repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
wy2136/xlearn
|
xlearn/decomposition.py
|
PCA.transform
|
python
|
def transform(self, da):
da = da.copy()
if not isinstance(da, xr.DataArray):
X = da
return super().transform(X)
if self.weight is not None:
da *= self.weight
X = da.data
n_samples = X.shape[0]
grid_shape = X.shape[1:]
n_grids = np.prod(grid_shape)
X = X.reshape((n_samples, n_grids))
valid_grids = ~np.isnan(X[0, :])
X = X[:, valid_grids]
pcs = super().transform(X)
sample_dim = da.dims[0]
pcs_dims = (sample_dim, 'mode')
pcs_coords = {sample_dim: da[sample_dim],
'mode': np.arange(self.n_components_)}
pcs_da = xr.DataArray(pcs,
dims=pcs_dims, coords=pcs_coords)
return pcs_da
|
xarray version of sklearn.decomposition.PCA.transform
|
https://github.com/wy2136/xlearn/blob/51d0713a38ecc5eecd4e72c71aa1d7fba5944259/xlearn/decomposition.py#L86-L120
|
import xarray as xr
import numpy as np
from sklearn.decomposition import PCA as PCA_sklearn
class PCA(PCA_sklearn):
def __init__(self, *args, **kw):
weight = kw.pop('weight', None)
n_components = kw.pop('n_components', 1)
super().__init__(*args, n_components=n_components, **kw)
self.weight = weight
def __str__(self):
attrs = ['copy', 'iterated_power', 'n_components', 'random_state', 'svd_solver',
'tol', 'whiten']
values = []
for attr in attrs:
value = getattr(self, attr)
if isinstance(value, str):
value = '"{}"'.format(value)
values.append(value)
s = ', '.join(['{}={}'.format(attr, value)
for attr,value in zip(attrs, values)])
return '[PCA for xarray]: {}.'.format(s)
def __repr__(self):
return self.__str__()
def fit(self, da):
da = da.copy()
if not isinstance(da, xr.DataArray):
X = da
return super().fit(X)
if self.weight is not None:
da *= self.weight
X = da.data
n_samples = X.shape[0]
grid_shape = X.shape[1:]
n_grids = np.prod(grid_shape)
X = X.reshape((n_samples, n_grids))
valid_grids = ~np.isnan(X[0, :])
X = X[:, valid_grids]
super().fit(X)
eofs = np.empty((self.n_components_, n_grids)) * np.nan
eofs[:, valid_grids] = self.components_
eofs = eofs.reshape((self.n_components_,) + grid_shape)
mean_ = np.empty(n_grids) * np.nan
mean_[valid_grids] = self.mean_
mean_ = mean_.reshape(grid_shape)
grid_dims = da.dims[1:]
eofs_dims = ('mode',) + grid_dims
grid_coords = {dim: da[dim] for dim in grid_dims}
eofs_coords = grid_coords.copy()
eofs_coords[eofs_dims[0]] = np.arange(self.n_components_)
self.components_da = xr.DataArray(eofs,
dims=eofs_dims, coords=eofs_coords)
self.mean_da = xr.DataArray(mean_,
dims=grid_dims, coords=grid_coords)
return self
|
BSD 3-Clause New or Revised License
|
gurkult/gurkbot
|
bot/exts/fun/xkcd.py
|
setup
|
python
|
def setup(bot: Bot) -> None:
bot.add_cog(XKCD(bot))
|
Loading the XKCD cog.
|
https://github.com/gurkult/gurkbot/blob/887c2ded7523a43abaa4865fa7978a64517ecbdc/bot/exts/fun/xkcd.py#L107-L109
|
import logging
import re
from datetime import datetime
from random import randint
from typing import Dict, Optional, Union
from bot.bot import Bot
from bot.constants import Colours
from discord import Embed
from discord.ext import tasks
from discord.ext.commands import Cog, Context, command
log = logging.getLogger(__name__)
COMIC_FORMAT = re.compile(r"latest|[0-9]+")
BASE_URL = "https://xkcd.com"
class XKCD(Cog):
def __init__(self, bot: Bot) -> None:
self.bot = bot
self.latest_comic_info: Dict[str, Union[str, int]] = {}
self.get_latest_comic_info.start()
def cog_unload(self) -> None:
self.get_latest_comic_info.cancel()
@tasks.loop(minutes=30)
async def get_latest_comic_info(self) -> None:
async with self.bot.http_session.get(f"{BASE_URL}/info.0.json") as resp:
if resp.status == 200:
self.latest_comic_info = await resp.json()
else:
log.debug(
f"Failed to get latest XKCD comic information. Status code {resp.status}"
)
@command(name="xkcd")
async def fetch_xkcd_comics(self, ctx: Context, comic: Optional[str]) -> None:
embed = Embed(title=f"XKCD comic '{comic}'")
embed.colour = Colours.soft_red
if comic and (comic := re.match(COMIC_FORMAT, comic)) is None:
embed.description = (
"Comic parameter should either be an integer or 'latest'."
)
await ctx.send(embed=embed)
return
comic = (
randint(1, self.latest_comic_info["num"])
if comic is None
else comic.group(0)
)
if comic == "latest":
info = self.latest_comic_info
else:
async with self.bot.http_session.get(
f"{BASE_URL}/{comic}/info.0.json"
) as resp:
if resp.status == 200:
info = await resp.json()
else:
embed.title = f"XKCD comic #{comic}"
embed.description = (
f"{resp.status}: Could not retrieve xkcd comic #{comic}."
)
log.debug(
f"Retrieving xkcd comic #{comic} failed with status code {resp.status}."
)
await ctx.send(embed=embed)
return
embed.title = f"{info['safe_title']} (#{info['num']})"
embed.description = info["alt"]
embed.url = f"{BASE_URL}/{info['num']}"
if info["img"][-3:] in ("jpg", "png", "gif"):
date = datetime(
year=int(info["year"]), month=int(info["month"]), day=int(info["day"])
)
embed.timestamp = date
embed.set_image(url=info["img"])
embed.set_footer(text=f"#{info['num']} • {info['safe_title']}")
embed.colour = Colours.green
else:
embed.description = (
"The selected comic is interactive, and cannot be displayed within an embed.\n"
f"Comic can be viewed [here](https://xkcd.com/{info['num']})."
)
await ctx.send(embed=embed)
|
MIT License
|
sk2/ank_legacy_v2
|
AutoNetkit/algorithms/ip.py
|
allocate_subnets
|
python
|
def allocate_subnets(network, address_block=IPNetwork("10.0.0.0/8")):
LOG.debug("Allocating subnets")
ip_as_allocs = {}
asgraphs = dict((my_as.asn, my_as) for my_as in ank.get_as_graphs(network))
subnet_list = address_block.subnet(16)
ebgp_edges = ank.ebgp_edges(network)
visited_ebgp_edges = set()
for src, dst in sorted(ebgp_edges):
if (dst, src) in visited_ebgp_edges:
continue
src_as = asgraphs[src.asn]
src_as.add_edge(src, dst)
ank.dns_advertise_link(src, dst)
visited_ebgp_edges.add( (src, dst))
for my_as in sorted(asgraphs.values(), key = lambda x: x.asn):
asn = my_as.asn
as_subnet = subnet_list.next()
as_internal_nodes = [n for n in sorted(my_as.nodes()) if network.asn(n) == asn]
host_count = my_as.number_of_nodes()
ip_as_allocs[my_as.asn] = as_subnet
ptp_count = my_as.number_of_edges()
req_sn_count = max(host_count, 4*ptp_count)
if req_sn_count == 0:
continue
req_pref_len = int(32 - math.ceil(math.log(req_sn_count, 2)) )
sn_iter = as_subnet.subnet(req_pref_len)
if ptp_count > 0:
ptp_subnet = sn_iter.next()
loopback_subnet = sn_iter.next()
if ptp_count > 0:
link_subnet = ptp_subnet.subnet(30)
for src, dst in sorted(my_as.edges()):
subnet = link_subnet.next()
if network.asn(dst) != asn:
network.graph[dst][src]['remote_as_sn_block'] = True
network.graph[src][dst]['sn'] = subnet
network.graph[dst][src]['sn'] = subnet
network.graph[src][dst]['ip'] = subnet[1]
network.graph[dst][src]['ip'] = subnet[2]
loopback_ips = loopback_subnet.subnet(32)
for rtr in sorted(as_internal_nodes):
lo_ip = loopback_ips.next()
network.graph.node[rtr]['lo_ip'] = lo_ip
network.ip_as_allocs = ip_as_allocs
|
Allocates subnets and IP addresses to links in the network.
Args:
address_block (IPNetwork): The address block to use.
Returns:
ip_as_allocs
Example usage:
>>> network = ank.example_multi_as()
>>> allocate_subnets(network)
>>> print ank.debug_nodes(network.graph, "lo_ip")
{'1a.AS1': IPNetwork('10.0.0.32/32'),
'1b.AS1': IPNetwork('10.0.0.33/32'),
'1c.AS1': IPNetwork('10.0.0.34/32'),
'2a.AS2': IPNetwork('10.1.0.64/32'),
'2b.AS2': IPNetwork('10.1.0.65/32'),
'2c.AS2': IPNetwork('10.1.0.66/32'),
'2d.AS2': IPNetwork('10.1.0.67/32'),
'3a.AS3': IPNetwork('10.2.0.0/32')}
>>> print ank.debug_edges(network.graph, "ip")
{('1a.AS1', '1b.AS1'): IPAddress('10.0.0.10'),
('1a.AS1', '1c.AS1'): IPAddress('10.0.0.22'),
('1b.AS1', '1a.AS1'): IPAddress('10.0.0.9'),
('1b.AS1', '1c.AS1'): IPAddress('10.0.0.26'),
('1b.AS1', '3a.AS3'): IPAddress('10.0.0.17'),
('1c.AS1', '1a.AS1'): IPAddress('10.0.0.21'),
('1c.AS1', '1b.AS1'): IPAddress('10.0.0.25'),
('1c.AS1', '2a.AS2'): IPAddress('10.0.0.29'),
('2a.AS2', '1c.AS1'): IPAddress('10.0.0.30'),
('2a.AS2', '2b.AS2'): IPAddress('10.1.0.10'),
('2a.AS2', '2d.AS2'): IPAddress('10.1.0.26'),
('2b.AS2', '2a.AS2'): IPAddress('10.1.0.9'),
('2b.AS2', '2c.AS2'): IPAddress('10.1.0.18'),
('2c.AS2', '2b.AS2'): IPAddress('10.1.0.17'),
('2c.AS2', '2d.AS2'): IPAddress('10.1.0.30'),
('2d.AS2', '2a.AS2'): IPAddress('10.1.0.25'),
('2d.AS2', '2c.AS2'): IPAddress('10.1.0.29'),
('2d.AS2', '3a.AS3'): IPAddress('10.1.0.33'),
('3a.AS3', '1b.AS1'): IPAddress('10.0.0.18'),
('3a.AS3', '2d.AS2'): IPAddress('10.1.0.34')}
>>> print ank.debug_edges(network.graph, "sn")
{('1a.AS1', '1b.AS1'): IPNetwork('10.0.0.8/30'),
('1a.AS1', '1c.AS1'): IPNetwork('10.0.0.20/30'),
('1b.AS1', '1a.AS1'): IPNetwork('10.0.0.8/30'),
('1b.AS1', '1c.AS1'): IPNetwork('10.0.0.24/30'),
('1b.AS1', '3a.AS3'): IPNetwork('10.0.0.16/30'),
('1c.AS1', '1a.AS1'): IPNetwork('10.0.0.20/30'),
('1c.AS1', '1b.AS1'): IPNetwork('10.0.0.24/30'),
('1c.AS1', '2a.AS2'): IPNetwork('10.0.0.28/30'),
('2a.AS2', '1c.AS1'): IPNetwork('10.0.0.28/30'),
('2a.AS2', '2b.AS2'): IPNetwork('10.1.0.8/30'),
('2a.AS2', '2d.AS2'): IPNetwork('10.1.0.24/30'),
('2b.AS2', '2a.AS2'): IPNetwork('10.1.0.8/30'),
('2b.AS2', '2c.AS2'): IPNetwork('10.1.0.16/30'),
('2c.AS2', '2b.AS2'): IPNetwork('10.1.0.16/30'),
('2c.AS2', '2d.AS2'): IPNetwork('10.1.0.28/30'),
('2d.AS2', '2a.AS2'): IPNetwork('10.1.0.24/30'),
('2d.AS2', '2c.AS2'): IPNetwork('10.1.0.28/30'),
('2d.AS2', '3a.AS3'): IPNetwork('10.1.0.32/30'),
('3a.AS3', '1b.AS1'): IPNetwork('10.0.0.16/30'),
('3a.AS3', '2d.AS2'): IPNetwork('10.1.0.32/30')}
|
https://github.com/sk2/ank_legacy_v2/blob/83a28aa54a4ea74962ee9a8c44f856a006a2e675/AutoNetkit/algorithms/ip.py#L33-L192
|
__author__ = "\n".join(['Simon Knight'])
__all__ = ['get_ip_as_allocs', 'allocate_subnets', 'alloc_interfaces',
'alloc_tap_hosts', 'get_tap_host', 'int_id', 'ip_addr',
'ip_to_net_ent_title_ios', 'create_ip_overlay',
'ip_to_net_ent_title']
from netaddr import IPNetwork, IPAddress
import AutoNetkit as ank
import math
import networkx as nx
import logging
LOG = logging.getLogger("ANK")
import pprint
def create_ip_overlay(network):
print "creating ip overlay"
overlay = nx.Graph(network.graph)
for edge in overlay.edges(data=True):
print edge
def get_ip_as_allocs(network):
return network.ip_as_allocs
|
BSD 3-Clause New or Revised License
|
hasgeek/coaster
|
coaster/sqlalchemy/registry.py
|
Registry.__setattr__
|
python
|
def __setattr__(self, name, value):
if name.startswith('_'):
raise ValueError("Registry member names cannot be underscore-prefixed")
if hasattr(self, name):
raise ValueError(f"{name} is already registered")
if not callable(value):
raise ValueError("Registry members must be callable")
self._members.add(name)
object.__setattr__(self, name, value)
|
Incorporate a new registry member.
|
https://github.com/hasgeek/coaster/blob/3ffbc9d33c981284593445299aaee0c3cc0cdb0b/coaster/sqlalchemy/registry.py#L85-L94
|
from functools import partial
from threading import Lock
from typing import Optional, Set
from sqlalchemy.ext.declarative import declared_attr
__all__ = ['Registry', 'InstanceRegistry', 'RegistryMixin']
_marker = object()
class Registry:
_param: Optional[str]
_name: Optional[str]
_lock: Lock
_default_property: bool
_default_cached_property: bool
_members: Set[str]
_properties: Set[str]
_cached_properties: Set[str]
def __init__(
self,
param: Optional[str] = None,
property: bool = False,
cached_property: bool = False,
):
if property and cached_property:
raise TypeError("Only one of property and cached_property can be True")
object.__setattr__(self, '_param', str(param) if param else None)
object.__setattr__(self, '_name', None)
object.__setattr__(self, '_lock', Lock())
object.__setattr__(self, '_default_property', property)
object.__setattr__(self, '_default_cached_property', cached_property)
object.__setattr__(self, '_members', set())
object.__setattr__(self, '_properties', set())
object.__setattr__(self, '_cached_properties', set())
def __set_name__(self, owner, name):
if self._name is None:
object.__setattr__(self, '_name', name)
elif name != self._name:
raise TypeError(
f"A registry cannot be used under multiple names {self._name} and"
f" {name}"
)
|
BSD 2-Clause Simplified License
|
amzn/autotrail
|
src/autotrail/workflow/default_workflow/io.py
|
InteractiveClientWrapper.rerun
|
python
|
def rerun(self, dry_run=True, **tags):
self._call_client_method('rerun', self._make_affected_steps_printer('rerun', dry_run), dry_run=dry_run, **tags)
|
Send message to resume steps.
Mark the specified steps so that they are resumed.
A step can only be resumed if it is either paused, marked to pause, paused due to failure or interrupted.
:param dry_run: Boolean. API call doesn't have any effect when True.
:param tags: Any key=value pair provided in the arguments is treated as a tag, except for dry_run=True.
Each step by default gets a tag viz., name=<action_function_name>.
If tags are provided, then only the steps matching the tags will be re-run.
If no tags are provided, all possible steps will be marked to be re-run.
:return: None. Prints the 'name' and 'n' tags of steps that were re-run.
|
https://github.com/amzn/autotrail/blob/182fdfee87b684828f74408dc4214cb6ec9f2a3c/src/autotrail/workflow/default_workflow/io.py#L369-L381
|
import sys
from operator import itemgetter
from autotrail.workflow.default_workflow.api import StatusField
def print_step_statuses(step_statuses, to):
all_fields = {StatusField.NAME, StatusField.TAGS, StatusField.STATE, StatusField.ACTIONS, StatusField.IO,
StatusField.RETURN_VALUE, StatusField.EXCEPTION}
single_value_fields = [StatusField.STATE, StatusField.RETURN_VALUE, StatusField.EXCEPTION]
multi_value_fields = [StatusField.IO, StatusField.OUTPUT, StatusField.ACTIONS]
max_field_length = len(max(all_fields, key=len))
header = '- {{field:<{}}}: {{value}}'.format(max_field_length)
body = ' {{field:<{}}}: {{value}}'.format(max_field_length)
print('Status of steps:', file=to)
for step_id, step_status in sorted(step_statuses.items()):
print(header.format(field=StatusField.NAME, value=step_status[StatusField.NAME]), file=to)
print(body.format(field='n', value=step_id), file=to)
for field in step_status:
if field in single_value_fields:
print(body.format(field=field, value=step_status[field]), file=to)
elif field in multi_value_fields:
if step_status[field]:
for i, message in enumerate(step_status[field]):
field = field if i == 0 else ''
print(body.format(field=field, value=str(message)), file=to)
else:
print(body.format(field=field, value=step_status[field]), file=to)
elif field == StatusField.TAGS:
for key, value in step_status[StatusField.TAGS].items():
print(body.format(field=field, value='{} = {}'.format(key, value)), file=to)
field = ''
print('', file=to)
def print_error(method_name, error_message, to):
print('- API Call: {}'.format(method_name), file=to)
print(' Error: {}'.format(error_message), file=to)
def print_no_result(method_name, to):
print('- API Call: {}'.format(method_name), file=to)
print(' No result received for the API call.', file=to)
def print_affected_steps(method_name, affected_step_ids, dry_run, step_id_to_name_mapping, to):
print('- API Call: {}'.format(method_name), file=to)
print(' Dry Run: {}'.format(dry_run), file=to)
print(' List of step names that are affected:', file=to)
for step_id in sorted(affected_step_ids):
print(' # {} - {}'.format(step_id, step_id_to_name_mapping[step_id]), file=to)
def print_step_list(steps_tags, to):
print('List of steps and their tags:', file=to)
for step_tags in sorted(steps_tags, key=itemgetter('n')):
print('- Name: {}'.format(step_tags['name']), file=to)
print(' n: {}'.format(step_tags['n']), file=to)
for key, value in step_tags.items():
if key in ['name', 'n']:
continue
print(' {key}: {value}'.format(key=key, value=value), file=to)
class InteractiveClientWrapper:
def __init__(self, method_api_client, stdout=sys.stdout, stderr=sys.stderr, status_printer=print_step_statuses,
affected_steps_printer=print_affected_steps, step_list_printer=print_step_list,
error_printer=print_error, no_result_printer=print_no_result):
self.client = method_api_client
self.stdout = stdout
self.stderr = stderr
try:
tags_of_all_steps = self.client.list()
except Exception as e:
raise ValueError('Unable to query the trail due to error: {}'.format(e))
if not tags_of_all_steps:
raise ValueError('Unable to query the trail. No response to "status" API call.')
self.step_id_to_name_mapping = {step_tags['n']: step_tags['name'] for step_tags in tags_of_all_steps}
self.error_printer = error_printer
self.no_result_printer = no_result_printer
self.status_printer = status_printer
self.affected_steps_printer = affected_steps_printer
self.step_list_printer = step_list_printer
def _make_affected_steps_printer(self, method, dry_run):
return lambda result: self.affected_steps_printer(method, result, dry_run, self.step_id_to_name_mapping,
self.stdout)
def _call_client_method(self, method, printer, *args, **kwargs):
try:
result = getattr(self.client, method)(*args, **kwargs)
except Exception as error:
self.error_printer(method, str(error), self.stderr)
return
if result is not None:
printer(result)
else:
self.no_result_printer(method, self.stderr)
def start(self, dry_run=True):
self._call_client_method('start', self._make_affected_steps_printer('start', dry_run), dry_run=dry_run)
def shutdown(self, dry_run=True):
self._call_client_method('shutdown', self._make_affected_steps_printer('shutdown', dry_run), dry_run=dry_run)
def send_message_to_steps(self, message, dry_run=True, **tags):
self._call_client_method('send_message_to_steps',
self._make_affected_steps_printer('send_message_to_steps', dry_run), message,
dry_run=dry_run, **tags)
def list(self, **tags):
printer = lambda result: self.step_list_printer(result, self.stdout)
self._call_client_method('list', printer, **tags)
def status(self, fields=None, states=None, **tags):
printer = lambda result: self.status_printer(result, self.stdout)
self._call_client_method('status', printer, fields=fields, states=states, **tags)
def steps_waiting_for_user_input(self, **tags):
printer = lambda result: self.status_printer(result, self.stdout)
self._call_client_method('steps_waiting_for_user_input', printer, **tags)
def pause(self, dry_run=True, **tags):
self._call_client_method('pause', self._make_affected_steps_printer('pause', dry_run), dry_run=dry_run, **tags)
def interrupt(self, dry_run=True, **tags):
self._call_client_method('interrupt', self._make_affected_steps_printer('interrupt', dry_run), dry_run=dry_run,
**tags)
def resume(self, dry_run=True, **tags):
self._call_client_method('resume', self._make_affected_steps_printer('resume', dry_run), dry_run=dry_run,
**tags)
|
Apache License 2.0
|
pokemongof/pokemongo-bot-desktop
|
build/pywin/Lib/distutils/msvccompiler.py
|
MSVCCompiler.get_msvc_paths
|
python
|
def get_msvc_paths(self, path, platform='x86'):
if not _can_read_reg:
return []
path = path + " dirs"
if self.__version >= 7:
key = (r"%s\%0.1f\VC\VC_OBJECTS_PLATFORM_INFO\Win32\Directories"
% (self.__root, self.__version))
else:
key = (r"%s\6.0\Build System\Components\Platforms"
r"\Win32 (%s)\Directories" % (self.__root, platform))
for base in HKEYS:
d = read_values(base, key)
if d:
if self.__version >= 7:
return string.split(self.__macros.sub(d[path]), ";")
else:
return string.split(d[path], ";")
if self.__version == 6:
for base in HKEYS:
if read_values(base, r"%s\6.0" % self.__root) is not None:
self.warn("It seems you have Visual Studio 6 installed, "
"but the expected registry settings are not present.\n"
"You must at least run the Visual Studio GUI once "
"so that these entries are created.")
break
return []
|
Get a list of devstudio directories (include, lib or path).
Return a list of strings. The list will be empty if unable to
access the registry or appropriate registry keys not found.
|
https://github.com/pokemongof/pokemongo-bot-desktop/blob/4bfa94f0183406c6a86f93645eff7abd3ad4ced8/build/pywin/Lib/distutils/msvccompiler.py#L602-L637
|
__revision__ = "$Id$"
import sys
import os
import string
from distutils.errors import (DistutilsExecError, DistutilsPlatformError,
CompileError, LibError, LinkError)
from distutils.ccompiler import CCompiler, gen_lib_options
from distutils import log
_can_read_reg = 0
try:
import _winreg
_can_read_reg = 1
hkey_mod = _winreg
RegOpenKeyEx = _winreg.OpenKeyEx
RegEnumKey = _winreg.EnumKey
RegEnumValue = _winreg.EnumValue
RegError = _winreg.error
except ImportError:
try:
import win32api
import win32con
_can_read_reg = 1
hkey_mod = win32con
RegOpenKeyEx = win32api.RegOpenKeyEx
RegEnumKey = win32api.RegEnumKey
RegEnumValue = win32api.RegEnumValue
RegError = win32api.error
except ImportError:
log.info("Warning: Can't read registry to find the "
"necessary compiler setting\n"
"Make sure that Python modules _winreg, "
"win32api or win32con are installed.")
pass
if _can_read_reg:
HKEYS = (hkey_mod.HKEY_USERS,
hkey_mod.HKEY_CURRENT_USER,
hkey_mod.HKEY_LOCAL_MACHINE,
hkey_mod.HKEY_CLASSES_ROOT)
def read_keys(base, key):
try:
handle = RegOpenKeyEx(base, key)
except RegError:
return None
L = []
i = 0
while 1:
try:
k = RegEnumKey(handle, i)
except RegError:
break
L.append(k)
i = i + 1
return L
def read_values(base, key):
try:
handle = RegOpenKeyEx(base, key)
except RegError:
return None
d = {}
i = 0
while 1:
try:
name, value, type = RegEnumValue(handle, i)
except RegError:
break
name = name.lower()
d[convert_mbcs(name)] = convert_mbcs(value)
i = i + 1
return d
def convert_mbcs(s):
enc = getattr(s, "encode", None)
if enc is not None:
try:
s = enc("mbcs")
except UnicodeError:
pass
return s
class MacroExpander:
def __init__(self, version):
self.macros = {}
self.load_macros(version)
def set_macro(self, macro, path, key):
for base in HKEYS:
d = read_values(base, path)
if d:
self.macros["$(%s)" % macro] = d[key]
break
def load_macros(self, version):
vsbase = r"Software\Microsoft\VisualStudio\%0.1f" % version
self.set_macro("VCInstallDir", vsbase + r"\Setup\VC", "productdir")
self.set_macro("VSInstallDir", vsbase + r"\Setup\VS", "productdir")
net = r"Software\Microsoft\.NETFramework"
self.set_macro("FrameworkDir", net, "installroot")
try:
if version > 7.0:
self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv1.1")
else:
self.set_macro("FrameworkSDKDir", net, "sdkinstallroot")
except KeyError:
raise DistutilsPlatformError, ("""Python was built with Visual Studio 2003;
extensions must be built with a compiler than can generate compatible binaries.
Visual Studio 2003 was not found on this system. If you have Cygwin installed,
you can try compiling with MingW32, by passing "-c mingw32" to setup.py.""")
p = r"Software\Microsoft\NET Framework Setup\Product"
for base in HKEYS:
try:
h = RegOpenKeyEx(base, p)
except RegError:
continue
key = RegEnumKey(h, 0)
d = read_values(base, r"%s\%s" % (p, key))
self.macros["$(FrameworkVersion)"] = d["version"]
def sub(self, s):
for k, v in self.macros.items():
s = string.replace(s, k, v)
return s
def get_build_version():
prefix = "MSC v."
i = string.find(sys.version, prefix)
if i == -1:
return 6
i = i + len(prefix)
s, rest = sys.version[i:].split(" ", 1)
majorVersion = int(s[:-2]) - 6
minorVersion = int(s[2:3]) / 10.0
if majorVersion == 6:
minorVersion = 0
if majorVersion >= 6:
return majorVersion + minorVersion
return None
def get_build_architecture():
prefix = " bit ("
i = string.find(sys.version, prefix)
if i == -1:
return "Intel"
j = string.find(sys.version, ")", i)
return sys.version[i+len(prefix):j]
def normalize_and_reduce_paths(paths):
reduced_paths = []
for p in paths:
np = os.path.normpath(p)
if np not in reduced_paths:
reduced_paths.append(np)
return reduced_paths
class MSVCCompiler (CCompiler) :
compiler_type = 'msvc'
executables = {}
_c_extensions = ['.c']
_cpp_extensions = ['.cc', '.cpp', '.cxx']
_rc_extensions = ['.rc']
_mc_extensions = ['.mc']
src_extensions = (_c_extensions + _cpp_extensions +
_rc_extensions + _mc_extensions)
res_extension = '.res'
obj_extension = '.obj'
static_lib_extension = '.lib'
shared_lib_extension = '.dll'
static_lib_format = shared_lib_format = '%s%s'
exe_extension = '.exe'
def __init__ (self, verbose=0, dry_run=0, force=0):
CCompiler.__init__ (self, verbose, dry_run, force)
self.__version = get_build_version()
self.__arch = get_build_architecture()
if self.__arch == "Intel":
if self.__version >= 7:
self.__root = r"Software\Microsoft\VisualStudio"
self.__macros = MacroExpander(self.__version)
else:
self.__root = r"Software\Microsoft\Devstudio"
self.__product = "Visual Studio version %s" % self.__version
else:
self.__product = "Microsoft SDK compiler %s" % (self.__version + 6)
self.initialized = False
def initialize(self):
self.__paths = []
if "DISTUTILS_USE_SDK" in os.environ and "MSSdk" in os.environ and self.find_exe("cl.exe"):
self.cc = "cl.exe"
self.linker = "link.exe"
self.lib = "lib.exe"
self.rc = "rc.exe"
self.mc = "mc.exe"
else:
self.__paths = self.get_msvc_paths("path")
if len (self.__paths) == 0:
raise DistutilsPlatformError, ("Python was built with %s, "
"and extensions need to be built with the same "
"version of the compiler, but it isn't installed." % self.__product)
self.cc = self.find_exe("cl.exe")
self.linker = self.find_exe("link.exe")
self.lib = self.find_exe("lib.exe")
self.rc = self.find_exe("rc.exe")
self.mc = self.find_exe("mc.exe")
self.set_path_env_var('lib')
self.set_path_env_var('include')
try:
for p in string.split(os.environ['path'], ';'):
self.__paths.append(p)
except KeyError:
pass
self.__paths = normalize_and_reduce_paths(self.__paths)
os.environ['path'] = string.join(self.__paths, ';')
self.preprocess_options = None
if self.__arch == "Intel":
self.compile_options = [ '/nologo', '/Ox', '/MD', '/W3', '/GX' ,
'/DNDEBUG']
self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3', '/GX',
'/Z7', '/D_DEBUG']
else:
self.compile_options = [ '/nologo', '/Ox', '/MD', '/W3', '/GS-' ,
'/DNDEBUG']
self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3', '/GS-',
'/Z7', '/D_DEBUG']
self.ldflags_shared = ['/DLL', '/nologo', '/INCREMENTAL:NO']
if self.__version >= 7:
self.ldflags_shared_debug = [
'/DLL', '/nologo', '/INCREMENTAL:no', '/DEBUG'
]
else:
self.ldflags_shared_debug = [
'/DLL', '/nologo', '/INCREMENTAL:no', '/pdb:None', '/DEBUG'
]
self.ldflags_static = [ '/nologo']
self.initialized = True
def object_filenames (self,
source_filenames,
strip_dir=0,
output_dir=''):
if output_dir is None: output_dir = ''
obj_names = []
for src_name in source_filenames:
(base, ext) = os.path.splitext (src_name)
base = os.path.splitdrive(base)[1]
base = base[os.path.isabs(base):]
if ext not in self.src_extensions:
raise CompileError ("Don't know how to compile %s" % src_name)
if strip_dir:
base = os.path.basename (base)
if ext in self._rc_extensions:
obj_names.append (os.path.join (output_dir,
base + self.res_extension))
elif ext in self._mc_extensions:
obj_names.append (os.path.join (output_dir,
base + self.res_extension))
else:
obj_names.append (os.path.join (output_dir,
base + self.obj_extension))
return obj_names
def compile(self, sources,
output_dir=None, macros=None, include_dirs=None, debug=0,
extra_preargs=None, extra_postargs=None, depends=None):
if not self.initialized: self.initialize()
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(output_dir, macros, include_dirs, sources,
depends, extra_postargs)
compile_opts = extra_preargs or []
compile_opts.append ('/c')
if debug:
compile_opts.extend(self.compile_options_debug)
else:
compile_opts.extend(self.compile_options)
for obj in objects:
try:
src, ext = build[obj]
except KeyError:
continue
if debug:
src = os.path.abspath(src)
if ext in self._c_extensions:
input_opt = "/Tc" + src
elif ext in self._cpp_extensions:
input_opt = "/Tp" + src
elif ext in self._rc_extensions:
input_opt = src
output_opt = "/fo" + obj
try:
self.spawn ([self.rc] + pp_opts +
[output_opt] + [input_opt])
except DistutilsExecError, msg:
raise CompileError, msg
continue
elif ext in self._mc_extensions:
h_dir = os.path.dirname (src)
rc_dir = os.path.dirname (obj)
try:
self.spawn ([self.mc] +
['-h', h_dir, '-r', rc_dir] + [src])
base, _ = os.path.splitext (os.path.basename (src))
rc_file = os.path.join (rc_dir, base + '.rc')
self.spawn ([self.rc] +
["/fo" + obj] + [rc_file])
except DistutilsExecError, msg:
raise CompileError, msg
continue
else:
raise CompileError (
"Don't know how to compile %s to %s" % (src, obj))
output_opt = "/Fo" + obj
try:
self.spawn ([self.cc] + compile_opts + pp_opts +
[input_opt, output_opt] +
extra_postargs)
except DistutilsExecError, msg:
raise CompileError, msg
return objects
def create_static_lib (self,
objects,
output_libname,
output_dir=None,
debug=0,
target_lang=None):
if not self.initialized: self.initialize()
(objects, output_dir) = self._fix_object_args (objects, output_dir)
output_filename = self.library_filename (output_libname, output_dir=output_dir)
if self._need_link (objects, output_filename):
lib_args = objects + ['/OUT:' + output_filename]
if debug:
pass
try:
self.spawn ([self.lib] + lib_args)
except DistutilsExecError, msg:
raise LibError, msg
else:
log.debug("skipping %s (up-to-date)", output_filename)
def link (self,
target_desc,
objects,
output_filename,
output_dir=None,
libraries=None,
library_dirs=None,
runtime_library_dirs=None,
export_symbols=None,
debug=0,
extra_preargs=None,
extra_postargs=None,
build_temp=None,
target_lang=None):
if not self.initialized: self.initialize()
(objects, output_dir) = self._fix_object_args (objects, output_dir)
(libraries, library_dirs, runtime_library_dirs) = self._fix_lib_args (libraries, library_dirs, runtime_library_dirs)
if runtime_library_dirs:
self.warn ("I don't know what to do with 'runtime_library_dirs': "
+ str (runtime_library_dirs))
lib_opts = gen_lib_options (self,
library_dirs, runtime_library_dirs,
libraries)
if output_dir is not None:
output_filename = os.path.join (output_dir, output_filename)
if self._need_link (objects, output_filename):
if target_desc == CCompiler.EXECUTABLE:
if debug:
ldflags = self.ldflags_shared_debug[1:]
else:
ldflags = self.ldflags_shared[1:]
else:
if debug:
ldflags = self.ldflags_shared_debug
else:
ldflags = self.ldflags_shared
export_opts = []
for sym in (export_symbols or []):
export_opts.append("/EXPORT:" + sym)
ld_args = (ldflags + lib_opts + export_opts +
objects + ['/OUT:' + output_filename])
if export_symbols is not None:
(dll_name, dll_ext) = os.path.splitext(
os.path.basename(output_filename))
implib_file = os.path.join(
os.path.dirname(objects[0]),
self.library_filename(dll_name))
ld_args.append ('/IMPLIB:' + implib_file)
if extra_preargs:
ld_args[:0] = extra_preargs
if extra_postargs:
ld_args.extend(extra_postargs)
self.mkpath (os.path.dirname (output_filename))
try:
self.spawn ([self.linker] + ld_args)
except DistutilsExecError, msg:
raise LinkError, msg
else:
log.debug("skipping %s (up-to-date)", output_filename)
def library_dir_option (self, dir):
return "/LIBPATH:" + dir
def runtime_library_dir_option (self, dir):
raise DistutilsPlatformError, "don't know how to set runtime library search path for MSVC++"
def library_option (self, lib):
return self.library_filename (lib)
def find_library_file (self, dirs, lib, debug=0):
if debug:
try_names = [lib + "_d", lib]
else:
try_names = [lib]
for dir in dirs:
for name in try_names:
libfile = os.path.join(dir, self.library_filename (name))
if os.path.exists(libfile):
return libfile
else:
return None
def find_exe(self, exe):
for p in self.__paths:
fn = os.path.join(os.path.abspath(p), exe)
if os.path.isfile(fn):
return fn
for p in string.split(os.environ['Path'],';'):
fn = os.path.join(os.path.abspath(p),exe)
if os.path.isfile(fn):
return fn
return exe
|
MIT License
|
tensorflow/agents
|
tf_agents/metrics/tf_metric.py
|
TFStepMetric.init_variables
|
python
|
def init_variables(self):
if not tf.executing_eagerly():
return tf.compat.v1.group([v.initializer for v in self.variables])
|
Initializes this Metric's variables.
Should be called after variables are created in the first execution
of `__call__()`. If using graph execution, the return value should be
`run()` in a session before running the op returned by `__call__()`.
(See example above.)
Returns:
If using graph execution, this returns an op to perform the
initialization. Under eager execution, the variables are reset to their
initial values as a side effect and this function returns None.
|
https://github.com/tensorflow/agents/blob/ad18e95cfd95e4e76b771aeafa653f70c5080a29/tf_agents/metrics/tf_metric.py#L62-L76
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tf_agents.utils import common
class TFStepMetric(tf.Module):
def __init__(self, name, prefix='Metrics'):
super(TFStepMetric, self).__init__(name)
common.check_tf1_allowed()
self._prefix = prefix
def call(self, *args, **kwargs):
raise NotImplementedError('Metrics must define a call() member function')
def reset(self):
raise NotImplementedError('Metrics must define a reset() member function')
def result(self):
raise NotImplementedError('Metrics must define a result() member function')
|
Apache License 2.0
|
markmichon1/bitglitter-python
|
bitglitter/utilities/palette.py
|
get_palette_id_from_hash
|
python
|
def get_palette_id_from_hash(name, description, time_created, color_set):
color_set_string = str(color_set)
color_set_string.replace('[', '(')
color_set_string.replace(']', ')')
hasher = hashlib.sha256(str(name + description + str(time_created) + color_set_string).encode())
return hasher.hexdigest()
|
Taking in the various parameters, this creates a unique ID for the custom palettes.
|
https://github.com/markmichon1/bitglitter-python/blob/c13176084ae71af959d8e551886055cdc1827391/bitglitter/utilities/palette.py#L137-L146
|
import hashlib
import itertools
import logging
import math
from pathlib import Path
from random import choice, randint
from bitstring import BitArray, ConstBitStream
from PIL import Image, ImageDraw
from bitglitter.write.render.renderutilities import render_coords_generator
class BitsToColor:
def __init__(self, color_set_tupled, bit_length, palette_name):
logging.debug(f'Generating encoder for {palette_name}...')
self.color_set_tupled = color_set_tupled
self.bit_length = bit_length
self.return_value = self.generate_dictionary()
@staticmethod
def twenty_four_bit_values(bit_value):
red_channel = bit_value.read('uint : 8')
green_channel = bit_value.read('uint : 8')
blue_channel = bit_value.read('uint : 8')
return red_channel, green_channel, blue_channel
def generate_dictionary(self):
color_dict = {}
if self.bit_length != 24:
for value in range(len(self.color_set_tupled)):
temp_bin_holder = str(BitArray(uint=value, length=self.bit_length))
temp_bin_holder = ConstBitStream(temp_bin_holder)
color_dict[temp_bin_holder] = self.color_set_tupled[value]
return color_dict
else:
return self.twenty_four_bit_values
def get_color(self, value):
if self.bit_length != 24:
return self.return_value[value]
else:
return self.return_value(value)
class ColorsToBits:
def __init__(self, color_set_tupled, bit_length, palette_name):
logging.debug(f'Generating decoder for {palette_name}...')
self.color_set_tupled = color_set_tupled
self.bit_length = bit_length
self.return_value = self.generate_dictionary()
@staticmethod
def twenty_four_bit_values(color):
outgoing_data = BitArray()
for color_channel in color:
outgoing_data.append(BitArray(uint=color_channel, length=8))
return outgoing_data
def generate_dictionary(self):
value_dict = {}
if self.bit_length != 24:
for value in range(len(self.color_set_tupled)):
temp_bin_holder = str(BitArray(uint=value, length=self.bit_length))
temp_bin_holder = ConstBitStream(temp_bin_holder)
value_dict[self.color_set_tupled[value]] = temp_bin_holder
return value_dict
else:
return self.twenty_four_bit_values
def get_value(self, color):
if self.bit_length != 24:
return self.return_value[color]
else:
return self.return_value(color)
def convert_hex_to_rgb(color_set):
returned_list = []
for color in color_set:
if isinstance(color, str):
stripped = color.replace('#', '')
returned_list.append(tuple(int(stripped[i:i + 2], 16) for i in (0, 2, 4)))
else:
returned_list.append(color)
return returned_list
def get_color_distance(color_set):
min_distance = None
for pair in itertools.combinations(color_set, 2):
first_color, second_color = pair
red_distance = (second_color[0] - first_color[0]) ** 2
green_distance = (second_color[1] - first_color[1]) ** 2
blue_distance = (second_color[2] - first_color[2]) ** 2
sum_of_distances = math.sqrt(red_distance + green_distance + blue_distance)
if min_distance is not None:
if sum_of_distances < min_distance:
min_distance = sum_of_distances
else:
min_distance = sum_of_distances
return round(min_distance, 3)
|
MIT License
|
cozysynthesizer/cozy
|
cozy/wf.py
|
exp_wf
|
python
|
def exp_wf(e : Exp, context : Context, pool = RUNTIME_POOL, assumptions : Exp = ETRUE, solver = None):
if solver is None:
solver = ModelCachingSolver(vars=[], funcs={})
for x, ctx, p in all_subexpressions_with_context_information(e, context, pool):
is_wf = exp_wf_nonrecursive(solver, x, ctx, p, assumptions=ctx.adapt(assumptions, context))
if not is_wf:
if isinstance(is_wf, No):
return ExpIsNotWf(e, x, is_wf.msg)
return is_wf
return True
|
Check the well-formedess of `e`.
Returns True or an instance of ExpIsNotWf that indicates why `e` is not
well-formed.
Parameters:
e - an expression to check
context - a context describing e's variables
pool - what pool e lives in
assumptions - facts that are true whenever e begins executing
(NOTE: this does NOT need to include the path conditions from the
context, but it is fine if it does.)
solver - a ModelCachingSolver to use for solving formulas
This function requires that:
- all free variables in `e` are used in the correct pool
- EStateVar only occurs in runtime expressions
|
https://github.com/cozysynthesizer/cozy/blob/d7b2c0ee575057dea4ebec201d579f0ecd785b1b/cozy/wf.py#L71-L98
|
import itertools
from cozy.common import No, typechecked, OrderedSet, unique
from cozy.syntax import Exp, EVar, EAll, ETRUE
from cozy.target_syntax import EStateVar
from cozy.syntax_tools import pprint, strip_EStateVar, freshen_binders, alpha_equivalent, replace
from cozy.solver import ModelCachingSolver
from cozy.pools import RUNTIME_POOL, STATE_POOL
from cozy.structures import extension_handler
from cozy.contexts import Context, all_subexpressions_with_context_information
from cozy.logging import task
class ExpIsNotWf(No):
def __init__(self, toplevel_expression, offending_subexpression, reason):
super().__init__("at {}: {}".format(pprint(offending_subexpression), reason))
self.toplevel_expression = toplevel_expression
self.offending_subexpression = offending_subexpression
self.reason = reason
def __repr__(self):
return "ExpIsNotWf({!r}, {!r}, {!r})".format(
self.toplevel_expression,
self.offending_subexpression,
self.reason)
def exp_wf_nonrecursive(solver, e : Exp, context : Context, pool = RUNTIME_POOL, assumptions : Exp = ETRUE):
if hasattr(e, "_wf"):
return True
state_vars = OrderedSet(v for v, p in context.vars() if p == STATE_POOL)
args = OrderedSet(v for v, p in context.vars() if p == RUNTIME_POOL)
h = extension_handler(type(e))
if h is not None:
assumptions = EAll([assumptions, context.path_condition()])
msg = h.check_wf(e, state_vars=state_vars, args=args, pool=pool, assumptions=assumptions, is_valid=solver.valid)
if msg is not None:
return No(msg)
e._wf = True
return True
at_runtime = pool == RUNTIME_POOL
if isinstance(e, EStateVar) and not at_runtime:
return No("EStateVar in state pool position")
if isinstance(e, EVar):
if at_runtime and e in state_vars:
return No("state var at runtime")
elif not at_runtime and e in args:
return No("arg in state exp")
e._wf = True
return True
@typechecked
|
Apache License 2.0
|
seldonio/alibi
|
alibi/explainers/backends/tensorflow/cfrl_base.py
|
save_model
|
python
|
def save_model(path: Union[str, os.PathLike], model: keras.layers.Layer) -> None:
model.save(path, save_format="tf")
|
Saves a model and its optimizer.
Parameters
----------
path
Path to the saving location.
model
Model to be saved.
|
https://github.com/seldonio/alibi/blob/ef757b9579f85ef2e3dfc7088211969616ee3fdb/alibi/explainers/backends/tensorflow/cfrl_base.py#L621-L632
|
import os
import random
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
from typing import Any, List, Dict, Callable, Union, Optional, TYPE_CHECKING
from alibi.explainers.backends.cfrl_base import CounterfactualRLDataset
from alibi.models.tensorflow.actor_critic import Actor, Critic
if TYPE_CHECKING:
from alibi.explainers.cfrl_base import NormalActionNoise
class TfCounterfactualRLDataset(CounterfactualRLDataset, keras.utils.Sequence):
def __init__(self,
X: np.ndarray,
preprocessor: Callable,
predictor: Callable,
conditional_func: Callable,
batch_size: int,
shuffle: bool = True) -> None:
super().__init__()
self.X = X
self.preprocessor = preprocessor
self.predictor = predictor
self.conditional_func = conditional_func
self.batch_size = batch_size
self.shuffle = shuffle
self.Y_m = self.predict_batches(X=self.X,
predictor=self.predictor,
batch_size=self.batch_size)
self.num_classes: Optional[int] = None
self.max_m: Optional[float] = None
self.min_m: Optional[float] = None
if self.Y_m.shape[1] > 1:
self.num_classes = self.Y_m.shape[1]
else:
self.min_m = np.min(self.Y_m)
self.max_n = np.max(self.Y_m)
self.X = self.preprocessor(self.X)
self.on_epoch_end()
def on_epoch_end(self) -> None:
self.indexes = np.arange(self.X.shape[0])
if self.shuffle:
np.random.shuffle(self.indexes)
def __len__(self) -> int:
return self.X.shape[0] // self.batch_size
def __getitem__(self, idx) -> Dict[str, np.ndarray]:
if self.num_classes is not None:
tgts = np.random.randint(low=0, high=self.num_classes, size=self.batch_size)
Y_t = np.zeros((self.batch_size, self.num_classes))
Y_t[np.arange(self.batch_size), tgts] = 1
else:
Y_t = np.random.uniform(low=self.min_m, high=self.max_m, size=(self.batch_size, 1))
indexes = self.indexes[idx * self.batch_size:(idx + 1) * self.batch_size]
C = self.conditional_func(self.X[indexes])
return {
"X": self.X[indexes],
"Y_m": self.Y_m[indexes],
"Y_t": Y_t,
"C": C
}
def get_optimizer(model: Optional[keras.layers.Layer] = None, lr: float = 1e-3) -> keras.optimizers.Optimizer:
return keras.optimizers.Adam(learning_rate=lr)
def get_actor(hidden_dim: int, output_dim: int) -> keras.layers.Layer:
return Actor(hidden_dim=hidden_dim, output_dim=output_dim)
def get_critic(hidden_dim: int) -> keras.layers.Layer:
return Critic(hidden_dim=hidden_dim)
def sparsity_loss(X_hat_cf: tf.Tensor, X: tf.Tensor) -> Dict[str, tf.Tensor]:
return {"sparsity_loss": tf.reduce_mean(tf.abs(X_hat_cf - X))}
def consistency_loss(Z_cf_pred: tf.Tensor, Z_cf_tgt: tf.Tensor):
return {"consistency_loss": 0}
def data_generator(X: np.ndarray,
encoder_preprocessor: Callable,
predictor: Callable,
conditional_func: Callable,
batch_size: int,
shuffle: bool = True,
**kwargs):
return TfCounterfactualRLDataset(X=X, preprocessor=encoder_preprocessor, predictor=predictor,
conditional_func=conditional_func, batch_size=batch_size, shuffle=shuffle)
def encode(X: Union[tf.Tensor, np.ndarray], encoder: keras.Model, **kwargs) -> tf.Tensor:
return encoder(X, training=False)
def decode(Z: Union[tf.Tensor, np.ndarray], decoder: keras.Model, **kwargs):
return decoder(Z, training=False)
def generate_cf(Z: Union[np.ndarray, tf.Tensor],
Y_m: Union[np.ndarray, tf.Tensor],
Y_t: Union[np.ndarray, tf.Tensor],
C: Optional[Union[np.ndarray, tf.Tensor]],
actor: keras.Model,
**kwargs) -> tf.Tensor:
Y_m = tf.cast(Y_m, dtype=tf.float32)
Y_t = tf.cast(Y_t, dtype=tf.float32)
C = tf.cast(C, dtype=tf.float32) if (C is not None) else C
state = [Z, Y_m, Y_t] + ([C] if (C is not None) else [])
state = tf.concat(state, axis=1)
Z_cf = actor(state, training=False)
return Z_cf
def add_noise(Z_cf: Union[tf.Tensor, np.ndarray],
noise: 'NormalActionNoise',
act_low: float,
act_high: float,
step: int,
exploration_steps: int,
**kwargs) -> tf.Tensor:
eps = noise(Z_cf.shape)
if step > exploration_steps:
Z_cf_tilde = Z_cf + eps
Z_cf_tilde = tf.clip_by_value(Z_cf_tilde, clip_value_min=act_low, clip_value_max=act_high)
else:
Z_cf_tilde = tf.random.uniform(Z_cf.shape, minval=act_low, maxval=act_high)
return Z_cf_tilde
def initialize_optimizer(optimizer: keras.optimizers.Optimizer, model: keras.Model) -> None:
zero_grads = [tf.zeros_like(w) for w in model.trainable_weights]
optimizer.apply_gradients(zip(zero_grads, model.trainable_weights))
def initialize_optimizers(optimizer_actor, optimizer_critic, actor, critic, **kwargs) -> None:
initialize_optimizer(optimizer=optimizer_actor, model=actor)
initialize_optimizer(optimizer=optimizer_critic, model=critic)
def initialize_actor_critic(actor, critic, Z, Z_cf_tilde, Y_m, Y_t, C, **kwargs):
Z = tf.zeros((1, *Z.shape[1:]), dtype=tf.float32)
Z_cf_tilde = tf.zeros((1, *Z_cf_tilde.shape[1:]), dtype=tf.float32)
Y_m = tf.zeros((1, *Y_m.shape[1:]), dtype=tf.float32)
Y_t = tf.zeros((1, *Y_t.shape[1:]), dtype=tf.float32)
actor_input = [Z, Y_m, Y_t]
if C is not None:
C = tf.zeros((1, *C.shape[1:]), dtype=tf.float32)
actor_input += [C]
actor_input = tf.concat(actor_input, axis=1)
critic_input = [actor_input, Z_cf_tilde]
critic_input = tf.concat(critic_input, axis=1)
actor(actor_input)
critic(critic_input)
@tf.function()
def update_actor_critic(encoder: keras.Model,
decoder: keras.Model,
critic: keras.Model,
actor: keras.Model,
optimizer_critic: keras.optimizers.Optimizer,
optimizer_actor: keras.optimizers.Optimizer,
sparsity_loss: Callable,
consistency_loss: Callable,
coeff_sparsity: float,
coeff_consistency: float,
X: np.ndarray,
X_cf: np.ndarray,
Z: np.ndarray,
Z_cf_tilde: np.ndarray,
Y_m: np.ndarray,
Y_t: np.ndarray,
C: Optional[np.ndarray],
R_tilde: np.ndarray,
**kwargs) -> Dict[str, Any]:
losses: Dict[str, float] = dict()
Y_m = tf.cast(Y_m, dtype=tf.float32)
Y_t = tf.cast(Y_t, dtype=tf.float32)
C = tf.cast(C, dtype=tf.float32) if (C is not None) else None
state = [Z, Y_m, Y_t] + ([C] if C is not None else [])
state = tf.concat(state, axis=1)
with tf.GradientTape() as tape_critic:
input_critic = tf.concat([state, Z_cf_tilde], axis=1)
output_critic = tf.squeeze(critic(input_critic, training=True), axis=1)
loss_critic = tf.reduce_mean(tf.square(output_critic - R_tilde))
losses.update({"critic_loss": loss_critic})
grads_critic = tape_critic.gradient(loss_critic, critic.trainable_weights)
optimizer_critic.apply_gradients(zip(grads_critic, critic.trainable_weights))
with tf.GradientTape() as tape_actor:
Z_cf = actor(state, training=True)
input_critic = tf.concat([state, Z_cf], axis=1)
output_critic = critic(input_critic, training=False)
loss_actor = -tf.reduce_mean(output_critic)
losses.update({"actor_loss": loss_actor})
X_hat_cf = decoder(Z_cf, training=False)
loss_sparsity = sparsity_loss(X_hat_cf, X)
losses.update(loss_sparsity)
for key in loss_sparsity.keys():
loss_actor += coeff_sparsity * loss_sparsity[key]
Z_cf_tgt = encoder(X_cf, training=False)
loss_consistency = consistency_loss(Z_cf_pred=Z_cf, Z_cf_tgt=Z_cf_tgt)
losses.update(loss_consistency)
for key in loss_consistency.keys():
loss_actor += coeff_consistency * loss_consistency[key]
grads_actor = tape_actor.gradient(loss_actor, actor.trainable_weights)
optimizer_actor.apply_gradients(zip(grads_actor, actor.trainable_weights))
return losses
def to_numpy(X: Optional[Union[List, np.ndarray, tf.Tensor]]) -> Optional[Union[List, np.ndarray]]:
if X is not None:
if isinstance(X, np.ndarray):
return X
if isinstance(X, tf.Tensor):
return X.numpy()
if isinstance(X, list):
return [to_numpy(e) for e in X]
return np.array(X)
return None
def to_tensor(X: Union[np.ndarray, tf.Tensor], **kwargs) -> Optional[tf.Tensor]:
if X is not None:
if isinstance(X, tf.Tensor):
return X
return tf.constant(X)
return None
|
Apache License 2.0
|
purestorage-openconnect/py-pure-client
|
pypureclient/flasharray/FA_2_3/api/smi_s_api.py
|
SMISApi.api23_smi_s_get_with_http_info
|
python
|
def api23_smi_s_get_with_http_info(
self,
authorization=None,
x_request_id=None,
filter=None,
limit=None,
offset=None,
sort=None,
total_item_count=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if sort is not None:
if not isinstance(sort, list):
sort = [sort]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if 'limit' in params and params['limit'] < 1:
raise ValueError("Invalid value for parameter `limit` when calling `api23_smi_s_get`, must be a value greater than or equal to `1`")
if 'offset' in params and params['offset'] < 0:
raise ValueError("Invalid value for parameter `offset` when calling `api23_smi_s_get`, must be a value greater than or equal to `0`")
collection_formats = {}
path_params = {}
query_params = []
if 'filter' in params:
query_params.append(('filter', params['filter']))
if 'limit' in params:
query_params.append(('limit', params['limit']))
if 'offset' in params:
query_params.append(('offset', params['offset']))
if 'sort' in params:
query_params.append(('sort', params['sort']))
collection_formats['sort'] = 'csv'
if 'total_item_count' in params:
query_params.append(('total_item_count', params['total_item_count']))
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.3/smi-s', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='SmisGetResponse',
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
|
List SMI-S settings
Displays the SMI-S settings, including the name of the array and whether SLP and WBEM-HTTPS are enabled.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.api23_smi_s_get_with_http_info(async_req=True)
>>> result = thread.get()
:param str authorization: Access token (in JWT format) required to use any API endpoint (except `/oauth2`, `/login`, and `/logout`)
:param str x_request_id: Supplied by client during request or generated by server.
:param str filter: Narrows down the results to only the response objects that satisfy the filter criteria.
:param int limit: Limits the size of the response to the specified number of objects on each page. To return the total number of resources, set `limit=0`. The total number of resources is returned as a `total_item_count` value. If the page size requested is larger than the system maximum limit, the server returns the maximum limit, disregarding the requested page size.
:param int offset: The starting position based on the results of the query in relation to the full set of response objects returned.
:param list[str] sort: Returns the response objects in the order specified. Set `sort` to the name in the response by which to sort. Sorting can be performed on any of the names in the response, and the objects can be sorted in ascending or descending order. By default, the response objects are sorted in ascending order. To sort in descending order, append the minus sign (`-`) to the name. A single request can be sorted on multiple objects. For example, you can sort all volumes from largest to smallest volume size, and then sort volumes of the same size in ascending order by volume name. To sort on multiple names, list the names as comma-separated values.
:param bool total_item_count: If set to `true`, the `total_item_count` matching the specified query parameters is calculated and returned in the response. If set to `false`, the `total_item_count` is `null` in the response. This may speed up queries where the `total_item_count` is large. If not specified, defaults to `false`.
:param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.
:param bool _return_http_data_only: Returns only data field.
:param bool _preload_content: Response is converted into objects.
:param int _request_timeout: Total request timeout in seconds.
It can also be a tuple of (connection time, read time) timeouts.
:return: SmisGetResponse
If the method is called asynchronously,
returns the request thread.
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_3/api/smi_s_api.py#L29-L135
|
from __future__ import absolute_import
import re
import six
from typing import List, Optional
from .. import models
class SMISApi(object):
def __init__(self, api_client):
self.api_client = api_client
|
BSD 2-Clause Simplified License
|
tansey/hrt
|
examples/timing/timings.py
|
fit_lasso
|
python
|
def fit_lasso(X, y):
from sklearn.linear_model import LassoCV
lasso = LassoCV(cv=5)
lasso.fit(X, y)
return lasso
|
Fit a lasso model
|
https://github.com/tansey/hrt/blob/f6d271a34590d073a08f0fc40f40e898f38cdf97/examples/timing/timings.py#L79-L84
|
import numpy as np
import time
from scipy.stats import norm
from collections import defaultdict
def bh(p, fdr):
p_orders = np.argsort(p)
discoveries = []
m = float(len(p_orders))
for k, s in enumerate(p_orders):
if p[s] <= (k+1) / m * fdr:
discoveries.append(s)
else:
break
return np.array(discoveries)
class DataGeneratingModel:
def __init__(self, N, P, signals, sigma=1, nfactors=5):
self.N = N
self.P = P
self.signals = signals
self.sigma = sigma
self.nfactors = nfactors
self.covariates()
self.response()
def covariates(self):
self.Z = np.random.gamma(1, 1, size=(self.N, self.nfactors))
self.W = np.random.normal(0, 1/np.sqrt(self.nfactors), size=(self.P, self.nfactors))
self.X = np.random.normal(self.Z.dot(self.W.T), self.sigma)
def response(self):
self.y = np.tanh(self.X[:,0]) * self.signals[0] + 5*np.tanh(self.X[:,1] * self.signals[1] + self.X[:,2] * self.signals[2]) + np.random.normal(0, self.sigma, size=self.X.shape[0])
def conditional_samples(self, rows, idx, nsamples=1):
return np.squeeze(np.random.normal(self.Z[rows].dot(self.W[idx]), self.sigma, size=(len(rows), nsamples)))
def conditional_grid(self, rows, idx, ngrid, tol=1e-8):
mu = self.Z[rows].dot(self.W[idx])
grid_start = norm.ppf(tol, mu, scale=self.sigma)
grid_end = norm.ppf(1-tol, mu, scale=self.sigma)
grid = np.array([np.linspace(start, end, ngrid-1) for start, end in zip(grid_start, grid_end)])
grid = np.concatenate([grid, self.X[rows, idx:idx+1]], axis=1)
grid_probs = norm.pdf(grid, mu[:,None], scale=self.sigma)
grid_probs = grid_probs / grid_probs.sum(axis=1, keepdims=True)
return grid, grid_probs
def permutation_probs(self, rows, idx):
unique_vals = np.unique(self.X[rows,idx])
logprobs = norm.logpdf(unique_vals[None], self.Z[rows].dot(self.W[idx])[:,None], scale=self.sigma)
logprobs -= logprobs.max(axis=1, keepdims=True)
numerator = np.exp(logprobs)
return numerator / numerator.sum(axis=1, keepdims=True)
|
MIT License
|
azure/azure-kusto-python
|
azure-kusto-ingest/azure/kusto/ingest/_ingestion_blob_info.py
|
_convert_dict_to_json
|
python
|
def _convert_dict_to_json(array):
return json.dumps(array, skipkeys=False, allow_nan=False, indent=None, separators=(",", ":"), sort_keys=True, default=lambda o: o.__dict__)
|
Converts array to a json string
|
https://github.com/azure/azure-kusto-python/blob/b25b95c5621dbbe9218dbbc82060dc52e86a79c4/azure-kusto-ingest/azure/kusto/ingest/_ingestion_blob_info.py#L65-L67
|
import json
import uuid
from datetime import datetime
class _IngestionBlobInfo:
def __init__(self, blob_descriptor: "BlobDescriptor", ingestion_properties: "IngestionProperties", auth_context=None):
self.properties = dict()
self.properties["BlobPath"] = blob_descriptor.path
self.properties["RawDataSize"] = blob_descriptor.size
self.properties["DatabaseName"] = ingestion_properties.database
self.properties["TableName"] = ingestion_properties.table
self.properties["RetainBlobOnSuccess"] = True
self.properties["FlushImmediately"] = ingestion_properties.flush_immediately
self.properties["IgnoreSizeLimit"] = False
self.properties["ReportLevel"] = ingestion_properties.report_level.value
self.properties["ReportMethod"] = ingestion_properties.report_method.value
self.properties["SourceMessageCreationTime"] = datetime.utcnow().isoformat()
self.properties["Id"] = (
str(blob_descriptor.source_id) if hasattr(blob_descriptor, "source_id") and blob_descriptor.source_id is not None else str(uuid.uuid4())
)
additional_properties = ingestion_properties.additional_properties or {}
additional_properties["authorizationContext"] = auth_context
tags = []
if ingestion_properties.additional_tags:
tags.extend(ingestion_properties.additional_tags)
if ingestion_properties.drop_by_tags:
tags.extend(["drop-by:" + drop for drop in ingestion_properties.drop_by_tags])
if ingestion_properties.ingest_by_tags:
tags.extend(["ingest-by:" + ingest for ingest in ingestion_properties.ingest_by_tags])
if tags:
additional_properties["tags"] = _convert_list_to_json(tags)
if ingestion_properties.ingest_if_not_exists:
additional_properties["ingestIfNotExists"] = _convert_list_to_json(ingestion_properties.ingest_if_not_exists)
if ingestion_properties.ingestion_mapping:
json_string = _convert_dict_to_json(ingestion_properties.ingestion_mapping)
additional_properties["ingestionMapping"] = json_string
if ingestion_properties.ingestion_mapping_reference:
additional_properties["ingestionMappingReference"] = ingestion_properties.ingestion_mapping_reference
if ingestion_properties.ingestion_mapping_type:
additional_properties["ingestionMappingType"] = ingestion_properties.ingestion_mapping_type.value
if ingestion_properties.validation_policy:
additional_properties["ValidationPolicy"] = _convert_dict_to_json(ingestion_properties.validation_policy)
if ingestion_properties.format:
additional_properties["format"] = ingestion_properties.format.value
if additional_properties:
self.properties["AdditionalProperties"] = additional_properties
def to_json(self):
return _convert_list_to_json(self.properties)
def _convert_list_to_json(array):
return json.dumps(array, skipkeys=False, allow_nan=False, indent=None, separators=(",", ":"))
|
MIT License
|
maojui/cytro
|
cytro/ecm.py
|
sub_sure_factors
|
python
|
def sub_sure_factors(f, u, curve_params):
if len(curve_params) == 1:
for factor in sub_sub_sure_factors(f, u, curve_params[0]):
yield factor
return
c1 = curve_params[:len(curve_params) >> 1]
c2 = curve_params[len(curve_params) >> 1:]
if mainloop(f, u, c1) == 1:
for factor in sub_sure_factors(f, u, c2):
yield factor
return
if mainloop(f, u, c2) == 1:
for factor in sub_sure_factors(f, u, c1):
yield factor
return
for factor in sub_sure_factors(f, u, c1):
if isprime(factor):
yield factor
else:
for factor_of_factor in sub_sure_factors(factor, u, c2):
yield factor_of_factor
return
|
Factors n as far as possible using the fact that f came from a mainloop call.
Yields factors of n.
|
https://github.com/maojui/cytro/blob/fdac91f2fbbbfd917f9340410ca8e63785fa01d2/cytro/ecm.py#L640-L669
|
import math, sys, random
from .modular import invmod
from .formula import *
from operator import mul
from functools import reduce
class Pyecm_Const :
INV_C = 13.0
LOG_2 = math.log(2)
LOG_4 = math.log(4)
LOG_3_MINUS_LOG_LOG_2 = math.log(3) - math.log(LOG_2)
LOG_4_OVER_9 = LOG_4 / 9
_3_OVER_LOG_2 = 3 / LOG_2
_5_LOG_10 = 5 * math.log(10)
_7_OVER_LOG_2 = 7 / LOG_2
BIG = 2.0**512
BILLION = 10**9
MULT = math.log(3) / LOG_2
ONE = 1
SMALL = 2.0**(-30)
SMALLEST_COUNTEREXAMPLE_FASTPRIME = 2047
VERSION = '2.0.2'
_12_LOG_2_OVER_49 = 12 * math.log(2) / 49
RECORD = 1162795072109807846655696105569042240239
def nextPrime(n):
PRIMES = (5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 167)
n += 1
if n <= 167:
if n <= 23:
if n <= 3:
return 3 - (n <= 2)
n += (n & 1) ^ 1
return n + (((4 - (n % 3)) >> 1) & 2)
n += (n & 1) ^ 1
inc = n % 3
n += ((4 - inc) >> 1) & 2
inc = 6 - ((inc + ((2 - inc) & 2)) << 1)
while 0 in (n % 5, n % 7, n % 11):
n += inc
inc = 6 - inc
return n
n += (n & 1) ^ 1
inc = n % 3
n += ((4 - inc) >> 1) & 2
inc = 6 - ((inc + ((2 - inc) & 2)) << 1)
should_break = False
while 1:
for prime in PRIMES:
if not n % prime:
should_break = True
break
if should_break:
should_break = False
n += inc
inc = 6 - inc
continue
p = 1
for i in range(int(math.log(n) / math.log(2)), 0, -1):
p <<= (n >> i) & 1
p = (p * p) % n
if p == 1:
return n
n += inc
inc = 6 - inc
def invert(a, b):
if a == 0 or b == 0:
return 0
truth = False
if a < 0:
truth = True
a = -a
b_orig = b
alpha = 1
beta = 0
while not a & 1:
if alpha & 1:
alpha += b_orig
alpha >>= 1
a >>= 1
if b > a:
a, b = b, a
alpha, beta = beta, alpha
while b != 0 and a != b:
a -= b
alpha -= beta
while not a & 1:
if alpha & 1:
alpha += b_orig
alpha >>= 1
a >>= 1
if b > a:
a,b = b,a
alpha, beta = beta, alpha
if a == b:
a -= b
alpha -= beta
a, b = b, a
alpha, beta = beta, alpha
if a != 1:
return 0
if truth:
alpha = b_orig - alpha
return alpha
class ts:
def __init__(self, degree, acc, p):
self.acc = acc
self.coefficients = p[:degree + 1]
while len(self.coefficients) <= degree:
self.coefficients.append(0)
def add(self, a, b):
b_ = b.coefficients[:]
a_ = a.coefficients[:]
self.coefficients = []
while len(b_) > len(a_):
a_.append(0)
while len(b_) < len(a_):
b_.append(0)
for i in range(len(a_)):
self.coefficients.append(a_[i] + b_[i])
self.acc = a.acc
def ev(self, x):
answer = 0
for i in range(len(self.coefficients) - 1, -1, -1):
answer *= x
answer += self.coefficients[i]
return answer
def evh(self):
answer = 0
for i in range(len(self.coefficients) - 1, -1, -1):
answer >>= 1
answer += self.coefficients[i]
return answer
def evmh(self):
answer = 0
for i in range(len(self.coefficients) - 1, -1, -1):
answer = - answer >> 1
answer += self.coefficients[i]
return answer
def int(self):
self.coefficients = [0] + self.coefficients
for i in range(1, len(self.coefficients)):
self.coefficients[i] //= i
def lindiv(self, a):
for i in range(len(self.coefficients) - 1):
self.coefficients[i] <<= 1
self.coefficients[i] //= a
self.coefficients[i + 1] -= self.coefficients[i]
self.coefficients[-1] <<= 1
self.coefficients[-1] //= a
def neg(self):
for i in range(len(self.coefficients)):
self.coefficients[i] = - self.coefficients[i]
def set(self, a):
self.coefficients = a.coefficients[:]
self.acc = a.acc
def simp(self):
for i in range(len(self.coefficients)):
shift = max(0, int(math.log(abs(self.coefficients[i]) + 1) / Pyecm_Const.LOG_2) - 1000)
self.coefficients[i] = float(self.coefficients[i] >> shift)
shift = self.acc - shift
for _ in range(shift >> 9):
self.coefficients[i] /= Pyecm_Const.BIG
self.coefficients[i] /= 2.0**(shift & 511)
if abs(self.coefficients[i] / self.coefficients[0]) <= Pyecm_Const.SMALL:
self.coefficients = self.coefficients[:i]
break
def add(p1, p2, n):
inv = list(range(len(p1)))
for i in range(len(p1)):
inv[i] = p1[i][0] - p2[i][0]
inv = parallel_invert(inv, n)
if not isinstance(inv, list):
return inv
for i in range(len(p1)):
m = ((p1[i][1] - p2[i][1]) * inv[i]) % n
p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n
p2[i][1] = (m * (p1[i][0] - p2[i][0]) - p1[i][1]) % n
return p2
def add_sub_x_only(p1, p2, n):
sums = list(range(len(p1)))
difs = list(range(len(p1)))
for i in range(len(p1)):
sums[i] = p2[i][0] - p1[i][0]
sums = parallel_invert(sums, n)
if not isinstance(sums, list):
return (sums, None)
for i in range(len(p1)):
ms = ((p2[i][1] - p1[i][1]) * sums[i]) % n
md = ((p2[i][1] + p1[i][1]) * sums[i]) % n
sums[i] = (ms * ms - p1[i][0] - p2[i][0]) % n
difs[i] = (md * md - p1[i][0] - p2[i][0]) % n
sums = tuple(sums)
difs = tuple(difs)
return (sums, difs)
def atdn(a, d, n):
x = 1
pos = int(math.log(d) / Pyecm_Const.LOG_2)
while pos >= 0:
x = (x * x) % n
if (d >> pos) & 1:
x *= a
pos -= 1
return x % n
def copy(p):
answer = []
for i in p:
answer.append(i[:])
return answer
def could_be_prime(n):
if n < 2:
return False
if n == 2:
return True
if not n & 1:
return False
product = Pyecm_Const.ONE
log_n = int(math.log(n)) + 1
bound = int(math.log(n) / (Pyecm_Const.LOG_2 * math.log(math.log(n))**2)) + 1
if bound * log_n >= n:
bound = 1
log_n = int(sqrt(n))
prime_bound = 0
prime = 3
for _ in range(bound):
p = []
prime_bound += log_n
while prime <= prime_bound:
p.append(prime)
prime = nextPrime(prime)
if p != []:
p = prod(p)
product = (product * p) % n
return gcd(n, product) == 1
def double(p, n):
inv = list(range(len(p)))
for i in range(len(p)):
inv[i] = p[i][1] << 1
inv = parallel_invert(inv, n)
if not isinstance(inv, list):
return inv
for i in range(len(p)):
x = p[i][0]
m = (x * x) % n
m = ((m + m + m + p[i][2]) * inv[i]) % n
p[i][0] = (m * m - x - x) % n
p[i][1] = (m * (x - p[i][0]) - p[i][1]) % n
return p
def fastprime(n):
if not could_be_prime(n):
return False
if n == 2:
return True
j = 1
d = n >> 1
while not d & 1:
d >>= 1
j += 1
p = 1
pos = int(math.log(d) / Pyecm_Const.LOG_2)
while pos >= 0:
p = (p * p) % n
p <<= (d >> pos) & 1
pos -= 1
if p in (n - 1, n + 1):
return True
for _ in range(j):
p = (p * p) % n
if p == 1:
return False
elif p == n - 1:
return True
return False
def greatest_n(phi_max):
phi_product = 1
product = 1
prime = 1
while phi_product <= phi_max:
prime = nextPrime(prime)
phi_product *= prime - 1
product *= prime
n_max = int((phi_max * product) // phi_product)
phi_values = list(range(n_max))
prime = 2
while prime <= n_max:
for i in range(0, n_max, prime):
phi_values[i] -= int(phi_values[i] / prime)
prime = nextPrime(prime)
for i in range(n_max - 1, 0, -1):
if phi_values[i] <= phi_max:
return i
def inv_const(n):
return int(Pyecm_Const.INV_C * math.log(n)**0.42)
def naf(d):
g = 0
while d:
g <<= 2
g ^= ((d & 2) & (d << 1)) ^ (d & 1)
d += (d & 2) >> 1
d >>= 1
return g
def parallel_invert(l, n):
l_ = l[:]
for i in range(len(l)-1):
l[i+1] = (l[i] * l[i+1]) % n
try:
inv = invert(l[-1], n)
except ZeroDivisionError:
inv = 0
if inv == 0:
return gcd(l[-1], n)
for i in range(len(l)-1, 0, -1):
l[i] = (inv * l[i-1]) % n
inv = (inv * l_[i]) % n
l[0] = inv
return l
def prod(p):
jump = 1
while jump < len(p):
for i in range(0, len(p) - jump, jump << 1):
p[i] *= p[i + jump]
p[i + jump] = None
jump <<= 1
return p[0]
def rho_ev(x, ts):
return ts[int(x)].ev(x - int(x) - 0.5)
def rho_ts(n):
f = ts(10, 10, [])
answer = [ts(10, 10, [1])]
for _ in range(n):
answer.append(ts(10, 10, [1]))
deg = 5
acc = 50 + n * int(1 + math.log(1 + n) + math.log(math.log(3 + n)))
r = 1
rho_series = ts(1, 10, [0])
while r != rho_series.coefficients[0]:
deg = int((deg + (deg << 2)) // 3)
r = rho_series.coefficients[0]
rho_series = ts(deg, acc, [(1) << acc])
center = 0.5
for i in range(1, n+1):
f.set(rho_series)
center += 1
f.lindiv(int(2*center))
f.int()
f.neg()
d = ts(deg, acc, [rho_series.evh() - f.evmh()])
f.add(f, d)
rho_series.set(f)
f.simp()
answer[i].set(f)
rho_series.simp()
return answer
def sub_sub_sure_factors(f, u, curve_parameter):
while not (f & 1):
yield 2
f >>= 1
while not (f % 3):
yield 3
f = int(f//3)
if isprime(f):
yield f
return
log_u = math.log(u)
u2 = int(Pyecm_Const._7_OVER_LOG_2 * u * log_u / math.log(log_u))
primes = []
still_a_chance = True
log_mo = math.log(f + 1 + sqrt(f << 2))
g = gcd(curve_parameter, f)
if g not in (1, f):
for factor in sub_sub_sure_factors(g, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(int(f//g), u, curve_parameter):
yield factor
return
g2 = gcd(curve_parameter**2 - 5, f)
if g2 not in (1, f):
for factor in sub_sub_sure_factors(g2, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(int(f//g2), u, curve_parameter):
yield factor
return
if f in (g, g2):
yield f
while still_a_chance:
p1 = get_points([curve_parameter], f)
for prime in primes:
p1 = multiply(p1, prime, f)
if not isinstance(p1, list):
if p1 != f:
for factor in sub_sub_sure_factors(p1, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(f//p1, u, curve_parameter):
yield factor
return
else:
still_a_chance = False
break
if not still_a_chance:
break
prime = 1
still_a_chance = False
while prime < u2:
prime = nextPrime(prime)
should_break = False
for _ in range(int(log_mo / math.log(prime))):
p1 = multiply(p1, prime, f)
if not isinstance(p1, list):
if p1 != f:
for factor in sub_sub_sure_factors(p1, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(int(f//p1), u, curve_parameter):
yield factor
return
else:
still_a_chance = True
primes.append(prime)
should_break = True
break
if should_break:
break
for i in range(2, int(math.log(f) / Pyecm_Const.LOG_2) + 2):
r = nroot(f, i)
if r[1]:
for factor in sub_sub_sure_factors(r[0], u, curve_parameter):
for _ in range(i):
yield factor
return
a = 1 + sqrt(f)
bsq = a * a - f
iter = 0
while bsq != sqrt(bsq)**2 and iter < 3:
a += 1
iter += 1
bsq += a + a - 1
if bsq == sqrt(bsq)**2:
b = sqrt(bsq)
for factor in sub_sub_sure_factors(a - b, u, curve_parameter):
yield factor
for factor in sub_sub_sure_factors(a + b, u, curve_parameter):
yield factor
return
yield f
return
|
MIT License
|
tensorflow/model-analysis
|
tensorflow_model_analysis/api/model_eval_lib.py
|
_update_eval_config_with_defaults
|
python
|
def _update_eval_config_with_defaults(
eval_config: config_pb2.EvalConfig,
eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels]
) -> config_pb2.EvalConfig:
eval_shared_models = model_util.verify_and_update_eval_shared_models(
eval_shared_model)
has_baseline = eval_shared_models and len(eval_shared_models) == 2
return config_util.update_eval_config_with_defaults(
eval_config=eval_config,
has_baseline=has_baseline,
rubber_stamp=model_util.has_rubber_stamp(eval_shared_models))
|
Returns updated eval config with default values.
|
https://github.com/tensorflow/model-analysis/blob/6814617c50e073f8d039b96b03b19fef39fa0008/tensorflow_model_analysis/api/model_eval_lib.py#L163-L174
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
from typing import Any, Dict, Iterable, Iterator, List, Optional, Set, Text, Union
from absl import logging
import apache_beam as beam
import pandas as pd
import pyarrow as pa
import tensorflow as tf
from tensorflow_model_analysis import constants
from tensorflow_model_analysis import types
from tensorflow_model_analysis.eval_saved_model import constants as eval_constants
from tensorflow_model_analysis.evaluators import evaluator
from tensorflow_model_analysis.evaluators import legacy_metrics_and_plots_evaluator
from tensorflow_model_analysis.evaluators import metrics_plots_and_validations_evaluator
from tensorflow_model_analysis.extractors import example_weights_extractor
from tensorflow_model_analysis.extractors import extractor
from tensorflow_model_analysis.extractors import features_extractor
from tensorflow_model_analysis.extractors import labels_extractor
from tensorflow_model_analysis.extractors import legacy_predict_extractor
from tensorflow_model_analysis.extractors import predictions_extractor
from tensorflow_model_analysis.extractors import slice_key_extractor
from tensorflow_model_analysis.extractors import sql_slice_key_extractor
from tensorflow_model_analysis.extractors import tfjs_predict_extractor
from tensorflow_model_analysis.extractors import tflite_predict_extractor
from tensorflow_model_analysis.extractors import transformed_features_extractor
from tensorflow_model_analysis.extractors import unbatch_extractor
from tensorflow_model_analysis.post_export_metrics import post_export_metrics
from tensorflow_model_analysis.proto import config_pb2
from tensorflow_model_analysis.proto import metrics_for_slice_pb2
from tensorflow_model_analysis.proto import validation_result_pb2
from tensorflow_model_analysis.slicer import slicer_lib as slicer
from tensorflow_model_analysis.utils import config_util
from tensorflow_model_analysis.utils import model_util
from tensorflow_model_analysis.validators import validator
from tensorflow_model_analysis.view import util as view_util
from tensorflow_model_analysis.view import view_types
from tensorflow_model_analysis.writers import eval_config_writer
from tensorflow_model_analysis.writers import metrics_plots_and_validations_writer
from tensorflow_model_analysis.writers import writer
from tfx_bsl.arrow import table_util
from tfx_bsl.tfxio import raw_tf_record
from tfx_bsl.tfxio import tensor_adapter
from tfx_bsl.tfxio import tf_example_record
from tensorflow_metadata.proto.v0 import schema_pb2
def _assert_tensorflow_version():
major, minor, _ = tf.version.VERSION.split('.')
if (int(major) not in (1, 2)) or (int(major) == 1 and int(minor) < 15):
raise RuntimeError(
'Tensorflow version >= 1.15, < 3 is required. Found (%s). Please '
'install the latest 1.x or 2.x version from '
'https://github.com/tensorflow/tensorflow. ' % tf.version.VERSION)
if int(major) == 2:
logging.warning(
'Tensorflow version (%s) found. Note that TFMA support for TF 2.0 '
'is currently in beta', tf.version.VERSION)
def _is_legacy_eval(
config_version: Optional[int],
eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels],
eval_config: Optional[config_pb2.EvalConfig]):
return ((config_version is not None and config_version == 1) or
(eval_shared_model and not isinstance(eval_shared_model, dict) and
not isinstance(eval_shared_model, list) and
(not eval_shared_model.model_loader.tags or
eval_constants.EVAL_TAG in eval_shared_model.model_loader.tags) and
not eval_config))
def _default_eval_config(eval_shared_models: List[types.EvalSharedModel],
slice_spec: Optional[List[slicer.SingleSliceSpec]],
write_config: Optional[bool],
compute_confidence_intervals: Optional[bool],
min_slice_size: int):
model_specs = []
for shared_model in eval_shared_models:
example_weight_key = shared_model.example_weight_key
example_weight_keys = {}
if example_weight_key and isinstance(example_weight_key, dict):
example_weight_keys = example_weight_key
example_weight_key = ''
model_specs.append(
config_pb2.ModelSpec(
name=shared_model.model_name,
example_weight_key=example_weight_key,
example_weight_keys=example_weight_keys))
slicing_specs = None
if slice_spec:
slicing_specs = [s.to_proto() for s in slice_spec]
options = config_pb2.Options()
options.compute_confidence_intervals.value = compute_confidence_intervals
options.min_slice_size.value = min_slice_size
if not write_config:
options.disabled_outputs.values.append(eval_config_writer.EVAL_CONFIG_FILE)
return config_pb2.EvalConfig(
model_specs=model_specs, slicing_specs=slicing_specs, options=options)
def _model_types(
eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels]
) -> Optional[Set[Text]]:
eval_shared_models = model_util.verify_and_update_eval_shared_models(
eval_shared_model)
if not eval_shared_models:
return None
else:
return set([m.model_type for m in eval_shared_models])
|
Apache License 2.0
|
jeffkinnison/shadho
|
shadho/hardware.py
|
ComputeClass.clear
|
python
|
def clear(self):
self.searchspaces = []
|
Remove all models from this compute class.
|
https://github.com/jeffkinnison/shadho/blob/f4d4c9fbf019203b1f984dbe13e0a8e2062f1fa0/shadho/hardware.py#L101-L103
|
import uuid
import sys
from pyrameter.optimizer import FMin
class ComputeClass(object):
def __init__(self, name, resource, value, max_queued_tasks):
self.id = str(uuid.uuid4())
self.name = name
self.resource = resource
self.value = value
self.max_queued_tasks = max_queued_tasks
self.current_tasks = 0
self.searchspaces = []
def __hash__(self):
return hash((self.id, self.name, self.resource, self.value))
def add_searchspace(self, searchspace):
if isinstance(searchspace, list):
self.searchspaces.extend(searchspace)
else:
self.searchspaces.append(searchspace)
def remove_searchspace(self, ssid):
idx = None
for i, ss in enumerate(self.searchspaces):
if ss.id == ssid:
idx = i
break
if idx is not None:
self.searchspaces.pop(idx)
|
MIT License
|
berkeley-reclab/reclab
|
reclab/recommenders/libfm.py
|
LibFM.model_parameters
|
python
|
def model_parameters(self):
self._model.train(self._train_data)
return self._model.parameters()
|
Train a libfm model and get the resulting model's parameters.
The degree-2 factorization machine model predicts a rating by
r(x) = b_0 + w^T x + Ind(j = i) Ind(k = u) V_j^T V_k
where b_0 is the global bias, w is the weights, and
V is the pairwise interactions with dimension k * (m+n)
V_j is the j^th row of V
x is defined as the concatenation of two one-hot encodings e_i and e_u,
and w^T x correpond to the user and item biases.
Returns
-------
global_bias : float
Global bias term in the model.
weights : np.ndarray
Linear terms in the model (related to user/item biases).
pairwise_interactions : np.ndarray
Interaction term in the model (related to user/item factors).
|
https://github.com/berkeley-reclab/reclab/blob/09d5b1639e9b7f6cbd230f181130b681e31cf4f0/reclab/recommenders/libfm.py#L202-L226
|
import numpy as np
import scipy.sparse
import wpyfm
from . import recommender
class LibFM(recommender.PredictRecommender):
def __init__(self,
num_user_features,
num_item_features,
num_rating_features,
max_num_users,
max_num_items,
method='sgd',
use_global_bias=True,
use_one_way=True,
num_two_way_factors=8,
learning_rate=0.1,
reg=0.0,
bias_reg=None,
one_way_reg=None,
two_way_reg=None,
init_stdev=0.1,
num_iter=100,
seed=0,
**kwargs):
super().__init__(**kwargs)
if bias_reg is None:
bias_reg = reg
if one_way_reg is None:
one_way_reg = reg
if two_way_reg is None:
two_way_reg = reg
self._max_num_users = max_num_users
self._max_num_items = max_num_items
self._train_data = None
self._num_features = (self._max_num_users + num_user_features + self._max_num_items +
num_item_features + num_rating_features)
self._model = wpyfm.PyFM(method=method,
dim=(use_global_bias, use_one_way, num_two_way_factors),
lr=learning_rate,
reg=(bias_reg, one_way_reg, two_way_reg),
init_stdev=init_stdev,
num_iter=num_iter,
seed=seed)
self._hyperparameters.update(locals())
self._has_xt = method in ('mcmc', 'als')
del self._hyperparameters['self']
del self._hyperparameters['__class__']
rating_inputs = scipy.sparse.csr_matrix((0, self._num_features))
rating_outputs = np.empty((0,))
self._train_data = wpyfm.Data(rating_inputs, rating_outputs, has_xt=self._has_xt)
@property
def name(self):
return 'libfm'
def reset(self, users=None, items=None, ratings=None):
rating_inputs = scipy.sparse.csr_matrix((0, self._num_features))
rating_outputs = np.empty((0,))
self._train_data = wpyfm.Data(rating_inputs, rating_outputs, has_xt=self._has_xt)
super().reset(users, items, ratings)
def update(self, users=None, items=None, ratings=None):
super().update(users, items, ratings)
if ratings is not None:
data = []
row_col = [[], []]
new_rating_outputs = []
for row, ((user_id_outer, item_id_outer),
(rating, rating_context)) in enumerate(ratings.items()):
user_id = self._outer_to_inner_uid[user_id_outer]
item_id = self._outer_to_inner_iid[item_id_outer]
user_features = self._users[user_id]
item_features = self._items[item_id]
row_col[0].append(row)
row_col[1].append(user_id)
data.append(1)
for i, feature in enumerate(user_features):
row_col[0].append(row)
row_col[1].append(self._max_num_users + i)
data.append(feature)
row_col[0].append(row)
row_col[1].append(self._max_num_users + len(user_features) + item_id)
data.append(1)
for i, feature in enumerate(item_features):
row_col[0].append(row)
row_col[1].append(self._max_num_users + len(user_features) +
self._max_num_items + i)
data.append(feature)
for i, feature in enumerate(rating_context):
row_col[0].append(row)
row_col[1].append(self._max_num_users + len(user_features) +
self._max_num_items + len(item_features) + i)
data.append(feature)
new_rating_outputs.append(rating)
new_rating_inputs = scipy.sparse.csr_matrix((data, row_col),
shape=(len(ratings), self._num_features))
new_rating_outputs = np.array(new_rating_outputs)
self._train_data.add_rows(new_rating_inputs, new_rating_outputs)
def _predict(self, user_item):
test_inputs = []
data = []
row_col = [[], []]
for row, (user_id, item_id, rating_context) in enumerate(user_item):
user_features = self._users[user_id]
item_features = self._items[item_id]
row_col[0].append(row)
row_col[1].append(user_id)
data.append(1)
for i, feature in enumerate(user_features):
row_col[0].append(row)
row_col[1].append(self._max_num_users + i)
data.append(feature)
row_col[0].append(row)
row_col[1].append(self._max_num_users + len(user_features) + item_id)
data.append(1)
for i, feature in enumerate(item_features):
row_col[0].append(row)
row_col[1].append(self._max_num_users + len(user_features) +
self._max_num_items + i)
data.append(feature)
for i, feature in enumerate(rating_context):
row_col[0].append(row)
row_col[1].append(self._max_num_users + len(user_features) +
self._max_num_items + len(item_features) + i)
data.append(feature)
test_inputs = scipy.sparse.csr_matrix((data, row_col),
shape=(len(user_item), self._num_features))
test_data = wpyfm.Data(test_inputs, np.zeros(test_inputs.shape[0]), has_xt=self._has_xt)
if self._has_xt:
self._model.train(self._train_data, test=test_data)
else:
self._model.train(self._train_data)
predictions = self._model.predict(test_data)
return predictions
|
MIT License
|
megvii-basedetection/dynamicrouting
|
dl_lib/utils/file_io.py
|
PathHandler._ls
|
python
|
def _ls(self, path: str) -> List[str]:
raise NotImplementedError()
|
List the contents of the directory at the provided URI.
Args:
path (str): A URI supported by this PathHandler
Returns:
List[str]: list of contents in given path
|
https://github.com/megvii-basedetection/dynamicrouting/blob/2ad0a95139b1bf21878dd222854f98974ac4930a/dl_lib/utils/file_io.py#L166-L176
|
import errno
import logging
import os
import shutil
from collections import OrderedDict
from typing import IO, Any, Dict, List, MutableMapping, Optional
from urllib.parse import urlparse
import portalocker
from dl_lib.utils.download import download
__all__ = ["PathManager", "get_cache_dir", "file_lock"]
def get_cache_dir(cache_dir: Optional[str] = None) -> str:
if cache_dir is None:
cache_dir = os.path.expanduser(
os.getenv("DL_LIB_CACHE", "~/.torch/dl_lib_cache"))
return cache_dir
def file_lock(path: str):
dirname = os.path.dirname(path)
try:
os.makedirs(dirname, exist_ok=True)
except OSError:
pass
return portalocker.Lock(path + ".lock", timeout=1800)
class PathHandler:
def _get_supported_prefixes(self) -> List[str]:
raise NotImplementedError()
def _get_local_path(self, path: str) -> str:
raise NotImplementedError()
def _open(self, path: str, mode: str = "r") -> IO[Any]:
raise NotImplementedError()
def _copy(self,
src_path: str,
dst_path: str,
overwrite: bool = False) -> bool:
raise NotImplementedError()
def _exists(self, path: str) -> bool:
raise NotImplementedError()
def _isfile(self, path: str) -> bool:
raise NotImplementedError()
def _isdir(self, path: str) -> bool:
raise NotImplementedError()
|
Apache License 2.0
|
alpacahq/pylivetrader
|
pylivetrader/finance/asset_restrictions.py
|
vectorized_is_element
|
python
|
def vectorized_is_element(array, choices):
return vectorize(choices.__contains__, otypes=[bool])(array)
|
Check if each element of ``array`` is in choices.
Parameters
----------
array : np.ndarray
choices : object
Object implementing __contains__.
Returns
-------
was_element : np.ndarray[bool]
Array indicating whether each element of ``array`` was in ``choices``.
|
https://github.com/alpacahq/pylivetrader/blob/2d9bf97103814409ba8b56a4291f2655c59514ee/pylivetrader/finance/asset_restrictions.py#L236-L251
|
import abc
from numpy import vectorize
from functools import partial, reduce
import operator
import pandas as pd
from six import with_metaclass, iteritems
from collections import namedtuple
from toolz import groupby
from enum import IntEnum
from pylivetrader.assets import Asset
Restriction = namedtuple(
'Restriction', ['asset', 'effective_date', 'state']
)
class RESTRICTION_STATES(IntEnum):
ALLOWED = 0
FROZEN = 1
class Restrictions(with_metaclass(abc.ABCMeta)):
@abc.abstractmethod
def is_restricted(self, assets, dt):
raise NotImplementedError('is_restricted')
def __or__(self, other_restriction):
if isinstance(other_restriction, _UnionRestrictions):
return other_restriction | self
return _UnionRestrictions([self, other_restriction])
class _UnionRestrictions(Restrictions):
def __new__(cls, sub_restrictions):
sub_restrictions = [
r for r in sub_restrictions if not isinstance(r, NoRestrictions)
]
if len(sub_restrictions) == 0:
return NoRestrictions()
elif len(sub_restrictions) == 1:
return sub_restrictions[0]
new_instance = super(_UnionRestrictions, cls).__new__(cls)
new_instance.sub_restrictions = sub_restrictions
return new_instance
def __or__(self, other_restriction):
if isinstance(other_restriction, _UnionRestrictions):
new_sub_restrictions = self.sub_restrictions + other_restriction.sub_restrictions
else:
new_sub_restrictions = self.sub_restrictions + [other_restriction]
return _UnionRestrictions(new_sub_restrictions)
def is_restricted(self, assets, dt):
if isinstance(assets, Asset):
return any(
r.is_restricted(assets, dt) for r in self.sub_restrictions
)
return reduce(
operator.or_,
(r.is_restricted(assets, dt) for r in self.sub_restrictions)
)
class NoRestrictions(Restrictions):
def is_restricted(self, assets, dt):
if isinstance(assets, Asset):
return False
return pd.Series(index=pd.Index(assets), data=False)
class StaticRestrictions(Restrictions):
def __init__(self, restricted_list):
self._restricted_set = frozenset(restricted_list)
def is_restricted(self, assets, dt):
if isinstance(assets, Asset):
return assets in self._restricted_set
return pd.Series(
index=pd.Index(assets),
data=vectorized_is_element(assets, self._restricted_set)
)
class HistoricalRestrictions(Restrictions):
def __init__(self, restrictions):
self._restrictions_by_asset = {
asset: sorted(
restrictions_for_asset, key=lambda x: x.effective_date
)
for asset, restrictions_for_asset
in iteritems(groupby(lambda x: x.asset, restrictions))
}
def is_restricted(self, assets, dt):
if isinstance(assets, Asset):
return self._is_restricted_for_asset(assets, dt)
is_restricted = partial(self._is_restricted_for_asset, dt=dt)
return pd.Series(
index=pd.Index(assets),
data=vectorize(is_restricted, otypes=[bool])(assets)
)
def _is_restricted_for_asset(self, asset, dt):
state = RESTRICTION_STATES.ALLOWED
for r in self._restrictions_by_asset.get(asset, ()):
if r.effective_date > dt:
break
state = r.state
return state == RESTRICTION_STATES.FROZEN
class SecurityListRestrictions(Restrictions):
def __init__(self, security_list_by_dt):
self.current_securities = security_list_by_dt.current_securities
def is_restricted(self, assets, dt):
securities_in_list = self.current_securities(dt)
if isinstance(assets, Asset):
return assets in securities_in_list
return pd.Series(
index=pd.Index(assets),
data=vectorized_is_element(assets, securities_in_list)
)
|
Apache License 2.0
|
bcicen/docker-replay
|
docker_replay/parser.py
|
ConfigParser.get
|
python
|
def get(self, key, default=None):
key_parts = key.split('.')
config = self.config
while key_parts:
try:
config = config[key_parts.pop(0)]
except KeyError:
log.warn('returning default for missing key: %s' % key)
return default
log.debug('get key: %s (%s)' % (key, config))
return config
|
Retrieve a top-level or nested key, e.g:
>>> get('Id')
>>> get('HostConfig.Binds')
|
https://github.com/bcicen/docker-replay/blob/e7a4b2142bc6ba130f9b39b867cbb7784da02f88/docker_replay/parser.py#L34-L49
|
import logging
from docker_replay.args import config_args
from docker_replay.opts import config_opts
from docker_replay.models import DockerOpt, DockerArg
log = logging.getLogger('docker-replay')
class ConfigParser(object):
args = []
opts = []
def __init__(self, config):
self.config = config
for op in config_opts:
o_val = self.get(op.key, op.otype.default)
self.opts += list(op.build(o_val))
for ap in config_args:
o_val = self.get(ap.key)
self.args += list(ap.build(o_val))
olen, alen = len(self.opts), len(self.args)
self.opts = [ o for o in self.opts if not o.is_null() ]
self.args = [ o for o in self.args if not o.is_null() ]
log.info('parsed %d options (%d configured)' % (olen, len(self.opts)))
log.info('parsed %d args (%d configured)' % (alen, len(self.args)))
|
MIT License
|
evrenesat/ganihomes
|
easy_thumbnails/management/__init__.py
|
delete_all_thumbnails
|
python
|
def delete_all_thumbnails(path, recursive=True):
total = 0
for thumbs in all_thumbnails(path, recursive=recursive).values():
total += _delete_using_thumbs_list(thumbs)
return total
|
Delete all files within a path which match the thumbnails pattern.
By default, matching files from all sub-directories are also removed. To
only remove from the path directory, set recursive=False.
|
https://github.com/evrenesat/ganihomes/blob/eece2d8d957989b176cc5a36d723f676862f8d17/easy_thumbnails/management/__init__.py#L117-L127
|
from django.conf import settings
from easy_thumbnails.utils import get_setting
import os
import re
re_thumbnail_file = re.compile(r'(?P<source_filename>.+)_(?P<x>\d+)x(?P<y>\d+)'
r'(?:_(?P<options>\w+))?_q(?P<quality>\d+)'
r'(?:.[^.]+)?$')
def all_thumbnails(path, recursive=True, prefix=None, subdir=None):
if prefix is None:
prefix = get_setting('PREFIX')
if subdir is None:
subdir = get_setting('SUBDIR')
thumbnail_files = {}
if not path.endswith('/'):
path = '%s/' % path
len_path = len(path)
if recursive:
all = os.walk(path)
else:
files = []
for file in os.listdir(path):
if os.path.isfile(os.path.join(path, file)):
files.append(file)
all = [(path, [], files)]
for dir_, subdirs, files in all:
rel_dir = dir_[len_path:]
for file in files:
thumb = re_thumbnail_file.match(file)
if not thumb:
continue
d = thumb.groupdict()
source_filename = d.pop('source_filename')
if prefix:
source_path, source_filename = os.path.split(source_filename)
if not source_filename.startswith(prefix):
continue
source_filename = os.path.join(source_path,
source_filename[len(prefix):])
d['options'] = d['options'] and d['options'].split('_') or []
if subdir and rel_dir.endswith(subdir):
rel_dir = rel_dir[:-len(subdir)]
m = re.match(r'(.*)_(.*)', source_filename)
if m:
source_filename = '%s.%s' % m.groups()
filename = os.path.join(rel_dir, source_filename)
thumbnail_file = thumbnail_files.setdefault(filename, [])
d['filename'] = os.path.join(dir_, file)
thumbnail_file.append(d)
return thumbnail_files
def thumbnails_for_file(relative_source_path, root=None, basedir=None,
subdir=None, prefix=None):
if root is None:
root = settings.MEDIA_ROOT
if prefix is None:
prefix = get_setting('PREFIX')
if subdir is None:
subdir = get_setting('SUBDIR')
if basedir is None:
basedir = get_setting('BASEDIR')
source_dir, filename = os.path.split(relative_source_path)
thumbs_path = os.path.join(root, basedir, source_dir, subdir)
if not os.path.isdir(thumbs_path):
return []
files = all_thumbnails(thumbs_path, recursive=False, prefix=prefix,
subdir='')
return files.get(filename, [])
def delete_thumbnails(relative_source_path, root=None, basedir=None,
subdir=None, prefix=None):
thumbs = thumbnails_for_file(relative_source_path, root, basedir, subdir,
prefix)
return _delete_using_thumbs_list(thumbs)
def _delete_using_thumbs_list(thumbs):
deleted = 0
for thumb_dict in thumbs:
filename = thumb_dict['filename']
try:
os.remove(filename)
except:
pass
else:
deleted += 1
return deleted
|
BSD 2-Clause Simplified License
|
yongzhuo/pytorch-nlu
|
pytorch_nlu/pytorch_textclassification/tcGraph.py
|
TCGraph.__init__
|
python
|
def __init__(self, graph_config):
self.graph_config = graph_config
pretrained_config, pretrained_tokenizer, pretrained_model = PRETRAINED_MODEL_CLASSES[graph_config.model_type]
self.pretrained_config = pretrained_config.from_pretrained(graph_config.pretrained_model_name_or_path, output_hidden_states=graph_config.output_hidden_states)
self.tokenizer = pretrained_tokenizer.from_pretrained(graph_config.pretrained_model_name_or_path)
super(TCGraph, self).__init__(self.pretrained_config)
self.model = pretrained_model.from_pretrained(graph_config.pretrained_model_name_or_path, config=self.pretrained_config)
self.tokenizer.model_max_length = self.model.config.max_position_embeddings
if self.graph_config.output_hidden_states:
self.dense = FCLayer(int(self.pretrained_config.hidden_size*len(self.graph_config.output_hidden_states)*3), self.graph_config.num_labels,
is_dropout=self.graph_config.is_dropout, is_active=self.graph_config.is_active, active_type=self.graph_config.active_type)
else:
self.dense = FCLayer(self.pretrained_config.hidden_size, self.graph_config.num_labels, is_dropout=self.graph_config.is_dropout,
is_active=self.graph_config.is_active, active_type=self.graph_config.active_type)
self.global_maxpooling = torch.nn.AdaptiveMaxPool1d(1)
self.global_avgpooling = torch.nn.AdaptiveAvgPool1d(1)
self.loss_type = self.graph_config.loss_type if self.graph_config.loss_type else "BCE"
self.loss_ce = torch.nn.CrossEntropyLoss(ignore_index=0)
self.loss_mlsm = torch.nn.MultiLabelSoftMarginLoss()
self.loss_bcelog = torch.nn.BCEWithLogitsLoss()
self.loss_bce = torch.nn.BCELoss()
self.loss_mse = torch.nn.MSELoss()
self.loss_pmlsm = PriorMultiLabelSoftMarginLoss(prior=self.graph_config.prior, num_labels=self.graph_config.num_labels)
self.loss_circle = MultiLabelCircleLoss()
self.loss_lsce = LabelSmoothingCrossEntropy()
self.loss_focal = FocalLoss()
self.loss_dice = DiceLoss()
self.softmax = torch.nn.Softmax(dim=-1)
self.sigmoid = torch.nn.Sigmoid()
self.dropout = torch.nn.Dropout
|
Pytorch Graph of TextClassification, Pre-Trained Model based
config:
config: json, params of graph, eg. {"num_labels":17, "model_type":"BERT"}
Returns:
output: Tuple, Tensor of logits and loss
Url: https://github.com/yongzhuo
|
https://github.com/yongzhuo/pytorch-nlu/blob/acb5cdb450efaac0c64b38d58a66aca9f942254b/pytorch_nlu/pytorch_textclassification/tcGraph.py#L17-L60
|
from tcLayer import PriorMultiLabelSoftMarginLoss, MultiLabelCircleLoss, LabelSmoothingCrossEntropy
from tcLayer import FCLayer, FocalLoss, DiceLoss
from tcConfig import PRETRAINED_MODEL_CLASSES
from transformers import BertPreTrainedModel
import torch
class TCGraph(BertPreTrainedModel):
|
Apache License 2.0
|
netket/netket
|
netket/hilbert/spin.py
|
Spin.__init__
|
python
|
def __init__(
self,
s: float,
N: int = 1,
total_sz: Optional[float] = None,
graph: Optional[AbstractGraph] = None,
):
N = graph_to_N_depwarn(N=N, graph=graph)
local_size = round(2 * s + 1)
local_states = np.empty(local_size)
assert int(2 * s + 1) == local_size
for i in range(local_size):
local_states[i] = -round(2 * s) + 2 * i
local_states = local_states.tolist()
_check_total_sz(total_sz, s, N)
if total_sz is not None:
def constraints(x):
return _sum_constraint(x, total_sz)
else:
constraints = None
self._total_sz = total_sz if total_sz is None else total_sz
self._s = s
super().__init__(local_states, N, constraints)
|
r"""Hilbert space obtained as tensor product of local spin states.
Args:
s: Spin at each site. Must be integer or half-integer.
N: Number of sites (default=1)
total_sz: If given, constrains the total spin of system to a particular
value.
graph: (deprecated) a graph from which to extract the number of sites.
Examples:
Simple spin hilbert space.
>>> import netket as nk
>>> hi = nk.hilbert.Spin(s=1/2, N=4)
>>> print(hi.size)
4
|
https://github.com/netket/netket/blob/74248a39e86bb501eaf6822e76107c4926321f80/netket/hilbert/spin.py#L62-L109
|
from fractions import Fraction
from typing import Optional, List, Union
import numpy as np
from netket.graph import AbstractGraph
from numba import jit
from .homogeneous import HomogeneousHilbert
from ._deprecations import graph_to_N_depwarn
def _check_total_sz(total_sz, S, size):
if total_sz is None:
return
local_size = 2 * S + 1
m = round(2 * total_sz)
if np.abs(m) > size * (2 * S):
raise ValueError(
"Cannot fix the total magnetization: 2|M| cannot " "exceed Nspins."
)
if local_size % 2 == 0:
if (size + m) % 2 != 0:
raise ValueError(
"Cannot fix the total magnetization: Nspins + 2*totalSz must be even."
)
else:
if m % 2 != 0:
raise ValueError(
"Cannot fix the total magnetization to a half-integer number"
)
@jit(nopython=True)
def _sum_constraint(x, total_sz):
return np.sum(x, axis=1) == round(2 * total_sz)
class Spin(HomogeneousHilbert):
|
Apache License 2.0
|
hypothesis/h
|
h/presenters/document_html.py
|
DocumentHTMLPresenter.link
|
python
|
def link(self):
return _format_document_link(
self.href, self.title, self.link_text, self.hostname_or_filename
)
|
Return a link to this document.
Returns HTML strings like:
<a href="{href}" title="{title}">{link_text}</a> {hostname}
<em>Local file:</em> {title}<br>{hostname}
where:
- {href} is the uri of the document, if it has an http(s):// uri
- {title} is the title of the document.
If the document has no title then its uri will be used instead.
If it's a local file:// uri then only the filename part is used,
not the full path.
- {link_text} is the same as {title}, but truncated with … if
it's too long
- {hostname} is the hostname name of the document's uri without
the scheme (http(s)://) and www parts, e.g. 'example.com'.
If it's a local file:// uri then the filename is used as the
hostname.
If the hostname is too long it is truncated with ….
The {hostname} part will be missing if it wouldn't be any different
from the {link_text} part.
The href="{href}" will be missing if there's no http(s) uri to link to
for this annotation's document.
User-supplied values are escaped so the string is safe for raw
rendering (the returned string is actually a Markup object and
won't be escaped by Jinja2 when rendering).
|
https://github.com/hypothesis/h/blob/1bf1fe34fd471f26a216e682d15ce986dd400fdb/h/presenters/document_html.py#L77-L113
|
from urllib.parse import unquote, urlparse
import jinja2
class DocumentHTMLPresenter:
def __init__(self, document):
self.document = document
@property
def filename(self):
if self.uri.lower().startswith("file:///"):
return jinja2.escape(self.uri.split("/")[-1])
return ""
@property
def href(self):
if self.document.web_uri:
return jinja2.escape(self.document.web_uri)
return ""
@property
def hostname_or_filename(self):
if self.filename:
return jinja2.escape(unquote(self.filename))
hostname = urlparse(self.uri).hostname
hostname = hostname or ""
return jinja2.escape(hostname)
@property
|
BSD 2-Clause Simplified License
|
aws/sagemaker-huggingface-inference-toolkit
|
src/sagemaker_huggingface_inference_toolkit/transformers_utils.py
|
_load_model_from_hub
|
python
|
def _load_model_from_hub(
model_id: str, model_dir: Path, revision: Optional[str] = None, use_auth_token: Optional[str] = None
):
logger.warn(
"This is an experimental beta features, which allows downloading model from the Hugging Face Hub on start up. "
"It loads the model defined in the env var `HF_MODEL_ID`"
)
_api = HfApi()
model_info = _api.model_info(repo_id=model_id, revision=revision, token=use_auth_token)
os.makedirs(model_dir, exist_ok=True)
framework = _get_framework()
storage_folder = _build_storage_path(model_id, model_dir, revision)
os.makedirs(storage_folder, exist_ok=True)
download_file_list = [
file.rfilename
for file in model_info.siblings
if file.rfilename in FILE_LIST_NAMES + [FRAMEWORK_MAPPING[framework]]
]
for file in download_file_list:
url = hf_hub_url(model_id, filename=file, revision=revision)
path = cached_download(url, cache_dir=storage_folder, force_filename=file, use_auth_token=use_auth_token)
if os.path.exists(path + ".lock"):
os.remove(path + ".lock")
return storage_folder
|
Downloads a model repository at the specified revision from the Hugging Face Hub.
All files are nested inside a folder in order to keep their actual filename
relative to that folder. `org__model.revision`
|
https://github.com/aws/sagemaker-huggingface-inference-toolkit/blob/f884fc65d64f2e15637ccf16d2a83e37114cb23f/src/sagemaker_huggingface_inference_toolkit/transformers_utils.py#L158-L198
|
import json
import logging
import os
from typing import Optional
from huggingface_hub import HfApi
from huggingface_hub.file_download import cached_download, hf_hub_url
from transformers import pipeline
from transformers.file_utils import is_tf_available, is_torch_available
from transformers.pipelines import Pipeline, Conversation
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
from pathlib import Path
logger = logging.getLogger(__name__)
PYTORCH_WEIGHTS_NAME = "pytorch_model.bin"
TF2_WEIGHTS_NAME = "tf_model.h5"
FRAMEWORK_MAPPING = {"pytorch": PYTORCH_WEIGHTS_NAME, "tensorflow": TF2_WEIGHTS_NAME}
FILE_LIST_NAMES = [
"config.json",
"special_tokens_map.json",
"tokenizer_config.json",
"tokenizer.json",
"vocab.json",
"vocab.txt",
"merges.txt",
"dict.txt",
"preprocessor_config.json",
"added_tokens.json",
"README.md",
"spiece.model",
"sentencepiece.bpe.model",
"sentencepiece.bpe.vocab",
"sentence.bpe.model",
"bpe.codes",
"source.spm",
"target.spm",
"spm.model",
"sentence_bert_config.json",
"sentence_roberta_config.json",
"sentence_distilbert_config.json",
"added_tokens.json",
"model_args.json",
"entity_vocab.json",
"pooling_config.json",
]
REPO_ID_SEPARATOR = "__"
ARCHITECTURES_2_TASK = {
"TapasForQuestionAnswering": "table-question-answering",
"ForQuestionAnswering": "question-answering",
"ForTokenClassification": "token-classification",
"ForSequenceClassification": "text-classification",
"ForMultipleChoice": "multiple-choice",
"ForMaskedLM": "fill-mask",
"ForCausalLM": "text-generation",
"ForConditionalGeneration": "text2text-generation",
"MTModel": "text2text-generation",
"EncoderDecoderModel": "text2text-generation",
"GPT2LMHeadModel": "text-generation",
"T5WithLMHeadModel": "text2text-generation",
}
HF_API_TOKEN = os.environ.get("HF_API_TOKEN", None)
HF_MODEL_REVISION = os.environ.get("HF_MODEL_REVISION", None)
def wrap_conversation_pipeline(pipeline):
def wrapped_pipeline(inputs, *args, **kwargs):
converted_input = Conversation(
inputs["text"],
past_user_inputs=inputs.get("past_user_inputs", []),
generated_responses=inputs.get("generated_responses", []),
)
prediction = pipeline(converted_input, *args, **kwargs)
return {
"generated_text": prediction.generated_responses[-1],
"conversation": {
"past_user_inputs": prediction.past_user_inputs,
"generated_responses": prediction.generated_responses,
},
}
return wrapped_pipeline
def _is_gpu_available():
if is_tf_available():
return True if len(tf.config.list_physical_devices("GPU")) > 0 else False
elif is_torch_available():
return torch.cuda.is_available()
else:
raise RuntimeError(
"At least one of TensorFlow 2.0 or PyTorch should be installed. "
"To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
"To install PyTorch, read the instructions at https://pytorch.org/."
)
def _get_framework():
if is_torch_available():
return "pytorch"
elif is_tf_available():
return "tensorflow"
else:
raise RuntimeError(
"At least one of TensorFlow 2.0 or PyTorch should be installed. "
"To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
"To install PyTorch, read the instructions at https://pytorch.org/."
)
def _build_storage_path(model_id: str, model_dir: Path, revision: Optional[str] = None):
if "/" and revision is None:
storage_path = os.path.join(model_dir, model_id.replace("/", REPO_ID_SEPARATOR))
elif "/" and revision is not None:
storage_path = os.path.join(model_dir, model_id.replace("/", REPO_ID_SEPARATOR) + "." + revision)
elif revision is not None:
storage_path = os.path.join(model_dir, model_id + "." + revision)
else:
storage_path = os.path.join(model_dir, model_id)
return storage_path
|
Apache License 2.0
|
fake-name/readablewebproxy
|
WebMirror/OfflineFilters/NewNetlocTracker.py
|
exposed_new_from_autotreiver_db
|
python
|
def exposed_new_from_autotreiver_db(db_path:str):
assert os.path.exists(db_path), "File specified by db_path must exist!"
import sqlite3
sdb = sqlite3.connect(db_path)
res = sdb.execute("SELECT actual_target FROM nu_release_item")
urls = res.fetchall()
mapdict = {}
print("Found %s rows in database." % (len(urls), ))
for url, in tqdm.tqdm(urls):
if url:
itemnl = WebMirror.OutputFilters.util.feedNameLut.patch_blogspot(urllib.parse.urlsplit(url).netloc)
mapdict.setdefault(itemnl, set())
mapdict[itemnl].add(url)
push_urls_into_table(mapdict)
|
Given a autotreiver generated sqlite db, fetch
all new URLs from that file
|
https://github.com/fake-name/readablewebproxy/blob/ed5c7abe38706acc2684a1e6cd80242a03c5f010/WebMirror/OfflineFilters/NewNetlocTracker.py#L401-L423
|
import sys
import os.path
import time
import datetime
import traceback
import urllib.parse
import tqdm
import sqlalchemy.exc
from sqlalchemy.orm import joinedload
from sqlalchemy import desc
import WebRequest
import common.database as db
import common.management.util
import common.global_constants
import common.util.urlFuncs as urlFuncs
import WebMirror.OutputFilters.util.feedNameLut
import WebMirror.rules
def get_wln_release_urls():
print("loading netlocs from WLN release listings")
import settings
if '__pypy__' in sys.builtin_module_names:
import psycopg2cffi as psycopg2
else:
import psycopg2
conn = psycopg2.connect(
host = settings.WLN_DB_DATABASE_IP,
dbname = settings.WLN_DB_DATABASE_DB_NAME,
user = settings.WLN_DB_DATABASE_USER,
password = settings.WLN_DB_DATABASE_PASS,
)
print("Conn:", conn)
cur = conn.cursor()
print("Fetching rows from changes table")
cur.execute("""
SELECT DISTINCT(srcurl) FROM releaseschanges;
""")
rows_1 = cur.fetchall()
print("Fetching rows from main table")
cur.execute("""
SELECT DISTINCT(srcurl) FROM releases;
""")
rows_2 = cur.fetchall()
print("Received %s, %s distinct URLs" % (len(rows_1), len(rows_2)))
nlfilter = {}
for url, in tqdm.tqdm(rows_1 + rows_2):
if url:
if isinstance(url, bytes):
url = url.decode("utf-8")
itemnl = WebMirror.OutputFilters.util.feedNameLut.patch_blogspot(urllib.parse.urlsplit(url).netloc)
nlfilter.setdefault(itemnl, set())
nlfilter[itemnl].add(url)
print("WLN Releases distinct netlocs: %s" % len(nlfilter))
return nlfilter
def get_nu_head_urls():
print("Loading netlocs from nuheader system")
with db.session_context() as sess:
nu_items = sess.query(db.NuReleaseItem) .filter(db.NuReleaseItem.actual_target != None) .all()
mapdict = {}
for row in nu_items:
itemnl = WebMirror.OutputFilters.util.feedNameLut.patch_blogspot(urllib.parse.urlsplit(row.actual_target).netloc)
mapdict.setdefault(itemnl, set())
mapdict[itemnl].add(row.actual_target)
print("Nu outbound items: ", len(mapdict))
return mapdict
def get_distance_of_zero_urls():
print("Loading short-distance netlocs")
with db.session_context() as sess:
page_items = sess.query(db.WebPages.url) .filter(db.WebPages.distance <= db.DB_DEFAULT_DIST) .filter(db.WebPages.is_text == True) .yield_per(10000) .all()
mapdict = {}
for row, in tqdm.tqdm(page_items):
itemnl = WebMirror.OutputFilters.util.feedNameLut.patch_blogspot(urllib.parse.urlsplit(row).netloc)
mapdict.setdefault(itemnl, set())
mapdict[itemnl].add(row)
print("short-distance items: ", len(mapdict))
return mapdict
def filter_get_have_urls():
rules = WebMirror.rules.load_rules()
urls = [item['starturls'] if item['starturls'] else [] + item['feedurls'] if item['feedurls'] else [] for item in rules]
urls = [item for sublist in urls for item in sublist]
start_netloc_dict = {}
for url in urls:
itemnl = WebMirror.OutputFilters.util.feedNameLut.patch_blogspot(urllib.parse.urlsplit(url).netloc)
start_netloc_dict.setdefault(itemnl, [])
start_netloc_dict[itemnl] = url
missing = 0
with db.session_context() as sess:
rows = sess.query(db.NewNetlocTracker) .filter(db.NewNetlocTracker.ignore == False) .filter(db.NewNetlocTracker.have == False) .all()
for row in tqdm.tqdm(rows):
if not row.netloc:
print("What:", (row.id, row.example_url, row.netloc))
sess.delete(row)
sess.commit()
continue
assert row.netloc
netloc = row.netloc.lower()
bad = False
if urlFuncs.SQUATTER_NETLOC_RE.match(netloc):
bad = True
if netloc in common.global_constants.NU_NEW_MASK_NETLOCS:
bad = True
if netloc.endswith(".photobucket.com"):
bad = True
if netloc.endswith(".postimg.org"):
bad = True
if "www.novelupdates.com" in netloc:
bad = True
if netloc.endswith("files.wordpress.com"):
bad = True
if netloc.endswith("media.tumblr.com"):
bad = True
if netloc.endswith("bp.blogspot.com"):
bad = True
cleaned = urlFuncs.cleanUrl(row.example_url)
if cleaned != row.example_url:
row.example_url = cleaned
sess.commit()
if WebMirror.OutputFilters.util.feedNameLut.getNiceName(sess, srcurl=None, netloc=netloc):
row.ignore = False
row.have = True
sess.commit()
continue
if netloc.startswith("www."):
if WebMirror.OutputFilters.util.feedNameLut.getNiceName(sess, srcurl=None, netloc=netloc[4:]):
bad = True
if netloc in start_netloc_dict:
row.ignore = False
row.have = True
sess.commit()
continue
if bad:
row.ignore = True
sess.commit()
continue
missing += 1
total = len(rows)
print("Total outbound items: ", total, "missing:", missing)
def update_missing_new_with_title():
wg = WebRequest.WebGetRobust()
with db.session_context(override_timeout_ms=1000 * 60 * 5) as sess:
rows = sess.query(db.NewNetlocTracker) .filter(db.NewNetlocTracker.ignore == False) .filter(db.NewNetlocTracker.have == False) .all()
sess.commit()
print("Missing items:", len(rows))
for row in tqdm.tqdm(rows):
if row.extra is None:
row.extra = {}
if not 'title' in row.extra:
titledict = common.management.util.get_page_title(wg, row.example_url)
for key, value in titledict.items():
row.extra[key] = value
try:
sess.commit()
except sqlalchemy.exc.InternalError:
print("(session_context) -> Transaction error (sqlalchemy.exc.InternalError).")
sess.rollback()
except sqlalchemy.exc.OperationalError:
print("(session_context) -> Transaction error (sqlalchemy.exc.OperationalError).")
sess.rollback()
except sqlalchemy.exc.IntegrityError:
print("(session_context) -> Transaction error (sqlalchemy.exc.IntegrityError).")
sess.rollback()
except sqlalchemy.exc.InvalidRequestError:
print("(session_context) -> Transaction error (sqlalchemy.exc.InvalidRequestError).")
traceback.print_exc()
sess.rollback()
def get_high_priority_urls(filter_before=None):
print("Loading high priority netlocs")
with db.session_context() as sess:
query = sess.query(db.WebPages.url) .filter(db.WebPages.priority <= db.DB_HIGH_PRIORITY) .filter(db.WebPages.is_text == True) .yield_per(10000)
if filter_before:
query = query.filter(db.NuReleaseItem.release_date >= filter_before)
page_items = query.all()
mapdict = {}
for row, in tqdm.tqdm(page_items):
itemnl = WebMirror.OutputFilters.util.feedNameLut.patch_blogspot(urllib.parse.urlsplit(row).netloc)
mapdict.setdefault(itemnl, set())
mapdict[itemnl].add(row)
print("High Priority outbound items: ", len(mapdict))
return mapdict
def push_urls_into_table(mapdict):
with db.session_context() as db_sess:
pbar = tqdm.tqdm(mapdict.items())
for netloc, urls in pbar:
have_item = db_sess.query(db.NewNetlocTracker) .filter(db.NewNetlocTracker.netloc == netloc) .scalar()
if not have_item and netloc:
urls = list(urls)
urls.sort(key=lambda x:len(x))
pbar.write("New Url: %s -> %s" % (netloc, urls[0]))
new = db.NewNetlocTracker(
netloc = netloc,
example_url = urls[0],
)
db_sess.add(new)
db_sess.commit()
def reset_nu_fails():
with db.session_context() as db_sess:
recent_d_2 = datetime.datetime.now() - datetime.timedelta(hours=24*14)
bulkq = db_sess.query(db.NuReleaseItem) .outerjoin(db.NuResolvedOutbound) .filter(db.NuReleaseItem.validated == False) .filter(db.NuReleaseItem.release_date >= recent_d_2) .options(joinedload('resolved')) .order_by(desc(db.NuReleaseItem.first_seen))
items = bulkq.all()
print("Found %s items." % len(items))
for item in items:
resolved = len(item.resolved)
item.fetch_attempts = resolved
db_sess.commit()
def exposed_new_from_wln_feeds():
nlfilter = get_wln_release_urls()
push_urls_into_table(mapdict)
def exposed_new_from_nu_feeds():
mapdict = get_nu_head_urls()
push_urls_into_table(mapdict)
def exposed_new_from_high_priority():
mapdict = get_high_priority_urls()
push_urls_into_table(mapdict)
def exposed_new_from_zero_distance_urls():
mapdict = get_distance_of_zero_urls()
push_urls_into_table(mapdict)
def exposed_new_from_all_feeds():
mapdict = get_nu_head_urls()
mapdict_1 = get_wln_release_urls()
mapdict_2 = get_high_priority_urls()
mapdict_3 = get_distance_of_zero_urls()
print("NU Header urls: %s, wln URLs: %s, %s high priority items, %s with a distance of zero." % (len(mapdict), len(mapdict_1), len(mapdict_2), len(mapdict_3)))
for key, value in mapdict_1.items():
mapdict.setdefault(key, set())
mapdict[key].update(value)
for key, value in mapdict_2.items():
mapdict.setdefault(key, set())
mapdict[key].update(value)
for key, value in mapdict_3.items():
mapdict.setdefault(key, set())
mapdict[key].update(value)
print("Total items: %s" % (len(mapdict), ))
push_urls_into_table(mapdict)
|
BSD 3-Clause New or Revised License
|
project-monai/monailabel
|
monailabel/interfaces/app.py
|
MONAILabelApp.deepgrow_infer_tasks
|
python
|
def deepgrow_infer_tasks(model_dir, pipeline=True):
deepgrow_2d = load_from_mmar("clara_pt_deepgrow_2d_annotation_1", model_dir)
deepgrow_3d = load_from_mmar("clara_pt_deepgrow_3d_annotation_1", model_dir)
infers = {
"deepgrow_2d": InferDeepgrow2D(None, deepgrow_2d),
"deepgrow_3d": InferDeepgrow3D(None, deepgrow_3d),
}
if pipeline:
infers["deepgrow_pipeline"] = InferDeepgrowPipeline(
path=None,
network=deepgrow_2d,
model_3d=infers["deepgrow_3d"],
description="Combines Deepgrow 2D model and 3D deepgrow model",
)
return infers
|
Dictionary of Default Infer Tasks for Deepgrow 2D/3D
|
https://github.com/project-monai/monailabel/blob/f7eaeea08ea1ba7698668f1f93b568091e6d1111/monailabel/interfaces/app.py#L528-L546
|
import copy
import itertools
import logging
import os
import platform
import shutil
import tempfile
import time
from datetime import timedelta
from distutils.util import strtobool
from typing import Callable, Dict, Optional, Sequence
import requests
import schedule
from dicomweb_client import DICOMwebClient
from dicomweb_client.session_utils import create_session_from_user_pass
from monai.apps import download_and_extract, download_url, load_from_mmar
from monai.data import partition_dataset
from timeloop import Timeloop
from monailabel.config import settings
from monailabel.datastore.dicom import DICOMWebDatastore
from monailabel.datastore.local import LocalDatastore
from monailabel.interfaces.datastore import Datastore, DefaultLabelTag
from monailabel.interfaces.exception import MONAILabelError, MONAILabelException
from monailabel.interfaces.tasks.batch_infer import BatchInferImageType, BatchInferTask
from monailabel.interfaces.tasks.infer import InferTask
from monailabel.interfaces.tasks.scoring import ScoringMethod
from monailabel.interfaces.tasks.strategy import Strategy
from monailabel.interfaces.tasks.train import TrainTask
from monailabel.tasks.activelearning.random import Random
from monailabel.tasks.infer.deepgrow_2d import InferDeepgrow2D
from monailabel.tasks.infer.deepgrow_3d import InferDeepgrow3D
from monailabel.tasks.infer.deepgrow_pipeline import InferDeepgrowPipeline
from monailabel.utils.async_tasks.task import AsyncTask
from monailabel.utils.sessions import Sessions
logger = logging.getLogger(__name__)
class MONAILabelApp:
PRE_TRAINED_PATH: str = "https://github.com/Project-MONAI/MONAILabel/releases/download/data/"
def __init__(
self,
app_dir: str,
studies: str,
conf: Dict[str, str],
name: str = "",
description: str = "",
version: str = "2.0",
labels: Optional[Sequence[str]] = None,
):
self.app_dir = app_dir
self.studies = studies
self.conf = conf if conf else {}
self.name = name
self.description = description
self.version = version
self.labels = labels
self._datastore: Datastore = self.init_datastore()
self._infers = self.init_infers()
self._trainers = self.init_trainers()
self._strategies = self.init_strategies()
self._scoring_methods = self.init_scoring_methods()
self._batch_infer = self.init_batch_infer()
if strtobool(conf.get("download_tools", "true")):
self._download_tools()
self._server_mode = strtobool(conf.get("server_mode", "false"))
self._auto_update_scoring = strtobool(conf.get("auto_update_scoring", "true"))
self._sessions = self._load_sessions(strtobool(conf.get("sessions", "true")))
def init_infers(self) -> Dict[str, InferTask]:
return {}
def init_trainers(self) -> Dict[str, TrainTask]:
return {}
def init_strategies(self) -> Dict[str, Strategy]:
return {"random": Random()}
def init_scoring_methods(self) -> Dict[str, ScoringMethod]:
return {}
def init_batch_infer(self) -> Callable:
return BatchInferTask()
def init_datastore(self) -> Datastore:
logger.info(f"Init Datastore for: {self.studies}")
if self.studies.startswith("http://") or self.studies.startswith("https://"):
dw_session = None
if settings.MONAI_LABEL_DICOMWEB_USERNAME and settings.MONAI_LABEL_DICOMWEB_PASSWORD:
dw_session = create_session_from_user_pass(
settings.MONAI_LABEL_DICOMWEB_USERNAME, settings.MONAI_LABEL_DICOMWEB_PASSWORD
)
dw_client = DICOMwebClient(
url=self.studies,
session=dw_session,
qido_url_prefix=settings.MONAI_LABEL_QIDO_PREFIX,
wado_url_prefix=settings.MONAI_LABEL_WADO_PREFIX,
stow_url_prefix=settings.MONAI_LABEL_STOW_PREFIX,
)
cache_path = settings.MONAI_LABEL_DICOMWEB_CACHE_PATH
cache_path = cache_path.strip() if cache_path else ""
return DICOMWebDatastore(dw_client, cache_path) if cache_path else DICOMWebDatastore(dw_client)
return LocalDatastore(
self.studies,
extensions=settings.MONAI_LABEL_DATASTORE_FILE_EXT,
auto_reload=settings.MONAI_LABEL_DATASTORE_AUTO_RELOAD,
)
def info(self):
meta = {
"name": self.name,
"description": self.description,
"version": self.version,
"labels": self.labels,
"models": {k: v.info() for k, v in self._infers.items() if v.is_valid()},
"trainers": {k: v.info() for k, v in self._trainers.items()},
"strategies": {k: v.info() for k, v in self._strategies.items()},
"scoring": {k: v.info() for k, v in self._scoring_methods.items()},
"train_stats": {k: v.stats() for k, v in self._trainers.items()},
"datastore": self._datastore.status(),
}
if not self.labels:
meta["labels"] = list(itertools.chain.from_iterable([v.get("labels", []) for v in meta["models"].values()]))
return meta
def infer(self, request, datastore=None):
model = request.get("model")
if not model:
raise MONAILabelException(
MONAILabelError.INVALID_INPUT,
"Model is not provided for Inference Task",
)
task = self._infers.get(model)
if not task:
raise MONAILabelException(
MONAILabelError.INVALID_INPUT,
f"Inference Task is not Initialized. There is no model '{model}' available",
)
request = copy.deepcopy(request)
image_id = request["image"]
datastore = datastore if datastore else self.datastore()
if os.path.exists(image_id):
request["save_label"] = False
else:
request["image"] = datastore.get_image_uri(request["image"])
if os.path.isdir(request["image"]):
logger.info("Input is a Directory; Consider it as DICOM")
logger.info(os.listdir(request["image"]))
request["image"] = [os.path.join(f, request["image"]) for f in os.listdir(request["image"])]
logger.info(f"Image => {request['image']}")
result_file_name, result_json = task(request)
label_id = None
if result_file_name and os.path.exists(result_file_name):
tag = request.get("label_tag", DefaultLabelTag.ORIGINAL)
save_label = request.get("save_label", True)
if save_label:
label_id = datastore.save_label(image_id, result_file_name, tag, result_json)
if os.path.exists(result_file_name):
os.unlink(result_file_name)
else:
label_id = result_file_name
return {"label": label_id, "tag": DefaultLabelTag.ORIGINAL, "params": result_json}
def batch_infer(self, request, datastore=None):
return self._batch_infer(request, datastore if datastore else self.datastore(), self.infer)
def scoring(self, request, datastore=None):
method = request.get("method")
if not method:
raise MONAILabelException(
MONAILabelError.INVALID_INPUT,
"Method is not provided for Scoring Task",
)
task = self._scoring_methods.get(method)
if not task:
raise MONAILabelException(
MONAILabelError.INVALID_INPUT,
f"Scoring Task is not Initialized. There is no such scoring method '{method}' available",
)
request = copy.deepcopy(request)
return task(copy.deepcopy(request), datastore if datastore else self.datastore())
def datastore(self) -> Datastore:
return self._datastore
@staticmethod
def partition_datalist(datalist, val_split, shuffle=True):
if val_split > 0.0:
return partition_dataset(datalist, ratios=[(1 - val_split), val_split], shuffle=shuffle)
return datalist, []
def train(self, request):
model = request.get("model")
if not model:
raise MONAILabelException(
MONAILabelError.INVALID_INPUT,
"Model is not provided for Training Task",
)
task = self._trainers.get(model)
if not task:
raise MONAILabelException(
MONAILabelError.INVALID_INPUT,
f"Train Task is not Initialized. There is no model '{model}' available",
)
request = copy.deepcopy(request)
result = task(request, self.datastore())
if self._auto_update_scoring:
self.async_scoring(None)
return result
def next_sample(self, request):
strategy = request.get("strategy")
strategy = strategy if strategy else "random"
task = self._strategies.get(strategy)
if task is None:
raise MONAILabelException(
MONAILabelError.APP_INIT_ERROR,
f"ActiveLearning Task is not Initialized. There is no such strategy '{strategy}' available",
)
image_id = task(request, self.datastore())
if not image_id:
return {}
image_path = self._datastore.get_image_uri(image_id)
if self._auto_update_scoring:
self.async_scoring(None)
return {
"id": image_id,
"path": image_path,
}
def on_init_complete(self):
logger.info("App Init - completed")
if self._auto_update_scoring:
self.async_scoring(None)
def cleanup_sessions(instance):
instance.cleanup_sessions()
cleanup_sessions(self)
time_loop = Timeloop()
schedule.every(5).minutes.do(cleanup_sessions, self)
@time_loop.job(interval=timedelta(seconds=30))
def run_scheduler():
schedule.run_pending()
time_loop.start(block=False)
def on_save_label(self, image_id, label_id):
logger.info(f"New label saved for: {image_id} => {label_id}")
def server_mode(self, mode: bool):
self._server_mode = mode
def async_scoring(self, method, params=None):
if not method and not self._scoring_methods:
return {}
methods = [method] if method else list(self._scoring_methods.keys())
result = {}
for m in methods:
if self._server_mode:
request = {"method": m}
request.update(params[m] if params and params.get(m) else {})
res, _ = AsyncTask.run("scoring", request=request, params=params, enqueue=True)
result[m] = res
else:
url = f"/scoring/{m}"
p = params[m] if params and params.get(m) else None
result[m] = self._local_request(url, p, "Scoring")
return result[method] if method else result
def async_training(self, model, params=None, enqueue=False):
if not model and not self._trainers:
return {}
models = [model] if model else list(self._trainers.keys())
enqueue = True if model > 1 else enqueue
result = {}
for m in models:
if self._server_mode:
request = {"model": m}
request.update(params[m] if params and params.get(m) else {})
res, _ = AsyncTask.run("train", request=request, params=params, enqueue=enqueue)
result[m] = res
else:
url = f"/train/{model}?enqueue={enqueue}"
p = params[m] if params and params.get(m) else None
result[m] = self._local_request(url, p, "Training")
return result[model] if model else result
def async_batch_infer(self, model, images: BatchInferImageType, params=None):
if self._server_mode:
request = {"model": model, "images": images}
res, _ = AsyncTask.run("batch_infer", request=request, params=params)
return res
url = f"/batch/infer/{model}?images={images}"
return self._local_request(url, params, "Batch Infer")
def _local_request(self, url, params, action):
params = params if params else {}
response = requests.post(f"http://127.0.0.1:{settings.MONAI_LABEL_SERVER_PORT}{url}", json=params)
if response.status_code != 200:
logger.error(f"Failed To Trigger {action}: {response.text}")
return response.json() if response.status_code == 200 else None
def _download_tools(self):
target = os.path.join(self.app_dir, "bin")
os.makedirs(target, exist_ok=True)
dcmqi_tools = ["segimage2itkimage", "itkimage2segimage", "segimage2itkimage.exe", "itkimage2segimage.exe"]
existing = [tool for tool in dcmqi_tools if shutil.which(tool) or os.path.exists(os.path.join(target, tool))]
logger.debug(f"Existing Tools: {existing}")
if len(existing) in [len(dcmqi_tools), len(dcmqi_tools) // 2]:
logger.debug("No need to download dcmqi tools")
return
target_os = "win64.zip" if any(platform.win32_ver()) else "linux.tar.gz"
with tempfile.TemporaryDirectory() as tmp:
download_and_extract(
url=f"https://github.com/QIICR/dcmqi/releases/download/v1.2.4/dcmqi-1.2.4-{target_os}", output_dir=tmp
)
for root, _, files in os.walk(tmp):
for f in files:
if f in dcmqi_tools:
shutil.copy(os.path.join(root, f), target)
def _load_sessions(self, load=False):
if not load:
return None
return Sessions(settings.MONAI_LABEL_SESSION_PATH, settings.MONAI_LABEL_SESSION_EXPIRY)
def cleanup_sessions(self):
if not self._sessions:
return
count = self._sessions.remove_expired()
logger.debug("Total sessions cleaned up: {}".format(count))
def sessions(self):
return self._sessions
@staticmethod
def download(resources):
if not resources:
return
for resource in resources:
if not os.path.exists(resource[0]):
os.makedirs(os.path.dirname(resource[0]), exist_ok=True)
logger.info(f"Downloading resource: {resource[0]} from {resource[1]}")
download_url(resource[1], resource[0])
time.sleep(1)
@staticmethod
|
Apache License 2.0
|
dmlc/dgl
|
python/dgl/distributed/kvstore.py
|
KVServer.barrier_count
|
python
|
def barrier_count(self, count):
self._barrier_count = count
|
Set barrier count
|
https://github.com/dmlc/dgl/blob/8341244a2dac850bd0c1153c7641c3b8a2bbfc30/python/dgl/distributed/kvstore.py#L704-L706
|
import os
import numpy as np
from . import rpc
from .graph_partition_book import NodePartitionPolicy, EdgePartitionPolicy
from .standalone_kvstore import KVClient as SA_KVClient
from .. import backend as F
from .. import utils
from .._ffi.ndarray import empty_shared_mem
KVSTORE_PULL = 901231
class PullResponse(rpc.Response):
def __init__(self, server_id, data_tensor):
self.server_id = server_id
self.data_tensor = data_tensor
def __getstate__(self):
return self.server_id, self.data_tensor
def __setstate__(self, state):
self.server_id, self.data_tensor = state
class PullRequest(rpc.Request):
def __init__(self, name, id_tensor):
self.name = name
self.id_tensor = id_tensor
def __getstate__(self):
return self.name, self.id_tensor
def __setstate__(self, state):
self.name, self.id_tensor = state
def process_request(self, server_state):
kv_store = server_state.kv_store
if self.name not in kv_store.part_policy:
raise RuntimeError("KVServer cannot find partition policy with name: %s" % self.name)
if self.name not in kv_store.data_store:
raise RuntimeError("KVServer Cannot find data tensor with name: %s" % self.name)
local_id = kv_store.part_policy[self.name].to_local(self.id_tensor)
data = kv_store.pull_handlers[self.name](kv_store.data_store, self.name, local_id)
res = PullResponse(kv_store.server_id, data)
return res
KVSTORE_PUSH = 901232
class PushRequest(rpc.Request):
def __init__(self, name, id_tensor, data_tensor):
self.name = name
self.id_tensor = id_tensor
self.data_tensor = data_tensor
def __getstate__(self):
return self.name, self.id_tensor, self.data_tensor
def __setstate__(self, state):
self.name, self.id_tensor, self.data_tensor = state
def process_request(self, server_state):
kv_store = server_state.kv_store
if self.name not in kv_store.part_policy:
raise RuntimeError("KVServer cannot find partition policy with name: %s" % self.name)
if self.name not in kv_store.data_store:
raise RuntimeError("KVServer Cannot find data tensor with name: %s" % self.name)
local_id = kv_store.part_policy[self.name].to_local(self.id_tensor)
kv_store.push_handlers[self.name](kv_store.data_store, self.name,
local_id, self.data_tensor)
INIT_DATA = 901233
INIT_MSG = 'Init'
class InitDataResponse(rpc.Response):
def __init__(self, msg):
self.msg = msg
def __getstate__(self):
return self.msg
def __setstate__(self, state):
self.msg = state
class InitDataRequest(rpc.Request):
def __init__(self, name, shape, dtype, policy_str, init_func):
self.name = name
self.shape = shape
self.dtype = dtype
self.policy_str = policy_str
self.init_func = init_func
def __getstate__(self):
return self.name, self.shape, self.dtype, self.policy_str, self.init_func
def __setstate__(self, state):
self.name, self.shape, self.dtype, self.policy_str, self.init_func = state
def process_request(self, server_state):
kv_store = server_state.kv_store
dtype = F.data_type_dict[self.dtype]
if self.name in kv_store.data_store:
assert tuple(F.shape(kv_store.data_store[self.name])) == tuple(self.shape)
assert F.reverse_data_type_dict[F.dtype(kv_store.data_store[self.name])] == self.dtype
assert kv_store.part_policy[self.name].policy_str == self.policy_str
else:
if not kv_store.is_backup_server():
data_tensor = self.init_func(self.shape, dtype)
kv_store.init_data(name=self.name,
policy_str=self.policy_str,
data_tensor=data_tensor)
else:
kv_store.init_data(name=self.name, policy_str=self.policy_str)
res = InitDataResponse(INIT_MSG)
return res
BARRIER = 901234
BARRIER_MSG = 'Barrier'
class BarrierResponse(rpc.Response):
def __init__(self, msg):
self.msg = msg
def __getstate__(self):
return self.msg
def __setstate__(self, state):
self.msg = state
class BarrierRequest(rpc.Request):
def __init__(self, role):
self.role = role
def __getstate__(self):
return self.role
def __setstate__(self, state):
self.role = state
def process_request(self, server_state):
kv_store = server_state.kv_store
role = server_state.roles
count = kv_store.barrier_count[self.role]
kv_store.barrier_count[self.role] = count + 1
if kv_store.barrier_count[self.role] == len(role[self.role]):
kv_store.barrier_count[self.role] = 0
res_list = []
for client_id, _ in role[self.role]:
res_list.append((client_id, BarrierResponse(BARRIER_MSG)))
return res_list
return None
REGISTER_PULL = 901235
REGISTER_PULL_MSG = 'Register_Pull'
class RegisterPullHandlerResponse(rpc.Response):
def __init__(self, msg):
self.msg = msg
def __getstate__(self):
return self.msg
def __setstate__(self, state):
self.msg = state
class RegisterPullHandlerRequest(rpc.Request):
def __init__(self, name, pull_func):
self.name = name
self.pull_func = pull_func
def __getstate__(self):
return self.name, self.pull_func
def __setstate__(self, state):
self.name, self.pull_func = state
def process_request(self, server_state):
kv_store = server_state.kv_store
kv_store.pull_handlers[self.name] = self.pull_func
res = RegisterPullHandlerResponse(REGISTER_PULL_MSG)
return res
REGISTER_PUSH = 901236
REGISTER_PUSH_MSG = 'Register_Push'
class RegisterPushHandlerResponse(rpc.Response):
def __init__(self, msg):
self.msg = msg
def __getstate__(self):
return self.msg
def __setstate__(self, state):
self.msg = state
class RegisterPushHandlerRequest(rpc.Request):
def __init__(self, name, push_func):
self.name = name
self.push_func = push_func
def __getstate__(self):
return self.name, self.push_func
def __setstate__(self, state):
self.name, self.push_func = state
def process_request(self, server_state):
kv_store = server_state.kv_store
kv_store.push_handlers[self.name] = self.push_func
res = RegisterPushHandlerResponse(REGISTER_PUSH_MSG)
return res
GET_SHARED = 901237
GET_SHARED_MSG = 'Get_Shared'
class GetSharedDataResponse(rpc.Response):
def __init__(self, meta):
self.meta = meta
def __getstate__(self):
return self.meta
def __setstate__(self, state):
self.meta = state
class GetSharedDataRequest(rpc.Request):
def __init__(self, msg):
self.msg = msg
def __getstate__(self):
return self.msg
def __setstate__(self, state):
self.msg = state
def process_request(self, server_state):
assert self.msg == GET_SHARED_MSG
meta = {}
kv_store = server_state.kv_store
for name, data in kv_store.data_store.items():
meta[name] = (F.shape(data),
F.reverse_data_type_dict[F.dtype(data)],
kv_store.part_policy[name].policy_str)
res = GetSharedDataResponse(meta)
return res
GET_PART_SHAPE = 901238
class GetPartShapeResponse(rpc.Response):
def __init__(self, shape):
self.shape = shape
def __getstate__(self):
return self.shape
def __setstate__(self, state):
if isinstance(state, int):
self.shape = (state,)
else:
self.shape = state
class GetPartShapeRequest(rpc.Request):
def __init__(self, name):
self.name = name
def __getstate__(self):
return self.name
def __setstate__(self, state):
self.name = state
def process_request(self, server_state):
kv_store = server_state.kv_store
if self.name not in kv_store.data_store:
raise RuntimeError("KVServer Cannot find data tensor with name: %s" % self.name)
data_shape = F.shape(kv_store.data_store[self.name])
res = GetPartShapeResponse(data_shape)
return res
SEND_META_TO_BACKUP = 901239
SEND_META_TO_BACKUP_MSG = "Send_Meta_TO_Backup"
class SendMetaToBackupResponse(rpc.Response):
def __init__(self, msg):
self.msg = msg
def __getstate__(self):
return self.msg
def __setstate__(self, state):
self.msg = state
class SendMetaToBackupRequest(rpc.Request):
def __init__(self, name, dtype, shape, policy_str, pull_handler, push_handler):
self.name = name
self.dtype = dtype
self.shape = shape
self.policy_str = policy_str
self.pull_handler = pull_handler
self.push_handler = push_handler
def __getstate__(self):
return self.name, self.dtype, self.shape, self.policy_str, self.pull_handler, self.push_handler
def __setstate__(self, state):
self.name, self.dtype, self.shape, self.policy_str, self.pull_handler, self.push_handler = state
def process_request(self, server_state):
kv_store = server_state.kv_store
assert kv_store.is_backup_server()
if self.name not in kv_store.data_store:
shared_data = empty_shared_mem(self.name+'-kvdata-', False, self.shape, self.dtype)
dlpack = shared_data.to_dlpack()
kv_store.data_store[self.name] = F.zerocopy_from_dlpack(dlpack)
kv_store.part_policy[self.name] = kv_store.find_policy(self.policy_str)
kv_store.pull_handlers[self.name] = self.pull_handler
kv_store.push_handlers[self.name] = self.push_handler
else:
assert tuple(F.shape(kv_store.data_store[self.name])) == tuple(self.shape)
assert F.reverse_data_type_dict[F.dtype(kv_store.data_store[self.name])] == self.dtype
assert kv_store.part_policy[self.name].policy_str == self.policy_str
assert kv_store.pull_handlers[self.name] == self.pull_handler
assert kv_store.push_handlers[self.name] == self.push_handler
res = SendMetaToBackupResponse(SEND_META_TO_BACKUP_MSG)
return res
DELETE_DATA = 901240
DELETE_MSG = "Delete_Data"
class DeleteDataResponse(rpc.Response):
def __init__(self, msg):
self.msg = msg
def __getstate__(self):
return self.msg
def __setstate__(self, state):
self.msg = state
class DeleteDataRequest(rpc.Request):
def __init__(self, name):
self.name = name
def __getstate__(self):
return self.name
def __setstate__(self, state):
self.name = state
def process_request(self, server_state):
kv_store = server_state.kv_store
if self.name in kv_store.data_store:
del kv_store.data_store[self.name]
del kv_store.part_policy[self.name]
del kv_store.push_handlers[self.name]
del kv_store.pull_handlers[self.name]
res = DeleteDataResponse(DELETE_MSG)
return res
COUNT_LOCAL_NONZERO = 901241
class CountLocalNonzeroResponse(rpc.Response):
def __init__(self, num_local_nonzero):
self.num_local_nonzero = num_local_nonzero
def __getstate__(self):
return self.num_local_nonzero
def __setstate__(self, state):
self.num_local_nonzero = state
class CountLocalNonzeroRequest(rpc.Request):
def __init__(self, name):
self.name = name
def __getstate__(self):
return self.name
def __setstate__(self, state):
self.name = state
def process_request(self, server_state):
kv_store = server_state.kv_store
num_local_nonzero = kv_store.count_local_nonzero(self.name)
res = CountLocalNonzeroResponse(num_local_nonzero)
return res
def default_push_handler(target, name, id_tensor, data_tensor):
target[name][id_tensor] = data_tensor
def default_pull_handler(target, name, id_tensor):
return target[name][id_tensor]
class KVServer(object):
def __init__(self, server_id, ip_config, num_servers, num_clients):
assert server_id >= 0, 'server_id (%d) cannot be a negative number.' % server_id
assert num_servers > 0, 'num_servers (%d) must be a positive number.' % num_servers
assert os.path.exists(ip_config), 'Cannot open file: %s' % ip_config
assert num_clients >= 0, 'num_clients (%d) cannot be a negative number.' % num_clients
rpc.register_service(KVSTORE_PULL,
PullRequest,
PullResponse)
rpc.register_service(KVSTORE_PUSH,
PushRequest,
None)
rpc.register_service(INIT_DATA,
InitDataRequest,
InitDataResponse)
rpc.register_service(BARRIER,
BarrierRequest,
BarrierResponse)
rpc.register_service(REGISTER_PUSH,
RegisterPushHandlerRequest,
RegisterPushHandlerResponse)
rpc.register_service(REGISTER_PULL,
RegisterPullHandlerRequest,
RegisterPullHandlerResponse)
rpc.register_service(GET_SHARED,
GetSharedDataRequest,
GetSharedDataResponse)
rpc.register_service(GET_PART_SHAPE,
GetPartShapeRequest,
GetPartShapeResponse)
rpc.register_service(SEND_META_TO_BACKUP,
SendMetaToBackupRequest,
SendMetaToBackupResponse)
rpc.register_service(DELETE_DATA,
DeleteDataRequest,
DeleteDataResponse)
rpc.register_service(COUNT_LOCAL_NONZERO,
CountLocalNonzeroRequest,
CountLocalNonzeroResponse)
self._data_store = {}
self._policy_set = set()
self._part_policy = {}
self._server_id = server_id
self._server_namebook = rpc.read_ip_config(ip_config, num_servers)
assert server_id in self._server_namebook, 'Trying to start server {}, but there are {} servers in the config file'.format(
server_id, len(self._server_namebook))
self._machine_id = self._server_namebook[server_id][0]
self._group_count = self._server_namebook[server_id][3]
self._part_id = self._machine_id
self._num_clients = num_clients
self._barrier_count = {}
self._push_handlers = {}
self._pull_handlers = {}
@property
def server_id(self):
return self._server_id
@property
def barrier_count(self):
return self._barrier_count
@barrier_count.setter
|
Apache License 2.0
|
ugnelis/tensorflow-rnn-ctc
|
utils.py
|
texts_encoder
|
python
|
def texts_encoder(texts, first_index=(ord('a') - 1), space_index=0, space_token='<space>'):
result = []
for text in texts:
item = make_char_array(text, space_token)
item = np.asarray([space_index if x == space_token else ord(x) - first_index for x in item])
result.append(item)
return np.array(result)
|
Encode texts to numbers.
Args:
texts: list of texts.
Data directory.
first_index: int.
First index (usually index of 'a').
space_index: int.
Index of 'space'.
space_token: string.
'space' representation.
Returns:
array of encoded texts.
|
https://github.com/ugnelis/tensorflow-rnn-ctc/blob/6998ba91952a9352b6805ddd0209b33a13ed4cc6/utils.py#L190-L212
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import glob
import re
import logging
import unicodedata
import codecs
import numpy as np
import scipy.io.wavfile as wav
from python_speech_features import mfcc
def read_text_file(path):
with codecs.open(path, encoding="utf-8") as file:
return file.read()
def normalize_text(text, remove_apostrophe=True):
result = unicodedata.normalize("NFKD", text).encode("ascii", "ignore").decode()
if remove_apostrophe:
result = result.replace("'", "")
return re.sub("[^a-zA-Z']+", ' ', result).strip().lower()
def read_text_files(dir, extensions=['txt']):
if not os.path.isdir(dir):
logging.error("Text files directory %s is not found.", dir)
return None
if not all(isinstance(extension, str) for extension in extensions):
logging.error("Variable 'extensions' is not a list of strings.")
return None
files_paths_list = []
for extension in extensions:
file_glob = os.path.join(dir, '*.' + extension)
files_paths_list.extend(glob.glob(file_glob))
files = []
for file_path in files_paths_list:
file = read_text_file(file_path)
file = normalize_text(file)
files.append(file)
files = np.array(files)
return files
def read_audio_files(dir, extensions=['wav']):
if not os.path.isdir(dir):
logging.error("Audio files directory %s is not found.", dir)
return None
if not all(isinstance(extension, str) for extension in extensions):
logging.error("Variable 'extensions' is not a list of strings.")
return None
files_paths_list = []
for extension in extensions:
file_glob = os.path.join(dir, '*.' + extension)
files_paths_list.extend(glob.glob(file_glob))
files = []
for file_path in files_paths_list:
audio_rate, audio_data = wav.read(file_path)
file = mfcc(audio_data, samplerate=audio_rate)
files.append(file)
files = np.array(files)
return files
def make_char_array(text, space_token='<space>'):
result = np.hstack([space_token if x == ' ' else list(x) for x in text])
return result
def sparse_tuples_from_sequences(sequences, dtype=np.int32):
indexes = []
values = []
for n, sequence in enumerate(sequences):
indexes.extend(zip([n] * len(sequence), range(len(sequence))))
values.extend(sequence)
indexes = np.asarray(indexes, dtype=np.int64)
values = np.asarray(values, dtype=dtype)
shape = np.asarray([len(sequences), np.asarray(indexes).max(0)[1] + 1], dtype=np.int64)
return indexes, values, shape
def sequence_decoder(sequence, first_index=(ord('a') - 1)):
decoded_text = ''.join([chr(x) for x in np.asarray(sequence) + first_index])
decoded_text = decoded_text.replace(chr(ord('z') + 1), '')
decoded_text = decoded_text.replace(chr(ord('a') - 1), ' ')
return decoded_text
|
MIT License
|
renatopp/aerolito
|
aerolito/pattern.py
|
Pattern.execute_post
|
python
|
def execute_post(self, environ):
if self._post:
for action in self._post:
action.run(environ)
|
u"""
Executes the actions of post tag
|
https://github.com/renatopp/aerolito/blob/842c38131d546a6f4abc6d839063e0754ee234d9/aerolito/pattern.py#L354-L360
|
import re
import random
from aerolito import exceptions
from aerolito.utils import remove_accents
from aerolito.utils import normalize_input
from aerolito.utils import get_meanings
def replace(literal, environ):
session = environ['session'][environ['user_id']]
p = r'\<([\d|\s|\w]*)\>'
_vars = re.findall(p, unicode(literal._value), re.I)
result = literal._value
for var in _vars:
temp = var.split()
varname = temp[0]
params = temp[1:]
if varname == 'star':
index = int(params[0]) if params else 0
result = result.replace('<%s>'%var, session['stars'][index])
elif varname in environ['globals']:
result = result.replace('<%s>'%var, environ['globals'][varname])
elif varname in session['locals']:
result = result.replace('<%s>'%var, session['locals'][varname])
else:
result = result.replace('<%s>'%var, '')
return result
class Literal(object):
def __init__(self, value):
self._value = value
def __repr__(self):
return '<Literal %s>' % self._value
class Action(object):
def __init__(self, directive, params):
self._directive = directive
self._params = params
def run(self, environ):
params = []
if self._params:
params = [replace(x, environ) for x in self._params]
return self._directive(params)
class Regex(object):
def __init__(self, text, ignore=None):
if ignore:
ignore = '|'.join([re.escape(i) for i in ignore])
self._ignore = re.compile('[%s]'%ignore)
self._expression = re.sub(self._ignore, '', text)
else:
self._ignore = None
self._expression = text
self._expression = re.escape(self._expression)
self._expression = self._expression.replace('\\*', '(.*)')
self._expression = self._expression.replace('\\\\(.*)', '\*')
self._expression = re.sub('(\\\ )+\(\.\*\)', '(.*)', self._expression)
self._expression = re.sub('\(\.\*\)(\\\ )+', '(.*)', self._expression)
self._expression = '^%s$'%self._expression
self._stars = None
def match(self, value):
if self._ignore:
value = re.sub(self._ignore, '', value)
m = re.match(self._expression, value, re.I)
if m:
self._stars = [x.strip() for x in m.groups()]
return True
else:
self._stars = None
return False
def __repr__(self):
return '<Regex %s>' % self._expression
class Pattern(object):
def __init__(self, p, environ):
self._mean = self.__convert_mean(p, environ)
self._ignore = self.__convert_ignore(p, environ)
self._after = self.__convert_regex(p, 'after', environ)
self._in = self.__convert_regex(p, 'in', environ)
self._out = self.__convert_literal(p, 'out', environ)
self._when = self.__convert_action(p, 'when', environ)
self._post = self.__convert_action(p, 'post', environ)
def __convert_mean(self, p, environ=None):
meanings = {}
synonyms = environ['synonyms']
if p.has_key('mean'):
tagValues = p['mean']
if tagValues is None:
raise exceptions.InvalidTagValue(u'Invalid value for tag mean')
for k in tagValues:
key = remove_accents(k)
meanings[key] = [normalize_input(v, synonyms) for v in tagValues[k]]
return meanings
else:
return None
def __convert_ignore(self, p, environ=None):
if p.has_key('ignore'):
if isinstance(p['ignore'], (tuple, list)):
tag_values = p['ignore']
else:
tag_values = list(str(p['ignore']))
else:
tag_values = None
return tag_values
def __convert_regex(self, p, tag, environ=None):
synonyms = environ['synonyms']
meanings = environ['meanings']
if p.has_key(tag):
tagValues = p[tag]
if tagValues is None or tagValues == u'':
raise exceptions.InvalidTagValue(
u'Invalid value for tag %s.'%tag)
if isinstance(tagValues, (tuple, list)):
values = tagValues
else:
values = [tagValues]
normalized = [normalize_input(unicode(x), synonyms) for x in values]
patterns = []
for x in normalized:
patterns.extend(get_meanings(x, meanings, self._mean))
return [Regex(x, self._ignore) for x in patterns]
else:
return None
def __convert_literal(self, p, tag, environ=None):
meanings = environ['meanings']
if p.has_key(tag):
tagValues = p[tag]
if tagValues is None or tagValues == u'':
raise exceptions.InvalidTagValue(
'Invalid value for tag %s.'%tag)
if isinstance(tagValues, (tuple, list)):
values = tagValues
else:
values = [tagValues]
patterns = []
for x in values:
patterns.extend(get_meanings(x, meanings, self._mean))
return [Literal(unicode(x)) for x in patterns]
else:
return None
def __convert_action(self, p, tag, environ):
if p.has_key(tag):
tagValues = p[tag]
actions = []
if isinstance(tagValues, dict):
tagValues = [tagValues]
if isinstance(tagValues, (tuple, list)):
for d in tagValues:
for k, p in d.iteritems():
if isinstance(p, (tuple, list)):
params = [Literal(x) for x in p]
else:
params = [Literal(p)]
if k not in environ['directives']:
raise exceptions.InvalidTagValue(
u'Directive "%s" not found'%str(k))
action = Action(environ['directives'][k], params)
actions.append(action)
else:
raise exceptions.InvalidTagValue(
u'Invalid value for tag %s.'%tag)
return actions
else:
return None
def match(self, value, environ):
self._stars = None
session = environ['session'][environ['user_id']]
if self._after:
for regex in self._after:
if session['responses-normalized'] and regex.match(session['responses-normalized'][-1]):
session['stars'] = regex._stars
break
else:
return False
if self._in:
for regex in self._in:
if regex.match(value):
session['stars'] = regex._stars
break
else:
return False
if self._when:
for action in self._when:
if not action.run(environ):
return False
return True
def choice_output(self, environ):
return replace(random.choice(self._out), environ)
|
MIT License
|
compas-dev/compas
|
src/compas/interop/matlab/client.py
|
MatlabClient.put
|
python
|
def put(self, name, value):
try:
res = self._app.PutFullMatrix(name, self.workspace, value, None)
except Exception:
res = self._app.PutWorkspaceData(name, self.workspace, value)
if self.verbose:
print(res)
self._renew_lease()
|
Put a variable in the Matlab workspace.
Parameters
----------
name : str
The name of the variable.
value : ...
The value of the variable.
Examples
--------
>>> m = MatlabClient(verbose=True, interactive=True)
>>> m.put('A', m.matrix([[1, 0, 1, 3], [2, 3, 4, 7], [-1, -3, -3, -4]]))
>>> m.put()
>>> m.put()
|
https://github.com/compas-dev/compas/blob/d795a8bfe9f21ffa124d09e37e9c0ed2e3520057/src/compas/interop/matlab/client.py#L245-L269
|
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import System
__all__ = ['MatlabClient']
class MatlabClient(object):
def __init__(self, verbose=False, interactive=False, workspace='base'):
self._type = None
self._app = None
self._lease = None
self.verbose = verbose
self.interactive = interactive
self.workspace = workspace
self.init()
def init(self):
self._create_instance()
self._init_lease()
def _create_instance(self):
self._type = System.Type.GetTypeFromProgID('Matlab.Application')
self._app = System.Activator.CreateInstance(self._type)
self._app.Visible = self.interactive
def _init_lease(self):
self._lease = self._app.InitializeLifetimeService()
self._lease.InitialLeaseTime = System.TimeSpan.FromMinutes(5.0)
self._lease.RenewOnCallTime = System.TimeSpan.FromMinutes(5.0)
def _renew_lease(self):
self._lease.Renew(System.TimeSpan.FromMinutes(5.0))
def _get_vector(self, name):
_value = self._app.GetVariable(name, self.workspace)
try:
_value.Rank
except AttributeError:
value = _value
else:
value = MatlabClient.list_from_vector(_value)
self._renew_lease()
return value
def _get_matrix_size(self, name):
self._app.Execute('[m, n] = size({0});'.format(name))
m = self._app.GetVariable('m', self.workspace)
n = self._app.GetVariable('n', self.workspace)
return int(m), int(n)
@staticmethod
def vector_from_list(a, dtype=float):
n = len(a)
vector = System.Array.CreateInstance(dtype, n)
for i in range(n):
vector[i] = a[i]
return vector
@staticmethod
def vector_from_array(a):
raise NotImplementedError
@staticmethod
def matrix_from_list(A, dtype=float):
m = len(A)
n = len(A[0])
if not all([len(row) == n for row in A]):
raise Exception('Matrix dimensions inconsistent.')
matrix = System.Array.CreateInstance(dtype, m, n)
for row in range(m):
for col in range(n):
matrix[row, col] = A[row][col]
return matrix
@staticmethod
def matrix_from_array(a):
raise NotImplementedError
@staticmethod
def list_from_vector(a):
return list(a)
@staticmethod
def list_from_matrix(A, m, n):
nlist = []
for row in range(m):
nlist.append([None] * n)
for col in range(n):
nlist[row][col] = A[row, col]
return nlist
@staticmethod
def double(a):
try:
len(a[0])
except TypeError:
return MatlabClient.vector_from_list(a, dtype=float)
else:
return MatlabClient.matrix_from_list(a, dtype=float)
def eval(self, cmd):
res = self._app.Execute(cmd)
if self.verbose:
print(res)
self._renew_lease()
|
MIT License
|
olitheolix/aiokubernetes
|
aiokubernetes/models/v1beta1_custom_resource_validation.py
|
V1beta1CustomResourceValidation.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, V1beta1CustomResourceValidation):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/olitheolix/aiokubernetes/blob/266718b210dff2a9b2212183261ea89adf89115e/aiokubernetes/models/v1beta1_custom_resource_validation.py#L106-L111
|
import pprint
import re
from aiokubernetes.models.v1beta1_json_schema_props import V1beta1JSONSchemaProps
class V1beta1CustomResourceValidation(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'open_apiv3_schema': 'V1beta1JSONSchemaProps'
}
attribute_map = {
'open_apiv3_schema': 'openAPIV3Schema'
}
def __init__(self, open_apiv3_schema=None):
self._open_apiv3_schema = None
self.discriminator = None
if open_apiv3_schema is not None:
self.open_apiv3_schema = open_apiv3_schema
@property
def open_apiv3_schema(self):
return self._open_apiv3_schema
@open_apiv3_schema.setter
def open_apiv3_schema(self, open_apiv3_schema):
self._open_apiv3_schema = open_apiv3_schema
def to_dict(self):
result = {}
for attr, _ in self.swagger_types.items():
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
Apache License 2.0
|
scikit-multiflow/scikit-multiflow
|
src/skmultiflow/data/sea_generator.py
|
SEAGenerator._classification_function_one
|
python
|
def _classification_function_one(att1, att2, att3):
return 0 if (att1 + att2 <= 9) else 1
|
classification_function_one
Decides the sample class label based on the sum of att1 and att2,
and the threshold value of 9.
Parameters
----------
att1: float
First numeric attribute.
att2: float
Second numeric attribute.
att3: float
Third numeric attribute.
Returns
-------
int
Returns the sample class label, either 0 or 1.
|
https://github.com/scikit-multiflow/scikit-multiflow/blob/d073a706b5006cba2584761286b7fa17e74e87be/src/skmultiflow/data/sea_generator.py#L302-L325
|
import numpy as np
from skmultiflow.data.base_stream import Stream
from skmultiflow.utils import check_random_state
class SEAGenerator(Stream):
def __init__(self, classification_function=0, random_state=None, balance_classes=False,
noise_percentage=0.0):
super().__init__()
self._classification_functions = [self._classification_function_zero,
self._classification_function_one,
self._classification_function_two,
self._classification_function_three]
self.classification_function = classification_function
self.random_state = random_state
self.balance_classes = balance_classes
self.noise_percentage = noise_percentage
self.n_num_features = 3
self.n_features = self.n_num_features
self.n_classes = 2
self.n_targets = 1
self._random_state = None
self.next_class_should_be_zero = False
self.name = "SEA Generator"
self.target_names = ["target_0"]
self.feature_names = ["att_num_" + str(i) for i in range(self.n_features)]
self.target_values = [i for i in range(self.n_classes)]
self._prepare_for_use()
@property
def classification_function(self):
return self._classification_function_idx
@classification_function.setter
def classification_function(self, classification_function_idx):
if classification_function_idx in range(4):
self._classification_function_idx = classification_function_idx
else:
raise ValueError("classification_function takes only these values: 0, 1, 2, 3, {} was "
"passed".format(classification_function_idx))
@property
def balance_classes(self):
return self._balance_classes
@balance_classes.setter
def balance_classes(self, balance_classes):
if isinstance(balance_classes, bool):
self._balance_classes = balance_classes
else:
raise ValueError(
"balance_classes should be boolean, {} was passed".format(balance_classes))
@property
def noise_percentage(self):
return self._noise_percentage
@noise_percentage.setter
def noise_percentage(self, noise_percentage):
if (0.0 <= noise_percentage) and (noise_percentage <= 1.0):
self._noise_percentage = noise_percentage
else:
raise ValueError(
"noise percentage should be in [0.0..1.0], {} was passed".format(noise_percentage))
def _prepare_for_use(self):
self._random_state = check_random_state(self.random_state)
self.next_class_should_be_zero = False
def next_sample(self, batch_size=1):
data = np.zeros([batch_size, self.n_features + 1])
for j in range(batch_size):
self.sample_idx += 1
att1 = att2 = att3 = 0.0
group = 0
desired_class_found = False
while not desired_class_found:
att1 = 10 * self._random_state.rand()
att2 = 10 * self._random_state.rand()
att3 = 10 * self._random_state.rand()
group = self._classification_functions[self.classification_function](att1, att2,
att3)
if not self.balance_classes:
desired_class_found = True
else:
if (self.next_class_should_be_zero and (group == 0)) or ((not self.next_class_should_be_zero) and (group == 1)):
desired_class_found = True
self.next_class_should_be_zero = not self.next_class_should_be_zero
if 0.01 + self._random_state.rand() <= self.noise_percentage:
group = 1 if (group == 0) else 0
data[j, 0] = att1
data[j, 1] = att2
data[j, 2] = att3
data[j, 3] = group
self.current_sample_x = data[:, :self.n_features]
self.current_sample_y = data[:, self.n_features:].flatten().astype(np.int64)
return self.current_sample_x, self.current_sample_y
def generate_drift(self):
new_function = self._random_state.randint(4)
while new_function == self.classification_function:
new_function = self._random_state.randint(4)
self.classification_function = new_function
@staticmethod
def _classification_function_zero(att1, att2, att3):
return 0 if (att1 + att2 <= 8) else 1
@staticmethod
|
BSD 3-Clause New or Revised License
|
sergioteula/python-amazon-paapi
|
amazon/paapi5_python_sdk/website_sales_rank.py
|
WebsiteSalesRank.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, WebsiteSalesRank):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/sergioteula/python-amazon-paapi/blob/9cb744bef17f5127231367430191df12126e9c24/amazon/paapi5_python_sdk/website_sales_rank.py#L195-L200
|
import pprint
import re
import six
class WebsiteSalesRank(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'context_free_name': 'str',
'display_name': 'str',
'id': 'str',
'sales_rank': 'int'
}
attribute_map = {
'context_free_name': 'ContextFreeName',
'display_name': 'DisplayName',
'id': 'Id',
'sales_rank': 'SalesRank'
}
def __init__(self, context_free_name=None, display_name=None, id=None, sales_rank=None):
self._context_free_name = None
self._display_name = None
self._id = None
self._sales_rank = None
self.discriminator = None
if context_free_name is not None:
self.context_free_name = context_free_name
if display_name is not None:
self.display_name = display_name
if id is not None:
self.id = id
if sales_rank is not None:
self.sales_rank = sales_rank
@property
def context_free_name(self):
return self._context_free_name
@context_free_name.setter
def context_free_name(self, context_free_name):
self._context_free_name = context_free_name
@property
def display_name(self):
return self._display_name
@display_name.setter
def display_name(self, display_name):
self._display_name = display_name
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def sales_rank(self):
return self._sales_rank
@sales_rank.setter
def sales_rank(self, sales_rank):
self._sales_rank = sales_rank
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(WebsiteSalesRank, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
MIT License
|
opensuse/yomi
|
salt/_states/partitioned.py
|
_get_first_overlapping_partition
|
python
|
def _get_first_overlapping_partition(device, start):
value, unit = disk.units(start)
value += OVERLAPPING_ERROR
partitions = _get_cached_partitions(device, unit)
partition_number = None
partition_start = 0
for number, partition in partitions.items():
p_start = disk.units(partition["start"])[0]
p_end = disk.units(partition["end"])[0]
if p_start <= value <= p_end:
if partition_number is None or partition_start < p_start:
partition_number = number
partition_start = p_start
return partition_number
|
Return the first partition that contains the start point.
|
https://github.com/opensuse/yomi/blob/4557cfd35b7b33b311b00cc2fa23cadee5a31340/salt/_states/partitioned.py#L248-L268
|
import logging
import re
import disk
from salt.exceptions import CommandExecutionError
log = logging.getLogger(__name__)
__virtualname__ = "partitioned"
try:
__grains__
__opts__
__salt__
except NameError:
__grains__ = {}
__opts__ = {}
__salt__ = {}
class EnumerateException(Exception):
pass
def __virtual__():
return "partition.mkpart" in __salt__
def _check_label(device, label):
label = {"dos": "msdos"}.get(label, label)
res = __salt__["cmd.run"](["parted", "--list", "--machine", "--script"])
line = "".join((line for line in res.splitlines() if line.startswith(device)))
return ":{}:".format(label) in line
def labeled(name, label):
ret = {
"name": name,
"result": False,
"changes": {},
"comment": [],
}
if not label:
ret["comment"].append("Label parameter is not optional")
return ret
if _check_label(name, label):
ret["result"] = True
ret["comment"].append("Label already set to {}".format(label))
return ret
if __opts__["test"]:
ret["result"] = None
ret["comment"].append("Label will be set to {} in {}".format(label, name))
ret["changes"]["label"] = "Will be set to {}".format(label)
return ret
__salt__["partition.mklabel"](name, label)
if _check_label(name, label):
ret["result"] = True
msg = "Label set to {} in {}".format(label, name)
ret["comment"].append(msg)
ret["changes"]["label"] = msg
else:
ret["comment"].append("Failed to set label to {}".format(label))
return ret
def _get_partition_type(device):
cmd = "parted -s {0} print".format(device)
out = __salt__["cmd.run_stdout"](cmd)
types = re.findall(r"\s*(\d+).*(primary|extended|logical).*", out)
return dict(types)
def _get_cached_info(device):
if not hasattr(_get_cached_info, "info"):
_get_cached_info.info = {}
info = _get_cached_info.info
if device not in info:
info[device] = __salt__["partition.list"](device)["info"]
return info[device]
def _invalidate_cached_info():
if hasattr(_get_cached_info, "info"):
delattr(_get_cached_info, "info")
def _get_cached_partitions(device, unit="s"):
if not hasattr(_get_cached_partitions, "partitions"):
_get_cached_partitions.partitions = {}
_get_cached_partitions.types = _get_partition_type(device)
if device not in _get_cached_partitions.partitions:
_get_cached_partitions.partitions[device] = {}
partitions = _get_cached_partitions.partitions[device]
if unit not in partitions:
partitions[unit] = __salt__["partition.list"](device, unit=unit)
types = _get_cached_partitions.types
for number, partition in partitions[unit]["partitions"].items():
partition["type"] = types.get(number, "primary")
return partitions[unit]["partitions"]
def _invalidate_cached_partitions():
if hasattr(_get_cached_partitions, "partitions"):
delattr(_get_cached_partitions, "partitions")
delattr(_get_cached_partitions, "types")
OVERLAPPING_ERROR = 0.75
def _check_partition(device, number, part_type, start, end):
number = str(number)
partitions = _get_cached_partitions(device)
if number not in partitions:
return None
if part_type != partitions[number]["type"]:
return False
for value, name in ((start, "start"), (end, "end")):
value, unit = disk.units(value)
p_value = _get_cached_partitions(device, unit)[number][name]
p_value = disk.units(p_value)[0]
min_value = value - OVERLAPPING_ERROR
max_value = value + OVERLAPPING_ERROR
if not min_value <= p_value <= max_value:
return False
return True
|
Apache License 2.0
|
astropy/photutils
|
photutils/aperture/core.py
|
SkyAperture.to_pixel
|
python
|
def to_pixel(self, wcs):
raise NotImplementedError('Needs to be implemented in a subclass.')
|
Convert the aperture to a `PixelAperture` object defined in
pixel coordinates.
Parameters
----------
wcs : WCS object
A world coordinate system (WCS) transformation that
supports the `astropy shared interface for WCS
<https://docs.astropy.org/en/stable/wcs/wcsapi.html>`_
(e.g., `astropy.wcs.WCS`, `gwcs.wcs.WCS`).
Returns
-------
aperture : `PixelAperture` object
A `PixelAperture` object.
|
https://github.com/astropy/photutils/blob/17192d6ee4517514187fc01c7624fe6eb4b0e233/photutils/aperture/core.py#L705-L723
|
import abc
import copy
import numpy as np
from astropy.coordinates import SkyCoord
import astropy.units as u
from .bounding_box import BoundingBox
from ._photometry_utils import (_handle_units, _prepare_photometry_data,
_validate_inputs)
from ..utils._wcs_helpers import _pixel_scale_angle_at_skycoord
__all__ = ['Aperture', 'SkyAperture', 'PixelAperture']
class Aperture(metaclass=abc.ABCMeta):
_shape_params = ()
positions = np.array(())
theta = None
def __len__(self):
if self.isscalar:
raise TypeError(f'A scalar {self.__class__.__name__!r} object '
'has no len()')
return self.shape[0]
def __getitem__(self, index):
if self.isscalar:
raise TypeError(f'A scalar {self.__class__.__name__!r} object '
'cannot be indexed')
kwargs = dict()
for param in self._shape_params:
kwargs[param] = getattr(self, param)
return self.__class__(self.positions[index], **kwargs)
def __iter__(self):
for i in range(len(self)):
yield self.__getitem__(i)
def _positions_str(self, prefix=None):
if isinstance(self, PixelAperture):
return np.array2string(self.positions, separator=', ',
prefix=prefix)
elif isinstance(self, SkyAperture):
return repr(self.positions)
else:
raise TypeError('Aperture must be a subclass of PixelAperture '
'or SkyAperture')
def __repr__(self):
prefix = f'{self.__class__.__name__}'
cls_info = [self._positions_str(prefix)]
if self._shape_params is not None:
for param in self._shape_params:
cls_info.append(f'{param}={getattr(self, param)}')
cls_info = ', '.join(cls_info)
return f'<{prefix}({cls_info})>'
def __str__(self):
prefix = 'positions'
cls_info = [
('Aperture', self.__class__.__name__),
(prefix, self._positions_str(prefix + ': '))]
if self._shape_params is not None:
for param in self._shape_params:
cls_info.append((param, getattr(self, param)))
fmt = [f'{key}: {val}' for key, val in cls_info]
return '\n'.join(fmt)
@property
def shape(self):
if isinstance(self.positions, SkyCoord):
return self.positions.shape
else:
return self.positions.shape[:-1]
@property
def isscalar(self):
return self.shape == ()
class PixelAperture(Aperture):
@property
def _default_patch_properties(self):
mpl_params = dict()
mpl_params['fill'] = False
return mpl_params
@staticmethod
def _translate_mask_mode(mode, subpixels, rectangle=False):
if mode not in ('center', 'subpixel', 'exact'):
raise ValueError(f'Invalid mask mode: {mode}')
if rectangle and mode == 'exact':
mode = 'subpixel'
subpixels = 32
if mode == 'subpixels':
if not isinstance(subpixels, int) or subpixels <= 0:
raise ValueError('subpixels must be a strictly positive '
'integer')
if mode == 'center':
use_exact = 0
subpixels = 1
elif mode == 'subpixel':
use_exact = 0
elif mode == 'exact':
use_exact = 1
subpixels = 1
return use_exact, subpixels
@property
@abc.abstractmethod
def _xy_extents(self):
raise NotImplementedError('Needs to be implemented in a subclass.')
@property
def bbox(self):
positions = np.atleast_2d(self.positions)
x_delta, y_delta = self._xy_extents
xmin = positions[:, 0] - x_delta
xmax = positions[:, 0] + x_delta
ymin = positions[:, 1] - y_delta
ymax = positions[:, 1] + y_delta
bboxes = [BoundingBox.from_float(x0, x1, y0, y1)
for x0, x1, y0, y1 in zip(xmin, xmax, ymin, ymax)]
if self.isscalar:
return bboxes[0]
else:
return bboxes
@property
def _centered_edges(self):
edges = []
for position, bbox in zip(np.atleast_2d(self.positions),
np.atleast_1d(self.bbox)):
xmin = bbox.ixmin - 0.5 - position[0]
xmax = bbox.ixmax - 0.5 - position[0]
ymin = bbox.iymin - 0.5 - position[1]
ymax = bbox.iymax - 0.5 - position[1]
edges.append((xmin, xmax, ymin, ymax))
return edges
@property
def area(self):
raise NotImplementedError('Needs to be implemented in a subclass.')
@abc.abstractmethod
def to_mask(self, method='exact', subpixels=5):
raise NotImplementedError('Needs to be implemented in a subclass.')
def area_overlap(self, data, *, mask=None, method='exact', subpixels=5):
apermasks = self.to_mask(method=method, subpixels=subpixels)
if self.isscalar:
apermasks = (apermasks,)
if mask is not None:
mask = np.asarray(mask)
if mask.shape != data.shape:
raise ValueError('mask and data must have the same shape')
data = np.ones_like(data)
vals = [apermask.get_values(data, mask=mask) for apermask in apermasks]
areas = [val.sum() if val.shape != (0,) else np.nan for val in vals]
if self.isscalar:
return areas[0]
else:
return areas
def _do_photometry(self, data, variance, method='exact', subpixels=5,
unit=None):
aperture_sums = []
aperture_sum_errs = []
masks = self.to_mask(method=method, subpixels=subpixels)
if self.isscalar:
masks = (masks,)
for apermask in masks:
values = apermask.get_values(data)
aper_sum = values.sum() if values.shape != (0,) else np.nan
aperture_sums.append(aper_sum)
if variance is not None:
values = apermask.get_values(variance)
aper_var = values.sum() if values.shape != (0,) else np.nan
aperture_sum_errs.append(np.sqrt(aper_var))
aperture_sums = np.array(aperture_sums)
aperture_sum_errs = np.array(aperture_sum_errs)
if unit is not None:
aperture_sums = aperture_sums * unit
aperture_sum_errs = aperture_sum_errs * unit
return aperture_sums, aperture_sum_errs
def do_photometry(self, data, error=None, mask=None, method='exact',
subpixels=5):
data, error = _validate_inputs(data, error)
data, error, unit = _handle_units(data, error)
data, variance = _prepare_photometry_data(data, error, mask)
return self._do_photometry(data, variance, method=method,
subpixels=subpixels, unit=unit)
@staticmethod
def _make_annulus_path(patch_inner, patch_outer):
import matplotlib.path as mpath
path_inner = patch_inner.get_path()
transform_inner = patch_inner.get_transform()
path_inner = transform_inner.transform_path(path_inner)
path_outer = patch_outer.get_path()
transform_outer = patch_outer.get_transform()
path_outer = transform_outer.transform_path(path_outer)
verts_inner = path_inner.vertices[:-1][::-1]
verts_inner = np.concatenate((verts_inner, [verts_inner[-1]]))
verts = np.vstack((path_outer.vertices, verts_inner))
codes = np.hstack((path_outer.codes, path_inner.codes))
return mpath.Path(verts, codes)
def _define_patch_params(self, origin=(0, 0), **kwargs):
xy_positions = copy.deepcopy(np.atleast_2d(self.positions))
xy_positions[:, 0] -= origin[0]
xy_positions[:, 1] -= origin[1]
patch_params = self._default_patch_properties
patch_params.update(kwargs)
return xy_positions, patch_params
@abc.abstractmethod
def _to_patch(self, origin=(0, 0), **kwargs):
raise NotImplementedError('Needs to be implemented in a subclass.')
def plot(self, axes=None, origin=(0, 0), **kwargs):
import matplotlib.pyplot as plt
if axes is None:
axes = plt.gca()
patches = self._to_patch(origin=origin, **kwargs)
if self.isscalar:
patches = (patches,)
for patch in patches:
axes.add_patch(patch)
return patches
def _to_sky_params(self, wcs):
sky_params = {}
xpos, ypos = np.transpose(self.positions)
sky_params['positions'] = wcs.pixel_to_world(xpos, ypos)
skypos = sky_params['positions']
if not self.isscalar:
skypos = skypos[0]
_, pixscale, angle = _pixel_scale_angle_at_skycoord(skypos, wcs)
shape_params = list(self._shape_params)
theta_key = 'theta'
if theta_key in shape_params:
sky_params[theta_key] = (self.theta * u.rad) - angle.to(u.rad)
shape_params.remove(theta_key)
for shape_param in shape_params:
value = getattr(self, shape_param)
sky_params[shape_param] = (value * u.pix * pixscale).to(u.arcsec)
return sky_params
@abc.abstractmethod
def to_sky(self, wcs):
raise NotImplementedError('Needs to be implemented in a subclass.')
class SkyAperture(Aperture):
def _to_pixel_params(self, wcs):
pixel_params = {}
xpos, ypos = wcs.world_to_pixel(self.positions)
pixel_params['positions'] = np.transpose((xpos, ypos))
if self.isscalar:
skypos = self.positions
else:
skypos = self.positions[0]
_, pixscale, angle = _pixel_scale_angle_at_skycoord(skypos, wcs)
shape_params = list(self._shape_params)
theta_key = 'theta'
if theta_key in shape_params:
pixel_params[theta_key] = (self.theta + angle).to(u.radian).value
shape_params.remove(theta_key)
for shape_param in shape_params:
value = getattr(self, shape_param)
if value.unit.physical_type == 'angle':
pixel_params[shape_param] = ((value / pixscale)
.to(u.pixel).value)
else:
pixel_params[shape_param] = value.value
return pixel_params
@abc.abstractmethod
|
BSD 3-Clause New or Revised License
|
qlyoung/lagopus
|
docker-images/lagopus-fuzzer/analyzer/crash_analysis/crash_comparer.py
|
CrashComparer.is_similar
|
python
|
def is_similar(self):
if not self.crash_state_1 or not self.crash_state_2:
return False
if self.crash_state_1 == self.crash_state_2:
return True
if 'FuzzerHash=' in self.crash_state_1:
return False
crash_state_lines_1 = self.crash_state_1.splitlines()
crash_state_lines_2 = self.crash_state_2.splitlines()
lines_compared = 0
similarity_ratio_sum = 0.0
for i in range(len(crash_state_lines_1)):
if i >= len(crash_state_lines_2):
break
similarity_ratio = _similarity_ratio(crash_state_lines_1[i],
crash_state_lines_2[i])
lines_compared += 1
similarity_ratio_sum += similarity_ratio
similarity_ratio_average = similarity_ratio_sum / lines_compared
return similarity_ratio_average > self.compare_threshold
|
Return a bool for whether the two crash results are similar.
|
https://github.com/qlyoung/lagopus/blob/c5c232ab00a762b712a0b80e88703d4670a229f8/docker-images/lagopus-fuzzer/analyzer/crash_analysis/crash_comparer.py#L65-L97
|
from __future__ import division
from builtins import object
from builtins import range
def _levenshtein_distance(string_1, string_2):
if string_1 == string_2:
return 0
elif not string_1:
return len(string_2)
elif not string_2:
return len(string_1)
v0 = list(range(len(string_2) + 1))
v1 = [None] * (len(string_2) + 1)
for i in range(len(string_1)):
v1[0] = i + 1
for j in range(len(string_2)):
cost = 0 if string_1[i] == string_2[j] else 1
v1[j + 1] = min(v1[j] + 1, v0[j + 1] + 1, v0[j] + cost)
for j in range(len(v0)):
v0[j] = v1[j]
return v1[len(string_2)]
def _similarity_ratio(string_1, string_2):
length_sum = len(string_1) + len(string_2)
if length_sum == 0:
return 1.0
return (length_sum - _levenshtein_distance(string_1, string_2)) / (
1.0 * length_sum)
class CrashComparer(object):
COMPARE_THRESHOLD = 0.8
def __init__(self, crash_state_1, crash_state_2, compare_threshold=None):
self.crash_state_1 = crash_state_1
self.crash_state_2 = crash_state_2
self.compare_threshold = compare_threshold or self.COMPARE_THRESHOLD
|
MIT License
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_container.py
|
V1Container.env_from
|
python
|
def env_from(self):
return self._env_from
|
Gets the env_from of this V1Container. # noqa: E501
List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated. # noqa: E501
:return: The env_from of this V1Container. # noqa: E501
:rtype: list[V1EnvFromSource]
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_container.py#L229-L237
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1Container(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'args': 'list[str]',
'command': 'list[str]',
'env': 'list[V1EnvVar]',
'env_from': 'list[V1EnvFromSource]',
'image': 'str',
'image_pull_policy': 'str',
'lifecycle': 'V1Lifecycle',
'liveness_probe': 'V1Probe',
'name': 'str',
'ports': 'list[V1ContainerPort]',
'readiness_probe': 'V1Probe',
'resources': 'V1ResourceRequirements',
'security_context': 'V1SecurityContext',
'startup_probe': 'V1Probe',
'stdin': 'bool',
'stdin_once': 'bool',
'termination_message_path': 'str',
'termination_message_policy': 'str',
'tty': 'bool',
'volume_devices': 'list[V1VolumeDevice]',
'volume_mounts': 'list[V1VolumeMount]',
'working_dir': 'str'
}
attribute_map = {
'args': 'args',
'command': 'command',
'env': 'env',
'env_from': 'envFrom',
'image': 'image',
'image_pull_policy': 'imagePullPolicy',
'lifecycle': 'lifecycle',
'liveness_probe': 'livenessProbe',
'name': 'name',
'ports': 'ports',
'readiness_probe': 'readinessProbe',
'resources': 'resources',
'security_context': 'securityContext',
'startup_probe': 'startupProbe',
'stdin': 'stdin',
'stdin_once': 'stdinOnce',
'termination_message_path': 'terminationMessagePath',
'termination_message_policy': 'terminationMessagePolicy',
'tty': 'tty',
'volume_devices': 'volumeDevices',
'volume_mounts': 'volumeMounts',
'working_dir': 'workingDir'
}
def __init__(self, args=None, command=None, env=None, env_from=None, image=None, image_pull_policy=None, lifecycle=None, liveness_probe=None, name=None, ports=None, readiness_probe=None, resources=None, security_context=None, startup_probe=None, stdin=None, stdin_once=None, termination_message_path=None, termination_message_policy=None, tty=None, volume_devices=None, volume_mounts=None, working_dir=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._args = None
self._command = None
self._env = None
self._env_from = None
self._image = None
self._image_pull_policy = None
self._lifecycle = None
self._liveness_probe = None
self._name = None
self._ports = None
self._readiness_probe = None
self._resources = None
self._security_context = None
self._startup_probe = None
self._stdin = None
self._stdin_once = None
self._termination_message_path = None
self._termination_message_policy = None
self._tty = None
self._volume_devices = None
self._volume_mounts = None
self._working_dir = None
self.discriminator = None
if args is not None:
self.args = args
if command is not None:
self.command = command
if env is not None:
self.env = env
if env_from is not None:
self.env_from = env_from
if image is not None:
self.image = image
if image_pull_policy is not None:
self.image_pull_policy = image_pull_policy
if lifecycle is not None:
self.lifecycle = lifecycle
if liveness_probe is not None:
self.liveness_probe = liveness_probe
self.name = name
if ports is not None:
self.ports = ports
if readiness_probe is not None:
self.readiness_probe = readiness_probe
if resources is not None:
self.resources = resources
if security_context is not None:
self.security_context = security_context
if startup_probe is not None:
self.startup_probe = startup_probe
if stdin is not None:
self.stdin = stdin
if stdin_once is not None:
self.stdin_once = stdin_once
if termination_message_path is not None:
self.termination_message_path = termination_message_path
if termination_message_policy is not None:
self.termination_message_policy = termination_message_policy
if tty is not None:
self.tty = tty
if volume_devices is not None:
self.volume_devices = volume_devices
if volume_mounts is not None:
self.volume_mounts = volume_mounts
if working_dir is not None:
self.working_dir = working_dir
@property
def args(self):
return self._args
@args.setter
def args(self, args):
self._args = args
@property
def command(self):
return self._command
@command.setter
def command(self, command):
self._command = command
@property
def env(self):
return self._env
@env.setter
def env(self, env):
self._env = env
@property
|
Apache License 2.0
|
opentoallctf/ota-challenge-bot
|
util/slack_wrapper.py
|
SlackWrapper.archive_private_channel
|
python
|
def archive_private_channel(self, channel_id):
return self.client.api_call("groups.archive", channel=channel_id)
|
Archive a private channel
|
https://github.com/opentoallctf/ota-challenge-bot/blob/6deea8c059d28ddb86dce277158a39a5ad9517e4/util/slack_wrapper.py#L176-L178
|
import json
import time
from slackclient import SlackClient
from util.util import load_json
class SlackWrapper:
def __init__(self, api_key):
self.api_key = api_key
self.client = SlackClient(self.api_key)
self.connected = self.client.rtm_connect(auto_reconnect=True)
self.server = None
self.username = None
self.user_id = None
if self.connected:
self.server = self.client.server
self.username = self.server.username
self.user_id = self.server.login_data.get("self").get("id")
def read(self):
return self.client.rtm_read()
def invite_user(self, users, channel, is_private=False):
users = [users] if not type(users) == list else users
api_call = "conversations.invite"
return self.client.api_call(api_call, channel=channel, users=users)
def set_purpose(self, channel, purpose, is_private=False):
api_call = "conversations.setPurpose"
return self.client.api_call(api_call, purpose=purpose, channel=channel)
def set_topic(self, channel, topic, is_private=False):
api_call = "groups.setTopic" if is_private else "channels.setTopic"
return self.client.api_call(api_call, topic=topic, channel=channel)
def get_members(self):
return self.client.api_call("users.list", presence=True)
def get_member(self, user_id):
return self.client.api_call("users.info", user=user_id)
def create_channel(self, name, is_private=False):
api_call = "conversations.create"
return self.client.api_call(api_call, name=name, is_private=is_private)
def rename_channel(self, channel_id, new_name, is_private=False):
api_call = "groups.rename" if is_private else "channels.rename"
return self.client.api_call(api_call, channel=channel_id, name=new_name, validate=False)
def get_channel_info(self, channel_id, is_private=False):
api_call = "conversations.info"
return self.client.api_call(api_call, channel=channel_id)
def get_channel_members(self, channel_id, next_cursor=None):
response = self.client.api_call("conversations.members", channel=channel_id, cursor=next_cursor)
members = response['members']
next_cursor = response['response_metadata']['next_cursor']
if not next_cursor:
return members
else:
return members + self.get_channel_members(channel_id, next_cursor)
def update_channel_purpose_name(self, channel_id, new_name, is_private=False):
channel_info = self.get_channel_info(channel_id, is_private)
if channel_info:
purpose = load_json(channel_info['channel']['purpose']['value'])
purpose['name'] = new_name
self.set_purpose(channel_id, json.dumps(purpose), is_private)
def post_message(self, channel_id, text, timestamp="", parse="full"):
self.client.api_call("chat.postMessage", channel=channel_id,
text=text, as_user=True, parse=parse, thread_ts=timestamp)
def post_message_with_react(self, channel_id, text, reaction, parse="full"):
result = self.client.api_call("chat.postMessage", channel=channel_id, text=text,
as_user=True, parse=parse)
if result["ok"]:
self.client.api_call("reactions.add", channel=channel_id, name=reaction, timestamp=result["ts"])
def get_message(self, channel_id, timestamp):
return self.client.api_call("channels.history", channel=channel_id, latest=timestamp, count=1, inclusive=True)
def update_message(self, channel_id, msg_timestamp, text, parse="full"):
self.client.api_call("chat.update", channel=channel_id, text=text, ts=msg_timestamp, as_user=True, parse=parse)
def get_channels(self, types, next_cursor=None):
types = [types] if type(types) != list else types
response = self.client.api_call("conversations.list", types=types, cursor=next_cursor)
channels = response['channels']
next_cursor = response['response_metadata']['next_cursor']
if not next_cursor:
return channels
else:
return channels + self.get_channels(types, next_cursor)
def get_all_channels(self):
return self.get_channels(["public_channel", "private_channel"])
def get_channel_by_name(self, name):
channels = self.get_all_channels()
for channel in channels:
if channel['name'] == name:
return channel
def get_public_channels(self):
return self.get_channels("public_channel")
def get_private_channels(self):
return self.get_channels("private_channel")
def archive_channel(self, channel_id):
return self.client.api_call("conversations.archive", channel=channel_id)
|
MIT License
|
stbraun/fuzzing
|
features/resources/testfuzz.py
|
main
|
python
|
def main():
description = "Simple app to test our fuzzer."
parser = argparse.ArgumentParser(description=description)
parser.add_argument('in_path', help='The name of a file to read.')
parser.add_argument('-c', '--crash', help='Crash the app!',
action="store_true")
parser.add_argument('-p', '--probability',
help='Crash the app with given probability (0.0-1.0)',
type=float,
default=0.0)
args = parser.parse_args()
if args.crash:
return 1 / 0
if random() < args.probability:
return 2 / 0
time.sleep(3)
return 0
|
Test for fuzzer.
|
https://github.com/stbraun/fuzzing/blob/bba3ad8a2b749e64a6e1f345ccd26a2675584d4e/features/resources/testfuzz.py#L11-L28
|
import sys
import argparse
from random import random
import time
|
MIT License
|
keflavich/agpy
|
agpy/pyflagger.py
|
Flagger.lookup
|
python
|
def lookup(self, tsname):
if tsname not in self.tscache:
t0 = time.time()
s0 = heapy.heap().size
print "Loading and caching %s" % tsname
self.tscache[tsname] = self.tsplot_dict[tsname]()
print "Loading and caching %s took %0.2g seconds and ate up %0.2g GB" % (tsname,time.time()-t0, (heapy.heap().size-s0)/1024.**3)
return self.tscache.get(tsname)
|
Cache and return data...
|
https://github.com/keflavich/agpy/blob/fb3a42d9909b7cd1ba74247530bcc8742f5aaeb1/agpy/pyflagger.py#L518-L529
|
import math
import warnings
warnings.filterwarnings('ignore','masked')
warnings.simplefilter('ignore')
import pylab
from pylab import *
for k,v in pylab.__dict__.iteritems():
if hasattr(v,'__module__'):
if v.__module__ is None:
locals()[k].__module__ = 'pylab'
import matplotlib
import pyfits
import numpy
from mad import MAD,nanmedian
from matplotlib.patches import Rectangle,FancyArrow,Circle,Ellipse
from matplotlib.lines import Line2D
from matplotlib.widgets import Cursor, MultiCursor
import matplotlib.cm as cm
try:
import scipy.optimize
except ImportError:
pass
import time
import re
import os
import subprocess
import copy
import idlsave
import gaussfitter
import agpy.mpfit as mpfit
import agpy
from agpy.PCA_tools import *
from AG_image_tools.drizzle import drizzle
from agpy import smooth
from guppy import hpy
heapy = hpy()
matplotlib.rcParams['image.origin']='lower'
matplotlib.rcParams['image.interpolation']='nearest'
matplotlib.rcParams['image.aspect']=1
matplotlib.rcParams['axes.color_cycle'] = [list(clr) for clr in matplotlib.cm.brg(linspace(0,1,144))]
matplotlib.defaultParams['image.origin']='lower'
matplotlib.defaultParams['image.interpolation']='nearest'
matplotlib.defaultParams['image.aspect']=1
rc('font',size=24)
rc('font',family='serif')
if matplotlib.rcParams['text.usetex']: texOn = True
else: texOn = False
class lazydata(object):
def __init__(self, varname, structname='bgps', reshape=None, flag=True):
self.varname = varname
self.structname = structname
self.reshape = reshape
self.flag = flag
def __getattr__(self,attribute):
return getattr(self,attribute)
def __get__(self, obj, type=None):
t0 = time.time()
if obj.__dict__.has_key(self.varname):
return obj.__dict__[self.varname]
else:
print "Computing %s " % self.varname
if self.flag:
obj.__dict__[self.varname] = obj.__dict__[self.structname][self.varname][0][obj.whscan,:].astype('float')
obj.__dict__[self.varname][obj.whempty,:] = NaN
obj.__dict__[self.varname].shape = obj.datashape
obj.__dict__[self.varname] = nantomask(obj.__dict__[self.varname])
try:
obj.__dict__[self.varname].mask[obj.flags > 0] = True
except TypeError:
obj.__dict__[self.varname].mask = (obj.flags > 0)
else:
obj.__dict__[self.varname] = obj.__dict__[self.structname][self.varname][0][obj.whscan,:].astype('float')
obj.__dict__[self.varname].shape = obj.datashape
print "Finished computing %s in %0.3g seconds" % (self.varname,time.time()-t0)
return obj.__dict__[self.varname]
class Flagger:
def __init__(self, filename, debug=False, npca=13, **kwargs):
pylab.figure(0)
pylab.figure(1,figsize=[16,12])
pylab.figure(2,figsize=[16,12])
self.filename = filename
self.debug = debug
self.npca = npca
if filename[-4:] == 'fits':
self._loadfits(filename,**kwargs)
elif filename[-3:] == 'sav':
self._loadsav(filename,**kwargs)
self.autopca = False
self.autohist = False
self.help = """
Key commands:
left click - flag
right click - unflag
n - next scan
p,N - previous scan
q - save and quit
Q - quit (no save)
. - point to this point in the map
f - plot footprint of array at this time point
R - reverse order of flag boxes (to delete things hiding on the bottom)
r - redraw
d - delete flag box
t - flag timepoint
s - flag scan
w - flag Whole scan (this is the same as s, except some python backends catch / steal 's')
S,W - unflag scan
b - flag bolometer
T - unflag timepoint
B - unflag bolometer
c - toggle current scan
v - display data value
P - display the PCA decomposition of the displayed timestream
o - make a map of the array at the sampled time
z - display the power spectra of the displayed timestream (use 'C' to plot one)
Z - display the power spectra of the displayed timestream over all time
C,L - plot Column/Line
j - plot whole timestream for selected bolo
a - create a footprint movie between two selected points
M,m - flag highest, lowest point in map
e - expsub current plane
Map Key Commands:
c - toggle current scan
. - show point in timestream
click - show point in timestream
middle click - list all points that contribute to that pixel
r - redraw
"""
def _loadfits(self, filename, ncfilename='', flagfile='', mapnum='', axis=None, **kwargs):
fnsearch = re.compile(
'([0-9]{6}_o[0-9b][0-9]_raw_ds5.nc)(_indiv[0-9]{1,2}pca)').search(filename)
ncsearch = re.compile(
'[0-9]{6}_o[0-9b][0-9]_raw_ds5.nc').search(ncfilename)
if fnsearch is None:
print "Couldn't find the correct prefix in the filename" +" - expected form like 050906_o11_raw_ds5.nc_indiv13pca_timestream00.fits"
return
mapnumsearch = re.compile('([0-9]{2})(\.fits)').search(filename)
if mapnumsearch is not None and mapnum=='':
mapnum = mapnumsearch.groups()[0]
else:
mapnum = '01'
if fnsearch.groups()[0] == ncsearch.group():
self.ncfilename = ncfilename
self.readncfile()
else:
print "Warning: the NCDF filename doesn't match the input fits file name." + "You'll probably get errors and your work won't be saved."
self.ncfilename = self.pathprefix+fnsearch.groups()[0]
if fnsearch.group() is not None:
self.fileprefix = fnsearch.group()
self.pathprefix = filename[:fnsearch.start()]
self.tsfn = self.pathprefix+self.fileprefix+"_timestream00.fits"
self.tsfile = pyfits.open(self.tsfn)
self.mapfn = self.pathprefix+self.fileprefix+"_map"+mapnum+".fits"
self.mapfile = pyfits.open(self.mapfn)
self.map = self.mapfile[0].data
self.map[numpy.isnan(self.map)] = 0
self.tstomapfn = self.pathprefix+self.fileprefix+"_tstomap.fits"
self.tstomapfile = pyfits.open(self.tstomapfn)
self.tstomap = self.tstomapfile[0].data
self.data = self.tsfile[0].data
self.flagfn = self.pathprefix+self.fileprefix+"_flags.fits"
self._initialize_vars(**kwargs)
def _initialize_vars(self,vmax=None):
self.reset()
self.counter = 0
self.mouse_up = False
self.connected = 0
print "There are %i scans" % (self.data.shape[0])
self.maxscan = self.data.shape[0]
self.rectangles=[[] for i in xrange(self.maxscan)]
self.lines=[[] for i in xrange(self.maxscan)]
self.arrows=[]
self.maparrows=[]
self.connections=[]
self.mapconnections=[]
self.md = 0
self.mu = 0
self.key = 0
self._lastkey = None
self.scannum = 0
self.fignum = 1
self.open = 1
self.currentscan = 0
self.aspect = float(self.data.shape[2])/float(self.data.shape[1])
self.plotfig = None
self.bolofig = None
self.mapfig = None
self.flagfig = None
self.datafig = None
self.scanim = None
self.PCAflag = False
self.powerspec_plotted = False
self.powerspectra_whole = None
self.gaussfit=None
self.showmap(vmax=vmax)
self.dcon()
def _loadsav(self, savfile, flag=True, **kwargs):
memtot = heapy.heap().size / 1024.0**3
print "Beginning IDLsave file read. %0.3g GB used" % memtot
t0 = time.time()
sav = idlsave.read(savfile)
memtot = heapy.heap().size / 1024.0**3
t1 = time.time()
print "Finished reading IDLsave file in %i seconds using %0.3g GB" % (t1 - t0,memtot)
self.bgps = sav.get('bgps')
memtot = heapy.heap().size / 1024.0**3
t2 = time.time()
print "Set bgps variable in %i seconds using %0.3g GB" % (t2 - t1,memtot)
self.mapstr = sav.get('mapstr')
self.needed_once_struct = sav.get('needed_once_struct')
if self.needed_once_struct is None:
neededoncefile = savfile.replace('preiter','neededonce').replace('postiter','neededonce')
if os.path.exists(neededoncefile):
sav_once = idlsave.read(neededoncefile)
self.needed_once_struct = sav_once.get('needed_once_struct')
t3 = time.time()
print "Completed IDLsave file read in %f seconds." % (t3 - t0)
self.ncfilename = savfile
self.tsfile = None
if self.needed_once_struct is not None:
self.ncdf_filename = self.needed_once_struct.filenames[0]
self.outfile_prefix = self.mapstr.outmap[0]
fnsearch = re.compile(
'([0-9]{6}_o[0-9b][0-9]_raw_ds[125].nc)(_indiv[0-9]{1,2}pca)').search(savfile)
if fnsearch is not None:
self.fileprefix = fnsearch.group()
self.pathprefix = savfile[:fnsearch.start()]
self.ncscans = self.bgps['scans_info'][0]
self.sample_interval = self.bgps['sample_interval'][0]
if len(self.ncscans.shape) == 1: self.ncscans.shape = [1,2]
self.scanlengths = self.ncscans[:,1]+1-self.ncscans[:,0]
self.scanlen = numpy.max(self.scanlengths)
self.ncflags = self.bgps['flags'][0]
self.timelen = self.ncflags.shape[0]
self.nbolos = self.ncflags.shape[1]
self.nscans = self.ncscans.shape[0]
self.ncbolo_params = self.bgps['bolo_params'][0]
self.ncbolo_indices = self.bgps['bolo_indices'][0]
self.bolo_indices = self.ncbolo_indices
self.ngoodbolos = self.bolo_indices.shape[0]
self.whscan = asarray([arange(self.scanlen)+i for i,j in self.ncscans[:,:2]]).ravel()
self.scanstarts = arange(self.nscans)*self.scanlen
self.whempty = concatenate([arange(i+j,i+self.scanlen) for i,j in zip(self.scanstarts,self.scanlengths) ]).ravel()
self.whscan[self.whempty] = 0
self.tsshape = [self.nscans*self.scanlen,self.ngoodbolos]
self.datashape = [self.nscans,self.scanlen,self.ngoodbolos]
t4 = time.time()
memtot = heapy.heap().size / 1024.0**3
print "Beginning array reshaping with %f seconds elapsed, %0.3g GB used." % (t4 - t0, memtot)
setattr(self.__class__, 'flags', lazydata('flags',flag=False))
self.flags.shape = self.datashape
if self.needed_once_struct is not None:
print "Loading 'raw' and 'dc_bolos' from needed_once_struct"
setattr(self.__class__, 'raw', lazydata('raw', 'needed_once_struct',flag=flag))
setattr(self.__class__, 'dc_bolos', lazydata('dc_bolos', 'needed_once_struct',flag=flag))
elif self.bgps.dtype.fields.has_key('raw'):
print "Loading 'raw' and 'dc_bolos' from bgps"
setattr(self.__class__, 'raw', lazydata('raw',flag=flag))
setattr(self.__class__, 'dc_bolos', lazydata('dc_bolos',flag=flag))
self.scale_coeffs = self.bgps['scale_coeffs'][0].astype('float')
t5 = time.time()
memtot = heapy.heap().size / 1024.0**3
print "Finished array reshaping in %f seconds, %0.3g GB used." % (t5 - t4, memtot)
print "Beginning array flagging."
datums=['astrosignal','atmosphere','ac_bolos','atmo_one','noise','scalearr','weight','mapped_astrosignal']
for d in datums:
if hasattr(self.bgps,d):
setattr(self.__class__, d, lazydata(d,flag=flag))
self.weight_by_bolo = self.weight.mean(axis=0).mean(axis=0)
if hasattr(self.bgps,'mapped_astrosignal'):
setattr(self.__class__, 'mapped_astrosignal', lazydata('mapped_astrosignal',flag=flag))
else:
setattr(self.__class__, 'mapped_astrosignal', lazydata('astrosignal',flag=flag))
if list(self.ac_bolos.shape) != self.datashape:
import pdb; pdb.set_trace()
self.data = self.ac_bolos
self.ncfile = None
self.flagfn = savfile.replace("sav","_flags.fits")
self.map = nantomask( self.mapstr['astromap'][0] )
self.default_map = nantomask( self.mapstr['astromap'][0] )
self.model = nantomask( self.mapstr['model'][0] )
self.noisemap = nantomask( self.mapstr['noisemap'][0] )
if not hasattr(self.bgps,'atmo_one'):
print "Reading file as a v1.0.2 sav file"
self.atmo_one = self.ac_bolos - self.astrosignal
self.mapped_timestream = self.ac_bolos - self.atmosphere
self.scalearr = numpy.ones(self.datashape[1])[newaxis,:,newaxis]*self.scale_coeffs.swapaxes(0,1)[:,newaxis,:]
self.version = 'v1.0'
else:
self.mapped_timestream = self.atmo_one - self.atmosphere + self.astrosignal
self.version = 'v2.0'
if self.map.sum() == 0:
self.map = nantomask( self.mapstr['rawmap'][0] )
self.header = pyfits.Header(_hdr_string_list_to_cardlist( self.mapstr['hdr'][0] ))
t6 = time.time()
memtot = heapy.heap().size / 1024.0**3
print "Finished array flagging in %f seconds, %0.3g GB used." % (t6 - t5, memtot)
self.tstomap = reshape( self.mapstr['ts'][0][self.whscan,:] , self.datashape )
t7 = time.time()
memtot = heapy.heap().size / 1024.0**3
print "Computed tstomap in %f seconds, %0.3g GB used." % (t7 - t6, memtot)
self._initialize_vars(**kwargs)
self.tsplot_dict = {'astrosignal': lambda: self.astrosignal if self.astrosignal.sum() != 0 else 0,
'dc_bolos': lambda: self.dc_bolos*self.scalearr,
'dc_bolos_noscale': lambda: self.dc_bolos,
'dcbolos': lambda: self.dc_bolos*self.scalearr,
'dcbolos_noscale': lambda: self.dc_bolos,
'acbolos_noscale': lambda: self.ac_bolos,
'ac_bolos_noscale': lambda: self.ac_bolos,
'atmo_one': lambda:self.atmo_one,
'acbolos': lambda:self.ac_bolos*self.scalearr,
'ac_bolos': lambda:self.ac_bolos*self.scalearr,
'atmosphere': lambda:self.atmosphere,
'skysub_noscale': lambda:self.atmo_one - self.atmosphere,
'new_astro': lambda: self.atmo_one - self.atmosphere,
'new_astro_v1': lambda: self.lookup('PCA_astro_v1'),
'residual': lambda:self.atmo_one - self.atmosphere - self.noise,
'skysub': lambda:self.atmo_one - self.atmosphere + self.astrosignal,
'default': lambda:self.atmo_one - self.atmosphere + self.astrosignal,
'last_astrosignal': lambda:self.atmo_one - self.atmosphere - self.noise + self.astrosignal,
'acbMatmo': lambda: self.ac_bolos - self.atmo_one - self.atmosphere,
'acbMatmosphere': lambda: self.ac_bolos - self.atmosphere,
'acbMatmoone': lambda: self.ac_bolos - self.atmo_one,
'scale': lambda: self.scalearr,
'weight': lambda: self.weight,
'raw': lambda: self.raw,
'rawscaled': lambda: self.raw * self.scalearr,
'noise': lambda: self.noise,
'nomodel_astro': lambda: self.noise+self.astrosignal,
'newnoise': lambda: self.lookup('PCA_astro') + self.astrosignal - self.lookup('astrosignal_from_model'),
'mapped_astrosignal': lambda: self.mapped_astrosignal,
'mapped_timestream': lambda: self.mapped_timestream,
'astrosignal_from_map': lambda: self.default_map.flat[self.tstomap],
'astrosignal_from_model': lambda: self.model.flat[self.tstomap],
'itermedian': lambda: itermedian(self.ac_bolos * self.scalearr),
'zeromedian': lambda: self.atmo_one,
'atmo_one_itermedian': lambda: itermedian(self.atmo_one),
'expsub': lambda: exponent_sub(self.lookup('atmo_one_itermedian')),
'preexpsub': lambda: exponent_sub(self.lookup('acbolos_noscale')),
'preexpsub_piecewise': lambda: exponent_sub(self.lookup('acbolos_noscale'),piecewise=True),
'atmos_remainder': lambda: self.lookup('atmo_one_itermedian'),
'atmos_remainder_v1': lambda: itermedian(self.atmo_one,scale=1.0,niter=1),
'expmodel': lambda: self.lookup('atmo_one_itermedian') - self.lookup('expsub'),
'first_sky': lambda: self.atmo_one - self.lookup('atmos_remainder'),
'first_sky_v1': lambda: self.atmo_one - self.lookup('atmos_remainder_v1'),
'astrosignal_premap': lambda: self.lookup('PCA_astro')+self.astrosignal,
'PCA_atmo_v1': lambda: reshape(unpca_subtract(numpy.nan_to_num(reshape(self.lookup('atmos_remainder_v1'),self.tsshape)),self.npca),self.datashape),
'PCA_astro_v1': lambda: reshape(pca_subtract(numpy.nan_to_num(reshape(self.lookup('atmos_remainder_v1'),self.tsshape)),self.npca),self.datashape),
'PCA_atmo': lambda: reshape(unpca_subtract(numpy.nan_to_num(reshape(self.lookup('atmos_remainder'),self.tsshape)),self.npca),self.datashape),
'PCA_astro': lambda: reshape(pca_subtract(numpy.nan_to_num(reshape(self.lookup('atmos_remainder'),self.tsshape)),self.npca),self.datashape),
'PCA_astrosignal': lambda: reshape(efuncs(reshape(self.astrosignal,self.tsshape)),self.datashape) / self.nbolos**0.5,
'PCA_acb': lambda: reshape(efuncs(reshape(self.ac_bolos,self.tsshape)),self.datashape) / self.nbolos**0.5,
'PCA_zeromedian': lambda: reshape(efuncs(reshape(self.atmo_one,self.tsshape)),self.datashape) / self.nbolos**0.5,
'PCA_itermedian': lambda: reshape(efuncs(reshape(self.lookup('itermedian'),self.tsshape)),self.datashape) / self.nbolos**0.5,
'PCA_noise': lambda: reshape(efuncs(reshape(self.noise,self.tsshape)),self.datashape) / self.nbolos**0.5,
'PCA_default': lambda: reshape(efuncs(reshape(self.atmo_one - self.atmosphere + self.astrosignal,self.tsshape)),self.datashape) / self.nbolos**0.5,
'PCA_atmos_remainder': lambda: reshape(efuncs(reshape(numpy.nan_to_num(self.lookup('atmos_remainder')),self.tsshape)),self.datashape) / self.nbolos**0.5,
}
self.tscache = {}
self.tsplot = 'default'
self.set_tsplot(**kwargs)
print "Completed the rest of initialization in an additional %f seconds" % (time.time()-t1)
|
MIT License
|
freifeld/cpabdiffeo
|
cpab/cpa2d/inference/transformation/Register.py
|
Register.set_data
|
python
|
def set_data(self,x,signal_src,signal_dst,isbinary):
self.isbinary=isbinary
nPts = len(x)
if x.ndim !=2 or x.shape[1]!=2:
raise ValueError(x.shape)
if signal_src.shape != signal_dst.shape:
raise ValueError(gnal_src.shape , signal_dst.shape)
if signal_src.ndim !=2:
raise ValueError(signal_src.shape)
signal_src = signal_src.astype(np.float64)
signal_dst = signal_dst.astype(np.float64)
if nPts != signal_src.size:
raise ValueError( nPts , signal_src.shape)
if x.shape[0] != signal_dst.size:
raise ValueError( nPts , signal_dst.shape)
if x.dtype != np.float64:
raise TypeError(x.dtype)
if signal_src.dtype != np.float64:
raise TypeError(signal_src.dtype)
if signal_dst.dtype != np.float64:
raise TypeError(signal_dst.dtype)
if signal_src.ndim == 1:
raise ValueError(signal_src.ndim)
if signal_dst.ndim == 1:
raise ValueError(signal_dst.ndim)
if not isinstance(signal_src,CpuGpuArray):
signal_src = CpuGpuArray(signal_src)
if not isinstance(signal_dst,CpuGpuArray):
signal_dst = CpuGpuArray(signal_dst)
self.signal = Bunch()
self.signal.src=signal_src
self.signal.dst=signal_dst
self.src = x
self.transformed = CpuGpuArray.zeros_like(self.src)
self.signal.transformed=CpuGpuArray.zeros_like(signal_src)
|
For now, assumes dst was evaluated on evenly-space points
// Is the comment above still current?
|
https://github.com/freifeld/cpabdiffeo/blob/22df6cdbd7111b9ae3e7f1c0e31ff85e92d281a6/cpab/cpa2d/inference/transformation/Register.py#L104-L164
|
import numpy as np
import cv2
import pylab
from pylab import plt
from of.gpu import CpuGpuArray
from of.utils import *
from cpab.cpa2d.TransformWrapper import TransformWrapper
from cpab.cpaNd.inference.Metropolis import Metropolis
from cpab.cpaNd.inference.Proposal import Proposal
from cpab.cpaNd.model import LogLikelihood as LL
from cpab.cpaNd.model import LogPrior as LP
from cpab.cpa2d.model.transformations.register import ScaleDependentLogLikelihoodGaussian as SDLL_gaussian
from cpab.cpaNd.model import ScaleDependentLogPrior as SDLP
class Register(object):
def __init__(self,nRows=100,
nCols=100,
base = [2,2],
nLevels=4,
tess='tri',
zero_v_across_bdry=[False]*2,
scale_spatial=1.0 * 10,
scale_value=2.0,
sigma_signal=None,
wlp=1e-4,
ll_type=['gaussian','gaussian_on_distancetransform'][0],
only_local=False,
valid_outside=True):
ll_type = ll_type.lower()
if ll_type == 'gaussian':
self.SDLL=SDLL_gaussian
else:
raise ValueError(ll_type)
self.base = base
self.nLevels=nLevels
if sigma_signal is None:
raise ValueError("sigma_signal cannot be None")
self.sigma_signal = sigma_signal
self.wlp = wlp
self.tw = TransformWrapper(nRows=nRows,nCols=nCols,
nLevels=nLevels,
base=base,
tess=tess,
scale_spatial=scale_spatial,
scale_value=scale_value,
zero_v_across_bdry=zero_v_across_bdry,
only_local=only_local,
valid_outside=valid_outside
)
def set_dense(self,domain_start=-10,domain_end=10):
self.src_dense = self.tw.pts_src_dense
self.transformed_dense = self.tw.transformed_dense
|
MIT License
|
dojot/device-manager
|
DeviceManager/DeviceHandler.py
|
DeviceHandler.update_device
|
python
|
def update_device(cls, params, device_id, token):
try:
content_type = params.get('content_type')
data_request = params.get('data')
device_data, json_payload = parse_payload(content_type, data_request, device_schema)
validate_repeated_attrs(json_payload)
tenant = init_tenant_context(token, db)
old_orm_device = assert_device_exists(device_id)
db.session.delete(old_orm_device)
db.session.flush()
device_data.pop('templates')
updated_orm_device = Device(**device_data)
parse_template_list(json_payload.get('templates', []), updated_orm_device)
auto_create_template(json_payload, updated_orm_device)
updated_orm_device.id = device_id
updated_orm_device.updated = datetime.now()
updated_orm_device.created = old_orm_device.created
db.session.add(updated_orm_device)
db.session.commit()
except IntegrityError as error:
handle_consistency_exception(error)
except ValidationError as error:
raise HTTPRequestError(400, error.messages)
full_device = serialize_full_device(updated_orm_device, tenant)
kafka_handler_instance = cls.kafka.getInstance(cls.kafka.kafkaNotifier)
kafka_handler_instance.update(full_device, meta={"service": tenant})
result = {
'message': 'device updated',
'device': serialize_full_device(updated_orm_device, tenant)
}
return result
|
Updated the information about a particular device
:param params: Parameters received from request (content_type, data)
as created by Flask
:param device_id: The device to be updated.
:param token: The authorization token (JWT).
:return The updated device.
:rtype JSON
:raises HTTPRequestError: If no authorization token was provided (no
tenant was informed)
:raises HTTPRequestError: If this device could not be found in
database.
|
https://github.com/dojot/device-manager/blob/31b630fe0969f6666f07db59a489772d7f0639d6/DeviceManager/DeviceHandler.py#L531-L584
|
import re
import logging
import json
import time
from datetime import datetime
import secrets
from flask import request, jsonify, Blueprint, make_response
from sqlalchemy.exc import IntegrityError
from sqlalchemy import or_, and_, func, text
from DeviceManager.utils import *
from DeviceManager.utils import create_id, get_pagination, format_response
from DeviceManager.utils import HTTPRequestError
from DeviceManager.conf import CONFIG
from DeviceManager.BackendHandler import KafkaHandler, KafkaInstanceHandler
from DeviceManager.DatabaseHandler import db
from DeviceManager.DatabaseModels import assert_device_exists, assert_template_exists
from DeviceManager.DatabaseModels import handle_consistency_exception, assert_device_relation_exists
from DeviceManager.DatabaseModels import DeviceTemplate, DeviceAttr, Device, DeviceTemplateMap, DeviceAttrsPsk
from DeviceManager.DatabaseModels import DeviceOverride
from DeviceManager.SerializationModels import device_list_schema, device_schema, ValidationError
from DeviceManager.SerializationModels import attr_list_schema
from DeviceManager.SerializationModels import parse_payload, load_attrs, validate_repeated_attrs
from DeviceManager.TenancyManager import init_tenant_context
from DeviceManager.app import app
from DeviceManager.Logger import Log
device = Blueprint('device', __name__)
LOGGER = Log().color_log()
def fill_overridden_flag(attrs):
for templateId in attrs:
for attr in attrs[templateId]:
if 'is_static_overridden' not in attr and 'static_value' in attr:
attr['is_static_overridden'] = False
if 'metadata' in attr:
for metadata in attr['metadata']:
if 'is_static_overridden' not in metadata and 'static_value' in metadata:
metadata['is_static_overridden'] = False
def serialize_override_attrs(orm_overrides, attrs):
fill_overridden_flag(attrs)
for override in orm_overrides:
if override.attr.template_id is not None:
for attr in attrs[override.attr.template_id]:
if attr['id'] == override.aid:
attr['static_value'] = override.static_value
attr['is_static_overridden'] = True
else:
for attr in attrs[override.attr.parent.template_id]:
if attr['id'] == override.attr.parent_id:
for metadata in attr['metadata']:
if metadata['id'] == override.aid:
metadata['static_value'] = override.static_value
metadata['is_static_overridden'] = True
def serialize_full_device(orm_device, tenant, sensitive_data=False):
data = device_schema.dump(orm_device)
data['attrs'] = {}
for template in orm_device.templates:
data['attrs'][template.id] = attr_list_schema.dump(template.attrs)
serialize_override_attrs(orm_device.overrides, data['attrs'])
if sensitive_data:
for psk_data in orm_device.pre_shared_keys:
for template_id in data['attrs']:
for attr in data['attrs'][template_id]:
if attr['id'] == psk_data.attr_id:
dec = decrypt(psk_data.psk)
attr['static_value'] = dec.decode('ascii')
return data
def find_template(template_list, id):
LOGGER.debug(f" Finding template from template list")
for template in template_list:
if template.id == int(id):
return template
def create_orm_override(attr, orm_device, orm_template):
try:
target = int(attr['id'])
except ValueError:
LOGGER.error(f" Unknown attribute {attr['id']} in override list")
raise HTTPRequestError(400, 'Unknown attribute {} in override list'.format(attr['id']))
found = False
for orm_attr in orm_template.attrs:
if target == orm_attr.id:
found = True
if 'static_value' in attr and attr['static_value'] is not None:
orm_override = DeviceOverride(
device=orm_device,
attr=orm_attr,
static_value=attr['static_value']
)
db.session.add(orm_override)
LOGGER.debug(f" Added overrided form {orm_override}")
if 'metadata' in attr:
for metadata in attr['metadata']:
try:
metadata_target = int(metadata['id'])
LOGGER.debug(f" Updated metadata {metadata_target}")
except ValueError:
LOGGER.error(f" metadata attribute {attr['id']} in override list")
raise HTTPRequestError(400, 'Unknown metadata attribute {} in override list'.format(
metadata['id']))
found = False
with db.session.no_autoflush:
for orm_attr_child in orm_attr.children:
if metadata_target == orm_attr_child.id:
found = True
if 'static_value' in metadata and metadata['static_value'] is not None:
orm_override = DeviceOverride(
device=orm_device,
attr=orm_attr_child,
static_value=metadata['static_value']
)
db.session.add(orm_override)
LOGGER.debug(f" Added overrided form {orm_override}")
if not found:
LOGGER.error(f" Unknown attribute {attr['id']} in override list")
raise HTTPRequestError(400, 'Unknown attribute {} in override list'.format(target))
def auto_create_template(json_payload, new_device):
if ('attrs' in json_payload) and (new_device.templates is None):
device_template = DeviceTemplate(
label="device.%s template" % new_device.id)
db.session.add(device_template)
LOGGER.debug(f" Adding auto-created template {device_template} into database")
new_device.templates = [device_template]
load_attrs(json_payload['attrs'], device_template, DeviceAttr, db)
if ('attrs' in json_payload) and (new_device.templates is not None):
for attr in json_payload['attrs']:
orm_template = find_template(new_device.templates, attr['template_id'])
if orm_template is None:
LOGGER.error(f" Unknown template {orm_template} in attr list")
raise HTTPRequestError(400, 'Unknown template {} in attr list'.format(orm_template))
create_orm_override(attr, new_device, orm_template)
def parse_template_list(template_list, new_device):
new_device.templates = []
LOGGER.debug(f" Adding new template list for device {new_device}")
for template_id in template_list:
new_device.templates.append(assert_template_exists(template_id, db.session))
def find_attribute(orm_device, attr_name, attr_type):
for template_id in orm_device['attrs']:
for attr in orm_device['attrs'][template_id]:
if (attr['label'] == attr_name) and (attr['type'] == attr_type):
LOGGER.debug(f" retrieving attribute {attr}")
return attr
return None
class DeviceHandler(object):
kafka = KafkaInstanceHandler()
def __init__(self):
pass
@staticmethod
def indexed_label(count, c_length, base, index):
if count == 1:
return base
else:
return "{}_{:0{width}d}".format(base, index, width=c_length)
@staticmethod
def generate_device_id():
_attempts = 0
generated_id = ''
while _attempts < 10 and len(generated_id) == 0:
_attempts += 1
new_id = create_id()
if Device.query.filter_by(id=new_id).first() is None:
LOGGER.debug(f" Generated a new device id {new_id}")
return new_id
LOGGER.error(f" Failed to generate unique device_id")
raise HTTPRequestError(500, "Failed to generate unique device_id")
@staticmethod
def list_ids(token):
init_tenant_context(token, db)
data = []
LOGGER.debug(f" Fetching list with known devices")
for id in db.session.query(Device.id).all():
data.append(id[0])
return data
@staticmethod
def get_devices(token, params, sensitive_data=False):
tenant = init_tenant_context(token, db)
pagination = {'page': params.get('page_number'), 'per_page': params.get('per_page'), 'error_out': False}
SORT_CRITERION = {
'label': Device.label,
None: Device.id
}
sortBy = SORT_CRITERION.get(params.get('sortBy'))
attr_filter = []
query = params.get('attr')
for attr_label_item in query:
parsed = re.search('^(.+){1}=(.+){1}$', attr_label_item)
attr_label = []
attr_label.append(DeviceAttr.label == parsed.group(1))
attr_label.append(text("coalesce(overrides.static_value, attrs.static_value)=:static_value ").bindparams(static_value=parsed.group(2)))
attr_filter.append(and_(*attr_label))
query = params.get('attr_type')
for attr_type_item in query:
attr_filter.append(DeviceAttr.value_type == attr_type_item)
label_filter = []
target_label = params.get('label')
if target_label:
label_filter.append(Device.label.like("%{}%".format(target_label)))
template_filter = []
target_template = params.get('template')
if target_template:
template_filter.append(DeviceTemplateMap.template_id == target_template)
if (attr_filter):
LOGGER.debug(f" Filtering devices by {attr_filter}")
page = db.session.query(Device) .join(DeviceTemplateMap, isouter=True)
page = page.join(DeviceTemplate) .join(DeviceAttr, isouter=True) .join(DeviceOverride, (Device.id == DeviceOverride.did) & (DeviceAttr.id == DeviceOverride.aid), isouter=True)
page = page.filter(*label_filter) .filter(*template_filter) .filter(*attr_filter) .order_by(sortBy) .paginate(**pagination)
elif label_filter or template_filter:
if label_filter:
LOGGER.debug(f"Filtering devices by label: {target_label}")
if template_filter:
LOGGER.debug(f"Filtering devices with template: {target_template}")
page = db.session.query(Device) .join(DeviceTemplateMap, isouter=True)
if sensitive_data:
page = page.join(DeviceTemplate) .join(DeviceAttr, isouter=True) .join(DeviceOverride, (Device.id == DeviceOverride.did) & (DeviceAttr.id == DeviceOverride.aid), isouter=True)
page = page.filter(*label_filter) .filter(*template_filter) .order_by(sortBy) .paginate(**pagination)
else:
LOGGER.debug(f" Querying devices sorted by device id")
page = db.session.query(Device).order_by(sortBy).paginate(**pagination)
devices = []
if params.get('idsOnly').lower() in ['true', '1', '']:
return DeviceHandler.get_only_ids(page)
for d in page.items:
devices.append(serialize_full_device(d, tenant, sensitive_data))
result = {
'pagination': {
'page': page.page,
'total': page.pages,
'has_next': page.has_next,
'next_page': page.next_num
},
'devices': devices
}
return result
@staticmethod
def get_only_ids(page):
device_id = []
for device in page.items:
data_device = device_schema.dump(device)
id_device = data_device.get('id')
device_id.append(id_device)
return device_id
@staticmethod
def get_device(token, device_id, sensitive_data=False):
tenant = init_tenant_context(token, db)
orm_device = assert_device_exists(device_id)
return serialize_full_device(orm_device, tenant, sensitive_data)
@classmethod
def create_device(cls, params, token):
tenant = init_tenant_context(token, db)
try:
count = int(params.get('count'))
except ValueError as e:
LOGGER.error(e)
raise HTTPRequestError(400, "If provided, count must be integer")
c_length = len(str(count))
verbose = params.get('verbose') in ['true', '1', 'True']
if verbose and count != 1:
raise HTTPRequestError(
400, "Verbose can only be used for single device creation")
devices = []
full_device = None
orm_devices = []
try:
for i in range(0, count):
content_type = params.get('content_type')
data_request = params.get('data')
device_data, json_payload = parse_payload(content_type, data_request, device_schema)
validate_repeated_attrs(json_payload)
device_data['id'] = DeviceHandler.generate_device_id()
device_data['label'] = DeviceHandler.indexed_label(count, c_length, device_data['label'], i)
device_data.pop('templates', None)
orm_device = Device(**device_data)
parse_template_list(json_payload.get('templates', []), orm_device)
auto_create_template(json_payload, orm_device)
db.session.add(orm_device)
orm_devices.append(orm_device)
db.session.commit()
except IntegrityError as error:
handle_consistency_exception(error)
except ValidationError as error:
raise HTTPRequestError(400, error.messages)
for orm_device in orm_devices:
devices.append(
{
'id': orm_device.id,
'label': orm_device.label
}
)
full_device = serialize_full_device(orm_device, tenant)
kafka_handler_instance = cls.kafka.getInstance(cls.kafka.kafkaNotifier)
kafka_handler_instance.create(full_device, meta={"service": tenant})
if verbose:
result = {
'message': 'device created',
'devices': [full_device]
}
else:
result = {
'message': 'devices created',
'devices': devices
}
return result
@classmethod
def delete_device(cls, device_id, token):
tenant = init_tenant_context(token, db)
orm_device = assert_device_exists(device_id)
data = serialize_full_device(orm_device, tenant)
kafka_handler_instance = cls.kafka.getInstance(cls.kafka.kafkaNotifier)
kafka_handler_instance.remove(data, meta={"service": tenant})
db.session.delete(orm_device)
db.session.commit()
results = {'result': 'ok', 'removed_device': data}
return results
@staticmethod
def delete_all_devices(token):
tenant = init_tenant_context(token, db)
json_devices = []
devices = db.session.query(Device)
for device in devices:
db.session.delete(device)
json_devices.append(serialize_full_device(device, tenant))
db.session.commit()
results = {
'result': 'ok',
'removed_devices': json_devices
}
return results
@classmethod
|
Apache License 2.0
|
itisfoundation/osparc-simcore
|
api/tests/utils.py
|
list_files_in_api_specs
|
python
|
def list_files_in_api_specs(wildcard: str) -> List[str]:
specs_dir = specs_folder()
return list(str(p) for p in specs_dir.rglob(wildcard))
|
Helper function to parameterize tests with list of files
e.g. pytest -v test_individual_openapi_schemas.py
test_individual_openapi_schemas.py::test_valid_individual_openapi_schemas_specs[/home/crespo/devp/osparc-simcore/api/specs/common/schemas/node-meta-v0.0.1.json] PASSED
|
https://github.com/itisfoundation/osparc-simcore/blob/a50b61735381231abba2cfcd57f3314785c656b0/api/tests/utils.py#L28-L38
|
import json
import sys
from pathlib import Path
from typing import List
import yaml
CONVERTED_SUFFIX = "-converted.yaml"
current_dir = Path(sys.argv[0] if __name__ == "__main__" else __file__).resolve().parent
def find_current_repo_folder():
cpath = Path(current_dir)
while not any(cpath.glob(".git")):
cpath = cpath.parent
assert cpath!=cpath.parent
assert cpath.glob("services")
return cpath
current_repo_dir = find_current_repo_folder()
def specs_folder():
return current_dir.parent / "specs"
|
MIT License
|
opencti-platform/connectors
|
external-import/kaspersky/src/kaspersky/master_ioc/importer.py
|
MasterIOCImporter.__init__
|
python
|
def __init__(
self,
helper: OpenCTIConnectorHelper,
client: KasperskyClient,
author: Identity,
tlp_marking: MarkingDefinition,
create_observables: bool,
create_indicators: bool,
update_existing_data: bool,
master_ioc_fetch_weekday: Optional[int],
master_ioc_excluded_ioc_indicator_types: Set[str],
master_ioc_report_type: str,
master_ioc_report_status: int,
) -> None:
super().__init__(helper, client, author, tlp_marking, update_existing_data)
self.create_observables = create_observables
self.create_indicators = create_indicators
self.master_ioc_fetch_weekday = master_ioc_fetch_weekday
self.master_ioc_excluded_ioc_indicator_types = (
master_ioc_excluded_ioc_indicator_types
)
self.master_ioc_report_type = master_ioc_report_type
self.master_ioc_report_status = master_ioc_report_status
if not (self.create_observables or self.create_indicators):
msg = "'create_observables' and 'create_indicators' false at the same time"
raise ValueError(msg)
|
Initialize Kaspersky Master IOC importer.
|
https://github.com/opencti-platform/connectors/blob/78d4ec585e8ffcc51e90149e74c7c57c176f5209/external-import/kaspersky/src/kaspersky/master_ioc/importer.py#L30-L59
|
import itertools
from datetime import datetime
from typing import Any, List, Mapping, Optional, Set, Tuple
from pycti import OpenCTIConnectorHelper
from stix2 import Bundle, Identity, MarkingDefinition
from stix2.exceptions import STIXError
from kaspersky.client import KasperskyClient
from kaspersky.importer import BaseImporter
from kaspersky.master_ioc.builder import IndicatorGroupBundleBuilder
from kaspersky.models import OpenIOCCSV, OpenIOCCSVIndicator
from kaspersky.utils import (
convert_openioc_csv_to_openioc_csv_model,
datetime_to_timestamp,
datetime_utc_now,
is_current_weekday_before_datetime,
timestamp_to_datetime,
)
class MasterIOCImporter(BaseImporter):
_LATEST_MASTER_IOC_TIMESTAMP = "latest_master_ioc_timestamp"
|
Apache License 2.0
|
pasqal-io/pulser
|
pulser/waveforms.py
|
Waveform.duration
|
python
|
def duration(self) -> int:
pass
|
The duration of the pulse (in ns).
|
https://github.com/pasqal-io/pulser/blob/0696d4e375c1ab153ba36002f3b24c9423c4ec78/pulser/waveforms.py#L93-L95
|
from __future__ import annotations
from abc import ABC, abstractmethod
import functools
import inspect
import itertools
import sys
from sys import version_info
from types import FunctionType
from typing import Any, cast, Optional, Tuple, Union
import warnings
from matplotlib.axes import Axes
import matplotlib.pyplot as plt
import numpy as np
from numpy.typing import ArrayLike
import scipy.interpolate as interpolate
from pulser.parametrized import Parametrized, ParamObj
from pulser.parametrized.decorators import parametrize
from pulser.json.utils import obj_to_dict
if version_info[:2] >= (3, 8):
from functools import cached_property
else:
try:
from backports.cached_property import cached_property
except ImportError:
raise ImportError(
"Using pulser with Python version 3.7 requires the"
" `backports.cached-property` module. Install it by running"
" `pip install backports.cached-property`."
)
class Waveform(ABC):
def __new__(cls, *args, **kwargs):
for x in itertools.chain(args, kwargs.values()):
if isinstance(x, Parametrized):
return ParamObj(cls, *args, **kwargs)
else:
return object.__new__(cls)
def __init__(self, duration: Union[int, Parametrized]):
duration = cast(int, duration)
try:
_duration = int(duration)
except (TypeError, ValueError):
raise TypeError(
"duration needs to be castable to an int but "
f"type {type(duration)} was provided."
)
if _duration <= 0:
raise ValueError(
"A waveform must have a positive duration, "
+ f"not {duration}."
)
elif duration - _duration != 0:
warnings.warn(
f"A waveform duration of {duration} ns is below the"
" supported precision of 1 ns. It was rounded down "
+ f"to {_duration} ns.",
stacklevel=3,
)
self._duration = _duration
@property
@abstractmethod
|
Apache License 2.0
|
couchbase/couchbase-cli
|
cbmgr.py
|
find_subcommands
|
python
|
def find_subcommands():
clsmembers = inspect.getmembers(sys.modules[__name__], inspect.isclass)
subclasses = [cls for cls in clsmembers if issubclass(cls[1], (Subcommand, LocalSubcommand))
and cls[1] not in [Subcommand, LocalSubcommand]]
subcommands = []
for subclass in subclasses:
name = '-'.join([part.lower() for part in re.findall('[A-Z][a-z]*', subclass[0])])
subcommands.append((name, subclass[1]))
return subcommands
|
Finds all subcommand classes
|
https://github.com/couchbase/couchbase-cli/blob/bc764599731c996d8e7f38979809ffbb21f8f807/cbmgr.py#L269-L279
|
import getpass
import inspect
import ipaddress
import json
import os
import platform
import random
import re
import string
import subprocess
import sys
import tempfile
import time
import urllib.parse
from argparse import SUPPRESS, Action, ArgumentError, ArgumentParser, HelpFormatter
from operator import itemgetter
from typing import Any, Dict, List, Optional
from cluster_manager import ClusterManager
from pbar import TopologyProgressBar
from x509_adapter import X509AdapterError
try:
from cb_version import VERSION
except ImportError:
VERSION = "0.0.0-0000-community"
print(f'WARNING: Could not import cb_version, setting VERSION to {VERSION}')
COUCHBASE_DEFAULT_PORT = 8091
BUCKET_PRIORITY_HIGH_INT = 8
BUCKET_PRIORITY_HIGH_STR = "high"
BUCKET_PRIORITY_LOW_INT = 3
BUCKET_PRIORITY_LOW_STR = "low"
BUCKET_TYPE_COUCHBASE = "membase"
BUCKET_TYPE_MEMCACHED = "memcached"
CB_BIN_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "bin"))
CB_ETC_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "etc", "couchbase"))
CB_LIB_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "lib"))
if os.name == 'nt':
CB_NS_EBIN_PATH = os.path.join(CB_LIB_PATH, "ns_server", "ebin")
CB_BABYSITTER_EBIN_PATH = os.path.join(CB_LIB_PATH, "ns_babysitter", "ebin")
else:
CB_NS_EBIN_PATH = os.path.join(CB_LIB_PATH, "ns_server", "erlang", "lib", "ns_server", "ebin")
CB_BABYSITTER_EBIN_PATH = os.path.join(CB_LIB_PATH, "ns_server", "erlang", "lib", "ns_babysitter", "ebin")
inetrc_file = os.path.join(CB_ETC_PATH, 'hosts.cfg')
if os.path.isfile(inetrc_file):
inetrc_file = inetrc_file.encode('unicode-escape').decode()
CB_INETRC_OPT = ['inetrc', f'"{inetrc_file}"']
else:
CB_INETRC_OPT = []
if platform.system() == "Darwin":
CB_CFG_PATH = os.path.expanduser("~/Library/Application Support/Couchbase/var/lib/couchbase")
else:
CB_CFG_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "var", "lib", "couchbase"))
CB_MAN_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "share"))
if os.name == "nt":
CB_MAN_PATH = os.path.join(CB_MAN_PATH, "doc", "couchbase-cli")
else:
CB_MAN_PATH = os.path.join(CB_MAN_PATH, "man", "man1")
def get_doc_page_name(command: str) -> str:
return f'{command}.{"1" if os.name != "nt" else "html"}'
def remove_prefix(val: str, prefix: str) -> str:
return val[len(prefix):] if val.startswith(prefix) else val
def force_communicate_tls(rest: ClusterManager) -> bool:
settings, err = rest.get_security_settings()
_exit_if_errors(err)
if 'clusterEncryptionLevel' not in settings or settings['clusterEncryptionLevel'] != 'strict':
return False
_warning("sub-command requires multi-node communication via TLS enabled ports, '--cacert' or "
"'--no-ssl-verify' may need to be supplied")
return True
def rest_initialiser(cluster_init_check=False, version_check=False, enterprise_check=None):
def inner(fn):
def decorator(self, opts):
_exit_if_errors(validate_credential_flags(opts.cluster, opts.username, opts.password, opts.client_ca,
opts.client_ca_password, opts.client_pk, opts.client_pk_password))
try:
self.rest = ClusterManager(opts.cluster, opts.username, opts.password, opts.ssl, opts.ssl_verify,
opts.cacert, opts.debug, client_ca=opts.client_ca,
client_ca_password=opts.client_ca_password, client_pk=opts.client_pk,
client_pk_password=opts.client_pk_password)
except X509AdapterError as error:
_exit_if_errors([f"failed to setup client certificate encryption, {error}"])
if cluster_init_check:
check_cluster_initialized(self.rest)
if version_check:
check_versions(self.rest)
if enterprise_check is not None:
enterprise, errors = self.rest.is_enterprise()
_exit_if_errors(errors)
if enterprise_check and not enterprise:
_exit_if_errors(['Command only available in enterprise edition'])
self.enterprise = enterprise
return fn(self, opts)
return decorator
return inner
def validate_credential_flags(host, username, password, client_ca, client_ca_password, client_pk, client_pk_password):
using_cert_auth = not (client_ca is None and
client_ca_password is None and
client_pk is None and
client_pk_password is None)
if using_cert_auth:
return validate_certificate_flags(
host,
username,
password,
client_ca,
client_ca_password,
client_pk,
client_pk_password)
if (username is None and password is None):
return ["cluster credentials required, expected --username/--password or --client-cert/--client-key"]
if (username is None or password is None):
return ["the --username/--password flags must be supplied together"]
return None
def validate_certificate_flags(host, username, password, client_ca, client_ca_password, client_pk, client_pk_password):
if username is not None or password is not None:
return ["expected either --username and --password or --client-cert and --client-key but not both"]
if not (host.startswith("https://") or host.startswith("couchbases://")):
return ["certificate authentication requires a secure connection, use https:// or couchbases://"]
if client_ca is None:
return ["certificate authentication requires a certificate to be supplied with the --client-cert flag"]
if client_ca_password is not None and client_pk_password is not None:
return ["--client-cert-password and --client-key-password can't be supplied together"]
unencrypted = client_ca_password is None and client_pk_password is None
if unencrypted and (client_ca is None or client_pk is None):
return ["when no cert/key password is provided, the --client-cert/--client-key flags must be supplied together"]
if client_pk_password is not None and client_pk is None:
return ["--client-key-password provided without --client-key"]
return None
def check_cluster_initialized(rest):
initialized, errors = rest.is_cluster_initialized()
if errors:
_exit_if_errors(errors)
if not initialized:
_exit_if_errors(["Cluster is not initialized, use cluster-init to initialize the cluster"])
def check_versions(rest):
result, errors = rest.pools()
if errors:
return
server_version = result['implementationVersion']
if server_version is None or VERSION is None:
return
major_couch = server_version[: server_version.index('.')]
minor_couch = server_version[server_version.index('.') + 1: server_version.index('.', len(major_couch) + 1)]
major_cli = VERSION[: VERSION.index('.')]
minor_cli = VERSION[VERSION.index('.') + 1: VERSION.index('.', len(major_cli) + 1)]
if major_cli != major_couch or minor_cli != minor_couch:
_warning(f'couchbase-cli version {VERSION} does not match couchbase server version {server_version}')
def index_storage_mode_to_param(value, default="plasma"):
if value == "default":
return default
if value == "memopt":
return "memory_optimized"
return value
def process_services(services, enterprise):
sep = ","
if services.find(sep) < 0:
sep = ";"
svc_set = set([w.strip() for w in services.split(sep)])
svc_candidate = ["data", "index", "query", "fts", "eventing", "analytics", "backup"]
for svc in svc_set:
if svc not in svc_candidate:
return None, [f'`{svc}` is not a valid service']
if not enterprise and svc in ["eventing", "analytics", "backup"]:
return None, [f'{svc} service is only available on Enterprise Edition']
if not enterprise:
ce_svc_30 = set(["data"])
ce_svc_40 = set(["data", "index", "query"])
ce_svc_45 = set(["data", "index", "query", "fts"])
if svc_set not in [ce_svc_30, ce_svc_40, ce_svc_45]:
return None, [f"Invalid service configuration. Community Edition only supports nodes with the following"
f" combinations of services: '{''.join(ce_svc_30)}', '{','.join(ce_svc_40)}' or "
f"'{','.join(ce_svc_45)}'"]
services = ",".join(svc_set)
for old, new in [[";", ","], ["data", "kv"], ["query", "n1ql"], ["analytics", "cbas"]]:
services = services.replace(old, new)
return services, None
|
Apache License 2.0
|
simsso/nips-2018-adversarial-vision-challenge
|
experiments/mnist/src/main.py
|
main
|
python
|
def main(args=None):
tf.logging.set_verbosity(tf.logging.INFO)
img, adv = attack.get_attack_batch(train.MODEL_NAME, 100)
pert.run_analysis(train.MODEL_NAME, img, adv)
|
This module package contains functionality for three different things:
* training a CNN on MNISt and storing the weights (+ logging to TensorBoard)
* loading the weights and analyzing the classification of linear combinations between inputs
* loading the weights and computing an adversarial example using FGSM
|
https://github.com/simsso/nips-2018-adversarial-vision-challenge/blob/b32f97b4e9ea98fed20a345f66e1dcbfa787edd5/experiments/mnist/src/main.py#L8-L20
|
import attack as attack
import tensorflow as tf
import train
import linear_combination as lc
import layerwise_perturbation as pert
|
MIT License
|
eggplants/deepl-cli
|
deepl/deepl.py
|
DeepLCLI._chk_stdin
|
python
|
def _chk_stdin(self) -> None:
if (sys.stdin.isatty() and len(sys.argv) == 1) or '-h' in sys.argv:
self.usage()
sys.tracebacklimit = 0
raise DeepLCLIArgCheckingError('show help.')
elif sys.stdin.isatty():
raise DeepLCLIArgCheckingError('stdin seems to be empty.')
|
Check if stdin is entered.
|
https://github.com/eggplants/deepl-cli/blob/a0b5ad5ab8baf0a4025a40411366b8f3659205a1/deepl/deepl.py#L64-L73
|
import asyncio
import sys
from textwrap import dedent
from typing import List, Optional, Tuple
from urllib.parse import quote
from urllib.request import urlopen
from pyppeteer.browser import Browser
from pyppeteer.errors import TimeoutError
from pyppeteer.launcher import launch
from pyppeteer.page import Page
class DeepLCLIArgCheckingError(Exception):
pass
class DeepLCLIPageLoadError(Exception):
pass
class DeepLCLI:
def __init__(self, langs: Optional[Tuple[str, str]] = None) -> None:
if langs:
self.fr_lang, self.to_lang = self._chk_lang(langs)
self.max_length = 5000
def usage(self) -> None:
print(dedent('''\
$ deepl
SYNTAX:
$ ... | deepl <from:lang>:<to:lang>
$ deepl <from:lang>:<to:lang> << 'EOS'
...
EOS
$ deepl <from:lang>:<to:lang> <<< "..."
$ deepl <from:lang>:<to:lang> < <filepath>
USAGE:
$ echo Hello | deepl en:ja
$ deepl :ru << 'EOS' # :ru is equivalent of auto:ru
good morning!
good night.
EOS
$ deepl fr:zh <<< "Mademoiselle"
$ deepl de:pl < README_de.md
LANGUAGE CODES:
<from:lang>: {auto it et nl el sv es sk sl cs da
de hu fi fr bg pl pt lv lt ro ru en zh ja}
<to:lang>: {it et nl el sv es sk sl cs da
de hu fi fr bg pl pt lv lt ro ru en zh ja}
'''))
def internet_on(self) -> bool:
try:
urlopen('https://www.google.com/', timeout=10)
return True
except IOError:
return False
|
MIT License
|
geopandas/geopandas
|
geopandas/geoseries.py
|
GeoSeries.fillna
|
python
|
def fillna(self, value=None, method=None, inplace=False, **kwargs):
if value is None:
value = BaseGeometry()
return super().fillna(value=value, method=method, inplace=inplace, **kwargs)
|
Fill NA values with a geometry (empty polygon by default).
"method" is currently not implemented for pandas <= 0.12.
Examples
--------
>>> from shapely.geometry import Polygon
>>> s = geopandas.GeoSeries(
... [
... Polygon([(0, 0), (1, 1), (0, 1)]),
... None,
... Polygon([(0, 0), (-1, 1), (0, -1)]),
... ]
... )
>>> s
0 POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0....
1 None
2 POLYGON ((0.00000 0.00000, -1.00000 1.00000, 0...
dtype: geometry
>>> s.fillna()
0 POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0....
1 GEOMETRYCOLLECTION EMPTY
2 POLYGON ((0.00000 0.00000, -1.00000 1.00000, 0...
dtype: geometry
>>> s.fillna(Polygon([(0, 1), (2, 1), (1, 2)]))
0 POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0....
1 POLYGON ((0.00000 1.00000, 2.00000 1.00000, 1....
2 POLYGON ((0.00000 0.00000, -1.00000 1.00000, 0...
dtype: geometry
See Also
--------
GeoSeries.isna : detect missing values
|
https://github.com/geopandas/geopandas/blob/04d377f321972801888381356cb6259766eb63b6/geopandas/geoseries.py#L754-L794
|
import json
import warnings
import numpy as np
import pandas as pd
from pandas import Series, MultiIndex
from pandas.core.internals import SingleBlockManager
from pyproj import CRS
from shapely.geometry.base import BaseGeometry
from geopandas.base import GeoPandasBase, _delegate_property
from geopandas.plotting import plot_series
from geopandas.explore import _explore_geoseries
import geopandas
from . import _compat as compat
from ._decorator import doc
from .array import (
GeometryDtype,
from_shapely,
from_wkb,
from_wkt,
points_from_xy,
to_wkb,
to_wkt,
)
from .base import is_geometry_type
_SERIES_WARNING_MSG = """\
You are passing non-geometry data to the GeoSeries constructor. Currently,
it falls back to returning a pandas Series. But in the future, we will start
to raise a TypeError instead."""
def _geoseries_constructor_with_fallback(data=None, index=None, crs=None, **kwargs):
try:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message=_SERIES_WARNING_MSG,
category=FutureWarning,
module="geopandas[.*]",
)
return GeoSeries(data=data, index=index, crs=crs, **kwargs)
except TypeError:
return Series(data=data, index=index, **kwargs)
class GeoSeries(GeoPandasBase, Series):
_metadata = ["name"]
def __new__(cls, data=None, index=None, crs=None, **kwargs):
if hasattr(data, "crs") and crs:
if not data.crs:
data = data.copy()
else:
if not data.crs == crs:
warnings.warn(
"CRS mismatch between CRS of the passed geometries "
"and 'crs'. Use 'GeoDataFrame.set_crs(crs, "
"allow_override=True)' to overwrite CRS or "
"'GeoSeries.to_crs(crs)' to reproject geometries. "
"CRS mismatch will raise an error in the future versions "
"of GeoPandas.",
FutureWarning,
stacklevel=2,
)
if isinstance(data, SingleBlockManager):
if isinstance(data.blocks[0].dtype, GeometryDtype):
if data.blocks[0].ndim == 2:
from pandas.core.internals import ExtensionBlock
values = data.blocks[0].values
block = ExtensionBlock(values, slice(0, len(values), 1), ndim=1)
data = SingleBlockManager([block], data.axes[0], fastpath=True)
self = super(GeoSeries, cls).__new__(cls)
super(GeoSeries, self).__init__(data, index=index, **kwargs)
self.crs = getattr(self.values, "crs", crs)
return self
warnings.warn(_SERIES_WARNING_MSG, FutureWarning, stacklevel=2)
return Series(data, index=index, **kwargs)
if isinstance(data, BaseGeometry):
n = len(index) if index is not None else 1
data = [data] * n
name = kwargs.pop("name", None)
if not is_geometry_type(data):
kwargs.pop("dtype", None)
with compat.ignore_shapely2_warnings():
empty_msg = "The default dtype for empty Series"
warnings.filterwarnings("ignore", empty_msg, DeprecationWarning)
warnings.filterwarnings("ignore", empty_msg, FutureWarning)
s = pd.Series(data, index=index, name=name, **kwargs)
if s.dtype != object:
if (s.empty and s.dtype == "float64") or data is None:
s = s.astype(object)
else:
warnings.warn(_SERIES_WARNING_MSG, FutureWarning, stacklevel=2)
return s
try:
data = from_shapely(s.values, crs)
except TypeError:
warnings.warn(_SERIES_WARNING_MSG, FutureWarning, stacklevel=2)
return s
index = s.index
name = s.name
self = super(GeoSeries, cls).__new__(cls)
super(GeoSeries, self).__init__(data, index=index, name=name, **kwargs)
if not self.crs:
self.crs = crs
return self
def __init__(self, *args, **kwargs):
pass
def append(self, *args, **kwargs):
return self._wrapped_pandas_method("append", *args, **kwargs)
@property
def geometry(self):
return self
@property
def x(self):
return _delegate_property("x", self)
@property
def y(self):
return _delegate_property("y", self)
@property
def z(self):
return _delegate_property("z", self)
@classmethod
def from_file(cls, filename, **kwargs):
from geopandas import GeoDataFrame
df = GeoDataFrame.from_file(filename, **kwargs)
return GeoSeries(df.geometry, crs=df.crs)
@classmethod
def from_wkb(cls, data, index=None, crs=None, **kwargs):
return cls._from_wkb_or_wkb(from_wkb, data, index=index, crs=crs, **kwargs)
@classmethod
def from_wkt(cls, data, index=None, crs=None, **kwargs):
return cls._from_wkb_or_wkb(from_wkt, data, index=index, crs=crs, **kwargs)
@classmethod
def from_xy(cls, x, y, z=None, index=None, crs=None, **kwargs):
if index is None:
if (
isinstance(x, Series)
and isinstance(y, Series)
and x.index.equals(y.index)
and (z is None or (isinstance(z, Series) and x.index.equals(z.index)))
):
index = x.index
return cls(points_from_xy(x, y, z, crs=crs), index=index, crs=crs, **kwargs)
@classmethod
def _from_wkb_or_wkb(
cls, from_wkb_or_wkt_function, data, index=None, crs=None, **kwargs
):
if isinstance(data, Series):
if index is not None:
data = data.reindex(index)
else:
index = data.index
data = data.values
return cls(from_wkb_or_wkt_function(data, crs=crs), index=index, **kwargs)
@property
def __geo_interface__(self):
from geopandas import GeoDataFrame
return GeoDataFrame({"geometry": self}).__geo_interface__
def to_file(self, filename, driver=None, index=None, **kwargs):
from geopandas import GeoDataFrame
data = GeoDataFrame({"geometry": self}, index=self.index)
data.crs = self.crs
data.to_file(filename, driver, index=index, **kwargs)
@property
def _constructor(self):
return _geoseries_constructor_with_fallback
@property
def _constructor_expanddim(self):
from geopandas import GeoDataFrame
return GeoDataFrame
def _wrapped_pandas_method(self, mtd, *args, **kwargs):
val = getattr(super(), mtd)(*args, **kwargs)
if type(val) == Series:
val.__class__ = GeoSeries
val.crs = self.crs
return val
def __getitem__(self, key):
return self._wrapped_pandas_method("__getitem__", key)
@doc(pd.Series)
def sort_index(self, *args, **kwargs):
return self._wrapped_pandas_method("sort_index", *args, **kwargs)
@doc(pd.Series)
def take(self, *args, **kwargs):
return self._wrapped_pandas_method("take", *args, **kwargs)
@doc(pd.Series)
def select(self, *args, **kwargs):
return self._wrapped_pandas_method("select", *args, **kwargs)
@doc(pd.Series)
def apply(self, func, convert_dtype=True, args=(), **kwargs):
result = super().apply(func, convert_dtype=convert_dtype, args=args, **kwargs)
if isinstance(result, GeoSeries):
if self.crs is not None:
result.set_crs(self.crs, inplace=True)
return result
def __finalize__(self, other, method=None, **kwargs):
for name in self._metadata:
object.__setattr__(self, name, getattr(other, name, None))
return self
def isna(self):
if self.is_empty.any():
warnings.warn(
"GeoSeries.isna() previously returned True for both missing (None) "
"and empty geometries. Now, it only returns True for missing values. "
"Since the calling GeoSeries contains empty geometries, the result "
"has changed compared to previous versions of GeoPandas.\n"
"Given a GeoSeries 's', you can use 's.is_empty | s.isna()' to get "
"back the old behaviour.\n\n"
"To further ignore this warning, you can do: \n"
"import warnings; warnings.filterwarnings('ignore', 'GeoSeries.isna', "
"UserWarning)",
UserWarning,
stacklevel=2,
)
return super().isna()
def isnull(self):
return self.isna()
def notna(self):
if self.is_empty.any():
warnings.warn(
"GeoSeries.notna() previously returned False for both missing (None) "
"and empty geometries. Now, it only returns False for missing values. "
"Since the calling GeoSeries contains empty geometries, the result "
"has changed compared to previous versions of GeoPandas.\n"
"Given a GeoSeries 's', you can use '~s.is_empty & s.notna()' to get "
"back the old behaviour.\n\n"
"To further ignore this warning, you can do: \n"
"import warnings; warnings.filterwarnings('ignore', "
"'GeoSeries.notna', UserWarning)",
UserWarning,
stacklevel=2,
)
return super().notna()
def notnull(self):
return self.notna()
|
BSD 3-Clause New or Revised License
|
kivy/python-for-android
|
tests/test_pythonpackage_basic.py
|
TestGetSystemPythonExecutable.run__get_system_python_executable
|
python
|
def run__get_system_python_executable(self, pybin):
cmd = [
pybin,
"-c",
"import importlib\n"
"import json\n"
"import os\n"
"import sys\n"
"sys.path = [os.path.dirname(sys.argv[1])] + sys.path\n"
"m = importlib.import_module(\n"
" os.path.basename(sys.argv[1]).partition('.')[0]\n"
")\n"
"print(m._get_system_python_executable())",
os.path.join(os.path.dirname(__file__), "..",
"pythonforandroid", "pythonpackage.py"),
]
try:
return subprocess.check_output(
cmd, stderr=subprocess.STDOUT
).decode("utf-8", "replace").strip()
except subprocess.CalledProcessError as e:
raise RuntimeError("call failed, with output: " + str(e.output))
|
Helper function to run our function.
We want to see what _get_system_python_executable() does given
a specific python, so we need to make it import it and run it,
with that TARGET python, which this function does.
|
https://github.com/kivy/python-for-android/blob/3a9bcabd91aa498982ab42ef7e59846f90df25d7/tests/test_pythonpackage_basic.py#L228-L256
|
import os
import shutil
import sys
import subprocess
import tempfile
import textwrap
from unittest import mock
from pythonforandroid.pythonpackage import (
_extract_info_from_package,
get_dep_names_of_package,
get_package_name,
_get_system_python_executable,
is_filesystem_path,
parse_as_folder_reference,
transform_dep_for_pip,
)
def local_repo_folder():
return os.path.abspath(os.path.join(
os.path.dirname(__file__), ".."
))
def fake_metadata_extract(dep_name, output_folder, debug=False):
with open(os.path.join(output_folder, "METADATA"), "w") as f:
f.write(textwrap.dedent("""\
Metadata-Version: 2.1
Name: testpackage
Version: 0.1
Requires-Dist: testpkg
Requires-Dist: testpkg2
Lorem Ipsum"""
))
with open(os.path.join(output_folder, "metadata_source"), "w") as f:
f.write(u"wheel")
def test__extract_info_from_package():
import pythonforandroid.pythonpackage
with mock.patch("pythonforandroid.pythonpackage."
"extract_metainfo_files_from_package",
fake_metadata_extract):
assert _extract_info_from_package(
"whatever", extract_type="name"
) == "testpackage"
assert set(_extract_info_from_package(
"whatever", extract_type="dependencies"
)) == {"testpkg", "testpkg2"}
def test_get_package_name():
with mock.patch("pythonforandroid.pythonpackage."
"extract_metainfo_files_from_package",
fake_metadata_extract):
assert get_package_name("TeStPackaGe") == "testpackage"
temp_d = tempfile.mkdtemp(prefix="p4a-pythonpackage-test-tmp-")
try:
with open(os.path.join(temp_d, "setup.py"), "w") as f:
f.write(textwrap.dedent("""\
from setuptools import setup
setup(name="testpackage")
"""
))
pkg_name = get_package_name(temp_d)
assert pkg_name == "testpackage"
finally:
shutil.rmtree(temp_d)
def test_get_dep_names_of_package():
dep_names = get_dep_names_of_package("python-for-android")
assert "colorama" in dep_names
assert "setuptools" not in dep_names
try:
dep_names = get_dep_names_of_package(
"python-for-android", include_build_requirements=True,
verbose=True,
)
except NotImplementedError as e:
assert "wheel" in str(e)
else:
assert "setuptools" in dep_names
assert "colorama" in get_dep_names_of_package(local_repo_folder())
test_fake_package = tempfile.mkdtemp()
try:
with open(os.path.join(test_fake_package, "setup.py"), "w") as f:
f.write(textwrap.dedent("""\
from setuptools import setup
setup(name='fakeproject',
description='fake for testing',
install_requires=['buildozer==0.39',
'python-for-android>=0.5.1'],
)
"""))
assert set(get_dep_names_of_package(
test_fake_package, recursive=False,
keep_version_pins=True, verbose=True
)) == {"buildozer==0.39", "python-for-android"}
assert set(get_dep_names_of_package(
test_fake_package, recursive=False,
keep_version_pins=False, verbose=True
)) == {"buildozer", "python-for-android"}
dep_names = get_dep_names_of_package(
test_fake_package, recursive=False,
keep_version_pins=False, verbose=True,
include_build_requirements=True
)
assert len(
{"buildozer", "python-for-android", "setuptools"}.intersection(
dep_names
)
) == 3
finally:
shutil.rmtree(test_fake_package)
def test_transform_dep_for_pip():
transformed = (
transform_dep_for_pip(
"python-for-android @ https://github.com/kivy/" +
"python-for-android/archive/master.zip"
),
transform_dep_for_pip(
"python-for-android @ https://github.com/kivy/" +
"python-for-android/archive/master.zip" +
"#egg=python-for-android-master"
),
transform_dep_for_pip(
"python-for-android @ https://github.com/kivy/" +
"python-for-android/archive/master.zip" +
"#"
),
)
expected = (
"https://github.com/kivy/python-for-android/archive/master.zip" +
"#egg=python-for-android"
)
assert transformed == (expected, expected, expected)
assert transform_dep_for_pip("https://a@b/") == "https://a@b/"
def test_is_filesystem_path():
assert is_filesystem_path("/some/test")
assert not is_filesystem_path("https://blubb")
assert not is_filesystem_path("test @ bla")
assert is_filesystem_path("/abc/c@d")
assert not is_filesystem_path("https://user:pw@host/")
assert is_filesystem_path(".")
assert is_filesystem_path("")
def test_parse_as_folder_reference():
assert parse_as_folder_reference("file:///a%20test") == "/a test"
assert parse_as_folder_reference("https://github.com") is None
assert parse_as_folder_reference("/a/folder") == "/a/folder"
assert parse_as_folder_reference("test @ /abc") == "/abc"
assert parse_as_folder_reference("test @ https://bla") is None
class TestGetSystemPythonExecutable():
def test_basic(self):
pybin = _get_system_python_executable()
pyversion = subprocess.check_output([
pybin, "-c", "import sys; print(sys.version)"
], stderr=subprocess.STDOUT).decode("utf-8", "replace")
assert pyversion.strip() == sys.version.strip()
|
MIT License
|
arslan-chaudhry/dcsp_segmentation
|
kaffe/tensorflow/network.py
|
Network.load
|
python
|
def load(self, data_path, session, ignore_missing=False):
data_dict = np.load(data_path).item()
for op_name in data_dict:
with tf.variable_scope(op_name, reuse=True):
for param_name, data in data_dict[op_name].iteritems():
try:
var = tf.get_variable(param_name)
session.run(var.assign(data))
except ValueError:
if not ignore_missing:
raise
|
Load network weights.
data_path: The path to the numpy-serialized network weights
session: The current TensorFlow session
ignore_missing: If true, serialized weights for missing layers are ignored.
|
https://github.com/arslan-chaudhry/dcsp_segmentation/blob/dd510695774fdabd36909501dac82f0f930ef04c/kaffe/tensorflow/network.py#L54-L69
|
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
DEFAULT_PADDING = 'SAME'
def layer(op):
def layer_decorated(self, *args, **kwargs):
name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
if len(self.terminals) == 0:
raise RuntimeError('No input variables found for layer %s.' % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
layer_output = op(self, layer_input, *args, **kwargs)
self.layers[name] = layer_output
self.feed(layer_output)
return self
return layer_decorated
class Network(object):
def __init__(self, inputs, trainable=True, is_training=False):
self.inputs = inputs
self.terminals = []
self.layers = dict(inputs)
self.trainable = trainable
self.use_dropout = tf.placeholder_with_default(tf.constant(1.0),
shape=[],
name='use_dropout')
self.setup(is_training)
def setup(self, is_training):
raise NotImplementedError('Must be implemented by the subclass.')
|
MIT License
|
ibm/compliance-trestle
|
tests/conftest.py
|
sample_nist_component_def
|
python
|
def sample_nist_component_def() -> ComponentDefinition:
component_obj = ComponentDefinition.oscal_read(test_utils.NIST_SAMPLE_CD_JSON)
return component_obj
|
Return a rich component definition object, from the NIST content repository.
|
https://github.com/ibm/compliance-trestle/blob/ae95c25dd1e3fec3c86ea34cd9981ddca65bf6d4/tests/conftest.py#L91-L94
|
import os
import pathlib
import random
import string
import sys
from typing import Iterator
from uuid import uuid4
from _pytest.monkeypatch import MonkeyPatch
import pytest
from tests import test_utils
import trestle.core.generators as gens
import trestle.oscal.common as common
from trestle.cli import Trestle
from trestle.core.err import TrestleError
from trestle.oscal import catalog as cat
from trestle.oscal.component import ComponentDefinition, DefinedComponent
from trestle.oscal.profile import Profile
TEST_CONFIG: dict = {}
@pytest.fixture(scope='function')
def rand_str():
rand_str = ''.join(random.choice(string.ascii_letters) for x in range(16))
return rand_str
@pytest.fixture(scope='function')
def tmp_file(tmp_path):
return pathlib.Path(tmp_path) / f'{uuid4()}'
@pytest.fixture(scope='session')
def tmp_fixed_file(tmp_path):
return pathlib.Path(tmp_path) / 'fixed_file'
@pytest.fixture(scope='function')
def tmp_yaml_file(tmp_path):
return pathlib.Path(tmp_path) / f'{uuid4()}.yaml'
@pytest.fixture(scope='function')
def tmp_json_file(tmp_path):
return pathlib.Path(tmp_path) / f'{uuid4()}.json'
@pytest.fixture(scope='function')
def tmp_xml_file(tmp_path):
return pathlib.Path(tmp_path) / f'{uuid4()}.xml'
@pytest.fixture(scope='module')
def yaml_testdata_path() -> pathlib.Path:
return pathlib.Path(test_utils.YAML_TEST_DATA_PATH)
@pytest.fixture(scope='module')
def json_testdata_path() -> pathlib.Path:
return pathlib.Path(test_utils.JSON_TEST_DATA_PATH)
@pytest.fixture(scope='function')
|
Apache License 2.0
|
constantinpape/elf
|
elf/evaluation/cremi_score.py
|
cremi_score
|
python
|
def cremi_score(segmentation, groundtruth, ignore_seg=None, ignore_gt=None):
ignore_mask = compute_ignore_mask(segmentation, groundtruth,
ignore_seg, ignore_gt)
if ignore_mask is not None:
segmentation = segmentation[ignore_mask]
groundtruth = groundtruth[ignore_mask]
else:
segmentation = segmentation.ravel()
groundtruth = groundtruth.ravel()
a_dict, b_dict, p_ids, p_counts = contigency_table(groundtruth, segmentation)
n_points = segmentation.size
vis, vim = compute_vi_scores(a_dict, b_dict, p_ids, p_counts, n_points,
use_log2=True)
ari, _ = compute_rand_scores(a_dict, b_dict, p_counts, n_points)
cs = np.sqrt(ari * (vis + vim))
return vis, vim, ari, cs
|
Computes cremi scores between two segmentations
Arguments:
segmentation [np.ndarray] - candidate segmentation to evaluate
groundtruth [np.ndarray] - groundtruth
ignore_seg [listlike] - ignore ids for segmentation (default: None)
ignore_gt [listlike] - ignore ids for groundtruth (default: None)
Retuns:
float - vi-split
float - vi-merge
float - adapted rand error
float - cremi score
|
https://github.com/constantinpape/elf/blob/f423ea0815949533933bd169b58a464bb7f3bbc0/elf/evaluation/cremi_score.py#L7-L46
|
import numpy as np
from .util import compute_ignore_mask, contigency_table
from .rand_index import compute_rand_scores
from .variation_of_information import compute_vi_scores
|
MIT License
|
univ-of-utah-marriott-library-apple/display_manager
|
display_manager.py
|
Command.__handleUnderscan
|
python
|
def __handleUnderscan(self):
for display in self.scope:
display.setUnderscan(self.underscan)
|
Sets or shows a display's underscan settings.
|
https://github.com/univ-of-utah-marriott-library-apple/display_manager/blob/303cd954606a4c8404007640db34d2843fa69c18/display_manager.py#L525-L530
|
import sys
import re
import collections
from display_manager_lib import *
class CommandSyntaxError(Exception):
def __init__(self, message, verb=None):
self.message = message
self.verb = verb
Exception.__init__(self, self.message)
class CommandValueError(Exception):
def __init__(self, message, verb=None):
self.message = message
self.verb = verb
Exception.__init__(self, self.message)
class CommandExecutionError(Exception):
def __init__(self, message, command=None):
self.message = message
self.command = command
Exception.__init__(self, self.message)
class Command(object):
def __init__(self, **kwargs):
if "verb" in kwargs:
if kwargs["verb"] in ["help", "show", "res", "brightness", "rotate", "underscan", "mirror"]:
self.verb = kwargs["verb"]
else:
raise CommandSyntaxError("\"{}\" is not a valid command".format(kwargs["verb"]))
else:
self.verb = None
self.subcommand = kwargs["subcommand"] if "subcommand" in kwargs else None
if "scope" in kwargs:
if isinstance(kwargs["scope"], list):
self.scope = kwargs["scope"]
elif isinstance(kwargs["scope"], AbstractDisplay):
self.scope = [kwargs["scope"]]
else:
self.scope = None
else:
self.scope = None
self.width = int(kwargs["width"]) if "width" in kwargs else None
self.height = int(kwargs["height"]) if "height" in kwargs else None
self.refresh = int(kwargs["refresh"]) if "refresh" in kwargs else None
self.hidpi = int(kwargs["hidpi"]) if "hidpi" in kwargs else None
self.angle = int(kwargs["angle"]) if "angle" in kwargs else None
self.brightness = float(kwargs["brightness"]) if "brightness" in kwargs else None
self.underscan = float(kwargs["underscan"]) if "underscan" in kwargs else None
self.source = kwargs["source"] if "source" in kwargs else None
getIOKit()
def __str__(self):
stringList = [self.verb]
if self.subcommand:
stringList.append(self.subcommand)
if self.verb == "res":
if self.width and self.height:
stringList.append(self.width)
stringList.append(self.height)
elif self.verb == "rotate":
stringList.append(self.angle)
elif self.verb == "brightness":
stringList.append(self.brightness)
elif self.verb == "underscan":
stringList.append(self.underscan)
elif self.verb == "mirror" and self.subcommand == "enable":
stringList.append(self.source.tag)
if self.verb == "show" or self.verb == "res":
if self.hidpi == 1:
stringList.append("no-hidpi")
elif self.hidpi == 2:
stringList.append("only-hidpi")
if self.verb == "res":
if self.refresh:
stringList.append("refresh {}".format(self.refresh))
if self.scope:
if len(self.scope) == len(getAllDisplays()):
stringList.append("all")
else:
for display in sorted(self.scope):
stringList.append(display.tag)
else:
if (
self.verb == "res" or
self.verb == "rotate" or
self.verb == "brightness" or
self.verb == "underscan"
):
stringList.append("main")
elif (
self.verb == "show" or
(self.verb == "mirror" and self.subcommand == "disable")
):
stringList.append("all")
for i in range(len(stringList)):
stringList[i] = str(stringList[i])
return " ".join(stringList)
def __eq__(self, other):
def safeScopeCheckEquals(a, b):
if a.scope and b.scope:
return set(a.scope) == set(b.scope)
else:
return a.scope == b.scope
if isinstance(other, self.__class__):
return all([
isinstance(other, self.__class__),
self.verb == other.verb,
self.subcommand == other.subcommand,
safeScopeCheckEquals(self, other),
self.width == other.width,
self.height == other.height,
self.refresh == other.refresh,
self.hidpi == other.hidpi,
self.angle == other.angle,
self.brightness == other.brightness,
self.underscan == other.underscan,
self.source == other.source,
])
else:
return NotImplemented
def __ne__(self, other):
if isinstance(other, self.__class__):
return not self.__eq__(other)
else:
return NotImplemented
def __lt__(self, other):
if self.__eq__(other):
return False
else:
return self.__str__().lower() < self.__str__().lower()
def __gt__(self, other):
if self.__eq__(other):
return False
else:
return self.__str__().lower() > self.__str__().lower()
def __hash__(self):
return hash(self.__str__())
def run(self):
try:
if self.verb == "help":
self.__handleHelp()
elif self.verb == "show":
self.__handleShow()
elif self.verb == "res":
self.__handleRes()
elif self.verb == "rotate":
self.__handleRotate()
elif self.verb == "brightness":
self.__handleBrightness()
elif self.verb == "underscan":
self.__handleUnderscan()
elif self.verb == "mirror":
self.__handleMirror()
except DisplayError as e:
raise CommandExecutionError(e.message, command=self)
def __handleHelp(self):
helpTypes = {
"usage": "\n".join([
"usage: display_manager.py <command>",
"",
"COMMANDS (required)",
" help Show help information about a command",
" show Show current/available display configurations",
" res Manage display resolution",
" brightness Manage display brightness",
" rotate Manage display rotation",
" underscan Manage display underscan",
" mirror Manage screen mirroring",
]), "help": "\n".join([
"usage: display_manager.py help <command>",
"",
"COMMANDS (required)",
" help Show help information about a command",
" show Show current/available display configurations",
" res Manage display resolution and refresh rate",
" brightness Manage display brightness",
" rotate Manage display rotation",
" underscan Manage display underscan",
" mirror Manage screen mirroring",
]), "show": "\n".join([
"usage: display_manager.py show [subcommand] [options] [scope...]",
"",
"SUBCOMMANDS (optional)",
" current (default) Show the current display configuration",
" default Apple's recommended default configuration",
" highest Show the highest available configuration",
" available Show all available configurations",
"",
"OPTIONS (optional; only applies to \"available\")",
" no-hidpi Don\'t show HiDPI resolutions",
" only-hidpi Only show HiDPI resolutions",
"",
" (Note: by default, both HiDPI and non-HiDPI resolutions are shown)",
"",
"SCOPE (optional)",
" main Perform this command on the main display",
" ext<N> Perform this command on external display number <N>",
" all (default) Perform this command on all connected displays",
]), "res": "\n".join([
"usage: display_manager.py res <resolution> [refresh] [options] [scope...]",
"",
"RESOLUTION (required)",
" default Apple's recommended default configuration",
" highest Set the display to the highest available configuration",
" <width> <height> Width and height (in pixels)",
" (Note: width and height must be separated by at least one space)",
"",
"REFRESH (not used by \"default\" or \"highest\" resolution; optional otherwise)",
" <refresh> Refresh rate (in Hz)",
" (Note: if refresh rate is not specified, it will default to a rate that is "
"available at the desired resolution, if possible)",
"",
"OPTIONS (optional)",
" no-hidpi Don\'t set to HiDPI resolutions",
" only-hidpi Only set to HiDPI resolutions",
"",
" (Note: by default, both HiDPI and non-HiDPI resolutions are shown)",
"",
"SCOPE (optional)",
" main (default) Perform this command on the main display",
" ext<N> Perform this command on external display number <N>",
" all Perform this command on all connected displays",
]), "rotate": "\n".join([
"usage: display_manager.py rotate <angle> [scope...]",
"",
"ANGLE (required)",
" <angle> Desired display rotation; must be a multiple of 90",
"",
"SCOPE (optional)",
" main (default) Perform this command on the main display",
" ext<N> Perform this command on external display number <N>",
" all Perform this command on all connected displays",
]), "brightness": "\n".join([
"usage: display_manager.py brightness <brightness> [scope...]",
"",
"BRIGHTNESS (required)",
" <brightness> A number between 0 and 1 (inclusive); "
"0 is minimum brightness, and 1 is maximum brightness",
"",
"SCOPE (optional)",
" main (default) Perform this command on the main display",
" ext<N> Perform this command on external display number <N>",
" all Perform this command on all connected displays",
]), "underscan": "\n".join([
"usage: display_manager.py underscan <underscan> [scope...]",
"",
"UNDERSCAN (required)",
" <underscan> A number between 0 and 1 (inclusive); "
"0 is minimum underscan, and 1 is maximum underscan",
"",
"SCOPE (optional)",
" main (default) Perform this command on the main display",
" ext<N> Perform this command on external display number <N>",
" all Perform this command on all connected displays",
]), "mirror": "\n".join([
"usage: display_manager.py mirror enable <source> <target...>",
" or: display_manager.py mirror disable [scope...]",
"",
"SUBCOMMANDS (required)",
" enable Set <target> to mirror <source>",
" disable Disable mirroring on <scope>",
"",
"SOURCE/TARGET(S) (not used by \"disable\"; required for \"enable\")",
" source The display which will be mirrored by the target(s); "
"must be a single element of <SCOPE> (see below); cannot be \"all\"",
" target(s) The display(s) which will mirror the source; "
"must be an element of <SCOPE> (see below)",
"",
"SCOPE",
" main The main display",
" ext<N> External display number <N>",
" all (default scope for \"disable\")",
" For <enable>: all connected displays besides <source>; only available to <target>",
" For <disable>: all connected displays",
])}
if self.subcommand in helpTypes:
print(helpTypes[self.subcommand])
else:
print(helpTypes["usage"])
def __handleShow(self):
for i, display in enumerate(self.scope):
print("display \"{0}\":".format(display.tag))
if self.subcommand == "current":
current = display.currentMode
print(current.bigString)
if display.rotation is not None:
print("rotation: {}".format(display.rotation))
if display.brightness is not None:
print("brightness: {:.2f}".format(display.brightness))
if display.underscan is not None:
print("underscan: {:.2f}".format(display.underscan))
if display.mirrorSource is not None:
print("mirror of: {}".format(display.mirrorSource.tag))
elif self.subcommand == "default":
default = display.defaultMode
if default:
print(default.bigString)
elif self.subcommand == "highest":
highest = display.highestMode(self.hidpi)
if highest:
print(highest.bigString)
elif self.subcommand == "available":
current = None
default = None
hidpi = []
lodpi = []
for mode in sorted(display.allModes, reverse=True):
if mode == display.currentMode:
current = mode
if mode.isDefault:
default = mode
if mode.hidpi:
hidpi.append(mode)
if not mode.hidpi:
lodpi.append(mode)
if current:
print("\n".join([
" current mode:",
" {}".format(current.littleString),
]))
if default:
print("\n".join([
" default mode:",
" {}".format(default.littleString),
]))
if hidpi:
print(
" HiDPI modes:"
)
for mode in hidpi:
print(
" {}".format(mode.littleString)
)
if lodpi:
print(
" non-HiDPI modes:"
)
for mode in lodpi:
print(
" {}".format(mode.littleString)
)
if i < len(self.scope) - 1:
print("")
def __handleRes(self):
for display in self.scope:
if self.subcommand == "default":
default = display.defaultMode
display.setMode(default)
elif self.subcommand == "highest":
highest = display.highestMode(self.hidpi)
display.setMode(highest)
else:
closest = display.closestMode(self.width, self.height, self.refresh, self.hidpi)
display.setMode(closest)
def __handleRotate(self):
for display in self.scope:
display.setRotate(self.angle)
def __handleBrightness(self):
for display in self.scope:
display.setBrightness(self.brightness)
|
MIT License
|
bitmovin/bitmovin-api-sdk-python
|
bitmovin_api_sdk/models/akamai_net_storage_output.py
|
AkamaiNetStorageOutput.password
|
python
|
def password(self, password):
if password is not None:
if not isinstance(password, string_types):
raise TypeError("Invalid type for `password`, type has to be `string_types`")
self._password = password
|
Sets the password of this AkamaiNetStorageOutput.
Your Akamai NetStorage password (required)
:param password: The password of this AkamaiNetStorageOutput.
:type: string_types
|
https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/akamai_net_storage_output.py#L139-L153
|
from enum import Enum
from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
from bitmovin_api_sdk.models.output import Output
import pprint
import six
class AkamaiNetStorageOutput(Output):
@poscheck_model
def __init__(self,
id_=None,
name=None,
description=None,
created_at=None,
modified_at=None,
custom_data=None,
acl=None,
host=None,
username=None,
password=None):
super(AkamaiNetStorageOutput, self).__init__(id_=id_, name=name, description=description, created_at=created_at, modified_at=modified_at, custom_data=custom_data, acl=acl)
self._host = None
self._username = None
self._password = None
self.discriminator = None
if host is not None:
self.host = host
if username is not None:
self.username = username
if password is not None:
self.password = password
@property
def openapi_types(self):
types = {}
if hasattr(super(AkamaiNetStorageOutput, self), 'openapi_types'):
types = getattr(super(AkamaiNetStorageOutput, self), 'openapi_types')
types.update({
'host': 'string_types',
'username': 'string_types',
'password': 'string_types'
})
return types
@property
def attribute_map(self):
attributes = {}
if hasattr(super(AkamaiNetStorageOutput, self), 'attribute_map'):
attributes = getattr(super(AkamaiNetStorageOutput, self), 'attribute_map')
attributes.update({
'host': 'host',
'username': 'username',
'password': 'password'
})
return attributes
@property
def host(self):
return self._host
@host.setter
def host(self, host):
if host is not None:
if not isinstance(host, string_types):
raise TypeError("Invalid type for `host`, type has to be `string_types`")
self._host = host
@property
def username(self):
return self._username
@username.setter
def username(self, username):
if username is not None:
if not isinstance(username, string_types):
raise TypeError("Invalid type for `username`, type has to be `string_types`")
self._username = username
@property
def password(self):
return self._password
@password.setter
|
MIT License
|
chrhenning/hypercl
|
mnets/mnet_interface.py
|
MainNetInterface.forward
|
python
|
def forward(self, x, weights=None, distilled_params=None, condition=None):
raise NotImplementedError('TODO implement function')
|
Compute the output :math:`y` of this network given the input
:math:`x`.
Args:
x: The inputs :math:`x` to the network.
weights (optional): List of weight tensors, that are used as network
parameters. If attribute :attr:`hyper_shapes_learned` is not
``None``, then this argument is non-optional and the shapes
of the weight tensors have to be as specified by
:attr:`hyper_shapes_learned`.
Otherwise, this option might still be set but the weight tensors
must follow the shapes specified by attribute
:attr:`param_shapes`.
distilled_params (optional): May only be passed if attribute
:attr:`hyper_shapes_distilled` is not ``None``.
If not passed but the network relies on those parameters
(e.g., batchnorm running statistics), then this method simply
chooses the current internal representation of these parameters
as returned by :meth:`distillation_targets`.
condition (optional): Sometimes, the network will have to be
conditioned on contextual information, which can be passed via
this argument and depends on the actual implementation of this
interface.
For instance, when using batch normalization in a continual
learning scenario, where running statistics have been
checkpointed for every task, then this ``condition`` might be
the actual task ID, that is passed as the argument ``stats_id``
of the method
:meth:`utils.batchnorm_layer.BatchNormLayer.forward`.
Returns:
The output :math:`y` of the network.
|
https://github.com/chrhenning/hypercl/blob/4645ef0e5b64abe40674d287b65c23e109ecfca1/mnets/mnet_interface.py#L364-L401
|
from abc import ABC, abstractmethod
import numpy as np
from warnings import warn
import torch
class MainNetInterface(ABC):
def __init__(self):
super(MainNetInterface, self).__init__()
self._weights = None
self._param_shapes = None
self._hyper_shapes_learned = None
self._hyper_shapes_distilled = None
self._has_bias = None
self._has_fc_out = None
self._mask_fc_out = None
self._has_linear_out = None
self._layer_weight_tensors = None
self._layer_bias_vectors = None
self._batchnorm_layers = None
self._context_mod_layers = None
self._num_params = None
self._num_internal_params = None
self._hyper_shapes = None
self._all_shapes = None
def _is_properly_setup(self):
assert(self._param_shapes is not None or self._all_shapes is not None)
if self._param_shapes is None:
warn('Private member "_param_shapes" should be specified in each ' +
'sublcass that implements this interface, since private ' +
'member "_all_shapes" is deprecated.', DeprecationWarning)
self._param_shapes = self._all_shapes
if self._hyper_shapes is not None or self._hyper_shapes_learned is not None:
if self._hyper_shapes_learned is None:
warn('Private member "_hyper_shapes_learned" should be ' +
'specified in each sublcass that implements this ' +
'interface, since private member "_hyper_shapes" is ' +
'deprecated.', DeprecationWarning)
self._hyper_shapes_learned = self._hyper_shapes
self._hyper_shapes = self._hyper_shapes_learned
assert(self._weights is not None or self._hyper_shapes_learned is not None)
if self._hyper_shapes_learned is None and self.hyper_shapes_distilled is None:
assert(len(self._weights) == len(self._param_shapes))
assert(isinstance(self._has_bias, bool))
assert(isinstance(self._has_fc_out, bool))
assert(isinstance(self._mask_fc_out, bool))
assert(isinstance(self._has_linear_out, bool))
assert(self._layer_weight_tensors is not None)
assert(self._layer_bias_vectors is not None)
if self._has_bias:
assert(len(self._layer_weight_tensors) == len(self._layer_bias_vectors))
@property
def weights(self):
return self._weights
@property
def param_shapes(self):
return self._param_shapes
@property
def hyper_shapes(self):
warn('Use atrtibute "hyper_shapes_learned" instead.',
DeprecationWarning)
return self.hyper_shapes_learned
@property
def hyper_shapes_learned(self):
return self._hyper_shapes_learned
@property
def hyper_shapes_distilled(self):
return self._hyper_shapes_distilled
@property
def has_bias(self):
return self._has_bias
@property
def has_fc_out(self):
return self._has_fc_out
@property
def mask_fc_out(self):
return self._mask_fc_out
@property
def has_linear_out(self):
return self._has_linear_out
@property
def num_params(self):
if self._num_params is None:
self._num_params = int(np.sum([np.prod(l) for l in
self.param_shapes]))
return self._num_params
@property
def num_internal_params(self):
if self._num_internal_params is None:
if self.weights is None:
self._num_internal_params = 0
else:
self._num_internal_params = int(sum(p.numel() for p in self.weights))
return self._num_internal_params
@property
def layer_weight_tensors(self):
return self._layer_weight_tensors
@property
def layer_bias_vectors(self):
return self._layer_bias_vectors
@property
def batchnorm_layers(self):
return self._batchnorm_layers
@property
def context_mod_layers(self):
return self._context_mod_layers
@abstractmethod
def distillation_targets(self):
raise NotImplementedError('TODO implement function')
@abstractmethod
|
Apache License 2.0
|
akb89/pyfn
|
pyfn/models/framerelation.py
|
FrameRelation.sub_frame
|
python
|
def sub_frame(self):
return self._sub_frame
|
Return the subFrame of the FrameRelation.
|
https://github.com/akb89/pyfn/blob/848091d55aaa9dbb1eb939cd6c551876f9f4d6f7/pyfn/models/framerelation.py#L21-L23
|
__all__ = ['FrameRelation']
class FrameRelation():
def __init__(self, _id=None, sub_frame=None, sup_frame=None, frtype=None):
self.__id = _id
self._sub_frame = sub_frame
self._sup_frame = sup_frame
self._frtype = frtype
@property
def _id(self):
return self.__id
@property
|
MIT License
|
tlc-pack/tenset
|
python/tvm/relay/op/strategy/x86.py
|
bitserial_dense_strategy_cpu
|
python
|
def bitserial_dense_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
strategy.add_implementation(
wrap_compute_bitserial_dense(topi.x86.bitserial_dense),
wrap_topi_schedule(topi.x86.schedule_bitserial_dense),
name="bitserial_dense.x86",
)
return strategy
|
bitserial_dense x86 strategy
|
https://github.com/tlc-pack/tenset/blob/3f7ed0291df47331d43f43a064fffacdc2914b47/python/tvm/relay/op/strategy/x86.py#L534-L542
|
import logging
import re
from tvm import topi
from tvm.auto_scheduler import is_auto_scheduler_enabled
from tvm.te import SpecializedCondition
from tvm.relay.ty import is_dynamic
from .generic import *
from .. import op as _op
logger = logging.getLogger("strategy")
_NCHWc_matcher = re.compile("^NCHW[0-9]+c$")
_OIHWio_matcher = re.compile("^OIHW[0-9]+i[0-9]+o$")
@schedule_injective.register("cpu")
def schedule_injective_cpu(attrs, outs, target):
with target:
return topi.x86.schedule_injective(outs)
@schedule_reduce.register("cpu")
def schedule_reduce_cpu(attrs, outs, target):
with target:
return topi.x86.schedule_reduce(outs)
@schedule_concatenate.register("cpu")
def schedule_concatenate_cpu(attrs, outs, target):
with target:
return topi.x86.schedule_concatenate(outs)
@schedule_pool.register("cpu")
def schedule_pool_cpu(attrs, outs, target):
with target:
return topi.x86.schedule_pool(outs, attrs.layout)
@schedule_adaptive_pool.register("cpu")
def schedule_adaptive_pool_cpu(attrs, outs, target):
with target:
return topi.x86.schedule_adaptive_pool(outs)
@softmax_strategy.register("cpu")
def softmax_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
strategy.add_implementation(
wrap_compute_softmax(topi.nn.softmax),
wrap_topi_schedule(topi.x86.schedule_softmax),
name="softmax.x86",
)
return strategy
@schedule_log_softmax.register("cpu")
def schedule_log_softmax_cpu(attrs, outs, target):
with target:
return topi.x86.schedule_softmax(outs)
@conv2d_strategy.register("cpu")
def conv2d_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
data, kernel = inputs
stride_h, stride_w = get_const_tuple(attrs.strides)
dilation_h, dilation_w = get_const_tuple(attrs.dilation)
groups = attrs.groups
layout = attrs.data_layout
kernel_layout = attrs.kernel_layout
if dilation_h < 1 or dilation_w < 1:
raise ValueError("dilation should be positive value")
if groups == 1:
if layout == "NCHW":
assert kernel_layout == "OIHW"
if topi.x86.is_int8_hw_support(data.dtype, kernel.dtype):
strategy.add_implementation(
wrap_compute_conv2d(topi.x86.conv2d_nchw_int8),
wrap_topi_schedule(topi.x86.schedule_conv2d_nchw_int8),
name="conv2d_nchw_int8.x86",
)
else:
strategy.add_implementation(
wrap_compute_conv2d(topi.x86.conv2d_nchw),
wrap_topi_schedule(topi.x86.schedule_conv2d_nchw),
name="conv2d_nchw.x86",
)
elif _NCHWc_matcher.match(layout):
assert _OIHWio_matcher.match(kernel_layout)
return conv2d_NCHWc_strategy_cpu(attrs, inputs, out_type, target)
elif layout == "NHWC":
assert kernel_layout == "HWIO"
if not is_auto_scheduler_enabled():
logger.warning("conv2d NHWC layout is not optimized for x86 with autotvm.")
strategy.add_implementation(
wrap_compute_conv2d(topi.nn.conv2d_nhwc, need_auto_scheduler_layout=True),
wrap_topi_schedule(topi.x86.schedule_conv2d_nhwc),
name="conv2d_nhwc.x86",
)
judge_winograd_auto_scheduler = False
if len(kernel.shape) == 4:
kernel_h, kernel_w, _, co = get_const_tuple(kernel.shape)
judge_winograd_auto_scheduler = (
"float" in data.dtype
and "float" in kernel.dtype
and kernel_h == 3
and kernel_w == 3
and stride_h == 1
and stride_w == 1
and dilation_h == 1
and dilation_w == 1
and 64 < co < 512
)
if is_auto_scheduler_enabled() and judge_winograd_auto_scheduler:
strategy.add_implementation(
wrap_compute_conv2d(
topi.nn.conv2d_winograd_nhwc, need_auto_scheduler_layout=True
),
naive_schedule,
name="conv2d_nhwc.winograd",
plevel=15,
)
elif layout == "HWCN":
assert kernel_layout == "HWIO"
if not is_auto_scheduler_enabled():
logger.warning("conv2d HWCN layout is not optimized for x86 with autotvm.")
strategy.add_implementation(
wrap_compute_conv2d(topi.nn.conv2d_hwcn),
wrap_topi_schedule(topi.generic.schedule_conv2d_hwcn),
name="conv2d_hwcn.generic",
)
else:
raise RuntimeError("Unsupported conv2d layout {} for x86".format(layout))
elif is_depthwise_conv2d(data.shape, layout, kernel.shape, kernel_layout, groups):
if layout == "NCHW":
assert kernel_layout == "OIHW"
channel_multiplier = get_const_tuple(inputs[1].shape)[1]
if channel_multiplier == 1 and dilation_h == 1 and dilation_w == 1:
strategy.add_implementation(
wrap_compute_conv2d(topi.x86.depthwise_conv2d_nchw),
wrap_topi_schedule(topi.x86.schedule_depthwise_conv2d_nchw),
name="depthwise_conv2d_nchw.x86",
)
else:
logger.warning(
"For x86 target, depthwise_conv2d with channel "
"multiplier greater than 1 is not optimized"
)
strategy.add_implementation(
wrap_compute_conv2d(topi.nn.depthwise_conv2d_nchw),
wrap_topi_schedule(topi.generic.schedule_depthwise_conv2d_nchw),
name="depthwise_conv2d_nchw.generic",
)
elif _NCHWc_matcher.match(layout):
assert _OIHWio_matcher.match(kernel_layout)
return depthwise_conv2d_NCHWc_strategy_cpu(attrs, inputs, out_type, target)
elif layout == "NHWC":
assert kernel_layout == "HWOI"
if not is_auto_scheduler_enabled():
logger.warning(
"depthwise_conv2d NHWC layout is not optimized for x86 with autotvm."
)
strategy.add_implementation(
wrap_compute_conv2d(topi.nn.depthwise_conv2d_nhwc),
wrap_topi_schedule(topi.generic.schedule_depthwise_conv2d_nhwc),
name="depthwise_conv2d_nhwc.generic",
)
else:
raise RuntimeError("Unsupported depthwise_conv2d layout {}".format(layout))
else:
if layout == "NCHW":
assert kernel_layout == "OIHW"
if not is_auto_scheduler_enabled():
logger.warning("group_conv2d is not optimized for x86 with autotvm.")
strategy.add_implementation(
wrap_compute_conv2d(topi.nn.group_conv2d_nchw, has_groups=True),
wrap_topi_schedule(topi.generic.schedule_group_conv2d_nchw),
name="group_conv2d_nchw.generic",
)
elif layout == "NHWC":
assert kernel_layout == "HWIO"
if not is_auto_scheduler_enabled():
logger.warning("group_conv2d is not optimized for x86 with autotvm.")
strategy.add_implementation(
wrap_compute_conv2d(topi.nn.group_conv2d_nhwc,
has_groups=True, need_auto_scheduler_layout=True),
wrap_topi_schedule(topi.generic.schedule_group_conv2d_nhwc),
name="group_conv2d_nhwc.generic",
)
else:
raise RuntimeError("Unsupported group_conv2d layout {}".format(layout))
return strategy
@conv2d_NCHWc_strategy.register("cpu")
def conv2d_NCHWc_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
data, kernel = inputs
if topi.x86.is_int8_hw_support(data.dtype, kernel.dtype):
strategy.add_implementation(
wrap_compute_conv2d(topi.x86.conv2d_NCHWc_int8, True, True),
wrap_topi_schedule(topi.x86.schedule_conv2d_NCHWc_int8),
name="conv2d_NCHWc_int8.x86",
)
else:
strategy.add_implementation(
wrap_compute_conv2d(topi.x86.conv2d_NCHWc, True, True),
wrap_topi_schedule(topi.x86.schedule_conv2d_NCHWc),
name="conv2d_NCHWc.x86",
)
return strategy
@depthwise_conv2d_NCHWc_strategy.register("cpu")
def depthwise_conv2d_NCHWc_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
strategy.add_implementation(
wrap_compute_conv2d(topi.x86.depthwise_conv2d_NCHWc, True, True),
wrap_topi_schedule(topi.x86.schedule_depthwise_conv2d_NCHWc),
name="depthwise_conv2d_NCHWc.x86",
)
return strategy
@conv2d_transpose_strategy.register("cpu")
def conv2d_transpose_strategy_cpu(attrs, inputs, out_type, target):
layout = attrs.data_layout
dilation = get_const_tuple(attrs.dilation)
groups = attrs.groups
assert dilation == (1, 1), "not support dilate now"
assert groups == 1, "only support groups == 1 for now"
strategy = _op.OpStrategy()
if layout == "NCHW":
strategy.add_implementation(
wrap_compute_conv2d_transpose(topi.x86.conv2d_transpose_nchw),
wrap_topi_schedule(topi.x86.schedule_conv2d_transpose_nchw),
name="conv2d_transpose_nchw.x86",
)
elif layout == "NHWC":
strategy.add_implementation(
wrap_compute_conv2d_transpose(topi.nn.conv2d_transpose_nhwc),
naive_schedule,
name='conv2d_transpose_nchw.x86',
)
else:
raise ValueError("Invalid layout: " + layout)
return strategy
@conv3d_transpose_strategy.register("cpu")
def conv3d_transpose_strategy_cpu(attrs, inputs, out_type, target):
layout = attrs.data_layout
dilation = get_const_tuple(attrs.dilation)
groups = attrs.groups
assert layout == "NCDHW", "only support ncdhw for now"
assert dilation == (1, 1, 1), "not support dilate now"
assert groups == 1, "only support groups == 1 for now"
strategy = _op.OpStrategy()
strategy.add_implementation(
wrap_compute_conv3d_transpose(topi.x86.conv3d_transpose_ncdhw),
wrap_topi_schedule(topi.x86.schedule_conv3d_transpose_ncdhw),
name="conv3d_transpose_ncdhw.x86",
)
return strategy
@conv3d_strategy.register("cpu")
def conv3d_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
layout = attrs.data_layout
if is_auto_scheduler_enabled():
if layout == "NCDHW":
strategy.add_implementation(
wrap_compute_conv3d(topi.nn.conv3d_ncdhw),
naive_schedule,
name="conv3d_ncdhw.x86",
)
elif layout == "NDHWC":
strategy.add_implementation(
wrap_compute_conv3d(topi.nn.conv3d_ndhwc, need_auto_scheduler_layout=True),
naive_schedule,
name="conv3d_ndhwc.x86",
)
else:
raise ValueError("Not support this layout {} yet".format(layout))
else:
if layout == "NCDHW":
strategy.add_implementation(
wrap_compute_conv3d(topi.x86.conv3d_ncdhw),
wrap_topi_schedule(topi.x86.schedule_conv3d_ncdhw),
name="conv3d_ncdhw.x86",
)
elif layout == "NDHWC":
strategy.add_implementation(
wrap_compute_conv3d(topi.x86.conv3d_ndhwc),
wrap_topi_schedule(topi.x86.schedule_conv3d_ndhwc),
name="conv3d_ndhwc.x86",
)
else:
raise ValueError("Not support this layout {} yet".format(layout))
return strategy
@conv1d_strategy.register("cpu")
def conv1d_strategy_cpu(attrs, inputs, out_type, target):
layout = attrs.data_layout
dilation = get_const_tuple(attrs.dilation)
if dilation[0] < 1:
raise ValueError("dilation should be a positive value")
strategy = _op.OpStrategy()
if layout == "NCW":
strategy.add_implementation(
wrap_compute_conv1d(topi.nn.conv1d_ncw),
wrap_topi_schedule(topi.x86.schedule_conv1d_ncw),
name="conv1d_ncw.x86",
)
elif layout == "NWC":
strategy.add_implementation(
wrap_compute_conv1d(topi.nn.conv1d_nwc),
wrap_topi_schedule(topi.x86.schedule_conv1d_nwc),
name="conv1d_nwc.x86",
)
else:
raise ValueError("Unsupported conv1d layout {}".format(layout))
return strategy
@dense_strategy.register("cpu")
def dense_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
same_type = inputs[0].dtype == inputs[1].dtype == out_type.dtype
dtype = inputs[0].dtype
u8s8s32 = dtype == "uint8" and inputs[1].dtype == "int8" and out_type.dtype == "int32"
strategy.add_implementation(
wrap_compute_dense(topi.x86.dense_nopack),
wrap_topi_schedule(topi.x86.schedule_dense_nopack),
name="dense_nopack.x86",
plevel=5,
)
strategy.add_implementation(
wrap_compute_dense(topi.x86.dense_pack),
wrap_topi_schedule(topi.x86.schedule_dense_pack),
name="dense_pack.x86",
plevel=10,
)
if is_auto_scheduler_enabled():
strategy.add_implementation(
wrap_compute_dense(topi.nn.dense, need_auto_scheduler_layout=True),
naive_schedule,
name="dense.generic",
plevel=11,
)
if "cblas" in target.libs:
with SpecializedCondition(same_type and dtype in ["float32", "float64"]):
strategy.add_implementation(
wrap_compute_dense(topi.x86.dense_cblas),
wrap_topi_schedule(topi.x86.schedule_dense_cblas),
name="dense_cblas.x86",
plevel=13,
)
if "mkl" in target.libs:
with SpecializedCondition(same_type and dtype in ["float32", "float64"] or u8s8s32):
strategy.add_implementation(
wrap_compute_dense(topi.x86.dense_mkl),
wrap_topi_schedule(topi.x86.schedule_dense_mkl),
name="dense_mkl.x86",
plevel=14,
)
if "mkldnn" in target.libs:
with SpecializedCondition(same_type and dtype == "float32"):
strategy.add_implementation(
wrap_compute_dense(topi.x86.dense_mkldnn),
wrap_topi_schedule(topi.x86.schedule_dense_mkldnn),
name="dense_mkldnn.x86",
plevel=15,
)
return strategy
@dense_pack_strategy.register("cpu")
def dense_pack_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
strategy.add_implementation(
wrap_compute_dense(topi.x86.dense_pack),
wrap_topi_schedule(topi.x86.schedule_dense_pack),
name="dense_pack.x86",
)
return strategy
@batch_matmul_strategy.register("cpu")
def batch_matmul_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
if is_dynamic(out_type) or is_auto_scheduler_enabled():
strategy.add_implementation(
wrap_compute_batch_matmul(topi.nn.batch_matmul, need_auto_scheduler_layout=True),
wrap_topi_schedule(topi.generic.nn.schedule_batch_matmul),
name="batch_matmul.generic",
plevel=10,
)
else:
strategy.add_implementation(
wrap_compute_batch_matmul(topi.x86.batch_matmul),
wrap_topi_schedule(topi.x86.schedule_batch_matmul),
name="batch_matmul.x86",
plevel=10,
)
if "cblas" in target.libs:
strategy.add_implementation(
wrap_compute_batch_matmul(topi.x86.batch_matmul_cblas),
wrap_topi_schedule(topi.x86.schedule_batch_matmul_cblas),
name="batch_matmul_cblas.x86",
plevel=15,
)
if "mkl" in target.libs:
strategy.add_implementation(
wrap_compute_batch_matmul(topi.x86.batch_matmul_mkl),
wrap_topi_schedule(topi.x86.schedule_batch_matmul_mkl),
name="batch_matmul_mkl.x86",
plevel=15,
)
return strategy
@sparse_dense_strategy.register("cpu")
def sparse_dense_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
strategy.add_implementation(
wrap_compute_sparse_dense(topi.nn.sparse_dense),
wrap_topi_schedule(topi.x86.schedule_sparse_dense),
name="sparse_dense.x86",
plevel=10,
)
return strategy
@roi_align_strategy.register("cpu")
def roi_align_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
layout = attrs.layout
if layout == "NCHW":
strategy.add_implementation(
wrap_compute_roi_align(topi.x86.roi_align_nchw),
wrap_topi_schedule(topi.generic.schedule_roi_align),
name="roi_align.x86",
)
else:
assert layout == "NHWC", "layout must be NCHW or NHWC."
strategy.add_implementation(
wrap_compute_roi_align(topi.vision.rcnn.roi_align_nhwc),
wrap_topi_schedule(topi.generic.schedule_roi_align),
name="roi_align.x86",
)
return strategy
@bitserial_conv2d_strategy.register("cpu")
def bitserial_conv2d_strategy_cpu(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
layout = attrs.data_layout
if layout == "NCHW":
strategy.add_implementation(
wrap_compute_bitserial_conv2d(topi.x86.bitserial_conv2d_nchw),
wrap_topi_schedule(topi.x86.schedule_bitserial_conv2d_nchw),
name="bitserial_conv2d_nchw.x86",
)
elif layout == "NHWC":
strategy.add_implementation(
wrap_compute_bitserial_conv2d(topi.x86.bitserial_conv2d_nhwc),
wrap_topi_schedule(topi.x86.schedule_bitserial_conv2d_nhwc),
name="bitserial_conv2d_nhwc.x86",
)
else:
raise ValueError("Data layout {} not supported.".format(layout))
return strategy
@bitserial_dense_strategy.register("cpu")
|
Apache License 2.0
|
marrow/mongo
|
marrow/mongo/model.py
|
Model.__init__
|
python
|
def __init__(self, collection, model=None, database='default', cache=None):
self.database = database
self.collection = collection
self.model = model
self.cache = cache
|
Construct a new lazy loader for MongoDB collections.
Pass in the string name of the collection as the first positional argument, optionally pass in a marrow.mongo
document class to remember for later, and the name of the database connection to access may be passed as a
keyword arguemnt appropriately called `database`.
If you want to utilize the cache (to save on repeated calls) you'll need to pass in the name of the attribute
you wish to assign to on the instance as `cache`.
|
https://github.com/marrow/mongo/blob/1a8e5fe9047b6a5bb2eaeea95f3dc085c737067f/marrow/mongo/model.py#L33-L46
|
from __future__ import unicode_literals
__all__ = ['Model']
class Model(object):
__slots__ = ('database', 'collection', 'model', 'cache')
|
MIT License
|
stmsolutions/boobsnail
|
excel4lib/sheet/worksheet.py
|
Worksheet.column_iterate
|
python
|
def column_iterate(self):
for c in self.cells.keys():
yield (c, self.cells[c])
|
Iterate through columns
:return: returns all cells in column
|
https://github.com/stmsolutions/boobsnail/blob/c0c2067d7271ca76ee721998d28e8c3c81a48397/excel4lib/sheet/worksheet.py#L70-L76
|
from .cell import *
class AlreadyReservedException(Exception):
pass
class CouldNotMoveCellException(Exception):
pass
class Worksheet(object):
def __init__(self, name = ""):
self.name = name
self.cells = {}
self._curr_x = 1
self._curr_y = 1
self._max_x = 1
self._max_y = 1
self.cells_tag = {}
def get_column(self, x):
return self.cells.get(x, None)
def worksheet_iterate(self):
i = 0
j = 0
while i < self._max_x:
j = 0
while j < self._max_y:
yield (i+1, j+1)
j = j + 1
i = i + 1
def cell_iterate(self):
i = 0
j = 0
while i < self._max_x:
j = 0
while j < self._max_y:
cell = self.get_cell(i + 1, j + 1)
if cell:
yield cell
j = j + 1
i = i + 1
|
MIT License
|
robertcsordas/modules
|
layers/batch_ops.py
|
batch_bias_add
|
python
|
def batch_bias_add(*args, **kwargs) -> torch.Tensor:
return batch_elementwise(*args, op = lambda a,b: a+b, **kwargs)
|
Batch add bias to the inputs.
For more details, see batch_elementwise
|
https://github.com/robertcsordas/modules/blob/efdb8790b074862581e035c9ab5bf889440a8023/layers/batch_ops.py#L65-L72
|
import torch
import torch.nn.functional as F
from typing import Optional, Callable
def batch_matmul(input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
assert input.ndim == 2
if weight.ndim == 3:
weight = weight.squeeze(0)
if weight.ndim == 2:
return torch.mm(input, weight)
assert weight.ndim == 3
assert input.shape[0] % weight.shape[0] == 0
res = torch.bmm(input.view(weight.shape[0], -1, input.shape[-1]), weight)
return res.view(input.shape[0], -1)
def batch_elementwise(input: torch.Tensor, param: torch.Tensor,
op: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
input_batch_dim: int = 0, pndim: int = 1) -> torch.Tensor:
if param.ndim == pndim+1:
param = param.squeeze(0)
if param.ndim == pndim:
return op(input, param)
assert param.ndim == pndim + 1
assert input.shape[input_batch_dim] % param.shape[0] == 0
input_r = input.view(*input.shape[:input_batch_dim], param.shape[0], -1, *input.shape[input_batch_dim+1:])
param_r = param.view(*([1]*input_batch_dim), param.shape[0], *([1]*(input_r.ndim - input_batch_dim - param.ndim)),
*param.shape[1:])
return op(input_r, param_r).view_as(input)
|
BSD 3-Clause New or Revised License
|
cogent3/cogent3
|
src/cogent3/parse/blast.py
|
is_blast_junk
|
python
|
def is_blast_junk(line):
return _is_junk(line, ("BLAST", "TBLAS"))
|
Ignore empty line or lines with blast info
|
https://github.com/cogent3/cogent3/blob/3d98bddc0aef2bf7fea21b9a89de76b01f3d2da8/src/cogent3/parse/blast.py#L50-L52
|
from cogent3.parse.record_finder import (
DelimitedRecordFinder,
LabeledRecordFinder,
never_ignore,
)
__author__ = "Micah Hamady"
__copyright__ = "Copyright 2007-2021, The Cogent Project"
__credits__ = ["Micah Hamady", "Rob Knight"]
__license__ = "BSD-3"
__version__ = "2021.10.12a1"
__maintainer__ = "Micah Hamady"
__email__ = "hamady@colorado.edu"
__status__ = "Prototype"
strip = str.strip
upper = str.upper
def iter_finder(line):
return line.startswith("# Iteration:")
def query_finder(line):
return line.startswith("# Query:")
def iteration_set_finder(line):
return line.startswith("# Iteration: 1")
def _is_junk(line, t_strs):
if not line or not line.strip():
return True
for t_str in t_strs:
if line.startswith("# %s" % t_str):
return True
return False
|
BSD 3-Clause New or Revised License
|
google/pasta
|
pasta/base/token_generator.py
|
TokenGenerator.block_whitespace
|
python
|
def block_whitespace(self, indent_level):
start_i = self._i
full_whitespace = self.whitespace(comment=True)
if not indent_level:
return full_whitespace
self._i = start_i
lines = full_whitespace.splitlines(True)
try:
last_line_idx = next(i for i, line in reversed(list(enumerate(lines)))
if line.startswith(indent_level + '#'))
except StopIteration:
self._loc = self._tokens[self._i].end
return ''
lines = lines[:last_line_idx + 1]
end_line = self._tokens[self._i].end[0] + 1 + len(lines)
list(self.takewhile(lambda tok: tok.start[0] < end_line))
self._loc = self._tokens[self._i].end
return ''.join(lines)
|
Parses whitespace from the current _loc to the end of the block.
|
https://github.com/google/pasta/blob/a73452d0cfa04f1473abd8e050a8ca3bceab61ad/pasta/base/token_generator.py#L171-L196
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import ast
import collections
import contextlib
import itertools
import tokenize
from six import StringIO
from pasta.base import formatting as fmt
from pasta.base import fstring_utils
TOKENS = tokenize
Token = collections.namedtuple('Token', ('type', 'src', 'start', 'end', 'line'))
FORMATTING_TOKENS = (TOKENS.INDENT, TOKENS.DEDENT, TOKENS.NL, TOKENS.NEWLINE,
TOKENS.COMMENT)
class TokenGenerator(object):
def __init__(self, source, ignore_error_token=False):
self.lines = source.splitlines(True)
self._tokens = list(_generate_tokens(source, ignore_error_token))
self._parens = []
self._hints = 0
self._scope_stack = []
self._len = len(self._tokens)
self._i = -1
self._loc = self.loc_begin()
def chars_consumed(self):
return len(self._space_between((1, 0), self._tokens[self._i].end))
def loc_begin(self):
if self._i < 0:
return (1, 0)
return self._tokens[self._i].start
def loc_end(self):
if self._i < 0:
return (1, 0)
return self._tokens[self._i].end
def peek(self):
if self._i + 1 >= self._len:
return None
return self._tokens[self._i + 1]
def peek_non_whitespace(self):
return self.peek_conditional(lambda t: t.type not in FORMATTING_TOKENS)
def peek_conditional(self, condition):
return next((t for t in self._tokens[self._i + 1:] if condition(t)), None)
def next(self, advance=True):
self._i += 1
if self._i >= self._len:
return None
if advance:
self._loc = self._tokens[self._i].end
return self._tokens[self._i]
def rewind(self, amount=1):
self._i -= amount
def whitespace(self, max_lines=None, comment=False):
next_token = self.peek()
if not comment and next_token and next_token.type == TOKENS.COMMENT:
return ''
def predicate(token):
return (token.type in (TOKENS.INDENT, TOKENS.DEDENT) or
token.type == TOKENS.COMMENT and (comment or self._hints) or
token.type == TOKENS.ERRORTOKEN and token.src == ' ' or
max_lines is None and token.type in (TOKENS.NL, TOKENS.NEWLINE))
whitespace = list(self.takewhile(predicate, advance=False))
next_token = self.peek()
result = ''
for tok in itertools.chain(whitespace,
((next_token,) if next_token else ())):
result += self._space_between(self._loc, tok.start)
if tok != next_token:
result += tok.src
self._loc = tok.end
else:
self._loc = tok.start
if ((max_lines is None or max_lines > 0) and
next_token and next_token.type in (TOKENS.NL, TOKENS.NEWLINE)):
result += self.next().src
return result
|
Apache License 2.0
|
paddlepaddle/paddlesleeve
|
AdvBox/examples/objectdetector/ppdet/modeling/necks/yolo_fpn.py
|
PPYOLOTinyDetBlock.__init__
|
python
|
def __init__(self,
ch_in,
ch_out,
name,
drop_block=False,
block_size=3,
keep_prob=0.9,
data_format='NCHW'):
super(PPYOLOTinyDetBlock, self).__init__()
self.drop_block_ = drop_block
self.conv_module = nn.Sequential()
cfgs = [
['.0', ch_in, ch_out, 1, 1, 0, 1],
['.1', ch_out, ch_out, 5, 1, 2, ch_out],
['.2', ch_out, ch_out, 1, 1, 0, 1],
['.route', ch_out, ch_out, 5, 1, 2, ch_out],
]
for cfg in cfgs:
conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, groups = cfg
self.conv_module.add_sublayer(
name + conv_name,
ConvBNLayer(
ch_in=conv_ch_in,
ch_out=conv_ch_out,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
name=name + conv_name))
self.tip = ConvBNLayer(
ch_in=ch_out,
ch_out=ch_out,
filter_size=1,
stride=1,
padding=0,
groups=1,
name=name + conv_name)
if self.drop_block_:
self.drop_block = DropBlock(
block_size=block_size,
keep_prob=keep_prob,
data_format=data_format,
name=name + '.dropblock')
|
PPYOLO Tiny DetBlock layer
Args:
ch_in (list): input channel number
ch_out (list): output channel number
name (str): block name
drop_block: whether user DropBlock
block_size: drop block size
keep_prob: probability to keep block in DropBlock
data_format (str): data format, NCHW or NHWC
|
https://github.com/paddlepaddle/paddlesleeve/blob/18cc4b83ae311365b8d132ea4619d60abf3945bf/AdvBox/examples/objectdetector/ppdet/modeling/necks/yolo_fpn.py#L246-L305
|
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import DropBlock
from ..backbones.darknet import ConvBNLayer
from ..shape_spec import ShapeSpec
__all__ = ['YOLOv3FPN', 'PPYOLOFPN', 'PPYOLOTinyFPN', 'PPYOLOPAN']
def add_coord(x, data_format):
b = paddle.shape(x)[0]
if data_format == 'NCHW':
h, w = x.shape[2], x.shape[3]
else:
h, w = x.shape[1], x.shape[2]
gx = paddle.arange(w, dtype=x.dtype) / ((w - 1.) * 2.0) - 1.
gy = paddle.arange(h, dtype=x.dtype) / ((h - 1.) * 2.0) - 1.
if data_format == 'NCHW':
gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
else:
gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])
gx.stop_gradient = True
gy.stop_gradient = True
return gx, gy
class YoloDetBlock(nn.Layer):
def __init__(self,
ch_in,
channel,
norm_type,
freeze_norm=False,
name='',
data_format='NCHW'):
super(YoloDetBlock, self).__init__()
self.ch_in = ch_in
self.channel = channel
assert channel % 2 == 0, "channel {} cannot be divided by 2".format(channel)
conv_def = [
['conv0', ch_in, channel, 1, '.0.0'],
['conv1', channel, channel * 2, 3, '.0.1'],
['conv2', channel * 2, channel, 1, '.1.0'],
['conv3', channel, channel * 2, 3, '.1.1'],
['route', channel * 2, channel, 1, '.2'],
]
self.conv_module = nn.Sequential()
for idx, (conv_name, ch_in, ch_out, filter_size,
post_name) in enumerate(conv_def):
self.conv_module.add_sublayer(
conv_name,
ConvBNLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=filter_size,
padding=(filter_size - 1) // 2,
norm_type=norm_type,
freeze_norm=freeze_norm,
data_format=data_format,
name=name + post_name))
self.tip = ConvBNLayer(
ch_in=channel,
ch_out=channel * 2,
filter_size=3,
padding=1,
norm_type=norm_type,
freeze_norm=freeze_norm,
data_format=data_format,
name=name + '.tip')
def forward(self, inputs):
route = self.conv_module(inputs)
tip = self.tip(route)
return route, tip
class SPP(nn.Layer):
def __init__(self,
ch_in,
ch_out,
k,
pool_size,
norm_type,
freeze_norm=False,
name='',
act='leaky',
data_format='NCHW'):
super(SPP, self).__init__()
self.pool = []
self.data_format = data_format
for size in pool_size:
pool = self.add_sublayer(
'{}.pool1'.format(name),
nn.MaxPool2D(
kernel_size=size,
stride=1,
padding=size // 2,
data_format=data_format,
ceil_mode=False))
self.pool.append(pool)
self.conv = ConvBNLayer(
ch_in,
ch_out,
k,
padding=k // 2,
norm_type=norm_type,
freeze_norm=freeze_norm,
name=name,
act=act,
data_format=data_format)
def forward(self, x):
outs = [x]
for pool in self.pool:
outs.append(pool(x))
if self.data_format == "NCHW":
y = paddle.concat(outs, axis=1)
else:
y = paddle.concat(outs, axis=-1)
y = self.conv(y)
return y
class CoordConv(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
padding,
norm_type,
freeze_norm=False,
name='',
data_format='NCHW'):
super(CoordConv, self).__init__()
self.conv = ConvBNLayer(
ch_in + 2,
ch_out,
filter_size=filter_size,
padding=padding,
norm_type=norm_type,
freeze_norm=freeze_norm,
data_format=data_format,
name=name)
self.data_format = data_format
def forward(self, x):
gx, gy = add_coord(x, self.data_format)
if self.data_format == 'NCHW':
y = paddle.concat([x, gx, gy], axis=1)
else:
y = paddle.concat([x, gx, gy], axis=-1)
y = self.conv(y)
return y
class PPYOLODetBlock(nn.Layer):
def __init__(self, cfg, name, data_format='NCHW'):
super(PPYOLODetBlock, self).__init__()
self.conv_module = nn.Sequential()
for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
kwargs.update(
name='{}.{}'.format(name, conv_name), data_format=data_format)
self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))
conv_name, layer, args, kwargs = cfg[-1]
kwargs.update(
name='{}.{}'.format(name, conv_name), data_format=data_format)
self.tip = layer(*args, **kwargs)
def forward(self, inputs):
route = self.conv_module(inputs)
tip = self.tip(route)
return route, tip
class PPYOLOTinyDetBlock(nn.Layer):
|
Apache License 2.0
|
wangbinyq/pillow_example
|
tutorial.py
|
show
|
python
|
def show(newim, oldim = im):
cm = Image.new('RGB', (512*2, 512))
left = (0, 0, 512, 512)
right = (512, 0, 512*2, 512)
cm.paste(oldim, left)
cm.paste(newim, right)
cm.show()
|
show origin and new image in one image.
|
https://github.com/wangbinyq/pillow_example/blob/64fdbeca9385a2a4361e54abceb5948c41809e0c/tutorial.py#L11-L22
|
from PIL import Image, ImageFilter, ImageEnhance
import os
fn = 'lena.ppm'
im = Image.open(fn)
print im.format, im.size, im.mode
|
BSD 2-Clause Simplified License
|
altosaar/proximity_vi
|
inferences/proximity_variational_inference.py
|
ProximityVariationalInference.build_distance
|
python
|
def build_distance(self):
cfg = self.config
distance = {}
proximity = self.proximity_statistic
moving_average = proximity.moving_average
for name, stat in proximity.statistic.items():
difference = stat - moving_average[name]
if cfg['c/distance'] == 'square_difference':
dist = tf.square(difference)
elif cfg['c/distance'] == 'inverse_huber':
dist = tf.where(tf.abs(difference) <= 1.0,
tf.abs(difference), 0.5 * tf.square(difference) + 0.5)
if 'latent' in proximity.named_shape[name]:
dist = tf.reduce_sum(dist, proximity.named_shape[name]['latent'])
proximity.named_shape[name].remove('latent')
if 'param_0' in proximity.named_shape[name]:
dist = tf.reduce_sum(dist, proximity.named_shape[name]['param_0'])
proximity.named_shape[name].remove('param_0')
if 'param_1' in proximity.named_shape[name]:
dist = tf.reduce_sum(dist, proximity.named_shape[name]['param_1'])
proximity.named_shape[name].remove('param_1')
distance[name] = dist
name = '_'.join(['c/distance', cfg['c/proximity_statistic'], name])
tf.summary.scalar(name, tf.reduce_mean(dist))
self.distance = distance
res = 0.
for dist in distance.values():
res += dist
self.distance_sum = res
|
Distance between statistic f(lambda) and its moving average.
|
https://github.com/altosaar/proximity_vi/blob/a3640379d06ecf860adac36fe70751858d5122e1/inferences/proximity_variational_inference.py#L49-L78
|
import tensorflow as tf
import numpy as np
import collections
import time
import util
from .variational_inference import VariationalInference
from inferences import proximity_statistics
fw = tf.contrib.framework
layers = tf.contrib.layers
dist = tf.contrib.distributions
class ProximityVariationalInference(VariationalInference):
def __init__(self, session, config, model, variational, data):
super(ProximityVariationalInference, self).__init__(
session, config, model, variational, data)
cfg = self.config
self.build_proximity_statistic()
self.build_distance()
if not cfg['optim/deterministic_annealing']:
self.build_magnitude()
def build_proximity_statistic(self):
cfg = self.config
if cfg['c/proximity_statistic'] == 'entropy':
s = proximity_statistics.Entropy(cfg, self.variational)
elif cfg['c/proximity_statistic'] == 'kl':
s = proximity_statistics.KL(cfg, self.variational, model=self.model)
elif cfg['c/proximity_statistic'] == 'mean_variance':
s = proximity_statistics.MeanVariance(cfg, self.variational)
elif cfg['c/proximity_statistic'] == 'active_units':
s = proximity_statistics.ActiveUnits(cfg, self.variational)
elif cfg['c/proximity_statistic'] == 'activations_layer_0_fc0':
s = proximity_statistics.Activations(cfg, self.variational)
elif cfg['c/proximity_statistic'] == 'log_likelihood':
s = proximity_statistics.LogLikelihood(
cfg, self.variational, model=self.model, q_z_sample=self.q_z_sample,
data=self.data)
elif cfg['c/proximity_statistic'] == 'orthogonal':
s = proximity_statistics.Orthogonal(cfg, self.variational)
else:
raise ValueError('Proximity statistic %s not implemented!' %
cfg['c/proximity_statistic'])
self.proximity_statistic = s
|
MIT License
|
zedthree/fort_depend.py
|
fortdepend/fort_depend.py
|
FortranProject.get_source
|
python
|
def get_source(self, extensions=None):
if extensions is None:
extensions = [".f90", ".F90"]
elif not isinstance(extensions, list):
extensions = [extensions]
tmp = os.listdir(".")
files = []
for ext in extensions:
files.extend([x for x in tmp if x.endswith(ext)])
return files
|
Return a list of filenames ending with any of extensions
Args:
extensions: List of file extensions (defaults to [".f90", ".F90"])
|
https://github.com/zedthree/fort_depend.py/blob/ea2caf0010765f00de142d168b05665499ffe1ca/fortdepend/fort_depend.py#L83-L100
|
from __future__ import print_function
import os
import sys
from colorama import Fore
from .smartopen import smart_open
from .units import FortranFile, FortranModule
from .graph import Graph
try:
input = raw_input
except NameError:
pass
DEPFILE_HEADER = "# This file is generated automatically. DO NOT EDIT!"
DEFAULT_IGNORED_MODULES = ["iso_c_binding", "iso_fortran_env"]
class FortranProject:
def __init__(self, name=None, exclude_files=None, files=None, ignore_modules=None,
macros=None, cpp_includes=None, use_preprocessor=True, verbose=False):
if name is None:
self.name = os.path.basename(os.getcwd())
else:
self.name = name
if files is None:
files = self.get_source()
elif not isinstance(files, list):
files = [files]
if exclude_files is not None:
if not isinstance(exclude_files, list):
exclude_files = [exclude_files]
files = set(files) - set(exclude_files)
self.files = {filename: FortranFile(filename=filename, macros=macros, readfile=True,
cpp_includes=cpp_includes,
use_preprocessor=use_preprocessor)
for filename in files}
self.modules = self.get_modules()
self.programs = {k: v for k, v in self.modules.items()
if v.unit_type == "program"}
self.remove_ignored_modules(ignore_modules)
self.depends_by_module = self.get_depends_by_module(verbose)
self.depends_by_file = self.get_depends_by_file(verbose)
|
MIT License
|
lukelbd/proplot
|
proplot/axes/base.py
|
Axes._get_background_props
|
python
|
def _get_background_props(patch_kw=None, context=True, **kwargs):
if patch_kw:
warnings._warn_proplot(
"Keyword 'patch_kw' was deprecated in v0.8. Please pass "
'patch properties as keyword arguments instead.'
)
kwargs.update(patch_kw)
props = _pop_props(kwargs, 'patch')
if 'color' in props:
props.setdefault('edgecolor', props.pop('color'))
for key in ('alpha', 'facecolor', 'linewidth', 'edgecolor'):
value = rc.find('axes.' + key, context=context)
if value is not None:
props.setdefault(key, value)
kw_face = _pop_kwargs(props, 'alpha', 'facecolor')
kw_edge = _pop_kwargs(props, 'edgecolor', 'linewidth', 'linestyle')
kw_edge['capstyle'] = 'projecting'
if 'color' in props:
kw_edge.setdefault('edgecolor', props.pop('color'))
if kwargs:
raise TypeError(f'Unexpected keyword argument(s): {kwargs!r}')
return kw_face, kw_edge
|
Return boundary properties. Backgrounds are used in all axes projections.
|
https://github.com/lukelbd/proplot/blob/26e7d5810fc8187e73f2028b5e8be4d0bcd82b91/proplot/axes/base.py#L859-L891
|
import copy
import inspect
import re
from numbers import Integral
import matplotlib.axes as maxes
import matplotlib.cm as mcm
import matplotlib.colors as mcolors
import matplotlib.container as mcontainer
import matplotlib.contour as mcontour
import matplotlib.gridspec as mgridspec
import matplotlib.legend as mlegend
import matplotlib.patches as mpatches
import matplotlib.projections as mprojections
import matplotlib.text as mtext
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms
import numpy as np
from matplotlib import cbook
from .. import colors as pcolors
from .. import constructor
from ..config import rc
from ..internals import ic
from ..internals import (
_kwargs_to_args,
_not_none,
_pop_kwargs,
_pop_params,
_pop_props,
_pop_rc,
_translate_loc,
dependencies,
docstring,
guides,
rcsetup,
texts,
warnings,
)
from ..utils import _fontsize_to_pt, edges, units
try:
from cartopy.crs import CRS, PlateCarree
except Exception:
CRS = PlateCarree = object
__all__ = ['Axes']
ABC_STRING = 'abcdefghijklmnopqrstuvwxyz'
ALIGN_OPTS = {
None: {
'center': 'center',
'left': 'center left',
'right': 'center right',
'top': 'upper center',
'bottom': 'lower center',
},
'left': {
'top': 'upper right',
'center': 'center right',
'bottom': 'lower right',
},
'right': {
'top': 'upper left',
'center': 'center left',
'bottom': 'lower left',
},
'top': {
'left': 'lower left',
'center': 'lower center',
'right': 'lower right'
},
'bottom': {
'left': 'upper left',
'center': 'upper center',
'right': 'upper right'
},
}
_proj_docstring = """
proj, projection : \
str, `cartopy.crs.Projection`, or `~mpl_toolkits.basemap.Basemap`, optional
The map projection specification(s). If ``'cart'`` or ``'cartesian'``
(the default), a `~proplot.axes.CartesianAxes` is created. If ``'polar'``,
a `~proplot.axes.PolarAxes` is created. Otherwise, the argument is
interpreted by `~proplot.constructor.Proj`, and the result is used
to make a `~proplot.axes.GeoAxes` (in this case the argument can be
a `cartopy.crs.Projection` instance, a `~mpl_toolkits.basemap.Basemap`
instance, or a projection name listed in :ref:`this table <proj_table>`).
"""
_proj_kw_docstring = """
proj_kw, projection_kw : dict-like, optional
Keyword arguments passed to `~mpl_toolkits.basemap.Basemap` or
cartopy `~cartopy.crs.Projection` classes on instantiation.
"""
_basemap_docstring = """
basemap : bool or dict-like, optional
Whether to use `~mpl_toolkits.basemap.Basemap` or `~cartopy.crs.Projection`
for map projections. Default is :rc:`basemap`.
"""
docstring._snippet_manager['axes.proj'] = _proj_docstring
docstring._snippet_manager['axes.proj_kw'] = _proj_kw_docstring
docstring._snippet_manager['axes.basemap'] = _basemap_docstring
_space_docstring = """
queue : bool, optional
If ``True`` and `loc` is the same as an existing {name}, the input
arguments are added to a queue and this function returns ``None``.
This is used to "update" the same {name} with successive ``ax.{name}(...)``
calls. If ``False`` (the default) and `loc` is the same as an existing
*inset* {name}, the old {name} is removed. If ``False`` and `loc` is an
*outer* {name}, the {name}s are stacked.
space : unit-spec, optional
For outer {name}s only. The fixed space between the {name} and the subplot
edge. %(units.em)s
When the tight layout algorithm is active for the figure, this is adjusted
automatically using `pad`. Otherwise, a suitable default is selected.
pad : unit-spec, optional
For outer {name}s, this is the tight layout padding between the {name} and
the subplot. Default is :rc:`subplots.panelpad`. For inset {name}s, this is the
fixed space between the axes edge and the {name}. Default is :rc:`{default}`.
%(units.em)s
align : {{'center', 'top', 't', 'bottom', 'b', 'left', 'l', 'right', 'r'}}, optional
For outer {name}s only. How to align the {name} against the
subplot edge. Default is ``'center'``. The values ``'top'``
and ``'bottom'`` are valid for left and right {name}s and
``'left'`` and ``'right'`` are valid for top and bottom
{name}s. The default is always ``'center'``.
"""
docstring._snippet_manager['axes.legend_space'] = _space_docstring.format(
name='legend', default='legend.borderaxespad'
)
docstring._snippet_manager['axes.colorbar_space'] = _space_docstring.format(
name='colorbar', default='colorbar.insetpad'
)
_transform_docstring = """
transform : {'data', 'axes', 'figure'} or `~matplotlib.transforms.Transform`, optional
The transform used to interpret the bounds. Can be a
`~matplotlib.transforms.Transform` instance
or a string representing the `~matplotlib.axes.Axes.transData`,
`~matplotlib.axes.Axes.transAxes`, or `~matplotlib.figure.Figure.transFigure`
transforms. Default is ``'axes'``, i.e. `bounds` is in axes-relative coordinates.
"""
docstring._snippet_manager['axes.transform'] = _transform_docstring
_inset_docstring = """
Add an inset axes.
This is similar to `matplotlib.axes.Axes.inset_axes`.
Parameters
----------
bounds : 4-tuple of float
The (left, bottom, width, height) coordinates for the axes.
%(axes.transform)s
Default is to use the same projection as the current axes.
%(axes.proj)s
%(axes.proj_kw)s
%(axes.basemap)s
zorder : float, optional
The `zorder <https://matplotlib.org/stable/gallery/misc/zorder_demo.html>`__
of the axes. Should be greater than the zorder
of elements in the parent axes. Default is ``4``.
zoom : bool, optional
Whether to draw lines indicating the inset zoom using
`~Axes.indicate_inset_zoom`. The line positions will automatically
adjust when the parent or inset axes limits change. Default
is ``True`` only if both axes are `~proplot.axes.CartesianAxes`.
zoom_kw : dict, optional
Passed to `~Axes.indicate_inset_zoom`.
Other parameters
----------------
**kwargs
Passed to `proplot.axes.Axes`.
Returns
-------
proplot.axes.Axes
The inset axes.
See also
--------
Axes.indicate_inset_zoom
matplotlib.axes.Axes.inset_axes
matplotlib.axes.Axes.indicate_inset
matplotlib.axes.Axes.indicate_inset_zoom
"""
_indicate_inset_docstring = """
Add indicators denoting the zoom range of the inset axes.
This will replace previously drawn zoom indicators.
Parameters
----------
%(artist.patch)s
zorder : float, optional
The `zorder <https://matplotlib.org/stable/gallery/misc/zorder_demo.html>`__
of the indicators. Should be greater than the zorder
of elements in the parent axes. Default is ``3.5``.
Other parameters
----------------
**kwargs
Passed to `~matplotlib.patches.Patch`.
Note
----
This command must be called from the inset axes rather than the parent axes.
It is called automatically when ``zoom=True`` is passed to `~Axes.inset_axes`
and whenever the axes are drawn (so the line positions always track the axis
limits even if they are later changed).
See also
--------
matplotlib.axes.Axes.indicate_inset
matplotlib.axes.Axes.indicate_inset_zoom
"""
docstring._snippet_manager['axes.inset'] = _inset_docstring
docstring._snippet_manager['axes.indicate_inset'] = _indicate_inset_docstring
_panel_loc_docstring = """
========== =====================
Location Valid keys
========== =====================
left ``'left'``, ``'l'``
right ``'right'``, ``'r'``
bottom ``'bottom'``, ``'b'``
top ``'top'``, ``'t'``
========== =====================
"""
_panel_docstring = """
Add a panel axes.
Parameters
----------
side : str, optional
The panel location. Valid location keys are as follows.
%(axes.panel_loc)s
width : unit-spec, optional
The panel width. Default is :rc:`subplots.panelwidth`.
%(units.in)s
space : unit-spec, optional
The fixed space between the panel and the subplot edge.
%(units.em)s
When the tight layout algorithm is active for the figure, this is adjusted
automatically using `pad`. Otherwise, a suitable default is selected.
pad : unit-spec, optional
The tight layout padding between the panel and the subplot.
%(units.em)s
share : bool, optional
Whether to enable axis sharing between the *x* and *y* axes of the
main subplot and the panel long axes for each panel in the stack.
Sharing between the panel short axis and other panel short axes
is determined by figure-wide `sharex` and `sharey` settings.
Other parameters
----------------
**kwargs
Passed to `proplot.axes.CartesianAxes`.
Returns
-------
proplot.axes.CartesianAxes
The panel axes.
"""
docstring._snippet_manager['axes.panel_loc'] = _panel_loc_docstring
docstring._snippet_manager['axes.panel'] = _panel_docstring
_axes_format_docstring = """
title : str, optional
The axes title.
abc : bool or str, optional
The "a-b-c" subplot label style. Must contain the character ``a`` or ``A``,
for example ``'a.'``, or ``'A'``. If ``True`` then the default style of
``'a'`` is used. The ``a`` or ``A`` is replaced with the alphabetic character
matching the `~Axes.number`. If `~Axes.number` is greater than 26, the
characters loop around to a, ..., z, aa, ..., zz, aaa, ..., zzz, etc.
abcloc, titleloc : str, optional
Strings indicating the location for the a-b-c label and main title.
The following locations are valid (defaults are :rc:`abc.loc` and
:rc:`title.loc`):
.. _title_table:
======================== ============================
Location Valid keys
======================== ============================
center above axes ``'center'``, ``'c'``
left above axes ``'left'``, ``'l'``
right above axes ``'right'``, ``'r'``
lower center inside axes ``'lower center'``, ``'lc'``
upper center inside axes ``'upper center'``, ``'uc'``
upper right inside axes ``'upper right'``, ``'ur'``
upper left inside axes ``'upper left'``, ``'ul'``
lower left inside axes ``'lower left'``, ``'ll'``
lower right inside axes ``'lower right'``, ``'lr'``
======================== ============================
abcborder, titleborder : bool, optional
Whether to draw a white border around titles and a-b-c labels positioned
inside the axes. This can help them stand out on top of artists plotted
inside the axes. Defaults are :rc:`abc.border` and :rc:`title.border`.
abcbbox, titlebbox : bool, optional
Whether to draw a white bbox around titles and a-b-c labels positioned
inside the axes. This can help them stand out on top of artists plotted
inside the axes. Defaults are :rc:`abc.bbox` and :rc:`title.bbox`.
abc_kw, title_kw : dict-like, optional
Additional settings used to update the a-b-c label and title
with ``text.update()``.
titlepad : float, optional
The padding for the inner and outer titles and a-b-c labels in
arbitrary units (default is points). Default is :rc:`title.pad`.
titleabove : bool, optional
Whether to try to put outer titles and a-b-c labels above panels,
colorbars, or legends that are above the axes. Default is :rc:`title.above`.
abctitlepad : float, optional
The horizontal padding between the a-b-c label and title when they are
in the same location. Default is :rc:`abc.titlepad`.
ltitle, ctitle, rtitle, ultitle, uctitle, urtitle, lltitle, lctitle, lrtitle \
: str, optional
Shorthands for the below keywords.
lefttitle, centertitle, righttitle, upperlefttitle, uppercentertitle, upperrighttitle, \
lowerlefttitle, lowercentertitle, lowerrighttitle : str, optoinal
Additional titles in specific positions. This works as an alternative
to the ``ax.format(title='Title', titleloc=loc)`` workflow and permits
adding more than one title-like label for a single axes.
a, alpha, fc, facecolor, ec, edgecolor, lw, linewidth, ls, linestyle : optional
Additional settings applied to the background patch, and their
shorthands. Defaults are :rcraw:`axes.alpha`, :rcraw:`axes.facecolor`,
:rcraw:`axes.edgecolor`, :rcraw:`axes.linewidth`, and ``'-'``, respectively.
"""
_figure_format_docstring = """
rowlabels, collabels, llabels, tlabels, rlabels, blabels
Aliases for `leftlabels` and `toplabels`, and for `leftlabels`,
`toplabels`, `rightlabels`, and `bottomlabels`, respectively.
leftlabels, toplabels, rightlabels, bottomlabels : sequence of str, optional
Labels for the subplots lying along the left, top, right, and
bottom edges of the figure. The length of each list must match
the number of subplots along the corresponding edge.
leftlabelpad, toplabelpad, rightlabelpad, bottomlabelpad : float, optional
The padding between the labels and the axes content in arbitrary units
(default is points). Defaults are :rcraw:`leftlabel.pad`,
:rcraw:`toplabel.pad`, :rcraw:`rightlabel.pad`, and :rcraw:`bottomlabel.pad`
leftlabels_kw, toplabels_kw, rightlabels_kw, bottomlabels_kw : dict-like, optional
Additional settings used to update the labels with ``text.update()``.
figtitle
Alias for `suptitle`.
suptitle : str, optional
The figure "super" title, centered between the left edge of the lefmost
column of subplots and the right edge of the rightmost column of subplots, and
automatically offset above figure titles. This is an improvement on matplotlib's
"super" title, which just centers the text between figure edges.
suptitlepad : float, optional
The padding between the super title and the axes content in arbitrary
units (default is points). Default is :rcraw:`suptitle.pad`.
suptitle_kw : optional
Additional settings used to update the super title with ``text.update()``.
includepanels : bool, optional
Whether to include panels when aligning figure "super titles" along the top
of the subplot grid and when aligning the `spanx` *x* axis labels and `spany`
*y* axis labels along the sides of the subplot grid. Default is ``False``.
mathtext_fallback : bool or str, optional
Apply this :rc:`mathtext.fallback` value when drawing the figure. If
``True`` or string, unavailable glyphs are replaced with a glyph from a
fallback font (Computer Modern by default). Otherwise, they are replaced
with the "¤" dummy character. For details see this `mathtext tutorial \
<https://matplotlib.org/stable/tutorials/text/mathtext.html#custom-fonts>`__.
"""
_rc_init_docstring = """
Remaining keyword arguments are passed to `matplotlib.axes.Axes`.
"""
_rc_format_docstring = """
rc_mode : int, optional
The context mode passed to `~proplot.config.Configurator.context`.
rc_kw : dict-like, optional
An alternative to passing extra keyword arguments. See below.
**kwargs
{}Keyword arguments that match the name of an `~proplot.config.rc` setting are
passed to `proplot.config.Configurator.context` and used to update the axes.
If the setting name has "dots" you can simply omit the dots. For example,
``abc='A.'`` modifies the :rcraw:`abc` setting, ``titleloc='left'`` modifies the
:rcraw:`title.loc` setting, ``gridminor=True`` modifies the :rcraw:`gridminor`
setting, and ``gridbelow=True`` modifies the :rcraw:`grid.below` setting. Many
of the keyword arguments documented above are internally applied by retrieving
settings passed to `~proplot.config.Configurator.context`.
"""
docstring._snippet_manager['rc.init'] = _rc_format_docstring.format(_rc_init_docstring.strip())
docstring._snippet_manager['rc.format'] = _rc_format_docstring.format('')
docstring._snippet_manager['axes.format'] = _axes_format_docstring
docstring._snippet_manager['figure.format'] = _figure_format_docstring
_colorbar_args_docstring = """
mappable : mappable, sequence of artist, sequence of color-spec, or colormap-spec
There are four options here:
1. A mappable object. Basically, any object with a ``get_cmap`` method,
like the objects returned by `~matplotlib.axes.Axes.contourf` and
`~matplotlib.axes.Axes.pcolormesh`.
2. A sequence of matplotlib artists. Any object with a ``get_color`` method
will do, like `~matplotlib.lines.Line2D` instances. A colormap will
be generated from the colors of these objects, and colorbar levels
will be selected using `values`. If `values` is ``None``, we try
to infer them by converting the handle labels returned by
`~matplotlib.artist.Artist.get_label` to `float`. Otherwise, it is
set to ``np.linspace(0, 1, len(mappable))``.
3. A sequence of hex strings, color string names, or RGB tuples. A colormap
will be generated from these colors, and colorbar levels will be
selected using `values`. If `values` is ``None``, it is set to
``np.linspace(0, 1, len(mappable))``.
4. A `~matplotlib.colors.Colormap` instance. In this case, a colorbar
will be drawn using this colormap and with levels determined by
`values`. If `values` is ``None``, it is set to
``np.linspace(0, 1, cmap.N)``.
values : sequence of float or str, optional
Ignored if `mappable` is a mappable object. This maps each color or
plot handle in the `mappable` list to numeric values, from which a
colormap and normalizer are constructed. These can also be strings,
in which case the list indices are used for tick locations and the
strings are applied as tick labels.
"""
_colorbar_kwargs_docstring = """
orientation : {None, 'horizontal', 'vertical'}, optional
The colorbar orientation. By default this depends on the "side" of the subplot
or figure where the colorbar is drawn. Inset colorbars are always horizontal.
norm : norm-spec, optional
Ignored if `values` is ``None``. The normalizer for converting `values`
to colormap colors. Passed to `~proplot.constructor.Norm`.
norm_kw : dict-like, optional
The normalizer settings. Passed to `~proplot.constructor.Norm`.
label, title : str, optional
The colorbar label. The `title` keyword is also accepted for
consistency with `~matplotlib.axes.Axes.legend`.
reverse : bool, optional
Whether to reverse the direction of the colorbar. This is done automatically
when descending levels are used with `~proplot.colors.DiscreteNorm`.
rotation : float, optional
The tick label rotation. Default is ``0``.
grid, edges, drawedges : bool, optional
Whether to draw level dividers (i.e., gridlines) between each distinct color.
Default is :rc:`colorbar.grid`.
extend : {'neither', 'both', 'min', 'max'}, optional
Direction for drawing colorbar "extensions" (i.e. color keys for out-of-bounds
data on the end of the colorbar). Default behavior is to use the value of `extend`
passed to the plotting command or use ``'neither'`` if the value is unknown.
extendfrac : float, optional
The length of the colorbar "extensions" relative to the length of the colorbar.
This is a native matplotlib `~matplotlib.figure.Figure.colorbar` keyword.
extendsize : unit-spec, optional
The length of the colorbar "extensions" in physical units. Default is
:rc:`colorbar.insetextend` for inset colorbars and :rc:`colorbar.extend` for
outer colorbars. %(units.em)s
extendrect : bool, optional
Whether to draw colorbar "extensions" as rectangles. Default is ``False``
(i.e. extensions are drawn as triangles).
locator, ticks : locator-spec, optional
Used to determine the colorbar tick positions. Passed to the
`~proplot.constructor.Locator` constructor function.
locator_kw : dict-like, optional
Keyword arguments passed to `matplotlib.ticker.Locator` class.
minorlocator, minorticks
As with `locator`, `ticks` but for the minor ticks.
minorlocator_kw
As with `locator_kw`, but for the minor ticks.
maxn : int, optional
The maximum number of `~proplot.colors.DiscreteNorm` levels that should be assigned
major ticks. Ignored if `locator` was passed. Default depends on the colorbar and
tick label size. The name `maxn` was inspired by `~matplotlib.ticker.MaxNLocator`.
maxn_minor
As with `maxn` but for minor ticks. Ignored if `minorlocator` was passed.
format, formatter, ticklabels : formatter-spec, optional
The tick label format. Passed to the `~proplot.constructor.Formatter`
constructor function.
formatter_kw : dict-like, optional
Keyword arguments passed to `matplotlib.ticker.Formatter` class.
frame, frameon : bool, optional
For inset colorbars only. Indicates whether to draw a "frame", just
like `~matplotlib.axes.Axes.legend`. Default is :rc:`colorbar.frameon`.
tickminor : bool, optional
Whether to add minor ticks using `~matplotlib.colorbar.ColorbarBase.minorticks_on`.
tickloc, ticklocation : {'bottom', 'top', 'left', 'right'}, optional
Where to draw tick marks on the colorbar. Default is toward the outside
of the subplot for outer colorbars and ``'bottom'`` for inset colorbars.
tickdir, tickdirection : {'out', 'in', 'inout'}, optional
Direction of major and minor colorbar ticks. Default is :rc:`tick.dir`.
ticklen : unit-spec, optional
Major tick lengths for the colorbar ticks. Default is :rc:`tick.len`.
ticklenratio : float, optional
Relative scaling of `ticklen` used to determine minor tick lengths.
Default is :rc:`tick.lenratio`.
tickwidth : unit-spec, optional
Major tick widths for the colorbar ticks. Default is `linewidth`
or :rc:`tick.width` if `linewidth` was not passed.
tickwidthratio : float, optional
Relative scaling of `tickwidth` used to determine minor tick widths.
Default is :rc:`tick.widthratio`.
ticklabelcolor, ticklabelsize, ticklabelweight : optional
The font color, size, and weight for colorbar tick labels. Defaults
are :rc:`tick.labelcolor`, :rc:`tick.labelsize`, :rc:`tick.labelweight`.
labelloc, labellocation : {'bottom', 'top', 'left', 'right'}
The colorbar label location. Inherits from `tickloc` by default. Default is toward
the outside of the subplot for outer colorbars and ``'bottom'`` for inset colorbars.
labelcolor, labelsize, labelweight : optional
The font color, size, and weight for the colorbar label. Defaults are
:rc:`label.color`, :rc:`label.size`, and :rc:`label.weight`.
a, alpha, framealpha, fc, facecolor, framecolor, ec, edgecolor, ew, edgewidth : optional
For inset colorbars only. Controls the transparency and color of the frame.
Defaults are :rc:`colorbar.framealpha` and :rc:`colorbar.framecolor`.
lw, linewidth, c, color : optional
Controls the line width and edge color for both the colorbar
outline and the level dividers.
%(axes.edgefix)s
rasterize : bool, optional
Whether to rasterize the colorbar solids. The matplotlib default is ``True``
but we change this to :rcraw:`colorbar.rasterize` because rasterization can
cause misalignment between `edges` and the level patches.
**kwargs
Passed to `~matplotlib.figure.Figure.colorbar`.
"""
_edgefix_docstring = """
edgefix : bool or float, optional
Whether to fix the common issue where white lines appear between adjacent
patches in saved vector graphics (this can slow down figure rendering).
See this `stackoverflow post <https://stackoverflow.com/q/27092991/4970632>`__
for a demonstration of the problem. Default is :rc:`edgefix`. If ``True``,
a small default linewidth is used to cover up the white lines. If float (e.g.
``edgefix=0.5``), this specific linewidth is used to cover up the white lines.
This feature is automatically disabled when the patches have transparency.
"""
docstring._snippet_manager['axes.edgefix'] = _edgefix_docstring
docstring._snippet_manager['axes.colorbar_args'] = _colorbar_args_docstring
docstring._snippet_manager['axes.colorbar_kwargs'] = _colorbar_kwargs_docstring
_legend_args_docstring = """
handles : list of artist, optional
List of matplotlib artists, or a list of lists of artist instances (see
the `center` keyword). If ``None``, artists with valid labels are retrieved
automatically. If the object is a `~matplotlib.contour.ContourSet`, the
``legend_elements`` method is used to pair the collection or contour set label
with the central artist in the list (generally giving the central colormap
color if the object is controlled with a colormap).
labels : list of str, optional
A matching list of string labels or ``None`` placeholders, or a matching list of
lists (see the `center` keyword). Wherever ``None`` appears in the list (or
if no labels were passed at all), labels are retrieved by calling
`~matplotlib.artist.Artist.get_label` on each `~matplotlib.artist.Artist` in the
handle list. If a handle consists of a tuple group of artists, labels are
inferred from the artists in the tuple. If there are multiple unique labels in
the tuple group of artists, the tuple group is expanded into unique legend
entries. Otherwise, the tuple group elements are drawn on top of eachother.
For details on matplotlib's legend handlers, including tuple groups, see
the matplotlib `legend guide \
<https://matplotlib.org/stable/tutorials/intermediate/legend_guide.html>`__.
"""
_legend_kwargs_docstring = """
frame, frameon : bool, optional
Toggles the legend frame. For centered-row legends, a frame
independent from matplotlib's built-in legend frame is created.
ncol, ncols : int, optional
The number of columns. `ncols` is an alias, added
for consistency with `~matplotlib.pyplot.subplots`.
order : {'C', 'F'}, optional
Whether legend handles are drawn in row-major (``'C'``) or column-major
(``'F'``) order. Analagous to `numpy.array` ordering. Default is ``'F'``.
center : bool, optional
Whether to center each legend row individually. If ``True``, we draw
successive single-row legends stacked on top of each other. If ``None``,
we infer this setting from `handles`. By default, `center` is set to ``True``
if `handles` is a list of lists (each sublist is used as a row in the legend).
alphabetize : bool, optional
Whether to alphabetize the legend entries according to the legend labels.
Default is ``False``.
title, label : str, optional
The legend title. The `label` keyword is also accepted, for consistency
with `~matplotlib.figure.Figure.colorbar`.
fontsize, fontweight, fontcolor : optional
The font size, weight, and color for the legend text. Font size is interpreted
by `~proplot.utils.units`. The default font size is :rcraw:`legend.fontsize`.
titlefontsize, titlefontweight, titlefontcolor : optional
The font size, weight, and color for the legend title. Font size is interpreted
by `~proplot.utils.units`. The default size is `fontsize`.
borderpad, borderaxespad, handlelength, handleheight, handletextpad, \
labelspacing, columnspacing : unit-spec, optional
Various matplotlib `~matplotlib.axes.Axes.legend` spacing arguments.
%(units.em)s
a, alpha, framealpha, fc, facecolor, framecolor, ec, edgecolor, ew, edgewidth : optional
The opacity, face color, edge color, and edge width for the legend frame.
Defaults are :rc:`legend.framealpha`, :rc:`legend.facecolor`,
:rc:`legend.edgecolor` and :rc:`axes.linewidth`.
c, color, lw, linewidth, m, marker, ls, linestyle, dashes, ms, markersize : optional
Properties used to override the legend handles. For example, for a
legend describing variations in line style ignoring variations
in color, you might want to use ``color='black'``.
handle_kw : dict-like, optional
Additional properties used to override legend handles, e.g.
``handle_kw={'edgecolor': 'black'}``. Only line properties
can be passed as keyword arguments.
handler_map : dict-like, optional
A dictionary mapping instances or types to a legend handler.
This `handler_map` updates the default handler map found at
`matplotlib.legend.Legend.get_legend_handler_map`.
**kwargs
Passed to `~matplotlib.axes.Axes.legend`.
"""
docstring._snippet_manager['axes.legend_args'] = _legend_args_docstring
docstring._snippet_manager['axes.legend_kwargs'] = _legend_kwargs_docstring
class Axes(maxes.Axes):
_name = None
_name_aliases = ()
def __repr__(self):
ax = self._get_topmost_axes()
try:
nrows, ncols, num1, num2 = ax.get_subplotspec()._get_subplot_geometry()
params = {'index': (num1, num2)}
except (IndexError, ValueError, AttributeError):
left, bottom, width, height = np.round(self._position.bounds, 2)
params = {'left': left, 'bottom': bottom, 'size': (width, height)}
if ax.number:
params['number'] = ax.number
name = type(self).__name__
if self._inset_parent:
name = re.sub('Axes(Subplot)?', 'AxesInset', name)
params['bounds'] = tuple(np.round(self._inset_bounds, 2))
if self._altx_parent or self._alty_parent:
name = re.sub('Axes(Subplot)?', 'AxesTwin', name)
params['axis'] = 'x' if self._altx_parent else 'y'
if self._panel_side:
name = re.sub('Axes(Subplot)?', 'AxesPanel', name)
params['side'] = self._panel_side
if self._name in ('cartopy', 'basemap'):
name = name.replace('_' + self._name.title(), 'Geo')
params['backend'] = self._name
params = ', '.join(f'{key}={value!r}' for key, value in params.items())
return f'{name}({params})'
def __str__(self):
return self.__repr__()
@docstring._snippet_manager
def __init__(self, *args, **kwargs):
ss = kwargs.pop('_subplot_spec', None)
number = kwargs.pop('number', None)
autoshare = kwargs.pop('autoshare', None)
autoshare = _not_none(autoshare, True)
rc_kw, rc_mode = _pop_rc(kwargs)
kw_format = _pop_props(kwargs, 'patch')
if 'zorder' in kw_format:
kwargs['zorder'] = kw_format.pop('zorder')
for cls, sig in self._format_signatures.items():
if isinstance(self, cls):
kw_format.update(_pop_params(kwargs, sig))
super().__init__(*args, **kwargs)
self._active_cycle = rc['axes.prop_cycle']
self._auto_format = None
self._abc_border_kwargs = {}
self._abc_loc = None
self._abc_title_pad = rc['abc.titlepad']
self._title_above = rc['title.above']
self._title_border_kwargs = {}
self._title_loc = None
self._title_pad = rc['title.pad']
self._title_pad_current = None
self._altx_parent = None
self._alty_parent = None
self._inset_parent = None
self._inset_bounds = None
self._inset_zoom = False
self._inset_zoom_artists = None
self._panel_hidden = False
self._panel_parent = None
self._panel_share = False
self._panel_sharex_group = False
self._panel_sharey_group = False
self._panel_side = None
self._tight_bbox = None
self.xaxis.isDefault_minloc = True
self.yaxis.isDefault_minloc = True
self._legend_dict = {}
self._colorbar_dict = {}
d = self._panel_dict = {}
d['left'] = []
d['right'] = []
d['bottom'] = []
d['top'] = []
d = self._title_dict = {}
kw = {'zorder': 3.5, 'transform': self.transAxes}
d['abc'] = self.text(0, 0, '', **kw)
d['left'] = self._left_title
d['center'] = self.title
d['right'] = self._right_title
d['upper left'] = self.text(0, 0, '', va='top', ha='left', **kw)
d['upper center'] = self.text(0, 0.5, '', va='top', ha='center', **kw)
d['upper right'] = self.text(0, 1, '', va='top', ha='right', **kw)
d['lower left'] = self.text(0, 0, '', va='bottom', ha='left', **kw)
d['lower center'] = self.text(0, 0.5, '', va='bottom', ha='center', **kw)
d['lower right'] = self.text(0, 1, '', va='bottom', ha='right', **kw)
self._number = None
if number:
self.number = number
if ss is not None:
self.set_subplotspec(ss)
if autoshare:
self._auto_share()
self.format(rc_kw=rc_kw, rc_mode=1, skip_figure=True, **kw_format)
@staticmethod
def _axisbelow_to_zorder(axisbelow):
if axisbelow is True:
zorder = 0.5
elif axisbelow is False:
zorder = 2.5
elif axisbelow in ('line', 'lines'):
zorder = 1.5
else:
raise ValueError(f'Unexpected axisbelow value {axisbelow!r}.')
return zorder
def _get_share_axes(self, x, panels=False):
if not isinstance(self, maxes.SubplotBase):
return [self]
y = 'y' if x == 'x' else 'x'
idx = 0 if x == 'x' else 1
argfunc = np.argmax if x == 'x' else np.argmin
irange = self._range_subplotspec(x)
axs = self.figure._iter_axes(hidden=False, children=False, panels=panels)
axs = [ax for ax in axs if ax._range_subplotspec(x) == irange]
axs = list({self, *axs})
pax = axs.pop(argfunc([ax._range_subplotspec(y)[idx] for ax in axs]))
return [pax, *axs]
def _get_span_axes(self, side, panels=False):
if side not in ('left', 'right', 'bottom', 'top'):
raise ValueError(f'Invalid side {side!r}.')
if not isinstance(self, maxes.SubplotBase):
return [self]
x, y = 'xy' if side in ('left', 'right') else 'yx'
idx = 0 if side in ('left', 'top') else 1
coord = self._range_subplotspec(x)[idx]
axs = self.figure._iter_axes(hidden=False, children=False, panels=panels)
axs = [ax for ax in axs if ax._range_subplotspec(x)[idx] == coord] or [self]
out = []
for ax in axs:
other = getattr(ax, '_share' + y)
if other and other._panel_parent:
ax = other
out.append(ax)
return out
def _get_topmost_axes(self):
for _ in range(5):
self = self._axes or self
self = self._altx_parent or self
self = self._inset_parent or self
self = self._panel_parent or self
return self
@staticmethod
|
MIT License
|
mega-data-lab/spectrallda
|
rand_svd.py
|
rand_svd
|
python
|
def rand_svd(docs, alpha0, k, docs_m1=None, n_iter=1, n_partitions=1):
n_docs, vocab_size = docs.shape
assert n_docs >= 1 and vocab_size >= 1
if docs_m1 is not None:
assert docs_m1.ndim == 1 and vocab_size == docs_m1.shape[0]
assert alpha0 > 0
assert k >= 1
assert n_iter >= 0
assert n_partitions >= 1
k_aug = np.min([k + 5, vocab_size])
test_x = np.random.randn(vocab_size, k_aug)
if docs_m1 is None:
docs_m1 = moment1(docs, n_partitions=n_partitions)
for _ in range(2 * n_iter + 1):
prod_test = prod_m2_x(docs, test_x, alpha0,
docs_m1=docs_m1, n_partitions=n_partitions)
test_x, _ = scipy.linalg.qr(prod_test, mode='economic')
prod_test = prod_m2_x(docs, test_x, alpha0,
n_partitions=n_partitions)
prod_test *= alpha0 * (alpha0 + 1)
svd_q, svd_s, _ = scipy.linalg.svd(prod_test.T.dot(prod_test))
return np.sqrt(svd_s)[:k], test_x.dot(svd_q)[:, :k]
|
Randomised SVD in local mode
Perform Randomised SVD on scaled M2.
PARAMETERS
-----------
docs : n_docs-by-vocab_size array or csr_matrix
Entire collection of word count vectors.
alpha0 : float
Sum of Dirichlet prior parameter.
k : int
Rank for the truncated SVD, >= 1.
docs_m1: length-vocab_size array, optional
M1 of the entire collection of word count vectors.
n_iter: int, optional
Number of iterations for the Krylov method, >= 0, 1 by default.
n_partitions: int, optional
Number of partitions, >= 1, 1 by default.
RETURNS
-----------
eigval : length-k array
Top k eigenvalues of scaled M2.
eigvec : vocab_size-by-k array
Top k eigenvectors of scaled M2.
|
https://github.com/mega-data-lab/spectrallda/blob/3f1dfd6130718ca31fcb9247cd636d11e9143791/rand_svd.py#L8-L67
|
import numpy as np
import scipy.linalg
from cumulants import moment1, prod_m2_x
|
Apache License 2.0
|
msu-mlsys-lab/arch2vec
|
search_methods/reinforce_darts.py
|
Env.step
|
python
|
def step(self, action):
dist = torch.norm(self.features - action.cpu(), dim=1)
knn = (-1 * dist).topk(dist.shape[0])
min_dist, min_idx = knn.values, knn.indices
count = 0
while True:
if len(self.visited) == dist.shape[0]:
print("CANNOT FIND IN THE DATASET!")
exit()
if min_idx[count].item() not in self.visited:
self.visited[min_idx[count].item()] = True
break
count += 1
return self.features[min_idx[count].item()], self.genotype[min_idx[count].item()]
|
action: 1 x dim
self.features. N x dim
|
https://github.com/msu-mlsys-lab/arch2vec/blob/ea01b0cf1295305596ee3c05fa1b6eb14e303512/search_methods/reinforce_darts.py#L78-L96
|
import os
import sys
sys.path.insert(0, os.getcwd())
import argparse
import json
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from models.pretraining_nasbench101 import configs
from utils.utils import load_json, preprocessing, one_hot_darts
from preprocessing.gen_isomorphism_graphs import process
from models.model import Model
from torch.distributions import MultivariateNormal
from darts.cnn.train_search import Train
class Env(object):
def __init__(self, name, seed, cfg, data_path=None, save=False):
self.name = name
self.seed = seed
self.model = Model(input_dim=args.input_dim, hidden_dim=args.hidden_dim, latent_dim=args.dim,
num_hops=args.hops, num_mlp_layers=args.mlps, dropout=args.dropout, **cfg['GAE']).cuda()
self.dir_name = 'pretrained/dim-{}'.format(args.dim)
if not os.path.exists(os.path.join(self.dir_name, 'model-darts.pt')):
exit()
self.model.load_state_dict(torch.load(os.path.join(self.dir_name, 'model-darts.pt').format(args.dim))['model_state'])
self.visited = {}
self.features = []
self.genotype = []
self.embedding = {}
self._reset(data_path, save)
def _reset(self, data_path, save):
if not save:
print("extract arch2vec on DARTS search space ...")
dataset = load_json(data_path)
print("length of the dataset: {}".format(len(dataset)))
self.f_path = os.path.join(self.dir_name, 'arch2vec-darts.pt')
if os.path.exists(self.f_path):
print('{} is already saved'.format(self.f_path))
exit()
print('save to {}'.format(self.f_path))
counter = 0
self.model.eval()
for k, v in dataset.items():
adj = torch.Tensor(v[0]).unsqueeze(0).cuda()
ops = torch.Tensor(one_hot_darts(v[1])).unsqueeze(0).cuda()
adj, ops, prep_reverse = preprocessing(adj, ops, **cfg['prep'])
with torch.no_grad():
x, _ = self.model._encoder(ops, adj)
self.embedding[counter] = {'feature': x.squeeze(0).mean(dim=0).cpu(), 'genotype': process(v[2])}
print("{}/{}".format(counter, len(dataset)))
counter += 1
torch.save(self.embedding, self.f_path)
print("finished arch2vec extraction")
exit()
else:
self.f_path = os.path.join(self.dir_name, 'arch2vec-darts.pt')
print("load arch2vec from: {}".format(self.f_path))
self.embedding = torch.load(self.f_path)
for ind in range(len(self.embedding)):
self.features.append(self.embedding[ind]['feature'])
self.genotype.append(self.embedding[ind]['genotype'])
self.features = torch.stack(self.features, dim=0)
print('loading finished. pretrained embeddings shape: {}'.format(self.features.shape))
def get_init_state(self):
rand_indices = random.randint(0, self.features.shape[0])
self.visited[rand_indices] = True
return self.features[rand_indices], self.genotype[rand_indices]
|
Apache License 2.0
|
mosen/salt-osx
|
_states/bluetooth.py
|
__virtual__
|
python
|
def __virtual__():
return 'bluetooth' if salt.utils.platform.is_darwin() else False
|
Only load on OSX
|
https://github.com/mosen/salt-osx/blob/818d4ae89bb2853b28999a8ddb883c0fe1b1a657/_states/bluetooth.py#L10-L12
|
import salt.utils
|
MIT License
|
identitypython/pysaml2
|
src/saml2/assertion.py
|
Assertion.apply_policy
|
python
|
def apply_policy(self, sp_entity_id, policy):
policy.acs = self.acs
ava = policy.restrict(self, sp_entity_id)
for key, val in list(self.items()):
if key in ava:
self[key] = ava[key]
else:
del self[key]
return ava
|
Apply policy to the assertion I'm representing
:param sp_entity_id: The SP entity ID
:param policy: The policy
:return: The resulting AVA after the policy is applied
|
https://github.com/identitypython/pysaml2/blob/f12ade09aa89211c42b7dc6ed94728f8aa69cffb/src/saml2/assertion.py#L845-L862
|
import copy
import importlib
import logging
import re
import six
from warnings import warn as _warn
from saml2 import saml
from saml2 import xmlenc
from saml2.attribute_converter import from_local, ac_factory
from saml2.attribute_converter import get_local_name
from saml2.s_utils import assertion_factory
from saml2.s_utils import factory
from saml2.s_utils import sid
from saml2.s_utils import MissingValue
from saml2.saml import NAME_FORMAT_URI
from saml2.time_util import instant
from saml2.time_util import in_a_while
logger = logging.getLogger(__name__)
def _filter_values(vals, vlist=None, must=False):
if not vlist:
return vals
if vals is None:
return vals
if isinstance(vlist, six.string_types):
vlist = [vlist]
res = []
for val in vlist:
if val in vals:
res.append(val)
if must:
if res:
return res
else:
raise MissingValue("Required attribute value missing")
else:
return res
def _match(attr, ava):
if attr in ava:
return attr
_la = attr.lower()
if _la in ava:
return _la
for _at in ava.keys():
if _at.lower() == _la:
return _at
return None
def filter_on_attributes(ava, required=None, optional=None, acs=None,
fail_on_unfulfilled_requirements=True):
def _match_attr_name(attr, ava):
local_name = None
for a in ['name_format', 'friendly_name']:
_val = attr.get(a)
if _val:
if a == 'name_format':
local_name = get_local_name(acs, attr['name'], _val)
else:
local_name = _val
break
if local_name:
_fn = _match(local_name, ava)
else:
_fn = None
if not _fn:
_fn = _match(attr["name"], ava)
return _fn
def _apply_attr_value_restrictions(attr, res, must=False):
try:
values = [av["text"] for av in attr["attribute_value"]]
except KeyError:
values = []
try:
res[_fn].extend(_filter_values(ava[_fn], values))
except KeyError:
val = _filter_values(ava[_fn], values)
res[_fn] = val if val is not None else []
return _filter_values(ava[_fn], values, must)
res = {}
if required is None:
required = []
for attr in required:
_fn = _match_attr_name(attr, ava)
if _fn:
_apply_attr_value_restrictions(attr, res, True)
elif fail_on_unfulfilled_requirements:
desc = "Required attribute missing: '%s'" % (attr["name"])
raise MissingValue(desc)
if optional is None:
optional = []
for attr in optional:
_fn = _match_attr_name(attr, ava)
if _fn:
_apply_attr_value_restrictions(attr, res, False)
return res
def filter_on_demands(ava, required=None, optional=None):
if required is None:
required = {}
lava = dict([(k.lower(), k) for k in ava.keys()])
for attr, vals in required.items():
attr = attr.lower()
if attr in lava:
if vals:
for val in vals:
if val not in ava[lava[attr]]:
raise MissingValue(
"Required attribute value missing: %s,%s" % (attr,
val))
else:
raise MissingValue("Required attribute missing: %s" % (attr,))
if optional is None:
optional = {}
oka = [k.lower() for k in required.keys()]
oka.extend([k.lower() for k in optional.keys()])
for attr in lava.keys():
if attr not in oka:
del ava[lava[attr]]
return ava
def filter_on_wire_representation(ava, acs, required=None, optional=None):
acsdic = dict([(ac.name_format, ac) for ac in acs])
if required is None:
required = []
if optional is None:
optional = []
res = {}
for attr, val in ava.items():
done = False
for req in required:
try:
_name = acsdic[req.name_format]._to[attr]
if _name == req.name:
res[attr] = val
done = True
except KeyError:
pass
if done:
continue
for opt in optional:
try:
_name = acsdic[opt.name_format]._to[attr]
if _name == opt.name:
res[attr] = val
break
except KeyError:
pass
return res
def filter_attribute_value_assertions(ava, attribute_restrictions=None):
if not attribute_restrictions:
return ava
for attr, vals in list(ava.items()):
_attr = attr.lower()
try:
_rests = attribute_restrictions[_attr]
except KeyError:
del ava[attr]
else:
if _rests is None:
continue
if isinstance(vals, six.string_types):
vals = [vals]
rvals = []
for restr in _rests:
for val in vals:
if restr.match(val):
rvals.append(val)
if rvals:
ava[attr] = list(set(rvals))
else:
del ava[attr]
return ava
def restriction_from_attribute_spec(attributes):
restr = {}
for attribute in attributes:
restr[attribute.name] = {}
for val in attribute.attribute_value:
if not val.text:
restr[attribute.name] = None
break
else:
restr[attribute.name] = re.compile(val.text)
return restr
def compile(restrictions):
for who, spec in restrictions.items():
spec = spec or {}
entity_categories = spec.get("entity_categories", [])
ecs = []
for cat in entity_categories:
try:
_mod = importlib.import_module(cat)
except ImportError:
_mod = importlib.import_module("saml2.entity_category.%s" % cat)
_ec = {}
for key, items in _mod.RELEASE.items():
alist = [k.lower() for k in items]
_only_required = getattr(_mod, "ONLY_REQUIRED", {}).get(key, False)
_ec[key] = (alist, _only_required)
ecs.append(_ec)
spec["entity_categories"] = ecs or None
attribute_restrictions = spec.get("attribute_restrictions") or {}
_attribute_restrictions = {}
for key, values in attribute_restrictions.items():
lkey = key.lower()
values = [] if not values else values
_attribute_restrictions[lkey] = (
[re.compile(value) for value in values] or None
)
spec["attribute_restrictions"] = _attribute_restrictions or None
return restrictions
class Policy(object):
def __init__(self, restrictions=None, mds=None):
self.metadata_store = mds
self._restrictions = self.setup_restrictions(restrictions)
logger.debug("policy restrictions: %s", self._restrictions)
self.acs = []
def setup_restrictions(self, restrictions=None):
if restrictions is None:
return None
restrictions = copy.deepcopy(restrictions)
restrictions = compile(restrictions)
return restrictions
def get(self, attribute, sp_entity_id, default=None):
if not self._restrictions:
return default
ra_info = (
self.metadata_store.registration_info(sp_entity_id) or {}
if self.metadata_store is not None
else {}
)
ra_entity_id = ra_info.get("registration_authority")
sp_restrictions = self._restrictions.get(sp_entity_id)
ra_restrictions = self._restrictions.get(ra_entity_id)
default_restrictions = (
self._restrictions.get("default")
or self._restrictions.get("")
)
restrictions = (
sp_restrictions
if sp_restrictions is not None
else ra_restrictions
if ra_restrictions is not None
else default_restrictions
if default_restrictions is not None
else {}
)
attribute_restriction = restrictions.get(attribute)
restriction = (
attribute_restriction
if attribute_restriction is not None
else default
)
return restriction
def get_nameid_format(self, sp_entity_id):
return self.get("nameid_format", sp_entity_id, saml.NAMEID_FORMAT_TRANSIENT)
def get_name_form(self, sp_entity_id):
return self.get("name_form", sp_entity_id, default=NAME_FORMAT_URI)
def get_lifetime(self, sp_entity_id):
return self.get("lifetime", sp_entity_id, {"hours": 1})
def get_attribute_restrictions(self, sp_entity_id):
return self.get("attribute_restrictions", sp_entity_id)
def get_fail_on_missing_requested(self, sp_entity_id):
return self.get("fail_on_missing_requested", sp_entity_id, default=True)
def get_sign(self, sp_entity_id):
return self.get("sign", sp_entity_id, default=[])
def get_entity_categories(self, sp_entity_id, mds=None, required=None):
if mds is not None:
warn_msg = (
"The mds parameter for saml2.assertion.Policy.get_entity_categories "
"is deprecated; "
"instead, initialize the Policy object setting the mds param."
)
logger.warning(warn_msg)
_warn(warn_msg, DeprecationWarning)
def post_entity_categories(maps, sp_entity_id=None, mds=None, required=None):
restrictions = {}
required_friendly_names = [
d.get('friendly_name') or get_local_name(
acs=self.acs, attr=d['name'], name_format=d['name_format']
)
for d in (required or [])
]
required = [
friendly_name.lower()
for friendly_name in required_friendly_names
]
if mds:
ecs = mds.entity_categories(sp_entity_id)
for ec_map in maps:
for key, (atlist, only_required) in ec_map.items():
if key == "":
attrs = atlist
elif isinstance(key, tuple):
if only_required:
attrs = [a for a in atlist if a in required]
else:
attrs = atlist
for _key in key:
if _key not in ecs:
attrs = []
break
elif key in ecs:
if only_required:
attrs = [a for a in atlist if a in required]
else:
attrs = atlist
else:
attrs = []
for attr in attrs:
restrictions[attr] = None
else:
restrictions[''] = None
return restrictions
sentinel = object()
result1 = self.get("entity_categories", sp_entity_id, default=sentinel)
if result1 is sentinel:
return {}
result2 = post_entity_categories(
result1,
sp_entity_id=sp_entity_id,
mds=(mds or self.metadata_store),
required=required,
)
return result2
def not_on_or_after(self, sp_entity_id):
return in_a_while(**self.get_lifetime(sp_entity_id))
def filter(self, ava, sp_entity_id, mdstore=None, required=None, optional=None):
if mdstore is not None:
warn_msg = (
"The mdstore parameter for saml2.assertion.Policy.filter "
"is deprecated; "
"instead, initialize the Policy object setting the mds param."
)
logger.warning(warn_msg)
_warn(warn_msg, DeprecationWarning)
if not self.acs:
self.acs = ac_factory()
subject_ava = ava.copy()
_ent_rest = self.get_entity_categories(sp_entity_id, mds=mdstore, required=required)
if _ent_rest:
subject_ava = filter_attribute_value_assertions(subject_ava, _ent_rest)
elif required or optional:
logger.debug("required: %s, optional: %s", required, optional)
subject_ava = filter_on_attributes(
subject_ava,
required,
optional,
self.acs,
self.get_fail_on_missing_requested(sp_entity_id),
)
_attr_rest = self.get_attribute_restrictions(sp_entity_id)
subject_ava = filter_attribute_value_assertions(subject_ava, _attr_rest)
return subject_ava or {}
def restrict(self, ava, sp_entity_id, metadata=None):
if metadata is not None:
warn_msg = (
"The metadata parameter for saml2.assertion.Policy.restrict "
"is deprecated and ignored; "
"instead, initialize the Policy object setting the mds param."
)
logger.warning(warn_msg)
_warn(warn_msg, DeprecationWarning)
metadata_store = metadata or self.metadata_store
spec = (
metadata_store.attribute_requirement(sp_entity_id) or {}
if metadata_store
else {}
)
return self.filter(
ava,
sp_entity_id,
required=spec.get("required"),
optional=spec.get("optional"),
)
def conditions(self, sp_entity_id):
return factory(
saml.Conditions,
not_before=instant(),
not_on_or_after=self.not_on_or_after(sp_entity_id),
audience_restriction=[
factory(
saml.AudienceRestriction,
audience=[factory(saml.Audience, text=sp_entity_id)],
),
],
)
class EntityCategories(object):
pass
def _authn_context_class_ref(authn_class, authn_auth=None):
cntx_class = factory(saml.AuthnContextClassRef, text=authn_class)
if authn_auth:
return factory(saml.AuthnContext,
authn_context_class_ref=cntx_class,
authenticating_authority=factory(
saml.AuthenticatingAuthority, text=authn_auth))
else:
return factory(saml.AuthnContext,
authn_context_class_ref=cntx_class)
def _authn_context_decl(decl, authn_auth=None):
return factory(saml.AuthnContext,
authn_context_decl=decl,
authenticating_authority=factory(
saml.AuthenticatingAuthority, text=authn_auth))
def _authn_context_decl_ref(decl_ref, authn_auth=None):
return factory(saml.AuthnContext,
authn_context_decl_ref=decl_ref,
authenticating_authority=factory(
saml.AuthenticatingAuthority, text=authn_auth))
def authn_statement(authn_class=None, authn_auth=None,
authn_decl=None, authn_decl_ref=None, authn_instant="",
subject_locality="", session_not_on_or_after=None):
if authn_instant:
_instant = instant(time_stamp=authn_instant)
else:
_instant = instant()
if authn_class:
res = factory(
saml.AuthnStatement,
authn_instant=_instant,
session_index=sid(),
session_not_on_or_after=session_not_on_or_after,
authn_context=_authn_context_class_ref(
authn_class, authn_auth))
elif authn_decl:
res = factory(
saml.AuthnStatement,
authn_instant=_instant,
session_index=sid(),
session_not_on_or_after=session_not_on_or_after,
authn_context=_authn_context_decl(authn_decl, authn_auth))
elif authn_decl_ref:
res = factory(
saml.AuthnStatement,
authn_instant=_instant,
session_index=sid(),
session_not_on_or_after=session_not_on_or_after,
authn_context=_authn_context_decl_ref(authn_decl_ref,
authn_auth))
else:
res = factory(
saml.AuthnStatement,
authn_instant=_instant,
session_index=sid(),
session_not_on_or_after=session_not_on_or_after)
if subject_locality:
res.subject_locality = saml.SubjectLocality(text=subject_locality)
return res
def do_subject_confirmation(not_on_or_after, key_info=None, **treeargs):
_sc = factory(saml.SubjectConfirmation, **treeargs)
_scd = _sc.subject_confirmation_data
_scd.not_on_or_after = not_on_or_after
if _sc.method == saml.SCM_HOLDER_OF_KEY:
_scd.add_extension_element(key_info)
return _sc
def do_subject(not_on_or_after, name_id, **farg):
specs = farg['subject_confirmation']
if isinstance(specs, list):
res = [do_subject_confirmation(not_on_or_after, **s) for s in specs]
else:
res = [do_subject_confirmation(not_on_or_after, **specs)]
return factory(saml.Subject, name_id=name_id, subject_confirmation=res)
class Assertion(dict):
def __init__(self, dic=None):
dict.__init__(self, dic)
self.acs = []
def construct(self, sp_entity_id, attrconvs, policy, issuer, farg,
authn_class=None, authn_auth=None, authn_decl=None,
encrypt=None, sec_context=None, authn_decl_ref=None,
authn_instant="", subject_locality="", authn_statem=None,
name_id=None, session_not_on_or_after=None):
_name_format = policy.get_name_form(sp_entity_id)
attr_statement = saml.AttributeStatement(
attribute=from_local(attrconvs, self, _name_format)
)
if encrypt == "attributes":
for attr in attr_statement.attribute:
enc = sec_context.encrypt(text="%s" % attr)
encd = xmlenc.encrypted_data_from_string(enc)
encattr = saml.EncryptedAttribute(encrypted_data=encd)
attr_statement.encrypted_attribute.append(encattr)
attr_statement.attribute = []
conds = policy.conditions(sp_entity_id)
if authn_statem:
_authn_statement = authn_statem
elif authn_auth or authn_class or authn_decl or authn_decl_ref:
_authn_statement = authn_statement(authn_class, authn_auth,
authn_decl, authn_decl_ref,
authn_instant,
subject_locality,
session_not_on_or_after=session_not_on_or_after)
else:
_authn_statement = None
subject = do_subject(
policy.not_on_or_after(sp_entity_id), name_id, **farg['subject']
)
_ass = assertion_factory(issuer=issuer, conditions=conds, subject=subject)
if _authn_statement:
_ass.authn_statement = [_authn_statement]
if not attr_statement.empty():
_ass.attribute_statement = [attr_statement]
return _ass
|
Apache License 2.0
|
humio/python-humio
|
src/humiolib/HumioClient.py
|
HumioClient._get_users
|
python
|
def _get_users(self):
endpoint = "users"
return self.webcaller.call_rest("get", endpoint, headers=self._default_user_headers)
|
Gets users registered to Humio instance
:return: Response to web request as json string
:rtype: str
|
https://github.com/humio/python-humio/blob/30adce199322c17724ca0100fffac8a29cf0ced9/src/humiolib/HumioClient.py#L371-L379
|
import requests
import json
from humiolib.WebCaller import WebCaller, WebStreamer
from humiolib.QueryJob import StaticQueryJob, LiveQueryJob
from humiolib.HumioExceptions import HumioConnectionException
class BaseHumioClient():
def __init__(self, base_url):
self.base_url = base_url
self.webcaller = WebCaller(self.base_url)
@classmethod
def _from_saved_state(cls, state_dump):
data = json.loads(state_dump)
instance = cls(**data)
return instance
@staticmethod
def _create_unstructured_data_object(messages, parser=None, fields=None, tags=None):
return dict(
(k, v)
for k, v in [
("messages", messages),
("type", parser),
("fields", fields),
("tags", tags),
]
if v is not None
)
class HumioClient(BaseHumioClient):
def __init__(
self,
repository,
user_token,
base_url="http://localhost:3000",
):
super().__init__(base_url)
self.repository = repository
self.user_token = user_token
@property
def _default_user_headers(self):
return {
"Content-Type": "application/json",
"Authorization": "Bearer {}".format(self.user_token),
}
@property
def _state(self):
return json.dumps(
{
"user_token": self.user_token,
"repository": self.repository,
"base_url": self.base_url,
}
)
def _streaming_query(
self,
query_string,
start=None,
end=None,
is_live=None,
timezone_offset_minutes=None,
arguments=None,
raw_data=None,
media_type="application/x-ndjson",
**kwargs
):
if raw_data is None:
raw_data = {}
endpoint = "dataspaces/{}/query".format(self.repository)
headers = self._default_user_headers
headers["Accept"] = media_type
headers.update(kwargs.pop("headers", {}))
data = dict(
(k, v)
for k, v in [
("queryString", query_string),
("start", start),
("end", end),
("isLive", is_live),
("timeZoneOffsetMinutes", timezone_offset_minutes),
("arguments", arguments),
]
if v is not None
)
data.update(raw_data)
connection = self.webcaller.call_rest(
"post", endpoint, data=json.dumps(data), headers=headers, stream=True, **kwargs
)
return WebStreamer(connection)
def streaming_query(
self,
query_string,
start=None,
end=None,
is_live=None,
timezone_offset_minutes=None,
arguments=None,
raw_data=None,
**kwargs
):
media_type = "application/x-ndjson"
encoding = "utf-8"
res = self._streaming_query(
query_string=query_string,
start=start,
end=end,
is_live=is_live,
timezone_offset_minutes=timezone_offset_minutes,
arguments=arguments,
media_type=media_type,
raw_data=raw_data,
**kwargs
)
for event in res:
yield json.loads(event.decode(encoding))
def create_queryjob(
self,
query_string,
start=None,
end=None,
is_live=None,
timezone_offset_minutes=None,
arguments=None,
raw_data=None,
**kwargs
):
endpoint = "dataspaces/{}/queryjobs".format(self.repository)
headers = self._default_user_headers
headers.update(kwargs.pop("headers", {}))
data = dict(
(k, v)
for k, v in [
("queryString", query_string),
("start", start),
("end", end),
("isLive", is_live),
("timeZoneOffsetMinutes", timezone_offset_minutes),
("arguments", arguments),
]
if v is not None
)
if raw_data is not None:
data.update(raw_data)
query_id = self.webcaller.call_rest(
"post", endpoint, data=json.dumps(data), headers=headers, **kwargs
).json()['id']
if is_live:
return LiveQueryJob(query_id, self.base_url, self.repository, self.user_token)
else:
return StaticQueryJob(query_id, self.base_url, self.repository, self.user_token)
def _ingest_json_data(self, json_elements=None, **kwargs):
if json_elements is None:
json_elements = []
headers = self._default_user_headers
headers.update(kwargs.pop("headers", {}))
endpoint = "dataspaces/{}/ingest".format(self.repository)
return self.webcaller.call_rest(
"post", endpoint, data=json.dumps(json_elements), headers=headers, **kwargs
)
ingest_json_data = WebCaller.response_as_json(_ingest_json_data)
def _ingest_messages(
self, messages=None, parser=None, fields=None, tags=None, **kwargs
):
if messages is None:
messages = []
headers = self._default_user_headers
headers.update(kwargs.pop("headers", {}))
endpoint = "dataspaces/{}/ingest-messages".format(self.repository)
obj = self._create_unstructured_data_object(
messages, parser=parser, fields=fields, tags=tags
)
return self.webcaller.call_rest(
"post", endpoint, data=json.dumps([obj]), headers=headers, **kwargs
)
ingest_messages = WebCaller.response_as_json(_ingest_messages)
def _get_status(self, **kwargs):
endpoint = "status"
return self.webcaller.call_rest("get", endpoint, **kwargs)
get_status = WebCaller.response_as_json(_get_status)
|
Apache License 2.0
|
pycon/pycon
|
pycon/finaid/utils.py
|
email_address
|
python
|
def email_address():
return getattr(settings, "FINANCIAL_AID_EMAIL", DEFAULT_EMAIL_ADDRESS)
|
Return the email address that financial aid emails should come from,
applications should send emails to with questions, etc.
Default is ``pycon-aid@python.org``. Override by setting
FINANCIAL_AID_EMAIL.
|
https://github.com/pycon/pycon/blob/666c1444f1b550d539cf6e087c83e749eb2ebf0a/pycon/finaid/utils.py#L56-L64
|
from django.conf import settings
from django.core.mail.message import EmailMessage
from django.template import Context, Template
from django.template.loader import get_template
from pycon.finaid.models import FinancialAidApplication, FinancialAidApplicationPeriod, STATUS_WITHDRAWN
from . import models
DEFAULT_EMAIL_ADDRESS = "pycon-aid@python.org"
def applications_open():
return FinancialAidApplicationPeriod.open()
def is_reviewer(user):
return user.has_perm("finaid.review_financial_aid")
def has_application(user):
if not hasattr(user, "_has_finaid_application"):
try:
getattr(user, 'financial_aid')
except (FinancialAidApplication.DoesNotExist, AttributeError):
user._has_finaid_application = False
else:
user._has_finaid_application = True
return user._has_finaid_application
def offer_accepted(user):
return has_application(user) and user.financial_aid.status == models.STATUS_ACCEPTED
def has_withdrawn_application(user):
if not has_application(user):
return False
return user.financial_aid.status == STATUS_WITHDRAWN
|
BSD 3-Clause New or Revised License
|
levlaz/circleci.py
|
circleci/api.py
|
Api._download
|
python
|
def _download(self, url, destdir=None, filename=None):
if not filename:
filename = url.split('/')[-1]
if not destdir:
destdir = os.getcwd()
endpoint = "{0}?circle-token={1}".format(url, self.token)
resp = requests.get(endpoint, stream=True)
path = "{0}/{1}".format(destdir, filename)
with open(path, 'wb') as f:
for chunk in resp.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
return path
|
File download helper.
:param url: The URL to the artifact.
:param destdir: The optional destination directory. \
Defaults to None (curent working directory).
:param filename: Optional file name. Defaults to the name of the artifact file.
|
https://github.com/levlaz/circleci.py/blob/95063ae69d2f19dcca8162c038f45e2d536e45ea/circleci/api.py#L678-L703
|
import os
import requests
from requests.auth import HTTPBasicAuth
from circleci.error import BadKeyError, BadVerbError, InvalidFilterError
class Api():
def __init__(self, token, url='https://circleci.com/api/v1.1'):
self.token = token
self.url = url
def get_user_info(self):
resp = self._request('GET', 'me')
return resp
def get_projects(self):
resp = self._request('GET', 'projects')
return resp
def follow_project(self, username, project, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/follow'.format(
vcs_type,
username,
project
)
resp = self._request('POST', endpoint)
return resp
def get_project_build_summary(
self,
username,
project,
limit=30,
offset=0,
status_filter=None,
branch=None,
vcs_type='github'):
valid_filters = [None, 'completed', 'successful', 'failed', 'running']
if status_filter not in valid_filters:
raise InvalidFilterError(status_filter, 'status')
if branch:
endpoint = 'project/{0}/{1}/{2}/tree/{3}?limit={4}&offset={5}&filter={6}'.format(
vcs_type,
username,
project,
branch,
limit,
offset,
status_filter
)
else:
endpoint = 'project/{0}/{1}/{2}?limit={3}&offset={4}&filter={5}'.format(
vcs_type,
username,
project,
limit,
offset,
status_filter
)
resp = self._request('GET', endpoint)
return resp
def get_recent_builds(self, limit=30, offset=0):
endpoint = 'recent-builds?limit={0}&offset={1}'.format(limit, offset)
resp = self._request('GET', endpoint)
return resp
def get_build_info(self, username, project, build_num, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/{3}'.format(
vcs_type,
username,
project,
build_num
)
resp = self._request('GET', endpoint)
return resp
def get_artifacts(self, username, project, build_num, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/{3}/artifacts'.format(
vcs_type,
username,
project,
build_num
)
resp = self._request('GET', endpoint)
return resp
def get_latest_artifact(
self,
username,
project,
branch=None,
status_filter='completed',
vcs_type='github'):
valid_filters = ['completed', 'successful', 'failed']
if status_filter not in valid_filters:
raise InvalidFilterError(status_filter, 'artifacts')
if branch:
endpoint = 'project/{0}/{1}/{2}/latest/artifacts?branch={3}&filter={4}'.format(
vcs_type,
username,
project,
branch,
status_filter
)
else:
endpoint = 'project/{0}/{1}/{2}/latest/artifacts?filter={3}'.format(
vcs_type,
username,
project,
status_filter
)
resp = self._request('GET', endpoint)
return resp
def download_artifact(self, url, destdir=None, filename=None):
resp = self._download(url, destdir, filename)
return resp
def retry_build(self, username, project, build_num, ssh=False, vcs_type='github'):
if ssh:
endpoint = 'project/{0}/{1}/{2}/{3}/ssh'.format(
vcs_type,
username,
project,
build_num
)
else:
endpoint = 'project/{0}/{1}/{2}/{3}/retry'.format(
vcs_type,
username,
project,
build_num
)
resp = self._request('POST', endpoint)
return resp
def cancel_build(self, username, project, build_num, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/{3}/cancel'.format(
vcs_type,
username,
project,
build_num
)
resp = self._request('POST', endpoint)
return resp
def add_ssh_user(self, username, project, build_num, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/{3}/ssh-users'.format(
vcs_type,
username,
project,
build_num
)
resp = self._request('POST', endpoint)
return resp
def trigger_build(
self,
username,
project,
branch='master',
revision=None,
tag=None,
parallel=None,
params=None,
vcs_type='github'):
data = {
'revision': revision,
'tag': tag,
'parallel': parallel,
}
if params:
data.update(params)
endpoint = 'project/{0}/{1}/{2}/tree/{3}'.format(
vcs_type,
username,
project,
branch
)
resp = self._request('POST', endpoint, data=data)
return resp
def add_ssh_key(
self,
username,
project,
ssh_key,
vcs_type='github',
hostname=None):
endpoint = 'project/{0}/{1}/{2}/ssh-key'.format(
vcs_type,
username,
project
)
params = {
"hostname": hostname,
"private_key": ssh_key
}
resp = self._request('POST', endpoint, data=params)
return resp
def list_checkout_keys(self, username, project, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/checkout-key'.format(
vcs_type,
username,
project
)
resp = self._request('GET', endpoint)
return resp
def create_checkout_key(self, username, project, key_type, vcs_type='github'):
valid_types = ['deploy-key', 'github-user-key']
if key_type not in valid_types:
raise BadKeyError(key_type)
params = {
"type": key_type
}
endpoint = 'project/{0}/{1}/{2}/checkout-key'.format(
vcs_type,
username,
project
)
resp = self._request('POST', endpoint, data=params)
return resp
def get_checkout_key(self, username, project, fingerprint, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/checkout-key/{3}'.format(
vcs_type,
username,
project,
fingerprint
)
resp = self._request('GET', endpoint)
return resp
def delete_checkout_key(self, username, project, fingerprint, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/checkout-key/{3}'.format(
vcs_type,
username,
project,
fingerprint
)
resp = self._request('DELETE', endpoint)
return resp
def get_test_metadata(self, username, project, build_num, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/{3}/tests'.format(
vcs_type,
username,
project,
build_num
)
resp = self._request('GET', endpoint)
return resp
def list_envvars(self, username, project, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/envvar'.format(
vcs_type,
username,
project
)
resp = self._request('GET', endpoint)
return resp
def add_envvar(self, username, project, name, value, vcs_type='github'):
params = {
"name": name,
"value": value
}
endpoint = 'project/{0}/{1}/{2}/envvar'.format(
vcs_type,
username,
project
)
resp = self._request('POST', endpoint, data=params)
return resp
def get_envvar(self, username, project, name, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/envvar/{3}'.format(
vcs_type,
username,
project,
name
)
resp = self._request('GET', endpoint)
return resp
def delete_envvar(self, username, project, name, vcs_type='github'):
endpoint = 'project/{0}/{1}/{2}/envvar/{3}'.format(
vcs_type,
username,
project,
name
)
resp = self._request('DELETE', endpoint)
return resp
def _request(self, verb, endpoint, data=None):
headers = {
'Accept': 'application/json',
}
auth = HTTPBasicAuth(self.token, '')
resp = None
request_url = "{0}/{1}".format(self.url, endpoint)
if verb == 'GET':
resp = requests.get(request_url, auth=auth, headers=headers)
elif verb == 'POST':
resp = requests.post(request_url, auth=auth, headers=headers, json=data)
elif verb == 'DELETE':
resp = requests.delete(request_url, auth=auth, headers=headers)
else:
raise BadVerbError(verb)
resp.raise_for_status()
return resp.json()
|
MIT License
|
mrknow/filmkodi
|
plugin.video.mrknow/mylib/_pydev_imps/_pydev_SimpleXMLRPCServer.py
|
SimpleXMLRPCDispatcher.system_methodHelp
|
python
|
def system_methodHelp(self, method_name):
method = None
if self.funcs.has_key(method_name):
method = self.funcs[method_name]
elif self.instance is not None:
if hasattr(self.instance, '_methodHelp'):
return self.instance._methodHelp(method_name)
elif not hasattr(self.instance, '_dispatch'):
try:
method = resolve_dotted_attribute(
self.instance,
method_name,
self.allow_dotted_names
)
except AttributeError:
pass
if method is None:
return ""
else:
try:
import pydoc
except ImportError:
return ""
else:
return pydoc.getdoc(method)
|
system.methodHelp('add') => "Adds two integers together"
Returns a string containing documentation for the specified method.
|
https://github.com/mrknow/filmkodi/blob/0162cde9ae25ddbf4a69330948714833ff2f78c9/plugin.video.mrknow/mylib/_pydev_imps/_pydev_SimpleXMLRPCServer.py#L320-L354
|
try:
True
False
except:
import __builtin__
setattr(__builtin__, 'True', 1)
setattr(__builtin__, 'False', 0)
from _pydev_imps import _pydev_xmlrpclib as xmlrpclib
from _pydev_imps._pydev_xmlrpclib import Fault
from _pydev_imps import _pydev_SocketServer as SocketServer
from _pydev_imps import _pydev_BaseHTTPServer as BaseHTTPServer
import sys
import os
try:
import fcntl
except ImportError:
fcntl = None
def resolve_dotted_attribute(obj, attr, allow_dotted_names=True):
if allow_dotted_names:
attrs = attr.split('.')
else:
attrs = [attr]
for i in attrs:
if i.startswith('_'):
raise AttributeError(
'attempt to access private attribute "%s"' % i
)
else:
obj = getattr(obj, i)
return obj
def list_public_methods(obj):
return [member for member in dir(obj)
if not member.startswith('_') and
callable(getattr(obj, member))]
def remove_duplicates(lst):
u = {}
for x in lst:
u[x] = 1
return u.keys()
class SimpleXMLRPCDispatcher:
def __init__(self, allow_none, encoding):
self.funcs = {}
self.instance = None
self.allow_none = allow_none
self.encoding = encoding
def register_instance(self, instance, allow_dotted_names=False):
self.instance = instance
self.allow_dotted_names = allow_dotted_names
def register_function(self, function, name=None):
if name is None:
name = function.__name__
self.funcs[name] = function
def register_introspection_functions(self):
self.funcs.update({'system.listMethods' : self.system_listMethods,
'system.methodSignature' : self.system_methodSignature,
'system.methodHelp' : self.system_methodHelp})
def register_multicall_functions(self):
self.funcs.update({'system.multicall' : self.system_multicall})
def _marshaled_dispatch(self, data, dispatch_method=None):
try:
params, method = xmlrpclib.loads(data)
if dispatch_method is not None:
response = dispatch_method(method, params)
else:
response = self._dispatch(method, params)
response = (response,)
response = xmlrpclib.dumps(response, methodresponse=1,
allow_none=self.allow_none, encoding=self.encoding)
except Fault, fault:
response = xmlrpclib.dumps(fault, allow_none=self.allow_none,
encoding=self.encoding)
except:
response = xmlrpclib.dumps(
xmlrpclib.Fault(1, "%s:%s" % (sys.exc_type, sys.exc_value)),
encoding=self.encoding, allow_none=self.allow_none,
)
return response
def system_listMethods(self):
methods = self.funcs.keys()
if self.instance is not None:
if hasattr(self.instance, '_listMethods'):
methods = remove_duplicates(
methods + self.instance._listMethods()
)
elif not hasattr(self.instance, '_dispatch'):
methods = remove_duplicates(
methods + list_public_methods(self.instance)
)
methods.sort()
return methods
def system_methodSignature(self, method_name):
return 'signatures not supported'
|
Apache License 2.0
|
jeeftor/alfredtoday
|
src/GoogleInterface.py
|
GoogleInterface._get_credentials
|
python
|
def _get_credentials(self):
home_dir = os.path.expanduser('~')
credential_dir = os.path.join(home_dir, '.credentials')
if not os.path.exists(credential_dir):
os.makedirs(credential_dir)
self.credential_path = os.path.join(credential_dir, 'calendar-alfred-today.json')
self.store = oauth2client.file.Storage(self.credential_path)
self.credentials = self.store.get()
return self.credentials
|
Gets valid user credentials from storage.
If nothing has been stored, or if the stored credentials are invalid,
the OAuth2 flow is completed to obtain the new credentials.
Returns:
Credentials, the obtained credential.
|
https://github.com/jeeftor/alfredtoday/blob/f6e2c2228caa71015e654e1fdbf552e2ca4f90ad/src/GoogleInterface.py#L78-L99
|
import sys, os
sys.path = [os.path.join(os.path.dirname(__file__), 'lib')] + sys.path
from workflow import Workflow3
import oauth2client
import googleapiclient
from apiclient import discovery
from oauth2client import client
from oauth2client import tools
from lib.apiclient import discovery
from lib.oauth2client import client, tools
import httplib2
from settings import get_http_kw_args
class AuthorizationNeededException(Exception):
pass
class NoCalendarException(Exception):
pass
class GoogleInterface(object):
def __init__(self, wf):
self.HTTP_INSTANCE = httplib2.Http(**get_http_kw_args(wf))
self.log = wf.logger
self.wf = wf
self.CLIENT_SECRET_FILE = 'client_secret.json'
self.APPLICATION_NAME = 'Alfred Today'
self.SCOPES = 'https://www.googleapis.com/auth/calendar.readonly'
credentials = self._get_credentials()
if not credentials or credentials.invalid:
self._authorize_google()
http = credentials.authorize(self.HTTP_INSTANCE)
self.service = discovery.build('calendar', 'v3', http=http)
def __check_auth_status(self):
if not self.credentials or self.credentials.invalid:
raise AuthorizationNeededException()
def _authorize_google(self):
try:
self.__check_auth_status()
except AuthorizationNeededException:
flow = client.flow_from_clientsecrets(self.CLIENT_SECRET_FILE, self.SCOPES)
flow.user_agent = self.APPLICATION_NAME
flags = None
self.credentials = tools.run_flow_wf(self.wf, flow, self.store, flags, http=self.HTTP_INSTANCE)
self.wf.logger.info("Storing credentials to [%s]", self.credential_path)
|
MIT License
|
philipbergen/zero
|
py/zero/__init__.py
|
Zero.sock
|
python
|
def sock(self):
if not hasattr(self, '_sock'):
self._sock = self.setup.ctx.socket(self.setup.method)
if self.setup.linger:
self._sock.setsockopt(zmq.LINGER, self.setup.linger)
for subsc in self.setup.subscriptions:
self._sock.setsockopt(zmq.SUBSCRIBE, subsc)
if self.setup.bind:
self._sock.bind(self.setup.point)
else:
self._sock.connect(self.setup.point)
self.setup.debug('Created ZMQ socket %r', self)
return self._sock
|
Returns the zmq.Socket, lazy initialization.
|
https://github.com/philipbergen/zero/blob/83c1487ae64d1a95e5529f875f02bf88c425c09f/py/zero/__init__.py#L388-L401
|
import sys
import zmq
import json
from itertools import izip
__all__ = ('ZeroSetup', 'Zero')
class UnsupportedZmqMethod(Exception):
class ZeroSetup(object):
def __init__(self, method, point):
self._method = method.lower()
self.bind = self.method not in (zmq.SUB, zmq.PUSH, zmq.REQ)
self.debugging(False)
self._point = point
self.linger = 1000
self.block = True
self.output = sys.stderr
@staticmethod
def argv(argv=sys.argv[1:]):
from docopt import docopt
from itertools import count
args = docopt(__doc__, argv)
method = [meth for meth in ('push', 'req', 'rep', 'pub', 'pull', 'sub')
if args[meth]]
if not method:
raise UnsupportedZmqMethod('Unsupported ZMQ method', '?', args)
method = method[0]
setup = ZeroSetup(method, args['<socket>']).debugging(args['--dbg'])
if args['--bind']:
setup.binding(True)
if args['--connect']:
setup.binding(False)
if args['<subscription>']:
setup.subscribing(args['<subscription>'])
setup.args = args
setup.debug('%r', setup)
msgloop = None
if setup.transmits:
if args['-']:
msgloop = ZeroSetup.iter_stdin()
else:
msgloop = args['<message>']
elif args['-n'] == 'inf':
msgloop = count()
else:
msgloop = xrange(int(args['-n']))
return setup, msgloop
@staticmethod
def iter_stdin():
from json import loads
def liner():
res = sys.stdin.readline()
if not res:
return None
return loads(res.rstrip())
return iter(liner, None)
def __repr__(self):
res = ['ZeroSetup(%r, %r)' % (self._method, self._point)]
res.append('.binding(%s)' % self.bind)
if self.debug == self._debug_on:
res.append('.debugging()')
if not self.block:
res.append('.nonblocking()')
if self.subscriptions:
res.append('.subscribing(%r)' % self.subscriptions)
return ''.join(res)
__str__ = __repr__
def _print(self, pre, col, s, *args, **kwarg):
from textwrap import wrap
if args:
s = s % args
if kwarg:
s = s % kwarg
for i in wrap(s, 95):
self.output.write(pre + i + '\n')
self.output.flush()
def _debug_off(self, s, *args, **kwarg):
pass
def _debug_on(self, s, *args, **kwarg):
from ansicolor import blu
self._print('> ', blu, s, *args, **kwarg)
def warn(self, s, *args, **kwarg):
from ansicolor import yel
self._print('>> ', yel, s, *args, **kwarg)
def err(self, s, *args, **kwarg):
from ansicolor import red, bld
self._print('>>> ', lambda x: bld(red(x)), s, *args, **kwarg)
def binding(self, val=True):
self.bind = val
return self
def subscribing(self, heads):
if self.method == zmq.SUB:
self._filters = list(iter(heads))
else:
raise ValueError('Only zmq.SUB accepts subscriptions (%r)' % self)
return self
def debugging(self, val=True):
self.debug = self._debug_on if val else self._debug_off
return self
def nonblocking(self, val=True):
self.block = not val
return self
def opposite(self):
res = eval(repr(self))
if res._method == 'pub':
res._method = 'sub'
elif res._method == 'sub':
res._method = 'pub'
elif res._method == 'pull':
res._method = 'push'
elif res._method == 'push':
res._method = 'pull'
elif res._method == 'rep':
res._method = 'req'
elif res._method == 'req':
res._method = 'rep'
return res.binding(not res.bind).debugging(False)
@property
def subscriptions(self):
if self.method == zmq.SUB:
return getattr(self, '_filters', [''])
return []
@property
def method(self):
try:
return getattr(zmq, self._method.upper())
except AttributeError:
raise UnsupportedZmqMethod('Unsupported ZMQ method', self._method, {})
@property
def point(self):
if str(self._point)[:1] == ':':
self._point = self._point[1:]
try:
int(self._point)
if self.bind:
return 'tcp://*:%s' % self._point
return 'tcp://localhost:%s' % self._point
except ValueError:
return self._point
@property
def transmits(self):
return self.method in (zmq.PUSH, zmq.PUB, zmq.REQ, zmq.REP)
@property
def replies(self):
return self.method == zmq.REP
@property
def yields(self):
return self.method in (zmq.PULL, zmq.SUB, zmq.REQ, zmq.REP)
class Zero(object):
def __init__(self, setup):
self.setup = setup
self.marshals()
self.naptime = 0.5
if not hasattr(setup, 'ctx'):
setup.ctx = zmq.Context()
def __del__(self):
self.close()
def close(self):
if hasattr(self, '_sock'):
self._sock.close()
del self._sock
def marshals(self, encode=json.dumps, decode=json.loads):
self._encode = encode
self._decode = decode
return self
def activated(self, zerorpc):
if not self.setup.yields:
raise ValueError('Only setups that yield can be activated', self)
if not callable(zerorpc):
raise ValueError('Objects used for activation must be callable', self, zerorpc)
self.rpc = zerorpc
self.rpc.zero = self
return self
def __repr__(self):
res = ['Zero(%r)' % self.setup]
if self._encode != json.dumps or self._decode != json.loads:
res.append('.marshals(%r, %r)' % (self._encode, self._decode))
if hasattr(self, 'rpc'):
res.append('.activated(%r)' % self.rpc)
return ''.join(res)
__str__ = __repr__
@property
|
MIT License
|
bihealth/sodar_core
|
projectroles/management/commands/batchupdateroles.py
|
Command._invite_user
|
python
|
def _invite_user(self, email, project, role):
logger.info(
'Creating and sending invite to {} for role {}..'.format(
email, role.name
)
)
invite = ProjectInvite.objects.filter(
email=email,
project=project,
active=True,
date_expire__gte=timezone.now(),
).first()
if invite:
logger.info('Invite already exists for user in project')
return
invite = ProjectInvite.objects.create(
email=email,
project=project,
role=role,
issuer=self.issuer,
date_expire=get_expiry_date(),
secret=build_secret(),
)
self.handle_invite(invite, self.request, add_message=False)
self.invite_count += 1
|
Create and send user for user not yet in system
|
https://github.com/bihealth/sodar_core/blob/4176f762b77fae4dfdf24d51328938b94d3a64ce/projectroles/management/commands/batchupdateroles.py#L102-L127
|
from email.utils import parseaddr
import logging
import sys
from django.conf import settings
from django.contrib import auth
from django.core.management.base import BaseCommand
from django.http import HttpRequest
from django.utils import timezone
from projectroles.models import (
Project,
Role,
RoleAssignment,
ProjectInvite,
SODAR_CONSTANTS,
)
from projectroles.views import RoleAssignmentModifyMixin, ProjectInviteMixin
from projectroles.utils import get_expiry_date, build_secret
User = auth.get_user_model()
logger = logging.getLogger(__name__)
SITE_MODE_TARGET = SODAR_CONSTANTS['SITE_MODE_TARGET']
class MockRequest(HttpRequest):
scheme = 'http'
def mock_scheme(self, host):
self.scheme = host.scheme
def scheme(self):
return self.scheme
class Command(RoleAssignmentModifyMixin, ProjectInviteMixin, BaseCommand):
help = 'Batch updates project roles and sends invites'
roles = None
owner_role = None
del_role = None
issuer = None
update_count = 0
invite_count = 0
request = None
sodar_url = None
def __init__(
self, stdout=None, stderr=None, no_color=False, sodar_url=None
):
self.sodar_url = sodar_url
super().__init__(stdout, stderr, no_color)
def _make_request(self):
host = settings.SODAR_API_DEFAULT_HOST
request = MockRequest()
request.mock_scheme(host)
request.META['HTTP_HOST'] = host.hostname
if host.port:
request.META['HTTP_HOST'] += ':' + str(host.port)
request.user = self.issuer
return request
def _update_role(self, project, user, role):
logger.info(
'Updating role of user {} to {}..'.format(user.username, role.name)
)
if user in [a.user for a in project.get_owners(inherited_only=True)]:
logger.info('Skipping as user has inherited ownership')
return
role_as = RoleAssignment.objects.filter(
project=project, user=user
).first()
if role_as and role_as.role == role:
logger.info('Skipping as role already exists for user')
return
elif role_as and role_as.role == self.owner_role:
logger.warning(
'Skipping as ownership transfer is not permitted here'
)
return
self.modify_assignment(
data={'user': user, 'role': role},
request=self.request,
project=project,
instance=role_as,
sodar_url=self.sodar_url,
)
self.update_count += 1
|
MIT License
|
forcebru/pyvm
|
VM/fetchLoop.py
|
FetchLoopMixin.run
|
python
|
def run(self: CPU32) -> int:
pref_segments = {
0x2E: SegmentRegs.CS,
0x36: SegmentRegs.SS,
0x3E: SegmentRegs.DS,
0x26: SegmentRegs.ES,
0x64: SegmentRegs.FS,
0x65: SegmentRegs.GS
}
pref_op_size_override = {0x66, 0x67}
pref_lock = {0xf0}
rep = {0xf3}
prefixes = set(pref_segments) | pref_op_size_override | pref_lock | rep
self.running = True
while self.running and self.eip + 1 < self.mem.size:
overrides = []
self.opcode = self.mem.get(self.eip, 1)
while self.opcode in prefixes:
overrides.append(self.opcode)
self.eip += 1
self.opcode = self.mem.get(self.eip, 1)
size_override_active = False
for ov in overrides:
if ov == 0x66:
if not size_override_active:
self.current_mode = not self.current_mode
size_override_active = True
old_operand_size = self.operand_size
self.operand_size = self.sizes[self.current_mode]
logger.debug(
'Operand size override: %d -> %d',
old_operand_size, self.operand_size
)
elif ov == 0x67:
if not size_override_active:
self.current_mode = not self.current_mode
size_override_active = True
old_address_size = self.address_size
self.address_size = self.sizes[self.current_mode]
logger.debug(
'Address size override: %d -> %d',
old_address_size, self.address_size
)
elif ov in pref_segments:
is_special = ov >> 6
if is_special:
sreg_number = 4 + (ov & 1)
else:
sreg_number = (ov >> 3) & 0b11
self.mem.segment_override = sreg_number
logger.debug('Segment override: %s', self.mem.segment_override)
elif ov == 0xf0:
logger.debug('LOCK prefix')
elif ov == 0xf3:
self.opcode = ov
self.eip -= 1
self.execute_opcode()
for ov in overrides:
if ov == 0x66:
self.current_mode = self.default_mode
self.operand_size = self.sizes[self.current_mode]
elif ov == 0x67:
self.current_mode = self.default_mode
self.address_size = self.sizes[self.current_mode]
elif ov in pref_segments:
self.mem.segment_override = SegmentRegs.DS
return self.reg.eax
|
Implements the basic CPU instruction cycle (https://en.wikipedia.org/wiki/Instruction_cycle)
:param self: passed implicitly
:param offset: location of the first opcode
:return: None
|
https://github.com/forcebru/pyvm/blob/cf1838ac4d94419ce10919b4bf83eeb484ad73fe/VM/fetchLoop.py#L56-L139
|
import enum
from .ELF import ELF32, enums
from .util import SegmentRegs, MissingOpcodeError
from .CPU import CPU32
import logging
logger = logging.getLogger(__name__)
class FetchLoopMixin:
_attrs_ = 'eip', 'mem', 'reg.ebx', 'fmt', 'instr', 'sizes', 'default_mode'
def execute_opcode(self: CPU32) -> None:
self.eip += 1
off = 1
if self.opcode == 0x0F:
op = self.mem.get_eip(self.eip, 1)
self.eip += 1
self.opcode = (self.opcode << 8) | op
off += 1
if __debug__:
logger.debug(self.fmt, self.eip - off, self.opcode)
try:
impls = self.instr[self.opcode]
except KeyError:
...
else:
for impl in impls:
if impl():
return
op = self.mem.get_eip(self.eip, 1)
self.eip += 1
self.opcode = (self.opcode << 8) | op
try:
impls = self.instr[self.opcode]
except KeyError:
raise MissingOpcodeError(f'Opcode {self.opcode:x} is not recognized yet (at 0x{self.eip - off - 1:08x})')
else:
for impl in impls:
if impl():
return
raise NotImplementedError(f'No suitable implementation found for opcode {self.opcode:x} (@0x{self.eip - off - 1:02x})')
|
MIT License
|
google/pyctr
|
overloads/testing/reverse_conditional_logic.py
|
if_stmt
|
python
|
def if_stmt(cond, body, orelse, *_):
if cond():
orelse()
else:
body()
|
Reverses body and orelse.
|
https://github.com/google/pyctr/blob/056a85cd338d2977f69483d0c735bb695666e2aa/overloads/testing/reverse_conditional_logic.py#L18-L23
|
Apache License 2.0
|
|
datamllab/tods
|
tods/detection_algorithm/core/AutoRegOD.py
|
AutoRegOD.fit
|
python
|
def fit(self, X: np.array) -> object:
X = check_array(X).astype(np.float)
sub_matrices, self.left_inds_, self.right_inds_ = get_sub_matrices(
X,
window_size=self.window_size,
step=self.step_size,
return_numpy=True,
flatten=True)
sub_matrices = sub_matrices[:-1, :]
self.left_inds_ = self.left_inds_[:-1]
self.right_inds_ = self.right_inds_[:-1]
self.valid_len_ = sub_matrices.shape[0]
y_buf = np.zeros([self.valid_len_, 1])
for i in range(self.valid_len_):
y_buf[i] = X[i * self.step_size + self.window_size]
self.lr_ = LinearRegression(fit_intercept=True)
self.lr_.fit(sub_matrices, y_buf)
self.decision_scores_ = np.absolute(
y_buf.ravel() - self.lr_.predict(sub_matrices).ravel())
self._process_decision_scores()
return self
|
Fit detector. y is ignored in unsupervised methods.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Fitted estimator.
|
https://github.com/datamllab/tods/blob/f77825bc6ee865db18e3930ce93de672969282d7/tods/detection_algorithm/core/AutoRegOD.py#L59-L104
|
import numpy as np
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted
from sklearn.linear_model import LinearRegression
from .CollectiveBase import CollectiveBaseDetector
from .utility import get_sub_matrices
class AutoRegOD(CollectiveBaseDetector):
def __init__(self, window_size, step_size=1, contamination=0.1):
super(AutoRegOD, self).__init__(contamination=contamination)
self.window_size = window_size
self.step_size = step_size
|
Apache License 2.0
|
flutterwave/rave-python
|
rave_python/rave_card.py
|
Card._handleChargeResponse
|
python
|
def _handleChargeResponse(self, response, txRef, request=None):
res = self._preliminaryResponseChecks(response, CardChargeError, txRef=txRef)
responseJson = res["json"]
flwRef = res["flwRef"]
if responseJson["data"].get("authurl", "N/A") == "N/A":
authUrl = None
else:
authUrl = responseJson["data"]["authurl"]
if not (responseJson["data"].get("chargeResponseCode", None) == "00"):
suggestedAuth = responseJson["data"].get("suggested_auth", None)
return {"error": False, "validationRequired": True, "txRef": txRef, "flwRef": flwRef, "suggestedAuth": suggestedAuth, "authUrl": authUrl}
else:
return {"error": False, "status": responseJson["status"], "validationRequired": False, "txRef": txRef, "flwRef": flwRef, "suggestedAuth": None, "authUrl": authUrl}
|
This handles charge responses
|
https://github.com/flutterwave/rave-python/blob/15b6e7032de15a58265d504983850877b871959f/rave_python/rave_card.py#L16-L35
|
from rave_python.rave_exceptions import RaveError, IncompletePaymentDetailsError, CardChargeError, TransactionVerificationError, ServerError
from rave_python.rave_payment import Payment
from rave_python.rave_misc import generateTransactionReference
class Card(Payment):
def __init__(self, publicKey, secretKey, production, usingEnv):
super(Card, self).__init__(publicKey, secretKey, production, usingEnv)
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/image_processing/opencv.py
|
_get_default_classifier
|
python
|
def _get_default_classifier(dest_path):
_LOGGER.info("Downloading default classifier")
req = requests.get(CASCADE_URL, stream=True)
with open(dest_path, 'wb') as fil:
for chunk in req.iter_content(chunk_size=1024):
if chunk:
fil.write(chunk)
|
Download the default OpenCV classifier.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/image_processing/opencv.py#L73-L80
|
from datetime import timedelta
import logging
import requests
import voluptuous as vol
from homeassistant.components.image_processing import (
CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE, PLATFORM_SCHEMA,
ImageProcessingEntity)
from homeassistant.core import split_entity_id
import homeassistant.helpers.config_validation as cv
REQUIREMENTS = ['numpy==1.14.3']
_LOGGER = logging.getLogger(__name__)
ATTR_MATCHES = 'matches'
ATTR_TOTAL_MATCHES = 'total_matches'
CASCADE_URL = 'https://raw.githubusercontent.com/opencv/opencv/master/data/' + 'lbpcascades/lbpcascade_frontalface.xml'
CONF_CLASSIFIER = 'classifier'
CONF_FILE = 'file'
CONF_MIN_SIZE = 'min_size'
CONF_NEIGHBORS = 'neighbors'
CONF_SCALE = 'scale'
DEFAULT_CLASSIFIER_PATH = 'lbp_frontalface.xml'
DEFAULT_MIN_SIZE = (30, 30)
DEFAULT_NEIGHBORS = 4
DEFAULT_SCALE = 1.1
DEFAULT_TIMEOUT = 10
SCAN_INTERVAL = timedelta(seconds=2)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Optional(CONF_CLASSIFIER): {
cv.string: vol.Any(
cv.isfile,
vol.Schema({
vol.Required(CONF_FILE): cv.isfile,
vol.Optional(CONF_SCALE, DEFAULT_SCALE): float,
vol.Optional(CONF_NEIGHBORS, DEFAULT_NEIGHBORS):
cv.positive_int,
vol.Optional(CONF_MIN_SIZE, DEFAULT_MIN_SIZE):
vol.Schema((int, int))
})
)
}
})
def _create_processor_from_config(hass, camera_entity, config):
classifier_config = config.get(CONF_CLASSIFIER)
name = '{} {}'.format(
config[CONF_NAME], split_entity_id(camera_entity)[1].replace('_', ' '))
processor = OpenCVImageProcessor(
hass, camera_entity, name, classifier_config)
return processor
|
MIT License
|
huggingface/accelerate
|
src/accelerate/utils.py
|
set_seed
|
python
|
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if is_tpu_available():
xm.set_rng_state(seed)
|
Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch``.
Args:
seed (:obj:`int`): The seed to set.
|
https://github.com/huggingface/accelerate/blob/34a4e4ea15931bdd36543d1f446caec56f848db0/src/accelerate/utils.py#L58-L71
|
import importlib
import os
import random
from collections.abc import Mapping
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import torch
from .state import AcceleratorState, DistributedType, is_deepspeed_available, is_tpu_available
if is_tpu_available():
import torch_xla.core.xla_model as xm
def is_boto3_available():
return importlib.util.find_spec("boto3") is not None
def is_sagemaker_available():
return importlib.util.find_spec("sagemaker") is not None
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
class RNGType(Enum):
TORCH = "torch"
CUDA = "cuda"
XLA = "xla"
GENERATOR = "generator"
@dataclass
class TensorInformation:
shape: torch.Size
dtype: torch.dtype
|
Apache License 2.0
|
codait/graph_def_editor
|
graph_def_editor/util.py
|
copy_directory
|
python
|
def copy_directory(oldpath, newpath, overwrite=False):
assert tf.gfile.IsDirectory(oldpath)
items = tf.gfile.Walk(oldpath)
for dirname, subdirs, filenames in items:
for subdir in subdirs:
tf.gfile.MakeDirs(os.path.join(dirname, subdir))
full_subdir = os.path.join(dirname, subdir)
remote_dir_path = os.path.join(newpath, full_subdir[1 + len(oldpath) :])
tf.gfile.MakeDirs(remote_dir_path)
for filename in filenames:
full_filename = os.path.join(dirname, filename)
remote_file_path = os.path.join(newpath,
full_filename[1 + len(oldpath) :])
tf.gfile.Copy(full_filename, remote_file_path, overwrite=overwrite)
|
Recursively copy a directory of files to GCS.
Args:
oldpath: string, bytes, or os.PathLike; a pathname of a directory.
newpath: string, bytes, or os.PathLike; a pathname to which the directory
will be copied.
overwrite: boolean; if false, it is an error for newpath to be occupied by
an existing file.
|
https://github.com/codait/graph_def_editor/blob/862fbe725fda2e174918b670316ce80ec8a41af6/graph_def_editor/util.py#L836-L858
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import json
import re
import sys
if sys.version >= '3':
from typing import Any, List
import numpy as np
from six import iteritems, string_types
import tensorflow.compat.v1 as tf
from graph_def_editor import base_graph, node, tensor
__all__ = [
"make_list_of_op",
"make_list_of_t",
"get_generating_ops",
"get_consuming_ops",
"ControlOutputs",
"placeholder_name",
"make_placeholder_from_tensor",
"make_placeholder_from_dtype_and_shape",
"load_variables_to_tf_graph",
"make_const",
"make_placeholder",
"make_simple_binary_op"
]
_DEFAULT_PLACEHOLDER_PREFIX = "geph"
def concatenate_unique(la, lb):
la_set = set(la)
for l in lb:
if l not in la_set:
la.append(l)
la_set.add(l)
return la
class ListView(object):
def __init__(self, list_):
if not isinstance(list_, list):
raise TypeError("Expected a list, got: {}.".format(type(list_)))
self._list = list_
def __iter__(self):
return iter(self._list)
def __len__(self):
return len(self._list)
def __bool__(self):
return bool(self._list)
__nonzero__ = __bool__
def __getitem__(self, i):
return self._list[i]
def __add__(self, other):
if not isinstance(other, list):
other = list(other)
return list(self) + other
def __str__(self):
return "ListView[{}]".format(self._list)
def is_iterable(obj):
if isinstance(obj, node.Node):
return False
try:
_ = iter(obj)
except Exception:
return False
return True
def flatten_tree(tree, leaves=None):
if leaves is None:
leaves = []
if isinstance(tree, dict):
for _, child in iteritems(tree):
flatten_tree(child, leaves)
elif is_iterable(tree):
for child in tree:
flatten_tree(child, leaves)
else:
leaves.append(tree)
return leaves
def transform_tree(tree, fn, iterable_type=tuple):
if is_iterable(tree):
if isinstance(tree, dict):
res = tree.__new__(type(tree))
res.__init__(
(k, transform_tree(child, fn)) for k, child in iteritems(tree))
return res
elif isinstance(tree, tuple):
if hasattr(tree, "_asdict"):
res = tree.__new__(type(tree), **transform_tree(tree._asdict(), fn))
else:
res = tree.__new__(type(tree),
(transform_tree(child, fn) for child in tree))
return res
elif isinstance(tree, collections.Sequence):
res = tree.__new__(type(tree))
res.__init__(transform_tree(child, fn) for child in tree)
return res
else:
return iterable_type(transform_tree(child, fn) for child in tree)
else:
return fn(tree)
def check_graphs(*args):
g = None
for i, sgv in enumerate(args):
if g is None and sgv.graph is not None:
g = sgv.graph
elif sgv.graph is not None and sgv.graph is not g:
raise ValueError("Argument[{}]: Wrong graph!".format(i))
def get_unique_graph(tops, check_types=None, none_if_empty=False):
if isinstance(tops, base_graph.BaseGraph):
return tops
if not is_iterable(tops):
raise TypeError("{} is not iterable".format(type(tops)))
if check_types is None:
check_types = (node.Node, tensor.Tensor,)
elif not is_iterable(check_types):
check_types = (check_types,)
g = None
for op in tops:
if not isinstance(op, check_types):
raise TypeError("Expected a type in ({}), got: {}".format(", ".join([str(
t) for t in check_types]), type(op)))
if g is None:
g = op.graph
elif g is not op.graph:
raise ValueError("Operation {} does not belong to given graph".format(op))
if g is None and not none_if_empty:
raise ValueError("Can't find the unique graph of an empty list")
return g
def make_list_of_op(ops, check_graph=True, allow_graph=True, ignore_ts=False):
if isinstance(ops, base_graph.BaseGraph):
if allow_graph:
return ops.nodes
else:
raise TypeError("allow_graph is False: cannot convert a gde.Graph.")
else:
if not is_iterable(ops):
ops = [ops]
if not ops:
return []
if check_graph:
check_types = None if ignore_ts else node.Node
get_unique_graph(ops, check_types=check_types)
return [op for op in ops if isinstance(op, node.Node)]
def make_list_of_t(ts, check_graph=True, allow_graph=True, ignore_ops=False):
if isinstance(ts, base_graph.BaseGraph):
if allow_graph:
return ts.tensors
else:
raise TypeError("allow_graph is False: cannot convert a gde.Graph.")
else:
if not is_iterable(ts):
ts = [ts]
if not ts:
return []
if check_graph:
check_types = None if ignore_ops else (tensor.Tensor,)
get_unique_graph(ts, check_types=check_types)
return [t for t in ts if isinstance(t, tensor.Tensor)]
def get_generating_ops(ts):
ts = make_list_of_t(ts, allow_graph=False)
return [t.node for t in ts]
def get_consuming_ops(ts):
ts = make_list_of_t(ts, allow_graph=False)
ops = []
for t in ts:
for op in t.consumers():
if op not in ops:
ops.append(op)
return ops
class ControlOutputs(object):
def __init__(self,
g
):
if not isinstance(g, base_graph.BaseGraph):
raise TypeError("Expected a gde.Graph, got: {}".format(type(g)))
self._control_outputs = {}
self._graph = g
self._version = None
self._build()
def update(self):
if self._version != self._graph.version:
self._build()
return self
def _build(self):
self._control_outputs.clear()
for n in self._graph.nodes:
for control_input in n.control_inputs:
if control_input not in self._control_outputs:
self._control_outputs[control_input] = []
if n not in self._control_outputs[control_input]:
self._control_outputs[control_input].append(n)
self._version = self._graph.version
def get_all(self):
return self._control_outputs
def get(self, op):
if op in self._control_outputs:
return self._control_outputs[op]
else:
return ()
@property
def graph(self):
return self._graph
def scope_finalize(scope):
if scope and scope[-1] != "/":
scope += "/"
return scope
def scope_dirname(scope):
slash = scope.rfind("/")
if slash == -1:
return ""
return scope[:slash + 1]
def scope_basename(scope):
slash = scope.rfind("/")
if slash == -1:
return scope
return scope[slash + 1:]
def placeholder_name(t=None, scope=None, prefix=_DEFAULT_PLACEHOLDER_PREFIX):
if scope is not None:
scope = scope_finalize(scope)
if t is not None:
if not isinstance(t, tensor.Tensor):
raise TypeError("Expected a gde.Tensor, got: {}".format(type(t)))
op_dirname = scope_dirname(t.node.name)
op_basename = scope_basename(t.node.name)
if scope is None:
scope = op_dirname
if op_basename.startswith("{}__".format(prefix)):
ph_name = op_basename
else:
ph_name = "{}__{}_{}".format(prefix, op_basename, t.value_index)
return scope + ph_name
else:
if scope is None:
scope = ""
return "{}{}".format(scope, prefix)
def make_placeholder_from_tensor(
g,
t,
scope=None,
prefix=_DEFAULT_PLACEHOLDER_PREFIX
):
return make_placeholder(g, dtype=t.dtype, shape=t.shape,
name=placeholder_name(t, scope=scope,
prefix=prefix))
def make_placeholder_from_dtype_and_shape(g, dtype, shape=None, scope=None,
prefix=_DEFAULT_PLACEHOLDER_PREFIX):
return make_placeholder(g,
dtype=dtype, shape=shape,
name=placeholder_name(scope=scope, prefix=prefix))
_INTERNAL_VARIABLE_RE = re.compile(r"^__\w+__$")
def get_predefined_collection_names():
return [getattr(tf.GraphKeys, key) for key in dir(tf.GraphKeys)
if not _INTERNAL_VARIABLE_RE.match(key)]
def find_corresponding_elem(target, dst_graph, dst_scope="", src_scope=""):
src_name = target.name
if src_scope:
src_scope = scope_finalize(src_scope)
if not src_name.startswidth(src_scope):
raise ValueError("{} does not start with {}".format(src_name, src_scope))
src_name = src_name[len(src_scope):]
dst_name = src_name
if dst_scope:
dst_scope = scope_finalize(dst_scope)
dst_name = dst_scope + dst_name
if isinstance(target, tensor.Tensor):
return dst_graph.get_tensor_by_name(dst_name)
if isinstance(target, node.Node):
return dst_graph[dst_name]
raise TypeError("Expected gde.Tensor or gde.Node, got: {}", type(target))
def find_corresponding(targets, dst_graph, dst_scope="", src_scope=""):
def func(top):
return find_corresponding_elem(top, dst_graph, dst_scope, src_scope)
return transform_tree(targets, func)
def _python_type_to_attr_list_elem(
list_value,
elem,
attr_name
):
if isinstance(elem, string_types):
list_value.s.append(tf.compat.as_bytes(elem))
elif isinstance(elem, bool):
list_value.b.append(elem)
elif isinstance(elem, int):
list_value.i.append(elem)
elif isinstance(elem, float):
list_value.f.append(elem)
elif isinstance(elem, tf.DType):
list_value.type.append(elem.as_datatype_enum)
elif isinstance(elem, tf.TensorShape):
list_value.shape.add().CopyFrom(elem.as_proto())
elif isinstance(elem, np.ndarray) or isinstance(elem, list):
list_value.tensor.add().CopyFrom(tf.make_tensor_proto(values=elem))
else:
raise ValueError("Don't know how to convert a {} to "
"tf.AttrValue.ListValue for attribute {}".format(type(elem), attr_name))
def python_type_to_attr_value(value,
attr_name
):
if isinstance(value, list) or isinstance(value, tuple):
if 0 == len(value):
return tf.AttrValue(list=tf.AttrValue.ListValue())
else:
list_value = tf.AttrValue.ListValue()
for elem in value:
_python_type_to_attr_list_elem(list_value, elem, attr_name)
return tf.AttrValue(list=list_value)
elif isinstance(value, tf.AttrValue):
return value
elif isinstance(value, string_types):
return tf.AttrValue(s=tf.compat.as_bytes(value))
elif isinstance(value, bool):
return tf.AttrValue(b=value)
elif (isinstance(value, int) or
isinstance(value, np.int32) or
isinstance(value, np.int64)):
return tf.AttrValue(i=value)
elif isinstance(value, float) or isinstance(value, np.float):
return tf.AttrValue(f=value)
elif isinstance(value, tf.DType):
return tf.AttrValue(type=value.as_datatype_enum)
elif isinstance(value, np.dtype):
return tf.AttrValue(type=tf.as_dtype(value).as_datatype_enum)
elif isinstance(value, tf.TensorShape):
return tf.AttrValue(shape=value.as_proto())
elif isinstance(value, np.ndarray):
return tf.AttrValue(tensor=tf.make_tensor_proto(values=value))
else:
raise ValueError("Don't know how to convert a {} to "
"tf.AttrValue for attribute {}".format(
type(value), attr_name))
def attr_value_to_python_type(
attr_value,
attr_name
):
if attr_value.HasField("s"):
return tf.compat.as_str(attr_value.s)
elif attr_value.HasField("i"):
return attr_value.i
elif attr_value.HasField("f"):
return attr_value.f
elif attr_value.HasField("b"):
return attr_value.b
elif attr_value.HasField("type"):
return tf.DType(attr_value.type)
elif attr_value.HasField("shape"):
return tf.TensorShape(attr_value.shape)
elif attr_value.HasField("tensor"):
return tf.make_ndarray(attr_value.tensor)
elif attr_value.HasField("list"):
return attr_value.list
elif attr_value.HasField("func"):
return attr_value.func
else:
raise ValueError("Don't know how to convert AttrValue {} to "
"a Python object for attribute {}".format(attr_value, attr_name))
def load_variables_to_tf_graph(g
):
for var_name in g.variable_names:
var = g.get_variable_by_name(var_name)
tf_var = tf.Variable.from_proto(var.to_proto())
tf.add_to_collections(var.collection_names, tf_var)
def make_const(g,
name,
value,
uniquify_name=False
):
dtype = tf.as_dtype(value.dtype)
ret = g.add_node(name, "Const", uniquify_name=uniquify_name)
ret.add_attr("dtype", dtype)
ret.add_attr("value", value)
ret.set_outputs_from_pairs([(dtype, tf.TensorShape(value.shape))])
return ret
def make_placeholder(g,
name,
dtype,
shape,
uniquify_name=False
):
ret = g.add_node(name, "Placeholder", uniquify_name=uniquify_name)
ret.add_attr("dtype", dtype)
ret.set_outputs_from_pairs([(dtype, shape)])
return ret
def make_identity(g,
name,
input,
uniquify_name=False
):
ret = g.add_node(name, "Identity", uniquify_name=uniquify_name)
ret.set_inputs([input])
ret.set_outputs_from_pairs([(input.dtype, input.shape)])
ret.add_attr("T", input.dtype)
return ret
def make_simple_binary_op(g,
name,
op_name,
input_1,
input_2,
dtype=None,
uniquify_name=False
):
if dtype is None:
dtype = input_1.dtype
ret = g.add_node(name, op_name, uniquify_name=uniquify_name)
ret.add_attr("T", dtype)
ret.set_inputs([input_1, input_2])
ret.infer_outputs()
return ret
|
Apache License 2.0
|
stencila/hub
|
manager/projects/models/projects.py
|
Project.event
|
python
|
def event(self, data: dict, source=None):
ProjectEvent.objects.create(project=self, data=data, source=source)
|
Handle an event notification.
Records the event and evaluates each project trigger.
|
https://github.com/stencila/hub/blob/e696c39213156bb43a098f81286197e919379cdf/manager/projects/models/projects.py#L399-L409
|
import datetime
import os
from typing import Dict, List, Optional
from urllib.parse import urlencode
import shortuuid
from django.conf import settings
from django.core.files.base import ContentFile
from django.db import models
from django.db.models import Q
from django.db.models.signals import post_save
from django.http import HttpRequest
from django.shortcuts import reverse
from django.utils import timezone
from meta.views import Meta
from accounts.models import Account, AccountTeam
from jobs.models import Job, JobMethod
from manager.helpers import EnumChoice
from manager.storage import (
StorageUsageMixin,
media_storage,
snapshots_storage,
working_storage,
)
from users.models import User
class ProjectLiveness(EnumChoice):
LIVE = "live"
LATEST = "latest"
PINNED = "pinned"
@staticmethod
def as_choices():
return (
("live", "Use working directory"),
("latest", "Use latest snapshot"),
("pinned", "Pinned to snapshot"),
)
def generate_project_key():
return shortuuid.ShortUUID().random(length=32)
class Project(StorageUsageMixin, models.Model):
account = models.ForeignKey(
Account,
on_delete=models.CASCADE,
related_name="projects",
null=False,
blank=False,
help_text="Account that the project belongs to.",
)
creator = models.ForeignKey(
User,
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name="projects_created",
help_text="The user who created the project.",
)
created = models.DateTimeField(
auto_now_add=True, help_text="The time the project was created."
)
name = models.SlugField(
null=False,
blank=False,
help_text="Name of the project. Lowercase only and unique for the account. "
"Will be used in URLS e.g. https://hub.stenci.la/awesome-org/great-project.",
)
title = models.CharField(
null=True,
blank=True,
max_length=256,
help_text="Title of the project to display in its profile.",
)
temporary = models.BooleanField(
default=False, help_text="Is the project temporary?"
)
public = models.BooleanField(
default=True, help_text="Is the project publicly visible?"
)
featured = models.BooleanField(
default=False, help_text="Is the project to be featured in listings?"
)
key = models.CharField(
default=generate_project_key,
max_length=64,
help_text="A unique, and very difficult to guess, key to access this project if it is not public.",
)
description = models.TextField(
null=True, blank=True, help_text="Brief description of the project."
)
image_file = models.ImageField(
null=True,
blank=True,
storage=media_storage(),
upload_to="projects/images",
help_text="The image used for this project in project listings and HTML meta data.",
)
image_path = models.CharField(
null=True,
blank=True,
max_length=1024,
help_text="Path of file in the project's working directory to use as this project's image. "
"Allows the project's image to update as it is re-executed.",
)
image_updated = models.DateTimeField(
null=True,
blank=True,
help_text="When the image file was last updated (e.g. from image_path).",
)
theme = models.TextField(
null=True,
blank=True,
help_text="The name of the theme to use as the default when generating content for this project."
)
extra_head = models.TextField(
null=True,
blank=True,
help_text="Content to inject into the <head> element of HTML served for this project.",
)
extra_top = models.TextField(
null=True,
blank=True,
help_text="Content to inject at the top of the <body> element of HTML served for this project.",
)
extra_bottom = models.TextField(
null=True,
blank=True,
help_text="Content to inject at the bottom of the <body> element of HTML served for this project.",
)
container_image = models.TextField(
null=True,
blank=True,
help_text="The container image to use as the execution environment for this project.",
)
session_timeout = models.PositiveIntegerField(
null=True,
blank=True,
help_text="The amount of time of inactivity after which a session will end (s).",
)
session_timelimit = models.PositiveIntegerField(
null=True, blank=True, help_text="The maximum duration of a session (s)."
)
session_memory = models.PositiveIntegerField(
null=True,
blank=True,
help_text="The amount of memory allocated (request and limit) for a session (MiB).",
)
main = models.TextField(
null=True, blank=True, help_text="Path of the main file of the project",
)
liveness = models.CharField(
max_length=16,
choices=ProjectLiveness.as_choices(),
default=ProjectLiveness.LATEST.value,
help_text="Where to serve the content for this project from.",
)
pinned = models.ForeignKey(
"Snapshot",
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name="project_pinned",
help_text="If pinned, the snapshot to pin to, when serving content.",
)
class Meta:
constraints = [
models.UniqueConstraint(
fields=["account", "name"], name="%(class)s_unique_account_name"
)
]
TEMPORARY_PROJECT_LIFESPANS = {
"temp": datetime.timedelta(days=1),
"default": datetime.timedelta(days=7),
}
TEMPORARY_PROJECT_WARNING = datetime.timedelta(days=2)
STORAGE = working_storage()
def __str__(self):
return self.name
def get_meta(self) -> Meta:
return Meta(
object_type="article",
title=self.title or self.name,
description=self.description,
image=self.image_file.url if self.image_file else None,
)
def set_image_from_file(self, file):
if isinstance(file, str):
try:
file = self.files.filter(current=True, path=file)[0]
except IndexError:
return
content = file.get_content()
format = file.get_format()
ext = format.default_extension if format else ""
file = ContentFile(content)
file.name = f"{self.id}-{shortuuid.uuid()}{ext}"
self.image_file = file
self.image_updated = timezone.now()
self.save()
def update_image(self):
modified_since = (
dict(modified__gt=self.image_updated) if self.image_updated else {}
)
if self.image_path and self.image_path != "__uploaded__":
images = self.files.filter(
current=True, path=self.image_path, **modified_since
).order_by("-modified")
if len(images) > 0:
self.set_image_from_file(images[0])
else:
images = self.files.filter(
current=True, mimetype__startswith="image/", **modified_since,
).order_by("-modified")
if len(images) > 0:
self.set_image_from_file(images[0])
def update_image_all_projects(self):
projects = Project.objects.all(temporary=False)
for project in projects:
project.update_image()
@property
def scheduled_deletion_time(self) -> Optional[datetime.datetime]:
if not self.temporary:
return None
delta = Project.TEMPORARY_PROJECT_LIFESPANS.get(
self.account.name, Project.TEMPORARY_PROJECT_LIFESPANS.get("default")
)
return self.created + delta
@property
def scheduled_deletion_warning(self) -> Optional[datetime.datetime]:
time = self.scheduled_deletion_time
return time - Project.TEMPORARY_PROJECT_WARNING if time else None
def get_main(self):
if self.main:
try:
return self.files.filter(path=self.main, current=True).order_by(
"-created"
)[0]
except IndexError:
pass
candidates = self.files.filter(
Q(path__startswith="main.") | Q(path__startswith="README."), current=True
).order_by("-modified")
if len(candidates):
return candidates[0]
return None
def get_theme(self) -> str:
return self.theme or self.account.theme
def content_url(self, snapshot=None, path=None, live=False) -> str:
params: Dict = {}
if settings.CONFIGURATION.endswith("Dev"):
url = (
reverse("ui-accounts-content", kwargs=dict(project_name=self.name))
+ "/"
)
params.update(account=self.account.name)
else:
url = "https://{account}.{domain}/{project}/".format(
account=self.account.name,
domain=settings.ACCOUNTS_DOMAIN,
project=self.name,
)
if live:
url += "live/"
elif snapshot:
url += "v{0}/".format(snapshot.number)
if not self.public:
url += "~{0}/".format(self.key)
if path:
url += path
if params:
url += "?" + urlencode(params)
return url
def file_location(self, file: str) -> str:
return os.path.join(str(self.id), file)
|
Apache License 2.0
|
picoctf/picoctf
|
picoCTF-web/tests/integration/common.py
|
ensure_before_competition
|
python
|
def ensure_before_competition():
db = get_conn()
db.settings.update_one(
{},
{
"$set": {
"start_time": datetime.datetime.utcnow() + datetime.timedelta(11),
"end_time": datetime.datetime.utcnow() + datetime.timedelta(10),
}
},
)
|
Adjust the competition times so that @block_before_competition fails.
|
https://github.com/picoctf/picoctf/blob/280dcf21ac024067cf436894947ffffd328be048/picoCTF-web/tests/integration/common.py#L728-L739
|
import datetime
import json
import re
import pymongo
import pytest
import api
RATE_LIMIT_BYPASS_KEY = "test_bypass"
TESTING_DB_NAME = "ctf_test"
db = None
def decode_response(res):
decoded_dict = json.loads(res.data.decode("utf-8"))
return (decoded_dict["status"], decoded_dict["message"], decoded_dict["data"])
def get_csrf_token(res):
for header in res.headers:
m = re.search("token=(.+?);", header[1])
if m:
return m.group(1)
raise RuntimeError(
"Could not find CSRF token in response headers: " + str(res.headers)
)
def get_conn():
global db
if db is None:
client = pymongo.MongoClient(host="127.0.0.1", port=27018)
db = client[TESTING_DB_NAME]
return db
def clear_db():
db = get_conn()
db.command("dropDatabase")
@pytest.fixture
def client():
app = api.create_app(
{
"TESTING": True,
"MONGO_DB_NAME": TESTING_DB_NAME,
"MONGO_PORT": 27018,
"RATE_LIMIT_BYPASS_KEY": RATE_LIMIT_BYPASS_KEY,
}
)
return app.test_client()
def app():
app = api.create_app(
{"TESTING": True, "MONGO_DB_NAME": TESTING_DB_NAME, "MONGO_PORT": 27018}
)
return app
def cache(f, *args, **kwargs):
result = f(reset_cache=True, *args, **kwargs)
return result
def update_all_scoreboards():
api.stats.get_all_team_scores()
for scoreboard in api.scoreboards.get_all_scoreboards():
api.stats.get_all_team_scores(scoreboard_id=scoreboard["sid"])
for group in api.group.get_all_groups():
api.stats.get_group_scores(gid=group["gid"])
ADMIN_DEMOGRAPHICS = {
"username": "adminuser",
"password": "adminpw",
"firstname": "Admin",
"lastname": "User",
"email": "admin@example.com",
"country": "US",
"affiliation": "Admin School",
"usertype": "other",
"demo": {"parentemail": "admin@example.com", "age": "18+"},
"gid": None,
"rid": None,
}
TEACHER_DEMOGRAPHICS = {
"username": "teacheruser",
"password": "teacherpw",
"firstname": "Teacher",
"lastname": "User",
"email": "teacher@example.com",
"country": "US",
"affiliation": "Sample School",
"usertype": "teacher",
"demo": {"parentemail": "teacher@example.com", "age": "18+"},
"gid": None,
"rid": None,
}
STUDENT_DEMOGRAPHICS = {
"username": "studentuser",
"password": "studentpw",
"firstname": "Student",
"lastname": "User",
"email": "student@example.com",
"country": "US",
"affiliation": "Sample School",
"usertype": "student",
"demo": {"parentemail": "student@example.com", "age": "13-17"},
"gid": None,
"rid": None,
}
STUDENT_2_DEMOGRAPHICS = {
"username": "studentuser2",
"password": "studentpw2",
"firstname": "Student",
"lastname": "Usertwo",
"email": "student2@example.com",
"country": "US",
"affiliation": "Sample School",
"usertype": "student",
"demo": {"parentemail": "student2@example.com", "age": "18+"},
"gid": None,
"rid": None,
}
OTHER_USER_DEMOGRAPHICS = {
"username": "otheruser",
"password": "otherpw",
"firstname": "Other",
"lastname": "User",
"email": "other@example.com",
"country": "US",
"affiliation": "Sample Organization",
"usertype": "other",
"demo": {"age": "18+"},
"gid": None,
"rid": None,
}
def register_test_accounts():
with app().app_context():
api.user.add_user(ADMIN_DEMOGRAPHICS)
api.user.add_user(TEACHER_DEMOGRAPHICS)
api.user.add_user(STUDENT_DEMOGRAPHICS)
api.user.add_user(STUDENT_2_DEMOGRAPHICS)
api.user.add_user(OTHER_USER_DEMOGRAPHICS)
sample_shellserver_publish_output = r"""
{
"problems": [
{
"name": "ECB 1",
"category": "Cryptography",
"description": "There is a crypto service running at {{server}}:{{port}}. We were able to recover the source code, which you can download at {{url_for(\"ecb.py\")}}.",
"walkthrough": "Let me google that for you.",
"score": 70,
"author": "Tim Becker",
"organization": "ForAllSecure",
"event": "Sample",
"pip_requirements": [
"pycrypto"
],
"pip_python_version": "3",
"unique_name": "ecb-1-b06174a",
"instances": [
{
"user": "ecb-1_0",
"deployment_directory": "/problems/ecb-1_0_73a0108a98d2862a86f4b71534aaf7c3",
"service": "ecb-1_0",
"socket": null,
"server": "192.168.2.3",
"description": "There is a crypto service running at 192.168.2.3:46981. We were able to recover the source code, which you can download at <a href='//192.168.2.3/static/fd59acc6b8d2359d48bd939a08ecb8ab/ecb.py'>ecb.py</a>.",
"hints": [],
"flag": "49e56ea9bf2e2b60ba9af034b5b2a5fd",
"flag_sha1": "77cec418714d6eb0dc48afa6d6f38200402a83c0",
"instance_number": 0,
"should_symlink": false,
"files": [
{
"path": "flag",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "key",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "ecb.py",
"permissions": 1517,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
}
],
"port": 46981
},
{
"user": "ecb-1_1",
"deployment_directory": "/problems/ecb-1_1_83b2ed9a1806c86219347bc4982a66de",
"service": "ecb-1_1",
"socket": null,
"server": "192.168.2.3",
"description": "There is a crypto service running at 192.168.2.3:21953. We were able to recover the source code, which you can download at <a href='//192.168.2.3/static/beb9874a05a1810fa8c9d79152ace1b3/ecb.py'>ecb.py</a>.",
"hints": [],
"flag": "85a32ccd05fa30e0efd8da555c1a101a",
"flag_sha1": "f28581a86561c885152f7622200057585787c063",
"instance_number": 1,
"should_symlink": false,
"files": [
{
"path": "flag",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "key",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "ecb.py",
"permissions": 1517,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
}
],
"port": 21953
},
{
"user": "ecb-1_2",
"deployment_directory": "/problems/ecb-1_2_1998c2cc0f0d17ae54170200f5478b7f",
"service": "ecb-1_2",
"socket": null,
"server": "192.168.2.3",
"description": "There is a crypto service running at 192.168.2.3:17648. We were able to recover the source code, which you can download at <a href='//192.168.2.3/static/19e863cba0bf14ad676e4b4799eacc72/ecb.py'>ecb.py</a>.",
"hints": [],
"flag": "f76d2f6b885255450ed2f7307d96e28e",
"flag_sha1": "43cf6f1dab026cf2100e2f663509512416112219",
"instance_number": 2,
"should_symlink": false,
"files": [
{
"path": "flag",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "key",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "ecb.py",
"permissions": 1517,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
}
],
"port": 17648
}
],
"sanitized_name": "ecb-1"
},
{
"name": "SQL Injection 1",
"category": "Web Exploitation",
"pkg_dependencies": [
"php7.2-sqlite3"
],
"description": "There is a website running at http://{{server}}:{{port}}. Try to see if you can login!",
"score": 40,
"author": "Tim Becker",
"organization": "ForAllSecure",
"event": "Sample",
"unique_name": "sql-injection-1-0c436d0",
"instances": [
{
"user": "sql-injection-1_0",
"deployment_directory": "/problems/sql-injection-1_0_9e114b246c48eb158b16525f71ae2a00",
"service": "sql-injection-1_0",
"socket": null,
"server": "192.168.2.3",
"description": "There is a website running at http://192.168.2.3:46984. Try to see if you can login!",
"hints": [],
"flag": "9ac0a74de6bced3cdce8e7fd466f32d0",
"flag_sha1": "958416d52940e4948eca8d9fb1eca21e4cf7eda1",
"instance_number": 0,
"should_symlink": false,
"files": [
{
"path": "webroot/index.html",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/login.php",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/login.phps",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/config.php",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "users.db",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
}
],
"port": 46984
},
{
"user": "sql-injection-1_1",
"deployment_directory": "/problems/sql-injection-1_1_10a4b1cdfd3a0f78d0d8b9759e6d69c5",
"service": "sql-injection-1_1",
"socket": null,
"server": "192.168.2.3",
"description": "There is a website running at http://192.168.2.3:21955. Try to see if you can login!",
"hints": [],
"flag": "28054fef0f362256c78025f82e6572c3",
"flag_sha1": "f57fa5d3861c22a657eecafe30a43bd4ad7a4a2a",
"instance_number": 1,
"should_symlink": false,
"files": [
{
"path": "webroot/index.html",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/login.php",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/login.phps",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/config.php",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "users.db",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
}
],
"port": 21955
},
{
"user": "sql-injection-1_2",
"deployment_directory": "/problems/sql-injection-1_2_57a103ad26a005f69b4332e62d611372",
"service": "sql-injection-1_2",
"socket": null,
"server": "192.168.2.3",
"description": "There is a website running at http://192.168.2.3:17649. Try to see if you can login!",
"hints": [],
"flag": "6ed19af4c4540d444ae08735aa5664af",
"flag_sha1": "19bbc88ca231ddfde8063acdda75a92b1e6fd993",
"instance_number": 2,
"should_symlink": false,
"files": [
{
"path": "webroot/index.html",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/login.php",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/login.phps",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "webroot/config.php",
"permissions": 436,
"user": null,
"group": null
},
{
"path": "users.db",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
},
{
"path": "xinet_startup.sh",
"permissions": 1517,
"user": null,
"group": null
}
],
"port": 17649
}
],
"sanitized_name": "sql-injection-1"
},
{
"name": "Buffer Overflow 1",
"category": "Binary Exploitation",
"description": "Exploit the {{url_for(\"vuln\", display=\"Buffer Overflow\")}} found here: {{directory}}.",
"score": 50,
"walkthrough": "PROTIP: Find the correct answer to get the points.",
"author": "Tim Becker",
"organization": "ForAllSecure",
"event": "Sample",
"unique_name": "buffer-overflow-1-35e6d9d",
"instances": [
{
"user": "buffer-overflow-1_0",
"deployment_directory": "/problems/buffer-overflow-1_0_bab40cd8ebd7845e1c4c2951c6f82e1f",
"service": null,
"socket": null,
"server": "192.168.2.3",
"description": "Exploit the <a href='//192.168.2.3/static/bd08ee41f495f8bff378c13157d0f511/vuln'>Buffer Overflow</a> found here: /problems/buffer-overflow-1_0_bab40cd8ebd7845e1c4c2951c6f82e1f.",
"hints": [
"This is a classic buffer overflow with no modern protections."
],
"flag": "638608c79eca2165e7b241ff365df05b",
"flag_sha1": "4b97abef055a11ec19c14622eb31eb1168d98aca",
"instance_number": 0,
"should_symlink": true,
"files": [
{
"path": "flag.txt",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "vuln",
"permissions": 1517,
"user": null,
"group": null
}
]
},
{
"user": "buffer-overflow-1_1",
"deployment_directory": "/problems/buffer-overflow-1_1_f49b6bd5da29513569bd87f98a934fa6",
"service": null,
"socket": null,
"server": "192.168.2.3",
"description": "Exploit the <a href='//192.168.2.3/static/c95410042007bb17f49b891a2a87afb2/vuln'>Buffer Overflow</a> found here: /problems/buffer-overflow-1_1_f49b6bd5da29513569bd87f98a934fa6.",
"hints": [
"This is a classic buffer overflow with no modern protections."
],
"flag": "35013564b97b80d4fd3f2be45e5836ff",
"flag_sha1": "5675d2d5819084d4203c1ef314239527074938a9",
"instance_number": 1,
"should_symlink": true,
"files": [
{
"path": "flag.txt",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "vuln",
"permissions": 1517,
"user": null,
"group": null
}
]
},
{
"user": "buffer-overflow-1_2",
"deployment_directory": "/problems/buffer-overflow-1_2_6c4daed04928f80dd29290060827be61",
"service": null,
"socket": null,
"server": "192.168.2.3",
"description": "Exploit the <a href='//192.168.2.3/static/dbeb4d34945e752ea988dcdb4454f57d/vuln'>Buffer Overflow</a> found here: /problems/buffer-overflow-1_2_6c4daed04928f80dd29290060827be61.",
"hints": [
"This is a classic buffer overflow with no modern protections."
],
"flag": "8dfabcb5c4a18d03ad5ecea19eef27a6",
"flag_sha1": "aef4789685665a1bf4994d62ef10941dbce5647a",
"instance_number": 2,
"should_symlink": true,
"files": [
{
"path": "flag.txt",
"permissions": 288,
"user": null,
"group": null
},
{
"path": "vuln",
"permissions": 1517,
"user": null,
"group": null
}
]
}
],
"sanitized_name": "buffer-overflow-1"
}
],
"bundles": [
{
"name": "Challenge Sampler",
"author": "Christopher Ganas",
"description": "Dependency weightmap for the example challenges provided in the picoCTF-Problems repository.",
"dependencies": {
"ecb-1-b06174a": {
"threshold": 1,
"weightmap": {
"buffer-overflow-1-35e6d9d": 1
}
},
"sql-injection-1-0c436d0": {
"threshold": 1,
"weightmap": {
"buffer-overflow-1-35e6d9d": 1,
"ecb-1-b06174a": 1
}
}
}
}
],
"sid": "728f36885f7c4686805593b9e4988c30"
}
"""
problems_endpoint_response = [
{
"name": "SQL Injection 1",
"category": "Web Exploitation",
"description": "There is a website running at http://192.168.2.3:17648. Try to see if you can login!",
"score": 40,
"hints": [],
"author": "Tim Becker",
"organization": "ForAllSecure",
"sanitized_name": "sql-injection-1",
"disabled": False,
"pid": "4508167aa0b219fd9d131551d10aa58e",
"solves": 0,
"socket": None,
"server": "192.168.2.3",
"port": 17648,
"server_number": 1,
"solved": False,
"unlocked": True,
},
{
"name": "Buffer Overflow 1",
"category": "Binary Exploitation",
"description": "Exploit the <a href='//192.168.2.3/static/bd08ee41f495f8bff378c13157d0f511/vuln'>Buffer Overflow</a> found here: /problems/buffer-overflow-1_0_bab40cd8ebd7845e1c4c2951c6f82e1f.",
"score": 50,
"hints": ["This is a classic buffer overflow with no modern protections."],
"author": "Tim Becker",
"organization": "ForAllSecure",
"sanitized_name": "buffer-overflow-1",
"disabled": False,
"pid": "1bef644c399e10a3f35fecdbf590bd0c",
"solves": 0,
"socket": None,
"server": "192.168.2.3",
"server_number": 1,
"solved": False,
"unlocked": True,
},
{
"name": "ECB 1",
"category": "Cryptography",
"description": "There is a crypto service running at 192.168.2.3:21953. We were able to recover the source code, which you can download at <a href='//192.168.2.3/static/beb9874a05a1810fa8c9d79152ace1b3/ecb.py'>ecb.py</a>.",
"hints": [],
"score": 70,
"author": "Tim Becker",
"organization": "ForAllSecure",
"sanitized_name": "ecb-1",
"disabled": False,
"pid": "7afda419da96e8471b49df9c2009e2ef",
"solves": 0,
"socket": None,
"server": "192.168.2.3",
"port": 21953,
"server_number": 1,
"solved": False,
"unlocked": True,
},
]
def load_sample_problems():
with app().app_context():
db = get_conn()
db.shell_servers.insert_one(
{
"sid": "728f36885f7c4686805593b9e4988c30",
"name": "Test shell server",
"host": "testing.picoctf.com",
"port": "22",
"username": "username",
"password": "password",
"protocol": "HTTPS",
"server_number": 1,
}
)
api.problem.load_published(json.loads(sample_shellserver_publish_output))
def enable_sample_problems():
db = get_conn()
db.problems.update_many({}, {"$set": {"disabled": False}})
def ensure_within_competition():
db = get_conn()
db.settings.update_one(
{},
{
"$set": {
"start_time": datetime.datetime.utcnow() - datetime.timedelta(1),
"end_time": datetime.datetime.utcnow() + datetime.timedelta(1),
}
},
)
|
MIT License
|
wdm0006/sklearn-extensions
|
sklearn_extensions/kernel_sgd/kernel_sgd.py
|
SquaredLoss.get_update
|
python
|
def get_update(self, p, y):
return -p + y
|
:param p:
:param y:
:return:
|
https://github.com/wdm0006/sklearn-extensions/blob/329f3efdb8c3c3a367b264f7c76c76411a784530/sklearn_extensions/kernel_sgd/kernel_sgd.py#L120-L128
|
import numpy as np
from sklearn.base import BaseEstimator
def euclidean_distances(X, Y=None, squared=False):
XX = np.sum(X * X, axis=1)[:, np.newaxis]
YY = np.sum(Y ** 2, axis=1)[np.newaxis, :]
distances = np.dot(X, Y.T)
distances *= -2
distances += XX
distances += YY
np.maximum(distances, 0, distances)
if X is Y:
distances.flat[::distances.shape[0] + 1] = 0.0
return distances if squared else np.sqrt(distances)
class GaussianKernel(object):
def __init__(self, gamma=1.0):
self.gamma = gamma
def compute(self, X, Y):
K = euclidean_distances(X, Y, squared=True)
K *= -self.gamma
np.exp(K, K)
return K
class HingeLoss(object):
def __init__(self, threshold=1):
self.threshold = threshold
def get_update(self, p, y):
z = p * y
if z <= self.threshold:
return y
return 0.0
class LogLoss(object):
def get_update(self, p, y):
z = p * y
if z > 18.0:
return np.exp(-z) * y
if z < -18.0:
return y
return y / (np.exp(z) + 1.0)
class SquaredLoss(object):
|
BSD 3-Clause New or Revised License
|
pyccel/pyccel
|
pyccel/parser/semantic.py
|
SemanticParser.get_import
|
python
|
def get_import(self, name):
imp = None
container = self.namespace
while container:
if name in container.imports['imports']:
imp = container.imports['imports'][name]
break
container = container.parent_scope
return imp
|
Search for an import with the given name in the current namespace.
Return None if not found.
|
https://github.com/pyccel/pyccel/blob/2a5bd75c33d270cdd675ad46b8ce718113b70498/pyccel/parser/semantic.py#L470-L487
|
from collections import OrderedDict
from itertools import chain
from sympy.utilities.iterables import iterable as sympy_iterable
from sympy import Sum as Summation
from sympy import Symbol as sp_Symbol
from sympy import Integer as sp_Integer
from sympy import ceiling
from sympy.core import cache
from pyccel.ast.basic import Basic, PyccelAstNode
from pyccel.ast.builtins import PythonPrint
from pyccel.ast.builtins import PythonInt, PythonBool, PythonFloat, PythonComplex
from pyccel.ast.builtins import python_builtin_datatype
from pyccel.ast.builtins import PythonList
from pyccel.ast.builtins import (PythonRange, PythonZip, PythonEnumerate,
PythonMap, PythonTuple, Lambda)
from pyccel.ast.core import Comment, CommentBlock, Pass
from pyccel.ast.core import If, IfSection
from pyccel.ast.core import Allocate, Deallocate
from pyccel.ast.core import Assign, AliasAssign, SymbolicAssign
from pyccel.ast.core import AugAssign, CodeBlock
from pyccel.ast.core import Return, FunctionDefArgument
from pyccel.ast.core import ConstructorCall
from pyccel.ast.core import FunctionDef, Interface, FunctionAddress, FunctionCall, FunctionCallArgument
from pyccel.ast.core import DottedFunctionCall
from pyccel.ast.core import ClassDef
from pyccel.ast.core import For
from pyccel.ast.core import Module
from pyccel.ast.core import While
from pyccel.ast.core import SymbolicPrint
from pyccel.ast.core import Del
from pyccel.ast.core import Program
from pyccel.ast.core import EmptyNode
from pyccel.ast.core import Concatenate
from pyccel.ast.core import Import
from pyccel.ast.core import AsName
from pyccel.ast.core import With
from pyccel.ast.core import Duplicate
from pyccel.ast.core import StarredArguments
from pyccel.ast.core import Iterable
from pyccel.ast.core import InProgram
from pyccel.ast.class_defs import NumpyArrayClass, TupleClass, get_cls_base
from pyccel.ast.datatypes import NativeRange, str_dtype
from pyccel.ast.datatypes import NativeSymbol
from pyccel.ast.datatypes import DataTypeFactory
from pyccel.ast.datatypes import (NativeInteger, NativeBool,
NativeReal, NativeString,
NativeGeneric, NativeComplex)
from pyccel.ast.functionalexpr import FunctionalSum, FunctionalMax, FunctionalMin, GeneratorComprehension, FunctionalFor
from pyccel.ast.headers import FunctionHeader, ClassHeader, MethodHeader, Header
from pyccel.ast.headers import MacroFunction, MacroVariable
from pyccel.ast.internals import Slice, PyccelSymbol
from pyccel.ast.itertoolsext import Product
from pyccel.ast.literals import LiteralTrue, LiteralFalse
from pyccel.ast.literals import LiteralInteger, LiteralFloat
from pyccel.ast.literals import Nil, LiteralString
from pyccel.ast.mathext import math_constants
from pyccel.ast.numpyext import NumpyZeros, NumpyMatmul
from pyccel.ast.numpyext import NumpyBool
from pyccel.ast.numpyext import NumpyInt, NumpyInt8, NumpyInt16, NumpyInt32, NumpyInt64
from pyccel.ast.numpyext import NumpyFloat, NumpyFloat32, NumpyFloat64
from pyccel.ast.numpyext import NumpyComplex, NumpyComplex64, NumpyComplex128
from pyccel.ast.numpyext import NumpyTranspose
from pyccel.ast.numpyext import NumpyNewArray
from pyccel.ast.omp import (OMP_For_Loop, OMP_Simd_Construct, OMP_Distribute_Construct,
OMP_TaskLoop_Construct, OMP_Sections_Construct, Omp_End_Clause,
OMP_Single_Construct, OMP_Parallel_Construct)
from pyccel.ast.operators import PyccelIs, PyccelIsNot, IfTernaryOperator, PyccelUnarySub
from pyccel.ast.operators import PyccelNot, PyccelEq
from pyccel.ast.sympy_helper import sympy_to_pyccel, pyccel_to_sympy
from pyccel.ast.utilities import builtin_function as pyccel_builtin_function
from pyccel.ast.utilities import python_builtin_libs
from pyccel.ast.utilities import builtin_import as pyccel_builtin_import
from pyccel.ast.utilities import builtin_import_registery as pyccel_builtin_import_registery
from pyccel.ast.utilities import split_positional_keyword_arguments
from pyccel.ast.variable import Constant
from pyccel.ast.variable import Variable
from pyccel.ast.variable import TupleVariable, HomogeneousTupleVariable, InhomogeneousTupleVariable
from pyccel.ast.variable import IndexedElement
from pyccel.ast.variable import DottedName, DottedVariable
from pyccel.errors.errors import Errors
from pyccel.errors.errors import PyccelSemanticError
from pyccel.errors.messages import *
from pyccel.parser.base import BasicParser, Scope
from pyccel.parser.base import get_filename_from_import
from pyccel.parser.syntactic import SyntaxParser
import pyccel.decorators as def_decorators
errors = Errors()
def _get_name(var):
if isinstance(var, str):
return var
if isinstance(var, (PyccelSymbol, DottedName)):
return str(var)
if isinstance(var, (IndexedElement)):
return str(var.base)
if isinstance(var, FunctionCall):
return var.funcdef
if isinstance(var, AsName):
return var.target
msg = 'Name of Object : {} cannot be determined'.format(type(var).__name__)
errors.report(PYCCEL_RESTRICTION_TODO+'\n'+msg, symbol=var,
severity='fatal')
class SemanticParser(BasicParser):
def __init__(self, inputs, **kwargs):
self._parents = kwargs.pop('parents', [])
self._d_parsers = kwargs.pop('d_parsers', OrderedDict())
if not isinstance(inputs, SyntaxParser):
raise TypeError('> Expecting a syntactic parser as input')
parser = inputs
BasicParser.__init__(self, **kwargs)
self._fst = parser._fst
self._ast = parser._ast
self._filename = parser._filename
self._metavars = parser._metavars
self._namespace = parser._namespace
self._namespace.imports['imports'] = OrderedDict()
self._program_namespace = Scope()
self._module_namespace = self._namespace
self._used_names = parser.used_names
self._dummy_counter = parser._dummy_counter
self._allocs = []
self._additional_exprs = []
self._code = parser._code
settings = {}
self.annotate()
@property
def parents(self):
return self._parents
@property
def d_parsers(self):
return self._d_parsers
@property
def program_namespace(self):
return self._program_namespace
def annotate(self, **settings):
if self.semantic_done:
print ('> semantic analysis already done')
return self.ast
errors = Errors()
if self.filename:
errors.set_target(self.filename, 'file')
errors.set_parser_stage('semantic')
ast = self.ast
self._allocs.append([])
PyccelAstNode.stage = 'semantic'
ast = self._visit(ast, **settings)
self._ast = ast
if self.is_header_file:
target = []
for parent in self.parents:
for (key, item) in parent.imports.items():
if get_filename_from_import(key) == self.filename:
target += item
target = set(target)
target_headers = target.intersection(self.namespace.headers.keys())
for name in list(target_headers):
v = self.namespace.headers[name][0]
if isinstance(v, FunctionHeader) and not isinstance(v,
MethodHeader):
F = self.get_function(name)
if F is None:
interfaces = v.create_definition()
for F in interfaces:
self.insert_function(F)
else:
errors.report(IMPORTING_EXISTING_IDENTIFIED,
symbol=name, blocker=True,
severity='fatal')
self._semantic_done = True
return ast
def change_to_program_scope(self):
self._allocs.append([])
self._module_namespace = self._namespace
self._namespace = self._program_namespace
def change_to_module_scope(self):
self._program_namespace = self._namespace
self._namespace = self._module_namespace
def get_variable_from_scope(self, name):
container = self.namespace
while container.is_loop:
container = container.parent_scope
var = self._get_variable_from_scope(name, container)
return var
def _get_variable_from_scope(self, name, container):
if name in container.variables:
return container.variables[name]
if name in container.imports['variables']:
return container.imports['variables'][name]
for container in container.loops:
var = self._get_variable_from_scope(name, container)
if var:
return var
return None
def check_for_variable(self, name):
if self.current_class:
for i in self._current_class.attributes:
if i.name == name:
var = i
return var
container = self.namespace
while container.is_loop:
container = container.parent_scope
while container:
var = self._get_variable_from_scope(name, container)
if var is not None:
return var
container = container.parent_scope
return None
def get_variable(self, name):
var = self.check_for_variable(name)
if var is None:
errors.report(UNDEFINED_VARIABLE, symbol=name,
bounding_box=(self._current_fst_node.lineno, self._current_fst_node.col_offset),
severity='fatal', blocker=True)
else:
return var
def get_variables(self, container):
variables = []
variables.extend(container.variables.values())
for container in container.loops:
variables.extend(self.get_variables(container))
return variables
def get_parent_functions(self):
container = self.namespace
funcs = container.functions.copy()
container = container.parent_scope
while container:
for i in container.functions:
if not i in funcs:
funcs[i] = container.functions[i]
container = container.parent_scope
return funcs
def get_class(self, name):
container = self.namespace
while container:
if name in container.classes:
return container.classes[name]
elif name in container.imports['classes']:
return container.imports['classes'][name]
container = container.parent_scope
return None
def insert_variable(self, var, name=None):
if not isinstance(var, Variable):
raise TypeError('variable must be of type Variable')
if name is None:
name = var.name
self.namespace.variables[name] = var
def insert_class(self, cls, parent=False):
if isinstance(cls, ClassDef):
name = cls.name
container = self.namespace
if parent:
container = container.parent_scope
container.classes[name] = cls
else:
raise TypeError('Expected A class definition ')
def insert_template(self, expr):
self.namespace.templates[expr.name] = expr
def insert_header(self, expr):
if isinstance(expr, (FunctionHeader, MethodHeader)):
if expr.name in self.namespace.headers:
self.namespace.headers[expr.name].append(expr)
else:
self.namespace.headers[expr.name] = [expr]
elif isinstance(expr, ClassHeader):
self.namespace.headers[expr.name] = expr
iterable = 'iterable' in expr.options
with_construct = 'with' in expr.options
dtype = DataTypeFactory(expr.name, '_name',
is_iterable=iterable,
is_with_construct=with_construct)
self.set_class_construct(expr.name, dtype)
else:
msg = 'header of type{0} is not supported'
msg = msg.format(str(type(expr)))
raise TypeError(msg)
def get_function(self, name):
func = None
container = self.namespace
while container:
if name in container.functions:
func = container.functions[name]
break
if name in container.imports['functions']:
func = container.imports['functions'][name]
break
container = container.parent_scope
return func
|
MIT License
|
awslabs/dgl-ke
|
python/dglke/models/general_models.py
|
KEModel.save_emb
|
python
|
def save_emb(self, path, dataset):
self.entity_emb.save(path, dataset+'_'+self.model_name+'_entity')
if self.strict_rel_part or self.soft_rel_part:
self.global_relation_emb.save(path, dataset+'_'+self.model_name+'_relation')
else:
self.relation_emb.save(path, dataset+'_'+self.model_name+'_relation')
self.score_func.save(path, dataset+'_'+self.model_name)
|
Save the model.
Parameters
----------
path : str
Directory to save the model.
dataset : str
Dataset name as prefix to the saved embeddings.
|
https://github.com/awslabs/dgl-ke/blob/30558e069c42038cded08bddd26ac75f153aae75/python/dglke/models/general_models.py#L290-L306
|
import os
import numpy as np
import math
import dgl.backend as F
backend = os.environ.get('DGLBACKEND', 'pytorch')
if backend.lower() == 'mxnet':
from .mxnet.tensor_models import masked_select
from .mxnet.tensor_models import logsigmoid
from .mxnet.tensor_models import abs
from .mxnet.tensor_models import get_device, get_dev
from .mxnet.tensor_models import norm
from .mxnet.tensor_models import get_scalar
from .mxnet.tensor_models import reshape
from .mxnet.tensor_models import cuda
from .mxnet.tensor_models import ExternalEmbedding
from .mxnet.tensor_models import InferEmbedding
from .mxnet.score_fun import *
DEFAULT_INFER_BATCHSIZE = 1024
else:
from .pytorch.tensor_models import logsigmoid
from .pytorch.tensor_models import abs
from .pytorch.tensor_models import masked_select
from .pytorch.tensor_models import get_device, get_dev
from .pytorch.tensor_models import norm
from .pytorch.tensor_models import get_scalar
from .pytorch.tensor_models import reshape
from .pytorch.tensor_models import cuda
from .pytorch.tensor_models import ExternalEmbedding
from .pytorch.tensor_models import InferEmbedding
from .pytorch.score_fun import *
from .pytorch.loss import LossGenerator
DEFAULT_INFER_BATCHSIZE = 2048
EMB_INIT_EPS = 2.0
class InferModel(object):
def __init__(self, device, model_name, hidden_dim,
double_entity_emb=False, double_relation_emb=False,
gamma=0., batch_size=DEFAULT_INFER_BATCHSIZE):
super(InferModel, self).__init__()
self.device = device
self.model_name = model_name
entity_dim = 2 * hidden_dim if double_entity_emb else hidden_dim
relation_dim = 2 * hidden_dim if double_relation_emb else hidden_dim
self.entity_emb = InferEmbedding(device)
self.relation_emb = InferEmbedding(device)
self.batch_size = batch_size
if model_name == 'TransE' or model_name == 'TransE_l2':
self.score_func = TransEScore(gamma, 'l2')
elif model_name == 'TransE_l1':
self.score_func = TransEScore(gamma, 'l1')
elif model_name == 'TransR':
assert False, 'Do not support inference of TransR model now.'
elif model_name == 'DistMult':
self.score_func = DistMultScore()
elif model_name == 'ComplEx':
self.score_func = ComplExScore()
elif model_name == 'RESCAL':
self.score_func = RESCALScore(relation_dim, entity_dim)
elif model_name == 'RotatE':
emb_init = (gamma + EMB_INIT_EPS) / hidden_dim
self.score_func = RotatEScore(gamma, emb_init)
elif model_name == 'SimplE':
self.score_func = SimplEScore()
def load_emb(self, path, dataset):
self.entity_emb.load(path, dataset+'_'+self.model_name+'_entity')
self.relation_emb.load(path, dataset+'_'+self.model_name+'_relation')
self.score_func.load(path, dataset+'_'+self.model_name)
def score(self, head, rel, tail, triplet_wise=False):
head_emb = self.entity_emb(head)
rel_emb = self.relation_emb(rel)
tail_emb = self.entity_emb(tail)
num_head = F.shape(head)[0]
num_rel = F.shape(rel)[0]
num_tail = F.shape(tail)[0]
batch_size = self.batch_size
score = []
if triplet_wise:
class FakeEdge(object):
def __init__(self, head_emb, rel_emb, tail_emb):
self._hobj = {}
self._robj = {}
self._tobj = {}
self._hobj['emb'] = head_emb
self._robj['emb'] = rel_emb
self._tobj['emb'] = tail_emb
@property
def src(self):
return self._hobj
@property
def dst(self):
return self._tobj
@property
def data(self):
return self._robj
for i in range((num_head + batch_size - 1) // batch_size):
sh_emb = head_emb[i * batch_size : (i + 1) * batch_size if (i + 1) * batch_size < num_head else num_head]
sr_emb = rel_emb[i * batch_size : (i + 1) * batch_size if (i + 1) * batch_size < num_head else num_head]
st_emb = tail_emb[i * batch_size : (i + 1) * batch_size if (i + 1) * batch_size < num_head else num_head]
edata = FakeEdge(sh_emb, sr_emb, st_emb)
score.append(F.copy_to(self.score_func.edge_func(edata)['score'], F.cpu()))
score = F.cat(score, dim=0)
return score
else:
for i in range((num_head + batch_size - 1) // batch_size):
sh_emb = head_emb[i * batch_size : (i + 1) * batch_size if (i + 1) * batch_size < num_head else num_head]
s_score = []
for j in range((num_tail + batch_size - 1) // batch_size):
st_emb = tail_emb[j * batch_size : (j + 1) * batch_size if (j + 1) * batch_size < num_tail else num_tail]
s_score.append(F.copy_to(self.score_func.infer(sh_emb, rel_emb, st_emb), F.cpu()))
score.append(F.cat(s_score, dim=2))
score = F.cat(score, dim=0)
return F.reshape(score, (num_head * num_rel * num_tail,))
@property
def num_entity(self):
return self.entity_emb.emb.shape[0]
@property
def num_rel(self):
return self.relation_emb.emb.shape[0]
class KEModel(object):
def __init__(self, args, model_name, n_entities, n_relations, hidden_dim, gamma,
double_entity_emb=False, double_relation_emb=False):
super(KEModel, self).__init__()
self.args = args
self.has_edge_importance = args.has_edge_importance
self.n_entities = n_entities
self.n_relations = n_relations
self.model_name = model_name
self.hidden_dim = hidden_dim
self.eps = EMB_INIT_EPS
self.emb_init = (gamma + self.eps) / hidden_dim
entity_dim = 2 * hidden_dim if double_entity_emb else hidden_dim
relation_dim = 2 * hidden_dim if double_relation_emb else hidden_dim
device = get_device(args)
self.loss_gen = LossGenerator(args,
args.loss_genre if hasattr(args, 'loss_genre') else 'Logsigmoid',
args.neg_adversarial_sampling if hasattr(args, 'neg_adversarial_sampling') else False,
args.adversarial_temperature if hasattr(args, 'adversarial_temperature') else 1.0,
args.pairwise if hasattr(args, 'pairwise') else False)
self.entity_emb = ExternalEmbedding(args, n_entities, entity_dim,
F.cpu() if args.mix_cpu_gpu else device)
if model_name == 'RESCAL':
rel_dim = relation_dim * entity_dim
else:
rel_dim = relation_dim
self.rel_dim = rel_dim
self.entity_dim = entity_dim
self.strict_rel_part = args.strict_rel_part
self.soft_rel_part = args.soft_rel_part
if not self.strict_rel_part and not self.soft_rel_part:
self.relation_emb = ExternalEmbedding(args, n_relations, rel_dim,
F.cpu() if args.mix_cpu_gpu else device)
else:
self.global_relation_emb = ExternalEmbedding(args, n_relations, rel_dim, F.cpu())
if model_name == 'TransE' or model_name == 'TransE_l2':
self.score_func = TransEScore(gamma, 'l2')
elif model_name == 'TransE_l1':
self.score_func = TransEScore(gamma, 'l1')
elif model_name == 'TransR':
projection_emb = ExternalEmbedding(args,
n_relations,
entity_dim * relation_dim,
F.cpu() if args.mix_cpu_gpu else device)
self.score_func = TransRScore(gamma, projection_emb, relation_dim, entity_dim)
elif model_name == 'DistMult':
self.score_func = DistMultScore()
elif model_name == 'ComplEx':
self.score_func = ComplExScore()
elif model_name == 'RESCAL':
self.score_func = RESCALScore(relation_dim, entity_dim)
elif model_name == 'RotatE':
self.score_func = RotatEScore(gamma, self.emb_init)
elif model_name == 'SimplE':
self.score_func = SimplEScore()
self.model_name = model_name
self.head_neg_score = self.score_func.create_neg(True)
self.tail_neg_score = self.score_func.create_neg(False)
self.head_neg_prepare = self.score_func.create_neg_prepare(True)
self.tail_neg_prepare = self.score_func.create_neg_prepare(False)
self.reset_parameters()
def share_memory(self):
self.entity_emb.share_memory()
if self.strict_rel_part or self.soft_rel_part:
self.global_relation_emb.share_memory()
else:
self.relation_emb.share_memory()
if self.model_name == 'TransR':
self.score_func.share_memory()
|
Apache License 2.0
|
microprediction/timemachines
|
timemachines/skatertools/data/real.py
|
hospital_with_exog
|
python
|
def hospital_with_exog(k: int, n: int, offset: bool = True) -> ([[float]], [[float]]):
import math
y0 = hospital()
y0_ahead_1 = [h for h in y0[1:]] + [y0[-1]]
y0_ahead_2 = [h for h in y0[1:]] + [y0[-1], y0[-1]]
z1 = [ya1 + 5 * np.random.randn() for ya1 in y0_ahead_1]
z2 = [ya2 + 10 * np.random.randn() for ya2 in y0_ahead_2]
a0 = [ math.cos( 2*i*math.pi / 24 ) for i in range(len(y0))]
y0_bumped = [y0i + 5 * a0i for y0i, a0i in zip(y0, a0)]
y = [[y0bi, z1i, z2i] for y0bi, z1i, z2i in zip(y0_bumped, z1, z2)]
a = [ [a0i] for a0i in a0 ]
assert len(y) == len(a), 'not same len'
y_trunc = y[-(n + k):]
a_trunc = a[-(n + k):]
if offset:
a_ahead = a_trunc[k:]
return y_trunc[:len(a_ahead)], a_ahead
else:
return y_trunc, a_trunc
|
Returns real data with fake known-in advance and exogenous
:param k: steps to look ahead
:param n: length of time series
:param offset: if true, this will offset a so it can be fed to a skater directly
:returns: y, a
|
https://github.com/microprediction/timemachines/blob/4332cd2a97b1bb2d1ea0a4437e73f3255f2a762e/timemachines/skatertools/data/real.py#L77-L101
|
import csv
import numpy as np
def hospital(n:int=2000):
return [146.0, 126.0, 126.0, 124.0, 124.0, 157.0, 157.0, 155.0, 155.0, 230.0, 230.0, 265.0, 265.0, 221.0, 221.0,
194.0, 194.0, 181.0, 248.0, 248.0, 248.0, 214.0, 214.0, 172.0, 172.0, 201.0, 201.0, 216.0, 216.0, 179.0,
179.0, 232.0, 232.0, 202.0, 202.0, 195.0, 195.0, 190.0, 190.0, 185.0, 185.0, 201.0, 201.0, 221.0, 221.0,
214.0, 214.0, 213.0, 213.0, 215.0, 215.0, 199.0, 199.0, 183.0, 183.0, 201.0, 201.0, 197.0, 197.0, 181.0,
181.0, 177.0, 177.0, 193.0, 193.0, 179.0, 179.0, 192.0, 192.0, 177.0, 177.0, 187.0, 187.0, 177.0, 177.0,
201.0, 201.0, 209.0, 209.0, 202.0, 202.0, 188.0, 188.0, 145.0, 145.0, 139.0, 139.0, 150.0, 150.0, 136.0,
136.0, 114.0, 114.0, 96.0, 96.0, 78.0, 78.0, 56.0, 56.0, 53.0, 53.0, 50.0, 50.0, 43.0, 43.0, 37.0, 37.0,
43.0, 43.0, 53.0, 53.0, 58.0, 58.0, 60.0, 60.0, 50.0, 50.0, 42.0, 42.0, 40.0, 40.0, 36.0, 36.0, 42.0, 42.0,
39.0, 39.0, 30.0, 30.0, 14.0, 14.0, 23.0, 23.0, 23.0, 23.0, 10.0, 10.0, 16.0, 16.0, 15.0, 15.0, 5.0, 5.0,
49.0, 49.0, 72.0, 72.0, 97.0, 97.0, 107.0, 107.0, 81.0, 81.0, 82.0, 82.0, 109.0, 109.0, 123.0, 123.0, 99.0,
99.0, 102.0, 102.0, 132.0, 132.0, 154.0, 154.0, 172.0, 172.0, 153.0, 153.0, 149.0, 149.0, 150.0, 150.0,
136.0, 136.0, 130.0, 130.0, 118.0, 118.0, 92.0, 92.0, 92.0, 92.0, 105.0, 105.0, 82.0, 82.0, 78.0, 78.0,
72.0, 72.0, 58.0, 58.0, 53.0, 53.0, 60.0, 60.0, 50.0, 50.0, 43.0, 43.0, 38.0, 38.0, 32.0, 32.0, 30.0, 30.0,
32.0, 32.0, 26.0, 26.0, 36.0, 36.0, 37.0, 37.0, 42.0, 42.0, 51.0, 51.0, 51.0, 51.0, 54.0, 54.0, 32.0, 32.0,
33.0, 33.0, 35.0, 35.0, 32.0, 32.0, 51.0, 51.0, 67.0, 67.0, 56.0, 56.0, 51.0, 51.0, 41.0, 41.0, 28.0, 28.0,
31.0, 31.0, 38.0, 38.0, 45.0, 45.0, 53.0, 53.0, 51.0, 51.0, 65.0, 65.0, 64.0, 64.0, 52.0, 52.0, 39.0, 39.0,
52.0, 52.0, 54.0, 54.0, 82.0, 82.0, 107.0, 107.0, 97.0, 97.0, 90.0, 90.0, 79.0, 79.0, 80.0, 80.0, 75.0,
75.0, 85.0, 85.0, 62.0, 62.0, 58.0, 58.0, 55.0, 55.0, 50.0, 50.0, 56.0, 56.0, 62.0, 62.0, 74.0, 74.0, 77.0,
77.0, 66.0, 66.0, 80.0, 80.0, 88.0, 88.0, 81.0, 81.0, 92.0, 92.0, 151.0, 151.0, 172.0, 172.0, 173.0, 173.0,
233.0, 233.0, 262.0, 262.0, 262.0, 262.0, 212.0, 212.0, 224.0, 224.0, 277.0, 277.0, 248.0, 248.0, 234.0,
234.0, 236.0, 236.0, 218.0, 218.0, 169.0, 169.0, 174.0, 174.0, 248.0, 248.0, 231.0, 231.0, 231.0, 231.0,
233.0, 233.0, 187.0, 187.0, 174.0, 174.0, 242.0, 242.0, 176.0, 176.0, 158.0, 158.0, 159.0, 159.0, 168.0,
168.0, 183.0, 183.0, 172.0, 172.0, 167.0, 167.0, 184.0, 184.0, 173.0, 173.0, 166.0, 166.0, 166.0, 166.0,
167.0, 167.0, 164.0, 164.0, 157.0, 157.0, 147.0, 147.0, 146.0, 146.0, 143.0, 143.0, 113.0, 113.0, 94.0,
94.0, 80.0, 80.0, 77.0, 77.0, 65.0, 65.0, 73.0, 73.0, 74.0, 74.0, 60.0, 60.0, 45.0, 45.0, 36.0, 36.0, 91.0,
91.0, 91.0, 91.0, 163.0, 163.0, 163.0, 163.0, 222.0, 222.0, 192.0, 192.0, 194.0, 194.0, 218.0, 218.0, 250.0,
250.0, 236.0, 236.0, 241.0, 241.0, 216.0, 216.0, 191.0, 191.0, 194.0, 194.0, 189.0, 189.0, 164.0, 164.0,
157.0, 157.0, 174.0, 174.0, 219.0, 219.0, 192.0, 192.0, 152.0, 152.0, 153.0, 153.0, 141.0, 141.0, 133.0,
133.0, 145.0, 145.0, 170.0, 170.0, 153.0, 153.0, 150.0, 150.0, 173.0, 173.0, 171.0, 171.0, 162.0, 162.0,
166.0, 166.0, 148.0, 148.0, 141.0, 141.0, 151.0, 151.0, 131.0, 115.0, 115.0, 103.0, 103.0, 103.0, 75.0,
75.0, 64.0, 64.0, 50.0, 50.0, 48.0, 48.0, 36.0, 36.0, 23.0, 23.0, 30.0, 30.0, 38.0, 38.0, 24.0, 24.0, 49.0,
49.0, 44.0, 44.0, 44.0, 44.0, 50.0, 50.0, 48.0, 48.0, 61.0, 61.0, 65.0, 65.0, 77.0, 77.0, 66.0, 66.0, 51.0,
51.0, 52.0, 52.0, 54.0, 54.0, 62.0, 62.0, 68.0, 68.0, 66.0, 66.0, 58.0, 58.0, 82.0, 82.0, 98.0, 98.0, 95.0,
95.0, 102.0, 102.0, 94.0, 94.0, 78.0, 78.0, 68.0, 68.0, 61.0, 61.0, 56.0, 56.0, 63.0, 63.0, 83.0, 83.0,
87.0, 87.0, 80.0, 80.0, 77.0, 77.0, 74.0, 74.0, 68.0, 68.0, 63.0, 63.0, 52.0, 52.0, 61.0, 61.0, 70.0, 70.0,
72.0, 72.0, 65.0, 65.0, 63.0, 63.0, 61.0, 61.0, 44.0, 44.0, 37.0, 37.0, 46.0, 46.0, 43.0, 43.0, 55.0, 55.0,
68.0, 68.0, 67.0, 67.0, 59.0, 59.0, 55.0, 55.0, 66.0, 66.0, 69.0, 69.0, 96.0, 96.0, 156.0, 156.0, 190.0,
190.0, 162.0, 162.0, 187.0, 187.0, 193.0, 193.0, 191.0, 191.0, 238.0, 238.0, 256.0, 256.0, 295.0, 295.0,
264.0, 264.0, 261.0, 261.0, 265.0, 265.0, 244.0, 244.0, 262.0, 262.0, 271.0, 271.0, 233.0, 233.0, 217.0,
217.0, 213.0, 213.0, 205.0, 205.0, 162.0, 162.0, 160.0, 160.0, 188.0, 188.0, 170.0, 170.0, 143.0, 143.0,
140.0, 140.0, 146.0, 146.0, 121.0, 121.0, 94.0, 94.0, 78.0, 78.0, 75.0, 75.0, 64.0, 64.0, 72.0, 72.0, 80.0,
80.0, 71.0, 71.0, 62.0, 62.0, 56.0, 56.0, 48.0, 48.0, 49.0, 49.0, 54.0, 54.0, 58.0, 58.0, 59.0, 59.0, 72.0,
72.0, 81.0, 81.0, 117.0, 117.0, 113.0, 113.0, 153.0, 153.0, 173.0, 173.0, 128.0, 128.0, 118.0, 118.0, 125.0,
125.0, 102.0, 102.0, 120.0, 120.0, 139.0, 139.0, 123.0, 123.0, 196.0, 196.0, 241.0, 241.0, 198.0, 198.0,
169.0, 169.0, 182.0, 182.0, 161.0, 161.0, 119.0, 119.0, 198.0, 198.0, 192.0, 192.0, 198.0, 198.0, 228.0,
228.0, 196.0, 196.0, 187.0, 187.0, 201.0, 201.0, 187.0, 187.0, 169.0, 169.0, 136.0, 136.0, 145.0, 145.0,
146.0, 146.0, 136.0, 136.0, 137.0, 137.0, 124.0, 124.0, 130.0, 130.0, 139.0, 139.0, 118.0, 118.0, 102.0,
102.0, 87.0, 87.0, 79.0, 79.0, 67.0, 67.0, 60.0, 60.0, 56.0, 56.0, 52.0, 52.0, 52.0, 52.0, 54.0, 54.0, 77.0,
77.0, 85.0, 85.0, 85.0, 85.0, 134.0, 134.0, 128.0, 128.0, 129.0, 129.0, 198.0, 198.0, 252.0, 252.0, 122.0,
122.0, 365.0, 365.0, 365.0, 365.0, 234.0, 234.0, 214.0, 214.0, 229.0, 229.0, 152.0, 152.0, 256.0, 256.0,
256.0, 256.0, 311.0, 311.0, 325.0, 325.0, 305.0, 305.0, 258.0, 258.0, 196.0, 196.0, 243.0, 243.0, 292.0,
292.0, 203.0, 203.0, 185.0, 185.0, 175.0, 175.0, 213.0, 213.0, 220.0, 220.0, 220.0, 220.0, 213.0, 213.0,
193.0, 193.0, 192.0, 192.0, 156.0, 156.0, 173.0, 173.0, 154.0, 154.0, 147.0, 147.0, 151.0, 151.0, 112.0,
112.0, 90.0, 90.0, 90.0, 90.0, 89.0, 89.0, 82.0, 82.0, 70.0, 70.0, 64.0, 64.0, 56.0, 56.0, 46.0, 46.0, 34.0,
34.0, 89.0, 89.0, 86.0, 86.0, 90.0, 90.0, 130.0, 130.0, 116.0, 116.0, 128.0, 128.0, 318.0, 318.0, 346.0,
346.0, 289.0, 289.0, 254.0, 254.0, 269.0, 269.0, 231.0, 231.0, 198.0, 198.0, 199.0, 199.0, 199.0, 199.0,
144.0, 144.0, 117.0, 117.0, 89.0, 89.0, 75.0, 75.0, 73.0, 73.0, 92.0, 92.0, 96.0, 96.0, 98.0, 98.0, 110.0,
110.0, 102.0, 102.0, 92.0, 92.0, 76.0, 76.0, 83.0, 83.0, 98.0, 98.0, 125.0, 125.0, 131.0, 131.0, 134.0,
134.0, 142.0, 112.0, 112.0, 112.0, 91.0, 94.0, 94.0, 94.0, 91.0, 91.0, 71.0, 71.0, 58.0, 58.0, 81.0, 81.0,
102.0, 102.0, 112.0, 112.0, 117.0, 117.0, 114.0, 114.0, 112.0, 112.0, 89.0, 89.0, 76.0, 76.0, 52.0, 52.0,
39.0, 39.0, 33.0, 33.0, 32.0, 32.0, 30.0, 30.0, 23.0, 23.0, 64.0, 64.0, 56.0, 56.0, 66.0, 66.0, 91.0, 91.0,
30.0, 30.0, 28.0, 28.0, 86.0, 86.0, 99.0, 99.0, 97.0, 97.0][:n]
|
MIT License
|
camelot-dev/camelot
|
camelot/parsers/stream.py
|
Stream._group_rows
|
python
|
def _group_rows(text, row_tol=2):
row_y = 0
rows = []
temp = []
for t in text:
if t.get_text().strip():
if not np.isclose(row_y, t.y0, atol=row_tol):
rows.append(sorted(temp, key=lambda t: t.x0))
temp = []
row_y = t.y0
temp.append(t)
rows.append(sorted(temp, key=lambda t: t.x0))
if len(rows) > 1:
__ = rows.pop(0)
return rows
|
Groups PDFMiner text objects into rows vertically
within a tolerance.
Parameters
----------
text : list
List of PDFMiner text objects.
row_tol : int, optional (default: 2)
Returns
-------
rows : list
Two-dimensional list of text objects grouped into rows.
|
https://github.com/camelot-dev/camelot/blob/644bbe7c6d57b95aefa2f049a9aacdbc061cc04f/camelot/parsers/stream.py#L105-L139
|
import os
import logging
import warnings
import numpy as np
import pandas as pd
from .base import BaseParser
from ..core import TextEdges, Table
from ..utils import text_in_bbox, get_table_index, compute_accuracy, compute_whitespace
logger = logging.getLogger("camelot")
class Stream(BaseParser):
def __init__(
self,
table_regions=None,
table_areas=None,
columns=None,
split_text=False,
flag_size=False,
strip_text="",
edge_tol=50,
row_tol=2,
column_tol=0,
**kwargs,
):
self.table_regions = table_regions
self.table_areas = table_areas
self.columns = columns
self._validate_columns()
self.split_text = split_text
self.flag_size = flag_size
self.strip_text = strip_text
self.edge_tol = edge_tol
self.row_tol = row_tol
self.column_tol = column_tol
@staticmethod
def _text_bbox(t_bbox):
xmin = min([t.x0 for direction in t_bbox for t in t_bbox[direction]])
ymin = min([t.y0 for direction in t_bbox for t in t_bbox[direction]])
xmax = max([t.x1 for direction in t_bbox for t in t_bbox[direction]])
ymax = max([t.y1 for direction in t_bbox for t in t_bbox[direction]])
text_bbox = (xmin, ymin, xmax, ymax)
return text_bbox
@staticmethod
|
MIT License
|
jzahedieh/django-tennis-ladder
|
ladder/models.py
|
Season.get_leader_stats
|
python
|
def get_leader_stats(self, user):
current_leaders = {}
for ladder in self.ladder_set.all():
current_leaders[ladder.id] = ladder.get_leader(user=user)
return {
'current_leaders': current_leaders,
}
|
Generates the list of leaders for current season
|
https://github.com/jzahedieh/django-tennis-ladder/blob/03a9fc9ec6d0830ac1d6648428eca11755eabb00/ladder/models.py#L42-L53
|
from datetime import date
import operator
from django.db import models
from django.db.models import Avg
from django.contrib.auth.models import User
class Season(models.Model):
name = models.CharField(max_length=150)
start_date = models.DateField('Start date')
end_date = models.DateField('End date')
season_round = models.IntegerField()
class Meta:
ordering = ['-start_date',]
def __str__(self):
return str(self.start_date.year) + ' Round ' + str(self.season_round)
def get_stats(self):
player_count = 0
results_count = 0
total_games_count = 0.0
for ladder in self.ladder_set.all():
player_count += ladder.league_set.count()
results_count += ladder.result_set.count() / 2
total_games_count += (ladder.league_set.count() * (ladder.league_set.count() - 1)) / 2
percentage_played = (results_count / total_games_count) * 100
return {
'divisions': self.ladder_set.count(),
'percentage_played': "{0:.2f}".format(percentage_played),
'total_games_count': total_games_count,
'results_count': results_count,
'player_count': player_count
}
|
MIT License
|
exhuma/puresnmp
|
puresnmp/api/pythonic.py
|
walk
|
python
|
def walk(
ip, community, oid, port=161, timeout=DEFAULT_TIMEOUT, version=Version.V2C
):
raw_result = raw.walk(ip, community, oid, port, timeout, version=version)
for raw_oid, raw_value in raw_result:
yield VarBind(raw_oid, raw_value.pythonize())
|
Delegates to :py:func:`~puresnmp.api.raw.walk` but returns simple Python
types.
See the "raw" equivalent for detailed documentation & examples.
|
https://github.com/exhuma/puresnmp/blob/a755b5365acdc8958e530234f6916a90923f5b96/puresnmp/api/pythonic.py#L183-L196
|
import logging
from collections import OrderedDict
from datetime import timedelta
from typing import TYPE_CHECKING, Generator, List, TypeVar
from warnings import warn
from x690.types import ObjectIdentifier, Type
from ..const import DEFAULT_TIMEOUT, Version
from ..pdu import Trap
from ..snmp import VarBind
from ..util import BulkResult
from . import raw
if TYPE_CHECKING:
from typing import Any, Callable, Dict, Tuple, Union
from puresnmp.typevars import PyType
T = TypeVar("T", bound=PyType)
_set = set
LOG = logging.getLogger(__name__)
OID = ObjectIdentifier.from_string
TWalkResponse = Generator[VarBind, None, None]
class TrapInfo:
raw_trap: Trap
def __init__(self, raw_trap: Trap) -> None:
self.raw_trap = raw_trap
def __repr__(self):
return "<TrapInfo from %s on %s with %d values>" % (
self.origin,
self.oid,
len(self.values),
)
@property
def origin(self) -> str:
if self.raw_trap is None or self.raw_trap.source is None:
return ""
return self.raw_trap.source.address
@property
def uptime(self) -> timedelta:
return self.raw_trap.varbinds[0].value.pythonize()
@property
def oid(self) -> str:
return self.raw_trap.varbinds[1].value.pythonize()
@property
def values(self):
output = {}
for oid_raw, value_raw in self.raw_trap.varbinds[2:]:
oid = oid_raw.pythonize()
value = value_raw.pythonize()
output[oid] = value
return output
def get(ip, community, oid, port=161, timeout=2, version=Version.V2C):
raw_value = raw.get(
ip, community, oid, port, timeout=timeout, version=version
)
return raw_value.pythonize()
def multiget(
ip, community, oids, port=161, timeout=DEFAULT_TIMEOUT, version=Version.V2C
):
raw_output = raw.multiget(
ip, community, oids, port, timeout, version=version
)
pythonized = [value.pythonize() for value in raw_output]
return pythonized
def getnext(
ip, community, oid, port=161, timeout=DEFAULT_TIMEOUT, version=Version.V2C
):
result = multigetnext(
ip, community, [oid], port, timeout=timeout, version=version
)
return result[0]
def multigetnext(
ip, community, oids, port=161, timeout=DEFAULT_TIMEOUT, version=Version.V2C
):
raw_output = raw.multigetnext(
ip, community, oids, port, timeout, version=version
)
pythonized = [
VarBind(oid, value.pythonize()) for oid, value in raw_output
]
return pythonized
|
MIT License
|
ageitgey/medium_to_ghost
|
medium_to_ghost/medium_to_ghost.py
|
create_export_file
|
python
|
def create_export_file(converted_posts):
return {
"db": [
{
"meta": {
"exported_on": int(time.time()),
"version": "2.18.3"
},
"data": {
"posts": converted_posts
}
}
]
}
|
Create a Ghost import json from a list of Ghost post documents.
:param converted_posts: Ghost formatted python docs.
:return: A Dict representation of a ghost export file you can dump to json.
|
https://github.com/ageitgey/medium_to_ghost/blob/0403e8e7b005e1b5af78b4ae58199d3b513416cc/medium_to_ghost/medium_to_ghost.py#L23-L41
|
import click
from pathlib import Path
from medium_to_ghost.medium_post_parser import convert_medium_post_to_ghost_json
import time
import json
from zipfile import ZipFile
import logging
import sys
import shutil
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging.getLogger('medium_to_ghost')
def create_ghost_import_zip():
shutil.make_archive("medium_export_for_ghost", "zip", "exported_content", logger=logger)
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/alarm_control_panel/envisalink.py
|
EnvisalinkAlarm.async_alarm_disarm
|
python
|
def async_alarm_disarm(self, code=None):
if code:
self.hass.data[DATA_EVL].disarm_partition(
str(code), self._partition_number)
else:
self.hass.data[DATA_EVL].disarm_partition(
str(self._code), self._partition_number)
|
Send disarm command.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/alarm_control_panel/envisalink.py#L131-L138
|
import asyncio
import logging
import voluptuous as vol
from homeassistant.core import callback
from homeassistant.helpers.dispatcher import async_dispatcher_connect
import homeassistant.components.alarm_control_panel as alarm
import homeassistant.helpers.config_validation as cv
from homeassistant.components.envisalink import (
DATA_EVL, EnvisalinkDevice, PARTITION_SCHEMA, CONF_CODE, CONF_PANIC,
CONF_PARTITIONNAME, SIGNAL_KEYPAD_UPDATE, SIGNAL_PARTITION_UPDATE)
from homeassistant.const import (
STATE_ALARM_ARMED_AWAY, STATE_ALARM_ARMED_HOME, STATE_ALARM_DISARMED,
STATE_UNKNOWN, STATE_ALARM_TRIGGERED, STATE_ALARM_PENDING, ATTR_ENTITY_ID)
_LOGGER = logging.getLogger(__name__)
DEPENDENCIES = ['envisalink']
SERVICE_ALARM_KEYPRESS = 'envisalink_alarm_keypress'
ATTR_KEYPRESS = 'keypress'
ALARM_KEYPRESS_SCHEMA = vol.Schema({
vol.Required(ATTR_ENTITY_ID): cv.entity_ids,
vol.Required(ATTR_KEYPRESS): cv.string
})
@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
configured_partitions = discovery_info['partitions']
code = discovery_info[CONF_CODE]
panic_type = discovery_info[CONF_PANIC]
devices = []
for part_num in configured_partitions:
device_config_data = PARTITION_SCHEMA(configured_partitions[part_num])
device = EnvisalinkAlarm(
hass,
part_num,
device_config_data[CONF_PARTITIONNAME],
code,
panic_type,
hass.data[DATA_EVL].alarm_state['partition'][part_num],
hass.data[DATA_EVL]
)
devices.append(device)
async_add_devices(devices)
@callback
def alarm_keypress_handler(service):
entity_ids = service.data.get(ATTR_ENTITY_ID)
keypress = service.data.get(ATTR_KEYPRESS)
target_devices = [device for device in devices
if device.entity_id in entity_ids]
for device in target_devices:
device.async_alarm_keypress(keypress)
hass.services.async_register(
alarm.DOMAIN, SERVICE_ALARM_KEYPRESS, alarm_keypress_handler,
schema=ALARM_KEYPRESS_SCHEMA)
return True
class EnvisalinkAlarm(EnvisalinkDevice, alarm.AlarmControlPanel):
def __init__(self, hass, partition_number, alarm_name, code, panic_type,
info, controller):
self._partition_number = partition_number
self._code = code
self._panic_type = panic_type
_LOGGER.debug("Setting up alarm: %s", alarm_name)
super().__init__(alarm_name, info, controller)
@asyncio.coroutine
def async_added_to_hass(self):
async_dispatcher_connect(
self.hass, SIGNAL_KEYPAD_UPDATE, self._update_callback)
async_dispatcher_connect(
self.hass, SIGNAL_PARTITION_UPDATE, self._update_callback)
@callback
def _update_callback(self, partition):
if partition is None or int(partition) == self._partition_number:
self.async_schedule_update_ha_state()
@property
def code_format(self):
if self._code:
return None
return '^\\d{4,6}$'
@property
def state(self):
state = STATE_UNKNOWN
if self._info['status']['alarm']:
state = STATE_ALARM_TRIGGERED
elif self._info['status']['armed_away']:
state = STATE_ALARM_ARMED_AWAY
elif self._info['status']['armed_stay']:
state = STATE_ALARM_ARMED_HOME
elif self._info['status']['exit_delay']:
state = STATE_ALARM_PENDING
elif self._info['status']['entry_delay']:
state = STATE_ALARM_PENDING
elif self._info['status']['alpha']:
state = STATE_ALARM_DISARMED
return state
@asyncio.coroutine
|
MIT License
|
orbingol/nurbs-python
|
geomdl/linalg.py
|
vector_is_zero
|
python
|
def vector_is_zero(vector_in, tol=10e-8):
if not isinstance(vector_in, (list, tuple)):
raise TypeError("Input vector must be a list or a tuple")
res = [False for _ in range(len(vector_in))]
for idx in range(len(vector_in)):
if abs(vector_in[idx]) < tol:
res[idx] = True
return all(res)
|
Checks if the input vector is a zero vector.
:param vector_in: input vector
:type vector_in: list, tuple
:param tol: tolerance value
:type tol: float
:return: True if the input vector is zero, False otherwise
:rtype: bool
|
https://github.com/orbingol/nurbs-python/blob/8ae8b127eb0b130a25a6c81e98e90f319733bca0/geomdl/linalg.py#L260-L277
|
import os
import math
from copy import deepcopy
from functools import reduce
from .exceptions import GeomdlException
from . import _linalg
try:
from functools import lru_cache
except ImportError:
from .functools_lru_cache import lru_cache
def vector_cross(vector1, vector2):
try:
if vector1 is None or len(vector1) == 0 or vector2 is None or len(vector2) == 0:
raise ValueError("Input vectors cannot be empty")
except TypeError as e:
print("An error occurred: {}".format(e.args[-1]))
raise TypeError("Input must be a list or tuple")
except Exception:
raise
if not 1 < len(vector1) <= 3 or not 1 < len(vector2) <= 3:
raise ValueError("The input vectors should contain 2 or 3 elements")
if len(vector1) == 2:
v1 = [float(v) for v in vector1] + [0.0]
else:
v1 = vector1
if len(vector2) == 2:
v2 = [float(v) for v in vector2] + [0.0]
else:
v2 = vector2
vector_out = [(v1[1] * v2[2]) - (v1[2] * v2[1]),
(v1[2] * v2[0]) - (v1[0] * v2[2]),
(v1[0] * v2[1]) - (v1[1] * v2[0])]
return vector_out
def vector_dot(vector1, vector2):
try:
if vector1 is None or len(vector1) == 0 or vector2 is None or len(vector2) == 0:
raise ValueError("Input vectors cannot be empty")
except TypeError as e:
print("An error occurred: {}".format(e.args[-1]))
raise TypeError("Input must be a list or tuple")
except Exception:
raise
prod = 0.0
for v1, v2 in zip(vector1, vector2):
prod += v1 * v2
return prod
def vector_multiply(vector_in, scalar):
scaled_vector = [v * scalar for v in vector_in]
return scaled_vector
def vector_sum(vector1, vector2, coeff=1.0):
summed_vector = [v1 + (coeff * v2) for v1, v2 in zip(vector1, vector2)]
return summed_vector
def vector_normalize(vector_in, decimals=18):
try:
if vector_in is None or len(vector_in) == 0:
raise ValueError("Input vector cannot be empty")
except TypeError as e:
print("An error occurred: {}".format(e.args[-1]))
raise TypeError("Input must be a list or tuple")
except Exception:
raise
magnitude = vector_magnitude(vector_in)
if magnitude > 0:
vector_out = []
for vin in vector_in:
vector_out.append(vin / magnitude)
return [float(("{:." + str(decimals) + "f}").format(vout)) for vout in vector_out]
else:
raise ValueError("The magnitude of the vector is zero")
def vector_generate(start_pt, end_pt, normalize=False):
try:
if start_pt is None or len(start_pt) == 0 or end_pt is None or len(end_pt) == 0:
raise ValueError("Input points cannot be empty")
except TypeError as e:
print("An error occurred: {}".format(e.args[-1]))
raise TypeError("Input must be a list or tuple")
except Exception:
raise
ret_vec = []
for sp, ep in zip(start_pt, end_pt):
ret_vec.append(ep - sp)
if normalize:
ret_vec = vector_normalize(ret_vec)
return ret_vec
def vector_mean(*args):
sz = len(args)
mean_vector = [0.0 for _ in range(len(args[0]))]
for input_vector in args:
mean_vector = [a+b for a, b in zip(mean_vector, input_vector)]
mean_vector = [a / sz for a in mean_vector]
return mean_vector
def vector_magnitude(vector_in):
sq_sum = 0.0
for vin in vector_in:
sq_sum += vin**2
return math.sqrt(sq_sum)
def vector_angle_between(vector1, vector2, **kwargs):
degrees = kwargs.get('degrees', True)
magn1 = vector_magnitude(vector1)
magn2 = vector_magnitude(vector2)
acos_val = vector_dot(vector1, vector2) / (magn1 * magn2)
angle_radians = math.acos(acos_val)
if degrees:
return math.degrees(angle_radians)
else:
return angle_radians
|
MIT License
|
pydoit/doit
|
doit/reporter.py
|
ConsoleReporter.execute_task
|
python
|
def execute_task(self, task):
if task.actions and (task.name[0] != '_'):
self.write('. %s\n' % task.title())
|
called when execution starts
|
https://github.com/pydoit/doit/blob/5f71d3b113a03292b35280479ffe5203b8f81156/doit/reporter.py#L38-L43
|
import sys
import time
import datetime
import json
from io import StringIO
class ConsoleReporter(object):
desc = 'console output'
def __init__(self, outstream, options):
self.failures = []
self.runtime_errors = []
self.failure_verbosity = options.get('failure_verbosity', 0)
self.outstream = outstream
def write(self, text):
self.outstream.write(text)
def initialize(self, tasks, selected_tasks):
pass
def get_status(self, task):
pass
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.