repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
mwojnars/hypertag
|
src/hypertag/core/dom.py
|
DOM.copy
|
python
|
def copy(self):
dup = copy(self)
dup.nodes = [node.copy() for node in self.nodes]
return dup
|
Mostly deep copy of self, with an exception for nodes' attributes, which are shallow-copied, and their `tag` links (no copy).
|
https://github.com/mwojnars/hypertag/blob/31b6a08cfaef57414ea553ee76b152e3fdc94d0f/src/hypertag/core/dom.py#L143-L149
|
import re, itertools
from copy import copy
from types import GeneratorType
from hypertag.nifty.util import Object
from hypertag.core.errors import VoidTagEx, TypeErrorEx
def add_indent(text, indent, re_start = re.compile(r'\n(?=.)')):
if not indent: return text
return re_start.sub('\n' + indent, text)
def del_indent(text, indent = None):
if indent is None: indent = get_indent(text)
if text.startswith(indent): text = text[len(indent):]
return text.replace('\n' + indent, '\n')
def get_indent(text):
lines = text.split('\n')
lines = list(filter(None, [l.rstrip() for l in lines]))
if not lines: return ''
for i, column in enumerate(zip(*lines)):
if not column[0].isspace() or min(column) != max(column):
return lines[0][:i]
else:
size = min(map(len, lines))
return lines[0][:size]
class DOM:
nodes = None
def __init__(self, *nodes, **params):
_strict = params.pop('_strict', True)
if params: raise TypeErrorEx('unrecognized keyword argument "%s" in DOM.__init__()' % list(params.keys())[0])
self.nodes = self._flatten(nodes) if _strict else list(nodes)
def __bool__(self): return bool(self.nodes)
def __len__(self): return len(self.nodes)
def __iter__(self): return iter(self.nodes)
def __getitem__(self, pos):
if isinstance(pos, int):
return self.nodes[pos]
if isinstance(pos, (int, slice)):
return DOM(self.nodes[pos], _strict = False)
return self.select(pos)
@staticmethod
def node(*args, **kwargs):
return DOM(DOM.Node(*args, **kwargs))
@staticmethod
def text(*args, **kwargs):
return DOM(DOM.Text(*args, **kwargs))
@staticmethod
def _flatten(nodes):
result = []
for n in nodes:
if n is None: continue
if isinstance(n, (list, DOM, GeneratorType)):
result += DOM._flatten(n)
elif isinstance(n, DOM.Node):
result.append(n)
else:
raise TypeErrorEx("found %s in a DOM, expected DOM.Node" % type(n))
return result
def set_indent(self, indent):
for n in self.nodes:
n.set_indent(indent)
def render(self):
return ''.join(node.render() for node in self.nodes)
def tree(self, indent = '', step = ' '):
return ''.join(node.tree(indent, step) for node in self.nodes)
|
MIT License
|
pcah/python-clean-architecture
|
pca/utils/collections.py
|
OrderedSet.discard
|
python
|
def discard(self, key):
if key in self:
i = self.items.index(key)
del self.items[i]
del self.map[key]
for k, v in self.map.items():
if v >= i:
self.map[k] = v - 1
|
Remove an element. Do not raise an exception if absent.
The MutableSet mixin uses this to implement the .remove() method, which
*does* raise an error when asked to remove a non-existent item.
|
https://github.com/pcah/python-clean-architecture/blob/20630d0b3b4c00f6503a26cc98c45df12bc31b3b/pca/utils/collections.py#L182-L194
|
import typing as t
from collections.abc import MutableSet
from functools import singledispatch
SliceAll = slice(None)
generator_type = type(e for e in ())
none_type = type(None)
def sget(target, key: str, default: t.Any = None):
key_iter = key.split(".") if hasattr(key, "split") else [key]
value = target
for part in key_iter:
try:
value = getattr(value, part)
except (TypeError, AttributeError):
try:
value = value[part]
except (TypeError, KeyError):
try:
value = value[int(part)]
except (TypeError, ValueError, IndexError, KeyError):
return default
return value
def is_iterable(obj):
return hasattr(obj, "__iter__") and not isinstance(obj, str)
def is_iterable_and_not_tuple(obj):
return is_iterable(obj) and not isinstance(obj, tuple)
class OrderedSet(MutableSet):
def __init__(self, iterable=None):
self.items = []
self.map = {}
if iterable is not None:
self |= iterable
def __len__(self):
return len(self.items)
def __getitem__(self, index):
if index == SliceAll:
return self
elif hasattr(index, "__index__") or isinstance(index, slice):
result = self.items[index]
if isinstance(result, list):
return OrderedSet(result)
else:
return result
elif is_iterable_and_not_tuple(index):
return OrderedSet([self.items[i] for i in index])
else:
raise TypeError("Don't know how to index an OrderedSet by %r" % index)
def copy(self):
return OrderedSet(self)
def __getstate__(self):
if len(self) == 0:
return (None,)
else:
return list(self)
def __setstate__(self, state):
if state == (None,):
self.__init__([])
else:
self.__init__(state)
def __contains__(self, key):
return key in self.map
def add(self, key):
if key not in self.map:
self.map[key] = len(self.items)
self.items.append(key)
return self.map[key]
append = add
def update(self, sequence):
item_index = None
try:
for item in sequence:
item_index = self.add(item)
except TypeError:
raise ValueError("Argument needs to be an iterable, got %s" % type(sequence))
return item_index
def index(self, key):
if is_iterable_and_not_tuple(key):
return [self.index(subkey) for subkey in key]
return self.map[key]
def pop(self):
if not self.items:
raise KeyError("Set is empty")
elem = self.items[-1]
del self.items[-1]
del self.map[elem]
return elem
|
MIT License
|
drexly/openhgsenti
|
lib/django/contrib/gis/db/models/query.py
|
GeoQuerySet.perimeter
|
python
|
def perimeter(self, **kwargs):
return self._distance_attribute('perimeter', None, **kwargs)
|
Returns the perimeter of the geometry field as a `Distance` object
stored in a `perimeter` attribute on each element of this GeoQuerySet.
|
https://github.com/drexly/openhgsenti/blob/d7806f58c81127d32091d9875a99ac13aef94a8a/lib/django/contrib/gis/db/models/query.py#L267-L272
|
import warnings
from django.contrib.gis.db.models import aggregates
from django.contrib.gis.db.models.fields import (
GeometryField, LineStringField, PointField, get_srid_info,
)
from django.contrib.gis.db.models.lookups import GISLookup
from django.contrib.gis.db.models.sql import (
AreaField, DistanceField, GeomField, GMLField,
)
from django.contrib.gis.geometry.backend import Geometry
from django.contrib.gis.measure import Area, Distance
from django.db import connections
from django.db.models.expressions import RawSQL
from django.db.models.fields import Field
from django.db.models.query import QuerySet
from django.utils import six
from django.utils.deprecation import (
RemovedInDjango20Warning, RemovedInDjango110Warning,
)
class GeoQuerySet(QuerySet):
def area(self, tolerance=0.05, **kwargs):
procedure_args, geo_field = self._spatial_setup(
'area', field_name=kwargs.get('field_name'))
s = {'procedure_args': procedure_args,
'geo_field': geo_field,
'setup': False,
}
connection = connections[self.db]
backend = connection.ops
if backend.oracle:
s['procedure_fmt'] = '%(geo_col)s,%(tolerance)s'
s['procedure_args']['tolerance'] = tolerance
s['select_field'] = AreaField('sq_m')
elif backend.postgis or backend.spatialite:
if backend.geography:
s['select_field'] = AreaField('sq_m')
elif not geo_field.geodetic(connection):
s['select_field'] = AreaField(Area.unit_attname(geo_field.units_name(connection)))
else:
raise Exception('Area on geodetic coordinate systems not supported.')
return self._spatial_attribute('area', s, **kwargs)
def centroid(self, **kwargs):
return self._geom_attribute('centroid', **kwargs)
def collect(self, **kwargs):
warnings.warn(
"The collect GeoQuerySet method is deprecated. Use the Collect() "
"aggregate in an aggregate() or annotate() method.",
RemovedInDjango110Warning, stacklevel=2
)
return self._spatial_aggregate(aggregates.Collect, **kwargs)
def difference(self, geom, **kwargs):
return self._geomset_attribute('difference', geom, **kwargs)
def distance(self, geom, **kwargs):
return self._distance_attribute('distance', geom, **kwargs)
def envelope(self, **kwargs):
return self._geom_attribute('envelope', **kwargs)
def extent(self, **kwargs):
warnings.warn(
"The extent GeoQuerySet method is deprecated. Use the Extent() "
"aggregate in an aggregate() or annotate() method.",
RemovedInDjango110Warning, stacklevel=2
)
return self._spatial_aggregate(aggregates.Extent, **kwargs)
def extent3d(self, **kwargs):
warnings.warn(
"The extent3d GeoQuerySet method is deprecated. Use the Extent3D() "
"aggregate in an aggregate() or annotate() method.",
RemovedInDjango110Warning, stacklevel=2
)
return self._spatial_aggregate(aggregates.Extent3D, **kwargs)
def force_rhr(self, **kwargs):
return self._geom_attribute('force_rhr', **kwargs)
def geojson(self, precision=8, crs=False, bbox=False, **kwargs):
backend = connections[self.db].ops
if not backend.geojson:
raise NotImplementedError('Only PostGIS 1.3.4+ and SpatiaLite 3.0+ '
'support GeoJSON serialization.')
if not isinstance(precision, six.integer_types):
raise TypeError('Precision keyword must be set with an integer.')
options = 0
if crs and bbox:
options = 3
elif bbox:
options = 1
elif crs:
options = 2
s = {'desc': 'GeoJSON',
'procedure_args': {'precision': precision, 'options': options},
'procedure_fmt': '%(geo_col)s,%(precision)s,%(options)s',
}
return self._spatial_attribute('geojson', s, **kwargs)
def geohash(self, precision=20, **kwargs):
s = {'desc': 'GeoHash',
'procedure_args': {'precision': precision},
'procedure_fmt': '%(geo_col)s,%(precision)s',
}
return self._spatial_attribute('geohash', s, **kwargs)
def gml(self, precision=8, version=2, **kwargs):
backend = connections[self.db].ops
s = {'desc': 'GML', 'procedure_args': {'precision': precision}}
if backend.postgis:
s['procedure_fmt'] = '%(version)s,%(geo_col)s,%(precision)s'
s['procedure_args'] = {'precision': precision, 'version': version}
if backend.oracle:
s['select_field'] = GMLField()
return self._spatial_attribute('gml', s, **kwargs)
def intersection(self, geom, **kwargs):
return self._geomset_attribute('intersection', geom, **kwargs)
def kml(self, **kwargs):
s = {'desc': 'KML',
'procedure_fmt': '%(geo_col)s,%(precision)s',
'procedure_args': {'precision': kwargs.pop('precision', 8)},
}
return self._spatial_attribute('kml', s, **kwargs)
def length(self, **kwargs):
return self._distance_attribute('length', None, **kwargs)
def make_line(self, **kwargs):
warnings.warn(
"The make_line GeoQuerySet method is deprecated. Use the MakeLine() "
"aggregate in an aggregate() or annotate() method.",
RemovedInDjango110Warning, stacklevel=2
)
return self._spatial_aggregate(aggregates.MakeLine, geo_field_type=PointField, **kwargs)
def mem_size(self, **kwargs):
return self._spatial_attribute('mem_size', {}, **kwargs)
def num_geom(self, **kwargs):
return self._spatial_attribute('num_geom', {}, **kwargs)
def num_points(self, **kwargs):
return self._spatial_attribute('num_points', {}, **kwargs)
|
Apache License 2.0
|
jasonrollins/shareplum
|
shareplum/site.py
|
_Site2007.list
|
python
|
def list(self, list_name, exclude_hidden_fields=False):
return _List2007(
self._session,
list_name,
self._url,
self._verify_ssl,
self.users,
self.huge_tree,
self.timeout,
exclude_hidden_fields=exclude_hidden_fields,
site_url=self.site_url,
)
|
Sharepoint Lists Web Service
Microsoft Developer Network:
The Lists Web service provides methods for working
with SharePoint lists, content types, list items, and files.
|
https://github.com/jasonrollins/shareplum/blob/ca01e1e3aa136ebede67e04ebb31aa0aa51d6f54/shareplum/site.py#L369-L387
|
from typing import Any
from typing import Dict
from typing import List
from typing import Optional
import requests
from requests.packages.urllib3.util.retry import Retry
from requests_toolbelt import SSLAdapter
from lxml import etree
from .request_helper import get, post
from .list import _List2007, _List365
from .folder import _Folder
from .soap import Soap
from .version import __version__
from enum import Enum
class Version(Enum):
v2007 = 1
v2010 = 2
v2013 = 3
v2016 = 4
v2019 = 5
v365 = 6
class _Site2007:
def __init__(self,
site_url,
auth=None,
authcookie=None,
verify_ssl=True,
ssl_version=None,
huge_tree=False,
timeout=None,
retry=None):
self.site_url = site_url
self._verify_ssl = verify_ssl
if retry is None:
retry = Retry(total=5,
read=5,
connect=5,
backoff_factor=0.3,
status_forcelist=[500, 502, 503, 504])
http_adaptor = requests.adapters.HTTPAdapter(max_retries=retry)
https_adaptor = http_adaptor
self._session = requests.Session()
if ssl_version is not None:
https_adaptor = SSLAdapter(ssl_version, max_retries=retry)
self._session.mount("https://", https_adaptor)
self._session.mount("http://", http_adaptor)
self._session.headers.update({"user-agent": "shareplum/%s" % __version__})
if authcookie is not None:
self._session.cookies = authcookie
else:
self._session.auth = auth
self.huge_tree = huge_tree
self.timeout = timeout
self.last_request = None
self._services_url = {
"Alerts": "/_vti_bin/Alerts.asmx",
"Authentication": "/_vti_bin/Authentication.asmx",
"Copy": "/_vti_bin/Copy.asmx",
"Dws": "/_vti_bin/Dws.asmx",
"Forms": "/_vti_bin/Forms.asmx",
"Imaging": "/_vti_bin/Imaging.asmx",
"DspSts": "/_vti_bin/DspSts.asmx",
"Lists": "/_vti_bin/lists.asmx",
"Meetings": "/_vti_bin/Meetings.asmx",
"People": "/_vti_bin/People.asmx",
"Permissions": "/_vti_bin/Permissions.asmx",
"SiteData": "/_vti_bin/SiteData.asmx",
"Sites": "/_vti_bin/Sites.asmx",
"Search": "/_vti_bin/Search.asmx",
"UserGroup": "/_vti_bin/usergroup.asmx",
"Versions": "/_vti_bin/Versions.asmx",
"Views": "/_vti_bin/Views.asmx",
"WebPartPages": "/_vti_bin/WebPartPages.asmx",
"Webs": "/_vti_bin/Webs.asmx",
}
self.site_info = self.get_site()
self.users = self.get_users()
self.version = "2007"
def _url(self, service):
return "".join([self.site_url, self._services_url[service]])
def _headers(self, soap_action):
headers = {
"Content-Type": "text/xml; charset=UTF-8",
"SOAPAction": "http://schemas.microsoft.com/sharepoint/soap/" + soap_action,
}
return headers
def add_list(self, list_name, description, template_id):
template_ids = {
"Announcements": "104",
"Contacts": "105",
"Custom List": "100",
"Custom List in Datasheet View": "120",
"DataSources": "110",
"Discussion Board": "108",
"Document Library": "101",
"Events": "106",
"Form Library": "115",
"Issues": "1100",
"Links": "103",
"Picture Library": "109",
"Survey": "102",
"Tasks": "107",
}
if type(template_id) == int:
template_id = str(template_id)
elif type(template_id) == str:
if template_id.isdigit():
pass
else:
template_id = template_ids[template_id]
soap_request = Soap("AddList")
soap_request.add_parameter("listName", list_name)
soap_request.add_parameter("description", description)
soap_request.add_parameter("templateID", template_id)
self.last_request = str(soap_request)
response = post(self._session,
url=self._url("Lists"),
headers=self._headers("AddList"),
data=str(soap_request).encode("utf-8"),
verify=self._verify_ssl,
timeout=self.timeout)
return response.text
def delete_list(self, list_name):
soap_request = Soap("DeleteList")
soap_request.add_parameter("listName", list_name)
self.last_request = str(soap_request)
post(self._session,
url=self._url("Lists"),
headers=self._headers("DeleteList"),
data=str(soap_request).encode("utf-8"),
verify=self._verify_ssl,
timeout=self.timeout)
def get_form_collection(self, list_name):
soap_request = Soap("GetFormCollection")
soap_request.add_parameter("listName", list_name)
self.last_request = str(soap_request)
response = post(self._session,
url=self._url("Forms"),
headers=self._headers("GetFormCollection"),
data=str(soap_request).encode("utf-8"),
verify=self._verify_ssl,
timeout=self.timeout)
envelope = etree.fromstring(response.text.encode("utf-8"),
parser=etree.XMLParser(huge_tree=self.huge_tree,
recover=True))
items = envelope[0][0][0][0]
data = []
for _item in items:
data.append({k: v for (k, v) in _item.items()})
return data
def get_site(self):
soap_request = Soap("GetSite")
soap_request.add_parameter("SiteUrl", self.site_url)
self.last_request = str(soap_request)
response = post(self._session,
url=self._url("Sites"),
headers=self._headers("GetSite"),
data=str(soap_request).encode("utf-8"),
verify=self._verify_ssl,
timeout=self.timeout)
envelope = etree.fromstring(response.text.encode("utf-8"),
parser=etree.XMLParser(huge_tree=self.huge_tree,
recover=True))
data = envelope[0][0][0]
return data.text
def get_list_templates(self):
soap_request = Soap("GetListTemplates")
soap_request.add_parameter("GetListTemplates")
self.last_request = str(soap_request)
response = post(self._session,
url=self._url("Webs"),
headers=self._headers("GetListTemplates"),
data=str(soap_request).encode("utf-8"),
verify=self._verify_ssl,
timeout=self.timeout)
envelope = etree.fromstring(response.text.encode("utf-8"),
parser=etree.XMLParser(huge_tree=self.huge_tree,
recover=True))
lists = envelope[0][0][0][0]
data = []
for _list in lists:
data.append({k: v for (k, v) in _list.items()})
return data
def get_site_templates(self, lcid="1033"):
soap_request = Soap("GetSiteTemplates")
soap_request.add_parameter("LCID", lcid)
self.last_request = str(soap_request)
response = post(self._session,
url=self._url("Sites"),
headers=self._headers("GetSiteTemplates"),
data=str(soap_request).encode("utf-8"),
verify=self._verify_ssl,
timeout=self.timeout)
return response
envelope = etree.fromstring(response.text.encode("utf-8"),
parser=etree.XMLParser(huge_tree=self.huge_tree,
recover=True))
lists = envelope[0][0][1]
data = []
for _list in lists:
data.append({k: v for (k, v) in _list.items()})
return data
def get_list_collection(self):
soap_request = Soap("GetListCollection")
self.last_request = str(soap_request)
response = post(self._session,
url=self._url("SiteData"),
headers=self._headers("GetListCollection"),
data=str(soap_request).encode("utf-8"),
verify=self._verify_ssl,
timeout=self.timeout)
envelope = etree.fromstring(response.text.encode("utf-8"),
parser=etree.XMLParser(huge_tree=self.huge_tree,
recover=True))
lists = envelope[0][0][1]
data = []
for _list in lists:
_list_data = {}
for item in _list:
key = item.tag.replace("{http://schemas.microsoft.com/sharepoint/soap/}", "")
value = item.text
_list_data[key] = value
data.append(_list_data)
return data
def get_users(self, rowlimit=0):
soap_request = Soap("GetListItems")
soap_request.add_parameter("listName", "UserInfo")
soap_request.add_parameter("rowLimit", str(rowlimit))
self.last_request = str(soap_request)
response = post(self._session,
url=self._url("Lists"),
headers=self._headers("GetListItems"),
data=str(soap_request).encode("utf-8"),
verify=self._verify_ssl,
timeout=self.timeout)
try:
envelope = etree.fromstring(response.text.encode("utf-8"),
parser=etree.XMLParser(huge_tree=self.huge_tree,
recover=True))
except Exception as e:
raise requests.ConnectionError("GetUsers GetListItems response failed to parse correctly: " + str(e))
listitems = envelope[0][0][0][0][0]
data = []
for row in listitems:
data.append({key[4:]: value for (key, value) in row.items() if key[4:]})
return {
"py": {i["ImnName"]: i["ID"] + ";#" + i["ImnName"] for i in data},
"sp": {i["ID"] + ";#" + i["ImnName"]: i["ImnName"] for i in data},
}
|
MIT License
|
m3dev/pptx-template
|
.eggs/python_pptx-0.6.6-py3.6.egg/pptx/dml/chtfmt.py
|
ChartFormat.line
|
python
|
def line(self):
spPr = self._element.get_or_add_spPr()
return LineFormat(spPr)
|
The |LineFormat| object providing access to the visual properties of
this object, such as line color and line style.
|
https://github.com/m3dev/pptx-template/blob/bccd95728fc27963dabdd53bd3a2ee92233d5176/.eggs/python_pptx-0.6.6-py3.6.egg/pptx/dml/chtfmt.py#L40-L46
|
from __future__ import (
absolute_import, division, print_function, unicode_literals
)
from .fill import FillFormat
from .line import LineFormat
from ..shared import ElementProxy
from ..util import lazyproperty
class ChartFormat(ElementProxy):
__slots__ = ('_fill', '_line')
@lazyproperty
def fill(self):
spPr = self._element.get_or_add_spPr()
return FillFormat.from_fill_parent(spPr)
@lazyproperty
|
Apache License 2.0
|
softbankrobotics-research/qibullet
|
qibullet/simulation_manager.py
|
SimulationManager.resetSimulation
|
python
|
def resetSimulation(self, physics_client):
self._clearInstance(physics_client)
pybullet.resetSimulation(physicsClientId=physics_client)
|
Resets the simulated instance corresponding to the physics client id.
All of the objects loaded in the simulation will be destroyed, but the
instance will still be running
|
https://github.com/softbankrobotics-research/qibullet/blob/486e5943a9886a777eeacdc06e97e323ccd0cc31/qibullet/simulation_manager.py#L96-L103
|
import time
import pybullet
import threading
import pybullet_data
from qibullet.laser import Laser
from qibullet.camera import Camera
from qibullet.nao_virtual import NaoVirtual
from qibullet.romeo_virtual import RomeoVirtual
from qibullet.pepper_virtual import PepperVirtual
from qibullet.robot_module import RobotModule
from qibullet.helpers import GravityHelper
class SimulationManager:
def __init__(self):
pass
def launchSimulation(
self,
gui=True,
use_shared_memory=False,
auto_step=True):
if gui:
physics_client = pybullet.connect(pybullet.GUI)
if auto_step:
pybullet.setRealTimeSimulation(
1,
physicsClientId=physics_client)
pybullet.configureDebugVisualizer(
pybullet.COV_ENABLE_RGB_BUFFER_PREVIEW,
0,
physicsClientId=physics_client)
pybullet.configureDebugVisualizer(
pybullet.COV_ENABLE_DEPTH_BUFFER_PREVIEW,
0,
physicsClientId=physics_client)
pybullet.configureDebugVisualizer(
pybullet.COV_ENABLE_SEGMENTATION_MARK_PREVIEW,
0,
physicsClientId=physics_client)
else:
if use_shared_memory:
physics_client = pybullet.connect(
pybullet.SHARED_MEMORY_SERVER)
if auto_step:
pybullet.setRealTimeSimulation(
1,
physicsClientId=physics_client)
else:
physics_client = pybullet.connect(pybullet.DIRECT)
if auto_step:
threading.Thread(
target=self._stepSimulation,
args=[physics_client]).start()
self.setGravity(physics_client, [0.0, 0.0, -9.81])
return physics_client
|
Apache License 2.0
|
xknx/xknx
|
xknx/remote_value/remote_value_sensor.py
|
_RemoteValueGeneric.payload_valid
|
python
|
def payload_valid(self, payload: DPTArray | DPTBinary | None) -> DPTArray | None:
return (
payload
if isinstance(payload, DPTArray)
and len(payload.value) == self.dpt_class.payload_length
else None
)
|
Test if telegram payload may be parsed.
|
https://github.com/xknx/xknx/blob/87666cc9bd9da64a84305baeff84486097346111/xknx/remote_value/remote_value_sensor.py#L58-L65
|
from __future__ import annotations
from abc import abstractmethod
from typing import TYPE_CHECKING, TypeVar, Union
from xknx.dpt import DPTArray, DPTBase, DPTBinary, DPTNumeric
from xknx.exceptions import ConversionError
from .remote_value import AsyncCallbackType, GroupAddressesType, RemoteValue
if TYPE_CHECKING:
from xknx.xknx import XKNX
ValueType = TypeVar("ValueType")
class _RemoteValueGeneric(RemoteValue[DPTArray, ValueType]):
dpt_base_class: type[DPTBase]
def __init__(
self,
xknx: XKNX,
group_address: GroupAddressesType | None = None,
group_address_state: GroupAddressesType | None = None,
sync_state: bool | int | float | str = True,
value_type: int | str | None = None,
device_name: str | None = None,
feature_name: str = "Value",
after_update_cb: AsyncCallbackType | None = None,
):
if value_type is None:
raise ConversionError("no value type given", device_name=device_name)
_dpt_class = self.dpt_base_class.parse_transcoder(value_type)
if _dpt_class is None:
raise ConversionError(
"invalid value type", value_type=value_type, device_name=device_name
)
self.dpt_class = _dpt_class
super().__init__(
xknx,
group_address,
group_address_state,
sync_state=sync_state,
device_name=device_name,
feature_name=feature_name,
after_update_cb=after_update_cb,
)
|
MIT License
|
gregorch/ipet
|
ipet/concepts/Manager.py
|
Manager.chgManageableName
|
python
|
def chgManageableName(self, manageable, oldname, newname):
if newname != oldname:
if self.getManageable(newname) is not None:
raise KeyError("An element of name %s is already listed" % (newname))
del self.stringrepresentations[oldname]
self.stringrepresentations[newname] = manageable
|
changes a manageables name, if possible
|
https://github.com/gregorch/ipet/blob/e4135ff936d3aa447a960d854f9c51554e5ba7dc/ipet/concepts/Manager.py#L94-L102
|
from .Observer import Observable
from .IPETMessageStream import Message
class Manager(Observable):
def __init__(self, listofmanageables=[], activate=False):
self.stringrepresentations = {}
self.activeset = set()
for manageable in listofmanageables:
self.addManageable(manageable)
if activate:
self.activate(manageable)
def addManageable(self, manageable):
stringrepresentation = self.getStringRepresentation(manageable)
self.stringrepresentations[stringrepresentation] = manageable
def getStringRepresentation(self, manageable):
if type(manageable) is str:
return manageable
else:
try:
return manageable.getName()
except AttributeError:
return str(manageable)
def getManageable(self, stringrepresentation):
return self.stringrepresentations.get(stringrepresentation, None)
def deleteManageable(self, manageable):
for key, val in list(self.stringrepresentations.items()):
if val == manageable:
oldstringrepresentation = key
break
del self.stringrepresentations[oldstringrepresentation]
self.deactivate([manageable])
def reinsertManageable(self, manageable):
active = self.isActive(manageable)
self.deleteManageable(manageable)
self.addManageable(manageable)
if active:
self.activate([manageable])
def editObjectAttribute(self, manageable, attributename, newattribute):
oldname = self.getStringRepresentation(manageable)
manageable.editAttribute(attributename, newattribute)
newname = self.getStringRepresentation(manageable)
print(newname, newattribute)
if oldname != newname:
self.chgManageableName(manageable, oldname, newname)
self.notify(Message("Changed attribute %s of %s to %s" % (attributename, newname, newattribute), Message.MESSAGETYPE_INFO))
|
MIT License
|
ingeniamc/ingenialink-python
|
ingenialink/ipb/servo.py
|
IPBServo.monitoring_set_mapped_register
|
python
|
def monitoring_set_mapped_register(self, channel, address, subnode, dtype, size):
return lib.il_net_set_mapped_register(self._cffi_network, channel,
address, subnode, dtype, size)
|
Set monitoring mapped register.
Args:
channel (int): Identity channel number.
reg_idx (int): Register address to map.
dtype (REG_DTYPE): Data type of the register to map.
Returns:
int: Result code.
|
https://github.com/ingeniamc/ingenialink-python/blob/6011931697e48456f5638c2848303aac2e5bcb75/ingenialink/ipb/servo.py#L937-L950
|
import os
from .._ingenialink import lib, ffi
from ingenialink.constants import *
from ingenialink.exceptions import *
from ingenialink.ipb.register import *
from ingenialink.utils._utils import *
from ingenialink.register import dtype_size
from ingenialink.ipb.dictionary import IPBDictionary
from ingenialink.servo import Servo, SERVO_MODE, SERVO_STATE, SERVO_UNITS_ACC, SERVO_UNITS_TORQUE, SERVO_UNITS_POS, SERVO_UNITS_VEL
import io
import numpy as np
from xml.dom import minidom
import xml.etree.ElementTree as ET
import ingenialogger
logger = ingenialogger.get_logger(__name__)
PRODUCT_ID_REGISTERS = {
0: IPBRegister(
identifier='', units='', subnode=0, address=0x06E1, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RO
),
1: IPBRegister(
identifier='', units='', subnode=1, address=0x06E1, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RO
)
}
SERIAL_NUMBER_REGISTERS = {
0: IPBRegister(
identifier='', units='', subnode=0, address=0x06E6, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RO
),
1: IPBRegister(
identifier='', units='', subnode=1, address=0x06E6, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RO
)
}
SOFTWARE_VERSION_REGISTERS = {
0: IPBRegister(
identifier='', units='', subnode=0, address=0x06E4, cyclic='CONFIG',
dtype=REG_DTYPE.STR, access=REG_ACCESS.RO
),
1: IPBRegister(
identifier='', units='', subnode=1, address=0x06E4, cyclic='CONFIG',
dtype=REG_DTYPE.STR, access=REG_ACCESS.RO
)
}
REVISION_NUMBER_REGISTERS = {
0: IPBRegister(
identifier='', units='', subnode=0, address=0x06E2, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RO
),
1: IPBRegister(
identifier='', units='', subnode=1, address=0x06E2, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RO
)
}
DIST_NUMBER_SAMPLES = IPBRegister(
identifier='', units='', subnode=0, address=0x00C4, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW
)
DIST_DATA = IPBRegister(
identifier='', units='', subnode=0, address=0x00B4, cyclic='CONFIG',
dtype=REG_DTYPE.U16, access=REG_ACCESS.WO
)
STORE_COCO_ALL = IPBRegister(
identifier='', units='', subnode=0, address=0x06DB, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW
)
RESTORE_COCO_ALL = IPBRegister(
identifier='', units='', subnode=0, address=0x06DC, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW
)
STATUS_WORD = IPBRegister(
identifier='', units='', subnode=1, address=0x0011, cyclic='CONFIG',
dtype=REG_DTYPE.U16, access=REG_ACCESS.RW
)
STORE_MOCO_ALL_REGISTERS = {
1: IPBRegister(
identifier='', units='', subnode=1, address=0x06DB, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW
),
2: IPBRegister(
identifier='', units='', subnode=2, address=0x06DB, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW
),
3: IPBRegister(
identifier='', units='', subnode=3, address=0x06DB, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW
)
}
RESTORE_MOCO_ALL_REGISTERS = {
1: IPBRegister(
identifier='', units='', subnode=1, address=0x06DC, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW, reg_range=None
),
2: IPBRegister(
identifier='', units='', subnode=2, address=0x06DC, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW, reg_range=None
),
3: IPBRegister(
identifier='', units='', subnode=3, address=0x06DC, cyclic='CONFIG',
dtype=REG_DTYPE.U32, access=REG_ACCESS.RW, reg_range=None
)
}
class IPBServo(Servo):
def __init__(self, cffi_servo, cffi_net, target, dictionary_path=None):
self._cffi_servo = cffi_servo
self._cffi_network = cffi_net
super(IPBServo, self).__init__(target)
_dictionary_path = cstr(dictionary_path) if dictionary_path else ffi.NULL
self.__dictionary = IPBDictionary(dictionary_path, self._cffi_servo)
self.__observers_servo_state = {}
self.__handlers_servo_state = {}
self.__observers_emergency_state = {}
if not hasattr(self, '_errors') or not self._errors:
self._errors = self._get_all_errors(_dictionary_path)
prod_name = '' if self.dictionary.part_number is None else self.dictionary.part_number
self.full_name = '{} {}'.format(prod_name, self.name)
@staticmethod
def _get_all_errors(dictionary):
errors = {}
if str(dictionary) != "<cdata 'void *' NULL>":
tree = ET.parse(dictionary)
for error in tree.iter("Error"):
label = error.find(".//Label")
id = int(error.attrib['id'], 0)
errors[id] = [
error.attrib['id'],
error.attrib['affected_module'],
error.attrib['error_type'].capitalize(),
label.text
]
return errors
def _get_reg(self, reg, subnode):
if isinstance(reg, IPBRegister):
return reg
elif isinstance(reg, str):
_dict = self.dictionary
if not _dict:
raise ValueError('No dictionary loaded')
if reg not in _dict.registers(subnode):
raise_err(lib.IL_REGNOTFOUND, 'Register not found ({})'.format(reg))
return _dict.registers(subnode)[reg]
else:
raise TypeError('Invalid register')
def raw_read(self, reg, subnode=1):
return self.read(reg, subnode=subnode)
def read(self, reg, subnode=1):
_reg = self._get_reg(reg, subnode)
t, f = self._raw_read[_reg.dtype]
v = ffi.new(t)
r = f(self._cffi_servo, _reg._reg, ffi.NULL, v)
raise_err(r)
value = self.extended_buffer if _reg.dtype == REG_DTYPE.STR else v[0]
if isinstance(value, str):
value = value.replace('\x00', '')
return value
def raw_write(self, reg, data, confirm=True, extended=0, subnode=1):
self.write(reg, data, confirm, extended, subnode)
def write(self, reg, data, confirm=True, extended=0, subnode=1):
_reg = self._get_reg(reg, subnode)
if isinstance(data, float) and _reg.dtype != REG_DTYPE.FLOAT:
data = int(data)
f = self._raw_write[_reg.dtype]
r = f(self._cffi_servo, _reg._reg, ffi.NULL, data, confirm, extended)
raise_err(r)
def read_sdo(self, idx, subidx, dtype, slave=1):
v = ffi.new('double *')
r = lib.il_net_SDO_read(self._cffi_network, slave, idx, subidx, dtype, v)
raise_err(r)
return v[0]
def read_string_sdo(self, idx, subidx, size, slave=1):
v = ffi.new("char[" + str(size) + "]")
r = lib.il_net_SDO_read_string(self._cffi_network, slave, idx, subidx, size, v)
raise_err(r)
return pstr(v)
def write_sdo(self, idx, subidx, dtype, value, slave=1):
r = lib.il_net_SDO_write(self._cffi_network, slave, idx, subidx, dtype, value)
raise_err(r)
def destroy(self):
return lib.il_servo_destroy(self._cffi_servo)
def reset(self):
r = lib.il_servo_reset(self._cffi_servo)
raise_err(r)
def get_state(self, subnode=1):
state = ffi.new('il_servo_state_t *')
flags = ffi.new('int *')
lib.il_servo_state_get(self._cffi_servo, state, flags, subnode)
return SERVO_STATE(state[0]), flags[0]
def enable(self, subnode=1, timeout=DEFAULT_PDS_TIMEOUT):
r = lib.il_servo_enable(self._cffi_servo, subnode, timeout)
raise_err(r)
def disable(self, subnode=1, timeout=DEFAULT_PDS_TIMEOUT):
r = lib.il_servo_disable(self._cffi_servo, subnode, timeout)
raise_err(r)
def fault_reset(self, subnode=1, timeout=DEFAULT_PDS_TIMEOUT):
r = lib.il_servo_fault_reset(self._cffi_servo, subnode, timeout)
raise_err(r)
def switch_on(self, timeout=2.):
r = lib.il_servo_switch_on(self._cffi_servo, to_ms(timeout))
raise_err(r)
def homing_start(self):
r = lib.il_servo_homing_start(self._cffi_servo)
raise_err(r)
def homing_wait(self, timeout):
r = lib.il_servo_homing_wait(self._cffi_servo, to_ms(timeout))
raise_err(r)
def store_parameters(self, subnode=None):
if subnode is None:
r = 0
try:
self.write(reg=STORE_COCO_ALL,
data=PASSWORD_STORE_ALL,
subnode=0)
logger.info('Store all successfully done.')
except Exception:
logger.warning('Store all COCO failed. Trying MOCO...')
r = -1
if r < 0:
if self.dictionary.subnodes > SINGLE_AXIS_MINIMUM_SUBNODES:
for dict_subnode in self.dictionary.subnodes:
self.write(reg=STORE_MOCO_ALL_REGISTERS[dict_subnode],
data=PASSWORD_STORE_ALL,
subnode=dict_subnode)
logger.info('Store axis {} successfully done.'.format(
dict_subnode))
else:
self.write(reg=STORE_MOCO_ALL_REGISTERS[1],
data=PASSWORD_STORE_ALL,
subnode=1)
logger.info('Store all successfully done.')
elif subnode == 0:
self.write(reg=STORE_COCO_ALL,
data=PASSWORD_STORE_RESTORE_SUB_0,
subnode=subnode)
logger.info('Store subnode 0 successfully done.')
elif subnode > 0 and subnode in STORE_MOCO_ALL_REGISTERS:
self.write(reg=STORE_MOCO_ALL_REGISTERS[subnode],
data=PASSWORD_STORE_ALL,
subnode=subnode)
logger.info('Store axis {} successfully done.'.format(subnode))
else:
raise ILError('Invalid subnode.')
sleep(1.5)
def restore_parameters(self, subnode=None):
if subnode is None:
self.write(reg=RESTORE_COCO_ALL,
data=PASSWORD_RESTORE_ALL,
subnode=0)
logger.info('Restore all successfully done.')
elif subnode == 0:
self.write(reg=RESTORE_COCO_ALL,
data=PASSWORD_STORE_RESTORE_SUB_0,
subnode=0)
logger.info('Restore subnode 0 successfully done.')
elif subnode > 0 and subnode in RESTORE_MOCO_ALL_REGISTERS:
self.write(reg=RESTORE_MOCO_ALL_REGISTERS[subnode],
data=PASSWORD_RESTORE_ALL,
subnode=subnode)
logger.info('Restore subnode {} successfully done.'.format(subnode))
else:
raise ILError('Invalid subnode.')
sleep(1.5)
def is_alive(self):
_is_alive = True
try:
self.read(STATUS_WORD)
except ILError as e:
_is_alive = True
logger.error(e)
return _is_alive
def _store_comm(self):
r = lib.il_servo_store_comm(self._cffi_servo)
raise_err(r)
def _store_app(self):
r = lib.il_servo_store_app(self._cffi_servo)
raise_err(r)
def replace_dictionary(self, dictionary):
r = lib.il_servo_dict_load(self._cffi_servo, cstr(dictionary))
if not hasattr(self, '_errors') or not self._errors:
self._errors = self._get_all_errors(dictionary)
raise_err(r)
self.__dictionary = IPBDictionary(dictionary, self._cffi_servo)
@staticmethod
def __update_single_axis_dict(registers_category, registers, subnode):
for register in registers:
if subnode is not None and register.attrib['subnode'] != str(
subnode) and subnode >= 0 and register in registers_category:
registers_category.remove(register)
cleanup_register(register)
@staticmethod
def __update_multiaxis_dict(device, axes_category, list_axis, subnode):
for axis in list_axis:
registers_category = axis.find('./Registers')
registers = registers_category.findall('./Register')
if subnode is not None and axis.attrib['subnode'] == str(subnode):
for register in registers:
cleanup_register(register)
device.append(registers_category)
device.remove(axes_category)
break
for register in registers:
cleanup_register(register)
def save_configuration(self, config_file, subnode=None):
if subnode is not None and (not isinstance(subnode, int) or subnode < 0):
raise ILError('Invalid subnode')
prod_code, rev_number = get_drive_identification(self, subnode)
r = lib.il_servo_dict_storage_read(self._cffi_servo)
raise_err(r)
self.dictionary.save(config_file)
tree = ET.parse(config_file)
xml_data = tree.getroot()
body = xml_data.find('Body')
device = xml_data.find('Body/Device')
categories = xml_data.find('Body/Device/Categories')
errors = xml_data.find('Body/Errors')
if 'ProductCode' in device.attrib and prod_code is not None:
device.attrib['ProductCode'] = str(prod_code)
if 'RevisionNumber' in device.attrib and rev_number is not None:
device.attrib['RevisionNumber'] = str(rev_number)
registers_category = xml_data.find('Body/Device/Registers')
if registers_category is None:
axes_category = xml_data.find('Body/Device/Axes')
list_axis = xml_data.findall('Body/Device/Axes/Axis')
self.__update_multiaxis_dict(device, axes_category, list_axis, subnode)
else:
registers = xml_data.findall('Body/Device/Registers/Register')
self.__update_single_axis_dict(registers_category, registers, subnode)
device.remove(categories)
body.remove(errors)
image = xml_data.find('./DriveImage')
if image is not None:
xml_data.remove(image)
xmlstr = minidom.parseString(ET.tostring(xml_data)).toprettyxml(
indent=" ", newl='')
config_file = io.open(config_file, "w", encoding='utf8')
config_file.write(xmlstr)
config_file.close()
def load_configuration(self, config_file, subnode=None):
if not os.path.isfile(config_file):
raise FileNotFoundError('Could not find {}.'.format(config_file))
if subnode is not None and (not isinstance(subnode, int) or subnode < 0):
raise ILError('Invalid subnode')
if subnode is None:
subnode = -1
r = lib.il_servo_dict_storage_write(self._cffi_servo, cstr(config_file),
subnode)
if not hasattr(self, '_errors') or not self._errors:
self._errors = self._get_all_errors(config_file)
raise_err(r)
def reload_errors(self, dictionary):
self._errors = self._get_all_errors(dictionary)
def emcy_subscribe(self, cb):
cb_handle = ffi.new_handle(cb)
slot = lib.il_servo_emcy_subscribe(
self._cffi_servo, lib._on_emcy_cb, cb_handle)
if slot < 0:
raise_err(slot)
self.__observers_emergency_state[slot] = cb_handle
return slot
def emcy_unsubscribe(self, slot):
lib.il_servo_emcy_unsubscribe(self._cffi_servo, slot)
del self.__observers_emergency_state[slot]
def subscribe_to_status(self, callback):
if callback in self.__observers_servo_state.values():
logger.info('Callback already subscribed.')
return
cb_handle = ffi.new_handle(callback)
slot = lib.il_servo_state_subscribe(
self._cffi_servo, lib._on_state_change_cb, cb_handle)
if slot < 0:
raise_err(slot)
self.__observers_servo_state[slot] = callback
self.__handlers_servo_state[slot] = cb_handle
def unsubscribe_from_status(self, callback):
if callback not in self.__observers_servo_state.values():
logger.info('Callback not subscribed.')
return
for slot, cb in self.__observers_servo_state.items():
if cb == callback:
lib.il_servo_state_unsubscribe(self._cffi_servo, slot)
del self.__observers_servo_state[slot]
del self.__handlers_servo_state[slot]
return
def _state_subs_stop(self, stop):
r = lib.il_servo_state_subs_stop(self._cffi_servo, stop)
if r < 0:
raise ILError('Failed toggling servo state subscriptions.')
def start_status_listener(self):
self._state_subs_stop(0)
def stop_status_listener(self):
self._state_subs_stop(1)
def disturbance_write_data(self, channels, dtypes, data_arr):
if not isinstance(channels, list):
channels = [channels]
if not isinstance(dtypes, list):
dtypes = [dtypes]
if not isinstance(data_arr[0], list):
data_arr = [data_arr]
num_samples = len(data_arr[0])
self.write(DIST_NUMBER_SAMPLES, num_samples, subnode=0)
sample_size = 0
for dtype_val in dtypes:
sample_size += dtype_size(dtype_val)
samples_for_write = DIST_FRAME_SIZE // sample_size
number_writes = num_samples // samples_for_write
rest_samples = num_samples % samples_for_write
for i in range(number_writes):
for index, channel in enumerate(channels):
self.disturbance_channel_data(
channel,
dtypes[index],
data_arr[index][i * samples_for_write:(i + 1) * samples_for_write])
self.disturbance_data_size = sample_size * samples_for_write
self.write(DIST_DATA, sample_size * samples_for_write, False, 1, subnode=0)
for index, channel in enumerate(channels):
self.disturbance_channel_data(
channel,
dtypes[index],
data_arr[index][number_writes * samples_for_write:num_samples])
self.disturbance_data_size = rest_samples * sample_size
self.write(DIST_DATA, rest_samples * sample_size, False, 1, subnode=0)
def wait_reached(self, timeout):
r = lib.il_servo_wait_reached(self._cffi_servo, to_ms(timeout))
raise_err(r)
def units_update(self):
r = lib.il_servo_units_update(self._cffi_servo)
raise_err(r)
def units_factor(self, reg):
return lib.il_servo_units_factor(self._cffi_servo, reg._reg)
def monitoring_channel_data(self, channel, dtype):
data_arr = []
size = int(self.monitoring_data_size)
bytes_per_block = self.monitoring_get_bytes_per_block()
if dtype == REG_DTYPE.U16:
data_arr = lib.il_net_monitoring_channel_u16(self._cffi_network, channel)
elif dtype == REG_DTYPE.S16:
data_arr = lib.il_net_monitoring_channel_s16(self._cffi_network, channel)
elif dtype == REG_DTYPE.U32:
data_arr = lib.il_net_monitoring_channel_u32(self._cffi_network, channel)
elif dtype == REG_DTYPE.S32:
data_arr = lib.il_net_monitoring_channel_s32(self._cffi_network, channel)
elif dtype == REG_DTYPE.FLOAT:
data_arr = lib.il_net_monitoring_channel_flt(self._cffi_network, channel)
ret_arr = []
for i in range(0, int(size / bytes_per_block)):
ret_arr.append(data_arr[i])
return ret_arr
def monitoring_remove_all_mapped_registers(self):
return lib.il_net_remove_all_mapped_registers(self._cffi_network)
|
MIT License
|
ucasir/nprf
|
utils/pair_generator.py
|
PairGenerator.get_triplet_list
|
python
|
def get_triplet_list(self, qid_list, sample_size=10):
triplet_list_global = []
for qid in qid_list:
relevance = self.relevance_dict.get(qid)
relevance_posting = relevance.get_judged_docid_list()
rel_0, rel_1, rel_2 = relevance_posting[0], relevance_posting[1], relevance_posting[2]
rel_01_triplet_list = self.create_triplet_list(rel_0, rel_1, qid, sample_size)
rel_12_triplet_list = self.create_triplet_list(rel_1, rel_2, qid, sample_size)
curr_triplet_list = []
if rel_01_triplet_list != None:
curr_triplet_list.extend(rel_01_triplet_list)
if rel_12_triplet_list != None:
curr_triplet_list.extend(rel_12_triplet_list)
curr_triplet_list = np.random.permutation(curr_triplet_list)
triplet_list_global.extend(curr_triplet_list[: self.sample_perquery_limit])
triplet_list_global = np.random.permutation(triplet_list_global)
triplet_list_global = triplet_list_global[: self.sample_total_limit]
return triplet_list_global
|
Deprecated, please use get_triplet_list_balanced
|
https://github.com/ucasir/nprf/blob/d385929b3249a003e017cba03b8669dc6a05037e/utils/pair_generator.py#L73-L96
|
import numpy as np
import cPickle as pickle
import os
import sys
import math
import logging
sys.path.append('../utils')
from relevance_info import Relevance
class PairGenerator(object):
def __init__(self, relevance_dict_path, batch_size, shuffle, sample_perquery_limit, sample_total_limit):
self.batch_size = batch_size
self.shuffle = shuffle
self.sample_perquery_limit = sample_perquery_limit
self.sample_total_limit = sample_total_limit
with open(relevance_dict_path, 'r') as f:
self.relevance_dict = pickle.load(f)
def generate_pair_batch(self, qid_list, sample_size):
pass
def get_feature_batch(self, triplet_list):
pass
def generate_list_batch(self, qid_list, topk):
pass
|
Apache License 2.0
|
hewlettpackard/python-ilorest-library-old
|
src/redfish/rest/v1.py
|
RisObject.__init__
|
python
|
def __init__(self, d):
super(RisObject, self).__init__()
self.update(**dict((k, self.parse(value)) for k, value in d.iteritems()))
|
Initialize RisObject
:param d: dictionary to be parsed
:type d: dict
|
https://github.com/hewlettpackard/python-ilorest-library-old/blob/b00fd417024485a77c4f71f913135831d674a177/src/redfish/rest/v1.py#L88-L97
|
import os
import sys
import ssl
import uuid
import time
import gzip
import json
import base64
import codecs
import urllib
import ctypes
import hashlib
import logging
import httplib
import platform
try:
import io
except ImportError:
pass
from StringIO import StringIO
from collections import (OrderedDict)
import urlparse2
from redfish.hpilo.rishpilo import HpIloChifPacketExchangeError
from redfish.hpilo.risblobstore2 import BlobStore2, Blob2OverrideError
LOGGER = logging.getLogger(__name__)
class RetriesExhaustedError(Exception):
pass
class InvalidCredentialsError(Exception):
pass
class ServerDownOrUnreachableError(Exception):
pass
class ChifDriverMissingOrNotFound(Exception):
pass
class DecompressResponseError(Exception):
pass
class JsonDecodingError(Exception):
pass
class RisObject(dict):
__getattr__ = dict.__getitem__
|
Apache License 2.0
|
wheatoncs/lexos
|
lexos/models/content_analysis_model.py
|
ContentAnalysisModel.analyze
|
python
|
def analyze(self) -> (Optional[str], Optional[str]):
dictionaries = self.count()
if self.is_secure():
formula_errors = self.save_formula()
self.generate_scores()
self.generate_averages()
dataframe_unsorted = self.to_data_frame()
dataframe = dataframe_unsorted.sort_values(
by=[dataframe_unsorted.columns
[self.content_analysis_option.sort_column]],
ascending=self.content_analysis_option.sort_ascending)
overview = dataframe.values.tolist()
overview.insert(0, dataframe.columns.values.tolist())
overview_csv = dataframe.to_csv()
corpus_dataframe = pd.DataFrame(self.generate_corpus_results(
dictionaries=dictionaries),
columns=["Dictionary", "Phrase", "Count"])
corpus_results = self.get_top_results(corpus_dataframe)
corpus_csv = corpus_dataframe.to_csv()
document_results = []
for document_result in self.generate_document_results(
dictionaries=dictionaries):
dataframe = pd.DataFrame(
document_result["table"],
columns=["Dictionary", "Phrase", "Count"])
document_results.append({
"name": document_result["name"],
"data": self.get_top_results(dataframe),
"csv": dataframe.to_csv()
})
else:
formula_errors = "Formula error: Invalid input"
overview = ""
overview_csv = ""
corpus_results = ""
corpus_csv = ""
document_results = ""
return overview, overview_csv, corpus_results, corpus_csv, document_results, formula_errors
|
Perform the analysis.
:return: The results of the analysis.
|
https://github.com/wheatoncs/lexos/blob/994be4e403053ebbef18e5758a100af616195706/lexos/models/content_analysis_model.py#L319-L373
|
import random
from copy import deepcopy
from typing import Optional
import pandas as pd
from lexos.helpers.definitions import count_phrase_in_text
from lexos.receivers.content_analysis_receiver import ContentAnalysisReceiver, ContentAnalysisOption
class ContentAnalysisModel(object):
def __init__(self, test_options: Optional[ContentAnalysisOption] = None):
self._test_options = test_options
self._dictionaries = []
self._corpus = []
self._counters = []
self._formulas = []
self._scores = []
self._averages = []
self._formula = ""
self._toggle_all = True
def add_file(self, file_name: str, label: str, content: str):
content = content.strip()
total_word_counts = len(str(content).split(" "))
self._corpus.append(File(content=content,
file_name=file_name,
label=label,
total_word_counts=total_word_counts))
def add_dictionary(self, file_name: str, label: str, content: str):
new_list = str(content).split(", ")
new_list.sort(key=lambda x: len(x.split()), reverse=True)
self._dictionaries.append(Dictionary(content=new_list,
file_name=file_name,
label=label))
def get_active_dicts(self) -> list:
return [dictionary for dictionary in self.dictionaries
if dictionary.active]
def count(self) -> list:
self._counters = []
dictionaries = self.join_active_dicts()
for file in deepcopy(self._corpus):
dictionaries = count_phrases(dictionary=dictionaries, file=file)
self.get_dictionary_counts(dictionaries)
return dictionaries
def generate_corpus_results(self, dictionaries: list) -> list:
corpus_results = []
for phrase in dictionaries:
count = 0
for i in phrase.file_counts:
count += phrase.file_counts[i]
corpus_results.append([phrase.dict_label,
phrase.content, str(count)])
return corpus_results
def generate_document_results(self, dictionaries: list) -> list:
document_results = []
for file in self._corpus:
result = {"name": file.label, "table": []}
for phrase in dictionaries:
result["table"].append([phrase.dict_label,
phrase.content,
str(phrase.file_counts[file.label])])
document_results.append(result)
return document_results
def get_dictionary_counts(self, dictionaries: list):
counter = []
active_dicts = self.get_active_dicts()
for dictionary in active_dicts:
count = 0
for phrase in dictionaries:
if phrase.dict_label == dictionary.label:
count += phrase.count
counter.append(count)
if len(counter) == len(active_dicts):
self._counters.append(counter)
def generate_scores(self):
self._scores = []
self._formulas = []
active_dicts = self.get_active_dicts()
result = 0
for corpus_index, file in enumerate(self._corpus):
new_formula = self._formula
for active_dict_index, active_dict in enumerate(active_dicts):
new_formula = new_formula.replace(
"[" + active_dict.label + "]",
str(self._counters[corpus_index][active_dict_index]))
new_formula = new_formula.replace("()", "")
try:
result = eval(new_formula)
except (ValueError, SyntaxError):
pass
self._scores.append(round(
float(result) / file.total_word_count, ndigits=3))
self._formulas.append(result)
def generate_averages(self):
self._averages = []
scores_sum = 0
total_word_counts_sum = 0
formulas_sum = 0
active_dicts = self.get_active_dicts()
for index, (score, formula, file) in enumerate(zip(self.scores,
self._formulas,
self._corpus)):
scores_sum += score
total_word_counts_sum += file.total_word_count
formulas_sum += formula
if len(self.scores) != 0:
scores_avg = round(
(float(scores_sum) / len(self.scores)), ndigits=3)
else:
scores_avg = 0
if len(self._corpus) != 0:
average = (float(total_word_counts_sum) / (len(self._corpus)))
total_word_counts_avg = round(average, ndigits=1)
else:
total_word_counts_avg = 0
if len(self._formulas) != 0:
sums_avg = round((float(formulas_sum) / len(self._formulas)),
ndigits=1)
else:
sums_avg = 0
for dict_index, _ in enumerate(active_dicts):
cat_count = sum([counter[dict_index]
for counter in self._counters])
if len(self._counters) != 0:
self._averages.append(round(
float(cat_count) / len(self._counters), ndigits=1))
else:
self._averages.append(0)
self._averages.append(sums_avg)
self._averages.append(total_word_counts_avg)
self._averages.append(scores_avg)
def join_active_dicts(self) -> list:
active_dicts = self.get_active_dicts()
dictionaries = [Phrase(content=phrase, dict_label=dictionary.label)
for dictionary in active_dicts
for phrase in dictionary.content if phrase != '']
dictionaries.sort(key=lambda x: len(x.content.split()), reverse=True)
return dictionaries
def to_data_frame(self) -> pd.DataFrame:
columns = ["Document Name"] + [dictionary.label for dictionary in
self.get_active_dicts()] + ["Formula", "Word Count", "Score"]
dataframe = pd.DataFrame(columns=columns)
avg_column = pd.Series(["Averages"] + self._averages, index=columns)
dataframe = dataframe.append(avg_column, ignore_index=True)
for index, (file, formula, score, counters) in enumerate(
zip(self._corpus, self._formulas,
self._scores, self._counters)):
column = pd.Series(
[file.label] + counters + [formula] + [file.total_word_count]
+ [score], index=columns)
dataframe = dataframe.append(column, ignore_index=True)
return dataframe
def is_secure(self) -> bool:
formula = self._formula
allowed_input = ["[" + dictionary.label + "]" for
dictionary in self.get_active_dicts()] + ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
" ", "+", "-", "*", "/", "sin", "cos", "tan", "log",
"sqrt", "(", ")"]
for item in allowed_input:
formula = formula.replace(item, "")
if len(formula) == 0:
return True
return False
def save_formula(self):
if self._test_options is not None:
formula = self._test_options.formula
else:
formula = self.content_analysis_option.formula
if len(formula) == 0:
self._formula = "0"
else:
formula = formula.replace("√", "sqrt").replace("^", "**")
self._formula = formula
return self.check_formula()
def check_formula(self) -> str:
error_msg = "Formula errors:<br>"
is_error = False
if self._formula.count("(") != self._formula.count(")"):
error_msg += "Mismatched parenthesis<br>"
is_error = True
if "sin()" in self._formula:
error_msg += "sin takes exactly one argument (0 given)<br>"
is_error = True
if "cos()" in self._formula:
error_msg += "cos takes exactly one argument (0 given)<br>"
is_error = True
if "tan()" in self._formula:
error_msg += "tan takes exactly one argument (0 given)<br>"
is_error = True
if "log()" in self._formula:
error_msg += "log takes exactly one argument (0 given)<br>"
is_error = True
if is_error:
return error_msg
return ""
def get_top_results(self, dataframe) -> list:
dataframe.Count = pd.to_numeric(dataframe.Count, errors="coerce")
dataframe = dataframe.sort_values(by="Count", ascending=False)
return dataframe.head(100).values.tolist()
|
MIT License
|
voronind/vk
|
vk/session.py
|
APIBase.on_api_error_15
|
python
|
def on_api_error_15(self, request):
logger.error('Authorization failed. Access token will be dropped')
self.access_token = self.get_access_token()
return self.send(request)
|
15. Access denied
- due to scope
|
https://github.com/voronind/vk/blob/37f41c7634f67149d4dab8017be0adca5ea3dc24/vk/session.py#L86-L93
|
import re
import urllib
import logging
import requests
from .exceptions import VkAuthError, VkAPIError
from .api import APINamespace
from .utils import json_iter_parse, stringify
logger = logging.getLogger('vk')
class APIBase:
METHOD_COMMON_PARAMS = {'v', 'lang', 'https', 'test_mode'}
API_URL = 'https://api.vk.com/method/'
CAPTCHA_URL = 'https://m.vk.com/captcha.php'
def __new__(cls, *args, **kwargs):
method_common_params = {key: kwargs.pop(key) for key in tuple(kwargs) if key in cls.METHOD_COMMON_PARAMS}
api = object.__new__(cls)
api.__init__(*args, **kwargs)
return APINamespace(api, method_common_params)
def __init__(self, timeout=10):
self.timeout = timeout
self.session = requests.Session()
self.session.headers['Accept'] = 'application/json'
self.session.headers['Content-Type'] = 'application/x-www-form-urlencoded'
def send(self, request):
logger.debug('Prepare API Method request')
self.prepare_request(request)
method_url = self.API_URL + request.method
response = self.session.post(method_url, request.method_params, timeout=self.timeout)
response.raise_for_status()
for response_or_error in json_iter_parse(response.text):
request.response = response_or_error
if 'response' in response_or_error:
return response_or_error['response']
elif 'error' in response_or_error:
api_error = VkAPIError(request.response['error'])
request.api_error = api_error
return self.handle_api_error(request)
def prepare_request(self, request):
request.method_params['access_token'] = self.access_token
def get_access_token(self):
raise NotImplementedError
def handle_api_error(self, request):
logger.error('Handle API error: %s', request.api_error)
api_error_handler_name = 'on_api_error_' + str(request.api_error.code)
api_error_handler = getattr(self, api_error_handler_name, self.on_api_error)
return api_error_handler(request)
def on_api_error_14(self, request):
request.method_params['captcha_key'] = self.get_captcha_key(request)
request.method_params['captcha_sid'] = request.api_error.captcha_sid
return self.send(request)
|
MIT License
|
districtdatalabs/yellowbrick-docs-zh
|
yellowbrick/base.py
|
ModelVisualizer.fit
|
python
|
def fit(self, X, y=None, **kwargs):
self.estimator.fit(X, y)
return self
|
Fits the wrapped estimator so that subclasses that override fit can
ensure that the estimator is fit using super rather than a direct call
down to the estimator. Score estimators tend to expect a fitted model.
Parameters
----------
X : ndarray or DataFrame of shape n x m
A matrix of n instances with m features
y : ndarray or Series of length n
An array or series of target or class values
kwargs: dict
Keyword arguments passed to the drawing functionality or to the
Scikit-Learn API. See visualizer specific details for how to use
the kwargs to modify the visualization or fitting process.
Returns
-------
self : visualizer
The fit method must always return self to support pipelines.
|
https://github.com/districtdatalabs/yellowbrick-docs-zh/blob/3118e67f2bed561a00885e6edb2cabb3520ad66b/yellowbrick/base.py#L279-L304
|
import matplotlib.pyplot as plt
from .utils.wrapper import Wrapper
from sklearn.base import BaseEstimator
from .utils import get_model_name, isestimator
from sklearn.model_selection import cross_val_predict as cvp
class Visualizer(BaseEstimator):
def __init__(self, ax=None, **kwargs):
self.ax = ax
self.size = kwargs.pop('size', None)
self.color = kwargs.pop('color', None)
self.title = kwargs.pop('title', None)
@property
def ax(self):
if not hasattr(self, "_ax") or self._ax is None:
self._ax = plt.gca()
return self._ax
@ax.setter
def ax(self, ax):
self._ax = ax
@property
def size(self):
if not hasattr(self, "_size") or self._size is None:
fig = plt.gcf()
self._size = fig.get_size_inches()*fig.dpi
return self._size
@size.setter
def size(self, size):
self._size = size
if self._size is not None:
fig = plt.gcf()
width, height = size
width_in_inches = width / fig.get_dpi()
height_in_inches = height / fig.get_dpi()
fig.set_size_inches(width_in_inches, height_in_inches)
def fit(self, X, y=None, **kwargs):
return self
def draw(self, **kwargs):
raise NotImplementedError(
"Visualizers must implement a drawing interface."
)
def finalize(self, **kwargs):
return self.ax
def poof(self, outpath=None, **kwargs):
if self._ax is None: return
self.finalize()
if outpath is not None:
plt.savefig(outpath, **kwargs)
else:
plt.show()
def set_title(self, title=None):
title = self.title or title
if title is not None:
self.ax.set_title(title)
class ModelVisualizer(Visualizer, Wrapper):
def __init__(self, model, ax=None, **kwargs):
self.estimator = model
self.name = get_model_name(self.estimator)
Wrapper.__init__(self, self.estimator)
Visualizer.__init__(self, ax=ax, **kwargs)
|
Apache License 2.0
|
squareslab/darjeeling
|
src/darjeeling/snippet.py
|
SnippetDatabase.lines_for_snippet
|
python
|
def lines_for_snippet(self, snippet: Snippet) -> Iterator[FileLine]:
yield from self.__content_to_lines.get(snippet.content, [])
|
Returns an iterator over all lines at which a snippet appears.
|
https://github.com/squareslab/darjeeling/blob/9c234a984f9a7f829c3fb3976b620142b40ca9c8/src/darjeeling/snippet.py#L100-L102
|
__all__ = ('Snippet', 'SnippetDatabase',
'LineSnippet', 'LineSnippetDatabase',
'StatementSnippet', 'StatementSnippetDatabase')
from typing import (Any, Collection, Dict, Generic, Iterator, MutableSet, Optional,
FrozenSet, TypeVar)
from collections import OrderedDict
import abc
import typing
import attr
from kaskara.analysis import Analysis as KaskaraAnalysis
from loguru import logger
from .core import FileLocationRange, FileLine
if typing.TYPE_CHECKING:
from .config import Config
from .problem import Problem
T = TypeVar('T', bound='Snippet')
class Snippet(abc.ABC):
@property
@abc.abstractmethod
def content(self) -> str:
...
def __lt__(self, other: Any) -> bool:
if not isinstance(other, Snippet):
return False
return self.content < other.content
def __str__(self) -> str:
return self.content
def __eq__(self, other: Any) -> bool:
return isinstance(other, Snippet) and self.content == other.content
def __hash__(self) -> int:
return hash(self.content)
@attr.s(slots=True, frozen=True, eq=False, hash=False, str=False, auto_attribs=True)
class LineSnippet(Snippet):
content: str
@attr.s(slots=True, frozen=True, eq=False, hash=False, str=False, auto_attribs=True)
class StatementSnippet(Snippet):
content: str
kind: Optional[str]
reads: FrozenSet[str]
writes: FrozenSet[str]
declares: FrozenSet[str]
requires_syntax: FrozenSet[str]
@property
def requires_break(self) -> bool:
return 'break' in self.requires_syntax
@property
def requires_continue(self) -> bool:
return 'continue' in self.requires_syntax
@property
def uses(self) -> FrozenSet[str]:
return self.reads | self.writes
class SnippetDatabase(Generic[T], Collection[T], abc.ABC):
def __init__(self) -> None:
self.__content_to_snippet: OrderedDict[str, T] = OrderedDict()
self.__filename_to_snippets: Dict[str, MutableSet[T]] = {}
self.__content_to_lines: Dict[str, MutableSet[FileLine]] = OrderedDict()
def __iter__(self) -> Iterator[T]:
yield from self.__content_to_snippet.values()
def __len__(self) -> int:
return len(self.__content_to_snippet)
def __contains__(self, snippet: Any) -> bool:
return snippet.content in self.__content_to_snippet
def in_file(self, filename: str) -> Iterator[T]:
yield from self.__filename_to_snippets.get(filename, [])
|
Apache License 2.0
|
chapmanb/cloudbiolinux
|
cloudbio/custom/cloudman.py
|
install_cloudman
|
python
|
def install_cloudman(env):
env.logger.debug("Installing CloudMan")
_configure_cloudman(env, use_repo_autorun=False)
install_nginx(env)
install_proftpd(env)
install_sge(env)
install_novnc(env)
|
A meta method for installing all of CloudMan components.
Allows CloudMan and all of its dependencies to be installed via:
fab -f fabfile.py -i <key> -H ubuntu@<IP> install_custom:cloudman
|
https://github.com/chapmanb/cloudbiolinux/blob/db84bce8b6ad1b7f418499281c3c2d9d2495af05/cloudbio/custom/cloudman.py#L20-L30
|
import os
import contextlib
from fabric.api import cd
from fabric.contrib.files import settings, hide
from cloudbio.custom.shared import (_make_tmp_dir, _setup_conf_file)
from cloudbio.cloudman import (_configure_cloudman, _configure_novnc,
_configure_desktop, _configure_ec2_autorun)
from cloudbio.galaxy import _install_nginx
CDN_ROOT_URL = "http://linuxcourse.rutgers.edu/rate/Clusters/download"
REPO_ROOT_URL = "https://bitbucket.org/afgane/mi-deployment/raw/tip"
|
MIT License
|
mandiant/speakeasy
|
speakeasy/windows/winemu.py
|
WindowsEmulator._handle_invalid_fetch
|
python
|
def _handle_invalid_fetch(self, emu, address, size, value, ctx):
if address == self.return_hook or address == self.exit_hook:
self._unset_emu_hooks()
return True
if not self.curr_mod:
self.curr_mod = self.get_module_from_addr(self.get_pc())
if self.curr_mod:
impfunc = self.curr_mod.import_table.get(address)
if impfunc:
mod_name, func_name = impfunc
self.handle_import_func(mod_name, func_name)
self._unset_emu_hooks()
return True
for addr, mod, fn in self.dyn_imps:
if addr == address:
self.handle_import_func(mod, fn)
self._unset_emu_hooks()
return True
for addr, mod, fn in self.callbacks:
if addr == address:
self.handle_import_func(mod, fn)
self._unset_emu_hooks()
return True
if self.dispatch_handlers:
rv = self.dispatch_seh(ddk.STATUS_ACCESS_VIOLATION, address)
if rv:
return True
fakeout = address & 0xFFFFFFFFFFFFF000
self.mem_map(self.page_size, base=fakeout)
error = self.get_error_info('invalid_fetch', address)
self.curr_run.error = error
self.tmp_maps.append((fakeout, self.page_size))
self.on_run_complete()
return True
|
Called when an attempt to emulate an instruction from an invalid address
|
https://github.com/mandiant/speakeasy/blob/e9b68610babba287c7032a32d0df2833ad1c5d7e/speakeasy/windows/winemu.py#L984-L1030
|
import io
import os
import ntpath
import traceback
import shlex
import speakeasy.winenv.arch as _arch
from speakeasy.binemu import BinaryEmulator
from speakeasy.profiler import MemAccess
import speakeasy.common as common
from speakeasy.profiler import Run
import speakeasy.windows.common as winemu
import speakeasy.windows.objman as objman
from speakeasy.windows.regman import RegistryManager
from speakeasy.windows.fileman import FileManager
from speakeasy.windows.cryptman import CryptoManager
from speakeasy.windows.netman import NetworkManager
from speakeasy.windows.hammer import ApiHammer
from speakeasy.windows.driveman import DriveManager
import speakeasy.winenv.defs.nt.ddk as ddk
import speakeasy.winenv.defs.windows.windows as windef
from speakeasy.struct import EmuStruct
from speakeasy.errors import WindowsEmuError
DISASM_SIZE = 0x20
class WindowsEmulator(BinaryEmulator):
def __init__(self, config, logger=None, exit_event=None, debug=False):
super(WindowsEmulator, self).__init__(config, logger=logger)
self.debug = debug
self.arch = 0
self.modules = []
self.pic_buffers = []
self.curr_run = None
self.restart_curr_run = False
self.curr_mod = None
self.runs = []
self.input = None
self.exit_event = exit_event
self.page_size = 4096
self.ptr_size = None
self.user_modules = []
self.max_runs = 100
self.sys_modules = []
self.symbols = {}
self.ansi_strings = []
self.unicode_strings = []
self.tmp_maps = []
self.impdata_queue = []
self.run_queue = []
self.suspended_runs = []
self.cd = ''
self.emu_hooks_set = True
self.api = None
self.curr_process = None
self.om = None
self.dyn_imps = []
self.callbacks = []
self.mem_trace_hooks = []
self.kernel_mode = False
self.virtual_mem_base = 0x50000
self.mem_tracing_enabled = False
self.tmp_code_hook = None
self.veh_handlers = []
self.run_complete = False
self.emu_complete = False
self.global_data = {}
self.processes = []
self.child_processes = []
self.curr_thread = None
self.curr_exception_code = 0
self.prev_pc = 0
self.unhandled_exception_filter = 0
self.fs_addr = 0
self.gs_addr = 0
self.return_hook = winemu.EMU_RETURN_ADDR
self.exit_hook = winemu.EXIT_RETURN_ADDR
self._parse_config(config)
self.wintypes = windef
self.regman = RegistryManager(self.get_registry_config())
self.fileman = FileManager(config, self)
self.netman = NetworkManager(config=self.get_network_config())
self.driveman = DriveManager(config=self.get_drive_config())
self.cryptman = CryptoManager()
self.hammer = ApiHammer(self)
def _parse_config(self, config):
def _normalize_image(img):
if img['arch'].lower() in ('x86', 'i386'):
img['arch'] = _arch.ARCH_X86
elif img['arch'].lower() in ('x64', 'amd64'):
img['arch'] = _arch.ARCH_AMD64
else:
raise WindowsEmuError('Unsupported image arch: %s'
% (img['arch']))
super(WindowsEmulator, self)._parse_config(config)
for umod in self.config_user_modules:
for img in umod.get('images', []):
_normalize_image(img)
for proc in self.config_processes:
for img in proc.get('images', []):
_normalize_image(img)
self.cd = self.config.get('current_dir', '')
self.dispatch_handlers = self.exceptions.get('dispatch_handlers', True)
self.mem_tracing_enabled = self.config_analysis.get('memory_tracing', False)
self.do_strings = self.config_analysis.get('strings', False)
self.registry_config = self.config.get('registry', {})
self.modules_always_exist = self.config_modules.get('modules_always_exist', False)
self.functions_always_exist = self.config_modules.get('functions_always_exist', False)
def get_registry_config(self):
return self.registry_config
def on_run_complete(self):
raise NotImplementedError()
def enable_code_hook(self):
if not self.tmp_code_hook and not self.mem_tracing_enabled:
self.tmp_code_hook = self.add_code_hook(cb=self._hook_code)
if self.tmp_code_hook:
self.tmp_code_hook.enable()
def disable_code_hook(self):
if self.tmp_code_hook:
self.tmp_code_hook.disable()
def _module_access_hook(self, emu, addr, size, ctx):
symbol = self.get_symbol_from_address(addr)
if symbol:
mod_name, fn = symbol.split('.')
self.handle_import_func(mod_name, fn)
return True
def set_mem_tracing_hooks(self):
if not self.mem_tracing_enabled:
return
if len(self.mem_trace_hooks) > 0:
return
self.mem_trace_hooks = (
self.add_code_hook(cb=self._hook_code),
self.add_mem_read_hook(cb=self._hook_mem_read),
self.add_mem_write_hook(cb=self._hook_mem_write)
)
def cast(self, obj, bytez):
if not isinstance(obj, EmuStruct):
raise WindowsEmuError('Invalid object for cast')
return obj.cast(bytez)
def _unset_emu_hooks(self):
if self.emu_hooks_set:
self.emu_eng.mem_map(winemu.EMU_RETURN_ADDR,
winemu.EMU_RESERVE_SIZE)
self.emu_hooks_set = False
def file_open(self, path, create=False):
return self.fileman.file_open(path, create)
def pipe_open(self, path, mode, num_instances, out_size, in_size):
return self.fileman.pipe_open(path, mode, num_instances, out_size, in_size)
def does_file_exist(self, path):
return self.fileman.does_file_exist(path)
def file_create_mapping(self, hfile, name, size, prot):
return self.fileman.file_create_mapping(hfile, name, size, prot)
def file_get(self, handle):
return self.fileman.get_file_from_handle(handle)
def file_delete(self, path):
return self.fileman.delete_file(path)
def pipe_get(self, handle):
return self.fileman.get_pipe_from_handle(handle)
def get_file_manager(self):
return self.fileman
def get_network_manager(self):
return self.netman
def get_crypt_manager(self):
return self.cryptman
def get_drive_manager(self):
return self.driveman
def reg_open_key(self, path, create=False):
return self.regman.open_key(path, create)
def reg_get_subkeys(self, hkey):
return self.regman.get_subkeys(hkey)
def reg_get_key(self, handle=0, path=''):
if path:
return self.regman.get_key_from_path(path)
return self.regman.get_key_from_handle(handle)
def reg_create_key(self, path):
return self.regman.create_key(path)
def _set_emu_hooks(self):
if not self.emu_hooks_set:
self.mem_unmap(winemu.EMU_RETURN_ADDR, winemu.EMU_RESERVE_SIZE)
self.emu_hooks_set = True
def add_run(self, run):
self.run_queue.append(run)
def _exec_next_run(self):
try:
run = self.run_queue.pop(0)
except IndexError:
self.on_emu_complete()
return None
self.run_complete = False
self.reset_stack(self.stack_base)
return self._exec_run(run)
def call(self, addr, params=[]):
self.reset_stack(self.stack_base)
run = Run()
run.type = 'call_0x%x' % (addr)
run.start_addr = addr
run.args = params
if not self.run_queue:
self.add_run(run)
self.start()
else:
self.add_run(run)
def _exec_run(self, run):
self.log_info("* exec: %s" % run.type)
self.curr_run = run
if self.profiler:
self.profiler.add_run(run)
self.runs.append(self.curr_run)
stk_ptr = self.get_stack_ptr()
self.set_func_args(stk_ptr, self.return_hook, *run.args)
stk_ptr = self.get_stack_ptr()
stk_map = self.get_address_map(stk_ptr)
self.curr_run.stack = MemAccess(base=stk_map.base, size=stk_map.size)
if run.process_context:
if run.process_context != self.get_current_process():
self.alloc_peb(run.process_context)
self.set_current_process(run.process_context)
if run.thread:
self.set_current_thread(run.thread)
if not self.kernel_mode:
thread = self.get_current_thread()
if thread:
self.init_teb(thread, self.curr_process.get_peb())
self.init_tls(thread)
self.set_pc(run.start_addr)
return run
def mem_cast(self, obj, addr):
size = obj.sizeof()
struct_bytes = self.mem_read(addr, size)
return self.cast(obj, struct_bytes)
def mem_purge(self):
self.purge_memory()
def setup_user_shared_data(self):
if self.get_arch() == _arch.ARCH_X86:
self.mem_map(self.page_size, base=0xFFDF0000,
tag='emu.struct.KUSER_SHARED_DATA')
elif self.get_arch() == _arch.ARCH_AMD64:
self.mem_map(self.page_size, base=0xFFFFF78000000000,
tag='emu.struct.KUSER_SHARED_DATA')
def resume(self, addr, count=-1):
self.emu_eng.start(addr, timeout=self.timeout,
count=count)
def start(self):
try:
run = self.run_queue.pop(0)
except IndexError:
return
self.run_complete = False
self.set_hooks()
self._set_emu_hooks()
if self.profiler:
self.profiler.set_start_time()
self._exec_run(run)
while True:
try:
self.curr_mod = self.get_module_from_addr(self.curr_run.start_addr)
self.emu_eng.start(self.curr_run.start_addr, timeout=self.timeout,
count=self.max_instructions)
if self.profiler:
if self.profiler.get_run_time() > self.timeout:
self.log_error('* Timeout of %d sec(s) reached.' % (self.timeout))
except KeyboardInterrupt:
self.log_error('* User exited.')
return
except Exception as e:
if self.exit_event and self.exit_event.is_set():
return
stack_trace = traceback.format_exc()
try:
mnem, op, instr = self.get_disasm(self.get_pc(), DISASM_SIZE)
except Exception as dis_err:
self.log_error(str(dis_err))
error = self.get_error_info(str(e), self.get_pc(),
traceback=stack_trace)
self.curr_run.error = error
run = self.on_run_complete()
if not run:
break
continue
break
self.on_emu_complete()
def get_current_run(self):
return self.curr_run
def get_current_module(self):
return self.curr_mod
def get_dropped_files(self):
if self.fileman:
return self.fileman.get_dropped_files()
def set_hooks(self):
super(WindowsEmulator, self).set_hooks()
def get_processes(self):
if not self.processes:
self.init_processes(self.config_processes)
return self.processes
def kill_process(self, proc):
try:
self.processes.remove(proc)
except ValueError:
pass
def get_current_thread(self):
return self.curr_thread
def get_current_process(self):
return self.curr_process
def set_current_process(self, process):
self.curr_process = process
def set_current_thread(self, thread):
self.curr_thread = thread
def _setup_gdt(self, arch):
GDT_SIZE = 0x1000
SEG_SIZE = 0x1000
ENTRY_SIZE = 0x8
num_gdt_entries = 31
fs_addr = 0
gs_addr = 0
gdt_addr = None
def _make_entry(index, base, access, limit=0xFFFFF000):
access = access | (winemu.GDT_ACCESS_BITS.PresentBit |
winemu.GDT_ACCESS_BITS.DirectionConformingBit)
entry = 0xFFFF & limit
entry |= (0xFFFFFF & base) << 16
entry |= (0xFF & access) << 40
entry |= (0xFF & (limit >> 16)) << 48
entry |= (0xFF & winemu.GDT_ACCESS_BITS.ProtMode32) << 52
entry |= (0xFF & (base >> 24)) << 56
entry = entry.to_bytes(8, 'little')
offset = index * ENTRY_SIZE
self.mem_write(gdt_addr + offset, entry)
def _create_selector(index, flags):
return flags | (index << 3)
gdt_addr, gdt_size = self.get_valid_ranges(GDT_SIZE)
self.mem_map(gdt_size, base=gdt_addr, tag='emu.gdt')
seg_addr, seg_size = self.get_valid_ranges(SEG_SIZE)
self.mem_map(seg_size, base=seg_addr, tag='emu.segment.gdt')
access = (winemu.GDT_ACCESS_BITS.Data | winemu.GDT_ACCESS_BITS.DataWritable |
winemu.GDT_ACCESS_BITS.Ring3)
_make_entry(16, 0, access)
access = (winemu.GDT_ACCESS_BITS.Code | winemu.GDT_ACCESS_BITS.CodeReadable |
winemu.GDT_ACCESS_BITS.Ring3)
_make_entry(17, 0, access)
access = (winemu.GDT_ACCESS_BITS.Data | winemu.GDT_ACCESS_BITS.DataWritable |
winemu.GDT_ACCESS_BITS.Ring0)
_make_entry(18, 0, access)
self.reg_write(_arch.X86_REG_GDTR, (0, gdt_addr,
num_gdt_entries * ENTRY_SIZE-1, 0x0))
selector = _create_selector(16, winemu.GDT_FLAGS.Ring3)
self.reg_write(_arch.X86_REG_DS, selector)
selector = _create_selector(17, winemu.GDT_FLAGS.Ring3)
self.reg_write(_arch.X86_REG_CS, selector)
selector = _create_selector(18, winemu.GDT_FLAGS.Ring0)
self.reg_write(_arch.X86_REG_SS, selector)
if _arch.ARCH_X86 == arch:
fs_addr, fs_size = self.get_valid_ranges(SEG_SIZE)
self.mem_map(fs_size, base=fs_addr, tag='emu.segment.fs')
access = (winemu.GDT_ACCESS_BITS.Data | winemu.GDT_ACCESS_BITS.DataWritable |
winemu.GDT_ACCESS_BITS.Ring3)
_make_entry(19, fs_addr, access)
selector = _create_selector(19, winemu.GDT_FLAGS.Ring3)
self.reg_write(_arch.X86_REG_FS, selector)
elif _arch.ARCH_AMD64 == arch:
gs_addr, gs_size = self.get_valid_ranges(SEG_SIZE)
self.mem_map(gs_size, base=gs_addr, tag='emu.segment.gs')
access = (winemu.GDT_ACCESS_BITS.Data | winemu.GDT_ACCESS_BITS.DataWritable |
winemu.GDT_ACCESS_BITS.Ring3)
_make_entry(15, gs_addr, access, limit=SEG_SIZE)
selector = _create_selector(15, winemu.GDT_FLAGS.Ring3)
self.reg_write(_arch.X86_REG_GS, selector)
self.fs_addr = fs_addr
self.gs_addr = gs_addr
return fs_addr, gs_addr
def init_peb(self, user_mods, proc=None):
p = proc
if not p:
p = self.curr_process
p.init_peb(user_mods)
self.mem_write(self.peb_addr,
p.peb.address.to_bytes(self.get_ptr_size(), 'little'))
return p.peb
def init_teb(self, thread, peb):
if self.get_arch() == _arch.ARCH_X86:
thread.init_teb(self.fs_addr, peb.address)
elif self.get_arch() == _arch.ARCH_AMD64:
thread.init_teb(self.gs_addr, peb.address)
def init_tls(self, thread):
ptrsz = self.get_ptr_size()
run = self.curr_run
module = self.get_mod_from_addr(run.start_addr)
if module:
modname = module.emu_path
tokens = modname.split("\\")
modname = tokens[len(tokens) - 1]
tls_dirp = module.OPTIONAL_HEADER.DATA_DIRECTORY[9].VirtualAddress
tls_dirp += module.OPTIONAL_HEADER.ImageBase
tls_dir = self.mem_read(tls_dirp, ptrsz)
thread.init_tls(tls_dir, os.path.splitext(modname)[0])
return
def load_pe(self, path=None, data=None, imp_id=winemu.IMPORT_HOOK_ADDR):
if not data and not os.path.exists(path):
raise WindowsEmuError('File: %s not found' % (path))
pe = winemu.PeFile(path=path, data=data, imp_id=imp_id, imp_step=4)
pe_type = 'unknown'
if pe.is_driver():
pe_type = 'driver'
elif pe.is_dll():
pe_type = 'dll'
elif pe.is_exe():
pe_type = 'exe'
arch = 'unknown'
if pe.arch == _arch.ARCH_AMD64:
arch = 'x64'
elif pe.arch == _arch.ARCH_X86:
arch = 'x86'
self.input = {'path': pe.path, 'sha256': pe.hash,
'size': pe.file_size, 'arch': arch,
'filetype': pe_type, 'emu_version': self.get_emu_version(),
'os_run': self.get_osver_string()}
if self.profiler:
self.profiler.add_input_metadata(self.input)
return pe
def map_pe(self, pe, mod_name='none', emu_path=''):
image_size = pe.image_size
base = pe.base
ranges = self.get_valid_ranges(image_size, addr=base)
base, size = ranges
addr = self.mem_map(size, base=base, tag='emu.module.%s' % (mod_name))
self.modules.append((pe, ranges, emu_path))
return addr
def get_sys_modules(self):
if not self.sys_modules:
self.sys_modules = self.init_sys_modules(self.config_system_modules)
return self.sys_modules
def get_user_modules(self):
if not self.user_modules:
self.user_modules = self.init_user_modules(self.config_user_modules)
return self.user_modules
def get_mod_from_addr(self, addr):
if self.curr_mod:
end = self.curr_mod.get_base() + self.curr_mod.get_image_size()
if addr >= self.curr_mod.get_base() and addr <= end:
return self.curr_mod
sys_mods = self.get_sys_modules()
for m in sys_mods:
if addr >= m.get_base() and addr < m.get_base() + m.image_size:
return m
user_mods = self.get_user_modules()
for m in user_mods:
if addr >= m.get_base() and addr < m.get_base() + m.image_size:
return m
def get_system_root(self):
sysroot = self.env.get('systemroot', 'C:\\WINDOWS\\system32')
if not sysroot.endswith('\\'):
sysroot += '\\'
return sysroot
def get_windows_dir(self):
sysroot = self.env.get('windir', 'C:\\WINDOWS')
if not sysroot.endswith('\\'):
sysroot += '\\'
return sysroot
def get_cd(self):
if not self.cd:
self.cd = self.env.get('cd', 'C:\\WINDOWS\\system32')
if not self.cd.endswith('\\'):
self.cd += '\\'
return self.cd
def set_cd(self, cd):
self.cd = cd
def get_env(self):
return self.env
def set_env(self, var, val):
return self.env.update({var.lower(): val})
def get_os_version(self):
return self.osversion
def get_object_from_addr(self, addr):
return self.om.get_object_from_addr(addr)
def get_object_from_id(self, id):
return self.om.get_object_from_id(id)
def get_object_from_name(self, name):
return self.om.get_object_from_name(name)
def get_object_from_handle(self, handle):
obj = self.om.get_object_from_handle(handle)
if obj:
return obj
obj = self.fileman.get_object_from_handle(handle)
if obj:
return obj
def get_object_handle(self, obj):
obj = self.om.objects.get(obj.address)
if obj:
return self.om.get_handle(obj)
def add_object(self, obj):
self.om.add_object(obj)
def search_path(self, file_name):
if '\\' in file_name:
return file_name
fp = self.get_cd()
if not fp.endswith('\\'):
fp += '\\'
return fp + file_name
def new_object(self, otype):
return self.om.new_object(otype)
def create_process(self, path=None, cmdline=None, image=None, child=False):
if not path and cmdline:
path = cmdline
file_path = shlex.split(path, posix=False)[0]
if file_path[0] == '\"' and file_path[len(file_path) - 1] == '\"':
file_path = file_path[1:-1]
p = self.om.new_object(objman.Process)
mod_data = self.get_module_data_from_emu_file(file_path)
if mod_data:
p.pe_data = mod_data
else:
new_mod = self.init_module(name=file_path, emu_path=path)
self.map_decoy(new_mod)
p.pe = new_mod
p.path = file_path
p.cmdline = cmdline
t = self.om.new_object(objman.Thread)
t.process = p
t.tid = self.om.new_id()
p.threads.append(t)
if child:
self.child_processes.append(p)
else:
self.processes.append(p)
return p
def create_thread(self, addr, ctx, proc_obj, thread_type='thread', is_suspended=False):
if len(self.run_queue) >= self.max_runs:
return 0, None
thread = self.om.new_object(objman.Thread)
thread.process = proc_obj
hnd = self.om.get_handle(thread)
run = Run()
run.type = thread_type
run.start_addr = addr
run.instr_cnt = 0
run.args = (ctx,)
run.process_context = proc_obj
run.thread = thread
if not is_suspended:
self.run_queue.append(run)
else:
self.suspended_runs.append(run)
return hnd, thread
def resume_thread(self, thread):
for r in self.suspended_runs:
if r.thread == thread:
_run = self.suspended_runs.pop(self.suspended_runs.index(r))
self.run_queue.append(_run)
return True
return False
def get_dyn_imports(self):
return self.dyn_imps
def get_process_peb(self, process):
return process.peb
def add_callback(self, mod_name, func_name):
for addr, mod, fn in self.callbacks:
if mod_name == mod and func_name == fn:
return addr
if not self.callbacks:
curr_idx = winemu.EMU_CALLBACK_RESERVE
self.callbacks.append((curr_idx, mod_name, func_name))
else:
curr_idx = self.callbacks[-1][0]
curr_idx += 1
self.callbacks.append((curr_idx, mod_name, func_name))
return curr_idx
def get_proc(self, mod_name, func_name):
for addr, mod, fn in self.dyn_imps:
if mod_name == mod and func_name == fn:
return addr
if not self.dyn_imps:
curr_idx = winemu.DYM_IMP_RESERVE
self.dyn_imps.append((curr_idx, mod_name, func_name))
else:
curr_idx = self.dyn_imps[-1][0]
curr_idx += 1
self.dyn_imps.append((curr_idx, mod_name, func_name))
return curr_idx
def handle_import_data(self, mod_name, sym, data_ptr=0):
module, func = self.api.get_data_export_handler(mod_name, sym)
if not func:
module, func = self.api.get_export_func_handler(mod_name, sym)
if not func:
return None
proc_addr = self.get_proc(mod_name, sym)
return proc_addr
data_addr = self.api.call_data_func(module, func, data_ptr)
return data_addr
|
MIT License
|
googlecloudplatform/perfkitbenchmarker
|
perfkitbenchmarker/providers/kubernetes/kubernetes_disk.py
|
StorageClass._Delete
|
python
|
def _Delete(self):
body = self._BuildBody()
kubernetes_helper.DeleteResource(body)
|
Deletes the StorageClass.
|
https://github.com/googlecloudplatform/perfkitbenchmarker/blob/c14a122016d414351d41167029c79c9a19709384/perfkitbenchmarker/providers/kubernetes/kubernetes_disk.py#L316-L319
|
import json
import logging
import re
from absl import flags
from perfkitbenchmarker import disk
from perfkitbenchmarker import errors
from perfkitbenchmarker import flag_util
from perfkitbenchmarker import kubernetes_helper
from perfkitbenchmarker import providers
from perfkitbenchmarker import resource
from perfkitbenchmarker import vm_util
from perfkitbenchmarker.configs import option_decoders
FLAGS = flags.FLAGS
def CreateDisks(disk_specs, vm_name):
scratch_disks = []
for disk_num, disk_spec in enumerate(disk_specs):
disk_class = GetKubernetesDiskClass(disk_spec.disk_type)
scratch_disk = disk_class(disk_num, disk_spec, vm_name)
scratch_disk.Create()
scratch_disks.append(scratch_disk)
return scratch_disks
class KubernetesDiskSpec(disk.BaseDiskSpec):
CLOUD = providers.KUBERNETES
@classmethod
def _GetOptionDecoderConstructions(cls):
result = super(KubernetesDiskSpec, cls)._GetOptionDecoderConstructions()
result.update({
'provisioner': (option_decoders.StringDecoder,
{'default': None, 'none_ok': True}),
'parameters': (option_decoders.TypeVerifier,
{'default': {}, 'valid_types': (dict,)})
})
return result
@classmethod
def _ApplyFlags(cls, config_values, flag_values):
super(KubernetesDiskSpec, cls)._ApplyFlags(config_values, flag_values)
if flag_values['k8s_volume_provisioner'].present:
config_values['provisioner'] = flag_values.k8s_volume_provisioner
if flag_values['k8s_volume_parameters'].present:
config_values['parameters'] = config_values.get('parameters', {})
config_values['parameters'].update(
flag_util.ParseKeyValuePairs(flag_values.k8s_volume_parameters))
def GetKubernetesDiskClass(volume_type):
return resource.GetResourceClass(KubernetesDisk, K8S_VOLUME_TYPE=volume_type)
class KubernetesDisk(disk.BaseDisk):
RESOURCE_TYPE = 'KubernetesDisk'
REQUIRED_ATTRS = ['K8S_VOLUME_TYPE']
def __init__(self, disk_num, disk_spec, name):
super(KubernetesDisk, self).__init__(disk_spec)
self.name = '%s-%s' % (name, disk_num)
def _Create(self):
return
def _Delete(self):
return
def Attach(self, vm):
return
def Detach(self):
return
def SetDevicePath(self, vm):
return
def AttachVolumeMountInfo(self, volume_mounts):
volume_mount = {
'mountPath': self.mount_point,
'name': self.name
}
volume_mounts.append(volume_mount)
class EmptyDirDisk(KubernetesDisk):
K8S_VOLUME_TYPE = 'emptyDir'
def GetDevicePath(self):
raise errors.Error('GetDevicePath not supported for Kubernetes local disk')
def AttachVolumeInfo(self, volumes):
local_volume = {
'name': self.name,
'emptyDir': {}
}
volumes.append(local_volume)
class CephDisk(KubernetesDisk):
K8S_VOLUME_TYPE = 'rbd'
def __init__(self, disk_num, disk_spec, name):
super(CephDisk, self).__init__(disk_num, disk_spec, name)
self.ceph_secret = FLAGS.ceph_secret
def _Create(self):
cmd = ['rbd', '-p', FLAGS.rbd_pool, 'create', self.name, '--size',
str(1024 * self.disk_size)]
_, stderr, retcode = vm_util.IssueCommand(cmd, raise_on_failure=False)
if retcode != 0:
raise Exception('Creating RBD image failed: %s' % stderr)
cmd = ['rbd', 'map', FLAGS.rbd_pool + '/' + self.name]
stdout, stderr, retcode = vm_util.IssueCommand(cmd, raise_on_failure=False)
if retcode != 0:
raise Exception('Mapping RBD image failed: %s' % stderr)
rbd_device = stdout.rstrip()
if '/dev/rbd' not in rbd_device:
cmd = ['rbd', 'showmapped']
stdout, _, _ = vm_util.IssueCommand(cmd, raise_on_failure=False)
for image_device in stdout.split('\n'):
if self.name in image_device:
pattern = re.compile('/dev/rbd.*')
output = pattern.findall(image_device)
rbd_device = output[0].rstrip()
break
cmd = ['/sbin/mkfs.ext4', rbd_device]
stdout, stderr, retcode = vm_util.IssueCommand(cmd, raise_on_failure=False)
if retcode != 0:
raise Exception('Formatting partition failed: %s' % stderr)
cmd = ['rbd', 'unmap', rbd_device]
stdout, stderr, retcode = vm_util.IssueCommand(cmd, raise_on_failure=False)
if retcode != 0:
raise Exception('Unmapping block device failed: %s' % stderr)
def _Delete(self):
cmd = ['rbd', 'rm', FLAGS.rbd_pool + '/' + self.name]
stdout, stderr, retcode = vm_util.IssueCommand(cmd, raise_on_failure=False)
if retcode != 0:
msg = 'Removing RBD image failed. Reattempting.'
logging.warning(msg)
raise Exception(msg)
def AttachVolumeInfo(self, volumes):
ceph_volume = {
'name': self.name,
'rbd': {
'monitors': FLAGS.ceph_monitors,
'pool': FLAGS.rbd_pool,
'image': self.name,
'keyring': FLAGS.ceph_keyring,
'user': FLAGS.rbd_user,
'fsType': 'ext4',
'readOnly': False
}
}
if FLAGS.ceph_secret:
ceph_volume['rbd']['secretRef'] = {'name': FLAGS.ceph_secret}
volumes.append(ceph_volume)
def SetDevicePath(self, vm):
cmd = "mount | grep %s | tr -s ' ' | cut -f 1 -d ' '" % self.mount_point
device, _ = vm.RemoteCommand(cmd)
self.device_path = device.rstrip()
def GetDevicePath(self):
return self.device_path
class PersistentVolumeClaim(resource.BaseResource):
@vm_util.Retry(poll_interval=10, max_retries=100, log_errors=False)
def _WaitForPVCBoundCompletion(self):
exists_cmd = [FLAGS.kubectl, '--kubeconfig=%s' % FLAGS.kubeconfig, 'get',
'pvc', '-o=json', self.name]
logging.info('Waiting for PVC %s', self.name)
pvc_info, _, _ = vm_util.IssueCommand(exists_cmd, suppress_warning=True,
raise_on_failure=False)
if pvc_info:
pvc_info = json.loads(pvc_info)
pvc = pvc_info['status']['phase']
if pvc == 'Bound':
logging.info('PVC is ready.')
return
raise Exception('PVC %s is not ready. Retrying to check status.' %
self.name)
def __init__(self, name, storage_class, size):
super(PersistentVolumeClaim, self).__init__()
self.name = name
self.storage_class = storage_class
self.size = size
def _Create(self):
body = self._BuildBody()
kubernetes_helper.CreateResource(body)
self._WaitForPVCBoundCompletion()
def _Delete(self):
body = self._BuildBody()
kubernetes_helper.DeleteResource(body)
def _BuildBody(self):
body = {
'kind': 'PersistentVolumeClaim',
'apiVersion': 'v1',
'metadata': {
'name': self.name
},
'spec': {
'accessModes': ['ReadWriteOnce'],
'resources': {
'requests': {
'storage': '%sGi' % self.size
}
},
'storageClassName': self.storage_class,
}
}
return json.dumps(body)
class StorageClass(resource.BaseResource):
def __init__(self, name, provisioner, parameters):
super(StorageClass, self).__init__()
self.name = name
self.provisioner = provisioner
self.parameters = parameters
def _CheckStorageClassExists(self):
exists_cmd = [FLAGS.kubectl, '--kubeconfig=%s' % FLAGS.kubeconfig, 'get',
'sc', '-o=json', self.name]
sc_info, _, _ = vm_util.IssueCommand(exists_cmd, suppress_warning=True,
raise_on_failure=False)
if sc_info:
sc_info = json.loads(sc_info)
sc_name = sc_info['metadata']['name']
if sc_name == self.name:
logging.info('StorageClass already exists.')
return True
else:
logging.info('About to create new StorageClass: %s', self.name)
return False
def _Create(self):
body = self._BuildBody()
if not self._CheckStorageClassExists():
kubernetes_helper.CreateResource(body)
|
Apache License 2.0
|
egnyte/python-egnyte
|
egnyte/events.py
|
Event.user
|
python
|
def user(self):
return resources.User(self._client, id=self.actor)
|
Get a user object based on event attributes
|
https://github.com/egnyte/python-egnyte/blob/569214d3030e8cdb097109e1ab2a82afae9a1623/egnyte/events.py#L54-L56
|
import time
from egnyte import base, exc, resources
class Event(base.Resource):
_url_template = "pubapi/v1/events/%(id)s"
|
MIT License
|
ngageoint/sarpy
|
sarpy/io/product/sidd2_elements/ExploitationFeatures.py
|
ExploitationFeaturesProductType.__init__
|
python
|
def __init__(self, Resolution=None, Ellipticity=None, Polarizations=None,
North=None, Extensions=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.Resolution = Resolution
self.Ellipticity = Ellipticity
self.Polarizations = Polarizations
self.North = North
self.Extensions = Extensions
super(ExploitationFeaturesProductType, self).__init__(**kwargs)
|
Parameters
----------
Resolution : RowColDoubleType|numpy.ndarray|list|tuple
Ellipticity : float
Polarizations : List[ProcTxRcvPolarizationType]
North : None|float
Extensions : None|ParametersCollection|dict
kwargs
|
https://github.com/ngageoint/sarpy/blob/91405721a7e6ffe7c76dd7b143915fee4bee1e82/sarpy/io/product/sidd2_elements/ExploitationFeatures.py#L790-L813
|
__classification__ = "UNCLASSIFIED"
__author__ = "Thomas McCullough"
import logging
import datetime
from typing import Union, List
import numpy
from sarpy.compliance import string_types
from sarpy.io.xml.base import Serializable, ParametersCollection
from sarpy.io.xml.descriptors import SerializableDescriptor, ParametersDescriptor, FloatDescriptor, FloatModularDescriptor, StringDescriptor, StringEnumDescriptor, DateTimeDescriptor, SerializableListDescriptor
from sarpy.io.complex.sicd_elements.blocks import POLARIZATION1_VALUES
from sarpy.io.complex.sicd_elements.SCPCOA import GeometryCalculator
from sarpy.io.complex.sicd_elements.SICD import SICDType
from sarpy.geometry.geocoords import wgs_84_norm, ecf_to_geodetic
from .base import DEFAULT_STRICT
from .blocks import RowColIntType, RowColDoubleType, RangeAzimuthType, AngleMagnitudeType, RadarModeType
logger = logging.getLogger(__name__)
class ExploitationCalculator(object):
def __init__(self, geometry_calculator, row_vector, col_vector):
self.geometry_calculator = geometry_calculator
self.ARPPos = geometry_calculator.ARP
self.ARPVel = geometry_calculator.ARP_vel
self.SCP = geometry_calculator.SCP
self.slant_x = self._make_unit(self.ARPPos - self.SCP)
self.slant_z = self._make_unit(numpy.cross(self.slant_x, self.ARPVel))
if self.slant_z.dot(self.ARPPos) < 0:
self.slant_z *= -1
self.slant_y = self._make_unit(numpy.cross(self.slant_z, self.slant_x))
self.ETP = wgs_84_norm(self.SCP)
self.row_vector = self._make_unit(row_vector)
self.col_vector = self._make_unit(col_vector)
self.normal_vector = self._make_unit(numpy.cross(self.row_vector, self.col_vector))
@staticmethod
def _make_unit(vec):
vec_norm = numpy.linalg.norm(vec)
if vec_norm < 1e-6:
logger.error(
'input vector to be normlaized has norm {}, this may be a mistake'.format(vec_norm))
return vec/vec_norm
@property
def AzimuthAngle(self):
return self.geometry_calculator.AzimAng
@property
def SlopeAngle(self):
return numpy.rad2deg(numpy.arccos(self.slant_z.dot(self.ETP)))
@property
def DopplerConeAngle(self):
return self.geometry_calculator.DopplerConeAng
@property
def SquintAngle(self):
return self.geometry_calculator.SquintAngle
@property
def GrazeAngle(self):
return numpy.rad2deg(numpy.arcsin(self.slant_x.dot(self.ETP)))
@property
def TiltAngle(self):
return numpy.rad2deg(numpy.arctan(self.ETP.dot(self.slant_y)/self.ETP.dot(self.slant_z)))
@property
def Shadow(self):
shadow = self.ETP - self.slant_x/(self.slant_x.dot(self.ETP))
shadow_prime = shadow - (shadow.dot(self.normal_vector)/self.slant_z.dot(self.normal_vector))*self.slant_z
return AngleMagnitudeType(
Angle=numpy.rad2deg(numpy.arctan2(self.col_vector.dot(shadow_prime), self.row_vector.dot(shadow_prime))),
Magnitude=numpy.linalg.norm(shadow_prime))
@property
def Layover(self):
layover = self.normal_vector - self.slant_z/(self.slant_z.dot(self.normal_vector))
return AngleMagnitudeType(
Angle=numpy.rad2deg(numpy.arctan2(self.col_vector.dot(layover), self.row_vector.dot(layover))),
Magnitude=numpy.linalg.norm(layover))
@property
def North(self):
lat, lon, hae = ecf_to_geodetic(self.SCP)
lat_r = numpy.deg2rad(lat)
lon_r = numpy.deg2rad(lon)
north = numpy.array(
[-numpy.sin(lat_r)*numpy.cos(lon_r),
-numpy.sin(lat_r)*numpy.sin(lon_r),
numpy.cos(lat_r)])
north_prime = north - self.slant_z*(north.dot(self.normal_vector)/self.slant_z.dot(self.normal_vector))
return numpy.rad2deg(numpy.arctan2(self.col_vector.dot(north_prime), self.row_vector.dot(north_prime)))
@property
def MultiPath(self):
multipath = self.slant_x - self.slant_z*(
self.slant_x.dot(self.normal_vector)/self.slant_z.dot(self.normal_vector))
return numpy.rad2deg(numpy.arctan2(self.col_vector.dot(multipath), self.row_vector.dot(multipath)))
@property
def GroundTrack(self):
track = self.ARPVel - (self.ARPVel.dot(self.normal_vector))*self.normal_vector
return numpy.rad2deg(numpy.arctan2(self.col_vector.dot(track), self.row_vector.dot(track)))
def get_ground_plane_resolution(self, row_ss, col_ss):
x_g = self.slant_x - (self.slant_x.dot(self.normal_vector))*self.normal_vector
theta_r = -numpy.arctan2(self.col_vector.dot(x_g), self.row_vector.dot(x_g))
graze = numpy.deg2rad(self.GrazeAngle)
tilt = numpy.deg2rad(self.TiltAngle)
k_r1 = (numpy.cos(theta_r)/numpy.cos(graze))**2 + (numpy.sin(theta_r)**2*numpy.tan(graze)*numpy.tan(tilt) -
numpy.sin(2*theta_r)/numpy.cos(graze))*numpy.tan(graze)*numpy.tan(tilt)
k_r2 = (numpy.sin(theta_r)/numpy.cos(tilt))**2
k_c1 = (numpy.sin(theta_r)**2/numpy.cos(graze) -
numpy.sin(2*theta_r)*numpy.tan(graze)*numpy.tan(tilt))/numpy.cos(graze) + (numpy.cos(theta_r)*numpy.tan(graze)*numpy.tan(tilt))**2
k_c2 = (numpy.cos(theta_r)/numpy.cos(tilt))**2
r2 = row_ss*row_ss
c2 = col_ss*col_ss
return float(numpy.sqrt(k_r1*r2 + k_r2*c2)), float(numpy.sqrt(k_c1*r2 + k_c2*c2))
@classmethod
def from_sicd(cls, sicd, row_vector, col_vector):
calculator = GeometryCalculator(
sicd.GeoData.SCP.ECF.get_array(),
sicd.SCPCOA.ARPPos.get_array(),
sicd.SCPCOA.ARPVel.get_array())
return cls(calculator, row_vector, col_vector)
def _extract_sicd_tx_rcv_pol(str_in):
if str_in is None:
return 'UNKNOWN', 'UNKNOWN'
if not isinstance(str_in, string_types):
raise TypeError('requires a string type input.')
if str_in in ['OTHER', 'UNKNOWN']:
return 'UNKNOWN', 'UNKNOWN'
return str_in.split(':')
class InputROIType(Serializable):
_fields = ('Size', 'UpperLeft')
_required = ('Size', 'UpperLeft')
Size = SerializableDescriptor(
'Size', RowColIntType, _required, strict=DEFAULT_STRICT,
docstring='Number of rows and columns extracted from the input.')
UpperLeft = SerializableDescriptor(
'UpperLeft', RowColIntType, _required, strict=DEFAULT_STRICT,
docstring='The upper-left pixel extracted from the input.')
def __init__(self, Size=None, UpperLeft=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.Size = Size
self.UpperLeft = UpperLeft
super(InputROIType, self).__init__(**kwargs)
class TxRcvPolarizationType(Serializable):
_fields = ('TxPolarization', 'RcvPolarization', 'RcvPolarizationOffset')
_required = ('TxPolarization', 'RcvPolarization')
_numeric_format = {'RcvPolarizationOffset': '0.17E'}
TxPolarization = StringEnumDescriptor(
'TxPolarization', POLARIZATION1_VALUES, _required, strict=DEFAULT_STRICT,
docstring='Transmit polarization type.')
RcvPolarization = StringEnumDescriptor(
'RcvPolarization', POLARIZATION1_VALUES, _required, strict=DEFAULT_STRICT,
docstring='Receive polarization type.')
RcvPolarizationOffset = FloatModularDescriptor(
'RcvPolarizationOffset', 180.0, _required, strict=DEFAULT_STRICT,
docstring='Angle offset for the receive polarization defined at aperture center.')
def __init__(self, TxPolarization=None, RcvPolarization=None, RcvPolarizationOffset=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.TxPolarization = TxPolarization
self.RcvPolarization = RcvPolarization
self.RcvPolarizationOffset = RcvPolarizationOffset
super(TxRcvPolarizationType, self).__init__(**kwargs)
@classmethod
def from_sicd_value(cls, str_in):
tx, rcv = _extract_sicd_tx_rcv_pol(str_in)
return cls(TxPolarization=tx, RcvPolarization=rcv)
class ProcTxRcvPolarizationType(Serializable):
_fields = ('TxPolarizationProc', 'RcvPolarizationProc')
_required = ('TxPolarizationProc', 'RcvPolarizationProc')
TxPolarizationProc = StringEnumDescriptor(
'TxPolarizationProc', POLARIZATION1_VALUES, _required, strict=DEFAULT_STRICT,
docstring='Transmit polarization type.')
RcvPolarizationProc = StringEnumDescriptor(
'RcvPolarizationProc', POLARIZATION1_VALUES, _required, strict=DEFAULT_STRICT,
docstring='Receive polarization type.')
def __init__(self, TxPolarizationProc=None, RcvPolarizationProc=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.TxPolarizationProc = TxPolarizationProc
self.RcvPolarizationProc = RcvPolarizationProc
super(ProcTxRcvPolarizationType, self).__init__(**kwargs)
@classmethod
def from_sicd_value(cls, str_in):
tx, rcv = _extract_sicd_tx_rcv_pol(str_in)
return cls(TxPolarizationProc=tx, RcvPolarizationProc=rcv)
class ExploitationFeaturesCollectionInformationType(Serializable):
_fields = (
'SensorName', 'RadarMode', 'CollectionDateTime', 'LocalDateTime', 'CollectionDuration',
'Resolution', 'InputROI', 'Polarizations')
_required = ('SensorName', 'RadarMode', 'CollectionDateTime', 'CollectionDuration')
_collections_tags = {'Polarizations': {'array': False, 'child_tag': 'Polarization'}}
_numeric_format = {'CollectionDuration': '0.17E'}
SensorName = StringDescriptor(
'SensorName', _required, strict=DEFAULT_STRICT,
docstring='The name of the sensor.')
RadarMode = SerializableDescriptor(
'RadarMode', RadarModeType, _required, strict=DEFAULT_STRICT,
docstring='Radar collection mode.')
CollectionDateTime = DateTimeDescriptor(
'CollectionDateTime', _required, strict=DEFAULT_STRICT,
docstring='Collection date and time defined in Coordinated Universal Time (UTC). The seconds '
'should be followed by a Z to indicate UTC.')
CollectionDuration = FloatDescriptor(
'CollectionDuration', _required, strict=DEFAULT_STRICT,
docstring='The duration of the collection (units = seconds).')
Resolution = SerializableDescriptor(
'Resolution', RangeAzimuthType, _required, strict=DEFAULT_STRICT,
docstring='Uniformly-weighted resolution (range and azimuth) processed in '
'the slant plane.')
InputROI = SerializableDescriptor(
'InputROI', InputROIType, _required, strict=DEFAULT_STRICT,
docstring='ROI representing portion of input data used to make '
'this product.')
Polarizations = SerializableListDescriptor(
'Polarizations', TxRcvPolarizationType, _collections_tags, _required, strict=DEFAULT_STRICT,
docstring='Transmit and receive polarization(s).')
def __init__(self, SensorName=None, RadarMode=None, CollectionDateTime=None, LocalDateTime=None,
CollectionDuration=None, Resolution=None, Polarizations=None, **kwargs):
self._local_date_time = None
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.SensorName = SensorName
self.RadarMode = RadarMode
self.CollectionDateTime = CollectionDateTime
self.CollectionDuration = CollectionDuration
self.LocalDateTime = LocalDateTime
self.Resolution = Resolution
self.Polarizations = Polarizations
super(ExploitationFeaturesCollectionInformationType, self).__init__(**kwargs)
@property
def LocalDateTime(self):
return self._local_date_time
@LocalDateTime.setter
def LocalDateTime(self, value):
if value is None:
self._local_date_time = None
return
elif isinstance(value, datetime.datetime):
value = value.isoformat('T')
if isinstance(value, string_types):
self._local_date_time = value
else:
logger.error(
'Attribute LocalDateTime of class ExploitationFeaturesCollectionInformationType\n\t'
'requires a datetime.datetime or string. Got unsupported type {}.\n\t'
'Setting value to None.'.format(type(value)))
self._local_date_time = None
@classmethod
def from_sicd(cls, sicd):
if not isinstance(sicd, SICDType):
raise TypeError('Requires SICDType instance, got type {}'.format(type(sicd)))
polarizations = [
TxRcvPolarizationType.from_sicd_value(entry.TxRcvPolarization)
for entry in sicd.RadarCollection.RcvChannels]
return cls(SensorName=sicd.CollectionInfo.CollectorName,
RadarMode=RadarModeType(**sicd.CollectionInfo.RadarMode.to_dict()),
CollectionDateTime=sicd.Timeline.CollectStart,
CollectionDuration=sicd.Timeline.CollectDuration,
Resolution=(sicd.Grid.Row.SS, sicd.Grid.Col.SS),
Polarizations=polarizations)
class ExploitationFeaturesCollectionGeometryType(Serializable):
_fields = ('Azimuth', 'Slope', 'Squint', 'Graze', 'Tilt', 'DopplerConeAngle', 'Extensions')
_required = ()
_collections_tags = {'Extensions': {'array': False, 'child_tag': 'Extension'}}
_numeric_format = {
'Azimuth': '0.17E', 'Slope': '0.17E', 'Squint': '0.17E', 'Graze': '0.17E',
'Tilt': '0.17E', 'DopplerConeAngle': '0.17E'}
Azimuth = FloatDescriptor(
'Azimuth', _required, strict=DEFAULT_STRICT, bounds=(0.0, 360.0),
docstring='Angle clockwise from north indicating the ETP line of sight vector.')
Slope = FloatDescriptor(
'Slope', _required, strict=DEFAULT_STRICT, bounds=(0.0, 90.0),
docstring='Angle between the ETP at scene center and the range vector perpendicular to '
'the direction of motion.')
Squint = FloatModularDescriptor(
'Squint', 180.0, _required, strict=DEFAULT_STRICT,
docstring='Angle from the ground track to platform velocity vector at nadir. '
'Left-look is positive, right-look is negative.')
Graze = FloatDescriptor(
'Graze', _required, strict=DEFAULT_STRICT, bounds=(0.0, 90.0),
docstring='Angle between the ETP and the line of sight vector.')
Tilt = FloatModularDescriptor(
'Tilt', 180.0, _required, strict=DEFAULT_STRICT,
docstring='Angle between the ETP and the cross range vector. '
'Also known as the twist angle.')
DopplerConeAngle = FloatDescriptor(
'DopplerConeAngle', _required, strict=DEFAULT_STRICT, bounds=(0.0, 180.0),
docstring='The angle between the velocity vector and the radar line-of-sight vector. '
'Also known as the slant plane squint angle.')
Extensions = ParametersDescriptor(
'Extensions', _collections_tags, _required, strict=DEFAULT_STRICT,
docstring='Exploitation feature extension related to geometry for a '
'single input image.')
def __init__(self, Azimuth=None, Slope=None, Squint=None, Graze=None, Tilt=None,
DopplerConeAngle=None, Extensions=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.Azimuth = Azimuth
self.Slope = Slope
self.Squint = Squint
self.Graze = Graze
self.Tilt = Tilt
self.DopplerConeAngle = DopplerConeAngle
self.Extensions = Extensions
super(ExploitationFeaturesCollectionGeometryType, self).__init__(**kwargs)
@classmethod
def from_calculator(cls, calculator):
if not isinstance(calculator, ExploitationCalculator):
raise TypeError(
'Requires input which is an instance of ExploitationCalculator, got type {}'.format(type(calculator)))
return cls(Azimuth=calculator.AzimuthAngle,
Slope=calculator.SlopeAngle,
Graze=calculator.SlopeAngle,
Tilt=calculator.TiltAngle,
DopplerConeAngle=calculator.DopplerConeAngle,
Squint=calculator.SquintAngle)
class ExploitationFeaturesCollectionPhenomenologyType(Serializable):
_fields = ('Shadow', 'Layover', 'MultiPath', 'GroundTrack', 'Extensions')
_required = ()
_collections_tags = {'Extensions': {'array': False, 'child_tag': 'Extension'}}
_numeric_format = {'MultiPath': '0.17E', 'GroundTrack': '0.17E'}
Shadow = SerializableDescriptor(
'Shadow', AngleMagnitudeType, _required, strict=DEFAULT_STRICT,
docstring='The phenomenon where vertical objects occlude radar '
'energy.')
Layover = SerializableDescriptor(
'Layover', AngleMagnitudeType, _required, strict=DEFAULT_STRICT,
docstring='The phenomenon where vertical objects appear as ground objects with '
'the same range/range rate.')
MultiPath = FloatModularDescriptor(
'MultiPath', 180.0, _required, strict=DEFAULT_STRICT,
docstring='This is a range dependent phenomenon which describes the energy from a '
'single scatter returned to the radar via more than one path and results '
'in a nominally constant direction in the ETP.')
GroundTrack = FloatModularDescriptor(
'GroundTrack', 180.0, _required, strict=DEFAULT_STRICT,
docstring='Counter-clockwise angle from increasing row direction to ground track '
'at the center of the image.')
Extensions = ParametersDescriptor(
'Extensions', _collections_tags, _required, strict=DEFAULT_STRICT,
docstring='Exploitation feature extension related to geometry for a '
'single input image.')
def __init__(self, Shadow=None, Layover=None, MultiPath=None, GroundTrack=None, Extensions=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.Shadow = Shadow
self.Layover = Layover
self.MultiPath = MultiPath
self.GroundTrack = GroundTrack
self.Extensions = Extensions
super(ExploitationFeaturesCollectionPhenomenologyType, self).__init__(**kwargs)
@classmethod
def from_calculator(cls, calculator):
if not isinstance(calculator, ExploitationCalculator):
raise TypeError(
'Requires input which is an instance of ExploitationCalculator, got type {}'.format(type(calculator)))
return cls(Shadow=calculator.Shadow, Layover=calculator.Layover,
MultiPath=calculator.MultiPath, GroundTrack=calculator.GroundTrack)
class CollectionType(Serializable):
_fields = ('Information', 'Geometry', 'Phenomenology', 'identifier')
_required = ('Information', 'identifier')
_set_as_attribute = ('identifier', )
Information = SerializableDescriptor(
'Information', ExploitationFeaturesCollectionInformationType, _required, strict=DEFAULT_STRICT,
docstring='General collection information.')
Geometry = SerializableDescriptor(
'Geometry', ExploitationFeaturesCollectionGeometryType, _required, strict=DEFAULT_STRICT,
docstring='Key geometry parameters independent of product '
'processing.')
Phenomenology = SerializableDescriptor(
'Phenomenology', ExploitationFeaturesCollectionPhenomenologyType, _required, strict=DEFAULT_STRICT,
docstring='Phenomenology related to both the geometry and the final '
'product processing.')
identifier = StringDescriptor(
'identifier', _required, strict=DEFAULT_STRICT,
docstring='The exploitation feature identifier.')
def __init__(self, Information=None, Geometry=None, Phenomenology=None, identifier=None, **kwargs):
if '_xml_ns' in kwargs:
self._xml_ns = kwargs['_xml_ns']
if '_xml_ns_key' in kwargs:
self._xml_ns_key = kwargs['_xml_ns_key']
self.Information = Information
self.Geometry = Geometry
self.Phenomenology = Phenomenology
self.identifier = identifier
super(CollectionType, self).__init__(**kwargs)
@classmethod
def from_calculator(cls, calculator, sicd):
if not isinstance(calculator, ExploitationCalculator):
raise TypeError(
'Requires input which is an instance of ExploitationCalculator, got type {}'.format(type(calculator)))
return cls(identifier=sicd.CollectionInfo.CoreName,
Information=ExploitationFeaturesCollectionInformationType.from_sicd(sicd),
Geometry=ExploitationFeaturesCollectionGeometryType.from_calculator(calculator),
Phenomenology=ExploitationFeaturesCollectionPhenomenologyType.from_calculator(calculator))
class ExploitationFeaturesProductType(Serializable):
_fields = ('Resolution', 'Ellipticity', 'Polarizations', 'North', 'Extensions')
_required = ('Resolution', 'Ellipticity', 'Polarizations')
_collections_tags = {
'Polarizations': {'array': False, 'child_tag': 'Polarization'},
'Extensions': {'array': False, 'child_tag': 'Extension'}}
_numeric_format = {'Ellipticity': '0.17E', 'North': '0.17E'}
Resolution = SerializableDescriptor(
'Resolution', RowColDoubleType, _required, strict=DEFAULT_STRICT,
docstring='Uniformly-weighted resolution projected into the Earth Tangent '
'Plane (ETP).')
Ellipticity = FloatDescriptor(
'Ellipticity', _required, strict=DEFAULT_STRICT,
docstring="Ellipticity of the 2D-IPR at the ORP, measured in the *Earth Geodetic "
"Tangent Plane (EGTP)*. Ellipticity is the ratio of the IPR ellipse's "
"major axis to minor axis.")
Polarizations = SerializableListDescriptor(
'Polarizations', ProcTxRcvPolarizationType, _collections_tags, _required, strict=DEFAULT_STRICT,
docstring='Describes the processed transmit and receive polarizations for the '
'product.')
North = FloatModularDescriptor(
'North', 180.0, _required, strict=DEFAULT_STRICT,
docstring='Counter-clockwise angle from increasing row direction to north at the center '
'of the image.')
Extensions = ParametersDescriptor(
'Extensions', _collections_tags, _required, strict=DEFAULT_STRICT,
docstring='Exploitation feature extension related to geometry for a '
'single input image.')
|
MIT License
|
numberly/flask-stupe
|
flask_stupe/app.py
|
Stupeflask.register_converters
|
python
|
def register_converters(self, converter_list):
for converter in converter_list:
self.register_converter(converter)
|
Register multiple converters at once.
See :meth:`register_converter`.
|
https://github.com/numberly/flask-stupe/blob/1aabda272d84c0f651c6302cb5eefe11c46567ef/flask_stupe/app.py#L47-L53
|
import os
from pkgutil import iter_modules
from flask import Blueprint, Flask
from flask_stupe.config import Config
from flask_stupe.converters import converters
from flask_stupe.logging import log
from flask_stupe.request import Request
class Stupeflask(Flask):
config_class = Config
request_class = Request
def __init__(self, *args, **kwargs):
super(Stupeflask, self).__init__(*args, **kwargs)
config_path = os.path.join(os.getcwd(), "config.py")
log.info(" * Loading default config ({})".format(config_path))
self.config.from_pyfile(config_path, silent=True)
log.info(" * Loading $CONFIG ({})".format(os.environ.get("CONFIG")))
self.config.from_envvar("CONFIG", silent=True)
from_env = self.config.from_env()
log.info(" * Overriden by environment: " + ", ".join(from_env))
self.register_converters(converters)
def register_converter(self, converter, name=None):
if not name:
name = converter.__name__
if "Converter" in name:
name = converter.__name__.replace("Converter", "")
self.url_map.converters[name] = converter
|
MIT License
|
stiletto/bnw
|
bnw/handlers/command_vcard.py
|
cmd_vcard
|
python
|
def cmd_vcard(request, safe=None):
reply = domish.Element((None, 'iq'))
reply.addUniqueId()
reply['type'] = 'get'
reply.addElement('vCard', 'vcard-temp')
send_raw(request.user['jid'], None, reply)
return dict(ok=True, desc='vCard has been requested.')
|
Request user's vCard.
|
https://github.com/stiletto/bnw/blob/bce286de01fac6b4edff71f91d8b4ebb6825d0ed/bnw/handlers/command_vcard.py#L8-L15
|
from twisted.words.xish import domish
from base import require_auth
from bnw.xmpp.base import send_raw
@require_auth
|
BSD 2-Clause Simplified License
|
numba/pyculib
|
pyculib/nputil.py
|
colmajor
|
python
|
def colmajor(x, dtype, var):
if not x.flags['F_CONTIGUOUS']:
warnings.warn("%s is converted to column-major layout"%(var),
warnings.PerformanceWarning, stacklevel=3)
return np.asfortranarray(x, dtype=dtype)
else:
return astype(x, dtype, var, stacklevel=4)
|
Return `x` or a copy of `x`, with its dimension ordering converted to
column-major, and its type converted to `dtype`.
`var` is the name of `x` as seen by users of a public API, which may be
used in a warning message.
|
https://github.com/numba/pyculib/blob/cb1b2a884e7fafa898ad5711172cda527b9875c8/pyculib/nputil.py#L32-L43
|
import numpy as np
from pyculib import warnings
promote = np.promote_types
def alias(a, b):
if a is b:
return True
elif a.base is None and b.base is None:
return False
else:
return a.base is b or a is b.base or a.base is b.base
def astype(x, dtype, var, stacklevel=3):
if dtype != x.dtype:
warnings.warn("%s (%s) is converted to %s"%(var, x.dtype, dtype),
warnings.PerformanceWarning, stacklevel=stacklevel)
return x.astype(dtype, copy=False)
|
BSD 2-Clause Simplified License
|
netmanchris/pyawair
|
pyawair/data.py
|
get_raw_data
|
python
|
def get_raw_data(auth, device_name=None, device_type=None, device_id=None):
if device_type is None or device_id is None:
awair_device = pyawair.objects.AwairDev(device_name, auth)
device_type = awair_device.type()
device_id = awair_device.id()
base_url = "https://developer-apis.awair.is/v1/users/self/devices/"
data_url = "/air-data/raw"
data = pyawair.conn.get_data(auth, device_id, device_type, base_url, data_url)
return data
|
Function to get air data that is averaged over each 5 minutes from a single specific
Awair Device linked
to your account
:param auth: pyawair.auth.AwairAuth object which contains a valid authentication token
:param device_type: str which matches the awair device type
:param device_name: str which matches exactly to the name of a specific device
:param device_id: str or int which matches the specific awair device internal id number
:return: Object of Dict type which contains current air data
|
https://github.com/netmanchris/pyawair/blob/5f0bbcfe79712fca467b116ef1dce77317a692b9/pyawair/data.py#L91-L111
|
from pyawair.devices import *
import pyawair.conn
import pyawair.objects
def get_current_air_data(auth, device_name=None, device_type=None, device_id=None):
if device_type is None or device_id is None:
awair_device = pyawair.objects.AwairDev(device_name, auth)
device_type = awair_device.type()
device_id = awair_device.id()
base_url = "https://developer-apis.awair.is/v1/users/self/devices/"
data_url = "/air-data/latest"
data = pyawair.conn.get_data(auth, device_id, device_type, base_url, data_url)
return data
def get_5_min_average(auth, device_name=None, device_type=None, device_id=None, limit=1000,
desc=True):
if device_type is None or device_id is None:
awair_device = pyawair.objects.AwairDev(device_name, auth)
device_type = awair_device.type()
device_id = awair_device.id()
base_url = "https://developer-apis.awair.is/v1/users/self/devices/"
data_url = "/air-data/5-min-avg"
if desc:
desc_param = "true"
else:
desc_param = "false"
args = "?limit={}&desc={}".format(limit, desc_param)
data = pyawair.conn.get_data(auth, device_id, device_type, base_url, data_url, args)
return data
def get_15_min_average(auth, device_name=None, device_type=None, device_id=None, limit=1000,
desc=True):
if device_type is None or device_id is None:
awair_device = pyawair.objects.AwairDev(device_name, auth)
device_type = awair_device.type()
device_id = awair_device.id()
base_url = "https://developer-apis.awair.is/v1/users/self/devices/"
data_url = "/air-data/15-min-avg"
if desc:
desc_param = "true"
else:
desc_param = "false"
args = "?limit={}&desc={}".format(limit, desc_param)
data = pyawair.conn.get_data(auth, device_id, device_type, base_url, data_url, args)
return data
|
Apache License 2.0
|
alvenchen/nsfw-pytorch
|
src/train.py
|
parse_args
|
python
|
def parse_args():
parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
parser.add_argument('--gpu', dest='gpu', help='GPU device id to use', nargs='+',
default=[0, 1], type=int)
parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
default=100, type=int)
parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
default=64, type=int)
parser.add_argument('--lr', dest='lr', help='Base learning rate.',
default=0.1, type=float)
parser.add_argument('--trainning_data_dir', dest='trainning_data_dir', help='Directory path for trainning data.',
default='./data/train', type=str)
parser.add_argument('--validation_data_dir', dest='validation_data_dir', help='Directory path for validation data.',
default='./data/test', type=str)
parser.add_argument('--save_path', dest='save_path', help='Path of model snapshot for save.',
default='./models', type=str)
parser.add_argument('--saved_model', help='Path of model snapshot for continue training.',
default='./models/resnet50-19c8e357.pth', type=str)
args = parser.parse_args()
return args
|
Parse input arguments.
|
https://github.com/alvenchen/nsfw-pytorch/blob/7cd9d237e09e19054550e9831cba0a3c33cdddcf/src/train.py#L20-L42
|
import argparse
import time
from model import resnet
from model.dpn import dpn92
import torch
import torch.backends.cudnn as cudnn
import torchvision
from torchvision import transforms
import torch.nn as nn
from torch.autograd import Variable
from model.utils import load_filtered_state_dict, SaveBestModel, AverageMeter, accuracy
from data_wrapper import get_dataset, DataWrapper
from tensorboardX import SummaryWriter
|
MIT License
|
peerchemist/cryptotik
|
cryptotik/kraken.py
|
Kraken.get_market_ticker
|
python
|
def get_market_ticker(self, pair):
p = self.format_pair(pair)
return self.api(self.url + "public/Ticker",
params={'pair': p})[p]
|
returns simple current market status report
|
https://github.com/peerchemist/cryptotik/blob/24ffd74c43ff1fc171081e135cb2b66b775af3f3/cryptotik/kraken.py#L129-L133
|
import hmac
import hashlib
import time
import base64
import requests
from cryptotik.common import (headers, ExchangeWrapper,
NormalizedExchangeWrapper)
from cryptotik.exceptions import (InvalidBaseCurrencyError,
InvalidDelimiterError,
APIError)
from re import findall
from decimal import Decimal
from datetime import datetime
class Kraken(ExchangeWrapper):
url = 'https://api.kraken.com/0/'
name = 'kraken'
delimiter = ""
headers = headers
taker_fee, maker_fee = 0.00, 0.00
quote_order = 0
base_currencies = ['xbt', 'eur', 'usd', 'eth', 'cad', 'gbp', 'jpy']
@classmethod
def format_pair(cls, pair):
return "".join(findall(r"[^\W\d_]+|\d+", pair)).upper()
def get_base_currencies(self):
raise NotImplementedError
def __init__(self, apikey=None, secret=None, timeout=None, proxy=None):
if apikey and secret:
self.apikey = apikey.encode('utf-8')
self.secret = secret.encode('utf-8')
if proxy:
assert proxy.startswith('https'), {'Error': 'Only https proxies supported.'}
self.proxy = {'https': proxy}
if not timeout:
self.timeout = (8, 15)
else:
self.timeout = timeout
self.api_session = requests.Session()
def _verify_response(self, response):
if response.json()['error']:
raise APIError(response.json()['error'])
def _generate_signature(self, message):
sig = hmac.new(base64.b64decode(self.secret), message, hashlib.sha512)
return base64.b64encode(sig.digest()).decode()
def api(self, url, params=None):
try:
result = self.api_session.get(url, headers=self.headers,
params=params, timeout=self.timeout,
proxies=self.proxy)
result.raise_for_status()
except requests.exceptions.HTTPError as e:
print(e)
self._verify_response(result)
return result.json()['result']
def get_nonce(self):
return int(1000 * time.time())
def private_api(self, url, params={}):
urlpath = url[22:]
data = params
data['nonce'] = self.get_nonce()
postdata = requests.compat.urlencode(data)
encoded = (str(data['nonce']) + postdata).encode()
message = urlpath.encode() + hashlib.sha256(encoded).digest()
signature = self._generate_signature(message)
try:
result = self.api_session.post(url, data=data, headers={
'API-Key': self.apikey,
'API-Sign': signature},
timeout=self.timeout,
proxies=self.proxy)
except requests.exceptions.HTTPError as e:
print(e)
self._verify_response(result)
return result.json()['result']
def get_markets(self):
markets = self.api(self.url + "public/AssetPairs")
return [markets[i]['altname'].lower() for i in markets.keys()]
def get_market_ohlcv_data(self, pair, interval, since=None):
if str(interval) not in "1, 5, 15, 30, 60, 240, 1440, 10080, 21600".split(', '):
raise APIError('Unsupported interval.')
return self.api(self.url + 'public/OHLC', params={'pair': self.format_pair(pair),
'interval': interval,
'since': since})
|
BSD 3-Clause New or Revised License
|
fgnt/paderbox
|
paderbox/utils/nested.py
|
deflatten
|
python
|
def deflatten(d: dict, sep: Optional[str] = '.', maxdepth: int = -1):
ret = {}
if sep is not None:
d = {
tuple(k.split(sep, maxdepth)): v for k, v in d.items()
}
for keys, v in d.items():
sub_dict = ret
for sub_key in keys[:-1]:
if sub_key not in sub_dict:
sub_dict[sub_key] = {}
assert isinstance(sub_dict[sub_key], dict), (
f'Conflicting keys! {keys}'
)
sub_dict = sub_dict[sub_key]
assert keys[-1] not in sub_dict, f'Conflicting keys! {keys}'
sub_dict[keys[-1]] = v
return ret
|
Build a nested `dict` from a flat dict respecting a separator.
Args:
d: Flattened `dict` to reconstruct a `nested` dict from
sep: The separator used in the keys of `d`. If `None`, `d.keys()` should
only contain `tuple`s.
maxdepth: Maximum depth until wich nested conversion is performed
>>> d_in = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
>>> d = flatten(d_in)
>>> for k, v in d.items(): print(k, v)
a 1
c.a 2
c.b.x 5
c.b.y 10
d [1, 2, 3]
>>> deflatten(d)
{'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}
>>> deflatten(d, maxdepth=1)
{'a': 1, 'c': {'a': 2, 'b.x': 5, 'b.y': 10}, 'd': [1, 2, 3]}
>>> deflatten(d, maxdepth=0)
{'a': 1, 'c.a': 2, 'c.b.x': 5, 'c.b.y': 10, 'd': [1, 2, 3]}
>>> d = flatten(d_in, sep='_')
>>> for k, v in d.items(): print(k, v)
a 1
c_a 2
c_b_x 5
c_b_y 10
d [1, 2, 3]
>>> deflatten(d, sep='_')
{'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}
>>> deflatten({('a', 'b'): 'd', ('a', 'c'): 'e'}, sep=None)
{'a': {'b': 'd', 'c': 'e'}}
>>> deflatten({'a.b': 1, 'a': 2})
Traceback (most recent call last):
...
AssertionError: Conflicting keys! ('a',)
>>> deflatten({'a': 1, 'a.b': 2})
Traceback (most recent call last):
...
AssertionError: Conflicting keys! ('a', 'b')
|
https://github.com/fgnt/paderbox/blob/c71538fe65235c5f5a46dae781ddbbd4be955c30/paderbox/utils/nested.py#L62-L124
|
import copy
import collections
import itertools
import operator
from typing import Optional, Any, Union, Sequence, Mapping, Tuple, Callable, Generator, Iterable, Iterator
def flatten(d, sep: Optional[str] = '.', *, flat_type=dict):
def inner(d, parent_key):
items = {}
for k, v in d.items():
new_key = parent_key + (k,)
if isinstance(v, flat_type) and v:
items.update(inner(v, new_key))
else:
items[new_key] = v
return items
items = inner(d, ())
if sep is None:
return items
else:
return {
sep.join(k): v for k, v in items.items()
}
|
MIT License
|
kriaga/health-checker
|
HealthChecker/venv/Lib/site-packages/selenium/webdriver/phantomjs/service.py
|
Service.service_url
|
python
|
def service_url(self):
return "http://localhost:%d/wd/hub" % self.port
|
Gets the url of the GhostDriver Service
|
https://github.com/kriaga/health-checker/blob/3d9ce933f131bcbb897103b0f509cc45393cae4a/HealthChecker/venv/Lib/site-packages/selenium/webdriver/phantomjs/service.py#L59-L63
|
import os
import tempfile
from selenium.webdriver.common import service
class Service(service.Service):
def __init__(self, executable_path, port=0, service_args=None, log_path=None):
self.service_args = service_args
if self.service_args is None:
self.service_args = []
else:
self.service_args = service_args[:]
if not log_path:
log_path = "ghostdriver.log"
if not self._args_contain("--cookies-file="):
self._cookie_temp_file_handle, self._cookie_temp_file = tempfile.mkstemp()
self.service_args.append("--cookies-file=" + self._cookie_temp_file)
else:
self._cookie_temp_file = None
service.Service.__init__(self, executable_path, port=port, log_file=open(log_path, 'w'))
def _args_contain(self, arg):
return len(list(filter(lambda x: x.startswith(arg), self.service_args))) > 0
def command_line_args(self):
return self.service_args + ["--webdriver=%d" % self.port]
@property
|
MIT License
|
luciferjack/python-mysql-pool
|
PyMysqlPool/mysql/connector/conversion.py
|
MySQLConverterBase.escape
|
python
|
def escape(self, buf):
return buf
|
Escape buffer for sending to MySQL
|
https://github.com/luciferjack/python-mysql-pool/blob/7b812c6fc7f04255620cb86f272a2d8900c2240d/PyMysqlPool/mysql/connector/conversion.py#L106-L108
|
import datetime
import time
from decimal import Decimal
from .catch23 import PY2, NUMERIC_TYPES, struct_unpack
from .constants import FieldType, FieldFlag, CharacterSet
from .custom_types import HexLiteral
class MySQLConverterBase(object):
def __init__(self, charset='utf8', use_unicode=True):
self.python_types = None
self.mysql_types = None
self.charset = None
self.charset_id = 0
self.use_unicode = None
self.set_charset(charset)
self.set_unicode(use_unicode)
self._cache_field_types = {}
def set_charset(self, charset):
if charset == 'utf8mb4':
charset = 'utf8'
if charset is not None:
self.charset = charset
else:
self.charset = 'utf8'
self.charset_id = CharacterSet.get_charset_info(self.charset)[0]
def set_unicode(self, value=True):
self.use_unicode = value
def to_mysql(self, value):
type_name = value.__class__.__name__.lower()
try:
if isinstance(value, tuple):
value_count = len(list(value))
if value_count == 1:
for item in value:
return "(" + str(item) + ")"
else:
value = value[:value_count]
return value
return getattr(self, "_{0}_to_mysql".format(type_name))(value)
except AttributeError:
return value
def to_python(self, vtype, value):
if (value == b'\x00' or value is None) and vtype[1] != FieldType.BIT:
return None
if not self._cache_field_types:
self._cache_field_types = {}
for name, info in FieldType.desc.items():
try:
self._cache_field_types[info[0]] = getattr(
self, '_{0}_to_python'.format(name))
except AttributeError:
pass
try:
return self._cache_field_types[vtype[1]](value, vtype)
except KeyError:
return value
|
MIT License
|
pwwang/datar
|
datar/dplyr/order_by.py
|
with_order
|
python
|
def with_order(
order: Iterable[Any],
func: Callable,
x: Iterable[Any],
*args: Any,
**kwargs: Any,
) -> Series:
x = order_by(order, x)
out = func(x, *args, **kwargs)
if isinstance(out, Series):
out = out.reset_index(drop=True)
return order_by(order, out)
|
Control argument and result of a window function
Examples:
>>> with_order([5,4,3,2,1], cumsum, [1,2,3,4,5])
>>> # 15, 14, 12, 9, 5
Args:
order: An iterable to order the arugment and result
func: The window function
x: The first arugment for the function
*args: and
**kwargs: Other arugments for the function
Returns:
A Seroes of ordered result
|
https://github.com/pwwang/datar/blob/4e2b5db026ad35918954576badef9951928c0cb1/datar/dplyr/order_by.py#L53-L82
|
from typing import Callable, Iterable, Any, Sequence
from pandas import Series
from pipda import register_func
from ..core.contexts import Context
from ..core.types import is_scalar
@register_func(None, context=Context.EVAL)
def order_by(
order: Sequence[Any],
data: Sequence[Any],
) -> Series:
if is_scalar(order):
order = [order]
if is_scalar(data):
data = [data]
order = Series(order) if len(order) > 1 else Series(order, dtype=object)
order = order.sort_values()
out = Series(data) if len(data) > 1 else Series(data, dtype=object)
return out[order.index]
@register_func(None, context=Context.EVAL)
|
MIT License
|
tensorflow/tensor2tensor
|
tensor2tensor/models/research/vqa_self_attention.py
|
iterative_encoder_decoder
|
python
|
def iterative_encoder_decoder(encoder_input,
encoder_self_attention_bias,
encoder_decoder_attention_bias,
query,
hparams):
for _ in range(hparams.num_rec_steps):
with tf.variable_scope("step", reuse=tf.AUTO_REUSE):
encoder_output = image_question_encoder(
encoder_input,
encoder_self_attention_bias,
hparams,
query)
decoder_output = decoder(
query,
encoder_output,
None,
encoder_decoder_attention_bias,
hparams)
encoder_input = encoder_output
query = decoder_output
return decoder_output
|
Iterative encoder decoder.
|
https://github.com/tensorflow/tensor2tensor/blob/c22a226704e5887862bf9edd9f269892c9016ad4/tensor2tensor/models/research/vqa_self_attention.py#L654-L678
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
from tensor2tensor.layers import common_attention
from tensor2tensor.layers import common_hparams
from tensor2tensor.layers import common_layers
from tensor2tensor.layers import vqa_layers
from tensor2tensor.models.research import vqa_attention
from tensor2tensor.utils import registry
import tensorflow.compat.v1 as tf
from tensorflow.contrib.layers.python.layers import utils
@registry.register_model
class VqaSelfAttention(vqa_attention.VqaAttentionBaseline):
def body(self, features):
hp = self.hparams
if hp.image_input_type == "image":
image_feat = vqa_layers.image_embedding(
features["inputs"],
model_fn=eval(hp.image_model_fn),
trainable=hp.train_resnet,
is_training=hp.mode == tf.estimator.ModeKeys.TRAIN)
else:
image_feat = features["inputs"]
image_feat = common_layers.flatten4d3d(image_feat)
image_hidden_size = hp.image_hidden_size or hp.hidden_size
if hp.image_feat_preprocess_proj:
image_feat = common_layers.dense(image_feat, image_hidden_size)
utils.collect_named_outputs("norms", "image_feat_after_proj",
tf.norm(image_feat, axis=-1))
else:
assert image_hidden_size == 2048
image_feat = tf.nn.dropout(
image_feat, keep_prob=1.-hp.layer_prepostprocess_dropout)
if hp.image_feat_encode:
image_feat = image_encoder(image_feat, hp)
utils.collect_named_outputs("norms", "image_feat_encoded",
tf.norm(image_feat, axis=-1))
else:
image_feat = common_layers.layer_norm(image_feat)
utils.collect_named_outputs("norms", "image_feat_after_layer",
tf.norm(image_feat, axis=-1))
question = common_layers.flatten4d3d(features["question"])
utils.collect_named_outputs("norms", "question_embedding",
tf.norm(question, axis=-1))
question, question_self_attention_bias = prepare_question_encoder(
question, hp)
question = tf.nn.dropout(
question, keep_prob=1.-hp.layer_prepostprocess_dropout)
query = question_encoder(question, question_self_attention_bias, hp)
utils.collect_named_outputs(
"norms", "query_encode", tf.norm(query, axis=-1))
query = (query + tf.expand_dims(
tf.squeeze(question_self_attention_bias, [1, 2]), axis=2))
query = tf.reduce_max(query, axis=1)
utils.collect_named_outputs(
"norms", "query_maxpool", tf.norm(query, axis=-1))
image_ave = attn(image_feat, query, hp)
utils.collect_named_outputs("norms", "image_ave",
tf.norm(image_ave, axis=-1))
if hp.multimodal_combine == "concat":
image_question = tf.concat([image_ave, query], axis=1)
elif hp.multimodal_combine == "sum":
image_question = image_ave + query
elif hp.multimodal_combine == "product":
image_question = image_ave * query
utils.collect_named_outputs("norms", "image_question",
tf.norm(image_question, axis=-1))
image_question = tf.nn.dropout(image_question, 1. - hp.dropout)
output = mlp(image_question, hp)
utils.collect_named_outputs("norms", "output",
tf.norm(output, axis=-1))
norm_tensors = utils.convert_collection_to_dict("norms")
vqa_layers.summarize_tensors(norm_tensors, tag="norms/")
return tf.expand_dims(tf.expand_dims(output, axis=1), axis=2)
@registry.register_model
class VqaCombinedSelfAttention(VqaSelfAttention):
def body(self, features):
hp = self.hparams
if hp.image_input_type == "image":
image_feat = vqa_layers.image_embedding(
features["inputs"],
model_fn=eval(hp.image_model_fn),
trainable=hp.train_resnet,
is_training=hp.mode == tf.estimator.ModeKeys.TRAIN)
else:
image_feat = features["inputs"]
image_feat = common_layers.flatten4d3d(image_feat)
image_hidden_size = hp.hidden_size
image_feat = common_layers.dense(image_feat, image_hidden_size)
utils.collect_named_outputs("norms", "image_feat_after_proj",
tf.norm(image_feat, axis=-1))
question = common_layers.flatten4d3d(features["question"])
utils.collect_named_outputs("norms", "question_embedding",
tf.norm(question, axis=-1))
(encoder_input, encoder_self_attention_bias,
encoder_decoder_attention_bias) = prepare_image_question_encoder(
image_feat, question, hp)
encoder_input = tf.nn.dropout(
encoder_input, keep_prob=1.-hp.layer_prepostprocess_dropout)
encoder_output = image_question_encoder(
encoder_input, encoder_self_attention_bias, hp)
utils.collect_named_outputs(
"norms", "encoder_output", tf.norm(encoder_output, axis=-1))
query = tf.get_variable("query", [hp.hidden_size]) * hp.hidden_size **0.5
query = tf.expand_dims(tf.expand_dims(query, axis=0), axis=0)
batch_size = common_layers.shape_list(encoder_input)[0]
query = tf.tile(query, [batch_size, 1, 1])
query = tf.nn.dropout(
query, keep_prob=1.-hp.layer_prepostprocess_dropout)
decoder_output = decoder(
query, encoder_output, None, encoder_decoder_attention_bias, hp)
utils.collect_named_outputs("norms", "decoder_output",
tf.norm(decoder_output, axis=-1))
norm_tensors = utils.convert_collection_to_dict("norms")
vqa_layers.summarize_tensors(norm_tensors, tag="norms/")
return tf.expand_dims(decoder_output, axis=1)
@registry.register_model
class VqaIterativeCombinedSelfAttention(VqaSelfAttention):
def body(self, features):
hp = self.hparams
if hp.image_input_type == "image":
image_feat = vqa_layers.image_embedding(
features["inputs"],
model_fn=eval(hp.image_model_fn),
trainable=hp.train_resnet,
is_training=hp.mode == tf.estimator.ModeKeys.TRAIN)
else:
image_feat = features["inputs"]
image_feat = common_layers.flatten4d3d(image_feat)
image_hidden_size = hp.hidden_size
image_feat = common_layers.dense(image_feat, image_hidden_size)
utils.collect_named_outputs("norms", "image_feat_after_proj",
tf.norm(image_feat, axis=-1))
question = common_layers.flatten4d3d(features["question"])
utils.collect_named_outputs("norms", "question_embedding",
tf.norm(question, axis=-1))
(encoder_input, encoder_self_attention_bias,
encoder_decoder_attention_bias) = prepare_image_question_encoder(
image_feat, question, hp)
encoder_input = tf.nn.dropout(
encoder_input, keep_prob=1.-hp.layer_prepostprocess_dropout)
query = tf.get_variable("query", [hp.hidden_size]) * hp.hidden_size **0.5
query = tf.expand_dims(tf.expand_dims(query, axis=0), axis=0)
batch_size = common_layers.shape_list(encoder_input)[0]
query = tf.tile(query, [batch_size, 1, 1])
query = tf.nn.dropout(
query, keep_prob=1.-hp.layer_prepostprocess_dropout)
decoder_output = iterative_encoder_decoder(
encoder_input,
encoder_self_attention_bias,
encoder_decoder_attention_bias,
query,
hp)
utils.collect_named_outputs("norms", "decoder_output",
tf.norm(decoder_output, axis=-1))
norm_tensors = utils.convert_collection_to_dict("norms")
vqa_layers.summarize_tensors(norm_tensors, tag="norms/")
return tf.expand_dims(decoder_output, axis=1)
def image_encoder(image_feat,
hparams,
name="image_encoder",
save_weights_to=None,
make_image_summary=True):
x = image_feat
image_hidden_size = hparams.image_hidden_size or hparams.hidden_size
image_filter_size = hparams.image_filter_size or hparams.filter_size
with tf.variable_scope(name):
for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % layer):
with tf.variable_scope("self_attention"):
y = vqa_layers.multihead_attention(
common_layers.layer_preprocess(x, hparams),
None,
None,
hparams.attention_key_channels or image_hidden_size,
hparams.attention_value_channels or image_hidden_size,
image_hidden_size,
hparams.num_heads,
hparams.attention_dropout,
attention_type=hparams.image_self_attention_type,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary,
scale_dotproduct=hparams.scale_dotproduct,
)
utils.collect_named_outputs(
"norms", "image_feat_self_attention_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "image_feat_self_attention_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
with tf.variable_scope("ffn"):
y = common_layers.dense_relu_dense(
common_layers.layer_preprocess(x, hparams),
image_filter_size,
image_hidden_size,
dropout=hparams.relu_dropout,
)
utils.collect_named_outputs(
"norms", "image_feat_ffn_%d"%(layer), tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "image_feat_ffn_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
return common_layers.layer_preprocess(x, hparams)
def prepare_question_encoder(inputs, hparams):
encoder_input = inputs
encoder_padding = common_attention.embedding_to_padding(encoder_input)
ignore_padding = common_attention.attention_bias_ignore_padding(
encoder_padding)
encoder_self_attention_bias = ignore_padding
if hparams.pos == "timing":
encoder_input = common_attention.add_timing_signal_1d(encoder_input)
elif hparams.pos == "emb":
encoder_input = common_attention.add_positional_embedding(
encoder_input, hparams.max_length, "inputs_positional_embedding",
None)
return (encoder_input, encoder_self_attention_bias)
def question_encoder(question,
question_self_attention_bias,
hparams,
name="question_encoder",
save_weights_to=None,
make_image_summary=True):
x = question
with tf.variable_scope(name):
for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % layer):
with tf.variable_scope("self_attention"):
y = vqa_layers.multihead_attention(
common_layers.layer_preprocess(x, hparams),
None,
question_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size,
hparams.num_heads,
hparams.attention_dropout,
attention_type=hparams.question_self_attention_type,
block_length=hparams.block_length,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary,
scale_dotproduct=hparams.scale_dotproduct,
)
utils.collect_named_outputs(
"norms", "query_self_attention_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "query_self_attention_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
with tf.variable_scope("ffn"):
y = common_layers.dense_relu_dense(
common_layers.layer_preprocess(x, hparams),
hparams.filter_size,
hparams.hidden_size,
dropout=hparams.relu_dropout,
)
utils.collect_named_outputs(
"norms", "query_ffn_%d"%(layer), tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "query_ffn_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
return common_layers.layer_preprocess(x, hparams)
def attn(image_feat,
query,
hparams,
name="attn",
save_weights_to=None,
make_image_summary=True):
with tf.variable_scope(name, "attn", values=[image_feat, query]):
total_key_depth = hparams.attention_key_channels or hparams.hidden_size
total_value_depth = hparams.attention_value_channels or hparams.hidden_size
num_heads = hparams.num_heads
query = tf.expand_dims(query, 1)
q, k, v = common_attention.compute_qkv(
query,
image_feat,
total_key_depth,
total_value_depth,
)
q = common_attention.split_heads(q, num_heads)
k = common_attention.split_heads(k, num_heads)
v = common_attention.split_heads(v, num_heads)
if hparams.scale_dotproduct:
key_depth_per_head = total_key_depth // num_heads
q *= key_depth_per_head**-0.5
x = common_attention.dot_product_attention(
q, k, v, None,
dropout_rate=hparams.attention_dropout,
image_shapes=None,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary)
x = common_attention.combine_heads(x)
return tf.squeeze(x, axis=1)
def mlp(feature, hparams, name="mlp"):
with tf.variable_scope(name, "mlp", values=[feature]):
num_mlp_layers = hparams.num_mlp_layers
mlp_size = hparams.mlp_size
for _ in range(num_mlp_layers):
feature = common_layers.dense(feature, mlp_size, activation=None)
utils.collect_named_outputs("norms", "mlp_feature",
tf.norm(feature, axis=-1))
feature = common_layers.layer_norm(feature)
feature = tf.nn.relu(feature)
feature = tf.nn.dropout(feature, keep_prob=1.-hparams.dropout)
return feature
def prepare_image_question_encoder(image_feat, question, hparams):
encoder_input = tf.concat([image_feat, question], axis=1)
encoder_padding = common_attention.embedding_to_padding(encoder_input)
ignore_padding = common_attention.attention_bias_ignore_padding(
encoder_padding)
encoder_self_attention_bias = ignore_padding
encoder_decoder_attention_bias = ignore_padding
if hparams.pos == "timing":
question = common_attention.add_timing_signal_1d(question)
elif hparams.pos == "emb":
question = common_attention.add_positional_embedding(
question, hparams.max_length, "inputs_positional_embedding",
None)
encoder_input = tf.concat([image_feat, question], axis=1)
return (encoder_input, encoder_self_attention_bias,
encoder_decoder_attention_bias)
def image_question_encoder(encoder_inputs,
encoder_self_attention_bias,
hparams,
query=None,
name="image_question_encoder",
save_weights_to=None,
make_image_summary=True):
x = encoder_inputs
with tf.variable_scope(name):
for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % layer):
with tf.variable_scope("self_attention"):
y = vqa_layers.multihead_attention(
common_layers.layer_preprocess(x, hparams),
None,
encoder_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size,
hparams.num_heads,
hparams.attention_dropout,
attention_type=hparams.self_attention_type,
block_length=hparams.block_length,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary,
scale_dotproduct=hparams.scale_dotproduct,
)
utils.collect_named_outputs(
"norms", "encoder_self_attention_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "encoder_self_attention_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
if query is not None:
with tf.variable_scope("encdec_attention"):
y = common_attention.multihead_attention(
common_layers.layer_preprocess(x, hparams),
query,
None,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size,
hparams.num_heads,
hparams.attention_dropout,
attention_type=hparams.self_attention_type,
block_length=hparams.block_length,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary,
scale_dotproduct=hparams.scale_dotproduct,
)
utils.collect_named_outputs(
"norms",
"encoder_decoder_attention_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms",
"encoder_decoder_attention_post_%d"%(layer),
tf.norm(x, axis=-1))
with tf.variable_scope("ffn"):
y = common_layers.dense_relu_dense(
common_layers.layer_preprocess(x, hparams),
hparams.filter_size,
hparams.hidden_size,
dropout=hparams.relu_dropout,
)
utils.collect_named_outputs(
"norms", "encoder_ffn_%d"%(layer), tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms", "encoder_ffn_postprocess_%d"%(layer),
tf.norm(x, axis=-1))
return common_layers.layer_preprocess(x, hparams)
def decoder(decoder_input,
encoder_output,
decoder_self_attention_bias,
encoder_decoder_attention_bias,
hparams,
name="decoder",
save_weights_to=None,
make_image_summary=True,):
x = decoder_input
with tf.variable_scope(name):
for layer in range(hparams.num_decoder_layers or hparams.num_hidden_layers):
layer_name = "layer_%d" % layer
with tf.variable_scope(layer_name):
with tf.variable_scope("self_attention"):
y = common_attention.multihead_attention(
common_layers.layer_preprocess(x, hparams),
None,
decoder_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size,
hparams.num_heads,
hparams.attention_dropout,
attention_type=hparams.self_attention_type,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary,
)
utils.collect_named_outputs("norms",
"decoder_self_attention_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs("norms",
"decoder_self_attention_post_%d"%(layer),
tf.norm(x, axis=-1))
if encoder_output is not None:
with tf.variable_scope("encdec_attention"):
y = common_attention.multihead_attention(
common_layers.layer_preprocess(x, hparams),
encoder_output,
encoder_decoder_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size,
hparams.num_heads,
hparams.attention_dropout,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary,
)
utils.collect_named_outputs(
"norms",
"decoder_encoder_attention_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs(
"norms",
"decoder_encoder_attention_post_%d"%(layer),
tf.norm(x, axis=-1))
with tf.variable_scope("ffn"):
y = common_layers.dense_relu_dense(
common_layers.layer_preprocess(x, hparams),
hparams.filter_size,
hparams.hidden_size,
dropout=hparams.relu_dropout,
)
utils.collect_named_outputs("norms", "decoder_ffn_%d"%(layer),
tf.norm(y, axis=-1))
x = common_layers.layer_postprocess(x, y, hparams)
utils.collect_named_outputs("norms", "decoder_ffn_post_%d"%(layer),
tf.norm(x, axis=-1))
return common_layers.layer_preprocess(x, hparams)
|
Apache License 2.0
|
xrplf/xrpl-py
|
xrpl/core/binarycodec/types/currency.py
|
Currency.__init__
|
python
|
def __init__(self: Currency, buffer: Optional[bytes] = None) -> None:
if buffer is not None:
super().__init__(buffer)
else:
super().__init__(bytes(self.LENGTH))
code_bytes = self.buffer[12:15]
if self.buffer[0] != 0:
self._iso = None
elif code_bytes.hex() == "000000":
self._iso = "XRP"
else:
self._iso = _iso_code_from_hex(code_bytes)
|
Construct a Currency.
|
https://github.com/xrplf/xrpl-py/blob/3635339bfb579353e56f126bbcf303d931b26d65/xrpl/core/binarycodec/types/currency.py#L76-L93
|
from __future__ import annotations
from typing import Optional, Type
from typing_extensions import Final
from xrpl.constants import HEX_CURRENCY_REGEX, ISO_CURRENCY_REGEX
from xrpl.core.binarycodec.exceptions import XRPLBinaryCodecException
from xrpl.core.binarycodec.types.hash160 import Hash160
_CURRENCY_CODE_LENGTH: Final[int] = 20
def _is_iso_code(value: str) -> bool:
return bool(ISO_CURRENCY_REGEX.fullmatch(value))
def _iso_code_from_hex(value: bytes) -> Optional[str]:
candidate_iso = value.decode("ascii")
if candidate_iso == "XRP":
raise XRPLBinaryCodecException(
"Disallowed currency code: to indicate the currency "
"XRP you must use 20 bytes of 0s"
)
if _is_iso_code(candidate_iso):
return candidate_iso
return None
def _is_hex(value: str) -> bool:
return bool(HEX_CURRENCY_REGEX.fullmatch(value))
def _iso_to_bytes(iso: str) -> bytes:
if not _is_iso_code(iso):
raise XRPLBinaryCodecException(f"Invalid ISO code: {iso}")
if iso == "XRP":
return bytes(_CURRENCY_CODE_LENGTH)
iso_bytes = iso.encode("ASCII")
return bytes(12) + iso_bytes + bytes(5)
class Currency(Hash160):
LENGTH: Final[int] = 20
_iso: Optional[str] = None
|
ISC License
|
mlflow/mlflow
|
mlflow/azureml/__init__.py
|
build_image
|
python
|
def build_image(
model_uri,
workspace,
image_name=None,
model_name=None,
mlflow_home=None,
description=None,
tags=None,
synchronous=True,
):
from azureml.core.image import ContainerImage
from azureml.core.model import Model as AzureModel
absolute_model_path = _download_artifact_from_uri(model_uri)
model_pyfunc_conf, _ = _load_pyfunc_conf_with_model(model_path=absolute_model_path)
model_python_version = model_pyfunc_conf.get(pyfunc.PY_VERSION, None)
if model_python_version is not None and Version(model_python_version) < Version("3.0.0"):
raise MlflowException(
message=(
"Azure ML can only deploy models trained in Python 3 and above. See"
" the following MLflow GitHub issue for a thorough explanation of this"
" limitation and a workaround to enable support for deploying models"
" trained in Python 2: https://github.com/mlflow/mlflow/issues/668"
),
error_code=INVALID_PARAMETER_VALUE,
)
tags = _build_tags(
model_uri=model_uri, model_python_version=model_python_version, user_tags=tags
)
if image_name is None:
image_name = _get_mlflow_azure_resource_name()
if model_name is None:
model_name = _get_mlflow_azure_resource_name()
with TempDir(chdr=True) as tmp:
model_directory_path = tmp.path("model")
tmp_model_path = os.path.join(
model_directory_path,
_copy_file_or_tree(src=absolute_model_path, dst=model_directory_path),
)
registered_model = AzureModel.register(
workspace=workspace,
model_path=tmp_model_path,
model_name=model_name,
tags=tags,
description=description,
)
_logger.info(
"Registered an Azure Model with name: `%s` and version: `%s`",
registered_model.name,
registered_model.version,
)
execution_script_path = tmp.path("execution_script.py")
_create_execution_script(output_path=execution_script_path, azure_model=registered_model)
execution_script_path = os.path.basename(execution_script_path)
if mlflow_home is not None:
_logger.info(
"Copying the specified mlflow_home directory: `%s` to a temporary location for"
" container creation",
mlflow_home,
)
mlflow_home = os.path.join(
tmp.path(), _copy_project(src_path=mlflow_home, dst_path=tmp.path())
)
image_file_dependencies = [mlflow_home]
else:
image_file_dependencies = None
dockerfile_path = tmp.path("Dockerfile")
_create_dockerfile(output_path=dockerfile_path, mlflow_path=mlflow_home)
conda_env_path = None
if pyfunc.ENV in model_pyfunc_conf:
conda_env_path = os.path.join(tmp_model_path, model_pyfunc_conf[pyfunc.ENV])
image_configuration = ContainerImage.image_configuration(
execution_script=execution_script_path,
runtime="python",
docker_file=dockerfile_path,
dependencies=image_file_dependencies,
conda_file=conda_env_path,
description=description,
tags=tags,
)
image = ContainerImage.create(
workspace=workspace,
name=image_name,
image_config=image_configuration,
models=[registered_model],
)
_logger.info(
"Building an Azure Container Image with name: `%s` and version: `%s`",
image.name,
image.version,
)
if synchronous:
image.wait_for_creation(show_output=True)
return image, registered_model
|
Register an MLflow model with Azure ML and build an Azure ML ContainerImage for deployment.
The resulting image can be deployed as a web service to Azure Container Instances (ACI) or
Azure Kubernetes Service (AKS).
The resulting Azure ML ContainerImage will contain a webserver that processes model queries.
For information about the input data formats accepted by this webserver, see the
:ref:`MLflow deployment tools documentation <azureml_deployment>`.
:param model_uri: The location, in URI format, of the MLflow model used to build the Azure
ML deployment image. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
- ``models:/<model_name>/<model_version>``
- ``models:/<model_name>/<stage>``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html#
artifact-locations>`_.
:param image_name: The name to assign the Azure Container Image that will be created. If
unspecified, a unique image name will be generated.
:param model_name: The name to assign the Azure Model will be created. If unspecified,
a unique model name will be generated.
:param workspace: The AzureML workspace in which to build the image. This is a
`azureml.core.Workspace` object.
:param mlflow_home: Path to a local copy of the MLflow GitHub repository. If specified, the
image will install MLflow from this directory. Otherwise, it will install
MLflow from pip.
:param description: A string description to associate with the Azure Container Image and the
Azure Model that will be created. For more information, see
`<https://docs.microsoft.com/en-us/python/api/azureml-core/
azureml.core.image.container.containerimageconfig?view=azure-ml-py>`_ and
`<https://docs.microsoft.com/en-us/python/api/azureml-core/
azureml.core.model.model?view=azure-ml-py#register>`_.
:param tags: A collection of tags, represented as a dictionary of string key-value pairs, to
associate with the Azure Container Image and the Azure Model that will be created.
These tags are added to a set of default tags that include the model uri,
and more. For more information, see
`<https://docs.microsoft.com/en-us/python/api/azureml-core/
azureml.core.image.container.containerimageconfig?view-azure-ml-py>`_ and
`<https://docs.microsoft.com/en-us/python/api/azureml-core/
azureml.core.model.model?view=azure-ml-py#register>`_.
:param synchronous: If ``True``, this method blocks until the image creation procedure
terminates before returning. If ``False``, the method returns immediately,
but the returned image will not be available until the asynchronous
creation process completes. Use the
``azureml.core.Image.wait_for_creation()`` function to wait for the creation
process to complete.
:return: A tuple containing the following elements in order:
- An ``azureml.core.image.ContainerImage`` object containing metadata for the new image.
- An ``azureml.core.model.Model`` object containing metadata for the new model.
.. code-block:: python
:caption: Example
import mlflow.azureml
from azureml.core import Workspace
from azureml.core.webservice import AciWebservice, Webservice
# Load or create an Azure ML Workspace
workspace_name = "<Name of your Azure ML workspace>"
subscription_id = "<Your Azure subscription ID>"
resource_group = "<Name of the Azure resource group in which to create Azure ML resources>"
location = "<Name of the Azure location (region) in which to create Azure ML resources>"
azure_workspace = Workspace.create(name=workspace_name,
subscription_id=subscription_id,
resource_group=resource_group,
location=location,
create_resource_group=True,
exist_ok=True)
# Build an Azure ML Container Image for an MLflow model
azure_image, azure_model = mlflow.azureml.build_image(model_uri="<model_uri>",
workspace=azure_workspace,
synchronous=True)
# If your image build failed, you can access build logs at the following URI:
print("Access the following URI for build logs: {}".format(azure_image.image_build_log_uri))
# Deploy the image to Azure Container Instances (ACI) for real-time serving
webservice_deployment_config = AciWebservice.deploy_configuration()
webservice = Webservice.deploy_from_image(
image=azure_image, workspace=azure_workspace, name="<deployment-name>")
webservice.wait_for_deployment()
|
https://github.com/mlflow/mlflow/blob/c4b8e849a3c718575e106f3499a12bea9b0b821e/mlflow/azureml/__init__.py#L32-L237
|
import sys
import os
import subprocess
import logging
import uuid
from packaging.version import Version
from mlflow import get_tracking_uri, get_registry_uri
from mlflow import pyfunc
from mlflow import register_model as mlflow_register_model
from mlflow.exceptions import MlflowException
from mlflow.models import Model
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.protos.databricks_pb2 import INVALID_PARAMETER_VALUE
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils import get_unique_resource_id
from mlflow.utils.annotations import deprecated
from mlflow.utils.file_utils import TempDir, _copy_file_or_tree, _copy_project
from mlflow.version import VERSION as mlflow_version
from pathlib import Path
_logger = logging.getLogger(__name__)
@deprecated("the azureml deployment plugin, https://aka.ms/aml-mlflow-deploy", since="1.19.0")
|
Apache License 2.0
|
chaffelson/whoville
|
whoville/cloudbreak/models/blueprint_details.py
|
BlueprintDetails.blueprint_name
|
python
|
def blueprint_name(self):
return self._blueprint_name
|
Gets the blueprint_name of this BlueprintDetails.
:return: The blueprint_name of this BlueprintDetails.
:rtype: str
|
https://github.com/chaffelson/whoville/blob/f71fda629c9fd50d0a482120165ea5abcc754522/whoville/cloudbreak/models/blueprint_details.py#L135-L142
|
from pprint import pformat
from six import iteritems
import re
class BlueprintDetails(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'id': 'int',
'name': 'str',
'description': 'str',
'blueprint_name': 'str',
'blueprint_json': 'str'
}
attribute_map = {
'id': 'id',
'name': 'name',
'description': 'description',
'blueprint_name': 'blueprintName',
'blueprint_json': 'blueprintJson'
}
def __init__(self, id=None, name=None, description=None, blueprint_name=None, blueprint_json=None):
self._id = None
self._name = None
self._description = None
self._blueprint_name = None
self._blueprint_json = None
if id is not None:
self.id = id
if name is not None:
self.name = name
if description is not None:
self.description = description
if blueprint_name is not None:
self.blueprint_name = blueprint_name
if blueprint_json is not None:
self.blueprint_json = blueprint_json
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def description(self):
return self._description
@description.setter
def description(self, description):
self._description = description
@property
|
Apache License 2.0
|
meteomatics/python-connector-api
|
meteomatics/api.py
|
query_grid_png
|
python
|
def query_grid_png(filename, startdate, parameter_grid, lat_N, lon_W, lat_S, lon_E, res_lat, res_lon, username,
password, model=None, ens_select=None, interp_select=None, api_base_url=DEFAULT_API_BASE_URL,
request_type='GET'):
startdate = sanitize_datetime(startdate)
url_params = dict()
url_params['connector'] = VERSION
if model is not None:
url_params['model'] = model
if ens_select is not None:
url_params['ens_select'] = ens_select
if interp_select is not None:
url_params['interp_select'] = interp_select
url = GRID_PNG_TEMPLATE.format(
api_base_url=api_base_url,
startdate=startdate.isoformat(),
parameter_grid=parameter_grid,
lat_N=lat_N,
lon_W=lon_W,
lat_S=lat_S,
lon_E=lon_E,
res_lat=res_lat,
res_lon=res_lon,
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params.items()])
)
headers = {'Accept': 'image/png'}
response = query_api(url, username, password, request_type=request_type, headers=headers)
with open(filename, 'wb') as f:
_logger.debug('Create File {}'.format(filename))
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
return
|
Gets a png image generated by the Meteomatics API from grid data (see method query_grid)
and saves it to the specified filename.
request_type is one of 'GET'/'POST'
|
https://github.com/meteomatics/python-connector-api/blob/755df82f84b2c3aef5ed8382ae778d69a3a89b43/meteomatics/api.py#L552-L598
|
from __future__ import print_function
import itertools
import logging
import os
import warnings
from functools import wraps
from io import StringIO
import isodate
import pandas as pd
import requests
from urllib3.exceptions import InsecureRequestWarning
from ._constants_ import DEFAULT_API_BASE_URL, VERSION, TIME_SERIES_TEMPLATE, GRID_TEMPLATE, POLYGON_TEMPLATE, GRID_TIME_SERIES_TEMPLATE, GRID_PNG_TEMPLATE, LIGHTNING_TEMPLATE, NETCDF_TEMPLATE, STATIONS_LIST_TEMPLATE, INIT_DATE_TEMPLATE, AVAILABLE_TIME_RANGES_TEMPLATE, NA_VALUES, LOGGERNAME
from .binary_parser import BinaryParser
from .binary_reader import BinaryReader
from .exceptions import API_EXCEPTIONS, WeatherApiException
from .parsing_util import all_entries_postal, build_coordinates_str_for_polygon, build_coordinates_str, build_coordinates_str_from_postal_codes, build_response_params, convert_grid_binary_response_to_df, convert_lightning_response_to_df, convert_polygon_response_to_df, parse_date_num, extract_user_statistics, parse_ens, parse_query_station_params, parse_query_station_timeseries_params, parse_time_series_params, parse_url_for_post_data, localize_datenum, sanitize_datetime, set_index_for_ts
_logger = logging.getLogger(LOGGERNAME)
class Config:
_config = {
"VERIFY_SSL": True
}
@staticmethod
def get(item):
return Config._config[item]
@staticmethod
def set(key, value):
if key not in Config._config.keys():
raise KeyError("Key '{}' does not exist.".format(key))
Config._config[key] = value
def handle_ssl(func):
@wraps(func)
def wrapper(*args, **kwargs):
if not Config.get("VERIFY_SSL"):
with warnings.catch_warnings():
warnings.simplefilter('ignore', InsecureRequestWarning)
return func(*args, verify=False, **kwargs)
return func(*args, **kwargs)
return wrapper
@handle_ssl
def get_request(*args, **kwargs):
return requests.get(*args, **kwargs)
@handle_ssl
def post_request(*args, **kwargs):
return requests.post(*args, **kwargs)
def create_path(_file):
_path = os.path.dirname(_file)
if not os.path.exists(_path) and len(_path) > 0:
_logger.info("Create Path: {}".format(_path))
os.makedirs(_path)
def query_api(url, username, password, request_type="GET", timeout_seconds=300,
headers={'Accept': 'application/octet-stream'}):
if request_type.lower() == "get":
_logger.debug("Calling URL: {} (username = {})".format(url, username))
response = get_request(url, timeout=timeout_seconds, auth=(username, password), headers=headers)
elif request_type.lower() == "post":
url, data = parse_url_for_post_data(url)
_logger.debug("Calling URL: {} (username = {})".format(url, username))
headers['Content-Type'] = "text/plain"
response = post_request(url, timeout=timeout_seconds, auth=(username, password), headers=headers, data=data)
else:
raise ValueError('Unknown request_type: {}.'.format(request_type))
if response.status_code != requests.codes.ok:
exc = API_EXCEPTIONS[response.status_code]
raise exc(response.text)
return response
def query_user_features(username, password):
response = get_request(DEFAULT_API_BASE_URL + '/user_stats_json', auth=(username, password))
if response.status_code != requests.codes.ok:
exc = API_EXCEPTIONS[response.status_code]
raise exc(response.text)
return extract_user_statistics(response)
def convert_time_series_binary_response_to_df(bin_input, coordinate_list, parameters, station=False,
na_values=NA_VALUES):
binary_parser = BinaryParser(BinaryReader(bin_input), na_values)
df = binary_parser.parse(parameters, station, coordinate_list)
df = df.apply(lambda col: parse_date_num(col) if col.name.endswith(":sql") else col)
df = set_index_for_ts(df, station, coordinate_list)
return df
def query_station_list(username, password, source=None, parameters=None, startdate=None, enddate=None, location=None,
api_base_url=DEFAULT_API_BASE_URL, request_type='GET', elevation=None, id=None):
url_params_dict = parse_query_station_params(source, parameters, startdate, enddate, location, elevation, id)
url = STATIONS_LIST_TEMPLATE.format(
api_base_url=api_base_url,
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params_dict.items()])
)
response = query_api(url, username, password, request_type=request_type)
sl = pd.read_csv(StringIO(response.text), sep=";")
sl['lat'] = sl['Location Lat,Lon'].apply(lambda x: float(x.split(",")[0]))
sl['lon'] = sl['Location Lat,Lon'].apply(lambda x: float(x.split(",")[1]))
sl.drop('Location Lat,Lon', 1, inplace=True)
return sl
def query_station_timeseries(startdate, enddate, interval, parameters, username, password, model='mix-obs',
latlon_tuple_list=None, wmo_ids=None, mch_ids=None, general_ids=None, hash_ids=None,
metar_ids=None, temporal_interpolation=None, spatial_interpolation=None, on_invalid=None,
api_base_url=DEFAULT_API_BASE_URL, request_type='GET', na_values=NA_VALUES):
startdate = sanitize_datetime(startdate)
enddate = sanitize_datetime(enddate)
coordinates = build_coordinates_str(latlon_tuple_list, wmo_ids, metar_ids, mch_ids, general_ids, hash_ids)
url_params_dict = parse_query_station_timeseries_params(model, on_invalid, temporal_interpolation,
spatial_interpolation)
url = TIME_SERIES_TEMPLATE.format(
api_base_url=api_base_url,
coordinates=coordinates,
startdate=startdate.isoformat(),
enddate=enddate.isoformat(),
interval=isodate.duration_isoformat(interval),
parameters=",".join(parameters),
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params_dict.items()])
)
headers = {'Accept': 'text/csv'}
response = query_api(url, username, password, request_type=request_type, headers=headers)
coordinates_list = coordinates.split("+")
return convert_time_series_binary_response_to_df(response.content, coordinates_list, parameters,
station=True, na_values=na_values)
def query_special_locations_timeseries(startdate, enddate, interval, parameters, username, password, model='mix',
postal_codes=None, temporal_interpolation=None, spatial_interpolation=None,
on_invalid=None, api_base_url=DEFAULT_API_BASE_URL, request_type='GET',
na_values=NA_VALUES):
startdate = sanitize_datetime(startdate)
enddate = sanitize_datetime(enddate)
coordinates = build_coordinates_str_from_postal_codes(postal_codes)
url_params = parse_query_station_timeseries_params(model, on_invalid, temporal_interpolation, spatial_interpolation)
url = TIME_SERIES_TEMPLATE.format(
api_base_url=api_base_url,
coordinates=coordinates,
startdate=startdate.isoformat(),
enddate=enddate.isoformat(),
interval=isodate.duration_isoformat(interval),
parameters=",".join(parameters),
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params.items()])
)
headers = {'Accept': 'text/csv'}
response = query_api(url, username, password, request_type=request_type, headers=headers)
coordinates_list = coordinates.split("+")
return convert_time_series_binary_response_to_df(response.content, coordinates_list, parameters, station=True,
na_values=na_values)
def query_time_series(coordinate_list, startdate, enddate, interval, parameters, username, password, model=None,
ens_select=None, interp_select=None, on_invalid=None, api_base_url=DEFAULT_API_BASE_URL,
request_type='GET', cluster_select=None, na_values=NA_VALUES,
**kwargs):
startdate = sanitize_datetime(startdate)
enddate = sanitize_datetime(enddate)
extended_params = parameters if ens_select is None else build_response_params(parameters, parse_ens(ens_select))
url_params = parse_time_series_params(model, ens_select, cluster_select, interp_select, on_invalid, kwargs)
is_postal = all_entries_postal(coordinate_list)
coordinate_list_str = '+'.join(coordinate_list) if is_postal else "+".join(
["{},{}".format(*latlon_tuple) for latlon_tuple in coordinate_list])
url = TIME_SERIES_TEMPLATE.format(
api_base_url=api_base_url,
coordinates=coordinate_list_str,
startdate=startdate.isoformat(),
enddate=enddate.isoformat(),
interval=isodate.duration_isoformat(interval),
parameters=",".join(parameters),
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params.items()])
)
response = query_api(url, username, password, request_type=request_type)
df = convert_time_series_binary_response_to_df(response.content, coordinate_list, extended_params,
na_values=na_values)
return df
def query_grid(startdate, parameter_grid, lat_N, lon_W, lat_S, lon_E, res_lat, res_lon, username, password, model=None,
ens_select=None, interp_select=None, api_base_url=DEFAULT_API_BASE_URL, request_type='GET',
na_values=NA_VALUES,
**kwargs):
startdate = sanitize_datetime(startdate)
url_params = parse_time_series_params(model=model, ens_select=ens_select, cluster_select=None,
interp_select=interp_select, on_invalid=None, kwargs=kwargs)
url = GRID_TEMPLATE.format(
api_base_url=api_base_url,
startdate=startdate.isoformat(),
parameter_grid=parameter_grid,
lat_N=lat_N,
lon_W=lon_W,
lat_S=lat_S,
lon_E=lon_E,
res_lat=res_lat,
res_lon=res_lon,
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params.items()])
)
response = query_api(url, username, password, request_type=request_type)
return convert_grid_binary_response_to_df(response.content, parameter_grid, na_values=na_values)
def query_grid_unpivoted(valid_dates, parameters, lat_N, lon_W, lat_S, lon_E, res_lat, res_lon, username, password,
model=None, ens_select=None, interp_select=None, request_type='GET', na_values=NA_VALUES):
idxcols = ['valid_date', 'lat', 'lon']
vd_dfs = []
for valid_date in valid_dates:
vd_df = None
for parameter in parameters:
dmo = query_grid(valid_date, parameter, lat_N, lon_W, lat_S, lon_E, res_lat, res_lon, username, password,
model, ens_select, interp_select, request_type=request_type, na_values=na_values)
df = pd.melt(dmo.reset_index(), id_vars='lat', var_name='lon', value_name=parameter)
df['valid_date'] = valid_date
df.lat = df.lat.apply(float)
df.lon = df.lon.apply(float)
if vd_df is None:
vd_df = df
else:
vd_df = vd_df.merge(df, on=idxcols)
vd_dfs.append(vd_df)
data = pd.concat(vd_dfs)
try:
data.sort_values(idxcols, inplace=True)
except AttributeError:
data.sort(idxcols, inplace=True)
data.set_index(idxcols, inplace=True)
return data
def query_grid_timeseries(startdate, enddate, interval, parameters, lat_N, lon_W, lat_S, lon_E,
res_lat, res_lon, username, password, model=None, ens_select=None, interp_select=None,
on_invalid=None, api_base_url=DEFAULT_API_BASE_URL, request_type='GET', na_values=NA_VALUES):
startdate = sanitize_datetime(startdate)
enddate = sanitize_datetime(enddate)
url_params = parse_time_series_params(model=model, ens_select=ens_select, cluster_select=None,
interp_select=interp_select, on_invalid=on_invalid, kwargs=None)
url = GRID_TIME_SERIES_TEMPLATE.format(
api_base_url=api_base_url,
startdate=startdate.isoformat(),
enddate=enddate.isoformat(),
interval=isodate.duration_isoformat(interval),
lat_N=lat_N,
lon_W=lon_W,
lat_S=lat_S,
lon_E=lon_E,
res_lat=res_lat,
res_lon=res_lon,
parameters=",".join(parameters),
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params.items()])
)
response = query_api(url, username, password, request_type=request_type)
lats = arange(lat_S, lat_N, res_lat)
lons = arange(lon_W, lon_E, res_lon)
latlon_tuple_list = list(itertools.product(lats, lons))
df = convert_time_series_binary_response_to_df(response.content, latlon_tuple_list, parameters, na_values=na_values)
return df
def query_polygon(latlon_tuple_lists, startdate, enddate, interval, parameters, aggregation, username,
password, operator=None, model=None, ens_select=None, interp_select=None, on_invalid=None,
api_base_url=DEFAULT_API_BASE_URL, request_type='GET', cluster_select=None, **kwargs):
startdate = sanitize_datetime(startdate)
enddate = sanitize_datetime(enddate)
url_params_dict = parse_time_series_params(model=model, ens_select=ens_select, cluster_select=cluster_select,
interp_select=interp_select, on_invalid=on_invalid, kwargs=kwargs)
coordinates = build_coordinates_str_for_polygon(latlon_tuple_lists, aggregation, operator)
url = POLYGON_TEMPLATE.format(
api_base_url=api_base_url,
coordinates_aggregation=coordinates,
startdate=startdate.isoformat(),
enddate=enddate.isoformat(),
interval=isodate.duration_isoformat(interval),
parameters=",".join(parameters),
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params_dict.items()])
)
response = query_api(url, username, password, request_type=request_type)
df = convert_polygon_response_to_df(response.text)
return df
def query_lightnings(startdate, enddate, lat_N, lon_W, lat_S, lon_E, username, password,
api_base_url=DEFAULT_API_BASE_URL, request_type='GET'):
startdate = sanitize_datetime(startdate)
enddate = sanitize_datetime(enddate)
url = LIGHTNING_TEMPLATE.format(
api_base_url=api_base_url,
startdate=startdate.isoformat(),
enddate=enddate.isoformat(),
lat_N=lat_N,
lon_W=lon_W,
lat_S=lat_S,
lon_E=lon_E
)
headers = {'Accept': 'text/csv'}
response = query_api(url, username, password, request_type=request_type, headers=headers)
return convert_lightning_response_to_df(response.text)
def query_netcdf(filename, startdate, enddate, interval, parameter_netcdf, lat_N, lon_W, lat_S, lon_E, res_lat, res_lon,
username, password, model=None, ens_select=None, interp_select=None,
api_base_url=DEFAULT_API_BASE_URL, request_type='GET', cluster_select=None):
startdate = sanitize_datetime(startdate)
enddate = sanitize_datetime(enddate)
url_params_dict = parse_time_series_params(model=model, ens_select=ens_select, cluster_select=cluster_select,
interp_select=interp_select)
url = NETCDF_TEMPLATE.format(
api_base_url=api_base_url,
startdate=startdate.isoformat(),
enddate=enddate.isoformat(),
interval=isodate.duration_isoformat(interval),
parameter_netcdf=parameter_netcdf,
lat_N=lat_N,
lon_W=lon_W,
lat_S=lat_S,
lon_E=lon_E,
res_lat=res_lat,
res_lon=res_lon,
urlParams="&".join(["{}={}".format(k, v) for k, v in url_params_dict.items()])
)
headers = {'Accept': 'application/netcdf'}
response = query_api(url, username, password, request_type=request_type, headers=headers)
create_path(filename)
with open(filename, 'wb') as f:
_logger.debug('Create File {}'.format(filename))
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
return
def query_init_date(startdate, enddate, interval, parameter, username, password, model,
api_base_url=DEFAULT_API_BASE_URL):
startdate = sanitize_datetime(startdate)
enddate = sanitize_datetime(enddate)
interval_string = "{}--{}:{}".format(startdate.isoformat(),
enddate.isoformat(),
isodate.duration_isoformat(interval))
url = INIT_DATE_TEMPLATE.format(api_base_url=api_base_url,
model=model, interval_string=interval_string, parameter=parameter)
headers = {'Accept': 'text/csv'}
response = query_api(url, username, password, request_type='GET', headers=headers)
try:
df = pd.read_csv(
StringIO(response.text),
sep=";",
header=0,
encoding="utf-8",
index_col=0,
na_values=["0000-00-00T00:00:00Z"],
parse_dates=[0, 1]
)
except Exception:
raise WeatherApiException(response.text)
df = localize_datenum(df)
return df
def query_available_time_ranges(parameters, username, password, model, api_base_url=DEFAULT_API_BASE_URL):
url = AVAILABLE_TIME_RANGES_TEMPLATE.format(api_base_url=api_base_url,
model=model, parameters=",".join(parameters))
headers = {'Accept': 'text/csv'}
response = query_api(url, username, password, request_type='GET', headers=headers)
try:
df = pd.read_csv(
StringIO(response.text),
sep=";",
header=0,
encoding="utf-8",
index_col=0,
na_values=["0000-00-00T00:00:00Z"],
parse_dates=['min_date', 'max_date']
)
except Exception:
raise WeatherApiException(response.text)
return df
|
MIT License
|
harmon758/harmonbot
|
Discord/cogs/search.py
|
Search.baidu
|
python
|
async def baidu(self, ctx, *search: str):
await ctx.embed_reply(f"[Baidu search for \"{' '.join(search)}\"](http://www.baidu.com/s?wd={'+'.join(search)})")
|
Search with Baidu
|
https://github.com/harmon758/harmonbot/blob/def3849beabdaea5e0f9c594dcf6d6d8980782bd/Discord/cogs/search.py#L77-L79
|
import discord
from discord.ext import commands
import functools
import inspect
import re
import youtube_dl
from utilities import checks
def setup(bot):
bot.add_cog(Search(bot))
class Search(commands.Cog):
def __init__(self, bot):
self.bot = bot
for name, command in inspect.getmembers(self):
if isinstance(command, commands.Command) and command.parent is None and name != "search":
self.bot.add_command(command)
self.search.add_command(command)
command = commands.Command(self.youtube, aliases = ["yt"], checks = [checks.not_forbidden().predicate])
command.error(self.youtube_error)
self.search.add_command(command)
if (cog := self.bot.get_cog("Audio")) and (parent := getattr(cog, "audio")):
command = commands.Command(self.youtube, name = "search", checks = [checks.not_forbidden().predicate])
command.error(self.youtube_error)
parent.add_command(command)
def cog_unload(self):
if (cog := self.bot.get_cog("Audio")) and (parent := getattr(cog, "audio")):
parent.remove_command("search")
async def cog_check(self, ctx):
return await checks.not_forbidden().predicate(ctx)
@commands.group(invoke_without_command = True, case_insensitive = True)
async def search(self, ctx):
await ctx.embed_reply(":grey_question: Search what?")
async def youtube(self, ctx, *, search: str):
ydl = youtube_dl.YoutubeDL({"default_search": "auto", "noplaylist": True, "quiet": True})
func = functools.partial(ydl.extract_info, search, download = False)
info = await self.bot.loop.run_in_executor(None, func)
if not info.get("entries"):
return await ctx.embed_reply(f"{ctx.bot.error_emoji} Video not found")
await ctx.message.reply(info["entries"][0].get("webpage_url"))
async def youtube_error(self, ctx, error):
if isinstance(error, commands.CommandInvokeError) and isinstance(error.original, youtube_dl.utils.DownloadError):
await ctx.embed_reply(f":no_entry: Error: {error.original}")
@commands.command()
async def amazon(self, ctx, *search: str):
await ctx.embed_reply(f"[Amazon search for \"{' '.join(search)}\"](https://smile.amazon.com/s/?field-keywords={'+'.join(search)})")
@commands.command()
async def aol(self, ctx, *search: str):
await ctx.embed_reply(f"[AOL search for \"{' '.join(search)}\"](https://search.aol.com/aol/search?q={'+'.join(search)})")
@commands.command(name = "ask.com")
async def ask_com(self, ctx, *search: str):
await ctx.embed_reply(f"[Ask.com search for \"{' '.join(search)}\"](http://www.ask.com/web?q={'+'.join(search)})")
@commands.command()
|
MIT License
|
nxt-dev/nxt
|
nxt/session.py
|
RPCServerProcess.terminate
|
python
|
def terminate(self):
try:
proxy = NxtClient()
proxy.kill()
except Exception as e:
if getattr(e, 'errno', -1) == 10061 and self.terminal:
try:
logger.info('Telling rpc server to shutdown...')
proxy = NxtClient()
proxy.kill()
self.server_log_file = ''
except:
logger.warning(
'Unable to tell rpc server to shutdown!')
try:
self.terminal.terminate()
self.terminal = None
logger.debug('RPC server has shutdown!')
except:
logger.warning('Unable to kill rpc process!')
nxt_log.shutdown_log_socket()
|
Attempts to kill the rpc server.
Note: The server is killed even if it isn't owned by this class!
:return: None
|
https://github.com/nxt-dev/nxt/blob/272e41dbfc963178a3509761bf244739a9bc3bd5/nxt/session.py#L370-L395
|
import os
import logging
import subprocess
import sys
import time
import socket
from nxt import nxt_log
from . import nxt_io
from . import nxt_path
from . import nxt_layer
from nxt.remote import get_running_server_address
from nxt.remote.client import NxtClient
from .remote import contexts
from nxt.stage import Stage
from nxt.constants import NXT_DCC_ENV_VAR, is_standalone
logger = logging.getLogger(__name__)
class Session(object):
def __init__(self):
self._loaded_files = {}
self.log_file = nxt_log.make_session_log()
self.rpc_server = None
@property
def loaded_files(self):
return self._loaded_files
def new_file(self):
new_graph = Stage(name=self.get_unused_graph_name('untitled'))
self._loaded_files[new_graph.uid] = new_graph
return new_graph
def get_unused_graph_name(self, name):
def test_name(n):
for stage in self._loaded_files.values():
if n == stage._name:
return False
return True
result_name = ''
num_suffix = 0
potential_name = name
while result_name == '':
if test_name(potential_name):
result_name = potential_name
else:
num_suffix += 1
potential_name = name + str(num_suffix)
return result_name
def load_file(self, filepath):
try:
layer_data = nxt_io.load_file_data(filepath)
new_stage = Stage(layer_data=layer_data)
except IOError:
logger.exception('Failed to open: "{}"'.format(filepath))
raise
self._loaded_files[new_stage.uid] = new_stage
return new_stage
def unload_file(self, uid):
unload_key = [k for k in self.loaded_files.keys() if k == uid]
uid_lst = [k for k in self.loaded_files.keys()]
if not unload_key:
err_format = ('Unable to find a graph with the uuid {uid} '
'exsisting uuids are {uidLst}')
raise LookupError(err_format.format(uid=uid, uidLst=uid_lst))
unload_key = unload_key[0]
self.loaded_files.pop(unload_key)
def save_file(self, graph_file_path, new_path=None):
target_path = graph_file_path
if new_path:
target_path = os.path.normcase(new_path)
current_path = None
if graph_file_path:
current_path = os.path.normcase(graph_file_path)
if current_path in (k[0] for k in self._loaded_files.keys()):
self._loaded_files[current_path].save_layer(filepath=target_path)
if current_path != target_path:
changed_graph = self._loaded_files.pop(current_path)
self._loaded_files[target_path] = changed_graph
return True
else:
return False
def save_layer(self, layer, filepath=None):
layer.save(filepath=filepath)
def get_stage(self, path):
norm_path = os.path.normcase(path)
for uid, data in self._loaded_files.items():
if data.filepath == norm_path:
return self._loaded_files[uid]
else:
return self.load_file(path)
def execute_graph(self, filepath, start=None, parameters=None,
context=None):
stage = self.get_stage(filepath)
if context is None:
self.start_rpc_if_needed(stage)
try:
return stage.execute(start=start, parameters=parameters)
finally:
self.shutdown_rpc_server()
else:
self._start_rpc_server()
proxy = NxtClient()
try:
cache_file = proxy.exec_in_headless(filepath, start, None,
parameters, context)
return nxt_layer.CacheLayer.load_from_filepath(cache_file)
finally:
self.shutdown_rpc_server()
def execute_nodes(self, filepath, node_paths, parameters=None):
stage = self.get_stage(filepath)
self.start_rpc_if_needed(stage)
comp_layer = stage.build_stage()
try:
return stage.execute_nodes(node_paths=node_paths,
layer=comp_layer, parameters=parameters)
finally:
self.shutdown_rpc_server()
def start_rpc_if_needed(self, stage):
remote_node_name = contexts.REMOTE_CONTEXT_BUILTIN_NODE
remote_path = nxt_path.join_node_paths(nxt_path.NODE_SEP,
remote_node_name)
sub_graph_node_name = contexts.SUB_GRAPH_BUILTIN_NODE
sub_graph_path = nxt_path.join_node_paths(nxt_path.NODE_SEP,
sub_graph_node_name)
start_rpc = False
for layer in stage._sub_layers:
if layer.lookup(remote_path) or layer.lookup(sub_graph_path):
start_rpc = True
break
if start_rpc:
self._start_rpc_server()
return
logger.info('It was determined you do not need an rpc server.')
def _start_rpc_server(self, custom_stdout=False, rpc_log_filepath=None,
socket_log=False, stream_handler=None):
logger.debug('Starting rpc server!')
rpc_server = RPCServerProcess.start(use_custom_stdout=custom_stdout,
stdout_filepath=rpc_log_filepath,
socket_log=socket_log,
stream_handler=stream_handler)
self.rpc_server = rpc_server
def shutdown_rpc_server(self):
if not self.rpc_server:
logger.debug('This session does not own an rpc server.')
return
logger.debug('Trying to shutdown rpc server...')
try:
self.rpc_server.terminate()
except:
logging.exception('Failed to shut down rpc server!')
pass
self.rpc_server = None
class RPCServerProcess(object):
STARTUP_TIMEOUT = 5
def __init__(self, use_custom_stdout=False, stdout_filepath=None,
socket_log=False, stream_handler=None):
self.terminal = None
self.use_custom_stdout = use_custom_stdout
self.server_log_file = stdout_filepath or ''
self.socket_logging = socket_log
self.stream_handler = stream_handler
@classmethod
def start(cls, use_custom_stdout=False, stdout_filepath=None,
socket_log=False, stream_handler=None):
if not is_standalone():
logger.warning('The nxt rpc server cannot be started unless nxt '
'is launched as standalone.')
return
rpc_server = cls(use_custom_stdout=use_custom_stdout,
stdout_filepath=stdout_filepath,
socket_log=socket_log, stream_handler=stream_handler)
if rpc_server.run():
return rpc_server
def run(self):
if self.is_running():
logger.info('Server already running somewhere...')
return False
elif not self.is_port_available():
_, port = get_running_server_address(as_str=False)
raise OSError('Port {} is not available!'.format(port))
old_env_verbosity = os.environ.get(nxt_log.VERBOSE_ENV_VAR, None)
if self.socket_logging:
os.environ[nxt_log.VERBOSE_ENV_VAR] = 'socket'
if self.use_custom_stdout:
if not self.server_log_file:
_ext = '.nxtlog'
self.server_log_file = nxt_io.generate_temp_file(suffix=_ext)
nxt_log.track_log_file(self.server_log_file)
server_log_handle = open(self.server_log_file, 'w')
nxt_log.startup_log_socket(stream_handler=self.stream_handler)
else:
server_log_handle = None
call = [sys.executable, '-m', 'nxt.remote.server', self.server_log_file]
logger.debug("Calling: ")
logger.debug(str(call))
self.terminal = subprocess.Popen(call, stdout=server_log_handle,
stderr=server_log_handle)
count = 0
while count < self.STARTUP_TIMEOUT:
logger.debug('Waiting on rpc server...')
time.sleep(1)
count += 1
if self.is_running():
break
if count == self.STARTUP_TIMEOUT:
raise OSError('Failed to start RPC server!')
logger.debug('rpc server started')
if old_env_verbosity is not None:
os.environ[nxt_log.VERBOSE_ENV_VAR] = old_env_verbosity
return True
def is_running(self):
is_running = False
try:
proxy = NxtClient()
is_running = proxy.is_alive()
except Exception as e:
if getattr(e, 'errno', -1) == 10061 and self.terminal:
poll = self.terminal.poll()
if poll is None:
is_running = True
return is_running
|
MIT License
|
dials/dials
|
algorithms/refinement/parameterisation/prediction_parameters.py
|
XYPhiPredictionParameterisation._goniometer_derivatives
|
python
|
def _goniometer_derivatives(
self, isel, parameterisation=None, dS_dgon_p=None, reflections=None
):
axis = self._axis.select(isel)
fixed_rotation = self._fixed_rotation.select(isel)
phi_calc = self._phi_calc.select(isel)
h = self._h.select(isel)
s1 = self._s1.select(isel)
e_X_r = self._e_X_r.select(isel)
e_r_s0 = self._e_r_s0.select(isel)
UB = self._UB.select(isel)
D = self._D.select(isel)
if dS_dgon_p is None:
dS_dgon_p = [
None if der is None else flex.mat3_double(len(isel), der.elems)
for der in parameterisation.get_ds_dp(use_none_as_null=True)
]
dphi_dp = []
dpv_dp = []
for der in dS_dgon_p:
if der is None:
dphi_dp.append(None)
dpv_dp.append(None)
continue
tmp = fixed_rotation * (UB * h)
dr = der * tmp.rotate_around_origin(axis, phi_calc)
dphi = -1.0 * dr.dot(s1) / e_r_s0
dphi_dp.append(dphi)
dpv_dp.append(D * (dr + e_X_r * dphi))
return dpv_dp, dphi_dp
|
helper function to extend the derivatives lists by
derivatives of the goniometer parameterisations
|
https://github.com/dials/dials/blob/a2cb71bf410e179b92554bcce2e21388e1dc25d1/algorithms/refinement/parameterisation/prediction_parameters.py#L857-L904
|
from collections import namedtuple
from scitbx import matrix, sparse
from dials.algorithms.refinement import DialsRefineConfigError
from dials.array_family import flex
ParamSet = namedtuple(
"ParamSet",
["beam_param", "xl_ori_param", "xl_uc_param", "det_param", "gonio_param"],
)
class PredictionParameterisation:
def __init__(
self,
experiments,
detector_parameterisations=None,
beam_parameterisations=None,
xl_orientation_parameterisations=None,
xl_unit_cell_parameterisations=None,
goniometer_parameterisations=None,
):
if detector_parameterisations is None:
detector_parameterisations = []
if beam_parameterisations is None:
beam_parameterisations = []
if xl_orientation_parameterisations is None:
xl_orientation_parameterisations = []
if xl_unit_cell_parameterisations is None:
xl_unit_cell_parameterisations = []
if goniometer_parameterisations is None:
goniometer_parameterisations = []
self._experiments = experiments
self._detector_parameterisations = detector_parameterisations
self._beam_parameterisations = beam_parameterisations
self._xl_orientation_parameterisations = xl_orientation_parameterisations
self._xl_unit_cell_parameterisations = xl_unit_cell_parameterisations
self._goniometer_parameterisations = goniometer_parameterisations
self._update()
def _update(self):
self._length = self._len()
if self._length == 0:
raise DialsRefineConfigError("There are no free parameters for refinement")
e2bp = {
ids: i
for i, p in enumerate(self._beam_parameterisations)
for ids in p.get_experiment_ids()
}
e2xop = {
ids: i
for i, p in enumerate(self._xl_orientation_parameterisations)
for ids in p.get_experiment_ids()
}
e2xucp = {
ids: i
for i, p in enumerate(self._xl_unit_cell_parameterisations)
for ids in p.get_experiment_ids()
}
e2dp = {
ids: i
for i, p in enumerate(self._detector_parameterisations)
for ids in p.get_experiment_ids()
}
e2gp = {
ids: i
for i, p in enumerate(self._goniometer_parameterisations)
for ids in p.get_experiment_ids()
}
self._exp_to_param = {
i: ParamSet(
e2bp.get(i), e2xop.get(i), e2xucp.get(i), e2dp.get(i), e2gp.get(i)
)
for i, _ in enumerate(self._experiments)
}
def get_detector_parameterisations(self):
return self._detector_parameterisations
def get_beam_parameterisations(self):
return self._beam_parameterisations
def get_crystal_orientation_parameterisations(self):
return self._xl_orientation_parameterisations
def get_crystal_unit_cell_parameterisations(self):
return self._xl_unit_cell_parameterisations
def get_goniometer_parameterisations(self):
return self._goniometer_parameterisations
def _len(self):
length = 0
for model in self._detector_parameterisations:
length += model.num_free()
for model in self._beam_parameterisations:
length += model.num_free()
for model in self._xl_orientation_parameterisations:
length += model.num_free()
for model in self._xl_unit_cell_parameterisations:
length += model.num_free()
for model in self._goniometer_parameterisations:
length += model.num_free()
return length
def __len__(self):
return self._length
def get_param_vals(self):
global_p_list = []
if self._detector_parameterisations:
det_plists = [x.get_param_vals() for x in self._detector_parameterisations]
params = [x for l in det_plists for x in l]
global_p_list.extend(params)
if self._beam_parameterisations:
src_plists = [x.get_param_vals() for x in self._beam_parameterisations]
params = [x for l in src_plists for x in l]
global_p_list.extend(params)
if self._xl_orientation_parameterisations:
xlo_plists = [
x.get_param_vals() for x in self._xl_orientation_parameterisations
]
params = [x for l in xlo_plists for x in l]
global_p_list.extend(params)
if self._xl_unit_cell_parameterisations:
xluc_plists = [
x.get_param_vals() for x in self._xl_unit_cell_parameterisations
]
params = [x for l in xluc_plists for x in l]
global_p_list.extend(params)
if self._goniometer_parameterisations:
gon_plists = [
x.get_param_vals() for x in self._goniometer_parameterisations
]
params = [x for l in gon_plists for x in l]
global_p_list.extend(params)
return global_p_list
def get_param_names(self):
param_names = []
for p in self._detector_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
for p in self._beam_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
for p in self._xl_orientation_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
for p in self._xl_unit_cell_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
for p in self._goniometer_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
return param_names
def _modify_parameters(self, vals, set_vals=False, set_esds=False, set_fix=False):
assert [set_vals, set_esds, set_fix].count(True) == 1
assert len(vals) == len(self)
it = iter(vals)
for model in (
self._detector_parameterisations
+ self._beam_parameterisations
+ self._xl_orientation_parameterisations
+ self._xl_unit_cell_parameterisations
+ self._goniometer_parameterisations
):
tmp = [next(it) for i in range(model.num_free())]
if set_esds:
model.set_param_esds(tmp)
elif set_vals:
model.set_param_vals(tmp)
elif set_fix:
current_fixes = model.get_fixed()
free_indices = [i for i, e in enumerate(current_fixes) if not e]
assert len(free_indices) == model.num_free()
for i, fix in zip(free_indices, tmp):
if fix:
current_fixes[i] = True
model.set_fixed(current_fixes)
def set_param_vals(self, vals):
self._modify_parameters(vals, set_vals=True)
def set_param_esds(self, esds):
self._modify_parameters(esds, set_esds=True)
def fix_params(self, fix):
self._modify_parameters(fix, set_fix=True)
self._update()
def calculate_model_state_uncertainties(self, var_cov):
i = 0
for model in (
self._detector_parameterisations
+ self._beam_parameterisations
+ self._xl_orientation_parameterisations
+ self._xl_unit_cell_parameterisations
+ self._goniometer_parameterisations
):
n = model.num_free()
sub = var_cov.matrix_copy_block(i, i, n, n)
state_covs = model.calculate_state_uncertainties(sub)
if state_covs is None:
continue
if len(state_covs) == 1:
model.set_state_uncertainties(state_covs[0])
else:
for i_state, state_cov in enumerate(state_covs):
model.set_state_uncertainties(state_cov, multi_state_elt=i_state)
i += n
def get_gradients(self, reflections, callback=None):
self._nref = len(reflections)
self._D = flex.mat3_double(self._nref)
self._s0 = flex.vec3_double(self._nref)
self._U = flex.mat3_double(self._nref)
self._B = flex.mat3_double(self._nref)
self._axis = flex.vec3_double(self._nref)
self._fixed_rotation = flex.mat3_double(self._nref)
self._setting_rotation = flex.mat3_double(self._nref)
self._experiment_to_idx = []
for iexp, exp in enumerate(self._experiments):
sel = reflections["id"] == iexp
isel = sel.iselection()
self._experiment_to_idx.append(isel)
subref = reflections.select(sel)
states = self._get_model_data_for_experiment(exp, subref)
self._D.set_selected(sel, states["D"])
self._s0.set_selected(sel, states["s0"])
self._U.set_selected(sel, states["U"])
self._B.set_selected(sel, states["B"])
if exp.goniometer:
self._setting_rotation.set_selected(sel, states["S"])
self._axis.set_selected(sel, exp.goniometer.get_rotation_axis_datum())
self._fixed_rotation.set_selected(
sel, exp.goniometer.get_fixed_rotation()
)
self._h = reflections["miller_index"].as_vec3_double()
self._UB = self._U * self._B
self._s1 = reflections["s1"]
self._pv = self._D * self._s1
u, v, w = self._pv.parts()
assert w.all_ne(0)
self._w_inv = 1.0 / w
self._u_w_inv = u * self._w_inv
self._v_w_inv = v * self._w_inv
self._iparam = 0
self._local_setup(reflections)
results = []
results = self._grads_detector_loop(reflections, results, callback=callback)
results = self._grads_beam_loop(reflections, results, callback=callback)
results = self._grads_xl_orientation_loop(
reflections, results, callback=callback
)
results = self._grads_xl_unit_cell_loop(reflections, results, callback=callback)
results = self._grads_goniometer_loop(reflections, results, callback=callback)
return results
@staticmethod
def _extend_gradient_vectors(results, m, n, keys=("dX_dp", "dY_dp", "dZ_dp")):
new_results = []
for i in range(n):
result = {}
for key in keys:
result[key] = flex.double(m, 0.0)
new_results.append(result)
results.extend(new_results)
return results
def _get_model_data_for_experiment(self, experiment, reflections):
D = flex.mat3_double(len(reflections))
panels = reflections["panel"]
for ipanel, D_mat in enumerate([p.get_D_matrix() for p in experiment.detector]):
sel = panels == ipanel
D.set_selected(sel, D_mat)
result = {
"s0": experiment.beam.get_s0(),
"U": matrix.sqr(experiment.crystal.get_U()),
"B": matrix.sqr(experiment.crystal.get_B()),
"D": D,
}
if experiment.goniometer:
result["S"] = matrix.sqr(experiment.goniometer.get_setting_rotation())
return result
def _detector_derivatives(
self, isel, panel_id, parameterisation=None, dd_ddet_p=None, reflections=None
):
pv = self._pv.select(isel)
D = self._D.select(isel)
if dd_ddet_p is None:
dd_ddet_p = parameterisation.get_ds_dp(
multi_state_elt=panel_id, use_none_as_null=True
)
dd_ddet_p = [
None if e is None else flex.mat3_double(len(D), e.elems)
for e in dd_ddet_p
]
dpv_ddet_p = [
der if der is None else (D * (der * -1.0)) * pv for der in dd_ddet_p
]
return dpv_ddet_p
def _beam_derivatives(
self, isel, parameterisation=None, ds0_dbeam_p=None, reflections=None
):
pass
def _xl_orientation_derivatives(
self, isel, parameterisation=None, dU_dxlo_p=None, reflections=None
):
pass
def _xl_unit_cell_derivatives(
self, isel, parameterisation=None, dB_dxluc_p=None, reflections=None
):
pass
def _goniometer_derivatives(
self, isel, parameterisation=None, dS_dgon_p=None, reflections=None
):
pass
def _grads_detector_loop(self, reflections, results, callback=None):
for dp in self._detector_parameterisations:
isel = flex.size_t()
for exp_id in dp.get_experiment_ids():
isel.extend(self._experiment_to_idx[exp_id])
detector = dp.get_model()
panel = reflections["panel"].select(isel)
results = self._extend_gradient_vectors(
results, self._nref, dp.num_free(), keys=self._grad_names
)
for panel_id, _ in enumerate(detector):
sub_isel = isel.select(panel == panel_id)
if len(sub_isel) == 0:
continue
dpv_ddet_p = self._detector_derivatives(
sub_isel, panel_id, parameterisation=dp, reflections=reflections
)
sub_w_inv = self._w_inv.select(sub_isel)
sub_u_w_inv = self._u_w_inv.select(sub_isel)
sub_v_w_inv = self._v_w_inv.select(sub_isel)
dX_ddet_p, dY_ddet_p = self._calc_dX_dp_and_dY_dp_from_dpv_dp(
sub_w_inv, sub_u_w_inv, sub_v_w_inv, dpv_ddet_p
)
iparam = self._iparam
for dX, dY in zip(dX_ddet_p, dY_ddet_p):
if dX is not None:
results[iparam][self._grad_names[0]].set_selected(sub_isel, dX)
if dY is not None:
results[iparam][self._grad_names[1]].set_selected(sub_isel, dY)
iparam += 1
if callback is not None:
iparam = self._iparam
for i in range(dp.num_free()):
results[iparam] = callback(results[iparam])
iparam += 1
self._iparam += dp.num_free()
return results
def _grads_model_loop(
self,
parameterisations,
reflections,
results,
callback=None,
derivatives_fn=None,
):
for p in parameterisations:
isel = flex.size_t()
for exp_id in p.get_experiment_ids():
isel.extend(self._experiment_to_idx[exp_id])
results = self._extend_gradient_vectors(
results, self._nref, p.num_free(), keys=self._grad_names
)
if len(isel) == 0:
if callback:
for _ in range(p.num_free()):
results[self._iparam] = callback(results[self._iparam])
self._iparam += 1
else:
self._iparam += p.num_free()
continue
w_inv = self._w_inv.select(isel)
u_w_inv = self._u_w_inv.select(isel)
v_w_inv = self._v_w_inv.select(isel)
dpv_dbeam_p, dAngle_dbeam_p = derivatives_fn(
isel, parameterisation=p, reflections=reflections
)
dX_dbeam_p, dY_dbeam_p = self._calc_dX_dp_and_dY_dp_from_dpv_dp(
w_inv, u_w_inv, v_w_inv, dpv_dbeam_p
)
for dX, dY, dAngle in zip(dX_dbeam_p, dY_dbeam_p, dAngle_dbeam_p):
if dX is not None:
results[self._iparam][self._grad_names[0]].set_selected(isel, dX)
if dY is not None:
results[self._iparam][self._grad_names[1]].set_selected(isel, dY)
if dAngle is not None:
results[self._iparam][self._grad_names[2]].set_selected(
isel, dAngle
)
if callback is not None:
results[self._iparam] = callback(results[self._iparam])
self._iparam += 1
return results
def _grads_beam_loop(self, reflections, results, callback=None):
return self._grads_model_loop(
self._beam_parameterisations,
reflections,
results,
derivatives_fn=self._beam_derivatives,
callback=callback,
)
def _grads_xl_orientation_loop(self, reflections, results, callback=None):
return self._grads_model_loop(
self._xl_orientation_parameterisations,
reflections,
results,
derivatives_fn=self._xl_orientation_derivatives,
callback=callback,
)
def _grads_xl_unit_cell_loop(self, reflections, results, callback=None):
return self._grads_model_loop(
self._xl_unit_cell_parameterisations,
reflections,
results,
derivatives_fn=self._xl_unit_cell_derivatives,
callback=callback,
)
def _grads_goniometer_loop(self, reflections, results, callback=None):
return self._grads_model_loop(
self._goniometer_parameterisations,
reflections,
results,
derivatives_fn=self._goniometer_derivatives,
callback=callback,
)
class SparseGradientVectorMixin:
@staticmethod
def _extend_gradient_vectors(results, m, n, keys=("dX_dp", "dY_dp", "dZ_dp")):
new_results = [{key: sparse.matrix_column(m) for key in keys} for _ in range(n)]
results.extend(new_results)
return results
class XYPhiPredictionParameterisation(PredictionParameterisation):
_grad_names = ("dX_dp", "dY_dp", "dphi_dp")
def _local_setup(self, reflections):
self._phi_calc = reflections["xyzcal.mm"].parts()[2]
q = self._fixed_rotation * (self._UB * self._h)
self._r = self._setting_rotation * q.rotate_around_origin(
self._axis, self._phi_calc
)
self._e_X_r = (self._setting_rotation * self._axis).cross(self._r)
self._e_r_s0 = (self._e_X_r).dot(self._s0)
e_r_s0_mag = flex.abs(self._e_r_s0)
try:
assert flex.min(e_r_s0_mag) > 1.0e-6
except AssertionError as e:
imin = flex.min_index(e_r_s0_mag)
print("(e X r).s0 too small:")
print("for", (e_r_s0_mag <= 1.0e-6).count(True), "reflections")
print("out of", len(e_r_s0_mag), "total")
print("such as", reflections["miller_index"][imin])
print("with scattering vector", reflections["s1"][imin])
print("where r =", self._r[imin])
print("e =", self._axis[imin])
print("s0 =", self._s0[imin])
print("this reflection forms angle with the equatorial plane " "normal:")
vecn = (
matrix.col(self._s0[imin])
.cross(matrix.col(self._axis[imin]))
.normalize()
)
print(matrix.col(reflections["s1"][imin]).accute_angle(vecn))
raise e
def _beam_derivatives(
self, isel, parameterisation=None, ds0_dbeam_p=None, reflections=None
):
r = self._r.select(isel)
e_X_r = self._e_X_r.select(isel)
e_r_s0 = self._e_r_s0.select(isel)
D = self._D.select(isel)
if ds0_dbeam_p is None:
ds0_dbeam_p = parameterisation.get_ds_dp(use_none_as_null=True)
ds0_dbeam_p = [
None if e is None else flex.vec3_double(len(r), e.elems)
for e in ds0_dbeam_p
]
dphi_dp = []
dpv_dp = []
for der in ds0_dbeam_p:
if der is None:
dphi_dp.append(None)
dpv_dp.append(None)
continue
dphi = (r.dot(der) / e_r_s0) * -1.0
dphi_dp.append(dphi)
dpv_dp.append(D * (e_X_r * dphi + der))
return dpv_dp, dphi_dp
def _xl_derivatives(self, isel, derivatives, b_matrix, parameterisation=None):
axis = self._axis.select(isel)
fixed_rotation = self._fixed_rotation.select(isel)
setting_rotation = self._setting_rotation.select(isel)
phi_calc = self._phi_calc.select(isel)
h = self._h.select(isel)
s1 = self._s1.select(isel)
e_X_r = self._e_X_r.select(isel)
e_r_s0 = self._e_r_s0.select(isel)
if b_matrix:
B = self._B.select(isel)
else:
U = self._U.select(isel)
D = self._D.select(isel)
if derivatives is None:
derivatives = [
None if der is None else flex.mat3_double(len(isel), der.elems)
for der in parameterisation.get_ds_dp(use_none_as_null=True)
]
dphi_dp = []
dpv_dp = []
for der in derivatives:
if der is None:
dphi_dp.append(None)
dpv_dp.append(None)
continue
if b_matrix:
tmp = fixed_rotation * (der * B * h)
else:
tmp = fixed_rotation * (U * der * h)
dr = setting_rotation * tmp.rotate_around_origin(axis, phi_calc)
dphi = -1.0 * dr.dot(s1) / e_r_s0
dphi_dp.append(dphi)
dpv_dp.append(D * (dr + e_X_r * dphi))
return dpv_dp, dphi_dp
def _xl_orientation_derivatives(
self, isel, parameterisation=None, dU_dxlo_p=None, reflections=None
):
return self._xl_derivatives(
isel, dU_dxlo_p, b_matrix=True, parameterisation=parameterisation
)
def _xl_unit_cell_derivatives(
self, isel, parameterisation=None, dB_dxluc_p=None, reflections=None
):
return self._xl_derivatives(
isel, dB_dxluc_p, b_matrix=False, parameterisation=parameterisation
)
|
BSD 3-Clause New or Revised License
|
almost-matching-exactly/dame-flame-python-package
|
dame_flame/matching.py
|
FLAME.predict
|
python
|
def predict(self, input_data, pre_dame=False, C=0.1):
self.input_data, self.holdout_data = data_cleaning.read_files(
input_data, self.holdout_data)
return_array = _FLAME(self.input_data.copy(deep=True),
self.holdout_data.copy(deep=True), self.treatment_column_name,
self.weight_array,self.outcome_column_name, self.adaptive_weights,
self.alpha, self.repeats, self.verbose, self.want_pe,
self.early_stop_iterations, self.stop_unmatched_c,
self.early_stop_un_c_frac, self.stop_unmatched_t,
self.early_stop_un_t_frac, self.early_stop_pe,
self.early_stop_pe_frac, self.want_bf, self.missing_indicator,
self.missing_data_replace, self.missing_holdout_replace,
self.missing_holdout_imputations, self.missing_data_imputations,
pre_dame, C)
self.bf_each_iter = None
self.pe_each_iter = None
if self.missing_data_replace != 3 and not pre_dame:
self.df_units_and_covars_matched = return_array[0]
self.groups_per_unit = self.df_units_and_covars_matched['weights']
self.df_units_and_covars_matched = self.df_units_and_covars_matched.drop(columns=['weights'])
self.units_per_group = return_array[1]
if self.want_pe:
self.pe_each_iter = return_array[2]
if self.want_bf:
self.bf_each_iter = return_array[-1]
if (self.missing_data_replace != 3 and pre_dame==False):
self.df_units_and_covars_matched = return_array[0]
self.groups_per_unit = self.df_units_and_covars_matched['weights']
self.df_units_and_covars_matched = self.df_units_and_covars_matched.drop(columns = ['weights'])
self.units_per_group = return_array[1]
if (self.want_pe == True):
self.pe_each_iter = return_array[2]
if (self.want_bf == True):
self.bf_each_iter = return_array[-1]
elif pre_dame:
self.df_units_and_covars_matched = return_array[0]
self.df_units_and_covars_matched = self.df_units_and_covars_matched.append(return_array[-1][0], sort=True)
if self.repeats == True:
df_wrepeats = self.df_units_and_covars_matched
df_no_repeats = df_wrepeats[~df_wrepeats.index.duplicated(keep='first')].copy()
matched_twice_ind = df_wrepeats[df_wrepeats.index.duplicated()].index.unique()
for index in matched_twice_ind:
df_no_repeats.loc[index, 'weights'] = df_wrepeats.loc[index].copy()['weights'].sum()
self.df_units_and_covars_matched = df_no_repeats
self.df_units_and_covars_matched.replace(np.nan, "*")
self.groups_per_unit = self.df_units_and_covars_matched['weights']
self.df_units_and_covars_matched = self.df_units_and_covars_matched.drop(columns = ['weights'])
self.units_per_group = return_array[1]
self.units_per_group += return_array[-1][1]
if (self.want_pe == True):
self.pe_each_iter = return_array[2]
self.pe_each_iter += return_array[-1][2]
if (self.want_bf == True):
self.bf_each_iter = return_array[-2]
self.bf_each_iter += return_array[-1][-2]
else:
self.df_units_and_covars_matched = []
self.groups_per_unit = []
self.df_units_and_covars_matched = []
self.units_per_group = []
self.pe_each_iter = []
self.bf_each_iter = []
for return_val in return_array:
self.df_units_and_covars_matched.append(return_val[0].drop(columns = ['weights']))
self.groups_per_unit.append(return_val[0]['weights'])
self.units_per_group.append(return_val[1])
if self.want_pe:
self.pe_each_iter.append(return_val[2])
if self.want_bf:
self.bf_each_iter.append(return_val[-1])
return self.df_units_and_covars_matched
|
Performs match and returns matched data.
Parameters
----------
input_data: {string, dataframe}, required parameter
The dataframe on which to perform the matching, or the location of
the CSV with the dataframe
pre_dame (int, False): Indicates whether to switch to dame and after
int number of iterations.
C (float, 0.1): The tradeoff between PE and BF in computing MQ
|
https://github.com/almost-matching-exactly/dame-flame-python-package/blob/b2e53a154ff514fbcbead2e8be36a8c769035015/dame_flame/matching.py#L193-L297
|
import numpy as np
from . import data_cleaning
from . import dame_algorithm
from . import flame_algorithm
from . import flame_dame_helpers
class MatchParent:
def __init__(self, adaptive_weights='ridge', alpha=0.1, repeats=True,
verbose=2, early_stop_iterations=False,
stop_unmatched_c=False, early_stop_un_c_frac=False,
stop_unmatched_t=False, early_stop_un_t_frac=False,
early_stop_pe=True, early_stop_pe_frac=0.05,
missing_indicator=np.nan, missing_data_replace=0,
missing_holdout_replace=0, missing_holdout_imputations=10,
missing_data_imputations=1, want_pe=False, want_bf=False):
self.adaptive_weights = adaptive_weights
self.alpha = alpha
self.repeats = repeats
self.verbose = verbose
self.missing_indicator = missing_indicator
self.missing_data_replace = missing_data_replace
self.missing_holdout_replace = missing_holdout_replace
self.missing_holdout_imputations = missing_holdout_imputations
self.missing_data_imputations = missing_data_imputations
self.early_stop_iterations = early_stop_iterations
self.stop_unmatched_c = stop_unmatched_c
self.early_stop_un_c_frac = early_stop_un_c_frac
self.stop_unmatched_t = stop_unmatched_t
self.early_stop_un_t_frac = early_stop_un_t_frac
self.early_stop_pe = early_stop_pe
self.early_stop_pe_frac = early_stop_pe_frac
self.want_pe = want_pe
self.want_bf = want_bf
def fit(self, holdout_data=False, treatment_column_name='treated',
outcome_column_name='outcome', weight_array=False):
self.holdout_data = holdout_data
self.treatment_column_name = treatment_column_name
self.outcome_column_name = outcome_column_name
self.weight_array = weight_array
class DAME(MatchParent):
def predict(self, input_data):
self.input_data, self.holdout_data = data_cleaning.read_files(
input_data, self.holdout_data)
return_array = _DAME(self.input_data.copy(deep=True),
self.holdout_data.copy(deep=True),
self.treatment_column_name, self.weight_array,
self.outcome_column_name, self.adaptive_weights, self.alpha,
self.repeats, self.verbose, self.want_pe,
self.early_stop_iterations, self.stop_unmatched_c,
self.early_stop_un_c_frac, self.stop_unmatched_t,
self.early_stop_un_t_frac, self.early_stop_pe,
self.early_stop_pe_frac, self.want_bf,
self.missing_indicator,
self.missing_data_replace, self.missing_holdout_replace,
self.missing_holdout_imputations, self.missing_data_imputations)
self.bf_each_iter = None
self.pe_each_iter = None
if (self.missing_data_replace != 3):
self.df_units_and_covars_matched = return_array[0]
self.groups_per_unit = self.df_units_and_covars_matched['weights']
self.df_units_and_covars_matched = self.df_units_and_covars_matched.drop(columns = ['weights'])
self.units_per_group = return_array[1]
if (self.want_pe == True):
self.pe_each_iter = return_array[2]
if (self.want_bf == True):
self.bf_each_iter = return_array[-1]
else:
array_of_dfs = []
array_of_groups_per_unit = []
array_of_units_per_group = []
for arr in return_array:
temp_df = arr[0]
array_of_groups_per_unit.append(temp_df['weights'])
array_of_dfs.append(temp_df.drop(columns=['weights']))
array_of_units_per_group.append(arr[1])
self.groups_per_unit = array_of_groups_per_unit
self.df_units_and_covars_matched = array_of_dfs
self.units_per_group = array_of_units_per_group
return self.df_units_and_covars_matched
class FLAME(MatchParent):
|
MIT License
|
macbre/index-digest
|
indexdigest/database.py
|
Database._get_information_schema_where
|
python
|
def _get_information_schema_where(self, table_name):
return "WHERE TABLE_SCHEMA='{db}' AND TABLE_NAME='{table_name}'".format(
db=self._connection_params['db'], table_name=table_name)
|
:type table_name str
:rtype: str
|
https://github.com/macbre/index-digest/blob/b1f07b4730a424b74e3398010361e8e4a4282300/indexdigest/database.py#L253-L260
|
import logging
import re
from collections import OrderedDict, defaultdict
from warnings import filterwarnings
import MySQLdb
from MySQLdb.cursors import DictCursor
from MySQLdb._exceptions import OperationalError, ProgrammingError
from indexdigest.schema import Column, Index
from indexdigest.utils import parse_dsn, memoize, IndexDigestError
class IndexDigestQueryError(IndexDigestError):
class DatabaseBase:
def __init__(self, host, user, passwd, db, port=3306):
self.logger = logging.getLogger(__name__)
self.query_logger = logging.getLogger(__name__ + '.query')
self._connection_params = dict(host=host, port=port, user=user, passwd=passwd, db=db)
self._connection = None
self.db_name = db
filterwarnings('ignore', category=MySQLdb.Warning)
self._queries = []
@classmethod
def connect_dsn(cls, dsn):
parsed = parse_dsn(dsn)
return cls(**parsed)
@property
def connection(self):
if self._connection is None:
self.logger.info('Lazy connecting to %s:%i and using %s database',
self._connection_params['host'], self._connection_params['port'],
self._connection_params['db'])
self._connection = MySQLdb.connect(**self._connection_params)
return self._connection
def get_queries(self):
return self._queries
def query(self, sql, cursor_class=None):
self.query_logger.info('%s', sql)
cursor = self.connection.cursor(cursorclass=cursor_class)
try:
try:
sql = sql.encode('utf8')
except UnicodeDecodeError:
pass
cursor.execute(sql)
except (OperationalError, ProgrammingError) as ex:
(code, message) = ex.args
self.query_logger.error('Database error #%d: %s', code, message)
raise IndexDigestQueryError(message) from ex
self._queries.append(sql)
return cursor
def query_row(self, sql):
return self.query(sql).fetchone()
def query_dict_row(self, sql):
return self.query(sql, cursor_class=DictCursor).fetchone()
def query_dict_rows(self, sql):
for row in self.query(sql, cursor_class=DictCursor):
yield row
def query_field(self, sql):
return self.query_row(sql)[0]
def query_list(self, sql):
for row in self.query(sql):
yield str(row[0])
def query_key_value(self, sql):
res = OrderedDict()
for row in self.query(sql):
res[row[0]] = row[1]
return res
class Database(DatabaseBase):
@memoize
def get_server_version(self):
return self.query_field('SELECT VERSION()')
def get_server_hostname(self):
return self.get_variables(like='hostname').get('hostname')
@memoize
def get_tables(self):
return sorted(self.query_list(
'SELECT TABLE_NAME FROM information_schema.tables '
'WHERE table_schema = "{}" and TABLE_TYPE = "BASE TABLE"'.
format(self.db_name)
))
def get_variables(self, like=None):
sql = 'SHOW VARIABLES'
if like is not None:
sql += ' LIKE "{}%"'.format(like)
return self.query_key_value(sql)
@memoize
def explain_query(self, sql):
return list(self.query_dict_rows('EXPLAIN {}'.format(sql)))
@memoize
def get_table_schema(self, table_name):
schema = str(self.query_row('SHOW CREATE TABLE `{}`'.format(table_name))[1])
schema = re.sub(r'/\*!50100[^*]+\*/', '', schema)
return schema.rstrip()
|
MIT License
|
netflix/pygenie
|
pygenie/jobs/hive.py
|
HiveJob._parameter_file
|
python
|
def _parameter_file(self):
param_file = ""
for name, value in self._parameters.items():
value = text_type(value)
param_file = '{p}SET hivevar:{name}={value};\n' .format(p=param_file,
name=name,
value=value)
return param_file.strip()
|
Takes specified parameters and creates a string for the parameter file.
|
https://github.com/netflix/pygenie/blob/96058a7586e001478048d84d5e8c7a6415c66f81/pygenie/jobs/hive.py#L98-L110
|
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import os
from six import text_type
from collections import OrderedDict
from ..utils import unicodify
from .core import GenieJob
from .utils import (add_to_repr,
arg_list,
arg_string,
is_file)
logger = logging.getLogger('com.netflix.genie.jobs.hive')
class HiveJob(GenieJob):
DEFAULT_SCRIPT_NAME = 'script.hive'
def __init__(self, conf=None):
super(HiveJob, self).__init__(conf=conf)
self._parameters = OrderedDict()
self._property_files = list()
self._script = None
@property
def cmd_args(self):
if self._command_arguments is not None:
return self._command_arguments
filename = HiveJob.DEFAULT_SCRIPT_NAME
if is_file(self._script):
filename = os.path.basename(self._script)
self._add_dependency(self._script)
elif self._script is not None:
self._add_dependency({'name': filename, 'data': self._script})
param_str = self._parameter_file
if param_str:
self._add_dependency({
'name': '_hive_parameters.txt',
'data': param_str
})
props_str = ' '.join([
'--hiveconf {name}={value}'.format(name=k, value=v) for k, v in self._command_options.get('--hiveconf', {}).items()
])
prop_file_str = ' '.join(['-i {}'.format(os.path.basename(f)) for f in self._property_files]) if self._property_files else ''
return '{prop_file} {props} {params} -f {filename} {post_cmd_args}' .format(prop_file=prop_file_str,
props=props_str,
filename=filename,
params='-i _hive_parameters.txt' if param_str else '',
post_cmd_args=' '.join(self._post_cmd_args)) .strip()
@property
|
Apache License 2.0
|
terrainbento/terrainbento
|
tests/test_advanced_output_intervals_generic.py
|
generate_previous_list
|
python
|
def generate_previous_list(next_list):
previous_list = [None] + next_list[:-1]
idx_last_valid = 1
for i in range(1, len(previous_list)):
if previous_list[i] is None:
previous_list[i] = previous_list[idx_last_valid]
else:
idx_last_valid = i
assert len(next_list) == len(previous_list)
return previous_list
|
Generate the expected list of previous values given a list of next values.
Lags the next list, holds the last valid number, and adds None to the
front. e.g.
[0,1,2,None,None,None] -> [None, 0,1,2,2,2]
|
https://github.com/terrainbento/terrainbento/blob/3758d3526a3a134e2cee5263ccff5d51d3ea13d1/tests/test_advanced_output_intervals_generic.py#L25-L44
|
import itertools
import os.path
import pytest
from terrainbento.output_writers import (
GenericOutputWriter,
OutputIteratorSkipWarning,
)
class ClockModel:
def __init__(self, clock):
self.clock = clock
def to_floats(int_list):
return [None if i is None else float(i) for i in int_list]
|
MIT License
|
ohmu/poni
|
poni/cloudbase.py
|
Provider.get_provider_key
|
python
|
def get_provider_key(cls, cloud_prop):
raise NoProviderMethod(cls, "get_provider_key")
|
Return the cloud provider key for the given cloud properties.
A unique provider key can be returned based on, for example, the
region of the specified data-center.
Returns a minimum unique key value needed to uniquely describe the
cloud Provider. Can be e.g. (provider_type, data_center_id), like
with AWS-EC2. The return value also needs to be hash()able.
|
https://github.com/ohmu/poni/blob/6bcccf2853c63f3658c490e1068f5489c11ce754/poni/cloudbase.py#L46-L57
|
from . import errors
class NoProviderMethod(NotImplementedError):
def __init__(self, obj, func):
name = (obj if isinstance(obj, type) else obj.__class__).__name__
NotImplementedError.__init__(self, "{0} does not implement {1}".format(name, func))
class Provider(object):
def __init__(self, provider_id, cloud_prop):
self.provider_id = provider_id
self._provider_key = self.get_provider_key(cloud_prop)
def __eq__(self, other):
if not other or not isinstance(other, Provider):
return False
return self._provider_key == other._provider_key
def __ne__(self, other):
if not other or not isinstance(other, Provider):
return True
return self._provider_key != other._provider_key
def __hash__(self):
return hash(("cloudbase.Provider", self._provider_key))
def required_prop(self, cloud_prop, prop_name):
value = cloud_prop.get(prop_name)
if value is None:
raise errors.CloudError("'cloud.{0}' property required by {1} not defined".format(
prop_name, self.provider_id))
return value
@classmethod
|
Apache License 2.0
|
funcwj/aps
|
aps/transform/utils.py
|
_pytorch_istft
|
python
|
def _pytorch_istft(transform: th.Tensor,
frame_len: int,
frame_hop: int,
window: th.Tensor,
n_fft: int = 512,
return_polar: bool = False,
normalized: bool = False,
onesided: bool = True,
center: bool = False,
eps: float = EPSILON) -> th.Tensor:
if TORCH_VERSION < 1.7:
raise RuntimeError("Can not use this function as TORCH_VERSION < 1.7")
transform_dim = transform.dim()
if transform_dim == 3:
transform = th.unsqueeze(transform, 0)
if transform_dim != 4:
raise RuntimeError(f"Expect 4D tensor, but got {transform_dim}D")
if return_polar:
real = transform[..., 0] * th.cos(transform[..., 1])
imag = transform[..., 0] * th.sin(transform[..., 1])
transform = th.stack([real, imag], -1)
stft = th.view_as_complex(transform)
wav = th.istft(stft,
n_fft,
hop_length=frame_hop,
win_length=window.shape[-1],
window=window,
center=center,
normalized=normalized,
onesided=onesided,
return_complex=False)
return wav
|
Wrapper of PyTorch iSTFT function
Args:
transform (Tensor): results of STFT
frame_len: length of the frame
frame_hop: hop size between frames
window: window tensor
n_fft: number of the FFT size
return_polar: keep same with _pytorch_stft
center: same definition with the parameter in librosa.stft
normalized: use normalized DFT kernel
onesided: output onesided STFT
Return:
wav (Tensor): synthetic audio
|
https://github.com/funcwj/aps/blob/d7208bca3a2f04e751fcc6e2d3c56964eeb179a5/aps/transform/utils.py#L417-L468
|
import math
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as tf
import librosa.filters as filters
from aps.const import EPSILON, TORCH_VERSION
from typing import Optional, Tuple
if TORCH_VERSION >= 1.7:
from torch.fft import fft as fft_func
else:
pass
def export_jit(transform: nn.Module) -> nn.Module:
export_out = [module for module in transform if module.exportable()]
return nn.Sequential(*export_out)
def init_window(wnd: str,
frame_len: int,
device: th.device = "cpu") -> th.Tensor:
def sqrthann(frame_len, periodic=True):
return th.hann_window(frame_len, periodic=periodic)**0.5
if wnd not in ["bartlett", "hann", "hamm", "blackman", "rect", "sqrthann"]:
raise RuntimeError(f"Unknown window type: {wnd}")
wnd_tpl = {
"sqrthann": sqrthann,
"hann": th.hann_window,
"hamm": th.hamming_window,
"blackman": th.blackman_window,
"bartlett": th.bartlett_window,
"rect": th.ones
}
if wnd != "rect":
c = wnd_tpl[wnd](frame_len, periodic=True)
else:
c = wnd_tpl[wnd](frame_len)
return c.to(device)
def init_kernel(frame_len: int,
frame_hop: int,
window: th.Tensor,
round_pow_of_two: bool = True,
normalized: bool = False,
inverse: bool = False,
mode: str = "librosa") -> Tuple[th.Tensor, th.Tensor]:
if mode not in ["librosa", "kaldi"]:
raise ValueError(f"Unsupported mode: {mode}")
if round_pow_of_two or mode == "kaldi":
fft_size = 2**math.ceil(math.log2(frame_len))
else:
fft_size = frame_len
if mode == "librosa" and fft_size != frame_len:
lpad = (fft_size - frame_len) // 2
window = tf.pad(window, (lpad, fft_size - frame_len - lpad))
if normalized:
S = fft_size**0.5
else:
S = 1
if TORCH_VERSION >= 1.7:
K = fft_func(th.eye(fft_size) / S, dim=-1)
K = th.stack([K.real, K.imag], dim=-1)
else:
I = th.stack([th.eye(fft_size), th.zeros(fft_size, fft_size)], dim=-1)
K = th.fft(I / S, 1)
if mode == "kaldi":
K = K[:frame_len]
if inverse and not normalized:
K = K / fft_size
K = th.transpose(K, 0, 2)
K = th.reshape(K, (fft_size * 2, 1, K.shape[-1]))
return K.to(window.device), window
def mel_filter(frame_len: int,
round_pow_of_two: bool = True,
num_bins: Optional[int] = None,
sr: int = 16000,
num_mels: int = 80,
fmin: float = 0.0,
fmax: Optional[float] = None,
norm: bool = False) -> th.Tensor:
if num_bins is None:
N = 2**math.ceil(
math.log2(frame_len)) if round_pow_of_two else frame_len
else:
N = (num_bins - 1) * 2
freq_upper = sr // 2
if fmax is None:
fmax = freq_upper
else:
fmax = min(fmax + freq_upper if fmax < 0 else fmax, freq_upper)
fmin = max(0, fmin)
mel = filters.mel(sr,
N,
n_mels=num_mels,
fmax=fmax,
fmin=fmin,
htk=True,
norm="slaney" if norm else None)
return th.tensor(mel, dtype=th.float32)
def speed_perturb_filter(src_sr: int,
dst_sr: int,
cutoff_ratio: float = 0.95,
num_zeros: int = 64) -> th.Tensor:
if src_sr == dst_sr:
raise ValueError(
f"src_sr should not be equal to dst_sr: {src_sr}/{dst_sr}")
gcd = math.gcd(src_sr, dst_sr)
src_sr = src_sr // gcd
dst_sr = dst_sr // gcd
if src_sr == 1 or dst_sr == 1:
raise ValueError("do not support integer downsample/upsample")
zeros_per_block = min(src_sr, dst_sr) * cutoff_ratio
padding = 1 + int(num_zeros / zeros_per_block)
times = (np.arange(dst_sr)[:, None, None] / float(dst_sr) -
np.arange(src_sr)[None, :, None] / float(src_sr) -
np.arange(2 * padding + 1)[None, None, :] + padding)
window = np.heaviside(1 - np.abs(times / padding),
0.0) * (0.5 + 0.5 * np.cos(times / padding * math.pi))
weight = np.sinc(
times * zeros_per_block) * window * zeros_per_block / float(src_sr)
return th.tensor(weight, dtype=th.float32)
def splice_feature(feats: th.Tensor,
lctx: int = 1,
rctx: int = 1,
op: str = "cat") -> th.Tensor:
if lctx + rctx == 0:
return feats
if op not in ["cat", "stack"]:
raise ValueError(f"Unknown op for feature splicing: {op}")
ctx = []
T = feats.shape[-2]
for c in range(-lctx, rctx + 1):
idx = th.arange(c, c + T, device=feats.device, dtype=th.int64)
idx = th.clamp(idx, min=0, max=T - 1)
ctx.append(th.index_select(feats, -2, idx))
if op == "cat":
splice = th.cat(ctx, -1)
else:
splice = th.stack(ctx, -1)
return splice
def _forward_stft(wav: th.Tensor,
kernel: th.Tensor,
window: th.Tensor,
return_polar: bool = False,
pre_emphasis: float = 0,
frame_hop: int = 256,
onesided: bool = False,
center: bool = False,
eps: float = EPSILON) -> th.Tensor:
wav_dim = wav.dim()
if wav_dim not in [2, 3]:
raise RuntimeError(f"STFT expect 2D/3D tensor, but got {wav_dim:d}D")
N, S = wav.shape[0], wav.shape[-1]
wav = wav.view(-1, 1, S)
if center:
pad = kernel.shape[-1] // 2
wav = tf.pad(wav, (pad, pad), mode="reflect")
kernel = kernel * window
if pre_emphasis > 0:
frames = tf.unfold(wav[:, None], (1, kernel.shape[-1]),
stride=frame_hop,
padding=0)
frames[:, 1:] = frames[:, 1:] - pre_emphasis * frames[:, :-1]
frames[:, 0] *= (1 - pre_emphasis)
packed = th.matmul(kernel[:, 0][None, ...], frames)
else:
packed = tf.conv1d(wav, kernel, stride=frame_hop, padding=0)
if wav_dim == 3:
packed = packed.view(N, -1, packed.shape[-2], packed.shape[-1])
real, imag = th.chunk(packed, 2, dim=-2)
if onesided:
num_bins = kernel.shape[0] // 4 + 1
real = real[..., :num_bins, :]
imag = imag[..., :num_bins, :]
if return_polar:
mag = (real**2 + imag**2 + eps)**0.5
pha = th.atan2(imag, real)
return th.stack([mag, pha], dim=-1)
else:
return th.stack([real, imag], dim=-1)
def _inverse_stft(transform: th.Tensor,
kernel: th.Tensor,
window: th.Tensor,
return_polar: bool = False,
frame_hop: int = 256,
onesided: bool = False,
center: bool = False,
eps: float = EPSILON) -> th.Tensor:
transform_dim = transform.dim()
if transform_dim == 3:
transform = th.unsqueeze(transform, 0)
if transform_dim != 4:
raise RuntimeError(f"Expect 4D tensor, but got {transform_dim}D")
if return_polar:
real = transform[..., 0] * th.cos(transform[..., 1])
imag = transform[..., 0] * th.sin(transform[..., 1])
else:
real, imag = transform[..., 0], transform[..., 1]
if onesided:
reverse = range(kernel.shape[0] // 4 - 1, 0, -1)
real = th.cat([real, real[:, reverse]], 1)
imag = th.cat([imag, -imag[:, reverse]], 1)
packed = th.cat([real, imag], dim=1)
wav = tf.conv_transpose1d(packed,
kernel * window,
stride=frame_hop,
padding=0)
num_frames = packed.shape[-1]
win_length = window.shape[0]
win = th.repeat_interleave(window[..., None]**2, num_frames, dim=-1)
I = th.eye(win_length, device=win.device)[:, None]
denorm = tf.conv_transpose1d(win[None, ...], I, stride=frame_hop, padding=0)
if center:
pad = kernel.shape[-1] // 2
wav = wav[..., pad:-pad]
denorm = denorm[..., pad:-pad]
wav = wav / (denorm + eps)
return wav.squeeze(1)
def _pytorch_stft(wav: th.Tensor,
frame_len: int,
frame_hop: int,
n_fft: int = 512,
return_polar: bool = False,
window: str = "sqrthann",
normalized: bool = False,
onesided: bool = True,
center: bool = False,
eps: float = EPSILON) -> th.Tensor:
if TORCH_VERSION < 1.7:
raise RuntimeError("Can not use this function as TORCH_VERSION < 1.7")
wav_dim = wav.dim()
if wav_dim not in [2, 3]:
raise RuntimeError(f"STFT expect 2D/3D tensor, but got {wav_dim:d}D")
N, S = wav.shape[0], wav.shape[-1]
wav = wav.view(-1, S)
stft = th.stft(wav,
n_fft,
hop_length=frame_hop,
win_length=window.shape[-1],
window=window,
center=center,
normalized=normalized,
onesided=onesided,
return_complex=False)
if wav_dim == 3:
stft = stft.view(N, -1, stft.shape[-3], stft.shape[-2])
if not return_polar:
return stft
real, imag = stft[..., 0], stft[..., 1]
mag = (real**2 + imag**2 + eps)**0.5
pha = th.atan2(imag, real)
return th.stack([mag, pha], dim=-1)
|
Apache License 2.0
|
ayust/kitnirc
|
kitnirc/client.py
|
Client.userinfo
|
python
|
def userinfo(self, username, realname=None):
realname = realname or username
_log.info("Requesting user info update: username=%s realname=%s",
username, realname)
self.send("USER", username, socket.getfqdn(), self.server.host,
":%s" % realname)
self.user.username = username
self.user.realname = realname
|
Set the username and realname for this connection.
Note: this should only be called once, on connect. (The default
on-connect routine calls this automatically.)
|
https://github.com/ayust/kitnirc/blob/cf19fe39219da75f053e1a3976bf21331b6fefea/kitnirc/client.py#L348-L362
|
import logging
import re
import socket
try:
import ssl as _ssl
_hush_pyflakes = [_ssl]
del _hush_pyflakes
except ImportError:
_ssl = None
from kitnirc.events import NUMERIC_EVENTS
from kitnirc.user import User
_log = logging.getLogger(__name__)
class Channel(object):
def __init__(self, name):
self.name = name.lower()
self.topic = None
self.members = {}
self.modes = {}
def __str__(self):
return self.name
def __repr__(self):
return "kitnirc.client.Channel(%r)" % self.name
def add_user(self, user):
if not isinstance(user, User):
user = User(user)
if user.nick in self.members:
_log.warning("Ignoring request to add user '%s' to channel '%s' "
"because that user is already in the member list.",
user, self.name)
return
self.members[user.nick] = user
_log.debug("Added '%s' to channel '%s'", user, self.name)
def remove_user(self, user):
if not isinstance(user, User):
user = User(user)
if user.nick not in self.members:
_log.warning("Ignoring request to remove user '%s' from channel "
"'%s' because that user is already not in the member "
"list.", user, self.name)
return
del self.members[user.nick]
_log.debug("Removed '%s' from channel '%s'", user, self.name)
class Host(object):
def __init__(self, host, port):
self.host = host
self.original_host = host
self.port = port
self.password = None
self.motd = ""
self._motd = []
self._whois = {}
self.channels = {}
self.features = dict()
self.user_modes = set()
self.channel_modes = set()
self.version = None
self.created = None
def __str__(self):
return self.host
def __repr__(self):
return "kitnirc.client.Host(%r, %r)" % (self.host, self.port)
def add_channel(self, channel):
if not isinstance(channel, Channel):
channel = Channel(channel)
if channel.name in self.channels:
_log.warning("Ignoring request to add a channel that has already "
"been added: '%s'", channel)
return
self.channels[channel.name] = channel
_log.info("Entered channel %s.", channel)
def remove_channel(self, channel):
if isinstance(channel, Channel):
channel = channel.name
channel = channel.lower()
if channel not in self.channels:
_log.warning("Ignoring request to remove a channel that hasn't "
"been added: '%s'", channel)
return
del self.channels[channel]
_log.info("Left channel %s.", channel)
def get_channel(self, channel):
if isinstance(channel, Channel):
channel = channel.name
channel = channel.lower()
if channel not in self.channels:
_log.warning("Ignoring request to get a channel that hasn't "
"been added: '%s'", channel)
return None
return self.channels[channel]
def in_channel(self, channel):
channel = str(channel).lower()
return channel in self.channels
class Client(object):
def __init__(self, host=None, port=6667):
if host:
self.server = Host(host, port)
else:
self.server = None
self.connected = False
self.socket = None
self._stop = False
self._buffer = ""
self.event_handlers = {
"PASSWORD": [],
"CONNECTED": [on_connect],
"LINE": [on_line],
"RAWLINE": [],
"ACTIVITY": [],
"WELCOME": [],
"PRIVMSG": [],
"NOTICE": [],
"MOTD": [],
"JOIN": [],
"PART": [],
"QUIT": [],
"KICK": [],
"MEMBERS": [],
"MODE": [],
"WHOIS": [],
"TOPIC": [],
"INVITE": [],
}
def add_handler(self, event, handler):
if event not in self.event_handlers:
_log.info("Adding event handler for new event %s.", event)
self.event_handlers[event] = [handler]
else:
self.event_handlers[event].append(handler)
def dispatch_event(self, event, *args):
if event not in self.event_handlers:
_log.error("Dispatch requested for unknown event '%s'", event)
return False
elif event != "LINE":
_log.debug("Dispatching event %s %r", event, args)
try:
for handler in self.event_handlers[event]:
if handler(self, *args):
return True
except Exception as e:
_log.exception("Error while processing event '%s': %r", event, e)
if event == "LINE":
return self.dispatch_event("RAWLINE", *args)
return False
def connect(self, nick, username=None, realname=None, password=None,
host=None, port=6667, ssl=None):
if host:
self.server = Host(host, port)
if self.server is None:
_log.error("Can't connect() without a host specified.")
return
self.user = User(nick)
self.user.username = username or nick
self.user.realname = realname or username or nick
_log.info("Connecting to %s as %s ...", self.server.host, nick)
self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
if ssl and _ssl:
ssl_kwargs = ssl if isinstance(ssl, dict) else {}
self.socket = _ssl.wrap_socket(self.socket, **ssl_kwargs)
elif ssl:
_log.error("SSL requested but no SSL support available!")
return
self.socket.connect((self.server.host, self.server.port))
self.connected = True
_log.info("Connected to %s.", self.server.host)
suppress_password = self.dispatch_event("PASSWORD")
if password and not suppress_password:
_log.info("Sending server password.")
self.socket.send("PASS %s\r\n" % password)
self.server.password = password
self.dispatch_event('CONNECTED')
def disconnect(self, msg="Shutting down..."):
if not self.connected:
_log.warning("Disconnect requested from non-connected client (%s)",
self.server.host)
return
_log.info("Disconnecting from %s ...", self.server.host)
self._stop = True
self.send("QUIT", ":" + msg)
try:
self.socket.close()
except socket.error:
pass
def run(self):
self._stop = False
while not self._stop:
try:
self._buffer += self.socket.recv(4096)
except socket.error:
raise
lines = self._buffer.split("\n")
self._buffer = lines.pop()
for line in lines:
line = line.rstrip("\r")
_log.debug("%s --> %s", self.server.host, line)
self.dispatch_event("LINE", line)
self.dispatch_event("ACTIVITY")
def ping(self):
self.send("PING " + self.server.host)
def send(self, *args):
msg = " ".join(a.nick if isinstance(a, User) else str(a) for a in args)
if "\n" in msg:
raise ValueError("Cannot send() a newline. Args: %s" % repr(args))
_log.debug("%s <-- %s", self.server.host, msg)
self.socket.send(msg + "\r\n")
def nick(self, nick):
_log.info("Requesting nick change to '%s'", nick)
self.send("NICK", nick)
|
MIT License
|
google-research/ott
|
ott/tools/soft_sort.py
|
ranks
|
python
|
def ranks(inputs: jnp.ndarray,
axis: int = -1,
num_targets: int = None,
**kwargs) -> jnp.ndarray:
return apply_on_axis(_ranks, inputs, axis, num_targets, **kwargs)
|
r"""Applies the soft trank operator on input tensor.
Args:
inputs: a jnp.ndarray<float> of any shape.
axis: the axis on which to apply the soft ranks operator.
num_targets: num_targets defines the number of targets used to compute a
composite ranks for each value in ``inputs``: that soft rank will be a
convex combination of values in [0,...,``(num_targets-2)/num_targets``,1]
specified by the optimal transport between values in ``inputs`` towards
those values. If not specified, ``num_targets`` is set by default to be
the size of the slices of the input that are sorted.
**kwargs: keyword arguments passed on to lower level functions. Of interest
to the user are ``squashing_fun``, which will redistribute the values in
``inputs`` to lie in [0,1] (sigmoid of whitened values by default) to
solve the optimal transport problem; ``cost_fn``, used in ``PointCloud``,
that defines the ground cost function to transport from ``inputs`` to the
``num_targets`` target values (squared Euclidean distance by default, see
``pointcloud.py`` for more details); ``epsilon`` values as well as other
parameters to shape the ``sinkhorn`` algorithm.
Returns:
A jnp.ndarray<float> of the same shape as inputs, with the ranks.
|
https://github.com/google-research/ott/blob/03afbebdb55ec37891f90e4d89376c4838cf4770/ott/tools/soft_sort.py#L168-L195
|
import functools
from typing import Callable, Optional
import jax
import jax.numpy as jnp
import numpy as np
from ott.tools import transport
def transport_for_sort(
inputs: jnp.ndarray,
weights: jnp.ndarray,
target_weights: jnp.ndarray,
squashing_fun: Callable[[jnp.ndarray], jnp.ndarray] = None,
epsilon: float = 1e-2,
**kwargs) -> jnp.ndarray:
shape = inputs.shape
if len(shape) > 2 or (len(shape) == 2 and shape[1] != 1):
raise ValueError(
'Shape ({shape}) not supported. The input should be one-dimensional.')
x = jnp.expand_dims(jnp.squeeze(inputs), axis=1)
if squashing_fun is None:
squashing_fun = lambda z: jax.nn.sigmoid((z - jnp.mean(z)) /
(jnp.std(z) + 1e-10))
x = squashing_fun(x)
a = jnp.squeeze(weights)
b = jnp.squeeze(target_weights)
num_targets = b.shape[0]
y = jnp.linspace(0.0, 1.0, num_targets)[:, jnp.newaxis]
return transport.Transport(x, y, a=a, b=b, epsilon=epsilon, **kwargs)
def apply_on_axis(op, inputs, axis, *args, **kwargs):
op_inner = functools.partial(op, **kwargs)
axis = (axis,) if isinstance(axis, int) else axis
num_points = np.prod(np.array(inputs.shape)[tuple([axis])])
permutation = np.arange(len(inputs.shape))
axis = tuple(permutation[a] for a in axis)
permutation = tuple(sorted(set(permutation) - set(axis)) + sorted(axis))
inputs = jnp.transpose(inputs, permutation)
batch_fn = jax.vmap(op_inner, in_axes=(0,) + (None,) * len(args))
result = batch_fn(jnp.reshape(inputs, (-1, num_points)), *args)
shrink = len(axis)
result = jnp.reshape(result, inputs.shape[:-shrink] + result.shape[-1:])
permutation = tuple(range(len(result.shape)))
rank = len(result.shape) - 1
axis = min(axis)
permutation = permutation[:axis] + (rank,) + permutation[axis:-1]
result = jnp.transpose(result, permutation)
return result
def _sort(inputs: jnp.ndarray, topk, num_targets, **kwargs) -> jnp.ndarray:
num_points = inputs.shape[0]
a = jnp.ones((num_points,)) / num_points
if 0 < topk < num_points:
start_index = 1
b = jnp.concatenate([
jnp.array([(num_points - topk) / num_points]),
jnp.ones(topk, dtype=inputs.dtype) / num_points
])
else:
num_targets = num_points if num_targets is None else num_targets
start_index = 0
b = jnp.ones((num_targets,)) / num_targets
ot = transport_for_sort(inputs, a, b, **kwargs)
out = 1.0 / b * ot.apply(inputs, axis=0)
return out[start_index:]
def sort(inputs: jnp.ndarray,
axis: int = -1,
topk: int = -1,
num_targets: int = None,
**kwargs) -> jnp.ndarray:
return apply_on_axis(_sort, inputs, axis, topk, num_targets, **kwargs)
def _ranks(inputs: jnp.ndarray, num_targets, **kwargs) -> jnp.ndarray:
num_points = inputs.shape[0]
num_targets = num_points if num_targets is None else num_targets
a = jnp.ones((num_points,)) / num_points
b = jnp.ones((num_targets,)) / num_targets
ot = transport_for_sort(inputs, a, b, **kwargs)
out = 1.0 / a * ot.apply(jnp.arange(num_targets), axis=1)
return jnp.reshape(out, inputs.shape)
|
Apache License 2.0
|
electronick1/stairs
|
stairs/core/app/components_interface.py
|
ComponentsMixin.consumer
|
python
|
def consumer(self):
def _handler_wrap(func) -> Consumer:
return Consumer(app=self, handler=func)
return _handler_wrap
|
It's a component which don't change pipeline data and behaves as
a standalone function.
Consumer useful in case when you need to save or load data somewhere.
Consumer will be executed simultaneously with pipelines by cli command:
python manage.py pipelines:run
Or by execute pipelines directly:
project.run_pipelines(pipelines_to_run)
If you want to achieve true fault tolerance use consumer as a worker
`as_worker=True` inside pipeline and make only one db transaction inside.
|
https://github.com/electronick1/stairs/blob/add7ee711c1d8ae3e529941aee14b4e38969a3b9/stairs/core/app/components_interface.py#L333-L356
|
from typing import Union
from stairs.core.producer import Producer
from stairs.core.producer.batch import BatchProducer
from stairs.core.consumer import Consumer
from stairs.core.consumer.standalone import StandAloneConsumer
from stairs.core.consumer.iter import ConsumerIter
from stairs.core.pipeline import Pipeline
class ComponentsMixin:
components = None
def producer(self,
*pipelines: Pipeline,
single_transaction=False,
repeat_on_signal=None,
repeat_times=None):
def _producer_handler_wrap(handler) -> Producer:
producer = Producer(app=self,
handler=handler,
default_callbacks=list(pipelines or []),
single_transaction=single_transaction,
repeat_on_signal=repeat_on_signal,
repeat_times=repeat_times)
return producer
return _producer_handler_wrap
def batch_producer(self, producer: Producer,
repeat_on_signal=None,
repeat_times=None) -> BatchProducer:
def _batch_producer_handler_wrap(handler):
batch_producer = BatchProducer(app=self,
handler=handler,
simple_producer=producer,
repeat_on_signal=repeat_on_signal,
repeat_times=repeat_times)
return batch_producer
return _batch_producer_handler_wrap
def producer_redirect(self,
based_on: Producer,
*pipelines: Pipeline):
def _producer_redirect_handler_wrap(handler) -> Producer:
redirect_handler = based_on.redirect_handler(handler)
producer = Producer(app=self,
handler=redirect_handler,
default_callbacks=list(pipelines),
single_transaction=based_on.single_transaction,
repeat_on_signal=based_on.repeat_on_signal,
repeat_times=based_on.repeat_times)
return producer
return _producer_redirect_handler_wrap
def spark_producer(self, *pipelines: Pipeline):
from stairs.core.producer.spark import SparkProducer
def _spark_producer_handler_wrap(handler) -> SparkProducer:
producer = SparkProducer(app=self,
handler=handler,
default_callbacks=list(pipelines))
return producer
return _spark_producer_handler_wrap
def pipeline(self, config=None, before=None, after=None):
def _pipeline_handler_wrap(func) -> Pipeline:
return Pipeline(self, func, config, before_callbacks=before, after_callbacks=after)
return _pipeline_handler_wrap
|
Apache License 2.0
|
facebookresearch/fbpcs
|
fbpcs/private_computation/service/prepare_data_stage_service.py
|
PrepareDataStageService.run_async
|
python
|
async def run_async(
self,
pc_instance: PrivateComputationInstance,
server_ips: Optional[List[str]] = None,
) -> PrivateComputationInstance:
output_path = pc_instance.data_processing_output_path
combine_output_path = output_path + "_combine"
self._logger.info(f"[{self}] Starting id spine combiner service")
await self._run_combiner_service(
pc_instance, combine_output_path, self._log_cost_to_s3
)
self._logger.info("Finished running CombinerService, starting to reshard")
await self._run_sharder_service(
pc_instance, combine_output_path
)
if self._update_status_to_complete:
pc_instance.status = pc_instance.current_stage.completed_status
return pc_instance
|
Runs the private computation prepare data stage
Args:
pc_instance: the private computation instance to run prepare data with
server_ips: ignored
Returns:
An updated version of pc_instance
|
https://github.com/facebookresearch/fbpcs/blob/2eec5e8f84cb6993ecd1fcaf88fb822b9c08ccc2/fbpcs/private_computation/service/prepare_data_stage_service.py#L74-L115
|
import asyncio
import logging
import math
from typing import DefaultDict
from typing import List, Optional
from fbpcp.service.onedocker import OneDockerService
from fbpcp.util.typing import checked_cast
from fbpcs.data_processing.attribution_id_combiner.attribution_id_spine_combiner_cpp import (
CppAttributionIdSpineCombinerService,
)
from fbpcs.data_processing.lift_id_combiner.lift_id_spine_combiner_cpp import (
CppLiftIdSpineCombinerService,
)
from fbpcs.data_processing.sharding.sharding import ShardType
from fbpcs.data_processing.sharding.sharding_cpp import CppShardingService
from fbpcs.onedocker_binary_config import OneDockerBinaryConfig
from fbpcs.onedocker_binary_names import OneDockerBinaryNames
from fbpcs.pid.service.pid_service.pid_stage import PIDStage
from fbpcs.private_computation.entity.private_computation_instance import (
PrivateComputationGameType,
)
from fbpcs.private_computation.entity.private_computation_instance import (
PrivateComputationInstance,
)
from fbpcs.private_computation.entity.private_computation_instance import (
PrivateComputationInstanceStatus,
)
from fbpcs.private_computation.service.private_computation_service_data import (
PrivateComputationServiceData,
)
from fbpcs.private_computation.service.private_computation_stage_service import (
PrivateComputationStageService,
)
class PrepareDataStageService(PrivateComputationStageService):
def __init__(
self,
onedocker_svc: OneDockerService,
onedocker_binary_config_map: DefaultDict[str, OneDockerBinaryConfig],
is_validating: bool = False,
log_cost_to_s3: bool = False,
update_status_to_complete: bool = False
) -> None:
self._onedocker_svc = onedocker_svc
self._onedocker_binary_config_map = onedocker_binary_config_map
self._is_validating = is_validating
self._log_cost_to_s3 = log_cost_to_s3
self._update_status_to_complete = update_status_to_complete
self._logger: logging.Logger = logging.getLogger(__name__)
|
MIT License
|
whyliam/whyliam.workflows.youdao
|
workflow/workflow.py
|
Workflow.__init__
|
python
|
def __init__(self, default_settings=None, update_settings=None,
input_encoding='utf-8', normalization='NFC',
capture_args=True, libraries=None,
help_url=None):
self._default_settings = default_settings or {}
self._update_settings = update_settings or {}
self._input_encoding = input_encoding
self._normalizsation = normalization
self._capture_args = capture_args
self.help_url = help_url
self._workflowdir = None
self._settings_path = None
self._settings = None
self._bundleid = None
self._debugging = None
self._name = None
self._cache_serializer = 'cpickle'
self._data_serializer = 'cpickle'
self._info = None
self._info_loaded = False
self._logger = None
self._items = []
self._alfred_env = None
self._version = UNSET
self._last_version_run = UNSET
self._search_pattern_cache = {}
self.magic_prefix = 'workflow:'
self.magic_arguments = {}
self._register_default_magic()
if libraries:
sys.path = libraries + sys.path
|
Create new :class:`Workflow` object.
|
https://github.com/whyliam/whyliam.workflows.youdao/blob/2dfa7f1de56419dab1c2e70c1a27e5e13ba25a5c/workflow/workflow.py#L939-L988
|
from __future__ import print_function, unicode_literals
import binascii
import cPickle
from copy import deepcopy
import json
import logging
import logging.handlers
import os
import pickle
import plistlib
import re
import shutil
import string
import subprocess
import sys
import time
import unicodedata
try:
import xml.etree.cElementTree as ET
except ImportError:
import xml.etree.ElementTree as ET
from util import AcquisitionError
from util import (
atomic_writer,
LockFile,
uninterruptible,
)
UNSET = object()
ICON_ROOT = '/System/Library/CoreServices/CoreTypes.bundle/Contents/Resources'
ICON_ACCOUNT = os.path.join(ICON_ROOT, 'Accounts.icns')
ICON_BURN = os.path.join(ICON_ROOT, 'BurningIcon.icns')
ICON_CLOCK = os.path.join(ICON_ROOT, 'Clock.icns')
ICON_COLOR = os.path.join(ICON_ROOT, 'ProfileBackgroundColor.icns')
ICON_COLOUR = ICON_COLOR
ICON_EJECT = os.path.join(ICON_ROOT, 'EjectMediaIcon.icns')
ICON_ERROR = os.path.join(ICON_ROOT, 'AlertStopIcon.icns')
ICON_FAVORITE = os.path.join(ICON_ROOT, 'ToolbarFavoritesIcon.icns')
ICON_FAVOURITE = ICON_FAVORITE
ICON_GROUP = os.path.join(ICON_ROOT, 'GroupIcon.icns')
ICON_HELP = os.path.join(ICON_ROOT, 'HelpIcon.icns')
ICON_HOME = os.path.join(ICON_ROOT, 'HomeFolderIcon.icns')
ICON_INFO = os.path.join(ICON_ROOT, 'ToolbarInfo.icns')
ICON_NETWORK = os.path.join(ICON_ROOT, 'GenericNetworkIcon.icns')
ICON_NOTE = os.path.join(ICON_ROOT, 'AlertNoteIcon.icns')
ICON_SETTINGS = os.path.join(ICON_ROOT, 'ToolbarAdvanced.icns')
ICON_SWIRL = os.path.join(ICON_ROOT, 'ErasingIcon.icns')
ICON_SWITCH = os.path.join(ICON_ROOT, 'General.icns')
ICON_SYNC = os.path.join(ICON_ROOT, 'Sync.icns')
ICON_TRASH = os.path.join(ICON_ROOT, 'TrashIcon.icns')
ICON_USER = os.path.join(ICON_ROOT, 'UserIcon.icns')
ICON_WARNING = os.path.join(ICON_ROOT, 'AlertCautionIcon.icns')
ICON_WEB = os.path.join(ICON_ROOT, 'BookmarkIcon.icns')
ASCII_REPLACEMENTS = {
'À': 'A',
'Á': 'A',
'Â': 'A',
'Ã': 'A',
'Ä': 'A',
'Å': 'A',
'Æ': 'AE',
'Ç': 'C',
'È': 'E',
'É': 'E',
'Ê': 'E',
'Ë': 'E',
'Ì': 'I',
'Í': 'I',
'Î': 'I',
'Ï': 'I',
'Ð': 'D',
'Ñ': 'N',
'Ò': 'O',
'Ó': 'O',
'Ô': 'O',
'Õ': 'O',
'Ö': 'O',
'Ø': 'O',
'Ù': 'U',
'Ú': 'U',
'Û': 'U',
'Ü': 'U',
'Ý': 'Y',
'Þ': 'Th',
'ß': 'ss',
'à': 'a',
'á': 'a',
'â': 'a',
'ã': 'a',
'ä': 'a',
'å': 'a',
'æ': 'ae',
'ç': 'c',
'è': 'e',
'é': 'e',
'ê': 'e',
'ë': 'e',
'ì': 'i',
'í': 'i',
'î': 'i',
'ï': 'i',
'ð': 'd',
'ñ': 'n',
'ò': 'o',
'ó': 'o',
'ô': 'o',
'õ': 'o',
'ö': 'o',
'ø': 'o',
'ù': 'u',
'ú': 'u',
'û': 'u',
'ü': 'u',
'ý': 'y',
'þ': 'th',
'ÿ': 'y',
'Ł': 'L',
'ł': 'l',
'Ń': 'N',
'ń': 'n',
'Ņ': 'N',
'ņ': 'n',
'Ň': 'N',
'ň': 'n',
'Ŋ': 'ng',
'ŋ': 'NG',
'Ō': 'O',
'ō': 'o',
'Ŏ': 'O',
'ŏ': 'o',
'Ő': 'O',
'ő': 'o',
'Œ': 'OE',
'œ': 'oe',
'Ŕ': 'R',
'ŕ': 'r',
'Ŗ': 'R',
'ŗ': 'r',
'Ř': 'R',
'ř': 'r',
'Ś': 'S',
'ś': 's',
'Ŝ': 'S',
'ŝ': 's',
'Ş': 'S',
'ş': 's',
'Š': 'S',
'š': 's',
'Ţ': 'T',
'ţ': 't',
'Ť': 'T',
'ť': 't',
'Ŧ': 'T',
'ŧ': 't',
'Ũ': 'U',
'ũ': 'u',
'Ū': 'U',
'ū': 'u',
'Ŭ': 'U',
'ŭ': 'u',
'Ů': 'U',
'ů': 'u',
'Ű': 'U',
'ű': 'u',
'Ŵ': 'W',
'ŵ': 'w',
'Ŷ': 'Y',
'ŷ': 'y',
'Ÿ': 'Y',
'Ź': 'Z',
'ź': 'z',
'Ż': 'Z',
'ż': 'z',
'Ž': 'Z',
'ž': 'z',
'ſ': 's',
'Α': 'A',
'Β': 'B',
'Γ': 'G',
'Δ': 'D',
'Ε': 'E',
'Ζ': 'Z',
'Η': 'E',
'Θ': 'Th',
'Ι': 'I',
'Κ': 'K',
'Λ': 'L',
'Μ': 'M',
'Ν': 'N',
'Ξ': 'Ks',
'Ο': 'O',
'Π': 'P',
'Ρ': 'R',
'Σ': 'S',
'Τ': 'T',
'Υ': 'U',
'Φ': 'Ph',
'Χ': 'Kh',
'Ψ': 'Ps',
'Ω': 'O',
'α': 'a',
'β': 'b',
'γ': 'g',
'δ': 'd',
'ε': 'e',
'ζ': 'z',
'η': 'e',
'θ': 'th',
'ι': 'i',
'κ': 'k',
'λ': 'l',
'μ': 'm',
'ν': 'n',
'ξ': 'x',
'ο': 'o',
'π': 'p',
'ρ': 'r',
'ς': 's',
'σ': 's',
'τ': 't',
'υ': 'u',
'φ': 'ph',
'χ': 'kh',
'ψ': 'ps',
'ω': 'o',
'А': 'A',
'Б': 'B',
'В': 'V',
'Г': 'G',
'Д': 'D',
'Е': 'E',
'Ж': 'Zh',
'З': 'Z',
'И': 'I',
'Й': 'I',
'К': 'K',
'Л': 'L',
'М': 'M',
'Н': 'N',
'О': 'O',
'П': 'P',
'Р': 'R',
'С': 'S',
'Т': 'T',
'У': 'U',
'Ф': 'F',
'Х': 'Kh',
'Ц': 'Ts',
'Ч': 'Ch',
'Ш': 'Sh',
'Щ': 'Shch',
'Ъ': "'",
'Ы': 'Y',
'Ь': "'",
'Э': 'E',
'Ю': 'Iu',
'Я': 'Ia',
'а': 'a',
'б': 'b',
'в': 'v',
'г': 'g',
'д': 'd',
'е': 'e',
'ж': 'zh',
'з': 'z',
'и': 'i',
'й': 'i',
'к': 'k',
'л': 'l',
'м': 'm',
'н': 'n',
'о': 'o',
'п': 'p',
'р': 'r',
'с': 's',
'т': 't',
'у': 'u',
'ф': 'f',
'х': 'kh',
'ц': 'ts',
'ч': 'ch',
'ш': 'sh',
'щ': 'shch',
'ъ': "'",
'ы': 'y',
'ь': "'",
'э': 'e',
'ю': 'iu',
'я': 'ia',
'ᴦ': 'G',
'ᴧ': 'L',
'ᴨ': 'P',
'ᴩ': 'R',
'ᴪ': 'PS',
'ẞ': 'Ss',
'Ỳ': 'Y',
'ỳ': 'y',
'Ỵ': 'Y',
'ỵ': 'y',
'Ỹ': 'Y',
'ỹ': 'y',
}
DUMB_PUNCTUATION = {
'‘': "'",
'’': "'",
'‚': "'",
'“': '"',
'”': '"',
'„': '"',
'–': '-',
'—': '-'
}
INITIALS = string.ascii_uppercase + string.digits
split_on_delimiters = re.compile('[^a-zA-Z0-9]').split
MATCH_STARTSWITH = 1
MATCH_CAPITALS = 2
MATCH_ATOM = 4
MATCH_INITIALS_STARTSWITH = 8
MATCH_INITIALS_CONTAIN = 16
MATCH_INITIALS = 24
MATCH_SUBSTRING = 32
MATCH_ALLCHARS = 64
MATCH_ALL = 127
DEFAULT_UPDATE_FREQUENCY = 1
class KeychainError(Exception):
class PasswordNotFound(KeychainError):
class PasswordExists(KeychainError):
def isascii(text):
try:
text.encode('ascii')
except UnicodeEncodeError:
return False
return True
class SerializerManager(object):
def __init__(self):
self._serializers = {}
def register(self, name, serializer):
getattr(serializer, 'load')
getattr(serializer, 'dump')
self._serializers[name] = serializer
def serializer(self, name):
return self._serializers.get(name)
def unregister(self, name):
if name not in self._serializers:
raise ValueError('No such serializer registered : {0}'.format(
name))
serializer = self._serializers[name]
del self._serializers[name]
return serializer
@property
def serializers(self):
return sorted(self._serializers.keys())
class JSONSerializer(object):
@classmethod
def load(cls, file_obj):
return json.load(file_obj)
@classmethod
def dump(cls, obj, file_obj):
return json.dump(obj, file_obj, indent=2, encoding='utf-8')
class CPickleSerializer(object):
@classmethod
def load(cls, file_obj):
return cPickle.load(file_obj)
@classmethod
def dump(cls, obj, file_obj):
return cPickle.dump(obj, file_obj, protocol=-1)
class PickleSerializer(object):
@classmethod
def load(cls, file_obj):
return pickle.load(file_obj)
@classmethod
def dump(cls, obj, file_obj):
return pickle.dump(obj, file_obj, protocol=-1)
manager = SerializerManager()
manager.register('cpickle', CPickleSerializer)
manager.register('pickle', PickleSerializer)
manager.register('json', JSONSerializer)
class Item(object):
def __init__(self, title, subtitle='', modifier_subtitles=None,
arg=None, autocomplete=None, valid=False, uid=None,
icon=None, icontype=None, type=None, largetext=None,
copytext=None, quicklookurl=None):
self.title = title
self.subtitle = subtitle
self.modifier_subtitles = modifier_subtitles or {}
self.arg = arg
self.autocomplete = autocomplete
self.valid = valid
self.uid = uid
self.icon = icon
self.icontype = icontype
self.type = type
self.largetext = largetext
self.copytext = copytext
self.quicklookurl = quicklookurl
@property
def elem(self):
attr = {}
if self.valid:
attr['valid'] = 'yes'
else:
attr['valid'] = 'no'
if self.autocomplete is not None:
attr['autocomplete'] = self.autocomplete
for name in ('uid', 'type'):
value = getattr(self, name, None)
if value:
attr[name] = value
root = ET.Element('item', attr)
ET.SubElement(root, 'title').text = self.title
ET.SubElement(root, 'subtitle').text = self.subtitle
for mod in ('cmd', 'ctrl', 'alt', 'shift', 'fn'):
if mod in self.modifier_subtitles:
ET.SubElement(root, 'subtitle',
{'mod': mod}).text = self.modifier_subtitles[mod]
if self.arg:
ET.SubElement(root, 'arg').text = self.arg
if self.icon:
if self.icontype:
attr = dict(type=self.icontype)
else:
attr = {}
ET.SubElement(root, 'icon', attr).text = self.icon
if self.largetext:
ET.SubElement(root, 'text',
{'type': 'largetype'}).text = self.largetext
if self.copytext:
ET.SubElement(root, 'text',
{'type': 'copy'}).text = self.copytext
if self.quicklookurl:
ET.SubElement(root, 'quicklookurl').text = self.quicklookurl
return root
class Settings(dict):
def __init__(self, filepath, defaults=None):
super(Settings, self).__init__()
self._filepath = filepath
self._nosave = False
self._original = {}
if os.path.exists(self._filepath):
self._load()
elif defaults:
for key, val in defaults.items():
self[key] = val
self.save()
def _load(self):
data = {}
with LockFile(self._filepath, 0.5):
with open(self._filepath, 'rb') as fp:
data.update(json.load(fp))
self._original = deepcopy(data)
self._nosave = True
self.update(data)
self._nosave = False
@uninterruptible
def save(self):
if self._nosave:
return
data = {}
data.update(self)
with LockFile(self._filepath, 0.5):
with atomic_writer(self._filepath, 'wb') as fp:
json.dump(data, fp, sort_keys=True, indent=2,
encoding='utf-8')
def __setitem__(self, key, value):
if self._original.get(key) != value:
super(Settings, self).__setitem__(key, value)
self.save()
def __delitem__(self, key):
super(Settings, self).__delitem__(key)
self.save()
def update(self, *args, **kwargs):
super(Settings, self).update(*args, **kwargs)
self.save()
def setdefault(self, key, value=None):
ret = super(Settings, self).setdefault(key, value)
self.save()
return ret
class Workflow(object):
item_class = Item
|
MIT License
|
wagtail/wagtail-live
|
src/wagtail_live/publishers/redis/bus.py
|
RedisBus.run
|
python
|
async def run(self):
self._running = asyncio.Event()
await self._running.wait()
await self.pubsub.run()
|
Retrieves messages from Redis and dispatches them as long as the server is running.
|
https://github.com/wagtail/wagtail-live/blob/3395f473c3c34f8932d8b0ea6de56745d446e3bd/src/wagtail_live/publishers/redis/bus.py#L42-L50
|
import asyncio
from collections import defaultdict
import aioredis
from ..utils import get_redis_url
class RedisBus:
def __init__(self, url, broadcast):
redis = aioredis.from_url(get_redis_url(), decode_responses=True)
self.pubsub = redis.pubsub(ignore_subscribe_messages=True)
self.broadcast = broadcast
self.channel_groups = defaultdict(set)
self._running = None
|
BSD 3-Clause New or Revised License
|
mic-dkfz/nnunet
|
nnunet/training/network_training/nnUNetTrainer.py
|
nnUNetTrainer.predict_preprocessed_data_return_seg_and_softmax
|
python
|
def predict_preprocessed_data_return_seg_and_softmax(self, data: np.ndarray, do_mirroring: bool = True,
mirror_axes: Tuple[int] = None,
use_sliding_window: bool = True, step_size: float = 0.5,
use_gaussian: bool = True, pad_border_mode: str = 'constant',
pad_kwargs: dict = None, all_in_gpu: bool = False,
verbose: bool = True, mixed_precision: bool = True) -> Tuple[np.ndarray, np.ndarray]:
if pad_border_mode == 'constant' and pad_kwargs is None:
pad_kwargs = {'constant_values': 0}
if do_mirroring and mirror_axes is None:
mirror_axes = self.data_aug_params['mirror_axes']
if do_mirroring:
assert self.data_aug_params["do_mirror"], "Cannot do mirroring as test time augmentation when training " "was done without mirroring"
valid = list((SegmentationNetwork, nn.DataParallel))
assert isinstance(self.network, tuple(valid))
current_mode = self.network.training
self.network.eval()
ret = self.network.predict_3D(data, do_mirroring=do_mirroring, mirror_axes=mirror_axes,
use_sliding_window=use_sliding_window, step_size=step_size,
patch_size=self.patch_size, regions_class_order=self.regions_class_order,
use_gaussian=use_gaussian, pad_border_mode=pad_border_mode,
pad_kwargs=pad_kwargs, all_in_gpu=all_in_gpu, verbose=verbose,
mixed_precision=mixed_precision)
self.network.train(current_mode)
return ret
|
:param data:
:param do_mirroring:
:param mirror_axes:
:param use_sliding_window:
:param step_size:
:param use_gaussian:
:param pad_border_mode:
:param pad_kwargs:
:param all_in_gpu:
:param verbose:
:return:
|
https://github.com/mic-dkfz/nnunet/blob/96d44c2fc1ce5e18da4cd54bf52882047c37982e/nnunet/training/network_training/nnUNetTrainer.py#L483-L524
|
import shutil
from collections import OrderedDict
from multiprocessing import Pool
from time import sleep
from typing import Tuple, List
import matplotlib
import numpy as np
import torch
from batchgenerators.utilities.file_and_folder_operations import *
from torch import nn
from torch.optim import lr_scheduler
import nnunet
from nnunet.configuration import default_num_threads
from nnunet.evaluation.evaluator import aggregate_scores
from nnunet.inference.segmentation_export import save_segmentation_nifti_from_softmax
from nnunet.network_architecture.generic_UNet import Generic_UNet
from nnunet.network_architecture.initialization import InitWeights_He
from nnunet.network_architecture.neural_network import SegmentationNetwork
from nnunet.postprocessing.connected_components import determine_postprocessing
from nnunet.training.data_augmentation.default_data_augmentation import default_3D_augmentation_params, default_2D_augmentation_params, get_default_augmentation, get_patch_size
from nnunet.training.dataloading.dataset_loading import load_dataset, DataLoader3D, DataLoader2D, unpack_dataset
from nnunet.training.loss_functions.dice_loss import DC_and_CE_loss
from nnunet.training.network_training.network_trainer import NetworkTrainer
from nnunet.utilities.nd_softmax import softmax_helper
from nnunet.utilities.tensor_utilities import sum_tensor
matplotlib.use("agg")
class nnUNetTrainer(NetworkTrainer):
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None,
unpack_data=True, deterministic=True, fp16=False):
super(nnUNetTrainer, self).__init__(deterministic, fp16)
self.unpack_data = unpack_data
self.init_args = (plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data,
deterministic, fp16)
self.stage = stage
self.experiment_name = self.__class__.__name__
self.plans_file = plans_file
self.output_folder = output_folder
self.dataset_directory = dataset_directory
self.output_folder_base = self.output_folder
self.fold = fold
self.plans = None
if self.dataset_directory is not None and isdir(self.dataset_directory):
self.gt_niftis_folder = join(self.dataset_directory, "gt_segmentations")
else:
self.gt_niftis_folder = None
self.folder_with_preprocessed_data = None
self.dl_tr = self.dl_val = None
self.num_input_channels = self.num_classes = self.net_pool_per_axis = self.patch_size = self.batch_size = self.threeD = self.base_num_features = self.intensity_properties = self.normalization_schemes = self.net_num_pool_op_kernel_sizes = self.net_conv_kernel_sizes = None
self.basic_generator_patch_size = self.data_aug_params = self.transpose_forward = self.transpose_backward = None
self.batch_dice = batch_dice
self.loss = DC_and_CE_loss({'batch_dice': self.batch_dice, 'smooth': 1e-5, 'do_bg': False}, {})
self.online_eval_foreground_dc = []
self.online_eval_tp = []
self.online_eval_fp = []
self.online_eval_fn = []
self.classes = self.do_dummy_2D_aug = self.use_mask_for_norm = self.only_keep_largest_connected_component = self.min_region_size_per_class = self.min_size_per_class = None
self.inference_pad_border_mode = "constant"
self.inference_pad_kwargs = {'constant_values': 0}
self.update_fold(fold)
self.pad_all_sides = None
self.lr_scheduler_eps = 1e-3
self.lr_scheduler_patience = 30
self.initial_lr = 3e-4
self.weight_decay = 3e-5
self.oversample_foreground_percent = 0.33
self.conv_per_stage = None
self.regions_class_order = None
def update_fold(self, fold):
if fold is not None:
if isinstance(fold, str):
assert fold == "all", "if self.fold is a string then it must be \'all\'"
if self.output_folder.endswith("%s" % str(self.fold)):
self.output_folder = self.output_folder_base
self.output_folder = join(self.output_folder, "%s" % str(fold))
else:
if self.output_folder.endswith("fold_%s" % str(self.fold)):
self.output_folder = self.output_folder_base
self.output_folder = join(self.output_folder, "fold_%s" % str(fold))
self.fold = fold
def setup_DA_params(self):
if self.threeD:
self.data_aug_params = default_3D_augmentation_params
if self.do_dummy_2D_aug:
self.data_aug_params["dummy_2D"] = True
self.print_to_log_file("Using dummy2d data augmentation")
self.data_aug_params["elastic_deform_alpha"] = default_2D_augmentation_params["elastic_deform_alpha"]
self.data_aug_params["elastic_deform_sigma"] = default_2D_augmentation_params["elastic_deform_sigma"]
self.data_aug_params["rotation_x"] = default_2D_augmentation_params["rotation_x"]
else:
self.do_dummy_2D_aug = False
if max(self.patch_size) / min(self.patch_size) > 1.5:
default_2D_augmentation_params['rotation_x'] = (-15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi)
self.data_aug_params = default_2D_augmentation_params
self.data_aug_params["mask_was_used_for_normalization"] = self.use_mask_for_norm
if self.do_dummy_2D_aug:
self.basic_generator_patch_size = get_patch_size(self.patch_size[1:],
self.data_aug_params['rotation_x'],
self.data_aug_params['rotation_y'],
self.data_aug_params['rotation_z'],
self.data_aug_params['scale_range'])
self.basic_generator_patch_size = np.array([self.patch_size[0]] + list(self.basic_generator_patch_size))
else:
self.basic_generator_patch_size = get_patch_size(self.patch_size, self.data_aug_params['rotation_x'],
self.data_aug_params['rotation_y'],
self.data_aug_params['rotation_z'],
self.data_aug_params['scale_range'])
self.data_aug_params['selected_seg_channels'] = [0]
self.data_aug_params['patch_size_for_spatialtransform'] = self.patch_size
def initialize(self, training=True, force_load_plans=False):
maybe_mkdir_p(self.output_folder)
if force_load_plans or (self.plans is None):
self.load_plans_file()
self.process_plans(self.plans)
self.setup_DA_params()
if training:
self.folder_with_preprocessed_data = join(self.dataset_directory, self.plans['data_identifier'] +
"_stage%d" % self.stage)
self.dl_tr, self.dl_val = self.get_basic_generators()
if self.unpack_data:
self.print_to_log_file("unpacking dataset")
unpack_dataset(self.folder_with_preprocessed_data)
self.print_to_log_file("done")
else:
self.print_to_log_file(
"INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you "
"will wait all winter for your model to finish!")
self.tr_gen, self.val_gen = get_default_augmentation(self.dl_tr, self.dl_val,
self.data_aug_params[
'patch_size_for_spatialtransform'],
self.data_aug_params)
self.print_to_log_file("TRAINING KEYS:\n %s" % (str(self.dataset_tr.keys())),
also_print_to_console=False)
self.print_to_log_file("VALIDATION KEYS:\n %s" % (str(self.dataset_val.keys())),
also_print_to_console=False)
else:
pass
self.initialize_network()
self.initialize_optimizer_and_scheduler()
self.was_initialized = True
def initialize_network(self):
net_numpool = len(self.net_num_pool_op_kernel_sizes)
if self.threeD:
conv_op = nn.Conv3d
dropout_op = nn.Dropout3d
norm_op = nn.InstanceNorm3d
else:
conv_op = nn.Conv2d
dropout_op = nn.Dropout2d
norm_op = nn.InstanceNorm2d
norm_op_kwargs = {'eps': 1e-5, 'affine': True}
dropout_op_kwargs = {'p': 0, 'inplace': True}
net_nonlin = nn.LeakyReLU
net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
self.network = Generic_UNet(self.num_input_channels, self.base_num_features, self.num_classes, net_numpool,
self.conv_per_stage, 2, conv_op, norm_op, norm_op_kwargs, dropout_op,
dropout_op_kwargs,
net_nonlin, net_nonlin_kwargs, False, False, lambda x: x, InitWeights_He(1e-2),
self.net_num_pool_op_kernel_sizes, self.net_conv_kernel_sizes, False, True, True)
self.network.inference_apply_nonlin = softmax_helper
if torch.cuda.is_available():
self.network.cuda()
def initialize_optimizer_and_scheduler(self):
assert self.network is not None, "self.initialize_network must be called first"
self.optimizer = torch.optim.Adam(self.network.parameters(), self.initial_lr, weight_decay=self.weight_decay,
amsgrad=True)
self.lr_scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='min', factor=0.2,
patience=self.lr_scheduler_patience,
verbose=True, threshold=self.lr_scheduler_eps,
threshold_mode="abs")
def plot_network_architecture(self):
try:
from batchgenerators.utilities.file_and_folder_operations import join
import hiddenlayer as hl
if torch.cuda.is_available():
g = hl.build_graph(self.network, torch.rand((1, self.num_input_channels, *self.patch_size)).cuda(),
transforms=None)
else:
g = hl.build_graph(self.network, torch.rand((1, self.num_input_channels, *self.patch_size)),
transforms=None)
g.save(join(self.output_folder, "network_architecture.pdf"))
del g
except Exception as e:
self.print_to_log_file("Unable to plot network architecture:")
self.print_to_log_file(e)
self.print_to_log_file("\nprinting the network instead:\n")
self.print_to_log_file(self.network)
self.print_to_log_file("\n")
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
def save_debug_information(self):
dct = OrderedDict()
for k in self.__dir__():
if not k.startswith("__"):
if not callable(getattr(self, k)):
dct[k] = str(getattr(self, k))
del dct['plans']
del dct['intensity_properties']
del dct['dataset']
del dct['dataset_tr']
del dct['dataset_val']
save_json(dct, join(self.output_folder, "debug.json"))
import shutil
shutil.copy(self.plans_file, join(self.output_folder_base, "plans.pkl"))
def run_training(self):
self.save_debug_information()
super(nnUNetTrainer, self).run_training()
def load_plans_file(self):
self.plans = load_pickle(self.plans_file)
def process_plans(self, plans):
if self.stage is None:
assert len(list(plans['plans_per_stage'].keys())) == 1, "If self.stage is None then there can be only one stage in the plans file. That seems to not be the " "case. Please specify which stage of the cascade must be trained"
self.stage = list(plans['plans_per_stage'].keys())[0]
self.plans = plans
stage_plans = self.plans['plans_per_stage'][self.stage]
self.batch_size = stage_plans['batch_size']
self.net_pool_per_axis = stage_plans['num_pool_per_axis']
self.patch_size = np.array(stage_plans['patch_size']).astype(int)
self.do_dummy_2D_aug = stage_plans['do_dummy_2D_data_aug']
if 'pool_op_kernel_sizes' not in stage_plans.keys():
assert 'num_pool_per_axis' in stage_plans.keys()
self.print_to_log_file("WARNING! old plans file with missing pool_op_kernel_sizes. Attempting to fix it...")
self.net_num_pool_op_kernel_sizes = []
for i in range(max(self.net_pool_per_axis)):
curr = []
for j in self.net_pool_per_axis:
if (max(self.net_pool_per_axis) - j) <= i:
curr.append(2)
else:
curr.append(1)
self.net_num_pool_op_kernel_sizes.append(curr)
else:
self.net_num_pool_op_kernel_sizes = stage_plans['pool_op_kernel_sizes']
if 'conv_kernel_sizes' not in stage_plans.keys():
self.print_to_log_file("WARNING! old plans file with missing conv_kernel_sizes. Attempting to fix it...")
self.net_conv_kernel_sizes = [[3] * len(self.net_pool_per_axis)] * (max(self.net_pool_per_axis) + 1)
else:
self.net_conv_kernel_sizes = stage_plans['conv_kernel_sizes']
self.pad_all_sides = None
self.intensity_properties = plans['dataset_properties']['intensityproperties']
self.normalization_schemes = plans['normalization_schemes']
self.base_num_features = plans['base_num_features']
self.num_input_channels = plans['num_modalities']
self.num_classes = plans['num_classes'] + 1
self.classes = plans['all_classes']
self.use_mask_for_norm = plans['use_mask_for_norm']
self.only_keep_largest_connected_component = plans['keep_only_largest_region']
self.min_region_size_per_class = plans['min_region_size_per_class']
self.min_size_per_class = None
if plans.get('transpose_forward') is None or plans.get('transpose_backward') is None:
print("WARNING! You seem to have data that was preprocessed with a previous version of nnU-Net. "
"You should rerun preprocessing. We will proceed and assume that both transpose_foward "
"and transpose_backward are [0, 1, 2]. If that is not correct then weird things will happen!")
plans['transpose_forward'] = [0, 1, 2]
plans['transpose_backward'] = [0, 1, 2]
self.transpose_forward = plans['transpose_forward']
self.transpose_backward = plans['transpose_backward']
if len(self.patch_size) == 2:
self.threeD = False
elif len(self.patch_size) == 3:
self.threeD = True
else:
raise RuntimeError("invalid patch size in plans file: %s" % str(self.patch_size))
if "conv_per_stage" in plans.keys():
self.conv_per_stage = plans['conv_per_stage']
else:
self.conv_per_stage = 2
def load_dataset(self):
self.dataset = load_dataset(self.folder_with_preprocessed_data)
def get_basic_generators(self):
self.load_dataset()
self.do_split()
if self.threeD:
dl_tr = DataLoader3D(self.dataset_tr, self.basic_generator_patch_size, self.patch_size, self.batch_size,
False, oversample_foreground_percent=self.oversample_foreground_percent,
pad_mode="constant", pad_sides=self.pad_all_sides, memmap_mode='r')
dl_val = DataLoader3D(self.dataset_val, self.patch_size, self.patch_size, self.batch_size, False,
oversample_foreground_percent=self.oversample_foreground_percent,
pad_mode="constant", pad_sides=self.pad_all_sides, memmap_mode='r')
else:
dl_tr = DataLoader2D(self.dataset_tr, self.basic_generator_patch_size, self.patch_size, self.batch_size,
oversample_foreground_percent=self.oversample_foreground_percent,
pad_mode="constant", pad_sides=self.pad_all_sides, memmap_mode='r')
dl_val = DataLoader2D(self.dataset_val, self.patch_size, self.patch_size, self.batch_size,
oversample_foreground_percent=self.oversample_foreground_percent,
pad_mode="constant", pad_sides=self.pad_all_sides, memmap_mode='r')
return dl_tr, dl_val
def preprocess_patient(self, input_files):
from nnunet.training.model_restore import recursive_find_python_class
preprocessor_name = self.plans.get('preprocessor_name')
if preprocessor_name is None:
if self.threeD:
preprocessor_name = "GenericPreprocessor"
else:
preprocessor_name = "PreprocessorFor2D"
print("using preprocessor", preprocessor_name)
preprocessor_class = recursive_find_python_class([join(nnunet.__path__[0], "preprocessing")],
preprocessor_name,
current_module="nnunet.preprocessing")
assert preprocessor_class is not None, "Could not find preprocessor %s in nnunet.preprocessing" % preprocessor_name
preprocessor = preprocessor_class(self.normalization_schemes, self.use_mask_for_norm,
self.transpose_forward, self.intensity_properties)
d, s, properties = preprocessor.preprocess_test_case(input_files,
self.plans['plans_per_stage'][self.stage][
'current_spacing'])
return d, s, properties
def preprocess_predict_nifti(self, input_files: List[str], output_file: str = None,
softmax_ouput_file: str = None, mixed_precision: bool = True) -> None:
print("preprocessing...")
d, s, properties = self.preprocess_patient(input_files)
print("predicting...")
pred = self.predict_preprocessed_data_return_seg_and_softmax(d, do_mirroring=self.data_aug_params["do_mirror"],
mirror_axes=self.data_aug_params['mirror_axes'],
use_sliding_window=True, step_size=0.5,
use_gaussian=True, pad_border_mode='constant',
pad_kwargs={'constant_values': 0},
verbose=True, all_in_gpu=False,
mixed_precision=mixed_precision)[1]
pred = pred.transpose([0] + [i + 1 for i in self.transpose_backward])
if 'segmentation_export_params' in self.plans.keys():
force_separate_z = self.plans['segmentation_export_params']['force_separate_z']
interpolation_order = self.plans['segmentation_export_params']['interpolation_order']
interpolation_order_z = self.plans['segmentation_export_params']['interpolation_order_z']
else:
force_separate_z = None
interpolation_order = 1
interpolation_order_z = 0
print("resampling to original spacing and nifti export...")
save_segmentation_nifti_from_softmax(pred, output_file, properties, interpolation_order,
self.regions_class_order, None, None, softmax_ouput_file,
None, force_separate_z=force_separate_z,
interpolation_order_z=interpolation_order_z)
print("done")
|
Apache License 2.0
|
nipy/nipy
|
nipy/labs/spatial_models/discrete_domain.py
|
DiscreteDomain.representative_feature
|
python
|
def representative_feature(self, fid, method):
f = self.get_feature(fid)
if method == "mean":
return np.mean(f, 0)
if method == "min":
return np.min(f, 0)
if method == "max":
return np.max(f, 0)
if method == "median":
return np.median(f, 0)
|
Compute a statistical representative of the within-Foain feature
Parameters
----------
fid: string, feature id
method: string, method used to compute a representative
to be chosen among 'mean', 'max', 'median', 'min'
|
https://github.com/nipy/nipy/blob/d16d268938dcd5c15748ca051532c21f57cf8a22/nipy/labs/spatial_models/discrete_domain.py#L567-L585
|
from __future__ import absolute_import
import numpy as np
import scipy.sparse as sp
from nibabel import load, Nifti1Image, save
from nipy.io.nibcompat import get_header, get_affine
from nipy.algorithms.graph import (WeightedGraph, wgraph_from_coo_matrix,
wgraph_from_3d_grid)
from nipy.externals.six import string_types
def smatrix_from_3d_array(mask, nn=18):
ijk = np.array(np.where(mask)).T
return smatrix_from_3d_idx(ijk, nn)
def smatrix_from_3d_idx(ijk, nn=18):
G = wgraph_from_3d_grid(ijk, nn)
return G.to_coo_matrix()
def smatrix_from_nd_array(mask, nn=0):
idx = np.array(np.where(mask)).T
return smatrix_from_nd_idx(idx, nn)
def smatrix_from_nd_idx(idx, nn=0):
n = idx.shape[0]
dim = idx.shape[1]
nidx = idx - idx.min(0)
eA = []
eB = []
for d in range(dim):
mi = nidx.max(0) + 2
a = np.hstack((1, np.cumprod(mi[:dim - 1])))
v1 = np.dot(nidx, a)
assert(np.size(v1) == np.size(np.unique(v1)))
o1 = np.argsort(v1)
sv1 = v1[o1]
nz = np.squeeze(np.nonzero(sv1[:n - 1] - sv1[1:] == - 1))
nz = np.reshape(nz, np.size(nz))
eA.append(o1[nz])
eB.append(o1[nz + 1])
nidx = np.roll(nidx, 1, 1)
eA = np.concatenate(eA)
eB = np.concatenate(eB)
E = 2 * np.size(eA)
if E == 0:
return sp.coo_matrix((n, n))
edges = np.vstack((np.hstack((eA, eB)), np.hstack((eB, eA)))).T
weights = np.ones(E)
G = WeightedGraph(n, edges, weights)
return G.to_coo_matrix()
def array_affine_coord(mask, affine):
idx = np.array(np.where(mask)).T
return idx_affine_coord(idx, affine)
def idx_affine_coord(idx, affine):
size = idx.shape[0]
hidx = np.hstack((idx, np.ones((size, 1))))
coord = np.dot(hidx, affine.T)[:, 0:-1]
return coord
def reduce_coo_matrix(mat, mask):
G = wgraph_from_coo_matrix(mat)
K = G.subgraph(mask)
if K is None:
return None
return K.to_coo_matrix()
def domain_from_binary_array(mask, affine=None, nn=0):
dim = len(mask.shape)
if affine is None:
affine = np.eye(dim + 1)
mask = mask > 0
vol = np.absolute(np.linalg.det(affine)) * np.ones(np.sum(mask))
coord = array_affine_coord(mask, affine)
topology = smatrix_from_nd_array(mask)
return StructuredDomain(dim, coord, vol, topology)
def domain_from_image(mim, nn=18):
if isinstance(mim, string_types):
iim = load(mim)
else:
iim = mim
return domain_from_binary_array(iim.get_data(), get_affine(iim), nn)
def grid_domain_from_binary_array(mask, affine=None, nn=0):
dim = len(mask.shape)
shape = mask.shape
if affine is None:
affine = np.eye(dim + 1)
mask = mask > 0
ijk = np.array(np.where(mask)).T
vol = np.absolute(np.linalg.det(affine[:3, 0:3])) * np.ones(np.sum(mask))
topology = smatrix_from_nd_idx(ijk, nn)
return NDGridDomain(dim, ijk, shape, affine, vol, topology)
def grid_domain_from_image(mim, nn=18):
if isinstance(mim, string_types):
iim = load(mim)
else:
iim = mim
return grid_domain_from_binary_array(iim.get_data(), get_affine(iim), nn)
def grid_domain_from_shape(shape, affine=None):
dim = len(shape)
if affine is None:
affine = np.eye(dim + 1)
rect = np.ones(shape)
ijk = np.array(np.where(rect)).T
vol = (np.absolute(np.linalg.det(affine[:3, 0:3])) *
np.ones(int(np.sum(rect))))
topology = smatrix_from_nd_idx(ijk, 0)
return NDGridDomain(dim, ijk, shape, affine, vol, topology)
class MeshDomain(object):
def __init__(self, coord, triangles):
self.coord = coord
self.triangles = triangles
self.V = len(coord)
def area(self):
E = len(self.triangles)
narea = np.zeros(self.V)
def _area(a, b):
c = np.array([a[1] * b[2] - a[2] * b[1],
- a[0] * b[2] + a[2] * b[0],
a[0] * b[1] - a[1] * b[0]])
return np.sqrt((c ** 2).sum())
for e in range(E):
i, j, k = self.triangles[e]
a = self.coord[i] - self.coord[k]
b = self.coord[j] - self.coord[k]
ar = _area(a, b)
narea[i] += ar
narea[j] += ar
narea[k] += ar
narea /= 6
return narea
def topology(self):
E = len(self.triangles)
edges = np.zeros((3 * E, 2))
weights = np.ones(3 * E)
for i in range(E):
sa, sb, sc = self.triangles[i]
edges[3 * i] = np.array([sa, sb])
edges[3 * i + 1] = np.array([sa, sc])
edges[3 * i + 2] = np.array([sb, sc])
G = WeightedGraph(self.V, edges, weights)
G = G.symmeterize()
G = G.cut_redundancies()
G.set_euclidian(self.coord)
return G.to_coo_matrix()
def domain_from_mesh(mesh):
if isinstance(mesh, string_types):
from nibabel.gifti import read
mesh_ = read(mesh)
else:
mesh_ = mesh
if len(mesh_.darrays) == 2:
cor, tri = mesh_.darrays
elif len(mesh_.darrays) == 3:
cor, nor, tri = mesh_.darrays
else:
raise Exception("%d arrays in gifti file (case not handled)" % len(mesh_.darrays))
mesh_dom = MeshDomain(cor.data, tri.data)
vol = mesh_dom.area()
topology = mesh_dom.topology()
dim = 2
return StructuredDomain(dim, mesh_dom.coord, vol, topology)
class DiscreteDomain(object):
def __init__(self, dim, coord, local_volume, id='', referential=''):
self.dim = dim
self.size = coord.shape[0]
if np.size(coord) == coord.shape[0]:
coord = np.reshape(coord, (np.size(coord), 1))
if np.size(coord) == 0:
self.em_dim = dim
else:
self.em_dim = coord.shape[1]
if self.em_dim < dim:
raise ValueError('Embedding dimension cannot be smaller than dim')
self.coord = coord
if np.size(local_volume) != self.size:
raise ValueError("Inconsistent Volume size")
if (local_volume < 0).any():
raise ValueError('Volume should be positive')
self.local_volume = np.ravel(local_volume)
self.id = id
self.referential = referential
self.features = {}
def copy(self):
new_dom = DiscreteDomain(self.dim, self.coord.copy(),
self.local_volume.copy(), self.id,
self.referential)
for fid in list(self.features.keys()):
new_dom.set_feature(fid, self.get_feature(fid).copy())
return new_dom
def get_coord(self):
return self.coord
def get_volume(self):
return self.local_volume
def connected_components(self):
if self.topology is not None:
return wgraph_from_coo_matrix(self.topology).cc()
else:
return []
def mask(self, bmask, id=''):
if bmask.size != self.size:
raise ValueError('Invalid mask size')
svol = self.local_volume[bmask]
scoord = self.coord[bmask]
DD = DiscreteDomain(self.dim, scoord, svol, id, self.referential)
for fid in list(self.features.keys()):
f = self.features.pop(fid)
DD.set_feature(fid, f[bmask])
return DD
def set_feature(self, fid, data, override=True):
if data.shape[0] != self.size:
raise ValueError('Wrong data size')
if (fid in self.features) & (override == False):
return
self.features.update({fid: data})
def get_feature(self, fid):
return self.features[fid]
|
BSD 3-Clause New or Revised License
|
alexa/alexa-apis-for-python
|
ask-smapi-model/ask_smapi_model/v1/skill/interaction_model/catalog/catalog_entity.py
|
CatalogEntity.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, CatalogEntity):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/alexa/alexa-apis-for-python/blob/bfe5e694daaca71bfb1a4199ca8d2514f1cac6c9/ask-smapi-model/ask_smapi_model/v1/skill/interaction_model/catalog/catalog_entity.py#L104-L110
|
import pprint
import re
import six
import typing
from enum import Enum
if typing.TYPE_CHECKING:
from typing import Dict, List, Optional, Union, Any
from datetime import datetime
class CatalogEntity(object):
deserialized_types = {
'name': 'str',
'description': 'str'
}
attribute_map = {
'name': 'name',
'description': 'description'
}
supports_multiple_types = False
def __init__(self, name=None, description=None):
self.__discriminator_value = None
self.name = name
self.description = description
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.deserialized_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else
x.value if isinstance(x, Enum) else x,
value
))
elif isinstance(value, Enum):
result[attr] = value.value
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else
(item[0], item[1].value)
if isinstance(item[1], Enum) else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
Apache License 2.0
|
tektoncd/experimental
|
sdk/python/tekton_pipeline/models/v1beta1_embedded_task.py
|
V1beta1EmbeddedTask.kind
|
python
|
def kind(self, kind):
self._kind = kind
|
Sets the kind of this V1beta1EmbeddedTask.
:param kind: The kind of this V1beta1EmbeddedTask. # noqa: E501
:type: str
|
https://github.com/tektoncd/experimental/blob/0ba4e7a2b9d45ed4accaecbb34dac006d665796a/sdk/python/tekton_pipeline/models/v1beta1_embedded_task.py#L184-L192
|
import pprint
import re
import six
from tekton_pipeline.configuration import Configuration
class V1beta1EmbeddedTask(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'api_version': 'str',
'description': 'str',
'kind': 'str',
'metadata': 'V1beta1PipelineTaskMetadata',
'params': 'list[V1beta1ParamSpec]',
'resources': 'V1beta1TaskResources',
'results': 'list[V1beta1TaskResult]',
'sidecars': 'list[V1beta1Sidecar]',
'spec': 'K8sIoApimachineryPkgRuntimeRawExtension',
'step_template': 'V1Container',
'steps': 'list[V1beta1Step]',
'volumes': 'list[V1Volume]',
'workspaces': 'list[V1beta1WorkspaceDeclaration]'
}
attribute_map = {
'api_version': 'apiVersion',
'description': 'description',
'kind': 'kind',
'metadata': 'metadata',
'params': 'params',
'resources': 'resources',
'results': 'results',
'sidecars': 'sidecars',
'spec': 'spec',
'step_template': 'stepTemplate',
'steps': 'steps',
'volumes': 'volumes',
'workspaces': 'workspaces'
}
def __init__(self, api_version=None, description=None, kind=None, metadata=None, params=None, resources=None, results=None, sidecars=None, spec=None, step_template=None, steps=None, volumes=None, workspaces=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._api_version = None
self._description = None
self._kind = None
self._metadata = None
self._params = None
self._resources = None
self._results = None
self._sidecars = None
self._spec = None
self._step_template = None
self._steps = None
self._volumes = None
self._workspaces = None
self.discriminator = None
if api_version is not None:
self.api_version = api_version
if description is not None:
self.description = description
if kind is not None:
self.kind = kind
if metadata is not None:
self.metadata = metadata
if params is not None:
self.params = params
if resources is not None:
self.resources = resources
if results is not None:
self.results = results
if sidecars is not None:
self.sidecars = sidecars
if spec is not None:
self.spec = spec
if step_template is not None:
self.step_template = step_template
if steps is not None:
self.steps = steps
if volumes is not None:
self.volumes = volumes
if workspaces is not None:
self.workspaces = workspaces
@property
def api_version(self):
return self._api_version
@api_version.setter
def api_version(self, api_version):
self._api_version = api_version
@property
def description(self):
return self._description
@description.setter
def description(self, description):
self._description = description
@property
def kind(self):
return self._kind
@kind.setter
|
Apache License 2.0
|
flask-admin/flask-admin
|
flask_admin/contrib/fileadmin/__init__.py
|
BaseFileAdmin._get_breadcrumbs
|
python
|
def _get_breadcrumbs(self, path):
accumulator = []
breadcrumbs = []
for n in path.split(self._separator):
accumulator.append(n)
breadcrumbs.append((n, self._separator.join(accumulator)))
return breadcrumbs
|
Returns a list of tuples with each tuple containing the folder and
the tree up to that folder when traversing down the `path`
|
https://github.com/flask-admin/flask-admin/blob/e39f786374ce0e60db93f583efacb4672de0025c/flask_admin/contrib/fileadmin/__init__.py#L784-L794
|
import warnings
from datetime import datetime
import os
import os.path as op
import platform
import re
import shutil
from operator import itemgetter
from flask import flash, redirect, abort, request, send_file
from werkzeug.utils import secure_filename
from wtforms import fields, validators
from flask_admin import form, helpers
from flask_admin._compat import urljoin, as_unicode, quote
from flask_admin.base import BaseView, expose
from flask_admin.actions import action, ActionsMixin
from flask_admin.babel import gettext, lazy_gettext
class LocalFileStorage(object):
def __init__(self, base_path):
self.base_path = as_unicode(base_path)
self.separator = os.sep
if not self.path_exists(self.base_path):
raise IOError('FileAdmin path "%s" does not exist or is not accessible' % self.base_path)
def get_base_path(self):
return op.normpath(self.base_path)
def make_dir(self, path, directory):
os.mkdir(op.join(path, directory))
def get_files(self, path, directory):
items = []
for f in os.listdir(directory):
fp = op.join(directory, f)
rel_path = op.join(path, f)
is_dir = self.is_dir(fp)
size = op.getsize(fp)
last_modified = op.getmtime(fp)
items.append((f, rel_path, is_dir, size, last_modified))
return items
def delete_tree(self, directory):
shutil.rmtree(directory)
def delete_file(self, file_path):
os.remove(file_path)
def path_exists(self, path):
return op.exists(path)
def rename_path(self, src, dst):
os.rename(src, dst)
def is_dir(self, path):
return op.isdir(path)
def send_file(self, file_path):
return send_file(file_path)
def read_file(self, path):
with open(path, 'rb') as f:
return f.read()
def write_file(self, path, content):
with open(path, 'w') as f:
return f.write(content)
def save_file(self, path, file_data):
file_data.save(path)
class BaseFileAdmin(BaseView, ActionsMixin):
can_upload = True
can_download = True
can_delete = True
can_delete_dirs = True
can_mkdir = True
can_rename = True
allowed_extensions = None
editable_extensions = tuple()
list_template = 'admin/file/list.html'
upload_template = 'admin/file/form.html'
upload_modal_template = 'admin/file/modals/form.html'
mkdir_template = 'admin/file/form.html'
mkdir_modal_template = 'admin/file/modals/form.html'
rename_template = 'admin/file/form.html'
rename_modal_template = 'admin/file/modals/form.html'
edit_template = 'admin/file/form.html'
edit_modal_template = 'admin/file/modals/form.html'
form_base_class = form.BaseForm
rename_modal = False
upload_modal = False
mkdir_modal = False
edit_modal = False
possible_columns = 'name', 'rel_path', 'is_dir', 'size', 'date'
column_list = 'name', 'size', 'date'
column_sortable_list = column_list
default_sort_column = None
default_desc = 0
column_labels = dict((column, column.capitalize()) for column in column_list)
date_format = '%Y-%m-%d %H:%M:%S'
def __init__(self, base_url=None, name=None, category=None, endpoint=None,
url=None, verify_path=True, menu_class_name=None,
menu_icon_type=None, menu_icon_value=None, storage=None):
self.base_url = base_url
self.storage = storage
self.init_actions()
self._on_windows = platform.system() == 'Windows'
if (self.allowed_extensions and
not isinstance(self.allowed_extensions, set)):
self.allowed_extensions = set(self.allowed_extensions)
if (self.editable_extensions and
not isinstance(self.editable_extensions, set)):
self.editable_extensions = set(self.editable_extensions)
super(BaseFileAdmin, self).__init__(name, category, endpoint, url,
menu_class_name=menu_class_name,
menu_icon_type=menu_icon_type,
menu_icon_value=menu_icon_value)
def is_accessible_path(self, path):
return True
def get_base_path(self):
return self.storage.get_base_path()
def get_base_url(self):
return self.base_url
def get_upload_form(self):
class UploadForm(self.form_base_class):
upload = fields.FileField(lazy_gettext('File to upload'))
def __init__(self, *args, **kwargs):
super(UploadForm, self).__init__(*args, **kwargs)
self.admin = kwargs['admin']
def validate_upload(self, field):
if not self.upload.data:
raise validators.ValidationError(gettext('File required.'))
filename = self.upload.data.filename
if not self.admin.is_file_allowed(filename):
raise validators.ValidationError(gettext('Invalid file type.'))
return UploadForm
def get_edit_form(self):
class EditForm(self.form_base_class):
content = fields.TextAreaField(lazy_gettext('Content'),
(validators.required(),))
return EditForm
def get_name_form(self):
def validate_name(self, field):
regexp = re.compile(r'^(?!^(PRN|AUX|CLOCK\$|NUL|CON|COM\d|LPT\d|\..*)(\..+)?$)[^\x00-\x1f\\?*:\";|/]+$')
if not regexp.match(field.data):
raise validators.ValidationError(gettext('Invalid name'))
class NameForm(self.form_base_class):
name = fields.StringField(lazy_gettext('Name'),
validators=[validators.Required(),
validate_name])
path = fields.HiddenField()
return NameForm
def get_delete_form(self):
class DeleteForm(self.form_base_class):
path = fields.HiddenField(validators=[validators.Required()])
return DeleteForm
def get_action_form(self):
class ActionForm(self.form_base_class):
action = fields.HiddenField()
url = fields.HiddenField()
return ActionForm
def upload_form(self):
upload_form_class = self.get_upload_form()
if request.form:
formdata = request.form.copy()
formdata.update(request.files)
return upload_form_class(formdata, admin=self)
elif request.files:
return upload_form_class(request.files, admin=self)
else:
return upload_form_class(admin=self)
def name_form(self):
name_form_class = self.get_name_form()
if request.form:
return name_form_class(request.form)
elif request.args:
return name_form_class(request.args)
else:
return name_form_class()
def edit_form(self):
edit_form_class = self.get_edit_form()
if request.form:
return edit_form_class(request.form)
else:
return edit_form_class()
def delete_form(self):
delete_form_class = self.get_delete_form()
if request.form:
return delete_form_class(request.form)
else:
return delete_form_class()
def action_form(self):
action_form_class = self.get_action_form()
if request.form:
return action_form_class(request.form)
else:
return action_form_class()
def is_file_allowed(self, filename):
ext = op.splitext(filename)[1].lower()
if ext.startswith('.'):
ext = ext[1:]
if self.allowed_extensions and ext not in self.allowed_extensions:
return False
return True
def is_file_editable(self, filename):
ext = op.splitext(filename)[1].lower()
if ext.startswith('.'):
ext = ext[1:]
if not self.editable_extensions or ext not in self.editable_extensions:
return False
return True
def is_in_folder(self, base_path, directory):
return op.normpath(directory).startswith(base_path)
def save_file(self, path, file_data):
self.storage.save_file(path, file_data)
def validate_form(self, form):
return helpers.validate_form_on_submit(form)
def _get_dir_url(self, endpoint, path=None, **kwargs):
if not path:
return self.get_url(endpoint, **kwargs)
else:
if self._on_windows:
path = path.replace('\\', '/')
kwargs['path'] = path
return self.get_url(endpoint, **kwargs)
def _get_file_url(self, path, **kwargs):
if self._on_windows:
path = path.replace('\\', '/')
if self.is_file_editable(path):
route = '.edit'
else:
route = '.download'
return self.get_url(route, path=path, **kwargs)
def _normalize_path(self, path):
base_path = self.get_base_path()
if path is None:
directory = base_path
path = ''
else:
path = op.normpath(path)
if base_path:
directory = self._separator.join([base_path, path])
else:
directory = path
directory = op.normpath(directory)
if not self.is_in_folder(base_path, directory):
abort(404)
if not self.storage.path_exists(directory):
abort(404)
return base_path, directory, path
def is_action_allowed(self, name):
if name == 'delete' and not self.can_delete:
return False
elif name == 'edit' and len(self.editable_extensions) == 0:
return False
return True
def on_rename(self, full_path, dir_base, filename):
pass
def on_edit_file(self, full_path, path):
pass
def on_file_upload(self, directory, path, filename):
pass
def on_mkdir(self, parent_dir, dir_name):
pass
def before_directory_delete(self, full_path, dir_name):
pass
def before_file_delete(self, full_path, filename):
pass
def on_directory_delete(self, full_path, dir_name):
pass
def on_file_delete(self, full_path, filename):
pass
def is_column_visible(self, column):
return column in self.column_list
def is_column_sortable(self, column):
return column in self.column_sortable_list
def column_label(self, column):
return self.column_labels[column]
def timestamp_format(self, timestamp):
return datetime.fromtimestamp(timestamp).strftime(self.date_format)
def _save_form_files(self, directory, path, form):
filename = self._separator.join([directory, secure_filename(form.upload.data.filename)])
if self.storage.path_exists(filename):
secure_name = self._separator.join([path, secure_filename(form.upload.data.filename)])
raise Exception(gettext('File "%(name)s" already exists.',
name=secure_name))
else:
self.save_file(filename, form.upload.data)
self.on_file_upload(directory, path, filename)
@property
def _separator(self):
return self.storage.separator
|
BSD 3-Clause New or Revised License
|
qecsim/qecsim
|
src/qecsim/cli.py
|
run_ftp
|
python
|
def run_ftp(code, time_steps, error_model, decoder, error_probabilities, max_failures, max_runs,
measurement_error_probability, output, random_seed):
code.validate()
logger.info('RUN STARTING: code={}, time_steps={}, error_model={}, decoder={}, error_probabilities={}, '
'max_failures={}, max_runs={}, measurement_error_probability={}, random_seed={}.'
.format(code, time_steps, error_model, decoder, error_probabilities, max_failures, max_runs,
measurement_error_probability, random_seed))
data = []
for error_probability in error_probabilities:
runs_data = app.run_ftp(code, time_steps, error_model, decoder, error_probability,
measurement_error_probability=measurement_error_probability,
max_runs=max_runs, max_failures=max_failures, random_seed=random_seed)
data.append(runs_data)
logger.info('RUN COMPLETE: data={}'.format(data))
_write_data(output, data)
|
Simulate fault-tolerant (time-periodic) quantum error correction.
Arguments:
\b
CODE Stabilizer code in format name(<args>)
#CODE_PARAMETERS#
\b
TIME_STEPS Number of time steps as INT >= 1
\b
ERROR_MODEL Error model in format name(<args>)
#ERROR_MODEL_PARAMETERS#
\b
DECODER Decoder in format name(<args>)
#DECODER_PARAMETERS#
\b
ERROR_PROBABILITY... One or more probabilities as FLOAT in [0.0, 1.0]
Examples:
qecsim run-ftp -r5 "rotated_planar(13,13)" 13 "generic.bit_phase_flip" "rotated_planar.smwpm" 0.1 0.2
qecsim run-ftp -r5 -m0.05 "rotated_toric(6,6)" 4 "generic.bit_phase_flip" "rotated_toric.smwpm" 0.1
qecsim run-ftp -r5 -o"data.json" "rotated_planar(7,7)" 7 "generic.depolarizing" "rotated_planar.smwpm" 0.1
|
https://github.com/qecsim/qecsim/blob/24d6b8a320b292461b66b68fe4fba40c9ddc2257/src/qecsim/cli.py#L286-L338
|
import ast
import inspect
import json
import logging
import re
import click
import pkg_resources
import qecsim
from qecsim import app
from qecsim import util
from qecsim.model import ATTR_CLI_DESCRIPTION
logger = logging.getLogger(__name__)
class _ConstructorParamType(click.ParamType):
name = 'constructor'
def __init__(self, constructors):
self._constructors = constructors
def get_metavar(self, param):
return '[{}]'.format('|'.join(sorted(self._constructors.keys())))
def get_missing_message(self, param):
return '(choose from {})'.format(', '.join(sorted(self._constructors.keys())))
def convert(self, value, param, ctx):
constructor_match = re.fullmatch(r'''
# match 'toric(3,3)' as {'constructor_name': 'toric', 'constructor_args': '3,3'}
(?P<constructor_name>[\w.]+) # capture constructor_name, e.g. 'toric'
(?:\(\s* # skip opening parenthesis and leading whitespace
(?P<constructor_args>.*?) # capture constructor_args, e.g. '3,3'
,?\s*\))? # skip trailing comma, trailing whitespace and closing parenthesis
''', value, re.VERBOSE)
if constructor_match is None:
self.fail('{} (format as name(<args>))'.format(value), param, ctx)
constructor_name = constructor_match.group('constructor_name')
if constructor_name in self._constructors.keys():
constructor = self._constructors[constructor_name]
else:
self.fail('{} (choose from {})'.format(value, ', '.join(sorted(self._constructors.keys()))), param, ctx)
constructor_args = constructor_match.group('constructor_args')
if constructor_args:
try:
arguments = ast.literal_eval(constructor_args + ',')
except Exception as ex:
self.fail('{} (failed to parse arguments "{}")'.format(value, ex), param, ctx)
else:
arguments = tuple()
try:
return constructor(*arguments)
except Exception as ex:
self.fail('{} (failed to construct "{}")'.format(value, ex), param, ctx)
def __repr__(self):
return '{}({!r})'.format(type(self).__name__, self._constructors)
def _model_argument(model_type):
def _decorator(func):
entry_point_id = 'qecsim.cli.{}.{}s'.format(func.__name__, model_type)
entry_points = sorted(pkg_resources.iter_entry_points(entry_point_id), key=lambda ep: ep.name)
constructors = {ep.name: ep.load() for ep in entry_points}
func = click.argument(model_type, type=_ConstructorParamType(constructors), metavar=model_type.upper())(func)
model_definition_list = [(name, getattr(cls, ATTR_CLI_DESCRIPTION, '')) for name, cls in constructors.items()]
formatter = click.HelpFormatter()
formatter.indent()
if model_definition_list:
formatter.write_dl(model_definition_list)
model_doc_placeholder = '#{}_PARAMETERS#'.format(model_type.upper())
func.__doc__ = inspect.getdoc(func).replace(model_doc_placeholder, formatter.getvalue())
return func
return _decorator
def _validate_error_probability(ctx, param, value):
if not (0 <= value <= 1):
raise click.BadParameter('{} is not in [0.0, 1.0]'.format(value), ctx, param)
return value
def _validate_error_probabilities(ctx, param, value):
for v in value:
_validate_error_probability(ctx, param, v)
return value
def _validate_measurement_error_probability(ctx, param, value):
if not (value is None or (0 <= value <= 1)):
raise click.BadParameter('{} is not in [0.0, 1.0]'.format(value), ctx, param)
return value
@click.group()
@click.version_option(version=qecsim.__version__, prog_name='qecsim')
def cli():
util.init_logging()
@cli.command()
@_model_argument('code')
@_model_argument('error_model')
@_model_argument('decoder')
@click.argument('error_probabilities', required=True, nargs=-1, type=float, metavar='ERROR_PROBABILITY...',
callback=_validate_error_probabilities)
@click.option('--max-failures', '-f', type=click.IntRange(min=1), metavar='INT',
help='Maximum number of failures for each probability.')
@click.option('--max-runs', '-r', type=click.IntRange(min=1), metavar='INT',
help='Maximum number of runs for each probability. [default: 1 if max-failures unspecified]')
@click.option('--output', '-o', default='-', type=click.Path(allow_dash=True), metavar='FILENAME',
help='Output file. (Writes to log if file exists).')
@click.option('--random-seed', '-s', type=click.IntRange(min=0), metavar='INT',
help='Random seed for qubit error generation. (Re-applied for each probability).')
def run(code, error_model, decoder, error_probabilities, max_failures, max_runs, output, random_seed):
code.validate()
logger.info('RUN STARTING: code={}, error_model={}, decoder={}, error_probabilities={}, max_failures={}, '
'max_runs={}, random_seed={}.'
.format(code, error_model, decoder, error_probabilities, max_failures, max_runs, random_seed))
data = []
for error_probability in error_probabilities:
runs_data = app.run(code, error_model, decoder, error_probability,
max_runs=max_runs, max_failures=max_failures, random_seed=random_seed)
data.append(runs_data)
logger.info('RUN COMPLETE: data={}'.format(data))
_write_data(output, data)
@cli.command()
@_model_argument('code')
@click.argument('time_steps', type=click.IntRange(min=1), metavar='TIME_STEPS')
@_model_argument('error_model')
@_model_argument('decoder')
@click.argument('error_probabilities', required=True, nargs=-1, type=float, metavar='ERROR_PROBABILITY...',
callback=_validate_error_probabilities)
@click.option('--max-failures', '-f', type=click.IntRange(min=1), metavar='INT',
help='Maximum number of failures for each probability.')
@click.option('--max-runs', '-r', type=click.IntRange(min=1), metavar='INT',
help='Maximum number of runs for each probability. [default: 1 if max_failures unspecified]')
@click.option('--measurement-error-probability', '-m', type=float, default=None,
callback=_validate_measurement_error_probability,
help='Measurement error probability [default: 0.0 if TIME_STEPS == 1 else ERROR_PROBABILITY].')
@click.option('--output', '-o', default='-', type=click.Path(allow_dash=True), metavar='FILENAME',
help='Output file. (Writes to log if file exists).')
@click.option('--random-seed', '-s', type=click.IntRange(min=0), metavar='INT',
help='Random seed for qubit error generation. (Re-applied for each probability).')
|
BSD 3-Clause New or Revised License
|
quantipy/quantipy3
|
quantipy/sandbox/pptx/PptxPainterClass.py
|
PptxPainter.draft_autochart
|
python
|
def draft_autochart(self, dataframe, chart_type):
valid_chart_types = ['pie',
'bar_clustered',
'bar_stacked_100',
'bar',
'column',
'column_clustered',
'line',
]
if not isinstance(chart_type, str):
raise ValueError('The chart_type argument must be a string')
if chart_type not in valid_chart_types:
error_msg ='Invalid chart_type {}. Valid chart types are {}'
raise ValueError(error_msg.format(chart_type, valid_chart_types))
if chart_type == 'pie':
draft = copy.deepcopy(self.chart_pie)
elif chart_type == 'bar_clustered' or chart_type == 'bar':
draft = copy.deepcopy(self.chart_bar)
if len(dataframe.columns) > 1:
draft['has_legend'] = True
elif chart_type == 'column_clustered' or chart_type == 'column':
draft = copy.deepcopy(self.chart_column)
if len(dataframe.columns) > 1:
draft['has_legend'] = True
elif chart_type == 'line':
draft = copy.deepcopy(self.chart_line)
if len(dataframe.columns) > 1:
draft['has_legend'] = True
elif chart_type == 'bar_stacked_100':
draft = copy.deepcopy(self.chart_bar_stacked100)
else:
draft = copy.deepcopy(self.chart_bar)
draft['dataframe'] = dataframe
return draft
|
Simplified caller for method draft_chart that wont require the settings dict,
but will instead pick the default chart setting for the chart type requested
Parameters
----------
dataframe: pandas.core.frame.DataFrame
chart_type: str
A string corresponding to the keys in Dict "chart_type_dct" from "enumerations.py"
Returns: self.chart
-------
|
https://github.com/quantipy/quantipy3/blob/8c64fde4130529990f0f9eada45a577d51a6537e/quantipy/sandbox/pptx/PptxPainterClass.py#L636-L685
|
import re
from lxml import etree
import warnings
from pptx import Presentation
from pptx.chart.data import CategoryChartData
from pptx.util import (
Emu,
Pt,
Cm,
Inches)
try:
from pptx import table
except:
from pptx.shapes import table
from pptx.chart.data import ChartData
from pptx.enum.chart import XL_CHART_TYPE
from pptx.dml.color import RGBColor
from .enumerations import (
fill_type_dct,
data_label_pos_dct,
legend_pos_dct,
tick_label_pos_dct,
tick_mark_pos_dct,
vertical_alignment_pos_dct,
paragraph_alignment_pos_dct,
theme_color_index_dct,
chart_type_dct
)
from .PptxDefaultsClass import PptxDefaults
from .PptxChainClass import float2String
import pandas as pd
import copy
def chartdata_from_dataframe(df, number_format="0%", xl_number_format='0.00%'):
def get_parent(sub_categories, line, pos):
for subcat in sub_categories:
if subcat.label == line[pos]:
return subcat
cd = CategoryChartData(number_format=number_format)
if isinstance(df.index, pd.MultiIndex):
cats = []
for line in df.index.unique().tolist():
for l, lvl in enumerate(line):
if l == 0:
if not any([lvl == cat.label for cat in cats]):
cats.append(cd.add_category(lvl))
else:
parent = get_parent(cats, line, 0)
if l > 1:
for i in range(1, l):
parent = get_parent(parent.sub_categories, line, i)
sub_categories = parent.sub_categories
seen = [lvl == subcat.label for subcat in sub_categories]
if not any(seen):
parent.add_sub_category(lvl)
else:
categories = tuple(df.index.values.tolist())
cd.categories = categories
for col in df.columns:
values = [
value if value == value else None
for value in df[col].values.tolist()
]
series = (col, tuple(values))
cd.add_series(*series, number_format=xl_number_format)
return cd
def return_slide_layout_by_name(pptx, slide_layout_name):
for slide_layout in pptx.slide_layouts:
if slide_layout.name == slide_layout_name:
return slide_layout
else:
raise Exception(
'Slide layout: {sld_layout} not found\n'.format(
sld_layout=slide_layout_name))
def convertable(obj, func):
try:
func(obj)
return True
except ValueError:
return False
class PptxPainter(object):
def __init__(self, path_to_presentation, slide_layout=None, shape_properties=None):
self.presentation = Presentation(path_to_presentation)
if slide_layout is None:
self.default_slide_layout = None
else:
self.default_slide_layout = self.set_slide_layout(slide_layout)
if shape_properties:
self._shape_properties = shape_properties
else:
self._shape_properties = PptxDefaults()
self.textbox = self._shape_properties.textbox
self.textbox_header = self._shape_properties.textbox_header
self.textbox_footer = self._shape_properties.textbox_footer
self.chart = self._shape_properties.chart
self.table = self._shape_properties.table
self.side_table = self._shape_properties.side_table
charts = self._shape_properties.charts
self.chart_bar = charts['bar']
self.chart_bar_stacked100 = charts['bar_stacked100']
self.chart_line = charts['line']
self.chart_column = charts['column']
self.chart_pie = charts['pie']
self.slide_kwargs = {
'textboxs': {},
'charts': {},
'tables': {},
'side_tables': {},
}
@staticmethod
def get_plot_values(plot):
series = [
{series.name: [str(s) for s in series.values]}
for series in plot.series
]
return series
def show_data_labels(self, plot, decimals=0):
data_labels = plot.data_labels
number_format = data_labels.number_format
font = data_labels.font
plot_values = self.get_plot_values(plot)
for s, series in enumerate(plot_values):
values = [
value
for value in list(series.values())[0]
if convertable(value, float)
]
for v, value in enumerate(values):
if value is not None:
if number_format == '0%':
value = round(float(value) * 100, decimals)
str_value = float2String(value) + '%'
else:
str_value = str(value)
else:
str_value = ""
point = plot.series[s].points[v]
data_label = point.data_label
frame = data_label.text_frame
frame.text = str_value
pgraph = frame.paragraphs[0]
for run in pgraph.runs:
run.font.bold = font.bold
run.font.italic = font.italic
run.font.name = font.name
run.font.size = font.size
run.font.underline = font.underline
def edit_datalabel(self, plot, series, point, text, prepend=False, append=False, rgb=None):
data_label = plot.series[series].points[point].data_label
frame = data_label.text_frame
run = frame.paragraphs[0].runs[0]
original_text = frame.text
if prepend:
run.text = '{}{}'.format(text, original_text)
elif append:
run.text = '{}{}'.format(original_text, text)
else:
run.text = text
if rgb is not None:
run.font.color.rgb = RGBColor(*rgb)
def queue_slide_items(self, pptx_chain, slide_items,
decimal_separator='.',
pct_decimals=0,
decimals=2,
):
valid_slide_items = ['chart','table','side_table']
slide_items = re.sub(' +', '', slide_items)
draft = self.draft_textbox_header(pptx_chain.question_text)
self.queue_textbox(settings=draft)
draft = self.draft_textbox_footer(pptx_chain.base_text)
self.queue_textbox(settings=draft)
slide_items = slide_items.split('+')
for slide_item in slide_items:
if slide_item.startswith('table'):
cell_items = slide_item.split(':')[1]
pptx_frame = pptx_chain.chart_df.get(cell_items).to_table(pct_decimals=pct_decimals,
decimals=decimals,
decimal_separator=decimal_separator,
)
if not pptx_frame().empty:
table_draft = self.draft_table(pptx_frame())
self.queue_table(settings=table_draft)
if slide_item.startswith('side_table'):
cell_items = slide_item.split(':')[1]
pptx_frame = pptx_chain.chart_df.get(cell_items).to_table(pct_decimals=pct_decimals,
decimals=decimals,
decimal_separator=decimal_separator,
)
if not pptx_frame().empty:
side_table_draft = self.draft_side_table(pptx_frame())
pct_index = [index for index, value in enumerate(pptx_frame.cell_items) if 'is_c_pct' in value]
if pct_index:
side_table_draft['values_suffix'] = '%'
side_table_draft['values_suffix_columns'] = pct_index
self.queue_side_table(settings=side_table_draft)
if slide_item.startswith('chart'):
sig_test = False
cell_items = slide_item.split(':')[1]
'''
Makes no sense to actually have 'test' as a cell_item.
Will remove it from cell_items and set flag sig_test as True
'''
cell_items = cell_items.split(',')
if 'test' in cell_items:
sig_test = True
pptx_chain.add_test_letter_to_column_labels()
pptx_chain.chart_df = pptx_chain.prepare_dataframe()
cell_items.remove('test')
cell_items = ','.join(cell_items)
pptx_frame = pptx_chain.chart_df.get(cell_items)
if not pptx_frame().empty:
chart_draft = self.draft_autochart(pptx_frame(), pptx_chain.chart_type)
if sig_test:
chart_draft['sig_test_visible'] = True
chart_draft['sig_test_results'] = pptx_chain.sig_test
self.queue_chart(settings=chart_draft)
self._check_shapes()
return None
def _check_shapes(self, adjust='chart'):
table_max_left=12240000
table_width=0
for table, table_settings in self.slide_kwargs['side_tables'].items():
if table_settings['left'] < table_max_left:
table_max_left = table_settings['left']
table_width = table_settings['width']
for chart, chart_settings in self.slide_kwargs['charts'].items():
if chart_settings['left'] + chart_settings['width'] > table_max_left:
chart_settings['width'] -= table_width
def clear_tables(self):
self.clear_queue('tables')
def clear_side_tables(self):
self.clear_queue('side_tables')
def clear_charts(self):
self.clear_queue('charts')
def clear_textboxes(self):
self.clear_queue('textboxs')
def clear_queue(self, key):
if key=='all':
for item in list(self.slide_kwargs.keys()):
self.slide_kwargs[item].clear()
elif key=='charts':
self.slide_kwargs['charts'].clear()
elif key=='textboxes':
self.slide_kwargs['textboxs'].clear()
elif key=='tables':
self.slide_kwargs['tables'].clear()
elif key=='side_tables':
self.slide_kwargs['side_tables'].clear()
def set_slide_layout(self, slide_layout):
if isinstance(slide_layout, int):
return self.presentation.slide_layouts[slide_layout]
else:
return return_slide_layout_by_name(self.presentation, slide_layout)
def add_slide(self, slide_layout=None):
if slide_layout is None:
if self.default_slide_layout is None:
raise ValueError('No slide layout found! Specify a slide layout or set a default slide layout')
else:
slide_layout = self.default_slide_layout
else:
slide_layout = self.set_slide_layout(slide_layout=slide_layout)
return self.presentation.slides.add_slide(slide_layout)
def draft_textbox(self, settings=None, text=None):
if settings:
draft = copy.deepcopy(settings)
else:
draft = copy.deepcopy(self.textbox)
draft['text'] = text
return draft
def draft_textbox_header(self, text=None):
draft = copy.deepcopy(self.textbox_header)
draft['text'] = text
return draft
def draft_textbox_footer(self, text=None):
draft = copy.deepcopy(self.textbox_footer)
draft['text'] = text
return draft
def draft_chart(self, dataframe, settings=None):
if settings:
draft = copy.deepcopy(settings)
else:
draft = copy.deepcopy(self.chart)
draft['dataframe'] = dataframe
return draft
|
MIT License
|
ekimekim/factoriocalc
|
factoriocalc/calculator.py
|
Process.rescale
|
python
|
def rescale(self, new_throughput):
return type(self)(self.item, self.recipe, new_throughput, self.per_process_outputs)
|
Return a new Process with a modified throughput
|
https://github.com/ekimekim/factoriocalc/blob/18583ee0ea16a12c061b272db68469edee86606d/factoriocalc/calculator.py#L48-L50
|
from fractions import Fraction
from .util import line_limit, is_liquid
class Process(object):
def __init__(self, item, recipe, throughput, outputs=None):
self.item = item
self.recipe = recipe
self.throughput = throughput
if outputs:
self.per_process_outputs = outputs
elif self.recipe and self.recipe.is_virtual:
self.per_process_outputs = {}
else:
self.per_process_outputs = {item: 1}
@property
def is_input(self):
return self.recipe is None
def buildings(self):
return None if self.is_input else self.throughput / self.recipe.throughput
def inputs(self):
return {} if self.is_input else {
k: v * self.throughput
for k, v in self.recipe.inputs.items()
}
def outputs(self):
return {k: v * self.throughput for k, v in self.per_process_outputs.items()}
|
MIT License
|
tomorrowisanotherday/tensorgo
|
tensorgo/benchmark/cifar10/cifar10.py
|
_add_loss_summaries
|
python
|
def _add_loss_summaries(total_loss):
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name + ' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op
|
Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
|
https://github.com/tomorrowisanotherday/tensorgo/blob/ff5a3c082bd584d6987db2b7a0cdc1e90cb95437/tensorgo/benchmark/cifar10/cifar10.py#L298-L322
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
import sys
import tarfile
from six.moves import urllib
import tensorflow as tf
import cifar10_input
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('batch_size', 128,
"""Number of images to process in a batch.""")
tf.app.flags.DEFINE_string('data_dir', '/tmp/cifar10_data',
"""Path to the CIFAR-10 data directory.""")
tf.app.flags.DEFINE_boolean('use_fp16', False,
"""Train the model using fp16.""")
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
MOVING_AVERAGE_DECAY = 0.9999
NUM_EPOCHS_PER_DECAY = 350.0
LEARNING_RATE_DECAY_FACTOR = 0.1
INITIAL_LEARNING_RATE = 0.1
TOWER_NAME = 'tower'
DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'
def _activation_summary(x):
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity',
tf.nn.zero_fraction(x))
def _variable_on_cpu(name, shape, initializer):
with tf.device('/cpu:0'):
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
return var
def _variable_with_weight_decay(name, shape, stddev, wd):
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
var = _variable_on_cpu(
name,
shape,
tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def distorted_inputs():
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
batch_size=FLAGS.batch_size)
if FLAGS.use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
def inputs(eval_data):
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
images, labels = cifar10_input.inputs(eval_data=eval_data,
data_dir=data_dir,
batch_size=FLAGS.batch_size)
if FLAGS.use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
def inference(images):
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 3, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv1)
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1')
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 64, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv2)
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool2')
with tf.variable_scope('local3') as scope:
reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
dim = reshape.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, 384],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
_activation_summary(local3)
with tf.variable_scope('local4') as scope:
weights = _variable_with_weight_decay('weights', shape=[384, 192],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
_activation_summary(local4)
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
stddev=1/192.0, wd=0.0)
biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear
def loss(logits, labels):
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
return tf.add_n(tf.get_collection('losses'), name='total_loss')
|
MIT License
|
thingsboard/python_tb_rest_client
|
tb_rest_client/models/models_pe/sign_up_request.py
|
SignUpRequest.last_name
|
python
|
def last_name(self):
return self._last_name
|
Gets the last_name of this SignUpRequest. # noqa: E501
:return: The last_name of this SignUpRequest. # noqa: E501
:rtype: str
|
https://github.com/thingsboard/python_tb_rest_client/blob/87c6a3703974fc8a86e4c72c444168ee2b758ecb/tb_rest_client/models/models_pe/sign_up_request.py#L139-L146
|
import pprint
import re
import six
class SignUpRequest(object):
swagger_types = {
'app_secret': 'str',
'email': 'str',
'first_name': 'str',
'last_name': 'str',
'password': 'str',
'pkg_name': 'str',
'recaptcha_response': 'str'
}
attribute_map = {
'app_secret': 'appSecret',
'email': 'email',
'first_name': 'firstName',
'last_name': 'lastName',
'password': 'password',
'pkg_name': 'pkgName',
'recaptcha_response': 'recaptchaResponse'
}
def __init__(self, app_secret=None, email=None, first_name=None, last_name=None, password=None, pkg_name=None, recaptcha_response=None):
self._app_secret = None
self._email = None
self._first_name = None
self._last_name = None
self._password = None
self._pkg_name = None
self._recaptcha_response = None
self.discriminator = None
if app_secret is not None:
self.app_secret = app_secret
if email is not None:
self.email = email
if first_name is not None:
self.first_name = first_name
if last_name is not None:
self.last_name = last_name
if password is not None:
self.password = password
if pkg_name is not None:
self.pkg_name = pkg_name
if recaptcha_response is not None:
self.recaptcha_response = recaptcha_response
@property
def app_secret(self):
return self._app_secret
@app_secret.setter
def app_secret(self, app_secret):
self._app_secret = app_secret
@property
def email(self):
return self._email
@email.setter
def email(self, email):
self._email = email
@property
def first_name(self):
return self._first_name
@first_name.setter
def first_name(self, first_name):
self._first_name = first_name
@property
|
Apache License 2.0
|
charlesshang/detectron-pytorch
|
libs/nets/model.py
|
detection_model.get_summaries
|
python
|
def get_summaries(self, is_training=True):
summaries = []
for key, var in self._score_summaries.items():
summaries.append(self._add_scalar_summary(key, var))
self._score_summaries = {}
self._hist_summaries = {}
if is_training:
for k, var in dict(self.named_parameters()).items():
if var.requires_grad:
summaries.append(self._add_scalar_summary('Params/' + k, var))
summaries.append(self._add_scalar_summary('Grads/' + k, var.grad))
return summaries
|
Run the summary operator: feed the placeholders with corresponding newtork outputs(activations)
|
https://github.com/charlesshang/detectron-pytorch/blob/468a8050330db4de1e22509c8b741ad236a55d88/libs/nets/model.py#L534-L554
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tensorboardX as tbx
import libs.configs.config as cfg
from .focal_loss import FocalLoss
from .smooth_l1_loss import smooth_l1_loss
from libs.layers.box import decoding_box, apply_nms
from libs.nets.utils import everything2numpy, everything2cuda
class detection_model(nn.Module):
def __init__(self, backbone, num_classes, num_anchors, is_training=True, maxpool5=True):
super(detection_model, self).__init__()
self.backbone = backbone
self.num_classes = num_classes
self.num_anchors = num_anchors
self.is_training = is_training
self.rpn_activation = cfg.class_activation
self.rpn_outs = []
self.loss_dict = []
self.with_segment = cfg.with_segment
self._score_summaries = {}
self._hist_summaries = {}
self.global_step = 0
self.anchors = None
self.maxpool5 = maxpool5
if is_training:
self.rpn_cls_loss_func = FocalLoss(gamma=2, alpha=0.25, activation=self.rpn_activation) if cfg.use_focal_loss else nn.CrossEntropyLoss()
def forward(self, input, gt_boxes_list, anchors_np):
pass
def _objectness(self, probs, activation=None):
activation = self.rpn_activation if activation is None else activation
if activation == 'softmax':
return 1. - probs[:, 0]
elif activation == 'sigmoid':
return probs.max(dim=1)[0]
else:
raise ValueError('Unknown activation funtion %s' % self.activation)
def _rerange(self, rpn_outs, last_dimension=None):
last_dimension = self.num_classes if last_dimension is None else last_dimension
n = rpn_outs[0][0].size()[0]
c = rpn_outs[0][0].size()[1]
cb = rpn_outs[0][1].size()[1]
rpn_logit = [rpn[0].view(n, c, -1) for rpn in rpn_outs]
rpn_box = [rpn[1].view(n, cb, -1) for rpn in rpn_outs]
rpn_logit = torch.cat(rpn_logit, dim=2)
rpn_box = torch.cat(rpn_box, dim=2)
rpn_logit = rpn_logit.permute(0, 2, 1).contiguous().view(-1, last_dimension)
num_endpoints = rpn_logit.size()[0]
rpn_box = rpn_box.permute(0, 2, 1).contiguous().view(num_endpoints, -1)
return rpn_logit, rpn_box
def _stage_one_results(self, rpn_box, rpn_prob, anchors, top_n=2000,
overlap_threshold=0.7,
top_n_post_nms=None):
boxes, probs, img_ids, anchors = self._decode_and_choose_top_n_stage1(rpn_box, rpn_prob, anchors, top_n=top_n)
boxes, probs, img_ids, anchors = self._apply_nms_in_batch(boxes, probs, img_ids, anchors,
activation=self.rpn_activation,
overlap_threshold=overlap_threshold)
if top_n_post_nms is not None:
return boxes[:top_n_post_nms], probs[:top_n_post_nms], img_ids[:top_n_post_nms]
return boxes, probs, img_ids
def _thresholding(self, boxes, probs, batch_ids, score_threshold=0.1):
objness = self._objectness(probs)
inds = objness.data.ge(score_threshold).nonzero().view(-1)
if inds.numel() == 0:
_, inds = objness.sort(dim=0, descending=True)
inds = inds[:10]
boxes = boxes[inds]
probs = probs[inds]
batch_ids = batch_ids[inds]
return boxes, probs, batch_ids
def build_losses_rpn(self, rpn_logits, rpn_box, rpn_prob,
rpn_labels, rpn_bboxes, rpn_bbwghts):
rpn_labels = rpn_labels.view(-1).long()
assert rpn_logits.size()[0] == rpn_box.size()[0] == rpn_labels.size()[0], 'Dimension dont match %d vs %d vs %d' % (rpn_logits.size()[0], rpn_box.size()[0], rpn_labels.size()[0])
if cfg.use_focal_loss:
rpn_logits, rpn_labels = self._sample_valid(rpn_logits, rpn_labels)
else:
rpn_logits, rpn_labels = self._sample_OHEM(rpn_logits, rpn_labels, rpn_prob, rpn_box,
bg_fg_ratio=3)
rpn_cls_loss = self.rpn_cls_loss_func(rpn_logits, rpn_labels)
rpn_bbwghts = rpn_bbwghts.view(-1, 4)
rpn_bboxes = rpn_bboxes.view(-1, 4)
bb_nums = torch.sum(rpn_bbwghts.data.gt(0).float())
bbwght_outside = (rpn_bbwghts > 0.0001).float() / max(bb_nums, 1.0)
rpn_box_loss = smooth_l1_loss(rpn_box, rpn_bboxes, rpn_bbwghts, bbwght_outside, sigma=1.0)
return rpn_cls_loss, rpn_box_loss
def build_losses_rpn_faster_rcnn(self, rpn_logits, rpn_box, rpn_prob,
rpn_labels, rpn_bboxes, rpn_bbwghts):
rpn_labels = rpn_labels.view(-1).long()
assert rpn_logits.size()[0] == rpn_box.size()[0] == rpn_labels.size()[0], 'Dimension dont match %d vs %d vs %d' % (rpn_logits.size()[0], rpn_box.size()[0], rpn_labels.size()[0])
rpn_logits, rpn_labels, all_rpn_labels = self._sample_faster_rcnn(rpn_logits, rpn_labels, rpn_prob, rpn_box,
rpn_batch_size=256, rpn_fg_fraction=0.5)
rpn_cls_loss = F.cross_entropy(rpn_logits, rpn_labels, ignore_index=-1)
rpn_bbwghts = rpn_bbwghts.view(-1, 4)
rpn_bboxes = rpn_bboxes.view(-1, 4)
bb_nums = all_rpn_labels.eq(1).sum().item()
bbwght_outside = all_rpn_labels.eq(1).float() / max(bb_nums * 4, 4.0)
bbwght_outside = bbwght_outside.view(-1, 1)
rpn_box_loss = smooth_l1_loss(rpn_box, rpn_bboxes, rpn_bbwghts, bbwght_outside, sigma=1.0)
return rpn_cls_loss, rpn_box_loss
def build_losses(self, outputs, targets):
pass
def loss(self):
pass
def cls_loss(self):
return self.loss_dict['rpn_cls_loss']
def box_loss(self):
return self.loss_dict['rpn_box_loss']
def _gather_fg(self, labels, boxes, logits):
fg_inds = labels.data.ge(1).nonzero().view(-1)
if fg_inds.numel() > 0:
return labels[fg_inds], boxes[fg_inds], logits[fg_inds], fg_inds
else:
return None, None, None, fg_inds
def _gather_bg(self, labels, probs, logits, top_n=2000):
bg_inds = labels.data.eq(0).nonzero().view(-1)
probs = probs[bg_inds]
logits = logits[bg_inds]
objness = self._objectness(probs)
_, inds = objness.sort(dim=0, descending=True)
top_n = min(top_n, inds.size(0))
inds = inds[:top_n]
return probs[inds], logits[inds], bg_inds[inds.data]
def _sample_OHEM(self, rpn_logits, rpn_label, rpn_prob, rpn_boxes, bg_fg_ratio=3):
rpn_prob.detach()
fg_labels, fg_boxes, fg_logits, fg_inds = self._gather_fg(rpn_label, rpn_boxes, rpn_logits)
fg_num = fg_inds.numel()
top_n = max(fg_num * bg_fg_ratio, 16)
bg_probs, bg_logits, bg_inds = self._gather_bg(rpn_label, rpn_prob, rpn_logits, top_n=top_n)
bg_num = bg_inds.numel()
bg_objness = self._objectness(bg_probs)
if fg_inds is not None:
chosen_inds = torch.cat((fg_inds, bg_inds), dim=0)
else:
chosen_inds = bg_inds
labels = rpn_label[chosen_inds]
if self.global_step % cfg.log_image == 0 and fg_num > 1:
c = rpn_logits.size(1)
sampled_fg_losses = 0.5 * torch.abs(self._to_one_hot(fg_labels, c) - rpn_prob[fg_inds]).sum(dim=1)
self._score_summaries['Sample/PosLoss'] = sampled_fg_losses
self._score_summaries['Sample/PosLossMax'] = sampled_fg_losses.max()
bg_probs_all, _, _ = self._gather_bg(rpn_label, rpn_prob, rpn_logits, top_n=float('inf'))
bg_objness_all = 1. - bg_probs_all[:, 0]
self._score_summaries['Sample/NegLoss'] = bg_objness_all
self._score_summaries['Sample/NegLoss_SampledMax'] = bg_objness.max()
self._score_summaries['Sample/NegLoss_Sampled'] = bg_objness
self._score_summaries['Sample/FG_nums'] = fg_num
self._score_summaries['Sample/BG_nums'] = bg_num
self.global_step += 1
logits = rpn_logits[chosen_inds]
return logits.contiguous(), labels.contiguous()
def _sample_faster_rcnn_OHEM(self, rpn_logits, rpn_label, rpn_prob, rpn_boxes,
rpn_batch_size=256, rpn_fg_fraction=0.5):
rpn_prob.detach()
fg_inds = rpn_label.data.ge(1).nonzero().view(-1)
fg_num = fg_inds.numel()
fg_num_ = min(int(rpn_batch_size * rpn_fg_fraction), fg_num)
if fg_num_ > 0:
inds = torch.randperm(fg_num)[:fg_num_]
fg_inds = fg_inds[inds]
bg_inds = rpn_label.data.eq(0).nonzero().view(-1)
bg_num = bg_inds.numel()
bg_num_ = min(rpn_batch_size - fg_num_, bg_num)
bg_probs, bg_logits, bg_inds = self._gather_bg(rpn_label, rpn_prob, rpn_logits, top_n=bg_num_)
chosen_inds = torch.cat((fg_inds, bg_inds), dim=0)
labels = rpn_label[chosen_inds]
logits = rpn_logits[chosen_inds]
all_labels = torch.zeros_like(rpn_label) - 1
all_labels[fg_inds] = 1
all_labels[bg_inds] = 0
if self.global_step % cfg.log_image == 0 and fg_num > 1:
self._score_summaries['Sample/FG_nums_total'] = fg_num
self._score_summaries['Sample/BG_nums_total'] = bg_num
self._score_summaries['Sample/FG_nums_train'] = fg_num_
self._score_summaries['Sample/BG_nums_train'] = bg_num_
self.global_step += 1
return logits.contiguous(), labels.contiguous(), all_labels
def _sample_faster_rcnn(self, rpn_logits, rpn_label, rpn_prob, rpn_boxes,
rpn_batch_size=256, rpn_fg_fraction=0.5):
rpn_prob.detach()
fg_inds = rpn_label.data.ge(1).nonzero().view(-1)
fg_num = fg_inds.numel()
fg_num_ = min(int(rpn_batch_size * rpn_fg_fraction), fg_num)
if fg_num_ > 0:
inds = torch.randperm(fg_num)[:fg_num_]
fg_inds = fg_inds[inds]
bg_inds = rpn_label.data.eq(0).nonzero().view(-1)
bg_num = bg_inds.numel()
bg_num_ = min(rpn_batch_size - fg_num_, bg_num)
if bg_num_ > 0:
inds = torch.randperm(bg_num)[:bg_num_]
bg_inds = bg_inds[inds]
chosen_inds = torch.cat((fg_inds, bg_inds), dim=0)
labels = rpn_label[chosen_inds]
logits = rpn_logits[chosen_inds]
all_labels = torch.zeros_like(rpn_label) - 1
all_labels[fg_inds] = 1
all_labels[bg_inds] = 0
if self.global_step % cfg.log_image == 0 and fg_num > 1:
self._score_summaries['Sample/FG_nums_total'] = fg_num
self._score_summaries['Sample/BG_nums_total'] = bg_num
self._score_summaries['Sample/FG_nums_train'] = fg_num_
self._score_summaries['Sample/BG_nums_train'] = bg_num_
self.global_step += 1
return logits.contiguous(), labels.contiguous(), all_labels
def _sample_valid(self, rpn_logits, rpn_labels):
valid_inds = rpn_labels.data.ge(0).nonzero().view(-1)
logits, labels = rpn_logits[valid_inds], rpn_labels[valid_inds]
return logits.contiguous(), labels.contiguous()
def _decode_and_choose_top_n_stage1(self, rpn_box, rpn_prob, anchors, top_n=1000):
objness = self._objectness(rpn_prob)
_, inds = objness.sort(dim=0, descending=True)
inds = inds[:top_n]
selected_boxes = rpn_box[inds]
selected_probs = rpn_prob[inds]
anchor_ids = inds % anchors.size(0)
selected_anchors = anchors[anchor_ids]
selected_boxes = decoding_box(selected_boxes, selected_anchors, box_encoding=cfg.rpn_box_encoding)
selected_img_ids = inds / anchors.size(0)
return selected_boxes, selected_probs, selected_img_ids, selected_anchors
def _decoding_and_thresholding_stage1(self, rpn_box, rpn_prob, anchors, score_threshold=0.3, max_dets=100):
selected_boxes, selected_probs, selected_img_ids, selected_anchors = self._decode_and_choose_top_n_stage1(rpn_box, rpn_prob, anchors, top_n=max_dets * 3)
objness = self._objectness(selected_probs)
inds = objness.data.ge(score_threshold).nonzero().view(-1)
if inds.numel() == 0:
_, inds = objness.sort(dim=0, descending=True)
inds = inds[:1]
selected_boxes = selected_boxes[inds]
selected_probs = selected_probs[inds]
selected_img_ids = selected_img_ids[inds]
selected_anchors = selected_anchors[inds]
return selected_boxes, selected_probs, selected_img_ids, selected_anchors
@staticmethod
def _apply_nms_in_batch(boxes, probs, img_ids, anchors, activation, overlap_threshold=0.5):
objness = probs.max(dim=1)[0] if activation == 'sigmoid' else 1. - probs[:, 0]
nmax = img_ids.max().cpu().data.numpy()
nmin = img_ids.min().cpu().data.numpy()
all_keeps = []
for i in range(nmin, nmax + 1):
inds = img_ids.data.eq(i).nonzero().view(-1)
if inds.numel() > 0:
keeps = apply_nms(boxes[inds][:, :4], objness[inds], overlap_threshold=overlap_threshold)
all_keeps.append(inds[keeps])
all_keeps = torch.cat(all_keeps, dim=0) if len(all_keeps) > 1 else all_keeps[0]
return boxes[all_keeps], probs[all_keeps], img_ids[all_keeps], anchors[all_keeps]
@staticmethod
def to_Dets(boxes, probs, img_ids):
boxes, probs, img_ids = everything2numpy([boxes, probs, img_ids])
Dets = []
for i in range(0, cfg.batch_size):
inds = np.where(img_ids == i)[0]
probs_ = probs[inds]
boxes_ = boxes[inds]
if probs_.shape[1] == 2:
cls_ids = np.ones((probs_.shape[0], ), dtype=np.int32)
cls_probs = probs_[:, 1]
else:
cls_ids = probs_[:, 1:].argmax(axis=1) + 1
cls_probs = probs_[np.arange(probs_.shape[0]), cls_ids]
dets = np.concatenate((boxes_.reshape(-1, 4),
cls_probs[:, np.newaxis],
cls_ids[:, np.newaxis]), axis=1)
Dets.append(dets)
return Dets
@staticmethod
def to_Dets_sigmoid(boxes, probs, img_ids):
boxes, probs, img_ids = everything2numpy([boxes, probs, img_ids])
Dets = []
for i in range(0, cfg.batch_size):
inds = np.where(img_ids == i)[0]
probs_ = probs[inds]
boxes_ = boxes[inds]
if probs_.ndim == 1 or probs_.shape[1] == 1:
cls_ids = np.ones((probs_.shape[0], ), dtype=np.int32)
cls_probs = probs_.view(-1)
else:
cls_ids = probs_.argmax(axis=1) + 1
cls_probs = probs_.max(axis=1)
dets = np.concatenate((boxes_.reshape(-1, 4),
cls_probs[:, np.newaxis],
cls_ids[:, np.newaxis]), axis=1)
Dets.append(dets)
return Dets
@staticmethod
def to_Dets2(boxes, probs, img_ids, score_threshold=0.1):
boxes, probs, img_ids = everything2numpy([boxes, probs, img_ids])
Dets = []
for i in range(0, cfg.batch_size):
inds = np.where(img_ids == i)[0]
probs_ = probs[inds]
boxes_ = boxes[inds]
if probs_.shape[1] == 2:
cls_ids = np.ones((probs_.shape[0], ), dtype=np.int32)
cls_probs = probs_[:, 1]
dets = np.concatenate((boxes_.reshape(-1, 4),
cls_probs[:, np.newaxis],
cls_ids[:, np.newaxis]), axis=1)
else:
d0_inds, d1_inds = np.where(probs_[:, 1:] > score_threshold)
if d0_inds.size > 0:
cls_ids = d1_inds + 1
cls_probs = probs_[d0_inds, cls_ids]
boxes_ = boxes_[d0_inds, :]
dets = np.concatenate((boxes_.reshape(-1, 4),
cls_probs[:, np.newaxis],
cls_ids[:, np.newaxis]), axis=1)
else:
cls_ids = probs_[:, 1:].argmax(axis=1) + 1
cls_probs = probs_[np.arange(probs_.shape[0]), cls_ids]
dets = np.concatenate((boxes_.reshape(-1, 4),
cls_probs[:, np.newaxis],
cls_ids[:, np.newaxis]), axis=1)
Dets.append(dets)
return Dets
@staticmethod
def to_Dets2_sigmoid(boxes, probs, img_ids, score_threshold=0.1):
boxes, probs, img_ids = everything2numpy([boxes, probs, img_ids])
Dets = []
for i in range(0, cfg.batch_size):
inds = np.where(img_ids == i)[0]
probs_ = probs[inds]
boxes_ = boxes[inds]
if probs_.ndim == 1 or probs_.shape[1] == 1:
cls_ids = np.ones((probs_.shape[0], ), dtype=np.int32)
cls_probs = probs_.view(-1)
dets = np.concatenate((boxes_.reshape(-1, 4),
cls_probs[:, np.newaxis],
cls_ids[:, np.newaxis]), axis=1)
else:
d0_inds, d1_inds = np.where(probs_ > score_threshold)
if d0_inds.size > 0:
cls_ids = d1_inds + 1
cls_probs = probs_[d0_inds, d1_inds]
boxes_ = boxes_[d0_inds, :]
dets = np.concatenate((boxes_.reshape(-1, 4),
cls_probs[:, np.newaxis],
cls_ids[:, np.newaxis]), axis=1)
else:
cls_ids = probs_.argmax(axis=1) + 1
cls_probs = probs_[np.arange(probs_.shape[0]), cls_ids - 1]
dets = np.concatenate((boxes_.reshape(-1, 4),
cls_probs[:, np.newaxis],
cls_ids[:, np.newaxis]), axis=1)
Dets.append(dets)
return Dets
def get_final_results(self, outputs, anchors, **kwargs):
pass
def get_final_results_stage1(self, rpn_box, rpn_prob, anchors,
score_threshold=0.1,
max_dets=100,
overlap_threshold=0.5):
selected_boxes, selected_probs, selected_img_ids, selected_anchors = self._decoding_and_thresholding_stage1(rpn_box, rpn_prob, anchors,
score_threshold=score_threshold,
max_dets=max_dets * 3)
selected_boxes, selected_probs, selected_img_ids, selected_anchors = self._apply_nms_in_batch(selected_boxes, selected_probs,
selected_img_ids, selected_anchors,
activation=self.rpn_activation,
overlap_threshold=overlap_threshold)
if self.rpn_activation == 'softmax':
Dets = self.to_Dets2(selected_boxes, selected_probs, selected_img_ids, score_threshold)
elif self.rpn_activation == 'sigmoid':
Dets = self.to_Dets2_sigmoid(selected_boxes, selected_probs, selected_img_ids, score_threshold)
else:
raise ValueError('Unknown activation function %s' % self.rpn_activation)
return Dets
def get_pos_anchors(self, score_threshold=0.1, max_dets=100):
_, selected_probs, selected_img_ids, selected_anchors = self._decoding_and_thresholding_stage1(score_threshold=score_threshold, max_dets=max_dets)
if self.rpn_activation == 'softmax':
Dets = self.to_Dets(selected_anchors, selected_probs, selected_img_ids)
elif self.rpn_activation == 'sigmoid':
Dets = self.to_Dets_sigmoid(selected_anchors, selected_probs, selected_img_ids)
else:
raise ValueError('Unknown activation function %s' % self.rpn_activation)
return Dets
def _to_one_hot(self, y, num_classes):
c = num_classes + 1 if self.rpn_activation == 'sigmoid' else num_classes
y_ = torch.FloatTensor(y.size()[0], c).zero_()
y_ = y_.scatter_(1, y.view(-1, 1).data.cpu(), 1.0).cuda()
if self.rpn_activation == 'sigmoid':
y_ = y_[:, 1:]
if y.is_cuda:
y_ = y_.cuda()
return y_
def de_frozen_backbone(self):
self.backbone.de_frozen()
def _add_scalar_summary(self, key, tensor):
if isinstance(tensor, torch.Tensor):
return tbx.summary.scalar(key + '/L1', torch.abs(tensor).mean().data.cpu().numpy())
elif isinstance(tensor, float) or isinstance(tensor, int):
return tbx.summary.scalar(key, tensor)
def _add_hist_summary(self, key, tensor):
return tbx.summary.histogram(key, tensor.data.cpu().numpy(), bins='auto')
|
Apache License 2.0
|
clovaai/ext_portrait_segmentation
|
models/SINet.py
|
S2module.forward
|
python
|
def forward(self, input):
output1 = self.c1(input)
output1= channel_shuffle(output1, self.group_n)
for i in range(self.group_n):
var_name = 'd{}'.format(i + 1)
result_d = self.__dict__["_modules"][var_name](output1)
if i == 0:
combine = result_d
else:
combine = torch.cat([combine, result_d], 1)
if self.add:
combine = input + combine
output = self.BR(combine)
return output
|
:param input: input feature map
:return: transformed feature map
|
https://github.com/clovaai/ext_portrait_segmentation/blob/9bc1bada1cb7bd17a3a80a2964980f4b4befef5b/models/SINet.py#L326-L347
|
import torch
import torch.nn as nn
import torch.nn.functional as F
BN_moment = 0.1
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
x = x.view(batchsize, groups,
channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
x = x.view(batchsize, -1, height, width)
return x
class CBR(nn.Module):
def __init__(self, nIn, nOut, kSize, stride=1):
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
self.bn = nn.BatchNorm2d(nOut, eps=1e-03, momentum= BN_moment)
self.act = nn.PReLU(nOut)
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
output = self.act(output)
return output
class separableCBR(nn.Module):
def __init__(self, nIn, nOut, kSize, stride=1):
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Sequential(
nn.Conv2d(nIn, nIn, (kSize, kSize), stride=stride, padding=(padding, padding), groups=nIn, bias=False),
nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, bias=False),
)
self.bn = nn.BatchNorm2d(nOut, eps=1e-03, momentum= BN_moment)
self.act = nn.PReLU(nOut)
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
output = self.act(output)
return output
class SqueezeBlock(nn.Module):
def __init__(self, exp_size, divide=4.0):
super(SqueezeBlock, self).__init__()
if divide > 1:
self.dense = nn.Sequential(
nn.Linear(exp_size, int(exp_size / divide)),
nn.PReLU(int(exp_size / divide)),
nn.Linear(int(exp_size / divide), exp_size),
nn.PReLU(exp_size),
)
else:
self.dense = nn.Sequential(
nn.Linear(exp_size, exp_size),
nn.PReLU(exp_size)
)
def forward(self, x):
batch, channels, height, width = x.size()
out = torch.nn.functional.avg_pool2d(x, kernel_size=[height, width]).view(batch, -1)
out = self.dense(out)
out = out.view(batch, channels, 1, 1)
return out * x
class SEseparableCBR(nn.Module):
def __init__(self, nIn, nOut, kSize, stride=1, divide=2.0):
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Sequential(
nn.Conv2d(nIn, nIn, (kSize, kSize), stride=stride, padding=(padding, padding), groups=nIn, bias=False),
SqueezeBlock(nIn,divide=divide),
nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, bias=False),
)
self.bn = nn.BatchNorm2d(nOut, eps=1e-03, momentum= BN_moment)
self.act = nn.PReLU(nOut)
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
output = self.act(output)
return output
class BR(nn.Module):
def __init__(self, nOut):
super().__init__()
self.bn = nn.BatchNorm2d(nOut, eps=1e-03, momentum= BN_moment)
self.act = nn.PReLU(nOut)
def forward(self, input):
output = self.bn(input)
output = self.act(output)
return output
class CB(nn.Module):
def __init__(self, nIn, nOut, kSize, stride=1):
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride, padding=(padding, padding), bias=False)
self.bn = nn.BatchNorm2d(nOut, eps=1e-03, momentum= BN_moment)
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
return output
class C(nn.Module):
def __init__(self, nIn, nOut, kSize, stride=1,group=1):
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Conv2d(nIn, nOut, (kSize, kSize), stride=stride,
padding=(padding, padding), bias=False, groups=group)
def forward(self, input):
output = self.conv(input)
return output
class S2block(nn.Module):
def __init__(self, nIn, nOut, config):
super().__init__()
kSize = config[0]
avgsize = config[1]
self.resolution_down = False
if avgsize >1:
self.resolution_down = True
self.down_res = nn.AvgPool2d(avgsize, avgsize)
self.up_res = nn.UpsamplingBilinear2d(scale_factor=avgsize)
self.avgsize = avgsize
padding = int((kSize - 1) / 2 )
self.conv = nn.Sequential(
nn.Conv2d(nIn, nIn, kernel_size=(kSize, kSize), stride=1,
padding=(padding, padding), groups=nIn, bias=False),
nn.BatchNorm2d(nIn, eps=1e-03, momentum=BN_moment))
self.act_conv1x1 = nn.Sequential(
nn.PReLU(nIn),
nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, bias=False),
)
self.bn = nn.BatchNorm2d(nOut, eps=1e-03, momentum=BN_moment)
def forward(self, input):
if self.resolution_down:
input = self.down_res(input)
output = self.conv(input)
output = self.act_conv1x1(output)
if self.resolution_down:
output = self.up_res(output)
return self.bn(output)
class S2module(nn.Module):
def __init__(self, nIn, nOut, add=True, config= [[3,1],[5,1]]):
super().__init__()
print("This module has " + str(config))
group_n = len(config)
n = int(nOut / group_n)
n1 = nOut - group_n * n
self.c1 = C(nIn, n, 1, 1, group=group_n)
for i in range(group_n):
var_name = 'd{}'.format(i + 1)
if i == 0:
self.__dict__["_modules"][var_name] = S2block(n, n + n1, config[i])
else:
self.__dict__["_modules"][var_name] = S2block(n, n, config[i])
self.BR = BR(nOut)
self.add = add
self.group_n = group_n
|
MIT License
|
ccpgames/pypackage
|
pypackage/context.py
|
ManifestContext.__enter__
|
python
|
def __enter__(self):
keys = ["package_data", "data_files"]
if not any([getattr(self.config, key, None) for key in keys]):
return self
add_to_manifest = []
for _, files in getattr(self.config, "package_data", {}).items():
for file_ in files:
include_line = "include {}".format(file_)
if include_line not in self.previously_existing:
add_to_manifest.append(include_line)
try:
for _, files in getattr(self.config, "data_files", []):
for file_ in files:
include_line = "include {}".format(file_)
if include_line not in self.previously_existing:
add_to_manifest.append(include_line)
except ValueError:
raise SystemExit("Malformed data_files: {!r}".format(
getattr(self.config, "data_files", [])
))
if add_to_manifest:
self._clean = True
with open("MANIFEST.in", "a") as openmanifest:
openmanifest.write("{}\n".format("\n".join(add_to_manifest)))
return self
|
Write the MANIFEST.in file if there are data files in use.
|
https://github.com/ccpgames/pypackage/blob/fa414bece96fa38a2471e380881f5ae4b20794de/pypackage/context.py#L58-L88
|
import os
class SetupContext(object):
def __init__(self, config, options):
self.config = config
self.options = options
def __enter__(self):
with open("setup.py", "w") as opensetup:
opensetup.write("{}\n".format(str(self.config)))
return self
def __exit__(self, *args):
if not any([self.options.interactive, self.options.metadata,
self.options.setup]):
os.remove("setup.py")
class ManifestContext(object):
def __init__(self, config, options):
self.config = config
self.options = options
self._clean = False
try:
with open("MANIFEST.in", "r") as openmanifest:
self.previously_existing = openmanifest.read().splitlines()
except:
self.previously_existing = []
|
MIT License
|
ducted/duct
|
duct/service.py
|
DuctService.setupSources
|
python
|
def setupSources(self, config):
sources = config.get('sources', [])
for source in sources:
src = self.createSource(source)
self.setupTriggers(source, src)
self.sources.append(src)
|
Sets up source objects from the given config
|
https://github.com/ducted/duct/blob/a175700a1794c324a1799cee43633eca16f0f9cc/duct/service.py#L144-L152
|
import time
import sys
import os
import importlib
import re
import copy
from twisted.application import service
from twisted.internet import task, reactor, defer
from twisted.python import log
class DuctService(service.Service):
def __init__(self, config):
self.running = 0
self.sources = []
self.lastEvents = {}
self.outputs = {}
self.evCache = {}
self.critical = {}
self.warn = {}
self.hostConnectorCache = {}
self.eventCounter = 0
self.factory = None
self.protocol = None
self.watchdog = None
self.config = config
if os.path.exists('/var/lib/duct'):
sys.path.append('/var/lib/duct')
self.debug = float(self.config.get('debug', False))
self.ttl = float(self.config.get('ttl', 60.0))
self.stagger = float(self.config.get('stagger', 0.2))
self.server = self.config.get('server', None)
self.port = int(self.config.get('port', 5555))
self.proto = self.config.get('proto', 'tcp')
self.inter = self.config.get('interval', 60.0)
if self.debug:
print("config:", repr(config))
self.setupSources(self.config)
def setupOutputs(self, config):
if self.server:
if self.proto == 'tcp':
defaultOutput = {
'output': 'duct.outputs.riemann.RiemannTCP',
'server': self.server,
'port': self.port
}
else:
defaultOutput = {
'output': 'duct.outputs.riemann.RiemannUDP',
'server': self.server,
'port': self.port
}
outputs = config.get('outputs', [defaultOutput])
else:
outputs = config.get('outputs', [])
for output in outputs:
if 'debug' not in output:
output['debug'] = self.debug
cl = output['output'].split('.')[-1]
path = '.'.join(output['output'].split('.')[:-1])
outputObj = getattr(
importlib.import_module(path), cl)(output, self)
name = output.get('name', None)
if name in self.outputs:
self.outputs[name].append(outputObj)
else:
self.outputs[name] = [outputObj]
reactor.callLater(0, outputObj.createClient)
def createSource(self, source):
if source.get('path'):
path = source['path']
if path not in sys.path:
sys.path.append(path)
cl = source['source'].split('.')[-1]
path = '.'.join(source['source'].split('.')[:-1])
sourceObj = getattr(importlib.import_module(path), cl)
if 'debug' not in source:
source['debug'] = self.debug
if 'ttl' not in source.keys():
source['ttl'] = self.ttl
if 'interval' not in source.keys():
source['interval'] = self.inter
return sourceObj(source, self.sendEvent, self)
def setupTriggers(self, source, sobj):
if source.get('critical'):
self.critical[sobj] = [(re.compile(key), val)
for key, val in source['critical'].items()]
if source.get('warning'):
self.warn[sobj] = [(re.compile(key), val)
for key, val in source['warning'].items()]
|
MIT License
|
tektoncd/experimental
|
sdk/python/tekton_pipeline/models/pod_template.py
|
PodTemplate.runtime_class_name
|
python
|
def runtime_class_name(self):
return self._runtime_class_name
|
Gets the runtime_class_name of this PodTemplate. # noqa: E501
RuntimeClassName refers to a RuntimeClass object in the node.k8s.io group, which should be used to run this pod. If no RuntimeClass resource matches the named class, the pod will not be run. If unset or empty, the \"legacy\" RuntimeClass will be used, which is an implicit class with an empty definition that uses the default runtime handler. More info: https://git.k8s.io/enhancements/keps/sig-node/runtime-class.md This is a beta feature as of Kubernetes v1.14. # noqa: E501
:return: The runtime_class_name of this PodTemplate. # noqa: E501
:rtype: str
|
https://github.com/tektoncd/experimental/blob/0ba4e7a2b9d45ed4accaecbb34dac006d665796a/sdk/python/tekton_pipeline/models/pod_template.py#L366-L374
|
import pprint
import re
import six
from tekton_pipeline.configuration import Configuration
class PodTemplate(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'affinity': 'V1Affinity',
'automount_service_account_token': 'bool',
'dns_config': 'V1PodDNSConfig',
'dns_policy': 'str',
'enable_service_links': 'bool',
'host_aliases': 'list[V1HostAlias]',
'host_network': 'bool',
'image_pull_secrets': 'list[V1LocalObjectReference]',
'node_selector': 'dict(str, str)',
'priority_class_name': 'str',
'runtime_class_name': 'str',
'scheduler_name': 'str',
'security_context': 'V1PodSecurityContext',
'tolerations': 'list[V1Toleration]',
'volumes': 'list[V1Volume]'
}
attribute_map = {
'affinity': 'affinity',
'automount_service_account_token': 'automountServiceAccountToken',
'dns_config': 'dnsConfig',
'dns_policy': 'dnsPolicy',
'enable_service_links': 'enableServiceLinks',
'host_aliases': 'hostAliases',
'host_network': 'hostNetwork',
'image_pull_secrets': 'imagePullSecrets',
'node_selector': 'nodeSelector',
'priority_class_name': 'priorityClassName',
'runtime_class_name': 'runtimeClassName',
'scheduler_name': 'schedulerName',
'security_context': 'securityContext',
'tolerations': 'tolerations',
'volumes': 'volumes'
}
def __init__(self, affinity=None, automount_service_account_token=None, dns_config=None, dns_policy=None, enable_service_links=None, host_aliases=None, host_network=None, image_pull_secrets=None, node_selector=None, priority_class_name=None, runtime_class_name=None, scheduler_name=None, security_context=None, tolerations=None, volumes=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._affinity = None
self._automount_service_account_token = None
self._dns_config = None
self._dns_policy = None
self._enable_service_links = None
self._host_aliases = None
self._host_network = None
self._image_pull_secrets = None
self._node_selector = None
self._priority_class_name = None
self._runtime_class_name = None
self._scheduler_name = None
self._security_context = None
self._tolerations = None
self._volumes = None
self.discriminator = None
if affinity is not None:
self.affinity = affinity
if automount_service_account_token is not None:
self.automount_service_account_token = automount_service_account_token
if dns_config is not None:
self.dns_config = dns_config
if dns_policy is not None:
self.dns_policy = dns_policy
if enable_service_links is not None:
self.enable_service_links = enable_service_links
if host_aliases is not None:
self.host_aliases = host_aliases
if host_network is not None:
self.host_network = host_network
if image_pull_secrets is not None:
self.image_pull_secrets = image_pull_secrets
if node_selector is not None:
self.node_selector = node_selector
if priority_class_name is not None:
self.priority_class_name = priority_class_name
if runtime_class_name is not None:
self.runtime_class_name = runtime_class_name
if scheduler_name is not None:
self.scheduler_name = scheduler_name
if security_context is not None:
self.security_context = security_context
if tolerations is not None:
self.tolerations = tolerations
if volumes is not None:
self.volumes = volumes
@property
def affinity(self):
return self._affinity
@affinity.setter
def affinity(self, affinity):
self._affinity = affinity
@property
def automount_service_account_token(self):
return self._automount_service_account_token
@automount_service_account_token.setter
def automount_service_account_token(self, automount_service_account_token):
self._automount_service_account_token = automount_service_account_token
@property
def dns_config(self):
return self._dns_config
@dns_config.setter
def dns_config(self, dns_config):
self._dns_config = dns_config
@property
def dns_policy(self):
return self._dns_policy
@dns_policy.setter
def dns_policy(self, dns_policy):
self._dns_policy = dns_policy
@property
def enable_service_links(self):
return self._enable_service_links
@enable_service_links.setter
def enable_service_links(self, enable_service_links):
self._enable_service_links = enable_service_links
@property
def host_aliases(self):
return self._host_aliases
@host_aliases.setter
def host_aliases(self, host_aliases):
self._host_aliases = host_aliases
@property
def host_network(self):
return self._host_network
@host_network.setter
def host_network(self, host_network):
self._host_network = host_network
@property
def image_pull_secrets(self):
return self._image_pull_secrets
@image_pull_secrets.setter
def image_pull_secrets(self, image_pull_secrets):
self._image_pull_secrets = image_pull_secrets
@property
def node_selector(self):
return self._node_selector
@node_selector.setter
def node_selector(self, node_selector):
self._node_selector = node_selector
@property
def priority_class_name(self):
return self._priority_class_name
@priority_class_name.setter
def priority_class_name(self, priority_class_name):
self._priority_class_name = priority_class_name
@property
|
Apache License 2.0
|
mblayman/homeschool
|
homeschool/courses/models.py
|
Course.belongs_to
|
python
|
def belongs_to(self, user):
grade_levels = GradeLevel.objects.filter(
school_year__school__admin=user
).values_list("id", flat=True)
return Course.objects.filter(id=self.id, grade_levels__in=grade_levels).exists()
|
Check if the course belongs to the user.
|
https://github.com/mblayman/homeschool/blob/2647b958051cab8c55eda62478af51724bcb02bc/homeschool/courses/models.py#L51-L56
|
from typing import Optional
from django.conf import settings
from django.db import models
from django.utils.functional import cached_property
from hashid_field import HashidAutoField
from ordered_model.models import OrderedModel, OrderedModelQuerySet
from homeschool.core.models import DaysOfWeekModel
from homeschool.schools.models import GradeLevel
from homeschool.users.models import User
from .exceptions import NoSchoolYearError
class Course(DaysOfWeekModel):
id = HashidAutoField(primary_key=True, salt=f"course{settings.HASHID_FIELD_SALT}")
name = models.CharField(max_length=256)
grade_levels = models.ManyToManyField(
"schools.GradeLevel",
related_name="courses",
through="courses.GradeLevelCoursesThroughModel",
)
default_task_duration = models.IntegerField(
default=30, help_text="The default task duration in minutes"
)
is_active = models.BooleanField(
default=True, help_text="Is this course active in the schedule?"
)
@property
def is_running(self):
return self.days_of_week != self.NO_DAYS
@cached_property
def has_many_grade_levels(self):
return self.grade_levels.count() > 1
@cached_property
def school_year(self):
grade_level = self.grade_levels.select_related("school_year").first()
if grade_level:
return grade_level.school_year
raise NoSchoolYearError("The course has no school year.")
|
MIT License
|
sassoftware/python-sasctl
|
src/sasctl/_services/model_repository.py
|
ModelRepository.default_repository
|
python
|
def default_repository(cls):
all_repos = cls.list_repositories()
if all_repos:
repo = all_repos[0]
for r in all_repos:
if r.name in ('Repository 1', 'Public'):
repo = r
break
return repo
|
Get the built-in default repository.
Returns
-------
RestObj
|
https://github.com/sassoftware/python-sasctl/blob/ab6387b86a26f6b0b08fbb36d0c94fe18be59b5f/src/sasctl/_services/model_repository.py#L433-L454
|
from warnings import warn
from .service import Service
from ..core import current_session, get, delete, sasctl_command, HTTPError
FUNCTIONS = {
'Analytical',
'Classification',
'Clustering',
'Forecasting',
'Prediction',
'Text categorization',
'Text extraction',
'Text sentiment',
'Text topics',
'Sentiment',
}
def _get_filter(x):
return dict(properties='(name, %s)' % x)
class ModelRepository(Service):
_SERVICE_ROOT = '/modelRepository'
list_repositories, _, update_repository, delete_repository = Service._crud_funcs(
'/repositories', 'repository', get_filter=_get_filter
)
list_projects, get_project, update_project, delete_project = Service._crud_funcs(
'/projects', 'project', get_filter=_get_filter
)
list_models, get_model, update_model, delete_model = Service._crud_funcs(
'/models', 'model', get_filter=_get_filter
)
@classmethod
def get_astore(cls, model):
link = cls.get_model_link(model, 'analyticStore', refresh=True)
if link is not None:
return link.get('href')
@classmethod
def get_model_link(cls, model, rel, refresh=False):
if isinstance(model, dict):
link = cls.get_link(model, rel)
if link is not None or not refresh:
return link
model = cls.get_model(model, refresh=refresh)
return cls.get_link(model, rel)
@classmethod
def get_score_code(cls, model):
link = cls.get_model_link(model, 'scoreCode', refresh=True)
if link is not None:
scorecode_uri = link.get('href')
return get(
scorecode_uri,
headers={'Accept': 'text/vnd.sas.models.score.code.ds2package'},
)
@classmethod
def get_model_contents(cls, model):
link = cls.get_model_link(model, 'contents', refresh=True)
contents = cls.request_link(link, 'contents')
if isinstance(contents, list):
return contents
return [contents]
@classmethod
@sasctl_command('get', 'repositories')
def get_repository(cls, repository, refresh=False):
if isinstance(repository, dict) and all(
k in repository for k in ('id', 'name')
):
if refresh:
repository = repository['id']
else:
return repository
if cls.is_uuid(repository):
try:
return cls.get('/repositories/{id}'.format(id=repository))
except HTTPError as e:
if e.code != 403:
raise e
results = cls.list_repositories()
for result in results:
if result['name'] == str(repository) or result['id'] == str(repository):
try:
if cls.get_link(result, 'self'):
return cls.request_link(result, 'self')
id_ = result.get('id', result['name'])
return cls.get('/repositories/{id}'.format(id=id_))
except HTTPError as e:
if e.code != 403:
raise e
return result
@classmethod
def create_model(
cls,
model,
project,
description=None,
modeler=None,
function=None,
algorithm=None,
tool=None,
score_code_type=None,
training_table=None,
event_prob_variable=None,
event_target_value=None,
is_champion=False,
is_challenger=False,
location=None,
target_variable=None,
is_retrainable=False,
is_immutable=False,
properties=None,
input_variables=None,
output_variables=None,
):
properties = properties or {}
if isinstance(model, str):
model = {'name': model}
p = cls.get_project(project)
if p is None:
raise ValueError("Unable to find project '%s'" % project)
model['projectId'] = p['id']
model['modeler'] = modeler or model.get('modeler') or current_session().username
model['description'] = description or model.get('description')
model['function'] = function or model.get('function')
model['algorithm'] = algorithm or model.get('algorithm')
model['tool'] = tool or model.get('tool')
model['champion'] = is_champion or model.get('champion')
if is_champion:
model['role'] = 'champion'
elif is_challenger:
model['role'] = 'challenger'
model.setdefault(
'properties', [{'name': k, 'value': v} for k, v in properties.items()]
)
model['scoreCodeType'] = score_code_type or model.get('scoreCodeType')
model['trainTable'] = training_table or model.get('trainTable')
model[
'classificationEventProbabilityVariableName'
] = event_prob_variable or model.get(
'classificationEventProbabilityVariableName'
)
model['classificationTargetEventValue'] = event_target_value or model.get(
'classificationTargetEventValue'
)
model['location'] = location or model.get('location')
model['targetVariable'] = target_variable or model.get('targetVariable')
model['retrainable'] = is_retrainable or model.get('retrainable')
model['immutable'] = is_immutable or model.get('immutable')
model['inputVariables'] = input_variables or model.get('inputVariables', [])
model['outputVariables'] = output_variables or model.get('outputVariables', [])
model['version'] = '2'
return cls.post(
'/models',
json=model,
headers={'Content-Type': 'application/vnd.sas.models.model+json'},
)
@classmethod
def add_model_content(cls, model, file, name, role=None, content_type=None):
if cls.is_uuid(model):
id_ = model
elif isinstance(model, dict) and 'id' in model:
id_ = model['id']
else:
model = cls.get_model(model)
id_ = model['id']
if content_type is None and isinstance(file, bytes):
content_type = 'application/octet-stream'
if content_type is not None:
files = {name: (name, file, content_type)}
else:
files = {name: file.read()}
metadata = {'role': role, 'name': name}
try:
return cls.post(
'/models/{}/contents'.format(id_), files=files, data=metadata
)
except HTTPError as e:
if e.code == 409:
model_contents = cls.get_model_contents(id_)
for item in model_contents:
if item.name == name:
cls.delete('/models/{}/contents/{}'.format(id_, item.id))
return cls.post(
'/models/{}/contents'.format(id_),
files=files,
data=metadata,
)
else:
raise e
@classmethod
|
Apache License 2.0
|
takelab/podium
|
podium/experimental/models/impl/simple_trainers.py
|
SimpleTrainer._check_kwargs
|
python
|
def _check_kwargs(self, **kwargs):
if self.MAX_EPOCH_KEY not in kwargs:
raise ValueError(
f"Missing training parameter: {self.MAX_EPOCH_KEY} "
"(used for determining stop criterion)"
)
|
Method checks if kwargs contains necessary training parameters.
Parameters
----------
kwargs : dict
training parameters
|
https://github.com/takelab/podium/blob/11ef32d889e483d4d77a44b61e0b5da956ee3a54/podium/experimental/models/impl/simple_trainers.py#L39-L52
|
from podium.datasets import Iterator
from podium.experimental.models.trainer import AbstractTrainer
class SimpleTrainer(AbstractTrainer):
MAX_EPOCH_KEY = "max_epoch"
def train(
self,
model,
dataset,
feature_transformer,
label_transform_fun,
max_epoch,
iterator=None,
):
if iterator is None:
iterator = Iterator()
for _ in range(max_epoch):
for batch in iterator(dataset):
x = feature_transformer.transform(batch)
y = label_transform_fun(batch)
model.fit(X=x, y=y)
|
BSD 3-Clause New or Revised License
|
hpac/elaps
|
elaps/signature.py
|
ArgWithMin.__cmp__
|
python
|
def __cmp__(self, other):
return Arg.__cmp__(self, other) or cmp((self.minstr, self.maxstr),
(other.minstr, other.maxstr))
|
Compare with other.
|
https://github.com/hpac/elaps/blob/390bbe8cbeb056ef57adbc91cdf5bcd1f7cbe187/elaps/signature.py#L414-L417
|
import numbers
from elaps import symbolic
named_attributes = ("lower", "upper", "symm", "herm", "spd", "hpd", "work")
datatype_prefixes = {
"i": "integer",
"s": "single precision",
"d": "double precision",
"c": "single precision complex",
"z": "double precision complex"
}
class Signature(list):
def __init__(self, *args, **kwargs):
list.__init__(self, args)
self.flopsstr = None
self.flops = None
if not isinstance(self[0], Name):
self[0] = Name(self[0])
self.init_lambdas(kwargs)
self.argtypelookup = {}
def init_lambdas(self, kwargs):
lambdaargs = ", ".join(arg.name for arg in self)
if "complexity" in kwargs and "flops" not in kwargs:
kwargs["flops"] = kwargs["complexity"]
if "flops" in kwargs:
self.flopsstr = kwargs["flops"]
self.flops = eval("lambda %s: %s" % (lambdaargs, kwargs["flops"]),
symbolic.__dict__)
for arg in self:
arg.min = None
arg.max = None
if isinstance(arg, ArgWithMin):
if arg.minstr:
arg.min = eval("lambda %s: %s" % (lambdaargs, arg.minstr),
symbolic.__dict__)
if arg.maxstr:
arg.max = eval("lambda %s: %s" % (lambdaargs, arg.maxstr),
symbolic.__dict__)
arg.properties = lambda *args: ()
if arg.propertiesstr:
lambdarhs = arg.propertiesstr
for attrname in named_attributes:
lambdarhs = lambdarhs.replace(attrname, repr(attrname))
arg.properties = eval("lambda %s: filter(None, (%s,))" %
(lambdaargs, lambdarhs),
symbolic.__dict__)
self.check_lambdas()
def check_lambdas(self):
args = range(len(self))
if self.flops:
try:
self.flops(*args)
except NameError as e:
raise NameError("Unknown argument %r used in flops" %
str(e).split("'")[1])
for arg in self:
if arg.min:
try:
arg.min(*args)
except NameError as e:
raise NameError("Unknown argument %r used in min for %s" %
(str(e).split("'")[1], arg))
if arg.max:
try:
arg.max(*args)
except NameError as e:
raise NameError("Unknown argument %r used in max for %s" %
(str(e).split("'")[1], arg))
if arg.properties:
try:
arg.properties(*args)
except NameError as e:
raise NameError("Unknown argument or property %r "
"used in properties for %s" %
(str(e).split("'")[1], arg))
def __str__(self):
return "%s(%s)" % (self[0], ", ".join(arg.name for arg in self[1:]))
def __repr__(self):
args = map(repr, [str(self[0])] + self[1:])
if self.flops:
args.append("flops=%r" % self.flopsstr)
return "%s(%s)" % (type(self).__name__, ", ".join(args))
def __call__(self, *args, **kwargs):
if len(args) == 0:
args = tuple(arg.default() for arg in self[1:])
return Call(self, *args, **kwargs)
def __getattr__(self, name):
try:
return self[self.argpos(name)]
except:
pass
return list.__getattr__(self, name)
def argpos(self, name):
for argid, arg in enumerate(self):
if arg.name == name:
return argid
raise IndexError("Unknown argument: %s" % name)
def argsbytype(self, type_, *types):
if types:
return sorted(set(self.argsbytype(type_) +
self.argsbytype(*types)))
if type_ not in self.argtypelookup:
self.argtypelookup[type_] = [i for i, arg in enumerate(self)
if isinstance(arg, type_)]
return self.argtypelookup[type_]
def dataargs(self):
return self.argsbytype(Data)
def datatype(self):
return self[self.dataargs()[0]].typename
class BasicCall(list):
def __init__(self, sig, *args):
if not args:
args = tuple("" if arg == "char*" else 0 for arg in sig[1:])
if len(sig) != 1 + len(args):
raise TypeError("%s takes %d arguments (%d given)" %
(sig[0], len(sig) - 1, len(args)))
list.__init__(self, (str(sig[0]),) + args)
self.__dict__["sig"] = sig
def __str__(self):
return "%s(%s)" % (self[0], ", ".join(map(str, self[1:])))
def __repr__(self):
args = map(repr, [self.sig] + self[1:])
return "%s(%s)" % (type(self).__name__, ", ".join(args))
def __copy__(self):
return type(self)(self.sig, *self[1:])
def copy(self):
return self.__copy__()
class Call(BasicCall):
def __init__(self, sig, *args, **kwargs):
if not isinstance(sig, Signature):
raise TypeError("a Signature is required as first argument")
BasicCall.__init__(self, sig, *args)
for arg, val in kwargs.iteritems():
setattr(self, arg, val)
def __getattr__(self, name):
try:
return self[self.sig.argpos(name)]
except:
pass
return BasicCall.__getattr__(self, name)
def __setattr__(self, name, value):
try:
self[self.sig.argpos(name)] = value
return value
except:
pass
list.__setattr__(self, name, value)
def argdict(self):
return dict((arg.name, val) for arg, val in zip(self.sig, self))
def restrict_once(self):
l = list(self)
for i, arg in enumerate(self.sig):
if self[i] is not None and arg.min:
try:
self[i] = max(self[i], arg.min(*l))
except TypeError:
pass
if self[i] is not None and arg.max:
try:
self[i] = min(self[i], arg.max(*l))
except TypeError:
pass
def restrict(self):
calls = []
while self[1:] not in calls:
calls.append(self[1:])
self.restrict_once()
def complete_once(self):
l = list(self)
for i, arg in enumerate(self.sig):
if self[i] is None:
if arg.min:
try:
self[i] = arg.min(*l)
except TypeError:
pass
else:
self[i] = arg.default()
def complete(self):
calls = []
while self[1:] not in calls:
calls.append(self[1:])
self.complete_once()
def properties(self, argid=None):
if argid:
return self.sig[argid].properties(*self)
return tuple(arg.properties(*self) for arg in self.sig)
def flops(self):
if self.sig.flops is not None:
return self.sig.flops(*self)
return None
def format_sampler(self):
return [arg.format_sampler(val) for arg, val in zip(self.sig, self)]
class Arg(object):
class __metaclass__(type):
def __repr__(cls):
return cls.__name__
def __init__(self, name, attr=None):
self.name = name
self.propertiesstr = attr
def __repr__(self):
args = [self.name]
if self.propertiesstr:
args.append(self.propertiesstr)
args = map(repr, args)
return "%s(%s)" % (type(self).__name__, ", ".join(args))
def __str__(self):
return str(self.name)
def __cmp__(self, other):
return cmp(type(self), type(other)) or cmp(
(self.name, self.propertiesstr), (other.name, other.propertiesstr)
)
@staticmethod
def format_sampler(val):
return val
class Name(Arg):
def __cmp__(self, other):
if self.name == other:
return 0
return Arg.__cmp__(self, other)
def default(self):
return self.name
class Flag(Arg):
def __init__(self, name, flags, attr=None):
Arg.__init__(self, name, attr)
self.flags = flags
def __repr__(self):
args = [self.name, self.flags]
if self.propertiesstr:
args.append(self.propertiesstr)
args = map(repr, args)
return "%s(%s)" % (type(self).__name__, ", ".join(args))
def __cmp__(self, other):
return Arg.__cmp__(self, other) or cmp(self.flags, other.flags)
def default(self):
return self.flags[0]
def _create_Flag(classname, defaultname, flags):
def __init__(self, name=defaultname, attr=None):
Flag.__init__(self, name, flags, attr)
def __repr__(self):
args = []
if self.name != defaultname:
args.append(self.name)
if self.propertiesstr:
args.append(self.propertiesstr)
args = map(repr, args)
elif self.propertiesstr:
args.append("attr=%r" % self.propertiesstr)
return "%s(%s)" % (type(self).__name__, ", ".join(args))
globals()[classname] = type(classname, (Flag,), {
"__init__": __init__,
"__repr__": __repr__
})
_create_Flag("Side", "side", ("L", "R"))
_create_Flag("Uplo", "uplo", ("L", "U"))
_create_Flag("Trans", "trans", ("N", "T"))
_create_Flag("cTrans", "trans", ("N", "T", "C"))
_create_Flag("Diag", "diag", ("N", "U"))
class ArgWithMin(Arg):
def __init__(self, name, min=None, attr=None, max=None):
Arg.__init__(self, name, attr)
self.minstr = min
self.maxstr = max
def __repr__(self):
args = [self.name]
if self.minstr:
args.append(self.minstr)
if self.propertiesstr:
if not self.minstr:
args.append(None)
args.append(self.propertiesstr)
if self.maxstr:
if not self.minstr:
args.append(None)
if not self.propertiesstr:
args.append(None)
args.append(self.maxstr)
args = map(repr, args)
return "%s(%s)" % (type(self).__name__, ", ".join(args))
|
BSD 3-Clause New or Revised License
|
ibm-security/ibmsecurity
|
ibmsecurity/isam/base/activation.py
|
get
|
python
|
def get(isamAppliance, id=None, check_mode=False, force=False):
if force is True or check(isamAppliance, id) is True:
return isamAppliance.invoke_get("Retrieve a specified activation offering",
"/isam/capabilities/{0}/v1".format(id))
return isamAppliance.create_return_object()
|
Retrieve a specified activation offering
|
https://github.com/ibm-security/ibmsecurity/blob/da098f7d555e571a99a0d7cd47a51add483feb6f/ibmsecurity/isam/base/activation.py#L15-L23
|
import logging
import ibmsecurity.utilities.tools
logger = logging.getLogger(__name__)
def get_all(isamAppliance, check_mode=False, force=False):
return isamAppliance.invoke_get("Retrieving activations",
"/isam/capabilities/v1")
|
Apache License 2.0
|
sebascuri/hucrl
|
exps/inverted_pendulum/util.py
|
solve_mpo
|
python
|
def solve_mpo(
dynamical_model,
action_cost,
num_iter,
num_sim_steps,
batch_size,
num_gradient_steps,
num_trajectories,
num_action_samples,
num_episodes,
epsilon,
epsilon_mean,
epsilon_var,
regularization,
lr,
):
reward_model = PendulumReward(action_cost)
freeze_parameters(dynamical_model)
value_function = NNValueFunction(
dim_state=(2,),
layers=[64, 64],
biased_head=False,
input_transform=StateTransform(),
)
policy = NNPolicy(
dim_state=(2,),
dim_action=(1,),
layers=[64, 64],
biased_head=False,
squashed_output=True,
input_transform=StateTransform(),
)
init_distribution = torch.distributions.Uniform(
torch.tensor([-np.pi, -0.05]), torch.tensor([np.pi, 0.05])
)
mpo = MBMPO(
dynamical_model,
reward_model,
policy,
value_function,
gamma=0.99,
epsilon=epsilon,
epsilon_mean=epsilon_mean,
epsilon_var=epsilon_var,
regularization=regularization,
num_action_samples=num_action_samples,
criterion=nn.MSELoss,
)
optimizer = optim.Adam([p for p in mpo.parameters() if p.requires_grad], lr=lr)
test_state = torch.tensor(np.array([np.pi, 0.0]), dtype=torch.get_default_dtype())
policy_losses, value_losses, kl_div, returns, entropy = [], [], [], [], []
model_rewards, trajectory = 0, None
for _ in range(num_episodes):
with gpytorch.settings.fast_pred_var(), gpytorch.settings.detach_test_caches():
vloss_, ploss_, kl_div_, return_, entropy_, = train_mpo(
mpo,
init_distribution,
optimizer,
num_iter=num_iter,
num_trajectories=num_trajectories,
num_simulation_steps=num_sim_steps,
num_gradient_steps=num_gradient_steps,
batch_size=batch_size,
num_subsample=1,
)
policy_losses += ploss_
value_losses += vloss_
returns += return_
entropy += entropy_
kl_div += kl_div_
test_policy_on_model(
mpo.dynamical_model, mpo.reward_model, mpo.policy, test_state
)
_, trajectory = test_policy_on_model(
mpo.dynamical_model,
mpo.reward_model,
lambda x: (
mpo.policy(x)[0][: mpo.dynamical_model.dim_action],
torch.zeros(1),
),
test_state,
policy_str="Expected Policy",
)
model_rewards, _ = test_policy_on_model(
mpo.dynamical_model, mpo.reward_model, mpo.policy, test_state
)
environment = SystemEnvironment(
InvertedPendulum(mass=0.3, length=0.5, friction=0.005, step_size=1 / 80),
reward=reward_model,
)
environment_rewards, trajectory = test_policy_on_environment(
environment, mpo.policy, test_state
)
environment_rewards, _ = test_policy_on_environment(
environment,
lambda x: (
mpo.policy(x)[0][: mpo.dynamical_model.dim_action],
torch.zeros(1),
),
test_state,
policy_str="Expected Policy",
)
plot_values_and_policy(
value_function,
policy,
trajectory=trajectory,
num_entries=[200, 200],
bounds=[(-2 * np.pi, 2 * np.pi), (-12, 12)],
)
plot_returns_entropy_kl(returns, entropy, kl_div)
plot_learning_losses(policy_losses, value_losses, horizon=20)
return model_rewards
|
Solve MPO optimization problem.
|
https://github.com/sebascuri/hucrl/blob/f9cb24a7fdbf8cb2e9c667ec8d254d7d102694b8/exps/inverted_pendulum/util.py#L287-L425
|
import argparse
from typing import List
import gpytorch
import numpy as np
import torch
import torch.distributions
import torch.nn as nn
import torch.optim as optim
from rllib.dataset.transforms import ActionScaler, DeltaState, MeanFunction
from rllib.dataset.utilities import stack_list_of_tuples
from rllib.environment.system_environment import SystemEnvironment
from rllib.environment.systems import InvertedPendulum
from rllib.model.abstract_model import AbstractModel
from rllib.policy import NNPolicy
from rllib.reward.utilities import tolerance
from rllib.util.neural_networks.utilities import freeze_parameters
from rllib.util.rollout import rollout_model, rollout_policy
from rllib.value_function import NNValueFunction
from torch.distributions import MultivariateNormal
from tqdm import tqdm
from exps.inverted_pendulum.plotters import (
plot_learning_losses,
plot_returns_entropy_kl,
plot_trajectory_states_and_rewards,
plot_values_and_policy,
)
from exps.util import get_mb_mpo_agent, get_mpc_agent
from hucrl.algorithms.mbmpo import MBMPO
from hucrl.environment.hallucination_wrapper import HallucinationWrapper
class StateTransform(nn.Module):
extra_dim = 1
def forward(self, states_):
angle, angular_velocity = torch.split(states_, 1, dim=-1)
states_ = torch.cat(
(torch.cos(angle), torch.sin(angle), angular_velocity), dim=-1
)
return states_
def inverse(self, states_):
cos, sin, angular_velocity = torch.split(states_, 1, dim=-1)
angle = torch.atan2(sin, cos)
states_ = torch.cat((angle, angular_velocity), dim=-1)
return states_
def large_state_termination(state, action, next_state=None):
if not isinstance(state, torch.Tensor):
state = torch.tensor(state)
if not isinstance(action, torch.Tensor):
action = torch.tensor(action)
done = torch.any(torch.abs(state) > 200, dim=-1) | torch.any(
torch.abs(action) > 200, dim=-1
)
return (
torch.zeros(*done.shape, 2)
.scatter_(dim=-1, index=(~done).long().unsqueeze(-1), value=-float("inf"))
.squeeze(-1)
)
class PendulumReward(AbstractModel):
def __init__(self, action_cost=0):
super().__init__(dim_state=(2,), dim_action=(1,), model_kind="rewards")
self.action_cost = action_cost
self.reward_offset = 0
def forward(self, state, action, next_state):
if not isinstance(state, torch.Tensor):
state = torch.tensor(state, dtype=torch.get_default_dtype())
if not isinstance(action, torch.Tensor):
action = torch.tensor(action, dtype=torch.get_default_dtype())
cos_angle = torch.cos(state[..., 0])
velocity = state[..., 1]
angle_tolerance = tolerance(cos_angle, lower=0.95, upper=1.0, margin=0.1)
velocity_tolerance = tolerance(velocity, lower=-0.5, upper=0.5, margin=0.5)
state_cost = angle_tolerance * velocity_tolerance
action_tolerance = tolerance(action[..., 0], lower=-0.1, upper=0.1, margin=0.1)
action_cost = self.action_cost * (action_tolerance - 1)
cost = state_cost + action_cost
return cost.unsqueeze(-1), torch.zeros(1)
class PendulumModel(AbstractModel):
def __init__(
self, mass, length, friction, step_size=1 / 80, noise: MultivariateNormal = None
):
super().__init__(dim_state=(2,), dim_action=(1,))
self.mass = mass
self.length = length
self.friction = friction
self.step_size = step_size
self.noise = noise
def forward(self, state, action):
action = torch.clamp(action, -1.0, 1.0)
mass = self.mass
gravity = 9.81
length = self.length
friction = self.friction
inertia = mass * length ** 2
dt = self.step_size
angle, angular_velocity = torch.split(state, 1, dim=-1)
for _ in range(1):
x_ddot = (
(gravity / length) * torch.sin(angle)
+ action * (1 / inertia)
- (friction / inertia) * angular_velocity
)
angle = angle + dt * angular_velocity
angular_velocity = angular_velocity + dt * x_ddot
next_state = torch.cat((angle, angular_velocity), dim=-1)
if self.noise is None:
return next_state, torch.zeros(1)
else:
return next_state + self.noise.mean, self.noise.covariance_matrix
def test_policy_on_model(
dynamical_model, reward_model, policy, test_state, policy_str="Sampled Policy"
):
with torch.no_grad():
trajectory = rollout_model(
dynamical_model,
reward_model,
policy,
max_steps=400,
initial_state=test_state.unsqueeze(0).unsqueeze(1),
)
trajectory = stack_list_of_tuples(trajectory)
states = trajectory.state[:, 0]
rewards = trajectory.reward
plot_trajectory_states_and_rewards(states, rewards)
model_rewards = torch.sum(rewards).item()
print(f"Model with {policy_str} Cumulative reward: {model_rewards:.2f}")
return model_rewards, trajectory
def test_policy_on_environment(
environment, policy, test_state, policy_str="Sampled Policy"
):
environment.state = test_state.numpy()
environment.initial_state = lambda: test_state.numpy()
trajectory = rollout_policy(environment, policy, max_steps=400, render=False)[0]
trajectory = stack_list_of_tuples(trajectory)
env_rewards = torch.sum(trajectory.reward).item()
print(f"Environment with {policy_str} Cumulative reward: {env_rewards:.2f}")
return env_rewards, trajectory
def train_mpo(
mpo: MBMPO,
initial_distribution,
optimizer,
num_iter,
num_trajectories,
num_simulation_steps,
num_gradient_steps,
batch_size,
num_subsample,
):
value_losses = []
policy_losses = []
returns = []
kl_div = []
entropy = []
for i in tqdm(range(num_iter)):
state_batches = _simulate_model(
mpo,
initial_distribution,
num_trajectories,
num_simulation_steps,
batch_size,
num_subsample,
returns,
entropy,
)
policy_episode_loss, value_episode_loss, episode_kl_div = _optimize_policy(
mpo, state_batches, optimizer, num_gradient_steps
)
value_losses.append(value_episode_loss / len(state_batches))
policy_losses.append(policy_episode_loss / len(state_batches))
kl_div.append(episode_kl_div)
return value_losses, policy_losses, kl_div, returns, entropy
def _simulate_model(
mpo,
initial_distribution,
num_trajectories,
num_simulation_steps,
batch_size,
num_subsample,
returns,
entropy,
):
with torch.no_grad():
test_states = torch.tensor([np.pi, 0]).repeat(num_trajectories // 2, 1)
initial_states = initial_distribution.sample((num_trajectories // 2,))
initial_states = torch.cat((initial_states, test_states), dim=0)
trajectory = rollout_model(
mpo.dynamical_model,
reward_model=mpo.reward_model,
policy=mpo.policy,
initial_state=initial_states,
max_steps=num_simulation_steps,
)
trajectory = stack_list_of_tuples(trajectory)
returns.append(trajectory.reward.sum(dim=0).mean().item())
entropy.append(trajectory.entropy.mean())
states = trajectory.state.reshape(-1, trajectory.state.shape[-1])
np.random.shuffle(states.numpy())
state_batches = torch.split(states, batch_size)[::num_subsample]
return state_batches
def _optimize_policy(mpo, state_batches, optimizer, num_gradient_steps):
policy_episode_loss = 0.0
value_episode_loss = 0.0
episode_kl_div = 0.0
mpo.reset()
for _ in range(num_gradient_steps):
idx = np.random.choice(len(state_batches))
states = state_batches[idx]
optimizer.zero_grad()
losses = mpo(states)
losses.loss.backward()
optimizer.step()
value_episode_loss += losses.critic_loss.item()
policy_episode_loss += losses.policy_loss.item()
mpo.update()
return policy_episode_loss, value_episode_loss, episode_kl_div
|
MIT License
|
pythonistaguild/wavelink
|
wavelink/client.py
|
Client.shard_count
|
python
|
def shard_count(self) -> int:
return self.bot.shard_count or 1
|
Return the bots Shard Count as an int.
Returns
---------
int:
An int of the bots shard count.
|
https://github.com/pythonistaguild/wavelink/blob/3e11c16516dd89791c1247032045385979736554/wavelink/client.py#L78-L86
|
import aiohttp
import asyncio
import logging
from discord.ext import commands
from functools import partial
from json import dumps
from typing import Optional, Union
from .errors import *
from .player import Player
from .node import Node
__log__ = logging.getLogger(__name__)
class Client:
def __new__(cls, *args, **kwargs):
cls.__qualname__ = 'wavelink.Client'
try:
bot = kwargs['bot']
except KeyError:
msg = 'wavelink.Client: bot is a required keyword only argument which is missing.'
raise WavelinkException(msg)
if not isinstance(bot, (commands.Bot, commands.AutoShardedBot)):
msg = f'wavelink.Client expected type <commands.Bot or commands.AutoShardedBot> not {type(bot)}'
raise TypeError(msg)
try:
update_handlers = bot.extra_events['on_socket_response']
except KeyError:
return super().__new__(cls)
for handler in update_handlers:
if handler.__self__.__class__.__qualname__ == 'wavelink.Client':
bot.remove_listener(handler, 'on_socket_response')
return super().__new__(cls)
def __init__(self, bot: Union[commands.Bot, commands.AutoShardedBot], *, session: aiohttp.ClientSession = None):
self.bot = bot
self.loop = bot.loop or asyncio.get_event_loop()
self.session = session or aiohttp.ClientSession()
self.nodes = {}
self._dumps = dumps
bot.add_listener(self.update_handler, 'on_socket_response')
@property
|
MIT License
|
sinhrks/daskperiment
|
daskperiment/core/trial/local.py
|
LocalTrialManager.trial_id
|
python
|
def trial_id(self):
if self.is_locked():
msg = ('Unable to use TrialManager.trial_id during trial. '
'Use .current_trial_id for safety.')
raise LockedTrialError(msg)
return self._trial_id
|
Return latest trial ID.
|
https://github.com/sinhrks/daskperiment/blob/63f5a18a0a0dc447698fb90947653b86a3c6160c/daskperiment/core/trial/local.py#L22-L30
|
from daskperiment.core.errors import LockedTrialError
from daskperiment.core.trial.base import _TrialManager
from daskperiment.util.log import get_logger
logger = get_logger(__name__)
class LocalTrialManager(_TrialManager):
def __init__(self, backend):
super().__init__(backend)
self._trial_id = 0
self._parameters_history = {}
self._result_history = {}
self._hashes = {}
@property
|
BSD 3-Clause New or Revised License
|
vmware/vsphere-automation-sdk-python
|
samples/vsphere/common/vapiconnect.py
|
login
|
python
|
def login(stub_config, user, pwd):
user_password_security_context = create_user_password_security_context(user,
pwd)
stub_config.connector.set_security_context(user_password_security_context)
session_svc = Session(stub_config)
session_id = session_svc.create()
session_security_context = create_session_security_context(session_id)
stub_config.connector.set_security_context(session_security_context)
return stub_config
|
Create an authenticated session with vCenter.
Returns a stub_config that stores the session identifier that can be used
to issue authenticated requests against vCenter.
|
https://github.com/vmware/vsphere-automation-sdk-python/blob/73624d9e20083002af770cf8763683f3c4681a16/samples/vsphere/common/vapiconnect.py#L55-L77
|
__author__ = 'VMware, Inc.'
__copyright__ = 'Copyright 2016 VMware, Inc. All rights reserved.'
import requests
from com.vmware.cis_client import Session
from vmware.vapi.lib.connect import get_requests_connector
from vmware.vapi.security.session import create_session_security_context
from vmware.vapi.security.user_password import create_user_password_security_context
from vmware.vapi.stdlib.client.factories import StubConfigurationFactory
def get_jsonrpc_endpoint_url(host):
return "https://{}/api".format(host)
def connect(host, user, pwd, skip_verification=False, cert_path=None, suppress_warning=True):
host_url = get_jsonrpc_endpoint_url(host)
session = requests.Session()
if skip_verification:
session = create_unverified_session(session, suppress_warning)
elif cert_path:
session.verify = cert_path
connector = get_requests_connector(session=session, url=host_url)
stub_config = StubConfigurationFactory.new_std_configuration(connector)
return login(stub_config, user, pwd)
|
MIT License
|
pkgcore/pkgcore
|
src/pkgcore/ebuild/eclass.py
|
_rst_header
|
python
|
def _rst_header(char, text, leading=False, newline=False):
sep = char * len(text)
data = [text, sep]
if leading:
data = [sep] + data
if newline:
data.append('')
return data
|
Create rST header data from a given character and header text.
|
https://github.com/pkgcore/pkgcore/blob/6c57606c15101590f4eed81636ae583f3f900d6a/src/pkgcore/ebuild/eclass.py#L37-L45
|
import os
import re
import shlex
import subprocess
from datetime import datetime
from functools import partial
from snakeoil import klass
from snakeoil.mappings import ImmutableDict, OrderedSet
from snakeoil.strings import pluralism
from snakeoil.version import get_version
from .. import __title__
from ..log import logger
from . import conditionals
from .eapi import EAPI
class AttrDict(ImmutableDict):
def __getattr__(self, name):
try:
object.__getattribute__(self, name)
except AttributeError as e:
try:
return object.__getattribute__(self, '_dict')[name]
except KeyError:
raise e
def __dir__(self):
return sorted(dir(self._dict) + list(self._dict))
|
BSD 3-Clause New or Revised License
|
mcleonard/sampyl
|
sampyl/distributions.py
|
fails_constraints
|
python
|
def fails_constraints(*conditions):
for each in conditions:
if not np.all(each):
return True
else:
return False
|
Utility function for catching out of bound parameters. Returns True if
any of the conditions aren't met. Typically you'll use this at the
beginning of defining the log P(X) functions. Example ::
def logp(x, y):
# Bound x and y to be greater than 0
if outofbounds(x > 0, y > 0):
return -np.inf
|
https://github.com/mcleonard/sampyl/blob/3849fa688d477b4ed723e08b931c73043f8471c5/sampyl/distributions.py#L17-L33
|
import numbers
from sampyl.core import np
from scipy.special import gamma
|
MIT License
|
gnocchixyz/gnocchi
|
gnocchi/utils.py
|
StopWatch.__enter__
|
python
|
def __enter__(self):
self.start()
return self
|
Starts the watch.
|
https://github.com/gnocchixyz/gnocchi/blob/1207c4ad2d82ebd5a1d463a761deed9be76a8369/gnocchi/utils.py#L264-L267
|
import datetime
import distutils.util
import errno
import itertools
import multiprocessing
import os
import uuid
from concurrent import futures
import daiquiri
import iso8601
import monotonic
import numpy
import pytimeparse
import six
from stevedore import driver
import tenacity
LOG = daiquiri.getLogger(__name__)
RESOURCE_ID_NAMESPACE = uuid.UUID('0a7a15ff-aa13-4ac2-897c-9bdf30ce175b')
def ResourceUUID(value, creator):
if isinstance(value, uuid.UUID):
return value
if '/' in value:
raise ValueError("'/' is not supported in resource id")
try:
return uuid.UUID(value)
except ValueError:
if len(value) <= 255:
if creator is None:
creator = "\x00"
if six.PY2:
value = value.encode('utf-8')
creator = creator.encode('utf-8')
return uuid.uuid5(RESOURCE_ID_NAMESPACE,
value + "\x00" + creator)
raise ValueError(
'transformable resource id >255 max allowed characters')
def UUID(value):
try:
return uuid.UUID(value)
except Exception as e:
raise ValueError(e)
unix_universal_start64 = numpy.datetime64("1970")
def to_timestamps(values):
try:
if len(values) == 0:
return []
if isinstance(values[0], (numpy.datetime64, datetime.datetime)):
times = numpy.array(values)
else:
try:
float(values[0])
except ValueError:
try:
numpy.datetime64(values[0])
except ValueError:
times = numpy.fromiter(
numpy.add(numpy.datetime64(utcnow()),
[to_timespan(v, True) for v in values]),
dtype='datetime64[ns]', count=len(values))
else:
times = numpy.array(values, dtype='datetime64[ns]')
else:
times = numpy.array(values, dtype='float') * 10e8
except ValueError:
raise ValueError("Unable to convert timestamps")
times = times.astype('datetime64[ns]')
if (times < unix_universal_start64).any():
raise ValueError('Timestamp must be after Epoch')
return times
def to_timestamp(value):
return to_timestamps([value])[0]
def to_datetime(value):
return timestamp_to_datetime(to_timestamp(value))
def timestamp_to_datetime(v):
return datetime.datetime.utcfromtimestamp(
v.astype(float) / 10e8).replace(tzinfo=iso8601.iso8601.UTC)
def to_timespan(value, allow_le_zero=False):
if value is None:
raise ValueError("Invalid timespan")
try:
seconds = float(value)
except Exception:
seconds = pytimeparse.parse(value)
if seconds is None:
raise ValueError("Unable to parse timespan")
seconds = numpy.timedelta64(int(seconds * 10e8), 'ns')
if not allow_le_zero and seconds <= numpy.timedelta64(0, 'ns'):
raise ValueError("Timespan must be positive")
return seconds
_ONE_SECOND = numpy.timedelta64(1, 's')
def timespan_total_seconds(td):
return td / _ONE_SECOND
def utcnow():
return datetime.datetime.now(tz=iso8601.iso8601.UTC)
def normalize_time(timestamp):
offset = timestamp.utcoffset()
if offset is None:
return timestamp
return timestamp.replace(tzinfo=None) - offset
def datetime_utc(*args):
return datetime.datetime(*args, tzinfo=iso8601.iso8601.UTC)
unix_universal_start = datetime_utc(1970, 1, 1)
def datetime_to_unix(timestamp):
return (timestamp - unix_universal_start).total_seconds()
def dt_in_unix_ns(timestamp):
return int(datetime_to_unix(timestamp) * int(10e8))
def get_default_workers():
try:
default_workers = multiprocessing.cpu_count() or 1
except NotImplementedError:
default_workers = 1
return default_workers
def grouper(iterable, n):
it = iter(iterable)
while True:
chunk = tuple(itertools.islice(it, n))
if not chunk:
return
yield chunk
def ensure_paths(paths):
for p in paths:
try:
os.makedirs(p)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def strtobool(v):
if isinstance(v, bool):
return v
return bool(distutils.util.strtobool(v))
class StopWatch(object):
_STARTED = object()
_STOPPED = object()
def __init__(self):
self._started_at = None
self._stopped_at = None
self._state = None
def start(self):
if self._state == self._STARTED:
return self
self._started_at = monotonic.monotonic()
self._state = self._STARTED
return self
@staticmethod
def _delta_seconds(earlier, later):
return max(0.0, later - earlier)
def elapsed(self):
if self._state not in (self._STARTED, self._STOPPED):
raise RuntimeError("Can not get the elapsed time of a stopwatch"
" if it has not been started/stopped")
if self._state == self._STOPPED:
elapsed = self._delta_seconds(self._started_at, self._stopped_at)
else:
elapsed = self._delta_seconds(
self._started_at, monotonic.monotonic())
return elapsed
|
Apache License 2.0
|
jeroenzegers/nabu-msss
|
nabu/neuralnetworks/trainers/task_trainer.py
|
TaskTrainer.gather_grads
|
python
|
def gather_grads(self, optimizer):
with tf.variable_scope(self.task_name):
self.batch_loss = tf.get_variable(
name='batch_loss', shape=[], dtype=tf.float32, initializer=tf.constant_initializer(0), trainable=False)
self.batch_loss_norm = tf.get_variable(
name='batch_loss_norm', shape=[], dtype=tf.float32, initializer=tf.constant_initializer(0),
trainable=False)
with tf.variable_scope('normalize_loss'):
self.normalized_loss = self.batch_loss / self.batch_loss_norm
self.process_minibatch = []
for set_ind, linkedset in enumerate(self.linkedsets):
inputs = dict()
seq_lengths = dict()
targets = dict()
data, seq_length = input_pipeline.input_pipeline(
data_queue=self.data_queue[linkedset],
batch_size=self.batch_size,
numbuckets=int(self.trainerconf['numbuckets']),
dataconfs=self.input_dataconfs[linkedset] + self.target_dataconfs[linkedset]
)
for ind, input_name in enumerate(self.input_names):
inputs[input_name] = data[ind]
seq_lengths[input_name] = seq_length[ind]
for ind, target_name in enumerate(self.target_names):
targets[target_name] = data[len(self.input_names) + ind]
logits, used_models = run_multi_model.run_multi_model(
models=self.models,
model_nodes=self.model_nodes,
model_links=self.model_links,
inputs=inputs,
inputs_links=self.inputs_links,
nodes_output_names=self.nodes_output_names,
output_names=self.output_names,
seq_lengths=seq_lengths,
is_training=True)
task_minibatch_loss, task_minibatch_loss_norm = self.loss_computer(targets, logits, seq_lengths)
task_minibatch_loss *= self.linkedset_weighting[linkedset]
task_minibatch_loss_norm *= self.linkedset_weighting[linkedset]
used_variables = run_multi_model.get_variables(used_models)
task_minibatch_grads_and_vars = optimizer.compute_gradients(task_minibatch_loss, var_list=used_variables)
(task_minibatch_grads, task_vars) = zip(*task_minibatch_grads_and_vars)
if set_ind == 0:
self.params = task_vars
self.grads = [tf.get_variable(
param.op.name, param.get_shape().as_list(), initializer=tf.constant_initializer(0),
trainable=False)
for param in self.params]
with tf.variable_scope('update_gradients_%s' % linkedset):
update_gradients = [
grad.assign_add(batchgrad) for batchgrad, grad in zip(task_minibatch_grads, self.grads)
if batchgrad is not None]
acc_loss = self.batch_loss.assign_add(task_minibatch_loss)
acc_loss_norm = self.batch_loss_norm.assign_add(task_minibatch_loss_norm)
self.process_minibatch.append(tf.group(
*(update_gradients + [acc_loss] + [acc_loss_norm]), name='update_grads_loss_norm_%s' % linkedset))
reset_batch_loss = self.batch_loss.assign(0.0)
reset_batch_loss_norm = self.batch_loss_norm.assign(0.0)
reset_grad = tf.variables_initializer(self.grads)
with tf.variable_scope('normalize_gradients'):
if self.trainerconf['normalize_gradients'] == 'True':
self.normalize_gradients = [
grad.assign(tf.divide(grad, self.batch_loss_norm)) for grad in self.grads]
else:
self.normalize_gradients = [grad.assign(grad) for grad in self.grads]
self.reset_grad_loss_norm = tf.group(*(
[reset_grad, reset_batch_loss, reset_batch_loss_norm]), name='reset_grad_loss_norm')
batch_grads_and_vars = zip(self.grads, task_vars)
with tf.variable_scope('clip'):
clip_value = float(self.trainerconf['clip_grad_value'])
batch_grads_and_vars = [
(tf.clip_by_value(grad, -clip_value, clip_value), var) for grad, var in batch_grads_and_vars]
return batch_grads_and_vars
|
Gather gradients for this task
|
https://github.com/jeroenzegers/nabu-msss/blob/5e862cbf846d45b8a317f87588533f3fde9f0726/nabu/neuralnetworks/trainers/task_trainer.py#L151-L269
|
import tensorflow as tf
from nabu.neuralnetworks.loss_computers import loss_computer_factory
from nabu.neuralnetworks.evaluators import evaluator_factory
from nabu.processing import input_pipeline
from nabu.neuralnetworks.models import run_multi_model
import numpy as np
class TaskTrainer(object):
def __init__(self, task_name, trainerconf, taskconf, models, modelconf, dataconf, evaluatorconf, lossconf, batch_size):
self.task_name = task_name
self.trainerconf = trainerconf
self.taskconf = taskconf
self.models = models
self.modelconf = modelconf
self.evaluatorconf = evaluatorconf
self.batch_size = batch_size
self.output_names = taskconf['outputs'].split(' ')
self.input_names = taskconf['inputs'].split(' ')
self.target_names = taskconf['targets'].split(' ')
if self.target_names == ['']:
self.target_names = []
self.model_nodes = taskconf['nodes'].split(' ')
if 'linkedsets' in taskconf:
set_names = taskconf['linkedsets'].split(' ')
self.linkedsets = dict()
for set_name in set_names:
set_input_names = ['%s_%s' % (set_name, in_name) for in_name in self.input_names]
set_target_names = ['%s_%s' % (set_name, tar_name) for tar_name in self.target_names]
self.linkedsets[set_name] = {'inputs': set_input_names, 'targets': set_target_names}
if 'linkedset_weighting' in taskconf:
linkedset_weighting = np.array(map(float, taskconf['linkedset_weighting'].split(' ')))
linkedset_weighting /= linkedset_weighting[0]
else:
linkedset_weighting = np.array([1.0] * len(self.linkedsets))
self.linkedset_weighting = {set_name: weight for set_name, weight in zip(set_names, linkedset_weighting)}
else:
self.linkedsets = {'set0': {'inputs': self.input_names, 'targets': self.target_names}}
self.linkedset_weighting = {'set0': 1.0}
self.input_dataconfs = dict()
self.target_dataconfs = dict()
for linkedset in self.linkedsets:
self.input_dataconfs[linkedset] = []
for input_name in self.linkedsets[linkedset]['inputs']:
dataconfs_for_input = []
sections = taskconf[input_name].split(' ')
for section in sections:
dataconfs_for_input.append(dict(dataconf.items(section)))
self.input_dataconfs[linkedset].append(dataconfs_for_input)
self.target_dataconfs[linkedset] = []
for target_name in self.linkedsets[linkedset]['targets']:
dataconfs_for_target = []
sections = taskconf[target_name].split(' ')
for section in sections:
dataconfs_for_target.append(dict(dataconf.items(section)))
self.target_dataconfs[linkedset].append(dataconfs_for_target)
self.model_links = dict()
self.inputs_links = dict()
self.nodes_output_names = dict()
for node in self.model_nodes:
self.model_links[node] = taskconf['%s_model' % node]
self.inputs_links[node] = taskconf['%s_inputs' % node].split(' ')
if '%s_output_names' % node in taskconf:
self.nodes_output_names[node] = taskconf['%s_output_names' % node].split(' ')
else:
self.nodes_output_names[node] = node
if lossconf:
loss_type = lossconf['loss_type']
else:
loss_type = taskconf['loss_type']
self.loss_computer = loss_computer_factory.factory(loss_type)(lossconf, self.batch_size)
evaltype = evaluatorconf.get('evaluator', 'evaluator')
if evaltype != 'None':
self.evaluator = evaluator_factory.factory(evaltype)(
conf=evaluatorconf, dataconf=dataconf, lossconf=lossconf, models=self.models, task=task_name)
def set_dataqueues(self):
self.data_queue = dict()
for linkedset in self.linkedsets:
data_queue_name = 'data_queue_%s_%s' % (self.task_name, linkedset)
data_queue_elements, _ = input_pipeline.get_filenames(
self.input_dataconfs[linkedset] + self.target_dataconfs[linkedset])
number_of_elements = len(data_queue_elements)
if 'trainset_frac' in self.taskconf:
number_of_elements = int(float(number_of_elements) * float(self.taskconf['trainset_frac']))
print '%d utterances will be used for training' % number_of_elements
data_queue_elements = data_queue_elements[:number_of_elements]
self.data_queue[linkedset] = tf.train.string_input_producer(
string_tensor=data_queue_elements,
shuffle=False,
seed=None,
capacity=self.batch_size*2,
shared_name=data_queue_name)
if int(self.trainerconf['numbatches_to_aggregate']) == 0:
num_steps = int(self.trainerconf['num_epochs']) * len(data_queue_elements) / self.batch_size
else:
num_steps = int(self.trainerconf['num_epochs']) * len(data_queue_elements) / (self.batch_size * int(self.trainerconf['numbatches_to_aggregate']))
done_ops = [tf.no_op()]
return num_steps, done_ops
|
MIT License
|
seetaresearch/dragon
|
torch/core/nn/functional.py
|
conv2d
|
python
|
def conv2d(
input,
weight,
bias=None,
stride=1,
padding=0,
dilation=1,
groups=1,
):
return _conv('Conv', utils._pair, **locals())
|
r"""Apply the 2d convolution to input.
Parameters
----------
input : dragon.vm.torch.Tensor
The input tensor.
weight : dragon.vm.torch.Tensor
The weight tensor.
bias : dragon.vm.torch.Tensor, optional
The bias tensor.
stride : Union[int, Sequence[int]], optional, default=1
The stride of convolution window.
padding : Union[int, Sequence[int]], optional, default=0
The zero padding size.
dilation : Union[int, Sequence[int]], optional, default=1
The rate of dilated kernel.
groups : int, optional, default=1
The number of groups to split input channels.
Returns
-------
dragon.vm.torch.Tensor
The output tensor.
See Also
--------
`torch.nn.Conv2d(...)`_
|
https://github.com/seetaresearch/dragon/blob/3dfb6ea55d90d2fb2da9b1b471f5e1e7d7667810/torch/core/nn/functional.py#L422-L460
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from dragon.core.util import nest
from dragon.vm.torch.core.autograd.function_impl import FunctionLib
from dragon.vm.torch.core.nn import _reduction
from dragon.vm.torch.core.nn.modules import utils
def adaptive_avg_pool1d(input, output_size):
args = utils._get_adaptive_pool_args(
input.size()[-1:], utils._single(output_size))
return _pool('AVG', utils._single, input, **args)
def adaptive_avg_pool2d(input, output_size):
args = utils._get_adaptive_pool_args(
input.size()[-2:], utils._pair(output_size))
return _pool('AVG', utils._pair, input, **args)
def adaptive_avg_pool3d(input, output_size):
args = utils._get_adaptive_pool_args(
input.size()[-3:], utils._triple(output_size))
return _pool('AVG', utils._triple, input, **args)
def adaptive_max_pool1d(input, output_size):
args = utils._get_adaptive_pool_args(
input.size()[-1:], utils._single(output_size))
return _pool('MAX', utils._single, input, **args)
def adaptive_max_pool2d(input, output_size):
args = utils._get_adaptive_pool_args(
input.size()[-2:], utils._pair(output_size))
return _pool('MAX', utils._pair, input, **args)
def adaptive_max_pool3d(input, output_size):
args = utils._get_adaptive_pool_args(
input.size()[-3:], utils._triple(output_size))
return _pool('MAX', utils._triple, input, **args)
def avg_pool1d(input, kernel_size, stride=1, padding=0, ceil_mode=False):
return _pool('AVG', utils._single, **locals())
def avg_pool2d(input, kernel_size, stride=1, padding=0, ceil_mode=False):
return _pool('AVG', utils._pair, **locals())
def avg_pool3d(input, kernel_size, stride=1, padding=0, ceil_mode=False):
return _pool('AVG', utils._triple, **locals())
def batch_norm(
input,
running_mean,
running_var,
weight,
bias,
training=False,
momentum=0.1,
eps=1e-5,
):
return FunctionLib.apply(
'BatchNorm', input.device,
[input, weight, bias, running_mean, running_var],
axis=1, epsilon=eps, use_stats=int(not training),
momentum=1.0 - momentum)
def binary_cross_entropy_with_logits(
input,
target,
weight=None,
size_average=None,
reduce=None,
reduction='mean',
pos_weight=None,
):
if size_average is not None or reduce is not None:
reduction = _reduction.legacy_get_string(size_average, reduce)
else:
reduction = reduction
return FunctionLib.apply(
'SigmoidCrossEntropyLoss', input.device,
[input, target], reduction=reduction.upper())
def channel_shuffle(input, groups):
return FunctionLib.apply(
'ChannelShuffle', input.device, [input], axis=1, group=groups)
def conv1d(
input,
weight,
bias=None,
stride=1,
padding=0,
dilation=1,
groups=1,
):
return _conv('Conv', utils._single, **locals())
|
BSD 2-Clause Simplified License
|
wangsr126/rdsnet
|
mmdet/core/anchor/guided_anchor_target.py
|
images_to_levels
|
python
|
def images_to_levels(target, num_level_anchors):
target = torch.stack(target, 0)
level_targets = []
start = 0
for n in num_level_anchors:
end = start + n
level_targets.append(target[:, start:end].squeeze(0))
start = end
return level_targets
|
Convert targets by image to targets by feature level.
[target_img0, target_img1] -> [target_level0, target_level1, ...]
|
https://github.com/wangsr126/rdsnet/blob/0fd3abbcedde4f2d3a379d93675f54ec1e7d9684/mmdet/core/anchor/guided_anchor_target.py#L205-L217
|
import torch
from ..bbox import PseudoSampler, build_assigner, build_sampler
from ..utils import multi_apply, unmap
def calc_region(bbox, ratio, featmap_size=None):
x1 = torch.round((1 - ratio) * bbox[0] + ratio * bbox[2]).long()
y1 = torch.round((1 - ratio) * bbox[1] + ratio * bbox[3]).long()
x2 = torch.round(ratio * bbox[0] + (1 - ratio) * bbox[2]).long()
y2 = torch.round(ratio * bbox[1] + (1 - ratio) * bbox[3]).long()
if featmap_size is not None:
x1 = x1.clamp(min=0, max=featmap_size[1] - 1)
y1 = y1.clamp(min=0, max=featmap_size[0] - 1)
x2 = x2.clamp(min=0, max=featmap_size[1] - 1)
y2 = y2.clamp(min=0, max=featmap_size[0] - 1)
return (x1, y1, x2, y2)
def ga_loc_target(gt_bboxes_list,
featmap_sizes,
anchor_scale,
anchor_strides,
center_ratio=0.2,
ignore_ratio=0.5):
img_per_gpu = len(gt_bboxes_list)
num_lvls = len(featmap_sizes)
r1 = (1 - center_ratio) / 2
r2 = (1 - ignore_ratio) / 2
all_loc_targets = []
all_loc_weights = []
all_ignore_map = []
for lvl_id in range(num_lvls):
h, w = featmap_sizes[lvl_id]
loc_targets = torch.zeros(
img_per_gpu,
1,
h,
w,
device=gt_bboxes_list[0].device,
dtype=torch.float32)
loc_weights = torch.full_like(loc_targets, -1)
ignore_map = torch.zeros_like(loc_targets)
all_loc_targets.append(loc_targets)
all_loc_weights.append(loc_weights)
all_ignore_map.append(ignore_map)
for img_id in range(img_per_gpu):
gt_bboxes = gt_bboxes_list[img_id]
scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) *
(gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1))
min_anchor_size = scale.new_full(
(1, ), float(anchor_scale * anchor_strides[0]))
target_lvls = torch.floor(
torch.log2(scale) - torch.log2(min_anchor_size) + 0.5)
target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long()
for gt_id in range(gt_bboxes.size(0)):
lvl = target_lvls[gt_id].item()
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[lvl]
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
gt_, r2, featmap_sizes[lvl])
ctr_x1, ctr_y1, ctr_x2, ctr_y2 = calc_region(
gt_, r1, featmap_sizes[lvl])
all_loc_targets[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, ctr_x1:ctr_x2 +
1] = 1
all_loc_weights[lvl][img_id, 0, ignore_y1:ignore_y2 +
1, ignore_x1:ignore_x2 + 1] = 0
all_loc_weights[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, ctr_x1:ctr_x2 +
1] = 1
if lvl > 0:
d_lvl = lvl - 1
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[d_lvl]
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
gt_, r2, featmap_sizes[d_lvl])
all_ignore_map[d_lvl][img_id, 0, ignore_y1:ignore_y2 +
1, ignore_x1:ignore_x2 + 1] = 1
if lvl < num_lvls - 1:
u_lvl = lvl + 1
gt_ = gt_bboxes[gt_id, :4] / anchor_strides[u_lvl]
ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
gt_, r2, featmap_sizes[u_lvl])
all_ignore_map[u_lvl][img_id, 0, ignore_y1:ignore_y2 +
1, ignore_x1:ignore_x2 + 1] = 1
for lvl_id in range(num_lvls):
all_loc_weights[lvl_id][(all_loc_weights[lvl_id] < 0)
& (all_ignore_map[lvl_id] > 0)] = 0
all_loc_weights[lvl_id][all_loc_weights[lvl_id] < 0] = 0.1
loc_avg_factor = sum(
[t.size(0) * t.size(-1) * t.size(-2) for t in all_loc_targets]) / 200
return all_loc_targets, all_loc_weights, loc_avg_factor
def ga_shape_target(approx_list,
inside_flag_list,
square_list,
gt_bboxes_list,
img_metas,
approxs_per_octave,
cfg,
gt_bboxes_ignore_list=None,
sampling=True,
unmap_outputs=True):
num_imgs = len(img_metas)
assert len(approx_list) == len(inside_flag_list) == len(
square_list) == num_imgs
num_level_squares = [squares.size(0) for squares in square_list[0]]
inside_flag_flat_list = []
approx_flat_list = []
square_flat_list = []
for i in range(num_imgs):
assert len(square_list[i]) == len(inside_flag_list[i])
inside_flag_flat_list.append(torch.cat(inside_flag_list[i]))
approx_flat_list.append(torch.cat(approx_list[i]))
square_flat_list.append(torch.cat(square_list[i]))
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
(all_bbox_anchors, all_bbox_gts, all_bbox_weights, pos_inds_list,
neg_inds_list) = multi_apply(
ga_shape_target_single,
approx_flat_list,
inside_flag_flat_list,
square_flat_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
img_metas,
approxs_per_octave=approxs_per_octave,
cfg=cfg,
sampling=sampling,
unmap_outputs=unmap_outputs)
if any([bbox_anchors is None for bbox_anchors in all_bbox_anchors]):
return None
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
bbox_anchors_list = images_to_levels(all_bbox_anchors, num_level_squares)
bbox_gts_list = images_to_levels(all_bbox_gts, num_level_squares)
bbox_weights_list = images_to_levels(all_bbox_weights, num_level_squares)
return (bbox_anchors_list, bbox_gts_list, bbox_weights_list, num_total_pos,
num_total_neg)
|
Apache License 2.0
|
bitshares/uptick
|
uptick/account.py
|
setproxy
|
python
|
def setproxy(ctx, proxy_account, account):
print_tx(ctx.bitshares.set_proxy(proxy_account, account=account))
|
Set the proxy account for an account
|
https://github.com/bitshares/uptick/blob/5035ff93745dddfbbd2878f818d9c302c8aa4244/uptick/account.py#L318-L321
|
import json
import click
from tqdm import tqdm
from prettytable import PrettyTable
from bitshares.block import Block, BlockHeader
from bitshares.account import Account
from .decorators import onlineChain, unlockWallet, unlock
from .ui import print_permissions, pprintOperation, print_table, print_tx
from .main import main, config
@main.command()
@click.pass_context
@onlineChain
@click.argument("foreign_account", required=False, type=str)
@click.option(
"--account",
default=config["default_account"],
type=str,
help="Account to be modified",
)
@click.option(
"--permission", default="active", type=str, help="Permission/Role to be modified"
)
@click.option("--threshold", type=int, help="Threshold for the Role")
@click.option("--weight", type=int, help="Weight of the new key/account")
@unlockWallet
def allow(ctx, foreign_account, permission, weight, threshold, account):
if not foreign_account:
from bitsharesbase.account import PasswordKey
pwd = click.prompt(
"Password for Key Derivation", hide_input=True, confirmation_prompt=True
)
foreign_account = format(
PasswordKey(account, pwd, permission).get_public(), "BTS"
)
print_tx(
ctx.bitshares.allow(
foreign_account,
weight=weight,
account=account,
permission=permission,
threshold=threshold,
)
)
@main.command()
@click.pass_context
@onlineChain
@click.argument("foreign_account", type=str)
@click.option(
"--account",
default=config["default_account"],
help="Account to be modified",
type=str,
)
@click.option(
"--permission", default="active", help="Permission/Role to be modified", type=str
)
@click.option("--threshold", help="Threshold for the Role", type=int)
@unlockWallet
def disallow(ctx, foreign_account, permission, threshold, account):
print_tx(
ctx.bitshares.disallow(
foreign_account, account=account, permission=permission, threshold=threshold
)
)
@main.command()
@click.pass_context
@onlineChain
@click.argument("account", nargs=-1)
@click.option("--csv/--table", help="Show output as csv or table", default=False)
@click.option(
"--type", type=str, help="Only show operations of this type", multiple=True
)
@click.option("--exclude", type=str, help="Exclude certain types", multiple=True)
@click.option("--limit", type=int, help="Limit number of elements", default=15)
@click.option("--raw/--no-raw", default=False)
@click.option("--memo/--no-memo", default=False)
def history(ctx, account, limit, type, csv, exclude, raw, memo):
from bitsharesbase.operations import getOperationNameForId
if memo:
pwd = click.prompt("Current Wallet Passphrase", hide_input=True)
ctx.bitshares.wallet.unlock(pwd)
t = [["#", "time (block)", "operation", "details"]]
for a in account:
account = Account(a, bitshares_instance=ctx.bitshares)
for b in tqdm(account.history(limit=limit, only_ops=type, exclude_ops=exclude)):
block = BlockHeader(b["block_num"])
row = [
b["id"],
"%s (%s)" % (block.time(), b["block_num"]),
"{} ({})".format(getOperationNameForId(b["op"][0]), b["op"][0]),
pprintOperation(b, memo, ctx) if not raw else json.dumps(b, indent=4),
]
t.append(row)
print_table(t)
@main.command()
@click.pass_context
@onlineChain
@click.argument("to", nargs=1, type=str)
@click.argument("amount", nargs=1, type=float)
@click.argument("asset", nargs=1, type=str)
@click.argument("memo", required=False, type=str, default=None)
@click.option(
"--account", default=config["default_account"], help="Account to send from"
)
@unlockWallet
def transfer(ctx, to, amount, asset, memo, account):
print_tx(ctx.bitshares.transfer(to, amount, asset, memo=memo, account=account))
@main.command()
@click.pass_context
@onlineChain
@click.argument("accounts", nargs=-1)
def balance(ctx, accounts):
t = [["Account", "Amount"]]
for a in accounts:
account = Account(a, bitshares_instance=ctx.bitshares)
for b in account.balances:
t.append([str(a), str(b)])
print_table(t)
@main.command()
@click.pass_context
@onlineChain
@click.argument("account", nargs=1)
def permissions(ctx, account):
print_permissions(Account(account))
@main.command()
@click.pass_context
@onlineChain
@click.argument("accountname", nargs=1, type=str)
@click.option(
"--account",
default=config["default_account"],
help="Account to pay the registration fee",
)
@click.option(
"--password",
prompt="Account Password",
hide_input=True,
confirmation_prompt=True,
help="Account Password",
)
@unlockWallet
def newaccount(ctx, accountname, account, password):
print_tx(
ctx.bitshares.create_account(accountname, registrar=account, password=password)
)
@main.command()
@click.pass_context
@onlineChain
@click.argument("account", nargs=1, default=config["default_account"], type=str)
@unlockWallet
def upgrade(ctx, account):
print_tx(ctx.bitshares.upgrade_account(account))
@main.command()
@click.pass_context
@onlineChain
@click.option(
"--feepayer", nargs=1, default=None, help="Account to pay the fee from", type=str
)
@click.option(
"--account",
nargs=1,
default=config["default_account"],
help="Account to clone",
type=str,
)
@click.argument("account_name", nargs=1, type=str)
@unlockWallet
def cloneaccount(ctx, account_name, account, feepayer):
from bitsharesbase import transactions, operations
account = Account(account)
if feepayer is None:
feepayer = account
else:
feepayer = Account(feepayer)
op = {
"fee": {"amount": 0, "asset_id": "1.3.0"},
"registrar": feepayer["id"],
"referrer": feepayer["id"],
"referrer_percent": 100,
"name": account_name,
"owner": account["owner"],
"active": account["active"],
"options": account["options"],
"extensions": {},
"prefix": ctx.bitshares.rpc.chain_params["prefix"],
}
op = operations.Account_create(**op)
print_tx(ctx.bitshares.finalizeOp(op, account, "active"))
@main.command()
@click.pass_context
@onlineChain
@click.option("--key", prompt="Memo Key", type=str)
@click.option(
"--account",
default=config["default_account"],
type=str,
help="Account to be modified",
)
@unlockWallet
def changememokey(ctx, key, account):
print_tx(ctx.bitshares.update_memo_key(key, account=account))
@main.command()
@click.pass_context
@onlineChain
@click.argument("whitelist_account", type=str)
@click.option(
"--account",
default=config["default_account"],
type=str,
help="Account to be modified",
)
@unlockWallet
def whitelist(ctx, whitelist_account, account):
account = Account(account, blockchain_instance=ctx.blockchain)
print_tx(account.whitelist(whitelist_account))
@main.command()
@click.pass_context
@onlineChain
@click.argument("blacklist_account", type=str)
@click.option(
"--account",
default=config["default_account"],
type=str,
help="Account to be modified",
)
@unlockWallet
def blacklist(ctx, blacklist_account, account):
account = Account(account, blockchain_instance=ctx.blockchain)
print_tx(account.blacklist(blacklist_account))
@main.command()
@click.pass_context
@onlineChain
@click.argument("unlist_account", type=str)
@click.option(
"--account",
default=config["default_account"],
type=str,
help="Account to be modified",
)
@unlockWallet
def unlist(ctx, unlist_account, account):
account = Account(account, blockchain_instance=ctx.blockchain)
print_tx(account.nolist(unlist_account))
@main.command()
@click.pass_context
@onlineChain
@click.argument("proxy_account", type=str)
@click.option(
"--account",
default=config["default_account"],
help="Account to be modified",
type=str,
)
@unlockWallet
|
MIT License
|
codyberenson/pgma-modernized
|
Fagalicious.bundle/Contents/Libraries/Shared/twodict.py
|
TwoWayOrderedDict._iterate
|
python
|
def _iterate(self, reverse=False):
index = self._PREV if reverse else self._NEXT
curr = self._items[index]
while curr is not self._items:
yield curr[self._KEY]
curr = curr[index]
|
Generator that iterates over the dictionary keys.
|
https://github.com/codyberenson/pgma-modernized/blob/f8d8771809d6b619f9e356e55bfcbfa7368c4abd/Fagalicious.bundle/Contents/Libraries/Shared/twodict.py#L180-L187
|
import sys
import collections
__all__ = ["TwoWayOrderedDict"]
__version__ = "1.2"
__license__ = "Unlicense"
_DEFAULT_OBJECT = object()
class DictKeysView(collections.KeysView):
def __init__(self, data):
super(DictKeysView, self).__init__(data)
self.__data = data
def __repr__(self):
return "dict_keys({data})".format(data=list(self))
def __contains__(self, key):
return key in [key for key in self.__data]
class DictValuesView(collections.ValuesView):
def __init__(self, data):
super(DictValuesView, self).__init__(data)
self.__data = data
def __repr__(self):
return "dict_values({data})".format(data=list(self))
def __contains__(self, value):
return value in [self.__data[key] for key in self.__data]
class DictItemsView(collections.ItemsView):
def __init__(self, data):
super(DictItemsView, self).__init__(data)
self.__data = data
def __repr__(self):
return "dict_items({data})".format(data=list(self))
def __contains__(self, item):
return item in [(key, self.__data[key]) for key in self.__data]
class TwoWayOrderedDict(dict):
_PREV = 0
_KEY = 1
_NEXT = 2
def __init__(self, *args, **kwargs):
super(TwoWayOrderedDict, self).__init__()
self.clear()
self.update(*args, **kwargs)
def __setitem__(self, key, value):
if key in self:
if key != self[key]:
self._remove_mapped_key(self[key])
dict.__delitem__(self, self[key])
if value in self:
if key != value:
self._remove_mapped_key(value)
self._remove_mapped_key(self[value])
if self[value] in self:
dict.__delitem__(self, self[value])
if key not in self._items_map:
last = self._items[self._PREV]
last[self._NEXT] = self._items[self._PREV] = self._items_map[key] = [last, key, self._items]
dict.__setitem__(self, key, value)
dict.__setitem__(self, value, key)
def __delitem__(self, key):
self._remove_mapped_key(self[key])
self._remove_mapped_key(key)
dict.__delitem__(self, self[key])
if key in self:
dict.__delitem__(self, key)
def __len__(self):
return len(self._items_map)
def __iter__(self):
return self._iterate()
def __reversed__(self):
return self._iterate(reverse=True)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, list(self.items()))
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return self.items() == other.items()
def __ne__(self, other):
return not self == other
def _remove_mapped_key(self, key):
if key in self._items_map:
prev_item, _, next_item = self._items_map.pop(key)
prev_item[self._NEXT] = next_item
next_item[self._PREV] = prev_item
|
MIT License
|
google/objax
|
objax/zoo/wide_resnet.py
|
WideResNetGeneral.__init__
|
python
|
def __init__(self,
nin: int,
nclass: int,
blocks_per_group: List[int],
width: int,
bn: Callable = functools.partial(objax.nn.BatchNorm2D, momentum=BN_MOM, eps=BN_EPS)):
widths = [int(v * width) for v in [16 * (2 ** i) for i in range(len(blocks_per_group))]]
n = 16
ops = [objax.nn.Conv2D(nin, n, 3, **conv_args(3, n))]
for i, (block, width) in enumerate(zip(blocks_per_group, widths)):
stride = 2 if i > 0 else 1
ops.append(WRNBlock(n, width, stride, bn))
for b in range(1, block):
ops.append(WRNBlock(width, width, 1, bn))
n = width
ops += [bn(n),
objax.functional.relu,
self.mean_reduce,
objax.nn.Linear(n, nclass, w_init=objax.nn.init.xavier_truncated_normal)
]
super().__init__(ops)
|
Creates WideResNetGeneral instance.
Args:
nin: number of channels in the input image.
nclass: number of output classes.
blocks_per_group: number of blocks in each block group.
width: multiplier to the number of convolution filters.
bn: module which used as batch norm function.
|
https://github.com/google/objax/blob/647d28bfd2fa47daa416f0f77f5f09c1bcda3c6f/objax/zoo/wide_resnet.py#L89-L119
|
__all__ = ['WRNBlock', 'WideResNetGeneral', 'WideResNet']
import functools
from typing import Callable, List
import objax
from objax.typing import JaxArray
BN_MOM = 0.9
BN_EPS = 1e-5
def conv_args(kernel_size: int, nout: int):
stddev = objax.functional.rsqrt(0.5 * kernel_size * kernel_size * nout)
return dict(w_init=functools.partial(objax.random.normal, stddev=stddev),
use_bias=False,
padding=objax.constants.ConvPadding.SAME)
class WRNBlock(objax.Module):
def __init__(self,
nin: int,
nout: int,
stride: int = 1,
bn: Callable = functools.partial(objax.nn.BatchNorm2D, momentum=BN_MOM, eps=BN_EPS)):
if nin != nout or stride > 1:
self.proj_conv = objax.nn.Conv2D(nin, nout, 1, strides=stride, **conv_args(1, nout))
else:
self.proj_conv = None
self.norm_1 = bn(nin)
self.conv_1 = objax.nn.Conv2D(nin, nout, 3, strides=stride, **conv_args(3, nout))
self.norm_2 = bn(nout)
self.conv_2 = objax.nn.Conv2D(nout, nout, 3, strides=1, **conv_args(3, nout))
def __call__(self, x: JaxArray, training: bool) -> JaxArray:
o1 = objax.functional.relu(self.norm_1(x, training))
y = self.conv_1(o1)
o2 = objax.functional.relu(self.norm_2(y, training))
z = self.conv_2(o2)
return z + self.proj_conv(o1) if self.proj_conv else z + x
class WideResNetGeneral(objax.nn.Sequential):
@staticmethod
def mean_reduce(x: JaxArray) -> JaxArray:
return x.mean((2, 3))
|
Apache License 2.0
|
whr94621/njunmt-pytorch
|
src/models/base.py
|
NMTModel.encode
|
python
|
def encode(self, src_seq):
raise NotImplementedError
|
Encode the source side
|
https://github.com/whr94621/njunmt-pytorch/blob/443918980231541ec36a1c893301258467f22c3b/src/models/base.py#L52-L56
|
import torch.nn as nn
class NMTModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, src_seq, tgt_seq, **kwargs):
raise NotImplementedError
def init_decoder(self, enc_outputs, expand_size=1):
raise NotImplementedError
|
MIT License
|
openkinome/kinoml
|
kinoml/docking/OEDocking.py
|
pose_molecules
|
python
|
def pose_molecules(
receptor: oechem.OEMolBase,
molecules: List[oechem.OEMolBase],
pKa_norm: bool = True,
) -> Union[List[oechem.OEGraphMol], None]:
from openeye import oedocking
from ..modeling.OEModeling import generate_reasonable_conformations
def probability(molecule: oechem.OEGraphMol):
value = oechem.OEGetSDData(molecule, "POSIT::Probability")
return float(value)
options = oedocking.OEPositOptions()
options.SetIgnoreNitrogenStereo(True)
options.SetPoseRelaxMode(oedocking.OEPoseRelaxMode_ALL)
poser = oedocking.OEPosit()
poser.Initialize(receptor)
posed_molecules = list()
for molecule in molecules:
conformations_ensemble = generate_reasonable_conformations(
molecule, dense=True, pKa_norm=pKa_norm
)
posed_conformations = list()
for conformations in conformations_ensemble:
result = oedocking.OESinglePoseResult()
return_code = poser.Dock(result, conformations)
if return_code != oedocking.OEDockingReturnCode_Success:
print(
f"POsing failed for molecule with title {conformations.GetTitle()} with error code "
f"{oedocking.OEDockingReturnCodeGetName(return_code)}."
)
continue
else:
posed_conformation = result.GetPose()
oechem.OESetSDData(
posed_conformation, "POSIT::Probability", str(result.GetProbability())
)
posed_conformations.append(oechem.OEGraphMol(posed_conformation))
posed_conformations.sort(key=probability, reverse=True)
posed_molecules.append(posed_conformations[0])
if len(posed_molecules) == 0:
return None
return posed_molecules
|
Generate a binding pose of molecules in a prepared receptor with OpenEye's Posit method.
Parameters
----------
receptor: oechem.OEMolBase
An OpenEye molecule holding the prepared receptor.
molecules: list of oechem.OEMolBase
A list of OpenEye molecules holding prepared molecules for docking.
pKa_norm: bool, default=True
Assign the predominant ionization state at pH ~7.4.
Returns
-------
posed_molecules: list of oechem.OEGraphMol or None
A list of OpenEye molecules holding the docked molecules.
|
https://github.com/openkinome/kinoml/blob/afe169e6eefc6fddbaaf81cf720a4e224c82696d/kinoml/docking/OEDocking.py#L139-L213
|
from typing import List, Tuple, Union
from openeye import oechem
def create_hybrid_receptor(
protein: oechem.OEMolBase, ligand: oechem.OEMolBase
) -> oechem.OEGraphMol:
from openeye import oedocking
receptor = oechem.OEGraphMol()
oedocking.OEMakeReceptor(receptor, protein, ligand)
return receptor
def create_hint_receptor(
protein: oechem.OEMolBase,
hintx: Union[float, int],
hinty: Union[float, int],
hintz: Union[float, int],
) -> oechem.OEGraphMol:
from openeye import oedocking
receptor = oechem.OEGraphMol()
oedocking.OEMakeReceptor(receptor, protein, hintx, hinty, hintz)
return receptor
def resids_to_box(
protein: oechem.OEMolBase, resids: List[int]
) -> Tuple[float, float, float, float, float, float]:
coordinates = oechem.OEFloatArray(protein.NumAtoms() * 3)
oechem.OEGetPackedCoords(protein, coordinates)
x_coordinates = []
y_coordinates = []
z_coordinates = []
for i, atom in enumerate(protein.GetAtoms()):
if oechem.OEAtomGetResidue(atom).GetResidueNumber() in resids:
x_coordinates.append(coordinates[i * 3])
y_coordinates.append(coordinates[(i * 3) + 1])
z_coordinates.append(coordinates[(i * 3) + 2])
box_dimensions = (
max(x_coordinates),
max(y_coordinates),
max(z_coordinates),
min(x_coordinates),
min(y_coordinates),
min(z_coordinates),
)
return box_dimensions
def create_box_receptor(
protein: oechem.OEMolBase,
box_dimensions: Tuple[float, float, float, float, float, float],
) -> oechem.OEGraphMol:
from openeye import oedocking
box = oedocking.OEBox(*box_dimensions)
receptor = oechem.OEGraphMol()
oedocking.OEMakeReceptor(receptor, protein, box)
return receptor
|
MIT License
|
googlecloudplatform/healthcare-api-dicomweb-cli
|
tests/test_delete.py
|
DeleteResponse.request_callback
|
python
|
def request_callback(self, request, uri, response_headers):
self.requested = True
return [200, response_headers, self.data]
|
Returns body and sets flag
|
https://github.com/googlecloudplatform/healthcare-api-dicomweb-cli/blob/0098960dc08a9be57649d9445f22ca439f853b6f/tests/test_delete.py#L96-L99
|
import json
import random
import httpretty
from dcmweb import dcmweb
@httpretty.activate
def test_delete():
httpretty.register_uri(
httpretty.GET,
"https://dicom.com/v1/dicomWeb/studies?limit=1",
match_querystring=True
)
dcmweb_cli = dcmweb.Dcmweb("https://dicom.com/v1/dicomWeb/", False, None)
empty_response = DeleteResponse('{}')
httpretty.register_uri(
httpretty.DELETE,
"https://dicom.com/v1/dicomWeb/studies/1",
status=200,
match_querystring=True,
body=empty_response.request_callback
)
dcmweb_cli.delete("studies/1")
assert empty_response.requested
operation_response = DeleteResponse('{"name":"/operation/1"}')
operation_progress = OperationProgress()
httpretty.register_uri(
httpretty.DELETE,
"https://dicom.com/v1/dicomWeb/studies/2",
status=200,
match_querystring=True,
body=operation_response.request_callback
)
httpretty.register_uri(
httpretty.GET,
"https://dicom.com/v1/operation/1",
status=200,
match_querystring=True,
body=operation_progress.request_callback
)
dcmweb_cli.delete("studies/2")
assert operation_progress.requests < 1
assert operation_response.requested
operation_response = DeleteResponse('{"name":"/operation/2"}')
httpretty.register_uri(
httpretty.DELETE,
"https://dicom.com/v1/dicomWeb/studies/3",
status=200,
match_querystring=True,
body=operation_response.request_callback
)
httpretty.register_uri(
httpretty.GET,
"https://dicom.com/v1/operation/2",
status=404,
match_querystring=True,
)
assert dcmweb_cli.delete("studies/3") == "/operation/2"
class OperationProgress:
def __init__(self):
self.requests = random.randint(1, 5)
def request_callback(self, request, uri, response_headers):
self.requests -= 1
resp_body = json.dumps({})
if self.requests < 1:
resp_body = json.dumps({"done": True})
return [200, response_headers, resp_body]
class DeleteResponse:
def __init__(self, data):
self.data = data
self.requested = False
|
Apache License 2.0
|
pdbpp/pdbpp
|
src/pdbpp.py
|
PdbMeta.__call__
|
python
|
def __call__(cls, *args, **kwargs):
if getattr(local, "_pdbpp_in_init", False):
class OrigPdb(pdb.Pdb, object):
def set_trace(self, frame=None):
print("pdb++: using pdb.Pdb for recursive set_trace.")
if frame is None:
frame = sys._getframe().f_back
super(OrigPdb, self).set_trace(frame)
orig_pdb = OrigPdb.__new__(OrigPdb)
kwargs.pop("Config", None)
orig_pdb.__init__(*args, **kwargs)
local._pdbpp_in_init = False
return orig_pdb
local._pdbpp_in_init = True
global_pdb = getattr(local, "GLOBAL_PDB", None)
if global_pdb:
use_global_pdb = kwargs.pop(
"use_global_pdb",
(
not global_pdb._in_interaction
and os.environ.get("PDBPP_REUSE_GLOBAL_PDB", "1") == "1"
),
)
else:
use_global_pdb = kwargs.pop("use_global_pdb", True)
frame = sys._getframe().f_back
called_for_set_trace = PdbMeta.called_for_set_trace(frame)
if (
use_global_pdb
and global_pdb
and called_for_set_trace
and (
hasattr(global_pdb, "_force_use_as_global_pdb")
or cls.use_global_pdb_for_class(global_pdb, cls)
)
):
if hasattr(global_pdb, "botframe"):
sys.settrace(None)
global_pdb.set_continue()
global_pdb._set_trace_use_next = True
stdout = kwargs.get("stdout", sys.stdout)
global_pdb._setup_streams(stdout=stdout)
local._pdbpp_in_init = False
return global_pdb
obj = cls.__new__(cls)
if called_for_set_trace:
kwargs.setdefault("start_filename", called_for_set_trace.f_code.co_filename)
kwargs.setdefault("start_lineno", called_for_set_trace.f_lineno)
if "set_global_pdb" in kwargs:
set_global_pdb = kwargs.pop("set_global_pdb", use_global_pdb)
if set_global_pdb:
obj._force_use_as_global_pdb = True
else:
set_global_pdb = use_global_pdb
obj.__init__(*args, **kwargs)
if set_global_pdb:
obj._env = {"HOME": os.environ.get("HOME")}
local.GLOBAL_PDB = obj
local._pdbpp_in_init = False
return obj
|
Reuse an existing instance with ``pdb.set_trace()``.
|
https://github.com/pdbpp/pdbpp/blob/07f043d39563419ccdd5c8413684362b63776ada/src/pdbpp.py#L239-L312
|
from __future__ import print_function
import sys
import os.path
import inspect
import code
import codecs
import contextlib
import types
import traceback
import subprocess
import threading
import pprint
import re
import signal
from collections import OrderedDict
import fancycompleter
import six
from fancycompleter import Color, Completer, ConfigurableClass
__author__ = 'Antonio Cuni <anto.cuni@gmail.com>'
__url__ = 'http://github.com/antocuni/pdb'
__version__ = fancycompleter.LazyVersion('pdbpp')
try:
from inspect import signature
except ImportError:
try:
from funcsigs import signature
except ImportError:
def signature(obj):
return ' [pip install funcsigs to show the signature]'
try:
from functools import lru_cache
except ImportError:
from functools import wraps
def lru_cache(maxsize):
def dec(fn, *args):
cache = {}
@wraps(fn)
def wrapper(*args):
key = args
try:
ret = cache[key]
except KeyError:
ret = cache[key] = fn(*args)
return ret
return wrapper
return dec
side_effects_free = re.compile(r'^ *[_0-9a-zA-Z\[\].]* *$')
RE_COLOR_ESCAPES = re.compile("(\x1b[^m]+m)+")
RE_REMOVE_FANCYCOMPLETER_ESCAPE_SEQS = re.compile(r"\x1b\[[\d;]+m")
if sys.version_info < (3, ):
from io import BytesIO as StringIO
else:
from io import StringIO
local = threading.local()
local.GLOBAL_PDB = None
local._pdbpp_completing = False
local._pdbpp_in_init = False
def __getattr__(name):
if name == "GLOBAL_PDB":
return local.GLOBAL_PDB
raise AttributeError("module '{}' has no attribute '{}'".format(__name__, name))
def import_from_stdlib(name):
import code
result = types.ModuleType(name)
stdlibdir, _ = os.path.split(code.__file__)
pyfile = os.path.join(stdlibdir, name + '.py')
with open(pyfile) as f:
src = f.read()
co_module = compile(src, pyfile, 'exec', dont_inherit=True)
exec(co_module, result.__dict__)
return result
pdb = import_from_stdlib('pdb')
def _newfunc(func, newglobals):
newfunc = types.FunctionType(func.__code__, newglobals, func.__name__,
func.__defaults__, func.__closure__)
if sys.version_info >= (3, ):
newfunc.__annotations__ = func.__annotations__
newfunc.__kwdefaults__ = func.__kwdefaults__
return newfunc
def rebind_globals(func, newglobals):
if hasattr(func, "__code__"):
return _newfunc(func, newglobals)
import functools
if isinstance(func, functools.partial):
return functools.partial(
_newfunc(func.func, newglobals), *func.args, **func.keywords
)
raise ValueError("cannot handle func {!r}".format(func))
class DefaultConfig(object):
prompt = '(Pdb++) '
highlight = True
sticky_by_default = False
use_pygments = None
pygments_formatter_class = None
pygments_formatter_kwargs = {}
bg = 'dark'
colorscheme = None
editor = None
stdin_paste = None
truncate_long_lines = True
exec_if_unfocused = None
disable_pytest_capturing = False
encodings = ('utf-8', 'latin-1')
enable_hidden_frames = True
show_hidden_frames_count = True
line_number_color = Color.turquoise
filename_color = Color.yellow
current_line_color = "39;49;7"
show_traceback_on_error = True
show_traceback_on_error_limit = None
default_pdb_kwargs = {
}
def setup(self, pdb):
pass
def before_interaction_hook(self, pdb):
pass
def setbgcolor(line, color):
import re
setbg = '\x1b[%sm' % color
regexbg = '\\1;%sm' % color
result = setbg + re.sub('(\x1b\\[.*?)m', regexbg, line) + '\x1b[00m'
if os.environ.get('TERM') == 'eterm-color':
result = result.replace(setbg, '\x1b[37;%dm' % color)
result = result.replace('\x1b[00;%dm' % color, '\x1b[37;%dm' % color)
result = result.replace('\x1b[39;49;00;', '\x1b[37;')
return result
CLEARSCREEN = '\033[2J\033[1;1H'
def lasti2lineno(code, lasti):
import dis
linestarts = list(dis.findlinestarts(code))
linestarts.reverse()
for i, lineno in linestarts:
if lasti >= i:
return lineno
return 0
class Undefined:
def __repr__(self):
return '<undefined>'
undefined = Undefined()
class ArgWithCount(str):
def __new__(cls, value, count, **kwargs):
obj = super(ArgWithCount, cls).__new__(cls, value)
obj.cmd_count = count
return obj
def __repr__(self):
return "<{} cmd_count={!r} value={}>".format(
self.__class__.__name__,
self.cmd_count,
super(ArgWithCount, self).__repr__(),
)
class PdbMeta(type):
|
BSD 3-Clause New or Revised License
|
berkeley-cocosci/wallace
|
wallace/models.py
|
Node.__json__
|
python
|
def __json__(self):
return {
"id": self.id,
"type": self.type,
"network_id": self.network_id,
"creation_time": self.creation_time,
"time_of_death": self.time_of_death,
"failed": self.failed,
"participant_id": self.participant_id,
"property1": self.property1,
"property2": self.property2,
"property3": self.property3,
"property4": self.property4,
"property5": self.property5
}
|
The json of a node.
|
https://github.com/berkeley-cocosci/wallace/blob/3650c0bc3b0804d0adb1d178c5eba9992babb1b0/wallace/models.py#L634-L649
|
from datetime import datetime
from .db import Base
from sqlalchemy import ForeignKey, or_, and_
from sqlalchemy import (Column, String, Text, Enum, Integer, Boolean, DateTime,
Float)
from sqlalchemy.orm import relationship, validates
import inspect
DATETIME_FMT = "%Y-%m-%dT%H:%M:%S.%f"
def timenow():
return datetime.now()
class SharedMixin(object):
id = Column(Integer, primary_key=True, index=True)
creation_time = Column(DateTime, nullable=False, default=timenow)
property1 = Column(String(256), nullable=True, default=None)
property2 = Column(String(256), nullable=True, default=None)
property3 = Column(String(256), nullable=True, default=None)
property4 = Column(String(256), nullable=True, default=None)
property5 = Column(String(256), nullable=True, default=None)
failed = Column(Boolean, nullable=False, default=False, index=True)
time_of_death = Column(DateTime, default=None)
class Participant(Base, SharedMixin):
__tablename__ = "participant"
type = Column(String(50))
__mapper_args__ = {
'polymorphic_on': type,
'polymorphic_identity': 'participant'
}
worker_id = Column(String(50), nullable=False)
assignment_id = Column(String(50), nullable=False, index=True)
unique_id = Column(String(50), nullable=False, index=True)
hit_id = Column(String(50), nullable=False)
mode = Column(String(50), nullable=False)
end_time = Column(DateTime)
base_pay = Column(Float)
bonus = Column(Float)
status = Column(Enum("working", "submitted", "approved", "rejected",
"returned", "abandoned", "did_not_attend", "bad_data",
"missing_notification", name="participant_status"),
nullable=False, default="working", index=True)
def __init__(self, worker_id, assignment_id, hit_id, mode):
self.worker_id = worker_id
self.assignment_id = assignment_id
self.hit_id = hit_id
self.unique_id = worker_id + ":" + assignment_id
self.mode = mode
def __json__(self):
return {
"id": self.id,
"type": self.type,
"worker_id": self.worker_id,
"assignment_id": self.assignment_id,
"unique_id": self.unique_id,
"hit_id": self.hit_id,
"mode": self.mode,
"end_time": self.end_time,
"base_pay": self.base_pay,
"bonus": self.bonus,
"status": self.status,
"creation_time": self.creation_time,
"failed": self.failed,
"time_of_death": self.time_of_death,
"property1": self.property1,
"property2": self.property2,
"property3": self.property3,
"property4": self.property4,
"property5": self.property5
}
def nodes(self, type=None, failed=False):
if type is None:
type = Node
if not issubclass(type, Node):
raise(TypeError("{} is not a valid node type.".format(type)))
if failed not in ["all", False, True]:
raise ValueError("{} is not a valid node failed".format(failed))
if failed == "all":
return type .query .filter_by(participant_id=self.id) .all()
else:
return type .query .filter_by(failed=failed, participant_id=self.id) .all()
def questions(self, type=None):
if type is None:
type = Question
if not issubclass(type, Question):
raise(TypeError("{} is not a valid question type.".format(type)))
return type .query .filter_by(participant_id=self.id) .all()
def infos(self, type=None, failed=False):
nodes = self.nodes(failed="all")
infos = []
for n in nodes:
infos.extend(n.infos(type=type, failed=failed))
return infos
def fail(self):
if self.failed is True:
raise AttributeError(
"Cannot fail {} - it has already failed.".format(self))
else:
self.failed = True
self.time_of_death = timenow()
for n in self.nodes():
n.fail()
class Question(Base, SharedMixin):
__tablename__ = "question"
type = Column(String(50))
__mapper_args__ = {
'polymorphic_on': type,
'polymorphic_identity': 'question'
}
participant_id = Column(Integer, ForeignKey('participant.id'))
participant = relationship(Participant, backref='all_questions')
number = Column(Integer, nullable=False)
question = Column(String(250), nullable=False)
response = Column(String(1000), nullable=False)
def __init__(self, participant, question, response, number):
if participant.failed:
raise ValueError("{} cannot create a question as it has failed"
.format(participant))
self.participant = participant
self.participant_id = participant.id
self.number = number
self.question = question
self.response = response
def fail(self):
if self.failed is True:
raise AttributeError(
"Cannot fail {} - it has already failed.".format(self))
else:
self.failed = True
self.time_of_death = timenow()
def __json__(self):
return {
"id": self.id,
"number": self.number,
"type": self.type,
"participant_id": self.participant_id,
"question": self.question,
"response": self.response,
"failed": self.failed,
"time_of_death": self.time_of_death,
"creation_time": self.creation_time,
"property1": self.property1,
"property2": self.property2,
"property3": self.property3,
"property4": self.property4,
"property5": self.property5
}
class Network(Base, SharedMixin):
__tablename__ = "network"
type = Column(String(50))
__mapper_args__ = {
'polymorphic_on': type,
'polymorphic_identity': 'network'
}
max_size = Column(Integer, nullable=False, default=1e6)
full = Column(Boolean, nullable=False, default=False, index=True)
role = Column(String(26), nullable=False, default="default", index=True)
def __repr__(self):
return ("<Network-{}-{} with {} nodes, {} vectors, {} infos, "
"{} transmissions and {} transformations>").format(
self.id,
self.type,
len(self.nodes()),
len(self.vectors()),
len(self.infos()),
len(self.transmissions()),
len(self.transformations()))
def __json__(self):
return {
"id": self.id,
"type": self.type,
"max_size": self.max_size,
"full": self.full,
"role": self.role,
"creation_time": self.creation_time,
"failed": self.failed,
"time_of_death": self.time_of_death,
"property1": self.property1,
"property2": self.property2,
"property3": self.property3,
"property4": self.property4,
"property5": self.property5
}
""" ###################################
Methods that get things about a Network
################################### """
def nodes(self, type=None, failed=False, participant_id=None):
if type is None:
type = Node
if not issubclass(type, Node):
raise(TypeError("{} is not a valid node type.".format(type)))
if failed not in ["all", False, True]:
raise ValueError("{} is not a valid node failed".format(failed))
if participant_id is not None:
if failed == "all":
return type .query .filter_by(network_id=self.id,
participant_id=participant_id) .all()
else:
return type .query .filter_by(network_id=self.id,
participant_id=participant_id,
failed=failed) .all()
else:
if failed == "all":
return type .query .filter_by(network_id=self.id) .all()
else:
return type .query .filter_by(failed=failed, network_id=self.id) .all()
def size(self, type=None, failed=False):
return len(self.nodes(type=type, failed=failed))
def infos(self, type=None, failed=False):
if type is None:
type = Info
if failed not in ["all", False, True]:
raise ValueError("{} is not a valid failed".format(failed))
if failed == "all":
return type.query .filter_by(network_id=self.id) .all()
else:
return type.query.filter_by(
network_id=self.id, failed=failed).all()
def transmissions(self, status="all", failed=False):
if status not in ["all", "pending", "received"]:
raise(ValueError("You cannot get transmission of status {}."
.format(status) +
"Status can only be pending, received or all"))
if failed not in ["all", False, True]:
raise ValueError("{} is not a valid failed".format(failed))
if status == "all":
if failed == "all":
return Transmission.query .filter_by(network_id=self.id) .all()
else:
return Transmission.query .filter_by(network_id=self.id, failed=failed) .all()
else:
if failed == "all":
return Transmission.query .filter_by(network_id=self.id, status=status) .all()
else:
return Transmission.query .filter_by(
network_id=self.id, status=status, failed=failed) .all()
def transformations(self, type=None, failed=False):
if type is None:
type = Transformation
if failed not in ["all", True, False]:
raise ValueError("{} is not a valid failed".format(failed))
if failed == "all":
return type.query .filter_by(network_id=self.id) .all()
else:
return type.query .filter_by(network_id=self.id, failed=failed) .all()
def latest_transmission_recipient(self):
from operator import attrgetter
ts = Transmission.query .filter_by(status="received", network_id=self.id, failed=False) .all()
if ts:
t = max(ts, key=attrgetter('receive_time'))
return t.destination
else:
return None
def vectors(self, failed=False):
if failed not in ["all", False, True]:
raise ValueError("{} is not a valid vector failed".format(failed))
if failed == "all":
return Vector.query .filter_by(network_id=self.id) .all()
else:
return Vector.query .filter_by(network_id=self.id, failed=failed) .all()
""" ###################################
Methods that make Networks do things
################################### """
def add_node(self, node):
raise NotImplementedError
def fail(self):
if self.failed is True:
raise AttributeError(
"Cannot fail {} - it has already failed.".format(self))
else:
self.failed = True
self.time_of_death = timenow()
for n in self.nodes():
n.fail()
def calculate_full(self):
self.full = len(self.nodes()) >= self.max_size
def print_verbose(self):
print "Nodes: "
for a in (self.nodes(failed="all")):
print a
print "\nVectors: "
for v in (self.vectors(failed="all")):
print v
print "\nInfos: "
for i in (self.infos(failed="all")):
print i
print "\nTransmissions: "
for t in (self.transmissions(failed="all")):
print t
print "\nTransformations: "
for t in (self.transformations(failed="all")):
print t
class Node(Base, SharedMixin):
__tablename__ = "node"
type = Column(String(50))
__mapper_args__ = {
'polymorphic_on': type,
'polymorphic_identity': 'node'
}
network_id = Column(Integer, ForeignKey('network.id'), index=True)
network = relationship(Network, backref="all_nodes")
participant_id = Column(Integer, ForeignKey('participant.id'), index=True)
participant = relationship(Participant, backref='all_nodes')
def __init__(self, network, participant=None):
if network.failed:
raise ValueError("Cannot create node in {} as it has failed"
.format(network))
if participant is not None and participant.failed:
raise ValueError("{} cannot create a node as it has failed"
.format(participant))
if participant is not None and participant.status != "working":
raise ValueError("{} cannot create a node as they are not working"
.format(participant))
self.network = network
self.network_id = network.id
network.calculate_full()
if participant is not None:
self.participant = participant
self.participant_id = participant.id
def __repr__(self):
return "Node-{}-{}".format(self.id, self.type)
|
MIT License
|
wavii/listy-django-cache
|
listy/list_cache.py
|
ListCache.add
|
python
|
def add(self, **kwargs):
o = self._set_db(**kwargs)
if not o:
log.debug("Not setting add because it already exists in the database")
return
kwargs['pk'] = self.backing_store.pk_for_object(o)
for cache in self.caches():
filtered = [t for t in kwargs.items() if t[0] in cache]
key = self.key(cache, filtered)
self.prepend_or_set_memcache(key, o, self.replacement_function(cache, filtered))
self._update_counters(o, dict(filtered), 1)
return o
|
Sets the value, taking into account enabled and deleted flags,
and updates the various caches.
1. If it exists and deleted is set to True, get the existing object and set deleted to False
2. If it doesn't exist, create an object
3. For each cached list, attempt to prepend the new object onto the list
4. If the list doesn't exist get all of the objects from the db and set it on the cache
|
https://github.com/wavii/listy-django-cache/blob/080152fdf18b89387d9f6fb9ce5e9fc1c7ed8a21/listy/list_cache.py#L261-L283
|
from datetime import date, datetime, timedelta
from dateutil.rrule import rrule, DAILY, WEEKLY, MONTHLY, YEARLY
from dateutil.relativedelta import *
import time
import random
import urllib
import logging
import memcache
import itertools
import cPickle as pickle
try:
from collections import Counter
except ImportError:
from listy.counter import Counter
from listy.utils import dump_hex, dict_merge
from listy.on_demand_pickle import OnDemandPickle
MAX_KEY_DATA = 1500
log = logging.getLogger(__name__)
list_caches = []
def aggregator(freq, dt):
dt = dt.date() if isinstance(dt, datetime) else dt
if freq == DAILY:
return dt
elif freq == MONTHLY:
return date(dt.year, dt.month, 1)
elif freq == YEARLY:
return date(dt.year, 1, 1)
elif freq == WEEKLY:
return dt - timedelta(days=dt.weekday())
def to_datetime(day):
return datetime(day.year, day.month, day.day)
RELATIVEDELTA = {
DAILY: relativedelta(days=+1),
MONTHLY: relativedelta(months=+1),
YEARLY: relativedelta(years=+1),
WEEKLY: relativedelta(weeks=+1),
}
class NotCachableException(Exception):
pass
class ListCache(object):
def __init__(self, backing_store, caches, soft_delete_field=None, deleted_timestamp_field=None, enabled_field=None, timestamp_field=None, disable_cache=False, address='127.0.0.1:11211', filter_out_soft_deletes=True):
self.backing_store = backing_store
self.name = self.backing_store.name()
self.pickler = self.backing_store.pickler()
self.soft_delete_field = soft_delete_field
self.deleted_timestamp_field = deleted_timestamp_field
self.filter_out_soft_deletes = filter_out_soft_deletes
self.enabled_field = enabled_field
self.timestamp_field = timestamp_field
self.disable_cache = disable_cache
self.address = ('%s:11211' % address()) if callable(address) else address
self.mc = memcache.Client([self.address],
pickleProtocol=pickle.HIGHEST_PROTOCOL,
pickler=self.pickler, unpickler=self.pickler)
self.caches_mc = memcache.Client([self.address],
pickleProtocol=pickle.HIGHEST_PROTOCOL)
self.generation = 1
self.configured_caches = set([tuple(sorted(c)) for c in caches])
self.caches_key = 'caches:%s' % self.name
self.caches()
self.reset_local_stats()
list_caches.append(self)
def caches(self, update_if_missing=True):
if self.disable_cache:
return []
installed_cache = self.caches_mc.gets(self.caches_key) or set()
if installed_cache >= self.configured_caches:
return installed_cache
for i in range(0, 10):
c = installed_cache | self.configured_caches
if self.caches_mc.cas(self.caches_key, c):
return c
if not installed_cache:
self.caches_mc.cas_ids = {}
c = self.caches_mc.gets(self.caches_key) or set()
t = 0.001 * random.randint(1, 5) * i
log.warn("Failed to update 'caches' cache for %r, trying again (%s) in %.3f seconds", self.caches_key, self.address, t)
time.sleep(t)
raise RuntimeError("Failed to update 'caches' cache for %r, giving up (%s)", self.caches_key, self.address)
def count(self, **kwargs):
key = self.count_key(kwargs)
count = self.mc.get(key)
if count is None:
if self.soft_delete_field:
kwargs = dict_merge(kwargs, { self.soft_delete_field: False })
count = self.backing_store.count(kwargs)
self.mc.set(key, count)
return count
def daily_count(self, **kwargs):
return self._count(DAILY, kwargs)
def daily_counts(self, **kwargs):
return self._counts(DAILY, kwargs)
def weekly_count(self, **kwargs):
return self._count(WEEKLY, kwargs)
def weekly_counts(self, **kwargs):
return self._counts(WEEKLY, kwargs)
def monthly_count(self, **kwargs):
return self._count(MONTHLY, kwargs)
def monthly_counts(self, **kwargs):
return self._counts(MONTHLY, kwargs)
def yearly_count(self, **kwargs):
return self._count(YEARLY, kwargs)
def yearly_counts(self, **kwargs):
return self._counts(YEARLY, kwargs)
def get_one(self, pk):
objects = list(self.get(pk=pk))
assert len(objects) <= 1
return objects[0] if objects else None
def get_first(self, **kwargs):
try:
return iter(self.get(**kwargs)).next()
except StopIteration:
return None
def get(self, **kwargs):
return self.get_multi([kwargs], lambda filter_args: 'results')['results']
def get_multi(self, filters, key_func):
start = time.time()
key_map = self.generate_key_map(filters, key_func)
result_set = {}
if not self.disable_cache:
for key_batch in self.batch_keys(key_map.keys()):
result_set.update(self.mc.get_multi(key_batch))
missing_keys = set(key_map.keys()) - set(result_set.keys())
for missing_key in missing_keys:
filter_args, cache, user_key = key_map[missing_key]
results = self.replacement_function(cache, filter_args.items())()
log.debug("Key %r not in cache, updating with database's results? %r", missing_key, not self.disable_cache)
if not self.disable_cache:
if not self.mc.set(missing_key, results):
log.info("Set for memcache_key=%s failed, someone must have set it before me.", missing_key)
result_set[missing_key] = results
self.hits += (len(key_map) - len(missing_keys))
self.misses += len(missing_keys)
self.time += (time.time() - start)
return self.map_results(key_map, result_set)
def get_multi_list(self, filters):
return list(itertools.chain(*self.get_multi(filters, lambda f: repr(f.items())).values()))
|
MIT License
|
kappa-dev/regraph
|
regraph/backends/networkx/hierarchies.py
|
NXHierarchy.add_graph
|
python
|
def add_graph(self, graph_id, graph, attrs=None):
if graph_id in self.nodes():
raise HierarchyError(
"Node '{}' already exists in the hierarchy!".format(graph_id))
self.add_node(graph_id)
if attrs is not None:
normalize_attrs(attrs)
else:
attrs = dict()
self.update_node_attrs(
graph_id, {
"graph": graph,
"attrs": attrs
}, normalize=False)
return
|
Add a new graph to the hierarchy.
Parameters
----------
graph_id : hashable
Id of a new node in the hierarchy
graph : regraph.Graph
Graph object corresponding to the new node of
the hierarchy
graph_attrs : dict, optional
Dictionary containing attributes of the new node
|
https://github.com/kappa-dev/regraph/blob/bb148a7cbd94e87f622443263e04c3fae2d4d00b/regraph/backends/networkx/hierarchies.py#L197-L224
|
import copy
import networkx as nx
import warnings
from regraph.exceptions import (HierarchyError,
ReGraphError,
InvalidHomomorphism,
RewritingError,
ReGraphWarning)
from regraph.hierarchies import Hierarchy
from regraph.backends.networkx.graphs import NXGraph
from regraph.category_utils import (compose,
pushout,
get_unique_map_to_pullback,
check_homomorphism,
right_relation_dict,
pullback_complement)
from regraph.utils import (normalize_attrs,
normalize_relation,
keys_by_value,)
class NXHierarchy(Hierarchy, NXGraph):
rel_dict_factory = dict
def graphs(self, data=False):
if data:
return [
(n, n_data["attrs"])
for n, n_data in self.nodes(True)
if "graph" in n_data]
else:
return [n for n, n_data in self.nodes(True) if "graph" in n_data]
def typings(self, data=False):
if data:
return [
(s, t, e_data["attrs"])
for s, t, e_data in self.edges(True)
if "mapping" in e_data]
else:
return [
(s, t)
for s, t, e_data in self.edges(True)
if "mapping" in e_data]
def relations(self, data=False):
if data:
return [
(l, r, attrs)
for (l, r), attrs in self.relation_edges.items()
]
else:
return list(set(self.relation_edges.keys()))
def successors(self, node_id):
return self._graph.successors(node_id)
def predecessors(self, node_id):
return self._graph.predecessors(node_id)
def get_graph(self, graph_id):
if graph_id not in self.nodes():
raise HierarchyError(
"Hierarchy node '{}' does not exist!".format(graph_id))
if not self.is_graph(graph_id):
raise HierarchyError(
"Hierarchy node '{}' is a rule!".format(graph_id))
return self.get_node(graph_id)["graph"]
def get_typing(self, source, target):
if (source, target) in self.edges():
if self.is_graph(source):
return self.get_edge(source, target)["mapping"]
else:
edge = self.get_edge(source, target)
return (edge["lhs_mapping"], edge["rhs_mapping"])
else:
try:
path = nx.shortest_path(self._graph, source, target)
except:
raise HierarchyError(
"No path from '{}' to '{}' in the hierarchy".format(
source, target))
return self.compose_path_typing(path)
def get_relation(self, left, right):
return self.relation_edges[(left, right)]["rel"]
def get_graph_attrs(self, graph_id):
return self.get_node(graph_id)["attrs"]
def set_graph_attrs(self, node_id, new_attrs):
normalize_attrs(new_attrs)
attrs = self.get_node(node_id)["attrs"]
for k, v in new_attrs.items():
attrs[k] = v
nx.set_node_attributes(self._graph, {node_id: {"attrs": attrs}})
def get_typing_attrs(self, source, target):
return self.get_edge(source, target)["attrs"]
def set_typing_attrs(self, source, target, attrs):
return self.set_edge_attrs(source, target, {"attrs": attrs})
def get_relation_attrs(self, left, right):
return self.relation_edges[(left, right)]["attrs"]
def set_relation_attrs(self, left, right, attrs):
normalize_attrs(attrs)
for k, v in attrs.items():
self.relation_edges[(left, right)]["attrs"][k] = v
self.relation_edges[(right, left)]["attrs"][k] = v
def set_node_relation(self, left_graph, right_graph,
left_node, right_node):
if left_node in self.relation_edges[
left_graph, right_graph]["rel"].keys():
self.relation_edges[left_graph, right_graph]["rel"][left_node].add(
right_node)
else:
self.relation_edges[left_graph, right_graph]["rel"][left_node] = {
right_node}
if right_node in self.relation_edges[
right_graph, left_graph]["rel"].keys():
self.relation_edges[
right_graph, left_graph]["rel"][right_node].add(left_node)
else:
self.relation_edges[right_graph, left_graph]["rel"][right_node] = {
left_node}
|
MIT License
|
haoheliu/voicefixer
|
voicefixer/vocoder/model/modules.py
|
FiLMConv1d.forward
|
python
|
def forward(self, x, c):
if self.ins_norm:
c = self.norm(c)
for i in range(self.loop):
x = self.mlps[i](x)
x = F.relu(x)
x = self.films[i](x, c)
return x
|
x: (B, input_dim, seq)
c: (B, attribute_dim, seq)
|
https://github.com/haoheliu/voicefixer/blob/8bbe7aff7a088cd4001eec319c61d852ed905ca2/voicefixer/vocoder/model/modules.py#L808-L820
|
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from voicefixer.vocoder.config import Config
class SineGen(torch.nn.Module):
def __init__(self, samp_rate=24000, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
def _f02uv(self, f0):
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def _f02sine(self, f0_values):
rad_values = (f0_values / self.sampling_rate) % 1
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
if not self.flag_for_pulse:
tmp_over_one = torch.cumsum(rad_values, 1) % 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] -
tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
else:
uv = self._f02uv(f0_values)
uv_1 = torch.roll(uv, shifts=-1, dims=1)
uv_1[:, -1, :] = 1
u_loc = (uv < 1) * (uv_1 > 0)
tmp_cumsum = torch.cumsum(rad_values, dim=1)
for idx in range(f0_values.shape[0]):
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
tmp_cumsum[idx, :, :] = 0
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
sines = torch.cos(i_phase * 2 * np.pi)
return sines
def forward(self, f0):
with torch.no_grad():
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in np.arange(self.harmonic_num):
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)
sine_waves = self._f02sine(f0_buf) * self.sine_amp
uv = self._f02uv(f0)
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class LowpassBlur(nn.Module):
def __init__(self, channels=128, filt_size=3, pad_type='reflect', pad_off=0):
super(LowpassBlur, self).__init__()
self.filt_size = filt_size
self.pad_off = pad_off
self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))]
self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes]
self.off = 0
self.channels = channels
if (self.filt_size == 1):
a = np.array([1., ])
elif (self.filt_size == 2):
a = np.array([1., 1.])
elif (self.filt_size == 3):
a = np.array([1., 2., 1.])
elif (self.filt_size == 4):
a = np.array([1., 3., 3., 1.])
elif (self.filt_size == 5):
a = np.array([1., 4., 6., 4., 1.])
elif (self.filt_size == 6):
a = np.array([1., 5., 10., 10., 5., 1.])
elif (self.filt_size == 7):
a = np.array([1., 6., 15., 20., 15., 6., 1.])
filt = torch.Tensor(a)
filt = filt / torch.sum(filt)
self.register_buffer('filt', filt[None, None, :].repeat((self.channels, 1, 1)))
self.pad = get_pad_layer_1d(pad_type)(self.pad_sizes)
def forward(self, inp):
if self.filt_size == 1:
return inp
return F.conv1d(self.pad(inp), self.filt, groups=inp.shape[1])
def get_pad_layer_1d(pad_type):
if (pad_type in ['refl', 'reflect']):
PadLayer = nn.ReflectionPad1d
elif (pad_type in ['repl', 'replicate']):
PadLayer = nn.ReplicationPad1d
elif (pad_type == 'zero'):
PadLayer = nn.ZeroPad1d
else:
print('Pad type [%s] not recognized' % pad_type)
return PadLayer
class MovingAverageSmooth(torch.nn.Conv1d):
def __init__(self, channels, window_len=3):
super(MovingAverageSmooth, self).__init__(in_channels=channels, out_channels=channels, kernel_size=1,
groups=channels, bias=False)
torch.nn.init.constant_(self.weight, 1.0 / window_len)
for p in self.parameters():
p.requires_grad = False
def forward(self, data):
return super(MovingAverageSmooth, self).forward(data)
class Conv1d(torch.nn.Conv1d):
def __init__(self, *args, **kwargs):
super(Conv1d, self).__init__(*args, **kwargs)
def reset_parameters(self):
torch.nn.init.kaiming_normal_(self.weight, nonlinearity="relu")
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
class Stretch2d(torch.nn.Module):
def __init__(self, x_scale, y_scale, mode="nearest"):
super(Stretch2d, self).__init__()
self.x_scale = x_scale
self.y_scale = y_scale
self.mode = mode
def forward(self, x):
return F.interpolate(
x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode)
class Conv2d(torch.nn.Conv2d):
def __init__(self, *args, **kwargs):
super(Conv2d, self).__init__(*args, **kwargs)
def reset_parameters(self):
self.weight.data.fill_(1. / np.prod(self.kernel_size))
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
class UpsampleNetwork(torch.nn.Module):
def __init__(self,
upsample_scales,
nonlinear_activation=None,
nonlinear_activation_params={},
interpolate_mode="nearest",
freq_axis_kernel_size=1,
use_causal_conv=False,
):
super(UpsampleNetwork, self).__init__()
self.use_causal_conv = use_causal_conv
self.up_layers = torch.nn.ModuleList()
for scale in upsample_scales:
stretch = Stretch2d(scale, 1, interpolate_mode)
self.up_layers += [stretch]
assert (freq_axis_kernel_size - 1) % 2 == 0, "Not support even number freq axis kernel size."
freq_axis_padding = (freq_axis_kernel_size - 1) // 2
kernel_size = (freq_axis_kernel_size, scale * 2 + 1)
if use_causal_conv:
padding = (freq_axis_padding, scale * 2)
else:
padding = (freq_axis_padding, scale)
conv = Conv2d(1, 1, kernel_size=kernel_size, padding=padding, bias=False)
self.up_layers += [conv]
if nonlinear_activation is not None:
nonlinear = getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params)
self.up_layers += [nonlinear]
def forward(self, c):
c = c.unsqueeze(1)
for f in self.up_layers:
if self.use_causal_conv and isinstance(f, Conv2d):
c = f(c)[..., :c.size(-1)]
else:
c = f(c)
return c.squeeze(1)
class ConvInUpsampleNetwork(torch.nn.Module):
def __init__(self,
upsample_scales=[3, 4, 5, 5],
nonlinear_activation="ReLU",
nonlinear_activation_params={},
interpolate_mode="nearest",
freq_axis_kernel_size=1,
aux_channels=80,
aux_context_window=0,
use_causal_conv=False
):
super(ConvInUpsampleNetwork, self).__init__()
self.aux_context_window = aux_context_window
self.use_causal_conv = use_causal_conv and aux_context_window > 0
kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1
self.conv_in = Conv1d(aux_channels, aux_channels, kernel_size=kernel_size, bias=False)
self.upsample = UpsampleNetwork(
upsample_scales=upsample_scales,
nonlinear_activation=nonlinear_activation,
nonlinear_activation_params=nonlinear_activation_params,
interpolate_mode=interpolate_mode,
freq_axis_kernel_size=freq_axis_kernel_size,
use_causal_conv=use_causal_conv,
)
def forward(self, c):
c_ = self.conv_in(c)
c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_
return self.upsample(c)
class DownsampleNet(nn.Module):
def __init__(self,
input_size,
output_size,
upsample_factor,
hp=None,
index=0):
super(DownsampleNet, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.upsample_factor = upsample_factor
self.skip_conv = nn.Conv1d(input_size, output_size, kernel_size=1)
self.index = index
layer = nn.Conv1d(input_size,
output_size,
kernel_size=upsample_factor * 2,
stride=upsample_factor,
padding=upsample_factor // 2 + upsample_factor % 2)
self.layer = nn.utils.weight_norm(layer)
def forward(self, inputs):
B, C, T = inputs.size()
res = inputs[:, :, ::self.upsample_factor]
skip = self.skip_conv(res)
outputs = self.layer(inputs)
outputs = outputs + skip
return outputs
class UpsampleNet(nn.Module):
def __init__(self,
input_size,
output_size,
upsample_factor,
hp=None,
index=0):
super(UpsampleNet, self).__init__()
self.up_type = Config.up_type
self.use_smooth = Config.use_smooth
self.use_drop = Config.use_drop
self.input_size = input_size
self.output_size = output_size
self.upsample_factor = upsample_factor
self.skip_conv = nn.Conv1d(input_size, output_size, kernel_size=1)
self.index = index
if self.use_smooth:
window_lens = [5, 5, 4, 3]
self.window_len = window_lens[index]
if self.up_type != "pn" or self.index < 3:
layer = nn.ConvTranspose1d(input_size, output_size, upsample_factor * 2,
upsample_factor,
padding=upsample_factor // 2 + upsample_factor % 2,
output_padding=upsample_factor % 2)
self.layer = nn.utils.weight_norm(layer)
else:
self.layer = nn.Sequential(
nn.ReflectionPad1d(1),
nn.utils.weight_norm(nn.Conv1d(input_size, output_size * upsample_factor, kernel_size=3)),
nn.LeakyReLU(),
nn.ReflectionPad1d(1),
nn.utils.weight_norm(
nn.Conv1d(output_size * upsample_factor, output_size * upsample_factor, kernel_size=3)),
nn.LeakyReLU(),
nn.ReflectionPad1d(1),
nn.utils.weight_norm(
nn.Conv1d(output_size * upsample_factor, output_size * upsample_factor, kernel_size=3)),
nn.LeakyReLU(),
)
if hp is not None:
self.org = Config.up_org
self.no_skip = Config.no_skip
else:
self.org = False
self.no_skip = True
if self.use_smooth:
self.mas = nn.Sequential(
MovingAverageSmooth(output_size, self.window_len),
)
def forward(self, inputs):
if not self.org:
inputs = inputs + torch.sin(inputs)
B, C, T = inputs.size()
res = inputs.repeat(1, self.upsample_factor, 1).view(B, C, -1)
skip = self.skip_conv(res)
if self.up_type == "repeat":
return skip
outputs = self.layer(inputs)
if self.up_type == "pn" and self.index > 2:
B, c, l = outputs.size()
outputs = outputs.view(B, -1, l * self.upsample_factor)
if self.no_skip:
return outputs
if not self.org:
outputs = outputs + skip
if self.use_smooth:
outputs = self.mas(outputs)
if self.use_drop:
outputs = F.dropout(outputs, p=0.05)
return outputs
class ResStack(nn.Module):
def __init__(self, channel, kernel_size=3, resstack_depth=4, hp=None):
super(ResStack, self).__init__()
self.use_wn = Config.use_wn
self.use_shift_scale = Config.use_shift_scale
self.channel = channel
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
if self.use_shift_scale:
self.scale_conv = nn.utils.weight_norm(
nn.Conv1d(channel, 2 * channel, kernel_size=kernel_size, dilation=1, padding=1))
if not self.use_wn:
self.layers = nn.ModuleList([
nn.Sequential(
nn.LeakyReLU(),
nn.utils.weight_norm(nn.Conv1d(channel, channel,
kernel_size=kernel_size, dilation=3 ** (i % 10),
padding=get_padding(kernel_size, 3 ** (i % 10)))),
nn.LeakyReLU(),
nn.utils.weight_norm(nn.Conv1d(channel, channel,
kernel_size=kernel_size, dilation=1,
padding=get_padding(kernel_size, 1))),
)
for i in range(resstack_depth)
])
else:
self.wn = WaveNet(
in_channels=channel,
out_channels=channel,
cin_channels=-1,
num_layers=resstack_depth,
residual_channels=channel,
gate_channels=channel,
skip_channels=channel,
causal=False,
use_downup=False,
)
def forward(self, x):
if not self.use_wn:
for layer in self.layers:
x = x + layer(x)
else:
x = self.wn(x)
if self.use_shift_scale:
m_s = self.scale_conv(x)
m_s = m_s[:, :, :-1]
m, s = torch.split(m_s, self.channel, dim=1)
s = F.softplus(s)
x = m + s * x[:, :, 1:]
x = F.pad(x, pad=(1, 0), mode='constant', value=0)
return x
class WaveNet(nn.Module):
def __init__(self,
in_channels=1,
out_channels=1,
num_layers=10,
residual_channels=64,
gate_channels=64,
skip_channels=64,
kernel_size=3,
dilation_rate=2,
cin_channels=80,
hp=None,
causal=False,
use_downup=False,
):
super(WaveNet, self).__init__()
self.in_channels = in_channels
self.causal = causal
self.num_layers = num_layers
self.out_channels = out_channels
self.gate_channels = gate_channels
self.residual_channels = residual_channels
self.skip_channels = skip_channels
self.cin_channels = cin_channels
self.kernel_size = kernel_size
self.use_downup = use_downup
self.front_conv = nn.Sequential(
nn.Conv1d(in_channels=self.in_channels, out_channels=self.residual_channels, kernel_size=3, padding=1),
nn.ReLU()
)
if self.use_downup:
self.downup_conv = nn.Sequential(
nn.Conv1d(in_channels=self.residual_channels, out_channels=self.residual_channels, kernel_size=3,
stride=2, padding=1),
nn.ReLU(),
nn.Conv1d(in_channels=self.residual_channels, out_channels=self.residual_channels, kernel_size=3,
stride=2, padding=1),
nn.ReLU(),
UpsampleNet(self.residual_channels, self.residual_channels, 4, hp),
)
self.res_blocks = nn.ModuleList()
for n in range(self.num_layers):
self.res_blocks.append(ResBlock(self.residual_channels,
self.gate_channels,
self.skip_channels,
self.kernel_size,
dilation=dilation_rate ** n,
cin_channels=self.cin_channels,
local_conditioning=(self.cin_channels > 0),
causal=self.causal,
mode='SAME'))
self.final_conv = nn.Sequential(
nn.ReLU(),
Conv(self.skip_channels, self.skip_channels, 1, causal=self.causal),
nn.ReLU(),
Conv(self.skip_channels, self.out_channels, 1, causal=self.causal),
)
def forward(self, x, c=None):
return self.wavenet(x, c)
def wavenet(self, tensor, c=None):
h = self.front_conv(tensor)
if self.use_downup:
h = self.downup_conv(h)
skip = 0
for i, f in enumerate(self.res_blocks):
h, s = f(h, c)
skip += s
out = self.final_conv(skip)
return out
def receptive_field_size(self):
num_dir = 1 if self.causal else 2
dilations = [2 ** (i % self.num_layers) for i in range(self.num_layers)]
return num_dir * (self.kernel_size - 1) * sum(dilations) + 1 + (self.front_channels - 1)
def remove_weight_norm(self):
for f in self.res_blocks:
f.remove_weight_norm()
class Conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation=1, causal=False, mode='SAME'):
super(Conv, self).__init__()
self.causal = causal
self.mode = mode
if self.causal and self.mode == 'SAME':
self.padding = dilation * (kernel_size - 1)
elif self.mode == 'SAME':
self.padding = dilation * (kernel_size - 1) // 2
else:
self.padding = 0
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, padding=self.padding)
self.conv = nn.utils.weight_norm(self.conv)
nn.init.kaiming_normal_(self.conv.weight)
def forward(self, tensor):
out = self.conv(tensor)
if self.causal and self.padding is not 0:
out = out[:, :, :-self.padding]
return out
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv)
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, skip_channels, kernel_size, dilation,
cin_channels=None, local_conditioning=True, causal=False, mode='SAME'):
super(ResBlock, self).__init__()
self.causal = causal
self.local_conditioning = local_conditioning
self.cin_channels = cin_channels
self.mode = mode
self.filter_conv = Conv(in_channels, out_channels, kernel_size, dilation, causal, mode)
self.gate_conv = Conv(in_channels, out_channels, kernel_size, dilation, causal, mode)
self.res_conv = nn.Conv1d(out_channels, in_channels, kernel_size=1)
self.skip_conv = nn.Conv1d(out_channels, skip_channels, kernel_size=1)
self.res_conv = nn.utils.weight_norm(self.res_conv)
self.skip_conv = nn.utils.weight_norm(self.skip_conv)
if self.local_conditioning:
self.filter_conv_c = nn.Conv1d(cin_channels, out_channels, kernel_size=1)
self.gate_conv_c = nn.Conv1d(cin_channels, out_channels, kernel_size=1)
self.filter_conv_c = nn.utils.weight_norm(self.filter_conv_c)
self.gate_conv_c = nn.utils.weight_norm(self.gate_conv_c)
def forward(self, tensor, c=None):
h_filter = self.filter_conv(tensor)
h_gate = self.gate_conv(tensor)
if self.local_conditioning:
h_filter += self.filter_conv_c(c)
h_gate += self.gate_conv_c(c)
out = torch.tanh(h_filter) * torch.sigmoid(h_gate)
res = self.res_conv(out)
skip = self.skip_conv(out)
if self.mode == 'SAME':
return (tensor + res) * math.sqrt(0.5), skip
else:
return (tensor[:, :, 1:] + res) * math.sqrt(0.5), skip
def remove_weight_norm(self):
self.filter_conv.remove_weight_norm()
self.gate_conv.remove_weight_norm()
nn.utils.remove_weight_norm(self.res_conv)
nn.utils.remove_weight_norm(self.skip_conv)
nn.utils.remove_weight_norm(self.filter_conv_c)
nn.utils.remove_weight_norm(self.gate_conv_c)
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int])
s_act = torch.sigmoid(in_act[:, n_channels_int:])
acts = t_act * s_act
return acts
@torch.jit.script
def fused_res_skip(tensor, res_skip, n_channels):
n_channels_int = n_channels[0]
res = res_skip[:, :n_channels_int]
skip = res_skip[:, n_channels_int:]
return (tensor + res), skip
class ResStack2D(nn.Module):
def __init__(self, channels=16, kernel_size=3, resstack_depth=4, hp=None):
super(ResStack2D, self).__init__()
channels = 16
kernel_size = 3
resstack_depth = 2
self.channels = channels
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
self.layers = nn.ModuleList([
nn.Sequential(
nn.LeakyReLU(),
nn.utils.weight_norm(nn.Conv2d(1, self.channels, kernel_size,
dilation=(1, 3 ** (i)),
padding=(1, get_padding(kernel_size, 3 ** (i))))),
nn.LeakyReLU(),
nn.utils.weight_norm(nn.Conv2d(self.channels, self.channels, kernel_size,
dilation=(1, 3 ** (i)),
padding=(1, get_padding(kernel_size, 3 ** (i))))),
nn.LeakyReLU(),
nn.utils.weight_norm(nn.Conv2d(self.channels, 1, kernel_size=1)))
for i in range(resstack_depth)])
def forward(self, tensor):
x = tensor.unsqueeze(1)
for layer in self.layers:
x = x + layer(x)
x = x.squeeze(1)
return x
class FiLM(nn.Module):
def __init__(self, input_dim, attribute_dim):
super().__init__()
self.input_dim = input_dim
self.generator = nn.Conv1d(attribute_dim, input_dim * 2, kernel_size=3, padding=1)
def forward(self, x, c):
c = self.generator(c)
m, s = torch.split(c, self.input_dim, dim=1)
return x * s + m
class FiLMConv1d(nn.Module):
def __init__(self, in_size, out_size, attribute_dim, ins_norm=True, loop=1):
super().__init__()
self.loop = loop
self.mlps = nn.ModuleList(
[nn.Conv1d(in_size, out_size, kernel_size=3, padding=1)]
+ [nn.Conv1d(out_size, out_size, kernel_size=3, padding=1) for i in range(loop - 1)])
self.films = nn.ModuleList([FiLM(out_size, attribute_dim) for i in range(loop)])
self.ins_norm = ins_norm
if self.ins_norm:
self.norm = nn.InstanceNorm1d(attribute_dim)
|
MIT License
|
elsander/goodenoughalgs
|
Visualizations.py
|
LongMC3
|
python
|
def LongMC3(fname=None):
if fname:
run = scipy.genfromtxt(fname)
else:
bestSol, run = tsp.TSP(200, 'MC3', 20000, 10, seed=None,
coordfile='tmp.txt')
fname = 'ExampleOutput/MC3-Long.txt'
run = scipy.array(run)
scipy.savetxt(fname, run)
Xs = range(0, run.shape[0] * 1000, 1000)
pl.plot(Xs, run)
pl.show()
|
Plot a single long MC3 run to demonstrate high performance
but slow convergence.
|
https://github.com/elsander/goodenoughalgs/blob/0c78435e02bcc8a13129ad5867c2c1f5aec34dd8/Visualizations.py#L28-L43
|
import TravelingSalesperson as tsp
import scipy
import pylab as pl
def PlotMultipleRuns(Alg, nruns=20, fname=None):
if fname:
runs = scipy.genfromtxt(fname)
else:
runs = []
for i in range(nruns):
bestSol, fitHistory = tsp.TSP(200, Alg, 3000, 30, seed=None,
coordfile='tmp.txt')
runs.append(fitHistory)
fname = 'MultRuns-' + str(Alg) + '.txt'
runs = scipy.array(runs)
scipy.savetxt(fname, runs)
Xs = scipy.linspace(0, runs.shape[1] * 1000, runs.shape[1])
for i in range(runs.shape[0]):
pl.plot(Xs, runs[i, :])
pl.show()
|
MIT License
|
photosynthesis-team/piq
|
piq/dss.py
|
_dct_matrix
|
python
|
def _dct_matrix(size: int) -> torch.Tensor:
p = torch.arange(1, size).reshape((size - 1, 1))
q = torch.arange(1, 2 * size, 2)
return torch.cat((
math.sqrt(1 / size) * torch.ones((1, size)),
math.sqrt(2 / size) * torch.cos(math.pi / (2 * size) * p * q)), 0)
|
r""" Computes the matrix coefficients for DCT transform using the following formula:
https://fr.mathworks.com/help/images/discrete-cosine-transform.html
Args:
size : size of DCT matrix to create. (`size`, `size`)
|
https://github.com/photosynthesis-team/piq/blob/c35a60f8c38159516154f8a344f06c4059f2f3b2/piq/dss.py#L162-L173
|
import math
import functools
import torch
import torch.nn.functional as F
from typing import Union
from torch.nn.modules.loss import _Loss
from piq.utils import _validate_input, _reduce
from piq.functional import gaussian_filter, rgb2yiq
def dss(x: torch.Tensor, y: torch.Tensor, reduction: str = 'mean',
data_range: Union[int, float] = 1.0, dct_size: int = 8,
sigma_weight: float = 1.55, kernel_size: int = 3,
sigma_similarity: float = 1.5, percentile: float = 0.05) -> torch.Tensor:
if sigma_weight == 0 or sigma_similarity == 0:
raise ValueError('Gaussian sigmas must not be 0.')
if percentile <= 0 or percentile > 1:
raise ValueError('Percentile must be in [0,1]')
_validate_input(tensors=[x, y], dim_range=(4, 4))
for size in (dct_size, kernel_size):
if size <= 0 or size > min(x.size(-1), x.size(-2)):
raise ValueError('DCT and kernels sizes must be included in [0, input size)')
x = (x / float(data_range)) * 255
y = (y / float(data_range)) * 255
num_channels = x.size(1)
if num_channels == 3:
x_lum = rgb2yiq(x)[:, :1]
y_lum = rgb2yiq(y)[:, :1]
else:
x_lum = x
y_lum = y
rows, cols = x_lum.size()[-2:]
rows = dct_size * (rows // dct_size)
cols = dct_size * (cols // dct_size)
x_lum = x_lum[:, :, 0:rows, 0:cols]
y_lum = y_lum[:, :, 0:rows, 0:cols]
dct_x = _dct_decomp(x_lum, dct_size)
dct_y = _dct_decomp(y_lum, dct_size)
coords = torch.arange(1, dct_size + 1).to(device=x.device, dtype=torch.float32)
weight = (coords - 0.5) ** 2
weight = (- (weight.unsqueeze(0) + weight.unsqueeze(1)) / (2 * sigma_weight ** 2)).exp()
subband_sim_matrix = torch.zeros((x.size(0), dct_size, dct_size), device=x.device)
threshold = 1e-2
for m in range(dct_size):
for n in range(dct_size):
first_term = (m == 0 and n == 0)
if weight[m, n] < threshold:
weight[m, n] = 0
continue
subband_sim_matrix[:, m, n] = _subband_similarity(
dct_x[:, :, m::dct_size, n::dct_size],
dct_y[:, :, m::dct_size, n::dct_size],
first_term, kernel_size, sigma_similarity, percentile)
eps = torch.finfo(weight.dtype).eps
similarity_scores = torch.sum(subband_sim_matrix * (weight / (torch.sum(weight)) + eps), dim=[1, 2])
dss_val = _reduce(similarity_scores, reduction)
return dss_val
def _subband_similarity(x: torch.Tensor, y: torch.Tensor, first_term: bool,
kernel_size: int = 3, sigma: float = 1.5,
percentile: float = 0.05) -> torch.Tensor:
dc_coeff, ac_coeff = (1000, 300)
c = dc_coeff if first_term else ac_coeff
kernel = gaussian_filter(kernel_size=kernel_size, sigma=sigma)
kernel = kernel.view(1, 1, kernel_size, kernel_size).to(x)
mu_x = F.conv2d(x, kernel, padding=kernel_size // 2)
mu_y = F.conv2d(y, kernel, padding=kernel_size // 2)
sigma_xx = F.conv2d(x * x, kernel, padding=kernel_size // 2) - mu_x ** 2
sigma_yy = F.conv2d(y * y, kernel, padding=kernel_size // 2) - mu_y ** 2
sigma_xx[sigma_xx < 0] = 0
sigma_yy[sigma_yy < 0] = 0
left_term = (2 * torch.sqrt(sigma_xx * sigma_yy) + c) / (sigma_xx + sigma_yy + c)
percentile_index = round(percentile * (left_term.size(-2) * left_term.size(-1)))
sorted_left = torch.sort(left_term.flatten(start_dim=1)).values
similarity = torch.mean(sorted_left[:, :percentile_index], dim=1)
if first_term:
sigma_xy = F.conv2d(x * y, kernel, padding=kernel_size // 2) - mu_x * mu_y
right_term = ((sigma_xy + c) / (torch.sqrt(sigma_xx * sigma_yy) + c))
sorted_right = torch.sort(right_term.flatten(start_dim=1)).values
similarity *= torch.mean(sorted_right[:, :percentile_index], dim=1)
return similarity
|
Apache License 2.0
|
williamsjj/shiji
|
shiji/stats/vendor/txstatsd/stats/exponentiallydecayingsample.py
|
ExponentiallyDecayingSample.rescale
|
python
|
def rescale(self, now, next):
self.next_scale_time = (now + self.RESCALE_THRESHOLD)
old_start_time = self.start_time
self.start_time = now
new_values = []
for k, v in self._values:
nk = k * exp(-self.alpha * (self.start_time - old_start_time))
insort(new_values, (nk, v))
self._values = new_values
|
A common feature of the above techniques - indeed, the key technique
that allows us to track the decayed weights efficiently - is that they
maintain counts and other quantities based on g(ti - L), and only
scale by g(t - L) at query time. But while g(ti - L)/g(t-L) is
guaranteed to lie between zero and one, the intermediate values of
g(ti - L) could become very large. For polynomial functions, these
values should not grow too large, and should be effectively
represented in practice by floating point values without loss of
precision. For exponential functions, these values could grow quite
large as new values of (ti - L) become large, and potentially exceed
the capacity of common floating point types. However, since the values
stored by the algorithms are linear combinations of g values (scaled
sums), they can be rescaled relative to a new landmark. That is, by
the analysis of exponential decay in Section III-A, the choice of L
does not affect the final result. We can therefore multiply each value
based on L by a factor of exp(-alpha(L' - L)), and obtain the correct
value as if we had instead computed relative to a new landmark L' (and
then use this new L' at query time). This can be done with a linear
pass over whatever data structure is being used.
|
https://github.com/williamsjj/shiji/blob/d823cbba4d31f3c81d5bb76b05fc4015a7a059c9/shiji/stats/vendor/txstatsd/stats/exponentiallydecayingsample.py#L100-L131
|
from time import time
from random import random
from math import exp
from bisect import insort
class ExponentiallyDecayingSample(object):
RESCALE_THRESHOLD = 60 * 10
def __init__(self, reservoir_size, alpha, wall_time=None):
self.alpha = alpha
self.reservoir_size = reservoir_size
if wall_time is None:
wall_time = time
self.tick = wall_time
self.clear()
def clear(self):
self._values = []
self.count = 0
self.start_time = self.tick()
self.next_scale_time = (
self.tick() + self.RESCALE_THRESHOLD)
def size(self):
return min(self.reservoir_size, self.count)
def update(self, value, timestamp=None):
if timestamp is None:
timestamp = self.tick()
now = timestamp
if now >= self.next_scale_time:
self.rescale(now, self.next_scale_time)
priority = exp(self.alpha * (timestamp - self.start_time)) / random()
values = self._values
if self.count < self.reservoir_size:
self.count += 1
insort(values, (priority, value))
else:
if values[0][0] < priority:
insort(values, (priority, value))
values.pop(0)
def get_values(self):
return [v for (k, v) in self._values]
|
MIT License
|
asdf-format/asdf
|
asdf/util.py
|
iter_subclasses
|
python
|
def iter_subclasses(cls):
for x in cls.__subclasses__():
yield x
for y in iter_subclasses(x):
yield y
|
Returns all subclasses of a class.
|
https://github.com/asdf-format/asdf/blob/ee34d21e2d0e8834128716cc72fd47f31856d00e/asdf/util.py#L91-L98
|
import enum
import inspect
import math
import struct
import types
import importlib.util
import re
from functools import lru_cache
from urllib.request import pathname2url
import numpy as np
from . import constants
urllib_parse_spec = importlib.util.find_spec('urllib.parse')
patched_urllib_parse = importlib.util.module_from_spec(urllib_parse_spec)
urllib_parse_spec.loader.exec_module(patched_urllib_parse)
del urllib_parse_spec
patched_urllib_parse.uses_relative.append('asdf')
patched_urllib_parse.uses_netloc.append('asdf')
__all__ = ['human_list', 'get_array_base', 'get_base_uri', 'filepath_to_url',
'iter_subclasses', 'calculate_padding', 'resolve_name', 'NotSet',
'is_primitive', 'uri_match', 'get_class_name']
def human_list(l, separator="and"):
if len(l) == 1:
return l[0]
else:
return ', '.join(l[:-1]) + ' ' + separator + ' ' + l[-1]
def get_array_base(arr):
base = arr
while isinstance(base.base, np.ndarray):
base = base.base
return base
def get_base_uri(uri):
parts = patched_urllib_parse.urlparse(uri)
return patched_urllib_parse.urlunparse(list(parts[:5]) + [''])
def filepath_to_url(path):
return patched_urllib_parse.urljoin('file:', pathname2url(path))
|
BSD 3-Clause New or Revised License
|
microsoft/azure-devops-python-api
|
azure-devops/azure/devops/v6_0/work/work_client.py
|
WorkClient.get_board_columns
|
python
|
def get_board_columns(self, team_context, board):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
response = self._send(http_method='GET',
location_id='c555d7ff-84e1-47df-9923-a3fe0cd8751b',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('[BoardColumn]', self._unwrap_collection(response))
|
GetBoardColumns.
[Preview API] Get columns on a board
:param :class:`<TeamContext> <azure.devops.v6_0.work.models.TeamContext>` team_context: The team context for the operation
:param str board: Name or ID of the specific board
:rtype: [BoardColumn]
|
https://github.com/microsoft/azure-devops-python-api/blob/451cade4c475482792cbe9e522c1fee32393139e/azure-devops/azure/devops/v6_0/work/work_client.py#L820-L850
|
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class WorkClient(Client):
def __init__(self, base_url=None, creds=None):
super(WorkClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = '1d4f49f9-02b9-4e26-b826-2cdb6195f2a9'
def get_backlog_configurations(self, team_context):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
response = self._send(http_method='GET',
location_id='7799f497-3cb5-4f16-ad4f-5cd06012db64',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('BacklogConfiguration', response)
def get_backlog_level_work_items(self, team_context, backlog_id):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if backlog_id is not None:
route_values['backlogId'] = self._serialize.url('backlog_id', backlog_id, 'str')
response = self._send(http_method='GET',
location_id='7c468d96-ab1d-4294-a360-92f07e9ccd98',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('BacklogLevelWorkItems', response)
def get_backlog(self, team_context, id):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if id is not None:
route_values['id'] = self._serialize.url('id', id, 'str')
response = self._send(http_method='GET',
location_id='a93726f9-7867-4e38-b4f2-0bfafc2f6a94',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('BacklogLevelConfiguration', response)
def get_backlogs(self, team_context):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
response = self._send(http_method='GET',
location_id='a93726f9-7867-4e38-b4f2-0bfafc2f6a94',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('[BacklogLevelConfiguration]', self._unwrap_collection(response))
def get_column_suggested_values(self, project=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
response = self._send(http_method='GET',
location_id='eb7ec5a3-1ba3-4fd1-b834-49a5a387e57d',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('[BoardSuggestedValue]', self._unwrap_collection(response))
def get_board_mapping_parent_items(self, team_context, child_backlog_context_category_ref_name, workitem_ids):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
query_parameters = {}
if child_backlog_context_category_ref_name is not None:
query_parameters['childBacklogContextCategoryRefName'] = self._serialize.query('child_backlog_context_category_ref_name', child_backlog_context_category_ref_name, 'str')
if workitem_ids is not None:
workitem_ids = ",".join(map(str, workitem_ids))
query_parameters['workitemIds'] = self._serialize.query('workitem_ids', workitem_ids, 'str')
response = self._send(http_method='GET',
location_id='186abea3-5c35-432f-9e28-7a15b4312a0e',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[ParentChildWIMap]', self._unwrap_collection(response))
def get_row_suggested_values(self, project=None):
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'str')
response = self._send(http_method='GET',
location_id='bb494cc6-a0f5-4c6c-8dca-ea6912e79eb9',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('[BoardSuggestedValue]', self._unwrap_collection(response))
def get_board(self, team_context, id):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if id is not None:
route_values['id'] = self._serialize.url('id', id, 'str')
response = self._send(http_method='GET',
location_id='23ad19fc-3b8e-4877-8462-b3f92bc06b40',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('Board', response)
def get_boards(self, team_context):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
response = self._send(http_method='GET',
location_id='23ad19fc-3b8e-4877-8462-b3f92bc06b40',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('[BoardReference]', self._unwrap_collection(response))
def set_board_options(self, options, team_context, id):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if id is not None:
route_values['id'] = self._serialize.url('id', id, 'str')
content = self._serialize.body(options, '{str}')
response = self._send(http_method='PUT',
location_id='23ad19fc-3b8e-4877-8462-b3f92bc06b40',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('{str}', self._unwrap_collection(response))
def get_board_user_settings(self, team_context, board):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
response = self._send(http_method='GET',
location_id='b30d9f58-1891-4b0a-b168-c46408f919b0',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('BoardUserSettings', response)
def update_board_user_settings(self, board_user_settings, team_context, board):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
content = self._serialize.body(board_user_settings, '{str}')
response = self._send(http_method='PATCH',
location_id='b30d9f58-1891-4b0a-b168-c46408f919b0',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('BoardUserSettings', response)
def get_capacities_with_identity_ref(self, team_context, iteration_id):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if iteration_id is not None:
route_values['iterationId'] = self._serialize.url('iteration_id', iteration_id, 'str')
response = self._send(http_method='GET',
location_id='74412d15-8c1a-4352-a48d-ef1ed5587d57',
version='6.0-preview.2',
route_values=route_values)
return self._deserialize('[TeamMemberCapacityIdentityRef]', self._unwrap_collection(response))
def get_capacity_with_identity_ref(self, team_context, iteration_id, team_member_id):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if iteration_id is not None:
route_values['iterationId'] = self._serialize.url('iteration_id', iteration_id, 'str')
if team_member_id is not None:
route_values['teamMemberId'] = self._serialize.url('team_member_id', team_member_id, 'str')
response = self._send(http_method='GET',
location_id='74412d15-8c1a-4352-a48d-ef1ed5587d57',
version='6.0-preview.2',
route_values=route_values)
return self._deserialize('TeamMemberCapacityIdentityRef', response)
def replace_capacities_with_identity_ref(self, capacities, team_context, iteration_id):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if iteration_id is not None:
route_values['iterationId'] = self._serialize.url('iteration_id', iteration_id, 'str')
content = self._serialize.body(capacities, '[TeamMemberCapacityIdentityRef]')
response = self._send(http_method='PUT',
location_id='74412d15-8c1a-4352-a48d-ef1ed5587d57',
version='6.0-preview.2',
route_values=route_values,
content=content)
return self._deserialize('[TeamMemberCapacityIdentityRef]', self._unwrap_collection(response))
def update_capacity_with_identity_ref(self, patch, team_context, iteration_id, team_member_id):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if iteration_id is not None:
route_values['iterationId'] = self._serialize.url('iteration_id', iteration_id, 'str')
if team_member_id is not None:
route_values['teamMemberId'] = self._serialize.url('team_member_id', team_member_id, 'str')
content = self._serialize.body(patch, 'CapacityPatch')
response = self._send(http_method='PATCH',
location_id='74412d15-8c1a-4352-a48d-ef1ed5587d57',
version='6.0-preview.2',
route_values=route_values,
content=content)
return self._deserialize('TeamMemberCapacityIdentityRef', response)
def get_board_card_rule_settings(self, team_context, board):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
response = self._send(http_method='GET',
location_id='b044a3d9-02ea-49c7-91a1-b730949cc896',
version='6.0-preview.2',
route_values=route_values)
return self._deserialize('BoardCardRuleSettings', response)
def update_board_card_rule_settings(self, board_card_rule_settings, team_context, board):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
content = self._serialize.body(board_card_rule_settings, 'BoardCardRuleSettings')
response = self._send(http_method='PATCH',
location_id='b044a3d9-02ea-49c7-91a1-b730949cc896',
version='6.0-preview.2',
route_values=route_values,
content=content)
return self._deserialize('BoardCardRuleSettings', response)
def update_taskboard_card_rule_settings(self, board_card_rule_settings, team_context):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
content = self._serialize.body(board_card_rule_settings, 'BoardCardRuleSettings')
self._send(http_method='PATCH',
location_id='3f84a8d1-1aab-423e-a94b-6dcbdcca511f',
version='6.0-preview.2',
route_values=route_values,
content=content)
def get_board_card_settings(self, team_context, board):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
response = self._send(http_method='GET',
location_id='07c3b467-bc60-4f05-8e34-599ce288fafc',
version='6.0-preview.2',
route_values=route_values)
return self._deserialize('BoardCardSettings', response)
def update_board_card_settings(self, board_card_settings_to_save, team_context, board):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
content = self._serialize.body(board_card_settings_to_save, 'BoardCardSettings')
response = self._send(http_method='PUT',
location_id='07c3b467-bc60-4f05-8e34-599ce288fafc',
version='6.0-preview.2',
route_values=route_values,
content=content)
return self._deserialize('BoardCardSettings', response)
def update_taskboard_card_settings(self, board_card_settings_to_save, team_context):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
content = self._serialize.body(board_card_settings_to_save, 'BoardCardSettings')
self._send(http_method='PUT',
location_id='0d63745f-31f3-4cf3-9056-2a064e567637',
version='6.0-preview.2',
route_values=route_values,
content=content)
def get_board_chart(self, team_context, board, name):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
if name is not None:
route_values['name'] = self._serialize.url('name', name, 'str')
response = self._send(http_method='GET',
location_id='45fe888c-239e-49fd-958c-df1a1ab21d97',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('BoardChart', response)
def get_board_charts(self, team_context, board):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
response = self._send(http_method='GET',
location_id='45fe888c-239e-49fd-958c-df1a1ab21d97',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('[BoardChartReference]', self._unwrap_collection(response))
def update_board_chart(self, chart, team_context, board, name):
project = None
team = None
if team_context is not None:
if team_context.project_id:
project = team_context.project_id
else:
project = team_context.project
if team_context.team_id:
team = team_context.team_id
else:
team = team_context.team
route_values = {}
if project is not None:
route_values['project'] = self._serialize.url('project', project, 'string')
if team is not None:
route_values['team'] = self._serialize.url('team', team, 'string')
if board is not None:
route_values['board'] = self._serialize.url('board', board, 'str')
if name is not None:
route_values['name'] = self._serialize.url('name', name, 'str')
content = self._serialize.body(chart, 'BoardChart')
response = self._send(http_method='PATCH',
location_id='45fe888c-239e-49fd-958c-df1a1ab21d97',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('BoardChart', response)
|
MIT License
|
mirantis/disk_perf_test_tool
|
wally/suits/job.py
|
JobParams.summary
|
python
|
def summary(self) -> str:
pass
|
Test short summary, used mostly for file names and short image description
|
https://github.com/mirantis/disk_perf_test_tool/blob/aaad8b81218d0907e9aa1425e18b1a044f06960d/wally/suits/job.py#L22-L24
|
import abc
from typing import Dict, Any, Tuple, cast, Union, NamedTuple
from collections import OrderedDict
from cephlib.istorage import Storable
Var = NamedTuple('Var', [('name', str)])
class JobParams(metaclass=abc.ABCMeta):
def __init__(self, **params: Dict[str, Any]) -> None:
self.params = params
@property
@abc.abstractmethod
|
Apache License 2.0
|
bguillouet/traj-dist
|
traj_dist/distance.py
|
pdist
|
python
|
def pdist(traj_list, metric="sspd", type_d="euclidean", converted=None, precision=None,
eps=None, g=None, verbose=False):
list_dim = [x.shape[1] if len(x.shape) > 1 else 1 for x in traj_list]
nb_traj = len(traj_list)
if not (len(set(list_dim)) == 1):
raise ValueError("All trajectories must have same dimesion !")
dim = list_dim[0]
if not (metric in ["sspd", "dtw", "lcss", "hausdorff", "frechet", "discret_frechet", "sowd_grid",
"erp", "edr"]):
raise ValueError("The metric argument should be 'sspd', 'dtw', 'lcss','erp','edr' 'hausdorff', 'frechet',"
"'discret_frechet' or 'sowd_grid' \nmetric given is : " + metric)
if not (type_d in ["spherical", "euclidean"]):
raise ValueError("The type_d argument should be 'euclidean' or 'spherical'\ntype_d given is : " + type_d)
if type_d == "spherical" and (metric in ["frechet", "discret_frechet"]):
raise ValueError("spherical implementation for distance " + metric + " is not "
"disponible")
if type_d == "euclidean" and (metric in ["sowd", "sowd_grid"]):
if not (converted):
raise ValueError("Euclidean implementation for distance " +
metric + " is not disponible if your data is not already converted in cell format")
if verbose:
print(("Computing " + type_d + " distance " + metric + " for %d trajectories" % nb_traj))
M = np.zeros(sum(range(nb_traj)))
dist = METRIC_DIC[type_d][metric]
if metric.startswith("sowd_grid"):
if converted is None:
warnings.warn("converted parameter should be specified for metric sowd_grid. Default "
"is False")
converted = False
if converted:
cells_list = traj_list
else:
if precision is None:
warnings.warn("precision parameter should be specified for metric sowd_grid if converted "
"is False. Default is 7")
precision = 7
if verbose:
print("Cells conversion start")
cells_list_, _, _, _, _ = trajectory_set_grid(traj_list, precision)
cells_list = [np.array(x)[:, :2] for x in cells_list_]
if verbose:
print("Cells conversion ok")
im = 0
for i in range(nb_traj):
cells_list_i = cells_list[i]
for j in range(i + 1, nb_traj):
cells_list_j = cells_list[j]
M[im] = dist(cells_list_i, cells_list_j)
im += 1
elif metric == "erp":
if g is None:
g = np.zeros(dim, dtype=float)
warnings.warn("g parameter should be specified for metric erp. Default is ")
if verbose:
print(g)
else:
if g.shape[0] != dim:
raise ValueError("g and trajectories in list should have same dimension")
im = 0
for i in range(nb_traj):
traj_list_i = traj_list[i]
for j in range(i + 1, nb_traj):
traj_list_j = traj_list[j]
M[im] = dist(traj_list_i, traj_list_j, g)
im += 1
elif metric == "lcss" or metric == "edr":
if eps is None:
warnings.warn("eps parameter should be specified for metric 'lcss' and 'edr', default is 100 ")
eps = 100
im = 0
for i in range(nb_traj):
traj_list_i = traj_list[i]
for j in range(i + 1, nb_traj):
traj_list_j = traj_list[j]
M[im] = dist(traj_list_i, traj_list_j, eps)
im += 1
else:
im = 0
for i in range(nb_traj):
traj_list_i = traj_list[i]
for j in range(i + 1, nb_traj):
traj_list_j = traj_list[j]
M[im] = dist(traj_list_i, traj_list_j)
im += 1
return M
|
Usage
-----
Pairwise distances between trajectory in traj_list.
metrics available are :
1. 'sspd'
Computes the distances using the Symmetrized Segment Path distance.
2. 'dtw'
Computes the distances using the Dynamic Path Warping distance.
3. 'lcss'
Computes the distances using the Longuest Common SubSequence distance
4. 'hausdorf'
Computes the distances using the Hausdorff distance.
5. 'frechet'
Computes the distances using the Frechet distance.
6. 'discret_frechet'
Computes the distances using the Discrete Frechet distance.
7. 'sowd_grid'
Computes the distances using the Symmetrized One Way Distance.
8. 'erp'
Computes the distances using the Edit Distance with real Penalty.
9. 'edr'
Computes the distances using the Edit Distance on Real sequence.
type_d available are "euclidean" or "spherical". Some distance can be computing according to spherical space
instead of euclidean. If so, traj_0 and traj_1 have to be 2-dimensional. First column is longitude, second one
is latitude.
'sowd_grid' computes distance between trajectory in grid representation. If the coordinate
are spherical, this conversion can be made according to the geohash encoding. If so, the geohash 'precision'
is needed.
'edr' and 'lcss' require 'eps' parameter. These distance assume that two locations are similar, or not, according
to a given threshold, eps.
'erp' require g parameter. This distance require a gap parameter. Which must have same dimension that the
trajectory.
Parameters
----------
param traj_list: a list of nT numpy array trajectory
param metric : string, distance used
param type_d : string, distance type_d used (spherical or euclidean)
param converted : boolean, specified if the data are converted in cell format (sowd_grid
metric)
param precision : int, precision of geohash (sowd_grid )
param eps : float, threshold distance (edr and lcss)
param g : numpy arrays, gaps (erp distance)
Returns
-------
M : a nT x nT numpy array. Where the i,j entry is the distance between traj_list[i] and traj_list[j]
|
https://github.com/bguillouet/traj-dist/blob/05893c52078fde5bd6ae9efd5e52178e5bd9a85c/traj_dist/distance.py#L419-L584
|
from .pydist.linecell import trajectory_set_grid
from .cydist.sspd import c_e_sspd, c_g_sspd
from .cydist.dtw import c_e_dtw, c_g_dtw
from .cydist.erp import c_e_erp, c_g_erp
from .cydist.edr import c_e_edr, c_g_edr
from .cydist.lcss import c_e_lcss, c_g_lcss
from .cydist.hausdorff import c_e_hausdorff, c_g_hausdorff
from .cydist.discret_frechet import c_discret_frechet
from .cydist.frechet import c_frechet
from .cydist.sowd import c_sowd_grid
import numpy as np
import warnings
__all__ = ["pdist", "cdist", "sspd", "sowd_grid", "frechet", "discret_frechet", "hausdorff", "dtw", "lcss", "edr",
"erp"]
METRIC_DIC = {"spherical": {"sspd": c_g_sspd,
"dtw": c_g_dtw,
"lcss": c_g_lcss,
"hausdorff": c_g_hausdorff,
"sowd_grid": c_sowd_grid,
"erp": c_g_erp,
"edr": c_g_edr},
"euclidean": {"sspd": c_e_sspd,
"dtw": c_e_dtw,
"lcss": c_e_lcss,
"hausdorff": c_e_hausdorff,
"discret_frechet": c_discret_frechet,
"frechet": c_frechet,
"sowd_grid": c_sowd_grid,
"erp": c_e_erp,
"edr": c_e_edr}}
def sspd(traj_1, traj_2, type_d="euclidean"):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
if not (type_d in ["spherical", "euclidean"]):
raise ValueError("The type_d argument should be 'euclidean' or 'spherical'\ntype_d given is : " + type_d)
dist_func = METRIC_DIC[type_d]["sspd"]
dist = dist_func(traj_1, traj_2)
return dist
def sowd_grid(traj_1, traj_2, type_d="euclidean", converted=None, precision=None):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
if not (type_d in ["spherical", "euclidean"]):
raise ValueError("The type_d argument should be 'euclidean' or 'spherical'\ntype_d given is : " + type_d)
if type_d == "euclidean" and not converted:
raise Warning("Euclidean implementation for distance sowd_grid is not "
"disponible if your data is not already converted in cell format")
if converted is None:
warnings.warn("converted parameter should be specified for metric sowd_grid. Default "
"is True")
converted = True
if converted:
cells_list = [traj_1, traj_2]
else:
if precision is None:
warnings.warn("precision parameter should be specified for metric sowd_grid if converted "
"is False. Default is 7")
precision = 7
cells_list_, _, _, _, _ = trajectory_set_grid([traj_1, traj_2], precision)
cells_list = [np.array(cells_list_[0])[:, :2], np.array(cells_list_[1])[:, :2]]
dist_func = METRIC_DIC[type_d]["sowd_grid"]
dist = dist_func(cells_list[0], cells_list[1])
return dist
def frechet(traj_1, traj_2, type_d="euclidean"):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
if type_d != "euclidean":
raise ValueError("The type_d argument should be 'euclidean'\ntype_d given is : " + type_d)
dist_func = METRIC_DIC[type_d]["frechet"]
dist = dist_func(traj_1, traj_2)
return dist
def discret_frechet(traj_1, traj_2, type_d="euclidean"):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
if type_d != "euclidean":
raise ValueError("The type_d argument should be 'euclidean'\ntype_d given is : " + type_d)
dist_func = METRIC_DIC[type_d]["discret_frechet"]
dist = dist_func(traj_1, traj_2)
return dist
def hausdorff(traj_1, traj_2, type_d="euclidean"):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
if not (type_d in ["spherical", "euclidean"]):
raise ValueError("The type_d argument should be 'euclidean' or 'spherical'\ntype_d given is : " + type_d)
dist_func = METRIC_DIC[type_d]["hausdorff"]
dist = dist_func(traj_1, traj_2)
return dist
def dtw(traj_1, traj_2, type_d="euclidean"):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
if not (type_d in ["spherical", "euclidean"]):
raise ValueError("The type_d argument should be 'euclidean' or 'spherical'\ntype_d given is : " + type_d)
dist_func = METRIC_DIC[type_d]["dtw"]
dist = dist_func(traj_1, traj_2)
return dist
def lcss(traj_1, traj_2, type_d="euclidean", eps=200):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
if not (type_d in ["spherical", "euclidean"]):
raise ValueError("The type_d argument should be 'euclidean' or 'spherical'\ntype_d given is : " + type_d)
dist_func = METRIC_DIC[type_d]["lcss"]
dist = dist_func(traj_1, traj_2, eps)
return dist
def edr(traj_1, traj_2, type_d="euclidean", eps=200):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
if not (type_d in ["spherical", "euclidean"]):
raise ValueError("The type_d argument should be 'euclidean' or 'spherical'\ntype_d given is : " + type_d)
dist_func = METRIC_DIC[type_d]["edr"]
dist = dist_func(traj_1, traj_2, eps)
return dist
def erp(traj_1, traj_2, type_d="euclidean", g=None):
dim_1 = traj_1.shape[1]
dim_2 = traj_2.shape[1]
if dim_1 != 2 or dim_2 != 2:
raise ValueError("Trajectories should be in 2D. t1 is %dD and t2 is %d given" % (dim_1, dim_2))
dim = dim_1
if g is None:
g = np.zeros(dim, dtype=float)
warnings.warn("g parameter should be specified for metric erp. Default is ")
print(g)
else:
if g.shape[0] != dim:
raise ValueError("g and trajectories in list should have same dimension")
if not (type_d in ["spherical", "euclidean"]):
raise ValueError("The type_d argument should be 'euclidean' or 'spherical'\ntype_d given is : " + type_d)
dist_func = METRIC_DIC[type_d]["erp"]
dist = dist_func(traj_1, traj_2, g)
return dist
|
MIT License
|
qdata/textattack
|
textattack/constraints/semantics/word_embedding_distance.py
|
WordEmbeddingDistance.extra_repr_keys
|
python
|
def extra_repr_keys(self):
if self.min_cos_sim is None:
metric = "max_mse_dist"
else:
metric = "min_cos_sim"
return [
"embedding",
metric,
"cased",
"include_unknown_words",
] + super().extra_repr_keys()
|
Set the extra representation of the constraint using these keys.
To print customized extra information, you should reimplement
this method in your own constraint. Both single-line and multi-
line strings are acceptable.
|
https://github.com/qdata/textattack/blob/3f0d5290bebc8436a60869576bede9138ea34cda/textattack/constraints/semantics/word_embedding_distance.py#L111-L127
|
from textattack.constraints import Constraint
from textattack.shared import AbstractWordEmbedding, WordEmbedding
from textattack.shared.validators import transformation_consists_of_word_swaps
class WordEmbeddingDistance(Constraint):
def __init__(
self,
embedding=WordEmbedding.counterfitted_GLOVE_embedding(),
include_unknown_words=True,
min_cos_sim=None,
max_mse_dist=None,
cased=False,
compare_against_original=True,
):
super().__init__(compare_against_original)
self.include_unknown_words = include_unknown_words
self.cased = cased
if bool(min_cos_sim) == bool(max_mse_dist):
raise ValueError("You must choose either `min_cos_sim` or `max_mse_dist`.")
self.min_cos_sim = min_cos_sim
self.max_mse_dist = max_mse_dist
if not isinstance(embedding, AbstractWordEmbedding):
raise ValueError(
"`embedding` object must be of type `textattack.shared.AbstractWordEmbedding`."
)
self.embedding = embedding
def get_cos_sim(self, a, b):
return self.embedding.get_cos_sim(a, b)
def get_mse_dist(self, a, b):
return self.embedding.get_mse_dist(a, b)
def _check_constraint(self, transformed_text, reference_text):
try:
indices = transformed_text.attack_attrs["newly_modified_indices"]
except KeyError:
raise KeyError(
"Cannot apply part-of-speech constraint without `newly_modified_indices`"
)
if any(
i >= len(reference_text.words) or i >= len(transformed_text.words)
for i in indices
):
return False
for i in indices:
ref_word = reference_text.words[i]
transformed_word = transformed_text.words[i]
if not self.cased:
ref_word = ref_word.lower()
transformed_word = transformed_word.lower()
try:
ref_id = self.embedding.word2index(ref_word)
transformed_id = self.embedding.word2index(transformed_word)
except KeyError:
if self.include_unknown_words:
continue
return False
if self.min_cos_sim:
cos_sim = self.get_cos_sim(ref_id, transformed_id)
if cos_sim < self.min_cos_sim:
return False
if self.max_mse_dist:
mse_dist = self.get_mse_dist(ref_id, transformed_id)
if mse_dist > self.max_mse_dist:
return False
return True
def check_compatibility(self, transformation):
return transformation_consists_of_word_swaps(transformation)
|
MIT License
|
athena-home-loans/keydra
|
src/keydra/clients/splunk.py
|
SplunkClient._wait_for_splunkcloud_task
|
python
|
def _wait_for_splunkcloud_task(self, id, timeout=240):
attempt = 1
while attempt < timeout:
try:
statusresp = self._service.get(
'/services/dmc/tasks/{}'.format(id),
output_mode='json'
)['body'].read()
except HTTPError:
raise Exception('Could not fetch status for task {}'.format(id))
status = json.loads(statusresp)['entry'][0]
LOGGER.debug("Task {} is currently '{}' after {} seconds.".format(
id,
status['content']['state'],
attempt
)
)
if status['content']['state'] == 'completed':
LOGGER.info("Deployment task {} completed in {} seconds.".format(id, attempt))
return
time.sleep(1)
attempt += 1
raise Exception(
'Deployment task did not complete within {} seconds! Aborting.'.format(timeout)
)
|
Wait for a Splunk Cloud (Classic) deployment task to complete
:param id: The task Id to wait for
:type id: :class:`string`
:param timeout: How many seconds to wait for before giving up
:type timeout: :class:`int`
|
https://github.com/athena-home-loans/keydra/blob/3b1423f629cd826d270d4d9e29023e22694fa24e/src/keydra/clients/splunk.py#L417-L454
|
import json
import requests
import time
import splunklib.client as splunkclient
import urllib.parse as urlparse
from splunklib.binding import HTTPError
from keydra.logging import get_logger
from keydra.providers.base import exponential_backoff_retry
LOGGER = get_logger()
ADMIN_API = 'https://admin.splunk.com'
class AppNotInstalledException(Exception):
pass
class TaskAlreadyInProgressException(Exception):
pass
class SplunkClient(object):
def __init__(self, username, password, host, verify, port=8089):
self.host = host
self.port = port
if password.startswith('eyJ') and len(password) > 32:
self.tokenauth = True
self._auth_headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {password}'
}
else:
self.tokenauth = False
self._service = splunkclient.Service(
host=host,
port=port,
username=username,
password=password,
verify=verify
)
self._service.login()
self._instance = host.split('.')[0]
def _get(self, url, params={}):
params['output_mode'] = 'json'
if not params:
params = self.params
resp = requests.get(url, headers=self._auth_headers, params=params)
resp.raise_for_status()
try:
return resp.json()
except ValueError:
return resp.text
def _post(self, url, data, params={}):
params['output_mode'] = 'json'
resp = requests.post(url, headers=self._auth_headers, params=params, data=data)
resp.raise_for_status()
try:
return resp.json()
except ValueError:
return resp.text
def _delete(self, url, data, params={}):
params['output_mode'] = 'json'
resp = requests.delete(url, headers=self._auth_headers, params=params, data=data)
resp.raise_for_status()
try:
return resp.json()
except ValueError:
return resp.text
def update_app_config(self, app, path, obj, data):
if self.app_exists(app) is not True:
raise AppNotInstalledException(
'App {} not installed on Splunk '
'host {}'.format(
app,
self._service.host
)
)
post_data = dict(**data)
try:
attempt = self._service.post(
'/servicesNS/nobody/{app}/'
'{path}/{object}'.format(
app=app,
path=path,
object=obj
),
**post_data
)
except HTTPError as error:
if 'does not exist' in str(error.body):
post_data['name'] = obj
attempt = self._service.post(
'/servicesNS/nobody/{app}/'
'{path}/{object}'.format(
app=app,
path=path,
object=obj
),
**post_data
)
else:
raise Exception(
'Error updating Splunk app {} on '
'host {}: {}'.format(
app,
self._service.host,
error
)
)
return attempt.status
def update_app_storepass(self, app, username, password, realm=None):
if not realm:
realm = ''
if self.app_exists(app) is not True:
raise AppNotInstalledException(
'App {} not installed on Splunk '
'host {}'.format(
app,
self._service.host
)
)
post_data = {
'name': username,
'password': password,
'realm': realm
}
try:
self._service.get(
'/servicesNS/nobody/{}/'
'storage/passwords/{}'.format(app, username)
)
url = '/servicesNS/nobody/{}/storage/passwords/{}'.format(
app,
username
)
post_data.pop('name', None)
post_data.pop('realm', None)
except HTTPError:
url = '/servicesNS/nobody/{}/storage/passwords'.format(app)
try:
attempt = self._service.post(url, **post_data)
except HTTPError as error:
raise Exception(
'Error updating Splunk app {} on '
'host {}: {}'.format(
app,
self._service.host,
error
)
)
return attempt.status
def app_exists(self, appname):
matching_apps = len(
self._service.apps.list(search='name={}'.format(appname))
)
return matching_apps > 0
def delete_token(self, username, token):
url = 'https://{}:{}/services/authorization/tokens/{}'.format(
self.host,
self.port,
username
)
postdata = {
'id': token
}
self._delete(url, postdata)
def list_tokens_by_user(self, username):
url = 'https://{}:{}/services/authorization/tokens'.format(
self.host,
self.port,
)
params = {
'username': username
}
resp = self._get(url, params)
LOGGER.debug(f'List token response: {resp}')
tokens = []
for entry in resp['entry']:
tokens.append(entry['name'])
return tokens
def rotate_token(self, username, lifetime=None):
url = 'https://{}:{}/services/authorization/tokens'.format(
self.host,
self.port,
)
postdata = {
'name': username,
'audience': 'Managed by Keydra'
}
if lifetime is not None:
postdata['expires_on'] = f'+{lifetime}'
resp = self._post(url, postdata)
newtoken = resp['entry'][0]['content']['token']
newtokenid = resp['entry'][0]['content']['id']
if newtoken.startswith('eyJ'):
self._auth_headers['Authorization'] = f'Bearer {newtoken}'
for token in self.list_tokens_by_user(username):
if token != newtokenid:
LOGGER.debug(f'Attempting to delete token {token}')
self.delete_token(username, token)
return newtoken
else:
raise Exception(f'Error rotating token for user {username}. New token is invalid!')
def change_passwd(self, username, oldpasswd, newpasswd):
attempt = self._service.post(
"/services/authentication/users/{}".format(username),
password=newpasswd,
oldpassword=oldpasswd
)
if attempt.status != 200:
raise Exception(
'Error rotating user {} on Splunk host '
'{}'.format(username, self._service.host)
)
return True
def rotate_hectoken(self, inputname):
response = self._service.get(
'/services/data/inputs/http',
output_mode='json'
)
inputs = json.loads(response['body'].read())
for entry in inputs['entry']:
if entry['name'] == 'http://'+inputname:
rotresp = self._service.post(
urlparse.unquote(entry['links']['edit']+'/rotate'),
output_mode='json'
)
newconfig = json.loads(rotresp['body'].read())['entry'][0]
return newconfig['content']['token']
raise Exception(
'Error rotating HEC token {} on Splunk host '
'{}. Input was not found! Input list: {}'.format(
inputname,
self._service.host,
inputs
)
)
def _get_splunkcloud_httpinput(self, inputname):
getresp = self._service.get(
'/services/dmc/config/inputs/__indexers/http/{}'.format(inputname),
output_mode='json'
)['body'].read()
return json.loads(getresp)['entry']
def _get_last_splunkcloud_deploytask(self):
taskresp = self._service.get(
'/services/dmc/deploy',
output_mode='json'
)['body'].read()
tasks = json.loads(taskresp)['entry']
if tasks[0]['name'] == 'lastDeploy':
return tasks[0]['content']['taskId']
else:
raise Exception(
"Could not fetch last task Id! Task with name 'lastDeploy' was not "
"found in the Splunk response. Unexpected response from server."
)
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.