repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
napalm-automation/napalm-yang
|
napalm_yang/models/openconfig/interfaces/interface/subinterfaces/subinterface/ipv6/addresses/address/vrrp/vrrp_group/state/__init__.py
|
state._get_virtual_link_local
|
python
|
def _get_virtual_link_local(self):
return self.__virtual_link_local
|
Getter method for virtual_link_local, mapped from YANG variable /interfaces/interface/subinterfaces/subinterface/ipv6/addresses/address/vrrp/vrrp_group/state/virtual_link_local (inet:ip-address)
YANG Description: For VRRP on IPv6 interfaces, sets the virtual link local
address
|
https://github.com/napalm-automation/napalm-yang/blob/9148e015b086ebe311c07deb92e168ea36fd7771/napalm_yang/models/openconfig/interfaces/interface/subinterfaces/subinterface/ipv6/addresses/address/vrrp/vrrp_group/state/__init__.py#L928-L935
|
from operator import attrgetter
from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType
from pyangbind.lib.yangtypes import RestrictedClassType
from pyangbind.lib.yangtypes import TypedListType
from pyangbind.lib.yangtypes import YANGBool
from pyangbind.lib.yangtypes import YANGListType
from pyangbind.lib.yangtypes import YANGDynClass
from pyangbind.lib.yangtypes import ReferenceType
from pyangbind.lib.base import PybindBase
from collections import OrderedDict
from decimal import Decimal
from bitarray import bitarray
import six
if six.PY3:
import builtins as __builtin__
long = int
elif six.PY2:
import __builtin__
class state(PybindBase):
__slots__ = (
"_path_helper",
"_extmethods",
"__virtual_router_id",
"__virtual_address",
"__priority",
"__preempt",
"__preempt_delay",
"__accept_mode",
"__advertisement_interval",
"__current_priority",
"__virtual_link_local",
)
_yang_name = "state"
_pybind_generated_by = "container"
def __init__(self, *args, **kwargs):
self._path_helper = False
self._extmethods = False
self.__virtual_router_id = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
restriction_dict={"range": ["1..255"]},
),
is_leaf=True,
yang_name="virtual-router-id",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
self.__virtual_address = YANGDynClass(
base=TypedListType(
allowed_type=[
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?"
},
),
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?"
},
),
]
),
is_leaf=False,
yang_name="virtual-address",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="inet:ip-address",
is_config=False,
)
self.__priority = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
restriction_dict={"range": ["1..254"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
)(
100
),
is_leaf=True,
yang_name="priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
self.__preempt = YANGDynClass(
base=YANGBool,
default=YANGBool("true"),
is_leaf=True,
yang_name="preempt",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
self.__preempt_delay = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
),
restriction_dict={"range": ["0..3600"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
0
),
is_leaf=True,
yang_name="preempt-delay",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
self.__accept_mode = YANGDynClass(
base=YANGBool,
default=YANGBool("false"),
is_leaf=True,
yang_name="accept-mode",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
self.__advertisement_interval = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
),
restriction_dict={"range": ["1..4095"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
100
),
is_leaf=True,
yang_name="advertisement-interval",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
self.__current_priority = YANGDynClass(
base=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
is_leaf=True,
yang_name="current-priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
self.__virtual_link_local = YANGDynClass(
base=[
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?"
},
),
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?"
},
),
],
is_leaf=True,
yang_name="virtual-link-local",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="inet:ip-address",
is_config=False,
)
load = kwargs.pop("load", None)
if args:
if len(args) > 1:
raise TypeError("cannot create a YANG container with >1 argument")
all_attr = True
for e in self._pyangbind_elements:
if not hasattr(args[0], e):
all_attr = False
break
if not all_attr:
raise ValueError("Supplied object did not have the correct attributes")
for e in self._pyangbind_elements:
nobj = getattr(args[0], e)
if nobj._changed() is False:
continue
setmethod = getattr(self, "_set_%s" % e)
if load is None:
setmethod(getattr(args[0], e))
else:
setmethod(getattr(args[0], e), load=load)
def _path(self):
if hasattr(self, "_parent"):
return self._parent._path() + [self._yang_name]
else:
return [
"interfaces",
"interface",
"subinterfaces",
"subinterface",
"ipv6",
"addresses",
"address",
"vrrp",
"vrrp-group",
"state",
]
def _get_virtual_router_id(self):
return self.__virtual_router_id
def _set_virtual_router_id(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int,
restriction_dict={"range": ["0..255"]},
int_size=8,
),
restriction_dict={"range": ["1..255"]},
),
is_leaf=True,
yang_name="virtual-router-id",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """virtual_router_id must be of a type compatible with uint8""",
"defined-type": "uint8",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['1..255']}), is_leaf=True, yang_name="virtual-router-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint8', is_config=False)""",
}
)
self.__virtual_router_id = t
if hasattr(self, "_set"):
self._set()
def _unset_virtual_router_id(self):
self.__virtual_router_id = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
restriction_dict={"range": ["1..255"]},
),
is_leaf=True,
yang_name="virtual-router-id",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
def _get_virtual_address(self):
return self.__virtual_address
def _set_virtual_address(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=TypedListType(
allowed_type=[
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?"
},
),
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?"
},
),
]
),
is_leaf=False,
yang_name="virtual-address",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="inet:ip-address",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """virtual_address must be of a type compatible with inet:ip-address""",
"defined-type": "inet:ip-address",
"generated-type": """YANGDynClass(base=TypedListType(allowed_type=[RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}),RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'}),]), is_leaf=False, yang_name="virtual-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='inet:ip-address', is_config=False)""",
}
)
self.__virtual_address = t
if hasattr(self, "_set"):
self._set()
def _unset_virtual_address(self):
self.__virtual_address = YANGDynClass(
base=TypedListType(
allowed_type=[
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?"
},
),
RestrictedClassType(
base_type=six.text_type,
restriction_dict={
"pattern": "((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?"
},
),
]
),
is_leaf=False,
yang_name="virtual-address",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="inet:ip-address",
is_config=False,
)
def _get_priority(self):
return self.__priority
def _set_priority(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int,
restriction_dict={"range": ["0..255"]},
int_size=8,
),
restriction_dict={"range": ["1..254"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
)(
100
),
is_leaf=True,
yang_name="priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """priority must be of a type compatible with uint8""",
"defined-type": "uint8",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), restriction_dict={'range': ['1..254']}), default=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8)(100), is_leaf=True, yang_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint8', is_config=False)""",
}
)
self.__priority = t
if hasattr(self, "_set"):
self._set()
def _unset_priority(self):
self.__priority = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
restriction_dict={"range": ["1..254"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
)(
100
),
is_leaf=True,
yang_name="priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
def _get_preempt(self):
return self.__preempt
def _set_preempt(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=YANGBool,
default=YANGBool("true"),
is_leaf=True,
yang_name="preempt",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """preempt must be of a type compatible with boolean""",
"defined-type": "boolean",
"generated-type": """YANGDynClass(base=YANGBool, default=YANGBool("true"), is_leaf=True, yang_name="preempt", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='boolean', is_config=False)""",
}
)
self.__preempt = t
if hasattr(self, "_set"):
self._set()
def _unset_preempt(self):
self.__preempt = YANGDynClass(
base=YANGBool,
default=YANGBool("true"),
is_leaf=True,
yang_name="preempt",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
def _get_preempt_delay(self):
return self.__preempt_delay
def _set_preempt_delay(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int,
restriction_dict={"range": ["0..65535"]},
int_size=16,
),
restriction_dict={"range": ["0..3600"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
0
),
is_leaf=True,
yang_name="preempt-delay",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """preempt_delay must be of a type compatible with uint16""",
"defined-type": "uint16",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['0..3600']}), default=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16)(0), is_leaf=True, yang_name="preempt-delay", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint16', is_config=False)""",
}
)
self.__preempt_delay = t
if hasattr(self, "_set"):
self._set()
def _unset_preempt_delay(self):
self.__preempt_delay = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
),
restriction_dict={"range": ["0..3600"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
0
),
is_leaf=True,
yang_name="preempt-delay",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
def _get_accept_mode(self):
return self.__accept_mode
def _set_accept_mode(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=YANGBool,
default=YANGBool("false"),
is_leaf=True,
yang_name="accept-mode",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """accept_mode must be of a type compatible with boolean""",
"defined-type": "boolean",
"generated-type": """YANGDynClass(base=YANGBool, default=YANGBool("false"), is_leaf=True, yang_name="accept-mode", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='boolean', is_config=False)""",
}
)
self.__accept_mode = t
if hasattr(self, "_set"):
self._set()
def _unset_accept_mode(self):
self.__accept_mode = YANGDynClass(
base=YANGBool,
default=YANGBool("false"),
is_leaf=True,
yang_name="accept-mode",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="boolean",
is_config=False,
)
def _get_advertisement_interval(self):
return self.__advertisement_interval
def _set_advertisement_interval(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int,
restriction_dict={"range": ["0..65535"]},
int_size=16,
),
restriction_dict={"range": ["1..4095"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
100
),
is_leaf=True,
yang_name="advertisement-interval",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """advertisement_interval must be of a type compatible with uint16""",
"defined-type": "uint16",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), restriction_dict={'range': ['1..4095']}), default=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16)(100), is_leaf=True, yang_name="advertisement-interval", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint16', is_config=False)""",
}
)
self.__advertisement_interval = t
if hasattr(self, "_set"):
self._set()
def _unset_advertisement_interval(self):
self.__advertisement_interval = YANGDynClass(
base=RestrictedClassType(
base_type=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
),
restriction_dict={"range": ["1..4095"]},
),
default=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16
)(
100
),
is_leaf=True,
yang_name="advertisement-interval",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint16",
is_config=False,
)
def _get_current_priority(self):
return self.__current_priority
def _set_current_priority(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
is_leaf=True,
yang_name="current-priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """current_priority must be of a type compatible with uint8""",
"defined-type": "uint8",
"generated-type": """YANGDynClass(base=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), is_leaf=True, yang_name="current-priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='uint8', is_config=False)""",
}
)
self.__current_priority = t
if hasattr(self, "_set"):
self._set()
def _unset_current_priority(self):
self.__current_priority = YANGDynClass(
base=RestrictedClassType(
base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8
),
is_leaf=True,
yang_name="current-priority",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="uint8",
is_config=False,
)
|
Apache License 2.0
|
hiwonjoon/icml2019-trex
|
atari/agc_demos.py
|
StackFrames
|
python
|
def StackFrames(frames):
import copy
stacked = []
stacked_obs = np.zeros((84,84,4))
for i in range(len(frames)):
if i >= 3:
stacked_obs[:,:,0] = frames[i-3]
stacked_obs[:,:,1] = frames[i-2]
stacked_obs[:,:,2] = frames[i-1]
stacked_obs[:,:,3] = frames[i]
stacked.append(np.expand_dims(copy.deepcopy(stacked_obs),0))
return stacked
|
stack every four frames to make an observation (84,84,4)
|
https://github.com/hiwonjoon/icml2019-trex/blob/44f92b61ca6c79ac22d468382d4f2fbee164fb7a/atari/agc_demos.py#L45-L57
|
import agc.dataset as ds
import agc.util as util
import numpy as np
from os import path, listdir
import cv2
cv2.ocl.setUseOpenCL(False)
import argparse
from baselines.common.trex_utils import preprocess
def GrayScaleWarpImage(image):
width=84
height=84
frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA)
return frame
def MaxSkipAndWarpFrames(trajectory_dir):
num_frames = len(listdir(trajectory_dir))
skip=4
sample_pic = np.random.choice(listdir(trajectory_dir))
image_path = path.join(trajectory_dir, sample_pic)
pic = cv2.imread(image_path)
obs_buffer = np.zeros((2,)+pic.shape, dtype=np.uint8)
max_frames = []
for i in range(num_frames):
if i % skip == skip - 2:
obs = cv2.imread(path.join(trajectory_dir, str(i) + ".png"))
obs_buffer[0] = obs
if i % skip == skip - 1:
obs = cv2.imread(path.join(trajectory_dir, str(i) + ".png"))
obs_buffer[1] = obs
image = obs_buffer.max(axis=0)
warped = GrayScaleWarpImage(image)
max_frames.append(warped)
return max_frames
|
MIT License
|
sphinx-toolbox/sphinx-toolbox
|
sphinx_toolbox/github/repos_and_users.py
|
user_role
|
python
|
def user_role(
name: str,
rawtext: str,
text: str,
lineno: int,
inliner: Inliner,
options: Dict[str, Any] = {},
content: List[str] = []
) -> Tuple[List[nodes.reference], List[system_message]]:
has_t, text, username = split_explicit_title(text)
username = nodes.unescape(username)
messages: List[system_message] = []
if has_t:
refnode = nodes.reference(
text,
text,
refuri=str(GITHUB_COM / username),
)
else:
refnode = GitHubObjectLinkNode(
name=f"@{username}",
refuri=GITHUB_COM / username,
)
return [refnode], messages
|
Adds a link to the given user / organization on GitHub.
:param name: The local name of the interpreted role, the role name actually used in the document.
:param rawtext: A string containing the entire interpreted text input, including the role and markup.
:param text: The interpreted text content.
:param lineno: The line number where the interpreted text begins.
:param inliner: The :class:`docutils.parsers.rst.states.Inliner` object that called :func:`~.user_role`.
It contains the several attributes useful for error reporting and document tree access.
:param options: A dictionary of directive options for customization (from the ``role`` directive),
to be interpreted by the function.
Used for additional attributes for the generated elements and other functionality.
:param content: A list of strings, the directive content for customization (from the ``role`` directive).
To be interpreted by the function.
:return: A list containing the created node, and a list containing any messages generated during the function.
.. clearpage::
|
https://github.com/sphinx-toolbox/sphinx-toolbox/blob/cee88c6bceac20a9ae0e381ada2fb2453ca3fc0b/sphinx_toolbox/github/repos_and_users.py#L145-L192
|
from typing import Any, Dict, List, Tuple, Union
from apeye.url import URL
from bs4 import BeautifulSoup
from docutils import nodes
from docutils.nodes import system_message
from docutils.parsers.rst.states import Inliner
from sphinx.util.nodes import split_explicit_title
from sphinx.writers.html import HTMLTranslator
from sphinx.writers.latex import LaTeXTranslator
from sphinx_toolbox.utils import GITHUB_COM, make_github_url
__all__ = [
"GitHubObjectLinkNode",
"repository_role",
"user_role",
"visit_github_object_link_node",
"depart_github_object_link_node",
]
class GitHubObjectLinkNode(nodes.reference):
name: str
url: str
def __init__(
self,
name: str,
refuri: Union[str, URL],
**kwargs,
):
self.name = str(name)
self.url = str(refuri)
super().__init__(self.name, self.name, refuri=self.url)
def copy(self) -> "GitHubObjectLinkNode":
obj = self.__class__(self.name, self.url)
obj.document = self.document
obj.source = self.source
obj.line = self.line
return obj
def repository_role(
name: str,
rawtext: str,
text: str,
lineno: int,
inliner: Inliner,
options: Dict[str, Any] = {},
content: List[str] = []
) -> Tuple[List[nodes.reference], List[system_message]]:
has_t, text, repo_name = split_explicit_title(text)
repo_name = nodes.unescape(repo_name)
repository_parts = nodes.unescape(repo_name).split('/')
if len(repository_parts) != 2:
return [], [inliner.document.reporter.warning(f"Invalid repository '{repo_name}'.")]
if has_t:
refnode = nodes.reference(
text,
text,
refuri=str(make_github_url(*repository_parts)),
)
else:
refnode = GitHubObjectLinkNode(
name=repo_name,
refuri=make_github_url(*repository_parts),
)
return [refnode], []
|
MIT License
|
ha0y/xiaomi_miot_raw
|
custom_components/xiaomi_miot_raw/light.py
|
MiotSubLight.brightness
|
python
|
def brightness(self):
try:
return self.convert_value(self.device_state_attributes[self._did_prefix + 'brightness'],"brightness",False,self._ctrl_params['brightness']['value_range'])
except:
return None
|
Return the brightness of the light.
|
https://github.com/ha0y/xiaomi_miot_raw/blob/6fe412b3fbb7fca11f0faf518c654c84228412cf/custom_components/xiaomi_miot_raw/light.py#L235-L240
|
import asyncio
import logging
from functools import partial
from datetime import timedelta
import json
from collections import OrderedDict
import homeassistant.helpers.config_validation as cv
import voluptuous as vol
from homeassistant.components.light import (
ATTR_BRIGHTNESS, ATTR_COLOR_TEMP,
ATTR_EFFECT, ATTR_HS_COLOR,
PLATFORM_SCHEMA,
SUPPORT_BRIGHTNESS, SUPPORT_COLOR,
SUPPORT_COLOR_TEMP, SUPPORT_EFFECT,
LightEntity)
from homeassistant.const import *
from homeassistant.exceptions import PlatformNotReady
from homeassistant.util import color
from miio.exceptions import DeviceException
from .deps.miio_new import MiotDevice
from .basic_dev_class import (
GenericMiotDevice,
ToggleableMiotDevice,
MiotSubDevice,
MiotSubToggleableDevice,
MiotIRDevice,
)
from . import async_generic_setup_platform
from .deps.const import (
DOMAIN,
CONF_UPDATE_INSTANT,
CONF_MAPPING,
CONF_CONTROL_PARAMS,
CONF_CLOUD,
CONF_MODEL,
ATTR_STATE_VALUE,
ATTR_MODEL,
ATTR_FIRMWARE_VERSION,
ATTR_HARDWARE_VERSION,
SCHEMA,
MAP,
DUMMY_IP,
DUMMY_TOKEN,
)
import copy
TYPE = 'light'
_LOGGER = logging.getLogger(__name__)
SCAN_INTERVAL = timedelta(seconds=10)
DEFAULT_NAME = "Generic MIoT " + TYPE
DATA_KEY = TYPE + '.' + DOMAIN
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
SCHEMA
)
@asyncio.coroutine
async def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
await async_generic_setup_platform(
hass,
config,
async_add_devices,
discovery_info,
TYPE,
{'default': MiotLight, '_ir_light': MiotIRLight},
{'default': MiotSubLight}
)
async def async_setup_entry(hass, config_entry, async_add_entities):
config = copy.copy(hass.data[DOMAIN]['configs'].get(config_entry.entry_id, dict(config_entry.data)))
await async_setup_platform(hass, config, async_add_entities)
class MiotLight(ToggleableMiotDevice, LightEntity):
def __init__(self, device, config, device_info, hass, main_mi_type):
ToggleableMiotDevice.__init__(self, device, config, device_info, hass, main_mi_type)
self._brightness = None
self._color = None
self._color_temp = None
self._effect = None
hass.async_add_job(self.create_sub_entities)
@property
def supported_features(self):
s = 0
if self._did_prefix + 'brightness' in self._mapping:
s |= SUPPORT_BRIGHTNESS
if self._did_prefix + 'color_temperature' in self._mapping:
s |= SUPPORT_COLOR_TEMP
if self._did_prefix + 'mode' in self._mapping:
s |= SUPPORT_EFFECT
if self._did_prefix + 'color' in self._mapping:
s |= SUPPORT_COLOR
return s
@property
def brightness(self):
return self._brightness
async def async_turn_on(self, **kwargs):
parameters = []
if 'switch_status' in self._ctrl_params:
parameters.append({**{'did': self._did_prefix + "switch_status", 'value': self._ctrl_params['switch_status']['power_on']},**(self._mapping[self._did_prefix + 'switch_status'])})
elif 'brightness' in self._ctrl_params and ATTR_BRIGHTNESS not in kwargs:
parameters.append({**{'did': self._did_prefix + "brightness", 'value': self._ctrl_params['brightness']['value_range'][-2]}, **(self._mapping[self._did_prefix + 'brightness'])})
if ATTR_EFFECT in kwargs:
modes = self._ctrl_params['mode']
parameters.append({**{'did': self._did_prefix + "mode", 'value': self._ctrl_params['mode'].get(kwargs[ATTR_EFFECT])}, **(self._mapping[self._did_prefix + 'mode'])})
if ATTR_BRIGHTNESS in kwargs:
self._effect = None
parameters.append({**{'did': self._did_prefix + "brightness", 'value': self.convert_value(kwargs[ATTR_BRIGHTNESS],"brightness", True, self._ctrl_params['brightness']['value_range'])}, **(self._mapping[self._did_prefix + 'brightness'])})
if ATTR_COLOR_TEMP in kwargs:
self._effect = None
valuerange = self._ctrl_params['color_temperature']['value_range']
ct = self.convert_value(kwargs[ATTR_COLOR_TEMP], "color_temperature")
ct = valuerange[0] if ct < valuerange[0] else valuerange[1] if ct > valuerange[1] else ct
parameters.append({**{'did': self._did_prefix + "color_temperature", 'value': ct}, **(self._mapping[self._did_prefix + 'color_temperature'])})
if ATTR_HS_COLOR in kwargs:
self._effect = None
intcolor = self.convert_value(kwargs[ATTR_HS_COLOR],'color')
parameters.append({**{'did': self._did_prefix + "color", 'value': intcolor}, **(self._mapping[self._did_prefix + 'color'])})
result = await self.set_property_new(multiparams = parameters)
if result:
self._state = True
self.async_write_ha_state()
async def async_turn_off(self, **kwargs):
if 'switch_status' in self._ctrl_params:
prm = self._ctrl_params['switch_status']['power_off']
result = await self.set_property_new(self._did_prefix + "switch_status",prm)
elif 'brightness' in self._ctrl_params:
prm = self._ctrl_params['brightness']['value_range'][0]
result = await self.set_property_new(self._did_prefix + "brightness",prm)
else:
raise NotImplementedError()
if result:
self._state = False
self.async_write_ha_state()
@property
def color_temp(self):
return self._color_temp
@property
def min_mireds(self):
try:
return self.convert_value(self._ctrl_params['color_temperature']['value_range'][1], "color_temperature") or 1
except KeyError:
return None
@property
def max_mireds(self):
try:
return self.convert_value(self._ctrl_params['color_temperature']['value_range'][0], "color_temperature") or 100
except KeyError:
return None
@property
def effect_list(self):
return list(self._ctrl_params['mode'].keys())
@property
def effect(self):
return self._effect
@property
def hs_color(self):
return self._color
def _handle_platform_specific_attrs(self):
super()._handle_platform_specific_attrs()
try:
self._brightness = self.convert_value(self._state_attrs[self._did_prefix + 'brightness'],"brightness",False,self._ctrl_params['brightness']['value_range'])
except KeyError: pass
try:
self._color = self.convert_value(self._state_attrs[self._did_prefix + 'color'],"color",False)
except KeyError: pass
try:
self._color_temp = self.convert_value(self._state_attrs[self._did_prefix + 'color_temperature'], "color_temperature") or 100
except KeyError: pass
try:
self._state_attrs.update({'color_temperature': self._state_attrs[self._did_prefix + 'color_temperature']})
except KeyError: pass
try:
self._state_attrs.update({'mode': self._state_attrs['mode']})
except KeyError: pass
try:
self._effect = self.get_key_by_value(self._ctrl_params['mode'],self._state_attrs[self._did_prefix + 'mode'])
except KeyError:
self._effect = None
class MiotSubLight(MiotSubToggleableDevice, LightEntity):
def __init__(self, parent_device, mapping, params, mitype):
super().__init__(parent_device, mapping, params, mitype)
self._brightness = None
self._color = None
self._color_temp = None
self._effect = None
@property
def supported_features(self):
s = 0
if 'brightness' in self._mapping:
s |= SUPPORT_BRIGHTNESS
if 'color_temperature' in self._mapping:
s |= SUPPORT_COLOR_TEMP
if 'mode' in self._mapping:
s |= SUPPORT_EFFECT
if 'color' in self._mapping:
s |= SUPPORT_COLOR
return s
@property
|
Apache License 2.0
|
dirty-cat/dirty_cat
|
dirty_cat/datasets/fetching.py
|
fetch_midwest_survey
|
python
|
def fetch_midwest_survey(load_dataframe: bool = True) -> namedtuple:
return fetch_dataset_as_namedtuple(
dataset_id=MIDWEST_SURVEY_ID,
target='Census_Region',
read_csv_kwargs={
'quotechar': "'",
'escapechar': '\\',
},
load_dataframe=load_dataframe,
)
|
Fetches the midwest survey dataset.
See Also
--------
dirty_cat.datasets.fetch_dataset_as_namedtuple : additional information
|
https://github.com/dirty-cat/dirty_cat/blob/3aeb866a11b869a360155043ede6868c7dfb8306/dirty_cat/datasets/fetching.py#L440-L455
|
import gzip
import json
import sklearn
import warnings
import pandas as pd
from pathlib import Path
from collections import namedtuple
from distutils.version import LooseVersion
from dirty_cat.datasets.utils import get_data_dir
Details = namedtuple("Details", ["name", "file_id", "description"])
Features = namedtuple("Features", ["names"])
DatasetAll = namedtuple('Dataset', ('description', 'X', 'y', 'source', 'path'))
DatasetInfoOnly = namedtuple('Dataset', ('description', 'source', 'path',
'read_csv_kwargs'))
DETAILS_DIRECTORY = "openml/openml.org/api/v1/json/data/"
FEATURES_DIRECTORY = "openml/openml.org/api/v1/json/data/features/"
DATA_DIRECTORY = "openml/openml.org/data/v1/download/"
openml_url = "https://www.openml.org/d/{ID}"
ROAD_SAFETY_ID = 42803
OPEN_PAYMENTS_ID = 42738
MIDWEST_SURVEY_ID = 42805
MEDICAL_CHARGE_ID = 42720
EMPLOYEE_SALARIES_ID = 42125
TRAFFIC_VIOLATIONS_ID = 42132
DRUG_DIRECTORY_ID = 43044
def fetch_openml_dataset(dataset_id: int,
data_directory: Path = get_data_dir()) -> dict:
data_directory = data_directory.resolve()
details_gz_path = data_directory / DETAILS_DIRECTORY / f'{dataset_id}.gz'
features_gz_path = data_directory / FEATURES_DIRECTORY / f'{dataset_id}.gz'
if not details_gz_path.is_file() or not features_gz_path.is_file():
warnings.warn(
f"Could not find the dataset {dataset_id} locally. "
"Downloading it from OpenML; this might take a while... "
"If it is interrupted, some files might be invalid/incomplete: "
"if on the following run, the fetching raises errors, you can try "
f"fixing this issue by deleting the directory {data_directory!r}."
)
_download_and_write_openml_dataset(dataset_id=dataset_id,
data_directory=data_directory)
details = _get_details(details_gz_path)
file_id = details.file_id
csv_path = data_directory / f'{details.name}.csv'
data_gz_path = data_directory / DATA_DIRECTORY / f'{file_id}.gz'
if not data_gz_path.is_file():
_download_and_write_openml_dataset(dataset_id=dataset_id,
data_directory=data_directory)
if not csv_path.is_file():
features = _get_features(features_gz_path)
_export_gz_data_to_csv(data_gz_path, csv_path, features)
url = openml_url.format(ID=dataset_id)
return {
"description": details.description,
"source": url,
"path": csv_path.resolve()
}
def _download_and_write_openml_dataset(dataset_id: int,
data_directory: Path) -> None:
from sklearn.datasets import fetch_openml
fetch_kwargs = {}
if LooseVersion(sklearn.__version__) >= LooseVersion('0.22'):
fetch_kwargs.update({'as_frame': True})
fetch_openml(
data_id=dataset_id,
data_home=str(data_directory),
**fetch_kwargs
)
def _read_json_from_gz(compressed_dir_path: Path) -> dict:
if not compressed_dir_path.is_file():
raise FileNotFoundError(f"Couldn't find file {compressed_dir_path!s}")
with gzip.open(compressed_dir_path, mode='rt') as gz:
content = gz.read()
details_json = json.JSONDecoder().decode(content)
return details_json
def _get_details(compressed_dir_path: Path) -> Details:
details = _read_json_from_gz(compressed_dir_path)["data_set_description"]
f_details = {
"name": details["name"],
"file_id": details["file_id"],
"description": details["description"],
}
return Details(*f_details.values())
def _get_features(compressed_dir_path: Path) -> Features:
raw_features = _read_json_from_gz(compressed_dir_path)["data_features"]
features = {
"names": [column["name"] for column in raw_features["feature"]]
}
return Features(*features.values())
def _export_gz_data_to_csv(compressed_dir_path: Path,
destination_file: Path, features: Features) -> None:
atdata_found = False
with destination_file.open(mode="w", encoding='utf8') as csv:
with gzip.open(compressed_dir_path, mode="rt", encoding='utf8') as gz:
csv.write(_features_to_csv_format(features))
csv.write("\n")
for line in gz.readlines():
if not atdata_found:
if line.lower().startswith("@data"):
atdata_found = True
else:
csv.write(line)
def _features_to_csv_format(features: Features) -> str:
return ",".join(features.names)
def fetch_dataset_as_namedtuple(dataset_id: int, target: str,
read_csv_kwargs: dict,
load_dataframe: bool) -> namedtuple:
info = fetch_openml_dataset(dataset_id)
if load_dataframe:
df = pd.read_csv(info['path'], **read_csv_kwargs)
y = df[target]
X = df.drop(target, axis='columns')
dataset = DatasetAll(
description=info['description'],
X=X,
y=y,
source=info['source'],
path=info['path'],
)
else:
dataset = DatasetInfoOnly(
description=info['description'],
source=info['source'],
path=info['path'],
read_csv_kwargs=read_csv_kwargs,
)
return dataset
def fetch_employee_salaries(load_dataframe: bool = True,
drop_linked: bool = True,
drop_irrelevant: bool = True) -> namedtuple:
dataset = fetch_dataset_as_namedtuple(
dataset_id=EMPLOYEE_SALARIES_ID,
target='current_annual_salary',
read_csv_kwargs={
'quotechar': "'",
'escapechar': '\\',
'na_values': ['?'],
},
load_dataframe=load_dataframe,
)
if load_dataframe:
if drop_linked:
dataset.X.drop(["2016_gross_pay_received", "2016_overtime_pay"],
axis=1, inplace=True)
if drop_irrelevant:
dataset.X.drop(["full_name"], axis=1, inplace=True)
return dataset
def fetch_road_safety(load_dataframe: bool = True) -> namedtuple:
return fetch_dataset_as_namedtuple(
dataset_id=ROAD_SAFETY_ID,
target='Sex_of_Driver',
read_csv_kwargs={
'na_values': ['?'],
},
load_dataframe=load_dataframe,
)
def fetch_medical_charge(load_dataframe: bool = True) -> namedtuple:
return fetch_dataset_as_namedtuple(
dataset_id=MEDICAL_CHARGE_ID,
target='Average_Total_Payments',
read_csv_kwargs={
'quotechar': "'",
'escapechar': '\\',
},
load_dataframe=load_dataframe,
)
|
BSD 3-Clause New or Revised License
|
jyveapp/django-action-framework
|
daf/urls.py
|
get_url_patterns
|
python
|
def get_url_patterns(
interfaces, *, path_prefix='', name_prefix='', interface_kwargs=None
):
interface_kwargs = interface_kwargs or {}
return [
urls.path(
f'{path_prefix}{interface.url_path}/',
interface.as_interface(**interface_kwargs),
name=f'{name_prefix}{interface.url_name}',
)
for interface in interfaces
]
|
Generate URL patterns for interfaces.
|
https://github.com/jyveapp/django-action-framework/blob/c3d32064a32444c74238ded7a47c5e70a13f7278/daf/urls.py#L4-L19
|
from django import urls
|
BSD 3-Clause New or Revised License
|
alterway/anonymization
|
anonymization/Anonymization.py
|
AnonymizerChain.pseudonymize
|
python
|
def pseudonymize(self, text: str) -> str:
dmp = diff_match_patch()
clean = self.anonymize(text)
diff = dmp.diff_main(clean, text)
patch = dmp.patch_make(clean, text, diff)
return clean, patch
|
Run all registered anonymizes on a text and return also the diff patch
|
https://github.com/alterway/anonymization/blob/57e6c20f8c97e902f3513b5adfdbc211791aaef0/anonymization/Anonymization.py#L99-L108
|
from collections import defaultdict
from typing import Iterable, Pattern, Callable, List, Any
import re
from faker import Factory
from .lib.diff_match_patch import diff_match_patch
class Anonymization:
def __init__(self, locale: str):
self.locale = locale
self.faker = Factory.create(locale)
self.anonDicts = {}
def getFake(self, provider: str, match: str) -> str:
if not provider in self.anonDicts:
self.anonDicts[provider] = defaultdict(getattr(self.faker, provider))
return self.anonDicts[provider][match]
def replace_all(self, text: str, matchs: Iterable[str], provider: str) -> str:
for match in matchs:
text = text.replace(match, self.getFake(provider, match))
return text
def regex_anonymizer(self, text: str, regex: Pattern, provider: str) -> str:
matchs = re.findall(regex, text)
return self.replace_all(text, matchs, provider)
def add_provider(self, provider):
return self.faker.add_provider(provider)
class AnonymizerChain:
def __init__(self, anonymization: Anonymization):
self.anonymization = anonymization
self._anonymizers = []
def add_anonymizers(self, *args: Iterable[Callable[[Anonymization], Any]]) -> None:
for arg in args:
self._anonymizers.append(arg(self.anonymization))
def clear_anonymizers(self) -> None:
self._anonymizers = []
def anonymize(self, text: str) -> str:
for anonymizer in self._anonymizers:
text = anonymizer.anonymize(text)
return text
def anonymize_all(self, texts: Iterable[str]) -> List[str]:
return [self.anonymize(text) for text in texts]
def evaluate(self, text: str) -> str:
result = []
for anonymizer in self._anonymizers:
result += anonymizer.evaluate(text)
return result
|
MIT License
|
dhermes/bezier
|
docs/make_images.py
|
triangle_constructor
|
python
|
def triangle_constructor(triangle):
if NO_IMAGES:
return
ax = triangle.plot(256, color=BLUE, with_nodes=True)
line = ax.lines[0]
nodes = triangle._nodes
add_patch(ax, nodes[:, (0, 1, 2, 5)], line.get_color())
delta = 1.0 / 32.0
ax.text(
nodes[0, 0],
nodes[1, 0],
r"$v_0$",
fontsize=20,
verticalalignment="top",
horizontalalignment="right",
)
ax.text(
nodes[0, 1],
nodes[1, 1],
r"$v_1$",
fontsize=20,
verticalalignment="top",
horizontalalignment="center",
)
ax.text(
nodes[0, 2],
nodes[1, 2],
r"$v_2$",
fontsize=20,
verticalalignment="top",
horizontalalignment="left",
)
ax.text(
nodes[0, 3] - delta,
nodes[1, 3],
r"$v_3$",
fontsize=20,
verticalalignment="center",
horizontalalignment="right",
)
ax.text(
nodes[0, 4] + delta,
nodes[1, 4],
r"$v_4$",
fontsize=20,
verticalalignment="center",
horizontalalignment="left",
)
ax.text(
nodes[0, 5],
nodes[1, 5] + delta,
r"$v_5$",
fontsize=20,
verticalalignment="bottom",
horizontalalignment="center",
)
ax.axis("scaled")
ax.set_xlim(-0.125, 1.125)
ax.set_ylim(-0.125, 1.125)
save_image(ax.figure, "triangle_constructor.png")
|
Image for :class`.Triangle` docstring.
|
https://github.com/dhermes/bezier/blob/4b54ac978158870122579c6fb7dbf070ac20a2d6/docs/make_images.py#L406-L467
|
import os
try:
from matplotlib import patches
from matplotlib import path as _path_mod
import matplotlib.pyplot as plt
except ImportError:
patches = None
_path_mod = None
plt = None
import numpy as np
try:
import seaborn
except ImportError:
seaborn = None
import bezier
from bezier import _geometric_intersection
from bezier import _helpers
from bezier import _plot_helpers
from bezier.hazmat import clipping
from bezier.hazmat import geometric_intersection as _py_geometric_intersection
BLUE = "blue"
GREEN = "green"
RED = "red"
if seaborn is not None:
seaborn.set()
_COLORS = seaborn.color_palette(palette="deep", n_colors=6)
BLUE = _COLORS[0]
GREEN = _COLORS[2]
RED = _COLORS[3]
del _COLORS
_DOCS_DIR = os.path.abspath(os.path.dirname(__file__))
IMAGES_DIR = os.path.join(_DOCS_DIR, "images")
NO_IMAGES = "GENERATE_IMAGES" not in os.environ
def save_image(figure, filename):
path = os.path.join(IMAGES_DIR, filename)
figure.savefig(path, bbox_inches="tight")
plt.close(figure)
def stack1d(*points):
result = np.empty((2, len(points)), order="F")
for index, point in enumerate(points):
result[:, index] = point
return result
def linearization_error(nodes):
if NO_IMAGES:
return
curve = bezier.Curve.from_nodes(nodes)
line = bezier.Curve.from_nodes(nodes[:, (0, -1)])
midpoints = np.hstack([curve.evaluate(0.5), line.evaluate(0.5)])
ax = curve.plot(256, color=BLUE)
line.plot(256, ax=ax, color=GREEN)
ax.plot(
midpoints[0, :], midpoints[1, :], color="black", linestyle="dashed"
)
ax.axis("scaled")
save_image(ax.figure, "linearization_error.png")
def newton_refine1(s, new_s, curve1, t, new_t, curve2):
if NO_IMAGES:
return
points = np.hstack([curve1.evaluate(s), curve2.evaluate(t)])
points_new = np.hstack([curve1.evaluate(new_s), curve2.evaluate(new_t)])
ax = curve1.plot(256, color=BLUE)
curve2.plot(256, ax=ax, color=GREEN)
ax.plot(
points[0, :],
points[1, :],
color="black",
linestyle="None",
marker="o",
markeredgewidth=1,
markerfacecolor="None",
)
ax.plot(
points_new[0, :],
points_new[1, :],
color="black",
linestyle="None",
marker="o",
)
ax.axis("scaled")
save_image(ax.figure, "newton_refine1.png")
def newton_refine2(s_vals, curve1, curve2):
if NO_IMAGES:
return
ax = curve1.plot(256, color=BLUE)
ax.lines[-1].zorder = 1
curve2.plot(256, ax=ax, color=GREEN)
ax.lines[-1].zorder = 1
points = curve1.evaluate_multi(np.asfortranarray(s_vals))
colors = seaborn.dark_palette("blue", 5)
ax.scatter(
points[0, :], points[1, :], c=colors, s=20, alpha=0.75, zorder=2
)
ax.axis("scaled")
ax.set_xlim(0.0, 1.0)
ax.set_ylim(0.0, 1.0)
save_image(ax.figure, "newton_refine2.png")
def newton_refine3(s_vals, curve1, curve2):
if NO_IMAGES:
return
ax = curve1.plot(256, color=BLUE)
ax.lines[-1].zorder = 1
curve2.plot(256, ax=ax, color=GREEN)
ax.lines[-1].zorder = 1
points = curve1.evaluate_multi(np.asfortranarray(s_vals))
colors = seaborn.dark_palette("blue", 6)
ax.scatter(
points[0, :], points[1, :], c=colors, s=20, alpha=0.75, zorder=2
)
ax.axis("scaled")
ax.set_xlim(0.0, 1.0)
ax.set_ylim(0.0, 0.5625)
save_image(ax.figure, "newton_refine3.png")
def segment_intersection1(start0, end0, start1, end1, s):
if NO_IMAGES:
return
line0 = bezier.Curve.from_nodes(stack1d(start0, end0))
line1 = bezier.Curve.from_nodes(stack1d(start1, end1))
ax = line0.plot(2, color=BLUE)
line1.plot(256, ax=ax, color=GREEN)
(x_val,), (y_val,) = line0.evaluate(s)
ax.plot([x_val], [y_val], color="black", marker="o")
ax.axis("scaled")
save_image(ax.figure, "segment_intersection1.png")
def segment_intersection2(start0, end0, start1, end1):
if NO_IMAGES:
return
line0 = bezier.Curve.from_nodes(stack1d(start0, end0))
line1 = bezier.Curve.from_nodes(stack1d(start1, end1))
ax = line0.plot(2, color=BLUE)
line1.plot(2, ax=ax, color=GREEN)
ax.axis("scaled")
save_image(ax.figure, "segment_intersection2.png")
def helper_parallel_lines(start0, end0, start1, end1, filename):
if NO_IMAGES:
return
figure = plt.figure()
ax = figure.gca()
points = stack1d(start0, end0, start1, end1)
ax.plot(points[0, :2], points[1, :2], marker="o", color=BLUE)
ax.plot(points[0, 2:], points[1, 2:], marker="o", color=GREEN)
ax.axis("scaled")
_plot_helpers.add_plot_boundary(ax)
save_image(figure, filename)
def add_patch(
ax, nodes, color, with_nodes=True, alpha=0.625, node_color="black"
):
path = _path_mod.Path(nodes.T)
patch = patches.PathPatch(
path, edgecolor=color, facecolor=color, alpha=alpha
)
ax.add_patch(patch)
if with_nodes:
ax.plot(
nodes[0, :],
nodes[1, :],
color=node_color,
linestyle="None",
marker="o",
)
def curve_constructor(curve):
if NO_IMAGES:
return
ax = curve.plot(256, color=BLUE)
line = ax.lines[0]
nodes = curve._nodes
ax.plot(
nodes[0, :], nodes[1, :], color="black", linestyle="None", marker="o"
)
add_patch(ax, nodes, line.get_color())
ax.axis("scaled")
ax.set_xlim(-0.125, 1.125)
ax.set_ylim(-0.0625, 0.5625)
save_image(ax.figure, "curve_constructor.png")
def curve_evaluate(curve):
if NO_IMAGES:
return
ax = curve.plot(256, color=BLUE)
points = curve.evaluate_multi(np.asfortranarray([0.75]))
ax.plot(
points[0, :], points[1, :], color="black", linestyle="None", marker="o"
)
ax.axis("scaled")
ax.set_xlim(-0.125, 1.125)
ax.set_ylim(-0.0625, 0.5625)
save_image(ax.figure, "curve_evaluate.png")
def curve_evaluate_hodograph(curve, s):
if NO_IMAGES:
return
ax = curve.plot(256, color=BLUE)
points = curve.evaluate_multi(np.asfortranarray([s]))
if points.shape != (2, 1):
raise ValueError("Unexpected shape", points)
point = points[:, 0]
tangents = curve.evaluate_hodograph(s)
if tangents.shape != (2, 1):
raise ValueError("Unexpected shape", tangents)
tangent = tangents[:, 0]
ax.plot(
[point[0] - 2 * tangent[0], point[0] + 2 * tangent[0]],
[point[1] - 2 * tangent[1], point[1] + 2 * tangent[1]],
color=BLUE,
alpha=0.5,
)
ax.plot(
[point[0], point[0] + tangent[0]],
[point[1], point[1] + tangent[1]],
color="black",
linestyle="dashed",
marker="o",
markersize=5,
)
ax.axis("scaled")
ax.set_xlim(-0.125, 1.75)
ax.set_ylim(-0.0625, 0.75)
save_image(ax.figure, "curve_evaluate_hodograph.png")
def curve_subdivide(curve, left, right):
if NO_IMAGES:
return
figure = plt.figure()
ax = figure.gca()
add_patch(ax, curve._nodes, "gray")
ax = left.plot(256, ax=ax, color=BLUE)
line = ax.lines[-1]
add_patch(ax, left._nodes, line.get_color())
right.plot(256, ax=ax, color=GREEN)
line = ax.lines[-1]
add_patch(ax, right._nodes, line.get_color())
ax.axis("scaled")
ax.set_xlim(-0.125, 2.125)
ax.set_ylim(-0.125, 3.125)
save_image(ax.figure, "curve_subdivide.png")
def curve_intersect(curve1, curve2, s_vals):
if NO_IMAGES:
return
ax = curve1.plot(256, color=BLUE)
curve2.plot(256, ax=ax, color=GREEN)
intersections = curve1.evaluate_multi(s_vals)
ax.plot(
intersections[0, :],
intersections[1, :],
color="black",
linestyle="None",
marker="o",
)
ax.axis("scaled")
ax.set_xlim(0.0, 0.75)
ax.set_ylim(0.0, 0.75)
save_image(ax.figure, "curve_intersect.png")
def curve_self_intersect2(curve, self_intersections):
if NO_IMAGES:
return
ax = curve.plot(256, color=BLUE)
if self_intersections.shape != (2, 1):
raise ValueError("Unexpected shape", self_intersections)
s1_val = self_intersections[0, 0]
intersection_xy = curve.evaluate(s1_val)
ax.plot(
intersection_xy[0, :],
intersection_xy[1, :],
color="black",
linestyle="None",
marker="o",
)
ax.axis("scaled")
ax.set_xlim(-0.8125, 0.0625)
ax.set_ylim(0.75, 2.125)
save_image(ax.figure, "curve_self_intersect2.png")
def curve_self_intersect3(curve, self_intersections):
if NO_IMAGES:
return
ax = curve.plot(256, color=BLUE)
if self_intersections.shape != (2, 2):
raise ValueError("Unexpected shape", self_intersections)
s1_vals = np.asfortranarray(self_intersections[0, :])
intersection_xy = curve.evaluate_multi(s1_vals)
ax.plot(
intersection_xy[0, :],
intersection_xy[1, :],
color="black",
linestyle="None",
marker="o",
)
ax.axis("scaled")
ax.set_xlim(-330.0, 330.0)
ax.set_ylim(0.125, 266.0)
save_image(ax.figure, "curve_self_intersect3.png")
|
Apache License 2.0
|
nastools/homeassistant
|
homeassistant/components/media_player/panasonic_viera.py
|
PanasonicVieraTVDevice.turn_off
|
python
|
def turn_off(self):
self.send_key('NRC_POWER-ONOFF')
|
Turn off media player.
|
https://github.com/nastools/homeassistant/blob/7ca1180bd42713f2d77bbc3f0b27b231ba8784aa/homeassistant/components/media_player/panasonic_viera.py#L128-L130
|
import logging
import voluptuous as vol
from homeassistant.components.media_player import (
SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PREVIOUS_TRACK,
SUPPORT_TURN_OFF, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET,
SUPPORT_VOLUME_STEP, MediaPlayerDevice, PLATFORM_SCHEMA)
from homeassistant.const import (
CONF_HOST, CONF_NAME, STATE_OFF, STATE_ON, STATE_UNKNOWN, CONF_PORT)
import homeassistant.helpers.config_validation as cv
REQUIREMENTS = ['panasonic_viera==0.2']
_LOGGER = logging.getLogger(__name__)
DEFAULT_NAME = 'Panasonic Viera TV'
DEFAULT_PORT = 55000
SUPPORT_VIERATV = SUPPORT_PAUSE | SUPPORT_VOLUME_STEP | SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_TURN_OFF
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_HOST): cv.string,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port,
})
def setup_platform(hass, config, add_devices, discovery_info=None):
from panasonic_viera import RemoteControl
name = config.get(CONF_NAME)
port = config.get(CONF_PORT)
if discovery_info:
_LOGGER.debug('%s', discovery_info)
vals = discovery_info.split(':')
if len(vals) > 1:
port = vals[1]
host = vals[0]
remote = RemoteControl(host, port)
add_devices([PanasonicVieraTVDevice(name, remote)])
return True
host = config.get(CONF_HOST)
remote = RemoteControl(host, port)
try:
remote.get_mute()
except OSError as error:
_LOGGER.error('Panasonic Viera TV is not available at %s:%d: %s',
host, port, error)
return False
add_devices([PanasonicVieraTVDevice(name, remote)])
return True
class PanasonicVieraTVDevice(MediaPlayerDevice):
def __init__(self, name, remote):
self._name = name
self._muted = False
self._playing = True
self._state = STATE_UNKNOWN
self._remote = remote
self._volume = 0
def update(self):
try:
self._muted = self._remote.get_mute()
self._volume = self._remote.get_volume() / 100
self._state = STATE_ON
except OSError:
self._state = STATE_OFF
def send_key(self, key):
try:
self._remote.send_key(key)
self._state = STATE_ON
except OSError:
self._state = STATE_OFF
return False
return True
@property
def name(self):
return self._name
@property
def state(self):
return self._state
@property
def volume_level(self):
return self._volume
@property
def is_volume_muted(self):
return self._muted
@property
def supported_media_commands(self):
return SUPPORT_VIERATV
|
MIT License
|
tducret/amazon-scraper-python
|
amazonscraper/client.py
|
Client._get_title
|
python
|
def _get_title(self, product):
title_css_selectors = [
'h5 span',
"a.s-access-detail-page > h2",
"div div.sg-row h5 > span"
]
for selector in title_css_selectors:
title = _css_select(product, selector)
if title:
break
if not title:
print(' Failed to extract title!')
return title
|
Given the HTML of a `product`, extract the title
|
https://github.com/tducret/amazon-scraper-python/blob/30f812f0d2f2e7dd2f2af7ec1ad23626a0a0cabd/amazonscraper/client.py#L222-L241
|
import requests
import re
from urllib.parse import urljoin
from bs4 import BeautifulSoup
import time
_BASE_URL = "https://www.amazon.com/"
_DEFAULT_BEAUTIFULSOUP_PARSER = "html.parser"
_DEFAULT_USER_AGENT = 'Mozilla/5.0 (Linux; Android 7.0; \
SM-A520F Build/NRD90M; wv) AppleWebKit/537.36 \
(KHTML, like Gecko) Version/4.0 \
Chrome/65.0.3325.109 Mobile Safari/537.36'
_CHROME_DESKTOP_USER_AGENT = 'Mozilla/5.0 (Macintosh; \
Intel Mac OS X 10_13_5) AppleWebKit/537.36 (KHTML, like Gecko) \
Chrome/67.0.3396.79 Safari/537.36'
_USER_AGENT_LIST = [
_DEFAULT_USER_AGENT,
_CHROME_DESKTOP_USER_AGENT,
]
_CSS_SELECTORS_MOBILE = {
"product": "#resultItems > li",
"title": "a > div > div.sx-table-detail > h5 > span",
"rating": "a > div > div.sx-table-detail > \
div.a-icon-row.a-size-small > i > span",
"review_nb": "a > div > div.sx-table-detail > \
div.a-icon-row.a-size-small > span",
"url": "a[href]",
"img": "img[src]",
"next_page_url": "ul.a-pagination > li.a-last > a[href]",
}
_CSS_SELECTORS_MOBILE_GRID = {
"product": "#grid-atf-content > li > div.s-item-container",
"title": "a > div > h5.sx-title > span",
"rating": "a > div > div.a-icon-row.a-size-mini > i > span",
"review_nb": "a > div > div.a-icon-row.a-size-mini > span",
"url": "a[href]",
"img": "img[src]",
"next_page_url": "ul.a-pagination > li.a-last > a[href]",
}
_CSS_SELECTORS_DESKTOP = {
"product": "ul > li.s-result-item > div.s-item-container",
"title": "a.s-access-detail-page > h2",
"rating": "i.a-icon-star > span",
"review_nb": "div.a-column.a-span5.a-span-last > \
div.a-row.a-spacing-mini > \
a.a-size-small.a-link-normal.a-text-normal",
"url": "div.a-row.a-spacing-small > div.a-row.a-spacing-none > a[href]",
"img": "div.a-column.a-span12.a-text-center > a.a-link-normal.a-text-normal > img[src]",
"next_page_url": "a#pagnNextLink",
}
_CSS_SELECTORS_DESKTOP_2 = {
"product": "div.s-result-list.sg-row > div.s-result-item",
"title": "div div.sg-row h5 > span",
"rating": "div div.sg-row .a-spacing-top-mini i span",
"review_nb": "div div.sg-row .a-spacing-top-mini span.a-size-small",
"url": "div div a.a-link-normal",
"img": "img[src]",
"next_page_url": "li.a-last > a[href]",
}
_CSS_SELECTOR_LIST = [
_CSS_SELECTORS_MOBILE,
_CSS_SELECTORS_MOBILE_GRID,
_CSS_SELECTORS_DESKTOP,
_CSS_SELECTORS_DESKTOP_2,
]
_MAX_TRIAL_REQUESTS = 5
_WAIT_TIME_BETWEEN_REQUESTS = 1
class Client(object):
def __init__(self):
self.session = requests.session()
self.current_user_agent_index = 0
self.headers = {
'Host': 'www.amazon.com',
'User-Agent': _USER_AGENT_LIST[0],
'Accept': 'text/html,application/xhtml+xml,\
application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
}
self.product_dict_list = []
self.html_pages = []
def _change_user_agent(self):
index = (self.current_user_agent_index + 1) % len(_USER_AGENT_LIST)
self.headers['User-Agent'] = _USER_AGENT_LIST[index]
self.current_user_agent_index = index
def _get(self, url):
ret = self.session.get(url, headers=self.headers)
if ret.status_code != 200:
raise ConnectionError(
'Status code {status} for url {url}\n{content}'.format(
status=ret.status_code, url=url, content=ret.text))
return ret
def _update_headers(self, search_url):
self.base_url = "https://" + search_url.split("://")[1].split("/")[0] + "/"
self.headers['Host'] = self.base_url.split("://")[1].split("/")[0]
def _get_search_url(self, keywords):
search_url = urljoin(_BASE_URL, ("s?k=%s" % (keywords)))
return search_url
def _check_page(self, html_content):
if "Sign in for the best experience" in html_content:
valid_page = False
elif "The request could not be satisfied." in html_content:
valid_page = False
elif "Robot Check" in html_content:
valid_page = False
else:
valid_page = True
return valid_page
def _get_page_html(self, search_url):
trials = 0
res = None
while trials < _MAX_TRIAL_REQUESTS:
print('Trying user agent: {}'.format(self.headers['User-Agent']))
trials += 1
try:
res = self._get(search_url)
valid_page = self._check_page(res.text)
except requests.exceptions.SSLError:
valid_page = False
except ConnectionError:
valid_page = False
if valid_page:
break
self._change_user_agent()
time.sleep(_WAIT_TIME_BETWEEN_REQUESTS)
if not valid_page:
raise ValueError('No valid pages found! Perhaps the page returned is a CAPTCHA? Check products.last_html_page')
return res.text
def _get_n_ratings(self, product):
n_ratings_css_selectors = [
"div.a-row.a-size-small span.a-size-base",
"div div.sg-row .a-spacing-top-mini span.a-size-small",
"div.a-column.a-span5.a-span-last > div.a-row.a-spacing-mini > a.a-size-small.a-link-normal.a-text-normal",
]
for selector in n_ratings_css_selectors:
n_ratings = _css_select(product, selector)
try:
n_ratings = int(n_ratings.replace(',', ''))
break
except ValueError:
pass
if not n_ratings:
print(f' Failed to extract number of ratings!')
return float('nan')
return n_ratings
|
MIT License
|
xuru/pyvisdk
|
pyvisdk/mo/distributed_virtual_switch.py
|
DistributedVirtualSwitch.MergeDvs_Task
|
python
|
def MergeDvs_Task(self, dvs):
return self.delegate("MergeDvs_Task")(dvs)
|
Merge an existing DistributedVirtualSwitch (source) to this switch
(destination). The host members and the connected entity of the source switch
will be transferred to the destination switch. This operation disconnects the
entities from the source switch, tears down its host proxy VirtualSwitches,
creates new ones for the destination switch, and reconnects the entities to the
destination switch.Merge an existing DistributedVirtualSwitch (source) to this
switch (destination). The host members and the connected entity of the source
switch will be transferred to the destination switch. This operation
disconnects the entities from the source switch, tears down its host proxy
VirtualSwitches, creates new ones for the destination switch, and reconnects
the entities to the destination switch.Merge an existing
DistributedVirtualSwitch (source) to this switch (destination). The host
members and the connected entity of the source switch will be transferred to
the destination switch. This operation disconnects the entities from the source
switch, tears down its host proxy VirtualSwitches, creates new ones for the
destination switch, and reconnects the entities to the destination switch.
:param dvs: The switch (source) to be merged
|
https://github.com/xuru/pyvisdk/blob/de24eb4426eb76233dc2e57640d3274ffd304eb3/pyvisdk/mo/distributed_virtual_switch.py#L91-L112
|
from pyvisdk.base.managed_object_types import ManagedObjectTypes
from pyvisdk.mo.managed_entity import ManagedEntity
import logging
log = logging.getLogger(__name__)
class DistributedVirtualSwitch(ManagedEntity):
def __init__(self, core, name=None, ref=None, type=ManagedObjectTypes.DistributedVirtualSwitch):
super(DistributedVirtualSwitch, self).__init__(core, name=name, ref=ref, type=type)
@property
def capability(self):
return self.update('capability')
@property
def config(self):
return self.update('config')
@property
def networkResourcePool(self):
return self.update('networkResourcePool')
@property
def portgroup(self):
return self.update('portgroup')
@property
def summary(self):
return self.update('summary')
@property
def uuid(self):
return self.update('uuid')
def AddDVPortgroup_Task(self, spec):
return self.delegate("AddDVPortgroup_Task")(spec)
def AddNetworkResourcePool(self, configSpec):
return self.delegate("AddNetworkResourcePool")(configSpec)
def EnableNetworkResourceManagement(self, enable):
return self.delegate("EnableNetworkResourceManagement")(enable)
def FetchDVPortKeys(self, criteria=None):
return self.delegate("FetchDVPortKeys")(criteria)
def FetchDVPorts(self, criteria=None):
return self.delegate("FetchDVPorts")(criteria)
|
MIT License
|
tcalmant/ipopo
|
pelix/shell/parser.py
|
_find_assignment
|
python
|
def _find_assignment(arg_token):
idx = arg_token.find("=")
while idx != -1:
if idx != 0 and arg_token[idx - 1] != "\\":
return idx
idx = arg_token.find("=", idx + 1)
return -1
|
Find the first non-escaped assignment in the given argument token.
Returns -1 if no assignment was found.
:param arg_token: The argument token
:return: The index of the first assignment, or -1
|
https://github.com/tcalmant/ipopo/blob/1d4b81207e67890dfccc8f562336c7104f194c17/pelix/shell/parser.py#L62-L79
|
import collections
import inspect
import logging
import shlex
import string
import sys
from pelix.utilities import to_str, get_method_arguments
import pelix.shell.beans as beans
from pelix.shell.completion.decorators import ATTR_COMPLETERS, CompletionInfo
__version_info__ = (1, 0, 1)
__version__ = ".".join(str(x) for x in __version_info__)
__docformat__ = "restructuredtext en"
DEFAULT_NAMESPACE = "default"
|
Apache License 2.0
|
sql-machine-learning/models
|
sqlflow_models/simple_dnn_generator.py
|
_SimpleDNNBuilder.__init__
|
python
|
def __init__(self, feature_columns, optimizer, layer_size, num_layers, learn_mixture_weights,
seed):
self._optimizer = optimizer
self._layer_size = layer_size
self._num_layers = num_layers
self._learn_mixture_weights = learn_mixture_weights
self._feature_columns = feature_columns
self._seed = seed
|
Initializes a `_DNNBuilder`.
Args:
optimizer: An `Optimizer` instance for training both the subnetwork and
the mixture weights.
layer_size: The number of nodes to output at each hidden layer.
num_layers: The number of hidden layers.
learn_mixture_weights: Whether to solve a learning problem to find the
best mixture weights, or use their default value according to the
mixture weight type. When `False`, the subnetworks will return a no_op
for the mixture weight train op.
seed: A random seed.
Returns:
An instance of `_SimpleDNNBuilder`.
|
https://github.com/sql-machine-learning/models/blob/5dc6421f562ea447e501fa355a48a6ee89856a1d/sqlflow_models/simple_dnn_generator.py#L16-L40
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import adanet
import tensorflow as tf
_NUM_LAYERS_KEY = "num_layers"
class _SimpleDNNBuilder(adanet.subnetwork.Builder):
|
Apache License 2.0
|
neovim/pynvim
|
pynvim/api/common.py
|
Remote.__repr__
|
python
|
def __repr__(self):
return '<%s(handle=%r)>' % (
self.__class__.__name__,
self.handle,
)
|
Get text representation of the object.
|
https://github.com/neovim/pynvim/blob/71102c03efdcd6e7a1db1057a68478fc2249734d/pynvim/api/common.py#L40-L45
|
import functools
from msgpack import unpackb
from pynvim.compat import unicode_errors_default
__all__ = ()
class NvimError(Exception):
pass
class Remote(object):
def __init__(self, session, code_data):
self._session = session
self.code_data = code_data
self.handle = unpackb(code_data[1])
self.api = RemoteApi(self, self._api_prefix)
self.vars = RemoteMap(self, self._api_prefix + 'get_var',
self._api_prefix + 'set_var',
self._api_prefix + 'del_var')
self.options = RemoteMap(self, self._api_prefix + 'get_option',
self._api_prefix + 'set_option')
|
Apache License 2.0
|
xknx/xknx
|
xknx/devices/devices.py
|
Devices.__getitem__
|
python
|
def __getitem__(self, key: str | int) -> Device:
for device in self.__devices:
if device.name == key:
return device
if isinstance(key, int):
return self.__devices[key]
raise KeyError
|
Return device by name or by index.
|
https://github.com/xknx/xknx/blob/87666cc9bd9da64a84305baeff84486097346111/xknx/devices/devices.py#L48-L55
|
from __future__ import annotations
from typing import Awaitable, Callable, Iterator
from xknx.telegram import Telegram
from xknx.telegram.address import DeviceGroupAddress, GroupAddress, InternalGroupAddress
from .device import Device
DeviceCallbackType = Callable[[Device], Awaitable[None]]
class Devices:
def __init__(self) -> None:
self.__devices: list[Device] = []
self.device_updated_cbs: list[DeviceCallbackType] = []
def register_device_updated_cb(self, device_updated_cb: DeviceCallbackType) -> None:
self.device_updated_cbs.append(device_updated_cb)
def unregister_device_updated_cb(
self, device_updated_cb: DeviceCallbackType
) -> None:
self.device_updated_cbs.remove(device_updated_cb)
def __iter__(self) -> Iterator[Device]:
yield from self.__devices
def devices_by_group_address(
self, group_address: DeviceGroupAddress
) -> Iterator[Device]:
for device in self.__devices:
if device.has_group_address(group_address):
yield device
|
MIT License
|
monzop/bioblender
|
bin/pdb2pqr-1.6/querystatus.py
|
mainCGI
|
python
|
def mainCGI():
logopts = {}
print "Content-type: text/html\n\n"
calctype = form["calctype"].value
if form["jobid"].value == 'False':
print printheader("%s Job Status Page" % calctype.upper())
progress = "version_mismatch"
runtime = 0
else:
progress = None
if have_opal:
if calctype=="pdb2pqr":
opal_url = PDB2PQR_OPAL_URL
elif calctype=="apbs":
opal_url = APBS_OPAL_URL
appLocator = AppServiceLocator()
appServicePort = appLocator.getAppServicePort(opal_url)
else:
appServicePort = None
if calctype=="pdb2pqr":
apbsInputFile = open('%s%s%s/apbs_input' % (INSTALLDIR, TMPDIR, form["jobid"].value))
apbs_input = apbsInputFile.read()
apbsInputFile.close()
if apbs_input=="True":
apbs_input = True
else:
apbs_input = False
typemapInputFile = open('%s%s%s/typemap' % (INSTALLDIR, TMPDIR, form["jobid"].value))
typemap = typemapInputFile.read()
typemapInputFile.close()
if typemap=="True":
typemap = True
else:
typemap = False
if have_opal and progress == None:
if form["calctype"].value=="pdb2pqr":
pdb2pqrJobIDFile = open('%s%s%s/pdb2pqr_opal_job_id' % (INSTALLDIR, TMPDIR, form["jobid"].value))
jobid = pdb2pqrJobIDFile.read()
pdb2pqrJobIDFile.close()
elif form["calctype"].value=="apbs":
apbsJobIDFile = open('%s%s%s/apbs_opal_job_id' % (INSTALLDIR, TMPDIR, form["jobid"].value))
jobid = apbsJobIDFile.read()
apbsJobIDFile.close()
else:
jobid = form["jobid"].value
if progress == None:
cp = checkprogress(jobid,appServicePort,calctype)
progress = cp[0]
if progress == "running" or progress == "complete":
timefile = open('%s%s%s/%s_start_time' % (INSTALLDIR, TMPDIR, form["jobid"].value, form["calctype"].value))
starttime = float(timefile.read())
timefile.close()
if progress == "running" or (have_opal and progress != "version_mismatch"):
runtime = time.time()-starttime
elif progress == "complete":
endtimefile = open('%s%s%s/%s_end_time' % (INSTALLDIR, TMPDIR, form["jobid"].value, form["calctype"].value))
runtime = float(endtimefile.read())-starttime
if progress == "running":
if calctype=="pdb2pqr":
resultsurl = '%squerystatus.cgi?jobid=%s&apbsinput=%s&calctype=pdb2pqr' % (WEBSITE, form["jobid"].value, apbs_input)
else:
resultsurl = '%squerystatus.cgi?jobid=%s&calctype=apbs' % (WEBSITE, form["jobid"].value)
if progress == "complete":
print printheader("%s Job Status Page" % calctype.upper())
elif progress == "error":
print printheader("%s Job Status Page - Error" % calctype.upper(),0)
elif progress == "running":
print printheader("%s Job Status Page" % calctype.upper(), refresh)
print "<BODY>\n<P>"
print "<h3>Status"
print "</h3>"
print "Message: %s<br />" % progress
print "Run time: %s seconds<br />" % int(runtime)
print "Current time: %s<br />" % time.asctime()
print "</P>\n<HR>\n<P>"
if progress == "complete":
if calctype=="pdb2pqr":
nexturl = 'apbs_cgi.cgi?jobid=%s' % form["jobid"].value
else:
nexturl = 'visualize.cgi?jobid=%s' % form["jobid"].value
if have_opal:
resp = appServicePort.getOutputs(getOutputsRequest(jobid))
filelist = resp._outputFile
print "Here are the results:<ul>"
print "<li>Input files<ul>"
if calctype=="pdb2pqr":
if have_opal:
for i in range(0,len(filelist)):
if len(filelist[i]._name) == 4:
print "<li><a href=%s>%s</a></li>" % (filelist[i]._url, filelist[i]._name)
else:
print "<li><a href=%s%s%s/%s.pdb>%s.pdb</a></li>" % (WEBSITE, TMPDIR, jobid, jobid, jobid)
elif calctype=="apbs":
if have_opal:
for i in range(0,len(filelist)):
if filelist[i]._name == "apbsinput.in" or filelist[i]._name[-4:] == ".pqr":
print "<li><a href=%s>%s</a></li>" % (filelist[i]._url, filelist[i]._name)
else:
print "<li><a href=%s%s%s/apbsinput.in>apbsinput.in</a></li>" % (WEBSITE, TMPDIR, jobid)
print "<li><a href=%s%s%s/%s.pqr>%s.pqr</a></li>" % (WEBSITE, TMPDIR, jobid, jobid, jobid)
print "</ul></li>"
print "<li>Output files<ul>"
if calctype=="pdb2pqr":
if have_opal:
if os.path.isfile('%s%s%s/pdb2pqr_opal_log' % (INSTALLDIR, TMPDIR, form["jobid"].value)):
pdb2pqrOpalLogFile=open('%s%s%s/pdb2pqr_opal_log' % (INSTALLDIR, TMPDIR, form["jobid"].value), 'r')
logstr=pdb2pqrOpalLogFile.read().split('\n')
logopts = eval(logstr[0])
logff = logstr[1]
REMOTE_ADDR = logstr[2]
pdb2pqrOpalLogFile.close()
for i in range(0,len(filelist)):
if filelist[i]._name[-7:]==".propka" or (filelist[i]._name[-13:]=="-typemap.html" and typemap == True) or filelist[i]._name[-4:]==".pqr" or filelist[i]._name[-3:]==".in":
if filelist[i]._name[-4:]==".pqr":
f=urllib.urlopen(filelist[i]._url)
pqrOpalFileLength = len(f.readlines())
f.close()
print "<li><a href=%s>%s</a></li>" % (filelist[i]._url, filelist[i]._name)
logRun(logopts, runtime, pqrOpalFileLength, logff, REMOTE_ADDR)
else:
outputfilelist = glob.glob('%s%s%s/*.propka' % (INSTALLDIR, TMPDIR, jobid))
for i in range(0,len(outputfilelist)):
outputfilelist[i] = os.path.basename(outputfilelist[i])
for extension in ["-typemap.html", ".pqr", ".in"]:
if extension != ".in" or apbs_input != False:
if extension == "-typemap.html" and typemap == False:
continue
outputfilelist.append('%s%s' % (jobid, extension))
for outputfile in outputfilelist:
print "<li><a href=%s%s%s/%s>%s</a></li>" % (WEBSITE, TMPDIR, jobid, outputfile, outputfile)
elif calctype=="apbs":
if have_opal:
for i in range(0,len(filelist)):
if filelist[i]._name[-3:]==".dx":
currentpath = os.getcwd()
zipjobid = filelist[i]._name.split("-")[0]
urllib.urlretrieve(filelist[i]._url, '%s%s%s/%s' % (INSTALLDIR, TMPDIR, zipjobid, filelist[i]._name))
os.chdir('%s%s%s' % (INSTALLDIR, TMPDIR, zipjobid))
syscommand = 'zip -9 ' + filelist[i]._name + '.zip ' + filelist[i]._name
os.system(syscommand)
os.chdir(currentpath)
outputfilezip = filelist[i]._name + '.zip'
print "<li><a href=%s%s%s/%s>%s</a></li>" % (WEBSITE, TMPDIR, zipjobid, outputfilezip, outputfilezip)
else:
outputfilelist = glob.glob('%s%s%s/%s-*.dx' % (INSTALLDIR, TMPDIR, jobid, jobid))
for outputfile in outputfilelist:
currentpath = os.getcwd()
workingpath = os.path.dirname(outputfile)
os.chdir(workingpath)
syscommand = 'zip -9 ' + os.path.basename(outputfile) + '.zip ' + os.path.basename(outputfile)
os.system(syscommand)
os.chdir(currentpath)
outputfilezip = outputfile+".zip"
print "<li><a href=%s%s%s/%s>%s</a></li>" % (WEBSITE, TMPDIR, jobid, os.path.basename(outputfilezip), os.path.basename(outputfilezip))
print "</ul></li>"
print "<li>Runtime and debugging information<ul>"
if have_opal:
stdouturl = resp._stdOut
stderrurl = resp._stdErr
else:
stdouturl = "%s%s%s/%s_stdout.txt" % (WEBSITE, TMPDIR, jobid, calctype)
stderrurl = "%s%s%s/%s_stderr.txt" % (WEBSITE, TMPDIR, jobid, calctype)
print "<li><a href=%s>Program output (stdout)</a></li>" % stdouturl
print "<li><a href=%s>Program errors and warnings (stderr)</a></li>" % stderrurl
print "</ul></li></ul>"
if calctype=="pdb2pqr" and apbs_input and HAVE_APBS!="":
print "</ul></p><hr><p><a href=%s>Click here</a> to run APBS with your results.</p>" % nexturl
elif calctype=="apbs":
print "</ul></p><hr><p><a href=%s>Click here</a> to visualize your results.</p>" % nexturl
elif progress == "error":
print "There was an error with your query request. This page will not refresh."
elif progress == "running":
print "Page will refresh in %d seconds<br />" % refresh
print "<HR>"
print "<small>Your results will appear at <a href=%s>this page</a>. If you want, you can bookmark it and come back later (note: results are only stored for approximately 12-24 hours).</small>" % resultsurl
elif progress == "version_mismatch":
print "The versions of APBS on the local server and on the Opal server do not match, so the calculation could not be completed"
print "</P>"
print "<script type=\"text/javascript\">"
print "var gaJsHost = ((\"https:\" == document.location.protocol) ? \"https://ssl.\" : \"http://www.\");"
print "document.write(unescape(\"%3Cscript src=\'\" + gaJsHost + \"google-analytics.com/ga.js\' type=\'text/javascript\'%3E%3C/script%3E\"));"
print "</script>"
print "<script type=\"text/javascript\">"
print "try {"
print "var pageTracker = _gat._getTracker(\"UA-11026338-3\");"
if logopts != {}:
for key in logopts:
print "pageTracker._trackPageview(\"/main_cgi/has_%s_%s.html\");" % (key, logopts[key])
print "pageTracker._trackPageview();"
print "} catch(err) {}</script>"
print "</BODY>"
print "</HTML>"
|
Main method for determining the query page output
|
https://github.com/monzop/bioblender/blob/57a6ed4dffaa8e43f39fcfa5481048b8f7cc369c/bin/pdb2pqr-1.6/querystatus.py#L259-L517
|
__date__ = "4 January 2010"
__author__ = "Wes Goodman, Samir Unni, Yong Huang"
import sys
import cgi
import cgitb
import os,shutil,glob,string,time,urllib
from src.server import *
from src.aconf import *
cgitb.enable()
form = cgi.FieldStorage()
def printheader(pagetitle,refresh=None):
str = ""
str+= "<html>\n"
str+= "<HEAD>\n"
if refresh:
str+= "\t<META HTTP-EQUIV=\"Refresh\" CONTENT=\"%s\">\n" % refresh
str+= "\t<TITLE>%s</TITLE>\n" % pagetitle
str+= "\t<link rel=\"stylesheet\" href=\"%s\" type=\"text/css\">\n" % STYLESHEET
str+= "</HEAD>\n"
return str
def getloads():
if loadpath == "": return none
try:
file = open(loadpath, 'ru')
except ioerror:
return none
line = file.readline()
words = string.split(line)
loads = words[:3]
return loads
def cleantmpdir():
newdir = []
size = 0.0
count = 0
path = INSTALLDIR + tmpdir
dir = os.listdir(path)
for filename in dir:
size = size + os.path.getsize("%s%s" % (path, filename))
period = string.find(filename,".")
id = filename[:period]
if id not in newdir:
newdir.append(id)
count += 1
newdir.sort()
size = size / (1024.0 * 1024.0)
newcount = 0
if size >= limit:
for filename in newdir:
if newcount > count/2.0: break
try:
os.remove("%s%s.pqr" % (path, filename))
except oserror: pass
try:
os.remove("%s%s.in" % (path, filename))
except oserror: pass
try:
os.remove("%s%s.html" % (path, filename))
except oserror: pass
newcount += 1
def getquote(path):
fortune = os.popen(path)
quote = fortune.read()
quote = string.replace(quote, "\n", "<br>")
quote = string.replace(quote, "\t", " "*5)
quote = "%s<p>" % quote
return quote
def printprogress(name, refreshname, reftime, starttime):
elapsedtime = time.time() - starttime + refreshtime/2.0
filename = "%s%s%s/%s-tmp.html" % (INSTALLDIR, tmpdir, jobid, name)
file = open(filename,"w")
file.write("<html>\n")
file.write("<head>\n")
file.write("<title>pdb2pqr progress</title>\n")
file.write("<link rel=\"stylesheet\" href=\"%s\" type=\"text/css\">\n" % stylesheet)
file.write("<meta http-equiv=\"refresh\" content=\"%s; url=%s\">\n" % (reftime, refreshname))
file.write("</head>\n")
file.write("<body>\n")
file.write("<h2>pdb2pqr progress</h2><p>\n")
file.write("the pdb2pqr server is generating your results - this page will automatically \n")
file.write("refresh every %s seconds.<p>\n" % refreshtime)
file.write("thank you for your patience!<p>\n")
file.write("server progress:<p>\n")
file.write("<blockquote>\n")
file.write("<font size=2>elapsed time:</font> <code>%.2f seconds</code><br>\n" % elapsedtime)
file.write("</blockquote>\n")
file.write("server information:<p>\n")
file.write("<blockquote>\n")
loads = getloads()
if loads != none:
file.write("<font size=2>server load:</font> <code>%s (1min) %s (5min) %s (15min)</code><br>\n" % (loads[0], loads[1], loads[2]))
file.write("<font size=2>server time:</font> <code>%s</code><br>\n" % (time.asctime(time.localtime())))
file.write("</blockquote>\n")
file.write("<script type=\"text/javascript\">")
file.write("var gaJsHost = ((\"https:\" == document.location.protocol) ? \"https://ssl.\" : \"http://www.\");")
file.write("document.write(unescape(\"%3Cscript src=\'\" + gaJsHost + \"google-analytics.com/ga.js\' type=\'text/javascript\'%3E%3C/script%3E\"));")
file.write("</script>")
file.write("<script type=\"text/javascript\">")
file.write("try {")
file.write("var pageTracker = _gat._getTracker(\"UA-11026338-3\");")
file.write("pageTracker._trackPageview();")
file.write("} catch(err) {}</script>")
file.write("</body></html>")
file.close()
def createresults(header, input, name, time, missedligands=[]):
newheader = string.replace(header, "\n", "<br>")
newheader = string.replace(newheader," "," ")
filename = "%s%s%s/%s.html" % (INSTALLDIR, tmpdir, jobid, name)
file = open(filename, "w")
file.write("<html>\n")
file.write("<head>\n")
file.write("<title>pdb2pqr results</title>\n")
file.write("<link rel=\"stylesheet\" href=\"%s\" type=\"text/css\">\n" % stylesheet)
file.write("</head>\n")
file.write("<body>\n")
file.write("<h2>pdb2pqr results</h2>\n")
file.write("<p>\n")
file.write("here are the results from pdb2pqr. the files will be available on the ")
file.write("server for a short period of time if you need to re-access the results.<p>\n")
file.write("<a href=\"%s%s%s.pqr\">%s.pqr</a><br>\n" % (website, tmpdir, name, name))
if input:
file.write("<a href=\"%s%s%s.in\">%s.in</a><br>\n" % (website, tmpdir, name, name))
pkaname = "%s%s%s/%s.propka" % (INSTALLDIR, tmpdir, jobid, name)
if os.path.isfile(pkaname):
file.write("<a href=\"%s%s%s.propka\">%s.propka</a><br>\n" % (website, tmpdir, name, name))
typename = "%s%s%s/%s-typemap.html" % (INSTALLDIR, tmpdir, jobid, name)
if os.path.isfile(typename):
file.write("<a href=\"%s%s%s-typemap.html\">%s-typemap.html</a><br>\n" % (website, tmpdir, name, name))
file.write("<p>the header for your pqr file, including any warnings generated, is:<p>\n")
file.write("<blockquote><code>\n")
file.write("%s<p>\n" % newheader)
file.write("</code></blockquote>\n")
if missedligands != []:
file.write("the forcefield that you have selected does not have ")
file.write("parameters for the following ligands in your pdb file. please visit ")
file.write("<a href=\"http://davapc1.bioch.dundee.ac.uk/programs/prodrg/\">prodrg</a> ")
file.write("to convert these ligands into mol2 format. this ligand can the be ")
file.write("parameterized in your pdb2pqr calculation using the peoe_pb methodology via ")
file.write("the 'assign charges to the ligand specified in a mol2 file' checkbox:<p>\n")
file.write("<blockquote><code>\n")
for item in missedligands:
file.write("%s<br>\n" % item)
file.write("<p></code></blockquote>\n")
file.write("if you would like to run pdb2pqr again, please click <a href=\"%s%s\">\n" % (website, webname))
file.write("here</a>.<p>\n")
file.write("if you would like to run apbs with these results, please click <a href=\"%s../apbs/index.py?pdb2pqr-id=%s\">here</a>.<p>\n" % (website[:-1], name))
file.write("<p>thank you for using the pdb2pqr server!<p>\n")
file.write("<font size=\"-1\"><p>total time on server: %.2f seconds</font><p>\n" % time)
file.write("<font size=\"-1\"><center><i>last updated %s</i></center></font>\n" % __date__)
file.write("<script type=\"text/javascript\">")
file.write("var gaJsHost = ((\"https:\" == document.location.protocol) ? \"https://ssl.\" : \"http://www.\");")
file.write("document.write(unescape(\"%3Cscript src=\'\" + gaJsHost + \"google-analytics.com/ga.js\' type=\'text/javascript\'%3E%3C/script%3E\"));")
file.write("</script>")
file.write("<script type=\"text/javascript\">")
file.write("try {")
file.write("var pageTracker = _gat._getTracker(\"UA-11026338-3\");")
file.write("pageTracker._trackPageview();")
file.write("} catch(err) {}</script>")
file.write("</body>\n")
file.write("</html>\n")
def checkprogress(jobid=None,appServicePort=None,calctype=None):
if have_opal:
try:
status=appServicePort.queryStatus(queryStatusRequest(jobid))
except Exception, e:
return ["error"]
if status._code == 4:
return ["error"]
if status._code == 8:
return ["complete",status]
else:
return ["running",status]
else:
progress = []
file = open('%s%s%s/%s_status' % (INSTALLDIR,TMPDIR,jobid, form["calctype"].value))
for line in file.readlines():
progress.append(string.strip(line))
file.close()
return progress
|
BSD 2-Clause Simplified License
|
devopshq/vspheretools
|
pysphere/ZSI/wstools/XMLname.py
|
fromXMLname
|
python
|
def fromXMLname(string):
retval = sub(r'_xFFFF_','', string )
def fun( matchobj ):
return _fromUnicodeHex( matchobj.group(0) )
retval = sub(r'_x[0-9A-Za-z]+_', fun, retval )
return retval
|
Convert XML name to unicode string.
|
https://github.com/devopshq/vspheretools/blob/10890423bfbba976e3ddee61204e9eed4b73fe92/pysphere/ZSI/wstools/XMLname.py#L80-L90
|
ident = "$Id$"
from re import sub
def _NCNameChar(x):
return x.isalpha() or x.isdigit() or x=="." or x=='-' or x=="_"
def _NCNameStartChar(x):
return x.isalpha() or x=="_"
def _toUnicodeHex(x):
hexval = hex(ord(x[0]))[2:]
hexlen = len(hexval)
if (hexlen==1): hexval = "000" + hexval
elif (hexlen==2): hexval = "00" + hexval
elif (hexlen==3): hexval = "0" + hexval
elif (hexlen==4): hexval = "" + hexval
elif (hexlen==5): hexval = "000" + hexval
elif (hexlen==6): hexval = "00" + hexval
elif (hexlen==7): hexval = "0" + hexval
elif (hexlen==8): hexval = "" + hexval
else: raise Exception("Illegal Value returned from hex(ord(x))")
return "_x"+ hexval + "_"
def _fromUnicodeHex(x):
return eval( r'u"\u'+x[2:-1]+'"' )
def toXMLname(string):
if string.find(':') != -1 :
(prefix, localname) = string.split(':',1)
else:
prefix = None
localname = string
T = unicode(localname)
N = len(localname)
X = [];
for i in range(N) :
if i< N-1 and T[i]==u'_' and T[i+1]==u'x':
X.append(u'_x005F_')
elif i==0 and N >= 3 and ( T[0]==u'x' or T[0]==u'X' ) and ( T[1]==u'm' or T[1]==u'M' ) and ( T[2]==u'l' or T[2]==u'L' ):
X.append(u'_xFFFF_' + T[0])
elif (not _NCNameChar(T[i])) or (i==0 and not _NCNameStartChar(T[i])):
X.append(_toUnicodeHex(T[i]))
else:
X.append(T[i])
if prefix:
return "%s:%s" % (prefix, u''.join(X))
return u''.join(X)
|
MIT License
|
common-workflow-language/schema_salad
|
schema_salad/schema.py
|
print_fieldrefs
|
python
|
def print_fieldrefs(doc: List[Dict[str, Any]], loader: Loader, stream: IO[Any]) -> None:
obj = extend_and_specialize(doc, loader)
primitives = {
"http://www.w3.org/2001/XMLSchema#string",
"http://www.w3.org/2001/XMLSchema#boolean",
"http://www.w3.org/2001/XMLSchema#int",
"http://www.w3.org/2001/XMLSchema#long",
saladp + "null",
saladp + "enum",
saladp + "array",
saladp + "record",
saladp + "Any",
}
stream.write("digraph {\n")
for entry in obj:
if entry.get("abstract"):
continue
if entry["type"] == "record":
label = shortname(entry["name"])
for field in entry.get("fields", []):
found = set()
field_name = shortname(field["name"])
replace_type(field["type"], {}, loader, found, find_embeds=False)
for each_type in found:
if each_type not in primitives:
stream.write(
'"{}" -> "{}" [label="{}"];\n'.format(
label, shortname(each_type), field_name
)
)
stream.write("}\n")
|
Write a GraphViz graph of the relationships between the fields.
|
https://github.com/common-workflow-language/schema_salad/blob/73fc4f9866ab2ba55cd1fe696f06b4bb7e36ab89/schema_salad/schema.py#L768-L801
|
import copy
import hashlib
from typing import (
IO,
Any,
Dict,
List,
Mapping,
MutableMapping,
MutableSequence,
Optional,
Set,
Tuple,
TypeVar,
Union,
cast,
)
from urllib.parse import urlparse
from pkg_resources import resource_stream
from ruamel.yaml.comments import CommentedMap, CommentedSeq
from schema_salad.utils import (
CacheType,
ResolveType,
add_dictlist,
aslist,
convert_to_dict,
flatten,
json_dumps,
yaml_no_ts,
)
from . import _logger, jsonld_context, ref_resolver, validate
from .avro.schema import Names, SchemaParseException, make_avsc_object
from .exceptions import (
ClassValidationException,
SchemaSaladException,
ValidationException,
)
from .ref_resolver import Loader
from .sourceline import SourceLine, add_lc_filename, relname
SALAD_FILES = (
"metaschema.yml",
"metaschema_base.yml",
"salad.md",
"field_name.yml",
"import_include.md",
"link_res.yml",
"ident_res.yml",
"vocab_res.yml",
"vocab_res.yml",
"field_name_schema.yml",
"field_name_src.yml",
"field_name_proc.yml",
"ident_res_schema.yml",
"ident_res_src.yml",
"ident_res_proc.yml",
"link_res_schema.yml",
"link_res_src.yml",
"link_res_proc.yml",
"vocab_res_schema.yml",
"vocab_res_src.yml",
"vocab_res_proc.yml",
"map_res.yml",
"map_res_schema.yml",
"map_res_src.yml",
"map_res_proc.yml",
"typedsl_res.yml",
"typedsl_res_schema.yml",
"typedsl_res_src.yml",
"typedsl_res_proc.yml",
"sfdsl_res.yml",
"sfdsl_res_schema.yml",
"sfdsl_res_src.yml",
"sfdsl_res_proc.yml",
)
saladp = "https://w3id.org/cwl/salad#"
def get_metaschema() -> Tuple[Names, List[Dict[str, str]], Loader]:
loader = ref_resolver.Loader(
{
"Any": saladp + "Any",
"ArraySchema": saladp + "ArraySchema",
"Array_symbol": saladp + "ArraySchema/type/Array_symbol",
"DocType": saladp + "DocType",
"Documentation": saladp + "Documentation",
"Documentation_symbol": saladp + "Documentation/type/Documentation_symbol",
"Documented": saladp + "Documented",
"EnumSchema": saladp + "EnumSchema",
"Enum_symbol": saladp + "EnumSchema/type/Enum_symbol",
"JsonldPredicate": saladp + "JsonldPredicate",
"NamedType": saladp + "NamedType",
"PrimitiveType": saladp + "PrimitiveType",
"RecordField": saladp + "RecordField",
"RecordSchema": saladp + "RecordSchema",
"Record_symbol": saladp + "RecordSchema/type/Record_symbol",
"SaladEnumSchema": saladp + "SaladEnumSchema",
"SaladRecordField": saladp + "SaladRecordField",
"SaladRecordSchema": saladp + "SaladRecordSchema",
"SchemaDefinedType": saladp + "SchemaDefinedType",
"SpecializeDef": saladp + "SpecializeDef",
"_container": saladp + "JsonldPredicate/_container",
"_id": {"@id": saladp + "_id", "@type": "@id", "identity": True},
"_type": saladp + "JsonldPredicate/_type",
"abstract": saladp + "SaladRecordSchema/abstract",
"array": saladp + "array",
"boolean": "http://www.w3.org/2001/XMLSchema#boolean",
"dct": "http://purl.org/dc/terms/",
"default": {"@id": saladp + "default", "noLinkCheck": True},
"doc": "rdfs:comment",
"docAfter": {"@id": saladp + "docAfter", "@type": "@id"},
"docChild": {"@id": saladp + "docChild", "@type": "@id"},
"docParent": {"@id": saladp + "docParent", "@type": "@id"},
"documentRoot": saladp + "SchemaDefinedType/documentRoot",
"documentation": saladp + "documentation",
"double": "http://www.w3.org/2001/XMLSchema#double",
"enum": saladp + "enum",
"extends": {"@id": saladp + "extends", "@type": "@id", "refScope": 1},
"fields": {
"@id": saladp + "fields",
"mapPredicate": "type",
"mapSubject": "name",
},
"float": "http://www.w3.org/2001/XMLSchema#float",
"identity": saladp + "JsonldPredicate/identity",
"inVocab": saladp + "NamedType/inVocab",
"int": "http://www.w3.org/2001/XMLSchema#int",
"items": {"@id": saladp + "items", "@type": "@vocab", "refScope": 2},
"jsonldPredicate": "sld:jsonldPredicate",
"long": "http://www.w3.org/2001/XMLSchema#long",
"mapPredicate": saladp + "JsonldPredicate/mapPredicate",
"mapSubject": saladp + "JsonldPredicate/mapSubject",
"name": "@id",
"noLinkCheck": saladp + "JsonldPredicate/noLinkCheck",
"null": saladp + "null",
"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"record": saladp + "record",
"refScope": saladp + "JsonldPredicate/refScope",
"sld": saladp,
"specialize": {
"@id": saladp + "specialize",
"mapPredicate": "specializeTo",
"mapSubject": "specializeFrom",
},
"specializeFrom": {
"@id": saladp + "specializeFrom",
"@type": "@id",
"refScope": 1,
},
"specializeTo": {
"@id": saladp + "specializeTo",
"@type": "@id",
"refScope": 1,
},
"string": "http://www.w3.org/2001/XMLSchema#string",
"subscope": saladp + "JsonldPredicate/subscope",
"symbols": {"@id": saladp + "symbols", "@type": "@id", "identity": True},
"type": {
"@id": saladp + "type",
"@type": "@vocab",
"refScope": 2,
"typeDSL": True,
},
"typeDSL": saladp + "JsonldPredicate/typeDSL",
"xsd": "http://www.w3.org/2001/XMLSchema#",
}
)
for salad in SALAD_FILES:
with resource_stream("schema_salad", "metaschema/" + salad) as stream:
loader.cache["https://w3id.org/cwl/" + salad] = stream.read().decode(
"UTF-8"
)
with resource_stream("schema_salad", "metaschema/metaschema.yml") as stream:
loader.cache["https://w3id.org/cwl/salad"] = stream.read().decode("UTF-8")
yaml = yaml_no_ts()
j = yaml.load(loader.cache["https://w3id.org/cwl/salad"])
add_lc_filename(j, "metaschema.yml")
j2 = loader.resolve_all(j, saladp)[0]
if not isinstance(j2, list):
_logger.error("%s", j2)
raise SchemaParseException(f"Not a list: {j2}")
else:
sch_obj = make_avro(j2, loader, loader.vocab)
try:
sch_names = make_avro_schema_from_avro(sch_obj)
except SchemaParseException:
_logger.error("Metaschema error, avro was:\n%s", json_dumps(sch_obj, indent=4))
raise
validate_doc(sch_names, j2, loader, strict=True)
return (sch_names, j2, loader)
def add_namespaces(
metadata: Mapping[str, Any], namespaces: MutableMapping[str, str]
) -> None:
for key, value in metadata.items():
if key not in namespaces:
namespaces[key] = value
elif namespaces[key] != value:
raise ValidationException(
"Namespace prefix '{}' has conflicting definitions '{}'"
" and '{}'.".format(key, namespaces[key], value)
)
def collect_namespaces(metadata: Mapping[str, Any]) -> Dict[str, str]:
namespaces = {}
if "$import_metadata" in metadata:
for value in metadata["$import_metadata"].values():
add_namespaces(collect_namespaces(value), namespaces)
if "$namespaces" in metadata:
add_namespaces(metadata["$namespaces"], namespaces)
return namespaces
schema_type = Tuple[Loader, Union[Names, SchemaParseException], Dict[str, Any], Loader]
def load_schema(
schema_ref: ResolveType,
cache: Optional[CacheType] = None,
) -> schema_type:
metaschema_names, _metaschema_doc, metaschema_loader = get_metaschema()
if cache is not None:
metaschema_loader.cache.update(cache)
schema_doc, schema_metadata = metaschema_loader.resolve_ref(schema_ref, "")
if not isinstance(schema_doc, MutableSequence):
raise ValidationException("Schema reference must resolve to a list.")
validate_doc(metaschema_names, schema_doc, metaschema_loader, True)
metactx = schema_metadata.get("@context", {})
metactx.update(collect_namespaces(schema_metadata))
schema_ctx = jsonld_context.salad_to_jsonld_context(schema_doc, metactx)[0]
document_loader = Loader(schema_ctx, cache=cache)
avsc_names = make_avro_schema(schema_doc, document_loader, metaschema_loader.vocab)
return document_loader, avsc_names, schema_metadata, metaschema_loader
def load_and_validate(
document_loader: Loader,
avsc_names: Names,
document: Union[CommentedMap, str],
strict: bool,
strict_foreign_properties: bool = False,
) -> Tuple[Any, Dict[str, Any]]:
try:
if isinstance(document, CommentedMap):
data, metadata = document_loader.resolve_all(
document,
document["id"],
checklinks=True,
strict_foreign_properties=strict_foreign_properties,
)
else:
data, metadata = document_loader.resolve_ref(
document,
checklinks=True,
strict_foreign_properties=strict_foreign_properties,
)
validate_doc(
avsc_names,
data,
document_loader,
strict,
strict_foreign_properties=strict_foreign_properties,
)
except ValidationException as exc:
raise ValidationException("", None, [exc]) from exc
return data, metadata
def validate_doc(
schema_names: Names,
doc: ResolveType,
loader: Loader,
strict: bool,
strict_foreign_properties: bool = False,
) -> None:
has_root = False
for root in schema_names.names.values():
if (hasattr(root, "get_prop") and root.get_prop("documentRoot")) or (
"documentRoot" in root.props
):
has_root = True
break
if not has_root:
raise ValidationException("No document roots defined in the schema")
if isinstance(doc, MutableSequence):
vdoc = doc
elif isinstance(doc, CommentedMap):
vdoc = CommentedSeq([doc])
vdoc.lc.add_kv_line_col(0, [doc.lc.line, doc.lc.col])
vdoc.lc.filename = doc.lc.filename
else:
raise ValidationException("Document must be dict or list")
roots = []
for root in schema_names.names.values():
if (hasattr(root, "get_prop") and root.get_prop("documentRoot")) or (
root.props.get("documentRoot")
):
roots.append(root)
anyerrors = []
for pos, item in enumerate(vdoc):
sourceline = SourceLine(vdoc, pos, str)
success = False
for root in roots:
success = validate.validate_ex(
root,
item,
loader.identifiers,
strict,
foreign_properties=loader.foreign_properties,
raise_ex=False,
skip_foreign_properties=loader.skip_schemas,
strict_foreign_properties=strict_foreign_properties,
vocab=loader.vocab,
)
if success:
break
if not success:
errors = []
for root in roots:
if hasattr(root, "get_prop"):
name = root.get_prop("name")
elif hasattr(root, "name"):
name = root.name
try:
validate.validate_ex(
root,
item,
loader.identifiers,
strict,
foreign_properties=loader.foreign_properties,
raise_ex=True,
skip_foreign_properties=loader.skip_schemas,
strict_foreign_properties=strict_foreign_properties,
vocab=loader.vocab,
)
except ClassValidationException as exc1:
errors = [
ClassValidationException(
f"tried `{validate.friendly(name)}` but", sourceline, [exc1]
)
]
break
except ValidationException as exc2:
errors.append(
ValidationException(
f"tried `{validate.friendly(name)}` but", sourceline, [exc2]
)
)
objerr = "Invalid"
for ident in loader.identifiers:
if ident in item:
objerr = "Object `{}` is not valid because".format(
relname(item[ident])
)
break
anyerrors.append(ValidationException(objerr, sourceline, errors, "-"))
if anyerrors:
raise ValidationException("", None, anyerrors, "*")
def get_anon_name(
rec: MutableMapping[str, Union[str, Dict[str, str], List[str]]]
) -> str:
if "name" in rec:
name = rec["name"]
if isinstance(name, str):
return name
raise ValidationException(f"Expected name field to be a string, was {name}")
anon_name = ""
if rec["type"] in ("enum", saladp + "enum"):
for sym in rec["symbols"]:
anon_name += sym
return (
"anon.enum_" + hashlib.sha1(anon_name.encode("UTF-8")).hexdigest()
)
if rec["type"] in ("record", saladp + "record"):
for field in rec["fields"]:
if isinstance(field, Mapping):
anon_name += field["name"]
else:
raise ValidationException(
"Expected entries in 'fields' to also be maps, was {}.".format(
field
)
)
return "record_" + hashlib.sha1(anon_name.encode("UTF-8")).hexdigest()
if rec["type"] in ("array", saladp + "array"):
return ""
raise ValidationException("Expected enum or record, was {}".format(rec["type"]))
def replace_type(
items: Any,
spec: Dict[str, Any],
loader: Loader,
found: Set[str],
find_embeds: bool = True,
deepen: bool = True,
) -> Any:
if isinstance(items, MutableMapping):
if items.get("type") in ("record", "enum") and items.get("name"):
if items["name"] in found:
return items["name"]
found.add(items["name"])
if not deepen:
return items
items = copy.copy(items)
if not items.get("name"):
items["name"] = get_anon_name(items)
for name in ("type", "items", "fields"):
if name in items:
items[name] = replace_type(
items[name],
spec,
loader,
found,
find_embeds=find_embeds,
deepen=find_embeds,
)
if isinstance(items[name], MutableSequence):
items[name] = flatten(items[name])
return items
if isinstance(items, MutableSequence):
return [
replace_type(i, spec, loader, found, find_embeds=find_embeds, deepen=deepen)
for i in items
]
if isinstance(items, str):
replace_with = None
if items in loader.vocab:
items = loader.vocab[items]
if items in spec:
replace_with = spec[items]
if replace_with:
return replace_type(
replace_with, spec, loader, found, find_embeds=find_embeds
)
found.add(items)
return items
def avro_field_name(url: str) -> str:
d = urlparse(url)
if d.fragment:
return d.fragment.split("/")[-1]
return d.path.split("/")[-1]
Avro = TypeVar("Avro", MutableMapping[str, Any], MutableSequence[Any], str)
def make_valid_avro(
items: Avro,
alltypes: Dict[str, Dict[str, Any]],
found: Set[str],
union: bool = False,
fielddef: bool = False,
vocab: Optional[Dict[str, str]] = None,
) -> Union[
Avro, MutableMapping[str, str], str, List[Union[Any, MutableMapping[str, str], str]]
]:
if vocab is None:
_, _, metaschema_loader = get_metaschema()
vocab = metaschema_loader.vocab
if isinstance(items, MutableMapping):
avro = copy.copy(items)
if avro.get("name") and avro.get("inVocab", True):
if fielddef:
avro["name"] = avro_field_name(avro["name"])
else:
avro["name"] = validate.avro_type_name(avro["name"])
if "type" in avro and avro["type"] in (
saladp + "record",
saladp + "enum",
"record",
"enum",
):
if (hasattr(avro, "get") and avro.get("abstract")) or ("abstract" in avro):
return avro
if avro["name"] in found:
return cast(str, avro["name"])
found.add(avro["name"])
for field in ("type", "items", "values", "fields"):
if field in avro:
avro[field] = make_valid_avro(
avro[field],
alltypes,
found,
union=True,
fielddef=(field == "fields"),
vocab=vocab,
)
if "symbols" in avro:
avro["symbols"] = [avro_field_name(sym) for sym in avro["symbols"]]
return avro
if isinstance(items, MutableSequence):
ret = []
for i in items:
ret.append(
make_valid_avro(
i, alltypes, found, union=union, fielddef=fielddef, vocab=vocab
)
)
return ret
if union and isinstance(items, str):
if items in alltypes and validate.avro_type_name(items) not in found:
return make_valid_avro(
alltypes[items], alltypes, found, union=union, vocab=vocab
)
if items in vocab:
return validate.avro_type_name(vocab[items])
else:
return validate.avro_type_name(items)
else:
return items
def deepcopy_strip(item: Any) -> Any:
if isinstance(item, MutableMapping):
return {k: deepcopy_strip(v) for k, v in item.items()}
if isinstance(item, MutableSequence):
return [deepcopy_strip(k) for k in item]
return item
def extend_and_specialize(
items: List[Dict[str, Any]], loader: Loader
) -> List[Dict[str, Any]]:
items2 = deepcopy_strip(items)
types = {i["name"]: i for i in items2}
results = []
for stype in items2:
if "extends" in stype:
specs = {}
if "specialize" in stype:
for spec in aslist(stype["specialize"]):
specs[spec["specializeFrom"]] = spec["specializeTo"]
exfields = []
exsym = []
for ex in aslist(stype["extends"]):
if ex not in types:
raise ValidationException(
"Extends {} in {} refers to invalid base type.".format(
stype["extends"], stype["name"]
)
)
basetype = copy.copy(types[ex])
if stype["type"] == "record":
if specs:
basetype["fields"] = replace_type(
basetype.get("fields", []), specs, loader, set()
)
for field in basetype.get("fields", []):
if "inherited_from" not in field:
field["inherited_from"] = ex
exfields.extend(basetype.get("fields", []))
elif stype["type"] == "enum":
exsym.extend(basetype.get("symbols", []))
if stype["type"] == "record":
stype = copy.copy(stype)
exfields.extend(stype.get("fields", []))
stype["fields"] = exfields
fieldnames = set()
for field in stype["fields"]:
if field["name"] in fieldnames:
raise ValidationException(
"Field name {} appears twice in {}".format(
field["name"], stype["name"]
)
)
else:
fieldnames.add(field["name"])
elif stype["type"] == "enum":
stype = copy.copy(stype)
exsym.extend(stype.get("symbols", []))
stype["symbol"] = exsym
types[stype["name"]] = stype
results.append(stype)
ex_types = {}
for result in results:
ex_types[result["name"]] = result
extended_by = {}
for result in results:
if "extends" in result:
for ex in aslist(result["extends"]):
if ex_types[ex].get("abstract"):
add_dictlist(extended_by, ex, ex_types[result["name"]])
add_dictlist(extended_by, validate.avro_type_name(ex), ex_types[ex])
for result in results:
if result.get("abstract") and result["name"] not in extended_by:
raise ValidationException(
"{} is abstract but missing a concrete subtype".format(result["name"])
)
for result in results:
if "fields" in result:
result["fields"] = replace_type(
result["fields"], extended_by, loader, set()
)
return results
def make_avro(
i: List[Dict[str, Any]],
loader: Loader,
metaschema_vocab: Optional[Dict[str, str]] = None,
) -> List[Any]:
j = extend_and_specialize(i, loader)
name_dict = {}
for entry in j:
name_dict[entry["name"]] = entry
avro = make_valid_avro(j, name_dict, set(), vocab=metaschema_vocab)
return [
t
for t in avro
if isinstance(t, MutableMapping)
and not t.get("abstract")
and t.get("type") != "org.w3id.cwl.salad.documentation"
]
def make_avro_schema(
i: List[Any], loader: Loader, metaschema_vocab: Optional[Dict[str, str]] = None
) -> Names:
names = Names()
avro = make_avro(i, loader, metaschema_vocab)
make_avsc_object(convert_to_dict(avro), names)
return names
def make_avro_schema_from_avro(avro: List[Union[Avro, Dict[str, str], str]]) -> Names:
names = Names()
make_avsc_object(convert_to_dict(avro), names)
return names
def shortname(inputid: str) -> str:
parsed_id = urlparse(inputid)
if parsed_id.fragment:
return parsed_id.fragment.split("/")[-1]
return parsed_id.path.split("/")[-1]
def print_inheritance(doc: List[Dict[str, Any]], stream: IO[Any]) -> None:
stream.write("digraph {\n")
for entry in doc:
if entry["type"] == "record":
label = name = shortname(entry["name"])
fields = entry.get("fields", [])
if fields:
label += "\\n* {}\\l".format(
"\\l* ".join(shortname(field["name"]) for field in fields)
)
shape = "ellipse" if entry.get("abstract") else "box"
stream.write(f'"{name}" [shape={shape} label="{label}"];\n')
if "extends" in entry:
for target in aslist(entry["extends"]):
stream.write(f'"{shortname(target)}" -> "{name}";\n')
stream.write("}\n")
|
Apache License 2.0
|
microsoft/qlib
|
scripts/data_collector/us_index/collector.py
|
get_instruments
|
python
|
def get_instruments(
qlib_dir: str, index_name: str, method: str = "parse_instruments", request_retry: int = 5, retry_sleep: int = 3
):
_cur_module = importlib.import_module("data_collector.us_index.collector")
obj = getattr(_cur_module, f"{index_name.upper()}Index")(
qlib_dir=qlib_dir, index_name=index_name, request_retry=request_retry, retry_sleep=retry_sleep
)
getattr(obj, method)()
|
Parameters
----------
qlib_dir: str
qlib data dir, default "Path(__file__).parent/qlib_data"
index_name: str
index name, value from ["SP500", "NASDAQ100", "DJIA", "SP400"]
method: str
method, value from ["parse_instruments", "save_new_companies"]
request_retry: int
request retry, by default 5
retry_sleep: int
request sleep, by default 3
Examples
-------
# parse instruments
$ python collector.py --index_name SP500 --qlib_dir ~/.qlib/qlib_data/cn_data --method parse_instruments
# parse new companies
$ python collector.py --index_name SP500 --qlib_dir ~/.qlib/qlib_data/cn_data --method save_new_companies
|
https://github.com/microsoft/qlib/blob/7c31012b507a3823117bddcc693fc64899460b2a/scripts/data_collector/us_index/collector.py#L247-L278
|
import abc
import sys
import importlib
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
from typing import List
import fire
import requests
import pandas as pd
from tqdm import tqdm
from loguru import logger
CUR_DIR = Path(__file__).resolve().parent
sys.path.append(str(CUR_DIR.parent.parent))
from data_collector.index import IndexBase
from data_collector.utils import deco_retry, get_calendar_list, get_trading_date_by_shift
WIKI_URL = "https://en.wikipedia.org/wiki"
WIKI_INDEX_NAME_MAP = {
"NASDAQ100": "NASDAQ-100",
"SP500": "List_of_S%26P_500_companies",
"SP400": "List_of_S%26P_400_companies",
"DJIA": "Dow_Jones_Industrial_Average",
}
class WIKIIndex(IndexBase):
INST_PREFIX = ""
def __init__(self, index_name: str, qlib_dir: [str, Path] = None, request_retry: int = 5, retry_sleep: int = 3):
super(WIKIIndex, self).__init__(
index_name=index_name, qlib_dir=qlib_dir, request_retry=request_retry, retry_sleep=retry_sleep
)
self._target_url = f"{WIKI_URL}/{WIKI_INDEX_NAME_MAP[self.index_name.upper()]}"
@property
@abc.abstractmethod
def bench_start_date(self) -> pd.Timestamp:
raise NotImplementedError("rewrite bench_start_date")
@abc.abstractmethod
def get_changes(self) -> pd.DataFrame:
raise NotImplementedError("rewrite get_changes")
@property
def calendar_list(self) -> List[pd.Timestamp]:
_calendar_list = getattr(self, "_calendar_list", None)
if _calendar_list is None:
_calendar_list = list(filter(lambda x: x >= self.bench_start_date, get_calendar_list("US_ALL")))
setattr(self, "_calendar_list", _calendar_list)
return _calendar_list
def _request_new_companies(self) -> requests.Response:
resp = requests.get(self._target_url)
if resp.status_code != 200:
raise ValueError(f"request error: {self._target_url}")
return resp
def set_default_date_range(self, df: pd.DataFrame) -> pd.DataFrame:
_df = df.copy()
_df[self.SYMBOL_FIELD_NAME] = _df[self.SYMBOL_FIELD_NAME].str.strip()
_df[self.START_DATE_FIELD] = self.bench_start_date
_df[self.END_DATE_FIELD] = self.DEFAULT_END_DATE
return _df.loc[:, self.INSTRUMENTS_COLUMNS]
def get_new_companies(self):
logger.info(f"get new companies {self.index_name} ......")
_data = deco_retry(retry=self._request_retry, retry_sleep=self._retry_sleep)(self._request_new_companies)()
df_list = pd.read_html(_data.text)
for _df in df_list:
_df = self.filter_df(_df)
if (_df is not None) and (not _df.empty):
_df.columns = [self.SYMBOL_FIELD_NAME]
_df = self.set_default_date_range(_df)
logger.info(f"end of get new companies {self.index_name} ......")
return _df
def filter_df(self, df: pd.DataFrame) -> pd.DataFrame:
raise NotImplementedError("rewrite filter_df")
class NASDAQ100Index(WIKIIndex):
HISTORY_COMPANIES_URL = (
"https://indexes.nasdaqomx.com/Index/WeightingData?id=NDX&tradeDate={trade_date}T00%3A00%3A00.000&timeOfDay=SOD"
)
MAX_WORKERS = 16
def filter_df(self, df: pd.DataFrame) -> pd.DataFrame:
if len(df) >= 100 and "Ticker" in df.columns:
return df.loc[:, ["Ticker"]].copy()
@property
def bench_start_date(self) -> pd.Timestamp:
return pd.Timestamp("2003-01-02")
@deco_retry
def _request_history_companies(self, trade_date: pd.Timestamp, use_cache: bool = True) -> pd.DataFrame:
trade_date = trade_date.strftime("%Y-%m-%d")
cache_path = self.cache_dir.joinpath(f"{trade_date}_history_companies.pkl")
if cache_path.exists() and use_cache:
df = pd.read_pickle(cache_path)
else:
url = self.HISTORY_COMPANIES_URL.format(trade_date=trade_date)
resp = requests.post(url)
if resp.status_code != 200:
raise ValueError(f"request error: {url}")
df = pd.DataFrame(resp.json()["aaData"])
df[self.DATE_FIELD_NAME] = trade_date
df.rename(columns={"Name": "name", "Symbol": self.SYMBOL_FIELD_NAME}, inplace=True)
if not df.empty:
df.to_pickle(cache_path)
return df
def get_history_companies(self):
logger.info(f"start get history companies......")
all_history = []
error_list = []
with tqdm(total=len(self.calendar_list)) as p_bar:
with ThreadPoolExecutor(max_workers=self.MAX_WORKERS) as executor:
for _trading_date, _df in zip(
self.calendar_list, executor.map(self._request_history_companies, self.calendar_list)
):
if _df.empty:
error_list.append(_trading_date)
else:
all_history.append(_df)
p_bar.update()
if error_list:
logger.warning(f"get error: {error_list}")
logger.info(f"total {len(self.calendar_list)}, error {len(error_list)}")
logger.info(f"end of get history companies.")
return pd.concat(all_history, sort=False)
def get_changes(self):
return self.get_changes_with_history_companies(self.get_history_companies())
class DJIAIndex(WIKIIndex):
@property
def bench_start_date(self) -> pd.Timestamp:
return pd.Timestamp("2000-01-01")
def get_changes(self) -> pd.DataFrame:
pass
def filter_df(self, df: pd.DataFrame) -> pd.DataFrame:
if "Symbol" in df.columns:
_df = df.loc[:, ["Symbol"]].copy()
_df["Symbol"] = _df["Symbol"].apply(lambda x: x.split(":")[-1])
return _df
def parse_instruments(self):
logger.warning(f"No suitable data source has been found!")
class SP500Index(WIKIIndex):
WIKISP500_CHANGES_URL = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
@property
def bench_start_date(self) -> pd.Timestamp:
return pd.Timestamp("1999-01-01")
def get_changes(self) -> pd.DataFrame:
logger.info(f"get sp500 history changes......")
changes_df = pd.read_html(self.WIKISP500_CHANGES_URL)[-1]
changes_df = changes_df.iloc[:, [0, 1, 3]]
changes_df.columns = [self.DATE_FIELD_NAME, self.ADD, self.REMOVE]
changes_df[self.DATE_FIELD_NAME] = pd.to_datetime(changes_df[self.DATE_FIELD_NAME])
_result = []
for _type in [self.ADD, self.REMOVE]:
_df = changes_df.copy()
_df[self.CHANGE_TYPE_FIELD] = _type
_df[self.SYMBOL_FIELD_NAME] = _df[_type]
_df.dropna(subset=[self.SYMBOL_FIELD_NAME], inplace=True)
if _type == self.ADD:
_df[self.DATE_FIELD_NAME] = _df[self.DATE_FIELD_NAME].apply(
lambda x: get_trading_date_by_shift(self.calendar_list, x, 0)
)
else:
_df[self.DATE_FIELD_NAME] = _df[self.DATE_FIELD_NAME].apply(
lambda x: get_trading_date_by_shift(self.calendar_list, x, -1)
)
_result.append(_df[[self.DATE_FIELD_NAME, self.CHANGE_TYPE_FIELD, self.SYMBOL_FIELD_NAME]])
logger.info(f"end of get sp500 history changes.")
return pd.concat(_result, sort=False)
def filter_df(self, df: pd.DataFrame) -> pd.DataFrame:
if "Symbol" in df.columns:
return df.loc[:, ["Symbol"]].copy()
class SP400Index(WIKIIndex):
@property
def bench_start_date(self) -> pd.Timestamp:
return pd.Timestamp("2000-01-01")
def get_changes(self) -> pd.DataFrame:
pass
def filter_df(self, df: pd.DataFrame) -> pd.DataFrame:
if "Ticker symbol" in df.columns:
return df.loc[:, ["Ticker symbol"]].copy()
def parse_instruments(self):
logger.warning(f"No suitable data source has been found!")
|
MIT License
|
nextdoor/ndscheduler
|
ndscheduler/server/handlers/jobs.py
|
Handler.post
|
python
|
def post(self):
self._validate_post_data()
job_id = self.scheduler_manager.add_job(**self.json_args)
self.datastore.add_audit_log(job_id, self.json_args['name'],
constants.AUDIT_LOG_ADDED, user=self.username)
response = {
'job_id': job_id}
self.set_status(201)
self.write(response)
|
Adds a job.
add_job() is a non-blocking operation, but audit log is a blocking operation.
Handles an endpoint:
POST /api/v1/jobs
|
https://github.com/nextdoor/ndscheduler/blob/d31016aaca480e38a69d75a66a9978a937c6a0b0/ndscheduler/server/handlers/jobs.py#L120-L141
|
import json
import tornado.concurrent
import tornado.gen
import tornado.web
from ndscheduler.corescheduler import constants
from ndscheduler.corescheduler import utils
from ndscheduler.server.handlers import base
class Handler(base.BaseHandler):
def _get_jobs(self):
jobs = self.scheduler_manager.get_jobs()
return_json = []
for job in jobs:
return_json.append(self._build_job_dict(job))
return {'jobs': return_json}
def _build_job_dict(self, job):
if job.next_run_time:
next_run_time = job.next_run_time.isoformat()
else:
next_run_time = ''
return_dict = {
'job_id': job.id,
'name': job.name,
'next_run_time': next_run_time,
'job_class_string': utils.get_job_name(job),
'pub_args': utils.get_job_args(job)}
return_dict.update(utils.get_cron_strings(job))
return return_dict
@tornado.concurrent.run_on_executor
def get_jobs(self):
return self._get_jobs()
@tornado.gen.engine
def get_jobs_yield(self):
return_json = yield self.get_jobs()
self.finish(return_json)
def _get_job(self, job_id):
job = self.scheduler_manager.get_job(job_id)
if not job:
self.set_status(400)
return {'error': 'Job not found: %s' % job_id}
return self._build_job_dict(job)
@tornado.concurrent.run_on_executor
def get_job(self, job_id):
return self._get_job(job_id)
@tornado.gen.engine
def get_job_yield(self, job_id):
return_json = yield self.get_job(job_id)
self.finish(return_json)
@tornado.web.removeslash
@tornado.web.asynchronous
@tornado.gen.engine
def get(self, job_id=None):
if job_id is None:
self.get_jobs_yield()
else:
self.get_job_yield(job_id)
@tornado.web.removeslash
|
BSD 2-Clause Simplified License
|
cartodb/cartoframes
|
cartoframes/data/observatory/catalog/entity.py
|
CatalogEntity.to_series
|
python
|
def to_series(self):
return pd.Series(self.data)
|
Converts the entity instance to a pandas Series.
|
https://github.com/cartodb/cartoframes/blob/7c7392be5d15d0472ff428546c4791ed1a3842b0/cartoframes/data/observatory/catalog/entity.py#L99-L101
|
import pandas as pd
from abc import ABC
from geopandas import GeoDataFrame
from carto.do_dataset import DODataset
from . import subscriptions
from ....utils.geom_utils import set_geometry
from ....utils.logger import log
_DATASET_READ_MSG = '''To load it as a DataFrame you can do:
df = pandas.read_csv('{}')
'''
_GEOGRAPHY_READ_MSG = '''To load it as a GeoDataFrame you can do:
from cartoframes.utils import decode_geometry
df = pandas.read_csv('{}')
gdf = GeoDataFrame(df, geometry=decode_geometry(df['geom']))
'''
GEOM_COL = 'geom'
class CatalogEntity(ABC):
id_field = 'id'
_entity_repo = None
export_excluded_fields = ['summary_json', 'geom_coverage']
def __init__(self, data):
self.data = data
@property
def id(self):
return self.data[self.id_field]
@property
def slug(self):
try:
return self.data['slug']
except KeyError:
return None
@classmethod
def get(cls, id_):
return cls._entity_repo.get_by_id(id_)
@classmethod
def get_all(cls, filters=None):
return cls._entity_repo.get_all(filters)
@classmethod
def get_list(cls, id_list):
return cls._entity_repo.get_by_id_list(id_list)
|
BSD 3-Clause New or Revised License
|
mila-iqia/myia
|
myia/operations/prim_env_getitem.py
|
infer_env_getitem
|
python
|
async def infer_env_getitem(
self, engine, env: xtype.EnvType, key: xtype.SymbolicKeyType, dflt
):
expected = key.xvalue().abstract
engine.abstract_merge(expected, dflt)
return expected
|
Infer the return type of primitive `env_getitem`.
|
https://github.com/mila-iqia/myia/blob/56774a39579b4ec4123f44843ad4ca688acc859b/myia/operations/prim_env_getitem.py#L14-L20
|
from .. import xtype
from ..lib import standard_prim
from . import primitives as P
def pyimpl_env_getitem(env, key, default):
return env.get(key, default)
@standard_prim(P.env_getitem)
|
MIT License
|
nyaruka/smartmin
|
smartmin/views.py
|
SmartFormMixin.get_form_class
|
python
|
def get_form_class(self):
if self.form_class:
form_class = self.form_class
else:
if self.model is not None:
model = self.model
elif hasattr(self, 'object') and self.object is not None:
model = self.object.__class__
else:
model = self.get_queryset().model
factory_kwargs = self.get_factory_kwargs()
form_class = model_forms.modelform_factory(model, **factory_kwargs)
return form_class
|
Returns the form class to use in this view
|
https://github.com/nyaruka/smartmin/blob/edaf589aee9de050e505059e30d61d0331908ef0/smartmin/views.py#L967-L991
|
import json
import operator
from functools import reduce
import django.forms.models as model_forms
from django import forms
from django.conf import settings
from django.conf.urls import url
from django.contrib import messages
from django.contrib.auth import REDIRECT_FIELD_NAME
from django.core.exceptions import ImproperlyConfigured
from django.urls import reverse
from django.db import IntegrityError
from django.db.models import Q
from django.http import HttpResponseRedirect, HttpResponse, JsonResponse
from django.utils.encoding import force_text
from django.utils.http import urlquote
from django.utils.translation import ugettext_lazy as _
from django.views.generic.edit import ModelFormMixin, UpdateView, CreateView, ProcessFormView, FormView
from django.views.generic.base import TemplateView
from django.views.generic import DetailView, ListView
from smartmin.csv_imports.models import ImportTask
from smartmin.mixins import NonAtomicMixin
from . import widgets
def smart_url(url, obj=None):
if url.find("@") >= 0:
(args, value) = url.split('@')
if args:
val = getattr(obj, args, None)
return reverse(value, args=[val])
else:
return reverse(value)
else:
if obj is None:
return url
else:
return url % obj.id
class SmartView:
fields = None
exclude = None
field_config = {}
title = None
refresh = 0
template_name = None
pjax = None
url_name = None
crudl = None
def __init__(self, *args):
self.extra_context = {}
super(SmartView, self).__init__()
def derive_title(self):
return self.title
@classmethod
def derive_url_pattern(cls, path, action):
return r'^%s/%s/$' % (path, action)
def has_permission(self, request, *args, **kwargs):
self.kwargs = kwargs
self.args = args
self.request = request
if not getattr(self, 'permission', None):
return True
else:
return request.user.has_perm(self.permission)
def dispatch(self, request, *args, **kwargs):
def wrapper(request, *args, **kwargs):
if not self.has_permission(request, *args, **kwargs):
path = urlquote(request.get_full_path())
login_url = kwargs.pop('login_url', settings.LOGIN_URL)
redirect_field_name = kwargs.pop('redirect_field_name', REDIRECT_FIELD_NAME)
return HttpResponseRedirect("%s?%s=%s" % (login_url, redirect_field_name, path))
else:
response = self.pre_process(request, *args, **kwargs)
if not response:
return super(SmartView, self).dispatch(request, *args, **kwargs)
else:
return response
return wrapper(request, *args, **kwargs)
def pre_process(self, request, *args, **kwargs):
return None
def lookup_obj_attribute(self, obj, field):
curr_field = field.encode('ascii', 'ignore').decode("utf-8")
rest = None
if field.find('.') >= 0:
curr_field = field.split('.')[0]
rest = '.'.join(field.split('.')[1:])
obj_field = getattr(obj, curr_field, None)
if obj_field and getattr(obj_field, '__call__', None):
obj_field = obj_field()
if obj_field and rest:
return self.lookup_obj_attribute(obj_field, rest)
else:
return obj_field
def lookup_field_value(self, context, obj, field):
curr_field = field.encode('ascii', 'ignore').decode("utf-8")
if field.find('.') == -1:
view_method = getattr(self, 'get_%s' % curr_field, None)
if view_method:
return view_method(obj)
return self.lookup_obj_attribute(obj, field)
def lookup_field_label(self, context, field, default=None):
if field.find('.') >= 0:
return self.lookup_field_label(context, field.split('.')[-1], default)
label = None
if field in self.field_config and 'label' in self.field_config[field]:
label = self.field_config[field]['label']
elif default:
label = default
else:
for model_field in self.model._meta.fields:
if model_field.name == field:
return model_field.verbose_name.title()
if label is None:
label = self.derive_field_label(field)
return label
def lookup_field_help(self, field, default=None):
help = None
if field in self.field_config and 'help' in self.field_config[field]:
help = self.field_config[field]['help']
elif default:
help = default
elif hasattr(self, 'model'):
for model_field in self.model._meta.fields:
if model_field.name == field:
help = model_field.help_text
break
return help
def lookup_field_class(self, field, obj=None, default=None):
css = ""
if field in self.field_config and 'class' in self.field_config[field]:
css = self.field_config[field]['class']
elif default:
css = default
return css
def derive_field_label(self, field, obj=None):
label = field.replace('_', ' ').title()
return label
def derive_field_config(self):
return self.field_config
def get_template_names(self):
templates = []
if getattr(self, 'template_name', None):
templates.append(self.template_name)
if getattr(self, 'default_template', None):
templates.append(self.default_template)
else:
templates = super(SmartView, self).get_template_names()
return templates
def derive_fields(self):
fields = []
if self.fields:
fields.append(self.fields)
return fields
def derive_exclude(self):
exclude = []
if self.exclude:
exclude += self.exclude
return exclude
def derive_refresh(self):
return self.refresh
def get_context_data(self, **kwargs):
context = super(SmartView, self).get_context_data(**kwargs)
self.field_config = self.derive_field_config()
self.fields = self.derive_fields()
url_params = "?"
order_params = ""
for key in self.request.GET.keys():
if key != 'page' and key != 'pjax' and (len(key) == 0 or key[0] != '_'):
for value in self.request.GET.getlist(key):
url_params += "%s=%s&" % (urlquote(key), urlquote(value))
elif key == '_order':
order_params = "&".join(["%s=%s" % (key, _) for _ in self.request.GET.getlist(key)])
context['url_params'] = url_params
context['order_params'] = order_params + "&"
context['pjax'] = self.pjax
context['blocks'] = dict()
context['fields'] = self.fields
context['view'] = self
context['field_config'] = self.field_config
context['title'] = self.derive_title()
context.update(self.extra_context)
base_template = "base.html"
if 'pjax' in self.request.GET or 'pjax' in self.request.POST:
base_template = "smartmin/pjax.html"
if 'HTTP_X_PJAX' in self.request.META:
base_template = "smartmin/pjax.html"
context['base_template'] = base_template
refresh = self.derive_refresh()
if refresh:
context['refresh'] = refresh
return context
def as_json(self, context):
raise NotImplementedError("this view can't be rendered as JSON")
def render_to_response(self, context, **response_kwargs):
if '_format' in self.request.GET and self.request.GET['_format'] == 'json':
try:
return JsonResponse(self.as_json(context), safe=False)
except NotImplementedError:
pass
return super(SmartView, self).render_to_response(context)
class SmartTemplateView(SmartView, TemplateView):
pass
def derive_single_object_url_pattern(slug_url_kwarg, path, action):
if slug_url_kwarg:
return r'^%s/%s/(?P<%s>[^/]+)/$' % (path, action, slug_url_kwarg)
else:
return r'^%s/%s/(?P<pk>\d+)/$' % (path, action)
class SmartSingleObjectView(SmartView):
slug_field = None
slug_url_kwarg = None
def get_slug_field(self):
return self.slug_field if self.slug_field else self.slug_url_kwarg
class SmartReadView(SmartSingleObjectView, DetailView):
default_template = 'smartmin/read.html'
edit_button = None
field_config = {'modified_blurb': dict(label="Modified"),
'created_blurb': dict(label="Created")}
@classmethod
def derive_url_pattern(cls, path, action):
return derive_single_object_url_pattern(cls.slug_url_kwarg, path, action)
def derive_queryset(self):
return super(SmartReadView, self).get_queryset()
def get_queryset(self):
self.queryset = self.derive_queryset()
return self.queryset
def derive_title(self):
return str(self.object)
def derive_fields(self):
if self.fields:
return list(self.fields)
else:
fields = []
for field in self.object._meta.fields:
fields.append(field.name)
exclude = self.derive_exclude()
fields = [field for field in fields if field not in exclude]
return fields
def get_modified_blurb(self, obj):
return "%s by %s" % (obj.modified_on.strftime("%B %d, %Y at %I:%M %p"), obj.modified_by)
def get_created_blurb(self, obj):
return "%s by %s" % (obj.created_on.strftime("%B %d, %Y at %I:%M %p"), obj.created_by)
class SmartDeleteView(SmartSingleObjectView, DetailView, ProcessFormView):
default_template = 'smartmin/delete_confirm.html'
name_field = 'name'
cancel_url = None
redirect_url = None
@classmethod
def derive_url_pattern(cls, path, action):
return derive_single_object_url_pattern(cls.slug_url_kwarg, path, action)
def get_cancel_url(self):
if not self.cancel_url:
raise ImproperlyConfigured("DeleteView must define a cancel_url")
return smart_url(self.cancel_url, self.object)
def pre_delete(self, obj):
if self.request.user.id and self.request.user.id > 0 and hasattr(obj, 'modified_by_id'):
obj.modified_by = self.request.user
def post(self, request, *args, **kwargs):
self.object = self.get_object()
self.pre_delete(self.object)
redirect_url = self.get_redirect_url()
self.object.delete()
return HttpResponseRedirect(redirect_url)
def get_redirect_url(self, **kwargs):
if not self.redirect_url:
raise ImproperlyConfigured("DeleteView must define a redirect_url")
return smart_url(self.redirect_url)
def get_context_data(self, **kwargs):
context = super(SmartDeleteView, self).get_context_data(**kwargs)
context['name_field'] = self.name_field
context['cancel_url'] = self.get_cancel_url()
return context
class SmartListView(SmartView, ListView):
default_template = 'smartmin/list.html'
link_url = None
link_fields = None
add_button = None
search_fields = None
paginate_by = 25
field_config = {'is_active': dict(label='')}
default_order = None
select_related = None
@classmethod
def derive_url_pattern(cls, path, action):
if action == 'list':
return r'^%s/$' % (path)
else:
return r'^%s/%s/$' % (path, action)
def derive_search_fields(self):
return self.search_fields
def derive_title(self):
title = super(SmartListView, self).derive_title()
if not title:
return force_text(self.model._meta.verbose_name_plural).title()
else:
return title
def derive_link_fields(self, context):
if self.link_fields is not None:
return self.link_fields
else:
link_fields = set()
if self.fields:
for field in self.fields:
if field != 'is_active':
link_fields.add(field)
break
return link_fields
def lookup_field_link(self, context, field, obj):
return smart_url(self.link_url, obj)
def lookup_field_orderable(self, field):
try:
self.model._meta.get_field_by_name(field)
return True
except Exception:
return False
def get_context_data(self, **kwargs):
context = super(SmartListView, self).get_context_data(**kwargs)
self.link_fields = self.derive_link_fields(context)
context['link_fields'] = self.link_fields
if 'search' in self.request.GET:
context['search'] = self.request.GET['search']
order = self.derive_ordering()
if order:
if order[0] == '-':
context['order'] = order[1:]
context['order_asc'] = False
else:
context['order'] = order
context['order_asc'] = True
return context
def derive_select_related(self):
return self.select_related
def derive_queryset(self, **kwargs):
queryset = super(SmartListView, self).get_queryset(**kwargs)
search_fields = self.derive_search_fields()
search_query = self.request.GET.get('search')
if search_fields and search_query:
term_queries = []
for term in search_query.split(' '):
field_queries = []
for field in search_fields:
field_queries.append(Q(**{field: term}))
term_queries.append(reduce(operator.or_, field_queries))
queryset = queryset.filter(reduce(operator.and_, term_queries))
related = self.derive_select_related()
if related:
queryset = queryset.select_related(*related)
return queryset
def get_queryset(self, **kwargs):
queryset = self.derive_queryset(**kwargs)
return self.order_queryset(queryset)
def derive_ordering(self):
if '_order' in self.request.GET:
return self.request.GET['_order']
elif self.default_order:
return self.default_order
else:
return None
def order_queryset(self, queryset):
order = self.derive_ordering()
if '_order' in self.request.GET:
if order.lstrip('-') not in self.derive_fields():
order = None
if order:
if isinstance(order, str):
order = (order,)
queryset = queryset.order_by(*order)
return queryset
def derive_fields(self):
if self.fields:
return self.fields
else:
fields = []
for field in self.object_list.model._meta.fields:
if field.name != 'id':
fields.append(field.name)
return fields
def get_is_active(self, obj):
if obj.is_active:
return '<div class="active_icon"></div>'
else:
return ''
def render_to_response(self, context, **response_kwargs):
if self.request.GET.get('_format', 'html') == 'select2':
results = []
for obj in context['object_list']:
result = None
if hasattr(obj, 'as_select2'):
result = obj.as_select2()
if not result:
result = dict(id=obj.pk, text="%s" % obj)
results.append(result)
has_more = context['page_obj'].has_next() if context['page_obj'] else False
json_data = dict(results=results, err='nil', more=has_more)
return JsonResponse(json_data)
else:
return super(SmartListView, self).render_to_response(context)
class SmartCsvView(SmartListView):
def derive_filename(self):
filename = getattr(self, 'filename', None)
if not filename:
filename = "%s.csv" % self.model._meta.verbose_name.lower()
return filename
def render_to_response(self, context, **response_kwargs):
import csv
response = HttpResponse(content_type='text/csv; charset=utf-8')
response['Content-Disposition'] = 'attachment; filename=%s' % self.derive_filename()
writer = csv.writer(response, quoting=csv.QUOTE_ALL)
fields = self.derive_fields()
header = []
for field in fields:
header.append(str(self.lookup_field_label(dict(), field)))
writer.writerow([s.encode("utf-8") for s in header])
for obj in self.object_list:
row = []
for field in fields:
row.append(str(self.lookup_field_value(dict(), obj, field)))
writer.writerow([s.encode("utf-8") for s in row])
return response
class SmartXlsView(SmartListView):
def derive_filename(self):
filename = getattr(self, 'filename', None)
if not filename:
filename = "%s.xls" % self.model._meta.verbose_name.lower()
return filename
def render_to_response(self, context, **response_kwargs):
from xlwt import Workbook
book = Workbook()
sheet1 = book.add_sheet(self.derive_title())
fields = self.derive_fields()
for col in range(len(fields)):
field = fields[col]
sheet1.write(0, col, str(self.lookup_field_label(dict(), field)))
for row in range(len(self.object_list)):
obj = self.object_list[row]
for col in range(len(fields)):
field = fields[col]
value = str(self.lookup_field_value(dict(), obj, field))
sheet1.write(row + 1, col, value)
response = HttpResponse(content_type='application/vnd.ms-excel')
response['Content-Disposition'] = 'attachment; filename=%s' % self.derive_filename()
book.save(response)
return response
class SmartFormMixin(object):
readonly = ()
field_config = {'modified_blurb': dict(label="Modified"),
'created_blurb': dict(label="Created")}
success_message = None
submit_button_name = _("Submit")
def derive_title(self):
if not self.title:
return _("Form")
else:
return self.title
def derive_success_message(self):
return self.success_message
def get_form(self):
self.form = super(SmartFormMixin, self).get_form()
fields = list(self.derive_fields())
exclude = self.derive_exclude()
exclude += self.derive_readonly()
for field in exclude:
if field in self.form.fields:
del self.form.fields[field]
if fields is not None:
remove = [name for name in self.form.fields.keys() if name not in fields]
for name in remove:
del self.form.fields[name]
location = forms.CharField(widget=forms.widgets.HiddenInput(), required=False)
if ('HTTP_REFERER' in self.request.META):
location.initial = self.request.META['HTTP_REFERER']
self.form.fields['loc'] = location
if fields:
fields.append('loc')
for (name, field) in self.form.fields.items():
field = self.customize_form_field(name, field)
self.form.fields[name] = field
return self.form
def customize_form_field(self, name, field):
if isinstance(field, forms.fields.DateField) and isinstance(field.widget, forms.widgets.DateInput):
field.widget = widgets.DatePickerWidget()
field.input_formats = [field.widget.input_format[1]] + list(field.input_formats)
if isinstance(field, forms.fields.ImageField) and isinstance(field.widget, forms.widgets.ClearableFileInput):
field.widget = widgets.ImageThumbnailWidget()
return field
def lookup_field_label(self, context, field, default=None):
default = None
meta_labels = self.form._meta.labels if hasattr(self.form, "_meta") else {}
if meta_labels and field in meta_labels:
default = meta_labels[field]
else:
for form_field in self.form:
if form_field.name == field:
default = form_field.label
break
return super(SmartFormMixin, self).lookup_field_label(context, field, default=default)
def lookup_field_help(self, field, default=None):
default = None
meta_help_texts = self.form._meta.help_texts if hasattr(self.form, "_meta") else {}
if meta_help_texts and field in meta_help_texts:
default = meta_help_texts[field]
else:
for form_field in self.form:
if form_field.name == field:
default = form_field.help_text
break
return super(SmartFormMixin, self).lookup_field_help(field, default=default)
def derive_readonly(self):
readonly = list(self.readonly)
for key, value in self.field_config.items():
if 'readonly' in value and value['readonly']:
readonly.append(key)
return readonly
def derive_fields(self):
if self.fields is not None:
fields = list(self.fields)
else:
form = self.form
fields = []
for field in form:
fields.append(field.name)
readonly = self.derive_readonly()
if readonly:
fields += readonly
for exclude in self.derive_exclude():
if exclude in fields:
fields.remove(exclude)
return fields
|
BSD 3-Clause New or Revised License
|
nedbat/zellij
|
zellij/euclid.py
|
Line.intersect
|
python
|
def intersect(self, other):
assert isinstance(other, Line)
(x1, y1), (x2, y2) = self
(x3, y3), (x4, y4) = other
denom = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
if isclose(denom, 0):
if line_collinear(self.p1, self.p2, other.p1):
raise CoincidentLines("No intersection of identical lines")
else:
raise ParallelLines("No intersection of parallel lines")
a = x1 * y2 - y1 * x2
b = x3 * y4 - y3 * x4
xi = (a * (x3 - x4) - b * (x1 - x2)) / denom
yi = (a * (y3 - y4) - b * (y1 - y2)) / denom
return Point(xi, yi)
|
Find the point where this Line and another intersect.
Raises BadGeometry if the lines are parallel or coincident.
|
https://github.com/nedbat/zellij/blob/c86ce064995726c484d21a97f888843707c72889/zellij/euclid.py#L88-L112
|
from collections import namedtuple
import math
from .postulates import adjacent_pairs, overlap, fbetween, isclose, perturbed
class BadGeometry(Exception):
pass
class ParallelLines(BadGeometry):
pass
class CoincidentLines(BadGeometry):
pass
class Point(namedtuple("Point", ["x", "y"])):
def __repr__(self):
return f"Point({self.x}, {self.y})"
def is_close(self, other):
assert isinstance(other, Point)
x1, y1 = self
x2, y2 = other
return isclose(x1, x2) and isclose(y1, y2)
def distance(self, other):
assert isinstance(other, Point)
x1, y1 = self
x2, y2 = other
return math.hypot(x2 - x1, y2 - y1)
def transform(self, xform):
return Point(*(xform * self))
def perturb(self, jitter):
x, y = self
return Point(perturbed(x, jitter), perturbed(y, jitter))
def line_collinear(p1, p2, p3):
(x1, y1), (x2, y2), (x3, y3) = p1, p2, p3
return isclose((y1 - y2) * (x1 - x3), (y1 - y3) * (x1 - x2))
def collinear(p1, p2, p3):
(x1, y1), (x2, y2), (x3, y3) = p1, p2, p3
if fbetween(x1, x2, x3) and fbetween(y1, y2, y3):
return line_collinear(p1, p2, p3)
else:
return False
def along_the_way(p1, p2, t):
return Point(p1.x + (p2.x - p1.x) * t, p1.y + (p2.y - p1.y) * t)
class Line(namedtuple("Line", ["p1", "p2"])):
def angle(self):
(x1, y1), (x2, y2) = self
return math.degrees(math.atan2(y2 - y1, x2 - x1))
|
Apache License 2.0
|
numba/numba
|
numba/core/entrypoints.py
|
init_all
|
python
|
def init_all():
global _already_initialized
if _already_initialized:
return
_already_initialized = True
for entry_point in iter_entry_points('numba_extensions', 'init'):
logger.debug('Loading extension: %s', entry_point)
try:
func = entry_point.load()
func()
except Exception as e:
msg = "Numba extension module '{}' failed to load due to '{}({})'."
warnings.warn(msg.format(entry_point.module_name, type(e).__name__,
str(e)), stacklevel=2)
logger.debug('Extension loading failed for: %s', entry_point)
|
Execute all `numba_extensions` entry points with the name `init`
If extensions have already been initialized, this function does nothing.
|
https://github.com/numba/numba/blob/8d4559a83b7b12da9121c030b8e3780874204a34/numba/core/entrypoints.py#L10-L31
|
import logging
import warnings
from pkg_resources import iter_entry_points
_already_initialized = False
logger = logging.getLogger(__name__)
|
BSD 2-Clause Simplified License
|
unofficial-memsource/memsource-cli-client
|
memsource_cli/models/user_edit_dto_v2.py
|
UserEditDtoV2.source_langs
|
python
|
def source_langs(self, source_langs):
self._source_langs = source_langs
|
Sets the source_langs of this UserEditDtoV2.
:param source_langs: The source_langs of this UserEditDtoV2. # noqa: E501
:type: list[str]
|
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/user_edit_dto_v2.py#L456-L464
|
import pprint
import re
import six
from memsource_cli.models.id_reference import IdReference
class UserEditDtoV2(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'user_name': 'str',
'first_name': 'str',
'last_name': 'str',
'email': 'str',
'role': 'str',
'timezone': 'str',
'note': 'str',
'may_edit_approved_terms': 'bool',
'may_reject_jobs': 'bool',
'editor_machine_translate_enabled': 'bool',
'receive_newsletter': 'bool',
'may_edit_translation_memory': 'bool',
'source_langs': 'list[str]',
'target_langs': 'list[str]',
'active': 'bool',
'workflow_steps': 'list[IdReference]',
'clients': 'list[IdReference]',
'domains': 'list[IdReference]',
'sub_domains': 'list[IdReference]',
'project_business_units': 'list[IdReference]'
}
attribute_map = {
'user_name': 'userName',
'first_name': 'firstName',
'last_name': 'lastName',
'email': 'email',
'role': 'role',
'timezone': 'timezone',
'note': 'note',
'may_edit_approved_terms': 'mayEditApprovedTerms',
'may_reject_jobs': 'mayRejectJobs',
'editor_machine_translate_enabled': 'editorMachineTranslateEnabled',
'receive_newsletter': 'receiveNewsletter',
'may_edit_translation_memory': 'mayEditTranslationMemory',
'source_langs': 'sourceLangs',
'target_langs': 'targetLangs',
'active': 'active',
'workflow_steps': 'workflowSteps',
'clients': 'clients',
'domains': 'domains',
'sub_domains': 'subDomains',
'project_business_units': 'projectBusinessUnits'
}
def __init__(self, user_name=None, first_name=None, last_name=None, email=None, role=None, timezone=None, note=None, may_edit_approved_terms=None, may_reject_jobs=None, editor_machine_translate_enabled=None, receive_newsletter=None, may_edit_translation_memory=None, source_langs=None, target_langs=None, active=None, workflow_steps=None, clients=None, domains=None, sub_domains=None, project_business_units=None):
self._user_name = None
self._first_name = None
self._last_name = None
self._email = None
self._role = None
self._timezone = None
self._note = None
self._may_edit_approved_terms = None
self._may_reject_jobs = None
self._editor_machine_translate_enabled = None
self._receive_newsletter = None
self._may_edit_translation_memory = None
self._source_langs = None
self._target_langs = None
self._active = None
self._workflow_steps = None
self._clients = None
self._domains = None
self._sub_domains = None
self._project_business_units = None
self.discriminator = None
self.user_name = user_name
self.first_name = first_name
self.last_name = last_name
self.email = email
self.role = role
self.timezone = timezone
if note is not None:
self.note = note
if may_edit_approved_terms is not None:
self.may_edit_approved_terms = may_edit_approved_terms
if may_reject_jobs is not None:
self.may_reject_jobs = may_reject_jobs
if editor_machine_translate_enabled is not None:
self.editor_machine_translate_enabled = editor_machine_translate_enabled
if receive_newsletter is not None:
self.receive_newsletter = receive_newsletter
if may_edit_translation_memory is not None:
self.may_edit_translation_memory = may_edit_translation_memory
if source_langs is not None:
self.source_langs = source_langs
if target_langs is not None:
self.target_langs = target_langs
if active is not None:
self.active = active
if workflow_steps is not None:
self.workflow_steps = workflow_steps
if clients is not None:
self.clients = clients
if domains is not None:
self.domains = domains
if sub_domains is not None:
self.sub_domains = sub_domains
if project_business_units is not None:
self.project_business_units = project_business_units
@property
def user_name(self):
return self._user_name
@user_name.setter
def user_name(self, user_name):
if user_name is None:
raise ValueError("Invalid value for `user_name`, must not be `None`")
if user_name is not None and len(user_name) > 255:
raise ValueError("Invalid value for `user_name`, length must be less than or equal to `255`")
if user_name is not None and len(user_name) < 0:
raise ValueError("Invalid value for `user_name`, length must be greater than or equal to `0`")
self._user_name = user_name
@property
def first_name(self):
return self._first_name
@first_name.setter
def first_name(self, first_name):
if first_name is None:
raise ValueError("Invalid value for `first_name`, must not be `None`")
if first_name is not None and len(first_name) > 255:
raise ValueError("Invalid value for `first_name`, length must be less than or equal to `255`")
if first_name is not None and len(first_name) < 0:
raise ValueError("Invalid value for `first_name`, length must be greater than or equal to `0`")
self._first_name = first_name
@property
def last_name(self):
return self._last_name
@last_name.setter
def last_name(self, last_name):
if last_name is None:
raise ValueError("Invalid value for `last_name`, must not be `None`")
if last_name is not None and len(last_name) > 255:
raise ValueError("Invalid value for `last_name`, length must be less than or equal to `255`")
if last_name is not None and len(last_name) < 0:
raise ValueError("Invalid value for `last_name`, length must be greater than or equal to `0`")
self._last_name = last_name
@property
def email(self):
return self._email
@email.setter
def email(self, email):
if email is None:
raise ValueError("Invalid value for `email`, must not be `None`")
if email is not None and len(email) > 255:
raise ValueError("Invalid value for `email`, length must be less than or equal to `255`")
if email is not None and len(email) < 0:
raise ValueError("Invalid value for `email`, length must be greater than or equal to `0`")
self._email = email
@property
def role(self):
return self._role
@role.setter
def role(self, role):
if role is None:
raise ValueError("Invalid value for `role`, must not be `None`")
allowed_values = ["ADMIN", "PROJECT_MANAGER", "LINGUIST", "GUEST", "SUBMITTER"]
if role not in allowed_values:
raise ValueError(
"Invalid value for `role` ({0}), must be one of {1}"
.format(role, allowed_values)
)
self._role = role
@property
def timezone(self):
return self._timezone
@timezone.setter
def timezone(self, timezone):
if timezone is None:
raise ValueError("Invalid value for `timezone`, must not be `None`")
if timezone is not None and len(timezone) > 255:
raise ValueError("Invalid value for `timezone`, length must be less than or equal to `255`")
if timezone is not None and len(timezone) < 0:
raise ValueError("Invalid value for `timezone`, length must be greater than or equal to `0`")
self._timezone = timezone
@property
def note(self):
return self._note
@note.setter
def note(self, note):
if note is not None and len(note) > 4096:
raise ValueError("Invalid value for `note`, length must be less than or equal to `4096`")
if note is not None and len(note) < 0:
raise ValueError("Invalid value for `note`, length must be greater than or equal to `0`")
self._note = note
@property
def may_edit_approved_terms(self):
return self._may_edit_approved_terms
@may_edit_approved_terms.setter
def may_edit_approved_terms(self, may_edit_approved_terms):
self._may_edit_approved_terms = may_edit_approved_terms
@property
def may_reject_jobs(self):
return self._may_reject_jobs
@may_reject_jobs.setter
def may_reject_jobs(self, may_reject_jobs):
self._may_reject_jobs = may_reject_jobs
@property
def editor_machine_translate_enabled(self):
return self._editor_machine_translate_enabled
@editor_machine_translate_enabled.setter
def editor_machine_translate_enabled(self, editor_machine_translate_enabled):
self._editor_machine_translate_enabled = editor_machine_translate_enabled
@property
def receive_newsletter(self):
return self._receive_newsletter
@receive_newsletter.setter
def receive_newsletter(self, receive_newsletter):
self._receive_newsletter = receive_newsletter
@property
def may_edit_translation_memory(self):
return self._may_edit_translation_memory
@may_edit_translation_memory.setter
def may_edit_translation_memory(self, may_edit_translation_memory):
self._may_edit_translation_memory = may_edit_translation_memory
@property
def source_langs(self):
return self._source_langs
@source_langs.setter
|
Apache License 2.0
|
libtcod/python-tcod
|
tcod/random.py
|
Random.__setstate__
|
python
|
def __setstate__(self, state: Any) -> None:
try:
cdata = state["random_c"]
except KeyError:
cdata = state["cdata"]
del state["cdata"]
state["random_c"] = ffi.new("mersenne_data_t*", cdata)
self.__dict__.update(state)
|
Create a new cdata object with the stored paramaters.
|
https://github.com/libtcod/python-tcod/blob/5e946635ff0c89dd9f6fe6f62f21229ba91e171d/tcod/random.py#L154-L162
|
from __future__ import annotations
import os
import random
import warnings
from typing import Any, Hashable, Optional
import tcod.constants
from tcod.loader import ffi, lib
MERSENNE_TWISTER = tcod.constants.RNG_MT
COMPLEMENTARY_MULTIPLY_WITH_CARRY = tcod.constants.RNG_CMWC
MULTIPLY_WITH_CARRY = tcod.constants.RNG_CMWC
class Random(object):
def __init__(
self,
algorithm: int = MERSENNE_TWISTER,
seed: Optional[Hashable] = None,
):
if seed is None:
seed = random.getrandbits(32)
elif not isinstance(seed, int):
warnings.warn(
"In the future this class will only accept integer seeds.",
DeprecationWarning,
stacklevel=2,
)
if __debug__ and "PYTHONHASHSEED" not in os.environ:
warnings.warn(
"Python's hash algorithm is not configured to be"
" deterministic so this non-integer seed will not be"
" deterministic."
"\nYou should do one of the following to fix this error:"
"\n* Use an integer as a seed instead (recommended.)"
"\n* Set the PYTHONHASHSEED environment variable before"
" starting Python.",
RuntimeWarning,
stacklevel=2,
)
seed = hash(seed)
self.random_c = ffi.gc(
ffi.cast(
"mersenne_data_t*",
lib.TCOD_random_new_from_seed(algorithm, seed & 0xFFFFFFFF),
),
lib.TCOD_random_delete,
)
@classmethod
def _new_from_cdata(cls, cdata: Any) -> Random:
self: Random = object.__new__(cls)
self.random_c = cdata
return self
def randint(self, low: int, high: int) -> int:
return int(lib.TCOD_random_get_i(self.random_c, low, high))
def uniform(self, low: float, high: float) -> float:
return float(lib.TCOD_random_get_double(self.random_c, low, high))
def guass(self, mu: float, sigma: float) -> float:
return float(lib.TCOD_random_get_gaussian_double(self.random_c, mu, sigma))
def inverse_guass(self, mu: float, sigma: float) -> float:
return float(lib.TCOD_random_get_gaussian_double_inv(self.random_c, mu, sigma))
def __getstate__(self) -> Any:
state = self.__dict__.copy()
state["random_c"] = {
"algo": self.random_c.algo,
"distribution": self.random_c.distribution,
"mt": list(self.random_c.mt),
"cur_mt": self.random_c.cur_mt,
"Q": list(self.random_c.Q),
"c": self.random_c.c,
"cur": self.random_c.cur,
}
return state
|
BSD 2-Clause Simplified License
|
abelfunctions/abelfunctions
|
abelfunctions/puiseux.py
|
newton_polygon
|
python
|
def newton_polygon(H, additional_points=[]):
R = H.parent()
x, y = R.gens()
monomials = H.monomials()
points = [(monom.degree(y), monom.degree(x)) for monom in monomials]
support = [Point(pt) for pt in points] + additional_points
i0 = min(P.x for P in support if P.y == 0)
j0 = min(P.y for P in support if P.x == 0)
support = [P for P in support if P.x <= i0 and P.y <= j0]
convex_hull = sympy.convex_hull(*support)
if isinstance(convex_hull, Point):
P = (convex_hull.x, convex_hull.y)
return [[P]]
elif isinstance(convex_hull, Segment):
P = convex_hull.p1
convex_hull = generalized_polygon_side(convex_hull)
support.remove(P)
support.append(convex_hull.p1)
sides = [convex_hull]
else:
sides = convex_hull.sides
first_side = generalized_polygon_side(sides[0])
if first_side != sides[0]:
P = first_side.p1
return newton_polygon(H, additional_points=[P])
polygon = []
for side in sides:
polygon_side = [P for P in support if P in side]
polygon_side = sorted(map(lambda P: (int(P.x),int(P.y)), polygon_side))
polygon.append(polygon_side)
if side.p2.y == 0: break
return polygon
|
r"""Computes the Newton polygon of `H`.
It's assumed that the first generator of `H` here is the "dependent
variable". For example, if `H = H(x,y)` and we are aiming to compute
a `y`-covering of the complex `x`-sphere then each monomial of `H`
is of the form
.. math::
a_{ij} x^j y^i.
Parameters
----------
H : bivariate polynomial
Returns
-------
list
Returns a list where each element is a list, representing a side
of the polygon, which in turn contains tuples representing the
points on the side.
Note
----
This is written using Sympy's convex hull algorithm for legacy purposes. It
can certainly be rewritten to use Sage's Polytope but do so *very
carefully*! There are a number of subtle things going on here due to the
fact that boundary points are ignored.
|
https://github.com/abelfunctions/abelfunctions/blob/67757a0b3744191c179ca4757e0db4a312bfd86a/abelfunctions/puiseux.py#L63-L140
|
import numpy
import sympy
from abelfunctions.puiseux_series_ring import PuiseuxSeriesRing
from sage.all import xgcd
from sage.functions.log import log
from sage.functions.other import ceil
from sage.rings.big_oh import O
from sage.rings.infinity import infinity
from sage.rings.laurent_series_ring import LaurentSeriesRing
from sage.rings.qqbar import QQbar
from sage.rings.rational_field import QQ
from sympy import Point, Segment
def newton_polygon_exceptional(H):
R = H.parent()
x,y = R.gens()
d = H(0,y).degree(y)
return [[(0,0),(d,0)]]
|
MIT License
|
mseitzer/csmri-refinement
|
data/reconstruction/deep_med_lib/my_pytorch/myImageTransformations.py
|
get_fspecial
|
python
|
def get_fspecial(length, angle):
length = max(1, length)
half = (length - 1) / 2
phi = np.mod(angle, 180) / 180 * np.pi
cosphi = np.cos(phi)
sinphi = np.sin(phi)
xsign = np.int16(np.sign(cosphi))
linewdt = 1
eps = 2.2204e-16
sx = np.fix(half * cosphi + linewdt * xsign - length * eps)
sy = np.fix(half * sinphi + linewdt - length * eps)
[x, y] = np.meshgrid(np.arange(0,np.int16(sx.flatten()[0])+(xsign*1),xsign),
np.arange(0,np.int16(sy.flatten()[0])+1))
dist2line = (y * cosphi - x * sinphi)
rad = np.sqrt(x**2 + y**2)
lastpix = np.logical_and((rad>=half),(np.abs(dist2line) <= linewdt))
x2lastpix = half - np.abs((x[lastpix] + dist2line[lastpix] * sinphi) / cosphi)
dist2line[lastpix] = np.sqrt(dist2line[lastpix] ** 2 + x2lastpix ** 2)
dist2line = linewdt + eps - np.abs(dist2line)
dist2line[dist2line < 0] = 0
dist2line
kernel = np.rot90(dist2line,2)
n_kernel = np.zeros((kernel.shape[0]+dist2line.shape[0]-1,
kernel.shape[1]+dist2line.shape[1]-1))
n_kernel[0:kernel.shape[0],0:kernel.shape[1]] = kernel
n_kernel[kernel.shape[0]-1:,kernel.shape[1]-1:] = dist2line
n_kernel = n_kernel/(np.sum(n_kernel) + eps*length*length)
if cosphi > 0:
n_kernel = np.flipud(n_kernel)
return n_kernel
|
Motion kernel is adopted from MATLAB's fspecial('motion')
Challenge slide says:
blur length: max ~25 px
angle range: 0-180 degree
|
https://github.com/mseitzer/csmri-refinement/blob/2cc8a691c03602c2a7c78c6144469ee00a7d64d6/data/reconstruction/deep_med_lib/my_pytorch/myImageTransformations.py#L279-L330
|
import numpy as np
import scipy
import scipy.ndimage
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.interpolation import map_coordinates
from scipy.stats import truncnorm
import collections
import logging
from PIL import Image
import numbers
import cv2
from ..utils import compressed_sensing as cs
from ..utils import mymath
from ..utils import dnn_io
__author__ = "Wei OUYANG"
__license__ = "GPL"
__version__ = "0.1.0"
__status__ = "Development"
def get_mask_generator(sampling_scheme, im_shape, acceleration_factor,
variable=False, var_type='uniform', rng=None):
if rng is None:
rng = np.random
logging.debug("sampling scheme: {}".format(sampling_scheme))
size = im_shape[-1]
def mask_gen():
if sampling_scheme == 'radial':
if variable:
x_in = np.arange(1, size//2)
if var_type == 'aggressive':
pdf = np.minimum(0.5, np.exp(-2*np.linspace(0, 4, len(x_in))) + 1./size)
pdf = pdf / np.sum(pdf)
acc_factors = rng.choice(x_in, im_shape[0], p=pdf)
else:
acc_factors = rng.randint(1, len(x_in), im_shape[0])
mask = []
for i in range(im_shape[0]):
mask.append(cs.radial_sampling((1, size, size),
acc_factors[i],
rand=True,
golden_angle=True,
centred=False,
rng=rng))
mask = np.array(mask)
mask = mask.reshape(im_shape)
else:
n_lines = acceleration_factor
mask = cs.radial_sampling(im_shape,
n_lines,
rand=True,
golden_angle=True,
centred=False,
rng=rng)
else:
central_lines = 8
if variable:
mask = np.zeros(im_shape)
for i in range(im_shape[0]):
acc_r = float(rng.uniform(1, acceleration_factor*1.5))
mask[i] = cs.cartesian_mask(mask.shape[1:], acc_r, central_lines, centred=False, rng=rng)
else:
mask = cs.cartesian_mask(im_shape, acceleration_factor,
central_lines, centred=False, rng=rng)
return mask
return mask_gen
def undersample(im, mask, rng=None):
im_und, k_und = cs.undersample(im, mask, centred=False,
norm='ortho', rng=rng)
und_sampl_rate = np.sum(mask.ravel()) * 1. / mask.size
return im_und, k_und, mask, und_sampl_rate
def get_truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(
(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)
def center_crop(x, center_crop_size):
assert x.ndim == 3
centerw, centerh = x.shape[1] // 2, x.shape[2] // 2
halfw, halfh = center_crop_size[0] // 2, center_crop_size[1] // 2
return x[:, centerw - halfw:centerw + halfw, centerh - halfh:centerh + halfh]
def crop_image_at(image, cx, cy, sx, sy):
X, Y = image.shape[:2]
r1, r2 = sx // 2, sy //2
x1, x2 = cx - r1, cx + r1
y1, y2 = cy - r2, cy + r2
x1_, x2_ = max(x1, 0), min(x2, X)
y1_, y2_ = max(y1, 0), min(y2, Y)
crop = image[x1_: x2_, y1_: y2_]
crop = np.pad(crop, ((x1_ - x1, x2 - x2_), (y1_ - y1, y2 - y2_)) + ((0, 0),) * (crop.ndim-2),
'constant')
return crop
def to_tensor(x):
import torch
x = x.transpose((2, 0, 1))
return torch.from_numpy(x).float()
def get_attribute(attribute, random_state):
if isinstance(attribute, collections.Sequence):
attr = random_num_generator(attribute, random_state=random_state)
else:
attr = attribute
return attr
def random_num_generator(config, random_state=np.random):
if config[0] == 'uniform':
ret = random_state.uniform(config[1], config[2], 1)[0]
elif config[0] == 'lognormal':
ret = random_state.lognormal(config[1], config[2], 1)[0]
else:
raise Exception('unsupported format')
return ret
def poisson_downsampling(image, peak, random_state=np.random):
if not isinstance(image, np.ndarray):
imgArr = np.array(image, dtype='float32')
else:
imgArr = image.astype('float32')
Q = imgArr.max(axis=(0, 1)) / peak
if Q[0] == 0:
return imgArr
ima_lambda = imgArr / Q
noisy_img = random_state.poisson(lam=ima_lambda)
return noisy_img.astype('float32')
def apply_gaussian_noise(im_in, mean=0, sigma=0.01):
low_clip = -1. if im_in.min() < 0 else 0
noise = np.random.normal(mean, sigma, im_in.shape)
return np.clip(im_in + noise, low_clip, 255.)
def apply_poission_matlab(im_in):
low_clip = -1. if im_in.min() < 0 else 0
vals = len(np.unique(im_in))
vals = 2 ** np.ceil(np.log2(vals))
if low_clip == -1.:
old_max = im_in.max()
im_in = (im_in + 1.) / (old_max + 1.)
out = np.random.poisson(im_in * vals) / float(vals)
if low_clip == -1.:
out = out * (old_max + 1.) - 1.
return np.clip(out, low_clip, 255.)
def apply_salt_and_pepper_noise(im_in, amount=0.1, salt_vs_pepper=0.5):
out = im_in.copy()
low_clip = -1. if im_in.min() < 0 else 0
p = amount
q = salt_vs_pepper
flipped = np.random.choice([True, False], size=im_in.shape, p=[p, 1 - p])
salted = np.random.choice([True, False], size=im_in.shape, p=[q, 1 - q])
peppered = ~salted
out[flipped & salted] = 255.
out[flipped & peppered] = low_clip
return np.clip(out, low_clip, 255.)
def apply_speckle_noise(im_in, mean=0, sigma=0.01):
low_clip = -1. if im_in.min() < 0 else 0
noise = np.random.normal(mean, sigma, im_in.shape)
return np.clip(im_in + im_in * noise, low_clip, 255.)
def affine_transform(image, alpha_affine, borderMode=cv2.BORDER_CONSTANT):
imshape = image.shape
shape_size = imshape[:2]
center_square = np.float32(shape_size) // 2
square_size = min(shape_size) // 3
pts1 = np.float32([center_square + square_size,
[center_square[0]+square_size, center_square[1]-square_size],
center_square - square_size])
pts2 = pts1 + np.random.uniform(-alpha_affine, alpha_affine, size=pts1.shape).astype(np.float32)
M = cv2.getAffineTransform(pts1, pts2)
warped = cv2.warpAffine(image.reshape(shape_size + (-1,)), M, shape_size[::-1],
flags=cv2.INTER_NEAREST, borderMode=borderMode)
warped = warped[..., np.newaxis].reshape(imshape)
return warped
def perspective_transform(image, alpha_warp):
shape_size = image.shape[:2]
center_square = np.float32(shape_size) // 2
square_size = min(shape_size) // 3
pts1 = np.float32([center_square + square_size,
[center_square[0]-square_size, center_square[1]+square_size],
center_square - square_size,
[center_square[0]+square_size, center_square[1]-square_size]])
pts2 = pts1 + np.random.uniform(-alpha_warp, alpha_warp, size=pts1.shape).astype(np.float32)
M = cv2.getPerspectiveTransform(pts1, pts2)
return cv2.warpPerspective(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)
def elastic_transform(image, alpha=1000, sigma=30, spline_order=1, mode='nearest', random_state=np.random):
assert image.ndim == 3
shape = image.shape[:2]
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1),
sigma, mode="constant", cval=0) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1),
sigma, mode="constant", cval=0) * alpha
x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
indices = [np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1))]
result = np.empty_like(image)
for i in range(image.shape[2]):
result[:, :, i] = map_coordinates(
image[:, :, i], indices, order=spline_order, mode=mode).reshape(shape)
return result
def get_motion_blur_kernel(l=None, th=None):
kernel_motion_blur = np.zeros((l, l))
kernel_motion_blur[int((l-1)/2), :] = np.ones(l)
kernel_motion_blur = kernel_motion_blur / l
M = cv2.getRotationMatrix2D((l/2,l/2), th, 1)
kernel_motion_blur_rotated = cv2.warpAffine(kernel_motion_blur, M, (l, l))
return kernel_motion_blur_rotated
|
Apache License 2.0
|
commvault/cvpysdk
|
cvpysdk/drorchestration/failovergroups.py
|
FailoverGroups.refresh
|
python
|
def refresh(self):
self._failovergroups = self._get_failover_groups()
|
Refresh the failover groups created in the commcell.
Args:
Returns:
Raises:
|
https://github.com/commvault/cvpysdk/blob/66df30e6e31d619812b7756cb4f7e130b220a08f/cvpysdk/drorchestration/failovergroups.py#L370-L379
|
from __future__ import absolute_import
from __future__ import unicode_literals
from past.builtins import basestring
from ..exception import SDKException
from .drorchestrationoperations import DROrchestrationOperations
from cvpysdk.instances.vsinstance import VirtualServerInstance
class FailoverGroups(object):
def __init__(self, commcell_object, instance_object: VirtualServerInstance = None):
self._commcell_object = commcell_object
self._client_object = commcell_object.clients
self._services = commcell_object._services
self._instance_object = instance_object
self._DRGROUPS = self._commcell_object._services['DR_GROUPS']
self._DRGROUPS_MACHINES = self._commcell_object._services['DR_GROUP_MACHINES']
self._vclientId = None
self._failovergroups = None
self.refresh()
def __str__(self):
representation_string = '{:^5}\t{:^20}\t{:^20}\n\n'.format(
'S. No.', 'Failover Group Id', 'Failover Group')
for index, failover_group in enumerate(self._failovergroups):
sub_str = '{:^5}\t{:20}\t{:20}\n'.format(
index + 1,
self._failovergroups[failover_group],
failover_group
)
representation_string += sub_str
return representation_string.strip()
def __repr__(self):
return "Failover Groups for Commserv: '{0}'".format(
self._commcell_object.commserv_name)
def has_failover_group(self, failover_group_name):
if not isinstance(failover_group_name, basestring):
raise SDKException('FailoverGroup', '101')
return self.failover_groups and failover_group_name.lower() in self.failover_groups
def add(self, failover_group_options=None):
self._check_failover_group_options(failover_group_options)
add_failover_group_json = self._prepare_add_failover_group_json(
failover_group_options)
if not add_failover_group_json:
raise SDKException(
'FailoverGroup',
'102',
'Failed to construct add failover group json.')
(flag, response) = self._commcell_object._cvpysdk_object.make_request(
'POST', self._DRGROUPS, add_failover_group_json)
if flag:
if response.json():
if 'error' in response.json():
error_message = response.json()['error']['errorMessage']
o_str = 'Failed to create failover group \nError: "{0}"'.format(
error_message)
raise SDKException('FailoverGroup', '102', o_str)
else:
self.refresh()
return self.get(failover_group_options)
else:
raise SDKException('Response', '102')
else:
response_string = self._commcell_object._update_response_(
response.text)
raise SDKException('Response', '101', response_string)
def get(self, failover_group_options):
if not isinstance(failover_group_options, dict):
raise SDKException('FailoverGroup', '101')
else:
failover_group_name = failover_group_options.get(
'failoverGroupName').lower()
if self.has_failover_group(failover_group_name):
return FailoverGroup(
self._commcell_object, failover_group_options)
raise SDKException(
'Failover',
'102',
'Failover group doesnt exists with name: {0}'.format(failover_group_name))
def delete(self, failover_group_name):
if not isinstance(failover_group_name, basestring):
raise SDKException('FailoverGroup', '101')
else:
failover_group_name = failover_group_name.lower()
if self.has_failover_group(failover_group_name):
failover_group_id = self.failover_groups.get(
failover_group_name.lower())
if failover_group_id:
_GET_DR_GROUP = self._commcell_object._services['GET_DR_GROUP'] % (
failover_group_id)
(flag, response) = self._commcell_object._cvpysdk_object.make_request(
method='DELETE', url=_GET_DR_GROUP)
if flag:
if response.json():
if 'error' in response.json():
error_message = response.json(
)['error']['errorMessage']
o_str = 'Failed to delete failover group: {0} \nError: "{1}"' .format(failover_group_name, error_message)
raise SDKException('Failover', '102', o_str)
else:
self.refresh()
else:
raise SDKException('Response', '102')
else:
response_string = self._commcell_object._update_response_(
response.text)
raise SDKException('Response', '101', response_string)
else:
raise SDKException(
'Failover', '102', 'No failovergroup exists with name: "{0}"'.format(
failover_group_name)
)
|
Apache License 2.0
|
napalm-automation/napalm
|
napalm/pyIOSXR/iosxr.py
|
IOSXR.lock
|
python
|
def lock(self):
if not self.locked:
rpc_command = "<Lock/>"
try:
self._execute_rpc(rpc_command)
except XMLCLIError:
raise LockError("Unable to enter in configure exclusive mode!", self)
self.locked = True
|
Lock the config database.
Use if Locking/Unlocking is not performaed automatically by lock=False
|
https://github.com/napalm-automation/napalm/blob/48a73ef16f3454dd14a2be87f08c9895ea601fa2/napalm/pyIOSXR/iosxr.py#L526-L538
|
import re
import time
import difflib
import logging
from threading import Lock
from xml.sax.saxutils import escape as escape_xml
from lxml import etree as ET
from netmiko import ConnectHandler
from netmiko.ssh_exception import NetMikoTimeoutException
from netmiko.ssh_exception import NetMikoAuthenticationException
from napalm.pyIOSXR.exceptions import LockError
from napalm.pyIOSXR.exceptions import UnlockError
from napalm.pyIOSXR.exceptions import XMLCLIError
from napalm.pyIOSXR.exceptions import CommitError
from napalm.pyIOSXR.exceptions import ConnectError
from napalm.pyIOSXR.exceptions import TimeoutError
from napalm.pyIOSXR.exceptions import IteratorIDError
from napalm.pyIOSXR.exceptions import InvalidInputError
from napalm.pyIOSXR.exceptions import InvalidXMLResponse
from napalm.iosxr.utilities import strip_config_header
logger = logging.getLogger(__name__)
class IOSXR(object):
_XML_SHELL = "xml"
_XML_MODE_PROMPT = r"XML>"
_READ_DELAY = 0.1
_XML_MODE_DELAY = 1
_ITERATOR_ID_ERROR_MSG = (
"Non-supported IteratorID in response object. "
'Turn iteration off on your XML agent by configuring "xml agent [tty | ssl] iteration off".'
" For more information refer to "
"http://www.cisco.com/c/en/us/td/docs/ios_xr_sw/iosxr_r4-1/xml/"
"programming/guide/xl41apidoc.pdf, page 7-99. "
"Please turn iteration off for the XML agent."
)
def __init__(
self,
hostname,
username,
password,
port=22,
timeout=60,
logfile=None,
lock=True,
**netmiko_kwargs
):
self.hostname = str(hostname)
self.username = str(username)
self.password = str(password)
self.port = int(port)
self.timeout = int(timeout)
self.logfile = logfile
self.lock_on_connect = lock
self.locked = False
self.netmiko_kwargs = netmiko_kwargs
self._cli_prompt = None
self._xml_agent_locker = Lock()
self._xml_agent_alive = False
def __getattr__(self, item):
def _getattr(*args, **kwargs):
cmd = item.replace("_", " ")
for arg in args:
cmd += " %s" % arg
if kwargs.get("config"):
response = self._execute_config_show(cmd)
else:
response = self._execute_show(cmd)
match = re.search(
".*(!! IOS XR Configuration.*)</Exec>", response, re.DOTALL
)
if match is not None:
response = match.group(1)
return response
if item.startswith("show"):
return _getattr
else:
raise AttributeError(
"type object '%s' has no attribute '%s'"
% (self.__class__.__name__, item)
)
def make_rpc_call(self, rpc_command):
if not self.is_alive():
logger.debug("Force closing tunnel before making RPC Call")
self.close()
self.open()
logger.debug("Re-opening tunnel before making RPC Call")
result = self._execute_rpc(rpc_command)
logger.debug(result)
return ET.tostring(result)
def open(self):
try:
self.device = ConnectHandler(
device_type="cisco_xr",
ip=self.hostname,
port=self.port,
username=self.username,
password=self.password,
global_cmd_verify=False,
**self.netmiko_kwargs
)
self.device.timeout = self.timeout
self._xml_agent_alive = True
except NetMikoTimeoutException as t_err:
logger.error(t_err.args[0])
raise ConnectError(t_err.args[0])
except NetMikoAuthenticationException as au_err:
logger.error(au_err.args[0])
raise ConnectError(au_err.args[0])
self._cli_prompt = self.device.find_prompt()
self._enter_xml_mode()
def is_alive(self):
if hasattr(self.device, "remote_conn"):
return (
self.device.remote_conn.transport.is_active() and self._xml_agent_alive
)
return False
def _timeout_exceeded(self, start=None, msg="Timeout exceeded!"):
if not start:
return False
if time.time() - start > self.timeout:
raise TimeoutError(msg, self)
return False
def _lock_xml_agent(self, start=None):
while not self._xml_agent_locker.acquire(False) and not self._timeout_exceeded(
start, "Waiting to acquire the XML agent!"
):
pass
return True
def _unlock_xml_agent(self):
if self._xml_agent_locker.locked():
self._xml_agent_locker.release()
def _send_command_timing(self, command):
return self.device.send_command_timing(
command,
delay_factor=self._READ_DELAY,
max_loops=self._XML_MODE_DELAY / self._READ_DELAY,
strip_prompt=False,
strip_command=False,
)
def _in_cli_mode(self):
out = self._send_command_timing("\n")
if not out:
return False
if self._cli_prompt in out:
return True
return False
def _enter_xml_mode(self):
self._unlock_xml_agent()
self._lock_xml_agent()
out = self._send_command_timing(self._XML_SHELL)
if "0x24319600" in out:
raise ConnectError(
"XML agent is not enabled. Please configure `xml agent tty iteration off`!",
self,
)
self._unlock_xml_agent()
if self.lock_on_connect:
self.lock()
def _send_command(
self,
command,
delay_factor=None,
start=None,
expect_string=None,
read_output=None,
receive=False,
):
if not expect_string:
expect_string = self._XML_MODE_PROMPT
if read_output is None:
read_output = ""
if not delay_factor:
delay_factor = self._READ_DELAY
if not start:
start = time.time()
output = read_output
last_read = ""
if not read_output and not receive:
self._lock_xml_agent(start)
try:
max_loops = self.timeout / delay_factor
last_read = self.device.send_command_expect(
command,
expect_string=expect_string,
strip_prompt=False,
strip_command=False,
delay_factor=delay_factor,
max_loops=max_loops,
)
output += last_read
except IOError:
if (not last_read and self._in_cli_mode()) or (
self._cli_prompt in output
and "% Invalid input detected at '^' marker." in output
):
self._enter_xml_mode()
if not self._timeout_exceeded(start=start):
return self._send_command(
command,
expect_string=expect_string,
delay_factor=delay_factor,
)
else:
output += self.device._read_channel_timing()
if "0xa3679e00" in output or "0xa367da00" in output:
raise XMLCLIError("XML agent cannot process parallel requests!", self)
if not output.strip().endswith("XML>"):
if "0x44318c06" in output or (
self._cli_prompt
and expect_string != self._cli_prompt
and (
output.startswith(self._cli_prompt)
or output.endswith(self._cli_prompt)
)
):
self._unlock_xml_agent()
self._enter_xml_mode()
raise XMLCLIError(
"Could not properly execute the command. Re-entering XML mode...",
self,
)
if (
not output.strip()
):
if not self._timeout_exceeded(start=start):
return self._send_command(
command, receive=True, start=start
)
raise XMLCLIError(output.strip(), self)
self._unlock_xml_agent()
return str(output.replace("XML>", "").strip())
def _execute_rpc(self, command_xml, delay_factor=0.1):
xml_rpc_command = (
'<?xml version="1.0" encoding="UTF-8"?><Request MajorVersion="1" MinorVersion="0">'
+ command_xml
+ "</Request>"
)
response = self._send_command(xml_rpc_command, delay_factor=delay_factor)
try:
root = ET.fromstring(str.encode(response))
except ET.XMLSyntaxError:
if 'IteratorID="' in response:
logger.error(self._ITERATOR_ID_ERROR_MSG)
raise IteratorIDError(self._ITERATOR_ID_ERROR_MSG, self)
raise InvalidXMLResponse(
"Unable to process the XML Response from the device!", self
)
if "IteratorID" in root.attrib:
logger.error(self._ITERATOR_ID_ERROR_MSG)
raise IteratorIDError(self._ITERATOR_ID_ERROR_MSG, self)
childs = [x.tag for x in list(root)]
result_summary = root.find("ResultSummary")
if result_summary is not None and int(result_summary.get("ErrorCount", 0)) > 0:
if "CLI" in childs:
error_msg = root.find("CLI").get("ErrorMsg") or ""
elif "Commit" in childs:
error_msg = root.find("Commit").get("ErrorMsg") or ""
error_code = root.find("Commit").get("ErrorCode") or ""
if error_code == "0x41866c00":
_candidate_config = self.get_candidate_config(merge=True)
self.discard_config()
try:
self._send_command("exit", expect_string=self._cli_prompt)
except XMLCLIError:
pass
self._enter_xml_mode()
self.load_candidate_config(config=_candidate_config)
return self.commit_config()
elif error_code == "0x41864e00" or error_code == "0x43682c00":
raise CommitError("The target configuration buffer is empty.", self)
else:
error_msg = root.get("ErrorMsg") or ""
error_msg += "\nOriginal call was: %s" % xml_rpc_command
logger.error(error_msg)
raise XMLCLIError(error_msg, self)
if "CLI" in childs:
cli_childs = [x.tag for x in list(root.find("CLI"))]
if "Configuration" in cli_childs:
output = root.find("CLI").find("Configuration").text
elif "Exec" in cli_childs:
output = root.find("CLI").find("Exec").text
if output is None:
output = ""
elif "Invalid input detected" in output:
logger.error("Invalid input entered:\n%s" % (output))
raise InvalidInputError("Invalid input entered:\n%s" % output, self)
return root
def _execute_show(self, show_command):
rpc_command = "<CLI><Exec>{show_command}</Exec></CLI>".format(
show_command=escape_xml(show_command)
)
response = self._execute_rpc(rpc_command)
raw_response = response.xpath(".//CLI/Exec")[0].text
return raw_response.strip() if raw_response else ""
def _execute_config_show(self, show_command, delay_factor=0.1):
rpc_command = "<CLI><Configuration>{show_command}</Configuration></CLI>".format(
show_command=escape_xml(show_command)
)
response = self._execute_rpc(rpc_command, delay_factor=delay_factor)
raw_response = response.xpath(".//CLI/Configuration")[0].text
return raw_response.strip() if raw_response else ""
def close(self):
if self.lock_on_connect or self.locked:
self.unlock()
self._unlock_xml_agent()
if hasattr(self.device, "remote_conn"):
self.device.remote_conn.close()
|
Apache License 2.0
|
consensys/py-eip712-structs
|
tests/test_chain_parity.py
|
w3
|
python
|
def w3():
client = Web3(HTTPProvider('http://localhost:8545'))
client.eth.defaultAccount = client.eth.accounts[0]
return client
|
Provide a Web3 client to interact with a local chain.
|
https://github.com/consensys/py-eip712-structs/blob/b05c1dfe073644ceef1b339a28cd201cb6d2ea88/tests/test_chain_parity.py#L11-L15
|
import os
import pytest
from requests.exceptions import ConnectionError
from web3 import HTTPProvider, Web3
from eip712_structs import EIP712Struct, String, Uint, Int, Address, Boolean, Bytes, Array
@pytest.fixture(scope='module')
|
MIT License
|
tum-pbs/phiflow
|
phi/math/_shape.py
|
Shape.type
|
python
|
def type(self) -> int:
assert self.rank == 1, "Shape.type is only defined for shapes of rank 1."
return self.types[0]
|
Only for Shapes containing exactly one single dimension.
Returns the type of the dimension.
See Also:
`Shape.get_type()`.
|
https://github.com/tum-pbs/phiflow/blob/4a85f8a5029aa4e30a791daa659f2c8e1536e37e/phi/math/_shape.py#L361-L370
|
import warnings
from typing import Tuple
from phi import math
BATCH_DIM = 'batch'
SPATIAL_DIM = 'spatial'
CHANNEL_DIM = 'channel'
INSTANCE_DIM = 'înstance'
TYPE_ABBR = {SPATIAL_DIM: "ˢ", CHANNEL_DIM: "ᶜ", INSTANCE_DIM: "ⁱ", BATCH_DIM: "ᵇ", None: "⁻"}
class Shape:
def __init__(self, sizes: tuple or list, names: tuple or list, types: tuple or list):
assert len(sizes) == len(names) == len(types), f"sizes={sizes} ({len(sizes)}), names={names} ({len(names)}), types={types} ({len(types)})"
if len(sizes) > 0:
from ._tensors import Tensor
sizes = tuple([s if isinstance(s, Tensor) or s is None else int(s) for s in sizes])
else:
sizes = ()
self.sizes: tuple = sizes
self.names: Tuple[str] = tuple(names)
assert all(isinstance(n, str) for n in names), f"All names must be of type string but got {names}"
self.types: Tuple[str] = tuple(types)
@property
def _named_sizes(self):
return zip(self.names, self.sizes)
@property
def _dimensions(self):
return zip(self.sizes, self.names, self.types)
def __len__(self):
return len(self.sizes)
def __contains__(self, item):
if isinstance(item, str):
return item in self.names
elif isinstance(item, Shape):
return all([d in self.names for d in item.names])
else:
raise ValueError(item)
def __iter__(self):
return iter(self[i] for i in range(self.rank))
def index(self, dim: str or 'Shape' or None) -> int:
if dim is None:
return None
elif isinstance(dim, str):
return self.names.index(dim)
elif isinstance(dim, Shape):
assert dim.rank == 1, f"index() requires a single dimension as input but got {dim}. Use indices() for multiple dimensions."
return self.names.index(dim.name)
else:
raise ValueError(f"index() requires a single dimension as input but got {dim}")
def indices(self, dims: tuple or list or 'Shape') -> Tuple[int]:
if isinstance(dims, (list, tuple)):
return tuple(self.index(n) for n in dims)
elif isinstance(dims, Shape):
return tuple(self.index(n) for n in dims.names)
else:
raise ValueError(f"indices() requires a sequence of dimensions but got {dims}")
def get_size(self, dim: str or 'Shape'):
if isinstance(dim, str):
return self.sizes[self.names.index(dim)]
elif isinstance(dim, Shape):
assert dim.rank == 1, f"get_size() requires a single dimension but got {dim}. Use indices() to get multiple sizes."
return self.sizes[self.names.index(dim.name)]
else:
raise ValueError(f"get_size() requires a single dimension but got {dim}. Use indices() to get multiple sizes.")
def get_sizes(self, dims: tuple or list or 'Shape') -> tuple:
assert isinstance(dims, (tuple, list, Shape)), f"get_sizes() requires a sequence of dimensions but got {dims}"
return tuple([self.get_size(dim) for dim in dims])
def get_type(self, dim: str or 'Shape') -> str:
if isinstance(dim, str):
return self.types[self.names.index(dim)]
elif isinstance(dim, Shape):
assert dim.rank == 1, f"Shape.get_type() only accepts single-dimension Shapes but got {dim}"
return self.types[self.names.index(dim.name)]
else:
raise ValueError(dim)
def get_types(self, dims: tuple or list or 'Shape') -> tuple:
if isinstance(dims, (tuple, list)):
return tuple(self.get_type(n) for n in dims)
elif isinstance(dims, Shape):
return tuple(self.get_type(n) for n in dims.names)
else:
raise ValueError(dims)
def __getitem__(self, selection):
if isinstance(selection, int):
return Shape([self.sizes[selection]], [self.names[selection]], [self.types[selection]])
elif isinstance(selection, slice):
return Shape(self.sizes[selection], self.names[selection], self.types[selection])
elif isinstance(selection, str):
index = self.index(selection)
return Shape([self.sizes[index]], [self.names[index]], [self.types[index]])
elif isinstance(selection, (tuple, list)):
return Shape([self.sizes[i] for i in selection], [self.names[i] for i in selection], [self.types[i] for i in selection])
raise AssertionError("Can only access shape elements as shape[int] or shape[slice]")
@property
def batch(self) -> 'Shape':
return self[[i for i, t in enumerate(self.types) if t == BATCH_DIM]]
@property
def non_batch(self) -> 'Shape':
return self[[i for i, t in enumerate(self.types) if t != BATCH_DIM]]
@property
def spatial(self) -> 'Shape':
return self[[i for i, t in enumerate(self.types) if t == SPATIAL_DIM]]
@property
def non_spatial(self) -> 'Shape':
return self[[i for i, t in enumerate(self.types) if t != SPATIAL_DIM]]
@property
def instance(self) -> 'Shape':
return self[[i for i, t in enumerate(self.types) if t == INSTANCE_DIM]]
@property
def non_instance(self) -> 'Shape':
return self[[i for i, t in enumerate(self.types) if t != INSTANCE_DIM]]
@property
def channel(self) -> 'Shape':
return self[[i for i, t in enumerate(self.types) if t == CHANNEL_DIM]]
@property
def non_channel(self) -> 'Shape':
return self[[i for i, t in enumerate(self.types) if t != CHANNEL_DIM]]
def unstack(self, dim='dims') -> Tuple['Shape']:
if dim == 'dims':
return tuple(Shape([self.sizes[i]], [self.names[i]], [self.types[i]]) for i in range(self.rank))
if dim not in self:
return tuple([self])
else:
from ._tensors import Tensor
inner = self.without(dim)
sizes = []
dim_size = self.get_size(dim)
for size in inner.sizes:
if isinstance(size, Tensor) and dim in size.shape:
sizes.append(size.unstack(dim))
dim_size = size.shape.get_size(dim)
else:
sizes.append(size)
assert isinstance(dim_size, int)
shapes = tuple(Shape([int(size[i]) if isinstance(size, tuple) else size for size in sizes], inner.names, inner.types) for i in range(dim_size))
return shapes
@property
def name(self) -> str:
assert self.rank == 1, "Shape.name is only defined for shapes of rank 1."
return self.names[0]
@property
def size(self) -> int:
assert self.rank == 1, "Shape.size is only defined for shapes of rank 1."
return self.sizes[0]
@property
|
MIT License
|
alexa/alexa-apis-for-python
|
ask-sdk-model/ask_sdk_model/session_ended_reason.py
|
SessionEndedReason.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, SessionEndedReason):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/alexa/alexa-apis-for-python/blob/bfe5e694daaca71bfb1a4199ca8d2514f1cac6c9/ask-sdk-model/ask_sdk_model/session_ended_reason.py#L56-L62
|
import pprint
import re
import six
import typing
from enum import Enum
if typing.TYPE_CHECKING:
from typing import Dict, List, Optional, Union, Any
from datetime import datetime
class SessionEndedReason(Enum):
USER_INITIATED = "USER_INITIATED"
ERROR = "ERROR"
EXCEEDED_MAX_REPROMPTS = "EXCEEDED_MAX_REPROMPTS"
def to_dict(self):
result = {self.name: self.value}
return result
def to_str(self):
return pprint.pformat(self.value)
def __repr__(self):
return self.to_str()
|
Apache License 2.0
|
mrknow/filmkodi
|
plugin.video.mrknow/mylib/pydev_ipython/inputhook.py
|
InputHookManager.set_inputhook
|
python
|
def set_inputhook(self, callback):
self._callback = callback
|
Set inputhook to callback.
|
https://github.com/mrknow/filmkodi/blob/0162cde9ae25ddbf4a69330948714833ff2f78c9/plugin.video.mrknow/mylib/pydev_ipython/inputhook.py#L83-L87
|
import sys
import select
GUI_WX = 'wx'
GUI_QT = 'qt'
GUI_QT4 = 'qt4'
GUI_GTK = 'gtk'
GUI_TK = 'tk'
GUI_OSX = 'osx'
GUI_GLUT = 'glut'
GUI_PYGLET = 'pyglet'
GUI_GTK3 = 'gtk3'
GUI_NONE = 'none'
def ignore_CTRL_C():
pass
def allow_CTRL_C():
pass
class InputHookManager(object):
def __init__(self):
self._return_control_callback = None
self._apps = {}
self._reset()
self.pyplot_imported = False
def _reset(self):
self._callback_pyfunctype = None
self._callback = None
self._current_gui = None
def set_return_control_callback(self, return_control_callback):
self._return_control_callback = return_control_callback
def get_return_control_callback(self):
return self._return_control_callback
def return_control(self):
return self._return_control_callback()
def get_inputhook(self):
return self._callback
|
Apache License 2.0
|
abstractgeek/comic-scraper
|
comic_scraper/extractors/mangareader.py
|
MangaReaderChapter.download_page
|
python
|
def download_page(self, page):
page_url, page_num = page
urlscheme = urlparse(page_url)
filename = os.path.join(self.chapter_location,
'%0.3d.jpg' % (page_num))
max_retries = deepcopy(self.max_retries)
wait_retry_time = deepcopy(self.wait_time)
while True:
r = requests.get(page_url, verify=self.verify_https)
soup = bsoup.BeautifulSoup(r.text, 'html.parser')
for div in soup.find_all('div', {'id':'imgholder'}):
if div.get('id'):
img = div.find_all('img')
break
if img:
image = urljoin(urlscheme.scheme
+ "://" + urlscheme.netloc,
img[0].get('src'))
self.download_image(image, filename)
return True
elif (max_retries > 0):
sleep(uniform(0.5 * wait_retry_time, 1.5 * wait_retry_time))
max_retries -= 1
else:
print("Failed download: Chapter-%g, page-%d"
% (self.chapter_num, page_num))
shutil.copyfile(
os.path.join(os.path.dirname(
os.path.realpath(__file__)), 'no_image_available.png'),
filename)
return False
|
Download individual pages in a manga.
|
https://github.com/abstractgeek/comic-scraper/blob/8e97d672e4d772f185f0c08f808a5584f6c8f073/comic_scraper/extractors/mangareader.py#L100-L135
|
from base_comic import BaseComic, BaseChapter
from urllib.parse import urlparse, urljoin
import requests
import bs4 as bsoup
from collections import defaultdict
import re
import os
import shutil
from random import shuffle, uniform
from copy import deepcopy
from time import sleep
class MangaReaderComic(BaseComic):
def extract_chapters(self):
comic_name = self.name
url = self.url
urlscheme = urlparse(url)
r = requests.get(url, verify=self.verify_https)
soup = bsoup.BeautifulSoup(r.text, 'html.parser')
chapters = defaultdict(MangaReaderChapter)
links = [link.get('href')
for link in soup.find_all('a')
if link.get('href') and
(comic_name in link.get('href'))]
for link in links:
chapter_link = urljoin(urlscheme.scheme
+ "://" + urlscheme.netloc,
link)
matched_groups = re.search('/([\d \.]+)', chapter_link)
if matched_groups:
chapter_num = float(matched_groups.group(1))
if chapter_num in chapters:
continue
else:
chapters[chapter_num] = MangaReaderChapter(
self, chapter_num, chapter_link)
return chapters
def page_filter(tag):
test = (tag.name == 'option')
test = (test and tag.parent.name == 'select')
test = (test and 'pageMenu' in tag.parent['name'])
return test
class MangaReaderChapter(BaseChapter):
def get_pages(self):
base_url = self.chapter_url
max_retries = deepcopy(self.max_retries)
wait_retry_time = deepcopy(self.wait_time)
urlscheme = urlparse(base_url)
while True:
r = requests.get(base_url, verify=self.verify_https)
soup = bsoup.BeautifulSoup(r.text, 'html.parser')
page_list = soup.find_all(page_filter)
pages = []
for page in page_list:
curr_url = page.get('value')
try:
page_num = float(curr_url.split('/')[-1])
except:
page_num = 1
page_url = urljoin(urlscheme.scheme
+ "://" + urlscheme.netloc, curr_url)
pages.append((page_url, page_num))
if pages:
shuffle(pages)
return True, pages
elif (max_retries > 0):
sleep(uniform(0.5 * wait_retry_time, 1.5 * wait_retry_time))
max_retries -= 1
else:
return False, None
|
MIT License
|
yasoob/youtube-dl-gui
|
youtube_dl/extractor/common.py
|
InfoExtractor.__init__
|
python
|
def __init__(self, downloader=None):
self._ready = False
self._x_forwarded_for_ip = None
self.set_downloader(downloader)
|
Constructor. Receives an optional downloader.
|
https://github.com/yasoob/youtube-dl-gui/blob/2c5b1c2300050c86d1245bcc8823b81d9d97f346/youtube_dl/extractor/common.py#L400-L404
|
from __future__ import unicode_literals
import base64
import datetime
import hashlib
import json
import netrc
import os
import random
import re
import socket
import ssl
import sys
import time
import math
from ..compat import (
compat_cookiejar_Cookie,
compat_cookies_SimpleCookie,
compat_etree_Element,
compat_etree_fromstring,
compat_getpass,
compat_integer_types,
compat_http_client,
compat_os_name,
compat_str,
compat_urllib_error,
compat_urllib_parse_unquote,
compat_urllib_parse_urlencode,
compat_urllib_request,
compat_urlparse,
compat_xml_parse_error,
)
from ..downloader.f4m import (
get_base_url,
remove_encrypted_media,
)
from ..utils import (
NO_DEFAULT,
age_restricted,
base_url,
bug_reports_message,
clean_html,
compiled_regex_type,
determine_ext,
determine_protocol,
dict_get,
error_to_compat_str,
ExtractorError,
extract_attributes,
fix_xml_ampersands,
float_or_none,
GeoRestrictedError,
GeoUtils,
int_or_none,
js_to_json,
JSON_LD_RE,
mimetype2ext,
orderedSet,
parse_bitrate,
parse_codecs,
parse_duration,
parse_iso8601,
parse_m3u8_attributes,
parse_resolution,
RegexNotFoundError,
sanitized_Request,
sanitize_filename,
str_or_none,
str_to_int,
strip_or_none,
unescapeHTML,
unified_strdate,
unified_timestamp,
update_Request,
update_url_query,
urljoin,
url_basename,
url_or_none,
xpath_element,
xpath_text,
xpath_with_ns,
)
class InfoExtractor(object):
_ready = False
_downloader = None
_x_forwarded_for_ip = None
_GEO_BYPASS = True
_GEO_COUNTRIES = None
_GEO_IP_BLOCKS = None
_WORKING = True
|
MIT License
|
dit/dit
|
dit/math/aitchison.py
|
alr_inv
|
python
|
def alr_inv(xalr):
if len(xalr.shape) == 1:
single = True
else:
single = False
xalr = np.atleast_2d(xalr)
newshape = list(xalr.shape)
newshape[1] += 1
x = np.empty(newshape)
x[:, :-1] = exp2(xalr)
x[:, -1] = 1
x = closure(x)
return x[0] if single else x
|
Returns the inverse additive log-ratio transformation of x.
Parameters
----------
xalr : NumPy array, shape (n,) or (k,n)
The additive log-ratio transformations of x.
Returns
-------
x : NumPy array, shape (n+1,) or (k,n+1)
The original compositions
Notes
-----
The sum of the composition is assumed to be 1.
|
https://github.com/dit/dit/blob/2853cb13110c5a5b2fa7ad792e238e2177013da2/dit/math/aitchison.py#L474-L514
|
import math
import numpy as np
from dit.exceptions import ditException
from dit.math import LogOperations
__all__ = (
'closure',
'subcomposition',
'perturbation',
'power',
'add',
'sub',
'inner',
'norm',
'dist',
'metric',
'clr',
'alr',
'ilr',
'basis',
'clr_inv',
'alr_inv',
'ilr_inv',
)
ops = LogOperations(2)
exp2 = ops.exp
log2 = ops.log
def _gm(x):
last_axis = -1
x_gm = x.prod(axis=last_axis) ** (1 / x.shape[last_axis])
return x_gm
def _log2_gm(x):
last_axis = -1
x_loggm = 1 / x.shape[last_axis] * np.log2(x).sum(axis=last_axis)
return x_loggm
def closure(x):
s = x.sum(axis=-1, dtype=float)
if np.any(s == 0.0):
raise ditException("x contains an unnormalizable distribution.")
cx = x / s[..., np.newaxis]
return cx
def subcomposition(x, indexes):
xsub = closure(x[..., indexes])
return xsub
def perturbation(x, dx):
px = closure(x * dx)
return px
def power(x, a):
a = np.ravel(a)[..., np.newaxis]
px = closure(x**a)
if len(x.shape) == 1:
px = px[0]
return px
add = perturbation
def sub(x, y):
z = perturbation(x, power(y, -1.0))
return z
def inner(x, y):
if len(x.shape) == 1 and len(y.shape) == 1:
single = True
else:
single = False
x = np.atleast_2d(x)
y = np.atleast_2d(y)
x_loggm = _log2_gm(x)[:, np.newaxis]
y_loggm = _log2_gm(y)[:, np.newaxis]
z = (log2(x) - x_loggm) * (log2(y) - y_loggm)
z = z.sum(axis=1)
if single:
z = z[0]
return z
def norm(x):
n = np.sqrt(inner(x, x))
return n
def dist(x, y):
d = norm(sub(x, y))
return d
metric = dist
def clr(x):
if len(x.shape) == 1:
single = True
else:
single = False
x = np.atleast_2d(x)
x_loggm = _log2_gm(x)[:, np.newaxis]
y = log2(x) - x_loggm
if single:
y = y[0]
return y
def alr(x):
if len(x.shape) == 1:
single = True
else:
single = False
x = np.atleast_2d(x)
y = log2(x[:, :-1]) - log2(x[:, -1][:, np.newaxis])
if single:
y = y[0]
return y
def ilr(x):
if len(x.shape) == 1:
single = True
else:
single = False
x = np.atleast_2d(x)
rng = np.arange(1, x.shape[1])
loggm = 1 / rng * log2(x).cumsum(axis=1)[:, :-1]
y = loggm - log2(x[:, 1:])
y *= np.sqrt([i / (i + 1) for i in rng])
if single:
y = y[0]
return y
def ubasis(n):
u = np.tri(N=n, M=n + 1, k=1)
rng = np.arange(1, n + 1)
u *= np.array([1 / i for i in rng])[:, np.newaxis]
u.flat[1::n + 2] = -1
u *= np.array([math.sqrt(i / (i + 1)) for i in rng])[:, np.newaxis]
return u
def basis(n):
u = ubasis(n)
b = clr_inv(u)
return b
def clr_inv(xclr):
x = closure(exp2(xclr))
return x
|
BSD 3-Clause New or Revised License
|
datacamp/viewflow
|
viewflow/create_dag.py
|
set_callbacks
|
python
|
def set_callbacks(created_task, parsed_task):
for callback_type in ["on_success_callback", "on_failure_callback", "on_retry_callback"]:
if getattr(created_task, callback_type):
callback_str = getattr(created_task, callback_type)
callback_fun = getattr(task_callbacks, callback_str)
setattr(created_task, callback_type, callback_fun)
if parsed_task.get(callback_type):
setattr(created_task, callback_type, getattr(task_callbacks, parsed_task.get(callback_type)))
if not getattr(created_task, callback_type):
setattr(created_task, callback_type, getattr(task_callbacks, callback_type+"_default"))
|
Set the task-specific callbacks if given any.
Use default callbacks if neither the DAG's config.yml nor the task specifies callbacks.
|
https://github.com/datacamp/viewflow/blob/3123b1e36ca4b9464d4a8cdf13c520384b71c600/viewflow/create_dag.py#L132-L150
|
import os
import yaml
import logging
import pickle
import re
import networkx as nx
import random
from collections import namedtuple
from pathlib import Path
from datetime import datetime
from dataclasses import dataclass
from typing import Dict, Any, TypeVar
from airflow import DAG
from airflow.models import BaseOperator
from airflow.sensors.external_task_sensor import ExternalTaskSensor
from . import task_callbacks
from .adapters.postgresql import postgres_adapter
from .adapters.python import python_adapter
from .adapters.rmd import rmd_adapter
from .adapters.r import r_adapter
from .parsers.parse_yml import parse_yml
from .parsers.parse_sql import parse_sql
from .parsers.parse_python import parse_python
from .parsers.parse_rmd import parse_rmd
from .parsers.parse_r import parse_r
from .parsers.dependencies import get_sql_dependencies
from .parsers.dependencies import get_python_dependencies
from .parsers.dependencies import get_r_dependencies
from .operators.rmd_operator import extract_r
O = TypeVar("O", bound=BaseOperator)
DAG_CONFIG_FILE = "config.yml"
OPERATORS = {
"PostgresOperator": postgres_adapter.create_task,
"PythonToPostgresOperator": python_adapter.create_task,
"RmdOperator": rmd_adapter.create_task,
"ROperator": r_adapter.create_task
}
PARSERS = {".yml": parse_yml, ".sql": parse_sql, ".py": parse_python, ".rmd": parse_rmd, ".r": parse_r}
SQL_OPERATORS = ["PostgresOperator"]
@dataclass
class ParseContext:
dag_id: str
def parse_dag_dir(
input_dir: str, parse_context: ParseContext, dag_config_file=DAG_CONFIG_FILE
) -> Dict[str, Any]:
dag_dir = Path(input_dir)
dag_config_file_path = dag_dir / dag_config_file
dag_config = yaml.safe_load(dag_config_file_path.read_text())
dag_config["start_date"] = datetime.strptime(dag_config["start_date"], "%Y-%m-%d")
task_files = sorted(os.listdir(dag_dir))
return {
"dag_config": dag_config,
"tasks": [
task
for task in [
parse_task_file(dag_dir / task_file, parse_context)
for task_file in task_files
if task_file != dag_config_file
]
if task is not None
],
}
def parse_depends_on_entry(depends_on_entry: str, dag_name: str) -> Dict[str, Any]:
match = re.search("^(.*?)/(.*?)$", depends_on_entry)
if match is None:
return {"task": depends_on_entry, "dag": dag_name}
dag, task = match.groups()
return {"task": task, "dag": dag}
def parse_depends_on(depends_on, dag_name: str):
if not (isinstance(depends_on, list)):
raise TypeError("'depends_on' should be a list")
return [
parse_depends_on_entry(depends_on_entry, dag_name)
for depends_on_entry in depends_on
]
def parse_task_file(
task_file_path: Path, parse_context: ParseContext
) -> Dict[str, Any]:
parser = PARSERS.get(task_file_path.suffix.lower())
if parser is None:
return None
task_config = parser(task_file_path)
task_config["task_id"] = task_file_path.stem
task_config["task_file_path"] = f"{parse_context.dag_id}/{task_file_path.name}"
if "depends_on" in task_config:
task_config["depends_on"] = parse_depends_on(
task_config["depends_on"], parse_context.dag_id
)
return task_config
def get_all_dependencies(task, schema_name):
if task["type"] == "PostgresOperator":
dependencies = get_sql_dependencies(task["content"], schema_name)
elif task["type"] == "PythonToPostgresOperator":
dependencies = get_python_dependencies(task["content"], schema_name)
elif task["type"] == "RmdOperator":
r_content = extract_r(task["content"])
dependencies = list(get_r_dependencies(r_content, schema_name, task["dependency_function"]).values())
elif task["type"] == "ROperator":
dependencies = list(get_r_dependencies(task["content"], schema_name, task["dependency_function"]).values())
else:
dependencies = []
return dependencies
|
MIT License
|
ssepulveda/rtgraph
|
rtgraph/processors/Serial.py
|
SerialProcess.get_ports
|
python
|
def get_ports():
if Architecture.get_os() is OSType.macosx:
import glob
return glob.glob("/dev/tty.*")
else:
found_ports = []
for port in list(list_ports.comports()):
Log.d(TAG, "found device {}".format(port))
found_ports.append(port.device)
return found_ports
|
Gets a list of the available serial ports.
:return: List of available serial ports.
:rtype: str list.
|
https://github.com/ssepulveda/rtgraph/blob/b9d2e3c0da7fc385b8c979e0dc670c211d45c02b/rtgraph/processors/Serial.py#L83-L97
|
import multiprocessing
from time import time
import serial
from serial.tools import list_ports
from rtgraph.common.architecture import Architecture
from rtgraph.common.architecture import OSType
from rtgraph.core.constants import Constants
from rtgraph.common.logger import Logger as Log
TAG = "Serial"
class SerialProcess(multiprocessing.Process):
def __init__(self, parser_process):
multiprocessing.Process.__init__(self)
self._exit = multiprocessing.Event()
self._parser = parser_process
self._serial = serial.Serial()
Log.i(TAG, "Process ready")
def open(self, port, speed=Constants.serial_default_speed, timeout=Constants.serial_timeout_ms):
self._serial.port = port
self._serial.baudrate = int(speed)
self._serial.stopbits = serial.STOPBITS_ONE
self._serial.bytesize = serial.EIGHTBITS
self._serial.timeout = timeout
return self._is_port_available(self._serial.port)
def run(self):
Log.i(TAG, "Process starting...")
if self._is_port_available(self._serial.port):
if not self._serial.isOpen():
self._serial.open()
Log.i(TAG, "Port opened")
timestamp = time()
while not self._exit.is_set():
self._parser.add([time() - timestamp, self._serial.readline()])
Log.i(TAG, "Process finished")
self._serial.close()
else:
Log.w(TAG, "Port is not opened")
else:
Log.w(TAG, "Port is not available")
def stop(self):
Log.i(TAG, "Process finishing...")
self._exit.set()
@staticmethod
|
MIT License
|
drorlab/atom3d
|
atom3d/util/results.py
|
Results3DCNN.get_prediction
|
python
|
def get_prediction(self, prediction_fn):
targets, predict = None, None
return targets, predict
|
Reads targets and prediction.
TODO: Implement this!
|
https://github.com/drorlab/atom3d/blob/7eacb676f56b4130fd805f4b2901a600170b88f9/atom3d/util/results.py#L16-L24
|
import os, sys
import pickle
import torch
import numpy as np
import pandas as pd
import scipy as sp
import scipy.stats as stats
class Results3DCNN():
def __init__(self, name, reps=[1,2,3]):
self.name = name
self.reps = reps
|
MIT License
|
pelioniot/mbed-cloud-sdk-python
|
src/mbed_cloud/_backends/billing/models/service_package_quota_history_service_package.py
|
ServicePackageQuotaHistoryServicePackage.firmware_update_count
|
python
|
def firmware_update_count(self, firmware_update_count):
if firmware_update_count is None:
raise ValueError("Invalid value for `firmware_update_count`, must not be `None`")
self._firmware_update_count = firmware_update_count
|
Sets the firmware_update_count of this ServicePackageQuotaHistoryServicePackage.
Size of firmware update quota of this service package.
:param firmware_update_count: The firmware_update_count of this ServicePackageQuotaHistoryServicePackage.
:type: int
|
https://github.com/pelioniot/mbed-cloud-sdk-python/blob/71dc67fc2a8d1aff31e35ec781fb328e6a60639c/src/mbed_cloud/_backends/billing/models/service_package_quota_history_service_package.py#L98-L109
|
from pprint import pformat
from six import iteritems
import re
class ServicePackageQuotaHistoryServicePackage(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'expires': 'datetime',
'firmware_update_count': 'int',
'id': 'str',
'previous_id': 'str',
'start_time': 'datetime'
}
attribute_map = {
'expires': 'expires',
'firmware_update_count': 'firmware_update_count',
'id': 'id',
'previous_id': 'previous_id',
'start_time': 'start_time'
}
def __init__(self, expires=None, firmware_update_count=None, id=None, previous_id=None, start_time=None):
self._expires = expires
self._firmware_update_count = firmware_update_count
self._id = id
self._previous_id = previous_id
self._start_time = start_time
self.discriminator = None
@property
def expires(self):
return self._expires
@expires.setter
def expires(self, expires):
if expires is None:
raise ValueError("Invalid value for `expires`, must not be `None`")
self._expires = expires
@property
def firmware_update_count(self):
return self._firmware_update_count
@firmware_update_count.setter
|
Apache License 2.0
|
ngageoint/sarpy
|
sarpy/annotation/label.py
|
LabelSchema.subtypes
|
python
|
def subtypes(self):
return self._subtypes
|
The complete dictionary of subtypes of the form `{parent_id : <subids list>}`.
Returns
-------
Dict[str, List[str]]
|
https://github.com/ngageoint/sarpy/blob/91405721a7e6ffe7c76dd7b143915fee4bee1e82/sarpy/annotation/label.py#L150-L159
|
__classification__ = "UNCLASSIFIED"
__author__ = "Thomas McCullough"
import logging
import time
from collections import OrderedDict
import os
import json
from typing import Union, List, Any, Dict
from datetime import datetime
import getpass
from sarpy.geometry.geometry_elements import _Jsonable, FeatureCollection, Feature
from sarpy.compliance import string_types, int_func, integer_types
logger = logging.getLogger(__name__)
class LabelSchema(object):
__slots__ = (
'_version', '_labels', '_classification', '_version_date', '_subtypes',
'_parent_types', '_confidence_values', '_permitted_geometries',
'_integer_ids', '_maximum_id')
def __init__(self, version='1.0', labels=None, version_date=None, classification="UNCLASSIFIED",
subtypes=None, confidence_values=None, permitted_geometries=None):
self._version_date = None
self._labels = None
self._subtypes = None
self._parent_types = None
self._confidence_values = None
self._permitted_geometries = None
self._integer_ids = True
self._maximum_id = None
self._version = version
self.update_version_date(value=version_date)
self._classification = classification
self.confidence_values = confidence_values
self.permitted_geometries = permitted_geometries
self.set_labels_and_subtypes(labels, subtypes)
@property
def version(self):
return self._version
@property
def version_date(self):
return self._version_date
def update_version_date(self, value=None):
if isinstance(value, string_types):
self._version_date = value
else:
self._version_date = datetime.utcnow().isoformat('T')+'Z'
@property
def classification(self):
return self._classification
@property
def suggested_next_id(self):
return None if self._maximum_id is None else self._maximum_id + 1
@property
def labels(self):
return self._labels
@property
|
MIT License
|
paddlepaddle/paddle
|
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
|
_check_grandchild_op_node
|
python
|
def _check_grandchild_op_node(op_node, grandchild_op_name):
for out1_var_node in op_node.outputs:
for out1_op_node in out1_var_node.outputs:
for out2_var_node in out1_op_node.outputs:
for out2_op_node in out2_var_node.outputs:
if out2_op_node.name() == grandchild_op_name:
return True
return False
|
Check whether the fake_quant node has a grandchild op node named
grandchild_op_name.
|
https://github.com/paddlepaddle/paddle/blob/056b87414880e0520bb4560fc40d5b62db9c5175/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py#L255-L266
|
import collections
import numpy as np
from ..... import compat as cpt
from .... import core
from ....framework import IrGraph
from ....framework import IrNode
from ....framework import Operator
from .... import unique_name
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
from ....framework import _get_paddle_place
__all__ = [
'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
'TransformForMobilePass', 'OutScaleForTrainingPass',
'OutScaleForInferencePass', 'AddQuantDequantPass'
]
_fake_quant_op_list = [
'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]
_fake_dequant_op_list = [
'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]
_fake_quant_dequant_op_list = [
'fake_quantize_dequantize_moving_average_abs_max'
]
_out_scale_op_list = [
"conv2d",
"depthwise_conv2d",
"mul",
"matmul",
"matmul_v2",
"relu",
"leaky_relu",
"relu6",
"sigmoid",
"tanh",
"prelu",
"swish",
"softmax",
"batch_norm",
"layer_norm",
"elementwise_add",
"pool2d",
"reshape2",
"transpose2",
"concat",
"elementwise_mul",
"scale",
"slice",
"hard_swish",
"hard_sigmoid",
"conv2d_transpose",
"gru",
"bilinear_interp",
"nearest_interp",
"trilinear_interp",
"flatten",
"flatten2",
"transpose",
"pad2d",
"reshape",
"layer_norm",
]
_op_real_in_out_name = {
"conv2d": [["Input", "Filter"], ["Output"]],
"depthwise_conv2d": [["Input", "Filter"], ["Output"]],
"conv2d_transpose": [["Input", "Filter"], ["Output"]],
"mul": [["X", "Y"], ["Out"]],
"matmul": [["X", "Y"], ["Out"]],
"matmul_v2": [["X", "Y"], ["Out"]],
"pool2d": [["X"], ["Out"]],
"elementwise_add": [["X", "Y"], ["Out"]],
"concat": [["X"], ["Out"]],
"softmax": [["X"], ["Out"]],
"argmax": [["X"], ["Out"]],
"transpose": [["X"], ["Out"]],
"equal": [["X", "Y"], ["Out"]],
"gather": [["X"], ["Out"]],
"greater_equal": [["X", "Y"], ["Out"]],
"greater_than": [["X", "Y"], ["Out"]],
"less_equal": [["X", "Y"], ["Out"]],
"less_than": [["X", "Y"], ["Out"]],
"mean": [["X"], ["Out"]],
"not_equal": [["X", "Y"], ["Out"]],
"reshape": [["X"], ["Out"]],
"reshape2": [["X"], ["Out"]],
"transpose2": [["X"], ["Out"]],
"bilinear_interp": [["X"], ["Out"]],
"nearest_interp": [["X"], ["Out"]],
"trilinear_interp": [["X"], ["Out"]],
"slice": [["Input"], ["Out"]],
"squeeze": [["X"], ["Out"]],
"elementwise_sub": [["X", "Y"], ["Out"]],
"relu": [["X"], ["Out"]],
"relu6": [["X"], ["Out"]],
"leaky_relu": [["X"], ["Out"]],
"prelu": [["X"], ["Out"]],
"tanh": [["X"], ["Out"]],
"swish": [["X"], ["Out"]],
"dropout": [["X"], ["Out"]],
"batch_norm": [["X"], ["Y"]],
"layer_norm": [["X"], ["Y"]],
"sigmoid": [["X"], ["Out"]],
"elementwise_mul": [["X", "Y"], ["Out"]],
"scale": [["X"], ["Out"]],
"hard_swish": [["X"], ["Out"]],
"hard_sigmoid": [["X"], ["Out"]],
"gru": [["Input", "Weight"], ["Hidden"]],
"lstm": [["Input", "Weight"], ["Hidden"]],
"pad2d": [["X"], ["Out"]],
"flatten": [["X"], ["Out"]],
"flatten2": [["X"], ["Out"]],
"unsqueeze2": [["X"], ["Out"]],
"flatten_contiguous_range": [['X'], ["Out", "XShape"]],
}
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']
_channelwise_quant_axis1_ops = [
'conv2d_transpose', 'mul', 'matmul', 'matmul_v2'
]
def _get_op_input_var_names(op):
assert isinstance(op, (IrNode, Operator)), "The input op should be IrNode or Operator."
var_names = []
op_name = op.name() if isinstance(op, IrNode) else op.type
if op_name not in _op_real_in_out_name:
return []
name_list = _op_real_in_out_name[op_name][0]
for name in name_list:
var_name = op.input(name)
if isinstance(var_name, list):
var_names.extend(var_name)
else:
var_names.append(var_name)
return var_names
def _get_input_name_index(op, input_var_name):
assert isinstance(op, (IrNode, Operator)), "The input op should be IrNode or Operator."
op_name = op.name() if isinstance(op, IrNode) else op.type
if op_name not in _op_real_in_out_name:
return None
res = None
for argname in _op_real_in_out_name[op_name][0]:
var_names = op.input(argname)
for index, name in enumerate(var_names):
if name == input_var_name:
res = (argname, index)
return res
def _get_op_output_var_names(op):
assert isinstance(op, (IrNode, Operator)), "The input op should be IrNode or Operator."
var_names = []
op_name = op.name() if isinstance(op, IrNode) else op.type
if op_name not in _op_real_in_out_name:
return []
name_list = _op_real_in_out_name[op_name][1]
for name in name_list:
var_name = op.output(name)
if isinstance(var_name, list):
var_names.extend(var_name)
else:
var_names.append(var_name)
return var_names
def _get_output_name_index(op, output_var_name):
assert isinstance(op, (IrNode, Operator)), "The input op should be IrNode or Operator."
op_name = op.name() if isinstance(op, IrNode) else op.type
if op_name not in _op_real_in_out_name:
return None
name_list = _op_real_in_out_name[op_name][1]
res = None
for name in name_list:
var_name = op.output(name)
for index, val in enumerate(var_name):
if val == output_var_name:
res = (name, index)
return res
def _init_var_node(var_node, value, scope, place):
assert isinstance(value,
np.ndarray), 'The type of value should be numpy array.'
assert scope is not None, 'The scope cannot be set None.'
assert place is not None, 'The place cannot be set None.'
tensor = scope.var(var_node.name()).get_tensor()
tensor.set(value, place)
def _is_input_all_not_persistable(graph, op_node):
is_input_all_not_persistable = True
for var_name in _get_op_input_var_names(op_node):
in_node = graph._find_node_by_name(op_node.inputs, var_name)
is_input_all_not_persistable = (is_input_all_not_persistable and (not in_node.persistable()))
return is_input_all_not_persistable
|
Apache License 2.0
|
montvieux/plark_ai_public
|
Components/stable-baselines/stable_baselines/deepq/replay_buffer.py
|
PrioritizedReplayBuffer.sample
|
python
|
def sample(self, batch_size, beta=0):
assert beta > 0
idxes = self._sample_proportional(batch_size)
weights = []
p_min = self._it_min.min() / self._it_sum.sum()
max_weight = (p_min * len(self._storage)) ** (-beta)
p_sample = self._it_sum[idxes] / self._it_sum.sum()
weights = (p_sample * len(self._storage)) ** (-beta) / max_weight
encoded_sample = self._encode_sample(idxes)
return tuple(list(encoded_sample) + [weights, idxes])
|
Sample a batch of experiences.
compared to ReplayBuffer.sample
it also returns importance weights and idxes
of sampled experiences.
:param batch_size: (int) How many transitions to sample.
:param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction)
:return:
- obs_batch: (np.ndarray) batch of observations
- act_batch: (numpy float) batch of actions executed given obs_batch
- rew_batch: (numpy float) rewards received as results of executing act_batch
- next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch
- done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode
and 0 otherwise.
- weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of
each sampled transition
- idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences
|
https://github.com/montvieux/plark_ai_public/blob/eb68a76f1dbfed1b0ef09e358aa8678d8ea8291a/Components/stable-baselines/stable_baselines/deepq/replay_buffer.py#L144-L174
|
import random
import numpy as np
from stable_baselines.common.segment_tree import SumSegmentTree, MinSegmentTree
class ReplayBuffer(object):
def __init__(self, size):
self._storage = []
self._maxsize = size
self._next_idx = 0
def __len__(self):
return len(self._storage)
@property
def storage(self):
return self._storage
@property
def buffer_size(self):
return self._maxsize
def can_sample(self, n_samples):
return len(self) >= n_samples
def is_full(self):
return len(self) == self.buffer_size
def add(self, obs_t, action, reward, obs_tp1, done):
data = (obs_t, action, reward, obs_tp1, done)
if self._next_idx >= len(self._storage):
self._storage.append(data)
else:
self._storage[self._next_idx] = data
self._next_idx = (self._next_idx + 1) % self._maxsize
def _encode_sample(self, idxes):
obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], []
for i in idxes:
data = self._storage[i]
obs_t, action, reward, obs_tp1, done = data
obses_t.append(np.array(obs_t, copy=False))
actions.append(np.array(action, copy=False))
rewards.append(reward)
obses_tp1.append(np.array(obs_tp1, copy=False))
dones.append(done)
return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array(dones)
def sample(self, batch_size, **_kwargs):
idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)]
return self._encode_sample(idxes)
class PrioritizedReplayBuffer(ReplayBuffer):
def __init__(self, size, alpha):
super(PrioritizedReplayBuffer, self).__init__(size)
assert alpha >= 0
self._alpha = alpha
it_capacity = 1
while it_capacity < size:
it_capacity *= 2
self._it_sum = SumSegmentTree(it_capacity)
self._it_min = MinSegmentTree(it_capacity)
self._max_priority = 1.0
def add(self, obs_t, action, reward, obs_tp1, done):
idx = self._next_idx
super().add(obs_t, action, reward, obs_tp1, done)
self._it_sum[idx] = self._max_priority ** self._alpha
self._it_min[idx] = self._max_priority ** self._alpha
def _sample_proportional(self, batch_size):
mass = []
total = self._it_sum.sum(0, len(self._storage) - 1)
mass = np.random.random(size=batch_size) * total
idx = self._it_sum.find_prefixsum_idx(mass)
return idx
|
Apache License 2.0
|
newville/pyshortcuts
|
pyshortcuts/darwin.py
|
fix_anacondapy_pythonw
|
python
|
def fix_anacondapy_pythonw(fname):
with open(fname, 'r') as fh:
try:
lines = fh.readlines()
except IOError:
lines = ['-']
firstline = lines[0][:-1].strip()
if firstline.startswith('#!') and 'python' in firstline:
firstline = '#!/usr/bin/env pythonw'
fh = open(fname, 'w')
fh.write('%s\n' % firstline)
fh.write("".join(lines[1:]))
fh.close()
|
fix shebang line for scripts using anaconda python
to use 'pythonw' instead of 'python'
|
https://github.com/newville/pyshortcuts/blob/3da6bfb32be033fcf4df0eabf2f6335c7c24b567/pyshortcuts/darwin.py#L36-L52
|
import os
import sys
import shutil
from .shortcut import shortcut
from .linux import get_homedir, get_desktop
from . import UserFolders
scut_ext = 'app'
ico_ext = ('icns',)
def get_startmenu():
return ''
def get_folders():
return UserFolders(get_homedir(), get_desktop(), get_startmenu())
|
MIT License
|
michaelaquilina/python-tools
|
lib/jedi/parser/tree.py
|
IfStmt.node_after_else
|
python
|
def node_after_else(self, node):
for c in self.children:
if c == 'else':
if node.start_pos > c.start_pos:
return True
else:
return False
|
Checks if a node is defined after `else`.
|
https://github.com/michaelaquilina/python-tools/blob/2fbee20f9ce286ba55050adafcea8bb43c0922b3/lib/jedi/parser/tree.py#L863-L872
|
import os
import re
from inspect import cleandoc
from itertools import chain
import textwrap
from jedi._compatibility import (Python3Method, encoding, is_py3, utf8_repr,
literal_eval, use_metaclass, unicode)
from jedi import cache
def is_node(node, *symbol_names):
try:
type = node.type
except AttributeError:
return False
else:
return type in symbol_names
class PositionModifier(object):
def __init__(self):
self.line = 0
zero_position_modifier = PositionModifier()
class DocstringMixin(object):
__slots__ = ()
@property
def raw_doc(self):
if isinstance(self, Module):
node = self.children[0]
elif isinstance(self, ClassOrFunc):
node = self.children[self.children.index(':') + 1]
if is_node(node, 'suite'):
node = node.children[2]
else:
simple_stmt = self.parent
c = simple_stmt.parent.children
index = c.index(simple_stmt)
if not index:
return ''
node = c[index - 1]
if is_node(node, 'simple_stmt'):
node = node.children[0]
if node.type == 'string':
cleaned = cleandoc(literal_eval(node.value))
if is_py3 or isinstance(cleaned, unicode):
return cleaned
else:
return unicode(cleaned, 'UTF-8', 'replace')
return ''
class Base(object):
__slots__ = ()
def isinstance(self, *cls):
return isinstance(self, cls)
@Python3Method
def get_parent_until(self, classes=(), reverse=False,
include_current=True):
if type(classes) not in (tuple, list):
classes = (classes,)
scope = self if include_current else self.parent
while scope.parent is not None:
if classes and reverse != scope.isinstance(*classes):
break
scope = scope.parent
return scope
def get_parent_scope(self, include_flows=False):
scope = self.parent
while scope is not None:
if include_flows and isinstance(scope, Flow):
return scope
if scope.is_scope():
break
scope = scope.parent
return scope
def is_scope(self):
return False
class Leaf(Base):
__slots__ = ('position_modifier', 'value', 'parent', '_start_pos', 'prefix')
def __init__(self, position_modifier, value, start_pos, prefix=''):
self.position_modifier = position_modifier
self.value = value
self._start_pos = start_pos
self.prefix = prefix
self.parent = None
@property
def start_pos(self):
return self._start_pos[0] + self.position_modifier.line, self._start_pos[1]
@start_pos.setter
def start_pos(self, value):
self._start_pos = value[0] - self.position_modifier.line, value[1]
@property
def end_pos(self):
return (self._start_pos[0] + self.position_modifier.line,
self._start_pos[1] + len(self.value))
def move(self, line_offset, column_offset):
self._start_pos = (self._start_pos[0] + line_offset,
self._start_pos[1] + column_offset)
def get_previous(self):
node = self
while True:
c = node.parent.children
i = c.index(self)
if i == 0:
node = node.parent
if node.parent is None:
raise IndexError('Cannot access the previous element of the first one.')
else:
node = c[i - 1]
break
while True:
try:
node = node.children[-1]
except AttributeError:
return node
def get_code(self):
return self.prefix + self.value
def next_sibling(self):
for i, child in enumerate(self.parent.children):
if child is self:
try:
return self.parent.children[i + 1]
except IndexError:
return None
def prev_sibling(self):
for i, child in enumerate(self.parent.children):
if child is self:
if i == 0:
return None
return self.parent.children[i - 1]
@utf8_repr
def __repr__(self):
return "<%s: %s>" % (type(self).__name__, self.value)
class LeafWithNewLines(Leaf):
__slots__ = ()
@property
def end_pos(self):
end_pos_line, end_pos_col = self.start_pos
lines = self.value.split('\n')
end_pos_line += len(lines) - 1
if self.start_pos[0] == end_pos_line:
end_pos_col += len(lines[-1])
else:
end_pos_col = len(lines[-1])
return end_pos_line, end_pos_col
@utf8_repr
def __repr__(self):
return "<%s: %r>" % (type(self).__name__, self.value)
class Whitespace(LeafWithNewLines):
__slots__ = ()
type = 'whitespace'
class Name(Leaf):
type = 'name'
__slots__ = ()
def __str__(self):
return self.value
def __unicode__(self):
return self.value
def __repr__(self):
return "<%s: %s@%s,%s>" % (type(self).__name__, self.value,
self.start_pos[0], self.start_pos[1])
def get_definition(self):
scope = self
while scope.parent is not None:
parent = scope.parent
if scope.isinstance(Node, Name) and parent.type != 'simple_stmt':
if scope.type == 'testlist_comp':
try:
if isinstance(scope.children[1], CompFor):
return scope.children[1]
except IndexError:
pass
scope = parent
else:
break
return scope
def is_definition(self):
stmt = self.get_definition()
if stmt.type in ('funcdef', 'classdef', 'file_input', 'param'):
return self == stmt.name
elif stmt.type == 'for_stmt':
return self.start_pos < stmt.children[2].start_pos
elif stmt.type == 'try_stmt':
return self.prev_sibling() == 'as'
else:
return stmt.type in ('expr_stmt', 'import_name', 'import_from',
'comp_for', 'with_stmt') and self in stmt.get_defined_names()
def assignment_indexes(self):
indexes = []
node = self.parent
compare = self
while node is not None:
if is_node(node, 'testlist_comp', 'testlist_star_expr', 'exprlist'):
for i, child in enumerate(node.children):
if child == compare:
indexes.insert(0, int(i / 2))
break
else:
raise LookupError("Couldn't find the assignment.")
elif isinstance(node, (ExprStmt, CompFor)):
break
compare = node
node = node.parent
return indexes
class Literal(LeafWithNewLines):
__slots__ = ()
def eval(self):
return literal_eval(self.value)
class Number(Literal):
type = 'number'
__slots__ = ()
class String(Literal):
type = 'string'
__slots__ = ()
class Operator(Leaf):
type = 'operator'
__slots__ = ()
def __str__(self):
return self.value
def __eq__(self, other):
if isinstance(other, Operator):
return self is other
else:
return self.value == other
def __ne__(self, other):
return self.value != other
def __hash__(self):
return hash(self.value)
class Keyword(Leaf):
type = 'keyword'
__slots__ = ()
def __eq__(self, other):
if isinstance(other, Keyword):
return self is other
return self.value == other
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.value)
class BaseNode(Base):
__slots__ = ('children', 'parent')
type = None
def __init__(self, children):
for c in children:
c.parent = self
self.children = children
self.parent = None
def move(self, line_offset, column_offset):
for c in self.children:
c.move(line_offset, column_offset)
@property
def start_pos(self):
return self.children[0].start_pos
@property
def end_pos(self):
return self.children[-1].end_pos
def get_code(self):
return "".join(c.get_code() for c in self.children)
@Python3Method
def name_for_position(self, position):
for c in self.children:
if isinstance(c, Leaf):
if isinstance(c, Name) and c.start_pos <= position <= c.end_pos:
return c
else:
result = c.name_for_position(position)
if result is not None:
return result
return None
@Python3Method
def get_statement_for_position(self, pos):
for c in self.children:
if c.start_pos <= pos <= c.end_pos:
if c.type not in ('decorated', 'simple_stmt', 'suite') and not isinstance(c, (Flow, ClassOrFunc)):
return c
else:
try:
return c.get_statement_for_position(pos)
except AttributeError:
pass
return None
def first_leaf(self):
try:
return self.children[0].first_leaf()
except AttributeError:
return self.children[0]
@utf8_repr
def __repr__(self):
code = self.get_code().replace('\n', ' ')
if not is_py3:
code = code.encode(encoding, 'replace')
return "<%s: %s@%s,%s>" % (type(self).__name__, code, self.start_pos[0], self.start_pos[1])
class Node(BaseNode):
__slots__ = ('type',)
def __init__(self, type, children):
super(Node, self).__init__(children)
self.type = type
def __repr__(self):
return "%s(%s, %r)" % (self.__class__.__name__, self.type, self.children)
class IsScopeMeta(type):
def __instancecheck__(self, other):
return other.is_scope()
class IsScope(use_metaclass(IsScopeMeta)):
pass
class Scope(BaseNode, DocstringMixin):
__slots__ = ('names_dict',)
def __init__(self, children):
super(Scope, self).__init__(children)
@property
def returns(self):
return self._search_in_scope(ReturnStmt)
@property
def subscopes(self):
return self._search_in_scope(Scope)
@property
def flows(self):
return self._search_in_scope(Flow)
@property
def imports(self):
return self._search_in_scope(Import)
@Python3Method
def _search_in_scope(self, typ):
def scan(children):
elements = []
for element in children:
if isinstance(element, typ):
elements.append(element)
if is_node(element, 'suite', 'simple_stmt', 'decorated') or isinstance(element, Flow):
elements += scan(element.children)
return elements
return scan(self.children)
@property
def statements(self):
return self._search_in_scope((ExprStmt, KeywordStatement))
def is_scope(self):
return True
def __repr__(self):
try:
name = self.path
except AttributeError:
try:
name = self.name
except AttributeError:
name = self.command
return "<%s: %s@%s-%s>" % (type(self).__name__, name,
self.start_pos[0], self.end_pos[0])
def walk(self):
yield self
for s in self.subscopes:
for scope in s.walk():
yield scope
for r in self.statements:
while isinstance(r, Flow):
for scope in r.walk():
yield scope
r = r.next
class Module(Scope):
__slots__ = ('path', 'global_names', 'used_names', '_name',
'error_statement_stacks')
type = 'file_input'
def __init__(self, children):
super(Module, self).__init__(children)
self.path = None
@property
@cache.underscore_memoization
def name(self):
if self.path is None:
string = ''
else:
sep = (re.escape(os.path.sep),) * 2
r = re.search(r'([^%s]*?)(%s__init__)?(\.py|\.so)?$' % sep, self.path)
string = re.sub('\.[a-z]+-\d{2}[mud]{0,3}$', '', r.group(1))
p = (1, 0)
name = Name(zero_position_modifier, string, p)
name.parent = self
return name
@property
def has_explicit_absolute_import(self):
for imp in self.imports:
if imp.type == 'import_from' and imp.level == 0:
for path in imp.paths():
if [str(name) for name in path] == ['__future__', 'absolute_import']:
return True
return False
class Decorator(BaseNode):
type = 'decorator'
__slots__ = ()
class ClassOrFunc(Scope):
__slots__ = ()
@property
def name(self):
return self.children[1]
def get_decorators(self):
decorated = self.parent
if is_node(decorated, 'decorated'):
if is_node(decorated.children[0], 'decorators'):
return decorated.children[0].children
else:
return decorated.children[:1]
else:
return []
class Class(ClassOrFunc):
type = 'classdef'
__slots__ = ()
def __init__(self, children):
super(Class, self).__init__(children)
def get_super_arglist(self):
if self.children[2] != '(':
return None
else:
if self.children[3] == ')':
return None
else:
return self.children[3]
@property
def doc(self):
docstr = self.raw_doc
for sub in self.subscopes:
if str(sub.name) == '__init__':
return '%s\n\n%s' % (
sub.get_call_signature(func_name=self.name), docstr)
return docstr
def _create_params(parent, argslist_list):
def check_python2_nested_param(node):
return node.type == 'tfpdef' and node.children[0] == '('
try:
first = argslist_list[0]
except IndexError:
return []
if first.type in ('name', 'tfpdef'):
if check_python2_nested_param(first):
return []
else:
return [Param([first], parent)]
else:
children = first.children
params = []
start = 0
for end, child in enumerate(children + [None], 1):
if child is None or child == ',':
new_children = children[start:end]
if new_children:
if check_python2_nested_param(new_children[0]):
continue
params.append(Param(new_children, parent))
start = end
return params
class Function(ClassOrFunc):
__slots__ = ('listeners',)
type = 'funcdef'
def __init__(self, children):
super(Function, self).__init__(children)
self.listeners = set()
parameters = self.children[2]
parameters.children[1:-1] = _create_params(parameters, parameters.children[1:-1])
@property
def params(self):
return self.children[2].children[1:-1]
@property
def name(self):
return self.children[1]
@property
def yields(self):
return self._search_in_scope(YieldExpr)
def is_generator(self):
return bool(self.yields)
def annotation(self):
try:
return self.children[6]
except IndexError:
return None
def get_call_signature(self, width=72, func_name=None):
func_name = func_name or self.children[1]
code = unicode(func_name) + self.children[2].get_code()
return '\n'.join(textwrap.wrap(code, width))
@property
def doc(self):
docstr = self.raw_doc
return '%s\n\n%s' % (self.get_call_signature(), docstr)
class Lambda(Function):
type = 'lambda'
__slots__ = ()
def __init__(self, children):
super(Function, self).__init__(children)
self.listeners = set()
lst = self.children[1:-2]
self.children[1:-2] = _create_params(self, lst)
@property
def params(self):
return self.children[1:-2]
def is_generator(self):
return False
def yields(self):
return []
def __repr__(self):
return "<%s@%s>" % (self.__class__.__name__, self.start_pos)
class Flow(BaseNode):
__slots__ = ()
class IfStmt(Flow):
type = 'if_stmt'
__slots__ = ()
def check_nodes(self):
for i, c in enumerate(self.children):
if c in ('elif', 'if'):
yield self.children[i + 1]
def node_in_which_check_node(self, node):
for check_node in reversed(list(self.check_nodes())):
if check_node.start_pos < node.start_pos:
return check_node
|
MIT License
|
apache/bloodhound
|
bloodhound_dashboard/bhdashboard/widgets/ticket.py
|
TicketGroupStatsWidget.render_widget
|
python
|
def render_widget(self, name, context, options):
req = context.req
params = ('query', 'stats_provider', 'skin', 'title', 'legend', 'desc',
'view')
qstr, pnm, skin, title, legend, desc, view = self.bind_params(name, options, *params)
statsp = resolve_ep_class(ITicketGroupStatsProvider, self, pnm,
default=RoadmapModule(self.env).stats_provider)
if skin is not None :
skin = (skin or '').split('-', 2)
tickets = exec_query(self.env, req, qstr)
tickets = apply_ticket_permissions(self.env, req, tickets)
stat = get_ticket_stats(statsp, tickets)
add_stylesheet(req, 'dashboard/css/bootstrap.css')
add_stylesheet(req, 'dashboard/css/bootstrap-responsive.css')
add_stylesheet(req, 'dashboard/css/roadmap.css')
return 'widget_progress.html', {
'title' : title,
'data' : dict(
desc=desc, legend=legend, bar_styles=skin,
stats=stat, view=view,
),
}, context
|
Prepare ticket stats
|
https://github.com/apache/bloodhound/blob/c3e31294e68af99d4e040e64fbdf52394344df9e/bloodhound_dashboard/bhdashboard/widgets/ticket.py#L294-L322
|
from itertools import imap, islice
from urllib import urlencode
from genshi.builder import tag
from genshi.core import Markup
from trac.core import implements, TracError
from trac.ticket.api import TicketSystem
from trac.ticket.query import Query
from trac.ticket.roadmap import apply_ticket_permissions, get_ticket_stats, ITicketGroupStatsProvider, RoadmapModule
from trac.util.text import unicode_urlencode
from trac.web.chrome import add_stylesheet
from bhdashboard.api import DateField, EnumField, InvalidWidgetArgument, ListField
from bhdashboard.widgets.query import exec_query
from bhdashboard.util import dummy_request, merge_links, minmax, pretty_wrapper, resolve_ep_class, trac_version, trac_tags
from bhdashboard.util.widgets import WidgetBase, check_widget_name
from bhdashboard.util.translation import _
from multiproduct.env import Product, ProductEnvironment
class TicketFieldValuesWidget(WidgetBase):
DASH_ITEM_HREF_MAP = {'milestone': ('milestone',),
}
def get_widget_params(self, name):
return {
'field' : {
'desc' : """Target ticket field. """
"""Required if no group in `query`.""",
},
'query' : {
'desc' : """TracQuery used to filter target tickets.""",
},
'title' : {
'desc' : """Widget title""",
},
'verbose' : {
'desc' : """Show frequency next to each value""",
'default' : False,
'type' : bool,
},
'threshold' : {
'desc' : """Filter items having smaller frequency""",
'type' : int,
},
'max' : {
'default' : 0,
'desc' : """Limit the number of items displayed""",
'type' : int
},
'view' : {
'desc' : """Display mode. Should be one of the following
- `list` : Unordered value list (default)
- `cloud` : Similar to tag cloud
""",
'default' : 'list',
'type' : EnumField('list', 'cloud', 'table', 'compact'),
},
}
get_widget_params = pretty_wrapper(get_widget_params, check_widget_name)
def render_widget(self, name, context, options):
req = context.req
params = ('field', 'query', 'verbose', 'threshold', 'max', 'title',
'view')
fieldnm, query, verbose, threshold, maxitems, title, view = self.bind_params(name, options, *params)
field_maps = {'type': {'admin_url': 'type',
'title': _('Types'),
},
'status': {'admin_url': None,
'title': _('Statuses'),
},
'priority': {'admin_url': 'priority',
'title': _('Priorities'),
},
'milestone': {'admin_url': 'milestones',
'title': _('Milestones'),
},
'component': {'admin_url': 'components',
'title': _('Components'),
},
'version': {'admin_url': 'versions',
'title': _('Versions'),
},
'severity': {'admin_url': 'severity',
'title': _('Severities'),
},
'resolution': {'admin_url': 'resolution',
'title': _('Resolutions'),
},
}
_field = []
def check_field_name():
if fieldnm is None:
raise InvalidWidgetArgument('field', 'Missing ticket field')
tsys = self.env[TicketSystem]
if tsys is None:
raise TracError(_('Error loading ticket system (disabled?)'))
for field in tsys.get_ticket_fields():
if field['name'] == fieldnm:
_field.append(field)
break
else:
if fieldnm in field_maps:
admin_suffix = field_maps.get(fieldnm)['admin_url']
if 'TICKET_ADMIN' in req.perm and admin_suffix is not None:
hint = _('You can add one or more '
'<a href="%(url)s">here</a>.',
url=req.href.admin('ticket', admin_suffix))
else:
hint = _('Contact your administrator for further details')
return 'widget_alert.html', {
'title' : Markup(field_maps[fieldnm]['title']),
'data' : dict(msgtype='info',
msglabel="Note",
msgbody=Markup(_('''No values are
defined for ticket field
<em>%(field)s</em>. %(hint)s''',
field=fieldnm, hint=hint))
)
}, context
else:
raise InvalidWidgetArgument('field',
'Unknown ticket field %s' % (fieldnm,))
return None
if query is None :
data = check_field_name()
if data is not None:
return data
field = _field[0]
if field.get('custom'):
sql = "SELECT COALESCE(value, ''), count(COALESCE(value, ''))" " FROM ticket_custom " " WHERE name='%(name)s' GROUP BY COALESCE(value, '')"
else:
sql = "SELECT COALESCE(%(name)s, ''), " "count(COALESCE(%(name)s, '')) FROM ticket " "GROUP BY COALESCE(%(name)s, '')"
sql = sql % field
db_query = req.perm.env.db_query if isinstance(req.perm.env, ProductEnvironment) else req.perm.env.db_direct_query
with db_query as db:
cursor = db.cursor()
cursor.execute(sql)
items = cursor.fetchall()
QUERY_COLS = ['id', 'summary', 'owner', 'type', 'status', 'priority']
item_link= lambda item: req.href.query(col=QUERY_COLS + [fieldnm],
**{fieldnm:item[0]})
else:
query = Query.from_string(self.env, query, group=fieldnm)
if query.group is None:
data = check_field_name()
if data is not None:
return data
raise InvalidWidgetArgument('field',
'Invalid ticket field for ticket groups')
fieldnm = query.group
sql, v = query.get_sql()
sql = "SELECT COALESCE(%(name)s, '') , count(COALESCE(%(name)s, ''))" "FROM (%(sql)s) AS foo GROUP BY COALESCE(%(name)s, '')" % { 'name' : fieldnm, 'sql' : sql }
db = self.env.get_db_cnx()
try :
cursor = db.cursor()
cursor.execute(sql, v)
items = cursor.fetchall()
finally:
cursor.close()
query_href = query.get_href(req.href)
item_link= lambda item: query_href + '&' + unicode_urlencode([(fieldnm, item[0])])
if fieldnm in self.DASH_ITEM_HREF_MAP:
def dash_item_link(item):
if item[0]:
args = self.DASH_ITEM_HREF_MAP[fieldnm] + (item[0],)
return req.href(*args)
else:
return item_link(item)
else:
dash_item_link = item_link
if title is None:
heading = _(fieldnm.capitalize())
else:
heading = None
return 'widget_cloud.html', {
'title' : title,
'data' : dict(
bounds=minmax(items, lambda x: x[1]),
item_link=dash_item_link,
heading=heading,
items=items,
verbose=verbose,
view=view,
),
}, context
render_widget = pretty_wrapper(render_widget, check_widget_name)
class TicketGroupStatsWidget(WidgetBase):
def get_widget_params(self, name):
return {
'query' : {
'default' : 'status!=closed',
'desc' : """Query string""",
},
'stats_provider' : {
'desc' : """Name of the component implementing
`ITicketGroupStatsProvider`, which is used to collect statistics
on groups of tickets.""",
'default' : 'DefaultTicketGroupStatsProvider'
},
'skin' : {
'desc' : """Look and feel of the progress bar""",
'type' : EnumField('info', 'success', 'warning',
'danger',
'info-stripped', 'success-stripped',
'warning-stripped', 'danger-stripped')
},
'title' : {
'desc' : """Widget title""",
},
'legend' : {
'desc' : """Text on top of the progress bar""",
},
'desc' : {
'desc' : """Descriptive (wiki) text""",
},
'view' : {
'desc' : """Display mode to render progress info""",
'type' : EnumField('compact', 'standard')
},
}
get_widget_params = pretty_wrapper(get_widget_params, check_widget_name)
|
Apache License 2.0
|
better/convoys
|
convoys/regression.py
|
GeneralizedGamma.predict_ci
|
python
|
def predict_ci(self, x, t, ci=0.8):
M = self.predict_posteriori(x, t)
y = numpy.mean(M, axis=-1)
y_lo = numpy.percentile(M, (1-ci)*50, axis=-1)
y_hi = numpy.percentile(M, (1+ci)*50, axis=-1)
return numpy.stack((y, y_lo, y_hi), axis=-1)
|
Works like :meth:`predict` but produces a confidence interval.
Requires the model to be fit with `ci = True`. The return value
will contain one more dimension than for :meth:`predict`, and
the last dimension will have size 3, containing the mean, the
lower bound of the confidence interval, and the upper bound of
the confidence interval.
|
https://github.com/better/convoys/blob/99e832d2170ba9670e5e16bb3f632ac9055291f3/convoys/regression.py#L310-L323
|
from convoys import autograd_scipy_monkeypatch
import autograd
from autograd_gamma import gammainc
from deprecated.sphinx import deprecated
import emcee
import numpy
from scipy.special import gammaincinv
from autograd.scipy.special import expit, gammaln
from autograd.numpy import isnan, exp, dot, log, sum
import progressbar
import scipy.optimize
import warnings
__all__ = ['Exponential',
'Weibull',
'Gamma',
'GeneralizedGamma']
def generalized_gamma_loss(x, X, B, T, W, fix_k, fix_p,
hierarchical, flavor, callback=None):
k = exp(x[0]) if fix_k is None else fix_k
p = exp(x[1]) if fix_p is None else fix_p
log_sigma_alpha = x[2]
log_sigma_beta = x[3]
a = x[4]
b = x[5]
n_features = int((len(x)-6)/2)
alpha = x[6:6+n_features]
beta = x[6+n_features:6+2*n_features]
lambd = exp(dot(X, alpha)+a)
log_pdf = log(p) + (k*p) * log(lambd) - gammaln(k) + (k*p-1) * log(T) - (T*lambd)**p
cdf = gammainc(k, (T*lambd)**p)
if flavor == 'logistic':
c = expit(dot(X, beta)+b)
LL_observed = log(c) + log_pdf
LL_censored = log((1 - c) + c * (1 - cdf))
elif flavor == 'linear':
c = dot(X, beta)+b
LL_observed = -(1 - c)**2 + log_pdf
LL_censored = -(c*cdf)**2
LL_data = sum(
W * B * LL_observed +
W * (1 - B) * LL_censored, 0)
if hierarchical:
LL_prior_a = -4*log_sigma_alpha - 1/exp(log_sigma_alpha)**2 - dot(alpha, alpha) / (2*exp(log_sigma_alpha)**2) - n_features*log_sigma_alpha
LL_prior_b = -4*log_sigma_beta - 1/exp(log_sigma_beta)**2 - dot(beta, beta) / (2*exp(log_sigma_beta)**2) - n_features*log_sigma_beta
LL = LL_prior_a + LL_prior_b + LL_data
else:
LL = LL_data
if isnan(LL):
return -numpy.inf
if callback is not None:
callback(LL)
return LL
class RegressionModel(object):
pass
class GeneralizedGamma(RegressionModel):
def __init__(self, mcmc=False, fix_k=None, fix_p=None, hierarchical=True,
flavor='logistic', ci=None):
self._mcmc = mcmc
self._fix_k = fix_k
self._fix_p = fix_p
self._hierarchical = hierarchical
self._flavor = flavor
if ci is not None:
warnings.warn('The `ci` argument is deprecated in 0.2.1 in favor '
' of `mcmc`.', DeprecationWarning)
self._mcmc = ci
def fit(self, X, B, T, W=None):
if W is None:
W = numpy.ones(len(X))
X, B, T, W = (Z if type(Z) == numpy.ndarray else numpy.array(Z)
for Z in (X, B, T, W))
keep_indexes = (T > 0) & (B >= 0) & (B <= 1) & (W >= 0)
if sum(keep_indexes) < X.shape[0]:
n_removed = X.shape[0] - sum(keep_indexes)
warnings.warn('Warning! Removed %d/%d entries from inputs where '
'T <= 0 or B not 0/1 or W < 0' % (n_removed, len(X)))
X, B, T, W = (Z[keep_indexes] for Z in (X, B, T, W))
n_features = X.shape[1]
x0 = numpy.zeros(6+2*n_features)
x0[0] = +1 if self._fix_k is None else log(self._fix_k)
x0[1] = -1 if self._fix_p is None else log(self._fix_p)
args = (X, B, T, W, self._fix_k, self._fix_p,
self._hierarchical, self._flavor)
bar = progressbar.ProgressBar(widgets=[
progressbar.Variable('loss', width=15, precision=9), ' ',
progressbar.BouncingBar(), ' ',
progressbar.Counter(width=6),
' [', progressbar.Timer(), ']'])
def callback(LL, value_history=[]):
value_history.append(LL)
bar.update(len(value_history), loss=LL)
f = lambda x: -generalized_gamma_loss(x, *args, callback=callback)
jac = autograd.grad(lambda x: -generalized_gamma_loss(x, *args))
res = scipy.optimize.minimize(f, x0, jac=jac, method='SLSQP',
options={'maxiter': 9999})
if not res.success:
raise Exception('Optimization failed with message: %s' %
res.message)
result = {'map': res.x}
if self._fix_k:
result['map'][0] = log(self._fix_k)
if self._fix_p:
result['map'][1] = log(self._fix_p)
gradient = jac(result['map'])
gradient_norm = numpy.dot(gradient, gradient)
if gradient_norm >= 1e-2 * len(X):
warnings.warn('Might not have found a local minimum! '
'Norm of gradient is %f' % gradient_norm)
if self._mcmc:
dim, = res.x.shape
n_walkers = 5*dim
sampler = emcee.EnsembleSampler(
nwalkers=n_walkers,
ndim=dim,
log_prob_fn=generalized_gamma_loss,
args=args,
)
mcmc_initial_noise = 1e-3
p0 = [result['map'] + mcmc_initial_noise * numpy.random.randn(dim)
for i in range(n_walkers)]
n_burnin = 100
n_steps = numpy.ceil(2000. / n_walkers)
n_iterations = n_burnin + n_steps
bar = progressbar.ProgressBar(max_value=n_iterations, widgets=[
progressbar.Percentage(), ' ', progressbar.Bar(),
' %d walkers [' % n_walkers,
progressbar.AdaptiveETA(), ']'])
for i, _ in enumerate(sampler.sample(p0, iterations=n_iterations)):
bar.update(i+1)
result['samples'] = sampler.chain[:, n_burnin:, :] .reshape((-1, dim)).T
if self._fix_k:
result['samples'][0, :] = log(self._fix_k)
if self._fix_p:
result['samples'][1, :] = log(self._fix_p)
self.params = {k: {
'k': exp(data[0]),
'p': exp(data[1]),
'a': data[4],
'b': data[5],
'alpha': data[6:6+n_features].T,
'beta': data[6+n_features:6+2*n_features].T,
} for k, data in result.items()}
def _predict(self, params, x, t):
lambd = exp(dot(x, params['alpha'].T) + params['a'])
if self._flavor == 'logistic':
c = expit(dot(x, params['beta'].T) + params['b'])
elif self._flavor == 'linear':
c = dot(x, params['beta'].T) + params['b']
M = c * gammainc(
params['k'],
(t*lambd)**params['p'])
return M
def predict_posteriori(self, x, t):
x = numpy.array(x)
t = numpy.array(t)
assert self._mcmc
params = self.params['samples']
t = numpy.expand_dims(t, -1)
return self._predict(params, x, t)
|
MIT License
|
hosford42/xcs
|
xcs/scenarios.py
|
ScenarioObserver.more
|
python
|
def more(self):
more = self.wrapped.more()
if not self.steps % 100:
self.logger.info('Steps completed: %d', self.steps)
self.logger.info('Average reward per step: %.5f',
self.total_reward / (self.steps or 1))
if not more:
self.logger.info('Run completed.')
self.logger.info('Total steps: %d', self.steps)
self.logger.info('Total reward received: %.5f',
self.total_reward)
self.logger.info('Average reward per step: %.5f',
self.total_reward / (self.steps or 1))
return more
|
Return a Boolean indicating whether additional actions may be
executed, per the reward program.
Usage:
while scenario.more():
situation = scenario.sense()
selected_action = choice(possible_actions)
reward = scenario.execute(selected_action)
Arguments: None
Return:
A bool indicating whether additional situations remain in the
current run.
|
https://github.com/hosford42/xcs/blob/183bdd0dd339e19ded3be202f86e1b38bdb9f1e5/xcs/scenarios.py#L563-L592
|
__author__ = 'Aaron Hosford'
__all__ = [
'HaystackProblem',
'MUXProblem',
'Scenario',
'ScenarioObserver',
'PreClassifiedData',
'UnclassifiedData',
]
import logging
import random
from abc import ABCMeta, abstractmethod
from . import numpy
from . import bitstrings
class Scenario(metaclass=ABCMeta):
@property
@abstractmethod
def is_dynamic(self):
raise NotImplementedError()
@abstractmethod
def get_possible_actions(self):
raise NotImplementedError()
@abstractmethod
def reset(self):
raise NotImplementedError()
@abstractmethod
def sense(self):
raise NotImplementedError()
@abstractmethod
def execute(self, action):
raise NotImplementedError()
@abstractmethod
def more(self):
raise NotImplementedError()
class MUXProblem(Scenario):
def __init__(self, training_cycles=10000, address_size=3):
assert isinstance(training_cycles, int) and training_cycles > 0
assert isinstance(address_size, int) and address_size > 0
self.address_size = address_size
self.current_situation = None
self.possible_actions = (True, False)
self.initial_training_cycles = training_cycles
self.remaining_cycles = training_cycles
@property
def is_dynamic(self):
return False
def get_possible_actions(self):
return self.possible_actions
def reset(self):
self.remaining_cycles = self.initial_training_cycles
def sense(self):
self.current_situation = bitstrings.BitString([
random.randrange(2)
for _ in range(self.address_size + (1 << self.address_size))
])
return self.current_situation
def execute(self, action):
assert action in self.possible_actions
self.remaining_cycles -= 1
index = int(bitstrings.BitString(
self.current_situation[:self.address_size]
))
bit = self.current_situation[self.address_size + index]
return action == bit
def more(self):
return int(self.remaining_cycles > 0)
class HaystackProblem(Scenario):
def __init__(self, training_cycles=10000, input_size=500):
assert isinstance(training_cycles, int) and training_cycles > 0
assert isinstance(input_size, int) and input_size > 0
self.input_size = input_size
self.possible_actions = (True, False)
self.initial_training_cycles = training_cycles
self.remaining_cycles = training_cycles
self.needle_index = random.randrange(input_size)
self.needle_value = None
@property
def is_dynamic(self):
return False
def get_possible_actions(self):
return self.possible_actions
def reset(self):
self.remaining_cycles = self.initial_training_cycles
self.needle_index = random.randrange(self.input_size)
def sense(self):
haystack = bitstrings.BitString.random(self.input_size)
self.needle_value = haystack[self.needle_index]
return haystack
def execute(self, action):
assert action in self.possible_actions
self.remaining_cycles -= 1
return action == self.needle_value
def more(self):
return self.remaining_cycles > 0
class ScenarioObserver(Scenario):
def __init__(self, wrapped):
assert isinstance(wrapped, Scenario)
self.logger = logging.getLogger(__name__)
self.wrapped = wrapped
self.total_reward = 0
self.steps = 0
@property
def is_dynamic(self):
return self.wrapped.is_dynamic
def get_possible_actions(self):
possible_actions = self.wrapped.get_possible_actions()
if len(possible_actions) <= 20:
try:
possible_actions = list(set(possible_actions))
except TypeError:
possible_actions = list(possible_actions)
try:
possible_actions.sort()
except TypeError:
pass
self.logger.info('Possible actions:')
for action in possible_actions:
self.logger.info(' %s', action)
else:
self.logger.info("%d possible actions.", len(possible_actions))
return possible_actions
def reset(self):
self.logger.info('Resetting scenario.')
self.wrapped.reset()
def sense(self):
situation = self.wrapped.sense()
self.logger.debug('Situation: %s', situation)
return situation
def execute(self, action):
self.logger.debug('Executing action: %s', action)
reward = self.wrapped.execute(action)
if reward:
self.total_reward += reward
self.steps += 1
self.logger.debug('Reward received on this step: %.5f',
reward or 0)
self.logger.debug('Average reward per step: %.5f',
self.total_reward / self.steps)
return reward
|
BSD 3-Clause New or Revised License
|
surrealai/surreal
|
surreal/launch/launcher.py
|
Launcher.launch
|
python
|
def launch(self, component_name):
raise NotImplementedError
|
Launches the specific component
Args:
component_name(str): the process to launch
|
https://github.com/surrealai/surreal/blob/ae9e5f43bdd7d1bc6d39d0a4783b96b2c117fade/surreal/launch/launcher.py#L58-L64
|
import time
import os
import sys
import subprocess
from argparse import ArgumentParser
import numpy as np
from tensorplex import Loggerplex
from tensorplex import Tensorplex
from surreal.distributed import ShardedParameterServer
from surreal.replay import ShardedReplay, ReplayLoadBalancer
import surreal.utils as U
import faulthandler
faulthandler.enable()
class Launcher:
def main(self):
argv = sys.argv[1:]
parser_args = argv
config_args = []
if '--' in argv:
index = argv.index('--')
parser_args = argv[:index]
config_args = argv[index + 1:]
parser = ArgumentParser(description='launch a surreal component')
parser.add_argument('component_name',
type=str,
help='which component to launch')
args = parser.parse_args(parser_args)
self.config_args = config_args
self.setup(config_args)
self.launch(args.component_name)
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/device_tracker/bt_home_hub_5.py
|
BTHomeHub5DeviceScanner.__init__
|
python
|
def __init__(self, config):
_LOGGER.info("Initialising BT Home Hub 5")
self.host = config.get(CONF_HOST, '192.168.1.254')
self.last_results = {}
self.url = 'http://{}/nonAuth/home_status.xml'.format(self.host)
data = _get_homehub_data(self.url)
self.success_init = data is not None
|
Initialise the scanner.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/device_tracker/bt_home_hub_5.py#L40-L49
|
import logging
import re
import xml.etree.ElementTree as ET
import json
from urllib.parse import unquote
import requests
import voluptuous as vol
import homeassistant.helpers.config_validation as cv
from homeassistant.components.device_tracker import (
DOMAIN, PLATFORM_SCHEMA, DeviceScanner)
from homeassistant.const import CONF_HOST
_LOGGER = logging.getLogger(__name__)
_MAC_REGEX = re.compile(r'(([0-9A-Fa-f]{1,2}\:){5}[0-9A-Fa-f]{1,2})')
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_HOST): cv.string
})
def get_scanner(hass, config):
scanner = BTHomeHub5DeviceScanner(config[DOMAIN])
return scanner if scanner.success_init else None
class BTHomeHub5DeviceScanner(DeviceScanner):
|
MIT License
|
pckv/pcbot
|
plugins/brainfuck.py
|
brainfuck
|
python
|
async def brainfuck(message: discord.Message, code: Annotate.Code):
program_input = ""
if "," in code:
await client.say(message, "**Input required, please type:**")
reply = await client.wait_for_message(timeout=30, author=message.author, channel=message.channel)
assert reply, "**You failed to reply.**"
program_input = reply.clean_content
await brainfuck_in_channel(message.channel, code, program_input)
|
Run the given brainfuck code and prompt for input if required.
This interpretation of brainfuck always returns a value with the , command,
which means that whenever there is no input to retrieve, a 0 would be inserted
in the pointer cell.
|
https://github.com/pckv/pcbot/blob/88d1243f22f2b00d6872b2c50468f26e2ba12965/plugins/brainfuck.py#L152-L166
|
import discord
import plugins
from pcbot import Annotate, Config
client = plugins.client
cfg = Config("brainfuck", data={})
max_iterations = 2 ** 17
brainfuck_chars = "+-><][.,"
class Loop:
def __init__(self, start, end):
self.start = start
self.end = end
self.pointer = None
def set_pointer(self, pointer):
self.pointer = (pointer.cursor, pointer.value)
def compare_pointer(self, pointer):
if self.pointer is None:
return False
return self.pointer == (pointer.cursor, pointer.value)
class TooManyIterations(Exception):
pass
class InfiniteLoop(Exception):
pass
class Pointer:
cells = 2 ** 15
cell_size = 2 ** 8 - 1
def __init__(self):
self.array = [0] * self.cells
self.cursor = 0
@property
def value(self):
return self.array[self.cursor]
@value.setter
def value(self, value):
self.array[self.cursor] = value
def add(self):
self.value += 1
if self.value > self.cell_size:
self.value = 0
def sub(self):
self.value -= 1
if self.value < 0:
self.value = self.cell_size
def right(self):
self.cursor += 1
if self.cursor >= self.cells:
self.cursor = 0
def left(self):
self.cursor -= 1
if self.cursor < 0:
self.cursor = self.cells - 1
def find_loop_end(code: str, start: int):
nest = 1
for i, c in enumerate(code):
if c == "[":
nest += 1
elif c == "]":
nest -= 1
if nest == 0:
return start + i
raise SyntaxError("{}: Loop never ends!".format(start))
def run_brainfuck(code: str, for_input: str=""):
pointer = Pointer()
input_pointer = Pointer()
input_pointer.array[:len(for_input)] = list(ord(c) for c in for_input)
loops = []
i, iterations = 0, 0
output = ""
while True:
char = code[i]
if char == "+":
pointer.add()
elif char == "-":
pointer.sub()
elif char == ">":
pointer.right()
elif char == "<":
pointer.left()
elif char == ".":
output += chr(pointer.value)
elif char == ",":
pointer.value = input_pointer.value
input_pointer.right()
if loops:
loops[-1].pointer = None
elif char == "[":
end = find_loop_end(code[i + 1:], i)
loops.append(Loop(start=i, end=end))
if pointer.value == 0:
i = end
elif char == "]":
if loops:
if loops[-1].compare_pointer(pointer):
raise InfiniteLoop("{}: Pointer value unchanged.".format(loops[-1].start))
if not pointer.value == 0:
i = loops[-1].start
loops[-1].set_pointer(pointer)
else:
del loops[-1]
i += 1
if i >= len(code):
return output or "Pointer value: {}".format(pointer.value)
iterations += 1
if iterations >= max_iterations:
raise TooManyIterations("Program exceeded maximum number of iterations ({})".format(max_iterations))
async def brainfuck_in_channel(channel: discord.Channel, code, program_input):
try:
output = run_brainfuck(code, program_input)
except Exception as e:
await client.send_message(channel, "```\n{}: {}```".format(type(e).__name__, str(e)))
else:
assert len(output) <= 2000, "**The output was too long.**"
await client.send_message(channel, "```\n{}```".format(output))
@plugins.command(aliases="bf")
|
MIT License
|
gkno/gkno_launcher
|
src/networkx/readwrite/multiline_adjlist.py
|
generate_multiline_adjlist
|
python
|
def generate_multiline_adjlist(G, delimiter = ' '):
if G.is_directed():
if G.is_multigraph():
for s,nbrs in G.adjacency_iter():
nbr_edges=[ (u,data)
for u,datadict in nbrs.items()
for key,data in datadict.items()]
deg=len(nbr_edges)
yield make_str(s)+delimiter+"%i"%(deg)
for u,d in nbr_edges:
if d is None:
yield make_str(u)
else:
yield make_str(u)+delimiter+make_str(d)
else:
for s,nbrs in G.adjacency_iter():
deg=len(nbrs)
yield make_str(s)+delimiter+"%i"%(deg)
for u,d in nbrs.items():
if d is None:
yield make_str(u)
else:
yield make_str(u)+delimiter+make_str(d)
else:
if G.is_multigraph():
seen=set()
for s,nbrs in G.adjacency_iter():
nbr_edges=[ (u,data)
for u,datadict in nbrs.items()
if u not in seen
for key,data in datadict.items()]
deg=len(nbr_edges)
yield make_str(s)+delimiter+"%i"%(deg)
for u,d in nbr_edges:
if d is None:
yield make_str(u)
else:
yield make_str(u)+delimiter+make_str(d)
seen.add(s)
else:
seen=set()
for s,nbrs in G.adjacency_iter():
nbr_edges=[ (u,d) for u,d in nbrs.items() if u not in seen]
deg=len(nbr_edges)
yield make_str(s)+delimiter+"%i"%(deg)
for u,d in nbr_edges:
if d is None:
yield make_str(u)
else:
yield make_str(u)+delimiter+make_str(d)
seen.add(s)
|
Generate a single line of the graph G in multiline adjacency list format.
Parameters
----------
G : NetworkX graph
delimiter : string, optional
Separator for node labels
Returns
-------
lines : string
Lines of data in multiline adjlist format.
Examples
--------
>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_multiline_adjlist(G):
... print(line)
0 3
1 {}
2 {}
3 {}
1 2
2 {}
3 {}
2 1
3 {}
3 1
4 {}
4 1
5 {}
5 1
6 {}
6 0
See Also
--------
write_multiline_adjlist, read_multiline_adjlist
|
https://github.com/gkno/gkno_launcher/blob/4210ede8448155d70bfbdbd658125a1d95ea8e95/src/networkx/readwrite/multiline_adjlist.py#L46-L136
|
__author__ = '\n'.join(['Aric Hagberg <hagberg@lanl.gov>',
'Dan Schult <dschult@colgate.edu>',
'Loïc Séguin-C. <loicseguin@gmail.com>'])
__all__ = ['generate_multiline_adjlist',
'write_multiline_adjlist',
'parse_multiline_adjlist',
'read_multiline_adjlist']
from networkx.utils import make_str, open_file
import networkx as nx
|
MIT License
|
clementpinard/flownetpytorch
|
models/FlowNetC.py
|
flownetc
|
python
|
def flownetc(data=None):
model = FlowNetC(batchNorm=False)
if data is not None:
model.load_state_dict(data['state_dict'])
return model
|
FlowNetS model architecture from the
"Learning Optical Flow with Convolutional Networks" paper (https://arxiv.org/abs/1504.06852)
Args:
data : pretrained weights of the network. will create a new one if not set
|
https://github.com/clementpinard/flownetpytorch/blob/8465a43b95d8776207fd1ba6801b8d1f2134742f/models/FlowNetC.py#L112-L122
|
import torch
import torch.nn as nn
from torch.nn.init import kaiming_normal_, constant_
from .util import conv, predict_flow, deconv, crop_like, correlate
__all__ = [
'flownetc', 'flownetc_bn'
]
class FlowNetC(nn.Module):
expansion = 1
def __init__(self,batchNorm=True):
super(FlowNetC,self).__init__()
self.batchNorm = batchNorm
self.conv1 = conv(self.batchNorm, 3, 64, kernel_size=7, stride=2)
self.conv2 = conv(self.batchNorm, 64, 128, kernel_size=5, stride=2)
self.conv3 = conv(self.batchNorm, 128, 256, kernel_size=5, stride=2)
self.conv_redir = conv(self.batchNorm, 256, 32, kernel_size=1, stride=1)
self.conv3_1 = conv(self.batchNorm, 473, 256)
self.conv4 = conv(self.batchNorm, 256, 512, stride=2)
self.conv4_1 = conv(self.batchNorm, 512, 512)
self.conv5 = conv(self.batchNorm, 512, 512, stride=2)
self.conv5_1 = conv(self.batchNorm, 512, 512)
self.conv6 = conv(self.batchNorm, 512, 1024, stride=2)
self.conv6_1 = conv(self.batchNorm,1024, 1024)
self.deconv5 = deconv(1024,512)
self.deconv4 = deconv(1026,256)
self.deconv3 = deconv(770,128)
self.deconv2 = deconv(386,64)
self.predict_flow6 = predict_flow(1024)
self.predict_flow5 = predict_flow(1026)
self.predict_flow4 = predict_flow(770)
self.predict_flow3 = predict_flow(386)
self.predict_flow2 = predict_flow(194)
self.upsampled_flow6_to_5 = nn.ConvTranspose2d(2, 2, 4, 2, 1, bias=False)
self.upsampled_flow5_to_4 = nn.ConvTranspose2d(2, 2, 4, 2, 1, bias=False)
self.upsampled_flow4_to_3 = nn.ConvTranspose2d(2, 2, 4, 2, 1, bias=False)
self.upsampled_flow3_to_2 = nn.ConvTranspose2d(2, 2, 4, 2, 1, bias=False)
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
kaiming_normal_(m.weight, 0.1)
if m.bias is not None:
constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
constant_(m.weight, 1)
constant_(m.bias, 0)
def forward(self, x):
x1 = x[:,:3]
x2 = x[:,3:]
out_conv1a = self.conv1(x1)
out_conv2a = self.conv2(out_conv1a)
out_conv3a = self.conv3(out_conv2a)
out_conv1b = self.conv1(x2)
out_conv2b = self.conv2(out_conv1b)
out_conv3b = self.conv3(out_conv2b)
out_conv_redir = self.conv_redir(out_conv3a)
out_correlation = correlate(out_conv3a,out_conv3b)
in_conv3_1 = torch.cat([out_conv_redir, out_correlation], dim=1)
out_conv3 = self.conv3_1(in_conv3_1)
out_conv4 = self.conv4_1(self.conv4(out_conv3))
out_conv5 = self.conv5_1(self.conv5(out_conv4))
out_conv6 = self.conv6_1(self.conv6(out_conv5))
flow6 = self.predict_flow6(out_conv6)
flow6_up = crop_like(self.upsampled_flow6_to_5(flow6), out_conv5)
out_deconv5 = crop_like(self.deconv5(out_conv6), out_conv5)
concat5 = torch.cat((out_conv5,out_deconv5,flow6_up),1)
flow5 = self.predict_flow5(concat5)
flow5_up = crop_like(self.upsampled_flow5_to_4(flow5), out_conv4)
out_deconv4 = crop_like(self.deconv4(concat5), out_conv4)
concat4 = torch.cat((out_conv4,out_deconv4,flow5_up),1)
flow4 = self.predict_flow4(concat4)
flow4_up = crop_like(self.upsampled_flow4_to_3(flow4), out_conv3)
out_deconv3 = crop_like(self.deconv3(concat4), out_conv3)
concat3 = torch.cat((out_conv3,out_deconv3,flow4_up),1)
flow3 = self.predict_flow3(concat3)
flow3_up = crop_like(self.upsampled_flow3_to_2(flow3), out_conv2a)
out_deconv2 = crop_like(self.deconv2(concat3), out_conv2a)
concat2 = torch.cat((out_conv2a,out_deconv2,flow3_up),1)
flow2 = self.predict_flow2(concat2)
if self.training:
return flow2,flow3,flow4,flow5,flow6
else:
return flow2
def weight_parameters(self):
return [param for name, param in self.named_parameters() if 'weight' in name]
def bias_parameters(self):
return [param for name, param in self.named_parameters() if 'bias' in name]
|
MIT License
|
allenporter/python-google-nest-sdm
|
google_nest_sdm/google_nest_api.py
|
GoogleNestAPI.async_get_device
|
python
|
async def async_get_device(self, device_id: str) -> Optional[Device]:
resp = await self._auth.get(f"{self._devices_url}/{device_id}")
data = await resp.json()
if NAME not in data:
return None
return Device.MakeDevice(data, self._auth)
|
Return a specific device.
|
https://github.com/allenporter/python-google-nest-sdm/blob/b3e41cbaa6961f4eda1b4375cebeaba34239ef91/google_nest_sdm/google_nest_api.py#L57-L63
|
from typing import List, Optional
from .auth import AbstractAuth
from .device import Device
from .structure import Structure
STRUCTURES = "structures"
DEVICES = "devices"
NAME = "name"
class GoogleNestAPI:
def __init__(self, auth: AbstractAuth, project_id: str):
self._auth = auth
self._project_id = project_id
@property
def _structures_url(self) -> str:
return f"enterprises/{self._project_id}/structures"
async def async_get_structures(self) -> List[Structure]:
resp = await self._auth.get(self._structures_url)
response_data = await resp.json()
if STRUCTURES not in response_data:
return []
structures = response_data[STRUCTURES]
return [
Structure.MakeStructure(structure_data) for structure_data in structures
]
async def async_get_structure(self, structure_id: str) -> Optional[Structure]:
resp = await self._auth.get(f"{self._structures_url}/{structure_id}")
data = await resp.json()
if NAME not in data:
return None
return Structure.MakeStructure(data)
@property
def _devices_url(self) -> str:
return f"enterprises/{self._project_id}/devices"
async def async_get_devices(self) -> List[Device]:
resp = await self._auth.get(self._devices_url)
response_data = await resp.json()
if DEVICES not in response_data:
return []
devices = response_data[DEVICES]
return [Device.MakeDevice(device_data, self._auth) for device_data in devices]
|
Apache License 2.0
|
danielfrg/jupyterhub-kubernetes_spawner
|
kubernetes_spawner/swagger_client/models/v1_node_spec.py
|
V1NodeSpec.provider_id
|
python
|
def provider_id(self):
return self._provider_id
|
Gets the provider_id of this V1NodeSpec.
ID of the node assigned by the cloud provider in the format: <ProviderName>://<ProviderSpecificNodeID>
:return: The provider_id of this V1NodeSpec.
:rtype: str
|
https://github.com/danielfrg/jupyterhub-kubernetes_spawner/blob/15a2b63ef719f8c3ff83221333f7de69c1495512/kubernetes_spawner/swagger_client/models/v1_node_spec.py#L103-L111
|
from pprint import pformat
from six import iteritems
class V1NodeSpec(object):
def __init__(self):
self.swagger_types = {
'pod_cidr': 'str',
'external_id': 'str',
'provider_id': 'str',
'unschedulable': 'bool'
}
self.attribute_map = {
'pod_cidr': 'podCIDR',
'external_id': 'externalID',
'provider_id': 'providerID',
'unschedulable': 'unschedulable'
}
self._pod_cidr = None
self._external_id = None
self._provider_id = None
self._unschedulable = None
@property
def pod_cidr(self):
return self._pod_cidr
@pod_cidr.setter
def pod_cidr(self, pod_cidr):
self._pod_cidr = pod_cidr
@property
def external_id(self):
return self._external_id
@external_id.setter
def external_id(self, external_id):
self._external_id = external_id
@property
|
Apache License 2.0
|
pytorchrl/pytorchrl
|
pytorchrl/agent/algorithms/ddqn.py
|
DDQN.set_weights
|
python
|
def set_weights(self, weights):
self.actor.load_state_dict(weights)
self.iter += 1
self.update_target_networks()
self.update_epsilon()
|
Update actor critic with the given weights. Update also target networks.
Parameters
----------
weights: dict of tensors
Dict containing actor weights to be set.
|
https://github.com/pytorchrl/pytorchrl/blob/1ea781580f31cf3bbe5b38b8cceca939ed713241/pytorchrl/agent/algorithms/ddqn.py#L378-L392
|
import random
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import pytorchrl as prl
from pytorchrl.agent.algorithms.base import Algorithm
from pytorchrl.agent.algorithms.utils import get_gradients, set_gradients
from pytorchrl.agent.algorithms.policy_loss_addons import PolicyLossAddOn
class DDQN(Algorithm):
def __init__(self,
device,
actor,
lr=1e-4,
gamma=0.99,
polyak=0.995,
num_updates=1,
update_every=50,
test_every=5000,
max_grad_norm=0.5,
start_steps=20000,
mini_batch_size=64,
num_test_episodes=5,
initial_epsilon=1.0,
epsilon_decay=0.999,
target_update_interval=1,
policy_loss_addons=[]):
self._gamma = gamma
self._start_steps = int(start_steps)
self._num_epochs = 1
self._update_every = int(update_every)
self._num_mini_batch = int(num_updates)
self._mini_batch_size = int(mini_batch_size)
self._test_every = int(test_every)
self._num_test_episodes = int(num_test_episodes)
self.iter = 0
self.device = device
self.polyak = polyak
self.epsilon = initial_epsilon
self.actor = actor
self.max_grad_norm = max_grad_norm
self.epsilon_decay = epsilon_decay
self.target_update_interval = target_update_interval
assert hasattr(self.actor, "q1"), "DDPG requires q critic (num_critics=1)"
self.actor_targ = deepcopy(actor)
for p in self.actor_targ.parameters():
p.requires_grad = False
self.q_optimizer = optim.Adam(self.actor.q1.parameters(), lr=lr)
assert isinstance(policy_loss_addons, (PolicyLossAddOn, list)), "DDQN policy_loss_addons parameter should be a PolicyLossAddOn instance " "or a list of PolicyLossAddOn instances"
if isinstance(policy_loss_addons, list):
for addon in policy_loss_addons:
assert isinstance(addon, PolicyLossAddOn), "DDQN policy_loss_addons parameter should be a PolicyLossAddOn" " instance or a list of PolicyLossAddOn instances"
else:
policy_loss_addons = [policy_loss_addons]
self.policy_loss_addons = policy_loss_addons
for addon in self.policy_loss_addons:
addon.setup(self.device)
@classmethod
def create_factory(cls,
lr=1e-4,
gamma=0.99,
polyak=0.995,
num_updates=50,
update_every=50,
test_every=5000,
start_steps=20000,
max_grad_norm=0.5,
mini_batch_size=64,
num_test_episodes=5,
epsilon_decay=0.999,
initial_epsilon=1.0,
target_update_interval=1,
policy_loss_addons=[]):
def create_algo_instance(device, actor):
return cls(lr=lr,
gamma=gamma,
device=device,
polyak=polyak,
actor=actor,
test_every=test_every,
start_steps=start_steps,
num_updates=num_updates,
update_every=update_every,
epsilon_decay=epsilon_decay,
max_grad_norm=max_grad_norm,
mini_batch_size=mini_batch_size,
initial_epsilon=initial_epsilon,
num_test_episodes=num_test_episodes,
target_update_interval=target_update_interval,
policy_loss_addons=policy_loss_addons)
return create_algo_instance, prl.DDQN
def acting_step(self, obs, rhs, done, deterministic=False):
if random.random() > self.epsilon:
with torch.no_grad():
q = self.actor.get_q_scores(obs).get("q1")
action = clipped_action = torch.argmax(q, dim=1).unsqueeze(0)
else:
action = clipped_action = torch.tensor(
[self.actor.action_space.sample()]).unsqueeze(0)
other = {}
return action, clipped_action, rhs, other
def compute_loss(self, batch, n_step=1, per_weights=1):
o, rhs, d = batch[prl.OBS], batch[prl.RHS], batch[prl.DONE]
a, r = batch[prl.ACT], batch[prl.REW]
o2, rhs2, d2 = batch[prl.OBS2], batch[prl.RHS2], batch[prl.DONE2]
q_targ_vals = self.actor_targ.get_q_scores(o2, rhs2, d2).get("q1")
q_targ_next = q_targ_vals.max(dim=1)[0].unsqueeze(1)
q_targ = r + (self.gamma ** n_step) * (1 - d2) * q_targ_next
q_vals = self.actor.get_q_scores(o, rhs, d).get("q1")
q_exp = q_vals.gather(1, a.long())
loss = F.mse_loss(q_targ, q_exp)
errors = (q_exp - q_targ).abs().detach().cpu()
return loss, errors
def compute_gradients(self, batch, grads_to_cpu=True):
if self.actor.is_recurrent:
batch = self.actor.burn_in_recurrent_states(batch)
n_step = batch["n_step"] if "n_step" in batch else 1.0
per_weights = batch["per_weights"] if "per_weights" in batch else 1.0
loss, errors = self.compute_loss(batch, n_step, per_weights)
self.q_optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.actor.q1.parameters(), self.max_grad_norm)
grads = get_gradients(self.actor.q1, grads_to_cpu=grads_to_cpu)
info = {
"loss_q": loss.detach().item(),
"epsilon": self.epsilon,
}
if "per_weights" in batch:
info.update({"errors": errors})
return grads, info
def update_target_networks(self):
if self.iter % self.target_update_interval == 0:
with torch.no_grad():
for p, p_targ in zip(self.actor.parameters(), self.actor_targ.parameters()):
p_targ.data.mul_(self.polyak)
p_targ.data.add_((1 - self.polyak) * p.data)
def update_epsilon(self):
self.epsilon *= self.epsilon_decay
self.epsilon = np.clip(self.epsilon, 0.05, 1.0)
def apply_gradients(self, gradients=None):
if gradients is not None:
set_gradients(
self.actor.q1, gradients=gradients, device=self.device)
self.q_optimizer.step()
self.iter += 1
self.update_target_networks()
self.update_epsilon()
|
MIT License
|
sphinx-toolbox/sphinx-toolbox
|
sphinx_toolbox/wikipedia.py
|
setup
|
python
|
def setup(app: Sphinx) -> SphinxExtMetadata:
app.add_role("wikipedia", make_wikipedia_link)
app.add_config_value("wikipedia_lang", "en", "env", [str])
return {"parallel_read_safe": True}
|
Setup :mod:`sphinx_toolbox.wikipedia`.
.. versionadded:: 1.0.0
:param app: The Sphinx application.
|
https://github.com/sphinx-toolbox/sphinx-toolbox/blob/cee88c6bceac20a9ae0e381ada2fb2453ca3fc0b/sphinx_toolbox/wikipedia.py#L157-L169
|
import re
from typing import Dict, List, Tuple
from urllib.parse import quote
from apeye.url import URL
from docutils import nodes
from docutils.nodes import system_message
from docutils.parsers.rst.states import Inliner
from sphinx.application import Sphinx
from sphinx.util.nodes import split_explicit_title
from sphinx_toolbox.utils import SphinxExtMetadata, metadata_add_version
__all__ = ["make_wikipedia_link", "setup"]
base_url = "https://%s.wikipedia.org/wiki"
_wiki_lang_re = re.compile(":(.*?):(.*)")
def _get_wikipedia_lang(inliner: Inliner):
return inliner.document.settings.env.config.wikipedia_lang
def make_wikipedia_link(
name: str,
rawtext: str,
text: str,
lineno: int,
inliner: Inliner,
options: Dict = {},
content: List[str] = []
) -> Tuple[List[nodes.reference], List[system_message]]:
text = nodes.unescape(text)
has_explicit, title, target = split_explicit_title(text)
m = _wiki_lang_re.match(target)
if m:
lang, target = m.groups()
if not has_explicit:
title = target
else:
lang = _get_wikipedia_lang(inliner)
ref = URL(base_url % lang) / quote(target.replace(' ', '_'), safe='')
node = nodes.reference(rawtext, title, refuri=str(ref), **options)
return [node], []
@metadata_add_version
|
MIT License
|
anhaidgroup/py_stringsimjoin
|
py_stringsimjoin/join/overlap_join_py.py
|
overlap_join_py
|
python
|
def overlap_join_py(ltable, rtable,
l_key_attr, r_key_attr,
l_join_attr, r_join_attr,
tokenizer, threshold, comp_op='>=',
allow_missing=False,
l_out_attrs=None, r_out_attrs=None,
l_out_prefix='l_', r_out_prefix='r_',
out_sim_score=True, n_jobs=1, show_progress=True):
validate_tokenizer(tokenizer)
revert_tokenizer_return_set_flag = False
if not tokenizer.get_return_set():
tokenizer.set_return_set(True)
revert_tokenizer_return_set_flag = True
overlap_filter = OverlapFilter(tokenizer, threshold, comp_op, allow_missing)
output_table = overlap_filter.filter_tables(ltable, rtable,
l_key_attr, r_key_attr,
l_join_attr, r_join_attr,
l_out_attrs, r_out_attrs,
l_out_prefix, r_out_prefix,
out_sim_score, n_jobs,
show_progress)
if revert_tokenizer_return_set_flag:
tokenizer.set_return_set(False)
return output_table
|
Join two tables using overlap measure.
For two sets X and Y, the overlap between them is given by:
:math:`overlap(X, Y) = |X \\cap Y|`
Finds tuple pairs from left table and right table such that the overlap
between the join attributes satisfies the condition on input threshold. For
example, if the comparison operator is '>=', finds tuple pairs whose
overlap between the strings that are the values of the join attributes is
greater than or equal to the input threshold, as specified in "threshold".
Args:
ltable (DataFrame): left input table.
rtable (DataFrame): right input table.
l_key_attr (string): key attribute in left table.
r_key_attr (string): key attribute in right table.
l_join_attr (string): join attribute in left table.
r_join_attr (string): join attribute in right table.
tokenizer (Tokenizer): tokenizer to be used to tokenize join
attributes.
threshold (float): overlap threshold to be satisfied.
comp_op (string): comparison operator. Supported values are '>=', '>'
and '=' (defaults to '>=').
allow_missing (boolean): flag to indicate whether tuple pairs with
missing value in at least one of the join attributes should be
included in the output (defaults to False). If this flag is set to
True, a tuple in ltable with missing value in the join attribute
will be matched with every tuple in rtable and vice versa.
l_out_attrs (list): list of attribute names from the left table to be
included in the output table (defaults to None).
r_out_attrs (list): list of attribute names from the right table to be
included in the output table (defaults to None).
l_out_prefix (string): prefix to be used for the attribute names coming
from the left table, in the output table (defaults to 'l\_').
r_out_prefix (string): prefix to be used for the attribute names coming
from the right table, in the output table (defaults to 'r\_').
out_sim_score (boolean): flag to indicate whether similarity score
should be included in the output table (defaults to True). Setting
this flag to True will add a column named '_sim_score' in the
output table. This column will contain the similarity scores for the
tuple pairs in the output.
n_jobs (int): number of parallel jobs to use for the computation
(defaults to 1). If -1 is given, all CPUs are used. If 1 is given,
no parallel computing code is used at all, which is useful for
debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used
(where n_cpus is the total number of CPUs in the machine). Thus for
n_jobs = -2, all CPUs but one are used. If (n_cpus + 1 + n_jobs)
becomes less than 1, then no parallel computing code will be used
(i.e., equivalent to the default).
show_progress (boolean): flag to indicate whether task progress should
be displayed to the user (defaults to True).
Returns:
An output table containing tuple pairs that satisfy the join
condition (DataFrame).
|
https://github.com/anhaidgroup/py_stringsimjoin/blob/fa11e9225ba772dfd45b1d055d8d2805fac9e649/py_stringsimjoin/join/overlap_join_py.py#L5-L110
|
from py_stringsimjoin.filter.overlap_filter import OverlapFilter
from py_stringsimjoin.utils.validation import validate_tokenizer
|
BSD 3-Clause New or Revised License
|
luno/luno-python
|
luno_python/base_client.py
|
BaseClient.__init__
|
python
|
def __init__(self, base_url='', timeout=0,
api_key_id='', api_key_secret=''):
self.set_auth(api_key_id, api_key_secret)
self.set_base_url(base_url)
self.set_timeout(timeout)
self.session = requests.Session()
|
:type base_url: str
:type timeout: float
:type api_key_id: str
:type api_key_secret: str
|
https://github.com/luno/luno-python/blob/95b742e35cdc5353b8a9771f39ded9daf629c852/luno_python/base_client.py#L22-L34
|
import json
import platform
import requests
import six
try:
from json.decoder import JSONDecodeError
except ImportError:
JSONDecodeError = ValueError
from . import VERSION
from .error import APIError
DEFAULT_BASE_URL = 'https://api.luno.com'
DEFAULT_TIMEOUT = 10
PYTHON_VERSION = platform.python_version()
SYSTEM = platform.system()
ARCH = platform.machine()
class BaseClient:
|
MIT License
|
indeedeng/django-proctor
|
proctor/cache.py
|
SessionCacher._get_session_dict_key
|
python
|
def _get_session_dict_key(self):
return 'proctorcache'
|
Return the key used for the request.session dict.
|
https://github.com/indeedeng/django-proctor/blob/b9f5ffc94b62072bd0cb2c9e22abfae738c329e3/proctor/cache.py#L187-L189
|
from __future__ import absolute_import, unicode_literals
import logging
import string
import time
import django.core.cache
import six
from . import api
from . import groups
logger = logging.getLogger('application.proctor.cache')
class Cacher(object):
def __init__(self, version_timeout_seconds=None):
self.version_timeout_seconds = (version_timeout_seconds
if version_timeout_seconds is not None
else (5 * 60))
def get(self, request, params, allow_expired=False):
latest_seen_version = self._get_latest_version()
if latest_seen_version is None:
logger.debug("Proctor cache MISS (version expired)")
return None
cache_dict = self._get_cache_dict(request, params)
if cache_dict is None:
logger.debug("Proctor cache MISS (absent)")
return None
group_dict = cache_dict['group_dict']
cache_params = api.ProctorParameters(**cache_dict['params'])
cache_matrix_version = cache_dict['matrix_version']
valid = (cache_matrix_version == latest_seen_version and params == cache_params)
if valid:
logger.debug("Proctor cache HIT")
return {key: groups.GroupAssignment(*val)
for key, val in six.iteritems(group_dict)}
else:
logger.debug("Proctor cache MISS (invalidated)")
self._del_cache_dict(request, params)
return None
def set(self, request, params, group_dict, api_response):
latest_seen_version = self.update_matrix_version(api_response)
cache_dict = {}
cache_dict['group_dict'] = group_dict
cache_dict['params'] = params.as_dict()
cache_dict['matrix_version'] = latest_seen_version
self._set_cache_dict(request, params, cache_dict)
logger.debug("Proctor cache SET")
def update_matrix_version(self, api_response):
new_version = api_response['data']['audit']['version']
latest_seen_version = self._get_latest_version()
self._set_latest_version(new_version)
if latest_seen_version != new_version:
logger.debug("Proctor test matrix version changed to %s.", new_version)
latest_seen_version = new_version
return latest_seen_version
def _get_cache_dict(self, request, params):
raise NotImplementedError("_get_cache_dict() must be overridden.")
def _set_cache_dict(self, request, params, cache_dict):
raise NotImplementedError("_set_cache_dict() must be overridden.")
def _del_cache_dict(self, request, params):
raise NotImplementedError("_del_cache_dict() must be overridden.")
def _get_latest_version(self):
raise NotImplementedError("_get_latest_version() must be overridden.")
def _set_latest_version(self, version):
raise NotImplementedError("_set_latest_version() must be overridden.")
class SessionCacher(Cacher):
def __init__(self, version_timeout_seconds=None):
super(SessionCacher, self).__init__(version_timeout_seconds)
self.seen_matrix_version = None
self.version_expiry_time = time.time()
def get(self, request, params, allow_expired=False):
if allow_expired:
self.version_expiry_time = time.time() + self.version_timeout_seconds
return super(SessionCacher, self).get(request, params)
def _get_cache_dict(self, request, params):
return request.session.get(self._get_session_dict_key())
def _set_cache_dict(self, request, params, cache_dict):
request.session[self._get_session_dict_key()] = cache_dict
def _del_cache_dict(self, request, params):
del request.session[self._get_session_dict_key()]
def _get_latest_version(self):
if time.time() >= self.version_expiry_time:
return None
else:
return self.seen_matrix_version
def _set_latest_version(self, version):
self.seen_matrix_version = version
self.version_expiry_time = time.time() + self.version_timeout_seconds
|
Apache License 2.0
|
danielnyga/pracmln
|
python2/pracmln/logic/common.py
|
Logic.copy
|
python
|
def copy(self, mln=None, idx=inherit):
raise Exception('%s does not implement copy()' % str(type(self)))
|
Produces a deep copy of this formula.
If `mln` is specified, the copied formula will be tied to `mln`. If not, it will be tied to the same
MLN as the original formula is. If `idx` is None, the index of the original formula will be used.
:param mln: the MLN that the new formula shall be tied to.
:param idx: the index of the formula.
If `None`, the index of this formula will be erased to `None`.
if `idx` is `auto`, the formula will get a new index from the MLN.
if `idx` is :class:`mln.constants.inherit`, the index from this formula will be inherited to the copy (default).
|
https://github.com/danielnyga/pracmln/blob/bbda65696fb8753b11ff007e991280ebe42d78f9/python2/pracmln/logic/common.py#L496-L509
|
import sys
from dnutils import logs, ifnone
from pracmln.mln.util import fstr, dict_union, colorize
from pracmln.mln.errors import NoSuchDomainError, NoSuchPredicateError
from collections import defaultdict
import itertools
from pracmln.mln.constants import HARD, auto, predicate_color, inherit
from grammar import StandardGrammar, PRACGrammar
logger = logs.getlogger(__name__)
def latexsym(sym):
return r'\textit{%s}' % str(sym)
class Logic(object):
def __init__(self, grammar, mln):
if grammar not in ('StandardGrammar', 'PRACGrammar'):
raise Exception('Invalid grammar: %s' % grammar)
self.grammar = eval(grammar)(self)
self.mln = mln
def __getstate__(self):
d = self.__dict__.copy()
d['grammar'] = type(self.grammar).__name__
return d
def __setstate__(self, d):
self.__dict__ = d
self.grammar = eval(d['grammar'])(self)
class Constraint(object):
def template_variants(self, mln):
raise Exception("%s does not implement getTemplateVariants" % str(type(self)))
def truth(self, world):
raise Exception("%s does not implement truth" % str(type(self)))
def islogical(self):
raise Exception("%s does not implement islogical" % str(type(self)))
def itergroundings(self, mrf, simplify=False, domains=None):
raise Exception("%s does not implement itergroundings" % str(type(self)))
def idx_gndatoms(self, l=None):
raise Exception("%s does not implement idxgndatoms" % str(type(self)))
def gndatoms(self, l=None):
raise Exception("%s does not implement gndatoms" % str(type(self)))
class Formula(Constraint):
def __init__(self, mln=None, idx=None):
self.mln = mln
if idx == auto and mln is not None:
self.idx = len(mln.formulas)
else:
self.idx = idx
@property
def idx(self):
return self._idx
@idx.setter
def idx(self, idx):
self._idx = idx
@property
def mln(self):
return self._mln
@mln.setter
def mln(self, mln):
if hasattr(self, 'children'):
for child in self.children:
child.mln = mln
self._mln = mln
@property
def weight(self):
return self.mln.weight(self.idx)
@weight.setter
def weight(self, w):
if self.idx is None:
raise Exception('%s does not have an index' % str(self))
self.mln.weight(self.idx, w)
@property
def ishard(self):
return self.weight == HARD
def contains_gndatom(self, gndatomidx):
if not hasattr(self, "children"):
return False
for child in self.children:
if child.contains_gndatom(gndatomidx):
return True
return False
def gndatom_indices(self, l=None):
if l == None: l = []
if not hasattr(self, "children"):
return l
for child in self.children:
child.gndatom_indices(l)
return l
def gndatoms(self, l=None):
if l is None: l = []
if not hasattr(self, "children"):
return l
for child in self.children:
child.gndatoms(l)
return l
def templ_atoms(self):
templ_atoms = []
for literal in self.literals():
for templ in literal.template_variants():
templ_atoms.append(templ)
return templ_atoms
def atomic_constituents(self, oftype=None):
const = list(self.literals())
if oftype is None: return const
else: return filter(lambda c: isinstance(c, oftype), const)
def constituents(self, oftype=None, const=None):
if const is None:
const = []
if oftype is None or type(self) is oftype:
const.append(self)
if hasattr(self, 'children'):
for child in self.children:
child.constituents(oftype, const)
return const
def template_variants(self):
uniqvars = list(self.mln._unique_templvars[self.idx])
vardoms = self.template_variables()
uniqvars_ = defaultdict(set)
for var in uniqvars:
dom = vardoms[var]
uniqvars_[dom].add(var)
assignments = []
for domain, variables in uniqvars_.iteritems():
group = []
domvalues = self.mln.domains[domain]
if not domvalues:
logger.warning('Template variants cannot be constructed since the domain "{}" is empty.'.format(domain))
for values in itertools.combinations(domvalues, len(variables)):
group.append(dict([(var, val) for var, val in zip(variables, values)]))
assignments.append(group)
for variable, domain in vardoms.iteritems():
if variable in uniqvars: continue
group = []
domvalues = self.mln.domains[domain]
if not domvalues:
logger.warning('Template variants cannot be constructed since the domain "{}" is empty.'.format(domain))
for value in self.mln.domains[domain]:
group.append(dict([(variable, value)]))
assignments.append(group)
def product(assign, result=[]):
if len(assign) == 0:
yield result
return
for a in assign[0]:
for r in product(assign[1:], result+[a]): yield r
for assignment in product(assignments):
if assignment:
for t in self._ground_template(reduce(lambda x, y: dict_union(x, y), itertools.chain(assignment))):
yield t
else:
for t in self._ground_template({}):
yield t
def template_variables(self, variable=None):
raise Exception("%s does not implement template_variables" % str(type(self)))
def _ground_template(self, assignment):
raise Exception("%s does not implement _ground_template" % str(type(self)))
def itervargroundings(self, mrf, partial=None):
variables = self.vardoms()
if partial is not None:
for v in [p for p in partial if p in variables]: del variables[v]
for assignment in self._itervargroundings(mrf, variables, {}):
yield assignment
def _itervargroundings(self, mrf, variables, assignment):
if variables == {}:
yield assignment
return
variables = dict(variables)
varname, domname = variables.popitem()
domain = mrf.domains[domname]
assignment = dict(assignment)
for value in domain:
assignment[varname] = value
for assign in self._itervargroundings(mrf, dict(variables), assignment):
yield assign
def itergroundings(self, mrf, simplify=False, domains=None):
try:
variables = self.vardoms()
except Exception, e:
raise Exception("Error grounding '%s': %s" % (str(self), str(e)))
for grounding in self._itergroundings(mrf, variables, {}, simplify, domains):
yield grounding
def iter_true_var_assignments(self, mrf, world=None, truth_thr=1.0, strict=False, unknown=False, partial=None):
if world is None:
world = list(mrf.evidence)
if partial is None:
partial = {}
try:
variables = self.vardoms()
for var in partial:
if var in variables: del variables[var]
except Exception, e:
raise Exception("Error grounding '%s': %s" % (str(self), str(e)))
for assignment in self._iter_true_var_assignments(mrf, variables, partial, world,
dict(variables), truth_thr=truth_thr, strict=strict, unknown=unknown):
yield assignment
def _iter_true_var_assignments(self, mrf, variables, assignment, world, allvars, truth_thr=1.0, strict=False, unknown=False):
if variables == {}:
gf = self.ground(mrf, assignment)
truth = gf(world)
if (((truth >= truth_thr) if not strict else (truth > truth_thr)) and truth is not None) or (truth is None and unknown):
true_assignment = {}
for v in allvars:
true_assignment[v] = assignment[v]
yield true_assignment
return
varname, domname = variables.popitem()
assignment_ = dict(assignment)
if domname not in mrf.domains: raise NoSuchDomainError('The domain %s does not exist, but is needed to ground the formula %s' % (domname, str(self)))
for value in mrf.domains[domname]:
assignment_[varname] = value
for ass in self._iter_true_var_assignments(mrf, dict(variables), assignment_, world, allvars,
truth_thr=truth_thr, strict=strict, unknown=unknown):
yield ass
def _itergroundings(self, mrf, variables, assignment, simplify=False, domains=None):
if not variables:
gf = self.ground(mrf, assignment, simplify, domains)
yield gf
return
varname, domname = variables.popitem()
domain = domains[varname] if domains is not None else mrf.domains[domname]
for value in domain:
assignment[varname] = value
for gf in self._itergroundings(mrf, dict(variables), assignment, simplify, domains):
yield gf
def vardoms(self, variables=None, constants=None):
raise Exception("%s does not implement vardoms()" % str(type(self)))
def prednames(self, prednames=None):
raise Exception('%s does not implement prednames()' % str(type(self)))
def ground(self, mrf, assignment, simplify=False, partial=False):
raise Exception("%s does not implement ground" % str(type(self)))
|
BSD 2-Clause Simplified License
|
aio-libs/aiokafka
|
aiokafka/consumer/fetcher.py
|
Fetcher._proc_offset_requests
|
python
|
async def _proc_offset_requests(self, timestamps):
await self._client._maybe_wait_metadata()
timestamps_by_node = collections.defaultdict(
lambda: collections.defaultdict(list))
for partition, timestamp in timestamps.items():
node_id = self._client.cluster.leader_for_partition(partition)
if node_id is None:
self._client.add_topic(partition.topic)
log.debug("Partition %s is unknown for fetching offset,"
" wait for metadata refresh", partition)
raise Errors.StaleMetadata(partition)
elif node_id == -1:
log.debug("Leader for partition %s unavailable for fetching "
"offset, wait for metadata refresh", partition)
raise Errors.LeaderNotAvailableError(partition)
else:
timestamps_by_node[node_id][partition.topic].append(
(partition.partition, timestamp)
)
futs = []
for node_id, topic_data in timestamps_by_node.items():
futs.append(
self._proc_offset_request(node_id, topic_data)
)
offsets = {}
res = await asyncio.gather(*futs)
for partial_offsets in res:
offsets.update(partial_offsets)
return offsets
|
Fetch offsets for each partition in timestamps dict. This may send
request to multiple nodes, based on who is Leader for partition.
Arguments:
timestamps (dict): {TopicPartition: int} mapping of fetching
timestamps.
Returns:
Future: resolves to a mapping of retrieved offsets
|
https://github.com/aio-libs/aiokafka/blob/901b2cb37291c8ee9cad93b6f3f4ee05518f0817/aiokafka/consumer/fetcher.py#L896-L941
|
import asyncio
import collections
import logging
import random
import time
from itertools import chain
from kafka.protocol.offset import OffsetRequest
from aiokafka.protocol.fetch import FetchRequest
import aiokafka.errors as Errors
from aiokafka.errors import (
ConsumerStoppedError, RecordTooLargeError, KafkaTimeoutError)
from aiokafka.record.memory_records import MemoryRecords
from aiokafka.record.control_record import ControlRecord, ABORT_MARKER
from aiokafka.structs import OffsetAndTimestamp, TopicPartition, ConsumerRecord
from aiokafka.util import create_future, create_task
log = logging.getLogger(__name__)
UNKNOWN_OFFSET = -1
READ_UNCOMMITTED = 0
READ_COMMITTED = 1
class OffsetResetStrategy:
LATEST = -1
EARLIEST = -2
NONE = 0
@classmethod
def from_str(cls, name):
name = name.lower()
if name == "latest":
return cls.LATEST
if name == "earliest":
return cls.EARLIEST
if name == "none":
return cls.NONE
else:
log.warning(
'Unrecognized ``auto_offset_reset`` config, using NONE')
return cls.NONE
@classmethod
def to_str(cls, value):
if value == cls.LATEST:
return "latest"
if value == cls.EARLIEST:
return "earliest"
if value == cls.NONE:
return "none"
else:
return f"timestamp({value})"
class FetchResult:
def __init__(
self, tp, *, assignment, partition_records, backoff):
self._topic_partition = tp
self._partition_records = partition_records
self._created = time.monotonic()
self._backoff = backoff
self._assignment = assignment
def calculate_backoff(self):
lifetime = time.monotonic() - self._created
if lifetime < self._backoff:
return self._backoff - lifetime
return 0
def check_assignment(self, tp):
assignment = self._assignment
return_result = True
if assignment.active:
tp = self._topic_partition
tp_state = assignment.state_value(tp)
if tp_state.paused:
return_result = False
else:
position = tp_state.position
if position != self._partition_records.next_fetch_offset:
return_result = False
else:
return_result = False
if not return_result:
log.debug("Not returning fetched records for partition %s"
" since it is no fetchable (unassigned or paused)", tp)
self._partition_records = None
return False
return True
def _update_position(self):
state = self._assignment.state_value(self._topic_partition)
state.consumed_to(self._partition_records.next_fetch_offset)
def getone(self):
tp = self._topic_partition
if not self.check_assignment(tp) or not self.has_more():
return
while True:
try:
msg = next(self._partition_records)
except StopIteration:
self._update_position()
self._partition_records = None
return
else:
self._update_position()
return msg
def getall(self, max_records=None):
tp = self._topic_partition
if not self.check_assignment(tp) or not self.has_more():
return []
ret_list = []
for msg in self._partition_records:
ret_list.append(msg)
if max_records is not None and len(ret_list) >= max_records:
self._update_position()
break
else:
self._update_position()
self._partition_records = None
return ret_list
def has_more(self):
return self._partition_records is not None
def __repr__(self):
return f"<FetchResult position={self._partition_records.next_fetch_offset!r}>"
class FetchError:
def __init__(self, *, error, backoff):
self._error = error
self._created = time.monotonic()
self._backoff = backoff
def calculate_backoff(self):
lifetime = time.monotonic() - self._created
if lifetime < self._backoff:
return self._backoff - lifetime
return 0
def check_raise(self):
raise self._error
def __repr__(self):
return f"<FetchError error={self._error!r}>"
class PartitionRecords:
def __init__(
self, tp, records, aborted_transactions, fetch_offset,
key_deserializer, value_deserializer, check_crcs, isolation_level):
self._tp = tp
self._records = records
self._aborted_transactions = sorted(
aborted_transactions or [], key=lambda x: x[1])
self._aborted_producers = set()
self._key_deserializer = key_deserializer
self._value_deserializer = value_deserializer
self._check_crcs = check_crcs
self._isolation_level = isolation_level
self.next_fetch_offset = fetch_offset
self._records_iterator = self._unpack_records()
def __iter__(self):
return self
def __next__(self):
try:
return next(self._records_iterator)
except StopIteration:
self._records_iterator = None
raise
def _unpack_records(self):
tp = self._tp
records = self._records
while records.has_next():
next_batch = records.next_batch()
if self._check_crcs and not next_batch.validate_crc():
raise Errors.CorruptRecordException(
f"Invalid CRC - {tp}")
if self._isolation_level == READ_COMMITTED and next_batch.producer_id is not None:
self._consume_aborted_up_to(next_batch.base_offset)
if next_batch.is_control_batch:
if self._contains_abort_marker(next_batch):
self._aborted_producers.discard(next_batch.producer_id)
if next_batch.is_transactional and next_batch.producer_id in self._aborted_producers:
log.debug(
"Skipping aborted record batch from partition %s with"
" producer_id %s and offsets %s to %s",
tp, next_batch.producer_id,
next_batch.base_offset, next_batch.next_offset - 1
)
self.next_fetch_offset = next_batch.next_offset
continue
if next_batch.is_control_batch:
self.next_fetch_offset = next_batch.next_offset
continue
for record in next_batch:
if record.offset < self.next_fetch_offset:
continue
consumer_record = self._consumer_record(tp, record)
self.next_fetch_offset = record.offset + 1
yield consumer_record
self.next_fetch_offset = next_batch.next_offset
def _consume_aborted_up_to(self, batch_offset):
aborted_transactions = self._aborted_transactions
while aborted_transactions:
producer_id, first_offset = aborted_transactions[0]
if first_offset <= batch_offset:
self._aborted_producers.add(producer_id)
aborted_transactions.pop(0)
else:
break
def _contains_abort_marker(self, next_batch):
try:
control_record = next(next_batch)
except StopIteration:
raise Errors.KafkaError(
"Control batch did not contain any records")
return ControlRecord.parse(control_record.key) == ABORT_MARKER
def _consumer_record(self, tp, record):
key_size = len(record.key) if record.key is not None else -1
value_size = len(record.value) if record.value is not None else -1
if self._key_deserializer:
key = self._key_deserializer(record.key)
else:
key = record.key
if self._value_deserializer:
value = self._value_deserializer(record.value)
else:
value = record.value
return ConsumerRecord(
tp.topic, tp.partition, record.offset, record.timestamp,
record.timestamp_type, key, value, record.checksum,
key_size, value_size, tuple(record.headers))
class Fetcher:
def __init__(
self, client, subscriptions, *,
key_deserializer=None,
value_deserializer=None,
fetch_min_bytes=1,
fetch_max_bytes=52428800,
fetch_max_wait_ms=500,
max_partition_fetch_bytes=1048576,
check_crcs=True,
fetcher_timeout=0.2,
prefetch_backoff=0.1,
retry_backoff_ms=100,
auto_offset_reset='latest',
isolation_level="read_uncommitted"):
self._client = client
self._loop = client._loop
self._key_deserializer = key_deserializer
self._value_deserializer = value_deserializer
self._fetch_min_bytes = fetch_min_bytes
self._fetch_max_bytes = fetch_max_bytes
self._fetch_max_wait_ms = fetch_max_wait_ms
self._max_partition_fetch_bytes = max_partition_fetch_bytes
self._check_crcs = check_crcs
self._fetcher_timeout = fetcher_timeout
self._prefetch_backoff = prefetch_backoff
self._retry_backoff = retry_backoff_ms / 1000
self._subscriptions = subscriptions
self._default_reset_strategy = OffsetResetStrategy.from_str(
auto_offset_reset)
if isolation_level == "read_uncommitted":
self._isolation_level = READ_UNCOMMITTED
elif isolation_level == "read_committed":
self._isolation_level = READ_COMMITTED
else:
raise ValueError(
f"Incorrect isolation level {isolation_level}")
self._records = collections.OrderedDict()
self._in_flight = set()
self._pending_tasks = set()
self._wait_consume_future = None
self._fetch_waiters = set()
self._subscriptions.register_fetch_waiters(self._fetch_waiters)
if client.api_version >= (0, 11):
req_version = 4
elif client.api_version >= (0, 10, 1):
req_version = 3
elif client.api_version >= (0, 10):
req_version = 2
else:
req_version = 1
self._fetch_request_class = FetchRequest[req_version]
self._fetch_task = create_task(self._fetch_requests_routine())
self._closed = False
async def close(self):
self._closed = True
self._fetch_task.cancel()
try:
await self._fetch_task
except asyncio.CancelledError:
pass
for waiter in self._fetch_waiters:
self._notify(waiter)
for x in self._pending_tasks:
x.cancel()
await x
def _notify(self, future):
if future is not None and not future.done():
future.set_result(None)
def _create_fetch_waiter(self):
fut = self._loop.create_future()
self._fetch_waiters.add(fut)
fut.add_done_callback(
lambda f, waiters=self._fetch_waiters: waiters.remove(f))
return fut
@property
def error_future(self):
return self._fetch_task
async def _fetch_requests_routine(self):
try:
assignment = None
def start_pending_task(coro, node_id, self=self):
task = create_task(coro)
self._pending_tasks.add(task)
self._in_flight.add(node_id)
def on_done(fut, self=self):
self._in_flight.discard(node_id)
task.add_done_callback(on_done)
while True:
if assignment is None or not assignment.active:
for task in self._pending_tasks:
if not task.done():
task.cancel()
await task
self._pending_tasks.clear()
self._records.clear()
subscription = self._subscriptions.subscription
if subscription is None or subscription.assignment is None:
try:
waiter = self._subscriptions.wait_for_assignment()
await waiter
except Errors.KafkaError:
continue
assignment = self._subscriptions.subscription.assignment
assert assignment is not None and assignment.active
self._wait_consume_future = create_future()
(fetch_requests, reset_requests, timeout, invalid_metadata,
resume_futures) = self._get_actions_per_node(assignment)
for node_id, request in fetch_requests:
start_pending_task(
self._proc_fetch_request(assignment, node_id, request),
node_id=node_id)
for node_id, tps in reset_requests.items():
start_pending_task(
self._update_fetch_positions(assignment, node_id, tps),
node_id=node_id)
other_futs = [self._wait_consume_future,
assignment.unassign_future]
if invalid_metadata:
fut = self._client.force_metadata_update()
other_futs.append(fut)
done_set, _ = await asyncio.wait(
set(
chain(self._pending_tasks, other_futs, resume_futures)
),
timeout=timeout,
return_when=asyncio.FIRST_COMPLETED)
done_pending = self._pending_tasks.intersection(done_set)
if done_pending:
has_new_data = any(fut.result() for fut in done_pending)
if has_new_data:
for waiter in self._fetch_waiters:
self._notify(waiter)
self._pending_tasks -= done_pending
except asyncio.CancelledError:
pass
except Exception:
log.error("Unexpected error in fetcher routine", exc_info=True)
raise Errors.KafkaError("Unexpected error during data retrieval")
def _get_actions_per_node(self, assignment):
fetchable = collections.defaultdict(list)
awaiting_reset = collections.defaultdict(list)
backoff_by_nodes = collections.defaultdict(list)
resume_futures = []
invalid_metadata = False
for tp in assignment.tps:
tp_state = assignment.state_value(tp)
node_id = self._client.cluster.leader_for_partition(tp)
backoff = 0
if tp in self._records:
record = self._records[tp]
backoff = record.calculate_backoff()
if backoff:
backoff_by_nodes[node_id].append(backoff)
elif node_id in self._in_flight:
continue
elif node_id is None or node_id == -1:
log.debug("No leader found for partition %s."
" Waiting metadata update", tp)
invalid_metadata = True
elif not tp_state.has_valid_position:
awaiting_reset[node_id].append(tp)
elif tp_state.paused:
resume_futures.append(tp_state.resume_fut)
else:
position = tp_state.position
fetchable[node_id].append((tp, position))
log.debug(
"Adding fetch request for partition %s at offset %d",
tp, position)
fetch_requests = []
for node_id, partition_data in fetchable.items():
if node_id in backoff_by_nodes:
continue
if node_id in awaiting_reset:
continue
random.shuffle(partition_data)
by_topics = collections.defaultdict(list)
for tp, position in partition_data:
by_topics[tp.topic].append((
tp.partition,
position,
self._max_partition_fetch_bytes))
klass = self._fetch_request_class
if klass.API_VERSION > 3:
req = klass(
-1,
self._fetch_max_wait_ms,
self._fetch_min_bytes,
self._fetch_max_bytes,
self._isolation_level,
list(by_topics.items()))
elif klass.API_VERSION == 3:
req = klass(
-1,
self._fetch_max_wait_ms,
self._fetch_min_bytes,
self._fetch_max_bytes,
list(by_topics.items()))
else:
req = klass(
-1,
self._fetch_max_wait_ms,
self._fetch_min_bytes,
list(by_topics.items()))
fetch_requests.append((node_id, req))
if backoff_by_nodes:
backoff = min(map(max, backoff_by_nodes.values()))
else:
backoff = self._fetcher_timeout
return (
fetch_requests, awaiting_reset, backoff, invalid_metadata,
resume_futures
)
async def _proc_fetch_request(self, assignment, node_id, request):
needs_wakeup = False
try:
response = await self._client.send(node_id, request)
except Errors.KafkaError as err:
log.error("Failed fetch messages from %s: %s", node_id, err)
await asyncio.sleep(self._retry_backoff)
return False
except asyncio.CancelledError:
return False
if not assignment.active:
log.debug(
"Discarding fetch response since the assignment changed during"
" fetch")
return False
fetch_offsets = {}
for topic, partitions in request.topics:
for partition, offset, _ in partitions:
fetch_offsets[TopicPartition(topic, partition)] = offset
now_ms = int(1000 * time.time())
for topic, partitions in response.topics:
for partition, error_code, highwater, *part_data in partitions:
tp = TopicPartition(topic, partition)
error_type = Errors.for_code(error_code)
fetch_offset = fetch_offsets[tp]
tp_state = assignment.state_value(tp)
if not tp_state.has_valid_position or tp_state.position != fetch_offset:
log.debug(
"Discarding fetch response for partition %s "
"since its offset %s does not match the current "
"position", tp, fetch_offset)
continue
if error_type is Errors.NoError:
if request.API_VERSION >= 4:
aborted_transactions = part_data[-2]
lso = part_data[-3]
else:
aborted_transactions = None
lso = None
tp_state.highwater = highwater
tp_state.lso = lso
tp_state.timestamp = now_ms
records = MemoryRecords(part_data[-1])
if records.has_next():
log.debug(
"Adding fetched record for partition %s with"
" offset %d to buffered record list",
tp, fetch_offset)
partition_records = PartitionRecords(
tp, records, aborted_transactions, fetch_offset,
self._key_deserializer, self._value_deserializer,
self._check_crcs, self._isolation_level)
self._records[tp] = FetchResult(
tp, partition_records=partition_records,
assignment=assignment,
backoff=self._prefetch_backoff)
needs_wakeup = True
elif records.size_in_bytes() > 0:
err = RecordTooLargeError(
"There are some messages at [Partition=Offset]: "
"%s=%s whose size is larger than the fetch size %s"
" and hence cannot be ever returned. "
"Increase the fetch size, or decrease the maximum "
"message size the broker will allow.",
tp, fetch_offset, self._max_partition_fetch_bytes)
self._set_error(tp, err)
tp_state.consumed_to(tp_state.position + 1)
needs_wakeup = True
elif error_type in (Errors.NotLeaderForPartitionError,
Errors.UnknownTopicOrPartitionError):
self._client.force_metadata_update()
elif error_type is Errors.OffsetOutOfRangeError:
if self._default_reset_strategy != OffsetResetStrategy.NONE:
tp_state.await_reset(self._default_reset_strategy)
else:
err = Errors.OffsetOutOfRangeError({tp: fetch_offset})
self._set_error(tp, err)
needs_wakeup = True
log.info(
"Fetch offset %s is out of range for partition %s,"
" resetting offset", fetch_offset, tp)
elif error_type is Errors.TopicAuthorizationFailedError:
log.warning(
"Not authorized to read from topic %s.", tp.topic)
err = Errors.TopicAuthorizationFailedError(tp.topic)
self._set_error(tp, err)
needs_wakeup = True
else:
log.warning('Unexpected error while fetching data: %s',
error_type.__name__)
return needs_wakeup
def _set_error(self, tp, error):
assert tp not in self._records, self._records[tp]
self._records[tp] = FetchError(
error=error, backoff=self._prefetch_backoff)
async def _update_fetch_positions(self, assignment, node_id, tps):
log.debug("Updating fetch positions for partitions %s", tps)
needs_wakeup = False
for tp in tps:
tp_state = assignment.state_value(tp)
if tp_state.has_valid_position or tp_state.awaiting_reset:
continue
try:
committed = await tp_state.fetch_committed()
except asyncio.CancelledError:
return needs_wakeup
assert committed is not None
if tp_state.has_valid_position or tp_state.awaiting_reset:
continue
if committed.offset == UNKNOWN_OFFSET:
if self._default_reset_strategy != OffsetResetStrategy.NONE:
tp_state.await_reset(self._default_reset_strategy)
else:
err = Errors.NoOffsetForPartitionError(tp)
self._set_error(tp, err)
needs_wakeup = True
log.debug(
"No committed offset found for %s", tp)
else:
log.debug("Resetting offset for partition %s to the "
"committed offset %s", tp, committed)
tp_state.reset_to(committed.offset)
topic_data = collections.defaultdict(list)
needs_reset = []
for tp in tps:
tp_state = assignment.state_value(tp)
if not tp_state.awaiting_reset:
continue
needs_reset.append(tp)
strategy = tp_state.reset_strategy
assert strategy is not None
log.debug("Resetting offset for partition %s using %s strategy.",
tp, OffsetResetStrategy.to_str(strategy))
topic_data[tp.topic].append((tp.partition, strategy))
if not topic_data:
return needs_wakeup
try:
try:
offsets = await self._proc_offset_request(
node_id, topic_data)
except Errors.KafkaError as err:
log.error("Failed fetch offsets from %s: %s", node_id, err)
await asyncio.sleep(self._retry_backoff)
return needs_wakeup
except asyncio.CancelledError:
return needs_wakeup
for tp in needs_reset:
offset = offsets[tp][0]
tp_state = assignment.state_value(tp)
if tp_state.awaiting_reset:
tp_state.reset_to(offset)
return needs_wakeup
async def _retrieve_offsets(self, timestamps, timeout_ms=float("inf")):
if not timestamps:
return {}
timeout = timeout_ms / 1000
start_time = time.monotonic()
remaining = timeout
while True:
try:
offsets = await asyncio.wait_for(
self._proc_offset_requests(timestamps),
timeout=None if remaining == float("inf") else remaining
)
except asyncio.TimeoutError:
break
except Errors.KafkaError as error:
if not error.retriable:
raise error
if error.invalid_metadata:
self._client.force_metadata_update()
elapsed = time.monotonic() - start_time
remaining = max(0, remaining - elapsed)
if remaining < self._retry_backoff:
break
await asyncio.sleep(self._retry_backoff)
else:
return offsets
raise KafkaTimeoutError(
"Failed to get offsets by times in %s ms" % timeout_ms)
|
Apache License 2.0
|
quantopian/zipline
|
tests/pipeline/test_international_markets.py
|
intervals_overlap
|
python
|
def intervals_overlap(a, b):
a_strictly_before = a[1] < b[0]
b_strictly_before = b[1] < a[0]
return not (a_strictly_before or b_strictly_before)
|
Check whether a pair of datetime intervals overlap.
Parameters
----------
a : (pd.Timestamp, pd.Timestamp)
b : (pd.Timestamp, pd.Timestamp)
Returns
-------
have_overlap : bool
Bool indicating whether there there is a non-empty intersection between
the intervals.
|
https://github.com/quantopian/zipline/blob/014f1fc339dc8b7671d29be2d85ce57d3daec343/tests/pipeline/test_international_markets.py#L465-L484
|
from itertools import cycle, islice
from nose_parameterized import parameterized
import numpy as np
import pandas as pd
from trading_calendars import get_calendar
from zipline.assets.synthetic import make_rotating_equity_info
from zipline.data.in_memory_daily_bars import InMemoryDailyBarReader
from zipline.pipeline.domain import (
CA_EQUITIES,
GB_EQUITIES,
US_EQUITIES,
)
from zipline.pipeline import Pipeline
from zipline.pipeline.data import EquityPricing, USEquityPricing
from zipline.pipeline.engine import SimplePipelineEngine
from zipline.pipeline.loaders.equity_pricing_loader import EquityPricingLoader
from zipline.pipeline.loaders.synthetic import NullAdjustmentReader
from zipline.testing.predicates import assert_equal
from zipline.testing.core import parameter_space, random_tick_prices
import zipline.testing.fixtures as zf
def T(s):
return pd.Timestamp(s, tz='UTC')
class WithInternationalDailyBarData(zf.WithAssetFinder):
DAILY_BAR_START_DATE = zf.alias('START_DATE')
DAILY_BAR_END_DATE = zf.alias('END_DATE')
DAILY_BAR_LOOKBACK_DAYS = 0
INTERNATIONAL_PRICING_STARTING_PRICES = {
'XNYS': 100,
'XTSE': 50,
'XLON': 25,
}
INTERNATIONAL_PRICING_CURRENCIES = {
'XNYS': ['USD'],
'XTSE': ['CAD'],
'XLON': ['GBP', 'EUR', 'USD'],
}
assert (
INTERNATIONAL_PRICING_STARTING_PRICES.keys()
== INTERNATIONAL_PRICING_CURRENCIES.keys()
)
FX_RATES_CURRENCIES = ["USD", "CAD", "GBP", "EUR"]
@classmethod
def make_daily_bar_data(cls, assets, calendar, sessions):
start = cls.INTERNATIONAL_PRICING_STARTING_PRICES[calendar.name]
closes = random_tick_prices(start, len(sessions))
opens = closes - 0.05
highs = closes + 0.10
lows = closes - 0.10
volumes = np.arange(10000, 10000 + len(closes))
base_frame = pd.DataFrame({
'close': closes,
'open': opens,
'high': highs,
'low': lows,
'volume': volumes,
}, index=sessions)
for asset in assets:
sid = asset.sid
yield sid, base_frame + sid
@classmethod
def make_currency_codes(cls, calendar, assets):
currencies = cls.INTERNATIONAL_PRICING_CURRENCIES[calendar.name]
return pd.Series(
index=assets,
data=list(islice(cycle(currencies), len(assets)))
)
@classmethod
def init_class_fixtures(cls):
super(WithInternationalDailyBarData, cls).init_class_fixtures()
cls.daily_bar_sessions = {}
cls.daily_bar_data = {}
cls.daily_bar_readers = {}
cls.daily_bar_currency_codes = {}
for calendar, assets, in cls.assets_by_calendar.items():
name = calendar.name
start_delta = cls.DAILY_BAR_LOOKBACK_DAYS * calendar.day
start_session = cls.DAILY_BAR_START_DATE - start_delta
sessions = calendar.sessions_in_range(
start_session, cls.DAILY_BAR_END_DATE,
)
cls.daily_bar_sessions[name] = sessions
cls.daily_bar_data[name] = dict(cls.make_daily_bar_data(
assets=assets, calendar=calendar, sessions=sessions,
))
panel = (pd.Panel.from_dict(cls.daily_bar_data[name])
.transpose(2, 1, 0))
cls.daily_bar_currency_codes[name] = cls.make_currency_codes(
calendar,
assets,
)
cls.daily_bar_readers[name] = InMemoryDailyBarReader.from_panel(
panel,
calendar,
currency_codes=cls.daily_bar_currency_codes[name],
)
class WithInternationalPricingPipelineEngine(zf.WithFXRates,
WithInternationalDailyBarData):
@classmethod
def init_class_fixtures(cls):
(super(WithInternationalPricingPipelineEngine, cls)
.init_class_fixtures())
adjustments = NullAdjustmentReader()
cls.loaders = {
GB_EQUITIES: EquityPricingLoader(
cls.daily_bar_readers['XLON'],
adjustments,
cls.in_memory_fx_rate_reader,
),
US_EQUITIES: EquityPricingLoader(
cls.daily_bar_readers['XNYS'],
adjustments,
cls.in_memory_fx_rate_reader,
),
CA_EQUITIES: EquityPricingLoader(
cls.daily_bar_readers['XTSE'],
adjustments,
cls.in_memory_fx_rate_reader,
)
}
cls.engine = SimplePipelineEngine(
get_loader=cls.get_loader,
asset_finder=cls.asset_finder,
)
@classmethod
def get_loader(cls, column):
return cls.loaders[column.domain]
def run_pipeline(self, pipeline, start_date, end_date):
return self.engine.run_pipeline(pipeline, start_date, end_date)
class InternationalEquityTestCase(WithInternationalPricingPipelineEngine,
zf.ZiplineTestCase):
START_DATE = T('2014-01-02')
END_DATE = T('2014-02-06')
EXCHANGE_INFO = pd.DataFrame.from_records([
{'exchange': 'XNYS', 'country_code': 'US'},
{'exchange': 'XTSE', 'country_code': 'CA'},
{'exchange': 'XLON', 'country_code': 'GB'},
])
@classmethod
def make_equity_info(cls):
out = pd.concat(
[
make_rotating_equity_info(
num_assets=20,
first_start=cls.START_DATE,
frequency=get_calendar(exchange).day,
periods_between_starts=1,
asset_lifetime=5,
exchange=exchange,
)
for exchange in cls.EXCHANGE_INFO.exchange
],
ignore_index=True,
)
assert_equal(out.end_date.max(), cls.END_DATE)
return out
@classmethod
def make_exchanges_info(cls, equities, futures, root_symbols):
return cls.EXCHANGE_INFO
@parameter_space(domain=[CA_EQUITIES, US_EQUITIES, GB_EQUITIES])
def test_generic_pipeline_with_explicit_domain(self, domain):
calendar = domain.calendar
pipe = Pipeline({
'open': EquityPricing.open.latest,
'high': EquityPricing.high.latest,
'low': EquityPricing.low.latest,
'close': EquityPricing.close.latest,
'volume': EquityPricing.volume.latest,
}, domain=domain)
sessions = self.daily_bar_sessions[calendar.name]
start, end = sessions[[-17, -10]]
result = self.run_pipeline(pipe, start, end)
all_assets = self.assets_by_calendar[calendar]
expected_assets = [
a for a in all_assets
if alive_in_range(a, start, end, include_asset_start_date=False)
]
expected_dates = sessions[-17:-9]
for col in pipe.columns:
result_data = result[col].unstack()
assert_equal(pd.Index(expected_assets), result_data.columns)
assert_equal(expected_dates, result_data.index)
for asset in expected_assets:
for date in expected_dates:
value = result_data.at[date, asset]
self.check_expected_latest_value(
calendar, col, date, asset, value,
)
@parameterized.expand([
('US', US_EQUITIES, 'XNYS'),
('CA', CA_EQUITIES, 'XTSE'),
('GB', GB_EQUITIES, 'XLON'),
])
def test_currency_convert_prices(self, name, domain, calendar_name):
pipe = Pipeline({
'close': EquityPricing.close.latest,
'close_USD': EquityPricing.close.fx('USD').latest,
'close_CAD': EquityPricing.close.fx('CAD').latest,
'close_EUR': EquityPricing.close.fx('EUR').latest,
'close_GBP': EquityPricing.close.fx('GBP').latest,
}, domain=domain)
sessions = self.daily_bar_sessions[calendar_name]
execution_sessions = sessions[-17:-9]
start, end = execution_sessions[[0, -1]]
result = self.run_pipeline(pipe, start, end)
closes_2d = result['close'].unstack(fill_value=np.nan)
all_currency_codes = self.daily_bar_currency_codes[calendar_name]
currency_codes = all_currency_codes.loc[[
a.sid for a in closes_2d.columns
]]
fx_reader = self.in_memory_fx_rate_reader
for target in self.FX_RATES_CURRENCIES:
result_2d = result['close_' + target].unstack(fill_value=np.nan)
expected_rates = fx_reader.get_rates(
rate='mid',
quote=target,
bases=np.array(currency_codes, dtype=object),
dts=sessions[-18:-10],
)
expected_result_2d = closes_2d * expected_rates
assert_equal(result_2d, expected_result_2d)
@parameterized.expand([
('US', US_EQUITIES, 'XNYS'),
('CA', CA_EQUITIES, 'XTSE'),
('GB', GB_EQUITIES, 'XLON'),
])
def test_only_currency_converted_data(self, name, domain, calendar_name):
pipe = Pipeline({
'close_USD': EquityPricing.close.fx('USD').latest,
'close_EUR': EquityPricing.close.fx('EUR').latest,
}, domain=domain)
start, end = self.daily_bar_sessions[calendar_name][-2:]
result = self.run_pipeline(pipe, start, end)
calendar = get_calendar(calendar_name)
daily_bars = self.daily_bar_data[calendar_name]
currency_codes = self.daily_bar_currency_codes[calendar_name]
for (dt, asset), row in result.iterrows():
price_date = dt - calendar.day
expected_close = daily_bars[asset].loc[price_date, 'close']
expected_base = currency_codes.loc[asset]
expected_rate_USD = self.in_memory_fx_rate_reader.get_rate_scalar(
rate='mid',
quote='USD',
base=expected_base,
dt=price_date.asm8,
)
expected_price = expected_close * expected_rate_USD
assert_equal(row.close_USD, expected_price)
expected_rate_EUR = self.in_memory_fx_rate_reader.get_rate_scalar(
rate='mid',
quote='EUR',
base=expected_base,
dt=price_date.asm8,
)
expected_price = expected_close * expected_rate_EUR
assert_equal(row.close_EUR, expected_price)
def test_explicit_specialization_matches_implicit(self):
pipeline_specialized = Pipeline({
'open': EquityPricing.open.latest,
'high': EquityPricing.high.latest,
'low': EquityPricing.low.latest,
'close': EquityPricing.close.latest,
'volume': EquityPricing.volume.latest,
}, domain=US_EQUITIES)
dataset_specialized = Pipeline({
'open': USEquityPricing.open.latest,
'high': USEquityPricing.high.latest,
'low': USEquityPricing.low.latest,
'close': USEquityPricing.close.latest,
'volume': USEquityPricing.volume.latest,
})
sessions = self.daily_bar_sessions['XNYS']
self.assert_identical_results(
pipeline_specialized,
dataset_specialized,
sessions[1],
sessions[-1],
)
def test_cannot_convert_volume_data(self):
with self.assertRaises(TypeError) as exc:
EquityPricing.volume.fx('EUR')
assert_equal(
str(exc.exception),
'The .fx() method cannot be called on EquityPricing.volume '
'because it does not produce currency-denominated data.',
)
def check_expected_latest_value(self, calendar, col, date, asset, value):
if np.isnan(value):
self.assertTrue(date <= asset.start_date or date > asset.end_date)
else:
self.assertTrue(asset.start_date < date <= asset.end_date)
bars = self.daily_bar_data[calendar.name]
expected_value = bars[asset.sid].loc[date - calendar.day, col]
assert_equal(value, expected_value)
def assert_identical_results(self, left, right, start_date, end_date):
left_result = self.run_pipeline(left, start_date, end_date)
right_result = self.run_pipeline(right, start_date, end_date)
assert_equal(left_result, right_result)
def alive_in_range(asset, start, end, include_asset_start_date=False):
if include_asset_start_date:
asset_start = asset.start_date
else:
asset_start = asset.start_date + pd.Timedelta('1 day')
return intervals_overlap((asset_start, asset.end_date), (start, end))
|
Apache License 2.0
|
aws/aws-parallelcluster-node
|
src/slurm_plugin/clustermgtd.py
|
ClusterManager._handle_powering_down_nodes
|
python
|
def _handle_powering_down_nodes(self, slurm_nodes):
powering_down_nodes = [node for node in slurm_nodes if node.is_powering_down_with_nodeaddr()]
if powering_down_nodes:
log.info("Resetting powering down nodes: %s", print_with_count(powering_down_nodes))
reset_nodes(nodes=[node.name for node in powering_down_nodes])
instances_to_terminate = [node.instance.id for node in powering_down_nodes if node.instance]
log.info("Terminating instances that are backing powering down nodes")
self._instance_manager.delete_instances(
instances_to_terminate, terminate_batch_size=self._config.terminate_max_batch_size
)
|
Handle nodes that are powering down.
Terminate instances backing the powering down node if any.
Reset the nodeaddr for the powering down node. Node state is not changed.
|
https://github.com/aws/aws-parallelcluster-node/blob/00cee467f983b18075752ed3fbc3bfe52420147c/src/slurm_plugin/clustermgtd.py#L673-L688
|
import logging
import os
import time
from configparser import ConfigParser
from datetime import datetime, timezone
from enum import Enum
from logging.config import fileConfig
import boto3
from boto3.dynamodb.conditions import Attr
from botocore.config import Config
from common.schedulers.slurm_commands import (
get_nodes_info,
get_partition_info,
reset_nodes,
set_nodes_down,
set_nodes_down_and_power_save,
set_nodes_drain,
update_all_partitions,
update_partitions,
)
from common.time_utils import seconds
from common.utils import sleep_remaining_loop_time, time_is_up
from retrying import retry
from slurm_plugin.common import TIMESTAMP_FORMAT, log_exception, print_with_count, retrieve_instance_type_mapping
from slurm_plugin.instance_manager import InstanceManager
from slurm_plugin.slurm_resources import CONFIG_FILE_DIR, EC2InstanceHealthState, PartitionStatus, StaticNode
LOOP_TIME = 60
log = logging.getLogger(__name__)
class ComputeFleetStatus(Enum):
STOPPED = "STOPPED"
RUNNING = "RUNNING"
STOPPING = "STOPPING"
STARTING = "STARTING"
STOP_REQUESTED = "STOP_REQUESTED"
START_REQUESTED = "START_REQUESTED"
PROTECTED = "PROTECTED"
def __str__(self):
return str(self.value)
@staticmethod
def is_stop_status(status):
return status in {ComputeFleetStatus.STOP_REQUESTED, ComputeFleetStatus.STOPPING, ComputeFleetStatus.STOPPED}
@staticmethod
def is_start_in_progress(status):
return status in {ComputeFleetStatus.START_REQUESTED, ComputeFleetStatus.STARTING}
@staticmethod
def is_stop_in_progress(status):
return status in {ComputeFleetStatus.STOP_REQUESTED, ComputeFleetStatus.STOPPING}
@staticmethod
def is_protected_status(status):
return status == ComputeFleetStatus.PROTECTED
class ComputeFleetStatusManager:
COMPUTE_FLEET_STATUS_KEY = "COMPUTE_FLEET"
COMPUTE_FLEET_STATUS_ATTRIBUTE = "Status"
LAST_UPDATED_TIME_ATTRIBUTE = "LastUpdatedTime"
class ConditionalStatusUpdateFailed(Exception):
pass
def __init__(self, table_name, boto3_config, region):
self._table_name = table_name
self._boto3_config = boto3_config
self.__region = region
self._ddb_resource = boto3.resource("dynamodb", region_name=region, config=boto3_config)
self._table = self._ddb_resource.Table(table_name)
def get_status(self, fallback=None):
try:
compute_fleet_status = self._table.get_item(ConsistentRead=True, Key={"Id": self.COMPUTE_FLEET_STATUS_KEY})
if not compute_fleet_status or "Item" not in compute_fleet_status:
raise Exception("COMPUTE_FLEET status not found in db table")
return ComputeFleetStatus(compute_fleet_status["Item"][self.COMPUTE_FLEET_STATUS_ATTRIBUTE])
except Exception as e:
log.error(
"Failed when retrieving fleet status from DynamoDB with error %s, using fallback value %s", e, fallback
)
return fallback
def update_status(self, current_status, next_status):
try:
self._table.put_item(
Item={
"Id": self.COMPUTE_FLEET_STATUS_KEY,
self.COMPUTE_FLEET_STATUS_ATTRIBUTE: str(next_status),
self.LAST_UPDATED_TIME_ATTRIBUTE: str(datetime.now(tz=timezone.utc)),
},
ConditionExpression=Attr(self.COMPUTE_FLEET_STATUS_ATTRIBUTE).eq(str(current_status)),
)
except self._ddb_resource.meta.client.exceptions.ConditionalCheckFailedException as e:
raise ComputeFleetStatusManager.ConditionalStatusUpdateFailed(e)
class ClustermgtdConfig:
DEFAULTS = {
"max_retry": 1,
"loop_time": LOOP_TIME,
"proxy": "NONE",
"logging_config": os.path.join(
os.path.dirname(__file__), "logging", "parallelcluster_clustermgtd_logging.conf"
),
"instance_type_mapping": "/opt/slurm/etc/pcluster/instance_name_type_mappings.json",
"launch_max_batch_size": 500,
"update_node_address": True,
"terminate_max_batch_size": 1000,
"node_replacement_timeout": 1800,
"terminate_drain_nodes": True,
"terminate_down_nodes": True,
"orphaned_instance_timeout": 120,
"disable_ec2_health_check": False,
"disable_scheduled_event_health_check": False,
"disable_all_cluster_management": False,
"health_check_timeout": 180,
"hosted_zone": None,
"dns_domain": None,
"use_private_hostname": False,
"protected_failure_count": 10,
}
def __init__(self, config_file_path):
self._get_config(config_file_path)
def __repr__(self):
attrs = ", ".join(["{key}={value}".format(key=key, value=repr(value)) for key, value in self.__dict__.items()])
return "{class_name}({attrs})".format(class_name=self.__class__.__name__, attrs=attrs)
def __eq__(self, other):
if type(other) is type(self):
return self._config == other._config and self.instance_name_type_mapping == other.instance_name_type_mapping
return False
def __ne__(self, other):
return not self.__eq__(other)
def _get_basic_config(self, config):
self.region = config.get("clustermgtd", "region")
self.cluster_name = config.get("clustermgtd", "cluster_name")
self.dynamodb_table = config.get("clustermgtd", "dynamodb_table")
self.head_node_private_ip = config.get("clustermgtd", "head_node_private_ip")
self.head_node_hostname = config.get("clustermgtd", "head_node_hostname")
instance_name_type_mapping_file = config.get(
"clustermgtd", "instance_type_mapping", fallback=self.DEFAULTS.get("instance_type_mapping")
)
self.instance_name_type_mapping = retrieve_instance_type_mapping(instance_name_type_mapping_file)
self._boto3_retry = config.getint("clustermgtd", "boto3_retry", fallback=self.DEFAULTS.get("max_retry"))
self._boto3_config = {"retries": {"max_attempts": self._boto3_retry, "mode": "standard"}}
self.loop_time = config.getint("clustermgtd", "loop_time", fallback=self.DEFAULTS.get("loop_time"))
self.disable_all_cluster_management = config.getboolean(
"clustermgtd",
"disable_all_cluster_management",
fallback=self.DEFAULTS.get("disable_all_cluster_management"),
)
self.heartbeat_file_path = config.get("clustermgtd", "heartbeat_file_path")
proxy = config.get("clustermgtd", "proxy", fallback=self.DEFAULTS.get("proxy"))
if proxy != "NONE":
self._boto3_config["proxies"] = {"https": proxy}
self.boto3_config = Config(**self._boto3_config)
self.logging_config = config.get("clustermgtd", "logging_config", fallback=self.DEFAULTS.get("logging_config"))
def _get_launch_config(self, config):
self.launch_max_batch_size = config.getint(
"clustermgtd", "launch_max_batch_size", fallback=self.DEFAULTS.get("launch_max_batch_size")
)
self.update_node_address = config.getboolean(
"clustermgtd", "update_node_address", fallback=self.DEFAULTS.get("update_node_address")
)
def _get_health_check_config(self, config):
self.disable_ec2_health_check = config.getboolean(
"clustermgtd", "disable_ec2_health_check", fallback=self.DEFAULTS.get("disable_ec2_health_check")
)
self.disable_scheduled_event_health_check = config.getboolean(
"clustermgtd",
"disable_scheduled_event_health_check",
fallback=self.DEFAULTS.get("disable_scheduled_event_health_check"),
)
self.health_check_timeout = config.getint(
"clustermgtd", "health_check_timeout", fallback=self.DEFAULTS.get("health_check_timeout")
)
self.disable_all_health_checks = config.getboolean(
"clustermgtd",
"disable_all_health_checks",
fallback=(self.disable_ec2_health_check and self.disable_scheduled_event_health_check),
)
def _get_terminate_config(self, config):
self.terminate_max_batch_size = config.getint(
"clustermgtd", "terminate_max_batch_size", fallback=self.DEFAULTS.get("terminate_max_batch_size")
)
self.node_replacement_timeout = config.getint(
"clustermgtd", "node_replacement_timeout", fallback=self.DEFAULTS.get("node_replacement_timeout")
)
self.terminate_drain_nodes = config.getboolean(
"clustermgtd", "terminate_drain_nodes", fallback=self.DEFAULTS.get("terminate_drain_nodes")
)
self.terminate_down_nodes = config.getboolean(
"clustermgtd", "terminate_down_nodes", fallback=self.DEFAULTS.get("terminate_down_nodes")
)
self.orphaned_instance_timeout = config.getint(
"clustermgtd", "orphaned_instance_timeout", fallback=self.DEFAULTS.get("orphaned_instance_timeout")
)
self.protected_failure_count = config.getint(
"clustermgtd", "protected_failure_count", fallback=self.DEFAULTS.get("protected_failure_count")
)
def _get_dns_config(self, config):
self.hosted_zone = config.get("clustermgtd", "hosted_zone", fallback=self.DEFAULTS.get("hosted_zone"))
self.dns_domain = config.get("clustermgtd", "dns_domain", fallback=self.DEFAULTS.get("dns_domain"))
self.use_private_hostname = config.getboolean(
"clustermgtd", "use_private_hostname", fallback=self.DEFAULTS.get("use_private_hostname")
)
@log_exception(log, "reading cluster manager configuration file", catch_exception=IOError, raise_on_error=True)
def _get_config(self, config_file_path):
log.info("Reading %s", config_file_path)
self._config = ConfigParser()
self._config.read_file(open(config_file_path, "r"))
self._get_basic_config(self._config)
self._get_health_check_config(self._config)
self._get_launch_config(self._config)
self._get_terminate_config(self._config)
self._get_dns_config(self._config)
class ClusterManager:
class HealthCheckTypes(Enum):
scheduled_event = "scheduled_events_check"
ec2_health = "ec2_health_check"
def __str__(self):
return self.value
class EC2InstancesInfoUnavailable(Exception):
pass
def __init__(self, config):
self._static_nodes_in_replacement = set()
self._partitions_protected_failure_count_map = {}
self._compute_fleet_status = ComputeFleetStatus.RUNNING
self._current_time = None
self._config = None
self._compute_fleet_status_manager = None
self._instance_manager = None
self.set_config(config)
def set_config(self, config):
if self._config != config:
logging.info("Applying new clustermgtd config: %s", config)
self._config = config
self._compute_fleet_status_manager = self._initialize_compute_fleet_status_manager(config)
self._instance_manager = self._initialize_instance_manager(config)
@staticmethod
def _initialize_instance_manager(config):
return InstanceManager(
config.region,
config.cluster_name,
config.boto3_config,
table_name=config.dynamodb_table,
hosted_zone=config.hosted_zone,
dns_domain=config.dns_domain,
use_private_hostname=config.use_private_hostname,
head_node_private_ip=config.head_node_private_ip,
head_node_hostname=config.head_node_hostname,
instance_name_type_mapping=config.instance_name_type_mapping,
)
@staticmethod
def _initialize_compute_fleet_status_manager(config):
return ComputeFleetStatusManager(
table_name=config.dynamodb_table, boto3_config=config.boto3_config, region=config.region
)
def _update_compute_fleet_status(self, status):
log.info("Updating compute fleet status from %s to %s", self._compute_fleet_status, status)
self._compute_fleet_status_manager.update_status(current_status=self._compute_fleet_status, next_status=status)
self._compute_fleet_status = status
@log_exception(log, "handling compute fleet status transitions", catch_exception=Exception, raise_on_error=False)
def _manage_compute_fleet_status_transitions(self):
self._compute_fleet_status = self._compute_fleet_status_manager.get_status(fallback=self._compute_fleet_status)
log.info("Current compute fleet status: %s", self._compute_fleet_status)
try:
if ComputeFleetStatus.is_stop_status(self._compute_fleet_status):
if self._compute_fleet_status == ComputeFleetStatus.STOP_REQUESTED:
self._update_compute_fleet_status(ComputeFleetStatus.STOPPING)
partitions_deactivated_successfully = update_all_partitions(
PartitionStatus.INACTIVE, reset_node_addrs_hostname=True
)
nodes_terminated = self._instance_manager.terminate_all_compute_nodes(
self._config.terminate_max_batch_size
)
if partitions_deactivated_successfully and nodes_terminated:
if self._compute_fleet_status == ComputeFleetStatus.STOPPING:
self._update_compute_fleet_status(ComputeFleetStatus.STOPPED)
elif ComputeFleetStatus.is_start_in_progress(self._compute_fleet_status):
if self._compute_fleet_status == ComputeFleetStatus.START_REQUESTED:
self._update_compute_fleet_status(ComputeFleetStatus.STARTING)
partitions_activated_successfully = update_all_partitions(
PartitionStatus.UP, reset_node_addrs_hostname=False
)
if partitions_activated_successfully:
self._update_compute_fleet_status(ComputeFleetStatus.RUNNING)
self._partitions_protected_failure_count_map = {}
except ComputeFleetStatusManager.ConditionalStatusUpdateFailed:
log.warning(
"Cluster status was updated while handling a transition from %s. "
"Status transition will be retried at the next iteration",
self._compute_fleet_status,
)
def _handle_successfully_launched_nodes(self, partitions_name_map):
partitions_protected_failure_count_map = self._partitions_protected_failure_count_map.copy()
for partition, failures_per_compute_resource in partitions_protected_failure_count_map.items():
partition_online_compute_resources = partitions_name_map[partition].get_online_node_by_type(
self._config.terminate_drain_nodes, self._config.terminate_down_nodes
)
for compute_resource in failures_per_compute_resource.keys():
if compute_resource in partition_online_compute_resources:
self._reset_partition_failure_count(partition)
break
def manage_cluster(self):
log.info("Managing cluster...")
self._current_time = datetime.now(tz=timezone.utc)
self._manage_compute_fleet_status_transitions()
if not self._config.disable_all_cluster_management and self._compute_fleet_status in {
None,
ComputeFleetStatus.RUNNING,
ComputeFleetStatus.PROTECTED,
}:
try:
log.info("Retrieving nodes info from the scheduler")
nodes = self._get_node_info_with_retry()
log.debug("Nodes: %s", nodes)
partitions_name_map = self._retrieve_scheduler_partitions(nodes)
except Exception as e:
log.error(
"Unable to get partition/node info from slurm, no other action can be performed. Sleeping... "
"Exception: %s",
e,
)
return
try:
cluster_instances = self._get_ec2_instances()
except ClusterManager.EC2InstancesInfoUnavailable:
log.error("Unable to get instances info from EC2, no other action can be performed. Sleeping...")
return
log.debug("Current cluster instances in EC2: %s", cluster_instances)
partitions = list(partitions_name_map.values())
self._update_slurm_nodes_with_ec2_info(nodes, cluster_instances)
self._clean_up_inactive_partition(partitions)
if not self._config.disable_all_health_checks:
self._perform_health_check_actions(partitions)
self._maintain_nodes(partitions_name_map)
self._terminate_orphaned_instances(cluster_instances)
self._write_timestamp_to_file()
def _write_timestamp_to_file(self):
with open(os.open(self._config.heartbeat_file_path, os.O_WRONLY | os.O_CREAT, 0o644), "w") as timestamp_file:
timestamp_file.write(datetime.now(tz=timezone.utc).strftime(TIMESTAMP_FORMAT))
@staticmethod
@retry(stop_max_attempt_number=2, wait_fixed=1000)
def _get_node_info_with_retry(nodes=""):
return get_nodes_info(nodes)
@staticmethod
@retry(stop_max_attempt_number=2, wait_fixed=1000)
def _get_partition_info_with_retry():
return {part.name: part for part in get_partition_info(get_all_nodes=True)}
def _clean_up_inactive_partition(self, partitions):
inactive_instance_ids, inactive_nodes = ClusterManager._get_inactive_instances_and_nodes(partitions)
if inactive_nodes:
try:
log.info("Cleaning up INACTIVE partitions.")
if inactive_instance_ids:
log.info(
"Clean up instances associated with nodes in INACTIVE partitions: %s",
print_with_count(inactive_instance_ids),
)
self._instance_manager.delete_instances(
inactive_instance_ids, terminate_batch_size=self._config.terminate_max_batch_size
)
self._reset_nodes_in_inactive_partitions(list(inactive_nodes))
except Exception as e:
log.error("Failed to clean up INACTIVE nodes %s with exception %s", print_with_count(inactive_nodes), e)
@staticmethod
def _reset_nodes_in_inactive_partitions(inactive_nodes):
nodes_to_reset = set()
for node in inactive_nodes:
if node.needs_reset_when_inactive():
nodes_to_reset.add(node.name)
if nodes_to_reset:
log.info(
"Resetting nodeaddr/nodehostname and setting to down the following nodes: %s",
print_with_count(nodes_to_reset),
)
try:
reset_nodes(
nodes_to_reset,
raise_on_error=False,
state="down",
reason="inactive partition",
)
except Exception as e:
log.error(
"Encountered exception when resetting nodeaddr for INACTIVE nodes %s: %s",
print_with_count(nodes_to_reset),
e,
)
def _get_ec2_instances(self):
time.sleep(5)
log.info("Retrieving list of EC2 instances associated with the cluster")
try:
return self._instance_manager.get_cluster_instances(include_head_node=False, alive_states_only=True)
except Exception as e:
log.error("Failed when getting instance info from EC2 with exception %s", e)
raise ClusterManager.EC2InstancesInfoUnavailable
@log_exception(log, "performing health check action", catch_exception=Exception, raise_on_error=False)
def _perform_health_check_actions(self, partitions):
log.info("Performing instance health check actions")
instance_id_to_active_node_map = ClusterManager.get_instance_id_to_active_node_map(partitions)
if not instance_id_to_active_node_map:
return
unhealthy_instances_status = self._instance_manager.get_unhealthy_cluster_instance_status(
list(instance_id_to_active_node_map.keys())
)
log.debug("Cluster instances that might be considered unhealthy: %s", unhealthy_instances_status)
if unhealthy_instances_status:
if not self._config.disable_ec2_health_check:
self._handle_health_check(
unhealthy_instances_status,
instance_id_to_active_node_map,
health_check_type=ClusterManager.HealthCheckTypes.ec2_health,
)
if not self._config.disable_scheduled_event_health_check:
self._handle_health_check(
unhealthy_instances_status,
instance_id_to_active_node_map,
health_check_type=ClusterManager.HealthCheckTypes.scheduled_event,
)
def _get_nodes_failing_health_check(
self, unhealthy_instances_status, instance_id_to_active_node_map, health_check_type
):
log.info("Performing actions for health check type: %s", health_check_type)
nodes_failing_health_check = []
for instance_status in unhealthy_instances_status:
unhealthy_node = instance_id_to_active_node_map.get(instance_status.id)
if unhealthy_node and self._is_instance_unhealthy(instance_status, health_check_type):
nodes_failing_health_check.append(unhealthy_node)
unhealthy_node.is_failing_health_check = True
log.warning(
"Node %s(%s) is associated with instance %s that is failing %s. EC2 health state: %s",
unhealthy_node.name,
unhealthy_node.nodeaddr,
instance_status.id,
health_check_type,
[
instance_status.id,
instance_status.state,
instance_status.instance_status,
instance_status.system_status,
instance_status.scheduled_events,
],
)
return nodes_failing_health_check
def _is_instance_unhealthy(self, instance_status: EC2InstanceHealthState, health_check_type):
is_instance_status_unhealthy = False
if health_check_type == ClusterManager.HealthCheckTypes.scheduled_event:
is_instance_status_unhealthy = instance_status.fail_scheduled_events_check()
elif health_check_type == ClusterManager.HealthCheckTypes.ec2_health:
is_instance_status_unhealthy = instance_status.fail_ec2_health_check(
self._current_time, self._config.health_check_timeout
)
return is_instance_status_unhealthy
def _update_static_nodes_in_replacement(self, slurm_nodes):
nodename_to_slurm_nodes_map = {node.name: node for node in slurm_nodes}
nodes_still_in_replacement = set()
for nodename in self._static_nodes_in_replacement:
node = nodename_to_slurm_nodes_map.get(nodename)
if node and not node.is_up():
nodes_still_in_replacement.add(nodename)
self._static_nodes_in_replacement = nodes_still_in_replacement
for node in slurm_nodes:
node.is_static_nodes_in_replacement = node.name in self._static_nodes_in_replacement
node._is_being_replaced = self._is_node_being_replaced(node)
node._is_replacement_timeout = self._is_node_replacement_timeout(node)
def _find_unhealthy_slurm_nodes(self, slurm_nodes):
unhealthy_static_nodes = []
unhealthy_dynamic_nodes = []
for node in slurm_nodes:
if not node.is_healthy(self._config.terminate_drain_nodes, self._config.terminate_down_nodes):
if isinstance(node, StaticNode):
unhealthy_static_nodes.append(node)
else:
unhealthy_dynamic_nodes.append(node)
return (
unhealthy_dynamic_nodes,
unhealthy_static_nodes,
)
def _increase_partitions_protected_failure_count(self, bootstrap_failure_nodes):
for node in bootstrap_failure_nodes:
compute_resource = node.get_compute_resource_name()
for p in node.partitions:
if p in self._partitions_protected_failure_count_map:
self._partitions_protected_failure_count_map[p][compute_resource] = (
self._partitions_protected_failure_count_map[p].get(compute_resource, 0) + 1
)
else:
self._partitions_protected_failure_count_map[p] = {}
self._partitions_protected_failure_count_map[p][compute_resource] = 1
@log_exception(log, "maintaining unhealthy dynamic nodes", raise_on_error=False)
def _handle_unhealthy_dynamic_nodes(self, unhealthy_dynamic_nodes):
instances_to_terminate = [node.instance.id for node in unhealthy_dynamic_nodes if node.instance]
if instances_to_terminate:
log.info("Terminating instances that are backing unhealthy dynamic nodes")
self._instance_manager.delete_instances(
instances_to_terminate, terminate_batch_size=self._config.terminate_max_batch_size
)
log.info("Setting unhealthy dynamic nodes to down and power_down.")
set_nodes_down_and_power_save(
[node.name for node in unhealthy_dynamic_nodes], reason="Scheduler health check failed"
)
@log_exception(log, "maintaining powering down nodes", raise_on_error=False)
|
Apache License 2.0
|
kuri65536/python-for-android
|
python-modules/twisted/twisted/test/stdio_test_halfclose.py
|
HalfCloseProtocol.readConnectionLost
|
python
|
def readConnectionLost(self):
self.exitCode = 0
reactor.stop()
|
This is the desired event. Once it has happened, stop the reactor so
the process will exit.
|
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-modules/twisted/twisted/test/stdio_test_halfclose.py#L38-L44
|
import sys
from zope.interface import implements
from twisted.internet.interfaces import IHalfCloseableProtocol
from twisted.internet import stdio, protocol
from twisted.python import reflect, log
class HalfCloseProtocol(protocol.Protocol):
implements(IHalfCloseableProtocol)
exitCode = None
def connectionMade(self):
self.transport.write("x")
|
Apache License 2.0
|
randolphvi/question-difficulty-prediction
|
TF/utils/data_helpers.py
|
get_out_dir
|
python
|
def get_out_dir(option, logger):
if option == 'T':
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
logger.info("Writing to {0}\n".format(out_dir))
if option == 'R':
MODEL = input("[Input] Please input the checkpoints model you want to restore, "
"it should be like (1490175368): ")
while not (MODEL.isdigit() and len(MODEL) == 10):
MODEL = input("[Warning] The format of your input is illegal, please re-input: ")
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", MODEL))
logger.info("Writing to {0}\n".format(out_dir))
return out_dir
|
Get the out dir.
Args:
option: Train or Restore
logger: The logger
Returns:
The output dir
|
https://github.com/randolphvi/question-difficulty-prediction/blob/77b4b83b5bc747c5074926d7a37545a5d46ed343/TF/utils/data_helpers.py#L87-L109
|
__author__ = 'Randolph'
import os
import math
import time
import gensim
import logging
import json
import numpy as np
from collections import OrderedDict
from scipy import stats
from texttable import Texttable
from gensim.models import KeyedVectors
from tflearn.data_utils import pad_sequences
def option(pattern):
if pattern == 0:
OPTION = input("[Input] Train or Restore? (T/R): ")
while not (OPTION.upper() in ['T', 'R']):
OPTION = input("[Warning] The format of your input is illegal, please re-input: ")
if pattern == 1:
OPTION = input("Load Best or Latest Model? (B/L): ")
while not (OPTION.isalpha() and OPTION.upper() in ['B', 'L']):
OPTION = input("[Warning] The format of your input is illegal, please re-input: ")
return OPTION.upper()
def logger_fn(name, input_file, level=logging.INFO):
logger = logging.getLogger(name)
logger.setLevel(level)
log_dir = os.path.dirname(input_file)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
fh = logging.FileHandler(input_file, mode='w')
fh.setFormatter(formatter)
logger.addHandler(fh)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
sh.setLevel(logging.WARNING)
logger.addHandler(sh)
return logger
def tab_printer(args, logger):
args = vars(args)
keys = sorted(args.keys())
t = Texttable()
t.add_rows([[k.replace("_", " ").capitalize(), args[k]] for k in keys])
t.add_rows([["Parameter", "Value"]])
logger.info('\n' + t.draw())
|
Apache License 2.0
|
pytorch/opacus
|
opacus/utils/uniform_sampler.py
|
DistributedPoissonBatchSampler.__len__
|
python
|
def __len__(self) -> int:
return self.num_batches
|
Expected number of batches.
|
https://github.com/pytorch/opacus/blob/78e2f49c6498de206ca06c4da69e5e53763779f4/opacus/utils/uniform_sampler.py#L140-L144
|
from typing import Optional
import torch
from torch.utils.data import Sampler
class UniformWithReplacementSampler(Sampler):
def __init__(self, num_samples: int, sample_rate: float, generator=None):
self.num_samples = num_samples
self.sample_rate = sample_rate
self.generator = generator
if self.generator is None:
generator = torch.Generator()
generator.manual_seed(
int(torch.empty((), dtype=torch.int64).random_().item())
)
if self.num_samples <= 0:
raise ValueError(
"num_samples should be a positive integer "
"value, but got num_samples={}".format(self.num_samples)
)
def __len__(self):
return int(1 / self.sample_rate)
def __iter__(self):
num_batches = int(1 / self.sample_rate)
while num_batches > 0:
mask = (
torch.rand(self.num_samples, generator=self.generator)
< self.sample_rate
)
indices = mask.nonzero(as_tuple=False).reshape(-1).tolist()
if len(indices) != 0:
yield indices
num_batches -= 1
class DistributedPoissonBatchSampler(Sampler):
def __init__(
self,
total_size: int,
sample_rate: float,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
generator=None,
):
self.total_size = total_size
self.sample_rate = sample_rate
self.generator = generator
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.shuffle = shuffle
self.seed = seed
if self.generator is None:
generator = torch.Generator()
generator.manual_seed(
int(torch.empty((), dtype=torch.int64).random_().item())
)
if self.total_size <= 0:
raise ValueError(
"total_size should be a positive integer "
"value, but got total_size={}".format(self.total_size)
)
self.num_samples = self.total_size // self.num_replicas
if self.rank < self.total_size % self.num_replicas:
self.num_samples += 1
self.num_batches = int(1 / self.sample_rate)
def __len__(self) -> int:
return self.num_batches
def __iter__(self):
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(self.total_size, generator=g)
else:
indices = torch.arange(self.total_size)
indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples
for _ in range(self.num_batches):
mask = (
torch.rand(self.num_samples, generator=self.generator)
< self.sample_rate
)
selected_examples = mask.nonzero(as_tuple=False).reshape(-1)
if len(selected_examples) > 0:
yield indices[selected_examples]
|
Apache License 2.0
|
yaworsw/sublime-scopealways
|
ScopeAlways.py
|
plugin_loaded
|
python
|
def plugin_loaded():
global settings
update_settings()
settings.add_on_change('extensions_path', update_settings)
|
When the plugin is loaded then load the plugin's settings.
|
https://github.com/yaworsw/sublime-scopealways/blob/71c911353f4e9de91ace8fb9ad15a17ffb0715a5/ScopeAlways.py#L9-L15
|
import sublime, sublime_plugin
status_format = '%s'
status_key = 'scope_always'
on = False
settings = None
|
MIT License
|
python-acoustics/python-acoustics
|
acoustics/_signal.py
|
Signal.peak
|
python
|
def peak(self, axis=-1):
return acoustics.standards.iso_tr_25417_2007.peak_sound_pressure(self, axis=axis)
|
Peak sound pressure.
:param axis: Axis.
.. seealso::
:func:`acoustic.standards.iso_tr_25417_2007.peak_sound_pressure`
|
https://github.com/python-acoustics/python-acoustics/blob/fbc87454422c41e1a39e282d7680126a6d8014dd/acoustics/_signal.py#L400-L410
|
import itertools
import matplotlib.pyplot as plt
import numpy as np
from scipy.io import wavfile
from scipy.signal import detrend, lfilter, bilinear, spectrogram, filtfilt, resample, fftconvolve
import acoustics
from acoustics.standards.iso_tr_25417_2007 import REFERENCE_PRESSURE
from acoustics.standards.iec_61672_1_2013 import WEIGHTING_SYSTEMS
from acoustics.standards.iec_61672_1_2013 import (NOMINAL_OCTAVE_CENTER_FREQUENCIES,
NOMINAL_THIRD_OCTAVE_CENTER_FREQUENCIES)
class Signal(np.ndarray):
def __new__(cls, data, fs):
obj = np.asarray(data).view(cls)
obj.fs = fs
return obj
def __array_prepare__(self, array, context=None):
try:
a = context[1][0]
b = context[1][1]
except IndexError:
return array
if hasattr(a, 'fs') and hasattr(b, 'fs'):
if a.fs == b.fs:
return array
else:
raise ValueError("Sample frequencies do not match.")
else:
return array
def __array_wrap__(self, out_arr, context=None):
return np.ndarray.__array_wrap__(self, out_arr, context)
def __array_finalize__(self, obj):
if obj is None:
return
self.fs = getattr(obj, 'fs', None)
def __reduce__(self):
pickled_state = super(Signal, self).__reduce__()
new_state = pickled_state[2] + (self.fs, )
return (pickled_state[0], pickled_state[1], new_state)
def __setstate__(self, state):
self.fs = state[-1]
super(Signal, self).__setstate__(state[0:-1])
def __repr__(self):
return "Signal({})".format(str(self))
def _construct(self, x):
return Signal(x, self.fs)
@property
def samples(self):
return self.shape[-1]
@property
def channels(self):
if self.ndim > 1:
return self.shape[-2]
else:
return 1
@property
def duration(self):
return float(self.samples / self.fs)
@property
def values(self):
return np.array(self)
def calibrate_to(self, decibel, inplace=False):
decibel = decibel * np.ones(self.shape)
gain = decibel - self.leq()[..., None]
return self.gain(gain, inplace=inplace)
def calibrate_with(self, other, decibel, inplace=False):
if not isinstance(other, Signal):
other = Signal(other, self.fs)
gain = decibel - other.leq()
return self.gain(gain, inplace=inplace)
def decimate(self, factor, zero_phase=False, ftype='iir', order=None):
return Signal(
acoustics.signal.decimate(x=self, q=factor, n=order, ftype=ftype, zero_phase=zero_phase), self.fs / factor)
def resample(self, nsamples, times=None, axis=-1, window=None):
return Signal(resample(self, nsamples, times, axis, window), nsamples / self.samples * self.fs)
def upsample(self, factor, axis=-1):
return self.resample(int(self.samples * factor), axis=axis)
def gain(self, decibel, inplace=False):
factor = 10.0**(decibel / 20.0)
if inplace:
self *= factor
return self
else:
return self * factor
def pick(self, start=0.0, stop=None):
if start is not None:
start = int(np.floor(start * self.fs))
if stop is not None:
stop = int(np.floor(stop * self.fs))
return self[..., start:stop]
def times(self):
return np.arange(0, self.samples) / self.fs
def energy(self):
return float((self * self).sum())
def power(self):
return self.energy() / len(self)
def ms(self):
return acoustics.signal.ms(self)
def rms(self):
return acoustics.signal.rms(self)
def weigh(self, weighting='A', zero_phase=False):
num, den = WEIGHTING_SYSTEMS[weighting]()
b, a = bilinear(num, den, self.fs)
func = filtfilt if zero_phase else lfilter
return self._construct(func(b, a, self))
def correlate(self, other=None, mode='full'):
if other is None:
other = self
if self.fs != other.fs:
raise ValueError("Cannot correlate. Sample frequencies are not the same.")
if self.channels > 1 or other.channels > 1:
raise ValueError("Cannot correlate. Not supported for multichannel signals.")
return self._construct(fftconvolve(self, other[::-1], mode=mode))
def amplitude_envelope(self):
return self._construct(acoustics.signal.amplitude_envelope(self, self.fs))
def instantaneous_frequency(self):
return self._construct(acoustics.signal.instantaneous_frequency(self, self.fs))
def instantaneous_phase(self):
return self._construct(acoustics.signal.instantaneous_phase(self, self.fs))
def detrend(self, **kwargs):
return self._construct(detrend(self, **kwargs))
def unwrap(self):
return self._construct(np.unwrap(self))
def complex_cepstrum(self, N=None):
if N is not None:
times = np.linspace(0.0, self.duration, N, endpoint=False)
else:
times = self.times()
cepstrum, ndelay = acoustics.cepstrum.complex_cepstrum(self, n=N)
return times, cepstrum, ndelay
def real_cepstrum(self, N=None):
if N is not None:
times = np.linspace(0.0, self.duration, N, endpoint=False)
else:
times = self.times()
return times, acoustics.cepstrum.real_cepstrum(self, n=N)
def power_spectrum(self, N=None):
return acoustics.signal.power_spectrum(self, self.fs, N=N)
def angle_spectrum(self, N=None):
return acoustics.signal.angle_spectrum(self, self.fs, N=N)
def phase_spectrum(self, N=None):
return acoustics.signal.phase_spectrum(self, self.fs, N=N)
|
BSD 3-Clause New or Revised License
|
ing-bank/popmon
|
popmon/stats/numpy.py
|
std
|
python
|
def std(a, weights=None, axis=None, dtype=None, ddof=0, keepdims=False):
if weights is None:
return np.std(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims)
else:
m = mean(a, weights=weights, axis=axis, keepdims=True)
v = mean((a - m) ** 2, weights=weights, axis=axis, keepdims=keepdims, ddof=ddof)
return np.sqrt(v)
|
Compute the weighted standard deviation along the specified axis.
:param a: Array containing numbers whose standard deviation is desired. If `a` is not an
array, a conversion is attempted.
:param weights: Array containing weights for the elements of `a`. If `weights` is not an
array, a conversion is attempted.
:param axis: Axis or axes along which the means are computed. The default is to
compute the mean of the flattened array. Type is None or int or tuple of ints, optional.
:param dtype: data type to use in computing the mean.
:param int ddof: Delta Degrees of Freedom. The divisor used in calculations
is ``W - ddof``, where ``W`` is the sum of weights (or number of elements
if `weights` is None). By default `ddof` is zero
:param bool keepdims: If this is set to True, the axes which are reduced are left
in the result as dimensions with size one.
:return: np.ndarray
|
https://github.com/ing-bank/popmon/blob/b82ed51437fd19bc331e62ac28943fa630412bae/popmon/stats/numpy.py#L108-L131
|
import warnings
import numpy as np
import pandas as pd
from scipy import stats
def fraction_of_true(bin_labels, bin_entries):
bin_labels = np.array(bin_labels)
bin_entries = np.array(bin_entries)
assert len(bin_labels) == len(bin_entries)
def replace(bl):
if bl in {"True", "true"}:
return True
elif bl in {"False", "false"}:
return False
return np.nan
if len(bin_labels) == 0 or len(bin_labels) > 4 or np.sum(bin_entries) == 0:
return np.nan
if not np.all([isinstance(bl, (bool, np.bool_)) for bl in bin_labels]):
if not np.all(
[isinstance(bl, (str, np.str_, np.string_)) for bl in bin_labels]
):
return np.nan
n_true = (bin_labels == "True").sum() + (bin_labels == "true").sum()
n_false = (bin_labels == "False").sum() + (bin_labels == "false").sum()
n_nan = (
(bin_labels == "NaN").sum()
+ (bin_labels == "nan").sum()
+ (bin_labels == "None").sum()
+ (bin_labels == "none").sum()
+ (bin_labels == "Null").sum()
+ (bin_labels == "null").sum()
)
if n_true + n_false + n_nan != len(bin_labels):
return np.nan
bin_labels = np.array([replace(bl) for bl in bin_labels])
sum_true = np.sum([be for bl, be in zip(bin_labels, bin_entries) if bl == True])
sum_false = np.sum([be for bl, be in zip(bin_labels, bin_entries) if bl == False])
sum_entries = sum_true + sum_false
if sum_entries == 0:
return np.nan
return (1.0 * sum_true) / sum_entries
def mean(a, weights=None, axis=None, dtype=None, keepdims=False, ddof=0):
if weights is None:
return np.mean(a, axis=axis, dtype=dtype, keepdims=keepdims)
else:
w = np.array(weights)
return np.sum(w * np.array(a), axis=axis, dtype=dtype, keepdims=keepdims) / (
np.sum(w, axis=axis, dtype=dtype, keepdims=keepdims) - ddof
)
|
MIT License
|
thenewboston-developers/validator
|
v1/status_updates/serializers/upgrade_request.py
|
UpgradeRequestSerializer.validate
|
python
|
def validate(self, data):
self_configuration = get_self_configuration(exception_class=RuntimeError)
self_node_identifier = self_configuration.node_identifier
validator_node_identifier = data['validator_node_identifier']
if self_node_identifier != validator_node_identifier:
raise serializers.ValidationError(
f'self_node_identifier of {self_node_identifier} does not match '
f'validator_node_identifier of {validator_node_identifier}'
)
return data
|
Check that self node_identifier matches validator_node_identifier
- this ensures that the request was intended for self
|
https://github.com/thenewboston-developers/validator/blob/7994f5ca6cef02e4e548a857e62162ac69ce5332/v1/status_updates/serializers/upgrade_request.py#L41-L57
|
from django.core.cache import cache
from rest_framework import serializers
from thenewboston.constants.network import CONFIRMATION_VALIDATOR, PRIMARY_VALIDATOR, VERIFY_KEY_LENGTH
from v1.banks.helpers.most_trusted import get_most_trusted_bank
from v1.banks.models.bank import Bank
from v1.cache_tools.cache_keys import BLOCK_QUEUE
from v1.cache_tools.queued_confirmation_blocks import delete_all_queued_confirmation_blocks
from v1.self_configurations.helpers.self_configuration import get_self_configuration
from v1.tasks.upgrade_notices import send_upgrade_notices
class UpgradeRequestSerializer(serializers.Serializer):
node_identifier = serializers.CharField(max_length=VERIFY_KEY_LENGTH)
validator_node_identifier = serializers.CharField(max_length=VERIFY_KEY_LENGTH)
def create(self, validated_data):
self_configuration = get_self_configuration(exception_class=RuntimeError)
if self_configuration.node_type == CONFIRMATION_VALIDATOR:
self_configuration.node_type = PRIMARY_VALIDATOR
self_configuration.save()
cache.set(BLOCK_QUEUE, [], None)
delete_all_queued_confirmation_blocks()
send_upgrade_notices.delay(requesting_banks_node_identifier=validated_data['node_identifier'])
return self_configuration
def update(self, instance, validated_data):
pass
|
MIT License
|
google/ashier
|
ashierlib/directive.py
|
Send.ExpandVariables
|
python
|
def ExpandVariables(self, bindings):
parts = re.split(r'(\$\w+)', self._message)
for i in range(len(parts)):
if parts[i].startswith('$'):
name = parts[i][1:]
parts[i] = bindings[name]
return ''.join(parts)
|
Expand variables in the message.
Args:
bindings: a dictionary of variable bindings.
Returns:
The message to be sent, with variables of the form $var replaced
by the strings they map to in the dictionary argument.
|
https://github.com/google/ashier/blob/76710289b2c459ed1ef8ca822cfa1d5fbad05b89/ashierlib/directive.py#L353-L369
|
__author__ = 'cklin@google.com (Chuan-kai Lin)'
import os
import re
import utils
def CreateLines(filename):
lineno = 1
lines = []
try:
with open(filename) as f:
for line in f:
lines.append(Line(filename, lineno, line))
lineno += 1
return lines
except IOError as err:
utils.ReportError(str(err))
return ''
class Line(object):
def __init__(self, filename, lineno, content):
self.lineno = lineno
self.content = content
self._header = '%s:%d ' % (filename, lineno)
def GetIndent(self):
expanded = self.content.expandtabs(8)
return len(expanded)-len(expanded.lstrip())
def StrippedContent(self):
return self.content.lstrip().rstrip('\n')
def WithIdentHeader(self, mesg):
return self._header+mesg
def ReportError(self, mesg):
utils.ReportError(self.WithIdentHeader(mesg))
def ParseDirective(line):
source = line.StrippedContent()
if source.startswith('#') or not source:
return None
elif '\t' in source:
line.ReportError('unexpected TAB in directive')
elif source.startswith('>'):
return Template(line, source[1:])
elif source.startswith('?'):
if source == '?':
line.ReportError('empty marker directive')
else:
syntax = re.compile(r' *(\.+) *(\w+)? *(?:/(.+)/)? *$')
matches = syntax.match(source[1:])
if matches:
start, finish = matches.span(1)
name = matches.group(2)
regex = matches.group(3) or ''
return Marker(line, start, finish, name, regex)
else:
line.ReportError('malformed marker directive')
elif source.startswith('!'):
if source == '!':
line.ReportError('empty action directive')
else:
syntax = re.compile(r' *(\w+) +"(.*)" *$')
matches = syntax.match(source[1:])
if matches:
channel = matches.group(1)
message = matches.group(2)
return Send(line, channel, message)
else:
line.ReportError('malformed action directive')
else:
line.ReportError('unrecognized directive syntax')
return None
class Template(object):
def __init__(self, line, sample):
self.line = line
self.sample = sample
self.ReportError = line.ReportError
def InferSkip(self, start, finish):
regex = ''
for ch in re.sub(r'\s+', ' ', self.sample[start:finish]):
regex += r'\s+' if ch == ' ' else re.escape(ch)
try:
match = re.match(regex, self.sample[start:])
assert match and match.end() >= finish-start, (
self.line.WithIdentHeader(
'skip pattern matches too few characters'))
if match.end() > finish-start:
self.ReportError('invalid boundary at column %d' % finish)
except re.error:
assert False, self.line.WithIdentHeader(
'ill-formed regular expression')
return regex
class Marker(object):
def __init__(self, line, start, finish, name, regex):
self.line = line
self.start = start
self.finish = finish
self.name = name
self._regex = utils.RemoveRegexBindingGroups(regex)
self.ReportError = line.ReportError
def InferRegex(self, template):
sample = template.sample
assert self.finish <= len(sample), (
'marker extends beyond template')
if not self._regex:
if len(sample) == self.finish:
self._regex = '.+'
elif len(sample) > self.finish:
delimiter = sample[self.finish]
if sample.count(delimiter, self.start, self.finish) == 0:
self._regex = '[^%s]+' % (
r'\s' if delimiter.isspace() else delimiter,)
else:
self.ReportError('delimiter appears in the marker')
if self._regex:
try:
match = re.match(self._regex, sample[self.start:])
if not match or match.end() != self.finish-self.start:
self.ReportError('regex does not match marker')
except re.error:
self.ReportError('ill-formed regular expression')
return self._regex
class Send(object):
def __init__(self, line, channel, message):
self.line = line
self._channel = channel
self._message = message
self.ReportError = line.ReportError
if channel not in ('controller', 'terminal'):
self.ReportError('invalid channel name: %s' % (channel,))
def References(self):
names = set()
parts = re.split(r'(\$\w+)', self._message)
for segment in parts:
if segment.startswith('$'):
names.add(segment[1:])
return names
|
Apache License 2.0
|
quantipy/quantipy
|
quantipy/core/helpers/functions.py
|
as_datetime64
|
python
|
def as_datetime64(data, date_format='dmy', date_sep='/', time_format='hm', time_sep=':'):
has_time = ' ' in data[0]
date_reorder = [date_format.index(p) for p in 'ymd']
if has_time:
if 's' not in time_format:
data = data + ':00'
date_time = zip(*(data.str.split(' ')))
time = pd.Series(date_time[1])
date = pd.Series(date_time[0])
date = date.str.split(date_sep).apply(lambda x: '-'.join([x[p] for p in date_reorder]))
if has_time:
date_time = (date +' '+ time).astype(np.datetime64)
return date_time
|
Converts data, a dtype 'object' Series storing date or datetime
as text, to a numpy.datetime64 Series object.
The default argument values work for a Series in the format:
"02/07/2014 16:58" as dtype object
and will return:
"2014-07-02 15:58:00" as dtype numpy.datetime64
There are still some issues with UTC that will need to be ironed out.
|
https://github.com/quantipy/quantipy/blob/82ef628d089ea9dbc47c91e842e50dd9e87bb29e/quantipy/core/helpers/functions.py#L845-L872
|
import pandas as pd
import numpy as np
import json
import cPickle
import re
import copy
import itertools
import math
import re, string
from collections import OrderedDict, defaultdict
from constants import DTYPE_MAP
from constants import MAPPED_PATTERN
from itertools import product
import quantipy as qp
def load_json(path_json, hook=OrderedDict):
with open(path_json) as f:
obj = json.load(f, object_pairs_hook=hook)
return obj
def loads_json(json_text, hook=OrderedDict):
obj = json.loads(json_text, object_pairs_hook=hook)
return obj
def save_json(obj, path_json):
with open(path_json, 'w+') as f:
json.dump(obj, f)
def df_to_browser(df, path_html='df.html', **kwargs):
import webbrowser
with open(path_html, 'w') as f:
f.write(df.to_html(**kwargs))
webbrowser.open(path_html, new=2)
def get_delimited_value_map(ds, ds_split=None, sep=';'):
if ds_split is None:
ds_split = ds.dropna().str.split(sep)
delimited = pd.DataFrame(ds_split.tolist())
value_map = pd.unique(delimited.values.ravel())
value_map = np.sort(value_map[value_map.nonzero()])
return value_map
def verify_dtypes_vs_meta(data, meta):
dtypes = data.dtypes
dtypes.name = 'dtype'
var_types = pd.DataFrame({k: v['type'] for k, v in meta['columns'].iteritems()}, index=['meta']).T
df = pd.concat([var_types, dtypes.astype(str)], axis=1)
missing = df.loc[df['dtype'].isin([np.NaN])]['meta']
if missing.size>0:
print '\nSome meta not paired to data columns was found (these may be special data types):\n', missing, '\n'
df = df.dropna(how='any')
df['verified'] = df.apply(lambda x: x['dtype'] in DTYPE_MAP[x['meta']], axis=1)
return df
def coerce_dtypes_from_meta(data, meta):
data = data.copy()
verified = verify_dtypes_vs_meta(data, meta)
for idx in verified[~verified['verified']].index:
meta = verified.loc[idx]['meta']
dtype = verified.loc[idx]['dtype']
if meta in ["int", "single"]:
if dtype in ["object"]:
data[idx] = data[idx].convert_objects(convert_numeric=True)
data[idx] = data[idx].replace(np.NaN, 0).astype(int)
return data
def index_to_dict(index):
if isinstance(index, pd.MultiIndex):
levels = index.levels
names = index.names
index_dict = {names[i]: levels[i] for i in range(len(names))}
else:
index_dict = {None: index.tolist()}
return index_dict
def has_collapsed_axis(df, axis=0):
agg_func = ('cbase', 'rbase', 'effbase', 'mean', 'net', 'promoters')
if axis == 0:
if df.index.get_level_values(1)[0].startswith(agg_func):
return True
else:
if df.T.index.get_level_values(1)[0].startswith(agg_func):
return True
def get_view_slicer(meta, col, values=None):
if values is None:
slicer = [
(col, val['value'])
for val in emulate_meta(meta, meta['columns'][col]['values'])]
else:
slicer = [
(col, val)
for val in values]
return slicer
def paint_index(meta,
index,
text_key,
display_names=False,
transform_names=None,
grp_text_map=None):
single_row = len(index.values)==1
levels = get_index_levels(index)
col = levels[0]
values = list(levels[1])
if not col in meta['columns']:
return index
else:
col_text = paint_col_text(
meta, col, text_key, display_names, transform_names)
values_text = paint_col_values_text(
meta, col, values, text_key, grp_text_map)
new_index = build_multiindex_from_tuples(
col_text,
values_text,
['Question', 'Values'],
single_row)
return new_index
def paint_view(meta, view, text_key=None, display_names=None,
transform_names=False, axes=['x', 'y']):
if text_key is None: text_key = finish_text_key(meta, {})
if display_names is None: display_names = ['x', 'y']
is_array = any(view.meta()[axis]['is_array'] for axis in ['x', 'y'])
if is_array:
df = paint_array(
meta, view, text_key, display_names, transform_names, axes)
else:
df = view.dataframe.copy()
grp_text_map = view.meta()['agg']['grp_text_map']
df = paint_dataframe(
meta, df, text_key, display_names, transform_names, axes,
grp_text_map)
return df
def paint_dataframe(meta, df, text_key=None, display_names=None,
transform_names=False, axes=['x', 'y'],
grp_text_map=None):
if text_key is None: text_key = finish_text_key(meta, {})
if display_names is None: display_names = ['x', 'y']
if 'x' in axes:
display_x_names = 'x' in display_names
if len(df.index.levels[0])>1:
order = []
for x in df.index.labels[0]:
if x not in order:
order.append(x)
levels = df.index.levels[0]
it = sorted(zip(levels, order), key=lambda x: x[1])
df.index = pd.concat([
paint_dataframe(
meta, df.ix[[level], :], text_key, display_names,
transform_names, 'x', grp_text_map)
for level, _ in it],
axis=0).index
else:
df.index = paint_index(
meta, df.index, text_key['x'],
display_x_names, transform_names, grp_text_map)
if 'y' in axes:
display_y_names = 'y' in display_names
if len(df.columns.levels[0])>1:
df.columns = pd.concat([
paint_dataframe(
meta, df.ix[:, [level]], text_key, display_names,
transform_names, 'y', grp_text_map)
for level in df.columns.levels[0]],
axis=1).columns
else:
df.columns = paint_index(
meta, df.columns, text_key['y'],
display_y_names, transform_names)
return df
def paint_array(meta, view, text_key, display_names, transform_names, axes):
df = view.dataframe.copy()
grp_text_map = view.meta()['agg']['grp_text_map']
columns_on_x = view.meta()['x']['is_array']
axes_x = {True: 'x',
False: 'y'}
if 'x' in axes:
display_x_names = axes_x.get(columns_on_x) in display_names
index = paint_array_items_index(
meta,
df.index if columns_on_x else df.columns,
text_key['x'],
display_x_names)
if 'y' in axes:
display_y_names = axes_x.get(not columns_on_x) in display_names
columns = paint_array_values_index(
meta,
df.columns if columns_on_x else df.index,
text_key['y'],
display_y_names,
grp_text_map)
df.index = index if columns_on_x else columns
df.columns = columns if columns_on_x else index
return df
def get_index_levels(index):
levels = []
idx_values = index.values
single_row = len(idx_values)==1
if single_row:
unzipped = [idx_values[0]]
levels.append(unzipped[0][0])
levels.append([unzipped[0][1]])
else:
unzipped = zip(*index.values)
levels.append(unzipped[0][0])
levels.append(unzipped[1])
return levels
def paint_col_text(meta, col, text_key, display_names, transform_names):
col_meta = emulate_meta(meta, meta['columns'][col])
if display_names:
try:
col_name = col
if transform_names: col_name = transform_names.get(col, col)
col_text = '{}. {}'.format(
col_name, get_text(col_meta['text'], text_key))
except UnicodeEncodeError:
col_text = '{}. {}'.format(
col_name, qp.core.tools.dp.io.unicoder(
get_text(col_meta['text'], text_key),
like_ascii=True))
else:
col_text = get_text(col_meta['text'], text_key)
return col_text
def paint_add_text_map(meta, add_text_map, text_key):
if add_text_map is None:
add_text_map = {}
else:
try:
add_text_map = {
key: get_text(text, text_key)
for key, text in add_text_map.iteritems()}
except UnicodeEncodeError:
add_text_map = {
key: qp.core.tools.dp.io.unicoder(
get_text(text, text_key, like_ascii=True))
for key, text in add_text_map.iteritems()}
return add_text_map
def paint_col_values_text(meta, col, values, text_key, add_text_map=None):
add_text_map = paint_add_text_map(meta, add_text_map, text_key)
num_col = meta['columns'][col]['type'] in ['int', 'float']
try:
has_all = 'All' in values
if has_all: values.remove('All')
if not num_col:
try:
values_map = {
val['value']: get_text(val['text'], text_key)
for val in meta['columns'][col]['values']}
except UnicodeEncodeError:
values_map = {
val['value']: qp.core.tools.dp.io.unicoder(
get_text(val['text'], text_key, like_ascii=True))
for val in meta['columns'][col]['values']}
else:
values_map = {}
values_map.update(add_text_map)
values_text = [values_map[v] for v in values]
except KeyError:
values_text = values
except ValueError:
values_text = values
if has_all:
values_text = ['All'] + values_text
return values_text
def paint_mask_text(meta, mask, text_key, display_names):
mask_meta = meta['masks'][mask]
if display_names:
try:
mask_text = '{}. {}'.format(
mask, get_text(mask_meta['text'], text_key))
except UnicodeEncodeError:
mask_text = '{}. {}'.format(
mask, qp.core.tools.dp.io.unicoder(
get_text(mask_meta['text'], text_key),
like_ascii=True))
else:
mask_text = get_text(mask_meta['text'], text_key)
return mask_text
def paint_array_items_text(meta, mask, items, text_key):
try:
has_all = 'All' in items
items = [i for i in items if not i=='All']
items_map = {}
try:
for item in meta['masks'][mask]['items']:
if isinstance(item['text'], dict):
text = get_text(item['text'], text_key)
else:
source = item['source'].split('@')[-1]
text = get_text(meta['columns'][source]['text'], text_key)
text = text.replace(
'{} - '.format(
get_text(meta['masks'][mask]['text'],
text_key)),
'')
items_map.update({item['source'].split('@')[-1]: text})
except UnicodeEncodeError:
for item in meta['masks'][mask]['items']:
if isinstance(item['text'], dict):
text = qp.core.tools.dp.io.unicoder(
get_text(item['text'], text_key),
like_ascii=True)
else:
source = item['source'].split('@')[-1]
text = qp.core.tools.dp.io.unicoder(
get_text(meta['columns'][source]['text'], text_key),
like_ascii=True)
text = qp.core.tools.dp.io.unicoder(
text.replace(
'{} - '.format(
get_text(meta['masks'][mask]['text'],
text_key)),
''),
like_ascii=True)
items_map.update({item['source'].split('@')[-1]: text})
items_text = [items_map[i] for i in items]
if has_all:
items_text = ['All'] + items_text
except KeyError:
items_text = items
except ValueError:
items_text = items
return items_text
def paint_array_values_text(meta, mask, values, text_key, add_text_map=None):
add_text_map = paint_add_text_map(meta, add_text_map, text_key)
values_meta = emulate_meta(meta, meta['masks'][mask]['values'])
try:
has_all = 'All' in values
if has_all: values.remove('All')
try:
values_map = {
val['value']: get_text(val['text'], text_key)
for val in values_meta}
except UnicodeEncodeError:
values_map = {
val['value']: qp.core.tools.dp.io.unicoder(
get_text(val['text'], text_key,
like_ascii=True))
for val in values_meta}
values_map.update(add_text_map)
values_text = [values_map[v] for v in values]
if has_all:
values_text = ['All'] + values_text
except KeyError:
values_text = values
except ValueError:
values_text = values
return values_text
def build_multiindex_from_tuples(l0_text, l1_text, names, single_row):
if single_row:
new_index = pd.MultiIndex.from_tuples(
[(l0_text, l1_text[0])], names=names)
else:
new_index = pd.MultiIndex.from_product(
[[l0_text], l1_text], names=names)
return new_index
def paint_array_items_index(meta, index, text_key, display_names):
single_row = len(index.values)==1
levels = get_index_levels(index)
mask = levels[0]
items = levels[1]
mask_text = paint_mask_text(meta, mask, text_key, display_names)
items_text = paint_array_items_text(meta, mask, items, text_key)
new_index = build_multiindex_from_tuples(
mask_text,
items_text,
['Array', 'Questions'],
single_row)
return new_index
def paint_array_values_index(meta, index, text_key, display_names,
grp_text_map=None):
single_row = len(index.values)==1
levels = get_index_levels(index)
mask = levels[0]
values = levels[1]
mask_text = paint_mask_text(meta, mask, text_key, display_names)
values_text = paint_array_values_text(
meta, mask, values, text_key, grp_text_map)
new_index = build_multiindex_from_tuples(
mask_text,
values_text,
['Question', 'Values'],
single_row)
return new_index
def get_rules(meta, col, axis):
if col=='@':
return None
try:
if col in meta['columns']:
rules = meta['columns'][col]['rules'][axis]
elif col in meta['masks']:
rules = meta['masks'][col]['rules'][axis]
return rules
except:
return None
def get_rules_slicer(f, rules, copy=True):
if copy:
f = f.copy()
if 'slicex' in rules:
kwargs = rules['slicex']
values = kwargs.get('values', None)
f = qp.core.tools.view.query.slicex(f, **kwargs)
if 'sortx' in rules:
kwargs = rules['sortx']
fixed = kwargs.get('fixed', None)
sort_on = kwargs.get('sort_on', '@')
f = qp.core.tools.view.query.sortx(f, **kwargs)
if 'dropx' in rules:
kwargs = rules['dropx']
values = kwargs.get('values', None)
f = qp.core.tools.view.query.dropx(f, **kwargs)
return f.index.values.tolist()
def apply_rules(df, meta, rules):
col_x = meta['columns'][df.index.levels[0][0]]
col_y = meta['columns'][df.columns.levels[0][0]]
if isinstance(rules, bool):
rules = ['x', 'y']
if 'x' in rules and df.index.levels[1][0]!='@' and 'rules' in col_x:
rx = col_x['rules'].get('x', None)
if not rx is None:
if 'slicex' in rx:
kwargs = rx['slicex']
values = kwargs.get('values', None)
if not values is None:
kwargs['values'] = [str(v) for v in values]
df = qp.core.tools.view.query.slicex(df, **kwargs)
if 'sortx' in rx:
kwargs = rx['sortx']
fixed = kwargs.get('fixed', None)
if not fixed is None:
kwargs['fixed'] = [str(f) for f in fixed]
df = qp.core.tools.view.query.sortx(df, **kwargs)
if 'dropx' in rx:
kwargs = rx['dropx']
values = kwargs.get('values', None)
if not values is None:
kwargs['values'] = [str(v) for v in values]
df = qp.core.tools.view.query.dropx(df, **kwargs)
if 'y' in rules and df.columns.levels[1][0]!='@' and 'rules' in col_y:
ry = col_y['rules'].get('y', None)
if not ry is None:
if 'slicex' in ry:
kwargs = ry['slicex']
values = kwargs.get('values', None)
if not values is None:
kwargs['values'] = [str(v) for v in values]
df = qp.core.tools.view.query.slicex(df.T, **kwargs).T
if 'sortx' in ry:
kwargs = ry['sortx']
fixed = kwargs.get('fixed', None)
if not fixed is None:
kwargs['fixed'] = [str(f) for f in fixed]
df = qp.core.tools.view.query.sortx(df.T, **kwargs).T
if 'dropx' in ry:
kwargs = ry['dropx']
values = kwargs.get('values', None)
if not values is None:
kwargs['values'] = [str(v) for v in values]
df = qp.core.tools.view.query.dropx(df.T, **kwargs).T
return df
def rule_viable_axes(meta, vk, x, y):
viable_axes = ['x', 'y']
condensed_x = False
condensed_y = False
array_summary = (x in meta['masks'] and y == '@')
transposed_summary = (y in meta['masks'] and x == '@')
v_method = vk.split('|')[1]
relation = vk.split('|')[2]
s_name = vk.split('|')[-1]
descriptive = v_method.startswith('.d')
exp_net = '}+]' in relation
array_sum_freqs = array_summary and s_name in ['counts', 'c%', 'r%']
if transposed_summary:
x, y = y, x
if (relation.split(":")[0].startswith('x') and not exp_net) or descriptive:
if not array_summary:
condensed_x = True
elif relation.split(":")[1].startswith('y'):
condensed_y = True
else:
if re.search('x\[.+:y$', relation) != None:
condensed_x = True
elif re.search('x:y\[.+', relation) != None:
condensed_y = True
if re.search('y\[.+:x$', relation) != None:
condensed_y = True
elif re.search('y:x\[.+', relation) != None:
condensed_x = True
if condensed_x or x=='@': viable_axes.remove('x')
if condensed_y or (y=='@' and not array_sum_freqs): viable_axes.remove('y')
return viable_axes
def get_text(text, text_key, axis=None):
if text is None:
text = ''
if isinstance(text, (str, unicode)):
return text
elif isinstance(text, (dict, OrderedDict)):
if axis is None:
if isinstance(text_key, (str, unicode)):
if text_key in text:
return text[text_key]
else:
for key in text_key:
if key in text:
return text[key]
else:
if axis in text_key.keys():
for key in text_key[axis]:
if key in text:
return text[key]
raise KeyError(
"No matching text key from the list {} was not found in the"
" text object: {}".format(text_key, text)
)
else:
raise TypeError(
"The value set into a 'text' object must either be"
" <str> or <unicode>, or <dict> or <collections.OrderedDict>"
" of <str> or <unicode>. Found: {}".format(text)
)
def finish_text_key(meta, text_key):
default_text = meta['lib'].get('default text', 'None')
if text_key is None:
text_key = {}
for key in ['x', 'y']:
if key in text_key.keys():
if isinstance(text_key[key], (str, unicode)):
text_key[key] = [text_key[key], default_text]
elif isinstance(text_key[key], list):
text_key[key].append(default_text)
else:
raise TypeError(
"text_key items must be <str> or <list>\n"
"Found: %s" % (type(text_key[key]))
)
else:
text_key[key] = [default_text]
return text_key
def get_values(var_meta, meta):
values = []
for value in var_meta['values']:
if isinstance(value, dict):
values.append(value)
elif isinstance(value, (str, unicode)):
values += get_mapped_meta(meta, value)
return values
def flatten_list(the_list, deep_flatten=False):
if deep_flatten:
flat = list(itertools.chain.from_iterable(the_list))
else:
flat = []
for item in the_list:
if isinstance(item, (list)):
for subitem in item:
flat.append(subitem)
else:
flat.append(item)
return flat
def is_mapped_meta(item):
if isinstance(item, (str, unicode)):
if item.split('@')[0] in ['lib', 'columns', 'masks', 'info', 'sets']:
if re.match(MAPPED_PATTERN, item):
return True
return False
def get_mapped_meta(meta, mapped):
steps = mapped.split('@')
key = steps.pop()
for step in steps:
if isinstance(meta, list):
step = int(step)
meta = meta[step]
if key in meta:
if isinstance(meta[key], (dict, OrderedDict)):
meta = {key: meta[key]}
else:
meta = meta[key]
return meta
def create_multi_index(item_1, item_2, names=None):
return pd.MultiIndex.from_product([[item_1], item_2], names=names)
def apply_multi_index_items(view, multi_index_items=None, names=None):
if multi_index_items is not None:
for key in multi_index_items:
item = multi_index_items[key]
multi_index = create_multi_index(item[0], item[1], names=names)
setattr(view, key, multi_index)
def emulate_meta(meta, item):
if is_mapped_meta(item):
item = get_mapped_meta(meta, item)
item = emulate_meta(meta, item)
return item
elif isinstance(item, (list, tuple, set)):
for n, i in enumerate(item):
item[n] = emulate_meta(meta, item[n])
item = flatten_list(item)
return item
elif isinstance(item, (dict, OrderedDict)):
for k in item.keys():
item[k] = emulate_meta(meta, item[k])
return item
else:
return item
|
MIT License
|
etiennemd/alexa-ecovacs
|
Deploy/Crypto/PublicKey/pubkey.py
|
pubkey.verify
|
python
|
def verify (self, M, signature):
if isinstance(M, bytes): M=bytes_to_long(M)
return self._verify(M, signature)
|
Verify the validity of a signature.
:Parameter M: The expected message.
:Type M: byte string or long
:Parameter signature: The signature to verify.
:Type signature: tuple with two items, as return by `sign`
:Return: True if the signature is correct, False otherwise.
|
https://github.com/etiennemd/alexa-ecovacs/blob/d0ee083c3d0728ebbfda3f41ae84979c6aad36d7/Deploy/Crypto/PublicKey/pubkey.py#L114-L126
|
__revision__ = "$Id$"
import types, warnings
from Crypto.Util.number import *
class pubkey:
def __init__(self):
pass
def __getstate__(self):
d=self.__dict__
for key in self.keydata:
if key in d: d[key]=int(d[key])
return d
def __setstate__(self, d):
for key in self.keydata:
if key in d: self.__dict__[key]=bignum(d[key])
def encrypt(self, plaintext, K):
wasString=0
if isinstance(plaintext, bytes):
plaintext=bytes_to_long(plaintext) ; wasString=1
if isinstance(K, bytes):
K=bytes_to_long(K)
ciphertext=self._encrypt(plaintext, K)
if wasString: return tuple(map(long_to_bytes, ciphertext))
else: return ciphertext
def decrypt(self, ciphertext):
wasString=0
if not isinstance(ciphertext, tuple):
ciphertext=(ciphertext,)
if isinstance(ciphertext[0], bytes):
ciphertext=tuple(map(bytes_to_long, ciphertext)) ; wasString=1
plaintext=self._decrypt(ciphertext)
if wasString: return long_to_bytes(plaintext)
else: return plaintext
def sign(self, M, K):
if (not self.has_private()):
raise TypeError('Private key not available in this object')
if isinstance(M, bytes): M=bytes_to_long(M)
if isinstance(K, bytes): K=bytes_to_long(K)
return self._sign(M, K)
|
MIT License
|
ali5h/rules_pip
|
third_party/py/pip/_internal/utils/subprocess.py
|
call_subprocess
|
python
|
def call_subprocess(
cmd,
show_stdout=False,
cwd=None,
on_returncode='raise',
extra_ok_returncodes=None,
command_desc=None,
extra_environ=None,
unset_environ=None,
spinner=None,
log_failed_cmd=True
):
if extra_ok_returncodes is None:
extra_ok_returncodes = []
if unset_environ is None:
unset_environ = []
if show_stdout:
log_subprocess = subprocess_logger.info
used_level = logging.INFO
else:
log_subprocess = subprocess_logger.debug
used_level = logging.DEBUG
showing_subprocess = subprocess_logger.getEffectiveLevel() <= used_level
use_spinner = not showing_subprocess and spinner is not None
if command_desc is None:
command_desc = format_command_args(cmd)
log_subprocess("Running command %s", command_desc)
env = os.environ.copy()
if extra_environ:
env.update(extra_environ)
for name in unset_environ:
env.pop(name, None)
try:
proc = subprocess.Popen(
reveal_command_args(cmd),
stderr=subprocess.STDOUT, stdin=subprocess.PIPE,
stdout=subprocess.PIPE, cwd=cwd, env=env,
)
assert proc.stdin
assert proc.stdout
proc.stdin.close()
except Exception as exc:
if log_failed_cmd:
subprocess_logger.critical(
"Error %s while executing command %s", exc, command_desc,
)
raise
all_output = []
while True:
line = console_to_str(proc.stdout.readline())
if not line:
break
line = line.rstrip()
all_output.append(line + '\n')
log_subprocess(line)
if use_spinner:
assert spinner
spinner.spin()
try:
proc.wait()
finally:
if proc.stdout:
proc.stdout.close()
proc_had_error = (
proc.returncode and proc.returncode not in extra_ok_returncodes
)
if use_spinner:
assert spinner
if proc_had_error:
spinner.finish("error")
else:
spinner.finish("done")
if proc_had_error:
if on_returncode == 'raise':
if not showing_subprocess and log_failed_cmd:
msg = make_subprocess_output_error(
cmd_args=cmd,
cwd=cwd,
lines=all_output,
exit_status=proc.returncode,
)
subprocess_logger.error(msg)
exc_msg = (
'Command errored out with exit status {}: {} '
'Check the logs for full command output.'
).format(proc.returncode, command_desc)
raise InstallationError(exc_msg)
elif on_returncode == 'warn':
subprocess_logger.warning(
'Command "%s" had error code %s in %s',
command_desc,
proc.returncode,
cwd,
)
elif on_returncode == 'ignore':
pass
else:
raise ValueError('Invalid value: on_returncode={!r}'.format(
on_returncode))
return ''.join(all_output)
|
Args:
show_stdout: if true, use INFO to log the subprocess's stderr and
stdout streams. Otherwise, use DEBUG. Defaults to False.
extra_ok_returncodes: an iterable of integer return codes that are
acceptable, in addition to 0. Defaults to None, which means [].
unset_environ: an iterable of environment variable names to unset
prior to calling subprocess.Popen().
log_failed_cmd: if false, failed commands are not logged, only raised.
|
https://github.com/ali5h/rules_pip/blob/fb02cb7bf5c03bc8cd4269679e4aea2e1839b501/third_party/py/pip/_internal/utils/subprocess.py#L111-L253
|
from __future__ import absolute_import
import logging
import os
import subprocess
from pip._vendor.six.moves import shlex_quote
from pip._internal.cli.spinners import SpinnerInterface, open_spinner
from pip._internal.exceptions import InstallationError
from pip._internal.utils.compat import console_to_str, str_to_display
from pip._internal.utils.logging import subprocess_logger
from pip._internal.utils.misc import HiddenText, path_to_display
from pip._internal.utils.typing import MYPY_CHECK_RUNNING
if MYPY_CHECK_RUNNING:
from typing import Any, Callable, Iterable, List, Mapping, Optional, Text, Union
CommandArgs = List[Union[str, HiddenText]]
LOG_DIVIDER = '----------------------------------------'
def make_command(*args):
command_args = []
for arg in args:
if isinstance(arg, list):
command_args.extend(arg)
else:
command_args.append(arg)
return command_args
def format_command_args(args):
return ' '.join(
shlex_quote(str(arg)) if isinstance(arg, HiddenText)
else shlex_quote(arg) for arg in args
)
def reveal_command_args(args):
return [
arg.secret if isinstance(arg, HiddenText) else arg for arg in args
]
def make_subprocess_output_error(
cmd_args,
cwd,
lines,
exit_status,
):
command = format_command_args(cmd_args)
command_display = str_to_display(command, desc='command bytes')
cwd_display = path_to_display(cwd)
output = ''.join(lines)
msg = (
u'Command errored out with exit status {exit_status}:\n'
' command: {command_display}\n'
' cwd: {cwd_display}\n'
'Complete output ({line_count} lines):\n{output}{divider}'
).format(
exit_status=exit_status,
command_display=command_display,
cwd_display=cwd_display,
line_count=len(lines),
output=output,
divider=LOG_DIVIDER,
)
return msg
|
MIT License
|
facebookresearch/reagent
|
reagent/gym/policies/policy.py
|
Policy.act
|
python
|
def act(
self, obs: Any, possible_actions_mask: Optional[torch.Tensor] = None
) -> rlt.ActorOutput:
scorer_inputs = (obs,)
if possible_actions_mask is not None:
scorer_inputs += (possible_actions_mask,)
scores = self.scorer(*scorer_inputs)
actor_output = self.sampler.sample_action(scores)
return actor_output.cpu().detach()
|
Performs the composition described above.
These are the actions being put into the replay buffer, not necessary
the actions taken by the environment!
|
https://github.com/facebookresearch/reagent/blob/57b58a8b3a6b74bb87a197b73a6cd108ddad895e/reagent/gym/policies/policy.py#L24-L37
|
from typing import Any, Optional
import reagent.core.types as rlt
import torch
from reagent.gym.types import Sampler, Scorer
class Policy:
def __init__(self, scorer: Scorer, sampler: Sampler):
self.scorer = scorer
self.sampler = sampler
|
BSD 3-Clause New or Revised License
|
eventbrite/pysoa
|
pysoa/client/expander.py
|
TypeNode.expansions
|
python
|
def expansions(self):
return list(six.itervalues(self._expansions))
|
The type node's list of expansions.
|
https://github.com/eventbrite/pysoa/blob/8ab18b43f533574f2b235c734da309ab21176957/pysoa/client/expander.py#L193-L197
|
from __future__ import (
absolute_import,
unicode_literals,
)
from typing import (
Any,
Dict,
List,
Optional,
Union,
cast,
)
from conformity import fields
from conformity.settings import (
Settings,
SettingsSchema,
)
import six
__all__ = (
'ExpansionConverter',
'ExpansionNode',
'Expansions',
'ExpansionSettings',
'TypeExpansions',
'TypeNode',
'TypeRoutes',
)
class ExpansionSettings(Settings):
schema = {
'type_routes': fields.SchemalessDictionary(
key_type=fields.UnicodeString(
description='The name of the expansion route, to be referenced from the `type_expansions` '
'configuration',
),
value_type=fields.Dictionary(
{
'service': fields.UnicodeString(
description='The name of the service to call to resolve this route',
),
'action': fields.UnicodeString(
description='The name of the action to call to resolve this route, which must accept a single '
'request field of type `List`, to which all the identifiers for matching candidate '
'expansions will be passed, and which must return a single response field of type '
'`Dictionary`, from which all expansion objects will be obtained',
),
'request_field': fields.UnicodeString(
description='The name of the `List` identifier field to place in the `ActionRequest` body when '
'making the request to the named service and action',
),
'response_field': fields.UnicodeString(
description='The name of the `Dictionary` field returned in the `ActionResponse`, from which '
'the expanded objects will be extracted',
),
},
description='The instructions for resolving this type route',
),
description='The definition of all recognized types that can be expanded into and information about how '
'to resolve objects of those types through action calls',
),
'type_expansions': fields.SchemalessDictionary(
key_type=fields.UnicodeString(
description='The name of the type for which the herein defined expansions can be sought, which will be '
"matched with a key from the `expansions` dict passed to one of `Client`'s `call_***` "
'methods, and which must also match the value of a `_type` field found on response objects '
'on which extra data will be expanded',
),
value_type=fields.SchemalessDictionary(
key_type=fields.UnicodeString(
description='The name of an expansion, which will be matched with a value from the `expansions` '
"dict passed to one of `Client`'s `call_***` methods corresponding to the type key in "
'that dict',
),
value_type=fields.Dictionary(
{
'type': fields.Nullable(fields.UnicodeString(
description='The type of object this expansion yields, which must map back to a '
'`type_expansions` key in order to support nested/recursive expansions, and '
'may be `None` if you do not wish to support nested/recursive expansions for '
'this expansion',
)),
'route': fields.UnicodeString(
description='The route to use to resolve this expansion, which must match a key in the '
'`type_routes` configuration',
),
'source_field': fields.UnicodeString(
description='The name of the field in the base object that contains the identifier used '
'for obtaining the expansion object (the identifier will be passed to the '
'`request_field` in the route when resolving the expansion)',
),
'destination_field': fields.UnicodeString(
description='The name of a not-already-existent field in the base object into which the '
'expansion object will be placed after it is obtained from the route',
),
'raise_action_errors': fields.Boolean(
description='Whether to raise action errors encountered when expanding objects these '
'objects (by default, action errors are suppressed, which differs from the '
'behavior of the `Client` to raise action errors during normal requests)',
),
},
optional_keys=('raise_action_errors', ),
description='The definition of one specific possible expansion for this object type',
),
description='The definition of all possible expansions for this object type',
),
description='The definition of all types that may contain identifiers that can be expanded into objects '
'using the `type_routes` configurations',
),
}
class TypeNode(object):
def __init__(self, node_type):
self.type = node_type
self._expansions = {}
def add_expansion(self, expansion_node):
existing_expansion_node = self.get_expansion(expansion_node.name)
if existing_expansion_node:
for child_expansion in expansion_node.expansions:
existing_expansion_node.add_expansion(child_expansion)
else:
self._expansions[expansion_node.name] = expansion_node
def get_expansion(self, expansion_name):
return self._expansions.get(expansion_name)
def find_objects(self, obj):
objects = []
if isinstance(obj, dict):
object_type = obj.get('_type')
if object_type == self.type:
objects.append(obj)
else:
for sub_object in six.itervalues(obj):
objects.extend(self.find_objects(sub_object))
elif isinstance(obj, list):
for sub_object in obj:
objects.extend(self.find_objects(sub_object))
return objects
@property
|
Apache License 2.0
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_role_binding.py
|
V1RoleBinding.role_ref
|
python
|
def role_ref(self, role_ref):
if self.local_vars_configuration.client_side_validation and role_ref is None:
raise ValueError("Invalid value for `role_ref`, must not be `None`")
self._role_ref = role_ref
|
Sets the role_ref of this V1RoleBinding.
:param role_ref: The role_ref of this V1RoleBinding. # noqa: E501
:type: V1RoleRef
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_role_binding.py#L152-L162
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1RoleBinding(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'api_version': 'str',
'kind': 'str',
'metadata': 'V1ObjectMeta',
'role_ref': 'V1RoleRef',
'subjects': 'list[V1Subject]'
}
attribute_map = {
'api_version': 'apiVersion',
'kind': 'kind',
'metadata': 'metadata',
'role_ref': 'roleRef',
'subjects': 'subjects'
}
def __init__(self, api_version=None, kind=None, metadata=None, role_ref=None, subjects=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._api_version = None
self._kind = None
self._metadata = None
self._role_ref = None
self._subjects = None
self.discriminator = None
if api_version is not None:
self.api_version = api_version
if kind is not None:
self.kind = kind
if metadata is not None:
self.metadata = metadata
self.role_ref = role_ref
if subjects is not None:
self.subjects = subjects
@property
def api_version(self):
return self._api_version
@api_version.setter
def api_version(self, api_version):
self._api_version = api_version
@property
def kind(self):
return self._kind
@kind.setter
def kind(self, kind):
self._kind = kind
@property
def metadata(self):
return self._metadata
@metadata.setter
def metadata(self, metadata):
self._metadata = metadata
@property
def role_ref(self):
return self._role_ref
@role_ref.setter
|
Apache License 2.0
|
azure/azure-devops-cli-extension
|
azure-devops/azext_devops/devops_sdk/v5_0/gallery/gallery_client.py
|
GalleryClient.update_extension_by_id
|
python
|
def update_extension_by_id(self, extension_id):
route_values = {}
if extension_id is not None:
route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str')
response = self._send(http_method='PUT',
location_id='a41192c8-9525-4b58-bc86-179fa549d80d',
version='5.0-preview.2',
route_values=route_values)
return self._deserialize('PublishedExtension', response)
|
UpdateExtensionById.
[Preview API]
:param str extension_id:
:rtype: :class:`<PublishedExtension> <azure.devops.v5_0.gallery.models.PublishedExtension>`
|
https://github.com/azure/azure-devops-cli-extension/blob/5f33f7d81a9c2d2990044fbd9ffa6b535cbda528/azure-devops/azext_devops/devops_sdk/v5_0/gallery/gallery_client.py#L848-L861
|
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class GalleryClient(Client):
def __init__(self, base_url=None, creds=None):
super(GalleryClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = '69d21c00-f135-441b-b5ce-3626378e0819'
def share_extension_by_id(self, extension_id, account_name):
route_values = {}
if extension_id is not None:
route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str')
if account_name is not None:
route_values['accountName'] = self._serialize.url('account_name', account_name, 'str')
self._send(http_method='POST',
location_id='1f19631b-a0b4-4a03-89c2-d79785d24360',
version='5.0-preview.1',
route_values=route_values)
def unshare_extension_by_id(self, extension_id, account_name):
route_values = {}
if extension_id is not None:
route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str')
if account_name is not None:
route_values['accountName'] = self._serialize.url('account_name', account_name, 'str')
self._send(http_method='DELETE',
location_id='1f19631b-a0b4-4a03-89c2-d79785d24360',
version='5.0-preview.1',
route_values=route_values)
def share_extension(self, publisher_name, extension_name, account_name):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
if account_name is not None:
route_values['accountName'] = self._serialize.url('account_name', account_name, 'str')
self._send(http_method='POST',
location_id='a1e66d8f-f5de-4d16-8309-91a4e015ee46',
version='5.0-preview.1',
route_values=route_values)
def unshare_extension(self, publisher_name, extension_name, account_name):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
if account_name is not None:
route_values['accountName'] = self._serialize.url('account_name', account_name, 'str')
self._send(http_method='DELETE',
location_id='a1e66d8f-f5de-4d16-8309-91a4e015ee46',
version='5.0-preview.1',
route_values=route_values)
def get_acquisition_options(self, item_id, installation_target, test_commerce=None, is_free_or_trial_install=None):
route_values = {}
if item_id is not None:
route_values['itemId'] = self._serialize.url('item_id', item_id, 'str')
query_parameters = {}
if installation_target is not None:
query_parameters['installationTarget'] = self._serialize.query('installation_target', installation_target, 'str')
if test_commerce is not None:
query_parameters['testCommerce'] = self._serialize.query('test_commerce', test_commerce, 'bool')
if is_free_or_trial_install is not None:
query_parameters['isFreeOrTrialInstall'] = self._serialize.query('is_free_or_trial_install', is_free_or_trial_install, 'bool')
response = self._send(http_method='GET',
location_id='9d0a0105-075e-4760-aa15-8bcf54d1bd7d',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('AcquisitionOptions', response)
def request_acquisition(self, acquisition_request):
content = self._serialize.body(acquisition_request, 'ExtensionAcquisitionRequest')
response = self._send(http_method='POST',
location_id='3adb1f2d-e328-446e-be73-9f6d98071c45',
version='5.0-preview.1',
content=content)
return self._deserialize('ExtensionAcquisitionRequest', response)
def get_asset_by_name(self, publisher_name, extension_name, version, asset_type, account_token=None, accept_default=None, account_token_header=None, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
if version is not None:
route_values['version'] = self._serialize.url('version', version, 'str')
if asset_type is not None:
route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str')
query_parameters = {}
if account_token is not None:
query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str')
if accept_default is not None:
query_parameters['acceptDefault'] = self._serialize.query('accept_default', accept_default, 'bool')
additional_headers = {}
if account_token_header is not None:
additional_headers['X-Market-AccountToken'] = account_token_header
response = self._send(http_method='GET',
location_id='7529171f-a002-4180-93ba-685f358a0482',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters,
additional_headers=additional_headers,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_asset(self, extension_id, version, asset_type, account_token=None, accept_default=None, account_token_header=None, **kwargs):
route_values = {}
if extension_id is not None:
route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str')
if version is not None:
route_values['version'] = self._serialize.url('version', version, 'str')
if asset_type is not None:
route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str')
query_parameters = {}
if account_token is not None:
query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str')
if accept_default is not None:
query_parameters['acceptDefault'] = self._serialize.query('accept_default', accept_default, 'bool')
additional_headers = {}
if account_token_header is not None:
additional_headers['X-Market-AccountToken'] = account_token_header
response = self._send(http_method='GET',
location_id='5d545f3d-ef47-488b-8be3-f5ee1517856c',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters,
additional_headers=additional_headers,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_asset_authenticated(self, publisher_name, extension_name, version, asset_type, account_token=None, account_token_header=None, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
if version is not None:
route_values['version'] = self._serialize.url('version', version, 'str')
if asset_type is not None:
route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str')
query_parameters = {}
if account_token is not None:
query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str')
additional_headers = {}
if account_token_header is not None:
additional_headers['X-Market-AccountToken'] = account_token_header
response = self._send(http_method='GET',
location_id='506aff36-2622-4f70-8063-77cce6366d20',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters,
additional_headers=additional_headers,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def associate_azure_publisher(self, publisher_name, azure_publisher_id):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
query_parameters = {}
if azure_publisher_id is not None:
query_parameters['azurePublisherId'] = self._serialize.query('azure_publisher_id', azure_publisher_id, 'str')
response = self._send(http_method='PUT',
location_id='efd202a6-9d87-4ebc-9229-d2b8ae2fdb6d',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('AzurePublisher', response)
def query_associated_azure_publisher(self, publisher_name):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
response = self._send(http_method='GET',
location_id='efd202a6-9d87-4ebc-9229-d2b8ae2fdb6d',
version='5.0-preview.1',
route_values=route_values)
return self._deserialize('AzurePublisher', response)
def get_categories(self, languages=None):
query_parameters = {}
if languages is not None:
query_parameters['languages'] = self._serialize.query('languages', languages, 'str')
response = self._send(http_method='GET',
location_id='e0a5a71e-3ac3-43a0-ae7d-0bb5c3046a2a',
version='5.0-preview.1',
query_parameters=query_parameters)
return self._deserialize('[str]', self._unwrap_collection(response))
def get_category_details(self, category_name, languages=None, product=None):
route_values = {}
if category_name is not None:
route_values['categoryName'] = self._serialize.url('category_name', category_name, 'str')
query_parameters = {}
if languages is not None:
query_parameters['languages'] = self._serialize.query('languages', languages, 'str')
if product is not None:
query_parameters['product'] = self._serialize.query('product', product, 'str')
response = self._send(http_method='GET',
location_id='75d3c04d-84d2-4973-acd2-22627587dabc',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('CategoriesResult', response)
def get_category_tree(self, product, category_id, lcid=None, source=None, product_version=None, skus=None, sub_skus=None):
route_values = {}
if product is not None:
route_values['product'] = self._serialize.url('product', product, 'str')
if category_id is not None:
route_values['categoryId'] = self._serialize.url('category_id', category_id, 'str')
query_parameters = {}
if lcid is not None:
query_parameters['lcid'] = self._serialize.query('lcid', lcid, 'int')
if source is not None:
query_parameters['source'] = self._serialize.query('source', source, 'str')
if product_version is not None:
query_parameters['productVersion'] = self._serialize.query('product_version', product_version, 'str')
if skus is not None:
query_parameters['skus'] = self._serialize.query('skus', skus, 'str')
if sub_skus is not None:
query_parameters['subSkus'] = self._serialize.query('sub_skus', sub_skus, 'str')
response = self._send(http_method='GET',
location_id='1102bb42-82b0-4955-8d8a-435d6b4cedd3',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('ProductCategory', response)
def get_root_categories(self, product, lcid=None, source=None, product_version=None, skus=None, sub_skus=None):
route_values = {}
if product is not None:
route_values['product'] = self._serialize.url('product', product, 'str')
query_parameters = {}
if lcid is not None:
query_parameters['lcid'] = self._serialize.query('lcid', lcid, 'int')
if source is not None:
query_parameters['source'] = self._serialize.query('source', source, 'str')
if product_version is not None:
query_parameters['productVersion'] = self._serialize.query('product_version', product_version, 'str')
if skus is not None:
query_parameters['skus'] = self._serialize.query('skus', skus, 'str')
if sub_skus is not None:
query_parameters['subSkus'] = self._serialize.query('sub_skus', sub_skus, 'str')
response = self._send(http_method='GET',
location_id='31fba831-35b2-46f6-a641-d05de5a877d8',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('ProductCategoriesResult', response)
def get_certificate(self, publisher_name, extension_name, version=None, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
if version is not None:
route_values['version'] = self._serialize.url('version', version, 'str')
response = self._send(http_method='GET',
location_id='e905ad6a-3f1f-4d08-9f6d-7d357ff8b7d0',
version='5.0-preview.1',
route_values=route_values,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_content_verification_log(self, publisher_name, extension_name, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
response = self._send(http_method='GET',
location_id='c0f1c7c4-3557-4ffb-b774-1e48c4865e99',
version='5.0-preview.1',
route_values=route_values,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def create_draft_for_edit_extension(self, publisher_name, extension_name):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
response = self._send(http_method='POST',
location_id='02b33873-4e61-496e-83a2-59d1df46b7d8',
version='5.0-preview.1',
route_values=route_values)
return self._deserialize('ExtensionDraft', response)
def perform_edit_extension_draft_operation(self, draft_patch, publisher_name, extension_name, draft_id):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
if draft_id is not None:
route_values['draftId'] = self._serialize.url('draft_id', draft_id, 'str')
content = self._serialize.body(draft_patch, 'ExtensionDraftPatch')
response = self._send(http_method='PATCH',
location_id='02b33873-4e61-496e-83a2-59d1df46b7d8',
version='5.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('ExtensionDraft', response)
def update_payload_in_draft_for_edit_extension(self, upload_stream, publisher_name, extension_name, draft_id, file_name=None, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
if draft_id is not None:
route_values['draftId'] = self._serialize.url('draft_id', draft_id, 'str')
additional_headers = {}
if file_name is not None:
additional_headers['X-Market-UploadFileName'] = file_name
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='PUT',
location_id='02b33873-4e61-496e-83a2-59d1df46b7d8',
version='5.0-preview.1',
route_values=route_values,
additional_headers=additional_headers,
content=content,
media_type='application/octet-stream')
return self._deserialize('ExtensionDraft', response)
def add_asset_for_edit_extension_draft(self, upload_stream, publisher_name, extension_name, draft_id, asset_type, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
if draft_id is not None:
route_values['draftId'] = self._serialize.url('draft_id', draft_id, 'str')
if asset_type is not None:
route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='PUT',
location_id='f1db9c47-6619-4998-a7e5-d7f9f41a4617',
version='5.0-preview.1',
route_values=route_values,
content=content,
media_type='application/octet-stream')
return self._deserialize('ExtensionDraftAsset', response)
def create_draft_for_new_extension(self, upload_stream, publisher_name, product, file_name=None, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
additional_headers = {}
if product is not None:
additional_headers['X-Market-UploadFileProduct'] = product
if file_name is not None:
additional_headers['X-Market-UploadFileName'] = file_name
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='POST',
location_id='b3ab127d-ebb9-4d22-b611-4e09593c8d79',
version='5.0-preview.1',
route_values=route_values,
additional_headers=additional_headers,
content=content,
media_type='application/octet-stream')
return self._deserialize('ExtensionDraft', response)
def perform_new_extension_draft_operation(self, draft_patch, publisher_name, draft_id):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if draft_id is not None:
route_values['draftId'] = self._serialize.url('draft_id', draft_id, 'str')
content = self._serialize.body(draft_patch, 'ExtensionDraftPatch')
response = self._send(http_method='PATCH',
location_id='b3ab127d-ebb9-4d22-b611-4e09593c8d79',
version='5.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('ExtensionDraft', response)
def update_payload_in_draft_for_new_extension(self, upload_stream, publisher_name, draft_id, file_name=None, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if draft_id is not None:
route_values['draftId'] = self._serialize.url('draft_id', draft_id, 'str')
additional_headers = {}
if file_name is not None:
additional_headers['X-Market-UploadFileName'] = file_name
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='PUT',
location_id='b3ab127d-ebb9-4d22-b611-4e09593c8d79',
version='5.0-preview.1',
route_values=route_values,
additional_headers=additional_headers,
content=content,
media_type='application/octet-stream')
return self._deserialize('ExtensionDraft', response)
def add_asset_for_new_extension_draft(self, upload_stream, publisher_name, draft_id, asset_type, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if draft_id is not None:
route_values['draftId'] = self._serialize.url('draft_id', draft_id, 'str')
if asset_type is not None:
route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='PUT',
location_id='88c0b1c8-b4f1-498a-9b2a-8446ef9f32e7',
version='5.0-preview.1',
route_values=route_values,
content=content,
media_type='application/octet-stream')
return self._deserialize('ExtensionDraftAsset', response)
def get_asset_from_edit_extension_draft(self, publisher_name, draft_id, asset_type, extension_name, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if draft_id is not None:
route_values['draftId'] = self._serialize.url('draft_id', draft_id, 'str')
if asset_type is not None:
route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str')
query_parameters = {}
if extension_name is not None:
query_parameters['extensionName'] = self._serialize.query('extension_name', extension_name, 'str')
response = self._send(http_method='GET',
location_id='88c0b1c8-b4f1-498a-9b2a-8446ef9f32e7',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_asset_from_new_extension_draft(self, publisher_name, draft_id, asset_type, **kwargs):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if draft_id is not None:
route_values['draftId'] = self._serialize.url('draft_id', draft_id, 'str')
if asset_type is not None:
route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str')
response = self._send(http_method='GET',
location_id='88c0b1c8-b4f1-498a-9b2a-8446ef9f32e7',
version='5.0-preview.1',
route_values=route_values,
accept_media_type='application/octet-stream')
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
return self._client.stream_download(response, callback=callback)
def get_extension_events(self, publisher_name, extension_name, count=None, after_date=None, include=None, include_property=None):
route_values = {}
if publisher_name is not None:
route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str')
if extension_name is not None:
route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str')
query_parameters = {}
if count is not None:
query_parameters['count'] = self._serialize.query('count', count, 'int')
if after_date is not None:
query_parameters['afterDate'] = self._serialize.query('after_date', after_date, 'iso-8601')
if include is not None:
query_parameters['include'] = self._serialize.query('include', include, 'str')
if include_property is not None:
query_parameters['includeProperty'] = self._serialize.query('include_property', include_property, 'str')
response = self._send(http_method='GET',
location_id='3d13c499-2168-4d06-bef4-14aba185dcd5',
version='5.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('ExtensionEvents', response)
def publish_extension_events(self, extension_events):
content = self._serialize.body(extension_events, '[ExtensionEvents]')
self._send(http_method='POST',
location_id='0bf2bd3a-70e0-4d5d-8bf7-bd4a9c2ab6e7',
version='5.0-preview.1',
content=content)
def query_extensions(self, extension_query, account_token=None, account_token_header=None):
query_parameters = {}
if account_token is not None:
query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str')
additional_headers = {}
if account_token_header is not None:
additional_headers['X-Market-AccountToken'] = account_token_header
content = self._serialize.body(extension_query, 'ExtensionQuery')
response = self._send(http_method='POST',
location_id='eb9d5ee1-6d43-456b-b80e-8a96fbc014b6',
version='5.0-preview.1',
query_parameters=query_parameters,
additional_headers=additional_headers,
content=content)
return self._deserialize('ExtensionQueryResult', response)
def create_extension(self, upload_stream, **kwargs):
if "callback" in kwargs:
callback = kwargs["callback"]
else:
callback = None
content = self._client.stream_upload(upload_stream, callback=callback)
response = self._send(http_method='POST',
location_id='a41192c8-9525-4b58-bc86-179fa549d80d',
version='5.0-preview.2',
content=content,
media_type='application/octet-stream')
return self._deserialize('PublishedExtension', response)
def delete_extension_by_id(self, extension_id, version=None):
route_values = {}
if extension_id is not None:
route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str')
query_parameters = {}
if version is not None:
query_parameters['version'] = self._serialize.query('version', version, 'str')
self._send(http_method='DELETE',
location_id='a41192c8-9525-4b58-bc86-179fa549d80d',
version='5.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
def get_extension_by_id(self, extension_id, version=None, flags=None):
route_values = {}
if extension_id is not None:
route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str')
query_parameters = {}
if version is not None:
query_parameters['version'] = self._serialize.query('version', version, 'str')
if flags is not None:
query_parameters['flags'] = self._serialize.query('flags', flags, 'str')
response = self._send(http_method='GET',
location_id='a41192c8-9525-4b58-bc86-179fa549d80d',
version='5.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('PublishedExtension', response)
|
MIT License
|
atmtools/typhon
|
typhon/files/handlers/common.py
|
FileInfo.__init__
|
python
|
def __init__(self, path=None, times=None, attr=None, fs=None):
super(FileInfo, self).__init__()
self._path = None
self.path = path
self._times = None
self.times = times
if attr is None:
self.attr = {}
else:
self.attr = attr
self.file_system = fs or LocalFileSystem()
|
Initialise a FileInfo object.
Args:
path: Absolute path to a file.
times: A list or tuple of two datetime objects indicating start and
end time of the file.
attr: A dictionary with further attributes.
fs: Implementation of fsspec file system
|
https://github.com/atmtools/typhon/blob/815dcb1d7cb2718ffe81cd08386739438e7782cc/typhon/files/handlers/common.py#L294-L317
|
from collections import defaultdict
from copy import copy
from datetime import datetime
from functools import wraps
import glob
from inspect import signature, ismethod
import os
import pickle
import warnings
import netCDF4
import pandas as pd
import xarray as xr
import numpy as np
from fsspec.implementations.local import LocalFileSystem
pyhdf_is_installed = False
try:
from pyhdf import HDF, VS, V
from pyhdf.SD import SD, SDC
pyhdf_is_installed = True
except ImportError:
pass
h5py_is_installed = False
try:
import h5py
h5py_is_installed = True
except ImportError:
pass
__all__ = [
'CSV',
'FileHandler',
'FileInfo',
'HDF4',
'HDF5',
'NetCDF4',
'Plotter',
'expects_file_info',
]
def parametrized(dec):
def layer(*args, **kwargs):
def repl(f):
return dec(f, *args, **kwargs)
return repl
return layer
@parametrized
def expects_file_info(method, pos=None, key=None):
if pos is None and key is None:
pos = 1
@wraps(method)
def wrapper(*args, **kwargs):
args = list(args)
if args and pos is not None:
if not isinstance(args[pos], FileInfo):
args[pos] = FileInfo(args[pos])
else:
if not isinstance(kwargs[key], FileInfo):
kwargs[key] = FileInfo(kwargs[key])
return method(*args, **kwargs)
return wrapper
def _xarray_rename_fields(dataset, mapping):
if mapping is not None:
names = set(dataset.dims.keys()) | set(dataset.variables.keys())
mapping = {
old_name: new_name
for old_name, new_name in mapping.items()
if old_name in names
}
dataset = dataset.rename(mapping)
return dataset
class FileHandler:
def __init__(
self, reader=None, info=None, writer=None, **kwargs):
self.reader = reader
self.info = info
self.writer = writer
self.stack_dims = {}
@expects_file_info()
def get_info(self, filename, **kwargs):
if self.info is not None:
number_args = 1 + int(ismethod(self.info))
if len(signature(self.info).parameters) > number_args:
return self.info(filename, **kwargs)
else:
return self.info(filename)
raise NotImplementedError(
"This file handler does not support reading data from a file. You "
"should use a different file handler.")
@expects_file_info()
def read(self, filename, **kwargs):
if self.reader is not None:
number_args = 1 + int(ismethod(self.reader))
if len(signature(self.reader).parameters) > number_args:
return self.reader(filename, **kwargs)
else:
return self.reader(filename)
raise NotImplementedError(
"This file handler does not support reading data from a file. You "
"should use a different file handler.")
@expects_file_info(pos=2)
def write(self, data, filename, **kwargs):
if self.writer is not None:
if len(signature(self.writer).parameters) > 2:
self.writer(data, filename, **kwargs)
else:
self.writer(data, filename)
return None
raise NotImplementedError(
"This file handler does not support writing data to a file. You "
"should use a different file handler.")
def _ensure_local_filesystem(self, file_info):
if not isinstance(file_info.file_system, LocalFileSystem):
raise NotImplementedError(
f"File handler {type(self).__name__:s} can only "
"read from local file system, not from "
f"{str(type(file_info.file_system).__name__)}")
class FileInfo(os.PathLike):
|
MIT License
|
pystage/pystage
|
src/pystage/en/stage.py
|
Stage.when_this_sprite_clicked
|
python
|
def when_this_sprite_clicked(self, generator_function, name='', no_refresh=False):
return self._core.event_whenthisspriteclicked(generator_function, name, no_refresh)
|
when this sprite clicked
Translation string: when this sprite clicked
Engl. Translation for your reference: ...
Engl. Documentation when available...
Parameters
----------
generator_function : FILL
name : FILL
no_refresh : FILL
Returns
-------
|
https://github.com/pystage/pystage/blob/4a76e95f6de2df59736de17fe81219485fde1556/src/pystage/en/stage.py#L369-L388
|
from pystage.core.stage import CoreStage
from pystage.en.sprite import Sprite
class Stage():
def __init__(self):
self._core = CoreStage()
self._core.facade = self
self._core.sprite_facade_class = Sprite
def add_a_sprite(self, costume="default"):
return self._core.pystage_createsprite(costume=costume)
def play(self):
self._core.pystage_play()
def create_clone_of(self, sprite='_myself_'):
return self._core.control_create_clone_of(sprite)
def stop_all(self):
return self._core.control_stop_all()
def stop_other_scripts_in_sprite(self):
return self._core.control_stop_other()
def stop_this_script(self):
return self._core.control_stop_this()
def wait_seconds(self, secs):
return self._core.control_wait(secs)
def change_by(self, name, value):
return self._core.data_changevariableby(name, value)
def hide_variable(self, name):
return self._core.data_hidevariable(name)
def set_variable(self, name, value):
return self._core.data_setvariableto(name, value)
def show_variable(self, name):
return self._core.data_showvariable(name)
def get_variable(self, name):
return self._core.data_variable(name)
def broadcast(self, message):
return self._core.event_broadcast(message)
def broadcast_and_wait(self, message):
return self._core.event_broadcastandwait(message)
def when_backdrop_switches_to(self, backdrop, generator_function, name='', no_refresh=False):
return self._core.event_whenbackdropswitchesto(backdrop, generator_function, name, no_refresh)
def when_i_receive(self, message, generator_function, name='', no_refresh=False):
return self._core.event_whenbroadcastreceived(message, generator_function, name, no_refresh)
def when_GREENFLAG_clicked(self, generator_function, name='', no_refresh=False):
return self._core.event_whenflagclicked(generator_function, name, no_refresh)
def when_loudness_GREATERTHAN(self, value, generator_function, name='', no_refresh=False):
return self._core.event_whengreaterthan_loudness(value, generator_function, name, no_refresh)
def when_timer_GREATERTHAN(self, value, generator_function, name='', no_refresh=False):
return self._core.event_whengreaterthan_timer(value, generator_function, name, no_refresh)
def when_key_pressed(self, key, generator_function, name='', no_refresh=False):
return self._core.event_whenkeypressed(key, generator_function, name, no_refresh)
|
MIT License
|
virtuesecurity/aws-extender
|
BappModules/boto/ec2/instance.py
|
Instance.use_ip
|
python
|
def use_ip(self, ip_address, dry_run=False):
if isinstance(ip_address, Address):
ip_address = ip_address.public_ip
return self.connection.associate_address(
self.id,
ip_address,
dry_run=dry_run
)
|
Associates an Elastic IP to the instance.
:type ip_address: Either an instance of
:class:`boto.ec2.address.Address` or a string.
:param ip_address: The IP address to associate
with the instance.
:rtype: bool
:return: True if successful
|
https://github.com/virtuesecurity/aws-extender/blob/3029dd26bd7bdf7f4148e1e92adf9f8c547cafbe/BappModules/boto/ec2/instance.py#L471-L490
|
import boto
from boto.ec2.ec2object import EC2Object, TaggedEC2Object
from boto.resultset import ResultSet
from boto.ec2.address import Address
from boto.ec2.blockdevicemapping import BlockDeviceMapping
from boto.ec2.image import ProductCodes
from boto.ec2.networkinterface import NetworkInterface
from boto.ec2.group import Group
import base64
class InstanceState(object):
def __init__(self, code=0, name=None):
self.code = code
self.name = name
def __repr__(self):
return '%s(%d)' % (self.name, self.code)
def startElement(self, name, attrs, connection):
pass
def endElement(self, name, value, connection):
if name == 'code':
self.code = int(value)
elif name == 'name':
self.name = value
else:
setattr(self, name, value)
class InstancePlacement(object):
def __init__(self, zone=None, group_name=None, tenancy=None):
self.zone = zone
self.group_name = group_name
self.tenancy = tenancy
def __repr__(self):
return self.zone
def startElement(self, name, attrs, connection):
pass
def endElement(self, name, value, connection):
if name == 'availabilityZone':
self.zone = value
elif name == 'groupName':
self.group_name = value
elif name == 'tenancy':
self.tenancy = value
else:
setattr(self, name, value)
class Reservation(EC2Object):
def __init__(self, connection=None):
super(Reservation, self).__init__(connection)
self.id = None
self.owner_id = None
self.groups = []
self.instances = []
def __repr__(self):
return 'Reservation:%s' % self.id
def startElement(self, name, attrs, connection):
if name == 'instancesSet':
self.instances = ResultSet([('item', Instance)])
return self.instances
elif name == 'groupSet':
self.groups = ResultSet([('item', Group)])
return self.groups
else:
return None
def endElement(self, name, value, connection):
if name == 'reservationId':
self.id = value
elif name == 'ownerId':
self.owner_id = value
else:
setattr(self, name, value)
def stop_all(self, dry_run=False):
for instance in self.instances:
instance.stop(dry_run=dry_run)
class Instance(TaggedEC2Object):
def __init__(self, connection=None):
super(Instance, self).__init__(connection)
self.id = None
self.dns_name = None
self.public_dns_name = None
self.private_dns_name = None
self.key_name = None
self.instance_type = None
self.launch_time = None
self.image_id = None
self.kernel = None
self.ramdisk = None
self.product_codes = ProductCodes()
self.ami_launch_index = None
self.monitored = False
self.monitoring_state = None
self.spot_instance_request_id = None
self.subnet_id = None
self.vpc_id = None
self.private_ip_address = None
self.ip_address = None
self.requester_id = None
self._in_monitoring_element = False
self.persistent = False
self.root_device_name = None
self.root_device_type = None
self.block_device_mapping = None
self.state_reason = None
self.group_name = None
self.client_token = None
self.eventsSet = None
self.groups = []
self.platform = None
self.interfaces = []
self.hypervisor = None
self.virtualization_type = None
self.architecture = None
self.instance_profile = None
self._previous_state = None
self._state = InstanceState()
self._placement = InstancePlacement()
def __repr__(self):
return 'Instance:%s' % self.id
@property
def state(self):
return self._state.name
@property
def state_code(self):
return self._state.code
@property
def previous_state(self):
if self._previous_state:
return self._previous_state.name
return None
@property
def previous_state_code(self):
if self._previous_state:
return self._previous_state.code
return 0
@property
def placement(self):
return self._placement.zone
@property
def placement_group(self):
return self._placement.group_name
@property
def placement_tenancy(self):
return self._placement.tenancy
def startElement(self, name, attrs, connection):
retval = super(Instance, self).startElement(name, attrs, connection)
if retval is not None:
return retval
if name == 'monitoring':
self._in_monitoring_element = True
elif name == 'blockDeviceMapping':
self.block_device_mapping = BlockDeviceMapping()
return self.block_device_mapping
elif name == 'productCodes':
return self.product_codes
elif name == 'stateReason':
self.state_reason = SubParse('stateReason')
return self.state_reason
elif name == 'groupSet':
self.groups = ResultSet([('item', Group)])
return self.groups
elif name == "eventsSet":
self.eventsSet = SubParse('eventsSet')
return self.eventsSet
elif name == 'networkInterfaceSet':
self.interfaces = ResultSet([('item', NetworkInterface)])
return self.interfaces
elif name == 'iamInstanceProfile':
self.instance_profile = SubParse('iamInstanceProfile')
return self.instance_profile
elif name == 'currentState':
return self._state
elif name == 'previousState':
self._previous_state = InstanceState()
return self._previous_state
elif name == 'instanceState':
return self._state
elif name == 'placement':
return self._placement
return None
def endElement(self, name, value, connection):
if name == 'instanceId':
self.id = value
elif name == 'imageId':
self.image_id = value
elif name == 'dnsName' or name == 'publicDnsName':
self.dns_name = value
self.public_dns_name = value
elif name == 'privateDnsName':
self.private_dns_name = value
elif name == 'keyName':
self.key_name = value
elif name == 'amiLaunchIndex':
self.ami_launch_index = value
elif name == 'previousState':
self.previous_state = value
elif name == 'instanceType':
self.instance_type = value
elif name == 'rootDeviceName':
self.root_device_name = value
elif name == 'rootDeviceType':
self.root_device_type = value
elif name == 'launchTime':
self.launch_time = value
elif name == 'platform':
self.platform = value
elif name == 'kernelId':
self.kernel = value
elif name == 'ramdiskId':
self.ramdisk = value
elif name == 'state':
if self._in_monitoring_element:
self.monitoring_state = value
if value == 'enabled':
self.monitored = True
self._in_monitoring_element = False
elif name == 'spotInstanceRequestId':
self.spot_instance_request_id = value
elif name == 'subnetId':
self.subnet_id = value
elif name == 'vpcId':
self.vpc_id = value
elif name == 'privateIpAddress':
self.private_ip_address = value
elif name == 'ipAddress':
self.ip_address = value
elif name == 'requesterId':
self.requester_id = value
elif name == 'persistent':
if value == 'true':
self.persistent = True
else:
self.persistent = False
elif name == 'groupName':
if self._in_monitoring_element:
self.group_name = value
elif name == 'clientToken':
self.client_token = value
elif name == "eventsSet":
self.events = value
elif name == 'hypervisor':
self.hypervisor = value
elif name == 'virtualizationType':
self.virtualization_type = value
elif name == 'architecture':
self.architecture = value
elif name == 'ebsOptimized':
self.ebs_optimized = (value == 'true')
else:
setattr(self, name, value)
def _update(self, updated):
self.__dict__.update(updated.__dict__)
def update(self, validate=False, dry_run=False):
rs = self.connection.get_all_reservations([self.id], dry_run=dry_run)
if len(rs) > 0:
r = rs[0]
for i in r.instances:
if i.id == self.id:
self._update(i)
elif validate:
raise ValueError('%s is not a valid Instance ID' % self.id)
return self.state
def terminate(self, dry_run=False):
rs = self.connection.terminate_instances([self.id], dry_run=dry_run)
if len(rs) > 0:
self._update(rs[0])
def stop(self, force=False, dry_run=False):
rs = self.connection.stop_instances([self.id], force, dry_run=dry_run)
if len(rs) > 0:
self._update(rs[0])
def start(self, dry_run=False):
rs = self.connection.start_instances([self.id], dry_run=dry_run)
if len(rs) > 0:
self._update(rs[0])
def reboot(self, dry_run=False):
return self.connection.reboot_instances([self.id], dry_run=dry_run)
def get_console_output(self, dry_run=False):
return self.connection.get_console_output(self.id, dry_run=dry_run)
def confirm_product(self, product_code, dry_run=False):
return self.connection.confirm_product_instance(
self.id,
product_code,
dry_run=dry_run
)
|
MIT License
|
diofant/diofant
|
diofant/sets/sets.py
|
Set._infimum_key
|
python
|
def _infimum_key(expr):
try:
infimum = expr.inf
assert infimum.is_comparable
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = oo
return infimum
|
Return infimum (if possible) else oo.
|
https://github.com/diofant/diofant/blob/05c50552b0e0533f1dbf2ec05e65b6c45b7e2c11/diofant/sets/sets.py#L48-L56
|
import itertools
import typing
from mpmath import mpf, mpi
from ..core import Basic, Eq, Expr, Mul, S, nan, oo, zoo
from ..core.compatibility import iterable
from ..core.decorators import _sympifyit
from ..core.evalf import EvalfMixin
from ..core.evaluate import global_evaluate
from ..core.singleton import Singleton
from ..core.sympify import sympify
from ..logic import And, Not, Or, false, true
from ..utilities import ordered, subsets
from .contains import Contains
class Set(Basic):
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection: typing.Optional[bool] = None
is_EmptySet: typing.Optional[bool] = None
is_UniversalSet: typing.Optional[bool] = None
is_Complement: typing.Optional[bool] = None
is_SymmetricDifference: typing.Optional[bool] = None
@staticmethod
|
BSD 3-Clause New or Revised License
|
zachchristensen28/ta-opnsense
|
bin/ta_opnsense/aob_py3/cloudconnectlib/core/ext.py
|
regex_not_match
|
python
|
def regex_not_match(pattern, source, flags=0):
return not regex_match(pattern, source, flags)
|
Determine whether a string is not match a regex pattern.
:param pattern: regex expression
:param source: candidate to match regex
:param flags: flags for regex match
:return: `True` if candidate not match pattern else `False`
|
https://github.com/zachchristensen28/ta-opnsense/blob/fc736f4c6f0fa7866b4f6d2dcf9761b6b693d6cf/bin/ta_opnsense/aob_py3/cloudconnectlib/core/ext.py#L69-L78
|
from builtins import str
from builtins import range
import calendar
import json
import re
import traceback
from collections import Iterable
from datetime import datetime
import six
from jsonpath_ng import parse
from .exceptions import FuncException, StopCCEIteration, QuitJobError
from .pipemgr import PipeManager
from ..common import util, log
_logger = log.get_cc_logger()
def regex_search(pattern, source, flags=0):
if not isinstance(source, six.string_types):
_logger.warning('Cannot apply regex search on non-string: %s', type(source))
return {}
try:
matches = re.search(pattern=pattern, string=source, flags=flags)
except Exception:
_logger.warning('Unable to search pattern=%s and flags=%s in string, error=%s',
pattern, flags, traceback.format_exc())
return {}
else:
return matches.groupdict() if matches else {}
def regex_match(pattern, source, flags=0):
try:
return re.match(pattern, source, flags) is not None
except Exception:
_logger.warning(
'Unable to match source with pattern=%s, cause=%s',
pattern,
traceback.format_exc()
)
return False
|
MIT License
|
elad661/picdescbot
|
picdescbot/common.py
|
NonClosingBytesIO.close
|
python
|
def close(self, really=False):
if really:
return super().close()
|
Close the BytesIO object, but only if you're really sure
|
https://github.com/elad661/picdescbot/blob/07d50d32201f4cd52ef1435e716ecf59624694f1/picdescbot/common.py#L329-L332
|
from __future__ import unicode_literals, absolute_import, print_function
from wordfilter import Wordfilter
import json
import re
import requests
import time
import lxml.html
from . import logger
from io import BytesIO
log = logger.get("common")
MEDIAWIKI_API = "https://commons.wikimedia.org/w/api.php"
HEADERS = {"User-Agent": "picdescbot, http://github.com/elad661/picdescbot"}
supported_formats = re.compile('\.(png|jpe?g|gif)$', re.I)
word_filter = Wordfilter()
word_filter.add_words(['nazi', 'hitler', 'reich'])
extra_filter = {'ape', 'apes', 'monkey', 'monkeys', 'gun'}
blacklisted_phrases = {'comic strip', 'logo', 'biblical illustration', 'church',
'historical document', 'donald trump'}
category_blacklist = ['september 11', 'hitler', 'nazi', 'antisemit', 'libel',
'apartheid', 'racism', 'lynching', 'cartoons',
'holocaust', 'auschwitz', 'stereotypes', 'flags', 'porn',
'homophobia', 'transphobia', 'logos',
'scans from google books', 'little nemo',
'stolperstein', 'songbird specimens', 'terror',
'bible illustrations', 'jesuit symbols',
'christian symbols', 'symbols of religion',
'symbols of islam', 'jewish symbols', 'pistols',
'corpse', 'victim', 'ultrasound', 'donald trump',
'pascual marín']
gendered_words = {'woman': 'person',
'man': 'person',
'women': 'people',
'man\'s': 'person\'s',
'woman\'s': 'person\'s',
'mans': 'persons',
'womans': 'persons',
'men': 'people',
'guy': 'person',
'boy': 'person',
'girl': 'person',
'boys': 'people',
'girls': 'people',
'lady': 'person',
'ladies': 'people',
'gentleman': 'person',
'gentlemen': 'people',
'female': '',
'male': '',
'she': 'they',
'her': 'their',
'hers': 'theirs',
'herself': 'themself',
'he': 'they',
'him': 'them',
'his': 'their',
'himself': 'themself'}
def gender_neutralize(phrase):
neutralized = []
for word in phrase.lower().split():
if word in gendered_words:
word = gendered_words[word]
if word != '':
neutralized.append(word)
neutralized = ' '.join(neutralized)
if neutralized != phrase:
log.info('Gender neutralized: "{0}" => "{1}"'.format(phrase, neutralized))
return neutralized
tags_blacklist = {'text', 'screenshot', 'military', 'church'}
def tag_blacklisted(tags):
for tag in tags:
if tag in tags_blacklist:
return True
return False
def is_blacklisted(caption):
if "a suit and tie" in caption:
return True
if word_filter.blacklisted(caption):
return True
for word in caption.split():
if word in extra_filter:
return True
return False
def remove_html_tags(text):
return ' '.join(lxml.html.fromstring(text).itertext())
def log_discarded(url, reason, description=None):
line = "Discarded {0} because of {1}".format(url, reason)
if description is not None:
line += ' - "{0}"'.format(description)
log.warning(line)
def get_picture(filename=None):
params = {"action": "query",
"prop": "imageinfo|categories|globalusage",
"iiprop": "url|size|extmetadata|mediatype",
"iiurlheight": "1080",
"format": "json"}
if filename is None:
params['generator'] = 'random'
params['grnnamespace'] = '6'
else:
params['titles'] = 'File:%s' % filename
response = requests.get(MEDIAWIKI_API,
params=params,
headers=HEADERS).json()
page = list(response['query']['pages'].values())[0]
imageinfo = page['imageinfo'][0]
url = imageinfo['url']
extra_metadata = imageinfo['extmetadata']
if imageinfo['mediatype'] != "BITMAP":
return None
if imageinfo['width'] <= 50 or imageinfo['height'] <= 50:
return None
if not supported_formats.search(url):
return None
if word_filter.blacklisted(page['title']):
log_discarded(url, 'badword in page title: "{0}"'.format(page['title']))
return None
if word_filter.blacklisted(extra_metadata['ObjectName']['value']):
log_discarded(url, 'badword in picture title: "{0}"'.format(extra_metadata['ObjectName']['value']))
return None
if word_filter.blacklisted(extra_metadata['Restrictions']['value']):
log_discarded(url, 'badword in restrictions: "{0}"'.format(extra_metadata['Restrictions']['value']))
return None
if 'ImageDescription' in extra_metadata:
cleaned_description = remove_html_tags(extra_metadata['ImageDescription']['value'])
if word_filter.blacklisted(cleaned_description):
log_discarded(url, 'badword in image description: "{0}"'.format(cleaned_description))
return None
for phrase in blacklisted_phrases:
if phrase in cleaned_description.lower().strip():
log_discarded(url, 'blacklisted phrase "{0}" found in description "{1}"'.format(phrase, cleaned_description))
return None
extra_categories = extra_metadata['Categories']['value'].lower()
for blacklisted_category in category_blacklist:
for category in page['categories']:
if blacklisted_category in category['title'].lower():
log_discarded(url, 'blacklisted category "{0}"'.format(category['title']))
return None
if blacklisted_category in extra_categories:
log_discarded(url, 'blacklisted category "{0}" (in extra)'.format(blacklisted_category))
return None
for wikipage in page['globalusage']:
if word_filter.blacklisted(wikipage['title'].lower()):
log_discarded(url, 'page usage "{0}"'.format(wikipage['title']))
return None
for blacklisted_category in category_blacklist:
if blacklisted_category in wikipage['title']:
log_discarded(url, 'page usage "{0}"'.format(wikipage['title']))
return None
return imageinfo
class CVAPIClient(object):
def __init__(self, apikey, endpoint):
self.apikey = apikey
self.endpoint = endpoint + '/analyze'
def describe_picture(self, url):
params = {'visualFeatures': 'Description,Adult'}
json = {'url': url}
headers = {'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': self.apikey}
result = None
retries = 0
while retries < 15 and not result:
response = requests.post(self.endpoint, json=json, params=params,
headers=headers)
if response.status_code == 429:
log.error("Error from mscognitive: %s" % (response.json()))
if retries < 15:
time.sleep(2)
retries += 1
else:
log.error('failed after retrying!')
elif response.status_code == 200 or response.status_code == 201:
result = response.json() if response.content else None
else:
log.error("Error code: %d" % (response.status_code))
log.error("url: %s" % url)
try:
log.error(response.json())
except:
log.error(response.text)
retries += 1
sleep = 20 + retries*4
log.info("attempt: {0}, sleeping for {1}".format(retries, sleep))
time.sleep(sleep)
return result
def get_picture_and_description(self, filename=None, max_retries=20):
pic = None
retries = 0
while retries <= max_retries:
while pic is None:
pic = get_picture(filename)
if pic is None:
time.sleep(1)
url = pic['url']
if pic['size'] > 3000000 or pic['width'] > 8192 or pic['height'] > 8192:
url = pic['thumburl']
result = self.describe_picture(url)
if result is not None:
description = result['description']
adult = result['adult']
if not adult['isAdultContent'] and not adult['isRacyContent']:
if len(description['captions']) > 0:
caption = description['captions'][0]['text']
caption = gender_neutralize(caption)
if not is_blacklisted(caption):
if not tag_blacklisted(description['tags']):
return Result(caption,
description['tags'], url,
pic['descriptionshorturl'])
else:
log_discarded(url, "tag blacklist", caption)
log.warning('tags: %s' % description['tags'])
else:
log_discarded(url, "caption blacklist", caption)
else:
log.warning("No caption for url: {0}".format(url))
else:
log_discarded(url, "adult content", description['captions'])
retries += 1
log.warning("Not good, retrying...")
pic = None
time.sleep(3)
raise Exception("Maximum retries exceeded, no good picture")
class NonClosingBytesIO(BytesIO):
|
MIT License
|
trp07/messages
|
tests/test_telegram.py
|
get_tgram
|
python
|
def get_tgram():
return TelegramBot(auth='34563:ABCDEFG', chat_id='123456', body='message',
attachments=['https://url1.com', 'https://url2.com'])
|
Return a valid TelegramBot object.
|
https://github.com/trp07/messages/blob/1e347dfe4dc5bb3776334fbfc9b3a04c8ed7007b/tests/test_telegram.py#L16-L19
|
import pytest
import httpx
import messages.telegram
from messages.telegram import TelegramBot
from messages._exceptions import MessageSendError
@pytest.fixture()
|
MIT License
|
swizzlevixen/letterboxd
|
letterboxd/services/list.py
|
Lists.create_list
|
python
|
def create_list(self, list_creation_request=None):
response = self._api.api_call(
path="lists", params=list_creation_request, method="POST"
)
list_create_response = response.json()
logging.debug(list_create_response)
return list_create_response
|
[POST] /lists
Create a list.
Calls to this endpoint must include the access token
for an authenticated member.
:param list_creation_request: dict - ListCreationRequest
:return: dict - ListCreateResponse
|
https://github.com/swizzlevixen/letterboxd/blob/4a39ad57ce9dd31f95626f6a943378aaae9cde30/letterboxd/services/list.py#L247-L264
|
import logging
logging.getLogger(__name__)
class List(object):
def __init__(self, api, list_id=None):
self._api = api
self._list_id = list_id
def details(self, list_id=None):
if list_id is None:
list_id = self._list_id
response = self._api.api_call(path=f"list/{list_id}")
return response.json()
def update(self, list_id=None, list_update_request=None):
if list_id is None:
list_id = self._list_id
response = self._api.api_call(
path=f"list/{list_id}", method="PATCH", params=list_update_request
)
return response.json()
def delete(self, list_id=None):
response = self._api.api_call(
path=f"list/{list_id}", method="DELETE", params={}
)
if response.status_code is 204:
return True
else:
return False
def comments(self, list_id=None, comments_request=None):
if list_id is None:
list_id = self._list_id
response = self._api.api_call(path=f"list/{list_id}/comments")
list_comments_response = response.json()
return list_comments_response
def create_comment(self, list_id=None, comment_creation_request=None):
if list_id is None:
list_id = self._list_id
response = self._api.api_call(
path=f"list/{list_id}/comments",
method="POST",
params=comment_creation_request,
)
list_comment = response.json()
return list_comment
def entries(self, list_id=None, list_entries_request=None):
if list_id is None:
list_id = self._list_id
response = self._api.api_call(
path=f"list/{list_id}/entries", params=list_entries_request
)
list_entries_response = response.json()
return list_entries_response
def me(self, list_id=None):
if list_id is None:
list_id = self._list_id
response = self._api.api_call(path=f"list/{list_id}/me")
list_relationship = response.json()
return list_relationship
def me_update(self, list_id=None, list_relationship_update_request=None):
if list_id is None:
list_id = self._list_id
response = self._api.api_call(
path=f"list/{list_id}/me",
method="PATCH",
params=list_relationship_update_request,
)
list_relationship_update_response = response.json()
return list_relationship_update_response
def report(self, list_id=None, report_list_request=None):
response = self._api.api_call(
path=f"list/{list_id}/report", params=report_list_request, method="POST"
)
if response.status_code is 204:
return True
else:
return False
def statistics(self, list_id=None):
if list_id is None:
list_id = self._list_id
response = self._api.api_call(path=f"list/{list_id}/statistics")
list_statistics = response.json()
return list_statistics
class Lists(object):
def __init__(self, api):
self._api = api
def lists(self, lists_request=None):
response = self._api.api_call(path="lists", params=lists_request)
lists_response = response.json()
logging.debug(lists_response)
return lists_response
|
MIT License
|
gmr/mikkoo
|
mikkoo/mcp.py
|
MasterControlProgram.__init__
|
python
|
def __init__(self, config):
self.set_process_name()
LOGGER.info('Mikkoo v%s initializing', __version__)
super(MasterControlProgram, self).__init__()
self.config = config
self.last_poll_results = dict()
self.poll_data = {'time': 0, 'processes': list()}
self.poll_timer = None
self.results_timer = None
self.stats = dict()
self.stats_queue = multiprocessing.Queue()
self.polled = False
self.workers = dict()
for name in config.application.workers.keys():
self.workers[name] = Worker(config.application.workers[name],
self.stats_queue)
self.poll_interval = config.application.get('poll_interval',
self.POLL_INTERVAL)
|
Initialize the Master Control Program
:param helper.config.Config config: Mikkoo Configuration
|
https://github.com/gmr/mikkoo/blob/1809528f61ca70f222bd0785e7d85a866d27b0a6/mikkoo/mcp.py#L45-L70
|
import logging
import multiprocessing
import os
import psutil
try:
import Queue as queue
except ImportError:
import queue
import signal
import sys
import time
from mikkoo import state
from mikkoo import worker
from mikkoo import __version__
LOGGER = logging.getLogger(__name__)
class Worker(object):
def __init__(self, config, stats_queue):
self.config = config
self.process = None
self.stats_queue = stats_queue
self.unresponsive = 0
class MasterControlProgram(state.State):
MAX_UNRESPONSIVE = 3
MAX_SHUTDOWN_WAIT = 10
POLL_INTERVAL = 60.0
POLL_RESULTS_INTERVAL = 3.0
SHUTDOWN_WAIT = 1
|
BSD 3-Clause New or Revised License
|
elfi-dev/elfi
|
elfi/store.py
|
OutputPool.__getitem__
|
python
|
def __getitem__(self, batch_index):
return self.get_batch(batch_index)
|
Return the batch.
|
https://github.com/elfi-dev/elfi/blob/07ac0ed5e81d5d5fb42de63db3cf9ccc9135b88c/elfi/store.py#L218-L220
|
import io
import logging
import os
import pickle
import shutil
import numpy as np
import numpy.lib.format as npformat
logger = logging.getLogger(__name__)
_default_prefix = 'pools'
class OutputPool:
_pkl_name = '_outputpool.pkl'
def __init__(self, outputs=None, name=None, prefix=None):
if outputs is None:
stores = {}
elif isinstance(outputs, dict):
stores = outputs
else:
stores = dict.fromkeys(outputs)
self.stores = stores
self.batch_size = None
self.seed = None
self.name = name
self.prefix = prefix or _default_prefix
if self.path and os.path.exists(self.path):
raise ValueError("A pool with this name already exists in {}. You can use "
"OutputPool.open() to open it.".format(self.prefix))
@property
def output_names(self):
return list(self.stores.keys())
@property
def has_context(self):
return self.seed is not None and self.batch_size is not None
def set_context(self, context):
if self.has_context:
raise ValueError('Context is already set')
self.batch_size = context.batch_size
self.seed = context.seed
if self.name is None:
self.name = "{}_{}".format(self.__class__.__name__.lower(), self.seed)
def get_batch(self, batch_index, output_names=None):
output_names = output_names or self.output_names
batch = dict()
for output in output_names:
store = self.stores[output]
if store is None:
continue
if batch_index in store:
batch[output] = store[batch_index]
return batch
def add_batch(self, batch, batch_index):
for node, values in batch.items():
if node not in self.stores:
continue
store = self._get_store_for(node)
if batch_index in store:
continue
store[batch_index] = values
def remove_batch(self, batch_index):
for store in self.stores.values():
if batch_index in store:
del store[batch_index]
def has_store(self, node):
return node in self.stores
def get_store(self, node):
return self.stores[node]
def add_store(self, node, store=None):
if node in self.stores and self.stores[node] is not None:
raise ValueError("Store for '{}' already exists".format(node))
store = store if store is not None else self._make_store_for(node)
self.stores[node] = store
def remove_store(self, node):
store = self.stores.pop(node)
return store
def _get_store_for(self, node):
if self.stores[node] is None:
self.stores[node] = self._make_store_for(node)
return self.stores[node]
def _make_store_for(self, node):
return {}
def __len__(self):
largest = 0
for output, store in self.stores.items():
if store is None:
continue
largest = max(largest, len(store))
return largest
|
BSD 3-Clause New or Revised License
|
google/android-emulator-container-scripts
|
emu/android_release_zip.py
|
AndroidReleaseZip.copy
|
python
|
def copy(self, destination):
try:
return shutil.copy2(self.file_name, destination)
except shutil.SameFileError:
logging.warning("Will not copy to itself, ignoring..")
return self.file_name
|
Copy the zipfile to the given destination.
If the destination is the same as this zipfile the current path
will be returned a no copy is made.
Args:
destination ({string}): The destination to copy this zip to.
Returns:
{string}: The path where this zip file was copied to
|
https://github.com/google/android-emulator-container-scripts/blob/022724c0733e23f4f200f0c11e01dd2246dc26ed/emu/android_release_zip.py#L74-L90
|
import collections
import logging
import os
import shutil
import zipfile
from tqdm import tqdm
from emu.utils import api_codename
class AndroidReleaseZip(object):
def __init__(self, file_name):
self.file_name = file_name
if not zipfile.is_zipfile(file_name):
raise Exception("{} is not a zipfile!".format(file_name))
with zipfile.ZipFile(file_name, "r") as zip_file:
self.props = collections.defaultdict(set)
files = [x for x in zip_file.infolist() if "source.properties" in x.filename or "build.prop" in x.filename]
for file in files:
for key, value in self._unpack_properties(zip_file, file).items():
self.props[key] = value
def _unpack_properties(self, zip_file, zip_info):
prop = zip_file.read(zip_info).decode("utf-8").splitlines()
res = dict([a.split("=") for a in prop if "=" in a])
return res
def __str__(self):
return "{}-{}".format(self.description(), self.revision())
def description(self):
return self.props.get("Pkg.Desc")
def revision(self):
return self.props.get("Pkg.Revision")
def build_id(self):
if "Pkg.BuildId" in self.props:
return self.props.get("Pkg.BuildId")
return self.revision()
def is_system_image(self):
return "System Image" in self.description() or "Android SDK Platform" in self.description()
def is_emulator(self):
return "Android Emulator" in self.description()
|
Apache License 2.0
|
reliaqualassociates/ramstk
|
src/ramstk/views/gtk3/hazard_analysis/view.py
|
HazardsWorkView._do_set_record_id
|
python
|
def _do_set_record_id(self, attributes: Dict[str, Any]) -> None:
self._record_id = attributes["hazard_id"]
|
Set the record ID when a hazard is selected.
:param attributes: the hazard dict for the selected hazard ID.
:return: None
:rtype: None
|
https://github.com/reliaqualassociates/ramstk/blob/ffec5a107424914cf0026c6dfe26369c221f79f9/src/ramstk/views/gtk3/hazard_analysis/view.py#L121-L128
|
from typing import Any, Dict
from pubsub import pub
from ramstk.configuration import RAMSTKUserConfiguration
from ramstk.logger import RAMSTKLogManager
from ramstk.views.gtk3 import Gtk, _
from ramstk.views.gtk3.widgets import RAMSTKPanel, RAMSTKWorkView
from . import HazardsTreePanel
class HazardsWorkView(RAMSTKWorkView):
_tag: str = "hazard"
_tablabel: str = _("HazOps")
_tabtooltip: str = _("Displays the HazOps analysis for the selected Function.")
def __init__(
self, configuration: RAMSTKUserConfiguration, logger: RAMSTKLogManager
) -> None:
super().__init__(configuration, logger)
self._lst_callbacks.insert(0, super().do_request_insert_sibling)
self._lst_callbacks.insert(1, self.do_request_delete)
self._lst_callbacks.insert(2, self._do_request_calculate)
self._lst_icons.insert(0, "add")
self._lst_icons.insert(1, "remove")
self._lst_icons.insert(2, "calculate")
self._lst_mnu_labels = [
_("Add Hazard"),
_("Delete Selected Hazard"),
_("Calculate HazOp"),
_("Save Selected Hazard"),
_("Save All Hazards"),
]
self._lst_tooltips = [
_("Add a new hazard to the HazOps analysis."),
_("Delete the selected hazard from the selected function."),
_("Calculate the HazOps analysis."),
_("Save changes to the selected hazard."),
_("Save changes to all hazards."),
]
self._pnlPanel: RAMSTKPanel = HazardsTreePanel()
self.__make_ui()
pub.subscribe(self._do_set_record_id, "selected_hazard")
pub.subscribe(self._on_select_function, "selected_function")
def _do_request_calculate(self, __button: Gtk.ToolButton) -> None:
super().do_set_cursor_busy()
pub.sendMessage("request_calculate_fha", node_id=self._record_id)
|
BSD 3-Clause New or Revised License
|
pvlib/pvanalytics
|
pvanalytics/quality/time.py
|
spacing
|
python
|
def spacing(times, freq):
if not isinstance(freq, pd.Timedelta):
freq = pd.Timedelta(freq)
delta = times.to_series().diff()
delta.iloc[0] = freq
return delta == freq
|
Check that the spacing between `times` conforms to `freq`.
Parameters
----------
times : DatetimeIndex
freq : string or Timedelta
Expected frequency of `times`.
Returns
-------
Series
True when the difference between one time and the time before
it conforms to `freq`.
Notes
-----
Copyright (c) 2019 SolarArbiter. See the file
LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory
of this distribution and at `<https://github.com/pvlib/
pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_
for more information.
|
https://github.com/pvlib/pvanalytics/blob/a3d3860ee848afd5cb7184b36beedcd14dbbdc60/pvanalytics/quality/time.py#L8-L38
|
import warnings
import pandas as pd
import numpy as np
from scipy import stats
|
MIT License
|
executablebooks/mdformat
|
src/mdformat/renderer/_context.py
|
_wrap
|
python
|
def _wrap(text: str, *, width: int | Literal["no"]) -> str:
text, replacements = _prepare_wrap(text)
if width == "no":
return _recover_preserve_chars(text, replacements)
wrapper = textwrap.TextWrapper(
break_long_words=False,
break_on_hyphens=False,
width=width,
expand_tabs=False,
replace_whitespace=False,
)
wrapped = wrapper.fill(text)
wrapped = _recover_preserve_chars(wrapped, replacements)
return " " + wrapped if text.startswith(" ") else wrapped
|
Wrap text at locations pointed by `WRAP_POINT`s.
Converts `WRAP_POINT`s to either a space or newline character, thus
wrapping the text. Already existing whitespace will be preserved as
is.
|
https://github.com/executablebooks/mdformat/blob/07f0b51998201ed1877bda023f61141a89e9b481/src/mdformat/renderer/_context.py#L319-L339
|
from __future__ import annotations
from collections import defaultdict
from collections.abc import Generator, Iterable, Mapping, MutableMapping
from contextlib import contextmanager
import logging
import re
import textwrap
from types import MappingProxyType
from typing import TYPE_CHECKING, Any, NamedTuple
from mdformat import codepoints
from mdformat._compat import Literal
from mdformat._conf import DEFAULT_OPTS
from mdformat.renderer._util import (
RE_CHAR_REFERENCE,
decimalify_leading,
decimalify_trailing,
escape_asterisk_emphasis,
escape_underscore_emphasis,
get_list_marker_type,
is_text_inside_autolink,
is_tight_list,
is_tight_list_item,
longest_consecutive_sequence,
maybe_add_link_brackets,
)
from mdformat.renderer.typing import Postprocess, Render
if TYPE_CHECKING:
from mdformat.renderer import RenderTreeNode
LOGGER = logging.getLogger(__name__)
WRAP_POINT = "\x00"
PRESERVE_CHAR = "\x00"
def make_render_children(separator: str) -> Render:
def render_children(
node: RenderTreeNode,
context: RenderContext,
) -> str:
return separator.join(child.render(context) for child in node.children)
return render_children
def hr(node: RenderTreeNode, context: RenderContext) -> str:
thematic_break_width = 70
return "_" * thematic_break_width
def code_inline(node: RenderTreeNode, context: RenderContext) -> str:
code = node.content
all_chars_are_whitespace = not code.strip()
longest_backtick_seq = longest_consecutive_sequence(code, "`")
if longest_backtick_seq:
separator = "`" * (longest_backtick_seq + 1)
return f"{separator} {code} {separator}"
if code.startswith(" ") and code.endswith(" ") and not all_chars_are_whitespace:
return f"` {code} `"
return f"`{code}`"
def html_block(node: RenderTreeNode, context: RenderContext) -> str:
content = node.content.rstrip("\n")
content = content.lstrip()
return content
def html_inline(node: RenderTreeNode, context: RenderContext) -> str:
return node.content
def _in_block(block_name: str, node: RenderTreeNode) -> bool:
while node.parent:
if node.parent.type == block_name:
return True
node = node.parent
return False
def hardbreak(node: RenderTreeNode, context: RenderContext) -> str:
if _in_block("heading", node):
return "<br /> "
return "\\" + "\n"
def softbreak(node: RenderTreeNode, context: RenderContext) -> str:
if context.do_wrap and _in_block("paragraph", node):
return WRAP_POINT
return "\n"
def text(node: RenderTreeNode, context: RenderContext) -> str:
text = node.content
if is_text_inside_autolink(node):
return text
text = text.replace("\\", "\\\\")
text = escape_asterisk_emphasis(text)
text = escape_underscore_emphasis(text)
text = text.replace("[", "\\[")
text = text.replace("]", "\\]")
text = text.replace("<", "\\<")
text = text.replace("`", "\\`")
text = RE_CHAR_REFERENCE.sub(r"\\\1", text)
text = text.replace("\n\n", " ")
next_sibling = node.next_sibling
if text.endswith("!") and next_sibling and next_sibling.type == "link":
text = text[:-1] + "\\!"
if context.do_wrap and _in_block("paragraph", node):
text = re.sub(r"\s+", WRAP_POINT, text)
return text
def fence(node: RenderTreeNode, context: RenderContext) -> str:
info_str = node.info.strip()
lang = info_str.split(maxsplit=1)[0] if info_str else ""
code_block = node.content
if "`" in info_str or "~" in info_str:
fence_char = "~"
else:
fence_char = "`"
if lang in context.options.get("codeformatters", {}):
fmt_func = context.options["codeformatters"][lang]
try:
code_block = fmt_func(code_block, info_str)
except Exception:
assert node.map is not None, "A fence token must have `map` attribute set"
LOGGER.warning(
f"Failed formatting content of a {lang} code block "
f"(line {node.map[0] + 1} before formatting)"
)
fence_len = max(3, longest_consecutive_sequence(code_block, fence_char) + 1)
fence_str = fence_char * fence_len
return f"{fence_str}{info_str}\n{code_block}{fence_str}"
def code_block(node: RenderTreeNode, context: RenderContext) -> str:
return fence(node, context)
def image(node: RenderTreeNode, context: RenderContext) -> str:
description = _render_inline_as_text(node, context)
if context.do_wrap:
description = description.replace(WRAP_POINT, " ")
ref_label = node.meta.get("label")
if ref_label:
context.env["used_refs"].add(ref_label)
ref_label_repr = ref_label.lower()
if description.lower() == ref_label_repr:
return f"![{description}]"
return f"![{description}][{ref_label_repr}]"
uri = node.attrs["src"]
assert isinstance(uri, str)
uri = maybe_add_link_brackets(uri)
title = node.attrs.get("title")
if title is not None:
return f''
return f""
def _render_inline_as_text(node: RenderTreeNode, context: RenderContext) -> str:
def text_renderer(node: RenderTreeNode, context: RenderContext) -> str:
return node.content
def image_renderer(node: RenderTreeNode, context: RenderContext) -> str:
return _render_inline_as_text(node, context)
inline_renderers: Mapping[str, Render] = defaultdict(
lambda: make_render_children(""),
{
"text": text_renderer,
"image": image_renderer,
"link": link,
"softbreak": softbreak,
},
)
inline_context = RenderContext(
inline_renderers, context.postprocessors, context.options, context.env
)
return make_render_children("")(node, inline_context)
def link(node: RenderTreeNode, context: RenderContext) -> str:
if node.info == "auto":
autolink_url = node.attrs["href"]
assert isinstance(autolink_url, str)
if autolink_url.startswith("mailto:") and not node.children[
0
].content.startswith("mailto:"):
autolink_url = autolink_url[7:]
return "<" + autolink_url + ">"
text = "".join(child.render(context) for child in node.children)
if context.do_wrap:
text = text.replace(WRAP_POINT, " ")
ref_label = node.meta.get("label")
if ref_label:
context.env["used_refs"].add(ref_label)
ref_label_repr = ref_label.lower()
if text.lower() == ref_label_repr:
return f"[{text}]"
return f"[{text}][{ref_label_repr}]"
uri = node.attrs["href"]
assert isinstance(uri, str)
uri = maybe_add_link_brackets(uri)
title = node.attrs.get("title")
if title is None:
return f"[{text}]({uri})"
assert isinstance(title, str)
title = title.replace('"', '\\"')
return f'[{text}]({uri} "{title}")'
def em(node: RenderTreeNode, context: RenderContext) -> str:
text = make_render_children(separator="")(node, context)
indicator = node.markup
return indicator + text + indicator
def strong(node: RenderTreeNode, context: RenderContext) -> str:
text = make_render_children(separator="")(node, context)
indicator = node.markup
return indicator + text + indicator
def heading(node: RenderTreeNode, context: RenderContext) -> str:
text = make_render_children(separator="")(node, context)
if node.markup == "=":
prefix = "# "
elif node.markup == "-":
prefix = "## "
else:
prefix = node.markup + " "
text = text.replace("\n", " ")
if text.endswith("#"):
text = text[:-1] + "\\#"
return prefix + text
def blockquote(node: RenderTreeNode, context: RenderContext) -> str:
marker = "> "
with context.indented(len(marker)):
text = make_render_children(separator="\n\n")(node, context)
lines = text.splitlines()
if not lines:
return ">"
quoted_lines = (f"{marker}{line}" if line else ">" for line in lines)
quoted_str = "\n".join(quoted_lines)
return quoted_str
|
MIT License
|
mitgcm/xmitgcm
|
xmitgcm/mds_store.py
|
open_mdsdataset
|
python
|
def open_mdsdataset(data_dir, grid_dir=None,
iters='all', prefix=None, read_grid=True,
delta_t=1, ref_date=None, calendar='gregorian',
levels=None, geometry='sphericalpolar',
grid_vars_to_coords=True, swap_dims=None,
endian=">", chunks=None,
ignore_unknown_vars=False, default_dtype=None,
nx=None, ny=None, nz=None,
llc_method="smallchunks", extra_metadata=None,
extra_variables=None):
frame = inspect.currentframe()
_, _, _, arg_values = inspect.getargvalues(frame)
del arg_values['frame']
function_name = inspect.getframeinfo(frame)[2]
if swap_dims is None:
if read_grid == False:
swap_dims = False
else:
swap_dims = False if geometry in (
'llc', 'cs', 'curvilinear') else True
if swap_dims and not read_grid:
raise ValueError("If swap_dims==True, read_grid must be True.")
if type(prefix) in stringtypes:
prefix = [prefix]
else:
pass
if levels is not None and nz is not None:
warnings.warn('levels has been set, nz will be ignored.')
nz = None
if isinstance(levels, slice):
levels = np.arange(levels.start, levels.stop)
if iters == 'all':
iters = _get_all_iternums(data_dir, file_prefixes=prefix)
if iters is None:
iternum = None
else:
try:
iternum = int(iters)
except TypeError:
if len(iters) == 1 and levels is None:
iternum = int(iters[0])
else:
first_prefixes = prefix or _get_all_matching_prefixes(
data_dir, iters[0])
for iternum in iters:
these_prefixes = _get_all_matching_prefixes(
data_dir, iternum, prefix
)
if set(these_prefixes) != set(first_prefixes):
raise IOError("Could not find the expected file "
"prefixes %s at iternum %g. (Instead "
"found %s)" % (repr(first_prefixes),
iternum,
repr(these_prefixes)))
chunks = chunks or {}
kwargs = dict(
grid_dir=grid_dir, delta_t=delta_t, swap_dims=False,
prefix=prefix, ref_date=ref_date, calendar=calendar,
geometry=geometry,
grid_vars_to_coords=False,
endian=endian, chunks=chunks,
ignore_unknown_vars=ignore_unknown_vars,
default_dtype=default_dtype,
nx=nx, ny=ny, nz=nz, llc_method=llc_method,
levels=levels, extra_metadata=extra_metadata,
extra_variables=extra_variables)
datasets = [open_mdsdataset(
data_dir, iters=iternum, read_grid=False, **kwargs)
for iternum in iters]
if read_grid:
if 'iters' in kwargs:
kwargs.pop('iters')
if 'read_grid' in kwargs:
kwargs.pop('read_grid')
if levels is not None:
kwargs.pop('nz')
kwargs.pop('levels')
grid_dataset = open_mdsdataset(data_dir, iters=None,
read_grid=True, **kwargs)
if levels is not None:
grid_dataset = grid_dataset.isel(**{coord: levels
for coord in ['k', 'k_l', 'k_u', 'k_p1']})
datasets.insert(0, grid_dataset)
if sys.version_info[0] < 3:
ds = xr.auto_combine(datasets)
elif xr.__version__ < '0.15.2':
ds = xr.combine_by_coords(datasets)
elif xr.__version__ < '0.18.0':
ds = xr.combine_by_coords(datasets, compat='override', coords='minimal', combine_attrs='drop')
else:
ds = xr.combine_by_coords(datasets, compat='override', coords='minimal', combine_attrs='drop_conflicts')
if swap_dims:
ds = _swap_dimensions(ds, geometry)
if grid_vars_to_coords:
ds = _set_coords(ds)
return ds
store = _MDSDataStore(data_dir, grid_dir, iternum, delta_t, read_grid,
prefix, ref_date, calendar,
geometry, endian,
ignore_unknown_vars=ignore_unknown_vars,
default_dtype=default_dtype,
nx=nx, ny=ny, nz=nz, llc_method=llc_method,
levels=levels, extra_metadata=extra_metadata,
extra_variables=extra_variables)
ds = xr.Dataset.load_store(store)
if swap_dims:
ds = _swap_dimensions(ds, geometry)
if grid_vars_to_coords:
ds = _set_coords(ds)
if 'time' in ds:
ds['time'] = xr.decode_cf(ds[['time']])['time']
if chunks is not None:
ds = ds.chunk(chunks)
ds.attrs['Conventions'] = "CF-1.6"
ds.attrs['title'] = "netCDF wrapper of MITgcm MDS binary data"
ds.attrs['source'] = "MITgcm"
arg_string = ', '.join(['%s=%s' % (str(k), repr(v))
for (k, v) in arg_values.items()])
ds.attrs['history'] = ('Created by calling '
'`%s(%s)`'% (function_name, arg_string))
return ds
|
Open MITgcm-style mds (.data / .meta) file output as xarray datset.
Parameters
----------
data_dir : string
Path to the directory where the mds .data and .meta files are stored
grid_dir : string, optional
Path to the directory where the mds .data and .meta files are stored, if
different from ``data_dir``.
iters : list, optional
The iterations numbers of the files to be read. If ``None``, no data
files will be read. If ``'all'`` (default), all iterations will be read.
prefix : list, optional
List of different filename prefixes to read. Default (``None``) is to
read all available files.
read_grid : bool, optional
Whether to read the grid data
delta_t : number, optional
The timestep used in the model. (Can't be inferred.)
ref_date : string, optional
An iSO date string corresponding to the zero timestep,
e.g. "1990-1-1 0:0:0" (See CF conventions [1]_)
calendar : string, optional
A calendar allowed by CF conventions [1]_
levels : list or slice, optional
A list or slice of the indexes of the grid levels to read
Same syntax as in the data.diagnostics file
geometry : {'sphericalpolar', 'cartesian', 'llc', 'curvilinear', 'cs'}
MITgcm grid geometry specifier
grid_vars_to_coords : boolean, optional
Whether to promote grid variables to coordinate status
swap_dims : boolean, optional
Whether to swap the logical dimensions for physical ones. If ``None``,
will be set to ``False`` for ``geometry==llc`` and ``True`` otherwise.
endian : {'=', '>', '<'}, optional
Endianness of variables. Default for MITgcm is ">" (big endian)
chunks : int or dict, optional
If chunks is provided, it used to load the new dataset into dask arrays.
ignore_unknown_vars : boolean, optional
Don't raise an error if unknown variables are encountered while reading
the dataset.
default_dtype : numpy.dtype, optional
A datatype to fall back on if the metadata can't be read.
nx, ny, nz : int, optional
The numerical dimensions of the model. These will be inferred from
``XC.meta`` and ``RC.meta`` if they are not specified. If
``geometry==llc``, ``ny`` does not have to specified.
llc_method : {"smallchunks", "bigchunks"}, optional
Which routine to use for reading LLC data. "smallchunks" splits the file
into a individual dask chunk of size (nx x nx) for each face of each
level (i.e. the total number of chunks is 13 * nz). "bigchunks" loads
the whole raw data file (either into memory or as a numpy.memmap),
splits it into faces, and concatenates those faces together using
``dask.array.concatenate``. The different methods will have different
memory and i/o performance depending on the details of the system
configuration.
extra_metadata : dict, optional
Allow to pass information on llc type grid (global or regional).
The additional metadata is typically such as :
aste = {'has_faces': True, 'ny': 1350, 'nx': 270,
'ny_facets': [450,0,270,180,450],
'pad_before_y': [90,0,0,0,0],
'pad_after_y': [0,0,0,90,90],
'face_facets': [0, 0, 2, 3, 4, 4],
'facet_orders' : ['C', 'C', 'C', 'F', 'F'],
'face_offsets' : [0, 1, 0, 0, 0, 1],
'transpose_face' : [False, False, False,
True, True, True]}
For global llc grids, no extra metadata is required and code
will set up to global llc default configuration.
extra_variables : dict, optional
Allow to pass variables not listed in the variables.py
or in available_diagnostics.log.
extra_variables must be a dict containing the variable names as keys with
the corresponging values being a dict with the keys being dims and attrs.
Syntax:
extra_variables = dict(varname = dict(dims=list_of_dims, attrs=dict(optional_attrs)))
where optional_attrs can contain standard_name, long_name, units as keys
Example:
extra_variables = dict(
ADJtheta = dict(dims=['k','j','i'], attrs=dict(
standard_name='Sensitivity_to_theta',
long_name='Sensitivity of cost function to theta', units='[J]/degC'))
)
Returns
-------
dset : xarray.Dataset
Dataset object containing all coordinates and variables.
References
----------
.. [1] http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch04s04.html
|
https://github.com/mitgcm/xmitgcm/blob/d500eec80c75d3e2dfc6bb52db32ca6d9c4819c5/xmitgcm/mds_store.py#L53-L304
|
from __future__ import print_function, division
from glob import glob
import os
import re
import numpy as np
import warnings
from io import StringIO
import inspect
import xarray as xr
import dask.array as da
import sys
from .variables import dimensions, horizontal_coordinates_spherical, horizontal_coordinates_cartesian, horizontal_coordinates_curvcart, horizontal_coordinates_llc, horizontal_coordinates_cs, vertical_coordinates, horizontal_grid_variables, vertical_grid_variables, volume_grid_variables, state_variables, aliases, package_state_variables, extra_grid_variables, mask_variables
from .utils import parse_meta_file, read_mds, parse_available_diagnostics, get_extra_metadata
from .file_utils import listdir, listdir_startswith, listdir_endswith, listdir_startsandendswith, listdir_fnmatch
if (sys.version_info > (3, 0)):
stringtypes = [str]
else:
stringtypes = [str, unicode]
try:
from xarray.core.pycompat import OrderedDict
except ImportError:
from collections import OrderedDict
LLC_NUM_FACES = 13
CS_NUM_FACES = 6
FACE_DIMNAME = 'face'
|
MIT License
|
jpstrydom/crypto-trading-bot
|
src/trader.py
|
Trader.initialise
|
python
|
def initialise(self):
try:
if len(self.Database.app_data["coinPairs"]) < 1:
self.Database.store_coin_pairs(self.get_markets("BTC"))
self.Messenger.print_header(len(self.Database.app_data["coinPairs"]))
except ConnectionError as exception:
self.Messenger.print_error("connection", [], True)
logger.exception(exception)
exit()
|
Fetch the initial coin pairs to track and to print the header line
|
https://github.com/jpstrydom/crypto-trading-bot/blob/94b5aab261a35d99bc044267baf4735f0ee3f89a/src/trader.py#L23-L34
|
import pydash as py_
import time
from bittrex import Bittrex
from messenger import Messenger
from database import Database
from logger import logger
class Trader(object):
def __init__(self, secrets, settings):
self.trade_params = settings["tradeParameters"]
self.pause_params = settings["pauseParameters"]
self.Bittrex = Bittrex(secrets)
self.Messenger = Messenger(secrets, settings)
self.Database = Database()
|
MIT License
|
rebiocoder/bioforum
|
venv/Lib/site-packages/django/core/serializers/xml_serializer.py
|
Serializer._start_relational_field
|
python
|
def _start_relational_field(self, field):
self.indent(2)
self.xml.startElement('field', {
'name': field.name,
'rel': field.remote_field.__class__.__name__,
'to': str(field.remote_field.model._meta),
})
|
Output the <field> element for relational fields.
|
https://github.com/rebiocoder/bioforum/blob/08c8ff2f07ae667d37ce343f537e878d78ac8fe2/venv/Lib/site-packages/django/core/serializers/xml_serializer.py#L139-L146
|
from xml.dom import pulldom
from xml.sax import handler
from xml.sax.expatreader import ExpatParser as _ExpatParser
from django.apps import apps
from django.conf import settings
from django.core.serializers import base
from django.db import DEFAULT_DB_ALIAS, models
from django.utils.xmlutils import (
SimplerXMLGenerator, UnserializableContentError,
)
class Serializer(base.Serializer):
def indent(self, level):
if self.options.get('indent') is not None:
self.xml.ignorableWhitespace('\n' + ' ' * self.options.get('indent') * level)
def start_serialization(self):
self.xml = SimplerXMLGenerator(self.stream, self.options.get("encoding", settings.DEFAULT_CHARSET))
self.xml.startDocument()
self.xml.startElement("django-objects", {"version": "1.0"})
def end_serialization(self):
self.indent(0)
self.xml.endElement("django-objects")
self.xml.endDocument()
def start_object(self, obj):
if not hasattr(obj, "_meta"):
raise base.SerializationError("Non-model object (%s) encountered during serialization" % type(obj))
self.indent(1)
attrs = {'model': str(obj._meta)}
if not self.use_natural_primary_keys or not hasattr(obj, 'natural_key'):
obj_pk = obj.pk
if obj_pk is not None:
attrs['pk'] = str(obj_pk)
self.xml.startElement("object", attrs)
def end_object(self, obj):
self.indent(1)
self.xml.endElement("object")
def handle_field(self, obj, field):
self.indent(2)
self.xml.startElement('field', {
'name': field.name,
'type': field.get_internal_type(),
})
if getattr(obj, field.name) is not None:
try:
self.xml.characters(field.value_to_string(obj))
except UnserializableContentError:
raise ValueError("%s.%s (pk:%s) contains unserializable characters" % (
obj.__class__.__name__, field.name, obj.pk))
else:
self.xml.addQuickElement("None")
self.xml.endElement("field")
def handle_fk_field(self, obj, field):
self._start_relational_field(field)
related_att = getattr(obj, field.get_attname())
if related_att is not None:
if self.use_natural_foreign_keys and hasattr(field.remote_field.model, 'natural_key'):
related = getattr(obj, field.name)
related = related.natural_key()
for key_value in related:
self.xml.startElement("natural", {})
self.xml.characters(str(key_value))
self.xml.endElement("natural")
else:
self.xml.characters(str(related_att))
else:
self.xml.addQuickElement("None")
self.xml.endElement("field")
def handle_m2m_field(self, obj, field):
if field.remote_field.through._meta.auto_created:
self._start_relational_field(field)
if self.use_natural_foreign_keys and hasattr(field.remote_field.model, 'natural_key'):
def handle_m2m(value):
natural = value.natural_key()
self.xml.startElement("object", {})
for key_value in natural:
self.xml.startElement("natural", {})
self.xml.characters(str(key_value))
self.xml.endElement("natural")
self.xml.endElement("object")
else:
def handle_m2m(value):
self.xml.addQuickElement("object", attrs={
'pk': str(value.pk)
})
for relobj in getattr(obj, field.name).iterator():
handle_m2m(relobj)
self.xml.endElement("field")
|
MIT License
|
klavinslab/coral
|
coral/design/_sequence_generation/random_sequences.py
|
random_dna
|
python
|
def random_dna(n):
return coral.DNA(''.join([random.choice('ATGC') for i in range(n)]))
|
Generate a random DNA sequence.
:param n: Output sequence length.
:type n: int
:returns: Random DNA sequence of length n.
:rtype: coral.DNA
|
https://github.com/klavinslab/coral/blob/17f59591211562a59a051f474cd6cecba4829df9/coral/design/_sequence_generation/random_sequences.py#L7-L16
|
import random
import coral
from coral.constants.molecular_bio import CODON_FREQ_BY_AA
|
MIT License
|
google/personfinder
|
app/tasks.py
|
CleanUpInTestMode.schedule_next_task
|
python
|
def schedule_next_task(self, cursor, utcnow):
self.add_task_for_repo(
self.repo,
self.task_name(),
self.ACTION,
utcnow=str(calendar.timegm(utcnow.utctimetuple())),
cursor=cursor,
queue_name='clean_up_in_test_mode')
|
Schedule the next task for to carry on with this query.
|
https://github.com/google/personfinder/blob/475f4c0ce916036d39bae2d480cde07126550875/app/tasks.py#L80-L89
|
import calendar
import copy
import datetime
import logging
import time
import StringIO
from google.appengine import runtime
from google.appengine.api import datastore_errors
from google.appengine.api import quota
from google.appengine.api import taskqueue
from google.appengine.ext import db
import cloud_storage
import config
import const
import model
import photo
import pfif
import record_writer
import utils
CPU_MEGACYCLES_PER_REQUEST = 1000
FETCH_LIMIT = 100
PFIF = pfif.PFIF_VERSIONS[pfif.PFIF_DEFAULT_VERSION]
class CleanUpInTestMode(utils.BaseHandler):
repo_required = False
ACTION = 'tasks/clean_up_in_test_mode'
https_required = False
DELETION_AGE_SECONDS = 24 * 3600
def __init__(self, request, response, env):
utils.BaseHandler.__init__(self, request, response, env)
self.__listener = None
def task_name(self):
return 'clean-up-in-test-mode'
|
Apache License 2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.