repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
jfarmer08/ha-sengledapi
|
custom_components/sengledapi/switch.py
|
SengledSwitch.async_turn_on
|
python
|
async def async_turn_on(self, **kwargs):
await self._switch.async_turn_on()
|
Instruct the switch to turn on.
|
https://github.com/jfarmer08/ha-sengledapi/blob/3a99cb494f788f49f2c0e944a786ebd58328f2a0/custom_components/sengledapi/switch.py#L73-L75
|
import logging
from .sengledapi.sengledapi import SengledApi
from . import DOMAIN
import voluptuous as vol
import homeassistant.helpers.config_validation as cv
from homeassistant.const import ATTR_ATTRIBUTION
from homeassistant.components.switch import PLATFORM_SCHEMA, SwitchDevice
_LOGGER = logging.getLogger(__name__)
ATTRIBUTION = "Data provided by Sengled"
async def async_setup_platform(hass, config, add_entities, discovery_info=None):
_LOGGER.debug("""Creating new SengledApi switch component""")
add_entities(
SengledSwitch(switch)
for switch in await hass.data[DOMAIN]["sengledapi_account"].async_list_switch()
)
class SengledSwitch(SwitchDevice):
def __init__(self, switch):
self._switch = switch
self._name = switch._friendly_name
self._state = switch._state
self._avaliable = True
self._device_mac = switch._device_mac
self._device_model = switch._device_model
@property
def name(self):
return self._name
@property
def available(self):
return self._avaliable
@property
def is_on(self):
return self._state
@property
def unique_id(self):
return self._device_mac
@property
def device_state_attributes(self):
return {
ATTR_ATTRIBUTION: ATTRIBUTION,
"state": self._state,
"available": self._avaliable,
"device model": self._device_model,
"mac": self._device_mac,
}
|
Apache License 2.0
|
directgroup/direct
|
direct/utils/__init__.py
|
detach_dict
|
python
|
def detach_dict(data: Dict[str, torch.Tensor], keys: Optional[Union[List, Tuple, KeysView]] = None) -> Dict:
if keys is None:
keys = data.keys()
return {k: v.detach() for k, v in data.items() if k in keys if isinstance(v, torch.Tensor)}
|
Return a detached copy of a dictionary. Only torch.Tensor's are detached.
Parameters
----------
data : Dict[str, torch.Tensor]
keys : List, Tuple
Subselection of keys to detach
Returns
-------
Dictionary at the new device.
|
https://github.com/directgroup/direct/blob/961989bfac0177988de04e8a3ff563db850575e2/direct/utils/__init__.py#L190-L206
|
import abc
import ast
import functools
import importlib
import logging
import pathlib
import random
import subprocess
import sys
from collections import OrderedDict
from typing import Any, Callable, Dict, KeysView, List, Optional, Tuple, Union
import numpy as np
import torch
logger = logging.getLogger(__name__)
def is_complex_data(data: torch.Tensor, complex_last: bool = True) -> bool:
if 2 not in data.shape:
return False
if complex_last:
if data.size(-1) != 2:
return False
else:
if data.ndim == 6:
if data.size(2) != 2 and data.size(-1) != 2:
return False
elif data.ndim == 5:
if data.size(1) != 2 and data.size(2) != 2 and data.size(-1) != 2:
return False
elif data.ndim == 4:
if data.size(1) != 2 and data.size(-1) != 2:
return False
elif data.ndim == 3:
if data.size(-1) != 2:
return False
else:
raise ValueError(f"Not compatible number of dimensions for complex data. Got {data.ndim}.")
return True
def is_power_of_two(number: int) -> bool:
return number != 0 and ((number & (number - 1)) == 0)
def ensure_list(data: Any) -> List:
if data is None:
return []
if not isinstance(data, (list, tuple)):
return [data]
return list(data)
def cast_as_path(data: Optional[Union[pathlib.Path, str]]) -> Optional[pathlib.Path]:
if data is None:
return None
return pathlib.Path(data)
def str_to_class(module_name: str, function_name: str) -> Callable:
tree = ast.parse(function_name)
func_call = tree.body[0].value
args = [ast.literal_eval(arg) for arg in func_call.args] if hasattr(func_call, "args") else []
kwargs = (
{arg.arg: ast.literal_eval(arg.value) for arg in func_call.keywords} if hasattr(func_call, "keywords") else {}
)
module = importlib.import_module(module_name)
if not args and not kwargs:
return getattr(module, function_name)
return functools.partial(getattr(module, func_call.func.id), *args, **kwargs)
def dict_to_device(
data: Dict[str, torch.Tensor],
device: Union[torch.device, str, None],
keys: Union[List, Tuple, KeysView, None] = None,
) -> Dict:
if keys is None:
keys = data.keys()
return {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in data.items() if k in keys}
|
Apache License 2.0
|
airtestproject/airtest
|
airtest/core/api.py
|
double_click
|
python
|
def double_click(v):
if isinstance(v, Template):
pos = loop_find(v, timeout=ST.FIND_TIMEOUT)
else:
try_log_screen()
pos = v
G.DEVICE.double_click(pos)
delay_after_operation()
return pos
|
Perform double click
:param v: target to touch, either a ``Template`` instance or absolute coordinates (x, y)
:return: finial position to be clicked
:Example:
>>> double_click((100, 100))
>>> double_click(Template(r"tpl1606730579419.png"))
|
https://github.com/airtestproject/airtest/blob/c29d0462fe29db5c04cda31de1c05bcae5991061/airtest/core/api.py#L366-L384
|
import os
import time
from six.moves.urllib.parse import parse_qsl, urlparse
from airtest.core.cv import Template, loop_find, try_log_screen
from airtest.core.error import TargetNotFoundError
from airtest.core.settings import Settings as ST
from airtest.utils.compat import script_log_dir
from airtest.core.helper import (G, delay_after_operation, import_device_cls,
logwrap, set_logdir, using, log)
def init_device(platform="Android", uuid=None, **kwargs):
cls = import_device_cls(platform)
dev = cls(uuid, **kwargs)
G.add_device(dev)
return dev
def connect_device(uri):
d = urlparse(uri)
platform = d.scheme
host = d.netloc
uuid = d.path.lstrip("/")
params = dict(parse_qsl(d.query))
if host:
params["host"] = host.split(":")
dev = init_device(platform, uuid, **params)
return dev
def device():
return G.DEVICE
def set_current(idx):
dev_dict = {dev.uuid: dev for dev in G.DEVICE_LIST}
if idx in dev_dict:
current_dev = dev_dict[idx]
elif isinstance(idx, int) and idx < len(G.DEVICE_LIST):
current_dev = G.DEVICE_LIST[idx]
else:
raise IndexError("device idx not found in: %s or %s" % (
list(dev_dict.keys()), list(range(len(G.DEVICE_LIST)))))
G.DEVICE = current_dev
def auto_setup(basedir=None, devices=None, logdir=None, project_root=None, compress=None):
if basedir:
if os.path.isfile(basedir):
basedir = os.path.dirname(basedir)
if basedir not in G.BASEDIR:
G.BASEDIR.append(basedir)
if devices:
for dev in devices:
connect_device(dev)
if logdir:
logdir = script_log_dir(basedir, logdir)
set_logdir(logdir)
if project_root:
ST.PROJECT_ROOT = project_root
if compress:
ST.SNAPSHOT_QUALITY = compress
@logwrap
def shell(cmd):
return G.DEVICE.shell(cmd)
@logwrap
def start_app(package, activity=None):
G.DEVICE.start_app(package, activity)
@logwrap
def stop_app(package):
G.DEVICE.stop_app(package)
@logwrap
def clear_app(package):
G.DEVICE.clear_app(package)
@logwrap
def install(filepath, **kwargs):
return G.DEVICE.install_app(filepath, **kwargs)
@logwrap
def uninstall(package):
return G.DEVICE.uninstall_app(package)
@logwrap
def snapshot(filename=None, msg="", quality=None, max_size=None):
if not quality:
quality = ST.SNAPSHOT_QUALITY
if not max_size and ST.IMAGE_MAXSIZE:
max_size = ST.IMAGE_MAXSIZE
if filename:
if not os.path.isabs(filename):
logdir = ST.LOG_DIR or "."
filename = os.path.join(logdir, filename)
screen = G.DEVICE.snapshot(filename, quality=quality, max_size=max_size)
return try_log_screen(screen, quality=quality, max_size=max_size)
else:
return try_log_screen(quality=quality, max_size=max_size)
@logwrap
def wake():
G.DEVICE.wake()
@logwrap
def home():
G.DEVICE.home()
@logwrap
def touch(v, times=1, **kwargs):
if isinstance(v, Template):
pos = loop_find(v, timeout=ST.FIND_TIMEOUT)
else:
try_log_screen()
pos = v
for _ in range(times):
G.DEVICE.touch(pos, **kwargs)
time.sleep(0.05)
delay_after_operation()
return pos
click = touch
@logwrap
|
Apache License 2.0
|
jazzband/django-queued-storage
|
queued_storage/backends.py
|
QueuedStorage.get_accessed_time
|
python
|
def get_accessed_time(self, name):
return self.get_storage(name).get_accessed_time(name)
|
Django +1.10
Returns the last accessed time (as datetime object) of the file
specified by name.
:param name: file name
:type name: str
:rtype: :class:`~python:datetime.datetime`
|
https://github.com/jazzband/django-queued-storage/blob/541faad8f5d03e7e066d02b2a2d5b89d45b77819/queued_storage/backends.py#L348-L358
|
import six
from packaging import version
import django
from django.core.cache import cache
from django.core.exceptions import ImproperlyConfigured
from django.utils.functional import SimpleLazyObject
from django.utils.http import urlquote
from .conf import settings
from .utils import import_attribute
DJANGO_VERSION = django.get_version()
if version.parse(DJANGO_VERSION) <= version.parse('1.7'):
from django.utils.deconstruct import deconstructible
class LazyBackend(SimpleLazyObject):
def __init__(self, import_path, options):
backend = import_attribute(import_path)
super(LazyBackend, self).__init__(lambda: backend(**options))
class QueuedStorage(object):
local = None
local_options = None
remote = None
remote_options = None
task = 'queued_storage.tasks.Transfer'
delayed = False
cache_prefix = settings.QUEUED_STORAGE_CACHE_PREFIX
def __init__(self, local=None, remote=None,
local_options=None, remote_options=None,
cache_prefix=None, delayed=None, task=None):
self.local_path = local or self.local
self.local_options = local_options or self.local_options or {}
self.local = self._load_backend(backend=self.local_path,
options=self.local_options)
self.remote_path = remote or self.remote
self.remote_options = remote_options or self.remote_options or {}
self.remote = self._load_backend(backend=self.remote_path,
options=self.remote_options)
self.task = self._load_backend(backend=task or self.task,
handler=import_attribute)
if delayed is not None:
self.delayed = delayed
if cache_prefix is not None:
self.cache_prefix = cache_prefix
def _load_backend(self, backend=None, options=None, handler=LazyBackend):
if backend is None:
raise ImproperlyConfigured("The QueuedStorage class '%s' "
"doesn't define a needed backend." %
(self))
if not isinstance(backend, six.string_types):
raise ImproperlyConfigured("The QueuedStorage class '%s' "
"requires its backends to be "
"specified as dotted import paths "
"not instances or classes" % self)
return handler(backend, options)
def get_storage(self, name):
cache_result = cache.get(self.get_cache_key(name))
if cache_result:
return self.remote
elif cache_result is None and self.remote.exists(name):
cache.set(self.get_cache_key(name), True)
return self.remote
else:
return self.local
def get_cache_key(self, name):
return '%s_%s' % (self.cache_prefix, urlquote(name))
def using_local(self, name):
return self.get_storage(name) is self.local
def using_remote(self, name):
return self.get_storage(name) is self.remote
def open(self, name, mode='rb'):
return self.get_storage(name).open(name, mode)
def save(self, name, content, max_length=None):
cache_key = self.get_cache_key(name)
cache.set(cache_key, False)
name = self.get_available_name(name)
try:
name = self.local.save(name, content, max_length=max_length)
except TypeError:
name = self.local.save(name, content)
if not self.delayed:
self.result = self.transfer(name, cache_key=cache_key)
return name
def transfer(self, name, cache_key=None):
if cache_key is None:
cache_key = self.get_cache_key(name)
return self.task.delay(name, cache_key,
self.local_path, self.remote_path,
self.local_options, self.remote_options)
def get_valid_name(self, name):
return self.get_storage(name).get_valid_name(name)
def get_available_name(self, name):
local_available_name = self.local.get_available_name(name)
remote_available_name = self.remote.get_available_name(name)
if remote_available_name > local_available_name:
return remote_available_name
return local_available_name
def path(self, name):
return self.get_storage(name).path(name)
def delete(self, name):
return self.get_storage(name).delete(name)
def exists(self, name):
return self.get_storage(name).exists(name)
def listdir(self, name):
return self.get_storage(name).listdir(name)
def size(self, name):
return self.get_storage(name).size(name)
def url(self, name):
return self.get_storage(name).url(name)
def accessed_time(self, name):
return self.get_storage(name).accessed_time(name)
def created_time(self, name):
return self.get_storage(name).created_time(name)
def modified_time(self, name):
return self.get_storage(name).modified_time(name)
|
BSD 3-Clause New or Revised License
|
panoptes/pocs
|
src/panoptes/pocs/mount/mount.py
|
AbstractMount.state
|
python
|
def state(self):
return self._state
|
bool: Mount state.
|
https://github.com/panoptes/pocs/blob/fd8c4034c6d2d9a4da46e6a1d5aa5a7b9ed68112/src/panoptes/pocs/mount/mount.py#L196-L198
|
from abc import abstractmethod
import time
from pathlib import Path
from astropy import units as u
from astropy.coordinates import EarthLocation
from astropy.coordinates import SkyCoord
from panoptes.pocs.base import PanBase
from panoptes.utils.serializers import from_yaml
from panoptes.utils.time import current_time
from panoptes.utils import error
from panoptes.utils.time import CountdownTimer
class AbstractMount(PanBase):
def __init__(self, location, commands=None, *args, **kwargs):
super(AbstractMount, self).__init__(*args, **kwargs)
assert isinstance(location, EarthLocation)
self.mount_settings = self.get_config('mount.settings', dict())
self.logger.debug(f"Mount settings: {self.mount_settings}")
self.logger.debug("Setting up commands for mount")
self._setup_commands(commands)
self.logger.debug("Mount commands set up")
self._location = location
self.non_sidereal_available = self.mount_settings.setdefault('non_sidereal_available',
False)
self.PEC_available = self.mount_settings.setdefault('PEC_available', False)
self._is_connected = False
self._is_initialized = False
self._is_slewing = False
self._is_parked = True
self._at_mount_park = True
self._is_tracking = False
self._is_home = False
self._state = 'Parked'
self.sidereal_rate = ((360 * u.degree).to(u.arcsec) / (86164 * u.second))
self.ra_guide_rate = 0.9
self.dec_guide_rate = 0.9
self._tracking_rate = 1.0
self._tracking = 'Sidereal'
self.min_tracking_threshold = self.mount_settings.setdefault('min_tracking_threshold',
100)
self.max_tracking_threshold = self.mount_settings.setdefault('max_tracking_threshold',
99999)
self._movement_speed = ''
self._status_lookup = dict()
self._target_coordinates = None
self._current_coordinates = None
self._park_coordinates = None
self.brand = self.get_config('mount.brand', '')
self.model = self.get_config('mount.model', '')
self.port = self.get_config('mount.serial.port')
def __str__(self):
mount_str = f'{self.brand} {self.model}'
if self.port is not None:
mount_str = f'{mount_str} {self.port}'
return mount_str
@abstractmethod
def connect(self):
raise NotImplementedError
@abstractmethod
def initialize(self, *arg, **kwargs):
raise NotImplementedError
def disconnect(self):
self.logger.info('Disconnecting mount')
if not self.is_parked:
self.park()
self._is_connected = False
@property
def status(self):
status = {}
try:
status['tracking_rate'] = f'{self.tracking_rate:0.04f}'
status['ra_guide_rate'] = self.ra_guide_rate
status['dec_guide_rate'] = self.dec_guide_rate
status['movement_speed'] = self.movement_speed
current_coord = self.get_current_coordinates()
if current_coord is not None:
status['current_ra'] = current_coord.ra
status['current_dec'] = current_coord.dec
if self.has_target:
target_coord = self.get_target_coordinates()
status['mount_target_ra'] = target_coord.ra
status['mount_target_dec'] = target_coord.dec
except Exception as e:
self.logger.debug(f'Problem getting mount status: {e!r}')
status.update(self._update_status())
return status
@property
def location(self):
return self._location
@location.setter
def location(self, location):
self._location = location
self._setup_location_for_mount()
@property
def is_connected(self):
return self._is_connected
@property
def is_initialized(self):
return self._is_initialized
@property
def is_parked(self):
return self._is_parked
@property
def at_mount_park(self):
return self._at_mount_park
@property
def is_home(self):
return self._is_home
@property
def is_tracking(self):
return self._is_tracking
@property
def is_slewing(self):
return self._is_slewing
@property
|
MIT License
|
josuebrunel/myql
|
myql/myql.py
|
YQL.multi_query
|
python
|
def multi_query(self, queries):
pass
|
Allow multi query
|
https://github.com/josuebrunel/myql/blob/891bad29cc83a81b3f5ebc4d0401d6f2c22f119e/myql/myql.py#L274-L277
|
from __future__ import absolute_import
import re
import logging
import requests
from myql import errors
logging.basicConfig(level=logging.DEBUG,format="[%(asctime)s %(levelname)s] [%(name)s.%(module)s.%(funcName)s] %(message)s \n")
logger = logging.getLogger('mYQL')
logging.getLogger('requests').disabled = True
class YQL(object):
PUBLIC_URL = 'https://query.yahooapis.com/v1/public/yql'
PRIVATE_URL = 'https://query.yahooapis.com/v1/yql'
COMMUNITY_DATA = "env 'store://datatables.org/alltableswithkeys'; "
FUNC_FILTERS = ['sort', 'tail', 'truncate', 'reverse', 'unique', 'sanitize']
def __init__(self, community=True, format='json', jsonCompact=True, crossProduct=None, debug=False, diagnostics=False, oauth=None):
self.community = community
self.format = format
self._table = None
self._query = None
self._payload = {}
self._vars = {}
self.diagnostics = diagnostics
self._limit = None
self._offset = None
self.crossProduct = crossProduct
self.jsonCompact = jsonCompact
self.debug = debug
if oauth:
self.oauth = oauth
def __repr__(self):
return "<Community>: {0} - <Format>: {1} ".format(self.community, self.format)
def _payload_builder(self, query, format=None):
if self.community :
query = self.COMMUNITY_DATA + query
if vars(self).get('yql_table_url') :
query = "use '{0}' as {1}; ".format(self.yql_table_url, self.yql_table_name) + query
if vars(self).get('_func'):
query = '| '.join((query, self._func))
self._query = query
self._query = self._add_limit()
self._query = self._add_offset()
logger.info("QUERY = %s" %(self._query,))
payload = {
'q': self._query,
'callback': '',
'diagnostics': self.diagnostics,
'format': format if format else self.format,
'debug': self.debug,
'jsonCompact': 'new' if self.jsonCompact else ''
}
if vars(self).get('_vars'):
payload.update(self._vars)
if self.crossProduct:
payload['crossProduct'] = 'optimized'
self._payload = payload
logger.info("PAYLOAD = %s " %(payload, ))
return payload
def raw_query(self, query, format=None, pretty=False):
if format:
format = format
else:
format = self.format
payload = self._payload_builder(query, format=format)
response = self.execute_query(payload)
if pretty:
response = self.response_builder(response)
return response
def execute_query(self, payload):
if vars(self).get('oauth'):
if not self.oauth.token_is_valid():
self.oauth.refresh_token()
response = self.oauth.session.get(self.PRIVATE_URL, params= payload, header_auth=True)
else:
response = requests.get(self.PUBLIC_URL, params= payload)
self._response = response
return response
def _clause_formatter(self, cond):
if len(cond) == 2 :
cond = ' '.join(cond)
return cond
if 'in' in cond[1].lower() :
if not isinstance(cond[2], (tuple, list)):
raise TypeError('("{0}") must be of type <type tuple> or <type list>'.format(cond[2]))
if 'select' not in cond[2][0].lower() :
cond[2] = "({0})".format(','.join(map(str,["'{0}'".format(e) for e in cond[2]])))
else:
cond[2] = "({0})".format(','.join(map(str,["{0}".format(e) for e in cond[2]])))
cond = " ".join(cond)
else:
if isinstance(cond[2], str) and cond[2].startswith('@'):
cond[2] = "{0}".format(cond[2])
else :
cond[2] = "'{0}'".format(cond[2])
cond = ' '.join(cond)
return cond
def response_builder(self, response):
try:
r = response.json()
result = r['query']['results']
response = {
'num_result': r['query']['count'] ,
'result': result
}
except (Exception,) as e:
print(e)
return response.content
return response
def _func_filters(self, filters):
if not isinstance(filters, (list,tuple)):
raise TypeError('func_filters must be a <type list> or <type tuple>')
for i, func in enumerate(filters) :
if isinstance(func, str) and func == 'reverse':
filters[i] = 'reverse()'
elif isinstance(func, tuple) and func[0] in YQL.FUNC_FILTERS:
filters[i] = '{:s}(count={:d})'.format(*func)
elif isinstance(func, dict) :
func_stmt = ''
func_name = list(func.keys())[0]
values = [ "{0}='{1}'".format(v[0], v[1]) for v in func[func_name] ]
func_stmt = ','.join(values)
func_stmt = '{0}({1})'.format(func_name, func_stmt)
filters[i] = func_stmt
else:
raise TypeError('{0} is neither a <str>, a <tuple> or a <dict>'.format(func))
return '| '.join(filters)
def _add_limit(self,):
return ''.join((self._query," LIMIT {0} ".format(self._limit))) if self._limit else self._query
def _add_offset(self,):
return ''.join((self._query," OFFSET {0} ".format(self._offset))) if self._offset else self._query
def use(self, url, name='mytable'):
self.yql_table_url = url
self.yql_table_name = name
return {'table url': url, 'table name': name}
def set(self, myvars):
self._vars.update(myvars)
return True
def desc(self, table):
query = "desc {0}".format(table)
response = self.raw_query(query)
return response
def get(self, *args, **kwargs):
self = self.select(*args, **kwargs)
payload = self._payload_builder(self._query)
response = self.execute_query(payload)
return response
def select(self, table, items=None, limit=None, offset=None, remote_filter=None, func_filters=None):
self._table = table
if remote_filter:
if not isinstance(remote_filter, tuple):
raise TypeError("{0} must be of type <type tuple>".format(remote_filter))
table = "%s(%s)" %(table, ','.join(map(str, remote_filter)))
if not items:
items = ['*']
self._query = "SELECT {1} FROM {0} ".format(table, ','.join(items))
if func_filters:
self._func = self._func_filters(func_filters)
self._limit = limit
self._offset = offset
return self
|
MIT License
|
sphinx-contrib/restbuilder
|
sphinxcontrib/builders/rst.py
|
RstBuilder.get_outdated_docs
|
python
|
def get_outdated_docs(self):
for docname in self.env.found_docs:
if docname not in self.env.all_docs:
yield docname
continue
sourcename = path.join(self.env.srcdir, docname +
self.file_suffix)
targetname = path.join(self.outdir, self.file_transform(docname))
try:
targetmtime = path.getmtime(targetname)
except Exception:
targetmtime = 0
try:
srcmtime = path.getmtime(sourcename)
if srcmtime > targetmtime:
yield docname
except EnvironmentError:
pass
|
Return an iterable of input files that are outdated.
|
https://github.com/sphinx-contrib/restbuilder/blob/1492b304b958ba687da8ab148f23f4aa0b699479/sphinxcontrib/builders/rst.py#L56-L81
|
from __future__ import (print_function, unicode_literals, absolute_import)
import codecs
from os import path
from docutils.io import StringOutput
from sphinx.builders import Builder
from sphinx.util.osutil import ensuredir, SEP
from ..writers.rst import RstWriter
class RstBuilder(Builder):
name = 'rst'
format = 'rst'
file_suffix = '.rst'
link_suffix = None
def init(self):
if self.config.rst_file_suffix is not None:
self.file_suffix = self.config.rst_file_suffix
if self.config.rst_link_suffix is not None:
self.link_suffix = self.config.rst_link_suffix
elif self.link_suffix is None:
self.link_suffix = self.file_suffix
def file_transform(docname):
return docname + self.file_suffix
def link_transform(docname):
return docname + self.link_suffix
if self.config.rst_file_transform is not None:
self.file_transform = self.config.rst_file_transform
else:
self.file_transform = file_transform
if self.config.rst_link_transform is not None:
self.link_transform = self.config.rst_link_transform
else:
self.link_transform = link_transform
|
BSD 2-Clause Simplified License
|
pygae/clifford
|
clifford/tools/g3c/__init__.py
|
val_midpoint_of_line_cluster
|
python
|
def val_midpoint_of_line_cluster(array_line_cluster):
accumulator_matrix = np.zeros((32, 32))
for i in range(array_line_cluster.shape[0]):
L_i_l = get_left_gmt_matrix(array_line_cluster[i, :])
L_i_r = get_right_gmt_matrix(array_line_cluster[i, :])
accumulator_matrix += L_i_r @ L_i_l
power_mat = np.linalg.matrix_power(accumulator_matrix / array_line_cluster.shape[0], 256)
pp_val = imt_func(array_line_cluster[0, :], eo.value)
p_start = val_normalise_n_minus_1(project_val(gmt_func(gmt_func(pp_val, ninf.value), pp_val), 1))
p_end = project_val(power_mat @ p_start, 1)
final_point = val_normalise_n_minus_1(project_val(gmt_func(gmt_func(p_end, ninf.value), p_end), 1))
return final_point
|
Gets a center point of a line cluster
Hadfield and Lasenby AGACSE2018
|
https://github.com/pygae/clifford/blob/e63f8564d64d6a5dad5fbb415772eb8aecbc2d8f/clifford/tools/g3c/__init__.py#L713-L742
|
import math
import numba
import numpy as np
from clifford.tools.g3 import quaternion_to_rotor, random_euc_mv, random_rotation_rotor, generate_rotation_rotor
from clifford.g3c import *
import clifford as cf
from clifford import NUMBA_PARALLEL, MVArray
from scipy.interpolate import interp1d
try:
from pyganja import draw
pyganja_available = True
except ImportError:
pyganja_available = False
ninf = einf
no = -eo
E = ninf ^ (no)
I5 = e12345
I3 = e123
E0 = ninf ^ -no
niono = ninf ^ no
unit_scalar_mv = 1.0 + 0.0*e1
adjoint_func = layout.adjoint_func
gmt_func = layout.gmt_func
omt_func = layout.omt_func
imt_func = layout.imt_func
epsilon = 10*10**(-6)
mask0 = layout.get_grade_projection_matrix(0)
mask1 = layout.get_grade_projection_matrix(1)
mask2 = layout.get_grade_projection_matrix(2)
mask3 = layout.get_grade_projection_matrix(3)
mask4 = layout.get_grade_projection_matrix(4)
mask5 = layout.get_grade_projection_matrix(5)
mask_2minus4 = mask2 - mask4
def _defunct_wrapper(f):
return f
def interpret_multivector_as_object(mv):
g_pres = mv.grades(eps=0.00000001)
if len(g_pres) != 1:
return -1
grade, = g_pres
if grade == 1:
if mv(e123) == mv:
return 1
elif np.sum(np.abs((mv**2).value)) < 0.00000001:
return 2
else:
return 0
elif mv.isBlade():
if grade == 2:
return 3
elif grade == 3:
if abs(mv[e123]) > epsilon:
return 4
else:
return 5
elif grade == 4:
if abs(((mv*I5)|no)[()]) > epsilon:
return 7
else:
return 6
else:
return -1
@numba.njit
@_defunct_wrapper
def val_sphere_line_intersect(s, l):
return sphere_line_intersect(
layout.MultiVector(s),
layout.MultiVector(l),
)
@numba.njit
def sphere_line_intersect(s, l):
mv = meet(s, l)
return (mv | mv).value[0] > 0
def sphere_in_sphere(S1, S2, tolerance=10**-6):
return (unsign_sphere(S1)|unsign_sphere(S2))[()] <= -1 + tolerance
def sphere_beyond_plane(sphere, plane):
no_intersection = ((meet(sphere, plane) ** 2)[()] < 0)
return no_intersection and point_beyond_plane(normalise_n_minus_1((sphere * einf * sphere)(1)), plane)
def sphere_behind_plane(sphere, plane):
no_intersection = ((meet(sphere, plane) ** 2)[()] < 0)
return no_intersection and not point_beyond_plane(normalise_n_minus_1((sphere * einf * sphere)(1)), plane)
def point_beyond_plane(point, plane):
return (point|(I5*plane))[()] < 0
@numba.njit
def unsign_sphere(S):
return (S*(-(fast_dual(S) | ninf).value[0])).normal()
@numba.njit
@_defunct_wrapper
def val_unsign_sphere(S):
return unsign_sphere(layout.MultiVector(S)).value
def join_spheres(S1in, S2in):
s1 = unsign_sphere(S1in)
s2 = unsign_sphere(S2in)
L = (((s1 * I5) ^ (s2 * I5) ^ einf)(3)).normal()
pp1 = (meet(s1, L)(2)).normal()
pp2 = (meet(s2, L)(2)).normal()
p1 = point_pair_to_end_points(pp1)[0]
p2 = point_pair_to_end_points(pp2)[1]
if (p1|(s2*I5))[()] > 0.0:
opt_sphere = s2(4)
elif (p2|(s1*I5))[()] > 0.0:
opt_sphere = s1(4)
else:
p12 = p1 ^ p2
L2 = (p12 * (p12 ^ einf)).normal()
opt_sphere = (L2*I5)(4)
return unsign_sphere(opt_sphere)
def enclosing_sphere(spheres):
nspheres = len(spheres)
if nspheres == 1:
return spheres[0]
elif nspheres == 2:
return join_spheres(spheres[0], spheres[1])
mins = spheres[0]
for i in range(1, nspheres):
mins = join_spheres(mins, spheres[i])
return mins
def project_points_to_plane(point_list, plane):
projected_list = []
for point in point_list:
proj_point = ((point|plane)*plane)
proj_point = normalise_n_minus_1((proj_point*einf*proj_point)(1))
projected_list.append(proj_point)
return projected_list
def project_points_to_sphere(point_list, sphere, closest=True):
if closest:
point_index = 1
else:
point_index = 0
projected_list = []
C = sphere*einf*sphere
for point in point_list:
proj_point = point_pair_to_end_points(meet((point^C^einf).normal(), sphere))[point_index]
projected_list.append(proj_point)
return projected_list
def project_points_to_circle(point_list, circle, closest=True):
circle_plane = (circle^einf).normal()
planar_points = project_points_to_plane(point_list, circle_plane)
circle_points = project_points_to_sphere(planar_points, -circle*circle_plane*I5, closest=closest)
return circle_points
def project_points_to_line(point_list, line):
projected_list = []
for point in point_list:
pp = point|line
proj_point = normalise_n_minus_1((pp*einf*pp)(1))
projected_list.append(proj_point)
return projected_list
def iterative_closest_points_on_circles(C1, C2, niterations=20):
cav = average_objects([C1, C2])
cav2 = average_objects([C1, -C2])
PP = meet(cav, cav2^einf).normal()
P_list = point_pair_to_end_points(PP)
dmin = np.inf
for Ptest in P_list:
d = -(project_points_to_circle([Ptest], C1)[0](1)|project_points_to_circle([Ptest], C2)[0](1))[()]
if d < dmin:
dmin = d
P2 = Ptest
P1 = project_points_to_circle([P2], C1)[0](1)
P2 = project_points_to_circle([P1], C2)[0](1)
for i in range(niterations):
P1 = project_points_to_circle([P2], C1)[0](1)
P2 = project_points_to_circle([P1], C2)[0](1)
return P1, P2
def closest_point_on_line_from_circle(C, L, eps=1E-6):
return project_points_to_line([closest_point_on_circle_from_line(C, L, eps=eps)], L)[0]
def closest_point_on_circle_from_line(C, L, eps=1E-6):
phi = (C^einf).normal()
B = meet(L, phi)
A = normalise_n_minus_1((C * einf * C)(1))
bound_sphere = ((C * phi) * I5).normal()
if abs((B**2)[()]) < eps:
Lpln = (L.normal() + (phi*L*phi)(3).normal()).normal()
X = normalise_n_minus_1((A|Lpln)*einf*(A|Lpln))
if sphere_in_sphere(X*I5, bound_sphere):
PP = meet(Lpln, bound_sphere)
return point_pair_to_end_points(PP)[0]
else:
L2 = A ^ X ^ einf
PP = meet(L2, bound_sphere)
return point_pair_to_end_points(PP)[1]
P = intersect_line_and_plane_to_point(L, phi)
Adash = L*A*L
E = up(down(A)*0.5 + down(Adash)*0.5)
Edash = normalise_n_minus_1((phi*E*phi)(1))
Y = up(down(E)*0.5 + down(Edash)*0.5)
if sphere_in_sphere(Y*I5, bound_sphere):
if abs((A | P)[()]) < eps:
L2 = (L.normal() + (phi * L * phi)(3).normal())
if abs(L2) < eps:
L2 = (A ^ project_points_to_circle([random_conformal_point()], C)[0] ^ einf).normal()
else:
L2 = L2.normal()
elif abs((P | Y)[()]) < eps:
L2 = A ^ Y ^ einf
else:
L2 = P ^ Y ^ einf
else:
L2 = A ^ Y ^ einf
PP = meet(L2, bound_sphere)
Xs = point_pair_to_end_points(PP)
return max(Xs, key=lambda x: (x | P)[()])
def iterative_closest_points_circle_line(C, L, niterations=20):
cav = average_objects([C, L])
cav2 = average_objects([C, -L])
PP = meet(cav, cav2^einf).normal()
P_list = point_pair_to_end_points(PP)
dmin = np.inf
for Ptest in P_list:
d = -(project_points_to_circle([Ptest], C)[0](1)|project_points_to_line([Ptest], L)[0](1))[()]
if d < dmin:
dmin = d
P2 = Ptest
P1 = project_points_to_circle([P2], C)[0](1)
P2 = project_points_to_line([P1], L)[0](1)
for i in range(niterations):
P1 = project_points_to_circle([P2], C)[0](1)
P2 = project_points_to_line([P1], L)[0](1)
P1 = normalise_n_minus_1(P1)
P2 = normalise_n_minus_1(P2)
return P1, P2
def iterative_furthest_points_on_circles(C1, C2, niterations=20):
P2 = random_conformal_point()
P1 = project_points_to_circle([P2], C1, closest=False)[0](1)
P2 = project_points_to_circle([P1], C2, closest=False)[0](1)
for i in range(niterations):
P1 = project_points_to_circle([P2], C1, closest=False)[0](1)
P2 = project_points_to_circle([P1], C2, closest=False)[0](1)
return P1, P2
def normalise_TR_to_unit_T(TR):
R_only = TR(e123)
T_only = (TR*~R_only).normal()
t = -2*(T_only|no)
scale = abs(t)
t = t/scale
new_TR = (generate_translation_rotor(t)*R_only).normal()
return new_TR, scale
def scale_TR_translation(TR, scale):
R_only = TR(e123)
T_only = (TR*~R_only).normal()
t = -2*(T_only|no)*scale
new_TR = (generate_translation_rotor(t)*R_only).normal()
return new_TR
def left_gmt_generator(mt=layout.gmt):
k_list, l_list, m_list = mt.coords
mult_table_vals = mt.data
gaDims = mt.shape[1]
val_get_left_gmt_matrix = cf._numba_val_get_left_gmt_matrix
@numba.njit
def get_left_gmt(x_val):
return val_get_left_gmt_matrix(
x_val, k_list, l_list, m_list, mult_table_vals, gaDims)
return get_left_gmt
def right_gmt_generator(mt=layout.gmt):
return left_gmt_generator(mt.T)
get_left_gmt_matrix = left_gmt_generator()
get_right_gmt_matrix = right_gmt_generator()
def get_line_reflection_matrix(lines, n_power=1):
line_array = np.array([l.value for l in lines])
return val_get_line_reflection_matrix(line_array, n_power)
@numba.njit
def val_get_line_reflection_matrix(line_array: np.ndarray, n_power: int) -> np.ndarray:
mat2solve = np.zeros((32, 32), dtype=np.float64)
for i in range(line_array.shape[0]):
LiMat = get_left_gmt_matrix(line_array[i, :])
tmat = (LiMat @ mask_2minus4) @ LiMat
mat2solve += tmat
mat = mask1 @ mat2solve/line_array.shape[0]
return np.linalg.matrix_power(mat, n_power)
@numba.njit
def val_truncated_get_line_reflection_matrix(line_array: np.ndarray, n_power: int) -> np.ndarray:
mat2solve = np.zeros((32, 32), dtype=np.float64)
for i in range(line_array.shape[0]):
LiMat = get_left_gmt_matrix(line_array[i, :])
tmat = (LiMat @ mask_2minus4) @ LiMat
mat2solve += tmat
mat_val = mask1 @ mat2solve
mat_val = mat_val[1:6, 1:6].copy()/line_array.shape[0]
return np.linalg.matrix_power(mat_val, n_power)
@numba.njit
@_defunct_wrapper
def val_get_line_intersection(L3_val, Ldd_val):
return get_line_intersection(
layout.MultiVector(L3_val),
layout.MultiVector(Ldd_val)
).value
@numba.njit
def get_line_intersection(L3, Ldd):
Xdd = Ldd * no * Ldd + no
Xddd = L3 * Xdd * L3
Pd = 0.5*(Xdd+Xddd)
P = -(Pd * ninf * Pd)
imt = Pd | ninf
P_denominator = 2*(imt * imt).value[0]
return (P/P_denominator)(1)
@numba.njit
@_defunct_wrapper
def val_midpoint_between_lines(L1_val, L2_val):
return midpoint_between_lines(layout.MultiVector(L1_val, L2_val)).value
@numba.njit
def midpoint_between_lines(L1, L2):
L3 = (L1 + L2).normal()
Ldd = (L1 - L2).normal()
S = get_line_intersection(L3, Ldd)
return normalise_n_minus_1((S * ninf * S)(1))
@numba.njit
def midpoint_of_line_cluster(line_cluster):
return layout.MultiVector(val_midpoint_of_line_cluster(MVArray(line_cluster).value))
@numba.njit
|
BSD 3-Clause New or Revised License
|
ltalirz/asetk
|
asetk/format/cube.py
|
Plane.__init__
|
python
|
def __init__(self, data=None, origin=None, dx=None, dy=None, extent=None):
self.data = data
self.origin = origin
if extent != None and (dx != None or dy != None):
print("Error: Please specify either extent or dx, dy")
elif extent != None:
self.dx = [(extent[1]-extent[0])/self.nx, 0]
self.dy = [0, (extent[3]-extent[2])/self.ny]
else:
self.dx = dx
self.dy = dy
|
Standard constructur, all parameters default to None.
|
https://github.com/ltalirz/asetk/blob/bdb31934a5eb49d601e492fc98078d27f5dd2ebd/asetk/format/cube.py#L582-L594
|
from __future__ import division
import numpy as np
import copy as cp
import asetk.atomistic.fundamental as fu
import asetk.atomistic.constants as constants
import matplotlib.mlab as mlab
class Cube(object):
dir_indices = {
'x': 0,
'y': 1,
'z': 2,
}
def __init__(self, filename=None, title=None, comment=None, origin=None,
atoms=None, data=None):
self.filename = filename
self.title = title
self.comment = comment
self.origin = origin
self.atoms = atoms
self.data = data
self._shape = None
@classmethod
def from_cube(cls, cube):
tmp = cp.deepcopy(cube)
return tmp
@classmethod
def from_file(cls, fname, read_data=False):
tmp = Cube()
tmp.read_cube_file(fname, read_data=read_data)
return tmp
@property
def cell(self):
return self.atoms.cell
@cell.setter
def cell(self, c):
self.atoms.cell = c
@property
def shape(self):
if self.data is not None:
return self.data.shape
elif self.shape_ is not None:
return self.shape_
else:
return None
@property
def nx(self):
return self.shape[0]
@property
def ny(self):
return self.shape[1]
@property
def nz(self):
return self.shape[2]
@property
def dx(self):
return self.cell[0] / self.nx
@property
def dy(self):
return self.cell[1] / self.ny
@property
def dz(self):
return self.cell[2] / self.nz
@property
def dv(self):
return np.dot(self.dx, np.cross(self.dy, self.dz))
def __str__(self):
text = "Spectrum containing {} spins\n".format(len(self.energylevels))
for i in range(len(self.energylevels)):
e = self.energylevels[i]
s = self.spins[i]
text += 'spin {} : {}\n'.format(s, e.__str__())
return text
def read_cube_file(self, fname, read_data=False, v=1):
self.filename = fname
f = open(fname, 'r')
readline = f.readline
self.title = readline()
self.comment = readline()
axes = [0, 1, 2]
line = readline().split()
natoms = int(line[0])
b2A = constants.a0 / constants.Angstrom
self.origin = np.array(line[1:], dtype=float) * b2A
shape = np.empty(3,dtype=int)
cell = np.empty((3, 3))
for i in range(3):
n, x, y, z = [float(s) for s in readline().split()]
shape[i] = int(n)
cell[i] = n * np.array([x, y, z])
self.shape_ = shape
cell = cell * b2A
numbers = np.empty(natoms, int)
positions = np.empty((natoms, 3))
for i in range(natoms):
line = readline().split()
numbers[i] = int(line[0])
positions[i] = [float(s) for s in line[2:]]
positions *= b2A
self.atoms = fu.Atoms(numbers=numbers, positions=positions, cell=cell)
if read_data:
self.data = np.array(f.read().split(), dtype=float)
self.data = self.data.reshape(shape)
f.close()
def resize(self, shape):
shape_old = self.shape
for dim in range(3):
self.cell[dim] = shape[dim] * self.cell[dim] / shape_old[dim]
tmp = np.zeros(shape)
m = np.min([shape, self.shape], axis=0)
tmp[:m[0], :m[1],:m[2]] = self.data[:m[0], :m[1],:m[2]]
self.data = tmp
def write_cube_file(self, fname=None):
if fname is None:
fname = self.filename
f = open(fname, 'w')
f.write(self.title)
f.write(self.comment)
A2b = constants.Angstrom / constants.a0
o = self.origin * A2b
f.write('{:5d}{:12.6f}{:12.6f}{:12.6f}\n' .format(len(self.atoms), o[0], o[1], o[2]))
c = self.cell * A2b
for i in range(3):
n = self.shape[i]
d = c[i] / self.shape[i]
f.write('{:5d}{:12.6f}{:12.6f}{:12.6f}\n'.format(n, d[0], d[1], d[2]))
positions = self.atoms.get_positions() * A2b
numbers = self.atoms.get_atomic_numbers()
for Z, (x, y, z) in zip(numbers, positions):
f.write('{:5d}{:12.6f}{:12.6f}{:12.6f}{:12.6f}\n'.format(Z, 0.0, x, y, z) )
self.data.tofile(f, sep='\n', format='%12.6e')
f.close()
def get_index(self, dir, d):
c = self.cell
if dir is 'x':
dmax = c[0][0]
step = np.linalg.norm(self.dx)
elif dir is 'y':
dmax = c[1][1]
step = np.linalg.norm(self.dy)
elif dir is 'z':
dmax = c[2][2]
step = np.linalg.norm(self.dz)
else:
raise ValueError("Did not recognize direction '{}'.".format(dir))
if d > dmax:
raise ValueError("Distance {} exceeds maximum distance {} \
along direction {}".format(d,dmax,dir))
index = int(round(d / step))
return index
def get_index_above_atoms(self, d, from_below=False, verbose=False):
if from_below:
zmin = np.min(self.atoms.positions[:,2])
zplane = zmmin - d
else:
zmax = np.max(self.atoms.positions[:,2])
zplane = zmax + d
dz = np.linalg.norm(self.dz)
iplane = int(round(zplane / dz))
zplanereal = iplane * dz
if verbose:
if from_below:
delta = zmin - zplanereal
else:
delta = zplanereal - zmax
print("Precise height above atoms: {} Angstroms".format(delta))
return iplane
def get_plane_above_atoms(self, d, verbose=False, return_object=None,
replica=None, resample=None, from_below=False):
iplane = self.get_index_above_atoms(d, from_below, verbose=verbose)
return self.get_plane('z', iplane, return_object=return_object,
replica=replica, resample=resample)
def get_isosurface_above_atoms(self, v, from_below=False, zcut=None,
on_grid=False, return_object=None, replica=None, resample=None):
plane = np.empty(self.shape[0:2])
missed = 0
dz = np.linalg.norm(self.dz)
nz = self.nz
if zcut is None:
zcut = dz*nz if from_below else 0.0
if from_below:
zmax = zcut
else:
self.data = self.data[:,:,::-1]
zmax = nz*dz - zcut
for i in range(self.nx):
for j in range(self.ny):
itmp = np.argmax(self.data[i,j,:] > v)
if itmp == 0 or itmp * dz > zmax:
plane[i,j] = zmax
missed = missed + 1
elif on_grid:
plane[i,j] = itmp * dz
else:
greater = self.data[i,j,itmp]
smaller = self.data[i,j,itmp-1]
plane[i,j] = dz * (itmp - (greater - v)/(greater-smaller))
if not from_below:
self.data = self.data[:,:,::-1]
plane = dz*nz - plane
print("{} z-values replaced by zcut = {}".format(missed,zcut))
pextent, pdx, pdy = self.get_plane_extent('z', return_vectors=True)
plane = Plane(data=plane, origin=self.origin, dx=pdx, dy=pdy)
if replica:
plane.replicate(replica)
if resample:
plane.resample(resample)
if return_object:
return plane
else:
return plane.data
def get_plane(self, dir, i, return_object=False, replica=None, resample=None):
shape = self.data.shape
dvs = self.atoms.cell / shape
ls = [ np.linalg.norm(v) for v in self.atoms.cell ]
o = self.origin
if dir is 'x' and i < shape[0]:
plane = self.data[i, :, :]
elif dir is 'y' and i < shape[1]:
plane = self.data[:, i, :]
elif dir is 'z' and i < shape[2]:
plane = self.data[:, :, i]
else:
msg = "Direction {} not recognized or index {} out of bounds" .format(dir,i)
msg += "\nDirection must be 'x', 'y' or 'z'."
raise ValueError(msg)
pextent, pdx, pdy = self.get_plane_extent(dir, return_vectors=True)
plane = Plane(data=plane, origin=o, dx=pdx, dy=pdy)
if replica:
plane.replicate(replica)
if resample:
plane.resample(resample)
if return_object:
return plane
else:
return plane.data
def get_plane_extent(self, dir, return_vectors=False):
dvs = self.atoms.cell / self.data.shape
ls = [ np.linalg.norm(v) for v in self.atoms.cell ]
o = self.origin
if dir is 'x':
dum, pdx, pdy = dvs
pextent = [o[1], o[1]+ls[1], o[2], o[2]+ls[2]]
elif dir is 'y':
pdy, dum, pdx = dvs
pextent = [o[2], o[2]+ls[2], o[0], o[0]+ls[0]]
elif dir is 'z':
pdx, pdy, dum = dvs
pextent = [o[0], o[0]+ls[0], o[1], o[1]+ls[1]]
else:
print("Cannot recognize direction '{}'".format(dir))
print("Expected 'x', 'y' or 'z'.")
if return_vectors:
return [pextent, pdx, pdy]
else:
return pextent
def set_plane(self, dir, i, plane):
nx, ny, nz = self.nx, self.ny, self.nz
npx, npy = plane.shape
if dir is 'x' and npx == ny and npy == nz:
self.data[i, :, :] = plane
elif dir is 'y' and npx == nz and npy == nx:
self.data[:, i, :] = plane
elif dir is 'z' and npx == nx and npy == ny:
self.data[:, :, i] = plane
else:
print("Direction '{}' and shape '{}' are not compatible." .format(dir, plane.shape))
print("Direction must be 'x', 'y' or 'z'.")
return False
return True
def get_avg(self, dir):
if dir is 'x':
return np.mean(self.data, axis=0)
elif dir is 'y':
return np.mean(self.data, axis=1)
elif dir is 'z':
return np.mean(self.data, axis=2)
else:
print("Cannot recognize direction '{}'".format(dir))
print("Direction must be 'x', 'y' or 'z'.")
def __iadd__(self, c):
if self.data.shape != c.data.shape:
raise ValueError("Shape of cube files do not agree")
self.data += c.data
return self
def roll(self, dir, shift=None, distance=None):
dir_index = self.dir_indices[dir]
step = np.linalg.norm(self.cell[dir_index] / self.data.shape[dir_index])
if shift:
dist_exact = shift * step
elif distance:
shift = int(distance / step)
dist_exact = shift * step
else:
raise IOError("Please provide either shift (integer) or distance (float)")
print("Rolling cube file by {:.3f} Angstroms along {}." .format(dist_exact,dir))
self.data = np.roll(self.data, shift=shift, axis=dir_index)
v = np.zeros(3)
v[dir_index] = dist_exact
self.atoms.translate(v)
class Plane(object):
|
MIT License
|
madcowfred/evething
|
thing/tasks/apitask.py
|
APITask.parse_xml
|
python
|
def parse_xml(self, data):
return ET.fromstring(data.encode('utf-8'))
|
Parse XML and return an ElementTree.
|
https://github.com/madcowfred/evething/blob/2926ce0afe656f932140a944e07cbc99c6ef7143/thing/tasks/apitask.py#L367-L371
|
import datetime
import hashlib
import requests
import time
try:
import xml.etree.cElementTree as ET
except ImportError:
import xml.etree.ElementTree as ET
from billiard import current_process
from celery import Task
from celery.task.control import broadcast
from celery.utils.log import get_task_logger
from django.conf import settings
from django.core.cache import cache
from django.db import connections
from django.db.models import Max
from urlparse import urljoin
from thing.models import APIKey, APIKeyFailure, Event, TaskState
from thing.stuff import total_seconds
PENALTY_TIME = 12 * 60 * 60
PENALTY_MULT = 0.2
KEY_ERRORS = set([
'202',
'203',
'204',
'205',
'207',
'210',
'211',
'212',
'220',
'222',
'223',
])
this_process = None
class APITask(Task):
abstract = True
_logger = get_task_logger(__name__)
_session = requests.Session()
_session.headers.update({
'User-Agent': 'EVEthing-tasks (keep-alive)',
})
_session.mount('http://', requests.adapters.HTTPAdapter(pool_connections=1, pool_maxsize=1))
_session.mount('https://', requests.adapters.HTTPAdapter(pool_connections=1, pool_maxsize=1))
def init(self, taskstate_id=None, apikey_id=None):
global this_process
if this_process is None:
this_process = int(current_process()._name.split('-')[1])
if settings.STAGGER_APITASK_STARTUP:
sleep_for = (this_process - 1) * 2
self._logger.warning('Worker #%d staggered startup: sleeping for %d seconds', this_process, sleep_for)
time.sleep(sleep_for)
if settings.DEBUG:
for db in settings.DATABASES.keys():
connections[db].queries = []
self._started = time.time()
self._api_log = []
self._cache_delta = None
self._taskstate = None
self.apikey = None
self.root = None
if taskstate_id is not None:
try:
self._taskstate = TaskState.objects.get(pk=taskstate_id)
except TaskState.DoesNotExist:
self.log_error('Task not starting: TaskState %d has gone missing', taskstate_id)
return False
if apikey_id is not None:
try:
self.apikey = APIKey.objects.get(pk=apikey_id)
except APIKey.DoesNotExist:
return False
else:
if not self.apikey.valid:
return False
if self.apikey.needs_apikeyinfo and getattr(self, 'name') != 'thing.api_key_info':
return False
def on_failure(self, exc, task_id, args, kwargs, einfo):
if self._taskstate is not None:
self._taskstate_ready()
def on_success(self, retval, task_id, args, kwargs):
if self._taskstate is not None:
self._taskstate_ready()
if retval is True:
if settings.DEBUG:
total_api = sum(a[1] for a in self._api_log)
self.log_warn('[API] %.3fs %d requests', total_api, len(self._api_log))
for url, runtime in self._api_log:
self.log_warn('%.3fs %s', runtime, url)
for db in sorted(settings.DATABASES.keys()):
self.log_warn(
'[%s] %.3fs %d queries',
db,
sum(float(q['time']) for q in connections[db].queries),
len(connections[db].queries),
)
for query in connections[db].queries:
if len(query['sql']) > 500:
self.log_warn('%02.3fs %s...', float(query['time']), query['sql'][:500])
else:
self.log_warn('%02.3fs %s', float(query['time']), query['sql'])
def _taskstate_ready(self):
utcnow = datetime.datetime.utcnow()
self._taskstate.state = TaskState.READY_STATE
self._taskstate.mod_time = utcnow
if self._cache_delta is not None:
self._taskstate.next_time = utcnow + self._cache_delta + datetime.timedelta(seconds=20)
else:
self._taskstate.next_time = utcnow + datetime.timedelta(minutes=30)
self._taskstate.save(update_fields=('state', 'mod_time', 'next_time'))
def fetch_api(self, url, params, use_auth=True, log_error=True):
utcnow = datetime.datetime.utcnow()
if use_auth:
params['keyID'] = self.apikey.keyid
cache_key = self._get_cache_key(url, params)
cached_data = cache.get(cache_key)
if cached_data is None:
sleep_for = self._get_backoff()
if sleep_for > 0:
time.sleep(sleep_for)
if use_auth:
params['vCode'] = self.apikey.vcode
full_url = urljoin(settings.API_HOST, url)
start = time.time()
try:
if params:
r = self._session.post(full_url, params)
else:
r = self._session.get(full_url)
data = r.text
except Exception, e:
self._increment_backoff(e)
return False
self._api_log.append((url, time.time() - start))
is_apikeyinfo = (getattr(self, 'name') == 'thing.api_key_info')
if not r.status_code == requests.codes.ok:
if r.status_code == '403' or r.status_code == 403:
self._cache_delta = datetime.timedelta(hours=4)
self.log_warn('403 error, caching for 4 hours')
if is_apikeyinfo and self.apikey:
self.apikey.apikeyinfo_errors += 1
if self.apikey.apikeyinfo_errors >= 3:
self.invalidate_key('Too many 403 errors from APIKeyInfo')
else:
self.apikey.save(update_fields=('apikeyinfo_errors',))
else:
self.apikey.needs_apikeyinfo = True
self.apikey.save(update_fields=('needs_apikeyinfo',))
else:
self._increment_backoff('Bad status code: %s' % (r.status_code))
return False
elif is_apikeyinfo and self.apikey:
self.apikey.apikeyinfo_errors = 0
self.apikey.needs_apikeyinfo = False
self.apikey.save(update_fields=('apikeyinfo_errors', 'needs_apikeyinfo'))
else:
data = cached_data
if data:
try:
self.root = self.parse_xml(data)
except Exception:
return False
current = self.parse_api_date(self.root.find('currentTime').text)
until = self.parse_api_date(self.root.find('cachedUntil').text)
self._cache_delta = until - current
if cached_data is None:
if self.apikey is None:
cache_expires = total_seconds(self._cache_delta) + 10
else:
last_seen = APIKey.objects.filter(keyid=self.apikey.keyid, vcode=self.apikey.vcode).aggregate(m=Max('user__profile__last_seen'))['m']
secs = max(0, total_seconds(utcnow - last_seen))
mult = 1 + (min(20, max(0, secs / PENALTY_TIME)) * PENALTY_MULT)
cache_expires = max(0, total_seconds(self._cache_delta) * mult) + 10
self._cache_delta = datetime.timedelta(seconds=cache_expires)
if cache_expires >= 0:
cache.set(cache_key, data, cache_expires)
error = self.root.find('error')
if error is not None:
if log_error:
self.log_error('%s: %s | %s -> %s', error.attrib['code'], error.text, current, until)
if error.attrib['code'] in KEY_ERRORS:
reason = '%s %s' % (error.attrib['code'], error.text)
self.invalidate_key(reason)
elif error.attrib['code'].startswith('5') or error.attrib['code'] in ('901', '902', '1001'):
self._increment_backoff('API server seems broken')
elif error.attrib['code'] == '904':
self.log_error('Received 904 error, killing workers!')
broadcast('shutdown')
return False
return True
def fetch_url(self, url, params):
start = time.time()
try:
if params:
r = self._session.post(url, params)
else:
r = self._session.get(url)
data = r.text
except Exception:
return False
self._api_log.append((url, time.time() - start))
if not r.status_code == requests.codes.ok:
return False
return data
|
BSD 2-Clause Simplified License
|
arise-initiative/robomimic
|
robomimic/algo/algo.py
|
Algo.deserialize
|
python
|
def deserialize(self, model_dict):
self.nets.load_state_dict(model_dict)
|
Load model from a checkpoint.
Args:
model_dict (dict): a dictionary saved by self.serialize() that contains
the same keys as @self.network_classes
|
https://github.com/arise-initiative/robomimic/blob/2804dd97dd1625ec861298a35cb677129d3bfacc/robomimic/algo/algo.py#L269-L277
|
import textwrap
from copy import deepcopy
from collections import OrderedDict
import torch.nn as nn
import robomimic.utils.tensor_utils as TensorUtils
import robomimic.utils.torch_utils as TorchUtils
import robomimic.utils.obs_utils as ObsUtils
REGISTERED_ALGO_FACTORY_FUNCS = OrderedDict()
def register_algo_factory_func(algo_name):
def decorator(factory_func):
REGISTERED_ALGO_FACTORY_FUNCS[algo_name] = factory_func
return decorator
def algo_name_to_factory_func(algo_name):
return REGISTERED_ALGO_FACTORY_FUNCS[algo_name]
def algo_factory(algo_name, config, modality_shapes, ac_dim, device):
assert algo_name == config.algo_name
factory_func = algo_name_to_factory_func(algo_name)
algo_cls, algo_kwargs = factory_func(config.algo)
return algo_cls(
algo_config=config.algo,
obs_config=config.observation,
global_config=config,
modality_shapes=modality_shapes,
ac_dim=ac_dim,
device=device,
**algo_kwargs
)
class Algo(object):
def __init__(
self,
algo_config,
obs_config,
global_config,
modality_shapes,
ac_dim,
device
):
self.optim_params = deepcopy(algo_config.optim_params)
self.algo_config = algo_config
self.obs_config = obs_config
self.global_config = global_config
self.ac_dim = ac_dim
self.device = device
self.modality_shapes = modality_shapes
self.nets = nn.ModuleDict()
self._create_shapes(obs_config.modalities, modality_shapes)
self._create_networks()
self._create_optimizers()
assert isinstance(self.nets, nn.ModuleDict)
def _create_shapes(self, modalities, modality_shapes):
self.obs_shapes = OrderedDict()
self.goal_shapes = OrderedDict()
self.subgoal_shapes = OrderedDict()
for k in modality_shapes:
if "obs" in self.obs_config.modalities and k in (self.obs_config.modalities.obs.low_dim + self.obs_config.modalities.obs.image):
self.obs_shapes[k] = modality_shapes[k]
if "goal" in self.obs_config.modalities and k in (self.obs_config.modalities.goal.low_dim + self.obs_config.modalities.goal.image):
self.goal_shapes[k] = modality_shapes[k]
if "subgoal" in self.obs_config.modalities and k in (self.obs_config.modalities.subgoal.low_dim + self.obs_config.modalities.subgoal.image):
self.subgoal_shapes[k] = modality_shapes[k]
def _create_networks(self):
raise NotImplementedError
def _create_optimizers(self):
self.optimizers = dict()
self.lr_schedulers = dict()
for k in self.optim_params:
if k in self.nets:
if isinstance(self.nets[k], nn.ModuleList):
self.optimizers[k] = [
TorchUtils.optimizer_from_optim_params(net_optim_params=self.optim_params[k], net=self.nets[k][i])
for i in range(len(self.nets[k]))
]
self.lr_schedulers[k] = [
TorchUtils.lr_scheduler_from_optim_params(net_optim_params=self.optim_params[k], net=self.nets[k][i], optimizer=self.optimizers[k][i])
for i in range(len(self.nets[k]))
]
else:
self.optimizers[k] = TorchUtils.optimizer_from_optim_params(
net_optim_params=self.optim_params[k], net=self.nets[k])
self.lr_schedulers[k] = TorchUtils.lr_scheduler_from_optim_params(
net_optim_params=self.optim_params[k], net=self.nets[k], optimizer=self.optimizers[k])
def process_batch_for_training(self, batch):
return batch
def train_on_batch(self, batch, epoch, validate=False):
assert validate or self.nets.training
return OrderedDict()
def log_info(self, info):
log = OrderedDict()
for k in self.optimizers:
for i, param_group in enumerate(self.optimizers[k].param_groups):
log["Optimizer/{}{}_lr".format(k, i)] = param_group["lr"]
return log
def on_epoch_end(self, epoch):
for k in self.lr_schedulers:
if self.lr_schedulers[k] is not None:
self.lr_schedulers[k].step()
def set_eval(self):
self.nets.eval()
def set_train(self):
self.nets.train()
def serialize(self):
return self.nets.state_dict()
|
MIT License
|
ducksboard/libsaas
|
libsaas/services/googleanalytics/resources.py
|
Account.webproperty
|
python
|
def webproperty(self, webproperty_id):
return WebProperty(self, webproperty_id)
|
Return the resource corresponding to a single property
|
https://github.com/ducksboard/libsaas/blob/615981a3336f65be9d51ae95a48aed9ad3bd1c3c/libsaas/services/googleanalytics/resources.py#L155-L159
|
from libsaas import http, parsers
from libsaas.services import base
def translate_param(val):
return val.replace('_', '-')
class QuotaResource(base.RESTResource):
@base.apimethod
def get(self, userIp=None, quotaUser=None):
params = base.get_params(None, locals(),
translate_param=translate_param)
request = http.Request('GET', self.get_url(), params)
return request, parsers.parse_json
def create(self, *args, **kwargs):
raise base.MethodNotSupported()
def update(self, *args, **kwargs):
raise base.MethodNotSupported()
def delete(self, *args, **kwargs):
raise base.MethodNotSupported()
class PaginatedQuotaResource(QuotaResource):
@base.apimethod
def get(self, max_results=None, start_index=None, userIp=None,
quotaUser=None):
params = base.get_params(None, locals(),
translate_param=translate_param)
request = http.Request('GET', self.get_url(), params)
return request, parsers.parse_json
class GoalBase(QuotaResource):
path = 'goals'
class Goal(GoalBase):
pass
class Goals(GoalBase, PaginatedQuotaResource):
pass
class ViewBase(QuotaResource):
path = 'profiles'
class Views(ViewBase, PaginatedQuotaResource):
pass
class View(ViewBase):
@base.resource(Goals)
def goals(self):
return Goals(self)
@base.resource(Goal)
def goal(self, goal_id):
return Goal(self, goal_id)
class WebPropertyBase(QuotaResource):
path = 'webproperties'
class WebProperties(WebPropertyBase, PaginatedQuotaResource):
pass
class WebProperty(WebPropertyBase):
@base.resource(Views)
def views(self):
return Views(self)
@base.resource(View)
def view(self, profile_id):
return View(self, profile_id)
class AccountBase(QuotaResource):
path = 'accounts'
class Accounts(AccountBase, PaginatedQuotaResource):
pass
class Account(AccountBase):
@base.resource(WebProperties)
def webproperties(self):
return WebProperties(self)
@base.resource(WebProperty)
|
MIT License
|
derricw/asciisciit
|
asciisciit/conversions.py
|
ascii_seq_to_gif
|
python
|
def ascii_seq_to_gif(seq, output_path, fps=15.0, font_size=10,
font_path=None):
images = []
status = StatusBar(len(seq), text="Generating frames: ",)
for index, ascii_img in enumerate(seq):
if type(ascii_img) == str:
text = ascii_img
else:
text = ascii_img.data
images.append(
ascii_to_pil(text,
font_size=font_size,
font_path=font_path
)
)
status.update(index)
status.complete()
duration = 1.0/fps
images_np = [np.array(img) for img in images]
imageio.mimsave(output_path, images_np, duration=duration)
|
Creates a gif from a sequence of ascii images.
Parameters
----------
output_path : str
Path for gif output.
fps : float
FPS for gif playback.
font_size : int
Font size for ascii.
|
https://github.com/derricw/asciisciit/blob/05923c555146730afe19d6c629044c037051d44a/asciisciit/conversions.py#L189-L226
|
from bisect import bisect
import random
import os
from PIL import Image, ImageOps, ImageDraw, ImageFont
import numpy as np
import cv2
import imageio
from asciisciit.misc import *
from asciisciit.lut import get_lut, relative_width
DEFAULT_ASPECT_CORRECTION_FACTOR = 6.0/11.0
RESOURCE_DIR = os.path.join(os.path.dirname(__file__),'res')
def image_to_ascii(img,
scalefactor=0.2,
invert=False,
equalize=True,
lut='simple',
aspect_correction_factor=None):
if type(img) == str:
img = open_pil_img(img)
elif type(img) == np.ndarray:
img = numpy_to_pil(img)
try:
text = pil_to_ascii(img, scalefactor, invert, equalize, lut,
aspect_correction_factor)
except:
raise TypeError("That image type doesn't work. Try PIL, Numpy, or file path...")
return text
def pil_to_ascii(img,
scalefactor=0.2,
invert=False,
equalize=True,
lut='simple',
aspect_correction_factor=None
):
lookup = get_lut(lut)
if aspect_correction_factor is None:
aspect_correction_factor = get_aspect_correction_factor(lookup.exemplar)
img = img.resize(
(int(img.size[0]*scalefactor),
int(img.size[1]*scalefactor*aspect_correction_factor)),
Image.BILINEAR)
img = img.convert("L")
if equalize:
img = ImageOps.equalize(img)
if invert:
img = ImageOps.invert(img)
img = np.array(img, dtype=np.uint8)
return u"\n" + u"".join(lookup.apply(img).flatten().tolist())
def ascii_to_pil(text, font_size=10, bg_color=(20, 20, 20),
fg_color=(255, 255, 255), font_path=None):
font = get_font(font_path, font_size)
if relative_width(text[1]) == 2:
font_width, font_height = font.getsize(u"\u3000")
else:
font_width, font_height = font.getsize(u" ")
img_height, img_width = get_ascii_image_size(text)
y_padding = 1
out_img = np.zeros(((font_height+y_padding)*img_height,
font_width*img_width,
3),
dtype=np.uint8)
out_img[:, :, 0] += bg_color[0]
out_img[:, :, 1] += bg_color[1]
out_img[:, :, 2] += bg_color[2]
img = Image.fromarray(out_img)
draw = ImageDraw.Draw(img)
for index, line in enumerate(text.split("\n")):
y = (font_height+y_padding)*index
draw.text((0, y), line, fg_color, font=font)
return img
|
MIT License
|
ecdavis/pants
|
pants/http/websocket.py
|
WebSocket.local_address
|
python
|
def local_address(self):
if self._local_address is not None:
return self._local_address
elif self._connection:
return self._connection.local_address
else:
return None
|
The address of the WebSocket on the local machine.
By default, this will be the value of ``socket.getsockname`` or
None. It is possible for user code to override the default
behaviour and set the value of the property manually. In order
to return the property to its default behaviour, user code then
has to delete the value. Example::
# default behaviour
channel.local_address = custom_value
# channel.local_address will return custom_value now
del channel.local_address
# default behaviour
|
https://github.com/ecdavis/pants/blob/88129d24020e95b71e8d0260a111dc0b457b0676/pants/http/websocket.py#L614-L635
|
import base64
import hashlib
import re
import struct
import sys
if sys.platform == "win32":
from time import clock as time
else:
from time import time
from pants.stream import StreamBufferOverflow
from pants.http.utils import log
try:
from netstruct import NetStruct as _NetStruct
except ImportError:
class _NetStruct(object):
def __init__(self, *a, **kw):
raise NotImplementedError
CLOSE_REASONS = {
1000: 'Normal Closure',
1001: 'Endpoint Going Away',
1002: 'Protocol Error',
1003: 'Unacceptable Data Type',
1005: 'No Status Code',
1006: 'Abnormal Close',
1007: 'Invalid UTF-8 Data',
1008: 'Message Violates Policy',
1009: 'Message Too Big',
1010: 'Extensions Not Present',
1011: 'Unexpected Condition Prevented Fulfillment',
1015: 'TLS Handshake Error'
}
WEBSOCKET_KEY = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"
WEBSOCKET_VERSIONS = (13, 8, 0)
FRAME_CONTINUATION = 0
FRAME_TEXT = 1
FRAME_BINARY = 2
FRAME_CLOSE = 8
FRAME_PING = 9
FRAME_PONG = 10
EntireMessage = object()
RegexType = type(re.compile(""))
Struct = struct.Struct
STRUCT_H = Struct("!H")
STRUCT_Q = Struct("!Q")
class WebSocket(object):
protocols = None
allow_old_handshake = False
def __init__(self, request, *arguments):
self._connection = request.connection
self.engine = self._connection.engine
request.auto_finish = False
self._arguments = arguments
self.fileno = self._connection.fileno
self._remote_address = None
self._local_address = None
self._pings = {}
self._last_ping = 0
self._read_delimiter = EntireMessage
self._recv_buffer_size_limit = self._buffer_size
self._recv_buffer = ""
self._read_buffer = None
self._rb_type = None
self._frag_frame = None
self.connected = False
self._closed = False
self.is_secure = request.is_secure
fail = False
headers = {}
if not request.headers.get('Connection','').lower() == 'upgrade' and not request.headers.get('Upgrade','').lower() == 'websocket':
fail = True
elif not self._safely_call(self.on_handshake, request, headers):
fail = True
if 'Sec-WebSocket-Version' in request.headers:
if not 'Sec-WebSocket-Key' in request.headers:
fail = True
else:
accept = base64.b64encode(hashlib.sha1(
request.headers['Sec-WebSocket-Key'] + WEBSOCKET_KEY
).digest())
headers['Upgrade'] = 'websocket'
headers['Connection'] = 'Upgrade'
headers['Sec-WebSocket-Accept'] = accept
self.version = int(request.headers['Sec-WebSocket-Version'])
if self.version not in WEBSOCKET_VERSIONS:
headers['Sec-WebSocket-Version'] = False
fail = True
elif not self.allow_old_handshake:
fail = True
else:
self.version = 0
self._headers = headers
self._request = request
self._connection.on_read = self._finish_handshake
self._connection.on_close = self._con_close
self._connection.on_write = self._con_write
self._connection.read_delimiter = 8
return
if fail:
if 'Sec-WebSocket-Version' in headers:
request.send_status(400)
request.send_headers({
'Content-Type': 'text/plain',
'Content-Length': 15,
'Sec-WebSocket-Version': ', '.join(str(x) for x in
WEBSOCKET_VERSIONS)
})
request.send('400 Bad Request')
else:
request.send_status(426)
headers = {
'Content-Type': 'text/plain',
'Content-Length': '20',
'Sec-WebSocket-Version': ', '.join(str(x) for x in
WEBSOCKET_VERSIONS)
}
request.send_headers(headers)
request.send("426 Upgrade Required")
request.finish()
return
request.send_status(101)
request.send_headers(headers)
self._connection.on_read = self._con_read
self._connection.on_close = self._con_close
self._connection.on_write = self._con_write
self._connection.read_delimiter = None
self.connected = True
self._safely_call(self.on_connect, *self._arguments)
del self._arguments
def _finish_handshake(self, key3):
self._connection.read_delimiter = None
request = self._request
headers = self._headers
del self._headers
del self._request
scheme = 'wss' if self.is_secure else 'ws'
request.send_status(101)
headers.update({
'Upgrade': 'WebSocket',
'Connection': 'Upgrade',
'Sec-WebSocket-Origin': request.headers['Origin'],
'Sec-WebSocket-Location': '%s://%s%s' % (
scheme, request.host, request.url)
})
request.send_headers(headers)
try:
request.send(challenge_response(
request.headers, key3))
except ValueError:
log.warning("Malformed WebSocket challenge to %r." % self)
self.close(False)
return
self._expect_frame = True
self.connected = True
self._connection.on_read = self._con_old_read
self._safely_call(self.on_connect, *self._arguments)
del self._arguments
@property
def remote_address(self):
if self._remote_address is not None:
return self._remote_address
elif self._connection:
return self._connection.remote_address
else:
return None
@remote_address.setter
def remote_address(self, val):
self._remote_address = val
@remote_address.deleter
def remote_address(self):
self._remote_address = None
@property
|
Apache License 2.0
|
aspuru-guzik-group/janus
|
NN.py
|
size_ring_counter
|
python
|
def size_ring_counter(ring_ls):
ring_counter = []
if ring_ls == (None, None):
return [0 for i in range(19)]
mol_ring_ls = [Chem.MolFromSmiles(smi) for smi in ring_ls]
conseq_dbl_bnd_in_ring = 0
for item in mol_ring_ls:
conseq_dbl_bnd_in_ring += count_conseq_double(item)
ring_counter.append(conseq_dbl_bnd_in_ring)
for i in range(3, 21):
count = 0
for mol_ring in mol_ring_ls:
if mol_ring.GetNumAtoms() == i:
count += 1
ring_counter.append(count)
return ring_counter
|
Get the number of rings of sizes 3 to 20 and the number of consequtive double bonds in a ring
Parameters:
ring_ls (list) : list of rings of a molecule
Returns
(list) : Of size 19 (1 for number of conseq. double bonds)
(18 for number of rings between size 3 to 20)
|
https://github.com/aspuru-guzik-group/janus/blob/426ddf29898664f9c444f333562ba58185701e59/NN.py#L163-L193
|
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import rdkit
from rdkit import Chem
from rdkit import RDLogger
from rdkit.Chem import Descriptors
RDLogger.DisableLog('rdApp.*')
import inspect
from collections import OrderedDict
import multiprocessing
manager = multiprocessing.Manager()
lock = multiprocessing.Lock()
def get_rot_bonds_posn(mol):
RotatableBond = Chem.MolFromSmarts('*-&!@*')
rot = mol.GetSubstructMatches(RotatableBond)
return rot
def get_bond_indeces(mol, rot):
bonds_idx = []
for i in range(len(rot)):
bond = mol.GetBondBetweenAtoms(rot[i][0],rot[i][1])
bonds_idx.append(bond.GetIdx())
return bonds_idx
def obtain_rings(smi):
mol = Chem.MolFromSmiles(smi)
rot = get_rot_bonds_posn(mol)
if len(rot) == 0:
return None, None
bond_idx = get_bond_indeces(mol, rot)
new_mol = Chem.FragmentOnBonds(mol, bond_idx, addDummies=False)
new_smile = Chem.MolToSmiles(new_mol)
smile_split_list = new_smile.split(".")
rings = []
for item in smile_split_list:
if '1' in item:
rings.append(item)
return rings
def count_atoms(mol, atomic_num):
pat = Chem.MolFromSmarts("[#{}]".format(atomic_num))
return len(mol.GetSubstructMatches(pat))
def get_num_bond_types(mol):
bonds = mol.GetBonds()
num_bonds = 0
num_double = 0
num_triple = 0
num_single = 0
num_aromatic = 0
for b in bonds:
num_bonds += 1
if b.GetBondType() == rdkit.Chem.rdchem.BondType.SINGLE:
num_single += 1
if b.GetBondType() == rdkit.Chem.rdchem.BondType.DOUBLE:
num_double += 1
if b.GetBondType() == rdkit.Chem.rdchem.BondType.TRIPLE:
num_triple += 1
if b.GetBondType() == rdkit.Chem.rdchem.BondType.AROMATIC:
num_aromatic += 1
if num_bonds == 0:
return [0, 0, 0, 0]
else:
return [num_single/num_bonds, num_double/num_bonds, num_triple/num_bonds, num_aromatic/num_bonds]
def count_conseq_double(mol):
bonds = mol.GetBonds()
previous_BType = None
count_conseq_doub = 0
for b in bonds:
curr_BType = b.GetBondType()
if previous_BType == curr_BType and curr_BType == rdkit.Chem.rdchem.BondType.DOUBLE:
count_conseq_doub += 1
previous_BType = curr_BType
return count_conseq_doub
|
Apache License 2.0
|
wglass/lighthouse
|
lighthouse/service.py
|
Service.reset_status
|
python
|
def reset_status(self):
self.is_up = collections.defaultdict(lambda: None)
|
Sets the up/down status of the service ports to the default state.
Useful for when the configuration is updated and the checks involved
in determining the status might have changed.
|
https://github.com/wglass/lighthouse/blob/f4ce6550895acc31e433ede0c05d366718a3ffe5/lighthouse/service.py#L96-L103
|
import collections
import logging
import six
from .configurable import Configurable
from .check import Check
logger = logging.getLogger(__name__)
class Service(Configurable):
config_subdirectory = "services"
def __init__(self):
self.host = None
self.ports = set()
self.configured_ports = None
self.discovery = None
self.checks = collections.defaultdict(dict)
self.check_interval = None
self.is_up = collections.defaultdict(lambda: None)
self.metadata = {}
@classmethod
def validate_config(cls, config):
if "discovery" not in config:
raise ValueError("No discovery method defined.")
if not any([item in config for item in ["port", "ports"]]):
raise ValueError("No port(s) defined.")
cls.validate_check_configs(config)
@classmethod
def validate_check_configs(cls, config):
if "checks" not in config:
raise ValueError("No checks defined.")
if "interval" not in config["checks"]:
raise ValueError("No check interval defined.")
for check_name, check_config in six.iteritems(config["checks"]):
if check_name == "interval":
continue
Check.from_config(check_name, check_config)
def apply_config(self, config):
self.host = config.get("host", "127.0.0.1")
self.configured_ports = config.get("ports", [config.get("port")])
self.discovery = config["discovery"]
self.metadata = config.get("metadata", {})
self.update_ports()
self.check_interval = config["checks"]["interval"]
self.update_checks(config["checks"])
|
Apache License 2.0
|
wesselb/gpar
|
gpar/model.py
|
GPAR.__or__
|
python
|
def __or__(self, x_y_w):
x, y, w = x_y_w
gpar, x_ind = self.copy(), self.x_ind
for is_last, ((y, w, mask), model) in last(
zip(per_output(y, w, keep=self.impute), self.layers)
):
x = x[mask]
f, noise = model()
obs = self._obs(x, x_ind, y, w, f, noise)
gpar.layers.append(construct_model(f | obs, noise))
if not is_last:
x, x_ind = self._update_inputs(x, x_ind, y, f, obs)
return gpar
|
Condition on data.
Args:
x (tensor): Inputs.
y (tensor): Outputs.
w (tensor): Weights.
Returns:
:class:`.gpar.GPAR`: Updated GPAR model.
|
https://github.com/wesselb/gpar/blob/70f5cb7cd2dec075e33dd7d9cd133b5bc1798777/gpar/model.py#L148-L176
|
import logging
from lab import B
from plum import Dispatcher
from stheno import Obs, PseudoObs
__all__ = ["GPAR"]
log = logging.getLogger(__name__)
_dispatch = Dispatcher()
def merge(x, updates, to_update):
concat = B.concat(x[~to_update], updates, axis=0)
i_original = 0
i_update = B.sum(~to_update)
indices = []
for i in range(len(to_update)):
if to_update[i]:
indices.append(i_update)
i_update = i_update + 1
else:
indices.append(i_original)
i_original = i_original + 1
return B.take(concat, indices)
def construct_model(f, noise):
return lambda: (f, noise)
def last(xs, select=None):
if select is not None:
select = set(select)
saved_x = None
i = -1
def should_yield(i_):
return i >= 0 and (select is None or i_ in select)
for x in xs:
if should_yield(i):
yield False, saved_x
saved_x = x
i += 1
if saved_x is not None and should_yield(i):
yield True, saved_x
class GPAR:
def __init__(self, replace=False, impute=False, x_ind=None):
self.replace = replace
self.impute = impute
self.layers = []
self.sparse = x_ind is not None
self.x_ind = None if x_ind is None else x_ind
def copy(self):
gpar = GPAR(replace=self.replace, impute=self.impute, x_ind=self.x_ind)
return gpar
def add_layer(self, model_constructor):
gpar = self.copy()
gpar.layers = list(self.layers) + [model_constructor]
return gpar
|
MIT License
|
edx/repo-tools
|
edx_repo_tools/data.py
|
Person.associated_with
|
python
|
def associated_with(self, *institutions):
if self.agreement != 'institution':
return False
if self.expires_on and self.expires_on < date.today():
return False
institutions = [inst.lower() for inst in institutions]
if self.institution and self.institution.lower() in institutions:
return True
return False
|
Return True if this Person is associated with an institution in
``institutions``.
Arguments:
*institutions: The institutions to check against
|
https://github.com/edx/repo-tools/blob/69c03ce99a4a6d87bc0c0fecaf1a3cbdb2a3b281/edx_repo_tools/data.py#L106-L125
|
from datetime import date
import functools
import logging
import os.path
import click
from github3.exceptions import NotFoundError
from lazy import lazy
import yaml
from edx_repo_tools.auth import pass_github
logging.basicConfig()
LOGGER = logging.getLogger(__name__)
OPEN_EDX_YAML = 'openedx.yaml'
def iter_nonforks(hub, orgs):
for org in orgs:
for repo in hub.organization(org).repositories():
if repo.fork:
LOGGER.debug("Skipping %s because it is a fork", repo.full_name)
else:
yield repo
def iter_openedx_yaml(hub, orgs, branches=None):
for repo in iter_nonforks(hub, orgs):
for branch in (branches or [repo.default_branch]):
try:
contents = repo.file_contents(OPEN_EDX_YAML, ref=branch)
except NotFoundError:
contents = None
if contents is not None:
LOGGER.debug("Found openedx.yaml at %s:%s", repo.full_name, branch)
try:
data = yaml.safe_load(contents.decoded)
except Exception as exc:
LOGGER.error("Couldn't parse openedx.yaml from %s:%s, skipping repo", repo.full_name, branch, exc_info=True)
else:
if data is not None:
yield repo, data
break
class Person:
def __init__(self, username, name, email, agreement, email_ok=True,
other_emails=None, institution=None, committer=None, jira=None,
comments=None, expires_on=None, before=None, beta=None,
is_robot=None,
):
self.username = username
self.name = name
self.email = email
self.email_ok = email_ok
self.other_emails = other_emails
self.agreement = agreement
self.institution = institution
self.committer = committer
self.jira = jira
self.comments = comments
self.expires_on = expires_on
self.before = before
self.beta = beta
self.is_robot = is_robot
@classmethod
def from_yaml(cls, username, yaml_data):
return cls(username=username, **yaml_data)
|
Apache License 2.0
|
mayank-git-hub/ete-speech-recognition
|
pytorch_backend/nets_utils.py
|
pad_list
|
python
|
def pad_list(xs, pad_value):
n_batch = len(xs)
max_len = max(x.size(0) for x in xs)
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
for i in range(n_batch):
pad[i, :xs[i].size(0)] = xs[i]
return pad
|
Function to pad values
:param list xs: list of torch.Tensor [(L_1, D), (L_2, D), ..., (L_B, D)]
:param float pad_value: value for padding
:return: padded tensor (B, Lmax, D)
:rtype: torch.Tensor
|
https://github.com/mayank-git-hub/ete-speech-recognition/blob/7c768c67c738a7c6c404f18e215c0d8e81bb21ce/pytorch_backend/nets_utils.py#L18-L33
|
import numpy as np
import torch
def to_device(m, x):
assert isinstance(m, torch.nn.Module)
device = next(m.parameters()).device
return x.to(device)
|
Apache License 2.0
|
getsenic/gatt-python
|
gatt/gatt_linux.py
|
DeviceManager.stop_discovery
|
python
|
def stop_discovery(self):
try:
self._adapter.StopDiscovery()
except dbus.exceptions.DBusException as e:
if (e.get_dbus_name() == 'org.bluez.Error.Failed') and (e.get_dbus_message() == 'No discovery started'):
pass
else:
raise _error_from_dbus_error(e)
|
Stops the discovery started with `start_discovery`
|
https://github.com/getsenic/gatt-python/blob/e1b147d54ff199571b6c0b43bdd3a9e1ce03850c/gatt/gatt_linux.py#L151-L161
|
try:
import dbus
import dbus.mainloop.glib
except ImportError:
import sys
print("Module 'dbus' not found")
print("Please run: sudo apt-get install python3-dbus")
print("See also: https://github.com/getsenic/gatt-python#installing-gatt-sdk-for-python")
sys.exit(1)
import re
from gi.repository import GObject
from . import errors
dbus.mainloop.glib.DBusGMainLoop(set_as_default=True)
dbus.mainloop.glib.threads_init()
class DeviceManager:
def __init__(self, adapter_name):
self.listener = None
self.adapter_name = adapter_name
self._bus = dbus.SystemBus()
try:
adapter_object = self._bus.get_object('org.bluez', '/org/bluez/' + adapter_name)
except dbus.exceptions.DBusException as e:
raise _error_from_dbus_error(e)
object_manager_object = self._bus.get_object("org.bluez", "/")
self._adapter = dbus.Interface(adapter_object, 'org.bluez.Adapter1')
self._adapter_properties = dbus.Interface(self._adapter, 'org.freedesktop.DBus.Properties')
self._object_manager = dbus.Interface(object_manager_object, "org.freedesktop.DBus.ObjectManager")
self._device_path_regex = re.compile('^/org/bluez/' + adapter_name + '/dev((_[A-Z0-9]{2}){6})$')
self._devices = {}
self._discovered_devices = {}
self._interface_added_signal = None
self._properties_changed_signal = None
self._main_loop = None
self.update_devices()
@property
def is_adapter_powered(self):
return self._adapter_properties.Get('org.bluez.Adapter1', 'Powered') == 1
@is_adapter_powered.setter
def is_adapter_powered(self, powered):
return self._adapter_properties.Set('org.bluez.Adapter1', 'Powered', dbus.Boolean(powered))
def run(self):
if self._main_loop:
return
self._interface_added_signal = self._bus.add_signal_receiver(
self._interfaces_added,
dbus_interface='org.freedesktop.DBus.ObjectManager',
signal_name='InterfacesAdded')
self._properties_changed_signal = self._bus.add_signal_receiver(
self._properties_changed,
dbus_interface=dbus.PROPERTIES_IFACE,
signal_name='PropertiesChanged',
arg0='org.bluez.Device1',
path_keyword='path')
def disconnect_signals():
for device in self._devices.values():
device.invalidate()
self._properties_changed_signal.remove()
self._interface_added_signal.remove()
self._main_loop = GObject.MainLoop()
try:
self._main_loop.run()
disconnect_signals()
except Exception:
disconnect_signals()
raise
def stop(self):
if self._main_loop:
self._main_loop.quit()
self._main_loop = None
def _manage_device(self, device):
existing_device = self._devices.get(device.mac_address)
if existing_device is not None:
existing_device.invalidate()
self._devices[device.mac_address] = device
def update_devices(self):
managed_objects = self._object_manager.GetManagedObjects().items()
possible_mac_addresses = [self._mac_address(path) for path, _ in managed_objects]
mac_addresses = [m for m in possible_mac_addresses if m is not None]
new_mac_addresses = [m for m in mac_addresses if m not in self._devices]
for mac_address in new_mac_addresses:
self.make_device(mac_address)
def devices(self):
self.update_devices()
return self._devices.values()
def start_discovery(self, service_uuids=[]):
discovery_filter = {'Transport': 'le'}
if service_uuids:
discovery_filter['UUIDs'] = service_uuids
try:
self._adapter.SetDiscoveryFilter(discovery_filter)
self._adapter.StartDiscovery()
except dbus.exceptions.DBusException as e:
if e.get_dbus_name() == 'org.bluez.Error.NotReady':
raise errors.NotReady(
"Bluetooth adapter not ready. "
"Set `is_adapter_powered` to `True` or run 'echo \"power on\" | sudo bluetoothctl'.")
if e.get_dbus_name() == 'org.bluez.Error.InProgress':
pass
else:
raise _error_from_dbus_error(e)
|
MIT License
|
tilezen/tilequeue
|
tilequeue/query/postgres.py
|
make_db_data_fetcher
|
python
|
def make_db_data_fetcher(postgresql_conn_info, template_path, reload_templates,
query_cfg, io_pool):
sources = parse_source_data(query_cfg)
queries_generator = make_queries_generator(
sources, template_path, reload_templates)
return DataFetcher(
postgresql_conn_info, queries_generator, io_pool)
|
Returns an object which is callable with the zoom and unpadded bounds and
which returns a list of rows.
|
https://github.com/tilezen/tilequeue/blob/911e618a3162877aea1c13fb0e2632c264c8e724/tilequeue/query/postgres.py#L279-L290
|
from collections import namedtuple
from jinja2 import Environment
from jinja2 import FileSystemLoader
from psycopg2.extras import RealDictCursor
from tilequeue.query import DBConnectionPool
from tilequeue.transform import calculate_padded_bounds
import sys
TemplateSpec = namedtuple('TemplateSpec', 'template start_zoom end_zoom')
DataSource = namedtuple('DataSource', 'name template_specs')
class TemplateFinder(object):
def __init__(self, jinja_environment, cache_templates=False):
self.environment = jinja_environment
self.cache_templates = cache_templates
if cache_templates:
self.template_cache = {}
def __call__(self, source_name):
template = None
if self.cache_templates:
template = self.template_cache.get(source_name)
if not template:
template = self.environment.get_template(source_name)
if self.cache_templates:
self.template_cache[source_name] = template
return template
class TemplateQueryGenerator(object):
def __init__(self, template_finder):
self.template_finder = template_finder
def __call__(self, source, bounds, zoom):
template = self.template_finder(source)
padded_bounds = dict(
polygon=bounds,
line=bounds,
point=bounds,
)
query = template.render(bounds=padded_bounds, zoom=zoom)
return query
class SourcesQueriesGenerator(object):
def __init__(self, sources, query_generator):
self.sources = sources
self.query_generator = query_generator
def __call__(self, zoom, bounds):
queries = []
for source in self.sources:
template_queries = []
for template_spec in source.template_specs:
if template_spec.start_zoom <= zoom < template_spec.end_zoom:
template_query = self.query_generator(
template_spec.template, bounds, zoom)
template_queries.append(template_query)
if template_queries:
source_query = '\nUNION ALL\n'.join(template_queries)
queries.append(source_query)
return queries
def jinja_filter_geometry(value):
return 'ST_AsBinary(%s)' % value
def jinja_filter_bbox_filter(bounds, geometry_col_name, srid=3857):
min_point = 'ST_MakePoint(%.12f, %.12f)' % (bounds[0], bounds[1])
max_point = 'ST_MakePoint(%.12f, %.12f)' % (bounds[2], bounds[3])
bbox_no_srid = 'ST_MakeBox2D(%s, %s)' % (min_point, max_point)
bbox = 'ST_SetSrid(%s, %d)' % (bbox_no_srid, srid)
bbox_filter = '%s && %s' % (geometry_col_name, bbox)
return bbox_filter
def jinja_filter_bbox_intersection(bounds, geometry_col_name, srid=3857):
min_point = 'ST_MakePoint(%.12f, %.12f)' % (bounds[0], bounds[1])
max_point = 'ST_MakePoint(%.12f, %.12f)' % (bounds[2], bounds[3])
bbox_no_srid = 'ST_MakeBox2D(%s, %s)' % (min_point, max_point)
bbox = 'ST_SetSrid(%s, %d)' % (bbox_no_srid, srid)
bbox_intersection = 'st_intersection(%s, %s)' % (geometry_col_name, bbox)
return bbox_intersection
def jinja_filter_bbox_padded_intersection(
bounds, geometry_col_name, pad_factor=1.1, srid=3857):
padded_bounds = calculate_padded_bounds(pad_factor, bounds)
return jinja_filter_bbox_intersection(
padded_bounds.bounds, geometry_col_name, srid)
def jinja_filter_bbox(bounds, srid=3857):
min_point = 'ST_MakePoint(%.12f, %.12f)' % (bounds[0], bounds[1])
max_point = 'ST_MakePoint(%.12f, %.12f)' % (bounds[2], bounds[3])
bbox_no_srid = 'ST_MakeBox2D(%s, %s)' % (min_point, max_point)
bbox = 'ST_SetSrid(%s, %d)' % (bbox_no_srid, srid)
return bbox
def jinja_filter_bbox_overlaps(bounds, geometry_col_name, srid=3857):
min_point = 'ST_MakePoint(%.12f, %.12f)' % (bounds[0], bounds[1])
max_point = 'ST_MakePoint(%.12f, %.12f)' % (bounds[2], bounds[3])
bbox_no_srid = 'ST_MakeBox2D(%s, %s)' % (min_point, max_point)
bbox = 'ST_SetSrid(%s, %d)' % (bbox_no_srid, srid)
bbox_filter = '((%(col)s && %(bbox)s) AND (' ' st_overlaps(%(col)s, %(bbox)s) OR' ' st_contains(%(bbox)s, %(col)s)' '))' % dict(col=geometry_col_name, bbox=bbox)
return bbox_filter
def execute_query(conn, query):
try:
cursor = conn.cursor(cursor_factory=RealDictCursor)
cursor.execute(query)
rows = list(cursor.fetchall())
return rows
except Exception:
try:
conn.close()
except Exception:
pass
raise
class DataFetchException(Exception):
def __init__(self, exceptions):
self.exceptions = exceptions
msgs = ', '.join([x.message for x in exceptions])
super(DataFetchException, self).__init__(msgs)
class DataFetcher(object):
def __init__(self, conn_info, queries_generator, io_pool):
self.conn_info = dict(conn_info)
self.queries_generator = queries_generator
self.io_pool = io_pool
self.dbnames = self.conn_info.pop('dbnames')
self.dbnames_query_index = 0
self.sql_conn_pool = DBConnectionPool(
self.dbnames, self.conn_info)
def fetch_tiles(self, all_data):
for data in all_data:
yield self, data
def __call__(self, zoom, unpadded_bounds):
queries = self.queries_generator(zoom, unpadded_bounds)
n_conns = len(queries)
assert n_conns, 'no queries'
with self.sql_conn_pool.get_conns(n_conns) as sql_conns:
async_results = []
for query, conn in zip(queries, sql_conns):
async_result = self.io_pool.apply_async(
execute_query, (conn, query))
async_results.append(async_result)
all_source_rows = []
async_exceptions = []
for async_result in async_results:
try:
source_rows = async_result.get()
all_source_rows.extend(source_rows)
except Exception:
exc_type, exc_value, exc_traceback = sys.exc_info()
async_exception = exc_value
async_exceptions.append(async_exception)
continue
if async_exceptions:
raise DataFetchException(async_exceptions)
read_rows = []
for row in all_source_rows:
read_row = {}
for k, v in row.items():
if isinstance(v, buffer):
v = bytes(v)
if v is not None:
read_row[k] = v
read_rows.append(read_row)
return read_rows
def make_jinja_environment(template_path):
environment = Environment(loader=FileSystemLoader(template_path))
environment.filters['geometry'] = jinja_filter_geometry
environment.filters['bbox_filter'] = jinja_filter_bbox_filter
environment.filters['bbox_intersection'] = jinja_filter_bbox_intersection
environment.filters['bbox_padded_intersection'] = (
jinja_filter_bbox_padded_intersection)
environment.filters['bbox'] = jinja_filter_bbox
environment.filters['bbox_overlaps'] = jinja_filter_bbox_overlaps
return environment
def make_queries_generator(sources, template_path, reload_templates):
jinja_environment = make_jinja_environment(template_path)
cache_templates = not reload_templates
template_finder = TemplateFinder(jinja_environment, cache_templates)
query_generator = TemplateQueryGenerator(template_finder)
queries_generator = SourcesQueriesGenerator(sources, query_generator)
return queries_generator
def parse_source_data(queries_cfg):
sources_cfg = queries_cfg['sources']
sources = []
for source_name, templates in sources_cfg.items():
template_specs = []
for template_data in templates:
template = template_data['template']
start_zoom = int(template_data.get('start_zoom', 0))
end_zoom = int(template_data.get('end_zoom', 21))
template_spec = TemplateSpec(template, start_zoom, end_zoom)
template_specs.append(template_spec)
source = DataSource(source_name, template_specs)
sources.append(source)
return sources
|
MIT License
|
sheynkman-lab/long-read-proteogenomics
|
modules/visualization_track/src/make_pacbio_cds_gtf.py
|
make_pacbio_cds_gtf
|
python
|
def make_pacbio_cds_gtf(sample_gtf, refined_orfs, called_orfs, pb_gene, name, include_transcript):
refined_db = pd.read_table(refined_orfs)
representative_accessions = refined_db['base_acc'].to_list()
gtf = gtfparse.read_gtf(sample_gtf)
gtf = gtf[['seqname', 'feature', 'start', 'end', 'strand', 'transcript_id']]
gtf = gtf[gtf['feature'] == 'exon']
gtf.columns = ['chr', 'feat', 'start', 'end', 'strand', 'acc']
gtf = gtf[gtf.acc.isin(representative_accessions)]
pbs = defaultdict(lambda: ['chr', 'strand', [], [], [],[]])
for i, row in gtf.iterrows():
chr, feat, start, end, strand, acc = row
pbs[acc][0] = chr
pbs[acc][1] = strand
pbs[acc][2].append([int(start), int(end)])
for acc, infos in pbs.items():
strand = infos[1]
if strand == '+':
infos[2] = sorted(infos[2])
elif strand == '-':
infos[2] = sorted(infos[2], reverse=True)
infos[3] = np.array([end-start+1 for [start, end] in infos[2]])
infos[4] = np.cumsum(infos[3])
infos[5] = infos[4] - infos[3]
ranges = pd.read_table(called_orfs)[['pb_acc', 'orf_start', 'orf_end']]
ranges = pd.merge(
ranges, refined_db[['base_acc', 'CPM']],
left_on='pb_acc',
right_on='base_acc',
how='inner')
ranges = ranges[['pb_acc', 'orf_start', 'orf_end', 'CPM']]
pb_gene = pd.read_table(pb_gene)
pb_gene = pd.Series(pb_gene.gene.values, index=pb_gene.pb_acc).to_dict()
with open(f"{name}_with_cds.gtf", 'w') as ofile:
for i, row in ranges.iterrows():
acc, orf_start, orf_end, cpm = row
cpm = round(cpm)
orf_end = orf_end - 3
if acc in pbs:
if acc in pb_gene.keys():
gene = pb_gene[acc]
else:
gene = '-'
if gene == '-': continue
infos = pbs[acc]
chr, strand, coords, blens, cblens, pblens = infos
logger.info(f"\n{acc}\t{strand}\n{orf_start} - {orf_end}\n{blens}\n{cblens}")
i1, delta1 = get_first_block_index(orf_start, cblens, pblens)
i2, delta2 = get_first_block_index(orf_end, cblens, pblens)
if strand == '+':
orf_coords = make_cds_coords_positive_strand(i1, delta1, i2, delta2, coords)
elif strand == '-':
orf_coords = make_cds_coords_negative_strand(i1, delta1, i2, delta2, coords)
acc_w_gene_w_cpm = gene + '|' + acc + '|' + str(cpm)
out_acc = f'gene_id "{gene}"; transcript_id "{acc_w_gene_w_cpm}";'
if include_transcript:
tstart, tend = get_min_and_max_coords_from_exon_chain(coords)
ofile.write('\t'.join([chr, 'hg38_canon', 'transcript', str(tstart), str(tend), '.', strand, '.', out_acc]) + '\n')
for [start, end] in coords:
ofile.write('\t'.join([chr, 'hg38_canon', 'exon', str(start), str(end), '.', strand, '.', out_acc]) + '\n')
for [start, end] in orf_coords:
ofile.write('\t'.join([chr, 'hg38_canon', 'CDS', str(start), str(end), '.', strand, '.', out_acc]) + '\n')
|
Makes PacBio CDS and saves file with CDS
Args:
sample_gtf (filename): sample_gtf file
refined_orfs (filename): aggregate_orf info. from Refined DB
called_orfs (filename): orf calls from ORF_Calling
pb_gene (filename): PacBio gene name cross reference
name (string): name of sample
include_transcript (bool): whether to include transcript in saved gtf file
|
https://github.com/sheynkman-lab/long-read-proteogenomics/blob/0845d0c6b9ecfc07d5893e52ef1b5a83457df3e2/modules/visualization_track/src/make_pacbio_cds_gtf.py#L188-L285
|
import pandas as pd
import numpy as np
from collections import defaultdict
import copy
import argparse
import gtfparse
import logging
logger = logging.getLogger('cds_logger')
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler('make_pacbio_cds.log')
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
ch.setFormatter(formatter)
fh.setFormatter(formatter)
logger.addHandler(ch)
logger.addHandler(fh)
def string_to_boolean(string):
if isinstance(string, bool):
return str
if string.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif string.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_first_block_index(orf_coord, cblens, pblens):
for i, cblen in enumerate(cblens):
if orf_coord <= cblen:
delta = cblen - orf_coord
return i, delta
logger.warning(f"ORF COORDINATE IS NOT FOUND WITHIN BLOCKS")
return i, 0
def make_cds_coords_positive_strand(i1, delta1, i2, delta2, coords):
orf_coords = copy.deepcopy(coords)
orf_coords = orf_coords[i1: i2+1]
orf_coords[0][0] = orf_coords[0][1] - delta1
orf_coords[-1][1] = orf_coords[-1][1] - delta2
return orf_coords
def make_cds_coords_negative_strand(i1, delta1, i2, delta2, coords):
orf_coords = copy.deepcopy(coords)
orf_coords = orf_coords[i1: i2+1]
orf_coords[0][1] = orf_coords[0][0] + delta1
orf_coords[-1][0] = orf_coords[-1][0] + delta2
return orf_coords
def ceiling_cpm(cpm, ceiling = 1000):
if cpm > ceiling:
return ceiling
else:
return cpm
def get_min_and_max_coords_from_exon_chain(coords):
min_coord = min(map(min, coords))
max_coord = max(map(max, coords))
return min_coord, max_coord
|
MIT License
|
clusterhq/flocker
|
flocker/apiclient/_client.py
|
IFlockerAPIV1Client.create_container
|
python
|
def create_container(node_uuid, name, image, volumes=None):
|
:param UUID node_uuid: The ``UUID`` of the node where the container
will be started.
:param unicode name: The name to assign to the container.
:param DockerImage image: The Docker image which the container will
run.
:param Optional[Sequence[MountedDataset]] volumes: Volumes to mount on
container.
:return: ``Deferred`` firing with the configured ``Container`` or
``ContainerAlreadyExists`` if the supplied container name already
exists.
|
https://github.com/clusterhq/flocker/blob/eaa586248986d7cd681c99c948546c2b507e44de/flocker/apiclient/_client.py#L355-L368
|
from uuid import UUID, uuid4
from json import dumps
from datetime import datetime
from os import environ
from ipaddr import IPv4Address, IPv6Address, IPAddress
from pytz import UTC
from zope.interface import Interface, implementer
from pyrsistent import PClass, field, pmap_field, pmap
from eliot import ActionType, Field
from eliot.twisted import DeferredContext
from twisted.internet.defer import succeed, fail
from twisted.python.filepath import FilePath
from twisted.web.http import (
CREATED, OK, CONFLICT, NOT_FOUND, PRECONDITION_FAILED,
)
from twisted.internet.utils import getProcessOutput
from twisted.internet.task import deferLater
from treq import json_content, content
from ..ca import treq_with_authentication
from ..control import Leases as LeasesModel, LeaseError, DockerImage
from ..common import retry_failure
from .. import __version__
_LOG_HTTP_REQUEST = ActionType(
"flocker:apiclient:http_request",
[Field.forTypes("url", [bytes, unicode], "Request URL."),
Field.forTypes("method", [bytes, unicode], "Request method."),
Field("request_body", lambda o: o, "Request JSON body.")],
[Field.forTypes("response_code", [int], "Response code."),
Field("response_body", lambda o: o, "JSON response body.")],
"A HTTP request.")
_LOG_CONDITIONAL_CREATE = ActionType(
u"flocker:apiclient:conditional_create", [], [],
u"Conditionally create a dataset.")
NoneType = type(None)
class ServerResponseMissingElementError(Exception):
def __init__(self, key, response):
message = u'{!r} not found in {!r}'.format(key, response)
Exception.__init__(self, message)
class Dataset(PClass):
dataset_id = field(type=UUID, mandatory=True)
primary = field(type=UUID, mandatory=True)
maximum_size = field(type=(int, NoneType), mandatory=True)
metadata = pmap_field(unicode, unicode)
class DatasetState(PClass):
dataset_id = field(type=UUID, mandatory=True)
primary = field(type=(UUID, NoneType), mandatory=True)
maximum_size = field(type=(int, NoneType), mandatory=True)
path = field(type=(FilePath, NoneType), mandatory=True)
class Lease(PClass):
dataset_id = field(type=UUID, mandatory=True)
node_uuid = field(type=UUID, mandatory=True)
expires = field(type=(float, int, NoneType), mandatory=True)
class MountedDataset(PClass):
dataset_id = field(type=UUID, mandatory=True)
mountpoint = field(type=unicode, mandatory=True)
def _parse_volumes(data_list):
if data_list:
return [
MountedDataset(
dataset_id=UUID(data[u'dataset_id']),
mountpoint=data[u'mountpoint'],
) for data in data_list
]
else:
return None
class Container(PClass):
node_uuid = field(type=UUID, mandatory=True)
name = field(type=unicode, mandatory=True)
image = field(type=DockerImage, mandatory=True)
volumes = field(initial=None)
class ContainerState(PClass):
node_uuid = field(type=UUID, mandatory=True)
name = field(type=unicode, mandatory=True)
image = field(type=DockerImage, mandatory=True)
running = field(type=bool, mandatory=True)
volumes = field(initial=None, mandatory=True)
class Node(PClass):
uuid = field(type=UUID, mandatory=True)
public_address = field(
type=(IPv4Address, IPv6Address),
mandatory=True,
)
class DatasetAlreadyExists(Exception):
class LeaseAlreadyHeld(Exception):
class ContainerAlreadyExists(Exception):
class ConfigurationChanged(Exception):
class DatasetsConfiguration(PClass):
tag = field(mandatory=True)
datasets = pmap_field(UUID, Dataset)
def __iter__(self):
return self.datasets.itervalues()
class IFlockerAPIV1Client(Interface):
def create_dataset(primary, maximum_size=None, dataset_id=None,
metadata=pmap(), configuration_tag=None):
def move_dataset(primary, dataset_id, configuration_tag=None):
def delete_dataset(dataset_id, configuration_tag=None):
def list_datasets_configuration():
def list_datasets_state():
def acquire_lease(dataset_id, node_uuid, expires):
def release_lease(dataset_id):
def list_leases():
def version():
def list_nodes():
|
Apache License 2.0
|
prompt-toolkit/ptterm
|
ptterm/process.py
|
Process.write_key
|
python
|
def write_key(self, key):
data = prompt_toolkit_key_to_vt100_key(
key, application_mode=self.screen.in_application_mode)
self.write_input(data)
|
Write prompt_toolkit Key.
|
https://github.com/prompt-toolkit/ptterm/blob/e104399e67628809511493a9d2423a9b13ffaf46/ptterm/process.py#L128-L134
|
from __future__ import unicode_literals
from prompt_toolkit.document import Document
from prompt_toolkit.eventloop import get_event_loop
from prompt_toolkit.utils import is_windows
from six.moves import range
from six import text_type
from .key_mappings import prompt_toolkit_key_to_vt100_key
from .screen import BetterScreen
from .stream import BetterStream
import os
import time
__all__ = (
'Process',
)
def create_terminal(command, before_exec_func):
if is_windows():
from .backends.win32 import Win32Terminal
return Win32Terminal()
else:
from .backends.posix import PosixTerminal
return PosixTerminal.from_command(command, before_exec_func=before_exec_func)
class Process(object):
def __init__(self, invalidate, command=None, before_exec_func=None,
bell_func=None, done_callback=None, has_priority=None):
assert callable(invalidate)
assert bell_func is None or callable(bell_func)
assert done_callback is None or callable(done_callback)
assert has_priority is None or callable(has_priority)
self.loop = get_event_loop()
self.invalidate = invalidate
self.done_callback = done_callback
self.has_priority = has_priority or (lambda: True)
self.suspended = False
self._reader_connected = False
self.terminal = create_terminal(command, before_exec_func=before_exec_func)
self.terminal.add_input_ready_callback(self._read)
if done_callback is not None:
self.terminal.ready_f.add_done_callback(lambda _: done_callback())
self.sx = 0
self.sy = 0
self.screen = BetterScreen(self.sx, self.sy,
write_process_input=self.write_input,
bell_func=bell_func)
self.stream = BetterStream(self.screen)
self.stream.attach(self.screen)
def start(self):
self.set_size(120, 24)
self.terminal.start()
self.terminal.connect_reader()
def set_size(self, width, height):
assert isinstance(width, int)
assert isinstance(height, int)
if (self.sx, self.sy) != (width, height):
self.terminal.set_size(width, height)
self.screen.resize(lines=height, columns=width)
self.screen.lines = height
self.screen.columns = width
self.sx = width
self.sy = height
def write_input(self, data, paste=False):
if paste and self.screen.bracketed_paste_enabled:
data = '\x1b[200~' + data + '\x1b[201~'
self.terminal.write_text(data)
|
BSD 3-Clause New or Revised License
|
flipperpa/peregrine
|
peregrine/templatetags/peregrine.py
|
settings_value
|
python
|
def settings_value(name):
return getattr(settings, name, None)
|
Allows a value from Django's settings to be included in a template tag.
|
https://github.com/flipperpa/peregrine/blob/1ba17753e83f84b38d0dc3bb8bc9f862e48372a7/peregrine/templatetags/peregrine.py#L88-L92
|
from django import template
from django.conf import settings
from wagtail.core.models import Site
from ..models import SitePost
register = template.Library()
@register.simple_tag(takes_context=True)
def get_site_root(context):
return Site.find_for_request(context["request"]).root_page
def has_menu_children(page):
return page.get_children().live().in_menu().exists()
@register.inclusion_tag("peregrine/tags/top_menu.html", takes_context=True)
def top_menu(context, parent, calling_page=None):
menu_items = (
parent.get_children()
.filter(
live=True,
show_in_menus=True,
)
.exclude(
content_type__model="sitepost",
)
)
for menu_item in menu_items:
menu_item.show_dropdown = has_menu_children(menu_item)
return {
"calling_page": calling_page,
"menu_items": menu_items,
"request": context["request"],
}
@register.inclusion_tag("peregrine/tags/top_menu_children.html", takes_context=True)
def top_menu_children(context, parent):
menu_items_children = parent.get_children()
menu_items_children = menu_items_children.live().in_menu()
return {
"parent": parent,
"menu_items_children": menu_items_children,
"request": context["request"],
}
@register.inclusion_tag("peregrine/tags/top_menu_posts.html", takes_context=True)
def top_menu_posts(context):
posts = SitePost.objects.filter(live=True, show_in_menus=True,).order_by(
"-post_date",
)[:10]
show_posts = posts.count() > 0
return {
"posts": posts,
"show_posts": show_posts,
}
@register.simple_tag
|
BSD 3-Clause New or Revised License
|
vs-uulm/nemesys
|
src/nemere/visualization/simplePrint.py
|
resolveIdx2Seg
|
python
|
def resolveIdx2Seg(dc: DistanceCalculator, segseq: Sequence[Sequence[int]]):
print(tabulate([[dc.segments[s].bytes.hex() if s != -1 else None for s in m]
for m in segseq], disable_numparse=True, headers=range(len(segseq[0]))))
|
Prints tabulated hex representations of (aligned) sequences of indices.
:param dc: DistanceCalculator to use for resolving indices to MessageSegment objects.
:param segseq: list of segment indices (from raw segment list) per message.
|
https://github.com/vs-uulm/nemesys/blob/4087944180b55f2e33f474b4785c03755f42a858/src/nemere/visualization/simplePrint.py#L69-L77
|
from itertools import chain
from time import strftime
from typing import Tuple, Iterable, Sequence, Dict, List, Union
from tabulate import tabulate
from netzob.Common.Utils.MatrixList import MatrixList
from netzob.Model.Vocabulary.Messages.AbstractMessage import AbstractMessage
from nemere.inference.segments import MessageSegment
from nemere.inference.templates import DistanceCalculator, Template
from nemere.validation.dissectorMatcher import MessageComparator
from nemere.visualization import bcolors as bcolors
def printMatrix(lines: Iterable[Iterable], headers: Iterable=None):
ml = MatrixList()
if headers:
ml.headers = headers
strlines = [ [ "{:0.3f}".format(cell) if isinstance(cell, float) else str(cell) for cell in row] for row in lines ]
ml.extend(strlines)
print(ml)
def alignDescreteValues(listA: list, listB: list) -> Tuple[list, list]:
rest = listB.copy()
newA = list()
newB = list()
for valA in listA:
consume = 0
while len(rest) > consume and rest[consume] <= valA:
consume += 1
if consume == 0:
newA.append(valA)
newB.append(None)
if consume > 0:
newA.extend([None]*(consume-1) + [valA])
newB.extend(rest[:consume])
rest = rest[consume:]
if len(rest) > 0:
newA.extend([None]*len(rest))
newB.extend(rest)
return newA, newB
def tabuSeqOfSeg(sequence: Sequence[Sequence[MessageSegment]]):
print(tabulate(((sg.bytes.hex() if sg is not None else '' for sg in msg) for msg in sequence),
headers=range(len(sequence[0])), showindex="always", disable_numparse=True))
|
MIT License
|
mikeshardmind/sinbadcogs
|
quotetools/quotetools.py
|
QuoteTools.quote
|
python
|
async def quote(
self, ctx, channels: commands.Greedy[GlobalTextChannel] = None, *messageids: int
):
if not messageids or not channels:
return await ctx.send_help()
chans = [c.matched_channel for c in channels]
msgs = await find_messages(ctx, messageids, chans)
if not msgs:
return await ctx.maybe_send_embed("No matching message found.")
for m in msgs:
if await ctx.embed_requested():
em = embed_from_msg(m)
await ctx.send(embed=em)
else:
msg1 = "\n".join(
[
f"Author: {m.author}({m.author.id})",
f"Channel: <#{m.channel.id}>",
f"Time(UTC): {m.created_at.isoformat()}",
]
)
if len(msg1) + len(m.clean_content) < 2000:
await ctx.send(msg1 + m.clean_content)
else:
await ctx.send(msg1)
await ctx.send(m.clean_content)
|
gets (a) message(s) by ID(s)
User must be able to see the message(s)
You need to specify specific channels to search (by ID or mention only!)
|
https://github.com/mikeshardmind/sinbadcogs/blob/e9353fb63f18f5c2025e177f89b028aa7ac7a63d/quotetools/quotetools.py#L72-L108
|
from __future__ import annotations
import re
from typing import NamedTuple
import discord
from redbot.core import commands
from .helpers import embed_from_msg, find_messages
CHANNEL_RE = re.compile(r"^<#(\d{15,21})>$|^(\d{15,21})$")
class GlobalTextChannel(NamedTuple):
matched_channel: discord.TextChannel
@classmethod
async def convert(cls, ctx: commands.Context, argument: str):
bot = ctx.bot
match = CHANNEL_RE.match(argument)
channel = None
if match:
idx = next(filter(None, match.groups()), None)
if idx:
channel_id = int(idx)
channel = bot.get_channel(channel_id)
if not channel or not isinstance(channel, discord.TextChannel):
raise commands.BadArgument('Channel "{}" not found.'.format(argument))
return cls(channel)
class QuoteTools(commands.Cog):
__author__ = "mikeshardmind(Sinbad)"
__version__ = "2021.03"
async def red_delete_data_for_user(self, **kwargs):
return
def format_help_for_context(self, ctx):
pre_processed = super().format_help_for_context(ctx)
return f"{pre_processed}\nCog Version: {self.__version__}"
def __init__(self, bot, *args, **kwargs):
super().__init__(*args, **kwargs)
self.bot = bot
@commands.command()
|
Apache License 2.0
|
svn2github/gyp
|
pylib/gyp/generator/ninja.py
|
NinjaWriter.WriteActionsRulesCopies
|
python
|
def WriteActionsRulesCopies(self, spec, extra_sources, prebuild,
mac_bundle_depends):
outputs = []
if self.is_mac_bundle:
mac_bundle_resources = spec.get('mac_bundle_resources', [])[:]
else:
mac_bundle_resources = []
extra_mac_bundle_resources = []
if 'actions' in spec:
outputs += self.WriteActions(spec['actions'], extra_sources, prebuild,
extra_mac_bundle_resources)
if 'rules' in spec:
outputs += self.WriteRules(spec['rules'], extra_sources, prebuild,
mac_bundle_resources,
extra_mac_bundle_resources)
if 'copies' in spec:
outputs += self.WriteCopies(spec['copies'], prebuild, mac_bundle_depends)
if 'sources' in spec and self.flavor == 'win':
outputs += self.WriteWinIdlFiles(spec, prebuild)
stamp = self.WriteCollapsedDependencies('actions_rules_copies', outputs)
if self.is_mac_bundle:
xcassets = self.WriteMacBundleResources(
extra_mac_bundle_resources + mac_bundle_resources, mac_bundle_depends)
partial_info_plist = self.WriteMacXCassets(xcassets, mac_bundle_depends)
self.WriteMacInfoPlist(partial_info_plist, mac_bundle_depends)
return stamp
|
Write out the Actions, Rules, and Copies steps. Return a path
representing the outputs of these steps.
|
https://github.com/svn2github/gyp/blob/e0ee72ddc7fb97eb33d530cf684efcbe4d27ecb3/pylib/gyp/generator/ninja.py#L540-L572
|
import collections
import copy
import hashlib
import json
import multiprocessing
import os.path
import re
import signal
import subprocess
import sys
import gyp
import gyp.common
from gyp.common import OrderedSet
import gyp.msvs_emulation
import gyp.MSVSUtil as MSVSUtil
import gyp.xcode_emulation
from cStringIO import StringIO
from gyp.common import GetEnvironFallback
import gyp.ninja_syntax as ninja_syntax
generator_default_variables = {
'EXECUTABLE_PREFIX': '',
'EXECUTABLE_SUFFIX': '',
'STATIC_LIB_PREFIX': 'lib',
'STATIC_LIB_SUFFIX': '.a',
'SHARED_LIB_PREFIX': 'lib',
'INTERMEDIATE_DIR': '$!INTERMEDIATE_DIR',
'SHARED_INTERMEDIATE_DIR': '$!PRODUCT_DIR/gen',
'PRODUCT_DIR': '$!PRODUCT_DIR',
'CONFIGURATION_NAME': '$|CONFIGURATION_NAME',
'RULE_INPUT_ROOT': '${root}',
'RULE_INPUT_DIRNAME': '${dirname}',
'RULE_INPUT_PATH': '${source}',
'RULE_INPUT_EXT': '${ext}',
'RULE_INPUT_NAME': '${name}',
}
generator_additional_non_configuration_keys = []
generator_additional_path_sections = []
generator_extra_sources_for_rules = []
generator_filelist_paths = None
generator_supports_multiple_toolsets = (
os.environ.get('GYP_CROSSCOMPILE') or
os.environ.get('AR_host') or
os.environ.get('CC_host') or
os.environ.get('CXX_host') or
os.environ.get('AR_target') or
os.environ.get('CC_target') or
os.environ.get('CXX_target'))
def StripPrefix(arg, prefix):
if arg.startswith(prefix):
return arg[len(prefix):]
return arg
def QuoteShellArgument(arg, flavor):
if re.match(r'^[a-zA-Z0-9_=.\\/-]+$', arg):
return arg
if flavor == 'win':
return gyp.msvs_emulation.QuoteForRspFile(arg)
return "'" + arg.replace("'", "'" + '"\'"' + "'") + "'"
def Define(d, flavor):
if flavor == 'win':
d = d.replace('#', '\\%03o' % ord('#'))
return QuoteShellArgument(ninja_syntax.escape('-D' + d), flavor)
def AddArch(output, arch):
output, extension = os.path.splitext(output)
return '%s.%s%s' % (output, arch, extension)
class Target(object):
def __init__(self, type):
self.type = type
self.preaction_stamp = None
self.precompile_stamp = None
self.actions_stamp = None
self.binary = None
self.bundle = None
self.component_objs = None
self.import_lib = None
def Linkable(self):
return self.type in ('static_library', 'shared_library')
def UsesToc(self, flavor):
if flavor == 'win' or self.bundle:
return False
return self.type in ('shared_library', 'loadable_module')
def PreActionInput(self, flavor):
if self.UsesToc(flavor):
return self.FinalOutput() + '.TOC'
return self.FinalOutput() or self.preaction_stamp
def PreCompileInput(self):
return self.actions_stamp or self.precompile_stamp
def FinalOutput(self):
return self.bundle or self.binary or self.actions_stamp
class NinjaWriter(object):
def __init__(self, hash_for_rules, target_outputs, base_dir, build_dir,
output_file, toplevel_build, output_file_name, flavor,
toplevel_dir=None):
self.hash_for_rules = hash_for_rules
self.target_outputs = target_outputs
self.base_dir = base_dir
self.build_dir = build_dir
self.ninja = ninja_syntax.Writer(output_file)
self.toplevel_build = toplevel_build
self.output_file_name = output_file_name
self.flavor = flavor
self.abs_build_dir = None
if toplevel_dir is not None:
self.abs_build_dir = os.path.abspath(os.path.join(toplevel_dir,
build_dir))
self.obj_ext = '.obj' if flavor == 'win' else '.o'
if flavor == 'win':
self.win_env = {}
for arch in ('x86', 'x64'):
self.win_env[arch] = 'environment.' + arch
build_to_top = gyp.common.InvertRelativePath(build_dir, toplevel_dir)
self.build_to_base = os.path.join(build_to_top, base_dir)
base_to_top = gyp.common.InvertRelativePath(base_dir, toplevel_dir)
self.base_to_build = os.path.join(base_to_top, build_dir)
def ExpandSpecial(self, path, product_dir=None):
PRODUCT_DIR = '$!PRODUCT_DIR'
if PRODUCT_DIR in path:
if product_dir:
path = path.replace(PRODUCT_DIR, product_dir)
else:
path = path.replace(PRODUCT_DIR + '/', '')
path = path.replace(PRODUCT_DIR + '\\', '')
path = path.replace(PRODUCT_DIR, '.')
INTERMEDIATE_DIR = '$!INTERMEDIATE_DIR'
if INTERMEDIATE_DIR in path:
int_dir = self.GypPathToUniqueOutput('gen')
path = path.replace(INTERMEDIATE_DIR,
os.path.join(product_dir or '', int_dir))
CONFIGURATION_NAME = '$|CONFIGURATION_NAME'
path = path.replace(CONFIGURATION_NAME, self.config_name)
return path
def ExpandRuleVariables(self, path, root, dirname, source, ext, name):
if self.flavor == 'win':
path = self.msvs_settings.ConvertVSMacros(
path, config=self.config_name)
path = path.replace(generator_default_variables['RULE_INPUT_ROOT'], root)
path = path.replace(generator_default_variables['RULE_INPUT_DIRNAME'],
dirname)
path = path.replace(generator_default_variables['RULE_INPUT_PATH'], source)
path = path.replace(generator_default_variables['RULE_INPUT_EXT'], ext)
path = path.replace(generator_default_variables['RULE_INPUT_NAME'], name)
return path
def GypPathToNinja(self, path, env=None):
if env:
if self.flavor == 'mac':
path = gyp.xcode_emulation.ExpandEnvVars(path, env)
elif self.flavor == 'win':
path = gyp.msvs_emulation.ExpandMacros(path, env)
if path.startswith('$!'):
expanded = self.ExpandSpecial(path)
if self.flavor == 'win':
expanded = os.path.normpath(expanded)
return expanded
if '$|' in path:
path = self.ExpandSpecial(path)
assert '$' not in path, path
return os.path.normpath(os.path.join(self.build_to_base, path))
def GypPathToUniqueOutput(self, path, qualified=True):
path = self.ExpandSpecial(path)
assert not path.startswith('$'), path
obj = 'obj'
if self.toolset != 'target':
obj += '.' + self.toolset
path_dir, path_basename = os.path.split(path)
if qualified:
path_basename = self.name + '.' + path_basename
return os.path.normpath(os.path.join(obj, self.base_dir, path_dir,
path_basename))
def WriteCollapsedDependencies(self, name, targets, order_only=None):
assert targets == filter(None, targets), targets
if len(targets) == 0:
assert not order_only
return None
if len(targets) > 1 or order_only:
stamp = self.GypPathToUniqueOutput(name + '.stamp')
targets = self.ninja.build(stamp, 'stamp', targets, order_only=order_only)
self.ninja.newline()
return targets[0]
def _SubninjaNameForArch(self, arch):
output_file_base = os.path.splitext(self.output_file_name)[0]
return '%s.%s.ninja' % (output_file_base, arch)
def WriteSpec(self, spec, config_name, generator_flags):
self.config_name = config_name
self.name = spec['target_name']
self.toolset = spec['toolset']
config = spec['configurations'][config_name]
self.target = Target(spec['type'])
self.is_standalone_static_library = bool(
spec.get('standalone_static_library', 0))
self.uses_cpp = False
self.is_mac_bundle = gyp.xcode_emulation.IsMacBundle(self.flavor, spec)
self.xcode_settings = self.msvs_settings = None
if self.flavor == 'mac':
self.xcode_settings = gyp.xcode_emulation.XcodeSettings(spec)
if self.flavor == 'win':
self.msvs_settings = gyp.msvs_emulation.MsvsSettings(spec,
generator_flags)
arch = self.msvs_settings.GetArch(config_name)
self.ninja.variable('arch', self.win_env[arch])
self.ninja.variable('cc', '$cl_' + arch)
self.ninja.variable('cxx', '$cl_' + arch)
self.ninja.variable('cc_host', '$cl_' + arch)
self.ninja.variable('cxx_host', '$cl_' + arch)
if self.flavor == 'mac':
self.archs = self.xcode_settings.GetActiveArchs(config_name)
if len(self.archs) > 1:
self.arch_subninjas = dict(
(arch, ninja_syntax.Writer(
OpenOutput(os.path.join(self.toplevel_build,
self._SubninjaNameForArch(arch)),
'w')))
for arch in self.archs)
actions_depends = []
compile_depends = []
if 'dependencies' in spec:
for dep in spec['dependencies']:
if dep in self.target_outputs:
target = self.target_outputs[dep]
actions_depends.append(target.PreActionInput(self.flavor))
compile_depends.append(target.PreCompileInput())
actions_depends = filter(None, actions_depends)
compile_depends = filter(None, compile_depends)
actions_depends = self.WriteCollapsedDependencies('actions_depends',
actions_depends)
compile_depends = self.WriteCollapsedDependencies('compile_depends',
compile_depends)
self.target.preaction_stamp = actions_depends
self.target.precompile_stamp = compile_depends
extra_sources = []
mac_bundle_depends = []
self.target.actions_stamp = self.WriteActionsRulesCopies(
spec, extra_sources, actions_depends, mac_bundle_depends)
compile_depends_stamp = (self.target.actions_stamp or compile_depends)
link_deps = []
sources = extra_sources + spec.get('sources', [])
if sources:
if self.flavor == 'mac' and len(self.archs) > 1:
for arch in self.archs:
self.ninja.subninja(self._SubninjaNameForArch(arch))
pch = None
if self.flavor == 'win':
gyp.msvs_emulation.VerifyMissingSources(
sources, self.abs_build_dir, generator_flags, self.GypPathToNinja)
pch = gyp.msvs_emulation.PrecompiledHeader(
self.msvs_settings, config_name, self.GypPathToNinja,
self.GypPathToUniqueOutput, self.obj_ext)
else:
pch = gyp.xcode_emulation.MacPrefixHeader(
self.xcode_settings, self.GypPathToNinja,
lambda path, lang: self.GypPathToUniqueOutput(path + '-' + lang))
link_deps = self.WriteSources(
self.ninja, config_name, config, sources, compile_depends_stamp, pch,
spec)
obj_outputs = [f for f in sources if f.endswith(self.obj_ext)]
if obj_outputs:
if self.flavor != 'mac' or len(self.archs) == 1:
link_deps += [self.GypPathToNinja(o) for o in obj_outputs]
else:
print "Warning: Actions/rules writing object files don't work with " "multiarch targets, dropping. (target %s)" % spec['target_name']
elif self.flavor == 'mac' and len(self.archs) > 1:
link_deps = collections.defaultdict(list)
if self.flavor == 'win' and self.target.type == 'static_library':
self.target.component_objs = link_deps
output = None
is_empty_bundle = not link_deps and not mac_bundle_depends
if link_deps or self.target.actions_stamp or actions_depends:
output = self.WriteTarget(spec, config_name, config, link_deps,
self.target.actions_stamp or actions_depends)
if self.is_mac_bundle:
mac_bundle_depends.append(output)
if self.is_mac_bundle:
output = self.WriteMacBundle(spec, mac_bundle_depends, is_empty_bundle)
if not output:
return None
assert self.target.FinalOutput(), output
return self.target
def _WinIdlRule(self, source, prebuild, outputs):
outdir, output, vars, flags = self.msvs_settings.GetIdlBuildData(
source, self.config_name)
outdir = self.GypPathToNinja(outdir)
def fix_path(path, rel=None):
path = os.path.join(outdir, path)
dirname, basename = os.path.split(source)
root, ext = os.path.splitext(basename)
path = self.ExpandRuleVariables(
path, root, dirname, source, ext, basename)
if rel:
path = os.path.relpath(path, rel)
return path
vars = [(name, fix_path(value, outdir)) for name, value in vars]
output = [fix_path(p) for p in output]
vars.append(('outdir', outdir))
vars.append(('idlflags', flags))
input = self.GypPathToNinja(source)
self.ninja.build(output, 'idl', input,
variables=vars, order_only=prebuild)
outputs.extend(output)
def WriteWinIdlFiles(self, spec, prebuild):
assert self.flavor == 'win'
if self.msvs_settings.HasExplicitIdlRulesOrActions(spec):
return []
outputs = []
for source in filter(lambda x: x.endswith('.idl'), spec['sources']):
self._WinIdlRule(source, prebuild, outputs)
return outputs
|
BSD 3-Clause New or Revised License
|
national-voter-file/national-voter-file
|
src/python/national_voter_file/transformers/base.py
|
BaseTransformer.extract_birthdate
|
python
|
def extract_birthdate(self, input_dict):
raise NotImplementedError('Must implement extract_birthdate method')
|
Inputs:
input_dict: names of columns and corresponding values
Outputs:
Dictionary with following keys
'BIRTHDATE'
'BIRTHDATE_IS_ESTIMATE'
|
https://github.com/national-voter-file/national-voter-file/blob/f8bae42418c9307150d10c9e71174defaefa4e60/src/python/national_voter_file/transformers/base.py#L746-L755
|
import os
import csv
import datetime
from collections import defaultdict
from io import TextIOWrapper
import zipfile
from functools import wraps
import usaddress
DATA_DIR = os.path.join(os.path.abspath(os.getcwd()), 'data')
class BasePreparer(object):
sep = ','
default_file = 'input.csv'
state_name = ''
def __init__(self, input_path, state_path=None, state_module=None,
transformer=None, history=False):
if transformer:
self.transformer = transformer
if state_path:
self.state_path = state_path
else:
self.state_path = self.state_name
if state_module:
self.default_file = state_module.default_file
self.history = history
filename = self.default_file
if os.path.isdir(input_path):
state_subdir_guess = os.path.join(input_path, self.state_path, filename)
state_file_guess = os.path.join(input_path, filename)
if os.path.isfile(state_subdir_guess):
input_path = state_subdir_guess
elif os.path.isfile(state_file_guess):
input_path = state_file_guess
else:
raise Exception("please include the input file path {}".format(
(""" or make sure your file is called "{filename}" in {datadir} or in
{datadir}/{state}/{filename}
""".format(filename=filename,
datadir=input_path,
state=self.state_path)) if filename else ''
))
self.input_path = input_path
def open(self, path_or_handle, mode='r'):
if mode == 'r' and isinstance(path_or_handle, zipfile.ZipExtFile):
return TextIOWrapper(path_or_handle,
encoding='utf8',
errors='ignore', line_buffering=True)
elif hasattr(path_or_handle, 'mode'):
return path_or_handle
else:
return open(path_or_handle, mode, errors='ignore')
def process(self):
return self.dict_iterator(self.open(self.input_path))
def dict_iterator(self, infile):
reader = csv.DictReader(infile, delimiter=self.sep,
fieldnames=self.transformer.input_fields)
return reader
class BaseTransformer(object):
col_type_dict = {
'TITLE': set([str, type(None)]),
'FIRST_NAME': set([str, type(None)]),
'MIDDLE_NAME': set([str, type(None)]),
'LAST_NAME': set([str, type(None)]),
'NAME_SUFFIX': set([str, type(None)]),
'GENDER': set([str, type(None)]),
'RACE':set([str, type(None)]),
'BIRTHDATE': set([datetime.date, type(None)]),
'BIRTHDATE_IS_ESTIMATE':set([str]),
'BIRTH_STATE':set([str, type(None)]),
'LANGUAGE_CHOICE': set([str, type(None)]),
'EMAIL': set([str, type(None)]),
'PHONE': set([str, type(None)]),
'DO_NOT_CALL_STATUS': set([str, type(None)]),
'ADDRESS_NUMBER': set([str, type(None)]),
'ADDRESS_NUMBER_PREFIX': set([str, type(None)]),
'ADDRESS_NUMBER_SUFFIX': set([str, type(None)]),
'BUILDING_NAME': set([str, type(None)]),
'CORNER_OF': set([str, type(None)]),
'INTERSECTION_SEPARATOR': set([str, type(None)]),
'LANDMARK_NAME': set([str, type(None)]),
'NOT_ADDRESS': set([str, type(None)]),
'OCCUPANCY_TYPE': set([str, type(None)]),
'OCCUPANCY_IDENTIFIER': set([str, type(None)]),
'PLACE_NAME': set([str, type(None)]),
'STATE_NAME': set([str]),
'STREET_NAME': set([str, type(None)]),
'STREET_NAME_PRE_DIRECTIONAL': set([str, type(None)]),
'STREET_NAME_PRE_MODIFIER': set([str, type(None)]),
'STREET_NAME_PRE_TYPE': set([str, type(None)]),
'STREET_NAME_POST_DIRECTIONAL': set([str, type(None)]),
'STREET_NAME_POST_MODIFIER': set([str, type(None)]),
'STREET_NAME_POST_TYPE': set([str, type(None)]),
'SUBADDRESS_IDENTIFIER': set([str, type(None)]),
'SUBADDRESS_TYPE': set([str, type(None)]),
'USPS_BOX_GROUP_ID': set([str, type(None)]),
'USPS_BOX_GROUP_TYPE': set([str, type(None)]),
'USPS_BOX_ID': set([str, type(None)]),
'USPS_BOX_TYPE': set([str, type(None)]),
'ZIP_CODE': set([str, type(None)]),
'MAIL_ADDRESS_LINE1': set([str, type(None)]),
'MAIL_ADDRESS_LINE2': set([str, type(None)]),
'MAIL_CITY': set([str, type(None)]),
'MAIL_STATE': set([str, type(None)]),
'MAIL_ZIP_CODE': set([str, type(None)]),
'MAIL_COUNTRY': set([str, type(None)]),
'COUNTYCODE': set([str]),
'STATE_VOTER_REF': set([str]),
'COUNTY_VOTER_REF': set([str, type(None)]),
'REGISTRATION_DATE': set([datetime.date, type(None)]),
'REGISTRATION_STATUS': set([str, type(None)]),
'ABSENTEE_TYPE': set([str, type(None)]),
'PARTY': set([str, type(None)]),
'CONGRESSIONAL_DIST': set([str, type(None)]),
'UPPER_HOUSE_DIST': set([str, type(None)]),
'LOWER_HOUSE_DIST': set([str, type(None)]),
'PRECINCT': set([str, type(None)]),
'COUNTY_BOARD_DIST': set([str, type(None)]),
'SCHOOL_BOARD_DIST': set([str, type(None)]),
'PRECINCT_SPLIT': set([str, type(None)]),
'RAW_ADDR1': set([str, type(None)]),
'RAW_ADDR2': set([str, type(None)]),
'RAW_CITY': set([str, type(None)]),
'RAW_ZIP': set([str, type(None)]),
'VALIDATION_STATUS':set([str, type(str)])
}
limited_value_dict = {
'PARTY': set([
'DEM',
'REP',
"AI",
"PF",
"CP",
"AMC",
"GRN",
"LIB",
"ECO",
"IDP",
"PSL",
"REF",
"SAP",
"CON",
"WOR",
"WEP",
"SCC",
"NLP",
"SP",
"SWP",
"UTY",
"AE",
"AMP",
"OTH",
"UN",
"DEL",
"FED",
"CIT",
'LIB',
"NEW",
"ALI",
"TAX",
'STS',
'UNI',
'IND',
'IPU',
'GPU',
'PCP',
'ROL',
'BLU',
'UJP',
'FDM',
'RTH',
'TXP',
'APP',
type(None)
]),
'GENDER': set(['M', 'F', 'U']),
'RACE':set([
'I',
'A',
'B',
'H',
'W',
'O',
'M',
"U"
]),
'VALIDATION_STATUS':set([
'1',
'2',
'3',
'4',
'5'
])
}
usaddress_to_standard_colnames_dict = {
'AddressNumber': 'ADDRESS_NUMBER',
'AddressNumberPrefix': 'ADDRESS_NUMBER_PREFIX',
'AddressNumberSuffix': 'ADDRESS_NUMBER_SUFFIX',
'BuildingName': 'BUILDING_NAME',
'CornerOf': 'CORNER_OF',
'IntersectionSeparator': 'INTERSECTION_SEPARATOR',
'LandmarkName': 'LANDMARK_NAME',
'NotAddress': 'NOT_ADDRESS',
'OccupancyType': 'OCCUPANCY_TYPE',
'OccupancyIdentifier': 'OCCUPANCY_IDENTIFIER',
'PlaceName': 'PLACE_NAME',
'StateName': 'STATE_NAME',
'StreetName': 'STREET_NAME',
'StreetNamePreDirectional': 'STREET_NAME_PRE_DIRECTIONAL',
'StreetNamePreModifier': 'STREET_NAME_PRE_MODIFIER',
'StreetNamePreType': 'STREET_NAME_PRE_TYPE',
'StreetNamePostDirectional': 'STREET_NAME_POST_DIRECTIONAL',
'StreetNamePostModifier': 'STREET_NAME_POST_MODIFIER',
'StreetNamePostType': 'STREET_NAME_POST_TYPE',
'SubaddressIdentifier': 'SUBADDRESS_IDENTIFIER',
'SubaddressType': 'SUBADDRESS_TYPE',
'USPSBoxGroupID': 'USPS_BOX_GROUP_ID',
'USPSBoxGroupType': 'USPS_BOX_GROUP_TYPE',
'USPSBoxID': 'USPS_BOX_ID',
'USPSBoxType': 'USPS_BOX_TYPE',
'ZipCode': 'ZIP_CODE',
}
date_format = ''
col_map = {}
input_fields = []
history_type_dict = {
'STATE_VOTER_REF': set([str]),
'ELECTION_DATE': set([datetime.date]),
'ELECTION_TYPE': set([str, type(None)]),
'VOTE_METHOD': set([str, type(None)])
}
def check_col_map(col_list):
def extract_decorator(f):
@wraps(f)
def wrapped(self, input_dict):
if all(col in self.col_map for col in col_list):
return {
(c, input_dict.get(self.col_map[c])) for c in col_list
}
else:
raise NotImplementedError(
'Must implement {} method or include {} in col_map'.format(
f.__name__, ', '.join(col_list)
)
)
return wrapped
return extract_decorator
def process_row(self, input_dict, history=False):
if history:
method_str = 'hist_'
else:
method_str = 'extract'
output_dict = {}
extract_funcs = [
getattr(self, x) for x in dir(self) if x.startswith(method_str)
]
for func in extract_funcs:
output_dict.update(func(input_dict))
return output_dict
def fix_missing_mailing_addr(self, orig_dict):
if('MAIL_CITY' not in orig_dict):
if(orig_dict['STREET_NAME']):
copied_addr = {
'MAIL_ADDRESS_LINE1': self.construct_val(
orig_dict,
[
'ADDRESS_NUMBER_PREFIX',
'ADDRESS_NUMBER',
'ADDRESS_NUMBER_SUFFIX',
'STREET_NAME_PRE_DIRECTIONAL',
'STREET_NAME_PRE_MODIFIER',
'STREET_NAME_PRE_TYPE',
'STREET_NAME',
'STREET_NAME_POST_DIRECTIONAL',
'STREET_NAME_POST_MODIFIER',
'STREET_NAME_POST_TYPE'
]
),
'MAIL_ADDRESS_LINE2': self.construct_val(
orig_dict,
['OCCUPANCY_TYPE', 'OCCUPANCY_IDENTIFIER']
),
'MAIL_CITY': orig_dict['PLACE_NAME'],
'MAIL_STATE': orig_dict['STATE_NAME'],
'MAIL_ZIP_CODE': orig_dict['ZIP_CODE'],
'MAIL_COUNTRY': "USA"
}
else:
copied_addr = {
'MAIL_ADDRESS_LINE1': orig_dict['RAW_ADDR1'],
'MAIL_ADDRESS_LINE2': orig_dict['RAW_ADDR2'],
'MAIL_CITY': orig_dict['RAW_CITY'],
'MAIL_STATE': orig_dict['STATE_NAME'],
'MAIL_ZIP_CODE': orig_dict['RAW_ZIP'],
'MAIL_COUNTRY': 'USA'
}
orig_dict.update(copied_addr)
return orig_dict
def construct_val(self, aDir, fields):
result = ""
for aField in fields:
if(aDir[aField]):
result = result + (aDir[aField].strip()+" " if aDir[aField].strip() else '')
return result
def constructEmptyResidentialAddress(self):
return {
'ADDRESS_NUMBER': None,
'ADDRESS_NUMBER_PREFIX': None,
'ADDRESS_NUMBER_SUFFIX': None,
'BUILDING_NAME': None,
'CORNER_OF': None,
'INTERSECTION_SEPARATOR': None,
'LANDMARK_NAME': None,
'NOT_ADDRESS': None,
'OCCUPANCY_TYPE': None,
'OCCUPANCY_IDENTIFIER': None,
'PLACE_NAME': None,
'STATE_NAME': None,
'STREET_NAME': None,
'STREET_NAME_PRE_DIRECTIONAL': None,
'STREET_NAME_PRE_MODIFIER': None,
'STREET_NAME_PRE_TYPE': None,
'STREET_NAME_POST_DIRECTIONAL': None,
'STREET_NAME_POST_MODIFIER': None,
'STREET_NAME_POST_TYPE': None,
'SUBADDRESS_IDENTIFIER': None,
'SUBADDRESS_TYPE': None,
'USPS_BOX_GROUP_ID': None,
'USPS_BOX_GROUP_TYPE': None,
'USPS_BOX_ID': None,
'USPS_BOX_TYPE': None,
'ZIP_CODE': None
}
@classmethod
def validate_output_row(cls, output_dict, history=False):
if history:
type_dict = cls.history_type_dict
else:
type_dict = cls.col_type_dict
correct_output_col_set = set(type_dict.keys())
output_dict_col_set = set(output_dict.keys())
missing_cols = correct_output_col_set - output_dict_col_set
extra_cols = output_dict_col_set - correct_output_col_set
if len(missing_cols) > 0 or len(extra_cols) > 0:
error_message = (
'Column(s) {} are required but missing.\n'
'Column(s) {} are present but not required.').format(
list(missing_cols),
list(extra_cols),
)
raise ValueError(error_message)
type_errors = []
for colname, value in output_dict.items():
if isinstance(value, str):
output_dict[colname] = value.strip()
value_type = str if len(value.strip()) > 0 else type(None)
else:
value_type = type(value)
acceptable_types = type_dict[colname]
if value_type not in acceptable_types:
type_errors.append(
'Column {} requires type(s) {}, found {}.'.format(
colname,
list(acceptable_types),
value_type,
)
)
if len(type_errors) > 0:
error_str = '\n'.join(sorted(type_errors))
raise TypeError(error_str)
if not history:
value_errors = []
for col, vals in cls.limited_value_dict.items():
output_value = output_dict[col]
if output_value is None and type(None) in cls.col_type_dict[col]:
continue
if output_value not in vals:
error_message = 'Column {} requires value(s) {}, found {}'.format(
col,
list(vals),
output_value,
)
value_errors.append(error_message)
if len(value_errors) > 0:
error_str = '\n'.join(sorted(value_errors))
raise ValueError(error_str)
def convert_date(self, date_str, date_format=None):
return datetime.datetime.strptime(date_str, date_format or self.date_format).date()
def usaddress_tag(self, address_str):
try:
usaddress_dict, usaddress_type = usaddress.tag(address_str)
if 'USPSBoxID' in usaddress_dict:
usaddress_type = 'PO Box'
else:
usaddress_type = 'Street Address'
return usaddress_dict, usaddress_type
except usaddress.RepeatedLabelError as e:
return None, None
def convert_usaddress_dict(self, usaddress_dict):
address_dict = {}
for k, v in self.usaddress_to_standard_colnames_dict.items():
address_dict[v] = usaddress_dict.get(k, None)
return address_dict
def construct_mail_address_1(self, usaddress_dict, usaddress_type):
if usaddress_type == 'Street Address':
cols = [
'AddressNumberPrefix',
'AddressNumber',
'AddressNumberSuffix',
'StreetNamePreDirectional',
'StreetNamePreModifier',
'StreetNamePreType',
'StreetName',
'StreetNamePostType',
'StreetNamePostModifier',
'StreetNamePostDirectional',
]
elif usaddress_type == 'PO Box':
cols = [
'USPSBoxType',
'USPSBoxID',
]
elif usaddress_type in ['Ambiguous', 'Intersection']:
return " "
output_vals = [
usaddress_dict[x] for x in cols if x in usaddress_dict
]
if len(output_vals) > 0:
return ' '.join(output_vals)
else:
return " "
def construct_mail_address_2(self, usaddress_dict):
cols = ['OccupancyType', 'OccupancyIdentifier']
output_vals = [
usaddress_dict[x] for x in cols if x in usaddress_dict
]
if len(output_vals) > 0:
return ' '.join(output_vals)
else:
return " "
def flag_empty_field(self, field_val):
return field_val if field_val else "XXX-MISSING-XXX"
@check_col_map(['TITLE', 'FIRST_NAME', 'MIDDLE_NAME', 'LAST_NAME', 'NAME_SUFFIX'])
def extract_name(self, input_dict):
raise NotImplementedError('Must implement extract_name method')
@check_col_map(['EMAIL'])
def extract_email(self, input_dict):
raise NotImplementedError('Must implement extract_email method')
@check_col_map(['PHONE'])
def extract_phone_number(self, input_dict):
raise NotImplementedError('Must implement extract_phone_number method')
@check_col_map(['DO_NOT_CALL_STATUS'])
def extract_do_not_call_status(self, input_dict):
raise NotImplementedError('Must implement extract_do_not_call_status method')
@check_col_map(['GENDER'])
def extract_gender(self, input_dict):
raise NotImplementedError('Must implement extract_gender method')
@check_col_map(['RACE'])
def extract_race(self, input_dict):
raise NotImplementedError('Must implement extract_race method')
@check_col_map(['BIRTH_STATE'])
def extract_birth_state(self, input_dict):
raise NotImplementedError('Must implement extract_birth_state method')
|
MIT License
|
philgyford/foursquare-feeds
|
generate_feeds.py
|
FeedGenerator._get_all_checkins
|
python
|
def _get_all_checkins(self):
offset = 0
checkins = []
total_checkins = 9999999999
while offset < total_checkins:
results = self._get_checkins_from_api(offset)
if offset == 0:
total_checkins = results["checkins"]["count"]
plural = "" if total_checkins == 1 else "s"
logger.debug("{} checkin{} to fetch".format(total_checkins, plural))
logger.debug("Fetched {}-{}".format(offset + 1, offset + 250))
checkins += results["checkins"]["items"]
offset += 250
return checkins
|
Make multiple requests to the API to get ALL checkins.
|
https://github.com/philgyford/foursquare-feeds/blob/b4d2f5642846c54fddd467696a6a9fc7af7e51e5/generate_feeds.py#L79-L101
|
import argparse
import configparser
from datetime import datetime
import logging
import os
import pytz
from xml.sax.saxutils import escape as xml_escape
import foursquare
from ics import Calendar, Event
import simplekml
logging.basicConfig(level=logging.INFO, format="%(message)s")
logger = logging.getLogger(__name__)
current_dir = os.path.realpath(os.path.dirname(__file__))
CONFIG_FILE = os.path.join(current_dir, "config.ini")
VALID_KINDS = ["ics", "kml"]
class FeedGenerator:
fetch = "recent"
def __init__(self, fetch="recent"):
self.fetch = fetch
self._load_config(CONFIG_FILE)
self.client = foursquare.Foursquare(access_token=self.api_access_token)
def _load_config(self, config_file):
config = configparser.ConfigParser()
try:
config.read_file(open(config_file))
except IOError:
logger.critical("Can't read config file: " + config_file)
exit()
self.api_access_token = config.get("Foursquare", "AccessToken")
self.ics_filepath = config.get("Local", "IcsFilepath")
self.kml_filepath = config.get("Local", "KmlFilepath")
def generate(self, kind="ics"):
if kind not in VALID_KINDS:
raise ValueError("kind should be one of {}.".format(", ".join(VALID_KINDS)))
if self.fetch == "all":
checkins = self._get_all_checkins()
else:
checkins = self._get_recent_checkins()
plural = "" if len(checkins) == 1 else "s"
logger.info("Fetched {} checkin{} from the API".format(len(checkins), plural))
if kind == "ics":
filepath = self._generate_ics_file(checkins)
elif kind == "kml":
filepath = self._generate_kml_file(checkins)
logger.info("Generated file {}".format(filepath))
exit(0)
def _get_recent_checkins(self):
results = self._get_checkins_from_api()
return results["checkins"]["items"]
|
BSD 3-Clause New or Revised License
|
arubdesu/microsoft-recipes
|
Lync/MSLyncURLandUpdateInfoProvider.py
|
MSLyncURLandUpdateInfoProvider.sanityCheckExpectedTriggers
|
python
|
def sanityCheckExpectedTriggers(self, item):
if not item.get("Trigger Condition") == ["and", "Lync"]:
raise ProcessorError(
"Unexpected Trigger Condition in item %s: %s"
% (item["Title"], item["Trigger Condition"]))
if not "Lync" in item.get("Triggers", {}):
raise ProcessorError(
"Missing expected MCP Trigger in item %s" % item["Title"])
|
Raises an exeception if the Trigger Condition or
Triggers for an update don't match what we expect.
Protects us if these change in the future.
|
https://github.com/arubdesu/microsoft-recipes/blob/677aaa3a8b82f25fbb7c130177095d6c7841a03f/Lync/MSLyncURLandUpdateInfoProvider.py#L71-L81
|
import plistlib
import urllib2
from distutils.version import LooseVersion
from operator import itemgetter
from autopkglib import Processor, ProcessorError
__all__ = ["MSLyncURLandUpdateInfoProvider"]
CULTURE_CODE = "0409"
BASE_URL = "https://www.microsoft.com/mac/autoupdate/%sUCCP14.xml"
MUNKI_UPDATE_NAME = "Lync_Installer"
class MSLyncURLandUpdateInfoProvider(Processor):
input_variables = {
"culture_code": {
"required": False,
"description": ("See "
"http://msdn.microsoft.com/en-us/library/ee825488(v=cs.20).aspx"
" for a table of CultureCodes Defaults to 0409, which "
"corresponds to en-US (English - United States)"),
},
"base_url": {
"required": False,
"description": ("Default is %s. If this is given, culture_code "
"is ignored." % (BASE_URL % CULTURE_CODE)),
},
"version": {
"required": False,
"description": "Update version number. Defaults to latest.",
},
}
output_variables = {
"url": {
"description": "URL to the latest Lync installer.",
},
"pkg_name": {
"description": "Name of the package within the disk image.",
},
"additional_pkginfo": {
"description":
"Some pkginfo fields extracted from the Microsoft metadata.",
},
"display_name": {
"description":
"The name of the package that includes the version.",
},
}
description = __doc__
|
Apache License 2.0
|
swisscom/ai-research-mamo-framework
|
paretomanager/pareto_manager_class.py
|
ParetoManager.__check_input_model
|
python
|
def __check_input_model(self, model):
if model is None:
raise TypeError(
'Argument: model must be a model derived from pytorch.')
if not isinstance(model, nn.Module):
raise TypeError(
'Argument: model must be a model derived from pytorch.')
|
A function that checks the input model
|
https://github.com/swisscom/ai-research-mamo-framework/blob/26d6a08c8c7e7d33ad60d7e6896b0ffeede41bc1/paretomanager/pareto_manager_class.py#L67-L75
|
import os
import torch
import warnings
from torch import nn
class ParetoManager(object):
def __init__(self, PATH='paretoFile/'):
self.path = PATH
self._pareto_front = []
self._all_solutions = []
self.id_count = 1
def __check_input_solution(self, solution):
if solution is None:
raise TypeError(
'Argument: the input solution must be a list representing a point.')
if not isinstance(solution, list):
raise TypeError(
'The input solution should be a list repressenting a point!')
if len(solution) == 0:
raise ValueError(
'Empty list was given as input, list should not be empty!')
|
Apache License 2.0
|
codeforfrankfurt/polbotcheck
|
webapi/analytics/flask_api_server.py
|
index
|
python
|
def index():
groupings = []
candidates_by_district = db.get_candidates_grouped_by_district()
for group in candidates_by_district:
print(group)
groupings.append(group)
return jsonify({'candidates_grouped_by_district': groupings})
|
Return organizational entities like Landesliste Hessen and the hessian election districts
as well as the candidates in them
|
https://github.com/codeforfrankfurt/polbotcheck/blob/cef5136008301dcb16eb06dc5f18d00510c77f35/webapi/analytics/flask_api_server.py#L28-L38
|
import os
if not os.environ.get('FLASK_ENV') == 'production':
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv(), override=True)
from flask import Flask, jsonify
from flask_cors import CORS
app = Flask(__name__)
CORS(app)
print("Value of WEB_CONCURRENCY is %s" % os.environ.get('WEB_CONCURRENCY'))
if int(os.environ.get('WEB_CONCURRENCY')) > 1:
from random import randint
from time import sleep
interval = randint(1,5)
print("Sleep for %d seconds to avoid too many concurrent db hits" % interval)
sleep(interval)
import db
@app.route("/pbc")
|
MIT License
|
luscoma/pyrazor
|
lex.py
|
RazorLexer.shouldEscape
|
python
|
def shouldEscape(self, token):
return token[1] != '!'
|
Returns false if this token should not be html escaped
|
https://github.com/luscoma/pyrazor/blob/15047a027339895652e700bba8b0884247786f00/lex.py#L81-L83
|
import sexylexer
import html
from scopestack import ScopeStack
import re
class Token:
ESCAPED = "ESCAPED"
COMMENT = "COMMENT"
LINECOMMENT = "LINECOMMENT"
ONELINE = "ONELINE"
MULTILINE = "MULTILINE"
EXPLICITMULTILINEEND = "EXPLICITMULTILINEEND"
PARENEXPRESSION = "PARENEXPRESSION"
EXPRESSION = "EXPRESSION"
TEXT = "TEXT"
CODE = "CODE"
NEWLINE = "NEWLINE"
INDENT = "INDENT"
EMPTYLINE = "EMPTYLINE"
XMLSTART = "XMLSTART"
XMLFULLSTART = "XMLFULLSTART"
XMLEND = "XMLEND"
XMLSELFCLOSE = "XMLSELFCLOSE"
PRINTLINE = "PRINTLINE"
def bind(handler):
return lambda scanner, token: handler(scanner, token);
class RazorLexer(object):
@staticmethod
def create(ignore_whitespace=False):
lex = RazorLexer(ignore_whitespace)
lex.rules = (
(Token.NEWLINE, (r"[\r]?[\n][ \t]*", bind(lex.newline))),
(Token.ESCAPED, (r"@@", bind(lex.escaped))),
(Token.LINECOMMENT, (r"@#[^\r\n]*?$", bind(lex.linecomment))),
(Token.ONELINE, (r"@(?:import|from|model) .+$", bind(lex.oneline))),
(Token.MULTILINE, (r"@\w*.*:$", bind(lex.multiline))),
(Token.PARENEXPRESSION, (r"@!?\(", bind(lex.paren_expression))),
(Token.EXPRESSION, (r"@!?(\w+(?:(?:\[.+\])|(?:\(.*\)))?(?:\.[a-zA-Z]+(?:(?:\[.+\])|(?:\(.*\)))?)*)", bind(lex.expression))),
(Token.XMLFULLSTART, (r"[ \t]*<\w[^@\r\n]*?>", bind(lex.xmlStart))),
(Token.XMLSTART, (r"[ \t]*<\w[^@\r\n>]*", bind(lex.xmlStart))),
(Token.XMLEND, (r"[ \t]*</[^@\r\n]+[>]", bind(lex.xmlEnd))),
(Token.XMLSELFCLOSE, (r"[^@]+/>[ \t]*", bind(lex.xmlSelfClose))),
(Token.TEXT, (r"[^@\r\n<]+", bind(lex.text))),
)
lex.multilineRules = (
(Token.EMPTYLINE, (r"[\r]?[\n][ \t]*$", bind(lex.empty_line))),
(Token.EXPLICITMULTILINEEND, (r"[\r]?[\n][ \t]*\w*.*:@", bind(lex.multiline_end))),
(Token.NEWLINE, (r"[\r]?[\n][ \t]*", bind(lex.newline))),
(Token.XMLFULLSTART, (r"[ \t]*<\w[^@\r\n]*?>", bind(lex.xmlStart))),
(Token.XMLSTART, (r"[ \t]*<\w[^@\r\n>]*", bind(lex.xmlStart))),
(Token.XMLEND, (r"[ \t]*</[^@\r\n]+[>]", bind(lex.xmlEnd))),
(Token.XMLSELFCLOSE, (r"[^@]+/>[ \t]*", bind(lex.xmlSelfClose))),
(Token.MULTILINE, (r"\w*.*:$", bind(lex.multiline))),
(Token.PRINTLINE, (r"[ \t]*print[ \t]*[(][ \t]*['\"].*[\"'][ \t]*[)]", bind(lex.printLine))),
(Token.CODE, (r".+", bind(lex.code))),
)
lex.lexer = sexylexer.Lexer(lex.rules,lex.multilineRules)
return lex
def __init__(self, ignore_whitespace):
self.scope = ScopeStack(ignore_whitespace)
self.ignore_whitespace = ignore_whitespace
self.Mode = []
self.NewLine = False
def scan(self, text):
if self.ignore_whitespace:
return self.lexer.scan(text.lstrip())
return self.lexer.scan(text)
|
MIT License
|
bigpon/qpnet
|
src/utils/utils.py
|
shape_hdf5
|
python
|
def shape_hdf5(hdf5_name, hdf5_path):
if check_hdf5(hdf5_name, hdf5_path):
with h5py.File(hdf5_name, "r") as f:
hdf5_shape = f[hdf5_path].shape
return hdf5_shape
else:
print("There is no such a file or dataset. (%s, %s)" % (hdf5_name, hdf5_path))
sys.exit(-1)
|
FUNCTION TO GET HDF5 DATASET SHAPE
Args:
hdf5_name (str): filename of hdf5 file
hdf5_path (str): dataset name in hdf5 file
Return:
(tuple): shape of dataset
|
https://github.com/bigpon/qpnet/blob/657fcb01b23e9e3371b5a4b2ebeec5757ad33e2d/src/utils/utils.py#L71-L87
|
from __future__ import division
from __future__ import print_function
import fnmatch
import os
import sys
import threading
import h5py
import numpy as np
from numpy.matlib import repmat
def check_hdf5(hdf5_name, hdf5_path):
if not os.path.exists(hdf5_name):
return False
else:
with h5py.File(hdf5_name, "r") as f:
if hdf5_path in f:
return True
else:
return False
def read_hdf5(hdf5_name, hdf5_path):
if not os.path.exists(hdf5_name):
print("ERROR: There is no such a hdf5 file. (%s)" % hdf5_name)
print("Please check the hdf5 file path.")
sys.exit(-1)
hdf5_file = h5py.File(hdf5_name, "r")
if hdf5_path not in hdf5_file:
print("ERROR: There is no such a data in hdf5 file. (%s)" % hdf5_path)
print("Please check the data path in hdf5 file('%s')." % hdf5_name)
sys.exit(-1)
hdf5_data = hdf5_file[hdf5_path][()]
hdf5_file.close()
return hdf5_data
|
Apache License 2.0
|
turksat/pns
|
pns/controllers/channel.py
|
unregister_user
|
python
|
def unregister_user(channel_id, pns_id):
user_obj = User.query.filter_by(pns_id=pns_id).first()
channel_obj = Channel.query.get(channel_id)
if not user_obj or not channel_obj:
return jsonify(success=False, message='not found'), 404
if channel_obj.unsubscribe_user(user_obj):
return jsonify(success=True, message={'channel': channel_obj.to_dict(),
'user': user_obj.to_dict()})
else:
return jsonify(success=False), 500
|
@api {delete} /channels/:channel_id/members/:pns_id Unsubscribe from Channel
@apiVersion 1.0.0
@apiName UnregisterUser
@apiGroup Channel
@apiSuccess {Boolean} success Request status
@apiSuccess {Object} message Respond payload
@apiSuccess {Object} message.channel Channel object
@apiSuccess {Object} message.user User object
|
https://github.com/turksat/pns/blob/e43d4b010add99ffaea4f07a29dc07f5b81a0d9f/pns/controllers/channel.py#L246-L267
|
from flask import Blueprint, jsonify, request
from pns.app import app
from pns.forms import CreateChannelForm
from pns.models import db, Channel, User, Alert
from pns.json_schemas import registration_schema
channel = Blueprint('channel', __name__)
@channel.route('/channels', methods=['POST'])
def create_channel():
form = CreateChannelForm()
if not form.validate_on_submit():
return jsonify(success=False, message=form.errors), 400
name = request.values.get('name')
description = request.values.get('description', None)
channel_obj = Channel.query.filter_by(name=name).first()
if channel_obj:
return jsonify(success=True, message={'channel': channel_obj.to_dict()})
channel_obj = Channel()
channel_obj.name = name
if description:
channel_obj.description = description
db.session.add(channel_obj)
try:
db.session.commit()
return jsonify(success=True, message={'channel': channel_obj.to_dict()})
except Exception as ex:
db.session.rollback()
app.logger.exception(ex)
return jsonify(success=False), 500
@channel.route('/channels', methods=['GET'])
def list_channels():
try:
offset = int(request.values.get('offset', 1))
limit = int(request.values.get('limit', 20))
except ValueError:
offset = 1
limit = 20
query = (Channel
.query
.order_by(Channel.created_at.desc())
.paginate(page=offset, per_page=limit, error_out=False))
channels = [channel_obj.to_dict() for channel_obj in query.items]
return jsonify(success=True, message={'channels': channels,
'total_pages': query.pages,
'current_page': offset,
'has_next': query.has_next})
@channel.route('/channels/<int:channel_id>', methods=['GET'])
def get_channel(channel_id):
channel_obj = Channel.query.get(channel_id)
if not channel_obj:
return jsonify(success=False, message='not found'), 404
return jsonify(success=True,
message={'channel': channel_obj.to_dict()})
@channel.route('/channels/<int:channel_id>', methods=['DELETE'])
def delete_channel(channel_id):
channel_obj = Channel.query.get(channel_id)
if not channel_obj:
return jsonify(success=False, message='not found'), 404
db.session.delete(channel_obj)
try:
db.session.commit()
return jsonify(success=True,
message={'channel': channel_obj.to_dict()})
except Exception as ex:
db.session.rollback()
app.logger.exception(ex)
return jsonify(success=False), 500
@channel.route('/channels/<int:channel_id>', methods=['PUT'])
def edit_channel(channel_id):
form = CreateChannelForm()
if not form.validate_on_submit():
return jsonify(success=False, message=form.errors), 400
name = request.values.get('name')
description = request.values.get('description', None)
channel_obj = Channel.query.get(channel_id)
if not channel_obj:
return jsonify(success=False, message='not found'), 404
channel_obj.name = name
if description:
channel_obj.description = description
db.session.add(channel_obj)
try:
db.session.commit()
return jsonify(success=True, message={'channel': channel_obj.to_dict()})
except Exception as ex:
db.session.rollback()
app.logger.exception(ex)
return jsonify(success=False), 500
@channel.route('/channels/<int:channel_id>/members', methods=['POST'])
def register_user(channel_id):
json_req = request.get_json(force=True)
try:
registration_schema.validate(json_req)
except Exception as ex:
return jsonify(success=False, message={'error': str(ex)}), 400
pns_id_list = [pns_id.strip() for pns_id in json_req['pns_id']]
channel_obj = Channel.query.get(channel_id)
if not channel_obj:
return jsonify(success=False, message='not found'), 404
users = User.query.filter(User.pns_id.in_(pns_id_list)).all()
for user in users:
channel_obj.subscribe_user(user)
return jsonify(success=True, message={'channel': channel_obj.to_dict(),
'users': [user.to_dict() for user in users]})
@channel.route('/channels/<int:channel_id>/members', methods=['GET'])
def list_channel_members(channel_id):
try:
offset = int(request.values.get('offset', 1))
limit = int(request.values.get('limit', 20))
except ValueError:
offset = 1
limit = 20
channel_obj = Channel.query.get(channel_id)
if not channel_obj:
return jsonify(success=False, message='not found'), 404
query = (channel_obj
.subscribers
.paginate(page=offset, per_page=limit, error_out=False))
users = [user.to_dict() for user in query.items]
return jsonify(success=True, message={'users': users,
'total_pages': query.pages,
'current_page': offset,
'has_next': query.has_next})
@channel.route('/channels/<int:channel_id>/members/<pns_id>', methods=['DELETE'])
|
Apache License 2.0
|
atomlinter/linter-pylama
|
bin/deps/pylint/checkers/logging.py
|
LoggingChecker._check_format_string
|
python
|
def _check_format_string(self, node, format_arg):
num_args = _count_supplied_tokens(node.args[format_arg + 1:])
if not num_args:
return
format_string = node.args[format_arg].value
if not isinstance(format_string, six.string_types):
required_num_args = 0
else:
try:
keyword_args, required_num_args = utils.parse_format_string(format_string)
if keyword_args:
return
except utils.UnsupportedFormatCharacter as ex:
char = format_string[ex.index]
self.add_message('logging-unsupported-format', node=node,
args=(char, ord(char), ex.index))
return
except utils.IncompleteFormatString:
self.add_message('logging-format-truncated', node=node)
return
if num_args > required_num_args:
self.add_message('logging-too-many-args', node=node)
elif num_args < required_num_args:
self.add_message('logging-too-few-args', node=node)
|
Checks that format string tokens match the supplied arguments.
Args:
node (astroid.node_classes.NodeNG): AST node to be checked.
format_arg (int): Index of the format string in the node arguments.
|
https://github.com/atomlinter/linter-pylama/blob/9157f7f84083007161814c93b537a712984f3c86/bin/deps/pylint/checkers/logging.py#L216-L252
|
import string
import six
import astroid
from pylint import checkers
from pylint import interfaces
from pylint.checkers import utils
from pylint.checkers.utils import check_messages
MSGS = {
'W1201': ('Specify string format arguments as logging function parameters',
'logging-not-lazy',
'Used when a logging statement has a call form of '
'"logging.<logging method>(format_string % (format_args...))". '
'Such calls should leave string interpolation to the logging '
'method itself and be written '
'"logging.<logging method>(format_string, format_args...)" '
'so that the program may avoid incurring the cost of the '
'interpolation in those cases in which no message will be '
'logged. For more, see '
'http://www.python.org/dev/peps/pep-0282/.'),
'W1202': ('Use % formatting in logging functions and pass the % '
'parameters as arguments',
'logging-format-interpolation',
'Used when a logging statement has a call form of '
'"logging.<logging method>(format_string.format(format_args...))"'
'. Such calls should use % formatting instead, but leave '
'interpolation to the logging function by passing the parameters '
'as arguments.'),
'E1200': ('Unsupported logging format character %r (%#02x) at index %d',
'logging-unsupported-format',
'Used when an unsupported format character is used in a logging\
statement format string.'),
'E1201': ('Logging format string ends in middle of conversion specifier',
'logging-format-truncated',
'Used when a logging statement format string terminates before\
the end of a conversion specifier.'),
'E1205': ('Too many arguments for logging format string',
'logging-too-many-args',
'Used when a logging format string is given too many arguments.'),
'E1206': ('Not enough arguments for logging format string',
'logging-too-few-args',
'Used when a logging format string is given too few arguments.'),
}
CHECKED_CONVENIENCE_FUNCTIONS = {
'critical', 'debug', 'error', 'exception', 'fatal', 'info', 'warn', 'warning'
}
def is_method_call(func, types=(), methods=()):
return (isinstance(func, astroid.BoundMethod)
and isinstance(func.bound, astroid.Instance)
and (func.bound.name in types if types else True)
and (func.name in methods if methods else True))
class LoggingChecker(checkers.BaseChecker):
__implements__ = interfaces.IAstroidChecker
name = 'logging'
msgs = MSGS
options = (('logging-modules',
{'default': ('logging',),
'type': 'csv',
'metavar': '<comma separated list>',
'help': 'Logging modules to check that the string format '
'arguments are in logging function parameter format'}
),
)
def visit_module(self, node):
self._logging_names = set()
logging_mods = self.config.logging_modules
self._logging_modules = set(logging_mods)
self._from_imports = {}
for logging_mod in logging_mods:
parts = logging_mod.rsplit('.', 1)
if len(parts) > 1:
self._from_imports[parts[0]] = parts[1]
def visit_importfrom(self, node):
try:
logging_name = self._from_imports[node.modname]
for module, as_name in node.names:
if module == logging_name:
self._logging_names.add(as_name or module)
except KeyError:
pass
def visit_import(self, node):
for module, as_name in node.names:
if module in self._logging_modules:
self._logging_names.add(as_name or module)
@check_messages(*(MSGS.keys()))
def visit_call(self, node):
def is_logging_name():
return (isinstance(node.func, astroid.Attribute) and
isinstance(node.func.expr, astroid.Name) and
node.func.expr.name in self._logging_names)
def is_logger_class():
try:
for inferred in node.func.infer():
if isinstance(inferred, astroid.BoundMethod):
parent = inferred._proxied.parent
if (isinstance(parent, astroid.ClassDef) and
(parent.qname() == 'logging.Logger' or
any(ancestor.qname() == 'logging.Logger'
for ancestor in parent.ancestors()))):
return True, inferred._proxied.name
except astroid.exceptions.InferenceError:
pass
return False, None
if is_logging_name():
name = node.func.attrname
else:
result, name = is_logger_class()
if not result:
return
self._check_log_method(node, name)
def _check_log_method(self, node, name):
if name == 'log':
if node.starargs or node.kwargs or len(node.args) < 2:
return
format_pos = 1
elif name in CHECKED_CONVENIENCE_FUNCTIONS:
if node.starargs or node.kwargs or not node.args:
return
format_pos = 0
else:
return
if isinstance(node.args[format_pos], astroid.BinOp):
binop = node.args[format_pos]
if (binop.op == '%' or binop.op == '+' and
len([_operand for _operand in (binop.left, binop.right)
if self._is_operand_literal_str(_operand)]) == 1):
self.add_message('logging-not-lazy', node=node)
elif isinstance(node.args[format_pos], astroid.Call):
self._check_call_func(node.args[format_pos])
elif isinstance(node.args[format_pos], astroid.Const):
self._check_format_string(node, format_pos)
@staticmethod
def _is_operand_literal_str(operand):
return isinstance(operand, astroid.Const) and operand.name == 'str'
def _check_call_func(self, node):
func = utils.safe_infer(node.func)
types = ('str', 'unicode')
methods = ('format',)
if is_method_call(func, types, methods) and not is_complex_format_str(func.bound):
self.add_message('logging-format-interpolation', node=node)
|
MIT License
|
blurstudio/cross3d
|
cross3d/studiomax/studiomaxscene.py
|
StudiomaxScene._getNativeMap
|
python
|
def _getNativeMap(self):
return mxs.materialBrowseDlg(mxs.pyhelper.namify("maps"))
|
\remarks implements the AbstractScene._getNativeMap method to invoke the application's ability to let a user select a Map from the scene
\return <Py3dsMax.mxs.TextureMap> nativeMap || None
|
https://github.com/blurstudio/cross3d/blob/277968d1227de740fc87ef61005c75034420eadf/cross3d/studiomax/studiomaxscene.py#L660-L665
|
import os
import re
import glob
import getpass
import win32con
import win32api
import traceback
import math
import cross3d
from Py3dsMax import mxs
from PyQt4.QtCore import QTimer
from cross3d import UserProps, application, FrameRange, constants
from cross3d.abstract.abstractscene import AbstractScene
from cross3d.constants import UpVector, ExtrapolationType, RendererType
from mxscustattribdef import MXSCustAttribDef
class EnvironmentMapHolder(MXSCustAttribDef):
@classmethod
def define(cls):
cls.setAttrName('OnionMapHolder')
cls.defineParam('environmentMap', 'textureMap', paramId='eMap')
EnvironmentMapHolder.register()
class EnvironmentMapsHolder(MXSCustAttribDef):
def init(self):
MXSCustAttribDef.init(self)
self.setValue('environmentMaps', [])
@classmethod
def define(cls):
cls.setAttrName('OnionAltMapsHolder')
cls.defineParam('environmentMaps', 'textureMapTab', paramId='aMps')
cls.defineParam('currentIndex', 'integer', paramId='mi')
EnvironmentMapsHolder.register()
class CustomProperties(MXSCustAttribDef):
def init(self):
MXSCustAttribDef.init(self)
self.setValue('keys', [])
self.setValue('values', [])
@classmethod
def define(cls):
cls.setAttrName('BlurCustomProperties')
cls.defineParam('keys', 'stringTab')
cls.defineParam('values', 'stringTab')
CustomProperties.register()
class SceneMetaData(MXSCustAttribDef):
version = 1.63
def __init__(self, mxsInstance):
MXSCustAttribDef.__init__(self, mxsInstance)
self._mapsHolder = None
self._mapHolder = None
self._custProperties = None
def customProperties(self):
if (not self._custProperties):
root = mxs.rootNode
data = CustomProperties.find(root)
if (not data):
data = CustomProperties.createUnique(root)
self._custProperties = data
return self._custProperties
def environmentMapCache(self):
if (not self._mapHolder):
root = mxs.rootNode
data = EnvironmentMapHolder.find(root)
if (not data):
data = EnvironmentMapHolder.createUnique(root)
self._mapHolder = data
return self._mapHolder
def environmentMapsCache(self):
if (not self._mapsHolder):
root = mxs.rootNode
data = EnvironmentMapsHolder.find(root)
if (not data):
data = EnvironmentMapsHolder.createUnique(root)
self._mapsHolder = data
return self._mapsHolder
def init(self):
MXSCustAttribDef.init(self)
self.setValue('version', SceneMetaData.version)
self.setValue('layerGroupNames', ['Main'])
self.setValue('layerGroupStates', [True])
@classmethod
def define(cls):
cls.setAttrName('OnionData')
cls.defineParam('version', 'float', paramId='v')
cls.defineParam('layerGroupNames', 'stringTab', paramId='gn')
cls.defineParam('layerGroupStates', 'boolTab', paramId='go')
cls.defineParam('materialLibraryList', 'materialTab', paramId='mtl')
cls.defineParam('baseMaterialCache', 'materialTab', paramId='ms')
SceneMetaData.register()
class StudiomaxScene(AbstractScene):
_fbxIOPresetModifiedTime = 0
_orignalFBXPresets = {}
def __init__(self):
AbstractScene.__init__(self)
self._metaData = None
self._mapCache = None
self._connectDefined = False
def _cacheNativeMaterial(self, cacheType, nativeMaterial):
from cross3d.constants import MaterialCacheType
if (cacheType == MaterialCacheType.BaseMaterial):
data = self.metaData()
cache = list(data.value('baseMaterialCache', []))
if (nativeMaterial and not nativeMaterial in cache):
cache.append(nativeMaterial)
data.setValue('baseMaterialCache', cache)
return True
return False
def _cachedNativeMaterial(self, cacheType, materialId, default=None):
unique_id = mxs.blurUtil.uniqueId
cache = self._cachedNativeMaterials(cacheType)
for mtl in cache:
if (mtl == None):
continue
uid = str(unique_id(mtl))
unm = str(mtl.name)
if (materialId == uid or materialId == unm):
return mtl
return None
def _cachedNativeMaterials(self, cacheType):
from cross3d.constants import MaterialCacheType
if (cacheType == MaterialCacheType.MaterialOverrideList):
return self.metaData().value('materialLibraryList')
if (cacheType == MaterialCacheType.BaseMaterial):
return self.metaData().value('baseMaterialCache')
return []
def _cacheNativeMap(self, cacheType, nativeMap):
from cross3d.constants import MapCacheType
if (cacheType == MapCacheType.EnvironmentMap):
data = self.metaData().environmentMapsCache()
maps = list(data.value('environmentMaps'))
maps.append(nativeMap)
data.setValue('environmentMaps', maps)
return False
def _cachedNativeMap(self, cacheType, uniqueId, default=None):
unique_id = mxs.blurUtil.uniqueId
cache = self._cachedNativeMaps(cacheType)
for nativeMap in cache:
if (nativeMap == None):
continue
uid = str(unique_id(nativeMap))
unm = str(nativeMap.name)
if (uniqueId == uid or uniqueId == unm):
return nativeMap
return None
def _cachedNativeMaps(self, cacheType):
from cross3d.constants import MapCacheType
if (cacheType == MapCacheType.EnvironmentMap):
data = self.metaData().environmentMapsCache()
return data.value('environmentMaps')
return []
def _clearNativeMaterialOverride(self, nativeObjects):
from cross3d.constants import MaterialCacheType
from cross3d.studiomax import StudiomaxAppData
get_userprop = mxs.getUserProp
set_userprop = mxs.setUserProp
get_appdata = mxs.getAppData
del_appdata = mxs.deleteAppData
superclassof = mxs.superClassOf
geoclass = mxs.GeometryClass
for obj in nativeObjects:
if (not superclassof(obj) == geoclass):
continue
mid = get_appdata(obj, int(StudiomaxAppData.AltMtlIndex))
if (mid == None):
mid = get_userprop(obj, 'basematerial')
if (mid and mid != 'undefined'):
del_appdata(obj, int(StudiomaxAppData.AltMtlIndex))
set_userprop(obj, 'basematerial', 'undefined')
if (mid == '0'):
obj.material = None
else:
obj.material = self._cachedNativeMaterial(MaterialCacheType.BaseMaterial, mid)
return True
def _clearNativePropSetOverride(self, nativeObjects):
from cross3d import SceneObjectPropSet
from cross3d.studiomax import StudiomaxAppData
get_appdata = mxs.getAppData
del_appdata = mxs.deleteAppData
get_userprop = mxs.getUserProp
set_userprop = mxs.setUserProp
altpropindex = int(StudiomaxAppData.AltPropIndex)
for obj in nativeObjects:
props = get_appdata(obj, altpropindex)
if (not props):
props = get_userprop(obj, 'baseprops')
if (props and props != 'undefined'):
nprop = SceneObjectPropSet(self, None)
nprop._setValueString(props)
for key in nprop.propertyNames():
if (nprop.isCustomProperty(key)):
set_userprop(obj, key, str(self._toNativeValue(nprop.value(key))))
else:
obj.setProperty(key, self._toNativeValue(nprop.value(key)))
set_userprop(obj, 'baseprops', 'undefined')
del_appdata(obj, altpropindex)
return True
def _createNativeModel(self, name='Model', nativeObjects=[], referenced=False):
name = 'Model' if not name else name
output = mxs.Point(cross=False, name=name)
userProps = UserProps(output)
userProps['model'] = True
if nativeObjects:
for nativeObject in nativeObjects:
nativeObject.name = '.'.join([name, nativeObject.name])
nativeObjects.append(output)
return output
def _createNativeLayer(self, name, nativeObjects=[]):
name = unicode(name)
lay = self._findNativeLayer(name)
if not lay:
lay = mxs.layerManager.newLayerFromName(name)
if lay:
from cross3d import SceneLayer
SceneLayer(self, lay)._addNativeObjects(nativeObjects)
return lay
def _createNativeLayerGroup(self, name, nativeLayers=[]):
names = list(self.metaData().value('layerGroupNames'))
states = list(self.metaData().value('layerGroupStates'))
if (not name in names):
names.append(str(name))
states.append(True)
self.metaData().setValue('layerGroupNames', names)
self.metaData().setValue('layerGroupStates', states)
return name
return ''
def _createNativeCamera(self, name='Camera', type='Standard', target=None, rotationOrder=None):
if type == 'Physical':
if application.version() < 18:
nativeCamera = mxs.VRayPhysicalCamera(target=target) if target else mxs.VRayPhysicalCamera()
else:
nativeCamera = mxs.Physical(target=target) if target else mxs.Physical()
else:
nativeCamera = mxs.FreeCamera()
nativeCamera.name = name
return nativeCamera
def _createNativeRenderer(self, rendererType):
from cross3d.constants import RendererType
if (rendererType == RendererType.Scanline):
return mxs.Default_Scanline_Renderer()
elif (rendererType == RendererType.MentalRay):
return mxs.mental_ray_renderer()
elif (rendererType == RendererType.VRay):
renderers = mxs.rendererClass.classes
for renderer in renderers:
clsname = str(renderer)
if (not clsname.startswith('V_Ray_RT') and clsname.startswith('V_Ray_')):
return renderer()
else:
renderers = mxs.rendererClass.classes
for renderer in renderers:
clsname = str(renderer)
if (clsname == rendererType):
return renderer()
return None
def _createNativeTarget(self, name='Camera.Target'):
return mxs.targetobject(name=name)
def _currentNativeCamera(self):
return mxs.viewport.getCamera()
def _currentNativeRenderer(self):
return mxs.renderers.current
def _exportNativeObjects(self, objects, filename=''):
return mxs.saveNodes(objects, filename)
def _findNativeObject(self, name='', uniqueId=0):
name = str(name)
output = None
if (name):
output = mxs.getNodeByName(str(name))
if (not output and uniqueId):
output = mxs.refByUniqueId(uniqueId)
return output
def _findNativeLayer(self, name='', uniqueId=0):
if (name == 'World Layer'):
name = '0'
output = None
if (name):
output = mxs.layerManager.getLayerFromName(str(name))
if (not output and uniqueId):
output = mxs.layerManager.refByUniqueId(uniqueId)
return output
def _findNativeLayerGroup(self, name='', uniqueId=0):
names = list(self.metaData().value('layerGroupNames'))
name = str(name)
if (name in names):
return name
return None
def _findNativeMaterial(self, materialName='', materialId=0):
materialName = str(materialName)
if (not (materialName or materialId)):
return None
uniqueid = mxs.blurUtil.uniqueId
for material in self._nativeMaterials():
if (material.name == materialName or uniqueid(material) == materialId):
return material
cross3d.logger.debug('could not find material (%s - %s)' % (materialName, materialId))
return None
def _findNativeMap(self, name='', uniqueId=0):
name = str(name)
if (not (name or uniqueId)):
return None
uniqueid = mxs.blurUtil.uniqueId
for nmap in self._collectNativeMaps():
if (nmap.name == name or uniqueid(nmap) == uniqueId):
return nmap
return None
def _freezeNativeObjects(self, nativeObjects, state):
if (state):
mxs.freeze(nativeObjects)
else:
mxs.unfreeze(nativeObjects)
application.refresh()
return True
def _hideNativeObjects(self, nativeObjects, state):
if (state):
mxs.hide(nativeObjects)
else:
mxs.unhide(nativeObjects)
application.refresh()
return True
def _fromNativeValue(self, nativeValue):
classof = mxs.classof
cls = classof(nativeValue)
if (cls == mxs.Color):
from PyQt4.QtGui import QColor
return QColor(nativeValue.r, nativeValue.g, nativeValue.b)
if (cls == mxs.Time):
return int(nativeValue)
if (cls == mxs.Name):
return str(nativeValue)
return nativeValue
def _getNativeObject(self):
return mxs.selectByName(single=True)
def _getNativeMaterial(self):
return mxs.materialBrowseDlg(mxs.pyhelper.namify("mats"))
|
MIT License
|
google/clusterfuzz
|
src/clusterfuzz/_internal/bot/fuzzers/dictionary_manager.py
|
DictionaryManager.parse_recommended_dictionary_from_data
|
python
|
def parse_recommended_dictionary_from_data(self, data):
log_lines = data.splitlines()
return self.parse_recommended_dictionary_from_log_lines(log_lines)
|
Extract recommended dictionary entriees from the given string.
Args:
data: A string containing data from a fuzzer log.
Returns:
A set containing recommended dictionary lines.
|
https://github.com/google/clusterfuzz/blob/e9e105d66f009356c4f3fe9ae7873ffff126b234/src/clusterfuzz/_internal/bot/fuzzers/dictionary_manager.py#L250-L260
|
import os
import re
from clusterfuzz._internal.base import errors
from clusterfuzz._internal.base import utils
from clusterfuzz._internal.bot.fuzzers import utils as fuzzer_utils
from clusterfuzz._internal.google_cloud_utils import storage
from clusterfuzz._internal.metrics import logs
from clusterfuzz._internal.system import environment
DICTIONARY_FILE_EXTENSION = '.dict'
RECOMMENDED_DICTIONARY_FILENAME = (
'recommended_dictionary%s' % DICTIONARY_FILE_EXTENSION)
RECOMMENDED_DICTIONARY_HEADER = '# Recommended dictionary stored in GCS.'
TOKEN_ANALYZE_DICT_METADATA = ' # Score: '
TOKEN_RECOMMENDED_DICT_END = 'End of recommended dictionary.'
TOKEN_RECOMMENDED_DICT_START = 'Recommended dictionary.'
TOKEN_USELESS_DICT_END = 'End of useless dictionary elements.'
TOKEN_USELESS_DICT_START = 'Useless dictionary elements.'
DICTIONARY_PART_PATTERN = re.compile(r'([^"]+\s*=\s*)?(.*)')
def extract_dictionary_element(line):
start_index = line.find('"')
end_index = line.rfind('"')
if start_index == -1 or end_index == -1 or start_index == end_index:
return None
element = line[start_index:end_index + 1]
return element
def get_default_dictionary_path(fuzz_target_path):
return fuzzer_utils.get_supporting_file(fuzz_target_path,
DICTIONARY_FILE_EXTENSION)
def get_dictionary_size(dictionary_content):
count = 0
for line in dictionary_content.splitlines():
if extract_dictionary_element(line):
count += 1
return count
def get_recommended_dictionary_gcs_path(fuzzer_name):
bucket_name = environment.get_value('FUZZ_LOGS_BUCKET')
bucket_subdirectory_name = 'dictionaries'
recommended_dictionary_gcs_path = '/%s/%s/%s/%s' % (
bucket_name, bucket_subdirectory_name, fuzzer_name,
RECOMMENDED_DICTIONARY_FILENAME)
return recommended_dictionary_gcs_path
def get_stats_for_dictionary_file(dictionary_path):
if not dictionary_path or not os.path.exists(dictionary_path):
return 0, 0
dictionary_content = utils.read_data_from_file(
dictionary_path, eval_data=False).decode('utf-8')
dictionaries = dictionary_content.split(RECOMMENDED_DICTIONARY_HEADER)
manual_dictionary_size = get_dictionary_size(dictionaries[0])
if len(dictionaries) < 2:
return manual_dictionary_size, 0
recommended_dictionary_size = get_dictionary_size(dictionaries[1])
return manual_dictionary_size, recommended_dictionary_size
def merge_dictionary_files(original_dictionary_path,
recommended_dictionary_path, merged_dictionary_path):
if original_dictionary_path and os.path.exists(original_dictionary_path):
merged_dictionary_data = utils.read_data_from_file(
original_dictionary_path, eval_data=False).decode('utf-8')
else:
merged_dictionary_data = ''
recommended_dictionary_lines = utils.read_data_from_file(
recommended_dictionary_path,
eval_data=False).decode('utf-8').splitlines()
dictionary_lines_to_add = set()
for line in recommended_dictionary_lines:
if line not in merged_dictionary_data:
dictionary_lines_to_add.add(line)
merged_dictionary_data += '\n%s\n' % RECOMMENDED_DICTIONARY_HEADER
merged_dictionary_data += '\n'.join(dictionary_lines_to_add)
utils.write_data_to_file(merged_dictionary_data, merged_dictionary_path)
def _fix_dictionary_line(line, dict_path):
if not line or line.strip().startswith('#'):
return line
match = DICTIONARY_PART_PATTERN.match(line)
if not match:
raise errors.BadStateError(
'Failed to correct dictionary line "{line}" in {path}.'.format(
line=line, path=dict_path))
name_part = match.group(1) or ''
entry = match.group(2)
if not entry and name_part:
entry = name_part
name_part = ''
if entry == '"':
entry = '"\\\""'
if entry.startswith('"') and entry.endswith('"'):
return name_part + entry
new_entry = ''
prev_character = ''
for character in entry:
if character == '"' and prev_character != '\\':
new_entry += '\\'
new_entry += character
prev_character = character
new_entry = '"{entry}"'.format(entry=new_entry)
return name_part + new_entry
def correct_if_needed(dict_path):
if not dict_path or not os.path.exists(dict_path):
return
content = utils.read_data_from_file(
dict_path, eval_data=False).decode('utf-8')
new_content = ''
for current_line in content.splitlines():
new_content += _fix_dictionary_line(current_line, dict_path) + '\n'
if new_content.rstrip('\n') != content.rstrip('\n'):
utils.write_data_to_file(new_content, dict_path)
class DictionaryManager(object):
def __init__(self, fuzzer_name):
self._fuzzer_name = fuzzer_name
self._gcs_path = get_recommended_dictionary_gcs_path(self.fuzzer_name)
@property
def fuzzer_name(self):
return self._fuzzer_name
@property
def gcs_path(self):
return self._gcs_path
def _compare_and_swap_gcs_dictionary(self, old_content, new_content):
current_content = storage.read_data(self.gcs_path).decode('utf-8')
if current_content != old_content:
return False, current_content
storage.write_data(new_content.encode('utf-8'), self.gcs_path)
return True, old_content
def download_recommended_dictionary_from_gcs(self, local_dict_path):
if environment.is_lib():
return 0
if not storage.exists(self.gcs_path):
return False
if storage.copy_file_from(self.gcs_path, local_dict_path):
return True
logs.log('Downloading %s failed.' % self.gcs_path)
return False
|
Apache License 2.0
|
wdm0006/dummyrdd
|
dummy_spark/rdd.py
|
RDD.persist
|
python
|
def persist(self, storageLevel=None):
return self
|
:param storageLevel:
:return:
|
https://github.com/wdm0006/dummyrdd/blob/d66c30495cbaa001a744128c89d41fb55741fba5/dummy_spark/rdd.py#L101-L107
|
import random
import uuid
from collections import OrderedDict
from functools import reduce
from dummy_spark.resultsiterable import ResultIterable
__author__ = 'willmcginnis'
class RDD(object):
def __init__(self, jrdd, ctx, jrdd_deserializer=None):
self._id = str(uuid.uuid4())
if jrdd is None:
self._jrdd = []
else:
if isinstance(jrdd, list):
self._jrdd = jrdd
elif isinstance(jrdd, set):
self._jrdd = list(jrdd)
else:
raise AttributeError('Type %s for jrdd not supported' % (type(jrdd), ))
self.ctx = ctx
self.is_cached = True
self._name = 'dummpy-rdd'
self.is_checkpointed = False
self._jrdd_deserializer = jrdd_deserializer
self.partitioner = None
def id(self):
return self._id
@property
def context(self):
return self.ctx
def name(self):
return self._name
def setName(self, name):
self._name = name
return self
def __repr__(self):
return str(self._jrdd)
def cache(self):
return self
|
BSD 3-Clause New or Revised License
|
alex-sherman/unsync
|
test/test_unsync.py
|
set_attr
|
python
|
def set_attr(attr_value):
@wraps(attr_value)
def wrapper(f):
f.attr = attr_value
return f
return wrapper
|
Sample decorator for testing nested unsync decorators.
|
https://github.com/alex-sherman/unsync/blob/88c4ecd9c74a86c23a50b0adfb8394807725e993/test/test_unsync.py#L114-L124
|
from functools import wraps
from unittest import TestCase
import asyncio
import concurrent
import time
from unsync import unsync
from unsync.unsync import Unfuture
class DecoratorTests(TestCase):
def test_exception(self):
class TestException(Exception):
pass
@unsync
async def error():
await asyncio.sleep(0.1)
raise TestException
with self.assertRaises(TestException):
error().result()
def test_parallelism(self):
calls = []
@unsync
async def sleep():
calls.append('a')
await asyncio.sleep(0.1)
calls.append('b')
results = []
for _ in range(100):
results.append(sleep())
for result in results:
result.result()
self.assertEqual(list(sorted(calls)), calls)
def test_apply_to_function(self):
async def sleep():
await asyncio.sleep(0.1)
return "derp"
unsync_sleep = unsync(sleep)
self.assertEqual(unsync_sleep().result(), "derp")
def test_apply_to_built_in(self):
unsync_sleep = unsync(time.sleep)
unsync_sleep(0.1).result()
def test_future_integration(self):
asyncio_future = asyncio.Future(loop=unsync.loop)
@unsync
async def wrapper(_future):
return await _future
result = wrapper(asyncio_future)
with self.assertRaises(concurrent.futures.TimeoutError):
result.result(timeout=0.1)
self.assertFalse(result.done())
unsync.loop.call_soon_threadsafe(lambda: asyncio_future.set_result('faff'))
self.assertEqual('faff', result.result(timeout=0.1))
def test_unfuture_integration(self):
unfuture = Unfuture()
@unsync
async def wrapper(_future):
result = await _future
return result
result = wrapper(unfuture)
with self.assertRaises(concurrent.futures.TimeoutError):
result.result(timeout=0.1)
self.assertFalse(result.done())
unfuture.set_result('faff')
self.assertEqual('faff', result.result(timeout=0.1))
def test_instance_methods(self):
class Class:
@unsync
async def wait(self):
await asyncio.sleep(0.1)
return 'faff'
self.assertEqual('faff', Class().wait().result())
def test_passing_arguments(self):
@unsync(faff='faff')
def cpu_bound():
return 'faff'
self.assertEqual('faff', cpu_bound().result())
def test_implementation_without_decorator(self):
def function_name(x: str) -> Unfuture[str]:
async_method = unsync(__function_name_synced)
return async_method(x)
def __function_name_synced(x: str) -> str:
return x + 'a'
future_result = function_name('b')
self.assertEqual('ba', future_result.result())
|
MIT License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_token_request_spec.py
|
V1TokenRequestSpec.audiences
|
python
|
def audiences(self, audiences):
if self.local_vars_configuration.client_side_validation and audiences is None:
raise ValueError("Invalid value for `audiences`, must not be `None`")
self._audiences = audiences
|
Sets the audiences of this V1TokenRequestSpec.
Audiences are the intendend audiences of the token. A recipient of a token must identitfy themself with an identifier in the list of audiences of the token, and otherwise should reject the token. A token issued for multiple audiences may be used to authenticate against any of the audiences listed but implies a high degree of trust between the target audiences. # noqa: E501
:param audiences: The audiences of this V1TokenRequestSpec. # noqa: E501
:type: list[str]
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_token_request_spec.py#L76-L87
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1TokenRequestSpec(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'audiences': 'list[str]',
'bound_object_ref': 'V1BoundObjectReference',
'expiration_seconds': 'int'
}
attribute_map = {
'audiences': 'audiences',
'bound_object_ref': 'boundObjectRef',
'expiration_seconds': 'expirationSeconds'
}
def __init__(self, audiences=None, bound_object_ref=None, expiration_seconds=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._audiences = None
self._bound_object_ref = None
self._expiration_seconds = None
self.discriminator = None
self.audiences = audiences
if bound_object_ref is not None:
self.bound_object_ref = bound_object_ref
if expiration_seconds is not None:
self.expiration_seconds = expiration_seconds
@property
def audiences(self):
return self._audiences
@audiences.setter
|
Apache License 2.0
|
transientskp/tkp
|
tkp/sourcefinder/utils.py
|
generate_subthresholds
|
python
|
def generate_subthresholds(min_value, max_value, num_thresholds):
subthrrange = numpy.logspace(
0.0,
numpy.log(max_value + 1 - min_value),
num=num_thresholds+1,
base=numpy.e,
endpoint=False
)[1:]
subthrrange += (min_value - 1)
return subthrrange
|
Generate a series of ``num_thresholds`` logarithmically spaced values
in the range (min_value, max_value) (both exclusive).
|
https://github.com/transientskp/tkp/blob/c4d6c3c59d51c083509316ba0e25dd8e732ee23b/tkp/sourcefinder/utils.py#L11-L29
|
import numpy
import math
import scipy.integrate
from tkp.sourcefinder.gaussian import gaussian
from tkp.utility import coordinates
|
BSD 2-Clause Simplified License
|
zachjweiner/pystella
|
pystella/sectors.py
|
Sector.stress_tensor
|
python
|
def stress_tensor(self, mu, nu, drop_trace=True):
raise NotImplementedError
|
:arg drop_trace: Whether to drop the term
:math:`g_{\\mu\\nu} \\mathcal{L}`.
Defauls to *False*.
:returns: The component :math:`T_{\\mu\\nu}` of the stress-energy
tensor of the particular :class:`Sector`.
Used by :class:`TensorPerturbationSector`, with ``drop_trace=True``.
|
https://github.com/zachjweiner/pystella/blob/97aa42aa9aaa4765ab5dc858e90921c6959b7ce7/pystella/sectors.py#L79-L89
|
__copyright__ = "Copyright (C) 2019 Zachary J Weiner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
from pystella import DynamicField, Field
from pystella.field import diff
from pymbolic import var
__doc__ = """
.. currentmodule:: pystella
.. autoclass:: Sector
.. autoclass:: ScalarSector
.. autoclass:: TensorPerturbationSector
.. currentmodule:: pystella.sectors
.. autofunction:: get_rho_and_p
"""
eta = [-1, 1, 1, 1]
class Sector:
def __init__(self):
raise NotImplementedError
@property
def rhs_dict(self):
raise NotImplementedError
@property
def reducers(self):
raise NotImplementedError
|
MIT License
|
yandex-cloud/python-sdk
|
yandex/cloud/mdb/clickhouse/v1/cluster_service_pb2_grpc.py
|
ClusterServiceServicer.DeleteShardGroup
|
python
|
def DeleteShardGroup(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
|
Deletes the specified shard group.
|
https://github.com/yandex-cloud/python-sdk/blob/6ddaaaf0ad01d8fc36cb72957f70a6e7943a5ce7/yandex/cloud/mdb/clickhouse/v1/cluster_service_pb2_grpc.py#L380-L385
|
import grpc
from yandex.cloud.mdb.clickhouse.v1 import cluster_pb2 as yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__pb2
from yandex.cloud.mdb.clickhouse.v1 import cluster_service_pb2 as yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2
from yandex.cloud.operation import operation_pb2 as yandex_dot_cloud_dot_operation_dot_operation__pb2
class ClusterServiceStub(object):
def __init__(self, channel):
self.Get = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Get',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.GetClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__pb2.Cluster.FromString,
)
self.List = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/List',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClustersRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClustersResponse.FromString,
)
self.Create = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Create',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.CreateClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Update = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Update',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.UpdateClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Delete = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Delete',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.DeleteClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Start = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Start',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.StartClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Stop = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Stop',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.StopClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Move = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Move',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.MoveClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.AddZookeeper = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/AddZookeeper',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.AddClusterZookeeperRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Backup = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Backup',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.BackupClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Restore = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/Restore',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.RestoreClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.RescheduleMaintenance = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/RescheduleMaintenance',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.RescheduleMaintenanceRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.ListLogs = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/ListLogs',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterLogsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterLogsResponse.FromString,
)
self.StreamLogs = channel.unary_stream(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/StreamLogs',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.StreamClusterLogsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.StreamLogRecord.FromString,
)
self.ListOperations = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/ListOperations',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterOperationsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterOperationsResponse.FromString,
)
self.ListBackups = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/ListBackups',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterBackupsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterBackupsResponse.FromString,
)
self.ListHosts = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/ListHosts',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterHostsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterHostsResponse.FromString,
)
self.AddHosts = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/AddHosts',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.AddClusterHostsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.DeleteHosts = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/DeleteHosts',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.DeleteClusterHostsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.GetShard = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/GetShard',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.GetClusterShardRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__pb2.Shard.FromString,
)
self.ListShards = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/ListShards',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterShardsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterShardsResponse.FromString,
)
self.AddShard = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/AddShard',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.AddClusterShardRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.UpdateShard = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/UpdateShard',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.UpdateClusterShardRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.DeleteShard = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/DeleteShard',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.DeleteClusterShardRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.GetShardGroup = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/GetShardGroup',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.GetClusterShardGroupRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__pb2.ShardGroup.FromString,
)
self.ListShardGroups = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/ListShardGroups',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterShardGroupsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.ListClusterShardGroupsResponse.FromString,
)
self.CreateShardGroup = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/CreateShardGroup',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.CreateClusterShardGroupRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.UpdateShardGroup = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/UpdateShardGroup',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.UpdateClusterShardGroupRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.DeleteShardGroup = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/DeleteShardGroup',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.DeleteClusterShardGroupRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.CreateExternalDictionary = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/CreateExternalDictionary',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.CreateClusterExternalDictionaryRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.DeleteExternalDictionary = channel.unary_unary(
'/yandex.cloud.mdb.clickhouse.v1.ClusterService/DeleteExternalDictionary',
request_serializer=yandex_dot_cloud_dot_mdb_dot_clickhouse_dot_v1_dot_cluster__service__pb2.DeleteClusterExternalDictionaryRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
class ClusterServiceServicer(object):
def Get(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def List(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Create(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Update(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Delete(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Start(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Stop(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Move(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AddZookeeper(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Backup(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Restore(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def RescheduleMaintenance(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListLogs(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def StreamLogs(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListOperations(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListBackups(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListHosts(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AddHosts(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def DeleteHosts(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GetShard(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListShards(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AddShard(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def UpdateShard(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def DeleteShard(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def GetShardGroup(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def ListShardGroups(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def CreateShardGroup(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def UpdateShardGroup(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
|
MIT License
|
felixriese/susi
|
susi/SOMEstimator.py
|
SOMEstimator.predict
|
python
|
def predict(
self, X: Sequence, y: Optional[Sequence] = None
) -> List[float]:
check_is_fitted(self, ["X_", "y_"])
X = check_array(X, dtype=np.float64)
y_pred_list = []
for dp in tqdm(X, desc="predict", **self.tqdm_params_):
y_pred_list.append(self._calc_estimation_output(dp, proba=False))
y_pred = np.array(y_pred_list)
return y_pred
|
Predict output of data X.
Parameters
----------
X : array-like matrix of shape = [n_samples, n_features]
The prediction input samples.
y : None, optional
Ignored.
Returns
-------
y_pred : list of float
List of predicted values.
Examples
--------
Fit the SOM on your data `X, y`:
>>> import susi
>>> som = susi.SOMClassifier()
>>> som.fit(X, y)
>>> y_pred = som.predict(X)
|
https://github.com/felixriese/susi/blob/fdac3651cb6e9c0aad4281e56633ce8f7cb135d5/susi/SOMEstimator.py#L255-L291
|
from abc import ABC, abstractmethod
from typing import List, Optional, Sequence, Tuple, Union
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_array, check_is_fitted
from tqdm import tqdm
from .SOMClustering import SOMClustering
from .SOMUtils import check_estimation_input, modify_weight_matrix_online
class SOMEstimator(SOMClustering, BaseEstimator, ABC):
def __init__(
self,
n_rows: int = 10,
n_columns: int = 10,
*,
init_mode_unsupervised: str = "random",
init_mode_supervised: str = "random",
n_iter_unsupervised: int = 1000,
n_iter_supervised: int = 1000,
train_mode_unsupervised: str = "online",
train_mode_supervised: str = "online",
neighborhood_mode_unsupervised: str = "linear",
neighborhood_mode_supervised: str = "linear",
learn_mode_unsupervised: str = "min",
learn_mode_supervised: str = "min",
distance_metric: str = "euclidean",
learning_rate_start: float = 0.5,
learning_rate_end: float = 0.05,
nbh_dist_weight_mode: str = "pseudo-gaussian",
missing_label_placeholder: Optional[Union[int, str]] = None,
n_jobs: Optional[int] = None,
random_state=None,
verbose: Optional[int] = 0,
) -> None:
super().__init__(
n_rows=n_rows,
n_columns=n_columns,
init_mode_unsupervised=init_mode_unsupervised,
n_iter_unsupervised=n_iter_unsupervised,
train_mode_unsupervised=train_mode_unsupervised,
neighborhood_mode_unsupervised=neighborhood_mode_unsupervised,
learn_mode_unsupervised=learn_mode_unsupervised,
distance_metric=distance_metric,
learning_rate_start=learning_rate_start,
learning_rate_end=learning_rate_end,
nbh_dist_weight_mode=nbh_dist_weight_mode,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
)
self.init_mode_supervised = init_mode_supervised
self.n_iter_supervised = n_iter_supervised
self.train_mode_supervised = train_mode_supervised
self.neighborhood_mode_supervised = neighborhood_mode_supervised
self.learn_mode_supervised = learn_mode_supervised
self.missing_label_placeholder = missing_label_placeholder
@abstractmethod
def _init_super_som(self) -> None:
return None
def fit(self, X: Sequence, y: Optional[Sequence] = None):
X, y = check_estimation_input(X, y)
self.X_: np.ndarray = X
self.y_: np.ndarray = y
self.n_features_in_ = self.X_.shape[1]
return self._fit_estimator()
def _fit_estimator(self):
np.random.seed(seed=self.random_state)
if self.missing_label_placeholder is None:
self.labeled_indices_ = list(range(len(self.y_)))
self.sample_weights_ = np.full(
fill_value=1.0, shape=(len(self.X_), 1)
)
else:
self.labeled_indices_ = np.where(
self.y_ != self.missing_label_placeholder
)[0]
unlabeled_weight = max(
len(self.labeled_indices_) / len(self.y_), 0.1
)
self.sample_weights_ = np.full(
fill_value=unlabeled_weight, shape=(len(self.X_), 1)
)
self.sample_weights_[self.labeled_indices_] = 1.0
self._train_unsupervised_som()
self._train_supervised_som()
self.fitted_ = True
return self
|
BSD 3-Clause New or Revised License
|
yelp/mycroft
|
mycroft/sherlock/batch/ingest_multiple_dates.py
|
ParallelEtStepper._setup_pool_size
|
python
|
def _setup_pool_size(self, cl_args, cpus):
if cl_args.pool_size < 1:
self.pool_size = 1
elif cl_args.pool_size > cpus and not cl_args.exceed_max_processes:
self.pool_size = cpus
else:
self.pool_size = cl_args.pool_size
date_span = (self.end - self.start).days + 1
self.pool_size = min(self.pool_size, date_span)
|
setup_pool_size uses the pool_size and exceed_max_processes input from
the command line, the number of cpus in the input argument, and the
date span found from the constructor to determine a pool size.
This is broken out so it can be nicely unit tested.
Args:
cl_args -- an Argparse.namespace from the command line arguments
cpus -- an integer number of cpus
Sets:
self.pool_size -- the number of processes used in parallelization of
the ET step
|
https://github.com/yelp/mycroft/blob/9c6185891aa367bb85a179bff35fbf4501ddf848/mycroft/sherlock/batch/ingest_multiple_dates.py#L333-L356
|
import argparse
import copy
from datetime import datetime
from datetime import timedelta
import itertools
from multiprocessing import cpu_count
from multiprocessing import Pool
from multiprocessing import ProcessError
import staticconf as sc
import sys
import time
import traceback
from sherlock.common.config_util import load_package_config
from sherlock.batch.s3_to_psv import s3_to_psv_main
from sherlock.batch.s3_to_redshift import s3_to_redshift_main
from sherlock.common.pipeline import add_load_args
from sherlock.common.pipeline import get_base_parser
from sherlock.common.pipeline import load_io_yaml_from_args
class KeyboardInterruptError(Exception):
pass
class DateAction(argparse.Action):
def __init__(self, *args, **kwargs):
argparse.Action.__init__(self, *args, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
try:
setattr(namespace,
self.dest, datetime.strptime(values, "%Y-%m-%d"))
except ValueError as value_error:
raise argparse.ArgumentError(self, value_error.args[0])
class ETLStep(object):
step_type_to_command = {
'et': s3_to_psv_main,
'load': s3_to_redshift_main
}
def __init__(self, input_args, step_date, step_type):
self.input_args = input_args
self.step_date = step_date
self.step_type = step_type
self._add_date_to_input_args()
def __repr__(self):
return "{0}(type: {1} date: {2})".format(
self.__class__.__name__,
self.step_type,
self.step_date
)
def _add_date_to_input_args(self):
parser = argparse.ArgumentParser()
parser.add_argument('--date')
namespace_copy = copy.deepcopy(self.input_args)
self.input_args = parser.parse_args(
args=['--date', self.step_date],
namespace=namespace_copy
)
def execute(self):
print self
if not self.input_args.dry_run:
self.step_type_to_command[self.step_type](self.input_args)
class ETLStepper(object):
def __init__(self, input_args):
self.start = input_args.start_date
self.end = input_args.end_date
self.poll_interval_seconds = input_args.load_polling_interval
if self.poll_interval_seconds < 1:
self._try_load_step = self._load_step
else:
self._try_load_step = self._polling_load_step
self.input_args = input_args
self._check_dates()
self.et_generator = None
self.load_generator = None
def _check_dates(self):
if self.start > self.end:
temp = self.start
self.start = self.end
self.end = temp
def _construct_step(self, days_from_start, step_type):
step_date = (self.start +
timedelta(days=days_from_start)).strftime("%Y-%m-%d")
return ETLStep(self.input_args, step_date, step_type)
def _get_step_type_imap(self, step_type):
return itertools.imap(
lambda days_from_start: self._construct_step(
days_from_start, step_type
),
xrange((self.end - self.start).days + 1)
)
def _construct_etl_generator(self, generator_type=None):
if generator_type == 'et':
self.et_generator = self._get_step_type_imap('et')
elif generator_type == 'load':
self.load_generator = self._get_step_type_imap('load')
else:
self.et_generator = self._get_step_type_imap('et')
self.load_generator = self._get_step_type_imap('load')
def execute_et_steps(self):
self._construct_etl_generator('et')
results = []
for step in self.et_generator:
step_result = _init_step_result(step)
try:
step.execute()
step_result['status'] = 'success'
except (KeyboardInterrupt, KeyboardInterruptError):
raise
except Exception:
step_result['status'] = 'error'
step_result['error_info'] = _capture_error_info()
raise ProcessError(
{'results': results, 'failures': [step_result]}
)
finally:
step_result['end_time'] = time.time()
results.append(step_result)
return results
def execute_load_steps(self):
self._construct_etl_generator('load')
results = []
for step in self.load_generator:
step_result = _init_step_result(step)
try:
self._try_load_step(step)
step_result['status'] = 'success'
except (KeyboardInterrupt, KeyboardInterruptError):
raise
except Exception:
step_result['status'] = 'error'
step_result['error_info'] = _capture_error_info()
raise ProcessError(
{'results': results, 'failures': [step_result]}
)
finally:
step_result['end_time'] = time.time()
results.append(step_result)
return results
def _load_step(self, step):
step.execute()
def _polling_load_step(self, step):
while True:
try:
step.execute()
break
except IOError as io_error:
print repr(io_error)
print "sleeping {0} minutes".format(
self.poll_interval_seconds / 60
)
time.sleep(self.poll_interval_seconds)
def _capture_error_info():
exc_type, exc_value, exc_tb = sys.exc_info()
return {
'crash_tb': ''.join(traceback.format_tb(exc_tb)),
'crash_exc': traceback.format_exception_only(
exc_type, exc_value
)[0].strip(),
}
def _init_step_result(step_object):
return {
'status': 'unknown',
'date': step_object.step_date,
'start_time': time.time(),
'end_time': None,
'type': step_object.step_type,
'error_info': {},
'repr': repr(step_object)
}
def _executor(step_object):
step_result = _init_step_result(step_object)
try:
step_object.execute()
step_result['status'] = 'success'
except KeyboardInterrupt:
raise KeyboardInterruptError()
except:
step_result['status'] = 'error'
step_result['error_info'] = _capture_error_info()
pass
finally:
step_result['end_time'] = time.time()
return step_result
class ParallelEtStepper(ETLStepper):
def __init__(self, input_args):
super(ParallelEtStepper, self).__init__(input_args)
cpus = cpu_count()
self.pool_size = None
self._setup_pool_size(input_args, cpus)
|
MIT License
|
xanaduai/strawberryfields
|
strawberryfields/circuitdrawer.py
|
Circuit._d
|
python
|
def _d(self, wire):
self._single_mode_gate(wire, D_COMP)
|
Adds a displacement operator to the circuit.
Args:
wire (int): the subsystem wire to apply the operator to.
|
https://github.com/xanaduai/strawberryfields/blob/c1eed81a93419cb9c28a6ca205925691063722ce/strawberryfields/circuitdrawer.py#L249-L255
|
import datetime
import os
DOCUMENT_CLASS = r"\documentclass{article}"
EMPTY_PAGESTYLE = r"\pagestyle{empty}"
QCIRCUIT_PACKAGE = r"\usepackage{qcircuit}"
BEGIN_DOCUMENT = r"\begin{document}"
DOCUMENT_END = r"\end{document}"
CIRCUIT_START = r"\Qcircuit"
COLUMN_SPACING = "@C={0}"
ROW_SPACING = "@R={0}"
UNIFORM_ROW_SPACING = "@!R"
UNIFORM_COLUMN_SPACING = "@!C"
UNIFORM_ELEMENT_SPACING = "@!"
QUANTUM_WIRE = r"\qw"
MULTI_QUANTUM_WIRE = r"\qw[{0}]"
VERTICAL_QUANTUM_WIRE = r"\qwx[{0}]"
WIRE_END = r"\qwa[{0}]"
CLASSICAL_WIRE = r"\cw[{0}]"
CLASSICAL_WIRE_END = r"\cwa[{0}]"
VERTICAL_CLASSICAL_WIRE = r"\cwx[{0}]"
LABELLED_GATE = r"\gate{{{0}}}"
TARGET = r"\targ"
SWAP = r"\qswap"
MULTIGATE = r"\multigate{{{0}}}{{{1}}}"
NON_ADJACENT_MULTIGATE = r"\sgate{{{0}}}{{{1}}}"
GHOST = r"\ghost{{{0}}}"
CLASSICAL_GHOST = r"\cghost{{{0}}}"
NO_GHOST = r"\nghost{{{0}}}"
CONTROL = r"\ctrl{{{0}}}"
CONTROL_ON_ZERO = r"\ctrlo{{{0}}}"
CLASSICAL_CONTROL = r"\cctrl{{{0}}}"
CLASSICAL_CONTROL_ON_ZERO = r"\cctrlo{{{0}}}"
ISOLATED_CONTROL = r"\control"
ISOLATED_CONTROL_ON_ZERO = r"\controlo"
METER = r"\meter"
BASIS_METER = r"\meterB{{{0}}}"
SPLIT_BASIS_METER = r"\smeterB{{{0}}}{{{1}}}"
MEASURE = r"\measuretab{{{0}}}"
MULTIMEASURE = r"\multimeasure{{{0}}}{{{1}}}"
LEFT_WIRE_LABEL = r"\lstick{{{0}}}"
RIGHT_WIRE_LABEL = r"\rstick{{{0}}}"
BRA = r"\bra{{{0}}}"
KET = r"\ket{{{0}}}"
HADAMARD_COMP = LABELLED_GATE.format("H")
PAULI_X_COMP = LABELLED_GATE.format("X")
PAULI_Y_COMP = LABELLED_GATE.format("Y")
PAULI_Z_COMP = LABELLED_GATE.format("Z")
D_COMP = LABELLED_GATE.format("D")
S_COMP = LABELLED_GATE.format("S")
R_COMP = LABELLED_GATE.format("R")
P_COMP = LABELLED_GATE.format("P")
V_COMP = LABELLED_GATE.format("V")
K_COMP = LABELLED_GATE.format("K")
FOURIER_COMP = LABELLED_GATE.format("F")
BS_MULTI_COMP = "BS"
S_MULTI_COMP = "S"
WIRE_OPERATION = "& {0}"
WIRE_TERMINATOR = r"\\" + "\n"
CIRCUIT_BODY_TERMINATOR = "}\n"
CIRCUIT_BODY_START = " {" + "\n"
INIT_DOCUMENT = (
DOCUMENT_CLASS
+ "\n"
+ EMPTY_PAGESTYLE
+ "\n"
+ QCIRCUIT_PACKAGE
+ "\n"
+ BEGIN_DOCUMENT
+ "\n"
+ CIRCUIT_START
)
PIPE = "|"
LINE_RETURN = "\n"
class NotDrawableException(Exception):
pass
class ModeMismatchException(Exception):
pass
class UnsupportedGateException(Exception):
pass
class Circuit:
_circuit_matrix = []
def __init__(self, wires):
self._document = ""
self._circuit_matrix = [[QUANTUM_WIRE.format(1)] for wire in range(wires)]
self._column_spacing = None
self._row_spacing = None
self.single_mode_gates = {
"Xgate": self._x,
"Zgate": self._z,
"Dgate": self._d,
"Sgate": self._s,
"Rgate": self._r,
"Pgate": self._p,
"Vgate": self._v,
"Kgate": self._k,
"Fourier": self._fourier,
}
self.two_mode_gates = {
"CXgate": self._cx,
"CZgate": self._cz,
"CKgate": self._ck,
"BSgate": self._bs,
"S2gate": self._s2,
}
def _gate_from_operator(self, op):
operator = str(op).split(PIPE)[0]
method = None
mode = None
for two_mode_gate in self.two_mode_gates:
if two_mode_gate in operator:
method = self.two_mode_gates[two_mode_gate]
mode = 2
if method is None:
for single_mode_gate in self.single_mode_gates:
if single_mode_gate in operator:
method = self.single_mode_gates[single_mode_gate]
mode = 1
return method, mode
def parse_op(self, op):
if not op.__class__.__name__ == "Command":
return
method, mode = self._gate_from_operator(op)
wires = list(map(lambda register: register.ind, op.reg))
if method is None:
raise UnsupportedGateException(
"Unsupported operation {0} not printable by circuit builder!".format(str(op))
)
if mode == len(wires):
method(*wires)
else:
raise ModeMismatchException(
"{0} mode gate applied to {1} wires!".format(mode, len(wires))
)
def _x(self, wire):
self._single_mode_gate(wire, PAULI_X_COMP)
def _z(self, wire):
self._single_mode_gate(wire, PAULI_Z_COMP)
def _s(self, wire):
self._single_mode_gate(wire, S_COMP)
|
Apache License 2.0
|
haoyuhu/bert-multi-gpu
|
run_custom_classifier_mlabel.py
|
file_based_convert_examples_to_features
|
python
|
def file_based_convert_examples_to_features(
examples, max_seq_length, tokenizer, output_file):
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
if isinstance(feature.label_ids, list):
label_ids = feature.label_ids
else:
label_ids = feature.label_ids[0]
features["label_ids"] = create_int_feature(label_ids)
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
|
Convert a set of `InputExample`s to a TFRecord file.
|
https://github.com/haoyuhu/bert-multi-gpu/blob/66dc4ec8af70ec13e44749dae2ca8e5928f4b02e/run_custom_classifier_mlabel.py#L375-L408
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import csv
import json
import os
import numpy as np
import tensorflow as tf
from tensorflow.python.distribute.cross_device_ops import AllReduceCrossDeviceOps
from tensorflow.python.estimator.estimator import Estimator
from tensorflow.python.estimator.run_config import RunConfig
import custom_optimization
import modeling
import optimization
import tokenization
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer(
"num_labels", 10,
"Number of labels in dataset for multi-label classification")
flags.DEFINE_string(
"data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("task_name", None, "The name of the task to train.")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool(
"do_predict", False,
"Whether to run the model in inference mode on the test set.")
flags.DEFINE_bool(
"save_for_serving", False,
"Whether to save the model for tensorflow serving.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 3.0,
"Total number of training epochs to perform.")
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("save_checkpoints_steps", 10000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 10000,
"How many steps to make in each estimator call.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
flags.DEFINE_bool("use_gpu", False, "Whether to use GPU.")
flags.DEFINE_integer(
"num_gpu_cores", 0,
"Only used if `use_gpu` is True. Total number of GPU cores to use."
)
flags.DEFINE_bool("use_fp16", False, "Whether to use fp16.")
class InputExample(object):
def __init__(self, guid, text_a, text_b=None, labels=None):
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.labels = labels
class PaddingInputExample(object):
class InputFeatures(object):
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_ids,
is_real_example=True):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
self.is_real_example = is_real_example
class DataProcessor(object):
def get_train_examples(self, data_dir):
raise NotImplementedError()
def get_dev_examples(self, data_dir):
raise NotImplementedError()
def get_test_examples(self, data_dir):
raise NotImplementedError()
def get_labels(self):
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class MlabelProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def _create_examples(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = tokenization.convert_to_unicode(line[1])
if set_type == "test":
labels = ["0"] * NUM_LABELS
else:
labels = line[2:]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, labels=labels))
return examples
def convert_single_example(ex_index, example, max_seq_length, tokenizer):
if isinstance(example, PaddingInputExample):
return InputFeatures(
input_ids=[0] * max_seq_length,
input_mask=[0] * max_seq_length,
segment_ids=[0] * max_seq_length,
label_id=0,
is_real_example=False)
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_ids = []
for label in example.labels:
label_ids.append(int(label))
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %s)" % (example.labels, label_ids))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids,
is_real_example=True)
return feature
|
Apache License 2.0
|
numba/numba
|
numba/np/ufunc/ufuncbuilder.py
|
UFuncBuilder._finalize_signature
|
python
|
def _finalize_signature(self, cres, args, return_type):
return _finalize_ufunc_signature(cres, args, return_type)
|
Slated for deprecation, use ufuncbuilder._finalize_ufunc_signature()
instead.
|
https://github.com/numba/numba/blob/8d4559a83b7b12da9121c030b8e3780874204a34/numba/np/ufunc/ufuncbuilder.py#L265-L269
|
import inspect
from contextlib import contextmanager
from numba.core import config, targetconfig
from numba.core.decorators import jit
from numba.core.descriptors import TargetDescriptor
from numba.core.options import TargetOptions, include_default_options
from numba.core.registry import cpu_target
from numba.core.target_extension import dispatcher_registry, target_registry
from numba.core import utils, types, serialize, compiler, sigutils
from numba.np.numpy_support import as_dtype
from numba.np.ufunc import _internal
from numba.np.ufunc.sigparse import parse_signature
from numba.np.ufunc.wrappers import build_ufunc_wrapper, build_gufunc_wrapper
from numba.core.caching import FunctionCache, NullCache
from numba.core.compiler_lock import global_compiler_lock
_options_mixin = include_default_options(
"nopython",
"forceobj",
"boundscheck",
"fastmath",
"target_backend",
)
class UFuncTargetOptions(_options_mixin, TargetOptions):
def finalize(self, flags, options):
if not flags.is_set("enable_pyobject"):
flags.enable_pyobject = True
if not flags.is_set("enable_looplift"):
flags.enable_looplift = True
flags.inherit_if_not_set("nrt", default=True)
if not flags.is_set("debuginfo"):
flags.debuginfo = config.DEBUGINFO_DEFAULT
if not flags.is_set("boundscheck"):
flags.boundscheck = flags.debuginfo
flags.enable_pyobject_looplift = True
flags.inherit_if_not_set("fastmath")
class UFuncTarget(TargetDescriptor):
options = UFuncTargetOptions
def __init__(self):
super().__init__('ufunc')
@property
def typing_context(self):
return cpu_target.typing_context
@property
def target_context(self):
return cpu_target.target_context
ufunc_target = UFuncTarget()
class UFuncDispatcher(serialize.ReduceMixin):
targetdescr = ufunc_target
def __init__(self, py_func, locals={}, targetoptions={}):
self.py_func = py_func
self.overloads = utils.UniqueDict()
self.targetoptions = targetoptions
self.locals = locals
self.cache = NullCache()
def _reduce_states(self):
return dict(
pyfunc=self.py_func,
locals=self.locals,
targetoptions=self.targetoptions,
)
@classmethod
def _rebuild(cls, pyfunc, locals, targetoptions):
return cls(py_func=pyfunc, locals=locals, targetoptions=targetoptions)
def enable_caching(self):
self.cache = FunctionCache(self.py_func)
def compile(self, sig, locals={}, **targetoptions):
locs = self.locals.copy()
locs.update(locals)
topt = self.targetoptions.copy()
topt.update(targetoptions)
flags = compiler.Flags()
self.targetdescr.options.parse_as_flags(flags, topt)
flags.no_cpython_wrapper = True
flags.error_model = "numpy"
flags.enable_looplift = False
return self._compile_core(sig, flags, locals)
def _compile_core(self, sig, flags, locals):
typingctx = self.targetdescr.typing_context
targetctx = self.targetdescr.target_context
@contextmanager
def store_overloads_on_success():
try:
yield
except Exception:
raise
else:
exists = self.overloads.get(cres.signature)
if exists is None:
self.overloads[cres.signature] = cres
with global_compiler_lock:
with targetconfig.ConfigStack().enter(flags.copy()):
with store_overloads_on_success():
cres = self.cache.load_overload(sig, targetctx)
if cres is not None:
return cres
args, return_type = sigutils.normalize_signature(sig)
cres = compiler.compile_extra(typingctx, targetctx,
self.py_func, args=args,
return_type=return_type,
flags=flags, locals=locals)
self.cache.save_overload(sig, cres)
return cres
dispatcher_registry[target_registry['npyufunc']] = UFuncDispatcher
def _compile_element_wise_function(nb_func, targetoptions, sig):
cres = nb_func.compile(sig, **targetoptions)
args, return_type = sigutils.normalize_signature(sig)
return cres, args, return_type
def _finalize_ufunc_signature(cres, args, return_type):
if return_type is None:
if cres.objectmode:
raise TypeError("return type must be specified for object mode")
else:
return_type = cres.signature.return_type
assert return_type != types.pyobject
return return_type(*args)
def _build_element_wise_ufunc_wrapper(cres, signature):
ctx = cres.target_context
library = cres.library
fname = cres.fndesc.llvm_func_name
with global_compiler_lock:
info = build_ufunc_wrapper(library, ctx, fname, signature,
cres.objectmode, cres)
ptr = info.library.get_pointer_to_function(info.name)
dtypenums = [as_dtype(a).num for a in signature.args]
dtypenums.append(as_dtype(signature.return_type).num)
return dtypenums, ptr, cres.environment
_identities = {
0: _internal.PyUFunc_Zero,
1: _internal.PyUFunc_One,
None: _internal.PyUFunc_None,
"reorderable": _internal.PyUFunc_ReorderableNone,
}
def parse_identity(identity):
try:
identity = _identities[identity]
except KeyError:
raise ValueError("Invalid identity value %r" % (identity,))
return identity
class _BaseUFuncBuilder(object):
def add(self, sig=None):
if hasattr(self, 'targetoptions'):
targetoptions = self.targetoptions
else:
targetoptions = self.nb_func.targetoptions
cres, args, return_type = _compile_element_wise_function(
self.nb_func, targetoptions, sig)
sig = self._finalize_signature(cres, args, return_type)
self._sigs.append(sig)
self._cres[sig] = cres
return cres
def disable_compile(self):
class UFuncBuilder(_BaseUFuncBuilder):
def __init__(self, py_func, identity=None, cache=False, targetoptions={}):
self.py_func = py_func
self.identity = parse_identity(identity)
self.nb_func = jit(_target='npyufunc',
cache=cache,
**targetoptions)(py_func)
self._sigs = []
self._cres = {}
|
BSD 2-Clause Simplified License
|
ninthdevilhaunster/arknightsautohelper
|
vendor/penguin_client/penguin_client/models/notice.py
|
Notice.existence
|
python
|
def existence(self, existence):
self._existence = existence
|
Sets the existence of this Notice.
:param existence: The existence of this Notice. # noqa: E501
:type: dict(str, Existence)
|
https://github.com/ninthdevilhaunster/arknightsautohelper/blob/d24b4e22a73b333c1acc152556566efad4e94c04/vendor/penguin_client/penguin_client/models/notice.py#L118-L126
|
import pprint
import re
import six
class Notice(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'conditions': 'ExistConditions',
'content_i18n': 'dict(str, str)',
'existence': 'dict(str, Existence)',
'severity': 'int'
}
attribute_map = {
'conditions': 'conditions',
'content_i18n': 'content_i18n',
'existence': 'existence',
'severity': 'severity'
}
def __init__(self, conditions=None, content_i18n=None, existence=None, severity=None):
self._conditions = None
self._content_i18n = None
self._existence = None
self._severity = None
self.discriminator = None
if conditions is not None:
self.conditions = conditions
if content_i18n is not None:
self.content_i18n = content_i18n
if existence is not None:
self.existence = existence
if severity is not None:
self.severity = severity
@property
def conditions(self):
return self._conditions
@conditions.setter
def conditions(self, conditions):
self._conditions = conditions
@property
def content_i18n(self):
return self._content_i18n
@content_i18n.setter
def content_i18n(self, content_i18n):
self._content_i18n = content_i18n
@property
def existence(self):
return self._existence
@existence.setter
|
MIT License
|
jhl-hust/ibcln
|
data/resize_natural_3_dataset.py
|
ResizeNatural3Dataset.__len__
|
python
|
def __len__(self):
if self.opt.dataset_size == 0 or self.opt.phase == 'test':
length = max(self.A1_size, self.A2_size, self.B_size)
else:
length = self.opt.dataset_size
return length
|
Return the total number of images.
|
https://github.com/jhl-hust/ibcln/blob/66056ffd83e873536cf26b76fa9532a40cbfa7fa/data/resize_natural_3_dataset.py#L164-L170
|
import os.path
from data.base_dataset import BaseDataset, get_transform
from data.image_folder import make_dataset
from PIL import Image
import random
import torchvision.transforms as transforms
import numpy as np
class RandomCrop(object):
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self, sample):
image, landmarks = sample['I'], sample['T']
h, w = image.shape[:2]
min_a = min(h, w)
self.output_size = (min_a * 7 // 10, min_a * 7 // 10)
new_h, new_w = self.output_size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
image = image[top: top + new_h,
left: left + new_w]
landmarks = landmarks[top: top + new_h,
left: left + new_w]
return {'I': image, 'T': landmarks}
class ResizeNatural3Dataset(BaseDataset):
def __init__(self, opt):
BaseDataset.__init__(self, opt)
if opt.phase == 'train':
self.natural_dir_A1 = os.path.join(opt.dataroot, 'natural_' + 'T')
self.natural_dir_B = os.path.join(opt.dataroot, 'natural_' + 'I')
self.natural_A1_paths = sorted(make_dataset(self.natural_dir_A1, opt.max_dataset_size))
self.natural_B_paths = sorted(make_dataset(self.natural_dir_B, opt.max_dataset_size))
self.natural_size = len(self.natural_A1_paths)
self.crop = RandomCrop(opt.load_size)
self.dir_A1 = os.path.join(opt.dataroot, opt.phase + 'A1')
self.dir_A2 = os.path.join(opt.dataroot, opt.phase + 'A2')
self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B')
self.A1_paths = sorted(make_dataset(self.dir_A1, opt.max_dataset_size))
self.A2_paths = sorted(make_dataset(self.dir_A2, opt.max_dataset_size))
if not opt.phase == 'train':
self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size))
self.B_size = len(self.B_paths)
self.A1_size = len(self.A1_paths)
self.A2_size = len(self.A2_paths)
input_nc =self.opt.input_nc
output_nc = self.opt.output_nc
self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1))
self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1))
print(self.transform_A)
self.trans2 = transforms.Compose([transforms.Resize([128, 128]), transforms.ToTensor()])
self.trans4 = transforms.Compose([transforms.Resize([64, 64]), transforms.ToTensor()])
def __getitem__(self, index):
is_natural = random.random() <= 0.3
if self.opt.phase == 'train':
if is_natural:
natural_index = index % self.natural_size
A1_path = self.natural_A1_paths[natural_index]
B_path = self.natural_B_paths[natural_index]
A1_img = np.asarray(Image.open(A1_path).convert('RGB'))
A2_img = Image.fromarray(np.zeros_like(A1_img))
B_img = np.asarray(Image.open(B_path).convert('RGB'))
imgs = self.crop({'I': B_img, 'T': A1_img})
A1_img, B_img = Image.fromarray(imgs['T']), Image.fromarray(imgs['I'])
is_natural_int = 1
else:
A1_path = self.A1_paths[index % self.A1_size]
index_A2 = random.randint(0, self.A2_size - 1)
A2_path = self.A2_paths[index_A2]
B_path = ''
A1_img = Image.open(A1_path).convert('RGB')
A2_img = Image.open(A2_path).convert('RGB')
B_img = Image.fromarray(np.zeros_like(A1_img))
is_natural_int = 0
else:
B_path = self.B_paths[index]
B_img = Image.open(B_path).convert('RGB')
if index < len(self.A1_paths):
A1_path = self.A1_paths[index]
A1_img = Image.open(A1_path).convert('RGB')
else:
A1_img = Image.fromarray(np.zeros_like(B_img))
A2_img = None
is_natural_int = 1
w, h = A1_img.size
neww = w // 4 * 4
newh = h // 4 * 4
resize = transforms.Resize([newh, neww])
A1_img = resize(A1_img)
A2_img = resize(A2_img) if A2_img else None
B_img = resize(B_img)
A1 = self.transform_A(A1_img)
A2 = self.transform_A(A2_img) if A2_img else None
B = self.transform_B(B_img)
T2 = self.trans2(A1_img)
T4 = self.trans4(A1_img)
if A2 is not None:
return {'T': A1, 'T2': T2, 'T4': T4, 'R': A2, 'I': B, 'B_paths': B_path, 'isNatural': is_natural_int}
else:
return {'T': A1, 'T2': T2, 'T4': T4, 'I': B, 'B_paths': B_path, 'isNatural': is_natural_int}
|
BSD 2-Clause Simplified License
|
kmmbvnr/django-any
|
django_any/forms.py
|
url_field_data
|
python
|
def url_field_data(field, **kwargs):
urls = kwargs.get('choices',
['http://news.yandex.ru/society.html',
'http://video.google.com/?hl=en&tab=wv',
'http://www.microsoft.com/en/us/default.aspx',
'http://habrahabr.ru/company/opera/',
'http://www.apple.com/support/hardware/',
'http://localhost/',
'http://72.14.221.99',
'http://fr.wikipedia.org/wiki/France'])
return random.choice(urls)
|
Return random value for URLField
>>> result = any_form_field(forms.URLField())
>>> from django.core.validators import URLValidator
>>> import re
>>> re.match(URLValidator.regex, result) is not None
True
|
https://github.com/kmmbvnr/django-any/blob/6f64ebd05476e2149e2e71deeefbb10f8edfc412/django_any/forms.py#L292-L312
|
import random
from datetime import date, datetime, time
from django import forms
from django.utils import formats
from django_any import xunit
from django_any.functions import valid_choices, split_model_kwargs, ExtensionMethod
any_form = ExtensionMethod()
any_form_field = ExtensionMethod()
@any_form.register_default
def any_form_default(form_cls, **kwargs):
form_data = {}
form_files = {}
form_fields, fields_args = split_model_kwargs(kwargs)
for name, field in form_cls.base_fields.iteritems():
if name in form_fields:
form_data[name] = kwargs[name]
else:
form_data[name] = any_form_field(field, **fields_args[name])
return form_data, form_files
@any_form_field.decorator
def field_required_attribute(function):
def _wrapper(field, **kwargs):
if not field.required and random.random < 0.1:
return None
return function(field, **kwargs)
return _wrapper
@any_form_field.decorator
def field_choices_attibute(function):
def _wrapper(field, **kwargs):
if hasattr(field.widget, 'choices'):
return random.choice(list(valid_choices(field.widget.choices)))
return function(field, **kwargs)
return _wrapper
@any_form_field.register(forms.BooleanField)
def boolean_field_data(field, **kwargs):
return str(xunit.any_boolean())
@any_form_field.register(forms.CharField)
def char_field_data(field, **kwargs):
min_length = kwargs.get('min_length', 1)
max_length = kwargs.get('max_length', field.max_length or 255)
return xunit.any_string(min_length=field.min_length or min_length,
max_length=field.max_length or max_length)
@any_form_field.register(forms.DecimalField)
def decimal_field_data(field, **kwargs):
min_value = 0
max_value = 10
from django.core.validators import MinValueValidator, MaxValueValidator
for elem in field.validators:
if isinstance(elem, MinValueValidator):
min_value = elem.limit_value
if isinstance(elem, MaxValueValidator):
max_value = elem.limit_value
if (field.max_digits and field.decimal_places):
from decimal import Decimal
max_value = min(max_value,
Decimal('%s.%s' % ('9'*(field.max_digits-field.decimal_places),
'9'*field.decimal_places)))
min_value = kwargs.get('min_value') or min_value
max_value = kwargs.get('max_value') or max_value
return str(xunit.any_decimal(min_value=min_value,
max_value=max_value,
decimal_places = field.decimal_places or 2))
@any_form_field.register(forms.EmailField)
def email_field_data(field, **kwargs):
max_length = 10
if field.max_length:
max_length = (field.max_length -5) / 2
min_length = 10
if field.min_length:
min_length = (field.min_length-4) / 2
return "%s@%s.%s" % (
xunit.any_string(min_length=min_length, max_length=max_length),
xunit.any_string(min_length=min_length, max_length=max_length),
xunit.any_string(min_length=2, max_length=3))
@any_form_field.register(forms.DateField)
def date_field_data(field, **kwargs):
from_date = kwargs.get('from_date', date(1990, 1, 1))
to_date = kwargs.get('to_date', date.today())
date_format = random.choice(field.input_formats or formats.get_format('DATE_INPUT_FORMATS'))
return xunit.any_date(from_date=from_date, to_date=to_date).strftime(date_format)
@any_form_field.register(forms.DateTimeField)
def datetime_field_data(field, **kwargs):
from_date = kwargs.get('from_date', datetime(1990, 1, 1))
to_date = kwargs.get('to_date', datetime.today())
date_format = random.choice(field.input_formats or formats.get_format('DATETIME_INPUT_FORMATS'))
return xunit.any_datetime(from_date=from_date, to_date=to_date).strftime(date_format)
@any_form_field.register(forms.FloatField)
def float_field_data(field, **kwargs):
min_value = 0
max_value = 100
from django.core.validators import MinValueValidator, MaxValueValidator
for elem in field.validators:
if isinstance(elem, MinValueValidator):
min_value = elem.limit_value
if isinstance(elem, MaxValueValidator):
max_value = elem.limit_value
min_value = kwargs.get('min_value', min_value)
max_value = kwargs.get('max_value', max_value)
precision = kwargs.get('precision', 3)
return str(xunit.any_float(min_value=min_value, max_value=max_value, precision=precision))
@any_form_field.register(forms.IntegerField)
def integer_field_data(field, **kwargs):
min_value = 0
max_value = 100
from django.core.validators import MinValueValidator, MaxValueValidator
for elem in field.validators:
if isinstance(elem, MinValueValidator):
min_value = elem.limit_value
if isinstance(elem, MaxValueValidator):
max_value = elem.limit_value
min_value = kwargs.get('min_value', min_value)
max_value = kwargs.get('max_value', max_value)
return str(xunit.any_int(min_value=min_value, max_value=max_value))
@any_form_field.register(forms.IPAddressField)
def ipaddress_field_data(field, **kwargs):
choices = kwargs.get('choices')
if choices:
return random.choice(choices)
else:
nums = [str(xunit.any_int(min_value=0, max_value=255)) for _ in xrange(0, 4)]
return ".".join(nums)
@any_form_field.register(forms.NullBooleanField)
def null_boolean_field_data(field, **kwargs):
return random.choice(['None', 'True', 'False'])
@any_form_field.register(forms.SlugField)
def slug_field_data(field, **kwargs):
min_length = kwargs.get('min_length', 1)
max_length = kwargs.get('max_length', field.max_length or 20)
from string import ascii_letters, digits
letters = ascii_letters + digits + '_-'
return xunit.any_string(letters = letters, min_length = min_length, max_length = max_length)
@any_form_field.register(forms.URLField)
|
MIT License
|
alexa/alexa-apis-for-python
|
ask-smapi-model/ask_smapi_model/v0/event_schema/alexa_development_event/manifest_update.py
|
ManifestUpdate.__init__
|
python
|
def __init__(self, timestamp=None, request_id=None, payload=None):
self.__discriminator_value = "AlexaDevelopmentEvent.ManifestUpdate"
self.event_name = self.__discriminator_value
super(ManifestUpdate, self).__init__(timestamp=timestamp, event_name=self.__discriminator_value)
self.request_id = request_id
self.payload = payload
|
'AlexaDevelopmentEvent.ManifestUpdate' event represents the status of the update request on the Manifest. This event is generated when request to create a skill or update an existing skill is completed. The request may complete either with `SUCCEEDED` or `FAILED` status.
:param timestamp: ISO 8601 timestamp for the instant when event was created.
:type timestamp: (optional) datetime
:param request_id: A development notification includes a unique identifier that identifies the original request that resulted in the development notification. The requestId for original request is returned by Amazon APIs in response's 'X-Amzn-RequestId' header.
:type request_id: (optional) str
:param payload:
:type payload: (optional) ask_smapi_model.v0.event_schema.skill_event_attributes.SkillEventAttributes
|
https://github.com/alexa/alexa-apis-for-python/blob/bfe5e694daaca71bfb1a4199ca8d2514f1cac6c9/ask-smapi-model/ask_smapi_model/v0/event_schema/alexa_development_event/manifest_update.py#L58-L74
|
import pprint
import re
import six
import typing
from enum import Enum
from ask_smapi_model.v0.event_schema.base_schema import BaseSchema
if typing.TYPE_CHECKING:
from typing import Dict, List, Optional, Union, Any
from datetime import datetime
from ask_smapi_model.v0.event_schema.skill_event_attributes import SkillEventAttributes as SkillEventAttributes_c0873626
class ManifestUpdate(BaseSchema):
deserialized_types = {
'timestamp': 'datetime',
'event_name': 'str',
'request_id': 'str',
'payload': 'ask_smapi_model.v0.event_schema.skill_event_attributes.SkillEventAttributes'
}
attribute_map = {
'timestamp': 'timestamp',
'event_name': 'eventName',
'request_id': 'requestId',
'payload': 'payload'
}
supports_multiple_types = False
|
Apache License 2.0
|
tufin/pytos
|
pytos/securetrack/helpers.py
|
Secure_Track_Helper.get_device_id_by_name
|
python
|
def get_device_id_by_name(self, device_name):
match_device = None
devices_list = self.get_devices_list()
for device in devices_list:
if device.name == device_name:
if not match_device:
match_device = device
else:
message = "More than one device with the name '{}' exists. (Device IDs are {},{})".format(
device_name, match_device.id, device.id)
logger.error(message)
raise IndexError(message)
if not match_device:
message = "A device with the name '{}' does not exist.".format(device_name)
logger.error(message)
raise ValueError(message)
else:
return match_device.id
|
Get the device ID for a device by name
:param device_name: The name for the device.
:type device_name: str
:return: The device ID for the device with the matching name.
:rtype: int
:raise ValueError: If a device with the specified name does not exist.
:raise IndexError: If more than one device with the specified name exists.
|
https://github.com/tufin/pytos/blob/18a2f4510b2d9c43b24c4f7c41a143c2512ba1ce/pytos/securetrack/helpers.py#L198-L224
|
import collections
import csv
import io
import itertools
import logging
import base64
import multiprocessing.pool
import xml.etree.ElementTree as ET
from pytos.common.definitions.Url_Params_Builder import URLParamBuilderDict
from requests import RequestException
from pytos.common.helpers import Secure_API_Helper
from pytos.common.definitions.xml_tags import Elements, SeverityLevels
from pytos.common.exceptions import REST_Not_Found_Error, REST_Bad_Request_Error, REST_Request_URI_Too_Long, REST_Client_Error, ItemAlreadyExists, REST_Internal_Server_Error, REST_HTTP_Exception
from pytos.common.logging.definitions import HELPERS_LOGGER_NAME
from pytos.securetrack.xml_objects.rest.cleanups import Generic_Cleanup_List
from pytos.securetrack.xml_objects.rest.device import Devices_List, Device, Device_Revisions_List, GenericDevicesList, RuleSearchDeviceList, Device_Revision, InternetReferralObject
from pytos.securetrack.xml_objects.rest.domain import Domains, Domain
from pytos.securetrack.xml_objects.rest.nat_rules import NatRules
from pytos.securetrack.xml_objects.rest.routes import RoutesList
from pytos.securetrack.xml_objects.rest.rules import Rules_List, Cleanup_Set, Policy_List, Bindings_List, Interfaces_List, Topology_Interfaces_List, Policy_Analysis_Query_Result, Network_Objects_List, Services_List, Rule_Documentation, SecurityPolicyDeviceViolations, Change_Authorization
from pytos.securetrack.xml_objects.rest.security_policy import SecurityPolicyExceptionList, Security_Policy_Exception, Security_Policies_List
from pytos.securetrack.xml_objects.rest.topology import PathCalculationResults, TopologyCloudList
from pytos.securetrack.xml_objects.rest.zones import Zone_Entries_List, Zone_List, ZoneDescendantsList, Device_Zones_List
logger = logging.getLogger(HELPERS_LOGGER_NAME)
DEVICE_TYPES = {"Cisco": ["asa", "pix", "fwsm", "nexus", "switch", "xr_router", "L3_switch", "router"],
"Checkpoint": ["cp_cma", "cp_smrt_cntr"],
"Netscreen": ["netscreen", "netscreen_cluster", "junos", "junosStateless"], "Fortinet": ["fortigate"],
"PaloAltoNetworks": ["PaloAltoFW"], "Mcafee": ["mcafeeFW"], "NewF5": ["new_bigip"], "f5": ["bigip"],
"bluecoat": ["proxysg"], "linux": ["iptables"]}
DEFAULT_DOMAIN_ID = 1
DETACH = -1
class Secure_Track_Helper(Secure_API_Helper):
CONFIG_PARSER_SECTION_NAME = "securetrack"
def __init__(self, hostname, login_data, **kwargs):
super().__init__(hostname, login_data, **kwargs)
def get_devices_list(self, custom_params=None):
logger.info("Getting SecureTrack devices list.")
if custom_params:
params = '&'.join('{}={}'.format(k, v) for k, v in custom_params.items())
params = '?' + params
else:
params = ''
try:
response_string = self.get_uri("/securetrack/api/devices/{}".format(params),
expected_status_codes=200).response.content
except RequestException:
message = "Failed to GET devices list."
logger.critical(message)
raise IOError(message)
return Devices_List.from_xml_string(response_string)
def get_device_by_id(self, device_id):
logger.info("Getting SecureTrack device with ID %s.", device_id)
try:
response_string = self.get_uri("/securetrack/api/devices/{}".format(device_id),
expected_status_codes=200).response.content
except REST_Not_Found_Error:
message = "Device with ID {} does not exist.".format(device_id)
logger.critical(message)
raise ValueError(message)
except RequestException:
message = "Failed to GET device with ID {}.".format(device_id)
logger.critical(message)
raise IOError(message)
return Device.from_xml_string(response_string)
def get_rule_by_device_and_rule_id(self, device_id, rule_id, get_documentation=False):
logger.info("Getting SecureTrack device with ID %s.", device_id)
if get_documentation:
rule_documentation_uri_suffix = "?add=documentation"
logger.info("Getting rules with rule documentation.")
else:
rule_documentation_uri_suffix = ""
try:
response_string = self.get_uri(
"/securetrack/api/devices/{}/rules/{}{}".format(device_id, rule_id, rule_documentation_uri_suffix),
expected_status_codes=200).response.content
except RequestException:
message = "Failed to GET device with ID {}.".format(device_id)
logger.critical(message)
raise IOError(message)
return Rules_List.from_xml_string(response_string)
def get_device_revisions_by_id(self, device_id):
logger.info("Getting SecureTrack revisions for device with ID %s.", device_id)
try:
response_string = self.get_uri("/securetrack/api/devices/{}/revisions/".format(device_id),
expected_status_codes=200).response.content
except REST_Not_Found_Error:
message = "Device with ID {} does not exist.".format(device_id)
logger.critical(message)
raise ValueError(message)
except RequestException:
message = "Failed to GET device with ID {}.".format(device_id)
logger.critical(message)
raise IOError(message)
return Device_Revisions_List.from_xml_string(response_string)
def get_device_config_by_id(self, device_id):
hard_coded_checksum_string = b"Cryptochecksum:0123456789ABCDEF]]></"
logger.info("Getting SecureTrack device with ID '%s'.", device_id)
try:
response_string = self.get_uri("/securetrack/api/devices/{}/config".format(device_id),
expected_status_codes=200).response.content
except REST_Not_Found_Error:
message = "Device with ID {} does not exist.".format(device_id)
logger.critical(message)
raise ValueError(message)
except RequestException:
message = "Failed to GET configuration for device with ID {}.".format(device_id)
logger.critical(message)
raise IOError(message)
device_config_xml_string = bytes(response_string)
if device_config_xml_string:
device_config_xml_string = device_config_xml_string.replace(
b"<" + bytes(Elements.DEVICE_CONFIG, encoding="ascii") + b"><![CDATA[", b"")
device_config_xml_string = device_config_xml_string.replace(
hard_coded_checksum_string + bytes(Elements.DEVICE_CONFIG, encoding="ascii") + b">\n", b"")
return device_config_xml_string
else:
return device_config_xml_string
|
Apache License 2.0
|
tmux-python/libtmux
|
libtmux/window.py
|
Window.attached_pane
|
python
|
def attached_pane(self):
for pane in self._panes:
if 'pane_active' in pane:
if pane.get('pane_active') == '1':
return Pane(window=self, **pane)
else:
continue
return []
|
Return the attached :class:`Pane`.
Returns
-------
:class:`Pane`
|
https://github.com/tmux-python/libtmux/blob/1b1066ea3c67f790f9751d6365215af4824afb48/libtmux/window.py#L489-L505
|
import logging
import os
import shlex
from . import exc, formats
from .common import TmuxMappingObject, TmuxRelationalObject, handle_option_error
from .pane import Pane
logger = logging.getLogger(__name__)
class Window(TmuxMappingObject, TmuxRelationalObject):
child_id_attribute = 'pane_id'
formatter_prefix = 'window_'
def __init__(self, session=None, **kwargs):
if not session:
raise ValueError('Window requires a Session, session=Session')
self.session = session
self.server = self.session.server
if 'window_id' not in kwargs:
raise ValueError('Window requires a `window_id`')
self._window_id = kwargs['window_id']
def __repr__(self):
return "%s(%s %s:%s, %s)" % (
self.__class__.__name__,
self.id,
self.index,
self.name,
self.session,
)
@property
def _info(self, *args):
attrs = {'window_id': self._window_id}
def by(val, *args):
for key, value in attrs.items():
try:
if attrs[key] != val[key]:
return False
except KeyError:
return False
return True
ret = list(filter(by, self.server._windows))
if len(ret) == 0 and self.server._windows[0]['window_id'] == '@0':
ret = self.server._windows
return ret[0]
def cmd(self, cmd, *args, **kwargs):
if not any(arg.startswith('-t') for arg in args):
args = ('-t', self.id) + args
return self.server.cmd(cmd, *args, **kwargs)
def select_layout(self, layout=None):
cmd = ['select-layout', '-t%s:%s' % (self.get('session_id'), self.index)]
if layout:
cmd.append(layout)
proc = self.cmd(*cmd)
if proc.stderr:
raise exc.LibTmuxException(proc.stderr)
def set_window_option(self, option, value):
self.server._update_windows()
if isinstance(value, bool) and value:
value = 'on'
elif isinstance(value, bool) and not value:
value = 'off'
cmd = self.cmd(
'set-window-option',
'-t%s:%s' % (self.get('session_id'), self.index),
option,
value,
)
if isinstance(cmd.stderr, list) and len(cmd.stderr):
handle_option_error(cmd.stderr[0])
def show_window_options(self, option=None, g=False):
tmux_args = tuple()
if g:
tmux_args += ('-g',)
if option:
return self.show_window_option(option, g=g)
else:
tmux_args += ('show-window-options',)
cmd = self.cmd(*tmux_args).stdout
cmd = [tuple(shlex.split(item)) for item in cmd]
window_options = dict(cmd)
for key, value in window_options.items():
if value.isdigit():
window_options[key] = int(value)
return window_options
def show_window_option(self, option, g=False):
tmux_args = tuple()
if g:
tmux_args += ('-g',)
tmux_args += (option,)
cmd = self.cmd('show-window-options', *tmux_args)
if len(cmd.stderr):
handle_option_error(cmd.stderr[0])
if not len(cmd.stdout):
return None
option = [shlex.split(item) for item in cmd.stdout][0]
if option[1].isdigit():
option = (option[0], int(option[1]))
return option[1]
def rename_window(self, new_name):
import shlex
lex = shlex.shlex(new_name)
lex.escape = ' '
lex.whitespace_split = False
try:
self.cmd('rename-window', new_name)
self['window_name'] = new_name
except Exception as e:
logger.error(e)
self.server._update_windows()
return self
def kill_window(self):
proc = self.cmd(
'kill-window',
'-t%s:%s' % (self.get('session_id'), self.index),
)
if proc.stderr:
raise exc.LibTmuxException(proc.stderr)
self.server._update_windows()
def move_window(self, destination="", session=None):
session = session or self.get('session_id')
proc = self.cmd(
'move-window',
'-s%s:%s' % (self.get('session_id'), self.index),
'-t%s:%s' % (session, destination),
)
if proc.stderr:
raise exc.LibTmuxException(proc.stderr)
self.server._update_windows()
def select_window(self):
return self.session.select_window(self.index)
def select_pane(self, target_pane):
if target_pane in ['-l', '-U', '-D', '-L', '-R']:
proc = self.cmd('select-pane', '-t%s' % self.id, target_pane)
else:
proc = self.cmd('select-pane', '-t%s' % target_pane)
if proc.stderr:
raise exc.LibTmuxException(proc.stderr)
return self.attached_pane
def last_pane(self):
return self.select_pane('-l')
def split_window(
self,
target=None,
start_directory=None,
attach=True,
vertical=True,
shell=None,
percent=None,
):
pformats = [
'session_name',
'session_id',
'window_index',
'window_id',
] + formats.PANE_FORMATS
tmux_formats = ['#{%s}\t' % f for f in pformats]
tmux_args = tuple()
if target:
tmux_args += ('-t%s' % target,)
else:
tmux_args += ('-t%s' % self.panes[0].get('pane_id'),)
if vertical:
tmux_args += ('-v',)
else:
tmux_args += ('-h',)
if percent is not None:
tmux_args += ('-p %d' % percent,)
tmux_args += ('-P', '-F%s' % ''.join(tmux_formats))
if start_directory:
start_directory = os.path.expanduser(start_directory)
tmux_args += ('-c%s' % start_directory,)
if not attach:
tmux_args += ('-d',)
if shell:
tmux_args += (shell,)
pane = self.cmd('split-window', *tmux_args)
if pane.stderr:
raise exc.LibTmuxException(pane.stderr)
if 'pane too small' in pane.stderr:
pass
raise exc.LibTmuxException(pane.stderr, self._info, self.panes)
else:
pane = pane.stdout[0]
pane = dict(zip(pformats, pane.split('\t')))
pane = dict((k, v) for k, v in pane.items() if v)
return Pane(window=self, **pane)
@property
|
MIT License
|
elfi-dev/elfi
|
elfi/examples/daycare.py
|
ss_shannon
|
python
|
def ss_shannon(data):
total_obs = np.sum(data, axis=2, keepdims=True)
with np.errstate(divide='ignore', invalid='ignore'):
proportions = np.nan_to_num(total_obs / np.sum(total_obs, axis=3, keepdims=True))
proportions[proportions == 0] = 1
shannon = (-np.sum(proportions * np.log(proportions), axis=3))[:, :, 0]
return shannon
|
r"""Calculate the Shannon index of diversity of the distribution of observed strains.
H = -\sum p \log(p)
https://en.wikipedia.org/wiki/Diversity_index#Shannon_index
Parameters
----------
data : np.array of shape (batch_size, n_dcc, n_obs, n_strains)
Returns
-------
np.array of shape (batch_size, n_dcc)
|
https://github.com/elfi-dev/elfi/blob/07ac0ed5e81d5d5fb42de63db3cf9ccc9135b88c/elfi/examples/daycare.py#L199-L221
|
import logging
from functools import partial
import numpy as np
import elfi
def daycare(t1, t2, t3, n_dcc=29, n_ind=53, n_strains=33, freq_strains_commun=None,
n_obs=36, time_end=10., batch_size=1, random_state=None):
random_state = random_state or np.random
t1 = np.asanyarray(t1).reshape((-1, 1, 1, 1))
t2 = np.asanyarray(t2).reshape((-1, 1, 1, 1))
t3 = np.asanyarray(t3).reshape((-1, 1, 1, 1))
if freq_strains_commun is None:
freq_strains_commun = np.full(n_strains, 0.1)
prob_commun = t2 * freq_strains_commun
state = np.zeros((batch_size, n_dcc, n_ind, n_strains), dtype=np.bool)
time = np.zeros((batch_size, n_dcc))
n_factor = 1. / (n_ind - 1)
gamma = 1.
ind_b_dcc = [np.repeat(np.arange(batch_size), n_dcc), np.tile(np.arange(n_dcc), batch_size)]
while np.any(time < time_end):
with np.errstate(divide='ignore', invalid='ignore'):
prob_strain_adjust = np.nan_to_num(state / np.sum(state, axis=3, keepdims=True))
prob_strain = np.sum(prob_strain_adjust, axis=2, keepdims=True)
intrainfect_rate = t1 * (np.tile(prob_strain, (1, 1, n_ind, 1)) -
prob_strain_adjust) * n_factor + 1e-9
hazards = intrainfect_rate + prob_commun
any_infection = np.any(state, axis=3, keepdims=True)
hazards = np.where(any_infection, t3 * hazards, hazards)
hazards[state] = gamma
inv_sum_hazards = 1. / np.sum(hazards, axis=(2, 3), keepdims=True)
probs = hazards * inv_sum_hazards
delta_t = random_state.exponential(inv_sum_hazards[:, :, 0, 0])
time = time + delta_t
probs = probs.reshape((batch_size, n_dcc, -1))
cumprobs = np.cumsum(probs[:, :, :-1], axis=2)
x = random_state.uniform(size=(batch_size, n_dcc, 1))
ind_transit = np.sum(x >= cumprobs, axis=2)
ind_transit = ind_b_dcc + list(np.unravel_index(ind_transit.ravel(), (n_ind, n_strains)))
state[ind_transit] = np.logical_not(state[ind_transit])
state_obs = state[:, :, :n_obs, :]
return state_obs
def get_model(true_params=None, seed_obs=None, **kwargs):
logger = logging.getLogger()
if true_params is None:
true_params = [3.6, 0.6, 0.1]
m = elfi.ElfiModel()
y_obs = daycare(*true_params, random_state=np.random.RandomState(seed_obs), **kwargs)
sim_fn = partial(daycare, **kwargs)
priors = []
sumstats = []
priors.append(elfi.Prior('uniform', 0, 11, model=m, name='t1'))
priors.append(elfi.Prior('uniform', 0, 2, model=m, name='t2'))
priors.append(elfi.Prior('uniform', 0, 1, model=m, name='t3'))
elfi.Simulator(sim_fn, *priors, observed=y_obs, name='DCC')
sumstats.append(elfi.Summary(ss_shannon, m['DCC'], name='Shannon'))
sumstats.append(elfi.Summary(ss_strains, m['DCC'], name='n_strains'))
sumstats.append(elfi.Summary(ss_prevalence, m['DCC'], name='prevalence'))
sumstats.append(elfi.Summary(ss_prevalence_multi, m['DCC'], name='multi'))
elfi.Discrepancy(distance, *sumstats, name='d')
elfi.Operation(np.log, m['d'], name='logd')
logger.info("Generated observations with true parameters "
"t1: %.1f, t2: %.3f, t3: %.1f, ", *true_params)
return m
|
BSD 3-Clause New or Revised License
|
pythad/nider
|
nider/utils.py
|
is_path_creatable
|
python
|
def is_path_creatable(pathname):
dirname = os.path.dirname(pathname) or os.getcwd()
return os.access(dirname, os.W_OK)
|
Function to check if the current user has sufficient permissions to create the passed
pathname
Args:
pathname (str): path to check.
Returns:
bool: ``True`` if the current user has sufficient permissions to create the passed ``pathname``. ``False`` otherwise.
|
https://github.com/pythad/nider/blob/be71e09968559c5504c59158aa339136fb891fb4/nider/utils.py#L40-L53
|
import os
import random
import warnings
from contextlib import contextmanager
from PIL import Image, ImageFont
from nider.colors import FLAT_UI_COLORS
from nider.exceptions import DefaultFontWarning, FontNotFoundWarning
def get_font(fontfullpath, fontsize):
if fontfullpath is None:
warnings.warn(DefaultFontWarning())
font = ImageFont.load_default()
font.is_default = True
elif not os.path.exists(fontfullpath):
warnings.warn(FontNotFoundWarning(fontfullpath))
font = ImageFont.load_default()
font.is_default = True
else:
font = ImageFont.truetype(fontfullpath, fontsize)
font.is_default = False
return font
|
MIT License
|
xilinx/pyxir
|
python/pyxir/graph/ops/l1_basic_nn.py
|
log
|
python
|
def log(attrs, in_xlayers):
assert len(in_xlayers) == 1
shape = in_xlayers[0].shapes[:]
return {'shape': shape}
|
Return Log registration information (shape)
|
https://github.com/xilinx/pyxir/blob/bef661d6d77adcdbd2cf4163f2cf3a1d31d40406/python/pyxir/graph/ops/l1_basic_nn.py#L430-L438
|
import math
import logging
import warnings
import numpy as np
from typing import Dict, List, Any
from pyxir.shapes import TensorShape, TupleShape, get_numpy_broadcasted_shape
from ..layer.xlayer import defaultXLayer, XLayer, ConvData, ScaleData
from ..layer.xlayer_factory import xop_register_factory, xop_register
from ..xop_registry import xop_register_op_layout_transform, xop_register_op_transpose_transform
logger = logging.getLogger("pyxir")
@xop_register('Add')
def add(attrs: Dict[str, Any], in_xlayers: List[XLayer]):
assert len(in_xlayers) == 2
lX, rX = in_xlayers
if len(lX.shapes) >= len(rX.shapes):
lshape = lX.shapes[:]
rshape = [None] * (len(lX.shapes) - len(rX.shapes)) + rX.shapes[:]
else:
rshape = rX.shapes[:]
lshape = [None] * (len(rX.shapes) - len(lX.shapes)) + lX.shapes[:]
assert len(lshape) == len(rshape)
reversed_shape = []
for ls, rs in zip(reversed(lshape), reversed(rshape)):
if ls == rs or ls in [1, None] or rs in [1, None]:
if ls is None:
reversed_shape.append(rs)
elif rs is None:
reversed_shape.append(ls)
else:
reversed_shape.append(max(ls, rs))
else:
raise ValueError("Invalid shapes for broadcasted additions:"
" {} and {}".format(lX.shapes, rX.shapes))
shape = TensorShape(list(reversed(reversed_shape)))
return {'shape': shape}
@xop_register_factory('BiasAdd')
def bias_add(op_name: str, input_layer: XLayer, bias_layer: XLayer, axis: int, **kwargs):
bottoms = [input_layer.name]
attrs = kwargs
attrs.update({
'axis': axis
})
logger.debug("--bias_add shape: {}".format(input_layer.shapes[:]))
X = XLayer()
X = X._replace(
shapes=input_layer.shapes[:],
sizes=input_layer.sizes[:],
name=op_name,
type=['BiasAdd'],
data=[bias_layer.data[0]],
layer=[op_name],
tops=[],
bottoms=bottoms,
attrs=attrs,
targets=[])
return X
@xop_register_op_transpose_transform('BiasAdd')
def bias_add_transpose_transform(X: XLayer, axes: List[int]):
new_shape = TensorShape([X.shapes[i] for i in axes])
X.shapes[:] = new_shape
X.attrs['axis'] = axes.index(X.attrs['axis'])
@xop_register_factory('Concat')
def concat(op_name: str, input_layers: List[XLayer], axis: int, **kwargs):
bottoms = [input_layer.name for input_layer in input_layers]
if axis < 0:
axis = axis + len(input_layers[0].shapes[:])
assert len(set([len(il.shapes) for il in input_layers])) == 1
for i in range(len(list(input_layers[0].shapes))):
check = set([il.shapes[i] for il in input_layers])
if len(check) > 1 and -1 in check:
check.remove(-1)
assert i == axis or len(check) == 1, "i: {0}, axis: {1}, check: {2}".format(i, axis, check)
shape = input_layers[0].shapes[:]
shape[axis] = sum([il.shapes[axis] for il in input_layers])
attrs = kwargs
attrs.update({
'axis': axis
})
X = XLayer()
X = X._replace(
name=op_name,
type=['Concat'],
shapes=shape,
sizes=shape.get_size(),
layer=[op_name],
tops=[],
bottoms=bottoms,
attrs=attrs,
targets=[]
)
return X
@xop_register_op_transpose_transform('Concat')
def concat_transpose_transform(X: XLayer, axes: List[int]):
new_shape = TensorShape([X.shapes[i] for i in axes])
X.shapes = new_shape
X.attrs['axis'] = axes.index(X.attrs['axis'])
@xop_register_factory('Eltwise')
def eltwise(op_name: str, lhs_layer: XLayer, rhs_layer: XLayer, **kwargs):
bottoms = [lhs_layer.name, rhs_layer.name]
attrs = kwargs
attrs.update({
'op': 'Add'
})
X = XLayer()
X = X._replace(
name=op_name,
type=['Eltwise'],
shapes=lhs_layer.shapes[:],
sizes=lhs_layer.sizes[:],
layer=[op_name],
tops=[],
bottoms=bottoms,
attrs=attrs,
targets=[]
)
return X
@xop_register_op_transpose_transform('Eltwise')
def eltwise_transpose_transform(X: XLayer, axes: List[int]):
new_shape = TensorShape([X.shapes[i] for i in axes])
X.shapes[:] = new_shape
@xop_register_factory('Dense')
def dense(op_name: str,
input_layer: XLayer,
weights_layer: XLayer,
units: int,
data_layout: str = 'NC',
kernel_layout: str = 'OI',
**kwargs):
if 'Constant' not in weights_layer.type:
raise ValueError("Dense layer is expecting a 'Constant' weights layer"
" as weights input but got layer of type: {}"
.format(weights_layer.type[0]))
bottoms = [input_layer.name]
bias = np.zeros([units])
data = ConvData(weights_layer.data[0], bias)
attrs = kwargs
attrs.update({
'W_shape': weights_layer.shapes.tolist(),
'units': units,
'data_layout': data_layout,
'kernel_layout': kernel_layout
})
X = XLayer()
X = X._replace(
name=op_name,
type=['Dense'],
shapes=TensorShape([input_layer.shapes[0], units]),
sizes=[units],
data=data,
layer=[op_name],
tops=[],
bottoms=bottoms,
attrs=attrs,
targets=[])
return X
@xop_register('Divide')
def divide(attrs: Dict, in_xlayers: List[XLayer]):
assert len(in_xlayers) == 2
lX, rX = in_xlayers
l_shape = lX.shapes[:]
r_shape = rX.shapes[:]
broadcast_shape = get_numpy_broadcasted_shape(l_shape, r_shape)
shape = TensorShape(broadcast_shape)
return {'shape': shape}
@xop_register_factory('Dropout')
def dropout(op_name: str, input_layer: XLayer, rate: float, **kwargs):
attrs = kwargs
attrs.update({
'rate': rate
})
X = XLayer()
X = X._replace(
name=op_name,
type=['Dropout'],
shapes=input_layer.shapes[:],
sizes=input_layer.shapes.get_size(),
layer=[op_name],
tops=[],
bottoms=[input_layer.name],
attrs=attrs,
targets=[])
return X
@xop_register('Exp')
def exp(attrs: Dict[str, Any], in_xlayers: List[XLayer]) -> Dict:
assert len(in_xlayers) == 1
shape = in_xlayers[0].shapes[:]
return {'shape': shape}
@xop_register('ExpandDims')
def expand_dims(attrs: Dict[str, Any], in_xlayers: List[XLayer]) -> Dict[str, List[int]]:
assert len(in_xlayers) == 1
assert 'axis' in attrs
assert 'num_newaxis' in attrs
shape = in_xlayers[0].shapes[:]
axis = attrs['axis']
num_newaxis = attrs['num_newaxis']
assert axis < 0 or axis <= len(shape)
assert axis > 0 or axis >= -len(shape) - 1
if axis < 0:
axis = len(shape) + axis + 1
new_shape = TensorShape(shape[:axis] + [1] * num_newaxis + shape[axis:])
return {'shape': new_shape}
@xop_register('Log')
|
Apache License 2.0
|
evonove/django-stored-messages
|
stored_messages/templatetags/stored_messages_tags.py
|
stored_messages_count
|
python
|
def stored_messages_count(context):
if "user" in context:
user = context["user"]
if user.is_authenticated():
return Inbox.objects.select_related("message").filter(user=user).count()
|
Renders a list of unread stored messages for the current user
|
https://github.com/evonove/django-stored-messages/blob/23b71f952d5d3fd03285f5e700879d05796ef7ba/stored_messages/templatetags/stored_messages_tags.py#L27-L34
|
from __future__ import unicode_literals
from django import template
from ..models import Inbox, MessageArchive
register = template.Library()
@register.inclusion_tag("stored_messages/stored_messages_list.html", takes_context=True)
def stored_messages_list(context, num_elements=10):
if "user" in context:
user = context["user"]
if user.is_authenticated():
qs = Inbox.objects.select_related("message").filter(user=user)
return {
"messages": qs[:num_elements],
"count": qs.count(),
}
@register.assignment_tag(takes_context=True)
|
BSD 3-Clause New or Revised License
|
jenspetersen/probabilistic-unet
|
probunet/model.py
|
ProbabilisticSegmentationNet.elbo
|
python
|
def elbo(self, seg, input_=None, nll_reduction="sum", beta=1.0, make_onehot=True, make_onehot_classes=None, newaxis=False):
if self.last_activations is None:
raise ValueError("'last_activations' is currently None. Please pass an input first.")
if input_ is not None:
with torch.no_grad():
self.encode_posterior(input_, seg, make_onehot=make_onehot, make_onehot_classes=make_onehot_classes, newaxis=newaxis)
if make_onehot and newaxis:
pass
elif make_onehot and not newaxis:
seg = seg[:, 0]
else:
seg = torch.argmax(seg, 1, keepdim=False)
kl = self.kl_divergence()
nll = nn.NLLLoss(reduction=nll_reduction)(self.reconstruct(sample=None, use_posterior_mean=True, out_device=None), seg.long())
return - (beta * nll + kl)
|
Compute the ELBO with seg as ground truth.
* Prior is expected and will not be encoded.
* If input_ is given, posterior will automatically be encoded.
* Either input_ or stored activations must be available.
|
https://github.com/jenspetersen/probabilistic-unet/blob/ce4708045a3fa3c9d23d44300920e2177fea7140/probunet/model.py#L660-L682
|
import torch
import torch.nn as nn
from probunet.util import make_onehot as make_onehot_segmentation, make_slices, match_to
def is_conv(op):
conv_types = (nn.Conv1d,
nn.Conv2d,
nn.Conv3d,
nn.ConvTranspose1d,
nn.ConvTranspose2d,
nn.ConvTranspose3d)
if type(op) == type and issubclass(op, conv_types):
return True
elif type(op) in conv_types:
return True
else:
return False
class ConvModule(nn.Module):
def __init__(self, *args, **kwargs):
super(ConvModule, self).__init__()
def init_weights(self, init_fn, *args, **kwargs):
class init_(object):
def __init__(self):
self.fn = init_fn
self.args = args
self.kwargs = kwargs
def __call__(self, module):
if is_conv(type(module)):
module.weight = self.fn(module.weight, *self.args, **self.kwargs)
_init_ = init_()
self.apply(_init_)
def init_bias(self, init_fn, *args, **kwargs):
class init_(object):
def __init__(self):
self.fn = init_fn
self.args = args
self.kwargs = kwargs
def __call__(self, module):
if is_conv(type(module)) and module.bias is not None:
module.bias = self.fn(module.bias, *self.args, **self.kwargs)
_init_ = init_()
self.apply(_init_)
class ConcatCoords(nn.Module):
def forward(self, input_):
dim = input_.dim() - 2
coord_channels = []
for i in range(dim):
view = [1, ] * dim
view[i] = -1
repeat = list(input_.shape[2:])
repeat[i] = 1
coord_channels.append(
torch.linspace(-0.5, 0.5, input_.shape[i+2])
.view(*view)
.repeat(*repeat)
.to(device=input_.device, dtype=input_.dtype))
coord_channels = torch.stack(coord_channels).unsqueeze(0)
repeat = [1, ] * input_.dim()
repeat[0] = input_.shape[0]
coord_channels = coord_channels.repeat(*repeat).contiguous()
return torch.cat([input_, coord_channels], 1)
class InjectionConvEncoder(ConvModule):
_default_activation_kwargs = dict(inplace=True)
_default_norm_kwargs = dict()
_default_conv_kwargs = dict(kernel_size=3, padding=1)
_default_pool_kwargs = dict(kernel_size=2)
_default_dropout_kwargs = dict()
_default_global_pool_kwargs = dict()
def __init__(self,
in_channels=1,
out_channels=6,
depth=4,
injection_depth="last",
injection_channels=0,
block_depth=2,
num_feature_maps=24,
feature_map_multiplier=2,
activation_op=nn.LeakyReLU,
activation_kwargs=None,
norm_op=nn.InstanceNorm2d,
norm_kwargs=None,
norm_depth=0,
conv_op=nn.Conv2d,
conv_kwargs=None,
pool_op=nn.AvgPool2d,
pool_kwargs=None,
dropout_op=None,
dropout_kwargs=None,
global_pool_op=nn.AdaptiveAvgPool2d,
global_pool_kwargs=None,
**kwargs):
super(InjectionConvEncoder, self).__init__(**kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.depth = depth
self.injection_depth = depth - 1 if injection_depth == "last" else injection_depth
self.injection_channels = injection_channels
self.block_depth = block_depth
self.num_feature_maps = num_feature_maps
self.feature_map_multiplier = feature_map_multiplier
self.activation_op = activation_op
self.activation_kwargs = self._default_activation_kwargs
if activation_kwargs is not None:
self.activation_kwargs.update(activation_kwargs)
self.norm_op = norm_op
self.norm_kwargs = self._default_norm_kwargs
if norm_kwargs is not None:
self.norm_kwargs.update(norm_kwargs)
self.norm_depth = depth if norm_depth == "full" else norm_depth
self.conv_op = conv_op
self.conv_kwargs = self._default_conv_kwargs
if conv_kwargs is not None:
self.conv_kwargs.update(conv_kwargs)
self.pool_op = pool_op
self.pool_kwargs = self._default_pool_kwargs
if pool_kwargs is not None:
self.pool_kwargs.update(pool_kwargs)
self.dropout_op = dropout_op
self.dropout_kwargs = self._default_dropout_kwargs
if dropout_kwargs is not None:
self.dropout_kwargs.update(dropout_kwargs)
self.global_pool_op = global_pool_op
self.global_pool_kwargs = self._default_global_pool_kwargs
if global_pool_kwargs is not None:
self.global_pool_kwargs.update(global_pool_kwargs)
for d in range(self.depth):
in_ = self.in_channels if d == 0 else self.num_feature_maps * (self.feature_map_multiplier**(d-1))
out_ = self.num_feature_maps * (self.feature_map_multiplier**d)
if d == self.injection_depth + 1:
in_ += self.injection_channels
layers = []
if d > 0:
layers.append(self.pool_op(**self.pool_kwargs))
for b in range(self.block_depth):
current_in = in_ if b == 0 else out_
layers.append(self.conv_op(current_in, out_, **self.conv_kwargs))
if self.norm_op is not None and d < self.norm_depth:
layers.append(self.norm_op(out_, **self.norm_kwargs))
if self.activation_op is not None:
layers.append(self.activation_op(**self.activation_kwargs))
if self.dropout_op is not None:
layers.append(self.dropout_op(**self.dropout_kwargs))
if d == self.depth - 1:
current_conv_kwargs = self.conv_kwargs.copy()
current_conv_kwargs["kernel_size"] = 1
current_conv_kwargs["padding"] = 0
current_conv_kwargs["bias"] = False
layers.append(self.conv_op(out_, out_channels, **current_conv_kwargs))
self.add_module("encode_{}".format(d), nn.Sequential(*layers))
if self.global_pool_op is not None:
self.add_module("global_pool", self.global_pool_op(1, **self.global_pool_kwargs))
def forward(self, x, injection=None):
for d in range(self.depth):
x = self._modules["encode_{}".format(d)](x)
if d == self.injection_depth and self.injection_channels > 0:
injection = match_to(injection, x, self.injection_channels)
x = torch.cat([x, injection], 1)
if hasattr(self, "global_pool"):
x = self.global_pool(x)
return x
class InjectionConvEncoder3D(InjectionConvEncoder):
def __init__(self, *args, **kwargs):
update_kwargs = dict(
norm_op=nn.InstanceNorm3d,
conv_op=nn.Conv3d,
pool_op=nn.AvgPool3d,
global_pool_op=nn.AdaptiveAvgPool3d
)
for (arg, val) in update_kwargs.items():
if arg not in kwargs: kwargs[arg] = val
super(InjectionConvEncoder3D, self).__init__(*args, **kwargs)
class InjectionUNet(ConvModule):
def __init__(
self,
depth=5,
in_channels=4,
out_channels=4,
kernel_size=3,
dilation=1,
num_feature_maps=24,
block_depth=2,
num_1x1_at_end=3,
injection_channels=3,
injection_at="end",
activation_op=nn.LeakyReLU,
activation_kwargs=None,
pool_op=nn.AvgPool2d,
pool_kwargs=dict(kernel_size=2),
dropout_op=None,
dropout_kwargs=None,
norm_op=nn.InstanceNorm2d,
norm_kwargs=None,
conv_op=nn.Conv2d,
conv_kwargs=None,
upconv_op=nn.ConvTranspose2d,
upconv_kwargs=None,
output_activation_op=None,
output_activation_kwargs=None,
return_bottom=False,
coords=False,
coords_dim=2,
**kwargs
):
super(InjectionUNet, self).__init__(**kwargs)
self.depth = depth
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.dilation = dilation
self.padding = (self.kernel_size + (self.kernel_size-1) * (self.dilation-1)) // 2
self.num_feature_maps = num_feature_maps
self.block_depth = block_depth
self.num_1x1_at_end = num_1x1_at_end
self.injection_channels = injection_channels
self.injection_at = injection_at
self.activation_op = activation_op
self.activation_kwargs = {} if activation_kwargs is None else activation_kwargs
self.pool_op = pool_op
self.pool_kwargs = {} if pool_kwargs is None else pool_kwargs
self.dropout_op = dropout_op
self.dropout_kwargs = {} if dropout_kwargs is None else dropout_kwargs
self.norm_op = norm_op
self.norm_kwargs = {} if norm_kwargs is None else norm_kwargs
self.conv_op = conv_op
self.conv_kwargs = {} if conv_kwargs is None else conv_kwargs
self.upconv_op = upconv_op
self.upconv_kwargs = {} if upconv_kwargs is None else upconv_kwargs
self.output_activation_op = output_activation_op
self.output_activation_kwargs = {} if output_activation_kwargs is None else output_activation_kwargs
self.return_bottom = return_bottom
if not coords:
self.coords = [[], []]
elif coords is True:
self.coords = [list(range(depth)), []]
else:
self.coords = coords
self.coords_dim = coords_dim
self.last_activations = None
for d in range(self.depth):
block = []
if d > 0:
block.append(self.pool_op(**self.pool_kwargs))
for i in range(self.block_depth):
if d == self.depth - 1 and i > 0:
continue
out_size = self.num_feature_maps * 2**d
if d == 0 and i == 0:
in_size = self.in_channels
elif i == 0:
in_size = self.num_feature_maps * 2**(d - 1)
else:
in_size = out_size
if d in self.coords[0] and i == 0:
block.append(ConcatCoords())
in_size += self.coords_dim
block.append(self.conv_op(in_size,
out_size,
self.kernel_size,
padding=self.padding,
dilation=self.dilation,
**self.conv_kwargs))
if self.dropout_op is not None:
block.append(self.dropout_op(**self.dropout_kwargs))
if self.norm_op is not None:
block.append(self.norm_op(out_size, **self.norm_kwargs))
block.append(self.activation_op(**self.activation_kwargs))
self.add_module("encode-{}".format(d), nn.Sequential(*block))
for d in reversed(range(self.depth)):
block = []
for i in range(self.block_depth):
if d == self.depth - 1 and i > 0:
continue
out_size = self.num_feature_maps * 2**(d)
if i == 0 and d < self.depth - 1:
in_size = self.num_feature_maps * 2**(d+1)
elif i == 0 and self.injection_at == "bottom":
in_size = out_size + self.injection_channels
else:
in_size = out_size
if d in self.coords[0] and i == 0 and d < self.depth - 1:
block.append(ConcatCoords())
in_size += self.coords_dim
block.append(self.conv_op(in_size,
out_size,
self.kernel_size,
padding=self.padding,
dilation=self.dilation,
**self.conv_kwargs))
if self.dropout_op is not None:
block.append(self.dropout_op(**self.dropout_kwargs))
if self.norm_op is not None:
block.append(self.norm_op(out_size, **self.norm_kwargs))
block.append(self.activation_op(**self.activation_kwargs))
if d > 0:
block.append(self.upconv_op(out_size,
out_size // 2,
self.kernel_size,
2,
padding=self.padding,
dilation=self.dilation,
output_padding=1,
**self.upconv_kwargs))
self.add_module("decode-{}".format(d), nn.Sequential(*block))
if self.injection_at == "end":
out_size += self.injection_channels
in_size = out_size
for i in range(self.num_1x1_at_end):
if i == self.num_1x1_at_end - 1:
out_size = self.out_channels
current_conv_kwargs = self.conv_kwargs.copy()
current_conv_kwargs["bias"] = True
self.add_module("reduce-{}".format(i), self.conv_op(in_size, out_size, 1, **current_conv_kwargs))
if i != self.num_1x1_at_end - 1:
self.add_module("reduce-{}-nonlin".format(i), self.activation_op(**self.activation_kwargs))
if self.output_activation_op is not None:
self.add_module("output-activation", self.output_activation_op(**self.output_activation_kwargs))
def reset(self):
self.last_activations = None
def forward(self, x, injection=None, reuse_last_activations=False, store_activations=False):
if self.injection_at == "bottom":
reuse_last_activations = False
store_activations = False
if self.last_activations is None or reuse_last_activations is False:
enc = [x]
for i in range(self.depth - 1):
enc.append(self._modules["encode-{}".format(i)](enc[-1]))
bottom_rep = self._modules["encode-{}".format(self.depth - 1)](enc[-1])
if self.injection_at == "bottom" and self.injection_channels > 0:
injection = match_to(injection, bottom_rep, (0, 1))
bottom_rep = torch.cat((bottom_rep, injection), 1)
x = self._modules["decode-{}".format(self.depth - 1)](bottom_rep)
for i in reversed(range(self.depth - 1)):
x = self._modules["decode-{}".format(i)](torch.cat((enc[-(self.depth - 1 - i)], x), 1))
if store_activations:
self.last_activations = x.detach()
else:
x = self.last_activations
if self.injection_at == "end" and self.injection_channels > 0:
injection = match_to(injection, x, (0, 1))
x = torch.cat((x, injection), 1)
for i in range(self.num_1x1_at_end):
x = self._modules["reduce-{}".format(i)](x)
if self.output_activation_op is not None:
x = self._modules["output-activation"](x)
if self.return_bottom and not reuse_last_activations:
return x, bottom_rep
else:
return x
class InjectionUNet3D(InjectionUNet):
def __init__(self, *args, **kwargs):
update_kwargs = dict(
pool_op=nn.AvgPool3d,
norm_op=nn.InstanceNorm3d,
conv_op=nn.Conv3d,
upconv_op=nn.ConvTranspose3d,
coords_dim=3
)
for (arg, val) in update_kwargs.items():
if arg not in kwargs: kwargs[arg] = val
super(InjectionUNet3D, self).__init__(*args, **kwargs)
class ProbabilisticSegmentationNet(ConvModule):
def __init__(self,
in_channels=4,
out_channels=4,
num_feature_maps=24,
latent_size=3,
depth=5,
latent_distribution=torch.distributions.Normal,
task_op=InjectionUNet3D,
task_kwargs=None,
prior_op=InjectionConvEncoder3D,
prior_kwargs=None,
posterior_op=InjectionConvEncoder3D,
posterior_kwargs=None,
**kwargs):
super(ProbabilisticSegmentationNet, self).__init__(**kwargs)
self.task_op = task_op
self.task_kwargs = {} if task_kwargs is None else task_kwargs
self.prior_op = prior_op
self.prior_kwargs = {} if prior_kwargs is None else prior_kwargs
self.posterior_op = posterior_op
self.posterior_kwargs = {} if posterior_kwargs is None else posterior_kwargs
default_task_kwargs = dict(
in_channels=in_channels,
out_channels=out_channels,
num_feature_maps=num_feature_maps,
injection_size=latent_size,
depth=depth
)
default_prior_kwargs = dict(
in_channels=in_channels,
num_feature_maps=num_feature_maps,
z_dim=latent_size,
depth=depth
)
default_posterior_kwargs = dict(
in_channels=in_channels+out_channels,
num_feature_maps=num_feature_maps,
z_dim=latent_size,
depth=depth
)
default_task_kwargs.update(self.task_kwargs)
self.task_kwargs = default_task_kwargs
default_prior_kwargs.update(self.prior_kwargs)
self.prior_kwargs = default_prior_kwargs
default_posterior_kwargs.update(self.posterior_kwargs)
self.posterior_kwargs = default_posterior_kwargs
self.latent_distribution = latent_distribution
self._prior = None
self._posterior = None
self.make_modules()
def make_modules(self):
if type(self.task_op) == type:
self.add_module("task_net", self.task_op(**self.task_kwargs))
else:
self.add_module("task_net", self.task_op)
if type(self.prior_op) == type:
self.add_module("prior_net", self.prior_op(**self.prior_kwargs))
else:
self.add_module("prior_net", self.prior_op)
if type(self.posterior_op) == type:
self.add_module("posterior_net", self.posterior_op(**self.posterior_kwargs))
else:
self.add_module("posterior_net", self.posterior_op)
@property
def prior(self):
return self._prior
@property
def posterior(self):
return self._posterior
@property
def last_activations(self):
return self.task_net.last_activations
def train(self, mode=True):
super(ProbabilisticSegmentationNet, self).train(mode)
self.reset()
def reset(self):
self.task_net.reset()
self._prior = None
self._posterior = None
def forward(self, input_, seg=None, make_onehot=True, make_onehot_classes=None, newaxis=False):
self.encode_prior(input_)
if self.training:
self.encode_posterior(input_, seg, make_onehot, make_onehot_classes, newaxis)
sample = self.posterior.rsample()
else:
sample = self.prior.loc
return self.task_net(input_, sample, store_activations=not self.training)
def encode_prior(self, input_):
rep = self.prior_net(input_)
if isinstance(rep, tuple):
mean, logvar = rep
elif torch.is_tensor(rep):
mean, logvar = torch.split(rep, rep.shape[1] // 2, dim=1)
self._prior = self.latent_distribution(mean, logvar.mul(0.5).exp())
return self._prior
def encode_posterior(self, input_, seg, make_onehot=True, make_onehot_classes=None, newaxis=False):
if make_onehot:
if make_onehot_classes is None:
make_onehot_classes = tuple(range(self.posterior_net.in_channels - input_.shape[1]))
seg = make_onehot_segmentation(seg, make_onehot_classes, newaxis=newaxis)
rep = self.posterior_net(torch.cat((input_, seg.float()), 1))
if isinstance(rep, tuple):
mean, logvar = rep
elif torch.is_tensor(rep):
mean, logvar = torch.split(rep, rep.shape[1] // 2, dim=1)
self._posterior = self.latent_distribution(mean, logvar.mul(0.5).exp())
return self._posterior
def sample_prior(self, N=1, out_device=None, input_=None):
if out_device is None:
if self.last_activations is not None:
out_device = self.last_activations.device
elif input_ is not None:
out_device = input_.device
else:
out_device = next(self.task_net.parameters()).device
with torch.no_grad():
if self.prior is None or input_ is not None:
self.encode_prior(input_)
result = []
if input_ is not None:
result.append(self.task_net(input_, self.prior.sample(), reuse_last_activations=False, store_activations=True).to(device=out_device))
while len(result) < N:
result.append(self.task_net(input_,
self.prior.sample(),
reuse_last_activations=self.last_activations is not None,
store_activations=False).to(device=out_device))
if N == 1:
return result[0]
else:
return result
def reconstruct(self, sample=None, use_posterior_mean=True, out_device=None, input_=None):
if self.posterior is None and sample is None:
raise ValueError("'posterior' is currently None. Please pass an input and a segmentation first.")
if out_device is None:
out_device = next(self.task_net.parameters()).device
if sample is None:
if use_posterior_mean:
sample = self.posterior.loc
else:
sample = self.posterior.sample()
else:
sample = sample.to(next(self.task_net.parameters()).device)
with torch.no_grad():
return self.task_net(input_, sample, reuse_last_activations=True).to(device=out_device)
def kl_divergence(self):
if self.posterior is None or self.prior is None:
raise ValueError("'prior' and 'posterior' must not be None, but prior={} and posterior={}".format(self.prior, self.posterior))
return torch.distributions.kl_divergence(self.posterior, self.prior).sum()
|
MIT License
|
amosbastian/fpl
|
fpl/cli.py
|
picks
|
python
|
async def picks(user_id):
async with aiohttp.ClientSession() as session:
fpl = FPL(session)
user = await fpl.get_user(user_id)
await format_picks(user)
|
Echoes a user's picks to the terminal.
|
https://github.com/amosbastian/fpl/blob/cce084026b039e36fee621f25c91c70a0fa45156/fpl/cli.py#L315-L320
|
import os
import sqlite3
import aiohttp
import click
from appdirs import user_data_dir
from prettytable import PrettyTable
from fpl import FPL
from .constants import MYTEAM_FORMAT, PICKS_FORMAT
from .utils import chip_converter, coroutine, position_converter
data_directory = user_data_dir("fpl", "fpl")
os.makedirs(data_directory, exist_ok=True)
sql_file = os.path.join(data_directory, "fpl.sqlite")
connection = sqlite3.connect(sql_file)
class HiddenPassword(object):
def __init__(self, password=""):
self.password = password
def __str__(self):
return "*" * len(self.password)
def table_exists(table_name):
query = ("SELECT name FROM sqlite_master "
f"WHERE type='table' AND name='{table_name}'")
try:
cursor = connection.cursor()
cursor.execute(query)
return True if cursor.fetchone() else False
except sqlite3.OperationalError:
return False
@click.group()
def cli():
pass
def get_starters(players, position):
starters = [player for player in players if position_converter(
player.element_type) == position]
return starters
async def get_picks(team):
player_ids = [player["element"] for player in team]
async with aiohttp.ClientSession() as session:
fpl = FPL(session)
players = await fpl.get_players(player_ids)
for player_data in team:
for player in players:
if player_data["element"] != player.id:
continue
player.role = ""
player.event_points = (player.event_points *
player_data["multiplier"])
player.team_position = player_data["position"]
player.is_captain = player_data["is_captain"]
if player.is_captain:
player.role = " (C)"
player.is_vice_captain = player_data["is_vice_captain"]
if player.is_vice_captain:
player.role = " (VC)"
if player.status in ["d", "u"]:
player.colour = "yellow"
elif player.status in ["i"]:
player.colour = "red"
else:
player.colour = None
return players
def team_width(positions, points=False):
width = 0
for position in positions:
if points:
player_names = [PICKS_FORMAT.format(
player.web_name, player.event_points,
player.role) for player in position]
else:
player_names = [MYTEAM_FORMAT.format(
player.web_name, player.role) for player in position]
position_width = len(" - ".join(player_names))
if position_width > width:
width = position_width
return width
def used_chips(chips):
if not chips:
return "NONE."
used = ["{} (GW {})".format(chip_converter(chip["name"]), chip["event"])
for chip in chips]
return ", ".join(used)
def available_chips(chips):
available = ["WC", "TC", "BB", "FH"]
used = [chip_converter(chip["name"]) for chip in chips]
return ", ".join(list(set(available) - set(used)))
def split_by_position(team):
return [
get_starters(team[:11], "Goalkeeper"),
get_starters(team[:11], "Defender"),
get_starters(team[:11], "Midfielder"),
get_starters(team[:11], "Forward"),
team[-4:]
]
def team_printer(positions, formatter, points=False):
width = team_width(positions[1:], points)
for position in positions:
player_names = []
ansi_padding = 0
for player in position:
if points:
player_information = (
player.event_points, player.web_name, player.role)
else:
player_information = (player.web_name, player.role)
normal_string = formatter.format(*player_information)
ansi_string = click.style(normal_string, fg=player.colour)
player_names.append(ansi_string)
ansi_padding += len(ansi_string) - len(normal_string)
player_string = " - ".join(player_names)
formatted_string = "{:^{}}".format(player_string, width + ansi_padding)
click.echo(formatted_string)
async def myteam_table(user):
table = PrettyTable()
table.field_names = ["Key", "Value"]
table.add_row(
["Overall points", "{:,}".format(user.summary_overall_points)])
table.add_row(["Overall rank", "{:,}".format(user.summary_overall_rank)])
table.add_row(["Gameweek points", user.summary_event_points])
table.add_row(["Squad value", "£{}m".format(user.value)])
table.add_row(["In the bank", "£{}m".format(user.bank)])
table.add_row(["Chips used", used_chips(await user.get_chips_history())])
table.add_row(["Chips available", available_chips(await user.get_chips_history())])
table.align["Key"] = "l"
table.align["Value"] = "r"
click.echo(str(table).split("\n", 2)[2])
async def format_myteam(user):
team = await user.get_team()
players = sorted(await get_picks(team), key=lambda x: x.team_position)
goalkeeper, defenders, midfielders, forwards, bench = split_by_position(
players)
team_printer([goalkeeper, defenders, midfielders, forwards], MYTEAM_FORMAT)
click.echo("\nSubstitutes: {}".format(", ".join(
[click.style("{}".format(player.web_name), fg=player.colour)
for player in bench])))
await myteam_table(user)
def get_account_data(index):
cursor = connection.cursor()
if table_exists("accounts"):
accounts = cursor.execute("SELECT * from accounts").fetchall()
if accounts:
return accounts[0][index]
return ""
@cli.command()
@click.argument("user_id",
default=get_account_data(1))
@click.option("--email",
prompt="Email address",
envvar="FPL_EMAIL",
default=get_account_data(2),
help="FPL email address",
show_default="email saved in SQLite database")
@click.option("--password",
prompt=True,
hide_input=True,
envvar="FPL_PASSWORD",
default=HiddenPassword(get_account_data(3)),
help="FPL password",
show_default="password saved in SQLite database")
@coroutine
async def myteam(user_id, email, password):
if isinstance(password, HiddenPassword):
password = password.password
async with aiohttp.ClientSession() as session:
fpl = FPL(session)
await fpl.login(email, password)
try:
user = await fpl.get_user(user_id)
await format_myteam(user)
except KeyError:
raise click.BadParameter("email address or password.")
def automatic_substitutions(user_information, players):
substitution_ids = [(player["element_in"], player["element_out"])
for player in user_information["automatic_subs"]]
substitutions = []
for player_in_id, player_out_id in substitution_ids:
player_in = [player for player in players
if player.player_id == player_in_id][0]
player_out = [player for player in players
if player.player_id == player_out_id][0]
substitutions.append("{} {} -> {} {}".format(
player_out.event_points,
click.style(player_out.name, fg=player_out.colour),
player_in.event_points,
click.style(player_in.name, fg=player_in.colour)))
return ", ".join(substitutions)
def picks_table(user, user_information, players):
table = PrettyTable()
table.field_names = ["Key", "Value"]
table.add_row(["Gamweek points", user.summary_overall_points])
table.add_row(["Gameweek rank", "{:,}".format(user.summary_overall_rank)])
gameweek_transfers = user_information["entry_history"]["event_transfers"]
point_hit = user_information["entry_history"]["event_transfers_cost"]
if point_hit < 0:
table.add_row(["Gameweek transfers", "{} ({})".format(
gameweek_transfers, point_hit)])
else:
table.add_row(["Gameweek transfers", gameweek_transfers])
table.add_row(["Points on bench", user_information["entry_history"][
"points_on_bench"]])
table.add_row(["Automatic substitutions", automatic_substitutions(
user_information, players)])
table.align["Key"] = "l"
table.align["Value"] = "r"
click.echo(str(table).split("\n", 2)[2])
async def format_picks(user):
user_picks = await user.get_picks()
user_information = user_picks[len(user_picks)]
players = sorted(await get_picks(user_information["picks"]),
key=lambda x: x.team_position)
goalkeeper, defenders, midfielders, forwards, bench = split_by_position(
players)
team_printer([goalkeeper, defenders, midfielders, forwards],
PICKS_FORMAT, True)
click.echo("\nSubstitutes: {}".format(", ".join(
["{} {}".format(player.event_points, click.style(
player.web_name, fg=player.colour)) for player in bench])))
picks_table(user, user_information, players)
@cli.command()
@click.argument("user_id")
@coroutine
|
MIT License
|
mosquito/aio-pika
|
aio_pika/queue.py
|
Queue.cancel
|
python
|
async def cancel(
self, consumer_tag: ConsumerTag, timeout=None, nowait: bool = False
) -> aiormq.spec.Basic.CancelOk:
return await asyncio.wait_for(
self.channel.basic_cancel(
consumer_tag=consumer_tag, nowait=nowait,
),
timeout=timeout,
)
|
This method cancels a consumer. This does not affect already
delivered messages, but it does mean the server will not send any more
messages for that consumer. The client may receive an arbitrary number
of messages in between sending the cancel method and receiving the
cancel-ok reply. It may also be sent from the server to the client in
the event of the consumer being unexpectedly cancelled (i.e. cancelled
for any reason other than the server receiving the corresponding
basic.cancel from the client). This allows clients to be notified of
the loss of consumers due to events such as queue deletion.
:param consumer_tag:
consumer tag returned by :func:`~aio_pika.Queue.consume`
:param timeout: execution timeout
:param bool nowait: Do not expect a Basic.CancelOk response
:return: Basic.CancelOk when operation completed successfully
|
https://github.com/mosquito/aio-pika/blob/99a90e46aeb34191753931011962c14434b5593e/aio_pika/queue.py#L244-L269
|
import asyncio
from collections import namedtuple
from functools import partial
from logging import getLogger
from typing import Any, Callable, Optional
import aiormq
from aiormq.types import DeliveredMessage
from .exceptions import QueueEmpty
from .exchange import Exchange, ExchangeParamType
from .message import IncomingMessage
from .tools import create_task, shield
log = getLogger(__name__)
ConsumerTag = str
DeclarationResult = namedtuple(
"DeclarationResult", ("message_count", "consumer_count"),
)
async def consumer(callback, msg: DeliveredMessage, *, no_ack, loop):
message = IncomingMessage(msg, no_ack=no_ack)
return await create_task(callback, message, loop=loop)
class Queue:
def __init__(
self,
connection,
channel: aiormq.Channel,
name,
durable,
exclusive,
auto_delete,
arguments,
passive: bool = False,
):
self.loop = connection.loop
self._channel = channel
self.name = name or ""
self.durable = durable
self.exclusive = exclusive
self.auto_delete = auto_delete
self.arguments = arguments
self.passive = passive
self.declaration_result = None
self._get_lock = asyncio.Lock()
@property
def channel(self) -> aiormq.Channel:
if self._channel is None:
raise RuntimeError("Channel not opened")
return self._channel
def __str__(self):
return "%s" % self.name
def __repr__(self):
return (
"<Queue(%s): "
"auto_delete=%s, "
"durable=%s, "
"exclusive=%s, "
"arguments=%r>"
) % (
self,
self.auto_delete,
self.durable,
self.exclusive,
self.arguments,
)
async def declare(
self, timeout: int = None
) -> aiormq.spec.Queue.DeclareOk:
log.debug("Declaring queue: %r", self)
self.declaration_result = await asyncio.wait_for(
self._channel.queue_declare(
queue=self.name,
durable=self.durable,
exclusive=self.exclusive,
auto_delete=self.auto_delete,
arguments=self.arguments,
passive=self.passive,
),
timeout=timeout,
)
self.name = self.declaration_result.queue
return self.declaration_result
async def bind(
self,
exchange: ExchangeParamType,
routing_key: str = None,
*,
arguments=None,
timeout: int = None
) -> aiormq.spec.Queue.BindOk:
if routing_key is None:
routing_key = self.name
log.debug(
"Binding queue %r: exchange=%r, routing_key=%r, arguments=%r",
self,
exchange,
routing_key,
arguments,
)
return await asyncio.wait_for(
self.channel.queue_bind(
self.name,
exchange=Exchange._get_exchange_name(exchange),
routing_key=routing_key,
arguments=arguments,
),
timeout=timeout,
)
async def unbind(
self,
exchange: ExchangeParamType,
routing_key: str = None,
arguments: dict = None,
timeout: int = None,
) -> aiormq.spec.Queue.UnbindOk:
if routing_key is None:
routing_key = self.name
log.debug(
"Unbinding queue %r: exchange=%r, routing_key=%r, arguments=%r",
self,
exchange,
routing_key,
arguments,
)
return await asyncio.wait_for(
self.channel.queue_unbind(
queue=self.name,
exchange=Exchange._get_exchange_name(exchange),
routing_key=routing_key,
arguments=arguments,
),
timeout=timeout,
)
async def consume(
self,
callback: Callable[[IncomingMessage], Any],
no_ack: bool = False,
exclusive: bool = False,
arguments: dict = None,
consumer_tag=None,
timeout=None,
) -> ConsumerTag:
log.debug("Start to consuming queue: %r", self)
return (
await asyncio.wait_for(
self.channel.basic_consume(
queue=self.name,
consumer_callback=partial(
consumer, callback, no_ack=no_ack, loop=self.loop,
),
exclusive=exclusive,
no_ack=no_ack,
arguments=arguments,
consumer_tag=consumer_tag,
),
timeout=timeout,
)
).consumer_tag
|
Apache License 2.0
|
googlearchive/simian
|
src/tests/simian/mac/common/test.py
|
RequestHandlerTest.MockDoAnyAuth
|
python
|
def MockDoAnyAuth(self, fail=False, and_return=None):
if 'authDoAnyAuth' not in self._set_mock:
self.mox.StubOutWithMock(auth, 'DoAnyAuth')
self._set_mock['authDoAnyAuth'] = 1
if fail:
auth.DoAnyAuth().AndRaise(auth.NotAuthenticated)
else:
auth.DoAnyAuth().AndReturn(and_return)
|
Mock calling auth.DoAnyAuth().
Args:
fail: bool, whether to fail or not
and_return: any, variable to pass to AndReturn, default None
|
https://github.com/googlearchive/simian/blob/fb9c43946ff7ba29be417068d6447cfc0adfe9ef/src/tests/simian/mac/common/test.py#L165-L178
|
import base64
import tests.appenginesdk
from google.appengine.ext import deferred
from google.appengine.ext import testbed
from google.apputils import basetest
from tests.simian.mac.common import test_base as test_base
from simian import settings
from simian.mac.common import auth
def GetArgFromCallHistory(mock_fn, call_index=0, arg_index=0):
return mock_fn.call_args_list[call_index][0][arg_index]
class AppengineTest(basetest.TestCase):
def setUp(self):
super(AppengineTest, self).setUp()
self.testbed = testbed.Testbed()
self.testbed.activate()
self.testbed.setup_env(
overwrite=True,
USER_EMAIL='user@example.com',
USER_ID='123',
USER_IS_ADMIN='0',
DEFAULT_VERSION_HOSTNAME='example.appspot.com')
self.testbed.init_all_stubs()
def tearDown(self):
super(AppengineTest, self).tearDown()
self.testbed.deactivate()
def RunAllDeferredTasks(self, queue_name='default'):
taskqueue = self.testbed.get_stub(testbed.TASKQUEUE_SERVICE_NAME)
tasks = taskqueue.GetTasks(queue_name)
for task in tasks:
deferred.run(base64.b64decode(task['body']))
taskqueue.DeleteTask(queue_name, task['name'])
class GenericContainer(test_base.GenericContainer):
class RequestHandlerTest(test_base.RequestHandlerTest):
def setUp(self):
super(RequestHandlerTest, self).setUp()
self.testbed = testbed.Testbed()
self.testbed.activate()
self.testbed.setup_env(
overwrite=True,
USER_EMAIL='user@example.com',
USER_ID='123',
USER_IS_ADMIN='0',
DEFAULT_VERSION_HOSTNAME='example.appspot.com')
self.testbed.init_datastore_v3_stub()
self.testbed.init_memcache_stub()
self.testbed.init_taskqueue_stub()
self.testbed.init_user_stub()
self.testbed.init_mail_stub()
settings.ADMINS = ['admin@example.com']
def tearDown(self):
super(RequestHandlerTest, self).tearDown()
self.testbed.deactivate()
def MockDoUserAuth(self, user=None, is_admin=None, fail=False):
if 'authDoUserAuth' not in self._set_mock:
self.mox.StubOutWithMock(auth, 'DoUserAuth')
self._set_mock['authDoUserAuth'] = 1
if fail:
if is_admin is None:
auth.DoUserAuth().AndRaise(auth.NotAuthenticated)
else:
auth.DoUserAuth(is_admin=is_admin).AndRaise(auth.NotAuthenticated)
else:
if is_admin is None:
auth.DoUserAuth().AndReturn(user)
else:
auth.DoUserAuth(is_admin=is_admin).AndReturn(user)
def MockDoOAuthAuth(self, user=None, is_admin=None, fail=False):
if not 'authDoOAuthAuth' in self._set_mock:
self.mox.StubOutWithMock(auth, 'DoOAuthAuth')
self._set_mock['authDoOAuthAuth'] = 1
if fail:
if is_admin is None:
auth.DoOAuthAuth().AndRaise(auth.NotAuthenticated)
else:
auth.DoOAuthAuth(is_admin=is_admin).AndRaise(auth.NotAuthenticated)
else:
if is_admin is None:
auth.DoOAuthAuth().AndReturn(user)
else:
auth.DoOAuthAuth(is_admin=is_admin).AndReturn(user)
def MockDoMunkiAuth(self, fail=False, and_return=None, **kwargs):
munki_auth_module = self.GetTestClassModule().gaeserver
if not hasattr(munki_auth_module, 'DoMunkiAuth'):
raise NotImplementedError('MockDoMunkiAuth for non-Munki handler class')
if 'authDoMunkiAuth' not in self._set_mock:
self.mox.StubOutWithMock(munki_auth_module, 'DoMunkiAuth')
self._set_mock['authDoMunkiAuth'] = 1
if fail:
self.GetTestClassModule().gaeserver.DoMunkiAuth(**kwargs).AndRaise(
munki_auth_module.NotAuthenticated)
else:
self.GetTestClassModule().gaeserver.DoMunkiAuth(**kwargs).AndReturn(
and_return)
|
Apache License 2.0
|
mar10/pyftpsync
|
ftpsync/synchronizers.py
|
BiDirSynchronizer.on_conflict
|
python
|
def on_conflict(self, pair):
any_entry = pair.any_entry
if not self._test_match_or_print(any_entry):
return
resolve = self._interactive_resolve(pair)
if resolve == "skip":
self._log_action("skip", "conflict", "*?*", any_entry)
self._inc_stat("conflict_files_skipped")
return
if pair.local and pair.remote:
assert pair.local.is_file()
is_newer = pair.local > pair.remote
if (
resolve == "local"
or (is_newer and resolve == "new")
or (not is_newer and resolve == "old")
):
self._log_action("copy", "conflict", "*>*", pair.local)
self._copy_file(self.local, self.remote, pair.local)
elif (
resolve == "remote"
or (is_newer and resolve == "old")
or (not is_newer and resolve == "new")
):
self._log_action("copy", "conflict", "*<*", pair.local)
self._copy_file(self.remote, self.local, pair.remote)
else:
raise NotImplementedError
elif pair.local:
assert pair.local.is_file()
if resolve == "local":
self._log_action("restore", "conflict", "*>x", pair.local)
self._copy_file(self.local, self.remote, pair.local)
elif resolve == "remote":
self._log_action("delete", "conflict", "*<x", pair.local)
self._remove_file(pair.local)
else:
raise NotImplementedError
else:
assert pair.remote.is_file()
if resolve == "local":
self._log_action("delete", "conflict", "x>*", pair.remote)
self._remove_file(pair.remote)
elif resolve == "remote":
self._log_action("restore", "conflict", "x<*", pair.remote)
self._copy_file(self.remote, self.local, pair.remote)
else:
raise NotImplementedError
return
|
Return False to prevent visiting of children.
|
https://github.com/mar10/pyftpsync/blob/fd6471b34cc2145cdc9a469016ad08273d13b211/ftpsync/synchronizers.py#L942-L996
|
import fnmatch
import sys
import time
from ftpsync.ftp_target import FTPTarget
from ftpsync.metadata import DirMetadata
from ftpsync.resources import DirectoryEntry, EntryPair, FileEntry, operation_map
from ftpsync.util import (
DRY_RUN_PREFIX,
IS_REDIRECTED,
VT_ERASE_LINE,
ansi_code,
byte_compare,
colorama,
eps_compare,
pretty_stamp,
write,
)
CONFIG_FILE_NAME = "pyftpsync.yaml"
DEFAULT_OMIT = [".DS_Store", ".git", ".hg", ".svn"]
ALWAYS_OMIT = (CONFIG_FILE_NAME, DirMetadata.META_FILE_NAME, DirMetadata.LOCK_FILE_NAME)
_ts = pretty_stamp
def process_options(opts):
match = opts.get("match")
if match and type(match) is str:
opts["match"] = [pat.strip() for pat in match.split(",")]
elif match:
assert type(match) is list
else:
opts["match"] = []
exclude = opts.get("exclude")
if exclude and type(exclude) is str:
opts["exclude"] = [pat.strip() for pat in exclude.split(",")]
elif exclude:
assert type(exclude) is list
else:
opts["exclude"] = []
def match_path(entry, opts):
if entry.name in ALWAYS_OMIT:
return False
path = entry.name
ok = True
match = opts.get("match")
exclude = opts.get("exclude")
if entry.is_file() and match:
assert type(match) is list
ok = False
for pat in match:
if fnmatch.fnmatch(path, pat):
ok = True
break
if ok and exclude:
assert type(exclude) is list
for pat in exclude:
if fnmatch.fnmatch(path, pat):
ok = False
break
return ok
class BaseSynchronizer:
_resolve_shortcuts = {"l": "local", "r": "remote", "s": "skip"}
def __init__(self, local, remote, options):
self.local = local
self.remote = remote
self.options = options or {}
process_options(self.options)
self.verbose = self.options.get("verbose", 3)
self.dry_run = self.options.get("dry_run", False)
self.is_script = None
self.resolve_all = None
self._stats = {
"bytes_written": 0,
"conflict_files": 0,
"conflict_files_skipped": 0,
"dirs_created": 0,
"dirs_deleted": 0,
"download_bytes_written": 0,
"download_files_written": 0,
"elap_secs": None,
"elap_str": None,
"entries_seen": 0,
"entries_touched": 0,
"files_created": 0,
"files_deleted": 0,
"files_written": 0,
"interactive_ask": 0,
"local_dirs": 0,
"local_files": 0,
"meta_bytes_read": 0,
"meta_bytes_written": 0,
"remote_dirs": 0,
"remote_files": 0,
"result_code": None,
"upload_bytes_written": 0,
"upload_files_written": 0,
}
def __del__(self):
self.close()
def get_info_strings(self):
raise NotImplementedError
def close(self):
if self.local.connected:
self.local.close()
if self.remote.connected:
self.remote.close()
def get_stats(self):
return self._stats
def _inc_stat(self, name, ofs=1):
self._stats[name] = self._stats.get(name, 0) + ofs
def _match(self, entry):
return match_path(entry, self.options)
def run(self):
start = time.time()
info_strings = self.get_info_strings()
if self.verbose >= 3:
write(
"{} {}\n{:>20} {}".format(
info_strings[0].capitalize(),
self.local.get_base_name(),
info_strings[1],
self.remote.get_base_name(),
)
)
write(
"Encoding local: {}, remote: {}".format(
self.local.encoding, self.remote.encoding
)
)
try:
self.local.synchronizer = self.remote.synchronizer = self
self.local.peer = self.remote
self.remote.peer = self.local
if self.dry_run:
self.local.readonly = True
self.local.dry_run = True
self.remote.readonly = True
self.remote.dry_run = True
if not self.local.connected:
self.local.open()
if not self.remote.connected:
self.remote.open()
res = self._sync_dir()
finally:
self.local.synchronizer = self.remote.synchronizer = None
self.local.peer = self.remote.peer = None
self.close()
stats = self._stats
stats["elap_secs"] = time.time() - start
stats["elap_str"] = "{:0.2f} sec".format(stats["elap_secs"])
def _add(rate, size, time):
if stats.get(time) and stats.get(size):
stats[rate] = "{:0.2f} kB/sec".format(0.001 * stats[size] / stats[time])
_add("upload_rate_str", "upload_bytes_written", "upload_write_time")
_add("download_rate_str", "download_bytes_written", "download_write_time")
return res
def _compare_file(self, local, remote):
assert isinstance(local, FileEntry) and isinstance(remote, FileEntry)
if not local or not remote:
write(" Files cannot be compared ({} != {}).".format(local, remote))
return False
elif local.size != remote.size:
write(
" Files are different (size {:,d} != {:,d}).".format(
local.size, remote.size
)
)
return False
with local.target.open_readable(
local.name
) as fp_src, remote.target.open_readable(remote.name) as fp_dest:
res, ofs = byte_compare(fp_src, fp_dest)
if not res:
write(" Files are different at offset {:,d}.".format(ofs))
else:
write(" Files are equal.")
return res
def _copy_file(self, src, dest, file_entry):
assert isinstance(file_entry, FileEntry)
self._inc_stat("files_written")
self._inc_stat("entries_touched")
is_upload = dest is self.remote
if is_upload:
self._inc_stat("upload_files_written")
else:
self._inc_stat("download_files_written")
self._tick()
if self.dry_run:
return self._dry_run_action(
"copy file ({}, {} --> {})".format(file_entry, src, dest)
)
elif dest.readonly:
raise RuntimeError("target is read-only: {}".format(dest))
start = time.time()
def __block_written(data):
self._inc_stat("bytes_written", len(data))
if is_upload:
self._inc_stat("upload_bytes_written", len(data))
else:
self._inc_stat("download_bytes_written", len(data))
if isinstance(src, FTPTarget) and not isinstance(dest, FTPTarget):
with dest.open_writable(file_entry.name) as fp_dest:
src.copy_to_file(file_entry.name, fp_dest, callback=__block_written)
else:
with src.open_readable(file_entry.name) as fp_src:
dest.write_file(file_entry.name, fp_src, callback=__block_written)
dest.set_mtime(file_entry.name, file_entry.mtime, file_entry.size)
dest.set_sync_info(file_entry.name, file_entry.mtime, file_entry.size)
elap = time.time() - start
self._inc_stat("write_time", elap)
if is_upload:
self._inc_stat("upload_write_time", elap)
else:
self._inc_stat("download_write_time", elap)
return
def _copy_recursive(self, src, dest, dir_entry):
assert isinstance(dir_entry, DirectoryEntry)
self._inc_stat("entries_touched")
self._inc_stat("dirs_created")
self._tick()
if self.dry_run:
return self._dry_run_action(
"copy directory ({}, {} --> {})".format(dir_entry, src, dest)
)
elif dest.readonly:
raise RuntimeError("target is read-only: {}".format(dest))
dest.set_sync_info(dir_entry.name, None, None)
src.push_meta()
dest.push_meta()
src.cwd(dir_entry.name)
dest.mkdir(dir_entry.name)
dest.cwd(dir_entry.name)
dest.cur_dir_meta = DirMetadata(dest)
for entry in src.get_dir():
self._inc_stat("entries_seen")
if entry.is_dir():
self._copy_recursive(src, dest, entry)
else:
self._copy_file(src, dest, entry)
src.flush_meta()
dest.flush_meta()
src.cwd("..")
dest.cwd("..")
src.pop_meta()
dest.pop_meta()
return
def _remove_file(self, file_entry):
assert isinstance(file_entry, FileEntry)
self._inc_stat("entries_touched")
self._inc_stat("files_deleted")
if self.dry_run:
return self._dry_run_action("delete file ({})".format(file_entry))
elif file_entry.target.readonly:
raise RuntimeError("target is read-only: {}".format(file_entry.target))
file_entry.target.remove_file(file_entry.name)
file_entry.target.remove_sync_info(file_entry.name)
def _remove_dir(self, dir_entry):
assert isinstance(dir_entry, DirectoryEntry)
self._inc_stat("entries_touched")
self._inc_stat("dirs_deleted")
if self.dry_run:
return self._dry_run_action("delete directory ({})".format(dir_entry))
elif dir_entry.target.readonly:
raise RuntimeError("target is read-only: {}".format(dir_entry.target))
dir_entry.target.rmdir(dir_entry.name)
dir_entry.target.remove_sync_info(dir_entry.name)
def _log_action(self, action, status, symbol, entry, min_level=3):
if self.verbose < min_level:
return
if len(symbol) > 1 and symbol[0] in (">", "<"):
symbol = (
" " + symbol
)
color = ""
final = ""
if not self.options.get("no_color"):
if action in ("copy", "restore"):
if "<" in symbol:
if status == "new":
color = ansi_code("Fore.GREEN") + ansi_code("Style.BRIGHT")
else:
color = ansi_code("Fore.GREEN")
else:
if status == "new":
color = ansi_code("Fore.CYAN") + ansi_code("Style.BRIGHT")
else:
color = ansi_code("Fore.CYAN")
elif action == "delete":
color = ansi_code("Fore.RED")
elif status == "conflict":
color = ansi_code("Fore.LIGHTRED_EX")
elif action == "skip" or status == "equal" or status == "visit":
color = ansi_code("Fore.LIGHTBLACK_EX")
final = ansi_code("Style.RESET_ALL")
if colorama:
final += colorama.ansi.clear_line(0)
else:
final += " " * 10
prefix = ""
if self.dry_run:
prefix = DRY_RUN_PREFIX
if action and status:
tag = ("{} {}".format(action, status)).upper()
else:
assert status
tag = ("{}".format(status)).upper()
name = entry.get_rel_path()
if entry.is_dir():
name = "[{}]".format(name)
write("{}{}{:<16} {:^3} {}{}".format(prefix, color, tag, symbol, name, final))
def _tick(self):
if (self.verbose >= 3 and not IS_REDIRECTED) or self.options.get("progress"):
stats = self.get_stats()
prefix = DRY_RUN_PREFIX if self.dry_run else ""
sys.stdout.write(
"{}Touched {}/{} entries in {} directories...\r".format(
prefix,
stats["entries_touched"],
stats["entries_seen"],
stats["local_dirs"],
)
)
sys.stdout.flush()
return
def _dry_run_action(self, action):
return
def _test_match_or_print(self, entry):
if not self._match(entry):
self._log_action("skip", "unmatched", "-", entry, min_level=4)
return False
return True
def _before_sync(self, entry):
self._inc_stat("entries_seen")
self._tick()
return True
def _sync_dir(self):
case_mode = self.options.get("case")
local_entries = self.local.get_dir()
if case_mode == "strict":
local_entry_map = dict(map(lambda e: (e.name, e), local_entries))
else:
local_entry_map = dict(map(lambda e: (e.name.lower(), e), local_entries))
if len(local_entry_map) != len(local_entries):
raise RuntimeError(
"Local target contains file names that only differ in case: "
"pass `--case strict`"
)
remote_entries = self.remote.get_dir()
if case_mode == "strict":
remote_entry_map = dict(map(lambda e: (e.name, e), remote_entries))
else:
remote_entry_map = dict(map(lambda e: (e.name.lower(), e), remote_entries))
if len(remote_entry_map) != len(remote_entries):
raise RuntimeError(
"Remote target contains file names that only differ in case: "
"pass `--case strict`"
)
entry_pair_list = []
for local_entry in local_entries:
if isinstance(local_entry, DirectoryEntry):
self._inc_stat("local_dirs")
else:
self._inc_stat("local_files")
if not self._before_sync(local_entry):
continue
if case_mode == "strict":
remote_entry = remote_entry_map.get(local_entry.name)
else:
remote_entry = remote_entry_map.get(local_entry.name.lower())
if remote_entry and remote_entry.name != local_entry.name:
if case_mode == "local":
remote_entry.name = local_entry.name
elif case_mode == "remote":
local_entry.name = remote_entry.name
else:
raise RuntimeError(
"Found ambigiuos name ({} != {}): "
"`--case` argument is required.".format(
local_entry, remote_entry
)
)
entry_pair = EntryPair(local_entry, remote_entry)
entry_pair_list.append(entry_pair)
for remote_entry in remote_entries:
if isinstance(remote_entry, DirectoryEntry):
self._inc_stat("remote_dirs")
else:
self._inc_stat("remote_files")
if not self._before_sync(remote_entry):
continue
if case_mode == "strict":
if remote_entry.name not in local_entry_map:
entry_pair = EntryPair(None, remote_entry)
entry_pair_list.append(entry_pair)
else:
if remote_entry.name.lower() not in local_entry_map:
entry_pair = EntryPair(None, remote_entry)
entry_pair_list.append(entry_pair)
peer_dir_meta = self.local.cur_dir_meta.peer_sync.get(self.remote.get_id())
for pair in entry_pair_list:
pair.classify(peer_dir_meta)
for pair in entry_pair_list:
hook_result = self.re_classify_pair(pair)
if not self._match(pair.any_entry):
self.on_mismatch(pair)
elif hook_result is not False:
handler = getattr(self, "on_" + pair.operation, None)
if handler:
try:
handler(pair)
except Exception as e:
if self.on_error(e, pair) is not True:
raise
else:
raise NotImplementedError("No handler for {}".format(pair))
if pair.is_conflict():
self._inc_stat("conflict_files")
self.local.flush_meta()
self.remote.flush_meta()
for local_dir in local_entries:
if not local_dir.is_dir():
continue
elif not self._before_sync(local_dir):
continue
remote_dir = remote_entry_map.get(local_dir.name)
if remote_dir:
if local_dir.was_deleted or remote_dir.was_deleted:
pass
else:
self.local.cwd(local_dir.name)
self.remote.cwd(local_dir.name)
self._sync_dir()
self.local.cwd("..")
self.remote.cwd("..")
return True
def re_classify_pair(self, pair):
return True
def on_error(self, exc, pair):
msg = "{red}ERROR: {exc}\n {pair}{reset}".format(
exc=exc,
pair=pair,
red=ansi_code("Fore.LIGHTRED_EX"),
reset=ansi_code("Style.RESET_ALL"),
)
write(msg)
return False
def on_mismatch(self, pair):
self._log_action("skip", "mismatch", "?", pair.any_entry, min_level=4)
def on_equal(self, pair):
self._log_action("", "equal", "=", pair.local, min_level=4)
def on_copy_local(self, pair):
status = pair.remote_classification
self._log_action("copy", status, ">", pair.local)
def on_copy_remote(self, pair):
status = pair.local_classification
self._log_action("copy", status, "<", pair.remote)
def on_delete_local(self, pair):
self._log_action("", "modified", "X< ", pair.local)
def on_delete_remote(self, pair):
self._log_action("", "modified", " >X", pair.remote)
def on_need_compare(self, pair):
self._log_action("", "different", "?", pair.local, min_level=2)
def on_conflict(self, pair):
self._log_action("skip", "conflict", "!", pair.local, min_level=2)
class BiDirSynchronizer(BaseSynchronizer):
def __init__(self, local, remote, options):
super(BiDirSynchronizer, self).__init__(local, remote, options)
def get_info_strings(self):
return ("synchronize", "with")
def _print_pair_diff(self, pair):
any_entry = pair.any_entry
has_meta = any_entry.get_sync_info("m") is not None
write(
(
VT_ERASE_LINE
+ ansi_code("Fore.LIGHTRED_EX")
+ "CONFLICT: {!r} was modified on both targets since last sync ({})."
+ ansi_code("Style.RESET_ALL")
).format(any_entry.get_rel_path(), _ts(any_entry.get_sync_info("u")))
)
if has_meta:
write(
" Original modification time: {}, size: {:,d} bytes.".format(
_ts(any_entry.get_sync_info("m")), any_entry.get_sync_info("s")
)
)
else:
write(" (No meta data available.)")
write(" Local: {}".format(pair.local.as_string() if pair.local else "n.a."))
write(
" Remote: {}".format(
pair.remote.as_string(pair.local) if pair.remote else "n.a."
)
)
def _interactive_resolve(self, pair):
if self.resolve_all:
resolve = self.resolve_all
else:
resolve = self.options.get("resolve", "skip")
if resolve in ("new", "old") and pair.is_same_time():
print("Cannot resolve using '{}' strategy: {}".format(resolve, pair))
resolve = "ask" if self.is_script else "skip"
if resolve == "ask" or self.verbose >= 5:
self._print_pair_diff(pair)
if resolve in ("local", "remote", "old", "new", "skip"):
return resolve
self._inc_stat("interactive_ask")
prompt = (
"Use {m}L{r}ocal, {m}R{r}emote, {m}O{r}lder, {m}N{r}ewer, "
+ "{m}S{r}kip, {m}B{r}inary compare, {m}H{r}elp ? "
).format(
m=ansi_code("Style.BRIGHT") + ansi_code("Style.UNDERLINE"),
r=ansi_code("Style.RESET_ALL"),
)
while True:
r = input(prompt).strip()
if r in ("h", "H", "?"):
print("The following keys are supported:")
print(" 'b': Binary compare")
print(" 'n': Use newer file")
print(" 'o': Use older file")
print(" 'l': Use local file")
print(" 'r': Use remote file")
print(" 's': Skip this file (leave both targets unchanged)")
print(
"Hold Shift (upper case letters) to apply choice for all "
"remaining conflicts."
)
print("Hit Ctrl+C to abort.")
self._print_pair_diff(pair)
continue
elif r in ("b", "B"):
self._compare_file(pair.local, pair.remote)
continue
elif r in ("o", "O", "n", "N") and pair.is_same_time():
print("Files have identical modification times.")
continue
elif r in ("L", "R", "O", "N", "S"):
r = self._resolve_shortcuts[r.lower()]
self.resolve_all = r
break
elif r in ("l", "r", "o", "n", "s"):
r = self._resolve_shortcuts[r]
break
return r
def run(self):
res = super(BiDirSynchronizer, self).run()
return res
def on_mismatch(self, pair):
self._log_action("skip", "mismatch", "?", pair.any_entry, min_level=4)
def on_equal(self, pair):
self._log_action("", "equal", "=", pair.local, min_level=4)
def on_copy_local(self, pair):
local_entry = pair.local
if self._test_match_or_print(local_entry):
self._log_action("copy", pair.local_classification, ">", local_entry)
if pair.is_dir:
self._copy_recursive(self.local, self.remote, local_entry)
else:
self._copy_file(self.local, self.remote, local_entry)
def on_copy_remote(self, pair):
remote_entry = pair.remote
if self._test_match_or_print(remote_entry):
self._log_action("copy", pair.remote_classification, "<", remote_entry)
if pair.is_dir:
self._copy_recursive(self.remote, self.local, remote_entry)
else:
self._copy_file(self.remote, self.local, remote_entry)
def on_delete_local(self, pair):
self._log_action("delete", "missing", "X< ", pair.local)
if pair.is_dir:
self._remove_dir(pair.local)
else:
self._remove_file(pair.local)
def on_delete_remote(self, pair):
self._log_action("delete", "missing", " >X", pair.remote)
if pair.is_dir:
self._remove_dir(pair.remote)
else:
self._remove_file(pair.remote)
def on_need_compare(self, pair):
c_pair = (pair.local_classification, pair.remote_classification)
org_pair = c_pair
org_operation = pair.operation
if pair.is_dir:
pair.local_classification = pair.remote_classification = "existing"
pair.operation = "equal"
self._log_action("", "visit", "?", pair.local, min_level=4)
return
elif c_pair == ("existing", "existing"):
time_cmp = eps_compare(
pair.local.mtime, pair.remote.mtime, FileEntry.EPS_TIME
)
if time_cmp < 0:
c_pair = ("unmodified", "modified")
elif time_cmp > 0:
c_pair = ("modified", "unmodified")
elif pair.local.size == pair.remote.size:
c_pair = ("unmodified", "unmodified")
else:
c_pair = ("modified", "modified")
elif c_pair == ("new", "new"):
time_cmp = eps_compare(
pair.local.mtime, pair.remote.mtime, FileEntry.EPS_TIME
)
if time_cmp == 0 and pair.local.size == pair.remote.size:
c_pair = ("unmodified", "unmodified")
else:
c_pair = ("modified", "modified")
pair.local_classification = c_pair[0]
pair.remote_classification = c_pair[1]
pair.operation = operation_map.get(c_pair)
if not pair.operation:
raise RuntimeError(
"Undefined operation for pair classification {}".format(c_pair)
)
elif pair.operation == org_operation:
raise RuntimeError("Could not re-classify {}".format(org_pair))
handler = getattr(self, "on_" + pair.operation, None)
res = handler(pair)
return res
|
MIT License
|
huggingface/pytorch-pretrained-biggan
|
pytorch_pretrained_biggan/utils.py
|
convert_to_images
|
python
|
def convert_to_images(obj):
try:
import PIL
except ImportError:
raise ImportError("Please install Pillow to use images: pip install Pillow")
if not isinstance(obj, np.ndarray):
obj = obj.detach().numpy()
obj = obj.transpose((0, 2, 3, 1))
obj = np.clip(((obj + 1) / 2.0) * 256, 0, 255)
img = []
for i, out in enumerate(obj):
out_array = np.asarray(np.uint8(out), dtype=np.uint8)
img.append(PIL.Image.fromarray(out_array))
return img
|
Convert an output tensor from BigGAN in a list of images.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
Output:
list of Pillow Images of size (height, width)
|
https://github.com/huggingface/pytorch-pretrained-biggan/blob/1e18aed2dff75db51428f13b940c38b923eb4a3d/pytorch_pretrained_biggan/utils.py#L36-L58
|
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import logging
from io import BytesIO
import numpy as np
from scipy.stats import truncnorm
logger = logging.getLogger(__name__)
NUM_CLASSES = 1000
def truncated_noise_sample(batch_size=1, dim_z=128, truncation=1., seed=None):
state = None if seed is None else np.random.RandomState(seed)
values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state).astype(np.float32)
return truncation * values
|
MIT License
|
bitmovin/bitmovin-api-sdk-python
|
bitmovin_api_sdk/models/broadcast_ts_transport_configuration.py
|
BroadcastTsTransportConfiguration.initial_program_clock_reference
|
python
|
def initial_program_clock_reference(self, initial_program_clock_reference):
if initial_program_clock_reference is not None:
if initial_program_clock_reference is not None and initial_program_clock_reference > 2576980377600:
raise ValueError("Invalid value for `initial_program_clock_reference`, must be a value less than or equal to `2576980377600`")
if initial_program_clock_reference is not None and initial_program_clock_reference < 0:
raise ValueError("Invalid value for `initial_program_clock_reference`, must be a value greater than or equal to `0`")
if not isinstance(initial_program_clock_reference, (float, int)):
raise TypeError("Invalid type for `initial_program_clock_reference`, type has to be `float`")
self._initial_program_clock_reference = initial_program_clock_reference
|
Sets the initial_program_clock_reference of this BroadcastTsTransportConfiguration.
Sets the Program Clock Reference value at the beginning of the first packet for the transport stream. The PCR is specified in the timescale of 90000
:param initial_program_clock_reference: The initial_program_clock_reference of this BroadcastTsTransportConfiguration.
:type: float
|
https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/broadcast_ts_transport_configuration.py#L311-L329
|
from enum import Enum
from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
import pprint
import six
class BroadcastTsTransportConfiguration(object):
@poscheck_model
def __init__(self,
muxrate=None,
stop_on_error=None,
prevent_empty_adaption_fields_in_video=None,
pat_repetition_rate_per_sec=None,
pmt_repetition_rate_per_sec=None,
variable_mux_rate=None,
initial_presentation_time_stamp=None,
initial_program_clock_reference=None):
self._muxrate = None
self._stop_on_error = None
self._prevent_empty_adaption_fields_in_video = None
self._pat_repetition_rate_per_sec = None
self._pmt_repetition_rate_per_sec = None
self._variable_mux_rate = None
self._initial_presentation_time_stamp = None
self._initial_program_clock_reference = None
self.discriminator = None
if muxrate is not None:
self.muxrate = muxrate
if stop_on_error is not None:
self.stop_on_error = stop_on_error
if prevent_empty_adaption_fields_in_video is not None:
self.prevent_empty_adaption_fields_in_video = prevent_empty_adaption_fields_in_video
if pat_repetition_rate_per_sec is not None:
self.pat_repetition_rate_per_sec = pat_repetition_rate_per_sec
if pmt_repetition_rate_per_sec is not None:
self.pmt_repetition_rate_per_sec = pmt_repetition_rate_per_sec
if variable_mux_rate is not None:
self.variable_mux_rate = variable_mux_rate
if initial_presentation_time_stamp is not None:
self.initial_presentation_time_stamp = initial_presentation_time_stamp
if initial_program_clock_reference is not None:
self.initial_program_clock_reference = initial_program_clock_reference
@property
def openapi_types(self):
types = {
'muxrate': 'float',
'stop_on_error': 'bool',
'prevent_empty_adaption_fields_in_video': 'bool',
'pat_repetition_rate_per_sec': 'float',
'pmt_repetition_rate_per_sec': 'float',
'variable_mux_rate': 'bool',
'initial_presentation_time_stamp': 'float',
'initial_program_clock_reference': 'float'
}
return types
@property
def attribute_map(self):
attributes = {
'muxrate': 'muxrate',
'stop_on_error': 'stopOnError',
'prevent_empty_adaption_fields_in_video': 'preventEmptyAdaptionFieldsInVideo',
'pat_repetition_rate_per_sec': 'patRepetitionRatePerSec',
'pmt_repetition_rate_per_sec': 'pmtRepetitionRatePerSec',
'variable_mux_rate': 'variableMuxRate',
'initial_presentation_time_stamp': 'initialPresentationTimeStamp',
'initial_program_clock_reference': 'initialProgramClockReference'
}
return attributes
@property
def muxrate(self):
return self._muxrate
@muxrate.setter
def muxrate(self, muxrate):
if muxrate is not None:
if muxrate is not None and muxrate > 1000000000:
raise ValueError("Invalid value for `muxrate`, must be a value less than or equal to `1000000000`")
if muxrate is not None and muxrate < 0:
raise ValueError("Invalid value for `muxrate`, must be a value greater than or equal to `0`")
if not isinstance(muxrate, (float, int)):
raise TypeError("Invalid type for `muxrate`, type has to be `float`")
self._muxrate = muxrate
@property
def stop_on_error(self):
return self._stop_on_error
@stop_on_error.setter
def stop_on_error(self, stop_on_error):
if stop_on_error is not None:
if not isinstance(stop_on_error, bool):
raise TypeError("Invalid type for `stop_on_error`, type has to be `bool`")
self._stop_on_error = stop_on_error
@property
def prevent_empty_adaption_fields_in_video(self):
return self._prevent_empty_adaption_fields_in_video
@prevent_empty_adaption_fields_in_video.setter
def prevent_empty_adaption_fields_in_video(self, prevent_empty_adaption_fields_in_video):
if prevent_empty_adaption_fields_in_video is not None:
if not isinstance(prevent_empty_adaption_fields_in_video, bool):
raise TypeError("Invalid type for `prevent_empty_adaption_fields_in_video`, type has to be `bool`")
self._prevent_empty_adaption_fields_in_video = prevent_empty_adaption_fields_in_video
@property
def pat_repetition_rate_per_sec(self):
return self._pat_repetition_rate_per_sec
@pat_repetition_rate_per_sec.setter
def pat_repetition_rate_per_sec(self, pat_repetition_rate_per_sec):
if pat_repetition_rate_per_sec is not None:
if pat_repetition_rate_per_sec is not None and pat_repetition_rate_per_sec > 1000:
raise ValueError("Invalid value for `pat_repetition_rate_per_sec`, must be a value less than or equal to `1000`")
if pat_repetition_rate_per_sec is not None and pat_repetition_rate_per_sec < 0.001:
raise ValueError("Invalid value for `pat_repetition_rate_per_sec`, must be a value greater than or equal to `0.001`")
if not isinstance(pat_repetition_rate_per_sec, (float, int)):
raise TypeError("Invalid type for `pat_repetition_rate_per_sec`, type has to be `float`")
self._pat_repetition_rate_per_sec = pat_repetition_rate_per_sec
@property
def pmt_repetition_rate_per_sec(self):
return self._pmt_repetition_rate_per_sec
@pmt_repetition_rate_per_sec.setter
def pmt_repetition_rate_per_sec(self, pmt_repetition_rate_per_sec):
if pmt_repetition_rate_per_sec is not None:
if pmt_repetition_rate_per_sec is not None and pmt_repetition_rate_per_sec > 1000:
raise ValueError("Invalid value for `pmt_repetition_rate_per_sec`, must be a value less than or equal to `1000`")
if pmt_repetition_rate_per_sec is not None and pmt_repetition_rate_per_sec < 0.001:
raise ValueError("Invalid value for `pmt_repetition_rate_per_sec`, must be a value greater than or equal to `0.001`")
if not isinstance(pmt_repetition_rate_per_sec, (float, int)):
raise TypeError("Invalid type for `pmt_repetition_rate_per_sec`, type has to be `float`")
self._pmt_repetition_rate_per_sec = pmt_repetition_rate_per_sec
@property
def variable_mux_rate(self):
return self._variable_mux_rate
@variable_mux_rate.setter
def variable_mux_rate(self, variable_mux_rate):
if variable_mux_rate is not None:
if not isinstance(variable_mux_rate, bool):
raise TypeError("Invalid type for `variable_mux_rate`, type has to be `bool`")
self._variable_mux_rate = variable_mux_rate
@property
def initial_presentation_time_stamp(self):
return self._initial_presentation_time_stamp
@initial_presentation_time_stamp.setter
def initial_presentation_time_stamp(self, initial_presentation_time_stamp):
if initial_presentation_time_stamp is not None:
if initial_presentation_time_stamp is not None and initial_presentation_time_stamp > 5400000:
raise ValueError("Invalid value for `initial_presentation_time_stamp`, must be a value less than or equal to `5400000`")
if initial_presentation_time_stamp is not None and initial_presentation_time_stamp < 0:
raise ValueError("Invalid value for `initial_presentation_time_stamp`, must be a value greater than or equal to `0`")
if not isinstance(initial_presentation_time_stamp, (float, int)):
raise TypeError("Invalid type for `initial_presentation_time_stamp`, type has to be `float`")
self._initial_presentation_time_stamp = initial_presentation_time_stamp
@property
def initial_program_clock_reference(self):
return self._initial_program_clock_reference
@initial_program_clock_reference.setter
|
MIT License
|
botfront/rasa-for-botfront
|
rasa/nlu/components.py
|
ComponentBuilder.__get_cached_component
|
python
|
def __get_cached_component(
self, component_meta: Dict[Text, Any], model_metadata: "Metadata"
) -> Tuple[Optional[Component], Optional[Text]]:
from rasa.nlu import registry
component_name = component_meta.get("class", component_meta["name"])
component_class = registry.get_component_class(component_name)
cache_key = component_class.cache_key(component_meta, model_metadata)
if (
cache_key is not None
and self.use_cache
and cache_key in self.component_cache
):
return self.component_cache[cache_key], cache_key
return None, cache_key
|
Load a component from the cache, if it exists.
Returns the component, if found, and the cache key.
|
https://github.com/botfront/rasa-for-botfront/blob/6e0e48d0059e197b5f686df1e27935769c3641b7/rasa/nlu/components.py#L755-L776
|
from collections import defaultdict
import itertools
import logging
import typing
from typing import Any, Dict, Hashable, List, Optional, Set, Text, Tuple, Type, Iterable
import rasa.utils.train_utils
from rasa.exceptions import MissingDependencyException
from rasa.shared.exceptions import RasaException
from rasa.shared.nlu.constants import TRAINABLE_EXTRACTORS
from rasa.nlu.config import RasaNLUModelConfig
from rasa.shared.exceptions import InvalidConfigException
from rasa.shared.nlu.training_data.training_data import TrainingData
from rasa.shared.nlu.training_data.message import Message
from rasa.nlu.constants import COMPONENT_INDEX
import rasa.shared.utils.io
if typing.TYPE_CHECKING:
from rasa.nlu.model import Metadata
logger = logging.getLogger(__name__)
def find_unavailable_packages(package_names: List[Text]) -> Set[Text]:
import importlib
failed_imports = set()
for package in package_names:
try:
importlib.import_module(package)
except ImportError:
failed_imports.add(package)
return failed_imports
def validate_requirements(component_names: List[Optional[Text]]) -> None:
from rasa.nlu import registry
failed_imports = {}
for component_name in component_names:
if component_name is None:
raise InvalidConfigException(
"Your pipeline configuration contains a component that is missing "
"a name. Please double check your configuration or if this is a "
"custom component make sure to implement the name property for "
"the component."
)
component_class = registry.get_component_class(component_name)
unavailable_packages = find_unavailable_packages(
component_class.required_packages()
)
if unavailable_packages:
failed_imports[component_name] = unavailable_packages
if failed_imports:
dependency_component_map = defaultdict(list)
for component, missing_dependencies in failed_imports.items():
for dependency in missing_dependencies:
dependency_component_map[dependency].append(component)
missing_lines = [
f"{d} (needed for {', '.join(cs)})"
for d, cs in dependency_component_map.items()
]
missing = "\n - ".join(missing_lines)
raise MissingDependencyException(
f"Not all required importable packages are installed to use "
f"the configured NLU pipeline. "
f"To use this pipeline, you need to install the "
f"missing modules: \n"
f" - {missing}\n"
f"Please install the packages that contain the missing modules."
)
def validate_component_keys(
component: "Component", component_config: Dict[Text, Any]
) -> None:
component_name = component_config.get("name")
allowed_keys = set(component.defaults.keys())
provided_keys = set(component_config.keys())
provided_keys.discard("name")
list_separator = "\n- "
for key in provided_keys:
if key not in allowed_keys:
rasa.shared.utils.io.raise_warning(
f"You have provided an invalid key `{key}` for component `{component_name}` in your pipeline. "
f"Valid options for `{component_name}` are:\n- "
f"{list_separator.join(allowed_keys)}"
)
def validate_empty_pipeline(pipeline: List["Component"]) -> None:
if len(pipeline) == 0:
raise InvalidConfigException(
"Can not train an empty pipeline. "
"Make sure to specify a proper pipeline in "
"the configuration using the 'pipeline' key."
)
def validate_only_one_tokenizer_is_used(pipeline: List["Component"]) -> None:
from rasa.nlu.tokenizers.tokenizer import Tokenizer
tokenizer_names = []
for component in pipeline:
if isinstance(component, Tokenizer):
tokenizer_names.append(component.name)
if len(tokenizer_names) > 1:
raise InvalidConfigException(
f"The pipeline configuration contains more than one tokenizer, "
f"which is not possible at this time. You can only use one tokenizer. "
f"The pipeline contains the following tokenizers: {tokenizer_names}. "
)
def _required_component_in_pipeline(
required_component: Type["Component"], pipeline: List["Component"]
) -> bool:
for previous_component in pipeline:
if isinstance(previous_component, required_component):
return True
return False
def validate_required_components(pipeline: List["Component"]) -> None:
for i, component in enumerate(pipeline):
missing_components = []
for required_component in component.required_components():
if not _required_component_in_pipeline(required_component, pipeline[:i]):
missing_components.append(required_component.name)
missing_components_str = ", ".join(f"'{c}'" for c in missing_components)
if missing_components:
raise InvalidConfigException(
f"The pipeline configuration contains errors. The component "
f"'{component.name}' requires {missing_components_str} to be "
f"placed before it in the pipeline. Please "
f"add the required components to the pipeline."
)
def validate_pipeline(pipeline: List["Component"]) -> None:
validate_empty_pipeline(pipeline)
validate_only_one_tokenizer_is_used(pipeline)
validate_required_components(pipeline)
def any_components_in_pipeline(components: Iterable[Text], pipeline: List["Component"]):
return any(any(component.name == c for component in pipeline) for c in components)
def validate_required_components_from_data(
pipeline: List["Component"], data: TrainingData
) -> None:
if data.response_examples and not any_components_in_pipeline(
["ResponseSelector"], pipeline
):
rasa.shared.utils.io.raise_warning(
"You have defined training data with examples for training a response "
"selector, but your NLU pipeline does not include a response selector "
"component. To train a model on your response selector data, add a "
"'ResponseSelector' to your pipeline."
)
if data.entity_examples and not any_components_in_pipeline(
TRAINABLE_EXTRACTORS, pipeline
):
rasa.shared.utils.io.raise_warning(
"You have defined training data consisting of entity examples, but "
"your NLU pipeline does not include an entity extractor trained on "
"your training data. To extract non-pretrained entities, add one of "
f"{TRAINABLE_EXTRACTORS} to your pipeline."
)
if data.entity_examples and not any_components_in_pipeline(
{"DIETClassifier", "CRFEntityExtractor"}, pipeline
):
if data.entity_roles_groups_used():
rasa.shared.utils.io.raise_warning(
"You have defined training data with entities that have roles/groups, "
"but your NLU pipeline does not include a 'DIETClassifier' or a "
"'CRFEntityExtractor'. To train entities that have roles/groups, "
"add either 'DIETClassifier' or 'CRFEntityExtractor' to your "
"pipeline."
)
if data.regex_features and not any_components_in_pipeline(
["RegexFeaturizer", "RegexEntityExtractor"], pipeline
):
rasa.shared.utils.io.raise_warning(
"You have defined training data with regexes, but "
"your NLU pipeline does not include a 'RegexFeaturizer' or a "
"'RegexEntityExtractor'. To use regexes, include either a "
"'RegexFeaturizer' or a 'RegexEntityExtractor' in your pipeline."
)
if data.lookup_tables and not any_components_in_pipeline(
["RegexFeaturizer", "RegexEntityExtractor"], pipeline
):
rasa.shared.utils.io.raise_warning(
"You have defined training data consisting of lookup tables, but "
"your NLU pipeline does not include a 'RegexFeaturizer' or a "
"'RegexEntityExtractor'. To use lookup tables, include either a "
"'RegexFeaturizer' or a 'RegexEntityExtractor' in your pipeline."
)
if data.lookup_tables:
if not any_components_in_pipeline(
["CRFEntityExtractor", "DIETClassifier"], pipeline
):
rasa.shared.utils.io.raise_warning(
"You have defined training data consisting of lookup tables, but "
"your NLU pipeline does not include any components that use these "
"features. To make use of lookup tables, add a 'DIETClassifier' or a "
"'CRFEntityExtractor' with the 'pattern' feature to your pipeline."
)
elif any_components_in_pipeline(["CRFEntityExtractor"], pipeline):
crf_components = [c for c in pipeline if c.name == "CRFEntityExtractor"]
has_pattern_feature = False
for crf in crf_components:
crf_features = crf.component_config.get("features")
has_pattern_feature = "pattern" in itertools.chain(*crf_features)
if not has_pattern_feature:
rasa.shared.utils.io.raise_warning(
"You have defined training data consisting of lookup tables, but "
"your NLU pipeline's 'CRFEntityExtractor' does not include the "
"'pattern' feature. To featurize lookup tables, add the 'pattern' "
"feature to the 'CRFEntityExtractor' in your pipeline."
)
if data.entity_synonyms and not any_components_in_pipeline(
["EntitySynonymMapper"], pipeline
):
rasa.shared.utils.io.raise_warning(
"You have defined synonyms in your training data, but "
"your NLU pipeline does not include an 'EntitySynonymMapper'. "
"To map synonyms, add an 'EntitySynonymMapper' to your pipeline."
)
class MissingArgumentError(ValueError):
def __init__(self, message: Text) -> None:
super().__init__(message)
self.message = message
def __str__(self) -> Text:
return self.message
class UnsupportedLanguageError(RasaException):
def __init__(self, component: Text, language: Text) -> None:
self.component = component
self.language = language
super().__init__(component, language)
def __str__(self) -> Text:
return (
f"component '{self.component}' does not support language '{self.language}'."
)
class ComponentMetaclass(type):
@property
def name(cls):
return cls.__name__
class Component(metaclass=ComponentMetaclass):
@property
def name(self) -> Text:
return type(self).name
@property
def unique_name(self) -> Text:
index = self.component_config.get(COMPONENT_INDEX)
return self.name if index is None else f"component_{index}_{self.name}"
@classmethod
def required_components(cls) -> List[Type["Component"]]:
return []
defaults = {}
supported_language_list = None
not_supported_language_list = None
def __init__(self, component_config: Optional[Dict[Text, Any]] = None) -> None:
if not component_config:
component_config = {}
component_config["name"] = self.name
self.component_config = rasa.utils.train_utils.override_defaults(
self.defaults, component_config
)
self.partial_processing_pipeline = None
self.partial_processing_context = None
@classmethod
def required_packages(cls) -> List[Text]:
return []
@classmethod
def load(
cls,
meta: Dict[Text, Any],
model_dir: Optional[Text] = None,
model_metadata: Optional["Metadata"] = None,
cached_component: Optional["Component"] = None,
**kwargs: Any,
) -> "Component":
if cached_component:
return cached_component
return cls(meta)
@classmethod
def create(
cls, component_config: Dict[Text, Any], config: RasaNLUModelConfig
) -> "Component":
language = config.language
if not cls.can_handle_language(language):
raise UnsupportedLanguageError(cls.name, language)
return cls(component_config)
def provide_context(self) -> Optional[Dict[Text, Any]]:
pass
def train(
self,
training_data: TrainingData,
config: Optional[RasaNLUModelConfig] = None,
**kwargs: Any,
) -> None:
pass
def process(self, message: Message, **kwargs: Any) -> None:
pass
def persist(self, file_name: Text, model_dir: Text) -> Optional[Dict[Text, Any]]:
pass
@classmethod
def cache_key(
cls, component_meta: Dict[Text, Any], model_metadata: "Metadata"
) -> Optional[Text]:
return None
def __getstate__(self) -> Any:
d = self.__dict__.copy()
if "partial_processing_context" in d:
del d["partial_processing_context"]
if "partial_processing_pipeline" in d:
del d["partial_processing_pipeline"]
return d
def __eq__(self, other) -> bool:
return self.__dict__ == other.__dict__
def prepare_partial_processing(
self, pipeline: List["Component"], context: Dict[Text, Any]
) -> None:
self.partial_processing_pipeline = pipeline
self.partial_processing_context = context
def partially_process(self, message: Message) -> Message:
if self.partial_processing_context is not None:
for component in self.partial_processing_pipeline:
component.process(message, **self.partial_processing_context)
else:
logger.info("Failed to run partial processing due to missing pipeline.")
return message
@classmethod
def can_handle_language(cls, language: Hashable) -> bool:
if language is None or (
cls.supported_language_list is None
and cls.not_supported_language_list is None
):
return True
if cls.supported_language_list and cls.not_supported_language_list:
raise RasaException(
"Only one of `supported_language_list` and `not_supported_language_list` can be set to not None"
)
supported_language_list = (
cls.supported_language_list
if cls.supported_language_list is not None
else []
)
not_supported_language_list = (
cls.not_supported_language_list
if cls.not_supported_language_list is not None
else []
)
if not supported_language_list and not not_supported_language_list:
raise RasaException(
"Empty lists for both "
"`supported_language_list` and `not_supported language_list` "
"is not a valid setting. If you meant to allow all languages "
"for the component use `None` for both of them."
)
if supported_language_list:
return language in supported_language_list
else:
return language not in not_supported_language_list
C = typing.TypeVar("C", bound=Component)
class ComponentBuilder:
def __init__(self, use_cache: bool = True) -> None:
self.use_cache = use_cache
self.component_cache = {}
|
Apache License 2.0
|
morganstanley/testplan
|
testplan/common/utils/testing.py
|
captured_logging
|
python
|
def captured_logging(logger, level=logging.INFO):
class LogWrapper(object):
def __init__(self):
self.buffer = io.StringIO()
self.stream_handler = logging.StreamHandler(self.buffer)
self._output = None
@property
def output(self):
if self._output is None:
self.stream_handler.flush()
self._output = self.buffer.getvalue().replace("\r\n", "\n")
return self._output
log_wrapper = LogWrapper()
log_wrapper.stream_handler.setLevel(level)
logger.addHandler(log_wrapper.stream_handler)
yield log_wrapper
logger.removeHandler(log_wrapper.stream_handler)
|
Utility for capturing a logger object's output at a specific level, with a
default level of INFO.
Useful for command line output testing.
|
https://github.com/morganstanley/testplan/blob/8cb6a0ed0682698b2d6af82382fbb66d8d9e3ff7/testplan/common/utils/testing.py#L96-L121
|
import sys
import functools
import logging
import pprint
import os
import io
import warnings
from lxml import objectify
from contextlib import contextmanager
from ..report.base import Report, ReportGroup
from ..utils.comparison import is_regex
import collections
null_handler = logging.NullHandler()
def context_wrapper(ctx_manager, *ctx_args, **ctx_kwargs):
def _wrapper(func):
@functools.wraps(func)
def _inner(*args, **kwargs):
with ctx_manager(*ctx_args, **ctx_kwargs):
return func(*args, **kwargs)
return _inner
return _wrapper
@contextmanager
def argv_overridden(*override_ctx):
argv_backup = list(sys.argv)
sys.argv = [argv_backup[0]] + list(override_ctx)
yield
sys.argv = argv_backup
def override_argv(*override_ctx):
return context_wrapper(argv_overridden, *override_ctx)
@contextmanager
def log_propagation_disabled(logger):
old_prop = logger.propagate
logger.propagate = False
logger.addHandler(null_handler)
yield
logger.propagate = old_prop
logger.removeHandler(null_handler)
def disable_log_propagation(logger):
return context_wrapper(log_propagation_disabled, logger)
@contextmanager
def log_level_changed(logger, level):
old_level = logger.level
logger.setLevel(level)
yield
logger.setLevel(old_level)
@contextmanager
|
Apache License 2.0
|
onicagroup/runway
|
runway/cfngin/hooks/utils.py
|
BlankBlueprint.create_template
|
python
|
def create_template(self) -> None:
|
Create template without raising NotImplementedError.
|
https://github.com/onicagroup/runway/blob/6e0d543512325a92265c140f386c163f6be410b4/runway/cfngin/hooks/utils.py#L28-L29
|
from __future__ import annotations
import collections.abc
import logging
import os
import sys
from typing import TYPE_CHECKING, Any, Dict, List, cast
import pydantic
from ...exceptions import FailedVariableLookup
from ...utils import BaseModel, load_object_from_string
from ...variables import Variable, resolve_variables
from ..blueprints.base import Blueprint
if TYPE_CHECKING:
from ...config.models.cfngin import CfnginHookDefinitionModel
from ...context import CfnginContext
from ..providers.aws.default import Provider
LOGGER = logging.getLogger(__name__)
class BlankBlueprint(Blueprint):
|
Apache License 2.0
|
ganeti/ganeti
|
lib/hypervisor/hv_xen.py
|
_IsCrashed
|
python
|
def _IsCrashed(instance_info):
return instance_info.count('c') > 0
|
Returns whether an instance is in the crashed Xen state.
When a horrible misconfiguration happens to a Xen domain, it can crash,
meaning that it encounters a violent ending. While this state usually flashes
only temporarily before the domain is restarted, being able to check for it
allows Ganeti not to act confused and do something about it.
|
https://github.com/ganeti/ganeti/blob/4d21019c72cba4d746f5d17ca22098f4c7682e9c/lib/hypervisor/hv_xen.py#L303-L312
|
import logging
import errno
import os
import string
import shutil
import time
from io import StringIO
from ganeti import constants
from ganeti import errors
from ganeti import utils
from ganeti.hypervisor import hv_base
from ganeti import netutils
from ganeti import objects
from ganeti import pathutils
XEND_CONFIG_FILE = utils.PathJoin(pathutils.XEN_CONFIG_DIR, "xend-config.sxp")
XL_CONFIG_FILE = utils.PathJoin(pathutils.XEN_CONFIG_DIR, "xen/xl.conf")
VIF_BRIDGE_SCRIPT = utils.PathJoin(pathutils.XEN_CONFIG_DIR,
"scripts/vif-bridge")
_DOM0_NAME = "Domain-0"
_DISK_LETTERS = string.ascii_lowercase
_FILE_DRIVER_MAP = {
constants.FD_LOOP: "file",
constants.FD_BLKTAP: "tap:aio",
constants.FD_BLKTAP2: "tap2:tapdisk:aio",
}
def _CreateConfigCpus(cpu_mask):
cpu_list = utils.ParseMultiCpuMask(cpu_mask)
if len(cpu_list) == 1:
all_cpu_mapping = cpu_list[0]
if all_cpu_mapping == constants.CPU_PINNING_OFF:
return None
else:
return "cpu = \"%s\"" % ",".join(map(str, all_cpu_mapping))
else:
def _GetCPUMap(vcpu):
if vcpu[0] == constants.CPU_PINNING_ALL_VAL:
cpu_map = constants.CPU_PINNING_ALL_XEN
else:
cpu_map = ",".join(map(str, vcpu))
return "\"%s\"" % cpu_map
return "cpus = [ %s ]" % ", ".join(map(_GetCPUMap, cpu_list))
def _RunInstanceList(fn, instance_list_errors):
result = fn()
if result.failed:
logging.error("Retrieving the instance list from xen failed (%s): %s",
result.fail_reason, result.output)
instance_list_errors.append(result)
raise utils.RetryAgain()
return result.stdout.splitlines()
class _InstanceCrashed(errors.GenericError):
def _ParseInstanceList(lines, include_node):
result = []
for line in lines[1:]:
data = line.split()
if len(data) != 6:
raise errors.HypervisorError("Can't parse instance list,"
" line: %s" % line)
try:
data[1] = int(data[1])
data[2] = int(data[2])
data[3] = int(data[3])
data[4] = _XenToHypervisorInstanceState(data[4])
data[5] = float(data[5])
except (TypeError, ValueError) as err:
raise errors.HypervisorError("Can't parse instance list,"
" line: %s, error: %s" % (line, err))
except _InstanceCrashed:
continue
if include_node or data[0] != _DOM0_NAME:
result.append(data)
return result
def _InstanceDomID(info):
return info[1]
def _InstanceRunning(info):
return info[4] == hv_base.HvInstanceState.RUNNING
def _InstanceRuntime(info):
return info[5]
def _GetAllInstanceList(fn, include_node, delays, timeout):
instance_list_errors = []
try:
lines = utils.Retry(_RunInstanceList, delays, timeout,
args=(fn, instance_list_errors))
except utils.RetryTimeout:
if instance_list_errors:
instance_list_result = instance_list_errors.pop()
errmsg = ("listing instances failed, timeout exceeded (%s): %s" %
(instance_list_result.fail_reason, instance_list_result.output))
else:
errmsg = "listing instances failed"
raise errors.HypervisorError(errmsg)
return _ParseInstanceList(lines, include_node)
def _IsInstanceRunning(instance_info):
allowable_running_prefixes = [
"r--",
"rb-",
"-b-",
"---",
]
def _RunningWithSuffix(suffix):
return [x + suffix for x in allowable_running_prefixes]
return instance_info in _RunningWithSuffix("---") or instance_info in _RunningWithSuffix("ss-") or instance_info in _RunningWithSuffix("sr-") or instance_info == "-----d"
def _IsInstanceShutdown(instance_info):
return instance_info == "---s--" or instance_info == "---s-d"
def _IgnorePaused(instance_info):
return instance_info.replace('p', '-')
|
BSD 2-Clause Simplified License
|
petercorke/bdsim
|
bdsim/blocks/discrete.py
|
DIntegrator.__init__
|
python
|
def __init__(self, clock, x0=0, gain=1.0, min=None, max=None, **kwargs):
super().__init__(clock=clock, **kwargs)
if isinstance(x0, (int, float)):
self.ndstates = 1
if min is None:
min = -math.inf
if max is None:
max = math.inf
else:
if isinstance(x0, np.ndarray):
if x0.ndim > 1:
raise ValueError('state must be a 1D vector')
else:
x0 = base.getvector(x0)
self.ndstates = x0.shape[0]
if min is None:
min = [-math.inf] * self.nstates
elif len(min) != self.nstates:
raise ValueError('minimum bound length must match x0')
if max is None:
max = [math.inf] * self.nstates
elif len(max) != self.nstates:
raise ValueError('maximum bound length must match x0')
self._x0 = np.r_[x0]
self.min = np.r_[min]
self.max = np.r_[max]
self.gain = gain
print('nstates', self.nstates)
|
:param x0: Initial state, defaults to 0
:type x0: array_like, optional
:param min: Minimum value of state, defaults to None
:type min: float or array_like, optional
:param max: Maximum value of state, defaults to None
:type max: float or array_like, optional
:param kwargs: common Block options
:return: an INTEGRATOR block
:rtype: Integrator instance
Create an integrator block.
Output is the time integral of the input. The state can be a scalar or a
vector, this is given by the type of ``x0``.
The minimum and maximum values can be:
- a scalar, in which case the same value applies to every element of
the state vector, or
- a vector, of the same shape as ``x0`` that applies elementwise to
the state.
|
https://github.com/petercorke/bdsim/blob/0b6afee0ae889e39a4be036f2aea8c2261cce0f8/bdsim/blocks/discrete.py#L110-L165
|
import numpy as np
import math
from math import sin, cos, atan2, sqrt, pi
import matplotlib.pyplot as plt
import inspect
from spatialmath import base
from bdsim.components import ClockedBlock
class ZOH(ClockedBlock):
nin = 1
nout = 1
def __init__(self, clock, x0=0, min=None, max=None, **kwargs):
self.type = 'sampler'
super().__init__(nin=1, nout=1, clock=clock, **kwargs)
x0 = base.getvector(x0)
self._x0 = x0
self.ndstates = len(x0)
def output(self, t=None):
return [self._x]
def next(self):
xnext = np.array(self.inputs)
return xnext
class DIntegrator(ClockedBlock):
nin = 1
nout = 1
|
MIT License
|
purestorage-openconnect/py-pure-client
|
pypureclient/flashblade/FB_2_1/models/smtp_server_get_response.py
|
SmtpServerGetResponse.to_dict
|
python
|
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
if hasattr(self, attr):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(SmtpServerGetResponse, dict):
for key, value in self.items():
result[key] = value
return result
|
Returns the model properties as a dict
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flashblade/FB_2_1/models/smtp_server_get_response.py#L78-L104
|
import pprint
import re
import six
import typing
from ....properties import Property
if typing.TYPE_CHECKING:
from pypureclient.flashblade.FB_2_1 import models
class SmtpServerGetResponse(object):
swagger_types = {
'continuation_token': 'str',
'total_item_count': 'int',
'items': 'list[SmtpServer]'
}
attribute_map = {
'continuation_token': 'continuation_token',
'total_item_count': 'total_item_count',
'items': 'items'
}
required_args = {
}
def __init__(
self,
continuation_token=None,
total_item_count=None,
items=None,
):
if continuation_token is not None:
self.continuation_token = continuation_token
if total_item_count is not None:
self.total_item_count = total_item_count
if items is not None:
self.items = items
def __setattr__(self, key, value):
if key not in self.attribute_map:
raise KeyError("Invalid key `{}` for `SmtpServerGetResponse`".format(key))
self.__dict__[key] = value
def __getattribute__(self, item):
value = object.__getattribute__(self, item)
if isinstance(value, Property):
return None
else:
return value
|
BSD 2-Clause Simplified License
|
avigad/boole
|
boole/core/expr.py
|
Kind.accept
|
python
|
def accept(self, visitor, *args, **kwargs):
return visitor.visit_kind(self, *args, **kwargs)
|
The accept method allows the definition of
recursive functions over objects of type expr.
Arguments:
- `visitor`: an object of class ExprVisitor
- `*args`: arguments to the visitor instance
- `**kwargs`: named arguments to the visitor instance
|
https://github.com/avigad/boole/blob/2a436c2967dbc968f6a5877c220b9757c3bc17c3/boole/core/expr.py#L201-L210
|
from expr_base import *
import vargen
class Const(Expr):
def __init__(self, name, type, value=None, **kwargs):
Expr.__init__(self)
self.name = name
self.type = type
self.value = value
for k in kwargs:
self.info[k] = kwargs[k]
self._hash = hash(('Const', self.name, self.type))
def accept(self, visitor, *args, **kwargs):
return visitor.visit_const(self, *args, **kwargs)
def to_string(self):
return self.name
def is_const(self):
return True
def eq(self, expr):
if expr.is_const():
return self.name == expr.name
else:
return False
class DB(Expr):
def __init__(self, index):
Expr.__init__(self)
self.index = index
self._hash = hash(("DB", self.index))
def incr(self, inc):
self.index += inc
def decr(self):
if self.index == 0:
raise ExprError("Cannot decrement a DB\
variable with index 0", self)
else:
self.index -= 1
def accept(self, visitor, *args, **kwargs):
return visitor.visit_db(self, *args, **kwargs)
def to_string(self):
return "DB({0!s})".format(self.index)
def is_db(self):
return True
def eq(self, expr):
if expr.is_db():
return self.index == expr.index
else:
return False
class Type(Expr):
def __init__(self):
Expr.__init__(self)
self.name = 'Type'
self._hash = hash('Type')
def accept(self, visitor, *args, **kwargs):
return visitor.visit_type(self, *args, **kwargs)
def to_string(self):
return "Type()"
def is_type(self):
return True
def eq(self, expr):
return expr.is_type()
class Kind(Expr):
def __init__(self):
Expr.__init__(self)
self._hash = hash('Kind')
|
Apache License 2.0
|
its-django/mysite
|
mysite/restaurants/views.py
|
RestaurantsView.dispatch
|
python
|
def dispatch(self, request, *args, **kwargs):
return super(RestaurantsView, self).dispatch(request, *args, **kwargs)
|
return decorated dispatch
:request: request
:returns: return origin dispatch
|
https://github.com/its-django/mysite/blob/8faa84867af5645d3d3d8e67fe8020be4dc68551/mysite/restaurants/views.py#L45-L51
|
from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response, render
from django.utils import timezone
from django.contrib.auth.decorators import login_required, user_passes_test
from django.views.generic.list import ListView
from django.utils.decorators import method_decorator
from django.views.generic.detail import DetailView, SingleObjectMixin
from django.views.generic.edit import FormView
from restaurants.models import Restaurant, Comment
from restaurants.forms import CommentForm
from restaurants.permissions import user_can_comment
class MenuView(DetailView):
model = Restaurant
template_name = 'menu.html'
context_object_name = 'restaurant'
@method_decorator(login_required)
def dispatch(self, request, *args, **kwargs):
return super(MenuView, self).dispatch(request, *args, **kwargs)
class RestaurantsView(ListView):
model = Restaurant
template_name = 'restaurants_list.html'
context_object_name = 'restaurants'
@method_decorator(login_required)
|
Apache License 2.0
|
edx/django-user-tasks
|
user_tasks/signals.py
|
start_user_task
|
python
|
def start_user_task(sender=None, **kwargs):
try:
current_connection = transaction.get_connection()
except Exception:
current_connection = None
if current_connection and (not current_connection.in_atomic_block):
close_old_connections()
if isinstance(sender, UserTaskMixin):
sender.status.start()
|
Update the status record when execution of a :py:class:`UserTaskMixin` begins.
|
https://github.com/edx/django-user-tasks/blob/b2e1d5c3e6b2b7d3ff0b67d6b8aedd1a6c29b5cf/user_tasks/signals.py#L193-L215
|
import logging
from uuid import uuid4
from celery.signals import before_task_publish, task_failure, task_prerun, task_retry, task_success
from django.contrib.auth import get_user_model
from django.db import close_old_connections, transaction
from django.utils.module_loading import import_string
from user_tasks import user_task_stopped
from .exceptions import TaskCanceledException
from .models import UserTaskStatus
from .tasks import UserTaskMixin
LOGGER = logging.getLogger(__name__)
@before_task_publish.connect
def create_user_task(sender=None, body=None, **kwargs):
try:
task_class = import_string(sender)
except ImportError:
return
if issubclass(task_class.__class__, UserTaskMixin):
arguments_dict = task_class.arguments_as_dict(*body['args'], **body['kwargs'])
user_id = _get_user_id(arguments_dict)
task_id = body['id']
if body.get('callbacks', []):
_create_chain_entry(user_id, task_id, task_class, body['args'], body['kwargs'], body['callbacks'])
return
if body.get('chord', None):
_create_chord_entry(task_id, task_class, body, user_id)
return
parent = _get_or_create_group_parent(body, user_id)
name = task_class.generate_name(arguments_dict)
total_steps = task_class.calculate_total_steps(arguments_dict)
UserTaskStatus.objects.get_or_create(
task_id=task_id, defaults={'user_id': user_id, 'parent': parent, 'name': name, 'task_class': sender,
'total_steps': total_steps})
if parent:
parent.increment_total_steps(total_steps)
def _create_chain_entry(user_id, task_id, task_class, args, kwargs, callbacks, parent=None):
LOGGER.debug(task_class)
if issubclass(task_class.__class__, UserTaskMixin):
arguments_dict = task_class.arguments_as_dict(*args, **kwargs)
name = task_class.generate_name(arguments_dict)
total_steps = task_class.calculate_total_steps(arguments_dict)
parent_name = kwargs.get('user_task_name', '')
with transaction.atomic():
if parent is None:
parent = UserTaskStatus.objects.create(
is_container=True, name=parent_name, task_class='celery.chain', task_id=str(uuid4()),
total_steps=0, user_id=user_id)
UserTaskStatus.objects.create(
name=name, parent=parent, task_class=task_class, task_id=task_id, total_steps=total_steps,
user_id=user_id)
parent.increment_total_steps(total_steps)
if parent_name and not parent.name:
parent.set_name(parent_name)
for callback in callbacks:
callback_class = import_string(callback['task'])
_create_chain_entry(
user_id,
callback['options']['task_id'],
callback_class,
callback['args'],
callback['kwargs'],
callback['options'].get('link', []),
parent=parent
)
def _create_chord_entry(task_id, task_class, message_body, user_id):
args = message_body['args']
kwargs = message_body['kwargs']
arguments_dict = task_class.arguments_as_dict(*args, **kwargs)
name = task_class.generate_name(arguments_dict)
total_steps = task_class.calculate_total_steps(arguments_dict)
parent_name = kwargs.get('user_task_name', '')
chord_data = message_body['chord']
group_id = message_body['taskset']
with transaction.atomic():
group, created = UserTaskStatus.objects.get_or_create(
task_id=group_id, defaults={'is_container': True, 'name': parent_name, 'task_class': 'celery.group',
'total_steps': total_steps, 'user_id': user_id})
if created:
chord = UserTaskStatus.objects.create(
is_container=True, name=parent_name, task_class='celery.chord', task_id=str(uuid4()),
total_steps=total_steps, user_id=user_id)
group.parent = chord
group.save(update_fields={'parent', 'modified'})
else:
chord = None
group.increment_total_steps(total_steps)
if parent_name and not group.name:
group.set_name(parent_name)
UserTaskStatus.objects.create(
name=name, parent=group, task_class=task_class, task_id=task_id, total_steps=total_steps, user_id=user_id)
if not created:
return
task_id = chord_data['options']['task_id']
body_task = chord_data['task']
body_class = import_string(body_task).__class__
if not issubclass(body_class, UserTaskMixin):
return
args = chord_data['args']
kwargs = chord_data['kwargs']
arguments_dict = body_class.arguments_as_dict(*args, **kwargs)
name = body_class.generate_name(arguments_dict)
total_steps = body_class.calculate_total_steps(arguments_dict)
UserTaskStatus.objects.get_or_create(
task_id=task_id, defaults={'name': name, 'parent': chord, 'task_class': body_task,
'total_steps': total_steps, 'user_id': user_id})
chord.increment_total_steps(total_steps)
def _get_or_create_group_parent(message_body, user_id):
parent_id = message_body.get('taskset', None)
if not parent_id:
return None
parent_class = 'celery.group'
parent_name = message_body['kwargs'].get('user_task_name', '')
parent, _ = UserTaskStatus.objects.get_or_create(
task_id=parent_id, defaults={'is_container': True, 'name': parent_name, 'task_class': parent_class,
'total_steps': 0, 'user_id': user_id})
if parent_name and not parent.name:
parent.name = parent_name
parent.save(update_fields={'name', 'modified'})
return parent
def _get_user_id(arguments_dict):
if 'user_id' not in arguments_dict:
raise TypeError('Each invocation of a UserTaskMixin subclass must include the user_id')
user_id = arguments_dict['user_id']
try:
get_user_model().objects.get(pk=user_id)
except (ValueError, get_user_model().DoesNotExist) as import_exception:
raise TypeError(f'Invalid user_id: {user_id}') from import_exception
return user_id
@task_prerun.connect
|
Apache License 2.0
|
cdriehuys/django-rest-email-auth
|
rest_email_auth/app_settings.py
|
AppSettings.CONFIRMATION_EXPIRATION
|
python
|
def CONFIRMATION_EXPIRATION(self):
import datetime
return self._setting(
"CONFIRMATION_EXPIRATION", datetime.timedelta(days=1)
)
|
The duration that an email confirmation is valid for.
Defaults to 1 day.
|
https://github.com/cdriehuys/django-rest-email-auth/blob/9310b68cf24b6bf16cd0177d6b19ab0470382244/rest_email_auth/app_settings.py#L45-L55
|
import sys
class AppSettings(object):
def __init__(self):
assert self.EMAIL_VERIFICATION_URL
assert self.PASSWORD_RESET_URL
def _setting(self, name, default):
from django.conf import settings
settings_dict = getattr(settings, "REST_EMAIL_AUTH", {})
return settings_dict.get(name, default)
@property
|
MIT License
|
adamlwgriffiths/pyglet
|
pyglet/font/__init__.py
|
GlyphString.get_break_index
|
python
|
def get_break_index(self, from_index, width):
to_index = from_index
if from_index >= len(self.text):
return from_index
if from_index:
width += self.cumulative_advance[from_index-1]
for i, (c, w) in enumerate(
zip(self.text[from_index:],
self.cumulative_advance[from_index:])):
if c in u'\u0020\u200b':
to_index = i + from_index + 1
if c == '\n':
return i + from_index + 1
if w > width:
return to_index
return to_index
|
Find a breakpoint within the text for a given width.
Returns a valid breakpoint after `from_index` so that the text
between `from_index` and the breakpoint fits within `width` pixels.
This method uses precomputed cumulative glyph widths to give quick
answer, and so is much faster than
`pyglet.font.base.Font.get_glyphs_for_width`.
:Parameters:
`from_index` : int
Index of text to begin at, or 0 for the beginning of the
string.
`width` : float
Maximum width to use.
:rtype: int
:return: the index of text which will be used as the breakpoint, or
`from_index` if there is no valid breakpoint.
|
https://github.com/adamlwgriffiths/pyglet/blob/18bd86a8f235e4f5edd94b0d38073d0e5477a366/pyglet/font/__init__.py#L149-L184
|
__docformat__ = 'restructuredtext'
__version__ = '$Id$'
import sys
import os
import math
import weakref
import pyglet
from pyglet.gl import *
from pyglet import gl
from pyglet import image
from pyglet import window
class GlyphString(object):
def __init__(self, text, glyphs, x=0, y=0):
lst = []
texture = None
self.text = text
self.states = []
self.cumulative_advance = []
state_from = 0
state_length = 0
for i, glyph in enumerate(glyphs):
if glyph.owner != texture:
if state_length:
self.states.append((state_from, state_length, texture))
texture = glyph.owner
state_from = i
state_length = 0
state_length += 1
t = glyph.tex_coords
lst += [t[0], t[1], t[2], 1.,
x + glyph.vertices[0], y + glyph.vertices[1], 0., 1.,
t[3], t[4], t[5], 1.,
x + glyph.vertices[2], y + glyph.vertices[1], 0., 1.,
t[6], t[7], t[8], 1.,
x + glyph.vertices[2], y + glyph.vertices[3], 0., 1.,
t[9], t[10], t[11], 1.,
x + glyph.vertices[0], y + glyph.vertices[3], 0., 1.]
x += glyph.advance
self.cumulative_advance.append(x)
self.states.append((state_from, state_length, texture))
self.array = (c_float * len(lst))(*lst)
self.width = x
|
BSD 3-Clause New or Revised License
|
pnnl/safekit
|
safekit/features/lanl/lanl_agg_features.py
|
part_of_day
|
python
|
def part_of_day(seconds):
time_of_day_in_seconds = int(seconds) % 86400
daypart = time_of_day_in_seconds / 21600
return daymap[daypart]
|
:param seconds:
:return:
|
https://github.com/pnnl/safekit/blob/92c004bc72f1480a4f9b26d304a900cbc8dea48d/safekit/features/lanl/lanl_agg_features.py#L82-L90
|
import os
import sys
cyberpath = '/'.join(os.path.realpath(__file__).split('/')[:-4])
sys.path.insert(0, cyberpath)
from safekit.features import merge_streams
import argparse
from itertools import product
from collections import Counter
from pprint import pprint
import numpy as np
def return_parser():
parser = argparse.ArgumentParser("Crisp aggregate feature derivation script.")
parser.add_argument('-datapath',
type=str,
help='Path to files to transliterate.')
parser.add_argument('-outfile',
type=str,
help='Where to write derived features.')
parser.add_argument('-redpath',
type=str,
help='Where the json of completely specified redteam events is.')
return parser
def popularness(id, counter):
if float(counter[id])/float(counter['total']) < .05:
return 'unpop_'
else:
return 'common_'
def gen_popularness(id, counter):
diff = counter['mean'] - counter[id]
if diff <= 0:
return 'common_'
else:
return 'unpop_'
class ID:
def __init__(self):
self.id = 0
self.map = {}
def __call__(self, value):
if value not in self.map:
eyedee = self.id
self.map[value] = self.id
self.id += 1
else:
eyedee = self.map[value]
return eyedee
def second_to_day(seconds):
day = int(seconds)/86400
assert day < 58, 'Too many seconds, reached day %s' % day
return day
daymap = {0: '12am-6am',
1: '6am-12pm',
2: '12pm-6pm',
3: '6pm-12am'}
|
MIT License
|
cohesity/management-sdk-python
|
cohesity_management_sdk/models/delete_protection_job_param.py
|
DeleteProtectionJobParam.__init__
|
python
|
def __init__(self,
delete_snapshots=None):
self.delete_snapshots = delete_snapshots
|
Constructor for the DeleteProtectionJobParam class
|
https://github.com/cohesity/management-sdk-python/blob/1c085d5a10f5f1a87b700e7ad1fc1dcabda41ae5/cohesity_management_sdk/models/delete_protection_job_param.py#L22-L27
|
class DeleteProtectionJobParam(object):
_names = {
"delete_snapshots":'deleteSnapshots'
}
|
Apache License 2.0
|
tmm1/graphite
|
webapp/graphite/graphlot/views.py
|
graphlot_render
|
python
|
def graphlot_render(request):
metrics = []
for target in request.GET.getlist('target'):
metrics.append(dict(name=target, yaxis="one"))
for target in request.GET.getlist('y2target'):
metrics.append(dict(name=target, yaxis="two"))
untiltime = request.GET.get('until', "-0hour")
fromtime = request.GET.get('from', "-24hour")
events = request.GET.get('events', "")
context = {
'metric_list' : metrics,
'fromtime' : fromtime,
'untiltime' : untiltime,
'events' : events,
'slash' : get_script_prefix()
}
return render_to_response("graphlot.html", context)
|
Render the main graphlot view.
|
https://github.com/tmm1/graphite/blob/8f17c2c48412270b8f4e849b16bf55866f5084cb/webapp/graphite/graphlot/views.py#L15-L33
|
import re
from django.shortcuts import render_to_response
from django.http import HttpResponse, Http404, HttpResponseBadRequest
from django.conf import settings
import simplejson
from graphite.render.views import parseOptions
from graphite.render.evaluator import evaluateTarget
from graphite.storage import STORE
from django.core.urlresolvers import get_script_prefix
|
Apache License 2.0
|
wikimedia/pywikibot
|
tests/wikibase_tests.py
|
TestWbQuantityNonDry.setUp
|
python
|
def setUp(self):
super().setUp()
self.repo = self.get_repo()
self.version = self.repo.mw_version
|
Override setup to store repo and it's version.
|
https://github.com/wikimedia/pywikibot/blob/5097f5b9a7ef9d39f35f17edd11faf3086a01d1d/tests/wikibase_tests.py#L473-L477
|
import copy
import json
import unittest
from contextlib import suppress
from decimal import Decimal
import pywikibot
from pywikibot import pagegenerators
from pywikibot.exceptions import (
InvalidTitleError,
IsNotRedirectPageError,
IsRedirectPageError,
NoPageError,
UnknownExtensionError,
WikiBaseError,
)
from pywikibot.page import ItemPage, Page, PropertyPage, WikibasePage
from pywikibot.site import Namespace, NamespacesDict
from pywikibot.tools import MediaWikiVersion, suppress_warnings
from tests import WARN_SITE_CODE, join_pages_path, mock
from tests.aspects import TestCase, WikidataTestCase
from tests.basepage import (
BasePageLoadRevisionsCachingTestBase,
BasePageMethodsTestBase,
)
def _get_test_unconnected_page(site):
gen = pagegenerators.NewpagesPageGenerator(site=site, total=10,
namespaces=[1, ])
for page in gen:
if not page.properties().get('wikibase_item'):
return page
class WbRepresentationTestCase(WikidataTestCase):
def _test_hashable(self, representation):
list_of_dupes = [representation, representation]
self.assertLength(set(list_of_dupes), 1)
class TestLoadRevisionsCaching(BasePageLoadRevisionsCachingTestBase,
WikidataTestCase):
def setUp(self):
self._page = ItemPage(self.get_repo(), 'Q60')
super().setUp()
def test_page_text(self):
with suppress_warnings(WARN_SITE_CODE, category=UserWarning):
self._test_page_text()
class TestGeneral(WikidataTestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
enwiki = pywikibot.Site('en', 'wikipedia')
cls.mainpage = pywikibot.Page(pywikibot.page.Link('Main Page', enwiki))
def testWikibase(self):
repo = self.get_repo()
item_namespace = repo.namespaces[0]
self.assertEqual(item_namespace.defaultcontentmodel, 'wikibase-item')
item = ItemPage.fromPage(self.mainpage)
self.assertIsInstance(item, ItemPage)
self.assertEqual(item.getID(), 'Q5296')
self.assertEqual(item.title(), 'Q5296')
self.assertIn('en', item.labels)
self.assertTrue(item.labels['en'].lower().endswith('main page'))
self.assertIn('en', item.aliases)
self.assertIn('home page', (a.lower() for a in item.aliases['en']))
self.assertEqual(item.namespace(), 0)
item2 = ItemPage(repo, 'q5296')
self.assertEqual(item2.getID(), 'Q5296')
item2.get()
self.assertTrue(item2.labels['en'].lower().endswith('main page'))
prop = PropertyPage(repo, 'Property:P21')
self.assertEqual(prop.type, 'wikibase-item')
self.assertEqual(prop.namespace(), 120)
claim = pywikibot.Claim(repo, 'p21')
regex = r' is not type .+\.$'
with self.assertRaisesRegex(ValueError, regex):
claim.setTarget(value='test')
claim.setTarget(ItemPage(repo, 'q1'))
self.assertEqual(claim._formatValue(), {'entity-type': 'item',
'numeric-id': 1})
def test_cmp(self):
self.assertEqual(ItemPage.fromPage(self.mainpage),
ItemPage(self.get_repo(), 'q5296'))
class TestWikibaseCoordinate(WbRepresentationTestCase):
dry = True
def test_Coordinate_WbRepresentation_methods(self):
repo = self.get_repo()
coord = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0,
globe='moon')
self._test_hashable(coord)
def test_Coordinate_dim(self):
repo = self.get_repo()
x = pywikibot.Coordinate(site=repo, lat=12.0, lon=13.0, precision=5.0)
self.assertEqual(x.precisionToDim(), 544434)
self.assertIsInstance(x.precisionToDim(), int)
y = pywikibot.Coordinate(site=repo, lat=12.0, lon=13.0, dim=54444)
self.assertEqual(y.precision, 0.500005084017101)
self.assertIsInstance(y.precision, float)
z = pywikibot.Coordinate(site=repo, lat=12.0, lon=13.0)
regex = r'^No values set for dim or precision$'
with self.assertRaisesRegex(ValueError, regex):
z.precisionToDim()
def test_Coordinate_plain_globe(self):
repo = self.get_repo()
coord = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0,
globe='moon')
self.assertEqual(coord.toWikibase(),
{'latitude': 12.0, 'longitude': 13.0,
'altitude': None, 'precision': 0,
'globe': 'http://www.wikidata.org/entity/Q405'})
def test_Coordinate_entity_uri_globe(self):
repo = self.get_repo()
coord = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0,
globe_item='http://www.wikidata.org/entity/Q123')
self.assertEqual(coord.toWikibase(),
{'latitude': 12.0, 'longitude': 13.0,
'altitude': None, 'precision': 0,
'globe': 'http://www.wikidata.org/entity/Q123'})
class TestWikibaseCoordinateNonDry(WbRepresentationTestCase):
def test_Coordinate_item_globe(self):
repo = self.get_repo()
coord = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0,
globe_item=ItemPage(repo, 'Q123'))
self.assertEqual(coord.toWikibase(),
{'latitude': 12.0, 'longitude': 13.0,
'altitude': None, 'precision': 0,
'globe': 'http://www.wikidata.org/entity/Q123'})
def test_Coordinate_get_globe_item_from_uri(self):
repo = self.get_repo()
q = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0,
globe_item='http://www.wikidata.org/entity/Q123')
self.assertEqual(q.get_globe_item(), ItemPage(repo, 'Q123'))
def test_Coordinate_get_globe_item_from_itempage(self):
repo = self.get_repo()
globe = ItemPage(repo, 'Q123')
q = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0, globe_item=globe)
self.assertEqual(q.get_globe_item(), ItemPage(repo, 'Q123'))
def test_Coordinate_get_globe_item_from_plain_globe(self):
repo = self.get_repo()
q = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0, globe='moon')
self.assertEqual(q.get_globe_item(), ItemPage(repo, 'Q405'))
def test_Coordinate_get_globe_item_provide_repo(self):
repo = self.get_repo()
q = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0,
globe_item='http://www.wikidata.org/entity/Q123')
self.assertEqual(q.get_globe_item(repo), ItemPage(repo, 'Q123'))
def test_Coordinate_get_globe_item_different_repo(self):
repo = self.get_repo()
test_repo = pywikibot.Site('test', 'wikidata')
q = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0,
globe_item='http://test.wikidata.org/entity/Q123')
self.assertEqual(q.get_globe_item(test_repo),
ItemPage(test_repo, 'Q123'))
def test_Coordinate_equality(self):
repo = self.get_repo()
a = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0.1,
globe='moon')
b = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0.1,
globe_item='http://www.wikidata.org/entity/Q405')
c = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0.1,
globe_item=ItemPage(repo, 'Q405'))
d = pywikibot.Coordinate(
site=repo, lat=12.0, lon=13.0, precision=0.1,
globe_item='http://test.wikidata.org/entity/Q405')
self.assertEqual(a, b)
self.assertEqual(b, c)
self.assertEqual(c, a)
self.assertNotEqual(a, d)
self.assertNotEqual(b, d)
self.assertNotEqual(c, d)
class TestWbTime(WbRepresentationTestCase):
dry = True
def test_WbTime_WbRepresentation_methods(self):
repo = self.get_repo()
t = pywikibot.WbTime(site=repo, year=2010, month=0, day=0, hour=12,
minute=43)
self._test_hashable(t)
def test_WbTime_timestr(self):
repo = self.get_repo()
t = pywikibot.WbTime(site=repo, year=2010, month=0, day=0, hour=12,
minute=43)
self.assertEqual(t.toTimestr(), '+00000002010-00-00T12:43:00Z')
self.assertEqual(t.toTimestr(force_iso=True), '+2010-01-01T12:43:00Z')
t = pywikibot.WbTime(site=repo, year=2010, hour=12, minute=43)
self.assertEqual(t.toTimestr(), '+00000002010-01-01T12:43:00Z')
self.assertEqual(t.toTimestr(force_iso=True), '+2010-01-01T12:43:00Z')
t = pywikibot.WbTime(site=repo, year=-2010, hour=12, minute=43)
self.assertEqual(t.toTimestr(), '-00000002010-01-01T12:43:00Z')
self.assertEqual(t.toTimestr(force_iso=True), '-2010-01-01T12:43:00Z')
def test_WbTime_fromTimestr(self):
repo = self.get_repo()
t = pywikibot.WbTime.fromTimestr('+00000002010-01-01T12:43:00Z',
site=repo)
self.assertEqual(t, pywikibot.WbTime(site=repo, year=2010, hour=12,
minute=43, precision=14))
def test_WbTime_zero_month(self):
repo = self.get_repo()
t = pywikibot.WbTime.fromTimestr('+00000002010-00-00T12:43:00Z',
site=repo)
self.assertEqual(t, pywikibot.WbTime(site=repo, year=2010, month=0,
day=0, hour=12, minute=43,
precision=14))
def test_WbTime_timestamp(self):
repo = self.get_repo()
timestamp = pywikibot.Timestamp.fromISOformat('2010-01-01T12:43:00Z')
t = pywikibot.WbTime(site=repo, year=2010, month=0, day=0, hour=12,
minute=43)
self.assertEqual(t.toTimestamp(), timestamp)
self.assertNotEqual(
t, pywikibot.WbTime.fromTimestamp(timestamp, site=repo))
t = pywikibot.WbTime(site=repo, year=2010, hour=12, minute=43)
self.assertEqual(t.toTimestamp(), timestamp)
t = pywikibot.WbTime(site=repo, year=-2010, hour=12, minute=43)
regex = r'^You cannot turn BC dates into a Timestamp$'
with self.assertRaisesRegex(ValueError, regex):
t.toTimestamp()
t = pywikibot.WbTime(site=repo, year=2010, month=1, day=1, hour=12,
minute=43, second=0)
self.assertEqual(t.toTimestamp(), timestamp)
self.assertEqual(
t, pywikibot.WbTime.fromTimestamp(timestamp, site=repo))
def test_WbTime_errors(self):
repo = self.get_repo()
regex = r'^no year given$'
with self.assertRaisesRegex(ValueError, regex):
pywikibot.WbTime(site=repo, precision=15)
with self.assertRaisesRegex(ValueError, regex):
pywikibot.WbTime(site=repo, precision='invalid_precision')
class TestWbQuantity(WbRepresentationTestCase):
dry = True
def test_WbQuantity_WbRepresentation_methods(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount=1234, error=1, site=repo)
self._test_hashable(q)
def test_WbQuantity_integer(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount=1234, error=1, site=repo)
self.assertEqual(q.toWikibase(),
{'amount': '+1234', 'lowerBound': '+1233',
'upperBound': '+1235', 'unit': '1', })
q = pywikibot.WbQuantity(amount=5, error=(2, 3), site=repo)
self.assertEqual(q.toWikibase(),
{'amount': '+5', 'lowerBound': '+2',
'upperBound': '+7', 'unit': '1', })
q = pywikibot.WbQuantity(amount=0, error=(0, 0), site=repo)
self.assertEqual(q.toWikibase(),
{'amount': '+0', 'lowerBound': '+0',
'upperBound': '+0', 'unit': '1', })
q = pywikibot.WbQuantity(amount=-5, error=(2, 3), site=repo)
self.assertEqual(q.toWikibase(),
{'amount': '-5', 'lowerBound': '-8',
'upperBound': '-3', 'unit': '1', })
def test_WbQuantity_float_27(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount=0.044405586, error=0.0, site=repo)
q_dict = {'amount': '+0.044405586', 'lowerBound': '+0.044405586',
'upperBound': '+0.044405586', 'unit': '1', }
self.assertEqual(q.toWikibase(), q_dict)
def test_WbQuantity_scientific(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount='1.3e-13', error='1e-14', site=repo)
q_dict = {'amount': '+1.3e-13', 'lowerBound': '+1.2e-13',
'upperBound': '+1.4e-13', 'unit': '1', }
self.assertEqual(q.toWikibase(), q_dict)
def test_WbQuantity_decimal(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount=Decimal('0.044405586'),
error=Decimal('0.0'), site=repo)
q_dict = {'amount': '+0.044405586', 'lowerBound': '+0.044405586',
'upperBound': '+0.044405586', 'unit': '1', }
self.assertEqual(q.toWikibase(), q_dict)
def test_WbQuantity_string(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount='0.044405586', error='0', site=repo)
q_dict = {'amount': '+0.044405586', 'lowerBound': '+0.044405586',
'upperBound': '+0.044405586', 'unit': '1', }
self.assertEqual(q.toWikibase(), q_dict)
def test_WbQuantity_formatting_bound(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount='0.044405586', error='0', site=repo)
self.assertEqual(str(q),
'{{\n'
' "amount": "+{val}",\n'
' "lowerBound": "+{val}",\n'
' "unit": "1",\n'
' "upperBound": "+{val}"\n'
'}}'.format(val='0.044405586'))
self.assertEqual(repr(q),
'WbQuantity(amount={val}, '
'upperBound={val}, lowerBound={val}, '
'unit=1)'.format(val='0.044405586'))
def test_WbQuantity_self_equality(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount='0.044405586', error='0', site=repo)
self.assertEqual(q, q)
def test_WbQuantity_fromWikibase(self):
repo = self.get_repo()
q = pywikibot.WbQuantity.fromWikibase({'amount': '+0.0229',
'lowerBound': '0',
'upperBound': '1',
'unit': '1'},
site=repo)
self.assertEqual(q.toWikibase(),
{'amount': '+0.0229', 'lowerBound': '+0.0000',
'upperBound': '+1.0000', 'unit': '1', })
def test_WbQuantity_errors(self):
regex = r'^no amount given$'
with self.assertRaisesRegex(ValueError, regex):
pywikibot.WbQuantity(amount=None, error=1)
def test_WbQuantity_entity_unit(self):
repo = self.get_repo()
q = pywikibot.WbQuantity(amount=1234, error=1, site=repo,
unit='http://www.wikidata.org/entity/Q712226')
self.assertEqual(q.toWikibase(),
{'amount': '+1234', 'lowerBound': '+1233',
'upperBound': '+1235',
'unit': 'http://www.wikidata.org/entity/Q712226', })
def test_WbQuantity_unit_fromWikibase(self):
repo = self.get_repo()
q = pywikibot.WbQuantity.fromWikibase({
'amount': '+1234', 'lowerBound': '+1233', 'upperBound': '+1235',
'unit': 'http://www.wikidata.org/entity/Q712226', },
site=repo)
self.assertEqual(q.toWikibase(),
{'amount': '+1234', 'lowerBound': '+1233',
'upperBound': '+1235',
'unit': 'http://www.wikidata.org/entity/Q712226', })
class TestWbQuantityNonDry(WbRepresentationTestCase):
|
MIT License
|
telecominfraproject/oopt-gnpy
|
gnpy/core/elements.py
|
Fiber.propagate
|
python
|
def propagate(self, *carriers):
attenuation = db2lin(self.params.con_in + self.params.att_in)
chan = []
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal / attenuation,
nli=pwr.nli / attenuation,
ase=pwr.ase / attenuation)
carrier = carrier._replace(power=pwr)
chan.append(carrier)
carriers = tuple(f for f in chan)
attenuation = db2lin(self.params.con_out)
for carrier in carriers:
pwr = carrier.power
carrier_nli = self._gn_analytic(carrier, *carriers)
pwr = pwr._replace(signal=pwr.signal / self.params.lin_attenuation / attenuation,
nli=(pwr.nli + carrier_nli) / self.params.lin_attenuation / attenuation,
ase=pwr.ase / self.params.lin_attenuation / attenuation)
chromatic_dispersion = carrier.chromatic_dispersion + self.chromatic_dispersion(carrier.frequency)
pmd = sqrt(carrier.pmd**2 + self.pmd**2)
yield carrier._replace(power=pwr, chromatic_dispersion=chromatic_dispersion, pmd=pmd)
|
r"""Generator that computes the fiber propagation: attenuation, non-linear interference generation, CD
accumulation and PMD accumulation.
:param: \*carriers: the channels at the input of the fiber
:yield: carrier: the next channel at the output of the fiber
|
https://github.com/telecominfraproject/oopt-gnpy/blob/78b45a39586704c0491d0905f17720ad77447f24/gnpy/core/elements.py#L423-L455
|
from numpy import abs, arange, array, divide, errstate, ones, interp, mean, pi, polyfit, polyval, sum, sqrt
from scipy.constants import h, c
from collections import namedtuple
from gnpy.core.utils import lin2db, db2lin, arrange_frequencies, snr_sum
from gnpy.core.parameters import FiberParams, PumpParams
from gnpy.core.science_utils import NliSolver, RamanSolver, propagate_raman_fiber, _psi
class Location(namedtuple('Location', 'latitude longitude city region')):
def __new__(cls, latitude=0, longitude=0, city=None, region=None):
return super().__new__(cls, latitude, longitude, city, region)
class _Node:
def __init__(self, uid, name=None, params=None, metadata=None, operational=None, type_variety=None):
if name is None:
name = uid
self.uid, self.name = uid, name
if metadata is None:
metadata = {'location': {}}
if metadata and not isinstance(metadata.get('location'), Location):
metadata['location'] = Location(**metadata.pop('location', {}))
self.params, self.metadata, self.operational = params, metadata, operational
if type_variety:
self.type_variety = type_variety
@property
def location(self):
return self.metadata['location']
loc = location
@property
def longitude(self):
return self.location.longitude
lng = longitude
@property
def latitude(self):
return self.location.latitude
lat = latitude
class Transceiver(_Node):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.osnr_ase_01nm = None
self.osnr_ase = None
self.osnr_nli = None
self.snr = None
self.passive = False
self.baud_rate = None
self.chromatic_dispersion = None
self.pmd = None
def _calc_cd(self, spectral_info):
self.chromatic_dispersion = [carrier.chromatic_dispersion * 1e3 for carrier in spectral_info.carriers]
def _calc_pmd(self, spectral_info):
self.pmd = [carrier.pmd*1e12 for carrier in spectral_info.carriers]
def _calc_snr(self, spectral_info):
with errstate(divide='ignore'):
self.baud_rate = [c.baud_rate for c in spectral_info.carriers]
ratio_01nm = [lin2db(12.5e9 / b_rate) for b_rate in self.baud_rate]
self.raw_osnr_ase = [lin2db(divide(c.power.signal, c.power.ase))
for c in spectral_info.carriers]
self.raw_osnr_ase_01nm = [ase - ratio for ase, ratio
in zip(self.raw_osnr_ase, ratio_01nm)]
self.raw_osnr_nli = [lin2db(divide(c.power.signal, c.power.nli))
for c in spectral_info.carriers]
self.raw_snr = [lin2db(divide(c.power.signal, c.power.nli + c.power.ase))
for c in spectral_info.carriers]
self.raw_snr_01nm = [snr - ratio for snr, ratio
in zip(self.raw_snr, ratio_01nm)]
self.osnr_ase = self.raw_osnr_ase
self.osnr_ase_01nm = self.raw_osnr_ase_01nm
self.osnr_nli = self.raw_osnr_nli
self.snr = self.raw_snr
self.snr_01nm = self.raw_snr_01nm
def update_snr(self, *args):
snr_added = 0
for s in args:
snr_added += db2lin(-s)
snr_added = -lin2db(snr_added)
self.osnr_ase = list(map(lambda x, y: snr_sum(x, y, snr_added),
self.raw_osnr_ase, self.baud_rate))
self.snr = list(map(lambda x, y: snr_sum(x, y, snr_added),
self.raw_snr, self.baud_rate))
self.osnr_ase_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
self.raw_osnr_ase_01nm))
self.snr_01nm = list(map(lambda x: snr_sum(x, 12.5e9, snr_added),
self.raw_snr_01nm))
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return (f'{type(self).__name__}('
f'uid={self.uid!r}, '
f'osnr_ase_01nm={self.osnr_ase_01nm!r}, '
f'osnr_ase={self.osnr_ase!r}, '
f'osnr_nli={self.osnr_nli!r}, '
f'snr={self.snr!r}, '
f'chromatic_dispersion={self.chromatic_dispersion!r}, '
f'pmd={self.pmd!r})')
def __str__(self):
if self.snr is None or self.osnr_ase is None:
return f'{type(self).__name__} {self.uid}'
snr = round(mean(self.snr), 2)
osnr_ase = round(mean(self.osnr_ase), 2)
osnr_ase_01nm = round(mean(self.osnr_ase_01nm), 2)
snr_01nm = round(mean(self.snr_01nm), 2)
cd = mean(self.chromatic_dispersion)
pmd = mean(self.pmd)
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' GSNR (0.1nm, dB): {snr_01nm:.2f}',
f' GSNR (signal bw, dB): {snr:.2f}',
f' OSNR ASE (0.1nm, dB): {osnr_ase_01nm:.2f}',
f' OSNR ASE (signal bw, dB): {osnr_ase:.2f}',
f' CD (ps/nm): {cd:.2f}',
f' PMD (ps): {pmd:.2f}'])
def __call__(self, spectral_info):
self._calc_snr(spectral_info)
self._calc_cd(spectral_info)
self._calc_pmd(spectral_info)
return spectral_info
RoadmParams = namedtuple('RoadmParams', 'target_pch_out_db add_drop_osnr pmd restrictions per_degree_pch_out_db')
class Roadm(_Node):
def __init__(self, *args, params, **kwargs):
if 'per_degree_pch_out_db' not in params.keys():
params['per_degree_pch_out_db'] = {}
super().__init__(*args, params=RoadmParams(**params), **kwargs)
self.loss = 0
self.effective_loss = None
self.effective_pch_out_db = self.params.target_pch_out_db
self.passive = True
self.restrictions = self.params.restrictions
self.per_degree_pch_out_db = self.params.per_degree_pch_out_db
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'params': {
'target_pch_out_db': self.effective_pch_out_db,
'restrictions': self.restrictions,
'per_degree_pch_out_db': self.per_degree_pch_out_db
},
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
def __str__(self):
if self.effective_loss is None:
return f'{type(self).__name__} {self.uid}'
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' effective loss (dB): {self.effective_loss:.2f}',
f' pch out (dBm): {self.effective_pch_out_db:.2f}'])
def propagate(self, pref, *carriers, degree):
per_degree_pch = self.per_degree_pch_out_db[degree] if degree in self.per_degree_pch_out_db.keys() else self.params.target_pch_out_db
self.effective_pch_out_db = min(pref.p_spani, per_degree_pch)
self.effective_loss = pref.p_spani - self.effective_pch_out_db
carriers_power = array([c.power.signal + c.power.nli + c.power.ase for c in carriers])
carriers_att = list(map(lambda x: lin2db(x * 1e3) - per_degree_pch, carriers_power))
exceeding_att = -min(list(filter(lambda x: x < 0, carriers_att)), default=0)
carriers_att = list(map(lambda x: db2lin(x + exceeding_att), carriers_att))
for carrier_att, carrier in zip(carriers_att, carriers):
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal / carrier_att,
nli=pwr.nli / carrier_att,
ase=pwr.ase / carrier_att)
pmd = sqrt(carrier.pmd**2 + self.params.pmd**2)
yield carrier._replace(power=pwr, pmd=pmd)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p_span0, p_spani=self.effective_pch_out_db)
def __call__(self, spectral_info, degree):
carriers = tuple(self.propagate(spectral_info.pref, *spectral_info.carriers, degree=degree))
pref = self.update_pref(spectral_info.pref)
return spectral_info._replace(carriers=carriers, pref=pref)
FusedParams = namedtuple('FusedParams', 'loss')
class Fused(_Node):
def __init__(self, *args, params=None, **kwargs):
if params is None:
params = {'loss': 1}
super().__init__(*args, params=FusedParams(**params), **kwargs)
self.loss = self.params.loss
self.passive = True
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'params': {
'loss': self.loss
},
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, loss={self.loss!r})'
def __str__(self):
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' loss (dB): {self.loss:.2f}'])
def propagate(self, *carriers):
attenuation = db2lin(self.loss)
for carrier in carriers:
pwr = carrier.power
pwr = pwr._replace(signal=pwr.signal / attenuation,
nli=pwr.nli / attenuation,
ase=pwr.ase / attenuation)
yield carrier._replace(power=pwr)
def update_pref(self, pref):
return pref._replace(p_span0=pref.p_span0, p_spani=pref.p_spani - self.loss)
def __call__(self, spectral_info):
carriers = tuple(self.propagate(*spectral_info.carriers))
pref = self.update_pref(spectral_info.pref)
return spectral_info._replace(carriers=carriers, pref=pref)
class Fiber(_Node):
def __init__(self, *args, params=None, **kwargs):
if not params:
params = {}
super().__init__(*args, params=FiberParams(**params), **kwargs)
self.pch_out_db = None
self.nli_solver = NliSolver(self)
@property
def to_json(self):
return {'uid': self.uid,
'type': type(self).__name__,
'type_variety': self.type_variety,
'params': {
'length': round(self.params.length * 1e-3, 6),
'loss_coef': round(self.params.loss_coef * 1e3, 6),
'length_units': 'km',
'att_in': self.params.att_in,
'con_in': self.params.con_in,
'con_out': self.params.con_out
},
'metadata': {
'location': self.metadata['location']._asdict()
}
}
def __repr__(self):
return f'{type(self).__name__}(uid={self.uid!r}, ' f'length={round(self.params.length * 1e-3,1)!r}km, ' f'loss={round(self.loss,1)!r}dB)'
def __str__(self):
if self.pch_out_db is None:
return f'{type(self).__name__} {self.uid}'
return '\n'.join([f'{type(self).__name__} {self.uid}',
f' type_variety: {self.type_variety}',
f' length (km): {self.params.length * 1e-3:.2f}',
f' pad att_in (dB): {self.params.att_in:.2f}',
f' total loss (dB): {self.loss:.2f}',
f' (includes conn loss (dB) in: {self.params.con_in:.2f} out: {self.params.con_out:.2f})',
f' (conn loss out includes EOL margin defined in eqpt_config.json)',
f' pch out (dBm): {self.pch_out_db:.2f}'])
@property
def loss(self):
return self.params.loss_coef * self.params.length + self.params.con_in + self.params.con_out + self.params.att_in
@property
def passive(self):
return True
def alpha(self, frequencies):
if type(self.params.loss_coef) == dict:
alpha = interp(frequencies, self.params.f_loss_ref, self.params.lin_loss_exp)
else:
alpha = self.params.lin_loss_exp * ones(frequencies.shape)
return alpha
def alpha0(self, f_ref=193.5e12):
return self.alpha(f_ref * ones(1))[0]
def chromatic_dispersion(self, freq=193.5e12):
beta2 = self.params.beta2
beta3 = self.params.beta3
ref_f = self.params.ref_frequency
length = self.params.length
beta = beta2 + 2 * pi * beta3 * (freq - ref_f)
dispersion = -beta * 2 * pi * ref_f**2 / c
return dispersion * length
@property
def pmd(self):
return self.params.pmd_coef * sqrt(self.params.length)
def _gn_analytic(self, carrier, *carriers):
g_nli = 0
for interfering_carrier in carriers:
psi = _psi(carrier, interfering_carrier, beta2=self.params.beta2,
asymptotic_length=self.params.asymptotic_length)
g_nli += (interfering_carrier.power.signal / interfering_carrier.baud_rate)**2 * (carrier.power.signal / carrier.baud_rate) * psi
g_nli *= (16 / 27) * (self.params.gamma * self.params.effective_length)**2 / (2 * pi * abs(self.params.beta2) * self.params.asymptotic_length)
carrier_nli = carrier.baud_rate * g_nli
return carrier_nli
|
BSD 3-Clause New or Revised License
|
hernanchavezthielemann/gro2lam
|
lib/handling/gromacs.py
|
sidemol_data_gatherer
|
python
|
def sidemol_data_gatherer( _sm_files_, _sm_):
print( '\nSearching for: {}'.format( _sm_ ))
_flag_ = True
_file_ = ''
_sm_data_c_ = {}
for smfile in _sm_files_:
with open( smfile, 'r') as sm_data:
read_flag = False
i = 0
for j_line in sm_data:
j_line = j_line.split(';')[0].strip()
if j_line.startswith('['):
if j_line.startswith('[ moleculetype ]'):
read_flag = True
i = 0
else:
read_flag = False
elif read_flag and j_line.startswith( _sm_):
_file_ = smfile
break
elif read_flag:
i +=1
if i > 3:
read_flag = False
if _file_=='':
pop_err_1('Error!! side molecule {} not found in itp -- '.format( _sm_))
_flag_ = False
else:
print( 'Success!, found in : {}\n'.format( _file_))
tag_str = [ 'atoms', 'bonds', 'angles', 'dihedrals','fin']
_sm_data_c_ = { x:[] for x in tag_str if x != 'fin'}
read_flag = False
iner_flag = False
cd_tag = ''
i = 0
with open( _file_, 'r') as sm_data:
for j_line0 in sm_data:
j_line = j_line0.split(';')[0].split()
if not j_line:
pass
elif read_flag:
if j_line[0][0] == '#':
pass
elif j_line[0][0] == '[':
if j_line[1] != tag_str[i] :
if j_line[1] in tag_str[i+1:]:
i = tag_str.index( j_line[1])
cd_tag = tag_str[i]
iner_flag = True
print( '** Gathering {} data'.format( cd_tag))
elif j_line[1] == 'moleculetype':
break
else:
txt_s = '> {} not considered in {}'
print txt_s.format( j_line[1], _sm_)
iner_flag = False
else :
cd_tag = tag_str[i]
print( '* Gathering {} data'.format( cd_tag))
iner_flag = True
elif iner_flag:
_sm_data_c_[ cd_tag].append( j_line)
elif j_line0.lstrip().startswith( _sm_):
read_flag = True
_sm_data_c_, _ = split_dihedral_improper( _sm_data_c_)
return _sm_data_c_, _flag_
|
collects all the data related with one kind of side molecule
the data types are specified in startstrings
|
https://github.com/hernanchavezthielemann/gro2lam/blob/e60aca80ad441f9b29acd30a6bef4c47d97e5e30/lib/handling/gromacs.py#L582-L672
|
__author__ = 'Hernan Chavez Thielemann <hchavezthiele at gmail dot com>'
from lib.misc.warn import wrg_1, wrg_3, pop_err_1, pop_wrg_1
from lib.misc.file import check_file, debugger_file, fileseeker
from lib.misc.geometry import rotate, arcos, raiz
from lib.misc.data import isnot_num
from sys import exit
def extract_gromacs_data( _data_files_, _autoload_):
filename_gro = _data_files_[0]
filename_top = _data_files_[1]
filename_ff = _data_files_[2]
filename_nb = _data_files_[3]
filename_bon = _data_files_[4]
data_container = {}
data_container['define'] = {}
print 'Autoload: {}\n'.format( _autoload_)
if not _autoload_:
print filename_ff
_sidemol_f_ = False
section = '''--------------- FILE GRO ----------------------'''
ok_flag, gro_pack, b_xyz = get_gro_fixed_line( filename_gro)
if not ok_flag:
pop_err_1('Problem detected in :\n' + section)
return {}, [ ok_flag, _sidemol_f_]
_mol_, _mtype_, _type_, _xyz_, _mtypes_ = gro_pack
data_container['box'] = [[],[]]
b_xyz = [ x_y_z*10 for x_y_z in b_xyz ]
angles = []
Ar = [[0,0,0],[0,0,0],[0,0,0]]
for i in range(3):
Ar[i][i] = b_xyz[i]
if sum( b_xyz) < 2.8:
exit('xx/0 Error in .gro file, box dimension 000')
elif len( b_xyz) == 3:
pass
elif len( b_xyz) == 9:
k = 0
for i in range(3):
for j in range(3):
if i != j:
Ar[i][j] = b_xyz[ k + 3]
k += 1
cero = 1e-12
if Ar[1][0] < cero or Ar[2][0] < cero or Ar[2][1] < cero:
print('Your triclinic cell will be rotated to make it!')
a_tor_y = -arcos( (Ar[0][0])/(raiz(Ar[0][0]*Ar[0][0]+Ar[2][0]*Ar[2][0])) )
Ar = rotate( Ar, a_tor_y, 'y')
a_tor_z = arcos( (Ar[0][0])/(raiz(Ar[0][0]*Ar[0][0]+Ar[1][0]*Ar[1][0])) )
Ar = rotate( Ar, a_tor_z, 'z')
a_tor_x = arcos( Ar[1][1]/( raiz( Ar[1][1]*Ar[1][1] + Ar[2][1]*Ar[2][1])) )
Ar = rotate( Ar, a_tor_x)
_xyz_ = rotate( rotate( rotate( _xyz_, a_tor_y, 'y'),
a_tor_z, 'z'), a_tor_x)
else:
exit('xx/0 Error box dimension 001')
_x_, _y_, _z_ = _xyz_
xlo = min( _x_)*10
xhi = xlo + Ar[0][0]
ylo = min( _y_)*10
yhi = ylo + Ar[1][1]
zlo = min( _z_)*10
zhi = zlo + Ar[2][2]
data_container['box'][0] = [ xlo, xhi, ylo, yhi, zlo, zhi]
data_container['box'][1] = [ Ar[0][1], Ar[0][2], Ar[1][2]]
data_container['atomsdata'] = [ _mol_, _mtypes_, _type_, _xyz_, _mtype_]
section = '''---------------- .FILE TOP. ---------------'''
data_container['defaults'], ok_flag, _a_fff_ = ck_forcefield( filename_ff,
filename_top)
filename_ff = _a_fff_
if not ok_flag:
pop_err_1('Problem detected in :\n' + section.split('.')[1])
return {}, [ ok_flag, _sidemol_f_]
buckorlj = int(data_container['defaults'][0])
startstrings = ['[ moleculetype ]', '[ atoms ]', '[ bonds ]', '[ pairs ]',
'[ angles ]', '[ dihedrals ]', '[ system ]',
'[ molecules ]', '']
exclusions_ = ['[ bonds ]', '[ pairs ]', '[ angles ]', '[ dihedrals ]']
pure_side_mol_flag = ( ( seek_for_directive( [ filename_top],
'moleculetype') == '') or
( filename_nb == filename_ff and
filename_nb == filename_bon))
if pure_side_mol_flag:
startstrings = startstrings[-3:]
print wrg_3( 'Using pure side molecule scheme')
data_container['atoms'] = []
data_container['bonds'] = []
data_container['angles'] = []
data_container['dihedrals'] = []
for ti in range(len(startstrings))[:-1]:
s_str_ = startstrings[ ti][ 2:-2]
data_container[ s_str_], ok_flag, _ = get_topitp_line( filename_top,
startstrings[ti]
)
if not ok_flag:
if startstrings[ti] not in exclusions_:
print wrg_3( 'Not ok flag in <extract_gromacs_data> top file' +
'section, in ' + s_str_)
return {}, [ ok_flag, _sidemol_f_]
else:
ok_flag = True
n_atoms = len( data_container['atoms'])
n_bonds = len( data_container['bonds'])
n_angles = len( data_container['angles'])
section = '''---------- .SIDE MOLE FILES. -------------'''
if _autoload_:
data_container, ok_flag, _sidemol_f_ = sidemol_data( filename_top,
data_container)
if not ok_flag:
pop_err_1( 'Problem detected in :\n' + section.split('.')[1])
return {}, [ ok_flag, _sidemol_f_]
section = '''----------------- .FILE NB. ---------------'''
startstrings = ['[ atomtypes ]', '[ nonbond_params ]']
data_container['atomtypes'], ok_flag, _ = get_topitp_line( filename_nb,
'[ atomtypes ]')
if not ok_flag:
pop_err_1('Problem detected in :\n' + section.split('.')[1])
return {}, [ ok_flag, _sidemol_f_]
n_atomtypes = len( data_container['atomtypes'])
section = '''---------------- .FILE BON. ---------------'''
startstrings = ['[ bondtypes ]', '[ angletypes ]', '[ dihedraltypes ]', '']
if filename_nb == filename_ff and filename_nb == filename_bon:
for bi in range( len( startstrings))[:-1]:
s_str_ = startstrings[ bi][ 2:-2]
data_container[ s_str_] = []
data_container['define'][s_str_[:-5]] = {}
startstrings = startstrings[-1]
aux_strings = [ 'bonds', 'angles', 'dihedrals']
for bi in range( len( startstrings))[:-1]:
s_str_ = startstrings[ bi][ 2:-2]
_aux_here_ = get_topitp_line( filename_bon, startstrings[ bi])
data_container[ s_str_], ok_flag, _data_define_ = _aux_here_
if bi == 2:
for di in range( len(data_container[ s_str_])):
dih_pt_line = data_container[ s_str_][di]
if not isnot_num( dih_pt_line[2]):
pop_wrg_1( 'Dihedral potential problem found!!\nAdopting'
+ ' X-A1-A2-X configuration for: '
+ ' {}-{}'.format( *dih_pt_line[:2]) )
new_row = ['X'] + dih_pt_line[:2] + ['X'] + dih_pt_line[2:]
data_container[ s_str_][di] = new_row
elif not isnot_num( dih_pt_line[3]):
exit('Error 0031 undefined dihedral')
data_container['define'][s_str_[:-5]] = _data_define_
if not ok_flag:
if data_container[ aux_strings[ bi]] != []:
pop_err_1('Problem detected in :\n' + section.split('.')[1])
return {}, [ ok_flag, _sidemol_f_]
else:
ok_flag = True
section = '''------------ .#define & Impropers. ------------'''
gromosff_flag = False
data_container[ 'define'][ 'improper'] = {}
aux_here = {}
print( section.split('.')[1])
if filename_nb != filename_ff and filename_nb != filename_bon:
print(" Is it GROMOS there ?? ")
aux_here = get_gromos_define( filename_bon)
else:
print('no gromos check')
for key_ in aux_here.keys():
if aux_here[ key_] != {}:
print ( 'GROMOS ' + key_ + ' kind detected!')
data_container[ 'define'][ key_].update( aux_here[ key_])
gromosff_flag = True
dihe_g_data = data_container[ 'dihedraltypes']
if 'dihedraltypes' == key_+'types' and dihe_g_data != []:
rewrite_flag = False
for gd_ in range( len( dihe_g_data)):
if dihe_g_data[gd_][2].isdigit():
if not rewrite_flag:
print('Dihedral with 2 atoms re-formating to 4: ')
rewrite_flag = True
dihe_g_data[gd_] = ( [ 'X',] + dihe_g_data[ gd_][:2]
+ [ 'X',] + dihe_g_data[ gd_][2:])
print (dihe_g_data[ gd_])
if rewrite_flag:
data_container[ 'dihedraltypes'] = dihe_g_data
if gromosff_flag:
for ss_ in startstrings[:-1]:
s_str_ = ss_[ 2:-2]
data_aux = data_container[ s_str_]
cont_k = s_str_[ :-5]
cddd = data_container[ 'define'][ cont_k]
for i in range( len( data_aux)):
if len( data_aux[i][-1].split('.')) < 2:
if not data_aux[i][-1].isdigit():
aux = data_aux[i][:-1] + cddd[ data_aux[i][-1]]
data_container[ s_str_][i] = aux
data_container = split_define_dihe_impr( data_container)
n_dihedrals = len( data_container['dihedrals'])
n_impropers = len( data_container['impropers'])
'''-------------- "Side Mol" --------------'''
n_atomsnew = len( _type_)
if _sidemol_f_:
sidemol = data_container['sidemol']
side_bonds_n = 0
side_angles_n = 0
side_dihed_n = 0
side_improp_n = 0
for sb in range( len( sidemol['tag'])):
bonds_x_mol = len( sidemol['data'][sb]['bonds'])
angles_x_mol = len( sidemol['data'][sb]['angles'])
dihedr_x_mol = len( sidemol['data'][sb]['dihedrals'])
improp_x_mol = len( sidemol['data'][sb]['impropers'])
sm_quantity = sidemol['num'][sb]
side_bonds_n += sm_quantity * bonds_x_mol
side_angles_n += sm_quantity * angles_x_mol
side_dihed_n += sm_quantity * dihedr_x_mol
side_improp_n += sm_quantity * improp_x_mol
n_bondsnew = n_bonds + side_bonds_n
n_anglesnew = n_angles + side_angles_n
n_dihednew = n_dihedrals + side_dihed_n
n_impropnew = n_impropers + side_improp_n
contentkey = [ 'bond', 'angle', 'improper', 'dihedral']
for cont_k in contentkey:
cddd = data_container[ 'define'][ cont_k]
if cddd.keys() != []:
for sb in range( len( sidemol['tag'])):
datacont = sidemol['data'][sb][cont_k+'s']
for dc in range( len( datacont)):
if isnot_num( datacont[dc][-1]):
aux = datacont[dc][:-1] + cddd[ datacont[dc][-1]]
sidemol['data'][sb][cont_k+'s'][dc] = aux
_charge_ = {}
_conv_dict_ = {}
for sb in range( len( sidemol['tag'])):
for at in range( len( sidemol['data'][sb]['atoms'])):
a_opls_tag = sidemol['data'][sb]['atoms'][at][1]
a_elem_tag = sidemol['data'][sb]['atoms'][at][4]
a_charge = float( sidemol['data'][sb]['atoms'][at][6])
_charge_[a_opls_tag] = a_charge
_conv_dict_[ a_elem_tag] = a_opls_tag
print '='*45+'\n'+'='*5+' Charges found: '
print _charge_
print _conv_dict_
data_container['S_charge'] = _charge_
data_container['S_translation'] = _conv_dict_
smol_extra_bondtypes = []
smol_extra_angletypes = []
smol_extra_dihedraltypes = []
smol_extra_impropertypes = []
bn_namelist = []
an_namelist = []
di_namelist = []
im_namelist = []
for sb in range( len( sidemol['tag'])):
_smd_ = sidemol['data'][sb]
_at_dic_here = {}
for _at in range( len( _smd_['atoms'])):
_smat_ = _smd_['atoms'][_at]
_at_dic_here[ _smat_[0]] = _smat_[1]
for _bn in range( len( _smd_['bonds'])):
_smbn_ = _smd_['bonds'][_bn]
aux_here = [_at_dic_here[ _smbn_[0]], _at_dic_here[ _smbn_[1]]]
name = '{}-{}'.format(*aux_here)
if name not in bn_namelist and len( _smbn_[2:]) > 1:
bn_namelist.append( name)
smol_extra_bondtypes.append( aux_here + _smbn_[2:])
for _an in range( len( _smd_['angles'])):
_sman_ = _smd_['angles'][_an]
aux_here = [_at_dic_here[ _sman_[0]], _at_dic_here[ _sman_[1]],
_at_dic_here[ _sman_[2]] ]
name = '{}-{}-{}'.format(*aux_here)
if name not in an_namelist and len( _sman_[3:]) > 1:
an_namelist.append( name)
smol_extra_angletypes.append( aux_here + _sman_[3:])
for _dh in range( len( _smd_['dihedrals'])):
_smdh_ = _smd_['dihedrals'][_dh]
aux_here = [_at_dic_here[ _smdh_[0]], _at_dic_here[ _smdh_[1]],
_at_dic_here[ _smdh_[2]], _at_dic_here[ _smdh_[3]]]
name = '{}-{}-{}-{}'.format(*aux_here)
if name not in di_namelist and len( _smdh_[4:]) > 1:
di_namelist.append( name)
smol_extra_dihedraltypes.append( aux_here + _smdh_[4:])
for _im in range( len( _smd_['impropers'])):
_smim_ = _smd_['impropers'][_im]
aux_here = [_at_dic_here[ _smim_[0]], _at_dic_here[ _smim_[1]],
_at_dic_here[ _smim_[2]], _at_dic_here[ _smim_[3]]]
name = '{}-{}-{}-{}'.format(*aux_here)
if name not in im_namelist and len( _smim_[4:]) > 1:
im_namelist.append( name)
smol_extra_impropertypes.append( aux_here + _smim_[4:])
if len( _smd_.keys()) > 5:
print ('Uuupa!! This thing is not implemented yet' +
' as side mol part')
a_key = [ 'atoms', 'bonds', 'angles', 'dihedrals', 'impropers']
for ky in _smd_.keys():
if ky not in a_key:
print ('-- > this key : ' + ky)
data_container['bondtypes'] = ( smol_extra_bondtypes +
data_container['bondtypes'] )
data_container['angletypes'] = ( smol_extra_angletypes +
data_container['angletypes'])
data_container['dihedraltypes'] = ( smol_extra_dihedraltypes +
data_container['dihedraltypes'])
data_container['impropertypes'] = ( smol_extra_impropertypes +
data_container['impropertypes'])
else:
n_bondsnew = n_bonds
n_anglesnew = n_angles
n_atomsnew = n_atoms
n_dihednew = n_dihedrals
n_impropnew = n_impropers
nice_list = [ 'bondtypes', 'angletypes', 'dihedraltypes','impropertypes']
for it in range( len( nice_list)):
_aux_set_here = set()
poss = it + 2
if poss > 4:
poss = 4
for i in range( len ( data_container[ nice_list[it] ])):
_aux_set_here.add( data_container[ nice_list[it] ][i][ poss ])
data_container[ nice_list[it][:4]+'_kinds'] = _aux_set_here
n_bondstypes = len( data_container['bondtypes'])
n_anglestypes = len( data_container['angletypes'])
n_dihedraltypes = len( data_container['dihedraltypes'])
n_impropertypes = len( data_container['impropertypes'])
data_container['numbers']={}
data_container['numbers']['total'] = [n_atomsnew, n_bondsnew,
n_anglesnew, n_dihednew, n_impropnew
]
data_container['numbers']['type'] = [n_atomtypes, n_bondstypes,
n_anglestypes, n_dihedraltypes,
n_impropertypes]
print 'Ending gromacs data parsing\n'
return data_container, [ ok_flag, _sidemol_f_]
def sidemol_data( _file_top_, data_container):
sidemol = {'tag': [],'num':[], 'data':[] }
sm_flag = False
_aux_m_ = data_container[ 'molecules']
if 'moleculetype' in data_container.keys():
non_sm = data_container['moleculetype']
non_sm = [non_sm[i][0] for i in range(len(non_sm))]
_buffer_ = ''
else:
non_sm = ['']
_buffer_ = '0'
for i in range( len( _aux_m_)) :
if _aux_m_[i][0] not in non_sm:
sidemol['tag'].append( _aux_m_[i][0])
sidemol['num'].append( int(_aux_m_[i][1]))
sm_flag = True
if sm_flag:
print ('\nLoading side molecule files: ' )
_sm_files_ = []
root_dir = '/'.join( _file_top_.split('/')[:-1]+[''])
ok_flag = False
with open( _file_top_, 'r') as topdata:
if sidemol['tag'] == []:
topdata = []
for k_line in topdata:
if k_line.startswith('#'):
logic_test = ('#if' not in _buffer_ and _buffer_ != '')
if k_line.startswith('#include') and logic_test:
if _sm_files_ == []:
ok_flag = True
try:
new_filename = k_line.split('"')[1].lstrip('.')
except IndexError:
auxt = wrg_1( 'Format error with {}')
print( auxt.format( k_line.split()[-1] ) )
new_filename = new_filename.lstrip('/').split('/')[-1]
po_file = fileseeker( root_dir, new_filename)
if po_file != []:
_sm_files_.append( po_file[0])
print( 'SM_file : {}'.format(_sm_files_[-1]))
ok_flag *= check_file( po_file[0],
content='[ atoms ]')
else:
_buffer_ = k_line
if ok_flag:
for sm in sidemol['tag']:
aux_data, aux_flag = sidemol_data_gatherer( _sm_files_, sm)
ok_flag *= aux_flag
sidemol['data'].append( aux_data)
data_container['sidemol'] = sidemol
else:
print ('No side molecule files detected!' )
ok_flag = True
return data_container, ok_flag, sm_flag
|
MIT License
|
nickjj/sublime-text-3-packages
|
Packages/python-markdown/st3/markdown/inlinepatterns.py
|
HtmlPattern.unescape
|
python
|
def unescape(self, text):
try:
stash = self.markdown.treeprocessors['inline'].stashed_nodes
except KeyError:
return text
def get_stash(m):
id = m.group(1)
value = stash.get(id)
if value is not None:
try:
return self.markdown.serializer(value)
except:
return '\%s' % value
return util.INLINE_PLACEHOLDER_RE.sub(get_stash, text)
|
Return unescaped text given text with an inline placeholder.
|
https://github.com/nickjj/sublime-text-3-packages/blob/15a992d5982337169dadb50fd0dbca4ca3be992e/Packages/python-markdown/st3/markdown/inlinepatterns.py#L335-L351
|
from __future__ import absolute_import
from __future__ import unicode_literals
from . import util
from . import odict
import re
try:
from urllib.parse import urlparse, urlunparse
except ImportError:
from urlparse import urlparse, urlunparse
try:
from html import entities
except ImportError:
import htmlentitydefs as entities
def build_inlinepatterns(md_instance, **kwargs):
inlinePatterns = odict.OrderedDict()
inlinePatterns["backtick"] = BacktickPattern(BACKTICK_RE)
inlinePatterns["escape"] = EscapePattern(ESCAPE_RE, md_instance)
inlinePatterns["reference"] = ReferencePattern(REFERENCE_RE, md_instance)
inlinePatterns["link"] = LinkPattern(LINK_RE, md_instance)
inlinePatterns["image_link"] = ImagePattern(IMAGE_LINK_RE, md_instance)
inlinePatterns["image_reference"] = ImageReferencePattern(
IMAGE_REFERENCE_RE, md_instance
)
inlinePatterns["short_reference"] = ReferencePattern(
SHORT_REF_RE, md_instance
)
inlinePatterns["autolink"] = AutolinkPattern(AUTOLINK_RE, md_instance)
inlinePatterns["automail"] = AutomailPattern(AUTOMAIL_RE, md_instance)
inlinePatterns["linebreak"] = SubstituteTagPattern(LINE_BREAK_RE, 'br')
if md_instance.safeMode != 'escape':
inlinePatterns["html"] = HtmlPattern(HTML_RE, md_instance)
inlinePatterns["entity"] = HtmlPattern(ENTITY_RE, md_instance)
inlinePatterns["not_strong"] = SimpleTextPattern(NOT_STRONG_RE)
inlinePatterns["em_strong"] = DoubleTagPattern(EM_STRONG_RE, 'strong,em')
inlinePatterns["strong_em"] = DoubleTagPattern(STRONG_EM_RE, 'em,strong')
inlinePatterns["strong"] = SimpleTagPattern(STRONG_RE, 'strong')
inlinePatterns["emphasis"] = SimpleTagPattern(EMPHASIS_RE, 'em')
if md_instance.smart_emphasis:
inlinePatterns["emphasis2"] = SimpleTagPattern(SMART_EMPHASIS_RE, 'em')
else:
inlinePatterns["emphasis2"] = SimpleTagPattern(EMPHASIS_2_RE, 'em')
return inlinePatterns
NOBRACKET = r'[^\]\[]*'
BRK = (
r'\[(' +
(NOBRACKET + r'(\[')*6 +
(NOBRACKET + r'\])*')*6 +
NOBRACKET + r')\]'
)
NOIMG = r'(?<!\!)'
BACKTICK_RE = r'(?<!\\)(`+)(.+?)(?<!`)\2(?!`)'
ESCAPE_RE = r'\\(.)'
EMPHASIS_RE = r'(\*)([^\*]+)\2'
STRONG_RE = r'(\*{2}|_{2})(.+?)\2'
EM_STRONG_RE = r'(\*|_)\2{2}(.+?)\2(.*?)\2{2}'
STRONG_EM_RE = r'(\*|_)\2{2}(.+?)\2{2}(.*?)\2'
SMART_EMPHASIS_RE = r'(?<!\w)(_)(?!_)(.+?)(?<!_)\2(?!\w)'
EMPHASIS_2_RE = r'(_)(.+?)\2'
LINK_RE = NOIMG + BRK + r'''\(\s*(<.*?>|((?:(?:\(.*?\))|[^\(\)]))*?)\s*((['"])(.*?)\12\s*)?\)'''
IMAGE_LINK_RE = r'\!' + BRK + r'\s*\((<.*?>|([^")]+"[^"]*"|[^\)]*))\)'
REFERENCE_RE = NOIMG + BRK + r'\s?\[([^\]]*)\]'
SHORT_REF_RE = NOIMG + r'\[([^\]]+)\]'
IMAGE_REFERENCE_RE = r'\!' + BRK + '\s?\[([^\]]*)\]'
NOT_STRONG_RE = r'((^| )(\*|_)( |$))'
AUTOLINK_RE = r'<((?:[Ff]|[Hh][Tt])[Tt][Pp][Ss]?://[^>]*)>'
AUTOMAIL_RE = r'<([^> \!]*@[^> ]*)>'
HTML_RE = r'(\<([a-zA-Z/][^\>]*?|\!--.*?--)\>)'
ENTITY_RE = r'(&[\#a-zA-Z0-9]*;)'
LINE_BREAK_RE = r' \n'
def dequote(string):
if ((string.startswith('"') and string.endswith('"')) or
(string.startswith("'") and string.endswith("'"))):
return string[1:-1]
else:
return string
ATTR_RE = re.compile("\{@([^\}]*)=([^\}]*)}")
def handleAttributes(text, parent):
def attributeCallback(match):
parent.set(match.group(1), match.group(2).replace('\n', ' '))
return ATTR_RE.sub(attributeCallback, text)
class Pattern(object):
def __init__(self, pattern, markdown_instance=None):
self.pattern = pattern
self.compiled_re = re.compile("^(.*?)%s(.*)$" % pattern,
re.DOTALL | re.UNICODE)
self.safe_mode = False
if markdown_instance:
self.markdown = markdown_instance
def getCompiledRegExp(self):
return self.compiled_re
def handleMatch(self, m):
pass
def type(self):
return self.__class__.__name__
def unescape(self, text):
try:
stash = self.markdown.treeprocessors['inline'].stashed_nodes
except KeyError:
return text
def itertext(el):
tag = el.tag
if not isinstance(tag, util.string_type) and tag is not None:
return
if el.text:
yield el.text
for e in el:
for s in itertext(e):
yield s
if e.tail:
yield e.tail
def get_stash(m):
id = m.group(1)
if id in stash:
value = stash.get(id)
if isinstance(value, util.string_type):
return value
else:
return ''.join(itertext(value))
return util.INLINE_PLACEHOLDER_RE.sub(get_stash, text)
class SimpleTextPattern(Pattern):
def handleMatch(self, m):
return m.group(2)
class EscapePattern(Pattern):
def handleMatch(self, m):
char = m.group(2)
if char in self.markdown.ESCAPED_CHARS:
return '%s%s%s' % (util.STX, ord(char), util.ETX)
else:
return None
class SimpleTagPattern(Pattern):
def __init__(self, pattern, tag):
Pattern.__init__(self, pattern)
self.tag = tag
def handleMatch(self, m):
el = util.etree.Element(self.tag)
el.text = m.group(3)
return el
class SubstituteTagPattern(SimpleTagPattern):
def handleMatch(self, m):
return util.etree.Element(self.tag)
class BacktickPattern(Pattern):
def __init__(self, pattern):
Pattern.__init__(self, pattern)
self.tag = "code"
def handleMatch(self, m):
el = util.etree.Element(self.tag)
el.text = util.AtomicString(m.group(3).strip())
return el
class DoubleTagPattern(SimpleTagPattern):
def handleMatch(self, m):
tag1, tag2 = self.tag.split(",")
el1 = util.etree.Element(tag1)
el2 = util.etree.SubElement(el1, tag2)
el2.text = m.group(3)
if len(m.groups()) == 5:
el2.tail = m.group(4)
return el1
class HtmlPattern(Pattern):
def handleMatch(self, m):
rawhtml = self.unescape(m.group(2))
place_holder = self.markdown.htmlStash.store(rawhtml)
return place_holder
|
MIT License
|
dywlavender/multi-label-classification
|
backbone/NA/mobilenet.py
|
MobileNet
|
python
|
def MobileNet(input_shape=None,
alpha=1.0,
depth_multiplier=1,
dropout=1e-3,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
**kwargs):
global backend, layers, models, keras_utils
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000')
if input_shape is None:
default_size = 224
else:
if backend.image_data_format() == 'channels_first':
rows = input_shape[1]
cols = input_shape[2]
else:
rows = input_shape[0]
cols = input_shape[1]
if rows == cols and rows in [128, 160, 192, 224]:
default_size = rows
else:
default_size = 224
input_shape = _obtain_input_shape(input_shape,
default_size=default_size,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights)
if backend.image_data_format() == 'channels_last':
row_axis, col_axis = (0, 1)
else:
row_axis, col_axis = (1, 2)
rows = input_shape[row_axis]
cols = input_shape[col_axis]
if weights == 'imagenet':
if depth_multiplier != 1:
raise ValueError('If imagenet weights are being loaded, '
'depth multiplier must be 1')
if alpha not in [0.25, 0.50, 0.75, 1.0]:
raise ValueError('If imagenet weights are being loaded, '
'alpha can be one of'
'`0.25`, `0.50`, `0.75` or `1.0` only.')
if rows != cols or rows not in [128, 160, 192, 224]:
rows = 224
warnings.warn('`input_shape` is undefined or non-square, '
'or `rows` is not in [128, 160, 192, 224]. '
'Weights for input shape (224, 224) will be'
' loaded as the default.')
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = _conv_bn(img_input, 32, alpha, strides=(2, 2))
x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier,
strides=(2, 2), block_id=2)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier,
strides=(2, 2), block_id=4)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier,
strides=(2, 2), block_id=6)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier,
strides=(2, 2), block_id=12)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)
if include_top:
if backend.image_data_format() == 'channels_first':
shape = (int(1024 * alpha), 1, 1)
else:
shape = (1, 1, int(1024 * alpha))
x = layers.GlobalAveragePooling2D()(x)
x = layers.Reshape(shape, name='reshape_1')(x)
x = layers.Dropout(dropout, name='dropout')(x)
x = layers.Conv2D(classes, (1, 1),
padding='same',
name='conv_preds')(x)
x = layers.Reshape((classes,), name='reshape_2')(x)
x = layers.Activation('softmax', name='act_softmax')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D()(x)
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
model = models.Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))
if weights == 'imagenet':
if alpha == 1.0:
alpha_text = '1_0'
elif alpha == 0.75:
alpha_text = '7_5'
elif alpha == 0.50:
alpha_text = '5_0'
else:
alpha_text = '2_5'
if include_top:
model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = keras_utils.get_file(model_name,
weight_path,
cache_subdir='models')
else:
model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = keras_utils.get_file(model_name,
weight_path,
cache_subdir='models')
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
|
Instantiates the MobileNet architecture.
# Arguments
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)`
(with `channels_last` data format)
or (3, 224, 224) (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
alpha: controls the width of the network. This is known as the
width multiplier in the MobileNet paper.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
depth_multiplier: depth multiplier for depthwise convolution. This
is called the resolution multiplier in the MobileNet paper.
dropout: dropout rate
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
|
https://github.com/dywlavender/multi-label-classification/blob/ec8567169b3f1b08c7dafeb71f007275621a5a95/backbone/NA/mobilenet.py#L107-L320
|
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import os
import warnings
from . import get_submodules_from_kwargs
from . import imagenet_utils
from .imagenet_utils import decode_predictions
from .imagenet_utils import _obtain_input_shape
from tensorflow import keras
BASE_WEIGHT_PATH = ('https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.6/')
backend = None
layers = None
models = None
keras_utils = None
def preprocess_input(x, **kwargs):
return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)
class MobileNet(object):
L2_WEIGHT = 5.e-4
BATCH_NORM_DECAY = 0.9
BATCH_NORM_EPSILON = 1e-5
BATCH_SIZE_AXIS = 0
ROW_AXIS = 1
COL_AXIS = 2
CHANNEL_AXIS = 3
|
MIT License
|
hfaran/tornado-json
|
tornado_json/routes.py
|
get_module_routes
|
python
|
def get_module_routes(module_name, custom_routes=None, exclusions=None,
arg_pattern=r'(?P<{}>[a-zA-Z0-9_\-]+)'):
def has_method(module, cls_name, method_name):
return all([
method_name in vars(getattr(module, cls_name)),
is_method(reduce(getattr, [module, cls_name, method_name]))
])
def yield_args(module, cls_name, method_name):
wrapped_method = reduce(getattr, [module, cls_name, method_name])
method = extract_method(wrapped_method)
argspec_args = getattr(method, "__argspec_args",
inspect.getfullargspec(method).args)
return [a for a in argspec_args if a not in ["self"]]
def generate_auto_route(module, module_name, cls_name, method_name, url_name):
def get_handler_name():
if url_name == "__self__":
if cls_name.lower().endswith('handler'):
return cls_name.lower().replace('handler', '', 1)
return cls_name.lower()
else:
return url_name
def get_arg_route():
if yield_args(module, cls_name, method_name):
return "/{}/?$".format("/".join(
[arg_pattern.format(argname) for argname
in yield_args(module, cls_name, method_name)]
))
return r"/?"
return "/{}/{}{}".format(
"/".join(module_name.split(".")[1:]),
get_handler_name(),
get_arg_route()
)
if not custom_routes:
custom_routes = []
if not exclusions:
exclusions = []
module = importlib.import_module(module_name)
custom_routes_s = [c.__name__ for r, c in custom_routes]
rhs = {cls_name: cls for (cls_name, cls) in
inspect.getmembers(module, inspect.isclass)}
auto_routes = list(chain(*[
list(set(chain(*[
[
(
generate_auto_route(
module, module_name, cls_name, method_name, url_name
),
getattr(module, cls_name)
) for url_name in getattr(module, cls_name).__url_names__
] + [
(
url,
getattr(module, cls_name)
) for url in getattr(module, cls_name).__urls__
]
for method_name in HTTP_METHODS if has_method(
module, cls_name, method_name)
])))
for cls_name, cls in rhs.items()
if is_handler_subclass(cls)
and cls_name not in (custom_routes_s + exclusions)
]))
routes = auto_routes + custom_routes
return routes
|
r"""Create and return routes for module_name
Routes are (url, RequestHandler) tuples
:returns: list of routes for ``module_name`` with respect to ``exclusions``
and ``custom_routes``. Returned routes are with URLs formatted such
that they are forward-slash-separated by module/class level
and end with the lowercase name of the RequestHandler (it will also
remove 'handler' from the end of the name of the handler).
For example, a requesthandler with the name
``helloworld.api.HelloWorldHandler`` would be assigned the url
``/api/helloworld``.
Additionally, if a method has extra arguments aside from ``self`` in
its signature, routes with URL patterns will be generated to
match ``r"(?P<{}>[a-zA-Z0-9_\-]+)".format(argname)`` for each
argument. The aforementioned regex will match ONLY values
with alphanumeric, hyphen and underscore characters. You can provide
your own pattern by setting a ``arg_pattern`` param.
:rtype: [(url, RequestHandler), ... ]
:type module_name: str
:param module_name: Name of the module to get routes for
:type custom_routes: [(str, RequestHandler), ... ]
:param custom_routes: List of routes that have custom URLs and therefore
should be automagically generated
:type exclusions: [str, str, ...]
:param exclusions: List of RequestHandler names that routes should not be
generated for
:type arg_pattern: str
:param arg_pattern: Default pattern for extra arguments of any method
|
https://github.com/hfaran/tornado-json/blob/fcc551e4b78cac9245e36376329d84afda296284/tornado_json/routes.py#L43-L199
|
import importlib
import inspect
import pkgutil
from functools import reduce
from itertools import chain
from tornado_json.constants import HTTP_METHODS
from tornado_json.utils import extract_method, is_method, is_handler_subclass
def get_routes(package):
return list(chain(*[get_module_routes(modname) for modname in
gen_submodule_names(package)]))
def gen_submodule_names(package):
for importer, modname, ispkg in pkgutil.walk_packages(
path=package.__path__,
prefix=package.__name__ + '.',
onerror=lambda x: None):
yield modname
|
MIT License
|
covid-19-impact-lab/sid
|
src/sid/rapid_tests.py
|
_create_sensitivity
|
python
|
def _create_sensitivity(states, sensitivity_params):
sensitivity = pd.Series(np.nan, index=states.index)
p_pos_preinfectious = sensitivity_params.loc["pre-infectious"]
p_pos_start_infectious = sensitivity_params.loc["start_infectious"]
p_pos_while_infectious = sensitivity_params.loc["while_infectious"]
p_pos_after_infectious = sensitivity_params.loc["after_infectious"]
sensitivity[states["cd_infectious_true"] > 0] = p_pos_preinfectious
sensitivity[states["infectious"]] = p_pos_while_infectious
sensitivity[states["cd_infectious_true"] == 0] = p_pos_start_infectious
within_10_days = states["cd_infectious_true"].between(-10, 0)
sensitivity[~states["infectious"] & within_10_days] = p_pos_after_infectious
if sensitivity.isnull().any():
raise ValueError(
"There are NaN left in the person-dependent sensitivity. "
"The likeliest explanation is that _create_sensitivity was called "
"with uninfected individuals (i.e. with individuals where "
"`cd_infectious_true` < -10)."
)
return sensitivity
|
Create the sensitivity se
|
https://github.com/covid-19-impact-lab/sid/blob/ac01bd49ff51cd5b1aebcc0c058c6ca0baaeb973/src/sid/rapid_tests.py#L138-L158
|
import itertools
import warnings
from typing import Callable
from typing import Optional
import numpy as np
import pandas as pd
from sid.shared import boolean_choices
from sid.validation import validate_return_is_series_or_ndarray
def perform_rapid_tests(
date: pd.Timestamp,
states: pd.DataFrame,
params: pd.DataFrame,
rapid_test_models: Optional[Callable],
contacts: pd.DataFrame,
seed: itertools.count,
) -> pd.DataFrame:
if rapid_test_models:
receives_rapid_test = _compute_who_receives_rapid_tests(
date=date,
states=states,
params=params,
rapid_test_models=rapid_test_models,
contacts=contacts,
seed=seed,
)
is_tested_positive = _sample_test_outcome(
states, receives_rapid_test, params, seed
)
states = _update_states_with_rapid_tests_outcomes(
states, receives_rapid_test, is_tested_positive
)
return states
def apply_reactions_to_rapid_tests(
date,
states,
params,
rapid_test_reaction_models,
contacts,
seed,
):
if rapid_test_reaction_models:
for model in rapid_test_reaction_models.values():
loc = model.get("loc", params.index)
func = model["model"]
if model["start"] <= date <= model["end"]:
contacts = func(
contacts=contacts,
states=states,
params=params.loc[loc],
seed=next(seed),
)
return contacts
def _compute_who_receives_rapid_tests(
date, states, params, rapid_test_models, contacts, seed
):
receives_rapid_test = pd.Series(index=states.index, data=False)
for name, model in rapid_test_models.items():
loc = model.get("loc", params.index)
func = model["model"]
if model["start"] <= date <= model["end"]:
new_receives_rapid_test = func(
receives_rapid_test=receives_rapid_test.copy(deep=True),
states=states,
params=params.loc[loc],
contacts=contacts,
seed=next(seed),
)
new_receives_rapid_test = validate_return_is_series_or_ndarray(
new_receives_rapid_test, name, "rapid_test_models", states.index
)
receives_rapid_test.loc[new_receives_rapid_test] = True
return receives_rapid_test
def _sample_test_outcome(states, receives_rapid_test, params, seed):
np.random.seed(next(seed))
is_tested_positive = pd.Series(index=states.index, data=False)
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", message="indexing past lexsort depth may impact performance."
)
sensitivity_params = params.loc[("rapid_test", "sensitivity"), "value"]
infected = states["cd_infectious_true"] >= -10
receives_test_and_is_infected = infected & receives_rapid_test
sensitivity = _create_sensitivity(
states=states[receives_test_and_is_infected],
sensitivity_params=sensitivity_params,
)
is_truly_positive = boolean_choices(sensitivity)
is_tested_positive.loc[receives_test_and_is_infected] = is_truly_positive
specificity = params.loc[("rapid_test", "specificity", "specificity"), "value"]
uninfected_test_receivers = ~infected & receives_rapid_test
p_false_positive = np.full(uninfected_test_receivers.sum(), 1 - specificity)
is_falsely_positive = boolean_choices(p_false_positive)
is_tested_positive.loc[uninfected_test_receivers] = is_falsely_positive
return is_tested_positive
|
MIT License
|
googlecloudplatform/appengine-python-standard
|
src/google/appengine/ext/ndb/tasklets.py
|
add_flow_exception
|
python
|
def add_flow_exception(exc):
global _flow_exceptions
if not isinstance(exc, type) or not issubclass(exc, Exception):
raise TypeError('Expected an Exception subclass, got %r' % (exc,))
as_set = set(_flow_exceptions)
as_set.add(exc)
_flow_exceptions = tuple(as_set)
|
Add an exception that should not be logged.
The argument must be a subclass of Exception.
|
https://github.com/googlecloudplatform/appengine-python-standard/blob/42c99c7a83f4ed50c724ecdde119a606a3ca58f3/src/google/appengine/ext/ndb/tasklets.py#L215-L225
|
import collections
import functools
import logging
import os
import sys
import threading
import types
import weakref
from google.appengine.api import apiproxy_rpc
from google.appengine.api import apiproxy_stub
from google.appengine.api import apiproxy_stub_map
from google.appengine.api import datastore
from google.appengine.api import datastore_errors
from google.appengine.api import full_app_id
from google.appengine.api import namespace_manager
from google.appengine.datastore import datastore_pbs
from google.appengine.datastore import datastore_rpc
from google.appengine.ext.ndb import eventloop
from google.appengine.ext.ndb import utils
from google.appengine.runtime import apiproxy
import six
from six.moves import map
__all__ = ['Return', 'tasklet', 'synctasklet', 'toplevel', 'sleep',
'add_flow_exception', 'get_return_value',
'get_context', 'set_context',
'make_default_context', 'make_context',
'Future', 'MultiFuture', 'QueueFuture', 'SerialQueueFuture',
'ReducingFuture',
]
_logging_debug = utils.logging_debug
_CALLBACK_KEY = '__CALLBACK__'
def _is_generator(obj):
return isinstance(obj, types.GeneratorType)
class _State(threading.local):
def __init__(self):
super(_State, self).__init__()
self.current_context = None
self.all_generators = weakref.WeakSet()
self.all_pending = set()
def set_context(self, ctx):
self.current_context = ctx
def add_generator(self, gen):
if _CALLBACK_KEY not in os.environ:
apiproxy.SetRequestEndCallback(self.reset)
os.environ[_CALLBACK_KEY] = '1'
_logging_debug('all_generators: add %s', gen)
self.all_generators.add(gen)
def add_pending(self, fut):
if _CALLBACK_KEY not in os.environ:
apiproxy.SetRequestEndCallback(self.reset)
os.environ[_CALLBACK_KEY] = '1'
_logging_debug('all_pending: add %s', fut)
self.all_pending.add(fut)
def remove_pending(self, fut, status='success'):
if fut in self.all_pending:
_logging_debug('all_pending: %s: remove %s', status, fut)
self.all_pending.remove(fut)
else:
_logging_debug('all_pending: %s: not found %s', status, fut)
def clear_all_generators(self):
if self.all_generators:
_logging_debug('all_generators: clear %s', self.all_generators)
for gen in self.all_generators:
gen.close()
self.all_generators.clear()
else:
_logging_debug('all_generators: clear no-op')
def clear_all_pending(self):
if self.all_pending:
_logging_debug('all_pending: clear %s', self.all_pending)
self.all_pending.clear()
else:
_logging_debug('all_pending: clear no-op')
def dump_all_pending(self, verbose=False):
pending = []
for fut in self.all_pending:
if verbose:
line = fut.dump() + ('\n' + '-' * 40)
else:
line = fut.dump_stack()
pending.append(line)
return '\n'.join(pending)
def reset(self, unused_req_id):
self.current_context = None
ev = eventloop.get_event_loop()
ev.clear()
self.clear_all_pending()
self.clear_all_generators()
_state = _State()
_flow_exceptions = ()
|
Apache License 2.0
|
iwwxiong/flask_restapi
|
example/demo/scripts/test.py
|
UnitTest.run
|
python
|
def run(self):
tests = unittest.TestLoader().discover('tests', pattern='test_*.py')
unittest.TextTestRunner(verbosity=1).run(tests)
|
Run unit tests.
|
https://github.com/iwwxiong/flask_restapi/blob/57fca3bf07d913b31b6b7ef877328b0e07056c39/example/demo/scripts/test.py#L16-L19
|
import unittest
from flask_script import Command
from tests.test_renders import *
class UnitTest(Command):
command_name = 'runtest'
|
MIT License
|
coffeateam/coffea
|
coffea/lookup_tools/extractor.py
|
extractor.make_evaluator
|
python
|
def make_evaluator(self):
if self._finalized:
return evaluator(self._names, self._types, self._weights)
else:
raise Exception("Cannot make an evaluator from unfinalized extractor!")
|
produce an evaluator based on the finalized extractor
|
https://github.com/coffeateam/coffea/blob/6ce872671c39d788fc9fe5e981862d4c6f7658f6/coffea/lookup_tools/extractor.py#L147-L152
|
from __future__ import print_function
import os
from coffea.lookup_tools.evaluator import evaluator
from coffea.lookup_tools.root_converters import convert_histo_root_file
from coffea.lookup_tools.csv_converters import convert_btag_csv_file
from coffea.lookup_tools.json_converters import convert_histo_json_file
from coffea.lookup_tools.txt_converters import *
file_converters = {
"root": {"default": convert_histo_root_file, "histo": convert_histo_root_file},
"csv": {"default": convert_btag_csv_file, "btag": convert_btag_csv_file},
"json": {"default": convert_histo_json_file, "histo": convert_histo_json_file},
"txt": {
"default": convert_jec_txt_file,
"jec": convert_jec_txt_file,
"jersf": convert_jersf_txt_file,
"jr": convert_jr_txt_file,
"junc": convert_junc_txt_file,
"ea": convert_effective_area_file,
},
}
class extractor(object):
def __init__(self):
self._weights = []
self._names = {}
self._types = []
self._filecache = {}
self._finalized = False
def add_weight_set(self, local_name, thetype, weights):
if self._finalized:
raise Exception("extractor is finalized cannot add new weights!")
if local_name in self._names.keys():
raise Exception('weights name "{}" already defined'.format(local_name))
self._names[local_name] = len(self._weights)
self._types.append(thetype)
self._weights.append(weights)
def add_weight_sets(self, weightsdescs):
for weightdesc in weightsdescs:
if weightdesc[0] == "#":
continue
temp = weightdesc.strip().split(" ")
if len(temp) != 3:
raise Exception(
'"{}" not formatted as "<local name> <name> <weights file>"'.format(
weightdesc
)
)
(local_name, name, thefile) = tuple(temp)
if name == "*":
self.import_file(thefile)
weights = self._filecache[thefile]
for key, value in weights.items():
if local_name == "*":
self.add_weight_set(key[0], key[1], value)
else:
keyfilename, keymyname = key[0], key[1]
if isinstance(keyfilename, bytes):
keyfilename = keyfilename.decode()
if isinstance(keymyname, bytes):
keymyname = keymyname.decode()
self.add_weight_set(local_name + keyfilename, keymyname, value)
else:
weights, thetype = self.extract_from_file(thefile, name)
self.add_weight_set(local_name, thetype, weights)
def import_file(self, thefile):
if thefile not in self._filecache.keys():
drop_gz = thefile.replace(".gz", "")
file_dots = os.path.basename(drop_gz).split(".")
theformat = file_dots[-1].strip()
thetype = "default"
if len(file_dots) > 2:
thetype = file_dots[-2]
self._filecache[thefile] = file_converters[theformat][thetype](thefile)
def extract_from_file(self, thefile, name):
self.import_file(thefile)
weights = self._filecache[thefile]
names = {key[0]: key[1] for key in weights.keys()}
if name not in names.keys():
raise Exception('Weights named "{}" not in {}!'.format(name, thefile))
return (weights[(name, names[name])], names[name])
def finalize(self, reduce_list=None):
if self._finalized:
raise Exception("extractor is already finalized!")
del self._filecache
if reduce_list is not None:
names = {}
types = []
weights = []
for i, name in enumerate(reduce_list):
if name not in self._names:
raise Exception('Weights named "{}" not in extractor!'.format(name))
names[name] = i
types.append(self._types[self._names[name]])
weights.append(self._weights[self._names[name]])
self._names = names
self._types = types
self._weights = weights
self._finalized = True
|
BSD 3-Clause New or Revised License
|
endlesstrax/pyanchor
|
pyanchor/link_checker.py
|
LinkResults.build_results_dictionary
|
python
|
def build_results_dictionary(self) -> dict:
results = {}
try:
for tag in self.all_atags:
href = tag.get("href")
parsed_url = self.check_link_for_http_scheme(href)
if parsed_url is not None:
parsed_url_status_code = requests.get(parsed_url).status_code
if parsed_url_status_code in results:
results[parsed_url_status_code].append(parsed_url)
else:
results[parsed_url_status_code] = [parsed_url]
except:
pass
return results
|
Build the final results dictionary.
Once all_tags has been populated in the AllTags base class, the final
results dictionary is build by testing each link.
Returns:
A dictionary with the key = the HTTP response,
and the value = a List of URLs that achieved that response code.
|
https://github.com/endlesstrax/pyanchor/blob/bd8f045ac85ad0457b5c69d6065ee78497e97b6b/pyanchor/link_checker.py#L87-L114
|
import requests
from bs4 import BeautifulSoup
import re
class AllTags:
def __init__(self, url: str):
self.base_url = url if url.endswith("/") else url + "/"
self.all_atags = self.find_all_atags(self.base_url)
def __str__(self) -> str:
return f"All links for {self.base_url}"
def find_all_atags(self, url: str):
r = requests.get(url)
if r.status_code == 200:
soup = BeautifulSoup(r.content, "html.parser")
return soup.find_all("a")
class LinkResults(AllTags):
def __init__(self, url: str):
super().__init__(url)
self.results = self.build_results_dictionary()
def check_link_for_http_scheme(self, href: str) -> str:
if href.startswith(self.base_url):
return href
elif href.startswith("/"):
href = self.base_url + href.lstrip("/")
return href
elif href.startswith("./"):
return self.base_url + href.lstrip("./")
elif href.startswith("../"):
return self.base_url + href.lstrip("../")
else:
return None
|
MIT License
|
dbrattli/oslash
|
oslash/identity.py
|
Identity.unit
|
python
|
def unit(cls, value: TSource) -> 'Identity[TSource]':
return Identity(value)
|
Initialize a new identity.
|
https://github.com/dbrattli/oslash/blob/c271c7633daf9d72393b419cfc9229e427e6a42a/oslash/identity.py#L21-L23
|
from functools import partial
from typing import TypeVar, Generic, Callable
from .typing import Functor, Monad, Applicative
TSource = TypeVar('TSource')
TResult = TypeVar('TResult')
class Identity(Generic[TSource]):
def __init__(self, value: TSource) -> None:
self._value = value
@classmethod
|
MIT License
|
openstack/futurist
|
futurist/periodics.py
|
PeriodicWorker.add
|
python
|
def add(self, cb, *args, **kwargs):
if not six.callable(cb):
raise ValueError("Periodic callback %r must be callable" % cb)
missing_attrs = _check_attrs(cb)
if missing_attrs:
raise ValueError("Periodic callback %r missing required"
" attributes %s" % (cb, missing_attrs))
if not cb._is_periodic:
return None
now = self._now_func()
with self._waiter:
cb_index = len(self._works)
cb_metrics = self._INITIAL_METRICS.copy()
work = Work(utils.get_callback_name(cb), cb, args, kwargs)
watcher = Watcher(cb_metrics, work)
self._works.append(work)
self._watchers.append((cb_metrics, watcher))
if cb._periodic_run_immediately:
self._immediates.append(cb_index)
else:
next_run = self._initial_schedule_strategy(cb, now)
self._schedule.push(next_run, cb_index)
self._waiter.notify_all()
return watcher
|
Adds a new periodic callback to the current worker.
Returns a :py:class:`.Watcher` if added successfully or the value
``None`` if not (or raises a ``ValueError`` if the callback is not
correctly formed and/or decorated).
:param cb: a callable object/method/function previously decorated
with the :py:func:`.periodic` decorator
:type cb: callable
|
https://github.com/openstack/futurist/blob/d70c7e5f4686ba0ea9235b280f8bdd07fecfeccb/futurist/periodics.py#L820-L853
|
import collections
import fractions
import functools
import heapq
import inspect
import logging
import math
import random
import threading
from concurrent import futures
try:
import prettytable
except ImportError:
prettytable = None
import six
import futurist
from futurist import _utils as utils
LOG = logging.getLogger(__name__)
class NeverAgain(Exception):
_REQUIRED_ATTRS = ('_is_periodic', '_periodic_spacing',
'_periodic_run_immediately')
_DEFAULT_COLS = ('Name', 'Active', 'Periodicity', 'Runs in',
'Runs', 'Failures', 'Successes', 'Stop Requested',
'Average elapsed', 'Average elapsed waiting')
PERIODIC = 'periodic'
IMMEDIATE = 'immediate'
class Work(collections.namedtuple("Work",
['name', 'callback', 'args', 'kwargs'])):
def __call__(self):
return self.callback(*self.args, **self.kwargs)
class Watcher(object):
def __init__(self, metrics, work):
self._metrics = metrics
self._work = work
def __repr__(self):
return ("<Watcher(metrics=%(metrics)s, work=%(work)s)"
" object at 0x%(ident)x>") % dict(ident=id(self),
work=self._work,
metrics=self._metrics)
@property
def requested_stop(self):
return self._metrics['requested_stop']
@property
def work(self):
return self._work
@property
def runs(self):
return self._metrics['runs']
@property
def successes(self):
return self._metrics['successes']
@property
def failures(self):
return self._metrics['failures']
@property
def elapsed(self):
return self._metrics['elapsed']
@property
def elapsed_waiting(self):
return self._metrics['elapsed_waiting']
@property
def average_elapsed_waiting(self):
return self._metrics['elapsed_waiting'] / self._metrics['runs']
@property
def average_elapsed(self):
return self._metrics['elapsed'] / self._metrics['runs']
def _check_attrs(obj):
missing_attrs = []
for attr_name in _REQUIRED_ATTRS:
if not hasattr(obj, attr_name):
missing_attrs.append(attr_name)
return missing_attrs
def is_periodic(obj):
return callable(obj) and not _check_attrs(obj)
def periodic(spacing, run_immediately=False, enabled=True):
if spacing <= 0 and enabled:
raise ValueError("Periodicity/spacing must be greater than"
" zero instead of %s" % spacing)
def wrapper(f):
f._is_periodic = enabled
f._periodic_spacing = spacing
f._periodic_run_immediately = run_immediately
@six.wraps(f)
def decorator(*args, **kwargs):
return f(*args, **kwargs)
return decorator
return wrapper
def _add_jitter(max_percent_jitter):
if max_percent_jitter > 1 or max_percent_jitter < 0:
raise ValueError("Invalid 'max_percent_jitter', must be greater or"
" equal to 0.0 and less than or equal to 1.0")
def wrapper(func):
rnd = random.SystemRandom()
@six.wraps(func)
def decorator(cb, started_at, finished_at, metrics):
next_run = func(cb, started_at, finished_at, metrics)
how_often = cb._periodic_spacing
jitter = how_often * (rnd.random() * max_percent_jitter)
return next_run + jitter
decorator.__name__ += "_with_jitter"
return decorator
return wrapper
def _last_finished_strategy(cb, started_at, finished_at, metrics):
how_often = cb._periodic_spacing
return finished_at + how_often
def _last_started_strategy(cb, started_at, finished_at, metrics):
how_often = cb._periodic_spacing
return started_at + how_often
def _aligned_last_finished_strategy(cb, started_at, finished_at, metrics):
how_often = cb._periodic_spacing
aligned_finished_at = finished_at - math.fmod(finished_at, how_often)
return aligned_finished_at + how_often
def _now_plus_periodicity(cb, now):
how_often = cb._periodic_spacing
return how_often + now
class _Schedule(object):
def __init__(self):
self._ordering = []
def push(self, next_run, index):
heapq.heappush(self._ordering, (next_run, index))
def __len__(self):
return len(self._ordering)
def fetch_next_run(self, index):
for (next_run, a_index) in self._ordering:
if a_index == index:
return next_run
return None
def pop(self):
return heapq.heappop(self._ordering)
def _on_failure_log(log, cb, kind, spacing, exc_info, traceback=None):
cb_name = utils.get_callback_name(cb)
if all(exc_info) or not traceback:
log.error("Failed to call %s '%s' (it runs every %0.2f"
" seconds)", kind, cb_name, spacing, exc_info=exc_info)
else:
log.error("Failed to call %s '%s' (it runs every %0.2f"
" seconds):\n%s", kind, cb_name, spacing, traceback)
class _Runner(object):
def __init__(self, now_func, retain_traceback=True):
self.now_func = now_func
self.retain_traceback = retain_traceback
def run(self, work):
failure = None
started_at = self.now_func()
try:
work()
except Exception:
failure = utils.Failure(self.retain_traceback)
finished_at = self.now_func()
return (started_at, finished_at, failure)
def _build(now_func, works, next_run_scheduler):
schedule = _Schedule()
now = None
immediates = collections.deque()
for index, work in enumerate(works):
cb = work.callback
if cb._periodic_run_immediately:
immediates.append(index)
else:
if now is None:
now = now_func()
next_run = next_run_scheduler(cb, now)
schedule.push(next_run, index)
return immediates, schedule
_SCHEDULE_RETRY_EXCEPTIONS = (RuntimeError, futurist.RejectedSubmission)
class ExecutorFactory(object):
shutdown = True
def __call__(self):
raise NotImplementedError()
class ExistingExecutor(ExecutorFactory):
def __init__(self, executor, shutdown=False):
self._executor = executor
self.shutdown = shutdown
def __call__(self):
return self._executor
class PeriodicWorker(object):
MAX_LOOP_IDLE = 30
_NO_OP_ARGS = ()
_NO_OP_KWARGS = {}
_INITIAL_METRICS = {
'runs': 0,
'elapsed': 0,
'elapsed_waiting': 0,
'failures': 0,
'successes': 0,
'requested_stop': False,
}
_RESCHEDULE_DELAY = 0.9
_RESCHEDULE_JITTER = 0.2
DEFAULT_JITTER = fractions.Fraction(5, 100)
BUILT_IN_STRATEGIES = {
'last_started': (
_last_started_strategy,
_now_plus_periodicity,
),
'last_started_jitter': (
_add_jitter(DEFAULT_JITTER)(_last_started_strategy),
_now_plus_periodicity,
),
'last_finished': (
_last_finished_strategy,
_now_plus_periodicity,
),
'last_finished_jitter': (
_add_jitter(DEFAULT_JITTER)(_last_finished_strategy),
_now_plus_periodicity,
),
'aligned_last_finished': (
_aligned_last_finished_strategy,
_now_plus_periodicity,
),
'aligned_last_finished_jitter': (
_add_jitter(DEFAULT_JITTER)(_aligned_last_finished_strategy),
_now_plus_periodicity,
),
}
@classmethod
def create(cls, objects, exclude_hidden=True,
log=None, executor_factory=None,
cond_cls=threading.Condition, event_cls=threading.Event,
schedule_strategy='last_started', now_func=utils.now,
on_failure=None, args=_NO_OP_ARGS, kwargs=_NO_OP_KWARGS):
callables = []
for obj in objects:
for (name, member) in inspect.getmembers(obj):
if name.startswith("_") and exclude_hidden:
continue
if six.callable(member):
missing_attrs = _check_attrs(member)
if not missing_attrs:
callables.append((member, args, kwargs))
return cls(callables, log=log, executor_factory=executor_factory,
cond_cls=cond_cls, event_cls=event_cls,
schedule_strategy=schedule_strategy, now_func=now_func,
on_failure=on_failure)
def __init__(self, callables, log=None, executor_factory=None,
cond_cls=threading.Condition, event_cls=threading.Event,
schedule_strategy='last_started', now_func=utils.now,
on_failure=None):
if on_failure is not None and not six.callable(on_failure):
raise ValueError("On failure callback %r must be"
" callable" % on_failure)
self._tombstone = event_cls()
self._waiter = cond_cls()
self._dead = event_cls()
self._active = event_cls()
self._cond_cls = cond_cls
self._watchers = []
self._works = []
for (cb, args, kwargs) in callables:
if not six.callable(cb):
raise ValueError("Periodic callback %r must be callable" % cb)
missing_attrs = _check_attrs(cb)
if missing_attrs:
raise ValueError("Periodic callback %r missing required"
" attributes %s" % (cb, missing_attrs))
if cb._is_periodic:
if args is None:
args = self._NO_OP_ARGS
if kwargs is None:
kwargs = self._NO_OP_KWARGS.copy()
cb_metrics = self._INITIAL_METRICS.copy()
work = Work(utils.get_callback_name(cb), cb, args, kwargs)
watcher = Watcher(cb_metrics, work)
self._works.append(work)
self._watchers.append((cb_metrics, watcher))
try:
strategy = self.BUILT_IN_STRATEGIES[schedule_strategy]
self._schedule_strategy = strategy[0]
self._initial_schedule_strategy = strategy[1]
except KeyError:
valid_strategies = sorted(self.BUILT_IN_STRATEGIES.keys())
raise ValueError("Scheduling strategy '%s' must be one of"
" %s selectable strategies"
% (schedule_strategy, valid_strategies))
self._immediates, self._schedule = _build(
now_func, self._works, self._initial_schedule_strategy)
self._log = log or LOG
if executor_factory is None:
executor_factory = lambda: futurist.SynchronousExecutor()
if on_failure is None:
on_failure = functools.partial(_on_failure_log, self._log)
self._on_failure = on_failure
self._executor_factory = executor_factory
self._now_func = now_func
def __len__(self):
return len(self._works)
def _run(self, executor, runner, auto_stop_when_empty):
barrier = utils.Barrier(cond_cls=self._cond_cls)
rnd = random.SystemRandom()
def _process_scheduled():
with self._waiter:
while (not self._schedule and
not self._tombstone.is_set() and
not self._immediates):
self._waiter.wait(self.MAX_LOOP_IDLE)
if self._tombstone.is_set():
return
if self._immediates:
return
submitted_at = now = self._now_func()
next_run, index = self._schedule.pop()
when_next = next_run - now
if when_next <= 0:
work = self._works[index]
self._log.debug("Submitting periodic"
" callback '%s'", work.name)
try:
fut = executor.submit(runner.run, work)
except _SCHEDULE_RETRY_EXCEPTIONS as exc:
delay = (self._RESCHEDULE_DELAY +
rnd.random() * self._RESCHEDULE_JITTER)
self._log.error("Failed to submit periodic callback "
"'%s', retrying after %.2f sec. "
"Error: %s",
work.name, delay, exc)
self._schedule.push(self._now_func() + delay,
index)
else:
barrier.incr()
fut.add_done_callback(functools.partial(_on_done,
PERIODIC,
work, index,
submitted_at))
else:
self._schedule.push(next_run, index)
when_next = min(when_next, self.MAX_LOOP_IDLE)
self._waiter.wait(when_next)
def _process_immediates():
with self._waiter:
try:
index = self._immediates.popleft()
except IndexError:
pass
else:
work = self._works[index]
submitted_at = self._now_func()
self._log.debug("Submitting immediate"
" callback '%s'", work.name)
try:
fut = executor.submit(runner.run, work)
except _SCHEDULE_RETRY_EXCEPTIONS as exc:
self._log.error("Failed to submit immediate callback "
"'%s', retrying. Error: %s", work.name,
exc)
self._immediates.append(index)
else:
barrier.incr()
fut.add_done_callback(functools.partial(_on_done,
IMMEDIATE,
work, index,
submitted_at))
def _on_done(kind, work, index, submitted_at, fut):
cb = work.callback
started_at, finished_at, failure = fut.result()
cb_metrics, _watcher = self._watchers[index]
cb_metrics['runs'] += 1
schedule_again = True
if failure is not None:
if not issubclass(failure.exc_type, NeverAgain):
cb_metrics['failures'] += 1
try:
self._on_failure(cb, kind, cb._periodic_spacing,
failure.exc_info,
traceback=failure.traceback)
except Exception as exc:
self._log.error("On failure callback %r raised an"
" unhandled exception. Error: %s",
self._on_failure, exc)
else:
cb_metrics['successes'] += 1
schedule_again = False
self._log.debug("Periodic callback '%s' raised "
"'NeverAgain' "
"exception, stopping any further "
"execution of it.", work.name)
else:
cb_metrics['successes'] += 1
elapsed = max(0, finished_at - started_at)
elapsed_waiting = max(0, started_at - submitted_at)
cb_metrics['elapsed'] += elapsed
cb_metrics['elapsed_waiting'] += elapsed_waiting
with self._waiter:
with barrier.decr_cm() as am_left:
if schedule_again:
next_run = self._schedule_strategy(cb, started_at,
finished_at,
cb_metrics)
self._schedule.push(next_run, index)
else:
cb_metrics['requested_stop'] = True
if (am_left <= 0 and
len(self._immediates) == 0 and
len(self._schedule) == 0 and
auto_stop_when_empty):
self._tombstone.set()
self._waiter.notify_all()
try:
while not self._tombstone.is_set():
_process_immediates()
_process_scheduled()
finally:
barrier.wait()
def _on_finish(self):
if not self._log.isEnabledFor(logging.DEBUG):
return
cols = list(_DEFAULT_COLS)
for c in ['Runs in', 'Active', 'Periodicity']:
cols.remove(c)
self._log.debug(
"Stopped running %s callbacks:\n%s",
len(self._works),
self.pformat(columns=cols) if prettytable
else "statistics not available, PrettyTable missing"
)
def pformat(self, columns=_DEFAULT_COLS):
if prettytable is None:
raise ImportError(
"PrettyTable is required to use the pformat method")
if not isinstance(columns, (list, tuple)):
columns = list(columns)
if not columns:
raise ValueError("At least one of %s columns must"
" be provided" % (set(_DEFAULT_COLS)))
for c in columns:
if c not in _DEFAULT_COLS:
raise ValueError("Unknown column '%s', valid column names"
" are %s" % (c, set(_DEFAULT_COLS)))
tbl_rows = []
now = self._now_func()
for index, work in enumerate(self._works):
_cb_metrics, watcher = self._watchers[index]
next_run = self._schedule.fetch_next_run(index)
if watcher.requested_stop:
active = False
runs_in = 'n/a'
elif next_run is None:
active = True
runs_in = 'n/a'
else:
active = False
runs_in = "%0.4fs" % (max(0.0, next_run - now))
cb_row = {
'Name': work.name,
'Active': active,
'Periodicity': work.callback._periodic_spacing,
'Runs': watcher.runs,
'Runs in': runs_in,
'Failures': watcher.failures,
'Successes': watcher.successes,
'Stop Requested': watcher.requested_stop,
}
try:
cb_row_avgs = [
"%0.4fs" % watcher.average_elapsed,
"%0.4fs" % watcher.average_elapsed_waiting,
]
except ZeroDivisionError:
cb_row_avgs = ['.', '.']
cb_row['Average elapsed'] = cb_row_avgs[0]
cb_row['Average elapsed waiting'] = cb_row_avgs[1]
tbl_rows.append(cb_row)
tbl = prettytable.PrettyTable(columns)
for cb_row in tbl_rows:
tbl_row = []
for c in columns:
tbl_row.append(cb_row[c])
tbl.add_row(tbl_row)
return tbl.get_string()
|
Apache License 2.0
|
zebrafishlabs/fastly-python
|
fastly/__init__.py
|
FastlyConnection.create_condition
|
python
|
def create_condition(
self,
service_id,
version_number,
name,
_type,
statement,
priority="10",
comment=None):
body = self._formdata({
"name": name,
"type": _type,
"statement": statement,
"priority": priority,
"comment": comment,
}, FastlyCondition.FIELDS)
content = self._fetch("/service/%s/version/%d/condition" % (service_id, version_number), method="POST", body=body)
return FastlyCondition(self, content)
|
Creates a new condition.
|
https://github.com/zebrafishlabs/fastly-python/blob/72be5db55819c0bd4316ab00170446d4707b5d06/fastly/__init__.py#L245-L263
|
from datetime import datetime
import httplib2
import json
import re
import urllib
from version import __version__
FASTLY_SCHEME = "https"
FASTLY_HOST = "api.fastly.com"
FASTLY_SESSION_REGEX = re.compile("(fastly\.session=[^;]+);")
class FastlyRoles(object):
USER = "user"
BILLING = "billing"
ENGINEER = "engineer"
SUPERUSER = "superuser"
class FastlyCacheSettingsAction(object):
CACHE = "cache"
PASS = "pass"
RESTART = "restart"
class FastlyConditionType(object):
RESPONSE = "response"
CACHE = "cache"
REQUEST = "request"
FETCH = "fetch"
class FastlyHeaderAction(object):
SET = "set"
APPEND = "append"
DELETE = "delete"
REGEX = "regex"
REGEX_ALL = "regex_repeat"
class FastlyHeaderType(object):
RESPONSE = "response"
FETCH = "fetch"
CACHE = "cache"
REQUEST = "request"
class FastlyRequestSettingAction(object):
LOOKUP = "lookup"
PASS = "pass"
class FastlyForwardedForAction(object):
CLEAR = "clear"
LEAVE = "leave"
APPEND = "append"
APPEND_ALL = "append_all"
OVERWRITE = "overwrite"
class FastlyStatsType(object):
ALL = "all"
DAILY = "daily"
HOURLY = "hourly"
MINUTELY = "minutely"
class FastlyDirectorType(object):
RANDOM = 1
ROUNDROBIN = 2
HASH = 3
CLIENT = 4
class FastlyConnection(object):
def __init__(self, api_key):
self._session = None
self._api_key = api_key
self._fully_authed = False
@property
def fully_authed(self):
return self._fully_authed
def login(self, user, password):
body = self._formdata({
"user": user,
"password": password,
}, ["user", "password"])
content = self._fetch("/login", method="POST", body=body)
self._fully_authed = True
return FastlySession(self, content)
def list_backends(self, service_id, version_number):
content = self._fetch("/service/%s/version/%d/backend" % (service_id, version_number))
return map(lambda x: FastlyBackend(self, x), content)
def create_backend(
self,
service_id,
version_number,
name,
address,
use_ssl=False,
port=80,
connect_timeout=1000,
first_byte_timeout=15000,
between_bytes_timeout=10000,
error_threshold=0,
max_conn=20,
weight=100,
auto_loadbalance=False,
shield=None,
request_condition=None,
healthcheck=None,
comment=None,
ssl_cert_hostname=None,
ssl_sni_hostname=None,
min_tls_version=None,
max_tls_version=None,):
body = self._formdata({
"name": name,
"address": address,
"use_ssl": use_ssl,
"port": port,
"connect_timeout": connect_timeout,
"first_byte_timeout": first_byte_timeout,
"between_bytes_timeout": between_bytes_timeout,
"error_threshold": error_threshold,
"max_conn": max_conn,
"weight": weight,
"auto_loadbalance": auto_loadbalance,
"shield": shield,
"request_condition": request_condition,
"healthcheck": healthcheck,
"comment": comment,
"ssl_cert_hostname": ssl_cert_hostname,
"ssl_sni_hostname": ssl_sni_hostname,
"min_tls_version": min_tls_version,
"max_tls_version": max_tls_version,
}, FastlyBackend.FIELDS)
content = self._fetch("/service/%s/version/%d/backend" % (service_id, version_number), method="POST", body=body)
return FastlyBackend(self, content)
def get_backend(self, service_id, version_number, name):
content = self._fetch("/service/%s/version/%d/backend/%s" % (service_id, version_number, urllib.quote(name, safe='')))
return FastlyBackend(self, content)
def update_backend(self, service_id, version_number, name_key, **kwargs):
body = self._formdata(kwargs, FastlyBackend.FIELDS)
content = self._fetch("/service/%s/version/%d/backend/%s" % (service_id, version_number, urllib.quote(name_key, safe='')), method="PUT", body=body)
return FastlyBackend(self, content)
def delete_backend(self, service_id, version_number, name):
content = self._fetch("/service/%s/version/%d/backend/%s" % (service_id, version_number, urllib.quote(name, safe='')), method="DELETE")
return self._status(content)
def check_backends(self, service_id, version_number):
content = self._fetch("/service/%s/version/%d/backend/check_all" % (service_id, version_number))
return content
def list_cache_settings(self, service_id, version_number):
content = self._fetch("/service/%s/version/%d/cache_settings" % (service_id, version_number))
return map(lambda x: FastlyCacheSettings(self, x), content)
def create_cache_settings(
self,
service_id,
version_number,
name,
action,
ttl=None,
stale_ttl=None,
cache_condition=None):
body = self._formdata({
"name": name,
"action": action,
"ttl": ttl,
"stale_ttl": stale_ttl,
"cache_condition": cache_condition,
}, FastlyCacheSettings.FIELDS)
content = self._fetch("/service/%s/version/%d/cache_settings" % (service_id, version_number), method="POST", body=body)
return FastlyCacheSettings(self, content)
def get_cache_settings(self, service_id, version_number, name):
content = self._fetch("/service/%s/version/%d/cache_settings/%s" % (service_id, version_number, urllib.quote(name, safe='')))
return FastlyCacheSettings(self, content)
def update_cache_settings(self, service_id, version_number, name_key, **kwargs):
body = self._formdata(kwargs, FastlyCacheSettings.FIELDS)
content = self._fetch("/service/%s/version/%d/cache_settings/%s" % (service_id, version_number, urllib.quote(name_key, safe='')), method="PUT", body=body)
return FastlyCacheSettings(self, content)
def delete_cache_settings(self, service_id, version_number, name):
content = self._fetch("/service/%s/version/%d/cache_settings/%s" % (service_id, version_number, urllib.quote(name, safe='')), method="DELETE")
return self._status(content)
def list_conditions(self, service_id, version_number):
content = self._fetch("/service/%s/version/%d/condition" % (service_id, version_number))
return map(lambda x: FastlyCondition(self, x), content)
|
BSD 2-Clause Simplified License
|
pymzml/pymzml
|
pymzml/file_classes/indexedGzip.py
|
IndexedGzip.__del__
|
python
|
def __del__(self):
self.Reader.close()
self.file_handler.close()
|
Close handlers when deleting object.
|
https://github.com/pymzml/pymzml/blob/ba552046719f754ffc3bc7cbdc2977b5f3363ae6/pymzml/file_classes/indexedGzip.py#L53-L56
|
import codecs
import gzip
from xml.etree.ElementTree import XML
from .. import spec
from ..utils.GSGR import GSGR
class IndexedGzip:
def __init__(self, path, encoding):
self.path = path
self.file_handler = codecs.getreader(encoding)(gzip.open(path))
self.offset_dict = dict()
self._build_index()
|
MIT License
|
dallinger/dallinger
|
dallinger/mturk.py
|
MTurkService.increment_named_qualification_score
|
python
|
def increment_named_qualification_score(self, name, worker_id, notify=False):
result = self.current_named_qualification_score(name, worker_id)
current_score = result["score"] or 0
new_score = current_score + 1
qtype_id = result["qtype"]["id"]
self.assign_qualification(qtype_id, worker_id, new_score, notify)
return {"qtype": result["qtype"], "score": new_score}
|
Increment the current qualification score for a worker, on a
qualification with the provided name.
|
https://github.com/dallinger/dallinger/blob/2bc309c422935d372a7568cc18340e3b5b3f6a21/dallinger/mturk.py#L389-L399
|
import boto3
import datetime
import logging
import time
from botocore.exceptions import ClientError
from botocore.exceptions import NoCredentialsError
from cached_property import cached_property
logger = logging.getLogger(__file__)
PERCENTAGE_APPROVED_REQUIREMENT_ID = "000000000000000000L0"
LOCALE_REQUIREMENT_ID = "00000000000000000071"
MAX_SUPPORTED_BATCH_SIZE = 100
class MTurkServiceException(Exception):
class RemoteAPICallTimedOut(MTurkServiceException):
class DuplicateQualificationNameError(MTurkServiceException):
class QualificationNotFoundException(MTurkServiceException):
class WorkerLacksQualification(MTurkServiceException):
class RevokedQualification(MTurkServiceException):
class NonExistentSubscription(MTurkServiceException):
class SNSService(object):
max_wait_secs = 12
def __init__(
self, aws_access_key_id, aws_secret_access_key, region_name, confirm=True
):
self.aws_key = aws_access_key_id
self.aws_secret = aws_secret_access_key
self.region_name = region_name
self.do_confirm_subscription = confirm
@cached_property
def _sns(self):
session = boto3.session.Session(
aws_access_key_id=self.aws_key,
aws_secret_access_key=self.aws_secret,
region_name=self.region_name,
)
return session.client("sns")
def confirm_subscription(self, token, topic):
logger.warning("Confirming SNS subsription.")
self._sns.confirm_subscription(
Token=token,
TopicArn=topic,
)
def create_subscription(self, experiment_id, notification_url):
logger.warning(
"Creating new SNS subscription for {}...".format(notification_url)
)
protocol = "https" if notification_url.startswith("https") else "http"
topic = self._sns.create_topic(Name=experiment_id)
subscription = self._sns.subscribe(
TopicArn=topic["TopicArn"],
Protocol=protocol,
Endpoint=notification_url,
ReturnSubscriptionArn=True,
)
start = time.time()
while self._awaiting_confirmation(subscription):
elapsed = time.time() - start
if elapsed > self.max_wait_secs:
raise RemoteAPICallTimedOut("Too long")
logger.warning("Awaiting SNS subscription confirmation...")
time.sleep(1)
logger.warning("Subscription confirmed.")
return topic["TopicArn"]
def cancel_subscription(self, experiment_id):
logger.warning("Cancelling SNS subscription")
topic_id = self._get_sns_topic_for_experiment(experiment_id)
if topic_id is None:
raise NonExistentSubscription(
"No SNS subscription found for {}".format(experiment_id)
)
self._sns.delete_topic(TopicArn=topic_id)
return True
def _awaiting_confirmation(self, subscription):
if not self.do_confirm_subscription:
return False
report = self._sns.get_subscription_attributes(
SubscriptionArn=subscription["SubscriptionArn"]
)
status = report["Attributes"]["PendingConfirmation"]
return status == "true"
def _get_sns_topic_for_experiment(self, experiment_id):
experiment_topics = (
t for t in self._all_topics() if t.endswith(":" + experiment_id)
)
try:
return next(experiment_topics)
except StopIteration:
return None
def _all_topics(self):
done = False
next_token = None
while not done:
if next_token is not None:
response = self._sns.list_topics(NextToken=next_token)
else:
response = self._sns.list_topics()
if response:
for t in response["Topics"]:
yield t["TopicArn"]
if "NextToken" in response:
next_token = response["NextToken"]
else:
done = True
class MTurkQuestions(object):
@staticmethod
def external(ad_url, frame_height=600):
q = (
'<ExternalQuestion xmlns="http://mechanicalturk.amazonaws.com/'
'AWSMechanicalTurkDataSchemas/2006-07-14/ExternalQuestion.xsd">'
"<ExternalURL>{}</ExternalURL>"
"<FrameHeight>{}</FrameHeight></ExternalQuestion>"
)
return q.format(ad_url, frame_height)
@staticmethod
def compensation(title="Compensation HIT", sandbox=False, frame_height=600):
if sandbox:
action = "https://workersandbox.mturk.com/mturk/externalSubmit"
else:
action = "https://www.mturk.com/mturk/externalSubmit"
q = (
'<HTMLQuestion xmlns="http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd">'
"<HTMLContent><![CDATA[<!DOCTYPE html><html>"
"<head>"
'<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>'
'<script type="text/javascript" src="https://s3.amazonaws.com/mturk-public/externalHIT_v1.js"></script>'
"</head>"
"<body>"
'<form name="mturk_form" method="post" id="mturk_form" action="{}">'
'<input type="hidden" value="" name="assignmentId" id="assignmentId"/>'
"<h1>{}</h1>"
"<p>We are sorry that you encountered difficulties with our experiment. "
"We will compensate you immediately upon submission of this HIT.</p>"
'<input type="hidden" name="some-input-required" value="anything" ></input>'
'<input type="submit" id="submitButton" value="Submit" /></p></form>'
'<script language="Javascript">turkSetAssignmentID();</script>'
"</body></html>]]>"
"</HTMLContent>"
"<FrameHeight>{}</FrameHeight>"
"</HTMLQuestion>"
)
return q.format(action, title, frame_height)
class MTurkQualificationRequirements(object):
@staticmethod
def min_approval(percentage):
return {
"QualificationTypeId": PERCENTAGE_APPROVED_REQUIREMENT_ID,
"Comparator": "GreaterThanOrEqualTo",
"IntegerValues": [percentage],
"RequiredToPreview": True,
}
@staticmethod
def restrict_to_countries(countries):
return {
"QualificationTypeId": LOCALE_REQUIREMENT_ID,
"Comparator": "EqualTo",
"LocaleValues": [{"Country": country} for country in countries],
"RequiredToPreview": True,
}
@staticmethod
def must_have(qualification_id):
return {
"QualificationTypeId": qualification_id,
"Comparator": "Exists",
"RequiredToPreview": True,
}
@staticmethod
def must_not_have(qualification_id):
return {
"QualificationTypeId": qualification_id,
"Comparator": "DoesNotExist",
"RequiredToPreview": True,
}
class MTurkService(object):
def __init__(
self,
aws_access_key_id,
aws_secret_access_key,
region_name,
sandbox=True,
max_wait_secs=0,
):
self.aws_key = aws_access_key_id
self.aws_secret = aws_secret_access_key
self.region_name = region_name
self.is_sandbox = sandbox
self.max_wait_secs = max_wait_secs
@cached_property
def mturk(self):
session = boto3.session.Session(
aws_access_key_id=self.aws_key,
aws_secret_access_key=self.aws_secret,
region_name=self.region_name,
)
return session.client(
"mturk", endpoint_url=self.host, region_name=self.region_name
)
@cached_property
def sns(self):
return SNSService(
aws_access_key_id=self.aws_key,
aws_secret_access_key=self.aws_secret,
region_name=self.region_name,
)
@property
def host(self):
if self.is_sandbox:
template = u"https://mturk-requester-sandbox.{}.amazonaws.com"
else:
template = u"https://mturk-requester.{}.amazonaws.com"
return template.format(self.region_name)
def account_balance(self):
response = self.mturk.get_account_balance()
return float(response["AvailableBalance"])
def check_credentials(self):
try:
return bool(self.mturk.get_account_balance())
except NoCredentialsError:
raise MTurkServiceException("No AWS credentials set!")
except ClientError:
raise MTurkServiceException("Invalid AWS credentials!")
except Exception as ex:
raise MTurkServiceException(
"Error checking credentials: {}".format(str(ex))
)
def confirm_subscription(self, token, topic):
self.sns.confirm_subscription(token=token, topic=topic)
def create_qualification_type(self, name, description, status="Active"):
try:
response = self.mturk.create_qualification_type(
Name=name, Description=description, QualificationTypeStatus=status
)
except Exception as ex:
if "already created a QualificationType with this name" in str(ex):
raise DuplicateQualificationNameError(str(ex))
else:
raise
return self._translate_qtype(response["QualificationType"])
def get_qualification_type_by_name(self, name):
max_fuzzy_matches_to_check = 100
query = name.upper()
args = {
"Query": query,
"MustBeRequestable": False,
"MustBeOwnedByCaller": True,
"MaxResults": max_fuzzy_matches_to_check,
}
results = self.mturk.list_qualification_types(**args)["QualificationTypes"]
start = time.time()
while not results:
elapsed = time.time() - start
if elapsed > self.max_wait_secs:
return None
time.sleep(1)
results = self.mturk.list_qualification_types(**args)["QualificationTypes"]
qualifications = [self._translate_qtype(r) for r in results]
if len(qualifications) > 1:
for qualification in qualifications:
if qualification["name"].upper() == query:
return qualification
raise MTurkServiceException("{} was not a unique name".format(query))
return qualifications[0]
def assign_qualification(self, qualification_id, worker_id, score, notify=False):
return self._is_ok(
self.mturk.associate_qualification_with_worker(
QualificationTypeId=qualification_id,
WorkerId=worker_id,
IntegerValue=score,
SendNotification=notify,
)
)
def assign_named_qualification(self, name, worker_id, score, notify=False):
qtype = self.get_qualification_type_by_name(name)
if qtype is None:
raise QualificationNotFoundException(
'No Qualification exists with name "{}"'.format(name)
)
return self._is_ok(
self.mturk.associate_qualification_with_worker(
QualificationTypeId=qtype["id"],
WorkerId=worker_id,
IntegerValue=score,
SendNotification=notify,
)
)
def increment_qualification_score(self, qualification_id, worker_id, notify=False):
try:
current_score = self.current_qualification_score(
qualification_id, worker_id
)
except (WorkerLacksQualification, RevokedQualification):
current_score = 0
new_score = current_score + 1
self.assign_qualification(qualification_id, worker_id, new_score, notify)
return {"qtype": qualification_id, "score": new_score}
|
MIT License
|
openstack/murano
|
murano/db/migration/alembic_migrations/versions/005_environment-template.py
|
upgrade
|
python
|
def upgrade():
op.create_table(
'environment-template',
sa.Column('created', sa.DateTime(), nullable=False),
sa.Column('updated', sa.DateTime(), nullable=False),
sa.Column('id', sa.String(length=255), nullable=False),
sa.Column('name', sa.String(length=255), nullable=False),
sa.Column('tenant_id', sa.String(length=36), nullable=False),
sa.Column('version', sa.BigInteger(), nullable=False),
sa.Column('description', sa.Text(), nullable=False),
sa.Column('networking', sa.Text(), nullable=True),
sa.PrimaryKeyConstraint('id'),
sa.UniqueConstraint('tenant_id', 'name'),
mysql_engine=MYSQL_ENGINE,
mysql_charset=MYSQL_CHARSET
)
|
It creates the table environment-template.
The name plus the tenant_id should be unique in the table,
since each tenant cannot duplicate template names.
|
https://github.com/openstack/murano/blob/314c85db8addae184a77c8b47217b1f28e4a1b67/murano/db/migration/alembic_migrations/versions/005_environment-template.py#L33-L54
|
from alembic import op
import sqlalchemy as sa
revision = '005'
down_revision = '004'
MYSQL_ENGINE = 'InnoDB'
MYSQL_CHARSET = 'utf8'
|
Apache License 2.0
|
hyperledger/aries-cloudagent-python
|
aries_cloudagent/wallet/askar.py
|
AskarWallet.verify_message
|
python
|
async def verify_message(
self,
message: Union[List[bytes], bytes],
signature: bytes,
from_verkey: str,
key_type: KeyType,
) -> bool:
if not from_verkey:
raise WalletError("Verkey not provided")
if not signature:
raise WalletError("Signature not provided")
if not message:
raise WalletError("Message not provided")
verkey = b58_to_bytes(from_verkey)
if key_type == KeyType.ED25519:
try:
pk = Key.from_public_bytes(KeyAlg.ED25519, verkey)
return pk.verify_signature(message, signature)
except AskarError as err:
raise WalletError("Exception when verifying message signature") from err
return verify_signed_message(
message=message,
signature=signature,
verkey=verkey,
key_type=key_type,
)
|
Verify a signature against the public key of the signer.
Args:
message: The message to verify
signature: The signature to verify
from_verkey: Verkey to use in verification
key_type: The key type to derive the signature verification algorithm from
Returns:
True if verified, else False
Raises:
WalletError: If the verkey is not provided
WalletError: If the signature is not provided
WalletError: If the message is not provided
WalletError: If another backend error occurs
|
https://github.com/hyperledger/aries-cloudagent-python/blob/fec69f1a2301e4745fc9d40cea190050e3f595fa/aries_cloudagent/wallet/askar.py#L606-L654
|
import asyncio
import json
import logging
from typing import List, Sequence, Tuple, Union
from aries_askar import (
AskarError,
AskarErrorCode,
Entry,
Key,
KeyAlg,
SeedMethod,
Session,
)
from ..askar.didcomm.v1 import pack_message, unpack_message
from ..askar.profile import AskarProfileSession
from ..did.did_key import DIDKey
from ..ledger.base import BaseLedger
from ..ledger.endpoint_type import EndpointType
from ..ledger.error import LedgerConfigError
from ..storage.askar import AskarStorage
from ..storage.base import StorageRecord, StorageDuplicateError, StorageNotFoundError
from .base import BaseWallet, KeyInfo, DIDInfo
from .crypto import (
sign_message,
validate_seed,
verify_signed_message,
)
from .did_method import DIDMethod
from .error import WalletError, WalletDuplicateError, WalletNotFoundError
from .key_type import KeyType
from .util import b58_to_bytes, bytes_to_b58
CATEGORY_DID = "did"
CATEGORY_CONFIG = "config"
RECORD_NAME_PUBLIC_DID = "default_public_did"
LOGGER = logging.getLogger(__name__)
class AskarWallet(BaseWallet):
def __init__(self, session: AskarProfileSession):
self._session = session
@property
def session(self) -> Session:
return self._session
async def create_signing_key(
self, key_type: KeyType, seed: str = None, metadata: dict = None
) -> KeyInfo:
if metadata is None:
metadata = {}
try:
keypair = _create_keypair(key_type, seed)
verkey = bytes_to_b58(keypair.get_public_bytes())
await self._session.handle.insert_key(
verkey, keypair, metadata=json.dumps(metadata)
)
except AskarError as err:
if err.code == AskarErrorCode.DUPLICATE:
raise WalletDuplicateError(
"Verification key already present in wallet"
) from None
raise WalletError("Error creating signing key") from err
return KeyInfo(verkey=verkey, metadata=metadata, key_type=key_type)
async def get_signing_key(self, verkey: str) -> KeyInfo:
if not verkey:
raise WalletNotFoundError("No key identifier provided")
key = await self._session.handle.fetch_key(verkey)
if not key:
raise WalletNotFoundError("Unknown key: {}".format(verkey))
metadata = json.loads(key.metadata or "{}")
return KeyInfo(verkey=verkey, metadata=metadata, key_type=KeyType.ED25519)
async def replace_signing_key_metadata(self, verkey: str, metadata: dict):
if not verkey:
raise WalletNotFoundError("No key identifier provided")
key = await self._session.handle.fetch_key(verkey, for_update=True)
if not key:
raise WalletNotFoundError("Keypair not found")
await self._session.handle.update_key(
verkey, metadata=json.dumps(metadata or {}), tags=key.tags
)
async def create_local_did(
self,
method: DIDMethod,
key_type: KeyType,
seed: str = None,
did: str = None,
metadata: dict = None,
) -> DIDInfo:
if not method.supports_key_type(key_type):
raise WalletError(
f"Invalid key type {key_type.key_type}"
f" for DID method {method.method_name}"
)
if method == DIDMethod.KEY and did:
raise WalletError("Not allowed to set DID for DID method 'key'")
if not metadata:
metadata = {}
if method not in [DIDMethod.SOV, DIDMethod.KEY]:
raise WalletError(
f"Unsupported DID method for askar storage: {method.method_name}"
)
try:
keypair = _create_keypair(key_type, seed)
verkey_bytes = keypair.get_public_bytes()
verkey = bytes_to_b58(verkey_bytes)
try:
await self._session.handle.insert_key(
verkey, keypair, metadata=json.dumps(metadata)
)
except AskarError as err:
if err.code == AskarErrorCode.DUPLICATE:
pass
else:
raise WalletError("Error inserting key") from err
if method == DIDMethod.KEY:
did = DIDKey.from_public_key(verkey_bytes, key_type).did
elif not did:
did = bytes_to_b58(verkey_bytes[:16])
item = await self._session.handle.fetch(CATEGORY_DID, did, for_update=True)
if item:
did_info = item.value_json
if did_info.get("verkey") != verkey:
raise WalletDuplicateError("DID already present in wallet")
if did_info.get("metadata") != metadata:
did_info["metadata"] = metadata
await self._session.handle.replace(
CATEGORY_DID, did, value_json=did_info, tags=item.tags
)
else:
await self._session.handle.insert(
CATEGORY_DID,
did,
value_json={
"did": did,
"method": method.method_name,
"verkey": verkey,
"verkey_type": key_type.key_type,
"metadata": metadata,
},
tags={
"method": method.method_name,
"verkey": verkey,
"verkey_type": key_type.key_type,
},
)
except AskarError as err:
raise WalletError("Error when creating local DID") from err
return DIDInfo(
did=did, verkey=verkey, metadata=metadata, method=method, key_type=key_type
)
async def get_local_dids(self) -> Sequence[DIDInfo]:
ret = []
for item in await self._session.handle.fetch_all(CATEGORY_DID):
ret.append(_load_did_entry(item))
return ret
async def get_local_did(self, did: str) -> DIDInfo:
if not did:
raise WalletNotFoundError("No identifier provided")
try:
did = await self._session.handle.fetch(CATEGORY_DID, did)
except AskarError as err:
raise WalletError("Error when fetching local DID") from err
if not did:
raise WalletNotFoundError("Unknown DID: {}".format(did))
return _load_did_entry(did)
async def get_local_did_for_verkey(self, verkey: str) -> DIDInfo:
try:
dids = await self._session.handle.fetch_all(
CATEGORY_DID, {"verkey": verkey}, limit=1
)
except AskarError as err:
raise WalletError("Error when fetching local DID for verkey") from err
if dids:
return _load_did_entry(dids[0])
raise WalletNotFoundError("No DID defined for verkey: {}".format(verkey))
async def replace_local_did_metadata(self, did: str, metadata: dict):
try:
item = await self._session.handle.fetch(CATEGORY_DID, did, for_update=True)
if not item:
raise WalletNotFoundError("Unknown DID: {}".format(did)) from None
entry_val = item.value_json
if entry_val["metadata"] != metadata:
entry_val["metadata"] = metadata
await self._session.handle.replace(
CATEGORY_DID, did, value_json=entry_val, tags=item.tags
)
except AskarError as err:
raise WalletError("Error updating DID metadata") from err
async def get_public_did(self) -> DIDInfo:
public_did = None
public_info = None
public_item = None
storage = AskarStorage(self._session)
try:
public_item = await storage.get_record(
CATEGORY_CONFIG, RECORD_NAME_PUBLIC_DID
)
except StorageNotFoundError:
dids = await self.get_local_dids()
for info in dids:
if info.metadata.get("public"):
public_did = info.did
public_info = info
break
try:
await storage.add_record(
StorageRecord(
type=CATEGORY_CONFIG,
id=RECORD_NAME_PUBLIC_DID,
value=json.dumps({"did": public_did}),
)
)
except StorageDuplicateError:
public_item = await storage.get_record(
CATEGORY_CONFIG, RECORD_NAME_PUBLIC_DID
)
if public_item:
public_did = json.loads(public_item.value)["did"]
if public_did:
try:
public_info = await self.get_local_did(public_did)
except WalletNotFoundError:
pass
return public_info
async def set_public_did(self, did: Union[str, DIDInfo]) -> DIDInfo:
if isinstance(did, str):
try:
item = await self._session.handle.fetch(
CATEGORY_DID, did, for_update=True
)
except AskarError as err:
raise WalletError("Error when fetching local DID") from err
if not item:
raise WalletNotFoundError("Unknown DID: {}".format(did))
info = _load_did_entry(item)
else:
info = did
item = None
if info.method != DIDMethod.SOV:
raise WalletError("Setting public DID is only allowed for did:sov DIDs")
public = await self.get_public_did()
if not public or public.did != info.did:
storage = AskarStorage(self._session)
if not info.metadata.get("posted"):
metadata = {**info.metadata, "posted": True}
if item:
entry_val = item.value_json
entry_val["metadata"] = metadata
await self._session.handle.replace(
CATEGORY_DID, did, value_json=entry_val, tags=item.tags
)
else:
await self.replace_local_did_metadata(info.did, metadata)
info = info._replace(
metadata=metadata,
)
await storage.update_record(
StorageRecord(
type=CATEGORY_CONFIG,
id=RECORD_NAME_PUBLIC_DID,
value="{}",
),
value=json.dumps({"did": info.did}),
tags=None,
)
public = info
return public
async def set_did_endpoint(
self,
did: str,
endpoint: str,
ledger: BaseLedger,
endpoint_type: EndpointType = None,
):
did_info = await self.get_local_did(did)
if did_info.method != DIDMethod.SOV:
raise WalletError("Setting DID endpoint is only allowed for did:sov DIDs")
metadata = {**did_info.metadata}
if not endpoint_type:
endpoint_type = EndpointType.ENDPOINT
if endpoint_type == EndpointType.ENDPOINT:
metadata[endpoint_type.indy] = endpoint
wallet_public_didinfo = await self.get_public_did()
if (
wallet_public_didinfo and wallet_public_didinfo.did == did
) or did_info.metadata.get("posted"):
if not ledger:
raise LedgerConfigError(
f"No ledger available but DID {did} is public: missing wallet-type?"
)
if not ledger.read_only:
async with ledger:
await ledger.update_endpoint_for_did(did, endpoint, endpoint_type)
await self.replace_local_did_metadata(did, metadata)
async def rotate_did_keypair_start(self, did: str, next_seed: str = None) -> str:
did_method = DIDMethod.from_did(did)
if not did_method.supports_rotation:
raise WalletError(
f"DID method '{did_method.method_name}' does not support key rotation."
)
keypair = _create_keypair(KeyType.ED25519, next_seed)
verkey = bytes_to_b58(keypair.get_public_bytes())
try:
await self._session.handle.insert_key(
verkey,
keypair,
)
except AskarError as err:
if err.code == AskarErrorCode.DUPLICATE:
pass
else:
raise WalletError(
"Error when creating new keypair for local DID"
) from err
try:
item = await self._session.handle.fetch(CATEGORY_DID, did, for_update=True)
if not item:
raise WalletNotFoundError("Unknown DID: {}".format(did)) from None
entry_val = item.value_json
metadata = entry_val.get("metadata", {})
metadata["next_verkey"] = verkey
entry_val["metadata"] = metadata
await self._session.handle.replace(
CATEGORY_DID, did, value_json=entry_val, tags=item.tags
)
except AskarError as err:
raise WalletError("Error updating DID metadata") from err
return verkey
async def rotate_did_keypair_apply(self, did: str) -> DIDInfo:
try:
item = await self._session.handle.fetch(CATEGORY_DID, did, for_update=True)
if not item:
raise WalletNotFoundError("Unknown DID: {}".format(did)) from None
entry_val = item.value_json
metadata = entry_val.get("metadata", {})
next_verkey = metadata.get("next_verkey")
if not next_verkey:
raise WalletError("Cannot rotate DID key: no next key established")
del metadata["next_verkey"]
entry_val["verkey"] = next_verkey
item.tags["verkey"] = next_verkey
await self._session.handle.replace(
CATEGORY_DID, did, value_json=entry_val, tags=item.tags
)
except AskarError as err:
raise WalletError("Error updating DID metadata") from err
async def sign_message(
self, message: Union[List[bytes], bytes], from_verkey: str
) -> bytes:
if not message:
raise WalletError("Message not provided")
if not from_verkey:
raise WalletError("Verkey not provided")
try:
keypair = await self._session.handle.fetch_key(from_verkey)
if not keypair:
raise WalletNotFoundError("Missing key for sign operation")
key = keypair.key
if key.algorithm == KeyAlg.BLS12_381_G2:
return sign_message(
message=message,
secret=key.get_secret_bytes(),
key_type=KeyType.BLS12381G2,
)
else:
return key.sign_message(message)
except AskarError as err:
raise WalletError("Exception when signing message") from err
|
Apache License 2.0
|
awni/backgammon
|
simple-bkg/submission.py
|
simpleEvaluation
|
python
|
def simpleEvaluation(state, evalArgs=None):
game,player = state
numHome = 0
for c in range(12,16):
col = game.grid[c]
if len(col)>=1 and col[0]==player:
numHome += len(col)
V = 10*len(game.offPieces[player])
V += numHome
V -= .1*len(game.barPieces[player])
return V
|
Evaluates the current game state with a simple heuristic.
@param state : Tuple of (game,player), the game is
a game object (see game.py for details, and player in
{'o','x'} designates whose turn it is.
@returns V : (scalar) evaluation of current game state
|
https://github.com/awni/backgammon/blob/aee5843b23f542b95e42549091d3f11d30b5af3e/simple-bkg/submission.py#L10-L31
|
import agent
import numpy as np
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.