repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
etiennemd/alexa-ecovacs
|
Deploy/_pytest/assertion/rewrite.py
|
_format_assertmsg
|
python
|
def _format_assertmsg(obj):
if isinstance(obj, six.text_type) or isinstance(obj, six.binary_type):
s = obj
is_repr = False
else:
s = py.io.saferepr(obj)
is_repr = True
if isinstance(s, six.text_type):
t = six.text_type
else:
t = six.binary_type
s = s.replace(t("\n"), t("\n~")).replace(t("%"), t("%%"))
if is_repr:
s = s.replace(t("\\n"), t("\n~"))
return s
|
Format the custom assertion message given.
For strings this simply replaces newlines with '\n~' so that
util.format_explanation() will preserve them instead of escaping
newlines. For other objects py.io.saferepr() is used first.
|
https://github.com/etiennemd/alexa-ecovacs/blob/d0ee083c3d0728ebbfda3f41ae84979c6aad36d7/Deploy/_pytest/assertion/rewrite.py#L415-L440
|
from __future__ import absolute_import, division, print_function
import ast
import errno
import itertools
import imp
import marshal
import os
import re
import six
import struct
import sys
import types
import py
from _pytest.assertion import util
if hasattr(imp, "get_tag"):
PYTEST_TAG = imp.get_tag() + "-PYTEST"
else:
if hasattr(sys, "pypy_version_info"):
impl = "pypy"
elif sys.platform == "java":
impl = "jython"
else:
impl = "cpython"
ver = sys.version_info
PYTEST_TAG = "%s-%s%s-PYTEST" % (impl, ver[0], ver[1])
del ver, impl
PYC_EXT = ".py" + (__debug__ and "c" or "o")
PYC_TAIL = "." + PYTEST_TAG + PYC_EXT
ASCII_IS_DEFAULT_ENCODING = sys.version_info[0] < 3
if sys.version_info >= (3, 5):
ast_Call = ast.Call
else:
def ast_Call(a, b, c):
return ast.Call(a, b, c, None, None)
class AssertionRewritingHook(object):
def __init__(self, config):
self.config = config
self.fnpats = config.getini("python_files")
self.session = None
self.modules = {}
self._rewritten_names = set()
self._register_with_pkg_resources()
self._must_rewrite = set()
def set_session(self, session):
self.session = session
def find_module(self, name, path=None):
state = self.config._assertstate
state.trace("find_module called for: %s" % name)
names = name.rsplit(".", 1)
lastname = names[-1]
pth = None
if path is not None:
path = list(path)
if len(path) == 1:
pth = path[0]
if pth is None:
try:
fd, fn, desc = imp.find_module(lastname, path)
except ImportError:
return None
if fd is not None:
fd.close()
tp = desc[2]
if tp == imp.PY_COMPILED:
if hasattr(imp, "source_from_cache"):
try:
fn = imp.source_from_cache(fn)
except ValueError:
fn = fn[:-1]
else:
fn = fn[:-1]
elif tp != imp.PY_SOURCE:
return None
else:
fn = os.path.join(pth, name.rpartition(".")[2] + ".py")
fn_pypath = py.path.local(fn)
if not self._should_rewrite(name, fn_pypath, state):
return None
self._rewritten_names.add(name)
write = not sys.dont_write_bytecode
cache_dir = os.path.join(fn_pypath.dirname, "__pycache__")
if write:
try:
os.mkdir(cache_dir)
except OSError:
e = sys.exc_info()[1].errno
if e == errno.EEXIST:
pass
elif e in [errno.ENOENT, errno.ENOTDIR]:
write = False
elif e in [errno.EACCES, errno.EROFS, errno.EPERM]:
state.trace("read only directory: %r" % fn_pypath.dirname)
write = False
else:
raise
cache_name = fn_pypath.basename[:-3] + PYC_TAIL
pyc = os.path.join(cache_dir, cache_name)
co = _read_pyc(fn_pypath, pyc, state.trace)
if co is None:
state.trace("rewriting %r" % (fn,))
source_stat, co = _rewrite_test(self.config, fn_pypath)
if co is None:
return None
if write:
_make_rewritten_pyc(state, source_stat, pyc, co)
else:
state.trace("found cached rewritten pyc for %r" % (fn,))
self.modules[name] = co, pyc
return self
def _should_rewrite(self, name, fn_pypath, state):
fn = str(fn_pypath)
if fn_pypath.basename == 'conftest.py':
state.trace("rewriting conftest file: %r" % (fn,))
return True
if self.session is not None:
if self.session.isinitpath(fn):
state.trace("matched test file (was specified on cmdline): %r" %
(fn,))
return True
for pat in self.fnpats:
if fn_pypath.fnmatch(pat):
state.trace("matched test file %r" % (fn,))
return True
for marked in self._must_rewrite:
if name == marked or name.startswith(marked + '.'):
state.trace("matched marked file %r (from %r)" % (name, marked))
return True
return False
def mark_rewrite(self, *names):
already_imported = (set(names)
.intersection(sys.modules)
.difference(self._rewritten_names))
for name in already_imported:
if not AssertionRewriter.is_rewrite_disabled(
sys.modules[name].__doc__ or ""):
self._warn_already_imported(name)
self._must_rewrite.update(names)
def _warn_already_imported(self, name):
self.config.warn(
'P1',
'Module already imported so cannot be rewritten: %s' % name)
def load_module(self, name):
if name in sys.modules:
return sys.modules[name]
co, pyc = self.modules.pop(name)
mod = sys.modules[name] = imp.new_module(name)
try:
mod.__file__ = co.co_filename
mod.__cached__ = pyc
mod.__loader__ = self
py.builtin.exec_(co, mod.__dict__)
except:
if name in sys.modules:
del sys.modules[name]
raise
return sys.modules[name]
def is_package(self, name):
try:
fd, fn, desc = imp.find_module(name)
except ImportError:
return False
if fd is not None:
fd.close()
tp = desc[2]
return tp == imp.PKG_DIRECTORY
@classmethod
def _register_with_pkg_resources(cls):
try:
import pkg_resources
pkg_resources.__name__
except ImportError:
return
pkg_resources.register_loader_type(cls, pkg_resources.DefaultProvider)
def get_data(self, pathname):
with open(pathname, 'rb') as f:
return f.read()
def _write_pyc(state, co, source_stat, pyc):
try:
fp = open(pyc, "wb")
except IOError:
err = sys.exc_info()[1].errno
state.trace("error writing pyc file at %s: errno=%s" % (pyc, err))
return False
try:
fp.write(imp.get_magic())
mtime = int(source_stat.mtime)
size = source_stat.size & 0xFFFFFFFF
fp.write(struct.pack("<ll", mtime, size))
marshal.dump(co, fp)
finally:
fp.close()
return True
RN = "\r\n".encode("utf-8")
N = "\n".encode("utf-8")
cookie_re = re.compile(r"^[ \t\f]*#.*coding[:=][ \t]*[-\w.]+")
BOM_UTF8 = '\xef\xbb\xbf'
def _rewrite_test(config, fn):
state = config._assertstate
try:
stat = fn.stat()
source = fn.read("rb")
except EnvironmentError:
return None, None
if ASCII_IS_DEFAULT_ENCODING:
end1 = source.find("\n")
end2 = source.find("\n", end1 + 1)
if (not source.startswith(BOM_UTF8) and
cookie_re.match(source[0:end1]) is None and
cookie_re.match(source[end1 + 1:end2]) is None):
if hasattr(state, "_indecode"):
return None, None
state._indecode = True
try:
try:
source.decode("ascii")
except UnicodeDecodeError:
return None, None
finally:
del state._indecode
try:
tree = ast.parse(source)
except SyntaxError:
state.trace("failed to parse: %r" % (fn,))
return None, None
rewrite_asserts(tree, fn, config)
try:
co = compile(tree, fn.strpath, "exec", dont_inherit=True)
except SyntaxError:
state.trace("failed to compile: %r" % (fn,))
return None, None
return stat, co
def _make_rewritten_pyc(state, source_stat, pyc, co):
if sys.platform.startswith("win"):
_write_pyc(state, co, source_stat, pyc)
else:
proc_pyc = pyc + "." + str(os.getpid())
if _write_pyc(state, co, source_stat, proc_pyc):
os.rename(proc_pyc, pyc)
def _read_pyc(source, pyc, trace=lambda x: None):
try:
fp = open(pyc, "rb")
except IOError:
return None
with fp:
try:
mtime = int(source.mtime())
size = source.size()
data = fp.read(12)
except EnvironmentError as e:
trace('_read_pyc(%s): EnvironmentError %s' % (source, e))
return None
if (len(data) != 12 or data[:4] != imp.get_magic() or
struct.unpack("<ll", data[4:]) != (mtime, size)):
trace('_read_pyc(%s): invalid or out of date pyc' % source)
return None
try:
co = marshal.load(fp)
except Exception as e:
trace('_read_pyc(%s): marshal.load error %s' % (source, e))
return None
if not isinstance(co, types.CodeType):
trace('_read_pyc(%s): not a code object' % source)
return None
return co
def rewrite_asserts(mod, module_path=None, config=None):
AssertionRewriter(module_path, config).run(mod)
def _saferepr(obj):
repr = py.io.saferepr(obj)
if isinstance(repr, six.text_type):
t = six.text_type
else:
t = six.binary_type
return repr.replace(t("\n"), t("\\n"))
from _pytest.assertion.util import format_explanation as _format_explanation
|
MIT License
|
django-fluent/django-fluent-contents
|
fluent_contents/models/managers.py
|
ContentItemQuerySet.move_to_placeholder
|
python
|
def move_to_placeholder(self, placeholder, sort_order=None):
qs = self.all()
for item in qs:
item.move_to_placeholder(placeholder, sort_order=sort_order)
if sort_order is not None:
sort_order += 1
return qs
|
.. versionadded: 1.0.2 Move the entire queryset to a new object.
Returns a queryset with the newly created objects.
|
https://github.com/django-fluent/django-fluent-contents/blob/b82a527a4a1007a62857ba9f6980d6c4482e8f2d/fluent_contents/models/managers.py#L112-L125
|
from django.conf import settings
from django.contrib.contenttypes.models import ContentType
from django.db import models
from django.utils.translation import get_language
from future.builtins import str
from future.utils import string_types
from parler import appsettings as parler_appsettings
from parler.utils import get_language_title
from polymorphic.managers import PolymorphicManager
from polymorphic.query import PolymorphicQuerySet
class PlaceholderManager(models.Manager):
def parent(self, parent_object):
lookup = get_parent_lookup_kwargs(parent_object)
return self.filter(**lookup)
def get_by_slot(self, parent_object, slot):
placeholder = self.parent(parent_object).get(slot=slot)
placeholder.parent = parent_object
return placeholder
def create_for_object(self, parent_object, slot, role="m", title=None):
from .db import Placeholder
parent_attrs = get_parent_lookup_kwargs(parent_object)
obj = self.create(
slot=slot,
role=role or Placeholder.MAIN,
title=title or slot.title().replace("_", " "),
**parent_attrs
)
obj.parent = parent_object
return obj
class ContentItemQuerySet(PolymorphicQuerySet):
def translated(self, *language_codes):
if not language_codes:
language_codes = (get_language(),)
else:
for language_code in language_codes:
if not isinstance(
language_code, string_types
) or language_code.lower() in ("1", "0", "true", "false"):
raise ValueError(
"ContentItemQuerySet.translated() expected language_code to be an ISO code"
)
if len(language_codes) == 1:
return self.filter(language_code=language_codes[0])
else:
return self.filter(language_code__in=language_codes)
def parent(self, parent_object, limit_parent_language=True):
lookup = get_parent_lookup_kwargs(parent_object)
if limit_parent_language:
language_code = get_parent_language_code(parent_object)
if language_code:
lookup["language_code"] = language_code
return self.filter(**lookup)
def clear_cache(self):
for contentitem in self:
contentitem.clear_cache()
clear_cache.alters_data = True
|
Apache License 2.0
|
bearle/django_mail_admin
|
django_mail_admin/cache.py
|
get_cache_key
|
python
|
def get_cache_key(name):
return 'django_mail_admin:template:%s' % (slugify(name))
|
Prefixes and slugify the key name
|
https://github.com/bearle/django_mail_admin/blob/5286e1d556ba5b696a343a8be0a11617ffd4d193/django_mail_admin/cache.py#L10-L15
|
from django.template.defaultfilters import slugify
from .settings import get_cache_backend
cache_backend = get_cache_backend()
|
MIT License
|
hazyresearch/flyingsquid
|
flyingsquid/_graphs.py
|
Mixin._is_separator
|
python
|
def _is_separator(self, srcSet, dstSet, separatorSet):
def neighbors(node):
neighbor_set = set()
for edge in self.G.edges:
if edge[0] == node:
neighbor_set.add(edge[1])
if edge[1] == node:
neighbor_set.add(edge[0])
return list(neighbor_set)
visited = set()
for srcNode in srcSet:
if srcNode in dstSet:
return False
queue = [srcNode]
curNode = srcNode
while len(queue) > 0:
curNode = queue.pop()
if curNode not in visited:
visited.add(curNode)
else:
continue
for neighbor in neighbors(curNode):
if neighbor == srcNode:
continue
if neighbor in dstSet:
return False
if neighbor in separatorSet:
continue
if neighbor not in visited:
queue.append(neighbor)
return True
|
Check if separatorSet separates srcSet from dstSet.
Tries to find a path from some node in srcSet to some node in dstSet that doesn't
pass through separatorSet. If successful, return False. Otherwise, return True.
|
https://github.com/hazyresearch/flyingsquid/blob/28a713a9ac501b7597c2489468ae189943d00685/flyingsquid/_graphs.py#L16-L56
|
from pgmpy.models import MarkovModel
from pgmpy.factors.discrete import JointProbabilityDistribution, DiscreteFactor
from itertools import combinations
from flyingsquid.helpers import *
import numpy as np
import math
from tqdm import tqdm
import sys
import random
class Mixin:
|
Apache License 2.0
|
picklepete/pyicloud
|
pyicloud/services/drive.py
|
DriveNode.open
|
python
|
def open(self, **kwargs):
if self.data["size"] == 0:
response = Response()
response.raw = io.BytesIO()
return response
return self.connection.get_file(self.data["docwsid"], **kwargs)
|
Gets the node file.
|
https://github.com/picklepete/pyicloud/blob/bab549a593b1f2554de8d0eefa0b053c18e09f6f/pyicloud/services/drive.py#L263-L270
|
from datetime import datetime, timedelta
import json
import io
import mimetypes
import os
import time
from re import search
from requests import Response
from six import PY2
class DriveService(object):
def __init__(self, service_root, document_root, session, params):
self._service_root = service_root
self._document_root = document_root
self.session = session
self.params = dict(params)
self._root = None
def _get_token_from_cookie(self):
for cookie in self.session.cookies:
if cookie.name == "X-APPLE-WEBAUTH-VALIDATE":
match = search(r"\bt=([^:]+)", cookie.value)
if match is None:
raise Exception("Can't extract token from %r" % cookie.value)
return {"token": match.group(1)}
raise Exception("Token cookie not found")
def get_node_data(self, node_id):
request = self.session.post(
self._service_root + "/retrieveItemDetailsInFolders",
params=self.params,
data=json.dumps(
[
{
"drivewsid": "FOLDER::com.apple.CloudDocs::%s" % node_id,
"partialData": False,
}
]
),
)
return request.json()[0]
def get_file(self, file_id, **kwargs):
file_params = dict(self.params)
file_params.update({"document_id": file_id})
response = self.session.get(
self._document_root + "/ws/com.apple.CloudDocs/download/by_id",
params=file_params,
)
if not response.ok:
return None
url = response.json()["data_token"]["url"]
return self.session.get(url, params=self.params, **kwargs)
def get_app_data(self):
request = self.session.get(
self._service_root + "/retrieveAppLibraries", params=self.params
)
return request.json()["items"]
def _get_upload_contentws_url(self, file_object):
content_type = mimetypes.guess_type(file_object.name)[0]
if content_type is None:
content_type = ""
orig_pos = file_object.tell()
file_object.seek(0, os.SEEK_END)
file_size = file_object.tell()
file_object.seek(orig_pos, os.SEEK_SET)
file_params = self.params
file_params.update(self._get_token_from_cookie())
request = self.session.post(
self._document_root + "/ws/com.apple.CloudDocs/upload/web",
params=file_params,
headers={"Content-Type": "text/plain"},
data=json.dumps(
{
"filename": file_object.name,
"type": "FILE",
"content_type": content_type,
"size": file_size,
}
),
)
if not request.ok:
return None
return (request.json()[0]["document_id"], request.json()[0]["url"])
def _update_contentws(self, folder_id, sf_info, document_id, file_object):
data = {
"data": {
"signature": sf_info["fileChecksum"],
"wrapping_key": sf_info["wrappingKey"],
"reference_signature": sf_info["referenceChecksum"],
"size": sf_info["size"],
},
"command": "add_file",
"create_short_guid": True,
"document_id": document_id,
"path": {"starting_document_id": folder_id, "path": file_object.name,},
"allow_conflict": True,
"file_flags": {
"is_writable": True,
"is_executable": False,
"is_hidden": False,
},
"mtime": int(time.time() * 1000),
"btime": int(time.time() * 1000),
}
if sf_info.get("receipt"):
data["data"].update({"receipt": sf_info["receipt"]})
request = self.session.post(
self._document_root + "/ws/com.apple.CloudDocs/update/documents",
params=self.params,
headers={"Content-Type": "text/plain"},
data=json.dumps(data),
)
if not request.ok:
return None
return request.json()
def send_file(self, folder_id, file_object):
document_id, content_url = self._get_upload_contentws_url(file_object)
request = self.session.post(content_url, files={file_object.name: file_object})
if not request.ok:
return None
content_response = request.json()["singleFile"]
self._update_contentws(folder_id, content_response, document_id, file_object)
def create_folders(self, parent, name):
request = self.session.post(
self._service_root + "/createFolders",
params=self.params,
headers={"Content-Type": "text/plain"},
data=json.dumps(
{
"destinationDrivewsId": parent,
"folders": [{"clientId": self.params["clientId"], "name": name,}],
}
),
)
return request.json()
def rename_items(self, node_id, etag, name):
request = self.session.post(
self._service_root + "/renameItems",
params=self.params,
data=json.dumps(
{"items": [{"drivewsid": node_id, "etag": etag, "name": name,}],}
),
)
return request.json()
def move_items_to_trash(self, node_id, etag):
request = self.session.post(
self._service_root + "/moveItemsToTrash",
params=self.params,
data=json.dumps(
{
"items": [
{
"drivewsid": node_id,
"etag": etag,
"clientId": self.params["clientId"],
}
],
}
),
)
return request.json()
@property
def root(self):
if not self._root:
self._root = DriveNode(self, self.get_node_data("root"))
return self._root
def __getattr__(self, attr):
return getattr(self.root, attr)
def __getitem__(self, key):
return self.root[key]
class DriveNode(object):
def __init__(self, conn, data):
self.data = data
self.connection = conn
self._children = None
@property
def name(self):
if "extension" in self.data:
return "%s.%s" % (self.data["name"], self.data["extension"])
return self.data["name"]
@property
def type(self):
node_type = self.data.get("type")
return node_type and node_type.lower()
def get_children(self):
if not self._children:
if "items" not in self.data:
self.data.update(self.connection.get_node_data(self.data["docwsid"]))
if "items" not in self.data:
raise KeyError("No items in folder, status: %s" % self.data["status"])
self._children = [
DriveNode(self.connection, item_data)
for item_data in self.data["items"]
]
return self._children
@property
def size(self):
size = self.data.get("size")
if not size:
return None
return int(size)
@property
def date_changed(self):
return _date_to_utc(self.data.get("dateChanged"))
@property
def date_modified(self):
return _date_to_utc(self.data.get("dateModified"))
@property
def date_last_open(self):
return _date_to_utc(self.data.get("lastOpenTime"))
|
MIT License
|
tebeka/pythonwise
|
cheetah-demo/Cheetah/SettingsManager.py
|
_SettingsCollector.readSettingsFromConfigFileObj
|
python
|
def readSettingsFromConfigFileObj(self, inFile, convert=True):
p = self._ConfigParserClass()
p.readfp(inFile)
sects = p.sections()
newSettings = {}
sects = p.sections()
newSettings = {}
for s in sects:
newSettings[s] = {}
for o in p.options(s):
if o != '__name__':
newSettings[s][o] = p.get(s,o)
for sect, subDict in newSettings.items():
for key, val in subDict.items():
if convert:
if val.lower().startswith('python:'):
subDict[key] = eval(val[7:],{},{})
if val.lower() == 'none':
subDict[key] = None
if val.lower() == 'true':
subDict[key] = True
if val.lower() == 'false':
subDict[key] = False
if stringIsNumber(val):
subDict[key] = convStringToNum(val)
if key.lower() == 'importsettings':
if val.find(';') < 0:
importedSettings = self.readSettingsFromPySrcFile(val)
else:
path = val.split(';')[0]
rest = ''.join(val.split(';')[1:]).strip()
parentDict = self.readSettingsFromPySrcFile(path)
importedSettings = eval('parentDict["' + rest + '"]')
subDict.update(mergeNestedDictionaries(subDict,
importedSettings))
if sect.lower() == 'globals':
newSettings.update(newSettings[sect])
del newSettings[sect]
return newSettings
|
Return the settings from a config file that uses the syntax accepted by
Python's standard ConfigParser module (like Windows .ini files).
NOTE:
this method maintains case unlike the ConfigParser module, unless this
class was initialized with the 'caseSensitive' keyword set to False.
All setting values are initially parsed as strings. However, If the
'convert' arg is True this method will do the following value
conversions:
* all Python numeric literals will be coverted from string to number
* The string 'None' will be converted to the Python value None
* The string 'True' will be converted to a Python truth value
* The string 'False' will be converted to a Python false value
* Any string starting with 'python:' will be treated as a Python literal
or expression that needs to be eval'd. This approach is useful for
declaring lists and dictionaries.
If a config section titled 'Globals' is present the options defined
under it will be treated as top-level settings.
|
https://github.com/tebeka/pythonwise/blob/3bc3735160a1761be83751126f99180ed353b2e4/cheetah-demo/Cheetah/SettingsManager.py#L351-L428
|
__author__ = "Tavis Rudd <tavis@damnsimple.com>"
__revision__ = "$Revision: 1.29 $"[11:-2]
import sys
import os.path
import copy as copyModule
from ConfigParser import ConfigParser
import re
from tokenize import Intnumber, Floatnumber, Number
from types import *
import types
import new
import tempfile
import time
from StringIO import StringIO
import imp
try:
import threading
from threading import Lock
except:
class Lock:
def acquire(self):
pass
def release(self):
pass
class BaseErrorClass: pass
try:
True,False
except NameError:
True, False = (1==1),(1==0)
numberRE = re.compile(Number)
complexNumberRE = re.compile('[\(]*' +Number + r'[ \t]*\+[ \t]*' + Number + '[\)]*')
convertableToStrTypes = (StringType, IntType, FloatType,
LongType, ComplexType, NoneType,
UnicodeType)
def mergeNestedDictionaries(dict1, dict2, copy=False, deepcopy=False):
if copy:
dict1 = copyModule.copy(dict1)
elif deepcopy:
dict1 = copyModule.deepcopy(dict1)
for key,val in dict2.items():
if dict1.has_key(key) and type(val) == types.DictType and type(dict1[key]) == types.DictType:
dict1[key] = mergeNestedDictionaries(dict1[key], val)
else:
dict1[key] = val
return dict1
def stringIsNumber(S):
S = S.strip()
if S[0] in '-+' and len(S) > 1:
S = S[1:].strip()
match = complexNumberRE.match(S)
if not match:
match = numberRE.match(S)
if not match or (match.end() != len(S)):
return False
else:
return True
def convStringToNum(theString):
if not stringIsNumber(theString):
raise Error(theString + ' cannot be converted to a Python number')
return eval(theString, {}, {})
ident = r'[_a-zA-Z][_a-zA-Z0-9]*'
firstChunk = r'^(?P<indent>\s*)(?P<class>[_a-zA-Z][_a-zA-Z0-9]*)'
customClassRe = re.compile(firstChunk + r'\s*:')
baseClasses = r'(?P<bases>\(\s*([_a-zA-Z][_a-zA-Z0-9]*\s*(,\s*[_a-zA-Z][_a-zA-Z0-9]*\s*)*)\))'
customClassWithBasesRe = re.compile(firstChunk + baseClasses + '\s*:')
def translateClassBasedConfigSyntax(src):
outputLines = []
for line in src.splitlines():
if customClassRe.match(line) and line.strip().split(':')[0] not in ('else','try', 'except', 'finally'):
line = customClassRe.sub(
r'\g<indent>class \g<class>(SettingsContainer):', line)
elif customClassWithBasesRe.match(line) and not line.strip().startswith('except'):
line = customClassWithBasesRe.sub(
r'\g<indent>class \g<class>\g<bases>:', line)
outputLines.append(line)
if outputLines[0].find('class ') == -1:
initLine = 'from Cheetah.SettingsManager import SettingsContainer; True, False = 1, 0; '
else:
initLine = 'from Cheetah.SettingsManager import SettingsContainer; True, False = 1, 0\n'
return initLine + '\n'.join(outputLines) + '\n'
class Error(BaseErrorClass):
pass
class NoDefault:
pass
class ConfigParserCaseSensitive(ConfigParser):
def optionxform(self, optionstr):
return optionstr
class SettingsContainer:
pass
class _SettingsCollector:
_sysPathLock = Lock()
_ConfigParserClass = ConfigParserCaseSensitive
def __init__(self):
pass
def normalizePath(self, path):
return os.path.normpath(path.replace("\\",'/'))
def readSettingsFromContainer(self, container, ignoreUnderscored=True):
S = {}
if type(container) == ModuleType:
attrs = vars(container)
else:
attrs = self._getAllAttrsFromContainer(container)
for k, v in attrs.items():
if (ignoreUnderscored and k.startswith('_')) or v is SettingsContainer:
continue
if self._isContainer(v):
S[k] = self.readSettingsFromContainer(v)
else:
S[k] = v
return S
readSettingsFromModule = readSettingsFromContainer
def _isContainer(self, thing):
return type(thing) == ModuleType or (
type(thing) == ClassType and issubclass(thing, SettingsContainer)
)
def _getAllAttrsFromContainer(self, container):
attrs = container.__dict__.copy()
attrs.update( container().__dict__ )
for base in container.__bases__:
for k, v in base.__dict__.items():
if not attrs.has_key(k):
attrs[k] = v
return attrs
def readSettingsFromPySrcFile(self, path):
path = self.normalizePath(path)
dirName = os.path.dirname(path)
tmpPath = tempfile.mkstemp('webware_temp')
pySrc = translateClassBasedConfigSyntax(open(path).read())
modName = path.replace('.','_').replace('/','_').replace('\\','_')
open(tmpPath, 'w').write(pySrc)
try:
fp = open(tmpPath)
self._sysPathLock.acquire()
sys.path.insert(0, dirName)
module = imp.load_source(modName, path, fp)
newSettings = self.readSettingsFromModule(module)
del sys.path[0]
self._sysPathLock.release()
return newSettings
finally:
fp.close()
try:
os.remove(tmpPath)
except:
pass
if os.path.exists(tmpPath + 'c'):
try:
os.remove(tmpPath + 'c')
except:
pass
if os.path.exists(path + 'c'):
try:
os.remove(path + 'c')
except:
pass
def readSettingsFromPySrcStr(self, theString):
globalsDict = {'True':1,
'False':0,
'SettingsContainer':SettingsContainer,
}
newSettings = {'self':self}
exec theString in globalsDict, newSettings
del newSettings['self'], newSettings['True'], newSettings['False']
module = new.module('temp_settings_module')
module.__dict__.update(newSettings)
return self.readSettingsFromModule(module)
def readSettingsFromConfigFile(self, path, convert=True):
path = self.normalizePath(path)
fp = open(path)
settings = self.readSettingsFromConfigFileObj(fp, convert=convert)
fp.close()
return settings
|
BSD 3-Clause New or Revised License
|
jahjajaka/afternoon_cleaner
|
object_detection/tpu_exporters/export_saved_model_tpu_lib.py
|
run_inference
|
python
|
def run_inference(inputs,
pipeline_config_file,
ckpt_path,
input_type='encoded_image_string_tensor',
use_bfloat16=False,
repeat=1):
pipeline_config, meta_arch = parse_pipeline_config(pipeline_config_file)
shapes_info = model_map[meta_arch].get_prediction_tensor_shapes(
pipeline_config)
with tf.Graph().as_default(), tf.Session() as sess:
placeholder_tensor, result_tensor_dict = model_map[meta_arch].build_graph(
pipeline_config, shapes_info, input_type, use_bfloat16)
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
sess.run(tf.contrib.tpu.initialize_system())
sess.run(init_op)
if ckpt_path is not None:
saver.restore(sess, ckpt_path)
for _ in range(repeat):
tensor_dict_out = sess.run(
result_tensor_dict, feed_dict={placeholder_tensor: [inputs]})
sess.run(tf.contrib.tpu.shutdown_system())
return tensor_dict_out
|
Runs inference on TPU.
Args:
inputs: Input image with the same type as `input_type`
pipeline_config_file: Pipeline config file name.
ckpt_path: Training checkpoint path.
input_type: One of
'encoded_image_string_tensor': a 1d tensor with dtype=tf.string
'image_tensor': a 4d tensor with dtype=tf.uint8
'tf_example': a 1d tensor with dtype=tf.string
use_bfloat16: If true, use tf.bfloat16 on TPU.
repeat: Number of times to repeat running the provided input for profiling.
Returns:
A dict of resulting tensors.
|
https://github.com/jahjajaka/afternoon_cleaner/blob/590bdf58a216cbc6cfc47ef8f49d7af3df3703b7/object_detection/tpu_exporters/export_saved_model_tpu_lib.py#L128-L175
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from google.protobuf import text_format
from tensorflow.python.saved_model import loader
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
from object_detection.protos import pipeline_pb2
from object_detection.tpu_exporters import faster_rcnn
from object_detection.tpu_exporters import ssd
model_map = {
'faster_rcnn': faster_rcnn,
'ssd': ssd,
}
def parse_pipeline_config(pipeline_config_file):
with tf.gfile.GFile(pipeline_config_file, 'r') as config_file:
config_str = config_file.read()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
text_format.Merge(config_str, pipeline_config)
meta_arch = pipeline_config.model.WhichOneof('model')
return pipeline_config, meta_arch
def export(pipeline_config_file,
ckpt_path,
export_dir,
input_placeholder_name='placeholder_tensor',
input_type='encoded_image_string_tensor',
use_bfloat16=False):
pipeline_config, meta_arch = parse_pipeline_config(pipeline_config_file)
shapes_info = model_map[meta_arch].get_prediction_tensor_shapes(
pipeline_config)
with tf.Graph().as_default(), tf.Session() as sess:
placeholder_tensor, result_tensor_dict = model_map[meta_arch].build_graph(
pipeline_config, shapes_info, input_type, use_bfloat16)
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
sess.run(init_op)
if ckpt_path is not None:
saver.restore(sess, ckpt_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_dir)
tensor_info_inputs = {
input_placeholder_name:
tf.saved_model.utils.build_tensor_info(placeholder_tensor)
}
tensor_info_outputs = {
k: tf.saved_model.utils.build_tensor_info(v)
for k, v in result_tensor_dict.items()
}
detection_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs=tensor_info_inputs,
outputs=tensor_info_outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
tf.logging.info('Inputs:\n{}\nOutputs:{}\nPredict method name:{}'.format(
tensor_info_inputs, tensor_info_outputs,
tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [
tf.saved_model.tag_constants.SERVING,
tf.saved_model.tag_constants.TPU
],
signature_def_map={
tf.saved_model.signature_constants
.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
detection_signature,
},
strip_default_attrs=True)
builder.add_meta_graph(
[tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants
.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
detection_signature,
},
strip_default_attrs=True)
builder.save(as_text=False)
tf.logging.info('Model saved to {}'.format(export_dir))
|
MIT License
|
adafruit/adafruit_blinka
|
src/bitbangio.py
|
I2C.scan
|
python
|
def scan(self):
return self._i2c.scan()
|
Scan for attached devices
|
https://github.com/adafruit/adafruit_blinka/blob/619196a5b8c3fe01662d6db193d77c8333e6c9a5/src/bitbangio.py#L55-L57
|
import adafruit_platformdetect.constants.boards as ap_board
from adafruit_blinka import Lockable, agnostic
class I2C(Lockable):
def __init__(self, scl, sda, frequency=400000):
if agnostic.board_id == ap_board.PYBOARD:
raise NotImplementedError("No software I2C on {}".format(agnostic.board_id))
if agnostic.detector.board.any_embedded_linux:
raise NotImplementedError(
"For bitbangio on Linux, please use Adafruit_CircuitPython_BitbangIO"
)
self.init(scl, sda, frequency)
def init(self, scl, sda, frequency):
from machine import Pin
from machine import I2C as _I2C
self.deinit()
id = (
-1
)
self._i2c = _I2C(id, Pin(scl.id), Pin(sda.id), freq=frequency)
def deinit(self):
try:
del self._i2c
except AttributeError:
pass
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.deinit()
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/tts/yandextts.py
|
YandexSpeechKitProvider.async_get_tts_audio
|
python
|
def async_get_tts_audio(self, message, language, options=None):
websession = async_get_clientsession(self.hass)
actual_language = language
options = options or {}
try:
with async_timeout.timeout(10, loop=self.hass.loop):
url_param = {
'text': message,
'lang': actual_language,
'key': self._key,
'speaker': options.get(CONF_VOICE, self._speaker),
'format': options.get(CONF_CODEC, self._codec),
'emotion': options.get(CONF_EMOTION, self._emotion),
'speed': options.get(CONF_SPEED, self._speed)
}
request = yield from websession.get(
YANDEX_API_URL, params=url_param)
if request.status != 200:
_LOGGER.error("Error %d on load URL %s",
request.status, request.url)
return (None, None)
data = yield from request.read()
except (asyncio.TimeoutError, aiohttp.ClientError):
_LOGGER.error("Timeout for yandex speech kit API")
return (None, None)
return (self._codec, data)
|
Load TTS from yandex.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/tts/yandextts.py#L110-L141
|
import asyncio
import logging
import aiohttp
import async_timeout
import voluptuous as vol
from homeassistant.const import CONF_API_KEY
from homeassistant.components.tts import Provider, PLATFORM_SCHEMA, CONF_LANG
from homeassistant.helpers.aiohttp_client import async_get_clientsession
import homeassistant.helpers.config_validation as cv
_LOGGER = logging.getLogger(__name__)
YANDEX_API_URL = "https://tts.voicetech.yandex.net/generate?"
SUPPORT_LANGUAGES = [
'ru-RU', 'en-US', 'tr-TR', 'uk-UK'
]
SUPPORT_CODECS = [
'mp3', 'wav', 'opus',
]
SUPPORT_VOICES = [
'jane', 'oksana', 'alyss', 'omazh',
'zahar', 'ermil'
]
SUPPORTED_EMOTION = [
'good', 'evil', 'neutral'
]
MIN_SPEED = 0.1
MAX_SPEED = 3
CONF_CODEC = 'codec'
CONF_VOICE = 'voice'
CONF_EMOTION = 'emotion'
CONF_SPEED = 'speed'
DEFAULT_LANG = 'en-US'
DEFAULT_CODEC = 'mp3'
DEFAULT_VOICE = 'zahar'
DEFAULT_EMOTION = 'neutral'
DEFAULT_SPEED = 1
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_API_KEY): cv.string,
vol.Optional(CONF_LANG, default=DEFAULT_LANG): vol.In(SUPPORT_LANGUAGES),
vol.Optional(CONF_CODEC, default=DEFAULT_CODEC): vol.In(SUPPORT_CODECS),
vol.Optional(CONF_VOICE, default=DEFAULT_VOICE): vol.In(SUPPORT_VOICES),
vol.Optional(CONF_EMOTION, default=DEFAULT_EMOTION):
vol.In(SUPPORTED_EMOTION),
vol.Optional(CONF_SPEED, default=DEFAULT_SPEED):
vol.Range(min=MIN_SPEED, max=MAX_SPEED)
})
SUPPORTED_OPTIONS = [
CONF_CODEC,
CONF_VOICE,
CONF_EMOTION,
CONF_SPEED,
]
@asyncio.coroutine
def async_get_engine(hass, config):
return YandexSpeechKitProvider(hass, config)
class YandexSpeechKitProvider(Provider):
def __init__(self, hass, conf):
self.hass = hass
self._codec = conf.get(CONF_CODEC)
self._key = conf.get(CONF_API_KEY)
self._speaker = conf.get(CONF_VOICE)
self._language = conf.get(CONF_LANG)
self._emotion = conf.get(CONF_EMOTION)
self._speed = str(conf.get(CONF_SPEED))
self.name = 'YandexTTS'
@property
def default_language(self):
return self._language
@property
def supported_languages(self):
return SUPPORT_LANGUAGES
@property
def supported_options(self):
return SUPPORTED_OPTIONS
@asyncio.coroutine
|
MIT License
|
hazyresearch/butterfly
|
butterfly/butterfly_multiply.py
|
ButterflyOrthoMultTied.forward
|
python
|
def forward(ctx, twiddle, input, increasing_stride=True):
twiddle_cos, twiddle_sin = torch.cos(twiddle), torch.sin(twiddle)
output = butterfly_ortho_multiply_tied(twiddle_cos, twiddle_sin, input, increasing_stride)
ctx.save_for_backward(twiddle_cos, twiddle_sin, output)
ctx._increasing_stride = increasing_stride
return output
|
Parameters:
twiddle: (nstack, n - 1)
input: (batch_size, nstack, n)
Returns:
output: (batch_size, nstack, n)
|
https://github.com/hazyresearch/butterfly/blob/7217b5d93bc78e1229fed3761bcc70d943f604b7/butterfly/butterfly_multiply.py#L225-L237
|
import math
import torch
from torch import nn
import torch.nn.functional as F
from .complex_utils import complex_mul
use_extension = True
try:
from factor_multiply import butterfly_multiply_intermediate, butterfly_multiply_intermediate_backward
from factor_multiply import butterfly_multiply_untied, butterfly_multiply_untied_backward
from factor_multiply import butterfly_multiply_untied_forward_backward
from factor_multiply import butterfly_ortho_multiply_tied, butterfly_ortho_multiply_tied_backward
from factor_multiply import butterfly_ortho_multiply_untied, butterfly_ortho_multiply_untied_backward
from factor_multiply import bbt_multiply_untied, bbt_multiply_untied_forward_backward
from factor_multiply import bbt_ortho_multiply_untied, bbt_ortho_multiply_untied_backward
from factor_multiply import butterfly_factor_multiply, butterfly_factor_multiply_backward
from factor_multiply import butterfly_conv2d, butterfly_conv2d_backward, butterfly_conv2d_forward_backward
from factor_multiply import bbt_conv2d, bbt_conv2d_forward_backward
from factor_multiply import butterfly_multiply_untied_eval
import factor_multiply_fast as fmf
from factor_multiply_fast import butterfly_multiply_untied_forward_fast
from factor_multiply_fast import butterfly_multiply_untied_forward_backward_fast
from factor_multiply_fast import butterfly_bbs_multiply_untied_forward_fast
from factor_multiply_fast import butterfly_bbs_multiply_untied_forward_backward_fast
from factor_multiply_fast import butterfly_odo_multiply_untied_forward_fast
from factor_multiply_fast import butterfly_odo_multiply_untied_backward_fast
from factor_multiply_fast import butterfly_odo_multiply_untied_forward_backward_fast
except:
use_extension = False
import warnings
warnings.warn("C++/CUDA extension isn't installed properly. Will use butterfly multiply implemented in Pytorch, which is much slower.")
try:
from apex import amp
amp.register_float_function(fmf, 'butterfly_odo_multiply_untied_forward_fast')
amp.register_float_function(fmf, 'butterfly_odo_multiply_untied_forward_backward_fast')
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex.")
def butterfly_mult_torch(twiddle, input, increasing_stride=True, return_intermediates=False):
batch_size, nstack, n = input.shape[:3]
assert twiddle.shape == (nstack, n - 1, 2, 2) if input.dim() == 2 else (nstack, n - 1, 2, 2, 2)
m = int(math.log2(n))
assert n == 1 << m, "size must be a power of 2"
if input.dim() == 3:
output = input.contiguous()
intermediates = [output]
for log_stride in range(m) if increasing_stride else range(m)[::-1]:
stride = 1 << log_stride
t = twiddle[:, (stride - 1):(2 * stride - 1)].permute(0, 2, 3, 1)
output_reshape = output.view(batch_size, nstack, n // (2 * stride), 1, 2, stride)
output = (t.unsqueeze(1) * output_reshape).sum(dim=4)
intermediates.append(output)
return output.view(batch_size, nstack, n) if not return_intermediates else torch.stack([intermediate.view(batch_size, nstack, n) for intermediate in intermediates])
else:
output = input.contiguous()
intermediates = [output]
for log_stride in range(m) if increasing_stride else range(m)[::-1]:
stride = 1 << log_stride
t = twiddle[:, (stride - 1):(2 * stride - 1)].permute(0, 2, 3, 1, 4)
output_reshape = output.view(batch_size, nstack, n // (2 * stride), 1, 2, stride, 2)
output = complex_mul(t.unsqueeze(1), output_reshape).sum(dim=4)
intermediates.append(output)
return output.view(batch_size, nstack, n, 2) if not return_intermediates else torch.stack([intermediate.view(batch_size, nstack, n, 2) for intermediate in intermediates])
class ButterflyMult(torch.autograd.Function):
@staticmethod
def forward(ctx, twiddle, input, increasing_stride=True):
output = butterfly_multiply_intermediate(twiddle, input, increasing_stride, False)
ctx.save_for_backward(twiddle, input)
ctx._increasing_stride = increasing_stride
return output
@staticmethod
def backward(ctx, grad):
twiddle, input = ctx.saved_tensors
increasing_stride = ctx._increasing_stride
output_and_intermediate = butterfly_multiply_intermediate(twiddle, input, increasing_stride, True)
d_coefficients, d_input = butterfly_multiply_intermediate_backward(grad, twiddle, output_and_intermediate, increasing_stride)
return d_coefficients, d_input, None
butterfly_mult = ButterflyMult.apply if use_extension else butterfly_mult_torch
def butterfly_mult_untied_torch(twiddle, input, increasing_stride=True, return_intermediates=False):
batch_size, nstack, n = input.shape[:3]
m = int(math.log2(n))
assert n == 1 << m, "size must be a power of 2"
assert twiddle.shape == (nstack, m, n // 2, 2, 2) if input.dim() == 3 else (nstack, m, n // 2, 2, 2, 2)
if input.dim() == 3:
output = input.contiguous()
intermediates = [output]
for log_stride in range(m) if increasing_stride else range(m)[::-1]:
stride = 1 << log_stride
t = twiddle[:, log_stride].view(nstack, n // (2 * stride), stride, 2, 2).permute(0, 1, 3, 4, 2)
output_reshape = output.view(batch_size, nstack, n // (2 * stride), 1, 2, stride)
output = (t * output_reshape).sum(dim=4)
intermediates.append(output)
return output.view(batch_size, nstack, n) if not return_intermediates else torch.stack([intermediate.view(batch_size, nstack, n) for intermediate in intermediates])
else:
output = input.contiguous()
intermediates = [output]
for log_stride in range(m) if increasing_stride else range(m)[::-1]:
stride = 1 << log_stride
t = twiddle[:, log_stride].view(nstack, n // (2 * stride), stride, 2, 2, 2).permute(0, 1, 3, 4, 2, 5)
output_reshape = output.view(batch_size, nstack, n // (2 * stride), 1, 2, stride, 2)
output = complex_mul(t, output_reshape).sum(dim=4)
intermediates.append(output)
return output.view(batch_size, nstack, n, 2) if not return_intermediates else torch.stack([intermediate.view(batch_size, nstack, n, 2) for intermediate in intermediates])
class ButterflyMultUntied(torch.autograd.Function):
@staticmethod
def forward(ctx, twiddle, input, increasing_stride=True, is_training=True, fast=False):
if not is_training and not input.is_cuda and input.dim() == 3 and input.dtype == torch.float and input.shape[-1] > 8:
output = butterfly_multiply_untied_eval(twiddle, input, increasing_stride)
else:
if not fast:
output = butterfly_multiply_untied(twiddle, input, increasing_stride, False)
else:
output = butterfly_multiply_untied_forward_fast(twiddle, input, increasing_stride)
ctx.save_for_backward(twiddle, input)
ctx._increasing_stride = increasing_stride
ctx._fast = fast
return output
@staticmethod
def backward(ctx, grad):
twiddle, input = ctx.saved_tensors
increasing_stride = ctx._increasing_stride
fast = ctx._fast
n = input.shape[2]
if input.dim() == 3 and n <= 1024 and input.is_cuda:
if not fast:
d_coefficients, d_input = butterfly_multiply_untied_forward_backward(twiddle, input, grad, increasing_stride)
else:
d_coefficients, d_input = butterfly_multiply_untied_forward_backward_fast(twiddle, input, grad, increasing_stride)
else:
output_and_intermediate = butterfly_multiply_untied(twiddle, input, increasing_stride, True)
d_coefficients, d_input = butterfly_multiply_untied_backward(grad, twiddle, output_and_intermediate, increasing_stride)
return d_coefficients, d_input, None, None, None
butterfly_mult_untied = ButterflyMultUntied.apply if use_extension else butterfly_mult_untied_torch
class ButterflyOrthoMultTied(torch.autograd.Function):
@staticmethod
|
Apache License 2.0
|
ucb-sts/sts
|
sts/control_flow/fuzzer.py
|
Fuzzer.check_pending_commands
|
python
|
def check_pending_commands(self):
if self.delay_flow_mods:
for switch in self.simulation.topology.switches:
assert(isinstance(switch, FuzzSoftwareSwitch))
if switch.has_pending_commands() and (self.random.random() < self.params.ofp_cmd_passthrough_rate):
(cmd, pending_receipt) = switch.get_next_command()
eventclass = ProcessFlowMod
b64_packet = base64_encode(cmd)
self._log_input_event(eventclass(pending_receipt.dpid,
pending_receipt.controller_id,
pending_receipt.fingerprint,
b64_packet=b64_packet))
switch.process_delayed_command(pending_receipt)
|
If Fuzzer is configured to delay flow mods, this decides whether
each switch is allowed to process a buffered flow mod
|
https://github.com/ucb-sts/sts/blob/82190b7662523e3aaa21998a6a31d0878abe66c7/sts/control_flow/fuzzer.py#L466-L481
|
from sts.control_flow.interactive import Interactive
from sts.topology import BufferedPatchPanel
from sts.traffic_generator import TrafficGenerator
from sts.replay_event import *
from pox.lib.util import TimeoutError
from pox.lib.packet.lldp import *
from config.invariant_checks import name_to_invariant_check
from sts.util.convenience import base64_encode
from sts.entities import FuzzSoftwareSwitch, ControllerState
from sts.openflow_buffer import OpenFlowBuffer
from sts.control_flow.base import ControlFlow, RecordingSyncCallback
import os
import re
import shutil
import signal
import sys
import time
import random
import logging
log = logging.getLogger("control_flow")
class Fuzzer(ControlFlow):
def __init__(self, simulation_cfg, fuzzer_params="config.fuzzer_params",
check_interval=None, traffic_inject_interval=10, random_seed=None,
delay=0.1, steps=None, input_logger=None,
invariant_check_name="InvariantChecker.check_correspondence",
halt_on_violation=False, log_invariant_checks=True,
delay_startup=True, print_buffers=True,
record_deterministic_values=False,
mock_link_discovery=False,
never_drop_whitelisted_packets=True,
initialization_rounds=0, send_all_to_all=False):
ControlFlow.__init__(self, simulation_cfg)
self.sync_callback = RecordingSyncCallback(input_logger,
record_deterministic_values=record_deterministic_values)
self.check_interval = check_interval
if self.check_interval is None:
print >> sys.stderr, "Fuzzer Warning: Check interval is not specified... not checking invariants"
if invariant_check_name not in name_to_invariant_check:
raise ValueError('''Unknown invariant check %s.\n'''
'''Invariant check name must be defined in config.invariant_checks''',
invariant_check_name)
self.invariant_check_name = invariant_check_name
self.invariant_check = name_to_invariant_check[invariant_check_name]
self.log_invariant_checks = log_invariant_checks
self.traffic_inject_interval = traffic_inject_interval
if random_seed is None:
random_seed = random.randint(0, sys.maxint)
self.random_seed = random_seed
self.random = random.Random(random_seed)
self.traffic_generator = TrafficGenerator(self.random)
self.delay = delay
self.steps = steps
self.params = object()
self._load_fuzzer_params(fuzzer_params)
self._input_logger = input_logger
self.halt_on_violation = halt_on_violation
self.delay_startup = delay_startup
self.print_buffers = print_buffers
self.mock_link_discovery = mock_link_discovery
self.initialization_rounds = initialization_rounds
self._pending_self_packets = self.initialization_rounds != 0
self._pending_all_to_all = send_all_to_all
self._all_to_all_iterations = 0
self._all_to_all_interval = 5
self.blocked_controller_pairs = []
self.unblocked_controller_pairs = []
self.logical_time = 0
self.never_drop_whitelisted_packets = never_drop_whitelisted_packets
self.delay_flow_mods = False
def _log_input_event(self, event, **kws):
if self._input_logger is not None:
if self._initializing():
event.prunable = False
event.round = self.logical_time
self._input_logger.log_input_event(event, **kws)
def _load_fuzzer_params(self, fuzzer_params_path):
if fuzzer_params_path.endswith('.py'):
fuzzer_params_path = fuzzer_params_path[:-3].replace("/", ".")
try:
self.params = __import__(fuzzer_params_path, globals(), locals(), ["*"])
self.params.link_discovery_rate = 0.1
except:
raise IOError("Could not find fuzzer params config file: %s" %
fuzzer_params_path)
def _compute_unblocked_controller_pairs(self):
sorted_controllers = sorted(self.simulation.controller_manager.controllers, key=lambda c: c.cid)
unblocked_pairs = []
for i in xrange(0, len(sorted_controllers)):
for j in xrange(i+1, len(sorted_controllers)):
c1 = sorted_controllers[i]
c2 = sorted_controllers[j]
c1.unblock_peer(c2)
c2.unblock_peer(c1)
unblocked_pairs.append((c1.cid, c2.cid))
return unblocked_pairs
def init_results(self, results_dir):
if self._input_logger:
self._input_logger.open(results_dir)
params_file = re.sub(r'\.pyc$', '.py', self.params.__file__)
if os.path.exists(params_file):
new_params_file = os.path.join(results_dir, os.path.basename(params_file))
if os.path.abspath(params_file) != os.path.abspath(new_params_file):
shutil.copy(params_file, new_params_file)
orig_config_path = os.path.join(results_dir, "orig_config.py")
if os.path.exists(orig_config_path):
with open(orig_config_path, "a") as out:
out.write('''\nraise RuntimeError("Please add this parameter to Fuzzer: '''
'''fuzzer_params='%s'")''' % new_params_file)
def _initializing(self):
return self._pending_self_packets or self._pending_all_to_all
def simulate(self):
self.simulation = self.simulation_cfg.bootstrap(self.sync_callback)
assert(isinstance(self.simulation.patch_panel, BufferedPatchPanel))
self.traffic_generator.set_topology(self.simulation.topology)
self.unblocked_controller_pairs = self._compute_unblocked_controller_pairs()
self.delay_flow_mods = self.params.ofp_cmd_passthrough_rate != 1.0
if self.delay_flow_mods:
for switch in self.simulation.topology.switches:
assert(isinstance(switch, FuzzSoftwareSwitch))
switch.use_delayed_commands()
switch.randomize_flow_mods()
return self.loop()
def loop(self):
if self.steps:
end_time = self.logical_time + self.steps
else:
end_time = sys.maxint
self.interrupted = False
self.old_interrupt = None
def interrupt(sgn, frame):
msg.interactive("Interrupting fuzzer, dropping to console (press ^C again to terminate)")
signal.signal(signal.SIGINT, self.old_interrupt)
self.old_interrupt = None
self.interrupted = True
raise KeyboardInterrupt()
self.old_interrupt = signal.signal(signal.SIGINT, interrupt)
try:
self._log_input_event(ConnectToControllers())
self.simulation.connect_to_controllers()
if self.delay_startup:
log.info("Waiting until first OpenFlow message received..")
while len(self.simulation.openflow_buffer.pending_receives) == 0:
self.simulation.io_master.select(self.delay)
while self.logical_time < end_time:
self.logical_time += 1
try:
if not self._initializing():
self.trigger_events()
halt = self.maybe_check_invariant()
if halt:
self.simulation.set_exit_code(5)
break
self.maybe_inject_trace_event()
else:
self.check_pending_messages(pass_through=True)
if self.logical_time > self.initialization_rounds:
if self._pending_self_packets:
self._send_initialization_packets(send_to_self=True)
self._pending_self_packets = False
elif self._pending_all_to_all and (self.logical_time % self._all_to_all_interval) == 0:
self._send_initialization_packets(send_to_self=False)
self._all_to_all_iterations += 1
if self._all_to_all_iterations > len(self.simulation.topology.hosts):
log.info("Done initializing")
self._pending_all_to_all = False
self.check_dataplane(pass_through=True)
msg.event("Round %d completed." % self.logical_time)
time.sleep(self.delay)
except KeyboardInterrupt as e:
if self.interrupted:
interactive = Interactive(self.simulation_cfg, self._input_logger)
interactive.simulate(self.simulation, bound_objects=( ('fuzzer', self), ))
self.old_interrupt = signal.signal(signal.SIGINT, interrupt)
else:
raise e
log.info("Terminating fuzzing after %d rounds" % self.logical_time)
if self.print_buffers:
self._print_buffers()
finally:
if self.old_interrupt:
signal.signal(signal.SIGINT, self.old_interrupt)
if self._input_logger is not None:
self._input_logger.close(self, self.simulation_cfg)
return self.simulation
def _send_initialization_packet(self, host, send_to_self=False):
traffic_type = "icmp_ping" if send_to_self else "arp_query"
(dp_event, send) = self.traffic_generator.generate(traffic_type, host, send_to_self=send_to_self)
self._log_input_event(TrafficInjection(dp_event=dp_event, host_id=host.hid))
send()
def _send_initialization_packets(self, send_to_self=False):
for host in self.simulation.topology.hosts:
self._send_initialization_packet(host, send_to_self=send_to_self)
def _print_buffers(self):
buffered_events = []
log.info("Pending Receives:")
of_buf = self.simulation.openflow_buffer
for (dpid, controller_id) in of_buf.conns_with_pending_receives():
for p in of_buf.get_pending_receives(dpid, controller_id):
log.info("- %r", p)
message = of_buf.get_message_receipt(p)
b64_packet = base64_encode(message)
event = ControlMessageReceive(p.dpid, p.controller_id, p.fingerprint, b64_packet=b64_packet)
buffered_events.append(event)
log.info("Pending Sends:")
for (dpid, controller_id) in of_buf.conns_with_pending_sends():
for p in of_buf.get_pending_sends(dpid, controller_id):
log.info("- %r", p)
message = of_buf.get_message_send(p)
b64_packet = base64_encode(message)
event = ControlMessageSend(p.dpid, p.controller_id, p.fingerprint, b64_packet=b64_packet)
buffered_events.append(event)
if self._input_logger is not None:
self._input_logger.dump_buffered_events(buffered_events)
def maybe_check_invariant(self):
if (self.check_interval is not None and
(self.logical_time % self.check_interval) == 0):
def do_invariant_check():
if self.log_invariant_checks:
self._log_input_event(CheckInvariants(round=self.logical_time,
invariant_check_name=self.invariant_check_name))
violations = self.invariant_check(self.simulation)
self.simulation.violation_tracker.track(violations, self.logical_time)
persistent_violations = self.simulation.violation_tracker.persistent_violations
transient_violations = list(set(violations) - set(persistent_violations))
if violations != []:
msg.fail("The following correctness violations have occurred: %s"
% str(violations))
else:
msg.success("No correctness violations!")
if transient_violations != []:
self._log_input_event(InvariantViolation(transient_violations))
if persistent_violations != []:
msg.fail("Persistent violations detected!: %s"
% str(persistent_violations))
self._log_input_event(InvariantViolation(persistent_violations, persistent=True))
if self.halt_on_violation:
return True
return do_invariant_check()
def maybe_inject_trace_event(self):
if (self.simulation.dataplane_trace and
(self.logical_time % self.traffic_inject_interval) == 0):
(dp_event, host) = self.simulation.dataplane_trace.peek()
if dp_event is not None:
self._log_input_event(TrafficInjection(dp_event=dp_event,
host_id=host.hid))
self.simulation.dataplane_trace.inject_trace_event()
def trigger_events(self):
self.check_dataplane()
self.check_tcp_connections()
self.check_pending_messages()
self.check_pending_commands()
self.check_switch_crashes()
self.check_link_failures()
self.fuzz_traffic()
self.check_controllers()
self.check_migrations()
self.check_intracontroller_blocks()
def check_dataplane(self, pass_through=False):
def drop(dp_event, log_event=True):
if log_event:
self._log_input_event(DataplaneDrop(dp_event.fingerprint,
host_id=dp_event.get_host_id(),
dpid=dp_event.get_switch_id()))
self.simulation.patch_panel.drop_dp_event(dp_event)
def permit(dp_event):
self._log_input_event(DataplanePermit(dp_event.fingerprint))
self.simulation.patch_panel.permit_dp_event(dp_event)
def in_whitelist(dp_event):
return (self.never_drop_whitelisted_packets and
OpenFlowBuffer.in_whitelist(dp_event.fingerprint[0]))
for dp_event in self.simulation.patch_panel.queued_dataplane_events:
if pass_through:
permit(dp_event)
elif not self.simulation.topology.ok_to_send(dp_event):
drop(dp_event, log_event=False)
elif (self.random.random() >= self.params.dataplane_drop_rate or in_whitelist(dp_event)):
permit(dp_event)
else:
drop(dp_event)
if self.mock_link_discovery and self.random.random() < self.params.link_discovery_rate:
link = self.random.choice(self.simulation.topology.network_links)
attrs = [link.start_software_switch.dpid, link.start_port.port_no,
link.end_software_switch.dpid, link.end_port.port_no]
live_controllers = self.simulation.controller_manager.live_controllers
if live_controllers != []:
c = self.random.choice(list(live_controllers))
self._log_input_event(LinkDiscovery(c.cid, attrs))
c.sync_connection.send_link_notification(attrs)
def check_tcp_connections(self):
for (switch, connection) in self.simulation.topology.unblocked_controller_connections:
if self.random.random() < self.params.controlplane_block_rate:
self._log_input_event(ControlChannelBlock(switch.dpid,
connection.get_controller_id()))
self.simulation.topology.block_connection(connection)
for (switch, connection) in self.simulation.topology.blocked_controller_connections:
if self.random.random() < self.params.controlplane_unblock_rate:
self._log_input_event(ControlChannelUnblock(switch.dpid,
controller_id=connection.get_controller_id()))
self.simulation.topology.unblock_connection(connection)
def check_pending_messages(self, pass_through=False):
of_buf = self.simulation.openflow_buffer
for (dpid, controller_id) in of_buf.conns_with_pending_receives():
for pending_receipt in of_buf.get_pending_receives(dpid, controller_id):
if (not pass_through and
self.random.random() > self.params.ofp_message_receipt_rate):
break
message = of_buf.get_message_receipt(pending_receipt)
b64_packet = base64_encode(message)
self._log_input_event(ControlMessageReceive(pending_receipt.dpid,
pending_receipt.controller_id,
pending_receipt.fingerprint,
b64_packet=b64_packet))
of_buf.schedule(pending_receipt)
for (dpid, controller_id) in of_buf.conns_with_pending_sends():
for pending_send in of_buf.get_pending_sends(dpid, controller_id):
if (not pass_through and
self.random.random() > self.params.ofp_message_send_rate):
break
message = of_buf.get_message_send(pending_send)
b64_packet = base64_encode(message)
self._log_input_event(ControlMessageSend(pending_send.dpid,
pending_send.controller_id,
pending_send.fingerprint,
b64_packet=b64_packet))
of_buf.schedule(pending_send)
|
Apache License 2.0
|
blurstudio/cross3d
|
cross3d/abstract/abstractcontainer.py
|
AbstractContainer.clearMaterialOverrideFlags
|
python
|
def clearMaterialOverrideFlags(self):
self._materialOverrideFlags = 0
return True
|
Return whether or not the inputed flag is set in the override options
:return: bool
|
https://github.com/blurstudio/cross3d/blob/277968d1227de740fc87ef61005c75034420eadf/cross3d/abstract/abstractcontainer.py#L230-L238
|
import cross3d
from cross3d import SceneWrapper, abstractmethod
from cross3d.constants import ObjectType
class AbstractContainer(SceneWrapper):
def __init__(self, scene, nativeGroup):
SceneWrapper.__init__(self, scene, nativeGroup)
self._materialOverride = None
self._materialOverrideFlags = 0
self._materialOverrideAdvancedState = {}
self._propSetOverride = None
@abstractmethod
def _addNativeAtmospherics(self, nativeAtmospherics):
return False
@abstractmethod
def _addNativeFx(self, nativeFx):
return False
@abstractmethod
def _addNativeObjects(self, nativeObjects):
return False
def _clearNativeMaterialOverride(self):
return self._scene._clearNativeMaterialOverride(self._nativeObjects())
def _clearNativePropSetOverride(self):
return self._scene._clearNativePropSetOverride(self._nativeObjects())
@abstractmethod
def _nativeAtmospherics(self):
return []
@abstractmethod
def _nativeFxs(self):
return []
@abstractmethod
def _nativeObjects(self):
return []
@abstractmethod
def _nativeMaterials(self, baseMaterials=False):
return []
@abstractmethod
def _nativeMaterialOverride(self):
return None
@abstractmethod
def _setNativeAtmospherics(self, nativeAtmospherics):
return False
@abstractmethod
def _setNativeFxs(self, nativeFxs):
return False
def _setNativeMaterialOverride(self, nativeMaterial, options= -1, advancedState=None):
if (options == -1):
options = self.materialOverrideFlags()
else:
self.setMaterialOverrideFlags(options)
if (advancedState == None):
advancedState = self.materialOverrideAdvancedState()
else:
self.setMaterialOverrideAdvancedState(advancedState)
return self._scene._setNativeMaterialOverride(self._nativeObjects(), nativeMaterial, options=options, advancedState=advancedState)
def _setNativePropSetOverride(self, nativePropSet):
if (nativePropSet):
return self._scene._setNativePropSetOverride(self._nativeObjects(), nativePropSet)
else:
return self._scene._clearNativePropSetOverride(self._nativeObjects())
def addAtmospherics(self, atmospherics):
return self._addNativeAtmospherics([ atmos.nativePointer() for atmos in atmospherics ])
def addFxs(self, fxs):
return self._addNativeFxs([ fx.nativePointer() for fx in fxs ])
def addObjects(self, objects):
return self._addNativeObjects([ object.nativePointer() for object in objects ])
def addSelection(self):
return self._addNativeObjects(self._scene._nativeSelection())
def atmospherics(self):
from cross3d import SceneAtmospheric
return [ SceneAtmospheric(self._scene, atmos) for atmos in self._nativeAtmospherics() ]
def clearMaterialOverride(self):
return self._clearNativeMaterialOverride()
|
MIT License
|
odatnurd/overrideaudit
|
lib/utils.py
|
SettingsGroup.has
|
python
|
def has(self, view):
for key in self.key_list:
if not view.settings().has(key):
return False
return True
|
Check if the settings in this group are all set on the provided view.
|
https://github.com/odatnurd/overrideaudit/blob/2e1601753af1b4ffc57e362bf8423c2db0c6d317/lib/utils.py#L41-L48
|
import sublime
import threading
class SettingsGroup():
def __init__(self, *settings):
self.key_list = list(settings)
def apply(self, view, *values):
if len(values) != len(self.key_list):
raise IndexError("Expected %d settings" % len(self.key_list))
for setting in zip(self.key_list, values):
view.settings().set(*setting)
def remove(self, view):
for setting in self.key_list:
view.settings().erase(setting)
|
MIT License
|
jollejolles/pirecorder
|
pirecorder/pirecorder.py
|
PiRecorder.schedule
|
python
|
def schedule(self, jobname = None, timeplan = None, enable = True,
showjobs = False, delete = None, test = False):
S = Schedule(jobname, timeplan, enable, showjobs, delete, test,
logfolder = self.logfolder, internal=True,
configfile = self.configfilerel)
|
Schedule future recordings
Parameters
----------
jobname : str, default = None
Name for the scheduled recorder task to create, modify or remove.
timeplan : string, default = None
Code string representing the time planning for the recorder to run
with current configuration set. Build on CRON, the time plan should
consist of the following parts:
* * * * *
- - - - -
| | | | |
| | | | +----- day of week (0 - 7) (sunday = 0 or 7)
| | | +---------- month (1 - 12)
| | +--------------- day of month (1 - 31)
| +-------------------- hour (0 - 23)
+------------------------- min (0 - 59)
Each of the parts supports wildcards (*), ranges (2-5), and lists
(2,5,6,11). For example, if you want to schedule a recording at
22:00, every workday of the week, enter the code '0 22 * * 1-5' If
uncertain, crontab.guru is a great website for checking your CRON
code. Note that the minimum time between subsequent scheduled
recordings is 1 minute. Smaller intervals between recordings is
possible for images with the imgseq command with the Record method.
enable : bool, default = None
If the scheduled job should be enabled or not.
showjobs : bool, default = False
If the differently timed tasks should be shown or not.
delete : [None, "job", "all"], default = None
If a specific job ('job'), all jobs ('all') or no jobs (None)
should be cleared from the scheduler.
test : bool; default = False
Determine if the timeplan is valid and how often it will run the
record command.
configfile : str, default = "pirecorder.conf"
The name of the configuration file to be used for the scheduled
recordings. Make sure the file exists, otherwise the default
configuration settings will be used.
Note: Make sure Recorder configuration timing settings are within the
timespan between subsequent scheduled recordings based on the provided
timeplan. For example, a video duration of 20 min and a scheduled
recording every 15 min between 13:00-16:00 (*/15 13-16 * * *) will fail.
This will be checked automatically.
|
https://github.com/jollejolles/pirecorder/blob/96cc15f86ccaa087ed2b7649ea4ac4d95a11aebe/pirecorder/pirecorder.py#L507-L560
|
from __future__ import print_function
from builtins import input
import os
import cv2
import sys
import yaml
import argparse
import numpy as np
from io import BytesIO
from ast import literal_eval
from datetime import datetime
from socket import gethostname
from fractions import Fraction
from time import sleep, strftime
from localconfig import LocalConfig
from pythutils.sysutils import Logger, lineprint, homedir, checkfrac, isrpi
from pythutils.fileutils import name
from pythutils.mediautils import picamconv
from .stream import Stream
from .camconfig import Camconfig
from .schedule import Schedule
from .__version__ import __version__
class PiRecorder:
def __init__(self, configfile = "pirecorder.conf", logging = True):
if not isrpi():
lineprint("PiRecorder only works on a raspberry pi. Exiting..")
return
self.system = "auto"
self.host = gethostname()
self.home = homedir()
self.setupdir = self.home + "pirecorder"
self.logfolder = self.setupdir+"/logs/"
if not os.path.exists(self.logfolder):
os.makedirs(self.setupdir)
os.makedirs(self.logfolder)
lineprint("Setup folder created ("+self.setupdir+")..")
if not os.path.exists(self.logfolder):
lineprint("Setup folder exists but was not set up properly..")
if logging:
self.log = Logger(self.logfolder+"/pirecorder.log")
self.log.start()
print("")
lineprint("pirecorder "+__version__+" started!")
lineprint("="*47, False)
self.brightfile = self.setupdir+"/cusbright.yml"
self.configfilerel = configfile
self.configfile = self.setupdir+"/"+configfile
self.config = LocalConfig(self.configfile, compact_form = True)
if not os.path.isfile(self.configfile):
lineprint("Config file "+configfile+" not found, new file created..")
for section in ["rec","cam","cus","img","vid"]:
if section not in list(self.config):
self.config.add_section(section)
self.settings(recdir="pirecorder/recordings",subdirs=False,
label="test",rectype="img",rotation=0,brighttune=0,
roi=None,gains=(1.0,2.5),brightness=45,contrast=10,
saturation=0,iso=200,sharpness=0,compensation=0,
shutterspeed=8000,imgdims=(2592,1944),maxres=None,
viddims=(1640,1232),imgfps=1,vidfps=24,imgwait=5.0,
imgnr=12,imgtime=60,imgquality=50,vidduration=10,
viddelay=10,vidquality=11,automode=True,internal="")
lineprint("Config settings stored..")
else:
lineprint("Config file "+configfile+" loaded..")
lineprint("Recording " + self.config.rec.rectype + " in " + self.home + self.config.rec.recdir)
self._imgparams()
self._shuttertofps()
if self.config.rec.rectype == "imgseq":
if self.config.cam.shutterspeed/1000000.>=(self.config.img.imgwait/5):
lineprint("imgwait is not enough for provided shutterspeed" + ", will be overwritten..")
if self.config.rec.recdir == "NAS":
if not os.path.ismount(self.config.rec.recdir):
self.recdir = self.home
lineprint("Recdir not mounted, storing in home directory..")
self.recdir = self.home + self.config.rec.recdir
if not os.path.exists(self.recdir):
os.makedirs(self.recdir)
os.chdir(self.recdir)
def _setup_cam(self, auto = False, fps = None):
import picamera
import picamera.array
self.cam = picamera.PiCamera()
self.cam.rotation = self.config.cus.rotation
self.cam.exposure_compensation = self.config.cam.compensation
if self.config.rec.rectype in ["img","imgseq"]:
self.cam.resolution = literal_eval(self.config.img.imgdims)
self.cam.framerate = self.config.img.imgfps
if self.config.rec.rectype in ["vid","vidseq"]:
self.cam.resolution = picamconv(literal_eval(self.config.vid.viddims))
self.cam.framerate = self.config.vid.vidfps
if fps != None:
self.cam.framerate = fps
if self.config.cus.roi is None:
self.cam.zoom = (0,0,1,1)
self.resize = self.cam.resolution
else:
self.cam.zoom = literal_eval(self.config.cus.roi)
w = int(self.cam.resolution[0]*self.cam.zoom[2])
h = int(self.cam.resolution[1]*self.cam.zoom[3])
if self.config.rec.rectype in ["vid","vidseq"]:
self.resize = picamconv((w,h))
else:
self.resize = (w,h)
self.longexpo = False if self.cam.framerate >= 6 else True
self.cam.exposure_mode = "auto"
self.cam.awb_mode = "auto"
lineprint("Camera warming up..")
if auto or self.config.cam.automode:
self.cam.shutter_speed = 0
sleep(2)
elif self.cam.framerate >= 6:
sleep(6) if self.cam.framerate > 1.6 else sleep(10)
else:
sleep(2)
if not auto and self.config.cam.automode == False:
self.cam.shutter_speed = self.config.cam.shutterspeed
self.cam.exposure_mode = "off"
self.cam.awb_mode = "off"
self.cam.awb_gains = eval(self.config.cus.gains)
sleep(0.1)
brightness = self.config.cam.brightness + self.config.cus.brighttune
self.cam.brightness = brightness
self.cam.contrast = self.config.cam.contrast
self.cam.saturation = self.config.cam.saturation
self.cam.iso = self.config.cam.iso
self.cam.sharpness = self.config.cam.sharpness
self.rawCapture = picamera.array.PiRGBArray(self.cam,
size=self.cam.resolution)
def _imgparams(self, mintime = 0.45):
self.config.img.imgwait = max(mintime, self.config.img.imgwait)
totimg = int(self.config.img.imgtime / self.config.img.imgwait)
self.config.img.imgnr = min(self.config.img.imgnr, totimg)
def _shuttertofps(self, minfps = 1, maxfps = 40):
fps = round(1./(self.config.cam.shutterspeed/1000000.),2)
self.config.img.imgfps = min(max(fps, minfps), maxfps)
def _namefile(self):
imgtypes = ["img","imgseq"]
self.filetype = ".jpg" if self.config.rec.rectype in imgtypes else ".h264"
if self.config.rec.rectype == "imgseq":
date = strftime("%y%m%d")
counter = "im{counter:05d}" if self.config.img.imgnr>999 else "im{counter:03d}"
time = "{timestamp:%H%M%S}"
self.filename = "_".join([self.config.rec.label,date,self.host,counter,time])
self.filename = self.filename+self.filetype
else:
date = strftime("%y%m%d")
self.filename = "_".join([self.config.rec.label, date, self.host])+"_"
if self.config.rec.subdirs:
subdir = name("_".join([self.config.rec.label,date,self.host]))
os.makedirs(subdir, exist_ok=True)
self.filename = subdir+"/"+self.filename
def autoconfig(self):
self._setup_cam(auto=True)
with self.rawCapture as stream:
for a in range(5):
self.cam.capture(stream, format="bgr", use_video_port=True)
image = stream.array
stream.seek(0)
stream.truncate()
self.config.cam.shutterspeed = self.cam.exposure_speed
self.config.cus.gains = tuple([round(float(i),2) for i in self.cam.awb_gains])
self.config.save()
lineprint("Shutterspeed set to "+str(self.cam.exposure_speed))
lineprint("White balance gains set to "+str(self.config.cus.gains))
stream.close()
self.rawCapture.close()
self.cam.close()
def settings(self, **kwargs):
if "recdir" in kwargs:
self.config.rec.recdir = kwargs["recdir"]
if "subdirs" in kwargs:
self.config.rec.subdirs = kwargs["subdirs"]
if "label" in kwargs:
self.config.rec.label = kwargs["label"]
if "rectype" in kwargs:
self.config.rec.rectype = kwargs["rectype"]
if "maxres" in kwargs:
self.config.rec.maxres = kwargs["maxres"]
if isinstance(self.config.rec.maxres, tuple):
self.config.img.imgdims = self.config.rec.maxres
elif self.config.rec.maxres == "v2":
self.config.img.imgdims = (3264,2464)
elif self.config.rec.maxres == "hq":
self.config.img.imgdims = (4056,3040)
if "rotation" in kwargs:
self.config.cus.rotation = kwargs["rotation"]
if "brighttune" in kwargs:
self.config.cus.brighttune = kwargs["brighttune"]
if "roi" in kwargs:
self.config.cus.roi = kwargs["roi"]
if "gains" in kwargs:
self.config.cus.gains = kwargs["gains"]
if "automode" in kwargs:
self.config.cam.automode = kwargs["automode"]
if "brightness" in kwargs:
self.config.cam.brightness = kwargs["brightness"]
if "contrast" in kwargs:
self.config.cam.contrast = kwargs["contrast"]
if "saturation" in kwargs:
self.config.cam.saturation = kwargs["saturation"]
if "iso" in kwargs:
self.config.cam.iso = kwargs["iso"]
if "sharpness" in kwargs:
self.config.cam.sharpness = kwargs["sharpness"]
if "compensation" in kwargs:
self.config.cam.compensation = kwargs["compensation"]
if "shutterspeed" in kwargs:
self.config.cam.shutterspeed = kwargs["shutterspeed"]
if "imgdims" in kwargs:
self.config.img.imgdims = kwargs["imgdims"]
if "viddims" in kwargs:
self.config.vid.viddims = kwargs["viddims"]
if "imgfps" in kwargs:
self.config.img.imgfps = kwargs["imgfps"]
if "vidfps" in kwargs:
self.config.vid.vidfps = kwargs["vidfps"]
if "imgwait" in kwargs:
self.config.img.imgwait = kwargs["imgwait"]
if "imgnr" in kwargs:
self.config.img.imgnr = kwargs["imgnr"]
if "imgtime" in kwargs:
self.config.img.imgtime = kwargs["imgtime"]
if "imgquality" in kwargs:
self.config.img.imgquality = kwargs["imgquality"]
if "vidduration" in kwargs:
self.config.vid.vidduration = kwargs["vidduration"]
if "viddelay" in kwargs:
self.config.vid.viddelay = kwargs["viddelay"]
if "vidquality" in kwargs:
self.config.vid.vidquality = kwargs["vidquality"]
brightchange = False
if os.path.exists(self.brightfile):
with open(self.brightfile) as f:
brighttune = yaml.load(f, Loader=yaml.FullLoader)
if brighttune != self.config.cus.brighttune:
self.config.cus.brighttune = brighttune
brightchange = True
if len(kwargs) > 0 or brightchange:
self._imgparams()
self._shuttertofps()
if self.config.rec.rectype == "imgseq":
if self.config.cam.shutterspeed/1000000. >= (self.config.img.imgwait/5):
lineprint("imgwait is not enough for provided shutterspeed" + ", will be overwritten..")
self.config.save()
if "internal" not in kwargs:
lineprint("Config settings stored and loaded..")
def stream(self, fps = None):
lineprint("Opening stream for cam positioning and roi extraction..")
vidstream = Stream(internal=True, rotation=self.config.cus.rotation,
maxres=self.config.rec.maxres)
if vidstream.roi:
self.settings(roi=vidstream.roi, internal="")
lineprint("Roi stored..")
else:
lineprint("No roi selected..")
def camconfig(self, fps=None, vidsize=0.4):
lineprint("Opening stream for interactive configuration..")
fps = max(self.config.vid.vidfps,1) if fps==None else int(fps)
self._setup_cam(fps=fps)
configout = Camconfig(self.cam, auto=self.config.cam.automode,
vidsize=vidsize)
if len(configout)>0:
self.settings(**configout)
|
Apache License 2.0
|
bitmovin/bitmovin-api-sdk-python
|
bitmovin_api_sdk/models/marlin_drm.py
|
MarlinDrm.kid
|
python
|
def kid(self):
return self._kid
|
Gets the kid of this MarlinDrm.
16 byte key in hex (32 characters) (required)
:return: The kid of this MarlinDrm.
:rtype: string_types
|
https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/marlin_drm.py#L92-L101
|
from enum import Enum
from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
from bitmovin_api_sdk.models.drm import Drm
import pprint
import six
class MarlinDrm(Drm):
@poscheck_model
def __init__(self,
id_=None,
name=None,
description=None,
created_at=None,
modified_at=None,
custom_data=None,
outputs=None,
key=None,
kid=None):
super(MarlinDrm, self).__init__(id_=id_, name=name, description=description, created_at=created_at, modified_at=modified_at, custom_data=custom_data, outputs=outputs)
self._key = None
self._kid = None
self.discriminator = None
if key is not None:
self.key = key
if kid is not None:
self.kid = kid
@property
def openapi_types(self):
types = {}
if hasattr(super(MarlinDrm, self), 'openapi_types'):
types = getattr(super(MarlinDrm, self), 'openapi_types')
types.update({
'key': 'string_types',
'kid': 'string_types'
})
return types
@property
def attribute_map(self):
attributes = {}
if hasattr(super(MarlinDrm, self), 'attribute_map'):
attributes = getattr(super(MarlinDrm, self), 'attribute_map')
attributes.update({
'key': 'key',
'kid': 'kid'
})
return attributes
@property
def key(self):
return self._key
@key.setter
def key(self, key):
if key is not None:
if not isinstance(key, string_types):
raise TypeError("Invalid type for `key`, type has to be `string_types`")
self._key = key
@property
|
MIT License
|
getnikola/plugins
|
v7/latex/latex/__init__.py
|
LaTeXContext.get_name
|
python
|
def get_name(self):
return '(unknown:{0})'.format(self.id) if self.name is None else self.name
|
Return name associated to context.
|
https://github.com/getnikola/plugins/blob/afafcec8a1530ee74dadfbe68ffa190b12a5a622/v7/latex/latex/__init__.py#L64-L66
|
from __future__ import unicode_literals
import os
import io
import nikola.plugin_categories
import nikola.utils
import re
import json
from . import parser, htmlify
LOGGER = nikola.utils.get_logger('compile_latex', nikola.utils.STDERR_HANDLER)
class LaTeXContext(object):
id = None
def __init__(self, id, lang, thm_names, name=None):
self.id = id
self.name = name
self.lang = lang
self.thm_names = thm_names
self.__file_deps_fragment = set()
self.__file_deps_page = set()
self.__uptodate_deps_fragment = list()
self.__uptodate_deps_page = list()
self.__plugin_data = {}
self.__link_providers = []
|
MIT License
|
xknx/xknx
|
xknx/remote_value/remote_value_switch.py
|
RemoteValueSwitch.payload_valid
|
python
|
def payload_valid(self, payload: DPTArray | DPTBinary | None) -> DPTBinary | None:
return payload if isinstance(payload, DPTBinary) else None
|
Test if telegram payload may be parsed.
|
https://github.com/xknx/xknx/blob/87666cc9bd9da64a84305baeff84486097346111/xknx/remote_value/remote_value_switch.py#L45-L47
|
from __future__ import annotations
from typing import TYPE_CHECKING
from xknx.dpt import DPTArray, DPTBinary
from xknx.exceptions import ConversionError, CouldNotParseTelegram
from .remote_value import AsyncCallbackType, GroupAddressesType, RemoteValue
if TYPE_CHECKING:
from xknx.xknx import XKNX
class RemoteValueSwitch(RemoteValue[DPTBinary, bool]):
def __init__(
self,
xknx: XKNX,
group_address: GroupAddressesType | None = None,
group_address_state: GroupAddressesType | None = None,
sync_state: bool | int | float | str = True,
device_name: str | None = None,
feature_name: str = "State",
after_update_cb: AsyncCallbackType | None = None,
invert: bool = False,
):
super().__init__(
xknx,
group_address,
group_address_state,
sync_state=sync_state,
device_name=device_name,
feature_name=feature_name,
after_update_cb=after_update_cb,
)
self.invert = bool(invert)
|
MIT License
|
mecha-karen/cake
|
cake/parsing/expression.py
|
Expression.append
|
python
|
def append(self, expr: typing.Union[str, "Expression"]) -> None:
if isinstance(expr, Expression):
expr = Expression.expression
self.__expression += expr
|
Add a new expression onto your current expression
.. code-block:: py
>>> from cake import Expression
>>> y = Expression("2x + 2")
>>> y.append(" * 2")
>>> y
2x + 2 * 2
Parameters
----------
expr: :class:`~typing.Union[str, Expression]`
The expression to append
|
https://github.com/mecha-karen/cake/blob/f7bd11a137616c477afbf4d0121edb60b6aeea9a/cake/parsing/expression.py#L699-L718
|
import re
import typing
import string
from cake import abc, errors
import cake
from ..core.markers import Operator, Symbol, PlusOrMinus, FunctionMarker
from ..core.types.complex import Complex
from ..core.types.irrational import Irrational
from ..core.unknown import Unknown
from .equation import Equation
from ._ast import *
from cake.helpers import convert_type
from tokenize import (
tokenize,
ENDMARKER,
NEWLINE,
ENCODING,
OP,
NAME,
NUMBER,
ERRORTOKEN,
)
from io import BytesIO
ASCII_CHARS = list(string.ascii_lowercase)
BLACKLISTED = list(abc.KEYWORDS.keys()) + list(abc.CONSTANTS.keys())
VALID_SYMBOLS = {"!", "(", ")"}
IGNORE = (ENDMARKER, NEWLINE, ENCODING)
FIND_UNKNOWNS = re.compile("[a-zA-Z]+", re.IGNORECASE)
INVALID_OPS = re.compile("[a-zA-Z]+[0-9]+", re.IGNORECASE)
subExecGlobals = {'math': __import__('math'), 'cake': __import__('cake')}
class Expression(object):
def __new__(
cls, expression: typing.Union[str, list], *default_args, **default_kwargs
):
multiple = expression.split("\n") if type(expression) == str else expression
if multiple == Ellipsis:
multiple = ""
if len(multiple) > 1:
eqs = list()
for eq in multiple:
eqs.append(Expression(eq, *default_args, **default_kwargs))
return eqs
return super(Expression, cls).__new__(
Expression, *default_args, **default_kwargs
)
def __init__(
self,
expression: typing.Union[str, typing.BinaryIO],
*default_args,
**default_kwargs,
) -> None:
default_args = list(default_args)
if hasattr(expression, "seek"):
self.__expression = expression.read().decode(
encoding="ASCII", errors="ignore"
)
else:
if expression == Ellipsis:
expression = ""
self.__expression = expression.lower()
self.args = default_args
self.kwargs = default_kwargs
self.__mappings = self._sort_values(*default_args, **default_kwargs)
def _sort_values(self, *args, **kwargs) -> dict:
unknowns = FIND_UNKNOWNS.findall(self.__expression)
for value in unknowns.copy():
if value in BLACKLISTED:
unknowns.remove(value)
as_dict = {i: None for i in unknowns}
keys = list(as_dict.keys())
if not keys:
return {}
current_key = keys[0]
current_index = 0
for arg in args:
if (current_index + 1) > len(keys):
break
as_dict[current_key] = arg
current_index += 1
for key, value in kwargs.items():
if key in as_dict:
as_dict[key] = value
as_dict = {k: v for k, v in as_dict.items() if v != None}
return as_dict
def _sub(
self,
update_mappings: bool = False,
return_tokens: bool = False,
*args,
**kwargs,
):
if update_mappings:
self.update_variables(*args, **kwargs)
unknown_mapping = self.__mappings
else:
unknown_mapping = self.update_variables(False, *args, **kwargs)
invalid = INVALID_OPS.findall(self.expression)
if invalid:
found_first = invalid[0]
index = 0
while True:
if index == len(found_first):
break
if found_first[index].isdigit():
break
index += 1
possible_correct = found_first[:index]
possible_correct += " "
possible_correct += found_first[index:]
raise errors.SubstitutionError(
f'String `{found_first}`, followed by integer. Perhaps you ment "{possible_correct}"'
)
as_file = BytesIO(self.expression.encode(encoding="ASCII", errors="ignore"))
as_file.seek(0)
tokens = list(tokenize(as_file.readline))
if not tokens:
return []
if tokens[0].type == ENCODING:
tokens.pop(0)
presence = list()
OPEN_BRACKETS = 0
ACTUAL_INDEX = 0
TOKEN_INDEX = 0
SKIP = 0
while True:
if TOKEN_INDEX > (len(tokens) - 1):
break
if SKIP:
SKIP -= 1
TOKEN_INDEX += 1
continue
token = tokens[TOKEN_INDEX]
string = (token.string).lower()
type_ = token.type
if type_ in IGNORE:
pass
elif type_ == OP:
if string == "(":
POS_TOKENS = tokens[TOKEN_INDEX:]
is_plus = POS_TOKENS[0:5]
to_mapping = "".join([i.string for i in is_plus])
if to_mapping in ["(+|-)", "(-|+)"]:
SKIP += 4
presence.append(PlusOrMinus())
else:
try:
comp = Complex(raw=to_mapping)
presence.append(comp)
SKIP += 4
except ValueError:
presence.append(Symbol("("))
OPEN_BRACKETS += 1
elif string == ")":
if OPEN_BRACKETS < 1:
INCORRECT_BRACK_INDEX = token.start[1]
raise errors.SubstitutionError(
f"Unexpected `)` at index {INCORRECT_BRACK_INDEX}"
)
presence.append(Symbol(")"))
OPEN_BRACKETS -= 1
else:
string_ = abc.MAP_OPERATORS.get(string, string)
try:
op = Operator(string_)
presence.append(op)
except ValueError as e:
raise errors.SubstitutionError(
f"Unknown Operator: {string}"
) from e
elif type_ in [NAME, ERRORTOKEN]:
TK_INDEX = (TOKEN_INDEX + 1)
TOKENS = list()
while True:
if TK_INDEX > len(tokens):
break
tk = tokens[TK_INDEX]
if tk.type == NAME:
TOKENS.append(tk)
SKIP += 1
else:
break
TK_INDEX += 1
if TOKENS:
string = ' '.join(map(lambda _: _.string, TOKENS))
constant = abc.CONSTANTS.get(string)
function = abc.KEYWORDS.get(string)
symbol_func = abc.SYMBOL_KW.get(string)
map_op = abc.MAP_OPERATORS.get(string)
if len([i for i in (constant, function, symbol_func, map_op) if i is not None]) > 1:
raise errors.SubstitutionError(
f"{string} is defined as multiple keywords"
)
elif constant:
presence.append(Irrational(constant))
elif function:
POS_TOKENS = tokens[(TOKEN_INDEX + 1) :]
if not POS_TOKENS:
raise errors.SubstitutionError(
f"{string} Called with no parameters"
)
if POS_TOKENS[0].string == "(":
WRAPPED_IN_BRACKETS = True
else:
WRAPPED_IN_BRACKETS = False
if not WRAPPED_IN_BRACKETS:
_, COL = POS_TOKENS[0].start
EQ = self.expression[COL:]
EVALUATE = EQ.split(" ")[0]
TREE, TOKENS = Expression(EVALUATE)._sub(
return_tokens=True, **self._sort_values(*args, **kwargs)
)
else:
FUNQ_EQ = ""
BRACKS = 0
for POSFIX in POS_TOKENS:
if POSFIX.string == "(":
BRACKS += 1
FUNQ_EQ += " ( "
elif POSFIX.string == ")":
if BRACKS < 1:
OPEN_BRACKETS -= 1
presence.append(Symbol(")"))
break
BRACKS -= 1
FUNQ_EQ += " ) "
else:
FUNQ_EQ += f" {POSFIX.string} "
if BRACKS > 1:
raise errors.SubstitutionError(
f"{BRACKS} Unclosed brackets whilst evaluating {function.__qualname__}"
)
TREE, TOKENS = Expression(FUNQ_EQ)._sub(
return_tokens=True, **self._sort_values(*args, **kwargs)
)
if not TREE:
raise errors.SubstitutionError(
f"{string} Called with no parameters"
)
func = FunctionMarker(function, TREE)
SKIP += len(TOKENS)
presence.append(func)
elif symbol_func:
LAST_POSFIX = presence[-1]
func_name = symbol_func.__qualname__.title()
if isinstance(LAST_POSFIX, Operator):
raise errors.SubstitutionError(
f"{func_name} called on an operator ({LAST_POSFIX.value}), at index {token.start[1]}."
)
if isinstance(LAST_POSFIX, Symbol):
if LAST_POSFIX.value != ")":
raise errors.SubstitutionError(
f"{func_name} called on an open bracket, at index {token.start[1]}"
)
OPEN_BRACKS = 0
POS_INDEX = 0
POS_TOKENS = tokens[:TOKEN_INDEX][::-1]
for POS_TOKEN in POS_TOKENS:
string = POS_TOKEN.string
if string == ")":
OPEN_BRACKS += 1
elif string == "(":
OPEN_BRACKS -= 1
if OPEN_BRACKS < 1:
break
POS_INDEX += 1
if OPEN_BRACKS:
raise errors.SubstitutionError(
f'{OPEN_BRACKS} Unclosed brackets whilst evalutating "{symbol_func.__qualname__}"'
)
POS_TOKENS = POS_TOKENS[::-1]
PS_IND = (len(POS_TOKENS) - 1) - POS_INDEX
as_eq = [i.string for i in POS_TOKENS[PS_IND:]]
del presence[
((TOKEN_INDEX - POS_INDEX) - 1) : (TOKEN_INDEX + 1)
]
TREE = Expression(" ".join(as_eq))._sub(
**self._sort_values(*args, **kwargs)
)
func = FunctionMarker(symbol_func, TREE)
presence.append(func)
else:
new_pre = [Symbol("("), LAST_POSFIX, Symbol(")")]
func = FunctionMarker(symbol_func, new_pre)
presence[-1] = func
elif map_op:
presence.append(Operator(map_op))
else:
if string in unknown_mapping:
presence.append(convert_type(unknown_mapping[string]))
if not (string in ASCII_CHARS):
cd = '('
for st in string:
if st in unknown_mapping:
cd += str(unknown_mapping[st])
else:
if st not in ASCII_CHARS:
raise errors.SubstitutionError(
f"Unknown Token ({string}) at index {token.start[1]}"
)
cd += st
cd += ' * '
cd = cd[:-3] + ')'
presence.extend(Expression(cd, *self.args, **self.kwargs)._sub(
update_mappings,
*args, **kwargs))
else:
presence.append(Unknown(string))
elif type_ == NUMBER:
POS_TOKENS = tokens[TOKEN_INDEX:]
CURRENT_NUMBER = convert_type(string)
if not POS_TOKENS:
presence.append(CURRENT_NUMBER)
else:
NEXT = POS_TOKENS[1]
if NEXT.type == NAME:
constant = abc.CONSTANTS.get(NEXT.string)
function = abc.KEYWORDS.get(NEXT.string)
value = unknown_mapping.get(NEXT.string)
unk = Unknown(NEXT.string)
if value:
value = convert_type(value)
else:
value = unk
if constant:
SKIP += 1
presence.append(Irrational(constant))
elif not function:
SKIP += 1
presence.extend(
[
Symbol("("),
CURRENT_NUMBER,
Operator("*"),
value,
Symbol(")"),
]
)
else:
possible_correct = f"{string} * {NEXT.string}"
raise errors.SubstitutionError(
f'Invalid use of function "{function.__qualname__}" at index {NEXT.start[1]}. Perhaps you ment "{possible_correct}"'
)
else:
presence.append(CURRENT_NUMBER)
else:
if string.strip():
raise errors.SubstitutionError(
f"Unknown Token ({string}) at index {token.start[1]}"
)
ACTUAL_INDEX += len(string)
TOKEN_INDEX += 1
if OPEN_BRACKETS > 1:
raise errors.SubstitutionError(f"{OPEN_BRACKETS} Unclosed brackets")
if return_tokens:
return presence, tokens
return presence
def _glSubCode(self, update_mapping: bool = False, *args, **kwargs):
if "dirty" in kwargs:
dirty = True
vars = kwargs.pop('vars')
else:
vars = list()
dirty = False
presence = kwargs.pop('dirty', self._sub(update_mapping, *args, **kwargs))
code = str()
VARS = vars
pm = 0
for posfix in presence:
if isinstance(posfix, Unknown):
if posfix.value not in VARS:
VARS.append(f"{posfix.value} = Unknown('{posfix.value}')")
code += f'{posfix.value}'
elif isinstance(posfix, FunctionMarker):
func, dirtyTokens = posfix.value
evaluated = Expression(...)._glSubCode(*args, **{**kwargs, 'dirty': dirtyTokens, 'vars': VARS})
newVars, evaluated, _ = evaluated
VARS.extend(newVars)
VARS = list(set(VARS))
code += f"{func.__qualname__}({evaluated})"
elif isinstance(posfix, cake.Number):
code += f'{posfix.__class__.__name__}({posfix.value})'
elif isinstance(posfix, PlusOrMinus):
code += '(+|-)'
pm += 1
elif isinstance(posfix, (Symbol, Operator)):
posfix.validate
code += f'{posfix.value}'
if not dirty:
return "{}\n{}".format('\n'.join(VARS), code), pm
return VARS, code, pm
def convertToCode(self, update_mapping: bool = False, imports: tuple = tuple(), *args, **kwargs):
beginning = GEN_AUTO_CODE_MARKING(*imports)
code, _ = self._glSubCode(update_mapping, *args, **kwargs)
return f'{beginning}{code}'
def substitute(self, update_mapping: bool = False, imports: tuple = tuple(), *args, **kwargs):
_, pmCount = self._glSubCode(update_mapping, *args, **kwargs)
code = self.convertToCode(update_mapping, imports, *args, **kwargs)
combos = cake.getPlusMinusCombos(pmCount)
if not combos:
return execCode(code)
toBeEvaluated = list()
for combo in combos:
codeCopy = code
for symbol in combo:
ind = codeCopy.find('(+|-)')
cmCopy = list(codeCopy)
cmCopy[ind:(ind + 5)] = symbol
codeCopy = ''.join(cmCopy)
toBeEvaluated.append(codeCopy)
results = list()
for rCode in toBeEvaluated:
results.append(execCode(rCode))
return tuple(results)
def solve(self, *args, **kwargs):
raise NotImplementedError()
|
MIT License
|
openstack/swift
|
swift/account/backend.py
|
AccountBroker.merge_items
|
python
|
def merge_items(self, item_list, source=None):
def _really_merge_items(conn):
max_rowid = -1
curs = conn.cursor()
for rec in item_list:
rec.setdefault('storage_policy_index', 0)
record = [rec['name'], rec['put_timestamp'],
rec['delete_timestamp'], rec['object_count'],
rec['bytes_used'], rec['deleted'],
rec['storage_policy_index']]
query = '''
SELECT name, put_timestamp, delete_timestamp,
object_count, bytes_used, deleted,
storage_policy_index
FROM container WHERE name = ?
'''
if self.get_db_version(conn) >= 1:
query += ' AND deleted IN (0, 1)'
curs_row = curs.execute(query, (rec['name'],))
curs_row.row_factory = None
row = curs_row.fetchone()
if row:
row = list(row)
for i in range(5):
if record[i] is None and row[i] is not None:
record[i] = row[i]
if Timestamp(row[1]) > Timestamp(record[1]):
record[1] = row[1]
if Timestamp(row[2]) > Timestamp(record[2]):
record[2] = row[2]
if Timestamp(record[2]) > Timestamp(record[1]) and zero_like(record[3]):
record[5] = 1
else:
record[5] = 0
curs.execute('''
DELETE FROM container WHERE name = ? AND
deleted IN (0, 1)
''', (record[0],))
curs.execute('''
INSERT INTO container (name, put_timestamp,
delete_timestamp, object_count, bytes_used,
deleted, storage_policy_index)
VALUES (?, ?, ?, ?, ?, ?, ?)
''', record)
if source:
max_rowid = max(max_rowid, rec['ROWID'])
if source:
try:
curs.execute('''
INSERT INTO incoming_sync (sync_point, remote_id)
VALUES (?, ?)
''', (max_rowid, source))
except sqlite3.IntegrityError:
curs.execute('''
UPDATE incoming_sync
SET sync_point=max(?, sync_point)
WHERE remote_id=?
''', (max_rowid, source))
conn.commit()
with self.get() as conn:
try:
_really_merge_items(conn)
except sqlite3.OperationalError as err:
if 'no such column: storage_policy_index' not in str(err):
raise
self._migrate_add_storage_policy_index(conn)
_really_merge_items(conn)
|
Merge items into the container table.
:param item_list: list of dictionaries of {'name', 'put_timestamp',
'delete_timestamp', 'object_count', 'bytes_used',
'deleted', 'storage_policy_index'}
:param source: if defined, update incoming_sync with the source
|
https://github.com/openstack/swift/blob/dbd0960aeebedc0487699d3ca2a4d6f21e7ed524/swift/account/backend.py#L469-L549
|
from uuid import uuid4
import sqlite3
import six
from swift.common.utils import Timestamp, RESERVED_BYTE
from swift.common.db import DatabaseBroker, utf8encode, zero_like
DATADIR = 'accounts'
POLICY_STAT_TRIGGER_SCRIPT = """
CREATE TRIGGER container_insert_ps AFTER INSERT ON container
BEGIN
INSERT OR IGNORE INTO policy_stat
(storage_policy_index, container_count, object_count, bytes_used)
VALUES (new.storage_policy_index, 0, 0, 0);
UPDATE policy_stat
SET container_count = container_count + (1 - new.deleted),
object_count = object_count + new.object_count,
bytes_used = bytes_used + new.bytes_used
WHERE storage_policy_index = new.storage_policy_index;
END;
CREATE TRIGGER container_delete_ps AFTER DELETE ON container
BEGIN
UPDATE policy_stat
SET container_count = container_count - (1 - old.deleted),
object_count = object_count - old.object_count,
bytes_used = bytes_used - old.bytes_used
WHERE storage_policy_index = old.storage_policy_index;
END;
"""
class AccountBroker(DatabaseBroker):
db_type = 'account'
db_contains_type = 'container'
db_reclaim_timestamp = 'delete_timestamp'
def _initialize(self, conn, put_timestamp, **kwargs):
if not self.account:
raise ValueError(
'Attempting to create a new database with no account set')
self.create_container_table(conn)
self.create_account_stat_table(conn, put_timestamp)
self.create_policy_stat_table(conn)
def create_container_table(self, conn):
conn.executescript("""
CREATE TABLE container (
ROWID INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,
put_timestamp TEXT,
delete_timestamp TEXT,
object_count INTEGER,
bytes_used INTEGER,
deleted INTEGER DEFAULT 0,
storage_policy_index INTEGER DEFAULT 0
);
CREATE INDEX ix_container_deleted_name ON
container (deleted, name);
CREATE TRIGGER container_insert AFTER INSERT ON container
BEGIN
UPDATE account_stat
SET container_count = container_count + (1 - new.deleted),
object_count = object_count + new.object_count,
bytes_used = bytes_used + new.bytes_used,
hash = chexor(hash, new.name,
new.put_timestamp || '-' ||
new.delete_timestamp || '-' ||
new.object_count || '-' || new.bytes_used);
END;
CREATE TRIGGER container_update BEFORE UPDATE ON container
BEGIN
SELECT RAISE(FAIL, 'UPDATE not allowed; DELETE and INSERT');
END;
CREATE TRIGGER container_delete AFTER DELETE ON container
BEGIN
UPDATE account_stat
SET container_count = container_count - (1 - old.deleted),
object_count = object_count - old.object_count,
bytes_used = bytes_used - old.bytes_used,
hash = chexor(hash, old.name,
old.put_timestamp || '-' ||
old.delete_timestamp || '-' ||
old.object_count || '-' || old.bytes_used);
END;
""" + POLICY_STAT_TRIGGER_SCRIPT)
def create_account_stat_table(self, conn, put_timestamp):
conn.executescript("""
CREATE TABLE account_stat (
account TEXT,
created_at TEXT,
put_timestamp TEXT DEFAULT '0',
delete_timestamp TEXT DEFAULT '0',
container_count INTEGER,
object_count INTEGER DEFAULT 0,
bytes_used INTEGER DEFAULT 0,
hash TEXT default '00000000000000000000000000000000',
id TEXT,
status TEXT DEFAULT '',
status_changed_at TEXT DEFAULT '0',
metadata TEXT DEFAULT ''
);
INSERT INTO account_stat (container_count) VALUES (0);
""")
conn.execute('''
UPDATE account_stat SET account = ?, created_at = ?, id = ?,
put_timestamp = ?, status_changed_at = ?
''', (self.account, Timestamp.now().internal, str(uuid4()),
put_timestamp, put_timestamp))
def create_policy_stat_table(self, conn):
conn.executescript("""
CREATE TABLE policy_stat (
storage_policy_index INTEGER PRIMARY KEY,
container_count INTEGER DEFAULT 0,
object_count INTEGER DEFAULT 0,
bytes_used INTEGER DEFAULT 0
);
INSERT OR IGNORE INTO policy_stat (
storage_policy_index, container_count, object_count,
bytes_used
)
SELECT 0, container_count, object_count, bytes_used
FROM account_stat
WHERE container_count > 0;
""")
def get_db_version(self, conn):
if self._db_version == -1:
self._db_version = 0
for row in conn.execute('''
SELECT name FROM sqlite_master
WHERE name = 'ix_container_deleted_name' '''):
self._db_version = 1
return self._db_version
def _commit_puts_load(self, item_list, entry):
(name, put_timestamp, delete_timestamp, object_count, bytes_used,
deleted) = entry[:6]
if len(entry) > 6:
storage_policy_index = entry[6]
else:
storage_policy_index = 0
item_list.append(
{'name': name,
'put_timestamp': put_timestamp,
'delete_timestamp': delete_timestamp,
'object_count': object_count,
'bytes_used': bytes_used,
'deleted': deleted,
'storage_policy_index': storage_policy_index})
def empty(self):
self._commit_puts_stale_ok()
with self.get() as conn:
row = conn.execute(
'SELECT container_count from account_stat').fetchone()
return zero_like(row[0])
def make_tuple_for_pickle(self, record):
return (record['name'], record['put_timestamp'],
record['delete_timestamp'], record['object_count'],
record['bytes_used'], record['deleted'],
record['storage_policy_index'])
def put_container(self, name, put_timestamp, delete_timestamp,
object_count, bytes_used, storage_policy_index):
if Timestamp(delete_timestamp) > Timestamp(put_timestamp) and zero_like(object_count):
deleted = 1
else:
deleted = 0
record = {'name': name, 'put_timestamp': put_timestamp,
'delete_timestamp': delete_timestamp,
'object_count': object_count,
'bytes_used': bytes_used,
'deleted': deleted,
'storage_policy_index': storage_policy_index}
self.put_record(record)
def _is_deleted_info(self, status, container_count, delete_timestamp,
put_timestamp):
return status == 'DELETED' or zero_like(container_count) and (
Timestamp(delete_timestamp) > Timestamp(put_timestamp))
def _is_deleted(self, conn):
info = conn.execute('''
SELECT put_timestamp, delete_timestamp, container_count, status
FROM account_stat''').fetchone()
return self._is_deleted_info(**info)
def is_status_deleted(self):
with self.get() as conn:
row = conn.execute('''
SELECT put_timestamp, delete_timestamp, status
FROM account_stat''').fetchone()
return row['status'] == "DELETED" or (
row['delete_timestamp'] > row['put_timestamp'])
def get_policy_stats(self, do_migrations=False):
columns = [
'storage_policy_index',
'container_count',
'object_count',
'bytes_used',
]
def run_query():
return (conn.execute('''
SELECT %s
FROM policy_stat
''' % ', '.join(columns)).fetchall())
self._commit_puts_stale_ok()
info = []
with self.get() as conn:
try:
info = run_query()
except sqlite3.OperationalError as err:
if "no such column: container_count" in str(err):
if do_migrations:
self._migrate_add_container_count(conn)
else:
columns.remove('container_count')
info = run_query()
elif "no such table: policy_stat" in str(err):
if do_migrations:
self.create_policy_stat_table(conn)
info = run_query()
else:
raise
policy_stats = {}
for row in info:
stats = dict(row)
key = stats.pop('storage_policy_index')
policy_stats[key] = stats
return policy_stats
def get_info(self):
self._commit_puts_stale_ok()
with self.get() as conn:
return dict(conn.execute('''
SELECT account, created_at, put_timestamp, delete_timestamp,
status_changed_at, container_count, object_count,
bytes_used, hash, id
FROM account_stat
''').fetchone())
def list_containers_iter(self, limit, marker, end_marker, prefix,
delimiter, reverse=False, allow_reserved=False):
delim_force_gte = False
if six.PY2:
(marker, end_marker, prefix, delimiter) = utf8encode(
marker, end_marker, prefix, delimiter)
if reverse:
marker, end_marker = end_marker, marker
self._commit_puts_stale_ok()
if delimiter and not prefix:
prefix = ''
if prefix:
end_prefix = prefix[:-1] + chr(ord(prefix[-1]) + 1)
orig_marker = marker
with self.get() as conn:
results = []
while len(results) < limit:
query = """
SELECT name, object_count, bytes_used, put_timestamp, 0
FROM container
WHERE """
query_args = []
if end_marker and (not prefix or end_marker < end_prefix):
query += ' name < ? AND'
query_args.append(end_marker)
elif prefix:
query += ' name < ? AND'
query_args.append(end_prefix)
if delim_force_gte:
query += ' name >= ? AND'
query_args.append(marker)
delim_force_gte = False
elif marker and (not prefix or marker >= prefix):
query += ' name > ? AND'
query_args.append(marker)
elif prefix:
query += ' name >= ? AND'
query_args.append(prefix)
if not allow_reserved:
query += ' name >= ? AND'
query_args.append(chr(ord(RESERVED_BYTE) + 1))
if self.get_db_version(conn) < 1:
query += ' +deleted = 0'
else:
query += ' deleted = 0'
query += ' ORDER BY name %s LIMIT ?' % ('DESC' if reverse else '')
query_args.append(limit - len(results))
curs = conn.execute(query, query_args)
curs.row_factory = None
if prefix is None or not delimiter:
return [r for r in curs]
rowcount = 0
for row in curs:
rowcount += 1
name = row[0]
if reverse:
end_marker = name
else:
marker = name
if len(results) >= limit:
curs.close()
return results
end = name.find(delimiter, len(prefix))
if end >= 0:
if reverse:
end_marker = name[:end + len(delimiter)]
else:
marker = ''.join([
name[:end],
delimiter[:-1],
chr(ord(delimiter[-1:]) + 1),
])
delim_force_gte = True
dir_name = name[:end + len(delimiter)]
if dir_name != orig_marker:
results.append([dir_name, 0, 0, '0', 1])
curs.close()
break
results.append(row)
if not rowcount:
break
return results
|
Apache License 2.0
|
mgharbi/ttools
|
ttools/training.py
|
ModelInterface.validation_step
|
python
|
def validation_step(self, batch, running_val_data):
LOG.warning("Running a ModelInterface validation step that was not overriden: this is a no-op.")
return {}
|
Updates the running validataion with the current batch's results.
The default implementation is a no-op
Args:
batch (dict): batch of data provided by a data pipeline.
running_val_data (dict): current aggregates of the validation loop.
Returns:
updated_data (dict): new updated value for the running_val_data.
|
https://github.com/mgharbi/ttools/blob/0bc410bf89a7f67f7b55ee6e501fc85636cb8ee8/ttools/training.py#L94-L107
|
from abc import ABCMeta, abstractmethod
import argparse
import os
import re
import signal
import torch as th
from .utils import get_logger
LOG = get_logger(__name__)
__all__ = ["ModelInterface", "Trainer", "Checkpointer", "BasicArgumentParser"]
class BasicArgumentParser(argparse.ArgumentParser):
def __init__(self, *args, **kwargs):
super(BasicArgumentParser, self).__init__(*args, **kwargs)
self.add_argument("--data", required=True, help="path to the training data.")
self.add_argument("--val_data", help="path to the validation data.")
self.add_argument("--config", help="path to a config file.")
self.add_argument("--checkpoint_dir", required=True,
help="Output directory where checkpoints are saved")
self.add_argument("--init_from", help="path to a checkpoint from which to try and initialize the weights.")
self.add_argument("--lr", type=float, default=1e-4,
help="Learning rate for the optimizer")
self.add_argument("--bs", type=int, default=4, help="Batch size")
self.add_argument("--num_epochs", type=int,
help="Number of epochs to train for")
self.add_argument("--num_worker_threads", default=4, type=int,
help="Number of threads that load data")
self.add_argument("--cuda", action="store_true",
dest="cuda", help="Force GPU")
self.add_argument("--no-cuda", action="store_false",
dest="cuda", help="Force CPU")
self.add_argument("--server", help="Visdom server url")
self.add_argument("--base_url", default="/", help="Visdom base url")
self.add_argument("--env", default="main", help="Visdom environment")
self.add_argument("--port", default=8097, type=int,
help="Visdom server port")
self.add_argument('--debug', dest="debug", action="store_true")
self.set_defaults(cuda=th.cuda.is_available(), debug=False)
class ModelInterface(metaclass=ABCMeta):
def __init__(self):
pass
@abstractmethod
def training_step(self, batch):
return {}
def init_validation(self):
LOG.warning("Running a ModelInterface validation initialization that was not overriden: this is a no-op.")
data = {}
return data
|
MIT License
|
exiahuang/salesforcexytools
|
xlsxwriter/format.py
|
Format.set_bottom
|
python
|
def set_bottom(self, bottom=1):
self.bottom = bottom
|
Set the Format bottom property.
Args:
bottom: Default is 1, border type 1.
Returns:
Nothing.
|
https://github.com/exiahuang/salesforcexytools/blob/dde689292bc991c1357ec7479a8e291cb537e8ff/xlsxwriter/format.py#L495-L506
|
from . import xmlwriter
class Format(xmlwriter.XMLwriter):
def __init__(self, properties={}, xf_indices=None, dxf_indices=None):
super(Format, self).__init__()
self.xf_format_indices = xf_indices
self.dxf_format_indices = dxf_indices
self.xf_index = None
self.dxf_index = None
self.num_format = 0
self.num_format_index = 0
self.font_index = 0
self.has_font = 0
self.has_dxf_font = 0
self.bold = 0
self.underline = 0
self.italic = 0
self.font_name = 'Calibri'
self.font_size = 11
self.font_color = 0x0
self.font_strikeout = 0
self.font_outline = 0
self.font_shadow = 0
self.font_script = 0
self.font_family = 2
self.font_charset = 0
self.font_scheme = 'minor'
self.font_condense = 0
self.font_extend = 0
self.theme = 0
self.hyperlink = 0
self.hidden = 0
self.locked = 1
self.text_h_align = 0
self.text_wrap = 0
self.text_v_align = 0
self.text_justlast = 0
self.rotation = 0
self.fg_color = 0
self.bg_color = 0
self.pattern = 0
self.has_fill = 0
self.has_dxf_fill = 0
self.fill_index = 0
self.fill_count = 0
self.border_index = 0
self.has_border = 0
self.has_dxf_border = 0
self.border_count = 0
self.bottom = 0
self.bottom_color = 0
self.diag_border = 0
self.diag_color = 0
self.diag_type = 0
self.left = 0
self.left_color = 0
self.right = 0
self.right_color = 0
self.top = 0
self.top_color = 0
self.indent = 0
self.shrink = 0
self.merge_range = 0
self.reading_order = 0
self.just_distrib = 0
self.color_indexed = 0
self.font_only = 0
for key, value in properties.items():
getattr(self, 'set_' + key)(value)
def set_font_name(self, font_name):
self.font_name = font_name
def set_font_size(self, font_size=11):
self.font_size = font_size
def set_font_color(self, font_color):
self.font_color = self._get_color(font_color)
def set_bold(self, bold=True):
self.bold = bold
def set_italic(self, italic=True):
self.italic = italic
def set_underline(self, underline=1):
self.underline = underline
def set_font_strikeout(self, font_strikeout=True):
self.font_strikeout = font_strikeout
def set_font_script(self, font_script=1):
self.font_script = font_script
def set_font_outline(self, font_outline=True):
self.font_outline = font_outline
def set_font_shadow(self, font_shadow=True):
self.font_shadow = font_shadow
def set_num_format(self, num_format):
self.num_format = num_format
def set_locked(self, locked=True):
self.locked = locked
def set_hidden(self, hidden=True):
self.hidden = hidden
def set_align(self, alignment):
alignment = alignment.lower()
if alignment == 'left':
self.set_text_h_align(1)
if alignment == 'centre':
self.set_text_h_align(2)
if alignment == 'center':
self.set_text_h_align(2)
if alignment == 'right':
self.set_text_h_align(3)
if alignment == 'fill':
self.set_text_h_align(4)
if alignment == 'justify':
self.set_text_h_align(5)
if alignment == 'center_across':
self.set_text_h_align(6)
if alignment == 'centre_across':
self.set_text_h_align(6)
if alignment == 'distributed':
self.set_text_h_align(7)
if alignment == 'justify_distributed':
self.set_text_h_align(7)
if alignment == 'justify_distributed':
self.just_distrib = 1
if alignment == 'top':
self.set_text_v_align(1)
if alignment == 'vcentre':
self.set_text_v_align(2)
if alignment == 'vcenter':
self.set_text_v_align(2)
if alignment == 'bottom':
self.set_text_v_align(3)
if alignment == 'vjustify':
self.set_text_v_align(4)
if alignment == 'vdistributed':
self.set_text_v_align(5)
def set_center_across(self, align_type=None):
self.set_text_h_align(6)
def set_text_wrap(self, text_wrap=True):
self.text_wrap = text_wrap
def set_rotation(self, rotation):
rotation = int(rotation)
if rotation == 270:
rotation = 255
elif -90 <= rotation <= 90:
if rotation < 0:
rotation = -rotation + 90
else:
raise Exception(
"Rotation rotation outside range: -90 <= angle <= 90")
self.rotation = rotation
def set_indent(self, indent=1):
self.indent = indent
def set_shrink(self, shrink=True):
self.shrink = shrink
def set_text_justlast(self, text_justlast=True):
self.text_justlast = text_justlast
def set_pattern(self, pattern=1):
self.pattern = pattern
def set_bg_color(self, bg_color):
self.bg_color = self._get_color(bg_color)
def set_fg_color(self, fg_color):
self.fg_color = self._get_color(fg_color)
def set_border(self, style=1):
self.set_bottom(style)
self.set_top(style)
self.set_left(style)
self.set_right(style)
def set_border_color(self, color):
self.set_bottom_color(color)
self.set_top_color(color)
self.set_left_color(color)
self.set_right_color(color)
|
Apache License 2.0
|
davidtvs/pytorch-lr-finder
|
torch_lr_finder/lr_finder.py
|
StateCacher.__del__
|
python
|
def __del__(self):
if self.in_memory:
return
for k in self.cached:
if os.path.exists(self.cached[k]):
os.remove(self.cached[k])
|
Check whether there are unused cached files existing in `cache_dir` before
this instance being destroyed.
|
https://github.com/davidtvs/pytorch-lr-finder/blob/acc5e7ee7711a460bf3e1cc5c5f05575ba1e1b4b/torch_lr_finder/lr_finder.py#L645-L654
|
import copy
import os
import torch
import numpy as np
from tqdm.autonotebook import tqdm
from torch.optim.lr_scheduler import _LRScheduler
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from packaging import version
PYTORCH_VERSION = version.parse(torch.__version__)
try:
from apex import amp
IS_AMP_AVAILABLE = True
except ImportError:
IS_AMP_AVAILABLE = False
class DataLoaderIter(object):
def __init__(self, data_loader):
self.data_loader = data_loader
self._iterator = iter(data_loader)
@property
def dataset(self):
return self.data_loader.dataset
def inputs_labels_from_batch(self, batch_data):
if not isinstance(batch_data, list) and not isinstance(batch_data, tuple):
raise ValueError(
"Your batch type is not supported: {}. Please inherit from "
"`TrainDataLoaderIter` or `ValDataLoaderIter` and override the "
"`inputs_labels_from_batch` method.".format(type(batch_data))
)
inputs, labels, *_ = batch_data
return inputs, labels
def __iter__(self):
return self
def __next__(self):
batch = next(self._iterator)
return self.inputs_labels_from_batch(batch)
class TrainDataLoaderIter(DataLoaderIter):
def __init__(self, data_loader, auto_reset=True):
super().__init__(data_loader)
self.auto_reset = auto_reset
def __next__(self):
try:
batch = next(self._iterator)
inputs, labels = self.inputs_labels_from_batch(batch)
except StopIteration:
if not self.auto_reset:
raise
self._iterator = iter(self.data_loader)
batch = next(self._iterator)
inputs, labels = self.inputs_labels_from_batch(batch)
return inputs, labels
class ValDataLoaderIter(DataLoaderIter):
def __init__(self, data_loader):
super().__init__(data_loader)
self.run_limit = len(self.data_loader)
self.run_counter = 0
def __iter__(self):
if self.run_counter >= self.run_limit:
self._iterator = iter(self.data_loader)
self.run_counter = 0
return self
def __next__(self):
self.run_counter += 1
return super(ValDataLoaderIter, self).__next__()
class LRFinder(object):
def __init__(
self,
model,
optimizer,
criterion,
device=None,
memory_cache=True,
cache_dir=None,
):
self.optimizer = optimizer
self._check_for_scheduler()
self.model = model
self.criterion = criterion
self.history = {"lr": [], "loss": []}
self.best_loss = None
self.memory_cache = memory_cache
self.cache_dir = cache_dir
self.model_device = next(self.model.parameters()).device
self.state_cacher = StateCacher(memory_cache, cache_dir=cache_dir)
self.state_cacher.store("model", self.model.state_dict())
self.state_cacher.store("optimizer", self.optimizer.state_dict())
if device:
self.device = device
else:
self.device = self.model_device
def reset(self):
self.model.load_state_dict(self.state_cacher.retrieve("model"))
self.optimizer.load_state_dict(self.state_cacher.retrieve("optimizer"))
self.model.to(self.model_device)
def range_test(
self,
train_loader,
val_loader=None,
start_lr=None,
end_lr=10,
num_iter=100,
step_mode="exp",
smooth_f=0.05,
diverge_th=5,
accumulation_steps=1,
non_blocking_transfer=True,
):
self.history = {"lr": [], "loss": []}
self.best_loss = None
self.model.to(self.device)
self._check_for_scheduler()
if start_lr:
self._set_learning_rate(start_lr)
if step_mode.lower() == "exp":
lr_schedule = ExponentialLR(self.optimizer, end_lr, num_iter)
elif step_mode.lower() == "linear":
lr_schedule = LinearLR(self.optimizer, end_lr, num_iter)
else:
raise ValueError("expected one of (exp, linear), got {}".format(step_mode))
if smooth_f < 0 or smooth_f >= 1:
raise ValueError("smooth_f is outside the range [0, 1[")
if isinstance(train_loader, DataLoader):
train_iter = TrainDataLoaderIter(train_loader)
elif isinstance(train_loader, TrainDataLoaderIter):
train_iter = train_loader
else:
raise ValueError(
"`train_loader` has unsupported type: {}."
"Expected types are `torch.utils.data.DataLoader`"
"or child of `TrainDataLoaderIter`.".format(type(train_loader))
)
if val_loader:
if isinstance(val_loader, DataLoader):
val_iter = ValDataLoaderIter(val_loader)
elif isinstance(val_loader, ValDataLoaderIter):
val_iter = val_loader
else:
raise ValueError(
"`val_loader` has unsupported type: {}."
"Expected types are `torch.utils.data.DataLoader`"
"or child of `ValDataLoaderIter`.".format(type(val_loader))
)
for iteration in tqdm(range(num_iter)):
loss = self._train_batch(
train_iter,
accumulation_steps,
non_blocking_transfer=non_blocking_transfer,
)
if val_loader:
loss = self._validate(
val_iter, non_blocking_transfer=non_blocking_transfer
)
self.history["lr"].append(lr_schedule.get_lr()[0])
lr_schedule.step()
if iteration == 0:
self.best_loss = loss
else:
if smooth_f > 0:
loss = smooth_f * loss + (1 - smooth_f) * self.history["loss"][-1]
if loss < self.best_loss:
self.best_loss = loss
self.history["loss"].append(loss)
if loss > diverge_th * self.best_loss:
print("Stopping early, the loss has diverged")
break
print("Learning rate search finished. See the graph with {finder_name}.plot()")
def _set_learning_rate(self, new_lrs):
if not isinstance(new_lrs, list):
new_lrs = [new_lrs] * len(self.optimizer.param_groups)
if len(new_lrs) != len(self.optimizer.param_groups):
raise ValueError(
"Length of `new_lrs` is not equal to the number of parameter groups "
+ "in the given optimizer"
)
for param_group, new_lr in zip(self.optimizer.param_groups, new_lrs):
param_group["lr"] = new_lr
def _check_for_scheduler(self):
for param_group in self.optimizer.param_groups:
if "initial_lr" in param_group:
raise RuntimeError("Optimizer already has a scheduler attached to it")
def _train_batch(self, train_iter, accumulation_steps, non_blocking_transfer=True):
self.model.train()
total_loss = None
self.optimizer.zero_grad()
for i in range(accumulation_steps):
inputs, labels = next(train_iter)
inputs, labels = self._move_to_device(
inputs, labels, non_blocking=non_blocking_transfer
)
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
loss /= accumulation_steps
if IS_AMP_AVAILABLE and hasattr(self.optimizer, "_amp_stash"):
delay_unscale = ((i + 1) % accumulation_steps) != 0
with amp.scale_loss(
loss, self.optimizer, delay_unscale=delay_unscale
) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if total_loss is None:
total_loss = loss
else:
total_loss += loss
self.optimizer.step()
return total_loss.item()
def _move_to_device(self, inputs, labels, non_blocking=True):
def move(obj, device, non_blocking=True):
if hasattr(obj, "to"):
return obj.to(device, non_blocking=non_blocking)
elif isinstance(obj, tuple):
return tuple(move(o, device, non_blocking) for o in obj)
elif isinstance(obj, list):
return [move(o, device, non_blocking) for o in obj]
elif isinstance(obj, dict):
return {k: move(o, device, non_blocking) for k, o in obj.items()}
else:
return obj
inputs = move(inputs, self.device, non_blocking=non_blocking)
labels = move(labels, self.device, non_blocking=non_blocking)
return inputs, labels
def _validate(self, val_iter, non_blocking_transfer=True):
running_loss = 0
self.model.eval()
with torch.no_grad():
for inputs, labels in val_iter:
inputs, labels = self._move_to_device(
inputs, labels, non_blocking=non_blocking_transfer
)
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
running_loss += loss.item() * len(labels)
return running_loss / len(val_iter.dataset)
def plot(
self,
skip_start=10,
skip_end=5,
log_lr=True,
show_lr=None,
ax=None,
suggest_lr=True,
):
if skip_start < 0:
raise ValueError("skip_start cannot be negative")
if skip_end < 0:
raise ValueError("skip_end cannot be negative")
if show_lr is not None and not isinstance(show_lr, float):
raise ValueError("show_lr must be float")
lrs = self.history["lr"]
losses = self.history["loss"]
if skip_end == 0:
lrs = lrs[skip_start:]
losses = losses[skip_start:]
else:
lrs = lrs[skip_start:-skip_end]
losses = losses[skip_start:-skip_end]
fig = None
if ax is None:
fig, ax = plt.subplots()
ax.plot(lrs, losses)
if suggest_lr:
print("LR suggestion: steepest gradient")
min_grad_idx = None
try:
min_grad_idx = (np.gradient(np.array(losses))).argmin()
except ValueError:
print(
"Failed to compute the gradients, there might not be enough points."
)
if min_grad_idx is not None:
print("Suggested LR: {:.2E}".format(lrs[min_grad_idx]))
ax.scatter(
lrs[min_grad_idx],
losses[min_grad_idx],
s=75,
marker="o",
color="red",
zorder=3,
label="steepest gradient",
)
ax.legend()
if log_lr:
ax.set_xscale("log")
ax.set_xlabel("Learning rate")
ax.set_ylabel("Loss")
if show_lr is not None:
ax.axvline(x=show_lr, color="red")
if fig is not None:
plt.show()
if suggest_lr and min_grad_idx is not None:
return ax, lrs[min_grad_idx]
else:
return ax
class LinearLR(_LRScheduler):
def __init__(self, optimizer, end_lr, num_iter, last_epoch=-1):
self.end_lr = end_lr
if num_iter <= 1:
raise ValueError("`num_iter` must be larger than 1")
self.num_iter = num_iter
super(LinearLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
if PYTORCH_VERSION < version.parse("1.1.0"):
curr_iter = self.last_epoch + 1
r = curr_iter / (self.num_iter - 1)
else:
r = self.last_epoch / (self.num_iter - 1)
return [base_lr + r * (self.end_lr - base_lr) for base_lr in self.base_lrs]
class ExponentialLR(_LRScheduler):
def __init__(self, optimizer, end_lr, num_iter, last_epoch=-1):
self.end_lr = end_lr
if num_iter <= 1:
raise ValueError("`num_iter` must be larger than 1")
self.num_iter = num_iter
super(ExponentialLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
if PYTORCH_VERSION < version.parse("1.1.0"):
curr_iter = self.last_epoch + 1
r = curr_iter / (self.num_iter - 1)
else:
r = self.last_epoch / (self.num_iter - 1)
return [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs]
class StateCacher(object):
def __init__(self, in_memory, cache_dir=None):
self.in_memory = in_memory
self.cache_dir = cache_dir
if self.cache_dir is None:
import tempfile
self.cache_dir = tempfile.gettempdir()
else:
if not os.path.isdir(self.cache_dir):
raise ValueError("Given `cache_dir` is not a valid directory.")
self.cached = {}
def store(self, key, state_dict):
if self.in_memory:
self.cached.update({key: copy.deepcopy(state_dict)})
else:
fn = os.path.join(self.cache_dir, "state_{}_{}.pt".format(key, id(self)))
self.cached.update({key: fn})
torch.save(state_dict, fn)
def retrieve(self, key):
if key not in self.cached:
raise KeyError("Target {} was not cached.".format(key))
if self.in_memory:
return self.cached.get(key)
else:
fn = self.cached.get(key)
if not os.path.exists(fn):
raise RuntimeError(
"Failed to load state in {}. File doesn't exist anymore.".format(fn)
)
state_dict = torch.load(fn, map_location=lambda storage, location: storage)
return state_dict
|
MIT License
|
xmunoz/sodapy
|
sodapy/socrata.py
|
Socrata.publish
|
python
|
def publish(self, dataset_identifier, content_type="json"):
base = utils.format_old_api_request(dataid=dataset_identifier)
resource = "{}/publication.{}".format(base, content_type)
return self._perform_request("post", resource)
|
The create() method creates a dataset in a "working copy" state.
This method publishes it.
|
https://github.com/xmunoz/sodapy/blob/8a815a7ac3f4d955f0ac7f9b525c8755584179b4/sodapy/socrata.py#L356-L364
|
import csv
from io import StringIO, IOBase
import json
import logging
import os
import re
import requests
from sodapy.constants import DATASETS_PATH
import sodapy.utils as utils
class Socrata:
DEFAULT_LIMIT = 1000
def __init__(
self,
domain,
app_token,
username=None,
password=None,
access_token=None,
session_adapter=None,
timeout=10,
):
if not domain:
raise Exception("A domain is required.")
self.domain = domain
self.session = requests.Session()
if not app_token:
logging.warning(
"Requests made without an app_token will be"
" subject to strict throttling limits."
)
else:
self.session.headers.update({"X-App-token": app_token})
utils.authentication_validation(username, password, access_token)
if username and password:
self.session.auth = (username, password)
elif access_token:
self.session.headers.update(
{"Authorization": "OAuth {}".format(access_token)}
)
if session_adapter:
self.session.mount(session_adapter["prefix"], session_adapter["adapter"])
self.uri_prefix = session_adapter["prefix"]
else:
self.uri_prefix = "https://"
if not isinstance(timeout, (int, float)):
raise TypeError("Timeout must be numeric.")
self.timeout = timeout
def __enter__(self):
return self
def __exit__(self, exc_type=None, exc_value=None, traceback=None):
self.close()
def datasets(self, limit=0, offset=0, order=None, **kwargs):
filter_multiple = set(
[
"ids",
"domains",
"categories",
"tags",
"only",
"shared_to",
"column_names",
]
)
filter_single = set(
[
"q",
"min_should_match",
"attribution",
"license",
"derived_from",
"provenance",
"for_user",
"visibility",
"public",
"published",
"approval_status",
"explicitly_hidden",
"derived",
]
)
all_filters = filter_multiple.union(filter_single)
for key in kwargs:
if key not in all_filters:
raise TypeError("Unexpected keyword argument %s" % key)
params = [("domains", self.domain)]
if limit:
params.append(("limit", limit))
for key, value in kwargs.items():
if key in filter_multiple:
for item in value:
params.append((key, item))
elif key in filter_single:
params.append((key, value))
if order:
params.append(("order", order))
results = self._perform_request(
"get", DATASETS_PATH, params=params + [("offset", offset)]
)
num_results = results["resultSetSize"]
if (
limit >= num_results
or limit == len(results["results"])
or num_results == len(results["results"])
):
return results["results"]
if limit != 0:
raise Exception(
"Unexpected number of results returned from endpoint.\
Expected {}, got {}.".format(
limit, len(results["results"])
)
)
all_results = results["results"]
while len(all_results) != num_results:
offset += len(results["results"])
results = self._perform_request(
"get", DATASETS_PATH, params=params + [("offset", offset)]
)
all_results.extend(results["results"])
return all_results
def create(self, name, **kwargs):
new_backend = kwargs.pop("new_backend", False)
resource = utils.format_old_api_request(content_type="json")
if new_backend:
resource += "?nbe=true"
payload = {"name": name}
if "row_identifier" in kwargs:
payload["metadata"] = {"rowIdentifier": kwargs.pop("row_identifier", None)}
payload.update(kwargs)
payload = utils.clear_empty_values(payload)
return self._perform_update("post", resource, payload)
def set_permission(
self, dataset_identifier, permission="private", content_type="json"
):
resource = utils.format_old_api_request(
dataid=dataset_identifier, content_type=content_type
)
params = {
"method": "setPermission",
"value": "public.read" if permission == "public" else permission,
}
return self._perform_request("put", resource, params=params)
def get_metadata(self, dataset_identifier, content_type="json"):
resource = utils.format_old_api_request(
dataid=dataset_identifier, content_type=content_type
)
return self._perform_request("get", resource)
def update_metadata(self, dataset_identifier, update_fields, content_type="json"):
resource = utils.format_old_api_request(
dataid=dataset_identifier, content_type=content_type
)
return self._perform_update("put", resource, update_fields)
def download_attachments(
self, dataset_identifier, content_type="json", download_dir="~/sodapy_downloads"
):
metadata = self.get_metadata(dataset_identifier, content_type=content_type)
files = []
attachments = metadata["metadata"].get("attachments")
if not attachments:
logging.info("No attachments were found or downloaded.")
return files
download_dir = os.path.join(
os.path.expanduser(download_dir), dataset_identifier
)
if not os.path.exists(download_dir):
os.makedirs(download_dir)
for attachment in attachments:
file_path = os.path.join(download_dir, attachment["filename"])
has_assetid = attachment.get("assetId", False)
if has_assetid:
base = utils.format_old_api_request(dataid=dataset_identifier)
assetid = attachment["assetId"]
resource = "{}/files/{}?download=true&filename={}".format(
base, assetid, attachment["filename"]
)
else:
base = "/api/assets"
assetid = attachment["blobId"]
resource = "{}/{}?download=true".format(base, assetid)
uri = "{}{}{}".format(self.uri_prefix, self.domain, resource)
utils.download_file(uri, file_path)
files.append(file_path)
logging.info(
"The following files were downloaded:\n\t%s", "\n\t".join(files)
)
return files
|
MIT License
|
skopos-team/skopos
|
skopos/memories/memory.py
|
Memory.lifo_replace
|
python
|
def lifo_replace(number_of_episodes):
return number_of_episodes - 1
|
Return the index of the latest element added in the list
|
https://github.com/skopos-team/skopos/blob/d200b83f0aeff514f4759690f1f3041af54ea383/skopos/memories/memory.py#L22-L24
|
from __future__ import absolute_import
import random
import numpy as np
class Memory(object):
def __init__(self):
super(Memory, self).__init__()
""" Methods to extract the index of the list to be replaced"""
def random_replace(number_of_episodes):
return random.randint(0, number_of_episodes)
def fifo_replace(number_of_episodes):
return 0
|
Apache License 2.0
|
vcasecnikovs/yet-another-yolov4-pytorch
|
lars.py
|
LARS.step
|
python
|
def step(self, epoch=None, closure=None):
loss = None
if closure is not None:
loss = closure()
if epoch is None:
epoch = self.epoch
self.epoch += 1
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
eta = group['eta']
lr = group['lr']
max_epoch = group['max_epoch']
for p in group['params']:
if p.grad is None:
continue
param_state = self.state[p]
d_p = p.grad.data
weight_norm = torch.norm(p.data)
grad_norm = torch.norm(d_p)
decay = (1 - float(epoch) / max_epoch) ** 2
global_lr = lr * decay
local_lr = eta * weight_norm / (grad_norm + weight_decay * weight_norm)
actual_lr = local_lr * global_lr
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(actual_lr, d_p + weight_decay * p.data)
p.data.add_(-buf)
return loss
|
Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
epoch: current epoch to calculate polynomial LR decay schedule.
if None, uses self.epoch and increments it.
|
https://github.com/vcasecnikovs/yet-another-yolov4-pytorch/blob/47b045014e6d7686fad7a6cbe3d3d3e5373a2b7e/lars.py#L39-L91
|
import torch
from torch.optim.optimizer import Optimizer, required
class LARS(Optimizer):
def __init__(self, params, lr=required, momentum=.9,
weight_decay=.0005, eta=0.001, max_epoch=200):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}"
.format(weight_decay))
if eta < 0.0:
raise ValueError("Invalid LARS coefficient value: {}".format(eta))
self.epoch = 0
defaults = dict(lr=lr, momentum=momentum,
weight_decay=weight_decay,
eta=eta, max_epoch=max_epoch)
super(LARS, self).__init__(params, defaults)
|
MIT License
|
mishbahr/djangocms-forms
|
djangocms_forms/forms.py
|
FormDefinitionAdminForm.clean_form_template
|
python
|
def clean_form_template(self):
form_template = self.cleaned_data.get('form_template', '')
if form_template:
try:
get_template(form_template)
except TemplateDoesNotExist:
msg = _('Selected Form Template does not exist.')
raise forms.ValidationError(msg)
return form_template
|
Check if template exists
|
https://github.com/mishbahr/djangocms-forms/blob/9d7a4ef9769fd5e1526921c084d6da7b8070a2c1/djangocms_forms/forms.py#L75-L84
|
from __future__ import unicode_literals
import re
from django import forms
from django.contrib.admin.widgets import AdminDateWidget, FilteredSelectMultiple
from django.core.mail import EmailMultiAlternatives
from django.core.urlresolvers import reverse
from django.template import TemplateDoesNotExist
from django.template.defaultfilters import slugify
from django.template.loader import get_template, render_to_string
from django.utils.translation import ugettext_lazy as _
from ipware.ip import get_ip
from unidecode import unidecode
from .fields import FormBuilderFileField, HoneyPotField, MultipleChoiceAutoCompleteField, ReCaptchaField
from .models import Form, FormDefinition, FormField, FormSubmission
from .utils import int_to_hashid
from .widgets import DateInput, TelephoneInput, TimeInput
class FormFieldInlineForm(forms.ModelForm):
def clean(self):
cleaned_data = super(FormFieldInlineForm, self).clean()
requires_choice_values = ['checkbox_multiple', 'select', 'radio']
if (cleaned_data.get('field_type') in requires_choice_values and
not cleaned_data.get('choice_values')):
error_msg = _('This field is required.')
self._errors['choice_values'] = self.error_class([error_msg])
return cleaned_data
class Meta:
model = FormField
fields = '__all__'
class FormDefinitionAdminForm(forms.ModelForm):
def clean(self):
cleaned_data = super(FormDefinitionAdminForm, self).clean()
populated_count = 0
storage_fields = ('email_to', 'save_data', )
for field in storage_fields:
if cleaned_data.get(field, None):
populated_count += 1
if not populated_count:
error_msg = _(
'You must choose a storage option for this Form. '
'You can choose to use multiple storage options if you prefer. ')
for field in storage_fields:
self._errors[field] = self.error_class([error_msg])
page_redirect = cleaned_data.get('page_redirect')
external_redirect = cleaned_data.get('external_redirect')
redirect_delay = cleaned_data.get('redirect_delay')
if redirect_delay and not any([page_redirect, external_redirect]):
self._errors['redirect_delay'] = self.error_class([
_('You must specify either a page or external redirect when '
'adding a redirect delay.')
])
return cleaned_data
|
BSD 3-Clause New or Revised License
|
dankilman/awe
|
awe/view.py
|
Element.new
|
python
|
def new(self, obj, **kwargs):
from . import parser
if CustomElement._is_custom(obj) and not obj._registered:
self.register(obj)
if parser.is_parsable(obj):
context = parser.ParserContext(inputs=kwargs.pop('inputs', None))
element_configuration = self._parse(obj, context)
return self._new_children(element_configuration, **kwargs)
else:
return self._new_child(obj, **kwargs)
|
This method can return different results depending on ``obj`` type.
If ``obj`` is a class that inherits from Element, a new element of that type will be created.
If ``obj`` is a dict or list, it will be parsed and the parser result will be created.
If ``obj`` is a string, it will be yaml loaded and that result will be passed to the parser.
When result is passed to the parser, an additional ``inputs`` argument can be supplied as a dict from keys
to values that are referenced in the DSL using the ``$`` intrinsic function.
:param obj: The ``Element`` subclass, a dict/list or a string to be passed to the parser.
:param kwargs: Arguments that should be passed to the ``_init`` method of the created element or one of
``props``, ``style``, ``id``, ``inputs`` if valid.
:return: The created element.
|
https://github.com/dankilman/awe/blob/56871e5cb1b1a925fbbb9b94704fc100dd76202b/awe/view.py#L263-L287
|
from collections import deque
import pydash
import six
from typing import List
from . import variables
from . import element_updater
builtin_element_types = {}
def builtin(cls):
builtin_element_types[cls.__name__] = cls
return cls
class Element(object):
allow_children = True
def __init__(self, root, parent, element_id, props, style, stack):
self.root = root
self.id = element_id or str(id(self))
self.root_id = getattr(root, 'id', self.id)
self.element_builder = getattr(root, 'element_builder', ElementBuilder(root))
self.element_type = type(self).__name__
self.parent = parent
self.index = len(parent.children) + 1 if isinstance(parent, Element) else 0
self.children = []
self.ref = Ref()
self.data = {}
self.props = props or {}
self.props['key'] = self.id
if style:
self.props['style'] = style
self._prop_children = {}
self._init_complete = False
self._removed = False
self._stack = stack
def new_grid(self, columns, **kwargs):
return self._new_child(Grid, columns=columns, **kwargs)
def new_tabs(self, **kwargs):
return self._new_child(Tabs, **kwargs)
def new_table(self, headers, page_size=None, **kwargs):
return self._new_child(Table, headers=headers, page_size=page_size, **kwargs)
def new_button(self, function, text='', icon=None, shape=None, type='default', block=False, **kwargs):
return self._new_child(
Button,
function=function,
text=text,
icon=icon,
shape=shape,
type=type,
block=block,
**kwargs
)
def new_input(self, placeholder=None, on_enter=None, **kwargs):
return self._new_child(Input, placeholder=placeholder, on_enter=on_enter, **kwargs)
def new_card(self, text='', **kwargs):
return self._new_child(Card, text=text, **kwargs)
def new_text(self, text='', **kwargs):
return self._new_child(Text, text=text, **kwargs)
def new_divider(self, **kwargs):
return self._new_child(Divider, **kwargs)
def new_collapse(self, **kwargs):
return self._new_child(Collapse, **kwargs)
def new_chart(self, data=None, options=None, transform=None, moving_window=None, **kwargs):
from .chart import Chart
return self._new_child(
Chart,
data=data,
options=options,
transform=transform,
moving_window=moving_window,
**kwargs
)
def new_icon(self, type, theme='outlined', spin=False, two_tone_color=None, **kwargs):
return self._new_child(Icon, type=type, theme=theme, spin=spin, two_tone_color=two_tone_color, **kwargs)
def new_inline(self, text='', **kwargs):
return self._new_child(Inline, text=text, **kwargs)
def new_link(self, link, **kwargs):
props = kwargs.setdefault('props', {})
props.setdefault('href', link)
return self._new_child(Raw, tag='a', **kwargs)
def new_markdown(self, source, **kwargs):
return self._new_child(Markdown, source=source, **kwargs)
def new_prop(self, prop, root=None):
assert self.parent
assert prop not in self.props
assert prop not in self._prop_children
result = root or self._new_root()
self._prop_children[prop] = result.id
if self._init_complete:
self._dispatch({
'type': 'newPropChild',
'id': result.id,
'prop': prop,
'elementRootId': self.root_id,
'elementId': self.id
})
return result
|
MIT License
|
alexandonian/pretorched-x
|
pretorched/models/utils.py
|
SizeEstimator.estimate_size
|
python
|
def estimate_size(self):
self.get_parameter_sizes()
self.get_output_sizes()
self.calc_param_bits()
self.calc_forward_backward_bits()
self.calc_input_bits()
total = self.param_bits + self.forward_backward_bits + self.input_bits
total_megabytes = (total / 8) / (1024**2)
return total_megabytes, total
|
Estimate model size in memory in megabytes and bits.
|
https://github.com/alexandonian/pretorched-x/blob/36a57540854142be1b1730fe26aa4eab9b0aacad/pretorched/models/utils.py#L68-L78
|
import torch
import numpy as np
class SizeEstimator(object):
def __init__(self, model, input_size=(1, 1, 32, 32), bits=32):
self.model = model
self.input_size = input_size
self.bits = 32
return
def get_parameter_sizes(self):
mods = list(self.model.modules())
sizes = []
for i in range(1, len(mods)):
m = mods[i]
p = list(m.parameters())
for j in range(len(p)):
sizes.append(np.array(p[j].size()))
self.param_sizes = sizes
return
def get_output_sizes(self):
input_ = torch.FloatTensor(*self.input_size)
mods = list(self.model.modules())
out_sizes = []
for i in range(1, len(mods)):
m = mods[i]
out = m(input_)
out_sizes.append(np.array(out.size()))
input_ = out
self.out_sizes = out_sizes
return
def calc_param_bits(self):
total_bits = 0
for i in range(len(self.param_sizes)):
s = self.param_sizes[i]
bits = np.prod(np.array(s)) * self.bits
total_bits += bits
self.param_bits = total_bits
return
def calc_forward_backward_bits(self):
total_bits = 0
for i in range(len(self.out_sizes)):
s = self.out_sizes[i]
bits = np.prod(np.array(s)) * self.bits
total_bits += bits
self.forward_backward_bits = (total_bits * 2)
return
def calc_input_bits(self):
self.input_bits = np.prod(np.array(self.input_size)) * self.bits
return
|
MIT License
|
mila-iqia/myia
|
myia/testing/common.py
|
ai32_of
|
python
|
def ai32_of(*shp, value=ANYTHING):
return arr_of(i32, shp, value)
|
Generate symbolic array of int32.
|
https://github.com/mila-iqia/myia/blob/56774a39579b4ec4123f44843ad4ca688acc859b/myia/testing/common.py#L63-L65
|
import inspect
import typing
from dataclasses import dataclass, is_dataclass
import numpy as np
from ovld import ovld
from myia import ArithmeticData, xtype
from myia.abstract import (
ANYTHING,
SHAPE,
TYPE,
VALUE,
AbstractArray,
AbstractBottom,
AbstractClass,
AbstractDict,
AbstractExternal,
AbstractHandle,
AbstractJTagged,
AbstractScalar,
AbstractTaggedUnion,
AbstractTuple,
AbstractType,
AbstractUnion,
AbstractValue,
empty,
from_value,
listof,
type_to_abstract,
)
from myia.classes import ADT
from myia.ir import MultitypeGraph
from myia.utils import EnvInstance, HandleInstance, dataclass_fields
from myia.xtype import Bool, f16, f32, f64, i16, i32, i64, u64
B = Bool
Bot = AbstractBottom()
EmptyTuple = typing.Tuple[()]
AA = AbstractArray(ANYTHING, {SHAPE: ANYTHING, TYPE: ANYTHING})
AN = AbstractArray(ANYTHING, {SHAPE: ANYTHING, TYPE: xtype.NDArray})
def arr_of(t, shp, value):
return AbstractArray(
AbstractScalar({VALUE: value, TYPE: t}),
{SHAPE: shp, TYPE: xtype.NDArray},
)
def ai64_of(*shp, value=ANYTHING):
return arr_of(i64, shp, value)
|
MIT License
|
tensorflow/similarity
|
tensorflow_similarity/samplers/samplers.py
|
Sampler.__len__
|
python
|
def __len__(self) -> int:
return self.steps_per_epoch
|
Return the number of batch per epoch
|
https://github.com/tensorflow/similarity/blob/cf70eab8190b96d6c9a1eca77d2d6ddaf40920ae/tensorflow_similarity/samplers/samplers.py#L125-L127
|
import abc
from typing import Any, Callable, Optional, Tuple
from tensorflow.keras.utils import Sequence
from tensorflow_similarity.types import FloatTensor, IntTensor
Augmenter = Callable[[FloatTensor, IntTensor, int, bool], Tuple[FloatTensor,
IntTensor]]
Scheduler = Callable[[Any], Any]
class Sampler(Sequence, metaclass=abc.ABCMeta):
def __init__(
self,
classes_per_batch: int,
examples_per_class_per_batch: int = 2,
num_augmentations_per_example: int = 0,
steps_per_epoch: int = 1000,
augmenter: Optional[Augmenter] = None,
warmup: int = 0,
) -> None:
self.epoch = 0
self.classes_per_batch = classes_per_batch
self.examples_per_class_per_batch = examples_per_class_per_batch
self.num_augmentations_per_example = num_augmentations_per_example
self.batch_size = classes_per_batch * examples_per_class_per_batch
self.aug_size = (self.batch_size *
(1 + num_augmentations_per_example)) - self.batch_size
self.steps_per_epoch = steps_per_epoch
self.augmenter = augmenter
self.warmup = warmup
self.is_warmup = True if warmup else False
print(f"\nThe initial batch size is {self.batch_size + self.aug_size} "
f"({self.classes_per_batch} classes * "
f"{self.examples_per_class_per_batch} examples per class) with "
f"{self.num_augmentations_per_example} augmenters")
@abc.abstractmethod
def _get_examples(self, batch_id: int, num_classes: int,
examples_per_class: int) -> Tuple[FloatTensor, IntTensor]:
|
Apache License 2.0
|
tmancal74/quantarhei
|
quantarhei/spectroscopy/pathwayanalyzer.py
|
get_TwoDSpectrum_from_pathways
|
python
|
def get_TwoDSpectrum_from_pathways(pathways, t1axis, t3axis):
from .mocktwodcalculator import MockTwoDSpectrumCalculator
t2axis = TimeAxis(0.0,1,1.0)
mcalc = MockTwoDSpectrumCalculator(t1axis, t2axis, t3axis)
mcalc.bootstrap(rwa = convert(12000.0,"1/cm","int"), pathways=pathways)
twod = mcalc.calculate()
return twod
|
Returns a 2D spectrum calculated based on submitted Liouville pathways
|
https://github.com/tmancal74/quantarhei/blob/54a40cc55cdedf86bf04a5d705227fe69461d408/quantarhei/spectroscopy/pathwayanalyzer.py#L663-L673
|
import os
import numpy
from ..core.managers import UnitsManaged, Manager
from ..core.wrappers import deprecated
from ..core.units import cm2int
from ..core.units import convert
from ..core.parcel import load_parcel
from .. import REAL, COMPLEX
from ..core.time import TimeAxis
from ..core.dfunction import DFunction
class LiouvillePathwayAnalyzer(UnitsManaged):
def __init__(self, pathways=None):
self.pathways = pathways
def set_pathways(self, pathways):
self.pathways = pathways
def get_pathways(self):
return self.pathways
def get_number_of_pathways(self):
return(len(self.pathways))
@deprecated
def max_pref(self, pathways):
if pathways is None:
pthways = self.pathways
else:
pthways = pathways
pmax = 0.0
k = 0
rec = -1
for pway in pthways:
if pway.pref > pmax:
rec = k
pmax = pway.pref
k += 1
return (pmax, rec)
def max_amplitude(self):
return max_amplitude(self.pathways)
@deprecated
def select_pref_GT(self, val, pathways=None, replace=True,
verbose=False):
if pathways is None:
pthways = self.pathways
else:
pthways = pathways
selected = []
for pway in pthways:
if numpy.abs(pway.pref) > val:
selected.append(pway)
if verbose:
print("Selected", len(selected), "pathways")
if (pathways is None) and replace:
self.pathways = selected
return selected
def select_amplitude_GT(self, val, replace=True,
verbose=False):
selected = select_amplitude_GT(val, self.pathways, verbose=verbose)
if replace:
self.pathways = selected
else:
return selected
def select_frequency_window(self, window, replace=True,
verbose=False):
selected = select_frequency_window(window, self.pathways, verbose)
if replace:
self.pathways = selected
else:
return selected
def select_omega2(self, interval, replace=True, verbose=False):
selected = select_omega2(interval, self.pathways, verbose)
if replace:
self.pathways = selected
else:
return selected
@deprecated
def order_by_pref(self, pthways):
lst = sorted(pthways, key=lambda pway: abs(pway.pref), reverse=True)
return lst
def order_by_amplitude(self, replace=True):
orderred = order_by_amplitude(self.pathways)
if replace:
self.pathways = orderred
else:
return orderred
def select_sign(self, sign, replace=True):
selected = select_sign(self.pathways, sign)
if replace:
self.pathways = selected
else:
return selected
def select_type(self, ptype="REPH", replace=True):
selected = select_type(self.pathways, ptype)
if replace:
self.pathways = selected
else:
return selected
return selected
def max_amplitude(pathways):
pmax = 0.0
k = 0
rec = -1
for pway in pathways:
if pway.pref > pmax:
rec = k
pmax = pway.pref
k += 1
return (pmax, rec)
def select_amplitude_GT(val, pathways, verbose=False):
pthways = pathways
selected = []
for pway in pthways:
if numpy.abs(pway.pref) > val:
selected.append(pway)
if verbose:
print("Selected", len(selected), "pathways")
return selected
def select_frequency_window(window, pathways, verbose=False):
pthways = pathways
m = Manager()
om1_low = m.convert_energy_2_internal_u(window[0])
om1_upp = m.convert_energy_2_internal_u(window[1])
om3_low = m.convert_energy_2_internal_u(window[2])
om3_upp = m.convert_energy_2_internal_u(window[3])
selected = []
for pway in pthways:
ne = len(pway.frequency)
om1 = numpy.abs(pway.get_interval_frequency(0))
om3 = numpy.abs(pway.get_interval_frequency(ne-2))
if (((om1 >= om1_low) and (om1 <= om1_upp)) and
((om3 >= om3_low) and (om3 <= om3_upp))):
selected.append(pway)
if verbose:
print("Selected", len(selected), "pathways")
return selected
def select_omega2(interval, pathways, secular=True,
tolerance=10.0*cm2int, verbose=False):
pthways = pathways
m = Manager()
om2_low = m.convert_energy_2_internal_u(interval[0])
om2_upp = m.convert_energy_2_internal_u(interval[1])
selected = []
for pway in pthways:
ne = len(pway.frequency)
om2 = pway.get_interval_frequency(ne-3)
if ne > 4:
om2_2 = pway.get_interval_frequency(ne-4)
if secular:
if numpy.abs(om2_2) <= tolerance:
if (om2 >= om2_low) and (om2 <= om2_upp):
selected.append(pway)
elif numpy.abs(om2 - om2_2) <= tolerance:
if (om2 >= om2_low) and (om2 <= om2_upp):
selected.append(pway)
else:
if (om2 >= om2_low) and (om2 <= om2_upp):
selected.append(pway)
else:
if (om2 >= om2_low) and (om2 <= om2_upp):
selected.append(pway)
if verbose:
print("Selected", len(selected), "pathways")
return selected
def order_by_amplitude(pthways):
lst = sorted(pthways, key=lambda pway: abs(pway.pref), reverse=True)
return lst
def select_sign(pathways, sign):
selected = []
pos = False
if sign > 0.0:
pos = True
for pway in pathways:
if pos:
if pway.sign > 0.0:
selected.append(pway)
else:
if pway.sign < 0.0:
selected.append(pway)
return selected
def select_type(pathways, stype):
di = dict(REPH="R", NONR="NR")
selected = []
for pw in pathways:
if pw.pathway_type == di[stype]:
selected.append(pw)
return selected
def select_by_states(pathways, states):
for pw in pathways:
ch = -1
for k in range(pw.states.shape[0]):
if not ((pw.states[k, 0] == states[k+1][0]) &
(pw.states[k, 1] == states[k+1][1])):
break
ch += 1
if ch == k:
return pw
def look_for_pathways(name="pathways", ext="qrp",
check=False, directory="."):
import glob
import os.path
path = os.path.join(directory,name+"_*."+ext)
files = glob.glob(path)
t2s = []
for fl in files:
t2 = float(fl.split("_")[1].split("."+ext)[0])
t2s.append(t2)
t2s = numpy.array(t2s)
t2s = numpy.sort(t2s)
if check:
pass
return t2s
def load_pathways_by_t2(t2, name="pathways", ext="qrp", directory=".",
tag_type=REAL):
t2_str = str(t2)
fname = name+"_"+t2_str+"."+ext
path = os.path.join(directory, fname)
try:
pw = load_parcel(path)
except:
print("Error while loading")
return []
return pw
def save_pathways_by_t2(t2, name="pathways", ext="qrp", directory=".",
tag_type=REAL):
pass
def get_evolution_from_saved_pathways(states, name="pathways", ext="qrp",
directory=".", tag_type=REAL, repl=0.0):
t2s = look_for_pathways(name=name, ext=ext, directory=directory)
t2s = numpy.sort(t2s)
evol = _get_evol(t2s, states, name, ext, directory, repl=repl)
dt = t2s[1] - t2s[0]
length = len(t2s)
taxis = TimeAxis(t2s[0], length, dt)
ii = 0
for tt in t2s:
if tt != taxis.data[ii]:
raise Exception("The set of available times"+
" does not correspond to a continuous time axis")
ii += 1
return DFunction(x=taxis, y=evol)
def get_prefactors_from_saved_pathways(states, name="pathways", ext="qrp",
directory=".", tag_type=REAL, repl=0.0):
t2s = look_for_pathways(name=name, ext=ext, directory=directory)
t2s = numpy.sort(t2s)
evol = _get_pref(t2s, states, name, ext, directory, repl=repl)
dt = t2s[1] - t2s[0]
length = len(t2s)
taxis = TimeAxis(t2s[0], length, dt)
ii = 0
for tt in t2s:
if tt != taxis.data[ii]:
raise Exception("The set of available times"+
" does not correspond to a continuous time axis")
ii += 1
return DFunction(x=taxis, y=evol)
def get_TwoDSpectrum_from_saved_pathways(t2, t1axis, t3axis, name="pathways",
ext="qrp", directory=".",
tag_type=REAL):
pwt2 = load_pathways_by_t2(t2, name=name, ext=ext,
directory=directory, tag_type=tag_type)
twod = get_TwoDSpectrum_from_pathways(pwt2, t1axis, t3axis)
return twod
|
MIT License
|
mdenolle/noisepy
|
test/data_check/combine_miniseed_stream.py
|
check_sample
|
python
|
def check_sample(stream):
if len(stream)==0:
return stream
else:
freqs = []
for tr in stream:
freqs.append(tr.stats.sampling_rate)
freq = max(freqs)
for tr in stream:
if tr.stats.sampling_rate != freq:
stream.remove(tr)
return stream
|
Returns sampling rate of traces in stream.
:type stream:`~obspy.core.stream.Stream` object.
:param stream: Stream containing one or more day-long trace
:return: List of sampling rates in stream
|
https://github.com/mdenolle/noisepy/blob/69f0e151b04740aa9a1648ef3b6ef53664398683/test/data_check/combine_miniseed_stream.py#L246-L267
|
import os
import sys
import glob
import obspy
import datetime
import numpy as np
import scipy.signal
import noise_module
from numba import jit
import matplotlib.pyplot as plt
from obspy.signal.filter import bandpass,lowpass
from obspy.signal.util import _npts2nfft
sys.path.insert(1,'../../src')
import noise_module
def preprocess_raw(st,downsamp_freq,clean_time=True,pre_filt=None,resp=False,respdir=None):
if len(st) > 100 or portion_gaps(st) > 0.5:
print('Too many traces or gaps in Stream: Continue!')
st=[]
return st
st = check_sample(st)
if len(st) == 0:
print('No traces in Stream: Continue!')
return st
for ii in range(len(st)):
st[ii].data = np.float32(st[ii].data)
st[ii].data = scipy.signal.detrend(st[ii].data,type='constant')
st[ii].data = scipy.signal.detrend(st[ii].data,type='linear')
st.merge(method=1,fill_value=0)
sps = st[0].stats.sampling_rate
if abs(downsamp_freq-sps) > 1E-4:
st[0].data = bandpass(st[0].data,0.005,0.4*downsamp_freq,df=sps,corners=4,zerophase=True)
st.interpolate(downsamp_freq,method='weighted_average_slopes')
delta = st[0].stats.delta
fric = st[0].stats.starttime.microsecond%(delta*1E6)
if fric>1E-4:
st[0].data = segment_interpolate(np.float32(st[0].data),float(fric/delta*1E6))
st[0].stats.starttime-=(fric*1E-6)
station = st[0].stats.station
if resp is not False:
if resp != 'inv':
if (respdir is None) or (not os.path.isdir(respdir)):
raise ValueError('response file folder not found! abort!')
if resp == 'inv':
if not st[0].stats.response:
raise ValueError('no response found in the inventory! abort!')
else:
print('removing response using inv')
st.remove_response(output="VEL",pre_filt=pre_filt,water_level=60)
elif resp == 'spectrum':
print('remove response using spectrum')
specfile = glob.glob(os.path.join(respdir,'*'+station+'*'))
if len(specfile)==0:
raise ValueError('no response sepctrum found for %s' % station)
st = resp_spectrum(st[0],specfile[0],downsamp_freq)
elif resp == 'RESP_files':
print('using RESP files')
seedresp = glob.glob(os.path.join(respdir,'RESP.'+station+'*'))
if len(seedresp)==0:
raise ValueError('no RESP files found for %s' % station)
st.simulate(paz_remove=None,pre_filt=pre_filt,seedresp=seedresp)
elif resp == 'polozeros':
print('using polos and zeros')
paz_sts = glob.glob(os.path.join(respdir,'*'+station+'*'))
if len(paz_sts)==0:
raise ValueError('no polozeros found for %s' % station)
st.simulate(paz_remove=paz_sts,pre_filt=pre_filt)
else:
raise ValueError('no such option of resp in preprocess_raw! please double check!')
if clean_time:
st = clean_daily_segments(st)
return st
def portion_gaps(stream):
pgaps=0
npts = (stream[-1].stats.endtime-stream[0].stats.starttime)*stream[0].stats.sampling_rate
if len(stream)==0:
return pgaps
else:
for ii in range(len(stream)-1):
pgaps += (stream[ii+1].stats.starttime-stream[ii].stats.endtime)*stream[ii].stats.sampling_rate
return pgaps/npts
@jit('float32[:](float32[:],float32)')
def segment_interpolate(sig1,nfric):
npts = len(sig1)
sig2 = np.zeros(npts,dtype=np.float32)
for ii in range(npts):
if ii==0 or ii==npts:
sig2[ii]=sig1[ii]
else:
sig2[ii]=(1-nfric)*sig1[ii+1]+nfric*sig1[ii]
return sig2
def resp_spectrum(source,resp_file,downsamp_freq):
respz = np.load(resp_file)
nrespz= respz[1][:]
spec_freq = max(respz[0])
nfft = _npts2nfft(source.stats.npts)
sps = source.stats.sample_rate
if spec_freq < 0.5*sps:
raise ValueError('spectrum file has peak freq smaller than the data, abort!')
else:
indx = np.where(respz[0]<=0.5*sps)
nfreq = np.linspace(0,0.5*sps,nfft)
nrespz= np.interp(nfreq,respz[0][indx],respz[1][indx])
source_spect = np.fft.rfft(source.data,n=nfft)
source_spect *= nrespz
source.data = np.fft.irfft(source_spect)[0:source.stats.npts]
return source
def clean_daily_segments(tr):
stream_time = tr[0].stats.starttime
time0 = obspy.UTCDateTime(stream_time.year,stream_time.month,stream_time.day,0,0,0)
time1 = obspy.UTCDateTime(stream_time.year,stream_time.month,stream_time.day,12,0,0)
time2 = time1+datetime.timedelta(hours=12)
if stream_time <= time1:
starttime=time0
else:
starttime=time2
ndays = round((tr[0].stats.endtime-starttime)/(time2-time0))
if ndays==0:
tr=[]
return tr
else:
ntr = obspy.Stream()
ttr = tr[0].copy()
for ii in range(ndays):
tr[0] = ttr.copy()
endtime = starttime+datetime.timedelta(days=1)
tr[0].trim(starttime=starttime,endtime=endtime,pad=True,fill_value=0)
ntr.append(tr[0])
starttime = endtime
return ntr
|
MIT License
|
the-zebulan/codewars
|
katas/kyu_6/string_searching_with_wildcard.py
|
find
|
python
|
def find(needle, haystack):
compiled = re.compile(re.escape(needle).replace("\\_", "\S"))
searched = re.search(compiled, haystack)
return searched.start() if searched else -1
|
Solution from 'knight07' on CodeWars
|
https://github.com/the-zebulan/codewars/blob/1eafd1247d60955a5dfb63e4882e8ce86019f43a/katas/kyu_6/string_searching_with_wildcard.py#L15-L19
|
import re
|
MIT License
|
unixsurfer/haproxystats
|
haproxystats/utils.py
|
load_file_content
|
python
|
def load_file_content(filename):
commented = re.compile(r'\s*?#')
try:
with open(filename, 'r') as _file:
_content = [line.strip() for line in _file.read().splitlines()
if not commented.match(line)]
except OSError as exc:
log.error('failed to read %s:%s', filename, exc)
return []
else:
return _content
|
Build list from the content of a file.
Arguments:
filename (str): A absolute path of a filename
Returns:
A list
|
https://github.com/unixsurfer/haproxystats/blob/3ef4b3cacada9b6ed52dcc7726d8dad81a821ed1/haproxystats/utils.py#L95-L114
|
import os
import stat
from collections import defaultdict, deque
from functools import wraps
import io
import socket
import shutil
import logging
import time
import configparser
import glob
import re
from urllib.parse import urlparse
import pyinotify
import pandas
from haproxystats.metrics import (MetricNamesPercentage, FRONTEND_METRICS,
BACKEND_METRICS, BACKEND_AVG_METRICS,
BACKEND_AVG_TIME_METRICS,
SERVER_METRICS, SERVER_AVG_METRICS,
SERVER_AVG_TIME_METRICS)
log = logging.getLogger('root')
FILE_SUFFIX_INFO = '_info'
FILE_SUFFIX_STAT = '_stat'
CMD_SUFFIX_MAP = {'info': FILE_SUFFIX_INFO, 'stat': FILE_SUFFIX_STAT}
OPTIONS_TYPE = {
'paths': {
'base-dir': 'get',
},
'pull': {
'loglevel': 'get',
'retries': 'getint',
'timeout': 'getfloat',
'interval': 'getfloat',
'pull-timeout': 'getfloat',
'pull-interval': 'getint',
'buffer-limit': 'getint',
'dst-dir': 'get',
'tmp-dst-dir': 'get',
'workers': 'getint',
'queue-size': 'getint',
},
'process': {
'workers': 'getint',
'src-dir': 'get',
'aggr-server-metrics': 'getboolean',
'per-process-metrics': 'getboolean',
'calculate-percentages': 'getboolean',
'liveness-check-interval': 'getfloat',
},
'graphite': {
'server': 'get',
'port': 'getint',
'retries': 'getint',
'interval': 'getfloat',
'connect-timeout': 'getfloat',
'write-timeout': 'getfloat',
'delay': 'getfloat',
'backoff': 'getfloat',
'namespace': 'get',
'prefix-hostname': 'getboolean',
'fqdn': 'getboolean',
'queue-size': 'getint',
},
'local-store': {
'dir': 'get',
},
}
VALID_TCP_SOCKETS = [
'tcp',
'unix',
]
class BrokenConnection(Exception):
def __init__(self, raised):
self.raised = raised
super().__init__()
|
Apache License 2.0
|
jimmysong/lepton
|
helper.py
|
decode_bech32
|
python
|
def decode_bech32(s):
hrp, raw_data = s.encode('ascii').split(b'1')
data = [BECH32_ALPHABET.index(c) for c in raw_data]
if not bech32_verify_checksum(hrp, data):
raise ValueError('bad address: {}'.format(s))
version = data[0]
number = 0
for digit in data[1:-6]:
number = (number << 5) + digit
num_bytes = (len(data) - 7) * 5 // 8
bits_to_ignore = (len(data) - 7) * 5 % 8
number >>= bits_to_ignore
witness = number.to_bytes(num_bytes, 'big')
if version == 0:
version_byte = b'\x00'
else:
version_byte = encode_varint(version + 0x50)
if num_bytes < 2 or num_bytes > 40:
raise ValueError('bytes out of range: {}'.format(num_bytes))
length_byte = encode_varint(num_bytes)
return version_byte + length_byte + bytes(witness)
|
Convert a bech32 address to a witness program
|
https://github.com/jimmysong/lepton/blob/064bf1c3bcfed5f5799f8dfd83f85ed30349f6a5/helper.py#L173-L194
|
from csiphash import siphash24
from io import BytesIO
from unittest import SkipTest, TestCase, TestSuite, TextTestRunner
import hashlib
SIGHASH_ALL = 1
SIGHASH_NONE = 2
SIGHASH_SINGLE = 3
BASE58_ALPHABET = b'123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
BECH32_ALPHABET = b'qpzry9x8gf2tvdw0s3jn54khce6mua7l'
GEN = [0x3b6a57b2, 0x26508e6d, 0x1ea119fa, 0x3d4233dd, 0x2a1462b3]
TWO_WEEKS = 60 * 60 * 24 * 14
MAX_TARGET = 0xffff * 256**(0x1d - 3)
def bytes_to_str(b, encoding='ascii'):
return b.decode(encoding)
def str_to_bytes(s, encoding='ascii'):
return s.encode(encoding)
def little_endian_to_int(b):
return int.from_bytes(b, 'little')
def int_to_little_endian(n, length):
return n.to_bytes(length, 'little')
def hash160(s):
return hashlib.new('ripemd160', hashlib.sha256(s).digest()).digest()
def sha256(s):
return hashlib.sha256(s).digest()
def hash256(s):
return hashlib.sha256(hashlib.sha256(s).digest()).digest()
def encode_base58(s):
count = 0
for c in s:
if c == 0:
count += 1
else:
break
prefix = b'1' * count
num = int.from_bytes(s, 'big')
result = bytearray()
while num > 0:
num, mod = divmod(num, 58)
result.insert(0, BASE58_ALPHABET[mod])
return prefix + bytes(result)
def encode_base58_checksum(raw):
checksum = hash256(raw)[:4]
base58 = encode_base58(raw + checksum)
return base58.decode('ascii')
def raw_decode_base58(s, num_bytes):
if type(s) == str:
b = s.encode('ascii')
else:
b = s
num = 0
for c in b:
num *= 58
num += BASE58_ALPHABET.index(c)
combined = num.to_bytes(num_bytes, 'big')
checksum = combined[-4:]
if hash256(combined[:-4])[:4] != checksum:
raise ValueError('bad checksum {} != {}'.format(
hash256(combined[:-4])[:4].hex(), checksum.hex()))
return combined[:-4]
def decode_base58(s):
raw = raw_decode_base58(s, 25)
return raw[1:]
def bech32_polymod(values):
chk = 1
for v in values:
b = (chk >> 25)
chk = (chk & 0x1ffffff) << 5 ^ v
for i in range(5):
chk ^= GEN[i] if ((b >> i) & 1) else 0
return chk
def bech32_hrp_expand(s):
return [x >> 5 for x in s] + [0] + [x & 31 for x in s]
def bech32_verify_checksum(hrp, data):
return bech32_polymod(bech32_hrp_expand(hrp) + data) == 1
def bech32_create_checksum(hrp, data):
values = bech32_hrp_expand(hrp) + data
polymod = bech32_polymod(values + [0, 0, 0, 0, 0, 0]) ^ 1
return [(polymod >> 5 * (5 - i)) & 31 for i in range(6)]
def group_32(s):
result = []
unused_bits = 0
current = 0
for c in s:
unused_bits += 8
current = current * 256 + c
while unused_bits > 5:
unused_bits -= 5
result.append(current >> unused_bits)
mask = (1 << unused_bits) - 1
current &= mask
result.append(current << (5 - unused_bits))
return result
def encode_bech32(nums):
return bytes([BECH32_ALPHABET[n] for n in nums])
def encode_bech32_checksum(s, testnet=False):
if testnet:
prefix = b'tb'
else:
prefix = b'bc'
version = s[0]
if version > 0:
version -= 0x50
length = s[1]
data = [version] + group_32(s[2:2 + length])
checksum = bech32_create_checksum(prefix, data)
bech32 = encode_bech32(data + checksum)
result = prefix + b'1' + bech32
return result.decode('ascii')
|
MIT License
|
googleapis/python-bigquery-connection
|
google/cloud/bigquery_connection_v1/services/connection_service/client.py
|
ConnectionServiceClient.from_service_account_info
|
python
|
def from_service_account_info(cls, info: dict, *args, **kwargs):
credentials = service_account.Credentials.from_service_account_info(info)
kwargs["credentials"] = credentials
return cls(*args, **kwargs)
|
Creates an instance of this client using the provided credentials
info.
Args:
info (dict): The service account private key info.
args: Additional arguments to pass to the constructor.
kwargs: Additional arguments to pass to the constructor.
Returns:
ConnectionServiceClient: The constructed client.
|
https://github.com/googleapis/python-bigquery-connection/blob/a13f505f46937db367d9dde2c89c06f9636b2fd4/google/cloud/bigquery_connection_v1/services/connection_service/client.py#L118-L132
|
from collections import OrderedDict
from distutils import util
import os
import re
from typing import Dict, Optional, Sequence, Tuple, Type, Union
import pkg_resources
from google.api_core import client_options as client_options_lib
from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry as retries
from google.auth import credentials as ga_credentials
from google.auth.transport import mtls
from google.auth.transport.grpc import SslCredentials
from google.auth.exceptions import MutualTLSChannelError
from google.oauth2 import service_account
from google.cloud.bigquery_connection_v1.services.connection_service import pagers
from google.cloud.bigquery_connection_v1.types import connection
from google.cloud.bigquery_connection_v1.types import connection as gcbc_connection
from google.iam.v1 import iam_policy_pb2
from google.iam.v1 import policy_pb2
from google.protobuf import field_mask_pb2
from .transports.base import ConnectionServiceTransport, DEFAULT_CLIENT_INFO
from .transports.grpc import ConnectionServiceGrpcTransport
from .transports.grpc_asyncio import ConnectionServiceGrpcAsyncIOTransport
class ConnectionServiceClientMeta(type):
_transport_registry = (
OrderedDict()
)
_transport_registry["grpc"] = ConnectionServiceGrpcTransport
_transport_registry["grpc_asyncio"] = ConnectionServiceGrpcAsyncIOTransport
def get_transport_class(
cls, label: str = None,
) -> Type[ConnectionServiceTransport]:
if label:
return cls._transport_registry[label]
return next(iter(cls._transport_registry.values()))
class ConnectionServiceClient(metaclass=ConnectionServiceClientMeta):
@staticmethod
def _get_default_mtls_endpoint(api_endpoint):
if not api_endpoint:
return api_endpoint
mtls_endpoint_re = re.compile(
r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?"
)
m = mtls_endpoint_re.match(api_endpoint)
name, mtls, sandbox, googledomain = m.groups()
if mtls or not googledomain:
return api_endpoint
if sandbox:
return api_endpoint.replace(
"sandbox.googleapis.com", "mtls.sandbox.googleapis.com"
)
return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com")
DEFAULT_ENDPOINT = "bigqueryconnection.googleapis.com"
DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__(
DEFAULT_ENDPOINT
)
@classmethod
|
Apache License 2.0
|
openstack/manila
|
manila/api/views/share_replicas.py
|
ReplicationViewBuilder.summary_list
|
python
|
def summary_list(self, request, replicas):
return self._list_view(self.summary, request, replicas)
|
Summary view of a list of replicas.
|
https://github.com/openstack/manila/blob/34d209484366cd921e052d37c5f9daef5e97af20/manila/api/views/share_replicas.py#L29-L31
|
from manila.api import common
class ReplicationViewBuilder(common.ViewBuilder):
_collection_name = 'share_replicas'
_collection_links = 'share_replica_links'
_detail_version_modifiers = [
"add_cast_rules_to_readonly_field",
]
|
Apache License 2.0
|
tebeka/pythonwise
|
bq_flow.py
|
view
|
python
|
def view(deps):
tmp = NamedTemporaryFile()
tmp.write('''
digraph G {
graph[rankdir=LR];
node[shape=box];
edge[color=blue];
'''.encode('utf-8'))
for src, dest in deps:
line = '"{}" -> "{}";'.format(src, dest)
tmp.write(line.encode('utf-8'))
tmp.write('}\n'.encode('utf-8'))
tmp.flush()
tmp.seek(0, SEEK_SET)
png = '{}.png'.format(tmp.name)
check_call(['dot', '-Tpng', '-o', png], stdin=tmp)
cmd = {
'win32': 'start',
'darwin': 'open',
}.get(platform, 'xdg-open')
check_call([cmd, png])
|
Generate image of dependency graph and shows it.
Requires "dot" utility.
|
https://github.com/tebeka/pythonwise/blob/3bc3735160a1761be83751126f99180ed353b2e4/bq_flow.py#L44-L69
|
from collections import defaultdict
from glob import iglob
from os import path, SEEK_SET
from subprocess import check_call
from sys import platform
from tempfile import NamedTemporaryFile
import re
def file2table(fname):
return path.basename(fname)[:-4]
def iter_deps(root):
for sql_file in iglob('{}/*.sql'.format(root)):
dest = file2table(sql_file)
with open(sql_file) as fp:
for line in fp:
for src in re.findall('`([^`]+)`', line):
if '.' not in src:
msg = 'table without dataset - "{}"'.format(src)
raise ValueError(msg)
src = src[src.rfind('.')+1:]
yield src, dest
|
BSD 3-Clause New or Revised License
|
kotori-y/scopy
|
scopy/ScoDruglikeness/molproperty_Lib.py
|
PC_properties.GetProperties
|
python
|
def GetProperties(self,
items = ['MW','Vol','Dense','fChar','nBond','nAtom','nHD','nHA','nHB',
'nHet','nStereo','nHev','nRot','nRig','nRing','Flex',
'logP','logD','pKa','logSw','ab','MR','TPSA','AP','HetRatio',
'Fsp3','MaxRing','QEDmean','QEDmax','QEDnone','SAscore','NPscore',
'nSingle','nDouble','nTriple','nC','nB','nF','nCl','nBr','nI',
'nP','nS','nO','nN'
],
showSMILES = False):
funcl = {'MW': 'self.CalculateMolWeight()',
'Vol': 'self.CalculateMolVolume()',
'Dense': 'self.CalculateMolDensity()',
'fChar': 'self.CalculateMolFCharge()',
'nBond': 'self.CalculateNumBonds()',
'nAtom': 'self.CalculateNumAtoms()',
'nHet': 'self.CalculateNumHetero()',
'nRot': 'self.CalculateNumRotatableBonds()',
'nRig': 'self.CalculateNumRigidBonds()',
'nRing': 'self.CalculateNumRing()',
'nHev': 'self.CalculateNumHeavyAtom()',
'logP': 'self.CalculateLogP()',
'logD': 'self.CalculateLogD()',
'pKa': 'self.CalculatepKa()',
'ab': 'self.CheckAcid()',
'MR': 'self.CalculateMolMR()',
'nHD': 'self.CalculateNumHDonors()',
'nHA': 'self.CalculateNumHAcceptors()',
'nHB': 'self.CalculateNumHyBond()',
'AP': 'self.CalculateAromaticProportion()',
'logSw': 'self.CalculateLogSw()',
'Fsp3': 'self.CalculateFsp3()',
'TPSA': 'self.CalculateTPSA()',
'MaxRing': 'self.CalculateMaxSizeSystemRing()',
'nStereo': 'self.CalculateNumStereocenters()',
'Flex': 'self.CalculateFlexibility()',
'HetRatio': 'self.CalculateHetCarbonRatio()',
'QEDmean': 'self.CalculateQEDmean()',
'QEDmax': 'self.CalculateQEDmax()',
'QEDnone': 'self.CalculateQEDnone()',
'SAscore': 'self.CalculateSAscore()',
'NPscore': 'self.CalculateNPscore()',
'nSingle': 'self.CalculateNumSinBond()',
'nDouble': 'self.CalculateNumDouBond()',
'nTriple': 'self.CalculateNumTriBond()',
'nC': 'self.CalculateNumCarbon()',
'nB': 'self.CalculateNumBoron()',
'nF': 'self.CalculateNumFluorin()',
'nCl': 'self.CalculateNumChlorin()',
'nBr': 'self.CalculateNumBromine()',
'nI': 'self.CalculateNumIodine()',
'nP': 'self.CalculateNumPhosphor()',
'nS': 'self.CalculateNumSulfur()',
'nO': 'self.CalculateNumOxygen()',
'nN': 'self.CalculateNumNitrogen()',}
vals = []
for item in items:
val = eval(funcl[item])
vals.append(val)
if showSMILES:
pool = Pool(self.n_jobs)
smis = pool.map_async(_GetSmi, self.mols).get()
pool.close()
pool.join()
items.insert(0, 'SMILES')
vals.insert(0, smis)
return dict(zip(items, vals))
|
Get all PC - properties in scopy
|
https://github.com/kotori-y/scopy/blob/b15e51a13507b5283888da90548bd50f7df5c50c/scopy/ScoDruglikeness/molproperty_Lib.py#L920-L994
|
import os
import csv
from multiprocessing import Pool
from rdkit import Chem
from . import molproperty
from .. import ScoConfig
from ..ScoRepresent.fingerprints import CalculateGhoseCrippen
def _GetSmi(mol):
return Chem.MolToSmiles(mol)
class PC_properties(object):
def __init__(self, mols, n_jobs=1):
self.mols = mols if type(mols) is not Chem.rdchem.Mol else [mols]
self.n_jobs = n_jobs if n_jobs>=1 else None
def CalculateMolWeight(self):
pool = Pool(self.n_jobs)
MW = pool.map_async(molproperty.CalculateMolWeight, self.mols).get()
pool.close()
pool.join()
return MW
def CalculateNumBonds(self):
pool = Pool(self.n_jobs)
nBond = pool.map_async(molproperty.CalculateNumBonds, self.mols).get()
pool.close()
pool.join()
return nBond
def CalculateNumAtoms(self):
pool = Pool(self.n_jobs)
nAtom = pool.map_async(molproperty.CalculateNumAtoms, self.mols).get()
pool.close()
pool.join()
return nAtom
def CalculateNumHetero(self):
pool = Pool(self.n_jobs)
nHet = pool.map_async(molproperty.CalculateNumHetero, self.mols).get()
pool.close()
pool.join()
return nHet
def CalculateNumRotatableBonds(self):
pool = Pool(self.n_jobs)
nRot = pool.map_async(molproperty.CalculateNumRotatableBonds, self.mols).get()
pool.close()
pool.join()
return nRot
def CalculateNumRigidBonds(self):
pool = Pool(self.n_jobs)
nRig = pool.map_async(molproperty.CalculateNumRigidBonds, self.mols).get()
pool.close()
pool.join()
return nRig
def CalculateFlexibility(self):
pool = Pool(self.n_jobs)
Flex = pool.map_async(molproperty.CalculateFlexibility, self.mols).get()
pool.close()
pool.join()
return Flex
def CalculateNumRing(self):
pool = Pool(self.n_jobs)
nRing = pool.map_async(molproperty.CalculateNumRing, self.mols).get()
pool.close()
pool.join()
return nRing
def CalculateNumHeavyAtom(self):
pool = Pool(self.n_jobs)
nHev = pool.map_async(molproperty.CalculateNumHeavyAtom, self.mols).get()
pool.close()
pool.join()
return nHev
def CalculateLogD(self):
intercept = 0.5748907159915493
fps = CalculateGhoseCrippen(self.mols,self.n_jobs)
with open(os.path.join(ScoConfig.CrippenDir, 'Crippen.txt')) as f_obj:
lines = csv.reader(f_obj,delimiter='\t')
next(lines)
contri = [x[-1] for x in lines]
contri = [float(x) for x in contri]
f_obj.close()
logD = (fps*contri).sum(axis=1) + intercept
return list(logD)
def CalculateLogP(self):
pool = Pool(self.n_jobs)
logp = pool.map_async(molproperty.CalculateLogP, self.mols).get()
pool.close()
pool.join()
return logp
def CheckAcid(self):
pool = Pool(self.n_jobs)
ab = pool.map_async(molproperty.CheckAcid, self.mols).get()
pool.close()
pool.join()
return ab
def CalculatepKa(self):
import warnings
warnings.filterwarnings('ignore')
from math import log10
logDl = self.CalculateLogD()
logPl = self.CalculateLogP()
statusl = self.CheckAcid()
res = []
for status,logP, logD in zip(statusl,logPl,logDl):
try:
if status == 'acid':
pKa = 7.4 - log10(10**(logP-logD)-1)
else:
pKa = log10(10**(logP-logD)-1) - 7.4
res.append(pKa)
except:
res.append('N/A')
return res
def CalculateMolMR(self):
pool = Pool(self.n_jobs)
mr = pool.map_async(molproperty.CalculateMolMR, self.mols).get()
pool.close()
pool.join()
return mr
def CalculateNumHDonors(self):
pool = Pool(self.n_jobs)
nHD = pool.map_async(molproperty.CalculateNumHDonors, self.mols).get()
pool.close()
pool.join()
return nHD
def CalculateNumHAcceptors(self):
pool = Pool(self.n_jobs)
nHA = pool.map_async(molproperty.CalculateNumHAcceptors, self.mols).get()
pool.close()
pool.join()
return nHA
def CalculateNumHyBond(self):
pool = Pool(self.n_jobs)
nHB = pool.map_async(molproperty.CalculateNumHyBond, self.mols).get()
pool.close()
pool.join()
return nHB
def CalculateAromaticProportion(self):
pool = Pool(self.n_jobs)
aroma = pool.map_async(molproperty.CalculateAromaticProportion, self.mols).get()
pool.close()
pool.join()
return aroma
def CalculateLogSw(self):
pool = Pool(self.n_jobs)
logSw = pool.map_async(molproperty.CalculateLogSw, self.mols).get()
pool.close()
pool.join()
return logSw
def CalculateFsp3(self):
pool = Pool(self.n_jobs)
fsp3 = pool.map_async(molproperty.CalculateFsp3, self.mols).get()
pool.close()
pool.join()
return fsp3
def CalculateTPSA(self):
pool = Pool(self.n_jobs)
tpsa = pool.map_async(molproperty.CalculateTPSA, self.mols).get()
pool.close()
pool.join()
return tpsa
def CalculateQEDmean(self):
pool = Pool(self.n_jobs)
qed_mean = pool.map_async(molproperty.CalculateQEDmean, self.mols).get()
pool.close()
pool.join()
return qed_mean
def CalculateQEDmax(self):
pool = Pool(self.n_jobs)
qed_max = pool.map_async(molproperty.CalculateQEDmax, self.mols).get()
pool.close()
pool.join()
return qed_max
def CalculateQEDnone(self):
pool = Pool(self.n_jobs)
qed_none = pool.map_async(molproperty.CalculateQEDnone, self.mols).get()
pool.close()
pool.join()
return qed_none
def CalculateMaxSizeSystemRing(self):
pool = Pool(self.n_jobs)
maxring = pool.map_async(molproperty.CalculateMaxSizeSystemRing, self.mols).get()
pool.close()
pool.join()
return maxring
def CalculateNumStereocenters(self):
nStereo = map(molproperty.CalculateNumStereocenters, self.mols)
return list(nStereo)
def CalculateNumCarbon(self):
pool = Pool(self.n_jobs)
nC = pool.map_async(molproperty.CalculateNumCarbon, self.mols).get()
pool.close()
pool.join()
return nC
def CalculateNumBoron(self):
pool = Pool(self.n_jobs)
nB = pool.map_async(molproperty.CalculateNumBoron, self.mols).get()
pool.close()
pool.join()
return nB
def CalculateNumFluorin(self):
pool = Pool(self.n_jobs)
nF = pool.map_async(molproperty.CalculateNumFluorin, self.mols).get()
pool.close()
pool.join()
return nF
def CalculateNumChlorin(self):
pool = Pool(self.n_jobs)
nCl = pool.map_async(molproperty.CalculateNumChlorin, self.mols).get()
pool.close()
pool.join()
return nCl
def CalculateNumBromine(self):
pool = Pool(self.n_jobs)
nBr = pool.map_async(molproperty.CalculateNumBromine, self.mols).get()
pool.close()
pool.join()
return nBr
def CalculateNumIodine(self):
pool = Pool(self.n_jobs)
nI = pool.map_async(molproperty.CalculateNumIodine, self.mols).get()
pool.close()
pool.join()
return nI
def CalculateNumPhosphor(self):
pool = Pool(self.n_jobs)
nP = pool.map_async(molproperty.CalculateNumPhosphor, self.mols).get()
pool.close()
pool.join()
return nP
def CalculateNumSulfur(self):
pool = Pool(self.n_jobs)
nS = pool.map_async(molproperty.CalculateNumSulfur, self.mols).get()
pool.close()
pool.join()
return nS
def CalculateNumOxygen(self):
pool = Pool(self.n_jobs)
nO = pool.map_async(molproperty.CalculateNumOxygen, self.mols).get()
pool.close()
pool.join()
return nO
def CalculateNumNitrogen(self):
pool = Pool(self.n_jobs)
nN = pool.map_async(molproperty.CalculateNumNitrogen, self.mols).get()
pool.close()
pool.join()
return nN
def CalculateNumChargedGroups(self):
pass
def CalculateHetCarbonRatio(self):
pool = Pool(self.n_jobs)
HetRatio = pool.map_async(molproperty.CalculateHetCarbonRatio, self.mols).get()
pool.close()
pool.join()
return HetRatio
def CalculateSAscore(self):
pool = Pool(self.n_jobs)
SA = pool.map_async(molproperty.CalculateSAscore, self.mols).get()
pool.close()
pool.join()
return SA
def CalculateNPscore(self):
pool = Pool(self.n_jobs)
NP = pool.map_async(molproperty.CalculateNPscore, self.mols).get()
pool.close()
pool.join()
return NP
def CalculateMolVolume(self):
pool = Pool(self.n_jobs)
mv = pool.map_async(molproperty.CalculateMolVolume, self.mols).get()
pool.close()
pool.join()
return mv
def CalculateMolDensity(self):
pool = Pool(self.n_jobs)
md = pool.map_async(molproperty.CalculateMolDensity, self.mols).get()
pool.close()
pool.join()
return md
def CalculateMolFCharge(self):
pool = Pool(self.n_jobs)
fChar = pool.map_async(molproperty.CalculateMolFCharge, self.mols).get()
pool.close()
pool.join()
return fChar
def CalculateNumSinBond(self):
pool = Pool(self.n_jobs)
nSingle = pool.map_async(molproperty.CalculateNumSinBond, self.mols).get()
pool.close()
pool.join()
return nSingle
def CalculateNumDouBond(self):
pool = Pool(self.n_jobs)
nDouble = pool.map_async(molproperty.CalculateNumDouBond, self.mols).get()
pool.close()
pool.join()
return nDouble
def CalculateNumTriBond(self):
pool = Pool(self.n_jobs)
nTriple = pool.map_async(molproperty.CalculateNumTriBond, self.mols).get()
pool.close()
pool.join()
return nTriple
|
MIT License
|
saketkc/pysradb
|
pysradb/geoweb.py
|
GEOweb.download
|
python
|
def download(self, links, root_url, gse, verbose=False, out_dir=None):
if out_dir is None:
out_dir = os.path.join(os.getcwd(), "pysradb_downloads")
out_dir = os.path.join(out_dir, gse)
os.makedirs(out_dir, exist_ok=True)
print("\nThe following files will be downloaded: \n")
for link in links:
print(link)
print(os.linesep)
tar_list = [i for i in links if ".tar" in i]
if "filelist.txt" in links:
tar_file = tar_list[0]
if verbose:
print(f"\nThe tar file {tar_file} contains the following files:\n")
file_list_contents = requests.get(
root_url + "filelist.txt"
).content.decode("utf-8")
print(file_list_contents)
for link in links:
prefix = ""
if link == "filelist.txt":
prefix = gse + "_"
geo_path = os.path.join(out_dir, prefix + link)
download_file(
root_url.lstrip("https://") + link, geo_path, show_progress=True
)
|
Download GEO files.
Parameters
----------
links: list
List of all links valid downloadable present for a GEO ID
root_url: string
url for root directory for a GEO ID
gse: string
GEO ID
verbose: bool
Print file list
out_dir: string
Directory location for download
|
https://github.com/saketkc/pysradb/blob/bce1726813a104ff83eb1221679bf93074252af6/pysradb/geoweb.py#L57-L105
|
import gzip
import os
import re
import requests
import sys
from lxml import html
from .download import download_file
from .geodb import GEOdb
from .utils import _get_url
from .utils import copyfileobj
from .utils import get_gzip_uncompressed_size
PY3 = True
if sys.version_info[0] < 3:
PY3 = False
class GEOweb(GEOdb):
def __init__(self):
def get_download_links(self, gse):
prefix = gse[:-3]
url = f"https://ftp.ncbi.nlm.nih.gov/geo/series/{prefix}nnn/{gse}/suppl/"
link_objects = html.fromstring(requests.get(url).content).xpath("//a")
links = [i.attrib["href"] for i in link_objects]
if "/" in links:
raise KeyError(f"The provided GEO ID {gse} does not exist.")
links = [i for i in links if "geo/series/" not in i]
links = [i for i in links]
return links, url
|
BSD 3-Clause New or Revised License
|
jameskmurphy/nes
|
nes/rom.py
|
ROM.load
|
python
|
def load(self, filename, ):
with open(filename, "rb") as f:
nesheader = f.read(16)
self.decode_header(nesheader)
if self.has_trainer:
self.trainer_data = f.read(512)
self.prg_rom_data = f.read(self.prg_rom_bytes)
self.chr_rom_data = f.read(self.chr_rom_bytes)
self.misc_rom_data = f.read()
if len(self.misc_rom_data) > 0:
print("WARNING: MISC ROM DATA IS NOT EMPTY")
|
Load a ROM in the standard .nes file format
|
https://github.com/jameskmurphy/nes/blob/d2fb20be164a766dbb6ad17f4cccb9518455fee0/nes/rom.py#L57-L70
|
import pyximport; pyximport.install()
from .cycore.carts import NESCart0, NESCart1, NESCart2, NESCart4
from nes.pycore.carts import NESCart0 as pyNESCart0
from .pycore.bitwise import upper_nibble, lower_nibble, bit_low, bit_high
class ROM:
MIRROR_BIT = 0
PERSISTENT_BIT = 1
TRAINER_BIT = 2
MIRROR_IGNORE_BIT = 3
NES2_FORMAT_MASK = 0b00001100
MIRROR_HORIZONTAL = [0, 0, 1, 1]
MIRROR_VERTICAL = [0, 1, 0, 1]
MIRROR_FOUR_SCREEN = [0, 1, 2, 3]
def __init__(self, filename, verbose=True, py_compatibility_mode=False):
self.py_compatibility_mode = py_compatibility_mode
self.prg_rom_bytes = None
self.chr_rom_bytes = None
self.mirror_pattern = None
self.mirror_ignore = None
self.has_persistent = None
self.has_trainer = None
self.mapper_id = None
self.submapper_id = None
self.nes2 = None
self.prg_ram_bytes = None
self.prg_nvram_bytes = None
self.chr_ram_bytes = None
self.chr_nvram_bytes = None
self.trainer_data = None
self.prg_rom_data = None
self.chr_rom_data = None
self.misc_rom_data = None
self.verbose = verbose
if filename is not None:
self.load(filename)
|
MIT License
|
fabi1cazenave/kalamine
|
kalamine/template.py
|
web_keymap
|
python
|
def web_keymap(layout):
keymap = {}
for key_name in LAYER_KEYS:
if key_name.startswith('-'):
continue
chars = list('')
for i in [0, 1, 4, 5]:
if key_name in layout.layers[i]:
chars.append(layout.layers[i][key_name])
if len(chars):
keymap[KEY_CODES['web'][key_name]] = chars
return keymap
|
Web layout, main part.
|
https://github.com/fabi1cazenave/kalamine/blob/a74e0e5b241e8a3621fd6629a405587589f814db/kalamine/template.py#L386-L400
|
from .utils import load_data, LAYER_KEYS, ODK_ID
KEY_CODES = load_data('key_codes.yaml')
XKB_KEY_SYM = load_data('key_sym.yaml')
def hex_ord(char):
return hex(ord(char))[2:].zfill(4)
def xml_proof(char):
if char not in '<&"\u0020\u00a0\u202f>':
return char
else:
return '&#x{0};'.format(hex_ord(char))
def xml_proof_id(symbol):
return symbol[2:-1] if symbol.startswith('&#x') else symbol
def xkb_keymap(layout, eight_levels):
showDescription = True
maxLength = 16
output = []
for keyName in LAYER_KEYS:
if keyName.startswith('-'):
if len(output):
output.append('')
output.append('//' + keyName[1:])
continue
symbols = []
description = ' //'
for layer in layout.layers:
if keyName in layer:
symbol = layer[keyName]
desc = symbol
if symbol in layout.dead_keys:
dk = layout.dead_keys[symbol]
desc = dk['alt_self']
if dk['char'] == ODK_ID:
symbol = 'ISO_Level3_Latch'
else:
symbol = 'dead_' + dk['name']
elif symbol in XKB_KEY_SYM and len(XKB_KEY_SYM[symbol]) <= maxLength:
symbol = XKB_KEY_SYM[symbol]
else:
symbol = 'U' + hex_ord(symbol).upper()
else:
desc = ' '
symbol = 'VoidSymbol'
description += ' ' + desc
symbols.append(symbol.ljust(maxLength))
s = 'key <{}> {{[ {}, {}, {}, {}]}};'
if layout.has_altgr and layout.has_1dk:
if eight_levels:
s = 'key <{}> {{[ {}, {}, {}, {}, {}, {}, {}, {}]}};'
symbols.append('VoidSymbol'.ljust(maxLength))
symbols.append('VoidSymbol'.ljust(maxLength))
else:
s = 'key <{}> {{[ {}, {}, {}, {}],[ {}, {}]}};'
elif layout.has_altgr:
del symbols[3]
del symbols[2]
line = s.format(* [keyName.upper()] + symbols)
if showDescription:
line += description.rstrip()
if line.endswith('\\'):
line += ' '
output.append(line)
return output
def klc_keymap(layout):
supportedSymbols = '1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
output = []
for keyName in LAYER_KEYS:
if keyName.startswith('-'):
continue
symbols = []
description = '//'
alpha = False
for i in [0, 1, 4, 5]:
layer = layout.layers[i]
if keyName in layer:
symbol = layer[keyName]
desc = symbol
if symbol in layout.dead_keys:
desc = layout.dead_keys[symbol]['alt_space']
symbol = hex_ord(desc) + '@'
else:
if i == 0:
alpha = symbol.upper() != symbol
if symbol not in supportedSymbols:
symbol = hex_ord(symbol)
symbols.append(symbol)
else:
desc = ' '
symbols.append('-1')
description += ' ' + desc
if (layout.has_altgr):
output.append('\t'.join([
KEY_CODES['klc'][keyName],
'1' if alpha else '0',
symbols[0], symbols[1], '-1',
symbols[2], symbols[3],
description.strip()
]))
else:
output.append('\t'.join([
KEY_CODES['klc'][keyName],
'1' if alpha else '0',
symbols[0], symbols[1], '-1',
description.strip()
]))
return output
def klc_deadkeys(layout):
output = []
def appendLine(base, alt):
s = '{0}\t{1}\t// {2} -> {3}'
output.append(s.format(hex_ord(base), hex_ord(alt), base, alt))
for k in layout.dk_index:
dk = layout.dead_keys[k]
output.append('// DEADKEY: ' + dk['name'].upper() + ' //{{{')
output.append('DEADKEY\t' + hex_ord(dk['alt_space']))
if k == ODK_ID:
output.extend(klc_1dk(layout))
else:
for i in range(len(dk['base'])):
appendLine(dk['base'][i], dk['alt'][i])
appendLine('\u00a0', dk['alt_space'])
appendLine('\u0020', dk['alt_space'])
output.append('//}}}')
output.append('')
return output[:-1]
def klc_dk_index(layout):
output = []
for k in layout.dk_index:
dk = layout.dead_keys[k]
output.append('{0}\t"{1}"'.format(hex_ord(dk['alt_space']),
dk['name'].upper()))
return output
def klc_1dk(layout):
output = []
for i in [0, 1]:
baseLayer = layout.layers[i]
extLayer = layout.layers[i + 2]
for keyName in LAYER_KEYS:
if keyName.startswith('- Space') or keyName == 'spce':
continue
if keyName.startswith('-'):
if len(output):
output.append('')
output.append('//' + keyName[1:])
continue
elif keyName in extLayer:
base = baseLayer[keyName]
if base in layout.dead_keys:
base = layout.dead_keys[base]['alt_space']
ext = extLayer[keyName]
if (ext in layout.dead_keys):
ext = layout.dead_keys[ext]['alt_space']
odk = hex_ord(ext) + '@'
else:
odk = hex_ord(ext)
output.append('\t'.join([
hex_ord(base), odk, '// ' + base + ' -> ' + ext
]))
return output
def osx_keymap(layout):
str = []
for index in range(5):
layer = layout.layers[[0, 1, 0, 4, 5][index]]
caps = index == 2
def has_dead_keys(letter):
if letter in '\u0020\u00a0\u202f':
return True
for k in layout.dead_keys:
if letter in layout.dead_keys[k]['base']:
return True
return False
output = []
for key_name in LAYER_KEYS:
if key_name in ['ae13', 'ab11']:
continue
if key_name.startswith('-'):
if len(output):
output.append('')
output.append('<!--' + key_name[1:] + ' -->')
continue
symbol = ''
final_key = True
if key_name in layer:
key = layer[key_name]
if key in layout.dead_keys:
symbol = 'dead_' + layout.dead_keys[key]['name']
final_key = False
else:
symbol = xml_proof(key.upper() if caps else key)
final_key = not has_dead_keys(key.upper())
char = 'code="{0}"'.format(KEY_CODES['osx'][key_name]).ljust(10)
if final_key:
action = 'output="{0}"'.format(symbol)
else:
action = 'action="{0}"'.format(xml_proof_id(symbol))
output.append('<key {0} {1} />'.format(char, action))
str.append(output)
return str
def osx_actions(layout):
output = []
def when(state, action):
s = 'state="{0}"'.format(state).ljust(18)
if action in layout.dead_keys:
a = 'next="{0}"'.format(layout.dead_keys[action]['name'])
elif action.startswith('dead_'):
a = 'next="{0}"'.format(action[5:])
else:
a = 'output="{0}"'.format(xml_proof(action))
return ' <when {0} {1} />'.format(s, a)
def append_actions(symbol, actions):
output.append('<action id="{0}">'.format(xml_proof_id(symbol)))
output.append(when('none', symbol))
for (state, out) in actions:
output.append(when(state, out))
output.append('</action>')
for key in layout.dead_keys:
symbol = layout.dead_keys[key]['name']
output.append('<action id="dead_{0}">'.format(symbol))
output.append(' <when state="none" next="{0}" />'.format(symbol))
output.append('</action>')
continue
for key_name in LAYER_KEYS:
if key_name.startswith('-'):
output.append('')
output.append('<!--' + key_name[1:] + ' -->')
continue
for i in [0, 1]:
if key_name not in layout.layers[i]:
continue
key = layout.layers[i][key_name]
if i and key == layout.layers[0][key_name]:
continue
if key in layout.dead_keys:
continue
actions = []
for k in layout.dk_index:
dk = layout.dead_keys[k]
if key in dk['base']:
idx = dk['base'].index(key)
actions.append((dk['name'], dk['alt'][idx]))
if len(actions):
append_actions(xml_proof(key), actions)
actions = []
for k in layout.dk_index:
dk = layout.dead_keys[k]
actions.append((dk['name'], dk['alt_space']))
append_actions(' ', actions)
append_actions(' ', actions)
append_actions(' ', actions)
return output
def osx_terminators(layout):
output = []
for k in layout.dk_index:
dk = layout.dead_keys[k]
s = 'state="{0}"'.format(dk['name']).ljust(18)
o = 'output="{0}"'.format(xml_proof(dk['alt_self']))
output.append('<when {0} {1} />'.format(s, o))
return output
|
MIT License
|
redhat-cip/restfuzz
|
restfuzz/os_api_ref_importer.py
|
OsApiRefFile.__init__
|
python
|
def __init__(self, fobj):
if isinstance(fobj, str):
fobj = open(fobj)
self.filename = fobj.name
self.fobj = fobj
self.methods = []
method = {}
last_title = None
last_line = None
parameters = None
parameter_block = []
while True:
line = self.fobj.readline()
if not line:
self.fobj.close()
break
if line == "\n":
continue
line = line[:-1]
if re.match(r'^==*$', line) or re.match(r'^--*$', line):
last_title = last_line
elif line.startswith(".. rest_method:"):
if method:
if parameter_block:
method["parameters"].append(parameter_block)
self.methods.append(method)
method = {'name': last_title,
'url': line[16:].strip(),
'parameters': []}
elif line.startswith(".. rest_parameters::"):
param_file = line.split()[-1]
if param_file not in self.parameters_db:
self.parameters_db[param_file] = yaml.load(open(
os.path.join(os.path.dirname(self.filename),
param_file)))
parameters = self.parameters_db[param_file]
elif parameters is not None:
if not re.match(r"^ *- ", line):
method["parameters"].append(parameter_block)
parameters = None
parameter_block = []
else:
name, param_name = line.split(': ')
name = re.match(r'\s+-\s*(.*)', name).groups()[0].strip()
param_name = param_name.strip()
param = parameters[param_name]
parameter_block.append((name, param))
last_line = line
if method:
if parameter_block:
method["parameters"].append(parameter_block)
self.methods.append(method)
|
Load os-api-ref documentation files
|
https://github.com/redhat-cip/restfuzz/blob/3ba7b8d5b6b25be40fa69f2570b0e0af29b48e5e/restfuzz/os_api_ref_importer.py#L24-L86
|
import os
import sys
import re
import yaml
class OsApiRefFile:
parameters_db = {}
|
Apache License 2.0
|
slackapi/python-slack-sdk
|
slack_sdk/web/deprecation.py
|
show_2020_01_deprecation
|
python
|
def show_2020_01_deprecation(method_name: str):
skip_deprecation = os.environ.get(
"SLACKCLIENT_SKIP_DEPRECATION"
)
if skip_deprecation:
return
if not method_name:
return
matched_prefixes = [
prefix
for prefix in deprecated_method_prefixes_2020_01
if method_name.startswith(prefix)
]
if len(matched_prefixes) > 0:
message = (
f"{method_name} is deprecated. Please use the Conversations API instead. "
"For more info, go to "
"https://api.slack.com/changelog/2020-01-deprecating-antecedents-to-the-conversations-api"
)
warnings.warn(message)
|
Prints a warning if the given method is deprecated
|
https://github.com/slackapi/python-slack-sdk/blob/6ae9a3ebd847857b5dd2dc89b6af75bff313ee3d/slack_sdk/web/deprecation.py#L14-L36
|
import os
import warnings
deprecated_method_prefixes_2020_01 = [
"channels.",
"groups.",
"im.",
"mpim.",
"admin.conversations.whitelist.",
]
|
MIT License
|
richrd/suplemon
|
suplemon/modules/battery.py
|
Battery.readf
|
python
|
def readf(self, path):
f = open(path)
data = f.read()
f.close()
return data
|
Read and return file contents at path.
|
https://github.com/richrd/suplemon/blob/8bb67d6758e5bc5ca200fdce7a0fb6635abb66f4/suplemon/modules/battery.py#L106-L111
|
import os
import time
import subprocess
from suplemon import helpers
from suplemon.suplemon_module import Module
class Battery(Module):
def init(self):
self.last_value = -1
self.checked = time.time()
self.interval = 60
def value(self):
if self.last_value == -1:
state = self.battery_status()
elif time.time()-self.checked > self.interval:
state = self.battery_status()
else:
return self.last_value
self.last_value = state
return state
def value_str(self):
val = self.value()
if val:
if self.app.config["app"]["use_unicode_symbols"]:
return "\u26A1{0}%".format(str(val))
else:
return "BAT {0}%".format(str(val))
return ""
def get_status(self):
return self.value_str()
def battery_status(self):
value = None
methods = [
self.battery_status_read,
self.battery_status_acpi,
self.battery_status_upower
]
for m in methods:
value = m()
if value is not None:
break
return value
def battery_status_read(self):
try:
path_info = self.readf("/proc/acpi/battery/BAT0/info")
path_state = self.readf("/proc/acpi/battery/BAT0/state")
except:
return None
try:
max_cap = float(helpers.get_string_between("last full capacity:", "mWh", path_info))
cur_cap = float(helpers.get_string_between("remaining capacity:", "mWh", path_state))
return int(cur_cap / max_cap * 100)
except:
return None
def battery_status_acpi(self):
try:
fnull = open(os.devnull, "w")
raw_str = subprocess.check_output(["acpi"], stderr=fnull)
fnull.close()
except:
return None
raw_str = raw_str.decode("utf-8")
part = helpers.get_string_between(",", "%", raw_str)
if part:
try:
return int(part)
except:
return None
return None
def battery_status_upower(self):
path = "/org/freedesktop/UPower/devices/battery_BAT0"
try:
raw_str = subprocess.check_output(["upower", "-i", path])
except:
return None
raw_str = raw_str.decode("utf-8")
raw_str = raw_str.splitlines()[0]
part = helpers.get_string_between("percentage:", "%", raw_str)
if part:
try:
return int(part)
except:
return None
return None
|
MIT License
|
napalm-automation/napalm-yang
|
napalm_yang/models/openconfig/interfaces/interface/routed_vlan/ipv4/unnumbered/__init__.py
|
unnumbered._set_interface_ref
|
python
|
def _set_interface_ref(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=interface_ref.interface_ref,
is_container="container",
yang_name="interface-ref",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
extensions=None,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="container",
is_config=True,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """interface_ref must be of a type compatible with container""",
"defined-type": "container",
"generated-type": """YANGDynClass(base=interface_ref.interface_ref, is_container='container', yang_name="interface-ref", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='container', is_config=True)""",
}
)
self.__interface_ref = t
if hasattr(self, "_set"):
self._set()
|
Setter method for interface_ref, mapped from YANG variable /interfaces/interface/routed_vlan/ipv4/unnumbered/interface_ref (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_interface_ref is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_interface_ref() directly.
YANG Description: Reference to an interface or subinterface
|
https://github.com/napalm-automation/napalm-yang/blob/9148e015b086ebe311c07deb92e168ea36fd7771/napalm_yang/models/openconfig/interfaces/interface/routed_vlan/ipv4/unnumbered/__init__.py#L261-L300
|
from operator import attrgetter
from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType
from pyangbind.lib.yangtypes import RestrictedClassType
from pyangbind.lib.yangtypes import TypedListType
from pyangbind.lib.yangtypes import YANGBool
from pyangbind.lib.yangtypes import YANGListType
from pyangbind.lib.yangtypes import YANGDynClass
from pyangbind.lib.yangtypes import ReferenceType
from pyangbind.lib.base import PybindBase
from collections import OrderedDict
from decimal import Decimal
from bitarray import bitarray
import six
if six.PY3:
import builtins as __builtin__
long = int
elif six.PY2:
import __builtin__
from . import config
from . import state
from . import interface_ref
class unnumbered(PybindBase):
__slots__ = (
"_path_helper", "_extmethods", "__config", "__state", "__interface_ref"
)
_yang_name = "unnumbered"
_pybind_generated_by = "container"
def __init__(self, *args, **kwargs):
self._path_helper = False
self._extmethods = False
self.__config = YANGDynClass(
base=config.config,
is_container="container",
yang_name="config",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
extensions=None,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="container",
is_config=True,
)
self.__state = YANGDynClass(
base=state.state,
is_container="container",
yang_name="state",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
extensions=None,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="container",
is_config=True,
)
self.__interface_ref = YANGDynClass(
base=interface_ref.interface_ref,
is_container="container",
yang_name="interface-ref",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
extensions=None,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="container",
is_config=True,
)
load = kwargs.pop("load", None)
if args:
if len(args) > 1:
raise TypeError("cannot create a YANG container with >1 argument")
all_attr = True
for e in self._pyangbind_elements:
if not hasattr(args[0], e):
all_attr = False
break
if not all_attr:
raise ValueError("Supplied object did not have the correct attributes")
for e in self._pyangbind_elements:
nobj = getattr(args[0], e)
if nobj._changed() is False:
continue
setmethod = getattr(self, "_set_%s" % e)
if load is None:
setmethod(getattr(args[0], e))
else:
setmethod(getattr(args[0], e), load=load)
def _path(self):
if hasattr(self, "_parent"):
return self._parent._path() + [self._yang_name]
else:
return ["interfaces", "interface", "routed-vlan", "ipv4", "unnumbered"]
def _get_config(self):
return self.__config
def _set_config(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=config.config,
is_container="container",
yang_name="config",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
extensions=None,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="container",
is_config=True,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """config must be of a type compatible with container""",
"defined-type": "container",
"generated-type": """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='container', is_config=True)""",
}
)
self.__config = t
if hasattr(self, "_set"):
self._set()
def _unset_config(self):
self.__config = YANGDynClass(
base=config.config,
is_container="container",
yang_name="config",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
extensions=None,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="container",
is_config=True,
)
def _get_state(self):
return self.__state
def _set_state(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(
v,
base=state.state,
is_container="container",
yang_name="state",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
extensions=None,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="container",
is_config=True,
)
except (TypeError, ValueError):
raise ValueError(
{
"error-string": """state must be of a type compatible with container""",
"defined-type": "container",
"generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='container', is_config=True)""",
}
)
self.__state = t
if hasattr(self, "_set"):
self._set()
def _unset_state(self):
self.__state = YANGDynClass(
base=state.state,
is_container="container",
yang_name="state",
parent=self,
path_helper=self._path_helper,
extmethods=self._extmethods,
register_paths=True,
extensions=None,
namespace="http://openconfig.net/yang/interfaces/ip",
defining_module="openconfig-if-ip",
yang_type="container",
is_config=True,
)
def _get_interface_ref(self):
return self.__interface_ref
|
Apache License 2.0
|
brikwerk/nxbt
|
nxbt/bluez.py
|
BlueZ.get_discovered_devices
|
python
|
def get_discovered_devices(self):
bluez_objects = dbus.Interface(
self.bus.get_object(SERVICE_NAME, "/"),
"org.freedesktop.DBus.ObjectManager")
devices = {}
objects = bluez_objects.GetManagedObjects()
for path, interfaces in list(objects.items()):
if DEVICE_INTERFACE in interfaces:
devices[str(path)] = interfaces[DEVICE_INTERFACE]
return devices
|
Gets a dict of all discovered (or previously discovered
and connected) devices. The key is the device's dbus object
path and the values are the device's properties.
The following is a non-exhaustive list of the properties a
device dictionary can contain:
- "Address": The Bluetooth address
- "Alias": The friendly name of the device
- "Paired": Whether the device is paired
- "Connected": Whether the device is presently connected
- "UUIDs": The services a device provides
:return: A dictionary of all discovered devices
:rtype: dictionary
|
https://github.com/brikwerk/nxbt/blob/5a7a8c0ff5ee1f075bef8924051de462179a9dd5/nxbt/bluez.py#L714-L741
|
import subprocess
import re
import os
import time
import logging
from shutil import which
import random
from pathlib import Path
import dbus
SERVICE_NAME = "org.bluez"
BLUEZ_OBJECT_PATH = "/org/bluez"
ADAPTER_INTERFACE = SERVICE_NAME + ".Adapter1"
PROFILEMANAGER_INTERFACE = SERVICE_NAME + ".ProfileManager1"
DEVICE_INTERFACE = SERVICE_NAME + ".Device1"
def find_object_path(bus, service_name, interface_name, object_name=None):
manager = dbus.Interface(
bus.get_object(service_name, "/"),
"org.freedesktop.DBus.ObjectManager")
for path, ifaces in manager.GetManagedObjects().items():
managed_interface = ifaces.get(interface_name)
if managed_interface is None:
continue
elif (not object_name or
object_name == managed_interface["Address"] or
path.endswith(object_name)):
obj = bus.get_object(service_name, path)
return dbus.Interface(obj, interface_name).object_path
return None
def find_objects(bus, service_name, interface_name):
manager = dbus.Interface(
bus.get_object(service_name, "/"),
"org.freedesktop.DBus.ObjectManager")
paths = []
for path, ifaces in manager.GetManagedObjects().items():
managed_interface = ifaces.get(interface_name)
if managed_interface is None:
continue
else:
obj = bus.get_object(service_name, path)
path = str(dbus.Interface(obj, interface_name).object_path)
paths.append(path)
return paths
def toggle_clean_bluez(toggle):
service_path = "/lib/systemd/system/bluetooth.service"
override_dir = Path("/run/systemd/system/bluetooth.service.d")
override_path = override_dir / "nxbt.conf"
if toggle:
if override_path.is_file():
return
with open(service_path) as f:
for line in f:
if line.startswith("ExecStart="):
exec_start = line.strip() + " --compat --noplugin=*"
break
else:
raise Exception("systemd service file doesn't have a ExecStart line")
override = f"[Service]\nExecStart=\n{exec_start}"
override_dir.mkdir(parents=True, exist_ok=True)
with override_path.open("w") as f:
f.write(override)
else:
try:
os.remove(override_path)
except FileNotFoundError:
return
_run_command(["systemctl", "daemon-reload"])
_run_command(["systemctl", "restart", "bluetooth"])
time.sleep(0.5)
def clean_sdp_records():
if which("sdptool") is None:
raise Exception("sdptool is not available on this system." +
"If you can, please install this tool, as " +
"it is required for proper functionality.")
_run_command(["chmod", "777", "/var/run/sdp"])
result = _run_command(['sdptool', 'browse', 'local']).stdout.decode('utf-8')
if result is None or len(result.split('\n\n')) < 1:
return
exceptions = ["PnP Information"]
service_rec_handles = []
for rec in result.split('\n\n'):
exception_found = False
for exception in exceptions:
if exception in rec:
exception_found = True
break
if exception_found:
continue
for line in rec.split('\n'):
if "Service RecHandle" in line:
service_rec_handles.append(line.split(" ")[2])
if len(service_rec_handles) > 0:
for record_handle in service_rec_handles:
_run_command(['sdptool', 'del', record_handle])
def _run_command(command):
result = subprocess.run(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
cmd_err = result.stderr.decode("utf-8").replace("\n", "")
if cmd_err != "":
raise Exception(cmd_err)
return result
def get_random_controller_mac():
def seg():
random_number = random.randint(0,255)
hex_number = str(hex(random_number))
hex_number = hex_number[2:].upper()
return str(hex_number)
return f"7C:BB:8A:{seg()}:{seg()}:{seg()}"
def replace_mac_addresses(adapter_paths, addresses):
if which("hcitool") is None:
raise Exception("hcitool is not available on this system." +
"If you can, please install this tool, as " +
"it is required for proper functionality.")
if which("hciconfig") is None:
raise Exception("hciconfig is not available on this system." +
"If you can, please install this tool, as " +
"it is required for proper functionality.")
if addresses:
assert len(addresses) == len(adapter_paths)
for i in range(len(adapter_paths)):
adapter_id = adapter_paths[i].split('/')[-1]
mac = addresses[i].split(':')
cmds = ['hcitool', '-i', adapter_id, 'cmd', '0x3f', '0x001',
f'0x{mac[5]}',f'0x{mac[4]}',f'0x{mac[3]}',f'0x{mac[2]}',
f'0x{mac[1]}',f'0x{mac[0]}']
_run_command(cmds)
_run_command(['hciconfig', adapter_id, 'reset'])
def find_devices_by_alias(alias, return_path=False, created_bus=None):
if created_bus is not None:
bus = created_bus
else:
bus = dbus.SystemBus()
devices = find_objects(
bus,
SERVICE_NAME,
DEVICE_INTERFACE)
addresses = []
matching_paths = []
for path in devices:
device_props = dbus.Interface(
bus.get_object(SERVICE_NAME, path),
"org.freedesktop.DBus.Properties")
device_alias = device_props.Get(
DEVICE_INTERFACE,
"Alias").upper()
device_addr = device_props.Get(
DEVICE_INTERFACE,
"Address").upper()
if device_alias.upper() == alias.upper():
addresses.append(device_addr)
matching_paths.append(path)
if created_bus is None:
bus.close()
if return_path:
return addresses, matching_paths
else:
return addresses
def disconnect_devices_by_alias(alias, created_bus=None):
if created_bus is not None:
bus = created_bus
else:
bus = dbus.SystemBus()
devices = find_objects(
bus,
SERVICE_NAME,
DEVICE_INTERFACE)
addresses = []
matching_paths = []
for path in devices:
device_props = dbus.Interface(
bus.get_object(SERVICE_NAME, path),
"org.freedesktop.DBus.Properties")
device_alias = device_props.Get(
DEVICE_INTERFACE,
"Alias").upper()
if device_alias.upper() == alias.upper():
device = dbus.Interface(
bus.get_object(SERVICE_NAME, path),
DEVICE_INTERFACE)
try:
device.Disconnect()
except Exception as e:
print(e)
if created_bus is None:
bus.close()
class BlueZ():
def __init__(self, adapter_path="/org/bluez/hci0"):
self.logger = logging.getLogger('nxbt')
self.bus = dbus.SystemBus()
self.device_path = adapter_path
if self.device_path is None:
self.device_path = find_object_path(
self.bus,
SERVICE_NAME,
ADAPTER_INTERFACE)
if self.device_path is None:
raise Exception("Unable to find a bluetooth adapter")
self.logger.debug(f"Using adapter under object path: {self.device_path}")
self.device = dbus.Interface(
self.bus.get_object(
SERVICE_NAME,
self.device_path),
"org.freedesktop.DBus.Properties")
self.device_id = self.device_path.split("/")[-1]
self.profile_manager = dbus.Interface(self.bus.get_object(
SERVICE_NAME, BLUEZ_OBJECT_PATH),
PROFILEMANAGER_INTERFACE)
self.adapter = dbus.Interface(
self.bus.get_object(
SERVICE_NAME,
self.device_path),
ADAPTER_INTERFACE)
@property
def address(self):
return self.device.Get(ADAPTER_INTERFACE, "Address").upper()
def set_address(self, mac):
if which("hcitool") is None:
raise Exception("hcitool is not available on this system." +
"If you can, please install this tool, as " +
"it is required for proper functionality.")
mac = mac.split(":")
cmds = ['hcitool', '-i', self.device_id, 'cmd', '0x3f', '0x001',
f'0x{mac[5]}',f'0x{mac[4]}',f'0x{mac[3]}',f'0x{mac[2]}',
f'0x{mac[1]}',f'0x{mac[0]}']
_run_command(cmds)
_run_command(['hciconfig', self.device_id, 'reset'])
def set_class(self, device_class):
if which("hciconfig") is None:
raise Exception("hciconfig is not available on this system." +
"If you can, please install this tool, as " +
"it is required for proper functionality.")
_run_command(['hciconfig', self.device_id, 'class', device_class])
def reset_adapter(self):
if which("hciconfig") is None:
raise Exception("hciconfig is not available on this system." +
"If you can, please install this tool, as " +
"it is required for proper functionality.")
_run_command(['hciconfig', self.device_id, 'reset'])
@property
def name(self):
return self.device.Get(ADAPTER_INTERFACE, "Name")
@property
def alias(self):
return self.device.Get(ADAPTER_INTERFACE, "Alias")
def set_alias(self, value):
self.device.Set(ADAPTER_INTERFACE, "Alias", value)
@property
def pairable(self):
return bool(self.device.Get(ADAPTER_INTERFACE, "Pairable"))
def set_pairable(self, value):
dbus_value = dbus.Boolean(value)
self.device.Set(ADAPTER_INTERFACE, "Pairable", dbus_value)
@property
def pairable_timeout(self):
return self.device.Get(ADAPTER_INTERFACE, "PairableTimeout")
def set_pairable_timeout(self, value):
dbus_value = dbus.UInt32(value)
self.device.Set(ADAPTER_INTERFACE, "PairableTimeout", dbus_value)
@property
def discoverable(self):
return bool(self.device.Get(ADAPTER_INTERFACE, "Discoverable"))
def set_discoverable(self, value):
dbus_value = dbus.Boolean(value)
self.device.Set(ADAPTER_INTERFACE, "Discoverable", dbus_value)
@property
def discoverable_timeout(self):
return self.device.Get(ADAPTER_INTERFACE, "DiscoverableTimeout")
def set_discoverable_timeout(self, value):
dbus_value = dbus.UInt32(value)
self.device.Set(
ADAPTER_INTERFACE,
"DiscoverableTimeout",
dbus_value)
@property
def device_class(self):
result = subprocess.run(
["hciconfig", self.device_id, "class"],
stdout=subprocess.PIPE)
device_class = result.stdout.decode("utf-8").split("Class: ")[1][0:8]
return device_class
def set_device_class(self, device_class):
if os.geteuid() != 0:
raise PermissionError("The device class must be set as root")
if len(device_class) != 8:
raise ValueError("Device class must be length 8")
result = subprocess.run(
["hciconfig", self.device_id, "class", device_class],
stderr=subprocess.PIPE)
cmd_err = result.stderr.decode("utf-8").replace("\n", "")
if cmd_err != "":
raise Exception(cmd_err)
@property
def powered(self):
return bool(self.device.Get(ADAPTER_INTERFACE, "Powered"))
def set_powered(self, value):
dbus_value = dbus.Boolean(value)
self.device.Set(ADAPTER_INTERFACE, "Powered", dbus_value)
def register_profile(self, profile_path, uuid, opts):
return self.profile_manager.RegisterProfile(profile_path, uuid, opts)
def unregister_profile(self, profile):
self.profile_manager.UnregisterProfile(profile)
def reset(self):
result = subprocess.run(
["systemctl", "restart", "bluetooth"],
stderr=subprocess.PIPE)
cmd_err = result.stderr.decode("utf-8").replace("\n", "")
if cmd_err != "":
raise Exception(cmd_err)
self.device = dbus.Interface(
self.bus.get_object(
SERVICE_NAME,
self.device_path),
"org.freedesktop.DBus.Properties")
self.profile_manager = dbus.Interface(
self.bus.get_object(
SERVICE_NAME,
BLUEZ_OBJECT_PATH),
PROFILEMANAGER_INTERFACE)
|
MIT License
|
jiacheng-xu/cached-lstm
|
Model/lstm_standard.py
|
sgd
|
python
|
def sgd(lr, tparams, grads, x, mask, y, cost):
gshared = [theano.shared(p.get_value() * 0., name='%s_grad' % k)
for k, p in tparams.iteritems()]
gsup = [(gs, g) for gs, g in zip(gshared, grads)]
f_grad_shared = theano.function([x, mask, y], cost, updates=gsup,
name='sgd_f_grad_shared')
pup = [(p, p - lr * g) for p, g in zip(tparams.values(), gshared)]
f_update = theano.function([lr], [], updates=pup,
name='sgd_f_update')
return f_grad_shared, f_update
|
Stochastic Gradient Descent
:note: A more complicated version of sgd then needed. This is
done like that for adadelta and rmsprop.
|
https://github.com/jiacheng-xu/cached-lstm/blob/8e684d5558e18216d6ec8186f8fd46fa1e15ccfd/Model/lstm_standard.py#L210-L235
|
from collections import OrderedDict
import cPickle as pkl
import sys
import time
import numpy
import theano
from theano import config
import theano.tensor as tensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import imdb
datasets = {'imdb': (imdb.load_data, imdb.prepare_data)}
SEED = 123
numpy.random.seed(SEED)
def numpy_floatX(data):
return numpy.asarray(data, dtype=config.floatX)
def get_minibatches_idx(n, minibatch_size, shuffle=False):
idx_list = numpy.arange(n, dtype="int32")
if shuffle:
numpy.random.shuffle(idx_list)
minibatches = []
minibatch_start = 0
for i in range(n // minibatch_size):
minibatches.append(idx_list[minibatch_start:
minibatch_start + minibatch_size])
minibatch_start += minibatch_size
if (minibatch_start != n):
minibatches.append(idx_list[minibatch_start:])
return zip(range(len(minibatches)), minibatches)
def get_dataset(name):
return datasets[name][0], datasets[name][1]
def zipp(params, tparams):
for kk, vv in params.iteritems():
tparams[kk].set_value(vv)
def unzip(zipped):
new_params = OrderedDict()
for kk, vv in zipped.iteritems():
new_params[kk] = vv.get_value()
return new_params
def dropout_layer(state_before, use_noise, trng):
proj = tensor.switch(use_noise,
(state_before *
trng.binomial(state_before.shape,
p=0.5, n=1,
dtype=state_before.dtype)),
state_before * 0.5)
return proj
def _p(pp, name):
return '%s_%s' % (pp, name)
def init_params(options):
params = OrderedDict()
randn = numpy.random.rand(options['n_words'],
options['dim_proj'])
params['Wemb'] = (0.01 * randn).astype(config.floatX)
params = get_layer(options['encoder'])[0](options,
params,
prefix=options['encoder'])
params['U'] = 0.01 * numpy.random.randn(options['dim_proj'],
options['ydim']).astype(config.floatX)
params['b'] = numpy.zeros((options['ydim'],)).astype(config.floatX)
return params
def load_params(path, params):
pp = numpy.load(path)
for kk, vv in params.iteritems():
if kk not in pp:
raise Warning('%s is not in the archive' % kk)
params[kk] = pp[kk]
return params
def init_tparams(params):
tparams = OrderedDict()
for kk, pp in params.iteritems():
tparams[kk] = theano.shared(params[kk], name=kk)
return tparams
def get_layer(name):
fns = layers[name]
return fns
def ortho_weight(ndim):
W = numpy.random.randn(ndim, ndim)
u, s, v = numpy.linalg.svd(W)
return u.astype(config.floatX)
def param_init_lstm(options, params, prefix='lstm'):
W = numpy.concatenate([ortho_weight(options['dim_proj']),
ortho_weight(options['dim_proj']),
ortho_weight(options['dim_proj']),
ortho_weight(options['dim_proj'])], axis=1)
params[_p(prefix, 'W')] = W
U = numpy.concatenate([ortho_weight(options['dim_proj']),
ortho_weight(options['dim_proj']),
ortho_weight(options['dim_proj']),
ortho_weight(options['dim_proj'])], axis=1)
params[_p(prefix, 'U')] = U
b = numpy.zeros((4 * options['dim_proj'],))
params[_p(prefix, 'b')] = b.astype(config.floatX)
return params
def lstm_layer(tparams, state_below, options, prefix='lstm', mask=None):
nsteps = state_below.shape[0]
if state_below.ndim == 3:
n_samples = state_below.shape[1]
else:
n_samples = 1
assert mask is not None
def _slice(_x, n, dim):
if _x.ndim == 3:
return _x[:, :, n * dim:(n + 1) * dim]
return _x[:, n * dim:(n + 1) * dim]
def _step(m_, x_, h_, c_):
preact = tensor.dot(h_, tparams[_p(prefix, 'U')])
preact += x_
i = tensor.nnet.sigmoid(_slice(preact, 0, options['dim_proj']))
f = tensor.nnet.sigmoid(_slice(preact, 1, options['dim_proj']))
o = tensor.nnet.sigmoid(_slice(preact, 2, options['dim_proj']))
c = tensor.tanh(_slice(preact, 3, options['dim_proj']))
c = f * c_ + i * c
c = m_[:, None] * c + (1. - m_)[:, None] * c_
h = o * tensor.tanh(c)
h = m_[:, None] * h + (1. - m_)[:, None] * h_
return h, c
state_below = (tensor.dot(state_below, tparams[_p(prefix, 'W')]) +
tparams[_p(prefix, 'b')])
dim_proj = options['dim_proj']
rval, updates = theano.scan(_step,
sequences=[mask, state_below],
outputs_info=[tensor.alloc(numpy_floatX(0.),
n_samples,
dim_proj),
tensor.alloc(numpy_floatX(0.),
n_samples,
dim_proj)],
name=_p(prefix, '_layers'),
n_steps=nsteps)
return rval[0]
layers = {'lstm': (param_init_lstm, lstm_layer)}
|
Apache License 2.0
|
tensorspeech/tensorflowasr
|
tensorflow_asr/featurizers/text_featurizers.py
|
CharFeaturizer.iextract
|
python
|
def iextract(
self,
indices: tf.Tensor,
) -> tf.Tensor:
indices = self.normalize_indices(indices)
tokens = tf.gather_nd(self.tokens, tf.expand_dims(indices, axis=-1))
with tf.device("/CPU:0"):
tokens = tf.strings.reduce_join(tokens, axis=-1)
return tokens
|
Convert list of indices to string
Args:
indices: tf.Tensor with dim [B, None]
Returns:
transcripts: tf.Tensor of dtype tf.string with dim [B]
|
https://github.com/tensorspeech/tensorflowasr/blob/283d1f2df3a4da021721c222a51c1e4bbc709238/tensorflow_asr/featurizers/text_featurizers.py#L206-L222
|
import abc
import codecs
import os
import unicodedata
from multiprocessing import cpu_count
import numpy as np
import sentencepiece as sp
import tensorflow as tf
import tensorflow_datasets as tds
from ..configs.config import DecoderConfig
from ..utils import file_util
ENGLISH_CHARACTERS = [
" ",
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
"'",
]
class TextFeaturizer(metaclass=abc.ABCMeta):
def __init__(
self,
decoder_config: dict,
):
self.scorer = None
self.decoder_config = DecoderConfig(decoder_config)
self.blank = None
self.tokens2indices = {}
self.tokens = []
self.num_classes = None
self.max_length = 0
@property
def shape(self) -> list:
return [self.max_length if self.max_length > 0 else None]
@property
def prepand_shape(self) -> list:
return [self.max_length + 1 if self.max_length > 0 else None]
def update_length(
self,
length: int,
):
self.max_length = max(self.max_length, length)
def reset_length(self):
self.max_length = 0
def preprocess_text(self, text):
text = unicodedata.normalize("NFC", text.lower())
return text.strip("\n")
def add_scorer(
self,
scorer: any = None,
):
self.scorer = scorer
def normalize_indices(
self,
indices: tf.Tensor,
) -> tf.Tensor:
with tf.name_scope("normalize_indices"):
minus_one = -1 * tf.ones_like(indices, dtype=tf.int32)
blank_like = self.blank * tf.ones_like(indices, dtype=tf.int32)
return tf.where(indices == minus_one, blank_like, indices)
def prepand_blank(
self,
text: tf.Tensor,
) -> tf.Tensor:
return tf.concat([[self.blank], text], axis=0)
@abc.abstractclassmethod
def extract(self, text):
raise NotImplementedError()
@abc.abstractclassmethod
def iextract(self, indices):
raise NotImplementedError()
@abc.abstractclassmethod
def indices2upoints(self, indices):
raise NotImplementedError()
class CharFeaturizer(TextFeaturizer):
def __init__(
self,
decoder_config: dict,
):
super(CharFeaturizer, self).__init__(decoder_config)
self.__init_vocabulary()
def __init_vocabulary(self):
lines = []
if self.decoder_config.vocabulary is not None:
with codecs.open(self.decoder_config.vocabulary, "r", "utf-8") as fin:
lines.extend(fin.readlines())
else:
lines = ENGLISH_CHARACTERS
self.blank = 0 if self.decoder_config.blank_at_zero else None
self.tokens2indices = {}
self.tokens = []
index = 1 if self.blank == 0 else 0
for line in lines:
line = self.preprocess_text(line)
if line.startswith("#") or not line:
continue
self.tokens2indices[line[0]] = index
self.tokens.append(line[0])
index += 1
if self.blank is None:
self.blank = len(self.tokens)
self.non_blank_tokens = self.tokens.copy()
self.tokens.insert(self.blank, "")
self.num_classes = len(self.tokens)
self.tokens = tf.convert_to_tensor(self.tokens, dtype=tf.string)
self.upoints = tf.strings.unicode_decode(self.tokens, "UTF-8").to_tensor(shape=[None, 1])
def extract(
self,
text: str,
) -> tf.Tensor:
text = self.preprocess_text(text)
text = list(text.strip())
indices = [self.tokens2indices[token] for token in text]
return tf.convert_to_tensor(indices, dtype=tf.int32)
|
Apache License 2.0
|
necaris/python3-openid
|
openid/yadis/xri.py
|
iriToURI
|
python
|
def iriToURI(iri):
if isinstance(iri, bytes):
iri = str(iri, encoding="utf-8")
return iri.encode('ascii', errors='oid_percent_escape').decode()
|
Transform an IRI to a URI by escaping unicode.
|
https://github.com/necaris/python3-openid/blob/5c7f8f8fa4d2a0124516046ab2f84130eb8c10cb/openid/yadis/xri.py#L59-L64
|
import re
from functools import reduce
from openid import codecutil
XRI_AUTHORITIES = ['!', '=', '@', '+', '$', '(']
def identifierScheme(identifier):
if identifier.startswith('xri://') or (identifier and
identifier[0] in XRI_AUTHORITIES):
return "XRI"
else:
return "URI"
def toIRINormal(xri):
if not xri.startswith('xri://'):
xri = 'xri://' + xri
return escapeForIRI(xri)
_xref_re = re.compile(r'\((.*?)\)')
def _escape_xref(xref_match):
xref = xref_match.group()
xref = xref.replace('/', '%2F')
xref = xref.replace('?', '%3F')
xref = xref.replace('#', '%23')
return xref
def escapeForIRI(xri):
xri = xri.replace('%', '%25')
xri = _xref_re.sub(_escape_xref, xri)
return xri
def toURINormal(xri):
return iriToURI(toIRINormal(xri))
|
Apache License 2.0
|
googlearchive/simian
|
src/simian/auth/base.py
|
Auth1.LoadSelfKey
|
python
|
def LoadSelfKey(self, keystr):
key = self._LoadKey(keystr)
self._key = key
|
Load a key and keep it as this instance's key.
Args:
keystr: str, bytes of key in PEM format
|
https://github.com/googlearchive/simian/blob/fb9c43946ff7ba29be417068d6447cfc0adfe9ef/src/simian/auth/base.py#L681-L688
|
import warnings
warnings.filterwarnings(
'ignore', '.* sha module .*', DeprecationWarning, '.*', 0)
import array
import base64
import datetime
import logging
import os
import struct
from simian.auth import tlslite_bridge
from simian.auth import x509
MSG_SEP = ' '
AGE_TOKEN_SECONDS = 6 * 60 * 60
AGE_CN_SECONDS = 5 * 60
AGE_DEFAULT_SECONDS = 6 * 60 * 60
AGE_APPLESUS_TOKEN_SECONDS = 21 * 24 * 60 * 60
MIN_VALUE_CN = 2**100
LEVEL_APPLESUS = -5
LEVEL_BASE = 0
LEVEL_ADMIN = 5
class Error(Exception):
class NotAuthenticated(Error):
def __init__(self, reason='Unknown'):
self.reason = reason
super(NotAuthenticated, self).__init__()
class AuthSessionError(Error):
class KeyNotLoaded(Error):
class CertificateParseError(Error):
class CertificateError(Error):
class MessageError(Error):
class SessionDataError(Error):
class CryptoError(Error):
class State(object):
NONE = 'NONE'
INPUT = 'INPUT'
OUTPUT = 'OUTPUT'
class AuthState(object):
UNKNOWN = 'UNKNOWN'
OK = 'OK'
FAIL = 'FAIL'
class AuthSessionBase(object):
def _Create(self, sid):
raise NotImplementedError
def _Get(self, sid):
raise NotImplementedError
def _Put(self, session):
raise NotImplementedError
def Set(self, sid, data=None, **kwargs):
session = self._Create(sid)
session.data = data
if kwargs:
for k in kwargs:
if k not in ['sid', 'mtime']:
setattr(session, k, kwargs[k])
self._Put(session)
def Get(self, sid):
session = self._Get(sid)
if session:
if not self.ExpireOne(session):
if session.data is not None:
return session.data
else:
return session
def DeleteById(self, sid):
raise NotImplementedError
def _Now(self):
now = datetime.datetime.utcnow()
return now
def _Mtime(self, session):
return session.mtime
def Delete(self, session):
raise NotImplementedError
def All(self, min_age_seconds=None):
raise NotImplementedError
def ExpireOne(self, session, now=None):
if self.IsExpired(session, now=now):
self.Delete(session)
return True
else:
return False
def IsExpired(self, session, now=None):
if now is None:
now = self._Now()
age = datetime.timedelta(seconds=AGE_DEFAULT_SECONDS)
session_mtime = self._Mtime(session)
if session_mtime:
d = now - session_mtime
else:
d = age + age
if d > age:
return True
else:
return False
@classmethod
def DefineSessionType(cls, name, prefix):
sane_name = name[0].upper() + name[1:].lower()
setattr(
cls, 'SESSION_TYPE_PREFIX_%s' % name.upper(), '%s_' % prefix)
setattr(
cls, 'Set%s' % sane_name,
lambda self, k, data=None, **kwargs: self.Set(
'%s_%s' % (prefix, k), data, **kwargs))
setattr(
cls, 'Get%s' % sane_name,
lambda self, k: self.Get('%s_%s' % (prefix, k)))
setattr(
cls, 'Del%s' % sane_name,
lambda self, k: self.DeleteById('%s_%s' % (prefix, k)))
class AuthSessionData(object):
def __init__(self, **kwargs):
if kwargs:
self.__dict__ = dict(kwargs)
def __contains__(self, item):
return item in self.__dict__
def __eq__(self, other):
if type(other) == dict:
return self.__dict__ == other
for k in self.__dict__:
if not hasattr(other, k) or self.__dict__[k] != getattr(other, k):
return False
return True
def __ne__(self, other):
return not self.__eq__(other)
class AuthSessionDict(AuthSessionBase):
def __init__(self):
self._sessions = {}
def _Create(self, sid):
return AuthSessionData(sid=sid, mtime=self._Now(), data=None)
def _Get(self, sid):
return self._sessions.get(sid, None)
def _Put(self, session):
self._sessions[session.sid] = session
def DeleteById(self, sid):
try:
del self._sessions[sid]
except KeyError:
pass
def Delete(self, session):
self.DeleteById(session.sid)
def All(self, unused_min_age_seconds=None):
for session in self._sessions:
yield self._sessions[session]
class Auth1ServerSession(AuthSessionDict):
AuthSessionBase.DefineSessionType('cn', 'cn')
AuthSessionBase.DefineSessionType('token', 't')
class Auth1ClientSession(AuthSessionDict):
class AuthBase(object):
def __init__(self):
self._output = None
self._error_output = []
self._session_class = self.GetSessionClass()
self._session = self._session_class()
self._default_state = self.DefaultState()
self.ResetState()
def GetSessionClass(self):
return AuthSessionBase
def DefaultState(self):
return State.NONE
def ResetState(self):
self._state = self._default_state
self._auth_state = AuthState.UNKNOWN
def AuthFail(self):
self.ResetState()
self._auth_state = AuthState.FAIL
def _AddOutput(self, output):
if self._output is not None:
if type(output) is dict:
self._output.update(output)
else:
self._output += output
else:
self._output = output
self._state = State.OUTPUT
def _AddError(self, errstr):
if self._error_output is None:
self._error_output = [errstr]
else:
self._error_output.append(errstr)
def ErrorOutput(self):
err_output = self._error_output
self._error_output = []
return err_output
def State(self):
return self._state
def Input(self, *unused_args, **unused_kwargs):
if self._state == State.INPUT:
return
raise ValueError('not waiting for input')
def Output(self):
if self._state == State.OUTPUT:
output = self._output
self._output = None
self._state = self._default_state
return output
def AuthState(self):
auth_state = self._auth_state
if self._auth_state in [AuthState.OK, AuthState.FAIL]:
self.ResetState()
return auth_state
def AuthStateOK(self):
auth_state = self.AuthState()
return auth_state == AuthState.OK
def _SplitMessage(self, m, expect_len):
a = m.split(MSG_SEP)
if len(a) != expect_len:
raise MessageError('wrong number of message items %d %s', len(a), a)
return a
def _AssembleMessage(self, *args):
return MSG_SEP.join(args)
class Auth1(AuthBase):
TOKEN = 'Auth1Token'
def __init__(self, *args, **kwargs):
super(Auth1, self).__init__(*args, **kwargs)
self._key = None
self._cert = None
self._ca_pem = ''
self._server_cert_pem = ''
self._required_issuer = None
def GetSessionClass(self):
return Auth1ServerSession
def DefaultState(self):
return State.INPUT
def Nonce(self):
s = os.urandom(16)
i = struct.unpack('QQ', s)
i = (i[0] << 64) + i[1]
return i
def NonceBase64(self):
return base64.urlsafe_b64encode(str(self.Nonce()))
def GetCurrentEpochTimeUTC(self):
return int(datetime.datetime.utcnow().strftime('%s'))
def _AuthToken(self):
if self._auth_state == AuthState.OK:
return self.NonceBase64()
def _LoadCert(self, certstr):
try:
cert = x509.LoadCertificateFromPEM(certstr)
except x509.Error, e:
raise ValueError(str(e))
return cert
def _LoadKey(self, keystr):
try:
key = tlslite_bridge.parsePEMKey(keystr)
except (SyntaxError, AttributeError), e:
raise ValueError('invalid PEM key format: %s' % str(e))
return key
def Sign(self, datastr):
if not self._key:
raise KeyNotLoaded
data_bytes = array.array('B')
data_bytes.fromstring(datastr)
sig_bytes = self._key.hashAndSign(data_bytes)
if isinstance(sig_bytes, bytearray):
return str(sig_bytes)
else:
return sig_bytes.tostring()
|
Apache License 2.0
|
hanyas/trajopt
|
trajopt/envs/quanser/common.py
|
Base.seed
|
python
|
def seed(self, seed=None):
self._np_random, seed = seeding.np_random(seed)
return [seed]
|
Set the random seed.
:param seed: random seed
:type seed: int
:return: list
|
https://github.com/hanyas/trajopt/blob/1cad9010be45851ec12fe4156ae73d9261304cb9/trajopt/envs/quanser/common.py#L211-L220
|
import socket
import struct
import autograd.numpy as np
from scipy import signal
import gym
from gym import spaces
from gym.utils import seeding
class QSocket:
def __init__(self, ip, x_len, u_len):
self._x_fmt = '>' + x_len * 'd'
self._u_fmt = '>' + u_len * 'd'
self._buf_size = x_len * 8
self._port = 9095
self._ip = ip
self._soc = None
def snd_rcv(self, u):
self._soc.send(struct.pack(self._u_fmt, *u))
data = self._soc.recv(self._buf_size)
return np.array(struct.unpack(self._x_fmt, data), dtype=np.float32)
def open(self):
if self._soc is None:
self._soc = socket.socket()
self._soc.connect((self._ip, self._port))
def close(self):
if self._soc is not None:
self._soc.close()
self._soc = None
def is_open(self):
open = True
if self._soc is None:
open = False
return open
class SymmetricBoxSpace:
def __init__(self, bound: np.ndarray, labels: tuple):
self.bound_lo = -bound
self.bound_up = bound
self.labels = labels
self.dim = len(labels)
def project(self, ele: np.ndarray):
return np.clip(ele, self.bound_lo, self.bound_up)
class VelocityFilter:
def __init__(self, x_len, num=(50, 0), den=(1, 50), dt=0.002, x_init=None):
derivative_filter = signal.cont2discrete((num, den), dt)
self.b = derivative_filter[0].ravel().astype(np.float32)
self.a = derivative_filter[1].astype(np.float32)
if x_init is None:
self.z = np.zeros((max(len(self.a), len(self.b)) - 1, x_len),
dtype=np.float32)
else:
self.set_initial_state(x_init)
def set_initial_state(self, x_init):
assert isinstance(x_init, np.ndarray)
zi = signal.lfilter_zi(self.b, self.a)
self.z = np.outer(zi, x_init)
def __call__(self, x):
xd, self.z = signal.lfilter(self.b, self.a, x[None, :], 0, self.z)
return xd.ravel()
class LabeledBox(spaces.Box):
def __init__(self, labels, **kwargs):
super(LabeledBox, self).__init__(**kwargs)
assert len(labels) == self.high.size
self.labels = labels
class GentlyTerminating(gym.Wrapper):
def step(self, action):
observation, reward, done, info = self.env.step(action)
if done:
self.env.step(np.zeros(self.env.action_space.shape))
return observation, reward, done, info
def reset(self):
return self.env.reset()
class Timing:
def __init__(self, fs, fs_ctrl):
fs_ctrl_min = 50.0
assert fs_ctrl >= fs_ctrl_min, "control frequency must be at least {}".format(fs_ctrl_min)
self.n_sim_per_ctrl = int(fs / fs_ctrl)
assert fs == fs_ctrl * self.n_sim_per_ctrl, "sampling frequency must be a multiple of the control frequency"
self.dt = 1.0 / fs
self.dt_ctrl = 1.0 / fs_ctrl
self.render_rate = int(fs_ctrl)
class Base(gym.Env):
def __init__(self, fs, fs_ctrl):
super(Base, self).__init__()
self._state = None
self._vel_filt = None
self.timing = Timing(fs, fs_ctrl)
self.sensor_space = None
self.state_space = None
self.observation_space = None
self.action_space = None
self.reward_range = None
self.reward_range = None
self.done = False
self._np_random = None
self.seed()
def _zero_sim_step(self):
return self._sim_step([0.0])
def _sim_step(self, u):
raise NotImplementedError
def _ctrl_step(self, u):
x = self._state
u_cmd = None
for _ in range(self.timing.n_sim_per_ctrl):
x, u_cmd = self._sim_step(u)
return x, u_cmd
def _rwd(self, x, u):
raise NotImplementedError
|
MIT License
|
wummel/dosage
|
dosagelib/util.py
|
backtick
|
python
|
def backtick (cmd, encoding='utf-8'):
data = subprocess.Popen(cmd, stdout=subprocess.PIPE).communicate()[0]
return data.decode(encoding)
|
Return decoded output from command.
|
https://github.com/wummel/dosage/blob/a0109c3a46219f280e6e5e77183674e40da0f304/dosagelib/util.py#L115-L118
|
from __future__ import division, print_function
try:
from urllib.parse import quote as url_quote, unquote as url_unquote
except ImportError:
from urllib import quote as url_quote, unquote as url_unquote
try:
from urllib.parse import urlparse, urlunparse, urlsplit
except ImportError:
from urlparse import urlparse, urlunparse, urlsplit
try:
from urllib import robotparser
except ImportError:
import robotparser
import requests
import sys
import os
import cgi
import re
import codecs
import traceback
import time
import subprocess
try:
from HTMLParser import HTMLParser
except ImportError:
from html.parser import HTMLParser
from .decorators import memoized
from .output import out
from .configuration import UserAgent, AppName, App, SupportUrl
MaxContentBytes = 1024 * 1024 * 2
MaxImageBytes = 1024 * 1024 * 20
MaxRetries = 3
RetryPauseSeconds = 5
ConnectionTimeoutSecs = 60
UrlEncoding = "utf-8"
if hasattr(requests, 'adapters'):
requests.adapters.DEFAULT_RETRIES = MaxRetries
def get_system_uid():
try:
if os.name == 'nt':
return get_nt_system_uid()
if sys.platform == 'darwin':
return get_osx_system_uid()
except Exception:
return get_mac_uid()
else:
return get_mac_uid()
def get_nt_system_uid():
try:
import _winreg as winreg
except ImportError:
import winreg
lm = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE)
try:
key = winreg.OpenKey(lm, r"Software\Microsoft\Cryptography")
try:
return winreg.QueryValueEx(key, "MachineGuid")[0]
finally:
key.Close()
finally:
lm.Close()
def get_osx_system_uid():
res = backtick(["system_profile"]).splitlines()
for line in res:
if "r (system)" in line:
return line.split(':', 1)[1].strip()
raise ValueError("Could not find system number in %r" % res)
def get_mac_uid():
import uuid
return "%d" % uuid.getnode()
|
MIT License
|
cupy/cupy
|
cupy/cublas.py
|
dgmm
|
python
|
def dgmm(side, a, x, out=None, incx=1):
assert a.ndim == 2
assert 0 <= x.ndim <= 2
assert a.dtype == x.dtype
dtype = a.dtype.char
if dtype == 'f':
func = cublas.sdgmm
elif dtype == 'd':
func = cublas.ddgmm
elif dtype == 'F':
func = cublas.cdgmm
elif dtype == 'D':
func = cublas.zdgmm
else:
raise TypeError('invalid dtype')
if side == 'L' or side == cublas.CUBLAS_SIDE_LEFT:
side = cublas.CUBLAS_SIDE_LEFT
elif side == 'R' or side == cublas.CUBLAS_SIDE_RIGHT:
side = cublas.CUBLAS_SIDE_RIGHT
else:
raise ValueError('invalid side (actual: {})'.format(side))
m, n = a.shape
if side == cublas.CUBLAS_SIDE_LEFT:
assert x.size >= (m - 1) * abs(incx) + 1
else:
assert x.size >= (n - 1) * abs(incx) + 1
if out is None:
if a._c_contiguous:
order = 'C'
else:
order = 'F'
out = cupy.empty((m, n), dtype=dtype, order=order)
else:
assert out.ndim == 2
assert out.shape == a.shape
assert out.dtype == a.dtype
handle = device.get_cublas_handle()
if out._c_contiguous:
if not a._c_contiguous:
a = a.copy(order='C')
func(handle, 1 - side, n, m, a.data.ptr, n, x.data.ptr, incx,
out.data.ptr, n)
else:
if not a._f_contiguous:
a = a.copy(order='F')
c = out
if not out._f_contiguous:
c = out.copy(order='F')
func(handle, side, m, n, a.data.ptr, m, x.data.ptr, incx,
c.data.ptr, m)
if not out._f_contiguous:
out[...] = c
return out
|
Computes diag(x) @ a or a @ diag(x)
Computes diag(x) @ a if side is 'L', a @ diag(x) if side is 'R'.
|
https://github.com/cupy/cupy/blob/a466b03ef0afd7c1ce1615e3f48da64ae38c1320/cupy/cublas.py#L808-L865
|
import numpy
from numpy import linalg
import warnings
import cupy
from cupy_backends.cuda.libs import cublas
from cupy.cuda import device
from cupy.linalg import _util
_batched_gesv_limit = 256
def get_batched_gesv_limit():
global _batched_gesv_limit
return _batched_gesv_limit
def set_batched_gesv_limit(limit):
global _batched_gesv_limit
_batched_gesv_limit = limit
def batched_gesv(a, b):
_util._assert_cupy_array(a, b)
_util._assert_stacked_2d(a)
_util._assert_stacked_square(a)
if not ((a.ndim == b.ndim or a.ndim == b.ndim + 1) and
a.shape[:-1] == b.shape[:a.ndim - 1]):
raise ValueError(
'a must have (..., M, M) shape and b must have (..., M) '
'or (..., M, K)')
dtype, out_dtype = _util.linalg_common_type(a, b)
if dtype == 'f':
t = 's'
elif dtype == 'd':
t = 'd'
elif dtype == 'F':
t = 'c'
elif dtype == 'D':
t = 'z'
else:
raise TypeError('invalid dtype')
getrf = getattr(cublas, t + 'getrfBatched')
getrs = getattr(cublas, t + 'getrsBatched')
bs = numpy.prod(a.shape[:-2]) if a.ndim > 2 else 1
n = a.shape[-1]
nrhs = b.shape[-1] if a.ndim == b.ndim else 1
b_shape = b.shape
a_data_ptr = a.data.ptr
b_data_ptr = b.data.ptr
a = cupy.ascontiguousarray(a.reshape(bs, n, n).transpose(0, 2, 1),
dtype=dtype)
b = cupy.ascontiguousarray(b.reshape(bs, n, nrhs).transpose(0, 2, 1),
dtype=dtype)
if a.data.ptr == a_data_ptr:
a = a.copy()
if b.data.ptr == b_data_ptr:
b = b.copy()
if n > get_batched_gesv_limit():
warnings.warn('The matrix size ({}) exceeds the set limit ({})'.
format(n, get_batched_gesv_limit()))
handle = device.get_cublas_handle()
lda = n
a_step = lda * n * a.itemsize
a_array = cupy.arange(a.data.ptr, a.data.ptr + a_step * bs, a_step,
dtype=cupy.uintp)
ldb = n
b_step = ldb * nrhs * b.itemsize
b_array = cupy.arange(b.data.ptr, b.data.ptr + b_step * bs, b_step,
dtype=cupy.uintp)
pivot = cupy.empty((bs, n), dtype=numpy.int32)
dinfo = cupy.empty((bs,), dtype=numpy.int32)
info = numpy.empty((1,), dtype=numpy.int32)
getrf(handle, n, a_array.data.ptr, lda, pivot.data.ptr, dinfo.data.ptr, bs)
_util._check_cublas_info_array_if_synchronization_allowed(getrf, dinfo)
getrs(handle, cublas.CUBLAS_OP_N, n, nrhs, a_array.data.ptr, lda,
pivot.data.ptr, b_array.data.ptr, ldb, info.ctypes.data, bs)
if info[0] != 0:
msg = 'Error reported by {} in cuBLAS. '.format(getrs.__name__)
if info[0] < 0:
msg += 'The {}-th parameter had an illegal value.'.format(-info[0])
raise linalg.LinAlgError(msg)
return b.transpose(0, 2, 1).reshape(b_shape).astype(out_dtype, copy=False)
def iamax(x, out=None):
return _iamaxmin(x, out, 'amax')
def iamin(x, out=None):
return _iamaxmin(x, out, 'amin')
def _iamaxmin(x, out, name):
if x.ndim != 1:
raise ValueError('x must be a 1D array (actual: {})'.format(x.ndim))
dtype = x.dtype.char
if dtype == 'f':
t = 's'
elif dtype == 'd':
t = 'd'
elif dtype == 'F':
t = 'c'
elif dtype == 'D':
t = 'z'
else:
raise TypeError('invalid dtype')
func = getattr(cublas, 'i' + t + name)
handle = device.get_cublas_handle()
result_dtype = 'i'
result_ptr, result, orig_mode = _setup_result_ptr(
handle, out, result_dtype)
try:
func(handle, x.size, x.data.ptr, 1, result_ptr)
finally:
cublas.setPointerMode(handle, orig_mode)
if out is None:
out = result
elif out.dtype != result_dtype:
out[...] = result
return out
def asum(x, out=None):
if x.ndim != 1:
raise ValueError('x must be a 1D array (actual: {})'.format(x.ndim))
dtype = x.dtype.char
if dtype == 'f':
func = cublas.sasum
elif dtype == 'd':
func = cublas.dasum
elif dtype == 'F':
func = cublas.scasum
elif dtype == 'D':
func = cublas.dzasum
else:
raise TypeError('invalid dtype')
handle = device.get_cublas_handle()
result_dtype = dtype.lower()
result_ptr, result, orig_mode = _setup_result_ptr(
handle, out, result_dtype)
try:
func(handle, x.size, x.data.ptr, 1, result_ptr)
finally:
cublas.setPointerMode(handle, orig_mode)
if out is None:
out = result
elif out.dtype != result_dtype:
out[...] = result
return out
def axpy(a, x, y):
_check_two_vectors(x, y)
dtype = x.dtype.char
if dtype == 'f':
func = cublas.saxpy
elif dtype == 'd':
func = cublas.daxpy
elif dtype == 'F':
func = cublas.caxpy
elif dtype == 'D':
func = cublas.zaxpy
else:
raise TypeError('invalid dtype')
handle = device.get_cublas_handle()
a, a_ptr, orig_mode = _setup_scalar_ptr(handle, a, dtype)
try:
func(handle, x.size, a_ptr, x.data.ptr, 1, y.data.ptr, 1)
finally:
cublas.setPointerMode(handle, orig_mode)
def dot(x, y, out=None):
dtype = x.dtype.char
if dtype == 'f':
func = cublas.sdot
elif dtype == 'd':
func = cublas.ddot
elif dtype in 'FD':
raise TypeError('Use dotu() or dotc() for complex dtype')
else:
raise TypeError('invalid dtype')
_check_two_vectors(x, y)
handle = device.get_cublas_handle()
result_dtype = dtype
result_ptr, result, orig_mode = _setup_result_ptr(
handle, out, result_dtype)
try:
func(handle, x.size, x.data.ptr, 1, y.data.ptr, 1, result_ptr)
finally:
cublas.setPointerMode(handle, orig_mode)
if out is None:
out = result
elif out.dtype != result_dtype:
out[...] = result
return out
def dotu(x, y, out=None):
dtype = x.dtype.char
if dtype in 'fd':
return dot(x, y, out=out)
elif dtype == 'F':
func = cublas.cdotu
elif dtype == 'D':
func = cublas.zdotu
else:
raise TypeError('invalid dtype')
_check_two_vectors(x, y)
handle = device.get_cublas_handle()
result_dtype = dtype
result_ptr, result, orig_mode = _setup_result_ptr(
handle, out, result_dtype)
try:
func(handle, x.size, x.data.ptr, 1, y.data.ptr, 1, result_ptr)
finally:
cublas.setPointerMode(handle, orig_mode)
if out is None:
out = result
elif out.dtype != result_dtype:
out[...] = result
return out
def dotc(x, y, out=None):
dtype = x.dtype.char
if dtype in 'fd':
return dot(x, y, out=out)
elif dtype == 'F':
func = cublas.cdotc
elif dtype == 'D':
func = cublas.zdotc
else:
raise TypeError('invalid dtype')
_check_two_vectors(x, y)
handle = device.get_cublas_handle()
result_dtype = dtype
result_ptr, result, orig_mode = _setup_result_ptr(
handle, out, result_dtype)
try:
func(handle, x.size, x.data.ptr, 1, y.data.ptr, 1, result_ptr)
finally:
cublas.setPointerMode(handle, orig_mode)
if out is None:
out = result
elif out.dtype != result_dtype:
out[...] = result
return out
def nrm2(x, out=None):
if x.ndim != 1:
raise ValueError('x must be a 1D array (actual: {})'.format(x.ndim))
dtype = x.dtype.char
if dtype == 'f':
func = cublas.snrm2
elif dtype == 'd':
func = cublas.dnrm2
elif dtype == 'F':
func = cublas.scnrm2
elif dtype == 'D':
func = cublas.dznrm2
else:
raise TypeError('invalid dtype')
handle = device.get_cublas_handle()
result_dtype = dtype.lower()
result_ptr, result, orig_mode = _setup_result_ptr(
handle, out, result_dtype)
try:
func(handle, x.size, x.data.ptr, 1, result_ptr)
finally:
cublas.setPointerMode(handle, orig_mode)
if out is None:
out = result
elif out.dtype != result_dtype:
out[...] = result
return out
def scal(a, x):
if x.ndim != 1:
raise ValueError('x must be a 1D array (actual: {})'.format(x.ndim))
dtype = x.dtype.char
if dtype == 'f':
func = cublas.sscal
elif dtype == 'd':
func = cublas.dscal
elif dtype == 'F':
func = cublas.cscal
elif dtype == 'D':
func = cublas.zscal
else:
raise TypeError('invalid dtype')
handle = device.get_cublas_handle()
a, a_ptr, orig_mode = _setup_scalar_ptr(handle, a, dtype)
try:
func(handle, x.size, a_ptr, x.data.ptr, 1)
finally:
cublas.setPointerMode(handle, orig_mode)
def _check_two_vectors(x, y):
if x.ndim != 1:
raise ValueError('x must be a 1D array (actual: {})'.format(x.ndim))
if y.ndim != 1:
raise ValueError('y must be a 1D array (actual: {})'.format(y.ndim))
if x.size != y.size:
raise ValueError('x and y must be the same size (actual: {} and {})'
''.format(x.size, y.size))
if x.dtype != y.dtype:
raise TypeError('x and y must be the same dtype (actual: {} and {})'
''.format(x.dtype, y.dtype))
def _setup_result_ptr(handle, out, dtype):
mode = cublas.getPointerMode(handle)
if out is None or isinstance(out, cupy.ndarray):
if out is None or out.dtype != dtype:
result = cupy.empty([], dtype=dtype)
else:
result = out
result_ptr = result.data.ptr
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_DEVICE)
elif isinstance(out, numpy.ndarray):
if out.dtype != dtype:
result = numpy.empty([], dtype=dtype)
else:
result = out
result_ptr = result.ctypes.data
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_HOST)
else:
raise TypeError('out must be either cupy or numpy ndarray')
return result_ptr, result, mode
def _setup_scalar_ptr(handle, a, dtype):
a, a_ptr = _get_scalar_ptr(a, dtype)
mode = cublas.getPointerMode(handle)
if isinstance(a, cupy.ndarray):
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_DEVICE)
else:
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_HOST)
return a, a_ptr, mode
def _get_scalar_ptr(a, dtype):
if isinstance(a, cupy.ndarray):
if a.dtype != dtype:
a = cupy.array(a, dtype=dtype)
a_ptr = a.data.ptr
else:
if not (isinstance(a, numpy.ndarray) and a.dtype == dtype):
a = numpy.array(a, dtype=dtype)
a_ptr = a.ctypes.data
return a, a_ptr
def gemv(transa, alpha, a, x, beta, y):
dtype = a.dtype.char
if dtype == 'f':
func = cublas.sgemv
elif dtype == 'd':
func = cublas.dgemv
elif dtype == 'F':
func = cublas.cgemv
elif dtype == 'D':
func = cublas.zgemv
else:
raise TypeError('invalid dtype')
assert a.ndim == 2
assert x.ndim == y.ndim == 1
assert a.dtype == x.dtype == y.dtype
m, n = a.shape
transa = _trans_to_cublas_op(transa)
if transa == cublas.CUBLAS_OP_N:
xlen, ylen = n, m
else:
xlen, ylen = m, n
assert x.shape[0] == xlen
assert y.shape[0] == ylen
alpha, alpha_ptr = _get_scalar_ptr(alpha, a.dtype)
beta, beta_ptr = _get_scalar_ptr(beta, a.dtype)
handle = device.get_cublas_handle()
orig_mode = cublas.getPointerMode(handle)
if isinstance(alpha, cupy.ndarray) or isinstance(beta, cupy.ndarray):
if not isinstance(alpha, cupy.ndarray):
alpha = cupy.array(alpha)
alpha_ptr = alpha.data.ptr
if not isinstance(beta, cupy.ndarray):
beta = cupy.array(beta)
beta_ptr = beta.data.ptr
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_DEVICE)
else:
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_HOST)
try:
if a._f_contiguous:
func(handle, transa, m, n, alpha_ptr, a.data.ptr, m, x.data.ptr, 1,
beta_ptr, y.data.ptr, 1)
elif a._c_contiguous and transa != cublas.CUBLAS_OP_C:
if transa == cublas.CUBLAS_OP_N:
transa = cublas.CUBLAS_OP_T
else:
transa = cublas.CUBLAS_OP_N
func(handle, transa, n, m, alpha_ptr, a.data.ptr, n, x.data.ptr, 1,
beta_ptr, y.data.ptr, 1)
else:
a = a.copy(order='F')
func(handle, transa, m, n, alpha_ptr, a.data.ptr, m, x.data.ptr, 1,
beta_ptr, y.data.ptr, 1)
finally:
cublas.setPointerMode(handle, orig_mode)
def ger(alpha, x, y, a):
dtype = a.dtype.char
if dtype == 'f':
func = cublas.sger
elif dtype == 'd':
func = cublas.dger
elif dtype in 'FD':
raise TypeError('Use geru or gerc for complex dtypes')
else:
raise TypeError('invalid dtype')
assert a.ndim == 2
assert x.ndim == y.ndim == 1
assert a.dtype == x.dtype == y.dtype
m, n = a.shape
assert x.shape[0] == m
assert y.shape[0] == n
handle = device.get_cublas_handle()
alpha, alpha_ptr, orig_mode = _setup_scalar_ptr(handle, alpha, dtype)
x_ptr, y_ptr = x.data.ptr, y.data.ptr
try:
if a._f_contiguous:
func(handle, m, n, alpha_ptr, x_ptr, 1, y_ptr, 1, a.data.ptr, m)
elif a._c_contiguous:
func(handle, n, m, alpha_ptr, y_ptr, 1, x_ptr, 1, a.data.ptr, n)
else:
aa = a.copy(order='F')
func(handle, m, n, alpha_ptr, x_ptr, 1, y_ptr, 1, aa.data.ptr, m)
a[...] = aa
finally:
cublas.setPointerMode(handle, orig_mode)
def geru(alpha, x, y, a):
dtype = a.dtype.char
if dtype in 'fd':
return ger(alpha, x, y, a)
elif dtype == 'F':
func = cublas.cgeru
elif dtype == 'D':
func = cublas.zgeru
else:
raise TypeError('invalid dtype')
assert a.ndim == 2
assert x.ndim == y.ndim == 1
assert a.dtype == x.dtype == y.dtype
m, n = a.shape
assert x.shape[0] == m
assert y.shape[0] == n
handle = device.get_cublas_handle()
alpha, alpha_ptr, orig_mode = _setup_scalar_ptr(handle, alpha, dtype)
x_ptr, y_ptr = x.data.ptr, y.data.ptr
try:
if a._f_contiguous:
func(handle, m, n, alpha_ptr, x_ptr, 1, y_ptr, 1, a.data.ptr, m)
elif a._c_contiguous:
func(handle, n, m, alpha_ptr, y_ptr, 1, x_ptr, 1, a.data.ptr, n)
else:
aa = a.copy(order='F')
func(handle, m, n, alpha_ptr, x_ptr, 1, y_ptr, 1, aa.data.ptr, m)
a[...] = aa
finally:
cublas.setPointerMode(handle, orig_mode)
def gerc(alpha, x, y, a):
dtype = a.dtype.char
if dtype in 'fd':
return ger(alpha, x, y, a)
elif dtype == 'F':
func = cublas.cgerc
elif dtype == 'D':
func = cublas.zgerc
else:
raise TypeError('invalid dtype')
assert a.ndim == 2
assert x.ndim == y.ndim == 1
assert a.dtype == x.dtype == y.dtype
m, n = a.shape
assert x.shape[0] == m
assert y.shape[0] == n
handle = device.get_cublas_handle()
alpha, alpha_ptr, orig_mode = _setup_scalar_ptr(handle, alpha, dtype)
x_ptr, y_ptr = x.data.ptr, y.data.ptr
try:
if a._f_contiguous:
func(handle, m, n, alpha_ptr, x_ptr, 1, y_ptr, 1, a.data.ptr, m)
else:
aa = a.copy(order='F')
func(handle, m, n, alpha_ptr, x_ptr, 1, y_ptr, 1, aa.data.ptr, m)
a[...] = aa
finally:
cublas.setPointerMode(handle, orig_mode)
def _trans_to_cublas_op(trans):
if trans == 'N' or trans == cublas.CUBLAS_OP_N:
trans = cublas.CUBLAS_OP_N
elif trans == 'T' or trans == cublas.CUBLAS_OP_T:
trans = cublas.CUBLAS_OP_T
elif trans == 'H' or trans == cublas.CUBLAS_OP_C:
trans = cublas.CUBLAS_OP_C
else:
raise TypeError('invalid trans (actual: {})'.fromat(trans))
return trans
def _decide_ld_and_trans(a, trans):
ld = None
if trans in (cublas.CUBLAS_OP_N, cublas.CUBLAS_OP_T):
if a._f_contiguous:
ld = a.shape[0]
elif a._c_contiguous:
ld = a.shape[1]
trans = 1 - trans
return ld, trans
def _change_order_if_necessary(a, lda):
if lda is None:
lda = a.shape[0]
if not a._f_contiguous:
a = a.copy(order='F')
return a, lda
def gemm(transa, transb, a, b, out=None, alpha=1.0, beta=0.0):
assert a.ndim == b.ndim == 2
assert a.dtype == b.dtype
dtype = a.dtype.char
if dtype == 'f':
func = cublas.sgemm
elif dtype == 'd':
func = cublas.dgemm
elif dtype == 'F':
func = cublas.cgemm
elif dtype == 'D':
func = cublas.zgemm
else:
raise TypeError('invalid dtype')
transa = _trans_to_cublas_op(transa)
transb = _trans_to_cublas_op(transb)
if transa == cublas.CUBLAS_OP_N:
m, k = a.shape
else:
k, m = a.shape
if transb == cublas.CUBLAS_OP_N:
n = b.shape[1]
assert b.shape[0] == k
else:
n = b.shape[0]
assert b.shape[1] == k
if out is None:
out = cupy.empty((m, n), dtype=dtype, order='F')
beta = 0.0
else:
assert out.ndim == 2
assert out.shape == (m, n)
assert out.dtype == dtype
alpha, alpha_ptr = _get_scalar_ptr(alpha, a.dtype)
beta, beta_ptr = _get_scalar_ptr(beta, a.dtype)
handle = device.get_cublas_handle()
orig_mode = cublas.getPointerMode(handle)
if isinstance(alpha, cupy.ndarray) or isinstance(beta, cupy.ndarray):
if not isinstance(alpha, cupy.ndarray):
alpha = cupy.array(alpha)
alpha_ptr = alpha.data.ptr
if not isinstance(beta, cupy.ndarray):
beta = cupy.array(beta)
beta_ptr = beta.data.ptr
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_DEVICE)
else:
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_HOST)
lda, transa = _decide_ld_and_trans(a, transa)
ldb, transb = _decide_ld_and_trans(b, transb)
if not (lda is None or ldb is None):
if out._f_contiguous:
try:
func(handle, transa, transb, m, n, k, alpha_ptr,
a.data.ptr, lda, b.data.ptr, ldb, beta_ptr, out.data.ptr,
m)
finally:
cublas.setPointerMode(handle, orig_mode)
return out
elif out._c_contiguous:
try:
func(handle, 1 - transb, 1 - transa, n, m, k, alpha_ptr,
b.data.ptr, ldb, a.data.ptr, lda, beta_ptr, out.data.ptr,
n)
finally:
cublas.setPointerMode(handle, orig_mode)
return out
a, lda = _change_order_if_necessary(a, lda)
b, ldb = _change_order_if_necessary(b, ldb)
c = out
if not out._f_contiguous:
c = out.copy(order='F')
try:
func(handle, transa, transb, m, n, k, alpha_ptr, a.data.ptr, lda,
b.data.ptr, ldb, beta_ptr, c.data.ptr, m)
finally:
cublas.setPointerMode(handle, orig_mode)
if not out._f_contiguous:
out[...] = c
return out
def geam(transa, transb, alpha, a, beta, b, out=None):
assert a.ndim == b.ndim == 2
assert a.dtype == b.dtype
dtype = a.dtype.char
if dtype == 'f':
func = cublas.sgeam
elif dtype == 'd':
func = cublas.dgeam
elif dtype == 'F':
func = cublas.cgeam
elif dtype == 'D':
func = cublas.zgeam
else:
raise TypeError('invalid dtype')
transa = _trans_to_cublas_op(transa)
transb = _trans_to_cublas_op(transb)
if transa == cublas.CUBLAS_OP_N:
m, n = a.shape
else:
n, m = a.shape
if transb == cublas.CUBLAS_OP_N:
assert b.shape == (m, n)
else:
assert b.shape == (n, m)
if out is None:
out = cupy.empty((m, n), dtype=dtype, order='F')
else:
assert out.ndim == 2
assert out.shape == (m, n)
assert out.dtype == dtype
alpha, alpha_ptr = _get_scalar_ptr(alpha, a.dtype)
beta, beta_ptr = _get_scalar_ptr(beta, a.dtype)
handle = device.get_cublas_handle()
orig_mode = cublas.getPointerMode(handle)
if isinstance(alpha, cupy.ndarray) or isinstance(beta, cupy.ndarray):
if not isinstance(alpha, cupy.ndarray):
alpha = cupy.array(alpha)
alpha_ptr = alpha.data.ptr
if not isinstance(beta, cupy.ndarray):
beta = cupy.array(beta)
beta_ptr = beta.data.ptr
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_DEVICE)
else:
cublas.setPointerMode(handle, cublas.CUBLAS_POINTER_MODE_HOST)
lda, transa = _decide_ld_and_trans(a, transa)
ldb, transb = _decide_ld_and_trans(b, transb)
if not (lda is None or ldb is None):
if out._f_contiguous:
try:
func(handle, transa, transb, m, n, alpha_ptr, a.data.ptr,
lda, beta_ptr, b.data.ptr, ldb, out.data.ptr, m)
finally:
cublas.setPointerMode(handle, orig_mode)
return out
elif out._c_contiguous:
try:
func(handle, 1-transa, 1-transb, n, m, alpha_ptr, a.data.ptr,
lda, beta_ptr, b.data.ptr, ldb, out.data.ptr, n)
finally:
cublas.setPointerMode(handle, orig_mode)
return out
a, lda = _change_order_if_necessary(a, lda)
b, ldb = _change_order_if_necessary(b, ldb)
c = out
if not out._f_contiguous:
c = out.copy(order='F')
try:
func(handle, transa, transb, m, n, alpha_ptr, a.data.ptr, lda,
beta_ptr, b.data.ptr, ldb, c.data.ptr, m)
finally:
cublas.setPointerMode(handle, orig_mode)
if not out._f_contiguous:
out[...] = c
return out
|
MIT License
|
flyteorg/flytekit
|
flytekit/models/core/identifier.py
|
NodeExecutionIdentifier.from_flyte_idl
|
python
|
def from_flyte_idl(cls, p):
return cls(
node_id=p.node_id,
execution_id=WorkflowExecutionIdentifier.from_flyte_idl(p.execution_id),
)
|
:param flyteidl.core.identifier_pb2.NodeExecutionIdentifier p:
:rtype: NodeExecutionIdentifier
|
https://github.com/flyteorg/flytekit/blob/6c032035563ae645b0b93558b3fe3362080057ea/flytekit/models/core/identifier.py#L182-L190
|
from flyteidl.core import identifier_pb2 as _identifier_pb2
from flytekit.models import common as _common_models
class ResourceType(object):
UNSPECIFIED = _identifier_pb2.UNSPECIFIED
TASK = _identifier_pb2.TASK
WORKFLOW = _identifier_pb2.WORKFLOW
LAUNCH_PLAN = _identifier_pb2.LAUNCH_PLAN
class Identifier(_common_models.FlyteIdlEntity):
def __init__(self, resource_type, project, domain, name, version):
self._resource_type = resource_type
self._project = project
self._domain = domain
self._name = name
self._version = version
@property
def resource_type(self):
return self._resource_type
def resource_type_name(self) -> str:
return _identifier_pb2.ResourceType.Name(self.resource_type)
@property
def project(self):
return self._project
@property
def domain(self):
return self._domain
@property
def name(self):
return self._name
@property
def version(self):
return self._version
def to_flyte_idl(self):
return _identifier_pb2.Identifier(
resource_type=self.resource_type,
project=self.project,
domain=self.domain,
name=self.name,
version=self.version,
)
@classmethod
def from_flyte_idl(cls, p):
return cls(
resource_type=p.resource_type,
project=p.project,
domain=p.domain,
name=p.name,
version=p.version,
)
class WorkflowExecutionIdentifier(_common_models.FlyteIdlEntity):
def __init__(self, project, domain, name):
self._project = project
self._domain = domain
self._name = name
@property
def project(self):
return self._project
@property
def domain(self):
return self._domain
@property
def name(self):
return self._name
def to_flyte_idl(self):
return _identifier_pb2.WorkflowExecutionIdentifier(
project=self.project,
domain=self.domain,
name=self.name,
)
@classmethod
def from_flyte_idl(cls, p):
return cls(
project=p.project,
domain=p.domain,
name=p.name,
)
class NodeExecutionIdentifier(_common_models.FlyteIdlEntity):
def __init__(self, node_id, execution_id):
self._node_id = node_id
self._execution_id = execution_id
@property
def node_id(self):
return self._node_id
@property
def execution_id(self):
return self._execution_id
def to_flyte_idl(self):
return _identifier_pb2.NodeExecutionIdentifier(
node_id=self.node_id,
execution_id=self.execution_id.to_flyte_idl(),
)
@classmethod
|
Apache License 2.0
|
lagg/steamodd
|
steam/user.py
|
friend_list.count
|
python
|
def count(self):
return len(self._friends)
|
Returns number of friends
|
https://github.com/lagg/steamodd/blob/2e9ced4e7a6dbe3e09d5a648450bafc12b937b95/steam/user.py#L458-L460
|
import time
import os
from . import api
class ProfileError(api.APIError):
pass
class ProfileNotFoundError(ProfileError):
pass
class VanityError(ProfileError):
pass
class BansError(ProfileError):
pass
class BansNotFoundError(BansError):
pass
class vanity_url(object):
@property
def id64(self):
if self._cache:
return self._cache
res = None
try:
res = self._api["response"]
self._cache = int(res["steamid"])
except KeyError:
if not self._cache:
if res:
raise VanityError(res.get("message",
"Invalid vanity response"))
else:
raise VanityError("Empty vanity response")
return self._cache
def __str__(self):
return str(self.id64)
def __init__(self, vanity, **kwargs):
vanity = os.path.basename(str(vanity).strip('/'))
self._cache = None
self._api = api.interface("ISteamUser").ResolveVanityURL(vanityurl=vanity, **kwargs)
class profile(object):
@property
def id64(self):
return int(self._prof["steamid"])
@property
def id32(self):
return int(self.id64) - 76561197960265728
@property
def persona(self):
return self._prof["personaname"]
@property
def profile_url(self):
return self._prof["profileurl"]
@property
def vanity(self):
purl = self.profile_url.strip('/')
if purl.find("/id/") != -1:
return os.path.basename(purl)
@property
def avatar_small(self):
return self._prof["avatar"]
@property
def avatar_medium(self):
return self._prof["avatarmedium"]
@property
def avatar_large(self):
return self._prof["avatarfull"]
@property
def status(self):
return self._prof["personastate"]
@property
def visibility(self):
return self._prof["communityvisibilitystate"]
@property
def configured(self):
return bool(self._prof.get("profilestate"))
@property
def last_online(self):
return time.localtime(self._prof["lastlogoff"])
@property
def comments_enabled(self):
return bool(self._prof.get("commentpermission"))
@property
def real_name(self):
return self._prof.get("realname")
@property
def primary_group(self):
return self._prof.get("primaryclanid")
@property
def creation_date(self):
timestamp = self._prof.get("timecreated")
if timestamp:
return time.localtime(timestamp)
@property
def current_game(self):
obj = self._prof
gameid = obj.get("gameid")
gameserverip = obj.get("gameserverip")
gameextrainfo = obj.get("gameextrainfo")
return (int(gameid) if gameid else None, gameserverip, gameextrainfo)
@property
def location(self):
obj = self._prof
return (obj.get("locstatecode"), obj.get("loccountrycode"))
@property
def lobbysteamid(self):
return int(self._prof.get("lobbysteamid", 0))
@property
def _prof(self):
if not self._cache:
try:
res = self._api["response"]["players"]
try:
self._cache = res[0]
except IndexError:
raise ProfileNotFoundError("Profile not found")
except KeyError:
raise ProfileError("Bad player profile results returned")
return self._cache
@property
def level(self):
level_key = "player_level"
if level_key in self._api["response"]:
return self._api["response"][level_key]
try:
lvl = api.interface("IPlayerService").GetSteamLevel(steamid=self.id64)["response"][level_key]
self._api["response"][level_key] = lvl
return lvl
except:
return -1
@classmethod
def from_def(cls, obj):
prof = cls(obj["steamid"])
prof._cache = obj
return prof
def __str__(self):
return self.persona or str(self.id64)
def __init__(self, sid, **kwargs):
try:
sid = sid.id64
except AttributeError:
sid = os.path.basename(str(sid).strip('/'))
self._cache = {}
self._api = api.interface("ISteamUser").GetPlayerSummaries(version=2, steamids=sid, **kwargs)
class _batched_request(object):
def __init__(self, batch, batchsize=100):
self._batches = []
batchlen, rem = divmod(len(batch), batchsize)
if rem > 0:
batchlen += 1
for i in range(batchlen):
offset = i * batchsize
batch_chunk = batch[offset:offset + batchsize]
self._batches.append(list(self._process_batch(batch_chunk)))
def _process_batch(self, batch):
return batch
def _call_method(self, batch):
raise NotImplementedError
def __iter__(self):
return next(self)
def __next__(self):
for batch in self._batches:
for result in self._call_method(batch):
yield result
next = __next__
class profile_batch(_batched_request):
def __init__(self, sids):
super(profile_batch, self).__init__(sids)
def _process_batch(self, batch):
processed = set()
for sid in batch:
try:
sid = sid.id64
except AttributeError:
sid = os.path.basename(str(sid).strip('/'))
processed.add(str(sid))
return processed
def _call_method(self, batch):
response = api.interface("ISteamUser").GetPlayerSummaries(version=2, steamids=','.join(batch))
return [profile.from_def(player) for player in response["response"]["players"]]
class bans(object):
def __init__(self, sid, **kwargs):
try:
sid = sid.id64
except AttributeError:
sid = os.path.basename(str(sid).strip('/'))
self._cache = {}
self._api = api.interface("ISteamUser").GetPlayerBans(steamids=sid, **kwargs)
@property
def _bans(self):
if not self._cache:
try:
res = self._api["players"]
try:
self._cache = res[0]
except IndexError:
raise BansNotFoundError("No ban results for this profile")
except KeyError:
raise BansError("Bad ban data returned")
return self._cache
@property
def id64(self):
return int(self._bans["SteamId"])
@property
def community(self):
return self._bans["CommunityBanned"]
@property
def vac(self):
return self._bans["VACBanned"]
@property
def vac_count(self):
return self._bans["NumberOfVACBans"]
@property
def days_unbanned(self):
return self._bans["DaysSinceLastBan"]
@property
def economy(self):
return self._bans["EconomyBan"]
@property
def game_count(self):
return self._bans["NumberOfGameBans"]
@classmethod
def from_def(cls, obj):
instance = cls(int(obj["SteamId"]))
instance._cache = obj
return instance
class bans_batch(_batched_request):
def __init__(self, sids):
super(bans_batch, self).__init__(sids)
def _process_batch(self, batch):
processed = set()
for sid in batch:
try:
sid = sid.id64
except AttributeError:
sid = os.path.basename(str(sid).strip('/'))
processed.add(str(sid))
return processed
def _call_method(self, batch):
response = api.interface("ISteamUser").GetPlayerBans(steamids=','.join(batch))
return [bans.from_def(player) for player in response["players"]]
class friend(object):
def __init__(self, friend_dict):
self._friend_dict = friend_dict
@property
def steamid(self):
return int(self._friend_dict["steamid"])
@property
def relationship(self):
return self._friend_dict["relationship"]
@property
def since(self):
return time.localtime(self._friend_dict["friend_since"])
class friend_list(object):
def __init__(self, sid, relationship="all", **kwargs):
try:
sid = sid.id64
except AttributeError:
sid = os.path.basename(str(sid).strip('/'))
self._api = api.interface("ISteamUser").GetFriendList(steamid=sid,
relationship=relationship,
**kwargs)
try:
self._friends = self._api["friendslist"]["friends"]
except api.HTTPFileNotFoundError:
raise ProfileNotFoundError("Profile not found")
except api.HTTPInternalServerError:
raise ProfileNotFoundError("Invalid Steam ID given")
self.index = 0
@property
|
ISC License
|
systemsbioinformatics/stochpy
|
stochpy/tools/ParseDistributions.py
|
retrieve_index
|
python
|
def retrieve_index(input_, lst_names):
if input_ in lst_names:
index = lst_names.index(input_)
else:
if isinstance(input_,int) and input_ < len(lst_names):
index = input_
else:
raise Warning("'{0}' is not recognized. Choose one of {1} or {2}.".format(input_, lst_names, range(len(lst_names))))
return index
|
Converts identifiers (or indices) to indices
Input:
- *name_or_index*
- *lst_names*
|
https://github.com/systemsbioinformatics/stochpy/blob/48f07e4a235158744680a94ed41c84aee040362d/stochpy/tools/ParseDistributions.py#L14-L29
|
import sys, numpy as np
|
BSD 3-Clause New or Revised License
|
pycontribs/pyrax
|
pyrax/autoscale.py
|
ScalingGroupManager.update_webhook_metadata
|
python
|
def update_webhook_metadata(self, scaling_group, policy, webhook, metadata):
if not isinstance(webhook, AutoScaleWebhook):
webhook = self.get_webhook(scaling_group, policy, webhook)
curr_meta = webhook.metadata or {}
curr_meta.update(metadata)
return self.update_webhook(scaling_group, policy, webhook,
metadata=curr_meta)
|
Adds the given metadata dict to the existing metadata for the specified
webhook.
|
https://github.com/pycontribs/pyrax/blob/a0c022981f76a4cba96a22ecc19bb52843ac4fbe/pyrax/autoscale.py#L706-L716
|
from __future__ import absolute_import, unicode_literals
import base64
import pyrax
from pyrax.client import BaseClient
from pyrax.cloudloadbalancers import CloudLoadBalancer
import pyrax.exceptions as exc
from pyrax.manager import BaseManager
from pyrax.resource import BaseResource
import pyrax.utils as utils
class ScalingGroup(BaseResource):
def __init__(self, *args, **kwargs):
super(ScalingGroup, self).__init__(*args, **kwargs)
self._non_display = ["active", "launchConfiguration", "links",
"groupConfiguration", "policies", "scalingPolicies"]
self._repr_properties = ["name", "cooldown", "metadata",
"min_entities", "max_entities"]
self._make_policies()
def _make_policies(self):
self.policies = [AutoScalePolicy(self.manager, dct, self)
for dct in self.scalingPolicies]
def get_state(self):
return self.manager.get_state(self)
def pause(self):
return self.manager.pause(self)
def resume(self):
return self.manager.resume(self)
def update(self, name=None, cooldown=None, min_entities=None,
max_entities=None, metadata=None):
return self.manager.update(self, name=name,
cooldown=cooldown, min_entities=min_entities,
max_entities=max_entities, metadata=metadata)
def update_metadata(self, metadata):
return self.manager.update_metadata(self, metadata=metadata)
def get_configuration(self):
return self.manager.get_configuration(self)
def get_launch_config(self):
return self.manager.get_launch_config(self)
def update_launch_config(self, server_name=None, image=None, flavor=None,
disk_config=None, metadata=None, personality=None, networks=None,
load_balancers=None, key_name=None, config_drive=False, user_data=None):
return self.manager.update_launch_config(self, server_name=server_name,
image=image, flavor=flavor, disk_config=disk_config,
metadata=metadata, personality=personality, networks=networks,
load_balancers=load_balancers, key_name=key_name,
config_drive=config_drive, user_data=user_data)
def update_launch_metadata(self, metadata):
return self.manager.update_launch_metadata(self, metadata)
def add_policy(self, name, policy_type, cooldown, change=None,
is_percent=False, desired_capacity=None, args=None):
return self.manager.add_policy(self, name, policy_type, cooldown,
change=change, is_percent=is_percent,
desired_capacity=desired_capacity, args=args)
def list_policies(self):
return self.manager.list_policies(self)
def get_policy(self, policy):
return self.manager.get_policy(self, policy)
def update_policy(self, policy, name=None, policy_type=None, cooldown=None,
change=None, is_percent=False, desired_capacity=None, args=None):
return self.manager.update_policy(scaling_group=self, policy=policy,
name=name, policy_type=policy_type, cooldown=cooldown,
change=change, is_percent=is_percent,
desired_capacity=desired_capacity, args=args)
def execute_policy(self, policy):
return self.manager.execute_policy(scaling_group=self, policy=policy)
def delete_policy(self, policy):
return self.manager.delete_policy(scaling_group=self, policy=policy)
def add_webhook(self, policy, name, metadata=None):
return self.manager.add_webhook(self, policy, name, metadata=metadata)
def list_webhooks(self, policy):
return self.manager.list_webhooks(self, policy)
def update_webhook(self, policy, webhook, name=None, metadata=None):
return self.manager.update_webhook(scaling_group=self, policy=policy,
webhook=webhook, name=name, metadata=metadata)
def update_webhook_metadata(self, policy, webhook, metadata):
return self.manager.update_webhook_metadata(self, policy, webhook,
metadata)
def delete_webhook(self, policy, webhook):
return self.manager.delete_webhook(self, policy, webhook)
@property
def policy_count(self):
return len(self.policies)
@property
def name(self):
return self.groupConfiguration.get("name")
@name.setter
def name(self, val):
self.groupConfiguration["name"] = val
@property
def cooldown(self):
return self.groupConfiguration.get("cooldown")
@cooldown.setter
def cooldown(self, val):
self.groupConfiguration["cooldown"] = val
@property
def metadata(self):
return self.groupConfiguration.get("metadata")
@metadata.setter
def metadata(self, val):
self.groupConfiguration["metadata"] = val
@property
def min_entities(self):
return self.groupConfiguration.get("minEntities")
@min_entities.setter
def min_entities(self, val):
self.groupConfiguration["minEntities"] = val
@property
def max_entities(self):
return self.groupConfiguration.get("maxEntities")
@max_entities.setter
def max_entities(self, val):
self.groupConfiguration["maxEntities"] = val
class ScalingGroupManager(BaseManager):
def __init__(self, api, resource_class=None, response_key=None,
plural_response_key=None, uri_base=None):
super(ScalingGroupManager, self).__init__(api,
resource_class=resource_class, response_key=response_key,
plural_response_key=plural_response_key, uri_base=uri_base)
def get_state(self, scaling_group):
uri = "/%s/%s/state" % (self.uri_base, utils.get_id(scaling_group))
resp, resp_body = self.api.method_get(uri)
data = resp_body["group"]
ret = {}
ret["active"] = [itm["id"] for itm in data["active"]]
ret["active_capacity"] = data["activeCapacity"]
ret["desired_capacity"] = data["desiredCapacity"]
ret["pending_capacity"] = data["pendingCapacity"]
ret["paused"] = data["paused"]
return ret
def pause(self, scaling_group):
uri = "/%s/%s/pause" % (self.uri_base, utils.get_id(scaling_group))
resp, resp_body = self.api.method_post(uri)
return None
def resume(self, scaling_group):
uri = "/%s/%s/resume" % (self.uri_base, utils.get_id(scaling_group))
resp, resp_body = self.api.method_post(uri)
return None
def get_configuration(self, scaling_group):
uri = "/%s/%s/config" % (self.uri_base, utils.get_id(scaling_group))
resp, resp_body = self.api.method_get(uri)
return resp_body.get("groupConfiguration")
def replace(self, scaling_group, name, cooldown, min_entities,
max_entities, metadata=None):
body = self._create_group_config_body(name, cooldown, min_entities,
max_entities, metadata=metadata)
group_id = utils.get_id(scaling_group)
uri = "/%s/%s/config" % (self.uri_base, group_id)
resp, resp_body = self.api.method_put(uri, body=body)
def update(self, scaling_group, name=None, cooldown=None,
min_entities=None, max_entities=None, metadata=None):
if not isinstance(scaling_group, ScalingGroup):
scaling_group = self.get(scaling_group)
uri = "/%s/%s/config" % (self.uri_base, scaling_group.id)
if cooldown is None:
cooldown = scaling_group.cooldown
if min_entities is None:
min_entities = scaling_group.min_entities
if max_entities is None:
max_entities = scaling_group.max_entities
body = {"name": name or scaling_group.name,
"cooldown": cooldown,
"minEntities": min_entities,
"maxEntities": max_entities,
"metadata": metadata or scaling_group.metadata,
}
resp, resp_body = self.api.method_put(uri, body=body)
return None
def update_metadata(self, scaling_group, metadata):
if not isinstance(scaling_group, ScalingGroup):
scaling_group = self.get(scaling_group)
curr_meta = scaling_group.metadata
curr_meta.update(metadata)
return self.update(scaling_group, metadata=curr_meta)
def get_launch_config(self, scaling_group):
key_map = {
"OS-DCF:diskConfig": "disk_config",
"flavorRef": "flavor",
"imageRef": "image",
}
uri = "/%s/%s/launch" % (self.uri_base, utils.get_id(scaling_group))
resp, resp_body = self.api.method_get(uri)
ret = {}
data = resp_body.get("launchConfiguration")
ret["type"] = data.get("type")
args = data.get("args", {})
ret["load_balancers"] = args.get("loadBalancers")
for key, value in args.get("server", {}).items():
norm_key = key_map.get(key, key)
ret[norm_key] = value
return ret
def replace_launch_config(self, scaling_group, launch_config_type,
server_name, image, flavor, disk_config=None, metadata=None,
personality=None, networks=None, load_balancers=None,
key_name=None, config_drive=False, user_data=None):
group_id = utils.get_id(scaling_group)
uri = "/%s/%s/launch" % (self.uri_base, group_id)
body = self._create_launch_config_body(
launch_config_type=launch_config_type, server_name=server_name,
image=image, flavor=flavor, disk_config=disk_config,
metadata=metadata, personality=personality, networks=networks,
load_balancers=load_balancers, key_name=key_name,
config_drive=config_drive, user_data=user_data)
resp, resp_body = self.api.method_put(uri, body=body)
def update_launch_config(self, scaling_group, server_name=None, image=None,
flavor=None, disk_config=None, metadata=None, personality=None,
networks=None, load_balancers=None, key_name=None, config_drive=False,
user_data=None):
if not isinstance(scaling_group, ScalingGroup):
scaling_group = self.get(scaling_group)
uri = "/%s/%s/launch" % (self.uri_base, scaling_group.id)
largs = scaling_group.launchConfiguration.get("args", {})
srv_args = largs.get("server", {})
lb_args = largs.get("loadBalancers", {})
flav = flavor or srv_args.get("flavorRef")
dconf = disk_config or srv_args.get("OS-DCF:diskConfig", "AUTO")
if personality is None:
personality = srv_args.get("personality", [])
cfg_drv = config_drive or srv_args.get("config_drive")
if user_data:
user_data = base64.b64encode(user_data)
usr_data = user_data or srv_args.get("user_data")
update_metadata = metadata or srv_args.get("metadata")
body = {"type": "launch_server",
"args": {
"server": {
"name": server_name or srv_args.get("name"),
"imageRef": image or srv_args.get("imageRef"),
"flavorRef": flav,
"OS-DCF:diskConfig": dconf,
"networks": networks or srv_args.get("networks"),
},
"loadBalancers": load_balancers or lb_args,
},
}
bas = body["args"]["server"]
if cfg_drv:
bas["config_drive"] = cfg_drv
if usr_data:
bas["user_data"] = usr_data
if personality:
bas["personality"] = self._encode_personality(personality)
if update_metadata:
bas["metadata"] = update_metadata
key_name = key_name or srv_args.get("key_name")
if key_name:
bas["key_name"] = key_name
resp, resp_body = self.api.method_put(uri, body=body)
return None
def update_launch_metadata(self, scaling_group, metadata):
if not isinstance(scaling_group, ScalingGroup):
scaling_group = self.get(scaling_group)
curr_meta = scaling_group.launchConfiguration.get("args", {}).get(
"server", {}).get("metadata", {})
curr_meta.update(metadata)
return self.update_launch_config(scaling_group, metadata=curr_meta)
def add_policy(self, scaling_group, name, policy_type, cooldown,
change=None, is_percent=False, desired_capacity=None, args=None):
uri = "/%s/%s/policies" % (self.uri_base, utils.get_id(scaling_group))
body = self._create_policy_body(name, policy_type, cooldown,
change=change, is_percent=is_percent,
desired_capacity=desired_capacity, args=args)
body = [body]
resp, resp_body = self.api.method_post(uri, body=body)
pol_info = resp_body.get("policies")[0]
return AutoScalePolicy(self, pol_info, scaling_group)
def _create_policy_body(self, name, policy_type, cooldown, change=None,
is_percent=None, desired_capacity=None, args=None):
body = {"name": name, "cooldown": cooldown, "type": policy_type}
if change is not None:
if is_percent:
body["changePercent"] = change
else:
body["change"] = change
if desired_capacity is not None:
body["desiredCapacity"] = desired_capacity
if args is not None:
body["args"] = args
return body
def list_policies(self, scaling_group):
uri = "/%s/%s/policies" % (self.uri_base, utils.get_id(scaling_group))
resp, resp_body = self.api.method_get(uri)
return [AutoScalePolicy(self, data, scaling_group)
for data in resp_body.get("policies", [])]
def get_policy(self, scaling_group, policy):
uri = "/%s/%s/policies/%s" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy))
resp, resp_body = self.api.method_get(uri)
data = resp_body.get("policy")
return AutoScalePolicy(self, data, scaling_group)
def replace_policy(self, scaling_group, policy, name,
policy_type, cooldown, change=None, is_percent=False,
desired_capacity=None, args=None):
policy_id = utils.get_id(policy)
group_id = utils.get_id(scaling_group)
uri = "/%s/%s/policies/%s" % (self.uri_base, group_id, policy_id)
body = self._create_policy_body(name=name, policy_type=policy_type,
cooldown=cooldown, change=change, is_percent=is_percent,
desired_capacity=desired_capacity, args=args)
resp, resp_body = self.api.method_put(uri, body=body)
def update_policy(self, scaling_group, policy, name=None, policy_type=None,
cooldown=None, change=None, is_percent=False,
desired_capacity=None, args=None):
uri = "/%s/%s/policies/%s" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy))
if not isinstance(policy, AutoScalePolicy):
policy = self.get_policy(scaling_group, policy)
body = {"name": name or policy.name,
"type": policy_type or policy.type,
"cooldown": cooldown or policy.cooldown,
}
if desired_capacity is not None:
body["desiredCapacity"] = desired_capacity
elif change is not None:
if is_percent:
body["changePercent"] = change
else:
body["change"] = change
else:
if getattr(policy, "changePercent", None) is not None:
body["changePercent"] = policy.changePercent
elif getattr(policy, "change", None) is not None:
body["change"] = policy.change
elif getattr(policy, "desiredCapacity", None) is not None:
body["desiredCapacity"] = policy.desiredCapacity
args = args or getattr(policy, "args", None)
if args is not None:
body["args"] = args
resp, resp_body = self.api.method_put(uri, body=body)
return None
def execute_policy(self, scaling_group, policy):
uri = "/%s/%s/policies/%s/execute" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy))
resp, resp_body = self.api.method_post(uri)
return None
def delete_policy(self, scaling_group, policy):
uri = "/%s/%s/policies/%s" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy))
resp, resp_body = self.api.method_delete(uri)
def _create_webhook_body(self, name, metadata=None):
if metadata is None:
metadata = {}
body = {"name": name, "metadata": metadata}
return body
def add_webhook(self, scaling_group, policy, name, metadata=None):
uri = "/%s/%s/policies/%s/webhooks" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy))
body = self._create_webhook_body(name, metadata=metadata)
body = [body]
resp, resp_body = self.api.method_post(uri, body=body)
data = resp_body.get("webhooks")[0]
return AutoScaleWebhook(self, data, policy, scaling_group)
def list_webhooks(self, scaling_group, policy):
uri = "/%s/%s/policies/%s/webhooks" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy))
resp, resp_body = self.api.method_get(uri)
return [AutoScaleWebhook(self, data, policy, scaling_group)
for data in resp_body.get("webhooks", [])]
def get_webhook(self, scaling_group, policy, webhook):
uri = "/%s/%s/policies/%s/webhooks/%s" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy),
utils.get_id(webhook))
resp, resp_body = self.api.method_get(uri)
data = resp_body.get("webhook")
return AutoScaleWebhook(self, data, policy, scaling_group)
def replace_webhook(self, scaling_group, policy, webhook, name,
metadata=None):
uri = "/%s/%s/policies/%s/webhooks/%s" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy),
utils.get_id(webhook))
group_id = utils.get_id(scaling_group)
policy_id = utils.get_id(policy)
webhook_id = utils.get_id(webhook)
body = self._create_webhook_body(name, metadata=metadata)
resp, resp_body = self.api.method_put(uri, body=body)
def update_webhook(self, scaling_group, policy, webhook, name=None,
metadata=None):
uri = "/%s/%s/policies/%s/webhooks/%s" % (self.uri_base,
utils.get_id(scaling_group), utils.get_id(policy),
utils.get_id(webhook))
if not isinstance(webhook, AutoScaleWebhook):
webhook = self.get_webhook(scaling_group, policy, webhook)
body = {"name": name or webhook.name,
"metadata": metadata or webhook.metadata,
}
resp, resp_body = self.api.method_put(uri, body=body)
webhook.reload()
return webhook
|
Apache License 2.0
|
osmr/imgclsmob
|
gluon/gluoncv2/models/sepreresnet_cifar.py
|
sepreresnet164bn_svhn
|
python
|
def sepreresnet164bn_svhn(classes=10, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="sepreresnet164bn_svhn",
**kwargs)
|
SE-PreResNet-164(BN) model for SVHN from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507.
Parameters:
----------
classes : int, default 10
Number of classification classes.
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
|
https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/gluon/gluoncv2/models/sepreresnet_cifar.py#L368-L384
|
__all__ = ['CIFARSEPreResNet', 'sepreresnet20_cifar10', 'sepreresnet20_cifar100', 'sepreresnet20_svhn',
'sepreresnet56_cifar10', 'sepreresnet56_cifar100', 'sepreresnet56_svhn',
'sepreresnet110_cifar10', 'sepreresnet110_cifar100', 'sepreresnet110_svhn',
'sepreresnet164bn_cifar10', 'sepreresnet164bn_cifar100', 'sepreresnet164bn_svhn',
'sepreresnet272bn_cifar10', 'sepreresnet272bn_cifar100', 'sepreresnet272bn_svhn',
'sepreresnet542bn_cifar10', 'sepreresnet542bn_cifar100', 'sepreresnet542bn_svhn',
'sepreresnet1001_cifar10', 'sepreresnet1001_cifar100', 'sepreresnet1001_svhn',
'sepreresnet1202_cifar10', 'sepreresnet1202_cifar100', 'sepreresnet1202_svhn']
import os
from mxnet import cpu
from mxnet.gluon import nn, HybridBlock
from .common import conv3x3_block
from .sepreresnet import SEPreResUnit
class CIFARSEPreResNet(HybridBlock):
def __init__(self,
channels,
init_block_channels,
bottleneck,
bn_use_global_stats=False,
in_channels=3,
in_size=(32, 32),
classes=10,
**kwargs):
super(CIFARSEPreResNet, self).__init__(**kwargs)
self.in_size = in_size
self.classes = classes
with self.name_scope():
self.features = nn.HybridSequential(prefix="")
self.features.add(conv3x3_block(
in_channels=in_channels,
out_channels=init_block_channels,
bn_use_global_stats=bn_use_global_stats))
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
stage = nn.HybridSequential(prefix="stage{}_".format(i + 1))
with stage.name_scope():
for j, out_channels in enumerate(channels_per_stage):
strides = 2 if (j == 0) and (i != 0) else 1
stage.add(SEPreResUnit(
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
bn_use_global_stats=bn_use_global_stats,
bottleneck=bottleneck,
conv1_stride=False))
in_channels = out_channels
self.features.add(stage)
self.features.add(nn.AvgPool2D(
pool_size=8,
strides=1))
self.output = nn.HybridSequential(prefix="")
self.output.add(nn.Flatten())
self.output.add(nn.Dense(
units=classes,
in_units=in_channels))
def hybrid_forward(self, F, x):
x = self.features(x)
x = self.output(x)
return x
def get_sepreresnet_cifar(classes,
blocks,
bottleneck,
model_name=None,
pretrained=False,
ctx=cpu(),
root=os.path.join("~", ".mxnet", "models"),
**kwargs):
assert (classes in [10, 100])
if bottleneck:
assert ((blocks - 2) % 9 == 0)
layers = [(blocks - 2) // 9] * 3
else:
assert ((blocks - 2) % 6 == 0)
layers = [(blocks - 2) // 6] * 3
channels_per_layers = [16, 32, 64]
init_block_channels = 16
channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)]
if bottleneck:
channels = [[cij * 4 for cij in ci] for ci in channels]
net = CIFARSEPreResNet(
channels=channels,
init_block_channels=init_block_channels,
bottleneck=bottleneck,
classes=classes,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import get_model_file
net.load_parameters(
filename=get_model_file(
model_name=model_name,
local_model_store_dir_path=root),
ctx=ctx)
return net
def sepreresnet20_cifar10(classes=10, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="sepreresnet20_cifar10",
**kwargs)
def sepreresnet20_cifar100(classes=100, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="sepreresnet20_cifar100",
**kwargs)
def sepreresnet20_svhn(classes=10, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="sepreresnet20_svhn",
**kwargs)
def sepreresnet56_cifar10(classes=10, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="sepreresnet56_cifar10",
**kwargs)
def sepreresnet56_cifar100(classes=100, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="sepreresnet56_cifar100",
**kwargs)
def sepreresnet56_svhn(classes=10, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="sepreresnet56_svhn",
**kwargs)
def sepreresnet110_cifar10(classes=10, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="sepreresnet110_cifar10",
**kwargs)
def sepreresnet110_cifar100(classes=100, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="sepreresnet110_cifar100",
**kwargs)
def sepreresnet110_svhn(classes=10, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="sepreresnet110_svhn",
**kwargs)
def sepreresnet164bn_cifar10(classes=10, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="sepreresnet164bn_cifar10",
**kwargs)
def sepreresnet164bn_cifar100(classes=100, **kwargs):
return get_sepreresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="sepreresnet164bn_cifar100",
**kwargs)
|
MIT License
|
qahive/robotframework-puppeteer
|
PuppeteerLibrary/keywords/element.py
|
ElementKeywords.element_should_be_enabled
|
python
|
def element_should_be_enabled(self, locator):
return self.loop.run_until_complete(self.get_async_keyword_group().element_should_be_enabled(locator))
|
Verifies that element identified by locator is enabled.
|
https://github.com/qahive/robotframework-puppeteer/blob/fba8f5c71dcec0a778a9ed22129bf1dc5e8ef1c3/PuppeteerLibrary/keywords/element.py#L112-L116
|
from PuppeteerLibrary.base.robotlibcore import keyword
from PuppeteerLibrary.base.librarycomponent import LibraryComponent
from PuppeteerLibrary.ikeywords.ielement_async import iElementAsync
class ElementKeywords(LibraryComponent):
def __init__(self, ctx):
super().__init__(ctx)
def get_async_keyword_group(self) -> iElementAsync:
return self.ctx.get_current_library_context().get_async_keyword_group(type(self).__name__)
@keyword
def click_element(self, locator, noWaitAfter='False'):
self.info(f"Clicking element '{locator}'.")
self.loop.run_until_complete(self.get_async_keyword_group().click_element(
locator=locator,
noWaitAfter=noWaitAfter
))
@keyword
def click_link(self, locator):
self.info(f"Clicking link '{locator}'.")
return self.loop.run_until_complete(self.get_async_keyword_group().click_link(locator))
@keyword
def click_button(self, locator):
self.info(f"Clicking button '{locator}'.")
self.loop.run_until_complete(self.get_async_keyword_group().click_button(locator))
@keyword
def click_image(self, locator):
self.info(f"Clicking image '{locator}'.")
self.loop.run_until_complete(self.get_async_keyword_group().click_image(locator))
@keyword
def click_element_at_coordinate(self, locator, xoffset, yoffset):
self.info(f"Clicking element at coordinate '{locator}' at xoffset: '{xoffset}', yoffset: '{yoffset}'.")
self.loop.run_until_complete(self.get_async_keyword_group().click_element_at_coordinate(locator, xoffset, yoffset))
@keyword
def upload_file(self, locator, file_path):
return self.loop.run_until_complete(self.get_async_keyword_group().upload_file(locator, file_path))
@keyword
def press_keys(self, locator, *keys):
self.info(f"Sending key(s) {keys} to {locator} element.")
return self.loop.run_until_complete(self.get_async_keyword_group().press_keys(locator, *keys))
@keyword
def element_should_be_disabled(self, locator):
return self.loop.run_until_complete(self.get_async_keyword_group().element_should_be_disabled(locator))
@keyword
|
Apache License 2.0
|
justdoit0823/pywxclient
|
pywxclient/utils.py
|
list2orderdict
|
python
|
def list2orderdict(key_list, val_list):
return OrderedDict(zip(key_list, val_list))
|
Return a ordered dict with two lists.
|
https://github.com/justdoit0823/pywxclient/blob/9a61c4c0c26d6566e6121641ab37c35b176d8e20/pywxclient/utils.py#L244-L246
|
import functools
import json
from collections import OrderedDict
from urllib.request import unquote
from xml.dom.minidom import Document, parseString
__all__ = [
'ParseWxRes', 'cookie_to_dict', 'MessageType', 'json_dumps', 'xml2dict',
'dict2xml', 'call_retry', 'list2orderdict']
class QRUUID:
code = 0
uuid = None
class JSWindow:
code = None
redirect_uri = None
synccheck = None
userAvatar = None
def __init__(self, qr_uuid=None):
self.QRLogin = qr_uuid
class ParseException(Exception):
pass
class ParseWxRes:
@classmethod
def exec_js(cls, js_code, js_locals=None):
window = JSWindow(QRUUID())
if js_locals:
locals().update(js_locals)
try:
exec(js_code, None)
except Exception:
raise ParseException
else:
return window
@classmethod
def parse_qrcode_uuid(cls, res_js):
window = cls.exec_js(res_js)
return {'code': window.QRLogin.code, 'uuid': window.QRLogin.uuid}
@classmethod
def parse_login(cls, res_js):
window = cls.exec_js(res_js)
return {
'code': window.code, 'redirect_uri': window.redirect_uri,
'userAvatar': window.userAvatar}
@classmethod
def parse_new_login_page(cls, res_xml):
data = xml2dict(res_xml)['error']
if 'pass_ticket' in data:
data['pass_ticket'] = unquote(data['pass_ticket'])
return data
@classmethod
def parse_sync_check(cls, res_js):
js_locals = {'retcode': 'retcode', 'selector': 'selector'}
window = cls.exec_js(res_js, js_locals=js_locals)
return window.synccheck
def cookie_to_dict(cookie):
attrs = (
'version', 'name', 'value', 'port', 'domain', 'path', 'secure',
'expires', 'discard', 'comment', 'comment_url', 'rfc2109')
attr_dict = {}
for attr in attrs:
attr_val = getattr(cookie, attr, None)
if attr_val is not None:
attr_dict[attr] = attr_val
attr_dict['rest'] = getattr(cookie, '_rest', {})
return attr_dict
class MessageType(type):
_base_slots = (
'from_user', 'to_user', 'message', 'create_time',
'local_msg_id', 'msg_id', '_msg_value')
def __new__(cls, name, bases, namespace, **kwargs):
ns = dict(namespace)
slots = ns.get('__slots__') or ()
if not bases or bases[0] == object:
slots = tuple(set(cls._base_slots + tuple(slots)))
ns['__slots__'] = tuple(slots)
new_type = type.__new__(cls, name, bases, ns)
return new_type
def json_dumps(json_data, compact=False, **kwargs):
if compact:
return json.dumps(json_data, separators=(',', ':'), **kwargs)
return json.dumps(json_data, **kwargs)
def xml2dict(xml_str):
if isinstance(xml_str, bytes):
xml_str = xml_str.decode()
if xml_str.startswith('<?xml'):
xml_str = '<br/>'.join(xml_str.split('<br/>')[1: -1]).replace('\t', '')
document = parseString(xml_str)
root_node = document.childNodes[0]
data = {}
DOCUMENT_NODE = root_node.DOCUMENT_NODE
ELEMENT_NODE = root_node.ELEMENT_NODE
TEXT_NODE = root_node.TEXT_NODE
DATA_NODE = root_node.CDATA_SECTION_NODE
ALL_NODE_TYPE = (DOCUMENT_NODE, ELEMENT_NODE, TEXT_NODE, DATA_NODE)
def extract_node(node_obj):
node_type = node_obj.nodeType
if node_type not in ALL_NODE_TYPE:
return None
if node_type == ELEMENT_NODE:
ele_data = {}
attrs = {attr: val
for attr, val in node_obj.attributes.items()}
if attrs:
ele_data['__attrs__'] = attrs
child_nodes = node_obj.childNodes
if len(child_nodes) == 1 and (
child_nodes[0].nodeType in (TEXT_NODE, DATA_NODE)):
if not ele_data:
return extract_node(child_nodes[0])
ele_data[node_obj.nodeName] = extract_node(child_nodes[0])
else:
for sub_node in child_nodes:
ele_data[sub_node.nodeName] = extract_node(sub_node)
return ele_data
else:
return node_obj.nodeValue
data[root_node.nodeName] = extract_node(root_node)
return data
def dict2xml(data):
document = Document()
def create_node(root, node_data):
for key, val in node_data.items():
node = document.createElement(key)
if isinstance(val, dict):
attrs = val.pop('__attrs__', {})
for attr, attr_val in attrs.items():
node.setAttribute(attr, attr_val)
create_node(node, val)
elif isinstance(val, (tuple, list)):
for sub_data in val:
create_node(node, sub_data)
else:
node.appendChild(document.createTextNode(str(val)))
root.appendChild(node)
create_node(document, data)
return document.childNodes[0].toxml()
def call_retry(retry_exceptions, retries=3):
def func_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
call_retries = kwargs.pop('retries', None)
once_retries = min(
call_retries if call_retries is not None else retries, 0)
loop_count = once_retries + 1
while loop_count > 0:
try:
return func(*args, **kwargs)
except retry_exceptions:
if once_retries == 0:
raise
loop_count -= 1
raise Warning('Retry exceeds {0} times when calling {1}'.format(
retries, func.__name__))
return wrapper
return func_decorator
|
Apache License 2.0
|
kivy/kivy-designer
|
designer/components/start_page.py
|
DesignerStartPage.on_open_down
|
python
|
def on_open_down(self, *args):
pass
|
Default Event Handler for 'on_open_down'
|
https://github.com/kivy/kivy-designer/blob/20343184a28c2851faf0c1ab451d0286d147a441/designer/components/start_page.py#L85-L88
|
import webbrowser
from designer.utils.utils import get_designer, get_fs_encoding
from kivy.properties import ObjectProperty, StringProperty
from kivy.uix.boxlayout import BoxLayout
from kivy.uix.button import Button
from kivy.uix.scrollview import ScrollView
class DesignerLinkLabel(Button):
link = StringProperty(None)
def on_release(self, *args):
if self.link:
webbrowser.open(self.link)
class RecentItem(BoxLayout):
path = StringProperty('')
__events__ = ('on_press', )
def on_press(self, *args):
class RecentFilesBox(ScrollView):
grid = ObjectProperty(None)
def __init__(self, **kwargs):
super(RecentFilesBox, self).__init__(**kwargs)
def add_recent(self, list_files):
for p in list_files:
if isinstance(p, bytes):
p = p.decode(get_fs_encoding())
recent_item = RecentItem(path=p)
self.grid.add_widget(recent_item)
recent_item.bind(on_press=self.btn_release)
self.grid.height += recent_item.height
self.grid.height = max(self.grid.height, self.height)
def btn_release(self, instance):
d = get_designer()
d._perform_open(instance.path)
class DesignerStartPage(BoxLayout):
recent_files_box = ObjectProperty(None)
__events__ = ('on_open_down', 'on_new_down', 'on_help')
|
MIT License
|
goverfl0w/slash-bot
|
cogs/tags.py
|
Tags.template
|
python
|
async def template(self, ctx: SlashContext, tag_id: typing.Optional[str] = None):
resp = await self.bot.db.res_sql(
"""SELECT value FROM tags WHERE cmd_id=?""", (ctx.command_id,)
)
content = resp[0]["value"]
if tag_id:
try:
msg: discord.Message = await ctx.channel.fetch_message(int(tag_id))
await ctx.send("Message found, replying", hidden=True)
return await msg.reply(content)
except (
discord.Forbidden,
discord.HTTPException,
discord.NotFound,
TypeError,
ValueError,
):
await ctx.send("Couldn't find message to reply. Normally sending tag.", hidden=True)
await ctx.send(content)
|
The base function of tags
:param ctx: SlashContext
:param tag_id: the tags id
:return:
|
https://github.com/goverfl0w/slash-bot/blob/b1aac9a5a5376f9f604de0db1aad70e9fc29d3c9/cogs/tags.py#L20-L45
|
import typing
import discord
from discord.ext import commands
from discord_slash import cog_ext, SlashContext
from discord_slash.utils import manage_commands
from modules.get_settings import get_settings
guild_ids = get_settings("servers")
class Tags(commands.Cog):
def __init__(self, bot):
self.bot: commands.Bot = bot
self.tag_opt = manage_commands.create_option("reply_to", "Message ID to reply.", 3, False)
self.bot.loop.create_task(self.init_tags())
|
MIT License
|
argoproj-labs/argo-client-python
|
argo/workflows/client/api/cron_workflow_service_api.py
|
CronWorkflowServiceApi.lint_cron_workflow
|
python
|
def lint_cron_workflow(self, namespace, body, **kwargs):
kwargs['_return_http_data_only'] = True
return self.lint_cron_workflow_with_http_info(namespace, body, **kwargs)
|
lint_cron_workflow # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.lint_cron_workflow(namespace, body, async_req=True)
>>> result = thread.get()
:param async_req bool: execute request asynchronously
:param str namespace: (required)
:param V1alpha1LintCronWorkflowRequest body: (required)
:param _preload_content: if False, the urllib3.HTTPResponse object will
be returned without reading/decoding response
data. Default is True.
:param _request_timeout: timeout setting for this request. If one
number provided, it will be total request
timeout. It can also be a pair (tuple) of
(connection, read) timeouts.
:return: V1alpha1CronWorkflow
If the method is called asynchronously,
returns the request thread.
|
https://github.com/argoproj-labs/argo-client-python/blob/993d684cab39a834770b296e028519cec035c7b5/argo/workflows/client/api/cron_workflow_service_api.py#L442-L465
|
from __future__ import absolute_import
import re
import six
from argo.workflows.client.api_client import ApiClient
from argo.workflows.client.exceptions import (
ApiTypeError,
ApiValueError
)
class CronWorkflowServiceApi(object):
def __init__(self, api_client=None):
if api_client is None:
api_client = ApiClient()
self.api_client = api_client
def create_cron_workflow(self, namespace, body, **kwargs):
kwargs['_return_http_data_only'] = True
return self.create_cron_workflow_with_http_info(namespace, body, **kwargs)
def create_cron_workflow_with_http_info(self, namespace, body, **kwargs):
local_var_params = locals()
all_params = [
'namespace',
'body'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method create_cron_workflow" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if self.api_client.client_side_validation and ('namespace' not in local_var_params or
local_var_params['namespace'] is None):
raise ApiValueError("Missing the required parameter `namespace` when calling `create_cron_workflow`")
if self.api_client.client_side_validation and ('body' not in local_var_params or
local_var_params['body'] is None):
raise ApiValueError("Missing the required parameter `body` when calling `create_cron_workflow`")
collection_formats = {}
path_params = {}
if 'namespace' in local_var_params:
path_params['namespace'] = local_var_params['namespace']
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'body' in local_var_params:
body_params = local_var_params['body']
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/v1/cron-workflows/{namespace}', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='V1alpha1CronWorkflow',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
def delete_cron_workflow(self, namespace, name, **kwargs):
kwargs['_return_http_data_only'] = True
return self.delete_cron_workflow_with_http_info(namespace, name, **kwargs)
def delete_cron_workflow_with_http_info(self, namespace, name, **kwargs):
local_var_params = locals()
all_params = [
'namespace',
'name',
'delete_options_grace_period_seconds',
'delete_options_preconditions_uid',
'delete_options_preconditions_resource_version',
'delete_options_orphan_dependents',
'delete_options_propagation_policy',
'delete_options_dry_run'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method delete_cron_workflow" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if self.api_client.client_side_validation and ('namespace' not in local_var_params or
local_var_params['namespace'] is None):
raise ApiValueError("Missing the required parameter `namespace` when calling `delete_cron_workflow`")
if self.api_client.client_side_validation and ('name' not in local_var_params or
local_var_params['name'] is None):
raise ApiValueError("Missing the required parameter `name` when calling `delete_cron_workflow`")
collection_formats = {}
path_params = {}
if 'namespace' in local_var_params:
path_params['namespace'] = local_var_params['namespace']
if 'name' in local_var_params:
path_params['name'] = local_var_params['name']
query_params = []
if 'delete_options_grace_period_seconds' in local_var_params and local_var_params['delete_options_grace_period_seconds'] is not None:
query_params.append(('deleteOptions.gracePeriodSeconds', local_var_params['delete_options_grace_period_seconds']))
if 'delete_options_preconditions_uid' in local_var_params and local_var_params['delete_options_preconditions_uid'] is not None:
query_params.append(('deleteOptions.preconditions.uid', local_var_params['delete_options_preconditions_uid']))
if 'delete_options_preconditions_resource_version' in local_var_params and local_var_params['delete_options_preconditions_resource_version'] is not None:
query_params.append(('deleteOptions.preconditions.resourceVersion', local_var_params['delete_options_preconditions_resource_version']))
if 'delete_options_orphan_dependents' in local_var_params and local_var_params['delete_options_orphan_dependents'] is not None:
query_params.append(('deleteOptions.orphanDependents', local_var_params['delete_options_orphan_dependents']))
if 'delete_options_propagation_policy' in local_var_params and local_var_params['delete_options_propagation_policy'] is not None:
query_params.append(('deleteOptions.propagationPolicy', local_var_params['delete_options_propagation_policy']))
if 'delete_options_dry_run' in local_var_params and local_var_params['delete_options_dry_run'] is not None:
query_params.append(('deleteOptions.dryRun', local_var_params['delete_options_dry_run']))
collection_formats['deleteOptions.dryRun'] = 'multi'
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/v1/cron-workflows/{namespace}/{name}', 'DELETE',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='object',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
def get_cron_workflow(self, namespace, name, **kwargs):
kwargs['_return_http_data_only'] = True
return self.get_cron_workflow_with_http_info(namespace, name, **kwargs)
def get_cron_workflow_with_http_info(self, namespace, name, **kwargs):
local_var_params = locals()
all_params = [
'namespace',
'name',
'get_options_resource_version'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method get_cron_workflow" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
if self.api_client.client_side_validation and ('namespace' not in local_var_params or
local_var_params['namespace'] is None):
raise ApiValueError("Missing the required parameter `namespace` when calling `get_cron_workflow`")
if self.api_client.client_side_validation and ('name' not in local_var_params or
local_var_params['name'] is None):
raise ApiValueError("Missing the required parameter `name` when calling `get_cron_workflow`")
collection_formats = {}
path_params = {}
if 'namespace' in local_var_params:
path_params['namespace'] = local_var_params['namespace']
if 'name' in local_var_params:
path_params['name'] = local_var_params['name']
query_params = []
if 'get_options_resource_version' in local_var_params and local_var_params['get_options_resource_version'] is not None:
query_params.append(('getOptions.resourceVersion', local_var_params['get_options_resource_version']))
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/v1/cron-workflows/{namespace}/{name}', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='V1alpha1CronWorkflow',
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'),
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats)
|
Apache License 2.0
|
google/uncertainty-baselines
|
uncertainty_baselines/models/bert_dropout.py
|
_monte_carlo_dropout
|
python
|
def _monte_carlo_dropout(inputs: tf.Tensor, dropout_rate: float,
use_mc_dropout: bool,
channel_wise_dropout: bool) -> tf.Tensor:
training = True if use_mc_dropout else None
noise_shape = None
input_size = len(inputs.shape)
if input_size not in (3, 4):
raise ValueError(f'"inputs" shape can only be 3 or 4, got {input_size}.')
if channel_wise_dropout:
if input_size == 3:
noise_shape = [inputs.shape[0], 1, inputs.shape[-1]]
elif input_size == 4:
noise_shape = [inputs.shape[0], inputs.shape[1], 1, 1]
return tf.keras.layers.Dropout(dropout_rate, noise_shape=noise_shape)(
inputs, training=training)
|
Implements a Monte Carlo dropout layer callable for the Transformer model.
Args:
inputs: An input tensor in the BERT encoder. It can be either a 3D layer
output with shape [batch_size, seq_len, hidden_dim], or a 4D attention
mask with shape [batch_size, num_head, seq_len, seq_len].
dropout_rate: Dropout rate.
use_mc_dropout: Whether to enable Monte Carlo dropout at inference time.
channel_wise_dropout: Whether to apply structured dropout along the
dimension of the hidden channels or of the attention heads.
Returns:
(tf.Tensor) Output of the (structured) Monte Carlo dropout layer.
|
https://github.com/google/uncertainty-baselines/blob/d37c17c4b08a88d6546bbf299b59127a03398404/uncertainty_baselines/models/bert_dropout.py#L28-L62
|
import functools
import math
from typing import Any, Dict, Union, Tuple
import tensorflow as tf
from official.modeling import tf_utils
from official.nlp.modeling import layers as bert_layers
from official.nlp.modeling import networks as bert_encoder
|
Apache License 2.0
|
cue/greplin-nagios-utils
|
checklib/src/greplin/nagios.py
|
percent
|
python
|
def percent(value):
return "%f%%" % (value * 100)
|
Formats the given float as a percentage.
|
https://github.com/cue/greplin-nagios-utils/blob/9a90d98fcd21da23b24b2fe5165d4a0c7dd680a1/checklib/src/greplin/nagios.py#L103-L105
|
import httplib
import json
import socket
import sys
import time
import threading
UNKNOWN = 3
CRITICAL = 2
WARNING = 1
OK = 0
STATUS_NAME = ['OK', 'WARN', 'CRIT', 'UNKNOWN']
GLOBAL_CONFIG = threading.local()
GLOBAL_CONFIG.outfile = sys.stdout
def output(msg):
GLOBAL_CONFIG.outfile.write(msg)
GLOBAL_CONFIG.outfile.write('\n')
def wgetWithTimeout(host, port, path, timeout, secure = False):
start = time.time()
try:
if secure:
conn = httplib.HTTPSConnection(host, port, timeout=timeout)
else:
conn = httplib.HTTPConnection(host, port, timeout=timeout)
conn.request('GET', path)
body = conn.getresponse().read()
return time.time() - start, body
except (socket.gaierror, socket.error):
output("CRIT: Could not connect to %s" % host)
exit(CRITICAL)
except socket.timeout:
output("CRIT: Timed out after %s seconds" % timeout)
exit(CRITICAL)
def parseJson(text):
try:
return json.loads(text)
except ValueError, e:
output('CRIT: %s (text was %r)' % (e, text))
exit(CRITICAL)
def parseJsonFile(filename):
try:
with open(filename) as f:
return parseJson(f.read())
except IOError, e:
output('UNKNOWN: %s' % e)
exit(UNKNOWN)
def lookup(source, *keys, **kw):
fallback = kw.get('default')
try:
for key in keys:
source = source[key]
return source
except (KeyError, AttributeError, TypeError):
return fallback
def statValue(data, *keys, **kw):
return float(lookup(data, *keys, **kw))
|
Apache License 2.0
|
pygame/pygameweb
|
pygameweb/wiki/views.py
|
edit
|
python
|
def edit(link):
page = Wiki.for_link(current_session, link)
if page is None:
page = Wiki(link=link, title=link, latest=1)
if page.locked and not current_user.has_role('admin'):
flash('Wiki page locked.')
return current_app.login_manager.unauthorized()
form = WikiForm(obj=page)
if request.method == 'GET':
form.changes.data = ''
elif request.method == 'POST':
if form.validate_on_submit():
page.new_version(current_session)
page.content = form.content.data
page.changes = form.changes.data
page.users_id = current_user.id
current_session.add(page)
current_session.commit()
delete_view_wiki_cache(link)
return redirect(url_for('wiki.index', link=page.link))
return render_template('wiki/edit.html', form=form, wiki=page)
|
the wiki page.
|
https://github.com/pygame/pygameweb/blob/144b2483d090c1ecd9482eb7d47454137210ba9d/pygameweb/wiki/views.py#L184-L214
|
from flask import (
abort, Blueprint, current_app, redirect,
render_template, request, Response, url_for
)
from flask_caching import make_template_fragment_key
from flask_sqlalchemy_session import current_session
import ghdiff
from flask_security import login_required, roles_required, current_user
from pygameweb.wiki.models import Wiki
from pygameweb.wiki.forms import WikiForm
from pygameweb.cache import cache
wiki_blueprint = Blueprint('wiki',
__name__,
template_folder='../templates/')
def wiki_for(link):
result = (current_session
.query(Wiki)
.filter(Wiki.link == link)
.filter(Wiki.latest == 1)
.first())
if not result:
abort(404)
return result
@wiki_blueprint.route('/wiki/', methods=['GET'])
@wiki_blueprint.route('/wiki/<link>/', methods=['GET'])
@wiki_blueprint.route('/wiki/<link>', methods=['GET'])
def index(link='index'):
action = request.args.get('action', '')
if action == 'source':
return source(link)
elif action == 'history':
return history(link)
elif action == 'diff':
return diff(link)
elif action == 'meta':
pass
elif action == 'links':
pass
return render_template('wiki/view.html', link=link, wiki_for=wiki_for)
@wiki_blueprint.route('/wiki/<link>/revert', methods=['GET'])
@login_required
@roles_required('members')
def revert(link):
if wiki_for(link).locked and not current_user.has_role('admin'):
flash('Wiki page locked.')
return current_app.login_manager.unauthorized()
latest = request.args.get('latest', None)
if latest is not None:
oldone = wiki_for(link)
newone = (current_session
.query(Wiki)
.filter(Wiki.link == link)
.filter(Wiki.id == int(latest))
.first())
oldone.latest = 0
newone.latest = 1
current_session.add(newone)
current_session.add(oldone)
current_session.commit()
return redirect(url_for('wiki.index', link=link, id=newone.id))
else:
abort(404)
@wiki_blueprint.route('/wiki/<link>/source', methods=['GET'])
def source(link):
the_id = request.args.get('id', '')
if the_id:
result = (current_session
.query(Wiki)
.filter(Wiki.id == int(the_id))
.first())
if not result:
abort(404)
else:
result = wiki_for(link)
return Response(result.content, mimetype='text/plain')
@wiki_blueprint.route('/wiki/<link>/history', methods=['GET'])
@login_required
@roles_required('members')
def history(link):
result = wiki_for(link)
versions = (current_session
.query(Wiki)
.filter(Wiki.link == link)
.order_by(Wiki.id.desc())
.all())
return render_template('wiki/history.html', versions=versions, wiki=result)
@wiki_blueprint.route('/wiki/<link>/diff', methods=['GET'])
def diff(link):
result = wiki_for(link)
new_id = request.args.get('newid', None)
old_id = request.args.get('oldid', None)
if new_id is not None and old_id is not None:
new_id = int(new_id)
old_id = int(old_id)
results = (current_session
.query(Wiki)
.filter(Wiki.id.in_([new_id, old_id]))
.all())
if not results or len(results) != 2:
abort(404)
old_wiki = [o for o in results if o.id == old_id][0]
new_wiki = [o for o in results if o.id == new_id][0]
html_diff = ghdiff.diff(old_wiki.content_rendered,
new_wiki.content_rendered)
else:
abort(404)
return render_template('wiki/diff.html', wiki=result, html_diff=html_diff)
@wiki_blueprint.route('/wiki/recent.php', methods=['GET'])
@wiki_blueprint.route('/wiki/recent', methods=['GET'])
def recent():
pages = (current_session
.query(Wiki)
.order_by(Wiki.datetimeon.desc())
.limit(30)
.all())
from itertools import groupby
def grouper(item):
if not item.datetimeon:
return (None, None, None)
return item.datetimeon.year, item.datetimeon.month, item.datetimeon.day
day_groups = []
for ((year, month, day), items) in groupby(pages, grouper):
day_groups.append(((year, month, day), list(items)))
return render_template('wiki/recent.html',
day_groups=day_groups)
@wiki_blueprint.route('/wiki/<link>/edit', methods=['GET', 'POST'])
@login_required
@roles_required('members')
|
BSD 2-Clause Simplified License
|
gapml/cv
|
gapcv/utils/img_tools.py
|
ImgUtils.__init__
|
python
|
def __init__(self, root_path='./', tree=1, remove_folder=False):
self.labels = None
self.root_path = None
self.tree = tree
self.remove_folder = remove_folder
self._transf = '1to2'
self._labels_org = []
self._end = None
self._end2 = None
if not os.path.isdir(root_path):
raise TypeError('String expected for directory path')
else:
self.labels = os.listdir(root_path)
self.root_path = root_path
if remove_folder:
answere_ok = False
while answere_ok is False:
try:
warning = input('Warning! this will delete your image dataset. Are you sure? [Yes/no]: ')
warning = warning[0].lower()
if warning in ('y', 'n'):
answere_ok = True
except:
continue
if warning == 'y':
shutil.rmtree(self.root_path)
print('Your files were deleted')
|
Class Constructor
:param root_path: main image folder root
:param tree: type of folder tree
:param remove_folder: remove folder from directory
|
https://github.com/gapml/cv/blob/9d513f8470a851b0f42396ecbe3c8bfaac95882a/gapcv/utils/img_tools.py#L35-L69
|
import os
import random
import shutil
class ImgUtils(object):
|
Apache License 2.0
|
jdswinbank/comet
|
comet/service/broker.py
|
Options._check_for_ivoid
|
python
|
def _check_for_ivoid(self):
if not self["local_ivo"] and (self["receive"] or self["broadcast"]):
self.parser.error("IVOA identifier required (--local-ivo).")
|
Ensure that an IVOID has been supplied if broadcasting or receiving.
|
https://github.com/jdswinbank/comet/blob/f4ea4c8598dbb0d7adf7a5e6ffbf31c7ef194d13/comet/service/broker.py#L191-L194
|
import os.path
from tempfile import gettempdir
from ipaddress import ip_network
from twisted.application.service import MultiService
from twisted.internet import reactor
from twisted.internet.task import LoopingCall
from twisted.plugin import getPlugins
import comet
import comet.log as log
from comet.constants import DEFAULT_SUBMIT_PORT, DEFAULT_SUBSCRIBE_PORT
from comet.service.broadcaster import makeBroadcasterService
from comet.service.subscriber import makeSubscriberService
from comet.service.receiver import makeReceiverService
from comet.utility import Event_DB, BaseOptions, valid_ivoid, valid_xpath
from comet.utility import coerce_to_client_endpoint, coerce_to_server_endpoint
from comet.validator import CheckIVOID, CheckPreviouslySeen, CheckSchema
import comet.plugins
from comet.icomet import IHandler, IHasOptions
from comet.handler import SpawnCommand, EventRelay
__all__ = ["makeService", "Options"]
MAX_AGE = 30.0 * 24 * 60 * 60
PRUNE_INTERVAL = 6 * 60 * 60
BCAST_TEST_INTERVAL = 3600
class Options(BaseOptions):
PROG = "twistd [options] comet"
def _configureParser(self):
std_group = self.parser.add_argument_group(
"Standard arguments", "Global options affecting " "broker operation."
)
std_group.add_argument(
"--local-ivo",
type=valid_ivoid,
help="IVOA identifier for this system. "
"Required if using --receive or --broadcast.",
)
std_group.add_argument(
"--eventdb",
default=gettempdir(),
help="Event database root [default=%(default)s].",
)
rcv_group = self.parser.add_argument_group(
"Event Receiver", "Receive events submitted " "by remote authors."
)
rcv_group.add_argument(
"--receive",
default=None,
const=f"tcp:{DEFAULT_SUBMIT_PORT}",
nargs="?",
action="append",
type=lambda ep: coerce_to_server_endpoint(reactor, ep),
help="Add an endpoint for receiving events.",
)
rcv_group.add_argument(
"--receive-whitelist",
default=[ip_network("0.0.0.0/0")],
nargs="*",
type=ip_network,
help="Networks from which to accept "
"event submissions [default=accept from "
"everywhere].",
)
bcast_group = self.parser.add_argument_group(
"Event Broadcaster", "Broadcast events to " "remote subscribers."
)
bcast_group.add_argument(
"--broadcast",
default=None,
const=f"tcp:{DEFAULT_SUBSCRIBE_PORT}",
nargs="?",
action="append",
type=lambda ep: coerce_to_server_endpoint(reactor, ep),
help="Add an endpoint for broadcasting events.",
)
bcast_group.add_argument(
"--broadcast-test-interval",
default=BCAST_TEST_INTERVAL,
type=int,
help="Interval between test event broadcasts "
"(seconds) [default=%(default)s].",
)
bcast_group.add_argument(
"--broadcast-whitelist",
default=[ip_network("0.0.0.0/0")],
nargs="*",
type=ip_network,
help="Networks from which to accept "
"subscription requests [default=accept "
"from everywhere].",
)
sub_group = self.parser.add_argument_group(
"Event Subscriber", "Subscribe to event streams" " from remote brokers."
)
sub_group.add_argument(
"--subscribe",
default=None,
action="append",
type=lambda ep: coerce_to_client_endpoint(
reactor, ep, DEFAULT_SUBSCRIBE_PORT
),
help="Add a remote broker to which " "to subscribe.",
)
sub_group.add_argument(
"--filter",
default=None,
action="append",
dest="filters",
type=valid_xpath,
help="XPath filter to be applied to events "
"received from remote brokers.",
)
proc_group = self.parser.add_argument_group(
"Event Processors",
"Define 'event handlers' "
"which are applied to all "
"events processed by this "
"system.",
)
proc_group.add_argument(
"--cmd",
default=None,
action="append",
dest="handlers",
type=SpawnCommand,
help="External command to spawn when an " "event is received.",
)
for plugin in getPlugins(IHandler, comet.plugins):
proc_group.add_argument(
f"--{plugin.name}",
help=f"Enable the {plugin.name} plugin.",
action="append_const",
const=plugin.name,
dest="plugins",
)
if IHasOptions.providedBy(plugin):
for name, default, description in plugin.get_options():
proc_group.add_argument(
f"--{plugin.name}-{name}", default=default, help=description
)
def _checkOptions(self):
self._check_for_ivoid()
self._configure_plugins()
def _configure_plugins(self):
if self._config.handlers is None:
self._config.handlers = []
if self._config.plugins:
for plugin in getPlugins(IHandler, comet.plugins):
if plugin.name in self._config.plugins:
if IHasOptions.providedBy(plugin):
for name, _, _ in plugin.get_options():
plugin.set_option(
name,
getattr(
self._config,
f"{plugin.name}-{name}".replace("-", "_"),
),
)
self._config.handlers.append(plugin)
|
BSD 2-Clause Simplified License
|
opencord/xos
|
lib/xos-genx/xosgenx/generator.py
|
XOSProcessor._read_input_from_files
|
python
|
def _read_input_from_files(files):
line_map = []
input = ""
for fname in files:
with open(fname) as infile:
line_map.append((len(input.split("\n")), fname))
input += infile.read()
return (input, line_map)
|
Read the files and return the combined text read.
Also returns a list of (line_number, filename) tuples that tell which
starting line corresponds to each file.
|
https://github.com/opencord/xos/blob/e52d3ea83d3a26b8d0a72cccce7898258926f5eb/lib/xos-genx/xosgenx/generator.py#L81-L93
|
from __future__ import absolute_import, print_function
import os
import jinja2
import plyxproto.parser as plyxproto
import yaml
from colorama import Fore
import sys
from . import jinja2_extensions
from .proto2xproto import Proto2XProto
from .xos2jinja import XOS2Jinja
from .validator import XProtoValidator
loader = jinja2.PackageLoader(__name__, "templates")
env = jinja2.Environment(loader=loader)
class XOSProcessorArgs:
default_rev = False
default_output = None
default_attic = None
default_kvpairs = None
default_write_to_file = None
default_dest_file = None
default_dest_extension = None
default_target = None
default_checkers = None
default_verbosity = (
0
)
default_include_models = (
[]
)
default_include_apps = []
default_strict_validation = False
default_lint = False
def __init__(self, **kwargs):
self.rev = XOSProcessorArgs.default_rev
self.output = XOSProcessorArgs.default_output
self.attic = XOSProcessorArgs.default_attic
self.kvpairs = XOSProcessorArgs.default_kvpairs
self.verbosity = XOSProcessorArgs.default_verbosity
self.write_to_file = XOSProcessorArgs.default_write_to_file
self.default_dest_file = XOSProcessorArgs.default_dest_file
self.default_dest_extension = XOSProcessorArgs.default_dest_extension
self.default_target = XOSProcessorArgs.default_target
self.default_checkers = XOSProcessorArgs.default_target
self.include_models = XOSProcessorArgs.default_include_models
self.include_apps = XOSProcessorArgs.default_include_apps
self.strict_validation = XOSProcessorArgs.default_strict_validation
self.lint = XOSProcessorArgs.default_lint
for (k, v) in kwargs.items():
setattr(self, k, v)
class XOSProcessor:
@staticmethod
|
Apache License 2.0
|
cereja-project/cereja
|
cereja/mltools/split_data.py
|
Corpus.split_data
|
python
|
def split_data(self, test_max_size: int = None, source_vocab_size: int = None, target_vocab_size: int = None,
shuffle=True, take_parallel_data=True, take_corpus_instances=False, legacy_test=None):
self.source.reset_freq()
self.target.reset_freq()
train = []
test = []
if legacy_test is not None:
test = Corpus(*self.distinct_from_parallel(legacy_test), source_name=self.source_language,
target_name=self.target_language)
test_max_size = test_max_size if test_max_size is not None and isinstance(test_max_size, (int, float)) else len(
self.source.data) - self.n_train
if source_vocab_size is not None or target_vocab_size is not None:
data = list(self._get_vocab_data(source_vocab_size=source_vocab_size,
target_vocab_size=target_vocab_size))
else:
data = list(zip(self.source.data, self.target.data))
if shuffle:
random.shuffle(data)
for x, y in data:
if x == '' or y == '':
continue
if legacy_test is not None:
if self.source.preprocess(x) in test.source.phrases_freq:
continue
if (self._can_go_test(x, y) and len(test) < test_max_size) and legacy_test is None:
test.append([x, y])
self._update_filters(x, y)
continue
train.append([x, y])
if take_parallel_data is False:
return (*get_cols(train), *get_cols(test))
if take_corpus_instances is True:
train = self.load_from_parallel_data(train, self.source_language, self.target_language)
test = self.load_from_parallel_data(test, self.source_language, self.target_language)
return train, test
return train, test
|
Guarantees test data without data identical to training and only with vocabulary that exists in training
:param test_max_size: int = max examples on test data
:param source_vocab_size: int = restrict most common vocab
:param target_vocab_size: int = restrict most common vocab
:param shuffle: bool = randomize
:param take_parallel_data: bool = zipped data if true else return (x_train, y_train, x_test, y_test)
:param take_corpus_instances: bool = return new instances for train data and test data
:param legacy_test: List[Tuple[str,str]] = parallel data
|
https://github.com/cereja-project/cereja/blob/c5000ddb3f640dc6089f991f36808f9f5e09c0f0/cereja/mltools/split_data.py#L229-L283
|
import warnings
from cereja import FileIO
from cereja.array import get_cols
from cereja.mltools.pln import LanguageData
import random
import csv
from cereja.system import Path
__all__ = ['Corpus']
class Corpus(object):
def __init__(self, source_data, target_data, source_name=None, percent_train=0.8, target_name=None, stop_words=(),
punctuation='!?,.', to_lower=True, is_remove_punctuation=True, is_remove_stop_words=True,
is_remove_accent=False, is_destructive=False):
self.source = LanguageData(source_data, name=source_name, stop_words=stop_words,
punctuation=punctuation, to_lower=to_lower,
is_remove_punctuation=is_remove_punctuation,
is_remove_stop_words=is_remove_stop_words,
is_remove_accent=is_remove_accent, is_destructive=is_destructive)
self.target = LanguageData(target_data, name=target_name, stop_words=stop_words,
punctuation=punctuation, to_lower=to_lower,
is_remove_punctuation=is_remove_punctuation,
is_remove_stop_words=is_remove_stop_words,
is_remove_accent=is_remove_accent, is_destructive=is_destructive)
self._percent_train = percent_train
self._n_train = self.n_train
self._valid_parallel_data(self.source.data, self.target.data)
def __iter__(self):
return zip(self.source, self.target)
def __len__(self):
return len(self.source)
def __repr__(self):
return f'Corpus(examples: {len(self)} - source_vocab_size: {self.source.vocab_size} - target_vocab_size:{self.target.vocab_size})'
def __getitem__(self, item):
if isinstance(item, int):
return self.source.data[item], self.target.data[item]
return list(zip(self.source.data[item], self.target.data[item]))
@property
def source_language(self):
return self.source.config.name
@property
def target_language(self):
return self.target.config.name
@property
def config(self):
return {'source': self.source.config.get(), 'target': self.source.config.get()}
def set_config(self, **kwargs):
source_config = kwargs.get('source')
target_config = kwargs.get('target')
if source_config:
self.source.config.set_config(**source_config)
if target_config:
self.target.config.set_config(**target_config)
@staticmethod
def is_parallel(data):
try:
for x, y in data:
if isinstance(x, (str, int, float)) and isinstance(y, (str, int, float)):
return True
break
except:
pass
return False
@classmethod
def distinct_from_parallel(cls, data):
return get_cols(data)
@classmethod
def load_from_parallel_data(cls, data, source_name: str = None, target_name: str = None, **kwargs):
if cls.is_parallel(data):
source_data, target_data = cls.distinct_from_parallel(data)
return cls(source_data, target_data, source_name=source_name, target_name=target_name, **kwargs)
raise ValueError("isn't valid parallel data")
@property
def n_train(self):
return int(self._percent_train * len(self.source.data))
@property
def n_test(self):
return len(self.source.data) - self.n_train
def _can_go_test(self, x, y):
x = self.source.preprocess(x)
y = self.target.preprocess(y)
if self.source.phrases_freq.get(x) == 1 and len(x.split()) >= 4:
x, y = x.split(), y.split()
for i in x:
if self.source.words_freq.get(i) <= x.count(i):
return False
for i in y:
if self.target.words_freq.get(i) <= y.count(i):
return False
return True
return False
def _valid_parallel_data(self, x, y):
assert len(x) == len(y), f"Size of {self.source_language} ({len(x)}) != {self.target_language} ({len(y)})"
def _update_filters(self, x, y):
x = self.source.preprocess(x)
y = self.target.preprocess(y)
for i in x.split():
self.source.words_freq.subtract([i])
for i in y.split():
self.target.words_freq.subtract([i])
self.source.phrases_freq.subtract([x])
self.target.phrases_freq.subtract([y])
def _get_vocab_data(self, source_vocab_size: int = None, target_vocab_size: int = None, order='most_common'):
source_vocab_data = {}
target_vocab_data = {}
if source_vocab_size is not None:
source_vocab_data = self.source.sample_words_freq(max_items=source_vocab_size, order=order)
if target_vocab_size is not None:
target_vocab_data = self.target.sample_words_freq(max_items=target_vocab_size, order=order)
for x, y in zip(self.source.data, self.target.data):
if source_vocab_size:
if not all(list(map(lambda w: w in source_vocab_data, self.source.preprocess(x).split()))):
continue
if target_vocab_size:
if not all(list(map(lambda w: w in target_vocab_data, self.target.preprocess(y).split()))):
continue
yield [x, y]
def save(self, save_on_dir: str, take_split: bool = True, test_max_size: int = None, source_vocab_size: int = None,
target_vocab_size: int = None, shuffle=True, prefix=None, ext='align', **kwargs):
save_on_dir = Path(save_on_dir)
if take_split:
x_train, y_train, x_test, y_test = self.split_data(test_max_size=test_max_size,
source_vocab_size=source_vocab_size,
target_vocab_size=target_vocab_size,
take_parallel_data=False,
shuffle=shuffle)
train_prefix, test_prefix = (f'{prefix}_train', f'{prefix}_test') if prefix is not None else (
'train', 'test')
data_to_save = ((train_prefix, x_train, y_train), (test_prefix, x_test, y_test))
else:
data_to_save = ((prefix, self.source.data, self.target.data),)
for prefix, x, y in data_to_save:
save_on = save_on_dir.join(f'{prefix}_{self.source_language}.{ext.strip(".")}')
FileIO.create(save_on, data=x).save(**kwargs)
save_on = save_on_dir.join(f'{prefix}_{self.target_language}.{ext.strip(".")}')
FileIO.create(save_on, data=y).save(**kwargs)
@classmethod
def load_corpus_from_csv(cls, path_: str, src_col_name: str, trg_col_name: str, source_name=None,
target_name=None):
csv_read = csv.DictReader(FileIO.load(path_).data)
src_data = []
trg_data = []
for i in csv_read:
for col_name in (src_col_name, trg_col_name):
if col_name not in i:
raise ValueError(f"Not found col <{col_name}> in {list(i.keys())}")
src_data.append(i[src_col_name])
trg_data.append(i[trg_col_name])
return cls(src_data, trg_data, source_name=source_name, target_name=target_name)
|
MIT License
|
kymatio/kymatio
|
kymatio/scattering3d/backend/tensorflow_backend.py
|
modulus_rotation
|
python
|
def modulus_rotation(x, module):
if module is None:
module = tf.zeros_like(x, tf.float32)
else:
module = module ** 2
module += tf.abs(x) ** 2
return tf.sqrt(module)
|
Used for computing rotation invariant scattering transform coefficents.
Parameters
----------
x : tensor
Size (batchsize, M, N, O).
module : tensor
Tensor that holds the overall sum.
Returns
-------
output : tensor
Tensor of the same size as input_array. It holds the output of
the operation::
$\\sqrt{\\sum_m (\\text{input}_\\text{array} \\star \\psi_{j,l,m})^2)}$
which is covariant to 3D translations and rotations.
|
https://github.com/kymatio/kymatio/blob/38cead012d1b134843a1dd0d5ea160042037c7da/kymatio/scattering3d/backend/tensorflow_backend.py#L30-L56
|
import tensorflow as tf
import numpy as np
from collections import namedtuple
BACKEND_NAME = 'tensorflow'
def complex_modulus(x):
modulus = tf.abs(x)
return modulus
|
BSD 3-Clause New or Revised License
|
juju/charm-helpers
|
charmhelpers/contrib/openstack/deferred_events.py
|
get_deferred_events
|
python
|
def get_deferred_events():
events = []
for _, event in deferred_events():
events.append(event)
return events
|
Return a list of deferred events requested by the charm and packages.
:returns: List of deferred events
:rtype: List[ServiceEvent]
|
https://github.com/juju/charm-helpers/blob/25b740578385d15b38f11bed8e4b6e732bdfb7c6/charmhelpers/contrib/openstack/deferred_events.py#L225-L234
|
import datetime
import glob
import yaml
import os
import time
import uuid
import charmhelpers.contrib.openstack.policy_rcd as policy_rcd
import charmhelpers.core.hookenv as hookenv
import charmhelpers.core.host as host
import charmhelpers.core.unitdata as unitdata
import subprocess
DEFERRED_EVENTS_DIR = policy_rcd.POLICY_DEFERRED_EVENTS_DIR
class ServiceEvent():
def __init__(self, timestamp, service, reason, action,
policy_requestor_name=None, policy_requestor_type=None):
self.timestamp = timestamp
self.service = service
self.reason = reason
self.action = action
if policy_requestor_name:
self.policy_requestor_name = policy_requestor_name
else:
self.policy_requestor_name = hookenv.service_name()
if policy_requestor_type:
self.policy_requestor_type = policy_requestor_type
else:
self.policy_requestor_type = 'charm'
def __eq__(self, other):
for attr in vars(self):
if getattr(self, attr) != getattr(other, attr):
return False
return True
def matching_request(self, other):
for attr in ['service', 'action', 'reason']:
if getattr(self, attr) != getattr(other, attr):
return False
return True
@classmethod
def from_dict(cls, data):
return cls(
data['timestamp'],
data['service'],
data['reason'],
data['action'],
data.get('policy_requestor_name'),
data.get('policy_requestor_type'))
def deferred_events_files():
return glob.glob('{}/*.deferred'.format(DEFERRED_EVENTS_DIR))
def read_event_file(file_name):
with open(file_name, 'r') as f:
contents = yaml.safe_load(f)
event = ServiceEvent(
contents['timestamp'],
contents['service'],
contents['reason'],
contents['action'],
policy_requestor_name=contents.get('policy_requestor_name'),
policy_requestor_type=contents.get('policy_requestor_type'))
return event
def deferred_events():
events = []
for defer_file in deferred_events_files():
events.append((defer_file, read_event_file(defer_file)))
return events
def duplicate_event_files(event):
duplicates = []
for event_file, existing_event in deferred_events():
if event.matching_request(existing_event):
duplicates.append(event_file)
return duplicates
def get_event_record_file(policy_requestor_type, policy_requestor_name):
file_name = '{}/{}-{}-{}.deferred'.format(
DEFERRED_EVENTS_DIR,
policy_requestor_type,
policy_requestor_name,
uuid.uuid1())
return file_name
def save_event(event):
requestor_name = hookenv.service_name()
requestor_type = 'charm'
init_policy_log_dir()
if duplicate_event_files(event):
hookenv.log(
"Not writing new event, existing event found. {} {} {}".format(
event.service,
event.action,
event.reason),
level="DEBUG")
else:
record_file = get_event_record_file(
policy_requestor_type=requestor_type,
policy_requestor_name=requestor_name)
with open(record_file, 'w') as f:
data = {
'timestamp': event.timestamp,
'service': event.service,
'action': event.action,
'reason': event.reason,
'policy_requestor_type': requestor_type,
'policy_requestor_name': requestor_name}
yaml.dump(data, f)
def clear_deferred_events(svcs, action):
for defer_file in deferred_events_files():
deferred_event = read_event_file(defer_file)
if deferred_event.service in svcs:
os.remove(defer_file)
def init_policy_log_dir():
if not os.path.exists(DEFERRED_EVENTS_DIR):
os.mkdir(DEFERRED_EVENTS_DIR)
|
Apache License 2.0
|
daeilkim/refinery
|
refinery/bnpy/bnpy-dev/demodata/DeadLeaves.py
|
makeImgPatchPrototype
|
python
|
def makeImgPatchPrototype(D, compID):
P = np.sqrt(D)
Xprototype = np.zeros((P,P))
if compID % 4 == 0:
Xprototype[:P/2] = 1.0
Xprototype = np.rot90( Xprototype, compID/4 )
if compID % 4 == 1:
Xprototype[np.tril_indices(P)] = 1
Xprototype = np.rot90( Xprototype, (compID-1)/4 )
if compID % 4 == 2:
Xprototype[np.tril_indices(P, 2)] = 1
Xprototype = np.rot90( Xprototype, (compID-2)/4 )
if compID % 4 == 3:
Xprototype[np.tril_indices(P, -2)] = 1
Xprototype = np.rot90( Xprototype, (compID-3)/4 )
return Xprototype
|
Create image patch prototype for specific component
Returns
--------
Xprototype : sqrt(D) x sqrt(D) matrix
|
https://github.com/daeilkim/refinery/blob/0d5de8fc3d680a2c79bd0e9384b506229787c74f/refinery/bnpy/bnpy-dev/demodata/DeadLeaves.py#L56-L77
|
import scipy.linalg
import numpy as np
from bnpy.data import XData, MinibatchIterator
def get_short_name():
return 'DeadLeavesD%d' % (D)
def get_data_info():
return 'Dead Leaves Data. K=%d. D=%d.' % (K,D)
def get_data(seed=8675309, nObsTotal=25000, **kwargs):
X, TrueZ = generateData( seed, nObsTotal)
Data = XData(X=X, TrueZ=TrueZ)
Data.summary = get_data_info()
return Data
def get_minibatch_iterator(seed=8675309, nObsTotal=25000, **kwargs):
X, TrueZ = generateData(seed, nObsTotal)
Data = XData(X=X, TrueZ=TrueZ)
DataIterator = MinibatchIterator(Data, **kwargs)
DataIterator.summary = get_data_info()
return DataIterator
def makeTrueParams(Din):
global K, D
D = Din
K = 8
global w
global Mu
global Sigma
global cholSigma
w = np.ones(K)
w = w / np.sum(w)
Mu = np.zeros((K,D))
Sigma = np.zeros((K,D,D))
cholSigma = np.zeros(Sigma.shape)
for k in xrange(K):
Sigma[k] = makeImgPatchCovMatForComp(D, k)
cholSigma[k] = scipy.linalg.cholesky(Sigma[k])
|
MIT License
|
dials/dials
|
algorithms/refinement/parameterisation/prediction_parameters.py
|
XYPhiPredictionParameterisation._xl_unit_cell_derivatives
|
python
|
def _xl_unit_cell_derivatives(
self, isel, parameterisation=None, dB_dxluc_p=None, reflections=None
):
return self._xl_derivatives(
isel, dB_dxluc_p, b_matrix=False, parameterisation=parameterisation
)
|
helper function to extend the derivatives lists by
derivatives of the crystal unit cell parameterisations
|
https://github.com/dials/dials/blob/a2cb71bf410e179b92554bcce2e21388e1dc25d1/algorithms/refinement/parameterisation/prediction_parameters.py#L848-L855
|
from collections import namedtuple
from scitbx import matrix, sparse
from dials.algorithms.refinement import DialsRefineConfigError
from dials.array_family import flex
ParamSet = namedtuple(
"ParamSet",
["beam_param", "xl_ori_param", "xl_uc_param", "det_param", "gonio_param"],
)
class PredictionParameterisation:
def __init__(
self,
experiments,
detector_parameterisations=None,
beam_parameterisations=None,
xl_orientation_parameterisations=None,
xl_unit_cell_parameterisations=None,
goniometer_parameterisations=None,
):
if detector_parameterisations is None:
detector_parameterisations = []
if beam_parameterisations is None:
beam_parameterisations = []
if xl_orientation_parameterisations is None:
xl_orientation_parameterisations = []
if xl_unit_cell_parameterisations is None:
xl_unit_cell_parameterisations = []
if goniometer_parameterisations is None:
goniometer_parameterisations = []
self._experiments = experiments
self._detector_parameterisations = detector_parameterisations
self._beam_parameterisations = beam_parameterisations
self._xl_orientation_parameterisations = xl_orientation_parameterisations
self._xl_unit_cell_parameterisations = xl_unit_cell_parameterisations
self._goniometer_parameterisations = goniometer_parameterisations
self._update()
def _update(self):
self._length = self._len()
if self._length == 0:
raise DialsRefineConfigError("There are no free parameters for refinement")
e2bp = {
ids: i
for i, p in enumerate(self._beam_parameterisations)
for ids in p.get_experiment_ids()
}
e2xop = {
ids: i
for i, p in enumerate(self._xl_orientation_parameterisations)
for ids in p.get_experiment_ids()
}
e2xucp = {
ids: i
for i, p in enumerate(self._xl_unit_cell_parameterisations)
for ids in p.get_experiment_ids()
}
e2dp = {
ids: i
for i, p in enumerate(self._detector_parameterisations)
for ids in p.get_experiment_ids()
}
e2gp = {
ids: i
for i, p in enumerate(self._goniometer_parameterisations)
for ids in p.get_experiment_ids()
}
self._exp_to_param = {
i: ParamSet(
e2bp.get(i), e2xop.get(i), e2xucp.get(i), e2dp.get(i), e2gp.get(i)
)
for i, _ in enumerate(self._experiments)
}
def get_detector_parameterisations(self):
return self._detector_parameterisations
def get_beam_parameterisations(self):
return self._beam_parameterisations
def get_crystal_orientation_parameterisations(self):
return self._xl_orientation_parameterisations
def get_crystal_unit_cell_parameterisations(self):
return self._xl_unit_cell_parameterisations
def get_goniometer_parameterisations(self):
return self._goniometer_parameterisations
def _len(self):
length = 0
for model in self._detector_parameterisations:
length += model.num_free()
for model in self._beam_parameterisations:
length += model.num_free()
for model in self._xl_orientation_parameterisations:
length += model.num_free()
for model in self._xl_unit_cell_parameterisations:
length += model.num_free()
for model in self._goniometer_parameterisations:
length += model.num_free()
return length
def __len__(self):
return self._length
def get_param_vals(self):
global_p_list = []
if self._detector_parameterisations:
det_plists = [x.get_param_vals() for x in self._detector_parameterisations]
params = [x for l in det_plists for x in l]
global_p_list.extend(params)
if self._beam_parameterisations:
src_plists = [x.get_param_vals() for x in self._beam_parameterisations]
params = [x for l in src_plists for x in l]
global_p_list.extend(params)
if self._xl_orientation_parameterisations:
xlo_plists = [
x.get_param_vals() for x in self._xl_orientation_parameterisations
]
params = [x for l in xlo_plists for x in l]
global_p_list.extend(params)
if self._xl_unit_cell_parameterisations:
xluc_plists = [
x.get_param_vals() for x in self._xl_unit_cell_parameterisations
]
params = [x for l in xluc_plists for x in l]
global_p_list.extend(params)
if self._goniometer_parameterisations:
gon_plists = [
x.get_param_vals() for x in self._goniometer_parameterisations
]
params = [x for l in gon_plists for x in l]
global_p_list.extend(params)
return global_p_list
def get_param_names(self):
param_names = []
for p in self._detector_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
for p in self._beam_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
for p in self._xl_orientation_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
for p in self._xl_unit_cell_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
for p in self._goniometer_parameterisations:
prefix = p.model_identifier
param_names.extend([prefix + x for x in p.get_param_names()])
return param_names
def _modify_parameters(self, vals, set_vals=False, set_esds=False, set_fix=False):
assert [set_vals, set_esds, set_fix].count(True) == 1
assert len(vals) == len(self)
it = iter(vals)
for model in (
self._detector_parameterisations
+ self._beam_parameterisations
+ self._xl_orientation_parameterisations
+ self._xl_unit_cell_parameterisations
+ self._goniometer_parameterisations
):
tmp = [next(it) for i in range(model.num_free())]
if set_esds:
model.set_param_esds(tmp)
elif set_vals:
model.set_param_vals(tmp)
elif set_fix:
current_fixes = model.get_fixed()
free_indices = [i for i, e in enumerate(current_fixes) if not e]
assert len(free_indices) == model.num_free()
for i, fix in zip(free_indices, tmp):
if fix:
current_fixes[i] = True
model.set_fixed(current_fixes)
def set_param_vals(self, vals):
self._modify_parameters(vals, set_vals=True)
def set_param_esds(self, esds):
self._modify_parameters(esds, set_esds=True)
def fix_params(self, fix):
self._modify_parameters(fix, set_fix=True)
self._update()
def calculate_model_state_uncertainties(self, var_cov):
i = 0
for model in (
self._detector_parameterisations
+ self._beam_parameterisations
+ self._xl_orientation_parameterisations
+ self._xl_unit_cell_parameterisations
+ self._goniometer_parameterisations
):
n = model.num_free()
sub = var_cov.matrix_copy_block(i, i, n, n)
state_covs = model.calculate_state_uncertainties(sub)
if state_covs is None:
continue
if len(state_covs) == 1:
model.set_state_uncertainties(state_covs[0])
else:
for i_state, state_cov in enumerate(state_covs):
model.set_state_uncertainties(state_cov, multi_state_elt=i_state)
i += n
def get_gradients(self, reflections, callback=None):
self._nref = len(reflections)
self._D = flex.mat3_double(self._nref)
self._s0 = flex.vec3_double(self._nref)
self._U = flex.mat3_double(self._nref)
self._B = flex.mat3_double(self._nref)
self._axis = flex.vec3_double(self._nref)
self._fixed_rotation = flex.mat3_double(self._nref)
self._setting_rotation = flex.mat3_double(self._nref)
self._experiment_to_idx = []
for iexp, exp in enumerate(self._experiments):
sel = reflections["id"] == iexp
isel = sel.iselection()
self._experiment_to_idx.append(isel)
subref = reflections.select(sel)
states = self._get_model_data_for_experiment(exp, subref)
self._D.set_selected(sel, states["D"])
self._s0.set_selected(sel, states["s0"])
self._U.set_selected(sel, states["U"])
self._B.set_selected(sel, states["B"])
if exp.goniometer:
self._setting_rotation.set_selected(sel, states["S"])
self._axis.set_selected(sel, exp.goniometer.get_rotation_axis_datum())
self._fixed_rotation.set_selected(
sel, exp.goniometer.get_fixed_rotation()
)
self._h = reflections["miller_index"].as_vec3_double()
self._UB = self._U * self._B
self._s1 = reflections["s1"]
self._pv = self._D * self._s1
u, v, w = self._pv.parts()
assert w.all_ne(0)
self._w_inv = 1.0 / w
self._u_w_inv = u * self._w_inv
self._v_w_inv = v * self._w_inv
self._iparam = 0
self._local_setup(reflections)
results = []
results = self._grads_detector_loop(reflections, results, callback=callback)
results = self._grads_beam_loop(reflections, results, callback=callback)
results = self._grads_xl_orientation_loop(
reflections, results, callback=callback
)
results = self._grads_xl_unit_cell_loop(reflections, results, callback=callback)
results = self._grads_goniometer_loop(reflections, results, callback=callback)
return results
@staticmethod
def _extend_gradient_vectors(results, m, n, keys=("dX_dp", "dY_dp", "dZ_dp")):
new_results = []
for i in range(n):
result = {}
for key in keys:
result[key] = flex.double(m, 0.0)
new_results.append(result)
results.extend(new_results)
return results
def _get_model_data_for_experiment(self, experiment, reflections):
D = flex.mat3_double(len(reflections))
panels = reflections["panel"]
for ipanel, D_mat in enumerate([p.get_D_matrix() for p in experiment.detector]):
sel = panels == ipanel
D.set_selected(sel, D_mat)
result = {
"s0": experiment.beam.get_s0(),
"U": matrix.sqr(experiment.crystal.get_U()),
"B": matrix.sqr(experiment.crystal.get_B()),
"D": D,
}
if experiment.goniometer:
result["S"] = matrix.sqr(experiment.goniometer.get_setting_rotation())
return result
def _detector_derivatives(
self, isel, panel_id, parameterisation=None, dd_ddet_p=None, reflections=None
):
pv = self._pv.select(isel)
D = self._D.select(isel)
if dd_ddet_p is None:
dd_ddet_p = parameterisation.get_ds_dp(
multi_state_elt=panel_id, use_none_as_null=True
)
dd_ddet_p = [
None if e is None else flex.mat3_double(len(D), e.elems)
for e in dd_ddet_p
]
dpv_ddet_p = [
der if der is None else (D * (der * -1.0)) * pv for der in dd_ddet_p
]
return dpv_ddet_p
def _beam_derivatives(
self, isel, parameterisation=None, ds0_dbeam_p=None, reflections=None
):
pass
def _xl_orientation_derivatives(
self, isel, parameterisation=None, dU_dxlo_p=None, reflections=None
):
pass
def _xl_unit_cell_derivatives(
self, isel, parameterisation=None, dB_dxluc_p=None, reflections=None
):
pass
def _goniometer_derivatives(
self, isel, parameterisation=None, dS_dgon_p=None, reflections=None
):
pass
def _grads_detector_loop(self, reflections, results, callback=None):
for dp in self._detector_parameterisations:
isel = flex.size_t()
for exp_id in dp.get_experiment_ids():
isel.extend(self._experiment_to_idx[exp_id])
detector = dp.get_model()
panel = reflections["panel"].select(isel)
results = self._extend_gradient_vectors(
results, self._nref, dp.num_free(), keys=self._grad_names
)
for panel_id, _ in enumerate(detector):
sub_isel = isel.select(panel == panel_id)
if len(sub_isel) == 0:
continue
dpv_ddet_p = self._detector_derivatives(
sub_isel, panel_id, parameterisation=dp, reflections=reflections
)
sub_w_inv = self._w_inv.select(sub_isel)
sub_u_w_inv = self._u_w_inv.select(sub_isel)
sub_v_w_inv = self._v_w_inv.select(sub_isel)
dX_ddet_p, dY_ddet_p = self._calc_dX_dp_and_dY_dp_from_dpv_dp(
sub_w_inv, sub_u_w_inv, sub_v_w_inv, dpv_ddet_p
)
iparam = self._iparam
for dX, dY in zip(dX_ddet_p, dY_ddet_p):
if dX is not None:
results[iparam][self._grad_names[0]].set_selected(sub_isel, dX)
if dY is not None:
results[iparam][self._grad_names[1]].set_selected(sub_isel, dY)
iparam += 1
if callback is not None:
iparam = self._iparam
for i in range(dp.num_free()):
results[iparam] = callback(results[iparam])
iparam += 1
self._iparam += dp.num_free()
return results
def _grads_model_loop(
self,
parameterisations,
reflections,
results,
callback=None,
derivatives_fn=None,
):
for p in parameterisations:
isel = flex.size_t()
for exp_id in p.get_experiment_ids():
isel.extend(self._experiment_to_idx[exp_id])
results = self._extend_gradient_vectors(
results, self._nref, p.num_free(), keys=self._grad_names
)
if len(isel) == 0:
if callback:
for _ in range(p.num_free()):
results[self._iparam] = callback(results[self._iparam])
self._iparam += 1
else:
self._iparam += p.num_free()
continue
w_inv = self._w_inv.select(isel)
u_w_inv = self._u_w_inv.select(isel)
v_w_inv = self._v_w_inv.select(isel)
dpv_dbeam_p, dAngle_dbeam_p = derivatives_fn(
isel, parameterisation=p, reflections=reflections
)
dX_dbeam_p, dY_dbeam_p = self._calc_dX_dp_and_dY_dp_from_dpv_dp(
w_inv, u_w_inv, v_w_inv, dpv_dbeam_p
)
for dX, dY, dAngle in zip(dX_dbeam_p, dY_dbeam_p, dAngle_dbeam_p):
if dX is not None:
results[self._iparam][self._grad_names[0]].set_selected(isel, dX)
if dY is not None:
results[self._iparam][self._grad_names[1]].set_selected(isel, dY)
if dAngle is not None:
results[self._iparam][self._grad_names[2]].set_selected(
isel, dAngle
)
if callback is not None:
results[self._iparam] = callback(results[self._iparam])
self._iparam += 1
return results
def _grads_beam_loop(self, reflections, results, callback=None):
return self._grads_model_loop(
self._beam_parameterisations,
reflections,
results,
derivatives_fn=self._beam_derivatives,
callback=callback,
)
def _grads_xl_orientation_loop(self, reflections, results, callback=None):
return self._grads_model_loop(
self._xl_orientation_parameterisations,
reflections,
results,
derivatives_fn=self._xl_orientation_derivatives,
callback=callback,
)
def _grads_xl_unit_cell_loop(self, reflections, results, callback=None):
return self._grads_model_loop(
self._xl_unit_cell_parameterisations,
reflections,
results,
derivatives_fn=self._xl_unit_cell_derivatives,
callback=callback,
)
def _grads_goniometer_loop(self, reflections, results, callback=None):
return self._grads_model_loop(
self._goniometer_parameterisations,
reflections,
results,
derivatives_fn=self._goniometer_derivatives,
callback=callback,
)
class SparseGradientVectorMixin:
@staticmethod
def _extend_gradient_vectors(results, m, n, keys=("dX_dp", "dY_dp", "dZ_dp")):
new_results = [{key: sparse.matrix_column(m) for key in keys} for _ in range(n)]
results.extend(new_results)
return results
class XYPhiPredictionParameterisation(PredictionParameterisation):
_grad_names = ("dX_dp", "dY_dp", "dphi_dp")
def _local_setup(self, reflections):
self._phi_calc = reflections["xyzcal.mm"].parts()[2]
q = self._fixed_rotation * (self._UB * self._h)
self._r = self._setting_rotation * q.rotate_around_origin(
self._axis, self._phi_calc
)
self._e_X_r = (self._setting_rotation * self._axis).cross(self._r)
self._e_r_s0 = (self._e_X_r).dot(self._s0)
e_r_s0_mag = flex.abs(self._e_r_s0)
try:
assert flex.min(e_r_s0_mag) > 1.0e-6
except AssertionError as e:
imin = flex.min_index(e_r_s0_mag)
print("(e X r).s0 too small:")
print("for", (e_r_s0_mag <= 1.0e-6).count(True), "reflections")
print("out of", len(e_r_s0_mag), "total")
print("such as", reflections["miller_index"][imin])
print("with scattering vector", reflections["s1"][imin])
print("where r =", self._r[imin])
print("e =", self._axis[imin])
print("s0 =", self._s0[imin])
print("this reflection forms angle with the equatorial plane " "normal:")
vecn = (
matrix.col(self._s0[imin])
.cross(matrix.col(self._axis[imin]))
.normalize()
)
print(matrix.col(reflections["s1"][imin]).accute_angle(vecn))
raise e
def _beam_derivatives(
self, isel, parameterisation=None, ds0_dbeam_p=None, reflections=None
):
r = self._r.select(isel)
e_X_r = self._e_X_r.select(isel)
e_r_s0 = self._e_r_s0.select(isel)
D = self._D.select(isel)
if ds0_dbeam_p is None:
ds0_dbeam_p = parameterisation.get_ds_dp(use_none_as_null=True)
ds0_dbeam_p = [
None if e is None else flex.vec3_double(len(r), e.elems)
for e in ds0_dbeam_p
]
dphi_dp = []
dpv_dp = []
for der in ds0_dbeam_p:
if der is None:
dphi_dp.append(None)
dpv_dp.append(None)
continue
dphi = (r.dot(der) / e_r_s0) * -1.0
dphi_dp.append(dphi)
dpv_dp.append(D * (e_X_r * dphi + der))
return dpv_dp, dphi_dp
def _xl_derivatives(self, isel, derivatives, b_matrix, parameterisation=None):
axis = self._axis.select(isel)
fixed_rotation = self._fixed_rotation.select(isel)
setting_rotation = self._setting_rotation.select(isel)
phi_calc = self._phi_calc.select(isel)
h = self._h.select(isel)
s1 = self._s1.select(isel)
e_X_r = self._e_X_r.select(isel)
e_r_s0 = self._e_r_s0.select(isel)
if b_matrix:
B = self._B.select(isel)
else:
U = self._U.select(isel)
D = self._D.select(isel)
if derivatives is None:
derivatives = [
None if der is None else flex.mat3_double(len(isel), der.elems)
for der in parameterisation.get_ds_dp(use_none_as_null=True)
]
dphi_dp = []
dpv_dp = []
for der in derivatives:
if der is None:
dphi_dp.append(None)
dpv_dp.append(None)
continue
if b_matrix:
tmp = fixed_rotation * (der * B * h)
else:
tmp = fixed_rotation * (U * der * h)
dr = setting_rotation * tmp.rotate_around_origin(axis, phi_calc)
dphi = -1.0 * dr.dot(s1) / e_r_s0
dphi_dp.append(dphi)
dpv_dp.append(D * (dr + e_X_r * dphi))
return dpv_dp, dphi_dp
def _xl_orientation_derivatives(
self, isel, parameterisation=None, dU_dxlo_p=None, reflections=None
):
return self._xl_derivatives(
isel, dU_dxlo_p, b_matrix=True, parameterisation=parameterisation
)
|
BSD 3-Clause New or Revised License
|
twisted/txaws
|
txaws/tests/test_auth_v4.py
|
_create_canonical_request_fixture
|
python
|
def _create_canonical_request_fixture():
return _CanonicalRequest(method="POST",
canonical_uri="/",
canonical_query_string="qs",
canonical_headers="headers",
signed_headers=b"signed headers",
payload_hash=b"payload hash")
|
Make a L{_CanonicalRequest} instance with fixed data.
@return: A canonical request.
@rtype: L{_CanonicalRequest}
|
https://github.com/twisted/txaws/blob/5c3317376cd47e536625027e38c3b37840175ce0/txaws/tests/test_auth_v4.py#L34-L46
|
import datetime
import hashlib
import hmac
import urlparse
from twisted.trial import unittest
from txaws._auth_v4 import (
_CanonicalRequest,
_Credential,
_CredentialScope,
_SignableAWS4HMAC256Token,
_make_authorization_header,
_make_canonical_headers,
_make_canonical_query_string,
_make_canonical_uri,
_make_signed_headers,
getSignatureKey,
makeAMZDate,
makeDateStamp,
sign,
)
from txaws.credentials import AWSCredentials
from txaws.service import REGION_US_EAST_1
|
MIT License
|
geoffxy/habitat
|
experiments/gnmt/seq2seq/train/fp_optimizers.py
|
Fp16Optimizer.step
|
python
|
def step(self, loss, optimizer, scheduler, update=True):
loss *= self.loss_scale
loss.backward()
if update:
self.set_grads(self.fp32_params, self.fp16_model.parameters())
if self.loss_scale != 1.0:
for param in self.fp32_params:
param.grad.data /= self.loss_scale
norm = clip_grad_norm_(self.fp32_params, self.grad_clip)
if math.isfinite(norm):
scheduler.step()
optimizer.step()
self.set_weights(self.fp16_model.parameters(),
self.fp32_params)
self.since_last_invalid += 1
else:
self.loss_scale /= self.dls_downscale
self.since_last_invalid = 0
logging.info(f'Gradient norm: {norm}')
logging.info(f'Skipped batch, new scale: {self.loss_scale}')
if self.since_last_invalid >= self.dls_upscale_interval:
self.loss_scale *= self.dls_upscale
self.loss_scale = min(self.loss_scale, 8192.0)
logging.info(f'Upscaling, new scale: {self.loss_scale}')
self.since_last_invalid = 0
self.fp16_model.zero_grad()
|
Performs one step of the optimizer.
Applies loss scaling, computes gradients in fp16, converts gradients to
fp32, inverts scaling and applies optional gradient norm clipping.
If gradients are finite, it applies update to fp32 master weights and
copies updated parameters to fp16 model for the next iteration. If
gradients are not finite, it skips the batch and adjusts scaling factor
for the next iteration.
:param loss: value of loss function
:param optimizer: optimizer
:param update: if True executes weight update
|
https://github.com/geoffxy/habitat/blob/decc70d18c4a1db7bb109fd59b2b60567bf74375/experiments/gnmt/seq2seq/train/fp_optimizers.py#L78-L121
|
import logging
import math
import torch
from torch.nn.utils import clip_grad_norm_
class Fp16Optimizer:
@staticmethod
def set_grads(params, params_with_grad):
for param, param_w_grad in zip(params, params_with_grad):
if param.grad is None:
param.grad = torch.nn.Parameter(torch.empty_like(param))
param.grad.data.copy_(param_w_grad.grad.data)
@staticmethod
def set_weights(params, new_params):
for param, new_param in zip(params, new_params):
param.data.copy_(new_param.data)
def __init__(self, fp16_model, grad_clip=float('inf'), loss_scale=8192,
dls_downscale=2, dls_upscale=2, dls_upscale_interval=128):
logging.info('Initializing fp16 optimizer')
self.initialize_model(fp16_model)
self.since_last_invalid = 0
self.loss_scale = loss_scale
self.dls_downscale = dls_downscale
self.dls_upscale = dls_upscale
self.dls_upscale_interval = dls_upscale_interval
self.grad_clip = grad_clip
def initialize_model(self, model):
logging.info('Initializing fp32 clone weights')
self.fp16_model = model
self.fp16_model.zero_grad()
self.fp32_params = [param.to(torch.float32).detach()
for param in model.parameters()]
for param in self.fp32_params:
param.requires_grad = True
|
Apache License 2.0
|
cleverhans-lab/cleverhans
|
cleverhans_v3.1.0/cleverhans_tutorials/mnist_blackbox.py
|
prep_bbox
|
python
|
def prep_bbox(
sess,
x,
y,
x_train,
y_train,
x_test,
y_test,
nb_epochs,
batch_size,
learning_rate,
rng,
nb_classes=10,
img_rows=28,
img_cols=28,
nchannels=1,
):
nb_filters = 64
model = ModelBasicCNN("model1", nb_classes, nb_filters)
loss = CrossEntropy(model, smoothing=0.1)
predictions = model.get_logits(x)
print("Defined TensorFlow model graph.")
train_params = {
"nb_epochs": nb_epochs,
"batch_size": batch_size,
"learning_rate": learning_rate,
}
train(sess, loss, x_train, y_train, args=train_params, rng=rng)
eval_params = {"batch_size": batch_size}
accuracy = model_eval(sess, x, y, predictions, x_test, y_test, args=eval_params)
print("Test accuracy of black-box on legitimate test " "examples: " + str(accuracy))
return model, predictions, accuracy
|
Define and train a model that simulates the "remote"
black-box oracle described in the original paper.
:param sess: the TF session
:param x: the input placeholder for MNIST
:param y: the ouput placeholder for MNIST
:param x_train: the training data for the oracle
:param y_train: the training labels for the oracle
:param x_test: the testing data for the oracle
:param y_test: the testing labels for the oracle
:param nb_epochs: number of epochs to train model
:param batch_size: size of training batches
:param learning_rate: learning rate for training
:param rng: numpy.random.RandomState
:return:
|
https://github.com/cleverhans-lab/cleverhans/blob/4aed4be702be5ce13d5017b8a3c6a2cdc4fc0009/cleverhans_v3.1.0/cleverhans_tutorials/mnist_blackbox.py#L59-L113
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import functools
import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf
from cleverhans.attacks import FastGradientMethod
from cleverhans.utils_tf import jacobian_graph, jacobian_augmentation
from cleverhans.compat import flags
from cleverhans.dataset import MNIST
from cleverhans.initializers import HeReLuNormalInitializer
from cleverhans.loss import CrossEntropy
from cleverhans.model import Model
from cleverhans.train import train
from cleverhans.utils import set_log_level
from cleverhans.utils import TemporaryLogLevel
from cleverhans.utils import to_categorical
from cleverhans.utils_tf import model_eval, batch_eval
from cleverhans.model_zoo.basic_cnn import ModelBasicCNN
FLAGS = flags.FLAGS
NB_CLASSES = 10
BATCH_SIZE = 128
LEARNING_RATE = 0.001
NB_EPOCHS = 10
HOLDOUT = 150
DATA_AUG = 6
NB_EPOCHS_S = 10
LMBDA = 0.1
AUG_BATCH_SIZE = 512
def setup_tutorial():
tf.set_random_seed(1234)
return True
|
MIT License
|
aleju/imgaug
|
imgaug/random.py
|
RNG.copy_unless_global_rng
|
python
|
def copy_unless_global_rng(self):
if self.is_global_rng():
return self
return self.copy()
|
Create a copy of this RNG unless it is the global RNG.
Returns
-------
RNG
Copy of this RNG unless it is the global RNG. In the latter case
the RNG instance itself will be returned without any changes.
|
https://github.com/aleju/imgaug/blob/0101108d4fed06bc5056c4a03e2bcb0216dac326/imgaug/random.py#L400-L412
|
from __future__ import print_function, division, absolute_import
import copy as copylib
import numpy as np
import six.moves as sm
SUPPORTS_NEW_NP_RNG_STYLE = False
BIT_GENERATOR = None
_NP_VERSION = list(map(int, np.__version__.split(".")[0:2]))
if _NP_VERSION[0] > 1 or _NP_VERSION[1] >= 17:
SUPPORTS_NEW_NP_RNG_STYLE = True
BIT_GENERATOR = np.random.SFC64
if _NP_VERSION[1] == 17:
_BIT_GENERATOR_INTERFACE = np.random.bit_generator.BitGenerator
else:
_BIT_GENERATOR_INTERFACE = np.random.BitGenerator
GLOBAL_RNG = None
SEED_MIN_VALUE = 0
SEED_MAX_VALUE = 2**31-1
_RNG_IDX = 1
class RNG(object):
def __init__(self, generator):
global _RNG_IDX
if isinstance(generator, RNG):
self.generator = generator.generator
else:
self.generator = normalize_generator_(generator)
self._is_new_rng_style = (
not isinstance(self.generator, np.random.RandomState))
self._idx = _RNG_IDX
_RNG_IDX += 1
@property
def state(self):
return get_generator_state(self.generator)
@state.setter
def state(self, value):
self.set_state_(value)
def set_state_(self, value):
set_generator_state_(self.generator, value)
return self
def use_state_of_(self, other):
return self.set_state_(other.state)
def is_global_rng(self):
return get_global_rng().generator is self.generator
def equals_global_rng(self):
return get_global_rng().equals(self)
def generate_seed_(self):
return generate_seed_(self.generator)
def generate_seeds_(self, n):
return generate_seeds_(self.generator, n)
def reset_cache_(self):
reset_generator_cache_(self.generator)
return self
def derive_rng_(self):
return self.derive_rngs_(1)[0]
def derive_rngs_(self, n):
return [RNG(gen) for gen in derive_generators_(self.generator, n)]
def equals(self, other):
assert isinstance(other, RNG), (
"Expected 'other' to be an RNG, got type %s. "
"Use imgaug.random.is_generator_equal_to() to compare "
"numpy generators or RandomStates." % (type(other),))
return is_generator_equal_to(self.generator, other.generator)
def advance_(self):
advance_generator_(self.generator)
return self
def copy(self):
return RNG(copy_generator(self.generator))
|
MIT License
|
scottkirkwood/key-mon
|
src/keymon/shaped_window.py
|
ShapedWindow.fade_away
|
python
|
def fade_away(self):
self.shown = False
self.timeout_timer = GLib.timeout_add(int(self.timeout * 1000), self.hide)
|
Make the window fade in a little bit.
|
https://github.com/scottkirkwood/key-mon/blob/d609880417479a86684b35dc273d1aa1b6c52627/src/keymon/shaped_window.py#L113-L117
|
import gi
gi.require_version("Gtk", "3.0")
from gi.repository import Gtk, Gdk, GLib
from . import lazy_pixbuf_creator
class ShapedWindow(Gtk.Window):
def __init__(self, fname, scale=1.0, timeout=0.2):
Gtk.Window.__init__(self)
self.connect('size-allocate', self._on_size_allocate)
self.set_decorated(False)
self.set_keep_above(True)
self.set_accept_focus(False)
self.scale = scale
self.shown = False
self.timeout = timeout
self.timeout_timer = None
self.name_fnames = {
'mouse' : [fname],
}
self.pixbufs = lazy_pixbuf_creator.LazyPixbufCreator(self.name_fnames,
self.scale)
self.pixbuf = self.pixbufs.get('mouse')
self.resize(self.pixbuf.get_width(), self.pixbuf.get_height())
self.image = Gtk.Image.new_from_pixbuf(self.pixbuf)
rgba = self.get_screen().get_rgba_visual()
if rgba is not None:
self.set_visual(rgba)
self.set_name("mouse-follow")
provider = Gtk.CssProvider()
provider.load_from_data(
b"""
#mouse-follow {
background-color:rgba(0,0,0,0);
}
"""
)
context = self.get_style_context()
context.add_provider(provider, Gtk.STYLE_PROVIDER_PRIORITY_APPLICATION)
self.image.show()
self.add(self.image)
def _on_size_allocate(self, win, unused_allocation):
win.set_property('skip-taskbar-hint', True)
if not win.is_composited():
print('Unable to fade the window')
else:
win.set_opacity(0.5)
def center_on_cursor(self, x=None, y=None):
if x is None or y is None:
root = Gdk.Screen.get_default().get_root_window()
_, x, y, _ = root.get_pointer()
w, h = self.get_size()
new_x, new_y = x - w/2, y - h/2
pos = self.get_position()
if pos[0] != new_x or pos[1] != new_y:
self.move(new_x, new_y)
self.show()
def show(self):
if self.timeout_timer and self.shown:
if GLib.main_context_default().find_source_by_id(self.timeout_timer) and not GLib.main_context_default().find_source_by_id(self.timeout_timer).is_destroyed():
GLib.source_remove(self.timeout_timer)
self.timeout_timer = None
super(ShapedWindow, self).show()
pm = gtk.gdk.Pixmap(None, self.get_size()[0], self.get_size()[1], 1)
pmcr = pm.cairo_create()
pmcr.rectangle(0, 0, 1, 1)
pmcr.fill()
self.input_shape_combine_mask(pm, 0, 0)
def maybe_show(self):
if self.shown or not self.timeout_timer:
return
self.shown = True
self.show()
|
Apache License 2.0
|
hyde/hyde
|
hyde/ext/plugins/css.py
|
SassPlugin.text_resource_complete
|
python
|
def text_resource_complete(self, resource, text):
if resource.relative_path not in self.resources:
return
includes = [resource.node.path] + self.includes
includes = [path.rstrip(os.sep) + os.sep for path in includes]
options = self.options
if 'include_paths' not in options:
options['include_paths'] = []
options['include_paths'].extend(includes)
self.logger.error(resource)
try:
return self.sass.compile(string=text, **options)
except Exception as exc:
self.logger.error(exc)
raise
|
Run sassycss compiler on text.
|
https://github.com/hyde/hyde/blob/7f415402cc3e007a746eb2b5bc102281fdb415bd/hyde/ext/plugins/css.py#L476-L494
|
from hyde._compat import str
from hyde.plugin import CLTransformer, Plugin
from hyde.exceptions import HydeException
import os
import re
import subprocess
import sys
from fswrap import File
class LessCSSPlugin(CLTransformer):
def __init__(self, site):
super(LessCSSPlugin, self).__init__(site)
self.import_finder = re.compile('^\\s*@import\s+(?:\'|\")([^\'\"]*)(?:\'|\")\s*\;\s*$',
re.MULTILINE)
@property
def executable_name(self):
return "lessc"
def _should_parse_resource(self, resource):
return resource.source_file.kind == 'less' and getattr(resource, 'meta', {}).get('parse', True)
def _should_replace_imports(self, resource):
return getattr(resource, 'meta', {}).get('uses_template', True)
def begin_site(self):
for resource in self.site.content.walk_resources():
if self._should_parse_resource(resource):
new_name = resource.source_file.name_without_extension + ".css"
target_folder = File(resource.relative_deploy_path).parent
resource.relative_deploy_path = target_folder.child(new_name)
def begin_text_resource(self, resource, text):
if not self._should_parse_resource(resource) or not self._should_replace_imports(resource):
return text
def import_to_include(match):
if not match.lastindex:
return ''
path = match.groups(1)[0]
afile = File(resource.source_file.parent.child(path))
if len(afile.kind.strip()) == 0:
afile = File(afile.path + '.less')
ref = self.site.content.resource_from_path(afile.path)
if not ref:
raise HydeException(
"Cannot import from path [%s]" % afile.path)
ref.is_processable = False
return self.template.get_include_statement(ref.relative_path)
text = self.import_finder.sub(import_to_include, text)
return text
@property
def plugin_name(self):
return "less"
def text_resource_complete(self, resource, text):
if not self._should_parse_resource(resource):
return
supported = [
"verbose",
("silent", "s"),
("compress", "x"),
"O0",
"O1",
"O2",
"include-path="
]
less = self.app
source = File.make_temp(text)
target = File.make_temp('')
args = [str(less)]
args.extend(self.process_args(supported))
args.extend([str(source), str(target)])
try:
self.call_app(args)
except subprocess.CalledProcessError:
HydeException.reraise(
"Cannot process %s. Error occurred when "
"processing [%s]" % (self.app.name, resource.source_file),
sys.exc_info())
return target.read_all()
class StylusPlugin(CLTransformer):
def __init__(self, site):
super(StylusPlugin, self).__init__(site)
self.import_finder = re.compile('^\\s*@import\s+(?:\'|\")([^\'\"]*)(?:\'|\")\s*\;?\s*$',
re.MULTILINE)
def begin_site(self):
for resource in self.site.content.walk_resources():
if resource.source_file.kind == 'styl':
new_name = resource.source_file.name_without_extension + ".css"
target_folder = File(resource.relative_deploy_path).parent
resource.relative_deploy_path = target_folder.child(new_name)
def begin_text_resource(self, resource, text):
if not resource.source_file.kind == 'styl':
return
def import_to_include(match):
if not match.lastindex:
return ''
path = match.groups(1)[0]
first_child = resource.source_file.parent.child(path)
afile = File(File(first_child).fully_expanded_path)
if len(afile.kind.strip()) == 0:
afile = File(afile.path + '.styl')
ref = self.site.content.resource_from_path(afile.path)
if not ref:
try:
include = self.settings.args.include
except AttributeError:
include = False
if not include:
raise HydeException(
"Cannot import from path [%s]" % afile.path)
else:
ref.is_processable = False
return "\n" + self.template.get_include_statement(ref.relative_path) + "\n"
return '@import "' + path + '"\n'
text = self.import_finder.sub(import_to_include, text)
return text
@property
def defaults(self):
try:
mode = self.site.config.mode
except AttributeError:
mode = "production"
defaults = {"compress": ""}
if mode.startswith('dev'):
defaults = {}
return defaults
@property
def plugin_name(self):
return "stylus"
def text_resource_complete(self, resource, text):
if not resource.source_file.kind == 'styl':
return
stylus = self.app
source = File.make_temp(text.strip())
supported = [("compress", "c"), ("include", "I")]
args = [str(stylus)]
args.extend(self.process_args(supported))
args.append(str(source))
try:
self.call_app(args)
except subprocess.CalledProcessError:
HydeException.reraise(
"Cannot process %s. Error occurred when "
"processing [%s]" % (stylus.name, resource.source_file),
sys.exc_info())
target = File(source.path + '.css')
return target.read_all()
class CleverCSSPlugin(Plugin):
def __init__(self, site):
super(CleverCSSPlugin, self).__init__(site)
try:
import clevercss
except ImportError as e:
raise HydeException('Unable to import CleverCSS: ' + e.message)
else:
self.clevercss = clevercss
def _should_parse_resource(self, resource):
return resource.source_file.kind == 'ccss' and getattr(resource, 'meta', {}).get('parse', True)
def _should_replace_imports(self, resource):
return getattr(resource, 'meta', {}).get('uses_template', True)
def begin_site(self):
for resource in self.site.content.walk_resources():
if self._should_parse_resource(resource):
new_name = resource.source_file.name_without_extension + ".css"
target_folder = File(resource.relative_deploy_path).parent
resource.relative_deploy_path = target_folder.child(new_name)
def begin_text_resource(self, resource, text):
if not self._should_parse_resource(resource) or not self._should_replace_imports(resource):
return text
import_finder = re.compile(
'^\\s*@import\s+(?:\'|\")([^\'\"]*)(?:\'|\")\s*\;\s*$',
re.MULTILINE)
def import_to_include(match):
if not match.lastindex:
return ''
path = match.groups(1)[0]
afile = File(resource.source_file.parent.child(path))
if len(afile.kind.strip()) == 0:
afile = File(afile.path + '.ccss')
ref = self.site.content.resource_from_path(afile.path)
if not ref:
raise HydeException(
"Cannot import from path [%s]" % afile.path)
ref.is_processable = False
return self.template.get_include_statement(ref.relative_path)
text = import_finder.sub(import_to_include, text)
return text
def text_resource_complete(self, resource, text):
if not self._should_parse_resource(resource):
return
return self.clevercss.convert(text, self.settings)
class SassyCSSPlugin(Plugin):
def __init__(self, site):
super(SassyCSSPlugin, self).__init__(site)
try:
import scss
except ImportError as e:
raise HydeException('Unable to import pyScss: ' + e.message)
else:
self.scss = scss
def _should_parse_resource(self, resource):
return resource.source_file.kind == 'scss' and getattr(resource, 'meta', {}).get('parse', True)
@property
def options(self):
try:
mode = self.site.config.mode
except AttributeError:
mode = "production"
debug = mode.startswith('dev')
opts = {'compress': not debug, 'debug_info': debug}
site_opts = self.settings.get('options', {})
opts.update(site_opts)
return opts
@property
def vars(self):
return self.settings.get('vars', {})
@property
def includes(self):
return self.settings.get('includes', [])
def begin_site(self):
self.scss.STATIC_URL = self.site.content_url('/')
self.scss.STATIC_ROOT = self.site.config.content_root_path.path
self.scss.ASSETS_URL = self.site.media_url('/')
self.scss.ASSETS_ROOT = self.site.config.deploy_root_path.child(
self.site.config.media_root)
for resource in self.site.content.walk_resources():
if self._should_parse_resource(resource):
new_name = resource.source_file.name_without_extension + ".css"
target_folder = File(resource.relative_deploy_path).parent
resource.relative_deploy_path = target_folder.child(new_name)
def text_resource_complete(self, resource, text):
if not self._should_parse_resource(resource):
return
includes = [resource.node.path] + self.includes
includes = [path.rstrip(os.sep) + os.sep for path in includes]
options = self.options
if 'load_paths' not in options:
options['load_paths'] = []
options['load_paths'].extend(includes)
scss = self.scss.Scss(scss_opts=options, scss_vars=self.vars)
return scss.compile(text)
class SassPlugin(Plugin):
def __init__(self, site):
super(SassPlugin, self).__init__(site)
try:
import sass
except ImportError as e:
raise HydeException('Unable to import libsass: ' + e.message)
else:
self.sass = sass
self.resources = []
def _should_parse_resource(self, resource):
files = self.site.config.get("sass", {}).get("files", [])
return resource.source_file.kind == 'scss' and resource.relative_path in files
@property
def options(self):
try:
mode = self.site.config.mode
except AttributeError:
mode = "production"
if 'sass' in self.site.config and 'output_style' in self.site.config.sass:
output_style = self.site.config.sass.output_style
else:
debug = mode.startswith('dev')
output_style = 'compressed' if not debug else 'nested'
opts = {'output_style': output_style}
site_opts = self.settings.get('options', {})
opts.update(site_opts)
return opts
@property
def includes(self):
return self.settings.get('includes', [])
def begin_site(self):
for resource in self.site.content.walk_resources():
if self._should_parse_resource(resource):
new_name = resource.source_file.name_without_extension + ".css"
target_folder = File(resource.relative_deploy_path).parent
resource.relative_deploy_path = target_folder.child(new_name)
self.resources.append(resource.relative_path)
|
MIT License
|
surrealai/surreal
|
surreal/learner/base.py
|
Learner.main_setup
|
python
|
def main_setup(self):
self.save_config()
self.iter_timer.start()
self.publish_parameter(0, message='batch '+str(0))
|
Setup before constant looping
|
https://github.com/surrealai/surreal/blob/ae9e5f43bdd7d1bc6d39d0a4783b96b2c117fade/surreal/learner/base.py#L356-L362
|
import os
import threading
import queue
import time
import numpy as np
from pathlib import Path
from benedict import BeneDict
import surreal.utils as U
from surreal.session import (
TimeThrottledTensorplex,
get_loggerplex_client,
get_tensorplex_client,
Config
)
from surreal.distributed import ParameterPublisher, LearnerDataPrefetcher
class Learner(metaclass=U.AutoInitializeMeta):
def __init__(self,
learner_config,
env_config,
session_config):
self.learner_config = learner_config
self.env_config = env_config
self.session_config = session_config
self.current_iter = 0
self._setup_logging()
self._setup_checkpoint()
def learn(self, batch_exp):
raise NotImplementedError
def module_dict(self):
raise NotImplementedError
def save(self, file_path):
raise NotImplementedError
def checkpoint_attributes(self):
return []
def _setup_publish(self):
min_publish_interval = self.learner_config.parameter_publish.min_publish_interval
self._ps_publish_tracker = U.TimedTracker(min_publish_interval)
ps_publish_port = os.environ['SYMPH_PARAMETER_PUBLISH_PORT']
self._ps_publisher = ParameterPublisher(
port=ps_publish_port,
module_dict=self.module_dict()
)
def _setup_prefetching(self):
batch_size = self.learner_config.replay.batch_size
self._prefetch_queue = LearnerDataPrefetcher(
session_config=self.session_config,
batch_size=batch_size,
worker_preprocess=self._prefetcher_preprocess,
main_preprocess=self.preprocess
)
self._prefetch_queue.start()
def _initialize(self):
if self.session_config.checkpoint.restore:
self.restore_checkpoint()
self._setup_publish()
self._setup_prefetching()
self._tensorplex_thread.start()
def should_publish_parameter(self):
return self._ps_publish_tracker.track_increment()
def publish_parameter(self, iteration, message=''):
self._ps_publisher.publish(iteration, message=message)
def fetch_batch(self):
return self._prefetch_queue.get()
def fetch_iterator(self):
while True:
yield self.fetch_batch()
def _setup_logging(self):
self.learn_timer = U.TimeRecorder()
self.iter_timer = U.TimeRecorder()
self.publish_timer = U.TimeRecorder()
self.init_time = time.time()
self.current_iter = 0
self.last_time = self.init_time
self.last_time_2 = self.init_time
self.last_iter = 0
self.log = get_loggerplex_client('learner', self.session_config)
self.tensorplex = self._get_tensorplex('learner/learner')
self._tensorplex_thread = U.PeriodicWakeUpWorker(
target=self.generate_tensorplex_report)
def _get_tensorplex(self, name):
tp = get_tensorplex_client(
name,
self.session_config
)
update_schedule = self.session_config.tensorplex.update_schedule
periodic_tp = TimeThrottledTensorplex(
tensorplex=tp,
min_update_interval=update_schedule.learner_min_update_interval,
)
return periodic_tp
def generate_tensorplex_report(self):
cur_time = time.time()
current_iter = self.current_iter
iter_elapsed = current_iter - self.last_iter
self.last_iter = current_iter
time_elapsed = cur_time - self.last_time
self.last_time = cur_time
core_metrics = {}
system_metrics = {}
learn_time = self.learn_timer.avg + 1e-6
fetch_timer = self._prefetch_queue.timer
fetch_time = fetch_timer.avg + 1e-6
iter_time = self.iter_timer.avg + 1e-6
publish_time = self.publish_timer.avg + 1e-6
core_metrics['learn_time_s'] = learn_time
core_metrics['fetch_time_s'] = fetch_time
core_metrics['publish_time_s'] = publish_time
core_metrics['iter_time_s'] = iter_time
iter_per_s = iter_elapsed / time_elapsed
system_metrics['iter_per_s'] = iter_per_s
system_metrics['exp_per_s'] = iter_per_s * self.learner_config.replay.batch_size
system_metrics['compute_load_percent'] = min(
learn_time / iter_time * 100, 100)
system_metrics['io_fetch_experience_load_percent'] = min(
fetch_time / iter_time * 100, 100)
system_metrics['io_publish_load_percent'] = min(
publish_time / iter_time * 100, 100)
all_metrics = {}
for k in core_metrics:
all_metrics['.core/' + k] = core_metrics[k]
for k in system_metrics:
all_metrics['.system/' + k] = system_metrics[k]
self.tensorplex.add_scalars(all_metrics)
def _setup_checkpoint(self):
tracked_attrs = self.checkpoint_attributes()
assert U.is_sequence(tracked_attrs), 'checkpoint_attributes must return a list of string attr names'
self._periodic_checkpoint = U.PeriodicCheckpoint(
U.f_join(self.session_config.folder, 'checkpoint'),
name='learner',
period=self.session_config.checkpoint.learner.periodic,
min_interval=self.session_config.checkpoint.learner.min_interval,
tracked_obj=self,
tracked_attrs=tracked_attrs,
keep_history=self.session_config.checkpoint.learner.keep_history,
keep_best=self.session_config.checkpoint.learner.keep_best,
)
def periodic_checkpoint(self, global_steps, score=None, **info):
return self._periodic_checkpoint.save(
score=score,
global_steps=global_steps,
reload_metadata=False,
**info,
)
def restore_checkpoint(self):
SC = self.session_config
restore_folder = SC.checkpoint.restore_folder
if (restore_folder and
U.f_last_part_in_path(restore_folder) != 'checkpoint'):
restore_folder = U.f_join(restore_folder, 'checkpoint')
restored = self._periodic_checkpoint.restore(
target=SC.checkpoint.learner.restore_target,
mode=SC.checkpoint.learner.mode,
reload_metadata=True,
check_ckpt_exists=True,
restore_folder=restore_folder,
)
if restored:
self.log.info('successfully restored from checkpoint', restored)
def preprocess(self, batch):
return batch
def _prefetcher_preprocess(self, batch):
return batch
def main(self):
self.main_setup()
while True:
self.main_loop()
|
MIT License
|
zehaos/mobilenet
|
preprocessing/preprocessing_factory.py
|
get_preprocessing
|
python
|
def get_preprocessing(name, is_training=False):
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
'mobilenet': mobilenet_preprocessing,
'mobilenetdet': mobilenetdet_preprocessing
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
|
Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
|
https://github.com/zehaos/mobilenet/blob/bb02b10fbd211d717f7a207245feac229f6bb23e/preprocessing/preprocessing_factory.py#L33-L79
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from preprocessing import cifarnet_preprocessing
from preprocessing import inception_preprocessing
from preprocessing import lenet_preprocessing
from preprocessing import vgg_preprocessing
from preprocessing import mobilenet_preprocessing
from preprocessing import mobilenetdet_preprocessing
slim = tf.contrib.slim
|
Apache License 2.0
|
onshape-public/onshape-clients
|
python/onshape_client/oas/models/bt_substitute_approver_info.py
|
BTSubstituteApproverInfo.__init__
|
python
|
def __init__(
self,
_check_type=True,
_from_server=False,
_path_to_item=(),
_configuration=None,
**kwargs
):
self._data_store = {}
self._check_type = _check_type
self._from_server = _from_server
self._path_to_item = _path_to_item
self._configuration = _configuration
for var_name, var_value in six.iteritems(kwargs):
if (
var_name not in self.attribute_map
and self._configuration is not None
and self._configuration.discard_unknown_keys
and self.additional_properties_type is None
):
continue
setattr(self, var_name, var_value)
|
bt_substitute_approver_info.BTSubstituteApproverInfo - a model defined in OpenAPI
Keyword Args:
_check_type (bool): if True, values for parameters in openapi_types
will be type checked and a TypeError will be
raised if the wrong type is input.
Defaults to True
_path_to_item (tuple/list): This is a list of keys or values to
drill down to the model in received_data
when deserializing a response
_from_server (bool): True if the data is from the server
False if the data is from the client (default)
_configuration (Configuration): the instance to use when
deserializing a file_type parameter.
If passed, type conversion is attempted
If omitted no type conversion is done.
company_id (str): [optional] # noqa: E501
enabled (bool): [optional] # noqa: E501
identity (bt_identity_info.BTIdentityInfo): [optional] # noqa: E501
|
https://github.com/onshape-public/onshape-clients/blob/20843a00c628e516e7219e17a23ec4ef2bf9f16f/python/onshape_client/oas/models/bt_substitute_approver_info.py#L110-L154
|
from __future__ import absolute_import
import re
import sys
import six
import nulltype
from onshape_client.oas.model_utils import (
ModelComposed,
ModelNormal,
ModelSimple,
date,
datetime,
file_type,
int,
none_type,
str,
validate_get_composed_info,
)
try:
from onshape_client.oas.models import bt_identity_info
except ImportError:
bt_identity_info = sys.modules["onshape_client.oas.models.bt_identity_info"]
class BTSubstituteApproverInfo(ModelNormal):
allowed_values = {}
validations = {}
additional_properties_type = None
@staticmethod
def openapi_types():
return {
"company_id": (str,),
"enabled": (bool,),
"identity": (bt_identity_info.BTIdentityInfo,),
}
@staticmethod
def discriminator():
return None
attribute_map = {
"company_id": "companyId",
"enabled": "enabled",
"identity": "identity",
}
@staticmethod
def _composed_schemas():
return None
required_properties = set(
[
"_data_store",
"_check_type",
"_from_server",
"_path_to_item",
"_configuration",
]
)
|
MIT License
|
unofficial-memsource/memsource-cli-client
|
memsource_cli/models/term_v2_dto.py
|
TermV2Dto.term_type
|
python
|
def term_type(self):
return self._term_type
|
Gets the term_type of this TermV2Dto. # noqa: E501
:return: The term_type of this TermV2Dto. # noqa: E501
:rtype: str
|
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/term_v2_dto.py#L542-L549
|
import pprint
import re
import six
from memsource_cli.models.user_reference import UserReference
class TermV2Dto(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'id': 'str',
'text': 'str',
'lang': 'str',
'rtl': 'bool',
'modified_at': 'datetime',
'created_at': 'datetime',
'modified_by': 'UserReference',
'created_by': 'UserReference',
'case_sensitive': 'bool',
'exact_match': 'bool',
'forbidden': 'bool',
'preferred': 'bool',
'status': 'str',
'concept_id': 'str',
'usage': 'str',
'note': 'str',
'writable': 'bool',
'short_translation': 'str',
'term_type': 'str',
'part_of_speech': 'str',
'gender': 'str',
'number': 'str'
}
attribute_map = {
'id': 'id',
'text': 'text',
'lang': 'lang',
'rtl': 'rtl',
'modified_at': 'modifiedAt',
'created_at': 'createdAt',
'modified_by': 'modifiedBy',
'created_by': 'createdBy',
'case_sensitive': 'caseSensitive',
'exact_match': 'exactMatch',
'forbidden': 'forbidden',
'preferred': 'preferred',
'status': 'status',
'concept_id': 'conceptId',
'usage': 'usage',
'note': 'note',
'writable': 'writable',
'short_translation': 'shortTranslation',
'term_type': 'termType',
'part_of_speech': 'partOfSpeech',
'gender': 'gender',
'number': 'number'
}
def __init__(self, id=None, text=None, lang=None, rtl=None, modified_at=None, created_at=None, modified_by=None, created_by=None, case_sensitive=None, exact_match=None, forbidden=None, preferred=None, status=None, concept_id=None, usage=None, note=None, writable=None, short_translation=None, term_type=None, part_of_speech=None, gender=None, number=None):
self._id = None
self._text = None
self._lang = None
self._rtl = None
self._modified_at = None
self._created_at = None
self._modified_by = None
self._created_by = None
self._case_sensitive = None
self._exact_match = None
self._forbidden = None
self._preferred = None
self._status = None
self._concept_id = None
self._usage = None
self._note = None
self._writable = None
self._short_translation = None
self._term_type = None
self._part_of_speech = None
self._gender = None
self._number = None
self.discriminator = None
if id is not None:
self.id = id
if text is not None:
self.text = text
if lang is not None:
self.lang = lang
if rtl is not None:
self.rtl = rtl
if modified_at is not None:
self.modified_at = modified_at
if created_at is not None:
self.created_at = created_at
if modified_by is not None:
self.modified_by = modified_by
if created_by is not None:
self.created_by = created_by
if case_sensitive is not None:
self.case_sensitive = case_sensitive
if exact_match is not None:
self.exact_match = exact_match
if forbidden is not None:
self.forbidden = forbidden
if preferred is not None:
self.preferred = preferred
if status is not None:
self.status = status
if concept_id is not None:
self.concept_id = concept_id
if usage is not None:
self.usage = usage
if note is not None:
self.note = note
if writable is not None:
self.writable = writable
if short_translation is not None:
self.short_translation = short_translation
if term_type is not None:
self.term_type = term_type
if part_of_speech is not None:
self.part_of_speech = part_of_speech
if gender is not None:
self.gender = gender
if number is not None:
self.number = number
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def text(self):
return self._text
@text.setter
def text(self, text):
self._text = text
@property
def lang(self):
return self._lang
@lang.setter
def lang(self, lang):
self._lang = lang
@property
def rtl(self):
return self._rtl
@rtl.setter
def rtl(self, rtl):
self._rtl = rtl
@property
def modified_at(self):
return self._modified_at
@modified_at.setter
def modified_at(self, modified_at):
self._modified_at = modified_at
@property
def created_at(self):
return self._created_at
@created_at.setter
def created_at(self, created_at):
self._created_at = created_at
@property
def modified_by(self):
return self._modified_by
@modified_by.setter
def modified_by(self, modified_by):
self._modified_by = modified_by
@property
def created_by(self):
return self._created_by
@created_by.setter
def created_by(self, created_by):
self._created_by = created_by
@property
def case_sensitive(self):
return self._case_sensitive
@case_sensitive.setter
def case_sensitive(self, case_sensitive):
self._case_sensitive = case_sensitive
@property
def exact_match(self):
return self._exact_match
@exact_match.setter
def exact_match(self, exact_match):
self._exact_match = exact_match
@property
def forbidden(self):
return self._forbidden
@forbidden.setter
def forbidden(self, forbidden):
self._forbidden = forbidden
@property
def preferred(self):
return self._preferred
@preferred.setter
def preferred(self, preferred):
self._preferred = preferred
@property
def status(self):
return self._status
@status.setter
def status(self, status):
allowed_values = ["New", "Approved"]
if status not in allowed_values:
raise ValueError(
"Invalid value for `status` ({0}), must be one of {1}"
.format(status, allowed_values)
)
self._status = status
@property
def concept_id(self):
return self._concept_id
@concept_id.setter
def concept_id(self, concept_id):
self._concept_id = concept_id
@property
def usage(self):
return self._usage
@usage.setter
def usage(self, usage):
self._usage = usage
@property
def note(self):
return self._note
@note.setter
def note(self, note):
self._note = note
@property
def writable(self):
return self._writable
@writable.setter
def writable(self, writable):
self._writable = writable
@property
def short_translation(self):
return self._short_translation
@short_translation.setter
def short_translation(self, short_translation):
self._short_translation = short_translation
@property
|
Apache License 2.0
|
cn-uofbasel/picn
|
PiCN/Layers/NFNLayer/BasicNFNLayer.py
|
BasicNFNLayer.handleContent
|
python
|
def handleContent(self, packet_id: int, content: Content):
self.logger.info("Handeling Content: " + str(content.name))
used = self.computation_table.push_data(content)
if not used:
self.queue_to_lower.put([packet_id, content])
return
ready_comps = self.computation_table.get_ready_computations()
for comp in ready_comps:
if comp.comp_state == NFNComputationState.FWD:
self.forwarding_descision(comp.interest)
if comp.comp_state == NFNComputationState.EXEC or comp.comp_state == NFNComputationState.WRITEBACK:
self.compute(comp.interest)
|
handle a arriving content object
:param packet_id: id of the computation
:param content: content that arrived
|
https://github.com/cn-uofbasel/picn/blob/64ed40242657238e9f1d522d5873173f0b93a30e/PiCN/Layers/NFNLayer/BasicNFNLayer.py#L100-L116
|
import multiprocessing
import random
from typing import Dict, List
from PiCN.Packets import Interest, Content, Nack, NackReason, Name
from PiCN.Processes import LayerProcess
from PiCN.Layers.NFNLayer.NFNComputationTable import BaseNFNComputationTable, NFNComputationTableEntry
from PiCN.Layers.NFNLayer.NFNComputationTable import NFNComputationState
from PiCN.Layers.NFNLayer.NFNExecutor import BaseNFNExecutor
from PiCN.Layers.NFNLayer.Parser import *
from PiCN.Layers.NFNLayer.NFNOptimizer import BaseNFNOptimizer
from PiCN.Layers.NFNLayer.NFNOptimizer import ToDataFirstOptimizer
from PiCN.Layers.NFNLayer.R2C import BaseR2CHandler
from PiCN.Layers.ICNLayer.PendingInterestTable import BasePendingInterestTable
from PiCN.Layers.ICNLayer.ContentStore import BaseContentStore
from PiCN.Layers.ICNLayer.ForwardingInformationBase import BaseForwardingInformationBase
from PiCN.Layers.LinkLayer.FaceIDTable import BaseFaceIDTable
class BasicNFNLayer(LayerProcess):
def __init__(self, cs: BaseContentStore, fib: BaseForwardingInformationBase, pit: BasePendingInterestTable,
faceidtable: BaseFaceIDTable,
comp_table: BaseNFNComputationTable, executors: Dict[str, type(BaseNFNExecutor)],
parser: DefaultNFNParser, r2c_client: BaseR2CHandler, log_level: int=255):
super().__init__("NFN-Layer", log_level=log_level)
self.cs = cs
self.fib = fib
self.pit = pit
self.faceidtable = faceidtable
self.computation_table = comp_table
self.executors = executors
self.r2cclient = r2c_client
self.parser: DefaultNFNParser = parser
self.optimizer: BaseNFNOptimizer = ToDataFirstOptimizer(self.cs, self.fib, self.pit, self.faceidtable)
def data_from_lower(self, to_lower: multiprocessing.Queue, to_higher: multiprocessing.Queue, data):
if isinstance(data, list):
packet_id = data[0]
packet = data[1]
else:
packet_id = 1
packet = data
if isinstance(packet, Interest):
self.logger.info("Got Interest from lower: " + str(packet.name) + "; Face ID: " + str(packet_id))
self.handleInterest(packet_id, packet)
elif isinstance(packet, Content):
self.logger.info("Got Content from lower: " + str(packet.name))
self.handleContent(packet_id, packet)
elif isinstance(packet, Nack):
self.logger.info("Got Nack from lower: " + str(packet.name))
self.handleNack(packet_id, packet)
def data_from_higher(self, to_lower: multiprocessing.Queue, to_higher: multiprocessing.Queue, data):
pass
def handleInterest(self, packet_id: int, interest: Interest):
if self.r2cclient.R2C_identify_Name(interest.name):
c = self.r2cclient.R2C_handle_request(interest.name, self.computation_table)
if c is not None:
if packet_id < 0:
self.computation_table.push_data(c)
else:
self.queue_to_lower.put([packet_id, c])
return
if interest.name.components[-1] != b"NFN":
self.queue_to_lower.put([packet_id, interest])
return
nfn_str, prepended_name = self.parser.network_name_to_nfn_str(interest.name)
ast = self.parser.parse(nfn_str)
if self.computation_table.add_computation(interest.name, packet_id, interest, ast) == False:
self.logger.info("Computation already running")
return
self.logger.info("#Running Computations: " + str(self.computation_table.get_container_size()))
required_optimizer_data = self.optimizer.required_data(interest.name, ast)
self.computation_table.update_status(interest.name, NFNComputationState.FWD)
if required_optimizer_data != []:
raise NotImplemented("Global Optimizing not implemeted yet")
return
self.forwarding_descision(interest)
|
BSD 3-Clause New or Revised License
|
rlworkgroup/garage
|
tests/fixtures/policies/dummy_policy.py
|
DummyPolicy.get_actions
|
python
|
def get_actions(self, observations):
n = len(observations)
action, action_info = self.get_action(None)
return [action] * n, action_info
|
Get multiple actions from this policy for the input observations.
Args:
observations (numpy.ndarray): Observations from environment.
Returns:
numpy.ndarray: Predicted actions.
dict: Distribution parameters.
|
https://github.com/rlworkgroup/garage/blob/3a578852c392cecde5b7c9786aa182d74f6df1d4/tests/fixtures/policies/dummy_policy.py#L34-L47
|
import numpy as np
from garage.np.policies import Policy
class DummyPolicy(Policy):
def __init__(self, env_spec):
self._env_spec = env_spec
self._param = []
self._param_values = np.random.uniform(-1, 1, 1000)
def get_action(self, observation):
return self.action_space.sample(), dict(dummy='dummy', mean=0.)
|
MIT License
|
sripathikrishnan/redis-rdb-tools
|
rdbtools/parser.py
|
RdbParser._decode_module_id
|
python
|
def _decode_module_id(self, module_id):
name = [''] * 9
module_id >>= 10
for i in reversed(range(9)):
name[i] = self.charset[module_id & 63]
module_id >>= 6
return ''.join(name)
|
decode module id to string
based on @antirez moduleTypeNameByID function from redis/src/module.c
:param module_id: 64bit integer
:return: string
|
https://github.com/sripathikrishnan/redis-rdb-tools/blob/548b11ec3c81a603f5b321228d07a61a0b940159/rdbtools/parser.py#L942-L954
|
import struct
import io
import datetime
import re
from rdbtools.encodehelpers import STRING_ESCAPE_RAW, apply_escape_bytes, bval
from .compat import range, str2regexp
from .iowrapper import IOWrapper
try:
try:
from cStringIO import StringIO as BytesIO
except ImportError:
from StringIO import StringIO as BytesIO
except ImportError:
from io import BytesIO
try:
import lzf
HAS_PYTHON_LZF = True
except ImportError:
HAS_PYTHON_LZF = False
REDIS_RDB_6BITLEN = 0
REDIS_RDB_14BITLEN = 1
REDIS_RDB_32BITLEN = 0x80
REDIS_RDB_64BITLEN = 0x81
REDIS_RDB_ENCVAL = 3
REDIS_RDB_OPCODE_MODULE_AUX = 247
REDIS_RDB_OPCODE_IDLE = 248
REDIS_RDB_OPCODE_FREQ = 249
REDIS_RDB_OPCODE_AUX = 250
REDIS_RDB_OPCODE_RESIZEDB = 251
REDIS_RDB_OPCODE_EXPIRETIME_MS = 252
REDIS_RDB_OPCODE_EXPIRETIME = 253
REDIS_RDB_OPCODE_SELECTDB = 254
REDIS_RDB_OPCODE_EOF = 255
REDIS_RDB_TYPE_STRING = 0
REDIS_RDB_TYPE_LIST = 1
REDIS_RDB_TYPE_SET = 2
REDIS_RDB_TYPE_ZSET = 3
REDIS_RDB_TYPE_HASH = 4
REDIS_RDB_TYPE_ZSET_2 = 5
REDIS_RDB_TYPE_MODULE = 6
REDIS_RDB_TYPE_MODULE_2 = 7
REDIS_RDB_TYPE_HASH_ZIPMAP = 9
REDIS_RDB_TYPE_LIST_ZIPLIST = 10
REDIS_RDB_TYPE_SET_INTSET = 11
REDIS_RDB_TYPE_ZSET_ZIPLIST = 12
REDIS_RDB_TYPE_HASH_ZIPLIST = 13
REDIS_RDB_TYPE_LIST_QUICKLIST = 14
REDIS_RDB_TYPE_STREAM_LISTPACKS = 15
REDIS_RDB_ENC_INT8 = 0
REDIS_RDB_ENC_INT16 = 1
REDIS_RDB_ENC_INT32 = 2
REDIS_RDB_ENC_LZF = 3
REDIS_RDB_MODULE_OPCODE_EOF = 0
REDIS_RDB_MODULE_OPCODE_SINT = 1
REDIS_RDB_MODULE_OPCODE_UINT = 2
REDIS_RDB_MODULE_OPCODE_FLOAT = 3
REDIS_RDB_MODULE_OPCODE_DOUBLE = 4
REDIS_RDB_MODULE_OPCODE_STRING = 5
DATA_TYPE_MAPPING = {
0 : "string", 1 : "list", 2 : "set", 3 : "sortedset", 4 : "hash", 5 : "sortedset", 6 : "module", 7: "module",
9 : "hash", 10 : "list", 11 : "set", 12 : "sortedset", 13 : "hash", 14 : "list", 15 : "stream"}
class RdbCallback(object):
def __init__(self, string_escape):
if string_escape is None:
self._escape = STRING_ESCAPE_RAW
else:
self._escape = string_escape
def encode_key(self, key):
return apply_escape_bytes(key, self._escape, skip_printable=True)
def encode_value(self, val):
return apply_escape_bytes(val, self._escape)
def start_rdb(self):
pass
def aux_field(self, key, value):
pass
def start_database(self, db_number):
pass
def start_module(self, key, module_name, expiry, info):
return False
def handle_module_data(self, key, opcode, data):
pass
def end_module(self, key, buffer_size, buffer=None):
pass
def db_size(self, db_size, expires_size):
pass
def set(self, key, value, expiry, info):
pass
def start_hash(self, key, length, expiry, info):
pass
def hset(self, key, field, value):
pass
def end_hash(self, key):
pass
def start_set(self, key, cardinality, expiry, info):
pass
def sadd(self, key, member):
pass
def end_set(self, key):
pass
def start_list(self, key, expiry, info):
pass
def rpush(self, key, value):
pass
def end_list(self, key, info):
pass
def start_sorted_set(self, key, length, expiry, info):
pass
def zadd(self, key, score, member):
pass
def end_sorted_set(self, key):
pass
def start_stream(self, key, listpacks_count, expiry, info):
pass
def stream_listpack(self, key, entry_id, data):
pass
def end_stream(self, key, items, last_entry_id, cgroups):
pass
def end_database(self, db_number):
pass
def end_rdb(self):
pass
class RdbParser(object):
def __init__(self, callback, filters = None) :
self._callback = callback
self._key = None
self._expiry = None
self._idle = None
self._freq = None
self.init_filter(filters)
self._rdb_version = 0
def parse(self, filename):
self.parse_fd(open(filename, "rb"))
def parse_fd(self, fd):
with fd as f:
self.verify_magic_string(f.read(5))
self.verify_version(f.read(4))
self._callback.start_rdb()
is_first_database = True
db_number = 0
while True :
self._expiry = None
self._idle = None
self._freq = None
data_type = read_unsigned_char(f)
if data_type == REDIS_RDB_OPCODE_EXPIRETIME_MS :
self._expiry = read_milliseconds_time(f)
data_type = read_unsigned_char(f)
elif data_type == REDIS_RDB_OPCODE_EXPIRETIME :
self._expiry = to_datetime(read_unsigned_int(f) * 1000000)
data_type = read_unsigned_char(f)
if data_type == REDIS_RDB_OPCODE_IDLE:
self._idle = self.read_length(f)
data_type = read_unsigned_char(f)
if data_type == REDIS_RDB_OPCODE_FREQ:
self._freq = read_unsigned_char(f)
data_type = read_unsigned_char(f)
if data_type == REDIS_RDB_OPCODE_SELECTDB :
if not is_first_database :
self._callback.end_database(db_number)
is_first_database = False
db_number = self.read_length(f)
self._callback.start_database(db_number)
continue
if data_type == REDIS_RDB_OPCODE_AUX:
aux_key = self.read_string(f)
aux_val = self.read_string(f)
ret = self._callback.aux_field(aux_key, aux_val)
if ret:
break
continue
if data_type == REDIS_RDB_OPCODE_RESIZEDB:
db_size = self.read_length(f)
expire_size = self.read_length(f)
self._callback.db_size(db_size, expire_size)
continue
if data_type == REDIS_RDB_OPCODE_MODULE_AUX:
self.read_module(f)
continue
if data_type == REDIS_RDB_OPCODE_EOF:
self._callback.end_database(db_number)
self._callback.end_rdb()
if self._rdb_version >= 5:
f.read(8)
break
if self.matches_filter(db_number):
self._key = self.read_string(f)
if self.matches_filter(db_number, self._key, data_type):
self.read_object(f, data_type)
else:
self.skip_object(f, data_type)
else :
self.skip_key_and_object(f, data_type)
self._key = None
def read_length_with_encoding(self, f):
length = 0
is_encoded = False
bytes = []
bytes.append(read_unsigned_char(f))
enc_type = (bytes[0] & 0xC0) >> 6
if enc_type == REDIS_RDB_ENCVAL:
is_encoded = True
length = bytes[0] & 0x3F
elif enc_type == REDIS_RDB_6BITLEN:
length = bytes[0] & 0x3F
elif enc_type == REDIS_RDB_14BITLEN:
bytes.append(read_unsigned_char(f))
length = ((bytes[0] & 0x3F) << 8) | bytes[1]
elif bytes[0] == REDIS_RDB_32BITLEN:
length = read_unsigned_int_be(f)
elif bytes[0] == REDIS_RDB_64BITLEN:
length = read_unsigned_long_be(f)
else:
raise Exception('read_length_with_encoding', "Invalid string encoding %s (encoding byte 0x%X)" % (enc_type, bytes[0]))
return (length, is_encoded)
def read_length(self, f) :
return self.read_length_with_encoding(f)[0]
def read_string(self, f) :
tup = self.read_length_with_encoding(f)
length = tup[0]
is_encoded = tup[1]
val = None
if is_encoded :
if length == REDIS_RDB_ENC_INT8 :
val = read_signed_char(f)
elif length == REDIS_RDB_ENC_INT16 :
val = read_signed_short(f)
elif length == REDIS_RDB_ENC_INT32 :
val = read_signed_int(f)
elif length == REDIS_RDB_ENC_LZF :
clen = self.read_length(f)
l = self.read_length(f)
val = self.lzf_decompress(f.read(clen), l)
else:
raise Exception('read_string', "Invalid string encoding %s"%(length))
else :
val = f.read(length)
return val
def read_float(self, f):
dbl_length = read_unsigned_char(f)
if dbl_length == 253:
return float('nan')
elif dbl_length == 254:
return float('inf')
elif dbl_length == 255:
return float('-inf')
data = f.read(dbl_length)
if isinstance(data, str):
return float(data)
return data
def read_object(self, f, enc_type) :
if enc_type == REDIS_RDB_TYPE_STRING :
val = self.read_string(f)
self._callback.set(self._key, val, self._expiry, info={'encoding':'string','idle':self._idle,'freq':self._freq})
elif enc_type == REDIS_RDB_TYPE_LIST :
length = self.read_length(f)
self._callback.start_list(self._key, self._expiry, info={'encoding':'linkedlist','idle':self._idle,'freq':self._freq})
for count in range(0, length) :
val = self.read_string(f)
self._callback.rpush(self._key, val)
self._callback.end_list(self._key, info={'encoding':'linkedlist' })
elif enc_type == REDIS_RDB_TYPE_SET:
length = self.read_length(f)
self._callback.start_set(self._key, length, self._expiry, info={'encoding':'hashtable','idle':self._idle,'freq':self._freq})
for count in range(0, length):
val = self.read_string(f)
self._callback.sadd(self._key, val)
self._callback.end_set(self._key)
elif enc_type == REDIS_RDB_TYPE_ZSET or enc_type == REDIS_RDB_TYPE_ZSET_2 :
length = self.read_length(f)
self._callback.start_sorted_set(self._key, length, self._expiry, info={'encoding':'skiplist','idle':self._idle,'freq':self._freq})
for count in range(0, length):
val = self.read_string(f)
score = read_binary_double(f) if enc_type == REDIS_RDB_TYPE_ZSET_2 else self.read_float(f)
self._callback.zadd(self._key, score, val)
self._callback.end_sorted_set(self._key)
elif enc_type == REDIS_RDB_TYPE_HASH:
length = self.read_length(f)
self._callback.start_hash(self._key, length, self._expiry, info={'encoding':'hashtable','idle':self._idle,'freq':self._freq})
for count in range(0, length):
field = self.read_string(f)
value = self.read_string(f)
self._callback.hset(self._key, field, value)
self._callback.end_hash(self._key)
elif enc_type == REDIS_RDB_TYPE_HASH_ZIPMAP:
self.read_zipmap(f)
elif enc_type == REDIS_RDB_TYPE_LIST_ZIPLIST:
self.read_ziplist(f)
elif enc_type == REDIS_RDB_TYPE_SET_INTSET:
self.read_intset(f)
elif enc_type == REDIS_RDB_TYPE_ZSET_ZIPLIST:
self.read_zset_from_ziplist(f)
elif enc_type == REDIS_RDB_TYPE_HASH_ZIPLIST:
self.read_hash_from_ziplist(f)
elif enc_type == REDIS_RDB_TYPE_LIST_QUICKLIST:
self.read_list_from_quicklist(f)
elif enc_type == REDIS_RDB_TYPE_MODULE:
raise Exception('read_object', 'Unable to read Redis Modules RDB objects (key %s)' % self._key)
elif enc_type == REDIS_RDB_TYPE_MODULE_2:
self.read_module(f)
elif enc_type == REDIS_RDB_TYPE_STREAM_LISTPACKS:
self.read_stream(f)
else:
raise Exception('read_object', 'Invalid object type %d for key %s' % (enc_type, self._key))
def skip_key_and_object(self, f, data_type):
self.skip_string(f)
self.skip_object(f, data_type)
def skip_string(self, f):
tup = self.read_length_with_encoding(f)
length = tup[0]
is_encoded = tup[1]
bytes_to_skip = 0
if is_encoded :
if length == REDIS_RDB_ENC_INT8 :
bytes_to_skip = 1
elif length == REDIS_RDB_ENC_INT16 :
bytes_to_skip = 2
elif length == REDIS_RDB_ENC_INT32 :
bytes_to_skip = 4
elif length == REDIS_RDB_ENC_LZF :
clen = self.read_length(f)
l = self.read_length(f)
bytes_to_skip = clen
else :
bytes_to_skip = length
skip(f, bytes_to_skip)
def skip_float(self, f):
dbl_length = read_unsigned_char(f)
if dbl_length < 253:
skip(f, dbl_length)
def skip_binary_double(self, f):
skip(f, 8)
def skip_object(self, f, enc_type):
skip_strings = 0
if enc_type == REDIS_RDB_TYPE_STRING :
skip_strings = 1
elif enc_type == REDIS_RDB_TYPE_LIST :
skip_strings = self.read_length(f)
elif enc_type == REDIS_RDB_TYPE_SET :
skip_strings = self.read_length(f)
elif enc_type == REDIS_RDB_TYPE_ZSET or enc_type == REDIS_RDB_TYPE_ZSET_2 :
length = self.read_length(f)
for x in range(length):
self.skip_string(f)
self.skip_binary_double(f) if enc_type == REDIS_RDB_TYPE_ZSET_2 else self.skip_float(f)
elif enc_type == REDIS_RDB_TYPE_HASH :
skip_strings = self.read_length(f) * 2
elif enc_type == REDIS_RDB_TYPE_HASH_ZIPMAP :
skip_strings = 1
elif enc_type == REDIS_RDB_TYPE_LIST_ZIPLIST :
skip_strings = 1
elif enc_type == REDIS_RDB_TYPE_SET_INTSET :
skip_strings = 1
elif enc_type == REDIS_RDB_TYPE_ZSET_ZIPLIST :
skip_strings = 1
elif enc_type == REDIS_RDB_TYPE_HASH_ZIPLIST :
skip_strings = 1
elif enc_type == REDIS_RDB_TYPE_LIST_QUICKLIST:
skip_strings = self.read_length(f)
elif enc_type == REDIS_RDB_TYPE_MODULE:
raise Exception('skip_object', 'Unable to skip Redis Modules RDB objects (key %s)' % self._key)
elif enc_type == REDIS_RDB_TYPE_MODULE_2:
self.skip_module(f)
elif enc_type == REDIS_RDB_TYPE_STREAM_LISTPACKS:
self.skip_stream(f)
else:
raise Exception('skip_object', 'Invalid object type %d for key %s' % (enc_type, self._key))
for x in range(0, skip_strings):
self.skip_string(f)
def read_intset(self, f) :
raw_string = self.read_string(f)
buff = BytesIO(raw_string)
encoding = read_unsigned_int(buff)
num_entries = read_unsigned_int(buff)
self._callback.start_set(self._key, num_entries, self._expiry, info={'encoding':'intset', 'sizeof_value':len(raw_string),'idle':self._idle,'freq':self._freq})
for x in range(0, num_entries) :
if encoding == 8 :
entry = read_signed_long(buff)
elif encoding == 4 :
entry = read_signed_int(buff)
elif encoding == 2 :
entry = read_signed_short(buff)
else :
raise Exception('read_intset', 'Invalid encoding %d for key %s' % (encoding, self._key))
self._callback.sadd(self._key, entry)
self._callback.end_set(self._key)
def read_ziplist(self, f) :
raw_string = self.read_string(f)
buff = BytesIO(raw_string)
zlbytes = read_unsigned_int(buff)
tail_offset = read_unsigned_int(buff)
num_entries = read_unsigned_short(buff)
self._callback.start_list(self._key, self._expiry, info={'encoding':'ziplist', 'sizeof_value':len(raw_string),'idle':self._idle,'freq':self._freq})
for x in range(0, num_entries) :
val = self.read_ziplist_entry(buff)
self._callback.rpush(self._key, val)
zlist_end = read_unsigned_char(buff)
if zlist_end != 255 :
raise Exception('read_ziplist', "Invalid zip list end - %d for key %s" % (zlist_end, self._key))
self._callback.end_list(self._key, info={'encoding':'ziplist'})
def read_list_from_quicklist(self, f):
count = self.read_length(f)
total_size = 0
self._callback.start_list(self._key, self._expiry, info={'encoding': 'quicklist', 'zips': count,'idle':self._idle,'freq':self._freq})
for i in range(0, count):
raw_string = self.read_string(f)
total_size += len(raw_string)
buff = BytesIO(raw_string)
zlbytes = read_unsigned_int(buff)
tail_offset = read_unsigned_int(buff)
num_entries = read_unsigned_short(buff)
for x in range(0, num_entries):
self._callback.rpush(self._key, self.read_ziplist_entry(buff))
zlist_end = read_unsigned_char(buff)
if zlist_end != 255:
raise Exception('read_quicklist', "Invalid zip list end - %d for key %s" % (zlist_end, self._key))
self._callback.end_list(self._key, info={'encoding': 'quicklist', 'zips': count, 'sizeof_value': total_size})
def read_zset_from_ziplist(self, f) :
raw_string = self.read_string(f)
buff = BytesIO(raw_string)
zlbytes = read_unsigned_int(buff)
tail_offset = read_unsigned_int(buff)
num_entries = read_unsigned_short(buff)
if (num_entries % 2) :
raise Exception('read_zset_from_ziplist', "Expected even number of elements, but found %d for key %s" % (num_entries, self._key))
num_entries = num_entries // 2
self._callback.start_sorted_set(self._key, num_entries, self._expiry, info={'encoding':'ziplist', 'sizeof_value':len(raw_string),'idle':self._idle,'freq':self._freq})
for x in range(0, num_entries) :
member = self.read_ziplist_entry(buff)
score = self.read_ziplist_entry(buff)
if isinstance(score, bytes) :
score = float(score)
self._callback.zadd(self._key, score, member)
zlist_end = read_unsigned_char(buff)
if zlist_end != 255 :
raise Exception('read_zset_from_ziplist', "Invalid zip list end - %d for key %s" % (zlist_end, self._key))
self._callback.end_sorted_set(self._key)
def read_hash_from_ziplist(self, f) :
raw_string = self.read_string(f)
buff = BytesIO(raw_string)
zlbytes = read_unsigned_int(buff)
tail_offset = read_unsigned_int(buff)
num_entries = read_unsigned_short(buff)
if (num_entries % 2) :
raise Exception('read_hash_from_ziplist', "Expected even number of elements, but found %d for key %s" % (num_entries, self._key))
num_entries = num_entries // 2
self._callback.start_hash(self._key, num_entries, self._expiry, info={'encoding':'ziplist', 'sizeof_value':len(raw_string),'idle':self._idle,'freq':self._freq})
for x in range(0, num_entries) :
field = self.read_ziplist_entry(buff)
value = self.read_ziplist_entry(buff)
self._callback.hset(self._key, field, value)
zlist_end = read_unsigned_char(buff)
if zlist_end != 255 :
raise Exception('read_hash_from_ziplist', "Invalid zip list end - %d for key %s" % (zlist_end, self._key))
self._callback.end_hash(self._key)
def read_ziplist_entry(self, f) :
length = 0
value = None
prev_length = read_unsigned_char(f)
if prev_length == 254 :
prev_length = read_unsigned_int(f)
entry_header = read_unsigned_char(f)
if (entry_header >> 6) == 0 :
length = entry_header & 0x3F
value = f.read(length)
elif (entry_header >> 6) == 1 :
length = ((entry_header & 0x3F) << 8) | read_unsigned_char(f)
value = f.read(length)
elif (entry_header >> 6) == 2 :
length = read_unsigned_int_be(f)
value = f.read(length)
elif (entry_header >> 4) == 12 :
value = read_signed_short(f)
elif (entry_header >> 4) == 13 :
value = read_signed_int(f)
elif (entry_header >> 4) == 14 :
value = read_signed_long(f)
elif (entry_header == 240) :
value = read_24bit_signed_number(f)
elif (entry_header == 254) :
value = read_signed_char(f)
elif (entry_header >= 241 and entry_header <= 253) :
value = entry_header - 241
else :
raise Exception('read_ziplist_entry', 'Invalid entry_header %d for key %s' % (entry_header, self._key))
return value
def read_zipmap(self, f) :
raw_string = self.read_string(f)
buff = io.BytesIO(bytearray(raw_string))
num_entries = read_unsigned_char(buff)
self._callback.start_hash(self._key, num_entries, self._expiry, info={'encoding':'zipmap', 'sizeof_value':len(raw_string),'idle':self._idle,'freq':self._freq})
while True :
next_length = self.read_zipmap_next_length(buff)
if next_length is None :
break
key = buff.read(next_length)
next_length = self.read_zipmap_next_length(buff)
if next_length is None :
raise Exception('read_zip_map', 'Unexepcted end of zip map for key %s' % self._key)
free = read_unsigned_char(buff)
value = buff.read(next_length)
try:
value = int(value)
except ValueError:
pass
skip(buff, free)
self._callback.hset(self._key, key, value)
self._callback.end_hash(self._key)
def read_zipmap_next_length(self, f) :
num = read_unsigned_char(f)
if num < 254:
return num
elif num == 254:
return read_unsigned_int(f)
else:
return None
def skip_module(self, f):
self.read_length_with_encoding(f)
opcode = self.read_length(f)
while opcode != REDIS_RDB_MODULE_OPCODE_EOF:
if opcode == REDIS_RDB_MODULE_OPCODE_SINT or opcode == REDIS_RDB_MODULE_OPCODE_UINT:
self.read_length(f)
elif opcode == REDIS_RDB_MODULE_OPCODE_FLOAT:
read_binary_float(f)
elif opcode == REDIS_RDB_MODULE_OPCODE_DOUBLE:
read_binary_double(f)
elif opcode == REDIS_RDB_MODULE_OPCODE_STRING:
self.skip_string(f)
else:
raise Exception("Unknown module opcode %s" % opcode)
opcode = self.read_length(f)
def read_module(self, f):
iowrapper = IOWrapper(f)
iowrapper.start_recording_size()
iowrapper.start_recording()
length, encoding = self.read_length_with_encoding(iowrapper)
record_buffer = self._callback.start_module(self._key, self._decode_module_id(length), self._expiry, info={'idle':self._idle, 'freq':self._freq})
if not record_buffer:
iowrapper.stop_recording()
opcode = self.read_length(iowrapper)
while opcode != REDIS_RDB_MODULE_OPCODE_EOF:
if opcode == REDIS_RDB_MODULE_OPCODE_SINT or opcode == REDIS_RDB_MODULE_OPCODE_UINT:
data = self.read_length(iowrapper)
elif opcode == REDIS_RDB_MODULE_OPCODE_FLOAT:
data = read_binary_float(iowrapper)
elif opcode == REDIS_RDB_MODULE_OPCODE_DOUBLE:
data = read_binary_double(iowrapper)
elif opcode == REDIS_RDB_MODULE_OPCODE_STRING:
data = self.read_string(iowrapper)
else:
raise Exception("Unknown module opcode %s" % opcode)
self._callback.handle_module_data(self._key, opcode, data)
opcode = self.read_length(iowrapper)
buffer = None
if record_buffer:
buffer = struct.pack('B', REDIS_RDB_TYPE_MODULE_2) + iowrapper.get_recorded_buffer()
iowrapper.stop_recording()
self._callback.end_module(self._key, buffer_size=iowrapper.get_recorded_size(), buffer=buffer)
def skip_stream(self, f):
listpacks = self.read_length(f)
for _lp in range(listpacks):
self.skip_string(f)
self.skip_string(f)
self.read_length(f)
self.read_length(f)
self.read_length(f)
cgroups = self.read_length(f)
for _cg in range(cgroups):
self.skip_string(f)
self.read_length(f)
self.read_length(f)
pending = self.read_length(f)
for _pel in range(pending):
f.read(16)
f.read(8)
self.read_length(f)
consumers = self.read_length(f)
for _c in range(consumers):
self.skip_string(f)
f.read(8)
pending = self.read_length(f)
f.read(pending*16)
def read_stream(self, f):
listpacks = self.read_length(f)
self._callback.start_stream(self._key, listpacks, self._expiry,
info={'encoding': 'listpack', 'idle': self._idle, 'freq': self._freq})
for _lp in range(listpacks):
self._callback.stream_listpack(self._key, self.read_string(f), self.read_string(f))
items = self.read_length(f)
last_entry_id = "%s-%s" % (self.read_length(f), self.read_length(f))
cgroups = self.read_length(f)
cgroups_data = []
for _cg in range(cgroups):
cgname = self.read_string(f)
last_cg_entry_id = "%s-%s" % (self.read_length(f), self.read_length(f))
pending = self.read_length(f)
group_pending_entries = []
for _pel in range(pending):
eid = f.read(16)
delivery_time = read_milliseconds_time(f)
delivery_count = self.read_length(f)
group_pending_entries.append({'id': eid,
'delivery_time': delivery_time,
'delivery_count': delivery_count})
consumers = self.read_length(f)
consumers_data = []
for _c in range(consumers):
cname = self.read_string(f)
seen_time = read_milliseconds_time(f)
pending = self.read_length(f)
consumer_pending_entries = []
for _pel in range( pending):
eid = f.read(16)
consumer_pending_entries.append({'id': eid})
consumers_data.append({'name': cname,
'seen_time': seen_time,
'pending': consumer_pending_entries})
cgroups_data.append({'name': cgname,
'last_entry_id': last_cg_entry_id,
'pending': group_pending_entries,
'consumers': consumers_data})
self._callback.end_stream(self._key, items, last_entry_id, cgroups_data)
charset = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_'
|
MIT License
|
blent-ai/pycopula
|
pycopula/copula.py
|
Copula.cdf
|
python
|
def cdf(self, x):
self._check_dimension(x)
if self.name == 'indep':
return np.prod(x)
elif self.name == 'frechet_up':
return min(x)
elif self.name == 'frechet_down':
return max(sum(x) - self.dim + 1., 0)
|
Returns the cumulative distribution function (CDF) of the copula.
Parameters
----------
x : numpy array (of size d)
Values to compute CDF.
|
https://github.com/blent-ai/pycopula/blob/697e2fb6a6717696d6bb7876990fa78f31456a8e/pycopula/copula.py#L112-L127
|
__author__ = "Maxime Jumelle"
__license__ = "Apache 2.0"
__maintainer__ = "Maxime Jumelle"
__email__ = "maxime@aipcloud.io"
from . import archimedean_generators as generators
from . import math_misc
from .math_misc import multivariate_t_distribution
from . import estimation
import numpy as np
from numpy.linalg import inv
import scipy
import scipy.misc
from scipy.stats import kendalltau, pearsonr, spearmanr, norm, t, multivariate_normal
from scipy.linalg import sqrtm
from scipy.optimize import fsolve
import scipy.integrate as integrate
class Copula():
def __init__(self, dim=2, name='indep'):
if dim < 2 or int(dim) != dim:
raise ValueError("Copula dimension must be an integer greater than 1.")
self.dim = dim
self.name = name
self.kendall = None
self.pearson = None
self.spearman = None
def __str__(self):
return "Copula ({0}).".format(self.name)
def _check_dimension(self, x):
if len(x) != self.dim:
raise ValueError("Expected vector of dimension {0}, get vector of dimension {1}".format(self.dim, len(x)))
def dimension(self):
return self.dim
def correlations(self, X):
if self.dim != 2:
raise Exception("Correlations can not be computed when dimension is greater than 2.")
self.kendall = kendalltau(X[:,0], X[:,1])[0]
self.pearson = pearsonr(X[:,0], X[:,1])[0]
self.spearman = spearmanr(X[:,0], X[:,1])[0]
return self.kendall, self.pearson, self.spearman
def kendall(self):
if self.kendall == None:
raise ValueError("You must compute correlations before accessing to Kendall's tau.")
return self.kendall
def pearson(self):
if self.pearson == None:
raise ValueError("You must compute correlations before accessing to Pearson's r.")
return self.pearson
def spearman(self):
if self.pearson == None:
raise ValueError("You must compute correlations before accessing to Spearman's rho.")
return self.spearman
|
Apache License 2.0
|
google/mobly
|
mobly/expects.py
|
_ExpectErrorRecorder.has_error
|
python
|
def has_error(self):
return self._count > 0
|
If any error has been recorded since the last reset.
|
https://github.com/google/mobly/blob/542a78a7198256d172f56546ab8a6493166b3d9b/mobly/expects.py#L53-L55
|
import contextlib
import logging
import time
from mobly import asserts
from mobly import records
from mobly import signals
DEFAULT_TEST_RESULT_RECORD = records.TestResultRecord('mobly', 'global')
class _ExpectErrorRecorder:
def __init__(self, record=None):
self.reset_internal_states(record=record)
def reset_internal_states(self, record=None):
self._record = None
self._count = 0
self._record = record
@property
|
Apache License 2.0
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1_resource_field_selector.py
|
V1ResourceFieldSelector.resource
|
python
|
def resource(self):
return self._resource
|
Gets the resource of this V1ResourceFieldSelector. # noqa: E501
Required: resource to select # noqa: E501
:return: The resource of this V1ResourceFieldSelector. # noqa: E501
:rtype: str
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1_resource_field_selector.py#L111-L119
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1ResourceFieldSelector(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'container_name': 'str',
'divisor': 'str',
'resource': 'str'
}
attribute_map = {
'container_name': 'containerName',
'divisor': 'divisor',
'resource': 'resource'
}
def __init__(self, container_name=None, divisor=None, resource=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._container_name = None
self._divisor = None
self._resource = None
self.discriminator = None
if container_name is not None:
self.container_name = container_name
if divisor is not None:
self.divisor = divisor
self.resource = resource
@property
def container_name(self):
return self._container_name
@container_name.setter
def container_name(self, container_name):
self._container_name = container_name
@property
def divisor(self):
return self._divisor
@divisor.setter
def divisor(self, divisor):
self._divisor = divisor
@property
|
Apache License 2.0
|
trevor/calendarserver
|
txdav/caldav/datastore/scheduling/caldav/scheduler.py
|
CalDAVScheduler.checkOrganizer
|
python
|
def checkOrganizer(self):
organizer = self.calendar.getOrganizer()
if organizer:
organizerAddress = yield calendarUserFromCalendarUserAddress(organizer, self.txn)
if organizerAddress.hosted():
if organizerAddress.validOriginator():
if self.checkForFreeBusy() and not organizerAddress.record.enabledAsOrganizer():
log.error("ORGANIZER not allowed to be an Organizer: {cal}", cal=self.calendar,)
raise HTTPError(self.errorResponse(
responsecode.FORBIDDEN,
self.errorElements["organizer-denied"],
"Organizer cannot schedule",
))
self.organizer = organizerAddress
else:
log.error("No scheduling for ORGANIZER: {o}", o=organizer,)
raise HTTPError(self.errorResponse(
responsecode.FORBIDDEN,
self.errorElements["organizer-denied"],
"Organizer cannot schedule",
))
else:
localUser = (yield addressmapping.mapper.isCalendarUserInMyDomain(organizer))
if localUser:
log.error("No principal for ORGANIZER in calendar data: {cal}", cal=self.calendar,)
raise HTTPError(self.errorResponse(
responsecode.FORBIDDEN,
self.errorElements["organizer-denied"],
"No principal for organizer",
))
else:
self.organizer = organizerAddress
else:
log.error("ORGANIZER missing in calendar data: {cal}", cal=self.calendar,)
raise HTTPError(self.errorResponse(
responsecode.FORBIDDEN,
self.errorElements["invalid-scheduling-message"],
"Missing organizer",
))
|
Check the validity of the ORGANIZER value. ORGANIZER must be local.
|
https://github.com/trevor/calendarserver/blob/c9970b06a70445ca75b62e3d170c26bc897a035e/txdav/caldav/datastore/scheduling/caldav/scheduler.py#L167-L215
|
from twext.python.log import Logger
from txweb2 import responsecode
from txweb2.dav.http import ErrorResponse
from txweb2.http import HTTPError, StatusResponse
from twisted.internet.defer import inlineCallbacks
from twistedcaldav.caldavxml import caldav_namespace
from twistedcaldav.config import config
from txdav.caldav.datastore.scheduling import addressmapping
from txdav.caldav.datastore.scheduling.cuaddress import LocalCalendarUser, OtherServerCalendarUser, InvalidCalendarUser, calendarUserFromCalendarUserAddress
from txdav.caldav.datastore.scheduling.scheduler import Scheduler, ScheduleResponseQueue
__all__ = [
"CalDAVScheduler",
]
log = Logger()
class CalDAVScheduler(Scheduler):
scheduleResponse = ScheduleResponseQueue
errorResponse = ErrorResponse
errorElements = {
"originator-missing": (caldav_namespace, "originator-specified"),
"originator-invalid": (caldav_namespace, "originator-allowed"),
"originator-denied": (caldav_namespace, "originator-allowed"),
"recipient-missing": (caldav_namespace, "recipient-specified"),
"recipient-invalid": (caldav_namespace, "recipient-exists"),
"organizer-denied": (caldav_namespace, "organizer-allowed"),
"attendee-denied": (caldav_namespace, "attendee-allowed"),
"invalid-calendar-data-type": (caldav_namespace, "supported-calendar-data"),
"invalid-calendar-data": (caldav_namespace, "valid-calendar-data"),
"invalid-scheduling-message": (caldav_namespace, "valid-calendar-data"),
"max-recipients": (caldav_namespace, "recipient-limit"),
}
def __init__(self, txn, originator_uid, **kwargs):
super(CalDAVScheduler, self).__init__(txn, originator_uid, **kwargs)
self.doingPOST = False
def doSchedulingViaPOST(self, originator, recipients, calendar):
self.doingPOST = True
return super(CalDAVScheduler, self).doSchedulingViaPOST(originator, recipients, calendar)
def checkAuthorization(self):
if not self.internal_request and self.originator_uid == None:
log.error(
"Unauthenticated originators not allowed: {o}",
o=self.originator,
)
raise HTTPError(self.errorResponse(
responsecode.FORBIDDEN,
self.errorElements["originator-denied"],
"Invalid originator",
))
@inlineCallbacks
def checkOriginator(self):
originatorAddress = yield calendarUserFromCalendarUserAddress(self.originator, self.txn)
if not originatorAddress.hosted():
log.error(
"Could not find principal for originator: {o}",
o=self.originator,
)
raise HTTPError(self.errorResponse(
responsecode.FORBIDDEN,
self.errorElements["originator-denied"],
"No principal for originator",
))
else:
if not originatorAddress.validOriginator() or isinstance(originatorAddress, OtherServerCalendarUser):
log.error(
"Originator not enabled or hosted on this server: {o}",
o=self.originator,
)
raise HTTPError(self.errorResponse(
responsecode.FORBIDDEN,
self.errorElements["originator-denied"],
"Originator cannot be scheduled",
))
self.originator = originatorAddress
@inlineCallbacks
def checkRecipients(self):
results = []
for recipient in self.recipients:
recipientAddress = yield calendarUserFromCalendarUserAddress(recipient, self.txn)
if not recipientAddress.hosted():
if isinstance(recipientAddress, InvalidCalendarUser):
log.error("Unknown calendar user address: {r}", r=recipient,)
results.append(recipientAddress)
else:
inbox = None
if recipientAddress.validRecipient():
if isinstance(recipientAddress, LocalCalendarUser):
recipient_home = yield self.txn.calendarHomeWithUID(recipientAddress.record.uid, create=True)
if recipient_home:
inbox = (yield recipient_home.calendarWithName("inbox"))
else:
inbox = "dummy"
recipientAddress.inbox = inbox
if inbox:
results.append(recipientAddress)
else:
log.error("No scheduling for calendar user: {r}", r=recipient,)
results.append(InvalidCalendarUser(recipient))
self.recipients = results
@inlineCallbacks
|
Apache License 2.0
|
gnosis/safe-transaction-service
|
safe_transaction_service/utils/tasks.py
|
only_one_running_task
|
python
|
def only_one_running_task(
task: CeleryTask,
lock_name_suffix: Optional[str] = None,
blocking_timeout: int = 1,
lock_timeout: Optional[int] = LOCK_TIMEOUT,
):
if WORKER_STOPPED:
raise LockError("Worker is stopping")
redis = get_redis()
lock_name = f"tasks:{task.name}"
if lock_name_suffix:
lock_name = f"{lock_name}:{lock_name_suffix}"
with redis.lock(
lock_name, blocking_timeout=blocking_timeout, timeout=lock_timeout
) as lock:
ACTIVE_LOCKS.add(lock_name)
yield lock
ACTIVE_LOCKS.remove(lock_name)
close_gevent_db_connection()
|
Ensures one running task at the same, using `task` name as a unique key
:param task: CeleryTask
:param lock_name_suffix: A suffix for the lock name, in the case that the same task can be run at the same time
when it has different arguments
:param blocking_timeout: Waiting blocking timeout, it should be as small as possible to the worker can release
the task
:param lock_timeout: How long the lock will be stored, in case worker is halted so key is not stored forever
in Redis
:return: Instance of redis `Lock`
:raises: LockError if lock cannot be acquired
|
https://github.com/gnosis/safe-transaction-service/blob/b26efe58f1c4bf89c5461c38065bc3c51ba4af04/safe_transaction_service/utils/tasks.py#L55-L85
|
import contextlib
from typing import Optional, Set
import gevent
from celery.app.task import Task as CeleryTask
from celery.signals import celeryd_init, worker_shutting_down
from celery.utils.log import get_task_logger
from redis.exceptions import LockError
from .redis import get_redis
from .utils import close_gevent_db_connection
logger = get_task_logger(__name__)
LOCK_TIMEOUT = 60 * 15
SOFT_TIMEOUT = 60 * 10
ACTIVE_LOCKS: Set[str] = set()
WORKER_STOPPED = set()
@celeryd_init.connect
def configure_workers(sender=None, conf=None, **kwargs):
def patch_psycopg():
try:
from psycogreen.gevent import patch_psycopg
logger.info("Patching psycopg for gevent")
patch_psycopg()
except ImportError:
pass
patch_psycopg()
@worker_shutting_down.connect
def worker_shutting_down_handler(sig, how, exitcode, **kwargs):
logger.warning("Worker shutting down")
gevent.spawn(shutdown_worker)
def shutdown_worker():
WORKER_STOPPED.add(True)
if ACTIVE_LOCKS:
logger.warning("Force releasing of redis locks %s", ACTIVE_LOCKS)
get_redis().delete(*ACTIVE_LOCKS)
logger.warning("Released redis locks")
else:
logger.warning("No redis locks to release")
@contextlib.contextmanager
|
MIT License
|
lrq3000/pyfilefixity
|
pyFileFixity/lib/profilers/visual/profilehooks.py
|
TraceFuncCoverage.__call__
|
python
|
def __call__(self, *args, **kw):
self.ncalls += 1
if TraceFuncCoverage.tracing:
return self.fn(*args, **kw)
try:
TraceFuncCoverage.tracing = True
return self.tracer.runfunc(self.fn, *args, **kw)
finally:
TraceFuncCoverage.tracing = False
|
Profile a singe call to the function.
|
https://github.com/lrq3000/pyfilefixity/blob/fd5ef23bb13835faf1e3baa773619b86a1cc9bdf/pyFileFixity/lib/profilers/visual/profilehooks.py#L558-L567
|
__author__ = "Marius Gedminas (marius@gedmin.as)"
__copyright__ = "Copyright 2004-2012 Marius Gedminas"
__license__ = "MIT"
__version__ = "1.6"
__date__ = "2012-05-05"
import atexit
import inspect
import sys
import re
from profile import Profile
import pstats
try:
import hotshot
import hotshot.stats
except ImportError:
hotshot = None
import trace
if hotshot is not None:
import _hotshot
import hotshot.log
try:
import cProfile
except ImportError:
cProfile = None
import time
AVAILABLE_PROFILERS = {}
def profile(fn=None, skip=0, filename=None, immediate=False, dirs=False,
sort=None, entries=40,
profiler=('cProfile', 'profile', 'hotshot')):
if fn is None:
def decorator(fn):
return profile(fn, skip=skip, filename=filename,
immediate=immediate, dirs=dirs,
sort=sort, entries=entries,
profiler=profiler)
return decorator
if isinstance(profiler, str):
profiler = [profiler]
for p in profiler:
if p in AVAILABLE_PROFILERS:
profiler_class = AVAILABLE_PROFILERS[p]
break
else:
raise ValueError('only these profilers are available: %s'
% ', '.join(AVAILABLE_PROFILERS))
fp = profiler_class(fn, skip=skip, filename=filename,
immediate=immediate, dirs=dirs,
sort=sort, entries=entries)
def new_fn(*args, **kw):
return fp(*args, **kw)
new_fn.__doc__ = fn.__doc__
new_fn.__name__ = fn.__name__
new_fn.__dict__ = fn.__dict__
new_fn.__module__ = fn.__module__
return new_fn
def coverage(fn):
fp = TraceFuncCoverage(fn)
def new_fn(*args, **kw):
return fp(*args, **kw)
new_fn.__doc__ = fn.__doc__
new_fn.__name__ = fn.__name__
new_fn.__dict__ = fn.__dict__
new_fn.__module__ = fn.__module__
return new_fn
def coverage_with_hotshot(fn):
fp = HotShotFuncCoverage(fn)
def new_fn(*args, **kw):
return fp(*args, **kw)
new_fn.__doc__ = fn.__doc__
new_fn.__name__ = fn.__name__
new_fn.__dict__ = fn.__dict__
new_fn.__module__ = fn.__module__
return new_fn
class FuncProfile(object):
in_profiler = False
Profile = Profile
def __init__(self, fn, skip=0, filename=None, immediate=False, dirs=False,
sort=None, entries=40):
self.fn = fn
self.skip = skip
self.filename = filename
self.immediate = immediate
self.dirs = dirs
self.sort = sort or ('cumulative', 'time', 'calls')
if isinstance(self.sort, str):
self.sort = (self.sort, )
self.entries = entries
self.reset_stats()
atexit.register(self.atexit)
def __call__(self, *args, **kw):
self.ncalls += 1
if self.skip > 0:
self.skip -= 1
self.skipped += 1
return self.fn(*args, **kw)
if FuncProfile.in_profiler:
return self.fn(*args, **kw)
profiler = self.Profile()
try:
FuncProfile.in_profiler = True
return profiler.runcall(self.fn, *args, **kw)
finally:
FuncProfile.in_profiler = False
self.stats.add(profiler)
if self.immediate:
self.print_stats()
self.reset_stats()
def print_stats(self):
funcname = self.fn.__name__
filename = self.fn.__code__.co_filename
lineno = self.fn.__code__.co_firstlineno
print("")
print("*** PROFILER RESULTS ***")
print("%s (%s:%s)" % (funcname, filename, lineno))
if self.skipped:
skipped = "(%d calls not profiled)" % self.skipped
else:
skipped = ""
print("function called %d times%s" % (self.ncalls, skipped))
print("")
stats = self.stats
if self.filename:
stats.dump_stats(self.filename)
if not self.dirs:
stats.strip_dirs()
stats.sort_stats(*self.sort)
stats.print_stats(self.entries)
def reset_stats(self):
self.stats = pstats.Stats(Profile())
self.ncalls = 0
self.skipped = 0
def atexit(self):
if not self.immediate:
self.print_stats()
AVAILABLE_PROFILERS['profile'] = FuncProfile
if cProfile is not None:
class CProfileFuncProfile(FuncProfile):
Profile = cProfile.Profile
AVAILABLE_PROFILERS['cProfile'] = CProfileFuncProfile
if hotshot is not None:
class HotShotFuncProfile(object):
in_profiler = False
def __init__(self, fn, skip=0, filename=None):
self.fn = fn
self.filename = filename
if self.filename:
self.logfilename = filename + ".raw"
else:
self.logfilename = fn.__name__ + ".prof"
self.profiler = hotshot.Profile(self.logfilename)
self.ncalls = 0
self.skip = skip
self.skipped = 0
atexit.register(self.atexit)
def __call__(self, *args, **kw):
self.ncalls += 1
if self.skip > 0:
self.skip -= 1
self.skipped += 1
return self.fn(*args, **kw)
if HotShotFuncProfile.in_profiler:
return self.fn(*args, **kw)
try:
HotShotFuncProfile.in_profiler = True
return self.profiler.runcall(self.fn, *args, **kw)
finally:
HotShotFuncProfile.in_profiler = False
def atexit(self):
self.profiler.close()
funcname = self.fn.__name__
filename = self.fn.__code__.co_filename
lineno = self.fn.__code__.co_firstlineno
print("")
print("*** PROFILER RESULTS ***")
print("%s (%s:%s)" % (funcname, filename, lineno))
if self.skipped:
skipped = "(%d calls not profiled)" % self.skipped
else:
skipped = ""
print("function called %d times%s" % (self.ncalls, skipped))
print("")
stats = hotshot.stats.load(self.logfilename)
if self.filename:
stats.dump_stats(self.filename)
stats.strip_dirs()
stats.sort_stats('cumulative', 'time', 'calls')
stats.print_stats(40)
AVAILABLE_PROFILERS['hotshot'] = HotShotFuncProfile
class HotShotFuncCoverage:
def __init__(self, fn):
self.fn = fn
self.logfilename = fn.__name__ + ".cprof"
self.profiler = _hotshot.coverage(self.logfilename)
self.ncalls = 0
atexit.register(self.atexit)
def __call__(self, *args, **kw):
self.ncalls += 1
return self.profiler.runcall(self.fn, args, kw)
def atexit(self):
self.profiler.close()
funcname = self.fn.__name__
filename = self.fn.__code__.co_filename
lineno = self.fn.__code__.co_firstlineno
print("")
print("*** COVERAGE RESULTS ***")
print("%s (%s:%s)" % (funcname, filename, lineno))
print("function called %d times" % self.ncalls)
print("")
fs = FuncSource(self.fn)
reader = hotshot.log.LogReader(self.logfilename)
for what, (filename, lineno, funcname), tdelta in reader:
if filename != fs.filename:
continue
if what == hotshot.log.LINE:
fs.mark(lineno)
if what == hotshot.log.ENTER:
if lineno == fs.firstlineno:
lineno = fs.firstcodelineno
fs.mark(lineno)
reader.close()
print(fs)
class TraceFuncCoverage:
tracer = trace.Trace(count=True, trace=False,
ignoredirs=[sys.prefix, sys.exec_prefix])
tracing = False
def __init__(self, fn):
self.fn = fn
self.logfilename = fn.__name__ + ".cprof"
self.ncalls = 0
atexit.register(self.atexit)
|
MIT License
|
olitheolix/aiokubernetes
|
aiokubernetes/models/v1_pod.py
|
V1Pod.api_version
|
python
|
def api_version(self):
return self._api_version
|
Gets the api_version of this V1Pod. # noqa: E501
APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources # noqa: E501
:return: The api_version of this V1Pod. # noqa: E501
:rtype: str
|
https://github.com/olitheolix/aiokubernetes/blob/266718b210dff2a9b2212183261ea89adf89115e/aiokubernetes/models/v1_pod.py#L74-L82
|
import pprint
import re
from aiokubernetes.models.v1_object_meta import V1ObjectMeta
from aiokubernetes.models.v1_pod_spec import V1PodSpec
from aiokubernetes.models.v1_pod_status import V1PodStatus
class V1Pod(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'api_version': 'str',
'kind': 'str',
'metadata': 'V1ObjectMeta',
'spec': 'V1PodSpec',
'status': 'V1PodStatus'
}
attribute_map = {
'api_version': 'apiVersion',
'kind': 'kind',
'metadata': 'metadata',
'spec': 'spec',
'status': 'status'
}
def __init__(self, api_version=None, kind=None, metadata=None, spec=None, status=None):
self._api_version = None
self._kind = None
self._metadata = None
self._spec = None
self._status = None
self.discriminator = None
if api_version is not None:
self.api_version = api_version
if kind is not None:
self.kind = kind
if metadata is not None:
self.metadata = metadata
if spec is not None:
self.spec = spec
if status is not None:
self.status = status
@property
|
Apache License 2.0
|
tomplus/kubernetes_asyncio
|
kubernetes_asyncio/client/models/v1beta1_aggregation_rule.py
|
V1beta1AggregationRule.__ne__
|
python
|
def __ne__(self, other):
if not isinstance(other, V1beta1AggregationRule):
return True
return self.to_dict() != other.to_dict()
|
Returns true if both objects are not equal
|
https://github.com/tomplus/kubernetes_asyncio/blob/22bf0f4ec775b920abc9cee86bb38abcfc57506d/kubernetes_asyncio/client/models/v1beta1_aggregation_rule.py#L117-L122
|
import pprint
import re
import six
from kubernetes_asyncio.client.configuration import Configuration
class V1beta1AggregationRule(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'cluster_role_selectors': 'list[V1LabelSelector]'
}
attribute_map = {
'cluster_role_selectors': 'clusterRoleSelectors'
}
def __init__(self, cluster_role_selectors=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._cluster_role_selectors = None
self.discriminator = None
if cluster_role_selectors is not None:
self.cluster_role_selectors = cluster_role_selectors
@property
def cluster_role_selectors(self):
return self._cluster_role_selectors
@cluster_role_selectors.setter
def cluster_role_selectors(self, cluster_role_selectors):
self._cluster_role_selectors = cluster_role_selectors
def to_dict(self):
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
return pprint.pformat(self.to_dict())
def __repr__(self):
return self.to_str()
def __eq__(self, other):
if not isinstance(other, V1beta1AggregationRule):
return False
return self.to_dict() == other.to_dict()
|
Apache License 2.0
|
ibm-security/ibmsecurity
|
ibmsecurity/isam/base/service_agreement.py
|
get
|
python
|
def get(isamAppliance, check_mode=False, force=False):
return isamAppliance.invoke_get("Retrieving the service agreement settings", "/setup_service_agreements/accepted")
|
Retrieving the service agreement settings
|
https://github.com/ibm-security/ibmsecurity/blob/da098f7d555e571a99a0d7cd47a51add483feb6f/ibmsecurity/isam/base/service_agreement.py#L7-L11
|
import logging
logger = logging.getLogger(__name__)
uri = "/setup_service_agreements"
|
Apache License 2.0
|
googlecloudplatform/django-cloud-deploy
|
django_cloud_deploy/tests/lib/test_base.py
|
ResourceCleanUp.clean_up_database
|
python
|
def clean_up_database(self, instance_name: str, database_name: str):
try:
yield
finally:
self._clean_up_database(instance_name, database_name)
|
A context manager to delete the given Cloud SQL database.
Args:
instance_name: Name of the Cloud SQL instance the database belongs
to.
database_name: Name of the database to delete.
Yields:
None
|
https://github.com/googlecloudplatform/django-cloud-deploy/blob/d316b1e45357761e2b124143e6e12ce34ef6f975/django_cloud_deploy/tests/lib/test_base.py#L546-L560
|
import contextlib
import os
import shutil
import subprocess
import tempfile
from typing import Any, List, Dict, Optional
import yaml
from absl.testing import absltest
from google.oauth2 import service_account
import django_cloud_deploy.tests
from django_cloud_deploy.tests.lib import utils
from django_cloud_deploy.skeleton import source_generator
import googleapiclient
from googleapiclient import discovery
from googleapiclient import errors
def _load_test_config():
dirname, _ = os.path.split(
os.path.abspath(django_cloud_deploy.tests.__file__))
config_path = os.path.join(dirname, 'integration', 'data',
'integration_test_config.yaml')
with open(config_path) as config_file:
config_file_content = config_file.read()
return yaml.load(config_file_content, Loader=yaml.FullLoader)
_TEST_CONFIG = _load_test_config()
class BaseTest(absltest.TestCase):
def setUp(self):
self.service_account_key_path = os.environ.get(
'GOOGLE_APPLICATION_CREDENTIALS')
self.credentials = (
service_account.Credentials.from_service_account_file(
self.service_account_key_path,
scopes=['https://www.googleapis.com/auth/cloud-platform']))
@property
def zone(self):
return _TEST_CONFIG['zone']
@property
def project_id(self):
return _TEST_CONFIG['project_id']
@property
def project_name(self):
return _TEST_CONFIG['project_name']
class DjangoFileGeneratorTest(BaseTest):
@property
def database_user(self):
return _TEST_CONFIG['database_user']
@property
def database_password(self):
return _TEST_CONFIG['database_password']
def setUp(self):
super().setUp()
self.project_dir = tempfile.mkdtemp()
image_name = utils.get_resource_name(resource_type='image')
self.image_tag = '/'.join(['gcr.io', self.project_id, image_name])
self.instance_name = utils.get_resource_name(
resource_type='sql-instance')
self.database_name = utils.get_resource_name(resource_type='db')
app_name = 'fake_app'
generator = source_generator.DjangoSourceFileGenerator()
generator.generate_new(project_id=self.project_id,
project_name=self.project_name,
app_name=app_name,
project_dir=self.project_dir,
database_user=self.database_user,
database_password=self.database_password,
instance_name=self.instance_name,
database_name=self.database_name,
image_tag=self.image_tag)
def tearDown(self):
shutil.rmtree(self.project_dir)
class ResourceList(BaseTest):
def list_service_accounts(self, service=None):
service = service or discovery.build(
'iam', 'v1', credentials=self.credentials, cache_discovery=False)
resource_name = '/'.join(['projects', self.project_id])
request = service.projects().serviceAccounts().list(name=resource_name)
accounts = []
while request:
response = request.execute()
accounts += [
account['email'] for account in response.get('accounts', [])
]
request = service.projects().serviceAccounts().list_next(
previous_request=request, previous_response=response)
return accounts
def list_clusters(self, service=None):
service = service or discovery.build('container',
'v1',
credentials=self.credentials,
cache_discovery=False)
request = service.projects().zones().clusters().list(
projectId=self.project_id, zone=self.zone)
response = request.execute()
return [
cluster.get('name', '') for cluster in response.get('clusters', [])
]
def list_buckets(self, service=None):
service = service or discovery.build('storage',
'v1',
credentials=self.credentials,
cache_discovery=False)
request = service.buckets().list(project=self.project_id)
response = request.execute()
return [bucket.get('name', '') for bucket in response.get('items', [])]
def list_enabled_services(self, service_usage_service=None):
service_usage_service = service_usage_service or discovery.build(
'serviceusage',
'v1',
credentials=self.credentials,
cache_discovery=False)
parent = '/'.join(['projects', self.project_id])
request = service_usage_service.services().list(parent=parent,
filter='state:ENABLED')
response = request.execute()
return [
service['config']['name']
for service in response.get('services', [])
]
def list_instances(self, service=None):
service = service or discovery.build('sqladmin',
'v1beta4',
cache_discovery=False,
credentials=self.credentials)
request = service.instances().list(project=self.project_id)
response = request.execute()
instances = [item['name'] for item in response.get('items', [])]
return instances
def list_databases(self, instance_name, service=None):
service = service or discovery.build('sqladmin',
'v1beta4',
cache_discovery=False,
credentials=self.credentials)
request = service.databases().list(project=self.project_id,
instance=instance_name)
response = request.execute()
databases = [item['name'] for item in response.get('items', [])]
return databases
class ResourceCleanUp(BaseTest):
def _delete_cluster(
self,
cluster_name: str,
service: Optional[googleapiclient.discovery.Resource] = None):
container_service = service or discovery.build(
'container',
'v1',
credentials=self.credentials,
cache_discovery=False)
request = container_service.projects().zones().clusters().delete(
projectId=self.project_id, zone=self.zone, clusterId=cluster_name)
try:
request.execute()
except errors.HttpError:
pass
@contextlib.contextmanager
def clean_up_appengine_service(self, service_id: str):
try:
yield
finally:
appengine_service = discovery.build('appengine',
'v1',
credentials=self.credentials,
cache_discovery=False)
request = appengine_service.apps().services().delete(
appsId=self.project_id, servicesId=service_id)
try:
request.execute(num_retries=5)
except errors.HttpError:
pass
def _delete_objects(self, bucket_name: str,
storage_service: googleapiclient.discovery.Resource):
request = storage_service.objects().list(bucket=bucket_name)
response = request.execute(num_retries=5)
if 'items' in response:
object_names = [item['name'] for item in response['items']]
for object_name in object_names:
request = storage_service.objects().delete(bucket=bucket_name,
object=object_name)
try:
request.execute(num_retries=5)
except errors.HttpError:
pass
def _delete_bucket(
self,
bucket_name: str,
service: Optional[googleapiclient.discovery.Resource] = None):
storage_service = service or discovery.build(
'storage',
'v1',
credentials=self.credentials,
cache_discovery=False)
self._delete_objects(bucket_name, storage_service)
request = storage_service.buckets().delete(bucket=bucket_name)
try:
request.execute(num_retries=5)
except errors.HttpError:
pass
def _delete_service_account(
self,
service_account_email: str,
service: Optional[googleapiclient.discovery.Resource] = None):
iam_service = service or discovery.build(
'iam', 'v1', credentials=self.credentials, cache_discovery=False)
resource_name = 'projects/{}/serviceAccounts/{}'.format(
self.project_id, service_account_email)
request = iam_service.projects().serviceAccounts().delete(
name=resource_name)
try:
request.execute(num_retries=5)
except errors.HttpError:
pass
def _reset_iam_policy(
self,
member: str,
roles: List[str],
service: Optional[googleapiclient.discovery.Resource] = None):
cloudresourcemanager_service = service or discovery.build(
'cloudresourcemanager',
'v1',
credentials=self.credentials,
cache_discovery=False)
request = cloudresourcemanager_service.projects().getIamPolicy(
resource=self.project_id)
policy = request.execute(num_retries=5)
for role in roles:
for binding in policy['bindings']:
if binding['role'] == role and member in binding['members']:
binding['members'].remove(member)
break
policy['bindings'] = [b for b in policy['bindings'] if b['members']]
body = {'policy': policy}
request = cloudresourcemanager_service.projects().setIamPolicy(
resource=self.project_id, body=body)
try:
request.execute(num_retries=5)
except errors.HttpError:
pass
def _clean_up_sql_instance(
self,
instance_name: str,
service: Optional[googleapiclient.discovery.Resource] = None):
sqladmin_service = service or discovery.build(
'sqladmin',
'v1beta4',
credentials=self.credentials,
cache_discovery=False)
request = sqladmin_service.instances().delete(instance=instance_name,
project=self.project_id)
try:
request.execute(num_retries=5)
except errors.HttpError:
pass
def _clean_up_database(
self,
instance_name: str,
database_name: str,
service: Optional[googleapiclient.discovery.Resource] = None):
sqladmin_service = service or discovery.build(
'sqladmin',
'v1beta4',
credentials=self.credentials,
cache_discovery=False)
request = sqladmin_service.databases().delete(database=database_name,
instance=instance_name,
project=self.project_id)
try:
request.execute(num_retries=5)
except errors.HttpError:
pass
@contextlib.contextmanager
def clean_up_cluster(self, cluster_name: str):
try:
yield
finally:
self._delete_cluster(cluster_name)
@contextlib.contextmanager
def clean_up_bucket(self, bucket_name: str):
try:
yield
finally:
self._delete_bucket(bucket_name)
@contextlib.contextmanager
def clean_up_docker_image(self, image_name: str):
try:
yield
finally:
digests = subprocess.check_output(
[
'gcloud', 'container', 'images', 'list-tags',
'--format=value(digest)', image_name
],
universal_newlines=True).rstrip().split('\n')
for digest in digests:
full_image_name = '{}@sha256:{}'.format(image_name, digest)
subprocess.check_call([
'gcloud', '-q', 'container', 'images', 'delete',
'--force-delete-tags', full_image_name
])
@contextlib.contextmanager
def disable_services(self, services: List[Dict[str, Any]]):
try:
yield
finally:
service_usage_service = discovery.build(
'serviceusage',
'v1',
credentials=self.credentials,
cache_discovery=False)
for service in services:
service_name = '/'.join(
['projects', self.project_id, 'services', service['name']])
request = service_usage_service.services().disable(
name=service_name, body={'disableDependentServices': False})
try:
request.execute(num_retries=5)
except errors.HttpError:
pass
@contextlib.contextmanager
def delete_service_account(self, service_account_email: str):
try:
yield
finally:
self._delete_service_account(service_account_email)
@contextlib.contextmanager
def reset_iam_policy(self, member: str, roles: List[str]):
try:
yield
finally:
self._reset_iam_policy(member, roles)
@contextlib.contextmanager
def clean_up_sql_instance(self, instance_name: str):
try:
yield
finally:
self._clean_up_sql_instance(instance_name)
@contextlib.contextmanager
|
Apache License 2.0
|
ambianic/peerjs-python
|
src/peerjs/api.py
|
API.__init__
|
python
|
def __init__(self, options: Any = None):
self._options = options
log.debug('API options: %s', options)
self._http_session = aiohttp.ClientSession()
|
Create API instance.
|
https://github.com/ambianic/peerjs-python/blob/1f5844cf9a4701fb336f7336c1287a4059da0242/src/peerjs/api.py#L27-L31
|
import logging
import random
import time
from typing import Any
import aiohttp
from .util import util
log = logging.getLogger(__name__)
class HttpMethod:
GET = "GET"
POST = "POST"
PUT = "PUT"
DELETE = "DELETE"
class API:
|
Apache License 2.0
|
jlmadurga/permabots
|
permabots/views/api/handler.py
|
SourceStateList.get
|
python
|
def get(self, request, bot_id, id, format=None):
return super(SourceStateList, self).get(request, bot_id, id, format)
|
Get list of source state of a handler
---
serializer: StateSerializer
responseMessages:
- code: 401
message: Not authenticated
|
https://github.com/jlmadurga/permabots/blob/f1bfb3081ed0da2a4cb4b0537e625ccfbab58ee1/permabots/views/api/handler.py#L332-L341
|
from permabots.serializers import HandlerSerializer, AbsParamSerializer, StateSerializer, HandlerUpdateSerializer
from permabots.models import Handler, Request, Hook, UrlParam, HeaderParam, State
from permabots.models import Response as handlerResponse
from rest_framework.response import Response
from rest_framework import status
import logging
from django.http.response import Http404
from rest_framework import exceptions
from permabots.views.api.base import ListBotAPIView, PermabotsAPIView, DetailBotAPIView, ObjectBotListView
import json
logger = logging.getLogger(__name__)
class HandlerList(ListBotAPIView):
serializer = HandlerSerializer
def _query(self, bot):
return bot.handlers.all()
def _creator(self, bot, serializer):
target_state = None
request = None
if 'target_state' in serializer.data:
target_state, _ = State.objects.get_or_create(bot=bot,
name=serializer.data['target_state']['name'])
if 'request' in serializer.data:
data = serializer.data['request'].get('data', None)
if data:
data = json.dumps(data)
request = Request.objects.create(url_template=serializer.data['request']['url_template'],
method=serializer.data['request']['method'],
data=data)
response = handlerResponse.objects.create(text_template=serializer.data['response']['text_template'],
keyboard_template=serializer.data['response']['keyboard_template'])
return Handler.objects.create(bot=bot,
name=serializer.data['name'],
pattern=serializer.data['pattern'],
priority=serializer.data.get('priority', 0),
response=response,
enabled=serializer.data['enabled'],
request=request,
target_state=target_state)
def get(self, request, bot_id, format=None):
return super(HandlerList, self).get(request, bot_id, format)
def post(self, request, bot_id, format=None):
return super(HandlerList, self).post(request, bot_id, format)
class HandlerDetail(DetailBotAPIView):
model = Handler
serializer = HandlerSerializer
serializer_update = HandlerUpdateSerializer
def get(self, request, bot_id, id, format=None):
return super(HandlerDetail, self).get(request, bot_id, id, format)
def put(self, request, bot_id, id, format=None):
return super(HandlerDetail, self).put(request, bot_id, id, format)
def delete(self, request, bot_id, id, format=None):
return super(HandlerDetail, self).delete(request, bot_id, id, format)
class UrlParameterList(ObjectBotListView):
serializer = AbsParamSerializer
obj_model = Handler
def _query(self, bot, obj):
return obj.request.url_parameters.all()
def _creator(self, obj, serializer):
return UrlParam.objects.create(key=serializer.data['key'],
value_template=serializer.data['value_template'],
request=obj.request)
def get(self, request, bot_id, id, format=None):
return super(UrlParameterList, self).get(request, bot_id, id, format)
def post(self, request, bot_id, id, format=None):
return super(UrlParameterList, self).post(request, bot_id, id, format)
class HeaderParameterList(ObjectBotListView):
serializer = AbsParamSerializer
obj_model = Handler
def _query(self, bot, obj):
return obj.request.header_parameters.all()
def _creator(self, obj, serializer):
return HeaderParam.objects.create(key=serializer.data['key'],
value_template=serializer.data['value_template'],
request=obj.request)
def get(self, request, bot_id, id, format=None):
return super(HeaderParameterList, self).get(request, bot_id, id, format)
def post(self, request, bot_id, id, format=None):
return super(HeaderParameterList, self).post(request, bot_id, id, format)
class RequestDetailView(PermabotsAPIView):
model = None
serializer = None
def get_handler(self, id, bot, user):
try:
handler = Handler.objects.get(id=id, bot=bot)
if handler.bot.owner != user:
raise exceptions.AuthenticationFailed()
return handler
except Handler.DoesNotExist:
raise Http404
def _user(self, handler):
return handler.bot.owner
def get_object(self, id, handler, user):
try:
obj = self.model.objects.get(id=id, request=handler.request)
if self._user(handler) != user:
raise exceptions.AuthenticationFailed()
return obj
except self.model.DoesNotExist:
raise Http404
def get(self, request, bot_id, handler_id, id, format=None):
bot = self.get_bot(bot_id, request.user)
handler = self.get_handler(handler_id, bot, request.user)
obj = self.get_object(id, handler, request.user)
serializer = self.serializer(obj)
return Response(serializer.data)
def put(self, request, bot_id, handler_id, id, format=None):
bot = self.get_bot(bot_id, request.user)
handler = self.get_handler(handler_id, bot, request.user)
obj = self.get_object(id, handler, request.user)
serializer = self.serializer(obj, data=request.data)
if serializer.is_valid():
obj = serializer.save()
return Response(self.serializer(obj).data)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
def delete(self, request, bot_id, handler_id, id, format=None):
bot = self.get_bot(bot_id, request.user)
handler = self.get_handler(handler_id, bot, request.user)
obj = self.get_object(id, handler, request.user)
obj.delete()
return Response(status=status.HTTP_204_NO_CONTENT)
class UrlParameterDetail(RequestDetailView):
model = UrlParam
serializer = AbsParamSerializer
def get(self, request, bot_id, handler_id, id, format=None):
return super(UrlParameterDetail, self).get(request, bot_id, handler_id, id, format)
def put(self, request, bot_id, handler_id, id, format=None):
return super(UrlParameterDetail, self).put(request, bot_id, handler_id, id, format)
def delete(self, request, bot_id, handler_id, id, format=None):
return super(UrlParameterDetail, self).delete(request, bot_id, handler_id, id, format)
class HeaderParameterDetail(RequestDetailView):
model = HeaderParam
serializer = AbsParamSerializer
def get(self, request, bot_id, handler_id, id, format=None):
return super(HeaderParameterDetail, self).get(request, bot_id, handler_id, id, format)
def put(self, request, bot_id, handler_id, id, format=None):
return super(HeaderParameterDetail, self).put(request, bot_id, handler_id, id, format)
def delete(self, request, bot_id, handler_id, id, format=None):
return super(HeaderParameterDetail, self).delete(request, bot_id, handler_id, id, format)
class FromHandlerViewMixin(object):
def get_handler(self, id, bot, user):
try:
handler = Handler.objects.get(id=id, bot=bot)
if handler.bot.owner != user:
raise exceptions.AuthenticationFailed()
return handler
except Hook.DoesNotExist:
raise Http404
class SourceStateList(ObjectBotListView):
serializer = StateSerializer
obj_model = Handler
def _query(self, bot, obj):
return obj.source_states.all()
def _creator(self, obj, serializer):
state, _ = State.objects.get_or_create(name=serializer.data['name'], bot=obj.bot)
obj.source_states.add(state)
return state
|
BSD 3-Clause New or Revised License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.