repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
mseclab/pyjfuzz
|
gramfuzz/gramfuzz/utils.py
|
val
|
python
|
def val(val, pre=None, shortest=False):
if pre is None:
pre = []
fields = gramfuzz.fields
MF = fields.MetaField
F = fields.Field
if type(val) is MF:
val = val()
if isinstance(val, F):
val = str(val.build(pre, shortest=shortest))
return str(val)
|
Build the provided value, while properly handling
native Python types, :any:`gramfuzz.fields.Field` instances, and :any:`gramfuzz.fields.Field`
subclasses.
:param list pre: The prerequisites list
:returns: str
|
https://github.com/mseclab/pyjfuzz/blob/f777067076f62c9ab74ffea6e90fd54402b7a1b4/gramfuzz/gramfuzz/utils.py#L13-L33
|
import gramfuzz
|
MIT License
|
christabor/moal
|
MOAL/data_structures/abstract/tree.py
|
Tree.total_height
|
python
|
def total_height(self):
return self.node_height(None, use_root=True)
|
Similar to height, but height is always absolute, rather than
relative from a specific node; also hides the details behind
a simpler interface with no arguments.
|
https://github.com/christabor/moal/blob/7d3062f6a49e45147172b7d577472b1e2aa084fa/MOAL/data_structures/abstract/tree.py#L137-L141
|
__author__ = """Chris Tabor (dxdstudio@gmail.com)"""
if __name__ == '__main__':
from os import getcwd
from os import sys
sys.path.append(getcwd())
from MOAL.helpers.display import Section
from MOAL.helpers.display import prnt
from MOAL.helpers.display import divider
from MOAL.helpers.display import cmd_title
from MOAL.data_structures.graphs.graphs import Graph
DEBUG = True if __name__ == '__main__' else False
class InvalidGraph(Exception):
pass
class InvalidNode(Exception):
pass
class Tree(Graph):
def __init__(self, vertices={}):
super(Tree, self).__init__(vertices=vertices)
for key, node in vertices.iteritems():
self.__setitem__(key, node)
def path(self, start_node, end_node):
return super(Tree, self).walk(start_node, end_node)
def level(self, node_name):
raise NotImplementedError
def __delitem__(self, key):
edges = self.__getitem__(key).get('edges')
for edge in edges:
del self.vertices[edge]
self.node_count -= 1
del self.vertices[key]
self.node_count -= 1
def __setitem__(self, key, node):
node['edges'] = set(node['edges'])
if key in node['edges']:
node['edges'].remove(key)
node.update({'is_root': node.get('is_root', False)})
node.update({'is_child': not node.get('is_root', True)})
node.update({'val': node.get('val', '')})
node.update({'edges': node.get('edges', [])})
is_leaf = len(node.get('edges')) == 0
node.update({'is_leaf': is_leaf})
node.update({'parent': node.get('parent', None)})
super(Tree, self).__setitem__(key, node)
return node
def build_tree(self, **kwargs):
g = super(Tree, self).build_graph(**kwargs)
for name, data in self.vertices.iteritems():
g.add_subgraph(data['edges'])
return g
def render_tree(self, filename, **kwargs):
g = self.build_tree(**kwargs)
g.layout(prog='dot')
g.draw(filename)
def node_depth(self, node_name, use_root=False):
height = 1
if use_root:
return height
node = self.__getitem__(node_name)
while not node.get('is_root'):
height += 1
node = self.__getitem__(node.get('parent'))
return height
def is_internal(self, node_name):
node = self.__getitem__(node_name)
if node is None:
return False
return 'is_root' not in node and len(node['edges']) != 0
def is_leaf(self, node_name):
node = self.__getitem__(node_name)
if node is None:
return False
return 'is_root' not in node and len(node['edges']) == 0
def node_height(self, node_name, height=1, use_root=False):
node = self.get_root() if use_root else self.__getitem__(node_name)
if node.get('is_leaf'):
return height
for child_name in node.get('edges'):
return self.node_height(child_name, height=height + 1)
return height
|
Apache License 2.0
|
mrknow/filmkodi
|
plugin.video.mrknow/mylib/pydevd_attach_to_process/winappdbg/process.py
|
Process.__iter__
|
python
|
def __iter__(self):
return self.__ThreadsAndModulesIterator(self)
|
@see: L{iter_threads}, L{iter_modules}
@rtype: iterator
@return: Iterator of L{Thread} and L{Module} objects in this snapshot.
All threads are iterated first, then all modules.
|
https://github.com/mrknow/filmkodi/blob/0162cde9ae25ddbf4a69330948714833ff2f78c9/plugin.video.mrknow/mylib/pydevd_attach_to_process/winappdbg/process.py#L346-L353
|
from __future__ import with_statement
__revision__ = "$Id$"
__all__ = ['Process']
import sys
from winappdbg import win32
from winappdbg import compat
from winappdbg.textio import HexDump, HexInput
from winappdbg.util import Regenerator, PathOperations, MemoryAddresses
from winappdbg.module import Module, _ModuleContainer
from winappdbg.thread import Thread, _ThreadContainer
from winappdbg.window import Window
from winappdbg.search import Search, Pattern, BytePattern, TextPattern, RegExpPattern, HexPattern
from winappdbg.disasm import Disassembler
import re
import os
import os.path
import ctypes
import struct
import warnings
import traceback
System = None
class Process (_ThreadContainer, _ModuleContainer):
def __init__(self, dwProcessId, hProcess = None, fileName = None):
_ThreadContainer.__init__(self)
_ModuleContainer.__init__(self)
self.dwProcessId = dwProcessId
self.hProcess = hProcess
self.fileName = fileName
def get_pid(self):
return self.dwProcessId
def get_filename(self):
if not self.fileName:
self.fileName = self.get_image_name()
return self.fileName
def open_handle(self, dwDesiredAccess = win32.PROCESS_ALL_ACCESS):
hProcess = win32.OpenProcess(dwDesiredAccess, win32.FALSE, self.dwProcessId)
try:
self.close_handle()
except Exception:
warnings.warn(
"Failed to close process handle: %s" % traceback.format_exc())
self.hProcess = hProcess
def close_handle(self):
try:
if hasattr(self.hProcess, 'close'):
self.hProcess.close()
elif self.hProcess not in (None, win32.INVALID_HANDLE_VALUE):
win32.CloseHandle(self.hProcess)
finally:
self.hProcess = None
def get_handle(self, dwDesiredAccess = win32.PROCESS_ALL_ACCESS):
if self.hProcess in (None, win32.INVALID_HANDLE_VALUE):
self.open_handle(dwDesiredAccess)
else:
dwAccess = self.hProcess.dwAccess
if (dwAccess | dwDesiredAccess) != dwAccess:
self.open_handle(dwAccess | dwDesiredAccess)
return self.hProcess
def __contains__(self, anObject):
return _ThreadContainer.__contains__(self, anObject) or _ModuleContainer.__contains__(self, anObject)
def __len__(self):
return _ThreadContainer.__len__(self) + _ModuleContainer.__len__(self)
class __ThreadsAndModulesIterator (object):
def __init__(self, container):
self.__container = container
self.__iterator = None
self.__state = 0
def __iter__(self):
return self
def next(self):
if self.__state == 0:
self.__iterator = self.__container.iter_threads()
self.__state = 1
if self.__state == 1:
try:
return self.__iterator.next()
except StopIteration:
self.__iterator = self.__container.iter_modules()
self.__state = 2
if self.__state == 2:
try:
return self.__iterator.next()
except StopIteration:
self.__iterator = None
self.__state = 3
raise StopIteration
|
Apache License 2.0
|
birkbeckctp/annotran
|
annotran/client.py
|
merge
|
python
|
def merge(d1, d2):
result = d1.copy()
result.update(d2)
return result
|
Merge two dictionaries
:param d1: first dictionary
:param d2: second dictionary
:return: a merge of d1 and d2
|
https://github.com/birkbeckctp/annotran/blob/42678afaee6d4b57cfaddb402bc6f15b37fdd027/annotran/client.py#L111-L120
|
import json
import os
from urlparse import urlparse
import annotran.views
import h
import h.client
from h import __version__
from jinja2 import Environment, PackageLoader
jinja_env = Environment(loader=PackageLoader(__package__, 'templates'))
def angular_template_context(name):
jinja_env_ext = Environment(loader=PackageLoader(__package__, 'templates'))
jinja_env_hypothesis = h.client.jinja_env
angular_template_path = 'client/{}.html'.format(name)
base_directory = os.path.dirname(os.path.realpath(__file__))
if os.path.isfile('{0}/templates/{1}'.format(base_directory, angular_template_path)):
content, _, _ = jinja_env_ext.loader.get_source(jinja_env_ext, angular_template_path)
else:
content, _, _ = jinja_env_hypothesis.loader.get_source(jinja_env_hypothesis, angular_template_path)
return {'name': '{}.html'.format(name), 'content': content}
def app_html_context(webassets_env, api_url, service_url, ga_tracking_id, sentry_public_dsn, websocket_url):
if urlparse(service_url).hostname == 'localhost':
ga_cookie_domain = 'none'
else:
ga_cookie_domain = 'auto'
service_url = h.client.url_with_path(service_url)
app_config = {
'apiUrl': api_url,
'serviceUrl': service_url,
'supportAddress': annotran.views.Shared.support_address
}
if websocket_url:
app_config.update({
'websocketUrl': websocket_url,
})
if sentry_public_dsn:
app_config.update({
'raven': {
'dsn': sentry_public_dsn,
'release': __version__
}
})
return {
'app_config': json.dumps(app_config),
'angular_templates': map(angular_template_context, h.client.ANGULAR_DIRECTIVE_TEMPLATES),
'app_css_urls': h.client.asset_urls(webassets_env, 'app_css'),
'app_js_urls': h.client.asset_urls(webassets_env, 'app_js'),
'ga_tracking_id': ga_tracking_id,
'ga_cookie_domain': ga_cookie_domain,
'register_url': service_url + 'register',
}
|
MIT License
|
tmbdev/webdataset
|
webdataset/autodecode.py
|
Decoder.__call__
|
python
|
def __call__(self, sample):
assert isinstance(sample, dict), (len(sample), sample)
return self.decode(sample)
|
Decode an entire sample.
:param sample: the sample
|
https://github.com/tmbdev/webdataset/blob/3431eeada3cba81c19966604116c4b5d6d6994ae/webdataset/autodecode.py#L414-L420
|
import io
import json
import os
import pickle
import re
import tempfile
from functools import partial
import numpy as np
from .checks import checkmember, checknotnone
image_extensions = "jpg jpeg png ppm pgm pbm pnm".split()
def torch_loads(data):
import io
import torch
stream = io.BytesIO(data)
return torch.load(stream)
def basichandlers(key, data):
extension = re.sub(r".*[.]", "", key)
if extension in "txt text transcript":
return data.decode("utf-8")
if extension in "cls cls2 class count index inx id".split():
try:
return int(data)
except ValueError:
return None
if extension in "json jsn":
return json.loads(data)
if extension in "pyd pickle".split():
return pickle.loads(data)
if extension in "pth".split():
return torch_loads(data)
if extension in "ten tb".split():
from . import tenbin
return tenbin.decode_buffer(data)
if extension in "mp msgpack msg".split():
import msgpack
return msgpack.unpackb(data)
if extension in "npy".split():
import numpy.lib.format
stream = io.BytesIO(data)
return numpy.lib.format.read_array(stream)
if extension in "npz".split():
return np.load(io.BytesIO(data))
def call_extension_handler(key, data, f, extensions):
extension = key.lower().split(".")
for target in extensions:
target = target.split(".")
if len(target) > len(extension):
continue
if extension[-len(target):] == target:
return f(data)
return None
def handle_extension(extensions, f):
extensions = extensions.lower().split()
return partial(call_extension_handler, f=f, extensions=extensions)
imagespecs = {
"l8": ("numpy", "uint8", "l"),
"rgb8": ("numpy", "uint8", "rgb"),
"rgba8": ("numpy", "uint8", "rgba"),
"l": ("numpy", "float", "l"),
"rgb": ("numpy", "float", "rgb"),
"rgba": ("numpy", "float", "rgba"),
"torchl8": ("torch", "uint8", "l"),
"torchrgb8": ("torch", "uint8", "rgb"),
"torchrgba8": ("torch", "uint8", "rgba"),
"torchl": ("torch", "float", "l"),
"torchrgb": ("torch", "float", "rgb"),
"torch": ("torch", "float", "rgb"),
"torchrgba": ("torch", "float", "rgba"),
"pill": ("pil", None, "l"),
"pil": ("pil", None, "rgb"),
"pilrgb": ("pil", None, "rgb"),
"pilrgba": ("pil", None, "rgba"),
}
class ImageHandler:
def __init__(self, imagespec, extensions=image_extensions):
checkmember(imagespec, list(imagespecs.keys()), "unknown image specification")
self.imagespec = imagespec.lower()
self.extensions = extensions
def __call__(self, key, data):
import PIL.Image
extension = re.sub(r".*[.]", "", key)
if extension.lower() not in self.extensions:
return None
imagespec = self.imagespec
atype, etype, mode = imagespecs[imagespec]
with io.BytesIO(data) as stream:
img = PIL.Image.open(stream)
img.load()
img = img.convert(mode.upper())
if atype == "pil":
return img
elif atype == "numpy":
result = np.asarray(img)
checkmember(result.dtype, [np.uint8])
if etype == "uint8":
return result
else:
return result.astype("f") / 255.0
elif atype == "torch":
import torch
result = np.asarray(img)
checkmember(result.dtype, [np.uint8])
if etype == "uint8":
result = np.array(result.transpose(2, 0, 1))
return torch.tensor(result)
else:
result = np.array(result.transpose(2, 0, 1))
return torch.tensor(result) / 255.0
return None
def imagehandler(imagespec, extensions=image_extensions):
return ImageHandler(imagespec, extensions)
def torch_video(key, data):
extension = re.sub(r".*[.]", "", key)
if extension not in "mp4 ogv mjpeg avi mov h264 mpg webm wmv".split():
return None
import torchvision.io
with tempfile.TemporaryDirectory() as dirname:
fname = os.path.join(dirname, f"file.{extension}")
with open(fname, "wb") as stream:
stream.write(data)
return torchvision.io.read_video(fname, pts_unit="sec")
def torch_audio(key, data):
extension = re.sub(r".*[.]", "", key)
if extension not in ["flac", "mp3", "sox", "wav", "m4a", "ogg", "wma"]:
return None
import torchaudio
with tempfile.TemporaryDirectory() as dirname:
fname = os.path.join(dirname, f"file.{extension}")
with open(fname, "wb") as stream:
stream.write(data)
return torchaudio.load(fname)
class Continue:
def __init__(self, key, data):
self.key, self.data = key, data
def gzfilter(key, data):
import gzip
if not key.endswith(".gz"):
return None
decompressed = gzip.open(io.BytesIO(data)).read()
return Continue(key[:-3], decompressed)
default_pre_handlers = [gzfilter]
default_post_handlers = [basichandlers]
class Decoder:
def __init__(self, handlers, pre=None, post=None, only=None):
if isinstance(only, str):
only = only.split()
self.only = only if only is None else set(only)
if pre is None:
pre = default_pre_handlers
if post is None:
post = default_post_handlers
assert all(callable(h) for h in handlers), f"one of {handlers} not callable"
assert all(callable(h) for h in pre), f"one of {pre} not callable"
assert all(callable(h) for h in post), f"one of {post} not callable"
self.handlers = pre + handlers + post
def decode1(self, key, data):
key = "." + key
for f in self.handlers:
result = f(key, data)
if isinstance(result, Continue):
key, data = result.key, result.data
continue
if result is not None:
return result
return data
def decode(self, sample):
result = {}
assert isinstance(sample, dict), sample
for k, v in list(sample.items()):
if k[0] == "_":
if isinstance(v, bytes):
v = v.decode("utf-8")
result[k] = v
continue
if self.only is not None and k not in self.only:
result[k] = v
continue
checknotnone(v)
assert isinstance(v, bytes)
result[k] = self.decode1(k, v)
return result
|
BSD 3-Clause New or Revised License
|
oshlack/mintie
|
collate/make_supertranscript.py
|
write_canonical_genes
|
python
|
def write_canonical_genes(args, contigs, gtf):
genes = contigs.overlapping_genes.apply(lambda x: x.split('|'))
genes = [g.split(':') for gene in genes for g in gene]
genes = [g for gene in genes for g in gene if g != '' and g not in canonical_genes_written]
genes = np.unique(np.array(genes))
logging.info('%d additional canonical genes to write...' % len(genes))
for gene in genes:
logging.info('Writing %s' % gene)
blocks, block_seqs = bedtool_helper.get_merged_exons([gene], gtf, args.fasta, '')
if len(blocks) == 0:
continue
if len(blocks.drop_duplicates()) != len(block_seqs):
continue
blocks = sh.sort_blocks(blocks)
write_gene('', blocks, block_seqs, args, [gene], gtf)
|
append unmodified reference genes for competitive mapping
|
https://github.com/oshlack/mintie/blob/88b28687bd31a35df6cf686ea524c5b14d05f3a6/collate/make_supertranscript.py#L364-L382
|
import numpy as np
import pandas as pd
import re
import sys
import logging
import os
import tempfile
import pickle
import st_helper as sh
import bedtool_helper
from pybedtools import BedTool
from Bio import SeqIO
from argparse import ArgumentParser
from utils import cached, init_logging, exit_with_error
pd.set_option("mode.chained_assignment", None)
EXIT_FILE_IO_ERROR = 1
GTF_COLS = ['chr', 'source', 'feature', 'start', 'end', 'score', 'strand', 'frame', 'attribute']
BED_EXT_COLS = ['chr', 'start', 'end', 'name', 'score', 'strand', 'thickStart', 'thickEnd', 'itemRgb']
VARS_TO_ANNOTATE = ['EE','NE','INS','RI','UN','FUS','DEL']
STRAND = r'\(([+-])\)'
canonical_genes_written = []
def parse_args():
description = 'Make supertranscript reference'
parser = ArgumentParser(description=description)
parser.add_argument('--log',
metavar='LOG_FILE',
type=str,
help='record program progress in LOG_FILE')
parser.add_argument(dest='contig_info',
metavar='CONTIG_INFO',
type=str,
help='''Contig information for novel contigs.''')
parser.add_argument(dest='contig_vcf',
metavar='CONTIG_VCF',
type=str,
help='''Novel variants in VCF format.''')
parser.add_argument(dest='gtf_file',
metavar='GTF_FILE',
type=str,
help='''GTF annotation file containing transcript annotations.''')
parser.add_argument(dest='fasta',
metavar='FASTA',
type=str,
help='''Genome reference in fasta format.''')
parser.add_argument(dest='outdir',
metavar='OUTDIR',
type=str,
help='''Output directory.''')
parser.add_argument(dest='sample',
metavar='SAMPLE',
type=str,
help='''Sample name. Used to name bed and supertranscript output files.''')
return parser.parse_args()
def reverse_complement(seq):
lookup = {'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G', 'N': 'N'}
if seq == '':
return ''
if type(seq) == float and math.isnan(seq):
return ''
seq = seq[::-1]
seq = ''.join([lookup[base.upper()] for base in list(seq)])
return(seq)
def get_gene(attribute):
try:
return attribute['gene_name']
except KeyError:
return ''
def get_contig_genes(con_info):
fus_genes = con_info[con_info.overlapping_genes.str.contains(':')]
if len(fus_genes) > 0:
fus_genes = np.unique(fus_genes.overlapping_genes)
fus_genes = [fg.split(':') for fg in fus_genes][0]
assert len(fus_genes) <= 2
return fus_genes[0], fus_genes[1]
else:
genes = np.unique(con_info.overlapping_genes.values)
if len(genes) > 1:
logging.info('WARNING: multiple overlapping genes found for contig %s' % con_info.contig_id.values[0])
return genes[0], ''
def get_contig_strand(con_info, variant):
strand = '.'
if variant in con_info.variant_id.values:
var_info = con_info[con_info.variant_id == variant]
strand = re.search(STRAND, var_info.pos1.values[0]).group(1)
if variant in con_info.partner_id.values:
var_info = con_info[con_info.partner_id == variant]
strand = re.search(STRAND, var_info.pos2.values[0]).group(1)
return strand
def get_gene_strands(gtf, genes):
strands = []
for gene in genes:
gene = gene.split('|')[0]
strand = gtf[gtf.gene == gene].strand.values
strand = strand[0] if gene != '' and len(strand) > 0 else ''
strands.append(strand)
return strands
def get_strand_info(con_info, gstrands):
if 'FUS' in con_info.variant_type.values:
con_fus = con_info[con_info.variant_type == 'FUS']
cs1 = get_contig_strand(con_fus, con_fus.variant_id.values[0])
cs2 = get_contig_strand(con_fus, con_fus.partner_id.values[0])
gs1, gs2 = gstrands
if (cs1 != gs1 and cs2 == gs2) or (cs1 == gs1 and cs2 != gs2):
return [cs1, cs2]
else:
return gstrands
else:
return gstrands
def get_output_files(sample, outdir):
genome_bed = '%s/%s_genome.bed' % (outdir, sample)
st_block_bed = '%s/%s_blocks_supertranscript.bed' % (outdir, sample)
st_gene_bed = '%s/%s_genes_supertranscript.bed' % (outdir, sample)
st_fasta = '%s/%s_supertranscript.fasta' % (outdir, sample)
return genome_bed, st_block_bed, st_gene_bed, st_fasta
@cached('gene_gtf.pickle')
def load_gtf_file(gtf_file):
logging.info('Processing GTF reference file...')
gtf = BedTool(gtf_file).remove_invalid().saveas()
gene_names = [get_gene(row.attrs) for row in gtf]
with tempfile.NamedTemporaryFile(mode='r+') as temp_gtf:
gtf.saveas(temp_gtf.name)
gtf_pd = pd.read_csv(temp_gtf, header=None, sep='\t', names=GTF_COLS, comment='#', low_memory=False)
gtf_pd['gene'] = gene_names
alt_chrs = gtf_pd['chr'].str.contains('Un|alt|unknown|random|K')
gtf_pd = gtf_pd[np.invert(alt_chrs.values)]
gtf_pd_chrs = gtf_pd['chr'].str.contains('chr')
if any(gtf_pd_chrs.values):
gtf_pd['chr'] = gtf_pd['chr'].apply(lambda a: a.split('chr')[1])
gtf_pd.loc[gtf_pd['chr'] == 'M', 'chr'] = 'MT'
if len(gtf_pd[gtf_pd.feature == 'gene']) == 0:
aggregator = {'start': lambda x: min(x),
'end': lambda x: max(x)}
gene_gtf_pd = gtf_pd.groupby(['chr', 'score', 'strand', 'frame', 'gene'],
as_index=False, sort=False).agg(aggregator)
gene_gtf_pd['source'] = 'ALL'
gene_gtf_pd['attribute'] = ''
gene_gtf_pd['feature'] = 'gene'
gene_gtf_pd = gene_gtf_pd[GTF_COLS + ['gene']]
gtf_pd = gtf_pd.append(gene_gtf_pd)
return gtf_pd
def load_vcf_file(contig_vcf):
cvcf = pd.read_csv(contig_vcf, sep='\t', header=None, comment='#', low_memory=False)
vcf_chrs = cvcf[0].map(str).str.contains('chr')
if any(vcf_chrs.values):
cvcf = cvcf[vcf_chrs]
cvcf[0] = cvcf[0].apply(lambda a: a.split('chr')[1])
cvcf.loc[cvcf[0] == 'M', 0] = 'MT'
return cvcf
def write_supertranscript_genes(blocks, block_bed, gtf, genes, st_gene_bed):
seg_starts, seg_ends = block_bed.start, block_bed.end
seg_starts.index, seg_ends.index = blocks.index, blocks.index
contig_name = block_bed['chr'].values[0]
gene_gtf = gtf[gtf.feature == 'gene']
gene_names, gene_starts, gene_ends, gene_strands, gene_cols = [], [], [], [], []
block_strands = []
last_strand = blocks.strand.values[0]
for gene in genes:
for gn in gene:
gn_match = blocks.name.str.contains(gn)
if any(gn_match):
last_strand = blocks[gn_match].strand.values[0]
block_strands.append(last_strand)
else:
block_strands.append(last_strand)
genes = [g for gn in genes for g in gn if g != '']
for gene, block_strand in zip(genes, block_strands):
gn = gene_gtf[gene_gtf.gene == gene]
if len(gn) == 0:
logging.info('WARNING: gene %s not found in reference GTF.' % gene)
continue
start, end = gn.start.values[0] - 1, gn.end.values[0]
start_block = blocks[np.logical_and(blocks.start <= start, blocks.end >= start)]
end_block = blocks[np.logical_and(blocks.start <= end, blocks.end >= end)]
if len(start_block) == 0 or len(end_block) == 0:
logging.info('WARNING: part of gene %s sits outside the reference blocks; skipping.')
continue
start_offset = start - min(start_block.start)
end_offset = max(end_block.end) - end
ref_strand = gn.strand.values[0]
gene_strand = '+' if block_strand == ref_strand else '-'
gene_strands.append(gene_strand)
antisense = block_strand == '-'
tmp = start_block.copy()
start_block = end_block if antisense else start_block
end_block = tmp if antisense else end_block
gene_start = seg_starts[start_block.index[0]] + start_offset
gene_end = seg_ends[end_block.index[0]] - end_offset
R, G, B = np.random.randint(0, 255, 3)
gene_col = '%s,%s,%s' % (R, G, B)
gene_starts.append(gene_start)
gene_ends.append(gene_end)
gene_names.append(gene)
gene_cols.append(gene_col)
if len(gene_starts) > 0:
if len(genes) > 1 and genes[0] == genes[1]:
gene_starts[1] = gene_ends[0]
gene_ends[1] = gene_ends[1] * 2
bed = pd.DataFrame({'chr': contig_name, 'start': gene_starts, 'end': gene_ends,
'name': gene_names, 'score': '.', 'strand': gene_strands,
'thickStart': gene_starts, 'thickEnd': gene_ends,
'itemRgb': gene_cols},
columns=BED_EXT_COLS)
bed.to_csv(st_gene_bed, mode='a', index=False, header=False, sep='\t')
def write_gene(contig, blocks, block_seqs, args, genes, gtf):
sample = args.sample
genome_bed, st_block_bed, st_gene_bed, st_fasta = get_output_files(args.sample, args.outdir)
seqs = []
for idx,x in blocks.iterrows():
seq = str(block_seqs['%s:%d-%d(%s)' % (x['chr'], x.start, x.end, x.strand)])
seqs.append(seq)
seg_ends = np.cumsum([len(s) for s in seqs])
seg_starts = np.concatenate([[0], seg_ends[:-1]])
segs = ['%s-%s' % (s1+1, s2) for s1,s2 in zip(seg_starts, seg_ends)]
gene_name = [gn.split('|')[0] for gn in genes if gn != '']
contig_name = '%s|%s|%s' % (sample, contig, '|'.join(gene_name)) if contig != '' else gene_name[0]
names = blocks['name'].apply(lambda x: x.split('|')[-1]).values
header = '>%s segs:%s names:%s\n' % (contig_name, ','.join(segs), ','.join(names))
sequence = ''.join(seqs) + '\n'
with open(st_fasta, 'a') as st_fasta:
st_fasta.writelines([header, sequence])
if len(genes) > 1 and '' not in genes:
blocks = blocks.reset_index()
gnames = blocks.name.apply(lambda x: x.split('|')[0])
gns, idxs = np.unique(gnames.values, return_index=True)
if len(gns) == 1:
half_idx = int((len(blocks)/2))
g1 = blocks.index < half_idx
g2 = blocks.index >= half_idx
else:
gene1, gene2 = gns[:2] if idxs[0] < idxs[1] else gns[1::-1]
g1 = gnames == gene1
g2 = gnames == gene2
c1 = sh.get_block_colours(blocks[g1], names[g1])
c2 = sh.get_block_colours(blocks[g2], names[g2], alt=True)
colours = np.concatenate([c1, c2])
assert len(colours) == len(seg_starts)
else:
colours = sh.get_block_colours(blocks, names)
bed = pd.DataFrame({'chr': contig_name, 'start': seg_starts, 'end': seg_ends,
'name': names, 'score': 0, 'strand': '.', 'thickStart': seg_starts,
'thickEnd': seg_ends, 'itemRgb': colours}, columns=BED_EXT_COLS)
bed.to_csv(st_block_bed, mode='a', index=False, header=False, sep='\t')
genes = [gn.split('|') for gn in genes if gn != '']
write_supertranscript_genes(blocks, bed, gtf, genes, st_gene_bed)
|
MIT License
|
neherlab/treetime
|
treetime/treetime.py
|
TreeTime.resolve_polytomies
|
python
|
def resolve_polytomies(self, merge_compressed=False):
self.logger("TreeTime.resolve_polytomies: resolving multiple mergers...",1)
poly_found=0
for n in self.tree.find_clades():
if len(n.clades) > 2:
prior_n_clades = len(n.clades)
self._poly(n, merge_compressed)
poly_found+=prior_n_clades - len(n.clades)
obsolete_nodes = [n for n in self.tree.find_clades() if len(n.clades)==1 and n.up is not None]
for node in obsolete_nodes:
self.logger('TreeTime.resolve_polytomies: remove obsolete node '+node.name,4)
if node.up is not None:
self.tree.collapse(node)
if poly_found:
self.logger('TreeTime.resolve_polytomies: introduces %d new nodes'%poly_found,3)
else:
self.logger('TreeTime.resolve_polytomies: No more polytomies to resolve',3)
return poly_found
|
Resolve the polytomies on the tree.
The function scans the tree, resolves polytomies if present,
and re-optimizes the tree with new topology. Note that polytomies are only
resolved if that would result in higher likelihood. Sometimes, stretching
two or more branches that carry several mutations is less costly than
an additional branch with zero mutations (long branches are not stiff,
short branches are).
Parameters
----------
merge_compressed : bool
If True, keep compressed branches as polytomies. If False,
return a strictly binary tree.
Returns
--------
poly_found : int
The number of polytomies found
|
https://github.com/neherlab/treetime/blob/a58e854f13cf05e222c93e2319476a53810a8af3/treetime/treetime.py#L504-L546
|
from __future__ import print_function, division, absolute_import
import numpy as np
from scipy import optimize as sciopt
from Bio import Phylo
from . import config as ttconf
from . import MissingDataError,UnknownMethodError,NotReadyError
from .utils import tree_layout
from .clock_tree import ClockTree
rerooting_mechanisms = ["min_dev", "best", "least-squares"]
deprecated_rerooting_mechanisms = {"residual":"least-squares", "res":"least-squares",
"min_dev_ML": "min_dev", "ML":"least-squares"}
class TreeTime(ClockTree):
def __init__(self, *args,**kwargs):
super(TreeTime, self).__init__(*args, **kwargs)
def run(self, root=None, infer_gtr=True, relaxed_clock=None, n_iqd = None,
resolve_polytomies=True, max_iter=0, Tc=None, fixed_clock_rate=None,
time_marginal=False, sequence_marginal=False, branch_length_mode='auto',
vary_rate=False, use_covariation=False, tracelog_file=None, **kwargs):
self.use_covariation = use_covariation or (vary_rate and (not type(vary_rate)==float))
if (self.tree is None) or (self.aln is None and self.data.full_length is None):
raise MissingDataError("TreeTime.run: ERROR, alignment or tree are missing")
if self.aln is None:
branch_length_mode='input'
self._set_branch_length_mode(branch_length_mode)
seq_kwargs = {"marginal_sequences":sequence_marginal or (self.branch_length_mode=='marginal'),
"branch_length_mode": self.branch_length_mode,
"sample_from_profile":"root",
"reconstruct_tip_states":kwargs.get("reconstruct_tip_states", False)}
tt_kwargs = {'clock_rate':fixed_clock_rate, 'time_marginal':False}
tt_kwargs.update(kwargs)
seq_LH = 0
if "fixed_pi" in kwargs:
seq_kwargs["fixed_pi"] = kwargs["fixed_pi"]
if "do_marginal" in kwargs:
time_marginal=kwargs["do_marginal"]
if self.branch_length_mode=='input':
if self.aln:
self.infer_ancestral_sequences(infer_gtr=infer_gtr, marginal=seq_kwargs["marginal_sequences"], **seq_kwargs)
self.prune_short_branches()
else:
self.optimize_tree(infer_gtr=infer_gtr,
max_iter=1, prune_short=True, **seq_kwargs)
avg_root_to_tip = np.mean([x.dist2root for x in self.tree.get_terminals()])
if n_iqd or root=='clock_filter':
if "plot_rtt" in kwargs and kwargs["plot_rtt"]:
plot_rtt=True
else:
plot_rtt=False
reroot_mechanism = 'least-squares' if root=='clock_filter' else root
self.clock_filter(reroot=reroot_mechanism, n_iqd=n_iqd, plot=plot_rtt, fixed_clock_rate=fixed_clock_rate)
elif root is not None:
self.reroot(root=root, clock_rate=fixed_clock_rate)
if self.branch_length_mode=='input':
if self.aln:
self.infer_ancestral_sequences(**seq_kwargs)
else:
self.optimize_tree(max_iter=1, prune_short=False,**seq_kwargs)
self.logger("###TreeTime.run: INITIAL ROUND",0)
self.make_time_tree(**tt_kwargs)
if self.aln:
seq_LH = self.tree.sequence_marginal_LH if seq_kwargs['marginal_sequences'] else self.tree.sequence_joint_LH
self.LH =[[seq_LH, self.tree.positional_joint_LH, 0]]
if root is not None and max_iter:
new_root = self.reroot(root='least-squares' if root=='clock_filter' else root, clock_rate=fixed_clock_rate)
self.logger("###TreeTime.run: rerunning timetree after rerooting",0)
self.make_time_tree(**tt_kwargs)
niter = 0
ndiff = 0
self.trace_run = []
self.trace_run.append(self.tracelog_run(niter=0, ndiff=0, n_resolved=0,
time_marginal = tt_kwargs['time_marginal'],
sequence_marginal = seq_kwargs['marginal_sequences'], Tc=None, tracelog=tracelog_file))
need_new_time_tree=False
while niter < max_iter:
self.logger("###TreeTime.run: ITERATION %d out of %d iterations"%(niter+1,max_iter),0)
tmpTc=None
if Tc:
if Tc=='skyline' and niter<max_iter-1:
tmpTc='const'
else:
tmpTc=Tc
self.add_coalescent_model(tmpTc, **kwargs)
need_new_time_tree = True
if relaxed_clock:
print("relaxed_clock", relaxed_clock)
self.relaxed_clock(**relaxed_clock)
need_new_time_tree = True
n_resolved=0
if resolve_polytomies:
n_resolved = self.resolve_polytomies()
if n_resolved:
self.prepare_tree()
if self.branch_length_mode!='input':
self.optimize_tree(prune_short=False, max_iter=0, **seq_kwargs)
need_new_time_tree = True
if need_new_time_tree:
self.make_time_tree(**tt_kwargs)
if self.aln:
ndiff = self.infer_ancestral_sequences('ml',**seq_kwargs)
else:
if self.aln:
ndiff = self.infer_ancestral_sequences('ml',**seq_kwargs)
self.make_time_tree(**tt_kwargs)
self.tree.coalescent_joint_LH = self.merger_model.total_LH() if Tc else 0.0
if self.aln:
seq_LH = self.tree.sequence_marginal_LH if seq_kwargs['marginal_sequences'] else self.tree.sequence_joint_LH
self.LH.append([seq_LH, self.tree.positional_joint_LH, self.tree.coalescent_joint_LH])
self.trace_run.append(self.tracelog_run(niter=niter+1, ndiff=ndiff, n_resolved=n_resolved,
time_marginal = tt_kwargs['time_marginal'],
sequence_marginal = seq_kwargs['marginal_sequences'], Tc=tmpTc, tracelog=tracelog_file))
niter+=1
if ndiff==0 and n_resolved==0 and Tc!='skyline':
self.logger("###TreeTime.run: CONVERGED",0)
break
if vary_rate:
if type(vary_rate)==float:
self.calc_rate_susceptibility(rate_std=vary_rate, params=tt_kwargs)
elif self.clock_model['valid_confidence']:
self.calc_rate_susceptibility(params=tt_kwargs)
else:
raise UnknownMethodError("TreeTime.run: rate variation for confidence estimation is not available. Either specify it explicitly, or estimate from root-to-tip regression.")
if time_marginal:
self.logger("###TreeTime.run: FINAL ROUND - confidence estimation via marginal reconstruction", 0)
tt_kwargs['time_marginal']=time_marginal
self.make_time_tree(**tt_kwargs)
self.trace_run.append(self.tracelog_run(niter=niter+1, ndiff=0, n_resolved=0,
time_marginal = tt_kwargs['time_marginal'],
sequence_marginal = seq_kwargs['marginal_sequences'], Tc=Tc, tracelog=tracelog_file))
bad_branches =[n for n in self.tree.get_terminals()
if n.bad_branch and n.raw_date_constraint]
if bad_branches:
self.logger("TreeTime: the following tips have been marked as outliers. Their date constraints were not used. "
"Please remove them from the tree. Their dates have been reset:",0,warn=True)
for n in bad_branches:
self.logger("%s, input date: %s, apparent date: %1.2f"%(n.name, str(n.raw_date_constraint), n.numdate),0,warn=True)
return ttconf.SUCCESS
def _set_branch_length_mode(self, branch_length_mode):
if branch_length_mode in ['joint', 'marginal', 'input']:
self.branch_length_mode = branch_length_mode
elif self.aln:
bl_dis = [n.branch_length for n in self.tree.find_clades() if n.up]
max_bl = np.max(bl_dis)
if max_bl>0.1:
bl_mode = 'input'
else:
bl_mode = 'joint'
self.logger("TreeTime._set_branch_length_mode: maximum branch length is %1.3e, using branch length mode %s"%(max_bl, bl_mode),1)
self.branch_length_mode = bl_mode
else:
self.branch_length_mode = 'input'
def clock_filter(self, reroot='least-squares', n_iqd=None, plot=False, fixed_clock_rate=None):
if n_iqd is None:
n_iqd = ttconf.NIQD
if type(reroot) is list and len(reroot)==1:
reroot=str(reroot[0])
terminals = self.tree.get_terminals()
if reroot:
self.reroot(root='least-squares' if reroot=='best' else reroot, covariation=False, clock_rate=fixed_clock_rate)
else:
self.get_clock_model(covariation=False, slope=fixed_clock_rate)
clock_rate = self.clock_model['slope']
icpt = self.clock_model['intercept']
res = {}
for node in terminals:
if hasattr(node, 'raw_date_constraint') and (node.raw_date_constraint is not None):
res[node] = node.dist2root - clock_rate*np.mean(node.raw_date_constraint) - icpt
residuals = np.array(list(res.values()))
iqd = np.percentile(residuals,75) - np.percentile(residuals,25)
bad_branch_count = 0
for node,r in res.items():
if abs(r)>n_iqd*iqd and node.up.up is not None:
self.logger('TreeTime.ClockFilter: marking %s as outlier, residual %f interquartile distances'%(node.name,r/iqd), 3, warn=True)
node.bad_branch=True
bad_branch_count += 1
else:
node.bad_branch=False
if bad_branch_count>0.34*self.tree.count_terminals():
self.logger("TreeTime.clock_filter: More than a third of leaves have been excluded by the clock filter. Please check your input data.", 0, warn=True)
self.prepare_tree()
if reroot:
self.reroot(root=reroot, clock_rate=fixed_clock_rate)
if plot:
self.plot_root_to_tip()
return ttconf.SUCCESS
def plot_root_to_tip(self, add_internal=False, label=True, ax=None):
Treg = self.setup_TreeRegression()
if self.clock_model and 'cov' in self.clock_model:
cf = self.clock_model['valid_confidence']
else:
cf = False
Treg.clock_plot(ax=ax, add_internal=add_internal, confidence=cf, n_sigma=1,
regression=self.clock_model)
def reroot(self, root='least-squares', force_positive=True, covariation=None, clock_rate=None):
if type(root) is list and len(root)==1:
root=str(root[0])
if root=='best':
root='least-squares'
use_cov = self.use_covariation if covariation is None else covariation
slope = 0.0 if type(root)==str and root.startswith('min_dev') else clock_rate
old_root = self.tree.root
self.logger("TreeTime.reroot: with method or node: %s"%root,0)
for n in self.tree.find_clades():
n.branch_length=n.mutation_length
if (type(root) is str) and (root in rerooting_mechanisms or root in deprecated_rerooting_mechanisms):
if root in deprecated_rerooting_mechanisms:
if "ML" in root:
use_cov=True
self.logger('TreeTime.reroot: rerooting mechanisms %s has been renamed to %s'
%(root, deprecated_rerooting_mechanisms[root]), 1, warn=True)
root = deprecated_rerooting_mechanisms[root]
self.logger("TreeTime.reroot: rerooting will %s covariance and shared ancestry."%("account for" if use_cov else "ignore"),0)
new_root = self._find_best_root(covariation=use_cov,
slope = slope,
force_positive=force_positive and (not root.startswith('min_dev')))
else:
if isinstance(root,Phylo.BaseTree.Clade):
new_root = root
elif isinstance(root, list):
new_root = self.tree.common_ancestor(root)
elif root in self._leaves_lookup:
new_root = self._leaves_lookup[root]
elif root=='oldest':
new_root = sorted([n for n in self.tree.get_terminals()
if n.raw_date_constraint is not None],
key=lambda x:np.mean(x.raw_date_constraint))[0]
else:
raise UnknownMethodError('TreeTime.reroot -- ERROR: unsupported rooting mechanisms or root not found')
self.tree.root_with_outgroup(new_root, outgroup_branch_length=new_root.branch_length/2)
self.get_clock_model(covariation=use_cov, slope = slope)
self.logger("TreeTime.reroot: Tree was re-rooted to node "
+('new_node' if new_root.name is None else new_root.name), 2)
self.tree.root.branch_length = self.one_mutation
self.tree.root.clock_length = self.one_mutation
self.tree.root.raw_date_constraint = None
if hasattr(new_root, 'time_before_present'):
self.tree.root.time_before_present = new_root.time_before_present
if hasattr(new_root, 'numdate'):
self.tree.root.numdate = new_root.numdate
if not hasattr(self.tree.root, 'gamma'):
self.tree.root.gamma = 1.0
for n in self.tree.find_clades():
n.mutation_length = n.branch_length
if not hasattr(n, 'clock_length'):
n.clock_length = n.branch_length
self.prepare_tree()
self.get_clock_model(covariation=self.use_covariation, slope=slope)
return new_root
|
MIT License
|
lttm/gmnet
|
Deeplab/research/deeplab/utils/general_utils.py
|
list_parts_names
|
python
|
def list_parts_names(num_parts):
list_parts = []
if num_parts == 108:
list_parts = ['background', 'aeroplane_body', 'aeroplane_stern', 'aeroplane_rwing', 'aeroplane_engine',
'aeroplane_wheel', 'bicycle_fwheel', 'bicycle_saddle', 'bicycle_handlebar', 'bicycle_chainwheel',
'birds_head', 'birds_beak', 'birds_torso', 'birds_neck', 'birds_rwing', 'birds_rleg', 'birds_rfoot',
'birds_tail', 'boat', 'bottle_cap', 'bottle_body', 'bus_rightside', 'bus_roofside', 'bus_rightmirror',
'bus_fliplate', 'bus_door', 'bus_wheel', 'bus_headlight', 'bus_window', 'car_rightside',
'car_roofside', 'car_fliplate', 'car_door', 'car_wheel', 'car_headlight', 'car_window', 'cat_head',
'cat_reye', 'cat_rear', 'cat_nose', 'cat_torso', 'cat_neck', 'cat_rfleg', 'cat_rfpa', 'cat_tail',
'chair', 'cow_head', 'cow_rear', 'cow_muzzle', 'cow_rhorn', 'cow_torso', 'cow_neck', 'cow_rfuleg',
'cow_tail', 'dining_table', 'dog_head', 'dog_reye', 'dog_rear', 'dog_nose', 'dog_torso', 'dog_neck',
'dog_rfleg', 'dog_rfpa', 'dog_tail', 'dog_muzzle', 'horse_head', 'horse_rear', 'horse_muzzle',
'horse_torso', 'horse_neck', 'horse_rfuleg', 'horse_tail', 'horse_rfho', 'motorbike_fwheel',
'motorbike_handlebar', 'motorbike_saddle', 'motorbike_headlight', 'person_head', 'person_reye',
'person_rear', 'person_nose', 'person_mouth', 'person_hair', 'person_torso', 'person_neck',
'person_ruarm', 'person_rhand', 'person_ruleg', 'person_rfoot', 'pottedplant_pot',
'pottedplant_plant', 'sheep_head', 'sheep_rear', 'sheep_muzzle', 'sheep_rhorn', 'sheep_torso',
'sheep_neck', 'sheep_rfuleg', 'sheep_tail', 'sofa', 'train_head', 'train_hrightside',
'train_hroofside', 'train_headlight', 'train_coach', 'train_crightside', 'train_croofside',
'tvmonitor_screen']
elif num_parts == 58:
list_parts = ['background', 'aeroplane_body', 'aeroplane_engine', 'aeroplane_wing', 'aeroplane_stern',
'aeroplane_wheel', 'bycicle_wheel', 'bycicle_body', 'bird_head', 'bird_wing', 'bird_leg',
'bird_torso', 'boat', 'bottle_cap', 'bottle_body', 'bus_window', 'bus_wheel', 'bus_body',
'car_window', 'car_wheel', 'car_light', 'car_plate', 'car_body', 'cat_head', 'cat_leg', 'cat_tail',
'cat_torso', 'chair', 'cow_head', 'cow_tail', 'cow_leg', 'cow_torso', 'dining_table', 'dog_head',
'dog_leg', 'dog_tail', 'dog_torso', 'horse_head', 'horse_tail', 'horse_leg', 'horse_torso',
'motorbike_wheel', 'motorbike_body', 'person_head', 'person_torso', 'person_larm', 'person_uarm',
'person_lleg', 'person_uleg', 'pottedplant_pot', 'pottedplant_plant', 'sheep_head', 'sheep_leg',
'sheep_torso', 'sofa', 'train', 'tvmonitor_screen', 'tvmonitor_frame']
elif num_parts == 7:
list_parts = ['background', 'person_head', 'person_torso', 'person_uarm', 'person_larm',
'person_uleg', 'person_lleg']
elif num_parts == 21:
list_parts = ['background',
'airplane',
'bicycle',
'bird',
'boat',
'bottle',
'bus',
'car',
'cat',
'chair',
'cow',
'table',
'dog',
'horse',
'motorbike',
'person',
'potted_plant',
'sheep',
'sofa',
'train',
'tv']
elif num_parts == 2:
list_parts = ['background',
'person']
else:
print_message(FilesName.GENERAL_UTILS, "Error: num_parts = " + str(num_parts), MessageType.FAIL)
exit(-1)
return list_parts
|
:return: list parts name
|
https://github.com/lttm/gmnet/blob/e17959eb219e1884e2be271c9244ba284c2f4ffa/Deeplab/research/deeplab/utils/general_utils.py#L157-L230
|
import sys
import numpy as np
import os
import cv2
import itertools
import glob
import random
from tqdm import tqdm
import tensorflow as tf
from datetime import datetime
from scipy.io import loadmat
from openpyxl import Workbook
from openpyxl.styles import PatternFill
class MessageType:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
class FilesName:
TRAIN = "[TRAIN] "
EVAL = "[EVAL] "
VIS = "[VIS] "
GENERAL_UTILS = "[GENERAL_UTILS] "
def print_message(filename, message, mess_type=""):
if mess_type == "":
print(filename, MessageType.ENDC, message, MessageType.ENDC)
else:
print(filename, mess_type, message, MessageType.ENDC)
def map_parts_to_classes(num_classes, num_parts):
map_pc = []
if num_classes == 2:
if num_parts == 2:
map_pc = [
[0, 1],
[1, 2],
]
elif num_parts == 7:
map_pc = [
[0, 1],
[1, 7],
]
else:
print_message(FilesName.GENERAL_UTILS, "Error: num_classes = " + str(num_classes) +
" and num_parts = " + str(num_parts), MessageType.FAIL)
exit(-1)
elif num_classes == 21:
if num_parts == 21:
map_pc = [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[4, 5],
[5, 6],
[6, 7],
[7, 8],
[8, 9],
[9, 10],
[10, 11],
[11, 12],
[12, 13],
[13, 14],
[14, 15],
[15, 16],
[16, 17],
[17, 18],
[18, 19],
[19, 20],
[20, 21],
]
elif num_parts == 58:
map_pc = [
[0, 1],
[1, 6],
[6, 8],
[8, 12],
[12, 13],
[13, 15],
[15, 18],
[18, 23],
[23, 27],
[27, 28],
[28, 32],
[32, 33],
[33, 37],
[37, 41],
[41, 43],
[43, 49],
[49, 51],
[51, 54],
[54, 55],
[55, 56],
[56, 58],
]
elif num_parts == 108:
map_pc = [
[0, 1],
[1, 6],
[6, 10],
[10, 18],
[18, 19],
[19, 21],
[21, 29],
[29, 36],
[36, 45],
[45, 46],
[46, 54],
[54, 55],
[55, 65],
[65, 73],
[73, 77],
[77, 89],
[89, 91],
[91, 99],
[99, 100],
[100, 107],
[107, 108],
]
else:
print_message(FilesName.GENERAL_UTILS, "Error: num_classes = " + str(num_classes) +
" and num_parts = " + str(num_parts), MessageType.FAIL)
exit(-1)
return map_pc
|
Apache License 2.0
|
cohorte/cohorte-runtime
|
python/cohorte/utils/statemachine.py
|
State.copy
|
python
|
def copy(self):
state = State(self.__name, self.__data, self.__callback)
state.__transitions = self.__transitions.copy()
return state
|
Makes a copy of this state
|
https://github.com/cohorte/cohorte-runtime/blob/686556cdde20beba77ae202de9969be46feed5e2/python/cohorte/utils/statemachine.py#L76-L85
|
import logging
import cohorte.version
__version__=cohorte.version.__version__
class State(object):
def __init__(self, name, data=None, callback=None):
self.__name = name
self.__data = data
self.__callback = callback
self.__transitions = {}
def __str__(self):
return "{{{0}}}".format(self.__name)
@property
def data(self):
return self.__data
@property
def name(self):
return self.__name
|
Apache License 2.0
|
jonathanfeng/new_horizons
|
venv/lib/python3.7/site-packages/jinja2/parser.py
|
Parser.parse_expression
|
python
|
def parse_expression(self, with_condexpr=True):
if with_condexpr:
return self.parse_condexpr()
return self.parse_or()
|
Parse an expression. Per default all expressions are parsed, if
the optional `with_condexpr` parameter is set to `False` conditional
expressions are not parsed.
|
https://github.com/jonathanfeng/new_horizons/blob/0ec21c8f8423932611e1e0bf24548dcef912bc54/venv/lib/python3.7/site-packages/jinja2/parser.py#L442-L449
|
from . import nodes
from ._compat import imap
from .exceptions import TemplateAssertionError
from .exceptions import TemplateSyntaxError
from .lexer import describe_token
from .lexer import describe_token_expr
_statement_keywords = frozenset(
[
"for",
"if",
"block",
"extends",
"print",
"macro",
"include",
"from",
"import",
"set",
"with",
"autoescape",
]
)
_compare_operators = frozenset(["eq", "ne", "lt", "lteq", "gt", "gteq"])
_math_nodes = {
"add": nodes.Add,
"sub": nodes.Sub,
"mul": nodes.Mul,
"div": nodes.Div,
"floordiv": nodes.FloorDiv,
"mod": nodes.Mod,
}
class Parser(object):
def __init__(self, environment, source, name=None, filename=None, state=None):
self.environment = environment
self.stream = environment._tokenize(source, name, filename, state)
self.name = name
self.filename = filename
self.closed = False
self.extensions = {}
for extension in environment.iter_extensions():
for tag in extension.tags:
self.extensions[tag] = extension.parse
self._last_identifier = 0
self._tag_stack = []
self._end_token_stack = []
def fail(self, msg, lineno=None, exc=TemplateSyntaxError):
if lineno is None:
lineno = self.stream.current.lineno
raise exc(msg, lineno, self.name, self.filename)
def _fail_ut_eof(self, name, end_token_stack, lineno):
expected = []
for exprs in end_token_stack:
expected.extend(imap(describe_token_expr, exprs))
if end_token_stack:
currently_looking = " or ".join(
"'%s'" % describe_token_expr(expr) for expr in end_token_stack[-1]
)
else:
currently_looking = None
if name is None:
message = ["Unexpected end of template."]
else:
message = ["Encountered unknown tag '%s'." % name]
if currently_looking:
if name is not None and name in expected:
message.append(
"You probably made a nesting mistake. Jinja "
"is expecting this tag, but currently looking "
"for %s." % currently_looking
)
else:
message.append(
"Jinja was looking for the following tags: "
"%s." % currently_looking
)
if self._tag_stack:
message.append(
"The innermost block that needs to be "
"closed is '%s'." % self._tag_stack[-1]
)
self.fail(" ".join(message), lineno)
def fail_unknown_tag(self, name, lineno=None):
return self._fail_ut_eof(name, self._end_token_stack, lineno)
def fail_eof(self, end_tokens=None, lineno=None):
stack = list(self._end_token_stack)
if end_tokens is not None:
stack.append(end_tokens)
return self._fail_ut_eof(None, stack, lineno)
def is_tuple_end(self, extra_end_rules=None):
if self.stream.current.type in ("variable_end", "block_end", "rparen"):
return True
elif extra_end_rules is not None:
return self.stream.current.test_any(extra_end_rules)
return False
def free_identifier(self, lineno=None):
self._last_identifier += 1
rv = object.__new__(nodes.InternalName)
nodes.Node.__init__(rv, "fi%d" % self._last_identifier, lineno=lineno)
return rv
def parse_statement(self):
token = self.stream.current
if token.type != "name":
self.fail("tag name expected", token.lineno)
self._tag_stack.append(token.value)
pop_tag = True
try:
if token.value in _statement_keywords:
return getattr(self, "parse_" + self.stream.current.value)()
if token.value == "call":
return self.parse_call_block()
if token.value == "filter":
return self.parse_filter_block()
ext = self.extensions.get(token.value)
if ext is not None:
return ext(self)
self._tag_stack.pop()
pop_tag = False
self.fail_unknown_tag(token.value, token.lineno)
finally:
if pop_tag:
self._tag_stack.pop()
def parse_statements(self, end_tokens, drop_needle=False):
self.stream.skip_if("colon")
self.stream.expect("block_end")
result = self.subparse(end_tokens)
if self.stream.current.type == "eof":
self.fail_eof(end_tokens)
if drop_needle:
next(self.stream)
return result
def parse_set(self):
lineno = next(self.stream).lineno
target = self.parse_assign_target(with_namespace=True)
if self.stream.skip_if("assign"):
expr = self.parse_tuple()
return nodes.Assign(target, expr, lineno=lineno)
filter_node = self.parse_filter(None)
body = self.parse_statements(("name:endset",), drop_needle=True)
return nodes.AssignBlock(target, filter_node, body, lineno=lineno)
def parse_for(self):
lineno = self.stream.expect("name:for").lineno
target = self.parse_assign_target(extra_end_rules=("name:in",))
self.stream.expect("name:in")
iter = self.parse_tuple(
with_condexpr=False, extra_end_rules=("name:recursive",)
)
test = None
if self.stream.skip_if("name:if"):
test = self.parse_expression()
recursive = self.stream.skip_if("name:recursive")
body = self.parse_statements(("name:endfor", "name:else"))
if next(self.stream).value == "endfor":
else_ = []
else:
else_ = self.parse_statements(("name:endfor",), drop_needle=True)
return nodes.For(target, iter, body, else_, test, recursive, lineno=lineno)
def parse_if(self):
node = result = nodes.If(lineno=self.stream.expect("name:if").lineno)
while 1:
node.test = self.parse_tuple(with_condexpr=False)
node.body = self.parse_statements(("name:elif", "name:else", "name:endif"))
node.elif_ = []
node.else_ = []
token = next(self.stream)
if token.test("name:elif"):
node = nodes.If(lineno=self.stream.current.lineno)
result.elif_.append(node)
continue
elif token.test("name:else"):
result.else_ = self.parse_statements(("name:endif",), drop_needle=True)
break
return result
def parse_with(self):
node = nodes.With(lineno=next(self.stream).lineno)
targets = []
values = []
while self.stream.current.type != "block_end":
if targets:
self.stream.expect("comma")
target = self.parse_assign_target()
target.set_ctx("param")
targets.append(target)
self.stream.expect("assign")
values.append(self.parse_expression())
node.targets = targets
node.values = values
node.body = self.parse_statements(("name:endwith",), drop_needle=True)
return node
def parse_autoescape(self):
node = nodes.ScopedEvalContextModifier(lineno=next(self.stream).lineno)
node.options = [nodes.Keyword("autoescape", self.parse_expression())]
node.body = self.parse_statements(("name:endautoescape",), drop_needle=True)
return nodes.Scope([node])
def parse_block(self):
node = nodes.Block(lineno=next(self.stream).lineno)
node.name = self.stream.expect("name").value
node.scoped = self.stream.skip_if("name:scoped")
if self.stream.current.type == "sub":
self.fail(
"Block names in Jinja have to be valid Python "
"identifiers and may not contain hyphens, use an "
"underscore instead."
)
node.body = self.parse_statements(("name:endblock",), drop_needle=True)
self.stream.skip_if("name:" + node.name)
return node
def parse_extends(self):
node = nodes.Extends(lineno=next(self.stream).lineno)
node.template = self.parse_expression()
return node
def parse_import_context(self, node, default):
if self.stream.current.test_any(
"name:with", "name:without"
) and self.stream.look().test("name:context"):
node.with_context = next(self.stream).value == "with"
self.stream.skip()
else:
node.with_context = default
return node
def parse_include(self):
node = nodes.Include(lineno=next(self.stream).lineno)
node.template = self.parse_expression()
if self.stream.current.test("name:ignore") and self.stream.look().test(
"name:missing"
):
node.ignore_missing = True
self.stream.skip(2)
else:
node.ignore_missing = False
return self.parse_import_context(node, True)
def parse_import(self):
node = nodes.Import(lineno=next(self.stream).lineno)
node.template = self.parse_expression()
self.stream.expect("name:as")
node.target = self.parse_assign_target(name_only=True).name
return self.parse_import_context(node, False)
def parse_from(self):
node = nodes.FromImport(lineno=next(self.stream).lineno)
node.template = self.parse_expression()
self.stream.expect("name:import")
node.names = []
def parse_context():
if self.stream.current.value in (
"with",
"without",
) and self.stream.look().test("name:context"):
node.with_context = next(self.stream).value == "with"
self.stream.skip()
return True
return False
while 1:
if node.names:
self.stream.expect("comma")
if self.stream.current.type == "name":
if parse_context():
break
target = self.parse_assign_target(name_only=True)
if target.name.startswith("_"):
self.fail(
"names starting with an underline can not be imported",
target.lineno,
exc=TemplateAssertionError,
)
if self.stream.skip_if("name:as"):
alias = self.parse_assign_target(name_only=True)
node.names.append((target.name, alias.name))
else:
node.names.append(target.name)
if parse_context() or self.stream.current.type != "comma":
break
else:
self.stream.expect("name")
if not hasattr(node, "with_context"):
node.with_context = False
return node
def parse_signature(self, node):
node.args = args = []
node.defaults = defaults = []
self.stream.expect("lparen")
while self.stream.current.type != "rparen":
if args:
self.stream.expect("comma")
arg = self.parse_assign_target(name_only=True)
arg.set_ctx("param")
if self.stream.skip_if("assign"):
defaults.append(self.parse_expression())
elif defaults:
self.fail("non-default argument follows default argument")
args.append(arg)
self.stream.expect("rparen")
def parse_call_block(self):
node = nodes.CallBlock(lineno=next(self.stream).lineno)
if self.stream.current.type == "lparen":
self.parse_signature(node)
else:
node.args = []
node.defaults = []
node.call = self.parse_expression()
if not isinstance(node.call, nodes.Call):
self.fail("expected call", node.lineno)
node.body = self.parse_statements(("name:endcall",), drop_needle=True)
return node
def parse_filter_block(self):
node = nodes.FilterBlock(lineno=next(self.stream).lineno)
node.filter = self.parse_filter(None, start_inline=True)
node.body = self.parse_statements(("name:endfilter",), drop_needle=True)
return node
def parse_macro(self):
node = nodes.Macro(lineno=next(self.stream).lineno)
node.name = self.parse_assign_target(name_only=True).name
self.parse_signature(node)
node.body = self.parse_statements(("name:endmacro",), drop_needle=True)
return node
def parse_print(self):
node = nodes.Output(lineno=next(self.stream).lineno)
node.nodes = []
while self.stream.current.type != "block_end":
if node.nodes:
self.stream.expect("comma")
node.nodes.append(self.parse_expression())
return node
def parse_assign_target(
self,
with_tuple=True,
name_only=False,
extra_end_rules=None,
with_namespace=False,
):
if with_namespace and self.stream.look().type == "dot":
token = self.stream.expect("name")
next(self.stream)
attr = self.stream.expect("name")
target = nodes.NSRef(token.value, attr.value, lineno=token.lineno)
elif name_only:
token = self.stream.expect("name")
target = nodes.Name(token.value, "store", lineno=token.lineno)
else:
if with_tuple:
target = self.parse_tuple(
simplified=True, extra_end_rules=extra_end_rules
)
else:
target = self.parse_primary()
target.set_ctx("store")
if not target.can_assign():
self.fail(
"can't assign to %r" % target.__class__.__name__.lower(), target.lineno
)
return target
|
MIT License
|
romeodespres/reapy
|
reapy/core/track/track.py
|
Track.is_selected
|
python
|
def is_selected(self, selected):
if selected:
self.select()
else:
self.unselect()
|
Select or unselect track.
Parameters
----------
selected : bool
Whether to select or unselect track.
|
https://github.com/romeodespres/reapy/blob/730627cee6f39fc26d6ebc8a3df0112e5921cd9f/reapy/core/track/track.py#L424-L436
|
import reapy
from reapy import reascript_api as RPR
from reapy.core import ReapyObject, ReapyObjectList
from reapy.errors import InvalidObjectError, UndefinedEnvelopeError
class Track(ReapyObject):
def __init__(self, id, project=None):
self._project = None
if isinstance(id, int):
id = RPR.GetTrack(project.id, id)
if id.endswith("0x0000000000000000"):
raise IndexError('Track index out of range')
self._project = project
elif isinstance(id, str) and not id.startswith("(MediaTrack*)"):
name = id
id = project._get_track_by_name(name).id
if id.endswith("0x0000000000000000"):
raise KeyError(name)
self._project = project
self.id = id
@property
def _args(self):
return self.id,
@classmethod
def _get_id_from_pointer(cls, pointer):
return '(MediaTrack*)0x{0:0{1}X}'.format(int(pointer), 16)
@reapy.inside_reaper()
def _get_project(self):
for project in reapy.get_projects():
if self.id in [t.id for t in project.tracks]:
return project
def add_audio_accessor(self):
audio_accessor_id = RPR.CreateTrackAudioAccessor(self.id)
audio_accessor = reapy.AudioAccessor(audio_accessor_id)
return audio_accessor
def add_fx(self, name, input_fx=False, even_if_exists=True):
index = RPR.TrackFX_AddByName(
self.id, name, input_fx, 1 - 2 * even_if_exists
)
if index == -1:
raise ValueError("Can't find FX named {}".format(name))
fx = reapy.FX(self, index)
return fx
@reapy.inside_reaper()
def add_item(self, start=0, end=None, length=0):
if end is None:
end = start + length
item = reapy.Item(RPR.AddMediaItemToTrack(self.id))
item.position = start
item.length = end - start
return item
def add_midi_item(self, start=0, end=1, quantize=False):
item_id = RPR.CreateNewMIDIItemInProj(self.id, start, end, quantize)[0]
item = reapy.Item(item_id)
return item
def add_send(self, destination=None):
if isinstance(destination, Track):
destination = destination.id
send_id = RPR.CreateTrackSend(self.id, destination)
type = "hardware" if destination is None else "send"
send = reapy.Send(self, send_id, type=type)
return send
@property
def automation_mode(self):
modes = "trim/read", "read", "touch", "write", "latch", "latch preview"
automation_mode = modes[RPR.GetTrackAutomationMode(self.id)]
return automation_mode
@automation_mode.setter
def automation_mode(self, mode):
modes = "trim/read", "read", "touch", "write", "latch", "latch preview"
RPR.SetTrackAutomationMode(self.id, modes.index(mode))
@property
def color(self):
native_color = RPR.GetTrackColor(self.id)
r, g, b = reapy.rgb_from_native(native_color)
return r, g, b
@color.setter
def color(self, color):
native_color = reapy.rgb_to_native(color)
RPR.SetTrackColor(self.id, native_color)
def delete(self):
RPR.DeleteTrack(self.id)
@property
def depth(self):
depth = RPR.GetTrackDepth(self.id)
return depth
@property
def envelopes(self):
return reapy.EnvelopeList(self)
@property
def fxs(self):
fxs = reapy.FXList(self)
return fxs
def get_info_string(self, param_name):
return RPR.GetSetMediaTrackInfo_String(self.id, param_name, "", False)[3]
def get_info_value(self, param_name):
value = RPR.GetMediaTrackInfo_Value(self.id, param_name)
return value
@property
def GUID(self):
return RPR.GetTrackGUID(self.id)
@GUID.setter
def GUID(self, guid_string):
self.set_info_string("GUID", guid_string)
@reapy.inside_reaper()
@property
def has_valid_id(self):
pointer, name = self._get_pointer_and_name()
if self._project is None:
return any(
RPR.ValidatePtr2(p.id, pointer, name)
for p in reapy.get_projects()
)
return bool(RPR.ValidatePtr2(self.project.id, pointer, name))
@property
def icon(self):
return self.get_info_string("P_ICON")
@icon.setter
def icon(self, filename):
self.set_info_string("P_ICON", filename)
@property
def index(self):
index = int(self.get_info_value('IP_TRACKNUMBER')) - 1
if index >= 0:
return index
if index == -1:
raise InvalidObjectError(self)
@property
def instrument(self):
fx_index = RPR.TrackFX_GetInstrument(self.id)
instrument = None if fx_index == -1 else reapy.FX(self, fx_index)
return instrument
@reapy.inside_reaper()
@property
def items(self):
n_items = RPR.CountTrackMediaItems(self.id)
item_ids = [
RPR.GetTrackMediaItem(self.id, i) for i in range(n_items)
]
return list(map(reapy.Item, item_ids))
@property
def is_muted(self):
return bool(self.get_info_value("B_MUTE"))
@is_muted.setter
def is_muted(self, muted):
if muted:
self.mute()
else:
self.unmute()
@property
def is_selected(self):
is_selected = bool(RPR.IsTrackSelected(self.id))
return is_selected
@is_selected.setter
|
MIT License
|
quattor/aquilon
|
tests/broker/personalitytest.py
|
PersonalityTestMixin.create_personality
|
python
|
def create_personality(self, archetype, name, environment="dev",
grn="grn:/ms/ei/aquilon/unittest", staged=False,
comments=None, maps=None, required=None,
cluster_required=None, config_override=None):
command = ["add_personality", "--archetype", archetype,
"--personality", name, "--grn", grn,
"--host_environment", environment]
if cluster_required or (cluster_required is None and
archetype in clustered_archetypes):
command.append("--cluster_required")
if staged is not None:
if staged:
command.append("--staged")
else:
command.append("--unstaged")
if config_override:
command.append("--config_override")
if staged:
command.append("--staged")
if comments:
command.extend(["--comments", comments])
self.noouttest(command)
self.setup_personality(archetype, name, maps=maps, required=required)
|
Create the given personality with reasonable defaults.
|
https://github.com/quattor/aquilon/blob/6562ea0f224cda33b72a6f7664f48d65f96bd41a/tests/broker/personalitytest.py#L70-L96
|
default_parameters = {
'aquilon': {
"espinfo/function": "development",
"espinfo/class": "INFRASTRUCTURE",
"espinfo/users": "IT / TECHNOLOGY",
"windows/windows": '[{"duration": 8, "start": "08:00", "day": "Sun"}]',
},
'esx_cluster': {
"espinfo/class": "INFRASTRUCTURE",
"windows/windows": '[{"duration": 8, "start": "08:00", "day": "Sun"}]',
},
'hacluster': {
"espinfo/class": "INFRASTRUCTURE",
},
'vmhost': {
"espinfo/function": "development",
"espinfo/class": "INFRASTRUCTURE",
"espinfo/users": "IT / TECHNOLOGY",
"windows/windows": '[{"duration": 8, "start": "08:00", "day": "Sun"}]',
},
}
clustered_archetypes = ["vmhost"]
class PersonalityTestMixin(object):
def setup_personality(self, archetype, name, maps=None, required=None):
if archetype in default_parameters:
for path, value in default_parameters[archetype].items():
command = ["add_parameter", "--archetype", archetype,
"--personality", name,
"--path", path, "--value", value]
self.noouttest(command)
if required:
for service in required:
command = ["add_required_service", "--service", service,
"--archetype", archetype, "--personality", name]
self.noouttest(command)
if maps:
for service, mappings in maps.items():
for instance, locations in mappings.items():
for loc_type, loc_names in locations.items():
for loc_name in loc_names:
self.noouttest(["map_service", "--service", service,
"--instance", instance,
"--" + loc_type, loc_name,
"--personality", name,
"--archetype", archetype])
|
Apache License 2.0
|
autosoft-dev/tree-hugger
|
tree_hugger/core/parser/php/php_parser.py
|
PHPParser.get_all_method_documentations
|
python
|
def get_all_method_documentations(self) -> Dict[str, str]:
return self.get_all_method_phpdocs()
|
Returns a dict where method names are the key and the comment docs are the values
Excludes any functions, i.e., functions defined outside a class.
|
https://github.com/autosoft-dev/tree-hugger/blob/750de305c3efbc0c9440f858a39d33697d04d49f/tree_hugger/core/parser/php/php_parser.py#L144-L150
|
import re
from typing import List, Dict
from pathlib import Path
from tree_sitter import Tree, Node, TreeCursor
from tree_hugger.core.code_parser import BaseParser, match_from_span
from tree_hugger.core.queries import Query
class PHPParser(BaseParser):
QUERY_FILE_PATH = Path(__file__).parent / "queries.yml"
def __init__(self, library_loc: str=None, query_file_path: str=None):
super(PHPParser, self).__init__('php', 'php_queries', PHPParser.QUERY_FILE_PATH, library_loc)
def get_all_function_names(self) -> List[str]:
captures = self._run_query_and_get_captures('all_function_names', self.root_node)
all_funcs = set([match_from_span(n[0], self.splitted_code) for n in captures])
return list(all_funcs)
def get_all_class_method_names(self) -> List[str]:
captures = self._run_query_and_get_captures('all_class_methods', self.root_node)
ret_struct = {}
current_key = ""
for tpl in captures:
if tpl[1] == "class.name":
current_key = match_from_span(tpl[0], self.splitted_code)
ret_struct[current_key] = []
continue
else:
ret_struct[current_key].append(match_from_span(tpl[0], self.splitted_code))
return ret_struct
def get_all_class_names(self) -> List[str]:
captures = self._run_query_and_get_captures('all_class_names', self.root_node)
return [match_from_span(t[0], self.splitted_code) for t in captures]
def get_all_function_bodies(self) -> Dict[str, str]:
function_names = self.get_all_function_names()
captures = self._run_query_and_get_captures('all_function_bodies', self.root_node)
function_bodies = {}
for i in range(0, len(captures), 2):
func_name = match_from_span(captures[i][0], self.splitted_code)
if func_name in function_names:
function_bodies[func_name] = match_from_span(captures[i+1][0], self.splitted_code)
return function_bodies
def get_all_function_names_with_params(self) -> Dict[str, str]:
captures = self._run_query_and_get_captures('all_function_names_and_params', self.root_node)
ret_struct = {}
for i in range(0, len(captures), 2):
func_name = match_from_span(captures[i][0], self.splitted_code)
ret_struct[func_name] = []
for param in captures[i+1][0].children:
if param.type == "simple_parameter":
name = match_from_span(
param.child_by_field_name("name").children[1],
self.splitted_code
)
node_typ = param.child_by_field_name("type")
typ = match_from_span(node_typ, self.splitted_code) if node_typ else None
node_value = param.child_by_field_name("default_value")
value = match_from_span(node_value, self.splitted_code) if node_value else None
elif param.type == "variadic_parameter":
name = match_from_span(
param.child_by_field_name("name").children[1],
self.splitted_code
)
typ = match_from_span(
param.child_by_field_name("type"),
self.splitted_code
)
value = None
else:
continue
ret_struct[func_name].append((name,typ,value))
return ret_struct
def _walk_recursive_phpdoc(self, cursor: TreeCursor, lines: List, node_type: str, documented: Dict):
n = cursor.node
for i in range(len(n.children)):
if i < len(n.children)-1 and n.children[i].type == "comment" and n.children[i+1].type == node_type:
name = str(match_from_span(cursor.node.children[i+1].child_by_field_name("name"), lines))
documented[name] = str(match_from_span(cursor.node.children[i], lines))
self._walk_recursive_phpdoc(n.children[i].walk(), lines, node_type, documented)
def get_all_function_phpdocs(self) -> Dict[str, str]:
documentation = {}
self._walk_recursive_phpdoc(self.root_node.walk(), self.splitted_code, "function_definition", documentation)
return documentation
def get_all_function_documentations(self) -> Dict[str, str]:
return self.get_all_function_phpdocs()
def get_all_method_phpdocs(self) -> Dict[str, str]:
documentation = {}
self._walk_recursive_phpdoc(self.root_node.walk(), self.splitted_code, "method_declaration", documentation)
return documentation
|
MIT License
|
systems-shiftlab/pmfuzz
|
src/pmfuzz/stages/stage1.py
|
Stage1.compress_new_crash_sites
|
python
|
def compress_new_crash_sites(self, parent_img, clean_name):
crash_imgs_pattern = parent_img.replace('.'+nh.PM_IMG_EXT, '') + '.' + clean_name.replace('.'+nh.TC_EXT, '') + '.*'
new_crash_imgs = glob(crash_imgs_pattern)
if self.verbose:
printv('Using pattern %s found %d images' % (crash_imgs_pattern, len(new_crash_imgs)))
hashdb = pickledb.load(self.crash_site_db_f, True)
def get_hash(img):
clean_img = re.sub(r"<pid=\d+>", "", img)
crash_img_name = path.basename(clean_img)
crash_img_name = crash_img_name[crash_img_name.index('.')+1:]
hash_v = sha256sum(img)
hash_f = path.join(self.img_dir, crash_img_name + '.hash')
with open(hash_f, 'w') as hash_obj:
hash_obj.write(hash_v)
prl_hash = parallel.Parallel(
get_hash,
self.cores,
transparent_io=True,
failure_mode=parallel.Parallel.FAILURE_EXIT
)
for img in new_crash_imgs:
if self.verbose:
printv('Running hash collection for ' + img)
prl_hash.run([img])
prl_hash.wait()
if self.verbose:
printv('Now left: %d images' % (len(new_crash_imgs)))
prl = parallel.Parallel(
self.compress_new_crash_site,
self.cores,
transparent_io=True,
failure_mode=parallel.Parallel.FAILURE_EXIT
)
for img in new_crash_imgs:
prl.run([img])
if self.verbose:
printv('Waiting for compression to complete')
prl.wait()
for img in new_crash_imgs:
os.remove(img)
|
Compresses the crash sites generated for the parent img
|
https://github.com/systems-shiftlab/pmfuzz/blob/4318d1daf2720a2164ca609ca35f7e33dd312e91/src/pmfuzz/stages/stage1.py#L226-L287
|
import pickledb
import re
import sys
from os import path, makedirs, listdir
from random import randrange
from shutil import which, rmtree
import handlers.name_handler as nh
import interfaces.failureinjection as finj
from .dedup import Dedup
from .stage import Stage
from interfaces.afl import *
from helper import config
from helper import parallel
from helper.common import *
from helper.prettyprint import *
from helper.target import Target as Tgt
from helper.target import TempEmptyImage
class Stage1(Stage):
def __init__(self, name, srcdir, outdir, cfg, cores, verbose,
force_resp, dry_run):
afloutdir = path.join(outdir, nh.get_outdir_name(1, 1), nh.AFL_DIR_NM)
stageoutdir = path.join(outdir, nh.get_outdir_name(1, 1))
self.afloutdir = afloutdir
try:
makedirs(afloutdir)
except OSError:
if path.isfile(afloutdir):
abort('%s is not a directory.' % afloutdir)
super().__init__(name, srcdir, outdir, cfg, cores, verbose,
force_resp, dry_run)
self.o_tc_dir = path.join(self.afloutdir, 'master_fuzzer/queue')
self.img_dir = path.join(stageoutdir, Dedup.PM_IMG_DIR)
self.tc_dir = path.join(stageoutdir, Dedup.TESTCASE_DIR)
self.map_dir = path.join(stageoutdir, Dedup.MAP_DIR)
try:
makedirs(self.tc_dir)
except OSError as e:
if path.isfile(self.tc_dir):
abort('%s is not a directory.' % self.tc_dir)
try:
makedirs(self.img_dir)
except OSError as e:
if path.isfile(self.img_dir):
abort('%s is not a directory.' % self.img_dir)
try:
makedirs(self.o_tc_dir)
except OSError as e:
if path.isfile(self.o_tc_dir):
abort('%s is not a directory.' % self.o_tc_dir)
try:
makedirs(self.map_dir)
except OSError as e:
if path.isfile(self.map_dir):
abort('%s is not a directory.' % self.map_dir)
def run(self):
run_afl(
indir = self.srcdir,
outdir = self.afloutdir,
tgtcmd = self.cfg.tgtcmd,
cfg = self.cfg,
cores = self.cores,
persist_tgt = False,
verbose = self.verbose,
dry_run = self.dry_run,
)
self.test_img_creation()
def whatsup(self):
afl_whatsup_bin = path.join(self.cfg['pmfuzz']['bin_dir'], 'afl-whatsup')
if which('watch') is None:
abort('`watch\' not found, is it included in the $PATH?')
afl_whatsup_cmd = [afl_whatsup_bin, '-s', self.afloutdir]
printi('Use the following command to track progress:'
+ '\n\t\twatch --color -n0.1 -d \''
+ ' '.join(afl_whatsup_cmd) + '\'')
exec_shell(afl_whatsup_cmd, wait=True)
def test_img_creation(self):
fd, imgpath = tempfile.mkstemp(dir=self.cfg('pmfuzz.img_loc'),
prefix='img_creation_test_img')
os.close(fd)
os.remove(imgpath)
fd, testcase_f = tempfile.mkstemp(prefix='pmfuzz-img-creation-input-')
os.close(fd)
if 'empty_img' in self.cfg('target') != 'None':
with open(testcase_f, 'w') as obj:
obj.write(self.cfg('target.empty_img.stdin') + '\n')
finj.run_failure_inj(
cfg = self.cfg,
tgtcmd = self.cfg.tgtcmd,
imgpath = imgpath,
testcase_f = testcase_f,
clean_name = 'id=000000',
create = True,
verbose = self.verbose,
)
for img in glob(imgpath + '*'):
self.check_crash_site(img)
def _collect_map(self, source_name, clean_name):
src_nm = 'map_' + source_name.replace('.testcase', '')
dest_nm = 'map_' + clean_name
src = path.join(self.o_tc_dir, src_nm)
dest = path.join(self.tc_dir, dest_nm)
if path.isfile(src):
if self.verbose:
printv('mapcpy %s -> %s' %(src, dest))
copypreserve(src, dest)
else:
abort(f'Cannot find {src}')
src_nm = 'pm_map_' + source_name.replace('.testcase', '')
dest_nm = 'pm_map_' + clean_name
src = path.join(self.o_tc_dir, src_nm)
dest = path.join(self.tc_dir, dest_nm)
if path.isfile(src):
if self.verbose:
printv('pmmapcpy%s -> %s' %(src, dest))
copypreserve(src, dest)
else:
printw('Unable to find PM map: ' + src)
def add_cs_hash_lcl(self):
hash_db = pickledb.load(self.crash_site_db_f, True)
for fname in filter(nh.is_hash_f, os.listdir(self.img_dir)):
hash_f = path.join(self.img_dir, fname)
with open(hash_f, 'r') as hash_obj:
hash_k = fname.replace('.' + nh.HASH_F_EXT, '')
hash_v = hash_obj.read().strip()
abort_if(hash_v.count('\n') != 0,
'Invalid hash value:' + hash_v)
hash_db.set(hash_k, hash_v)
hash_db.dump()
if self.verbose:
printv('Updated HashDB at %s with %s: %s' % (self.crash_site_db_f, hash_k, hash_v))
printw('Deleting ' + hash_f)
os.remove(hash_f)
def compress_new_crash_site(self, img):
clean_img = re.sub(r"<pid=\d+>", "", img)
crash_img_name = path.basename(clean_img)
crash_img_name = crash_img_name[crash_img_name.index('.')+1:]
clean_img = path.join(self.img_dir, crash_img_name)
self.check_crash_site(img)
compress(img, clean_img+'.tar.gz', self.verbose, level=3,
extra_params=['--transform', 's/pmfuzz-tmp-img-.........//'])
|
BSD 3-Clause New or Revised License
|
pynbody/tangos
|
tangos/input_handlers/halo_stat_files/__init__.py
|
AmigaIDLStatFile.iter_rows_raw
|
python
|
def iter_rows_raw(self, *args):
for row in super().iter_rows_raw(*args):
row[0] = row[1]
yield row
|
Yield the halo ID along with the values associated with each of the given arguments. The halo ID is output twice
in order to be consistent with other stat file readers. In this case, the finder_offset that is normally output
is just equal to the finder_id.
:param args: strings for the column names
:return: finder_id, finder_id, arg1, arg2, arg3, ... where finder_id is the halo's ID number read directly
from the stat file and argN is the value associated with the Nth column name given as arguments.
|
https://github.com/pynbody/tangos/blob/1d7e837b731e974087ceda4bcb61a1730be0243a/tangos/input_handlers/halo_stat_files/__init__.py#L226-L239
|
from __future__ import absolute_import
import os
import copy
import numpy as np
from . import translations
from ...util import proxy_object
from six.moves import range
from six.moves import zip
class HaloStatFile(object):
_finder_offset_start = 0
_column_translations = {}
def __new__(cls, timestep):
subcls = cls.find_loadable_subclass(timestep)
if subcls:
return object.__new__(subcls)
else:
raise IOError("No stat file found for timestep %r"%timestep)
@classmethod
def find_loadable_subclass(cls, timestep_filename):
if cls.can_load(timestep_filename):
return cls
for subclass in cls.__subclasses__():
loadable_cls = subclass.find_loadable_subclass(timestep_filename)
if loadable_cls:
return loadable_cls
return None
@classmethod
def can_load(cls, timestep_filename):
try:
return os.path.exists(cls.filename(timestep_filename))
except (ValueError, TypeError):
return False
@classmethod
def filename(cls, timestep_filename):
raise ValueError("Unknown path to stat file")
def __init__(self, timestep_filename):
self._timestep_filename = timestep_filename
self.filename = self.filename(timestep_filename)
def all_columns(self):
with open(self.filename) as f:
columns = self._read_column_names(f)
columns+=self._column_translations.keys()
return columns
def iter_rows_raw(self, *args):
with open(self.filename) as f:
header = self._read_column_names(f)
cnt = 0
ids = [0]
for a in args:
try:
ids.append(header.index(a))
except ValueError:
ids.append(None)
for l in f:
if not l.startswith("#"):
col_data = self._get_values_for_columns(ids, l)
col_data.insert(0, cnt+self._finder_offset_start)
yield col_data
cnt += 1
def iter_rows(self, *args):
raw_args = []
for arg in args:
if arg in self._column_translations:
raw_args+=self._column_translations[arg].inputs()
else:
raw_args.append(arg)
for raw_values in self.iter_rows_raw(*raw_args):
values = [raw_values[0], raw_values[1]]
for arg in args:
if arg in self._column_translations:
values.append(self._column_translations[arg](raw_args, raw_values[2:]))
else:
values.append(raw_values[2:][raw_args.index(arg)])
yield values
def read(self, *args):
return_values = [[] for _ in range(len(args)+2)]
for row in self.iter_rows(*args):
for return_array, value in zip(return_values, row):
return_array.append(value)
return [np.array(x) for x in return_values]
def _get_values_for_columns(self, columns, line):
results = []
l_split = line.split()
for id_this in columns:
if id_this is None:
this_cast = None
else:
this_str = l_split[id_this]
if "." in this_str or "e" in this_str:
guess_type = float
else:
guess_type = int
try:
this_cast = guess_type(this_str)
except ValueError:
this_cast = this_str
results.append(this_cast)
return results
def _read_column_names(self, f):
return [x.split("(")[0] for x in f.readline().split()]
class AHFStatFile(HaloStatFile):
_finder_offset_start = 1
_column_translations = {'n_gas': translations.DefaultValue('n_gas', 0),
'n_star': translations.DefaultValue('n_star', 0),
'n_dm': translations.Function(lambda ngas, nstar, npart: npart - (ngas or 0) - (nstar or 0),
'n_gas', 'n_star', 'npart'),
'hostHalo': translations.Function(
lambda id: None if id==-1 else proxy_object.IncompleteProxyObjectFromFinderId(id, 'halo'),
'hostHalo')}
def __init__(self, timestep_filename):
super(AHFStatFile, self).__init__(timestep_filename)
self._column_translations = copy.copy(self._column_translations)
self._column_translations['childHalo'] = translations.Function(self._child_halo_entry, '#ID')
@classmethod
def filename(cls, timestep_filename):
import glob
file_list = glob.glob(timestep_filename+ '.z*.???.AHF_halos')
parts = timestep_filename.split("/")
parts_with_halo = parts[:-1]+["halos"]+parts[-1:]
filename_with_halo = "/".join(parts_with_halo)
file_list+=glob.glob(filename_with_halo+'.z*.???.AHF_halos')
if len(file_list)==0:
return "CannotFindAHFHaloFilename"
else:
return file_list[0]
def _calculate_children(self):
self._children_map = {}
for c_id, f_id, host_f_id in self.iter_rows_raw("hostHalo"):
if host_f_id!=-1:
cmap = self._children_map.get(host_f_id, [])
cmap.append(proxy_object.IncompleteProxyObjectFromFinderId(f_id,'halo'))
self._children_map[host_f_id] = cmap
def _calculate_children_if_required(self):
if not hasattr(self, "_children_map"):
self._calculate_children()
def _child_halo_entry(self, this_id_raw):
self._calculate_children_if_required()
children = self._children_map.get(this_id_raw, [])
return children
class RockstarStatFile(HaloStatFile):
_column_translations = {'n_dm': translations.Rename('Np'),
'n_gas': translations.Value(0),
'n_star': translations.Value(0),
'npart': translations.Rename('Np')}
@classmethod
def filename(cls, timestep_filename):
basename = os.path.basename(timestep_filename)
dirname = os.path.dirname(timestep_filename)
if basename.startswith("snapshot_"):
timestep_id = int(basename[9:])
return os.path.join(dirname, "out_%d.list"%timestep_id)
else:
return "CannotComputeRockstarFilename"
class AmigaIDLStatFile(HaloStatFile):
_column_translations = {'n_dm': translations.Rename('N_dark'),
'n_gas': translations.Rename('N_gas'),
'n_star': translations.Rename("N_star"),
'npart': translations.Function(lambda ngas, nstar, ndark: ngas + nstar + ndark,
"N_dark", "N_gas", "N_star")}
@classmethod
def filename(cls, timestep_filename):
return timestep_filename + '.amiga.stat'
|
BSD 3-Clause New or Revised License
|
gerritcodereview/git-repo
|
git_config.py
|
Remote.WritesTo
|
python
|
def WritesTo(self, ref):
for spec in self.fetch:
if spec.DestMatches(ref):
return True
return False
|
True if the remote stores to the tracking ref.
|
https://github.com/gerritcodereview/git-repo/blob/03ff276cd70e78639232d2e878d972f15ebcd461/git_config.py#L659-L665
|
import contextlib
import datetime
import errno
from http.client import HTTPException
import json
import os
import re
import ssl
import subprocess
import sys
import urllib.error
import urllib.request
from error import GitError, UploadError
import platform_utils
from repo_trace import Trace
from git_command import GitCommand
from git_refs import R_CHANGES, R_HEADS, R_TAGS
SYNC_STATE_PREFIX = 'repo.syncstate.'
ID_RE = re.compile(r'^[0-9a-f]{40}$')
REVIEW_CACHE = dict()
def IsChange(rev):
return rev.startswith(R_CHANGES)
def IsId(rev):
return ID_RE.match(rev)
def IsTag(rev):
return rev.startswith(R_TAGS)
def IsImmutable(rev):
return IsChange(rev) or IsId(rev) or IsTag(rev)
def _key(name):
parts = name.split('.')
if len(parts) < 2:
return name.lower()
parts[0] = parts[0].lower()
parts[-1] = parts[-1].lower()
return '.'.join(parts)
class GitConfig(object):
_ForUser = None
_USER_CONFIG = '~/.gitconfig'
_ForSystem = None
_SYSTEM_CONFIG = '/etc/gitconfig'
@classmethod
def ForSystem(cls):
if cls._ForSystem is None:
cls._ForSystem = cls(configfile=cls._SYSTEM_CONFIG)
return cls._ForSystem
@classmethod
def ForUser(cls):
if cls._ForUser is None:
cls._ForUser = cls(configfile=os.path.expanduser(cls._USER_CONFIG))
return cls._ForUser
@classmethod
def ForRepository(cls, gitdir, defaults=None):
return cls(configfile=os.path.join(gitdir, 'config'),
defaults=defaults)
def __init__(self, configfile, defaults=None, jsonFile=None):
self.file = configfile
self.defaults = defaults
self._cache_dict = None
self._section_dict = None
self._remotes = {}
self._branches = {}
self._json = jsonFile
if self._json is None:
self._json = os.path.join(
os.path.dirname(self.file),
'.repo_' + os.path.basename(self.file) + '.json')
def ClearCache(self):
self._cache_dict = None
def Has(self, name, include_defaults=True):
if _key(name) in self._cache:
return True
if include_defaults and self.defaults:
return self.defaults.Has(name, include_defaults=True)
return False
def GetInt(self, name):
v = self.GetString(name)
if v is None:
return None
v = v.strip()
mult = 1
if v.endswith('k'):
v = v[:-1]
mult = 1024
elif v.endswith('m'):
v = v[:-1]
mult = 1024 * 1024
elif v.endswith('g'):
v = v[:-1]
mult = 1024 * 1024 * 1024
base = 10
if v.startswith('0x'):
base = 16
try:
return int(v, base=base) * mult
except ValueError:
return None
def DumpConfigDict(self):
config_dict = {}
for key in self._cache:
config_dict[key] = self.GetString(key)
return config_dict
def GetBoolean(self, name):
v = self.GetString(name)
if v is None:
return None
v = v.lower()
if v in ('true', 'yes'):
return True
if v in ('false', 'no'):
return False
return None
def SetBoolean(self, name, value):
if value is not None:
value = 'true' if value else 'false'
self.SetString(name, value)
def GetString(self, name, all_keys=False):
try:
v = self._cache[_key(name)]
except KeyError:
if self.defaults:
return self.defaults.GetString(name, all_keys=all_keys)
v = []
if not all_keys:
if v:
return v[0]
return None
r = []
r.extend(v)
if self.defaults:
r.extend(self.defaults.GetString(name, all_keys=True))
return r
def SetString(self, name, value):
key = _key(name)
try:
old = self._cache[key]
except KeyError:
old = []
if value is None:
if old:
del self._cache[key]
self._do('--unset-all', name)
elif isinstance(value, list):
if len(value) == 0:
self.SetString(name, None)
elif len(value) == 1:
self.SetString(name, value[0])
elif old != value:
self._cache[key] = list(value)
self._do('--replace-all', name, value[0])
for i in range(1, len(value)):
self._do('--add', name, value[i])
elif len(old) != 1 or old[0] != value:
self._cache[key] = [value]
self._do('--replace-all', name, value)
def GetRemote(self, name):
try:
r = self._remotes[name]
except KeyError:
r = Remote(self, name)
self._remotes[r.name] = r
return r
def GetBranch(self, name):
try:
b = self._branches[name]
except KeyError:
b = Branch(self, name)
self._branches[b.name] = b
return b
def GetSyncAnalysisStateData(self):
return {k: v for k, v in self.DumpConfigDict().items() if k.startswith(SYNC_STATE_PREFIX)}
def UpdateSyncAnalysisState(self, options, superproject_logging_data):
return SyncAnalysisState(self, options, superproject_logging_data)
def GetSubSections(self, section):
return self._sections.get(section, set())
def HasSection(self, section, subsection=''):
try:
return subsection in self._sections[section]
except KeyError:
return False
def UrlInsteadOf(self, url):
for new_url in self.GetSubSections('url'):
for old_url in self.GetString('url.%s.insteadof' % new_url, True):
if old_url is not None and url.startswith(old_url):
return new_url + url[len(old_url):]
return url
@property
def _sections(self):
d = self._section_dict
if d is None:
d = {}
for name in self._cache.keys():
p = name.split('.')
if 2 == len(p):
section = p[0]
subsect = ''
else:
section = p[0]
subsect = '.'.join(p[1:-1])
if section not in d:
d[section] = set()
d[section].add(subsect)
self._section_dict = d
return d
@property
def _cache(self):
if self._cache_dict is None:
self._cache_dict = self._Read()
return self._cache_dict
def _Read(self):
d = self._ReadJson()
if d is None:
d = self._ReadGit()
self._SaveJson(d)
return d
def _ReadJson(self):
try:
if os.path.getmtime(self._json) <= os.path.getmtime(self.file):
platform_utils.remove(self._json)
return None
except OSError:
return None
try:
Trace(': parsing %s', self.file)
with open(self._json) as fd:
return json.load(fd)
except (IOError, ValueErrorl):
platform_utils.remove(self._json, missing_ok=True)
return None
def _SaveJson(self, cache):
try:
with open(self._json, 'w') as fd:
json.dump(cache, fd, indent=2)
except (IOError, TypeError):
platform_utils.remove(self._json, missing_ok=True)
def _ReadGit(self):
c = {}
if not os.path.exists(self.file):
return c
d = self._do('--null', '--list')
for line in d.rstrip('\0').split('\0'):
if '\n' in line:
key, val = line.split('\n', 1)
else:
key = line
val = None
if key in c:
c[key].append(val)
else:
c[key] = [val]
return c
def _do(self, *args):
if self.file == self._SYSTEM_CONFIG:
command = ['config', '--system', '--includes']
else:
command = ['config', '--file', self.file, '--includes']
command.extend(args)
p = GitCommand(None,
command,
capture_stdout=True,
capture_stderr=True)
if p.Wait() == 0:
return p.stdout
else:
raise GitError('git config %s: %s' % (str(args), p.stderr))
class RepoConfig(GitConfig):
_USER_CONFIG = '~/.repoconfig/config'
class RefSpec(object):
@classmethod
def FromString(cls, rs):
lhs, rhs = rs.split(':', 2)
if lhs.startswith('+'):
lhs = lhs[1:]
forced = True
else:
forced = False
return cls(forced, lhs, rhs)
def __init__(self, forced, lhs, rhs):
self.forced = forced
self.src = lhs
self.dst = rhs
def SourceMatches(self, rev):
if self.src:
if rev == self.src:
return True
if self.src.endswith('/*') and rev.startswith(self.src[:-1]):
return True
return False
def DestMatches(self, ref):
if self.dst:
if ref == self.dst:
return True
if self.dst.endswith('/*') and ref.startswith(self.dst[:-1]):
return True
return False
def MapSource(self, rev):
if self.src.endswith('/*'):
return self.dst[:-1] + rev[len(self.src) - 1:]
return self.dst
def __str__(self):
s = ''
if self.forced:
s += '+'
if self.src:
s += self.src
if self.dst:
s += ':'
s += self.dst
return s
URI_ALL = re.compile(r'^([a-z][a-z+-]*)://([^@/]*@?[^/]*)/')
def GetSchemeFromUrl(url):
m = URI_ALL.match(url)
if m:
return m.group(1)
return None
@contextlib.contextmanager
def GetUrlCookieFile(url, quiet):
if url.startswith('persistent-'):
try:
p = subprocess.Popen(
['git-remote-persistent-https', '-print_config', url],
stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
try:
cookieprefix = 'http.cookiefile='
proxyprefix = 'http.proxy='
cookiefile = None
proxy = None
for line in p.stdout:
line = line.strip().decode('utf-8')
if line.startswith(cookieprefix):
cookiefile = os.path.expanduser(line[len(cookieprefix):])
if line.startswith(proxyprefix):
proxy = line[len(proxyprefix):]
if cookiefile or proxy:
yield cookiefile, proxy
return
finally:
p.stdin.close()
if p.wait():
err_msg = p.stderr.read().decode('utf-8')
if ' -print_config' in err_msg:
pass
elif not quiet:
print(err_msg, file=sys.stderr)
except OSError as e:
if e.errno == errno.ENOENT:
pass
raise
cookiefile = GitConfig.ForUser().GetString('http.cookiefile')
if cookiefile:
cookiefile = os.path.expanduser(cookiefile)
yield cookiefile, None
class Remote(object):
def __init__(self, config, name):
self._config = config
self.name = name
self.url = self._Get('url')
self.pushUrl = self._Get('pushurl')
self.review = self._Get('review')
self.projectname = self._Get('projectname')
self.fetch = list(map(RefSpec.FromString,
self._Get('fetch', all_keys=True)))
self._review_url = None
def _InsteadOf(self):
globCfg = GitConfig.ForUser()
urlList = globCfg.GetSubSections('url')
longest = ""
longestUrl = ""
for url in urlList:
key = "url." + url + ".insteadOf"
insteadOfList = globCfg.GetString(key, all_keys=True)
for insteadOf in insteadOfList:
if (self.url.startswith(insteadOf)
and len(insteadOf) > len(longest)):
longest = insteadOf
longestUrl = url
if len(longest) == 0:
return self.url
return self.url.replace(longest, longestUrl, 1)
def PreConnectFetch(self, ssh_proxy):
if not ssh_proxy:
return True
connectionUrl = self._InsteadOf()
return ssh_proxy.preconnect(connectionUrl)
def ReviewUrl(self, userEmail, validate_certs):
if self._review_url is None:
if self.review is None:
return None
u = self.review
if u.startswith('persistent-'):
u = u[len('persistent-'):]
if u.split(':')[0] not in ('http', 'https', 'sso', 'ssh'):
u = 'http://%s' % u
if u.endswith('/Gerrit'):
u = u[:len(u) - len('/Gerrit')]
if u.endswith('/ssh_info'):
u = u[:len(u) - len('/ssh_info')]
if not u.endswith('/'):
u += '/'
http_url = u
if u in REVIEW_CACHE:
self._review_url = REVIEW_CACHE[u]
elif 'REPO_HOST_PORT_INFO' in os.environ:
host, port = os.environ['REPO_HOST_PORT_INFO'].split()
self._review_url = self._SshReviewUrl(userEmail, host, port)
REVIEW_CACHE[u] = self._review_url
elif u.startswith('sso:') or u.startswith('ssh:'):
self._review_url = u
REVIEW_CACHE[u] = self._review_url
elif 'REPO_IGNORE_SSH_INFO' in os.environ:
self._review_url = http_url
REVIEW_CACHE[u] = self._review_url
else:
try:
info_url = u + 'ssh_info'
if not validate_certs:
context = ssl._create_unverified_context()
info = urllib.request.urlopen(info_url, context=context).read()
else:
info = urllib.request.urlopen(info_url).read()
if info == b'NOT_AVAILABLE' or b'<' in info:
self._review_url = http_url
else:
info = info.decode('utf-8')
host, port = info.split()
self._review_url = self._SshReviewUrl(userEmail, host, port)
except urllib.error.HTTPError as e:
raise UploadError('%s: %s' % (self.review, str(e)))
except urllib.error.URLError as e:
raise UploadError('%s: %s' % (self.review, str(e)))
except HTTPException as e:
raise UploadError('%s: %s' % (self.review, e.__class__.__name__))
REVIEW_CACHE[u] = self._review_url
return self._review_url + self.projectname
def _SshReviewUrl(self, userEmail, host, port):
username = self._config.GetString('review.%s.username' % self.review)
if username is None:
username = userEmail.split('@')[0]
return 'ssh://%s@%s:%s/' % (username, host, port)
def ToLocal(self, rev):
if self.name == '.' or IsId(rev):
return rev
if not rev.startswith('refs/'):
rev = R_HEADS + rev
for spec in self.fetch:
if spec.SourceMatches(rev):
return spec.MapSource(rev)
if not rev.startswith(R_HEADS):
return rev
raise GitError('%s: remote %s does not have %s' %
(self.projectname, self.name, rev))
|
Apache License 2.0
|
google/macops
|
gmacpyutil/gmacpyutil/gmacpyutil.py
|
GetAirportInfo
|
python
|
def GetAirportInfo(include_nearby_networks=False):
airport_info = {}
try:
objc.loadBundle('CoreWLAN', globals(),
bundle_path='/System/Library/Frameworks/CoreWLAN.framework')
except ImportError:
logging.error('Could not load CoreWLAN framework.')
return airport_info
cw_interface_state = {0: u'Inactive',
1: u'Scanning',
2: u'Authenticating',
3: u'Associating',
4: u'Running'}
cw_security = {-1: u'Unknown',
0: u'None',
1: u'WEP',
2: u'WPA Personal',
3: u'WPA Personal Mixed',
4: u'WPA2 Personal',
6: u'Dynamic WEP',
7: u'WPA Enterprise',
8: u'WPA Enterprise Mixed',
9: u'WPA2 Enterprise',
10: u'Enterprise',
11: u'WPA3 Personal',
12: u'WPA3 Enterprise',
13: u'WPA3 Transition'}
cw_phy_mode = {0: u'None',
1: u'802.11a',
2: u'802.11b',
3: u'802.11g',
4: u'802.11n'}
cw_channel_band = {0: u'Unknown',
1: u'2 GHz',
2: u'5 GHz'}
iface = CWInterface.interface()
if not iface:
return airport_info
airport_info['name'] = iface.interfaceName()
airport_info['hw_address'] = iface.hardwareAddress()
airport_info['service_active'] = bool(iface.serviceActive())
airport_info['country_code'] = iface.countryCode()
airport_info['power'] = bool(iface.powerOn())
airport_info['SSID'] = iface.ssid()
airport_info['BSSID'] = iface.bssid()
airport_info['noise_measurement'] = iface.noiseMeasurement()
airport_info['phy_mode'] = iface.activePHYMode()
airport_info['phy_mode_name'] = cw_phy_mode[iface.activePHYMode()]
airport_info['rssi'] = iface.rssiValue()
airport_info['state'] = iface.interfaceState()
airport_info['state_name'] = cw_interface_state[iface.interfaceState()]
airport_info['transmit_power'] = iface.transmitPower()
airport_info['transmit_rate'] = iface.transmitRate()
cw_channel = iface.wlanChannel()
if cw_channel:
airport_info['channel_number'] = cw_channel.channelNumber()
airport_info['channel_band'] = cw_channel_band[cw_channel.channelBand()]
security = iface.security()
if security > 100:
security = -1
airport_info['security'] = security
airport_info['security_name'] = cw_security[security]
if include_nearby_networks:
nearby_networks = []
try:
for nw in iface.scanForNetworksWithName_error_(None, None):
ssid = nw.ssid()
if ssid not in nearby_networks:
nearby_networks.append(ssid)
except TypeError:
pass
airport_info['nearby_networks'] = nearby_networks
return airport_info
|
Returns information about current AirPort connection.
Args:
include_nearby_networks: bool, if True a nearby_networks key will be in
the returned dict with a list of detected SSIDs nearby.
Returns:
dict: key value pairs from CWInterface data. If an error occurs or there is
no Wi-Fi interface: the dict will be empty.
|
https://github.com/google/macops/blob/8442745359c0c941cd4e4e7d243e43bd16b40dec/gmacpyutil/gmacpyutil/gmacpyutil.py#L351-L449
|
import contextlib
import ctypes
import fcntl
import logging
import logging.handlers
import os
import pwd
import re
import select
import signal
import socket
import subprocess
import sys
import time
from . import defaults
from distutils import version as distutils_version
if os.uname()[0] == 'Linux':
pass
else:
try:
import objc
except ImportError:
print >>sys.stderr, ('Can\'t import Mac-specific objc library! '
'Some functionality may be broken.')
objc = None
try:
from Foundation import NSDictionary
from Foundation import NSMutableDictionary
except ImportError:
print >>sys.stderr, ('Can\'t import Mac-specific Foundation libraries! '
'Some functionality may be broken.')
NSDictionary = None
NSMutableDictionary = None
try:
from CoreFoundation import CFStringCreateWithCString
from CoreFoundation import kCFStringEncodingASCII
except ImportError:
print >>sys.stderr, ('Can\'t import Mac-specific CoreFoundation libraries! '
'Some functionality may be broken.')
CFStringCreateWithCString = None
kCFStringEncodingASCII = None
MACHINEINFO = defaults.MACHINEINFO
IMAGEINFO = defaults.IMAGEINFO
SESSIONHASGRAPHICACCESS = 0x0010
LOG_FORMAT_SYSLOG = '%(pathname)s[%(process)d]:%(message)s'
LOG_FORMAT_STDERR_LEVEL = '%(levelname)s: %(message)s'
LOG_FORMAT_STDERR = '%(message)s'
MAX_SUPPORTED_VERS = '10.10'
class GmacpyutilException(Exception):
class LogConfigurationError(GmacpyutilException):
class MissingImportsError(GmacpyutilException):
class MultilineSysLogHandler(logging.handlers.SysLogHandler):
def emit(self, record):
msg = self.format(record)
if len(msg) > 2000:
break_loc_pre = 0
for break_char in ['\n', ' ', '\t']:
break_loc_pre = msg.rfind(break_char, 1000, 2000)
break_loc_post = break_loc_pre + 1
if break_loc_pre > 0:
break
if break_loc_pre < 1:
break_loc_pre = 2000
break_loc_post = 2000
r1msg = msg[:break_loc_pre]
r2msg = 'CONTINUED: %s' % msg[break_loc_post:]
r1 = logging.LogRecord(
record.name, record.levelno, record.pathname, record.lineno,
r1msg, None, None, func=record.funcName)
r2 = logging.LogRecord(
record.name, record.levelno, record.pathname, None, r2msg, None, None)
logging.handlers.SysLogHandler.emit(self, r1)
self.emit(r2)
else:
logging.handlers.SysLogHandler.emit(self, record)
def _ConfigureHandler(handler, logger, formatstr, debug_level):
handler.setFormatter(logging.Formatter(formatstr))
handler.setLevel(debug_level)
logger.addHandler(handler)
def ConfigureLogging(debug_level=logging.INFO,
show_level=True,
stderr=True,
syslog=True,
facility=None):
if not stderr and not syslog:
raise LogConfigurationError('Neither syslog nor stdout handlers set.')
if facility and not syslog:
raise LogConfigurationError('facility can only be used with syslog.')
logger = logging.getLogger()
logger.handlers = []
logger.setLevel(debug_level)
if syslog:
facility_id = logging.handlers.SysLogHandler.LOG_USER
if facility:
try:
facility_id = logging.handlers.SysLogHandler.facility_names[facility]
except KeyError:
logging.error('%s is an invalid facility, using default.', facility)
try:
syslog_handler = MultilineSysLogHandler(facility=facility_id)
_ConfigureHandler(syslog_handler, logger, LOG_FORMAT_SYSLOG, debug_level)
except socket.error:
print >>sys.stderr, 'Warning: Could not configure syslog based logging.'
stderr = True
if stderr:
stderr_handler = logging.StreamHandler()
if show_level:
_ConfigureHandler(stderr_handler, logger, LOG_FORMAT_STDERR_LEVEL,
debug_level)
else:
_ConfigureHandler(stderr_handler, logger, LOG_FORMAT_STDERR, debug_level)
logging.debug('Logging enabled at level %s', debug_level)
def SetFileNonBlocking(f, non_blocking=True):
flags = fcntl.fcntl(f.fileno(), fcntl.F_GETFL)
if bool(flags & os.O_NONBLOCK) != non_blocking:
flags ^= os.O_NONBLOCK
fcntl.fcntl(f.fileno(), fcntl.F_SETFL, flags)
def _RunProcess(cmd, stdinput=None, env=None, cwd=None, sudo=False,
sudo_password=None, background=False, stream_output=False,
timeout=0, waitfor=0):
if timeout and (background or stream_output or sudo or sudo_password or
stdinput):
raise GmacpyutilException('timeout is not compatible with background, '
'stream_output, sudo, sudo_password, or '
'stdinput.')
if waitfor and not timeout:
raise GmacpyutilException('waitfor only valid with timeout.')
if timeout < 0:
raise GmacpyutilException('timeout must be greater than 0.')
if stream_output:
stdoutput = None
stderror = None
else:
stdoutput = subprocess.PIPE
stderror = subprocess.PIPE
if sudo and not background:
sudo_cmd = ['sudo']
if sudo_password and not stdinput:
sudo_cmd.extend(['-S'])
stdinput = sudo_password + '\n'
elif sudo_password and stdinput:
raise GmacpyutilException('stdinput and sudo_password are mutually '
'exclusive')
else:
sudo_cmd.extend(['-p', "%u's password is required for admin access: "])
sudo_cmd.extend(cmd)
cmd = sudo_cmd
elif sudo and background:
raise GmacpyutilException('sudo is not compatible with background.')
environment = os.environ.copy()
if env is not None:
environment.update(env)
try:
task = subprocess.Popen(cmd, stdout=stdoutput, stderr=stderror,
stdin=subprocess.PIPE, env=environment, cwd=cwd)
except OSError, e:
raise GmacpyutilException('Could not execute: %s' % e.strerror)
if timeout == 0:
if not background:
(stdout, stderr) = task.communicate(input=stdinput)
return (stdout, stderr, task.returncode)
else:
if stdinput:
task.stdin.write(stdinput)
return task
else:
inactive = 0
stdoutput = []
stderror = []
SetFileNonBlocking(task.stdout)
SetFileNonBlocking(task.stderr)
returncode = None
while returncode is None:
rlist, _, _ = select.select([task.stdout, task.stderr], [], [], 1.0)
if not rlist:
inactive += 1
if inactive >= timeout:
logging.error('cmd has timed out: %s', cmd)
logging.error('Sending SIGTERM to PID=%s', task.pid)
os.kill(task.pid, signal.SIGTERM)
break
else:
inactive = 0
for fd in rlist:
if fd is task.stdout:
stdoutput.append(fd.read())
elif fd is task.stderr:
stderror.append(fd.read())
returncode = task.poll()
if inactive >= timeout and waitfor > 0:
time.sleep(waitfor)
returncode = task.poll()
stdoutput = ''.join(stdoutput)
stderror = ''.join(stderror)
return (stdoutput, stderror, task.returncode)
def RunProcess(*args, **kwargs):
if kwargs.get('background'):
raise GmacpyutilException('Use RunProcessInBackground() instead.')
out, err, rc = _RunProcess(*args, **kwargs)
return (out, err, rc)
def RunProcessInBackground(*args, **kwargs):
kwargs['background'] = True
return _RunProcess(*args, **kwargs)
def GetConsoleUser():
stat_info = os.stat('/dev/console')
console_user = pwd.getpwuid(stat_info.st_uid)[0]
return console_user
|
Apache License 2.0
|
conducto/conducto
|
nb/magic.py
|
load_ipython_extension
|
python
|
def load_ipython_extension(ipython):
ipython.register_magics(ConductoMagics)
|
This function is called when the extension is
loaded. It accepts an IPython InteractiveShell
instance.
|
https://github.com/conducto/conducto/blob/b480780905f5a25e8c803b60ca7cdf6976ce5ef6/nb/magic.py#L183-L187
|
from IPython.core.magic import Magics, magics_class, line_magic, cell_magic
import ast, astsearch
import re
import shlex
from textwrap import indent
class Param(object):
def __init__(self, name, vtype, value=None, metadata=None):
self.name = name
self.type = vtype
self.value = value
self.metadata = metadata or {}
def __repr__(self):
params = [repr(self.name), self.type.__name__]
if self.value is not None:
params.append(f"value={self.value!r}")
if self.metadata:
params.append(f"metadata={self.metadata!r}")
return f"Param({', '.join(params)})"
def with_value(self, value):
return type(self)(self.name, self.type, value, self.metadata or None)
def __eq__(self, other):
if isinstance(other, Param):
return (
self.name == other.name
and self.type == other.type
and self.value == other.value
)
def any_supported_node(node, path):
if isinstance(node, (ast.Num, ast.Str)):
return
elif isinstance(node, ast.NameConstant) and (node.value in (True, False)):
return
elif isinstance(node, ast.Dict):
for n in node.keys:
any_supported_node(n, path)
for n in node.values:
any_supported_node(n, path)
return
elif isinstance(node, ast.List):
for n in node.elts:
any_supported_node(n, path)
return
raise Exception(
"Parsing an unsupported param in first cell. Only number, string, or Boolean supported: {path}, {node}"
) from None
pydefine_ptrn = ast.Assign(targets=[ast.Name()], value=any_supported_node)
def type_and_value(node):
if isinstance(node, ast.Num):
return type(node.n), node.n
elif isinstance(node, ast.Str):
return str, node.s
elif isinstance(node, ast.NameConstant) and (node.value in (True, False)):
return (bool, node.value)
elif isinstance(node, ast.Dict):
return (
dict,
{
type_and_value(node.keys[i])[1]: type_and_value(node.values[i])[1]
for i in range(len(node.keys))
},
)
elif isinstance(node, ast.List):
return (list, [type_and_value(n)[1] for n in node.elts])
raise Exception(
"Parsing an unsupported param in first cell. Only number, string, or Boolean supported: {node}"
) from None
def get_param_definitions(cellstr):
definitions = list()
cellast = ast.parse(cellstr)
for assign in astsearch.ASTPatternFinder(pydefine_ptrn).scan_ast(cellast):
definitions.append(Param(assign.targets[0].id, *type_and_value(assign.value)))
return definitions
def get_conbparam_definitions(co_nb_params):
definitions = list()
ARG_ASSIGNMENT = re.compile(r"([\-a-zA-Z0-9]+)=(.*)")
for arg in co_nb_params:
kv = re.search(ARG_ASSIGNMENT, arg)
if kv:
name = kv.group(1).lstrip("-")
value = kv.group(2)
param = Param(name, str, value)
definitions.append(param)
else:
name = arg.lstrip("-")
value = not name.startswith("no-")
if not value:
name = name[3:]
param = Param(name, bool, value)
definitions.append(param)
return definitions
RUN_IPYTHON_LOAD_PARAMS = """
import sys
sys.argv[1:] = co_nb_params
del co_nb_params
"""
from IPython.core.magics.namespace import NamespaceMagics
import IPython.core as core
import ipynbname
@magics_class
class ConductoMagics(Magics):
@cell_magic
def conducto(self, line, cell):
self.shell.run_line_magic("store", "-r co_nb_params")
has_co_nb_params = self.shell.ev("'co_nb_params' in locals()")
if not has_co_nb_params:
raise Exception(
"Couldn't store or retrieve parameters in IPython"
) from None
co_nb_params = self.shell.ev("co_nb_params")
nbname = ipynbname.name()
params = co_nb_params[nbname] if nbname in co_nb_params else list()
self.shell.ex(f"co_nb_params = {str(params)}")
for line in RUN_IPYTHON_LOAD_PARAMS.split("\n"):
self.shell.ex(line)
userparams = get_param_definitions(cell)
cliparams = get_conbparam_definitions(params)
overrides = list()
for cliparam in cliparams:
for param in userparams:
if param.name == cliparam.name:
if param.type == str:
overrides.append(f"{param.name} = '{cliparam.value}'")
elif param.type in (list, dict, tuple):
raise Exception(
f"list type notebook arguments not supported. variable '{param.name}'"
) from None
else:
overrides.append(f"{param.name} = {cliparam.value}")
self.shell.run_cell(cell, store_history=False)
if len(overrides):
overrides_statements = "\n".join(overrides)
notification_of_overrides = (
f'print("Applying arguments from the command line: (use `conducto-notebook clearargs` to clear)")\n'
f'print("""{indent(overrides_statements, " ")}""")'
)
overrides_cell = f"{overrides_statements}\n{notification_of_overrides}"
self.shell.run_cell(overrides_cell, store_history=False)
|
Apache License 2.0
|
facebookresearch/classyvision
|
classy_vision/hooks/classy_hook.py
|
ClassyHook.on_phase_start
|
python
|
def on_phase_start(self, task) -> None:
pass
|
Called at the start of each phase.
|
https://github.com/facebookresearch/classyvision/blob/4785d5ee19d3bcedd5b28c1eb51ea1f59188b54d/classy_vision/hooks/classy_hook.py#L81-L83
|
from abc import ABC, abstractmethod
from typing import Any, Dict
from classy_vision.generic.util import log_class_usage
class ClassyHookState:
def get_classy_state(self) -> Dict[str, Any]:
return self.__dict__
def set_classy_state(self, state_dict: Dict[str, Any]):
self.__dict__.update(state_dict)
class ClassyHook(ABC):
def __init__(self):
log_class_usage("Hooks", self.__class__)
self.state = ClassyHookState()
@classmethod
def from_config(cls, config) -> "ClassyHook":
return cls(**config)
def _noop(self, *args, **kwargs) -> None:
pass
@classmethod
def name(cls) -> str:
return cls.__name__
@abstractmethod
def on_start(self, task) -> None:
pass
@abstractmethod
|
MIT License
|
compas-dev/compas
|
src/compas_ghpython/artists/networkartist.py
|
NetworkArtist.draw_edges
|
python
|
def draw_edges(self, edges=None, color=None):
self.edge_color = color
node_xyz = self.node_xyz
edges = edges or list(self.network.edges())
lines = []
for edge in edges:
lines.append({
'start': node_xyz[edge[0]],
'end': node_xyz[edge[1]],
'color': self.edge_color.get(edge, self.default_edgecolor),
'name': "{}.edge.{}-{}".format(self.network.name, *edge)
})
return compas_ghpython.draw_lines(lines)
|
Draw a selection of edges.
Parameters
----------
edges : list, optional
A list of edges to draw.
The default is ``None``, in which case all edges are drawn.
color : tuple or dict of tuple, optional
The color specififcation for the edges.
The default color is the value of ``~NetworkArtist.default_edgecolor``.
Returns
-------
list of :class:`Rhino.Geometry.Line`
|
https://github.com/compas-dev/compas/blob/d795a8bfe9f21ffa124d09e37e9c0ed2e3520057/src/compas_ghpython/artists/networkartist.py#L66-L93
|
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from functools import partial
import compas_ghpython
from compas.utilities import color_to_colordict
from compas.artists import NetworkArtist
from .artist import GHArtist
colordict = partial(color_to_colordict, colorformat='rgb', normalize=False)
class NetworkArtist(GHArtist, NetworkArtist):
def __init__(self, network, **kwargs):
super(NetworkArtist, self).__init__(network=network, **kwargs)
def draw(self):
return (self.draw_nodes(), self.draw_edges())
def draw_nodes(self, nodes=None, color=None):
self.node_color = color
node_xyz = self.node_xyz
nodes = nodes or list(self.network.nodes())
points = []
for node in nodes:
points.append({
'pos': node_xyz[node],
'name': "{}.node.{}".format(self.network.name, node),
'color': self.node_color.get(node, self.default_nodecolor)
})
return compas_ghpython.draw_points(points)
|
MIT License
|
square/connect-python-sdk
|
squareconnect/models/checkout.py
|
Checkout.pre_populate_shipping_address
|
python
|
def pre_populate_shipping_address(self, pre_populate_shipping_address):
self._pre_populate_shipping_address = pre_populate_shipping_address
|
Sets the pre_populate_shipping_address of this Checkout.
If provided, the buyer's shipping info is pre-populated on the checkout page as editable text fields. Default: none; only exists if explicitly set.
:param pre_populate_shipping_address: The pre_populate_shipping_address of this Checkout.
:type: Address
|
https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/checkout.py#L203-L212
|
from pprint import pformat
from six import iteritems
import re
class Checkout(object):
def __init__(self, id=None, checkout_page_url=None, ask_for_shipping_address=None, merchant_support_email=None, pre_populate_buyer_email=None, pre_populate_shipping_address=None, redirect_url=None, order=None, created_at=None, additional_recipients=None):
self.swagger_types = {
'id': 'str',
'checkout_page_url': 'str',
'ask_for_shipping_address': 'bool',
'merchant_support_email': 'str',
'pre_populate_buyer_email': 'str',
'pre_populate_shipping_address': 'Address',
'redirect_url': 'str',
'order': 'Order',
'created_at': 'str',
'additional_recipients': 'list[AdditionalRecipient]'
}
self.attribute_map = {
'id': 'id',
'checkout_page_url': 'checkout_page_url',
'ask_for_shipping_address': 'ask_for_shipping_address',
'merchant_support_email': 'merchant_support_email',
'pre_populate_buyer_email': 'pre_populate_buyer_email',
'pre_populate_shipping_address': 'pre_populate_shipping_address',
'redirect_url': 'redirect_url',
'order': 'order',
'created_at': 'created_at',
'additional_recipients': 'additional_recipients'
}
self._id = id
self._checkout_page_url = checkout_page_url
self._ask_for_shipping_address = ask_for_shipping_address
self._merchant_support_email = merchant_support_email
self._pre_populate_buyer_email = pre_populate_buyer_email
self._pre_populate_shipping_address = pre_populate_shipping_address
self._redirect_url = redirect_url
self._order = order
self._created_at = created_at
self._additional_recipients = additional_recipients
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def checkout_page_url(self):
return self._checkout_page_url
@checkout_page_url.setter
def checkout_page_url(self, checkout_page_url):
self._checkout_page_url = checkout_page_url
@property
def ask_for_shipping_address(self):
return self._ask_for_shipping_address
@ask_for_shipping_address.setter
def ask_for_shipping_address(self, ask_for_shipping_address):
self._ask_for_shipping_address = ask_for_shipping_address
@property
def merchant_support_email(self):
return self._merchant_support_email
@merchant_support_email.setter
def merchant_support_email(self, merchant_support_email):
self._merchant_support_email = merchant_support_email
@property
def pre_populate_buyer_email(self):
return self._pre_populate_buyer_email
@pre_populate_buyer_email.setter
def pre_populate_buyer_email(self, pre_populate_buyer_email):
self._pre_populate_buyer_email = pre_populate_buyer_email
@property
def pre_populate_shipping_address(self):
return self._pre_populate_shipping_address
@pre_populate_shipping_address.setter
|
Apache License 2.0
|
ageir/chirp-rpi
|
chirp.py
|
Chirp.sensor_address
|
python
|
def sensor_address(self, new_addr):
if isinstance(new_addr, int) and (new_addr >= 3 and new_addr <= 119):
self.bus.write_byte_data(self.address, 1, new_addr)
self.reset()
self.address = new_addr
else:
raise ValueError('I2C address must be between 3-119 or 0x03-0x77.')
|
Set a new I2C address for the sensor
Args:
new_addr (int): New I2C address. 3-119 or 0x03-0x77
Raises:
ValueError: If new_addr is not within required range.
|
https://github.com/ageir/chirp-rpi/blob/6e411d6c382d5e43ee1fd269ec4de6a316893407/chirp.py#L184-L198
|
from __future__ import division
from datetime import datetime
import smbus
import sys
import time
class Chirp(object):
def __init__(self, bus=1, address=0x20, min_moist=False, max_moist=False,
temp_scale='celsius', temp_offset=0, read_temp=True,
read_moist=True, read_light=True):
self.bus_num = bus
self.bus = smbus.SMBus(bus)
self.busy_sleep = 0.01
self.address = address
self.min_moist = min_moist
self.max_moist = max_moist
self.temp_scale = temp_scale
self.temp_offset = temp_offset
self.read_temp = read_temp
self.read_moist = read_moist
self.read_light = read_light
self.temp = False
self.moist = False
self.light = False
self.temp_timestamp = datetime
self.moist_timestamp = datetime
self.light_timestamp = datetime
self._GET_CAPACITANCE = 0x00
self._SET_ADDRESS = 0x01
self._GET_ADDRESS = 0x02
self._MEASURE_LIGHT = 0x03
self._GET_LIGHT = 0x04
self._GET_TEMPERATURE = 0x05
self._RESET = 0x06
self._GET_VERSION = 0x07
self._SLEEP = 0x08
self._GET_BUSY = 0x09
def trigger(self):
if self.read_temp is True:
self.temp = self._read_temp()
if self.read_moist is True:
self.moist = self._read_moist()
if self.read_light is True:
self.light = self._read_light()
def get_reg(self, reg):
val = self.bus.read_word_data(self.address, reg)
return (val >> 8) + ((val & 0xFF) << 8)
@property
def version(self):
return self.bus.read_byte_data(self.address, self._GET_VERSION)
@property
def busy(self):
busy = self.bus.read_byte_data(self.address, self._GET_BUSY)
if busy == 1:
return True
else:
return False
def reset(self):
self.bus.write_byte(self.address, self._RESET)
def sleep(self):
self.bus.write_byte(self.address, self._SLEEP)
def wake_up(self, wake_time=1):
self.wake_time = wake_time
try:
self.bus.read_byte_data(self.address, self._GET_VERSION)
except OSError:
pass
finally:
time.sleep(self.wake_time)
@property
def sensor_address(self):
return self.bus.read_byte_data(self.address, self._GET_ADDRESS)
@sensor_address.setter
|
MIT License
|
user-cont/conu
|
conu/backend/k8s/deployment.py
|
Deployment.wait
|
python
|
def wait(self, timeout=15):
Probe(timeout=timeout, fnc=self.all_pods_ready, expected_retval=True).run()
|
block until all replicas are not ready, raises an exc ProbeTimeout if timeout is reached
:param timeout: int or float (seconds), time to wait for pods to run
:return: None
|
https://github.com/user-cont/conu/blob/0d8962560f6f7f17fe1be0d434a4809e2a0ea51d/conu/backend/k8s/deployment.py#L128-L135
|
import logging
import yaml
from kubernetes import client
from kubernetes.client.rest import ApiException
from conu.utils.probes import Probe
from conu.backend.k8s.pod import Pod
from conu.backend.k8s.client import get_apps_api
from conu.exceptions import ConuException
logger = logging.getLogger(__name__)
class Deployment(object):
def __init__(self, name=None, selector=None, labels=None, image_metadata=None,
namespace='default', create_in_cluster=False, from_template=None):
self.namespace = namespace
if (from_template is not None) and (name is not None or selector is not None or
labels is not None or image_metadata is not None):
raise ConuException(
'from_template cannot be passed to constructor at the same time with'
' name, selector, labels or image_metadata')
elif from_template is not None:
self.body = yaml.safe_load(from_template)
self.name = self.body['metadata']['name']
elif (name is not None and selector is not None and
labels is not None and image_metadata is not None):
self.name = name
self.pod = Pod.create(image_metadata)
self.spec = client.V1DeploymentSpec(
selector=client.V1LabelSelector(match_labels=selector),
template=client.V1PodTemplateSpec(metadata=client.V1ObjectMeta(labels=selector),
spec=self.pod.spec))
self.metadata = client.V1ObjectMeta(name=self.name, namespace=self.namespace,
labels=labels)
self.body = client.V1Deployment(spec=self.spec, metadata=self.metadata)
else:
raise ConuException(
'to create deployment you need to specify template or'
' properties: name, selector, labels, image_metadata')
self.api = get_apps_api()
if create_in_cluster:
self.create_in_cluster()
def delete(self):
body = client.V1DeleteOptions()
try:
status = self.api.delete_namespaced_deployment(self.name, self.namespace, body)
logger.info("Deleting Deployment %s in namespace: %s", self.name, self.namespace)
except ApiException as e:
raise ConuException(
"Exception when calling Kubernetes API - delete_namespaced_deployment: %s\n" % e)
if status.status == 'Failure':
raise ConuException("Deletion of Deployment failed")
def get_status(self):
try:
api_response = self.api.read_namespaced_deployment_status(self.name, self.namespace)
except ApiException as e:
raise ConuException(
"Exception when calling Kubernetes API - "
"read_namespaced_deployment_status: %s\n" % e)
return api_response.status
def all_pods_ready(self):
if self.get_status().replicas and self.get_status().ready_replicas:
if self.get_status().replicas == self.get_status().ready_replicas:
logger.info("All pods are ready for deployment %s in namespace: %s",
self.name, self.namespace)
return True
return False
|
MIT License
|
openstack/cinder
|
cinder/volume/drivers/dell_emc/sc/storagecenter_api.py
|
SCApi._find_folder
|
python
|
def _find_folder(self, url, foldername, ssn=-1):
ssn = self._vet_ssn(ssn)
pf = self._get_payload_filter()
pf.append('scSerialNumber', ssn)
basename = os.path.basename(foldername)
pf.append('Name', basename)
folderpath = foldername.strip('/')
folderpath = os.path.dirname(folderpath)
if folderpath != '':
if not self.legacyfoldernames:
folderpath = '/' + folderpath
folderpath += '/'
elif not self.legacyfoldernames:
folderpath = '/'
pf.append('folderPath', folderpath)
folder = None
r = self.client.post(url, pf.payload)
if self._check_result(r):
folder = self._get_result(r, 'folderPath', folderpath)
return folder
|
Find a folder on the SC using the specified url.
Most of the time the folder will already have been created so
we look for the end folder and check that the rest of the path is
right.
The REST url sent in defines the folder type being created on the Dell
Storage Center backend. Thus this is generic to server and volume
folders.
:param url: The portion of the url after the base url (see http class)
to use for this operation. (Can be for Server or Volume
folders.)
:param foldername: Full path to the folder we are looking for.
:returns: Dell folder object.
|
https://github.com/openstack/cinder/blob/4558e4b53a7e41dc1263417a4824f39bb6fd30e1/cinder/volume/drivers/dell_emc/sc/storagecenter_api.py#L826-L866
|
import json
import os.path
import uuid
import eventlet
from oslo_log import log as logging
from oslo_utils import excutils
import requests
import six
from six.moves import http_client
from cinder import exception
from cinder.i18n import _
from cinder import utils
LOG = logging.getLogger(__name__)
class DellDriverRetryableException(exception.VolumeBackendAPIException):
message = _("Retryable Dell Exception encountered")
class PayloadFilter(object):
def __init__(self, filtertype='AND'):
self.payload = {}
self.payload['filter'] = {'filterType': filtertype,
'filters': []}
def append(self, name, val, filtertype='Equals'):
if val is not None:
apifilter = {}
apifilter['attributeName'] = name
apifilter['attributeValue'] = val
apifilter['filterType'] = filtertype
self.payload['filter']['filters'].append(apifilter)
class LegacyPayloadFilter(object):
def __init__(self, filter_type='AND'):
self.payload = {'filterType': filter_type,
'filters': []}
def append(self, name, val, filtertype='Equals'):
if val is not None:
apifilter = {}
apifilter['attributeName'] = name
apifilter['attributeValue'] = val
apifilter['filterType'] = filtertype
self.payload['filters'].append(apifilter)
class HttpClient(object):
def __init__(self, host, port, user, password,
verify, asynctimeout, synctimeout, apiversion):
self.baseUrl = 'https://%s:%s/' % (host, port)
self.session = requests.Session()
self.session.auth = (user, password)
self.header = {}
self.header['Content-Type'] = 'application/json; charset=utf-8'
self.header['Accept'] = 'application/json'
self.header['x-dell-api-version'] = apiversion
self.verify = verify
self.asynctimeout = asynctimeout
self.synctimeout = synctimeout
if not verify:
requests.packages.urllib3.disable_warnings()
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.session.close()
def __formatUrl(self, url):
baseurl = self.baseUrl
if 'api/rest' not in url:
baseurl += 'api/rest/'
return '%s%s' % (baseurl, url if url[0] != '/' else url[1:])
def _get_header(self, header_async):
if header_async:
header = self.header.copy()
header['async'] = 'True'
return header
return self.header
def _get_async_url(self, asyncTask):
try:
url = asyncTask.get('returnValue').split(
'https://')[1].split('/', 1)[1]
except IndexError:
url = asyncTask.get('returnValue')
except AttributeError:
LOG.debug('_get_async_url: Attribute Error. (%r)', asyncTask)
url = 'api/rest/ApiConnection/AsyncTask/'
if not url:
LOG.debug('_get_async_url: No URL. (%r)', asyncTask)
url = 'api/rest/ApiConnection/AsyncTask/'
if url.endswith('/'):
id = asyncTask.get('instanceId')
if id:
LOG.debug('_get_async_url: url format error. (%r)', asyncTask)
url = url + id
else:
LOG.error('_get_async_url: Bogus return async task %r',
asyncTask)
raise exception.VolumeBackendAPIException(
message=_('_get_async_url: Invalid URL.'))
if url.startswith('<') and url.endswith('>'):
LOG.error('_get_async_url: Malformed URL (XML returned). (%r)',
asyncTask)
raise exception.VolumeBackendAPIException(
message=_('_get_async_url: Malformed URL.'))
return url
def _wait_for_async_complete(self, asyncTask):
url = self._get_async_url(asyncTask)
while True and url:
try:
r = self.get(url)
if not SCApi._check_result(r):
LOG.debug('Async error:\n'
'\tstatus_code: %(code)s\n'
'\ttext: %(text)s\n',
{'code': r.status_code,
'text': r.text})
else:
if r.content:
content = r.json()
if content.get('objectType') == 'AsyncTask':
url = self._get_async_url(content)
eventlet.sleep(1)
continue
else:
LOG.debug('Async debug: r.content is None')
return r
except Exception:
methodname = asyncTask.get('methodName')
objectTypeName = asyncTask.get('objectTypeName')
msg = (_('Async error: Unable to retrieve %(obj)s '
'method %(method)s result')
% {'obj': objectTypeName, 'method': methodname})
raise exception.VolumeBackendAPIException(message=msg)
LOG.debug('_wait_for_async_complete: Error asyncTask: %r', asyncTask)
return None
def _rest_ret(self, rest_response, async_call):
if async_call:
if rest_response.status_code == http_client.ACCEPTED:
asyncTask = rest_response.json()
return self._wait_for_async_complete(asyncTask)
else:
LOG.debug('REST Async error command not accepted:\n'
'\tUrl: %(url)s\n'
'\tCode: %(code)d\n'
'\tReason: %(reason)s\n',
{'url': rest_response.url,
'code': rest_response.status_code,
'reason': rest_response.reason})
msg = _('REST Async Error: Command not accepted.')
raise exception.VolumeBackendAPIException(message=msg)
return rest_response
@utils.retry(retry_param=(requests.ConnectionError,
DellDriverRetryableException))
def get(self, url):
LOG.debug('get: %(url)s', {'url': url})
rest_response = self.session.get(self.__formatUrl(url),
headers=self.header,
verify=self.verify,
timeout=self.synctimeout)
if (rest_response and rest_response.status_code == (
http_client.BAD_REQUEST)) and (
'Unhandled Exception' in rest_response.text):
raise DellDriverRetryableException()
return rest_response
@utils.retry(retry_param=(requests.ConnectionError,))
def post(self, url, payload, async_call=False):
LOG.debug('post: %(url)s data: %(payload)s',
{'url': url,
'payload': payload})
return self._rest_ret(self.session.post(
self.__formatUrl(url),
data=json.dumps(payload,
ensure_ascii=False).encode('utf-8'),
headers=self._get_header(async_call),
verify=self.verify, timeout=(
self.asynctimeout if async_call else self.synctimeout)),
async_call)
@utils.retry(retry_param=(requests.ConnectionError,))
def put(self, url, payload, async_call=False):
LOG.debug('put: %(url)s data: %(payload)s',
{'url': url,
'payload': payload})
return self._rest_ret(self.session.put(
self.__formatUrl(url),
data=json.dumps(payload,
ensure_ascii=False).encode('utf-8'),
headers=self._get_header(async_call),
verify=self.verify, timeout=(
self.asynctimeout if async_call else self.synctimeout)),
async_call)
@utils.retry(retry_param=(requests.ConnectionError,))
def delete(self, url, payload=None, async_call=False):
LOG.debug('delete: %(url)s data: %(payload)s',
{'url': url, 'payload': payload})
named = {'headers': self._get_header(async_call),
'verify': self.verify,
'timeout': (
self.asynctimeout if async_call else self.synctimeout)}
if payload:
named['data'] = json.dumps(
payload, ensure_ascii=False).encode('utf-8')
return self._rest_ret(
self.session.delete(self.__formatUrl(url), **named), async_call)
class SCApiHelper(object):
def __init__(self, config, active_backend_id, storage_protocol):
self.config = config
self.active_backend_id = active_backend_id
self.primaryssn = self.config.dell_sc_ssn
self.storage_protocol = storage_protocol
self.san_ip = self.config.san_ip
self.san_login = self.config.san_login
self.san_password = self.config.san_password
self.san_port = self.config.dell_sc_api_port
self.apiversion = '2.0'
def _swap_credentials(self):
if self.san_ip == self.config.san_ip:
if (self.config.secondary_san_ip and
self.config.secondary_san_login and
self.config.secondary_san_password):
self.san_ip = self.config.secondary_san_ip
self.san_login = self.config.secondary_san_login
self.san_password = self.config.secondary_san_password
else:
LOG.info('Swapping DSM credentials: Secondary DSM '
'credentials are not set or are incomplete.')
return False
if self.config.secondary_sc_api_port:
self.san_port = self.config.secondary_sc_api_port
else:
self.san_ip = self.config.san_ip
self.san_login = self.config.san_login
self.san_password = self.config.san_password
self.san_port = self.config.dell_sc_api_port
LOG.info('Swapping DSM credentials: New DSM IP is %r.',
self.san_ip)
return True
def _setup_connection(self):
connection = SCApi(self.san_ip,
self.san_port,
self.san_login,
self.san_password,
self.config.dell_sc_verify_cert,
self.config.dell_api_async_rest_timeout,
self.config.dell_api_sync_rest_timeout,
self.apiversion)
connection.vfname = self.config.dell_sc_volume_folder
connection.sfname = self.config.dell_sc_server_folder
connection.excluded_domain_ips = self.config.excluded_domain_ips
connection.included_domain_ips = self.config.included_domain_ips
if self.config.excluded_domain_ip:
LOG.info("Using excluded_domain_ip for "
"excluding domain IPs is deprecated in the "
"Stein release of OpenStack. Please use the "
"excluded_domain_ips configuration option.")
connection.excluded_domain_ips += self.config.excluded_domain_ip
connection.excluded_domain_ips = list(set(
connection.excluded_domain_ips))
connection.primaryssn = self.primaryssn
if self.storage_protocol == 'FC':
connection.protocol = 'FibreChannel'
if self.active_backend_id:
connection.ssn = int(self.active_backend_id)
else:
connection.ssn = self.primaryssn
connection.open_connection()
return connection
def open_connection(self):
connection = None
LOG.info('open_connection to %(ssn)s at %(ip)s',
{'ssn': self.primaryssn,
'ip': self.san_ip})
if self.primaryssn:
try:
connection = self._setup_connection()
except Exception:
if self._swap_credentials():
connection = self._setup_connection()
else:
with excutils.save_and_reraise_exception():
LOG.error('Failed to connect to the API. '
'No backup DSM provided.')
if self.apiversion != connection.apiversion:
LOG.info('open_connection: Updating API version to %s',
connection.apiversion)
self.apiversion = connection.apiversion
else:
raise exception.VolumeBackendAPIException(
data=_('Configuration error: dell_sc_ssn not set.'))
return connection
class SCApi(object):
APIDRIVERVERSION = '4.1.2'
def __init__(self, host, port, user, password, verify,
asynctimeout, synctimeout, apiversion):
self.notes = 'Created by Dell EMC Cinder Driver'
self.repl_prefix = 'Cinder repl of '
self.ssn = None
self.primaryssn = None
self.failed_over = False
self.vfname = 'openstack'
self.sfname = 'openstack'
self.excluded_domain_ips = []
self.included_domain_ips = []
self.legacypayloadfilters = False
self.consisgroups = True
self.protocol = 'Iscsi'
self.apiversion = apiversion
self.legacyfoldernames = True
self.is_direct_connect = False
self.client = HttpClient(host, port, user, password, verify,
asynctimeout, synctimeout, apiversion)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.close_connection()
@staticmethod
def _check_result(rest_response):
if rest_response is not None:
if http_client.OK <= rest_response.status_code < (
http_client.MULTIPLE_CHOICES):
return True
try:
response_json = rest_response.json()
response_text = response_json.text['result']
except Exception:
response_text = rest_response.text
LOG.debug('REST call result:\n'
'\tUrl: %(url)s\n'
'\tCode: %(code)d\n'
'\tReason: %(reason)s\n'
'\tText: %(text)s',
{'url': rest_response.url,
'code': rest_response.status_code,
'reason': rest_response.reason,
'text': response_text})
else:
LOG.warning('Failed to get REST call result.')
return False
@staticmethod
def _path_to_array(path):
array = []
while True:
(path, tail) = os.path.split(path)
if tail == '':
array.reverse()
return array
array.append(tail)
def _first_result(self, blob):
return self._get_result(blob, None, None)
def _get_result(self, blob, attribute, value):
rsp = None
content = self._get_json(blob)
if content is not None:
if isinstance(content, list):
for r in content:
if attribute is None or r.get(attribute) == value:
rsp = r
break
elif isinstance(content, dict):
if attribute is None or content.get(attribute) == value:
rsp = content
elif attribute is None:
rsp = content
if rsp is None:
LOG.debug('Unable to find result where %(attr)s is %(val)s',
{'attr': attribute,
'val': value})
LOG.debug('Blob was %(blob)s', {'blob': blob.text})
return rsp
def _get_json(self, blob):
try:
return blob.json()
except AttributeError:
LOG.error('Error invalid json: %s', blob)
except TypeError as ex:
LOG.error('Error TypeError. %s', ex)
except ValueError as ex:
LOG.error('JSON decoding error. %s', ex)
LOG.debug('_get_json blob %s', blob)
return None
def _get_id(self, blob):
try:
if isinstance(blob, dict):
return blob.get('instanceId')
except AttributeError:
LOG.error('Invalid API object: %s', blob)
except TypeError as ex:
LOG.error('Error TypeError. %s', ex)
except ValueError as ex:
LOG.error('JSON decoding error. %s', ex)
LOG.debug('_get_id failed: blob %s', blob)
return None
def _get_payload_filter(self, filterType='AND'):
if self.legacypayloadfilters:
return LegacyPayloadFilter(filterType)
return PayloadFilter(filterType)
def _check_version_fail(self, payload, response):
try:
result = self._get_json(response).get('result')
if result and result.startswith(
'Invalid API version specified, '
'the version must be in the range ['):
self.apiversion = response.text.split('[')[1].split(',')[0]
self.client.header['x-dell-api-version'] = self.apiversion
LOG.debug('API version updated to %s', self.apiversion)
r = self.client.post('ApiConnection/Login', payload)
return r
except Exception:
LOG.error('_check_version_fail: Parsing error.')
return response
def open_connection(self):
self.failed_over = (self.primaryssn != self.ssn)
payload = {}
payload['Application'] = 'Cinder REST Driver'
payload['ApplicationVersion'] = self.APIDRIVERVERSION
r = self.client.post('ApiConnection/Login', payload)
if not self._check_result(r):
r = self._check_version_fail(payload, r)
if not self._check_result(r):
raise exception.VolumeBackendAPIException(
data=_('Failed to connect to Dell REST API'))
try:
apidict = self._get_json(r)
version = apidict['apiVersion']
self.is_direct_connect = apidict['provider'] == 'StorageCenter'
splitver = version.split('.')
if splitver[0] == '2':
if splitver[1] == '0':
self.consisgroups = False
self.legacypayloadfilters = True
elif splitver[1] == '1':
self.legacypayloadfilters = True
self.legacyfoldernames = (splitver[0] < '4')
except Exception:
LOG.error('Unrecognized Login Response: %s', r)
def close_connection(self):
r = self.client.post('ApiConnection/Logout', {})
self._check_result(r)
self.client = None
def _use_provider_id(self, provider_id):
ret = False
if provider_id:
try:
if provider_id.split('.')[0] == six.text_type(self.ssn):
ret = True
else:
LOG.debug('_use_provider_id: provider_id '
'%(pid)r not valid on %(ssn)r',
{'pid': provider_id, 'ssn': self.ssn})
except Exception:
LOG.error('_use_provider_id: provider_id %s is invalid!',
provider_id)
return ret
def find_sc(self, ssn=-1):
ssn = self._vet_ssn(ssn)
r = self.client.get('StorageCenter/StorageCenter')
result = self._get_result(r, 'scSerialNumber', ssn)
if result is None:
LOG.error('Failed to find %(s)s. Result %(r)s',
{'s': ssn,
'r': r})
raise exception.VolumeBackendAPIException(
data=_('Failed to find Storage Center'))
return self._get_id(result)
def _create_folder(self, url, parent, folder, ssn=-1):
ssn = self._vet_ssn(ssn)
scfolder = None
payload = {}
payload['Name'] = folder
payload['StorageCenter'] = ssn
if parent != '':
payload['Parent'] = parent
payload['Notes'] = self.notes
r = self.client.post(url, payload, True)
if self._check_result(r):
scfolder = self._first_result(r)
return scfolder
def _create_folder_path(self, url, foldername, ssn=-1):
ssn = self._vet_ssn(ssn)
path = self._path_to_array(foldername)
folderpath = ''
instanceId = ''
found = True
scfolder = None
for folder in path:
folderpath = folderpath + folder
if found:
listurl = url + '/GetList'
scfolder = self._find_folder(listurl, folderpath, ssn)
if scfolder is None:
found = False
if found is False:
scfolder = self._create_folder(url, instanceId, folder, ssn)
if scfolder is None:
LOG.error('Unable to create folder path %s', folderpath)
break
instanceId = self._get_id(scfolder)
folderpath = folderpath + '/'
return scfolder
|
Apache License 2.0
|
felix-hilden/sphinx-codeautolink
|
src/sphinx_codeautolink/parse.py
|
ImportTrackerVisitor.visit_ClassDef
|
python
|
def visit_ClassDef(self, node: ast.ClassDef):
for dec in node.decorator_list:
self.visit(dec)
for base in node.bases:
self.visit(base)
for kw in node.keywords:
self.visit(kw)
self._overwrite(node.name)
self.pseudo_scopes_stack.append(self.pseudo_scopes_stack[0].copy())
for b in node.body:
self.visit(b)
self.pseudo_scopes_stack.pop()
|
Handle pseudo scope of class body.
|
https://github.com/felix-hilden/sphinx-codeautolink/blob/1ab13844f58cf4efe8aac2da710ff5794502770b/src/sphinx_codeautolink/parse.py#L446-L459
|
import ast
import sys
from contextlib import contextmanager
from enum import Enum
from functools import wraps
from importlib import import_module
from typing import Dict, Union, List, Optional, Tuple
from warnings import warn
from dataclasses import dataclass, field
def parse_names(source: str) -> List['Name']:
tree = ast.parse(source)
visitor = ImportTrackerVisitor()
visitor.visit(tree)
return sum([split_access(a) for a in visitor.accessed], [])
@dataclass
class PendingAccess:
components: List[ast.AST]
@dataclass
class Component:
name: str
lineno: int
end_lineno: int
context: str
@classmethod
def from_ast(cls, node):
context = 'load'
if isinstance(node, ast.Name):
name = node.id
context = node.ctx.__class__.__name__.lower()
elif isinstance(node, ast.Attribute):
name = node.attr
context = node.ctx.__class__.__name__.lower()
elif isinstance(node, ast.Call):
name = NameBreak.call
else:
raise ValueError(f'Invalid AST for component: {node.__class__.__name__}')
end_lineno = getattr(node, 'end_lineno', node.lineno)
return cls(name, node.lineno, end_lineno, context)
class NameBreak(str, Enum):
call = '()'
class LinkContext(str, Enum):
none = 'none'
after_call = 'after_call'
import_from = 'import_from'
import_target = 'import_target'
@dataclass
class Name:
import_components: List[str]
code_str: str
lineno: int
end_lineno: int
context: LinkContext = None
resolved_location: str = None
@dataclass
class Access:
context: LinkContext
prior_components: List[Component]
components: List[Component]
hidden_components: List[Component] = field(default_factory=list)
@property
def full_components(self):
if not self.prior_components:
return self.hidden_components + self.components
if self.hidden_components:
proper_components = self.hidden_components[1:] + self.components
else:
proper_components = self.components[1:]
return self.prior_components + proper_components
@property
def code_str(self):
breaks = set(NameBreak)
return '.'.join(c.name for c in self.components if c.name not in breaks)
@property
def lineno_span(self) -> Tuple[int, int]:
min_ = min(c.lineno for c in self.components)
max_ = max(c.end_lineno for c in self.components)
return min_, max_
def split_access(access: Access) -> List[Name]:
split = [access]
while True:
current = split[-1]
for i, comp in enumerate(current.components):
if i and comp.name == NameBreak.call:
hidden = current.hidden_components + current.components[:i]
next_ = Access(
LinkContext.after_call,
current.prior_components,
current.components[i:],
hidden_components=hidden,
)
current.components = current.components[:i]
split.append(next_)
break
else:
break
if split[-1].components[-1].name == NameBreak.call:
split.pop()
return [
Name(
[c.name for c in s.full_components],
s.code_str,
*s.lineno_span,
context=s.context,
)
for s in split
]
@dataclass
class Assignment:
to: Optional[PendingAccess]
value: Optional[PendingAccess]
def track_parents(func):
@wraps(func)
def wrapper(self: 'ImportTrackerVisitor', *args, **kwargs):
self._parents += 1
r: Union[PendingAccess, Assignment, None] = func(self, *args, **kwargs)
self._parents -= 1
if not self._parents:
if isinstance(r, Assignment):
self._resolve_assignment(r)
elif isinstance(r, PendingAccess):
self._access(r)
return r
return wrapper
class ImportTrackerVisitor(ast.NodeVisitor):
def __init__(self):
super().__init__()
self.accessed: List[Access] = []
self.in_augassign = False
self._parents = 0
self.pseudo_scopes_stack: List[Dict[str, List[Component]]] = [{}]
self.outer_scopes_stack: List[Dict[str, List[Component]]] = []
@contextmanager
def reset_parents(self):
self._parents, old = (0, self._parents)
yield
self._parents = old
track_nodes = (
ast.Name,
ast.Attribute,
ast.Call,
ast.Assign,
ast.AnnAssign,
)
if sys.version_info >= (3, 8):
track_nodes += (ast.NamedExpr,)
def visit(self, node: ast.AST):
if not isinstance(node, self.track_nodes):
with self.reset_parents():
return super().visit(node)
return super().visit(node)
def _overwrite(self, name: str):
self.pseudo_scopes_stack[-1].pop(name, None)
def _assign(self, local_name: str, components: List[Component]):
self._overwrite(local_name)
self.pseudo_scopes_stack[-1][local_name] = components
def _access(self, access: PendingAccess) -> Optional[Access]:
components = [Component.from_ast(n) for n in access.components]
prior = self.pseudo_scopes_stack[-1].get(components[0].name, None)
if prior is None:
return
context = components[0].context
if context == 'store' and not self.in_augassign:
self._overwrite(components[0].name)
return
access = Access(LinkContext.none, prior, components)
self.accessed.append(access)
if context == 'del':
self._overwrite(components[0].name)
return access
def _resolve_assignment(self, assignment: Assignment):
value = assignment.value
access = self._access(value) if value is not None else None
if assignment.to is None:
return
if len(assignment.to.components) == 1:
comp = Component.from_ast(assignment.to.components[0])
self._overwrite(comp.name)
if access is not None:
self._assign(comp.name, access.full_components)
else:
self._access(assignment.to)
def _access_simple(self, name: str, lineno: int) -> Optional[Access]:
component = Component(name, lineno, lineno, 'load')
prior = self.pseudo_scopes_stack[-1].get(component.name, None)
if prior is None:
return
access = Access(LinkContext.none, prior, [component])
self.accessed.append(access)
return access
def visit_Global(self, node: ast.Global):
if not self.outer_scopes_stack:
return
imports = self.outer_scopes_stack[0]
for name in node.names:
self._overwrite(name)
if name in imports:
self._assign(name, imports[name])
self._access_simple(name, node.lineno)
def visit_Nonlocal(self, node: ast.Nonlocal):
imports_stack = self.outer_scopes_stack[1:]
for name in node.names:
self._overwrite(name)
for imports in imports_stack[::-1]:
if name in imports:
self.pseudo_scopes_stack[-1][name] = imports[name]
self._access_simple(name, node.lineno)
break
def visit_Import(self, node: Union[ast.Import, ast.ImportFrom], prefix: str = ''):
import_star = (node.names[0].name == '*')
if import_star:
try:
mod = import_module(node.module)
except ImportError:
warn(f'Could not import module `{node.module}` for parsing!')
return
import_names = [name for name in mod.__dict__ if not name.startswith('_')]
aliases = [None] * len(import_names)
else:
import_names = [name.name for name in node.names]
aliases = [name.asname for name in node.names]
end_lineno = getattr(node, 'end_lineno', node.lineno)
prefix_parts = prefix.rstrip('.').split('.') if prefix else []
prefix_components = [
Component(n, node.lineno, end_lineno, 'load') for n in prefix_parts
]
if prefix:
self.accessed.append(Access(LinkContext.import_from, [], prefix_components))
for import_name, alias in zip(import_names, aliases):
if not import_star:
components = [
Component(n, node.lineno, end_lineno, 'load')
for n in import_name.split('.')
]
self.accessed.append(
Access(LinkContext.import_target, [], components, prefix_components)
)
if not alias and '.' in import_name:
import_name = import_name.split('.')[0]
full_components = [
Component(n, node.lineno, end_lineno, 'store')
for n in (prefix + import_name).split('.')
]
self._assign(alias or import_name, full_components)
def visit_ImportFrom(self, node: ast.ImportFrom):
if node.level:
for name in node.names:
self._overwrite(name.asname or name.name)
else:
self.visit_Import(node, prefix=node.module + '.')
@track_parents
def visit_Name(self, node):
return PendingAccess([node])
@track_parents
def visit_Attribute(self, node):
inner: PendingAccess = self.visit(node.value)
if inner is not None:
inner.components.append(node)
return inner
@track_parents
def visit_Call(self, node: ast.Call):
inner: PendingAccess = self.visit(node.func)
if inner is not None:
inner.components.append(node)
with self.reset_parents():
for arg in node.args + node.keywords:
self.visit(arg)
if hasattr(node, 'starargs'):
self.visit(node.starargs)
if hasattr(node, 'kwargs'):
self.visit(node.kwargs)
return inner
@track_parents
def visit_Assign(self, node: ast.Assign):
value = self.visit(node.value)
target_returns = []
for n in node.targets:
target_returns.append(self.visit(n))
if len(target_returns) == 1:
return Assignment(target_returns[0], value)
else:
return value
@track_parents
def visit_AnnAssign(self, node: ast.AnnAssign):
if node.value is not None:
value = self.visit(node.value)
target = self.visit(node.target)
with self.reset_parents():
self.visit(node.annotation)
if node.value is not None:
return Assignment(target, value)
def visit_AugAssign(self, node: ast.AugAssign):
self.visit(node.value)
self.in_augassign, temp = (True, self.in_augassign)
self.visit(node.target)
self.in_augassign = temp
@track_parents
def visit_NamedExpr(self, node):
value = self.visit(node.value)
target = self.visit(node.target)
return Assignment(target, value)
def visit_AsyncFor(self, node: ast.AsyncFor):
self.visit_AsyncFor(node)
def visit_For(self, node: Union[ast.For, ast.AsyncFor]):
self.visit(node.iter)
self.visit(node.target)
for n in node.body:
self.visit(n)
for n in node.orelse:
self.visit(n)
|
MIT License
|
westpa/westpa
|
src/oldtools/stats/edfs.py
|
EDF.std
|
python
|
def std(self):
return self.cmoment(2)**0.5
|
Return the standard deviation (root of the variance) of this probability distribution.
|
https://github.com/westpa/westpa/blob/cda177c5dea2cee571d71c4b04fcc625dc5f689c/src/oldtools/stats/edfs.py#L130-L132
|
import numpy
class EDF:
@staticmethod
def from_array(array):
edf = EDF(None,None)
edf.x = array[:,0]
edf.F = array[:,1]
edf.dF = numpy.diff(edf.F)
return edf
@staticmethod
def from_arrays(x, F):
edf = EDF(None,None)
edf.x = x
edf.F = F
edf.dF = numpy.diff(edf.F)
return edf
def __init__(self, values, weights = None):
if values is None:
self.x = None
self.F = None
self.dF = None
return
if weights is None:
weights = numpy.ones((len(values)), numpy.float64)
elif numpy.isscalar(weights):
tweights = numpy.empty((len(values)), numpy.float64)
tweights[:] = weights
weights = tweights
else:
if len(weights) != len(values):
raise TypeError('values and weights have different lengths')
sort_indices = numpy.argsort(values)
values = values[sort_indices]
weights = weights[sort_indices]
x = values[numpy.concatenate(([True], values[1:] != values[:-1]))]
F = numpy.empty((len(x),), numpy.float64)
ival_last = 0
ival = 0
for ibin in range(0, len(x)):
while ival < len(values) and values[ival] <= x[ibin]:
ival+=1
F[ibin] = weights[ival_last:ival].sum()
ival_last = ival
F = numpy.add.accumulate(F)
F /= F[-1]
self.x = x
self.F = F
self.dF = numpy.diff(F)
def __len__(self):
return len(self.x)
def __call__(self, x):
indices = numpy.digitize(x, self.x)
indices[indices >= len(self.x)] = len(self.x) - 1
return self.F[indices]
def as_array(self):
result = numpy.empty((len(self.F),2), dtype=numpy.result_type(self.x, self.F))
result[:,0] = self.x
result[:,1] = self.F
return result
def quantiles(self, p):
indices = numpy.searchsorted(self.F, p)
indices[indices >= len(self.x)] = len(self.x) - 1
return self.x[indices]
def quantile(self, p):
return self.quantiles([p])[0]
def median(self):
return self.quantiles([0.5])[0]
def moment(self, n):
if n == 1:
return (self.x[:-1] * self.dF).sum()
else:
return (self.x[:-1]**n * self.dF).sum()
def cmoment(self, n):
if n < 2:
return 0
return ((self.x[:-1]-self.moment(1))**n * self.dF).sum()
def mean(self):
return self.moment(1)
def var(self):
return self.cmoment(2)
|
MIT License
|
pappasam/latexbuild
|
latexbuild/assertions.py
|
list_is_type
|
python
|
def list_is_type(ls, t):
if not isclass(t):
raise TypeError("{} is not a class".format(t))
elif not isinstance(ls, list):
raise TypeError("{} is not a list".format(ls))
else:
ls_bad_types = [i for i in ls if not isinstance(i, t)]
if len(ls_bad_types) > 0:
raise TypeError("{} are not {}".format(ls_bad_types, t))
return True
|
Assert that a list contains only elements of type t
Return True if list contains elements of type t
Raise TypeError if t is not a class
Raise TypeError if ls is not a list
Raise TypeError if ls contains non-t elements
:param ls: LIST
:param t: python class
|
https://github.com/pappasam/latexbuild/blob/596a2a0a4c42eaa5eb9503d64f9073ad5d0640d5/latexbuild/assertions.py#L44-L63
|
import shutil
import os
from inspect import isclass
def has_file_extension(filepath, ext_required):
ext = os.path.splitext(filepath)[-1]
if ext != ext_required:
msg_tmpl = "The extension for {}, which is {}, does not equal {}"
msg_format = msg_tmpl.format(filepath, ext, ext_required)
raise ValueError(msg_format)
return True
def is_binary(system_binary_str):
if not isinstance(system_binary_str, str):
raise TypeError("{} must be of type STR".format(system_binary_str))
binary_str = shutil.which(system_binary_str)
if not binary_str:
msg = "{} is not valid system binary".format(system_binary_str)
raise ValueError(msg)
return True
|
MIT License
|
berkeleyautomation/autolab_core
|
autolab_core/image.py
|
Image.mask_by_ind
|
python
|
def mask_by_ind(self, inds):
new_data = np.zeros(self.shape)
for ind in inds:
new_data[ind[0], ind[1]] = self.data[ind[0], ind[1]]
return type(self)(new_data.astype(self.data.dtype), self.frame)
|
Create a new image by zeroing out data at locations not in the
given indices.
Parameters
----------
inds : :obj:`numpy.ndarray` of int
A 2D ndarray whose first entry is the list of row indices
and whose second entry is the list of column indices.
The data at these indices will not be set to zero.
Returns
-------
:obj:`Image`
A new Image of the same type, with data not indexed by inds set
to zero.
|
https://github.com/berkeleyautomation/autolab_core/blob/cda081d2e07e3fe6cc9f3e8c86eea92330910d20/autolab_core/image.py#L496-L516
|
from abc import ABCMeta, abstractmethod
import logging
import os
import cv2
import numpy as np
import PIL.Image as PImage
import matplotlib.pyplot as plt
import scipy.signal as ssg
import scipy.ndimage.filters as sf
import scipy.ndimage.interpolation as sni
import scipy.ndimage.morphology as snm
import scipy.spatial.distance as ssd
import sklearn.cluster as sc
import skimage.morphology as morph
import skimage.transform as skt
from .constants import MAX_DEPTH, MIN_DEPTH, MAX_IR, COLOR_IMAGE_EXTS
from .points import PointCloud, NormalCloud, PointNormalCloud
from .primitives import Contour
BINARY_IM_MAX_VAL = np.iinfo(np.uint8).max
BINARY_IM_DEFAULT_THRESH = BINARY_IM_MAX_VAL / 2
def imresize(image, size, interp="nearest"):
skt_interp_map = {
"nearest": 0,
"bilinear": 1,
"biquadratic": 2,
"bicubic": 3,
"biquartic": 4,
"biquintic": 5,
}
if interp in ("lanczos", "cubic"):
raise ValueError(
'"lanczos" and "cubic"' " interpolation are no longer supported."
)
assert (
interp in skt_interp_map
), 'Interpolation "{}" not' " supported.".format(interp)
if isinstance(size, (tuple, list)):
output_shape = size
elif isinstance(size, (float)):
np_shape = np.asarray(image.shape).astype(np.float32)
np_shape[0:2] *= size
output_shape = tuple(np_shape.astype(int))
elif isinstance(size, (int)):
np_shape = np.asarray(image.shape).astype(np.float32)
np_shape[0:2] *= size / 100.0
output_shape = tuple(np_shape.astype(int))
else:
raise ValueError('Invalid type for size "{}".'.format(type(size)))
return skt.resize(
image.astype(np.float),
output_shape,
order=skt_interp_map[interp],
anti_aliasing=False,
mode="constant",
)
class Image(object):
__metaclass__ = ABCMeta
def __init__(self, data, frame="unspecified"):
if not isinstance(data, np.ndarray):
raise ValueError("Must initialize image with a numpy ndarray")
if not isinstance(frame, str):
raise ValueError("Must provide string name of frame of data")
self._check_valid_data(data)
self._data = self._preprocess_data(data)
self._frame = frame
self._encoding = "passthrough"
def _preprocess_data(self, data):
original_type = data.dtype
if len(data.shape) == 1:
data = data[:, np.newaxis, np.newaxis]
elif len(data.shape) == 2:
data = data[:, :, np.newaxis]
elif len(data.shape) == 0 or len(data.shape) > 3:
raise ValueError(
"Illegal data array passed to image. "
"Must be 1, 2, or 3 dimensional numpy array"
)
return data.astype(original_type)
@property
def shape(self):
return self._data.shape
@property
def height(self):
return self._data.shape[0]
@property
def width(self):
return self._data.shape[1]
@property
def center(self):
return np.array([self.height / 2, self.width / 2])
@property
def channels(self):
return self._data.shape[2]
@property
def type(self):
return self._data.dtype.type
@property
def raw_data(self):
return self._data
@property
def data(self):
return self._data.squeeze()
@property
def frame(self):
return self._frame
@property
def encoding(self):
return self._encoding
@property
def rosmsg(self):
from cv_bridge import CvBridge, CvBridgeError
cv_bridge = CvBridge()
try:
return cv_bridge.cv2_to_imgmsg(self._data, encoding=self._encoding)
except CvBridgeError as cv_bridge_exception:
logging.error("%s" % (str(cv_bridge_exception)))
@abstractmethod
def _check_valid_data(self, data):
pass
@abstractmethod
def _image_data(self):
pass
@abstractmethod
def resize(self, size, interp):
pass
@staticmethod
def can_convert(x):
if len(x.shape) < 2 or len(x.shape) > 3:
return False
channels = 1
if len(x.shape) == 3:
channels = x.shape[2]
if channels > 4:
return False
return True
@staticmethod
def from_array(x, frame="unspecified"):
if not Image.can_convert(x):
raise ValueError("Cannot convert array to an Image!")
dtype = x.dtype
channels = 1
if len(x.shape) == 3:
channels = x.shape[2]
if dtype == np.uint8:
if channels == 1:
if np.any((x % BINARY_IM_MAX_VAL) > 0):
return GrayscaleImage(x, frame)
return BinaryImage(x, frame)
elif channels == 3:
return ColorImage(x, frame)
else:
raise ValueError(
"No available image conversion for uint8 array "
"with 2 channels"
)
elif dtype == np.uint16:
if channels != 1:
raise ValueError(
"No available image conversion for uint16 array "
"with 2 or 3 channels"
)
return GrayscaleImage(x, frame)
elif dtype == np.float32 or dtype == np.float64:
if channels == 1:
return DepthImage(x, frame)
elif channels == 2:
return GdImage(x, frame)
elif channels == 3:
logging.warning("Converting float array to uint8")
return ColorImage(x.astype(np.uint8), frame)
return RgbdImage(x, frame)
else:
raise ValueError(
"Conversion for dtype %s not supported!" % (str(dtype))
)
def transform(self, translation, theta, method="opencv"):
theta = np.rad2deg(theta)
trans_map = np.float32(
[[1, 0, translation[1]], [0, 1, translation[0]]]
)
rot_map = cv2.getRotationMatrix2D(
(self.center[1], self.center[0]), theta, 1
)
trans_map_aff = np.r_[trans_map, [[0, 0, 1]]]
rot_map_aff = np.r_[rot_map, [[0, 0, 1]]]
full_map = rot_map_aff.dot(trans_map_aff)
full_map = full_map[:2, :]
if method == "opencv":
im_data_tf = cv2.warpAffine(
self.data,
full_map,
(self.width, self.height),
flags=cv2.INTER_NEAREST,
)
else:
im_data_tf = sni.affine_transform(
self.data,
matrix=full_map[:, :2],
offset=full_map[:, 2],
order=0,
)
return type(self)(
im_data_tf.astype(self.data.dtype), frame=self._frame
)
def align(self, scale, center, angle, height, width):
scaled_im = self.resize(scale)
cx = scaled_im.center[1]
cy = scaled_im.center[0]
dx = cx - center[0] * scale
dy = cy - center[1] * scale
translation = np.array([dy, dx])
tf_im = scaled_im.transform(translation, angle)
aligned_im = tf_im.crop(height, width)
return aligned_im
def gradients(self):
g = np.gradient(self.data.astype(np.float32))
return g
def ij_to_linear(self, i, j):
return i + j.dot(self.width)
def linear_to_ij(self, linear_inds):
return np.c_[linear_inds / self.width, linear_inds % self.width]
def is_same_shape(self, other_im, check_channels=False):
if self.height == other_im.height and self.width == other_im.width:
if check_channels and self.channels != other_im.channels:
return False
return True
return False
|
Apache License 2.0
|
opennetworkingfoundation/tapi
|
RI/flask_server/tapi_server/models/tapi_connectivity_switch.py
|
TapiConnectivitySwitch.switch_direction
|
python
|
def switch_direction(self, switch_direction):
self._switch_direction = switch_direction
|
Sets the switch_direction of this TapiConnectivitySwitch.
:param switch_direction: The switch_direction of this TapiConnectivitySwitch.
:type switch_direction: TapiCommonPortDirection
|
https://github.com/opennetworkingfoundation/tapi/blob/1f3fd9483d5674552c5a31206c97399c8c151897/RI/flask_server/tapi_server/models/tapi_connectivity_switch.py#L227-L235
|
from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from tapi_server.models.base_model_ import Model
from tapi_server.models.tapi_common_local_class import TapiCommonLocalClass
from tapi_server.models.tapi_common_name_and_value import TapiCommonNameAndValue
from tapi_server.models.tapi_common_port_direction import TapiCommonPortDirection
from tapi_server.models.tapi_connectivity_connection_end_point_ref import TapiConnectivityConnectionEndPointRef
from tapi_server.models.tapi_connectivity_route_ref import TapiConnectivityRouteRef
from tapi_server.models.tapi_connectivity_selection_control import TapiConnectivitySelectionControl
from tapi_server.models.tapi_connectivity_selection_reason import TapiConnectivitySelectionReason
from tapi_server import util
class TapiConnectivitySwitch(Model):
def __init__(self, name=None, local_id=None, selected_connection_end_point=None, selected_route=None, selection_control=None, selection_reason=None, switch_direction=None):
self.openapi_types = {
'name': List[TapiCommonNameAndValue],
'local_id': str,
'selected_connection_end_point': List[TapiConnectivityConnectionEndPointRef],
'selected_route': List[TapiConnectivityRouteRef],
'selection_control': TapiConnectivitySelectionControl,
'selection_reason': TapiConnectivitySelectionReason,
'switch_direction': TapiCommonPortDirection
}
self.attribute_map = {
'name': 'name',
'local_id': 'local-id',
'selected_connection_end_point': 'selected-connection-end-point',
'selected_route': 'selected-route',
'selection_control': 'selection-control',
'selection_reason': 'selection-reason',
'switch_direction': 'switch-direction'
}
self._name = name
self._local_id = local_id
self._selected_connection_end_point = selected_connection_end_point
self._selected_route = selected_route
self._selection_control = selection_control
self._selection_reason = selection_reason
self._switch_direction = switch_direction
@classmethod
def from_dict(cls, dikt) -> 'TapiConnectivitySwitch':
return util.deserialize_model(dikt, cls)
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def local_id(self):
return self._local_id
@local_id.setter
def local_id(self, local_id):
self._local_id = local_id
@property
def selected_connection_end_point(self):
return self._selected_connection_end_point
@selected_connection_end_point.setter
def selected_connection_end_point(self, selected_connection_end_point):
self._selected_connection_end_point = selected_connection_end_point
@property
def selected_route(self):
return self._selected_route
@selected_route.setter
def selected_route(self, selected_route):
self._selected_route = selected_route
@property
def selection_control(self):
return self._selection_control
@selection_control.setter
def selection_control(self, selection_control):
self._selection_control = selection_control
@property
def selection_reason(self):
return self._selection_reason
@selection_reason.setter
def selection_reason(self, selection_reason):
self._selection_reason = selection_reason
@property
def switch_direction(self):
return self._switch_direction
@switch_direction.setter
|
Apache License 2.0
|
neurostuff/nimare
|
nimare/dataset.py
|
Dataset._generic_column_getter
|
python
|
def _generic_column_getter(self, attr, ids=None, column=None, ignore_columns=None):
if ignore_columns is None:
ignore_columns = self._id_cols
else:
ignore_columns += self._id_cols
df = getattr(self, attr)
return_first = False
if isinstance(ids, str) and column is not None:
return_first = True
ids = listify(ids)
available_types = [c for c in df.columns if c not in self._id_cols]
if (column is not None) and (column not in available_types):
raise ValueError(
f"{column} not found in {attr}.\nAvailable types: {', '.join(available_types)}"
)
if column is not None:
if ids is not None:
result = df[column].loc[df["id"].isin(ids)].tolist()
else:
result = df[column].tolist()
else:
if ids is not None:
result = {v: df[v].loc[df["id"].isin(ids)].tolist() for v in available_types}
result = {k: v for k, v in result.items() if any(v)}
else:
result = {v: df[v].tolist() for v in available_types}
result = list(result.keys())
if return_first:
return result[0]
else:
return result
|
Extract information from DataFrame-based attributes.
Parameters
----------
attr : :obj:`str`
The name of the DataFrame-format Dataset attribute to search.
ids : :obj:`list` or None, optional
A list of study IDs within which to extract values.
If None, extract values for all studies in the Dataset.
Default is None.
column : :obj:`str` or None, optional
The column from which to extract values.
If None, a list of all columns with valid values will be returned.
Must be a column within Dataset.[attr].
ignore_columns : :obj:`list` or None, optional
A list of columns to ignore. Only used if ``column`` is None.
Returns
-------
result : :obj:`list` or :obj:`str`
A list of values or a string, depending on if ids is a list (or None) or a string.
|
https://github.com/neurostuff/nimare/blob/e8814c23b33c64a73de907bf56de852b13a9d56a/nimare/dataset.py#L432-L489
|
import copy
import inspect
import json
import logging
import os.path as op
import numpy as np
import pandas as pd
from nilearn._utils import load_niimg
from .base import NiMAREBase
from .utils import (
dict_to_coordinates,
dict_to_df,
get_masker,
get_template,
listify,
mm2vox,
transform_coordinates_to_space,
try_prepend,
validate_df,
validate_images_df,
)
LGR = logging.getLogger(__name__)
class Dataset(NiMAREBase):
_id_cols = ["id", "study_id", "contrast_id"]
def __init__(self, source, target="mni152_2mm", mask=None):
if isinstance(source, str):
with open(source, "r") as f_obj:
data = json.load(f_obj)
elif isinstance(source, dict):
data = source
else:
raise Exception("`source` needs to be a file path or a dictionary")
id_columns = ["id", "study_id", "contrast_id"]
all_ids = []
for pid in data.keys():
for expid in data[pid]["contrasts"].keys():
id_ = f"{pid}-{expid}"
all_ids.append([id_, pid, expid])
id_df = pd.DataFrame(columns=id_columns, data=all_ids)
id_df = id_df.set_index("id", drop=False)
self._ids = id_df.index.values
if mask is None:
mask = get_template(target, mask="brain")
self.masker = mask
self.space = target
self.annotations = dict_to_df(id_df, data, key="labels")
self.coordinates = dict_to_coordinates(data, masker=self.masker, space=self.space)
self.images = dict_to_df(id_df, data, key="images")
self.metadata = dict_to_df(id_df, data, key="metadata")
self.texts = dict_to_df(id_df, data, key="text")
self.basepath = None
def __repr__(self):
signature = inspect.signature(self.__init__)
defaults = {
k: v.default
for k, v in signature.parameters.items()
if v.default is not inspect.Parameter.empty
}
params = self.get_params()
params = {k: v for k, v in params.items() if "__" not in k}
params["space"] = self.space
params.pop("target")
params = {k: v for k, v in params.items() if defaults.get(k) != v}
param_strs = []
for k, v in params.items():
if isinstance(v, str):
param_str = f"{k}='{v}'"
else:
param_str = f"{k}={v}"
param_strs.append(param_str)
params_str = ", ".join(param_strs)
params_str = f"{len(self.ids)} experiments{', ' if params_str else ''}{params_str}"
rep = f"{self.__class__.__name__}({params_str})"
return rep
@property
def ids(self):
return self.__ids
@ids.setter
def _ids(self, ids):
ids = np.sort(np.asarray(ids))
assert isinstance(ids, np.ndarray) and ids.ndim == 1
self.__ids = ids
@property
def masker(self):
return self.__masker
@masker.setter
def masker(self, mask):
mask = get_masker(mask)
if hasattr(self, "masker") and not np.array_equal(
self.masker.mask_img.affine, mask.mask_img.affine
):
LGR.warning("New masker does not match old masker. Space is assumed to be the same.")
self.__masker = mask
@property
def annotations(self):
return self.__annotations
@annotations.setter
def annotations(self, df):
validate_df(df)
self.__annotations = df.sort_values(by="id")
@property
def coordinates(self):
return self.__coordinates
@coordinates.setter
def coordinates(self, df):
validate_df(df)
self.__coordinates = df.sort_values(by="id")
@property
def images(self):
return self.__images
@images.setter
def images(self, df):
validate_df(df)
self.__images = validate_images_df(df).sort_values(by="id")
@property
def metadata(self):
return self.__metadata
@metadata.setter
def metadata(self, df):
validate_df(df)
self.__metadata = df.sort_values(by="id")
@property
def texts(self):
return self.__texts
@texts.setter
def texts(self, df):
validate_df(df)
self.__texts = df.sort_values(by="id")
def slice(self, ids):
new_dset = copy.deepcopy(self)
new_dset._ids = ids
for attribute in ("annotations", "coordinates", "images", "metadata", "texts"):
df = getattr(new_dset, attribute)
df = df.loc[df["id"].isin(ids)]
setattr(new_dset, attribute, df)
return new_dset
def merge(self, right):
assert isinstance(right, Dataset)
shared_ids = np.intersect1d(self.ids, right.ids)
if shared_ids.size:
raise Exception("Duplicate IDs detected in both datasets.")
all_ids = np.concatenate((self.ids, right.ids))
new_dset = copy.deepcopy(self)
new_dset._ids = all_ids
for attribute in ("annotations", "coordinates", "images", "metadata", "texts"):
df1 = getattr(self, attribute)
df2 = getattr(right, attribute)
new_df = df1.append(df2, ignore_index=True, sort=False)
new_df.sort_values(by="id", inplace=True)
new_df.reset_index(drop=True, inplace=True)
new_df = new_df.where(~new_df.isna(), None)
setattr(new_dset, attribute, new_df)
new_dset.coordinates = transform_coordinates_to_space(
new_dset.coordinates,
self.masker,
self.space,
)
return new_dset
def update_path(self, new_path):
self.basepath = op.abspath(new_path)
df = self.images
relative_path_cols = [c for c in df if c.endswith("__relative")]
for col in relative_path_cols:
abs_col = col.replace("__relative", "")
if abs_col in df.columns:
LGR.info(f"Overwriting images column {abs_col}")
df[abs_col] = df[col].apply(try_prepend, prefix=self.basepath)
self.images = df
def copy(self):
return copy.deepcopy(self)
def get(self, dict_, drop_invalid=True):
results = {}
results["id"] = self.ids
keep_idx = np.arange(len(self.ids), dtype=int)
for k, vals in dict_.items():
if vals[0] == "image":
temp = self.get_images(imtype=vals[1])
elif vals[0] == "metadata":
temp = self.get_metadata(field=vals[1])
elif vals[0] == "coordinates":
temp = [self.coordinates.loc[self.coordinates["id"] == id_] for id_ in self.ids]
temp = [t if t.size else None for t in temp]
elif vals[0] == "annotations":
temp = [self.annotations.loc[self.annotations["id"] == id_] for id_ in self.ids]
temp = [t if t.size else None for t in temp]
else:
raise ValueError(f"Input '{vals[0]}' not understood.")
results[k] = temp
temp_keep_idx = np.where([t is not None for t in temp])[0]
keep_idx = np.intersect1d(keep_idx, temp_keep_idx)
if drop_invalid and (len(keep_idx) != len(self.ids)):
LGR.info(f"Retaining {len(keep_idx)}/{len(self.ids)} studies")
elif len(keep_idx) != len(self.ids):
raise Exception(
f"Only {len(keep_idx)}/{len(self.ids)} in Dataset contain the necessary data. "
"If you want to analyze the subset of studies with required data, "
"set `drop_invalid` to True."
)
for k in results:
results[k] = [results[k][i] for i in keep_idx]
if dict_.get(k, [None])[0] in ("coordinates", "annotations"):
results[k] = pd.concat(results[k])
return results
|
MIT License
|
forseti-security/forseti-security
|
google/cloud/forseti/services/inventory/storage.py
|
InventoryIndex.create
|
python
|
def create(cls):
utc_now = date_time.get_utc_now_datetime()
micro_timestamp = date_time.get_utc_now_microtimestamp(utc_now)
return InventoryIndex(
id=micro_timestamp,
created_at_datetime=utc_now,
completed_at_datetime=None,
inventory_status=IndexState.CREATED,
schema_version=CURRENT_SCHEMA,
counter=0)
|
Create a new inventory index row.
Returns:
InventoryIndex: InventoryIndex row object.
|
https://github.com/forseti-security/forseti-security/blob/de5d0f4d047c293a2a72545a76c3783980865551/google/cloud/forseti/services/inventory/storage.py#L129-L143
|
from builtins import object
import json
import enum
import threading
from sqlalchemy import and_
from sqlalchemy import BigInteger
from sqlalchemy import case
from sqlalchemy import Column
from sqlalchemy import DateTime
from sqlalchemy import Enum
from sqlalchemy import exists
from sqlalchemy import ForeignKey
from sqlalchemy import func
from sqlalchemy import Index
from sqlalchemy import Integer
from sqlalchemy import or_
from sqlalchemy import select
from sqlalchemy import String
from sqlalchemy import Text
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import aliased
from sqlalchemy.orm import column_property
from sqlalchemy.orm import joinedload
from sqlalchemy.orm import relationship
from google.cloud.forseti.common.util import date_time
from google.cloud.forseti.common.util import logger
from google.cloud.forseti.common.util.index_state import IndexState
from google.cloud.forseti.services import utils
from google.cloud.forseti.services.inventory.base.storage import Storage as BaseStorage
from google.cloud.forseti.services.scanner.dao import ScannerIndex
LOGGER = logger.get_logger(__name__)
BASE = declarative_base()
CURRENT_SCHEMA = 1
PER_YIELD = 1024
class Categories(enum.Enum):
resource = 1
iam_policy = 2
gcs_policy = 3
dataset_policy = 4
billing_info = 5
enabled_apis = 6
kubernetes_service_config = 7
org_policy = 8
access_policy = 9
SUPPORTED_CATEGORIES = frozenset(item.name for item in list(Categories))
class InventoryWarnings(BASE):
__tablename__ = 'inventory_warnings'
id = Column(Integer, primary_key=True, autoincrement=True)
inventory_index_id = Column(BigInteger, ForeignKey('inventory_index.id'))
resource_full_name = Column(String(2048))
warning_message = Column(Text)
class InventoryIndex(BASE):
__tablename__ = 'inventory_index'
id = Column(BigInteger, primary_key=True)
created_at_datetime = Column(DateTime)
completed_at_datetime = Column(DateTime)
inventory_status = Column(Text)
schema_version = Column(Integer)
progress = Column(Text)
counter = Column(Integer)
inventory_index_warnings = Column(Text(16777215))
inventory_index_errors = Column(Text(16777215))
message = Column(Text(16777215))
warning_count = column_property(
select([func.count(InventoryWarnings.id)]).where(
InventoryWarnings.inventory_index_id == id).correlate_except(
InventoryWarnings))
warning_messages = relationship('InventoryWarnings', cascade='expunge')
def __repr__(self):
return """<{}(id='{}', version='{}', timestamp='{}')>""".format(
self.__class__.__name__,
self.id,
self.schema_version,
self.created_at_datetime)
@classmethod
|
Apache License 2.0
|
golemhq/golem
|
golem/browser.py
|
elements
|
python
|
def elements(*args, **kwargs):
webelement = get_browser().find_all(*args, **kwargs)
return webelement
|
Shortcut to golem.browser.get_browser().find_all()
|
https://github.com/golemhq/golem/blob/ab6a08ee54d2c5d27ab6af15b833ce3d2575d3e3/golem/browser.py#L29-L32
|
import traceback
from contextlib import contextmanager
from selenium import webdriver
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
from golem.core import utils
from golem.core.project import Project
from golem import execution
from golem.webdriver import (GolemChromeDriver,
GolemEdgeDriver,
GolemGeckoDriver,
GolemIeDriver,
GolemOperaDriver,
GolemRemoteDriver)
class InvalidBrowserIdError(Exception):
pass
def element(*args, **kwargs):
webelement = get_browser().find(*args, **kwargs)
return webelement
|
MIT License
|
niaorg/niapy
|
niapy/algorithms/basic/fwa.py
|
EnhancedFireworksAlgorithm.mapping
|
python
|
def mapping(self, x, task):
return repair.rand(x, task.lower, task.upper, rng=self.rng)
|
r"""Fix value to bounds.
Args:
x (numpy.ndarray): Individual to fix.
task (Task): Optimization task.
Returns:
numpy.ndarray: Individual in search range.
|
https://github.com/niaorg/niapy/blob/88de4acbdec9836111c8a0f1c7f76f75b191d344/niapy/algorithms/basic/fwa.py#L488-L499
|
import logging
import numpy as np
from niapy.algorithms.algorithm import Algorithm
from niapy.util.distances import euclidean
import niapy.util.repair as repair
logging.basicConfig()
logger = logging.getLogger('niapy.algorithms.basic')
logger.setLevel('INFO')
__all__ = ['FireworksAlgorithm', 'EnhancedFireworksAlgorithm', 'DynamicFireworksAlgorithm',
'DynamicFireworksAlgorithmGauss', 'BareBonesFireworksAlgorithm']
class BareBonesFireworksAlgorithm(Algorithm):
Name = ['BareBonesFireworksAlgorithm', 'BBFWA']
@staticmethod
def info():
return r"""Junzhi Li, Ying Tan, The bare bones fireworks algorithm: A minimalist global optimizer, Applied Soft Computing, Volume 62, 2018, Pages 454-462, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.10.046."""
def __init__(self, num_sparks=10, amplification_coefficient=1.5, reduction_coefficient=0.5, *args, **kwargs):
kwargs.pop('population_size', None)
super().__init__(1, *args, **kwargs)
self.num_sparks = num_sparks
self.amplification_coefficient = amplification_coefficient
self.reduction_coefficient = reduction_coefficient
def set_parameters(self, num_sparks=10, amplification_coefficient=1.5, reduction_coefficient=0.5, **kwargs):
kwargs.pop('population_size', None)
super().set_parameters(population_size=1, **kwargs)
self.num_sparks = num_sparks
self.amplification_coefficient = amplification_coefficient
self.reduction_coefficient = reduction_coefficient
def init_population(self, task):
x, x_fit, d = super().init_population(task)
d.update({'amplitude': task.range})
return x, x_fit, d
def run_iteration(self, task, population, population_fitness, best_x, best_fitness, **params):
amplitude = params.pop('amplitude')
sparks = self.uniform(population - amplitude, population + amplitude, (self.num_sparks, task.dimension))
sparks = np.apply_along_axis(task.repair, 1, sparks, self.rng)
sparks_fitness = np.apply_along_axis(task.eval, 1, sparks)
best_index = np.argmin(sparks_fitness)
if sparks_fitness[best_index] < population_fitness:
population = sparks[best_index]
population_fitness = sparks_fitness[best_index]
amplitude = self.amplification_coefficient * amplitude
else:
amplitude = self.reduction_coefficient * amplitude
return population, population_fitness, population.copy(), population_fitness, {'amplitude': amplitude}
class FireworksAlgorithm(Algorithm):
Name = ['FireworksAlgorithm', 'FWA']
@staticmethod
def info():
return r"""Tan, Ying. "Fireworks algorithm." Heidelberg, Germany: Springer 10 (2015): 978-3."""
def __init__(self, population_size=5, num_sparks=50, a=0.04, b=0.8, max_amplitude=40, num_gaussian=5, *args, **kwargs):
super().__init__(population_size, *args, **kwargs)
self.num_sparks = num_sparks
self.a = a
self.b = b
self.max_amplitude = max_amplitude
self.num_gaussian = num_gaussian
self.epsilon = np.finfo(float).eps
def set_parameters(self, population_size=5, num_sparks=50, a=0.04, b=0.8, max_amplitude=40, num_gaussian=5,
**kwargs):
super().set_parameters(population_size=population_size, **kwargs)
self.num_sparks = num_sparks
self.a = a
self.b = b
self.max_amplitude = max_amplitude
self.num_gaussian = num_gaussian
self.epsilon = np.finfo(float).eps
def sparks_num(self, population_fitness):
worst_fitness = np.amax(population_fitness)
sparks_num = self.num_sparks * (worst_fitness - population_fitness + self.epsilon)
sparks_num /= np.sum(worst_fitness - population_fitness) + self.epsilon
cond = [sparks_num < self.a * self.num_sparks, (sparks_num > self.b * self.num_sparks) * (self.a < self.b < 1)]
choices = [round(self.a * self.num_sparks), round(self.b * self.num_sparks)]
return np.select(cond, choices, default=np.round(sparks_num)).astype(int)
def explosion_amplitudes(self, population_fitness, task=None):
best_fitness = np.amin(population_fitness)
amplitudes = self.max_amplitude * (population_fitness - best_fitness + self.epsilon)
amplitudes /= np.sum(population_fitness - best_fitness) + self.epsilon
return amplitudes
def explosion_spark(self, x, amplitude, task):
z = self.rng.choice(task.dimension, self.rng.integers(task.dimension), replace=False)
x[z] = x[z] + amplitude * self.uniform(-1, 1)
return self.mapping(x, task)
def gaussian_spark(self, x, task, best_x=None):
z = self.rng.choice(task.dimension, self.rng.integers(task.dimension), replace=False)
x[z] = x[z] * self.normal(1, 1)
return self.mapping(x, task)
def mapping(self, x, task):
return repair.reflect(x, task.lower, task.upper)
def selection(self, population, population_fitness, sparks, task):
sparks_fitness = np.apply_along_axis(task.eval, 1, sparks)
best_index = np.argmin(sparks_fitness)
best_x = sparks[best_index].copy()
best_fitness = sparks_fitness[best_index]
all_sparks = np.delete(sparks, best_index, axis=0)
fitness = np.delete(sparks_fitness, best_index)
distances = np.sum(euclidean(all_sparks[:, np.newaxis, :], all_sparks[np.newaxis, :, :]), axis=0)
probabilities = distances / np.sum(distances)
selected_indices = self.rng.choice(len(all_sparks), self.population_size - 1, replace=False, p=probabilities)
population[0] = best_x
population[1:] = all_sparks[selected_indices]
population_fitness[0] = best_fitness
population_fitness[1:] = fitness[selected_indices]
return population, population_fitness, best_x, best_fitness
def run_iteration(self, task, population, population_fitness, best_x, best_fitness, **params):
sparks_num = self.sparks_num(population_fitness)
amplitudes = self.explosion_amplitudes(population_fitness, task=task)
all_sparks = population.copy()
for i in range(self.population_size):
si = sparks_num[i]
ai = amplitudes[i]
sparks_i = np.empty((si, task.dimension))
for s in range(si):
sparks_i[s] = population[i]
sparks_i[s] = self.explosion_spark(sparks_i[s], ai, task)
all_sparks = np.concatenate((all_sparks, sparks_i), axis=0)
gaussian_idx = self.rng.choice(len(all_sparks), self.num_gaussian, replace=False)
gaussian_sparks = np.array(all_sparks[gaussian_idx])
for i in range(self.num_gaussian):
gaussian_sparks[i] = self.gaussian_spark(gaussian_sparks[i], task, best_x=best_x)
all_sparks = np.concatenate((all_sparks, gaussian_sparks), axis=0)
population, population_fitness, best_x, best_fitness = self.selection(population, population_fitness,
all_sparks, task)
return population, population_fitness, best_x, best_fitness, {}
class EnhancedFireworksAlgorithm(FireworksAlgorithm):
Name = ['EnhancedFireworksAlgorithm', 'EFWA']
@staticmethod
def info():
return r"""S. Zheng, A. Janecek and Y. Tan, "Enhanced Fireworks Algorithm," 2013 IEEE Congress on Evolutionary Computation, Cancun, 2013, pp. 2069-2077. doi: 10.1109/CEC.2013.6557813"""
def __init__(self, amplitude_init=0.2, amplitude_final=0.01, *args, **kwargs):
super().__init__(*args, **kwargs)
self.amplitude_init = amplitude_init
self.amplitude_final = amplitude_final
def set_parameters(self, amplitude_init=0.2, amplitude_final=0.01, **kwargs):
super().set_parameters(**kwargs)
self.amplitude_init = amplitude_init
self.amplitude_final = amplitude_final
def explosion_amplitudes(self, population_fitness, task=None):
amplitudes = super().explosion_amplitudes(population_fitness, task)
a_min = self.amplitude_init - np.sqrt(task.evals * (2 * task.max_evals - task.evals)) * (self.amplitude_init - self.amplitude_final) / task.max_evals
amplitudes[amplitudes < a_min] = a_min
return amplitudes
|
MIT License
|
google/uncertainty-baselines
|
baselines/cifar/ood_utils.py
|
load_ood_datasets
|
python
|
def load_ood_datasets(ood_dataset_names,
in_dataset_builder,
in_dataset_validation_percent,
batch_size,
drop_remainder=False):
steps = {}
datasets = {}
for ood_dataset_name in ood_dataset_names:
ood_dataset_class = ub.datasets.DATASETS[ood_dataset_name]
ood_dataset_class = ub.datasets.make_ood_dataset(ood_dataset_class)
if 'cifar' not in ood_dataset_name:
ood_dataset_builder = ood_dataset_class(
in_dataset_builder,
split='test',
validation_percent=in_dataset_validation_percent,
normalize_by_cifar=True,
drop_remainder=drop_remainder)
else:
ood_dataset_builder = ood_dataset_class(
in_dataset_builder,
split='test',
validation_percent=in_dataset_validation_percent,
drop_remainder=drop_remainder)
ood_dataset = ood_dataset_builder.load(batch_size=batch_size)
steps[f'ood/{ood_dataset_name}'] = ood_dataset_builder.num_examples(
'in_distribution') // batch_size + ood_dataset_builder.num_examples(
'ood') // batch_size
datasets[f'ood/{ood_dataset_name}'] = ood_dataset
return datasets, steps
|
Load OOD datasets.
|
https://github.com/google/uncertainty-baselines/blob/d37c17c4b08a88d6546bbf299b59127a03398404/baselines/cifar/ood_utils.py#L64-L96
|
import tensorflow as tf
import uncertainty_baselines as ub
def DempsterShaferUncertainty(logits):
num_classes = tf.shape(logits)[-1]
num_classes = tf.cast(num_classes, dtype=logits.dtype)
belief_mass = tf.reduce_sum(tf.exp(logits), axis=-1)
return num_classes / (belief_mass + num_classes)
def create_ood_metrics(ood_dataset_names):
ood_metrics = {}
for dataset_name in ood_dataset_names:
ood_dataset_name = f'ood/{dataset_name}'
ood_metrics.update({
f'{ood_dataset_name}_auroc':
tf.keras.metrics.AUC(curve='ROC', num_thresholds=100000),
f'{ood_dataset_name}_auprc':
tf.keras.metrics.AUC(curve='PR', num_thresholds=100000),
f'{ood_dataset_name}_(1-fpr)@95tpr':
tf.keras.metrics.SpecificityAtSensitivity(
0.95, num_thresholds=100000)
})
return ood_metrics
|
Apache License 2.0
|
upb-lea/gym-electric-motor
|
gym_electric_motor/reference_generators/subepisoded_reference_generator.py
|
SubepisodedReferenceGenerator._reset_reference
|
python
|
def _reset_reference(self):
raise NotImplementedError
|
Subclasses implement in this method its generation of the references for the next self._current_episode_length
time steps and write it into self._reference.
|
https://github.com/upb-lea/gym-electric-motor/blob/f091d6b4a754d4fa2439fea64e2c89b9e86d683a/gym_electric_motor/reference_generators/subepisoded_reference_generator.py#L98-L103
|
import numpy as np
from gym.spaces import Box
from ..random_component import RandomComponent
from ..core import ReferenceGenerator
from ..utils import set_state_array
class SubepisodedReferenceGenerator(ReferenceGenerator, RandomComponent):
def __init__(self, reference_state='omega', episode_lengths=(500, 2000), limit_margin=None, **kwargs):
ReferenceGenerator.__init__(self, **kwargs)
RandomComponent.__init__(self)
self.reference_space = Box(-1, 1, shape=(1,))
self._reference = None
self._limit_margin = limit_margin
self._reference_value = 0.0
self._reference_state = reference_state.lower()
self._episode_len_range = episode_lengths
self._current_episode_length = int(self._get_current_value(episode_lengths))
self._k = 0
self._reference_names = [self._reference_state]
def set_modules(self, physical_system):
super().set_modules(physical_system)
self._referenced_states = set_state_array(
{self._reference_state: 1}, physical_system.state_names
).astype(bool)
rs = self._referenced_states
ps = physical_system
if self._limit_margin is None:
upper_margin = (ps.nominal_state[rs] / ps.limits[rs])[0] * ps.state_space.high[rs]
lower_margin = (ps.nominal_state[rs] / ps.limits[rs])[0] * ps.state_space.low[rs]
self._limit_margin = lower_margin[0], upper_margin[0]
elif type(self._limit_margin) in [float, int]:
upper_margin = self._limit_margin * ps.state_space.high[rs]
lower_margin = self._limit_margin * ps.state_space.low[rs]
self._limit_margin = lower_margin[0], upper_margin[0]
elif type(self._limit_margin) is tuple:
lower_margin = self._limit_margin[0] * ps.state_space.low[rs]
upper_margin = self._limit_margin[1] * ps.state_space.high[rs]
self._limit_margin = lower_margin[0], upper_margin[0]
else:
raise Exception('Unknown type for the limit margin.')
self.reference_space = Box(lower_margin[0], upper_margin[0], shape=(1,))
def reset(self, initial_state=None, initial_reference=None):
if initial_reference is not None:
self._reference_value = initial_reference[self._referenced_states][0]
else:
self._reference_value = 0.0
self.next_generator()
self._current_episode_length = -1
return super().reset(initial_state)
def get_reference(self, *_, **__):
reference = np.zeros_like(self._referenced_states, dtype=float)
reference[self._referenced_states] = self._reference_value
return reference
def get_reference_observation(self, *_, **__):
if self._k >= self._current_episode_length:
self._k = 0
self._current_episode_length = int(self._get_current_value(self._episode_len_range))
self._reset_reference()
self._reference_value = self._reference[self._k]
self._k += 1
return np.array([self._reference_value])
|
MIT License
|
argoproj-labs/argo-client-python
|
argo/workflows/client/models/v1alpha1_workflow_template_lint_request.py
|
V1alpha1WorkflowTemplateLintRequest.template
|
python
|
def template(self):
return self._template
|
Gets the template of this V1alpha1WorkflowTemplateLintRequest. # noqa: E501
:return: The template of this V1alpha1WorkflowTemplateLintRequest. # noqa: E501
:rtype: V1alpha1WorkflowTemplate
|
https://github.com/argoproj-labs/argo-client-python/blob/993d684cab39a834770b296e028519cec035c7b5/argo/workflows/client/models/v1alpha1_workflow_template_lint_request.py#L108-L115
|
import pprint
import re
import six
from argo.workflows.client.configuration import Configuration
class V1alpha1WorkflowTemplateLintRequest(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'create_options': 'V1CreateOptions',
'namespace': 'str',
'template': 'V1alpha1WorkflowTemplate'
}
attribute_map = {
'create_options': 'createOptions',
'namespace': 'namespace',
'template': 'template'
}
def __init__(self, create_options=None, namespace=None, template=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._create_options = None
self._namespace = None
self._template = None
self.discriminator = None
if create_options is not None:
self.create_options = create_options
if namespace is not None:
self.namespace = namespace
if template is not None:
self.template = template
@property
def create_options(self):
return self._create_options
@create_options.setter
def create_options(self, create_options):
self._create_options = create_options
@property
def namespace(self):
return self._namespace
@namespace.setter
def namespace(self, namespace):
self._namespace = namespace
@property
|
Apache License 2.0
|
rbuffat/pyidf
|
pyidf/location_and_climate.py
|
SizingPeriodDesignDay.humidity_condition_type
|
python
|
def humidity_condition_type(self):
return self["Humidity Condition Type"]
|
field `Humidity Condition Type`
| values/schedules indicated here and in subsequent fields create the humidity
| values in the 24 hour design day conditions profile.
| Default value: WetBulb
Args:
value (str): value for IDD Field `Humidity Condition Type`
Raises:
ValueError: if `value` is not a valid value
Returns:
str: the value of `humidity_condition_type` or None if not set
|
https://github.com/rbuffat/pyidf/blob/c2f744211572b5e14e29522aac1421ba88addb0e/pyidf/location_and_climate.py#L692-L709
|
from collections import OrderedDict
import logging
from pyidf.helper import DataObject
logger = logging.getLogger("pyidf")
logger.addHandler(logging.NullHandler())
class SiteLocation(DataObject):
_schema = {'extensible-fields': OrderedDict(),
'fields': OrderedDict([(u'name',
{'name': u'Name',
'pyname': u'name',
'required-field': True,
'autosizable': False,
'autocalculatable': False,
'type': u'alpha'}),
(u'latitude',
{'name': u'Latitude',
'pyname': u'latitude',
'default': 0.0,
'maximum': 90.0,
'required-field': False,
'autosizable': False,
'minimum': -90.0,
'autocalculatable': False,
'type': u'real',
'unit': u'deg'}),
(u'longitude',
{'name': u'Longitude',
'pyname': u'longitude',
'default': 0.0,
'maximum': 180.0,
'required-field': False,
'autosizable': False,
'minimum': -180.0,
'autocalculatable': False,
'type': u'real',
'unit': u'deg'}),
(u'time zone',
{'name': u'Time Zone',
'pyname': u'time_zone',
'default': 0.0,
'maximum': 14.0,
'required-field': False,
'autosizable': False,
'minimum': -12.0,
'autocalculatable': False,
'type': u'real',
'unit': u'hr'}),
(u'elevation',
{'name': u'Elevation',
'pyname': u'elevation',
'default': 0.0,
'maximum<': 8900.0,
'required-field': False,
'autosizable': False,
'minimum': -300.0,
'autocalculatable': False,
'type': u'real',
'unit': u'm'})]),
'format': None,
'group': u'Location and Climate',
'min-fields': 5,
'name': u'Site:Location',
'pyname': u'SiteLocation',
'required-object': False,
'unique-object': True}
@property
def name(self):
return self["Name"]
@name.setter
def name(self, value=None):
self["Name"] = value
@property
def latitude(self):
return self["Latitude"]
@latitude.setter
def latitude(self, value=None):
self["Latitude"] = value
@property
def longitude(self):
return self["Longitude"]
@longitude.setter
def longitude(self, value=None):
self["Longitude"] = value
@property
def time_zone(self):
return self["Time Zone"]
@time_zone.setter
def time_zone(self, value=None):
self["Time Zone"] = value
@property
def elevation(self):
return self["Elevation"]
@elevation.setter
def elevation(self, value=None):
self["Elevation"] = value
class SizingPeriodDesignDay(DataObject):
_schema = {'extensible-fields': OrderedDict(),
'fields': OrderedDict([(u'name',
{'name': u'Name',
'pyname': u'name',
'required-field': True,
'autosizable': False,
'autocalculatable': False,
'type': u'alpha'}),
(u'month',
{'name': u'Month',
'pyname': u'month',
'maximum': 12,
'required-field': True,
'autosizable': False,
'minimum': 1,
'autocalculatable': False,
'type': u'integer'}),
(u'day of month',
{'name': u'Day of Month',
'pyname': u'day_of_month',
'maximum': 31,
'required-field': True,
'autosizable': False,
'minimum': 1,
'autocalculatable': False,
'type': u'integer'}),
(u'day type',
{'name': u'Day Type',
'pyname': u'day_type',
'required-field': True,
'autosizable': False,
'accepted-values': [u'Sunday',
u'Monday',
u'Tuesday',
u'Wednesday',
u'Thursday',
u'Friday',
u'Saturday',
u'Holiday',
u'SummerDesignDay',
u'WinterDesignDay',
u'CustomDay1',
u'CustomDay2'],
'autocalculatable': False,
'type': 'alpha'}),
(u'maximum dry-bulb temperature',
{'name': u'Maximum Dry-Bulb Temperature',
'pyname': u'maximum_drybulb_temperature',
'maximum': 70.0,
'required-field': False,
'autosizable': False,
'minimum': -90.0,
'autocalculatable': False,
'type': u'real',
'unit': u'C'}),
(u'daily dry-bulb temperature range',
{'name': u'Daily Dry-Bulb Temperature Range',
'pyname': u'daily_drybulb_temperature_range',
'default': 0.0,
'required-field': False,
'autosizable': False,
'minimum': 0.0,
'autocalculatable': False,
'type': u'real',
'unit': u'deltaC'}),
(u'dry-bulb temperature range modifier type',
{'name': u'Dry-Bulb Temperature Range Modifier Type',
'pyname': u'drybulb_temperature_range_modifier_type',
'default': u'DefaultMultipliers',
'required-field': False,
'autosizable': False,
'accepted-values': [u'MultiplierSchedule',
u'DifferenceSchedule',
u'TemperatureProfileSchedule',
u'DefaultMultipliers'],
'autocalculatable': False,
'type': 'alpha'}),
(u'dry-bulb temperature range modifier day schedule name',
{'name': u'Dry-Bulb Temperature Range Modifier Day Schedule Name',
'pyname': u'drybulb_temperature_range_modifier_day_schedule_name',
'required-field': False,
'autosizable': False,
'autocalculatable': False,
'type': u'object-list'}),
(u'humidity condition type',
{'name': u'Humidity Condition Type',
'pyname': u'humidity_condition_type',
'default': u'WetBulb',
'required-field': False,
'autosizable': False,
'accepted-values': [u'WetBulb',
u'DewPoint',
u'HumidityRatio',
u'Enthalpy',
u'RelativeHumiditySchedule',
u'WetBulbProfileMultiplierSchedule',
u'WetBulbProfileDifferenceSchedule',
u'WetBulbProfileDefaultMultipliers'],
'autocalculatable': False,
'type': 'alpha'}),
(u'wetbulb or dewpoint at maximum dry-bulb',
{'name': u'Wetbulb or DewPoint at Maximum Dry-Bulb',
'pyname': u'wetbulb_or_dewpoint_at_maximum_drybulb',
'required-field': False,
'autosizable': False,
'autocalculatable': False,
'type': u'real',
'unit': u'C'}),
(u'humidity condition day schedule name',
{'name': u'Humidity Condition Day Schedule Name',
'pyname': u'humidity_condition_day_schedule_name',
'required-field': False,
'autosizable': False,
'autocalculatable': False,
'type': u'object-list'}),
(u'humidity ratio at maximum dry-bulb',
{'name': u'Humidity Ratio at Maximum Dry-Bulb',
'pyname': u'humidity_ratio_at_maximum_drybulb',
'required-field': False,
'autosizable': False,
'autocalculatable': False,
'type': u'real',
'unit': u'kgWater/kgDryAir'}),
(u'enthalpy at maximum dry-bulb',
{'name': u'Enthalpy at Maximum Dry-Bulb',
'pyname': u'enthalpy_at_maximum_drybulb',
'required-field': False,
'autosizable': False,
'autocalculatable': False,
'type': u'real',
'unit': u'J/kg'}),
(u'daily wet-bulb temperature range',
{'name': u'Daily Wet-Bulb Temperature Range',
'pyname': u'daily_wetbulb_temperature_range',
'required-field': False,
'autosizable': False,
'autocalculatable': False,
'type': 'real',
'unit': u'deltaC'}),
(u'barometric pressure',
{'name': u'Barometric Pressure',
'pyname': u'barometric_pressure',
'maximum': 120000.0,
'required-field': False,
'autosizable': False,
'minimum': 31000.0,
'autocalculatable': False,
'type': u'real',
'unit': u'Pa'}),
(u'wind speed',
{'name': u'Wind Speed',
'pyname': u'wind_speed',
'maximum': 40.0,
'required-field': True,
'autosizable': False,
'minimum': 0.0,
'autocalculatable': False,
'type': u'real',
'unit': u'm/s'}),
(u'wind direction',
{'name': u'Wind Direction',
'pyname': u'wind_direction',
'maximum': 360.0,
'required-field': True,
'autosizable': False,
'minimum': 0.0,
'autocalculatable': False,
'type': u'real',
'unit': u'deg'}),
(u'rain indicator',
{'name': u'Rain Indicator',
'pyname': u'rain_indicator',
'default': u'No',
'required-field': False,
'autosizable': False,
'accepted-values': [u'Yes',
u'No'],
'autocalculatable': False,
'type': 'alpha'}),
(u'snow indicator',
{'name': u'Snow Indicator',
'pyname': u'snow_indicator',
'default': u'No',
'required-field': False,
'autosizable': False,
'accepted-values': [u'Yes',
u'No'],
'autocalculatable': False,
'type': 'alpha'}),
(u'daylight saving time indicator',
{'name': u'Daylight Saving Time Indicator',
'pyname': u'daylight_saving_time_indicator',
'default': u'No',
'required-field': False,
'autosizable': False,
'accepted-values': [u'Yes',
u'No'],
'autocalculatable': False,
'type': 'alpha'}),
(u'solar model indicator',
{'name': u'Solar Model Indicator',
'pyname': u'solar_model_indicator',
'default': u'ASHRAEClearSky',
'required-field': False,
'autosizable': False,
'accepted-values': [u'ASHRAEClearSky',
u'ZhangHuang',
u'Schedule',
u'ASHRAETau'],
'autocalculatable': False,
'type': 'alpha'}),
(u'beam solar day schedule name',
{'name': u'Beam Solar Day Schedule Name',
'pyname': u'beam_solar_day_schedule_name',
'required-field': False,
'autosizable': False,
'autocalculatable': False,
'type': u'object-list'}),
(u'diffuse solar day schedule name',
{'name': u'Diffuse Solar Day Schedule Name',
'pyname': u'diffuse_solar_day_schedule_name',
'required-field': False,
'autosizable': False,
'autocalculatable': False,
'type': u'object-list'}),
(u'ashrae clear sky optical depth for beam irradiance (taub)',
{'name': u'ASHRAE Clear Sky Optical Depth for Beam Irradiance (taub)',
'pyname': u'ashrae_clear_sky_optical_depth_for_beam_irradiance_taub',
'default': 0.0,
'maximum': 1.2,
'required-field': False,
'autosizable': False,
'minimum': 0.0,
'autocalculatable': False,
'type': 'real',
'unit': u'dimensionless'}),
(u'ashrae clear sky optical depth for diffuse irradiance (taud)',
{'name': u'ASHRAE Clear Sky Optical Depth for Diffuse Irradiance (taud)',
'pyname': u'ashrae_clear_sky_optical_depth_for_diffuse_irradiance_taud',
'default': 0.0,
'maximum': 3.0,
'required-field': False,
'autosizable': False,
'minimum': 0.0,
'autocalculatable': False,
'type': 'real',
'unit': u'dimensionless'}),
(u'sky clearness',
{'name': u'Sky Clearness',
'pyname': u'sky_clearness',
'default': 0.0,
'maximum': 1.2,
'required-field': False,
'autosizable': False,
'minimum': 0.0,
'autocalculatable': False,
'type': u'real'})]),
'format': None,
'group': u'Location and Climate',
'min-fields': 0,
'name': u'SizingPeriod:DesignDay',
'pyname': u'SizingPeriodDesignDay',
'required-object': False,
'unique-object': False}
@property
def name(self):
return self["Name"]
@name.setter
def name(self, value=None):
self["Name"] = value
@property
def month(self):
return self["Month"]
@month.setter
def month(self, value=None):
self["Month"] = value
@property
def day_of_month(self):
return self["Day of Month"]
@day_of_month.setter
def day_of_month(self, value=None):
self["Day of Month"] = value
@property
def day_type(self):
return self["Day Type"]
@day_type.setter
def day_type(self, value=None):
self["Day Type"] = value
@property
def maximum_drybulb_temperature(self):
return self["Maximum Dry-Bulb Temperature"]
@maximum_drybulb_temperature.setter
def maximum_drybulb_temperature(self, value=None):
self["Maximum Dry-Bulb Temperature"] = value
@property
def daily_drybulb_temperature_range(self):
return self["Daily Dry-Bulb Temperature Range"]
@daily_drybulb_temperature_range.setter
def daily_drybulb_temperature_range(self, value=None):
self["Daily Dry-Bulb Temperature Range"] = value
@property
def drybulb_temperature_range_modifier_type(self):
return self["Dry-Bulb Temperature Range Modifier Type"]
@drybulb_temperature_range_modifier_type.setter
def drybulb_temperature_range_modifier_type(
self,
value="DefaultMultipliers"):
self["Dry-Bulb Temperature Range Modifier Type"] = value
@property
def drybulb_temperature_range_modifier_day_schedule_name(self):
return self["Dry-Bulb Temperature Range Modifier Day Schedule Name"]
@drybulb_temperature_range_modifier_day_schedule_name.setter
def drybulb_temperature_range_modifier_day_schedule_name(self, value=None):
self["Dry-Bulb Temperature Range Modifier Day Schedule Name"] = value
@property
|
Apache License 2.0
|
polysquare/polysquare-travis-container
|
psqtraviscontainer/linux_container.py
|
_rmtrees_as_container
|
python
|
def _rmtrees_as_container(cont, directories):
root = cont.root_filesystem_directory()
with tempfile.NamedTemporaryFile(dir=root, mode="wt") as bash_script:
bash_script.write(";\n".join([("rm -rf " + d) for d in directories]))
bash_script.flush()
cont.execute(["bash", bash_script.name], minimal_bind=True)
|
Remove directories as the root user in the container.
This allows the removal of directories where permission errors
might not permit otherwise.
|
https://github.com/polysquare/polysquare-travis-container/blob/bb31302cfc48f55da56c12ab27b88644380209b9/psqtraviscontainer/linux_container.py#L89-L100
|
from __future__ import unicode_literals
import errno
import fnmatch
import os
import platform
import shutil
import stat
import tarfile
import tempfile
from collections import defaultdict
from collections import namedtuple
from getpass import getuser
from itertools import chain
from clint.textui import colored
from psqtraviscontainer import architecture
from psqtraviscontainer import constants
from psqtraviscontainer import container
from psqtraviscontainer import debian_package
from psqtraviscontainer import directory
from psqtraviscontainer import distro
from psqtraviscontainer import package_system
from psqtraviscontainer import printer
from psqtraviscontainer import util
from psqtraviscontainer.download import TemporarilyDownloadedFile
import tempdir
_PROOT_URL_BASE = "http://static.proot.me/proot-{arch}"
_QEMU_URL_BASE = ("http://download.opensuse.org/repositories"
"/home:/cedric-vincent/xUbuntu_12.04/{arch}/"
"qemu-user-mode_1.6.1-1_{arch}.deb")
DistroInfo = distro.DistroInfo
DistroConfig = distro.DistroConfig
ProotDistribution = namedtuple("ProotDistribution", "proot qemu")
def proot_distro_from_container(container_dir):
path_to_proot_dir = constants.proot_distribution_dir(container_dir)
path_to_proot_bin = os.path.join(path_to_proot_dir, "bin/proot")
path_to_qemu_template = os.path.join(path_to_proot_dir,
"bin/qemu-{arch}")
def _get_qemu_binary(arch):
qemu_arch = architecture.Alias.qemu(arch)
return path_to_qemu_template.format(arch=qemu_arch)
def _get_proot_binary():
return path_to_proot_bin
return ProotDistribution(proot=_get_proot_binary,
qemu=_get_qemu_binary)
def get_dir_for_distro(container_dir, config):
arch = config["arch"]
url = config["url"]
distro_folder_name_template = (os.path.basename(url) + ".root")
distro_folder_name = distro_folder_name_template.format(arch=arch)
return os.path.realpath(os.path.join(container_dir, distro_folder_name))
|
MIT License
|
data-apis/dataframe-api
|
protocol/dataframe_protocol.py
|
DataFrame.metadata
|
python
|
def metadata(self) -> Dict[str, Any]:
pass
|
The metadata for the data frame, as a dictionary with string keys. The
contents of `metadata` may be anything, they are meant for a library
to store information that it needs to, e.g., roundtrip losslessly or
for two implementations to share data that is not (yet) part of the
interchange protocol specification. For avoiding collisions with other
entries, please add name the keys with the name of the library
followed by a period and the desired name, e.g, ``pandas.indexcol``.
|
https://github.com/data-apis/dataframe-api/blob/5cbbfc1fcc6458e367ba55b28196e82c87014311/protocol/dataframe_protocol.py#L313-L323
|
class Buffer:
@property
def bufsize(self) -> int:
pass
@property
def ptr(self) -> int:
pass
def __dlpack__(self):
raise NotImplementedError("__dlpack__")
def __dlpack_device__(self) -> Tuple[enum.IntEnum, int]:
pass
class Column:
@property
def size(self) -> Optional[int]:
pass
@property
def offset(self) -> int:
pass
@property
def dtype(self) -> Tuple[enum.IntEnum, int, str, str]:
pass
@property
def describe_categorical(self) -> dict[bool, bool, Optional[dict]]:
pass
@property
def describe_null(self) -> Tuple[int, Any]:
pass
@property
def null_count(self) -> Optional[int]:
pass
@property
def metadata(self) -> Dict[str, Any]:
pass
def num_chunks(self) -> int:
pass
def get_chunks(self, n_chunks : Optional[int] = None) -> Iterable[Column]:
pass
def get_buffers(self) -> dict[Tuple[Buffer, Any], Optional[Tuple[Buffer, Any]], Optional[Tuple[Buffer, Any]]]:
pass
class DataFrame:
def __dataframe__(self, nan_as_null : bool = False,
allow_copy : bool = True) -> dict:
self._nan_as_null = nan_as_null
self._allow_zero_zopy = allow_copy
return {
"dataframe": self,
"version": 0
}
@property
|
MIT License
|
aspose-words-cloud/aspose-words-cloud-python
|
asposewordscloud/models/bmp_save_options_data.py
|
BmpSaveOptionsData.color_mode
|
python
|
def color_mode(self):
return self._color_mode
|
Gets the color_mode of this BmpSaveOptionsData. # noqa: E501
Gets or sets the value determining how colors are rendered. { Normal | Grayscale}. # noqa: E501
:return: The color_mode of this BmpSaveOptionsData. # noqa: E501
:rtype: str
|
https://github.com/aspose-words-cloud/aspose-words-cloud-python/blob/abf8fccfed40aa2b09c6cdcaf3f2723e1f412d85/asposewordscloud/models/bmp_save_options_data.py#L566-L574
|
import pprint
import re
import datetime
import six
import json
class BmpSaveOptionsData(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'allow_embedding_post_script_fonts': 'bool',
'custom_time_zone_info_data': 'TimeZoneInfoData',
'dml3_d_effects_rendering_mode': 'str',
'dml_effects_rendering_mode': 'str',
'dml_rendering_mode': 'str',
'file_name': 'str',
'flat_opc_xml_mapping_only': 'bool',
'iml_rendering_mode': 'str',
'save_format': 'str',
'update_created_time_property': 'bool',
'update_fields': 'bool',
'update_last_printed_property': 'bool',
'update_last_saved_time_property': 'bool',
'update_sdt_content': 'bool',
'zip_output': 'bool',
'color_mode': 'str',
'jpeg_quality': 'int',
'metafile_rendering_options': 'MetafileRenderingOptionsData',
'numeral_format': 'str',
'optimize_output': 'bool',
'page_count': 'int',
'page_index': 'int',
'horizontal_resolution': 'float',
'image_brightness': 'float',
'image_color_mode': 'str',
'image_contrast': 'float',
'paper_color': 'str',
'pixel_format': 'str',
'resolution': 'float',
'scale': 'float',
'use_anti_aliasing': 'bool',
'use_gdi_emf_renderer': 'bool',
'use_high_quality_rendering': 'bool',
'vertical_resolution': 'float'
}
attribute_map = {
'allow_embedding_post_script_fonts': 'AllowEmbeddingPostScriptFonts',
'custom_time_zone_info_data': 'CustomTimeZoneInfoData',
'dml3_d_effects_rendering_mode': 'Dml3DEffectsRenderingMode',
'dml_effects_rendering_mode': 'DmlEffectsRenderingMode',
'dml_rendering_mode': 'DmlRenderingMode',
'file_name': 'FileName',
'flat_opc_xml_mapping_only': 'FlatOpcXmlMappingOnly',
'iml_rendering_mode': 'ImlRenderingMode',
'save_format': 'SaveFormat',
'update_created_time_property': 'UpdateCreatedTimeProperty',
'update_fields': 'UpdateFields',
'update_last_printed_property': 'UpdateLastPrintedProperty',
'update_last_saved_time_property': 'UpdateLastSavedTimeProperty',
'update_sdt_content': 'UpdateSdtContent',
'zip_output': 'ZipOutput',
'color_mode': 'ColorMode',
'jpeg_quality': 'JpegQuality',
'metafile_rendering_options': 'MetafileRenderingOptions',
'numeral_format': 'NumeralFormat',
'optimize_output': 'OptimizeOutput',
'page_count': 'PageCount',
'page_index': 'PageIndex',
'horizontal_resolution': 'HorizontalResolution',
'image_brightness': 'ImageBrightness',
'image_color_mode': 'ImageColorMode',
'image_contrast': 'ImageContrast',
'paper_color': 'PaperColor',
'pixel_format': 'PixelFormat',
'resolution': 'Resolution',
'scale': 'Scale',
'use_anti_aliasing': 'UseAntiAliasing',
'use_gdi_emf_renderer': 'UseGdiEmfRenderer',
'use_high_quality_rendering': 'UseHighQualityRendering',
'vertical_resolution': 'VerticalResolution'
}
def __init__(self, allow_embedding_post_script_fonts=None, custom_time_zone_info_data=None, dml3_d_effects_rendering_mode=None, dml_effects_rendering_mode=None, dml_rendering_mode=None, file_name=None, flat_opc_xml_mapping_only=None, iml_rendering_mode=None, save_format=None, update_created_time_property=None, update_fields=None, update_last_printed_property=None, update_last_saved_time_property=None, update_sdt_content=None, zip_output=None, color_mode=None, jpeg_quality=None, metafile_rendering_options=None, numeral_format=None, optimize_output=None, page_count=None, page_index=None, horizontal_resolution=None, image_brightness=None, image_color_mode=None, image_contrast=None, paper_color=None, pixel_format=None, resolution=None, scale=None, use_anti_aliasing=None, use_gdi_emf_renderer=None, use_high_quality_rendering=None, vertical_resolution=None):
self._allow_embedding_post_script_fonts = None
self._custom_time_zone_info_data = None
self._dml3_d_effects_rendering_mode = None
self._dml_effects_rendering_mode = None
self._dml_rendering_mode = None
self._file_name = None
self._flat_opc_xml_mapping_only = None
self._iml_rendering_mode = None
self._save_format = None
self._update_created_time_property = None
self._update_fields = None
self._update_last_printed_property = None
self._update_last_saved_time_property = None
self._update_sdt_content = None
self._zip_output = None
self._color_mode = None
self._jpeg_quality = None
self._metafile_rendering_options = None
self._numeral_format = None
self._optimize_output = None
self._page_count = None
self._page_index = None
self._horizontal_resolution = None
self._image_brightness = None
self._image_color_mode = None
self._image_contrast = None
self._paper_color = None
self._pixel_format = None
self._resolution = None
self._scale = None
self._use_anti_aliasing = None
self._use_gdi_emf_renderer = None
self._use_high_quality_rendering = None
self._vertical_resolution = None
self.discriminator = None
if allow_embedding_post_script_fonts is not None:
self.allow_embedding_post_script_fonts = allow_embedding_post_script_fonts
if custom_time_zone_info_data is not None:
self.custom_time_zone_info_data = custom_time_zone_info_data
if dml3_d_effects_rendering_mode is not None:
self.dml3_d_effects_rendering_mode = dml3_d_effects_rendering_mode
if dml_effects_rendering_mode is not None:
self.dml_effects_rendering_mode = dml_effects_rendering_mode
if dml_rendering_mode is not None:
self.dml_rendering_mode = dml_rendering_mode
if file_name is not None:
self.file_name = file_name
if flat_opc_xml_mapping_only is not None:
self.flat_opc_xml_mapping_only = flat_opc_xml_mapping_only
if iml_rendering_mode is not None:
self.iml_rendering_mode = iml_rendering_mode
if save_format is not None:
self.save_format = save_format
if update_created_time_property is not None:
self.update_created_time_property = update_created_time_property
if update_fields is not None:
self.update_fields = update_fields
if update_last_printed_property is not None:
self.update_last_printed_property = update_last_printed_property
if update_last_saved_time_property is not None:
self.update_last_saved_time_property = update_last_saved_time_property
if update_sdt_content is not None:
self.update_sdt_content = update_sdt_content
if zip_output is not None:
self.zip_output = zip_output
if color_mode is not None:
self.color_mode = color_mode
if jpeg_quality is not None:
self.jpeg_quality = jpeg_quality
if metafile_rendering_options is not None:
self.metafile_rendering_options = metafile_rendering_options
if numeral_format is not None:
self.numeral_format = numeral_format
if optimize_output is not None:
self.optimize_output = optimize_output
if page_count is not None:
self.page_count = page_count
if page_index is not None:
self.page_index = page_index
if horizontal_resolution is not None:
self.horizontal_resolution = horizontal_resolution
if image_brightness is not None:
self.image_brightness = image_brightness
if image_color_mode is not None:
self.image_color_mode = image_color_mode
if image_contrast is not None:
self.image_contrast = image_contrast
if paper_color is not None:
self.paper_color = paper_color
if pixel_format is not None:
self.pixel_format = pixel_format
if resolution is not None:
self.resolution = resolution
if scale is not None:
self.scale = scale
if use_anti_aliasing is not None:
self.use_anti_aliasing = use_anti_aliasing
if use_gdi_emf_renderer is not None:
self.use_gdi_emf_renderer = use_gdi_emf_renderer
if use_high_quality_rendering is not None:
self.use_high_quality_rendering = use_high_quality_rendering
if vertical_resolution is not None:
self.vertical_resolution = vertical_resolution
@property
def allow_embedding_post_script_fonts(self):
return self._allow_embedding_post_script_fonts
@allow_embedding_post_script_fonts.setter
def allow_embedding_post_script_fonts(self, allow_embedding_post_script_fonts):
self._allow_embedding_post_script_fonts = allow_embedding_post_script_fonts
@property
def custom_time_zone_info_data(self):
return self._custom_time_zone_info_data
@custom_time_zone_info_data.setter
def custom_time_zone_info_data(self, custom_time_zone_info_data):
self._custom_time_zone_info_data = custom_time_zone_info_data
@property
def dml3_d_effects_rendering_mode(self):
return self._dml3_d_effects_rendering_mode
@dml3_d_effects_rendering_mode.setter
def dml3_d_effects_rendering_mode(self, dml3_d_effects_rendering_mode):
allowed_values = ["Basic", "Advanced"]
if not dml3_d_effects_rendering_mode.isdigit():
if dml3_d_effects_rendering_mode not in allowed_values:
raise ValueError(
"Invalid value for `dml3_d_effects_rendering_mode` ({0}), must be one of {1}"
.format(dml3_d_effects_rendering_mode, allowed_values))
self._dml3_d_effects_rendering_mode = dml3_d_effects_rendering_mode
else:
self._dml3_d_effects_rendering_mode = allowed_values[int(dml3_d_effects_rendering_mode) if six.PY3 else long(dml3_d_effects_rendering_mode)]
@property
def dml_effects_rendering_mode(self):
return self._dml_effects_rendering_mode
@dml_effects_rendering_mode.setter
def dml_effects_rendering_mode(self, dml_effects_rendering_mode):
self._dml_effects_rendering_mode = dml_effects_rendering_mode
@property
def dml_rendering_mode(self):
return self._dml_rendering_mode
@dml_rendering_mode.setter
def dml_rendering_mode(self, dml_rendering_mode):
self._dml_rendering_mode = dml_rendering_mode
@property
def file_name(self):
return self._file_name
@file_name.setter
def file_name(self, file_name):
self._file_name = file_name
@property
def flat_opc_xml_mapping_only(self):
return self._flat_opc_xml_mapping_only
@flat_opc_xml_mapping_only.setter
def flat_opc_xml_mapping_only(self, flat_opc_xml_mapping_only):
self._flat_opc_xml_mapping_only = flat_opc_xml_mapping_only
@property
def iml_rendering_mode(self):
return self._iml_rendering_mode
@iml_rendering_mode.setter
def iml_rendering_mode(self, iml_rendering_mode):
self._iml_rendering_mode = iml_rendering_mode
@property
def save_format(self):
return self._save_format
@save_format.setter
def save_format(self, save_format):
self._save_format = save_format
@property
def update_created_time_property(self):
return self._update_created_time_property
@update_created_time_property.setter
def update_created_time_property(self, update_created_time_property):
self._update_created_time_property = update_created_time_property
@property
def update_fields(self):
return self._update_fields
@update_fields.setter
def update_fields(self, update_fields):
self._update_fields = update_fields
@property
def update_last_printed_property(self):
return self._update_last_printed_property
@update_last_printed_property.setter
def update_last_printed_property(self, update_last_printed_property):
self._update_last_printed_property = update_last_printed_property
@property
def update_last_saved_time_property(self):
return self._update_last_saved_time_property
@update_last_saved_time_property.setter
def update_last_saved_time_property(self, update_last_saved_time_property):
self._update_last_saved_time_property = update_last_saved_time_property
@property
def update_sdt_content(self):
return self._update_sdt_content
@update_sdt_content.setter
def update_sdt_content(self, update_sdt_content):
self._update_sdt_content = update_sdt_content
@property
def zip_output(self):
return self._zip_output
@zip_output.setter
def zip_output(self, zip_output):
self._zip_output = zip_output
@property
|
MIT License
|
universitadellacalabria/uniticket
|
uni_ticket/views/manager.py
|
category_add_new
|
python
|
def category_add_new(request, structure_slug, structure):
title = _('Nuova tipologia di richiesta')
sub_title = _("Crea una nuova tipologia di richieste nella struttura {}").format(structure)
form = CategoryForm()
if request.method == 'POST':
form = CategoryForm(request.POST)
if form.is_valid():
name = form.cleaned_data['name']
slug = slugify(name)
m = TicketCategory
slug_name_exist = m.objects.filter(Q(name=name) | Q(slug=slug),
organizational_structure=structure)
if slug_name_exist:
logger.error('[{}] manager of structure {}'
' {} tried to add a new category'
' with existent name {} or slug {}'.format(timezone.localtime(),
structure,
request.user,
name,
slug))
messages.add_message(request, messages.ERROR,
_("Esiste già una tipologia di richiesta con"
" nome {} o slug {}").format(name, slug))
else:
new_category = form.save(commit=False)
protocol_required = form.cleaned_data['protocol_required']
if protocol_required:
protocol_required = False
messages.add_message(request, messages.INFO,
_("Prima di attivare il protocollo "
"obbligatorio è necessario "
"configurare i parametri"))
new_category.protocol_required = protocol_required
new_category.slug = slug
new_category.organizational_structure = structure
new_category.save()
messages.add_message(request, messages.SUCCESS,
_("Categoria creata con successo"))
logger.info('[{}] manager of structure {}'
' {} added a new category'
' with name {} and slug {}'.format(timezone.localtime(),
structure,
request.user,
name,
slug))
return redirect('uni_ticket:manager_category_detail',
structure_slug=structure_slug,
category_slug=new_category.slug)
else:
for k,v in get_labeled_errors(form).items():
messages.add_message(request, messages.ERROR,
"<b>{}</b>: {}".format(k, strip_tags(v)))
template = 'manager/category_add_new.html'
d = {'form': form,
'structure': structure,
'sub_title': sub_title,
'title': title,}
return render(request, template, d)
|
Adds new category
:type structure_slug: String
:type structure: OrganizationalStructure (from @is_manager)
:param structure_slug: structure slug
:param structure: structure object (from @is_manager)
:return: render
|
https://github.com/universitadellacalabria/uniticket/blob/b7c6e9b793eda273038a6339f6dfdfc3e3b5a344/uni_ticket/views/manager.py#L749-L825
|
import datetime
import logging
from django.conf import settings
from django.contrib import messages
from django.contrib.admin.views.decorators import staff_member_required
from django.contrib.auth import get_user_model
from django.contrib.auth.decorators import login_required
from django.db.models import Count
from django.http import HttpResponse, HttpResponseRedirect
from django.db.models import Q
from django.shortcuts import get_object_or_404, render, redirect
from django.utils.html import strip_tags
from django.utils.text import slugify
from django.utils.translation import gettext as _
from django_form_builder.utils import get_labeled_errors
from organizational_area.models import *
from uni_ticket.decorators import (has_access_to_ticket,
is_manager,
ticket_assigned_to_structure,
ticket_is_not_taken_and_not_closed)
from uni_ticket.forms import *
from uni_ticket.models import *
from uni_ticket.protocol_utils import ticket_protocol
from uni_ticket.utils import (custom_message,
office_can_be_deleted,
user_is_manager,
uuid_code)
logger = logging.getLogger(__name__)
@login_required
@is_manager
def dashboard(request, structure_slug, structure):
title = _("Pannello di Controllo")
sub_title = _("Gestisci le richieste per la struttura {}").format(structure)
template = "manager/dashboard.html"
ta = TicketAssignment
structure_tickets = ta.get_ticket_per_structure(structure=structure)
tickets = Ticket.objects.filter(code__in=structure_tickets)
not_closed = tickets.filter(is_closed=False)
unassigned = 0
opened = 0
my_opened = 0
for nc in not_closed:
if nc.has_been_taken():
opened += 1
if nc.has_been_taken_by_user(structure=structure,
user=request.user):
my_opened += 1
else:
unassigned += 1
chiusi = tickets.filter(is_closed=True).count()
om = OrganizationalStructureOffice
offices = om.objects.filter(organizational_structure=structure)
cm = TicketCategory
categories = cm.objects.filter(organizational_structure=structure)
disabled_expired_items(categories)
messages = TicketReply.get_unread_messages_count(tickets=tickets)
d = {'categories': categories,
'offices': offices,
'structure': structure,
'sub_title': sub_title,
'ticket_aperti': opened,
'ticket_assegnati_a_me': my_opened,
'ticket_chiusi': chiusi,
'ticket_messages': messages,
'ticket_non_gestiti': unassigned,
'title': title,}
return render(request, template, d)
@login_required
@is_manager
def offices(request, structure_slug, structure):
title = _('Gestione uffici')
template = 'manager/offices.html'
os = OrganizationalStructureOffice
offices = os.objects.filter(organizational_structure=structure)
d = {'offices': offices,
'structure': structure,
'title': title,}
return render(request, template, d)
@login_required
@is_manager
def office_add_new(request, structure_slug, structure):
title = _('Nuovo ufficio')
sub_title = _("Crea un nuovo ufficio nella struttura {}").format(structure)
form = OfficeForm()
if request.method == 'POST':
form = OfficeForm(request.POST)
if form.is_valid():
name = form.cleaned_data['name']
slug = slugify(name)
os = OrganizationalStructureOffice
slug_name_exist = os.objects.filter(Q(name=name) | Q(slug=slug),
organizational_structure=structure)
if slug_name_exist:
messages.add_message(request, messages.ERROR,
_("Esiste già un ufficio con"
" nome {} o slug {}".format(name, slug)))
else:
new_office = form.save(commit=False)
new_office.slug = slug
new_office.organizational_structure = structure
new_office.save()
logger.info('[{}] manager of structure {}'
' {} created new office {}'.format(timezone.localtime(),
structure,
request.user,
new_office))
messages.add_message(request, messages.SUCCESS,
_("Ufficio creato con successo"))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=new_office.slug)
else:
for k,v in get_labeled_errors(form).items():
messages.add_message(request, messages.ERROR,
"{}: {}".format(k, strip_tags(v)))
template = 'manager/office_add_new.html'
d = {'form': form,
'structure': structure,
'sub_title': sub_title,
'title': title,}
return render(request, template, d)
@login_required
@is_manager
def office_edit(request, structure_slug, office_slug, structure):
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
title = _('Modifica ufficio')
sub_title = office.name
form = OfficeForm(instance=office)
if request.method == 'POST':
form = OfficeForm(instance=office, data=request.POST)
if form.is_valid():
name = form.cleaned_data['name']
slug = slugify(name)
oso = OrganizationalStructureOffice
slug_name_exist = oso.objects.filter(Q(name=name) | Q(slug=slug),
organizational_structure=structure).exclude(pk=office.pk)
if slug_name_exist:
messages.add_message(request, messages.ERROR,
_("Esiste già un ufficio con questo"
" nome o slug"))
else:
edited_office = form.save(commit=False)
edited_office.slug = slug
edited_office.save()
messages.add_message(request, messages.SUCCESS,
_("Ufficio modificato con successo"))
logger.info('[{}] manager of structure {}'
' {} edited office {}'.format(timezone.localtime(),
structure,
request.user,
edited_office))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=edited_office.slug)
else:
for k,v in get_labeled_errors(form).items():
messages.add_message(request, messages.ERROR,
"<b>{}</b>: {}".format(k, strip_tags(v)))
template = 'manager/office_edit.html'
d = {'form': form,
'office': office,
'structure': structure,
'sub_title': sub_title,
'title': title,}
return render(request, template, d)
@login_required
@is_manager
def office_detail(request, structure_slug, office_slug, structure):
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
title = _('Gestione ufficio')
template = 'manager/office_detail.html'
sub_title = office.name
form = OfficeAddOperatorForm(structure=structure,
office_slug=office_slug)
category_form = OfficeAddCategoryForm(structure=structure,
office=office)
if request.method == 'POST':
form = OfficeAddOperatorForm(request.POST,
structure=structure,
office_slug=office_slug)
if form.is_valid():
employee = form.cleaned_data['operatore']
description = form.cleaned_data['description']
osoe = OrganizationalStructureOfficeEmployee
new_officeemployee = osoe(employee=employee,
office=office,
description=description)
new_officeemployee.save()
messages.add_message(request, messages.SUCCESS,
_("Operatore assegnato con successo"))
logger.info('[{}] manager of structure {}'
' {} added employee {}'
' to office {}'.format(timezone.localtime(),
structure,
request.user,
employee,
office))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=office_slug)
else:
for k,v in get_labeled_errors(form).items():
messages.add_message(request, messages.ERROR,
"<b>{}</b>: {}".format(k, strip_tags(v)))
em = OrganizationalStructureOfficeEmployee
employees = em.objects.filter(office=office,
employee__is_active=True)
d = {'category_form': category_form,
'employees': employees,
'form': form,
'office': office,
'structure': structure,
'sub_title': sub_title,
'title': title,}
return render(request, template, d)
@login_required
@is_manager
def office_add_category(request, structure_slug, office_slug, structure):
if request.method == 'POST':
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
form = OfficeAddCategoryForm(request.POST,
structure=structure,
office=office)
if form.is_valid():
category = form.cleaned_data['category']
if category.organizational_office:
messages.add_message(request, messages.ERROR,
_("La tipologia di richiesta <b>{}</b> risulta "
"già assegnato all'ufficio <b>{}</b>. "
"Rimuovere la competenza per "
"procedere").format(category,
category.organizational_office))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=office_slug)
category.organizational_office = office
category.save(update_fields = ['organizational_office'])
messages.add_message(request, messages.SUCCESS,
_("Competenza ufficio impostata con successo"))
logger.info('[{}] manager of structure {}'
' {} added category {}'
' to office {}'.format(timezone.localtime(),
structure,
request.user,
category,
office))
else:
for k,v in get_labeled_errors(form).items():
messages.add_message(request, messages.ERROR,
"<b>{}</b>: {}".format(k, strip_tags(v)))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=office_slug)
return custom_message(request, _("Impossibile accedere a questo URL "
"senza passare dal form collegato."),
structure_slug=structure.slug)
@login_required
@is_manager
def office_remove_category(request, structure_slug,
office_slug, category_slug, structure):
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
category = get_object_or_404(TicketCategory,
organizational_structure=structure,
slug=category_slug)
if category.organizational_office != office:
messages.add_message(request, messages.ERROR,
_("La tipologia di richiesta non è di competenza di"
" questo ufficio"))
else:
category.organizational_office = None
category.is_active = False
category.save(update_fields = ['organizational_office', 'is_active'])
messages.add_message(request, messages.SUCCESS,
_("La tipologia di richiesta <b>{}</b> non è più di competenza "
" dell'ufficio <b>{}</b> ed è stato disattivato".format(category,
office)))
logger.info('[{}] manager of structure {}'
' {} removed category {}'
' from office {}'.format(timezone.localtime(),
structure,
request.user,
category,
office))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=office_slug)
@login_required
@is_manager
def office_remove_operator(request, structure_slug,
office_slug, employee_id, structure):
user_model = get_user_model()
employee = user_model.objects.get(pk=employee_id)
usertype = get_user_type(employee, structure)
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
if usertype == 'manager' and office.is_default:
return custom_message(request, _("Eliminando l'afferenza dell'utente"
" a questo ufficio, egli perderà i"
" privilegi di Amministratore."
" Questa operazione, pertanto,"
" non può essere eseguita in autonomia."
" Contattare l'assistenza tecnica."),
structure_slug=structure.slug)
m = OrganizationalStructureOfficeEmployee
office_employee = m.objects.get(office=office,
employee=employee)
if not office_employee:
messages.add_message(request, messages.ERROR,
_("L'operatore non è assegnato a questo ufficio"))
else:
logger.info('[{}] manager of structure {}'
' {} removed employee {}'
' from office {}'.format(timezone.localtime(),
structure,
request.user,
employee,
office))
office_employee.delete()
messages.add_message(request, messages.SUCCESS,
_("Operatore {} rimosso correttamente").format(employee))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=office_slug)
@login_required
@is_manager
def office_disable(request, structure_slug, office_slug, structure):
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
one_tickets_for_this_office = False
office_tickets = TicketAssignment.objects.filter(office=office,
follow=True)
one_tickets_for_this_office = False
for ot in office_tickets:
other_offices_for_ticket = TicketAssignment.objects.filter(office__is_active=True,
ticket=ot.ticket,
follow=True,
readonly=False).exclude(office=office)
if not other_offices_for_ticket:
one_tickets_for_this_office = True
break
if office.is_default:
messages.add_message(request, messages.ERROR,
_("Impossibile disattivare questo ufficio"))
elif one_tickets_for_this_office:
messages.add_message(request, messages.ERROR,
_("Impossibile disattivare questo ufficio."
" Alcuni ticket potrebbero rimanere privi di gestione"))
elif office.is_active:
assigned_categories = TicketCategory.objects.filter(organizational_office=office)
for cat in assigned_categories:
cat.is_active = False
cat.save(update_fields = ['is_active'])
messages.add_message(request, messages.SUCCESS,
_("Categoria {} disattivata correttamente").format(cat))
office.is_active = False
office.save(update_fields = ['is_active'])
messages.add_message(request, messages.SUCCESS,
_("Ufficio {} disattivato con successo").format(office))
logger.info('[{}] manager of structure {}'
' {} disabled office {}'.format(timezone.localtime(),
structure,
request.user,
office))
else:
messages.add_message(request, messages.ERROR,
_("Ufficio {} già disattivato").format(office))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=office_slug)
@login_required
@is_manager
def office_enable(request, structure_slug, office_slug, structure):
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
if office.is_active:
messages.add_message(request, messages.ERROR,
_("Ufficio {} già attivato").format(office))
else:
office.is_active = True
office.save(update_fields = ['is_active'])
messages.add_message(request, messages.SUCCESS,
_("Ufficio {} attivato con successo").format(office))
logger.info('[{}] manager of structure {}'
' {} enabled office {}'.format(timezone.localtime(),
structure,
request.user,
office))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=office_slug)
@login_required
@is_manager
def office_delete(request, structure_slug, office_slug, structure):
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
if office_can_be_deleted(office):
assigned_categories = TicketCategory.objects.filter(organizational_office=office)
for cat in assigned_categories:
cat.is_active = False
cat.save(update_fields = ['is_active'])
messages.add_message(request, messages.SUCCESS,
_("Categoria {} disattivata correttamente").format(cat))
messages.add_message(request, messages.SUCCESS,
_("Ufficio {} eliminato correttamente").format(office))
logger.info('[{}] manager of structure {}'
' {} deleted office {}'.format(timezone.localtime(),
structure,
request.user,
office))
office.delete()
return redirect('uni_ticket:manager_dashboard', structure_slug=structure_slug)
messages.add_message(request, messages.ERROR,
_("Impossibile eliminare l'ufficio {}."
" Ci sono ticket assegnati"
" o è l'ufficio predefinito della struttura.").format(office))
return redirect('uni_ticket:manager_office_detail',
structure_slug=structure_slug,
office_slug=office_slug)
@login_required
@is_manager
def category_detail(request, structure_slug, category_slug, structure):
category = get_object_or_404(TicketCategory,
organizational_structure=structure,
slug=category_slug)
category.disable_if_expired()
title = _('Gestione tipologia di richiesta')
template = 'manager/category_detail.html'
sub_title = category
form = CategoryAddOfficeForm(structure=structure)
if request.method == 'POST':
if category.organizational_office:
messages.add_message(request, messages.ERROR,
_("Competenza ufficio già presente"))
return redirect('uni_ticket:manager_category_detail',
structure_slug=structure_slug,
category_slug=category_slug)
form = CategoryAddOfficeForm(request.POST,
structure=structure)
if form.is_valid():
office = form.cleaned_data['office']
category.organizational_office = office
category.save(update_fields = ['organizational_office'])
messages.add_message(request, messages.SUCCESS,
_("Competenza ufficio impostata con successo"))
return redirect('uni_ticket:manager_category_detail',
structure_slug=structure_slug,
category_slug=category_slug)
else:
for k,v in get_labeled_errors(form).items():
messages.add_message(request, messages.ERROR,
"<b>{}</b>: {}".format(k, strip_tags(v)))
slug_url = request.build_absolute_uri(reverse('uni_ticket:add_new_ticket',
kwargs={'structure_slug': structure.slug,
'category_slug': category.slug}))
pk_url = request.build_absolute_uri(reverse('uni_ticket:add_new_ticket',
kwargs={'structure_slug': structure.pk,
'category_slug': category.pk}))
category_urls = (slug_url, pk_url)
d = {'category': category,
'category_urls': category_urls,
'form': form,
'structure': structure,
'sub_title': sub_title,
'title': title,}
return render(request, template, d)
@login_required
@is_manager
def category_remove_office(request, structure_slug,
category_slug, office_slug, structure):
category = get_object_or_404(TicketCategory,
organizational_structure=structure,
slug=category_slug)
office = get_object_or_404(OrganizationalStructureOffice,
organizational_structure=structure,
slug=office_slug)
if category.organizational_office != office:
messages.add_message(request, messages.ERROR,
_("La tipologia di richiesta non è di competenza di"
" questo ufficio"))
else:
category.organizational_office = None
category.is_active = False
category.save(update_fields = ['is_active', 'organizational_office'])
messages.add_message(request, messages.SUCCESS,
_("Competenza ufficio {} rimossa correttamente").format(office))
messages.add_message(request, messages.ERROR,
_("Tipo di richieste {} disattivato poichè"
" priva di ufficio competente").format(category))
logger.info('[{}] manager of structure {}'
' {} removed office {}'
' from category {}'
' (now disabled)'.format(timezone.localtime(),
structure,
request.user,
office,
category))
return redirect('uni_ticket:manager_category_detail',
structure_slug=structure_slug,
category_slug=category_slug)
@login_required
@is_manager
|
Apache License 2.0
|
td22057/t-home
|
python/tHome/eagle/messages/Reading.py
|
Reading.__init__
|
python
|
def __init__( self, node ):
assert( node.tag == "Reading" )
Base.__init__( self, "Reading", node )
convert.time( self, "Time", "TimeUnix", self.TimeStamp )
self.Value = float( self.Value )
|
node == xml ETree node
|
https://github.com/td22057/t-home/blob/5dc8689f52d87dac890051e540b338b009293ced/python/tHome/eagle/messages/Reading.py#L39-L46
|
from .Base import Base
from . import convert
class Reading ( Base ):
_intHexKeys = []
_numHexKeys = [ "TimeStamp" ]
_jsonKeys = [ "Value", "Type" ]
|
BSD 2-Clause Simplified License
|
xingjunm/lid_adversarial_subspace_detection
|
util.py
|
block_split
|
python
|
def block_split(X, Y):
print("Isolated split 80%, 20% for training and testing")
num_samples = X.shape[0]
partition = int(num_samples / 3)
X_adv, Y_adv = X[:partition], Y[:partition]
X_norm, Y_norm = X[partition: 2*partition], Y[partition: 2*partition]
X_noisy, Y_noisy = X[2*partition:], Y[2*partition:]
num_train = int(partition*0.008) * 100
X_train = np.concatenate((X_norm[:num_train], X_noisy[:num_train], X_adv[:num_train]))
Y_train = np.concatenate((Y_norm[:num_train], Y_noisy[:num_train], Y_adv[:num_train]))
X_test = np.concatenate((X_norm[num_train:], X_noisy[num_train:], X_adv[num_train:]))
Y_test = np.concatenate((Y_norm[num_train:], Y_noisy[num_train:], Y_adv[num_train:]))
return X_train, Y_train, X_test, Y_test
|
Split the data into 80% for training and 20% for testing
in a block size of 100.
:param X:
:param Y:
:return:
|
https://github.com/xingjunm/lid_adversarial_subspace_detection/blob/29ae6f5d1b376753876c9cb404e7fe297d17a2d4/util.py#L770-L792
|
from __future__ import absolute_import
from __future__ import print_function
import os
import multiprocessing as mp
from subprocess import call
import warnings
import numpy as np
import scipy.io as sio
from tqdm import tqdm
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc, roc_auc_score
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import scale
import keras.backend as K
from keras.datasets import mnist, cifar10
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization
from keras.layers import Conv2D, MaxPooling2D
from keras.regularizers import l2
import tensorflow as tf
from scipy.spatial.distance import pdist, cdist, squareform
from keras import regularizers
from sklearn.decomposition import PCA
STDEVS = {
'mnist': {'fgsm': 0.271, 'bim-a': 0.111, 'bim-b': 0.167, 'cw-l2': 0.207},
'cifar': {'fgsm': 0.0504, 'bim-a': 0.0084, 'bim-b': 0.0428, 'cw-l2': 0.007},
'svhn': {'fgsm': 0.133, 'bim-a': 0.0155, 'bim-b': 0.095, 'cw-l2': 0.008}
}
CLIP_MIN = -0.5
CLIP_MAX = 0.5
PATH_DATA = "data/"
np.random.seed(0)
def get_data(dataset='mnist'):
assert dataset in ['mnist', 'cifar', 'svhn'], "dataset parameter must be either 'mnist' 'cifar' or 'svhn'"
if dataset == 'mnist':
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(-1, 28, 28, 1)
X_test = X_test.reshape(-1, 28, 28, 1)
elif dataset == 'cifar':
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
else:
if not os.path.isfile(os.path.join(PATH_DATA, "svhn_train.mat")):
print('Downloading SVHN train set...')
call(
"curl -o ../data/svhn_train.mat "
"http://ufldl.stanford.edu/housenumbers/train_32x32.mat",
shell=True
)
if not os.path.isfile(os.path.join(PATH_DATA, "svhn_test.mat")):
print('Downloading SVHN test set...')
call(
"curl -o ../data/svhn_test.mat "
"http://ufldl.stanford.edu/housenumbers/test_32x32.mat",
shell=True
)
train = sio.loadmat(os.path.join(PATH_DATA,'svhn_train.mat'))
test = sio.loadmat(os.path.join(PATH_DATA, 'svhn_test.mat'))
X_train = np.transpose(train['X'], axes=[3, 0, 1, 2])
X_test = np.transpose(test['X'], axes=[3, 0, 1, 2])
y_train = np.reshape(train['y'], (-1,)) - 1
y_test = np.reshape(test['y'], (-1,)) - 1
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train = (X_train/255.0) - (1.0 - CLIP_MAX)
X_test = (X_test/255.0) - (1.0 - CLIP_MAX)
Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)
print("X_train:", X_train.shape)
print("Y_train:", Y_train.shape)
print("X_test:", X_test.shape)
print("Y_test", Y_test.shape)
return X_train, Y_train, X_test, Y_test
def get_model(dataset='mnist', softmax=True):
assert dataset in ['mnist', 'cifar', 'svhn'], "dataset parameter must be either 'mnist' 'cifar' or 'svhn'"
if dataset == 'mnist':
layers = [
Conv2D(64, (3, 3), padding='valid', input_shape=(28, 28, 1)),
Activation('relu'),
BatchNormalization(),
Conv2D(64, (3, 3)),
Activation('relu'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.5),
Flatten(),
Dense(128),
Activation('relu'),
BatchNormalization(),
Dropout(0.5),
Dense(10),
]
elif dataset == 'cifar':
layers = [
Conv2D(32, (3, 3), padding='same', input_shape=(32, 32, 3)),
Activation('relu'),
BatchNormalization(),
Conv2D(32, (3, 3), padding='same'),
Activation('relu'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(64, (3, 3), padding='same'),
Activation('relu'),
BatchNormalization(),
Conv2D(64, (3, 3), padding='same'),
Activation('relu'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(128, (3, 3), padding='same'),
Activation('relu'),
BatchNormalization(),
Conv2D(128, (3, 3), padding='same'),
Activation('relu'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dropout(0.5),
Dense(1024, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01)),
Activation('relu'),
BatchNormalization(),
Dropout(0.5),
Dense(512, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01)),
Activation('relu'),
BatchNormalization(),
Dropout(0.5),
Dense(10),
]
else:
layers = [
Conv2D(64, (3, 3), padding='valid', input_shape=(32, 32, 3)),
Activation('relu'),
BatchNormalization(),
Conv2D(64, (3, 3)),
Activation('relu'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.5),
Flatten(),
Dense(512),
Activation('relu'),
BatchNormalization(),
Dropout(0.5),
Dense(128),
Activation('relu'),
BatchNormalization(),
Dropout(0.5),
Dense(10),
]
model = Sequential()
for layer in layers:
model.add(layer)
if softmax:
model.add(Activation('softmax'))
return model
def cross_entropy(y_true, y_pred):
return tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred)
def lid_term(logits, batch_size=100):
y_pred = logits
r = tf.reduce_sum(tf.square(y_pred), axis=1)
r = tf.reshape(r, [-1, 1])
D = r - 2 * tf.matmul(y_pred, tf.transpose(y_pred)) + tf.transpose(r)
D1 = tf.sqrt(D + 1e-9)
D2, _ = tf.nn.top_k(-D1, k=21, sorted=True)
D3 = -D2[:, 1:]
m = tf.transpose(tf.multiply(tf.transpose(D3), 1.0 / D3[:, -1]))
v_log = tf.reduce_sum(tf.log(m + 1e-9), axis=1)
lids = -20 / v_log
return lids
def lid_adv_term(clean_logits, adv_logits, batch_size=100):
c_pred = tf.reshape(clean_logits, (batch_size, -1))
a_pred = tf.reshape(adv_logits, (batch_size, -1))
r_a = tf.reduce_sum(tf.square(a_pred), axis=1)
r_a = tf.reshape(r_a, [-1, 1])
r_c = tf.reduce_sum(tf.square(c_pred), axis=1)
r_c = tf.reshape(r_c, [1, -1])
D = r_a - 2 * tf.matmul(a_pred, tf.transpose(c_pred)) + r_c
D1 = tf.sqrt(D + 1e-9)
D2, _ = tf.nn.top_k(-D1, k=21, sorted=True)
D3 = -D2[:, 1:]
m = tf.transpose(tf.multiply(tf.transpose(D3), 1.0 / D3[:, -1]))
v_log = tf.reduce_sum(tf.log(m + 1e-9), axis=1)
lids = -20 / v_log
lids = tf.nn.l2_normalize(lids, dim=0, epsilon=1e-12)
return lids
def flip(x, nb_diff):
original_shape = x.shape
x = np.copy(np.reshape(x, (-1,)))
candidate_inds = np.where(x < CLIP_MAX)[0]
assert candidate_inds.shape[0] >= nb_diff
inds = np.random.choice(candidate_inds, nb_diff)
x[inds] = CLIP_MAX
return np.reshape(x, original_shape)
def get_noisy_samples(X_test, X_test_adv, dataset, attack):
if attack in ['jsma', 'cw-l0']:
X_test_noisy = np.zeros_like(X_test)
for i in range(len(X_test)):
nb_diff = len(np.where(X_test[i] != X_test_adv[i])[0])
X_test_noisy[i] = flip(X_test[i], nb_diff)
else:
warnings.warn("Important: using pre-set Gaussian scale sizes to craft noisy "
"samples. You will definitely need to manually tune the scale "
"according to the L2 print below, otherwise the result "
"will inaccurate. In future scale sizes will be inferred "
"automatically. For now, manually tune the scales around "
"mnist: L2/20.0, cifar: L2/54.0, svhn: L2/60.0")
X_test_noisy = np.minimum(
np.maximum(
X_test + np.random.normal(loc=0, scale=STDEVS[dataset][attack],
size=X_test.shape),
CLIP_MIN
),
CLIP_MAX
)
return X_test_noisy
def get_mc_predictions(model, X, nb_iter=50, batch_size=256):
output_dim = model.layers[-1].output.shape[-1].value
get_output = K.function(
[model.layers[0].input, K.learning_phase()],
[model.layers[-1].output]
)
def predict():
n_batches = int(np.ceil(X.shape[0] / float(batch_size)))
output = np.zeros(shape=(len(X), output_dim))
for i in range(n_batches):
output[i * batch_size:(i + 1) * batch_size] = get_output([X[i * batch_size:(i + 1) * batch_size], 1])[0]
return output
preds_mc = []
for i in tqdm(range(nb_iter)):
preds_mc.append(predict())
return np.asarray(preds_mc)
def get_deep_representations(model, X, batch_size=256):
output_dim = model.layers[-4].output.shape[-1].value
get_encoding = K.function(
[model.layers[0].input, K.learning_phase()],
[model.layers[-4].output]
)
n_batches = int(np.ceil(X.shape[0] / float(batch_size)))
output = np.zeros(shape=(len(X), output_dim))
for i in range(n_batches):
output[i * batch_size:(i + 1) * batch_size] = get_encoding([X[i * batch_size:(i + 1) * batch_size], 0])[0]
return output
def get_layer_wise_activations(model, dataset):
assert dataset in ['mnist', 'cifar', 'svhn'], "dataset parameter must be either 'mnist' 'cifar' or 'svhn'"
if dataset == 'mnist':
acts = [model.layers[0].input]
acts.extend([layer.output for layer in model.layers])
elif dataset == 'cifar':
acts = [model.layers[0].input]
acts.extend([layer.output for layer in model.layers])
else:
acts = [model.layers[0].input]
acts.extend([layer.output for layer in model.layers])
return acts
def mle_single(data, x, k=20):
data = np.asarray(data, dtype=np.float32)
x = np.asarray(x, dtype=np.float32)
if x.ndim == 1:
x = x.reshape((-1, x.shape[0]))
k = min(k, len(data)-1)
f = lambda v: - k / np.sum(np.log(v/v[-1]))
a = cdist(x, data)
a = np.apply_along_axis(np.sort, axis=1, arr=a)[:,1:k+1]
a = np.apply_along_axis(f, axis=1, arr=a)
return a[0]
def mle_batch(data, batch, k):
data = np.asarray(data, dtype=np.float32)
batch = np.asarray(batch, dtype=np.float32)
k = min(k, len(data)-1)
f = lambda v: - k / np.sum(np.log(v/v[-1]))
a = cdist(batch, data)
a = np.apply_along_axis(np.sort, axis=1, arr=a)[:,1:k+1]
a = np.apply_along_axis(f, axis=1, arr=a)
return a
def kmean_batch(data, batch, k):
data = np.asarray(data, dtype=np.float32)
batch = np.asarray(batch, dtype=np.float32)
k = min(k, len(data)-1)
f = lambda v: np.mean(v)
a = cdist(batch, data)
a = np.apply_along_axis(np.sort, axis=1, arr=a)[:,1:k+1]
a = np.apply_along_axis(f, axis=1, arr=a)
return a
def kmean_pca_batch(data, batch, k=10):
data = np.asarray(data, dtype=np.float32)
batch = np.asarray(batch, dtype=np.float32)
a = np.zeros(batch.shape[0])
for i in np.arange(batch.shape[0]):
tmp = np.concatenate((data, [batch[i]]))
tmp_pca = PCA(n_components=2).fit_transform(tmp)
a[i] = kmean_batch(tmp_pca[:-1], tmp_pca[-1], k=k)
return a
def get_lids_random_batch(model, X, X_noisy, X_adv, dataset, k=10, batch_size=100):
funcs = [K.function([model.layers[0].input, K.learning_phase()], [out])
for out in get_layer_wise_activations(model, dataset)]
lid_dim = len(funcs)
print("Number of layers to estimate: ", lid_dim)
def estimate(i_batch):
start = i_batch * batch_size
end = np.minimum(len(X), (i_batch + 1) * batch_size)
n_feed = end - start
lid_batch = np.zeros(shape=(n_feed, lid_dim))
lid_batch_adv = np.zeros(shape=(n_feed, lid_dim))
lid_batch_noisy = np.zeros(shape=(n_feed, lid_dim))
for i, func in enumerate(funcs):
X_act = func([X[start:end], 0])[0]
X_act = np.asarray(X_act, dtype=np.float32).reshape((n_feed, -1))
X_adv_act = func([X_adv[start:end], 0])[0]
X_adv_act = np.asarray(X_adv_act, dtype=np.float32).reshape((n_feed, -1))
X_noisy_act = func([X_noisy[start:end], 0])[0]
X_noisy_act = np.asarray(X_noisy_act, dtype=np.float32).reshape((n_feed, -1))
lid_batch[:, i] = mle_batch(X_act, X_act, k=k)
lid_batch_adv[:, i] = mle_batch(X_act, X_adv_act, k=k)
lid_batch_noisy[:, i] = mle_batch(X_act, X_noisy_act, k=k)
return lid_batch, lid_batch_noisy, lid_batch_adv
lids = []
lids_adv = []
lids_noisy = []
n_batches = int(np.ceil(X.shape[0] / float(batch_size)))
for i_batch in tqdm(range(n_batches)):
lid_batch, lid_batch_noisy, lid_batch_adv = estimate(i_batch)
lids.extend(lid_batch)
lids_adv.extend(lid_batch_adv)
lids_noisy.extend(lid_batch_noisy)
lids = np.asarray(lids, dtype=np.float32)
lids_noisy = np.asarray(lids_noisy, dtype=np.float32)
lids_adv = np.asarray(lids_adv, dtype=np.float32)
return lids, lids_noisy, lids_adv
def get_kmeans_random_batch(model, X, X_noisy, X_adv, dataset, k=10, batch_size=100, pca=False):
funcs = [K.function([model.layers[0].input, K.learning_phase()], [model.layers[-2].output])]
km_dim = len(funcs)
print("Number of layers to use: ", km_dim)
def estimate(i_batch):
start = i_batch * batch_size
end = np.minimum(len(X), (i_batch + 1) * batch_size)
n_feed = end - start
km_batch = np.zeros(shape=(n_feed, km_dim))
km_batch_adv = np.zeros(shape=(n_feed, km_dim))
km_batch_noisy = np.zeros(shape=(n_feed, km_dim))
for i, func in enumerate(funcs):
X_act = func([X[start:end], 0])[0]
X_act = np.asarray(X_act, dtype=np.float32).reshape((n_feed, -1))
X_adv_act = func([X_adv[start:end], 0])[0]
X_adv_act = np.asarray(X_adv_act, dtype=np.float32).reshape((n_feed, -1))
X_noisy_act = func([X_noisy[start:end], 0])[0]
X_noisy_act = np.asarray(X_noisy_act, dtype=np.float32).reshape((n_feed, -1))
if pca:
km_batch[:, i] = kmean_pca_batch(X_act, X_act, k=k)
else:
km_batch[:, i] = kmean_batch(X_act, X_act, k=k)
if pca:
km_batch_adv[:, i] = kmean_pca_batch(X_act, X_adv_act, k=k)
else:
km_batch_adv[:, i] = kmean_batch(X_act, X_adv_act, k=k)
if pca:
km_batch_noisy[:, i] = kmean_pca_batch(X_act, X_noisy_act, k=k)
else:
km_batch_noisy[:, i] = kmean_batch(X_act, X_noisy_act, k=k)
return km_batch, km_batch_noisy, km_batch_adv
kms = []
kms_adv = []
kms_noisy = []
n_batches = int(np.ceil(X.shape[0] / float(batch_size)))
for i_batch in tqdm(range(n_batches)):
km_batch, km_batch_noisy, km_batch_adv = estimate(i_batch)
kms.extend(km_batch)
kms_adv.extend(km_batch_adv)
kms_noisy.extend(km_batch_noisy)
kms = np.asarray(kms, dtype=np.float32)
kms_noisy = np.asarray(kms_noisy, dtype=np.float32)
kms_adv = np.asarray(kms_adv, dtype=np.float32)
return kms, kms_noisy, kms_adv
def score_point(tup):
x, kde = tup
return kde.score_samples(np.reshape(x, (1, -1)))[0]
def score_samples(kdes, samples, preds, n_jobs=None):
if n_jobs is not None:
p = mp.Pool(n_jobs)
else:
p = mp.Pool()
results = np.asarray(
p.map(
score_point,
[(x, kdes[i]) for x, i in zip(samples, preds)]
)
)
p.close()
p.join()
return results
def normalize(normal, adv, noisy):
n_samples = len(normal)
total = scale(np.concatenate((normal, adv, noisy)))
return total[:n_samples], total[n_samples:2*n_samples], total[2*n_samples:]
def train_lr(X, y):
lr = LogisticRegressionCV(n_jobs=-1).fit(X, y)
return lr
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg):
values_neg = np.concatenate(
(densities_neg.reshape((1, -1)),
uncerts_neg.reshape((1, -1))),
axis=0).transpose([1, 0])
values_pos = np.concatenate(
(densities_pos.reshape((1, -1)),
uncerts_pos.reshape((1, -1))),
axis=0).transpose([1, 0])
values = np.concatenate((values_neg, values_pos))
labels = np.concatenate(
(np.zeros_like(densities_neg), np.ones_like(densities_pos)))
lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels)
return values, labels, lr
def compute_roc(y_true, y_pred, plot=False):
fpr, tpr, _ = roc_curve(y_true, y_pred)
auc_score = roc_auc_score(y_true, y_pred)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False):
probs = np.concatenate((probs_neg, probs_pos))
labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
fpr, tpr, _ = roc_curve(labels, probs)
auc_score = auc(fpr, tpr)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
def random_split(X, Y):
print("random split 80%, 20% for training and testing")
num_samples = X.shape[0]
num_train = int(num_samples * 0.8)
rand_pert = np.random.permutation(num_samples)
X = X[rand_pert]
Y = Y[rand_pert]
X_train, X_test = X[:num_train], X[num_train:]
Y_train, Y_test = Y[:num_train], Y[num_train:]
return X_train, Y_train, X_test, Y_test
|
MIT License
|
pytest-dev/pytest-testinfra
|
testinfra/backend/base.py
|
BaseBackend.get_connection_type
|
python
|
def get_connection_type(cls):
return cls.NAME
|
Return the connection backend used as string.
Can be local, paramiko, ssh, docker, salt or ansible
|
https://github.com/pytest-dev/pytest-testinfra/blob/1974005549cc1b37af778371879b17ea372150d8/testinfra/backend/base.py#L132-L137
|
import abc
import collections
import locale
import logging
import shlex
import subprocess
import urllib.parse
logger = logging.getLogger("testinfra")
HostSpec = collections.namedtuple("HostSpec", ["name", "port", "user", "password"])
class CommandResult:
def __init__(
self,
backend,
exit_status,
command,
stdout_bytes,
stderr_bytes,
stdout=None,
stderr=None,
):
self.exit_status = exit_status
self._stdout_bytes = stdout_bytes
self._stderr_bytes = stderr_bytes
self._stdout = stdout
self._stderr = stderr
self.command = command
self._backend = backend
super().__init__()
@property
def succeeded(self):
return self.exit_status == 0
@property
def failed(self):
return self.exit_status != 0
@property
def rc(self):
return self.exit_status
@property
def stdout(self):
if self._stdout is None:
self._stdout = self._backend.decode(self._stdout_bytes)
return self._stdout
@property
def stderr(self):
if self._stderr is None:
self._stderr = self._backend.decode(self._stderr_bytes)
return self._stderr
@property
def stdout_bytes(self):
if self._stdout_bytes is None:
self._stdout_bytes = self._backend.encode(self._stdout)
return self._stdout_bytes
@property
def stderr_bytes(self):
if self._stderr_bytes is None:
self._stderr_bytes = self._backend.encode(self._stderr)
return self._stderr_bytes
def __repr__(self):
return (
"CommandResult(command={!r}, exit_status={}, stdout={!r}, " "stderr={!r})"
).format(
self.command,
self.exit_status,
self._stdout_bytes or self._stdout,
self._stderr_bytes or self._stderr,
)
class BaseBackend(metaclass=abc.ABCMeta):
HAS_RUN_SALT = False
HAS_RUN_ANSIBLE = False
@property
@classmethod
@abc.abstractmethod
def NAME(cls) -> str:
raise NotImplementedError()
def __init__(self, hostname, sudo=False, sudo_user=None, *args, **kwargs):
self._encoding = None
self._host = None
self.hostname = hostname
self.sudo = sudo
self.sudo_user = sudo_user
super().__init__()
def set_host(self, host):
self._host = host
@classmethod
|
Apache License 2.0
|
docusign/docusign-python-client
|
docusign_esign/models/event_notification.py
|
EventNotification.include_envelope_void_reason
|
python
|
def include_envelope_void_reason(self):
return self._include_envelope_void_reason
|
Gets the include_envelope_void_reason of this EventNotification. # noqa: E501
When set to **true**, this tells the Connect Service to include the void reason, as entered by the person that voided the envelope, in the message. # noqa: E501
:return: The include_envelope_void_reason of this EventNotification. # noqa: E501
:rtype: str
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/event_notification.py#L282-L290
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class EventNotification(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'delivery_mode': 'str',
'envelope_events': 'list[EnvelopeEvent]',
'event_data': 'ConnectEventData',
'include_certificate_of_completion': 'str',
'include_certificate_with_soap': 'str',
'include_document_fields': 'str',
'include_documents': 'str',
'include_envelope_void_reason': 'str',
'include_hmac': 'str',
'include_sender_account_as_custom_field': 'str',
'include_time_zone': 'str',
'logging_enabled': 'str',
'recipient_events': 'list[RecipientEvent]',
'require_acknowledgment': 'str',
'sign_message_with_x509_cert': 'str',
'soap_name_space': 'str',
'url': 'str',
'use_soap_interface': 'str'
}
attribute_map = {
'delivery_mode': 'deliveryMode',
'envelope_events': 'envelopeEvents',
'event_data': 'eventData',
'include_certificate_of_completion': 'includeCertificateOfCompletion',
'include_certificate_with_soap': 'includeCertificateWithSoap',
'include_document_fields': 'includeDocumentFields',
'include_documents': 'includeDocuments',
'include_envelope_void_reason': 'includeEnvelopeVoidReason',
'include_hmac': 'includeHMAC',
'include_sender_account_as_custom_field': 'includeSenderAccountAsCustomField',
'include_time_zone': 'includeTimeZone',
'logging_enabled': 'loggingEnabled',
'recipient_events': 'recipientEvents',
'require_acknowledgment': 'requireAcknowledgment',
'sign_message_with_x509_cert': 'signMessageWithX509Cert',
'soap_name_space': 'soapNameSpace',
'url': 'url',
'use_soap_interface': 'useSoapInterface'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._delivery_mode = None
self._envelope_events = None
self._event_data = None
self._include_certificate_of_completion = None
self._include_certificate_with_soap = None
self._include_document_fields = None
self._include_documents = None
self._include_envelope_void_reason = None
self._include_hmac = None
self._include_sender_account_as_custom_field = None
self._include_time_zone = None
self._logging_enabled = None
self._recipient_events = None
self._require_acknowledgment = None
self._sign_message_with_x509_cert = None
self._soap_name_space = None
self._url = None
self._use_soap_interface = None
self.discriminator = None
setattr(self, "_{}".format('delivery_mode'), kwargs.get('delivery_mode', None))
setattr(self, "_{}".format('envelope_events'), kwargs.get('envelope_events', None))
setattr(self, "_{}".format('event_data'), kwargs.get('event_data', None))
setattr(self, "_{}".format('include_certificate_of_completion'), kwargs.get('include_certificate_of_completion', None))
setattr(self, "_{}".format('include_certificate_with_soap'), kwargs.get('include_certificate_with_soap', None))
setattr(self, "_{}".format('include_document_fields'), kwargs.get('include_document_fields', None))
setattr(self, "_{}".format('include_documents'), kwargs.get('include_documents', None))
setattr(self, "_{}".format('include_envelope_void_reason'), kwargs.get('include_envelope_void_reason', None))
setattr(self, "_{}".format('include_hmac'), kwargs.get('include_hmac', None))
setattr(self, "_{}".format('include_sender_account_as_custom_field'), kwargs.get('include_sender_account_as_custom_field', None))
setattr(self, "_{}".format('include_time_zone'), kwargs.get('include_time_zone', None))
setattr(self, "_{}".format('logging_enabled'), kwargs.get('logging_enabled', None))
setattr(self, "_{}".format('recipient_events'), kwargs.get('recipient_events', None))
setattr(self, "_{}".format('require_acknowledgment'), kwargs.get('require_acknowledgment', None))
setattr(self, "_{}".format('sign_message_with_x509_cert'), kwargs.get('sign_message_with_x509_cert', None))
setattr(self, "_{}".format('soap_name_space'), kwargs.get('soap_name_space', None))
setattr(self, "_{}".format('url'), kwargs.get('url', None))
setattr(self, "_{}".format('use_soap_interface'), kwargs.get('use_soap_interface', None))
@property
def delivery_mode(self):
return self._delivery_mode
@delivery_mode.setter
def delivery_mode(self, delivery_mode):
self._delivery_mode = delivery_mode
@property
def envelope_events(self):
return self._envelope_events
@envelope_events.setter
def envelope_events(self, envelope_events):
self._envelope_events = envelope_events
@property
def event_data(self):
return self._event_data
@event_data.setter
def event_data(self, event_data):
self._event_data = event_data
@property
def include_certificate_of_completion(self):
return self._include_certificate_of_completion
@include_certificate_of_completion.setter
def include_certificate_of_completion(self, include_certificate_of_completion):
self._include_certificate_of_completion = include_certificate_of_completion
@property
def include_certificate_with_soap(self):
return self._include_certificate_with_soap
@include_certificate_with_soap.setter
def include_certificate_with_soap(self, include_certificate_with_soap):
self._include_certificate_with_soap = include_certificate_with_soap
@property
def include_document_fields(self):
return self._include_document_fields
@include_document_fields.setter
def include_document_fields(self, include_document_fields):
self._include_document_fields = include_document_fields
@property
def include_documents(self):
return self._include_documents
@include_documents.setter
def include_documents(self, include_documents):
self._include_documents = include_documents
@property
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/light/lifx_legacy.py
|
LIFXLight.color_temp
|
python
|
def color_temp(self):
temperature = color_temperature_kelvin_to_mired(self._kel)
_LOGGER.debug("color_temp: %d", temperature)
return temperature
|
Return the color temperature.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/light/lifx_legacy.py#L173-L178
|
import logging
import voluptuous as vol
from homeassistant.components.light import (
ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_HS_COLOR, ATTR_TRANSITION,
SUPPORT_BRIGHTNESS, SUPPORT_COLOR_TEMP, SUPPORT_COLOR,
SUPPORT_TRANSITION, Light, PLATFORM_SCHEMA)
from homeassistant.helpers.event import track_time_change
from homeassistant.util.color import (
color_temperature_mired_to_kelvin, color_temperature_kelvin_to_mired)
import homeassistant.helpers.config_validation as cv
_LOGGER = logging.getLogger(__name__)
REQUIREMENTS = ['liffylights==0.9.4']
BYTE_MAX = 255
CONF_BROADCAST = 'broadcast'
CONF_SERVER = 'server'
SHORT_MAX = 65535
TEMP_MAX = 9000
TEMP_MAX_HASS = 500
TEMP_MIN = 2500
TEMP_MIN_HASS = 154
SUPPORT_LIFX = (SUPPORT_BRIGHTNESS | SUPPORT_COLOR_TEMP | SUPPORT_COLOR |
SUPPORT_TRANSITION)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Optional(CONF_SERVER): cv.string,
vol.Optional(CONF_BROADCAST): cv.string,
})
def setup_platform(hass, config, add_devices, discovery_info=None):
server_addr = config.get(CONF_SERVER)
broadcast_addr = config.get(CONF_BROADCAST)
lifx_library = LIFX(add_devices, server_addr, broadcast_addr)
track_time_change(hass, lifx_library.poll, second=[10, 40])
lifx_library.probe()
class LIFX(object):
def __init__(self, add_devices_callback, server_addr=None,
broadcast_addr=None):
import liffylights
self._devices = []
self._add_devices_callback = add_devices_callback
self._liffylights = liffylights.LiffyLights(
self.on_device, self.on_power, self.on_color, server_addr,
broadcast_addr)
def find_bulb(self, ipaddr):
bulb = None
for device in self._devices:
if device.ipaddr == ipaddr:
bulb = device
break
return bulb
def on_device(self, ipaddr, name, power, hue, sat, bri, kel):
bulb = self.find_bulb(ipaddr)
if bulb is None:
_LOGGER.debug("new bulb %s %s %d %d %d %d %d",
ipaddr, name, power, hue, sat, bri, kel)
bulb = LIFXLight(
self._liffylights, ipaddr, name, power, hue, sat, bri, kel)
self._devices.append(bulb)
self._add_devices_callback([bulb])
else:
_LOGGER.debug("update bulb %s %s %d %d %d %d %d",
ipaddr, name, power, hue, sat, bri, kel)
bulb.set_power(power)
bulb.set_color(hue, sat, bri, kel)
bulb.schedule_update_ha_state()
def on_color(self, ipaddr, hue, sat, bri, kel):
bulb = self.find_bulb(ipaddr)
if bulb is not None:
bulb.set_color(hue, sat, bri, kel)
bulb.schedule_update_ha_state()
def on_power(self, ipaddr, power):
bulb = self.find_bulb(ipaddr)
if bulb is not None:
bulb.set_power(power)
bulb.schedule_update_ha_state()
def poll(self, now):
self.probe()
def probe(self, address=None):
self._liffylights.probe(address)
class LIFXLight(Light):
def __init__(self, liffy, ipaddr, name, power, hue, saturation, brightness,
kelvin):
_LOGGER.debug("LIFXLight: %s %s", ipaddr, name)
self._liffylights = liffy
self._ip = ipaddr
self.set_name(name)
self.set_power(power)
self.set_color(hue, saturation, brightness, kelvin)
@property
def should_poll(self):
return False
@property
def name(self):
return self._name
@property
def ipaddr(self):
return self._ip
@property
def hs_color(self):
return (self._hue / 65535 * 360, self._sat / 65535 * 100)
@property
def brightness(self):
brightness = int(self._bri / (BYTE_MAX + 1))
_LOGGER.debug("brightness: %d", brightness)
return brightness
@property
|
MIT License
|
sdu-cfei/modest-py
|
modestpy/estim/ga/ga.py
|
GA.plot_error_evo
|
python
|
def plot_error_evo(self, file=None):
fig, ax = plt.subplots()
ax.plot(self.fittest_errors)
ax.set_xlabel('Generation')
ax.set_ylabel('Error (NRMSE)')
if file:
fig = ax.get_figure()
fig.set_size_inches(GA.FIG_SIZE)
fig.savefig(file, dpi=GA.FIG_DPI)
return ax
|
Returns a plot of the error evolution.
:param file: string (path to the file, if None, file not created)
:return: Axes
|
https://github.com/sdu-cfei/modest-py/blob/dc14091fb8c20a8b3fa5ab33bbf597c0b566ba0a/modestpy/estim/ga/ga.py#L309-L323
|
import logging
import os
import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pyDOE as doe
from modestpy.estim.ga import algorithm
import modestpy.estim.plots as plots
from modestpy.estim.estpar import EstPar
from modestpy.estim.ga.population import Population
class GA(object):
FIG_DPI = 150
FIG_SIZE = (15, 10)
NAME = 'GA'
METHOD = '_method_'
ITER = '_iter_'
ERR = '_error_'
def __init__(self, fmu_path, inp, known, est, ideal,
maxiter=100, tol=0.001, look_back=10,
pop_size=40, uniformity=0.5, mut=0.05, mut_inc=0.3,
trm_size=6, ftype='RMSE', init_pop=None, lhs=False):
self.logger = logging.getLogger(type(self).__name__)
deprecated_msg = 'This GA implementation is deprecated. Use MODESTGA instead.'
print(deprecated_msg)
self.logger.warning('This GA implementation is deprecated. Use MODESTGA instead.')
self.logger.info('GA constructor invoked')
assert inp.index.equals(ideal.index), 'inp and ideal indexes are not matching'
algorithm.UNIFORM_RATE = uniformity
algorithm.MUT_RATE = mut
algorithm.MUT_RATE_INC = mut_inc
algorithm.TOURNAMENT_SIZE = int(trm_size)
self.max_generations = maxiter
self.tol = tol
self.look_back = look_back
self.fittest_errors = list()
self.all_estim_and_err = pd.DataFrame()
estpars = list()
for key in sorted(est.keys()):
self.logger.info(
'Add {} (initial guess={}) to estimated parameters'
.format(key, est[key][0])
)
estpars.append(EstPar(name=key,
value=est[key][0],
lo=est[key][1],
hi=est[key][2]))
known_df = pd.DataFrame()
for key in known:
assert known[key] is not None, 'None is not allowed in known parameters (parameter {})' .format(key)
known_df[key] = [known[key]]
self.logger.info('Known parameters:\n{}'.format(str(known_df)))
if lhs:
self.logger.info('LHS initialization')
init_pop = GA._lhs_init(par_names=[p.name for p in estpars],
bounds=[(p.lo, p.hi) for p in estpars],
samples=pop_size,
criterion='c')
self.logger.debug('Current population:\n{}'.format(str(init_pop)))
elif init_pop is None:
self.logger.info(
'No initial population provided, one individual will be based '
'on the initial guess and the other will be random'
)
init_pop = pd.DataFrame({k: [est[k][0]] for k in est})
self.logger.debug('Current population:\n{}'.format(str(init_pop)))
if init_pop is not None:
missing = pop_size - init_pop.index.size
self.logger.debug('Missing individuals = {}'.format(missing))
if missing > 0:
self.logger.debug('Add missing individuals (random)...')
while missing > 0:
init_pop = init_pop.append({
key: random.random() * (est[key][2] - est[key][1])
+ est[key][1] for key in sorted(est.keys())
}, ignore_index=True)
missing -= 1
self.logger.debug('Current population:\n{}'.format(str(init_pop)))
self.logger.debug('Instantiate Population ')
self.pop = Population(fmu_path=fmu_path,
pop_size=pop_size,
inp=inp,
known=known_df,
est=estpars,
ideal=ideal,
init=True,
ftype=ftype,
init_pop=init_pop)
def estimate(self):
self.evolution()
return self.get_estimates()
def evolution(self):
gen_count = 1
err_decreasing = True
self.logger.info('Generation ' + str(gen_count))
self.logger.info(str(self.pop))
self._update_res(gen_count)
gen_count += 1
while (gen_count <= self.max_generations) and err_decreasing:
self.pop = algorithm.evolve(self.pop)
self._update_res(gen_count)
self.logger.info('Generation ' + str(gen_count))
self.logger.info(str(self.pop))
if len(self.fittest_errors) > self.look_back:
err_past = self.fittest_errors[-self.look_back]
err_now = self.fittest_errors[-1]
err_decrease = err_past - err_now
if err_decrease < self.tol:
self.logger.info(
'Error decrease smaller than tol: {0:.5f} < {1:.5f}'
.format(err_decrease, self.tol))
self.logger.info('Stopping evolution...')
err_decreasing = False
else:
self.logger.info(
"'Look back' error decrease = {0:.5f} > "
"tol = {1:.5f}\n"
.format(err_decrease, self.tol))
gen_count += 1
self.logger.info('FITTEST PARAMETERS:\n{}'
.format(self.get_estimates()))
return self.pop.get_fittest()
def get_estimates(self, as_dict=False):
return self.pop.get_fittest_estimates()
def get_error(self):
return self.pop.get_fittest_error()
def get_errors(self):
return self.fittest_errors
def get_sim_res(self):
return self.pop.get_fittest().result.copy()
def get_full_solution_trajectory(self):
df = self.all_estim_and_err.copy()
summary = pd.DataFrame()
for i in range(1, df[GA.ITER].max() + 1):
summary = summary.append(self._get_best_from_gen(i))
summary[GA.ITER] = summary[GA.ITER].astype(int)
summary = summary.set_index(GA.ITER)
summary[GA.METHOD] = GA.NAME
return summary
def get_plots(self):
plots = list()
plots.append({'name': 'GA', 'axes': self.plot_pop_evo()})
return plots
def save_plots(self, workdir):
self.plot_comparison(os.path.join(workdir, 'ga_comparison.png'))
self.plot_error_evo(os.path.join(workdir, 'ga_error_evo.png'))
self.plot_parameter_evo(os.path.join(workdir, 'ga_param_evo.png'))
self.plot_pop_evo(os.path.join(workdir, 'ga_pop_evo.png'))
|
BSD 2-Clause Simplified License
|
01walid/py-dz-phone-number
|
dz_phone_number/dz_phones.py
|
DZPhoneNumber.__setattr__
|
python
|
def __setattr__(self, *args):
raise TypeError(
"DZPhoneNumber is an immutable object. You cannot set/delete its attributes"
)
|
Disables setting attributes
|
https://github.com/01walid/py-dz-phone-number/blob/4149faf0e94d172e1b108139ea0ca33a1011a5f8/dz_phone_number/dz_phones.py#L214-L219
|
from __future__ import annotations
import re
from dataclasses import dataclass, field
from enum import Flag, IntFlag, unique
from typing import List, Union, Callable, Optional, Any
from .enums import CountryCode, LandlinePrefix, MobileOperator
from .exceptions import InvalidDZPhoneNumber
class DZPhoneNumber:
__slots__ = ["number", "indicative", "operator_or_region", "suffix", "raw_number"]
def __init__(
self,
number: Optional[str] = None,
indicative: Optional[str] = "0",
operator_or_region: Optional[str] = None,
suffix: Optional[str] = None,
):
number = number or f"{indicative}{operator_or_region}{suffix}"
self._set_number(number)
def is_mobile(self) -> bool:
return isinstance(self.operator_or_region, MobileOperator)
def is_landline(self) -> bool:
return isinstance(self.operator_or_region, LandlinePrefix)
def replace(
self,
indicative: Union[str, None] = None,
operator_or_region: Union[str, None] = None,
suffix: Optional[str] = None,
) -> DZPhoneNumber:
indicative = indicative or self.indicative.value
operator_or_region = operator_or_region or self.operator_or_region.value
suffix = suffix or self.suffix
return DZPhoneNumber(
indicative=indicative, operator_or_region=operator_or_region, suffix=suffix
)
def get_pattern(self) -> re.Pattern:
landline_re = "|".join([str(o) for o in LandlinePrefix.all()])
mobile_re = "|".join([str(o) for o in MobileOperator.all()])
global_re = rf"\A(00213|\+213|0)({landline_re})?(?(2)([0-9]{{6}})|({mobile_re})([0-9]{{8}}))\Z"
return re.compile(global_re)
def _is_(self, operator_or_region: str) -> Callable:
def is_match():
return self.operator_or_region.is_of_equal_value(operator_or_region)
return is_match
def with_number(self, number):
return self.from_string(number)
@classmethod
def from_string(cls, number: str) -> DZPhoneNumber:
return cls(number)
def _set_number(self, number: str):
object.__setattr__(self, "raw_number", number)
if not isinstance(number, str):
self.__raise_invalid()
number = self._normalize_number(number)
pattern = self.get_pattern()
it_matches = pattern.match(number)
if it_matches:
indicative, operator_or_region, suffix = tuple(
x for x in it_matches.groups() if x is not None
)
object.__setattr__(self, "indicative", CountryCode(indicative))
object.__setattr__(
self,
"operator_or_region",
self.get_operator_or_region_by_number(operator_or_region),
)
object.__setattr__(self, "suffix", suffix)
else:
self.__raise_invalid()
object.__setattr__(self, "number", number)
def get_operator_or_region_by_number(
self, number: Union[str, int]
) -> Union[MobileOperator, LandlinePrefix]:
number = int(number)
return (
MobileOperator(number)
if number in MobileOperator.all()
else LandlinePrefix(number)
)
def _normalize_number(self, value: str) -> str:
number = value.strip()
if number.startswith("-") or number.endswith("-"):
self.__raise_invalid()
chars_to_remove = {"-": 5, " ": 13, "(": 1, ")": 1, ".": 5}
for char, count in chars_to_remove.items():
number = number.replace(char, "", count)
return number
def __raise_invalid(self):
raise InvalidDZPhoneNumber(
f"{self.raw_number} is invalid Algerian phone number"
)
def __getattr__(self, name: str) -> Any:
if name.startswith("is_"):
operator_or_region_str = name.replace("is_", "").upper()
return self._is_(operator_or_region_str)
raise AttributeError
def __eq__(self, other: object) -> bool:
if not isinstance(other, DZPhoneNumber):
raise TypeError("Expected object of type DZPhoneNumber got", type(other))
return (
self.operator_or_region.value == other.operator_or_region.value
and self.suffix == other.suffix
)
def __hash__(self):
return hash((self.indicative, self.operator_or_region, self.suffix))
def __str__(self) -> str:
return self.number
def __repr__(self) -> str:
return f"<{self.__class__.__name__}:{self.indicative.LOCAL} - {self.operator_or_region.describe()} - {self.suffix}>"
|
MIT License
|
rensaproject/rensapy
|
rensapy/src/en/parser/nltk_lite/draw/plot.py
|
PlotFrameI.create_zoom_marker
|
python
|
def create_zoom_marker(self):
raise AssertionError, 'PlotFrameI is an interface'
|
mark the zoom region, for drag-zooming
|
https://github.com/rensaproject/rensapy/blob/e7bb0bd248c23353226d4582eb3cc15e0de168ca/rensapy/src/en/parser/nltk_lite/draw/plot.py#L92-L94
|
__all__ = ['Plot']
from types import *
from math import log, log10, ceil, floor
import Tkinter, sys, time
from en.parser.nltk_lite.draw import ShowText, in_idle
class PlotFrameI(object):
def postscript(self, filename):
raise AssertionError, 'PlotFrameI is an interface'
def config_axes(self, xlog, ylog):
raise AssertionError, 'PlotFrameI is an interface'
def invtransform(self, x, y):
raise AssertionError, 'PlotFrameI is an interface'
def zoom(self, i1, j1, i2, j2):
raise AssertionError, 'PlotFrameI is an interface'
def visible_area(self):
raise AssertionError, 'PlotFrameI is an interface'
|
MIT License
|
allexks/py-polynomial
|
polynomial/core.py
|
Polynomial.__isub__
|
python
|
def __isub__(self, other):
return self.try_set_self(_sub(self.terms, other.terms))
|
Implement self -= other.
|
https://github.com/allexks/py-polynomial/blob/b2132f8b4c24227cfb2dbb2f61cf26ce3978c3a0/polynomial/core.py#L490-L492
|
from copy import deepcopy
from itertools import chain
from math import inf
import string
class PolynomialError(Exception):
class DegreeError(PolynomialError):
class TermError(PolynomialError):
def _accepts_many_arguments(function):
def decorated(self, *args, **kwargs):
if len(args) == 1 and not isinstance(args[0], (int, float, complex)):
function(self, args[0], kwargs)
else:
function(self, args, kwargs)
return decorated
def _extract_polynomial(method):
def decorated(self, other):
if isinstance(other, Polynomial):
return method(self, other)
if isinstance(other, (int, float, complex)):
return method(self, Constant(other))
raise ValueError(
"{0}.{1} requires a Polynomial or number, got {2}."
.format(
self.__class__.__name__,
method.__name__,
type(other).__name__
)
)
return decorated
def _get_more_permissive_class(a, b):
a_cls = a.__class__
b_cls = b.__class__
return b_cls if issubclass(a_cls, b_cls) else a_cls
def _trim(_vector):
if not _vector or len(_vector) == 1:
return _vector
ind = len(_vector)
while _vector[ind - 1] == 0 and ind > 0:
ind -= 1
return _vector[:ind]
def _to_terms(vec):
s_d = _degree(vec, tuples=False)
return [(coeff, s_d - deg) for deg, coeff
in enumerate(reversed(vec)) if coeff != 0]
def _degree(vec, tuples=True):
if not vec:
return -inf
if tuples:
return max(vec, key=lambda term: term[1] if term[0] else -inf)[1]
return len(vec) - 1
def _mul(lhs, rhs):
if not lhs or not rhs:
return [(0, 0)]
deg = _degree(lhs) + _degree(rhs) + 1
res = [0] * deg
for lcoeff, ldeg in lhs:
for rcoeff, rdeg in rhs:
res[ldeg + rdeg] += lcoeff * rcoeff
return _to_terms(res)
def _add(lhs, rhs):
if not lhs:
return rhs
if not rhs:
return lhs
deg = max(_degree(lhs), _degree(rhs)) + 1
res = [0] * deg
for coeff, deg in chain(lhs, rhs):
res[deg] += coeff
return _to_terms(res)
def _neg(vec):
return [(-coeff, deg) for coeff, deg in vec]
def _sub(lhs, rhs):
if not lhs:
return _neg(rhs)
if not rhs:
return lhs
deg = max(_degree(lhs), _degree(rhs)) + 1
res = [0] * deg
for coeff, deg in lhs:
res[deg] += coeff
for coeff, deg in rhs:
res[deg] -= coeff
return _to_terms(res)
class Polynomial:
@_accepts_many_arguments
def __init__(self, iterable, from_monomials=False):
if from_monomials:
def monomial_to_tuple(monomial):
if isinstance(monomial, Monomial):
return monomial.a, monomial.degree
if len(monomial) == 2:
return monomial
raise TypeError("{} cannot be a monomial.".
format(monomial))
self.terms = [monomial_to_tuple(monomial) for monomial in iterable]
else:
self._vector = _trim(list(iterable)[::-1])
@classmethod
def zero_instance(cls):
return Polynomial()
def _trim(self):
self._vector = _trim(self._vector)
@property
def degree(self):
if not self:
return -inf
return len(self._vector) - 1
@property
def derivative(self):
return self.nth_derivative()
def nth_derivative(self, n=1):
if not isinstance(n, int) or n < 0:
raise ValueError(
"n must be a non-negative integer (got {0})".format(n)
)
if not self or n > self.degree:
return self.zero_instance()
if n == 0:
return deepcopy(self)
if n == 1:
factors = range(1, self.degree + 1)
else:
d = self.degree - n + 1
factorial_term = n + 1
factors = [1] * d
for i in range(1, factorial_term):
factors[0] *= i
for i in range(1, d):
factors[i] = (factors[i - 1] // i) * factorial_term
factorial_term += 1
return Polynomial(
[c * x for c, x
in zip(self, reversed(factors))]
)
def integral(self, a, b):
res = self._indefinite_integral
return res.calculate(b) - res.calculate(a)
@property
def _indefinite_integral(self):
if not self:
return Polynomial()
return Polynomial(
[c/x for c, x in
zip(self, range(self.degree + 1, 0, -1))] + [0]
)
@property
def terms(self):
s_d = self.degree
return [(coeff, s_d - deg) for deg, coeff
in enumerate(self) if coeff != 0]
@terms.setter
def terms(self, terms):
if not terms:
_vector = [0]
else:
list_len = max(terms, key=lambda x: x[1])[1] + 1
_vector = [0] * list_len
for coeff, deg in terms:
_vector[deg] += coeff
_vector = _trim(_vector)
self._vector = _vector
@property
def monomials(self):
return [Monomial(k, deg) for k, deg in self.terms]
def calculate(self, x):
if self.degree < 0:
return 0
return sum(ak * (x ** k) for ak, k in self.terms)
def __getattr__(self, name):
if len(name) != 1:
return object.__getattribute__(self, name)
if name in string.ascii_letters:
return self[self.degree - ord(name.lower()) + ord('a')]
raise AttributeError("attribute {0} is not defined for Polynomial."
.format(name))
def __setattr__(self, name, new_value):
if len(name) != 1:
object.__setattr__(self, name, new_value)
elif name in string.ascii_letters:
self[self.degree - ord(name.lower()) + ord('a')] = new_value
else:
raise AttributeError("attribute {0} is not defined for Polynomial."
.format(name))
def __getitem__(self, degree):
if isinstance(degree, slice):
return self._vector[degree]
if degree == -inf and self.degree == -inf:
return 0
if degree > self.degree or degree < 0:
raise IndexError("Attempt to get coefficient of term with \
degree {0} of a {1}-degree polynomial".format(degree, self.degree))
return self._vector[degree]
def __setitem__(self, degree, new_value):
if isinstance(degree, slice):
self._vector[degree] = new_value
elif degree == -inf:
if self.degree == -inf:
self._vector = [new_value]
else:
raise IndexError(
"Can not set term with degree -inf on a"
" non-zero polynomial."
)
elif degree > self.degree:
raise IndexError("Attempt to set coefficient of term with \
degree {0} of a {1}-degree polynomial".format(degree, self.degree))
else:
self._vector[degree] = new_value
self._trim()
def __iter__(self):
return reversed(self._vector)
def __repr__(self):
if not self:
return "Polynomial()"
terms = ', '.join([repr(ak) for ak in self])
return "Polynomial({0})".format(terms)
def __str__(self):
if not self:
return "0"
def components(ak, k, is_leading):
ak = str(ak)
if ak[0] == "-":
ak = ak[1:]
sign = "-" if is_leading else "- "
else:
sign = "" if is_leading else "+ "
ak = "" if ak == "1" and k != 0 else ak
if k == 0:
p, k = "", ""
elif k == 1:
p, k = "x", ""
else:
p = "x^"
return sign, ak, p, k
s_d = self.degree
terms = ["{0}{1}{2}{3}".
format(*components(ak, k, k == s_d))
for ak, k in self.terms]
return " ".join(terms)
@_extract_polynomial
def __eq__(self, other):
if other == 0:
return not self
return self.degree == other.degree and self.terms == other.terms
@_extract_polynomial
def __ne__(self, other):
if other == 0:
return bool(self)
return self.degree != other.degree or self.terms != other.terms
def __bool__(self):
self._trim()
if not self._vector:
return False
if len(self._vector) > 1:
return True
return self._vector[0] != 0
@_extract_polynomial
def __add__(self, other):
if not self:
return deepcopy(other)
if not other:
return deepcopy(self)
return self.__class__().try_set_self(
_add(self.terms, other.terms)
)
@_extract_polynomial
def __radd__(self, other):
return self + other
@_extract_polynomial
def __iadd__(self, other):
return self.try_set_self(_add(self.terms, other.terms))
@_extract_polynomial
def __mul__(self, other):
if not self or not other:
return _get_more_permissive_class(self, other).zero_instance()
ret_val = deepcopy(self)
ret_val *= other
return ret_val
@_extract_polynomial
def __rmul__(self, other):
return self * other
@_extract_polynomial
def __imul__(self, other):
return self.try_set_self(_mul(self.terms, other.terms))
def __pos__(self):
self._trim()
return deepcopy(self)
def __neg__(self):
ret_val = deepcopy(self)
ret_val._vector = [-x for x in _trim(self._vector)]
return ret_val
@_extract_polynomial
def __sub__(self, other):
return self + (-other)
@_extract_polynomial
def __rsub__(self, other):
return other + (-self)
@_extract_polynomial
|
MIT License
|
chanedwin/pydistinct
|
pydistinct/sampling.py
|
sample_gaussian
|
python
|
def sample_gaussian(cov=200.0, population_size=1000, sample_size=500, seed=None):
np.random.seed(seed)
population = [int(i) for i in np.random.normal(0, cov, population_size)]
sample = population[:sample_size]
return {"sample": sample, "sample_distinct": len(set(sample)), "ground_truth": len(set(population))}
|
generate a ground truth population of distinct integers from a gaussian distribution (rounded to nearest int),
then draw a sample sequence of integers without replacement from the population. Integers created could be negative
:param cov: covariance of gaussian distribution
:type cov: float
:param population_size: ground truth number of distinct integers in population, with different probabilities
:type population_size: int
:param sample_size: sample size of sequence observed
:type sample_size: int
:param seed: random seed for numpy rng generator
:type seed: int
:returns : dictionary with sampled sequence[sample],
actual number of distinct values[ground_truth],
sample number of distinct values[sample_distinct]
|
https://github.com/chanedwin/pydistinct/blob/afecd6c9226a9eee3bad3e2610c34f32026db6f7/pydistinct/sampling.py#L24-L47
|
import numpy as np
def sample_uniform(n_distinct_integers=1000, sample_size=500, seed=None):
np.random.seed(seed)
sample = np.random.randint(1, n_distinct_integers, sample_size)
return {"sample": sample, "sample_distinct": len(set(sample)), "ground_truth": n_distinct_integers}
|
MIT License
|
deathbeds/pidgy
|
pidgy/parser.py
|
footnote
|
python
|
def footnote(state, start, end, silent=False):
import mdit_py_plugins.footnote
result = mdit_py_plugins.footnote.index.footnote_def(state, start, end, silent)
if not result:
return result
return result
|
a footnote lexer than inlines the token in the token stream
|
https://github.com/deathbeds/pidgy/blob/3cb16655df8e02f7af345faa485be22f1757975e/pidgy/parser.py#L236-L243
|
import functools
import io
import re
import markdown_it
from . import tangle
MAGIC = re.compile(r"^\s*%{2}")
class Markdown(markdown_it.MarkdownIt):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
[
self.block.ruler.before(
"code",
"front_matter",
__import__("functools").partial(frontMatter, x),
{"alt": ["paragraph", "reference", "blockquote", "list"]},
)
for x in "-+"
]
self.block.ruler.before("code", "doctest", doctest)
self.block.ruler.disable("code")
self.block.ruler.after("doctest", "code", code)
import mdit_py_plugins.footnote
self.block.ruler.after(
"list", "footnote_def", footnote, {"alt": ["paragraph", "reference"]}
)
self.block.ruler.disable("reference")
self.block.ruler.after("footnote_def", "", reference)
def init_env(self, src, env):
env.setdefault("source", io.StringIO(src))
env.setdefault("unprocessed", [])
env.setdefault("last_line", 0)
def runner(self, name, src, env=None):
from .lisp import LIT_HY_MATCH
if env is None:
env = {}
self.init_env(src, env)
if MAGIC.match(src) or LIT_HY_MATCH.match(src):
self.renderer_cls = tangle.Null
self.renderer = tangle.Null()
else:
self.renderer_cls = tangle.Python
self.renderer = tangle.Python()
return getattr(super(), name)(src, env)
parse = functools.partialmethod(runner, "parse")
render = functools.partialmethod(runner, "render")
def __call__(self, src):
return self.render("".join(src)).splitlines(True)
def print(self, src, env=None):
print(self.render(src, env))
def frontMatter(marker_str, state, start, end, silent, markers=("+++", "---")):
from math import floor
if state.tokens:
return False
while start < end:
if state.isEmpty(start):
start += 1
continue
break
else:
return False
marker = None
line = state.getLines(start, start + 1, 0, True)
if not state.getLines(start, start + 1, 0, True).startswith(markers):
return False
next = start + 1
marker = markers[line.startswith(markers[1])]
while next < end:
line = state.getLines(next, next + 1, 0, True)
next += 1
if line.startswith(marker):
break
else:
return False
old_parent = state.parentType
old_line_max = state.lineMax
state.parentType = "container"
state.lineMax = next
token = state.push("front_matter", "", 0)
token.hidden = True
token.markup = marker
token.content = state.src[state.bMarks[start] : state.eMarks[next]]
token.block = True
state.parentType = old_parent
state.lineMax = old_line_max
state.line = next
token.map = [start, state.line]
return True
def doctest(state, start, end, silent=False):
if not state.getLines(start, start + 1, 0, True).lstrip().startswith(">>> "):
return False
indent = state.bMarks[start]
next = start + 1
while next < end:
if state.isEmpty(next):
break
if state.bMarks[next] < indent:
break
next += 1
state.line = next
token = state.push("doctest", "code", 0)
token.content = state.getLines(start, next, 0, True)
token.map = [start, state.line]
return True
def code(state, start, end, silent=False):
if state.sCount[start] - state.blkIndent < 4:
return False
indent = state.bMarks[start]
last = next = start + 1
while next < end:
if state.isEmpty(next):
next += 1
continue
if state.sCount[next] - state.blkIndent >= 4:
if state.getLines(next, next + 1, 0, True).lstrip().startswith(">>> "):
break
next += 1
last = next
continue
break
state.line = last
token = state.push("code_block", "code", 0)
token.content = state.getLines(start, last, 4 + state.blkIndent, True)
token.map = [start, state.line]
return True
def reference(state, start, end, silent=False):
result = markdown_it.rules_block.reference(state, start, end, silent)
if not result:
return result
for key, value in sorted(
state.env["references"].items(), key=lambda x: x[1]["map"][0]
):
token = state.push("reference", "span", 0)
token.content = state.getLines(*value["map"], 0, True)
token.map = value["map"]
token.meta.update(value, name=key)
state.env["references"].clear()
return result
|
BSD 3-Clause New or Revised License
|
daeilkim/refinery
|
refinery/bnpy/bnpy-dev/bnpy/data/AdmixMinibatchIteratorDB.py
|
AdmixMinibatchIteratorDB.__init__
|
python
|
def __init__(self, vocab_size=None, dbpath=None, nDocTotal=None, nBatch=None, nLap=20, dataorderseed=42):
self.vocab_size= vocab_size
self.nBatch = nBatch
self.nLap = nLap
self.dbpath = dbpath
self.nDocTotal = nDocTotal
self.nObsBatch = nDocTotal/nBatch
self.curLapPos = -1
self.lapID = 0
self.dataorderseed = int(int(dataorderseed) % MAXSEED)
self.obsIDByBatch = self.configObsIDsForEachBatch()
|
Constructor for creating an iterator over the batches of data
|
https://github.com/daeilkim/refinery/blob/0d5de8fc3d680a2c79bd0e9384b506229787c74f/refinery/bnpy/bnpy-dev/bnpy/data/AdmixMinibatchIteratorDB.py#L42-L61
|
import numpy as np
import sqlite3
from WordsData import WordsData
MAXSEED = 1000000
class AdmixMinibatchIteratorDB(object):
|
MIT License
|
solid-mechanics/matplotlib-4-abaqus
|
matplotlib/colorbar.py
|
ColorbarBase._central_N
|
python
|
def _central_N(self):
nb = len(self._boundaries)
if self.extend == 'both':
nb -= 2
elif self.extend in ('min', 'max'):
nb -= 1
return nb
|
number of boundaries **before** extension of ends
|
https://github.com/solid-mechanics/matplotlib-4-abaqus/blob/1117070fb824210c217c564ac36e69112ce70501/matplotlib/colorbar.py#L668-L675
|
from __future__ import print_function
import warnings
import numpy as np
import matplotlib as mpl
import matplotlib.artist as martist
import matplotlib.cbook as cbook
import matplotlib.collections as collections
import matplotlib.colors as colors
import matplotlib.contour as contour
import matplotlib.cm as cm
import matplotlib.gridspec as gridspec
import matplotlib.lines as lines
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.ticker as ticker
import matplotlib.transforms as mtrans
from matplotlib import docstring
make_axes_kw_doc = '''
============= ====================================================
Property Description
============= ====================================================
*orientation* vertical or horizontal
*fraction* 0.15; fraction of original axes to use for colorbar
*pad* 0.05 if vertical, 0.15 if horizontal; fraction
of original axes between colorbar and new image axes
*shrink* 1.0; fraction by which to shrink the colorbar
*aspect* 20; ratio of long to short dimensions
*anchor* (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal;
the anchor point of the colorbar axes
*panchor* (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal;
the anchor point of the colorbar parent axes. If
False, the parent axes' anchor will be unchanged
============= ====================================================
'''
colormap_kw_doc = '''
============ ====================================================
Property Description
============ ====================================================
*extend* [ 'neither' | 'both' | 'min' | 'max' ]
If not 'neither', make pointed end(s) for out-of-
range values. These are set for a given colormap
using the colormap set_under and set_over methods.
*extendfrac* [ *None* | 'auto' | length | lengths ]
If set to *None*, both the minimum and maximum
triangular colorbar extensions with have a length of
5% of the interior colorbar length (this is the
default setting). If set to 'auto', makes the
triangular colorbar extensions the same lengths as
the interior boxes (when *spacing* is set to
'uniform') or the same lengths as the respective
adjacent interior boxes (when *spacing* is set to
'proportional'). If a scalar, indicates the length
of both the minimum and maximum triangular colorbar
extensions as a fraction of the interior colorbar
length. A two-element sequence of fractions may also
be given, indicating the lengths of the minimum and
maximum colorbar extensions respectively as a
fraction of the interior colorbar length.
*extendrect* [ *False* | *True* ]
If *False* the minimum and maximum colorbar extensions
will be triangular (the default). If *True* the
extensions will be rectangular.
*spacing* [ 'uniform' | 'proportional' ]
Uniform spacing gives each discrete color the same
space; proportional makes the space proportional to
the data interval.
*ticks* [ None | list of ticks | Locator object ]
If None, ticks are determined automatically from the
input.
*format* [ None | format string | Formatter object ]
If None, the
:class:`~matplotlib.ticker.ScalarFormatter` is used.
If a format string is given, e.g., '%.3f', that is
used. An alternative
:class:`~matplotlib.ticker.Formatter` object may be
given instead.
*drawedges* [ False | True ] If true, draw lines at color
boundaries.
============ ====================================================
The following will probably be useful only in the context of
indexed colors (that is, when the mappable has norm=NoNorm()),
or other unusual circumstances.
============ ===================================================
Property Description
============ ===================================================
*boundaries* None or a sequence
*values* None or a sequence which must be of length 1 less
than the sequence of *boundaries*. For each region
delimited by adjacent entries in *boundaries*, the
color mapped to the corresponding value in values
will be used.
============ ===================================================
'''
colorbar_doc = '''
Add a colorbar to a plot.
Function signatures for the :mod:`~matplotlib.pyplot` interface; all
but the first are also method signatures for the
:meth:`~matplotlib.figure.Figure.colorbar` method::
colorbar(**kwargs)
colorbar(mappable, **kwargs)
colorbar(mappable, cax=cax, **kwargs)
colorbar(mappable, ax=ax, **kwargs)
arguments:
*mappable*
the :class:`~matplotlib.image.Image`,
:class:`~matplotlib.contour.ContourSet`, etc. to
which the colorbar applies; this argument is mandatory for the
:meth:`~matplotlib.figure.Figure.colorbar` method but optional for the
:func:`~matplotlib.pyplot.colorbar` function, which sets the
default to the current image.
keyword arguments:
*cax*
None | axes object into which the colorbar will be drawn
*ax*
None | parent axes object(s) from which space for a new
colorbar axes will be stolen. If a list of axes is given
they will all be resized to make room for the colorbar axes.
*use_gridspec*
False | If *cax* is None, a new *cax* is created as an instance of
Axes. If *ax* is an instance of Subplot and *use_gridspec* is True,
*cax* is created as an instance of Subplot using the
grid_spec module.
Additional keyword arguments are of two kinds:
axes properties:
%s
colorbar properties:
%s
If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend*
kwarg is included automatically.
Note that the *shrink* kwarg provides a simple way to keep a vertical
colorbar, for example, from being taller than the axes of the mappable
to which the colorbar is attached; but it is a manual method requiring
some trial and error. If the colorbar is too tall (or a horizontal
colorbar is too wide) use a smaller value of *shrink*.
For more precise control, you can manually specify the positions of
the axes objects in which the mappable and the colorbar are drawn. In
this case, do not use any of the axes properties kwargs.
It is known that some vector graphics viewer (svg and pdf) renders white gaps
between segments of the colorbar. This is due to bugs in the viewers not
matplotlib. As a workaround the colorbar can be rendered with overlapping
segments::
cbar = colorbar()
cbar.solids.set_edgecolor("face")
draw()
However this has negative consequences in other circumstances. Particularly
with semi transparent images (alpha < 1) and colorbar extensions and is not
enabled by default see (issue #1188).
returns:
:class:`~matplotlib.colorbar.Colorbar` instance; see also its base class,
:class:`~matplotlib.colorbar.ColorbarBase`. Call the
:meth:`~matplotlib.colorbar.ColorbarBase.set_label` method
to label the colorbar.
''' % (make_axes_kw_doc, colormap_kw_doc)
docstring.interpd.update(colorbar_doc=colorbar_doc)
def _set_ticks_on_axis_warn(*args, **kw):
warnings.warn("Use the colorbar set_ticks() method instead.")
class ColorbarBase(cm.ScalarMappable):
_slice_dict = {'neither': slice(0, None),
'both': slice(1, -1),
'min': slice(1, None),
'max': slice(0, -1)}
def __init__(self, ax, cmap=None,
norm=None,
alpha=None,
values=None,
boundaries=None,
orientation='vertical',
ticklocation='auto',
extend='neither',
spacing='uniform',
ticks=None,
format=None,
drawedges=False,
filled=True,
extendfrac=None,
extendrect=False,
label='',
):
self.ax = ax
self._patch_ax()
if cmap is None:
cmap = cm.get_cmap()
if norm is None:
norm = colors.Normalize()
self.alpha = alpha
cm.ScalarMappable.__init__(self, cmap=cmap, norm=norm)
self.values = values
self.boundaries = boundaries
self.extend = extend
self._inside = self._slice_dict[extend]
self.spacing = spacing
self.orientation = orientation
self.drawedges = drawedges
self.filled = filled
self.extendfrac = extendfrac
self.extendrect = extendrect
self.solids = None
self.lines = list()
self.outline = None
self.patch = None
self.dividers = None
if ticklocation == 'auto':
ticklocation = 'bottom' if orientation == 'horizontal' else 'right'
self.ticklocation = ticklocation
self.set_label(label)
if cbook.iterable(ticks):
self.locator = ticker.FixedLocator(ticks, nbins=len(ticks))
else:
self.locator = ticks
if format is None:
if isinstance(self.norm, colors.LogNorm):
self.formatter = ticker.LogFormatterMathtext()
else:
self.formatter = ticker.ScalarFormatter()
elif cbook.is_string_like(format):
self.formatter = ticker.FormatStrFormatter(format)
else:
self.formatter = format
self.config_axis()
self.draw_all()
def _extend_lower(self):
return self.extend in ('both', 'min')
def _extend_upper(self):
return self.extend in ('both', 'max')
def _patch_ax(self):
self.ax.set_xticks = _set_ticks_on_axis_warn
self.ax.set_yticks = _set_ticks_on_axis_warn
def draw_all(self):
self._process_values()
self._find_range()
X, Y = self._mesh()
C = self._values[:, np.newaxis]
self._config_axes(X, Y)
if self.filled:
self._add_solids(X, Y, C)
def config_axis(self):
ax = self.ax
if self.orientation == 'vertical':
ax.xaxis.set_ticks([])
ax.yaxis.set_label_position(self.ticklocation)
ax.yaxis.set_ticks_position(self.ticklocation)
else:
ax.yaxis.set_ticks([])
ax.xaxis.set_label_position(self.ticklocation)
ax.xaxis.set_ticks_position(self.ticklocation)
self._set_label()
def update_ticks(self):
ax = self.ax
ticks, ticklabels, offset_string = self._ticker()
if self.orientation == 'vertical':
ax.yaxis.set_ticks(ticks)
ax.set_yticklabels(ticklabels)
ax.yaxis.get_major_formatter().set_offset_string(offset_string)
else:
ax.xaxis.set_ticks(ticks)
ax.set_xticklabels(ticklabels)
ax.xaxis.get_major_formatter().set_offset_string(offset_string)
def set_ticks(self, ticks, update_ticks=True):
if cbook.iterable(ticks):
self.locator = ticker.FixedLocator(ticks, nbins=len(ticks))
else:
self.locator = ticks
if update_ticks:
self.update_ticks()
def set_ticklabels(self, ticklabels, update_ticks=True):
if isinstance(self.locator, ticker.FixedLocator):
self.formatter = ticker.FixedFormatter(ticklabels)
if update_ticks:
self.update_ticks()
else:
warnings.warn("set_ticks() must have been called.")
def _config_axes(self, X, Y):
ax = self.ax
ax.set_frame_on(False)
ax.set_navigate(False)
xy = self._outline(X, Y)
ax.update_datalim(xy)
ax.set_xlim(*ax.dataLim.intervalx)
ax.set_ylim(*ax.dataLim.intervaly)
if self.outline is not None:
self.outline.remove()
self.outline = lines.Line2D(
xy[:, 0], xy[:, 1], color=mpl.rcParams['axes.edgecolor'],
linewidth=mpl.rcParams['axes.linewidth'])
ax.add_artist(self.outline)
self.outline.set_clip_box(None)
self.outline.set_clip_path(None)
c = mpl.rcParams['axes.facecolor']
if self.patch is not None:
self.patch.remove()
self.patch = mpatches.Polygon(xy, edgecolor=c,
facecolor=c,
linewidth=0.01,
zorder=-1)
ax.add_artist(self.patch)
self.update_ticks()
def _set_label(self):
if self.orientation == 'vertical':
self.ax.set_ylabel(self._label, **self._labelkw)
else:
self.ax.set_xlabel(self._label, **self._labelkw)
def set_label(self, label, **kw):
self._label = '%s' % (label, )
self._labelkw = kw
self._set_label()
def _outline(self, X, Y):
N = X.shape[0]
ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0]
x = np.take(np.ravel(np.transpose(X)), ii)
y = np.take(np.ravel(np.transpose(Y)), ii)
x = x.reshape((len(x), 1))
y = y.reshape((len(y), 1))
if self.orientation == 'horizontal':
return np.hstack((y, x))
return np.hstack((x, y))
def _edges(self, X, Y):
N = X.shape[0]
if self.orientation == 'vertical':
return [zip(X[i], Y[i]) for i in xrange(1, N - 1)]
else:
return [zip(Y[i], X[i]) for i in xrange(1, N - 1)]
def _add_solids(self, X, Y, C):
if self.orientation == 'vertical':
args = (X, Y, C)
else:
args = (np.transpose(Y), np.transpose(X), np.transpose(C))
kw = dict(cmap=self.cmap,
norm=self.norm,
alpha=self.alpha,
edgecolors='None')
_hold = self.ax.ishold()
self.ax.hold(True)
col = self.ax.pcolormesh(*args, **kw)
self.ax.hold(_hold)
if self.solids is not None:
self.solids.remove()
self.solids = col
if self.dividers is not None:
self.dividers.remove()
self.dividers = None
if self.drawedges:
linewidths = (0.5 * mpl.rcParams['axes.linewidth'],)
self.dividers = collections.LineCollection(self._edges(X, Y),
colors=(mpl.rcParams['axes.edgecolor'],),
linewidths=linewidths)
self.ax.add_collection(self.dividers)
def add_lines(self, levels, colors, linewidths, erase=True):
y = self._locate(levels)
igood = (y < 1.001) & (y > -0.001)
y = y[igood]
if cbook.iterable(colors):
colors = np.asarray(colors)[igood]
if cbook.iterable(linewidths):
linewidths = np.asarray(linewidths)[igood]
N = len(y)
x = np.array([0.0, 1.0])
X, Y = np.meshgrid(x, y)
if self.orientation == 'vertical':
xy = [zip(X[i], Y[i]) for i in xrange(N)]
else:
xy = [zip(Y[i], X[i]) for i in xrange(N)]
col = collections.LineCollection(xy, linewidths=linewidths)
if erase and self.lines:
for lc in self.lines:
lc.remove()
self.lines = []
self.lines.append(col)
col.set_color(colors)
self.ax.add_collection(col)
def _ticker(self):
locator = self.locator
formatter = self.formatter
if locator is None:
if self.boundaries is None:
if isinstance(self.norm, colors.NoNorm):
nv = len(self._values)
base = 1 + int(nv / 10)
locator = ticker.IndexLocator(base=base, offset=0)
elif isinstance(self.norm, colors.BoundaryNorm):
b = self.norm.boundaries
locator = ticker.FixedLocator(b, nbins=10)
elif isinstance(self.norm, colors.LogNorm):
locator = ticker.LogLocator()
else:
locator = ticker.MaxNLocator()
else:
b = self._boundaries[self._inside]
locator = ticker.FixedLocator(b, nbins=10)
if isinstance(self.norm, colors.NoNorm):
intv = self._values[0], self._values[-1]
else:
intv = self.vmin, self.vmax
locator.create_dummy_axis(minpos=intv[0])
formatter.create_dummy_axis(minpos=intv[0])
locator.set_view_interval(*intv)
locator.set_data_interval(*intv)
formatter.set_view_interval(*intv)
formatter.set_data_interval(*intv)
b = np.array(locator())
ticks = self._locate(b)
inrange = (ticks > -0.001) & (ticks < 1.001)
ticks = ticks[inrange]
b = b[inrange]
formatter.set_locs(b)
ticklabels = [formatter(t, i) for i, t in enumerate(b)]
offset_string = formatter.get_offset()
return ticks, ticklabels, offset_string
def _process_values(self, b=None):
if b is None:
b = self.boundaries
if b is not None:
self._boundaries = np.asarray(b, dtype=float)
if self.values is None:
self._values = 0.5 * (self._boundaries[:-1]
+ self._boundaries[1:])
if isinstance(self.norm, colors.NoNorm):
self._values = (self._values + 0.00001).astype(np.int16)
return
self._values = np.array(self.values)
return
if self.values is not None:
self._values = np.array(self.values)
if self.boundaries is None:
b = np.zeros(len(self.values) + 1, 'd')
b[1:-1] = 0.5 * (self._values[:-1] - self._values[1:])
b[0] = 2.0 * b[1] - b[2]
b[-1] = 2.0 * b[-2] - b[-3]
self._boundaries = b
return
self._boundaries = np.array(self.boundaries)
return
if isinstance(self.norm, colors.NoNorm):
b = self._uniform_y(self.cmap.N + 1) * self.cmap.N - 0.5
v = np.zeros((len(b) - 1,), dtype=np.int16)
v[self._inside] = np.arange(self.cmap.N, dtype=np.int16)
if self._extend_lower():
v[0] = -1
if self._extend_upper():
v[-1] = self.cmap.N
self._boundaries = b
self._values = v
return
elif isinstance(self.norm, colors.BoundaryNorm):
b = list(self.norm.boundaries)
if self._extend_lower():
b = [b[0] - 1] + b
if self._extend_upper():
b = b + [b[-1] + 1]
b = np.array(b)
v = np.zeros((len(b) - 1,), dtype=float)
bi = self.norm.boundaries
v[self._inside] = 0.5 * (bi[:-1] + bi[1:])
if self._extend_lower():
v[0] = b[0] - 1
if self._extend_upper():
v[-1] = b[-1] + 1
self._boundaries = b
self._values = v
return
else:
if not self.norm.scaled():
self.norm.vmin = 0
self.norm.vmax = 1
b = self.norm.inverse(self._uniform_y(self.cmap.N + 1))
if self._extend_lower():
b[0] = b[0] - 1
if self._extend_upper():
b[-1] = b[-1] + 1
self._process_values(b)
def _find_range(self):
b = self._boundaries[self._inside]
self.vmin = b[0]
self.vmax = b[-1]
|
MIT License
|
x1angli/cvt2utf
|
cvt2utf/main.py
|
normalize_codec_name
|
python
|
def normalize_codec_name(chardet_name):
python_name = chardet_name.lower().replace('iso-', 'iso').replace('-', '_')
python_name = codecs.lookup(python_name).name
if python_name == 'gb2312':
return 'gb18030'
return python_name
|
Normalizes chardet codec names to Python codec names.
:param chardet_name: chardet codec names
:return: Python codec names. See: https://docs.python.org/3.7/library/codecs.html#standard-encodings
|
https://github.com/x1angli/cvt2utf/blob/8a8197e6aeda6f2eab865676279ff09c78376640/cvt2utf/main.py#L39-L55
|
__author__ = 'x1ang.li'
import logging, os, argparse, textwrap, time
import codecs
import chardet
from cvt2utf.meta_inf import __version__
DEFAULT_CONF = {
'inc_exts': {'txt'},
'exc_exts': {'bak'},
'size_limit': 10 * 1024 ** 2,
'codec_chain': ['ascii', 'utf_8_sig', 'latin_1', 'chardet'],
'confi_thres': 0.8,
'cut_time': 40
}
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
log = logging.getLogger(__name__)
|
MIT License
|
dstein64/vimgolf
|
vimgolf/keys.py
|
to_bytes
|
python
|
def to_bytes(x):
return x.to_bytes(2, 'big')
|
Convert an integer to bytes.
|
https://github.com/dstein64/vimgolf/blob/af5320108e16ab15ba5afa8f4c76d1fe3b2e37cf/vimgolf/keys.py#L3-L5
|
MIT License
|
|
cameronlonsdale/mtp
|
manytime/models.py
|
DecryptEdit.set_edit_pos
|
python
|
def set_edit_pos(self, pos: int) -> None:
if pos >= len(self._edit_text):
pos = len(self._edit_text) - 1
super().set_edit_pos(pos)
if self.previous_event[0] in (keys.LEFT, keys.RIGHT):
self.parent.x_pos = self.get_cursor_coords(self.previous_event[1])[0]
|
Overload the set_edit_pos function to restrict
the edit position to the end of the string, not 1 past the end
|
https://github.com/cameronlonsdale/mtp/blob/1ab37bb28eb72cfef9c1d2bfadf8b79b489d2621/manytime/models.py#L60-L72
|
import urwid
import math
from manytime import keys
from typing import Optional, List, Tuple, Union, Iterator
class Key:
def __init__(self, key: List[Optional[int]], unknown_character: str = '_') -> None:
self.key = key
self.unknown_character = unknown_character
def to_formatted_text(self) -> List:
unknown_char_formatted = ('unknown', self.unknown_character)
return self._to_text(unknown_char_formatted)
def to_plain_text(self) -> List:
return self._to_text(self.unknown_character)
def _to_text(self, unknown: Union[str, Tuple[str, str]]) -> List:
return [format(k, '02x') if k is not None else [unknown, unknown] for k in self.key]
def __iter__(self) -> Iterator:
return iter(self.key)
def __getitem__(self, index: int) -> Optional[int]:
return self.key[index]
def __setitem__(self, index: int, value: Optional[int]) -> None:
self.key[index] = value
class DecryptEdit(urwid.Edit):
def __init__(self, parent, edit_text):
self.parent = parent
self.previous_event: Tuple[Optional[str], Any] = (None, None)
super().__init__(edit_pos=0, edit_text=edit_text)
|
MIT License
|
azure/azure-linux-extensions
|
DSC/azure/servicemanagement/servicemanagementservice.py
|
ServiceManagementService.walk_upgrade_domain
|
python
|
def walk_upgrade_domain(self, service_name, deployment_name,
upgrade_domain):
_validate_not_none('service_name', service_name)
_validate_not_none('deployment_name', deployment_name)
_validate_not_none('upgrade_domain', upgrade_domain)
return self._perform_post(
self._get_deployment_path_using_name(
service_name, deployment_name) + '/?comp=walkupgradedomain',
_XmlSerializer.walk_upgrade_domain_to_xml(
upgrade_domain),
async=True)
|
Specifies the next upgrade domain to be walked during manual in-place
upgrade or configuration change.
service_name: Name of the hosted service.
deployment_name: The name of the deployment.
upgrade_domain:
An integer value that identifies the upgrade domain to walk.
Upgrade domains are identified with a zero-based index: the first
upgrade domain has an ID of 0, the second has an ID of 1, and so on.
|
https://github.com/azure/azure-linux-extensions/blob/128c1c5babfe5f74ad3c00be95abce3c54311e91/DSC/azure/servicemanagement/servicemanagementservice.py#L606-L627
|
from azure import (
WindowsAzureError,
MANAGEMENT_HOST,
_str,
_validate_not_none,
)
from azure.servicemanagement import (
AffinityGroups,
AffinityGroup,
AvailabilityResponse,
Certificate,
Certificates,
DataVirtualHardDisk,
Deployment,
Disk,
Disks,
Locations,
Operation,
HostedService,
HostedServices,
Images,
OperatingSystems,
OperatingSystemFamilies,
OSImage,
PersistentVMRole,
StorageService,
StorageServices,
Subscription,
SubscriptionCertificate,
SubscriptionCertificates,
VirtualNetworkSites,
_XmlSerializer,
)
from azure.servicemanagement.servicemanagementclient import (
_ServiceManagementClient,
)
class ServiceManagementService(_ServiceManagementClient):
def __init__(self, subscription_id=None, cert_file=None,
host=MANAGEMENT_HOST):
super(ServiceManagementService, self).__init__(
subscription_id, cert_file, host)
def list_storage_accounts(self):
return self._perform_get(self._get_storage_service_path(),
StorageServices)
def get_storage_account_properties(self, service_name):
_validate_not_none('service_name', service_name)
return self._perform_get(self._get_storage_service_path(service_name),
StorageService)
def get_storage_account_keys(self, service_name):
_validate_not_none('service_name', service_name)
return self._perform_get(
self._get_storage_service_path(service_name) + '/keys',
StorageService)
def regenerate_storage_account_keys(self, service_name, key_type):
_validate_not_none('service_name', service_name)
_validate_not_none('key_type', key_type)
return self._perform_post(
self._get_storage_service_path(
service_name) + '/keys?action=regenerate',
_XmlSerializer.regenerate_keys_to_xml(
key_type),
StorageService)
def create_storage_account(self, service_name, description, label,
affinity_group=None, location=None,
geo_replication_enabled=True,
extended_properties=None):
_validate_not_none('service_name', service_name)
_validate_not_none('description', description)
_validate_not_none('label', label)
if affinity_group is None and location is None:
raise WindowsAzureError(
'location or affinity_group must be specified')
if affinity_group is not None and location is not None:
raise WindowsAzureError(
'Only one of location or affinity_group needs to be specified')
return self._perform_post(
self._get_storage_service_path(),
_XmlSerializer.create_storage_service_input_to_xml(
service_name,
description,
label,
affinity_group,
location,
geo_replication_enabled,
extended_properties),
async=True)
def update_storage_account(self, service_name, description=None,
label=None, geo_replication_enabled=None,
extended_properties=None):
_validate_not_none('service_name', service_name)
return self._perform_put(
self._get_storage_service_path(service_name),
_XmlSerializer.update_storage_service_input_to_xml(
description,
label,
geo_replication_enabled,
extended_properties))
def delete_storage_account(self, service_name):
_validate_not_none('service_name', service_name)
return self._perform_delete(
self._get_storage_service_path(service_name))
def check_storage_account_name_availability(self, service_name):
_validate_not_none('service_name', service_name)
return self._perform_get(
self._get_storage_service_path() +
'/operations/isavailable/' +
_str(service_name) + '',
AvailabilityResponse)
def list_hosted_services(self):
return self._perform_get(self._get_hosted_service_path(),
HostedServices)
def get_hosted_service_properties(self, service_name, embed_detail=False):
_validate_not_none('service_name', service_name)
_validate_not_none('embed_detail', embed_detail)
return self._perform_get(
self._get_hosted_service_path(service_name) +
'?embed-detail=' +
_str(embed_detail).lower(),
HostedService)
def create_hosted_service(self, service_name, label, description=None,
location=None, affinity_group=None,
extended_properties=None):
_validate_not_none('service_name', service_name)
_validate_not_none('label', label)
if affinity_group is None and location is None:
raise WindowsAzureError(
'location or affinity_group must be specified')
if affinity_group is not None and location is not None:
raise WindowsAzureError(
'Only one of location or affinity_group needs to be specified')
return self._perform_post(self._get_hosted_service_path(),
_XmlSerializer.create_hosted_service_to_xml(
service_name,
label,
description,
location,
affinity_group,
extended_properties))
def update_hosted_service(self, service_name, label=None, description=None,
extended_properties=None):
_validate_not_none('service_name', service_name)
return self._perform_put(self._get_hosted_service_path(service_name),
_XmlSerializer.update_hosted_service_to_xml(
label,
description,
extended_properties))
def delete_hosted_service(self, service_name):
_validate_not_none('service_name', service_name)
return self._perform_delete(self._get_hosted_service_path(service_name))
def get_deployment_by_slot(self, service_name, deployment_slot):
_validate_not_none('service_name', service_name)
_validate_not_none('deployment_slot', deployment_slot)
return self._perform_get(
self._get_deployment_path_using_slot(
service_name, deployment_slot),
Deployment)
def get_deployment_by_name(self, service_name, deployment_name):
_validate_not_none('service_name', service_name)
_validate_not_none('deployment_name', deployment_name)
return self._perform_get(
self._get_deployment_path_using_name(
service_name, deployment_name),
Deployment)
def create_deployment(self, service_name, deployment_slot, name,
package_url, label, configuration,
start_deployment=False,
treat_warnings_as_error=False,
extended_properties=None):
_validate_not_none('service_name', service_name)
_validate_not_none('deployment_slot', deployment_slot)
_validate_not_none('name', name)
_validate_not_none('package_url', package_url)
_validate_not_none('label', label)
_validate_not_none('configuration', configuration)
return self._perform_post(
self._get_deployment_path_using_slot(
service_name, deployment_slot),
_XmlSerializer.create_deployment_to_xml(
name,
package_url,
label,
configuration,
start_deployment,
treat_warnings_as_error,
extended_properties),
async=True)
def delete_deployment(self, service_name, deployment_name):
_validate_not_none('service_name', service_name)
_validate_not_none('deployment_name', deployment_name)
return self._perform_delete(
self._get_deployment_path_using_name(
service_name, deployment_name),
async=True)
def swap_deployment(self, service_name, production, source_deployment):
_validate_not_none('service_name', service_name)
_validate_not_none('production', production)
_validate_not_none('source_deployment', source_deployment)
return self._perform_post(self._get_hosted_service_path(service_name),
_XmlSerializer.swap_deployment_to_xml(
production, source_deployment),
async=True)
def change_deployment_configuration(self, service_name, deployment_name,
configuration,
treat_warnings_as_error=False,
mode='Auto', extended_properties=None):
_validate_not_none('service_name', service_name)
_validate_not_none('deployment_name', deployment_name)
_validate_not_none('configuration', configuration)
return self._perform_post(
self._get_deployment_path_using_name(
service_name, deployment_name) + '/?comp=config',
_XmlSerializer.change_deployment_to_xml(
configuration,
treat_warnings_as_error,
mode,
extended_properties),
async=True)
def update_deployment_status(self, service_name, deployment_name, status):
_validate_not_none('service_name', service_name)
_validate_not_none('deployment_name', deployment_name)
_validate_not_none('status', status)
return self._perform_post(
self._get_deployment_path_using_name(
service_name, deployment_name) + '/?comp=status',
_XmlSerializer.update_deployment_status_to_xml(
status),
async=True)
def upgrade_deployment(self, service_name, deployment_name, mode,
package_url, configuration, label, force,
role_to_upgrade=None, extended_properties=None):
_validate_not_none('service_name', service_name)
_validate_not_none('deployment_name', deployment_name)
_validate_not_none('mode', mode)
_validate_not_none('package_url', package_url)
_validate_not_none('configuration', configuration)
_validate_not_none('label', label)
_validate_not_none('force', force)
return self._perform_post(
self._get_deployment_path_using_name(
service_name, deployment_name) + '/?comp=upgrade',
_XmlSerializer.upgrade_deployment_to_xml(
mode,
package_url,
configuration,
label,
role_to_upgrade,
force,
extended_properties),
async=True)
|
Apache License 2.0
|
alberanid/diffido
|
diffido.py
|
BaseHandler.build_success
|
python
|
def build_success(self, message='', status=200):
self.set_status(status)
self.write({'error': False, 'message': message})
|
Build and write a success message.
:param message: textual message
:type message: str
:param status: HTTP status code
:type status: int
|
https://github.com/alberanid/diffido/blob/89ed643f6b3967656b7817284ca26f8bab549b99/diffido.py#L608-L617
|
import os
import re
import json
import pytz
import shutil
import urllib
import smtplib
from email.mime.text import MIMEText
from email.utils import formatdate
import logging
import datetime
import requests
import subprocess
import multiprocessing
from lxml import etree
from xml.etree import ElementTree
from tornado.ioloop import IOLoop
from apscheduler.triggers.cron import CronTrigger
from apscheduler.schedulers.tornado import TornadoScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
import tornado.httpserver
import tornado.ioloop
import tornado.options
from tornado.options import define, options
import tornado.web
from tornado import gen, escape
JOBS_STORE = 'sqlite:///conf/jobs.db'
API_VERSION = '1.0'
SCHEDULES_FILE = 'conf/schedules.json'
DEFAULT_CONF = 'conf/diffido.conf'
EMAIL_FROM = 'diffido@localhost'
SMTP_SETTINGS = {}
GIT_CMD = 'git'
re_commit = re.compile(r'^(?P<id>[0-9a-f]{40}) (?P<message>.*)\n(?: .* '
'(?P<insertions>\d+) insertion.* (?P<deletions>\d+) deletion.*$)?', re.M)
re_insertion = re.compile(r'(\d+) insertion')
re_deletion = re.compile(r'(\d+) deletion')
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def read_schedules():
if not os.path.isfile(SCHEDULES_FILE):
return {'schedules': {}}
try:
with open(SCHEDULES_FILE, 'r') as fd:
schedules = json.loads(fd.read())
for id_ in schedules.get('schedules', {}).keys():
schedule = schedules['schedules'][id_]
try:
schedule['last_history'] = get_last_history(id_)
except:
schedule['last_history'] = {}
continue
return schedules
except Exception as e:
logger.error('unable to read %s: %s' % (SCHEDULES_FILE, e))
return {'schedules': {}}
def write_schedules(schedules):
try:
with open(SCHEDULES_FILE, 'w') as fd:
fd.write(json.dumps(schedules, indent=2))
except Exception as e:
logger.error('unable to write %s: %s' % (SCHEDULES_FILE, e))
return False
return True
def next_id(schedules):
ids = schedules.get('schedules', {}).keys()
if not ids:
return '1'
return str(max([int(i) for i in ids]) + 1)
def get_schedule(id_, add_id=True, add_history=False):
try:
schedules = read_schedules()
except Exception:
return {}
data = schedules.get('schedules', {}).get(id_, {})
if add_history and data:
data['last_history'] = get_last_history(id_)
if add_id:
data['id'] = str(id_)
return data
def select_xpath(content, xpath):
tree = etree.HTML(content)
elems = tree.xpath(xpath)
if not elems:
return content
selected_content = []
for elem in elems:
pieces = []
if elem.text:
pieces.append(elem.text)
for sub_el in elem.getchildren():
try:
sub_el_text = ElementTree.tostring(sub_el, method='html').decode('utf-8', 'replace')
except:
continue
if sub_el_text:
pieces.append(sub_el_text)
selected_content.append(''.join(pieces))
content = ''.join(selected_content).strip()
return content
def run_job(id_=None, force=False, *args, **kwargs):
schedule = get_schedule(id_, add_id=False)
url = schedule.get('url')
if not url:
return False
logger.debug('running job id:%s title:%s url: %s' % (id_, schedule.get('title', ''), url))
if not schedule.get('enabled') and not force:
logger.info('not running job %s: disabled' % id_)
return True
req = requests.get(url, allow_redirects=True, timeout=(30.10, 240))
content = req.text
xpath = schedule.get('xpath')
if xpath:
try:
content = select_xpath(content, xpath)
except Exception as e:
logger.warn('unable to extract XPath %s: %s' % (xpath, e))
req_path = urllib.parse.urlparse(req.url).path
base_name = os.path.basename(req_path) or 'index.html'
def _commit(id_, filename, content, queue):
try:
os.chdir('storage/%s' % id_)
except Exception as e:
logger.info('unable to move to storage/%s directory: %s; trying to create it...' % (id_, e))
_created = False
try:
_created = git_create_repo(id_)
except Exception as e:
logger.info('unable to move to storage/%s directory: %s; unable to create it' % (id_, e))
if not _created:
return False
current_lines = 0
if os.path.isfile(filename):
with open(filename, 'r') as fd:
for line in fd:
current_lines += 1
with open(filename, 'w') as fd:
fd.write(content)
p = subprocess.Popen([GIT_CMD, 'add', filename])
p.communicate()
p = subprocess.Popen([GIT_CMD, 'commit', '-m', '%s' % datetime.datetime.utcnow(), '--allow-empty'],
stdout=subprocess.PIPE)
stdout, _ = p.communicate()
stdout = stdout.decode('utf-8')
insert = re_insertion.findall(stdout)
if insert:
insert = int(insert[0])
else:
insert = 0
delete = re_deletion.findall(stdout)
if delete:
delete = int(delete[0])
else:
delete = 0
queue.put({'insertions': insert, 'deletions': delete, 'previous_lines': current_lines,
'changes': max(insert, delete)})
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=_commit, args=(id_, base_name, content, queue))
p.start()
res = queue.get()
p.join()
email = schedule.get('email')
if not email:
return True
changes = res.get('changes')
if not changes:
return True
min_change = schedule.get('minimum_change')
previous_lines = res.get('previous_lines')
if min_change and previous_lines:
min_change = float(min_change)
change_fraction = res.get('changes') / previous_lines
if change_fraction < min_change:
return True
diff = get_diff(id_).get('diff')
if not diff:
return True
send_email(to=email, subject='%s page changed' % schedule.get('title'),
body='changes:\n\n%s' % diff)
return True
def safe_run_job(id_=None, *args, **kwargs):
try:
run_job(id_, *args, **kwargs)
except Exception as e:
send_email('error executing job %s: %s' % (id_, e))
def send_email(to, subject='diffido', body='', from_=None):
msg = MIMEText(body)
msg['Subject'] = subject
msg['From'] = from_ or EMAIL_FROM
msg['To'] = to
msg["Date"] = formatdate(localtime=True)
starttls = SMTP_SETTINGS.get('smtp-starttls')
use_ssl = SMTP_SETTINGS.get('smtp-use-ssl')
username = SMTP_SETTINGS.get('smtp-username')
password = SMTP_SETTINGS.get('smtp-password')
args = {}
for key, value in SMTP_SETTINGS.items():
if key in ('smtp-starttls', 'smtp-use-ssl', 'smtp-username', 'smtp-password'):
continue
if key in ('smtp-port'):
value = int(value)
key = key.replace('smtp-', '', 1).replace('-', '_')
args[key] = value
try:
if use_ssl:
logger.debug('STMP SSL connection with args: %s' % repr(args))
with smtplib.SMTP_SSL(**args) as s:
if username:
logger.debug('STMP LOGIN for username %s and password of length %d' % (username, len(password)))
s.login(username, password)
s.send_message(msg)
else:
tls_args = {}
for key in ('ssl_keyfile', 'ssl_certfile', 'ssl_context'):
if key in args:
tls_args[key.replace('ssl_', '')] = args[key]
del args[key]
logger.debug('STMP connection with args: %s' % repr(args))
with smtplib.SMTP(**args) as s:
if starttls:
logger.debug('STMP STARTTLS connection with args: %s' % repr(tls_args))
s.ehlo_or_helo_if_needed()
s.starttls(**tls_args)
if username:
logger.debug('STMP LOGIN for username %s and password of length %d' % (username, len(password)))
s.login(username, password)
s.send_message(msg)
except Exception as e:
logger.error('unable to send email to %s: %s' % (to, e))
return False
return True
def get_history(id_, limit=None, add_info=False):
def _history(id_, limit, queue):
try:
os.chdir('storage/%s' % id_)
except Exception as e:
logger.info('unable to move to storage/%s directory: %s' % (id_, e))
return queue.put(b'')
cmd = [GIT_CMD, 'log', '--pretty=oneline', '--shortstat']
if limit is not None:
cmd.append('-%s' % limit)
p = subprocess.Popen(cmd, stdout=subprocess.PIPE)
stdout, _ = p.communicate()
queue.put(stdout)
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=_history, args=(id_, limit, queue))
p.start()
res = queue.get().decode('utf-8')
p.join()
history = []
for match in re_commit.finditer(res):
info = match.groupdict()
info['insertions'] = int(info['insertions'] or 0)
info['deletions'] = int(info['deletions'] or 0)
info['changes'] = max(info['insertions'], info['deletions'])
history.append(info)
last_id = None
if history and 'id' in history[0]:
last_id = history[0]['id']
for idx, item in enumerate(history):
item['seq'] = idx + 1
data = {'history': history, 'last_id': last_id}
if add_info:
data['schedule'] = get_schedule(id_)
return data
def get_last_history(id_):
history = get_history(id_, limit=1)
hist = history.get('history') or [{}]
return hist[0]
def get_diff(id_, commit_id='HEAD', old_commit_id=None):
def _history(id_, commit_id, old_commit_id, queue):
try:
os.chdir('storage/%s' % id_)
except Exception as e:
logger.info('unable to move to storage/%s directory: %s' % (id_, e))
return queue.put(b'')
p = subprocess.Popen([GIT_CMD, 'diff', old_commit_id or '%s~' % commit_id, commit_id],
stdout=subprocess.PIPE)
stdout, _ = p.communicate()
queue.put(stdout)
queue = multiprocessing.Queue()
p = multiprocessing.Process(target=_history, args=(id_, commit_id, old_commit_id, queue))
p.start()
res = queue.get().decode('utf-8')
p.join()
schedule = get_schedule(id_)
return {'diff': res, 'schedule': schedule}
def scheduler_update(scheduler, id_):
schedule = get_schedule(id_, add_id=False)
if not schedule:
logger.warn('unable to update empty schedule %s' % id_)
return False
trigger = schedule.get('trigger')
if trigger not in ('interval', 'cron'):
logger.warn('unable to update empty schedule %s: trigger not in ("cron", "interval")' % id_)
return False
args = {}
if trigger == 'interval':
args['trigger'] = 'interval'
for unit in 'weeks', 'days', 'hours', 'minutes', 'seconds':
if 'interval_%s' % unit not in schedule:
continue
try:
val = schedule['interval_%s' % unit]
if not val:
continue
args[unit] = int(val)
except Exception:
logger.warn('invalid argument on schedule %s: %s parameter %s is not an integer' %
(id_, 'interval_%s' % unit, schedule['interval_%s' % unit]))
if len(args) == 1:
logger.error('no valid interval specified, skipping schedule %s' % id_)
return False
elif trigger == 'cron':
try:
cron_trigger = CronTrigger.from_crontab(schedule['cron_crontab'])
args['trigger'] = cron_trigger
except Exception:
logger.warn('invalid argument on schedule %s: cron_tab parameter %s is not a valid crontab' %
(id_, schedule.get('cron_crontab')))
return False
git_create_repo(id_)
try:
scheduler.add_job(safe_run_job, id=id_, replace_existing=True, kwargs={'id_': id_}, **args)
except Exception as e:
logger.warn('unable to update job %s: %s' % (id_, e))
return False
return True
def scheduler_delete(scheduler, id_):
try:
scheduler.remove_job(job_id=id_)
except Exception as e:
logger.warn('unable to delete job %s: %s' % (id_, e))
return False
return git_delete_repo(id_)
def reset_from_schedules(scheduler):
ret = False
try:
scheduler.remove_all_jobs()
for key in read_schedules().get('schedules', {}).keys():
ret |= scheduler_update(scheduler, id_=key)
except Exception as e:
logger.warn('unable to reset all jobs: %s' % e)
return False
return ret
def git_init():
p = subprocess.Popen([GIT_CMD, 'config', '--global', 'user.email', '"%s"' % EMAIL_FROM])
p.communicate()
p = subprocess.Popen([GIT_CMD, 'config', '--global', 'user.name', '"Diffido"'])
p.communicate()
def git_create_repo(id_):
repo_dir = 'storage/%s' % id_
if os.path.isdir(repo_dir):
return True
p = subprocess.Popen([GIT_CMD, 'init', repo_dir])
p.communicate()
return p.returncode == 0
def git_delete_repo(id_):
repo_dir = 'storage/%s' % id_
if not os.path.isdir(repo_dir):
return False
try:
shutil.rmtree(repo_dir)
except Exception as e:
logger.warn('unable to delete Git repository %s: %s' % (id_, e))
return False
return True
class DiffidoBaseException(Exception):
def __init__(self, message, status=400):
super(DiffidoBaseException, self).__init__(message)
self.message = message
self.status = status
class BaseHandler(tornado.web.RequestHandler):
arguments = property(lambda self: dict([(k, v[0].decode('utf-8'))
for k, v in self.request.arguments.items()]))
@property
def clean_body(self):
return escape.json_decode(self.request.body or '{}')
def write_error(self, status_code, **kwargs):
if isinstance(kwargs.get('exc_info', (None, None))[1], DiffidoBaseException):
exc = kwargs['exc_info'][1]
status_code = exc.status
message = exc.message
else:
message = 'internal error'
self.build_error(message, status=status_code)
def initialize(self, **kwargs):
for key, value in kwargs.items():
setattr(self, key, value)
def build_error(self, message='', status=400):
self.set_status(status)
self.write({'error': True, 'message': message})
|
Apache License 2.0
|
inmanta/inmanta-core
|
src/inmanta/execute/dataflow/__init__.py
|
NodeReference.ref_to_node
|
python
|
def ref_to_node(self, node: "Node") -> bool:
return node in self.nodes()
|
Returns true iff this NodeReference refers to node.
|
https://github.com/inmanta/inmanta-core/blob/7e57295314e30276204b74ddcb8e2402c0a50b19/src/inmanta/execute/dataflow/__init__.py#L245-L249
|
from functools import reduce
from itertools import chain, filterfalse
from typing import TYPE_CHECKING, Callable, Dict, FrozenSet, Generic, Iterable, Iterator, List, Optional, Set, Tuple, TypeVar
if TYPE_CHECKING:
from inmanta.ast import Locatable
from inmanta.ast.attribute import Attribute
from inmanta.ast.entity import Entity
from inmanta.ast.statements.generator import Constructor
from inmanta.execute.runtime import Resolver, ResultVariable
class DataflowGraph:
__slots__ = ("resolver", "parent", "_own_variables", "_own_instances")
def __init__(self, resolver: "Resolver", parent: Optional["DataflowGraph"] = None) -> None:
self.resolver: "Resolver" = resolver
self.parent: Optional[DataflowGraph] = parent if parent is not None else None
self._own_variables: Dict[str, AssignableNode] = {}
self._own_instances: Dict["Constructor", InstanceNode] = {}
def get_own_variable(self, name: str) -> "AssignableNodeReference":
if name not in self._own_variables:
self._own_variables[name] = AssignableNode(name)
return self._own_variables[name].reference()
def own_instance_node_for_responsible(
self, entity: "Entity", responsible: "Constructor", get_new: Callable[[], "InstanceNode"]
) -> "InstanceNode":
if responsible not in self._own_instances:
new: InstanceNode = get_new()
new.entity = entity
new.responsible = responsible
new.context = self
self._own_instances[responsible] = new
return self._own_instances[responsible]
def add_index_match(self, instances: Iterable["InstanceNodeReference"]) -> None:
iterator: Iterator[InstanceNodeReference] = iter(instances)
try:
first: InstanceNode = next(iter(iterator)).node()
for instance in iterator:
instance.node().index_match(first)
except StopIteration:
pass
class Node:
__slots__ = ()
def __init__(self) -> None:
pass
def reference(self) -> "NodeReference":
raise NotImplementedError()
class NodeReference:
__slots__ = ()
def __init__(self) -> None:
pass
def nodes(self) -> Iterator["Node"]:
raise NotImplementedError()
|
Apache License 2.0
|
lvtk/lvtk
|
waflib/Build.py
|
BuildContext.get_tasks_group
|
python
|
def get_tasks_group(self, idx):
tasks = []
for tg in self.groups[idx]:
try:
tasks.extend(tg.tasks)
except AttributeError:
tasks.append(tg)
return tasks
|
Returns all task instances for the build group at position idx,
used internally by :py:meth:`waflib.Build.BuildContext.get_build_iterator`
:rtype: list of :py:class:`waflib.Task.Task`
|
https://github.com/lvtk/lvtk/blob/c9e351c480c7f335ced85cbe1ce599e43ae72d4c/waflib/Build.py#L787-L800
|
import os, sys, errno, re, shutil, stat
try:
import cPickle
except ImportError:
import pickle as cPickle
from waflib import Node, Runner, TaskGen, Utils, ConfigSet, Task, Logs, Options, Context, Errors
CACHE_DIR = 'c4che'
CACHE_SUFFIX = '_cache.py'
INSTALL = 1337
UNINSTALL = -1337
SAVED_ATTRS = 'root node_sigs task_sigs imp_sigs raw_deps node_deps'.split()
CFG_FILES = 'cfg_files'
POST_AT_ONCE = 0
POST_LAZY = 1
PROTOCOL = -1
if sys.platform == 'cli':
PROTOCOL = 0
class BuildContext(Context.Context):
cmd = 'build'
variant = ''
def __init__(self, **kw):
super(BuildContext, self).__init__(**kw)
self.is_install = 0
self.top_dir = kw.get('top_dir', Context.top_dir)
self.out_dir = kw.get('out_dir', Context.out_dir)
self.run_dir = kw.get('run_dir', Context.run_dir)
self.launch_dir = Context.launch_dir
self.post_mode = POST_LAZY
self.cache_dir = kw.get('cache_dir')
if not self.cache_dir:
self.cache_dir = os.path.join(self.out_dir, CACHE_DIR)
self.all_envs = {}
self.node_sigs = {}
self.task_sigs = {}
self.imp_sigs = {}
self.node_deps = {}
self.raw_deps = {}
self.task_gen_cache_names = {}
self.jobs = Options.options.jobs
self.targets = Options.options.targets
self.keep = Options.options.keep
self.progress_bar = Options.options.progress_bar
self.deps_man = Utils.defaultdict(list)
self.current_group = 0
self.groups = []
self.group_names = {}
for v in SAVED_ATTRS:
if not hasattr(self, v):
setattr(self, v, {})
def get_variant_dir(self):
if not self.variant:
return self.out_dir
return os.path.join(self.out_dir, os.path.normpath(self.variant))
variant_dir = property(get_variant_dir, None)
def __call__(self, *k, **kw):
kw['bld'] = self
ret = TaskGen.task_gen(*k, **kw)
self.task_gen_cache_names = {}
self.add_to_group(ret, group=kw.get('group'))
return ret
def __copy__(self):
raise Errors.WafError('build contexts cannot be copied')
def load_envs(self):
node = self.root.find_node(self.cache_dir)
if not node:
raise Errors.WafError('The project was not configured: run "waf configure" first!')
lst = node.ant_glob('**/*%s' % CACHE_SUFFIX, quiet=True)
if not lst:
raise Errors.WafError('The cache directory is empty: reconfigure the project')
for x in lst:
name = x.path_from(node).replace(CACHE_SUFFIX, '').replace('\\', '/')
env = ConfigSet.ConfigSet(x.abspath())
self.all_envs[name] = env
for f in env[CFG_FILES]:
newnode = self.root.find_resource(f)
if not newnode or not newnode.exists():
raise Errors.WafError('Missing configuration file %r, reconfigure the project!' % f)
def init_dirs(self):
if not (os.path.isabs(self.top_dir) and os.path.isabs(self.out_dir)):
raise Errors.WafError('The project was not configured: run "waf configure" first!')
self.path = self.srcnode = self.root.find_dir(self.top_dir)
self.bldnode = self.root.make_node(self.variant_dir)
self.bldnode.mkdir()
def execute(self):
self.restore()
if not self.all_envs:
self.load_envs()
self.execute_build()
def execute_build(self):
Logs.info("Waf: Entering directory `%s'", self.variant_dir)
self.recurse([self.run_dir])
self.pre_build()
self.timer = Utils.Timer()
try:
self.compile()
finally:
if self.progress_bar == 1 and sys.stderr.isatty():
c = self.producer.processed or 1
m = self.progress_line(c, c, Logs.colors.BLUE, Logs.colors.NORMAL)
Logs.info(m, extra={'stream': sys.stderr, 'c1': Logs.colors.cursor_off, 'c2' : Logs.colors.cursor_on})
Logs.info("Waf: Leaving directory `%s'", self.variant_dir)
try:
self.producer.bld = None
del self.producer
except AttributeError:
pass
self.post_build()
def restore(self):
try:
env = ConfigSet.ConfigSet(os.path.join(self.cache_dir, 'build.config.py'))
except EnvironmentError:
pass
else:
if env.version < Context.HEXVERSION:
raise Errors.WafError('Project was configured with a different version of Waf, please reconfigure it')
for t in env.tools:
self.setup(**t)
dbfn = os.path.join(self.variant_dir, Context.DBFILE)
try:
data = Utils.readf(dbfn, 'rb')
except (EnvironmentError, EOFError):
Logs.debug('build: Could not load the build cache %s (missing)', dbfn)
else:
try:
Node.pickle_lock.acquire()
Node.Nod3 = self.node_class
try:
data = cPickle.loads(data)
except Exception as e:
Logs.debug('build: Could not pickle the build cache %s: %r', dbfn, e)
else:
for x in SAVED_ATTRS:
setattr(self, x, data.get(x, {}))
finally:
Node.pickle_lock.release()
self.init_dirs()
def store(self):
data = {}
for x in SAVED_ATTRS:
data[x] = getattr(self, x)
db = os.path.join(self.variant_dir, Context.DBFILE)
try:
Node.pickle_lock.acquire()
Node.Nod3 = self.node_class
x = cPickle.dumps(data, PROTOCOL)
finally:
Node.pickle_lock.release()
Utils.writef(db + '.tmp', x, m='wb')
try:
st = os.stat(db)
os.remove(db)
if not Utils.is_win32:
os.chown(db + '.tmp', st.st_uid, st.st_gid)
except (AttributeError, OSError):
pass
os.rename(db + '.tmp', db)
def compile(self):
Logs.debug('build: compile()')
self.producer = Runner.Parallel(self, self.jobs)
self.producer.biter = self.get_build_iterator()
try:
self.producer.start()
except KeyboardInterrupt:
if self.is_dirty():
self.store()
raise
else:
if self.is_dirty():
self.store()
if self.producer.error:
raise Errors.BuildError(self.producer.error)
def is_dirty(self):
return self.producer.dirty
def setup(self, tool, tooldir=None, funs=None):
if isinstance(tool, list):
for i in tool:
self.setup(i, tooldir)
return
module = Context.load_tool(tool, tooldir)
if hasattr(module, "setup"):
module.setup(self)
def get_env(self):
try:
return self.all_envs[self.variant]
except KeyError:
return self.all_envs['']
def set_env(self, val):
self.all_envs[self.variant] = val
env = property(get_env, set_env)
def add_manual_dependency(self, path, value):
if not path:
raise ValueError('Invalid input path %r' % path)
if isinstance(path, Node.Node):
node = path
elif os.path.isabs(path):
node = self.root.find_resource(path)
else:
node = self.path.find_resource(path)
if not node:
raise ValueError('Could not find the path %r' % path)
if isinstance(value, list):
self.deps_man[node].extend(value)
else:
self.deps_man[node].append(value)
def launch_node(self):
try:
return self.p_ln
except AttributeError:
self.p_ln = self.root.find_dir(self.launch_dir)
return self.p_ln
def hash_env_vars(self, env, vars_lst):
if not env.table:
env = env.parent
if not env:
return Utils.SIG_NIL
idx = str(id(env)) + str(vars_lst)
try:
cache = self.cache_env
except AttributeError:
cache = self.cache_env = {}
else:
try:
return self.cache_env[idx]
except KeyError:
pass
lst = [env[a] for a in vars_lst]
cache[idx] = ret = Utils.h_list(lst)
Logs.debug('envhash: %s %r', Utils.to_hex(ret), lst)
return ret
def get_tgen_by_name(self, name):
cache = self.task_gen_cache_names
if not cache:
for g in self.groups:
for tg in g:
try:
cache[tg.name] = tg
except AttributeError:
pass
try:
return cache[name]
except KeyError:
raise Errors.WafError('Could not find a task generator for the name %r' % name)
def progress_line(self, idx, total, col1, col2):
if not sys.stderr.isatty():
return ''
n = len(str(total))
Utils.rot_idx += 1
ind = Utils.rot_chr[Utils.rot_idx % 4]
pc = (100. * idx)/total
fs = "[%%%dd/%%d][%%s%%2d%%%%%%s][%s][" % (n, ind)
left = fs % (idx, total, col1, pc, col2)
right = '][%s%s%s]' % (col1, self.timer, col2)
cols = Logs.get_term_cols() - len(left) - len(right) + 2*len(col1) + 2*len(col2)
if cols < 7:
cols = 7
ratio = ((cols * idx)//total) - 1
bar = ('='*ratio+'>').ljust(cols)
msg = Logs.indicator % (left, bar, right)
return msg
def declare_chain(self, *k, **kw):
return TaskGen.declare_chain(*k, **kw)
def pre_build(self):
for m in getattr(self, 'pre_funs', []):
m(self)
def post_build(self):
for m in getattr(self, 'post_funs', []):
m(self)
def add_pre_fun(self, meth):
try:
self.pre_funs.append(meth)
except AttributeError:
self.pre_funs = [meth]
def add_post_fun(self, meth):
try:
self.post_funs.append(meth)
except AttributeError:
self.post_funs = [meth]
def get_group(self, x):
if not self.groups:
self.add_group()
if x is None:
return self.groups[self.current_group]
if x in self.group_names:
return self.group_names[x]
return self.groups[x]
def add_to_group(self, tgen, group=None):
assert(isinstance(tgen, TaskGen.task_gen) or isinstance(tgen, Task.Task))
tgen.bld = self
self.get_group(group).append(tgen)
def get_group_name(self, g):
if not isinstance(g, list):
g = self.groups[g]
for x in self.group_names:
if id(self.group_names[x]) == id(g):
return x
return ''
def get_group_idx(self, tg):
se = id(tg)
for i, tmp in enumerate(self.groups):
for t in tmp:
if id(t) == se:
return i
return None
def add_group(self, name=None, move=True):
if name and name in self.group_names:
raise Errors.WafError('add_group: name %s already present', name)
g = []
self.group_names[name] = g
self.groups.append(g)
if move:
self.current_group = len(self.groups) - 1
def set_group(self, idx):
if isinstance(idx, str):
g = self.group_names[idx]
for i, tmp in enumerate(self.groups):
if id(g) == id(tmp):
self.current_group = i
break
else:
self.current_group = idx
def total(self):
total = 0
for group in self.groups:
for tg in group:
try:
total += len(tg.tasks)
except AttributeError:
total += 1
return total
def get_targets(self):
to_post = []
min_grp = 0
for name in self.targets.split(','):
tg = self.get_tgen_by_name(name)
m = self.get_group_idx(tg)
if m > min_grp:
min_grp = m
to_post = [tg]
elif m == min_grp:
to_post.append(tg)
return (min_grp, to_post)
def get_all_task_gen(self):
lst = []
for g in self.groups:
lst.extend(g)
return lst
def post_group(self):
def tgpost(tg):
try:
f = tg.post
except AttributeError:
pass
else:
f()
if self.targets == '*':
for tg in self.groups[self.current_group]:
tgpost(tg)
elif self.targets:
if self.current_group < self._min_grp:
for tg in self.groups[self.current_group]:
tgpost(tg)
else:
for tg in self._exact_tg:
tg.post()
else:
ln = self.launch_node()
if ln.is_child_of(self.bldnode):
Logs.warn('Building from the build directory, forcing --targets=*')
ln = self.srcnode
elif not ln.is_child_of(self.srcnode):
Logs.warn('CWD %s is not under %s, forcing --targets=* (run distclean?)', ln.abspath(), self.srcnode.abspath())
ln = self.srcnode
def is_post(tg, ln):
try:
p = tg.path
except AttributeError:
pass
else:
if p.is_child_of(ln):
return True
def is_post_group():
for i, g in enumerate(self.groups):
if i > self.current_group:
for tg in g:
if is_post(tg, ln):
return True
if self.post_mode == POST_LAZY and ln != self.srcnode:
if is_post_group():
ln = self.srcnode
for tg in self.groups[self.current_group]:
if is_post(tg, ln):
tgpost(tg)
|
ISC License
|
opensearch-project/opensearch-py
|
opensearchpy/_async/client/snapshot.py
|
SnapshotClient.cleanup_repository
|
python
|
async def cleanup_repository(self, repository, params=None, headers=None):
if repository in SKIP_IN_PATH:
raise ValueError("Empty value passed for a required argument 'repository'.")
return await self.transport.perform_request(
"POST",
_make_path("_snapshot", repository, "_cleanup"),
params=params,
headers=headers,
)
|
Removes stale data from repository.
:arg repository: A repository name
:arg master_timeout: Explicit operation timeout for connection
to master node
:arg timeout: Explicit operation timeout
|
https://github.com/opensearch-project/opensearch-py/blob/4281fe0e2c6baefc7abeda115b1f0cb1f746ebba/opensearchpy/_async/client/snapshot.py#L248-L266
|
from .utils import SKIP_IN_PATH, NamespacedClient, _make_path, query_params
class SnapshotClient(NamespacedClient):
@query_params("master_timeout", "wait_for_completion")
async def create(self, repository, snapshot, body=None, params=None, headers=None):
for param in (repository, snapshot):
if param in SKIP_IN_PATH:
raise ValueError("Empty value passed for a required argument.")
return await self.transport.perform_request(
"PUT",
_make_path("_snapshot", repository, snapshot),
params=params,
headers=headers,
body=body,
)
@query_params("master_timeout")
async def delete(self, repository, snapshot, params=None, headers=None):
for param in (repository, snapshot):
if param in SKIP_IN_PATH:
raise ValueError("Empty value passed for a required argument.")
return await self.transport.perform_request(
"DELETE",
_make_path("_snapshot", repository, snapshot),
params=params,
headers=headers,
)
@query_params(
"ignore_unavailable",
"include_repository",
"index_details",
"master_timeout",
"verbose",
)
async def get(self, repository, snapshot, params=None, headers=None):
for param in (repository, snapshot):
if param in SKIP_IN_PATH:
raise ValueError("Empty value passed for a required argument.")
return await self.transport.perform_request(
"GET",
_make_path("_snapshot", repository, snapshot),
params=params,
headers=headers,
)
@query_params("master_timeout", "timeout")
async def delete_repository(self, repository, params=None, headers=None):
if repository in SKIP_IN_PATH:
raise ValueError("Empty value passed for a required argument 'repository'.")
return await self.transport.perform_request(
"DELETE",
_make_path("_snapshot", repository),
params=params,
headers=headers,
)
@query_params("local", "master_timeout")
async def get_repository(self, repository=None, params=None, headers=None):
return await self.transport.perform_request(
"GET", _make_path("_snapshot", repository), params=params, headers=headers
)
@query_params("master_timeout", "timeout", "verify")
async def create_repository(self, repository, body, params=None, headers=None):
for param in (repository, body):
if param in SKIP_IN_PATH:
raise ValueError("Empty value passed for a required argument.")
return await self.transport.perform_request(
"PUT",
_make_path("_snapshot", repository),
params=params,
headers=headers,
body=body,
)
@query_params("master_timeout", "wait_for_completion")
async def restore(self, repository, snapshot, body=None, params=None, headers=None):
for param in (repository, snapshot):
if param in SKIP_IN_PATH:
raise ValueError("Empty value passed for a required argument.")
return await self.transport.perform_request(
"POST",
_make_path("_snapshot", repository, snapshot, "_restore"),
params=params,
headers=headers,
body=body,
)
@query_params("ignore_unavailable", "master_timeout")
async def status(self, repository=None, snapshot=None, params=None, headers=None):
return await self.transport.perform_request(
"GET",
_make_path("_snapshot", repository, snapshot, "_status"),
params=params,
headers=headers,
)
@query_params("master_timeout", "timeout")
async def verify_repository(self, repository, params=None, headers=None):
if repository in SKIP_IN_PATH:
raise ValueError("Empty value passed for a required argument 'repository'.")
return await self.transport.perform_request(
"POST",
_make_path("_snapshot", repository, "_verify"),
params=params,
headers=headers,
)
@query_params("master_timeout", "timeout")
|
Apache License 2.0
|
luci/luci-py
|
appengine/components/components/auth/b64.py
|
decode
|
python
|
def decode(data):
if not isinstance(data, str):
raise TypeError('Expecting str with base64 data')
mod = len(data) % 4
if mod:
data += '=' * (4 - mod)
return base64.b64decode(data.replace('-', '+').replace('_', '/'))
|
URL safe base64 with stripped '=' -> bytes str.
|
https://github.com/luci/luci-py/blob/0417a3f6d73d0bcb92626dafe277ef79214c9087/appengine/components/components/auth/b64.py#L22-L29
|
import base64
def encode(data):
if not isinstance(data, str):
raise TypeError('Expecting str with binary data')
urlsafe = base64.b64encode(data)
return urlsafe.rstrip('=').replace('+', '-').replace('/', '_')
|
Apache License 2.0
|
xoeye/xoto3
|
xoto3/utils/stack_context.py
|
StackContext.__call__
|
python
|
def __call__(self) -> T:
return self.get()
|
4 fewer characters than .get()
|
https://github.com/xoeye/xoto3/blob/ef91cde3cce81e1ded311389358271d5c8eba02b/xoto3/utils/stack_context.py#L62-L64
|
import contextlib as cl
import contextvars as cv
import typing as ty
T = ty.TypeVar("T")
F = ty.TypeVar("F", bound=ty.Callable)
@cl.contextmanager
def stack_context(contextvar: cv.ContextVar[T], value: T) -> ty.Iterator:
try:
token = contextvar.set(value)
yield
finally:
contextvar.reset(token)
class StackContext(ty.Generic[T]):
def __init__(self, name: str, default: T):
self._contextvar = cv.ContextVar(name, default=default)
def set(self, value: T) -> ty.ContextManager[T]:
return stack_context(self._contextvar, value)
def get(self) -> T:
return self._contextvar.get()
|
MIT License
|
cohesity/management-sdk-python
|
cohesity_management_sdk/models/user_quota_and_usage.py
|
UserQuotaAndUsage.from_dictionary
|
python
|
def from_dictionary(cls,
dictionary):
if dictionary is None:
return None
quota_policy = cohesity_management_sdk.models.quota_policy.QuotaPolicy.from_dictionary(dictionary.get('quotaPolicy')) if dictionary.get('quotaPolicy') else None
sid = dictionary.get('sid')
unix_uid = dictionary.get('unixUid')
usage_bytes = dictionary.get('usageBytes')
return cls(quota_policy,
sid,
unix_uid,
usage_bytes)
|
Creates an instance of this model from a dictionary
Args:
dictionary (dictionary): A dictionary representation of the object as
obtained from the deserialization of the server's response. The keys
MUST match property names in the API description.
Returns:
object: An instance of this structure class.
|
https://github.com/cohesity/management-sdk-python/blob/1c085d5a10f5f1a87b700e7ad1fc1dcabda41ae5/cohesity_management_sdk/models/user_quota_and_usage.py#L70-L96
|
import cohesity_management_sdk.models.quota_policy
class UserQuotaAndUsage(object):
_names = {
"quota_policy":'quotaPolicy',
"sid":'sid',
"unix_uid":'unixUid',
"usage_bytes":'usageBytes'
}
def __init__(self,
quota_policy=None,
sid=None,
unix_uid=None,
usage_bytes=None):
self.quota_policy = quota_policy
self.sid = sid
self.unix_uid = unix_uid
self.usage_bytes = usage_bytes
@classmethod
|
Apache License 2.0
|
square/connect-python-sdk
|
squareconnect/models/v1_create_item_request.py
|
V1CreateItemRequest.__init__
|
python
|
def __init__(self, body=None):
self.swagger_types = {
'body': 'V1Item'
}
self.attribute_map = {
'body': 'body'
}
self._body = body
|
V1CreateItemRequest - a model defined in Swagger
:param dict swaggerTypes: The key is attribute name
and the value is attribute type.
:param dict attributeMap: The key is attribute name
and the value is json key in definition.
|
https://github.com/square/connect-python-sdk/blob/e00e2889b2dd2c55048219cbe64db79962a68633/squareconnect/models/v1_create_item_request.py#L30-L47
|
from pprint import pformat
from six import iteritems
import re
class V1CreateItemRequest(object):
|
Apache License 2.0
|
emc-openstack/storops
|
storops/vnx/resource/nqm.py
|
VNXIOClass.policy
|
python
|
def policy(self):
policies = VNXIOPolicy.get(cli=self._cli)
ret = None
for policy in policies:
contained = policy.ioclasses.name
if self._get_name() in contained:
ret = VNXIOPolicy.get(name=policy.name, cli=self._cli)
break
return ret
|
Returns policy which contains this ioclass.
|
https://github.com/emc-openstack/storops/blob/7092c516c55b4c2f00c7c22383e1ad46ecfec091/storops/vnx/resource/nqm.py#L119-L128
|
from __future__ import unicode_literals
from contextlib import contextmanager
from storops.vnx.resource import VNXCliResourceList, VNXCliResource
from storops.vnx.resource.lun import VNXLun, VNXLunList
from storops.vnx.enums import VNXCtrlMethod
from storops import exception as ex
__author__ = "Peter Wang"
def convert_lun(luns):
lun_ids = []
smp_names = []
for lun in luns:
if lun.is_snap_mount_point:
smp_names.append(lun.name)
else:
lun_ids.append(lun.lun_id)
return lun_ids, smp_names
def normalize_lun(luns, cli):
if isinstance(luns, int):
return [VNXLun(lun_id=luns, cli=cli)]
elif isinstance(luns, VNXLun):
return [luns]
elif isinstance(luns, list) or isinstance(luns, VNXLunList):
return luns
elif luns is None:
return []
else:
raise ValueError('Invalid format for luns.')
def convert_ioclass(ioclasses):
names = []
if ioclasses:
for ioclass in ioclasses:
names.append(ioclass.name)
return names
@contextmanager
def restart_policy(policy):
VNXIOPolicy.stop_policy(cli=policy._cli)
try:
yield policy
except ex.StoropsException:
pass
policy.run_policy()
class VNXIOClassList(VNXCliResourceList):
def __init__(self, cli=None, name=None):
super(VNXIOClassList, self).__init__()
self._cli = cli
self._name = name
@classmethod
def get_resource_class(cls):
return VNXIOClass
def _get_raw_resource(self):
return self._cli.get_ioclass(name=self._name, poll=self.poll)
def _filter(self, item):
return 'Background Class' not in item.name
class VNXIOClass(VNXCliResource):
def __init__(self, name=None, cli=None):
super(VNXIOClass, self).__init__()
self._cli = cli
self._name = name
def _get_raw_resource(self):
if self._cli is None:
raise ValueError('client is not available for this resource.')
return self._cli.get_ioclass(name=self._name, poll=self.poll)
@staticmethod
def get(cli, name=None):
ret = VNXIOClassList(cli=cli)
if name:
ret = VNXIOClass(name=name, cli=cli)
return ret
@property
def luns(self):
lun_list, smp_list = [], []
if self.ioclass_luns:
lun_list = map(lambda l: VNXLun(lun_id=l.lun_id, name=l.name,
cli=self._cli), self.ioclass_luns)
if self.ioclass_snapshots:
smp_list = map(lambda smp: VNXLun(name=smp.name, cli=self._cli),
self.ioclass_snapshots)
return list(lun_list) + list(smp_list)
@property
|
Apache License 2.0
|
raymondbutcher/pretf
|
pretf/pretf/util.py
|
import_file
|
python
|
def import_file(path: Union[PurePath, str]) -> Generator[ModuleType, None, None]:
pathdir = os.path.dirname(path)
if pathdir in sys.path:
added_to_sys_path = False
else:
sys.path.insert(0, pathdir)
added_to_sys_path = True
try:
name = os.path.basename(path).split(".")[0]
spec = spec_from_file_location(name, str(path))
module = module_from_spec(spec)
assert isinstance(spec.loader, Loader)
loader: Loader = spec.loader
try:
loader.exec_module(module)
except Exception as error:
log.bad(error)
raise
yield module
finally:
if added_to_sys_path:
sys.path.remove(pathdir)
|
Imports a Python module from any local filesystem path.
Temporarily alters sys.path to allow the imported module
to import other modules in the same directory.
|
https://github.com/raymondbutcher/pretf/blob/3d2fe7619ce0adc38d5f0765e993bee2fd8c4bbd/pretf/pretf/util.py#L190-L218
|
import os
import shlex
import sys
from contextlib import contextmanager
from fnmatch import fnmatch
from importlib.abc import Loader
from importlib.util import module_from_spec, spec_from_file_location
from io import StringIO
from pathlib import Path, PurePath
from subprocess import PIPE, CalledProcessError, CompletedProcess, Popen
from threading import Thread
from types import ModuleType
from typing import (
IO,
BinaryIO,
Generator,
List,
Optional,
Sequence,
TextIO,
Tuple,
Union,
)
from . import log
def execute(
file: str,
args: Sequence[str],
cwd: Optional[Union[Path, str]] = None,
env: Optional[dict] = None,
capture: bool = False,
verbose: Optional[bool] = None,
) -> CompletedProcess:
if env is None:
env = os.environ.copy()
if is_verbose(verbose):
log.ok(f"run: {' '.join(shlex.quote(arg) for arg in args)}")
if capture:
return _execute_and_capture(file, args, cwd, env, verbose)
else:
return _execute(file, args, cwd, env)
def _execute(
file: str, args: Sequence[str], cwd: Optional[Union[Path, str]], env: dict
) -> CompletedProcess:
proc = Popen(args, executable=file, cwd=cwd, env=env)
while True:
try:
returncode = proc.wait()
except KeyboardInterrupt:
pass
else:
break
if returncode != 0:
raise CalledProcessError(
returncode=returncode, cmd=" ".join(shlex.quote(arg) for arg in args),
)
return CompletedProcess(args=args, returncode=returncode)
def _execute_and_capture(
file: str,
args: Sequence[str],
cwd: Optional[Union[Path, str]],
env: dict,
verbose: Optional[bool],
) -> CompletedProcess:
stdout_buffer = StringIO()
stderr_buffer = StringIO()
proc = Popen(args, executable=file, stdout=PIPE, stderr=PIPE, cwd=cwd, env=env)
stdout_args: List[Optional[IO]] = [proc.stdout, stdout_buffer]
if is_verbose(verbose):
stdout_args.append(sys.stdout)
stdout_thread = Thread(target=_fan_out, args=stdout_args)
stdout_thread.start()
stderr_args = [proc.stderr, stderr_buffer, sys.stderr]
stderr_thread = Thread(target=_fan_out, args=stderr_args)
stderr_thread.start()
while True:
try:
returncode = proc.wait()
except KeyboardInterrupt:
pass
else:
break
stdout_thread.join()
stderr_thread.join()
stdout_buffer.seek(0)
stderr_buffer.seek(0)
if returncode != 0:
raise CalledProcessError(
returncode=returncode,
cmd=" ".join(shlex.quote(arg) for arg in args),
output=stdout_buffer.read(),
stderr=stderr_buffer.read(),
)
return CompletedProcess(
args=args,
returncode=returncode,
stdout=stdout_buffer.read(),
stderr=stderr_buffer.read(),
)
def _fan_out(input_steam: BinaryIO, *output_streams: TextIO) -> None:
while True:
char = input_steam.read(1).decode()
if char:
for output_stream in output_streams:
output_stream.write(char)
else:
break
def find_paths(
path_patterns: Sequence[str],
exclude_name_patterns: Sequence[str] = [],
cwd: Optional[Union[Path, str]] = None,
) -> Generator[Path, None, None]:
if cwd is None:
cwd = Path.cwd()
elif isinstance(cwd, str):
cwd = Path(cwd)
for pattern in path_patterns:
for path in cwd.glob(pattern):
for exclude_name_pattern in exclude_name_patterns:
if fnmatch(path.name, exclude_name_pattern):
break
else:
yield path
def find_workflow_path(cwd: Optional[Union[Path, str]] = None) -> Optional[Path]:
if cwd is None:
cwd = Path.cwd()
elif isinstance(cwd, str):
cwd = Path(cwd)
for name in ("pretf.workflow.py", "pretf.py"):
path = cwd / name
if path.exists():
return path
for dir_path in path.parents:
path = dir_path / name
if path.exists():
return path
return None
@contextmanager
|
MIT License
|
qiskit/qiskit-aqua
|
qiskit/chemistry/applications/molecular_ground_state_energy.py
|
MolecularGroundStateEnergy.get_default_solver
|
python
|
def get_default_solver(quantum_instance: Union[QuantumInstance, Backend, BaseBackend]) -> Optional[Callable[[List, int, str, bool, Z2Symmetries], MinimumEigensolver]]:
def cb_default_solver(num_particles, num_orbitals,
qubit_mapping, two_qubit_reduction, z2_symmetries):
initial_state = HartreeFock(num_orbitals, num_particles, qubit_mapping,
two_qubit_reduction, z2_symmetries.sq_list)
var_form = UCCSD(num_orbitals=num_orbitals,
num_particles=num_particles,
initial_state=initial_state,
qubit_mapping=qubit_mapping,
two_qubit_reduction=two_qubit_reduction,
z2_symmetries=z2_symmetries)
vqe = VQE(var_form=var_form)
vqe.quantum_instance = quantum_instance
return vqe
return cb_default_solver
|
Get the default solver callback that can be used with :meth:`compute_energy`
Args:
quantum_instance: A Backend/Quantum Instance for the solver to run on
Returns:
Default solver callback
|
https://github.com/qiskit/qiskit-aqua/blob/5ccf0e20129880e78a57f2f78c59b9a362ebb208/qiskit/chemistry/applications/molecular_ground_state_energy.py#L144-L168
|
import warnings
from typing import List, Optional, Callable, Union
from qiskit.providers import BaseBackend
from qiskit.providers import Backend
from qiskit.aqua import QuantumInstance
from qiskit.aqua.algorithms import MinimumEigensolver, VQE
from qiskit.aqua.operators import Z2Symmetries
from qiskit.chemistry import QiskitChemistryError
from qiskit.chemistry.circuit.library import HartreeFock
from qiskit.chemistry.components.variational_forms import UCCSD
from qiskit.chemistry.core import (Hamiltonian, TransformationType, QubitMappingType,
ChemistryOperator, MolecularGroundStateResult)
from qiskit.chemistry.drivers import FermionicDriver
class MolecularGroundStateEnergy:
def __init__(self,
driver: FermionicDriver,
solver: Optional[MinimumEigensolver] = None,
transformation: TransformationType = TransformationType.FULL,
qubit_mapping: QubitMappingType = QubitMappingType.PARITY,
two_qubit_reduction: bool = True,
freeze_core: bool = False,
orbital_reduction: Optional[List[int]] = None,
z2symmetry_reduction: Optional[Union[str, List[int]]] = None) -> None:
warnings.warn('The MolecularGroundStateEnergy class is deprecated as of Qiskit Aqua 0.8.0 '
'and will be removed no earlier than 3 months after the release date. '
'Instead, the GroundStateCalculation class can be used.',
DeprecationWarning, stacklevel=2)
self._driver = driver
self._solver = solver
self._transformation = transformation
self._qubit_mapping = qubit_mapping
self._two_qubit_reduction = two_qubit_reduction
self._freeze_core = freeze_core
self._orbital_reduction = orbital_reduction
self._z2symmetry_reduction = z2symmetry_reduction
@property
def driver(self) -> FermionicDriver:
return self._driver
@driver.setter
def driver(self, driver: FermionicDriver) -> None:
self._driver = driver
@property
def solver(self) -> MinimumEigensolver:
return self._solver
@solver.setter
def solver(self, solver: MinimumEigensolver) -> None:
self._solver = solver
def compute_energy(self,
callback: Optional[Callable[[List, int, str, bool, Z2Symmetries],
MinimumEigensolver]] = None
) -> MolecularGroundStateResult:
if self.solver is None and callback is None:
raise QiskitChemistryError('MinimumEigensolver was not provided')
q_molecule = self.driver.run()
core = Hamiltonian(transformation=self._transformation,
qubit_mapping=self._qubit_mapping,
two_qubit_reduction=self._two_qubit_reduction,
freeze_core=self._freeze_core,
orbital_reduction=self._orbital_reduction,
z2symmetry_reduction=self._z2symmetry_reduction)
operator, aux_operators = core.run(q_molecule)
if callback is not None:
num_particles = core.molecule_info[ChemistryOperator.INFO_NUM_PARTICLES]
num_orbitals = core.molecule_info[ChemistryOperator.INFO_NUM_ORBITALS]
two_qubit_reduction = core.molecule_info[ChemistryOperator.INFO_TWO_QUBIT_REDUCTION]
z2_symmetries = core.molecule_info[ChemistryOperator.INFO_Z2SYMMETRIES]
self.solver = callback(num_particles, num_orbitals,
self._qubit_mapping.value, two_qubit_reduction,
z2_symmetries)
aux_operators = aux_operators if self.solver.supports_aux_operators() else None
raw_result = self.solver.compute_minimum_eigenvalue(operator, aux_operators)
return core.process_algorithm_result(raw_result)
@staticmethod
|
Apache License 2.0
|
threatconnect-inc/tcex
|
tcex/tcex_error_codes.py
|
TcExErrorCodes.message
|
python
|
def message(self, code):
return self.errors.get(code)
|
Return the error message.
Args:
code (integer): The error code integer.
Returns:
(string): The error message.
|
https://github.com/threatconnect-inc/tcex/blob/dae37b73d8b33cf26360f6d25c6b305a68f2f0e2/tcex/tcex_error_codes.py#L73-L82
|
class TcExErrorCodes:
@property
def errors(self):
return {
100: 'Generic error. See log for more details ({}).',
105: 'Required Module is not installed ({}).',
200: 'Failed retrieving Custom Indicator Associations types from API ({}).',
210: 'Failure during token renewal ({}).',
215: 'HMAC authorization requires a PreparedRequest Object.',
220: 'Failed retrieving indicator types from API ({}).',
300: 'Failed retrieving Bulk JSON ({}).',
305: 'An invalid action/association name ({}) was provided.',
350: 'Data Store request failed. API status code: {}, API message: {}.',
520: 'File Occurrences can only be added to a File. Current type: {}.',
540: 'Failed polling batch status ({}).',
545: 'Failed polling batch status. API status code: {}, API message: {}.',
550: 'Batch status check reached timeout ({} seconds).',
560: 'Failed retrieving batch errors ({}).',
580: 'Failed posting file data ({}).',
585: 'Failed posting file data. API status code: {}, API message: {}.',
590: 'No hash values provided.',
600: 'Failed adding group type "{}" with name "{}" ({}).',
605: 'Failed adding attribute type "{}" with value "{}" to group id "{}" ({}).',
610: 'Failed adding label "{}" to group id "{}" ({}).',
615: 'Failed adding tag "{}" to group id "{}" ({}).',
650: 'Failed adding label "{}" to attribute id "{}" ({}).',
700: 'Failed to create metric. API status code: {}, API message: {}.',
705: 'Error while finding metric by name. API status code: {}, API message: {}.',
710: 'Failed to add metric data. API status code: {}, API message: {}.',
715: 'No metric ID found for "{}".',
750: 'Failed to send notification. API status code: {}, API message: {}.',
800: 'Failed to create index. API status code: {}, API message: {}.',
805: 'Failed to {} record data. API status code: {}, API message: {}.',
905: 'Error during update. {} does not have a unique_id set and cannot be updated.',
910: 'Error during get. {} does not have a unique_id set and cannot be fetched.',
915: 'Error during delete. {} does not have a unique_id set and cannot be deleted.',
920: (
'Error during create. {} does not have required values set and cannot be '
'created.'
),
925: 'Error invalid {}. {} does not accept that {}, {}: {}.',
950: 'Error during pagination. API status code: {}, API message: {}, API Url: {}.',
951: 'Error during {}. API status code: {}, API message: {}, API Url: {}.',
952: 'Error during {}. API status code: {}, API message: {}, API Url: {}.',
10500: 'Critical batch error ({}).',
10505: 'Failed submitting batch job requests ({}).',
10510: 'Failed submitting batch job requests. API status code: {}, API message: {}.',
10520: 'Failed submitting batch data ({}).',
10525: 'Failed submitting batch data. API status code: {}, API message: {}.',
}
|
Apache License 2.0
|
shinmorino/qgate
|
qgate/openqasm/yacc.py
|
p_include
|
python
|
def p_include(p) :
if p[2] == '"qelib1.inc"' :
p[0] == True
else :
raise NotImplementedError('include is not implemented.')
|
include : INCLUDE FILENAME ';'
|
https://github.com/shinmorino/qgate/blob/b8a7da1475c7f43c1050e8f2e10806a3cfe748e3/qgate/openqasm/yacc.py#L47-L52
|
import ply.yacc as yacc
import logging
from . import lex
from .lex import tokens, literals
precedence = (
('left', '+', '-'),
('left', '*', '/'),
('left', '^'),
('right', 'uminus'),
)
def p_mainprogram(p) :
def p_program_begin(p) :
this.analyzer.open_program()
def p_program_end(p) :
this.analyzer.close_program()
def p_header_or_empty(p) :
pass
def p_includelist_or_empty(p) :
pass
def p_includelist(p) :
pass
|
Apache License 2.0
|
fisco-bcos/generator
|
pys/tool/utils.py
|
valid_chain_id
|
python
|
def valid_chain_id(chain_id):
try:
int(chain_id)
return True
except ValueError as utils_exp:
LOGGER.error('%s is not a valid chain_id', utils_exp)
except Exception as utils_exp:
LOGGER.error('%s is not a valid chain_id', utils_exp)
raise MCError(
'%s is not a valid chain_id' % utils_exp)
|
[Determine if the chain id is valid]
Arguments:
ip {[string]} -- [chain id]
Returns:
[bool] -- [true or false]
|
https://github.com/fisco-bcos/generator/blob/59ad43980aa0a7ea3efb018eba968f411f0adcd4/pys/tool/utils.py#L169-L187
|
import sys
import re
import os
import subprocess
import shutil
from pys.error.exp import MCError
from pys.log import LOGGER, CONSOLER
from pys import path
if sys.version > '3':
import urllib.request
import urllib.error
else:
import urllib
import urllib2
class Status(object):
gm_option = False
gm_ssl = False
unit_time = False
allow_unsecure_cfg = False
use_cdn = False
download_console_shell_script = "download_console.sh"
default_console_version = "2.8.0"
download_console_version = default_console_version
download_console_version_specified = False
solidity_version = ""
solidity_version_specified = False
def __init__(self):
self. gm_option = False
def get_gm_status(self):
return self.gm_option
def get_gmssl_status(self):
return self.gm_ssl
def get_ut_status(self):
return self.unit_time
def set_allow_unsecure_cfg(self):
self.allow_unsecure_cfg = True
def get_cnd_status(self):
return self.use_cdn
def set_cdn():
Status.use_cdn = True
def console_use_xml_configuration():
version_list = Status.download_console_version.split(".")
if len(version_list) < 3:
raise MCError(
'%s invalid download_console_version' % Status.download_console_version)
major_version = version_list[0]
if int(major_version) >= 2:
return False
else:
return True
def set_download_console_version(version):
Status.download_console_version = version
Status.download_console_version_specified = True
CONSOLER.debug("expect to download console %s",
Status.download_console_version)
def set_solidity_version(version):
Status.solidity_version = version
Status.solidity_version_specified = True
LOGGER.debug('expected solidity version is %s', Status.solidity_version)
def set_gm():
Status.gm_option = True
def set_gmssl():
Status.gm_ssl = True
def off_gm():
Status.gm_option = False
def off_gmssl():
Status.gm_ssl = False
def get_status():
return Status.gm_option
|
Apache License 2.0
|
shunk031/chainer-skin-lesion-detector
|
src/make_dataset.py
|
get_bbox_from_gt
|
python
|
def get_bbox_from_gt(gt):
return gt.convert('RGB').getbbox()
|
Get bounding box from ground truth image
|
https://github.com/shunk031/chainer-skin-lesion-detector/blob/1865eb0bd287b3493f2bbe48720b567ebd9f3850/src/make_dataset.py#L72-L76
|
import argparse
import xml.etree.ElementTree as ET
from multiprocessing.pool import Pool
from xml.dom import minidom
from PIL import Image
from tqdm import tqdm
from util import const
def get_fpaths(data_dir, suffix):
return [fpath for fpath in sorted(data_dir.iterdir(),
key=lambda x: x.name) if fpath.suffix == suffix]
def make_voc_based_xml(folder_name, file_name, bbox):
left, upper, right, lower = bbox
annotation = ET.Element('annotation')
annotation = ET.Element('annotation')
tree = ET.ElementTree(element=annotation)
folder = ET.SubElement(annotation, 'folder')
filename = ET.SubElement(annotation, 'filename')
objects = ET.SubElement(annotation, 'object')
name = ET.SubElement(objects, 'name')
pose = ET.SubElement(objects, 'pose')
truncated = ET.SubElement(objects, 'truncated')
difficult = ET.SubElement(objects, 'difficult')
bndbox = ET.SubElement(objects, 'bndbox')
xmin = ET.SubElement(bndbox, 'xmin')
ymin = ET.SubElement(bndbox, 'ymin')
xmax = ET.SubElement(bndbox, 'xmax')
ymax = ET.SubElement(bndbox, 'ymax')
folder.text = folder_name
filename.text = file_name
name.text = 'lesion'
pose.text = 'frontal'
truncated.text = '1'
difficult.text = '0'
xmin.text = str(left)
ymin.text = str(upper)
xmax.text = str(right)
ymax.text = str(lower)
return annotation
def save_voc_based_xml(xml_file, xml_fpath):
xml_file = pretify_xml(xml_file)
with xml_fpath.open('w') as wf:
wf.write(xml_file)
def load_image(img_fpath):
return Image.open(str(img_fpath))
|
MIT License
|
yaqwsx/kikit
|
kikit/present.py
|
Template._copyResources
|
python
|
def _copyResources(self, outputDirectory):
for pattern in self.parameters["resources"]:
for path in glob.glob(os.path.join(self.directory, pattern), recursive=True):
copyRelativeTo(self.directory, path, outputDirectory)
for pattern in self.extraResources:
for path in glob.glob(pattern, recursive=True):
copyRelativeTo(".", path, outputDirectory)
|
Copy all resource files specified by template.json and further specified
by addResource to the output directory.
|
https://github.com/yaqwsx/kikit/blob/cddb09d784fbd84d3736538f466597f43e6ab045/kikit/present.py#L69-L79
|
import click
from pathlib import Path
import sys
import os
import json
import glob
import shutil
import subprocess
import tempfile
import markdown2
import pybars
from datetime import datetime
from kikit import export
def resolveTemplatePath(path):
if os.path.exists(os.path.join(path, "template.json")):
return path
PKG_BASE = os.path.dirname(__file__)
TEMPLATES = os.path.join(PKG_BASE, "resources/present/templates")
if os.path.exists(os.path.join(TEMPLATES, path, "template.json")):
return os.path.join(TEMPLATES, path)
raise RuntimeError("'{}' is not a name or a path for existing template. Perhaps you miss template.json in the template?")
def readTemplate(path):
templateClasses = {
"HtmlTemplate": HtmlTemplate
}
path = resolveTemplatePath(path)
with open(os.path.join(path, "template.json")) as jsonFile:
parameters = json.load(jsonFile)
try:
tType = parameters["type"]
except KeyError:
raise RuntimeError("Invalid template.json - missing 'type'")
try:
return templateClasses[tType](path)
except KeyError:
raise RuntimeError("Unknown template type '{}'".format(tType))
def copyRelativeTo(sourceTree, sourceFile, outputDir):
sourceTree = os.path.abspath(sourceTree)
sourceFile = os.path.abspath(sourceFile)
relPath = os.path.relpath(sourceFile, sourceTree)
outputDir = os.path.join(outputDir, os.path.dirname(relPath))
Path(outputDir).mkdir(parents=True, exist_ok=True)
shutil.copy(sourceFile, outputDir)
class Template:
def __init__(self, directory):
self.directory = directory
with open(os.path.join(directory, "template.json")) as jsonFile:
self.parameters = json.load(jsonFile)
self.extraResources = []
self.boards = []
self.name = None
self.repository = None
|
MIT License
|
codefordc/housing-insights
|
back_end/app.py
|
make_table
|
python
|
def make_table(table_name, password):
if password != get_credentials('load-data-password'):
send_mail('Invalid data loading attempted.')
return '<h1>Invalid Password: Please Try Again</h1>'
if table_name not in table_loaders.keys():
return '''
<h1>Invalid Table Name: Please Try Again</h1>
<h2>Tables Are:</h2>
<ul>
<li>crime</li>
<li>acs</li>
<li>permit</li>
<li>project</li>
<li>wmata</li>
</ul>
'''
if table_loaders[table_name](engine):
send_mail('Loaded {} table.'.format(table_name))
return '<h1>Success! Loaded {} table.</h1>'.format(table_name)
return '''
<h1>Unable to load {} table.</h1>
<h2>The source data may be unavailable.</h2>
<h2>Housing insights will load the backup data.</h2>
'''.format(table_name)
|
This function allows CNHED staff to load a database table "manually".
See the documentation for clear instructions on creating tables.
|
https://github.com/codefordc/housing-insights/blob/131260edf4482e176d9a93cae44553060cd33209/back_end/app.py#L166-L194
|
import datetime
from mailer import send_mail
from flask import Flask, jsonify, request
from flask_cors import cross_origin
from flask_apscheduler import APScheduler
import ETL
from sqlalchemy import create_engine
from ETL.utils import get_credentials, basic_query
app = Flask(__name__)
app.config['SCHEDULER_API_ENABLED'] = True
scheduler = APScheduler()
scheduler.init_app(app)
engine = create_engine(get_credentials('engine-string'))
table_loaders = {
'acs': ETL.load_acs_data,
'crime': ETL.load_crime_data,
'permit': ETL.load_permit_data,
'project': ETL.load_project_data,
'subsidy': ETL.load_subsidy_data,
'zone_facts': ETL.make_zone_facts,
'wmata': ETL.make_wmata_tables,
}
@app.route('/', methods=['GET'])
def index():
return 'At the housing-insights back-end.'
@app.route('/api/meta', methods=['GET'])
@cross_origin()
def get_meta():
result = basic_query("SELECT meta FROM meta")
print(result)
return result[0]['meta']
@app.route('/site-map', methods=['GET'])
def site_map():
return jsonify([str(rule) for rule in app.url_map.iter_rules()
if 'GET' in rule.methods])
@app.route('/api/project', methods=['GET'])
@cross_origin()
def all_projects(nlihc_id=None):
where = f" WHERE nlihc_id = '{nlihc_id}'" if nlihc_id else ''
result = basic_query('SELECT * FROM new_project'+where+';')
return jsonify({'objects': result})
@app.route('/api/project/<string:nlihc_id>', methods=['GET'])
@cross_origin()
def project(nlihc_id=None):
where = f" WHERE nlihc_id = '{nlihc_id}'" if nlihc_id else ''
result = basic_query('SELECT * FROM new_project'+where+';')
return jsonify({'objects': result})
@app.route('/api/project/<nlihc_id>/subsidies/', methods=['GET'])
@cross_origin()
def project_subsidies(nlihc_id):
result = basic_query(f"SELECT * FROM new_subsidy WHERE nlihc_id = '{nlihc_id}';")
return jsonify({'objects': result})
@app.route('/api/filter')
@cross_origin()
def filter():
result = basic_query(ETL.filter_query)
return jsonify({'objects': result})
@app.route('/api/zone_facts/<column_name>/<grouping>', methods = ['GET'])
@cross_origin()
def zone_facts(column_name='poverty_rate', grouping='ward'):
try:
if grouping not in ['ward', 'tract', 'neighborhood_cluster']:
if grouping == 'census_tract':
grouping = 'tract'
else:
raise ValueError('Not valid grouping')
result = basic_query('''
SELECT zone, {}
FROM new_zone_facts
WHERE zone_type = '{}'
ORDER BY zone;'''.format(column_name, grouping))
status = 'success'
except:
result = []
status = 'Not found'
output = {'status': status, 'grouping': grouping, 'column_name': column_name, 'objects': result}
return jsonify(output)
@app.route('/api/wmata/<nlihc_id>', methods=['GET'])
@cross_origin()
def nearby_transit(nlihc_id):
result = basic_query(f"SELECT * FROM new_wmata_dist WHERE nlihc_id = '{nlihc_id}';")
result = ETL.wmata_helper(result)
return jsonify(result)
@app.route('/api/projects/<dist>', methods=['GET'])
@cross_origin()
def nearby_projects(dist):
latitude = request.args.get('latitude', None)
longitude = request.args.get('longitude', None)
if not (latitude and longitude):
return "Please supply latitude and longitude"
return jsonify(ETL.nearby_projects(
float(dist), float(latitude), float(longitude)))
@app.route('/make_table/<table_name>/<password>')
|
MIT License
|
viblo/pymunk
|
pymunk/vec2d.py
|
Vec2d.get_angle_degrees_between
|
python
|
def get_angle_degrees_between(self, other: "Vec2d") -> float:
return math.degrees(self.get_angle_between(other))
|
Get the angle between the vector and the other in degrees
:return: The angle (in degrees)
|
https://github.com/viblo/pymunk/blob/56885484b8cd794e995480d448b9c089fc7135d9/pymunk/vec2d.py#L260-L265
|
__docformat__ = "reStructuredText"
import math
import numbers
import operator
from typing import NamedTuple, Tuple
__all__ = ["Vec2d"]
class Vec2d(NamedTuple):
x: float
y: float
def __repr__(self) -> str:
return "Vec2d(%s, %s)" % (self.x, self.y)
def __add__(self, other: Tuple[float, float]) -> "Vec2d":
assert (
len(other) == 2
), f"{other} not supported. Only Vec2d and Sequence of length 2 is supported."
return Vec2d(self.x + other[0], self.y + other[1])
def __radd__(self, other: Tuple[float, float]) -> "Vec2d":
return self.__add__(other)
def __sub__(self, other: Tuple[float, float]) -> "Vec2d":
return Vec2d(self.x - other[0], self.y - other[1])
def __rsub__(self, other: Tuple[float, float]) -> "Vec2d":
assert (
len(other) == 2
), f"{other} not supported. Only Vec2d and Sequence of length 2 is supported."
return Vec2d(other[0] - self.x, other[1] - self.y)
def __mul__(self, other: float) -> "Vec2d":
assert isinstance(other, numbers.Real)
return Vec2d(self.x * other, self.y * other)
def __rmul__(self, other: float) -> "Vec2d":
return self.__mul__(other)
def __floordiv__(self, other: float) -> "Vec2d":
assert isinstance(other, numbers.Real)
return Vec2d(self.x // other, self.y // other)
def __truediv__(self, other: float) -> "Vec2d":
assert isinstance(other, numbers.Real)
return Vec2d(self.x / other, self.y / other)
def __neg__(self) -> "Vec2d":
return Vec2d(operator.neg(self.x), operator.neg(self.y))
def __pos__(self) -> "Vec2d":
return Vec2d(operator.pos(self.x), operator.pos(self.y))
def __abs__(self) -> float:
return self.length
def get_length_sqrd(self) -> float:
return self.x ** 2 + self.y ** 2
@property
def length(self) -> float:
return math.sqrt(self.x ** 2 + self.y ** 2)
def scale_to_length(self, length: float) -> "Vec2d":
old_length = self.length
return Vec2d(self.x * length / old_length, self.y * length / old_length)
def rotated(self, angle_radians: float) -> "Vec2d":
cos = math.cos(angle_radians)
sin = math.sin(angle_radians)
x = self.x * cos - self.y * sin
y = self.x * sin + self.y * cos
return Vec2d(x, y)
def rotated_degrees(self, angle_degrees: float) -> "Vec2d":
return self.rotated(math.radians(angle_degrees))
@property
def angle(self) -> float:
if self.get_length_sqrd() == 0:
return 0
return math.atan2(self.y, self.x)
@property
def angle_degrees(self) -> float:
return math.degrees(self.angle)
def get_angle_between(self, other: Tuple[float, float]) -> float:
assert len(other) == 2
cross = self.x * other[1] - self.y * other[0]
dot = self.x * other[0] + self.y * other[1]
return math.atan2(cross, dot)
|
MIT License
|
shenyunhang/ws-jds
|
detectron/roi_data/retinanet_wsl.py
|
get_wsl_blob_names
|
python
|
def get_wsl_blob_names(is_training=True):
blob_names = ['im_info']
if is_training:
blob_names += ['cls_labels']
return blob_names
|
Returns blob names in the order in which they are read by the data
loader.
|
https://github.com/shenyunhang/ws-jds/blob/4827791640c5affef1af4b548333694973f5c0d5/detectron/roi_data/retinanet_wsl.py#L16-L26
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import logging
import detectron.utils.boxes as box_utils
import detectron.roi_data.data_utils as data_utils
from detectron.core.config import cfg
logger = logging.getLogger(__name__)
|
Apache License 2.0
|
nickjj/flask-pg-extras
|
flask_pg_extras/__init__.py
|
FlaskPGExtras.init_app
|
python
|
def init_app(self, app):
pass
|
Mutate the application passed in as explained here:
https://flask.palletsprojects.com/en/1.1.x/extensiondev/
:param app: Flask application
:return: None
|
https://github.com/nickjj/flask-pg-extras/blob/c69200665f5a17dff163206367418c41c7953bf2/flask_pg_extras/__init__.py#L12-L20
|
from sqlalchemy import text
from tabulate import tabulate
class FlaskPGExtras(object):
def __init__(self, app=None):
self.app = app
if app is not None:
self.init_app(app)
|
MIT License
|
daili0015/modelfeast
|
models/classifiers/squeezenet.py
|
squeezenet1_0
|
python
|
def squeezenet1_0(n_class, img_size=(224, 224), pretrained=False, pretrained_path="./pretrained/"):
param = {'model_url': model_urls['squeezenet1_0'], 'file_name': model_names['squeezenet1_0'],
'model_version': 1.0, 'n_class': n_class, 'img_size': img_size }
return get_squeezenet(param, pretrained, pretrained_path)
|
r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters
|
https://github.com/daili0015/modelfeast/blob/0689ced4d0f37be438d3a91908e5e4cc5b7d54b8/models/classifiers/squeezenet.py#L71-L77
|
import logging
import os
import torch
from torch import load as TorchLoad
import torch.utils.model_zoo as model_zoo
from models.classifiers.Squeezenet_module import SqueezeNet
__all__ = ['squeezenet', 'squeezenet1_0', 'squeezenet1_1']
model_urls = {
'squeezenet1_0': 'https://download.pytorch.org/models/squeezenet1_0-a815701f.pth',
'squeezenet1_1': 'https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth',
}
model_names = {
'squeezenet1_0': 'squeezenet1_0-a815701f.pth',
'squeezenet1_1': 'squeezenet1_1-f364aa15.pth',
}
def get_squeezenet(param, pretrained = False, pretrained_path="./pretrained/"):
if isinstance(param['img_size'], (tuple, list)):
h, w = param['img_size'][0], param['img_size'][1]
else:
h = w = param['img_size']
model = SqueezeNet(param['model_version'], num_classes=1000)
model.img_size = (h, w)
if pretrained:
if os.path.exists(os.path.join(pretrained_path, param['file_name'])):
model.load_state_dict(TorchLoad(os.path.join(pretrained_path, param['file_name'])))
logging.info("Find local model file, load model from local !!")
logging.info("找到本地下载的预训练模型!!载入权重!!")
else:
logging.info("pretrained 文件夹下没有,从网上下载 !!")
model.load_state_dict(model_zoo.load_url(param['model_url'], model_dir = pretrained_path))
logging.info("下载完毕!!载入权重!!")
model.adaptive_set_classifier(param['n_class'])
return model
def squeezenet(n_class, img_size=(224, 224), pretrained=False, pretrained_path="./pretrained/"):
return squeezenet1_1(n_class, img_size, pretrained, pretrained_path)
|
MIT License
|
vincent-lg/tsunami
|
src/secondaires/navigation/equipage/volontes/virer_babord.py
|
VirerBabord.crier_ordres
|
python
|
def crier_ordres(self, personnage):
direction = int((self.navire.direction.direction - self.direction) % 180)
msg = "{} s'écrie : virez de {}° bâbord !".format(
personnage.distinction_audible, direction)
self.navire.envoyer(msg)
|
On fait crier l'ordre au personnage.
|
https://github.com/vincent-lg/tsunami/blob/36b3b974f6eefbf15cd5d5f099fc14630e66570b/src/secondaires/navigation/equipage/volontes/virer_babord.py#L65-L71
|
import re
from corps.fonctions import lisser
from secondaires.navigation.equipage.ordres.long_deplacer import LongDeplacer
from secondaires.navigation.equipage.ordres.relacher_gouvernail import RelacherGouvernail
from secondaires.navigation.equipage.ordres.tenir_gouvernail import TenirGouvernail
from secondaires.navigation.equipage.ordres.virer import Virer as OrdreVirer
from secondaires.navigation.equipage.volontes.virer_gouvernail import VirerGouvernail
class VirerBabord(VirerGouvernail):
cle = "virer_babord"
ordre_court = re.compile(r"^vb([0-9]{1,3})$", re.I)
ordre_long = re.compile(r"^virer\s+babord\s+([0-9]{1,3})$", re.I)
def executer(self, couple):
self.navire.equipage.retirer_controle("direction")
VirerGouvernail.executer(self, couple)
|
BSD 3-Clause New or Revised License
|
bitmovin/bitmovin-api-sdk-python
|
bitmovin_api_sdk/models/stream_metadata.py
|
StreamMetadata.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, StreamMetadata):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/stream_metadata.py#L97-L102
|
from enum import Enum
from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
import pprint
import six
class StreamMetadata(object):
@poscheck_model
def __init__(self,
language=None):
self._language = None
self.discriminator = None
if language is not None:
self.language = language
@property
def openapi_types(self):
types = {
'language': 'string_types'
}
return types
@property
def attribute_map(self):
attributes = {
'language': 'language'
}
return attributes
@property
def language(self):
return self._language
@language.setter
def language(self, language):
if language is not None:
if not isinstance(language, string_types):
raise TypeError("Invalid type for `language`, type has to be `string_types`")
self._language = language
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if value is None:
continue
if isinstance(value, list):
if len(value) == 0:
continue
result[self.attribute_map.get(attr)] = [y.value if isinstance(y, Enum) else y for y in [x.to_dict() if hasattr(x, "to_dict") else x for x in value]]
elif hasattr(value, "to_dict"):
result[self.attribute_map.get(attr)] = value.to_dict()
elif isinstance(value, Enum):
result[self.attribute_map.get(attr)] = value.value
elif isinstance(value, dict):
result[self.attribute_map.get(attr)] = {k: (v.to_dict() if hasattr(v, "to_dict") else v) for (k, v) in value.items()}
else:
result[self.attribute_map.get(attr)] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
MIT License
|
csbdeep/csbdeep
|
csbdeep/data/prepare.py
|
PercentileNormalizer.before
|
python
|
def before(self, x, axes):
self.axes_before = axes_check_and_normalize(axes,x.ndim)
axis = tuple(d for d,a in enumerate(self.axes_before) if a != 'C')
self.mi = np.percentile(x,self.pmin,axis=axis,keepdims=True).astype(self.dtype,copy=False)
self.ma = np.percentile(x,self.pmax,axis=axis,keepdims=True).astype(self.dtype,copy=False)
return normalize_mi_ma(x, self.mi, self.ma, dtype=self.dtype, **self.kwargs)
|
Percentile-based normalization of raw input image.
See :func:`csbdeep.predict.Normalizer.before` for parameter descriptions.
Note that percentiles are computed individually for each channel (if present in `axes`).
|
https://github.com/csbdeep/csbdeep/blob/7d0c957bcd5d9923d5d3a8d2a25e509650a58dca/csbdeep/data/prepare.py#L120-L130
|
from __future__ import print_function, unicode_literals, absolute_import, division
from six.moves import range, zip, map, reduce, filter
from ..utils import _raise, consume, normalize_mi_ma, axes_dict, axes_check_and_normalize, move_image_axes
import warnings
import numpy as np
from six import add_metaclass
from abc import ABCMeta, abstractmethod, abstractproperty
@add_metaclass(ABCMeta)
class Normalizer():
@abstractmethod
def before(self, x, axes):
@abstractmethod
def after(self, mean, scale, axes):
def __call__(self, x, axes):
return self.before(x, axes)
@abstractproperty
def do_after(self):
class NoNormalizer(Normalizer):
def __init__(self, do_after=False):
self._do_after = do_after
def before(self, x, axes):
return x
def after(self, mean, scale, axes):
self.do_after or _raise(ValueError())
return mean, scale
@property
def do_after(self):
return self._do_after
class PercentileNormalizer(Normalizer):
def __init__(self, pmin=2, pmax=99.8, do_after=True, dtype=np.float32, **kwargs):
(np.isscalar(pmin) and np.isscalar(pmax) and 0 <= pmin < pmax <= 100) or _raise(ValueError())
self.pmin = pmin
self.pmax = pmax
self._do_after = do_after
self.dtype = dtype
self.kwargs = kwargs
|
BSD 3-Clause New or Revised License
|
google/clusterfuzz
|
src/clusterfuzz/_internal/google_cloud_utils/storage.py
|
get_cache_file_metadata_path
|
python
|
def get_cache_file_metadata_path(cache_file_path):
return '%s%s' % (cache_file_path, CACHE_METADATA_FILE_EXTENSION)
|
Return metadata file path for a cache file.
|
https://github.com/google/clusterfuzz/blob/e9e105d66f009356c4f3fe9ae7873ffff126b234/src/clusterfuzz/_internal/google_cloud_utils/storage.py#L942-L944
|
import copy
import datetime
import json
import os
import shutil
import threading
import time
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
from clusterfuzz._internal.base import retry
from clusterfuzz._internal.base import utils
from clusterfuzz._internal.config import local_config
from clusterfuzz._internal.datastore import locks
from clusterfuzz._internal.metrics import logs
from clusterfuzz._internal.system import environment
from clusterfuzz._internal.system import shell
from . import credentials
try:
import google.cloud
from google.cloud import storage as gcs
except ImportError:
pass
AUTH_TOKEN_EXPIRY_TIME = 10 * 60
CACHE_COPY_WAIT_TIME = 10
CACHE_DIRNAME = 'cache'
CACHE_LOCK_TIMEOUT = 30 * 60
CACHE_METADATA_FILE_EXTENSION = '.metadata'
CACHE_SIZE_LIMIT = 5 * 1024 * 1024 * 1024
CACHE_TIMEOUT = 3 * 60 * 60
DEFAULT_FAIL_RETRIES = 8
DEFAULT_FAIL_WAIT = 2
GS_PREFIX = 'gs:/'
MAX_CACHED_FILES_PER_DIRECTORY = 15
CREATE_BUCKET_DELAY = 4
BLOB_FILENAME_METADATA_KEY = 'filename'
_local = threading.local()
OBJECT_URL = 'https://storage.cloud.google.com'
DIRECTORY_URL = 'https://console.cloud.google.com/storage'
class StorageProvider(object):
def create_bucket(self, name, object_lifecycle, cors):
raise NotImplementedError
def get_bucket(self, name):
raise NotImplementedError
def list_blobs(self, remote_path, recursive=True):
raise NotImplementedError
def copy_file_from(self, remote_path, local_path):
raise NotImplementedError
def copy_file_to(self, local_path_or_handle, remote_path, metadata=None):
raise NotImplementedError
def copy_blob(self, remote_source, remote_target):
raise NotImplementedError
def read_data(self, remote_path):
raise NotImplementedError
def write_data(self, data, remote_path, metadata=None):
raise NotImplementedError
def get(self, remote_path):
raise NotImplementedError
def delete(self, remote_path):
raise NotImplementedError
class GcsProvider(StorageProvider):
def _chunk_size(self):
if environment.is_running_on_app_engine():
return 10 * 1024 * 1024
return None
def create_bucket(self, name, object_lifecycle, cors):
project_id = utils.get_application_id()
request_body = {'name': name}
if object_lifecycle:
request_body['lifecycle'] = object_lifecycle
if cors:
request_body['cors'] = cors
client = create_discovery_storage_client()
try:
client.buckets().insert(project=project_id, body=request_body).execute()
except HttpError as e:
logs.log_warn('Failed to create bucket %s: %s' % (name, e))
raise
return True
def get_bucket(self, name):
client = create_discovery_storage_client()
try:
return client.buckets().get(bucket=name).execute()
except HttpError as e:
if e.resp.status == 404:
return None
raise
def list_blobs(self, remote_path, recursive=True):
bucket_name, path = get_bucket_name_and_path(remote_path)
if path and not path.endswith('/'):
path += '/'
client = _storage_client()
bucket = client.bucket(bucket_name)
properties = {}
if recursive:
delimiter = None
else:
delimiter = '/'
iterator = bucket.list_blobs(prefix=path, delimiter=delimiter)
for blob in iterator:
properties['bucket'] = bucket_name
properties['name'] = blob.name
properties['updated'] = blob.updated
properties['size'] = blob.size
yield properties
if not recursive:
for prefix in iterator.prefixes:
properties['bucket'] = bucket_name
properties['name'] = prefix
yield properties
def copy_file_from(self, remote_path, local_path):
client = _storage_client()
bucket_name, path = get_bucket_name_and_path(remote_path)
try:
bucket = client.bucket(bucket_name)
blob = bucket.blob(path, chunk_size=self._chunk_size())
blob.download_to_filename(local_path)
except google.cloud.exceptions.GoogleCloudError:
logs.log_warn('Failed to copy cloud storage file %s to local file %s.' %
(remote_path, local_path))
raise
return True
def copy_file_to(self, local_path_or_handle, remote_path, metadata=None):
client = _storage_client()
bucket_name, path = get_bucket_name_and_path(remote_path)
try:
bucket = client.bucket(bucket_name)
blob = bucket.blob(path, chunk_size=self._chunk_size())
if metadata:
blob.metadata = metadata
if isinstance(local_path_or_handle, str):
blob.upload_from_filename(local_path_or_handle)
else:
blob.upload_from_file(local_path_or_handle, rewind=True)
except google.cloud.exceptions.GoogleCloudError:
logs.log_warn('Failed to copy local file %s to cloud storage file %s.' %
(local_path_or_handle, remote_path))
raise
return True
def copy_blob(self, remote_source, remote_target):
source_bucket_name, source_path = get_bucket_name_and_path(remote_source)
target_bucket_name, target_path = get_bucket_name_and_path(remote_target)
client = _storage_client()
try:
source_bucket = client.bucket(source_bucket_name)
source_blob = source_bucket.blob(source_path)
target_bucket = client.bucket(target_bucket_name)
source_bucket.copy_blob(source_blob, target_bucket, target_path)
except google.cloud.exceptions.GoogleCloudError:
logs.log_warn('Failed to copy cloud storage file %s to cloud storage '
'file %s.' % (remote_source, remote_target))
raise
return True
def read_data(self, remote_path):
bucket_name, path = get_bucket_name_and_path(remote_path)
client = _storage_client()
try:
bucket = client.bucket(bucket_name)
blob = bucket.blob(path, chunk_size=self._chunk_size())
return blob.download_as_string()
except google.cloud.exceptions.GoogleCloudError as e:
if e.code == 404:
return None
logs.log_warn('Failed to read cloud storage file %s.' % remote_path)
raise
def write_data(self, data, remote_path, metadata=None):
client = _storage_client()
bucket_name, path = get_bucket_name_and_path(remote_path)
try:
bucket = client.bucket(bucket_name)
blob = bucket.blob(path, chunk_size=self._chunk_size())
if metadata:
blob.metadata = metadata
blob.upload_from_string(data)
except google.cloud.exceptions.GoogleCloudError:
logs.log_warn('Failed to write cloud storage file %s.' % remote_path)
raise
return True
def get(self, remote_path):
client = create_discovery_storage_client()
bucket, path = get_bucket_name_and_path(remote_path)
try:
return client.objects().get(bucket=bucket, object=path).execute()
except HttpError as e:
if e.resp.status == 404:
return None
raise
def delete(self, remote_path):
client = _storage_client()
bucket_name, path = get_bucket_name_and_path(remote_path)
try:
bucket = client.bucket(bucket_name)
bucket.delete_blob(path)
except google.cloud.exceptions.GoogleCloudError:
logs.log_warn('Failed to delete cloud storage file %s.' % remote_path)
raise
return True
class FileSystemProvider(StorageProvider):
OBJECTS_DIR = 'objects'
METADATA_DIR = 'metadata'
def __init__(self, filesystem_dir):
self.filesystem_dir = os.path.abspath(filesystem_dir)
def _get_object_properties(self, remote_path):
bucket, path = get_bucket_name_and_path(remote_path)
fs_path = self.convert_path(remote_path)
data = {
'bucket': bucket,
'name': path,
}
if not os.path.isdir(fs_path):
data.update({
'updated':
datetime.datetime.utcfromtimestamp(os.stat(fs_path).st_mtime),
'size':
os.path.getsize(fs_path),
'metadata':
self._get_metadata(bucket, path),
})
return data
def _get_metadata(self, bucket, path):
fs_metadata_path = self._fs_path(bucket, path, self.METADATA_DIR)
if os.path.exists(fs_metadata_path):
with open(fs_metadata_path) as f:
return json.load(f)
return {}
def _fs_bucket_path(self, bucket):
return os.path.join(self.filesystem_dir, bucket)
def _fs_objects_dir(self, bucket):
return os.path.join(self._fs_bucket_path(bucket), self.OBJECTS_DIR)
def _fs_path(self, bucket, path, directory):
return os.path.join(self._fs_bucket_path(bucket), directory, path)
def _write_metadata(self, remote_path, metadata):
if not metadata:
return
fs_metadata_path = self.convert_path_for_write(remote_path,
self.METADATA_DIR)
with open(fs_metadata_path, 'w') as f:
json.dump(metadata, f)
def convert_path(self, remote_path, directory=OBJECTS_DIR):
bucket, path = get_bucket_name_and_path(remote_path)
return self._fs_path(bucket, path, directory)
def convert_path_for_write(self, remote_path, directory=OBJECTS_DIR):
bucket, path = get_bucket_name_and_path(remote_path)
if not os.path.exists(self._fs_bucket_path(bucket)):
raise RuntimeError(
'Bucket {bucket} does not exist.'.format(bucket=bucket))
fs_path = self._fs_path(bucket, path, directory)
shell.create_directory(os.path.dirname(fs_path), create_intermediates=True)
return fs_path
def create_bucket(self, name, object_lifecycle, cors):
bucket_path = self._fs_bucket_path(name)
if os.path.exists(bucket_path):
return False
os.makedirs(bucket_path)
return True
def get_bucket(self, name):
bucket_path = self._fs_bucket_path(name)
if not os.path.exists(bucket_path):
return None
return {
'name': name,
}
def _list_files_recursive(self, fs_path):
for root, _, filenames in shell.walk(fs_path):
for filename in filenames:
yield os.path.join(root, filename)
def _list_files_nonrecursive(self, fs_path):
for filename in os.listdir(fs_path):
yield os.path.join(fs_path, filename)
def list_blobs(self, remote_path, recursive=True):
bucket, _ = get_bucket_name_and_path(remote_path)
fs_path = self.convert_path(remote_path)
if recursive:
file_paths = self._list_files_recursive(fs_path)
else:
file_paths = self._list_files_nonrecursive(fs_path)
for fs_path in file_paths:
path = os.path.relpath(fs_path, self._fs_objects_dir(bucket))
yield self._get_object_properties(
get_cloud_storage_file_path(bucket, path))
def copy_file_from(self, remote_path, local_path):
fs_path = self.convert_path(remote_path)
return shell.copy_file(fs_path, local_path)
def copy_file_to(self, local_path_or_handle, remote_path, metadata=None):
fs_path = self.convert_path_for_write(remote_path)
if isinstance(local_path_or_handle, str):
if not shell.copy_file(local_path_or_handle, fs_path):
return False
else:
with open(fs_path, 'wb') as f:
shutil.copyfileobj(local_path_or_handle, f)
self._write_metadata(remote_path, metadata)
return True
def copy_blob(self, remote_source, remote_target):
fs_source_path = self.convert_path(remote_source)
fs_target_path = self.convert_path_for_write(remote_target)
return shell.copy_file(fs_source_path, fs_target_path)
def read_data(self, remote_path):
fs_path = self.convert_path(remote_path)
if not os.path.exists(fs_path):
return None
with open(fs_path, 'rb') as f:
return f.read()
def write_data(self, data, remote_path, metadata=None):
fs_path = self.convert_path_for_write(remote_path)
if isinstance(data, str):
data = data.encode()
with open(fs_path, 'wb') as f:
f.write(data)
self._write_metadata(remote_path, metadata)
return True
def get(self, remote_path):
fs_path = self.convert_path(remote_path)
if not os.path.exists(fs_path):
return None
return self._get_object_properties(remote_path)
def delete(self, remote_path):
fs_path = self.convert_path(remote_path)
shell.remove_file(fs_path)
fs_metadata_path = self.convert_path(remote_path, self.METADATA_DIR)
shell.remove_file(fs_metadata_path)
return True
class GcsBlobInfo(object):
def __init__(self,
bucket,
object_path,
filename=None,
size=None,
legacy_key=None):
self.bucket = bucket
self.object_path = object_path
if filename is not None and size is not None:
self.filename = filename
self.size = size
else:
gcs_object = get(get_cloud_storage_file_path(bucket, object_path))
self.filename = gcs_object['metadata'].get(BLOB_FILENAME_METADATA_KEY)
self.size = int(gcs_object['size'])
self.legacy_key = legacy_key
def key(self):
if self.legacy_key:
return self.legacy_key
return self.object_path
@property
def gcs_path(self):
return '/%s/%s' % (self.bucket, self.object_path)
@staticmethod
def from_key(key):
try:
return GcsBlobInfo(blobs_bucket(), key)
except Exception:
logs.log_error('Failed to get blob from key %s.' % key)
return None
@staticmethod
def from_legacy_blob_info(blob_info):
bucket, path = get_bucket_name_and_path(blob_info.gs_object_name)
return GcsBlobInfo(bucket, path, blob_info.filename, blob_info.size,
blob_info.key.id())
def _provider():
local_buckets_path = environment.get_value('LOCAL_GCS_BUCKETS_PATH')
if local_buckets_path:
return FileSystemProvider(local_buckets_path)
return GcsProvider()
def _create_storage_client_new():
creds, project = credentials.get_default()
if not project:
project = utils.get_application_id()
return gcs.Client(project=project, credentials=creds)
def _storage_client():
if hasattr(_local, 'client'):
return _local.client
_local.client = _create_storage_client_new()
return _local.client
def get_bucket_name_and_path(cloud_storage_file_path):
filtered_path = utils.strip_from_left(cloud_storage_file_path, GS_PREFIX)
_, bucket_name_and_path = filtered_path.split('/', 1)
if '/' in bucket_name_and_path:
bucket_name, path = bucket_name_and_path.split('/', 1)
else:
bucket_name = bucket_name_and_path
path = ''
return bucket_name, path
def get_cloud_storage_file_path(bucket, path):
return GS_PREFIX + '/' + bucket + '/' + path
def _get_error_reason(http_error):
try:
data = json.loads(http_error.content.decode('utf-8'))
return data['error']['message']
except (ValueError, KeyError):
logs.log_error('Failed to decode error content: %s' % http_error.content)
return None
@environment.local_noop
def add_single_bucket_iam(storage, iam_policy, role, bucket_name, member):
binding = get_bucket_iam_binding(iam_policy, role)
binding['members'].append(member)
result = set_bucket_iam_policy(storage, bucket_name, iam_policy)
binding['members'].pop()
return result
@environment.local_noop
def get_bucket_iam_binding(iam_policy, role):
return next((
binding for binding in iam_policy['bindings'] if binding['role'] == role),
None)
@environment.local_noop
def get_or_create_bucket_iam_binding(iam_policy, role):
binding = get_bucket_iam_binding(iam_policy, role)
if not binding:
binding = {'role': role, 'members': []}
iam_policy['bindings'].append(binding)
return binding
@environment.local_noop
def remove_bucket_iam_binding(iam_policy, role):
iam_policy['bindings'] = [
binding for binding in iam_policy['bindings'] if binding['role'] != role
]
@environment.local_noop
def get_bucket_iam_policy(storage, bucket_name):
try:
iam_policy = storage.buckets().getIamPolicy(bucket=bucket_name).execute()
except HttpError as e:
logs.log_error('Failed to get IAM policies for %s: %s' % (bucket_name, e))
return None
return iam_policy
@environment.local_noop
def set_bucket_iam_policy(client, bucket_name, iam_policy):
filtered_iam_policy = copy.deepcopy(iam_policy)
for binding in filtered_iam_policy['bindings']:
binding['members'] = sorted(list(set(binding['members'])))
filtered_iam_policy['bindings'] = [
b for b in filtered_iam_policy['bindings'] if b['members']
]
try:
return client.buckets().setIamPolicy(
bucket=bucket_name, body=filtered_iam_policy).execute()
except HttpError as e:
error_reason = _get_error_reason(e)
if error_reason == 'Invalid argument':
logs.log_warn('Invalid Google email or group being added to bucket %s.' %
bucket_name)
elif error_reason and 'is of type "group"' in error_reason:
logs.log_warn('Failed to set IAM policy for %s bucket for a group: %s.' %
(bucket_name, error_reason))
else:
logs.log_error('Failed to set IAM policies for bucket %s.' % bucket_name)
return None
def create_bucket_if_needed(bucket_name, object_lifecycle=None, cors=None):
provider = _provider()
if provider.get_bucket(bucket_name):
return True
if not provider.create_bucket(bucket_name, object_lifecycle, cors):
return False
time.sleep(CREATE_BUCKET_DELAY)
return True
@environment.local_noop
def create_discovery_storage_client():
return build('storage', 'v1', cache_discovery=False)
def generate_life_cycle_config(action, age=None, num_newer_versions=None):
rule = {}
rule['action'] = {'type': action}
rule['condition'] = {}
if age is not None:
rule['condition']['age'] = age
if num_newer_versions is not None:
rule['condition']['numNewerVersions'] = num_newer_versions
config = {'rule': [rule]}
return config
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.copy_file_from',
exception_type=google.cloud.exceptions.GoogleCloudError)
def copy_file_from(cloud_storage_file_path, local_file_path, use_cache=False):
if use_cache and get_file_from_cache_if_exists(local_file_path):
logs.log('Copied file %s from local cache.' % cloud_storage_file_path)
return True
if not _provider().copy_file_from(cloud_storage_file_path, local_file_path):
return False
if use_cache:
store_file_in_cache(local_file_path)
return True
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.copy_file_to',
exception_type=google.cloud.exceptions.GoogleCloudError)
def copy_file_to(local_file_path_or_handle,
cloud_storage_file_path,
metadata=None):
if (isinstance(local_file_path_or_handle, str) and
not os.path.exists(local_file_path_or_handle)):
logs.log_error('Local file %s not found.' % local_file_path_or_handle)
return False
return _provider().copy_file_to(
local_file_path_or_handle, cloud_storage_file_path, metadata=metadata)
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.copy_blob',
exception_type=google.cloud.exceptions.GoogleCloudError)
def copy_blob(cloud_storage_source_path, cloud_storage_target_path):
return _provider().copy_blob(cloud_storage_source_path,
cloud_storage_target_path)
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.delete',
exception_type=google.cloud.exceptions.GoogleCloudError)
def delete(cloud_storage_file_path):
return _provider().delete(cloud_storage_file_path)
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.exists')
def exists(cloud_storage_file_path, ignore_errors=False):
try:
return bool(_provider().get(cloud_storage_file_path))
except HttpError:
if not ignore_errors:
logs.log_error('Failed when trying to find cloud storage file %s.' %
cloud_storage_file_path)
return False
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.last_updated',
exception_type=google.cloud.exceptions.GoogleCloudError)
def last_updated(cloud_storage_file_path):
last_update = None
for blob in _provider().list_blobs(cloud_storage_file_path):
if not last_update or blob['updated'] > last_update:
last_update = blob['updated']
if last_update:
last_update = last_update.replace(tzinfo=None)
return last_update
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.read_data',
exception_type=google.cloud.exceptions.GoogleCloudError)
def read_data(cloud_storage_file_path):
return _provider().read_data(cloud_storage_file_path)
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.write_data',
exception_type=google.cloud.exceptions.GoogleCloudError)
def write_data(data, cloud_storage_file_path, metadata=None):
return _provider().write_data(
data, cloud_storage_file_path, metadata=metadata)
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.get_blobs',
exception_type=google.cloud.exceptions.GoogleCloudError)
def get_blobs(cloud_storage_path, recursive=True):
for blob in _provider().list_blobs(cloud_storage_path, recursive=recursive):
yield blob
@retry.wrap(
retries=DEFAULT_FAIL_RETRIES,
delay=DEFAULT_FAIL_WAIT,
function='google_cloud_utils.storage.list_blobs',
exception_type=google.cloud.exceptions.GoogleCloudError)
def list_blobs(cloud_storage_path, recursive=True):
for blob in _provider().list_blobs(cloud_storage_path, recursive=recursive):
yield blob['name']
def get_download_file_size(cloud_storage_file_path,
file_path=None,
use_cache=False):
if use_cache and file_path:
size_from_cache = get_file_size_from_cache_if_exists(file_path)
if size_from_cache is not None:
return size_from_cache
return get_object_size(cloud_storage_file_path)
@utils.timeout(CACHE_TIMEOUT)
def get_file_from_cache_if_exists(file_path,
update_modification_time_on_access=True):
cache_file_path = get_cache_file_path(file_path)
if not cache_file_path or not file_exists_in_cache(cache_file_path):
return False
cache_file_size = get_cache_file_size_from_metadata(cache_file_path)
if not shell.copy_file(cache_file_path, file_path):
return False
if update_modification_time_on_access:
update_access_and_modification_timestamp(cache_file_path)
return (os.path.exists(file_path) and
os.path.getsize(file_path) == cache_file_size)
@utils.timeout(CACHE_TIMEOUT)
def get_file_size_from_cache_if_exists(file_path):
cache_file_path = get_cache_file_path(file_path)
if not cache_file_path or not file_exists_in_cache(cache_file_path):
return None
return get_cache_file_size_from_metadata(cache_file_path)
def get_cache_file_path(file_path):
if not environment.get_value('NFS_ROOT'):
return None
return os.path.join(
environment.get_value('NFS_ROOT'), CACHE_DIRNAME,
utils.get_directory_hash_for_path(file_path), os.path.basename(file_path))
|
Apache License 2.0
|
forseti-security/forseti-security
|
google/cloud/forseti/scanner/audit/audit_logging_rules_engine.py
|
AuditLoggingRulesEngine.find_violations
|
python
|
def find_violations(self, project, audit_config, force_rebuild=False):
if self.rule_book is None or force_rebuild:
self.build_rule_book()
violations = self.rule_book.find_violations(project, audit_config)
return set(violations)
|
Determine whether a project's audit logging config violates rules.
Args:
project (gcp_type): The project with audit log config.
audit_config (IamAuditConfig): The audit config for this project,
merged with ancestor configs.
force_rebuild (bool): If True, rebuilds the rule book.
This will reload the rules definition file and add the
rules to the book.
Returns:
iterable: A generator of rule violations.
|
https://github.com/forseti-security/forseti-security/blob/de5d0f4d047c293a2a72545a76c3783980865551/google/cloud/forseti/scanner/audit/audit_logging_rules_engine.py#L65-L84
|
from builtins import object
import collections
import itertools
import threading
from google.cloud.forseti.common.gcp_type import resource_util
from google.cloud.forseti.common.gcp_type.iam_policy import IamAuditConfig
from google.cloud.forseti.common.util import logger
from google.cloud.forseti.common.util import relationship
from google.cloud.forseti.scanner.audit import base_rules_engine as bre
from google.cloud.forseti.scanner.audit import errors as audit_errors
LOGGER = logger.get_logger(__name__)
VIOLATION_TYPE = 'AUDIT_LOGGING_VIOLATION'
class AuditLoggingRulesEngine(bre.BaseRulesEngine):
def __init__(self, rules_file_path, snapshot_timestamp=None):
super(AuditLoggingRulesEngine, self).__init__(
rules_file_path=rules_file_path,
snapshot_timestamp=snapshot_timestamp)
self.rule_book = None
def build_rule_book(self, global_configs=None):
self.rule_book = AuditLoggingRuleBook(
global_configs,
self._load_rule_definitions(),
snapshot_timestamp=self.snapshot_timestamp)
|
Apache License 2.0
|
kaggle/kaggle-api
|
kaggle/models/license.py
|
License.__eq__
|
python
|
def __eq__(self, other):
if not isinstance(other, License):
return False
return self.__dict__ == other.__dict__
|
Returns true if both objects are equal
|
https://github.com/kaggle/kaggle-api/blob/49057db362903d158b1e71a43d888b981dd27159/kaggle/models/license.py#L128-L133
|
import pprint
import re
import six
class License(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'name': 'str'
}
attribute_map = {
'name': 'name'
}
def __init__(self, name=None):
self._name = None
self.discriminator = None
self.name = name
@property
def name(self):
return self._name
@name.setter
def name(self, name):
if name is None:
raise ValueError("Invalid value for `name`, must not be `None`")
allowed_values = ["CC0-1.0", "CC-BY-SA-4.0", "GPL-2.0", "ODbL-1.0", "CC-BY-NC-SA-4.0", "unknown", "DbCL-1.0", "CC-BY-SA-3.0", "copyright-authors", "other", "reddit-api", "world-bank"]
if name not in allowed_values:
raise ValueError(
"Invalid value for `name` ({0}), must be one of {1}"
.format(name, allowed_values)
)
self._name = name
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
|
Apache License 2.0
|
whosaysni/robotframework-seriallibrary
|
src/SerialLibrary/__init__.py
|
SerialLibrary.set_dtr
|
python
|
def set_dtr(self, value, port_locator=None):
self._port(port_locator).dtr = is_truthy_on_off(value)
|
Sets DTR (Data Terminal Ready) status.
|
https://github.com/whosaysni/robotframework-seriallibrary/blob/d5c33014acafc35f3190d345d422b43699a382f8/src/SerialLibrary/__init__.py#L638-L642
|
from __future__ import unicode_literals
import codecs
import re
from collections import OrderedDict
from os import SEEK_CUR
from sys import platform
from serial import Serial, SerialBase, serial_for_url
from serial.rs485 import RS485Settings
from serial.serialutil import LF
from serial.tools.list_ports import comports, grep
from serial.tools import hexlify_codec
from robot.api import logger
from robot.utils import asserts, is_truthy, is_string
from robot.utils.unic import unic
from .version import VERSION as __version__
if platform == 'win32':
import ntpath as ospath
else:
import os.path as ospath
abspath = ospath.abspath
isabs = ospath.isabs
join = ospath.join
unicode_ = type('')
def hexlify_decode_plus(data, errors='strict'):
udata, length = hexlify_codec.hex_decode(data, errors)
return (udata.rstrip(), length)
hexlify_codec_plus = codecs.CodecInfo(
name='hexlify',
encode=hexlify_codec.hex_encode,
decode=hexlify_decode_plus,
incrementalencoder=hexlify_codec.IncrementalEncoder,
incrementaldecoder=hexlify_codec.IncrementalDecoder,
streamwriter=hexlify_codec.StreamWriter,
streamreader=hexlify_codec.StreamReader)
codecs.register(lambda c: hexlify_codec_plus if c == 'hexlify' else None)
DEFAULT_SETTINGS = SerialBase(
timeout=1.0, write_timeout=1.0, inter_byte_timeout=0.0).get_settings()
def is_truthy_on_off(item):
if is_string(item):
item = item.strip()
if item.isdigit():
return bool(int(item))
return item.strip().upper() not in ['FALSE', 'NO', '0', 'OFF', '']
return bool(item)
def to_on_off(value):
return 'On' if bool(value) is True else 'Off'
class SerialLibrary:
ROBOT_LIBRARY_SCOPE = 'GLOBAL'
ROBOT_LIBRARY_VERSION = __version__
LOGGER_MAP = dict(INFO=logger.info, DEBUG=logger.debug, WARN=logger.warn)
def __init__(self, port_locator=None, encoding='hexlify', **kwargs):
self._encoding = encoding
self._ports = OrderedDict()
self._defaults = dict(DEFAULT_SETTINGS)
self.set_default_parameters(kwargs)
self._current_port_locator = None
if port_locator is not None:
self.add_port(port_locator)
self._current_port_str = port_locator
def _encode(self, ustring, encoding=None, encoding_mode='strict'):
return ustring.encode(encoding or self._encoding, encoding_mode)
def _decode(self, bstring, encoding=None, encoding_mode='replace'):
return bstring.decode(encoding or self._encoding, encoding_mode)
def _port(self, port_locator=None, fail=True):
if port_locator in [None, '_']:
port_locator = self._current_port_locator
port = self._ports.get(port_locator, None)
if port is None and is_truthy(fail) is True:
asserts.fail('No such port.')
return port
def get_encoding(self):
return self._encoding
def set_encoding(self, encoding=None):
prev_encoding = self._encoding
if encoding:
self._encoding = encoding
return prev_encoding
def list_com_ports(self):
return comports()
def list_com_port_names(self):
return sorted(port_info.device for port_info in self.list_com_ports())
def com_port_should_exist_regexp(self, regexp):
found = list(grep(regexp))
asserts.assert_true(len(found) > 0, 'Matching port does not exist.')
return found
def set_default_parameters(self, params):
prev_value = OrderedDict(self._defaults)
for key, value in params.items():
if key in self._defaults:
value_type = type(self._defaults.get(key))
self._defaults[key] = value_type(value)
return prev_value
def reset_default_parameters(self):
self._defaults = dict(DEFAULT_SETTINGS)
def get_current_port_locator(self):
return self._current_port_locator
def current_port_should_be(self, port_locator):
if port_locator not in [self._current_port_locator, '_']:
asserts.fail('Port does not match.')
def current_port_should_be_regexp(self, port_locator_regexp):
current_port_locator = self._current_port_locator
if current_port_locator is None:
current_port_locator = ''
regexp = re.compile(port_locator_regexp, re.I)
asserts.assert_not_none(
regexp.match(current_port_locator),
'Port does not match.', values=False)
def add_port(self, port_locator, open=True, make_current=False, **kwargs):
if port_locator in [None, '', '_']:
asserts.fail('Invalid port locator.')
elif port_locator in self._ports:
asserts.fail('Port already exists.')
serial_kw = dict(
(k, type(v)(kwargs.get(k, v)))
for k, v in self._defaults.items())
try:
port = serial_for_url(port_locator, **serial_kw)
except (AttributeError, ValueError):
port = Serial(port_locator, **serial_kw)
asserts.assert_not_none(port, 'Port initialization failed.')
self._ports[port_locator] = port
if port.is_open and (is_truthy(open) is False):
port.close()
if self._current_port_locator is None or make_current:
self._current_port_locator = port_locator
return port
def delete_port(self, port_locator=None):
if port_locator is None:
port_locator = self._current_port_locator
if port_locator not in self._ports:
asserts.fail('Invalid port locator.')
port = self._ports.pop(port_locator)
if port.is_open:
port.close()
if port_locator == self._current_port_locator:
self._current_port_locator = None
if self._ports.keys():
self._current_port_locator = self._ports.keys()[-1]
del port
def delete_all_ports(self):
self._current_port_locator = None
while self._ports:
locator, port = self._ports.popitem()
if port.is_open:
port.close()
del port
def open_port(self, port_locator=None):
port = self._port(port_locator)
if not port.is_open:
port.open()
def close_port(self, port_locator=None):
port = self._port(port_locator)
if port.is_open:
port.close()
def port_should_be_open(self, port_locator=None):
asserts.assert_true(
self._port(port_locator).is_open,
'Port is closed.'
)
def port_should_be_closed(self, port_locator=None):
asserts.assert_false(
self._port(port_locator).is_open,
'Port is open.'
)
def switch_port(self, port_locator):
if port_locator not in self._ports:
asserts.fail('No such port.')
self._current_port_locator = port_locator
def get_port_parameter(self, param_name, port_locator=None):
if param_name not in self._defaults:
asserts.fail('Wrong parameter name.')
port = self._port(port_locator)
return getattr(port, param_name)
def set_port_parameter(self, param_name, value, port_locator=None):
if param_name not in self._defaults:
asserts.fail('Wrong parameter name.')
port = self._port(port_locator, fail=True)
prev_value = getattr(port, param_name)
param_type = type(self._defaults.get(param_name))
setattr(port, param_name, param_type(value))
return prev_value
def read_all_data(self, encoding=None, port_locator=None):
return self._decode(self._port(port_locator).read_all(), encoding)
def read_all_and_log(self, loglevel='debug', encoding=None, port_locator=None):
loglevel = loglevel.upper()
logger_func = self.LOGGER_MAP.get(loglevel, None)
if logger_func is None:
raise asserts.fail('Invalid loglevel.')
logger_func(self.read_all_data(encoding, port_locator))
def read_data_should_be(
self, data, encoding=None, port_locator=None):
bdata = self._encode(data, encoding)
bread = self._port(port_locator).read_all()
if bread != bdata:
hex_bread = self._decode(bread, 'hexlify')
hex_bdata = self._decode(bdata, 'hexlify')
msg = "'%s'(read) != '%s'(data)" % (hex_bread, hex_bdata)
asserts.fail(msg)
def read_until(self, terminator=LF, size=None, encoding=None, port_locator=None):
if size is not None:
size = float(size)
if terminator != LF:
terminator = self._encode(terminator)
return self._decode(
self._port(port_locator).read_until(terminator=terminator, size=size),
encoding)
def port_should_have_unread_bytes(self, port_locator=None):
asserts.assert_true(
self._port(port_locator).in_waiting,
'Port has no in-waiting data.')
def port_should_not_have_unread_bytes(self, port_locator=None):
asserts.assert_false(
self._port(port_locator).in_waiting,
'Port has in-waiting data.')
def port_should_have_unsent_bytes(self, port_locator=None):
asserts.assert_true(
self._port(port_locator).out_waiting,
'Port has no out-waiting data.')
def port_should_not_have_unsent_bytes(self, port_locator=None):
asserts.assert_false(
self._port(port_locator).out_waiting,
'Port has out-waiting data.')
def read_n_bytes(self, size=1, encoding=None, port_locator=None):
if is_string(size):
size = int(size)
return self._decode(self._port(port_locator).read(size))
def write_data(self, data, encoding=None, port_locator=None):
if not isinstance(data, unicode_):
data = unic(data)
if isinstance(data, unicode_):
data = self._encode(data, encoding)
self._port(port_locator).write(data)
def flush_port(self, port_locator=None):
self._port(port_locator).flush()
def reset_input_buffer(self, port_locator=None):
self._port(port_locator).reset_input_buffer()
def reset_output_buffer(self, port_locator=None):
self._port(port_locator).reset_output_buffer()
def send_break(self, duration=0.25, port_locator=None):
self._port(port_locator).send_break(float(duration))
def set_rts(self, value, port_locator=None):
self._port(port_locator).rts = is_truthy_on_off(value)
value = 1 if is_truthy_on_off(value) else 0
self._port(port_locator).rts = value
|
BSD 3-Clause New or Revised License
|
simphony/osp-core
|
tests/test_sql_wrapper_session.py
|
MockSqlWrapperSession.__init__
|
python
|
def __init__(self, engine=None,
data_tables=(data_tbl("XSD_string"), data_tbl("VECTOR-2-2"))):
self._data_tables = data_tables
super().__init__(engine)
|
Call the super constructor.
|
https://github.com/simphony/osp-core/blob/19f233ebe6c40e92884aa07bf498304d772f7f27/tests/test_sql_wrapper_session.py#L433-L437
|
import unittest2 as unittest
import rdflib
import uuid
import numpy as np
from osp.core.ontology.cuba import rdflib_cuba
from osp.core.session import SqlWrapperSession
from osp.core.session.db.sql_util import AndCondition, JoinCondition, EqualsCondition
from osp.core.utils.general import iri_from_uid
from osp.core.namespaces import cuba
try:
from osp.core.namespaces import city
except ImportError:
from osp.core.ontology import Parser
from osp.core.ontology.namespace_registry import namespace_registry
Parser().parse("city")
city = namespace_registry.city
CUDS_TABLE = SqlWrapperSession.CUDS_TABLE
ENTITIES_TABLE = SqlWrapperSession.ENTITIES_TABLE
TYPES_TABLE = SqlWrapperSession.TYPES_TABLE
NAMESPACES_TABLE = SqlWrapperSession.NAMESPACES_TABLE
RELATIONSHIP_TABLE = SqlWrapperSession.RELATIONSHIP_TABLE
DATA_TABLE_PREFIX = SqlWrapperSession.DATA_TABLE_PREFIX
def data_tbl(suffix):
return DATA_TABLE_PREFIX + suffix
class TestSqlWrapperSession(unittest.TestCase):
def setUp(self):
self.session = MockSqlWrapperSession()
self.session._ns_to_idx = {str(rdflib_cuba): 1}
self.session._idx_to_ns = {1: str(rdflib_cuba)}
def test_queries_subject_given(self):
r = sorted(self.session._queries(
pattern=(iri_from_uid(uuid.UUID(int=1)),
None, None)), key=lambda x: x[1])
self.assertEqual(len(r), 4)
self.assertEqual(r[0][1], data_tbl("VECTOR-2-2"))
self.assertEqual(r[1][1], data_tbl("XSD_string"))
self.assertEqual(r[2][1], RELATIONSHIP_TABLE)
self.assertEqual(r[3][1], TYPES_TABLE)
self.assertEqual(r[0][2], rdflib_cuba["_datatypes/VECTOR-2-2"])
self.assertEqual(r[1][2], rdflib.XSD.string)
self.assertEqual(r[2][2], rdflib.XSD.integer)
self.assertEqual(r[3][2], rdflib.XSD.integer)
self.assertEqual(r[0][0].order, ["ts", "tp", data_tbl("VECTOR-2-2")])
self.assertEqual(r[0][0]._columns, {
"ts": ["uid"], "tp": ["ns_idx", "name"],
data_tbl("VECTOR-2-2"): ["o___0", "o___1", "o___2", "o___3"]})
self.assertEqual(r[0][0].condition, AndCondition(
JoinCondition(data_tbl("VECTOR-2-2"), "s", "ts", "cuds_idx"),
JoinCondition(data_tbl("VECTOR-2-2"), "p", "tp", "entity_idx"),
EqualsCondition("ts", "uid", str(uuid.UUID(int=1)), "UID")
))
self.assertEqual(r[0][0].datatypes, {
data_tbl("VECTOR-2-2"): {"o": rdflib_cuba["_datatypes/VECTOR-2-2"],
"o___0": rdflib.XSD.float,
"o___1": rdflib.XSD.float,
"o___2": rdflib.XSD.float,
"o___3": rdflib.XSD.float},
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"tp": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer}
})
self.assertEqual(r[0][0].tables, {
"ts": CUDS_TABLE, "tp": ENTITIES_TABLE,
data_tbl("VECTOR-2-2"): data_tbl("VECTOR-2-2")
})
self.assertEqual(r[1][0]._columns, {
"ts": ["uid"], "tp": ["ns_idx", "name"],
data_tbl("XSD_string"): ["o"]})
self.assertEqual(r[1][0].condition, AndCondition(
JoinCondition(data_tbl("XSD_string"), "s", "ts", "cuds_idx"),
JoinCondition(data_tbl("XSD_string"), "p", "tp", "entity_idx"),
EqualsCondition("ts", "uid", str(uuid.UUID(int=1)), "UID")
))
self.assertEqual(r[1][0].datatypes, {
data_tbl("XSD_string"): {"o": rdflib.XSD.string},
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"tp": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer}
})
self.assertEqual(r[1][0].tables, {
"ts": CUDS_TABLE, "tp": ENTITIES_TABLE,
data_tbl("XSD_string"): data_tbl("XSD_string")
})
self.assertEqual(r[2][0]._columns, {
"ts": ["uid"], "tp": ["ns_idx", "name"], RELATIONSHIP_TABLE: [],
"to": ["uid"]})
self.assertEqual(r[2][0].condition, AndCondition(
JoinCondition(RELATIONSHIP_TABLE, "s", "ts", "cuds_idx"),
JoinCondition(RELATIONSHIP_TABLE, "p", "tp", "entity_idx"),
JoinCondition(RELATIONSHIP_TABLE, "o", "to", "cuds_idx"),
EqualsCondition("ts", "uid", str(uuid.UUID(int=1)), "UID")
))
self.assertEqual(r[2][0].datatypes, {
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"tp": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer},
"to": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
RELATIONSHIP_TABLE: {}
})
self.assertEqual(r[2][0].tables, {
"ts": CUDS_TABLE, "tp": ENTITIES_TABLE, "to": CUDS_TABLE,
RELATIONSHIP_TABLE: RELATIONSHIP_TABLE
})
self.assertEqual(r[3][0]._columns, {
"ts": ["uid"], TYPES_TABLE: [], "to": ["ns_idx", "name"]})
self.assertEqual(r[3][0].condition, AndCondition(
JoinCondition(TYPES_TABLE, "s", "ts", "cuds_idx"),
JoinCondition(TYPES_TABLE, "o", "to", "entity_idx"),
EqualsCondition("ts", "uid", str(uuid.UUID(int=1)), "UID")
))
self.assertEqual(r[3][0].datatypes, {
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"to": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer},
TYPES_TABLE: {}
})
self.assertEqual(r[3][0].tables, {
"ts": CUDS_TABLE, "to": ENTITIES_TABLE, TYPES_TABLE: TYPES_TABLE
})
def test_queries_predicate_given(self):
r = sorted(self.session._queries(
pattern=(None, cuba.activeRelationship.iri, None)),
key=lambda x: x[1]
)
self.assertEqual(len(r), 1)
self.assertEqual(r[0][1:], (RELATIONSHIP_TABLE, rdflib.XSD.integer))
self.assertEqual(r[0][0]._columns, {
"ts": ["uid"], "tp": ["ns_idx", "name"], RELATIONSHIP_TABLE: [],
"to": ["uid"]})
self.assertEqual(r[0][0].condition, AndCondition(
JoinCondition(RELATIONSHIP_TABLE, "s", "ts", "cuds_idx"),
JoinCondition(RELATIONSHIP_TABLE, "p", "tp", "entity_idx"),
JoinCondition(RELATIONSHIP_TABLE, "o", "to", "cuds_idx"),
EqualsCondition("tp", "ns_idx", 1, rdflib.XSD.integer),
EqualsCondition("tp", "name", "activeRelationship",
rdflib.XSD.string)
))
self.assertEqual(r[0][0].datatypes, {
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"tp": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer},
"to": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
RELATIONSHIP_TABLE: {}
})
self.assertEqual(r[0][0].tables, {
"ts": CUDS_TABLE, "tp": ENTITIES_TABLE, "to": CUDS_TABLE,
RELATIONSHIP_TABLE: RELATIONSHIP_TABLE
})
r = sorted(self.session._queries(
pattern=(None, rdflib.RDF.type, None)),
key=lambda x: x[1]
)
self.assertEqual(len(r), 1)
self.assertEqual(r[0][1:], (TYPES_TABLE, rdflib.XSD.integer))
self.assertEqual(r[0][0]._columns, {
"ts": ["uid"], TYPES_TABLE: [], "to": ["ns_idx", "name"]})
self.assertEqual(r[0][0].condition, AndCondition(
JoinCondition(TYPES_TABLE, "s", "ts", "cuds_idx"),
JoinCondition(TYPES_TABLE, "o", "to", "entity_idx")
))
self.assertEqual(r[0][0].datatypes, {
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"to": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer},
TYPES_TABLE: {}
})
self.assertEqual(r[0][0].tables, {
"ts": CUDS_TABLE, "to": ENTITIES_TABLE, TYPES_TABLE: TYPES_TABLE
})
r = sorted(self.session._queries(
pattern=(None, city.coordinates.iri, None)),
key=lambda x: x[1]
)
self.assertEqual(len(r), 1)
self.assertEqual(r[0][1:], (data_tbl("VECTOR-INT-2"),
rdflib_cuba["_datatypes/VECTOR-INT-2"]))
self.assertEqual(r[0][0]._columns, {
"ts": ["uid"], "tp": ["ns_idx", "name"],
data_tbl("VECTOR-INT-2"): ["o___0", "o___1"]})
self.assertEqual(r[0][0].condition, AndCondition(
JoinCondition(data_tbl("VECTOR-INT-2"), "s", "ts", "cuds_idx"),
JoinCondition(data_tbl("VECTOR-INT-2"), "p", "tp", "entity_idx"),
EqualsCondition("tp", "ns_idx", 2, rdflib.XSD.integer),
EqualsCondition("tp", "name", "coordinates", rdflib.XSD.string)
))
self.assertEqual(r[0][0].datatypes, {
data_tbl("VECTOR-INT-2"): {
"o": rdflib_cuba["_datatypes/VECTOR-INT-2"],
"o___1": rdflib.XSD.integer,
"o___0": rdflib.XSD.integer
},
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"tp": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer}
})
self.assertEqual(r[0][0].tables, {
"ts": CUDS_TABLE, "tp": ENTITIES_TABLE,
data_tbl("VECTOR-INT-2"): data_tbl("VECTOR-INT-2")
})
dtype = rdflib_cuba["_datatypes/VECTOR-INT-2"]
r = sorted(self.session._queries(
pattern=(None, city.coordinates.iri,
rdflib.Literal(np.array([1, 1]), datatype=dtype))),
key=lambda x: x[1])
self.assertEqual(len(r), 1)
self.assertEqual(r[0][1:], (data_tbl("VECTOR-INT-2"),
rdflib_cuba["_datatypes/VECTOR-INT-2"]))
self.assertEqual(r[0][0]._columns, {
"ts": ["uid"], "tp": ["ns_idx", "name"],
data_tbl("VECTOR-INT-2"): ["o___0", "o___1"]})
self.assertEqual(r[0][0].condition, AndCondition(
JoinCondition(data_tbl("VECTOR-INT-2"), "s", "ts", "cuds_idx"),
JoinCondition(data_tbl("VECTOR-INT-2"), "p", "tp", "entity_idx"),
EqualsCondition("tp", "ns_idx", 2, rdflib.XSD.integer),
EqualsCondition("tp", "name", "coordinates", rdflib.XSD.string),
AndCondition(
EqualsCondition(data_tbl("VECTOR-INT-2"), "o___0",
1, rdflib.XSD.integer),
EqualsCondition(data_tbl("VECTOR-INT-2"), "o___1",
1, rdflib.XSD.integer),
)
))
self.assertEqual(r[0][0].datatypes, {
data_tbl("VECTOR-INT-2"): {
"o": rdflib_cuba["_datatypes/VECTOR-INT-2"],
"o___0": rdflib.XSD.integer,
"o___1": rdflib.XSD.integer
},
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"tp": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer}
})
self.assertEqual(r[0][0].tables, {
"ts": CUDS_TABLE, "tp": ENTITIES_TABLE,
data_tbl("VECTOR-INT-2"): data_tbl("VECTOR-INT-2")
})
def test_queries_object_given(self):
r = sorted(self.session._queries(
pattern=(None, None, city.City.iri)),
key=lambda x: x[1])
self.assertEqual(len(r), 1)
self.assertEqual(r[0][1:], (TYPES_TABLE, rdflib.XSD.integer))
self.assertEqual(r[0][0]._columns, {
"ts": ["uid"], "to": ["ns_idx", "name"], TYPES_TABLE: []})
self.assertEqual(r[0][0].condition, AndCondition(
JoinCondition(TYPES_TABLE, "s", "ts", "cuds_idx"),
JoinCondition(TYPES_TABLE, "o", "to", "entity_idx"),
EqualsCondition("to", "ns_idx", 2, rdflib.XSD.integer),
EqualsCondition("to", "name", "City", rdflib.XSD.string)
))
self.assertEqual(r[0][0].datatypes, {
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"to": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer},
TYPES_TABLE: {}
})
self.assertEqual(r[0][0].tables, {
"ts": CUDS_TABLE, "to": ENTITIES_TABLE, TYPES_TABLE: TYPES_TABLE
})
r = sorted(self.session._queries(
pattern=(None, None, iri_from_uid(uuid.UUID(int=1)))),
key=lambda x: x[1])
self.assertEqual(len(r), 1)
self.assertEqual(r[0][1:], (RELATIONSHIP_TABLE, rdflib.XSD.integer))
self.assertEqual(r[0][0]._columns, {
"ts": ["uid"], "tp": ["ns_idx", "name"], RELATIONSHIP_TABLE: [],
"to": ["uid"]})
self.assertEqual(r[0][0].condition, AndCondition(
JoinCondition(RELATIONSHIP_TABLE, "s", "ts", "cuds_idx"),
JoinCondition(RELATIONSHIP_TABLE, "p", "tp", "entity_idx"),
JoinCondition(RELATIONSHIP_TABLE, "o", "to", "cuds_idx"),
EqualsCondition("to", "uid", str(uuid.UUID(int=1)), "UID")
))
self.assertEqual(r[0][0].datatypes, {
"ts": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
"tp": {"name": rdflib.XSD.string, "ns_idx": rdflib.XSD.integer,
"entity_idx": rdflib.XSD.integer},
"to": {"uid": "UID", "cuds_idx": rdflib.XSD.integer},
RELATIONSHIP_TABLE: {}
})
self.assertEqual(r[0][0].tables, {
"ts": CUDS_TABLE, "tp": ENTITIES_TABLE, "to": CUDS_TABLE,
RELATIONSHIP_TABLE: RELATIONSHIP_TABLE
})
def test_construct_remove_condition(self):
r = sorted(self.session._queries(
pattern=(iri_from_uid(uuid.UUID(int=1)),
city.hasInhabitant.iri,
iri_from_uid(uuid.UUID(int=2))), mode="delete"),
key=lambda x: x[1])
self.assertEqual(len(r), 1)
self.assertEqual(r[0][1], RELATIONSHIP_TABLE)
self.assertEqual(r[0][2], rdflib.XSD.integer)
self.assertEqual(r[0][0], AndCondition(
EqualsCondition(RELATIONSHIP_TABLE, "s", 1, rdflib.XSD.integer),
EqualsCondition(RELATIONSHIP_TABLE, "p", 42, rdflib.XSD.integer),
EqualsCondition(RELATIONSHIP_TABLE, "o", 2, rdflib.XSD.integer)
))
r = sorted(self.session._queries(
pattern=(iri_from_uid(uuid.UUID(int=1)), rdflib.RDF.type,
city.City.iri),
mode="delete"), key=lambda x: x[1])
self.assertEqual(len(r), 1)
self.assertEqual(r[0][1], TYPES_TABLE)
self.assertEqual(r[0][2], rdflib.XSD.integer)
self.assertEqual(r[0][0], AndCondition(
EqualsCondition(TYPES_TABLE, "s", 1, rdflib.XSD.integer),
EqualsCondition(TYPES_TABLE, "o", 42, rdflib.XSD.integer)
))
def test_rows_to_triples(self):
cursor = iter([
(uuid.UUID(int=1), 2, "hasInhabitant", uuid.UUID(int=2)),
(uuid.UUID(int=1), 1, "activeRelationship", uuid.UUID(int=3))
])
triples = list(
self.session._rows_to_triples(cursor, RELATIONSHIP_TABLE,
rdflib.XSD.integer)
)
self.assertEqual(triples, [
(iri_from_uid(uuid.UUID(int=1)),
city.hasInhabitant.iri,
iri_from_uid(uuid.UUID(int=2))),
(iri_from_uid(uuid.UUID(int=1)),
cuba.activeRelationship.iri,
iri_from_uid(uuid.UUID(int=3)))
])
cursor = iter([
(uuid.UUID(int=1), 2, "City"), (uuid.UUID(int=2), 1, "Entity")
])
triples = list(
self.session._rows_to_triples(cursor, TYPES_TABLE,
rdflib.XSD.integer)
)
self.assertEqual(sorted(triples), sorted([
(iri_from_uid(uuid.UUID(int=1)), rdflib.RDF.type,
city.City.iri),
(iri_from_uid(uuid.UUID(int=2)), rdflib.RDF.type,
cuba.Entity.iri)
]))
cursor = iter([
(uuid.UUID(int=1), 2, "coordinates", np.array([1, 2])),
(uuid.UUID(int=2), 1, "attribute", np.array([3, 4]))
])
triples = list(
self.session._rows_to_triples(
cursor, data_tbl("VECTOR-INT-2"),
rdflib_cuba["_datatypes/VECTOR-INT-2"])
)
self.assertEqual(triples, [
(iri_from_uid(uuid.UUID(int=1)), city.coordinates.iri,
rdflib.Literal(np.array([1, 2]),
datatype=rdflib_cuba["_datatypes/VECTOR-INT-2"])),
(iri_from_uid(uuid.UUID(int=2)), cuba.attribute.iri,
rdflib.Literal(np.array([3, 4]),
datatype=rdflib_cuba["_datatypes/VECTOR-INT-2"]))
])
def test_get_values(self):
v = self.session._get_values(
(iri_from_uid(uuid.UUID(int=1)), city.hasInhabitant.iri,
iri_from_uid(uuid.UUID(int=2))), RELATIONSHIP_TABLE)
self.assertEqual(v, (1, 42, 2))
v = self.session._get_values(
(iri_from_uid(uuid.UUID(int=1)), city.coordinates.iri,
rdflib.Literal(np.array([1, 2]),
datatype=rdflib_cuba["_datatypes/VECTOR-INT-2"])),
data_tbl("VECTOR-INT-2"))
np.testing.assert_equal(v, (1, 42, np.array([1, 2])))
v = self.session._get_values(
(iri_from_uid(uuid.UUID(int=1)),
rdflib.XSD.anyURI,
city.City.iri),
TYPES_TABLE)
self.assertEqual(v, (1, 42))
class MockSqlWrapperSession(SqlWrapperSession):
|
BSD 3-Clause New or Revised License
|
google-research/ott
|
ott/tools/soft_sort.py
|
_ranks
|
python
|
def _ranks(inputs: jnp.ndarray, num_targets, **kwargs) -> jnp.ndarray:
num_points = inputs.shape[0]
num_targets = num_points if num_targets is None else num_targets
a = jnp.ones((num_points,)) / num_points
b = jnp.ones((num_targets,)) / num_targets
ot = transport_for_sort(inputs, a, b, **kwargs)
out = 1.0 / a * ot.apply(jnp.arange(num_targets), axis=1)
return jnp.reshape(out, inputs.shape)
|
Applies the soft ranks operator on a one dimensional array.
|
https://github.com/google-research/ott/blob/03afbebdb55ec37891f90e4d89376c4838cf4770/ott/tools/soft_sort.py#L157-L165
|
import functools
from typing import Callable, Optional
import jax
import jax.numpy as jnp
import numpy as np
from ott.tools import transport
def transport_for_sort(
inputs: jnp.ndarray,
weights: jnp.ndarray,
target_weights: jnp.ndarray,
squashing_fun: Callable[[jnp.ndarray], jnp.ndarray] = None,
epsilon: float = 1e-2,
**kwargs) -> jnp.ndarray:
shape = inputs.shape
if len(shape) > 2 or (len(shape) == 2 and shape[1] != 1):
raise ValueError(
'Shape ({shape}) not supported. The input should be one-dimensional.')
x = jnp.expand_dims(jnp.squeeze(inputs), axis=1)
if squashing_fun is None:
squashing_fun = lambda z: jax.nn.sigmoid((z - jnp.mean(z)) /
(jnp.std(z) + 1e-10))
x = squashing_fun(x)
a = jnp.squeeze(weights)
b = jnp.squeeze(target_weights)
num_targets = b.shape[0]
y = jnp.linspace(0.0, 1.0, num_targets)[:, jnp.newaxis]
return transport.Transport(x, y, a=a, b=b, epsilon=epsilon, **kwargs)
def apply_on_axis(op, inputs, axis, *args, **kwargs):
op_inner = functools.partial(op, **kwargs)
axis = (axis,) if isinstance(axis, int) else axis
num_points = np.prod(np.array(inputs.shape)[tuple([axis])])
permutation = np.arange(len(inputs.shape))
axis = tuple(permutation[a] for a in axis)
permutation = tuple(sorted(set(permutation) - set(axis)) + sorted(axis))
inputs = jnp.transpose(inputs, permutation)
batch_fn = jax.vmap(op_inner, in_axes=(0,) + (None,) * len(args))
result = batch_fn(jnp.reshape(inputs, (-1, num_points)), *args)
shrink = len(axis)
result = jnp.reshape(result, inputs.shape[:-shrink] + result.shape[-1:])
permutation = tuple(range(len(result.shape)))
rank = len(result.shape) - 1
axis = min(axis)
permutation = permutation[:axis] + (rank,) + permutation[axis:-1]
result = jnp.transpose(result, permutation)
return result
def _sort(inputs: jnp.ndarray, topk, num_targets, **kwargs) -> jnp.ndarray:
num_points = inputs.shape[0]
a = jnp.ones((num_points,)) / num_points
if 0 < topk < num_points:
start_index = 1
b = jnp.concatenate([
jnp.array([(num_points - topk) / num_points]),
jnp.ones(topk, dtype=inputs.dtype) / num_points
])
else:
num_targets = num_points if num_targets is None else num_targets
start_index = 0
b = jnp.ones((num_targets,)) / num_targets
ot = transport_for_sort(inputs, a, b, **kwargs)
out = 1.0 / b * ot.apply(inputs, axis=0)
return out[start_index:]
def sort(inputs: jnp.ndarray,
axis: int = -1,
topk: int = -1,
num_targets: int = None,
**kwargs) -> jnp.ndarray:
return apply_on_axis(_sort, inputs, axis, topk, num_targets, **kwargs)
|
Apache License 2.0
|
demisto/demisto-py
|
demisto_client/demisto_api/models/investigation_filter.py
|
InvestigationFilter.from_date_license
|
python
|
def from_date_license(self):
return self._from_date_license
|
Gets the from_date_license of this InvestigationFilter. # noqa: E501
:return: The from_date_license of this InvestigationFilter. # noqa: E501
:rtype: datetime
|
https://github.com/demisto/demisto-py/blob/95d29e07693d27c133f7fe6ef9da13e4b6dbf542/demisto_client/demisto_api/models/investigation_filter.py#L284-L291
|
import pprint
import re
import six
from demisto_client.demisto_api.models.duration import Duration
from demisto_client.demisto_api.models.investigation_status import InvestigationStatus
from demisto_client.demisto_api.models.investigation_type import InvestigationType
from demisto_client.demisto_api.models.order import Order
from demisto_client.demisto_api.models.period import Period
class InvestigationFilter(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'cache': 'dict(str, list[str])',
'and_op': 'bool',
'category': 'list[str]',
'from_close_date': 'datetime',
'from_date': 'datetime',
'from_date_license': 'datetime',
'id': 'list[str]',
'ids_only': 'bool',
'include_child_inv': 'bool',
'name': 'list[str]',
'not_category': 'list[str]',
'not_i_ds': 'list[str]',
'page': 'int',
'period': 'Period',
'reason': 'list[str]',
'search_after': 'list[str]',
'search_before': 'list[str]',
'size': 'int',
'sort': 'list[Order]',
'status': 'list[InvestigationStatus]',
'time_frame': 'Duration',
'to_close_date': 'datetime',
'to_date': 'datetime',
'type': 'list[InvestigationType]',
'user': 'list[str]'
}
attribute_map = {
'cache': 'Cache',
'and_op': 'andOp',
'category': 'category',
'from_close_date': 'fromCloseDate',
'from_date': 'fromDate',
'from_date_license': 'fromDateLicense',
'id': 'id',
'ids_only': 'idsOnly',
'include_child_inv': 'includeChildInv',
'name': 'name',
'not_category': 'notCategory',
'not_i_ds': 'notIDs',
'page': 'page',
'period': 'period',
'reason': 'reason',
'search_after': 'searchAfter',
'search_before': 'searchBefore',
'size': 'size',
'sort': 'sort',
'status': 'status',
'time_frame': 'timeFrame',
'to_close_date': 'toCloseDate',
'to_date': 'toDate',
'type': 'type',
'user': 'user'
}
def __init__(self, cache=None, and_op=None, category=None, from_close_date=None, from_date=None, from_date_license=None, id=None, ids_only=None, include_child_inv=None, name=None, not_category=None, not_i_ds=None, page=None, period=None, reason=None, search_after=None, search_before=None, size=None, sort=None, status=None, time_frame=None, to_close_date=None, to_date=None, type=None, user=None):
self._cache = None
self._and_op = None
self._category = None
self._from_close_date = None
self._from_date = None
self._from_date_license = None
self._id = None
self._ids_only = None
self._include_child_inv = None
self._name = None
self._not_category = None
self._not_i_ds = None
self._page = None
self._period = None
self._reason = None
self._search_after = None
self._search_before = None
self._size = None
self._sort = None
self._status = None
self._time_frame = None
self._to_close_date = None
self._to_date = None
self._type = None
self._user = None
self.discriminator = None
if cache is not None:
self.cache = cache
if and_op is not None:
self.and_op = and_op
if category is not None:
self.category = category
if from_close_date is not None:
self.from_close_date = from_close_date
if from_date is not None:
self.from_date = from_date
if from_date_license is not None:
self.from_date_license = from_date_license
if id is not None:
self.id = id
if ids_only is not None:
self.ids_only = ids_only
if include_child_inv is not None:
self.include_child_inv = include_child_inv
if name is not None:
self.name = name
if not_category is not None:
self.not_category = not_category
if not_i_ds is not None:
self.not_i_ds = not_i_ds
if page is not None:
self.page = page
if period is not None:
self.period = period
if reason is not None:
self.reason = reason
if search_after is not None:
self.search_after = search_after
if search_before is not None:
self.search_before = search_before
if size is not None:
self.size = size
if sort is not None:
self.sort = sort
if status is not None:
self.status = status
if time_frame is not None:
self.time_frame = time_frame
if to_close_date is not None:
self.to_close_date = to_close_date
if to_date is not None:
self.to_date = to_date
if type is not None:
self.type = type
if user is not None:
self.user = user
@property
def cache(self):
return self._cache
@cache.setter
def cache(self, cache):
self._cache = cache
@property
def and_op(self):
return self._and_op
@and_op.setter
def and_op(self, and_op):
self._and_op = and_op
@property
def category(self):
return self._category
@category.setter
def category(self, category):
self._category = category
@property
def from_close_date(self):
return self._from_close_date
@from_close_date.setter
def from_close_date(self, from_close_date):
self._from_close_date = from_close_date
@property
def from_date(self):
return self._from_date
@from_date.setter
def from_date(self, from_date):
self._from_date = from_date
@property
|
Apache License 2.0
|
rapidpro/rapidpro-python
|
temba_client/utils.py
|
format_iso8601
|
python
|
def format_iso8601(value):
if value is None:
return None
return str(value.astimezone(pytz.UTC).strftime("%Y-%m-%dT%H:%M:%S.%fZ"))
|
Formats a datetime as a UTC ISO8601 date or returns None if value is None
|
https://github.com/rapidpro/rapidpro-python/blob/715d27b7197c2bb7bb42bdba17a30aebe05598ba/temba_client/utils.py#L18-L25
|
import json
import iso8601
import pytz
import requests
def parse_iso8601(value):
if not value:
return None
return iso8601.parse_date(value)
|
BSD 3-Clause New or Revised License
|
cc1-cloud/cc1
|
src/clm/views/guest/user.py
|
is_mailer_active
|
python
|
def is_mailer_active():
return {'mailer_active': settings.MAILER_ACTIVE, 'contact_email': settings.CONTACT_EMAIL}
|
Info, whether mailer is active
@clmview_guest
@response{dict} fiedls:
@dictkey{mailer_active}
@dictkey{contact_email}
|
https://github.com/cc1-cloud/cc1/blob/8113673fa13b6fe195cea99dedab9616aeca3ae8/src/clm/views/guest/user.py#L258-L267
|
from datetime import datetime
import random
from smtplib import SMTPRecipientsRefused
import string
from django.conf import settings
from django.utils.http import int_to_base36
from clm.models.cluster import Cluster
from clm.models.user import User
from clm.utils import mail
from clm.utils.cm import CM
from clm.utils.decorators import guest_log
from clm.utils.exception import CLMException
from clm.utils.tokens import default_token_generator as token_generator
from common.signature import Signature
from common.states import user_active_states, registration_states, cluster_states
@guest_log(log=False)
def check_password(login, password):
try:
user = User.objects.get(login=login)
except User.DoesNotExist:
raise CLMException('user_get')
if user.is_active == user_active_states['ok']:
try:
user.last_login_date = datetime.now()
user.save()
except:
raise CLMException('user_edit')
else:
return False
if user.password == password:
return user.dict
else:
return False
@guest_log(log=True)
def check_signature(parameters):
try:
auth_header = parameters['authorization']
space = auth_header.index(' ')
auth_header = auth_header[space + 1:]
login_and_signature = auth_header.split(':')
login = login_and_signature[0]
user_signature = login_and_signature[1]
user = User.objects.get(login=login)
except User.DoesNotExist, error:
print 'ERROR', error
raise CLMException('user_get')
except KeyError:
raise CLMException('user_parameter')
if not Signature.checkSignature(user.password, user_signature, parameters):
raise CLMException('user_get')
return True
@guest_log(log=True)
def register(first, last, login, email, new_password, organization, wi_data):
user = User()
user.first = first
user.last = last
try:
default_cluster_id = Cluster.objects.filter(state=cluster_states['ok'])[0].id
except:
default_cluster_id = None
user.default_cluster_id = default_cluster_id
user.login = login
user.email = email
user.password = new_password
user.organization = organization
user.act_key = ''.join(random.choice(string.ascii_uppercase + string.digits) for n in range(40))
user.is_active = user_active_states['inactive']
try:
user.save()
except:
raise CLMException('user_register')
reg_state = -1
if settings.MAILER_ACTIVE:
try:
mail.send_activation_email(user.act_key, user, wi_data)
except SMTPRecipientsRefused:
reg_state = registration_states['error']
reg_state = registration_states['mail_confirmation']
else:
if settings.AUTOACTIVATION:
for cluster in Cluster.objects.filter(state__exact=0):
resp = CM(cluster.id).send_request("guest/user/add/", new_user_id=user.id)
if resp['status'] != 'ok':
raise CLMException('cm_get')
user.is_active = user_active_states['ok']
user.activation_date = datetime.now()
user.act_key = ''
reg_state = registration_states['completed']
else:
user.is_active = user_active_states['email_confirmed']
reg_state = registration_states['admin_confirmation']
try:
user.save()
except:
raise CLMException('user_activate')
return {'user': user.dict, 'registration_state': reg_state}
@guest_log(log=False)
def exists(login):
return User.objects.filter(login=login).exists()
@guest_log(log=False)
def email_exists(email):
return User.objects.filter(email__exact=email).exists()
@guest_log(log=True)
def activate(act_key, wi_data):
try:
user = User.objects.get(act_key=act_key)
except:
raise CLMException('user_get')
user.is_active = user_active_states['email_confirmed']
reg_state = registration_states['admin_confirmation']
if settings.AUTOACTIVATION:
for cluster in Cluster.objects.filter(state__exact=0):
resp = CM(cluster.id).send_request("guest/user/add/", new_user_id=user.id)
if resp['status'] != 'ok':
raise CLMException('cm_get')
user.is_active = user_active_states['ok']
reg_state = registration_states['completed']
user.activation_date = datetime.now()
user.act_key = ''
try:
user.save()
except:
raise CLMException('user_activate')
if settings.MAILER_ACTIVE and reg_state == registration_states['admin_confirmation']:
try:
mail.send_admin_registration_notification(user, wi_data)
except SMTPRecipientsRefused:
pass
return {'user': user.dict, 'registration_state': reg_state}
@guest_log(log=True)
|
Apache License 2.0
|
pandas-ml/pandas-ml
|
pandas_ml/confusion_matrix/abstract.py
|
ConfusionMatrixAbstract.max
|
python
|
def max(self):
return(self.to_dataframe().max().max())
|
Returns max value of confusion matrix
|
https://github.com/pandas-ml/pandas-ml/blob/26717cc33ddc3548b023a6410b2235fb21a7b382/pandas_ml/confusion_matrix/abstract.py#L461-L465
|
import numpy as np
import pandas as pd
import collections
import pandas_ml as pdml
from pandas_ml.confusion_matrix.stats import binom_interval, class_agreement, prop_test
class ConfusionMatrixAbstract(object):
TRUE_NAME = 'Actual'
PRED_NAME = 'Predicted'
def __init__(self, y_true, y_pred, labels=None,
display_sum=True, backend='matplotlib',
true_name='Actual', pred_name='Predicted'):
self.true_name = true_name
self.pred_name = pred_name
if isinstance(y_true, pd.Series):
self._y_true = y_true
self._y_true.name = self.true_name
else:
self._y_true = pd.Series(y_true, name=self.true_name)
if isinstance(y_pred, pd.Series):
self._y_pred = y_pred
self._y_pred.name = self.pred_name
else:
self._y_pred = pd.Series(y_pred, name=self.pred_name)
if labels is not None:
if not self.is_binary:
self._y_true = self._y_true.map(lambda i: self._label(i, labels))
self._y_pred = self._y_pred.map(lambda i: self._label(i, labels))
else:
N = len(labels)
assert len(labels) == 2, "labels be a list with length=2 - length=%d" % N
d = {labels[0]: False, labels[1]: True}
self._y_true = self._y_true.map(d)
self._y_pred = self._y_pred.map(d)
raise(NotImplementedError)
N_true = len(y_true)
N_pred = len(y_pred)
assert N_true == N_pred, "y_true must have same size - %d != %d" % (N_true, N_pred)
df = pd.crosstab(self._y_true, self._y_pred)
idx = self._classes(df)
if self.is_binary and pdml.compat._PANDAS_ge_021:
df = df.reindex([False, True])
df = df.reindex([False, True], axis=1)
df = df.fillna(0)
else:
df = df.loc[idx, idx.copy()].fillna(0)
self._df_confusion = df
self._df_confusion.index.name = self.true_name
self._df_confusion.columns.name = self.pred_name
self._df_confusion = self._df_confusion.astype(np.int64)
self._len = len(idx)
self.backend = backend
self.display_sum = display_sum
def _label(self, i, labels):
try:
return(labels[i])
except IndexError:
return(i)
def __repr__(self):
return(self.to_dataframe(calc_sum=self.display_sum).__repr__())
def __str__(self):
return(self.to_dataframe(calc_sum=self.display_sum).__str__())
@property
def classes(self):
return(self._classes())
def _classes(self, df=None):
if df is None:
df = self.to_dataframe()
idx_classes = (df.columns | df.index).copy()
idx_classes.name = 'Classes'
return(idx_classes)
def to_dataframe(self, normalized=False, calc_sum=False,
sum_label='__all__'):
if normalized:
a = self._df_confusion.values.astype('float')
a = a.astype('float') / a.sum(axis=1)[:, np.newaxis]
df = pd.DataFrame(a,
index=self._df_confusion.index.copy(),
columns=self._df_confusion.columns.copy())
else:
df = self._df_confusion
if calc_sum:
df = df.copy()
df[sum_label] = df.sum(axis=1)
df = pd.concat([df, pd.DataFrame(df.sum(axis=0), columns=[sum_label]).T])
df.index.name = self.true_name
return(df)
@property
def true(self):
s = self.to_dataframe().sum(axis=1)
s.name = self.true_name
return(s)
@property
def pred(self):
s = self.to_dataframe().sum(axis=0)
s.name = self.pred_name
return(s)
def to_array(self, normalized=False, sum=False):
return(self.to_dataframe(normalized, sum).values)
def toarray(self, *args, **kwargs):
return(self.to_array(*args, **kwargs))
def len(self):
return(self._len)
def sum(self):
return(self.to_dataframe().sum().sum())
@property
def population(self):
return(self.sum())
def y_true(self, func=None):
if func is None:
return(self._y_true)
else:
return(self._y_true.map(func))
def y_pred(self, func=None):
if func is None:
return(self._y_pred)
else:
return(self._y_pred.map(func))
@property
def title(self):
if self.is_binary:
return("Binary confusion matrix")
else:
return("Confusion matrix")
def plot(self, normalized=False, backend='matplotlib',
ax=None, max_colors=10, **kwargs):
df = self.to_dataframe(normalized)
try:
cmap = kwargs['cmap']
except KeyError:
import matplotlib.pyplot as plt
cmap = plt.cm.gray_r
title = self.title
if normalized:
title += " (normalized)"
if backend == 'matplotlib':
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(9, 8))
plt.imshow(df, cmap=cmap, interpolation='nearest')
ax.set_title(title)
tick_marks_col = np.arange(len(df.columns))
tick_marks_idx = tick_marks_col.copy()
ax.set_yticks(tick_marks_idx)
ax.set_xticks(tick_marks_col)
ax.set_xticklabels(df.columns, rotation=45, ha='right')
ax.set_yticklabels(df.index)
ax.set_ylabel(df.index.name)
ax.set_xlabel(df.columns.name)
N_max = self.max()
if N_max > max_colors:
plt.colorbar()
else:
pass
return ax
elif backend == 'seaborn':
import seaborn as sns
ax = sns.heatmap(df, **kwargs)
return ax
else:
msg = "'backend' must be either 'matplotlib' or 'seaborn'"
raise ValueError(msg)
def binarize(self, select):
if not isinstance(select, collections.Iterable):
select = np.array(select)
y_true_bin = self.y_true().map(lambda x: x in select)
y_pred_bin = self.y_pred().map(lambda x: x in select)
from pandas_ml.confusion_matrix.bcm import BinaryConfusionMatrix
binary_cm = BinaryConfusionMatrix(y_true_bin, y_pred_bin)
return(binary_cm)
def enlarge(self, select):
if not isinstance(select, collections.Iterable):
idx_new_cls = pd.Index([select])
else:
idx_new_cls = pd.Index(select)
new_idx = self._df_confusion.index | idx_new_cls
new_idx.name = self.true_name
new_col = self._df_confusion.columns | idx_new_cls
new_col.name = self.pred_name
print(new_col)
self._df_confusion = self._df_confusion.loc[:, new_col]
@property
def stats_overall(self):
df = self._df_confusion
d_stats = collections.OrderedDict()
d_class_agreement = class_agreement(df)
key = 'Accuracy'
try:
d_stats[key] = d_class_agreement['diag']
except KeyError:
d_stats[key] = np.nan
key = '95% CI'
try:
d_stats[key] = binom_interval(np.sum(np.diag(df)), df.sum().sum())
except:
d_stats[key] = np.nan
d_prop_test = prop_test(df)
d_stats['No Information Rate'] = 'ToDo'
d_stats['P-Value [Acc > NIR]'] = d_prop_test['p.value']
d_stats['Kappa'] = d_class_agreement['kappa']
d_stats['Mcnemar\'s Test P-Value'] = 'ToDo'
return(d_stats)
@property
def stats_class(self):
df = pd.DataFrame(columns=self.classes)
for cls in self.classes:
binary_cm = self.binarize(cls)
binary_cm_stats = binary_cm.stats()
for key, value in binary_cm_stats.items():
df.loc[key, cls] = value
d_name = {
'population': 'Population',
'P': 'P: Condition positive',
'N': 'N: Condition negative',
'PositiveTest': 'Test outcome positive',
'NegativeTest': 'Test outcome negative',
'TP': 'TP: True Positive',
'TN': 'TN: True Negative',
'FP': 'FP: False Positive',
'FN': 'FN: False Negative',
'TPR': 'TPR: (Sensitivity, hit rate, recall)',
'TNR': 'TNR=SPC: (Specificity)',
'PPV': 'PPV: Pos Pred Value (Precision)',
'NPV': 'NPV: Neg Pred Value',
'prevalence': 'Prevalence',
'FPR': 'FPR: False-out',
'FDR': 'FDR: False Discovery Rate',
'FNR': 'FNR: Miss Rate',
'ACC': 'ACC: Accuracy',
'F1_score': 'F1 score',
'MCC': 'MCC: Matthews correlation coefficient',
'informedness': 'Informedness',
'markedness': 'Markedness',
'LRP': 'LR+: Positive likelihood ratio',
'LRN': 'LR-: Negative likelihood ratio',
'DOR': 'DOR: Diagnostic odds ratio',
'FOR': 'FOR: False omission rate',
}
df.index = df.index.map(lambda id: self._name_from_dict(id, d_name))
return(df)
def stats(self, lst_stats=None):
d_stats = collections.OrderedDict()
d_stats['cm'] = self
d_stats['overall'] = self.stats_overall
d_stats['class'] = self.stats_class
return(d_stats)
def _name_from_dict(self, key, d_name):
try:
return(d_name[key])
except (KeyError, TypeError):
return(key)
def _str_dict(self, d, line_feed_key_val='\n',
line_feed_stats='\n\n', d_name=None):
s = ""
for i, (key, val) in enumerate(d.items()):
name = self._name_from_dict(key, d_name)
if i != 0:
s = s + line_feed_stats
s = s + "%s:%s%s" % (name, line_feed_key_val, val)
return(s)
def _str_stats(self, lst_stats=None):
d_stats_name = {
"cm": "Confusion Matrix",
"overall": "Overall Statistics",
"class": "Class Statistics",
}
stats = self.stats(lst_stats)
d_stats_str = collections.OrderedDict([
("cm", str(stats['cm'])),
("overall", self._str_dict(
stats['overall'],
line_feed_key_val=' ', line_feed_stats='\n')),
("class", str(stats['class'])),
])
s = self._str_dict(
d_stats_str, line_feed_key_val='\n\n',
line_feed_stats='\n\n\n', d_name=d_stats_name)
return(s)
def print_stats(self, lst_stats=None):
print(self._str_stats(lst_stats))
def get(self, actual=None, predicted=None):
if actual is None:
actual = predicted
if predicted is None:
predicted = actual
return(self.to_dataframe().loc[actual, predicted])
|
BSD 3-Clause New or Revised License
|
richardaecn/class-balanced-loss
|
tpu/models/official/retinanet/retinanet_architecture.py
|
resnet_v1_generator
|
python
|
def resnet_v1_generator(block_fn, layers, data_format='channels_last'):
def model(inputs, is_training_bn=False):
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=64,
kernel_size=7,
strides=2,
data_format=data_format)
inputs = tf.identity(inputs, 'initial_conv')
inputs = batch_norm_relu(inputs, is_training_bn, data_format=data_format)
inputs = tf.layers.max_pooling2d(
inputs=inputs,
pool_size=3,
strides=2,
padding='SAME',
data_format=data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
c2 = block_group(
inputs=inputs,
filters=64,
blocks=layers[0],
strides=1,
block_fn=block_fn,
is_training_bn=is_training_bn,
name='block_group1',
data_format=data_format)
c3 = block_group(
inputs=c2,
filters=128,
blocks=layers[1],
strides=2,
block_fn=block_fn,
is_training_bn=is_training_bn,
name='block_group2',
data_format=data_format)
c4 = block_group(
inputs=c3,
filters=256,
blocks=layers[2],
strides=2,
block_fn=block_fn,
is_training_bn=is_training_bn,
name='block_group3',
data_format=data_format)
c5 = block_group(
inputs=c4,
filters=512,
blocks=layers[3],
strides=2,
block_fn=block_fn,
is_training_bn=is_training_bn,
name='block_group4',
data_format=data_format)
return c2, c3, c4, c5
return model
|
Generator of ResNet v1 model with classification layers removed.
Our actual ResNet network. We return the output of c2, c3,c4,c5
N.B. batch norm is always run with trained parameters, as we use very small
batches when training the object layers.
Args:
block_fn: `function` for the block to use within the model. Either
`residual_block` or `bottleneck_block`.
layers: list of 4 `int`s denoting the number of blocks to include in each
of the 4 block groups. Each group consists of blocks that take inputs of
the same resolution.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
Model `function` that takes in `inputs` and `is_training` and returns the
output `Tensor` of the ResNet model.
|
https://github.com/richardaecn/class-balanced-loss/blob/1d7857208a2abc03d84e35a9d5383af8225d4b4d/tpu/models/official/retinanet/retinanet_architecture.py#L321-L398
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
_WEIGHT_DECAY = 1e-4
_BATCH_NORM_DECAY = 0.997
_BATCH_NORM_EPSILON = 1e-4
_RESNET_MAX_LEVEL = 5
def batch_norm_relu(inputs,
is_training_bn,
relu=True,
init_zero=False,
data_format='channels_last',
name=None):
if init_zero:
gamma_initializer = tf.zeros_initializer()
else:
gamma_initializer = tf.ones_initializer()
if data_format == 'channels_first':
axis = 1
else:
axis = 3
inputs = tf.layers.batch_normalization(
inputs=inputs,
axis=axis,
momentum=_BATCH_NORM_DECAY,
epsilon=_BATCH_NORM_EPSILON,
center=True,
scale=True,
training=is_training_bn,
fused=True,
gamma_initializer=gamma_initializer,
name=name)
if relu:
inputs = tf.nn.relu(inputs)
return inputs
def fixed_padding(inputs, kernel_size, data_format='channels_last'):
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(
inputs, [[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]])
else:
padded_inputs = tf.pad(
inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
return padded_inputs
def conv2d_fixed_padding(inputs,
filters,
kernel_size,
strides,
data_format='channels_last'):
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format=data_format)
return tf.layers.conv2d(
inputs=inputs,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=('SAME' if strides == 1 else 'VALID'),
use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(),
data_format=data_format)
def residual_block(inputs,
filters,
is_training_bn,
strides,
use_projection=False,
data_format='channels_last'):
shortcut = inputs
if use_projection:
shortcut = conv2d_fixed_padding(
inputs=inputs,
filters=filters,
kernel_size=1,
strides=strides,
data_format=data_format)
shortcut = batch_norm_relu(
shortcut, is_training_bn, relu=False, data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=filters,
kernel_size=3,
strides=strides,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training_bn, data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=filters,
kernel_size=3,
strides=1,
data_format=data_format)
inputs = batch_norm_relu(
inputs,
is_training_bn,
relu=False,
init_zero=True,
data_format=data_format)
return tf.nn.relu(inputs + shortcut)
def bottleneck_block(inputs,
filters,
is_training_bn,
strides,
use_projection=False,
data_format='channels_last'):
shortcut = inputs
if use_projection:
filters_out = 4 * filters
shortcut = conv2d_fixed_padding(
inputs=inputs,
filters=filters_out,
kernel_size=1,
strides=strides,
data_format=data_format)
shortcut = batch_norm_relu(
shortcut, is_training_bn, relu=False, data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=filters,
kernel_size=1,
strides=1,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training_bn, data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=filters,
kernel_size=3,
strides=strides,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training_bn, data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=4 * filters,
kernel_size=1,
strides=1,
data_format=data_format)
inputs = batch_norm_relu(
inputs,
is_training_bn,
relu=False,
init_zero=True,
data_format=data_format)
return tf.nn.relu(inputs + shortcut)
def block_group(inputs,
filters,
block_fn,
blocks,
strides,
is_training_bn,
name,
data_format='channels_last'):
inputs = block_fn(
inputs,
filters,
is_training_bn,
strides,
use_projection=True,
data_format=data_format)
for _ in range(1, blocks):
inputs = block_fn(
inputs, filters, is_training_bn, 1, data_format=data_format)
return tf.identity(inputs, name)
|
MIT License
|
metatab/geoid
|
geoid/core.py
|
CountyName.medium_name
|
python
|
def medium_name(self):
return self.state_name_re.sub('', self.name)
|
The census name without the state
|
https://github.com/metatab/geoid/blob/7f91dee11f2131381bb57628a55587f5c10f8e6b/geoid/core.py#L479-L481
|
import inspect
import re
import sys
import six
names = {
'null': 1,
'us': 10,
'region': 20,
'division': 30,
'state': 40,
'county': 50,
'cosub': 60,
'place': 160,
'ua': 400,
'tract': 140,
'blockgroup': 150,
'block': 101,
'puma': 795,
'sdelm': 950,
'sdsec': 960,
'sduni': 970,
'zcta': 860,
'zip': 1200,
'sldl': 620,
'sldu': 610,
'cdcurr': 500,
'state_aianhh': 260,
'necta_nectadiv_state_county_cousub': 358,
'state_aianhh_place': 269,
'aianhh_state_county': 270,
'state_cbsa_metdiv': 323,
'state_aianhh280': 280,
'state_place_county': 155,
'aianhh_aitsce_state': 290,
'state_aianhh_aihhtli': 283,
'state_cdcurr_aianhh': 550,
'state_concit': 170,
'state_concit_place': 172,
'state_aianhh_aihhtli286': 286,
'cbsa': 310,
'cbsa_state': 311,
'cbsa_state_place': 312,
'cbsa_state_county': 313,
'cbsa_metdiv': 314,
'cbsa_metdiv_state': 315,
'state_cbsa': 320,
'state_cbsa_place': 321,
'state_cbsa_county': 322,
'state_county_cousub_submcd': 67,
'state_cbsa_metdiv_county': 324,
'state_county_cousub_place': 70,
'necta_state_county': 353,
'csa': 330,
'csa_state': 331,
'csa_cbsa': 332,
'csa_cbsa_state': 333,
'cnecta': 335,
'state_county_cousub_place_tract': 80,
'cnecta_necta': 337,
'cnecta_necta_state': 338,
'state_csa': 340,
'state_csa_cbsa': 341,
'state_cnecta': 345,
'state_cnecta_necta': 346,
'necta': 350,
'necta_state': 351,
'necta_state_place': 352,
'cnecta_state': 336,
'necta_state_county_cousub': 354,
'necta_nectadiv': 355,
'necta_nectadiv_state': 356,
'state_anrc': 230,
'necta_nectadiv_state_county': 357,
'state_necta': 360,
'cbsa_metdiv_state_county': 316,
'state_necta_county': 362,
'state_necta_county_cousub': 363,
'state_necta_nectadiv': 364,
'state_necta_nectadiv_county': 365,
'state_necta_nectadiv_county_cousub': 366,
'ua_state': 410,
'ua_state_county': 430,
'state_sldu_county': 612,
'state_sldu': 610,
'state_sldl_county': 622,
'state_sldl': 620,
'state_cdcurr_county': 510,
'state_necta_place': 361,
'aianhh': 250,
'aianhh_aitsce': 251,
'aianhh_aihhtli': 252,
'state_sldl_county': 622,
'aianhh_aihhtli254': 254
}
lengths = {
'null': 1,
'aianhh': 4,
'aihhtli': '1',
'aitsce': 3,
'anrc': 5,
'blkgrp': 1,
'blockgroup': 1,
'block': 4,
'cbsa': 5,
'cdcurr': 2,
'cnecta': 3,
'concit': 5,
'county': 3,
'cousub': 5,
'cosub': 5,
'csa': 3,
'division': 1,
'metdiv': 5,
'necta': 5,
'nectadiv': 5,
'place': 5,
'puma5': 5,
'region': 1,
'sdelm': 5,
'sdsec': 5,
'sduni': 5,
'sldl': '3',
'sldu': '3',
'state': 2,
'submcd': 5,
'tract': 6,
'ua': 5,
'ur': 1,
'us': 0,
'zcta': 5,
'zip': 5,
}
segments = {
1: ['null'],
10: ['us'],
20: ['region'],
30: ['division'],
40: ['state'],
50: ['state', 'county'],
60: ['state', 'county', 'cousub'],
67: ['state', 'county', 'cousub', 'submcd'],
70: ['state', 'county', 'cousub', 'place'],
80: ['state', 'county', 'cousub', 'place', 'tract'],
101: ['state', 'county', 'tract', 'block'],
140: ['state', 'county', 'tract'],
150: ['state', 'county', 'tract', 'blockgroup'],
155: ['state', 'place', 'county'],
160: ['state', 'place'],
170: ['state', 'concit'],
172: ['state', 'concit', 'place'],
230: ['state', 'anrc'],
250: ['aianhh'],
251: ['aianhh', 'aitsce'],
252: ['aianhh', 'aihhtli'],
254: ['aianhh', 'aihhtli'],
260: ['state', 'aianhh'],
269: ['state', 'aianhh', 'place'],
270: ['aianhh', 'state', 'county'],
280: ['state', 'aianhh'],
283: ['state', 'aianhh', 'aihhtli'],
286: ['state', 'aianhh', 'aihhtli'],
290: ['aianhh', 'aitsce', 'state'],
310: ['cbsa'],
311: ['cbsa', 'state'],
312: ['cbsa', 'state', 'place'],
313: ['cbsa', 'state', 'county'],
314: ['cbsa', 'metdiv'],
315: ['cbsa', 'metdiv', 'state'],
316: ['cbsa', 'metdiv', 'state', 'county'],
320: ['state', 'cbsa'],
321: ['state', 'cbsa', 'place'],
322: ['state', 'cbsa', 'county'],
323: ['state', 'cbsa', 'metdiv'],
324: ['state', 'cbsa', 'metdiv', 'county'],
330: ['csa'],
331: ['csa', 'state'],
332: ['csa', 'cbsa'],
333: ['csa', 'cbsa', 'state'],
335: ['cnecta'],
336: ['cnecta', 'state'],
337: ['cnecta', 'necta'],
338: ['cnecta', 'necta', 'state'],
340: ['state', 'csa'],
341: ['state', 'csa', 'cbsa'],
345: ['state', 'cnecta'],
346: ['state', 'cnecta', 'necta'],
350: ['necta'],
351: ['necta', 'state'],
352: ['necta', 'state', 'place'],
353: ['necta', 'state', 'county'],
354: ['necta', 'state', 'county', 'cousub'],
355: ['necta', 'nectadiv'],
356: ['necta', 'nectadiv', 'state'],
357: ['necta', 'nectadiv', 'state', 'county'],
358: ['necta', 'nectadiv', 'state', 'county', 'cousub'],
360: ['state', 'necta'],
361: ['state', 'necta', 'place'],
362: ['state', 'necta', 'county'],
363: ['state', 'necta', 'county', 'cousub'],
364: ['state', 'necta', 'nectadiv'],
365: ['state', 'necta', 'nectadiv', 'county'],
366: ['state', 'necta', 'nectadiv', 'county', 'cousub'],
400: ['ua'],
410: ['ua', 'state'],
430: ['ua','state','county'],
500: ['state', 'cdcurr'],
510: ['state', 'cdcurr', 'county'],
550: ['state', 'cdcurr', 'aianhh'],
610: ['state', 'sldu'],
612: ['state', 'sldu', 'county'],
620: ['state', 'sldl'],
622: ['state', 'sldl', 'county'],
795: ['state', 'puma5'],
860: ['zcta'],
950: ['state', 'sdelm'],
960: ['state', 'sdsec'],
970: ['state', 'sduni'],
1200: ['zip']
}
descriptions = {
1: 'United States',
10: 'United States',
20: 'Region',
30: 'Division',
40: 'State',
50: 'County',
60: 'County Subdivision',
67: 'State (Puerto Rico Only)-County-County Subdivision-Subbarrio',
70: 'County Subdivision-Place/Remainder',
80: 'County Subdivision-Place/Remainder-Census Tract',
101: 'block',
140: 'Census Tract',
150: 'Census Tract-Block Group',
155: 'Place-County',
160: 'Place',
170: 'Consolidated City',
172: 'Consolidated City-Place Within Consolidated City',
230: 'State-Alaska Native Regional Corporation',
250: 'American Indian Area/Alaska Native Area/Hawaiian Home Land',
251: 'American Indian Area/Alaska NativeArea/HawaiianHomeLand-Tribal Subdivision/Remainder',
252: 'American Indian Area/Alaska Native Area (Reservation or Statistical Entity Only)',
254: 'American Indian Area (Off-Reservation Trust Land Only)/Hawaiian Home Land',
260: 'American Indian Area/Alaska Native Area/Hawaiian Home Land-State',
269: 'American Indian Area/Alaska Native Area/Hawaiian Home Land-Place-Remainder',
270: 'American Indian Area/Alaska Native Area/Hawaiian Home Land-State-County',
280: 'State-American Indian Area/Alaska Native Area/Hawaiian Home Land',
283: 'aihhtli',
286: 'aihhtli',
290: 'state',
310: 'CBSA',
311: 'CBSA-State-County',
312: 'CBSA-State-Principal City',
313: 'CBSA-State-County',
314: 'Metropolitan Statistical Area/Metropolitan Division',
315: 'Metropolitan Statistical Area/Metropolitan Division-State',
316: 'Metropolitan Statistical Area/Metropolitan Division-State-County',
320: 'State- CBSA',
321: 'State- CBSA -Principal City',
322: 'State- CBSA -County',
323: 'State- Metropolitan Statistical Area/Metropolitan Division',
324: 'State- Metropolitan Statistical Area/Metropolitan Division-County',
330: 'Combined Statistical Area',
331: 'Combined Statistical Area-State',
332: 'Combined Statistical Area-CBSA',
333: 'Combined Statistical Area-CBSA-State',
335: 'Combined New England City and Town Area',
336: 'Combined New England City and Town Area -State',
337: 'Combined New England City and Town Area -New England City and Town Area',
338: 'Combined New England City and Town Area -New England City and Town Area-State',
340: 'State-Combined Statistical Area',
341: 'State-Combined Statistical Area-CBSA',
345: 'State-Combined New England City and Town Area',
346: 'State-Combined New England City and Town Area-New England City and Town Area',
350: 'New England City and Town Area',
351: 'New England City and Town Area-State',
352: 'New England City and Town Area-State-Principal City',
353: 'New England City and Town Area-State-County',
354: 'New England City and Town Area-State-County-County Subdivision',
355: 'New England City and Town Area (NECTA)-NECTA Division',
356: 'New England City and Town Area (NECTA)-NECTA Division-State',
357: 'New England City and Town Area (NECTA)-NECTA Division-State-County',
358: 'New England City and Town Area (NECTA)-NECTA Division-State-County-County Subdivision',
360: 'State-New England City and Town Area',
361: 'State-New England City and Town Area-Principal City',
362: 'State-New England City and Town Area-County',
363: 'State-New England City and Town Area-County-County Subdivision',
364: 'State-New England City and Town Area (NECTA)-NECTA Division',
365: 'State-New England City and Town Area (NECTA)-NECTA Division-County-County Subdivision',
400: 'Urban Area,',
410: 'Urban Area, State,',
430: 'Urban Area, State, County,',
500: 'Congressional District',
510: 'Congressional District, County',
550: 'Congressional District-American IndianArea/Alaska NativeArea/Hawaiian Home Land',
610: 'State Senate District',
612: 'State Senate District-County',
620: 'State House District',
622: 'State House District-County',
795: 'State-Public Use MicroSample Area 5%',
860: 'ZIP Code Tabulation Area',
950: 'State-Elementary School District',
960: 'State-High School District',
970: 'State-Unified School District',
}
plurals = {
'county': 'counties',
'place': 'places',
'Sdlu': 'State '
}
class NotASummaryName(Exception):
class ParseError(Exception):
def parse_to_gvid(v):
from geoid.civick import GVid
from geoid.acs import AcsGeoid
m1 = ''
try:
return GVid.parse(v)
except ValueError as e:
m1 = str(e)
try:
return AcsGeoid.parse(v).convert(GVid)
except ValueError as e:
raise ValueError("Failed to parse to either ACS or GVid: {}; {}".format(m1, str(e)))
def base62_encode(num):
num = int(num)
alphabet = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
if (num == 0):
return alphabet[0]
arr = []
base = len(alphabet)
while num:
rem = num % base
num = num // base
arr.append(alphabet[rem])
arr.reverse()
return ''.join(arr)
def base62_decode(string):
alphabet = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
base = len(alphabet)
strlen = len(string)
num = 0
idx = 0
for char in string:
power = (strlen - (idx + 1))
num += alphabet.index(char) * (base ** power)
idx += 1
return int(num)
def augment(module_name, base_class):
for name, cls in inspect.getmembers(sys.modules[module_name],
lambda x : inspect.isclass(x) and issubclass(x, base_class) ):
if cls == base_class:
continue
cls.augment()
def get_class(module, sl):
for name, named_sl in names.items():
if named_sl == sl or sl == name:
return getattr(module, name.capitalize())
raise NotASummaryName("No class for summary_level {}".format(sl))
def make_classes(base_class, module):
from functools import partial
for k in names:
cls = base_class.class_factory(k.capitalize())
cls.augment()
setattr(module, k.capitalize(), cls)
setattr(module, 'get_class', partial(get_class, module))
class CountyName(object):
state_name_pattern = r', (.*)$'
state_name_re = re.compile(state_name_pattern)
def __init__(self, name):
self.name = name
def intuit_name(self, name):
raise NotImplementedError
@property
def state(self):
try:
county, state = self.name.split(',')
return state
except ValueError:
return ''
@property
|
BSD 2-Clause Simplified License
|
dickreuter/neuron_poker
|
agents/agent_custom_q1.py
|
Player.initiate_agent
|
python
|
def initiate_agent(self, nb_actions):
self.model = Sequential()
self.model.add(Dense(512, activation='relu', input_shape=env.observation_space))
self.model.add(Dropout(0.2))
self.model.add(Dense(512, activation='relu'))
self.model.add(Dropout(0.2))
self.model.add(Dense(512, activation='relu'))
self.model.add(Dropout(0.2))
self.model.add(Dense(nb_actions, activation='linear'))
memory = SequentialMemory(limit=memory_limit, window_length=window_length)
policy = TrumpPolicy()
|
initiate a deep Q agent
|
https://github.com/dickreuter/neuron_poker/blob/9f841e5aeead681fa1fb2955524c53081fba2078/agents/agent_custom_q1.py#L23-L38
|
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from rl.memory import SequentialMemory
from agents.agent_keras_rl_dqn import TrumpPolicy, memory_limit, window_length
from gym_env import env
class Player:
def __init__(self, name='Custom_Q1'):
self.equity_alive = 0
self.actions = []
self.last_action_in_stage = ''
self.temp_stack = []
self.name = name
self.autoplay = True
self.model = None
|
MIT License
|
uzaymacar/attention-mechanisms
|
examples/machine_translation.py
|
unicode_to_ascii
|
python
|
def unicode_to_ascii(string):
return ''.join(char for char in unicodedata.normalize('NFD', string)
if unicodedata.category(char) != 'Mn')
|
Function to convert the string from unicode file to ascii format
|
https://github.com/uzaymacar/attention-mechanisms/blob/37f131dee1148cd1dec8b59116efe8e52134004f/examples/machine_translation.py#L71-L74
|
import argparse
import time
import os
import unicodedata
import re
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.utils import get_file, to_categorical
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Embedding, Bidirectional, Dense, RepeatVector, TimeDistributed, Flatten, Lambda, Concatenate, Permute, Reshape
from tensorflow.compat.v1.keras.layers import CuDNNLSTM
from tensorflow.keras.backend import permute_dimensions
import sys
sys.path.append('..')
from layers import Attention
parser = argparse.ArgumentParser()
parser.add_argument("--config",
default=0,
help="Integer value representing a model configuration")
args = parser.parse_args()
np.random.seed(500)
tf.random.set_seed(500)
embedding_dim = 128
batch_size = 100
num_epochs = 30
config = int(args.config)
zipped = get_file(
fname='spa-eng.zip',
origin='http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip',
extract=True
)
file = os.path.join(os.path.dirname(zipped), 'spa-eng/spa.txt')
|
MIT License
|
hypothesis/h
|
h/emails/signup.py
|
generate
|
python
|
def generate(request, user_id, email, activation_code):
context = {
"activate_link": request.route_url("activate", id=user_id, code=activation_code)
}
subject = _("Please activate your account")
text = render("h:templates/emails/signup.txt.jinja2", context, request=request)
html = render("h:templates/emails/signup.html.jinja2", context, request=request)
return [email], subject, text, html
|
Generate an email for a user signup.
:param request: the current request
:type request: pyramid.request.Request
:param user_id: the new user's primary key ID
:type user_id: int
:param email: the new user's email address
:type email: text
:param activation_code: the activation code
:type activation_code: text
:returns: a 4-element tuple containing: recipients, subject, text, html
|
https://github.com/hypothesis/h/blob/1bf1fe34fd471f26a216e682d15ce986dd400fdb/h/emails/signup.py#L6-L30
|
from pyramid.renderers import render
from h.i18n import TranslationString as _
|
BSD 2-Clause Simplified License
|
ryanbhayward/games-puzzles-algorithms
|
old/tournament/tournament.py
|
Tournament._play_round
|
python
|
def _play_round(self, first_to_play):
self._initialize_round()
player_index = first_to_play
player_mapping = {}
while not self._round_finished():
player = self._players[player_index]
if player not in player_mapping.values():
player_mapping[player.player_to_move()] = player
move = player.play()
self._logger.debug('{} plays {}\n{}'.format(player, move,
player.board()))
if move == 'resign':
self._player_has_resigned = True
elif move == 'pass':
self._consecutive_passes += 1
else:
self._consecutive_passes = 0
self._notify_players(move, player_index)
player_index = self._next_player(player_index)
if self._player_has_resigned:
winner = player.player_to_move()
else:
(winner, score) = player.final_score()
if winner == '0':
self._logger.debug('Round ends in a draw.')
self._results.increment_win_count('', winner)
else:
winning_player = player_mapping[winner]
self._logger.debug('{} wins round {} as {}'.format(winning_player,
self._round,
winner))
self._results.increment_win_count(winning_player, winner)
self._round += 1
|
Play a single round of a tournament.
|
https://github.com/ryanbhayward/games-puzzles-algorithms/blob/53b12cf37324f8757024cec5839e8cb2625cc4e2/old/tournament/tournament.py#L86-L129
|
from collections import defaultdict
class TournamentResult(object):
def __init__(self):
self._sequence = []
self._results = defaultdict(int)
self._draws = 0
def increment_win_count(self, player, side):
if side == '0':
self._sequence.append(('Draw', '0'))
self._draws += 1
else:
self._sequence.append((player, side))
self._results[player] += 1
def __str__(self):
outcomes = []
for (player, games) in self._results.items():
outcomes.append('{} won {} games.'.format(player, games))
if self._draws > 0:
outcomes.append('{} draws occurred.'.format(self._draws))
return '\n'.join(outcomes)
class Tournament(object):
def __init__(self, players, num_games, game_size, time_limit, logger):
self._logger = logger
self._results = TournamentResult()
self._round = 1
self._players = players
self._games = num_games
self._size = game_size
self._time_limit = time_limit
self._configure_players()
def _configure_players(self):
for player in self._players:
player.configure(size=self._size, time_limit=self._time_limit)
def _initialize_round(self):
self._player_has_resigned = False
self._consecutive_passes = 0
for player in self._players:
player.clear()
def _round_finished(self):
return self._player_has_resigned or self._consecutive_passes > 1
def _notify_players(self, move, skip_index):
for (i, player) in enumerate(self._players):
if i == skip_index:
continue
player.play(move)
def _next_player(self, player_index):
num_players = len(self._players)
return (player_index + 1) % num_players
|
MIT License
|
fatescript/centernet-better
|
dl_lib/evaluation/coco_evaluation.py
|
COCOEvaluator._eval_predictions
|
python
|
def _eval_predictions(self, tasks):
self._logger.info("Preparing results for COCO format ...")
self._coco_results = list(itertools.chain(*[x["instances"] for x in self._predictions]))
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
reverse_id_mapping = {
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
}
for result in self._coco_results:
category_id = result["category_id"]
assert (
category_id in reverse_id_mapping
), "A prediction has category_id={}, which is not available in the dataset.".format(
category_id
)
result["category_id"] = reverse_id_mapping[category_id]
if self._output_dir:
file_path = os.path.join(self._output_dir, "coco_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(self._coco_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info("Evaluating predictions ...")
for task in sorted(tasks):
coco_eval = (
_evaluate_predictions_on_coco(
self._coco_api, self._coco_results, task, kpt_oks_sigmas=self._kpt_oks_sigmas
)
if len(self._coco_results) > 0
else None
)
res = self._derive_coco_results(
coco_eval, task, class_names=self._metadata.get("thing_classes")
)
self._results[task] = res
|
Evaluate self._predictions on the given tasks.
Fill self._results with the metrics of the tasks.
|
https://github.com/fatescript/centernet-better/blob/972dbf2882375d54ec0e06ada21f39baaa997f0c/dl_lib/evaluation/coco_evaluation.py#L143-L189
|
import contextlib
import copy
import io
import itertools
import json
import logging
import os
import pickle
import sys
from collections import OrderedDict
import numpy as np
import pycocotools.mask as mask_util
import torch
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import dl_lib.utils.comm as comm
from dl_lib.data import MetadataCatalog
from dl_lib.data.datasets.coco import convert_to_coco_json
from dl_lib.structures import Boxes, BoxMode, pairwise_iou
from dl_lib.utils.file_io import PathManager
from dl_lib.utils.logger import create_small_table, create_table_with_header
from .evaluator import DatasetEvaluator
class COCOEvaluator(DatasetEvaluator):
def __init__(self, dataset_name, cfg, distributed, output_dir=None, dump=False):
self._dump = dump
self._tasks = self._tasks_from_config(cfg)
self._distributed = distributed
self._output_dir = output_dir
self._cpu_device = torch.device("cpu")
self._logger = logging.getLogger(__name__)
self._metadata = MetadataCatalog.get(dataset_name)
if not hasattr(self._metadata, "json_file"):
self._logger.warning(f"json_file was not found in MetaDataCatalog for '{dataset_name}'")
cache_path = convert_to_coco_json(dataset_name, output_dir)
self._metadata.json_file = cache_path
json_file = PathManager.get_local_path(self._metadata.json_file)
with contextlib.redirect_stdout(io.StringIO()):
self._coco_api = COCO(json_file)
self._kpt_oks_sigmas = cfg.TEST.KEYPOINT_OKS_SIGMAS
self._do_evaluation = "annotations" in self._coco_api.dataset
def reset(self):
self._predictions = []
self._coco_results = []
def _tasks_from_config(self, cfg):
if self._dump:
with open("README.md", "w") as f:
name = cfg.OUTPUT_DIR.split("/")[-1]
f.write("# {} \n".format(name))
tasks = ("bbox",)
if cfg.MODEL.MASK_ON:
tasks = tasks + ("segm",)
if cfg.MODEL.KEYPOINT_ON:
tasks = tasks + ("keypoints",)
return tasks
def process(self, inputs, outputs):
for input, output in zip(inputs, outputs):
prediction = {"image_id": input["image_id"]}
if "instances" in output:
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
if "proposals" in output:
prediction["proposals"] = output["proposals"].to(self._cpu_device)
self._predictions.append(prediction)
def evaluate(self):
if self._distributed:
comm.synchronize()
self._predictions = comm.gather(self._predictions, dst=0)
self._predictions = list(itertools.chain(*self._predictions))
if not comm.is_main_process():
return {}
if len(self._predictions) == 0:
self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
return {}
if self._output_dir:
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "instances_predictions.pth")
with PathManager.open(file_path, "wb") as f:
torch.save(self._predictions, f)
self._results = OrderedDict()
if "proposals" in self._predictions[0]:
self._eval_box_proposals()
if "instances" in self._predictions[0]:
self._eval_predictions(set(self._tasks))
return copy.deepcopy(self._results)
|
Apache License 2.0
|
ip2location/ip2proxy-python
|
IP2Proxy.py
|
IP2Proxy.open
|
python
|
def open(self, filename):
self.close()
if os.path.isfile(filename) == False:
raise ValueError("The database file does not seem to exist.")
self._f = open(filename, 'rb')
self._dbtype = struct.unpack('B', self._f.read(1))[0]
self._dbcolumn = struct.unpack('B', self._f.read(1))[0]
self._dbyear = 2000 + struct.unpack('B', self._f.read(1))[0]
self._dbmonth = struct.unpack('B', self._f.read(1))[0]
self._dbday = struct.unpack('B', self._f.read(1))[0]
self._ipv4dbcount = struct.unpack('<I', self._f.read(4))[0]
self._ipv4dbaddr = struct.unpack('<I', self._f.read(4))[0]
self._ipv6dbcount = struct.unpack('<I', self._f.read(4))[0]
self._ipv6dbaddr = struct.unpack('<I', self._f.read(4))[0]
self._ipv4indexbaseaddr = struct.unpack('<I', self._f.read(4))[0]
self._ipv6indexbaseaddr = struct.unpack('<I', self._f.read(4))[0]
self._productcode = struct.unpack('B', self._f.read(1))[0]
self._licensecode = struct.unpack('B', self._f.read(1))[0]
self._databasesize = struct.unpack('B', self._f.read(1))[0]
if (self._productcode != 2) :
if (self._dbyear > 20 and self._productcode != 0) :
self._f.close()
del self._f
raise ValueError("Incorrect IP2Location BIN file format. Please make sure that you are using the latest IP2Location BIN file.")
|
Opens a database file
|
https://github.com/ip2location/ip2proxy-python/blob/31e88100875d610a945fe8abdc1e026540f8f235/IP2Proxy.py#L148-L176
|
import sys
import struct
import socket
import ipaddress
import os
import json
import re
if sys.version < '3':
import urllib, httplib
def urlencode(x):
return urllib.urlencode(x)
def httprequest(x, usessl):
try:
if (usessl is True):
conn = httplib.HTTPSConnection("api.ip2proxy.com")
else:
conn = httplib.HTTPConnection("api.ip2proxy.com")
conn.request("GET", "/?" + x)
res = conn.getresponse()
return json.loads(res.read())
except:
return None
def u(x):
return x.decode('utf-8')
def b(x):
return str(x)
else:
import urllib.parse, http.client
def urlencode(x):
return urllib.parse.urlencode(x)
def httprequest(x, usessl):
try:
if (usessl is True):
conn = http.client.HTTPSConnection("api.ip2proxy.com")
else:
conn = http.client.HTTPConnection("api.ip2proxy.com")
conn.request("GET", "/?" + x)
res = conn.getresponse()
return json.loads(res.read())
except:
return None
def u(x):
if isinstance(x, bytes):
return x.decode()
return x
def b(x):
if isinstance(x, bytes):
return x
return x.encode('ascii')
if not hasattr(socket, 'inet_pton'):
def inet_pton(t, addr):
import ctypes
a = ctypes.WinDLL('ws2_32.dll')
in_addr_p = ctypes.create_string_buffer(b(addr))
if t == socket.AF_INET:
out_addr_p = ctypes.create_string_buffer(4)
elif t == socket.AF_INET6:
out_addr_p = ctypes.create_string_buffer(16)
n = a.inet_pton(t, in_addr_p, out_addr_p)
if n == 0:
raise ValueError('Invalid address')
return out_addr_p.raw
socket.inet_pton = inet_pton
_VERSION = '3.3.0'
_NO_IP = 'MISSING IP ADDRESS'
_FIELD_NOT_SUPPORTED = 'NOT SUPPORTED'
_INVALID_IP_ADDRESS = 'INVALID IP ADDRESS'
MAX_IPV4_RANGE = 4294967295
MAX_IPV6_RANGE = 340282366920938463463374607431768211455
class IP2ProxyRecord:
ip = None
country_short = _FIELD_NOT_SUPPORTED
country_long = _FIELD_NOT_SUPPORTED
region = _FIELD_NOT_SUPPORTED
city = _FIELD_NOT_SUPPORTED
isp = _FIELD_NOT_SUPPORTED
proxy_type = _FIELD_NOT_SUPPORTED
usage_type = _FIELD_NOT_SUPPORTED
as_name = _FIELD_NOT_SUPPORTED
asn = _FIELD_NOT_SUPPORTED
last_seen = _FIELD_NOT_SUPPORTED
domain = _FIELD_NOT_SUPPORTED
threat = _FIELD_NOT_SUPPORTED
provider = _FIELD_NOT_SUPPORTED
def __str__(self):
return str(self.__dict__)
def __repr__(self):
return repr(self.__dict__)
_COUNTRY_POSITION = (0, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)
_REGION_POSITION = (0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4)
_CITY_POSITION = (0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5)
_ISP_POSITION = (0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6)
_PROXYTYPE_POSITION = (0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
_DOMAIN_POSITION = (0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 7)
_USAGETYPE_POSITION = (0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8)
_ASN_POSITION = (0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9)
_AS_POSITION = (0, 0, 0, 0, 0, 0, 0, 10, 10, 10, 10, 10)
_LASTSEEN_POSITION = (0, 0, 0, 0, 0, 0, 0, 0, 11, 11, 11, 11)
_THREAT_POSITION = (0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 12)
_PROVIDER_POSITION = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13)
class IP2Proxy(object):
def __init__(self, filename=None):
if filename:
self.open(filename)
def __enter__(self):
if not hasattr(self, '_f') or self._f.closed:
raise ValueError("Cannot enter context with closed file")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.