(self):
return None
@staticmethod
def isKnownToBeHashable():
return None
@staticmethod
def extractUnhashableNode():
return None
def onRelease(self, trace_collection):
pass
def isKnownToHaveAttribute(self, attribute_name):
return None
@abstractmethod
def computeExpressionRaw(self, trace_collection):
def computeExpressionAttribute(self, lookup_node, attribute_name, trace_collection):
trace_collection.onControlFlowEscape(self)
if not self.isKnownToHaveAttribute(attribute_name):
trace_collection.onExceptionRaiseExit(BaseException)
return lookup_node, None, None
def computeExpressionAttributeSpecial(
self, lookup_node, attribute_name, trace_collection
):
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return lookup_node, None, None
def computeExpressionImportName(self, import_node, import_name, trace_collection):
if self.mayRaiseExceptionImportName(BaseException, import_name):
trace_collection.onExceptionRaiseExit(BaseException)
trace_collection.onControlFlowEscape(self)
return import_node, None, None
def computeExpressionSetAttribute(
self, set_node, attribute_name, value_node, trace_collection
):
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return set_node, None, None
def computeExpressionDelAttribute(self, set_node, attribute_name, trace_collection):
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return set_node, None, None
def computeExpressionSubscript(self, lookup_node, subscript, trace_collection):
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return lookup_node, None, None
def computeExpressionSetSubscript(
self, set_node, subscript, value_node, trace_collection
):
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return set_node, None, None
def computeExpressionDelSubscript(self, del_node, subscript, trace_collection):
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return del_node, None, None
def computeExpressionSlice(self, lookup_node, lower, upper, trace_collection):
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return lookup_node, None, None
def computeExpressionSetSlice(
self, set_node, lower, upper, value_node, trace_collection
):
trace_collection.removeKnowledge(self)
trace_collection.removeKnowledge(value_node)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return set_node, None, None
def computeExpressionDelSlice(self, set_node, lower, upper, trace_collection):
trace_collection.removeKnowledge(self)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return set_node, None, None
def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection):
self.onContentEscapes(trace_collection)
if call_args is not None:
call_args.onContentEscapes(trace_collection)
if call_kw is not None:
call_kw.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return call_node, None, None
def computeExpressionLen(self, len_node, trace_collection):
shape = self.getValueShape()
has_len = shape.hasShapeSlotLen()
if has_len is False:
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
template="object of type '%s' has no len()",
operation="len",
original_node=len_node,
value_node=self,
)
elif has_len is True:
iter_length = self.getIterationLength()
if iter_length is not None:
from .ConstantRefNodes import makeConstantRefNode
result = makeConstantRefNode(
constant=int(iter_length),
source_ref=len_node.getSourceReference(),
)
result = wrapExpressionWithNodeSideEffects(
new_node=result, old_node=self
)
return (
result,
"new_constant",
"Predicted 'len' result from value shape.",
)
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return len_node, None, None
def computeExpressionAbs(self, abs_node, trace_collection):
shape = self.getTypeShape()
if shape.hasShapeSlotAbs() is False:
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
template="bad operand type for abs(): '%s'",
operation="abs",
original_node=abs_node,
value_node=self,
)
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return abs_node, None, None
def computeExpressionInt(self, int_node, trace_collection):
shape = self.getTypeShape()
if shape.hasShapeSlotInt() is False:
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
template="int() argument must be a string or a number, not '%s'"
if python_version < 0x300
else "int() argument must be a string, a bytes-like object or a number, not '%s'",
operation="int",
original_node=int_node,
value_node=self,
)
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return int_node, None, None
def computeExpressionLong(self, long_node, trace_collection):
shape = self.getTypeShape()
if shape.hasShapeSlotLong() is False:
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
template="long() argument must be a string or a number, not '%s'",
operation="long",
original_node=long_node,
value_node=self,
)
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return long_node, None, None
def computeExpressionFloat(self, float_node, trace_collection):
shape = self.getTypeShape()
if shape.hasShapeSlotFloat() is False:
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
"float() argument must be a string or a number"
if Options.is_fullcompat and python_version < 0x300
else "float() argument must be a string or a number, not '%s'",
operation="long",
original_node=float_node,
value_node=self,
)
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return float_node, None, None
def computeExpressionBytes(self, bytes_node, trace_collection):
shape = self.getTypeShape()
if (
shape.hasShapeSlotBytes() is False
and shape.hasShapeSlotInt() is False
and shape.hasShapeSlotIter() is False
):
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
"'%s' object is not iterable",
operation="bytes",
original_node=bytes_node,
value_node=self,
)
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return bytes_node, None, None
def computeExpressionComplex(self, complex_node, trace_collection):
shape = self.getTypeShape()
if shape.hasShapeSlotComplex() is False:
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
"complex() argument must be a string or a number"
if Options.is_fullcompat and python_version < 0x300
else "complex() argument must be a string or a number, not '%s'",
operation="complex",
original_node=complex_node,
value_node=self,
)
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return complex_node, None, None
def computeExpressionIter1(self, iter_node, trace_collection):
shape = self.getTypeShape()
if shape.hasShapeSlotIter() is False:
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
template="'%s' object is not iterable",
operation="iter",
original_node=iter_node,
value_node=self,
)
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return iter_node, None, None
def computeExpressionNext1(self, next_node, trace_collection):
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return False, (next_node, None, None)
def computeExpressionAsyncIter(self, iter_node, trace_collection):
self.onContentEscapes(trace_collection)
trace_collection.onControlFlowEscape(self)
trace_collection.onExceptionRaiseExit(BaseException)
return iter_node, None, None
def computeExpressionOperationNot(self, not_node, trace_collection):
trace_collection.onControlFlowEscape(not_node)
trace_collection.onExceptionRaiseExit(BaseException)
return not_node, None, None
def computeExpressionOperationRepr(self, repr_node, trace_collection):
type_shape = self.getTypeShape()
escape_desc = type_shape.getOperationUnaryReprEscape()
exception_raise_exit = escape_desc.getExceptionExit()
if exception_raise_exit is not None:
trace_collection.onExceptionRaiseExit(exception_raise_exit)
if escape_desc.isValueEscaping():
trace_collection.removeKnowledge(self)
if escape_desc.isControlFlowEscape():
trace_collection.onControlFlowEscape(self)
return (repr_node, None, None), escape_desc
def computeExpressionComparisonIn(self, in_node, value_node, trace_collection):
shape = self.getTypeShape()
assert shape is not None, self
if shape.hasShapeSlotContains() is False:
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
template="argument of type '%s' object is not iterable",
operation="in",
original_node=in_node,
value_node=self,
)
trace_collection.onControlFlowEscape(in_node)
trace_collection.onExceptionRaiseExit(BaseException)
return in_node, None, None
def computeExpressionDrop(self, statement, trace_collection):
if not self.mayHaveSideEffects():
return (
None,
"new_statements",
lambda: "Removed %s without effect." % self.getDescription(),
)
return statement, None, None
def computeExpressionBool(self, trace_collection):
if not self.mayRaiseException(BaseException) and self.mayRaiseExceptionBool(
BaseException
):
trace_collection.onExceptionRaiseExit(BaseException)
@staticmethod
def onContentEscapes(trace_collection):
pass
@staticmethod
def mayRaiseExceptionBool(exception_type):
return True
@staticmethod
def mayRaiseExceptionAbs(exception_type):
return True
@staticmethod
def mayRaiseExceptionInt(exception_type):
return True
@staticmethod
def mayRaiseExceptionLong(exception_type):
return True
@staticmethod
def mayRaiseExceptionFloat(exception_type):
return True
@staticmethod
def mayRaiseExceptionBytes(exception_type):
return True
@staticmethod
def mayRaiseExceptionIn(exception_type, checked_value):
return True
@staticmethod
def mayRaiseExceptionAttributeLookup(exception_type, attribute_name):
return True
@staticmethod
def mayRaiseExceptionAttributeLookupSpecial(exception_type, attribute_name):
return True
@staticmethod
def mayRaiseExceptionAttributeLookupObject(exception_type, attribute):
return True
@staticmethod
def mayRaiseExceptionAttributeCheck(exception_type, attribute_name):
return True
@staticmethod
def mayRaiseExceptionAttributeCheckObject(exception_type, attribute):
return True
@staticmethod
|
Apache License 2.0
|
react-native-skia/react-native-skia
|
tools/clang/scripts/run_tool.py
|
_CompilerDispatcher.Run
|
python
|
def Run(self):
pool = multiprocessing.Pool()
result_iterator = pool.imap_unordered(
functools.partial(_ExecuteTool, self.__toolname, self.__tool_args,
self.__build_directory),
self.__compdb_entries)
for result in result_iterator:
self.__ProcessResult(result)
sys.stderr.write('\n')
|
Does the grunt work.
|
https://github.com/react-native-skia/react-native-skia/blob/91ecc74444b163f128541dbc1a42e27a9c0fb40b/tools/clang/scripts/run_tool.py#L284-L293
|
from __future__ import print_function
import argparse
from collections import namedtuple
import functools
import json
import multiprocessing
import os
import os.path
import re
import subprocess
import shlex
import sys
script_dir = os.path.dirname(os.path.realpath(__file__))
tool_dir = os.path.abspath(os.path.join(script_dir, '../pylib'))
sys.path.insert(0, tool_dir)
from clang import compile_db
CompDBEntry = namedtuple('CompDBEntry', ['directory', 'filename', 'command'])
def _PruneGitFiles(git_files, paths):
if not git_files:
return []
git_files.sort()
pruned_list = []
git_index = 0
for path in sorted(paths):
least = git_index
most = len(git_files) - 1
while least <= most:
middle = (least + most ) / 2
if git_files[middle] == path:
least = middle
break
elif git_files[middle] > path:
most = middle - 1
else:
least = middle + 1
while least < len(git_files) and git_files[least].startswith(path):
pruned_list.append(git_files[least])
least += 1
git_index = least
return pruned_list
def _GetFilesFromGit(paths=None):
partial_paths = []
files = []
for p in paths:
real_path = os.path.realpath(p)
if os.path.isfile(real_path):
files.append(real_path)
else:
partial_paths.append(real_path)
if partial_paths or not files:
args = []
if sys.platform == 'win32':
args.append('git.bat')
else:
args.append('git')
args.append('ls-files')
command = subprocess.Popen(args, stdout=subprocess.PIPE)
output, _ = command.communicate()
git_files = [os.path.realpath(p) for p in output.splitlines()]
if partial_paths:
git_files = _PruneGitFiles(git_files, partial_paths)
files.extend(git_files)
return files
def _GetEntriesFromCompileDB(build_directory, source_filenames):
filenames_set = None if source_filenames is None else set(source_filenames)
return [
CompDBEntry(entry['directory'], entry['file'], entry['command'])
for entry in compile_db.Read(build_directory)
if filenames_set is None or os.path.realpath(
os.path.join(entry['directory'], entry['file'])) in filenames_set
]
def _UpdateCompileCommandsIfNeeded(compile_commands, files_list):
if sys.platform == 'win32' and files_list:
relative_paths = set([os.path.relpath(f) for f in files_list])
filtered_compile_commands = []
for entry in compile_commands:
file_path = os.path.relpath(
os.path.join(entry['directory'], entry['file']))
if file_path in relative_paths:
filtered_compile_commands.append(entry)
else:
filtered_compile_commands = compile_commands
return compile_db.ProcessCompileDatabaseIfNeeded(filtered_compile_commands)
def _ExecuteTool(toolname, tool_args, build_directory, compdb_entry):
args = [toolname, compdb_entry.filename]
if (tool_args):
args.extend(tool_args)
args.append('--')
args.extend([
a for a in shlex.split(compdb_entry.command,
posix=(sys.platform != 'win32'))
if a != compdb_entry.filename
and a != '/showIncludes' and a != '/showIncludes:user'
and a != '-MMD'
])
for i, arg in enumerate(args):
if arg == '-MF':
del args[i:i+2]
break
if sys.platform == 'win32':
args = [a.replace('\\"', '"') for a in args]
command = subprocess.Popen(
args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=build_directory)
stdout_text, stderr_text = command.communicate()
stderr_text = re.sub(
r"^warning: .*'linker' input unused \[-Wunused-command-line-argument\]\n",
"", stderr_text, flags=re.MULTILINE)
if command.returncode != 0:
return {
'status': False,
'filename': compdb_entry.filename,
'stderr_text': stderr_text,
}
else:
return {
'status': True,
'filename': compdb_entry.filename,
'stdout_text': stdout_text,
'stderr_text': stderr_text,
}
class _CompilerDispatcher(object):
def __init__(self, toolname, tool_args, build_directory, compdb_entries):
self.__toolname = toolname
self.__tool_args = tool_args
self.__build_directory = build_directory
self.__compdb_entries = compdb_entries
self.__success_count = 0
self.__failed_count = 0
@property
def failed_count(self):
return self.__failed_count
|
MIT License
|
pfnet/pfrl
|
pfrl/agent.py
|
Agent.save
|
python
|
def save(self, dirname: str) -> None:
pass
|
Save internal states.
Returns:
None
|
https://github.com/pfnet/pfrl/blob/edc5a35a0d5ffb86ec41f4ae3a9a10c5ab2c6be6/pfrl/agent.py#L33-L39
|
import contextlib
import os
from abc import ABCMeta, abstractmethod, abstractproperty
from typing import Any, List, Optional, Sequence, Tuple
import torch
class Agent(object, metaclass=ABCMeta):
training = True
@abstractmethod
def act(self, obs: Any) -> Any:
raise NotImplementedError()
@abstractmethod
def observe(self, obs: Any, reward: float, done: bool, reset: bool) -> None:
raise NotImplementedError()
@abstractmethod
|
MIT License
|
argoproj-labs/argo-client-python
|
argo/workflows/client/models/v1alpha1_workflow_template_spec.py
|
V1alpha1WorkflowTemplateSpec.priority
|
python
|
def priority(self, priority):
self._priority = priority
|
Sets the priority of this V1alpha1WorkflowTemplateSpec.
Priority is used if controller is configured to process limited number of workflows in parallel. Workflows with higher priority are processed first. # noqa: E501
:param priority: The priority of this V1alpha1WorkflowTemplateSpec. # noqa: E501
:type: int
|
https://github.com/argoproj-labs/argo-client-python/blob/993d684cab39a834770b296e028519cec035c7b5/argo/workflows/client/models/v1alpha1_workflow_template_spec.py#L717-L726
|
import pprint
import re
import six
from argo.workflows.client.configuration import Configuration
class V1alpha1WorkflowTemplateSpec(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'active_deadline_seconds': 'int',
'affinity': 'V1Affinity',
'arguments': 'V1alpha1Arguments',
'artifact_repository_ref': 'V1alpha1ArtifactRepositoryRef',
'automount_service_account_token': 'bool',
'dns_config': 'V1PodDNSConfig',
'dns_policy': 'str',
'entrypoint': 'str',
'executor': 'V1alpha1ExecutorConfig',
'host_aliases': 'list[V1HostAlias]',
'host_network': 'bool',
'image_pull_secrets': 'list[V1LocalObjectReference]',
'metrics': 'V1alpha1Metrics',
'node_selector': 'dict(str, str)',
'on_exit': 'str',
'parallelism': 'int',
'pod_disruption_budget': 'IoK8sApiPolicyV1beta1PodDisruptionBudgetSpec',
'pod_gc': 'V1alpha1PodGC',
'pod_priority': 'int',
'pod_priority_class_name': 'str',
'pod_spec_patch': 'str',
'priority': 'int',
'retry_strategy': 'V1alpha1RetryStrategy',
'scheduler_name': 'str',
'security_context': 'V1PodSecurityContext',
'service_account_name': 'str',
'shutdown': 'str',
'suspend': 'bool',
'synchronization': 'V1alpha1Synchronization',
'templates': 'list[V1alpha1Template]',
'tolerations': 'list[V1Toleration]',
'ttl_seconds_after_finished': 'int',
'ttl_strategy': 'V1alpha1TTLStrategy',
'volume_claim_gc': 'V1alpha1VolumeClaimGC',
'volume_claim_templates': 'list[V1PersistentVolumeClaim]',
'volumes': 'list[V1Volume]',
'workflow_metadata': 'V1ObjectMeta',
'workflow_template_ref': 'V1alpha1WorkflowTemplateRef'
}
attribute_map = {
'active_deadline_seconds': 'activeDeadlineSeconds',
'affinity': 'affinity',
'arguments': 'arguments',
'artifact_repository_ref': 'artifactRepositoryRef',
'automount_service_account_token': 'automountServiceAccountToken',
'dns_config': 'dnsConfig',
'dns_policy': 'dnsPolicy',
'entrypoint': 'entrypoint',
'executor': 'executor',
'host_aliases': 'hostAliases',
'host_network': 'hostNetwork',
'image_pull_secrets': 'imagePullSecrets',
'metrics': 'metrics',
'node_selector': 'nodeSelector',
'on_exit': 'onExit',
'parallelism': 'parallelism',
'pod_disruption_budget': 'podDisruptionBudget',
'pod_gc': 'podGC',
'pod_priority': 'podPriority',
'pod_priority_class_name': 'podPriorityClassName',
'pod_spec_patch': 'podSpecPatch',
'priority': 'priority',
'retry_strategy': 'retryStrategy',
'scheduler_name': 'schedulerName',
'security_context': 'securityContext',
'service_account_name': 'serviceAccountName',
'shutdown': 'shutdown',
'suspend': 'suspend',
'synchronization': 'synchronization',
'templates': 'templates',
'tolerations': 'tolerations',
'ttl_seconds_after_finished': 'ttlSecondsAfterFinished',
'ttl_strategy': 'ttlStrategy',
'volume_claim_gc': 'volumeClaimGC',
'volume_claim_templates': 'volumeClaimTemplates',
'volumes': 'volumes',
'workflow_metadata': 'workflowMetadata',
'workflow_template_ref': 'workflowTemplateRef'
}
def __init__(self, active_deadline_seconds=None, affinity=None, arguments=None, artifact_repository_ref=None, automount_service_account_token=None, dns_config=None, dns_policy=None, entrypoint=None, executor=None, host_aliases=None, host_network=None, image_pull_secrets=None, metrics=None, node_selector=None, on_exit=None, parallelism=None, pod_disruption_budget=None, pod_gc=None, pod_priority=None, pod_priority_class_name=None, pod_spec_patch=None, priority=None, retry_strategy=None, scheduler_name=None, security_context=None, service_account_name=None, shutdown=None, suspend=None, synchronization=None, templates=None, tolerations=None, ttl_seconds_after_finished=None, ttl_strategy=None, volume_claim_gc=None, volume_claim_templates=None, volumes=None, workflow_metadata=None, workflow_template_ref=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._active_deadline_seconds = None
self._affinity = None
self._arguments = None
self._artifact_repository_ref = None
self._automount_service_account_token = None
self._dns_config = None
self._dns_policy = None
self._entrypoint = None
self._executor = None
self._host_aliases = None
self._host_network = None
self._image_pull_secrets = None
self._metrics = None
self._node_selector = None
self._on_exit = None
self._parallelism = None
self._pod_disruption_budget = None
self._pod_gc = None
self._pod_priority = None
self._pod_priority_class_name = None
self._pod_spec_patch = None
self._priority = None
self._retry_strategy = None
self._scheduler_name = None
self._security_context = None
self._service_account_name = None
self._shutdown = None
self._suspend = None
self._synchronization = None
self._templates = None
self._tolerations = None
self._ttl_seconds_after_finished = None
self._ttl_strategy = None
self._volume_claim_gc = None
self._volume_claim_templates = None
self._volumes = None
self._workflow_metadata = None
self._workflow_template_ref = None
self.discriminator = None
if active_deadline_seconds is not None:
self.active_deadline_seconds = active_deadline_seconds
if affinity is not None:
self.affinity = affinity
if arguments is not None:
self.arguments = arguments
if artifact_repository_ref is not None:
self.artifact_repository_ref = artifact_repository_ref
if automount_service_account_token is not None:
self.automount_service_account_token = automount_service_account_token
if dns_config is not None:
self.dns_config = dns_config
if dns_policy is not None:
self.dns_policy = dns_policy
if entrypoint is not None:
self.entrypoint = entrypoint
if executor is not None:
self.executor = executor
if host_aliases is not None:
self.host_aliases = host_aliases
if host_network is not None:
self.host_network = host_network
if image_pull_secrets is not None:
self.image_pull_secrets = image_pull_secrets
if metrics is not None:
self.metrics = metrics
if node_selector is not None:
self.node_selector = node_selector
if on_exit is not None:
self.on_exit = on_exit
if parallelism is not None:
self.parallelism = parallelism
if pod_disruption_budget is not None:
self.pod_disruption_budget = pod_disruption_budget
if pod_gc is not None:
self.pod_gc = pod_gc
if pod_priority is not None:
self.pod_priority = pod_priority
if pod_priority_class_name is not None:
self.pod_priority_class_name = pod_priority_class_name
if pod_spec_patch is not None:
self.pod_spec_patch = pod_spec_patch
if priority is not None:
self.priority = priority
if retry_strategy is not None:
self.retry_strategy = retry_strategy
if scheduler_name is not None:
self.scheduler_name = scheduler_name
if security_context is not None:
self.security_context = security_context
if service_account_name is not None:
self.service_account_name = service_account_name
if shutdown is not None:
self.shutdown = shutdown
if suspend is not None:
self.suspend = suspend
if synchronization is not None:
self.synchronization = synchronization
if templates is not None:
self.templates = templates
if tolerations is not None:
self.tolerations = tolerations
if ttl_seconds_after_finished is not None:
self.ttl_seconds_after_finished = ttl_seconds_after_finished
if ttl_strategy is not None:
self.ttl_strategy = ttl_strategy
if volume_claim_gc is not None:
self.volume_claim_gc = volume_claim_gc
if volume_claim_templates is not None:
self.volume_claim_templates = volume_claim_templates
if volumes is not None:
self.volumes = volumes
if workflow_metadata is not None:
self.workflow_metadata = workflow_metadata
if workflow_template_ref is not None:
self.workflow_template_ref = workflow_template_ref
@property
def active_deadline_seconds(self):
return self._active_deadline_seconds
@active_deadline_seconds.setter
def active_deadline_seconds(self, active_deadline_seconds):
self._active_deadline_seconds = active_deadline_seconds
@property
def affinity(self):
return self._affinity
@affinity.setter
def affinity(self, affinity):
self._affinity = affinity
@property
def arguments(self):
return self._arguments
@arguments.setter
def arguments(self, arguments):
self._arguments = arguments
@property
def artifact_repository_ref(self):
return self._artifact_repository_ref
@artifact_repository_ref.setter
def artifact_repository_ref(self, artifact_repository_ref):
self._artifact_repository_ref = artifact_repository_ref
@property
def automount_service_account_token(self):
return self._automount_service_account_token
@automount_service_account_token.setter
def automount_service_account_token(self, automount_service_account_token):
self._automount_service_account_token = automount_service_account_token
@property
def dns_config(self):
return self._dns_config
@dns_config.setter
def dns_config(self, dns_config):
self._dns_config = dns_config
@property
def dns_policy(self):
return self._dns_policy
@dns_policy.setter
def dns_policy(self, dns_policy):
self._dns_policy = dns_policy
@property
def entrypoint(self):
return self._entrypoint
@entrypoint.setter
def entrypoint(self, entrypoint):
self._entrypoint = entrypoint
@property
def executor(self):
return self._executor
@executor.setter
def executor(self, executor):
self._executor = executor
@property
def host_aliases(self):
return self._host_aliases
@host_aliases.setter
def host_aliases(self, host_aliases):
self._host_aliases = host_aliases
@property
def host_network(self):
return self._host_network
@host_network.setter
def host_network(self, host_network):
self._host_network = host_network
@property
def image_pull_secrets(self):
return self._image_pull_secrets
@image_pull_secrets.setter
def image_pull_secrets(self, image_pull_secrets):
self._image_pull_secrets = image_pull_secrets
@property
def metrics(self):
return self._metrics
@metrics.setter
def metrics(self, metrics):
self._metrics = metrics
@property
def node_selector(self):
return self._node_selector
@node_selector.setter
def node_selector(self, node_selector):
self._node_selector = node_selector
@property
def on_exit(self):
return self._on_exit
@on_exit.setter
def on_exit(self, on_exit):
self._on_exit = on_exit
@property
def parallelism(self):
return self._parallelism
@parallelism.setter
def parallelism(self, parallelism):
self._parallelism = parallelism
@property
def pod_disruption_budget(self):
return self._pod_disruption_budget
@pod_disruption_budget.setter
def pod_disruption_budget(self, pod_disruption_budget):
self._pod_disruption_budget = pod_disruption_budget
@property
def pod_gc(self):
return self._pod_gc
@pod_gc.setter
def pod_gc(self, pod_gc):
self._pod_gc = pod_gc
@property
def pod_priority(self):
return self._pod_priority
@pod_priority.setter
def pod_priority(self, pod_priority):
self._pod_priority = pod_priority
@property
def pod_priority_class_name(self):
return self._pod_priority_class_name
@pod_priority_class_name.setter
def pod_priority_class_name(self, pod_priority_class_name):
self._pod_priority_class_name = pod_priority_class_name
@property
def pod_spec_patch(self):
return self._pod_spec_patch
@pod_spec_patch.setter
def pod_spec_patch(self, pod_spec_patch):
self._pod_spec_patch = pod_spec_patch
@property
def priority(self):
return self._priority
@priority.setter
|
Apache License 2.0
|
svenito/brew-tools
|
brew_tools/brew_maths.py
|
apparent_attenuation
|
python
|
def apparent_attenuation(og, fg):
return 1.0 - to_plato(fg) / to_plato(og)
|
Calculate the apparent attenuation from the current and
original gravity.
via http://realbeer.com/spencer/attenuation.html
AA = 1 - AE / OE
:arg og: The original gravity of the wort (1.0 to 1.2)
:arg fg: The current gravity of the beer
:returns: The apparent attenuation as a decimal (multiply
by 100 to get percentage value)
|
https://github.com/svenito/brew-tools/blob/23a2e6b4528b4e8ad5a046e80555c961342f9ea4/brew_tools/brew_maths.py#L253-L266
|
import math
def oz_to_g(oz):
return oz * 28.34952
def g_to_oz(g):
return g / 28.34952
def lbs_to_oz(lbs):
return lbs * 16
def c_to_f(c):
return c * 1.8 + 32.0
def f_to_c(f):
return (f - 32.0) / 1.8
def l_to_g(liter):
return liter * 0.26417
def g_to_l(gallon):
return gallon / 0.26417
def l_to_q(liter):
return liter * 1.056688
def kg_to_lbs(kg):
return kg * 2.204623
def lbs_to_kg(lbs):
return lbs / 2.204623
def to_brix(value):
brix = ((182.4601 * value - 775.6821) * value + 1262.7794) * value - 669.5622
return brix
def to_plato(sg):
plato = (-1 * 616.868) + (1111.14 * sg) - (630.272 * sg ** 2) + (135.997 * sg ** 3)
return plato
def to_sg(plato):
return 1 + (plato / (258.6 - ((plato / 258.2) * 227.1)))
def ebc_to_srm(ebc):
return ebc * 0.508
def ebc_to_l(ebc):
return srm_to_l(ebc_to_srm(ebc))
def srm_to_ebc(srm):
return srm / 0.508
def srm_to_l(srm):
return (srm + 0.76) / 1.3546
def l_to_srm(lovibond):
return 1.3546 * lovibond - 0.76
def l_to_ebc(lovibond):
return srm_to_ebc(l_to_srm(lovibond))
def adjust_gravity(og, fg):
adjusted_fg = (1.0000 - 0.00085683 * to_brix(og)) + 0.0034941 * to_brix(fg)
return adjusted_fg
def abv(og, fg, adjust):
if adjust:
fg = adjust_gravity(og, fg)
return (og - fg) * 131.25
def keg_psi(temp, co2):
henry_coeff = 0.01821 + 0.09011 * math.exp(-(temp - 32) / 43.11)
pressure = ((co2 + 0.003342) / henry_coeff) - 14.695
return pressure
def priming(temp, beer_vol, co2):
return (
15.195
* beer_vol
* (co2 - 3.0378 + (0.050062 * temp) - (0.00026555 * (temp ** 2)))
)
def infusion(ratio, curr_temp, new_temp, water_temp, grain):
mash_water = grain * ratio
return ((new_temp - curr_temp) * (0.2 * grain + mash_water)) / (
water_temp - new_temp
)
def pre_boil_dme(points, cur_vol):
return lbs_to_oz(points * (1 / (44 / cur_vol)))
|
MIT License
|
pyansys/pyaedt
|
pyaedt/modules/SolveSetup.py
|
SetupCircuit.p_app
|
python
|
def p_app(self):
return self._app
|
AEDT app module for setting up the analysis.
|
https://github.com/pyansys/pyaedt/blob/817c7d706a2d10942470ccac959645e16e9ea971/pyaedt/modules/SolveSetup.py#L493-L495
|
from __future__ import absolute_import
import warnings
from collections import OrderedDict
import os.path
from ..generic.general_methods import aedt_exception_handler, generate_unique_name
from .SetupTemplates import SweepHFSS, SweepQ3D, SetupKeys, SweepHFSS3DLayout
from ..generic.DataHandlers import tuple2dict, dict2arg
class Setup(object):
@property
def p_app(self):
return self._app
@p_app.setter
def p_app(self, value):
self._app = value
@property
def omodule(self):
return self._app.oanalysis
def __repr__(self):
return "SetupName " + self.name + " with " + str(len(self.sweeps)) + " Sweeps"
def __init__(self, app, solutiontype, setupname="MySetupAuto", isnewsetup=True):
self._app = None
self.p_app = app
if isinstance(solutiontype, int):
self.setuptype = solutiontype
else:
self.setuptype = SetupKeys.defaultSetups[solutiontype]
self.name = setupname
self.props = {}
self.sweeps = []
if isnewsetup:
setup_template = SetupKeys.SetupTemplates[self.setuptype]
for t in setup_template:
tuple2dict(t, self.props)
else:
try:
setups_data = self.p_app.design_properties["AnalysisSetup"]["SolveSetups"]
if setupname in setups_data:
setup_data = setups_data[setupname]
if "Sweeps" in setup_data and self.setuptype not in [
0,
7,
]:
if self.setuptype <= 4:
app = setup_data["Sweeps"]
app.pop("NextUniqueID", None)
app.pop("MoveBackForward", None)
app.pop("MoveBackwards", None)
for el in app:
if isinstance(app[el], (OrderedDict, dict)):
self.sweeps.append(SweepHFSS(self.omodule, setupname, el, props=app[el]))
else:
app = setup_data["Sweeps"]
for el in app:
if isinstance(app[el], (OrderedDict, dict)):
self.sweeps.append(SweepQ3D(self.omodule, setupname, el, props=app[el]))
setup_data.pop("Sweeps", None)
self.props = OrderedDict(setup_data)
except:
self.props = OrderedDict()
@aedt_exception_handler
def create(self):
soltype = SetupKeys.SetupNames[self.setuptype]
arg = ["NAME:" + self.name]
dict2arg(self.props, arg)
self.omodule.InsertSetup(soltype, arg)
return arg
@aedt_exception_handler
def update(self, update_dictionary=None):
if update_dictionary:
for el in update_dictionary:
self.props[el] = update_dictionary[el]
arg = ["NAME:" + self.name]
dict2arg(self.props, arg)
self.omodule.EditSetup(self.name, arg)
return True
@aedt_exception_handler
def _expression_cache(
self,
expression_list,
report_type_list,
intrinsics_list,
isconvergence_list,
isrelativeconvergence,
conv_criteria,
):
if isrelativeconvergence:
userelative = 1
else:
userelative = 0
list_data = ["NAME:ExpressionCache"]
if type(expression_list) is list:
i = 0
while i < len(expression_list):
expression = expression_list[i]
name = expression.replace("(", "_") + "1"
name = name.replace(")", "_")
name = name.replace(" ", "_")
name = name.replace(".", "_")
name = name.replace("/", "_")
name = name.replace("*", "_")
name = name.replace("+", "_")
name = name.replace("-", "_")
if type(report_type_list) is list:
report_type = report_type_list[i]
else:
report_type = report_type_list
if type(isconvergence_list) is list:
isconvergence = isconvergence_list[i]
else:
isconvergence = isconvergence_list
if type(intrinsics_list) is list:
intrinsics = intrinsics_list[i]
else:
intrinsics = intrinsics_list
list_data.append(
[
"NAME:CacheItem",
"Title:=",
name,
"Expression:=",
expression,
"Intrinsics:=",
intrinsics,
"IsConvergence:=",
isconvergence,
"UseRelativeConvergence:=",
1,
"MaxConvergenceDelta:=",
1,
"MaxConvergeValue:=",
"0.01",
"ReportType:=",
report_type,
["NAME:ExpressionContext"],
]
)
i += 1
else:
name = expression_list.replace("(", "") + "1"
name = name.replace(")", "")
name = name.replace(" ", "")
name = name.replace(",", "_")
list_data.append(
[
"NAME:CacheItem",
"Title:=",
name,
"Expression:=",
expression_list,
"Intrinsics:=",
intrinsics_list,
"IsConvergence:=",
isconvergence_list,
"UseRelativeConvergence:=",
userelative,
"MaxConvergenceDelta:=",
conv_criteria,
"MaxConvergeValue:=",
str(conv_criteria),
"ReportType:=",
report_type_list,
["NAME:ExpressionContext"],
]
)
return list_data
@aedt_exception_handler
def enable_expression_cache(
self,
expressions,
report_type="Fields",
intrinsics="",
isconvergence=True,
isrelativeconvergence=True,
conv_criteria=1,
):
arg = ["NAME:" + self.name]
dict2arg(self.props, arg)
expression_cache = self._expression_cache(
expressions, report_type, intrinsics, isconvergence, isrelativeconvergence, conv_criteria
)
arg.append(expression_cache)
self.omodule.EditSetup(self.name, arg)
return True
@aedt_exception_handler
def add_derivatives(self, derivative_list):
arg = ["NAME:" + self.name]
dict2arg(self.props, arg)
arg.append("VariablesForDerivatives:=")
arg.append(derivative_list)
self.omodule.EditSetup(self.name, arg)
return True
@aedt_exception_handler
def enable(self, setup_name=None):
if not setup_name:
setup_name = self.name
self.omodule.EditSetup(setup_name, ["NAME:" + setup_name, "IsEnabled:=", True])
return True
@aedt_exception_handler
def disable(self, setup_name=None):
if not setup_name:
setup_name = self.name
self.omodule.EditSetup(setup_name, ["NAME:" + setup_name, "IsEnabled:", False])
return True
@aedt_exception_handler
def add_sweep(self, sweepname=None, sweeptype="Interpolating"):
if not sweepname:
sweepname = generate_unique_name("Sweep")
if self.setuptype <= 4:
sweep_n = SweepHFSS(self.omodule, self.name, sweepname, sweeptype)
else:
sweep_n = SweepQ3D(self.omodule, self.name, sweepname, sweeptype)
sweep_n.create()
self.sweeps.append(sweep_n)
return sweep_n
@aedt_exception_handler
def add_mesh_link(self, design_name, solution_name, parameters_dict, project_name="This Project*"):
meshlinks = self.props["MeshLink"]
meshlinks["ImportMesh"] = True
meshlinks["Project"] = project_name
meshlinks["Product"] = "ElectronicsDesktop"
meshlinks["Design"] = design_name
meshlinks["Soln"] = solution_name
meshlinks["Params"] = OrderedDict({})
for el in parameters_dict:
if el in list(self._app.available_variations.nominal_w_values_dict.keys()):
meshlinks["Params"][el] = el
else:
meshlinks["Params"][el] = parameters_dict[el]
meshlinks["ForceSourceToSolve"] = True
meshlinks["PreservePartnerSoln"] = True
meshlinks["PathRelativeTo"] = "TargetProject"
meshlinks["ApplyMeshOp"] = True
self.update()
return True
class SetupCircuit(object):
def __init__(self, app, solutiontype, setupname="MySetupAuto", isnewsetup=True):
self._app = None
self.p_app = app
if isinstance(solutiontype, int):
self.setuptype = solutiontype
else:
self.setuptype = SetupKeys.defaultSetups[solutiontype]
self._Name = "LinearFrequency"
self.props = {}
if isnewsetup:
setup_template = SetupKeys.SetupTemplates[self.setuptype]
for t in setup_template:
tuple2dict(t, self.props)
else:
try:
setups_data = self.p_app.design_properties["SimSetups"]["SimSetup"]
if type(setups_data) is not list:
setups_data = [setups_data]
for setup in setups_data:
if setupname == setup["Name"]:
setup_data = setup
setup_data.pop("Sweeps", None)
self.props = setup_data
except:
self.props = {}
self.name = setupname
@property
def name(self):
return self._Name
@name.setter
def name(self, name):
self._Name = name
self.props["Name"] = name
@property
|
MIT License
|
legrego/homeassistant-elasticsearch
|
custom_components/elasticsearch/es_gateway.py
|
ElasticsearchGateway.async_init
|
python
|
async def async_init(self):
LOGGER.debug("Creating Elasticsearch client for %s", self._url)
self.client = self._create_es_client()
self.es_version = ElasticsearchVersion(self.client)
await self.es_version.async_init()
if not self.es_version.is_supported_version():
LOGGER.fatal(
"UNSUPPORTED VERSION OF ELASTICSEARCH DETECTED: %s.",
self.es_version.to_string(),
)
raise UnsupportedVersion()
LOGGER.debug("Gateway initialized")
|
I/O bound init
|
https://github.com/legrego/homeassistant-elasticsearch/blob/ba7a4a78bd9209993628b99511a3c97108614f63/custom_components/elasticsearch/es_gateway.py#L84-L99
|
import aiohttp
from homeassistant.const import (
CONF_PASSWORD,
CONF_TIMEOUT,
CONF_URL,
CONF_USERNAME,
CONF_VERIFY_SSL,
)
from homeassistant.helpers.typing import HomeAssistantType
from .const import CONF_SSL_CA_PATH
from .errors import (
AuthenticationRequired,
CannotConnect,
ElasticException,
InsufficientPrivileges,
UnsupportedVersion,
UntrustedCertificate,
)
from .es_serializer import get_serializer
from .es_version import ElasticsearchVersion
from .logger import LOGGER
class ElasticsearchGateway:
def __init__(self, config):
self._url = config.get(CONF_URL)
self._timeout = config.get(CONF_TIMEOUT)
self._username = config.get(CONF_USERNAME)
self._password = config.get(CONF_PASSWORD)
self._verify_certs = config.get(CONF_VERIFY_SSL, True)
self._ca_certs = config.get(CONF_SSL_CA_PATH)
self.client = None
self.es_version = None
async def check_connection(self, hass: HomeAssistantType):
from elasticsearch import (
AuthenticationException,
AuthorizationException,
ConnectionError,
ElasticsearchException,
SSLError,
)
client = None
is_supported_version = True
try:
client = self._create_es_client()
es_version = ElasticsearchVersion(client)
await es_version.async_init()
is_supported_version = es_version.is_supported_version()
except SSLError as err:
raise UntrustedCertificate(err)
except ConnectionError as err:
if isinstance(
err.info, aiohttp.client_exceptions.ClientConnectorCertificateError
):
raise UntrustedCertificate(err)
raise CannotConnect(err)
except AuthenticationException as err:
raise AuthenticationRequired(err)
except AuthorizationException as err:
raise InsufficientPrivileges(err)
except ElasticsearchException as err:
raise ElasticException(err)
except Exception as err:
raise ElasticException(err)
finally:
if client:
await client.close()
client = None
if not is_supported_version:
raise UnsupportedVersion()
|
MIT License
|
btaba/yarlp
|
yarlp/experiment/plotting.py
|
plot_data
|
python
|
def plot_data(data, value, time, run, condition, title='', ax=None, ci=95):
if isinstance(data, list):
data = pd.concat(data, ignore_index=True)
sns.set(style="darkgrid", font_scale=1.5)
plot = sns.tsplot(
data=data, time=time, value=value, unit=run, condition=condition,
ax=ax, ci=ci)
plt.title(title)
return plot
|
Plot time series data using sns.tsplot
Params
----------
data (pd.DataFrame):
value (str): value column
time (str): time column
condition (str): sns.tsplot condition
title (str):
ax (matplotlib axis):
|
https://github.com/btaba/yarlp/blob/e6bc70afe32f8617f56180d60d6a100c83868119/yarlp/experiment/plotting.py#L8-L28
|
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
|
MIT License
|
openstack/tempest
|
tempest/lib/services/identity/v2/users_client.py
|
UsersClient.show_user
|
python
|
def show_user(self, user_id):
resp, body = self.get("users/%s" % user_id)
self.expected_success(200, resp.status)
body = json.loads(body)
return rest_client.ResponseBody(resp, body)
|
GET a user.
For a full list of available parameters, please refer to the official
API reference:
https://docs.openstack.org/api-ref/identity/v2-admin/index.html#show-user-details-admin-endpoint
|
https://github.com/openstack/tempest/blob/d458bf329739ae7b7652d329e6415ad6ba54e490/tempest/lib/services/identity/v2/users_client.py#L49-L59
|
from urllib import parse as urllib
from oslo_serialization import jsonutils as json
from tempest.lib.common import rest_client
class UsersClient(rest_client.RestClient):
api_version = "v2.0"
def create_user(self, **kwargs):
post_body = json.dumps({'user': kwargs})
resp, body = self.post('users', post_body)
self.expected_success(200, resp.status)
body = json.loads(body)
return rest_client.ResponseBody(resp, body)
def update_user(self, user_id, **kwargs):
put_body = json.dumps({'user': kwargs})
resp, body = self.put('users/%s' % user_id, put_body)
self.expected_success(200, resp.status)
body = json.loads(body)
return rest_client.ResponseBody(resp, body)
|
Apache License 2.0
|
stefanvdweide/flask-api-template
|
flask_api_template.py
|
remove_old_jwts
|
python
|
def remove_old_jwts():
from app.models import RevokedTokenModel
delete_date = datetime.utcnow() - relativedelta(days=5)
old_tokens = (
db.session.query(RevokedTokenModel)
.filter(RevokedTokenModel.date_revoked < delete_date)
.all()
)
if old_tokens:
for token in old_tokens:
db.session.delete(token)
db.session.commit()
print(
"{} old tokens have been removed from the database".format(len(old_tokens))
)
else:
print("No JWT's older than 5 days have been found")
return old_tokens
|
Scan the database for JWT tokens in the Revoked Token table older than 5 days and remove them.
|
https://github.com/stefanvdweide/flask-api-template/blob/68330e797c94cdfffb16bf547a4b83935be9edba/flask_api_template.py#L11-L40
|
from app import create_app
from app import db
from datetime import datetime
from dateutil.relativedelta import relativedelta
app = create_app()
@app.cli.command()
|
MIT License
|
jtambasco/modesolverpy
|
modesolverpy/structure_base.py
|
Slabs.n
|
python
|
def n(self):
try:
n_mat = self.slabs['0'].n
for s in range(1, self.slab_count):
n_mat = np.vstack((self.slabs[str(s)].n, n_mat))
except KeyError:
n_mat = None
return n_mat
|
np.array: The refractive index profile matrix
of the current slab.
|
https://github.com/jtambasco/modesolverpy/blob/ebdd70087f8e1c46f36dd7c6ae70ad59d7c38185/modesolverpy/structure_base.py#L418-L429
|
import numpy as np
from scipy import interpolate
import os
import sys
import subprocess
import abc
from six import with_metaclass
try:
devnull = open(os.devnull, 'w')
subprocess.call(['gnuplot', '--version'], stdout=devnull, stderr=devnull)
import gnuplotpy as gp
MPL = False
except:
import matplotlib.pylab as plt
MPL = True
def use_gnuplot():
global gp
import gnuplotpy as gp
global MPL
MPL = False
def use_matplotlib():
global plt
import matplotlib.pylab as plt
global MPL
MPL = True
class _AbstractStructure(with_metaclass(abc.ABCMeta)):
@abc.abstractproperty
def n(self):
pass
@property
def x_pts(self):
return int((self.x_max - self.x_min) / self.x_step + 1)
@property
def y_pts(self):
return int((self.y_max - self.y_min) / self.y_step)
@property
def x_ctr(self):
return 0.5*(self.x_max + self.x_min)
@property
def y_ctr(self):
return 0.5*(self.y_max + self.y_min)
@property
def xc(self):
return 0.5*(self.x[1:] + self.x[:-1])
@property
def yc(self):
return 0.5*(self.y[1:] + self.y[:-1])
@property
def xc_pts(self):
return self.x_pts - 1
@property
def yc_pts(self):
return self.y_pts - 1
@property
def xc_min(self):
return self.xc[0]
@property
def xc_max(self):
return self.xc[-1]
@property
def yc_min(self):
return self.yc[0]
@property
def yc_max(self):
return self.yc[-1]
@property
def x(self):
if None not in (self.x_min, self.x_max, self.x_step) and self.x_min != self.x_max:
x = np.arange(self.x_min, self.x_max+self.x_step-self.y_step*0.1, self.x_step)
else:
x = np.array([])
return x
@property
def y(self):
if None not in (self.y_min, self.y_max, self.y_step) and self.y_min != self.y_max:
y = np.arange(self.y_min, self.y_max-self.y_step*0.1, self.y_step)
else:
y = np.array([])
return y
@property
def eps(self):
return self.n**2
@property
def eps_func(self):
interp_real = interpolate.interp2d(self.x, self.y, self.eps.real)
interp_imag = interpolate.interp2d(self.x, self.y, self.eps.imag)
interp = lambda x, y: interp_real(x, y) + 1.j*interp_imag(x, y)
return interp
@property
def n_func(self):
return interpolate.interp2d(self.x, self.y, self.n)
def _add_triangular_sides(self, xy_mask, angle, y_top_right, y_bot_left,
x_top_right, x_bot_left, n_material):
angle = np.radians(angle)
trap_len = (y_top_right - y_bot_left) / np.tan(angle)
num_x_iterations = trap_len / self.x_step
y_per_iteration = num_x_iterations / self.y_pts
lhs_x_start_index = int(x_bot_left/ self.x_step + 0.5)
rhs_x_stop_index = int(x_top_right/ self.x_step + 1 + 0.5)
running_removal_float = y_per_iteration
for i, _ in enumerate(xy_mask):
if running_removal_float >= 1:
removal_int = int(round(running_removal_float))
lhs_x_start_index -= removal_int
rhs_x_stop_index += removal_int
running_removal_float -= removal_int
running_removal_float += y_per_iteration
xy_mask[i][:lhs_x_start_index] = False
xy_mask[i][lhs_x_start_index:rhs_x_stop_index] = True
self.n[xy_mask] = n_material
return self.n
def _add_material(self, x_bot_left, y_bot_left, x_top_right, y_top_right,
n_material, angle=0):
x_mask = np.logical_and(x_bot_left<=self.x, self.x<=x_top_right)
y_mask = np.logical_and(y_bot_left<=self.y, self.y<=y_top_right)
xy_mask = np.kron(y_mask, x_mask).reshape((y_mask.size, x_mask.size))
self.n[xy_mask] = n_material
if angle:
self._add_triangular_sides(xy_mask, angle, y_top_right, y_bot_left,
x_top_right, x_bot_left, n_material)
return self.n
def write_to_file(self, filename='material_index.dat', plot=True):
path = os.path.dirname(sys.modules[__name__].__file__) + '/'
with open(filename, 'w') as fs:
for n_row in np.abs(self.n[::-1]):
n_str = ','.join([str(v) for v in n_row])
fs.write(n_str+'\n')
if plot:
filename_image_prefix, _ = os.path.splitext(filename)
filename_image = filename_image_prefix + '.png'
args = {
'title': 'Refractive Index Profile',
'x_pts': self.x_pts,
'y_pts': self.y_pts,
'x_min': self.x_min,
'x_max': self.x_max,
'y_min': self.y_min,
'y_max': self.y_max,
'filename_data': filename,
'filename_image': filename_image
}
if MPL:
heatmap = np.loadtxt(args['filename_data'], delimiter=',')
plt.clf()
plt.title(args['title'])
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.imshow(np.flipud(heatmap),
extent=(args['x_min'], args['x_max'], args['y_min'], args['y_max']),
aspect="auto")
plt.colorbar()
plt.savefig(filename_image)
else:
gp.gnuplot(path+'structure.gpi', args)
def __str__(self):
return self.n.__str__()
class Structure(_AbstractStructure):
def __init__(self, x_step, y_step, x_max, y_max, x_min=0., y_min=0.,
n_background=1.):
self.x_min = x_min
self.x_max = x_max
self.y_min = y_min
self.y_max = y_max
self.x_step = x_step
self.y_step = y_step
self.n_background = n_background
self._n = np.ones((self.y.size,self.x.size), 'complex_') * n_background
@property
def n(self):
return self._n
class Slabs(_AbstractStructure):
def __init__(self, wavelength, y_step, x_step, x_max, x_min=0.):
_AbstractStructure.__init__(self)
self._wl = wavelength
self.x_min = x_min
self.x_max = x_max
self.x_step = x_step
self.y_step = y_step
self.y_min = 0
self.slabs = {}
self.slab_count = 0
self._next_start = 0.
def add_slab(self, height, n_background=1., position='top'):
assert position in ('top', 'bottom')
name = str(self.slab_count)
if not callable(n_background):
n_back = lambda wl: n_background
else:
n_back = n_background
height_discretised = self.y_step*((height // self.y_step) + 1)
y_min = self._next_start
y_max = y_min + height_discretised
self.slabs[name] = Slab(name, self.x_step, self.y_step, self.x_max,
y_max, self.x_min, y_min, n_back, self._wl)
self.y_max = y_max
self._next_start = y_min + height_discretised
self.slab_count += 1
if position == 'bottom':
slabs = {}
for k in self.slabs.keys():
slabs[str(int(k)+1)] = self.slabs[k]
slabs['0'] = slabs.pop(str(self.slab_count))
self.slabs = slabs
return name
def change_wavelength(self, wavelength):
for name, slab in self.slabs.items():
const_args = slab._const_args
mat_args = slab._mat_params
const_args[8] = wavelength
s = Slab(*const_args)
for mat_arg in mat_args:
s.add_material(*mat_arg)
self.slabs[name] = s
self._wl = wavelength
@property
|
MIT License
|
openstack/openstacksdk
|
openstack/baremetal/v1/_proxy.py
|
Proxy.wait_for_nodes_provision_state
|
python
|
def wait_for_nodes_provision_state(self, nodes, expected_state,
timeout=None,
abort_on_failed_state=True,
fail=True):
log_nodes = ', '.join(n.id if isinstance(n, _node.Node) else n
for n in nodes)
finished = []
failed = []
remaining = nodes
try:
for count in utils.iterate_timeout(
timeout,
"Timeout waiting for nodes %(nodes)s to reach "
"target state '%(state)s'" % {'nodes': log_nodes,
'state': expected_state}):
nodes = [self.get_node(n) for n in remaining]
remaining = []
for n in nodes:
try:
if n._check_state_reached(self, expected_state,
abort_on_failed_state):
finished.append(n)
else:
remaining.append(n)
except exceptions.ResourceFailure:
if fail:
raise
else:
failed.append(n)
if not remaining:
if fail:
return finished
else:
return _node.WaitResult(finished, failed, [])
self.log.debug(
'Still waiting for nodes %(nodes)s to reach state '
'"%(target)s"',
{'nodes': ', '.join(n.id for n in remaining),
'target': expected_state})
except exceptions.ResourceTimeout:
if fail:
raise
else:
return _node.WaitResult(finished, failed, remaining)
|
Wait for the nodes to reach the expected state.
:param nodes: List of nodes - name, ID or
:class:`~openstack.baremetal.v1.node.Node` instance.
:param expected_state: The expected provisioning state to reach.
:param timeout: If ``wait`` is set to ``True``, specifies how much (in
seconds) to wait for the expected state to be reached. The value of
``None`` (the default) means no client-side timeout.
:param abort_on_failed_state: If ``True`` (the default), abort waiting
if any node reaches a failure state which does not match the
expected one. Note that the failure state for ``enroll`` ->
``manageable`` transition is ``enroll`` again.
:param fail: If set to ``False`` this call will not raise on timeouts
and provisioning failures.
:return: If `fail` is ``True`` (the default), the list of
:class:`~openstack.baremetal.v1.node.Node` instances that reached
the requested state. If `fail` is ``False``, a
:class:`~openstack.baremetal.v1.node.WaitResult` named tuple.
:raises: :class:`~openstack.exceptions.ResourceFailure` if a node
reaches an error state and ``abort_on_failed_state`` is ``True``.
:raises: :class:`~openstack.exceptions.ResourceTimeout` on timeout.
|
https://github.com/openstack/openstacksdk/blob/b38f16e0e8f47f5bdbfd57506869bb6ee2533005/openstack/baremetal/v1/_proxy.py#L432-L501
|
from openstack.baremetal.v1 import _common
from openstack.baremetal.v1 import allocation as _allocation
from openstack.baremetal.v1 import chassis as _chassis
from openstack.baremetal.v1 import conductor as _conductor
from openstack.baremetal.v1 import deploy_templates as _deploytemplates
from openstack.baremetal.v1 import driver as _driver
from openstack.baremetal.v1 import node as _node
from openstack.baremetal.v1 import port as _port
from openstack.baremetal.v1 import port_group as _portgroup
from openstack.baremetal.v1 import volume_connector as _volumeconnector
from openstack.baremetal.v1 import volume_target as _volumetarget
from openstack import exceptions
from openstack import proxy
from openstack import utils
class Proxy(proxy.Proxy):
retriable_status_codes = _common.RETRIABLE_STATUS_CODES
def _get_with_fields(self, resource_type, value, fields=None):
res = self._get_resource(resource_type, value)
kwargs = {}
if fields:
kwargs['fields'] = _common.fields_type(fields, resource_type)
return res.fetch(
self,
error_message="No {resource_type} found for {value}".format(
resource_type=resource_type.__name__, value=value),
**kwargs)
def chassis(self, details=False, **query):
return _chassis.Chassis.list(self, details=details, **query)
def create_chassis(self, **attrs):
return self._create(_chassis.Chassis, **attrs)
def find_chassis(self, name_or_id, ignore_missing=True):
return self._find(_chassis.Chassis, name_or_id,
ignore_missing=ignore_missing)
def get_chassis(self, chassis, fields=None):
return self._get_with_fields(_chassis.Chassis, chassis, fields=fields)
def update_chassis(self, chassis, **attrs):
return self._update(_chassis.Chassis, chassis, **attrs)
def patch_chassis(self, chassis, patch):
return self._get_resource(_chassis.Chassis, chassis).patch(self, patch)
def delete_chassis(self, chassis, ignore_missing=True):
return self._delete(_chassis.Chassis, chassis,
ignore_missing=ignore_missing)
def drivers(self, details=False, **query):
if details:
query['details'] = True
return self._list(_driver.Driver, **query)
def get_driver(self, driver):
return self._get(_driver.Driver, driver)
def list_driver_vendor_passthru(self, driver):
driver = self.get_driver(driver)
return driver.list_vendor_passthru(self)
def call_driver_vendor_passthru(self, driver,
verb: str, method: str, body=None):
driver = self.get_driver(driver)
return driver.call_vendor_passthru(self, verb, method, body)
def nodes(self, details=False, **query):
return _node.Node.list(self, details=details, **query)
def create_node(self, **attrs):
return self._create(_node.Node, **attrs)
def find_node(self, name_or_id, ignore_missing=True):
return self._find(_node.Node, name_or_id,
ignore_missing=ignore_missing)
def get_node(self, node, fields=None):
return self._get_with_fields(_node.Node, node, fields=fields)
def update_node(self, node, retry_on_conflict=True, **attrs):
res = self._get_resource(_node.Node, node, **attrs)
return res.commit(self, retry_on_conflict=retry_on_conflict)
def patch_node(self, node, patch, reset_interfaces=None,
retry_on_conflict=True):
res = self._get_resource(_node.Node, node)
return res.patch(self, patch, retry_on_conflict=retry_on_conflict,
reset_interfaces=reset_interfaces)
def set_node_provision_state(self, node, target, config_drive=None,
clean_steps=None, rescue_password=None,
wait=False, timeout=None, deploy_steps=None):
res = self._get_resource(_node.Node, node)
return res.set_provision_state(self, target, config_drive=config_drive,
clean_steps=clean_steps,
rescue_password=rescue_password,
wait=wait, timeout=timeout,
deploy_steps=deploy_steps)
def set_node_boot_device(self, node, boot_device, persistent=False):
res = self._get_resource(_node.Node, node)
return res.set_boot_device(self, boot_device, persistent=persistent)
def set_node_boot_mode(self, node, target):
res = self._get_resource(_node.Node, node)
return res.set_boot_mode(self, target)
def set_node_secure_boot(self, node, target):
res = self._get_resource(_node.Node, node)
return res.set_secure_boot(self, target)
|
Apache License 2.0
|
hyperledger/fabric-sdk-py
|
hfc/fabric/channel/channel.py
|
Channel._validate_state
|
python
|
def _validate_state(self):
if not self._initialized:
raise ValueError(
"Channel {} has not been initialized.".format(self._name))
|
Validate channel state.
:raises ValueError:
|
https://github.com/hyperledger/fabric-sdk-py/blob/8ee33a8981887e37950dc0f36a7ec63b3a5ba5c3/hfc/fabric/channel/channel.py#L192-L201
|
import logging
import random
import sys
import re
from hashlib import sha256
from hfc.fabric.block_decoder import BlockDecoder
from hfc.fabric.transaction.tx_proposal_request import create_tx_prop_req
from hfc.protos.common import common_pb2
from hfc.protos.orderer import ab_pb2
from hfc.protos.peer import chaincode_pb2, proposal_pb2
from hfc.protos.discovery import protocol_pb2
from hfc.protos.utils import create_cc_spec, create_seek_info, create_seek_payload, create_envelope
from hfc.util import utils
from hfc.util.utils import proto_str, current_timestamp, proto_b, build_header, build_channel_header, build_cc_proposal, send_transaction_proposal, pem_to_der
from hfc.util.consts import SYSTEM_CHANNEL_NAME, CC_INSTANTIATE, CC_UPGRADE, CC_INVOKE, CC_QUERY, CC_TYPE_GOLANG
from .channel_eventhub import ChannelEventHub
from hfc.util.collection_config import build_collection_config_proto
from hfc.util.policies import build_policy
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.DEBUG)
class Channel(object):
def __init__(self, name, client):
pat = "^[a-z][a-z0-9.-]*$"
if not re.match(pat, name):
raise ValueError(
"ERROR: Channel name is invalid. It should be a \
string and match {}, but got {}".format(pat, name)
)
self._name = name
self._client = client
self._orderers = {}
self._peers = {}
self._anchor_peers = []
self._kafka_brokers = []
self._initialized = False
self._is_dev_mode = False
self._channel_event_hubs = {}
def add_orderer(self, orderer):
self._orderers[orderer.endpoint] = orderer
def remove_orderer(self, orderer):
if orderer.endpoint in self._orderers:
self._orderers.pop(orderer.endpoint, None)
def add_peer(self, peer):
self._peers[peer.endpoint] = peer
def remove_peer(self, peer):
if peer.endpoint in self._peers:
self._peers.pop(peer.endpoint, None)
@property
def orderers(self):
return self._orderers
@property
def peers(self):
return self._peers
@property
def is_dev_mode(self):
return self._is_dev_mode
@is_dev_mode.setter
def is_dev_mode(self, mode):
self._is_dev_mode = mode
def _get_latest_block(self, tx_context, orderer):
seek_info = ab_pb2.SeekInfo()
seek_info.start.newest = ab_pb2.SeekNewest()
seek_info.stop.newest = ab_pb2.SeekNewest()
seek_info.behavior = ab_pb2.SeekInfo.SeekBehavior.Value('BLOCK_UNTIL_READY')
seek_info_header = self._build_channel_header(
common_pb2.HeaderType.Value('DELIVER_SEEK_INFO'),
tx_context.tx_id, self._name, current_timestamp(),
tx_context.epoch)
signature_header = common_pb2.SignatureHeader()
signature_header.creator = tx_context.identity
signature_header.nonce = tx_context.nonce
seek_payload = common_pb2.Payload()
seek_payload.header.signature_header = signature_header.SerializeToString()
seek_payload.header.channel_header = seek_info_header.SerializeToString()
seek_payload.data = seek_info.SerializeToString()
envelope = common_pb2.Envelope()
envelope.signature = tx_context.sign(seek_payload.SerializeToString())
envelope.payload = seek_payload.SerializeToString()
def _get_random_orderer(self):
if sys.version_info < (3, 0):
return random.choice(self._orderers.values())
else:
return random.choice(list(self._orderers.values()))
@property
def name(self):
return self._name
def state_store(self):
return self._client.state_store
|
Apache License 2.0
|
pyglet/pyglet
|
pyglet/text/document.py
|
InlineElement.remove
|
python
|
def remove(self, layout):
raise NotImplementedError('abstract')
|
Remove this element from a layout.
The counterpart of `place`; called when the element is no longer
visible in the given layout.
:Parameters:
`layout` : `pyglet.text.layout.TextLayout`
The layout the element was removed from.
|
https://github.com/pyglet/pyglet/blob/b9a63ea179735c8f252ac31d51751bdf8a741c9d/pyglet/text/document.py#L246-L257
|
import re
import sys
from pyglet import event
from pyglet.text import runlist
_is_pyglet_doc_run = hasattr(sys, "is_pyglet_doc_run") and sys.is_pyglet_doc_run
STYLE_INDETERMINATE = 'indeterminate'
class InlineElement:
def __init__(self, ascent, descent, advance):
self.ascent = ascent
self.descent = descent
self.advance = advance
self._position = None
position = property(lambda self: self._position,
doc="""Position of the element within the
document. Read-only.
:type: int
""")
def place(self, layout, x, y):
raise NotImplementedError('abstract')
|
BSD 3-Clause New or Revised License
|
hectorpulido/deeplearning-based-twitch-bot
|
src/Class/ChatbotBrain.py
|
ChatbotBrain.post_process_text
|
python
|
def post_process_text(self, ask):
ask = ask.strip()
search = re.findall(r"(([A-Z0-9]+\.)+[A-Z0-9]+)", ask, flags=re.IGNORECASE)
for match in search:
ask = ask.replace(match[0], "")
ask = re.sub(r"\W+\?\!\.\,", "", ask)
return ask[:500]
|
Post process the response to avoid links
Args:
ask (str): response string
Returns:
str: post processed response string
|
https://github.com/hectorpulido/deeplearning-based-twitch-bot/blob/9482b394bb96453a2cfcdbfccd2681318174e9ef/src/Class/ChatbotBrain.py#L131-L146
|
import re
from transformers import pipeline, set_seed, MarianMTModel, MarianTokenizer
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
class ChatbotBrain:
def __init__(
self,
context,
translation_artifacts_english,
translation_artifacts_spanish,
model="microsoft/DialoGPT-small",
tokenizer="microsoft/DialoGPT-small",
translate=True,
sentiment_analisis=False,
seed=44,
):
self.generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
self.translate = translate
self.context = context
self.translation_artifacts_english = translation_artifacts_english
self.translation_artifacts_spanish = translation_artifacts_spanish
self.sentiment_analisis = sentiment_analisis
self.parsed_context = self.generator.tokenizer.eos_token.join(
context.split("\n")
)
self.temporal_context = []
set_seed(seed)
if sentiment_analisis:
self.sentiment_engine = SentimentIntensityAnalyzer()
if translate:
self.model_name_en_t_es = "Helsinki-NLP/opus-mt-en-ROMANCE"
self.tokenizer_en_t_es = MarianTokenizer.from_pretrained(
self.model_name_en_t_es
)
self.model_en_t_es = MarianMTModel.from_pretrained(self.model_name_en_t_es)
self.model_name_es_t_en = "Helsinki-NLP/opus-mt-ROMANCE-en"
self.tokenizer_es_t_en = MarianTokenizer.from_pretrained(
self.model_name_es_t_en
)
self.model_es_t_en = MarianMTModel.from_pretrained(self.model_name_es_t_en)
def english_to_spanish(self, text):
src_text = [">>es<< {}".format(text)]
translated = self.model_en_t_es.generate(
**self.tokenizer_en_t_es.prepare_seq2seq_batch(src_text, return_tensors="pt", padding=True)
)
tgt_text = [
self.tokenizer_en_t_es.decode(t, skip_special_tokens=True)
for t in translated
]
return tgt_text[0]
def spanish_to_english(self, text):
src_text = [text]
translated = self.model_es_t_en.generate(
**self.tokenizer_es_t_en.prepare_seq2seq_batch(src_text, return_tensors="pt", padding=True)
)
tgt_text = [
self.tokenizer_es_t_en.decode(t, skip_special_tokens=True)
for t in translated
]
return tgt_text[0]
def replace_translation_artifacts_en_sp(self, text):
for word, initial in self.translation_artifacts_spanish.items():
text = text.lower().replace(word.lower(), initial.lower())
return text
def replace_translation_artifacts_sp_en(self, text):
for word, initial in self.translation_artifacts_english.items():
text = text.lower().replace(word.lower(), initial.lower())
return text
|
MIT License
|
mbr/tinyrpc
|
tinyrpc/client.py
|
RPCProxy.__getattr__
|
python
|
def __getattr__(self, name: str) -> Callable:
proxy_func = lambda *args, **kwargs: self.client.call(
self.prefix + name, args, kwargs, one_way=self.one_way
)
return proxy_func
|
Returns a proxy function that, when called, will call a function
name ``name`` on the client associated with the proxy.
|
https://github.com/mbr/tinyrpc/blob/0d359315b629ec7c083c5753f310d874b1c710bd/tinyrpc/client.py#L173-L180
|
import sys
from collections import namedtuple
from typing import List, Any, Dict, Callable, Optional
from .transports import ClientTransport
from .exc import RPCError
from .protocols import RPCErrorResponse, RPCProtocol, RPCRequest, RPCResponse, RPCBatchResponse
RPCCall = namedtuple('RPCCall', 'method args kwargs')
RPCCallTo = namedtuple('RPCCallTo', 'transport method args kwargs')
class RPCClient(object):
def __init__(
self, protocol: RPCProtocol, transport: ClientTransport
) -> None:
self.protocol = protocol
self.transport = transport
def _send_and_handle_reply(
self,
req: RPCRequest,
one_way: bool = False,
transport: ClientTransport = None,
no_exception: bool = False
) -> Optional[RPCResponse]:
tport = self.transport if transport is None else transport
reply = tport.send_message(req.serialize(), expect_reply=(not one_way))
if one_way:
return
response = self.protocol.parse_reply(reply)
if not no_exception and isinstance(response, RPCErrorResponse):
if hasattr(self.protocol, 'raise_error') and callable(
self.protocol.raise_error):
response = self.protocol.raise_error(response)
else:
raise RPCError(
'Error calling remote procedure: %s' % response.error
)
return response
def call(
self, method: str, args: List, kwargs: Dict, one_way: bool = False
) -> Any:
req = self.protocol.create_request(method, args, kwargs, one_way)
rep = self._send_and_handle_reply(req, one_way)
if one_way:
return
return rep.result
def call_all(self, requests: List[RPCCall]) -> List[Any]:
threads = []
if 'gevent' in sys.modules:
import gevent
for r in requests:
req = self.protocol.create_request(r.method, r.args, r.kwargs)
tr = r.transport.transport if len(r) == 4 else None
threads.append(
gevent.spawn(
self._send_and_handle_reply, req, False, tr, True
)
)
gevent.joinall(threads)
return [t.value for t in threads]
else:
for r in requests:
req = self.protocol.create_request(r.method, r.args, r.kwargs)
tr = r.transport.transport if len(r) == 4 else None
threads.append(
self._send_and_handle_reply(req, False, tr, True)
)
return threads
def get_proxy(self, prefix: str = '', one_way: bool = False) -> 'RPCProxy':
return RPCProxy(self, prefix, one_way)
def batch_call(self, calls: List[RPCCallTo]) -> RPCBatchResponse:
req = self.protocol.create_batch_request()
for call_args in calls:
req.append(self.protocol.create_request(*call_args))
return self._send_and_handle_reply(req)
class RPCProxy(object):
def __init__(
self, client: RPCClient, prefix: str = '', one_way: bool = False
) -> None:
self.client = client
self.prefix = prefix
self.one_way = one_way
|
MIT License
|
ibm/mi-prometheus
|
miprometheus/workers/trainer.py
|
Trainer.setup_experiment
|
python
|
def setup_experiment(self):
super(Trainer, self).setup_experiment()
if self.flags.config == '':
print('Please pass configuration file(s) as --c parameter')
exit(-1)
if self.flags.use_gpu and (torch.cuda.device_count() == 0):
self.logger.error("Cannot use GPU as there are no CUDA-compatible devices present in the system!")
exit(-2)
configs_to_load = self.recurrent_config_parse(self.flags.config, [])
self.recurrent_config_load(configs_to_load)
conf_str = 'Loaded (initial) configuration:\n'
conf_str += '='*80 + '\n'
conf_str += yaml.safe_dump(self.params.to_dict(), default_flow_style=False)
conf_str += '='*80 + '\n'
print(conf_str)
try:
training_problem_name = self.params['training']['problem']['name']
except KeyError:
print("Error: Couldn't retrieve the problem name from the 'training' section in the loaded configuration")
exit(-1)
try:
_ = self.params['validation']['problem']['name']
except KeyError:
print("Error: Couldn't retrieve the problem name from the 'validation' section in the loaded configuration")
exit(-1)
try:
model_name = self.params['model']['name']
except KeyError:
print("Error: Couldn't retrieve the model name from the loaded configuration")
exit(-1)
while True:
try:
time_str = '{0:%Y%m%d_%H%M%S}'.format(datetime.now())
if self.flags.savetag != '':
time_str = time_str + "_" + self.flags.savetag
self.log_dir = self.flags.expdir + '/' + training_problem_name + '/' + model_name + '/' + time_str + '/'
os.makedirs(self.log_dir, exist_ok=False)
except FileExistsError:
sleep(1)
else:
break
self.log_file = self.log_dir + 'trainer.log'
self.add_file_handler_to_logger(self.log_file)
self.model_dir = self.log_dir + 'models/'
os.makedirs(self.model_dir, exist_ok=False)
self.set_random_seeds(self.params['training'], 'training')
self.check_and_set_cuda(self.flags.use_gpu)
self.training_problem, self.training_sampler, self.training_dataloader = self.build_problem_sampler_loader(self.params['training'], 'training')
if 'curriculum_learning' in self.params['training']:
self.training_problem.curriculum_learning_initialize(self.params['training']['curriculum_learning'])
self.curric_done = self.training_problem.curriculum_learning_update_params(0)
self.params['training']['curriculum_learning'].add_default_params({'must_finish': True})
self.must_finish_curriculum = self.params['training']['curriculum_learning']['must_finish']
self.logger.info("Curriculum Learning activated")
else:
self.must_finish_curriculum = False
self.curric_done = True
self.validation_problem, self.validations_sampler, self.validation_dataloader = self.build_problem_sampler_loader(self.params['validation'], 'validation')
self.validation_batch = next(iter(self.validation_dataloader))
self.model = ModelFactory.build(self.params['model'], self.training_problem.default_values)
try:
if self.flags.model != "":
model_name = self.flags.model
msg = "command line (--m)"
elif "load" in self.params['model']:
model_name = self.params['model']['load']
msg = "model section of the configuration file"
else:
model_name = ""
if model_name != "":
if os.path.isfile(model_name):
self.model.load(model_name)
else:
raise Exception("Couldn't load the checkpoint {} indicated in the {}: file does not exist".format(model_name, msg))
except KeyError:
self.logger.error("File {} indicated in the {} seems not to be a valid model checkpoint".format(model_name, msg))
exit(-5)
except Exception as e:
self.logger.error(e)
exit(-6)
if self.app_state.use_CUDA:
self.model.cuda()
self.logger.info(self.model.summarize())
optimizer_conf = dict(self.params['training']['optimizer'])
optimizer_name = optimizer_conf['name']
del optimizer_conf['name']
self.optimizer = getattr(torch.optim, optimizer_name)(filter(lambda p: p.requires_grad,
self.model.parameters()),
**optimizer_conf)
|
Sets up experiment of all trainers:
- Calls base class setup_experiment to parse the command line arguments,
- Loads the config file(s):
>>> configs_to_load = self.recurrent_config_parse(flags.config, [])
- Set up the log directory path:
>>> os.makedirs(self.log_dir, exist_ok=False)
- Add a ``FileHandler`` to the logger:
>>> self.add_file_handler_to_logger(self.log_file)
- Set random seeds:
>>> self.set_random_seeds(self.params['training'], 'training')
- Creates training problem and model:
>>> self.training_problem = ProblemFactory.build_problem(self.params['training']['problem'])
>>> self.model = ModelFactory.build_model(self.params['model'], self.training_problem.default_values)
- Creates the DataLoader:
>>> self.training_dataloader = DataLoader(dataset=self.training_problem, ...)
- Handles curriculum learning if indicated:
>>> if 'curriculum_learning' in self.params['training']:
>>> ...
- Handles the validation of the model:
- Creates validation problem & DataLoader
- Set optimizer:
>>> self.optimizer = getattr(torch.optim, optimizer_name)
- Handles TensorBoard writers & files:
>>> self.training_writer = SummaryWriter(self.log_dir + '/training')
|
https://github.com/ibm/mi-prometheus/blob/a8e8a5b339598b0637a251834c560bc24d5a9500/miprometheus/workers/trainer.py#L88-L298
|
__author__ = "Vincent Marois, Tomasz Kornuta"
import os
import yaml
import torch
from time import sleep
from random import randrange
from datetime import datetime
from miprometheus.workers.worker import Worker
from miprometheus.models.model_factory import ModelFactory
from miprometheus.utils.statistics_collector import StatisticsCollector
from miprometheus.utils.statistics_aggregator import StatisticsAggregator
class Trainer(Worker):
def __init__(self, name="Trainer"):
super(Trainer, self).__init__(name)
self.parser.add_argument('--tensorboard',
action='store',
dest='tensorboard', choices=[0, 1, 2],
type=int,
help="If present, enable logging to TensorBoard. Available log levels:\n"
"0: Log the collected statistics.\n"
"1: Add the histograms of the model's biases & weights (Warning: Slow).\n"
"2: Add the histograms of the model's biases & weights gradients "
"(Warning: Even slower).")
self.parser.add_argument('--visualize',
dest='visualize',
default='-1',
choices=[-1, 0, 1, 2, 3],
type=int,
help="Activate dynamic visualization (Warning: will require user interaction):\n"
"-1: disabled (DEFAULT)\n"
"0: Only during training episodes.\n"
"1: During both training and validation episodes.\n"
"2: Only during validation episodes.\n"
"3: Only during the last validation, after the training is completed.\n")
|
Apache License 2.0
|
pidgeot/python-lnp
|
core/mods.py
|
simplify_pack
|
python
|
def simplify_pack(pack):
i = baselines.simplify_pack(pack, 'mods')
if not i:
i = 0
if i > 10:
log.w('Reducing mod "{}": assume vanilla files were omitted '
'deliberately'.format(pack))
i += make_blank_files(pack)
i += baselines.remove_vanilla_raws_from_pack(pack, 'mods')
i += baselines.remove_empty_dirs(pack, 'mods')
return i
|
Removes unnecessary files from one mod.
Params:
pack
path segment in './LNP/Mods/pack/' as a string
Returns:
The sum of files affected by the operations
|
https://github.com/pidgeot/python-lnp/blob/e738c0003e119e92478c831b94a5fd44a52031c6/core/mods.py#L67-L91
|
from __future__ import print_function, unicode_literals, absolute_import
import sys, os, shutil, glob, time
from difflib import ndiff, SequenceMatcher
from io import open
from . import paths, baselines, log, manifest
from .lnp import lnp
def _shutil_wrap(fn):
def _wrapped_fn(*args, **kwargs):
i = 0
while i < 5:
try:
fn(*args, **kwargs)
except:
i += 1
time.sleep(0.1)
else:
break
return _wrapped_fn
if sys.platform == 'win32':
shutil.rmtree = _shutil_wrap(shutil.rmtree)
shutil.copytree = _shutil_wrap(shutil.copytree)
def toggle_premerge_gfx():
lnp.userconfig['premerge_graphics'] = not lnp.userconfig.get_bool(
'premerge_graphics')
lnp.userconfig.save_data()
def will_premerge_gfx():
return lnp.userconfig.get_bool('premerge_graphics')
def read_mods():
return [os.path.basename(o) for o in glob.glob(paths.get('mods', '*'))
if os.path.isdir(o) and
manifest.is_compatible('mods', os.path.basename(o))]
def get_title(mod):
title = manifest.get_cfg('mods', mod).get_string('title')
if title:
return title
return mod
def get_tooltip(mod):
return manifest.get_cfg('mods', mod).get_string('tooltip')
def simplify_mods():
mods, files = 0, 0
for pack in read_mods():
mods += 1
files += simplify_pack(pack)
return mods, files
|
ISC License
|
pathoschild/stewbot
|
stewbot/components/modules/mechanize/_form.py
|
MimeWriter.startbody
|
python
|
def startbody(self, ctype=None, plist=[], prefix=1,
add_to_http_hdrs=0, content_type=1):
if content_type and ctype:
for name, value in plist:
ctype = ctype + ';\r\n %s=%s' % (name, value)
self.addheader("Content-Type", ctype, prefix=prefix,
add_to_http_hdrs=add_to_http_hdrs)
self.flushheaders()
if not add_to_http_hdrs: self._fp.write("\r\n")
self._first_part = True
return self._fp
|
prefix is ignored if add_to_http_hdrs is true.
|
https://github.com/pathoschild/stewbot/blob/8cfcb8378684b0083eb11748f21d1bc74636cdb6/stewbot/components/modules/mechanize/_form.py#L305-L318
|
__all__ = ['AmbiguityError', 'CheckboxControl', 'Control',
'ControlNotFoundError', 'FileControl', 'FormParser', 'HTMLForm',
'HiddenControl', 'IgnoreControl', 'ImageControl', 'IsindexControl',
'Item', 'ItemCountError', 'ItemNotFoundError', 'Label',
'ListControl', 'LocateError', 'Missing', 'ParseError', 'ParseFile',
'ParseFileEx', 'ParseResponse', 'ParseResponseEx','PasswordControl',
'RadioControl', 'ScalarControl', 'SelectControl',
'SubmitButtonControl', 'SubmitControl', 'TextControl',
'TextareaControl', 'XHTMLCompatibleFormParser']
import HTMLParser
from cStringIO import StringIO
import inspect
import logging
import random
import re
import sys
import urllib
import urlparse
import warnings
import _beautifulsoup
import _request
import sgmllib
import _sgmllib_copy
VERSION = "0.2.11"
CHUNK = 1024
DEFAULT_ENCODING = "latin-1"
_logger = logging.getLogger("mechanize.forms")
OPTIMIZATION_HACK = True
def debug(msg, *args, **kwds):
if OPTIMIZATION_HACK:
return
caller_name = inspect.stack()[1][3]
extended_msg = '%%s %s' % msg
extended_args = (caller_name,)+args
_logger.debug(extended_msg, *extended_args, **kwds)
def _show_debug_messages():
global OPTIMIZATION_HACK
OPTIMIZATION_HACK = False
_logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
_logger.addHandler(handler)
def deprecation(message, stack_offset=0):
warnings.warn(message, DeprecationWarning, stacklevel=3+stack_offset)
class Missing: pass
_compress_re = re.compile(r"\s+")
def compress_text(text): return _compress_re.sub(" ", text.strip())
def normalize_line_endings(text):
return re.sub(r"(?:(?<!\r)\n)|(?:\r(?!\n))", "\r\n", text)
def unescape(data, entities, encoding=DEFAULT_ENCODING):
if data is None or "&" not in data:
return data
def replace_entities(match, entities=entities, encoding=encoding):
ent = match.group()
if ent[1] == "#":
return unescape_charref(ent[2:-1], encoding)
repl = entities.get(ent)
if repl is not None:
if type(repl) != type(""):
try:
repl = repl.encode(encoding)
except UnicodeError:
repl = ent
else:
repl = ent
return repl
return re.sub(r"&#?[A-Za-z0-9]+?;", replace_entities, data)
def unescape_charref(data, encoding):
name, base = data, 10
if name.startswith("x"):
name, base= name[1:], 16
uc = unichr(int(name, base))
if encoding is None:
return uc
else:
try:
repl = uc.encode(encoding)
except UnicodeError:
repl = "&#%s;" % data
return repl
def get_entitydefs():
import htmlentitydefs
from codecs import latin_1_decode
entitydefs = {}
try:
htmlentitydefs.name2codepoint
except AttributeError:
entitydefs = {}
for name, char in htmlentitydefs.entitydefs.items():
uc = latin_1_decode(char)[0]
if uc.startswith("&#") and uc.endswith(";"):
uc = unescape_charref(uc[2:-1], None)
entitydefs["&%s;" % name] = uc
else:
for name, codepoint in htmlentitydefs.name2codepoint.items():
entitydefs["&%s;" % name] = unichr(codepoint)
return entitydefs
def issequence(x):
try:
x[0]
except (TypeError, KeyError):
return False
except IndexError:
pass
return True
def isstringlike(x):
try: x+""
except: return False
else: return True
def choose_boundary():
nonce = "".join([str(random.randint(0, sys.maxint-1)) for i in 0,1,2])
return "-"*27 + nonce
class MimeWriter:
def __init__(self, fp, http_hdrs=None):
self._http_hdrs = http_hdrs
self._fp = fp
self._headers = []
self._boundary = []
self._first_part = True
def addheader(self, key, value, prefix=0,
add_to_http_hdrs=0):
lines = value.split("\r\n")
while lines and not lines[-1]: del lines[-1]
while lines and not lines[0]: del lines[0]
if add_to_http_hdrs:
value = "".join(lines)
self._http_hdrs.append((key.capitalize(), value))
else:
for i in range(1, len(lines)):
lines[i] = " " + lines[i].strip()
value = "\r\n".join(lines) + "\r\n"
line = key.title() + ": " + value
if prefix:
self._headers.insert(0, line)
else:
self._headers.append(line)
def flushheaders(self):
self._fp.writelines(self._headers)
self._headers = []
|
ISC License
|
nuagenetworks/vspk-python
|
vspk/v6/numacfilterprofile.py
|
NUMACFilterProfile.customer_id
|
python
|
def customer_id(self):
return self._customer_id
|
Get customer_id value.
Notes:
The customer ID given to parent enterprise. This is used by Netconf/Config manager.
This attribute is named `customerID` in VSD API.
|
https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v6/numacfilterprofile.py#L328-L338
|
from .fetchers import NUPermissionsFetcher
from .fetchers import NUMetadatasFetcher
from .fetchers import NUGlobalMetadatasFetcher
from bambou import NURESTObject
class NUMACFilterProfile(NURESTObject):
__rest_name__ = "macfilterprofile"
__resource_name__ = "macfilterprofiles"
CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL"
CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE"
def __init__(self, **kwargs):
super(NUMACFilterProfile, self).__init__()
self._name = None
self._last_updated_by = None
self._last_updated_date = None
self._description = None
self._embedded_metadata = None
self._entity_scope = None
self._creation_date = None
self._assoc_entity_type = None
self._customer_id = None
self._owner = None
self._external_id = None
self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="last_updated_date", remote_name="lastUpdatedDate", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="description", remote_name="description", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="embedded_metadata", remote_name="embeddedMetadata", attribute_type=list, is_required=False, is_unique=False)
self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL'])
self.expose_attribute(local_name="creation_date", remote_name="creationDate", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="assoc_entity_type", remote_name="assocEntityType", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="customer_id", remote_name="customerID", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="owner", remote_name="owner", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True)
self.permissions = NUPermissionsFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self._compute_args(**kwargs)
@property
def name(self):
return self._name
@name.setter
def name(self, value):
self._name = value
@property
def last_updated_by(self):
return self._last_updated_by
@last_updated_by.setter
def last_updated_by(self, value):
self._last_updated_by = value
@property
def last_updated_date(self):
return self._last_updated_date
@last_updated_date.setter
def last_updated_date(self, value):
self._last_updated_date = value
@property
def description(self):
return self._description
@description.setter
def description(self, value):
self._description = value
@property
def embedded_metadata(self):
return self._embedded_metadata
@embedded_metadata.setter
def embedded_metadata(self, value):
self._embedded_metadata = value
@property
def entity_scope(self):
return self._entity_scope
@entity_scope.setter
def entity_scope(self, value):
self._entity_scope = value
@property
def creation_date(self):
return self._creation_date
@creation_date.setter
def creation_date(self, value):
self._creation_date = value
@property
def assoc_entity_type(self):
return self._assoc_entity_type
@assoc_entity_type.setter
def assoc_entity_type(self, value):
self._assoc_entity_type = value
@property
|
BSD 3-Clause New or Revised License
|
rebiocoder/bioforum
|
venv/Lib/site-packages/django/template/loaders/cached.py
|
Loader.reset
|
python
|
def reset(self):
self.template_cache.clear()
self.get_template_cache.clear()
|
Empty the template cache.
|
https://github.com/rebiocoder/bioforum/blob/08c8ff2f07ae667d37ce343f537e878d78ac8fe2/venv/Lib/site-packages/django/template/loaders/cached.py#L93-L96
|
import hashlib
from django.template import TemplateDoesNotExist
from django.template.backends.django import copy_exception
from django.utils.encoding import force_bytes
from .base import Loader as BaseLoader
class Loader(BaseLoader):
def __init__(self, engine, loaders):
self.template_cache = {}
self.get_template_cache = {}
self.loaders = engine.get_template_loaders(loaders)
super().__init__(engine)
def get_contents(self, origin):
return origin.loader.get_contents(origin)
def get_template(self, template_name, skip=None):
key = self.cache_key(template_name, skip)
cached = self.get_template_cache.get(key)
if cached:
if isinstance(cached, type) and issubclass(cached, TemplateDoesNotExist):
raise cached(template_name)
elif isinstance(cached, TemplateDoesNotExist):
raise copy_exception(cached)
return cached
try:
template = super().get_template(template_name, skip)
except TemplateDoesNotExist as e:
self.get_template_cache[key] = copy_exception(e) if self.engine.debug else TemplateDoesNotExist
raise
else:
self.get_template_cache[key] = template
return template
def get_template_sources(self, template_name):
for loader in self.loaders:
yield from loader.get_template_sources(template_name)
def cache_key(self, template_name, skip=None):
dirs_prefix = ''
skip_prefix = ''
if skip:
matching = [origin.name for origin in skip if origin.template_name == template_name]
if matching:
skip_prefix = self.generate_hash(matching)
return '-'.join(s for s in (str(template_name), skip_prefix, dirs_prefix) if s)
def generate_hash(self, values):
return hashlib.sha1(force_bytes('|'.join(values))).hexdigest()
|
MIT License
|
roseou/flasky
|
venv/lib/python2.7/site-packages/coverage/templite.py
|
Templite.do_dots
|
python
|
def do_dots(self, value, *dots):
for dot in dots:
try:
value = getattr(value, dot)
except AttributeError:
value = value[dot]
if hasattr(value, '__call__'):
value = value()
return value
|
Evaluate dotted expressions at runtime.
|
https://github.com/roseou/flasky/blob/0ebf366ddfe9604acfba99756f69a6d63063b3f9/venv/lib/python2.7/site-packages/coverage/templite.py#L199-L208
|
import re
from coverage.backward import set
class CodeBuilder(object):
def __init__(self, indent=0):
self.code = []
self.indent_amount = indent
def add_line(self, line):
self.code.append(" " * self.indent_amount)
self.code.append(line)
self.code.append("\n")
def add_section(self):
sect = CodeBuilder(self.indent_amount)
self.code.append(sect)
return sect
def indent(self):
self.indent_amount += 4
def dedent(self):
self.indent_amount -= 4
def __str__(self):
return "".join([str(c) for c in self.code])
def get_function(self, fn_name):
assert self.indent_amount == 0
g = {}
code_text = str(self)
exec(code_text, g)
return g[fn_name]
class Templite(object):
def __init__(self, text, *contexts):
self.text = text
self.context = {}
for context in contexts:
self.context.update(context)
code = CodeBuilder()
code.add_line("def render(ctx, dot):")
code.indent()
vars_code = code.add_section()
self.all_vars = set()
self.loop_vars = set()
code.add_line("result = []")
code.add_line("a = result.append")
code.add_line("e = result.extend")
code.add_line("s = str")
buffered = []
def flush_output():
if len(buffered) == 1:
code.add_line("a(%s)" % buffered[0])
elif len(buffered) > 1:
code.add_line("e([%s])" % ",".join(buffered))
del buffered[:]
toks = re.split(r"(?s)({{.*?}}|{%.*?%}|{#.*?#})", text)
ops_stack = []
for tok in toks:
if tok.startswith('{{'):
buffered.append("s(%s)" % self.expr_code(tok[2:-2].strip()))
elif tok.startswith('{#'):
continue
elif tok.startswith('{%'):
flush_output()
words = tok[2:-2].strip().split()
if words[0] == 'if':
assert len(words) == 2
ops_stack.append('if')
code.add_line("if %s:" % self.expr_code(words[1]))
code.indent()
elif words[0] == 'for':
assert len(words) == 4 and words[2] == 'in'
ops_stack.append('for')
self.loop_vars.add(words[1])
code.add_line(
"for c_%s in %s:" % (
words[1],
self.expr_code(words[3])
)
)
code.indent()
elif words[0].startswith('end'):
end_what = words[0][3:]
if ops_stack[-1] != end_what:
raise SyntaxError("Mismatched end tag: %r" % end_what)
ops_stack.pop()
code.dedent()
else:
raise SyntaxError("Don't understand tag: %r" % words[0])
else:
if tok:
buffered.append("%r" % tok)
flush_output()
for var_name in self.all_vars - self.loop_vars:
vars_code.add_line("c_%s = ctx[%r]" % (var_name, var_name))
if ops_stack:
raise SyntaxError("Unmatched action tag: %r" % ops_stack[-1])
code.add_line("return ''.join(result)")
code.dedent()
self.render_function = code.get_function('render')
def expr_code(self, expr):
if "|" in expr:
pipes = expr.split("|")
code = self.expr_code(pipes[0])
for func in pipes[1:]:
self.all_vars.add(func)
code = "c_%s(%s)" % (func, code)
elif "." in expr:
dots = expr.split(".")
code = self.expr_code(dots[0])
args = [repr(d) for d in dots[1:]]
code = "dot(%s, %s)" % (code, ", ".join(args))
else:
self.all_vars.add(expr)
code = "c_%s" % expr
return code
def render(self, context=None):
ctx = dict(self.context)
if context:
ctx.update(context)
return self.render_function(ctx, self.do_dots)
|
MIT License
|
citrineinformatics/citrine-python
|
src/citrine/resources/gemd_resource.py
|
GEMDResourceCollection.get_type
|
python
|
def get_type(cls) -> Type[DataConcepts]:
return DataConcepts
|
Return the resource type in the collection.
|
https://github.com/citrineinformatics/citrine-python/blob/d164744c99b17f935a09935c2e57d2f056675477/src/citrine/resources/gemd_resource.py#L26-L28
|
from typing import Type, Union, Optional, List, Tuple
from uuid import UUID
from gemd.entity.base_entity import BaseEntity
from gemd.entity.link_by_uid import LinkByUID
from citrine.resources.api_error import ApiError
from citrine.resources.data_concepts import DataConcepts, DataConceptsCollection
from citrine.resources.delete import _async_gemd_batch_delete
from citrine._session import Session
class GEMDResourceCollection(DataConceptsCollection[DataConcepts]):
_path_template = 'projects/{project_id}/storables'
_dataset_agnostic_path_template = 'projects/{project_id}/storables'
def __init__(self, project_id: UUID, dataset_id: UUID, session: Session):
self.project_id = project_id
self.dataset_id = dataset_id
self.session = session
@classmethod
|
Apache License 2.0
|
cleverhans-lab/cleverhans
|
cleverhans_v3.1.0/cleverhans/attack_bundling.py
|
basic_max_confidence_recipe
|
python
|
def basic_max_confidence_recipe(
sess,
model,
x,
y,
nb_classes,
eps,
clip_min,
clip_max,
eps_iter,
nb_iter,
report_path,
batch_size=BATCH_SIZE,
eps_iter_small=None,
):
noise_attack = Noise(model, sess)
pgd_attack = ProjectedGradientDescent(model, sess)
threat_params = {"eps": eps, "clip_min": clip_min, "clip_max": clip_max}
noise_attack_config = AttackConfig(noise_attack, threat_params)
attack_configs = [noise_attack_config]
pgd_attack_configs = []
pgd_params = copy.copy(threat_params)
pgd_params["eps_iter"] = eps_iter
pgd_params["nb_iter"] = nb_iter
assert batch_size % num_devices == 0
dev_batch_size = batch_size // num_devices
ones = tf.ones(dev_batch_size, tf.int32)
expensive_pgd = []
if eps_iter_small is None:
eps_iter_small = eps_iter / 25.0
for cls in range(nb_classes):
cls_params = copy.copy(pgd_params)
cls_params["y_target"] = tf.to_float(tf.one_hot(ones * cls, nb_classes))
cls_attack_config = AttackConfig(pgd_attack, cls_params, "pgd_" + str(cls))
pgd_attack_configs.append(cls_attack_config)
expensive_params = copy.copy(cls_params)
expensive_params["eps_iter"] = eps_iter_small
expensive_params["nb_iter"] *= 25.0
expensive_config = AttackConfig(
pgd_attack, expensive_params, "expensive_pgd_" + str(cls)
)
expensive_pgd.append(expensive_config)
attack_configs = [noise_attack_config] + pgd_attack_configs + expensive_pgd
new_work_goal = {config: 5 for config in attack_configs}
pgd_work_goal = {config: 5 for config in pgd_attack_configs}
goals = [
Misclassify(new_work_goal={noise_attack_config: 50}),
Misclassify(new_work_goal=pgd_work_goal),
MaxConfidence(t=0.5, new_work_goal=new_work_goal),
MaxConfidence(t=0.75, new_work_goal=new_work_goal),
MaxConfidence(t=0.875, new_work_goal=new_work_goal),
MaxConfidence(t=0.9375, new_work_goal=new_work_goal),
MaxConfidence(t=0.96875, new_work_goal=new_work_goal),
MaxConfidence(t=0.984375, new_work_goal=new_work_goal),
MaxConfidence(t=1.0),
]
bundle_attacks(sess, model, x, y, attack_configs, goals, report_path)
|
A reasonable attack bundling recipe for a max norm threat model and
a defender that uses confidence thresholding.
References:
https://openreview.net/forum?id=H1g0piA9tQ
This version runs indefinitely, updating the report on disk continuously.
:param sess: tf.Session
:param model: cleverhans.model.Model
:param x: numpy array containing clean example inputs to attack
:param y: numpy array containing true labels
:param nb_classes: int, number of classes
:param eps: float, maximum size of perturbation (measured by max norm)
:param eps_iter: float, step size for one version of PGD attacks
(will also run another version with eps_iter_small)
:param nb_iter: int, number of iterations for one version of PGD attacks
(will also run another version with 25X more iterations)
:param report_path: str, the path that the report will be saved to.
:batch_size: int, the total number of examples to run simultaneously
:param eps_iter_small: optional, float.
The second version of the PGD attack is run with 25 * nb_iter iterations
and eps_iter_small step size. If eps_iter_small is not specified it is
set to eps_iter / 25.
|
https://github.com/cleverhans-lab/cleverhans/blob/4aed4be702be5ce13d5017b8a3c6a2cdc4fc0009/cleverhans_v3.1.0/cleverhans/attack_bundling.py#L130-L212
|
import copy
import logging
import time
import numpy as np
import six
from six.moves import range
import tensorflow as tf
from cleverhans.attacks import Noise
from cleverhans.attacks import ProjectedGradientDescent
from cleverhans.attacks import SPSA
from cleverhans.evaluation import correctness_and_confidence
from cleverhans.evaluation import batch_eval_multi_worker, run_attack
from cleverhans.model import Model
from cleverhans import serial
from cleverhans.utils import create_logger, deep_copy, safe_zip
from cleverhans.utils_tf import infer_devices
from cleverhans.confidence_report import ConfidenceReport
from cleverhans.confidence_report import ConfidenceReportEntry
from cleverhans.confidence_report import print_stats
_logger = create_logger("attack_bundling")
_logger.setLevel(logging.INFO)
devices = infer_devices()
num_devices = len(devices)
DEFAULT_EXAMPLES_PER_DEVICE = 128
BATCH_SIZE = DEFAULT_EXAMPLES_PER_DEVICE * num_devices
REPORT_TIME_INTERVAL = 60
def single_run_max_confidence_recipe(
sess,
model,
x,
y,
nb_classes,
eps,
clip_min,
clip_max,
eps_iter,
nb_iter,
report_path,
batch_size=BATCH_SIZE,
eps_iter_small=None,
):
noise_attack = Noise(model, sess)
pgd_attack = ProjectedGradientDescent(model, sess)
threat_params = {"eps": eps, "clip_min": clip_min, "clip_max": clip_max}
noise_attack_config = AttackConfig(noise_attack, threat_params, "noise")
attack_configs = [noise_attack_config]
pgd_attack_configs = []
pgd_params = copy.copy(threat_params)
pgd_params["eps_iter"] = eps_iter
pgd_params["nb_iter"] = nb_iter
assert batch_size % num_devices == 0
dev_batch_size = batch_size // num_devices
ones = tf.ones(dev_batch_size, tf.int32)
expensive_pgd = []
if eps_iter_small is None:
eps_iter_small = eps_iter / 25.0
for cls in range(nb_classes):
cls_params = copy.copy(pgd_params)
cls_params["y_target"] = tf.to_float(tf.one_hot(ones * cls, nb_classes))
cls_attack_config = AttackConfig(pgd_attack, cls_params, "pgd_" + str(cls))
pgd_attack_configs.append(cls_attack_config)
expensive_params = copy.copy(cls_params)
expensive_params["eps_iter"] = eps_iter_small
expensive_params["nb_iter"] *= 25.0
expensive_config = AttackConfig(
pgd_attack, expensive_params, "expensive_pgd_" + str(cls)
)
expensive_pgd.append(expensive_config)
attack_configs = [noise_attack_config] + pgd_attack_configs + expensive_pgd
new_work_goal = {config: 1 for config in attack_configs}
goals = [MaxConfidence(t=1.0, new_work_goal=new_work_goal)]
bundle_attacks(
sess,
model,
x,
y,
attack_configs,
goals,
report_path,
attack_batch_size=batch_size,
eval_batch_size=batch_size,
)
|
MIT License
|
deepset-ai/haystack
|
haystack/document_store/base.py
|
BaseDocumentStore._drop_duplicate_documents
|
python
|
def _drop_duplicate_documents(self, documents: List[Document]) -> List[Document]:
_hash_ids: list = []
_documents: List[Document] = []
for document in documents:
if document.id in _hash_ids:
logger.warning(f"Duplicate Documents: Document with id '{document.id}' already exists in index "
f"'{self.index}'")
continue
_documents.append(document)
_hash_ids.append(document.id)
return _documents
|
Drop duplicates documents based on same hash ID
:param documents: A list of Haystack Document objects.
:return: A list of Haystack Document objects.
|
https://github.com/deepset-ai/haystack/blob/38652dd4dd3e5f4b66bbf70def84220f723add2c/haystack/document_store/base.py#L264-L282
|
import logging
import collections
from abc import abstractmethod
from pathlib import Path
from typing import Optional, Dict, List, Union
import numpy as np
from haystack import Document, Label, MultiLabel, BaseComponent
from haystack.errors import DuplicateDocumentError
from haystack.preprocessor.preprocessor import PreProcessor
from haystack.preprocessor.utils import eval_data_from_json, eval_data_from_jsonl, squad_json_to_jsonl
logger = logging.getLogger(__name__)
class BaseDocumentStore(BaseComponent):
index: Optional[str]
label_index: Optional[str]
similarity: Optional[str]
duplicate_documents_options: tuple = ('skip', 'overwrite', 'fail')
ids_iterator = None
@abstractmethod
def write_documents(self, documents: Union[List[dict], List[Document]], index: Optional[str] = None,
batch_size: int = 10_000, duplicate_documents: Optional[str] = None):
pass
@abstractmethod
def get_all_documents(
self,
index: Optional[str] = None,
filters: Optional[Dict[str, List[str]]] = None,
return_embedding: Optional[bool] = None
) -> List[Document]:
pass
def __iter__(self):
if not self.ids_iterator:
self.ids_iterator = [x.id for x in self.get_all_documents()]
return self
def __next__(self):
if len(self.ids_iterator) == 0:
raise StopIteration
else:
curr_id = self.ids_iterator[0]
ret = self.get_document_by_id(curr_id)
self.ids_iterator = self.ids_iterator[1:]
return ret
@abstractmethod
def get_all_labels(self, index: Optional[str] = None, filters: Optional[Dict[str, List[str]]] = None) -> List[Label]:
pass
def get_all_labels_aggregated(self,
index: Optional[str] = None,
filters: Optional[Dict[str, List[str]]] = None,
open_domain: bool=True,
drop_negative_labels: bool=False,
drop_no_answers: bool=False,
aggregate_by_meta: Optional[Union[str, list]]=None) -> List[MultiLabel]:
aggregated_labels = []
all_labels = self.get_all_labels(index=index, filters=filters)
question_ans_dict: dict = {}
for l in all_labels:
group_by_id_list: list = []
if open_domain:
group_by_id_list = [l.query]
else:
group_by_id_list = [l.document.id, l.query]
if aggregate_by_meta:
if type(aggregate_by_meta) == str:
aggregate_by_meta = [aggregate_by_meta]
if l.meta is None:
l.meta = {}
for meta_key in aggregate_by_meta:
curr_meta = l.meta.get(meta_key, None)
if curr_meta:
group_by_id_list.append(curr_meta)
group_by_id = tuple(group_by_id_list)
if group_by_id in question_ans_dict:
question_ans_dict[group_by_id].append(l)
else:
question_ans_dict[group_by_id] = [l]
for q, ls in question_ans_dict.items():
agg_label = MultiLabel(labels=ls, drop_negative_labels=drop_negative_labels, drop_no_answers=drop_no_answers)
aggregated_labels.append(agg_label)
return aggregated_labels
@abstractmethod
def get_document_by_id(self, id: str, index: Optional[str] = None) -> Optional[Document]:
pass
@abstractmethod
def get_document_count(self, filters: Optional[Dict[str, List[str]]] = None, index: Optional[str] = None) -> int:
pass
@abstractmethod
def query_by_embedding(self,
query_emb: np.ndarray,
filters: Optional[Optional[Dict[str, List[str]]]] = None,
top_k: int = 10,
index: Optional[str] = None,
return_embedding: Optional[bool] = None) -> List[Document]:
pass
@abstractmethod
def get_label_count(self, index: Optional[str] = None) -> int:
pass
@abstractmethod
def write_labels(self, labels: Union[List[Label], List[dict]], index: Optional[str] = None):
pass
def add_eval_data(self, filename: str, doc_index: str = "eval_document", label_index: str = "label",
batch_size: Optional[int] = None, preprocessor: Optional[PreProcessor] = None,
max_docs: Union[int, bool] = None, open_domain: bool = False):
if preprocessor is not None:
assert preprocessor.split_by != "sentence", f"Split by sentence not supported.\n" f"Please set 'split_by' to either 'word' or 'passage' in the supplied PreProcessor."
assert preprocessor.split_respect_sentence_boundary == False, f"split_respect_sentence_boundary not supported yet.\n" f"Please set 'split_respect_sentence_boundary' to False in the supplied PreProcessor."
assert preprocessor.split_overlap == 0, f"Overlapping documents are currently not supported when adding eval data.\n" f"Please set 'split_overlap=0' in the supplied PreProcessor."
assert preprocessor.clean_empty_lines == False, f"clean_empty_lines currently not supported when adding eval data.\n" f"Please set 'clean_empty_lines=False' in the supplied PreProcessor."
assert preprocessor.clean_whitespace == False, f"clean_whitespace is currently not supported when adding eval data.\n" f"Please set 'clean_whitespace=False' in the supplied PreProcessor."
assert preprocessor.clean_header_footer == False, f"clean_header_footer is currently not supported when adding eval data.\n" f"Please set 'clean_header_footer=False' in the supplied PreProcessor."
file_path = Path(filename)
if file_path.suffix == ".json":
if batch_size is None:
docs, labels = eval_data_from_json(filename, max_docs=max_docs, preprocessor=preprocessor, open_domain=open_domain)
self.write_documents(docs, index=doc_index)
self.write_labels(labels, index=label_index)
else:
jsonl_filename = (file_path.parent / (file_path.stem + '.jsonl')).as_posix()
logger.info(f"Adding evaluation data batch-wise is not compatible with json-formatted SQuAD files. "
f"Converting json to jsonl to: {jsonl_filename}")
squad_json_to_jsonl(filename, jsonl_filename)
self.add_eval_data(jsonl_filename, doc_index, label_index, batch_size, open_domain=open_domain)
elif file_path.suffix == ".jsonl":
for docs, labels in eval_data_from_jsonl(filename, batch_size, max_docs=max_docs, preprocessor=preprocessor, open_domain=open_domain):
if docs:
self.write_documents(docs, index=doc_index)
if labels:
self.write_labels(labels, index=label_index)
else:
logger.error("File needs to be in json or jsonl format.")
def delete_all_documents(self, index: Optional[str] = None, filters: Optional[Dict[str, List[str]]] = None):
pass
@abstractmethod
def delete_documents(self, index: Optional[str] = None, ids: Optional[List[str]] = None, filters: Optional[Dict[str, List[str]]] = None):
pass
@abstractmethod
def delete_labels(self, index: Optional[str] = None, ids: Optional[List[str]] = None, filters: Optional[Dict[str, List[str]]] = None):
pass
def run(self, documents: List[dict], index: Optional[str] = None):
self.write_documents(documents=documents, index=index)
return {}, "output_1"
@abstractmethod
def get_documents_by_id(self, ids: List[str], index: Optional[str] = None,
batch_size: int = 10_000) -> List[Document]:
pass
|
Apache License 2.0
|
solid-mechanics/matplotlib-4-abaqus
|
matplotlib/mlab.py
|
PCA.__init__
|
python
|
def __init__(self, a):
n, m = a.shape
if n<m:
raise RuntimeError('we assume data in a is organized with numrows>numcols')
self.numrows, self.numcols = n, m
self.mu = a.mean(axis=0)
self.sigma = a.std(axis=0)
a = self.center(a)
self.a = a
U, s, Vh = np.linalg.svd(a, full_matrices=False)
Y = np.dot(Vh, a.T).T
vars = s**2/float(len(s))
self.fracs = vars/vars.sum()
self.Wt = Vh
self.Y = Y
|
compute the SVD of a and store data for PCA. Use project to
project the data onto a reduced set of dimensions
Inputs:
*a*: a numobservations x numdims array
Attrs:
*a* a centered unit sigma version of input a
*numrows*, *numcols*: the dimensions of a
*mu* : a numdims array of means of a
*sigma* : a numdims array of atandard deviation of a
*fracs* : the proportion of variance of each of the principal components
*Wt* : the weight vector for projecting a numdims point or array into PCA space
*Y* : a projected into PCA space
The factor loadings are in the Wt factor, ie the factor
loadings for the 1st principal component are given by Wt[0]
|
https://github.com/solid-mechanics/matplotlib-4-abaqus/blob/1117070fb824210c217c564ac36e69112ce70501/matplotlib/mlab.py#L815-L867
|
from __future__ import division, print_function
import csv, warnings, copy, os, operator
from itertools import izip
import numpy as np
ma = np.ma
from matplotlib import verbose
import matplotlib.cbook as cbook
from matplotlib import docstring
from matplotlib.path import Path
def logspace(xmin,xmax,N):
return np.exp(np.linspace(np.log(xmin), np.log(xmax), N))
def _norm(x):
return np.sqrt(np.dot(x,x))
def window_hanning(x):
return np.hanning(len(x))*x
def window_none(x):
return x
def detrend(x, key=None):
if key is None or key=='constant':
return detrend_mean(x)
elif key=='linear':
return detrend_linear(x)
def demean(x, axis=0):
x = np.asarray(x)
if axis == 0 or axis is None or x.ndim <= 1:
return x - x.mean(axis)
ind = [slice(None)] * x.ndim
ind[axis] = np.newaxis
return x - x.mean(axis)[ind]
def detrend_mean(x):
return x - x.mean()
def detrend_none(x):
return x
def detrend_linear(y):
x = np.arange(len(y), dtype=np.float_)
C = np.cov(x, y, bias=1)
b = C[0,1]/C[0,0]
a = y.mean() - b*x.mean()
return y - (b*x + a)
def _spectral_helper(x, y, NFFT=256, Fs=2, detrend=detrend_none,
window=window_hanning, noverlap=0, pad_to=None, sides='default',
scale_by_freq=None):
same_data = y is x
x = np.asarray(x)
if not same_data:
y = np.asarray(y)
else:
y = x
if len(x)<NFFT:
n = len(x)
x = np.resize(x, (NFFT,))
x[n:] = 0
if not same_data and len(y)<NFFT:
n = len(y)
y = np.resize(y, (NFFT,))
y[n:] = 0
if pad_to is None:
pad_to = NFFT
if scale_by_freq is None:
scale_by_freq = True
if (sides == 'default' and np.iscomplexobj(x)) or sides == 'twosided':
numFreqs = pad_to
scaling_factor = 1.
elif sides in ('default', 'onesided'):
numFreqs = pad_to//2 + 1
scaling_factor = 2.
else:
raise ValueError("sides must be one of: 'default', 'onesided', or "
"'twosided'")
if cbook.iterable(window):
assert(len(window) == NFFT)
windowVals = window
else:
windowVals = window(np.ones((NFFT,), x.dtype))
step = NFFT - noverlap
ind = np.arange(0, len(x) - NFFT + 1, step)
n = len(ind)
Pxy = np.zeros((numFreqs, n), np.complex_)
for i in range(n):
thisX = x[ind[i]:ind[i]+NFFT]
thisX = windowVals * detrend(thisX)
fx = np.fft.fft(thisX, n=pad_to)
if same_data:
fy = fx
else:
thisY = y[ind[i]:ind[i]+NFFT]
thisY = windowVals * detrend(thisY)
fy = np.fft.fft(thisY, n=pad_to)
Pxy[:,i] = np.conjugate(fx[:numFreqs]) * fy[:numFreqs]
Pxy /= (np.abs(windowVals)**2).sum()
Pxy[1:-1] *= scaling_factor
if scale_by_freq:
Pxy /= Fs
t = 1./Fs * (ind + NFFT / 2.)
freqs = float(Fs) / pad_to * np.arange(numFreqs)
if (np.iscomplexobj(x) and sides == 'default') or sides == 'twosided':
freqs = np.concatenate((freqs[numFreqs//2:] - Fs, freqs[:numFreqs//2]))
Pxy = np.concatenate((Pxy[numFreqs//2:, :], Pxy[:numFreqs//2, :]), 0)
return Pxy, freqs, t
docstring.interpd.update(PSD=cbook.dedent("""
Keyword arguments:
*NFFT*: integer
The number of data points used in each block for the FFT.
Must be even; a power 2 is most efficient. The default value is 256.
This should *NOT* be used to get zero padding, or the scaling of the
result will be incorrect. Use *pad_to* for this instead.
*Fs*: scalar
The sampling frequency (samples per time unit). It is used
to calculate the Fourier frequencies, freqs, in cycles per time
unit. The default value is 2.
*detrend*: callable
The function applied to each segment before fft-ing,
designed to remove the mean or linear trend. Unlike in
MATLAB, where the *detrend* parameter is a vector, in
matplotlib is it a function. The :mod:`~matplotlib.pylab`
module defines :func:`~matplotlib.pylab.detrend_none`,
:func:`~matplotlib.pylab.detrend_mean`, and
:func:`~matplotlib.pylab.detrend_linear`, but you can use
a custom function as well.
*window*: callable or ndarray
A function or a vector of length *NFFT*. To create window
vectors see :func:`window_hanning`, :func:`window_none`,
:func:`numpy.blackman`, :func:`numpy.hamming`,
:func:`numpy.bartlett`, :func:`scipy.signal`,
:func:`scipy.signal.get_window`, etc. The default is
:func:`window_hanning`. If a function is passed as the
argument, it must take a data segment as an argument and
return the windowed version of the segment.
*pad_to*: integer
The number of points to which the data segment is padded when
performing the FFT. This can be different from *NFFT*, which
specifies the number of data points used. While not increasing
the actual resolution of the psd (the minimum distance between
resolvable peaks), this can give more points in the plot,
allowing for more detail. This corresponds to the *n* parameter
in the call to fft(). The default is None, which sets *pad_to*
equal to *NFFT*
*sides*: [ 'default' | 'onesided' | 'twosided' ]
Specifies which sides of the PSD to return. Default gives the
default behavior, which returns one-sided for real data and both
for complex data. 'onesided' forces the return of a one-sided PSD,
while 'twosided' forces two-sided.
*scale_by_freq*: boolean
Specifies whether the resulting density values should be scaled
by the scaling frequency, which gives density in units of Hz^-1.
This allows for integration over the returned frequency values.
The default is True for MATLAB compatibility.
"""))
@docstring.dedent_interpd
def psd(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning,
noverlap=0, pad_to=None, sides='default', scale_by_freq=None):
Pxx,freqs = csd(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
scale_by_freq)
return Pxx.real,freqs
@docstring.dedent_interpd
def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning,
noverlap=0, pad_to=None, sides='default', scale_by_freq=None):
Pxy, freqs, t = _spectral_helper(x, y, NFFT, Fs, detrend, window,
noverlap, pad_to, sides, scale_by_freq)
if len(Pxy.shape) == 2 and Pxy.shape[1]>1:
Pxy = Pxy.mean(axis=1)
return Pxy, freqs
@docstring.dedent_interpd
def specgram(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning,
noverlap=128, pad_to=None, sides='default', scale_by_freq=None):
assert(NFFT > noverlap)
Pxx, freqs, t = _spectral_helper(x, x, NFFT, Fs, detrend, window,
noverlap, pad_to, sides, scale_by_freq)
Pxx = Pxx.real
return Pxx, freqs, t
_coh_error = """Coherence is calculated by averaging over *NFFT*
length segments. Your signal is too short for your choice of *NFFT*.
"""
@docstring.dedent_interpd
def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning,
noverlap=0, pad_to=None, sides='default', scale_by_freq=None):
if len(x)<2*NFFT:
raise ValueError(_coh_error)
Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
scale_by_freq)
Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
scale_by_freq)
Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
scale_by_freq)
Cxy = np.divide(np.absolute(Pxy)**2, Pxx*Pyy)
Cxy.shape = (len(f),)
return Cxy, f
def donothing_callback(*args):
pass
def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none,
window=window_hanning, noverlap=0,
preferSpeedOverMemory=True,
progressCallback=donothing_callback,
returnPxx=False):
numRows, numCols = X.shape
if numRows < NFFT:
tmp = X
X = np.zeros( (NFFT, numCols), X.dtype)
X[:numRows,:] = tmp
del tmp
numRows, numCols = X.shape
allColumns = set()
for i,j in ij:
allColumns.add(i); allColumns.add(j)
Ncols = len(allColumns)
if np.iscomplexobj(X): numFreqs = NFFT
else: numFreqs = NFFT//2+1
if cbook.iterable(window):
assert(len(window) == NFFT)
windowVals = window
else:
windowVals = window(np.ones(NFFT, X.dtype))
ind = range(0, numRows-NFFT+1, NFFT-noverlap)
numSlices = len(ind)
FFTSlices = {}
FFTConjSlices = {}
Pxx = {}
slices = range(numSlices)
normVal = np.linalg.norm(windowVals)**2
for iCol in allColumns:
progressCallback(i/Ncols, 'Cacheing FFTs')
Slices = np.zeros( (numSlices,numFreqs), dtype=np.complex_)
for iSlice in slices:
thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol]
thisSlice = windowVals*detrend(thisSlice)
Slices[iSlice,:] = np.fft.fft(thisSlice)[:numFreqs]
FFTSlices[iCol] = Slices
if preferSpeedOverMemory:
FFTConjSlices[iCol] = np.conjugate(Slices)
Pxx[iCol] = np.divide(np.mean(abs(Slices)**2, axis=0), normVal)
del Slices, ind, windowVals
Cxy = {}
Phase = {}
count = 0
N = len(ij)
for i,j in ij:
count +=1
if count%10==0:
progressCallback(count/N, 'Computing coherences')
if preferSpeedOverMemory:
Pxy = FFTSlices[i] * FFTConjSlices[j]
else:
Pxy = FFTSlices[i] * np.conjugate(FFTSlices[j])
if numSlices>1: Pxy = np.mean(Pxy, axis=0)
Pxy /= normVal
Cxy[i,j] = abs(Pxy)**2 / (Pxx[i]*Pxx[j])
Phase[i,j] = np.arctan2(Pxy.imag, Pxy.real)
freqs = Fs/NFFT*np.arange(numFreqs)
if returnPxx:
return Cxy, Phase, freqs, Pxx
else:
return Cxy, Phase, freqs
def entropy(y, bins):
n, bins = np.histogram(y, bins)
n = n.astype(np.float_)
n = np.take(n, np.nonzero(n)[0])
p = np.divide(n, len(y))
delta = bins[1] - bins[0]
S = -1.0 * np.sum(p * np.log(p)) + np.log(delta)
return S
def normpdf(x, *args):
mu, sigma = args
return 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-0.5 * (1./sigma*(x - mu))**2)
def levypdf(x, gamma, alpha):
N = len(x)
if N % 2 != 0:
raise ValueError('x must be an event length array; try\n' + 'x = np.linspace(minx, maxx, N), where N is even')
dx = x[1] - x[0]
f = 1/(N*dx)*np.arange(-N / 2, N / 2, np.float_)
ind = np.concatenate([np.arange(N / 2, N, int),
np.arange(0, N / 2, int)])
df = f[1] - f[0]
cfl = np.exp(-gamma * np.absolute(2 * np.pi * f) ** alpha)
px = np.fft.fft(np.take(cfl, ind) * df).astype(np.float_)
return np.take(px, ind)
def find(condition):
res, = np.nonzero(np.ravel(condition))
return res
def longest_contiguous_ones(x):
x = np.ravel(x)
if len(x)==0:
return np.array([])
ind = (x==0).nonzero()[0]
if len(ind)==0:
return np.arange(len(x))
if len(ind)==len(x):
return np.array([])
y = np.zeros( (len(x)+2,), x.dtype)
y[1:-1] = x
dif = np.diff(y)
up = (dif == 1).nonzero()[0];
dn = (dif == -1).nonzero()[0];
i = (dn-up == max(dn - up)).nonzero()[0][0]
ind = np.arange(up[i], dn[i])
return ind
def longest_ones(x):
return longest_contiguous_ones(x)
def prepca(P, frac=0):
warnings.warn('This function is deprecated -- see class PCA instead')
U,s,v = np.linalg.svd(P)
varEach = s**2/P.shape[1]
totVar = varEach.sum()
fracVar = varEach/totVar
ind = slice((fracVar>=frac).sum())
Trans = U[:,ind].transpose()
Pcomponents = np.dot(Trans,P)
return Pcomponents, Trans, fracVar[ind]
class PCA:
|
MIT License
|
codeeu/coding-events
|
api/processors.py
|
get_created_events
|
python
|
def get_created_events(
creator,
limit=None,
order=None,
country_code=None,
past=False):
events = Event.objects.filter(creator=creator)
if not past:
events = events.filter(end_date__gte=datetime.datetime.now())
if country_code:
events = events.filter(country=country_code)
if order:
events = events.order_by(order)
if limit:
events = events = events[:limit]
return events
|
Select all future or past events which are created by user and optionally limit and/or order them
|
https://github.com/codeeu/coding-events/blob/9e34a937c4503f8fb6e406142bd4ef43075ad6dc/api/processors.py#L133-L152
|
import datetime
from django.db.models import Q
from models.events import Event
from models.events import EventTheme
from models.events import EventAudience
def get_all_events():
return Event.objects.all()
def get_event_by_id(event_id):
event = Event.objects.get(id=event_id)
return event
def get_approved_events(limit=None, order=None, country_code=None, past=False):
events = Event.objects.filter(status='APPROVED')
if not past:
events = events.filter(end_date__gte=datetime.datetime.now())
if country_code:
events = events.filter(country=country_code)
if order:
events = events.order_by(order)
if limit:
events = events[:limit]
return events
def get_event_detail(id):
events = Event.objects.filter(id=id)
return events
def get_pending_events(limit=None, order=None, country_code=None, past=False):
events = Event.objects.filter(status='PENDING')
if not past:
events = events.filter(end_date__gte=datetime.datetime.now())
if country_code:
events = events.filter(country=country_code)
if order:
events = events.order_by(order)
if limit:
events = events[:limit]
return events
def get_next_or_previous(event, country_code=None, past=False, direction=True):
next_event = None
events = Event.objects.filter(status='PENDING')
if direction:
events = events.filter(pk__gt=event.pk).order_by("pk")
else:
events = events.filter(pk__lt=event.pk).order_by("-pk")
if not past:
events = events.filter(end_date__gte=datetime.datetime.now())
if country_code:
events = events.filter(country=country_code)
if events:
next_event = events[0]
return next_event
def get_filtered_events(
search_filter=None,
country_filter=None,
theme_filter=None,
audience_filter=None,
past_events=None):
filter_args = ()
filter_kwargs = {'status': 'APPROVED'}
if not past_events:
filter_kwargs['end_date__gte'] = datetime.datetime.now()
if search_filter:
filter_args = (
Q(
title__icontains=search_filter) | Q(
description__icontains=search_filter) | Q(
tags__name__icontains=search_filter) | Q(
organizer__icontains=search_filter) | Q(
location__icontains=search_filter),)
if country_filter and country_filter not in [custom_country[
0] for custom_country in Event.CUSTOM_COUNTRY_ENTRIES]:
filter_kwargs['country'] = country_filter
if theme_filter:
filter_kwargs['theme__in'] = theme_filter
if audience_filter:
audience = EventAudience.objects.filter()
filter_kwargs['audience__in'] = audience_filter
if len(filter_args) > 0:
events = Event.objects.filter(*filter_args, **filter_kwargs).distinct()
else:
events = Event.objects.filter(**filter_kwargs).distinct()
return events
|
MIT License
|
ooici/pyon
|
prototype/sci_data/stream_defs.py
|
ctd_stream_packet
|
python
|
def ctd_stream_packet(stream_id = None, c=None, t=None, p=None , lat=None, lon=None, height=None, time=None, create_hdf=True):
stream_def = ctd_stream_definition(stream_id=stream_id)
psc = PointSupplementConstructor(point_definition=stream_def, stream_id=stream_id)
assert time
assert lat
assert lon
def listify(input):
if hasattr(input, '__iter__'):
return input
else:
return [input,]
length = False
if c is not None:
c = listify(c)
if length:
assert length == len(c), 'Conductivity input is the wrong length'
else:
length = len(c)
if t is not None:
t = listify(t)
if length:
assert length == len(t), 'Temperature input is the wrong length'
else:
length = len(t)
if p is not None:
p = listify(p)
if length:
assert length == len(p), 'Pressure input is the wrong length'
else:
length = len(p)
if lat is not None:
lat = listify(lat)
if length:
if 1 == len(lat):
lat = lat*length
else:
length = len(lat)
else:
raise RuntimeError('Did not specify longitude')
if lon is not None:
lon = listify(lon)
if length:
if 1 == len(lon):
lon = lon*length
else:
length = len(lon)
else:
raise RuntimeError('Did not specify longitude')
if height is not None:
height = listify(height)
if length:
if 1 == len(height):
height = height*length
else:
length = len(height)
else:
height = [0,]*length
if time is not None:
time = listify(time)
if length:
if 1 == len(time):
time = time*length
else:
length = len(time)
else:
raise RuntimeError('Did not specify time')
for idx, time_val in enumerate(time):
p_id = psc.add_point(time=time_val, location=(lon[idx], lat[idx], height[idx]))
if t:
psc.add_scalar_point_coverage(point_id=p_id, coverage_id='temperature', value=t[idx])
if p:
psc.add_scalar_point_coverage(point_id=p_id, coverage_id='pressure', value=p[idx])
if c:
psc.add_scalar_point_coverage(point_id=p_id, coverage_id='conductivity', value=c[idx])
granule = psc.close_stream_granule()
if not create_hdf:
data_stream = granule.identifiables['data_stream']
data_stream.values = ''
return granule
|
###
### This method is deprecated!
###
This is a simple interface for creating a packet of ctd data for a given stream defined by the method above.
The string names of content are tightly coupled to the method above.
To send actual data you must have hdf5, numpy and h5py installed.
@brief build a demo ctd data packet as an ion object. All values arguments are optional, but any argument provided
should have the same length.
@param stream_id should be the same as the stream_id for the definition - the stream resource ID
@param c is a list, tuple or ndarray of conductivity values
@param t is a list, tuple or ndarray of temperature values
@param p is a list, tuple or ndarray of presure values
@param lat is a list, tuple or ndarray of latitude values
@param lon is a list, tuple or ndarray of longitude values
@param time is a list, tuple or ndarray of time values
|
https://github.com/ooici/pyon/blob/122c629290d27f32f2f41dafd5c12469295e8acf/prototype/sci_data/stream_defs.py#L429-L556
|
from interface.objects import StreamDefinitionContainer, StreamGranuleContainer
from interface.objects import DataStream, ElementType, DataRecord, Vector, Coverage, RangeSet, Domain, Mesh, CoordinateAxis, Encoding
from interface.objects import UnitReferenceProperty, NilValue, AllowedValues
from interface.objects import CategoryElement, CountElement
from interface.objects import QuantityRangeElement
from prototype.hdf.hdf_codec import HDFEncoder
from prototype.sci_data.constructor_apis import StreamDefinitionConstructor, PointSupplementConstructor
import hashlib
from pyon.util.log import log
def SBE37_CDM_stream_definition():
sdc = StreamDefinitionConstructor(
description='Parsed conductivity temperature and pressure observations from a Seabird 37 CTD',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name='temperature',
field_definition="urn:x-ogc:def:phenomenon:OGC:temperature",
field_units_code='Cel',
field_range=[-10.0, 100.0]
)
sdc.define_coverage(
field_name = 'conductivity',
field_definition = "urn:x-ogc:def:phenomenon:OGC:conductivity",
field_units_code = 'mS/cm',
field_range = [0.0, 100.0]
)
sdc.define_coverage(
field_name = 'pressure',
field_definition = "urn:x-ogc:def:phenomenon:OGC:pressure",
field_units_code = 'dBar',
field_range = [0.0, 1000.0]
)
return sdc.close_structure()
def USGS_stream_definition():
sdc = StreamDefinitionConstructor(
description='CONNECTICUT RIVER AT THOMPSONVILLE CT (01184000) - Daily Value',
nil_value=-9999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4326'
)
sdc.define_coverage(
field_name='water_height',
field_definition="urn:x-ogc:def:phenomenon:OGC:water_height",
field_units_code='ft_us'
)
sdc.define_coverage(
field_name = 'water_temperature',
field_definition = "urn:x-ogc:def:phenomenon:OGC:water_temperature",
field_units_code = 'Cel'
)
sdc.define_coverage(
field_name = 'streamflow',
field_definition = "urn:x-ogc:def:phenomenon:OGC:streamflow",
field_units_code = 'cft_i/s'
)
return sdc.close_structure()
def ctd_stream_definition(stream_id = None):
sd = SBE37_CDM_stream_definition()
sd.stream_resource_id = stream_id or ''
return sd
def SBE37_RAW_stream_definition():
stream_definition = StreamDefinitionContainer(
data_stream_id='data_stream',
)
ident = stream_definition.identifiables
ident['data_stream'] = DataStream(
description='Raw data from an SBE 37',
element_count_id='record_count',
element_type_id='element_type',
encoding_id='stream_encoding',
values=None
)
ident['stream_encoding'] = Encoding(
encoding_type='raw',
compression=None,
sha1=None
)
ident['record_count'] = CountElement(
value=0,
optional=False,
updatable=True
)
ident['element_type'] = ElementType(
updatable=False,
optional=False,
definition='Raw SBE 37 data'
)
return stream_definition
def L0_conductivity_stream_definition():
sdc = StreamDefinitionConstructor(
description='L0 Conductivity observations from a Seabird 37 CTD',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name = 'conductivity',
field_definition = "urn:x-ogc:def:phenomenon:OGC:conductivity",
field_units_code = 'mS/cm',
field_range = [0.0, 100.0]
)
return sdc.close_structure()
def L0_temperature_stream_definition():
sdc = StreamDefinitionConstructor(
description='L0 Temperature observations from a Seabird 37 CTD',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name='temperature',
field_definition="urn:x-ogc:def:phenomenon:OGC:temperature",
field_units_code='Cel',
field_range=[-10.0, 100.0]
)
return sdc.close_structure()
def L0_pressure_stream_definition():
sdc = StreamDefinitionConstructor(
description='L0 Pressure observations from a Seabird 37 CTD',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name = 'pressure',
field_definition = "urn:x-ogc:def:phenomenon:OGC:pressure",
field_units_code = 'dBar',
field_range = [0.0, 1000.0]
)
return sdc.close_structure()
def L1_conductivity_stream_definition():
sdc = StreamDefinitionConstructor(
description='L1 Conductivity observations from a Seabird 37 CTD',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name = 'conductivity',
field_definition = "urn:x-ogc:def:phenomenon:OGC:conductivity",
field_units_code = 'mS/cm',
field_range = [0.0, 100.0]
)
return sdc.close_structure()
def L1_temperature_stream_definition():
sdc = StreamDefinitionConstructor(
description='L1 Temperature observations from a Seabird 37 CTD',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name='temperature',
field_definition="urn:x-ogc:def:phenomenon:OGC:temperature",
field_units_code='Cel',
field_range=[-10.0, 100.0]
)
return sdc.close_structure()
def L1_pressure_stream_definition():
sdc = StreamDefinitionConstructor(
description='L1 Pressure observations from a Seabird 37 CTD',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name = 'pressure',
field_definition = "urn:x-ogc:def:phenomenon:OGC:pressure",
field_units_code = 'dBar',
field_range = [0.0, 1000.0]
)
return sdc.close_structure()
def L2_practical_salinity_stream_definition():
sdc = StreamDefinitionConstructor(
description='L2 practical salinity observations',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name = 'salinity',
field_definition = "urn:x-ogc:def:phenomenon:OGC:practical_salinity",
field_units_code = '',
field_range = [0.1, 40.0]
)
return sdc.close_structure()
def L2_density_stream_definition():
sdc = StreamDefinitionConstructor(
description='L2 practical salinity observations',
nil_value=-999.99,
encoding='hdf5'
)
sdc.define_temporal_coordinates(
reference_frame='http://www.opengis.net/def/trs/OGC/0/GPS',
definition='http://www.opengis.net/def/property/OGC/0/SamplingTime',
reference_time='1970-01-01T00:00:00Z',
unit_code='s'
)
sdc.define_geospatial_coordinates(
definition="http://www.opengis.net/def/property/OGC/0/PlatformLocation",
reference_frame='urn:ogc:def:crs:EPSG::4979'
)
sdc.define_coverage(
field_name = 'density',
field_definition = "urn:x-ogc:def:phenomenon:OGC:density",
field_units_code = 'kg/m3',
field_range = [1000.0, 1050.0]
)
return sdc.close_structure()
|
BSD 2-Clause Simplified License
|
alexsavio/hansel
|
hansel/crumb.py
|
Crumb.get_first
|
python
|
def get_first(self, arg_name: str) -> str:
return self[arg_name][0]
|
Return the first existing value of the crumb argument `arg_name`.
Parameters
----------
arg_name: str
Returns
-------
values: str
|
https://github.com/alexsavio/hansel/blob/dd20150b372488767a35eab42f486780e76fc455/hansel/crumb.py#L797-L807
|
import os
import pathlib
import re
from collections import OrderedDict
from copy import deepcopy
from typing import List, Dict, Iterator, Tuple
from hansel._utils import (
_first_txt,
_build_path,
_arg_names,
_find_arg_depth,
_check,
_depth_names,
_depth_names_regexes,
_has_arg,
_is_crumb_arg,
_split_exists,
_split,
_touch,
has_crumbs,
is_valid,
)
from hansel.utils import (
list_subpaths,
fnmatch_filter,
regex_match_filter,
CrumbArgsSequence, CrumbArgsSequences)
class Crumb(object):
def __init__(self, crumb_path: str, ignore_list: List[str] = None, regex: str = 'fnmatch'):
self._path = _check(crumb_path)
self._argval = {}
self._re_method = regex
self._re_args = None
if ignore_list is None:
ignore_list = []
self._ignore = ignore_list
self._update()
def _update(self):
self._set_match_function()
def _set_match_function(self):
if self._re_method == 'fnmatch':
self._match_filter = fnmatch_filter
elif self._re_method == 're':
self._match_filter = regex_match_filter
elif self._re_method == 're.ignorecase':
self._match_filter = regex_match_filter
self._re_args = (re.IGNORECASE,)
else:
raise ValueError('Expected regex method value to be "fnmatch", "re" or "re.ignorecase"'
', got {}.'.format(self._re_method))
def is_valid(self, crumb_path: str = None) -> bool:
if crumb_path is None:
crumb_path = self.path
return is_valid(crumb_path)
@property
def patterns(self):
return {arg: rgx for _, (arg, rgx) in _depth_names_regexes(self._path) if rgx}
def set_pattern(self, arg_name: str, arg_regex: str):
if not _has_arg(self.path, arg_name):
raise KeyError('Crumb argument {} is not present in {}.'.format(arg_name, self))
self._path = _build_path(
self._path,
arg_values={},
with_regex=True,
regexes={arg_name: arg_regex}
)
def set_patterns(self, **kwargs):
for arg, pat in kwargs.items():
self.set_pattern(arg, pat)
def clear_pattern(self, arg_name: str):
self.set_pattern(arg_name, '')
def clear(self, arg_name: str):
del self._argval[arg_name]
@property
def arg_values(self) -> Dict[str, str]:
return self._argval
@property
def path(self) -> str:
return _build_path(self._path, arg_values=self.arg_values, with_regex=True)
@path.setter
def path(self, value: str):
self._path = value
self._update()
def has_crumbs(self, crumb_path: str = None) -> bool:
if crumb_path is None:
crumb_path = self.path
return has_crumbs(crumb_path)
def _open_arg_items(self):
for depth, arg_name in _depth_names(self.path):
yield depth, arg_name
def _last_open_arg(self):
open_args = list(self._open_arg_items())
if not open_args:
return None, None
for dpth, arg in reversed(open_args):
return dpth, arg
def _first_open_arg(self):
for dpth, arg in self._open_arg_items():
return dpth, arg
def _is_first_open_arg(self, arg_name: str) -> bool:
return arg_name == self._first_open_arg()[1]
def has_set(self, arg_name: str) -> bool:
return arg_name not in set(self.open_args())
def open_args(self) -> Iterator[str]:
for _, arg_name in self._open_arg_items():
yield arg_name
def all_args(self) -> Iterator[str]:
yield from _arg_names(self._path)
def copy(self, crumb: 'Crumb' = None) -> 'Crumb':
if crumb is None:
crumb = self
if isinstance(crumb, Crumb):
nucr = Crumb(
crumb._path,
ignore_list=crumb._ignore,
regex=crumb._re_method
)
nucr._argval = deepcopy(crumb._argval)
return nucr
if isinstance(crumb, str):
return Crumb.from_path(crumb)
raise TypeError("Expected a Crumb or a str to copy, "
"got {}.".format(type(crumb)))
def isabs(self) -> bool:
subp = _first_txt(self.path)
return os.path.isabs(subp)
def abspath(self, first_is_basedir: bool = False) -> 'Crumb':
nucr = self.copy()
if not nucr.isabs():
nucr._path = self._abspath(first_is_basedir=first_is_basedir)
return nucr
def _abspath(self, first_is_basedir: bool = False) -> str:
if os.path.isabs(self._path):
return self._path
splits = self._path.split(os.path.sep)
basedir = [os.path.abspath(os.path.curdir)]
if _is_crumb_arg(splits[0]):
if first_is_basedir:
splits.pop(0)
basedir.extend(splits)
return os.path.sep.join(basedir)
def split(self) -> Tuple[str, str]:
return _split(self.path)
@classmethod
def from_path(cls, crumb_path: [str, 'Crumb', pathlib.Path]) -> 'Crumb':
if isinstance(crumb_path, Crumb):
return crumb_path.copy()
elif isinstance(crumb_path, pathlib.Path):
return cls(str(crumb_path))
elif isinstance(crumb_path, str):
return cls(crumb_path)
else:
raise TypeError("Expected a `val` to be a `str`, got {}.".format(type(crumb_path)))
def _arg_values(self, arg_name: str, arg_values: CrumbArgsSequence = None) -> CrumbArgsSequences:
if arg_values is None and not self._is_first_open_arg(arg_name):
raise ValueError("Cannot get the list of values for {} if"
" the previous arguments are not filled"
" in `paths`.".format(arg_name))
path = self.path
dpth, arg_name, arg_regex = _find_arg_depth(path, arg_name)
splt = path.split(os.path.sep)
if dpth == len(splt) - 1:
just_dirs = False
else:
just_dirs = True
if arg_values is None:
vals = self._arg_values_from_base(
basedir=os.path.sep.join(splt[:dpth]),
arg_name=arg_name,
arg_regex=arg_regex,
just_dirs=just_dirs
)
else:
vals = self._extend_arg_values(
arg_values=arg_values,
arg_name=arg_name,
arg_regex=arg_regex,
just_dirs=just_dirs
)
return vals
def _extend_arg_values(
self,
arg_values: CrumbArgsSequence,
arg_name: str,
arg_regex: str,
just_dirs: bool
) -> CrumbArgsSequences:
path = self.path
vals = []
for aval in arg_values:
nupath = _split(_build_path(path, arg_values=dict(aval)))[0]
if not os.path.exists(nupath):
continue
paths = list_subpaths(
nupath,
just_dirs=just_dirs,
ignore=self._ignore,
pattern=arg_regex,
filter_func=self._match_filter
)
vals.extend([aval + [(arg_name, sp)] for sp in paths])
return vals
def _arg_values_from_base(self, basedir: str, arg_name: str, arg_regex: str, just_dirs: bool) -> CrumbArgsSequences:
vals = list_subpaths(basedir,
just_dirs=just_dirs,
ignore=self._ignore,
pattern=arg_regex,
filter_func=self._match_filter,
filter_args=self._re_args)
return [[(arg_name, val)] for val in vals]
def _check_args(self, arg_names: Iterator[str], self_args: Iterator[str]):
anames = set(arg_names)
aself = set(self_args)
if not anames and not aself:
return
if not aself or aself is None:
raise AttributeError('This Crumb has no remaining arguments: {}.'.format(self.path))
if not anames.issubset(aself):
raise KeyError("Expected `arg_names` to be a subset of ({}),"
" got {}.".format(list(aself), anames))
def _check_open_args(self, arg_names: Iterator[str]):
self._check_args(arg_names, self_args=self.open_args())
def update(self, **kwargs) -> 'Crumb':
self._check_args(list(kwargs.keys()), self_args=self.all_args())
for k, v in kwargs.items():
if not isinstance(v, str):
raise ValueError("Expected a string for the value of argument {}, "
"got {}.".format(k, v))
path = _build_path(self.path, arg_values=kwargs, with_regex=True)
_check(path)
self._argval.update(**kwargs)
return self
def replace(self, **kwargs) -> 'Crumb':
cr = self.copy(self)
return cr.update(**kwargs)
def _arg_parents(self, arg_name: str) -> Dict[str, int]:
if arg_name not in self.arg_values:
path = self.path
else:
path = self._path
dpth, _, _ = _find_arg_depth(path, arg_name)
return OrderedDict([(arg, idx) for idx, arg in self._open_arg_items() if idx <= dpth])
def _args_open_parents(self, arg_names: Iterator[str]) -> Iterator[str]:
started = False
arg_dads = []
for an in reversed(list(self.open_args())):
if an in arg_names:
started = True
else:
if started:
arg_dads.append(an)
return list(reversed(arg_dads))
def values_map(self, arg_name: str = '', check_exists: bool = False) -> CrumbArgsSequences:
if not arg_name:
_, arg_name = self._last_open_arg()
if arg_name is None:
return [list(self.arg_values.items())]
arg_deps = self._arg_parents(arg_name)
values_map = None
if arg_deps:
for arg in arg_deps:
values_map = self._arg_values(arg, values_map)
elif arg_name in self.arg_values:
values_map = [[(arg_name, self.arg_values[arg_name])]]
else:
raise ValueError('Could not build a map of values with '
'argument {}.'.format(arg_name))
return sorted(self._build_and_check(values_map) if check_exists else values_map)
def _build_and_check(self, values_map: CrumbArgsSequences) -> CrumbArgsSequences:
paths = list(self.build_paths(values_map, make_crumbs=True))
yield from (args for args, path in zip(values_map, paths) if path.exists())
def build_paths(
self,
values_map: CrumbArgsSequences,
make_crumbs: bool = True
) -> [Iterator[str], Iterator['Crumb']]:
if make_crumbs:
yield from (self.replace(**dict(val)) for val in values_map)
else:
yield from (_build_path(self.path, arg_values=dict(val)) for val in values_map)
def ls(
self,
arg_name: str = '',
fullpath: bool = True,
make_crumbs: bool = True,
check_exists: bool = True
) -> [Iterator[str], Iterator['Crumb']]:
if not arg_name and not fullpath:
raise ValueError('Expecting an `arg_name` if `fullpath` is False.')
if not arg_name:
_, arg_name = self._last_open_arg()
if arg_name is None:
arg_name = ''
arg_regex = False
if arg_name:
_, (arg_name, arg_regex) = tuple(_depth_names_regexes('{' + arg_name + '}'))[0]
if arg_regex:
old_regex = self.patterns.get(arg_name, None)
self.set_pattern(arg_name=arg_name, arg_regex=arg_regex)
self._check_args([arg_name], self.all_args())
self._check_ls_params(make_crumbs, fullpath)
if not fullpath:
make_crumbs = fullpath
values_map = self.values_map(arg_name, check_exists=check_exists)
if fullpath:
paths = self.build_paths(values_map, make_crumbs=make_crumbs)
else:
paths = (dict(val)[arg_name] for val in values_map)
if arg_regex:
self.clear_pattern(arg_name=arg_name)
if old_regex is not None:
self.set_pattern(arg_name=arg_name, arg_regex=old_regex)
return sorted(paths)
def _check_ls_params(self, make_crumbs: bool, fullpath: bool):
if not self.isabs() and self.path.startswith('{'):
raise NotImplementedError("Cannot list paths that start with an argument. "
"If this is a relative path, use the `abspath()` "
"member function.")
def touch(self, exist_ok: bool = True) -> str:
return _touch(self.path, exist_ok=exist_ok)
def joinpath(self, suffix: str) -> 'Crumb':
return Crumb(os.path.join(self.path, suffix))
def exists(self) -> bool:
if not has_crumbs(self.path):
return os.path.exists(str(self)) or os.path.islink(str(self))
if not os.path.exists(self.split()[0]):
return False
_, last = self._last_open_arg()
paths = self.ls(last,
fullpath=True,
make_crumbs=False,
check_exists=False)
return any((_split_exists(lp) for lp in paths))
def has_files(self) -> bool:
if not os.path.exists(self.split()[0]):
return False
_, last = self._last_open_arg()
paths = self.ls(
last,
fullpath=True,
make_crumbs=True,
check_exists=True
)
return any((os.path.isfile(str(lp)) for lp in paths))
def unfold(self) -> [List['Crumb'], Iterator[pathlib.Path]]:
if list(self.open_args()):
return self.ls(
self._last_open_arg()[1],
fullpath=True,
make_crumbs=True,
check_exists=True
)
return [self]
|
Apache License 2.0
|
lindsayyoung/python-class
|
lesson-6/restaurant.py
|
Restaurant.take_order
|
python
|
def take_order(self, item, money):
return money
|
Take an order for item, given a certain amount of money.
If the item doesn't exist, print "Sorry, we don't have <ITEM>".
If the cost of the item is greater than the money provided, print
"Sorry, <ITEM> costs <COST>" (eg. "Sorry, PB&J costs 1.99")
If the order is successful, record the order and return the person's
change (money - price) to them.
|
https://github.com/lindsayyoung/python-class/blob/63821805dab826ab4c8b030c3cbdd6835435a3ce/lesson-6/restaurant.py#L24-L36
|
class Restaurant(object):
def __init__(self, name, menu):
self.name = name
self.menu = menu
self.items_ordered = []
def print_menu(self):
def has_item(self, item):
return False
|
MIT License
|
someengineering/cloudkeeper
|
plugins/gcp/cloudkeeper_plugin_gcp/collector.py
|
GCPProjectCollector.post_process_machine_type
|
python
|
def post_process_machine_type(resource: GCPMachineType, graph: Graph):
if (
resource.region(graph).name == "undefined"
and resource.zone(graph).name == "undefined"
):
log.error(
f"Resource {resource.rtdname} has no region or zone"
" - removing from graph"
)
graph.remove_node(resource)
return
log.debug(
(
f"Looking up pricing for {resource.rtdname}"
f" in {resource.location(graph).rtdname}"
)
)
skus = []
for sku in graph.searchall(
{
"kind": "gcp_service_sku",
"resource_family": "Compute",
"usage_type": "OnDemand",
}
):
if sku.resource_group not in (
"G1Small",
"F1Micro",
"N1Standard",
"CPU",
"RAM",
):
continue
if ("custom" not in resource.name and "Custom" in sku.name) or (
"custom" in resource.name and "Custom" not in sku.name
):
continue
if resource.region(graph).name not in sku.geo_taxonomy_regions:
continue
if resource.name == "g1-small" and sku.resource_group != "G1Small":
continue
if resource.name == "f1-micro" and sku.resource_group != "F1Micro":
continue
if (
resource.name.startswith("n2d-") and not sku.name.startswith("N2D AMD ")
) or (
not resource.name.startswith("n2d-") and sku.name.startswith("N2D AMD ")
):
continue
if (resource.name.startswith("n2-") and not sku.name.startswith("N2 ")) or (
not resource.name.startswith("n2-") and sku.name.startswith("N2 ")
):
continue
if (
resource.name.startswith("m1-")
and not sku.name.startswith("Memory-optimized ")
) or (
not resource.name.startswith("m1-")
and sku.name.startswith("Memory-optimized ")
):
continue
if (
resource.name.startswith("c2-")
and not sku.name.startswith("Compute optimized ")
) or (
not resource.name.startswith("c2-")
and sku.name.startswith("Compute optimized ")
):
continue
if resource.name.startswith("n1-") and sku.resource_group != "N1Standard":
continue
if "custom" not in resource.name:
if (
resource.name.startswith("e2-") and not sku.name.startswith("E2 ")
) or (
not resource.name.startswith("e2-") and sku.name.startswith("E2 ")
):
continue
skus.append(sku)
if len(skus) == 1 and resource.name in ("g1-small", "f1-micro"):
graph.add_edge(skus[0], resource)
resource.ondemand_cost = skus[0].usage_unit_nanos / 1000000000
elif len(skus) == 2 or (len(skus) == 3 and "custom" in resource.name):
ondemand_cost = 0
cores = resource.instance_cores
ram = resource.instance_memory
extended_memory_pricing = False
if "custom" in resource.name:
extended_memory_pricing = ram / cores > 8
for sku in skus:
if "Core" in sku.name:
ondemand_cost += sku.usage_unit_nanos * cores
elif "Ram" in sku.name:
if (extended_memory_pricing and "Extended" not in sku.name) or (
not extended_memory_pricing and "Extended" in sku.name
):
continue
ondemand_cost += sku.usage_unit_nanos * ram
graph.add_edge(sku, resource)
if ondemand_cost > 0:
resource.ondemand_cost = ondemand_cost / 1000000000
else:
log.debug(
(
f"Unable to determine SKU(s) for {resource}:"
f" {[sku.dname for sku in skus]}"
)
)
|
Adds edges from machine type to SKUs and determines ondemand pricing
TODO: Implement GPU types
|
https://github.com/someengineering/cloudkeeper/blob/2bfbf2d815b80806943fc0a2e749cfaeb1ae7d81/plugins/gcp/cloudkeeper_plugin_gcp/collector.py#L976-L1090
|
import cklib.logging
import socket
from pprint import pformat
from retrying import retry
from typing import Callable, List, Dict, Type, Union
from cklib.baseresources import BaseResource
from cklib.graph import Graph
from cklib.args import ArgumentParser
from cklib.utils import except_log_and_pass
from prometheus_client import Summary
from .resources import (
GCPProject,
GCPQuota,
GCPRegion,
GCPZone,
GCPDiskType,
GCPDisk,
GCPInstance,
GCPMachineType,
GCPNetwork,
GCPSubnetwork,
GCPTargetVPNGateway,
GCPVPNGateway,
GCPVPNTunnel,
GCPRouter,
GCPRoute,
GCPSecurityPolicy,
GCPSnapshot,
GCPSSLCertificate,
GCPNetworkEndpointGroup,
GCPGlobalNetworkEndpointGroup,
GCPInstanceGroup,
GCPInstanceGroupManager,
GCPAutoscaler,
GCPHealthCheck,
GCPHTTPHealthCheck,
GCPHTTPSHealthCheck,
GCPUrlMap,
GCPTargetPool,
GCPTargetHttpProxy,
GCPTargetHttpsProxy,
GCPTargetSslProxy,
GCPTargetTcpProxy,
GCPTargetGrpcProxy,
GCPTargetInstance,
GCPBackendService,
GCPForwardingRule,
GCPGlobalForwardingRule,
GCPBucket,
GCPDatabase,
GCPService,
GCPServiceSKU,
GCPInstanceTemplate,
)
from .utils import (
Credentials,
gcp_client,
gcp_resource,
paginate,
iso2datetime,
get_result_data,
common_resource_kwargs,
retry_on_error,
)
log = cklib.logging.getLogger("cloudkeeper." + __name__)
metrics_collect_regions = Summary(
"cloudkeeper_plugin_gcp_collect_regions_seconds",
"Time it took the collect_regions() method",
)
metrics_collect_zones = Summary(
"cloudkeeper_plugin_gcp_collect_zones_seconds",
"Time it took the collect_zones() method",
)
metrics_collect_disks = Summary(
"cloudkeeper_plugin_gcp_collect_disks_seconds",
"Time it took the collect_disks() method",
)
metrics_collect_instances = Summary(
"cloudkeeper_plugin_gcp_collect_instances_seconds",
"Time it took the collect_instances() method",
)
metrics_collect_disk_types = Summary(
"cloudkeeper_plugin_gcp_collect_disk_types_seconds",
"Time it took the collect_disk_types() method",
)
metrics_collect_networks = Summary(
"cloudkeeper_plugin_gcp_collect_networks_seconds",
"Time it took the collect_networks() method",
)
metrics_collect_subnetworks = Summary(
"cloudkeeper_plugin_gcp_collect_subnetworks_seconds",
"Time it took the collect_subnetworks() method",
)
metrics_collect_vpn_tunnels = Summary(
"cloudkeeper_plugin_gcp_collect_vpn_tunnels_seconds",
"Time it took the collect_vpn_tunnels() method",
)
metrics_collect_vpn_gateways = Summary(
"cloudkeeper_plugin_gcp_collect_vpn_gateways_seconds",
"Time it took the collect_vpn_gateways() method",
)
metrics_collect_target_vpn_gateways = Summary(
"cloudkeeper_plugin_gcp_collect_target_vpn_gateways_seconds",
"Time it took the collect_target_vpn_gateways() method",
)
metrics_collect_routers = Summary(
"cloudkeeper_plugin_gcp_collect_routers_seconds",
"Time it took the collect_routers() method",
)
metrics_collect_routes = Summary(
"cloudkeeper_plugin_gcp_collect_routes_seconds",
"Time it took the collect_routes() method",
)
metrics_collect_security_policies = Summary(
"cloudkeeper_plugin_gcp_collect_security_policies_seconds",
"Time it took the collect_security_policies() method",
)
metrics_collect_snapshots = Summary(
"cloudkeeper_plugin_gcp_collect_snapshots_seconds",
"Time it took the collect_snapshots() method",
)
metrics_collect_ssl_certificates = Summary(
"cloudkeeper_plugin_gcp_collect_ssl_certificates_seconds",
"Time it took the collect_ssl_certificates() method",
)
metrics_collect_machine_types = Summary(
"cloudkeeper_plugin_gcp_collect_machine_types_seconds",
"Time it took the collect_machine_types() method",
)
metrics_collect_network_endpoint_groups = Summary(
"cloudkeeper_plugin_gcp_collect_network_endpoint_groups_seconds",
"Time it took the collect_network_endpoint_groups() method",
)
metrics_collect_global_network_endpoint_groups = Summary(
"cloudkeeper_plugin_gcp_collect_global_network_endpoint_groups_seconds",
"Time it took the collect_global_network_endpoint_groups() method",
)
metrics_collect_instance_groups = Summary(
"cloudkeeper_plugin_gcp_collect_instance_groups_seconds",
"Time it took the collect_instance_groups() method",
)
metrics_collect_instance_group_managers = Summary(
"cloudkeeper_plugin_gcp_collect_instance_group_managers_seconds",
"Time it took the collect_instance_group_managers() method",
)
metrics_collect_autoscalers = Summary(
"cloudkeeper_plugin_gcp_collect_autoscalers_seconds",
"Time it took the collect_autoscalers() method",
)
metrics_collect_health_checks = Summary(
"cloudkeeper_plugin_gcp_collect_health_checks_seconds",
"Time it took the collect_health_checks() method",
)
metrics_collect_http_health_checks = Summary(
"cloudkeeper_plugin_gcp_collect_http_health_checks_seconds",
"Time it took the collect_http_health_checks() method",
)
metrics_collect_https_health_checks = Summary(
"cloudkeeper_plugin_gcp_collect_https_health_checks_seconds",
"Time it took the collect_https_health_checks() method",
)
metrics_collect_url_maps = Summary(
"cloudkeeper_plugin_gcp_collect_url_maps_seconds",
"Time it took the collect_url_maps() method",
)
metrics_collect_target_pools = Summary(
"cloudkeeper_plugin_gcp_collect_target_pools_seconds",
"Time it took the collect_target_pools() method",
)
metrics_collect_target_instances = Summary(
"cloudkeeper_plugin_gcp_collect_target_instances_seconds",
"Time it took the collect_target_instances() method",
)
metrics_collect_target_http_proxies = Summary(
"cloudkeeper_plugin_gcp_collect_target_http_proxies_seconds",
"Time it took the collect_target_http_proxies() method",
)
metrics_collect_target_https_proxies = Summary(
"cloudkeeper_plugin_gcp_collect_target_https_proxies_seconds",
"Time it took the collect_target_https_proxies() method",
)
metrics_collect_target_ssl_proxies = Summary(
"cloudkeeper_plugin_gcp_collect_target_ssl_proxies_seconds",
"Time it took the collect_target_ssl_proxies() method",
)
metrics_collect_target_tcp_proxies = Summary(
"cloudkeeper_plugin_gcp_collect_target_tcp_proxies_seconds",
"Time it took the collect_target_tcp_proxies() method",
)
metrics_collect_target_grpc_proxies = Summary(
"cloudkeeper_plugin_gcp_collect_target_grpc_proxies_seconds",
"Time it took the collect_target_grpc_proxies() method",
)
metrics_collect_backend_services = Summary(
"cloudkeeper_plugin_gcp_collect_backend_services_seconds",
"Time it took the collect_backend_services() method",
)
metrics_collect_forwarding_rules = Summary(
"cloudkeeper_plugin_gcp_collect_forwarding_rules_seconds",
"Time it took the collect_forwarding_rules() method",
)
metrics_collect_global_forwarding_rules = Summary(
"cloudkeeper_plugin_gcp_collect_global_forwarding_rules_seconds",
"Time it took the collect_global_forwarding_rules() method",
)
metrics_collect_buckets = Summary(
"cloudkeeper_plugin_gcp_collect_buckets_seconds",
"Time it took the collect_buckets() method",
)
metrics_collect_databases = Summary(
"cloudkeeper_plugin_gcp_collect_databases_seconds",
"Time it took the collect_databases() method",
)
metrics_collect_services = Summary(
"cloudkeeper_plugin_gcp_collect_services_seconds",
"Time it took the collect_services() method",
)
metrics_collect_instance_templates = Summary(
"cloudkeeper_plugin_gcp_collect_instance_templates_seconds",
"Time it took the collect_instance_templates() method",
)
class GCPProjectCollector:
def __init__(self, project: GCPProject) -> None:
self.project = project
self.credentials = Credentials.get(self.project.id)
self.graph = Graph(root=self.project)
self.mandatory_collectors = {
"regions": self.collect_regions,
"zones": self.collect_zones,
}
self.global_collectors = {
"services": self.collect_services,
"networks": self.collect_networks,
"subnetworks": self.collect_subnetworks,
"routers": self.collect_routers,
"routes": self.collect_routes,
"health_checks": self.collect_health_checks,
"http_health_checks": self.collect_http_health_checks,
"https_health_checks": self.collect_https_health_checks,
"machine_types": self.collect_machine_types,
"instances": self.collect_instances,
"disk_types": self.collect_disk_types,
"disks": self.collect_disks,
"target_vpn_gateways": self.collect_target_vpn_gateways,
"vpn_gateways": self.collect_vpn_gateways,
"vpn_tunnels": self.collect_vpn_tunnels,
"security_policies": self.collect_security_policies,
"snapshots": self.collect_snapshots,
"ssl_certificates": self.collect_ssl_certificates,
"network_endpoint_groups": self.collect_network_endpoint_groups,
"instance_groups": self.collect_instance_groups,
"instance_group_managers": self.collect_instance_group_managers,
"autoscalers": self.collect_autoscalers,
"backend_services": self.collect_backend_services,
"url_maps": self.collect_url_maps,
"target_pools": self.collect_target_pools,
"target_instances": self.collect_target_instances,
"target_http_proxies": self.collect_target_http_proxies,
"target_https_proxies": self.collect_target_https_proxies,
"target_ssl_proxies": self.collect_target_ssl_proxies,
"target_tcp_proxies": self.collect_target_tcp_proxies,
"target_grpc_proxies": self.collect_target_grpc_proxies,
"forwarding_rules": self.collect_forwarding_rules,
"buckets": self.collect_buckets,
"databases": self.collect_databases,
"instance_templates": self.collect_instance_templates,
}
self.region_collectors = {}
self.zone_collectors = {}
self.all_collectors = dict(self.mandatory_collectors)
self.all_collectors.update(self.global_collectors)
self.all_collectors.update(self.region_collectors)
self.all_collectors.update(self.zone_collectors)
self.collector_set = set(self.all_collectors.keys())
@retry(
stop_max_attempt_number=10,
wait_exponential_multiplier=3000,
wait_exponential_max=300000,
retry_on_exception=retry_on_error,
)
def collect(self) -> None:
self.graph = Graph(root=self.project)
collectors = set(self.collector_set)
if len(ArgumentParser.args.gcp_collect) > 0:
collectors = set(ArgumentParser.args.gcp_collect).intersection(collectors)
if len(ArgumentParser.args.gcp_no_collect) > 0:
collectors = collectors - set(ArgumentParser.args.gcp_no_collect)
collectors = collectors.union(set(self.mandatory_collectors.keys()))
log.debug(
(
f"Running the following collectors in {self.project.rtdname}:"
f" {', '.join(collectors)}"
)
)
for collector_name, collector in self.mandatory_collectors.items():
if collector_name in collectors:
log.info(f"Collecting {collector_name} in {self.project.rtdname}")
collector()
regions = [r for r in self.graph.nodes if isinstance(r, GCPRegion)]
zones = [z for z in self.graph.nodes if isinstance(z, GCPZone)]
log.debug(f"Found {len(zones)} zones in {len(regions)} regions")
for collector_name, collector in self.global_collectors.items():
if collector_name in collectors:
log.info(f"Collecting {collector_name} in {self.project.rtdname}")
collector()
for region in regions:
for collector_name, collector in self.region_collectors.items():
if collector_name in collectors:
log.info(
(
f"Collecting {collector_name} in {region.rtdname}"
f" {self.project.rtdname}"
)
)
collector(region=region)
for zone in zones:
for collector_name, collector in self.zone_collectors.items():
if collector_name in collectors:
log.info(
(
f"Collecting {collector_name} in {zone.rtdname}"
f" {self.project.rtdname}"
)
)
collector(zone=zone)
def default_attributes(
self, result: Dict, attr_map: Dict = None, search_map: Dict = None
) -> Dict:
kwargs = {
"id": result.get("id", result.get("name", result.get("selfLink"))),
"tags": result.get("labels", {}),
"name": result.get("name"),
"ctime": iso2datetime(result.get("creationTimestamp")),
"link": result.get("selfLink"),
"label_fingerprint": result.get("labelFingerprint"),
"_account": self.project,
}
if attr_map is not None:
for map_to, map_from in attr_map.items():
data = get_result_data(result, map_from)
if data is None:
log.debug(f"Attribute {map_from} not in result")
continue
log.debug(f"Found attribute {map_to}: {pformat(data)}")
kwargs[map_to] = data
default_search_map = {"_region": ["link", "region"], "_zone": ["link", "zone"]}
search_results = {}
if search_map is None:
search_map = dict(default_search_map)
else:
updated_search_map = dict(default_search_map)
updated_search_map.update(search_map)
search_map = updated_search_map
for map_to, search_data in search_map.items():
search_attr = search_data[0]
search_value_name = search_data[1]
search_value = get_result_data(result, search_value_name)
if search_value is None:
continue
if isinstance(search_value, List):
search_values = search_value
else:
search_values = [search_value]
for search_value in search_values:
search_result = self.graph.search_first(search_attr, search_value)
if search_result:
if map_to not in search_results:
search_results[map_to] = []
search_results[map_to].append(search_result)
if (
map_to not in kwargs
and map_to in search_results
and not str(map_to).startswith("__")
):
search_result = search_results[map_to]
if len(search_result) == 1:
kwargs[map_to] = search_result[0]
else:
kwargs[map_to] = list(search_result)
if (
"_zone" in kwargs
and "_region" not in kwargs
and isinstance(kwargs["_zone"], BaseResource)
):
region = kwargs["_zone"].region(self.graph)
if region:
kwargs["_region"] = region
if "_region" in search_map.keys() and "_region" not in search_results:
search_results["_region"] = region
return kwargs, search_results
@except_log_and_pass(do_raise=socket.timeout)
def collect_something(
self,
resource_class: Type[BaseResource],
paginate_method_name: str = "list",
paginate_items_name: str = "items",
parent_resource: Union[BaseResource, str] = None,
attr_map: Dict = None,
search_map: Dict = None,
successors: List = None,
predecessors: List = None,
client_kwargs: Dict = None,
resource_kwargs: Dict = None,
paginate_subitems_name: str = None,
post_process: Callable = None,
dump_resource: bool = False,
) -> List:
client_method_name = resource_class("", {})._client_method
default_resource_args = resource_class("", {}).resource_args
log.debug(f"Collecting {client_method_name}")
if paginate_subitems_name is None:
paginate_subitems_name = client_method_name
if client_kwargs is None:
client_kwargs = {}
if resource_kwargs is None:
resource_kwargs = {}
if successors is None:
successors = []
if predecessors is None:
predecessors = []
parent_map = {True: predecessors, False: successors}
if "project" in default_resource_args:
resource_kwargs["project"] = self.project.id
client = gcp_client(
resource_class.client,
resource_class.api_version,
credentials=self.credentials,
**client_kwargs,
)
gcp_resource = getattr(client, client_method_name)
if not callable(gcp_resource):
raise RuntimeError(f"No method {client_method_name} on client {client}")
for resource in paginate(
gcp_resource=gcp_resource(),
method_name=paginate_method_name,
items_name=paginate_items_name,
subitems_name=paginate_subitems_name,
**resource_kwargs,
):
kwargs, search_results = self.default_attributes(
resource, attr_map=attr_map, search_map=search_map
)
r = resource_class(**kwargs)
pr = parent_resource
log.debug(f"Adding {r.rtdname} to the graph")
if dump_resource:
log.debug(f"Resource Dump: {pformat(resource)}")
if isinstance(pr, str) and pr in search_results:
pr = search_results[parent_resource][0]
log.debug(f"Parent resource for {r.rtdname} set to {pr.rtdname}")
if not isinstance(pr, BaseResource):
pr = kwargs.get("_zone", kwargs.get("_region", self.graph.root))
log.debug(
f"Parent resource for {r.rtdname} automatically set to {pr.rtdname}"
)
self.graph.add_resource(pr, r)
for is_parent, sr_names in parent_map.items():
for sr_name in sr_names:
if sr_name in search_results:
srs = search_results[sr_name]
for sr in srs:
if is_parent:
src = sr
dst = r
else:
src = r
dst = sr
self.graph.add_edge(src, dst)
else:
if sr_name in search_map:
graph_search = search_map[sr_name]
attr = graph_search[0]
value_name = graph_search[1]
if value_name in resource:
value = resource[value_name]
if isinstance(value, List):
values = value
for value in values:
r.add_deferred_connection(
attr, value, is_parent
)
elif isinstance(value, str):
r.add_deferred_connection(attr, value, is_parent)
else:
log.error(
(
"Unable to add deferred connection for"
f" value {value} of type {type(value)}"
)
)
else:
log.error(f"Key {sr_name} is missing in search_map")
if callable(post_process):
post_process(r, self.graph)
@metrics_collect_regions.time()
def collect_regions(self) -> List:
def post_process(resource: GCPRegion, graph: Graph):
for quota in resource._quotas:
if set(["metric", "limit", "usage"]) == set(quota.keys()):
q = GCPQuota(
quota["metric"],
{},
quota=quota["limit"],
usage=quota["usage"],
_region=resource.region(),
_account=resource.account(),
_zone=resource.zone(),
ctime=resource.ctime,
)
graph.add_resource(resource, q)
resource._quotas = None
self.collect_something(
resource_class=GCPRegion,
attr_map={"region_status": "status", "quotas": "quotas"},
post_process=post_process,
)
@metrics_collect_zones.time()
def collect_zones(self) -> List:
self.collect_something(
resource_class=GCPZone,
)
@metrics_collect_disks.time()
def collect_disks(self):
def volume_status(result):
status = result.get("status")
num_users = len(result.get("users", []))
if num_users == 0 and status == "READY":
status = "AVAILABLE"
return status
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPDisk,
search_map={
"volume_type": ["link", "type"],
"__users": ["link", "users"],
},
attr_map={
"volume_size": (lambda r: int(r.get("sizeGb"))),
"volume_status": volume_status,
"last_attach_timestamp": (
lambda r: iso2datetime(
r.get("lastAttachTimestamp", r["creationTimestamp"])
)
),
"last_detach_timestamp": (
lambda r: iso2datetime(
r.get("lastDetachTimestamp", r["creationTimestamp"])
)
),
},
predecessors=["volume_type"],
successors=["__users"],
)
@metrics_collect_instances.time()
def collect_instances(self):
def post_process(resource: GCPInstance, graph: Graph):
if resource.instance_type == "" and "custom" in resource._machine_type_link:
log.debug(f"Fetching custom instance type for {resource.rtdname}")
machine_type = GCPMachineType(
resource._machine_type_link.split("/")[-1],
{},
_zone=resource.zone(graph),
_account=resource.account(graph),
link=resource._machine_type_link,
)
resource._machine_type_link = None
kwargs = {str(machine_type._get_identifier): machine_type.name}
common_kwargs = common_resource_kwargs(machine_type)
kwargs.update(common_kwargs)
gr = gcp_resource(machine_type)
request = gr.get(**kwargs)
result = request.execute()
machine_type.id = result.get("id")
machine_type.instance_cores = float(result.get("guestCpus"))
machine_type.instance_memory = float(result.get("memoryMb", 0) / 1024)
graph.add_resource(machine_type.zone(graph), machine_type)
graph.add_edge(machine_type, resource)
self.post_process_machine_type(machine_type, graph)
resource._machine_type = machine_type
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPInstance,
post_process=post_process,
search_map={
"__network": [
"link",
(
lambda r: next(iter(r.get("networkInterfaces", [])), {}).get(
"network"
)
),
],
"__subnetwork": [
"link",
(
lambda r: next(iter(r.get("networkInterfaces", [])), {}).get(
"subnetwork"
)
),
],
"machine_type": ["link", "machineType"],
},
attr_map={
"instance_status": "status",
"machine_type_link": "machineType",
},
predecessors=["__network", "__subnetwork", "machine_type"],
)
@metrics_collect_disk_types.time()
def collect_disk_types(self):
def post_process(resource: GCPDiskType, graph: Graph):
if (
resource.region(graph).name == "undefined"
and resource.zone(graph).name == "undefined"
):
log.error(
f"Resource {resource.rtdname} has no region or zone"
" - removing from graph"
)
graph.remove_node(resource)
return
log.debug(
(
f"Looking up pricing for {resource.rtdname}"
f" in {resource.location(graph).rtdname}"
)
)
resource_group_map = {
"local-ssd": "LocalSSD",
"pd-balanced": "SSD",
"pd-ssd": "SSD",
"pd-standard": "PDStandard",
}
resource_group = resource_group_map.get(resource.name)
skus = []
for sku in graph.searchall(
{
"kind": "gcp_service_sku",
"resource_family": "Storage",
"usage_type": "OnDemand",
"resource_group": resource_group,
}
):
try:
if resource.region(graph).name not in sku.geo_taxonomy_regions:
continue
except TypeError:
log.exception(
f"Problem accessing geo_taxonomy_regions in {sku.rtdname}:"
f" {type(sku.geo_taxonomy_regions)}"
)
if resource.name == "pd-balanced" and not sku.name.startswith(
"Balanced"
):
continue
if resource.name != "pd-balanced" and sku.name.startswith("Balanced"):
continue
if resource.zone(graph).name != "undefined" and sku.name.startswith(
"Regional"
):
continue
if (
resource.zone(graph).name == "undefined"
and not sku.name.startswith("Regional")
and resource.name != "pd-balanced"
):
continue
skus.append(sku)
if len(skus) == 1:
graph.add_edge(skus[0], resource)
resource.ondemand_cost = skus[0].usage_unit_nanos / 1000000000
else:
log.debug(f"Unable to determine SKU for {resource}")
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPDiskType,
post_process=post_process,
)
@metrics_collect_networks.time()
def collect_networks(self):
self.collect_something(
resource_class=GCPNetwork,
)
@metrics_collect_subnetworks.time()
def collect_subnetworks(self):
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPSubnetwork,
search_map={
"__network": ["link", "network"],
},
predecessors=["__network"],
)
@metrics_collect_vpn_tunnels.time()
def collect_vpn_tunnels(self):
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPVPNTunnel,
search_map={
"__vpn_gateway": ["link", "vpnGateway"],
"__target_vpn_gateway": ["link", "targetVpnGateway"],
},
successors=["__target_vpn_gateway", "__vpn_gateway"],
)
@metrics_collect_vpn_gateways.time()
def collect_vpn_gateways(self):
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPVPNGateway,
search_map={
"__network": ["link", "network"],
},
predecessors=["__network"],
)
@metrics_collect_target_vpn_gateways.time()
def collect_target_vpn_gateways(self):
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPTargetVPNGateway,
search_map={
"__network": ["link", "network"],
},
predecessors=["__network"],
)
@metrics_collect_routers.time()
def collect_routers(self):
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPRouter,
search_map={
"__network": ["link", "network"],
},
predecessors=["__network"],
)
@metrics_collect_routes.time()
def collect_routes(self):
self.collect_something(
resource_class=GCPRoute,
search_map={
"__network": ["link", "network"],
},
predecessors=["__network"],
)
@metrics_collect_security_policies.time()
def collect_security_policies(self):
self.collect_something(resource_class=GCPSecurityPolicy)
@metrics_collect_snapshots.time()
def collect_snapshots(self):
self.collect_something(
resource_class=GCPSnapshot,
search_map={
"volume_id": ["link", "sourceDisk"],
},
attr_map={
"volume_size": lambda r: int(r.get("diskSizeGb", -1)),
"storage_bytes": lambda r: int(r.get("storageBytes", -1)),
},
)
@metrics_collect_ssl_certificates.time()
def collect_ssl_certificates(self):
self.collect_something(
paginate_method_name="aggregatedList",
resource_class=GCPSSLCertificate,
attr_map={
"ctime": lambda r: iso2datetime(r.get("creationTimestamp")),
"expires": lambda r: iso2datetime(r.get("expireTime")),
"description": "description",
"certificate": "certificate",
"certificate_type": "type",
"certificate_managed": "managed",
"subject_alternative_names": "subjectAlternativeNames",
},
search_map={
"__user": ["link", "user"],
},
successors=["__user"],
)
@staticmethod
|
Apache License 2.0
|
codyberenson/pgma-modernized
|
Fagalicious.bundle/Contents/Libraries/Shared/google_translate/translator.py
|
GoogleTranslator._try_make_request
|
python
|
def _try_make_request(self, request_url):
current_attempt = 1
while current_attempt <= self._retries:
self.logger.info("Attempt no. %s out of %s", current_attempt, self._retries)
proxy = self._get_proxy()
try:
return make_request(request_url, self._get_headers(), proxy, self._timeout, self._simulate)
except (urllib2.HTTPError, urllib2.URLError, IOError) as error:
self.logger.error("Error %s", error)
if proxy is not None and self._proxy_selector is not None:
self._proxy_selector.remove_proxy(proxy)
if current_attempt < self._retries:
self._wait()
current_attempt += 1
self.logger.warning("Maximum attempts reached")
return None
|
Try to make the request and return the reply or None.
|
https://github.com/codyberenson/pgma-modernized/blob/f8d8771809d6b619f9e356e55bfcbfa7368c4abd/Fagalicious.bundle/Contents/Libraries/Shared/google_translate/translator.py#L595-L619
|
from __future__ import unicode_literals
import re
import sys
import copy
import json
import random
import os.path
import urllib2
import logging
from time import sleep
try:
from twodict import TwoWayOrderedDict
except ImportError as error:
print error
sys.exit(1)
from .tk_generator import get_tk
from .cache import Cache
from .utils import (
display_unicode_item,
get_absolute_path,
load_from_file,
quote_unicode,
make_request,
parse_reply
)
_JSON_REPLACE_PATTERN = re.compile(r",(?=,)|\[,+")
class GoogleTranslator(object):
LANGUAGES_DB = os.path.join(get_absolute_path(__file__), "data", "languages")
WAIT_MIN = 1.0
WAIT_MAX = 20.0
MAX_INPUT_SIZE = 1980
MAX_CACHE_SIZE = 500
CACHE_VALID_PERIOD = 604800.0
DEFAULT_USERAGENT = "Mozilla/5.0"
DOMAIN_NAME = "translate.google.ru"
REQUEST_URL = "{prot}://{host}/translate_a/single?{params}"
def __init__(self, proxy_selector=None, ua_selector=None, simulate=False, https=True,
timeout=10.0, retries=5, wait_time=1.0, random_wait=False, encoding="UTF-8"):
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
self._https = https
self._timeout = timeout
self._retries = retries
self._encoding = encoding
self._simulate = simulate
self._wait_time = wait_time
self._random_wait = random_wait
self._ua_selector = ua_selector
self._proxy_selector = proxy_selector
self.cache = Cache(self.MAX_CACHE_SIZE, self.CACHE_VALID_PERIOD)
if https:
referer = "https://{0}/".format(self.DOMAIN_NAME)
else:
referer = "http://{0}/".format(self.DOMAIN_NAME)
self._default_headers = {
"Accept": "*/*",
"Referer": referer,
"Connection": "close",
"Host": self.DOMAIN_NAME,
"Accept-Language": "en-US,en;q=0.8",
"Accept-Encoding": "gzip, deflate, sdch",
"User-Agent": self.DEFAULT_USERAGENT
}
self._user_specific_headers = {}
self._lang_dict = TwoWayOrderedDict(auto="auto")
for line in load_from_file(self.LANGUAGES_DB):
lang, code = line.split(':')
self._lang_dict[lang.lower()] = code
def add_header(self, header):
if (not isinstance(header, tuple) or
len(header) != 2 or
not isinstance(header[0], basestring) or
not isinstance(header[1], basestring)):
raise ValueError(header)
self._user_specific_headers[header[0]] = header[1]
def word_exists(self, word, lang="en", output="text"):
lang = self._validate_language(lang, allow_auto=False)
return self._do_work(self._word_exists, word, lang, output)
def romanize(self, word, src_lang="auto", output="text"):
src_lang = self._validate_language(src_lang)
return self._do_work(self._romanize, word, src_lang, output)
def detect(self, word, output="text"):
return self._do_work(self._detect, word, output)
def translate(self, word, dst_lang, src_lang="auto", additional=False, output="text"):
if not isinstance(additional, bool):
raise ValueError(additional)
src_lang = self._validate_language(src_lang)
dst_lang = self._validate_language(dst_lang, allow_auto=False)
return self._do_work(self._translate, word, dst_lang, src_lang, additional, output)
def get_info_dict(self, word, dst_lang, src_lang="auto", output="text"):
src_lang = self._validate_language(src_lang)
dst_lang = self._validate_language(dst_lang, allow_auto=False)
return self._do_work(self._get_info, word, dst_lang, src_lang, output)
def _do_work(self, func, *args):
if isinstance(args[0], list):
results_list = []
for word in args[0]:
self._validate_word(word)
results_list.append(func(word, *args[1:-1]))
if word != args[0][-1]:
self._wait()
return self._convert_output(args[0], results_list, args[-1])
self._validate_word(args[0])
return self._convert_output(args[0], func(*args[:-1]), args[-1])
def _convert_output(self, word, output, output_type):
if output_type not in ["text", "dict", "json"]:
raise ValueError(output_type)
if output_type == "text":
return output
if isinstance(word, list):
temp_dict = dict(zip(word, output))
else:
temp_dict = {word: output}
if output_type == "dict":
return temp_dict
return json.dumps(temp_dict, indent=4, ensure_ascii=False)
def _validate_word(self, word):
if not isinstance(word, basestring):
self.logger.critical("Invalid word: %r", word)
raise ValueError(word)
quoted_text_length = len(quote_unicode(word, self._encoding))
self.logger.debug("Max input size: (%s)", self.MAX_INPUT_SIZE)
self.logger.debug("Unquoted text size: (%s)", len(word))
self.logger.debug("Quoted text size: (%s)", quoted_text_length)
if quoted_text_length >= self.MAX_INPUT_SIZE:
self.logger.critical("Input size over limit: %r", word)
raise ValueError("Input size exceeds the maximum value")
def _validate_language(self, language, allow_auto=True):
if not isinstance(language, basestring):
self.logger.critical("Invalid language: %r", language)
raise ValueError(language)
if '-' in language:
language = language[:2].lower() + language[2:].upper()
else:
language = language.lower()
if language == "auto" and not allow_auto:
self.logger.critical("'auto' language is not allowed")
raise ValueError(language)
if not language in self._lang_dict:
self.logger.critical("Could not locate language: %r", language)
raise ValueError(language)
if language in self._lang_dict.keys():
language = self._lang_dict[language]
return language
def _word_exists(self, word, src_lang):
self.logger.info("Searching for word: %r", word)
dst_lang = src_lang
for lang_code in self._lang_dict.values():
if lang_code != "auto" and lang_code != src_lang:
dst_lang = lang_code
break
self.logger.debug("src_lang: %r dst_lang: %r", src_lang, dst_lang)
data = self._get_info(word, dst_lang, src_lang)
if data is not None:
if data["original_text"] == data["translation"]:
return False
return not data["has_typo"]
return None
def _romanize(self, word, src_lang):
self.logger.info("Romanizing word: %r", word)
self.logger.debug("src_lang: %r", src_lang)
data = self._get_info(word, "en", src_lang)
if data is not None:
if not data["has_typo"]:
return data["romanization"]
return None
def _detect(self, word):
self.logger.info("Detecting language for word: %r", word)
data = self._get_info(word, "en", "auto")
if data is not None:
try:
return self._lang_dict[data["src_lang"]]
except KeyError:
return data["src_lang"]
return None
def _translate(self, word, dst_lang, src_lang, additional):
self.logger.info("Translating word: %r", word)
self.logger.debug("src_lang: %r dst_lang: %r", src_lang, dst_lang)
if dst_lang == src_lang:
return word
data = self._get_info(word, dst_lang, src_lang)
if data is not None:
if not data["has_typo"]:
if additional:
return data["extra"]
return data["translation"]
return None
def _get_info(self, word, dst_lang, src_lang):
cache_key = word + dst_lang + src_lang
info_dict = self.cache.get(cache_key)
if info_dict is not None:
return copy.deepcopy(info_dict)
reply = self._try_make_request(self._build_request(word, dst_lang, src_lang))
if reply is not None:
self.logger.info("Parsing reply")
data = parse_reply(reply, self._encoding)
self.logger.debug("Raw data: %s\n", data)
json_data = self._string_to_json(data)
self.logger.debug("JSON data: %s\n", display_unicode_item(json_data))
info_dict = self._extract_data(json_data)
self.logger.debug("Extracted data: %s\n", display_unicode_item(info_dict))
self.cache.add(cache_key, info_dict)
return copy.deepcopy(info_dict)
return None
def _build_request(self, word, dst_lang, src_lang):
self.logger.info("Building the request")
params = [
["client", "t"],
["sl", src_lang],
["tl", dst_lang],
["dt", "t"],
["dt", "bd"],
["dt", "rm"],
["dt", "qca"],
["ie", self._encoding],
["oe", self._encoding],
["tk", get_tk(word)],
["q", quote_unicode(word, self._encoding)]
]
if self._https:
protocol = "https"
else:
protocol = "http"
params_str = ""
for param in params:
params_str += "{key}={value}&".format(key=param[0], value=param[1])
params_str = params_str[:-1]
request_url = self.REQUEST_URL.format(prot=protocol, host=self.DOMAIN_NAME, params=params_str)
self.logger.debug("Request url: %r", request_url)
self.logger.debug("URL size: (%s)", len(request_url))
return request_url
|
MIT License
|
aiven/aiven-client
|
aiven/client/cli.py
|
AivenCLI.account__authentication_method__list
|
python
|
def account__authentication_method__list(self):
methods = self.client.get_account_authentication_methods(self.args.account_id)
self.print_response(methods, json=self.args.json, table_layout=AUTHENTICATION_METHOD_COLUMNS)
|
Lists all current account authentication methods
|
https://github.com/aiven/aiven-client/blob/d0514693762cf4279a5ceed2bd0cd8ba64ba94b5/aiven/client/cli.py#L737-L740
|
from . import argx, client
from aiven.client import envdefault
from aiven.client.cliarg import arg
from aiven.client.common import UNDEFINED
from aiven.client.connection_info.common import Store
from aiven.client.connection_info.kafka import KafkaCertificateConnectionInfo, KafkaSASLConnectionInfo
from aiven.client.connection_info.pg import PGConnectionInfo
from aiven.client.speller import suggest
from collections import Counter
from datetime import datetime, timedelta, timezone
from decimal import Decimal
from typing import Callable, List, Optional
from urllib.parse import urlparse
import errno
import getpass
import json as jsonlib
import os
import re
import requests
import subprocess
import sys
import time
AUTHENTICATION_METHOD_COLUMNS = [
"account_id",
"authentication_method_enabled",
"authentication_method_id",
"authentication_method_name",
"authentication_method_type",
"state",
"create_time",
"update_time",
]
PLUGINS = []
EOL_ADVANCE_WARNING_TIME = timedelta(weeks=26)
try:
from aiven.admin import plugin as adminplugin
PLUGINS.append(adminplugin)
except ImportError:
pass
def convert_str_to_value(schema, str_value):
if "string" in schema["type"]:
return str_value
elif "integer" in schema["type"]:
return int(str_value, 0)
elif "number" in schema["type"]:
return float(str_value)
elif "boolean" in schema["type"]:
values = {
"1": True,
"0": False,
"true": True,
"false": False,
}
try:
return values[str_value]
except KeyError as ex:
raise argx.UserError(
"Invalid boolean value {!r}: expected one of {}".format(str_value, ", ".join(values))
) from ex
elif "array" in schema["type"]:
return [convert_str_to_value(schema["items"], val) for val in str_value.split(",")]
elif "null" in schema["type"] and str_value is None:
return None
else:
raise argx.UserError("Support for option value type(s) {!r} not implemented".format(schema["type"]))
tag_key_re = re.compile(r"[\w\-]+")
tag_value_re = re.compile(r"[\w\-,. ]*")
def parse_tag_str(kv):
k, v = (kv.split(sep='=', maxsplit=1) + [''])[:2]
if not tag_key_re.fullmatch(k):
raise argx.UserError(f"Tag key '{k}' must consist of alpha-numeric characters, underscores or dashes")
if not tag_value_re.fullmatch(v):
raise argx.UserError(
f"Tag value '{k}={v}' must consist of alpha-numeric characters, underscores, dashes, commas or dots"
)
return {"key": k, "value": v}
def parse_untag_str(k):
if not tag_key_re.match(k):
raise argx.UserError(f"Tag key {k} must consist of alpha-numeric characters, underscores or dashes")
return k
def no_auth(fun):
fun.no_auth = True
return fun
def optional_auth(fun):
fun.optional_auth = True
return fun
def is_truthy(value: str) -> bool:
return value.lower() in {"y", "yes", "t", "true", "1", "ok"}
def parse_iso8601(value: str) -> datetime:
if value[-1] == 'Z':
value = value[:-1] + '+0000'
return datetime.strptime(value, "%Y-%m-%dT%H:%M:%S%z")
def get_current_date() -> datetime:
return datetime.now(timezone.utc)
if (sys.version_info.major, sys.version_info.minor) >= (3, 8):
from typing import Protocol
class ClientFactory(Protocol):
def __call__(self, base_url: str, show_http: bool, request_timeout: Optional[int]):
...
else:
ClientFactory = Callable[..., client.AivenClient]
class AivenCLI(argx.CommandLineTool):
def __init__(self, client_factory: ClientFactory = client.AivenClient):
argx.CommandLineTool.__init__(self, "avn")
self.client_factory = client_factory
self.client = None
for plugin in PLUGINS:
plugincli = plugin.ClientPlugin()
self.extend_commands(plugincli)
def add_args(self, parser):
parser.add_argument(
"--auth-ca",
help="CA certificate to use [AIVEN_CA_CERT], default %(default)r",
default=envdefault.AIVEN_CA_CERT,
metavar="FILE",
)
parser.add_argument(
"--auth-token",
help="Client auth token to use [AIVEN_AUTH_TOKEN], [AIVEN_CREDENTIALS_FILE]",
default=envdefault.AIVEN_AUTH_TOKEN,
)
parser.add_argument("--show-http", help="Show HTTP requests and responses", action="store_true")
parser.add_argument(
"--url",
help="Server base url default %(default)r",
default=envdefault.AIVEN_WEB_URL or "https://api.aiven.io",
)
parser.add_argument(
"--request-timeout",
type=int,
default=None,
help="Wait for up to N seconds for a response to a request (default: infinite)",
)
def collect_user_config_options(self, obj_def, prefixes=None):
opts = {}
for prop, spec in sorted(obj_def.get("properties", {}).items()):
full_prop = prefixes + [prop] if prefixes else [prop]
full_name = ".".join(full_prop)
types = spec["type"]
if not isinstance(types, list):
types = [types]
if "object" in types:
opts.update(self.collect_user_config_options(spec, prefixes=full_prop))
if "null" in types:
opts[full_name] = {
"property_parts": full_prop,
"title": "Remove {}".format(prop),
"type": "null",
}
else:
opts[full_name] = dict(spec, property_parts=full_prop)
for spec in sorted(obj_def.get("patternProperties", {}).values()):
full_prop = prefixes + ["KEY"] if prefixes else ["KEY"]
full_name = ".".join(full_prop)
if spec["type"] == "object":
opts.update(self.collect_user_config_options(spec, prefixes=full_prop))
else:
title = ': '.join([obj_def["title"], spec["title"]]) if "title" in spec else obj_def["title"]
opts[full_name] = dict(spec, property_parts=full_prop, title=title)
return opts
def create_user_config(self, user_config_schema):
user_option_remove = []
if hasattr(self.args, "user_option_remove"):
user_option_remove = self.args.user_option_remove
if not self.args.user_config and not user_option_remove:
return {}
options = self.collect_user_config_options(user_config_schema)
user_config = {}
for key_value in self.args.user_config:
try:
key, value = key_value.split("=", 1)
except ValueError as ex:
raise argx.UserError(
"Invalid config value: {!r}, expected '<KEY>[.<SUBKEY>]=<JSON_VALUE>'".format(key_value)
) from ex
opt_schema = options.get(key)
if not opt_schema:
generic_key = ".".join(key.split(".")[:-1] + ["KEY"])
opt_schema = options.get(generic_key)
if not opt_schema:
raise argx.UserError(
"Unsupported option {!r}, available options: {}".format(key, ", ".join(options) or "none")
)
try:
value = convert_str_to_value(opt_schema, value)
except ValueError as ex:
raise argx.UserError("Invalid value {!r}: {}".format(key_value, ex))
leaf_config, leaf_key = self.get_leaf_config_and_key(config=user_config, key=key, opt_schema=opt_schema)
leaf_config[leaf_key] = value
for opt in user_option_remove:
opt_schema = options.get(opt)
if not opt_schema:
raise argx.UserError(
"Unsupported option {!r}, available options: {}".format(opt, ", ".join(options) or "none")
)
if "null" not in opt_schema["type"]:
raise argx.UserError("Removing option {!r} is not supported".format(opt))
leaf_config, leaf_key = self.get_leaf_config_and_key(config=user_config, key=opt, opt_schema=opt_schema)
leaf_config[leaf_key] = None
return user_config
@classmethod
def get_leaf_config_and_key(cls, *, config, key, opt_schema):
key_suffix = key
for part in opt_schema["property_parts"][:-1]:
prefix = "{}.".format(part)
if not key_suffix.startswith(prefix):
raise argx.UserError("Expected {} to start with {} (full key {})".format(key_suffix, prefix, key))
key_suffix = key_suffix[len(prefix):]
config = config.setdefault(part, {})
return config, key_suffix
def enter_password(self, prompt, var="AIVEN_PASSWORD", confirm=False):
password = os.environ.get(var)
if password:
return password
password = getpass.getpass(prompt)
if confirm:
again = getpass.getpass("Confirm password again: ")
if password != again:
raise argx.UserError("Passwords do not match")
return password
def print_boxed(self, lines: List[str]) -> None:
longest = max(len(line) for line in lines)
print("*" * longest)
for line in lines:
print(line)
print("*" * longest)
def confirm(self, prompt: str = "confirm (y/N)? "):
if self.args.force or is_truthy(os.environ.get("AIVEN_FORCE", "no")):
return True
answer = input(prompt)
return is_truthy(answer)
def get_project(self):
if getattr(self.args, "project", None) and self.args.project:
return self.args.project
return self.config.get("default_project")
@no_auth
@arg("pattern", nargs="*", help="command search pattern")
def help(self):
output = []
patterns = [re.compile(p, re.I) for p in self.args.pattern]
for plugin in self._extensions:
for prop_name in dir(plugin):
if prop_name.startswith("_"):
continue
prop = getattr(plugin, prop_name)
arg_list = getattr(prop, argx.ARG_LIST_PROP, None)
if arg_list is not None:
cmd = prop_name.replace("__", " ").replace("_", "-")
if patterns and not all((p.search(cmd) or p.search(prop.__doc__)) for p in patterns):
continue
output.append({"command": cmd, "help": " ".join(prop.__doc__.split())})
layout = ["command", "help"]
self.print_response(output, json=False, table_layout=layout)
@no_auth
@arg()
def crab(self):
output = """
`'+;` `'+;`
'@@@#@@@` '@@@#@@@`
#@. #@. @@. #@.
@: ,@@ @@ @: ,@@ @@
,@ @@@@@ :@ :@ @@@@@ .@
@ #@@@. #@ @` #@@@` @@
@@ `@# @@ `@#
@@#. :@@+ @@#. :@@#
`+@@@' `#@@@'
,;:` ,;;.
@@@@@@# .+@@@@@@@@@@@@@'. `@@@@@@@
@@@@@# @@@@@@@@@@@@@@@@@@@@@@+ @@@@@@
@@@ ;@@@@@@@@@@@@@@@@@@@@@@@@@@@` `@@;
` `@@@@@@@@@@@ ;@@@@@@@@@@@
`@@@ '@@@@@@@@@@@@@ @@@@@@@@@@@@@` @@@
'@@@` .@@@@@@@@@@@@@@@ `@@@@@@@@@@@@@@@ @@@@`
@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@
'@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@
,:::; @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ,:::
:@ ,@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ #@
@@@ +@#+#@@@@@@@@@@@@@@@@@@@@@@@@@#+#@. @@@
@@@@ '@@@@@@@@@@@@@@@@@@@. @@@@
@@@ @@@@@@+ @@@@@@@@@@@@@@@@@ @@@@@@; @@@
@@ @@@@@@@@@ @@@@@@@@@@@@@@@ `@@@@@@@@@ @+
@@@@@@@@@@@ :@@@@@@@@@@@@@ @@@@@@@@@@@ '
`@@@@@@@@@@@ ``` ,@@@@@@@@@@@
`@@@@@@ '@ :@: @@@@@@
@@@@@: @@@@@@
@@@@@ @@@@@
@@@@# @@@@'
"""
print(output)
@no_auth
@arg("email", nargs="?", help="User email address")
@arg("--tenant", help="Login under a different tenant")
@arg("--token", action="store_true", help="Provide an access token instead of password")
def user__login(self):
email = self.args.email
if not email:
email = input("Username (email): ")
if self.args.token:
token = self.enter_password(f"{email}'s Aiven access token: ", var="AIVEN_AUTH_TOKEN")
else:
password = self.enter_password(f"{email}'s Aiven password: ", var="AIVEN_PASSWORD")
try:
result = self.client.authenticate_user(email=email, password=password, tenant_id=self.args.tenant)
except client.Error as ex:
if ex.status == 510:
otp = input("Two-factor authentication OTP: ")
result = self.client.authenticate_user(email=email, password=password, otp=otp)
else:
raise
token = result["token"]
self._write_auth_token_file(token=token, email=email)
auth_token = self._get_auth_token()
if auth_token:
self.client.set_auth_token(auth_token)
project = self.get_project()
projects = self.client.get_projects()
if project and any(p["project_name"] == project for p in projects):
return
if projects:
default_project = projects[0]["project_name"]
self.config["default_project"] = default_project
self.config.save()
self.log.info(
"Default project set as '%s' (change with 'avn project switch <project>')",
default_project,
)
else:
self.log.info("No projects exists. You should probably create one with 'avn project create <name>'")
@arg()
def user__logout(self):
self.client.access_token_revoke(token_prefix=self._get_auth_token())
self._remove_auth_token_file()
@arg.verbose
def user__tokens_expire(self):
message = self.client.expire_user_tokens()["message"]
print(message)
@arg("--description", required=True, help="Description of how the token will be used")
@arg("--max-age-seconds", type=int, help="Maximum age of the token, if any")
@arg(
"--extend-when-used",
action="store_true",
help="Extend token's expiry time when used (only applicable if token is set to expire)",
)
@arg.json
def user__access_token__create(self):
token_info = self.client.access_token_create(
description=self.args.description,
extend_when_used=self.args.extend_when_used,
max_age_seconds=self.args.max_age_seconds,
)
layout = [
"expiry_time",
"description",
"max_age_seconds",
"extend_when_used",
"full_token",
]
self.print_response([token_info], json=self.args.json, table_layout=layout)
@arg(
"token_prefix",
help="The full token or token prefix identifying the token to update",
)
@arg("--description", required=True, help="Description of how the token will be used")
@arg.json
def user__access_token__update(self):
token_info = self.client.access_token_update(token_prefix=self.args.token_prefix, description=self.args.description)
layout = [
"expiry_time",
"token_prefix",
"description",
"max_age_seconds",
"extend_when_used",
"last_used_time",
"last_ip",
"last_user_agent",
]
self.print_response([token_info], json=self.args.json, table_layout=layout)
@arg(
"token_prefix",
help="The full token or token prefix identifying the token to revoke",
)
def user__access_token__revoke(self):
self.client.access_token_revoke(token_prefix=self.args.token_prefix)
print("Revoked")
@arg.json
def user__access_token__list(self):
tokens = self.client.access_tokens_list()
layout = [
"expiry_time",
"token_prefix",
"description",
"max_age_seconds",
"extend_when_used",
"last_used_time",
"last_ip",
"last_user_agent",
]
self.print_response(tokens, json=self.args.json, table_layout=layout)
def _show_logs(self, msgs):
if self.args.json:
print(jsonlib.dumps(msgs["logs"], indent=4, sort_keys=True))
else:
for log_msg in msgs["logs"]:
print("{time:<27}{hostname} {unit} {msg}".format(**log_msg))
return msgs["offset"]
@arg.project
@arg.service_name
@arg.json
@arg(
"-S",
"--sort-order",
type=str,
default="asc",
choices=["desc", "asc"],
help="Sort direction for log fetching",
)
@arg("-n", "--limit", type=int, default=100, help="Get up to N rows of logs")
@arg("-f", "--follow", action="store_true", default=False)
def service__logs(self):
previous_offset = None
consecutive_errors = 0
while True:
try:
msgs = self.client.get_service_logs(
project=self.get_project(),
limit=self.args.limit,
offset=previous_offset,
service=self.args.service_name,
sort_order=self.args.sort_order,
)
except requests.RequestException as ex:
if not self.args.follow:
raise ex
consecutive_errors += 1
if consecutive_errors > 10:
raise argx.UserError("Fetching logs failed repeatedly, aborting.")
sys.stderr.write("Fetching log messages failed with {}. Retrying after 10s\n".format(ex))
time.sleep(10.0)
continue
consecutive_errors = 0
new_offset = self._show_logs(msgs)
if not msgs["logs"] and previous_offset is not None and self.args.sort_order == "desc":
break
if not self.args.follow:
break
if previous_offset == new_offset:
time.sleep(10.0)
previous_offset = new_offset
@arg.project
@arg.json
@arg("-n", "--limit", type=int, default=100, help="Get up to N rows of logs")
def events(self):
events = self.client.get_events(project=self.get_project(), limit=self.args.limit)
if self.args.json:
print(jsonlib.dumps(events, indent=4, sort_keys=True))
return
for msg in events:
if not msg["service_name"]:
msg["service_name"] = ""
layout = ["time", "actor", "event_type", "service_name", "event_desc"]
self.print_response(events, json=self.args.json, table_layout=layout)
@optional_auth
@arg.project
@arg.json
def cloud__list(self):
project = self.get_project()
if project and not self.client.auth_token:
raise argx.UserError("authentication is required to list clouds for a specific project")
self.print_response(self.client.get_clouds(project=project), json=self.args.json)
@staticmethod
def describe_plan(plan, node_count, service_plan):
if plan["node_memory_mb"] < 1024:
ram_amount = "{} MB".format(plan["node_memory_mb"])
else:
ram_amount = "{:.0f} GB".format(plan["node_memory_mb"] / 1024.0)
if plan["disk_space_mb"]:
if plan.get("disk_space_cap_mb"):
disk_desc = ", {:.0f}-{:.0f} GB disk".format(
plan["disk_space_mb"] / 1024.0, plan["disk_space_cap_mb"] / 1024.0
)
else:
disk_desc = ", {:.0f} GB disk".format(plan["disk_space_mb"] / 1024.0)
else:
disk_desc = ""
if node_count == 2:
plan_qual = " high availability pair"
elif node_count > 2:
plan_qual = " {}-node high availability set".format(node_count)
else:
plan_qual = ""
return "{name} ({cpu_count} CPU, {ram_amount} RAM{disk_desc}){qual}".format(
name=service_plan.title(),
cpu_count=plan["node_cpu_count"],
ram_amount=ram_amount,
disk_desc=disk_desc,
qual=plan_qual,
)
@arg.json
@arg("-n", "--name", required=True, help="Name of the account to create")
def account__create(self):
account = self.client.create_account(self.args.name)
self.print_response(account, json=self.args.json, single_item=True)
@arg.json
@arg.account_id
@arg("-n", "--name", required=True, help="New name for the account")
def account__update(self):
account = self.client.update_account(self.args.account_id, self.args.name)
self.print_response(account, json=self.args.json, single_item=True)
@arg.account_id
def account__delete(self):
self.client.delete_account(self.args.account_id)
print("Deleted")
@arg.json
def account__list(self):
accounts = self.client.get_accounts()
self.print_response(accounts, json=self.args.json)
@staticmethod
def _parse_auth_config_options(config_cmdline, config_file):
options = {}
for name_and_value in config_cmdline:
if "=" not in name_and_value:
raise argx.UserError("Invalid custom value, missing '=': {}".format(name_and_value))
name, value = name_and_value.split("=", 1)
options[name] = value
for name_and_value in config_file:
if "=" not in name_and_value:
raise argx.UserError("Invalid custom value, missing '=': {}".format(name_and_value))
name, filename = name_and_value.split("=", 1)
if not os.path.isfile(filename):
raise argx.UserError("No such file {!r}".format(filename))
with open(filename, "rt") as fob:
value = fob.read()
options[name] = value
return options
@arg.json
@arg.account_id
@arg("-n", "--name", required=True, help="Authentication method name")
@arg(
"-t",
"--type",
required=True,
help="Authentication method type",
choices=["saml"],
)
@arg.config_cmdline
@arg.config_file
def account__authentication_method__create(self):
options = self._parse_auth_config_options(self.args.config_cmdline, self.args.config_file)
method = self.client.create_account_authentication_method(
self.args.account_id,
method_name=self.args.name,
method_type=self.args.type,
options=options,
)
acs_url = "https://api.aiven.io/v1/sso/saml/account/{}/method/{}/acs".format(
self.args.account_id, method["authentication_method_id"]
)
metadata_url = "https://api.aiven.io/v1/sso/saml/account/{}/method/{}/metadata".format(
self.args.account_id, method["authentication_method_id"]
)
acs_key = "ACS (Single Sign On / Recipient) URL"
metadata_key = "Metadata URL"
method[acs_key] = acs_url
method[metadata_key] = metadata_url
table_layout = [AUTHENTICATION_METHOD_COLUMNS, acs_key, metadata_key]
self.print_response(method, json=self.args.json, single_item=True, table_layout=table_layout)
@arg.json
@arg.account_id
@arg.authentication_id
@arg("-n", "--name", help="New name for the authentication method")
@arg("--enable", help="Enable the authentication method", action="store_true")
@arg("--disable", help="Disable the authentication method", action="store_true")
@arg.config_cmdline
@arg.config_file
def account__authentication_method__update(self):
if self.args.enable and self.args.disable:
raise argx.UserError("Only set at most one of --enable and --disable")
enable = None
if self.args.enable:
enable = True
elif self.args.disable:
enable = False
options = self._parse_auth_config_options(self.args.config_cmdline, self.args.config_file)
account = self.client.update_account_authentication_method(
self.args.account_id,
self.args.authentication_id,
method_enable=enable,
method_name=self.args.name,
options=options,
)
self.print_response(
account,
json=self.args.json,
single_item=True,
table_layout=AUTHENTICATION_METHOD_COLUMNS,
)
@arg.account_id
@arg.authentication_id
def account__authentication_method__delete(self):
self.client.delete_account_authentication_method(self.args.account_id, self.args.authentication_id)
print("Deleted")
@arg.json
@arg.account_id
|
Apache License 2.0
|
thunlp/openprompt
|
openprompt/prompt_base.py
|
Template.process_batch
|
python
|
def process_batch(self, batch):
raise NotImplementedError
|
r"""All template should rewrite this method to process the batch input
such as substituting embeddings.
|
https://github.com/thunlp/openprompt/blob/5d3d5dce8c4babe9a265b69576e63eec2d067fe3/openprompt/prompt_base.py#L164-L168
|
from abc import abstractmethod
import json
from openprompt.config import convert_cfg_to_dict
from transformers.utils.dummy_pt_objects import PreTrainedModel
from openprompt.utils.utils import signature
from yacs.config import CfgNode
from openprompt.data_utils.data_utils import InputFeatures
import torch
import torch.nn as nn
from openprompt.data_utils import InputExample
from typing import *
from transformers.tokenization_utils import PreTrainedTokenizer
from openprompt.utils.logging import logger
import numpy as np
import torch.nn.functional as F
class Template(nn.Module):
registered_inputflag_names = ["loss_ids", "shortenable_ids"]
def __init__(self,
tokenizer: PreTrainedTokenizer,
mask_token: str = '<mask>',
placeholder_mapping: dict = {'<text_a>':'text_a','<text_b>':'text_b'},
):
super().__init__()
self.mask_token = mask_token
self.tokenizer = tokenizer
self.placeholder_mapping = placeholder_mapping
self._in_on_text_set = False
def get_default_loss_ids(self):
idx = [
1 if token==self.mask_token
else 0
for token in self.text
]
return idx
def get_default_shortenable_ids(self) -> List[int]:
idx = [
1 if any([placeholder in token for placeholder in self.placeholder_mapping.keys()])
else 0
for token in self.text
]
return idx
def get_default_new_token_ids(self) -> List[int]:
raise NotImplementedError
def get_default_soft_token_ids(self) -> List[int]:
raise NotImplementedError
def wrap_one_example(self,
example: InputExample) -> List[Dict]:
not_empty_keys = example.keys()
if self.text is None:
raise ValueError("template text has not been initialized")
if isinstance(example, InputExample):
text = self.text.copy()
for placeholder_token in self.placeholder_mapping:
for i in range(len(text)):
text[i] = text[i].replace(placeholder_token, getattr(example, self.placeholder_mapping[placeholder_token]))
not_empty_keys.remove(self.placeholder_mapping[placeholder_token])
for key, value in example.meta.items():
for i in range(len(text)):
text[i] = text[i].replace("<meta:"+key+">", value)
not_empty_keys.remove('meta')
keys, values= ['text'], [text]
for inputflag_name in self.registered_inputflag_names:
keys.append(inputflag_name)
v = None
if hasattr(self, inputflag_name) and getattr(self, inputflag_name) is not None:
v = getattr(self, inputflag_name)
elif hasattr(self, "get_default_"+inputflag_name):
v = getattr(self, "get_default_"+inputflag_name)()
else:
raise ValueError("""
Template's inputflag '{}' is registered but not initialize.
Try using template.{} = [...] to initialize
or create an method get_default_{}(self) in your template.
""".format(inputflag_name, inputflag_name, inputflag_name))
if len(v) != len(text):
raise ValueError("Template: len({})={} doesn't match len(text)={}." .format(inputflag_name, len(v), len(text)))
values.append(v)
wrapped_parts_to_tokenize = []
for piece in list(zip(*values)):
wrapped_parts_to_tokenize.append(dict(zip(keys, piece)))
wrapped_parts_not_tokenize = {key: getattr(example, key) for key in not_empty_keys}
return [wrapped_parts_to_tokenize, wrapped_parts_not_tokenize]
else:
raise TypeError("InputExample")
@abstractmethod
|
Apache License 2.0
|
burnash/gspread
|
gspread/client.py
|
Client.remove_permission
|
python
|
def remove_permission(self, file_id, permission_id):
url = "{}/{}/permissions/{}".format(
DRIVE_FILES_API_V2_URL, file_id, permission_id
)
params = {"supportsAllDrives": True}
self.request("delete", url, params=params)
|
Deletes a permission from a file.
:param str file_id: a spreadsheet ID (aka file ID.)
:param str permission_id: an ID for the permission.
|
https://github.com/burnash/gspread/blob/90a728fac1c8f6fb38f19da588de0337697854cc/gspread/client.py#L388-L399
|
from google.auth.transport.requests import AuthorizedSession
from .exceptions import APIError, SpreadsheetNotFound
from .spreadsheet import Spreadsheet
from .urls import (
DRIVE_FILES_API_V2_URL,
DRIVE_FILES_API_V3_URL,
DRIVE_FILES_UPLOAD_API_V2_URL,
)
from .utils import convert_credentials, extract_id_from_url, finditem
class Client:
def __init__(self, auth, session=None):
if auth is not None:
self.auth = convert_credentials(auth)
self.session = session or AuthorizedSession(self.auth)
else:
self.session = session
def login(self):
from google.auth.transport.requests import Request
self.auth.refresh(Request(self.session))
self.session.headers.update({"Authorization": "Bearer %s" % self.auth.token})
def request(
self,
method,
endpoint,
params=None,
data=None,
json=None,
files=None,
headers=None,
):
response = getattr(self.session, method)(
endpoint,
json=json,
params=params,
data=data,
files=files,
headers=headers,
)
if response.ok:
return response
else:
raise APIError(response)
def list_spreadsheet_files(self, title=None):
files = []
page_token = ""
url = DRIVE_FILES_API_V3_URL
q = 'mimeType="application/vnd.google-apps.spreadsheet"'
if title:
q += ' and name = "{}"'.format(title)
params = {
"q": q,
"pageSize": 1000,
"supportsAllDrives": True,
"includeItemsFromAllDrives": True,
"fields": "kind,nextPageToken,files(id,name,createdTime,modifiedTime)",
}
while page_token is not None:
if page_token:
params["pageToken"] = page_token
res = self.request("get", url, params=params).json()
files.extend(res["files"])
page_token = res.get("nextPageToken", None)
return files
def open(self, title):
try:
properties = finditem(
lambda x: x["name"] == title,
self.list_spreadsheet_files(title),
)
properties["title"] = properties["name"]
return Spreadsheet(self, properties)
except StopIteration:
raise SpreadsheetNotFound
def open_by_key(self, key):
return Spreadsheet(self, {"id": key})
def open_by_url(self, url):
return self.open_by_key(extract_id_from_url(url))
def openall(self, title=None):
spreadsheet_files = self.list_spreadsheet_files(title)
if title:
spreadsheet_files = [
spread for spread in spreadsheet_files if title == spread["name"]
]
return [
Spreadsheet(self, dict(title=x["name"], **x)) for x in spreadsheet_files
]
def create(self, title, folder_id=None):
payload = {
"name": title,
"mimeType": "application/vnd.google-apps.spreadsheet",
}
params = {
"supportsAllDrives": True,
}
if folder_id is not None:
payload["parents"] = [folder_id]
r = self.request("post", DRIVE_FILES_API_V3_URL, json=payload, params=params)
spreadsheet_id = r.json()["id"]
return self.open_by_key(spreadsheet_id)
def copy(self, file_id, title=None, copy_permissions=False, folder_id=None):
url = "{}/{}/copy".format(DRIVE_FILES_API_V2_URL, file_id)
payload = {
"title": title,
"mimeType": "application/vnd.google-apps.spreadsheet",
}
if folder_id is not None:
payload["parents"] = [{"id": folder_id}]
params = {"supportsAllDrives": True}
r = self.request("post", url, json=payload, params=params)
spreadsheet_id = r.json()["id"]
new_spreadsheet = self.open_by_key(spreadsheet_id)
if copy_permissions is True:
original = self.open_by_key(file_id)
permissions = original.list_permissions()
for p in permissions:
if p.get("deleted"):
continue
try:
new_spreadsheet.share(
value=p["emailAddress"],
perm_type=p["type"],
role=p["role"],
notify=False,
)
except Exception:
pass
return new_spreadsheet
def del_spreadsheet(self, file_id):
url = "{}/{}".format(DRIVE_FILES_API_V3_URL, file_id)
params = {"supportsAllDrives": True}
self.request("delete", url, params=params)
def import_csv(self, file_id, data):
headers = {"Content-Type": "text/csv"}
url = "{}/{}".format(DRIVE_FILES_UPLOAD_API_V2_URL, file_id)
self.request(
"put",
url,
data=data,
params={
"uploadType": "media",
"convert": True,
"supportsAllDrives": True,
},
headers=headers,
)
def list_permissions(self, file_id):
url = "{}/{}/permissions".format(DRIVE_FILES_API_V2_URL, file_id)
params = {"supportsAllDrives": True}
r = self.request("get", url, params=params)
return r.json()["items"]
def insert_permission(
self,
file_id,
value,
perm_type,
role,
notify=True,
email_message=None,
with_link=False,
):
url = "{}/{}/permissions".format(DRIVE_FILES_API_V2_URL, file_id)
payload = {
"value": value,
"type": perm_type,
"role": role,
"withLink": with_link,
}
params = {
"sendNotificationEmails": notify,
"emailMessage": email_message,
"supportsAllDrives": "true",
}
self.request("post", url, json=payload, params=params)
|
MIT License
|
cakebread/yolk
|
yolk/pypi.py
|
CheeseShop.package_releases
|
python
|
def package_releases(self, package_name):
if self.debug:
self.logger.debug("DEBUG: querying PyPI for versions of " + package_name)
return self.xmlrpc.package_releases(package_name)
|
Query PYPI via XMLRPC interface for a pkg's available versions
|
https://github.com/cakebread/yolk/blob/ee8c9f529a542d9c5eff4fe69b9c7906c802e4d8/yolk/pypi.py#L245-L250
|
__docformat__ = 'restructuredtext'
import re
import platform
if platform.python_version().startswith('2'):
import xmlrpclib
import cPickle
import urllib2
else:
import xmlrpc.client as xmlrpclib
import pickle
import urllib.request as urllib2
import os
import time
import logging
import urllib
from yolk.utils import get_yolk_dir
XML_RPC_SERVER = 'http://pypi.python.org/pypi'
class addinfourl(urllib2.addinfourl):
def getheader(self, name, default=None):
if self.headers is None:
raise httplib.ResponseNotReady()
return self.headers.getheader(name, default)
def getheaders(self):
if self.headers is None:
raise httplib.ResponseNotReady()
return self.headers.items()
urllib2.addinfourl = addinfourl
class ProxyTransport(xmlrpclib.Transport):
def request(self, host, handler, request_body, verbose):
self.verbose = verbose
url = 'http://' + host + handler
request = urllib2.Request(url)
request.add_data(request_body)
request.add_header('User-Agent', self.user_agent)
request.add_header('Content-Type', 'text/xml')
proxy_handler = urllib2.ProxyHandler()
opener = urllib2.build_opener(proxy_handler)
fhandle = opener.open(request)
return(self.parse_response(fhandle))
def check_proxy_setting():
try:
http_proxy = os.environ['HTTP_PROXY']
except KeyError:
return
if not http_proxy.startswith('http://'):
match = re.match('(http://)?([-_\.A-Za-z]+):(\d+)', http_proxy)
os.environ['HTTP_PROXY'] = 'http://%s:%s' % (match.group(2),
match.group(3))
return
class CheeseShop(object):
def __init__(self, debug=False, no_cache=False, yolk_dir=None):
self.debug = debug
self.no_cache = no_cache
if yolk_dir:
self.yolk_dir = yolk_dir
else:
self.yolk_dir = get_yolk_dir()
self.xmlrpc = self.get_xmlrpc_server()
self.pkg_cache_file = self.get_pkg_cache_file()
self.last_sync_file = self.get_last_sync_file()
self.pkg_list = None
self.logger = logging.getLogger("yolk")
self.get_cache()
def get_cache(self):
if self.no_cache:
self.pkg_list = self.list_packages()
return
if not os.path.exists(self.yolk_dir):
os.mkdir(self.yolk_dir)
if os.path.exists(self.pkg_cache_file):
self.pkg_list = self.query_cached_package_list()
else:
self.logger.debug("DEBUG: Fetching package list cache from PyPi...")
self.fetch_pkg_list()
def get_last_sync_file(self):
return os.path.abspath(self.yolk_dir + "/last_sync")
def get_xmlrpc_server(self):
check_proxy_setting()
if os.environ.has_key('XMLRPC_DEBUG'):
debug = 1
else:
debug = 0
try:
return xmlrpclib.Server(XML_RPC_SERVER, transport=ProxyTransport(), verbose=debug)
except IOError:
self.logger("ERROR: Can't connect to XML-RPC server: %s" % XML_RPC_SERVER)
def get_pkg_cache_file(self):
return os.path.abspath('%s/pkg_list.pkl' % self.yolk_dir)
def query_versions_pypi(self, package_name):
if not package_name in self.pkg_list:
self.logger.debug("Package %s not in cache, querying PyPI..." % package_name)
self.fetch_pkg_list()
versions = []
for pypi_pkg in self.pkg_list:
if pypi_pkg.lower() == package_name.lower():
if self.debug:
self.logger.debug("DEBUG: %s" % package_name)
versions = self.package_releases(pypi_pkg)
package_name = pypi_pkg
break
return (package_name, versions)
def query_cached_package_list(self):
if self.debug:
self.logger.debug("DEBUG: reading pickled cache file")
return cPickle.load(open(self.pkg_cache_file, "r"))
def fetch_pkg_list(self):
self.logger.debug("DEBUG: Fetching package name list from PyPI")
package_list = self.list_packages()
cPickle.dump(package_list, open(self.pkg_cache_file, "w"))
self.pkg_list = package_list
def search(self, spec, operator):
return self.xmlrpc.search(spec, operator.lower())
def changelog(self, hours):
return self.xmlrpc.changelog(get_seconds(hours))
def updated_releases(self, hours):
return self.xmlrpc.updated_releases(get_seconds(hours))
def list_packages(self):
return self.xmlrpc.list_packages()
def release_urls(self, package_name, version):
return self.xmlrpc.release_urls(package_name, version)
def release_data(self, package_name, version):
try:
return self.xmlrpc.release_data(package_name, version)
except xmlrpclib.Fault:
return
|
BSD 3-Clause New or Revised License
|
pkgcore/pkgcore
|
src/pkgcore/scripts/pmerge.py
|
unmerge
|
python
|
def unmerge(out, err, installed_repos, targets, options, formatter, world_set=None):
vdb = installed_repos.real.combined
fake_vdb = installed_repos.virtual.combined
matches = set()
fake = set()
unknown = set()
for token, restriction in targets:
installed = vdb.match(restriction)
if not installed:
fake_pkgs = fake_vdb.match(restriction)
if fake_pkgs:
fake.update(fake_pkgs)
else:
unknown.add(token)
continue
categories = set(pkg.category for pkg in installed)
if len(categories) > 1:
raise parserestrict.ParseError(
"%r is in multiple categories (%s)" % (
token, ', '.join(sorted(set(pkg.key for pkg in installed)))))
matches.update(installed)
if unknown:
unknowns = ', '.join(map(repr, unknown))
if matches:
err.write(f"Skipping unknown matches: {unknowns}\n")
else:
raise Failure(f"no matches found: {unknowns}")
if fake:
err.write('Skipping virtual pkg%s: %s' % (
pluralism(fake_pkgs),
', '.join(f'{x.versioned_atom}::{x.repo_id}' for x in fake)))
if matches:
out.write(out.bold, 'The following packages are to be unmerged:')
out.prefix = [out.bold, ' * ', out.reset]
for pkg in matches:
out.write(pkg.cpvstr)
out.prefix = []
repo_obs = observer.repo_observer(
observer.formatter_output(out), debug=options.debug)
if options.pretend:
return
if (options.ask and not formatter.ask("Would you like to unmerge these packages?")):
return
return do_unmerge(options, out, err, vdb, matches, world_set, repo_obs)
|
Unmerge tokens. hackish, should be rolled back into the resolver
|
https://github.com/pkgcore/pkgcore/blob/6c57606c15101590f4eed81636ae583f3f900d6a/src/pkgcore/scripts/pmerge.py#L281-L342
|
import sys
from functools import partial
from textwrap import dedent
from time import time
from snakeoil.cli.exceptions import ExitException
from snakeoil.sequences import iflatten_instance, stable_unique
from snakeoil.strings import pluralism
from ..ebuild import resolver, restricts
from ..ebuild.atom import atom
from ..ebuild.misc import run_sanity_checks
from ..merge import errors as merge_errors
from ..operations import format, observer
from ..repository.util import get_raw_repos
from ..repository.virtual import RestrictionRepo
from ..resolver.util import reduce_to_failures
from ..restrictions import packages
from ..restrictions.boolean import OrRestriction
from ..util import commandline, parserestrict
argparser = commandline.ArgumentParser(
domain=True, description=__doc__, script=(__file__, __name__))
argparser.add_argument(
nargs='*', dest='targets', metavar='TARGET',
action=commandline.StoreTarget, use_sets='sets',
help="extended package matching",
docs=commandline.StoreTarget.__doc__.split('\n')[1:])
operation_args = argparser.add_argument_group('operations')
operation_options = operation_args.add_mutually_exclusive_group()
operation_options.add_argument(
'-u', '--upgrade', action='store_true',
help='try to upgrade installed pkgs/deps',
docs="""
Try to upgrade specified targets to the latest visible version. Note
that altered package visibility due to keywording or masking can often
hide the latest versions of packages, especially for stable
configurations.
""")
operation_options.add_argument(
'-d', '--downgrade', action='store_true',
help='try to downgrade installed pkgs/deps',
docs="""
Try to downgrade specified targets to a lower visible version
compared to what's currently installed.
Useful for reverting to the previously installed package version;
however, note that the -O/--nodeps option is generally used with this
otherwise lots of downgrades will be pulled into the resolved deptree.
""")
operation_options.add_argument(
'-C', '--unmerge', action='store_true',
help='unmerge packages',
docs="""
Target packages for unmerging from the system.
WARNING: This does not ask for user confirmation for any targets so
it's possible to quickly break a system.
""")
operation_options.add_argument(
'--clean', action='store_true',
help='remove installed packages not referenced by any target pkgs/sets',
docs="""
Remove installed packages that aren't referenced by any target packages
or sets. This defaults to using the world and system sets if no targets
are specified.
Use with *caution*, this option used incorrectly can render your system
unusable. Note that this implies --deep.
""")
operation_options.add_argument(
'--list-sets', action='store_true',
help='display the list of available package sets')
resolution_options = argparser.add_argument_group("resolver options")
resolution_options.add_argument(
'-p', '--pretend', action='store_true',
help="only perform the dep resolution",
docs="""
Resolve package dependencies and display the results without performing
any merges.
""")
resolution_options.add_argument(
'-a', '--ask', action='store_true',
help="ask for user confirmation after dep resolution",
docs="""
Perform the dependency resolution, but ask for user confirmation before
beginning the fetch/build/merge process. The choice defaults to yes so
pressing the "Enter" key will trigger acceptance.
""")
resolution_options.add_argument(
'-f', '--fetchonly', action='store_true',
help="do only the fetch steps of the resolved plan",
docs="""
Only perform fetching of all targets from SRC_URI based on the current
USE configuration.
""")
resolution_options.add_argument(
'-1', '--oneshot', action='store_true',
help="do not record changes in the world file",
docs="""
Build and merge packages normally, but do not add any targets to the
world file. Note that this is forcibly enabled if a package set is
specified.
""")
resolution_options.add_argument(
'-D', '--deep', action='store_true',
help='force the resolver to verify installed deps',
docs="""
Force dependency resolution across the entire dependency tree for all
specified targets.
""")
resolution_options.add_argument(
'-N', '--newuse', action='store_true',
help="add installed pkgs with changed useflags to targets",
docs="""
Include installed packages with USE flag changes in the list of viable
targets for rebuilding.
USE flag changes include flags being added, removed, enabled, or
disabled with regards to a package. USE flag changes can occur via
ebuild alterations, profile updates, or local configuration
modifications.
Note that this option implies -1/--oneshot.
""")
resolution_options.add_argument(
'-i', '--ignore-cycles', action='store_true',
help="ignore unbreakable dep cycles",
docs="""
Ignore dependency cycles if they're found to be unbreakable; for
example: a depends on b, and b depends on a, with neither built.
""")
resolution_options.add_argument(
'--with-bdeps', action='store_true',
help="process build deps for built packages",
docs="""
Pull in build time dependencies for built packages during dependency
resolution, by default they're ignored.
""")
resolution_options.add_argument(
'-O', '--nodeps', action='store_true',
help='disable dependency resolution',
docs="""
Build and merge packages without resolving any dependencies.
""")
resolution_options.add_argument(
'-o', '--onlydeps', action='store_true',
help='only merge the deps of the specified packages',
docs="""
Build and merge only the dependencies for the packages specified.
""")
resolution_options.add_argument(
'-n', '--noreplace', action='store_false', dest='replace',
help="don't reinstall target pkgs that are already installed",
docs="""
Skip packages that are already installed. By default when running
without this option, any specified target packages will be remerged
regardless of if they are already installed.
""")
resolution_options.add_argument(
'-b', '--buildpkg', action='store_true',
help="build binpkgs",
docs="""
Force binary packages to be built for all merged packages.
""")
resolution_options.add_argument(
'-k', '--usepkg', action='store_true',
help="prefer to use binpkgs",
docs="""
Binary packages are preferred over ebuilds when performing dependency
resolution.
""")
resolution_options.add_argument(
'-K', '--usepkgonly', action='store_true',
help="use only binpkgs",
docs="""
Only binary packages are considered when performing dependency
resolution.
""")
resolution_options.add_argument(
'-S', '--source-only', action='store_true',
help="use only ebuilds, no binpkgs",
docs="""
Only ebuilds are considered when performing dependency
resolution.
""")
resolution_options.add_argument(
'-e', '--empty', action='store_true',
help="force rebuilding of all involved packages",
docs="""
Force all targets and their dependencies to be rebuilt.
""")
resolution_options.add_argument(
'-x', '--exclude', dest='excludes', metavar='TARGET[,TARGET,...]',
action=commandline.StoreTarget, separator=',',
help='inject packages into the installed set',
docs="""
Comma-separated list of targets to pretend are installed.
This supports extended package globbing, e.g. ``'dev-python/*'``
equates to faking the entire dev-python category is installed.
""")
resolution_options.add_argument(
'--ignore-failures', action='store_true',
help='ignore failures while running all types of tasks',
docs="""
Skip failures during the following phases: sanity checks
(pkg_pretend), fetching, dep resolution, and (un)merging.
""")
resolution_options.add_argument(
'--force', action='store_true',
dest='force',
help="force changes to a repo, regardless of if it's frozen",
docs="""
Force (un)merging on the livefs (vdb), regardless of if it's frozen.
""")
resolution_options.add_argument(
'--preload-vdb-state', action='store_true',
help="enable preloading of the installed packages database",
docs="""
Preload the installed package database which causes the resolver to
work with a complete graph, thus disallowing actions that conflict with
installed packages. If disabled, it's possible for the requested action
to conflict with already installed dependencies that aren't involved in
the graph of the requested operation.
""")
output_options = argparser.add_argument_group("output options")
output_options.add_argument(
'--quiet-repo-display', action='store_true',
help="use indexes instead of ::repo suffixes in dep resolution output",
docs="""
In the package merge list display, suppress ::repo output and instead
use index numbers to indicate which repos packages come from.
""")
output_options.add_argument(
'-F', '--formatter', priority=90, metavar='FORMATTER',
action=commandline.StoreConfigObject, get_default=True,
config_type='pmerge_formatter',
help='output formatter to use',
docs="""
Select an output formatter to use for text formatting of --pretend or
--ask output, currently available formatters include the following:
basic, pkgcore, portage, and portage-verbose.
The basic formatter is the nearest to simple text output and is
intended for scripting while the portage/portage-verbose formatter
closely emulates portage output and is used by default.
""")
class AmbiguousQuery(parserestrict.ParseError):
def __init__(self, token, keys):
self.token = token
self.keys = keys
def __str__(self):
return f"multiple matches for {self.token!r}: {', '.join(map(str, self.keys))}"
class NoMatches(parserestrict.ParseError):
def __init__(self, token):
super().__init__(f'{token!r}: no matches')
class Failure(ValueError):
|
BSD 3-Clause New or Revised License
|
apache/cloudstack-ec2stack
|
ec2stack/providers/cloudstack/instances.py
|
_reboot_instance_request
|
python
|
def _reboot_instance_request(instance_id):
args = {'command': 'rebootVirtualMachine',
'id': instance_id}
response = requester.make_request_async(args)
response = response['virtualmachine']
return response
|
Request to reboot an instance.
@param instance_id: Id of instance to be rebooted.
@return: Response.
|
https://github.com/apache/cloudstack-ec2stack/blob/9773f7ce2df76562f26743078f2f651e7fb71144/ec2stack/providers/cloudstack/instances.py#L138-L149
|
from flask import current_app
from ec2stack.providers import cloudstack
from ec2stack.providers.cloudstack import requester, service_offerings, zones, disk_offerings
from ec2stack import helpers, errors
@helpers.authentication_required
def describe_instance_attribute():
instance_id = helpers.get('InstanceId')
attribute = helpers.get('Attribute')
supported_attribute_map = {
'instanceType': 'serviceofferingname',
'groupSet': 'securitygroup'
}
if attribute not in supported_attribute_map.iterkeys():
errors.invalid_parameter_value(
'The specified attribute is not valid, please specify a valid ' +
'instance attribute.'
)
response = describe_instance_by_id(instance_id)
return _describe_instance_attribute_response(
response, attribute, supported_attribute_map)
def _describe_instance_attribute_response(response, attribute, attr_map):
response = {
'template_name_or_list': 'instance_attribute.xml',
'response_type': 'DescribeInstanceAttributeResponse',
'attribute': attribute,
'response': response[attr_map[attribute]],
'id': response['id']
}
return response
@helpers.authentication_required
def describe_instances():
args = {'command': 'listVirtualMachines'}
response = cloudstack.describe_item(
args, 'virtualmachine', errors.invalid_instance_id, 'InstanceId'
)
return _describe_instances_response(
response
)
def describe_instance_by_id(instance_id):
args = {'id': instance_id, 'command': 'listVirtualMachines'}
response = cloudstack.describe_item_request(
args, 'virtualmachine', errors.invalid_instance_id
)
return response
def _describe_instances_response(response):
return {
'template_name_or_list': 'instances.xml',
'response_type': 'DescribeInstancesResponse',
'response': response
}
@helpers.authentication_required
def reboot_instance():
helpers.require_parameters(['InstanceId.1'])
instance_id = helpers.get('InstanceId.1')
_reboot_instance_request(instance_id)
return _reboot_instance_response()
|
Apache License 2.0
|
matchms/matchms
|
matchms/similarity/CosineGreedy.py
|
CosineGreedy.__init__
|
python
|
def __init__(self, tolerance: float = 0.1, mz_power: float = 0.0,
intensity_power: float = 1.0):
self.tolerance = tolerance
self.mz_power = mz_power
self.intensity_power = intensity_power
|
Parameters
----------
tolerance:
Peaks will be considered a match when <= tolerance apart. Default is 0.1.
mz_power:
The power to raise m/z to in the cosine function. The default is 0, in which
case the peak intensity products will not depend on the m/z ratios.
intensity_power:
The power to raise intensity to in the cosine function. The default is 1.
|
https://github.com/matchms/matchms/blob/d5c6cd79c891325815099c87bf6dfe2ff2db562b/matchms/similarity/CosineGreedy.py#L54-L69
|
from typing import Tuple
import numpy
from matchms.typing import SpectrumType
from .BaseSimilarity import BaseSimilarity
from .spectrum_similarity_functions import collect_peak_pairs
from .spectrum_similarity_functions import score_best_matches
class CosineGreedy(BaseSimilarity):
is_commutative = True
score_datatype = [("score", numpy.float64), ("matches", "int")]
|
Apache License 2.0
|
artefactory-global/streamlit_prophet
|
streamlit_prophet/lib/utils/load.py
|
write_bytesio_to_file
|
python
|
def write_bytesio_to_file(filename: str, bytesio: io.BytesIO) -> None:
with open(filename, "wb") as outfile:
outfile.write(bytesio.getbuffer())
|
Write the contents of the given BytesIO to a file.
Parameters
----------
filename
Uploaded toml config file.
bytesio
BytesIO object.
|
https://github.com/artefactory-global/streamlit_prophet/blob/20ec5e94214fcf1c253e79a9d014d74018b26a02/streamlit_prophet/lib/utils/load.py#L118-L130
|
from typing import Any, Dict, Tuple
import io
from pathlib import Path
import pandas as pd
import requests
import streamlit as st
import toml
from PIL import Image
def get_project_root() -> str:
return str(Path(__file__).parent.parent.parent)
@st.cache(suppress_st_warning=True, ttl=300)
def load_dataset(file: str, load_options: Dict[Any, Any]) -> pd.DataFrame:
try:
return pd.read_csv(file, sep=load_options["separator"])
except:
st.error(
"This file can't be converted into a dataframe. Please import a csv file with a valid separator."
)
st.stop()
@st.cache(allow_output_mutation=True, ttl=300)
def load_config(
config_streamlit_filename: str, config_instructions_filename: str, config_readme_filename: str
) -> Tuple[Dict[Any, Any], Dict[Any, Any], Dict[Any, Any]]:
config_streamlit = toml.load(Path(get_project_root()) / f"config/{config_streamlit_filename}")
config_instructions = toml.load(
Path(get_project_root()) / f"config/{config_instructions_filename}"
)
config_readme = toml.load(Path(get_project_root()) / f"config/{config_readme_filename}")
return dict(config_streamlit), dict(config_instructions), dict(config_readme)
@st.cache(ttl=300)
def download_toy_dataset(url: str) -> pd.DataFrame:
download = requests.get(url).content
df = pd.read_csv(io.StringIO(download.decode("utf-8")))
return df
@st.cache(ttl=300)
def load_custom_config(config_file: io.BytesIO) -> Dict[Any, Any]:
toml_file = Path(get_project_root()) / f"config/custom_{config_file.name}"
write_bytesio_to_file(str(toml_file), config_file)
config = toml.load(toml_file)
return dict(config)
|
MIT License
|
gd-zhang/acktr
|
ops/fisher_blocks.py
|
FullyConnectedDiagonalFB.__init__
|
python
|
def __init__(self, layer_collection, has_bias=False):
self._inputs = []
self._outputs = []
self._has_bias = has_bias
super(FullyConnectedDiagonalFB, self).__init__(layer_collection)
|
Creates a FullyConnectedDiagonalFB block.
Args:
layer_collection: The collection of all layers in the K-FAC approximate
Fisher information matrix to which this FisherBlock belongs.
has_bias: Whether the component Kronecker factors have an additive bias.
(Default: False)
|
https://github.com/gd-zhang/acktr/blob/9d61318117672262c78c06a976abf3cd47a54bd6/ops/fisher_blocks.py#L284-L296
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import enum
import six
from ops import fisher_factors
from ops import utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
NORMALIZE_DAMPING_POWER = 1.0
PI_OFF_NAME = "off"
PI_TRACENORM_NAME = "tracenorm"
PI_TYPE = PI_TRACENORM_NAME
def set_global_constants(normalize_damping_power=None, pi_type=None):
global NORMALIZE_DAMPING_POWER
global PI_TYPE
if normalize_damping_power is not None:
NORMALIZE_DAMPING_POWER = normalize_damping_power
if pi_type is not None:
PI_TYPE = pi_type
def _compute_pi_tracenorm(left_cov, right_cov):
left_norm = math_ops.trace(left_cov) * right_cov.shape.as_list()[0]
right_norm = math_ops.trace(right_cov) * left_cov.shape.as_list()[0]
return math_ops.sqrt(left_norm / right_norm)
def _compute_pi_adjusted_damping(left_cov, right_cov, damping):
if PI_TYPE == PI_TRACENORM_NAME:
pi = _compute_pi_tracenorm(left_cov, right_cov)
return (damping * pi, damping / pi)
elif PI_TYPE == PI_OFF_NAME:
return (damping, damping)
@six.add_metaclass(abc.ABCMeta)
class FisherBlock(object):
def __init__(self, layer_collection):
self._layer_collection = layer_collection
@abc.abstractmethod
def instantiate_factors(self, grads_list, damping):
pass
@abc.abstractmethod
def multiply_inverse(self, vector):
pass
@abc.abstractmethod
def multiply(self, vector):
pass
@abc.abstractmethod
def tensors_to_compute_grads(self):
pass
@abc.abstractproperty
def num_registered_minibatches(self):
pass
class FullFB(FisherBlock):
def __init__(self, layer_collection, params):
self._batch_sizes = []
self._params = params
super(FullFB, self).__init__(layer_collection)
def instantiate_factors(self, grads_list, damping):
self._damping = damping
self._factor = self._layer_collection.make_or_get_factor(
fisher_factors.FullFactor, (grads_list, self._batch_size))
self._factor.register_damped_inverse(damping)
def multiply_inverse(self, vector):
inverse = self._factor.get_damped_inverse(self._damping)
out_flat = math_ops.matmul(inverse, utils.tensors_to_column(vector))
return utils.column_to_tensors(vector, out_flat)
def multiply(self, vector):
vector_flat = utils.tensors_to_column(vector)
out_flat = (
math_ops.matmul(self._factor.get_cov(), vector_flat) +
self._damping * vector_flat)
return utils.column_to_tensors(vector, out_flat)
def full_fisher_block(self):
return self._factor.get_cov()
def tensors_to_compute_grads(self):
return self._params
def register_additional_minibatch(self, batch_size):
self._batch_sizes.append(batch_size)
@property
def num_registered_minibatches(self):
return len(self._batch_sizes)
@property
def _batch_size(self):
return math_ops.reduce_sum(self._batch_sizes)
class NaiveDiagonalFB(FisherBlock):
def __init__(self, layer_collection, params):
self._params = params
self._batch_sizes = []
super(NaiveDiagonalFB, self).__init__(layer_collection)
def instantiate_factors(self, grads_list, damping):
self._damping = damping
self._factor = self._layer_collection.make_or_get_factor(
fisher_factors.NaiveDiagonalFactor, (grads_list, self._batch_size))
def multiply_inverse(self, vector):
vector_flat = utils.tensors_to_column(vector)
out_flat = vector_flat / (self._factor.get_cov() + self._damping)
return utils.column_to_tensors(vector, out_flat)
def multiply(self, vector):
vector_flat = utils.tensors_to_column(vector)
out_flat = vector_flat * (self._factor.get_cov() + self._damping)
return utils.column_to_tensors(vector, out_flat)
def full_fisher_block(self):
return array_ops.diag(array_ops.reshape(self._factor.get_cov(), (-1,)))
def tensors_to_compute_grads(self):
return self._params
def register_additional_minibatch(self, batch_size):
self._batch_sizes.append(batch_size)
@property
def num_registered_minibatches(self):
return len(self._batch_sizes)
@property
def _batch_size(self):
return math_ops.reduce_sum(self._batch_sizes)
class FullyConnectedDiagonalFB(FisherBlock):
|
MIT License
|
yelp/pgctl
|
tests/spec/examples.py
|
DescribePgctlLog.it_distinguishes_multiple_services
|
python
|
def it_distinguishes_multiple_services(self):
|
There's some indication of which output came from which services.
A (colorized?) [servicename] prefix.
|
https://github.com/yelp/pgctl/blob/0a921abfa6e400e9c663feca3078acc5596a59ac/tests/spec/examples.py#L152-L156
|
import json
import os
import pytest
from testing import norm
from testing import pty
from testing.assertions import assert_svstat
from testing.assertions import wait_for
from testing.norm import norm_trailing_whitespace_json
from testing.subprocess import assert_command
from testing.subprocess import ctrl_c
from testing.subprocess import run
from pgctl.daemontools import SvStat
from pgctl.subprocess import check_call
from pgctl.subprocess import PIPE
from pgctl.subprocess import Popen
class ANY_INTEGER:
def __eq__(self, other):
return isinstance(other, int)
class DescribePgctlLog:
@pytest.yield_fixture
def service_name(self):
yield 'output'
def it_is_empty_before_anything_starts(self, in_example_dir):
assert_command(
('pgctl', 'log'),
'''\
==> playground/ohhi/logs/current <==
==> playground/sweet/logs/current <==
''',
'',
0,
)
def it_shows_stdout_and_stderr(self, in_example_dir):
check_call(('pgctl', 'start', 'sweet'))
assert_command(
('pgctl', 'log'),
'''\
==> playground/ohhi/logs/current <==
==> playground/sweet/logs/current <==
{TIMESTAMP} sweet
{TIMESTAMP} sweet_error
''',
'',
0,
norm=norm.pgctl,
)
check_call(('pgctl', 'restart', 'sweet'))
assert_command(
('pgctl', 'log'),
'''\
==> playground/ohhi/logs/current <==
==> playground/sweet/logs/current <==
{TIMESTAMP} sweet
{TIMESTAMP} sweet_error
{TIMESTAMP} sweet
{TIMESTAMP} sweet_error
''',
'',
0,
norm=norm.pgctl,
)
def it_logs_continuously_when_run_interactively(self, in_example_dir):
check_call(('pgctl', 'start'))
read, write = os.openpty()
pty.normalize_newlines(read)
p = Popen(('pgctl', 'log'), stdout=write, stderr=write)
os.close(write)
import fcntl
fl = fcntl.fcntl(read, fcntl.F_GETFL)
fcntl.fcntl(read, fcntl.F_SETFL, fl | os.O_NONBLOCK)
assert p.poll() is None
limit = 3.0
wait = .1
buf = b''
while True:
try:
block = os.read(read, 1024)
print('BLOCK:', block)
except OSError as error:
print('ERROR:', error)
if error.errno == 11:
if limit > 0:
import time
time.sleep(wait)
limit -= wait
continue
else:
break
else:
raise
buf += block
from testfixtures import StringComparison as S
buf = norm.pgctl(buf.decode('UTF-8'))
print('NORMED:')
print(buf)
assert buf == S('''(?s)\
==> playground/ohhi/logs/current <==
{TIMESTAMP} [oe].*
==> playground/sweet/logs/current <==
{TIMESTAMP} sweet
{TIMESTAMP} sweet_error
==> playground/ohhi/logs/current <==
.*{TIMESTAMP} .*$''')
assert p.poll() is None
p.terminate()
assert p.wait() == -15
def it_fails_for_nonexistent_services(self, in_example_dir):
assert_command(
('pgctl', 'log', 'i-dont-exist'),
'',
'''\
[pgctl] ERROR: No such service: 'playground/i-dont-exist'
''',
1,
)
def it_is_line_buffered(self):
|
MIT License
|
gussand/anubis
|
api/anubis/views/admin/autograde.py
|
admin_autograde_assignment_assignment_id
|
python
|
def admin_autograde_assignment_assignment_id(assignment_id):
limit = get_number_arg("limit", 10)
offset = get_number_arg("offset", 0)
assignment = Assignment.query.filter(
Assignment.id == assignment_id
).first()
req_assert(assignment is not None, message='assignment does not exist')
assert_course_context(assignment)
bests = bulk_autograde(assignment_id, limit=limit, offset=offset)
total = User.query.join(InCourse).filter(
InCourse.course_id == assignment.course_id,
).count()
return success_response({"stats": bests, "total": total})
|
Calculate result statistics for an assignment. This endpoint is
potentially very IO and computationally expensive. We basically
need to load the entire submission history out of the database
for the given assignment, then do calculations per user. For
this reason, much of the individual computations here are quite
heavily cached.
* Due to how heavily cached the stats calculations are, once cached
they will not be updated until there is a cache bust after the
timeout. *
:param assignment_id:
:return:
|
https://github.com/gussand/anubis/blob/5ff4e293b84049af92b53b3bcc264c7782ffb9e6/api/anubis/views/admin/autograde.py#L59-L98
|
from flask import Blueprint, request
from sqlalchemy.sql import or_
from anubis.models import Submission, Assignment, User, InCourse
from anubis.utils.auth.http import require_admin
from anubis.utils.data import req_assert
from anubis.utils.http.decorators import json_response
from anubis.utils.http import success_response, get_number_arg
from anubis.lms.autograde import bulk_autograde, autograde, autograde_submission_result_wrapper
from anubis.lms.courses import assert_course_context
from anubis.lms.questions import get_assigned_questions
from anubis.utils.cache import cache
from anubis.utils.visuals.assignments import (
get_admin_assignment_visual_data,
get_assignment_history,
get_assignment_sundial,
)
autograde_ = Blueprint("admin-autograde", __name__, url_prefix="/admin/autograde")
@autograde_.route('/cache-reset/<string:assignment_id>')
@require_admin()
@cache.memoize(timeout=60)
@json_response
def admin_autograde_cache_reset(assignment_id: str):
assignment = Assignment.query.filter(
Assignment.id == assignment_id
).first()
req_assert(assignment is not None, message='assignment does not exist')
assert_course_context(assignment)
cache.delete_memoized(bulk_autograde)
cache.delete_memoized(autograde)
cache.delete_memoized(get_assignment_history)
cache.delete_memoized(get_admin_assignment_visual_data)
cache.delete_memoized(get_assignment_sundial)
return success_response({
'message': 'success'
})
@autograde_.route("/assignment/<string:assignment_id>")
@require_admin()
@cache.memoize(timeout=60)
@json_response
|
MIT License
|
twisted/txaws
|
txaws/server/call.py
|
Call.get_raw_params
|
python
|
def get_raw_params(self):
return self._raw_params.copy()
|
Return a C{dict} holding the raw API call paramaters.
The format of the dictionary is C{{'ParamName': param_value}}.
|
https://github.com/twisted/txaws/blob/5c3317376cd47e536625027e38c3b37840175ce0/txaws/server/call.py#L54-L59
|
from uuid import uuid4
from txaws.version import ec2_api as ec2_api_version
from txaws.server.exception import APIError
class Call(object):
def __init__(self, raw_params=None, principal=None, action=None,
version=None, id=None):
if id is None:
id = str(uuid4())
self.id = id
self._raw_params = {}
if raw_params is not None:
self._raw_params.update(raw_params)
self.action = action
if version is None:
version = ec2_api_version
self.version = version
self.principal = principal
def parse(self, schema, strict=True):
self.args, self.rest = schema.extract(self._raw_params)
if strict and self.rest:
raise APIError(400, "UnknownParameter",
"The parameter %s is not "
"recognized" % self.rest.keys()[0])
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.