repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
appsembler/figures
|
devsite/devsite/management/commands/check_devsite.py
|
Command.run_devsite_celery_task
|
python
|
def run_devsite_celery_task(self):
print('Checking Celery...')
msg = 'run_devsite_check management command'
result = celery_check.delay(msg)
print(('Task called. task_id={}'.format(result.task_id)))
try:
print(('result={}'.format(result.get())))
except NotImplementedError as e:
print(('Error: {}'.format(e)))
print('Done checking Celery')
|
Perform basic Celery checking
In production, we typically don't want to call `.get()`, but trying it
here just to see if the results backend is configured and working
See the `get` method here:
https://docs.celeryproject.org/en/stable/reference/celery.result.html
|
https://github.com/appsembler/figures/blob/c14d059b425d81710b0d4c7ebea317a65592998a/devsite/devsite/management/commands/check_devsite.py#L19-L38
|
from __future__ import absolute_import
from __future__ import print_function
from django.core.management.base import BaseCommand
from devsite.celery import celery_check
class Command(BaseCommand):
|
MIT License
|
iffix/machin
|
machin/frame/buffers/prioritized_buffer.py
|
WeightTree.get_weight_sum
|
python
|
def get_weight_sum(self) -> float:
return self.weights[-1]
|
Returns:
Total weight sum.
|
https://github.com/iffix/machin/blob/7fa986b1bafdefff117d6ff73d14644a5488de9d/machin/frame/buffers/prioritized_buffer.py#L54-L59
|
from typing import Union, Dict, List, Tuple, Any
from ..transition import TransitionBase
from .buffer import Buffer
import torch as t
import numpy as np
class WeightTree:
def __init__(self, size: int):
self.size = size
self.max_leaf = 0
self.depth = int(np.ceil(np.log2(self.size))) + 1
level_sizes_log = np.arange(self.depth - 1, -1, -1)
self.sizes = np.power(2, level_sizes_log)
self.offsets = np.concatenate(([0], np.cumsum(self.sizes)))
self.weights = np.zeros([self.offsets[-1]], dtype=np.float64)
|
MIT License
|
docusign/docusign-python-client
|
docusign_esign/models/user_info.py
|
UserInfo.user_name
|
python
|
def user_name(self, user_name):
self._user_name = user_name
|
Sets the user_name of this UserInfo.
# noqa: E501
:param user_name: The user_name of this UserInfo. # noqa: E501
:type: str
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/user_info.py#L342-L351
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class UserInfo(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'account_id': 'str',
'account_name': 'str',
'activation_access_code': 'str',
'email': 'str',
'error_details': 'ErrorDetails',
'login_status': 'str',
'membership_id': 'str',
'send_activation_email': 'str',
'uri': 'str',
'user_id': 'str',
'user_name': 'str',
'user_status': 'str',
'user_type': 'str'
}
attribute_map = {
'account_id': 'accountId',
'account_name': 'accountName',
'activation_access_code': 'activationAccessCode',
'email': 'email',
'error_details': 'errorDetails',
'login_status': 'loginStatus',
'membership_id': 'membershipId',
'send_activation_email': 'sendActivationEmail',
'uri': 'uri',
'user_id': 'userId',
'user_name': 'userName',
'user_status': 'userStatus',
'user_type': 'userType'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._account_id = None
self._account_name = None
self._activation_access_code = None
self._email = None
self._error_details = None
self._login_status = None
self._membership_id = None
self._send_activation_email = None
self._uri = None
self._user_id = None
self._user_name = None
self._user_status = None
self._user_type = None
self.discriminator = None
setattr(self, "_{}".format('account_id'), kwargs.get('account_id', None))
setattr(self, "_{}".format('account_name'), kwargs.get('account_name', None))
setattr(self, "_{}".format('activation_access_code'), kwargs.get('activation_access_code', None))
setattr(self, "_{}".format('email'), kwargs.get('email', None))
setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None))
setattr(self, "_{}".format('login_status'), kwargs.get('login_status', None))
setattr(self, "_{}".format('membership_id'), kwargs.get('membership_id', None))
setattr(self, "_{}".format('send_activation_email'), kwargs.get('send_activation_email', None))
setattr(self, "_{}".format('uri'), kwargs.get('uri', None))
setattr(self, "_{}".format('user_id'), kwargs.get('user_id', None))
setattr(self, "_{}".format('user_name'), kwargs.get('user_name', None))
setattr(self, "_{}".format('user_status'), kwargs.get('user_status', None))
setattr(self, "_{}".format('user_type'), kwargs.get('user_type', None))
@property
def account_id(self):
return self._account_id
@account_id.setter
def account_id(self, account_id):
self._account_id = account_id
@property
def account_name(self):
return self._account_name
@account_name.setter
def account_name(self, account_name):
self._account_name = account_name
@property
def activation_access_code(self):
return self._activation_access_code
@activation_access_code.setter
def activation_access_code(self, activation_access_code):
self._activation_access_code = activation_access_code
@property
def email(self):
return self._email
@email.setter
def email(self, email):
self._email = email
@property
def error_details(self):
return self._error_details
@error_details.setter
def error_details(self, error_details):
self._error_details = error_details
@property
def login_status(self):
return self._login_status
@login_status.setter
def login_status(self, login_status):
self._login_status = login_status
@property
def membership_id(self):
return self._membership_id
@membership_id.setter
def membership_id(self, membership_id):
self._membership_id = membership_id
@property
def send_activation_email(self):
return self._send_activation_email
@send_activation_email.setter
def send_activation_email(self, send_activation_email):
self._send_activation_email = send_activation_email
@property
def uri(self):
return self._uri
@uri.setter
def uri(self, uri):
self._uri = uri
@property
def user_id(self):
return self._user_id
@user_id.setter
def user_id(self, user_id):
self._user_id = user_id
@property
def user_name(self):
return self._user_name
@user_name.setter
|
MIT License
|
aldebaran/qibuild
|
python/qisrc/manifest.py
|
Manifest.remove_repo
|
python
|
def remove_repo(self, project_name):
matching_repo = self.get_repo(project_name)
if not matching_repo:
raise Exception("No such repo:", project_name)
self.repos.remove(matching_repo)
|
Remove a repo from the manifest
|
https://github.com/aldebaran/qibuild/blob/efea6fa3744664348717fe5e8df708a3cf392072/python/qisrc/manifest.py#L201-L206
|
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
import io
import copy
import functools
import collections
import six
import qisys.sh
import qisys.qixml
import qisrc.groups
import qisrc.git_config
class ManifestError(Exception):
pass
class Manifest(object):
def __init__(self, manifest_xml, review=True):
self.manifest_xml = manifest_xml
self.review = review
self.repos = list()
self.remotes = list()
self.default_branch = None
self.groups = qisrc.groups.Groups()
self.load()
def change_config(func):
@functools.wraps(func)
def new_func(self, *args, **kwargs):
res = func(self, *args, **kwargs)
self.dump()
self.load()
return res
return new_func
def load(self):
project_names = list()
self.repos = list()
self.remotes = list()
self.import_manifest = list()
self.groups = qisrc.groups.Groups()
root = qisys.qixml.read(self.manifest_xml).getroot()
parser = ManifestParser(self)
parser.parse(root)
for repo in self.repos:
if repo.project in project_names:
raise ManifestError("%s found twice" % repo.project)
project_names.append(repo.project)
for remote in self.remotes:
if remote.review and not self.review:
continue
remote.parse_url()
review_remotes = list()
for remote in self.remotes:
if remote.review:
review_remotes.append(remote)
if len(review_remotes) > 1:
mess = """ \
Only one remote can be configured with review="true", found {0}
""".format(len(review_remotes))
raise ManifestError(mess)
for import_manifest in self.import_manifest:
self.set_remote(import_manifest, import_manifest.default_remote_name)
srcs = dict()
for repo in self.repos:
if repo.src in srcs:
mess = """ \
Found two projects sharing the same sources:
* {0}
* {1}
""".format(srcs[repo.src], repo)
raise ManifestError(mess)
for remote_name in repo.remote_names:
self.set_remote(repo, remote_name)
srcs[repo.src] = repo
def set_remote(self, repo, remote_name):
matching_remote = self.get_remote(remote_name)
if not matching_remote:
raise ManifestError("No matching remote: %s for repo %s" %
(remote_name, repo.project))
if matching_remote.review and not self.review:
return
remote = copy.copy(matching_remote)
remote.url = matching_remote.prefix + repo.project
if repo.default_branch is None:
if self.default_branch:
repo.default_branch = self.default_branch
else:
repo.default_branch = remote.default_branch
if remote.name == repo.default_remote_name:
remote.default = True
if repo.fixed_ref:
repo.default_branch = None
repo.remotes.append(remote)
def dump(self):
parser = ManifestParser(self)
xml_elem = parser.xml_elem()
qisys.qixml.write(xml_elem, self.manifest_xml)
def get_repos(self, groups=None, get_all=False):
default_group = self.groups.default_group
if groups is None:
if default_group and not get_all:
groups = [default_group.name]
else:
return self.repos
repos = collections.OrderedDict()
for group in groups:
try:
project_names = self.groups.projects(group)
except qisrc.groups.GroupError as e:
raise ManifestError(str(e))
for project_name in project_names:
matching_repo = self.get_repo(project_name)
if matching_repo:
repos[project_name] = matching_repo
else:
raise ManifestError("""When reading group {0}:
No such project: {1}
""".format(group, project_name))
values = list()
if six.PY3:
values = list(repos.values())
else:
values = repos.values()
return values
def get_repo(self, project):
for repo in self.repos:
if repo.project == project:
return repo
return None
def get_remote(self, name):
for remote in self.remotes:
if remote.name == name:
return remote
return None
@change_config
def add_remote(self, name, url, review=False):
remote = qisrc.git_config.Remote()
remote.name = name
remote.url = url
remote.review = review
self.remotes.append(remote)
@change_config
def add_repo(self, project_name, src, remote_names,
default_branch="master"):
repo = RepoConfig()
repo.project = project_name
repo.src = src
repo.remote_names = remote_names
repo.default_branch = default_branch
self.repos.append(repo)
@change_config
|
BSD 3-Clause New or Revised License
|
google/containerregistry
|
client/v1/docker_session_.py
|
Push.__init__
|
python
|
def __init__(self, name, creds,
transport):
self._name = name
self._basic_creds = creds
self._transport = transport
self._top = None
|
Constructor.
Args:
name: the fully-qualified name of the tag to push.
creds: provider for authorizing requests.
transport: the http transport to use for sending requests.
Raises:
TypeError: an incorrectly typed argument was supplied.
|
https://github.com/google/containerregistry/blob/8a11dc8c53003ecf5b72ffaf035ba280109356ac/client/v1/docker_session_.py#L40-L55
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
from containerregistry.client import docker_creds
from containerregistry.client import docker_name
from containerregistry.client.v1 import docker_creds as v1_creds
from containerregistry.client.v1 import docker_http
from containerregistry.client.v1 import docker_image
import httplib2
import six.moves.http_client
class Push(object):
|
Apache License 2.0
|
rapid7/vm-console-client-python
|
rapid7vmconsole/models/policy.py
|
Policy.store_scap
|
python
|
def store_scap(self, store_scap):
self._store_scap = store_scap
|
Sets the store_scap of this Policy.
Whether Asset Reporting Format (ARF) results are stored. If you are required to submit reports of your policy scan results to the U.S. government in ARF for SCAP certification, you will need to store SCAP data so that it can be exported in this format. Note that stored SCAP data can accumulate rapidly, which can have a significant impact on file storage. Defaults to `false`. # noqa: E501
:param store_scap: The store_scap of this Policy. # noqa: E501
:type: bool
|
https://github.com/rapid7/vm-console-client-python/blob/55e1f573967bce27cc9a2d10c12a949b1142c2b3/rapid7vmconsole/models/policy.py#L144-L153
|
import pprint
import re
import six
class Policy(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'enabled': 'list[int]',
'links': 'list[Link]',
'recursive_windows_fs_search': 'bool',
'store_scap': 'bool'
}
attribute_map = {
'enabled': 'enabled',
'links': 'links',
'recursive_windows_fs_search': 'recursiveWindowsFSSearch',
'store_scap': 'storeSCAP'
}
def __init__(self, enabled=None, links=None, recursive_windows_fs_search=None, store_scap=None):
self._enabled = None
self._links = None
self._recursive_windows_fs_search = None
self._store_scap = None
self.discriminator = None
if enabled is not None:
self.enabled = enabled
if links is not None:
self.links = links
if recursive_windows_fs_search is not None:
self.recursive_windows_fs_search = recursive_windows_fs_search
if store_scap is not None:
self.store_scap = store_scap
@property
def enabled(self):
return self._enabled
@enabled.setter
def enabled(self, enabled):
self._enabled = enabled
@property
def links(self):
return self._links
@links.setter
def links(self, links):
self._links = links
@property
def recursive_windows_fs_search(self):
return self._recursive_windows_fs_search
@recursive_windows_fs_search.setter
def recursive_windows_fs_search(self, recursive_windows_fs_search):
self._recursive_windows_fs_search = recursive_windows_fs_search
@property
def store_scap(self):
return self._store_scap
@store_scap.setter
|
MIT License
|
bobankh/auto-generate-changelog
|
main.py
|
generate_changelog
|
python
|
def generate_changelog(releases, part_name):
info_list = []
CHANGELOG = '# CHANGELOG\n\n'
for release_tag in releases:
release_info = ''
release_commits = releases[release_tag]['commits']
if release_tag == 'Unreleased':
title = 'Unreleased'
description = 'Changes unreleased.'
release_info = f'''## {title}\n\n{description}\n\n'''
else:
title = release_tag
url = releases[release_tag]['html_url']
origin_desc = re.split(r'<!-- HIDE IN CHANGELOG BEGIN -->(?:.|\n)*?<!-- HIDE IN CHANGELOG END -->', releases[release_tag]['body'])
if len(origin_desc) == 1:
description = origin_desc[0]
else:
description = ''
for elem in origin_desc:
if elem == origin_desc[0]:
para = re.sub(r'\n*$', r'', elem)
description = description + para
elif elem == origin_desc[-1]:
para = re.sub(r'^\n*', r'', elem)
if para == '':
continue
elif description == '':
description = description + para
else:
description = description + '\n\n' + para
else:
para = re.sub(r'\n*$', r'', elem)
para = re.sub(r'^\n*', r'', para)
if para == '':
continue
elif description == '':
description = description + para
else:
description = description + '\n\n' + para
date = releases[release_tag]['created_at']
if description == '':
description = '*No description*'
release_info = f'''## [{title}]({url}) - {date}\n\n{description}\n\n'''
release_body = generate_release_body(release_commits, part_name)
if release_body == '' and release_tag == 'Unreleased':
continue
else:
release_info = release_info + release_body
info_list.append(release_info)
for j in info_list:
CHANGELOG = CHANGELOG + j
CHANGELOG = CHANGELOG + r'\* *This CHANGELOG was automatically generated by [auto-generate-changelog](https://github.com/BobAnkh/auto-generate-changelog)*'
CHANGELOG = CHANGELOG + '\n'
return CHANGELOG
|
Generate CHANGELOG
Args:
releases: dict of release data
part_name (list): a list of part_name, e.g. feat:Feature
Returns:
string: content of CHANGELOG
|
https://github.com/bobankh/auto-generate-changelog/blob/920f902dddd57169f5868154681f43659b79b818/main.py#L313-L376
|
import argparse
import base64
import os
import re
import github
import yaml
from tqdm import tqdm
def argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
'-m',
'--mode',
help=
'choose to use local-dev mode or on github action mode. Valid values are \'local\' or \'github\'',
default='github')
parser.add_argument(
'-f',
'--file',
help='configuration file to read from when running local-dev mode',
default='.github/workflows/changelog.yml')
parser.add_argument('-o',
'--output',
help='output file when running local-dev mode',
default='local-dev.md')
parser.add_argument('-t', '--token', help='Github Access Token')
args = parser.parse_args()
return args
def set_local_env(env_name: str, env_value: str, prefix='INPUT'):
os.environ[prefix + '_{}'.format(env_name).upper()] = env_value
def get_inputs(input_name: str, prefix='INPUT') -> str:
return os.getenv(prefix + '_{}'.format(input_name).upper())
def set_env_from_file(file, args, prefix='INPUT'):
f = open(file, encoding='utf-8')
y = yaml.safe_load(f)
for job in y['jobs'].values():
for step in job['steps']:
if re.match(r'BobAnkh/auto-generate-changelog', step['uses']):
params = step['with']
break
option_params = [
'REPO_NAME', 'ACCESS_TOKEN', 'PATH', 'COMMIT_MESSAGE', 'TYPE', 'COMMITTER'
]
for param in option_params:
if param not in params.keys():
if param == 'ACCESS_TOKEN' and args.token:
tmp = args.token
else:
tmp = input('Please input the value of ' + param + ':')
elif param == 'ACCESS_TOKEN':
if re.match(r'\$\{\{secrets\.', params[param]):
if args.token:
tmp = args.token
else:
tmp = input('Please input the value of ' + param + ':')
else:
tmp = params[param]
elif param == 'REPO_NAME' and params[param] == '':
tmp = input('Please input the value of ' + param + ':')
else:
tmp = params[param]
set_local_env(param, tmp, prefix)
class GithubChangelog:
def __init__(self, ACCESS_TOKEN, REPO_NAME, PATH, BRANCH, PULL_REQUEST, COMMIT_MESSAGE, COMMITTER):
self.__commit_message = COMMIT_MESSAGE
self.__path = PATH
self.__branch = BRANCH
self.__pull_request = PULL_REQUEST
self.__sha = ''
self.__releases = {}
self.__changelog = ''
self.__file_exists = False
g = github.Github(ACCESS_TOKEN)
self.__repo = g.get_repo(REPO_NAME)
self.__author = github.GithubObject.NotSet if COMMITTER == '' else github.InputGitAuthor(COMMITTER.split(' ')[0], COMMITTER.split(' ')[1])
def get_data(self):
releases = self.__repo.get_releases()
self.__releases['Unreleased'] = {'html_url': '', 'body': '', 'created_at': '', 'commit_sha': ''}
for release in releases:
self.__releases[release.tag_name] = {'html_url': release.html_url, 'body': re.sub(r'\r\n', r'\n', release.body), 'created_at': release.created_at}
tags = self.__repo.get_tags()
for tag in tags:
if tag.name in self.__releases:
self.__releases[tag.name]['commit_sha'] = tag.commit.sha
release_commit_sha_list = {self.__releases[x]['commit_sha']:x for x in self.__releases}
release_tags = list(self.__releases.keys())[::-1]
seq = 0
commits = self.__repo.get_commits(sha=self.__branch).reversed
selected_commits = []
pbar = tqdm(desc='Commits progress', total=commits.totalCount)
for commit in commits:
message = commit.commit.message.split('\n\n')
message_head = message[0]
if message_head[-3:] == '...' and len(message) > 1:
if message[1][0:3] == '...':
message_head = re.sub(r' ', r' ', message_head[:-3] + ' ' + message[1].split('\n')[0][3:])
url = commit.html_url
pulls = commit.get_pulls()
pr_links = []
if pulls.totalCount == 0:
pass
else:
for pull in pulls:
pr = f''' ([#{pull.number}]({pull.html_url}))'''
pr_links.append(pr)
selected_commits.append({'head': message_head, 'sha': commit.sha, 'url': url, 'pr_links': pr_links})
if commit.sha == self.__releases[release_tags[seq]]['commit_sha']:
self.__releases[release_tags[seq]]['commits'] = selected_commits[::-1]
selected_commits = []
seq = seq + 1
else:
if commit.sha in release_commit_sha_list:
while (seq < release_tags.index(release_commit_sha_list[commit.sha])):
print(f'\n[DEBUG]Skip {release_tags[seq]} because the release commit is not in the log history')
self.__releases[release_tags[seq]]['commits'] = []
seq = seq + 1
if commit.sha == self.__releases[release_tags[seq]]['commit_sha']:
self.__releases[release_tags[seq]]['commits'] = selected_commits[::-1]
selected_commits = []
seq = seq + 1
pbar.update(1)
pbar.close()
while (seq < len(release_tags) - 1):
print(f'\n[DEBUG]Skip {release_tags[seq]} because the release commit is not in the log history')
self.__releases[release_tags[seq]]['commits'] = []
seq = seq + 1
self.__releases[release_tags[seq]]['commits'] = selected_commits[::-1]
try:
contents = self.__repo.get_contents(self.__path, self.__branch)
except github.GithubException as e:
if e.status == 404:
self.__changelog = ''
else:
raise github.GithubException(e.status, e.data)
else:
self.__file_exists = True
self.__path = contents.path
self.__sha = contents.sha
base = contents.content
base = base.replace('\n', '')
self.__changelog = base64.b64decode(base).decode('utf-8')
def read_releases(self):
return self.__releases
def write_data(self, changelog):
if changelog == self.__changelog:
pass
else:
if self.__file_exists:
self.__repo.update_file(self.__path, self.__commit_message, changelog,
self.__sha, self.__branch, self.__author)
else:
self.__repo.create_file(self.__path, self.__commit_message, changelog,
self.__branch, self.__author)
print(f'[DEBUG] BRANCH: {self.__branch}, PULL_REQUEST: {self.__pull_request}')
if self.__pull_request != '' and self.__pull_request != self.__branch:
self.repo.create_pull(title=self.__commit_message, body=self.__commit_message, base=self.__pull_request, head=self.__branch, draft=False, maintainer_can_modify=True)
def strip_commits(commits, type_regex):
regex = r'^'+ type_regex + r'[(](.+?)[)]'
scopes = {}
for commit in commits:
if re.match(regex, commit['head']):
scope = re.findall(regex, commit['head'])[0]
if scope.lower() == 'changelog' and regex == r'^docs[(](.+?)[)]':
continue
subject = re.sub(regex + r'\s?:\s?', '', commit['head'])
if scope in scopes:
scopes[scope].append({'subject': subject, 'commit': commit})
else:
scopes[scope] = []
scopes[scope].append({'subject': subject, 'commit': commit})
return scopes
def generate_section(release_commits, regex):
section = ''
scopes = strip_commits(release_commits, regex)
for scope in scopes:
scope_content = f'''- {scope}:\n'''
for sel_commit in scopes[scope]:
commit = sel_commit['commit']
sha = commit['sha']
url = commit['url']
subject = sel_commit['subject']
pr_links = commit['pr_links']
scope_content = scope_content + f''' - {subject} ([{sha[0:7]}]({url}))'''
for pr_link in pr_links:
scope_content = scope_content + pr_link
scope_content = scope_content + '\n'
section = section + scope_content + '\n'
return section
def generate_release_body(release_commits, part_name):
release_body = ''
for part in part_name:
regex, name = part.split(':')
sec = generate_section(release_commits, regex)
if sec != '':
release_body = release_body + '### ' + name + '\n\n' + sec
return release_body
|
Apache License 2.0
|
noxdafox/clipspy
|
clips/classes.py
|
Class.superclass
|
python
|
def superclass(self, defclass: 'Class') -> bool:
return lib.SuperclassP(self._ptr(), defclass._ptr())
|
True if the Class is a superclass of the given one.
|
https://github.com/noxdafox/clipspy/blob/a317964dc86755619d84b9adf4008d62663889ce/clips/classes.py#L289-L291
|
import os
import clips
from clips.modules import Module
from clips.common import PutSlotError, PUT_SLOT_ERROR
from clips.common import CLIPSError, SaveMode, ClassDefaultMode
from clips.common import environment_builder, environment_modifier
from clips._clips import lib, ffi
class Instance:
__slots__ = '_env', '_ist'
def __init__(self, env: ffi.CData, ist: ffi.CData):
self._env = env
self._ist = ist
lib.RetainInstance(self._ist)
def __del__(self):
try:
lib.ReleaseInstance(self._ist)
except (AttributeError, TypeError):
pass
def __hash__(self):
return hash(self._ist)
def __eq__(self, ist):
return self._ist == ist._ist
def __str__(self):
return ' '.join(instance_pp_string(self._env, self._ist).split())
def __repr__(self):
string = ' '.join(instance_pp_string(self._env, self._ist).split())
return "%s: %s" % (self.__class__.__name__, string)
def __iter__(self):
slot_names = (s.name for s in self.instance_class.slots())
return ((n, slot_value(self._env, self._ist, n)) for n in slot_names)
def __getitem__(self, slot):
return slot_value(self._env, self._ist, slot)
@property
def name(self) -> str:
return ffi.string(lib.InstanceName(self._ist)).decode()
@property
def instance_class(self) -> 'Class':
defclass = lib.InstanceClass(self._ist)
name = ffi.string(lib.DefclassName(defclass)).decode()
return Class(self._env, name)
def modify_slots(self, **slots):
modifier = environment_modifier(self._env, 'instance')
ret = lib.IMSetInstance(modifier, self._ist)
if ret != lib.IME_NO_ERROR:
raise CLIPSError(self._env, code=ret)
for slot, slot_val in slots.items():
value = clips.values.clips_value(self._env, value=slot_val)
ret = lib.IMPutSlot(modifier, str(slot).encode(), value)
if ret != PutSlotError.PSE_NO_ERROR:
raise PUT_SLOT_ERROR[ret](slot)
if lib.IMModify(modifier) is ffi.NULL:
raise CLIPSError(self._env, code=lib.IMError(self._env))
def send(self, message: str, arguments: str = None) -> type:
output = clips.values.clips_value(self._env)
instance = clips.values.clips_value(self._env, value=self)
args = arguments.encode() if arguments is not None else ffi.NULL
lib.Send(self._env, instance, message.encode(), args, output)
return clips.values.python_value(self._env, output)
def delete(self):
ret = lib.DeleteInstance(self._ist)
if ret != lib.UIE_NO_ERROR:
raise CLIPSError(self._env, code=ret)
def unmake(self):
ret = lib.UnmakeInstance(self._ist)
if ret != lib.UIE_NO_ERROR:
raise CLIPSError(self._env, code=ret)
class Class:
__slots__ = '_env', '_name'
def __init__(self, env: ffi.CData, name: str):
self._env = env
self._name = name.encode()
def __hash__(self):
return hash(self._ptr())
def __eq__(self, cls):
return self._ptr() == cls._ptr()
def __str__(self):
string = lib.DefclassPPForm(self._ptr())
string = ffi.string(string).decode() if string != ffi.NULL else ''
return ' '.join(string.split())
def __repr__(self):
string = lib.DefclassPPForm(self._ptr())
string = ffi.string(string).decode() if string != ffi.NULL else ''
return "%s: %s" % (self.__class__.__name__, ' '.join(string.split()))
def _ptr(self) -> ffi.CData:
cls = lib.FindDefclass(self._env, self._name)
if cls == ffi.NULL:
raise CLIPSError(self._env, 'Class <%s> not defined' % self.name)
return cls
@property
def abstract(self) -> bool:
return lib.ClassAbstractP(self._ptr())
@property
def reactive(self) -> bool:
return lib.ClassReactiveP(self._ptr())
@property
def name(self) -> str:
return ffi.string(lib.DefclassName(self._ptr())).decode()
@property
def module(self) -> Module:
name = ffi.string(lib.DefclassModule(self._ptr())).decode()
return Module(self._env, name)
@property
def deletable(self) -> bool:
return lib.DefclassIsDeletable(self._ptr())
@property
def watch_instances(self) -> bool:
return lib.DefclassGetWatchInstances(self._ptr())
@watch_instances.setter
def watch_instances(self, flag: bool):
lib.DefclassSetWatchInstances(self._ptr(), flag)
@property
def watch_slots(self) -> bool:
return lib.DefclassGetWatchSlots(self._ptr())
@watch_slots.setter
def watch_slots(self, flag: bool):
lib.DefclassSetWatchSlots(self._ptr(), flag)
def make_instance(self, instance_name: str = None, **slots) -> Instance:
builder = environment_builder(self._env, 'instance')
ret = lib.IBSetDefclass(builder, lib.DefclassName(self._ptr()))
if ret != lib.IBE_NO_ERROR:
raise CLIPSError(self._env, code=ret)
for slot, slot_val in slots.items():
value = clips.values.clips_value(self._env, value=slot_val)
ret = lib.IBPutSlot(builder, str(slot).encode(), value)
if ret != PutSlotError.PSE_NO_ERROR:
raise PUT_SLOT_ERROR[ret](slot)
instance = lib.IBMake(
builder, instance_name.encode()
if instance_name is not None else ffi.NULL)
if instance != ffi.NULL:
return Instance(self._env, instance)
else:
raise CLIPSError(self._env, code=lib.FBError(self._env))
def subclass(self, defclass: 'Class') -> bool:
return lib.SubclassP(self._ptr(), defclass._ptr())
|
BSD 3-Clause New or Revised License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1beta1_eviction.py
|
V1beta1Eviction.kind
|
python
|
def kind(self, kind):
self._kind = kind
|
Sets the kind of this V1beta1Eviction.
Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501
:param kind: The kind of this V1beta1Eviction. # noqa: E501
:type: str
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1beta1_eviction.py#L126-L135
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1beta1Eviction(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'api_version': 'str',
'delete_options': 'V1DeleteOptions',
'kind': 'str',
'metadata': 'V1ObjectMeta'
}
attribute_map = {
'api_version': 'apiVersion',
'delete_options': 'deleteOptions',
'kind': 'kind',
'metadata': 'metadata'
}
def __init__(self, api_version=None, delete_options=None, kind=None, metadata=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._api_version = None
self._delete_options = None
self._kind = None
self._metadata = None
self.discriminator = None
if api_version is not None:
self.api_version = api_version
if delete_options is not None:
self.delete_options = delete_options
if kind is not None:
self.kind = kind
if metadata is not None:
self.metadata = metadata
@property
def api_version(self):
return self._api_version
@api_version.setter
def api_version(self, api_version):
self._api_version = api_version
@property
def delete_options(self):
return self._delete_options
@delete_options.setter
def delete_options(self, delete_options):
self._delete_options = delete_options
@property
def kind(self):
return self._kind
@kind.setter
|
Apache License 2.0
|
meolu/walle-web
|
walle/api/project.py
|
ProjectAPI.put
|
python
|
def put(self, project_id, action=None):
super(ProjectAPI, self).put()
if action and action == 'members':
return self.members(project_id, members=json.loads(request.data.decode('utf-8')))
form = ProjectForm(request.form, csrf=False)
form.set_id(project_id)
if form.validate_on_submit():
server = ProjectModel().get_by_id(project_id)
repo_url_origin = server.repo_url
data = form.form2dict()
ret = server.update(data)
if repo_url_origin != data['repo_url']:
dir_codebase_project = current_app.config.get('CODE_BASE') + str(project_id)
if os.path.exists(dir_codebase_project):
shutil.rmtree(dir_codebase_project)
return self.render_json(data=server.item())
else:
return self.render_error(code=Code.form_error, message=form.errors)
|
update project
/project/<int:id>
:return:
|
https://github.com/meolu/walle-web/blob/f96dc41ed882782d52ec62fddbe0213b8b9158ec/walle/api/project.py#L109-L137
|
import json
import os, shutil
from flask import request, abort
from walle.api.api import SecurityResource
from walle.form.project import ProjectForm
from walle.model.member import MemberModel
from walle.model.project import ProjectModel
from walle.service.extensions import permission
from walle.service.rbac.role import *
from walle.service.deployer import Deployer
class ProjectAPI(SecurityResource):
actions = ['members', 'copy', 'detection']
@permission.upper_reporter
def get(self, action=None, project_id=None):
super(ProjectAPI, self).get()
return self.item(project_id) if project_id else self.list()
def list(self):
page = int(request.args.get('page', 0))
page = page - 1 if page else 0
size = int(request.args.get('size', 10))
kw = request.values.get('kw', '')
environment_id = request.values.get('environment_id', '')
project_model = ProjectModel()
project_list, count = project_model.list(page=page, size=size, kw=kw, environment_id=environment_id,
space_id=self.space_id)
return self.list_json(list=project_list, count=count,
enable_create=permission.role_upper_master() and current_user.role != SUPER)
def item(self, project_id):
project_model = ProjectModel(id=project_id)
current_app.logger.info(project_id)
project_info = project_model.item(id=project_id)
current_app.logger.info(project_info)
if not project_info:
return self.render_json(code=-1)
project_info['members'], count, project_info['user_uids'] = MemberModel().members(project_id=project_id)
return self.render_json(data=project_info)
@permission.upper_developer
def post(self, action=None, project_id=None):
super(ProjectAPI, self).post()
if action is None:
return self.create()
if action in self.actions:
self_action = getattr(self, action.lower(), None)
return self_action(project_id)
else:
abort(404)
def create(self):
form = ProjectForm(request.form, csrf=False)
if form.validate_on_submit():
project = ProjectModel()
data = form.form2dict()
project_new = project.add(data)
if not project_new:
return self.render_json(code=-1)
return self.render_json(data=project_new)
else:
return self.render_error(code=Code.form_error, message=form.errors)
@permission.upper_developer
|
Apache License 2.0
|
hema-ted/pycdft
|
pycdft/dft_driver/base.py
|
DFTDriver.run_opt
|
python
|
def run_opt(self):
pass
|
Order the DFT code to run one structure relaxation step.
|
https://github.com/hema-ted/pycdft/blob/d6f54dcfbee309ba310791b39119257b66c5560d/pycdft/dft_driver/base.py#L49-L51
|
from abc import ABCMeta, abstractmethod
from pycdft.common.sample import Sample
class DFTDriver(object):
__metaclass__ = ABCMeta
def __init__(self, sample: Sample):
self.sample = sample
self.istep = None
self.icscf = None
self.output_path = None
@abstractmethod
def reset(self, output_path):
pass
@abstractmethod
def set_Vc(self, Vc):
pass
@abstractmethod
def run_scf(self):
pass
@abstractmethod
|
MIT License
|
celery/django-celery
|
djcelery/humanize.py
|
naturaldate
|
python
|
def naturaldate(date, include_seconds=False):
if not date:
return ''
right_now = now()
today = datetime(right_now.year, right_now.month,
right_now.day, tzinfo=right_now.tzinfo)
delta = right_now - date
delta_midnight = today - date
days = delta.days
hours = delta.seconds // 3600
minutes = delta.seconds // 60
seconds = delta.seconds
if days < 0:
return _('just now')
if days == 0:
if hours == 0:
if minutes > 0:
return ungettext(
_('{minutes} minute ago'),
_('{minutes} minutes ago'), minutes
).format(minutes=minutes)
else:
if include_seconds and seconds:
return ungettext(
_('{seconds} second ago'),
_('{seconds} seconds ago'), seconds
).format(seconds=seconds)
return _('just now')
else:
return ungettext(
_('{hours} hour ago'), _('{hours} hours ago'), hours
).format(hours=hours)
if delta_midnight.days == 0:
return _('yesterday at {time}').format(time=date.strftime('%H:%M'))
count = 0
for chunk, pluralizefun in OLDER_CHUNKS:
if days >= chunk:
count = int(round((delta_midnight.days + 1) / chunk, 0))
fmt = pluralizefun(count)
return fmt.format(num=count)
|
Convert datetime into a human natural date string.
|
https://github.com/celery/django-celery/blob/a78b3a5e0d3b28ee550c70cc509d608744c88337/djcelery/humanize.py#L38-L85
|
from __future__ import absolute_import, unicode_literals
from datetime import datetime
from django.utils.translation import ungettext, ugettext as _
from .utils import now
def pluralize_year(n):
return ungettext(_('{num} year ago'), _('{num} years ago'), n)
def pluralize_month(n):
return ungettext(_('{num} month ago'), _('{num} months ago'), n)
def pluralize_week(n):
return ungettext(_('{num} week ago'), _('{num} weeks ago'), n)
def pluralize_day(n):
return ungettext(_('{num} day ago'), _('{num} days ago'), n)
OLDER_CHUNKS = (
(365.0, pluralize_year),
(30.0, pluralize_month),
(7.0, pluralize_week),
(1.0, pluralize_day),
)
def _un(singular__plural, n=None):
singular, plural = singular__plural
return ungettext(singular, plural, n)
|
BSD 3-Clause New or Revised License
|
walkerning/aw_nas
|
aw_nas/utils/box_utils.py
|
encode
|
python
|
def encode(matched, priors, variances):
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2
p_cxcy = (priors[:, :2] + priors[:, 2:]) / 2
p_wh = priors[:, 2:] - priors[:, :2]
g_cxcy -= p_cxcy
g_cxcy /= (variances[0] * p_wh)
g_wh = (matched[:, 2:] - matched[:, :2]) / p_wh
g_wh = torch.log(g_wh) / variances[1]
return torch.cat([g_cxcy, g_wh], 1)
|
Encode the variances from the priorbox layers into the ground truth boxes
we have matched (based on jaccard overlap) with the prior boxes.
Args:
matched: (tensor) Coords of ground truth for each prior in point-form
Shape: [num_priors, 4].
priors: (tensor) Prior boxes in center-offset form
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
encoded boxes (tensor), Shape: [num_priors, 4]
|
https://github.com/walkerning/aw_nas/blob/8a32196ce342b8ad9e3885895735d1286e25beba/aw_nas/utils/box_utils.py#L34-L58
|
import collections
import itertools
import math
import numpy as np
import torch
import torch.nn as nn
def decode(loc, priors, variances):
p_cxcy = (priors[:, :2] + priors[:, 2:]) / 2
p_wh = priors[:, 2:] - priors[:, :2]
boxes = torch.cat(
(p_cxcy + loc[:, :2] * variances[0] * p_wh,
p_wh * torch.exp(loc[:, 2:] * variances[1])), 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
|
MIT License
|
raxod502/mercury
|
mercury/_api.py
|
Service.login
|
python
|
def login(self, fields):
pass
|
Given values for the fields returned by get_login_fields (a map
where the keys are the "field" values from get_login_fields
and the values are the strings provided by the user), try to
do a login. Throw LoginRequiredError if the auth fails,
ServiceError on unexpected error.
|
https://github.com/raxod502/mercury/blob/a102cbd87040863225802157981e8f532c523c9b/mercury/_api.py#L68-L76
|
import abc
class LoginRequiredError(Exception):
pass
class ServiceError(Exception):
def __init__(self, fmt, *args, **kwargs):
super().__init__(fmt.format(*args, **kwargs))
class Service(abc.ABC):
@abc.abstractmethod
def __init__(self):
pass
@abc.abstractmethod
def get_session(self):
pass
@abc.abstractmethod
def restore_session(self, session):
pass
@abc.abstractmethod
def get_login_fields(self):
pass
@abc.abstractmethod
|
MIT License
|
cslotboom/hysteresis
|
doc/readthedocs/hysteresis/baseClass.py
|
CurveBase.getNetArea
|
python
|
def getNetArea(self, startIndex = 0, endIndex = 0):
Area = self.area
if endIndex == 0:
endIndex = self.Npoints
return np.sum(Area[startIndex:endIndex])
|
Returns the net area between two indexes in the xy curve. The default
setting is to return the area for the whole cuve.
|
https://github.com/cslotboom/hysteresis/blob/2c41dc9b551a8e9332318a90f0f2477bec163b4d/doc/readthedocs/hysteresis/baseClass.py#L116-L127
|
import numpy as np
from numpy import trapz
from scipy.interpolate import interp1d
from scipy.signal import find_peaks
from hysteresis import data
import hysteresis.env as env
import matplotlib.pyplot as plt
class CurveBase:
def __init__(self, XYData, xunit = '', yunit = ''):
self.xy = XYData
self.Npoints = len(XYData[:,0])
self.areaFunction = env.environment.fArea
self.slopeFunction = env.environment.fslope
self.lengthFunction = env.environment.flength
self.plotFunction = env.environment.fplot
self.initializeFig = env.environment.finit
self.showCycles = env.environment.fcycles
self.colorDict = {0:'C0', 1:'C1', 2:'C3'}
self.xunit = xunit
self.yunit = yunit
def __len__(self):
return len(self.xy[:,0])
def setArea(self):
self.area = self.areaFunction(self.xy)
return self.area
def getCumDisp(self):
dx = np.diff(self.xy[:,0])
return np.append(0, np.cumsum(np.abs(dx)))
def getNetCumDisp(self, startIndex = 0, endIndex = 0):
x = self.xy[:,0]
dx = np.append(0, np.diff(self.xy[:,0]))
if endIndex == 0:
endIndex = self.Npoints
return np.sum(np.abs(dx[startIndex:endIndex]))
def getCumArea(self):
Area = self.area
return np.cumsum(Area)
|
Apache License 2.0
|
kcl-bmeis/exetera
|
exetera/core/dataset.py
|
HDF5Dataset.__len__
|
python
|
def __len__(self):
return len(self._dataframes)
|
Return the number of dataframes stored in this dataset.
|
https://github.com/kcl-bmeis/exetera/blob/2149a386b79ae2e6538edee54361614d025ee3b3/exetera/core/dataset.py#L266-L268
|
from typing import Optional
import h5py
from exetera.core.abstract_types import DataFrame, Dataset
from exetera.core import dataframe as edf
class HDF5Dataset(Dataset):
def __init__(self, session, dataset_path, mode, name):
self.name = name
self._session = session
self._file = h5py.File(dataset_path, mode)
self._dataframes = dict()
for group in self._file.keys():
if group not in ('trash',):
h5group = self._file[group]
dataframe = edf.HDF5DataFrame(self, group, h5group=h5group)
self._dataframes[group] = dataframe
@property
def session(self):
return self._session
def create_group(self,
name: str):
return self.create_dataframe(name)
def create_dataframe(self,
name: str,
dataframe: Optional[DataFrame] = None):
if dataframe is not None:
if not isinstance(dataframe, DataFrame):
raise ValueError("If set, 'dataframe' must be of type DataFrame "
"but is of type {}".format(type(dataframe)))
self._file.create_group(name)
h5group = self._file[name]
_dataframe = edf.HDF5DataFrame(self, name, h5group)
if dataframe is not None:
for k, v in dataframe.items():
f = v.create_like(_dataframe, k)
if f.indexed:
f.indices.write(v.indices[:])
f.values.write(v.values[:])
else:
f.data.write(v.data[:])
self._dataframes[name] = _dataframe
return _dataframe
def require_dataframe(self, name):
if self.__contains__(name):
return self._dataframes[name]
else:
return self.create_dataframe(name)
def close(self):
self._file.close()
def copy(self, dataframe, name):
copy(dataframe, self, name)
def __contains__(self, name: str):
return name in self._dataframes
def contains_dataframe(self, dataframe: DataFrame):
if not isinstance(dataframe, DataFrame):
raise TypeError("The field must be a DataFrame object")
else:
for v in self._dataframes.values():
if id(dataframe) == id(v):
return True
return False
def __getitem__(self, name: str):
if not isinstance(name, str):
raise TypeError("The name must be a str object.")
elif not self.__contains__(name):
raise ValueError("Can not find the name from this dataset.")
else:
return self._dataframes[name]
def get_dataframe(self, name: str):
return self.__getitem__(name)
def __setitem__(self, name: str, dataframe: DataFrame):
if not isinstance(name, str):
raise TypeError("The name must be a str object.")
if not isinstance(dataframe, edf.DataFrame):
raise TypeError("The field must be a DataFrame object.")
if dataframe.dataset == self:
del self._dataframes[dataframe.name]
dataframe.name = name
self._file.move(dataframe.h5group.name, name)
else:
copy(dataframe, self, name)
def __delitem__(self, name: str):
if not self.__contains__(name):
raise ValueError("This dataframe does not contain the name to delete.")
else:
del self._dataframes[name]
del self._file[name]
return True
def delete_dataframe(self, dataframe: DataFrame):
name = dataframe.name
if name is None:
raise ValueError("This dataframe does not contain the field to delete.")
else:
self.__delitem__(name)
def drop(self,
name: str):
del self._dataframes[name]
del self._file[name]
def keys(self):
return self._dataframes.keys()
def values(self):
return self._dataframes.values()
def items(self):
return self._dataframes.items()
def __iter__(self):
return iter(self._dataframes)
def __next__(self):
return next(self._dataframes)
|
Apache License 2.0
|
mila-iqia/platoon
|
platoon/training/global_dynamics.py
|
Downpour.make_rule
|
python
|
def make_rule(self, local_particle, local_acc_updates, global_particle):
import theano
from theano.tensor import basic
if isinstance(local_particle, theano.compile.SharedVariable):
local_particle = [local_particle]
if isinstance(local_acc_updates, theano.compile.SharedVariable):
local_acc_updates = [local_acc_updates]
if isinstance(global_particle, theano.compile.SharedVariable):
global_particle = [global_particle]
new_global = []
new_local = []
new_acc_updates = []
for lp, lau, gp in zip(local_particle, local_acc_updates, global_particle):
global_acc_updates = AllReduceSum(lau, inplace=True)
if self.average:
global_acc_updates /= self.worker.global_size
new_global.append(gp + global_acc_updates)
new_local.append(new_global[-1])
new_acc_updates.append(basic.zeros_like(lau))
updates = list(zip(local_particle, new_local)) + list(zip(local_acc_updates, new_acc_updates)) + list(zip(global_particle, new_global))
self._fn = theano.function([], [], updates=updates, accept_inplace=True)
|
Make Downpour rule.
All particles along with the global particle start from the same
position. According to this rule, each local particle executes descent
normally but their parameter updates are accumulated (e.g. by moving
average) to a variable. Every N iterations, the local accumulated
updates are added together and applied to the global particle. Each
local particle restarts from global particle's position.
Parameters
----------
local_particle : {:ref:`theano.compile.SharedVariable`,
list of :ref:`theano.compile.SharedVariable`}
A particle's position in parameter space doing local SGD.
local_acc_updates : {:ref:`theano.compile.SharedVariable`,
list of :ref:`theano.compile.SharedVariable`}
Shared variable accumulating local parameter updates.
global_particle : {:ref:`theano.compile.SharedVariable`,
list of :ref:`theano.compile.SharedVariable`}
A particle whose position is updated only by the Downpour process and
resets position of local particles.
.. seealso:: Notes on :meth:`GlobalDynamics.make_rule`
|
https://github.com/mila-iqia/platoon/blob/4cd26f4235da06967e20679e4cf769b423269165/platoon/training/global_dynamics.py#L274-L324
|
from __future__ import absolute_import, division
from ..channel.worker import Worker
from ..ops import AllReduceSum
class GlobalDynamics(object):
def __init__(self, worker=None):
self._worker = None
if worker is not None:
self.worker = worker
self._fn = None
def __call__(self):
if self._fn is None:
raise NotImplementedError("Functionality has not been specified.\n"
"Please use {} method to setup GlobalDynamics"
"for a set of Variables\nor supply your own"
"using {} method.".format(
repr(self.make_rule), repr(self.fn)))
self._fn()
@property
def worker(self):
if self._worker is None:
try:
self._worker = Worker()
except TypeError:
raise AttributeError("Worker instance has not been created yet.")
return self._worker
@worker.setter
def worker(self, inst):
if not isinstance(inst, Worker):
raise TypeError("Argument `inst` is not of platoon.Worker type.")
self._worker = inst
def register_fn(self, fun):
if not hasattr(fun, '__call__'):
raise TypeError("Supplied object is not a callable.")
self._fn = fun
def make_rule(self, *args):
raise NotImplementedError(self.make_rule.__doc__)
class _GlobalDynamicsNoSet(GlobalDynamics):
def register_fn(self, fun):
raise AttributeError("Cannot set internal function. Use {} method.".format(
repr(self.make_rule)))
class SGD(_GlobalDynamicsNoSet):
def __init__(self, average=False, worker=None):
self.average = average
super(SGD, self).__init__(worker)
def make_rule(self, local_updates):
import theano
if isinstance(local_updates, theano.compile.SharedVariable):
local_updates = [local_updates]
global_updates = []
for update in local_updates:
gup = AllReduceSum(update, inplace=True)
if self.average:
gup /= self.worker.global_size
global_updates.append(gup)
self._fn = theano.function([], [],
updates=list(zip(local_updates, global_updates)),
accept_inplace=True)
def SumSGD(worker=None):
return SGD(average=False, worker=worker)
def AverageSGD(worker=None):
return SGD(average=True, worker=worker)
class EASGD(_GlobalDynamicsNoSet):
def make_rule(self, local_particle, central_particle, alpha):
import theano
if isinstance(local_particle, theano.compile.SharedVariable):
local_particle = [local_particle]
if isinstance(central_particle, theano.compile.SharedVariable):
central_particle = [central_particle]
self.alpha = alpha
new_local = []
new_central = []
for local_position, central_position in zip(local_particle, central_particle):
distance = local_position - central_position
elastic_force = alpha * distance
local_new_position = local_position - elastic_force
total_elastic_force = AllReduceSum(elastic_force, inplace=True)
central_new_position = central_position + total_elastic_force
new_local.append(local_new_position)
new_central.append(central_new_position)
updates = list(zip(local_particle, new_local)) + list(zip(central_particle, new_central))
self._fn = theano.function([], [], updates=updates, accept_inplace=True)
class Downpour(_GlobalDynamicsNoSet):
def __init__(self, average=False, worker=None):
self.average = average
super(Downpour, self).__init__(worker)
|
MIT License
|
googlecloudplatform/professional-services-data-validator
|
data_validation/data_validation.py
|
DataValidation.execute
|
python
|
def execute(self):
if (
self.config_manager.is_grouped_row_validation
or self.config_manager.validation_type == "Row"
):
grouped_fields = self.validation_builder.pop_grouped_fields()
result_df = self.execute_recursive_validation(
self.validation_builder, grouped_fields
)
elif self.config_manager.validation_type == consts.SCHEMA_VALIDATION:
result_df = self.schema_validator.execute()
else:
result_df = self._execute_validation(
self.validation_builder, process_in_memory=True
)
return self.result_handler.execute(self.config, result_df)
|
Execute Queries and Store Results
|
https://github.com/googlecloudplatform/professional-services-data-validator/blob/781d8bf259ba2864e05c40dfe2a69d6c954cfec6/data_validation/data_validation.py#L80-L99
|
import datetime
import json
import logging
import warnings
import ibis.backends.pandas
import pandas
import numpy
from data_validation import consts, combiner, metadata
from data_validation.config_manager import ConfigManager
from data_validation.validation_builder import ValidationBuilder
from data_validation.schema_validation import SchemaValidation
class DataValidation(object):
def __init__(
self,
config,
validation_builder=None,
schema_validator=None,
result_handler=None,
verbose=False,
):
self.verbose = verbose
self.config = config
self.config_manager = ConfigManager(config, verbose=self.verbose)
self.run_metadata = metadata.RunMetadata()
self.run_metadata.labels = self.config_manager.labels
self.validation_builder = validation_builder or ValidationBuilder(
self.config_manager
)
self.schema_validator = schema_validator or SchemaValidation(
self.config_manager, run_metadata=self.run_metadata, verbose=self.verbose
)
self.result_handler = result_handler or self.config_manager.get_result_handler()
|
Apache License 2.0
|
pybrain2/pybrain2
|
pybrain/rl/learners/modelbased/policyiteration.py
|
policyIteration
|
python
|
def policyIteration(Ts, R, discountFactor, VEvaluator=None, initpolicy=None, maxIters=20):
if initpolicy is None:
policy, T = randomPolicy(Ts)
else:
policy = initpolicy
T = collapsedTransitions(Ts, policy)
if VEvaluator is None:
VEvaluator = lambda T: trueValues(T, R, discountFactor)
while maxIters > 0:
V = VEvaluator(T)
newpolicy, T = greedyPolicy(Ts, R, discountFactor, V)
if sum(ravel(abs(newpolicy - policy))) < 1e-3:
return policy, T
policy = newpolicy
maxIters -= 1
return policy, T
|
Given transition matrices (one per action),
produce the optimal policy, using the policy iteration algorithm.
A custom function that maps policies to value functions can be provided.
|
https://github.com/pybrain2/pybrain2/blob/33ead60704d126e58c10d458ddd1e5e5fd17b65d/pybrain/rl/learners/modelbased/policyiteration.py#L121-L143
|
__author__ = 'Tom Schaul, tom@idsia.ch'
from scipy import dot, zeros, zeros_like, ones, mean, array, ravel, rand
from numpy.matlib import repmat
from pybrain.utilities import all_argmax
def trueValues(T, R, discountFactor):
assert discountFactor < 1
distr = T.copy()
res = dot(T, R)
for i in range(1, int(10 / (1. - discountFactor))):
distr = dot(distr, T)
res += (discountFactor ** i) * dot(distr, R)
return res
def trueQValues(Ts, R, discountFactor, policy):
T = collapsedTransitions(Ts, policy)
V = trueValues(T, R, discountFactor)
Vnext = V*discountFactor+R
numA = len(Ts)
dim = len(R)
Qs = zeros((dim, numA))
for si in range(dim):
for a in range(numA):
Qs[si, a] = dot(Ts[a][si], Vnext)
return Qs
def collapsedTransitions(Ts, policy):
res = zeros_like(Ts[0])
dim = len(Ts[0])
for ai, ap in enumerate(policy.T):
res += Ts[ai] * repmat(ap, dim, 1).T
return res
def greedyPolicy(Ts, R, discountFactor, V):
dim = len(V)
numA = len(Ts)
Vnext = V*discountFactor+R
policy = zeros((dim, numA))
for si in range(dim):
actions = all_argmax([dot(T[si, :], Vnext) for T in Ts])
for a in actions:
policy[si, a] = 1. / len(actions)
return policy, collapsedTransitions(Ts, policy)
def greedyQPolicy(Qs):
dim = len(Qs)
numA = len(Qs[0])
policy = zeros((dim, numA))
for si in range(dim):
actions = all_argmax(Qs[si])
for a in actions:
policy[si, a] = 1. / len(actions)
return policy
def randomPolicy(Ts):
numA = len(Ts)
dim = len(Ts[0])
return ones((dim, numA)) / float(numA), mean(array(Ts), axis=0)
def randomDeterministic(Ts):
numA = len(Ts)
dim = len(Ts[0])
choices = (rand(dim) * numA).astype(int)
policy = zeros((dim, numA))
for si, a in choices:
policy[si, a] = 1
return policy, collapsedTransitions(Ts, policy)
|
BSD 3-Clause New or Revised License
|
renmengye/imageqa-qgen
|
question_generator.py
|
QuestionGenerator.splitCCStructure
|
python
|
def splitCCStructure(self, root):
roots = []
node = root.children[0]
if node.className == 'S':
if len(node.children) >= 3:
childrenClasses = []
for child in node.children:
childrenClasses.append(child.className)
renew = True
index = 0
for c in childrenClasses:
if c == 'S' and renew:
root_ = TreeNode('ROOT', '', [node.children[index]], 0)
root_.relevel(0)
roots.append(root_)
elif c == 'CC':
renew = True
index += 1
if len(roots) == 0:
roots.append(root)
return roots
|
Split composite sentences.
|
https://github.com/renmengye/imageqa-qgen/blob/0fe64f42f52b1e587bad9d23d810d34187b9b75e/question_generator.py#L583-L606
|
from nltk.corpus import wordnet
from nltk.stem.wordnet import WordNetLemmatizer
import argparse
import copy
import cPickle as pkl
import logger
import os
import re
import subprocess
import sys
import time
whiteListColorAdj = set(['red', 'yellow', 'orange', 'brown', 'green', 'blue',
'purple', 'black', 'white', 'gray', 'grey', 'violet'])
whiteListLexname = set(['noun.animal', 'noun.artifact', 'noun.food',
'noun.object', 'noun.plant', 'noun.possession',
'noun.shape'])
blackListColorNoun = set(['ride', 'riding', 'past', 'stand', 'standing',
'eating', 'holding', 'frosting', 'glow', 'glowing',
'resting', 'parked'])
blackListNoun = set(['female', 'females', 'male', 'males', 'commuter',
'commuters', 'player', 'players', 'match', 'matches',
'rider', 'riders', 'doll', 'dolls', 'ride', 'rides',
'riding', 'past', 'pasts', 'teddy', 'fan', 'fans',
'street', 'streets', 'arm', 'arms', 'head', 'heads',
'slope', 'slopes', 'shoot', 'shoots', 'photo', 'photos',
'space', 'spaces', 'stand', 'stands', 'standing',
'cross', 'crosses', 'crossing', 'eating', 'walking',
'driving', 'upright', 'structure', 'turn', 'system',
'arrangement', 'set', 'top', 'while', 'well', 'area',
'produce', 'thing', 'things', 'cut', 'cuts', 'holding',
'frosting', 'glow', 'glowing', 'ground', 'parked'])
blackListCompoundNoun = set(['tennis', 'delivery', 'soccer', 'baseball',
'fighter', 'mother', 'window'])
blackListVerb = set(['sink', 'sinks', 'counter', 'counters', 'cupboard',
'cupboards', 'has', 'have', 'contain', 'contains',
'containing', 'contained', 'spaniel', 'spaniels',
'mirror', 'mirrors', 'shower', 'showers', 'stove',
'stoves', 'bowl', 'bowls', 'tile', 'tiles', 'mouthwash',
'mouthwashes', 'smoke', 'smokes'])
blackListPrep = set(['with', 'of', 'in', 'down', 'as'])
blackListLocation = set(['t-shirt', 't-shirts', 'jeans', 'shirt', 'shirts',
'uniform', 'uniforms', 'jacket', 'jackets', 'dress',
'dresses', 'hat', 'hats', 'tie', 'ties', 'costume',
'costumes', 'attire', 'attires', 'match', 'matches',
'coat', 'coats', 'cap', 'caps', 'gear', 'gears',
'sweatshirt', 'sweatshirts', 'helmet', 'helmets',
'clothing', 'clothings', 'cloth', 'clothes',
'blanket', 'blankets', 'enclosure', 'enclosures',
'suit', 'suits', 'photo', 'photos', 'picture',
'pictures', 'round', 'rounds', 'area', 'well',
'skirt', 'snowsuit', 'sunglasses', 'sweater', 'mask',
'frisbee', 'frisbees', 'shoe', 'umbrella', 'towel',
'scarf', 'phone', 'cellphone', 'motorcycle',
'device', 'computer', 'cake', 'hydrant', 'desk',
'stove', 'sculpture', 'lamp', 'fireplace', 'bags',
'laptop', 'trolley', 'toy', 'bus', 'counter',
'buffet', 'engine', 'graffiti', 'clock', 'jet',
'ramp', 'brick', 'taxi', 'knife', 'flag', 'screen',
'parked'])
blackListVerbLocation = set(['sink', 'sinks', 'counter', 'counters',
'cupboard', 'cupboards', 'has', 'have',
'contain', 'contains', 'containing', 'contained',
'can', 'cans'])
blackListNumberNoun = set(['pole', 'vase', 'kite', 'hay', 'shower', 'paddle',
'buffet', 'bicycle', 'bike', 'elephants'])
synonymConvert = {'busses': 'buses', 'plane': 'airplane',
'planes': 'airplanes', 'aircraft': 'airplane',
'aircrafts': 'airplane', 'jetliner': 'airliner',
'jetliners': 'airliners', 'bike': 'bicycle',
'bikes': 'bicycles', 'cycle': 'bicycle',
'cycles': 'bicycles', 'motorbike': 'motorcycle',
'motorbikes': 'motorcycles', 'grey': 'gray',
'railroad': 'rail', 'cell': 'cellphone',
'doughnut': 'donut', 'doughnuts': 'donuts'}
compoundNoun = set(['fighter jet', 'soccer ball', 'tennis ball'])
charText = set(['.', ',', '-', '\'', '`', '/', '>', ':', ';', '\\', '!', '?',
'&', '-', '=', '#', '$', '@', '_', '*', '+', '%', chr(194),
chr(160)])
charClassName = set(['.', ',', '$', '\'', '`', ':', '-', '#'])
lemmatizer = WordNetLemmatizer()
log = logger.get()
class TreeNode:
def __init__(self, className, text, children, level):
self.className = className
self.text = text
self.children = children
self.level = level
pass
def __str__(self):
strlist = []
for i in range(self.level):
strlist.append(' ')
strlist.extend(['(', self.className])
if len(self.children) > 0:
strlist.append('\n')
for child in self.children:
strlist.append(child.__str__())
if len(self.text) > 0:
for i in range(self.level + 1):
strlist.append(' ')
else:
for i in range(self.level):
strlist.append(' ')
else:
strlist.append(' ')
strlist.append(self.text)
strlist.append(')\n')
return ''.join(strlist)
def toSentence(self):
strlist = []
for child in self.children:
childSent = child.toSentence()
if len(childSent) > 0:
strlist.append(childSent)
if len(self.text) > 0:
strlist.append(self.text)
return ' '.join(strlist)
def relevel(self, level):
self.level = level
for child in self.children:
child.relevel(level + 1)
def copy(self):
children = []
for child in self.children:
children.append(child.copy())
return TreeNode(self.className, self.text, children, self.level)
class TreeParser:
def __init__(self):
self.state = 0
self.currentClassStart = 0
self.currentTextStart = 0
self.classNameStack = []
self.childrenStack = [[]]
self.root = None
self.rootsList = []
self.level = 0
self.stateTable = [self.state0, self.state1, self.state2,
self.state3, self.state4, self.state5, self.state6]
self.raw = None
self.state = 0
def parse(self, raw):
if not self.isAlpha(raw[0]):
self.raw = raw
for i in range(len(raw)):
self.state = self.stateTable[self.state](i)
@staticmethod
def isAlpha(c):
return 65 <= ord(c) <= 90 or 97 <= ord(c) <= 122
@staticmethod
def isNumber(c):
return 48 <= ord(c) <= 57
@staticmethod
def exception(raw, i):
print raw
raise Exception(
'Unexpected character "%c" (%d) at position %d'
% (raw[i], ord(raw[i]), i))
@staticmethod
def isClassName(s):
if TreeParser.isAlpha(s) or s in charClassName:
return True
else:
return False
@staticmethod
def isText(s):
if TreeParser.isAlpha(s) or TreeParser.isNumber(s) or s in charText:
return True
else:
return False
def state0(self, i):
if self.raw[i] == '(':
return 1
else:
return 0
def state1(self, i):
if self.isClassName(self.raw[i]):
self.currentClassStart = i
self.level += 1
self.childrenStack.append([])
return 2
else:
self.exception(self.raw, i)
def state2(self, i):
if self.isClassName(self.raw[i]):
return 2
else:
self.classNameStack.append(self.raw[self.currentClassStart:i])
if self.raw[i] == ' ' and self.raw[i + 1] == '(':
return 0
elif self.raw[i] == ' ' and self.isText(self.raw[i + 1]):
return 4
elif self.raw[i] == '\n':
return 3
else:
self.exception(self.raw, i)
def state3(self, i):
if self.raw[i] == ' ' and self.raw[i + 1] == '(':
return 0
elif self.raw[i] == ' ' and self.raw[i + 1] == ' ':
return 3
elif self.raw[i] == ' ' and self.isText(self.raw[i + 1]):
return 4
else:
return 3
def state4(self, i):
if self.isText(self.raw[i]):
self.currentTextStart = i
return 5
else:
self.exception(self.raw, i)
def state5(self, i):
if self.isText(self.raw[i]):
return 5
elif i == len(self.raw) - 1:
return 5
elif self.raw[i] == ')':
self.wrapup(self.raw[self.currentTextStart:i])
if self.level == 0:
return 0
elif self.raw[i + 1] == ')':
return 6
else:
return 3
else:
self.exception(self.raw, i)
def state6(self, i):
if self.level == 0:
return 0
elif self.raw[i] == ')':
self.wrapup('')
return 6
else:
return 3
def wrapup(self, text):
self.level -= 1
root = TreeNode(self.classNameStack[-1], text,
self.childrenStack[-1][:], self.level)
del self.childrenStack[-1]
del self.classNameStack[-1]
self.childrenStack[-1].append(root)
if self.level == 0:
self.rootsList.append(root)
class QuestionGenerator:
def __init__(self):
self.lexnameDict = {}
pass
@staticmethod
def escapeNumber(line):
line = re.sub('^11$', 'eleven', line)
line = re.sub('^12$', 'twelve', line)
line = re.sub('^13$', 'thirteen', line)
line = re.sub('^14$', 'fourteen', line)
line = re.sub('^15$', 'fifteen', line)
line = re.sub('^16$', 'sixteen', line)
line = re.sub('^17$', 'seventeen', line)
line = re.sub('^18$', 'eighteen', line)
line = re.sub('^19$', 'nineteen', line)
line = re.sub('^20$', 'twenty', line)
line = re.sub('^10$', 'ten', line)
line = re.sub('^0$', 'zero', line)
line = re.sub('^1$', 'one', line)
line = re.sub('^2$', 'two', line)
line = re.sub('^3$', 'three', line)
line = re.sub('^4$', 'four', line)
line = re.sub('^5$', 'five', line)
line = re.sub('^6$', 'six', line)
line = re.sub('^7$', 'seven', line)
line = re.sub('^8$', 'eight', line)
line = re.sub('^9$', 'nine', line)
return line
def whMovement(self, root):
stack = [[]]
found = [False]
def traverseFindTopClass(node, className):
if not found[0]:
stack[0].append(node)
if node.className == className:
found[0] = True
else:
for child in node.children:
traverseFindTopClass(child, className)
if not found[0]:
del stack[0][-1]
traverseFindTopClass(root, 'NP')
topNoun = None
if found[0]:
np = stack[0][-1]
while np.className != 'DT' and len(np.children) > 0:
np = np.children[0]
if np.className == 'DT' and np.text.lower() == 'a':
np.text = 'the'
np = stack[0][-1]
def lookForNoun(np):
if len(np.children) > 0:
for child in np.children:
answer = lookForNoun(child)
if (answer != None):
return answer
return None
else:
if np.className == 'NN' or np.className == 'NNS':
return np
else:
return None
topNoun = lookForNoun(np)
found[0] = False
stack[0] = []
traverseFindTopClass(root, 'VP')
topVP = None
if found[0]:
topVP = stack[0][-1]
found[0] = False
stack[0] = []
traverseFindTopClass(root, 'WHNP')
if not found[0]:
return False
insideSBar = False
insideNP = False
insideVP = False
whStack = stack[0][:]
whPosition = len(whStack) - 1
for item in whStack:
if item.className == 'SBAR':
insideSBar = True
elif item.className == 'NP' and item.level > 1:
insideNP = True
elif insideNP and item.className == 'VP':
insideVP = True
found[0] = False
stack[0] = []
traverseFindTopClass(root, 'VP')
node = root
parent = root
while len(node.children) > 0:
parent = node
node = node.children[0]
if parent.className == 'WHNP':
if found[0]:
vpnode = stack[0][-1]
vpchild = vpnode.children[0]
frontWord = None
if vpchild.className == 'VBG':
verb = 'are' if root.answer.className == 'NNS' else 'is'
verbnode = TreeNode('VB', verb, [], vpchild.level)
vpnode.children.insert(0, verbnode)
return True
if insideSBar:
return False
if insideVP:
return False
if not found[0]:
return False
vpnode = stack[0][-1]
vpchild = vpnode.children[0]
frontWord = None
if vpchild.className == 'VBZ':
if vpchild.text == 'is':
frontWord = vpchild
vpnode.children.remove(vpchild)
elif vpchild.text == 'has':
done = False
for child in vpnode.children:
if child.className == 'VP':
done = True
break
if done:
frontWord = vpchild
vpnode.children.remove(vpchild)
else:
frontWord = TreeNode('VBZ', 'does', [], 0)
vpchild.text = 'have'
vpchild.className = 'VB'
else:
frontWord = TreeNode('VBZ', 'does', [], 0)
vpchild.className = 'VB'
vpchild.text = lemmatizer.lemmatize(vpchild.text, 'v')
pass
elif vpchild.className == 'VBP':
if vpchild.text == 'are':
frontWord = vpchild
vpnode.children.remove(vpchild)
else:
frontWord = TreeNode('VBP', 'do', [], 0)
vpchild.className = 'VB'
pass
elif vpchild.className == 'VBD':
if vpchild.text == 'was' or vpchild.text == 'were':
frontWord = vpchild
vpnode.children.remove(vpchild)
elif vpchild.text == 'had':
done = False
for child in vpnode.children:
if child.className == 'VP':
done = True
break
if done:
frontWord = vpchild
vpnode.children.remove(vpchild)
else:
frontWord = TreeNode('VBD', 'did', [], 0)
vpchild.text = 'have'
vpchild.className = 'VB'
else:
frontWord = TreeNode('VBD', 'did', [], 0)
vpchild.className = 'VB'
vpchild.text = lemmatizer.lemmatize(vpchild.text, 'v')
pass
elif vpchild.className == 'MD':
frontWord = vpchild
vpnode.children.remove(vpchild)
pass
elif vpchild.className == 'VBG':
verb = 'are' if topNoun != None and topNoun.className == 'NNS' else 'is'
frontWord = TreeNode('VBZ', verb, [], 0)
if frontWord is None:
return False
whStack[whPosition - 1].children.remove(whStack[whPosition])
bigS = TreeNode('S', '', [whStack[whPosition], stack[0][1]], 0)
stack[0][0].children = [bigS]
bigS.children[1].children.insert(0, frontWord)
root.relevel(0)
return True
|
MIT License
|
googleapis/python-aiplatform
|
google/cloud/aiplatform_v1beta1/services/specialist_pool_service/transports/grpc_asyncio.py
|
SpecialistPoolServiceGrpcAsyncIOTransport.__init__
|
python
|
def __init__(
self,
*,
host: str = "aiplatform.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: Optional[str] = None,
scopes: Optional[Sequence[str]] = None,
channel: aio.Channel = None,
api_mtls_endpoint: str = None,
client_cert_source: Callable[[], Tuple[bytes, bytes]] = None,
ssl_channel_credentials: grpc.ChannelCredentials = None,
client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None,
quota_project_id=None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
always_use_jwt_access: Optional[bool] = False,
) -> None:
self._grpc_channel = None
self._ssl_channel_credentials = ssl_channel_credentials
self._stubs: Dict[str, Callable] = {}
self._operations_client = None
if api_mtls_endpoint:
warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning)
if client_cert_source:
warnings.warn("client_cert_source is deprecated", DeprecationWarning)
if channel:
credentials = False
self._grpc_channel = channel
self._ssl_channel_credentials = None
else:
if api_mtls_endpoint:
host = api_mtls_endpoint
if client_cert_source:
cert, key = client_cert_source()
self._ssl_channel_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
else:
self._ssl_channel_credentials = SslCredentials().ssl_credentials
else:
if client_cert_source_for_mtls and not ssl_channel_credentials:
cert, key = client_cert_source_for_mtls()
self._ssl_channel_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
super().__init__(
host=host,
credentials=credentials,
credentials_file=credentials_file,
scopes=scopes,
quota_project_id=quota_project_id,
client_info=client_info,
always_use_jwt_access=always_use_jwt_access,
)
if not self._grpc_channel:
self._grpc_channel = type(self).create_channel(
self._host,
credentials=self._credentials,
credentials_file=credentials_file,
scopes=self._scopes,
ssl_credentials=self._ssl_channel_credentials,
quota_project_id=quota_project_id,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._prep_wrapped_messages(client_info)
|
Instantiate the transport.
Args:
host (Optional[str]):
The hostname to connect to.
credentials (Optional[google.auth.credentials.Credentials]): The
authorization credentials to attach to requests. These
credentials identify the application to the service; if none
are specified, the client will attempt to ascertain the
credentials from the environment.
This argument is ignored if ``channel`` is provided.
credentials_file (Optional[str]): A file with credentials that can
be loaded with :func:`google.auth.load_credentials_from_file`.
This argument is ignored if ``channel`` is provided.
scopes (Optional[Sequence[str]]): A optional list of scopes needed for this
service. These are only used when credentials are not specified and
are passed to :func:`google.auth.default`.
channel (Optional[aio.Channel]): A ``Channel`` instance through
which to make calls.
api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint.
If provided, it overrides the ``host`` argument and tries to create
a mutual TLS channel with client SSL credentials from
``client_cert_source`` or application default SSL credentials.
client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]):
Deprecated. A callback to provide client SSL certificate bytes and
private key bytes, both in PEM format. It is ignored if
``api_mtls_endpoint`` is None.
ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials
for the grpc channel. It is ignored if ``channel`` is provided.
client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]):
A callback to provide client certificate bytes and private key bytes,
both in PEM format. It is used to configure a mutual TLS channel. It is
ignored if ``channel`` or ``ssl_channel_credentials`` is provided.
quota_project_id (Optional[str]): An optional project to use for billing
and quota.
client_info (google.api_core.gapic_v1.client_info.ClientInfo):
The client info used to send a user-agent string along with
API requests. If ``None``, then default info will be used.
Generally, you only need to set this if you're developing
your own client library.
always_use_jwt_access (Optional[bool]): Whether self signed JWT should
be used for service account credentials.
Raises:
google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport
creation failed for any reason.
google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials``
and ``credentials_file`` are passed.
|
https://github.com/googleapis/python-aiplatform/blob/c1c2326b2342ab1b6f4c4ce3852e63376eae740d/google/cloud/aiplatform_v1beta1/services/specialist_pool_service/transports/grpc_asyncio.py#L100-L228
|
import warnings
from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union
from google.api_core import gapic_v1
from google.api_core import grpc_helpers_async
from google.api_core import operations_v1
from google.auth import credentials as ga_credentials
from google.auth.transport.grpc import SslCredentials
import packaging.version
import grpc
from grpc.experimental import aio
from google.cloud.aiplatform_v1beta1.types import specialist_pool
from google.cloud.aiplatform_v1beta1.types import specialist_pool_service
from google.longrunning import operations_pb2
from .base import SpecialistPoolServiceTransport, DEFAULT_CLIENT_INFO
from .grpc import SpecialistPoolServiceGrpcTransport
class SpecialistPoolServiceGrpcAsyncIOTransport(SpecialistPoolServiceTransport):
_grpc_channel: aio.Channel
_stubs: Dict[str, Callable] = {}
@classmethod
def create_channel(
cls,
host: str = "aiplatform.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: Optional[str] = None,
scopes: Optional[Sequence[str]] = None,
quota_project_id: Optional[str] = None,
**kwargs,
) -> aio.Channel:
return grpc_helpers_async.create_channel(
host,
credentials=credentials,
credentials_file=credentials_file,
quota_project_id=quota_project_id,
default_scopes=cls.AUTH_SCOPES,
scopes=scopes,
default_host=cls.DEFAULT_HOST,
**kwargs,
)
|
Apache License 2.0
|
liuanji/wu-uct
|
Policy/PPO/PPOPolicy.py
|
AtariCNN.__init__
|
python
|
def __init__(self, num_actions, device):
super().__init__()
self.conv = nn.Sequential(nn.Conv2d(4, 32, 8, stride=4),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, 4, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, stride=1),
nn.ReLU(inplace=True))
self.fc = nn.Sequential(nn.Linear(64 * 7 * 7, 512),
nn.ReLU(inplace=True))
self.pi = nn.Linear(512, num_actions)
self.v = nn.Linear(512, 1)
self.num_actions = num_actions
self.device = device
|
Basic convolutional actor-critic network for Atari 2600 games
Equivalent to the network in the original DQN paper.
Args:
num_actions (int): the number of available discrete actions
|
https://github.com/liuanji/wu-uct/blob/a185cf11feef548ca3f7f59bec4f9d8a92c8a2a1/Policy/PPO/PPOPolicy.py#L127-L152
|
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim
import time
import os
from Env.AtariEnv.atari_wrappers import LazyFrames
def ortho_weights(shape, scale=1.):
shape = tuple(shape)
if len(shape) == 2:
flat_shape = shape[1], shape[0]
elif len(shape) == 4:
flat_shape = (np.prod(shape[1:]), shape[0])
else:
raise NotImplementedError
a = np.random.normal(0., 1., flat_shape)
u, _, v = np.linalg.svd(a, full_matrices=False)
q = u if u.shape == flat_shape else v
q = q.transpose().copy().reshape(shape)
if len(shape) == 2:
return torch.from_numpy((scale * q).astype(np.float32))
if len(shape) == 4:
return torch.from_numpy((scale * q[:, :shape[1], :shape[2]]).astype(np.float32))
def atari_initializer(module):
classname = module.__class__.__name__
if classname == 'Linear':
module.weight.data = ortho_weights(module.weight.data.size(), scale=np.sqrt(2.))
module.bias.data.zero_()
elif classname == 'Conv2d':
module.weight.data = ortho_weights(module.weight.data.size(), scale=np.sqrt(2.))
module.bias.data.zero_()
elif classname == 'LSTM':
for name, param in module.named_parameters():
if 'weight_ih' in name:
param.data = ortho_weights(param.data.size(), scale=1.)
if 'weight_hh' in name:
param.data = ortho_weights(param.data.size(), scale=1.)
if 'bias' in name:
param.data.zero_()
class PPOAtariCNN():
def __init__(self, num_actions, device = "cpu", checkpoint_dir = ""):
self.num_actions = num_actions
self.device = torch.device(device)
self.checkpoint_dir = checkpoint_dir
self.model = AtariCNN(num_actions, self.device)
if checkpoint_dir != "" and os.path.exists(checkpoint_dir):
checkpoint = torch.load(checkpoint_dir, map_location = "cpu")
self.model.load_state_dict(checkpoint["policy"])
self.model.to(device)
def get_action(self, state, logit = False):
return self.model.get_action(state, logit = logit)
def get_value(self, state):
return self.model.get_value(state)
class PPOSmallAtariCNN():
def __init__(self, num_actions, device = "cpu", checkpoint_dir = ""):
self.num_actions = num_actions
self.device = torch.device(device)
self.checkpoint_dir = checkpoint_dir
self.model = SmallPolicyAtariCNN(num_actions, self.device)
if checkpoint_dir != "" and os.path.exists(checkpoint_dir):
checkpoint = torch.load(checkpoint_dir, map_location = "cpu")
self.model.to(device)
self.optimizer = optim.Adam(self.model.parameters(), lr = 1e-3)
self.mseLoss = nn.MSELoss()
def get_action(self, state):
return self.model.get_action(state)
def get_value(self, state):
return self.model.get_value(state)
def train_step(self, state_batch, policy_batch, value_batch, temperature = 2.5):
self.optimizer.zero_grad()
out_policy, out_value = self.model(state_batch)
loss = self.mseLoss(policy_batch, out_policy) + self.mseLoss(value_batch, out_value)
loss.backward()
self.optimizer.step()
return loss.detach().cpu().numpy()
def save(self, path):
torch.save({"policy": self.model.state_dict()}, path)
class AtariCNN(nn.Module):
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/ads/__init__.py
|
AdsHub.__init__
|
python
|
def __init__(self, ads_client):
self._client = ads_client
self._client.open()
self._devices = []
self._notification_items = {}
self._lock = threading.Lock()
|
Initialize the ADS hub.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/ads/__init__.py#L116-L124
|
import threading
import struct
import logging
import ctypes
from collections import namedtuple
import voluptuous as vol
from homeassistant.const import CONF_DEVICE, CONF_PORT, CONF_IP_ADDRESS, EVENT_HOMEASSISTANT_STOP
import homeassistant.helpers.config_validation as cv
REQUIREMENTS = ['pyads==2.2.6']
_LOGGER = logging.getLogger(__name__)
DATA_ADS = 'data_ads'
ADSTYPE_INT = 'int'
ADSTYPE_UINT = 'uint'
ADSTYPE_BYTE = 'byte'
ADSTYPE_BOOL = 'bool'
DOMAIN = 'ads'
CONF_ADS_VAR = 'adsvar'
CONF_ADS_VAR_BRIGHTNESS = 'adsvar_brightness'
CONF_ADS_TYPE = 'adstype'
CONF_ADS_FACTOR = 'factor'
CONF_ADS_VALUE = 'value'
SERVICE_WRITE_DATA_BY_NAME = 'write_data_by_name'
CONFIG_SCHEMA = vol.Schema({
DOMAIN: vol.Schema({
vol.Required(CONF_DEVICE): cv.string,
vol.Required(CONF_PORT): cv.port,
vol.Optional(CONF_IP_ADDRESS): cv.string,
})
}, extra=vol.ALLOW_EXTRA)
SCHEMA_SERVICE_WRITE_DATA_BY_NAME = vol.Schema({
vol.Required(CONF_ADS_TYPE):
vol.In([ADSTYPE_INT, ADSTYPE_UINT, ADSTYPE_BYTE]),
vol.Required(CONF_ADS_VALUE): cv.match_all,
vol.Required(CONF_ADS_VAR): cv.string,
})
def setup(hass, config):
import pyads
conf = config[DOMAIN]
net_id = conf.get(CONF_DEVICE)
ip_address = conf.get(CONF_IP_ADDRESS)
port = conf.get(CONF_PORT)
client = pyads.Connection(net_id, port, ip_address)
AdsHub.ADS_TYPEMAP = {
ADSTYPE_BOOL: pyads.PLCTYPE_BOOL,
ADSTYPE_BYTE: pyads.PLCTYPE_BYTE,
ADSTYPE_INT: pyads.PLCTYPE_INT,
ADSTYPE_UINT: pyads.PLCTYPE_UINT,
}
AdsHub.PLCTYPE_BOOL = pyads.PLCTYPE_BOOL
AdsHub.PLCTYPE_BYTE = pyads.PLCTYPE_BYTE
AdsHub.PLCTYPE_INT = pyads.PLCTYPE_INT
AdsHub.PLCTYPE_UINT = pyads.PLCTYPE_UINT
AdsHub.ADSError = pyads.ADSError
try:
ads = AdsHub(client)
except pyads.pyads.ADSError:
_LOGGER.error(
"Could not connect to ADS host (netid=%s, port=%s)", net_id, port)
return False
hass.data[DATA_ADS] = ads
hass.bus.listen(EVENT_HOMEASSISTANT_STOP, ads.shutdown)
def handle_write_data_by_name(call):
ads_var = call.data.get(CONF_ADS_VAR)
ads_type = call.data.get(CONF_ADS_TYPE)
value = call.data.get(CONF_ADS_VALUE)
try:
ads.write_by_name(ads_var, value, ads.ADS_TYPEMAP[ads_type])
except pyads.ADSError as err:
_LOGGER.error(err)
hass.services.register(
DOMAIN, SERVICE_WRITE_DATA_BY_NAME, handle_write_data_by_name,
schema=SCHEMA_SERVICE_WRITE_DATA_BY_NAME)
return True
NotificationItem = namedtuple(
'NotificationItem', 'hnotify huser name plc_datatype callback'
)
class AdsHub(object):
|
MIT License
|
buildinspace/peru
|
peru/resources/plugins/curl/curl_plugin.py
|
get_request_filename
|
python
|
def get_request_filename(request):
if 'Content-Disposition' in request.info():
disposition = request.info()['Content-Disposition']
pieces = re.split(r'\s*;\s*', disposition)
for piece in pieces:
if piece.startswith('filename='):
filename = piece[len('filename='):]
if filename.startswith('"'):
filename = filename[1:]
if filename.endswith('"'):
filename = filename[:-1]
filename = filename.replace('\\"', '"')
return filename
return os.path.basename(urlsplit(request.url).path) or 'index.html'
|
Figure out the filename for an HTTP download.
|
https://github.com/buildinspace/peru/blob/e9ba6e0024ea08105a8d027f958899cca39aeb9a/peru/resources/plugins/curl/curl_plugin.py#L16-L34
|
import hashlib
import os
import pathlib
import re
import stat
import sys
import tarfile
from urllib.error import HTTPError, URLError
from urllib.parse import urlsplit
import urllib.request
import zipfile
|
MIT License
|
weso/cwr-dataapi
|
cwr/other.py
|
VISAN.isan
|
python
|
def isan(self):
return self._isan
|
Returns the ISAN code
:return: the ISAN code
|
https://github.com/weso/cwr-dataapi/blob/f3b6ba8308c901b6ab87073c155c08e30692333c/cwr/other.py#L221-L226
|
__author__ = 'Bernardo Martínez Garrido'
__license__ = 'MIT'
__status__ = 'Development'
class _ThreePartsCode(object):
_code_size = 9
def __init__(self,
header,
id_code,
check_digit
):
self._header = header
self._id_code = id_code
self._check_digit = check_digit
def __str__(self):
return '%s-%s-%s' % (self._header, self._printable_id_code(),
self._check_digit)
def __repr__(self):
return '<class %s>(header=%r, id_code=%r, check_digit=%r)' % ('ThreePartsCode', self._header, self._id_code,
self._check_digit)
def _printable_id_code(self):
code = str(self.id_code)
while len(code) < self._code_size:
code = '0' + code
return code
@property
def header(self):
return self._header
@header.setter
def header(self, value):
self._header = value
@property
def id_code(self):
return self._id_code
@id_code.setter
def id_code(self, value):
self._id_code = value
@property
def check_digit(self):
return self._check_digit
@check_digit.setter
def check_digit(self, value):
self._check_digit = value
class ISWCCode(_ThreePartsCode):
def __init__(self,
id_code,
check_digit
):
super(ISWCCode, self).__init__(
'T',
id_code,
check_digit
)
def __str__(self):
return 'ISWC T-%s-%s' % (self._printable_id_code(), self._check_digit)
def __repr__(self):
return '<class %s>(id_code=%r, check_digit=%r)' % ('ISWCCode',
self._id_code,
self._check_digit)
def _printable_id_code(self):
code = super(ISWCCode, self)._printable_id_code()
code1 = code[:3]
code2 = code[3:6]
code3 = code[-3:]
return '%s.%s.%s' % (code1, code2, code3)
class IPIBaseNumber(_ThreePartsCode):
def __init__(self,
header,
id_code,
check_digit
):
super(IPIBaseNumber, self).__init__(
header,
id_code,
check_digit
)
def __str__(self):
return '%s-%s-%s' % (
self.header, self._printable_id_code(), self.check_digit)
def __repr__(self):
return '<class %s>(header=%r, id_code=%r, check_digit=%r)' % (
'IPIBaseNumber', self._header, self._id_code, self._check_digit)
class VISAN(object):
def __init__(self,
version,
isan,
episode,
check_digit
):
self._version = version
self._isan = isan
self._episode = episode
self._check_digit = check_digit
@property
def check_digit(self):
return self._check_digit
@check_digit.setter
def check_digit(self, value):
self._check_digit = value
@property
def episode(self):
return self._episode
@episode.setter
def episode(self, value):
self._episode = value
@property
|
MIT License
|
rroller/dahua
|
custom_components/dahua/client.py
|
DahuaClient.get_bytes
|
python
|
async def get_bytes(self, url: str) -> bytes:
async with async_timeout.timeout(TIMEOUT_SECONDS):
response = None
try:
auth = DigestAuth(self._username, self._password, self._session)
response = await auth.request("GET", self._base + url)
response.raise_for_status()
return await response.read()
finally:
if response is not None:
response.close()
|
Get information from the API. This will return the raw response and not process it
|
https://github.com/rroller/dahua/blob/83c09300098b6e446d218a60280a7d5babfd2c6f/custom_components/dahua/client.py#L600-L612
|
import logging
import socket
import asyncio
import aiohttp
import async_timeout
from custom_components.dahua.const import STREAM_MAIN, STREAM_SUB
from .digest import DigestAuth
_LOGGER: logging.Logger = logging.getLogger(__package__)
TIMEOUT_SECONDS = 10
SECURITY_LIGHT_TYPE = 1
SIREN_TYPE = 2
class DahuaClient:
def __init__(
self,
username: str,
password: str,
address: str,
port: int,
rtsp_port: int,
session: aiohttp.ClientSession
) -> None:
self._username = username
self._password = password
self._address = address
self._session = session
self._port = port
self._rtsp_port = rtsp_port
protocol = "https" if int(port) == 443 else "http"
self._base = "{0}://{1}:{2}".format(protocol, address, port)
def get_rtsp_stream_url(self, channel: int, subtype: int) -> str:
url = "rtsp://{0}:{1}@{2}:{3}/cam/realmonitor?channel={4}&subtype={5}".format(
self._username,
self._password,
self._address,
self._rtsp_port,
channel,
subtype,
)
return url
async def async_get_snapshot(self, channel_number: int) -> bytes:
url = "/cgi-bin/snapshot.cgi?channel={0}".format(channel_number)
return await self.get_bytes(url)
async def async_get_system_info(self) -> dict:
url = "/cgi-bin/magicBox.cgi?action=getSystemInfo"
return await self.get(url)
async def get_device_type(self) -> dict:
url = "/cgi-bin/magicBox.cgi?action=getDeviceType"
return await self.get(url)
async def get_software_version(self) -> dict:
url = "/cgi-bin/magicBox.cgi?action=getSoftwareVersion"
return await self.get(url)
async def get_machine_name(self) -> dict:
url = "/cgi-bin/magicBox.cgi?action=getMachineName"
return await self.get(url)
async def get_vendor(self) -> dict:
url = "/cgi-bin/magicBox.cgi?action=getVendor"
return await self.get(url)
async def async_get_coaxial_control_io_status(self) -> dict:
url = "/cgi-bin/coaxialControlIO.cgi?action=getStatus&channel=1"
return await self.get(url)
async def async_get_lighting_v2(self) -> dict:
url = "/cgi-bin/configManager.cgi?action=getConfig&name=Lighting_V2"
return await self.get(url)
async def async_get_machine_name(self) -> dict:
url = "/cgi-bin/configManager.cgi?action=getConfig&name=General"
return await self.get(url)
async def async_get_config(self, name) -> dict:
url = "/cgi-bin/configManager.cgi?action=getConfig&name={0}".format(name)
return await self.get(url)
async def async_get_config_lighting(self, channel: int, profile_mode) -> dict:
try:
return await self.async_get_config("Lighting[{0}][{1}]".format(channel, profile_mode))
except aiohttp.ClientResponseError as e:
if e.status == 400:
return {}
raise e
async def async_get_config_motion_detection(self) -> dict:
return await self.async_get_config("MotionDetect")
async def async_get_ivs_rules(self):
return await self.async_get_config("VideoAnalyseRule")
async def async_set_all_ivs_rules(self, channel: int, enabled: bool):
rules = await self.async_get_ivs_rules()
rules_set = []
for index in range(10):
rule = "table.VideoAnalyseRule[{0}][{1}].Enable".format(channel, index)
if rule in rules:
rules_set.append("VideoAnalyseRule[{0}][{1}].Enable={2}".format(channel, index, str(enabled).lower()))
if len(rules_set) > 0:
url = "/cgi-bin/configManager.cgi?action=setConfig&" + "&".join(rules_set)
return await self.get(url, True)
async def async_set_ivs_rule(self, channel: int, index: int, enabled: bool):
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoAnalyseRule[{0}][{1}].Enable={2}".format(
channel, index, str(enabled).lower()
)
return await self.get(url, True)
async def async_set_lighting_v1(self, channel: int, enabled: bool, brightness: int) -> dict:
mode = "Manual"
if not enabled:
mode = "Off"
return await self.async_set_lighting_v1_mode(channel, mode, brightness)
async def async_set_lighting_v1_mode(self, channel: int, mode: str, brightness: int) -> dict:
if mode.lower() == "on":
mode = "Manual"
mode = mode.capitalize()
url = "/cgi-bin/configManager.cgi?action=setConfig&Lighting[{channel}][0].Mode={mode}&Lighting[{channel}][0].MiddleLight[0].Light={brightness}".format(
channel=channel, mode=mode, brightness=brightness
)
return await self.get(url)
async def async_set_video_profile_mode(self, channel: int, mode: str):
if mode.lower() == "night":
mode = "1"
else:
mode = "0"
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoInMode[{0}].Config[0]={1}".format(channel, mode)
return await self.get(url, True)
async def async_set_night_switch_mode(self, channel: int, mode: str):
if mode.lower() == "night":
mode = "3"
else:
mode = "0"
url = f"/cgi-bin/configManager.cgi?action=setConfig&VideoInOptions[{channel}].NightOptions.SwitchMode={mode}"
_LOGGER.debug("Switching night mode: %s", url)
return await self.get(url, True)
async def async_enable_channel_title(self, channel: int, enabled: bool, ):
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoWidget[{0}].ChannelTitle.EncodeBlend={1}".format(
channel, str(enabled).lower()
)
value = await self.get(url)
if "OK" not in value and "ok" not in value:
raise Exception("Could enable/disable channel title")
async def async_enable_time_overlay(self, channel: int, enabled: bool):
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoWidget[{0}].TimeTitle.EncodeBlend={1}".format(
channel, str(enabled).lower()
)
value = await self.get(url)
if "OK" not in value and "ok" not in value:
raise Exception("Could not enable/disable time overlay")
async def async_enable_text_overlay(self, channel: int, group: int, enabled: bool):
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoWidget[{0}].CustomTitle[{1}].EncodeBlend={2}".format(
channel, group, str(enabled).lower()
)
value = await self.get(url)
if "OK" not in value and "ok" not in value:
raise Exception("Could not enable/disable text overlay")
async def async_enable_custom_overlay(self, channel: int, group: int, enabled: bool):
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoWidget[{0}].UserDefinedTitle[{1}].EncodeBlend={2}".format(
channel, group, str(enabled).lower()
)
value = await self.get(url)
if "OK" not in value and "ok" not in value:
raise Exception("Could not enable/disable customer overlay")
async def async_set_service_set_channel_title(self, channel: int, text1: str, text2: str):
text = '|'.join(filter(None, [text1, text2]))
url = "/cgi-bin/configManager.cgi?action=setConfig&ChannelTitle[{0}].Name={1}".format(
channel, text
)
value = await self.get(url)
if "OK" not in value and "ok" not in value:
raise Exception("Could not set text")
async def async_set_service_set_text_overlay(self, channel: int, group: int, text1: str, text2: str, text3: str,
text4: str):
text = '|'.join(filter(None, [text1, text2, text3, text4]))
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoWidget[{0}].CustomTitle[{1}].Text={2}".format(
channel, group, text
)
value = await self.get(url)
if "OK" not in value and "ok" not in value:
raise Exception("Could not set text")
async def async_set_service_set_custom_overlay(self, channel: int, group: int, text1: str, text2: str):
text = '|'.join(filter(None, [text1, text2]))
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoWidget[{0}].UserDefinedTitle[{1}].Text={2}".format(
channel, group, text
)
value = await self.get(url)
if "OK" not in value and "ok" not in value:
raise Exception("Could not set text")
async def async_set_lighting_v2(self, channel: int, enabled: bool, brightness: int, profile_mode: str) -> dict:
mode = "Manual"
if not enabled:
mode = "Off"
url = "/cgi-bin/configManager.cgi?action=setConfig&Lighting_V2[{channel}][{profile_mode}][0].Mode={mode}&Lighting_V2[{channel}][{profile_mode}][0].MiddleLight[0].Light={brightness}".format(
channel=channel, profile_mode=profile_mode, mode=mode, brightness=brightness
)
_LOGGER.debug("Turning light on: %s", url)
return await self.get(url)
async def async_set_video_in_day_night_mode(self, channel: int, config_type: str, mode: str):
if config_type == "day":
config_no = 0
elif config_type == "night":
config_no = 1
else:
config_no = 2
if mode is None or mode.lower() == "auto" or mode.lower() == "brightness":
mode = "Brightness"
elif mode.lower() == "color":
mode = "Color"
elif mode.lower() == "blackwhite":
mode = "BlackWhite"
url = "/cgi-bin/configManager.cgi?action=setConfig&VideoInDayNight[{0}][{1}].Mode={2}".format(
channel, str(config_no), mode
)
value = await self.get(url)
if "OK" not in value and "ok" not in value:
raise Exception("Could not set Day/Night mode")
async def async_get_video_in_mode(self) -> dict:
url = "/cgi-bin/configManager.cgi?action=getConfig&name=VideoInMode"
return await self.get(url)
async def async_set_coaxial_control_state(self, channel: int, dahua_type: int, enabled: bool) -> dict:
io = "1"
if not enabled:
io = "2"
url = "/cgi-bin/coaxialControlIO.cgi?action=control&channel={channel}&info[0].Type={dahua_type}&info[0].IO={io}".format(
channel=channel, dahua_type=dahua_type, io=io)
_LOGGER.debug("Setting coaxial control state to %s: %s", io, url)
return await self.get(url)
async def async_set_disarming_linkage(self, channel: int, enabled: bool) -> dict:
value = "false"
if enabled:
value = "true"
url = "/cgi-bin/configManager.cgi?action=setConfig&DisableLinkage[{0}].Enable={1}".format(channel, value)
return await self.get(url)
async def async_set_record_mode(self, channel: int, mode: str) -> dict:
if mode.lower() == "auto":
mode = "0"
elif mode.lower() == "manual" or mode.lower() == "on":
mode = "1"
elif mode.lower() == "off":
mode = "2"
url = "/cgi-bin/configManager.cgi?action=setConfig&RecordMode[{0}].Mode={1}".format(channel, mode)
_LOGGER.debug("Setting record mode: %s", url)
return await self.get(url)
async def async_get_disarming_linkage(self) -> dict:
url = "/cgi-bin/configManager.cgi?action=getConfig&name=DisableLinkage"
return await self.get(url)
async def async_access_control_open_door(self, door_id: int = 1) -> dict:
url = "/cgi-bin/accessControl.cgi?action=openDoor&UserID=101&Type=Remote&channel={0}".format(door_id)
return await self.get(url)
async def enable_motion_detection(self, channel: int, enabled: bool) -> dict:
url = "/cgi-bin/configManager.cgi?action=setConfig&MotionDetect[{channel}].Enable={enabled}&MotionDetect[{channel}].DetectVersion=V3.0".format(
channel=channel, enabled=str(enabled).lower())
response = await self.get(url)
if "OK" in response:
return response
url = "/cgi-bin/configManager.cgi?action=setConfig&MotionDetect[{0}].Enable={1}".format(channel,
str(enabled).lower())
response = await self.get(url)
return response
async def stream_events(self, on_receive, events: list, channel: int):
codes = ",".join(events)
url = "{0}/cgi-bin/eventManager.cgi?action=attach&codes=[{1}]&heartbeat=5".format(self._base, codes)
if self._username is not None and self._password is not None:
response = None
try:
auth = DigestAuth(self._username, self._password, self._session)
response = await auth.request("GET", url)
response.raise_for_status()
async for data, _ in response.content.iter_chunks():
on_receive(data, channel)
except Exception as exception:
raise ConnectionError() from exception
finally:
if response is not None:
response.close()
@staticmethod
async def parse_dahua_api_response(data: str) -> dict:
lines = data.splitlines()
data_dict = {}
for line in lines:
parts = line.split("=", 1)
if len(parts) == 2:
data_dict[parts[0]] = parts[1]
else:
data_dict[parts[0]] = line
return data_dict
|
MIT License
|
dkoslicki/cmash
|
CMash/GroundTruth.py
|
TrueContainment.__parseNumList
|
python
|
def __parseNumList(k_sizes_str: str) -> list:
m = re.match(r'(\d+)(?:-(\d+))?(?:-(\d+))?$', k_sizes_str)
if not m:
raise ArgumentTypeError(
"'" + k_sizes_str + "' is not a range of number. Expected forms like '1-5' or '2' or '10-15-2'.")
start = int(m.group(1))
end = int(m.group(2))
if m.group(3):
increment = int(m.group(3))
else:
increment = 1
return list(range(start, end + 1, increment))
|
Parses a string like 10-21-1 and turn it into a list like [10, 11, 12,...,21]
:param k_sizes_str: the <start>-<end>-<increment> string
:type k_sizes_str: str
:return: list of k-mer sizes
:rtype: list
|
https://github.com/dkoslicki/cmash/blob/1485a0cde4685c52ae8cfb8bdaa5d1bad77eaac3/CMash/GroundTruth.py#L74-L93
|
import khmer
import numpy as np
import os
import sys
import pandas as pd
import re
import screed
from argparse import ArgumentTypeError
import multiprocessing
import argparse
import subprocess
import json
from itertools import starmap
import tempfile
try:
from CMash import MinHash as MH
from CMash import Query
except ImportError:
try:
import MinHash as MH
import Query
except ImportError:
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from CMash import MinHash as MH
from CMash import Query
notACTG = re.compile('[^ACTG]')
class TrueContainment:
def __init__(self, training_database_file: str, k_sizes: str, temp_dir: str):
self.training_database_file = training_database_file
self.k_sizes = self.__parseNumList(k_sizes)
self.CEs = self.__import_database()
self.training_file_names = self.__return_file_names()
self.temp_dir = temp_dir
if not os.path.exists(temp_dir):
os.mkdir(temp_dir)
self._compute_all_training_kmers()
def __import_database(self) -> list:
CEs = MH.import_multiple_from_single_hdf5(self.training_database_file)
return CEs
def __return_file_names(self):
training_file_names = list(map(lambda x: x.input_file_name.decode('utf-8'), self.CEs))
return training_file_names
@staticmethod
|
BSD 3-Clause New or Revised License
|
spikeinterface/spikeextractors
|
spikeextractors/recordingextractor.py
|
RecordingExtractor.get_num_channels
|
python
|
def get_num_channels(self):
return len(self.get_channel_ids())
|
This function returns the number of channels in the recording.
Returns
-------
num_channels: int
Number of channels in the recording
|
https://github.com/spikeinterface/spikeextractors/blob/4097f6f22f5aa4811cd85d5d8a9d25b94312339d/spikeextractors/recordingextractor.py#L95-L103
|
from abc import ABC, abstractmethod
import numpy as np
from copy import deepcopy
from .extraction_tools import load_probe_file, save_to_probe_file, write_to_binary_dat_format, write_to_h5_dataset_format, get_sub_extractors_by_property, cast_start_end_frame
from .baseextractor import BaseExtractor
class RecordingExtractor(ABC, BaseExtractor):
_default_filename = "spikeinterface_recording"
def __init__(self):
BaseExtractor.__init__(self)
self._key_properties = {'group': None, 'location': None, 'gain': None, 'offset': None}
self.is_filtered = False
@abstractmethod
def get_traces(self, channel_ids=None, start_frame=None, end_frame=None, return_scaled=True):
pass
@abstractmethod
def get_num_frames(self):
pass
@abstractmethod
def get_sampling_frequency(self):
pass
@abstractmethod
def get_channel_ids(self):
pass
|
MIT License
|
rethinkrobotics/intera_sdk
|
intera_interface/src/intera_motion_interface/motion_waypoint.py
|
MotionWaypoint.get_default_active_endpoint
|
python
|
def get_default_active_endpoint():
return 'right_hand'
|
@return: the active endpoint string corresponding to the tip of
sawyer's arm when nothing else is attached.
|
https://github.com/rethinkrobotics/intera_sdk/blob/6614dec1c5c2e7a74db1af6d01811d1332801785/intera_interface/src/intera_motion_interface/motion_waypoint.py#L48-L53
|
import rospy
from geometry_msgs.msg import (
PoseStamped,
Pose
)
from intera_motion_msgs.msg import (
Waypoint,
WaypointOptions
)
from sensor_msgs.msg import JointState
from copy import deepcopy
from .utility_functions import ensure_path_to_file_exists
from rospy_message_converter import message_converter
import yaml
from .motion_waypoint_options import MotionWaypointOptions
from intera_interface import Limb
class MotionWaypoint(object):
@staticmethod
def get_default_joint_angles():
return [0.0, -0.9, 0.0, 1.8, 0.0, -0.9, 0.0]
@staticmethod
|
Apache License 2.0
|
berkeleyphotonicsgenerator/bpg
|
tests/test_flatten.py
|
SubLevel2.draw_layout
|
python
|
def draw_layout(self):
self.add_rect(
layer='SI',
coord1=(0, 0),
coord2=(2, 4),
unit_mode=False
)
self.add_photonic_port(name='Sublevel2',
center=(0, 0),
orient='R0',
layer='SI',
width=1)
|
Specifies the creation of the lumerical shapes
|
https://github.com/berkeleyphotonicsgenerator/bpg/blob/27221c9bbfd5e25547ad048fcbfacf940db9ac8c/tests/test_flatten.py#L24-L37
|
import BPG
class SubLevel2(BPG.PhotonicTemplateBase):
def __init__(self, temp_db,
lib_name,
params,
used_names,
**kwargs,
):
BPG.PhotonicTemplateBase.__init__(self, temp_db, lib_name, params, used_names, **kwargs)
@classmethod
def get_params_info(cls):
return dict(
)
@classmethod
def get_default_param_values(cls):
return dict(
)
|
BSD 3-Clause New or Revised License
|
cryptosignal/crypto-signal
|
app/notifiers/gmail_client.py
|
GmailNotifier.notify
|
python
|
def notify(self, message):
header = 'From: %s\n' % self.username
header += 'To: %s\n' % self.destination_addresses
header += 'Content-Type: text/plain\n'
header += 'Subject: Crypto-signal alert!\n\n'
message = header + message
smtp_handler = smtplib.SMTP(self.smtp_server)
smtp_handler.starttls()
smtp_handler.login(self.username, self.password)
result = smtp_handler.sendmail(self.username, self.destination_addresses, message)
smtp_handler.quit()
return result
|
Sends the message.
Args:
message (str): The message to send.
Returns:
dict: A dictionary containing the result of the attempt to send the email.
|
https://github.com/cryptosignal/crypto-signal/blob/8769d0df2c50e5071b282300788a3860200b22c6/app/notifiers/gmail_client.py#L32-L53
|
import smtplib
import structlog
from tenacity import retry, retry_if_exception_type, stop_after_attempt
from notifiers.utils import NotifierUtils
class GmailNotifier(NotifierUtils):
def __init__(self, username, password, destination_addresses):
self.logger = structlog.get_logger()
self.smtp_server = 'smtp.gmail.com:587'
self.username = username
self.password = password
self.destination_addresses = ','.join(destination_addresses)
@retry(stop=stop_after_attempt(3))
|
MIT License
|
b-ryan/powerline-shell
|
powerline_shell/segments/hg.py
|
_get_hg_status
|
python
|
def _get_hg_status(output):
return output[0].decode("utf-8").splitlines()
|
This function exists to enable mocking the `hg status` output in tests.
|
https://github.com/b-ryan/powerline-shell/blob/a9b8c9bb39dbfb7ec3c639e497b5a76fa6dcb8cc/powerline_shell/segments/hg.py#L26-L29
|
import subprocess
from ..utils import RepoStats, ThreadedSegment, get_subprocess_env
def _get_hg_branch():
p = subprocess.Popen(["hg", "branch"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=get_subprocess_env())
branch = p.communicate()[0].decode("utf-8").rstrip('\n')
return branch
def parse_hg_stats(status):
stats = RepoStats()
for statusline in status:
if statusline[0] == "A":
stats.staged += 1
elif statusline[0] == "?":
stats.new += 1
else:
stats.changed += 1
return stats
|
MIT License
|
cozysynthesizer/cozy
|
cozy/jobs.py
|
Job.successful
|
python
|
def successful(self):
return self._flags[Job._DONE_NORMALLY_FLAG]
|
True if the job has stopped without throwing an uncaught exception.
|
https://github.com/cozysynthesizer/cozy/blob/d7b2c0ee575057dea4ebec201d579f0ecd785b1b/cozy/jobs.py#L192-L194
|
import os
import multiprocessing
from queue import Queue as PlainQueue, Empty, Full
import threading
import signal
from cozy.common import partition
import cozy.opts as opts
do_profiling = opts.Option("profile", bool, False, description="Profile Cozy itself")
_interrupted = False
def _set_interrupt_flag(signal_number, stack_frame):
global _interrupted
_interrupted = True
def install_graceful_sigint_handler():
signal.signal(signal.SIGINT, _set_interrupt_flag)
def was_interrupted():
return _interrupted
multiprocessing_context = multiprocessing.get_context("spawn")
class Job(object):
_STOP_REQUESTED_FLAG = 0
_DONE_FLAG = 1
_DONE_NORMALLY_FLAG = 2
_SIGINT_HANDLER_INSTALLED_FLAG = 3
_FLAG_COUNT = 4
def __init__(self):
self._thread = multiprocessing_context.Process(target=self._run, daemon=True)
self._flags = multiprocessing_context.Array("b", [False] * Job._FLAG_COUNT)
def start(self):
self._options = opts.snapshot()
self._thread.start()
def run(self):
raise NotImplementedError()
def _run(self):
opts.restore(self._options)
install_graceful_sigint_handler()
self._flags[Job._SIGINT_HANDLER_INSTALLED_FLAG] = True
try:
if do_profiling.value:
import cProfile
import tempfile
(fd, filename) = tempfile.mkstemp(suffix=".prof")
print("Profile info: {}".format(filename))
cProfile.runctx("self.run()", globals(), locals(), filename=filename)
else:
self.run()
self._flags[Job._DONE_NORMALLY_FLAG] = True
except Exception as e:
import traceback
traceback.print_exc()
finally:
self._flags[Job._DONE_FLAG] = True
@property
def stop_requested(self):
return was_interrupted() or self._flags[Job._STOP_REQUESTED_FLAG]
@property
def done(self):
return self._flags[Job._DONE_FLAG] or (self._thread.exitcode is not None)
@property
|
Apache License 2.0
|
google-research/language
|
language/labs/consistent_zero_shot_nmt/utils/model_utils.py
|
gnmt_residual_fn
|
python
|
def gnmt_residual_fn(inputs, outputs):
def split_input(inp, out):
out_dim = out.get_shape().as_list()[-1]
inp_dim = inp.get_shape().as_list()[-1]
return tf.split(inp, [out_dim, inp_dim - out_dim], axis=-1)
actual_inputs, _ = contrib_framework.nest.map_structure(
split_input, inputs, outputs)
def assert_shape_match(inp, out):
inp.get_shape().assert_is_compatible_with(out.get_shape())
contrib_framework.nest.assert_same_structure(actual_inputs, outputs)
contrib_framework.nest.map_structure(assert_shape_match, actual_inputs,
outputs)
return contrib_framework.nest.map_structure(lambda inp, out: inp + out,
actual_inputs, outputs)
|
Residual function that handles different inputs and outputs inner dims.
Args:
inputs: A potentially nested structure of <tensor> [..., input_dim] that
represents cell inputs.
outputs: A potentially nested structure of <tensor> [..., output_dim] that
represents cell outputs. Must have the same structure and number of
dimensions as inputs and output_dim >= input_dim must hold.
Returns:
outputs + actual_inputs where actual_inputs are a nested structure of slices
of the inputs along the last dimension up to the output_dim.
|
https://github.com/google-research/language/blob/240cd2a1fd0307c6822b6f1f6c2abf1349a5a4da/language/labs/consistent_zero_shot_nmt/utils/model_utils.py#L163-L191
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensor2tensor.layers import common_layers
import tensorflow.compat.v1 as tf
from tensorflow.contrib import framework as contrib_framework
from tensorflow.contrib import rnn as contrib_rnn
from tensorflow.contrib import seq2seq as contrib_seq2seq
__all__ = [
"GNMTAttentionMultiCell",
"gnmt_residual_fn",
"create_rnn_cell",
"create_gnmt_rnn_cell",
"build_unidirectional_rnn",
"build_bidirectional_rnn",
"make_sequences_compatible",
"get_embeddings",
"build_logits",
"get_global_step",
]
def _single_cell(unit_type,
num_units,
forget_bias,
dropout,
mode,
residual_connection=False,
residual_fn=None,
trainable=True):
dropout = dropout if mode == tf.estimator.ModeKeys.TRAIN else 0.0
if unit_type == "lstm":
single_cell = contrib_rnn.LSTMCell(
num_units, forget_bias=forget_bias, trainable=trainable)
elif unit_type == "gru":
single_cell = contrib_rnn.GRUCell(num_units, trainable=trainable)
elif unit_type == "layer_norm_lstm":
single_cell = contrib_rnn.LayerNormBasicLSTMCell(
num_units,
forget_bias=forget_bias,
layer_norm=True,
trainable=trainable)
elif unit_type == "nas":
single_cell = contrib_rnn.NASCell(num_units, trainable=trainable)
else:
raise ValueError("Unknown unit type %s!" % unit_type)
if dropout > 0.0:
single_cell = contrib_rnn.DropoutWrapper(
cell=single_cell, input_keep_prob=(1.0 - dropout))
if residual_connection:
single_cell = contrib_rnn.ResidualWrapper(
single_cell, residual_fn=residual_fn)
return single_cell
def _cell_list(unit_type,
num_units,
num_layers,
num_residual_layers,
forget_bias,
dropout,
mode,
single_cell_fn=None,
residual_fn=None,
trainable=True):
if single_cell_fn is None:
single_cell_fn = _single_cell
cell_list = []
for i in range(num_layers):
single_cell = single_cell_fn(
unit_type=unit_type,
num_units=num_units,
forget_bias=forget_bias,
dropout=dropout,
mode=mode,
residual_connection=(i >= num_layers - num_residual_layers),
residual_fn=residual_fn,
trainable=trainable)
cell_list.append(single_cell)
return cell_list
class GNMTAttentionMultiCell(tf.nn.rnn_cell.MultiRNNCell):
def __init__(self, attention_cell, cells, use_new_attention=False):
cells = [attention_cell] + cells
self.use_new_attention = use_new_attention
super(GNMTAttentionMultiCell, self).__init__(cells, state_is_tuple=True)
def __call__(self, inputs, state, scope=None):
if not contrib_framework.nest.is_sequence(state):
raise ValueError(
"Expected state to be a tuple of length %d, but received: %s"
% (len(self.state_size), state))
scope = "multi_rnn_cell" if scope is None else scope
with tf.variable_scope(scope):
new_states = []
with tf.variable_scope("cell_0_attention"):
attention_cell = self._cells[0]
attention_state = state[0]
cur_inp, new_attention_state = attention_cell(inputs, attention_state)
new_states.append(new_attention_state)
for i in range(1, len(self._cells)):
with tf.variable_scope("cell_%d" % i):
cell = self._cells[i]
cur_state = state[i]
if self.use_new_attention:
cur_inp = tf.concat([cur_inp, new_attention_state.attention], -1)
else:
cur_inp = tf.concat([cur_inp, attention_state.attention], -1)
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
return cur_inp, tuple(new_states)
|
Apache License 2.0
|
arviz-devs/arviz
|
arviz/plots/backends/matplotlib/ppcplot.py
|
_empirical_cdf
|
python
|
def _empirical_cdf(data):
return np.sort(data), np.linspace(0, 1, len(data))
|
Compute empirical cdf of a numpy array.
Parameters
----------
data : np.array
1d array
Returns
-------
np.array, np.array
x and y coordinates for the empirical cdf of the data
|
https://github.com/arviz-devs/arviz/blob/a934308e8d8f63b2b6b06b3badf7c93a88112c97/arviz/plots/backends/matplotlib/ppcplot.py#L453-L466
|
import logging
import platform
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import animation, get_backend
from ....stats.density_utils import get_bins, histogram, kde
from ...kdeplot import plot_kde
from ...plot_utils import _scale_fig_size
from . import backend_kwarg_defaults, backend_show, create_axes_grid
_log = logging.getLogger(__name__)
def plot_ppc(
ax,
length_plotters,
rows,
cols,
figsize,
animated,
obs_plotters,
pp_plotters,
predictive_dataset,
pp_sample_ix,
kind,
alpha,
colors,
textsize,
mean,
observed,
jitter,
total_pp_samples,
legend,
labeller,
group,
animation_kwargs,
num_pp_samples,
backend_kwargs,
show,
):
if backend_kwargs is None:
backend_kwargs = {}
backend_kwargs = {
**backend_kwarg_defaults(),
**backend_kwargs,
}
if animation_kwargs is None:
animation_kwargs = {}
if platform.system() == "Linux":
animation_kwargs.setdefault("blit", True)
else:
animation_kwargs.setdefault("blit", False)
if alpha is None:
if animated:
alpha = 1
else:
if kind.lower() == "scatter":
alpha = 0.7
else:
alpha = 0.2
if jitter is None:
jitter = 0.0
if jitter < 0.0:
raise ValueError("jitter must be >=0")
if animated:
try:
shell = get_ipython().__class__.__name__
if shell == "ZMQInteractiveShell" and get_backend() != "nbAgg":
raise Warning(
"To run animations inside a notebook you have to use the nbAgg backend. "
"Try with `%matplotlib notebook` or `%matplotlib nbAgg`. You can switch "
"back to the default backend with `%matplotlib inline` or "
"`%matplotlib auto`."
)
except NameError:
pass
if animation_kwargs["blit"] and platform.system() != "Linux":
_log.warning(
"If you experience problems rendering the animation try setting "
"`animation_kwargs({'blit':False}) or changing the plotting backend "
"(e.g. to TkAgg)"
)
(figsize, ax_labelsize, _, xt_labelsize, linewidth, markersize) = _scale_fig_size(
figsize, textsize, rows, cols
)
backend_kwargs.setdefault("figsize", figsize)
backend_kwargs.setdefault("squeeze", True)
if ax is None:
fig, axes = create_axes_grid(length_plotters, rows, cols, backend_kwargs=backend_kwargs)
else:
axes = np.ravel(ax)
if len(axes) != length_plotters:
raise ValueError(
"Found {} variables to plot but {} axes instances. They must be equal.".format(
length_plotters, len(axes)
)
)
if animated:
fig = axes[0].get_figure()
if not all((ax.get_figure() is fig for ax in axes)):
raise ValueError("All axes must be on the same figure for animation to work")
for i, ax_i in enumerate(np.ravel(axes)[:length_plotters]):
var_name, selection, isel, obs_vals = obs_plotters[i]
pp_var_name, _, _, pp_vals = pp_plotters[i]
dtype = predictive_dataset[pp_var_name].dtype.kind
if dtype not in ["i", "f"]:
raise ValueError(
f"The data type of the predictive data must be one of 'i' or 'f', but is '{dtype}'"
)
obs_vals = obs_vals.flatten()
pp_vals = pp_vals.reshape(total_pp_samples, -1)
pp_sampled_vals = pp_vals[pp_sample_ix]
if kind == "kde":
plot_kwargs = {"color": colors[0], "alpha": alpha, "linewidth": 0.5 * linewidth}
if dtype == "i":
plot_kwargs["drawstyle"] = "steps-pre"
ax_i.plot([], color=colors[0], label=f"{group.capitalize()} predictive")
if observed:
if dtype == "f":
plot_kde(
obs_vals,
label="Observed",
plot_kwargs={"color": colors[1], "linewidth": linewidth, "zorder": 3},
fill_kwargs={"alpha": 0},
ax=ax_i,
legend=legend,
)
else:
bins = get_bins(obs_vals)
_, hist, bin_edges = histogram(obs_vals, bins=bins)
hist = np.concatenate((hist[:1], hist))
ax_i.plot(
bin_edges,
hist,
label="Observed",
color=colors[1],
linewidth=linewidth,
zorder=3,
drawstyle=plot_kwargs["drawstyle"],
)
pp_densities = []
pp_xs = []
for vals in pp_sampled_vals:
vals = np.array([vals]).flatten()
if dtype == "f":
pp_x, pp_density = kde(vals)
pp_densities.append(pp_density)
pp_xs.append(pp_x)
else:
bins = get_bins(vals)
_, hist, bin_edges = histogram(vals, bins=bins)
hist = np.concatenate((hist[:1], hist))
pp_densities.append(hist)
pp_xs.append(bin_edges)
if animated:
animate, init = _set_animation(
pp_sampled_vals, ax_i, dtype=dtype, kind=kind, plot_kwargs=plot_kwargs
)
else:
if dtype == "f":
ax_i.plot(np.transpose(pp_xs), np.transpose(pp_densities), **plot_kwargs)
else:
for x_s, y_s in zip(pp_xs, pp_densities):
ax_i.plot(x_s, y_s, **plot_kwargs)
if mean:
label = f"{group.capitalize()} predictive mean"
if dtype == "f":
rep = len(pp_densities)
len_density = len(pp_densities[0])
new_x = np.linspace(np.min(pp_xs), np.max(pp_xs), len_density)
new_d = np.zeros((rep, len_density))
bins = np.digitize(pp_xs, new_x, right=True)
new_x -= (new_x[1] - new_x[0]) / 2
for irep in range(rep):
new_d[irep][bins[irep]] = pp_densities[irep]
ax_i.plot(
new_x,
new_d.mean(0),
color=colors[2],
linestyle="--",
linewidth=linewidth * 1.5,
zorder=2,
label=label,
)
else:
vals = pp_vals.flatten()
bins = get_bins(vals)
_, hist, bin_edges = histogram(vals, bins=bins)
hist = np.concatenate((hist[:1], hist))
ax_i.plot(
bin_edges,
hist,
color=colors[2],
linewidth=linewidth * 1.5,
label=label,
zorder=2,
linestyle="--",
drawstyle=plot_kwargs["drawstyle"],
)
ax_i.tick_params(labelsize=xt_labelsize)
ax_i.set_yticks([])
elif kind == "cumulative":
drawstyle = "default" if dtype == "f" else "steps-pre"
if observed:
ax_i.plot(
*_empirical_cdf(obs_vals),
color=colors[1],
linewidth=linewidth,
label="Observed",
drawstyle=drawstyle,
zorder=3,
)
if animated:
animate, init = _set_animation(
pp_sampled_vals,
ax_i,
kind=kind,
alpha=alpha,
drawstyle=drawstyle,
linewidth=linewidth,
)
else:
pp_densities = np.empty((2 * len(pp_sampled_vals), pp_sampled_vals[0].size))
for idx, vals in enumerate(pp_sampled_vals):
vals = np.array([vals]).flatten()
pp_x, pp_density = _empirical_cdf(vals)
pp_densities[2 * idx] = pp_x
pp_densities[2 * idx + 1] = pp_density
ax_i.plot(
*pp_densities,
alpha=alpha,
color=colors[0],
drawstyle=drawstyle,
linewidth=linewidth,
)
ax_i.plot([], color=colors[0], label="Posterior predictive")
if mean:
ax_i.plot(
*_empirical_cdf(pp_vals.flatten()),
color=colors[2],
linestyle="--",
linewidth=linewidth * 1.5,
drawstyle=drawstyle,
label="Posterior predictive mean",
)
ax_i.set_yticks([0, 0.5, 1])
elif kind == "scatter":
if mean:
if dtype == "f":
plot_kde(
pp_vals.flatten(),
plot_kwargs={
"color": colors[2],
"linestyle": "--",
"linewidth": linewidth * 1.5,
"zorder": 3,
},
label="Posterior predictive mean",
ax=ax_i,
legend=legend,
)
else:
vals = pp_vals.flatten()
bins = get_bins(vals)
_, hist, bin_edges = histogram(vals, bins=bins)
hist = np.concatenate((hist[:1], hist))
ax_i.plot(
bin_edges,
hist,
color=colors[2],
linewidth=linewidth * 1.5,
label="Posterior predictive mean",
zorder=3,
linestyle="--",
drawstyle="steps-pre",
)
_, limit = ax_i.get_ylim()
limit *= 1.05
y_rows = np.linspace(0, limit, num_pp_samples + 1)
jitter_scale = y_rows[1] - y_rows[0]
scale_low = 0
scale_high = jitter_scale * jitter
if observed:
obs_yvals = np.zeros_like(obs_vals, dtype=np.float64)
if jitter:
obs_yvals += np.random.uniform(
low=scale_low, high=scale_high, size=len(obs_vals)
)
ax_i.plot(
obs_vals,
obs_yvals,
"o",
color=colors[1],
markersize=markersize,
alpha=alpha,
label="Observed",
zorder=4,
)
if animated:
animate, init = _set_animation(
pp_sampled_vals,
ax_i,
kind=kind,
color=colors[0],
height=y_rows.mean() * 0.5,
markersize=markersize,
)
else:
for vals, y in zip(pp_sampled_vals, y_rows[1:]):
vals = np.ravel(vals)
yvals = np.full_like(vals, y, dtype=np.float64)
if jitter:
yvals += np.random.uniform(low=scale_low, high=scale_high, size=len(vals))
ax_i.plot(
vals,
yvals,
"o",
zorder=2,
color=colors[0],
markersize=markersize,
alpha=alpha,
)
ax_i.plot([], color=colors[0], marker="o", label="Posterior predictive")
ax_i.set_yticks([])
ax_i.set_xlabel(
labeller.make_pp_label(var_name, pp_var_name, selection, isel), fontsize=ax_labelsize
)
if legend:
if i == 0:
ax_i.legend(fontsize=xt_labelsize * 0.75)
else:
ax_i.legend([])
if backend_show(show):
plt.show()
if animated:
ani = animation.FuncAnimation(
fig, animate, np.arange(0, num_pp_samples), init_func=init, **animation_kwargs
)
return axes, ani
else:
return axes
def _set_animation(
pp_sampled_vals,
ax,
dtype=None,
kind="density",
alpha=None,
color=None,
drawstyle=None,
linewidth=None,
height=None,
markersize=None,
plot_kwargs=None,
):
if kind == "kde":
length = len(pp_sampled_vals)
if dtype == "f":
x_vals, y_vals = kde(pp_sampled_vals[0])
max_max = max([max(kde(pp_sampled_vals[i])[1]) for i in range(length)])
ax.set_ylim(0, max_max)
(line,) = ax.plot(x_vals, y_vals, **plot_kwargs)
def animate(i):
x_vals, y_vals = kde(pp_sampled_vals[i])
line.set_data(x_vals, y_vals)
return (line,)
else:
vals = pp_sampled_vals[0]
_, y_vals, x_vals = histogram(vals, bins="auto")
(line,) = ax.plot(x_vals[:-1], y_vals, **plot_kwargs)
max_max = max(
[max(histogram(pp_sampled_vals[i], bins="auto")[1]) for i in range(length)]
)
ax.set_ylim(0, max_max)
def animate(i):
_, y_vals, x_vals = histogram(pp_sampled_vals[i], bins="auto")
line.set_data(x_vals[:-1], y_vals)
return (line,)
elif kind == "cumulative":
x_vals, y_vals = _empirical_cdf(pp_sampled_vals[0])
(line,) = ax.plot(
x_vals, y_vals, alpha=alpha, color=color, drawstyle=drawstyle, linewidth=linewidth
)
def animate(i):
x_vals, y_vals = _empirical_cdf(pp_sampled_vals[i])
line.set_data(x_vals, y_vals)
return (line,)
elif kind == "scatter":
x_vals = pp_sampled_vals[0]
y_vals = np.full_like(x_vals, height, dtype=np.float64)
(line,) = ax.plot(
x_vals, y_vals, "o", zorder=2, color=color, markersize=markersize, alpha=alpha
)
def animate(i):
line.set_xdata(np.ravel(pp_sampled_vals[i]))
return (line,)
def init():
if kind != "scatter":
line.set_data([], [])
else:
line.set_xdata([])
return (line,)
return animate, init
|
Apache License 2.0
|
ericssonresearch/calvin-base
|
calvin/runtime/north/calvincontrol.py
|
CalvinControlTunnelServer.tunnel_down
|
python
|
def tunnel_down(self, tunnel):
self.controltunnels[tunnel.peer_node_id].close()
del self.tunnels[tunnel.peer_node_id]
del self.controltunnels[tunnel.peer_node_id]
return True
|
Callback that the tunnel is not accepted or is going down
|
https://github.com/ericssonresearch/calvin-base/blob/bc4645c2061c30ca305a660e48dc86e3317f5b6f/calvin/runtime/north/calvincontrol.py#L261-L267
|
import json
from random import randint
from urlparse import urlparse
from calvin.utilities.calvinlogger import get_logger
from calvin.utilities.calvin_callback import CalvinCB
from calvin.runtime.south.async import server_connection
from calvin.requests import calvinresponse
from calvin.utilities.security import Security
from calvin.utilities import calvinuuid
from calvin.utilities.issuetracker import IssueTracker
from control_apis import routes
from control_apis import security_api
from control_apis import runtime_api
from control_apis import application_api
from control_apis import documentation_api
from control_apis import logging_api
from control_apis import registry_api
from control_apis import uicalvinsys_api
from control_apis import proxyhandler_api
_log = get_logger(__name__)
_calvincontrol = None
def get_calvincontrol():
global _calvincontrol
if _calvincontrol is None:
_calvincontrol = CalvinControl()
return _calvincontrol
class CalvinControl(object):
def __init__(self):
self.node = None
self.loggers = {}
self.server = None
self.connections = {}
self.tunnel = None
self.host = None
self.tunnel_server = None
self.tunnel_client = None
self.security = None
self.token_dict = None
self.routes = routes.install_handlers(self)
def start(self, node, uri, tunnel=False, external_uri=None):
self.node = node
self.security = Security(self.node)
schema, _ = uri.split(':', 1)
if tunnel:
self.tunnel_client = CalvinControlTunnelClient(uri, self)
else:
url = urlparse(uri)
self.port = int(url.port)
self.host = url.hostname
if external_uri is not None:
self.external_host = urlparse(external_uri).hostname
else:
self.external_host = self.host
_log.info("Control API listening on: %s:%s" % (self.host, self.port))
self.server = server_connection.ServerProtocolFactory(self.handle_request, "http", node_name=node.node_name)
self.server.start(self.host, self.port)
self.tunnel_server = CalvinControlTunnelServer(self.node)
def stop(self):
self.server.stop()
if self.tunnel_server is not None:
self.tunnel_server.stop()
if self.tunnel_client is not None:
self.tunnel_client.stop()
def close_log_tunnel(self, handle):
for user_id, logger in self.loggers:
if logger.handle == handle:
del self.loggers[user_id]
def handle_request(self, actor_ids=None):
if self.server.pending_connections:
addr, conn = self.server.accept()
self.connections[addr] = conn
for handle, connection in self.connections.items():
if connection.data_available:
command, headers, data = connection.data_get()
self.route_request(handle, connection, command, headers, data)
def _handler_for_route(self, command):
for re_route, handler in self.routes:
match_object = re_route.match(command)
if match_object:
return handler, match_object
return None, None
def route_request(self, handle, connection, command, headers, data):
if self.node.quitting:
self.send_response(handle, connection, None, status=calvinresponse.INTERNAL_ERROR)
return
try:
issuetracker = IssueTracker()
handler, match = self._handler_for_route(command)
if handler:
credentials = None
if data:
data = json.loads(data)
_log.debug("Calvin control handles:%s\n%s\n---------------" % (command, data))
handler(handle, connection, match, data, headers)
else:
_log.error("No route found for: %s\n%s" % (command, data))
self.send_response(handle, connection, None, status=404)
except Exception as e:
_log.info("Failed to parse request", exc_info=e)
self.send_response(handle, connection, None, status=calvinresponse.BAD_REQUEST)
def send_response(self, handle, connection, data, status=200, content_type=None):
content_type = content_type or "Content-Type: application/json"
content_type += "\n"
if data is None and status in range(200, 207):
status = 204
header = "HTTP/1.0 " + str(status) + " " + calvinresponse.RESPONSE_CODES[status] + "\n" + ("" if data is None else content_type ) + "Access-Control-Allow-Methods: GET, POST, PUT, DELETE, OPTIONS\n" + "Access-Control-Allow-Origin: *\r\n" + "\n"
if connection is None:
msg = {"cmd": "httpresp", "msgid": handle, "header": header, "data": data}
self.tunnel_client.send(msg)
else:
if not connection.connection_lost:
connection.send(header)
if data:
connection.send(data)
connection.close()
del self.connections[handle]
def send_streamheader(self, handle, connection):
response = "HTTP/1.0 200 OK\n" + "Content-Type: text/event-stream\n" + "Access-Control-Allow-Origin: *\r\n" + "\n"
if connection is not None:
if not connection.connection_lost:
connection.send(response)
elif self.tunnel_client is not None:
msg = {"cmd": "logresp", "msgid": handle, "header": response, "data": None}
self.tunnel_client.send(msg)
def log_actor_firing(self, actor_id, action_method, tokens_produced, tokens_consumed, production):
pass
def log_actor_new(self, actor_id, actor_name, actor_type, is_shadow):
pass
def log_actor_destroy(self, actor_id):
pass
def log_actor_migrate(self, actor_id, dest_node_id):
pass
def log_actor_replicate(self, actor_id, replica_actor_id, replication_id, dest_node_id):
pass
def log_actor_dereplicate(self, actor_id, replica_actor_id, replication_id):
pass
def log_application_new(self, application_id, application_name):
pass
def log_application_destroy(self, application_id):
pass
def log_link_connected(self, peer_id, uri):
pass
def log_link_disconnected(self, peer_id):
pass
def log_log_message(self, message):
pass
class CalvinControlTunnelServer(object):
def __init__(self, node):
self.node = node
self.tunnels = {}
self.controltunnels = {}
self.node.proto.register_tunnel_handler("control", CalvinCB(self.tunnel_request_handles))
def stop(self):
for _, control in self.controltunnels.items():
control.close()
def tunnel_request_handles(self, tunnel):
self.tunnels[tunnel.peer_node_id] = tunnel
self.controltunnels[tunnel.peer_node_id] = CalvinControlTunnel(tunnel)
tunnel.register_tunnel_down(CalvinCB(self.tunnel_down, tunnel))
tunnel.register_tunnel_up(CalvinCB(self.tunnel_up, tunnel))
tunnel.register_recv(CalvinCB(self.tunnel_recv_handler, tunnel))
return True
|
Apache License 2.0
|
city-of-helsinki/wagtail-svgmap
|
wagtail_svgmap/svg.py
|
serialize_svg
|
python
|
def serialize_svg(tree, encoding='UTF-8', xml_declaration=True):
bio = BytesIO()
fixup_unqualified_attributes(tree, namespace=SVG_NAMESPACE)
tree.write(bio, encoding=encoding, xml_declaration=xml_declaration, default_namespace=SVG_NAMESPACE)
return bio.getvalue().decode(encoding)
|
Serialize an ElementTree as SVG.
:param tree: The tree to process.
:type tree: xml.etree.ElementTree.ElementTree
:param xml_declaration: Whether to emit the XML declaration tag or not
:type xml_declaration: bool
:return: the serialized XML (as an Unicode string)
:rtype: str
|
https://github.com/city-of-helsinki/wagtail-svgmap/blob/a9883570029a23b555fd0ce2b8bdfc423c3032ed/wagtail_svgmap/svg.py#L168-L182
|
import re
from six import BytesIO
try:
from xml.etree import cElementTree as ET
except ImportError:
from xml.etree import ElementTree as ET
SVG_NAMESPACE = 'http://www.w3.org/2000/svg'
XLINK_NAMESPACE = 'http://www.w3.org/1999/xlink'
ET.register_namespace('svg', SVG_NAMESPACE)
ET.register_namespace('xlink', XLINK_NAMESPACE)
VISIBLE_SVG_TAGS = frozenset({
'a',
'circle',
'ellipse',
'g',
'image',
'line',
'path',
'polygon',
'polyline',
'rect',
'switch',
'text',
'textPath',
'tref',
'tspan',
'use',
})
def find_ids(svg_stream, in_elements=VISIBLE_SVG_TAGS):
for event, elem in ET.iterparse(svg_stream, events=('end',)):
tag_without_ns = elem.tag.split('}')[-1]
if in_elements and tag_without_ns not in in_elements:
continue
id = elem.get('id')
if id:
yield id
class Link(object):
def __init__(self, url, target=None):
self.url = str(url)
self.target = target
def get_element(self):
return ET.Element(
'{%s}a' % SVG_NAMESPACE,
dict(kv for kv in self.get_element_attribs().items() if kv[0] and kv[1])
)
def get_element_attribs(self):
return {
('{%s}href' % XLINK_NAMESPACE): self.url,
('{%s}target' % SVG_NAMESPACE): self.target,
}
def wrap_elements_in_links(tree, id_to_url_map, in_elements=VISIBLE_SVG_TAGS):
if isinstance(tree, str) or hasattr(tree, 'read'):
tree = ET.parse(tree)
parent_map = {child: parent for parent in tree.iter() for child in parent}
element_to_url = {}
for elem in parent_map.keys():
tag_without_ns = elem.tag.split('}')[-1]
if in_elements and tag_without_ns not in in_elements:
continue
url = id_to_url_map.get(elem.get('id'))
if not url:
continue
if isinstance(url, str):
url = Link(url)
element_to_url[elem] = url
for elem, url in element_to_url.items():
a_element = url.get_element()
parent = parent_map[elem]
for index, test_element in enumerate(parent):
if elem is test_element:
break
else:
raise ValueError("tree broken")
parent.remove(elem)
a_element.append(elem)
elem.tail = (elem.tail or '').strip()
parent.insert(index, a_element)
parent_map[elem] = a_element
return tree
def fixup_unqualified_attributes(tree, namespace):
for elem in tree.iter():
for key in [key for key in elem.keys() if key[0] != '{']:
elem.attrib['{%s}%s' % (namespace, key)] = elem.attrib.pop(key)
return tree
|
BSD 3-Clause New or Revised License
|
cuthbertlab/music21-tools
|
trecento/quodJactatur.py
|
findRetrogradeVoices
|
python
|
def findRetrogradeVoices(show=True):
for transpose in [1, 2, -2, 3, -3, 4, -4]:
for invert in [False, True]:
qj1 = getQJ()
qj2 = getQJ()
if transpose != 1:
transposeStreamDiatonic(qj2, transpose)
if invert is True:
qj2.invertDiatonic(qj2.flat.notesAndRests[0], inPlace=True)
qj2 = reverse(qj2, makeNotation = False)
qj = stream.Score()
qj.insert(0, qj2.flat)
qj.insert(0, qj1.flat)
qjChords = qj.chordify()
consScore = 0
totIntervals = 0
for n in qjChords.flat.notesAndRests:
strength = getStrengthForNote(n)
if n.isRest is True or len(n.pitches) < 2:
thisScore = strength
else:
int1 = interval.Interval(n.pitches[0], n.pitches[1])
if int1.generic.simpleUndirected in [1, 3, 4, 5]:
thisScore = strength
elif int1.generic.simpleUndirected == 6:
thisScore = strength / 2.0
else:
thisScore = -2 * strength
if n.duration.quarterLength < 2:
thisScore = thisScore * n.duration.quarterLength
else:
thisScore = thisScore * 8
consScore += thisScore
totIntervals += 1
n.lyric = str(thisScore)
finalScore = int(100*(consScore + 0.0)/totIntervals)
qj.insert(0, qjChords.flat)
qj2.flat.notesAndRests[0].addLyric('Trans: ' + str(transpose))
qj2.flat.notesAndRests[0].addLyric('Invert: ' + str(invert))
qj1.flat.notesAndRests[0].addLyric('Score: ' + str(finalScore))
if show:
qj.show()
else:
if invert:
invStr = "Invert"
else:
invStr = " "
print(str(transpose) + " " + invStr + " " + str(finalScore))
|
the structure of the piece strongly suggests a retrograde solution
(e.g., there is a cadence in m5 and five measures from the end and one
at the exact center). This method tries all transpositions of one
voice vs. the other and gives positive points to intervals of 3, 4,
5, 6, and 8 (incl. tritones, since they might be fixed w/ other voices;
4th is included since there could be a 3rd or 5th below it).
|
https://github.com/cuthbertlab/music21-tools/blob/78cf5404c1bf5e4ab8b4d5b7b6c76e253d48c8ee/trecento/quodJactatur.py#L205-L264
|
import copy
import unittest
from music21 import clef
from music21 import corpus
from music21 import exceptions21
from music21 import instrument
from music21 import interval
from music21 import key
from music21 import layout
from music21 import metadata
from music21 import meter
from music21 import note
from music21 import stream
def reverse(self, *,
inPlace=False,
classesToMove=(key.KeySignature, meter.TimeSignature, clef.Clef,
metadata.Metadata, instrument.Instrument, layout.SystemLayout),
makeNotation=False):
highestTime = self.highestTime
if inPlace is True:
returnObj = self
raise Exception("Whoops haven't written inPlace=True yet for reverse")
else:
returnObj = stream.Part()
sf = self.flat
for myEl in sf:
if isinstance(myEl, classesToMove):
continue
if myEl.duration is not None:
releaseTime = myEl.getOffsetBySite(sf) + myEl.duration.quarterLength
else:
releaseTime = myEl.getOffsetBySite(sf)
newOffset = highestTime - releaseTime
returnObj.insert(newOffset, myEl)
returnObj.insert(0, sf.getElementsByClass(layout.SystemLayout)[0])
returnObj.insert(0, sf.getElementsByClass(clef.Clef)[0])
returnObj.insert(0, sf.getElementsByClass(key.KeySignature)[0])
returnObj.insert(0, sf.getElementsByClass(meter.TimeSignature)[0])
returnObj.insert(0, sf.getElementsByClass(instrument.Instrument)[0])
for thisP in returnObj.flat.pitches:
if thisP.accidental is not None:
thisP.accidental.displayStatus = None
if makeNotation is True:
return returnObj.makeNotation()
else:
return returnObj
def prependBlankMeasures(myStream, measuresToAppend=1, *, inPlace=False):
measureDuration = myStream.flat.getElementsByClass(meter.TimeSignature
)[0].barDuration.quarterLength
if inPlace:
ms = myStream
else:
ms = copy.deepcopy(myStream)
for dummy in range(measuresToAppend):
qjBlankM = stream.Measure()
hr = note.Rest()
hr.duration.quarterLength = measureDuration
qjBlankM.append(hr)
ms.insertAndShift(0, qjBlankM)
return ms
def transposeStreamDiatonic(myStream, diatonicInterval=1):
if diatonicInterval == 1:
return myStream
for n in myStream.flat.notesAndRests:
if n.isRest is False:
if diatonicInterval >= 1:
n.pitch.diatonicNoteNum += diatonicInterval - 1
else:
n.pitch.diatonicNoteNum += diatonicInterval + 1
if n.pitch.step == 'B':
n.pitch.name = 'B-'
else:
n.pitch.name = n.pitch.step
n.pitch.accidental = None
return myStream
PERFCONS = ['P1', 'P5', 'P8']
IMPERFCONS = ['m3', 'M3', 'm6', 'M6']
cachedParts = {}
def getQJ():
qj = corpus.parse("ciconia/quod_jactatur")
qjPart = qj.getElementsByClass(stream.Part)[0]
qjPart.transpose("P-8", inPlace=True)
qjPart.replace(qjPart.flat.getElementsByClass(clef.Clef)[0], clef.BassClef())
cachedParts['1-0-False-False'] = copy.deepcopy(qjPart)
return qjPart
|
BSD 3-Clause New or Revised License
|
online-ml/river
|
river/neighbors/sam_knn.py
|
STMSizer.get_new_stm_size
|
python
|
def get_new_stm_size(
aprox_adaption_strategy,
labels,
n_neighbours,
get_labels_fct,
prediction_histories,
distances_stm,
min_stm_size,
):
if aprox_adaption_strategy:
return STMSizer._get_max_acc_approx_window_size(
labels,
n_neighbours,
get_labels_fct,
prediction_histories,
distances_stm,
min_size=min_stm_size,
)
elif aprox_adaption_strategy is not None and not aprox_adaption_strategy:
return STMSizer._get_max_acc_window_size(
labels,
n_neighbours,
get_labels_fct,
prediction_histories,
distances_stm,
min_size=min_stm_size,
)
elif aprox_adaption_strategy is None:
return len(labels), prediction_histories
else:
raise Exception(f"Invalid adaption_strategy: {aprox_adaption_strategy}")
|
Returns the new STM size.
|
https://github.com/online-ml/river/blob/842f7c5be5574e62a3aab0b46d996eb5f1d73beb/river/neighbors/sam_knn.py#L576-L610
|
import copy as cp
import logging
from collections import deque
import numpy as np
from river.base import Classifier
from river.utils import dict2numpy
from . import libNearestNeighbor
class SAMKNNClassifier(Classifier):
def __init__(
self,
n_neighbors: int = 5,
distance_weighting=True,
window_size: int = 5000,
ltm_size: float = 0.4,
min_stm_size: int = 50,
stm_aprox_adaption=True,
use_ltm=True,
):
super().__init__()
self.n_neighbors = n_neighbors
self.distance_weighting = distance_weighting
self.window_size = window_size
self.ltm_size = ltm_size
self.min_stm_size = min_stm_size
self.use_ltm = use_ltm
self._stm_samples = None
self._stm_labels = np.empty(shape=0, dtype=np.int32)
self._ltm_samples = None
self._ltm_labels = np.empty(shape=0, dtype=np.int32)
self.max_ltm_size = self.ltm_size * self.window_size
self.max_stm_size = self.window_size - self.max_ltm_size
self.min_stm_size = self.min_stm_size
self.stm_aprox_adaption = stm_aprox_adaption
self.stm_distances = np.zeros(shape=(window_size + 1, window_size + 1))
if self.distance_weighting:
self.get_labels_fct = SAMKNNClassifier._get_distance_weighted_label
else:
self.get_labels_fct = SAMKNNClassifier._get_maj_label
if self.use_ltm:
self.predict_fct = self._predict_by_all_memories
self.size_check_fct = self._size_check_stmltm
else:
self.predict_fct = self._predict_by_stm
self.size_check_fct = self._size_check_fade_out
self.interleaved_pred_histories = {}
self.ltm_pred_history = deque([])
self.stm_pred_history = deque([])
self.cmp_pred_history = deque([])
self.train_step_count = 0
self.stm_sizes = []
self.ltm_sizes = []
self.n_stm_correct = 0
self.n_ltm_correct = 0
self.n_cm_correct = 0
self.n_possible_correct_predictions = 0
self.n_correct_predictions = 0
self.classifier_choice = []
self.pred_history = []
def _unit_test_skips(self):
return {"check_emerging_features", "check_disappearing_features"}
@staticmethod
def _get_distances(sample, samples):
return libNearestNeighbor.get1ToNDistances(sample, samples)
def _cluster_down(self, samples, labels):
from sklearn.cluster import KMeans
logging.debug("cluster Down %d" % self.train_step_count)
uniqueLabels = np.unique(labels)
newSamples = np.empty(shape=(0, samples.shape[1]))
newLabels = np.empty(shape=0, dtype=np.int32)
for label in uniqueLabels:
tmpSamples = samples[labels == label]
newLength = int(max(tmpSamples.shape[0] / 2, 1))
clustering = KMeans(n_clusters=newLength, n_init=1, random_state=0)
clustering.fit(tmpSamples)
newSamples = np.vstack([newSamples, clustering.cluster_centers_])
newLabels = np.append(
newLabels, label * np.ones(shape=newLength, dtype=np.int32)
)
return newSamples, newLabels
def _size_check_fade_out(self):
STMShortened = False
if len(self._stm_labels) > self.max_stm_size + self.max_ltm_size:
STMShortened = True
self._stm_samples = np.delete(self._stm_samples, 0, 0)
self._stm_labels = np.delete(self._stm_labels, 0, 0)
self.stm_distances[
: len(self._stm_labels), : len(self._stm_labels)
] = self.stm_distances[
1 : len(self._stm_labels) + 1, 1 : len(self._stm_labels) + 1
]
if self.stm_aprox_adaption:
key_set = list(self.interleaved_pred_histories.keys())
if 0 in key_set:
self.interleaved_pred_histories[0].pop(0)
updated_histories = cp.deepcopy(self.interleaved_pred_histories)
for key in self.interleaved_pred_histories.keys():
if key > 0:
if key == 1:
updated_histories.pop(0, None)
tmp = updated_histories[key]
updated_histories.pop(key, None)
updated_histories[key - 1] = tmp
self.interleaved_pred_histories = updated_histories
else:
self.interleaved_pred_histories = {}
return STMShortened
def _size_check_stmltm(self):
stm_shortened = False
if (
len(self._stm_labels) + len(self._ltm_labels)
> self.max_stm_size + self.max_ltm_size
):
if len(self._ltm_labels) > self.max_ltm_size:
self._ltm_samples, self._ltm_labels = self._cluster_down(
self._ltm_samples, self._ltm_labels
)
else:
if (
len(self._stm_labels) + len(self._ltm_labels)
> self.max_stm_size + self.max_ltm_size
):
stm_shortened = True
n_shifts = int(self.max_ltm_size - len(self._ltm_labels) + 1)
shift_range = range(n_shifts)
self._ltm_samples = np.vstack(
[self._ltm_samples, self._stm_samples[:n_shifts, :]]
)
self._ltm_labels = np.append(
self._ltm_labels, self._stm_labels[:n_shifts]
)
self._ltm_samples, self._ltm_labels = self._cluster_down(
self._ltm_samples, self._ltm_labels
)
self._stm_samples = np.delete(self._stm_samples, shift_range, 0)
self._stm_labels = np.delete(self._stm_labels, shift_range, 0)
self.stm_distances[
: len(self._stm_labels), : len(self._stm_labels)
] = self.stm_distances[
n_shifts : len(self._stm_labels) + n_shifts,
n_shifts : len(self._stm_labels) + n_shifts,
]
for _ in shift_range:
self.ltm_pred_history.popleft()
self.stm_pred_history.popleft()
self.cmp_pred_history.popleft()
self.interleaved_pred_histories = {}
return stm_shortened
def _clean_samples(self, samples_cl, labels_cl, only_last=False):
if len(self._stm_labels) > self.n_neighbors and samples_cl.shape[0] > 0:
if only_last:
loop_range = [len(self._stm_labels) - 1]
else:
loop_range = range(len(self._stm_labels))
for i in loop_range:
if len(labels_cl) == 0:
break
samples_shortened = np.delete(self._stm_samples, i, 0)
labels_shortened = np.delete(self._stm_labels, i, 0)
distances_stm = SAMKNNClassifier._get_distances(
self._stm_samples[i, :], samples_shortened
)
nn_indices_stm = libNearestNeighbor.nArgMin(
self.n_neighbors, distances_stm
)[0]
distances_ltm = SAMKNNClassifier._get_distances(
self._stm_samples[i, :], samples_cl
)
nn_indices_ltm = libNearestNeighbor.nArgMin(
min(len(distances_ltm), self.n_neighbors), distances_ltm
)[0]
correct_indices_stm = nn_indices_stm[
labels_shortened[nn_indices_stm] == self._stm_labels[i]
]
if len(correct_indices_stm) > 0:
dist_threshold = np.max(distances_stm[correct_indices_stm])
wrong_indices_ltm = nn_indices_ltm[
labels_cl[nn_indices_ltm] != self._stm_labels[i]
]
del_indices = np.where(
distances_ltm[wrong_indices_ltm] <= dist_threshold
)[0]
samples_cl = np.delete(
samples_cl, wrong_indices_ltm[del_indices], 0
)
labels_cl = np.delete(labels_cl, wrong_indices_ltm[del_indices], 0)
return samples_cl, labels_cl
def _learn_one(self, x, y):
distances_stm = SAMKNNClassifier._get_distances(x, self._stm_samples)
if not self.use_ltm:
self._learn_one_by_stm(x, y, distances_stm)
else:
self._learn_one_by_all_memories(x, y, distances_stm)
self.train_step_count += 1
self._stm_samples = np.vstack([self._stm_samples, x])
self._stm_labels = np.append(self._stm_labels, y)
stm_shortened = self.size_check_fct()
self._ltm_samples, self._ltm_labels = self._clean_samples(
self._ltm_samples, self._ltm_labels, only_last=True
)
if self.stm_aprox_adaption is not None:
if stm_shortened:
distances_stm = SAMKNNClassifier._get_distances(
x, self._stm_samples[:-1, :]
)
self.stm_distances[
len(self._stm_labels) - 1, : len(self._stm_labels) - 1
] = distances_stm
old_window_size = len(self._stm_labels)
(
new_window_size,
self.interleaved_pred_histories,
) = STMSizer.get_new_stm_size(
self.stm_aprox_adaption,
self._stm_labels,
self.n_neighbors,
self.get_labels_fct,
self.interleaved_pred_histories,
self.stm_distances,
self.min_stm_size,
)
if new_window_size < old_window_size:
del_range = range(old_window_size - new_window_size)
old_stm_samples = self._stm_samples[del_range, :]
old_stm_labels = self._stm_labels[del_range]
self._stm_samples = np.delete(self._stm_samples, del_range, 0)
self._stm_labels = np.delete(self._stm_labels, del_range, 0)
self.stm_distances[
: len(self._stm_labels), : len(self._stm_labels)
] = self.stm_distances[
(old_window_size - new_window_size) : (
(old_window_size - new_window_size) + len(self._stm_labels)
),
(old_window_size - new_window_size) : (
(old_window_size - new_window_size) + len(self._stm_labels)
),
]
if self.use_ltm:
for _ in del_range:
self.stm_pred_history.popleft()
self.ltm_pred_history.popleft()
self.cmp_pred_history.popleft()
old_stm_samples, old_stm_labels = self._clean_samples(
old_stm_samples, old_stm_labels
)
self._ltm_samples = np.vstack([self._ltm_samples, old_stm_samples])
self._ltm_labels = np.append(self._ltm_labels, old_stm_labels)
self.size_check_fct()
self.stm_sizes.append(len(self._stm_labels))
self.ltm_sizes.append(len(self._ltm_labels))
def _learn_one_by_all_memories(self, sample, label, distances_stm):
predicted_label_ltm = 0
predicted_label_stm = 0
predicted_label_both = 0
classifier_choice = 0
if len(self._stm_labels) == 0:
predicted_label = predicted_label_stm
else:
if len(self._stm_labels) < self.n_neighbors:
predicted_label_stm = self.get_labels_fct(
distances_stm, self._stm_labels, len(self._stm_labels)
)[0]
predicted_label = predicted_label_stm
else:
distances_ltm = SAMKNNClassifier._get_distances(
sample, self._ltm_samples
)
predicted_label_stm = self.get_labels_fct(
distances_stm, self._stm_labels, self.n_neighbors
)[0]
predicted_label_both = self.get_labels_fct(
np.append(distances_stm, distances_ltm),
np.append(self._stm_labels, self._ltm_labels),
self.n_neighbors,
)[0]
if len(self._ltm_labels) >= self.n_neighbors:
predicted_label_ltm = self.get_labels_fct(
distances_ltm, self._ltm_labels, self.n_neighbors
)[0]
correct_ltm = np.sum(self.ltm_pred_history)
correct_stm = np.sum(self.stm_pred_history)
correct_both = np.sum(self.cmp_pred_history)
labels = [
predicted_label_stm,
predicted_label_ltm,
predicted_label_both,
]
classifier_choice = np.argmax(
[correct_stm, correct_ltm, correct_both]
)
predicted_label = labels[classifier_choice]
else:
predicted_label = predicted_label_stm
self.classifier_choice.append(classifier_choice)
self.cmp_pred_history.append(predicted_label_both == label)
self.n_cm_correct += predicted_label_both == label
self.stm_pred_history.append(predicted_label_stm == label)
self.n_stm_correct += predicted_label_stm == label
self.ltm_pred_history.append(predicted_label_ltm == label)
self.n_ltm_correct += predicted_label_ltm == label
self.n_possible_correct_predictions += label in [
predicted_label_stm,
predicted_label_both,
predicted_label_ltm,
]
self.n_correct_predictions += predicted_label == label
return predicted_label
def _predict_by_all_memories(self, sample, label, distances_stm):
predicted_label_stm = 0
if len(self._stm_labels) == 0:
predicted_label = predicted_label_stm
else:
if len(self._stm_labels) < self.n_neighbors:
predicted_label_stm = self.get_labels_fct(
distances_stm, self._stm_labels, len(self._stm_labels)
)[0]
predicted_label = predicted_label_stm
else:
distances_ltm = SAMKNNClassifier._get_distances(
sample, self._ltm_samples
)
predicted_label_stm = self.get_labels_fct(
distances_stm, self._stm_labels, self.n_neighbors
)[0]
distances_new = cp.deepcopy(distances_stm)
stm_labels_new = cp.deepcopy(self._stm_labels)
predicted_label_both = self.get_labels_fct(
np.append(distances_new, distances_ltm),
np.append(stm_labels_new, self._ltm_labels),
self.n_neighbors,
)[0]
if len(self._ltm_labels) >= self.n_neighbors:
predicted_label_ltm = self.get_labels_fct(
distances_ltm, self._ltm_labels, self.n_neighbors
)[0]
correct_ltm = np.sum(self.ltm_pred_history)
correct_stm = np.sum(self.stm_pred_history)
correct_both = np.sum(self.cmp_pred_history)
labels = [
predicted_label_stm,
predicted_label_ltm,
predicted_label_both,
]
classifier_choice = np.argmax(
[correct_stm, correct_ltm, correct_both]
)
predicted_label = labels[classifier_choice]
else:
predicted_label = predicted_label_stm
return predicted_label
def _learn_one_by_stm(self, sample, label, distances_stm):
pass
def _predict_by_stm(self, sample, label, distances_stm):
predicted_label = 0
curr_len = len(self._stm_labels)
if curr_len > 0:
predicted_label = self.get_labels_fct(
distances_stm, self._stm_labels, min(self.n_neighbors, curr_len)
)[0]
return predicted_label
def learn_one(self, x, y) -> "Classifier":
x_array = dict2numpy(x)
c = len(x_array)
if self._stm_samples is None:
self._stm_samples = np.empty(shape=(0, c))
self._ltm_samples = np.empty(shape=(0, c))
self._learn_one(x_array, y)
return self
def predict_one(self, x: dict):
x_array = dict2numpy(x)
c = len(x_array)
if self._stm_samples is None:
self._stm_samples = np.empty(shape=(0, c))
self._ltm_samples = np.empty(shape=(0, c))
distances_stm = SAMKNNClassifier._get_distances(x_array, self._stm_samples)
return self.predict_fct(x_array, None, distances_stm)
def predict_proba_one(self, x):
raise NotImplementedError
@staticmethod
def _get_maj_label(distances, labels, n_neighbors):
nn_indices = libNearestNeighbor.nArgMin(n_neighbors, distances)
if not isinstance(labels, type(np.array([]))):
labels = np.asarray(labels, dtype=np.int8)
else:
labels = np.int8(labels)
pred_labels = libNearestNeighbor.mostCommon(labels[nn_indices])
return pred_labels
@staticmethod
def _get_distance_weighted_label(distances, labels, n_neighbors):
nn_indices = libNearestNeighbor.nArgMin(n_neighbors, distances)
sqrtDistances = np.sqrt(distances[nn_indices])
if not isinstance(labels, type(np.array([]))):
labels = np.asarray(labels, dtype=np.int8)
else:
labels = np.int8(labels)
predLabels = libNearestNeighbor.getLinearWeightedLabels(
labels[nn_indices], sqrtDistances
)
return predLabels
@property
def STMSamples(self):
return self._stm_samples
@property
def STMLabels(self):
return self._stm_labels
@property
def LTMSamples(self):
return self._ltm_samples
@property
def LTMLabels(self):
return self._ltm_labels
class STMSizer:
@staticmethod
|
BSD 3-Clause New or Revised License
|
jnewland/ha-config
|
custom_components/senseme/fan.py
|
HASensemeFan.__init__
|
python
|
def __init__(self, device: SensemeFan) -> None:
super().__init__(device, device.name)
|
Initialize the entity.
|
https://github.com/jnewland/ha-config/blob/aeb36a624acb1119b09c06d8ac70e4ec43b9f7fa/custom_components/senseme/fan.py#L53-L55
|
import math
from typing import Any, List, Optional
import voluptuous as vol
from aiosenseme import SensemeFan
from homeassistant.components.fan import (
DIRECTION_FORWARD,
DIRECTION_REVERSE,
SUPPORT_DIRECTION,
SUPPORT_SET_SPEED,
FanEntity,
)
from homeassistant.const import CONF_DEVICE
from homeassistant.util.percentage import (
percentage_to_ranged_value,
ranged_value_to_percentage,
)
from homeassistant.util.temperature import convert, TEMP_CELSIUS
from homeassistant.helpers import config_validation as cv, entity_platform, service
from . import SensemeEntity
from .const import (
DOMAIN,
PRESET_MODE_WHOOSH,
SENSEME_DIRECTION_FORWARD,
SENSEME_DIRECTION_REVERSE,
)
async def async_setup_entry(hass, entry, async_add_entities):
platform = entity_platform.current_platform.get()
device = hass.data[DOMAIN][entry.entry_id][CONF_DEVICE]
if device.is_fan:
async_add_entities([HASensemeFan(device)])
platform.async_register_entity_service(
"smart_mode",
{
vol.Required("auto_comfort"): cv.string,
vol.Optional("cool_temp"): cv.positive_float,
vol.Optional("cool_min_speed"): cv.positive_int,
vol.Optional("cool_max_speed"): cv.positive_int,
},
"async_set_smart_mode",
)
class HASensemeFan(SensemeEntity, FanEntity):
|
MIT License
|
wildmeorg/wildbook-ia
|
wbia/dbio/export_subset.py
|
export_images
|
python
|
def export_images(ibs, gid_list, new_dbpath=None):
logger.info('Exporting image gid_list=%r' % (gid_list,))
if new_dbpath is None:
new_dbpath = make_new_dbpath(ibs, 'gid', gid_list)
aid_list = ut.unique_unordered(ut.flatten(ibs.get_image_aids(gid_list)))
nid_list = ut.unique_unordered(ibs.get_annot_nids(aid_list))
return export_data(ibs, gid_list, aid_list, nid_list, new_dbpath=new_dbpath)
|
exports a subset of images and other required info
TODO:
PZ_Master1 needs to backproject information back on to NNP_Master3 and PZ_Master0
Args:
ibs (IBEISController): wbia controller object
gid_list (list): list of annotation rowids
new_dbpath (None): (default = None)
Returns:
str: new_dbpath
|
https://github.com/wildmeorg/wildbook-ia/blob/017057cfd3a2a7ea22f575842c9473e121c66ea4/wbia/dbio/export_subset.py#L288-L310
|
import logging
import utool as ut
from wbia.other import ibsfuncs
from wbia import constants as const
(print, rrr, profile) = ut.inject2(__name__)
logger = logging.getLogger('wbia')
def check_merge(ibs_src, ibs_dst):
aid_list1 = ibs_src.get_valid_aids()
gid_list1 = ibs_src.get_annot_gids(aid_list1)
gname_list1 = ibs_src.get_image_uris(gid_list1)
image_uuid_list1 = ibs_src.get_image_uuids(gid_list1)
gid_list2 = ibs_dst.get_image_gids_from_uuid(image_uuid_list1)
gname_list2 = ibs_dst.get_image_uris(gid_list2)
ut.assert_all_not_None(gid_list1, 'gid_list1')
ut.assert_all_not_None(gid_list2, 'gid_list2')
ut.assert_lists_eq(gname_list1, gname_list2, 'faild gname')
image_uuid_list2 = ibs_dst.get_image_uuids(gid_list2)
ut.assert_lists_eq(image_uuid_list1, image_uuid_list2, 'failed uuid')
aids_list1 = ibs_src.get_image_aids(gid_list1)
aids_list2 = ibs_dst.get_image_aids(gid_list2)
avuuids_list1 = ibs_src.unflat_map(ibs_src.get_annot_visual_uuids, aids_list1)
avuuids_list2 = ibs_dst.unflat_map(ibs_dst.get_annot_visual_uuids, aids_list2)
issubset_list = [
set(avuuids1).issubset(set(avuuids2))
for avuuids1, avuuids2 in zip(avuuids_list1, avuuids_list2)
]
assert all(issubset_list), 'ibs_src must be a subset of ibs_dst: issubset_list=%r' % (
issubset_list,
)
logger.info('Merge seems ok...')
def merge_databases(ibs_src, ibs_dst, rowid_subsets=None, localize_images=True):
logger.info(
'BEGIN MERGE OF %r into %r' % (ibs_src.get_dbname(), ibs_dst.get_dbname())
)
ibs_dst.update_annot_visual_uuids(ibs_dst.get_valid_aids())
ibs_src.update_annot_visual_uuids(ibs_src.get_valid_aids())
ibs_src.ensure_contributor_rowids()
ibs_dst.ensure_contributor_rowids()
ibs_src.fix_invalid_annotmatches()
ibs_dst.fix_invalid_annotmatches()
if rowid_subsets is not None and const.IMAGE_TABLE in rowid_subsets:
src_gid_list = rowid_subsets[const.IMAGE_TABLE]
else:
src_gid_list = ibs_src.get_valid_gids()
imgpath_list = ibs_src.get_image_paths(src_gid_list)
dst_imgdir = ibs_dst.get_imgdir()
if localize_images:
ut.copy_files_to(imgpath_list, dst_imgdir, overwrite=False, verbose=True)
ignore_tables = [
'lblannot',
'lblimage',
'image_lblimage_relationship',
'annotation_lblannot_relationship',
'keys',
]
error_tables = [
'imageset_image_relationship',
'annotgroup_annotation_relationship',
'annotmatch',
]
ignore_tables += error_tables
ibs_dst.db.merge_databases_new(
ibs_src.db, ignore_tables=ignore_tables, rowid_subsets=rowid_subsets
)
blacklist_set = set(
[
'Reviewed Images',
'Exemplars',
'*Exemplars',
'All Images',
'*All Images',
'*Undetected Images',
'*Ungrouped Images',
]
)
imageset_dict = {}
src_guuids = ibs_src.get_image_uuids(src_gid_list)
src_texts_list = ibs_src.get_image_imagesettext(src_gid_list)
for src_guuid, src_text_list in zip(src_guuids, src_texts_list):
current_set = imageset_dict.get(src_guuid, set([]))
src_text_set = set(src_text_list) - blacklist_set
src_text_set_ = set([])
for src_text in src_text_set:
src_text_ = '%s / %s' % (
ibs_src.dbname,
src_text,
)
src_text_set_.add(src_text_)
src_text_set = src_text_set_ | current_set
imageset_dict[src_guuid] = src_text_set
dst_guuids = list(imageset_dict.keys())
dst_gid_list = ibs_dst.get_image_gids_from_uuid(dst_guuids)
assert None not in dst_gid_list
dst_text_set_list = [list(imageset_dict[dst_guuid]) for dst_guuid in dst_guuids]
length_list = map(len, dst_text_set_list)
zipped = zip(dst_gid_list, length_list)
dst_gid_list = ut.flatten([[dst_gid] * length for dst_gid, length in zipped])
dst_text_list = ut.flatten(dst_text_set_list)
assert len(dst_gid_list) == len(dst_text_list)
ibs_dst.set_image_imagesettext(dst_gid_list, dst_text_list)
src_image_uuids = ibs_src.get_image_uuids(src_gid_list)
dst_gid_list = ibs_dst.get_image_gids_from_uuid(src_image_uuids)
assert None not in dst_gid_list
timestamp = ut.timestamp(format_='printable').split()[1]
imageset_text = 'Import from %s on %s' % (
ibs_src.dbname,
timestamp,
)
ibs_dst.set_image_imagesettext(dst_gid_list, [imageset_text] * len(dst_gid_list))
logger.info(
'FINISHED MERGE %r into %r' % (ibs_src.get_dbname(), ibs_dst.get_dbname())
)
def make_new_dbpath(ibs, id_label, id_list):
import wbia
tag_hash = ut.hashstr_arr(id_list, hashlen=8, alphabet=ut.ALPHABET_27)
base_fmtstr = (
ibs.get_dbname()
+ '_'
+ id_label
+ 's='
+ tag_hash.replace('(', '_').replace(')', '_')
+ '_%d'
)
dpath = wbia.get_workdir()
new_dbpath = ut.non_existing_path(base_fmtstr, dpath)
return new_dbpath
def export_names(ibs, nid_list, new_dbpath=None):
logger.info('Exporting name nid_list=%r' % (nid_list,))
if new_dbpath is None:
new_dbpath = make_new_dbpath(ibs, 'nid', nid_list)
aid_list = ut.flatten(ibs.get_name_aids(nid_list))
gid_list = ut.unique_unordered(ibs.get_annot_gids(aid_list))
return export_data(ibs, gid_list, aid_list, nid_list, new_dbpath=new_dbpath)
def find_gid_list(ibs, min_count=500, ensure_annots=False):
import random
gid_list = ibs.get_valid_gids()
reviewed_list = ibs.get_image_reviewed(gid_list)
if ensure_annots:
aids_list = ibs.get_image_aids(gid_list)
reviewed_list = [
0 if len(aids) == 0 else reviewed
for aids, reviewed in zip(aids_list, reviewed_list)
]
gid_list = [gid for gid, reviewed in zip(gid_list, reviewed_list) if reviewed == 1]
if len(gid_list) < min_count:
return None
while len(gid_list) > min_count:
index = random.randint(0, len(gid_list) - 1)
del gid_list[index]
return gid_list
def __export_reviewed_subset(ibs, min_count=500, ensure_annots=False):
from os.path import join
gid_list = find_gid_list(ibs, min_count=min_count, ensure_annots=ensure_annots)
if gid_list is None:
return None
new_dbpath = '/' + join('Datasets', 'BACKGROUND', ibs.dbname)
logger.info('Exporting to %r with %r images' % (new_dbpath, len(gid_list)))
return export_images(ibs, gid_list, new_dbpath=new_dbpath)
|
Apache License 2.0
|
lorinkoz/django-pgschemas
|
django_pgschemas/contrib/channels3/router.py
|
TenantProtocolRouter.get_protocol_type_router
|
python
|
def get_protocol_type_router(self, tenant_prefix, ws_urlconf):
return TenantAwareProtocolTypeRouter(
{"websocket": TenantAuthMiddlewareStack(URLRouter(ws_urlconf))}, tenant_prefix
)
|
Subclasses can override this to include more protocols.
|
https://github.com/lorinkoz/django-pgschemas/blob/445b91cb313223aa908b72d466ce4cbd24418d09/django_pgschemas/contrib/channels3/router.py#L73-L79
|
from channels.db import database_sync_to_async
from channels.routing import ProtocolTypeRouter, URLRouter
from django.conf import settings
from django.core.exceptions import ImproperlyConfigured
from django.utils.encoding import force_text
from django.utils.module_loading import import_string
from ...schema import SchemaDescriptor
from ...utils import get_domain_model, remove_www
from .auth import TenantAuthMiddlewareStack
class TenantAwareProtocolTypeRouter(ProtocolTypeRouter):
def __init__(self, application_mapping, tenant_prefix):
self.tenant_prefix = tenant_prefix
super().__init__(application_mapping)
async def __call__(self, scope, receive, send):
if scope["type"] != "http":
scope["path"] = scope["path"][len(self.tenant_prefix) + 1 :]
return await super().__call__(scope, receive, send)
class TenantProtocolRouter:
def __init__(self):
self.root_ws_urlconf = settings.TENANTS["default"].get("WS_URLCONF")
if self.root_ws_urlconf is None:
raise ImproperlyConfigured(
"TENANTS['default'] must contain a 'WS_URLCONF' key in order to use TenantProtocolRouter."
)
@database_sync_to_async
def get_tenant_scope(self, scope):
hostname = force_text(dict(scope["headers"]).get(b"host", b""))
hostname = remove_www(hostname.split(":")[0])
tenant = None
ws_urlconf = self.root_ws_urlconf
for schema, data in settings.TENANTS.items():
if schema in ["public", "default"]:
continue
if hostname in data["DOMAINS"]:
tenant = SchemaDescriptor.create(schema_name=schema, domain_url=hostname)
if "WS_URLCONF" in data:
ws_urlconf = data["WS_URLCONF"]
return tenant, "", import_string(ws_urlconf + ".urlpatterns")
else:
DomainModel = get_domain_model()
prefix = scope["path"].split("/")[1]
try:
domain = DomainModel.objects.select_related("tenant").get(domain=hostname, folder=prefix)
except DomainModel.DoesNotExist:
try:
domain = DomainModel.objects.select_related("tenant").get(domain=hostname, folder="")
except DomainModel.DoesNotExist:
return None, "", []
tenant = domain.tenant
tenant.domain_url = hostname
ws_urlconf = settings.TENANTS["default"]["WS_URLCONF"]
return tenant, prefix if prefix == domain.folder else "", import_string(ws_urlconf + ".urlpatterns")
|
MIT License
|
tensorflow/tensor2tensor
|
tensor2tensor/data_generators/generator_utils.py
|
SequenceDatasetPacker._concurrent_pack
|
python
|
def _concurrent_pack(self, dataset, window_size=None, cycle_length=None,
keys=None):
if window_size is None:
window_size = int(self._packed_length / 8 * self._queue_size * 10)
if cycle_length is None:
cycle_length = max([int(multiprocessing.cpu_count() / 3), 1])
return self._pack(dataset, window_size=window_size,
cycle_length=cycle_length, keys=keys)
|
Selects sensible default parallelism parameters based for a task.
|
https://github.com/tensorflow/tensor2tensor/blob/c22a226704e5887862bf9edd9f269892c9016ad4/tensor2tensor/data_generators/generator_utils.py#L809-L830
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import gzip
import math
import multiprocessing
import os
import random
import stat
import tarfile
import tempfile
import numpy as np
import requests
import six
from six.moves import range
import six.moves.urllib_request as urllib
from tensor2tensor.data_generators import text_encoder
from tensor2tensor.utils import mlperf_log
import tensorflow.compat.v1 as tf
UNSHUFFLED_SUFFIX = "-unshuffled"
def to_example(dictionary):
features = {}
for (k, v) in six.iteritems(dictionary):
if not v:
raise ValueError("Empty generated field: %s" % str((k, v)))
if six.PY3 and isinstance(v, map):
v = list(v)
if (isinstance(v[0], six.integer_types) or
np.issubdtype(type(v[0]), np.integer)):
features[k] = tf.train.Feature(int64_list=tf.train.Int64List(value=v))
elif isinstance(v[0], float):
features[k] = tf.train.Feature(float_list=tf.train.FloatList(value=v))
elif isinstance(v[0], six.string_types):
if not six.PY2:
v = [bytes(x, "utf-8") for x in v]
features[k] = tf.train.Feature(bytes_list=tf.train.BytesList(value=v))
elif isinstance(v[0], bytes):
features[k] = tf.train.Feature(bytes_list=tf.train.BytesList(value=v))
else:
raise ValueError("Value for %s is not a recognized type; v: %s type: %s" %
(k, str(v[0]), str(type(v[0]))))
return tf.train.Example(features=tf.train.Features(feature=features))
def generate_files_distributed(generator,
output_name,
output_dir,
num_shards=1,
max_cases=None,
task_id=0):
assert task_id < num_shards
output_filename = sharded_name(output_name, task_id, num_shards)
output_file = os.path.join(output_dir, output_filename)
tf.logging.info("Writing to file %s", output_file)
writer = tf.python_io.TFRecordWriter(output_file)
counter = 0
for case in generator:
if counter % 100000 == 0:
tf.logging.info("Generating case %d for %s." % (counter, output_name))
counter += 1
if max_cases and counter > max_cases:
break
example = to_example(case)
writer.write(example.SerializeToString())
writer.close()
return output_file
def _data_filenames(output_name, output_dir, num_shards):
return [
os.path.join(output_dir, fname)
for fname in shard_filepath(output_name, num_shards)
]
def train_data_filenames(problem, output_dir, num_shards):
return _data_filenames(problem + "-train", output_dir, num_shards)
def dev_data_filenames(problem, output_dir, num_shards):
return _data_filenames(problem + "-dev", output_dir, num_shards)
def test_data_filenames(problem, output_dir, num_shards):
return _data_filenames(problem + "-test", output_dir, num_shards)
def combined_data_filenames(problem, output_dir, num_training_shards):
return (train_data_filenames(problem, output_dir, num_training_shards) +
dev_data_filenames(problem, output_dir, 1) + test_data_filenames(
problem, output_dir, 1))
def sharded_name(base_name, shard, total_shards):
return "%s-%.5d-of-%.5d" % (base_name, shard, total_shards)
def shard_filepath(fname, num_shards):
return [
sharded_name(fname, shard, num_shards) for shard in range(num_shards)
]
def outputs_exist(filenames):
for out_fname in filenames:
out_fname = out_fname.replace(UNSHUFFLED_SUFFIX, "")
if tf.gfile.Exists(out_fname):
return out_fname
def generate_files(generator, output_filenames,
max_cases=None, cycle_every_n=1):
if outputs_exist(output_filenames):
tf.logging.info("Skipping generator because outputs files exists at {}"
.format(output_filenames))
return
tmp_filenames = [fname + ".incomplete" for fname in output_filenames]
num_shards = len(output_filenames)
if num_shards > 0:
if "-train" in output_filenames[0]:
tag = "train"
elif "-dev" in output_filenames[0]:
tag = "eval"
else:
tag = "other"
writers = [tf.python_io.TFRecordWriter(fname) for fname in tmp_filenames]
counter, shard = 0, 0
for case in generator:
if case is None:
continue
if counter % 100000 == 0:
tf.logging.info("Generating case %d." % counter)
counter += 1
if max_cases and counter > max_cases:
break
example = to_example(case)
writers[shard].write(example.SerializeToString())
if counter % cycle_every_n == 0:
shard = (shard + 1) % num_shards
for writer in writers:
writer.close()
for tmp_name, final_name in zip(tmp_filenames, output_filenames):
tf.gfile.Rename(tmp_name, final_name)
if num_shards > 0:
if tag == "train":
mlperf_log.transformer_print(
key=mlperf_log.PREPROC_NUM_TRAIN_EXAMPLES, value=counter)
elif tag == "eval":
mlperf_log.transformer_print(
key=mlperf_log.PREPROC_NUM_EVAL_EXAMPLES, value=counter)
tf.logging.info("Generated %s Examples", counter)
def download_report_hook(count, block_size, total_size):
percent = int(count * block_size * 100 / total_size)
print("\r%d%%" % percent + " completed", end="\r")
def maybe_download(directory, filename, uri):
tf.gfile.MakeDirs(directory)
filepath = os.path.join(directory, filename)
if tf.gfile.Exists(filepath):
tf.logging.info("Not downloading, file already found: %s" % filepath)
return filepath
tf.logging.info("Downloading %s to %s" % (uri, filepath))
try:
tf.gfile.Copy(uri, filepath)
except tf.errors.UnimplementedError:
if uri.startswith("http"):
inprogress_filepath = filepath + ".incomplete"
inprogress_filepath, _ = urllib.urlretrieve(
uri, inprogress_filepath, reporthook=download_report_hook)
print()
tf.gfile.Rename(inprogress_filepath, filepath)
else:
raise ValueError("Unrecognized URI: " + filepath)
statinfo = os.stat(filepath)
tf.logging.info("Successfully downloaded %s, %s bytes." %
(filename, statinfo.st_size))
return filepath
def maybe_download_from_drive(directory, filename, url):
if not tf.gfile.Exists(directory):
tf.logging.info("Creating directory %s" % directory)
tf.gfile.MakeDirs(directory)
filepath = os.path.join(directory, filename)
confirm_token = None
if tf.gfile.Exists(filepath):
tf.logging.info("Not downloading, file already found: %s" % filepath)
return filepath
confirm_token = None
session = requests.Session()
response = session.get(url, stream=True)
for k, v in response.cookies.items():
if k.startswith("download_warning"):
confirm_token = v
if confirm_token:
url = url + "&confirm=" + confirm_token
tf.logging.info("Downloading %s to %s" % (url, filepath))
response = session.get(url, stream=True)
chunk_size = 16 * 1024
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size):
if chunk:
f.write(chunk)
print()
statinfo = os.stat(filepath)
tf.logging.info("Successfully downloaded %s, %s bytes." % (filename,
statinfo.st_size))
return filepath
def gunzip_file(gz_path, new_path):
if tf.gfile.Exists(new_path):
tf.logging.info("File %s already exists, skipping unpacking" % new_path)
return
tf.logging.info("Unpacking %s to %s" % (gz_path, new_path))
mode = stat.S_IRWXU or stat.S_IXGRP or stat.S_IRGRP or stat.S_IROTH
os.chmod(os.path.dirname(new_path), mode)
with gzip.open(gz_path, "rb") as gz_file:
with tf.gfile.GFile(new_path, mode="wb") as new_file:
for line in gz_file:
new_file.write(line)
def get_or_generate_vocab_inner(data_dir, vocab_filename, vocab_size,
generator, max_subtoken_length=None,
reserved_tokens=None):
if data_dir and vocab_filename:
vocab_filepath = os.path.join(data_dir, vocab_filename)
if tf.gfile.Exists(vocab_filepath):
tf.logging.info("Found vocab file: %s", vocab_filepath)
return text_encoder.SubwordTextEncoder(vocab_filepath)
else:
vocab_filepath = None
tf.logging.info("Generating vocab file: %s", vocab_filepath)
vocab = text_encoder.SubwordTextEncoder.build_from_generator(
generator, vocab_size, max_subtoken_length=max_subtoken_length,
reserved_tokens=reserved_tokens)
if vocab_filepath:
tf.gfile.MakeDirs(data_dir)
vocab.store_to_file(vocab_filepath)
return vocab
def get_or_generate_vocab(data_dir, tmp_dir, vocab_filename, vocab_size,
sources, file_byte_budget=1e6,
max_subtoken_length=None):
vocab_generator = generate_lines_for_vocab(tmp_dir, sources, file_byte_budget)
return get_or_generate_vocab_inner(data_dir, vocab_filename, vocab_size,
vocab_generator, max_subtoken_length)
def generate_lines_for_vocab(tmp_dir, sources, file_byte_budget=1e6):
tf.logging.info("Generating vocab from: %s", str(sources))
for source in sources:
url = source[0]
filename = os.path.basename(url)
compressed_file = maybe_download(tmp_dir, filename, url)
for lang_file in source[1]:
tf.logging.info("Reading file: %s" % lang_file)
filepath = os.path.join(tmp_dir, lang_file)
if not tf.gfile.Exists(filepath):
read_type = "r:gz" if filename.endswith("tgz") else "r"
with tarfile.open(compressed_file, read_type) as corpus_tar:
corpus_tar.extractall(tmp_dir)
if lang_file.endswith(".gz"):
new_filepath = os.path.join(tmp_dir, lang_file[:-3])
if tf.gfile.Exists(new_filepath):
tf.logging.info(
"Subdirectory %s already exists, skipping unpacking" % filepath)
else:
tf.logging.info("Unpacking subdirectory %s" % filepath)
gunzip_file(filepath, new_filepath)
filepath = new_filepath
with tf.gfile.GFile(filepath, mode="r") as source_file:
file_byte_budget_ = file_byte_budget
counter = 0
countermax = int(source_file.size() / file_byte_budget_ / 2)
for line in source_file:
if counter < countermax:
counter += 1
else:
if file_byte_budget_ <= 0:
break
line = line.strip()
file_byte_budget_ -= len(line)
counter = 0
yield line
def get_or_generate_tabbed_vocab(data_dir, tmp_dir, source_filename,
index, vocab_filename, vocab_size):
def generate():
filepath = os.path.join(tmp_dir, source_filename)
tf.logging.info("Generating vocab from %s", filepath)
with tf.gfile.GFile(filepath, mode="r") as source_file:
for line in source_file:
line = line.strip()
if line and "\t" in line:
parts = line.split("\t", 1)
part = parts[index].strip()
yield part
return get_or_generate_vocab_inner(data_dir, vocab_filename, vocab_size,
generate())
def get_or_generate_txt_vocab(data_dir, vocab_filename, vocab_size,
filepatterns):
if isinstance(filepatterns, str):
filepatterns = [filepatterns]
def generate():
tf.logging.info("Generating vocab from %s", filepatterns)
for filepattern in filepatterns:
for filename in tf.gfile.Glob(filepattern):
with tf.gfile.GFile(filename, mode="r") as source_file:
for line in source_file:
yield line.strip()
return get_or_generate_vocab_inner(data_dir, vocab_filename, vocab_size,
generate())
def read_records(filename):
reader = tf.python_io.tf_record_iterator(filename)
records = []
for record in reader:
records.append(record)
if len(records) % 100000 == 0:
tf.logging.info("read: %d", len(records))
return records
def write_records(records, out_filename):
writer = tf.python_io.TFRecordWriter(out_filename)
for count, record in enumerate(records):
writer.write(record)
if count > 0 and count % 100000 == 0:
tf.logging.info("write: %d", count)
writer.close()
def generate_dataset_and_shuffle(train_gen,
train_paths,
dev_gen,
dev_paths,
shuffle=True):
generate_files(train_gen, train_paths)
generate_files(dev_gen, dev_paths)
mlperf_log.transformer_print(key=mlperf_log.INPUT_ORDER)
if shuffle:
shuffle_dataset(train_paths + dev_paths)
def _shuffle_single(fname, extra_fn=None):
records = read_records(fname)
random.shuffle(records)
if extra_fn is not None:
records = extra_fn(records)
out_fname = fname.replace(UNSHUFFLED_SUFFIX, "")
write_records(records, out_fname)
tf.gfile.Remove(fname)
def shuffle_dataset(filenames, extra_fn=None):
if outputs_exist(filenames):
tf.logging.info("Skipping shuffle because output files exist")
return
tf.logging.info("Shuffling data...")
for filename in filenames:
_shuffle_single(filename, extra_fn=extra_fn)
tf.logging.info("Data shuffled.")
class SequencePacker(object):
def __init__(self, first_sequence, spacing=2):
self._spacing = spacing
self._ids = first_sequence[:]
self._segmentation = [1] * len(first_sequence)
self._position = list(range(len(first_sequence)))
def add(self, ids):
padding = [0] * self._spacing
self._ids.extend(padding + ids)
next_segment_num = self._segmentation[-1] + 1 if self._segmentation else 1
self._segmentation.extend(padding + [next_segment_num] * len(ids))
self._position.extend(padding + list(range(len(ids))))
def can_fit(self, ids, packed_length):
return len(self._ids) + self._spacing + len(ids) <= packed_length
def to_dict(self):
return {"inputs": [0],
"targets": self._ids,
"targets_segmentation": self._segmentation,
"targets_position": self._position}
class SequencePairPacker(object):
def __init__(self, first_sequence_pair, spacing=2):
self._inputs = SequencePacker(first_sequence_pair[0], spacing)
self._targets = SequencePacker(first_sequence_pair[1], spacing)
def add(self, pair):
self._inputs.add(pair[0])
self._targets.add(pair[1])
def can_fit(self, pair, packed_length):
return (self._inputs.can_fit(pair[0], packed_length) and
self._targets.can_fit(pair[1], packed_length))
def to_dict(self):
ret = self._targets.to_dict()
inputs_dict = self._inputs.to_dict()
ret["inputs"] = inputs_dict["targets"]
ret["inputs_segmentation"] = inputs_dict["targets_segmentation"]
ret["inputs_position"] = inputs_dict["targets_position"]
return ret
def pack_examples(examples,
has_inputs,
packed_length=256,
spacing=2,
queue_size=10,
chop_long_sequences=False):
packer = SequencePairPacker if has_inputs else SequencePacker
combined = []
for example in examples:
x = ((example["inputs"], example["targets"])
if has_inputs else example["targets"])
if chop_long_sequences and len(x) > packed_length:
assert not has_inputs
num_fragments = len(x) // packed_length
for i in range(num_fragments):
yield packer(
x[packed_length * i:packed_length * (i + 1)], spacing).to_dict()
x = x[packed_length * num_fragments:]
added = False
for c in combined:
if c.can_fit(x, packed_length):
c.add(x)
added = True
break
if not added:
if len(combined) == queue_size:
yield combined[0].to_dict()
combined = combined[1:]
combined.append(packer(x, spacing))
for c in combined:
yield c.to_dict()
def pack_dataset(dataset, length, keys=None, use_custom_ops=False):
shapes = dataset.output_shapes
if keys is None:
keys = shapes.keys()
for k in keys:
if k not in shapes:
raise ValueError("Key %s not found in dataset. Available keys are %s"
% (k, shapes.keys()))
if not shapes[k].is_compatible_with(tf.TensorShape([None])):
raise ValueError("Tensors to be packed must be one-dimensional.")
if use_custom_ops:
return _pack_with_custom_ops(dataset, keys, length)
else:
packer = SequenceDatasetPacker(length, spacing=0, queue_size=10)
return packer(dataset, cycle_length=10, keys=keys)
def _pack_with_custom_ops(dataset, keys, length):
from tensor2tensor.data_generators.ops import pack_sequences_ops
dataset = dataset.map(lambda x: {k: x[k][:length] for k in keys})
batch_size = length
dataset = dataset.padded_batch(
batch_size, padded_shapes={k: [-1] for k in keys})
k1, k2 = keys
def map_fn_custom(x):
(k1_packed, k1_segmengation, k1_position,
k2_packed, k2_segmentation, k2_position) = (
pack_sequences_ops.pack_sequences2(x[k1], x[k2], length, length))
packed = {
k1: k1_packed,
k1 + "_segmentation": k1_segmengation,
k1 + "_position": k1_position,
k2: k2_packed,
k2 + "_segmentation": k2_segmentation,
k2 + "_position": k2_position,
}
return tf.data.Dataset.from_tensor_slices(packed)
dataset = dataset.flat_map(map_fn_custom)
return dataset
INDEX_DTYPE = tf.int32
class SequenceDatasetPacker(object):
def __init__(self, packed_length=256, spacing=0, queue_size=10,
chop_long_sequences=False):
self._packed_length = packed_length
self._spacing = spacing
self._queue_size = queue_size
self._chop_long_sequences = chop_long_sequences
self._num_sequences = None
self._token_dtype = None
def __call__(self, dataset, **kwargs):
if {"window_size", "cycle_length"}.intersection(kwargs):
return self._concurrent_pack(dataset, **kwargs)
return self._pack(dataset, **kwargs)
|
Apache License 2.0
|
matsui528/rii
|
rii/rii.py
|
Rii.query
|
python
|
def query(self, q, topk=1, L=None, target_ids=None, sort_target_ids=True, method="auto"):
assert 0 < self.N
assert 0 < self.nlist
assert method in ["auto", "linear", "ivf"]
if topk is None:
topk = self.N
assert 1 <= topk <= self.N
if L is None:
L = self._multiple_of_L0_covering_topk(topk=topk)
assert topk <= L <= self.N, "Parameters are weird. Make sure topk<=L<=N: topk={}, L={}, N={}".format(topk, L, self.N)
if target_ids is None:
tids = np.array([], dtype=np.int64)
len_target_ids = self.N
else:
assert isinstance(target_ids, np.ndarray)
assert target_ids.dtype == np.int64
assert target_ids.ndim == 1
if sort_target_ids:
tids = np.sort(target_ids)
else:
tids = target_ids
len_target_ids = len(tids)
assert topk <= len_target_ids <= self.N, "Parameters are weird. Make sure topk<=len(target_ids)<=N: " "topk={}, len(target_ids)={}, N={}".format(topk, len_target_ids, self.N)
if isinstance(self.fine_quantizer, nanopq.OPQ):
q_ = self.fine_quantizer.rotate(q)
elif isinstance(self.fine_quantizer, nanopq.PQ):
q_ = q
if method == "auto":
if self._use_linear(len_target_ids, L):
ids, dists = self.impl_cpp.query_linear(q_, topk, tids)
else:
ids, dists = self.impl_cpp.query_ivf(q_, topk, tids, L)
elif method == "linear":
ids, dists = self.impl_cpp.query_linear(q_, topk, tids)
elif method == "ivf":
ids, dists = self.impl_cpp.query_ivf(q_, topk, tids, L)
return np.array(ids, np.int64), np.array(dists)
|
Given a query vector, run the approximate nearest neighbor search over the stored PQ-codes.
This functions returns the identifiers and the distances of ``topk`` nearest PQ-codes to the query.
The search can be conducted over a subset of the whole PQ-codes by specifying ``target_ids``.
For example, if ``target_ids=np.array([23, 567, 998])``, the search result would be
the items with these identifiers, sorted by the distance to the query.
Inside this function, the algorithm for the search is selected either from PQ-linear-scan (see Alg. 1
in the paper) or inverted-index (see Alg. 2 in the paper). This is specified by ``method``, by setting
'linear' or 'ivf'. If 'auto' is set, the faster one is automatically selected
(See Alg. 3 in the paper for more details).
See :ref:`guideline_for_search` for tips of the parameter selection.
Args:
q (np.ndarray): The query vector with the shape=(D, ) and dtype=np.float32.
topk (int): The number of PQ-codes to be returned. The default value is 1.
L (int): The number of PQ-codes for the candidates of distance evaluation.
With a higher ``L`` value, the accuracy is boosted but the runtime gets slower.
The default value is a minimum multiple of :attr:`L0` that covers ``topk``.
This is typically :attr:`L0`.
Note that ``L`` is used only if the search method is inverted-index.
target_ids (np.ndarray): The target identifiers with the shape=(S, ) and dtype=np.int64, where S can
be any scalar. The default value is None, then the search is run over the whole dataset.
Note that ``target_ids`` does not need to be sorted if ``sort_target_ids==True``, where
it will be sorted inside this function automatically. Otherwise please sort ``target_ids``
before calling this function.
sort_target_ids (bool): The default value is True. If True, ``target_ids`` will be sorted automatically
inside this function before running the search. If False, ``target_ids`` will not be sorted.
Note that ``target_ids`` must be sorted before the search, so please sort it by yourself
if you set ``sort_target_ids`` as False.
method (str): The search algorithm to be used: 'linear', 'ivf', or 'auto'.
Returns:
(np.ndarray, np.ndarray):
The result (nearest items) of the search.
The first one is the identifiers of the items, with the shape=(topk, ) and dtype=int64.
The second one is the distances of the items to the query, with the shape=(topk, ) and dtype=float64
|
https://github.com/matsui528/rii/blob/955f17b6615dd2b370470f241b3812039867e4e3/rii/rii.py#L235-L320
|
import main
import nanopq
import numpy as np
import copy
class Rii(object):
def __init__(self, fine_quantizer):
assert isinstance(fine_quantizer, nanopq.PQ) or isinstance(fine_quantizer, nanopq.OPQ)
assert fine_quantizer.codewords is not None, "Please fit the PQ/OPQ instance first"
assert fine_quantizer.Ks <= 256, "Ks must be less than 256 so that each code must be uint8"
self.fine_quantizer = copy.deepcopy(fine_quantizer)
self.impl_cpp = main.RiiCpp(fine_quantizer.codewords, fine_quantizer.verbose)
self.threshold = None
@property
def M(self):
return self.fine_quantizer.M
@property
def Ks(self):
return self.fine_quantizer.Ks
@property
def N(self):
return self.impl_cpp.N
@property
def nlist(self):
return self.impl_cpp.nlist
@property
def codewords(self):
return self.fine_quantizer.codewords
@property
def coarse_centers(self):
if self.nlist == 0:
return None
else:
return np.array(self.impl_cpp.coarse_centers,
dtype=self.fine_quantizer.code_dtype)
@property
def codes(self):
if self.N == 0:
return None
else:
return np.array(self.impl_cpp.flattened_codes,
dtype=self.fine_quantizer.code_dtype).reshape(self.N, self.M)
@property
def posting_lists(self):
return self.impl_cpp.posting_lists
@property
def verbose(self):
return self.impl_cpp.verbose
@verbose.setter
def verbose(self, v):
self.fine_quantizer.verbose = v
self.impl_cpp.verbose = v
@property
def L0(self):
if self.nlist == 0:
return None
else:
return int(np.round(self.N / self.nlist))
def reconfigure(self, nlist=None, iter=5):
if nlist is None:
nlist = int(np.sqrt(self.N))
assert 0 < nlist
self.impl_cpp.reconfigure(nlist, iter)
self.threshold = estimate_best_threshold_function(
e=self, queries=self.fine_quantizer.decode(self.codes[:min(100, self.N)]))
def add(self, vecs, update_posting_lists="auto"):
assert vecs.ndim == 2
assert vecs.dtype == np.float32
self.impl_cpp.add_codes(self.fine_quantizer.encode(vecs),
self._resolve_update_posting_lists_flag(update_posting_lists))
def add_configure(self, vecs, nlist=None, iter=5):
self.add(vecs=vecs, update_posting_lists=False)
self.reconfigure(nlist=nlist, iter=iter)
return self
def merge(self, engine, update_posting_lists='auto'):
assert isinstance(engine, Rii)
assert self.fine_quantizer == engine.fine_quantizer, "Two engines to be merged must have the same fine quantizer"
if engine.N != 0:
self.impl_cpp.add_codes(engine.codes,
self._resolve_update_posting_lists_flag(update_posting_lists))
if self.verbose:
print("The number of codes: {}".format(self.N))
|
MIT License
|
nitipit/shelfdb
|
shelfdb/server.py
|
QueryHandler.slice
|
python
|
def slice(self, args):
self.chain_query = self.chain_query.slice(*args)
return self
|
`args` should be [start, stop, step]
|
https://github.com/nitipit/shelfdb/blob/92af9c9f4912b7181c7664bc6ab3383def1328e0/shelfdb/server.py#L79-L82
|
import asyncio
import dill
import re
from datetime import datetime
import argparse
import os
import sys
import shelfdb
class QueryHandler():
def __init__(self, db, shelf, queries):
self.chain_query = db.shelf(shelf)
self.queries = queries
def count(self):
self.chain_query = self.chain_query.count()
return self
def delete(self):
self.chain_query = self.chain_query.delete()
return self
def edit(self, func):
self.chain_query = self.chain_query.edit(func)
return self
def first(self, filter_):
self.chain_query = self.chain_query.first(filter_)
return self
def filter(self, filter_):
self.chain_query = self.chain_query.filter(filter_)
return self
def get(self, id_):
self.chain_query = self.chain_query.get(id_)
return self
def insert(self, data):
self.chain_query = self.chain_query.insert(data)
return self
def map(self, fn):
self.chain_query = self.chain_query.map(fn)
return self
def put(self, args):
self.chain_query = self.chain_query.put(*args)
return self
def reduce(self, fn):
self.chain_query = self.chain_query.reduce(fn)
return self
def replace(self, data):
self.chain_query = self.chain_query.replace(data)
return self
|
MIT License
|
ozflux/pyfluxpro2.7
|
scripts/pfp_gfSOLO.py
|
gfSOLO_plot
|
python
|
def gfSOLO_plot(pd, ds, drivers, target, output, l5s, si=0, ei=-1):
ts = int(ds.globalattributes['time_step'])
xdt = ds.series["DateTime"]["Data"][si:ei+1]
Hdh = numpy.array([dt.hour+(dt.minute+dt.second/float(60))/float(60) for dt in xdt])
obs, _, _ = pfp_utils.GetSeriesasMA(ds, target, si=si, ei=ei)
mod, _, _ = pfp_utils.GetSeriesasMA(ds, output, si=si, ei=ei)
if l5s["gui"]["show_plots"]:
plt.ion()
else:
plt.ioff()
if plt.fignum_exists(1):
fig = plt.figure(1)
plt.clf()
else:
fig = plt.figure(1, figsize=(13, 8))
fig.canvas.set_window_title(target)
title = l5s["info"]["site_name"] + " : Comparison of tower and SOLO data for " + target
plt.figtext(0.5, 0.95, title, ha='center', size=16)
rect1 = [0.10, pd["margin_bottom"], pd["xy_width"], pd["xy_height"]]
ax1 = plt.axes(rect1)
mask = numpy.ma.mask_or(obs.mask, mod.mask)
obs_mor = numpy.ma.array(obs, mask=mask)
_, Hr1, Av1, _, _, _ = gf_getdiurnalstats(Hdh, obs_mor, ts)
ax1.plot(Hr1, Av1, 'b-', label="Obs")
_, Hr2, Av2, _, _, _ = gf_getdiurnalstats(Hdh, mod, ts)
ax1.plot(Hr2, Av2, 'r-', label="SOLO(all)")
mod_mor = numpy.ma.array(mod, mask=mask)
if numpy.ma.count_masked(obs) != 0:
index = numpy.where(numpy.ma.getmaskarray(obs) == False)[0]
_, Hr3, Av3, _, _, _ = gf_getdiurnalstats(Hdh[index], mod_mor[index], ts)
ax1.plot(Hr3, Av3, 'g-', label="SOLO(obs)")
plt.xlim(0, 24)
plt.xticks([0, 6, 12, 18, 24])
ax1.set_ylabel(target)
ax1.set_xlabel('Hour')
ax1.legend(loc='upper right', frameon=False, prop={'size':8})
rect2 = [0.40, pd["margin_bottom"], pd["xy_width"], pd["xy_height"]]
ax2 = plt.axes(rect2)
ax2.plot(mod, obs, 'b.')
ax2.set_ylabel(target + '_obs')
ax2.set_xlabel(target + '_SOLO')
coefs = numpy.ma.polyfit(numpy.ma.copy(mod), numpy.ma.copy(obs), 1)
xfit = numpy.ma.array([numpy.ma.min(mod), numpy.ma.max(mod)])
yfit = numpy.polyval(coefs, xfit)
r = numpy.ma.corrcoef(mod, obs)
ax2.plot(xfit, yfit, 'r--', linewidth=3)
eqnstr = 'y = %.3fx + %.3f, r = %.3f'%(coefs[0], coefs[1], r[0][1])
ax2.text(0.5, 0.875, eqnstr, fontsize=8, horizontalalignment='center', transform=ax2.transAxes)
numpoints = trap_masked_constant(numpy.ma.count(obs))
numfilled = trap_masked_constant(numpy.ma.count(mod)-numpy.ma.count(obs))
diff = mod - obs
bias = trap_masked_constant(numpy.ma.average(diff))
fractional_bias = trap_masked_constant(bias/(0.5*(numpy.ma.average(obs+mod))))
l5s["outputs"][output]["results"]["Bias"].append(bias)
l5s["outputs"][output]["results"]["Frac Bias"].append(fractional_bias)
rmse = numpy.ma.sqrt(numpy.ma.mean((obs-mod)*(obs-mod)))
data_range = numpy.ma.max(obs)-numpy.ma.min(obs)
nmse = rmse/data_range
plt.figtext(0.65, 0.225, 'No. points')
plt.figtext(0.75, 0.225, str(numpoints))
l5s["outputs"][output]["results"]["No. points"].append(numpoints)
plt.figtext(0.65, 0.200, 'No. filled')
plt.figtext(0.75, 0.200, str(numfilled))
plt.figtext(0.65, 0.175, 'Nodes')
plt.figtext(0.75, 0.175, str(l5s["gui"]["nodes_target"]))
plt.figtext(0.65, 0.150, 'Training')
plt.figtext(0.75, 0.150, str(l5s["gui"]["training"]))
plt.figtext(0.65, 0.125, 'Nda factor')
plt.figtext(0.75, 0.125, str(l5s["gui"]["nda_factor"]))
plt.figtext(0.65, 0.100, 'Learning rate')
plt.figtext(0.75, 0.100, str(l5s["gui"]["learning_rate"]))
plt.figtext(0.65, 0.075, 'Iterations')
plt.figtext(0.75, 0.075, str(l5s["gui"]["iterations"]))
plt.figtext(0.815, 0.225, 'Slope')
plt.figtext(0.915, 0.225, str(pfp_utils.round2significant(coefs[0], 4)))
l5s["outputs"][output]["results"]["m_ols"].append(trap_masked_constant(coefs[0]))
plt.figtext(0.815, 0.200, 'Offset')
plt.figtext(0.915, 0.200, str(pfp_utils.round2significant(coefs[1], 4)))
l5s["outputs"][output]["results"]["b_ols"].append(trap_masked_constant(coefs[1]))
plt.figtext(0.815, 0.175, 'r')
plt.figtext(0.915, 0.175, str(pfp_utils.round2significant(r[0][1], 4)))
l5s["outputs"][output]["results"]["r"].append(trap_masked_constant(r[0][1]))
plt.figtext(0.815, 0.150, 'RMSE')
plt.figtext(0.915, 0.150, str(pfp_utils.round2significant(rmse, 4)))
l5s["outputs"][output]["results"]["RMSE"].append(trap_masked_constant(rmse))
l5s["outputs"][output]["results"]["NMSE"].append(trap_masked_constant(nmse))
var_obs = numpy.ma.var(obs)
plt.figtext(0.815, 0.125, 'Var (obs)')
plt.figtext(0.915, 0.125, '%.4g'%(var_obs))
l5s["outputs"][output]["results"]["Var (obs)"].append(trap_masked_constant(var_obs))
var_mod = numpy.ma.var(mod)
plt.figtext(0.815, 0.100, 'Var (SOLO)')
plt.figtext(0.915, 0.100, '%.4g'%(var_mod))
l5s["outputs"][output]["results"]["Var (SOLO)"].append(trap_masked_constant(var_mod))
l5s["outputs"][output]["results"]["Var ratio"].append(trap_masked_constant(var_obs/var_mod))
l5s["outputs"][output]["results"]["Avg (obs)"].append(trap_masked_constant(numpy.ma.average(obs)))
l5s["outputs"][output]["results"]["Avg (SOLO)"].append(trap_masked_constant(numpy.ma.average(mod)))
ts_axes = []
rect = [pd["margin_left"], pd["ts_bottom"], pd["ts_width"], pd["ts_height"]]
ts_axes.append(plt.axes(rect))
ts_axes[0].plot(xdt, obs, 'b.')
ts_axes[0].plot(xdt, mod, 'r-')
ts_axes[0].set_xlim(xdt[0], xdt[-1])
TextStr = target + '_obs (' + ds.series[target]['Attr']['units'] + ')'
ts_axes[0].text(0.05, 0.85, TextStr, color='b', horizontalalignment='left', transform=ts_axes[0].transAxes)
TextStr = output + '(' + ds.series[output]['Attr']['units'] + ')'
ts_axes[0].text(0.85, 0.85, TextStr, color='r', horizontalalignment='right', transform=ts_axes[0].transAxes)
for label, i in zip(drivers, range(1, len(drivers) + 1)):
this_bottom = pd["ts_bottom"] + i*pd["ts_height"]
rect = [pd["margin_left"], this_bottom, pd["ts_width"], pd["ts_height"]]
ts_axes.append(plt.axes(rect, sharex=ts_axes[0]))
data, flag, attr = pfp_utils.GetSeriesasMA(ds, label, si=si, ei=ei)
data_notgf = numpy.ma.masked_where(flag != 0, data)
data_gf = numpy.ma.masked_where(flag == 0, data)
ts_axes[i].plot(xdt, data_notgf, 'b-')
ts_axes[i].plot(xdt, data_gf, 'r-', linewidth=2)
plt.setp(ts_axes[i].get_xticklabels(), visible=False)
TextStr = label + '(' + attr['units'] + ')'
ts_axes[i].text(0.05, 0.85, TextStr, color='b', horizontalalignment='left', transform=ts_axes[i].transAxes)
sdt = xdt[0].strftime("%Y%m%d")
edt = xdt[-1].strftime("%Y%m%d")
figname = l5s["info"]["site_name"].replace(" ", "") + "_SOLO_" + target
figname = figname + "_" + sdt + "_" + edt + ".png"
figname = os.path.join(l5s["info"]["plot_path"], figname)
fig.savefig(figname, format="png")
if l5s["gui"]["show_plots"]:
plt.draw()
mypause(1)
plt.ioff()
else:
plt.ion()
|
Plot the results of the SOLO run.
|
https://github.com/ozflux/pyfluxpro2.7/blob/be066919d82bacb57e5ec691115c114f259659b8/scripts/pfp_gfSOLO.py#L286-L434
|
import csv
import datetime
import logging
import os
import platform
import subprocess
import dateutil
import numpy
import matplotlib
import matplotlib.dates as mdt
import matplotlib.pyplot as plt
import pylab
import constants as c
import pfp_ck
import pfp_gf
import pfp_io
import pfp_utils
logger = logging.getLogger("pfp_log")
def GapFillUsingSOLO(main_gui, ds, l5_info, called_by):
ds.returncodes["value"] = 0
ds.returncodes["message"] = "normal"
pfp_gf.CheckDrivers(ds, l5_info, called_by)
if ds.returncodes["value"] != 0:
return ds
if l5_info[called_by]["info"]["call_mode"].lower() == "interactive":
gfSOLO_plotcoveragelines(ds, l5_info, called_by)
gfSOLO_gui(main_gui, ds, l5_info, called_by)
else:
gfSOLO_run(ds, l5_info, called_by)
def gfSOLO_gui(main_gui, ds, l5_info, called_by):
main_gui.solo_gui.ds = ds
main_gui.solo_gui.l5_info = l5_info
main_gui.solo_gui.called_by = called_by
main_gui.solo_gui.edit_cfg = main_gui.tabs.tab_dict[main_gui.tabs.tab_index_running]
start_date = ds.series["DateTime"]["Data"][0].strftime("%Y-%m-%d %H:%M")
end_date = ds.series["DateTime"]["Data"][-1].strftime("%Y-%m-%d %H:%M")
main_gui.solo_gui.label_DataStartDate_value.setText(start_date)
main_gui.solo_gui.label_DataEndDate_value.setText(end_date)
if l5_info[called_by]["info"]["called_by"] == "GapFillLongSOLO":
main_gui.solo_gui.setWindowTitle("Gap fill using SOLO (long gaps)")
main_gui.solo_gui.radioButton_Manual.setChecked(True)
main_gui.solo_gui.lineEdit_StartDate.setText(start_date)
main_gui.solo_gui.lineEdit_EndDate.setText(end_date)
main_gui.solo_gui.lineEdit_MinPercent.setText("25")
main_gui.solo_gui.lineEdit_Nodes.setText("Auto")
main_gui.solo_gui.checkBox_AutoComplete.setChecked(True)
elif l5_info[called_by]["info"]["called_by"] == "GapFillUsingSOLO":
main_gui.solo_gui.setWindowTitle("Gap fill using SOLO (short gaps)")
main_gui.solo_gui.lineEdit_StartDate.setText("")
main_gui.solo_gui.lineEdit_EndDate.setText("")
main_gui.solo_gui.radioButton_NumberMonths.setChecked(True)
main_gui.solo_gui.lineEdit_NumberMonths.setText("2")
main_gui.solo_gui.lineEdit_MinPercent.setText("25")
main_gui.solo_gui.lineEdit_Nodes.setText("Auto")
auto_complete = l5_info[called_by]["gui"]["auto_complete"]
main_gui.solo_gui.checkBox_AutoComplete.setChecked(auto_complete)
elif l5_info[called_by]["info"]["called_by"] == "ERUsingSOLO":
main_gui.solo_gui.setWindowTitle("ER using SOLO")
main_gui.solo_gui.radioButton_Manual.setChecked(True)
main_gui.solo_gui.lineEdit_StartDate.setText(start_date)
main_gui.solo_gui.lineEdit_EndDate.setText(end_date)
main_gui.solo_gui.lineEdit_Nodes.setText("1")
main_gui.solo_gui.lineEdit_MinPercent.setText("10")
main_gui.solo_gui.checkBox_AutoComplete.setChecked(True)
main_gui.solo_gui.show()
main_gui.solo_gui.exec_()
def gfSOLO_autocomplete(ds, l5_info, called_by):
l5s = l5_info[called_by]
if not l5s["gui"]["auto_complete"]:
return
ldt = ds.series["DateTime"]["Data"]
nRecs = len(ldt)
for output in l5s["outputs"].keys():
not_enough_points = False
target = l5s["outputs"][output]["target"]
data_solo, _, _ = pfp_utils.GetSeriesasMA(ds, output)
if numpy.ma.count(data_solo) == 0:
continue
mask_solo = numpy.ma.getmaskarray(data_solo)
gapstartend = pfp_utils.contiguous_regions(mask_solo)
data_obs, _, _ = pfp_utils.GetSeriesasMA(ds, target)
for si_gap, ei_gap in gapstartend:
min_points = int((ei_gap-si_gap)*l5s["gui"]["min_percent"]/100)
num_good_points = numpy.ma.count(data_obs[si_gap: ei_gap])
while num_good_points < min_points:
si_gap = max([0, si_gap - l5s["info"]["nperday"]])
ei_gap = min([nRecs-1, ei_gap + l5s["info"]["nperday"]])
if si_gap == 0 and ei_gap == nRecs-1:
msg = " Unable to find enough good points in target " + target
logger.error(msg)
not_enough_points = True
if not_enough_points:
break
min_points = int((ei_gap-si_gap)*l5s["gui"]["min_percent"]/100)
num_good_points = numpy.ma.count(data_obs[si_gap: ei_gap])
if not_enough_points:
break
si = max([0, si_gap])
ei = min([len(ldt)-1, ei_gap])
l5s["run"]["startdate"] = ldt[si].strftime("%Y-%m-%d %H:%M")
l5s["run"]["enddate"] = ldt[ei].strftime("%Y-%m-%d %H:%M")
gfSOLO_main(ds, l5_info, called_by, outputs=[output])
if l5s["info"]["call_mode"] == "interactive":
gfSOLO_plotcoveragelines(ds, l5_info, called_by)
def gfSOLO_check_drivers(ds, drivers, si, ei):
drivers_accept = list(drivers)
drivers_reject = []
for label in drivers_accept:
data = pfp_utils.GetVariable(ds, label, start=si, end=ei)
var = numpy.ma.var(data["Data"])
if var == 0:
drivers_accept.remove(label)
drivers_reject.append(label)
if len(drivers_reject) == 1:
msg = " Variance is 0 for driver " + ','.join(drivers_reject) + ", not used for this period"
logger.warning(msg)
elif len(drivers_reject) > 1:
msg = " Variance is 0 for drivers " + ','.join(drivers_reject) + ", not used for this period"
logger.warning(msg)
return drivers_accept
def gfSOLO_done(solo_gui):
ds = solo_gui.ds
l5_info = solo_gui.l5_info
called_by = solo_gui.called_by
l5s = l5_info[called_by]
cl = ["GapFillUsingSOLO", "GapFillLongSOLO"]
if (l5s["gui"]["period_option"] == 1 and l5s["info"]["called_by"] in cl):
pfp_io.xl_write_SOLOStats(ds, l5s)
gfSOLO_plotsummary(ds, l5s)
solo_gui.close()
ds.returncodes["value"] = 0
ds.returncodes["message"] = "normal"
def gfSOLO_getserieslist(cf):
series_list = []
if "Drivers" in cf.keys():
for series in cf["Drivers"].keys():
if "GapFillUsingSOLO" in cf["Drivers"][series]:
series_list.append(series)
elif "Fluxes" in cf.keys():
for series in cf["Fluxes"].keys():
if "GapFillUsingSOLO" in cf["Fluxes"][series]:
series_list.append(series)
elif "Variables" in cf.keys():
for series in cf["Variables"].keys():
if "GapFillUsingSOLO" in cf["Variables"][series]:
series_list.append(series)
else:
series_list = []
msg = "No Variables, Drivers or Fluxes section found in control file"
logger.error(msg)
return series_list
def gfSOLO_initplot(nDrivers):
pd = {"margin_bottom":0.075, "margin_top":0.075, "margin_left":0.05, "margin_right":0.05,
"xy_height":0.20, "xy_width":0.20, "xyts_space":0.05, "ts_width":0.9}
pd["ts_bottom"] = pd["margin_bottom"]+pd["xy_height"]+pd["xyts_space"]
pd["ts_height"] = (1.0 - pd["margin_top"] - pd["ts_bottom"])/float(nDrivers+1)
return pd
def gfSOLO_main(ds, l5_info, called_by, outputs=None):
l5s = l5_info[called_by]
ts = int(ds.globalattributes["time_step"])
startdate = l5s["run"]["startdate"]
enddate = l5s["run"]["enddate"]
logger.info(" Gap filling using SOLO: " + startdate + " to " + enddate)
ldt = ds.series["DateTime"]["Data"]
si = pfp_utils.GetDateIndex(ldt, startdate, ts=ts, default=0, match="exact")
ei = pfp_utils.GetDateIndex(ldt, enddate, ts=ts, default=len(ldt)-1, match="exact")
l5s["gui"]["min_points"] = int((ei-si)*l5s["gui"]["min_percent"]/100)
if outputs == None:
outputs = l5s["outputs"].keys()
for output in outputs:
flag_code = l5s["outputs"][output]["flag_code"]
target = l5s["outputs"][output]["target"]
drivers = gfSOLO_check_drivers(ds, l5s["outputs"][output]["drivers"], si, ei)
l5s["outputs"][output]["results"]["startdate"].append(ldt[si])
l5s["outputs"][output]["results"]["enddate"].append(ldt[ei])
d, _, _ = pfp_utils.GetSeriesasMA(ds, target, si=si, ei=ei)
nRecs = len(d)
if numpy.ma.count(d) < l5s["gui"]["min_points"]:
msg = "SOLO: Less than " + str(l5s["gui"]["min_points"]) + " points available for target " + target
logger.warning(msg)
l5s["outputs"][output]["results"]["No. points"].append(float(0))
results = l5s["outputs"][output]["results"].keys()
for item in ["startdate", "enddate", "No. points"]:
if item in results: results.remove(item)
for item in results:
l5s["outputs"][output]["results"][item].append(float(c.missing_value))
continue
if str(l5s["gui"]["nodes"]).lower() == "auto":
l5s["gui"]["nodes_target"] = len(drivers) + 1
else:
l5s["gui"]["nodes_target"] = int(l5s["gui"]["nodes"])
if "solo_settings" in l5s["outputs"][output]:
l5s["gui"]["nodes_target"] = l5s["outputs"][output]["solo_settings"]["nodes_target"]
l5s["gui"]["training"] = l5s["outputs"][output]["solo_settings"]["training"]
l5s["gui"]["nda_factor"] = l5s["outputs"][output]["solo_settings"]["nda_factor"]
l5s["gui"]["learning_rate"] = l5s["outputs"][output]["solo_settings"]["learning_rate"]
l5s["gui"]["iterations"] = l5s["outputs"][output]["solo_settings"]["iterations"]
gfSOLO_writeinffiles(l5s)
result = gfSOLO_runsofm(ds, drivers, target, nRecs, si=si, ei=ei)
if result != 1:
return
result = gfSOLO_runsolo(ds, drivers, target, nRecs, si=si, ei=ei)
if result != 1:
return
result = gfSOLO_runseqsolo(ds, drivers, target, output, nRecs,
flag_code, si=si, ei=ei)
if result != 1:
return
pd = gfSOLO_initplot(len(drivers))
gfSOLO_plot(pd, ds, drivers, target, output, l5s, si=si, ei=ei)
|
BSD 3-Clause New or Revised License
|
secondmind-labs/trieste
|
trieste/models/interfaces.py
|
ModelStack.predict
|
python
|
def predict(self, query_points: TensorType) -> tuple[TensorType, TensorType]:
means, vars_ = zip(*[model.predict(query_points) for model in self._models])
return tf.concat(means, axis=-1), tf.concat(vars_, axis=-1)
|
r"""
:param query_points: The points at which to make predictions, of shape [..., D].
:return: The predictions from all the wrapped models, concatenated along the event axis in
the same order as they appear in :meth:`__init__`. If the wrapped models have predictive
distributions with event shapes [:math:`E_i`], the mean and variance will both have
shape [..., :math:`\sum_i E_i`].
|
https://github.com/secondmind-labs/trieste/blob/b58eb924a49ad86e27fa2e082defe2d37afcc14a/trieste/models/interfaces.py#L158-L167
|
from __future__ import annotations
from abc import ABC, abstractmethod
import gpflow
import tensorflow as tf
from ..data import Dataset
from ..types import TensorType
class ProbabilisticModel(ABC):
@abstractmethod
def predict(self, query_points: TensorType) -> tuple[TensorType, TensorType]:
raise NotImplementedError
@abstractmethod
def predict_joint(self, query_points: TensorType) -> tuple[TensorType, TensorType]:
raise NotImplementedError
@abstractmethod
def sample(self, query_points: TensorType, num_samples: int) -> TensorType:
raise NotImplementedError
def predict_y(self, query_points: TensorType) -> tuple[TensorType, TensorType]:
raise NotImplementedError(
f"Model {self!r} does not support predicting observations, just the latent function"
)
def get_observation_noise(self) -> TensorType:
raise NotImplementedError(f"Model {self!r} does not provide scalar observation noise")
def get_kernel(self) -> gpflow.kernels.Kernel:
raise NotImplementedError(f"Model {self!r} does not provide a kernel")
class TrainableProbabilisticModel(ProbabilisticModel):
@abstractmethod
def update(self, dataset: Dataset) -> None:
raise NotImplementedError
@abstractmethod
def optimize(self, dataset: Dataset) -> None:
raise NotImplementedError
class ModelStack(TrainableProbabilisticModel):
def __init__(
self,
model_with_event_size: tuple[TrainableProbabilisticModel, int],
*models_with_event_sizes: tuple[TrainableProbabilisticModel, int],
):
super().__init__()
self._models, self._event_sizes = zip(*(model_with_event_size,) + models_with_event_sizes)
|
Apache License 2.0
|
hackersandslackers/beautifulsoup-tutorial
|
scraper/scrape.py
|
get_description
|
python
|
def get_description(html):
description = None
if html.find("meta", property="description"):
description = html.find("meta", property="description").get('content')
elif html.find("meta", property="og:description"):
description = html.find("meta", property="og:description").get('content')
elif html.find("meta", property="twitter:description"):
description = html.find("meta", property="twitter:description").get('content')
elif html.find("p"):
description = html.find("p").contents
return description
|
Scrape page description.
|
https://github.com/hackersandslackers/beautifulsoup-tutorial/blob/1e514ae69abf839843e7f8ee183236944b01da29/scraper/scrape.py#L22-L33
|
def get_title(html):
title = None
if html.title.string:
title = html.title.string
elif html.find("meta", property="og:title"):
description = html.find("meta", property="og:title").get('content')
elif html.find("meta", property="twitter:title"):
description = html.find("meta", property="twitter:title").get('content')
elif html.find("h1"):
title = html.find("h1").string
elif html.find_all("h1"):
title = html.find_all("h1")[0].string
if title:
title = title.split('|')[0]
return title
|
MIT License
|
google-research/language
|
language/orqa/preprocessing/create_data_splits.py
|
resplit_ct
|
python
|
def resplit_ct():
hash_fn = make_hash_fn()
resplit_data(
input_path=FLAGS.ct_train_path,
output_path=get_resplit_path("CuratedTrec", "train"),
keep_fn=lambda x: hash_fn(x) != 0)
resplit_data(
input_path=FLAGS.ct_train_path,
output_path=get_resplit_path("CuratedTrec", "dev"),
keep_fn=lambda x: hash_fn(x) == 0)
resplit_data(
input_path=FLAGS.ct_test_path,
output_path=get_resplit_path("CuratedTrec", "test"),
keep_fn=lambda x: True)
|
Resplit the CuratedTrec dataset.
|
https://github.com/google-research/language/blob/240cd2a1fd0307c6822b6f1f6c2abf1349a5a4da/language/orqa/preprocessing/create_data_splits.py#L88-L102
|
import json
import os
from absl import app
from absl import flags
import tensorflow.compat.v1 as tf
FLAGS = flags.FLAGS
flags.DEFINE_string("nq_train_path", None,
"Path to the Natural Questions (open) train data.")
flags.DEFINE_string("nq_dev_path", None,
"Path to the Natural Questions (open) dev data.")
flags.DEFINE_string("wb_train_path", None, "Path to WebQuestions train data.")
flags.DEFINE_string("wb_test_path", None, "Path to WebQuestions test data.")
flags.DEFINE_string("ct_train_path", None, "Path to CuratedTrec train data.")
flags.DEFINE_string("ct_test_path", None, "Path to CuratedTrec test data.")
flags.DEFINE_string("output_dir", None, "Output directory.")
def get_resplit_path(name, split):
return os.path.join(FLAGS.output_dir,
"{}.resplit.{}.jsonl".format(name, split))
def resplit_data(input_path, output_path, keep_fn):
count = 0
with tf.io.gfile.GFile(output_path, "w") as output_file:
for line in tf.io.gfile.GFile(input_path):
example = json.loads(line)
if keep_fn(example["question"]):
output_file.write(line)
count += 1
tf.logging.info("Wrote {} examples to {}".format(count, output_path))
def resplit_nq():
hash_fn = make_hash_fn()
resplit_data(
input_path=FLAGS.nq_train_path,
output_path=get_resplit_path("NaturalQuestions", "train"),
keep_fn=lambda x: hash_fn(x) != 0)
resplit_data(
input_path=FLAGS.nq_train_path,
output_path=get_resplit_path("NaturalQuestions", "dev"),
keep_fn=lambda x: hash_fn(x) == 0)
resplit_data(
input_path=FLAGS.nq_dev_path,
output_path=get_resplit_path("NaturalQuestions", "test"),
keep_fn=lambda x: True)
def resplit_wb():
hash_fn = make_hash_fn()
resplit_data(
input_path=FLAGS.wb_train_path,
output_path=get_resplit_path("WebQuestions", "train"),
keep_fn=lambda x: hash_fn(x) != 0)
resplit_data(
input_path=FLAGS.wb_train_path,
output_path=get_resplit_path("WebQuestions", "dev"),
keep_fn=lambda x: hash_fn(x) == 0)
resplit_data(
input_path=FLAGS.wb_test_path,
output_path=get_resplit_path("WebQuestions", "test"),
keep_fn=lambda x: True)
|
Apache License 2.0
|
timsusa/aptly_api_cli
|
aptly_cli/cli/cli.py
|
_get_parser_opts
|
python
|
def _get_parser_opts():
parser = OptionParser()
parser.add_option('--repo_list',
action='store_true',
help='List all local repos')
parser.add_option('--repo_create',
nargs=1,
help='Create local repo',
metavar='REPO_NAME [COMMENT] [DISTRIBUTION] [COMPONENT]')
parser.add_option('--repo_show_packages',
nargs=1,
help='Shows packages from repo',
metavar='REPO_NAME [PACKAGE_TO_SEARCH] [WITH_DEPS] [FORMAT]')
parser.add_option('--repo_show',
nargs=1,
help='Show basic repo-information',
metavar='REPO_NAME')
parser.add_option('--repo_edit',
nargs=1,
help='Edit repo-information',
metavar='REPO_NAME COMMENT DISTRIBUTION COMPONENT')
parser.add_option('--repo_delete',
nargs=1,
help='Delete repository',
metavar='REPO_NAME')
parser.add_option('--repo_add_packages_by_key',
nargs=2,
help='Add packages to local repo by key',
metavar='REPO_NAME PACKAGE_REFS')
parser.add_option('--repo_delete_packages_by_key',
nargs=2,
help='Delete packages from repository by key',
metavar='REPO_NAME PACKAGE_REFS')
parser.add_option('--file_list_dirs',
action='store_true',
help='Lists all upload-directories')
parser.add_option('--file_upload',
nargs=2,
help='Upload file to local upload-directory',
metavar='UPLOAD_DIR FILE')
parser.add_option('--repo_add_package_from_upload',
nargs=3,
help='Add package from upload folder to local repo',
metavar='REPO_NAME UPLOAD_DIR PACKAGE_NAME')
parser.add_option('--file_list',
action='store_true',
help='List uploaded files')
parser.add_option('--file_delete_dir',
nargs=1,
help='Delete upload directory',
metavar='UPLOAD_DIR')
parser.add_option('--file_delete',
nargs=2,
help='Delete a file in upload directory',
metavar='UPLOAD_DIR FILE')
parser.add_option('--snapshot_create_from_local_repo',
nargs=2,
help='Create snapshot from local repo',
metavar='SNAPSHOT_NAME REPO_NAME [DESCRIPTION]')
parser.add_option('--snapshot_create_by_pack_refs',
nargs=3,
help='Create snapshot by package references',
metavar='SNAPSHOT_NAME SOURCE_SNAPSHOTS PACKAGE_REF_LIST [DESCRIPTION]')
parser.add_option('--snapshot_show',
nargs=1,
help='Show basic information about snapshot',
metavar='SNAPSHOT_NAME')
parser.add_option('--snapshot_show_packages',
nargs=1,
help='Show all packages the snapshot is containing or optionally search for one.',
metavar='SNAPSHOT_NAME [PACKAGE_TO_SEARCH] [WITH_DEPS] [FORMAT]')
parser.add_option('--snapshot_update',
nargs=2,
help='Rename snapshot and optionally change description',
metavar='OLD_SNAPSHOT_NAME NEW_SNAPSHOT_NAME [DESCRIPTION]')
parser.add_option('--snapshot_list',
action='store_true',
help='Lists all available snapshots',
metavar='[SORT_BY_NAME_OR_TIME]')
parser.add_option('--snapshot_diff',
nargs=2,
help='List differences of two snapshots',
metavar='LEFT_SNAPSHOT_NAME RIGHT_SNAPSHOT_NAME')
parser.add_option('--snapshot_delete',
nargs=1,
help='Delete snapshot by name. Optionally force deletion.',
metavar='SNAPSHOT_NAME [FORCE_DELETION]')
parser.add_option('--publish_list',
action='store_true',
help='List all available repositories to publish to')
parser.add_option('--publish',
nargs=5,
help='Publish snapshot or repository to storage',
metavar='PREFIX SOURCES_KIND SOURCES_LIST DISTRIBUTION COMPONENT_LIST [LABEL] [ORIGIN] \
[FORCE_OVERWRITE] [ARCHITECTURES_LIST]')
parser.add_option('--publish_drop',
nargs=2,
help='Drop published repo content',
metavar='PREFIX DISTRIBUTION [FORCE_REMOVAL]')
parser.add_option('--publish_switch',
nargs=3,
help='Switching snapshots to published repo with minimal server down time.',
metavar='PREFIX SOURCES_LIST DISTRIBUTION [COMPONENT] [FORCE_OVERWRITE]')
parser.add_option('--get_version',
action='store_true',
help='Returns aptly version')
parser.add_option('--package_show_by_key',
nargs=1,
help='Show packages by key',
metavar='PACKAGE_KEY')
parser.add_option('--create_config',
action='store_true',
help='Creates standard config file (aptly-cli.conf) in $HOME')
parser.add_option('--get_last_snapshots',
nargs=2,
help='Returns the last n snapshots by prefix or optional postfix.',
metavar='PREFIX NR_OF_VERS [POSTFIX]')
parser.add_option('--clean_last_snapshots',
nargs=2,
help='Cleans the last n snapshots by prefix or optional postfix.',
metavar='PREFIX NR_OF_VERS [POSTFIX]')
parser.add_option('--clean_mirrored_snapshots',
action='store_true',
help='Cleans out snapshots, which were taken from mirrors (from config)')
parser.add_option('--clean_repo_packages',
action='store_true',
help='Cleans out packages, which were taken from repos (from config)')
parser.add_option('--list_repos_and_packages',
action='store_true',
help='List all repos with their containing packages.')
parser.add_option('--get_last_packages',
nargs=3,
help='Returns the last n packages by reponame, prefix or optional postfix.',
metavar='REPO_NAME PREFIX NR_OF_VERS [POSTFIX]')
parser.add_option('--clean_last_packages',
nargs=3,
help='Cleans the last n packages by reponame, prefix or optional postfix.',
metavar='REPO_NAME PREFIX NR_OF_VERS [POSTFIX]')
parser.add_option('--diff_both_last_snapshots_mirrors',
action='store_true',
help='Sorts list of snapshots and makes a diff between the last two.')
parser.add_option('--publish_switch_3rdparty_production',
action='store_true',
help='Publish the last 3rd party staging snapshot to s3 production, if new content is available')
return parser
|
_get_parser_opts
Create parser, options and return object.
|
https://github.com/timsusa/aptly_api_cli/blob/011ba8e7f464726b336b53f6b2cbdc4490b5180c/aptly_cli/cli/cli.py#L33-L218
|
import sys
import json
import os
from optparse import OptionParser
from aptly_cli.util.util import Util
def main():
util = Util()
parser = _get_parser_opts()
(opts, args) = parser.parse_args()
_execute_opts(opts, args, util)
if len(sys.argv) == 1:
parser.print_help()
home = os.path.expanduser("~")
name = home + '/aptly-cli.conf'
if not os.path.exists(name):
print "No config file (aptly-cli.conf) found at $HOME. Please create one by --create_config option"
sys.exit(0)
|
MIT License
|
ppaanngggg/paradoxtrading
|
ParadoxTrading/Utils/DataStruct.py
|
DataStruct.index
|
python
|
def index(self) -> list:
return self.data[self.index_name]
|
return the column of index
:return:
|
https://github.com/ppaanngggg/paradoxtrading/blob/2c4024e60b14bf630fd141ccd4c77f197b7c901a/ParadoxTrading/Utils/DataStruct.py#L310-L316
|
import pickle
import typing
from bisect import bisect_left, bisect_right
import pandas as pd
import tabulate
class DataStruct:
EXPAND_STRICT = 'strict'
EXPAND_INTERSECT = 'intersect'
def __init__(
self,
_keys: typing.Sequence[str],
_index_name: str,
_rows: typing.Sequence[typing.Sequence] = None,
_dicts: typing.Sequence[dict] = None
):
assert _index_name in _keys
self.index_name = _index_name
self.data: typing.Dict[str, typing.List] = {}
for key in _keys:
self.data[key] = []
self.loc: Loc = Loc(self)
self.iloc: ILoc = ILoc(self)
if _rows is not None:
self.addRows(_rows, _keys)
if _dicts is not None:
self.addDicts(_dicts)
def __getitem__(self, _item: str) -> typing.List[typing.Any]:
assert type(_item) == str
return self.data[_item]
def __len__(self) -> int:
return len(self.index())
def __iter__(self):
for i in range(len(self.index())):
yield self.iloc[i]
def __repr__(self):
if len(self) > 20:
tmp_rows, tmp_keys = self.iloc[:8].toRows()
tmp_rows.append(['...' for _ in tmp_keys])
tmp_rows += self.iloc[-8:].toRows()[0]
return tabulate.tabulate(tmp_rows, headers=tmp_keys)
tmp_rows, tmp_keys = self.toRows()
return tabulate.tabulate(tmp_rows, headers=tmp_keys)
def addRow(
self,
_row: typing.Sequence[typing.Any],
_keys: typing.Sequence[str]
):
assert len(_row) == len(_keys)
self.addDict(dict(zip(_keys, _row)))
def addRows(
self,
_rows: typing.Sequence[typing.Sequence],
_keys: typing.Sequence[str]
):
for row in _rows:
self.addRow(row, _keys)
def addDict(self, _dict: typing.Dict[str, typing.Any]):
index_value = _dict[self.index_name]
insert_idx = bisect_right(self.index(), index_value)
for k in self.data.keys():
self.data[k].insert(insert_idx, _dict[k])
def addDicts(self, _dicts: typing.Sequence[dict]):
for _dict in _dicts:
self.addDict(_dict)
def toRows(
self, _keys=None
) -> (typing.Sequence[typing.Sequence[typing.Any]], typing.List[str]):
rows = []
keys: typing.List[str] = _keys
if keys is None:
keys = self.getColumnNames()
for i in range(len(self)):
rows.append([self.data[k][i] for k in keys])
return rows, keys
def toRow(
self, _index: int = 0, _keys=None
) -> (typing.Sequence[typing.Any], typing.List[str]):
keys: typing.List[str] = _keys
if keys is None:
keys = self.getColumnNames()
row = [self.data[k][_index] for k in keys]
return row, keys
def toDicts(self) -> (typing.List[typing.Dict[str, typing.Any]]):
dicts = []
rows, keys = self.toRows()
for d in rows:
dicts.append(dict(zip(keys, d)))
return dicts
def toDict(self, _index: int = 0) -> (typing.Dict[str, typing.Any]):
row, keys = self.toRow(_index)
return dict(zip(keys, row))
def clone(self, _columns: typing.List[str] = None) -> 'DataStruct':
if _columns is None:
return self.iloc[:]
keys_self = self.getColumnNames(_include_index_name=False)
for column in _columns:
assert column in keys_self
keys_new = _columns
if self.index_name not in keys_new:
keys_new.append(self.index_name)
datastruct = DataStruct(
keys_new, self.index_name
)
datastruct.addRows(*self.toRows(keys_new))
return datastruct
def merge(self, _struct: "DataStruct"):
self.addRows(*_struct.toRows())
def expand(
self, _struct: "DataStruct", _type: str = 'strict'
) -> 'DataStruct':
assert self.index_name == _struct.index_name
self_names = self.getColumnNames(_include_index_name=False)
struct_names = _struct.getColumnNames(_include_index_name=False)
assert not (set(self_names) & set(struct_names))
if _type == self.EXPAND_STRICT:
assert len(self) == len(_struct)
for idx1, idx2 in zip(self.index(), _struct.index()):
assert idx1 == idx2
index = self.index()
elif _type == self.EXPAND_INTERSECT:
index = sorted(set(self.index()) & set(_struct.index()))
else:
raise Exception('unknown type!')
new_names = self_names + struct_names
new_names.append(self.index_name)
new_struct = DataStruct(new_names, self.index_name)
for i in index:
tmp_dict = {self.index_name: i}
self_dict = self.loc[i]
if self_dict is None:
self_dict = dict([(d, None) for d in self_names])
else:
self_dict = self_dict.toDict()
tmp_dict.update(self_dict)
struct_dict = _struct.loc[i]
if struct_dict is None:
struct_dict = dict([(d, None) for d in struct_names])
else:
struct_dict = struct_dict.toDict()
tmp_dict.update(struct_dict)
new_struct.addDict(tmp_dict)
return new_struct
def toPandas(self) -> pd.DataFrame:
df = pd.DataFrame(data=self.data, index=self.index())
del df[self.index_name]
df.index.name = self.index_name
return df
@staticmethod
def fromPandas(df: pd.DataFrame) -> 'DataStruct':
columns = list(df)
index_name = df.index.name
columns.append(index_name)
datastruct = DataStruct(columns, index_name)
sorted_df = df.sort_index()
datastruct.data[datastruct.index_name] = sorted_df.index.tolist()
for column in df:
datastruct.data[column] = df[column].tolist()
return datastruct
def save(self, _path: str):
pickle.dump(self, open(_path, 'wb'))
@staticmethod
def load(_path: str) -> 'DataStruct':
return pickle.load(open(_path, 'rb'))
|
MIT License
|
googleapis/python-speech
|
google/cloud/speech_v1p1beta1/services/adaptation/transports/grpc_asyncio.py
|
AdaptationGrpcAsyncIOTransport.list_custom_classes
|
python
|
def list_custom_classes(
self,
) -> Callable[
[cloud_speech_adaptation.ListCustomClassesRequest],
Awaitable[cloud_speech_adaptation.ListCustomClassesResponse],
]:
if "list_custom_classes" not in self._stubs:
self._stubs["list_custom_classes"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1p1beta1.Adaptation/ListCustomClasses",
request_serializer=cloud_speech_adaptation.ListCustomClassesRequest.serialize,
response_deserializer=cloud_speech_adaptation.ListCustomClassesResponse.deserialize,
)
return self._stubs["list_custom_classes"]
|
r"""Return a callable for the list custom classes method over gRPC.
List custom classes.
Returns:
Callable[[~.ListCustomClassesRequest],
Awaitable[~.ListCustomClassesResponse]]:
A function that, when called, will call the underlying RPC
on the server.
|
https://github.com/googleapis/python-speech/blob/cc97a580bb4e693a1c3e5170064164e0c5d8482b/google/cloud/speech_v1p1beta1/services/adaptation/transports/grpc_asyncio.py#L435-L461
|
import warnings
from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union
from google.api_core import gapic_v1
from google.api_core import grpc_helpers_async
from google.auth import credentials as ga_credentials
from google.auth.transport.grpc import SslCredentials
import packaging.version
import grpc
from grpc.experimental import aio
from google.cloud.speech_v1p1beta1.types import cloud_speech_adaptation
from google.cloud.speech_v1p1beta1.types import resource
from google.protobuf import empty_pb2
from .base import AdaptationTransport, DEFAULT_CLIENT_INFO
from .grpc import AdaptationGrpcTransport
class AdaptationGrpcAsyncIOTransport(AdaptationTransport):
_grpc_channel: aio.Channel
_stubs: Dict[str, Callable] = {}
@classmethod
def create_channel(
cls,
host: str = "speech.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: Optional[str] = None,
scopes: Optional[Sequence[str]] = None,
quota_project_id: Optional[str] = None,
**kwargs,
) -> aio.Channel:
return grpc_helpers_async.create_channel(
host,
credentials=credentials,
credentials_file=credentials_file,
quota_project_id=quota_project_id,
default_scopes=cls.AUTH_SCOPES,
scopes=scopes,
default_host=cls.DEFAULT_HOST,
**kwargs,
)
def __init__(
self,
*,
host: str = "speech.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: Optional[str] = None,
scopes: Optional[Sequence[str]] = None,
channel: aio.Channel = None,
api_mtls_endpoint: str = None,
client_cert_source: Callable[[], Tuple[bytes, bytes]] = None,
ssl_channel_credentials: grpc.ChannelCredentials = None,
client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None,
quota_project_id=None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
always_use_jwt_access: Optional[bool] = False,
) -> None:
self._grpc_channel = None
self._ssl_channel_credentials = ssl_channel_credentials
self._stubs: Dict[str, Callable] = {}
if api_mtls_endpoint:
warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning)
if client_cert_source:
warnings.warn("client_cert_source is deprecated", DeprecationWarning)
if channel:
credentials = False
self._grpc_channel = channel
self._ssl_channel_credentials = None
else:
if api_mtls_endpoint:
host = api_mtls_endpoint
if client_cert_source:
cert, key = client_cert_source()
self._ssl_channel_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
else:
self._ssl_channel_credentials = SslCredentials().ssl_credentials
else:
if client_cert_source_for_mtls and not ssl_channel_credentials:
cert, key = client_cert_source_for_mtls()
self._ssl_channel_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
super().__init__(
host=host,
credentials=credentials,
credentials_file=credentials_file,
scopes=scopes,
quota_project_id=quota_project_id,
client_info=client_info,
always_use_jwt_access=always_use_jwt_access,
)
if not self._grpc_channel:
self._grpc_channel = type(self).create_channel(
self._host,
credentials=self._credentials,
credentials_file=credentials_file,
scopes=self._scopes,
ssl_credentials=self._ssl_channel_credentials,
quota_project_id=quota_project_id,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._prep_wrapped_messages(client_info)
@property
def grpc_channel(self) -> aio.Channel:
return self._grpc_channel
@property
def create_phrase_set(
self,
) -> Callable[
[cloud_speech_adaptation.CreatePhraseSetRequest], Awaitable[resource.PhraseSet]
]:
if "create_phrase_set" not in self._stubs:
self._stubs["create_phrase_set"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1p1beta1.Adaptation/CreatePhraseSet",
request_serializer=cloud_speech_adaptation.CreatePhraseSetRequest.serialize,
response_deserializer=resource.PhraseSet.deserialize,
)
return self._stubs["create_phrase_set"]
@property
def get_phrase_set(
self,
) -> Callable[
[cloud_speech_adaptation.GetPhraseSetRequest], Awaitable[resource.PhraseSet]
]:
if "get_phrase_set" not in self._stubs:
self._stubs["get_phrase_set"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1p1beta1.Adaptation/GetPhraseSet",
request_serializer=cloud_speech_adaptation.GetPhraseSetRequest.serialize,
response_deserializer=resource.PhraseSet.deserialize,
)
return self._stubs["get_phrase_set"]
@property
def list_phrase_set(
self,
) -> Callable[
[cloud_speech_adaptation.ListPhraseSetRequest],
Awaitable[cloud_speech_adaptation.ListPhraseSetResponse],
]:
if "list_phrase_set" not in self._stubs:
self._stubs["list_phrase_set"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1p1beta1.Adaptation/ListPhraseSet",
request_serializer=cloud_speech_adaptation.ListPhraseSetRequest.serialize,
response_deserializer=cloud_speech_adaptation.ListPhraseSetResponse.deserialize,
)
return self._stubs["list_phrase_set"]
@property
def update_phrase_set(
self,
) -> Callable[
[cloud_speech_adaptation.UpdatePhraseSetRequest], Awaitable[resource.PhraseSet]
]:
if "update_phrase_set" not in self._stubs:
self._stubs["update_phrase_set"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1p1beta1.Adaptation/UpdatePhraseSet",
request_serializer=cloud_speech_adaptation.UpdatePhraseSetRequest.serialize,
response_deserializer=resource.PhraseSet.deserialize,
)
return self._stubs["update_phrase_set"]
@property
def delete_phrase_set(
self,
) -> Callable[
[cloud_speech_adaptation.DeletePhraseSetRequest], Awaitable[empty_pb2.Empty]
]:
if "delete_phrase_set" not in self._stubs:
self._stubs["delete_phrase_set"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1p1beta1.Adaptation/DeletePhraseSet",
request_serializer=cloud_speech_adaptation.DeletePhraseSetRequest.serialize,
response_deserializer=empty_pb2.Empty.FromString,
)
return self._stubs["delete_phrase_set"]
@property
def create_custom_class(
self,
) -> Callable[
[cloud_speech_adaptation.CreateCustomClassRequest],
Awaitable[resource.CustomClass],
]:
if "create_custom_class" not in self._stubs:
self._stubs["create_custom_class"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1p1beta1.Adaptation/CreateCustomClass",
request_serializer=cloud_speech_adaptation.CreateCustomClassRequest.serialize,
response_deserializer=resource.CustomClass.deserialize,
)
return self._stubs["create_custom_class"]
@property
def get_custom_class(
self,
) -> Callable[
[cloud_speech_adaptation.GetCustomClassRequest], Awaitable[resource.CustomClass]
]:
if "get_custom_class" not in self._stubs:
self._stubs["get_custom_class"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1p1beta1.Adaptation/GetCustomClass",
request_serializer=cloud_speech_adaptation.GetCustomClassRequest.serialize,
response_deserializer=resource.CustomClass.deserialize,
)
return self._stubs["get_custom_class"]
@property
|
Apache License 2.0
|
bpsmith/tia
|
tia/rlab/table.py
|
pad_positive_wrapper
|
python
|
def pad_positive_wrapper(fmtfct):
def check_and_append(*args, **kwargs):
result = fmtfct(*args, **kwargs)
if fmtfct.parens and not result.endswith(')'):
result += ' '
return result
return check_and_append
|
Ensure that numbers are aligned in table by appending a blank space to postive values if 'parenthesis' are
used to denote negative numbers
|
https://github.com/bpsmith/tia/blob/a7043b6383e557aeea8fc7112bbffd6e36a230e9/tia/rlab/table.py#L43-L53
|
from reportlab.platypus import Table, TableStyle, Flowable
from reportlab.lib.colors import grey, white, HexColor, black, gray
from matplotlib.colors import rgb2hex, LinearSegmentedColormap
from matplotlib.pyplot import get_cmap
import numpy as np
import pandas as pd
from tia.rlab.components import KeepInFrame
import tia.util.fmt as fmt
__all__ = ['ConditionalRedBlack', 'DynamicTable', 'TableFormatter', 'RegionFormatter', 'IntFormatter', 'FloatFormatter',
'PercentFormatter', 'ThousandsFormatter', 'MillionsFormatter', 'BillionsFormatter', 'DollarCentsFormatter',
'DollarFormatter', 'ThousandDollarsFormatter', 'MillionDollarsFormatter', 'BillionDollarsFormatter',
'YmdFormatter', 'Y_m_dFormatter', 'DynamicNumberFormatter', 'BorderTypeGrid', 'BorderTypeHorizontal',
'BorderTypeOutline', 'BorderTypeOutline', 'BorderTypeVertical', 'Style', 'BorderTypeOutlineCols']
DefaultHeaderStyle = {
"GRID": (.5, grey), "BOX": (.25, black), "VALIGN": "MIDDLE", "LEADING": 6, "LEFTPADDING": 3,
"RIGHTPADDING": 3, "BOTTOMPADDING": 3, "TOPPADDING": 3, "FONTSIZE": 6, "BACKGROUND": HexColor("#404040"),
"FONTNAME": "Helvetica", "ALIGN": "CENTER", "TEXTCOLOR": white
}
DefaultCellStyle = {
"GRID": (.5, grey), "BOX": (.25, black), "VALIGN": "MIDDLE", "LEADING": 6, "LEFTPADDING": 3,
"RIGHTPADDING": 3, "BOTTOMPADDING": 2, "TOPPADDING": 2, "ALIGN": "CENTER", "TEXTCOLOR": black,
"ROWBACKGROUNDS": [[HexColor("#e3ebf4"), white]], "FONTSIZE": 6, "FONTNAME": "Helvetica"
}
DefaultIndexStyle = {
"GRID": (.5, grey), "BOX": (.25, black), "VALIGN": "MIDDLE", "LEADING": 6, "LEFTPADDING": 3,
"RIGHTPADDING": 3, "BOTTOMPADDING": 2, "TOPPADDING": 2, "ALIGN": "RIGHT", "TEXTCOLOR": black,
"ROWBACKGROUNDS": [[HexColor("#e3ebf4"), white]], "FONTSIZE": 6, "FONTNAME": "Helvetica"
}
DefaultWeight = .7
AlignRight = {'ALIGN': 'RIGHT'}
ConditionalRedBlack = lambda x: x < 0 and dict(TEXTCOLOR=HexColor("#800000"))
|
BSD 3-Clause New or Revised License
|
qiskit/qiskit-aqua
|
qiskit/aqua/algorithms/minimum_eigen_solvers/vqe.py
|
VQE._run
|
python
|
def _run(self) -> 'VQEResult':
if self.operator is None:
raise AquaError("The operator was never provided.")
self._check_operator_varform()
self._quantum_instance.circuit_summary = True
self._eval_count = 0
if self._gradient:
if isinstance(self._gradient, GradientBase):
self._gradient = self._gradient.gradient_wrapper(
~StateFn(self._operator) @ StateFn(self._var_form),
bind_params=self._var_form_params,
backend=self._quantum_instance)
vqresult = self.find_minimum(initial_point=self.initial_point,
var_form=self.var_form,
cost_fn=self._energy_evaluation,
gradient_fn=self._gradient,
optimizer=self.optimizer)
self._ret = {}
self._ret['num_optimizer_evals'] = vqresult.optimizer_evals
self._ret['min_val'] = vqresult.optimal_value
self._ret['opt_params'] = vqresult.optimal_point
self._ret['eval_time'] = vqresult.optimizer_time
self._ret['opt_params_dict'] = vqresult.optimal_parameters
if self._ret['num_optimizer_evals'] is not None and self._eval_count >= self._ret['num_optimizer_evals']:
self._eval_count = self._ret['num_optimizer_evals']
self._eval_time = self._ret['eval_time']
logger.info('Optimization complete in %s seconds.\nFound opt_params %s in %s evals',
self._eval_time, self._ret['opt_params'], self._eval_count)
self._ret['eval_count'] = self._eval_count
result = VQEResult()
result.combine(vqresult)
result.eigenvalue = vqresult.optimal_value + 0j
result.eigenstate = self.get_optimal_vector()
self._ret['energy'] = self.get_optimal_cost()
self._ret['eigvals'] = np.asarray([self._ret['energy']])
self._ret['eigvecs'] = np.asarray([result.eigenstate])
if len(self.aux_operators) > 0:
self._eval_aux_ops()
result.aux_operator_eigenvalues = self._ret['aux_ops'][0]
result.cost_function_evals = self._eval_count
return result
|
Run the algorithm to compute the minimum eigenvalue.
Returns:
The result of the VQE algorithm as ``VQEResult``.
Raises:
AquaError: Wrong setting of operator and backend.
|
https://github.com/qiskit/qiskit-aqua/blob/5ccf0e20129880e78a57f2f78c59b9a362ebb208/qiskit/aqua/algorithms/minimum_eigen_solvers/vqe.py#L403-L467
|
from typing import Optional, List, Callable, Union, Dict, Any
import logging
import warnings
from time import time
import numpy as np
from qiskit import ClassicalRegister, QuantumCircuit
from qiskit.circuit import Parameter
from qiskit.circuit.library import RealAmplitudes
from qiskit.providers import BaseBackend
from qiskit.providers import Backend
from qiskit.aqua import QuantumInstance, AquaError
from qiskit.aqua.algorithms import QuantumAlgorithm
from qiskit.aqua.operators import (OperatorBase, ExpectationBase, ExpectationFactory, StateFn,
CircuitStateFn, LegacyBaseOperator, ListOp, I, CircuitSampler)
from qiskit.aqua.operators.gradients import GradientBase
from qiskit.aqua.components.optimizers import Optimizer, SLSQP
from qiskit.aqua.components.variational_forms import VariationalForm
from qiskit.aqua.utils.validation import validate_min
from qiskit.aqua.utils.backend_utils import is_aer_provider
from ..vq_algorithm import VQAlgorithm, VQResult
from .minimum_eigen_solver import MinimumEigensolver, MinimumEigensolverResult
logger = logging.getLogger(__name__)
class VQE(VQAlgorithm, MinimumEigensolver):
def __init__(self,
operator: Optional[Union[OperatorBase, LegacyBaseOperator]] = None,
var_form: Optional[Union[QuantumCircuit, VariationalForm]] = None,
optimizer: Optional[Optimizer] = None,
initial_point: Optional[np.ndarray] = None,
gradient: Optional[Union[GradientBase, Callable]] = None,
expectation: Optional[ExpectationBase] = None,
include_custom: bool = False,
max_evals_grouped: int = 1,
aux_operators: Optional[List[Optional[Union[OperatorBase,
LegacyBaseOperator]]]] = None,
callback: Optional[Callable[[int, np.ndarray, float, float], None]] = None,
quantum_instance: Optional[
Union[QuantumInstance, BaseBackend, Backend]] = None) -> None:
validate_min('max_evals_grouped', max_evals_grouped, 1)
if var_form is None:
var_form = RealAmplitudes()
if optimizer is None:
optimizer = SLSQP()
if initial_point is None and hasattr(var_form, 'preferred_init_points'):
initial_point = var_form.preferred_init_points
self._max_evals_grouped = max_evals_grouped
self._circuit_sampler = None
self._expectation = expectation
self._user_valid_expectation = self._expectation is not None
self._include_custom = include_custom
self._expect_op = None
self._operator = None
super().__init__(var_form=var_form,
optimizer=optimizer,
cost_fn=self._energy_evaluation,
gradient=gradient,
initial_point=initial_point,
quantum_instance=quantum_instance)
self._ret = None
self._eval_time = None
self._optimizer.set_max_evals_grouped(max_evals_grouped)
self._callback = callback
if operator is not None:
self.operator = operator
self.aux_operators = aux_operators
self._eval_count = 0
logger.info(self.print_settings())
@property
def operator(self) -> Optional[OperatorBase]:
return self._operator
@operator.setter
def operator(self, operator: Union[OperatorBase, LegacyBaseOperator]) -> None:
if isinstance(operator, LegacyBaseOperator):
operator = operator.to_opflow()
self._operator = operator
self._expect_op = None
self._check_operator_varform()
if not self._user_valid_expectation:
self._try_set_expectation_value_from_factory()
def _try_set_expectation_value_from_factory(self) -> None:
if self.operator is not None and self.quantum_instance is not None:
self._set_expectation(ExpectationFactory.build(operator=self.operator,
backend=self.quantum_instance,
include_custom=self._include_custom))
def _set_expectation(self, exp: ExpectationBase) -> None:
self._expectation = exp
self._user_valid_expectation = False
self._expect_op = None
@QuantumAlgorithm.quantum_instance.setter
def quantum_instance(self, quantum_instance: Union[QuantumInstance,
BaseBackend, Backend]) -> None:
super(VQE, self.__class__).quantum_instance.__set__(self, quantum_instance)
self._circuit_sampler = CircuitSampler(
self._quantum_instance,
param_qobj=is_aer_provider(self._quantum_instance.backend))
if not self._user_valid_expectation:
self._try_set_expectation_value_from_factory()
@property
def expectation(self) -> ExpectationBase:
return self._expectation
@expectation.setter
def expectation(self, exp: ExpectationBase) -> None:
self._set_expectation(exp)
self._user_valid_expectation = self._expectation is not None
@property
def aux_operators(self) -> Optional[List[Optional[OperatorBase]]]:
return self._aux_operators
@aux_operators.setter
def aux_operators(self,
aux_operators: Optional[
Union[OperatorBase,
LegacyBaseOperator,
List[Optional[Union[OperatorBase,
LegacyBaseOperator]]]]]) -> None:
if aux_operators is None:
aux_operators = []
elif not isinstance(aux_operators, list):
aux_operators = [aux_operators]
self._aux_op_nones = [op is None for op in aux_operators]
if aux_operators:
zero_op = I.tensorpower(self.operator.num_qubits) * 0.0
converted = []
for op in aux_operators:
if op is None:
converted.append(zero_op)
elif isinstance(op, LegacyBaseOperator):
converted.append(op.to_opflow())
else:
converted.append(op)
aux_operators = [zero_op if op == 0 else op for op in converted]
self._aux_operators = aux_operators
def _check_operator_varform(self):
if self.operator is not None and self.var_form is not None:
if self.operator.num_qubits != self.var_form.num_qubits:
try:
self.var_form.num_qubits = self.operator.num_qubits
self._var_form_params = sorted(self.var_form.parameters, key=lambda p: p.name)
except AttributeError as ex:
raise AquaError("The number of qubits of the variational form does not match "
"the operator, and the variational form does not allow setting "
"the number of qubits using `num_qubits`.") from ex
@VQAlgorithm.optimizer.setter
def optimizer(self, optimizer: Optimizer):
super(VQE, self.__class__).optimizer.__set__(self, optimizer)
if optimizer is not None:
optimizer.set_max_evals_grouped(self._max_evals_grouped)
@property
def setting(self):
ret = "Algorithm: {}\n".format(self.__class__.__name__)
params = ""
for key, value in self.__dict__.items():
if key[0] == "_":
if "initial_point" in key and value is None:
params += "-- {}: {}\n".format(key[1:], "Random seed")
else:
params += "-- {}: {}\n".format(key[1:], value)
ret += "{}".format(params)
return ret
def print_settings(self):
ret = "\n"
ret += "==================== Setting of {} ============================\n".format(
self.__class__.__name__)
ret += "{}".format(self.setting)
ret += "===============================================================\n"
if hasattr(self._var_form, 'setting'):
ret += "{}".format(self._var_form.setting)
elif hasattr(self._var_form, 'print_settings'):
ret += "{}".format(self._var_form.print_settings())
elif isinstance(self._var_form, QuantumCircuit):
ret += "var_form is a custom circuit"
else:
ret += "var_form has not been set"
ret += "===============================================================\n"
ret += "{}".format(self._optimizer.setting)
ret += "===============================================================\n"
return ret
def construct_expectation(self,
parameter: Union[List[float], List[Parameter], np.ndarray]
) -> OperatorBase:
if self.operator is None:
raise AquaError("The operator was never provided.")
self._check_operator_varform()
if isinstance(self.var_form, QuantumCircuit):
param_dict = dict(zip(self._var_form_params, parameter))
wave_function = self.var_form.assign_parameters(param_dict)
else:
wave_function = self.var_form.construct_circuit(parameter)
if self._expectation is None:
self._try_set_expectation_value_from_factory()
if self._expectation is None:
raise AquaError('No expectation set and could not automatically set one, please '
'try explicitly setting an expectation or specify a backend so it '
'can be chosen automatically.')
observable_meas = self.expectation.convert(StateFn(self.operator, is_measurement=True))
ansatz_circuit_op = CircuitStateFn(wave_function)
return observable_meas.compose(ansatz_circuit_op).reduce()
def construct_circuit(self,
parameter: Union[List[float], List[Parameter], np.ndarray]
) -> List[QuantumCircuit]:
expect_op = self.construct_expectation(parameter).to_circuit_op()
circuits = []
def extract_circuits(op):
if isinstance(op, CircuitStateFn):
circuits.append(op.primitive)
elif isinstance(op, ListOp):
for op_i in op.oplist:
extract_circuits(op_i)
extract_circuits(expect_op)
return circuits
@classmethod
def supports_aux_operators(cls) -> bool:
return True
|
Apache License 2.0
|
ai4finance-llc/neofinrl
|
stable_baselines3/a2c/a2c.py
|
A2C.train
|
python
|
def train(self) -> None:
self._update_learning_rate(self.policy.optimizer)
for rollout_data in self.rollout_buffer.get(batch_size=None):
actions = rollout_data.actions
if isinstance(self.action_space, spaces.Discrete):
actions = actions.long().flatten()
values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions)
values = values.flatten()
advantages = rollout_data.advantages
if self.normalize_advantage:
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
policy_loss = -(advantages * log_prob).mean()
value_loss = F.mse_loss(rollout_data.returns, values)
if entropy is None:
entropy_loss = -th.mean(-log_prob)
else:
entropy_loss = -th.mean(entropy)
loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss
self.policy.optimizer.zero_grad()
loss.backward()
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
self._n_updates += 1
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
self.logger.record("train/explained_variance", explained_var)
self.logger.record("train/entropy_loss", entropy_loss.item())
self.logger.record("train/policy_loss", policy_loss.item())
self.logger.record("train/value_loss", value_loss.item())
if hasattr(self.policy, "log_std"):
self.logger.record("train/std", th.exp(self.policy.log_std).mean().item())
|
Update policy using the currently gathered
rollout buffer (one gradient step over whole data).
|
https://github.com/ai4finance-llc/neofinrl/blob/51338dbb0ec86f74e4fc6cce90bc385a4639de79/stable_baselines3/a2c/a2c.py#L117-L174
|
from typing import Any, Dict, Optional, Type, Union
import torch as th
from gym import spaces
from torch.nn import functional as F
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import ActorCriticPolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance
class A2C(OnPolicyAlgorithm):
def __init__(
self,
policy: Union[str, Type[ActorCriticPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 7e-4,
n_steps: int = 5,
gamma: float = 0.99,
gae_lambda: float = 1.0,
ent_coef: float = 0.0,
vf_coef: float = 0.5,
max_grad_norm: float = 0.5,
rms_prop_eps: float = 1e-5,
use_rms_prop: bool = True,
use_sde: bool = False,
sde_sample_freq: int = -1,
normalize_advantage: bool = False,
tensorboard_log: Optional[str] = None,
create_eval_env: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super(A2C, self).__init__(
policy,
env,
learning_rate=learning_rate,
n_steps=n_steps,
gamma=gamma,
gae_lambda=gae_lambda,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
tensorboard_log=tensorboard_log,
policy_kwargs=policy_kwargs,
verbose=verbose,
device=device,
create_eval_env=create_eval_env,
seed=seed,
_init_setup_model=False,
supported_action_spaces=(
spaces.Box,
spaces.Discrete,
spaces.MultiDiscrete,
spaces.MultiBinary,
),
)
self.normalize_advantage = normalize_advantage
if use_rms_prop and "optimizer_class" not in self.policy_kwargs:
self.policy_kwargs["optimizer_class"] = th.optim.RMSprop
self.policy_kwargs["optimizer_kwargs"] = dict(alpha=0.99, eps=rms_prop_eps, weight_decay=0)
if _init_setup_model:
self._setup_model()
|
MIT License
|
nautobot/nautobot
|
nautobot/utilities/management/commands/__init__.py
|
custom_deconstruct
|
python
|
def custom_deconstruct(field):
name, path, args, kwargs = _deconstruct(field)
for attr in EXEMPT_ATTRS:
kwargs.pop(attr, None)
if hasattr(field, "CHOICES"):
kwargs["choices"] = field.CHOICES
return name, path, args, kwargs
|
Imitate the behavior of the stock deconstruct() method, but ignore the field attributes listed above.
|
https://github.com/nautobot/nautobot/blob/624ac936671db928e24b28785e678b96588384c7/nautobot/utilities/management/commands/__init__.py#L13-L28
|
from django.db import models
EXEMPT_ATTRS = [
"choices",
"help_text",
"verbose_name",
]
_deconstruct = models.Field.deconstruct
|
Apache License 2.0
|
koenhaak/congrads
|
bayesreg.py
|
BLR.predict
|
python
|
def predict(self, hyp, X, y, Xs):
if (hyp != self.hyp).all() or not(hasattr(self, 'A')):
self.post(hyp, X, y)
beta = np.exp(hyp[0])
ys = Xs.dot(self.m)
s2 = 1/beta + np.sum(Xs*linalg.solve(self.A, Xs.T).T, axis=1)
return ys, s2
|
Function to make predictions from the model
|
https://github.com/koenhaak/congrads/blob/a988773f7a24d4bd8c0984a887692c098b01962f/bayesreg.py#L237-L250
|
from __future__ import print_function
from __future__ import division
import numpy as np
from scipy import optimize, linalg
from scipy.linalg import LinAlgError
class BLR:
def __init__(self, hyp=None, X=None, y=None,
n_iter=100, tol=1e-3, verbose=False):
self.hyp = np.nan
self.nlZ = np.nan
self.tol = tol
self.n_iter = n_iter
self.verbose = verbose
if (hyp is not None) and (X is not None) and (y is not None):
self.post(hyp, X, y)
def post(self, hyp, X, y):
N = X.shape[0]
if len(X.shape) == 1:
D = 1
else:
D = X.shape[1]
if (hyp == self.hyp).all() and hasattr(self, 'N'):
print("hyperparameters have not changed, exiting")
return
beta = np.exp(hyp[0])
alpha = np.exp(hyp[1:])
if self.verbose:
print("estimating posterior ... | hyp=", hyp)
if len(alpha) == 1 or len(alpha) == D:
self.Sigma = np.diag(np.ones(D))/alpha
self.iSigma = np.diag(np.ones(D))*alpha
else:
raise ValueError("hyperparameter vector has invalid length")
self.A = beta*X.T.dot(X) + self.iSigma
self.m = beta*linalg.solve(self.A, X.T, check_finite=False).dot(y)
self.N = N
self.D = D
self.hyp = hyp
def loglik(self, hyp, X, y):
beta = np.exp(hyp[0])
if (hyp != self.hyp).all() or not(hasattr(self, 'A')):
try:
self.post(hyp, X, y)
except ValueError:
print("Warning: Estimation of posterior distribution failed")
nlZ = 1/np.finfo(float).eps
return nlZ
try:
logdetA = 2*sum(np.log(np.diag(np.linalg.cholesky(self.A))))
except (ValueError, LinAlgError):
print("Warning: Estimation of posterior distribution failed")
nlZ = 1/np.finfo(float).eps
return nlZ
logdetSigma = sum(np.log(np.diag(self.Sigma)))
nlZ = -0.5 * (self.N*np.log(beta) - self.N*np.log(2*np.pi) -
logdetSigma -
beta*(y-X.dot(self.m)).T.dot(y-X.dot(self.m)) -
self.m.T.dot(self.iSigma).dot(self.m) -
logdetA
)
if not np.isfinite(nlZ):
nlZ = 1/np.finfo(float).eps
if self.verbose:
print("nlZ= ", nlZ, " | hyp=", hyp)
self.nlZ = nlZ
return nlZ
def dloglik(self, hyp, X, y):
beta = np.exp(hyp[0])
alpha = np.exp(hyp[1:])
if (hyp != self.hyp).all() or not(hasattr(self, 'A')):
try:
self.post(hyp, X, y)
except ValueError:
print("Warning: Estimation of posterior distribution failed")
dnlZ = np.sign(self.dnlZ) / np.finfo(float).eps
return dnlZ
XX = X.T.dot(X)
S = np.linalg.inv(self.A)
Q = S.dot(X.T)
b = (np.eye(self.D) - beta*Q.dot(X)).dot(Q).dot(y)
dnlZ = np.zeros(hyp.shape)
dnlZ[0] = - (self.N / (2 * beta) - 0.5 * y.dot(y) +
y.dot(X).dot(self.m) +
beta * y.T.dot(X).dot(b) -
0.5 * self.m.T.dot(XX).dot(self.m) -
beta * b.T.dot(self.iSigma).dot(self.m) -
0.5 * np.trace(Q.dot(X))
) * beta
for i in range(0, len(alpha)):
if len(alpha) == self.D:
dSigma = np.zeros((self.D, self.D))
dSigma[i, i] = -alpha[i] ** -2
diSigma = np.zeros((self.D, self.D))
diSigma[i, i] = 1
else:
dSigma = -alpha[i] ** -2*np.eye(self.D)
diSigma = np.eye(self.D)
F = diSigma
c = -beta*S.dot(F).dot(S).dot(X.T).dot(y)
dnlZ[i+1] = -(-0.5 * np.trace(self.iSigma.dot(dSigma)) +
beta * y.T.dot(X).dot(c) -
beta * c.T.dot(XX).dot(self.m) -
c.T.dot(self.iSigma).dot(self.m) -
0.5 * self.m.T.dot(F).dot(self.m) -
0.5*np.trace(linalg.solve(self.A, F))
) * alpha[i]
if not all(np.isfinite(dnlZ)):
bad = np.where(np.logical_not(np.isfinite(dnlZ)))
for b in bad:
dnlZ[b] = np.sign(self.dnlZ[b]) / np.finfo(float).eps
if self.verbose:
print("dnlZ= ", dnlZ, " | hyp=", hyp)
self.dnlZ = dnlZ
return dnlZ
def estimate(self, hyp0, X, y, optimizer='cg'):
if optimizer.lower() == 'cg':
out = optimize.fmin_cg(self.loglik, hyp0, self.dloglik, (X, y),
disp=True, gtol=self.tol,
maxiter=self.n_iter, full_output=1)
elif optimizer.lower() == 'powell':
out = optimize.fmin_powell(self.loglik, hyp0, (X, y),
full_output=1)
else:
raise ValueError("unknown optimizer")
self.hyp = out[0]
self.nlZ = out[1]
self.optimizer = optimizer
return self.hyp
|
Apache License 2.0
|
xflr6/bitsets
|
bitsets/bases.py
|
BitSet.__contains__
|
python
|
def __contains__(self, member):
return self._map[member] & self
|
Set membership.
Raises:
KeyError: if member is not in the domain of the set.
|
https://github.com/xflr6/bitsets/blob/849d735cdf68d7a809170e74cc70581b881ee2d8/bitsets/bases.py#L149-L155
|
from itertools import compress, filterfalse
from . import combos
from . import integers
from . import meta
__all__ = ['MemberBits', 'BitSet']
__new__ = int.__new__
class MemberBits(int, metaclass=meta.MemberBitsMeta):
_indexes = integers.indexes_optimized
_reinverted = integers.reinverted
frombitset = fromint = classmethod(int.__new__)
@classmethod
def frommembers(cls, members=()):
return cls.fromint(sum(map(cls._map.__getitem__, set(members))))
@classmethod
def frombools(cls, bools=()):
return cls.fromint(sum(compress(cls._atoms, bools)))
@classmethod
def frombits(cls, bits='0'):
if len(bits) > cls._len:
raise ValueError(f'too many bits {bits!r}')
return cls.fromint(bits[::-1], 2)
__new__ = frombits.__func__
def __reduce__(self):
return __new__, (self.__class__, self._int)
def copy(self):
return self
int = _int = int.real
iter_set = integers.indexes
def members(self, as_set=False):
if as_set:
return frozenset(map(self._members.__getitem__, self._indexes()))
return tuple(map(self._members.__getitem__, self._indexes()))
def bools(self):
return tuple(not not self & a for a in self._atoms)
def bits(self):
return '{0:0{1}b}'.format(self, self._len)[::-1]
def __repr__(self):
return f'{self.__class__.__name__}({self.bits()!r})'
def atoms(self, reverse=False):
atoms = reversed(self._atoms) if reverse else self._atoms
return filter(self.__and__, atoms)
def inatoms(self, reverse=False):
atoms = reversed(self._atoms) if reverse else self._atoms
return filterfalse(self.__and__, atoms)
def powerset(self, start=None, excludestart=False):
if start is None:
start = self.infimum
other = self.atoms()
else:
if self | start != self:
raise ValueError(f'{start!r} is no subset of {self!r}')
other = self.fromint(self & ~start).atoms()
return map(self.frombitset, combos.shortlex(start, list(other)))
def shortlex(self):
return bin(self).count('1'), self._reinverted(self._len)
def longlex(self):
return -bin(self).count('1'), self._reinverted(self._len)
def shortcolex(self):
return bin(self).count('1'), self._int
def longcolex(self):
return -bin(self).count('1'), self._int
def count(self, value=True):
if value not in (True, False):
raise ValueError(f'can only count True or False, not {value!r}')
return bin(self)[2:].count('01'[value])
def all(self):
return self == self.supremum
def any(self):
return self != self.infimum
class BitSet(MemberBits):
__new__ = MemberBits.frommembers.__func__
__bool__ = MemberBits.any
def __len__(self):
return bin(self).count('1')
def __iter__(self):
return map(self._members.__getitem__, self._indexes())
|
MIT License
|
univ-of-utah-marriott-library-apple/aeios
|
aeios/apps.py
|
AppManager.recovery
|
python
|
def recovery(self):
alerts = self.alerts
def _recovery(alert):
logger = logging.getLogger(__name__)
logger.debug("received alert: %r", alert)
logger.debug(u" message: %r", alert.message)
logger.debug(u" details: %r", alert.details)
logger.debug(u" options: %r", alert.options)
logger.debug(u" choices: %r", alert.choices)
if alerts:
logger.debug("previous alerts were found")
for a in alerts:
if a == alert:
logger.error("same alert occurred: %s", alert)
logger.debug("%r", alert)
raise RecoveryError(alert)
else:
logger.debug("no previous alerts")
alerts.append(alert)
if "unknown error" in [alert.message, alert.details]:
logger.critical("unknown error: %s", alert)
raise alert
elif "already exists on" in alert.message:
logger.debug(u"skipping installed app: %s", alert)
adapter.action("Skip App", ["Apply to all apps"])
elif alert.details:
if "An unexpected network error occurred" in alert.details:
logger.debug(u"attempting to retry network: %s", alert)
adapter.action("Try Again")
else:
raise RecoveryError(alert)
return _recovery
|
:returns: callback to performed in the case of an alert
|
https://github.com/univ-of-utah-marriott-library-apple/aeios/blob/daa7088441030c9b6e1d89e07e18b2090645a65c/aeios/apps.py#L497-L540
|
import re
import os
import logging
import datetime as dt
from distutils import version
import config
from . import resources
from device import DeviceList
from actools import adapter, cfgutil
__author__ = 'Sam Forester'
__email__ = 'sam.forester@utah.edu'
__copyright__ = 'Copyright (c) 2019 University of Utah, Marriott Library'
__license__ = 'MIT'
__version__ = "2.4.2"
__all__ = ['App',
'AppError',
'AppList',
'AppManager',
'RecoveryError']
logging.getLogger(__name__).addHandler(logging.NullHandler())
class Error(Exception):
pass
class AppError(Error):
pass
class RecoveryError(Error):
def __init__(self, alert):
self.alert = alert
def __str__(self):
return self.alert.message
class VerificationError(Error):
pass
class SkipVerification(Error):
pass
class App(object):
def __init__(self, record, path=None):
self.name = u"{0!s}".format(record['itunesName'])
self.version = version.LooseVersion(record['bundleVersion'])
self.displayname = record['displayName']
self.identifier = record['bundleIdentifier']
self._file = None
def __eq__(self, x):
return self.name == x.name and self.version == x.version
def __ne__(self, x):
return not self == x
def __lt__(self, x):
if self.name != x.name:
raise AppError("unable to compare different apps")
return self.version < x.version
def __gt__(self, x):
if self.name != x.name:
raise AppError("unable to compare different apps")
return self.version > x.version
def __repr__(self):
return u"App({0!r})".format(self.name)
def __str__(self):
return self.name.encode('utf-8')
def __unicode__(self):
return self.name
@property
def record(self):
return {'itunesName': self.name,
'bundleVersion': str(self.version),
'displayName': self.displayname,
'bundleIdentifier': self.identifier}
@property
def file(self):
if not self._file:
try:
_files = [x for x in os.listdir(self.path) if x.endswith('.ipa')]
self._file = os.path.join(self.path, _files[-1])
except (OSError, IndexError):
pass
return self._file
class AppList(list):
@property
def names(self):
return [x.name for x in self]
@property
def identifiers(self):
return [x.identifier for x in self]
def find(self, a):
try:
return [app for app in self if app == a][0]
except IndexError:
return a
def app(self, name):
return [app for app in self if app.name == name][0]
def __repr__(self):
return "AppList({0!r})".format(self.names)
def __unicode__(self):
return u'“{0!s}”'.format(u'”, “'.join(self.names))
def __str__(self):
names = [x.encode('utf-8') for x in self.names]
return '"{0!s}"'.format('", "'.join(names))
class Hook(object):
def __init__(self):
self.callback = None
self.trigger = None
class Monitor(object):
def __init__(self):
self.hook = None
self.recovery = None
self.result = None
self.alerts = []
class AlertRecord(object):
def __init__(self, data, alert=None):
if alert:
self.alert = alert
self.count = 1
self.similar = 0
else:
self.alert = adapter.Alert.load(data['alert'])
self.count = data.get('count', 1)
self.similar = data.get('similar', 0)
def record(self):
return {'alert': self.alert.record, 'timestamp': timestamp,
'count': self.count, 'similar': self.similar}
@classmethod
def from_alert(cls, alert):
return cls({}, alert)
class AlertManager(object):
def __init__(self, name, resources):
self.log = logging.getLogger(__name__ + '.AlertManager')
_id = "{0}.errors".format(name)
self.config = config.Manager(_id, path=resources.path)
try:
self.config.read()
except config.Missing as e:
self.log.error(e)
_default = {'Errors': ()}
self.log.debug("creating default: %s", _default)
self.config.write(_default)
def __bool__(self):
return True if self.error else False
__nonzero__ = __bool__
@property
def count(self):
return len(self.errors)
@property
def error(self):
try:
self.log.debug("returning: %r", self.errors[-1])
return self.errors[-1]
except IndexError:
self.log.debug("no errors")
pass
@error.setter
def error(self, value):
self.log.debug("adding value: %r", value)
_errors = self.errors + [value]
self.config.reset('Errors', _errors)
def add(self, value):
self.log.debug("adding value: %r", value)
self.error = value
@property
def errors(self):
return self.config.setdefault('Errors', ())
@errors.setter
def errors(self, value=()):
self.log.debug("reseting value: %r", value)
return self.config.reset('Errors', value)
def clear(self):
self.log.debug("clearing")
return self.config.reset('Errors', [])
class AppManager(object):
def __init__(self, *args, **kwargs):
self.log = logging.getLogger(__name__)
self.resources = resources.Resources(__name__)
domain = self.resources.domain
path = self.resources.path
self.config = self.resources.config
self.file = self.config.file
self.errors = AlertManager(domain, self.resources)
_apps = resources.DEFAULT.apps
try:
g_path = path.replace(os.path.expanduser('~'), '')
g_config = config.Manager(domain, path=g_path)
_apps = g_config.read()
self.config.write(_apps)
except config.ConfigError:
self.log.debug("no global configuration for apps")
try:
self._record = self.config.read()
self.log.debug("found configuration: %s", self.file)
except config.Missing as e:
self.log.error("unable to read config: %s", e)
self.log.info("creating new config from default")
self.log.debug("writing config: %r", _apps)
self.config.write(_apps)
self._record = self.config.read()
adapter.log = os.path.join(self.resources.logs, 'acadapter.log')
self._apps = AppList()
self.alerts = []
@property
def error(self):
return self.errors.error
@property
def record(self):
return self.config.read()
def groups(self, device=None):
if device is not None:
model_type = re.match(r'^(\w+?)\d+,\d+$', device.model).group(1)
groupnames = ["all-{0!s}s".format(model_type)]
groupset = set(groupnames)
try:
_membership = self._record['groups']['model'][device.model]
self.log.debug("_membership: %r", _membership)
groupset.update(_membership)
except KeyError:
pass
self.log.debug("groupset: %r", groupset)
return list(groupset)
else:
_excluded = ['groups', 'Identifiers', 'errors']
return [x for x in self._record.keys() if x not in _excluded]
def list(self, device=None, exclude=()):
appset = set()
for group in self.groups(device):
appset.update(self._record[group])
appset.difference_update(exclude)
return list(appset)
def membership(self, model):
device_type = re.match(r'^(\w+?)\d+,\d+$', model).group(1)
_groups = self.groups
_groups = ['All', 'All-{0!s}'.format(device_type)]
members = {}
for _type, v in self.config.get('groups', {}).items():
for _id, groups in v.items():
if name in groups:
g = members.setdefault(_type, [])
g.append(_id)
return members
def group(self, name):
return {'apps': list(self._record[name]),
'members': self.membership(name)}
def add(self, group, apps):
if isinstance(apps, (str, unicode)):
apps = (apps,)
current = self.config.get(group, [])
if apps:
self.log.debug(u"adding apps: %r: %r", group, apps)
for app in apps:
if app not in current:
current.append(app)
self.log.info(u"added app: '%s'", app)
else:
self.log.info(u"already added: '%s'", app)
self._record[group] = current
self.config.update({group: current})
else:
self.log.debug("nothing to add: %r", apps)
return current
def remove(self, apps, groups=None):
if not apps:
self.log.error("nothing to remove")
return
if isinstance(apps, (str, unicode)):
apps = (apps,)
elif isinstance(apps, AppList):
apps = apps.names
if not groups:
groups = self.groups()
self.log.debug(u"removing: %r from %r", apps, groups)
for group in groups:
current = set(self.config.get(group, []))
self.log.debug("current: %r", current)
modified = current - set(apps)
self.log.debug("modified: %r", modified)
self.config.update({group: list(modified)})
self._record = self.config.read()
def unknown(self, device, appnames=None):
applist = AppList([App(x) for x in device.apps])
if not appnames:
appset = set(applist.names)
else:
appset = set(appnames)
appset.difference_update(self.list())
return AppList([x for x in applist if x.name in appset])
def breakdown(self, devices):
_ipads = self._record['all-iPads']
_breakdown = [(devices, list(set( _ipads)))]
if self._record['iPads']:
ipads = [x for x in devices if x.model == 'iPad7,5']
if ipads:
_breakdown.append((ipads, self._record['iPads']))
ipadpros = [x for x in devices if x.model == 'iPad7,3']
if ipadpros and self._record['iPadPros']:
_breakdown.append((ipadpros, self._record['iPadPros']))
return _breakdown
def installed(self, devices):
_installed = set().union([App(a).name for d in devices for a in d.apps])
self.log.debug("_installed: %r", _installed)
for device in devices:
_apps = [app for app in device.apps]
self.log.debug("_apps: %r", _apps)
_applist = AppList(App(a) for a in _apps)
self.log.debug("_applist: %r", _applist)
names = _applist.names
self.log.debug("names: %r", names)
_installed.intersection_update(names)
return _installed
@staticmethod
def installedapps(devices):
results = cfgutil.get(['installedApps'], devices.ecids)
apps = []
for device in devices:
_apps = results.get(device.ecid, {}).get('installedApps', [])
device.apps = _apps
apps += [x for x in _apps if x not in apps]
return apps
@property
|
MIT License
|
google/hypebot
|
hypebot/plugins/coin_lib.py
|
Bank.ProcessPayment
|
python
|
def ProcessPayment(self,
customer,
merchants,
num_coins,
details,
msg_fn,
can_overdraft=False,
merchant_weights=None):
if num_coins < 0:
logging.error('ProcessPayment called with negative value: %s, %s -> %s',
num_coins, customer, merchants)
return False
if isinstance(merchants, user_pb2.User):
merchants = [merchants]
if merchant_weights is None:
merchant_weights = [1] * len(merchants)
total_weight = sum(merchant_weights)
merchant_weights = [w / total_weight for w in merchant_weights]
amount_paid = 0
success = True
for i, (merchant, weight) in enumerate(zip(merchants, merchant_weights)):
merchant_amount = min(
int(round(num_coins * weight)), num_coins - amount_paid)
if i == len(merchants) - 1:
merchant_amount = num_coins - amount_paid
if merchant_amount > 0:
withdrawl_entry = bank_pb2.LedgerEntry(
details=details, counterparty=merchant)
withdrawl_entry.create_time.GetCurrentTime()
deposit_entry = bank_pb2.LedgerEntry(
details=details,
counterparty=customer,
create_time=withdrawl_entry.create_time)
if (self._Withdraw(customer, merchant_amount, withdrawl_entry, msg_fn,
can_overdraft) and
self._Deposit(merchant, merchant_amount, deposit_entry, msg_fn)):
amount_paid += merchant_amount
else:
success = False
return success
|
Process payment from customer to merchant.
The merchant will only be paid if the customer has the funds.
Args:
customer: {User} name of account to withdraw money.
merchants: {User or list<User>} name(s) of account(s) to deposit money.
num_coins: {int} number of hypecoins to transfer.
details: {string} details of transaction.
msg_fn: {callable(channel, msg)} function to send messages.
can_overdraft: {boolean} whether it is possible to overdraft the account.
If True, the account balance can go negative and no fees will be
charged. If False, the transaction will fail and an overdraft fee will
be assessed if there are insufficient funds for the transaction.
merchant_weights: {list<float>} Weight of num_coins that each merchant
will receive. Defaults to all 1's.
Returns:
{boolean} whether payment was successful.
|
https://github.com/google/hypebot/blob/d85158cf5d966d24c3c2ca5789530864c9fe2662/hypebot/plugins/coin_lib.py#L565-L628
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import collections
import math
import numbers
import random
import re
import threading
from absl import logging
from hypebot.core import schedule_lib
from hypebot.core import util_lib
from hypebot.data import messages
from hypebot.protos import bank_pb2
from hypebot.protos import bet_pb2
from hypebot.protos import user_pb2
import six
from google.protobuf import json_format
BOOKIE_ACCOUNT = user_pb2.User(user_id='_hypebank', display_name='HypeBank')
FEE_ACCOUNT = BOOKIE_ACCOUNT
MINT_ACCOUNT = BOOKIE_ACCOUNT
SCHOLARSHIP_ACCOUNT = user_pb2.User(
user_id='_hypescholarship', display_name='HypeScholarship')
SUBSCRIPTION_ACCOUNT = BOOKIE_ACCOUNT
HYPECENTS = frozenset([
BOOKIE_ACCOUNT.user_id,
FEE_ACCOUNT.user_id,
MINT_ACCOUNT.user_id,
SCHOLARSHIP_ACCOUNT.user_id,
SUBSCRIPTION_ACCOUNT.user_id,
])
class Thievery(object):
_DECAY_RATE = 0.75
_DECAY_TIME = util_lib.ArrowTime(2)
_BASE_BALANCE_PERCENT = 0.02
_HYPEBOT_SCORE = 1000
def __init__(self, store, bank, bot_name, timezone):
self._store = store
self._bank = bank
self._bot_name = bot_name
self._protected_peeps = [self._bot_name] + list(HYPECENTS)
self._scheduler = schedule_lib.HypeScheduler(timezone)
self._scheduler.DailyCallback(
self._DECAY_TIME.to(timezone),
self._store.RunInTransaction,
self._DecayAllScores)
def Rob(self, thief, victim, amount, msg_fn):
if amount < 0:
msg_fn(None, 'Did you mean !hc gift?')
return
if victim.user_id in self._protected_peeps:
msg_fn(None, 'The Godfather protects his family.')
self._bank.ProcessPayment(
thief,
user_pb2.User(user_id=self._bot_name, display_name=self._bot_name),
500, 'In Soviet Russia, %s steals from you.' % self._bot_name, msg_fn)
return
victim_balance = self._bank.GetBalance(victim)
if victim_balance <= 0:
msg_fn(None, 'You cannot milk a dead cow.')
return
thief_alert = self._GetPDF('thief')[thief.user_id]
victim_alert = self._GetPDF('victim')[victim.user_id]
offset = self._BASE_BALANCE_PERCENT * (1 - thief_alert - victim_alert)
failure_chance = self._Sigmoid(amount / victim_balance, offset)
rob_attempt_score = random.random()
logging.info('(%s: %0.2f, %s: %0.2f) %s of %s attempt %0.2f >? %0.2f',
thief, thief_alert, victim, victim_alert, amount,
victim_balance, rob_attempt_score, failure_chance)
if rob_attempt_score < failure_chance:
self._bank.ProcessPayment(thief, SCHOLARSHIP_ACCOUNT,
min(self._bank.GetBalance(thief), amount),
'Victim scholarship fund', msg_fn)
self._DistributeToPastVictims(msg_fn)
if (rob_attempt_score < failure_chance * thief_alert /
(thief_alert + victim_alert + 1e-6)):
msg_fn(None, '%s is a known thief and was caught.' % thief.display_name)
else:
msg_fn(
None, '%s is on high alert and caught %s.' %
(victim.display_name, thief.display_name))
return
if self._bank.ProcessPayment(victim, thief, amount, 'Highway robbery',
msg_fn):
self._store.RunInTransaction(self._UpdateScores, thief, victim, amount)
formatted_amount = util_lib.FormatHypecoins(amount)
msg_fn(
None, '%s stole %s from %s' %
(thief.display_name, formatted_amount, victim.display_name))
msg_fn(
victim, 'You\'ve been robbed! %s stole %s' %
(thief.display_name, formatted_amount))
def _Sigmoid(self, value, offset, scale=200.0):
return 1 / (1 + math.exp(-scale * (value - offset)))
def _GetScores(self, collection, tx=None):
scores = self._store.GetJsonValue(self._bot_name, 'scores:%s' % collection,
tx)
return collections.defaultdict(
int, scores or {self._bot_name: self._HYPEBOT_SCORE})
def _GetPDF(self, collection):
scores = self._GetScores(collection)
total_score = sum(scores.values())
pdf = {peep: score / total_score for peep, score in scores.items()}
return collections.defaultdict(float, pdf)
def _AddToScore(self, collection, name, amount, tx=None):
scores = self._GetScores(collection, tx)
scores[name] += amount
logging.info('Updating %s scores: %s', collection, scores)
self._store.SetJsonValue(self._bot_name, 'scores:%s' % collection, scores,
tx)
def _UpdateScores(self, thief, victim, amount, tx=None):
self._AddToScore('thief', thief.user_id, amount, tx)
self._AddToScore('victim', victim.user_id, amount, tx)
return True
def _DecayAllScores(self, tx=None):
self._DecayScores('thief', tx)
self._DecayScores('victim', tx)
return True
def _DecayScores(self, collection, tx=None):
scores = {
peep: int(score * self._DECAY_RATE)
for peep, score in self._GetScores(collection, tx).items()
if score > 0
}
scores[self._bot_name] = self._HYPEBOT_SCORE
logging.info('Updating %s scores: %s', collection, scores)
self._store.SetJsonValue(self._bot_name, 'scores:%s' % collection, scores,
tx)
def _DistributeToPastVictims(self, msg_fn):
victim_scores = self._GetPDF('victim')
scholarship_balance = self._bank.GetBalance(SCHOLARSHIP_ACCOUNT)
self._bank.ProcessPayment(
SCHOLARSHIP_ACCOUNT,
[user_pb2.User(user_id=v) for v in victim_scores.keys()],
scholarship_balance,
'Victim scholarship fund',
msg_fn,
merchant_weights=victim_scores.values())
class Bookie(object):
_BET_SUBKEY = 'bets'
_ledger_lock = threading.RLock()
def __init__(self, store, bank, inventory):
self._store = store
self._bank = bank
self._inventory = inventory
def LookupBets(self, game, user: user_pb2.User = None, resolver=None):
with self._ledger_lock:
bets = self._GetBets(game)
if user:
user_id = user.user_id
bets = {user_id: bets[user_id]} if user_id in bets else {}
if resolver:
bets = {
user_id: [bet for bet in user_bets if bet.resolver == resolver
] for user_id, user_bets in bets.items()
}
bets = collections.defaultdict(list, bets)
return bets
def PlaceBet(self, game, bet, msg_fn, more=False):
return self._store.RunInTransaction(self._PlaceBet, game, bet, more, msg_fn)
def _PlaceBet(self, game, bet, more, msg_fn, *unused_args, **kwargs):
bet.game = game.name
with self._ledger_lock:
tx = kwargs.get('tx')
if not tx:
logging.error('_PlaceBet can only be called with a transaction.')
return
bets = self._GetBets(game.name, tx=tx)
prior_bet = None
for b in bets[bet.user.user_id]:
if bet.target == b.target:
prior_bet = b
logging.info('%s has a prior_bet for %s:%s => %s', bet.user,
game.name, bet.target, prior_bet)
break
if more and prior_bet:
bet.amount += prior_bet.amount
if game.name == 'lottery':
bet.amount = game.CapBet(bet.user, bet.amount, bet.resolver)
net_amount = bet.amount - (prior_bet.amount if prior_bet else 0)
if net_amount < 0:
msg_fn(bet.user,
'Money on the table is not yours. Try a higher amount.')
return False
if prior_bet:
details = 'Bet updated. Replaced %s with %s' % (
game.FormatBet(prior_bet), game.FormatBet(bet))
else:
details = 'Bet placed. %s' % game.FormatBet(bet)
if not self._bank.ProcessPayment(bet.user, BOOKIE_ACCOUNT, net_amount,
details, msg_fn):
return False
if prior_bet:
bets[bet.user.user_id].remove(prior_bet)
bets[bet.user.user_id].append(bet)
self._SetBets(game.name, bets, tx=tx)
return True
def SettleBets(self, game, resolver, msg_fn, *args, **kwargs):
return self._store.RunInTransaction(self._SettleBets, game, resolver,
msg_fn, *args, **kwargs)
def _SettleBets(self, game, resolver, msg_fn, *args, **kwargs):
with self._ledger_lock:
tx = kwargs.get('tx')
if not tx:
logging.error('_SettleBets can only be called with a transaction.')
return []
bets = self._GetBets(game.name, tx)
if not bets:
logging.warning('Tried to settle bets for %s, but no bets were found',
game.name)
return []
unresolved_bets = collections.defaultdict(list)
filtered_bets = collections.defaultdict(list)
for user_id, user_bets in bets.items():
for bet in user_bets:
if not bet.resolver or bet.resolver == resolver:
filtered_bets[user_id].append(bet)
else:
unresolved_bets[user_id].append(bet)
if not filtered_bets:
logging.info('No bets found for resolver %s', resolver)
return []
winner_info, unused_bets, notifications = game.SettleBets(
filtered_bets, msg_fn, *args, **kwargs)
for user_id, user_bets in unresolved_bets.items():
if user_id in unused_bets:
unused_bets[user_id] += user_bets
else:
unused_bets[user_id] = user_bets
self._SetBets(game.name, unused_bets, tx=tx)
for winner, winnings in winner_info:
if isinstance(winnings, numbers.Number):
if not self._bank.ProcessPayment(BOOKIE_ACCOUNT, winner, winnings,
'Gambling payout', msg_fn):
logging.error('Couldn\'t pay %s %s for winning %s', winner, winnings,
game.name)
else:
self._inventory.AddItem(winner, winnings)
return notifications
def _GetBets(self, row, tx=None):
json_bets = self._store.GetJsonValue(row, self._BET_SUBKEY, tx) or {}
bets = {
u: [json_format.ParseDict(b, bet_pb2.Bet()) for b in user_bets
] for u, user_bets in json_bets.items()
}
return collections.defaultdict(list, bets)
def _SetBets(self, row, bets, tx=None):
json_bets = {
u: [json_format.MessageToDict(b) for b in user_bets
] for u, user_bets in bets.items()
}
return self._store.SetJsonValue(row, self._BET_SUBKEY, json_bets, tx=tx)
class Bank(object):
_BALANCE_SUBKEY = 'bank:balance'
_TRANSACTION_SUBKEY = 'bank:transaction'
_MIN_OVERDRAFT_FEE = 5
_MAX_OVERDRAFT_FEE_PERCENT = 0.05
def __init__(self, store, bot_name):
self._store = store
self._bot_name = bot_name
self._withdraw_lock = threading.RLock()
def GetBalance(self, user):
balance = self._store.GetValue(user.user_id, self._BALANCE_SUBKEY)
if not balance:
return 0
return util_lib.SafeCast(balance, int, 0)
def GetUserBalances(self, plebs_only=False):
user_balances = self._store.GetSubkey(self._BALANCE_SUBKEY)
return {
user_id: util_lib.SafeCast(balance, int, 0)
for user_id, balance in user_balances
if (not plebs_only or user_id not in HYPECENTS) and
not user_id.startswith('http')
}
def GetTransactions(self, user):
json_entries = self._store.GetHistoricalValues(user.user_id,
self._TRANSACTION_SUBKEY, 5)
return [
json_format.ParseDict(entry, bank_pb2.LedgerEntry())
for entry in json_entries
]
def GetBankStats(self, plebs_only=False):
user_balances = self.GetUserBalances(plebs_only=plebs_only)
balance_sum = sum(user_balances.values())
return len(user_balances), balance_sum
def MintNewHypeCoins(self):
mint_balance = self.GetBalance(MINT_ACCOUNT)
num_users, coins_in_circulation = self.GetBankStats()
if mint_balance >= coins_in_circulation // 4:
logging.info(
'Mint balance (%s) >= 25%% of market (%s), not minting new coins',
util_lib.FormatHypecoins(mint_balance),
util_lib.FormatHypecoins(coins_in_circulation))
return
num_coins_to_mint = max(
5000, int(math.log(coins_in_circulation, 2) * num_users * 1000))
logging.info('Minting %s', util_lib.FormatHypecoins(num_coins_to_mint))
entry = bank_pb2.LedgerEntry(
counterparty={
'user_id': '_ether',
'display_name': 'Ether'
},
amount=num_coins_to_mint,
details='Minting')
entry.create_time.GetCurrentTime()
if not self._Deposit(MINT_ACCOUNT, num_coins_to_mint, entry, None):
logging.error('Minting %s failed',
util_lib.FormatHypecoins(num_coins_to_mint))
def ParseAmount(self, user, amount_str, msg_fn):
def _IntAmount(match, unused_balance):
return int(match.groups()[0])
def _HumanIntAmount(match, unused_balance):
try:
return int(util_lib.UnformatHypecoins(match.groups()[0]))
except ValueError:
return None
def _HexAmount(match, unused_balance):
return int(match.groups()[0], 16)
def _RandomBalance(unused_match, balance):
return random.randint(1, balance)
def _MemeTeam(unused_match, unused_balance):
return 'ayyy'
parsers = (
(r'%s$' % self._bot_name,
lambda x, y: 'You can\'t put a price on this bot.'),
(r'(dank)? ?memes?$', _MemeTeam),
(r'(-?[0-9]+)$', _IntAmount),
(r'(?:0x)([0-9,a-f]+)$', _HexAmount),
(r'(a )?positive int$', _RandomBalance),
(r'(-?[0-9.]+ ?[A-Za-z]+)$', _HumanIntAmount),
)
balance = self.GetBalance(user)
amount_str = amount_str.lower().strip()
if amount_str in messages.GAMBLE_STRINGS:
return balance
amount = None
for parser in parsers:
match = re.match(parser[0], amount_str)
if match:
amount = parser[1](match, balance)
break
if amount is None:
amount = 'Unrecognized amount.'
if isinstance(amount, six.string_types):
msg_fn(None, amount)
amount = None
return amount
def FineUser(self, user, amount, details, msg_fn):
return self.ProcessPayment(
user,
BOOKIE_ACCOUNT,
amount,
'Fine: %s' % details,
msg_fn,
can_overdraft=True)
|
Apache License 2.0
|
facebookresearch/fvcore
|
fvcore/transforms/transform.py
|
ScaleTransform.apply_image
|
python
|
def apply_image(self, img: np.ndarray, interp: str = None) -> np.ndarray:
if len(img.shape) == 4:
h, w = img.shape[1:3]
elif len(img.shape) in (2, 3):
h, w = img.shape[:2]
else:
raise ("Unsupported input with shape of {}".format(img.shape))
assert (
self.h == h and self.w == w
), "Input size mismatch h w {}:{} -> {}:{}".format(self.h, self.w, h, w)
interp_method = interp if interp is not None else self.interp
if interp_method in ["linear", "bilinear", "bicubic"]:
align_corners = False
else:
align_corners = None
float_tensor = torch.nn.functional.interpolate(
to_float_tensor(img),
size=(self.new_h, self.new_w),
mode=interp_method,
align_corners=align_corners,
)
return to_numpy(float_tensor, img.shape, img.dtype)
|
Resize the image(s).
Args:
img (ndarray): of shape NxHxWxC, or HxWxC or HxW. The array can be
of type uint8 in range [0, 255], or floating point in range
[0, 1] or [0, 255].
interp (str): interpolation methods. Options includes `nearest`, `linear`
(3D-only), `bilinear`, `bicubic` (4D-only), and `area`.
Details can be found in:
https://pytorch.org/docs/stable/nn.functional.html
Returns:
ndarray: resized image(s).
|
https://github.com/facebookresearch/fvcore/blob/4525b814c8bb0f70510e37e68247c958010eb285/fvcore/transforms/transform.py#L509-L550
|
import inspect
import pprint
from abc import ABCMeta, abstractmethod
from typing import Any, Callable, List, Optional, TypeVar
import numpy as np
import torch
from .transform_util import to_float_tensor, to_numpy
__all__ = [
"BlendTransform",
"CropTransform",
"PadTransform",
"GridSampleTransform",
"HFlipTransform",
"VFlipTransform",
"NoOpTransform",
"ScaleTransform",
"Transform",
"TransformList",
]
class Transform(metaclass=ABCMeta):
def _set_attributes(self, params: Optional[List[Any]] = None) -> None:
if params:
for k, v in params.items():
if k != "self" and not k.startswith("_"):
setattr(self, k, v)
@abstractmethod
def apply_image(self, img: np.ndarray):
@abstractmethod
def apply_coords(self, coords: np.ndarray):
def apply_segmentation(self, segmentation: np.ndarray) -> np.ndarray:
return self.apply_image(segmentation)
def apply_box(self, box: np.ndarray) -> np.ndarray:
idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
coords = np.asarray(box).reshape(-1, 4)[:, idxs].reshape(-1, 2)
coords = self.apply_coords(coords).reshape((-1, 4, 2))
minxy = coords.min(axis=1)
maxxy = coords.max(axis=1)
trans_boxes = np.concatenate((minxy, maxxy), axis=1)
return trans_boxes
def apply_polygons(self, polygons: list) -> list:
return [self.apply_coords(p) for p in polygons]
@classmethod
def register_type(cls, data_type: str, func: Optional[Callable] = None):
if func is None:
def wrapper(decorated_func):
assert decorated_func is not None
cls.register_type(data_type, decorated_func)
return decorated_func
return wrapper
assert callable(
func
), "You can only register a callable to a Transform. Got {} instead.".format(
func
)
argspec = inspect.getfullargspec(func)
assert len(argspec.args) == 2, (
"You can only register a function that takes two positional "
"arguments to a Transform! Got a function with spec {}".format(str(argspec))
)
setattr(cls, "apply_" + data_type, func)
def inverse(self) -> "Transform":
raise NotImplementedError
def __repr__(self):
try:
sig = inspect.signature(self.__init__)
classname = type(self).__name__
argstr = []
for name, param in sig.parameters.items():
assert (
param.kind != param.VAR_POSITIONAL
and param.kind != param.VAR_KEYWORD
), "The default __repr__ doesn't support *args or **kwargs"
assert hasattr(self, name), (
"Attribute {} not found! "
"Default __repr__ only works if attributes match the constructor.".format(
name
)
)
attr = getattr(self, name)
default = param.default
if default is attr:
continue
attr_str = pprint.pformat(attr)
if "\n" in attr_str:
attr_str = "..."
argstr.append("{}={}".format(name, attr_str))
return "{}({})".format(classname, ", ".join(argstr))
except AssertionError:
return super().__repr__()
_T = TypeVar("_T")
class TransformList(Transform):
def __init__(self, transforms: List[Transform]):
super().__init__()
tfms_flatten = []
for t in transforms:
assert isinstance(
t, Transform
), f"TransformList requires a list of Transform. Got type {type(t)}!"
if isinstance(t, TransformList):
tfms_flatten.extend(t.transforms)
else:
tfms_flatten.append(t)
self.transforms = tfms_flatten
def _apply(self, x: _T, meth: str) -> _T:
for t in self.transforms:
x = getattr(t, meth)(x)
return x
def __getattribute__(self, name: str):
if name.startswith("apply_"):
return lambda x: self._apply(x, name)
return super().__getattribute__(name)
def __add__(self, other: "TransformList") -> "TransformList":
others = other.transforms if isinstance(other, TransformList) else [other]
return TransformList(self.transforms + others)
def __iadd__(self, other: "TransformList") -> "TransformList":
others = other.transforms if isinstance(other, TransformList) else [other]
self.transforms.extend(others)
return self
def __radd__(self, other: "TransformList") -> "TransformList":
others = other.transforms if isinstance(other, TransformList) else [other]
return TransformList(others + self.transforms)
def __len__(self) -> int:
return len(self.transforms)
def __getitem__(self, idx) -> Transform:
return self.transforms[idx]
def inverse(self) -> "TransformList":
return TransformList([x.inverse() for x in self.transforms[::-1]])
def __repr__(self) -> str:
msgs = [str(t) for t in self.transforms]
return "TransformList[{}]".format(", ".join(msgs))
__str__ = __repr__
def apply_coords(self, x):
raise NotImplementedError
def apply_image(self, x):
raise NotImplementedError
class HFlipTransform(Transform):
def __init__(self, width: int):
super().__init__()
self._set_attributes(locals())
def apply_image(self, img: np.ndarray) -> np.ndarray:
if img.ndim <= 3:
return np.flip(img, axis=1)
else:
return np.flip(img, axis=-2)
def apply_coords(self, coords: np.ndarray) -> np.ndarray:
coords[:, 0] = self.width - coords[:, 0]
return coords
def inverse(self) -> Transform:
return self
class VFlipTransform(Transform):
def __init__(self, height: int):
super().__init__()
self._set_attributes(locals())
def apply_image(self, img: np.ndarray) -> np.ndarray:
tensor = torch.from_numpy(np.ascontiguousarray(img))
if len(tensor.shape) == 2:
tensor = tensor.flip((-2))
elif len(tensor.shape) > 2:
tensor = tensor.flip((-3))
return tensor.numpy()
def apply_coords(self, coords: np.ndarray) -> np.ndarray:
coords[:, 1] = self.height - coords[:, 1]
return coords
def inverse(self) -> Transform:
return self
class NoOpTransform(Transform):
def __init__(self):
super().__init__()
def apply_image(self, img: np.ndarray) -> np.ndarray:
return img
def apply_coords(self, coords: np.ndarray) -> np.ndarray:
return coords
def inverse(self) -> Transform:
return self
def __getattr__(self, name: str):
if name.startswith("apply_"):
return lambda x: x
raise AttributeError("NoOpTransform object has no attribute {}".format(name))
class ScaleTransform(Transform):
def __init__(self, h: int, w: int, new_h: int, new_w: int, interp: str = None):
super().__init__()
self._set_attributes(locals())
|
Apache License 2.0
|
pepkit/looper
|
oldtests/models/pipeline_interface/test_PipelineInterface.py
|
ConstructorPathParsingTests.apply_envvars
|
python
|
def apply_envvars(self, request):
if "envvars" not in request.fixturenames:
return
original_envvars = {}
new_envvars = request.getfixturevalue("envvars")
for name, value in new_envvars.items():
try:
original_envvars[name] = os.environ[name]
except KeyError:
pass
os.environ[name] = value
def restore():
for k, v in new_envvars.items():
try:
os.environ[k] = original_envvars[k]
except KeyError:
del os.environ[k]
request.addfinalizer(restore)
|
Use environment variables temporarily.
|
https://github.com/pepkit/looper/blob/cd1c7d4da84c631a4b6565b7a80926c7ac3640c3/oldtests/models/pipeline_interface/test_PipelineInterface.py#L457-L482
|
import copy
import inspect
import itertools
import logging
import os
import random
import sys
import warnings
import pytest
import yaml
from attmap import PathExAttMap
from divvy import DEFAULT_COMPUTE_RESOURCES_NAME
from looper.const import *
from looper.pipeline_interface import PipelineInterface, PL_KEY, PROTOMAP_KEY, RESOURCES_KEY
from looper.project import Project
from looper.exceptions import InvalidResourceSpecificationException, MissingPipelineConfigurationException, PipelineInterfaceConfigError
from peppy import Project, Sample
from peppy.const import *
from ubiquerg import powerset
from .conftest import ATAC_PROTOCOL_NAME, write_config_data
from oldtests.helpers import remove_piface_requirements
__author__ = "Vince Reuter"
__email__ = "vreuter@virginia.edu"
_LOGGER = logging.getLogger(__name__)
PIPELINE_NAMES = ["ATACseq", "WGBS"]
EXTENSIONS = [".py", ".sh", ".R"]
def pytest_generate_tests(metafunc):
try:
parameters = metafunc.cls.PARAMETERS
except AttributeError:
_LOGGER.debug("No indirect parameterization for test class: '{}'".
format(metafunc.cls))
else:
for name, values in parameters.items():
metafunc.parametrize(argnames=name, argvalues=values)
@pytest.fixture(scope="function")
def basic_pipe_iface_data(request):
extension = request.getfixturevalue("extension") if "extension" in request.fixturenames else ".py"
return {pipe_name + extension: {"name": pipe_name}
for pipe_name in PIPELINE_NAMES}
@pytest.fixture
def bundled_piface(request):
pipelines = request.getfixturevalue("basic_pipe_iface_data")
return {PROTOMAP_KEY: {"ATAC": "ATACSeq.py"}, PL_KEY: pipelines}
@pytest.fixture(scope="function")
def pi_with_resources(request, bundled_piface, resources):
if "use_new_file_size" in request.fixturenames:
file_size_name = "min_file_size" if request.getfixturevalue("use_new_file_size") else "file_size"
for rp_data in resources.values():
size1 = rp_data.pop("file_size", None)
size2 = rp_data.pop("min_file_size", None)
size = size1 or size2
if size:
rp_data[file_size_name] = size
pipe_iface_config = PipelineInterface(bundled_piface)
for pipe_data in pipe_iface_config.pipelines.values():
pipe_data[RESOURCES_KEY] = resources
return pipe_iface_config
@pytest.mark.parametrize(argnames="from_file", argvalues=[False, True])
def test_basic_construction(tmpdir, from_file, bundled_piface):
if from_file:
pipe_iface_config = tmpdir.join("pipe-iface-conf.yaml").strpath
with open(tmpdir.join("pipe-iface-conf.yaml").strpath, 'w') as f:
yaml.safe_dump(bundled_piface, f)
else:
pipe_iface_config = bundled_piface
pi = PipelineInterface(pipe_iface_config)
assert PL_KEY in pi, "Missing pipeline key ({})".format(PL_KEY)
assert PROTOMAP_KEY in pi, "Missing protocol mapping key: ({})".format(PROTOMAP_KEY)
assert pi.pipe_iface_file == (pipe_iface_config if from_file else None)
if from_file:
assert pi.pipelines_path == tmpdir.strpath
else:
assert pi.pipelines_path is None
assert bundled_piface[PL_KEY] == remove_piface_requirements(pi[PL_KEY])
assert PathExAttMap(bundled_piface[PROTOMAP_KEY]) == pi[PROTOMAP_KEY]
assert pi.pipelines == pi[PL_KEY]
assert list(pi.pipelines.keys()) == pi.pipeline_names
def test_iterpipes(pi_with_resources):
missing, unequal = [], []
seen = 0
known = pi_with_resources[PL_KEY]
assert len(known) > 0
def get_err_msg(obs, context):
return "{} of {} known pipeline(s) {}: {}".format(
len(obs), len(known), context, ", ".join(obs))
for pipe, data in pi_with_resources.iterpipes():
seen += 1
if pipe not in known:
missing.append(pipe)
elif data != pi_with_resources.select_pipeline(pipe):
unequal.append(pipe)
assert len(known) == seen
assert [] == missing, get_err_msg(missing, "missing")
try:
assert [] == unequal
except AssertionError:
print(get_err_msg(unequal, "with unmatched data"))
print("KNOWN: {}".format(known))
print("ITERPIPES: {}".format(", ".join(pi_with_resources.iterpipes())))
raise
@pytest.mark.parametrize(
"exclude", powerset(PipelineInterface.REQUIRED_SECTIONS))
def test_requires_pipelines_and_protocol_mapping(
basic_pipe_iface_data, bundled_piface, exclude):
pipe_iface_config = copy.deepcopy(bundled_piface)
missing = [s for s in PipelineInterface.REQUIRED_SECTIONS if s not in pipe_iface_config]
assert [] == missing, "Missing PI config section(s): {}".format(", ".join(missing))
pipe_iface_config = {
k: v for k, v in pipe_iface_config.items() if k not in exclude}
assert [] == [s for s in exclude if s in pipe_iface_config]
if exclude:
with pytest.raises(PipelineInterfaceConfigError):
PipelineInterface(pipe_iface_config)
else:
PipelineInterface(pipe_iface_config)
@pytest.mark.parametrize(
argnames="funcname_and_kwargs",
argvalues=[("choose_resource_package", {"file_size": 4}),
("get_arg_string",
{"sample": Sample(
{"sample_name": "arbitrary-sample-name"})}),
("get_attribute",
{"attribute_key": "irrelevant-attr-name"}),
("get_pipeline_name", {})])
@pytest.mark.parametrize(argnames="use_resources", argvalues=[False, True])
def test_unconfigured_pipeline_exception(
funcname_and_kwargs, use_resources, pi_with_resources):
pi = pi_with_resources
if not use_resources:
for pipeline in pi.pipelines.values():
try:
del pipeline[RESOURCES_KEY][DEFAULT_COMPUTE_RESOURCES_NAME]
except KeyError:
pass
def parse_param_names(f):
return inspect.getargspec(f).args if sys.version_info < (3, 0) else [p for p in inspect.signature(f).parameters.keys()]
funcname, kwargs = funcname_and_kwargs
func = getattr(pi, funcname)
required_parameters = parse_param_names(func)
for parameter in ["pipeline_name", "pipeline"]:
if parameter in required_parameters and parameter not in kwargs:
kwargs[parameter] = "missing-pipeline"
with pytest.raises(MissingPipelineConfigurationException):
func.__call__(**kwargs)
@pytest.mark.parametrize(
argnames=["pipe_name", "extension"],
argvalues=list(itertools.product(PIPELINE_NAMES, EXTENSIONS)))
def test_prohibition_of_direct_pipeline_access(
recwarn, pipe_name, extension, pi_with_resources):
pk = pipe_name + extension
assert pk in pi_with_resources.pipelines
warnings.simplefilter('always')
assert 0 == len(recwarn)
_ = pi_with_resources.select_pipeline(pk)
assert 0 == len(recwarn)
with pytest.raises(KeyError):
pi_with_resources[pk]
class PipelineInterfaceNameResolutionTests:
@pytest.mark.parametrize(
argnames="name_and_ext_pairs",
argvalues=itertools.combinations(
itertools.product(PIPELINE_NAMES, EXTENSIONS), 2))
def test_get_pipeline_name_explicit(self, name_and_ext_pairs):
names, extensions = zip(*name_and_ext_pairs)
pipelines = [name + ext for name, ext in name_and_ext_pairs]
pi_conf_data = {pipeline: {"name": name}
for pipeline, name in zip(pipelines, names)}
pi = PipelineInterface({PROTOMAP_KEY: {"ATAC": "ATACSeq.py"},
PL_KEY: pi_conf_data})
for pipeline, expected_name in zip(pipelines, names):
assert expected_name == pi.get_pipeline_name(pipeline)
class PipelineInterfaceResourcePackageTests:
PARAMETERS = {"use_new_file_size": [False, True]}
def test_requires_default(
self, use_new_file_size, pi_with_resources, huge_resources):
pi = pi_with_resources
for name, pipeline in pi.iterpipes():
try:
del pipeline[RESOURCES_KEY][DEFAULT_COMPUTE_RESOURCES_NAME]
except KeyError:
pass
assert "default" not in pipeline[RESOURCES_KEY]
with pytest.raises(InvalidResourceSpecificationException):
pi.choose_resource_package(
name, file_size=huge_resources["file_size"] + 1)
def test_negative_file_size_request(
self, use_new_file_size, pi_with_resources):
pi = pi_with_resources
for pipeline_name in pi.pipeline_names:
negative_file_size = -10 * random.random()
with pytest.raises(ValueError):
pi.choose_resource_package(
pipeline_name, file_size=negative_file_size)
@pytest.mark.parametrize(argnames="file_size", argvalues=[0, 10, 101])
def test_resources_not_required(
self, use_new_file_size, file_size, pi_with_resources):
pi = pi_with_resources
for pipe_data in pi.pipelines.values():
del pipe_data[RESOURCES_KEY]
for pipe_name in pi.pipeline_names:
assert {} == pi.choose_resource_package(pipe_name, int(file_size))
assert {} == pi.choose_resource_package(pipe_name, float(file_size))
@pytest.mark.parametrize(
argnames=["file_size", "expected_package_name"],
argvalues=[(0, "default"), (4, "default"),
(16, "midsize"), (64, "huge")])
def test_selects_proper_resource_package(
self, use_new_file_size, pi_with_resources,
file_size, expected_package_name, midsize_resources):
for pipe_data in pi_with_resources.pipelines.values():
pipe_data[RESOURCES_KEY].update(
{"midsize": copy.deepcopy(midsize_resources)})
for pipe_name, pipe_data in pi_with_resources.iterpipes():
observed_package = pi_with_resources.choose_resource_package(
pipe_name, file_size)
expected_package = copy.deepcopy(
pipe_data[RESOURCES_KEY][expected_package_name])
assert expected_package == observed_package
def test_negative_file_size_prohibited(
self, use_new_file_size, pi_with_resources):
file_size_attr = "min_file_size" if use_new_file_size else "file_size"
for pipe_data in pi_with_resources.pipelines.values():
for package_data in pipe_data[RESOURCES_KEY].values():
package_data[file_size_attr] = -5 * random.random()
for pipe_name in pi_with_resources.pipeline_names:
file_size_request = random.randrange(1, 11)
with pytest.raises(ValueError):
pi_with_resources.choose_resource_package(
pipe_name, file_size_request)
def test_file_size_spec_not_required_for_default(
self, use_new_file_size, bundled_piface,
default_resources, huge_resources, midsize_resources):
def clear_file_size(resource_package):
for fs_var_name in ("file_size", "min_file_size"):
if fs_var_name in resource_package:
del resource_package[fs_var_name]
resources_data = dict(zip(
["default", "midsize", "huge"],
[copy.deepcopy(data) for data in
[default_resources, midsize_resources, huge_resources]]))
for pack_name, pack_data in resources_data.items():
if pack_name == "default":
clear_file_size(pack_data)
elif use_new_file_size:
pack_data["min_file_size"] = pack_data.pop("file_size")
pipe_iface_data = copy.deepcopy(bundled_piface)
for pipe_data in pipe_iface_data[PL_KEY].values():
pipe_data[RESOURCES_KEY] = resources_data
pi = PipelineInterface(pipe_iface_data)
for pipe_name, pipe_data in pi.iterpipes():
default_resource_package = pipe_data[RESOURCES_KEY][DEFAULT_COMPUTE_RESOURCES_NAME]
clear_file_size(default_resource_package)
assert default_resource_package == pi.choose_resource_package(pipe_name, 0.001)
@pytest.mark.parametrize(
argnames="min_file_size", argvalues=[-1, 1])
def test_default_package_new_name_zero_size(
self, use_new_file_size, min_file_size, pi_with_resources):
for pipe_name, pipe_data in pi_with_resources.iterpipes():
default_resource_package = pipe_data[RESOURCES_KEY]["default"]
if use_new_file_size:
if "file_size" in default_resource_package:
del default_resource_package["file_size"]
default_resource_package["min_file_size"] = min_file_size
else:
if "min_file_size" in default_resource_package:
del default_resource_package["min_file_size"]
default_resource_package["file_size"] = min_file_size
observed_resource_package = pi_with_resources.choose_resource_package(pipe_name, 0)
expected_resource_package = copy.deepcopy(default_resource_package)
if "file_size" in expected_resource_package:
del expected_resource_package["file_size"]
expected_resource_package["min_file_size"] = 0
assert expected_resource_package == observed_resource_package
def test_file_size_spec_required_for_non_default_packages(
self, use_new_file_size, bundled_piface,
default_resources, huge_resources):
resource_package_data = {
"default": copy.deepcopy(default_resources),
"huge": copy.deepcopy(huge_resources)}
del resource_package_data["huge"]["file_size"]
if use_new_file_size:
resource_package_data["default"]["min_file_size"] = resource_package_data["default"].pop("file_size")
for pipe_data in bundled_piface[PL_KEY].values():
pipe_data[RESOURCES_KEY] = resource_package_data
pi = PipelineInterface(bundled_piface)
for pipe_name in pi.pipeline_names:
with pytest.raises(KeyError):
pi.choose_resource_package(pipe_name, random.randrange(0, 10))
class ConstructorPathParsingTests:
ADD_PATH = [True, False]
PIPELINE_KEYS = ["ATACSeq.py", "no_path.py"]
RELATIVE_PATH_DATA = [
("./arbitrary-test-pipelines",
{},
"./arbitrary-test-pipelines"),
("path/to/$TEMP_PIPE_LOCS",
{"TEMP_PIPE_LOCS": "validation-value"},
"path/to/validation-value")]
ABSOLUTE_PATHS = [
os.path.join("~", "code_home", "bioinformatics"),
os.path.join("$TEMP_TEST_HOME", "subfolder"),
os.path.join("~", "$TEMPORARY_SUBFOLDER", "leaf")]
ABSPATH_ENVVARS = {"TEMP_TEST_HOME": "tmptest-home-folder",
"TEMPORARY_SUBFOLDER": "temp-subfolder"}
EXPECTED_PATHS_ABSOLUTE = [
os.path.join(os.path.expanduser("~"), "code_home",
"bioinformatics"),
os.path.join("tmptest-home-folder", "subfolder"),
os.path.join(os.path.expanduser("~"), "temp-subfolder", "leaf")]
@pytest.fixture(scope="function")
def pipe_iface_data(self, piface_config_bundles):
return dict(zip(self.PIPELINE_KEYS, piface_config_bundles))
@pytest.fixture(scope="function")
def bundled_piface(self, pipe_iface_data):
return {PROTOMAP_KEY: {"ATAC": "ATACSeq.py"},
PL_KEY: pipe_iface_data}
@pytest.fixture(scope="function", autouse=True)
|
BSD 2-Clause Simplified License
|
vikifox/monster
|
elfinder/volumes/storage.py
|
ElfinderVolumeStorage._save_uploaded
|
python
|
def _save_uploaded(self, uploaded_file, dir_, name, **kwargs):
path = self._join_path(dir_, name)
first_chunk = kwargs.get('first_chunk',False)
chunk = kwargs.get('chunk',False)
if chunk is False:
target = self._fopen(path, 'w+')
else:
if first_chunk is True:
target = self._fopen(path, 'w+')
else:
target = self._fopen(path, 'a+')
for chunk in uploaded_file.chunks():
target.write(chunk)
target.close()
return path
|
Save the Django
`UploadedFile <https://docs.djangoproject.com/en/dev/topics/http/file-uploads/#django.core.files.uploadedfile.UploadedFile>`_
object and return its new path.
|
https://github.com/vikifox/monster/blob/bac9b7da204c3eee344f55bb2187df38ef3b3d4c/elfinder/volumes/storage.py#L458-L478
|
import os, re, magic, time, tempfile, shutil, mimetypes
try:
from PIL import Image
except ImportError:
import Image
from django.core.files.storage import FileSystemStorage
from django.core.files.base import ContentFile
from django.core.files import File as DjangoFile
from importlib import import_module
from elfinder.exceptions import NotAnImageError, ElfinderErrorMessages
from base import ElfinderVolumeDriver
class ElfinderVolumeStorage(ElfinderVolumeDriver):
_driver_id = 's'
def mount(self, opts):
if "key_label" in opts['storageKwArgs'].keys():
self._key_label = opts['storageKwArgs']['key_label']
del opts['storageKwArgs']['key_label']
if not 'storage' in opts:
if not 'storageClass' in opts:
opts['storage'] = FileSystemStorage()
else:
if isinstance(opts['storageClass'], basestring):
split = opts['storageClass'].split('.')
storage_module = import_module('.'.join(split[:-1]))
opts['storageClass'] = getattr(storage_module, split[-1])
if not 'storageKwArgs' in opts:
opts['storageKwArgs'] = {}
opts['storage'] = opts['storageClass'](**opts['storageKwArgs'])
try:
opts['storage'].listdir(self._root)
opts['storage'].url(self._root)
except NotImplementedError:
raise Exception('Storage %s should implement both the listdir() and url() methods to be valid for use with yawd-elfinder.' % self._options['storage'].__class__)
self._options['path'] = '.'
if (not 'URL' in opts or not opts['URL']):
self._options['URL'] = opts['storage'].url(self._root)
if not 'alias' in opts or not opts['alias']:
self._options['alias'] = opts['storage'].__class__.__name__
return super(ElfinderVolumeStorage, self).mount(opts)
def _configure(self):
if not self._isabs(self._options['tmbPath']):
super(ElfinderVolumeStorage, self)._configure()
if not self._options['tmbURL'] and self._options['URL']:
self._options['tmbURL'] = self._options['URL'] + self._options['tmbPath'][len(self._root)+1:].replace(self._separator, '/') + '/'
elif self._isabs(self._options['tmbPath']):
raise Exception('tmbPath must be relative')
try:
self._options['storage'].delete(self.encode(str(time.time())))
except NotImplementedError:
if not 'rm' in self._options['disabled']:
self._options['disabled'].append('rm')
except:
pass
if not 'rmDir' in self._options or not callable(self._options['rmDir']):
if isinstance(self._options['storage'], FileSystemStorage):
self._options['rmDir'] = self._rmdir_callable
elif not 'rmdir' in self._options['disabled']:
pass
def _dirname(self, path):
return self._separator.join(path.split(self._separator)[:-1])
def _basename(self, path):
return path.split(self._separator)[-1]
def _join_path(self, path1, path2):
if self._separator == '\\' and re.match(r'([a-zA-Z]+:)?\\$', path2):
return path2
elif path2.startswith(self._separator):
return path2
if not path1.endswith(self._separator):
return '%s%s%s' % (path1, self._separator, path2)
else:
return '%s%s' % (path1, path2)
def _normpath(self, path):
if path[-1] == self._separator:
return path[:-1]
return path
def _get_available_name(self, dir_, name, ext, i):
path = self._options['storage'].get_available_name(self._join_path(dir_, '%s%s' % (name, ext)))
return self._basename(path)
def _stat(self, path):
stat = {}
if not self._options['storage'].exists(path):
raise os.error
try:
stat['mime'] = self.mimetype(path)
try:
stat['size'] = self._options['storage'].size(path)
except NotImplementedError:
stat['size'] = 0
except:
stat['mime'] = 'directory'
stat['size'] = 0
try:
stat['ts'] = time.mktime(self._options['storage'].modified_time(path).timetuple())
except NotImplementedError:
stat['ts'] = ''
stat['read'] = True
stat['write'] = True
return stat
def _subdirs(self, path):
try:
for entry in self._options['storage'].listdir(path)[0]:
if not self._attr(self._join_path(path, entry), 'hidden'):
return True
except NotImplementedError:
pass
def _dimensions(self, path):
try:
im = self._openimage(path)
return '%sx%s' % im.size
except:
raise NotAnImageError
def _mimetype(self, path):
file_name = str(path.split("/")[-1]).strip()
if re.search(r'^\./proc/', path) or re.search(r'^\./sys/', path):
if file_name in self._files:
try:
fp = self._fopen(path)
mime = magic.Magic(mime=True).from_buffer(fp.read(10))
fp.close()
return mime
except:
return "application/empty"
if re.search(r'^\./dev/', path) and self._files[file_name] in 'l':
return "application/empty"
if file_name in self._files:
if self._files[file_name] not in '-l':
return "application/empty"
fp = self._fopen(path)
mime = magic.Magic(mime=True).from_buffer(fp.read(10))
fp.close()
return mime
def _scandir(self, path):
try:
all_ = self._options['storage'].listdir(path)
return map(lambda x: self._join_path(path, x), all_[0]+all_[1])
except NotImplementedError:
return []
def _fopen(self, path, mode='rb'):
return self._options['storage'].open(path, mode)
def _fclose(self, fp, **kwargs):
return fp.close()
def _openimage(self, path):
fp = self._fopen(path)
tmp_file = tempfile.TemporaryFile()
tmp_file.write(fp.read())
fp.close()
tmp_file.seek(0)
im = Image.open(tmp_file)
return im
def _saveimage(self, im, path, form):
tmp_file = tempfile.TemporaryFile()
im.save(tmp_file, form)
tmp_file.seek(0)
fp = self._fopen(path, 'w+')
fp.write(tmp_file.read())
tmp_file.close()
fp.close()
def _mkdir(self, path, mode=None):
fname = '.%s-mkdir' % self.encode(path)
self._mkfile(path, fname)
self._unlink(self._join_path(path, fname))
return path
def _mkfile(self, path, name):
try:
return self._options['storage'].save(self._join_path(path, name), ContentFile(''))
except:
raise os.error
def _copy(self, source, target_dir, name):
fp = self._fopen(source)
tmp_file = tempfile.NamedTemporaryFile()
tmp_file.write(fp.read())
fp.close()
self._options['storage'].save(self._join_path(target_dir, name), DjangoFile(tmp_file))
tmp_file.close()
def _move(self, source, target_dir, name):
stat = self.stat(source)
try:
if stat['mime'] == 'directory':
dest = self._join_path(target_dir, name)
self._mkdir(dest)
for p in self._get_cached_dir(source):
self._move(p, dest, self._basename(p))
self._rmdir(source)
else:
self._copy(source, target_dir, name)
self._unlink(source)
except:
raise os.error
return self._join_path(target_dir, name)
def _unlink(self, path):
try:
self._options['storage'].delete(path)
return True
except:
return False
def _rmdir(self, path):
if 'rmDir' in self._options and callable(self._options['rmDir']):
return self._options['rmDir'](path, self._options['storage'])
raise os.error
def _rmdir_callable(self, path, storage):
return os.rmdir(self._join_path(storage.location, path))
def _save(self, fp, dir_, name):
tmp_file = tempfile.NamedTemporaryFile()
tmp_file.write(fp.read())
fp.close()
tmp_file.seek(0)
path = self._join_path(dir_, name)
self._options['storage'].save(path, DjangoFile(tmp_file))
tmp_file.close()
return path
|
Apache License 2.0
|
azure/azure-storage-python
|
azure-storage-file/azure/storage/file/fileservice.py
|
FileService.set_share_metadata
|
python
|
def set_share_metadata(self, share_name, metadata=None, timeout=None):
_validate_not_none('share_name', share_name)
request = HTTPRequest()
request.method = 'PUT'
request.host_locations = self._get_host_locations()
request.path = _get_path(share_name)
request.query = {
'restype': 'share',
'comp': 'metadata',
'timeout': _int_to_str(timeout),
}
_add_metadata_headers(metadata, request)
self._perform_request(request)
|
Sets one or more user-defined name-value pairs for the specified
share. Each call to this operation replaces all existing metadata
attached to the share. To remove all metadata from the share,
call this operation with no metadata dict.
:param str share_name:
Name of existing share.
:param metadata:
A dict containing name-value pairs to associate with the share as
metadata. Example: {'category':'test'}
:type metadata: dict(str, str)
:param int timeout:
The timeout parameter is expressed in seconds.
|
https://github.com/azure/azure-storage-python/blob/4306898850dd21617644fc537a57d025e833db74/azure-storage-file/azure/storage/file/fileservice.py#L795-L823
|
import sys
from datetime import datetime
import math
from os import path
from azure.common import AzureHttpError
from azure.storage.common._auth import (
_StorageSharedKeyAuthentication,
_StorageSASAuthentication,
)
from azure.storage.common._common_conversion import (
_int_to_str,
_to_str,
_get_content_md5,
)
from azure.storage.common._connection import _ServiceParameters
from azure.storage.common._constants import (
SERVICE_HOST_BASE,
DEFAULT_PROTOCOL,
DEV_ACCOUNT_NAME,
)
from azure.storage.common._deserialization import (
_convert_xml_to_service_properties,
_convert_xml_to_signed_identifiers,
_parse_metadata,
_parse_properties,
_parse_length_from_content_range,
)
from azure.storage.common._error import (
_dont_fail_not_exist,
_dont_fail_on_exist,
_validate_not_none,
_validate_type_bytes,
_ERROR_VALUE_NEGATIVE,
_ERROR_STORAGE_MISSING_INFO,
_ERROR_EMULATOR_DOES_NOT_SUPPORT_FILES,
_ERROR_PARALLEL_NOT_SEEKABLE,
_validate_access_policies,
)
from azure.storage.common._http import HTTPRequest
from azure.storage.common._serialization import (
_get_request_body,
_get_data_bytes_only,
_convert_signed_identifiers_to_xml,
_convert_service_properties_to_xml,
_add_metadata_headers,
)
from azure.storage.common.models import (
Services,
ListGenerator,
_OperationContext,
)
from .sharedaccesssignature import (
FileSharedAccessSignature,
)
from azure.storage.common.storageclient import StorageClient
from ._deserialization import (
_convert_xml_to_shares,
_convert_xml_to_directories_and_files,
_convert_xml_to_handles,
_parse_close_handle_response,
_convert_xml_to_ranges,
_convert_xml_to_share_stats,
_parse_file,
_parse_share,
_parse_snapshot_share,
_parse_directory,
_parse_permission_key, _parse_permission)
from ._download_chunking import _download_file_chunks
from ._serialization import (
_get_path,
_validate_and_format_range_headers,
_validate_and_return_file_permission)
from ._upload_chunking import _upload_file_chunks
from .models import (
FileProperties,
SMBProperties)
from ._constants import (
X_MS_VERSION,
__version__ as package_version,
)
_SHARE_NOT_FOUND_ERROR_CODE = 'ShareNotFound'
_PARENT_NOT_FOUND_ERROR_CODE = 'ParentNotFound'
_RESOURCE_NOT_FOUND_ERROR_CODE = 'ResourceNotFound'
_RESOURCE_ALREADY_EXISTS_ERROR_CODE = 'ResourceAlreadyExists'
_SHARE_ALREADY_EXISTS_ERROR_CODE = 'ShareAlreadyExists'
_GB = 1024 * 1024 * 1024
if sys.version_info >= (3,):
from io import BytesIO
else:
from cStringIO import StringIO as BytesIO
class FileService(StorageClient):
MAX_SINGLE_GET_SIZE = 32 * 1024 * 1024
MAX_CHUNK_GET_SIZE = 8 * 1024 * 1024
MAX_RANGE_SIZE = 4 * 1024 * 1024
def __init__(self, account_name=None, account_key=None, sas_token=None,
protocol=DEFAULT_PROTOCOL, endpoint_suffix=SERVICE_HOST_BASE,
request_session=None, connection_string=None, socket_timeout=None):
service_params = _ServiceParameters.get_service_parameters(
'file',
account_name=account_name,
account_key=account_key,
sas_token=sas_token,
protocol=protocol,
endpoint_suffix=endpoint_suffix,
request_session=request_session,
connection_string=connection_string,
socket_timeout=socket_timeout)
super(FileService, self).__init__(service_params)
if self.account_name == DEV_ACCOUNT_NAME:
raise ValueError(_ERROR_EMULATOR_DOES_NOT_SUPPORT_FILES)
if self.account_key:
self.authentication = _StorageSharedKeyAuthentication(
self.account_name,
self.account_key,
)
elif self.sas_token:
self.authentication = _StorageSASAuthentication(self.sas_token)
else:
raise ValueError(_ERROR_STORAGE_MISSING_INFO)
self._X_MS_VERSION = X_MS_VERSION
self._update_user_agent_string(package_version)
def make_file_url(self, share_name, directory_name, file_name,
protocol=None, sas_token=None):
if directory_name is None:
url = '{}://{}/{}/{}'.format(
protocol or self.protocol,
self.primary_endpoint,
share_name,
file_name,
)
else:
url = '{}://{}/{}/{}/{}'.format(
protocol or self.protocol,
self.primary_endpoint,
share_name,
directory_name,
file_name,
)
if sas_token:
url += (sas_token if sas_token.startswith('?') else '?' + sas_token)
return url
def generate_account_shared_access_signature(self, resource_types, permission,
expiry, start=None, ip=None, protocol=None):
_validate_not_none('self.account_name', self.account_name)
_validate_not_none('self.account_key', self.account_key)
sas = FileSharedAccessSignature(self.account_name, self.account_key)
return sas.generate_account(Services.FILE, resource_types, permission,
expiry, start=start, ip=ip, protocol=protocol)
def generate_share_shared_access_signature(self, share_name,
permission=None,
expiry=None,
start=None,
id=None,
ip=None,
protocol=None,
cache_control=None,
content_disposition=None,
content_encoding=None,
content_language=None,
content_type=None):
_validate_not_none('share_name', share_name)
_validate_not_none('self.account_name', self.account_name)
_validate_not_none('self.account_key', self.account_key)
sas = FileSharedAccessSignature(self.account_name, self.account_key)
return sas.generate_share(
share_name,
permission,
expiry,
start=start,
id=id,
ip=ip,
protocol=protocol,
cache_control=cache_control,
content_disposition=content_disposition,
content_encoding=content_encoding,
content_language=content_language,
content_type=content_type,
)
def generate_file_shared_access_signature(self, share_name,
directory_name=None,
file_name=None,
permission=None,
expiry=None,
start=None,
id=None,
ip=None,
protocol=None,
cache_control=None,
content_disposition=None,
content_encoding=None,
content_language=None,
content_type=None):
_validate_not_none('share_name', share_name)
_validate_not_none('file_name', file_name)
_validate_not_none('self.account_name', self.account_name)
_validate_not_none('self.account_key', self.account_key)
sas = FileSharedAccessSignature(self.account_name, self.account_key)
return sas.generate_file(
share_name,
directory_name,
file_name,
permission,
expiry,
start=start,
id=id,
ip=ip,
protocol=protocol,
cache_control=cache_control,
content_disposition=content_disposition,
content_encoding=content_encoding,
content_language=content_language,
content_type=content_type,
)
def set_file_service_properties(self, hour_metrics=None, minute_metrics=None,
cors=None, timeout=None):
request = HTTPRequest()
request.method = 'PUT'
request.host_locations = self._get_host_locations()
request.path = _get_path()
request.query = {
'restype': 'service',
'comp': 'properties',
'timeout': _int_to_str(timeout),
}
request.body = _get_request_body(
_convert_service_properties_to_xml(None, hour_metrics, minute_metrics, cors))
self._perform_request(request)
def get_file_service_properties(self, timeout=None):
request = HTTPRequest()
request.method = 'GET'
request.host_locations = self._get_host_locations()
request.path = _get_path()
request.query = {
'restype': 'service',
'comp': 'properties',
'timeout': _int_to_str(timeout),
}
return self._perform_request(request, _convert_xml_to_service_properties)
def list_shares(self, prefix=None, marker=None, num_results=None,
include_metadata=False, timeout=None, include_snapshots=False):
include = 'snapshots' if include_snapshots else None
if include_metadata:
if include is not None:
include = include + ',metadata'
else:
include = 'metadata'
operation_context = _OperationContext(location_lock=True)
kwargs = {'prefix': prefix, 'marker': marker, 'max_results': num_results,
'include': include, 'timeout': timeout, '_context': operation_context}
resp = self._list_shares(**kwargs)
return ListGenerator(resp, self._list_shares, (), kwargs)
def _list_shares(self, prefix=None, marker=None, max_results=None,
include=None, timeout=None, _context=None):
request = HTTPRequest()
request.method = 'GET'
request.host_locations = self._get_host_locations()
request.path = _get_path()
request.query = {
'comp': 'list',
'prefix': _to_str(prefix),
'marker': _to_str(marker),
'maxresults': _int_to_str(max_results),
'include': _to_str(include),
'timeout': _int_to_str(timeout),
}
return self._perform_request(request, _convert_xml_to_shares, operation_context=_context)
def create_share(self, share_name, metadata=None, quota=None,
fail_on_exist=False, timeout=None):
_validate_not_none('share_name', share_name)
request = HTTPRequest()
request.method = 'PUT'
request.host_locations = self._get_host_locations()
request.path = _get_path(share_name)
request.query = {
'restype': 'share',
'timeout': _int_to_str(timeout),
}
request.headers = {
'x-ms-share-quota': _int_to_str(quota)
}
_add_metadata_headers(metadata, request)
if not fail_on_exist:
try:
self._perform_request(request, expected_errors=[_SHARE_ALREADY_EXISTS_ERROR_CODE])
return True
except AzureHttpError as ex:
_dont_fail_on_exist(ex)
return False
else:
self._perform_request(request)
return True
def snapshot_share(self, share_name, metadata=None, quota=None, timeout=None):
_validate_not_none('share_name', share_name)
request = HTTPRequest()
request.method = 'PUT'
request.host_locations = self._get_host_locations()
request.path = _get_path(share_name)
request.query = {
'restype': 'share',
'comp': 'snapshot',
'timeout': _int_to_str(timeout),
}
request.headers = {
'x-ms-share-quota': _int_to_str(quota)
}
_add_metadata_headers(metadata, request)
return self._perform_request(request, _parse_snapshot_share, [share_name])
def get_share_properties(self, share_name, timeout=None, snapshot=None):
_validate_not_none('share_name', share_name)
request = HTTPRequest()
request.method = 'GET'
request.host_locations = self._get_host_locations()
request.path = _get_path(share_name)
request.query = {
'restype': 'share',
'timeout': _int_to_str(timeout),
'sharesnapshot': _to_str(snapshot)
}
return self._perform_request(request, _parse_share, [share_name])
def set_share_properties(self, share_name, quota, timeout=None):
_validate_not_none('share_name', share_name)
_validate_not_none('quota', quota)
request = HTTPRequest()
request.method = 'PUT'
request.host_locations = self._get_host_locations()
request.path = _get_path(share_name)
request.query = {
'restype': 'share',
'comp': 'properties',
'timeout': _int_to_str(timeout),
}
request.headers = {
'x-ms-share-quota': _int_to_str(quota)
}
self._perform_request(request)
def get_share_metadata(self, share_name, timeout=None, snapshot=None):
_validate_not_none('share_name', share_name)
request = HTTPRequest()
request.method = 'GET'
request.host_locations = self._get_host_locations()
request.path = _get_path(share_name)
request.query = {
'restype': 'share',
'comp': 'metadata',
'timeout': _int_to_str(timeout),
'sharesnapshot': _to_str(snapshot),
}
return self._perform_request(request, _parse_metadata)
|
MIT License
|
junsukchoe/adl
|
tensorpack/dataflow/imgaug/imgproc.py
|
Saturation.__init__
|
python
|
def __init__(self, alpha=0.4, rgb=True):
super(Saturation, self).__init__()
rgb = bool(rgb)
assert alpha < 1
self._init(locals())
|
Args:
alpha(float): maximum saturation change.
rgb (bool): whether input is RGB or BGR.
|
https://github.com/junsukchoe/adl/blob/dab2e78163bd96970ec9ae41de62835332dbf4fe/tensorpack/dataflow/imgaug/imgproc.py#L228-L237
|
import numpy as np
import cv2
from .base import PhotometricAugmentor
__all__ = ['Hue', 'Brightness', 'BrightnessScale', 'Contrast', 'MeanVarianceNormalize',
'GaussianBlur', 'Gamma', 'Clip', 'Saturation', 'Lighting', 'MinMaxNormalize']
class Hue(PhotometricAugmentor):
def __init__(self, range=(0, 180), rgb=True):
super(Hue, self).__init__()
rgb = bool(rgb)
self._init(locals())
def _get_augment_params(self, _):
return self._rand_range(*self.range)
def _augment(self, img, hue):
m = cv2.COLOR_BGR2HSV if not self.rgb else cv2.COLOR_RGB2HSV
hsv = cv2.cvtColor(img, m)
if hsv.dtype.itemsize == 1:
hsv[..., 0] = (hsv[..., 0] + hue) % 180
else:
hsv[..., 0] = (hsv[..., 0] + 2 * hue) % 360
m = cv2.COLOR_HSV2BGR if not self.rgb else cv2.COLOR_HSV2RGB
img = cv2.cvtColor(hsv, m)
return img
class Brightness(PhotometricAugmentor):
def __init__(self, delta, clip=True):
super(Brightness, self).__init__()
assert delta > 0
self._init(locals())
def _get_augment_params(self, _):
return self._rand_range(-self.delta, self.delta)
def _augment(self, img, v):
old_dtype = img.dtype
img = img.astype('float32')
img += v
if self.clip or old_dtype == np.uint8:
img = np.clip(img, 0, 255)
return img.astype(old_dtype)
class BrightnessScale(PhotometricAugmentor):
def __init__(self, range, clip=True):
super(BrightnessScale, self).__init__()
self._init(locals())
def _get_augment_params(self, _):
return self._rand_range(*self.range)
def _augment(self, img, v):
old_dtype = img.dtype
img = img.astype('float32')
img *= v
if self.clip or old_dtype == np.uint8:
img = np.clip(img, 0, 255)
return img.astype(old_dtype)
class Contrast(PhotometricAugmentor):
def __init__(self, factor_range, rgb=None, clip=True):
super(Contrast, self).__init__()
self._init(locals())
def _get_augment_params(self, _):
return self._rand_range(*self.factor_range)
def _augment(self, img, r):
old_dtype = img.dtype
if img.ndim == 3:
if self.rgb is not None:
m = cv2.COLOR_RGB2GRAY if self.rgb else cv2.COLOR_BGR2GRAY
grey = cv2.cvtColor(img.astype('float32'), m)
mean = np.mean(grey)
else:
mean = np.mean(img, axis=(0, 1), keepdims=True)
else:
mean = np.mean(img)
img = img * r + mean * (1 - r)
if self.clip or old_dtype == np.uint8:
img = np.clip(img, 0, 255)
return img.astype(old_dtype)
class MeanVarianceNormalize(PhotometricAugmentor):
def __init__(self, all_channel=True):
self._init(locals())
def _augment(self, img, _):
img = img.astype('float32')
if self.all_channel:
mean = np.mean(img)
std = np.std(img)
else:
mean = np.mean(img, axis=(0, 1), keepdims=True)
std = np.std(img, axis=(0, 1), keepdims=True)
std = np.maximum(std, 1.0 / np.sqrt(np.prod(img.shape)))
img = (img - mean) / std
return img
class GaussianBlur(PhotometricAugmentor):
def __init__(self, max_size=3):
super(GaussianBlur, self).__init__()
self._init(locals())
def _get_augment_params(self, _):
sx, sy = self.rng.randint(self.max_size, size=(2,))
sx = sx * 2 + 1
sy = sy * 2 + 1
return sx, sy
def _augment(self, img, s):
return np.reshape(cv2.GaussianBlur(img, s, sigmaX=0, sigmaY=0,
borderType=cv2.BORDER_REPLICATE), img.shape)
class Gamma(PhotometricAugmentor):
def __init__(self, range=(-0.5, 0.5)):
super(Gamma, self).__init__()
self._init(locals())
def _get_augment_params(self, _):
return self._rand_range(*self.range)
def _augment(self, img, gamma):
old_dtype = img.dtype
lut = ((np.arange(256, dtype='float32') / 255) ** (1. / (1. + gamma)) * 255).astype('uint8')
img = np.clip(img, 0, 255).astype('uint8')
ret = cv2.LUT(img, lut).astype(old_dtype)
if img.ndim == 3 and ret.ndim == 2:
ret = ret[:, :, np.newaxis]
return ret
class Clip(PhotometricAugmentor):
def __init__(self, min=0, max=255):
self._init(locals())
def _augment(self, img, _):
return np.clip(img, self.min, self.max)
class Saturation(PhotometricAugmentor):
|
MIT License
|
polyjit/benchbuild
|
benchbuild/utils/uchroot.py
|
mkfile_uchroot
|
python
|
def mkfile_uchroot(filepath: str, root: str = ".") -> None:
_uchroot = no_args()
_uchroot = _uchroot["-E", "-A", "-C", "-w", "/", "-r"]
_uchroot = _uchroot[os.path.abspath(root)]
uretry(_uchroot["--", "/bin/touch", filepath])
|
Create a file inside a uchroot env.
You will want to use this when you need to create a file with apropriate
rights inside a uchroot container with subuid/subgid handling enabled.
Args:
filepath:
The filepath that should be created. Absolute inside the
uchroot container.
root:
The root PATH of the container filesystem as seen outside of
the container.
|
https://github.com/polyjit/benchbuild/blob/04655f86ff0b28cd0770048e1213aeca3d0ee557/benchbuild/utils/uchroot.py#L231-L249
|
import enum
import logging
import os
import typing as tp
from plumbum import local
from plumbum.commands import ProcessExecutionError
from plumbum.commands.base import BoundCommand
from benchbuild.settings import CFG
from benchbuild.utils import path, run
LOG = logging.getLogger(__name__)
def uchroot(*args, **kwargs):
uchroot_cmd = with_mounts(*args, uchroot_cmd_fn=no_llvm, **kwargs)
return uchroot_cmd["--"]
def __default_opts__(uid=0, gid=0):
return [
"-C", "-w", "/", "-r", local.cwd, "-u",
str(uid), "-g",
str(gid), "-E", "-A"
]
def no_llvm(*args, uid=0, gid=0, **kwargs):
del kwargs
uchroot_cmd = no_args()
uchroot_cmd = uchroot_cmd[__default_opts__(uid, gid)]
return uchroot_cmd[args]
def no_args(**kwargs):
del kwargs
from benchbuild.utils.cmd import uchroot as uchrt
prefixes = CFG["container"]["prefixes"].value
p_paths, p_libs = env(prefixes)
uchrt = run.with_env_recursive(
uchrt,
LD_LIBRARY_PATH=path.list_to_path(p_libs),
PATH=path.list_to_path(p_paths)
)
return uchrt
def with_mounts(*args, uchroot_cmd_fn=no_args, **kwargs):
_mounts = CFG["container"]["mounts"].value
prefixes = CFG["container"]["prefixes"].value
uchroot_opts, _mounts = __mounts__("mnt", _mounts)
uchroot_cmd = uchroot_cmd_fn(**kwargs)
uchroot_cmd = uchroot_cmd[uchroot_opts]
uchroot_cmd = uchroot_cmd[args]
paths, libs = env(_mounts)
prefix_paths, prefix_libs = env(prefixes)
uchroot_cmd = run.with_env_recursive(
uchroot_cmd,
LD_LIBRARY_PATH=path.list_to_path(libs + prefix_libs),
PATH=path.list_to_path(paths + prefix_paths)
)
return uchroot_cmd
class UchrootEC(enum.Enum):
MNT_FAILED = 255
MNT_PROC_FAILED = 254
MNT_DEV_FAILED = 253
MNT_SYS_FAILED = 252
MNT_PTS_FAILED = 251
def retry(
pb_cmd: BoundCommand,
retries: int = 0,
max_retries: int = 10,
retcode: int = 0,
retry_retcodes: tp.Optional[tp.List[int]] = None
) -> None:
try:
pb_cmd.run_fg(retcode=retcode)
except ProcessExecutionError as proc_ex:
new_retcode = proc_ex.retcode
if retries > max_retries:
LOG.error("Retried %d times. No change. Abort", retries)
raise
if retry_retcodes and new_retcode in retry_retcodes:
retry(
pb_cmd,
retries=retries + 1,
max_retries=max_retries,
retcode=retcode,
retry_retcodes=retry_retcodes
)
else:
raise
def uretry(cmd: BoundCommand, retcode: int = 0) -> None:
retry(
cmd,
retcode=retcode,
retry_retcodes=[
UchrootEC.MNT_PROC_FAILED.value, UchrootEC.MNT_DEV_FAILED.value,
UchrootEC.MNT_SYS_FAILED.value, UchrootEC.MNT_PTS_FAILED.value
]
)
def clean_env(
uchroot_cmd: BoundCommand, varnames: tp.List[str]
) -> BoundCommand:
_env = uchroot_cmd["/usr/bin/env"]
__clean_env = _env["-u", ",".join(varnames)]
return __clean_env
def mounts(prefix: str, __mounts: tp.List) -> tp.List[str]:
i = 0
mntpoints = []
for mount in __mounts:
if not isinstance(mount, dict):
mntpoint = "{0}/{1}".format(prefix, str(i))
mntpoints.append(mntpoint)
i = i + 1
return mntpoints
def __mounts__(prefix: str,
_mounts: tp.List) -> tp.Tuple[tp.List[str], tp.List[str]]:
i = 0
mntpoints = []
uchroot_opts = []
for mount in _mounts:
if isinstance(mount, dict):
src_mount = mount["src"]
tgt_mount = mount["tgt"]
else:
src_mount = mount
tgt_mount = "{0}/{1}".format(prefix, str(i))
i = i + 1
mkdir_uchroot(tgt_mount)
uchroot_opts.extend(["-M", "{0}:{1}".format(src_mount, tgt_mount)])
mntpoints.append(tgt_mount)
return uchroot_opts, mntpoints
def env(
uchroot_mounts: tp.List[str]
) -> tp.Tuple[tp.List[local.path], tp.List[local.path]]:
f_mounts = [m.strip("/") for m in uchroot_mounts]
root = local.path("/")
ld_libs = [root / m / "lib" for m in f_mounts]
ld_libs.extend([root / m / "lib64" for m in f_mounts])
paths = [root / m / "bin" for m in f_mounts]
paths.extend([root / m / "sbin" for m in f_mounts])
paths.extend([root / m for m in f_mounts])
return paths, ld_libs
def mkdir_uchroot(dirpath: str, root: str = ".") -> None:
_uchroot = no_args()
_uchroot = _uchroot["-E", "-A", "-C", "-w", "/", "-r"]
_uchroot = _uchroot[os.path.abspath(root)]
uretry(_uchroot["--", "/bin/mkdir", "-p", dirpath])
|
MIT License
|
artyompal/tpu_models
|
models/samples/core/get_started/iris_data_tpu.py
|
train_input_fn
|
python
|
def train_input_fn(features, labels, batch_size):
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
dataset = dataset.shuffle(1000).repeat()
dataset = dataset.batch(batch_size, drop_remainder=True)
return dataset
|
An input function for training.
|
https://github.com/artyompal/tpu_models/blob/639306f30e085bb1cdb5b1118a4c96a2dbe14e3e/models/samples/core/get_started/iris_data_tpu.py#L66-L78
|
import pandas as pd
import tensorflow as tf
TRAIN_URL = 'http://download.tensorflow.org/data/iris_training.csv'
TEST_URL = 'http://download.tensorflow.org/data/iris_test.csv'
CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth',
'PetalLength', 'PetalWidth', 'Species']
SPECIES = ['Setosa', 'Versicolor', 'Virginica']
PREDICTION_INPUT_DATA = {
'SepalLength': [6.9, 5.1, 5.9],
'SepalWidth': [3.1, 3.3, 3.0],
'PetalLength': [5.4, 1.7, 4.2],
'PetalWidth': [2.1, 0.5, 1.5],
}
PREDICTION_OUTPUT_DATA = ['Virginica', 'Setosa', 'Versicolor']
def maybe_download():
train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL)
test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)
return train_path, test_path
def load_data(y_name='Species'):
train_path, test_path = maybe_download()
train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0,
dtype={'SepalLength': pd.np.float32,
'SepalWidth': pd.np.float32,
'PetalLength': pd.np.float32,
'PetalWidth': pd.np.float32,
'Species': pd.np.int32})
train_x, train_y = train, train.pop(y_name)
test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0,
dtype={'SepalLength': pd.np.float32,
'SepalWidth': pd.np.float32,
'PetalLength': pd.np.float32,
'PetalWidth': pd.np.float32,
'Species': pd.np.int32})
test_x, test_y = test, test.pop(y_name)
return (train_x, train_y), (test_x, test_y)
|
Apache License 2.0
|
pwenker/chessli
|
chessli/cli/stats.py
|
main
|
python
|
def main(ctx: typer.Context,):
ctx.params = ctx.parent.params
print(f"{as_title('lichess stats')}", end="\n\n")
|
Get stats and infos from Lichess
|
https://github.com/pwenker/chessli/blob/a3fdbc828e33ced5e25fbd7599be06dc4a46a0ab/chessli/cli/stats.py#L20-L24
|
import datetime
from typing import Optional
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import typer
from rich import print
from rich.console import Console
from chessli import users_client
from chessli.enums import PerfType
from chessli.utils import as_title, create_config_from_options
console = Console()
app = typer.Typer()
@app.callback(invoke_without_command=True)
|
MIT License
|
getnikola/plugins
|
v8/category_prevnext/category_prevnext.py
|
CategoryNav.set_site
|
python
|
def set_site(self, site):
super(CategoryNav, self).set_site(site)
blinker.signal("taxonomies_classified").connect(self._set_navlinks)
|
Set site, which is a Nikola instance.
|
https://github.com/getnikola/plugins/blob/afafcec8a1530ee74dadfbe68ffa190b12a5a622/v8/category_prevnext/category_prevnext.py#L54-L58
|
from __future__ import unicode_literals
import blinker
from nikola.plugin_categories import SignalHandler
class CategoryNav(SignalHandler):
name = "category"
def _set_navlinks(self, site):
if site is not self.site:
return
for lang, langposts in site.posts_per_classification['category'].items():
for category, categoryposts in langposts.items():
for i, p in enumerate(categoryposts[1:]):
p.next_post = categoryposts[i]
for i, p in enumerate(categoryposts[:-1]):
p.prev_post = categoryposts[i + 1]
categoryposts[0].next_post = None
categoryposts[-1].prev_post = None
|
MIT License
|
bitlabstudio/django-paypal-express-checkout
|
paypal_express_checkout/forms.py
|
PayPalFormMixin.get_cancel_url
|
python
|
def get_cancel_url(self):
return settings.HOSTNAME + reverse(
'paypal_canceled', kwargs=self.get_url_kwargs())
|
Returns the paypal cancel url.
|
https://github.com/bitlabstudio/django-paypal-express-checkout/blob/9bb3fc653268325440a605842ddc1c56cec036a7/paypal_express_checkout/forms.py#L60-L63
|
import httplib
import logging
import urllib2
import urlparse
from django import forms
from django.conf import settings
from django.contrib.contenttypes.models import ContentType
from django.core.urlresolvers import reverse
from django.http import Http404
from django.shortcuts import redirect
from django.utils.timezone import now
from django.utils.translation import ugettext_lazy as _
from .constants import PAYMENT_STATUS, PAYPAL_DEFAULTS
from .models import (
Item,
PaymentTransaction,
PaymentTransactionError,
PurchasedItem,
)
from .settings import API_URL, LOGIN_URL
from .utils import urlencode
logger = logging.getLogger(__name__)
CURRENCYCODE = getattr(settings, 'PAYPAL_CURRENCYCODE', 'USD')
class PayPalFormMixin(object):
def call_paypal(self, api_url, post_data, transaction=None):
data = urlencode(post_data)
try:
response = urllib2.urlopen(api_url, data=data)
except (
urllib2.HTTPError,
urllib2.URLError,
httplib.HTTPException) as ex:
self.log_error(
ex, api_url=api_url, request_data=data,
transaction=transaction)
else:
parsed_response = urlparse.parse_qs(response.read())
return parsed_response
|
MIT License
|
opentoallctf/ota-challenge-bot
|
bottypes/challenge.py
|
Challenge.mark_as_solved
|
python
|
def mark_as_solved(self, solver_list, solve_date=None):
self.is_solved = True
self.solver = solver_list
self.solve_date = solve_date or int(time.time())
|
Mark a challenge as solved.
solver_list : List of usernames, that solved the challenge.
solve_date : Time of solve (epoch) (None: current time / value: set to specified value).
|
https://github.com/opentoallctf/ota-challenge-bot/blob/6deea8c059d28ddb86dce277158a39a5ad9517e4/bottypes/challenge.py#L25-L33
|
import time
class Challenge:
MAX_TAGS = 5
def __init__(self, ctf_channel_id, channel_id, name, category):
self.channel_id = channel_id
self.ctf_channel_id = ctf_channel_id
self.name = name
self.category = category
self.players = {}
self.is_solved = False
self.solver = None
self.solve_date = 0
self.tags = []
|
MIT License
|
autosoft-dev/tree-hugger
|
tree_hugger/core/parser/python/python_parser.py
|
PythonParser.get_all_method_docstrings
|
python
|
def get_all_method_docstrings(self, strip_quotes: bool=False) -> Dict:
captures = self._run_query_and_get_captures('all_class_method_docstrings', self.root_node)
ret_struct = {}
current_class = ""
current_method = ""
for tpl in captures:
if tpl[1] == "class.name":
current_class = match_from_span(tpl[0], self.splitted_code)
ret_struct[current_class] = {}
continue
elif tpl[1] == "method.name":
current_method = match_from_span(tpl[0], self.splitted_code)
ret_struct[current_class][current_method] = ""
continue
elif tpl[1] == "method.docstr":
ret_struct[current_class][current_method] = self._strip_py_doc_string(match_from_span(
tpl[0], self.splitted_code
), strip_quotes)
return ret_struct
|
Returns a dict where method names are the key and the docstrings are the values
Excludes any functions, i.e., functions defined outside a class.
Optional argugmet "strip_quotes" gives the choice whether the docstring returned
will be strippted out of tripple quotes or not. Default: False
|
https://github.com/autosoft-dev/tree-hugger/blob/750de305c3efbc0c9440f858a39d33697d04d49f/tree_hugger/core/parser/python/python_parser.py#L128-L154
|
import re
from typing import List, Dict
import logging
from pathlib import Path
from tree_sitter import Tree, Node
from tree_hugger.core.queries import Query
from tree_hugger.core.code_parser import BaseParser, match_from_span
import tree_hugger.setup_logging
TRIPPLE_QUOTE = '"""'
TRIPPLE_SINGLE_QUOTE = "'''"
TRIPPLE_QUOTE_NUMPY_STYLE = 'r"""'
TRIPPLE_SINGLE_QUOTE_NUMPY_STYLE = "r'''"
starts_with_tripple_quote = lambda x: x.startswith(TRIPPLE_QUOTE)
starts_with_tripple_single_quote = lambda x: x.startswith(TRIPPLE_SINGLE_QUOTE)
starts_with_numpy_style_tripple_quote = lambda x: x.startswith(TRIPPLE_QUOTE_NUMPY_STYLE)
starts_with_numpy_style_tripple_single_quote = lambda x: x.startswith(TRIPPLE_SINGLE_QUOTE_NUMPY_STYLE)
regex = r"([ ]{2,})"
class PythonParser(BaseParser):
QUERY_FILE_PATH = Path(__file__).parent / "queries.yml"
def __init__(self, library_loc: str=None, query_file_path: str=None):
super(PythonParser, self).__init__('python', 'python_queries', PythonParser.QUERY_FILE_PATH, library_loc)
def _strip_py_doc_string(self, dt: str, strip_quotes: bool) -> str:
try:
if starts_with_tripple_quote(dt):
regex = r"\"{3}[\s\S]*?\"{3}"
elif starts_with_tripple_single_quote(dt):
regex = r"\'{3}[\s\S]*?\'{3}"
elif starts_with_numpy_style_tripple_quote(dt):
regex = r"r\"{3}[\s\S]*?\"{3}"
elif starts_with_numpy_style_tripple_single_quote(dt):
regex = r"r\'{3}[\s\S]*?\'{3}"
if regex is None:
logging.info(f"not a docstring {dt}")
matches = re.search(regex, dt)
return_dt = matches.group()
if not strip_quotes:
return return_dt.lstrip().rstrip()
else:
return return_dt.replace('"""', "").rstrip().lstrip() if return_dt.find('"""') != -1 else return_dt.replace("'''", "").rstrip().lstrip()
except UnboundLocalError:
return ""
def _outer_indent(self, code):
spaces_arr = []
matches = re.finditer(regex, code)
for _, match in enumerate(matches, start=1):
spaces_arr.append(len(match.group(0)))
return min(spaces_arr) if spaces_arr else 4
def get_all_class_method_names(self) -> Dict:
captures = self._run_query_and_get_captures('all_class_methods', self.root_node)
ret_struct = {}
current_key = ""
for tpl in captures:
if tpl[1] == "class.name":
current_key = match_from_span(tpl[0], self.splitted_code)
ret_struct[current_key] = []
continue
else:
ret_struct[current_key].append(match_from_span(tpl[0], self.splitted_code))
return ret_struct
def get_all_function_names(self) -> List:
captures = self._run_query_and_get_captures('all_function_names', self.root_node)
all_funcs = set([match_from_span(n[0], self.splitted_code) for n in captures])
methods = self.get_all_class_method_names()
all_methods = set([method_name for key, value in methods.items() for method_name in value])
return list(all_funcs - all_methods)
def get_all_function_docstrings(self, strip_quotes: bool=False) -> Dict:
function_names = self.get_all_function_names()
captures = self._run_query_and_get_captures('all_function_doctrings', self.root_node)
ret_struct = {}
for i in range(0, len(captures), 2):
func_name = match_from_span(captures[i][0], self.splitted_code)
if func_name in function_names:
ret_struct[func_name] = self._strip_py_doc_string(match_from_span(
captures[i+1][0], self.splitted_code
), strip_quotes)
return ret_struct
def get_all_function_documentations(self) -> Dict:
return self.get_all_function_docstrings()
|
MIT License
|
deep500/deep500
|
deep500/datasets/mnist.py
|
_load_mnist
|
python
|
def _load_mnist(downloaded_data, data_node_name, label_node_name, normalize=True) -> Tuple[Dataset, Dataset]:
def extract_img(file_path):
with gzip.open(file_path, 'rb') as f:
return np.frombuffer(f.read(), np.uint8, offset=16).reshape(-1, 1, 28, 28)
def extract_lbl(file_path):
with gzip.open(file_path, 'rb') as f:
return np.frombuffer(f.read(), np.uint8, offset=8)
train_img = extract_img(downloaded_data['train_images'])
train_lbl = extract_lbl(downloaded_data['train_labels'])
test_img = extract_img(downloaded_data['test_images'])
test_lbl = extract_lbl(downloaded_data['test_labels'])
if normalize:
train_img = ((train_img - np.min(train_img)) / (np.max(train_img) - np.min(train_img))).astype(np.float32)
test_img = ((test_img - np.min(test_img)) / (np.max(test_img) - np.min(test_img))).astype(np.float32)
train_lbl = train_lbl.astype(np.int64)
test_lbl = test_lbl.astype(np.int64)
return (NumpyDataset(train_img, data_node_name, train_lbl, label_node_name),
NumpyDataset(test_img, data_node_name, test_lbl, label_node_name))
|
Returns the training and testing Dataset objects for an MNIST-like dataset.
@param data_node_name The graph node name for the data inputs.
@param label_node_name The graph node name for the ground-truth labels.
@param normalize Normalizes the input images first.
@return A 2-tuple with the training and test datasets.
|
https://github.com/deep500/deep500/blob/34e93a46dea17513ac705bb4392b3514fa9d87c6/deep500/datasets/mnist.py#L63-L94
|
import tarfile
from typing import List, Tuple, Dict
from urllib import request
import numpy as np
import gzip
from deep500.utils.download import real_download
from deep500.lv2.dataset import Dataset, NumpyDataset
from deep500.utils.onnx_interop.losses import SoftmaxCrossEntropy
def download_mnist_and_get_file_paths(folder='') -> Dict[str, str]:
base_url = "http://yann.lecun.com/exdb/mnist/"
filenames = [
["train_images", "train-images-idx3-ubyte.gz"],
["test_images", "t10k-images-idx3-ubyte.gz"],
["train_labels", "train-labels-idx1-ubyte.gz"],
["test_labels", "t10k-labels-idx1-ubyte.gz"]
]
sub_folder = '/mnist'
local_files = real_download(base_url, filenames, sub_folder, output_dir=folder)
return local_files
def download_fashion_mnist_and_get_file_paths(folder='') -> Dict[str, str]:
base_url = "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"
filenames = [
["train_images", "train-images-idx3-ubyte.gz"],
["test_images", "t10k-images-idx3-ubyte.gz"],
["train_labels", "train-labels-idx1-ubyte.gz"],
["test_labels", "t10k-labels-idx1-ubyte.gz"]
]
sub_folder = '/fashion_mnist'
local_files = real_download(base_url, filenames, sub_folder, output_dir=folder)
return local_files
def mnist_shape():
return (10, 1, 28, 28)
def fashion_mnist_shape():
return mnist_shape()
def mnist_loss():
return SoftmaxCrossEntropy
def fashion_mnist_loss():
return mnist_loss()
|
BSD 3-Clause New or Revised License
|
secondmind-labs/gpflux
|
gpflux/layers/bayesian_dense_layer.py
|
BayesianDenseLayer.call
|
python
|
def call(
self, inputs: TensorType, training: Optional[bool] = False
) -> Union[tf.Tensor, MeanAndVariance]:
sample = self.predict_samples(
inputs,
num_samples=None,
)
if training:
loss = self.temperature * self.prior_kl()
else:
loss = tf.constant(0.0, dtype=default_float())
loss_per_datapoint = loss / self.num_data
self.add_loss(loss_per_datapoint)
return sample
|
The default behaviour upon calling this layer.
|
https://github.com/secondmind-labs/gpflux/blob/e05d7ba86aa3739a34dc6615de8f9ff810642605/gpflux/layers/bayesian_dense_layer.py#L181-L201
|
from typing import Callable, Optional, Union
import numpy as np
import tensorflow as tf
from gpflow import Parameter, default_float
from gpflow.base import TensorType
from gpflow.kullback_leiblers import gauss_kl
from gpflow.models.model import MeanAndVariance
from gpflow.utilities.bijectors import positive, triangular
from gpflux.helpers import xavier_initialization_numpy
from gpflux.layers.trackable_layer import TrackableLayer
from gpflux.types import ShapeType
class BayesianDenseLayer(TrackableLayer):
def __init__(
self,
input_dim: int,
output_dim: int,
num_data: int,
w_mu: Optional[np.ndarray] = None,
w_sqrt: Optional[np.ndarray] = None,
activation: Optional[Callable] = None,
is_mean_field: bool = True,
temperature: float = 1e-4,
):
super().__init__(dtype=default_float())
assert input_dim >= 1
assert output_dim >= 1
assert num_data >= 1
if w_mu is not None:
assert w_mu.shape == ((input_dim + 1) * output_dim,)
if w_sqrt is not None:
if not is_mean_field:
assert w_sqrt.shape == (
(input_dim + 1) * output_dim,
(input_dim + 1) * output_dim,
)
else:
assert w_sqrt.shape == ((input_dim + 1) * output_dim,)
assert temperature > 0.0
self.input_dim = input_dim
self.output_dim = output_dim
self.num_data = num_data
self.w_mu_ini = w_mu
self.w_sqrt_ini = w_sqrt
self.activation = activation
self.is_mean_field = is_mean_field
self.temperature = temperature
self.dim = (input_dim + 1) * output_dim
self.full_output_cov = False
self.full_cov = False
self.w_mu = Parameter(np.zeros((self.dim,)), dtype=default_float(), name="w_mu")
self.w_sqrt = Parameter(
np.zeros((self.dim, self.dim)) if not self.is_mean_field else np.ones((self.dim,)),
transform=triangular() if not self.is_mean_field else positive(),
dtype=default_float(),
name="w_sqrt",
)
def initialize_variational_distribution(self) -> None:
if self.w_mu_ini is None:
w = xavier_initialization_numpy(self.input_dim, self.output_dim)
b = np.zeros((1, self.output_dim))
self.w_mu_ini = np.concatenate((w, b), axis=0).reshape((self.dim,))
self.w_mu.assign(self.w_mu_ini)
if self.w_sqrt_ini is None:
if not self.is_mean_field:
self.w_sqrt_ini = 1e-5 * np.eye(self.dim)
else:
self.w_sqrt_ini = 1e-5 * np.ones((self.dim,))
self.w_sqrt.assign(self.w_sqrt_ini)
def build(self, input_shape: ShapeType) -> None:
super().build(input_shape)
self.initialize_variational_distribution()
def predict_samples(
self,
inputs: TensorType,
*,
num_samples: Optional[int] = None,
) -> tf.Tensor:
_num_samples = num_samples or 1
z = tf.random.normal((self.dim, _num_samples), dtype=default_float())
if not self.is_mean_field:
w = self.w_mu[:, None] + tf.matmul(self.w_sqrt, z)
else:
w = self.w_mu[:, None] + self.w_sqrt[:, None] * z
N = tf.shape(inputs)[0]
inputs_concat_1 = tf.concat(
(inputs, tf.ones((N, 1), dtype=default_float())), axis=-1
)
samples = tf.tensordot(
inputs_concat_1,
tf.reshape(tf.transpose(w), (_num_samples, self.input_dim + 1, self.output_dim)),
[[-1], [1]],
)
if num_samples is None:
samples = tf.squeeze(samples, axis=-2)
else:
samples = tf.transpose(samples, perm=[1, 0, 2])
if self.activation is not None:
samples = self.activation(samples)
return samples
|
Apache License 2.0
|
nintorac/neuraldx7
|
neuralDX7/models/dx7_vae.py
|
DX7VAE.__init__
|
python
|
def __init__(self, features, latent_dim, encoder, decoder, num_flows=3):
super().__init__()
self.embedder = nn.Embedding(MAX_VALUE, features)
self.encoder = ResidualAttentionEncoder(**encoder)
self._latent_encoder = nn.ModuleList([
ResidualAttentionEncoder(**encoder),
TriangularSylvesterFlow(features, latent_dim, num_flows)]
)
self.z_to_c = nn.Linear(latent_dim, latent_dim*155)
self.decoder = CondtionalResidualAttentionEncoder(**decoder)
self.logits = FeedForwardGELU(features, MAX_VALUE)
self.n_features = features
|
features - number of features in the model
latent_dim - the latent dimension of the model
encoder - dictionary containing instantiation parameters for ResidualAttentionEncoder module
decoder - dictionary containing instantiation parameters for CondtionalResidualAttentionEncoder module
num_flows - the number of flows for the TriangularSylvesterFlow module
|
https://github.com/nintorac/neuraldx7/blob/327844cea18a6dfe35e0dc8f5de0832343487366/neuralDX7/models/dx7_vae.py#L20-L41
|
import torch
from torch import nn
from torch.nn import functional as F
from agoge import AbstractModel
from neuralDX7.models.attention import ResidualAttentionEncoder, CondtionalResidualAttentionEncoder
from neuralDX7.models.general import FeedForwardGELU
from neuralDX7.models.stochastic_nodes import TriangularSylvesterFlow
from neuralDX7.constants import MAX_VALUE, N_PARAMS
from neuralDX7.utils import mask_parameters
class DX7VAE(AbstractModel):
|
MIT License
|
tlc-pack/tenset
|
python/tvm/topi/arm_cpu/cortex_m7/micro_kernel/gemm.py
|
intrin_gemm_MxKxN
|
python
|
def intrin_gemm_MxKxN(M, K, N, in_dtype, out_dtype):
UNIQ_ID_LEN = 8
uniq_id = "".join(random.choices(string.ascii_uppercase, k=UNIQ_ID_LEN))
if isinstance(M, tvm.tir.IntImm):
M = M.value
if isinstance(K, tvm.tir.IntImm):
K = K.value
if isinstance(N, tvm.tir.IntImm):
N = N.value
assert K % 4 == 0
assert in_dtype == "int8"
assert out_dtype == "int32"
A = te.placeholder((M, K), name="a", dtype=in_dtype)
B = te.placeholder((N, K), name="b", dtype=in_dtype)
k = te.reduce_axis((0, K), name="k")
C = te.compute(
(M, N),
lambda i, j: te.sum(A[i, k].astype(out_dtype) * B[j, k].astype(out_dtype), axis=k),
name="c",
)
A_buf = tvm.tir.decl_buffer(
A.shape, A.dtype, name="A", offset_factor=1, strides=[te.var("A_s"), 1]
)
B_buf = tvm.tir.decl_buffer(
B.shape, B.dtype, name="B", offset_factor=1, strides=[te.var("B_s"), 1]
)
C_buf = tvm.tir.decl_buffer(
C.shape, C.dtype, name="C", offset_factor=1, strides=[te.var("C_s"), 1]
)
def intrin_func(ins, outs):
aa, bb = ins
cc = outs[0]
def _reduce_update():
ib = tvm.tir.ir_builder.create()
ib.emit(
tvm.tir.call_extern(
"int32",
f"gemm_{M}x{K}x{N}_update_{uniq_id}",
aa.access_ptr("r"),
bb.access_ptr("r"),
cc.access_ptr("w"),
aa.strides[0],
bb.strides[0],
cc.strides[0],
)
)
return ib.get()
def _reduce_reset():
ib = tvm.tir.ir_builder.create()
ib.emit(
tvm.tir.call_extern(
"int32", f"gemm_{M}x{K}x{N}_reset_{uniq_id}", cc.access_ptr("w"), cc.strides[0]
)
)
return ib.get()
def _body():
ib = tvm.tir.ir_builder.create()
ib.emit(
tvm.tir.call_extern(
"int32",
f"gemm_{M}x{K}x{N}_body_{uniq_id}",
aa.access_ptr("r"),
bb.access_ptr("r"),
cc.access_ptr("w"),
aa.strides[0],
bb.strides[0],
cc.strides[0],
)
)
return ib.get()
return _body(), _reduce_reset(), _reduce_update()
intrin_decl = te.decl_tensor_intrin(C.op, intrin_func, binds={A: A_buf, B: B_buf, C: C_buf})
return intrin_decl, uniq_id
|
Defines a SIMD-accelerated transposed matmul.
|
https://github.com/tlc-pack/tenset/blob/3f7ed0291df47331d43f43a064fffacdc2914b47/python/tvm/topi/arm_cpu/cortex_m7/micro_kernel/gemm.py#L31-L119
|
import random
import string
import tvm
from tvm import te
|
Apache License 2.0
|
sfanous/pyecobee
|
pyecobee/objects/sensor.py
|
Sensor.temp_correction
|
python
|
def temp_correction(self):
return self._temp_correction
|
Gets the temp_correction attribute of this Sensor instance.
:return: The value of the temp_correction attribute of this
Sensor instance.
:rtype: int
|
https://github.com/sfanous/pyecobee/blob/3d6b4aec3c6bc9b796aa3d3fd6626909ffdbac13/pyecobee/objects/sensor.py#L242-L251
|
from pyecobee.ecobee_object import EcobeeObject
class Sensor(EcobeeObject):
__slots__ = [
'_name',
'_manufacturer',
'_model',
'_zone',
'_sensor_id',
'_type',
'_usage',
'_number_of_bits',
'_bconstant',
'_thermistor_size',
'_temp_correction',
'_gain',
'_max_voltage',
'_multiplier',
'_states',
]
attribute_name_map = {
'name': 'name',
'manufacturer': 'manufacturer',
'model': 'model',
'zone': 'zone',
'sensor_id': 'sensorId',
'sensorId': 'sensor_id',
'type': 'type',
'usage': 'usage',
'number_of_bits': 'numberOfBits',
'numberOfBits': 'number_of_bits',
'bconstant': 'bconstant',
'thermistor_size': 'thermistorSize',
'thermistorSize': 'thermistor_size',
'temp_correction': 'tempCorrection',
'tempCorrection': 'temp_correction',
'gain': 'gain',
'max_voltage': 'maxVoltage',
'maxVoltage': 'max_voltage',
'multiplier': 'multiplier',
'states': 'states',
}
attribute_type_map = {
'name': 'six.text_type',
'manufacturer': 'six.text_type',
'model': 'six.text_type',
'zone': 'int',
'sensor_id': 'int',
'type': 'six.text_type',
'usage': 'six.text_type',
'number_of_bits': 'int',
'bconstant': 'int',
'thermistor_size': 'int',
'temp_correction': 'int',
'gain': 'int',
'max_voltage': 'int',
'multiplier': 'int',
'states': 'List[State]',
}
def __init__(
self,
name=None,
manufacturer=None,
model=None,
zone=None,
sensor_id=None,
type_=None,
usage=None,
number_of_bits=None,
bconstant=None,
thermistor_size=None,
temp_correction=None,
gain=None,
max_voltage=None,
multiplier=None,
states=None,
):
self._name = name
self._manufacturer = manufacturer
self._model = model
self._zone = zone
self._sensor_id = sensor_id
self._type = type_
self._usage = usage
self._number_of_bits = number_of_bits
self._bconstant = bconstant
self._thermistor_size = thermistor_size
self._temp_correction = temp_correction
self._gain = gain
self._max_voltage = max_voltage
self._multiplier = multiplier
self._states = states
@property
def name(self):
return self._name
@property
def manufacturer(self):
return self._manufacturer
@property
def model(self):
return self._model
@property
def zone(self):
return self._zone
@property
def sensor_id(self):
return self._sensor_id
@property
def type(self):
return self._type
@property
def usage(self):
return self._usage
@property
def number_of_bits(self):
return self._number_of_bits
@property
def bconstant(self):
return self._bconstant
@property
def thermistor_size(self):
return self._thermistor_size
@property
|
MIT License
|
idlesign/django-sitemessage
|
sitemessage/models.py
|
Dispatch.is_read
|
python
|
def is_read(self) -> bool:
return self.read_status == self.READ_STATUS_READ
|
Returns message read flag.
|
https://github.com/idlesign/django-sitemessage/blob/a2db821f9365194cef5e120251f8efa476a6b2af/sitemessage/models.py#L243-L245
|
import json
from typing import Type, List, Optional, Union, Tuple, Dict, Iterable
from django.conf import settings
from django.contrib.auth.base_user import AbstractBaseUser
from django.core import exceptions
from django.db import models, transaction, DatabaseError, NotSupportedError
from django.db.models import QuerySet
from django.utils import timezone
from django.utils.translation import gettext_lazy as _
from .utils import get_registered_message_type, Recipient
if False:
from .messages.base import MessageBase
from .messengers.base import MessengerBase
USER_MODEL = getattr(settings, 'AUTH_USER_MODEL', 'auth.User')
def _get_dispatches(filter_kwargs: dict) -> List['Dispatch']:
dispatches = Dispatch.objects.prefetch_related('message').filter(
**filter_kwargs
).order_by('-message__time_created')
return list(dispatches)
def _get_dispatches_for_update(filter_kwargs: dict) -> Optional[List['Dispatch']]:
dispatches = Dispatch.objects.prefetch_related('message').filter(
**filter_kwargs
).select_for_update(
**GET_DISPATCHES_ARGS[1]
).order_by('-message__time_created')
try:
dispatches = list(dispatches)
except NotSupportedError:
return None
except DatabaseError:
return []
return dispatches
GET_DISPATCHES_ARGS = [
_get_dispatches_for_update,
{'skip_locked': True}
]
class ContextField(models.TextField):
@classmethod
def parse_value(cls, value: str):
try:
return json.loads(value)
except ValueError:
raise exceptions.ValidationError(
_('Value `%r` is not a valid context.') % value,
code='invalid_context', params={'value': value})
def from_db_value(self, *args):
value, expression, connection = args[:3]
if value is None:
return {}
return self.parse_value(value)
def to_python(self, value: Union[dict, str]):
if not value:
return {}
if isinstance(value, dict):
return value
return self.parse_value(value)
def get_prep_value(self, value: dict):
return json.dumps(value, ensure_ascii=False)
class Message(models.Model):
time_created = models.DateTimeField(_('Time created'), auto_now_add=True, editable=False)
sender = models.ForeignKey(
USER_MODEL, verbose_name=_('Sender'), null=True, blank=True, on_delete=models.CASCADE)
cls = models.CharField(
_('Message class'), max_length=250, db_index=True,
help_text=_('Message logic class identifier.'))
context = ContextField(_('Message context'))
priority = models.PositiveIntegerField(
_('Priority'), default=0, db_index=True,
help_text=_('Number describing message sending priority. '
'Messages with different priorities can be sent with different periodicity.'))
dispatches_ready = models.BooleanField(
_('Dispatches ready'), db_index=True, default=False,
help_text=_('Indicates whether dispatches for this message are already formed and ready to delivery.'))
class Meta:
verbose_name = _('Message')
verbose_name_plural = _('Messages')
def __str__(self) -> str:
return self.cls
def get_type(self) -> Type['MessageBase']:
return get_registered_message_type(self.cls)
@classmethod
def get_without_dispatches(cls) -> Union[List['Message'], QuerySet]:
return cls.objects.filter(dispatches_ready=False).all()
@classmethod
def create(
cls,
message_class: str,
context: dict,
recipients: Optional[Union[Iterable[Recipient], Recipient]] = None,
sender: Optional[AbstractBaseUser] = None,
priority: Optional[int] = None
) -> Tuple['Message', List['Dispatch']]:
dispatches_ready = False
if recipients is not None:
dispatches_ready = True
msg_kwargs = {
'cls': message_class,
'context': context,
'sender': sender,
'dispatches_ready': dispatches_ready
}
if priority is not None:
msg_kwargs['priority'] = priority
message_model = cls(**msg_kwargs)
message_model.save()
dispatch_models = Dispatch.create(message_model, recipients)
return message_model, dispatch_models
class Dispatch(models.Model):
DISPATCH_STATUS_PENDING = 1
DISPATCH_STATUS_SENT = 2
DISPATCH_STATUS_ERROR = 3
DISPATCH_STATUS_FAILED = 4
DISPATCH_STATUS_PROCESSING = 5
DISPATCH_STATUSES = (
(DISPATCH_STATUS_PENDING, _('Pending')),
(DISPATCH_STATUS_PROCESSING, _('Processing')),
(DISPATCH_STATUS_SENT, _('Sent')),
(DISPATCH_STATUS_ERROR, _('Error')),
(DISPATCH_STATUS_FAILED, _('Failed')),
)
READ_STATUS_UNREAD = 0
READ_STATUS_READ = 1
READ_STATUSES = (
(READ_STATUS_UNREAD, _('Unread')),
(READ_STATUS_READ, _('Read')),
)
error_log = None
time_created = models.DateTimeField(
_('Time created'), auto_now_add=True, editable=False)
time_dispatched = models.DateTimeField(
_('Time dispatched'), editable=False, null=True, blank=True, help_text=_('Time of the last delivery attempt.'))
message = models.ForeignKey(Message, verbose_name=_('Message'), on_delete=models.CASCADE)
messenger = models.CharField(
_('Messenger'), max_length=250, db_index=True, help_text=_('Messenger class identifier.'))
recipient = models.ForeignKey(
USER_MODEL, verbose_name=_('Recipient'), null=True, blank=True, on_delete=models.CASCADE)
address = models.CharField(_('Address'), max_length=250, help_text=_('Recipient address.'))
retry_count = models.PositiveIntegerField(
_('Retry count'), default=0, help_text=_('A number of delivery retries has already been made.'))
message_cache = models.TextField(_('Message cache'), null=True, editable=False)
dispatch_status = models.PositiveIntegerField(
_('Dispatch status'), choices=DISPATCH_STATUSES, default=DISPATCH_STATUS_PENDING)
read_status = models.PositiveIntegerField(_('Read status'), choices=READ_STATUSES, default=READ_STATUS_UNREAD)
class Meta:
verbose_name = _('Dispatch')
verbose_name_plural = _('Dispatches')
def __str__(self) -> str:
return f'{self.address} [{self.messenger}]'
|
BSD 3-Clause New or Revised License
|
aminyazdanpanah/python-ffmpeg-video-streaming
|
ffmpeg_streaming/_input.py
|
Capture.__init__
|
python
|
def __init__(self, video, options):
self.options = options
self.video = video
|
@TODO: add documentation
|
https://github.com/aminyazdanpanah/python-ffmpeg-video-streaming/blob/731530fd9e569362f9ba30d723b395bf0d011eb3/ffmpeg_streaming/_input.py#L21-L26
|
from ffmpeg_streaming._media import Media
from ffmpeg_streaming._utiles import get_os, cnv_options_to_args
from ffmpeg_streaming._clouds import Clouds
cloud = None
class Capture(object):
|
MIT License
|
pabigot/pyxb
|
pyxb/binding/facets.py
|
Facet.ClassForFacet
|
python
|
def ClassForFacet (cls, name):
assert cls != Facet
if 0 <= name.find(':'):
name = name.split(':', 1)[1]
facet_class = globals().get('%s_%s' % (cls._FacetPrefix, name))
if facet_class is None:
raise pyxb.LogicError('Unrecognized facet name %s: expect %s' % (name, ','.join([_f._Name for _f in cls.Facets])))
assert facet_class is not None
return facet_class
|
Given the name of a facet, return the Facet subclass that represents it.
|
https://github.com/pabigot/pyxb/blob/14737c23a125fd12c954823ad64fc4497816fae3/pyxb/binding/facets.py#L137-L146
|
import logging
import re
import decimal
import pyxb
from . import datatypes
from . import basis
from pyxb.utils import utility, six
_log = logging.getLogger(__name__)
class Facet (pyxb.cscRoot):
_Name = None
@classmethod
def Name (self):
return self._Name
__baseTypeDefinition = None
def baseTypeDefinition (self):
return self.__baseTypeDefinition
__ownerTypeDefinition = None
def ownerTypeDefinition (self):
return self.__ownerTypeDefinition
_ValueDatatype = None
__valueDatatype = None
def valueDatatype (self):
if self.__valueDatatype is None:
assert self.baseTypeDefinition() is not None
return self.baseTypeDefinition().pythonSupport()
return self.__valueDatatype
__value = None
def _value (self, v): self.__value = v
def value (self): return self.__value
__annotation = None
def annotation (self): return self.__annotation
def __init__ (self, **kw):
super(Facet, self).__init__(**kw)
assert Facet != self.__class__
self.setFromKeywords(_reset=True, _constructor=True, **kw)
def _setFromKeywords_vb (self, **kw):
if not kw.get('_reset', False):
kw.setdefault('base_type_definition', self.__baseTypeDefinition)
kw.setdefault('owner_type_definition', self.__ownerTypeDefinition)
kw.setdefault('value_datatype', self.__valueDatatype)
self.__baseTypeDefinition = kw.get('base_type_definition')
self.__ownerTypeDefinition = kw.get('owner_type_definition')
self.__valueDatatype = kw.get('value_datatype', self._ValueDatatype)
assert (self.__valueDatatype is not None) or (self.__baseTypeDefinition is not None)
super_fn = getattr(super(Facet, self), '_setFromKeywords_vb', lambda *a,**kw: self)
return super_fn(**kw)
def setFromKeywords (self, **kw):
return self._setFromKeywords_vb(**kw)
@classmethod
|
Apache License 2.0
|
jobovy/galpy
|
galpy/potential/Potential.py
|
Potential.z2deriv
|
python
|
def z2deriv(self,R,Z,phi=0.,t=0.):
try:
return self._amp*self._z2deriv(R,Z,phi=phi,t=t)
except AttributeError:
raise PotentialError("'_z2deriv' function not implemented for this potential")
|
NAME:
z2deriv
PURPOSE:
evaluate the second vertical derivative
INPUT:
R - Galactocentric radius (can be Quantity)
Z - vertical height (can be Quantity)
phi - Galactocentric azimuth (can be Quantity)
t - time (can be Quantity)
OUTPUT:
d2phi/dz2
HISTORY:
2012-07-25 - Written - Bovy (IAS@MPIA)
|
https://github.com/jobovy/galpy/blob/0470fa3e990f44319e9340497f669699d1bf1008/galpy/potential/Potential.py#L572-L604
|
from __future__ import division, print_function
import os, os.path
import pickle
from functools import wraps
import warnings
import numpy
from scipy import optimize, integrate
from ..util import plot, coords, conversion
from ..util.conversion import velocity_in_kpcGyr, physical_conversion, potential_physical_input, freq_in_Gyr, get_physical
from ..util import galpyWarning
from .plotRotcurve import plotRotcurve, vcirc
from .plotEscapecurve import _INF, plotEscapecurve
from .DissipativeForce import DissipativeForce, _isDissipative
from .Force import Force, _APY_LOADED
if _APY_LOADED:
from astropy import units
def check_potential_inputs_not_arrays(func):
@wraps(func)
def func_wrapper(self,R,z,phi,t):
if (hasattr(R,'shape') and R.shape != () and len(R) > 1) or (hasattr(z,'shape') and z.shape != () and len(z) > 1) or (hasattr(phi,'shape') and phi.shape != () and len(phi) > 1) or (hasattr(t,'shape') and t.shape != () and len(t) > 1):
raise TypeError('Methods in {} do not accept array inputs. Please input scalars'.format(self.__class__.__name__))
return func(self,R,z,phi,t)
return func_wrapper
class Potential(Force):
def __init__(self,amp=1.,ro=None,vo=None,amp_units=None):
Force.__init__(self,amp=amp,ro=ro,vo=vo,amp_units=amp_units)
self.dim= 3
self.isRZ= True
self.isNonAxi= False
self.hasC= False
self.hasC_dxdv= False
self.hasC_dens= False
return None
@potential_physical_input
@physical_conversion('energy',pop=True)
def __call__(self,R,z,phi=0.,t=0.,dR=0,dphi=0):
return self._call_nodecorator(R,z,phi=phi,t=t,dR=dR,dphi=dphi)
def _call_nodecorator(self,R,z,phi=0.,t=0.,dR=0.,dphi=0):
if dR == 0 and dphi == 0:
try:
rawOut= self._evaluate(R,z,phi=phi,t=t)
except AttributeError:
raise PotentialError("'_evaluate' function not implemented for this potential")
if rawOut is None: return rawOut
else: return self._amp*rawOut
elif dR == 1 and dphi == 0:
return -self.Rforce(R,z,phi=phi,t=t,use_physical=False)
elif dR == 0 and dphi == 1:
return -self.phiforce(R,z,phi=phi,t=t,use_physical=False)
elif dR == 2 and dphi == 0:
return self.R2deriv(R,z,phi=phi,t=t,use_physical=False)
elif dR == 0 and dphi == 2:
return self.phi2deriv(R,z,phi=phi,t=t,use_physical=False)
elif dR == 1 and dphi == 1:
return self.Rphideriv(R,z,phi=phi,t=t,use_physical=False)
elif dR != 0 or dphi != 0:
raise NotImplementedError('Higher-order derivatives not implemented for this potential')
@potential_physical_input
@physical_conversion('force',pop=True)
def Rforce(self,R,z,phi=0.,t=0.):
return self._Rforce_nodecorator(R,z,phi=phi,t=t)
def _Rforce_nodecorator(self,R,z,phi=0.,t=0.):
try:
return self._amp*self._Rforce(R,z,phi=phi,t=t)
except AttributeError:
raise PotentialError("'_Rforce' function not implemented for this potential")
@potential_physical_input
@physical_conversion('force',pop=True)
def zforce(self,R,z,phi=0.,t=0.):
return self._zforce_nodecorator(R,z,phi=phi,t=t)
def _zforce_nodecorator(self,R,z,phi=0.,t=0.):
try:
return self._amp*self._zforce(R,z,phi=phi,t=t)
except AttributeError:
raise PotentialError("'_zforce' function not implemented for this potential")
@potential_physical_input
@physical_conversion('forcederivative',pop=True)
def r2deriv(self,R,z,phi=0.,t=0.):
r= numpy.sqrt(R**2.+z**2.)
return (self.R2deriv(R,z,phi=phi,t=t,use_physical=False)*R/r +self.Rzderiv(R,z,phi=phi,t=t,use_physical=False)*z/r)*R/r +(self.Rzderiv(R,z,phi=phi,t=t,use_physical=False)*R/r +self.z2deriv(R,z,phi=phi,t=t,use_physical=False)*z/r)*z/r
@potential_physical_input
@physical_conversion('density',pop=True)
def dens(self,R,z,phi=0.,t=0.,forcepoisson=False):
try:
if forcepoisson: raise AttributeError
return self._amp*self._dens(R,z,phi=phi,t=t)
except AttributeError:
return (-self.Rforce(R,z,phi=phi,t=t,use_physical=False)/R
+self.R2deriv(R,z,phi=phi,t=t,use_physical=False)
+self.phi2deriv(R,z,phi=phi,t=t,use_physical=False)/R**2.
+self.z2deriv(R,z,phi=phi,t=t,use_physical=False))/4./numpy.pi
@potential_physical_input
@physical_conversion('surfacedensity',pop=True)
def surfdens(self,R,z,phi=0.,t=0.,forcepoisson=False):
try:
if forcepoisson: raise AttributeError
return self._amp*self._surfdens(R,z,phi=phi,t=t)
except AttributeError:
return (-self.zforce(R,numpy.fabs(z),phi=phi,t=t,use_physical=False)
+self.zforce(R,-numpy.fabs(z),phi=phi,t=t,use_physical=False)
+integrate.quad( lambda x: -self.Rforce(R,x,phi=phi,t=t,use_physical=False)/R
+self.R2deriv(R,x,phi=phi,t=t,use_physical=False)
+self.phi2deriv(R,x,phi=phi,t=t,use_physical=False)/R**2.,
-numpy.fabs(z),numpy.fabs(z))[0])/4./numpy.pi
def _surfdens(self,R,z,phi=0.,t=0.):
return integrate.quad(lambda x: self._dens(R,x,phi=phi,t=t),
-numpy.fabs(z),numpy.fabs(z))[0]
@potential_physical_input
@physical_conversion('mass',pop=True)
def mass(self,R,z=None,t=0.,forceint=False):
from .EllipsoidalPotential import EllipsoidalPotential
if self.isNonAxi and not isinstance(self,EllipsoidalPotential):
raise NotImplementedError('mass for non-axisymmetric potentials that are not EllipsoidalPotentials is not currently supported')
try:
if forceint: raise AttributeError
return self._amp*self._mass(R,z=z,t=t)
except AttributeError:
if z is None:
def _integrand(theta):
tz= R*numpy.cos(theta)
tR= R*numpy.sin(theta)
return self.rforce(tR,tz,t=t,use_physical=False) *numpy.sin(theta)
return -R**2.*integrate.quad(_integrand,0.,numpy.pi)[0]/2.
else:
return -R*integrate.quad(lambda x: self.Rforce(R,x,t=t,
use_physical=False),
-z,z)[0]/2. -integrate.quad(lambda x: x*self.zforce(x,z,t=t,
use_physical=False),
0.,R)[0]
@physical_conversion('position',pop=True)
def rhalf(self,t=0.,INF=numpy.inf):
return rhalf(self,t=t,INF=INF,use_physical=False)
@potential_physical_input
@physical_conversion('time',pop=True)
def tdyn(self,R,t=0.):
return 2.*numpy.pi*R*numpy.sqrt(R/self.mass(R,use_physical=False))
@physical_conversion('mass',pop=False)
def mvir(self,H=70.,Om=0.3,t=0.,overdens=200.,wrtcrit=False,
forceint=False,ro=None,vo=None,
use_physical=False):
if ro is None: ro= self._ro
if vo is None: vo= self._vo
try:
rvir= self.rvir(H=H,Om=Om,t=t,overdens=overdens,wrtcrit=wrtcrit,
use_physical=False,ro=ro,vo=vo)
except AttributeError:
raise AttributeError("This potential does not have a '_scale' defined to base the concentration on or does not support calculating the virial radius")
return self.mass(rvir,t=t,forceint=forceint,use_physical=False,ro=ro,vo=vo)
@potential_physical_input
@physical_conversion('forcederivative',pop=True)
def R2deriv(self,R,Z,phi=0.,t=0.):
try:
return self._amp*self._R2deriv(R,Z,phi=phi,t=t)
except AttributeError:
raise PotentialError("'_R2deriv' function not implemented for this potential")
@potential_physical_input
@physical_conversion('forcederivative',pop=True)
|
BSD 3-Clause New or Revised License
|
ntoll/p4p2p
|
p4p2p/dht/bucket.py
|
Bucket.key_in_range
|
python
|
def key_in_range(self, key):
if isinstance(key, str):
key = int(key, 0)
return self.range_min <= key < self.range_max
|
Checks if a key is within the range covered by this bucket. Returns
a boolean to indicate if a certain key should be placed within this
bucket.
|
https://github.com/ntoll/p4p2p/blob/189a35ae964bef7e6db094283f3ead79c6356a6c/p4p2p/dht/bucket.py#L107-L115
|
from .constants import K
class BucketFull(Exception):
pass
class Bucket(object):
def __init__(self, range_min, range_max):
self.range_min = range_min
self.range_max = range_max
self._contacts = []
self.last_accessed = 0
def add_contact(self, contact):
if contact in self._contacts:
self._contacts.remove(contact)
self._contacts.append(contact)
elif len(self._contacts) < K:
self._contacts.append(contact)
else:
raise BucketFull("No space in bucket to insert contact.")
def get_contact(self, network_id):
index = self._contacts.index(network_id)
return self._contacts[index]
def get_contacts(self, count=0, exclude_contact=None):
current_len = len(self._contacts)
if count <= 0:
count = current_len
if not self._contacts:
contact_list = []
elif current_len < count:
contact_list = self._contacts[:current_len]
else:
contact_list = self._contacts[:count]
if exclude_contact in contact_list:
contact_list.remove(exclude_contact)
return contact_list
def remove_contact(self, network_id):
self._contacts.remove(network_id)
|
MIT License
|
tnbar/tednet
|
tednet/tnn/tensor_train/base.py
|
TTLinear.__init__
|
python
|
def __init__(self, in_shape: Union[list, np.ndarray], out_shape: Union[list, np.ndarray],
ranks: Union[list, np.ndarray], bias: bool = True):
super(TTLinear, self).__init__(in_shape=in_shape, out_shape=out_shape, ranks=ranks, bias=bias)
self.reset_parameters()
|
Tensor Train Decomposition Linear.
Parameters
----------
in_shape : Union[list, numpy.ndarray]
1-D param :math:`\in \mathbb{R}^m`. The decomposition shape of feature in
out_shape : Union[list, numpy.ndarray]
1-D param :math:`\in \mathbb{R}^m`. The decomposition shape of feature out
ranks : Union[list, numpy.ndarray]
1-D param :math:`\in \mathbb{R}^{m-1}`. The rank of the decomposition
bias : bool
use bias of convolution or not. ``True`` to use, and ``False`` to not use
|
https://github.com/tnbar/tednet/blob/fe2c531ab9c388284b4ebc22edcc53df147a3a1f/tednet/tnn/tensor_train/base.py#L153-L170
|
import math
from typing import Union
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from ..tn_cnn import _TNConvNd
from ..tn_linear import _TNLinear
class TTConv2D(_TNConvNd):
def __init__(self, in_shape: Union[list, np.ndarray], out_shape: Union[list, np.ndarray],
ranks: Union[list, np.ndarray], kernel_size: Union[int, tuple], stride=1, padding=0, bias=True):
super(TTConv2D, self).__init__(in_shape=in_shape, out_shape=out_shape, ranks=ranks, kernel_size=kernel_size,
stride=stride, padding=padding, bias=bias)
self.reset_parameters()
def set_tn_type(self):
self.tn_info["type"] = "tt"
def set_nodes(self):
self.in_num = len(self.in_shape)
self.out_num = len(self.out_shape)
self.core_num = self.in_num
assert self.in_num == self.out_num == len(self.ranks), "Input and output number should be equal to rank number."
nodes_info = []
for i in range(0, self.core_num):
if i < self.core_num - 1:
node_info = dict(
name="node%d" % i,
shape=(self.in_shape[i], self.out_shape[i], self.ranks[i], self.ranks[i + 1])
)
else:
node_info = dict(
name="node%d" % i,
shape=(self.in_shape[i], self.out_shape[i], self.ranks[i])
)
tmp = nn.Parameter(torch.Tensor(*node_info["shape"]))
self.register_parameter(node_info["name"], tmp)
nodes_info.append(node_info)
self.kernel = nn.Conv2d(1, self.ranks[0], self.kernel_size, self.stride, self.padding, bias=False)
self.tn_info["nodes"] = nodes_info
def set_params_info(self):
params_ori = self.in_size * self.out_size * np.prod(self.kernel_size)
tt_ranks_1 = np.append(self.ranks, 1)
params_tt = np.sum(tt_ranks_1[:self.in_num] * self.in_shape * self.out_shape * tt_ranks_1[1:(self.in_num + 1)])
param_kernel = np.prod(self.kernel_size) * self.ranks[0]
params_tt = params_tt + param_kernel
compression_ration = params_ori / params_tt
self.tn_info["t_params"] = params_tt
self.tn_info["ori_params"] = params_ori
self.tn_info["cr"] = compression_ration
print("compression_ration is: ", compression_ration)
def reset_parameters(self):
node_vars = []
for i in range(self.core_num):
node_vars.append(1. / (self.in_shape[i] * self.ranks[i]))
conv_node_var = 2. / (self.kernel_size[0] * self.kernel_size[1])
std = math.pow(math.sqrt(np.prod(node_vars) * conv_node_var), 1. / (self.core_num + 1))
for i in range(self.core_num):
nn.init.normal_(getattr(self, "node%d" % i), std=std)
nn.init.normal_(self.kernel.weight.data, std=std)
if self.bias is not None:
nn.init.zeros_(self.bias)
def tn_contract(self, inputs: torch.Tensor)->torch.Tensor:
batch_size = inputs.shape[0]
image_hw = inputs.shape[-2:]
res = inputs.view(-1, 1, *image_hw)
res = self.kernel(res)
new_hw = res.shape[-2:]
res = res.reshape(batch_size, *self.in_shape, self.ranks[0], -1)
weight_tmp = getattr(self, "node0")
res = torch.tensordot(res, weight_tmp, dims=([1, -2], [0, 2]))
for i in range(1, self.core_num):
weight_tmp = getattr(self, "node%d" % i)
res = torch.tensordot(res, weight_tmp, dims=([1, -1], [0, 2]))
res = res.reshape(batch_size, *new_hw, -1)
return res
def recover(self):
pass
class TTLinear(_TNLinear):
|
MIT License
|
deepset-ai/haystack
|
haystack/modeling/model/language_model.py
|
LanguageModel.unfreeze
|
python
|
def unfreeze(self):
raise NotImplementedError()
|
To be implemented
|
https://github.com/deepset-ai/haystack/blob/38652dd4dd3e5f4b66bbf70def84220f723add2c/haystack/modeling/model/language_model.py#L259-L261
|
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import logging
import os
from pathlib import Path
import numpy as np
import torch
from torch import nn
logger = logging.getLogger(__name__)
from transformers import (
BertModel, BertConfig,
RobertaModel, RobertaConfig,
XLNetModel, XLNetConfig,
AlbertModel, AlbertConfig,
XLMRobertaModel, XLMRobertaConfig,
DistilBertModel, DistilBertConfig,
ElectraModel, ElectraConfig,
CamembertModel, CamembertConfig,
BigBirdModel, BigBirdConfig
)
from transformers import AutoModel, AutoConfig
from transformers.modeling_utils import SequenceSummary
import transformers
OUTPUT_DIM_NAMES = ["dim", "hidden_size", "d_model"]
class LanguageModel(nn.Module):
subclasses: dict = {}
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls.subclasses[cls.__name__] = cls
def forward(self, input_ids, padding_mask, **kwargs):
raise NotImplementedError
@classmethod
def load(cls, pretrained_model_name_or_path, revision=None, n_added_tokens=0, language_model_class=None, **kwargs):
kwargs["revision"] = revision
logger.info("")
logger.info("LOADING MODEL")
logger.info("=============")
config_file = Path(pretrained_model_name_or_path) / "language_model_config.json"
if os.path.exists(config_file):
logger.info(f"Model found locally at {pretrained_model_name_or_path}")
config = json.load(open(config_file))
language_model = cls.subclasses[config["name"]].load(pretrained_model_name_or_path)
else:
logger.info(f"Could not find {pretrained_model_name_or_path} locally.")
logger.info(f"Looking on Transformers Model Hub (in local cache and online)...")
if language_model_class is None:
language_model_class = cls.get_language_model_class(pretrained_model_name_or_path)
if language_model_class:
language_model = cls.subclasses[language_model_class].load(pretrained_model_name_or_path, **kwargs)
else:
language_model = None
if not language_model:
raise Exception(
f"Model not found for {pretrained_model_name_or_path}. Either supply the local path for a saved "
f"model or one of bert/roberta/xlnet/albert/distilbert models that can be downloaded from remote. "
f"Ensure that the model class name can be inferred from the directory name when loading a "
f"Transformers' model."
)
else:
logger.info(f"Loaded {pretrained_model_name_or_path}")
if n_added_tokens != 0:
model_emb_size = language_model.model.resize_token_embeddings(new_num_tokens=None).num_embeddings
vocab_size = model_emb_size + n_added_tokens
logger.info(
f"Resizing embedding layer of LM from {model_emb_size} to {vocab_size} to cope with custom vocab.")
language_model.model.resize_token_embeddings(vocab_size)
model_emb_size = language_model.model.resize_token_embeddings(new_num_tokens=None).num_embeddings
assert vocab_size == model_emb_size
return language_model
@staticmethod
def get_language_model_class(model_name_or_path, **kwargs):
model_name_or_path = str(model_name_or_path)
config = AutoConfig.from_pretrained(model_name_or_path, **kwargs)
model_type = config.model_type
if model_type == "xlm-roberta":
language_model_class = "XLMRoberta"
elif model_type == "roberta":
if "mlm" in model_name_or_path.lower():
raise NotImplementedError("MLM part of codebert is currently not supported in Haystack")
language_model_class = "Roberta"
elif model_type == "camembert":
language_model_class = "Camembert"
elif model_type == "albert":
language_model_class = "Albert"
elif model_type == "distilbert":
language_model_class = "DistilBert"
elif model_type == "bert":
language_model_class = "Bert"
elif model_type == "xlnet":
language_model_class = "XLNet"
elif model_type == "electra":
language_model_class = "Electra"
elif model_type == "dpr":
if config.architectures[0] == "DPRQuestionEncoder":
language_model_class = "DPRQuestionEncoder"
elif config.architectures[0] == "DPRContextEncoder":
language_model_class = "DPRContextEncoder"
elif config.archictectures[0] == "DPRReader":
raise NotImplementedError("DPRReader models are currently not supported.")
elif model_type == "big_bird":
language_model_class = "BigBird"
else:
logger.warning("Could not infer LanguageModel class from config. Trying to infer "
"LanguageModel class from model name.")
language_model_class = LanguageModel._infer_language_model_class_from_string(model_name_or_path)
return language_model_class
@staticmethod
def _infer_language_model_class_from_string(model_name_or_path):
if "xlm" in model_name_or_path.lower() and "roberta" in model_name_or_path.lower():
language_model_class = "XLMRoberta"
elif "bigbird" in model_name_or_path.lower():
language_model_class = "BigBird"
elif "roberta" in model_name_or_path.lower():
language_model_class = "Roberta"
elif "codebert" in model_name_or_path.lower():
if "mlm" in model_name_or_path.lower():
raise NotImplementedError("MLM part of codebert is currently not supported in Haystack")
else:
language_model_class = "Roberta"
elif "camembert" in model_name_or_path.lower() or "umberto" in model_name_or_path.lower():
language_model_class = "Camembert"
elif "albert" in model_name_or_path.lower():
language_model_class = 'Albert'
elif "distilbert" in model_name_or_path.lower():
language_model_class = 'DistilBert'
elif "bert" in model_name_or_path.lower():
language_model_class = 'Bert'
elif "xlnet" in model_name_or_path.lower():
language_model_class = 'XLNet'
elif "electra" in model_name_or_path.lower():
language_model_class = 'Electra'
elif "word2vec" in model_name_or_path.lower() or "glove" in model_name_or_path.lower():
language_model_class = 'WordEmbedding_LM'
elif "minilm" in model_name_or_path.lower():
language_model_class = "Bert"
elif "dpr-question_encoder" in model_name_or_path.lower():
language_model_class = "DPRQuestionEncoder"
elif "dpr-ctx_encoder" in model_name_or_path.lower():
language_model_class = "DPRContextEncoder"
else:
language_model_class = None
return language_model_class
def get_output_dims(self):
config = self.model.config
for odn in OUTPUT_DIM_NAMES:
if odn in dir(config):
return getattr(config, odn)
else:
raise Exception("Could not infer the output dimensions of the language model")
def freeze(self, layers):
raise NotImplementedError()
|
Apache License 2.0
|
pyro-ppl/pyro
|
pyro/contrib/epidemiology/compartmental.py
|
CompartmentalModel.fit_svi
|
python
|
def fit_svi(
self,
*,
num_samples=100,
num_steps=2000,
num_particles=32,
learning_rate=0.1,
learning_rate_decay=0.01,
betas=(0.8, 0.99),
haar=True,
init_scale=0.01,
guide_rank=0,
jit=False,
log_every=200,
**options,
):
self.relaxed = True
self.num_quant_bins = 1
if haar:
time_dim = -2 if self.is_regional else -1
dims = {"auxiliary": time_dim}
supports = {"auxiliary": constraints.interval(-0.5, self.population + 0.5)}
for name, (fn, is_regional) in self._non_compartmental.items():
dims[name] = time_dim - fn.event_dim
supports[name] = fn.support
haar = _HaarSplitReparam(0, self.duration, dims, supports)
heuristic_options = {
k.replace("heuristic_", ""): options.pop(k)
for k in list(options)
if k.startswith("heuristic_")
}
assert not options, "unrecognized options: {}".format(", ".join(options))
init_strategy = self._heuristic(haar, **heuristic_options)
logger.info("Running inference...")
model = self._relaxed_model
if haar:
model = haar.reparam(model)
if guide_rank == 0:
guide = AutoNormal(model, init_loc_fn=init_strategy, init_scale=init_scale)
elif guide_rank == "full":
guide = AutoMultivariateNormal(
model, init_loc_fn=init_strategy, init_scale=init_scale
)
elif guide_rank is None or isinstance(guide_rank, int):
guide = AutoLowRankMultivariateNormal(
model, init_loc_fn=init_strategy, init_scale=init_scale, rank=guide_rank
)
else:
raise ValueError("Invalid guide_rank: {}".format(guide_rank))
Elbo = JitTrace_ELBO if jit else Trace_ELBO
elbo = Elbo(
max_plate_nesting=self.max_plate_nesting,
num_particles=num_particles,
vectorize_particles=True,
ignore_jit_warnings=True,
)
optim = ClippedAdam(
{
"lr": learning_rate,
"betas": betas,
"lrd": learning_rate_decay ** (1 / num_steps),
}
)
svi = SVI(model, guide, optim, elbo)
start_time = default_timer()
losses = []
for step in range(1 + num_steps):
loss = svi.step() / self.duration
if step % log_every == 0:
logger.info("step {} loss = {:0.4g}".format(step, loss))
losses.append(loss)
elapsed = default_timer() - start_time
logger.info(
"SVI took {:0.1f} seconds, {:0.1f} step/sec".format(
elapsed, (1 + num_steps) / elapsed
)
)
with torch.no_grad():
particle_plate = pyro.plate(
"particles", num_samples, dim=-1 - self.max_plate_nesting
)
guide_trace = poutine.trace(particle_plate(guide)).get_trace()
model_trace = poutine.trace(
poutine.replay(particle_plate(model), guide_trace)
).get_trace()
self.samples = {
name: site["value"]
for name, site in model_trace.nodes.items()
if site["type"] == "sample"
if not site["is_observed"]
if not site_is_subsample(site)
}
if haar:
haar.aux_to_user(self.samples)
assert all(v.size(0) == num_samples for v in self.samples.values()), {
k: tuple(v.shape) for k, v in self.samples.items()
}
return losses
|
Runs stochastic variational inference to generate posterior samples.
This runs :class:`~pyro.infer.svi.SVI`, setting the ``.samples``
attribute on completion.
This approximate inference method is useful for quickly iterating on
probabilistic models.
:param int num_samples: Number of posterior samples to draw from the
trained guide. Defaults to 100.
:param int num_steps: Number of :class:`~pyro.infer.svi.SVI` steps.
:param int num_particles: Number of :class:`~pyro.infer.svi.SVI`
particles per step.
:param int learning_rate: Learning rate for the
:class:`~pyro.optim.clipped_adam.ClippedAdam` optimizer.
:param int learning_rate_decay: Learning rate for the
:class:`~pyro.optim.clipped_adam.ClippedAdam` optimizer. Note this
is decay over the entire schedule, not per-step decay.
:param tuple betas: Momentum parameters for the
:class:`~pyro.optim.clipped_adam.ClippedAdam` optimizer.
:param bool haar: Whether to use a Haar wavelet reparameterizer.
:param int guide_rank: Rank of the auto normal guide. If zero (default)
use an :class:`~pyro.infer.autoguide.AutoNormal` guide. If a
positive integer or None, use an
:class:`~pyro.infer.autoguide.AutoLowRankMultivariateNormal` guide.
If the string "full", use an
:class:`~pyro.infer.autoguide.AutoMultivariateNormal` guide. These
latter two require more ``num_steps`` to fit.
:param float init_scale: Initial scale of the
:class:`~pyro.infer.autoguide.AutoLowRankMultivariateNormal` guide.
:param bool jit: Whether to use a jit compiled ELBO.
:param int log_every: How often to log svi losses.
:param int heuristic_num_particles: Passed to :meth:`heuristic` as
``num_particles``. Defaults to 1024.
:returns: Time series of SVI losses (useful to diagnose convergence).
:rtype: list
|
https://github.com/pyro-ppl/pyro/blob/751843a16ffca0fec0ec722aa4d57cad246db648/pyro/contrib/epidemiology/compartmental.py#L384-L531
|
import functools
import logging
import operator
import re
import warnings
from abc import ABC, abstractmethod
from collections import OrderedDict
from contextlib import ExitStack, contextmanager
from functools import reduce
from timeit import default_timer
import torch
from torch.distributions import biject_to, constraints
from torch.distributions.utils import lazy_property
import pyro.distributions as dist
import pyro.distributions.hmm
import pyro.poutine as poutine
from pyro.distributions.transforms import HaarTransform
from pyro.infer import (
MCMC,
NUTS,
SVI,
JitTrace_ELBO,
SMCFilter,
Trace_ELBO,
infer_discrete,
)
from pyro.infer.autoguide import (
AutoLowRankMultivariateNormal,
AutoMultivariateNormal,
AutoNormal,
init_to_generated,
init_to_value,
)
from pyro.infer.mcmc import ArrowheadMassMatrix
from pyro.infer.reparam import HaarReparam, SplitReparam
from pyro.infer.smcfilter import SMCFailed
from pyro.infer.util import is_validation_enabled
from pyro.optim import ClippedAdam
from pyro.poutine.util import site_is_factor, site_is_subsample
from pyro.util import warn_if_nan
from .distributions import (
set_approx_log_prob_tol,
set_approx_sample_thresh,
set_relaxed_distributions,
)
from .util import align_samples, cat2, clamp, quantize, quantize_enumerate
logger = logging.getLogger(__name__)
def _require_double_precision():
if torch.get_default_dtype() != torch.float64:
warnings.warn(
"CompartmentalModel is unstable for dtypes less than torch.float64; "
"try torch.set_default_dtype(torch.float64)",
RuntimeWarning,
)
@contextmanager
def _disallow_latent_variables(section_name):
if not is_validation_enabled():
yield
return
with poutine.trace() as tr:
yield
for name, site in tr.trace.nodes.items():
if site["type"] == "sample" and not site["is_observed"]:
raise NotImplementedError(
"{} contained latent variable {}".format(section_name, name)
)
class CompartmentalModel(ABC):
def __init__(self, compartments, duration, population, *, approximate=()):
super().__init__()
assert isinstance(duration, int)
assert duration >= 1
self.duration = duration
if isinstance(population, torch.Tensor):
assert population.dim() == 1
assert (population >= 1).all()
self.is_regional = True
self.max_plate_nesting = 2
else:
assert isinstance(population, int)
assert population >= 2
self.is_regional = False
self.max_plate_nesting = 1
self.population = population
compartments = tuple(compartments)
assert all(isinstance(name, str) for name in compartments)
assert len(compartments) == len(set(compartments))
self.compartments = compartments
assert isinstance(approximate, tuple)
assert all(name in compartments for name in approximate)
self.approximate = approximate
self.samples = {}
self._clear_plates()
@property
def time_plate(self):
if self._time_plate is None:
self._time_plate = pyro.plate(
"time", self.duration, dim=-2 if self.is_regional else -1
)
return self._time_plate
@property
def region_plate(self):
if self._region_plate is None:
if self.is_regional:
self._region_plate = pyro.plate("region", len(self.population), dim=-1)
else:
self._region_plate = ExitStack()
return self._region_plate
def _clear_plates(self):
self._time_plate = None
self._region_plate = None
@lazy_property
def full_mass(self):
with torch.no_grad(), poutine.block(), poutine.trace() as tr:
self.global_model()
return [
tuple(
name
for name, site in tr.trace.iter_stochastic_nodes()
if not site_is_subsample(site)
)
]
@lazy_property
def series(self):
with torch.no_grad(), poutine.block():
params = self.global_model()
prev = self.initialize(params)
for name in self.approximate:
prev[name + "_approx"] = prev[name]
curr = prev.copy()
with poutine.trace() as tr:
self.transition(params, curr, 0)
return frozenset(
re.match("(.*)_0", name).group(1)
for name, site in tr.trace.nodes.items()
if site["type"] == "sample"
if not site_is_subsample(site)
)
def global_model(self):
return None
@abstractmethod
def initialize(self, params):
raise NotImplementedError
@abstractmethod
def transition(self, params, state, t):
raise NotImplementedError
def finalize(self, params, prev, curr):
pass
def compute_flows(self, prev, curr, t):
flows = {}
flow = 0
for source, destin in zip(self.compartments, self.compartments[1:] + ("R",)):
flow = prev[source] - curr[source] + flow
flows["{}2{}_{}".format(source, destin, t)] = flow
return flows
@torch.no_grad()
@set_approx_sample_thresh(1000)
def generate(self, fixed={}):
fixed = {k: torch.as_tensor(v) for k, v in fixed.items()}
model = self._generative_model
model = poutine.condition(model, fixed)
trace = poutine.trace(model).get_trace()
samples = OrderedDict(
(name, site["value"])
for name, site in trace.nodes.items()
if site["type"] == "sample"
)
self._concat_series(samples, trace)
return samples
|
Apache License 2.0
|
bomquote/transistor
|
transistor/browsers/splash_browser.py
|
SplashBrowser._add_soup
|
python
|
def _add_soup(self, response, soup_config):
if self.resp_headers:
if ("text/html" in self.resp_content_type_header or
SplashBrowser.__looks_like_html(self.html)):
response.soup = bs4.BeautifulSoup(self.html, **soup_config)
elif SplashBrowser.__looks_like_html(self.html):
response.soup = bs4.BeautifulSoup(self.html, **soup_config)
else:
response.soup = None
return response
|
Attaches a soup object to a requests response.
|
https://github.com/bomquote/transistor/blob/4bc5eaa1beac334cd05f2149a1dd584e0d803921/transistor/browsers/splash_browser.py#L290-L300
|
import bs4
import sys
import random
import gevent
from requests import Response
from requests.exceptions import Timeout
from mechanicalsoup.stateful_browser import _BrowserState, StatefulBrowser
from mechanicalsoup.utils import LinkNotFoundError
from mechanicalsoup.form import Form
from transistor.utility.utils import obsolete_setter
from transistor.browsers.mixin import SplashBrowserMixin
class SplashBrowser(StatefulBrowser, SplashBrowserMixin):
retry = 0
def __init__(self, *args, **kwargs):
self._set_raw_content(content=b'')
self._set_status(status='')
self.__state = _BrowserState()
self._test_true = False
self.timeout_exception = False
self.flags = kwargs.pop('flags', None)
self.priority = kwargs.pop('priority', 0)
if kwargs.pop('meta', None):
self._meta = dict(kwargs.pop('meta'))
else:
self._meta = None
self.callback = None
self.errback = None
super().__init__(*args, **kwargs)
@property
def meta(self):
if self._meta is None:
self._meta = {}
return self._meta
def _get_raw_content(self):
return self._content
def _set_raw_content(self, content):
if content is None:
self._content = b''
elif not isinstance(content, bytes):
raise TypeError(
"Response content must be bytes.")
else:
self._content = content
raw_content = property(_get_raw_content, obsolete_setter(_set_raw_content, 'raw_content'))
def _get_status(self):
return self._status
def _set_status(self, status):
if status is None:
self._status = ''
else:
self._status = status
status = property(_get_status, obsolete_setter(_set_status, 'status'))
def get_current_form(self):
return self.__state.form
def get_current_page(self):
return self.__state.page
def get_current_url(self):
return self.__state.url
def get_current_request(self):
return self.__state.request
def _update_state(self, response):
self._set_raw_content(response.content)
self._set_status(response.status_code)
self._add_soup(response, self.soup_config)
self.__state = _BrowserState(page=response.soup,
url=response.url,
request=response.request)
def open(self, url, *args, **kwargs):
if self.get_verbose() == 1:
sys.stdout.write('.')
sys.stdout.flush()
elif self.get_verbose() >= 2:
print(url)
resp = self.stateful_post(url, *args, **kwargs)
return resp
def open_fake_page(self, page_text, status_code=None, url=None, soup_config=None):
soup_config = soup_config or self.soup_config
self._test_true = True
self._set_raw_content(page_text.encode())
self._set_status(status_code)
self.__state = _BrowserState(
page=bs4.BeautifulSoup(page_text, **soup_config),
url=url)
def refresh(self):
old_request = self.__state.request
if old_request is None:
raise ValueError('The current page is not refreshable. Either no '
'page is opened or low-level browser methods '
'were used to do so.')
resp = self.session.send(old_request)
self._update_state(resp)
return resp
def select_form(self, selector="form", nr=0):
if isinstance(selector, bs4.element.Tag):
if selector.name != "form":
raise LinkNotFoundError
self.__state.form = Form(selector)
else:
found_forms = self.get_current_page().select(selector,
limit=nr + 1)
if len(found_forms) != nr + 1:
if self.__debug:
print('select_form failed for', selector)
self.launch_browser()
raise LinkNotFoundError()
self.__state.form = Form(found_forms[-1])
return self.get_current_form()
def submit(self, form, url=None, **kwargs):
if isinstance(form, Form):
form = form.form
response = self._request(form, url, **kwargs)
self._add_soup(response, self.soup_config)
return response
def submit_selected(self, btnName=None, *args, **kwargs):
self.get_current_form().choose_submit(btnName)
referer = self.get_current_url()
if referer:
if 'headers' in kwargs:
kwargs['headers']['Referer'] = referer
else:
kwargs['headers'] = {'Referer': referer}
resp = self.submit(self.__state.form, url=self.__state.url, **kwargs)
self._update_state(resp)
return resp
@staticmethod
def __looks_like_html(blob):
text = blob.lstrip().lower()
return text.startswith('<html') or text.startswith('<!doctype')
|
MIT License
|
ntoll/p4p2p
|
p4p2p/dht/contact.py
|
PeerNode.__init__
|
python
|
def __init__(self, public_key, ip_address, port, version, last_seen=0):
hex_digest = sha512(public_key.encode('ascii')).hexdigest()
self.network_id = '0x' + hex_digest
self.public_key = public_key
self.ip_address = ip_address
self.port = port
self.version = version
self.last_seen = last_seen
self.failed_RPCs = 0
|
Initialise the peer node with a unique id within the network (derived
from its public key), IP address, port the p4p2p version the contact
is running and a timestamp indicating when the last connection was
made with the contact (defaults to 0).
The network id is created as the hexdigest of the SHA512 of the public
key.
|
https://github.com/ntoll/p4p2p/blob/189a35ae964bef7e6db094283f3ead79c6356a6c/p4p2p/dht/contact.py#L13-L33
|
from hashlib import sha512
class PeerNode(object):
|
MIT License
|
libyal/winreg-kb
|
winregrc/services.py
|
WindowsServicesCollector.Compare
|
python
|
def Compare(self, registry, output_writer):
system_key = registry.GetKeyByPath('HKEY_LOCAL_MACHINE\\System\\')
if not system_key:
return False
result = False
control_sets = []
service_names = set()
for control_set_key in system_key.GetSubkeys():
if control_set_key.name.startswith('ControlSet'):
services_key = control_set_key.GetSubkeyByName('Services')
if not services_key:
continue
result = True
services = {}
for windows_service in self._CollectWindowsServicesFromKey(
services_key):
if windows_service.name in services:
continue
windows_service_name = windows_service.name.lower()
service_names.add(windows_service_name)
services[windows_service_name] = windows_service
control_sets.append(services)
number_of_control_sets = len(control_sets)
for name in service_names:
services_diff = set()
windows_service = control_sets[0].get(name, None)
for control_set_index in range(1, number_of_control_sets):
control_set = control_sets[control_set_index]
compare_windows_service = control_set.get(name, None)
if windows_service != compare_windows_service:
services_diff.add(windows_service)
services_diff.add(compare_windows_service)
for windows_service in services_diff:
if not windows_service:
if self._debug:
print('Not defined')
else:
output_writer.WriteWindowsService(windows_service)
return result
|
Compares services in the different control sets.
Args:
registry (dfwinreg.WinRegistry): Windows Registry.
output_writer (OutputWriter): output writer.
Returns:
bool: True if the services key was found, False if not.
|
https://github.com/libyal/winreg-kb/blob/ec90fa47511c45bd31c876f8f2702af605dd6229/winregrc/services.py#L228-L286
|
from winregrc import interface
class WindowsService(object):
_OBJECT_NAME_DESCRIPTIONS = {
0x00000010: 'Account name',
0x00000020: 'Account name',
0x00000110: 'Account name',
}
_SERVICE_TYPE_DESCRIPTIONS = {
0x00000001: 'Kernel device driver',
0x00000002: 'File system driver',
0x00000004: 'Adapter arguments',
0x00000010: 'Stand-alone service',
0x00000020: 'Shared service',
}
_START_VALUE_DESCRIPTIONS = {
0x00000000: 'Boot',
0x00000001: 'System',
0x00000002: 'Automatic',
0x00000003: 'On demand',
0x00000004: 'Disabled',
}
def __init__(
self, name, service_type, display_name, description, image_path,
object_name, start_value):
super(WindowsService, self).__init__()
self.description = description
self.display_name = display_name
self.image_path = image_path
self.name = name
self.object_name = object_name
self.service_type = service_type
self.start_value = start_value
def __eq__(self, other):
return (
other is not None and
self.description == other.description and
self.display_name == other.display_name and
self.image_path == other.image_path and
self.name == other.name and
self.object_name == other.object_name and
self.service_type == other.service_type and
self.start_value == other.start_value)
def __ne__(self, other):
return (
other is None or
self.description != other.description or
self.display_name != other.display_name or
self.image_path != other.image_path or
self.name != other.name or
self.object_name != other.object_name or
self.service_type != other.service_type or
self.start_value != other.start_value)
def GetObjectNameDescription(self):
return(self._OBJECT_NAME_DESCRIPTIONS.get(
self.service_type, 'Object name'))
def GetServiceTypeDescription(self):
return(self._SERVICE_TYPE_DESCRIPTIONS.get(
self.service_type, 'Unknown 0x{0:08x}'.format(self.service_type)))
def GetStartValueDescription(self):
return(self._START_VALUE_DESCRIPTIONS.get(
self.start_value, 'Unknown 0x{0:08x}'.format(self.start_value)))
class WindowsServicesCollector(interface.WindowsRegistryKeyCollector):
def _CollectWindowsServicesFromKey(self, services_key):
for service_key in services_key.GetSubkeys():
type_value = service_key.GetValueByName('Type')
if type_value:
type_value = type_value.GetDataAsObject()
display_name_value = service_key.GetValueByName('DisplayName')
if display_name_value:
if display_name_value.DataIsString():
display_name_value = display_name_value.GetDataAsObject()
else:
display_name_value = None
description_value = service_key.GetValueByName('Description')
if description_value:
description_value = description_value.GetDataAsObject()
image_path_value = service_key.GetValueByName('ImagePath')
if image_path_value:
image_path_value = image_path_value.GetDataAsObject()
object_name_value = service_key.GetValueByName('ObjectName')
if object_name_value:
object_name_value = object_name_value.GetDataAsObject()
start_value = service_key.GetValueByName('Start')
if start_value:
start_value = start_value.GetDataAsObject()
yield WindowsService(
service_key.name, type_value, display_name_value, description_value,
image_path_value, object_name_value, start_value)
def Collect(self, registry, output_writer, all_control_sets=False):
result = False
if all_control_sets:
system_key = registry.GetKeyByPath('HKEY_LOCAL_MACHINE\\System\\')
if not system_key:
return result
for control_set_key in system_key.GetSubkeys():
if control_set_key.name.startswith('ControlSet'):
services_key = control_set_key.GetSubkeyByName('Services')
if services_key:
result = True
if self._debug:
print('Control set: {0:s}'.format(control_set_key.name))
print('\tNumber of entries\t: {0:d}'.format(
services_key.number_of_subkeys))
print('')
for windows_service in self._CollectWindowsServicesFromKey(
services_key):
output_writer.WriteWindowsService(windows_service)
else:
try:
services_key = registry.GetKeyByPath(
'HKEY_LOCAL_MACHINE\\System\\CurrentControlSet\\Services')
except RuntimeError:
services_key = None
if services_key:
result = True
if self._debug:
print('Current control set')
print('\tNumber of entries\t: {0:d}'.format(
services_key.number_of_subkeys))
print('')
for windows_service in self._CollectWindowsServicesFromKey(
services_key):
output_writer.WriteWindowsService(windows_service)
return result
|
Apache License 2.0
|
cgatoxford/cgatpipelines
|
obsolete/pipeline_timeseries.py
|
buildCombinedExpression
|
python
|
def buildCombinedExpression(infiles, outfile):
infiles = " ".join(infiles)
statement = '''
cgat combine_tables
--columns=1
--log=%(outfile)s.log
%(infiles)s
| sed 's/Geneid/gene_id/'
| sed 's/\-/\./g'
| tee %(outfile)s.table.tsv
| gzip > %(outfile)s
'''
P.run()
|
aggregate together all of the datasets for a combined
all-vs-all analysis
|
https://github.com/cgatoxford/cgatpipelines/blob/a34d460b5fc64984f6da0acb18aee43c5e02d5fc/obsolete/pipeline_timeseries.py#L344-L361
|
from ruffus import *
import sys
import os
import itertools
import re
import sqlite3
import glob
import pandas as pd
import rpy2.robjects as ro
import CGAT.Experiment as E
import CGAT.Timeseries as Timeseries
import CGATPipelines.PipelineTracks as PipelineTracks
import CGATPipelines.Pipeline as P
P.getParameters(
["%s/pipeline.ini" % os.path.splitext(__file__)[0],
"../pipeline.ini",
"pipeline.ini"])
PARAMS = P.PARAMS
GENESETS = PipelineTracks.Tracks(PipelineTracks.Sample).loadFromDirectory(
glob.glob("*.gtf.gz"),
"(\S+).gtf.gz")
TRACKS3 = PipelineTracks.Tracks(PipelineTracks.Sample3)
TRACKS = TRACKS3.loadFromDirectory(glob.glob("*.bam"), "(\S+).bam")
REPLICATE = PipelineTracks.Aggregate(TRACKS, labels=("replicate", ))
TIME = PipelineTracks.Aggregate(TRACKS, labels=("condition", "tissue"))
def connect():
dbh = sqlite3.connect(PARAMS["database_name"])
statement = '''ATTACH DATABASE '%s' as annotations''' % (
PARAMS["annotations_database"])
cc = dbh.cursor()
cc.execute(statement)
cc.close()
return dbh
@follows(connect)
@transform("reference.gtf.gz",
suffix("reference.gtf.gz"),
"refcoding.gtf.gz")
def buildCodingGeneSet(infile, outfile):
statement = '''
zcat %(infile)s | awk '$2 == "protein_coding"' | gzip > %(outfile)s
'''
P.run()
@follows(mkdir("feature_counts.dir"))
@files([(("%s.bam" % x.asFile(), "%s.gtf.gz" % y.asFile()),
("feature_counts.dir/%s_vs_%s.tsv.gz" % (x.asFile(), y.asFile())))
for x, y in itertools.product(TRACKS, GENESETS)])
def buildFeatureCounts(infiles, outfile):
infile, annotations = infiles
outfile = P.snip(outfile, ".gz")
annotations_tmp = P.getTempFilename()
if PARAMS['featurecounts_paired'] == "1":
paired = "-p -B"
else:
paired = ""
job_options = "-pe dedicated %i" % PARAMS['featurecounts_threads']
statement = '''
zcat %(annotations)s > %(annotations_tmp)s;
checkpoint;
featureCounts %(featurecounts_options)s
-T %(featurecounts_threads)s
-s %(featurecounts_strand)s
-b
-a %(annotations_tmp)s
-o %(outfile)s
%(infile)s
> %(outfile)s.log;
checkpoint;
gzip %(outfile)s;
checkpoint;
rm %(annotations_tmp)s '''
P.run()
@collate(buildFeatureCounts,
regex("feature_counts.dir/(.+)-(.+)-(.+)_vs_(.+).tsv.gz"),
r"feature_counts.dir/\1-\4-feature_counts.tsv.gz")
def aggregateFeatureCounts(infiles, outfile):
infiles = " ".join(infiles)
statement = '''
cgat combine_tables
--columns=1
--take=7
--use-file-prefix
--regex-filename='(.+)_vs.+.tsv.gz'
--log=%(outfile)s.log
%(infiles)s
| sed 's/Geneid/gene_id/'
| sed 's/\-/\./g'
| tee %(outfile)s.table.tsv
| gzip > %(outfile)s '''
P.run()
@transform(aggregateFeatureCounts,
suffix(".tsv.gz"),
".load")
def loadFeatureCounts(infile, outfile):
P.load(infile, outfile, "--add-index=gene_id")
@follows(mkdir("combined_analysis.dir"), aggregateFeatureCounts)
@collate(aggregateFeatureCounts,
regex("feature_counts.dir/(.+)-(.+)-feature_counts.tsv.gz"),
r"combined_analysis.dir/\2-combined.tsv.gz")
|
MIT License
|
viniciuschiele/flask-apscheduler
|
examples/application_factory/events.py
|
job_executed
|
python
|
def job_executed(event):
with scheduler.app.app_context():
print(event)
|
Job executed event.
|
https://github.com/viniciuschiele/flask-apscheduler/blob/af6f32f35998478c16b0a876e917966c52de1fe4/examples/application_factory/events.py#L28-L31
|
from apscheduler.events import (
EVENT_JOB_ADDED,
EVENT_JOB_ERROR,
EVENT_JOB_EXECUTED,
EVENT_JOB_MISSED,
EVENT_JOB_REMOVED,
EVENT_JOB_SUBMITTED,
)
from .extensions import scheduler
def job_missed(event):
with scheduler.app.app_context():
print(event)
def job_error(event):
with scheduler.app.app_context():
print(event)
|
Apache License 2.0
|
rebiocoder/bioforum
|
venv/Lib/site-packages/django/db/backends/sqlite3/base.py
|
DatabaseWrapper._start_transaction_under_autocommit
|
python
|
def _start_transaction_under_autocommit(self):
self.cursor().execute("BEGIN")
|
Start a transaction explicitly in autocommit mode.
Staying in autocommit mode works around a bug of sqlite3 that breaks
savepoints when autocommit is disabled.
|
https://github.com/rebiocoder/bioforum/blob/08c8ff2f07ae667d37ce343f537e878d78ac8fe2/venv/Lib/site-packages/django/db/backends/sqlite3/base.py#L277-L284
|
import decimal
import math
import re
import warnings
from sqlite3 import dbapi2 as Database
import pytz
from django.core.exceptions import ImproperlyConfigured
from django.db import utils
from django.db.backends import utils as backend_utils
from django.db.backends.base.base import BaseDatabaseWrapper
from django.utils import timezone
from django.utils.dateparse import (
parse_date, parse_datetime, parse_duration, parse_time,
)
from .client import DatabaseClient
from .creation import DatabaseCreation
from .features import DatabaseFeatures
from .introspection import DatabaseIntrospection
from .operations import DatabaseOperations
from .schema import DatabaseSchemaEditor
def decoder(conv_func):
return lambda s: conv_func(s.decode())
Database.register_converter("bool", lambda s: s == b'1')
Database.register_converter("time", decoder(parse_time))
Database.register_converter("date", decoder(parse_date))
Database.register_converter("datetime", decoder(parse_datetime))
Database.register_converter("timestamp", decoder(parse_datetime))
Database.register_converter("TIMESTAMP", decoder(parse_datetime))
Database.register_converter("decimal", decoder(decimal.Decimal))
Database.register_adapter(decimal.Decimal, backend_utils.rev_typecast_decimal)
class DatabaseWrapper(BaseDatabaseWrapper):
vendor = 'sqlite'
display_name = 'SQLite'
data_types = {
'AutoField': 'integer',
'BigAutoField': 'integer',
'BinaryField': 'BLOB',
'BooleanField': 'bool',
'CharField': 'varchar(%(max_length)s)',
'DateField': 'date',
'DateTimeField': 'datetime',
'DecimalField': 'decimal',
'DurationField': 'bigint',
'FileField': 'varchar(%(max_length)s)',
'FilePathField': 'varchar(%(max_length)s)',
'FloatField': 'real',
'IntegerField': 'integer',
'BigIntegerField': 'bigint',
'IPAddressField': 'char(15)',
'GenericIPAddressField': 'char(39)',
'NullBooleanField': 'bool',
'OneToOneField': 'integer',
'PositiveIntegerField': 'integer unsigned',
'PositiveSmallIntegerField': 'smallint unsigned',
'SlugField': 'varchar(%(max_length)s)',
'SmallIntegerField': 'smallint',
'TextField': 'text',
'TimeField': 'time',
'UUIDField': 'char(32)',
}
data_types_suffix = {
'AutoField': 'AUTOINCREMENT',
'BigAutoField': 'AUTOINCREMENT',
}
operators = {
'exact': '= %s',
'iexact': "LIKE %s ESCAPE '\\'",
'contains': "LIKE %s ESCAPE '\\'",
'icontains': "LIKE %s ESCAPE '\\'",
'regex': 'REGEXP %s',
'iregex': "REGEXP '(?i)' || %s",
'gt': '> %s',
'gte': '>= %s',
'lt': '< %s',
'lte': '<= %s',
'startswith': "LIKE %s ESCAPE '\\'",
'endswith': "LIKE %s ESCAPE '\\'",
'istartswith': "LIKE %s ESCAPE '\\'",
'iendswith': "LIKE %s ESCAPE '\\'",
}
pattern_esc = r"REPLACE(REPLACE(REPLACE({}, '\', '\\'), '%%', '\%%'), '_', '\_')"
pattern_ops = {
'contains': r"LIKE '%%' || {} || '%%' ESCAPE '\'",
'icontains': r"LIKE '%%' || UPPER({}) || '%%' ESCAPE '\'",
'startswith': r"LIKE {} || '%%' ESCAPE '\'",
'istartswith': r"LIKE UPPER({}) || '%%' ESCAPE '\'",
'endswith': r"LIKE '%%' || {} ESCAPE '\'",
'iendswith': r"LIKE '%%' || UPPER({}) ESCAPE '\'",
}
Database = Database
SchemaEditorClass = DatabaseSchemaEditor
client_class = DatabaseClient
creation_class = DatabaseCreation
features_class = DatabaseFeatures
introspection_class = DatabaseIntrospection
ops_class = DatabaseOperations
def get_connection_params(self):
settings_dict = self.settings_dict
if not settings_dict['NAME']:
raise ImproperlyConfigured(
"settings.DATABASES is improperly configured. "
"Please supply the NAME value.")
kwargs = {
'database': settings_dict['NAME'],
'detect_types': Database.PARSE_DECLTYPES | Database.PARSE_COLNAMES,
}
kwargs.update(settings_dict['OPTIONS'])
if 'check_same_thread' in kwargs and kwargs['check_same_thread']:
warnings.warn(
'The `check_same_thread` option was provided and set to '
'True. It will be overridden with False. Use the '
'`DatabaseWrapper.allow_thread_sharing` property instead '
'for controlling thread shareability.',
RuntimeWarning
)
kwargs.update({'check_same_thread': False})
if self.features.can_share_in_memory_db:
kwargs.update({'uri': True})
return kwargs
def get_new_connection(self, conn_params):
conn = Database.connect(**conn_params)
conn.create_function("django_date_extract", 2, _sqlite_date_extract)
conn.create_function("django_date_trunc", 2, _sqlite_date_trunc)
conn.create_function("django_datetime_cast_date", 2, _sqlite_datetime_cast_date)
conn.create_function("django_datetime_cast_time", 2, _sqlite_datetime_cast_time)
conn.create_function("django_datetime_extract", 3, _sqlite_datetime_extract)
conn.create_function("django_datetime_trunc", 3, _sqlite_datetime_trunc)
conn.create_function("django_time_extract", 2, _sqlite_time_extract)
conn.create_function("django_time_trunc", 2, _sqlite_time_trunc)
conn.create_function("django_time_diff", 2, _sqlite_time_diff)
conn.create_function("django_timestamp_diff", 2, _sqlite_timestamp_diff)
conn.create_function("regexp", 2, _sqlite_regexp)
conn.create_function("django_format_dtdelta", 3, _sqlite_format_dtdelta)
conn.create_function("django_power", 2, _sqlite_power)
conn.execute('PRAGMA foreign_keys = ON')
return conn
def init_connection_state(self):
pass
def create_cursor(self, name=None):
return self.connection.cursor(factory=SQLiteCursorWrapper)
def close(self):
self.validate_thread_sharing()
if not self.is_in_memory_db():
BaseDatabaseWrapper.close(self)
def _savepoint_allowed(self):
return self.features.uses_savepoints and self.in_atomic_block
def _set_autocommit(self, autocommit):
if autocommit:
level = None
else:
level = ''
with self.wrap_database_errors:
self.connection.isolation_level = level
def disable_constraint_checking(self):
if self.in_atomic_block:
return False
self.cursor().execute('PRAGMA foreign_keys = OFF')
return True
def enable_constraint_checking(self):
self.cursor().execute('PRAGMA foreign_keys = ON')
def check_constraints(self, table_names=None):
cursor = self.cursor()
if table_names is None:
table_names = self.introspection.table_names(cursor)
for table_name in table_names:
primary_key_column_name = self.introspection.get_primary_key_column(cursor, table_name)
if not primary_key_column_name:
continue
key_columns = self.introspection.get_key_columns(cursor, table_name)
for column_name, referenced_table_name, referenced_column_name in key_columns:
cursor.execute(
"""
SELECT REFERRING.`%s`, REFERRING.`%s` FROM `%s` as REFERRING
LEFT JOIN `%s` as REFERRED
ON (REFERRING.`%s` = REFERRED.`%s`)
WHERE REFERRING.`%s` IS NOT NULL AND REFERRED.`%s` IS NULL
"""
% (
primary_key_column_name, column_name, table_name,
referenced_table_name, column_name, referenced_column_name,
column_name, referenced_column_name,
)
)
for bad_row in cursor.fetchall():
raise utils.IntegrityError(
"The row in table '%s' with primary key '%s' has an "
"invalid foreign key: %s.%s contains a value '%s' that "
"does not have a corresponding value in %s.%s." % (
table_name, bad_row[0], table_name, column_name,
bad_row[1], referenced_table_name, referenced_column_name,
)
)
def is_usable(self):
return True
|
MIT License
|
devopshq/teamcity
|
dohq_teamcity/api/build_api.py
|
BuildApi.get_pinned
|
python
|
def get_pinned(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_pinned_with_http_info(build_locator, **kwargs)
else:
(data) = self.__get_pinned_with_http_info(build_locator, **kwargs)
return data
|
get_pinned # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.get_pinned(build_locator, async_req=True)
>>> result = thread.get()
:param async_req: bool
:param str build_locator: (required)
:return: str
If the method is called asynchronously,
returns the request thread.
|
https://github.com/devopshq/teamcity/blob/84f1757ec1fddef27d39246a75739d047be0e831/dohq_teamcity/api/build_api.py#L552-L571
|
from __future__ import absolute_import
from dohq_teamcity.custom.base_model import TeamCityObject
import re
import six
from dohq_teamcity.models.build import Build
from dohq_teamcity.models.build_cancel_request import BuildCancelRequest
from dohq_teamcity.models.build_changes import BuildChanges
from dohq_teamcity.models.builds import Builds
from dohq_teamcity.models.comment import Comment
from dohq_teamcity.models.file import File
from dohq_teamcity.models.files import Files
from dohq_teamcity.models.issues_usages import IssuesUsages
from dohq_teamcity.models.model_property import ModelProperty
from dohq_teamcity.models.problem_occurrences import ProblemOccurrences
from dohq_teamcity.models.properties import Properties
from dohq_teamcity.models.tags import Tags
from dohq_teamcity.models.test_occurrences import TestOccurrences
from dohq_teamcity.models.file import file
class BuildApi(object):
base_name = 'Build'
def __init__(self, api_client=None):
self.api_client = api_client
def add_tags(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__add_tags_with_http_info(build_locator, **kwargs)
else:
(data) = self.__add_tags_with_http_info(build_locator, **kwargs)
return data
def cancel_build(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__cancel_build_with_http_info(build_locator, **kwargs)
else:
(data) = self.__cancel_build_with_http_info(build_locator, **kwargs)
return data
def cancel_build_0(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__cancel_build_0_with_http_info(build_locator, **kwargs)
else:
(data) = self.__cancel_build_0_with_http_info(build_locator, **kwargs)
return data
def delete_all_parameters(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__delete_all_parameters_with_http_info(build_locator, **kwargs)
else:
(data) = self.__delete_all_parameters_with_http_info(build_locator, **kwargs)
return data
def delete_build(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__delete_build_with_http_info(build_locator, **kwargs)
else:
(data) = self.__delete_build_with_http_info(build_locator, **kwargs)
return data
def delete_builds(self, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__delete_builds_with_http_info(**kwargs)
else:
(data) = self.__delete_builds_with_http_info(**kwargs)
return data
def delete_comment(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__delete_comment_with_http_info(build_locator, **kwargs)
else:
(data) = self.__delete_comment_with_http_info(build_locator, **kwargs)
return data
def delete_parameter(self, name, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__delete_parameter_with_http_info(name, build_locator, **kwargs)
else:
(data) = self.__delete_parameter_with_http_info(name, build_locator, **kwargs)
return data
def get_artifact_dependency_changes(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_artifact_dependency_changes_with_http_info(build_locator, **kwargs)
else:
(data) = self.__get_artifact_dependency_changes_with_http_info(build_locator, **kwargs)
return data
def get_artifacts_directory(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_artifacts_directory_with_http_info(build_locator, **kwargs)
else:
(data) = self.__get_artifacts_directory_with_http_info(build_locator, **kwargs)
return data
def get_build_number(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_build_number_with_http_info(build_locator, **kwargs)
else:
(data) = self.__get_build_number_with_http_info(build_locator, **kwargs)
return data
def get_build_status_text(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_build_status_text_with_http_info(build_locator, **kwargs)
else:
(data) = self.__get_build_status_text_with_http_info(build_locator, **kwargs)
return data
def get_canceled_info(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_canceled_info_with_http_info(build_locator, **kwargs)
else:
(data) = self.__get_canceled_info_with_http_info(build_locator, **kwargs)
return data
def get_children(self, path, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_children_with_http_info(path, build_locator, **kwargs)
else:
(data) = self.__get_children_with_http_info(path, build_locator, **kwargs)
return data
def get_children_alias(self, path, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_children_alias_with_http_info(path, build_locator, **kwargs)
else:
(data) = self.__get_children_alias_with_http_info(path, build_locator, **kwargs)
return data
def get_content(self, path, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_content_with_http_info(path, build_locator, **kwargs)
else:
(data) = self.__get_content_with_http_info(path, build_locator, **kwargs)
return data
def get_content_alias(self, path, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_content_alias_with_http_info(path, build_locator, **kwargs)
else:
(data) = self.__get_content_alias_with_http_info(path, build_locator, **kwargs)
return data
def get_metadata(self, path, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_metadata_with_http_info(path, build_locator, **kwargs)
else:
(data) = self.__get_metadata_with_http_info(path, build_locator, **kwargs)
return data
def get_parameter(self, name, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_parameter_with_http_info(name, build_locator, **kwargs)
else:
(data) = self.__get_parameter_with_http_info(name, build_locator, **kwargs)
return data
def get_parameter_0(self, build_locator, property_name, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_parameter_0_with_http_info(build_locator, property_name, **kwargs)
else:
(data) = self.__get_parameter_0_with_http_info(build_locator, property_name, **kwargs)
return data
def get_parameter_value_long(self, name, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_parameter_value_long_with_http_info(name, build_locator, **kwargs)
else:
(data) = self.__get_parameter_value_long_with_http_info(name, build_locator, **kwargs)
return data
def get_parameters(self, build_locator, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.__get_parameters_with_http_info(build_locator, **kwargs)
else:
(data) = self.__get_parameters_with_http_info(build_locator, **kwargs)
return data
|
MIT License
|
googlecloudplatform/solutions-cloud-orchestrate
|
api/orchestrateapi/commands/projects/deregister.py
|
remove_project_iam_binding
|
python
|
def remove_project_iam_binding(member, role):
policy = resource_manager.projects().getIamPolicy(
resource=environ.ORCHESTRATE_PROJECT, body=dict()).execute()
if remove_iam_binding(policy, member, role):
resource_manager.projects().setIamPolicy(
resource=environ.ORCHESTRATE_PROJECT, body=dict(policy=policy)).execute()
|
Remove policy binding.
Args:
member: Account, e.g. user:joe@doe.com, serviceAccount:..., etc.
role: Role.
|
https://github.com/googlecloudplatform/solutions-cloud-orchestrate/blob/abb7ca3128f99f10e78caa06c1ed9802656bef40/api/orchestrateapi/commands/projects/deregister.py#L77-L93
|
import uuid
from googleapiclient import discovery
from oauth2client.client import GoogleCredentials
from google.cloud import error_reporting
from orchestrateapi import environ
from orchestrateapi import orchestrate_pb2
error_client = error_reporting.Client()
credentials = GoogleCredentials.get_application_default()
resource_manager = discovery.build('cloudresourcemanager', 'v1',
credentials=credentials,
cache_discovery=False)
storage = discovery.build('storage', 'v1', credentials=credentials,
cache_discovery=False)
def run(request, context):
print('Orchestrate.DeregisterProject project={project}'.format(
project=request.project,
))
request_id = uuid.uuid4().hex
account = (
'serviceAccount:orchestrate@{project}.iam.gserviceaccount.com').format(
project=request.project)
role = 'projects/{project}/roles/orchestrate.project'.format(
project=environ.ORCHESTRATE_PROJECT)
remove_project_iam_binding(account, role)
remove_storage_iam_binding(account, 'roles/storage.objectViewer')
return orchestrate_pb2.RegisterProjectResponse(
status='DEREGISTERED',
request_id=str(request_id),
)
|
Apache License 2.0
|
albanie/pytorch-mcn
|
python/importer.py
|
Network.add_mod
|
python
|
def add_mod(self, name, inputs, outputs, params, mod, state_dict):
if not isinstance(mod, pmu.PlaceHolder):
mod_str = ensure_compatible_repr(mod)
self.attr_str += ['self.{} = nn.{}'.format(name, mod_str)]
outs = ','.join(outputs)
ins = ','.join(inputs)
if not self.input_vars:
self.input_vars = ins
self.output_vars = [v for v in self.output_vars if v not in inputs]
self.output_vars.extend(outputs)
if isinstance(mod, pmu.PlaceHolder):
if isinstance(mod, pmu.Concat):
func = str(mod).format(ins)
else:
func = str(mod).format(*inputs)
forward_str = '{} = {}'.format(outs, func)
else:
forward_str = '{} = self.{}({})'.format(outs, name, ins)
self.forward_str += [forward_str]
if self.debug_mode:
self.forward_debug_str += [forward_str]
template = "self.debug_feats['{0}'] = {0}.clone()"
forward_debug_str = template.format(outs)
self.forward_debug_str += [forward_debug_str]
if not params:
return
for idx, param_name in enumerate(params):
if idx == 0:
key = '{}.weight'.format(name)
elif idx == 1:
key = '{}.bias'.format(name)
elif idx == 2:
std_name = 'moments' in params[idx]
std_suffixes = ['x', '_m']
std_sfx = any([params[idx].endswith(x) for x in std_suffixes])
msg = 'The third parameter should correspond to bn moments'
assert std_name or std_sfx, msg
state_dict = pmu.update_bnorm_moments(
name=name,
param_name=param_name,
mcn_net=self.mcn_net,
eps=mod.eps,
state_dict=state_dict
)
continue
else:
raise ValueError('unexpected number of params')
val_idx = self.mcn_net['params']['name'].index(param_name)
weights = self.mcn_net['params']['value'][val_idx]
if 'Linear' in mod_str:
if weights.ndim > 1 and weights.shape[1] > 1:
kwargs = {
"squeeze": True,
"in_features": mod.in_features,
"out_features": mod.out_features,
}
else:
kwargs = {"squeeze": True}
else:
kwargs = {"squeeze": False}
state_dict[key] = pmu.weights2tensor(weights, **kwargs)
|
Add computational module to pytorch network
This function adds a representation of computational module (which
is then used to generate the corresponding pytorch network source
code) to the Network data structure.
It is also responsible for tracking the outputs of the network as each
new module is added, so that the correct variables are returned by the
generated pytorch network's "forward()" function.
Args:
name (str): the name of the module
inputs (List[str]): the names of the input variables to the module
outputs (List[str]): the names of the output variables from the
module
params (List[str]): the names of the parameters of the module
mod (torch.nn.Module): the corresponding pytorch module (if one is
available for the given operation, otherwise a Placeholder object
is used instead).
state_dict (dict): the dictionary of network weights to be updated
with the parameters of the given module.
|
https://github.com/albanie/pytorch-mcn/blob/c4c9bcfa727f41d62a65091b2601488c8bf04c7d/python/importer.py#L310-L401
|
import os
from collections import OrderedDict, defaultdict
import argparse
import torch
import torch.nn as nn
import scipy.io as sio
import numpy as np
import ptmcn_utils as pmu
import source_gen as sg
def load_mcn_net(path):
mcn = sio.loadmat(path, squeeze_me=False)
for key in ['meta', 'params', 'layers']: assert key in mcn.keys()
mcn_net = {
'meta': pmu.parse_struct(mcn['meta']),
'params': pmu.parse_struct(mcn['params']),
'layers': pmu.parse_struct(mcn['layers']),
}
mcn_net = pmu.fix_spio_issues(mcn_net)
mcn_net = pmu.align_interfaces(mcn_net)
return mcn_net
def flatten_if_needed(nodes, complete_dag, is_flattened, flatten_layer):
if not is_flattened:
prev = nodes[-1]
flatten_condition = (flatten_layer == 'last' and complete_dag) or (flatten_layer == prev['name'])
if flatten_condition:
name = '{}_flatten'.format(prev['name'])
outputs = prev['outputs']
prev['outputs'] = ['{}_preflatten'.format(x)
for x in prev['outputs']]
node = {
'name': name,
'inputs': prev['outputs'],
'outputs': outputs,
'params': [],
}
node['mod'] = pmu.Flatten()
nodes.append(node)
is_flattened = True
return nodes, is_flattened
def extract_dag(mcn_net, inplace, drop_prob_softmax=True, in_ch=3,
flatten_layer='last', **kwargs):
nodes = []
is_flattened = False
uses_functional = False
num_layers = len(mcn_net['layers']['name'])
in_ch_store = defaultdict(lambda: in_ch)
for ii in range(num_layers):
params = mcn_net['layers']['params'][ii]
if params == {'': []}:
params = None
node = {
'name': mcn_net['layers']['name'][ii],
'inputs': mcn_net['layers']['inputs'][ii],
'outputs': mcn_net['layers']['outputs'][ii],
'params': params,
}
bt = mcn_net['layers']['type'][ii]
block = mcn_net['layers']['block'][ii]
opts = {'block': block, 'block_type': bt}
in_chs = [in_ch_store[x] for x in node['inputs']]
out_chs = in_chs
if bt == 'dagnn.Conv':
msg = 'conv layers should only take a single_input'
if len(in_chs) != 1:
import ipdb ; ipdb.set_trace()
assert len(in_chs) == 1, msg
mod, out_ch = pmu.conv2d_mod(block, in_chs[0], is_flattened,
**kwargs)
out_chs = [out_ch]
elif bt == 'dagnn.BatchNorm':
mod = pmu.batchnorm2d_mod(block, mcn_net, params)
elif bt == 'dagnn.GlobalPooling':
mod = pmu.globalpool_mod(block)
elif bt == 'dagnn.ReLU':
mod = nn.ReLU(inplace=inplace)
elif bt == 'dagnn.Sigmoid':
mod = nn.Sigmoid()
elif bt == 'dagnn.Pooling':
pad, ceil_mode = pmu.convert_padding(block['pad'])
pool_opts = {'kernel_size': pmu.int_list(block['poolSize']),
'stride': pmu.int_list(block['stride']),
'padding': pad, 'ceil_mode': ceil_mode}
if block['method'] == 'avg':
pool_opts['count_include_pad'] = False
mod = nn.AvgPool2d(**pool_opts)
elif block['method'] == 'max':
mod = nn.MaxPool2d(**pool_opts)
else:
msg = 'unknown pooling type: {}'.format(block['method'])
raise ValueError(msg)
elif bt == 'dagnn.DropOut':
mod = nn.Dropout(p=block['rate'])
elif bt == 'dagnn.Permute':
mod = pmu.Permute(**opts)
elif bt == 'dagnn.Reshape':
mod = pmu.Reshape(**opts)
elif bt == 'dagnn.Axpy':
mod = pmu.Axpy(**opts)
elif bt == 'dagnn.Flatten':
mod = pmu.Flatten(**opts)
is_flattened = True
out_chs = [1]
elif bt == 'dagnn.Concat':
mod = pmu.Concat(**opts)
out_chs = [sum(in_chs)]
elif bt == 'dagnn.Sum':
mod = pmu.Sum(**opts)
out_chs = [in_chs[0]]
elif bt == 'dagnn.AffineGridGenerator':
mod = pmu.AffineGridGen(height=block['Ho'],
width=block['Wo'],
**opts)
uses_functional = True
elif bt == 'dagnn.BilinearSampler':
mod = pmu.BilinearSampler(**opts)
uses_functional = True
elif bt in ['dagnn.Loss', 'dagnn.SoftmaxCELoss']:
if kwargs['verbose']:
print('skipping loss layer: {}'.format(node['name']))
continue
elif (bt == 'dagnn.SoftMax' and
(ii == num_layers - 1) and
drop_prob_softmax):
continue
else:
import ipdb ; ipdb.set_trace()
for output, out_ch in zip(node['outputs'], out_chs):
in_ch_store[output] = out_ch
node['mod'] = mod
nodes += [node]
complete_dag = (ii == num_layers - 1)
nodes, is_flattened = flatten_if_needed(nodes, complete_dag,
is_flattened, flatten_layer)
return nodes, uses_functional
def ensure_compatible_repr(mod):
repr_str = str(mod)
repr_str = repr_str.replace('Conv2d (', 'Conv2d(')
if isinstance(mod, nn.MaxPool2d):
if 'ceil_mode' not in repr_str:
assert repr_str[-2:] == '))', 'unexpected repr format'
repr_str = repr_str[:-1] + ', ceil_mode={})'.format(mod.ceil_mode)
elif isinstance(mod, nn.Linear):
if 'bias' not in repr_str:
assert repr_str[-1:] == ')', 'unexpected repr format'
bias = mod.bias is not None
repr_str = repr_str[:-1] + ', bias={})'.format(bias)
elif isinstance(mod, nn.ReLU):
if mod.inplace:
repr_str = "ReLU(inplace=True)"
return repr_str
class Network(nn.Module):
def __init__(self, name, mcn_net, meta, uses_functional, flatten_layer,
debug_mode=True):
super(Network, self).__init__()
self.name = pmu.capitalize_first_letter(name)
self.attr_str = []
self.meta = meta
self.forward_str = []
self.mcn_net = mcn_net
self.uses_functional = uses_functional
self.input_vars = None
self.output_vars = []
self.forward_debug_str = []
self.debug_mode = debug_mode
self.flatten_layer = flatten_layer
def indenter(self, x, depth=2):
num_spaces = 4
indent = ' ' * depth * num_spaces
return indent + '{}\n'.format(x)
def forward_return(self):
return 'return {}'.format(', '.join(self.output_vars))
|
MIT License
|
mitmproxy/mitmproxy
|
mitmproxy/net/encoding.py
|
decode
|
python
|
def decode(
encoded: Union[None, str, bytes], encoding: str, errors: str = 'strict'
) -> Union[None, str, bytes]:
if encoded is None:
return None
encoding = encoding.lower()
global _cache
cached = (
isinstance(encoded, bytes) and
_cache.encoded == encoded and
_cache.encoding == encoding and
_cache.errors == errors
)
if cached:
return _cache.decoded
try:
try:
decoded = custom_decode[encoding](encoded)
except KeyError:
decoded = codecs.decode(encoded, encoding, errors)
if encoding in ("gzip", "deflate", "deflateraw", "br", "zstd"):
_cache = CachedDecode(encoded, encoding, errors, decoded)
return decoded
except TypeError:
raise
except Exception as e:
raise ValueError("{} when decoding {} with {}: {}".format(
type(e).__name__,
repr(encoded)[:10],
repr(encoding),
repr(e),
))
|
Decode the given input object
Returns:
The decoded value
Raises:
ValueError, if decoding fails.
|
https://github.com/mitmproxy/mitmproxy/blob/667d4e04749a4bc2212f58fa2b8c31cd1d91fc7b/mitmproxy/net/encoding.py#L41-L82
|
import codecs
import collections
from io import BytesIO
import gzip
import zlib
import brotli
import zstandard as zstd
from typing import Union, Optional, AnyStr, overload
CachedDecode = collections.namedtuple(
"CachedDecode", "encoded encoding errors decoded"
)
_cache = CachedDecode(None, None, None, None)
@overload
def decode(encoded: None, encoding: str, errors: str = 'strict') -> None:
...
@overload
def decode(encoded: str, encoding: str, errors: str = 'strict') -> str:
...
@overload
def decode(encoded: bytes, encoding: str, errors: str = 'strict') -> Union[str, bytes]:
...
|
MIT License
|
whbrewer/spc
|
src/gluino/contrib/hypermedia.py
|
Collection.row2data
|
python
|
def row2data(self,table,row,text=False):
data = []
if self.compact:
for fieldname in (self.table_policy.get('fields',table.fields)):
field = table[fieldname]
if not ((field.type=='text' and text==False) or
field.type=='blob' or
field.type.startswith('reference ') or
field.type.startswith('list:reference ')) and field.name in row:
data.append(row[field.name])
else:
for fieldname in (self.table_policy.get('fields',table.fields)):
field = table[fieldname]
if not ((field.type=='text' and text==False) or
field.type=='blob' or
field.type.startswith('reference ') or
field.type.startswith('list:reference ')) and field.name in row:
data.append({'name':field.name,'value':row[field.name],
'prompt':field.label, 'type':field.type})
return data
|
converts a DAL Row object into a collection.item
|
https://github.com/whbrewer/spc/blob/859f15e0fcb3f5f7d84d420f4757ae0a42c5837a/src/gluino/contrib/hypermedia.py#L44-L64
|
import json
from collections import OrderedDict
from gluon import URL, IS_SLUG
__all__ = ['Collection']
class Collection(object):
VERSION = '1.0'
MAXITEMS = 100
def __init__(self,db, extensions=True, compact=False):
self.db = db
self.extensions = extensions
self.compact = compact
|
MIT License
|
crs4/pyehr
|
pyehr/ehr/services/dbmanager/drivers/interface.py
|
DriverInterface.delete_record
|
python
|
def delete_record(self, record_id):
pass
|
Delete a record from the backend server by giving the record ID
|
https://github.com/crs4/pyehr/blob/936df084861bfb075f013567d6181585b2754394/pyehr/ehr/services/dbmanager/drivers/interface.py#L152-L156
|
from abc import ABCMeta, abstractmethod
from pyehr.ehr.services.dbmanager.errors import *
import re, json
from hashlib import md5
class DriverInterface(object):
__metaclass__ = ABCMeta
def __enter__(self):
self.connect()
return self
def __exit__(self, exception_type, exception_value, traceback):
self.disconnect()
return None
@abstractmethod
def connect(self):
pass
@abstractmethod
def disconnect(self):
pass
@abstractmethod
def init_structure(self, structure_def):
pass
@abstractmethod
def encode_record(self, record):
pass
@abstractmethod
def decode_record(self, record):
pass
@abstractmethod
def add_record(self, record):
pass
@abstractmethod
def add_records(self, records, skip_existing_duplicated=False):
errors = list()
saved = list()
for r in records:
try:
saved.append(self.add_record(r))
except DuplicatedKeyError, dke:
if skip_existing_duplicated:
errors.append(r)
else:
raise dke
return saved, errors
def _check_batch(self, records_batch, uid_field):
from collections import Counter
duplicated_counter = Counter()
for r in records_batch:
duplicated_counter[r[uid_field]] += 1
if len(duplicated_counter) < len(records_batch):
raise DuplicatedKeyError('The following IDs have one or more duplicated in this batch: %s' %
[k for k, v in duplicated_counter.iteritems() if v > 1])
@abstractmethod
def get_record_by_id(self, record_id):
pass
@abstractmethod
def get_record_by_version(self, record_id, version):
pass
@abstractmethod
def get_revisions_by_ehr_id(self, record_id):
pass
@abstractmethod
def get_all_records(self):
pass
@abstractmethod
def get_records_by_value(self, field, value):
pass
@abstractmethod
def get_records_by_query(self, selector, fields, limit):
pass
@abstractmethod
def get_values_by_record_id(self, record_id, values_list):
pass
@abstractmethod
def count_records_by_query(self, selector):
pass
@abstractmethod
|
MIT License
|
steemit/hivemind
|
hive/server/condenser_api/methods.py
|
get_post_discussions_by_payout
|
python
|
async def get_post_discussions_by_payout(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0):
ids = await cursor.pids_by_query(
context['db'],
'payout',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
|
Query top-level posts, sorted by payout.
|
https://github.com/steemit/hivemind/blob/d99b852e1ad321aeb67eaec5fb03f7bfb32c75d6/hive/server/condenser_api/methods.py#L344-L355
|
from functools import wraps
import hive.server.condenser_api.cursor as cursor
from hive.server.condenser_api.objects import load_posts, load_posts_reblogs
from hive.server.common.helpers import (
ApiError,
return_error_info,
valid_account,
valid_permlink,
valid_tag,
valid_offset,
valid_limit,
valid_follow_type)
@return_error_info
async def get_account_votes(context, account):
raise ApiError("get_account_votes is no longer supported, for details see "
"https://steemit.com/steemit/@steemitdev/additional-public-api-change")
def _legacy_follower(follower, following, follow_type):
return dict(follower=follower, following=following, what=[follow_type])
def _legacy_follower_with_reputation (follower, reputation, following, follow_type):
what = ['','']
if follow_type & 1 != 0:
what[0] = 'blog'
if follow_type & 2 != 0:
what[1] = 'ignore'
return dict(follower=follower, reputation=reputation, following=following, what=what)
@return_error_info
async def get_followers(context, account: str, start: str, follow_type: str = None,
limit: int = None, **kwargs):
if not follow_type and 'type' in kwargs:
follow_type = kwargs['type']
if not follow_type:
follow_type = 'blog'
followers = await cursor.get_followers(
context['db'],
valid_account(account),
valid_account(start, allow_empty=True),
valid_follow_type(follow_type),
valid_limit(limit, 1000))
return [_legacy_follower_with_reputation(row['name'], row['reputation'],account,row['state']) for row in followers]
@return_error_info
async def get_followers_by_page(context, account: str, page: int, page_size: int = None,
follow_type: str = None, **kwargs):
if not follow_type and 'type' in kwargs:
follow_type = kwargs['type']
if not follow_type:
follow_type = 'blog'
followers = await cursor.get_followers_by_page(
context['db'],
valid_account(account),
valid_offset(page),
valid_limit(page_size, 100),
valid_follow_type(follow_type))
return [_legacy_follower_with_reputation(row['name'], row['reputation'],account,row['state']) for row in followers]
@return_error_info
async def get_following(context, account: str, start: str, follow_type: str = None,
limit: int = None, **kwargs):
if not follow_type and 'type' in kwargs:
follow_type = kwargs['type']
if not follow_type:
follow_type = 'blog'
following = await cursor.get_following(
context['db'],
valid_account(account),
valid_account(start, allow_empty=True),
valid_follow_type(follow_type),
valid_limit(limit, 1000))
return [_legacy_follower_with_reputation(account,row['reputation'],row['name'],row['state']) for row in following]
@return_error_info
async def get_following_by_page(context, account: str, page: int, page_size: int = None,
follow_type: str = None, **kwargs):
if not follow_type and 'type' in kwargs:
follow_type = kwargs['type']
if not follow_type:
follow_type = 'blog'
following = await cursor.get_following_by_page(
context['db'],
valid_account(account),
valid_offset(page),
valid_limit(page_size, 100),
valid_follow_type(follow_type))
return [_legacy_follower_with_reputation(account,row['reputation'],row['name'],row['state']) for row in following]
@return_error_info
async def get_follow_count(context, account: str):
count = await cursor.get_follow_counts(
context['db'],
valid_account(account))
return dict(account=account,
following_count=count['following'],
follower_count=count['followers'])
@return_error_info
async def get_reblogged_by(context, author: str, permlink: str):
return await cursor.get_reblogged_by(
context['db'],
valid_account(author),
valid_permlink(permlink))
@return_error_info
async def get_account_reputations(context, account_lower_bound: str = None, limit: int = None):
return {'reputations': await cursor.get_account_reputations(
context['db'],
account_lower_bound,
valid_limit(limit, 1000))}
@return_error_info
async def get_content(context, author: str, permlink: str):
db = context['db']
valid_account(author)
valid_permlink(permlink)
post_id = await cursor.get_post_id(db, author, permlink)
if not post_id:
return {'id': 0, 'author': '', 'permlink': ''}
posts = await load_posts(db, [post_id])
assert posts, 'post was not found in cache'
return posts[0]
@return_error_info
async def get_content_replies(context, author: str, permlink: str):
db = context['db']
valid_account(author)
valid_permlink(permlink)
parent_id = await cursor.get_post_id(db, author, permlink)
if parent_id:
child_ids = await cursor.get_child_ids(db, parent_id)
if child_ids:
return await load_posts(db, child_ids)
return []
def nested_query_compat(function):
@wraps(function)
def wrapper(*args, **kwargs):
if args and not kwargs and len(args) == 2 and isinstance(args[1], dict):
return function(args[0], **args[1])
return function(*args, **kwargs)
return wrapper
@return_error_info
@nested_query_compat
async def get_discussions_by_trending(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0, filter_tags: list = None):
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_query(
context['db'],
'trending',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_hot(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0, filter_tags: list = None):
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_query(
context['db'],
'hot',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_promoted(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0, filter_tags: list = None):
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_query(
context['db'],
'promoted',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_created(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0, filter_tags: list = None):
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_query(
context['db'],
'created',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_blog(context, tag: str = None, start_author: str = '',
start_permlink: str = '', limit: int = 20,
truncate_body: int = 0, filter_tags: list = None):
assert tag, '`tag` cannot be blank'
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_blog(
context['db'],
valid_account(tag),
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_feed(context, tag: str = None, start_author: str = '',
start_permlink: str = '', limit: int = 20,
truncate_body: int = 0, filter_tags: list = None):
assert tag, '`tag` cannot be blank'
assert not filter_tags, 'filter_tags not supported'
res = await cursor.pids_by_feed_with_reblog(
context['db'],
valid_account(tag),
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts_reblogs(context['db'], res, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_comments(context, start_author: str = None, start_permlink: str = '',
limit: int = 20, truncate_body: int = 0,
filter_tags: list = None):
assert start_author, '`start_author` cannot be blank'
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_account_comments(
context['db'],
valid_account(start_author),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_replies_by_last_update(context, start_author: str = None, start_permlink: str = '',
limit: int = 20, truncate_body: int = 0):
assert start_author, '`start_author` cannot be blank'
ids = await cursor.pids_by_replies_to_account(
context['db'],
valid_account(start_author),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_author_before_date(context, author: str = None, start_permlink: str = '',
before_date: str = '', limit: int = 10):
assert author, '`author` cannot be blank'
ids = await cursor.pids_by_blog_without_reblog(
context['db'],
valid_account(author),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts(context['db'], ids)
@return_error_info
@nested_query_compat
|
MIT License
|
hrnet/hrnet-maskrcnn-benchmark
|
maskrcnn_benchmark/config/yacs.py
|
CfgNode.merge_from_list
|
python
|
def merge_from_list(self, cfg_list):
_assert_with_logging(
len(cfg_list) % 2 == 0,
"Override list has odd length: {}; it must be a list of pairs".format(
cfg_list
),
)
root = self
for full_key, v in zip(cfg_list[0::2], cfg_list[1::2]):
if root.key_is_deprecated(full_key):
continue
if root.key_is_renamed(full_key):
root.raise_key_rename_error(full_key)
key_list = full_key.split(".")
d = self
for subkey in key_list[:-1]:
_assert_with_logging(
subkey in d, "Non-existent key: {}".format(full_key)
)
d = d[subkey]
subkey = key_list[-1]
_assert_with_logging(subkey in d, "Non-existent key: {}".format(full_key))
value = _decode_cfg_value(v)
value = _check_and_coerce_cfg_value_type(value, d[subkey], subkey, full_key)
d[subkey] = value
|
Merge config (keys, values) in a list (e.g., from command line) into
this CfgNode. For example, `cfg_list = ['FOO.BAR', 0.5]`.
|
https://github.com/hrnet/hrnet-maskrcnn-benchmark/blob/a807747c65cbd64edd807100da3fc2ce291fda16/maskrcnn_benchmark/config/yacs.py#L177-L204
|
import copy
import io
import logging
import os
from ast import literal_eval
import yaml
_PY2 = False
_YAML_EXTS = {"", ".yaml", ".yml"}
_PY_EXTS = {".py"}
try:
_FILE_TYPES = (file, io.IOBase)
_PY2 = True
except NameError:
_FILE_TYPES = (io.IOBase,)
_VALID_TYPES = {tuple, list, str, int, float, bool}
if _PY2:
_VALID_TYPES = _VALID_TYPES.union({unicode})
if _PY2:
import imp
else:
import importlib.util
logger = logging.getLogger(__name__)
class CfgNode(dict):
IMMUTABLE = "__immutable__"
DEPRECATED_KEYS = "__deprecated_keys__"
RENAMED_KEYS = "__renamed_keys__"
def __init__(self, init_dict=None, key_list=None):
init_dict = {} if init_dict is None else init_dict
key_list = [] if key_list is None else key_list
for k, v in init_dict.items():
if type(v) is dict:
init_dict[k] = CfgNode(v, key_list=key_list + [k])
else:
_assert_with_logging(
_valid_type(v, allow_cfg_node=True),
"Key {} with value {} is not a valid type; valid types: {}".format(
".".join(key_list + [k]), type(v), _VALID_TYPES
),
)
super(CfgNode, self).__init__(init_dict)
self.__dict__[CfgNode.IMMUTABLE] = False
self.__dict__[CfgNode.DEPRECATED_KEYS] = set()
self.__dict__[CfgNode.RENAMED_KEYS] = {
}
def __getattr__(self, name):
if name in self:
return self[name]
else:
raise AttributeError(name)
def __setattr__(self, name, value):
if self.is_frozen():
raise AttributeError(
"Attempted to set {} to {}, but CfgNode is immutable".format(
name, value
)
)
_assert_with_logging(
name not in self.__dict__,
"Invalid attempt to modify internal CfgNode state: {}".format(name),
)
_assert_with_logging(
_valid_type(value, allow_cfg_node=True),
"Invalid type {} for key {}; valid types = {}".format(
type(value), name, _VALID_TYPES
),
)
self[name] = value
def __str__(self):
def _indent(s_, num_spaces):
s = s_.split("\n")
if len(s) == 1:
return s_
first = s.pop(0)
s = [(num_spaces * " ") + line for line in s]
s = "\n".join(s)
s = first + "\n" + s
return s
r = ""
s = []
for k, v in sorted(self.items()):
seperator = "\n" if isinstance(v, CfgNode) else " "
attr_str = "{}:{}{}".format(str(k), seperator, str(v))
attr_str = _indent(attr_str, 2)
s.append(attr_str)
r += "\n".join(s)
return r
def __repr__(self):
return "{}({})".format(self.__class__.__name__, super(CfgNode, self).__repr__())
def dump(self):
self_as_dict = _to_dict(self)
return yaml.safe_dump(self_as_dict)
def merge_from_file(self, cfg_filename):
with open(cfg_filename, "r") as f:
cfg = load_cfg(f)
self.merge_from_other_cfg(cfg)
def merge_from_other_cfg(self, cfg_other):
_merge_a_into_b(cfg_other, self, self, [])
|
MIT License
|
threatconnect-inc/tcex
|
tcex/threat_intelligence/mappings/security_label.py
|
SecurityLabel.name
|
python
|
def name(self, name):
self._data['name'] = name
data = {'name': name}
return self._tc_requests.update(
self.api_type, self.api_branch, self.unique_id, data, owner=self.owner
)
|
Updates the security labels name.
Args:
name:
|
https://github.com/threatconnect-inc/tcex/blob/dae37b73d8b33cf26360f6d25c6b305a68f2f0e2/tcex/threat_intelligence/mappings/security_label.py#L63-L73
|
from .mappings import Mappings
module = __import__(__name__)
class SecurityLabel(Mappings):
def __init__(self, ti: 'ThreatIntelligenc', name, **kwargs):
super().__init__(
ti,
main_type='SecurityLabel',
api_type='securitylabels',
sub_type=None,
api_entity='securityLabel',
api_branch=None,
owner=kwargs.pop('owner', None),
)
self._data['type'] = 'securityLabels'
self._data['sub_type'] = None
self._data['name'] = name
for arg, value in kwargs.items():
self.add_key_value(arg, value)
@property
def as_entity(self):
return {}
@staticmethod
def is_security_label():
return True
def can_create(self):
if self._data.get('name'):
return True
return False
def add_key_value(self, key, value):
self._data[key] = value
|
Apache License 2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.