repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
hoxmark/deep_reinforcement_active_learning
|
reinforcement/logger.py
|
ExternalLogger.__init__
|
python
|
def __init__(self, external_logger_name):
self.external_logger_name = external_logger_name
|
Create a summary writer logging to log_dir.
|
https://github.com/hoxmark/deep_reinforcement_active_learning/blob/7458916d6f75c7fbfcfd4bc81763ab5ba16208ad/reinforcement/logger.py#L64-L66
|
import requests
import tensorflow as tf
import numpy as np
import scipy.misc
from visdom import Visdom
from config import opt
try:
from StringIO import StringIO
except ImportError:
from io import BytesIO
class LocalLogger(object):
def __init__(self, log_dir):
self.log_dir = log_dir
self.writer = tf.summary.FileWriter(log_dir)
def scalar_summary(self, tag, value, step):
summary = tf.Summary(
value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
def dict_scalar_summary(self, prefix, values, step):
for key in values:
tag = "{}/{}".format(prefix, key)
self.scalar_summary(tag, values[key], step)
def histo_summary(self, tag, values, step, bins=1000):
counts, bin_edges = np.histogram(values, bins=bins)
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
bin_edges = bin_edges[1:]
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
class ExternalLogger(object):
|
MIT License
|
fausecteam/ctf-gameserver
|
src/ctf_gameserver/web/registration/views.py
|
delete_team
|
python
|
def delete_team(request):
try:
team = request.user.team
except Team.DoesNotExist:
team = None
user_form = forms.UserForm(prefix='user', instance=request.user)
team_form = forms.TeamForm(prefix='team', instance=team)
if request.method == 'POST':
delete_form = forms.DeleteForm(request.POST, user=request.user, prefix='delete')
if delete_form.is_valid():
request.user.delete()
logout(request)
messages.success(request, _('Your team has been deleted.'))
return redirect(settings.HOME_URL)
else:
delete_form = forms.DeleteForm(user=request.user, prefix='delete')
return render(request, 'edit_team.html', {
'user_form': user_form,
'team_form': team_form,
'delete_form': delete_form
})
|
View for deletion of a User and the associated Team.
This renders the 'edit_team' template with a modal overlay for deletion. The modal is rendered in static
HTML instead of showing it dynamically to avoid the need for (custom) JavaScript, especially when
handling form errors in the modal.
|
https://github.com/fausecteam/ctf-gameserver/blob/00290cf103e5aa4eea9d9157aba2ab9d07ab3282/src/ctf_gameserver/web/registration/views.py#L111-L144
|
import logging
import random
from django.db import transaction, IntegrityError
from django.views.generic import ListView
from django.shortcuts import render, redirect
from django.conf import settings
from django.utils.safestring import mark_safe
from django.utils.translation import ugettext as _
from django.contrib import messages
from django.contrib.auth import logout, get_user_model
from django.contrib.auth.decorators import login_required
from django.contrib.admin.views.decorators import staff_member_required
from ctf_gameserver.web.scoring.decorators import before_competition_required, registration_open_required
import ctf_gameserver.web.scoring.models as scoring_models
from . import forms
from .models import Team
from .util import email_token_generator
User = get_user_model()
class TeamList(ListView):
queryset = Team.active_not_nop_objects.order_by('user__username')
context_object_name = 'teams'
template_name = 'team_list.html'
@registration_open_required
@transaction.atomic
def register(request):
if request.method == 'POST':
user_form = forms.UserForm(request.POST, prefix='user')
team_form = forms.TeamForm(request.POST, request.FILES, prefix='team')
if user_form.is_valid() and team_form.is_valid():
user = user_form.save()
team_form.save(user)
user_form.send_confirmation_mail(request)
messages.success(request,
mark_safe(_('Successful registration! A confirmation mail has been sent to '
'your formal email address. <strong>You must click the link inside '
'that email to complete your sign-up, otherwise you will not be '
'able to participate.</strong>')))
return redirect(settings.HOME_URL)
else:
user_form = forms.UserForm(prefix='user')
team_form = forms.TeamForm(prefix='team')
return render(request, 'register.html', {'user_form': user_form, 'team_form': team_form})
@login_required
@registration_open_required
@transaction.atomic
def edit_team(request):
try:
team = request.user.team
except Team.DoesNotExist:
team = None
if request.method == 'POST':
user_form = forms.UserForm(request.POST, prefix='user', instance=request.user)
team_form = forms.TeamForm(request.POST, request.FILES, prefix='team', instance=team)
if user_form.is_valid() and team_form.is_valid():
user = user_form.save()
team_form.save(user)
if 'email' in user_form.changed_data:
user_form.send_confirmation_mail(request)
logout(request)
messages.warning(request, _('A confirmation mail has been sent to your new formal email '
'address. Please visit the link inside that email. Until then, '
'your team has been deactivated and you have been logged out.'))
return redirect(settings.HOME_URL)
team_form = forms.TeamForm(prefix='team', instance=team)
else:
user_form = forms.UserForm(prefix='user', instance=request.user)
team_form = forms.TeamForm(prefix='team', instance=team)
game_control = scoring_models.GameControl.get_instance()
show_delete_button = not game_control.competition_started()
return render(request, 'edit_team.html', {
'team': team,
'user_form': user_form,
'team_form': team_form,
'show_delete_button': show_delete_button,
'delete_form': None
})
@login_required
@before_competition_required
@registration_open_required
@transaction.atomic
|
ISC License
|
gregdavill/kibuzzard
|
KiBuzzard/deps/fonttools/Lib/fontTools/t1Lib/__init__.py
|
readPFB
|
python
|
def readPFB(path, onlyHeader=False):
data = []
with open(path, "rb") as f:
while True:
if f.read(1) != bytechr(128):
raise T1Error('corrupt PFB file')
code = byteord(f.read(1))
if code in [1, 2]:
chunklen = stringToLong(f.read(4))
chunk = f.read(chunklen)
assert len(chunk) == chunklen
data.append(chunk)
elif code == 3:
break
else:
raise T1Error('bad chunk code: ' + repr(code))
if onlyHeader:
break
data = bytesjoin(data)
assertType1(data)
return data
|
reads a PFB font file, returns raw data
|
https://github.com/gregdavill/kibuzzard/blob/22e7358f7d5eb4d802700334988d2c2f68ad7869/KiBuzzard/deps/fonttools/Lib/fontTools/t1Lib/__init__.py#L180-L201
|
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
from fontTools.misc import eexec
from fontTools.misc.macCreatorType import getMacCreatorAndType
import os
import re
__author__ = "jvr"
__version__ = "1.0b2"
DEBUG = 0
try:
try:
from Carbon import Res
except ImportError:
import Res
except ImportError:
haveMacSupport = 0
else:
haveMacSupport = 1
class T1Error(Exception): pass
class T1Font(object):
def __init__(self, path, encoding="ascii", kind=None):
if kind is None:
self.data, _ = read(path)
elif kind == "LWFN":
self.data = readLWFN(path)
elif kind == "PFB":
self.data = readPFB(path)
elif kind == "OTHER":
self.data = readOther(path)
else:
raise ValueError(kind)
self.encoding = encoding
def saveAs(self, path, type, dohex=False):
write(path, self.getData(), type, dohex)
def getData(self):
return self.data
def getGlyphSet(self):
return self["CharStrings"]
def __getitem__(self, key):
if not hasattr(self, "font"):
self.parse()
return self.font[key]
def parse(self):
from fontTools.misc import psLib
from fontTools.misc import psCharStrings
self.font = psLib.suckfont(self.data, self.encoding)
charStrings = self.font["CharStrings"]
lenIV = self.font["Private"].get("lenIV", 4)
assert lenIV >= 0
subrs = self.font["Private"]["Subrs"]
for glyphName, charString in charStrings.items():
charString, R = eexec.decrypt(charString, 4330)
charStrings[glyphName] = psCharStrings.T1CharString(charString[lenIV:],
subrs=subrs)
for i in range(len(subrs)):
charString, R = eexec.decrypt(subrs[i], 4330)
subrs[i] = psCharStrings.T1CharString(charString[lenIV:], subrs=subrs)
del self.data
def read(path, onlyHeader=False):
_, ext = os.path.splitext(path)
ext = ext.lower()
creator, typ = getMacCreatorAndType(path)
if typ == 'LWFN':
return readLWFN(path, onlyHeader), 'LWFN'
if ext == '.pfb':
return readPFB(path, onlyHeader), 'PFB'
else:
return readOther(path), 'OTHER'
def write(path, data, kind='OTHER', dohex=False):
assertType1(data)
kind = kind.upper()
try:
os.remove(path)
except os.error:
pass
err = 1
try:
if kind == 'LWFN':
writeLWFN(path, data)
elif kind == 'PFB':
writePFB(path, data)
else:
writeOther(path, data, dohex)
err = 0
finally:
if err and not DEBUG:
try:
os.remove(path)
except os.error:
pass
LWFNCHUNKSIZE = 2000
HEXLINELENGTH = 80
def readLWFN(path, onlyHeader=False):
from fontTools.misc.macRes import ResourceReader
reader = ResourceReader(path)
try:
data = []
for res in reader.get('POST', []):
code = byteord(res.data[0])
if byteord(res.data[1]) != 0:
raise T1Error('corrupt LWFN file')
if code in [1, 2]:
if onlyHeader and code == 2:
break
data.append(res.data[2:])
elif code in [3, 5]:
break
elif code == 4:
with open(path, "rb") as f:
data.append(f.read())
elif code == 0:
pass
else:
raise T1Error('bad chunk code: ' + repr(code))
finally:
reader.close()
data = bytesjoin(data)
assertType1(data)
return data
|
MIT License
|
letolab/airy
|
airy/core/web.py
|
UIProxy.set_meta_description
|
python
|
def set_meta_description(self, text):
return self.execute('airy.ui.meta.description("%s")' % text)
|
Set page meta description to ``text``.
|
https://github.com/letolab/airy/blob/4dc53bec4aa0cd9b983a0a626fecdf49d14bdf94/airy/core/web.py#L170-L174
|
import calendar
from airy.core.conf import settings
from airy.core.exceptions import Http404
from airy.core.files.uploadedfile import SimpleUploadedFile
from airy.core.reportbug import report_on_fail
from airy.utils.encoding import smart_unicode
from airy.utils.functional import curry
from tornado.web import *
from tornado.escape import *
from tornadio2 import TornadioRouter, SocketConnection, event
from urlparse import urlparse, parse_qs
from urllib2 import unquote
import logging
import base64
class ConnectionSet(set):
def _get_filter_condition(self, item, key, value):
try:
key, tester = key.split('__', 1)
except ValueError:
tester = None
if tester:
if callable(getattr(getattr(item, key), tester)):
condition = getattr(getattr(item, key), tester)(value)
else:
condition = getattr(getattr(item, key), tester) == value
else:
condition = getattr(item, key) == value
return condition
def filter(self, **kwargs):
filtered_set = ConnectionSet(self)
for item in self:
for key, value in kwargs.iteritems():
condition = self._get_filter_condition(item, key, value)
if not condition:
filtered_set = filtered_set - set([item])
break
return filtered_set
def exclude(self, *args, **kwargs):
if len(args):
for conn in args:
if isinstance(conn, AiryHandler):
kwargs['session__session_id'] = conn.connection.session.session_id
else:
kwargs['session__session_id'] = conn.session.session_id
filtered_set = ConnectionSet(self)
for item in self:
for key, value in kwargs.iteritems():
condition = self._get_filter_condition(item, key, value)
if condition:
filtered_set = filtered_set - set([item])
break
return filtered_set
@property
def ui(self):
return UIProxySet(self)
def __getattr__(self, name):
def filtered_func(conn_set, name, *args, **kwargs):
for item in conn_set:
getattr(item, name)(*args, **kwargs)
return conn_set
return curry(filtered_func, self, name)
class UIProxy(object):
_data = ''
def __init__(self, connection):
self.connection = connection
def execute(self, data):
self.connection.emit('execute', data)
self._data = ''
return self
def redirect(self, url):
return self.execute('airy.ui.redirect("%s");' % url)
def insert(self, target, data=None):
data = data or self._data
return self.execute('airy.ui.insert("%s", %s);' % (target, json_encode(data)))
def after(self, target, data=None):
data = data or self._data
return self.execute('airy.ui.after("%s", %s);' % (target, json_encode(data)))
def append(self, target, data=None):
data = data or self._data
return self.execute('airy.ui.append("%s", %s);' % (target, json_encode(data)))
def prepend(self, target, data=None):
data = data or self._data
return self.execute('airy.ui.prepend("%s", %s);' % (target, json_encode(data)))
def remove(self, target):
return self.execute('airy.ui.remove("%s")' % target)
def set_title(self, text):
return self.execute('airy.ui.title("%s")' % text)
|
BSD 2-Clause Simplified License
|
google/clusterfuzz
|
src/clusterfuzz/_internal/build_management/revisions.py
|
get_components_list
|
python
|
def get_components_list(component_revisions_dict, job_type):
components = sorted(component_revisions_dict.keys())
if utils.is_chromium():
return components
project_name = data_handler.get_project_name(job_type)
if not project_name:
return components
main_repo = data_handler.get_main_repo(job_type)
project_src = '/src/' + project_name
for component in components.copy():
if component_revisions_dict[component]['url'] == main_repo:
components.remove(component)
components.insert(0, component)
break
if component == project_src:
components.remove(component)
components.insert(0, component)
break
if project_name.lower() in os.path.basename(component).lower():
components.remove(component)
components.insert(0, component)
return components
|
Return a prioritized order of components based on job type.
|
https://github.com/google/clusterfuzz/blob/e9e105d66f009356c4f3fe9ae7873ffff126b234/src/clusterfuzz/_internal/build_management/revisions.py#L300-L332
|
import ast
import base64
import bisect
import os
import re
import time
import urllib.parse
import six
from clusterfuzz._internal.base import memoize
from clusterfuzz._internal.base import utils
from clusterfuzz._internal.build_management import overrides
from clusterfuzz._internal.build_management import source_mapper
from clusterfuzz._internal.config import local_config
from clusterfuzz._internal.datastore import data_handler
from clusterfuzz._internal.google_cloud_utils import storage
from clusterfuzz._internal.metrics import logs
from clusterfuzz._internal.system import environment
CHROMIUM_GIT_ROOT_URL = 'https://chromium.googlesource.com'
CRREV_NUMBERING_URL = (
'https://cr-rev.appspot.com/_ah/api/crrev/v1/get_numbering')
CLANK_URL = 'https://chrome-internal.googlesource.com/clank/internal/apps.git'
CLANK_REVISION_FILE_COMPONENT_REGEX = re.compile(
r'.*["]([^"]+)["]\s*:\s*["]([^"]+)["]')
COMPONENT_NAMES_BLACKLIST = [
'api', 'bin', 'data', 'dist', 'lib', 'pylib', 'source', 'src'
]
DISK_CACHE_SIZE = 1000
SOURCE_MAP_EXTENSION = '.srcmap.json'
FIND_BRANCHED_FROM = re.compile(r'Cr-Branched-From:.*master@\{#(\d+)\}')
def _add_components_from_dict(deps_dict, vars_dict, revisions_dict):
if not deps_dict:
return
for key, value in six.iteritems(deps_dict):
url = rev = None
if isinstance(value, str):
url, _, rev = value.partition('@')
elif isinstance(value, dict):
if 'revision' in value:
url = value['url']
rev = value['revision']
elif 'url' in value and value['url'] is not None:
url, _, rev = value['url'].partition('@')
if url and rev:
url = url.format(**vars_dict)
rev = rev.format(**vars_dict)
revisions_dict[key] = {
'name': _get_component_display_name(key),
'rev': rev,
'url': url
}
def _clank_revision_file_to_revisions_dict(content):
component_revision_mappings = {}
for line in content.splitlines():
match = CLANK_REVISION_FILE_COMPONENT_REGEX.match(line)
if not match:
continue
component = match.group(1)
revision = match.group(2)
component_revision_mappings[component] = revision
if not component_revision_mappings:
logs.log_error('Failed to get component revision mappings for clank.')
return None
chromium_revision = component_revision_mappings['chromium_revision']
clank_revision = component_revision_mappings['clank_revision']
revisions_dict = get_component_revisions_dict(chromium_revision, None)
if revisions_dict is None:
logs.log_error(
'Failed to get chromium component revisions.',
chromium_revision=chromium_revision,
clank_revision=clank_revision)
return None
revisions_dict['/src/clank'] = {
'name': 'Clank',
'url': CLANK_URL,
'rev': clank_revision
}
return revisions_dict
def _get_component_display_name(name, default=None):
if default and name in ['', 'default', '/src']:
return default.capitalize()
names = name.split('/')
name_index = -1
if len(names) > 1 and names[-1] in COMPONENT_NAMES_BLACKLIST:
name_index -= 1
return names[name_index].capitalize()
def _get_display_revision(component_revision_dict):
if 'commit_pos' in component_revision_dict:
return component_revision_dict['commit_pos']
return component_revision_dict['rev'] or '<empty>'
def _get_link_text(start_component_revision_dict, end_component_revision_dict):
start_revision = _get_display_revision(start_component_revision_dict)
end_revision = _get_display_revision(end_component_revision_dict)
if start_revision == end_revision:
return str(start_revision)
return '%s:%s' % (start_revision, end_revision)
def _get_link_url(start_component_revision_dict, end_component_revision_dict):
url = start_component_revision_dict['url']
if not url:
return None
vcs_viewer = source_mapper.get_vcs_viewer_for_url(url)
if not vcs_viewer:
return None
start_revision = _get_revision(start_component_revision_dict)
end_revision = _get_revision(end_component_revision_dict)
if start_revision == end_revision:
return vcs_viewer.get_source_url_for_revision(start_revision)
return vcs_viewer.get_source_url_for_revision_diff(start_revision,
end_revision)
def _get_revision(component_revision_dict):
return component_revision_dict['rev']
def _get_url_content(url):
if url.startswith(storage.GS_PREFIX):
url_data = storage.read_data(url)
if url_data is None:
return None
url_content = url_data.decode('utf-8')
else:
url_content = utils.fetch_url(url)
if url_content and url.endswith('format=text'):
url_content = base64.b64decode(url_content)
return url_content
def _git_url_for_chromium_repository(repository):
return '%s/%s.git' % (CHROMIUM_GIT_ROOT_URL, repository)
def _is_clank(url):
return '/chrome-test-builds/android' in url
def _is_deps(url):
return urllib.parse.urlparse(url).path.endswith('/DEPS')
def _src_map_to_revisions_dict(src_map, project_name):
revisions_dict = {}
for key in src_map:
if 'url' in src_map[key] and 'rev' in src_map[key]:
revisions_dict[key] = {
'name': _get_component_display_name(key, project_name),
'rev': src_map[key]['rev'],
'url': src_map[key]['url']
}
return revisions_dict
@memoize.wrap(memoize.FifoOnDisk(DISK_CACHE_SIZE))
@memoize.wrap(memoize.Memcache(60 * 60 * 24 * 30))
def _git_commit_position_to_git_hash_for_chromium(revision, repository):
request_variables = {
'number': revision,
'numbering_identifier': 'refs/heads/main',
'numbering_type': 'COMMIT_POSITION',
'project': 'chromium',
'repo': repository,
'fields': 'git_sha',
}
query_string = urllib.parse.urlencode(request_variables)
query_url = '%s?%s' % (CRREV_NUMBERING_URL, query_string)
url_content = _get_url_content(query_url)
if url_content is None:
logs.log_error('Failed to fetch git hash from url: ' + query_url)
return None
result_dict = _to_dict(url_content)
if result_dict is None:
logs.log_error('Failed to parse git hash from url: ' + query_url)
return None
return result_dict['git_sha']
def _to_dict(contents):
try:
result = ast.literal_eval(contents)
if isinstance(result, dict):
return result
except (ValueError, TypeError):
pass
return None
def deps_to_revisions_dict(content):
local_context = {}
global_context = {
'Var': lambda x: local_context.get('vars', {}).get(x),
'Str': str,
}
exec(content, global_context, local_context)
revisions_dict = {}
vars_dict = local_context.get('vars', {})
deps_dict = local_context.get('deps')
if not deps_dict:
logs.log_error('Deps format has changed, code needs fixing.')
return None
_add_components_from_dict(deps_dict, vars_dict, revisions_dict)
deps_os_dict = local_context.get('deps_os')
if deps_os_dict:
for deps_os in list(deps_os_dict.values()):
_add_components_from_dict(deps_os, vars_dict, revisions_dict)
return revisions_dict
|
Apache License 2.0
|
hozn/stravalib
|
stravalib/client.py
|
Client.leave_club
|
python
|
def leave_club(self, club_id):
self.protocol.post('clubs/{id}/leave', id=club_id)
|
Leave club on behalf of authenticated user.
(Acces token with write permissions required.)
:param club_id:
|
https://github.com/hozn/stravalib/blob/d3bc7b8094ce318e8dfd94bf1aeba3f421258412/stravalib/client.py#L426-L434
|
from __future__ import division, absolute_import, print_function, unicode_literals
import logging
import warnings
import functools
import time
import collections
import calendar
from io import BytesIO
from datetime import datetime, timedelta
import arrow
import pytz
import six
from units.quantity import Quantity
from stravalib import model, exc
from stravalib.protocol import ApiV3
from stravalib.util import limiter
from stravalib import unithelper
class Client(object):
def __init__(self, access_token=None, rate_limit_requests=True,
rate_limiter=None, requests_session=None):
self.log = logging.getLogger('{0.__module__}.{0.__name__}'.format(self.__class__))
if rate_limit_requests:
if not rate_limiter:
rate_limiter = limiter.DefaultRateLimiter()
elif rate_limiter:
raise ValueError("Cannot specify rate_limiter object when rate_limit_requests is False")
self.protocol = ApiV3(access_token=access_token,
requests_session=requests_session,
rate_limiter=rate_limiter)
@property
def access_token(self):
return self.protocol.access_token
@access_token.setter
def access_token(self, v):
self.protocol.access_token = v
def authorization_url(self, client_id, redirect_uri, approval_prompt='auto',
scope=None, state=None):
return self.protocol.authorization_url(client_id=client_id,
redirect_uri=redirect_uri,
approval_prompt=approval_prompt,
scope=scope, state=state)
def exchange_code_for_token(self, client_id, client_secret, code):
return self.protocol.exchange_code_for_token(client_id=client_id,
client_secret=client_secret,
code=code)
def refresh_access_token(self, client_id, client_secret, refresh_token):
return self.protocol.refresh_access_token(client_id=client_id,
client_secret=client_secret,
refresh_token=refresh_token)
def deauthorize(self):
self.protocol.post("oauth/deauthorize")
def _utc_datetime_to_epoch(self, activity_datetime):
if isinstance(activity_datetime, str):
activity_datetime = arrow.get(activity_datetime).datetime
assert isinstance(activity_datetime, datetime)
if activity_datetime.tzinfo:
activity_datetime = activity_datetime.astimezone(pytz.utc)
return calendar.timegm(activity_datetime.timetuple())
def get_activities(self, before=None, after=None, limit=None):
if before:
before = self._utc_datetime_to_epoch(before)
if after:
after = self._utc_datetime_to_epoch(after)
params = dict(before=before, after=after)
result_fetcher = functools.partial(self.protocol.get,
'/athlete/activities',
**params)
return BatchedResultsIterator(entity=model.Activity,
bind_client=self,
result_fetcher=result_fetcher,
limit=limit)
def get_athlete(self, athlete_id=None):
if athlete_id is None:
raw = self.protocol.get('/athlete')
else:
raise NotImplementedError("The /athletes/{id} endpoint was removed by Strava. "
"See https://developers.strava.com/docs/january-2018-update/")
return model.Athlete.deserialize(raw, bind_client=self)
def get_athlete_friends(self, athlete_id=None, limit=None):
if athlete_id is None:
result_fetcher = functools.partial(self.protocol.get, '/athlete/friends')
else:
raise NotImplementedError("The /athletes/{id}/friends endpoint was removed by Strava. "
"See https://developers.strava.com/docs/january-2018-update/")
return BatchedResultsIterator(entity=model.Athlete,
bind_client=self,
result_fetcher=result_fetcher,
limit=limit)
def update_athlete(self, city=None, state=None, country=None, sex=None, weight=None):
params = {'city': city,
'state': state,
'country': country,
'sex': sex}
params = {k: v for (k, v) in params.items() if v is not None}
if weight is not None:
params['weight'] = float(weight)
raw_athlete = self.protocol.put('/athlete', **params)
return model.Athlete.deserialize(raw_athlete, bind_client=self)
def get_athlete_followers(self, athlete_id=None, limit=None):
if athlete_id is None:
result_fetcher = functools.partial(self.protocol.get, '/athlete/followers')
else:
raise NotImplementedError("The /athletes/{id}/followers endpoint was removed by Strava. "
"See https://developers.strava.com/docs/january-2018-update/")
return BatchedResultsIterator(entity=model.Athlete,
bind_client=self,
result_fetcher=result_fetcher,
limit=limit)
def get_both_following(self, athlete_id, limit=None):
raise NotImplementedError("The /athletes/{id}/both-following endpoint was removed by Strava. "
"See https://developers.strava.com/docs/january-2018-update/")
def get_athlete_koms(self, athlete_id, limit=None):
result_fetcher = functools.partial(self.protocol.get,
'/athletes/{id}/koms',
id=athlete_id)
return BatchedResultsIterator(entity=model.SegmentEffort,
bind_client=self,
result_fetcher=result_fetcher,
limit=limit)
def get_athlete_stats(self, athlete_id=None):
if athlete_id is None:
athlete_id = self.get_athlete().id
raw = self.protocol.get('/athletes/{id}/stats', id=athlete_id)
return model.AthleteStats.deserialize(raw)
def get_athlete_clubs(self):
club_structs = self.protocol.get('/athlete/clubs')
return [model.Club.deserialize(raw, bind_client=self) for raw in club_structs]
def join_club(self, club_id):
self.protocol.post('clubs/{id}/join', id=club_id)
|
Apache License 2.0
|
luci/recipes-py
|
recipe_modules/step/api.py
|
StepApi.sub_build
|
python
|
def sub_build(self,
name,
cmd,
build,
raise_on_failure=True,
output_path=None,
timeout=None,
step_test_data=None,
cost=_ResourceCost()):
self._validate_cmd_list(cmd)
cmd = list(cmd)
cmd[1:1] = ['--output', self._sub_build_output(output_path)]
new_tmp_dir = str(self.m.path.mkdtemp())
with self.m.context(
env={
var: new_tmp_dir for var in (
'TEMPDIR', 'TMPDIR', 'TEMP', 'TMP', 'MAC_CHROMIUM_TMPDIR')
},
env_prefixes={'PATH': self._prefix_path}
):
env = self.m.context.env
env_prefixes = self.m.context.env_prefixes
return self._run_or_raise_step(
self.step_client.StepConfig(
name=name,
cmd=cmd,
cost=self._normalize_cost(cost),
cwd=self._normalize_cwd(self.m.context.cwd),
env=env,
env_prefixes=self._to_env_affix(env_prefixes),
env_suffixes=self._to_env_affix(self.m.context.env_suffixes),
timeout=timeout,
luci_context=self.m.context.luci_context,
stdin=self.m.proto.input(self._make_initial_build(build), 'BINARY'),
infra_step=self.m.context.infra_step or False,
raise_on_failure=raise_on_failure,
merge_step=True,
ok_ret=self.step_client.StepConfig.ALL_OK,
step_test_data=step_test_data,
))
|
Launch a sub-build by invoking a LUCI executable. All steps in the
sub-build will appear as child steps of this step (Merge Step).
See protocol: https://go.chromium.org/luci/luciexe
Example:
```python
run_exe = api.cipd.ensure_tool(...) # Install LUCI executable `run_exe`
# Basic Example: launch `run_exe` with empty initial build and
# default options.
ret = api.sub_build("launch sub build", [run_exe], build_pb2.Build())
sub_build = ret.step.sub_build # access final build proto result
# Example: launch `run_exe` with input build to recipe and customized
# output path, cwd and cache directory.
with api.context(
# Change the cwd of the launched LUCI executable
cwd=api.path['start_dir'].join('subdir'),
# Change the cache_dir of the launched LUCI executable. Defaults to
# api.path['cache'] if unchanged.
luciexe=sections_pb2.LUCIExe(cache_dir=api.path['cache'].join('sub')),
):
# Command executed:
# `/path/to/run_exe --output [CLEANUP]/build.json --foo bar baz`
ret = api.sub_build("launch sub build",
[run_exe, '--foo', 'bar', 'baz'],
api.buildbucket.build,
output_path=api.path['cleanup'].join('build.json'))
sub_build = ret.step.sub_build # access final build proto result
```
Args:
* name (str): The name of this step.
* cmd (List[int|string|Placeholder|Path]): Same as the `cmd` parameter in
`__call__` method except that None is NOT allowed. cmd[0] MUST denote a
LUCI executable. The `--output` flag and its value should NOT be
provided in the list. It should be provided via keyword arg
`output_path` instead.
* build (build_pb2.Build): The initial build state that the launched
luciexe will start with. This method will clone the input build, modify
the clone's fields and pass the clone to luciexe (see 'Invocation'
section in http://go.chromium.org/luci/luciexe for what modification
will be done).
* raise_on_failure: Whether or not the step will raise on failure. If
True, a StepFailure will be raised if the step's status is FAILURE, an
InfraFailure will be raised if the step's status is EXCEPTION and a
StepWarning will be raised if the step's status is WARNING. Regardless
of the value of this argument, an InfraFailure will be raised if the
step is canceled.
* output_path (None|str|Path): The value of the `--output` flag. If
provided, it should be a path to a non-existent file (its directory
MUST exist). The extension of the path dictates the encoding format of
final build proto (See `EXT_TO_CODEC`). If not provided, the output
will be a temp file with binary encoding.
* timeout (None|int|float|datetime.timedelta): Same as the `timeout`
parameter in `__call__` method.
* step_test_data(Callable[[], recipe_test_api.StepTestData]): Same as the
`step_test_data` parameter in `__call__` method.
* cost (None|ResourceCost): Same as the `cost` parameter in `__call__`
method.
Returns a `step_data.StepData` for the finished step. The final build proto
object can be accessed via `ret.step.sub_build`. The build is guaranteed to
be present (i.e. not None) with a terminal build status.
Raises `StepFailure` if the sub-build reports FAILURE status.
Raises `InfraFailure` if the sub-build reports INFRA_FAILURE or CANCELED
status.
|
https://github.com/luci/recipes-py/blob/32f0255a6910af47c6cb35546032ae4d60fe9a92/recipe_modules/step/api.py#L449-L564
|
import contextlib
import multiprocessing
import sys
import types
from builtins import int
from future.utils import iteritems
from past.builtins import basestring
import enum
from recipe_engine import recipe_api
from recipe_engine.config_types import Path
from recipe_engine.engine_types import StepPresentation
from recipe_engine.engine_types import ResourceCost as _ResourceCost
from recipe_engine.util import Placeholder, returns_placeholder
from PB.go.chromium.org.luci.buildbucket.proto import build as build_pb2
from PB.go.chromium.org.luci.buildbucket.proto import common as common_pb2
class StepApi(recipe_api.RecipeApiPlain):
step_client = recipe_api.RequireClient('step')
def __init__(self, step_properties, **kwargs):
super(StepApi, self).__init__(**kwargs)
self._prefix_path = step_properties.get('prefix_path', [])
EXCEPTION = 'EXCEPTION'
FAILURE = 'FAILURE'
SUCCESS = 'SUCCESS'
WARNING = 'WARNING'
EXT_TO_CODEC = {
'.pb': 'BINARY',
'.json': 'JSONPB',
'.textpb': 'TEXTPB',
}
def ResourceCost(self, cpu=500, memory=50, disk=0, net=0):
return _ResourceCost(
min(cpu, self.MAX_CPU),
min(memory, self.MAX_MEMORY),
disk,
net)
CPU_CORE = 1000
@property
def MAX_CPU(self):
return self.m.platform.cpu_count * self.CPU_CORE
@property
def MAX_MEMORY(self):
return self.m.platform.total_memory
@property
def StepFailure(self):
return recipe_api.StepFailure
@property
def StepWarning(self):
return recipe_api.StepWarning
@property
def InfraFailure(self):
return recipe_api.InfraFailure
@property
def active_result(self):
return self.step_client.previous_step_result()
def close_non_nest_step(self):
return self.step_client.close_non_parent_step()
class _StepPresentationProxy(object):
def __init__(self, presentation):
object.__setattr__(self, 'presentation', presentation)
def __getattr__(self, name):
return getattr(self.presentation, name)
def __setattr__(self, name, value):
setattr(self.presentation, name, value)
@contextlib.contextmanager
def nest(self, name, status='worst'):
assert status in ('worst', 'last'), 'Got bad status: %r' % (status,)
with self.step_client.parent_step(name) as (pres, children_presentations):
caught_exc = None
try:
yield self._StepPresentationProxy(pres)
except:
caught_exc = sys.exc_info()[0]
raise
finally:
if pres.status is None:
if caught_exc:
pres.status = {
recipe_api.StepFailure: self.FAILURE,
recipe_api.StepWarning: self.WARNING,
}.get(caught_exc, self.EXCEPTION)
elif children_presentations:
if status == 'worst':
worst = self.SUCCESS
for cpres in children_presentations:
worst = StepPresentation.status_worst(worst, cpres.status)
pres.status = worst
else:
pres.status = children_presentations[-1].status
else:
pres.status = self.SUCCESS
@property
def defer_results(self):
return recipe_api.defer_results
@staticmethod
def _validate_cmd_list(cmd):
if not isinstance(cmd, list):
raise ValueError('cmd must be a list, got %r' % (cmd,))
for arg in cmd:
if not isinstance(arg, (int, basestring, Path, Placeholder)):
raise ValueError('Type %s is not permitted. '
'cmd is %r' % (type(arg), cmd))
@staticmethod
def _normalize_cost(cost):
if not isinstance(cost, (type(None), _ResourceCost)):
raise ValueError('cost must be a None or ResourceCost , got %r' % (cost,))
return cost or _ResourceCost.zero()
def _normalize_cwd(self, cwd):
if cwd and cwd == self.m.path['start_dir']:
cwd = None
elif cwd is not None:
cwd = str(cwd)
return cwd
def _to_env_affix(self, affix):
return self.step_client.EnvAffix(
mapping={k: [str(v) for v in vs] for k, vs in iteritems(affix)},
pathsep=self.m.path.pathsep,
)
@returns_placeholder('sub_build')
def _sub_build_output(self, output_path):
if not isinstance(output_path, (type(None), str, Path)):
raise ValueError('expected None, str or Path; got %r' % (output_path,))
ext = '.pb'
if output_path is None:
output_path = self.m.path.mkdtemp().join('sub_build' + ext)
else:
if self.m.path.exists(output_path):
raise ValueError('expected non-existent output path; '
'got path %s' % (output_path,))
_, ext = self.m.path.splitext(output_path)
if ext not in self.EXT_TO_CODEC:
raise ValueError('expected extension of output path to be '
'one of %s; got %s' % (tuple(self.EXT_TO_CODEC), ext))
dir_name = self.m.path.dirname(output_path)
self.m.path.mock_add_paths(dir_name)
if not self.m.path.exists(dir_name):
raise ValueError('expected directory of output path exists; '
'got dir: %s' % (dir_name,))
return self.m.proto.output(build_pb2.Build, self.EXT_TO_CODEC[ext],
leak_to=output_path,
add_json_log=True)
def _make_initial_build(self, input_build):
build = build_pb2.Build()
build.CopyFrom(input_build)
build.status = common_pb2.STARTED
if self._test_data.enabled:
build.create_time.FromSeconds(
self._test_data.get('initial_build_create_time', 1577836800))
build.start_time.FromSeconds(
self._test_data.get('initial_build_start_time', 1577836801))
else:
build.create_time.GetCurrentTime()
build.start_time.GetCurrentTime()
for f in ('end_time', 'output', 'status_details', 'steps',
'summary_markdown', 'update_time'):
build.ClearField(f)
return build
def _raise_on_disallowed_statuses(self, result, allowed_statuses,
status_override=None):
status = status_override or result.presentation.status
if status in allowed_statuses:
return result
exc = {
'FAILURE': self.StepFailure,
'WARNING': self.StepWarning,
'EXCEPTION': self.InfraFailure,
'CANCELED': self.InfraFailure,
}[status]
raise exc('.'.join(result.name_tokens), result)
def raise_on_failure(self, result, status_override=None):
return self._raise_on_disallowed_statuses(
result, [self.SUCCESS], status_override=status_override)
def _run_or_raise_step(self, step_config):
ret = self.step_client.run_step(step_config)
allowed_statuses = [self.SUCCESS]
if not step_config.raise_on_failure:
allowed_statuses += [self.WARNING, self.FAILURE, self.EXCEPTION]
return self._raise_on_disallowed_statuses(ret, allowed_statuses)
@recipe_api.composite_step
|
Apache License 2.0
|
kevin-ssy/vip
|
utils/flop_count/jit_analysis.py
|
JitModelAnalysis.__init__
|
python
|
def __init__(
self,
model: nn.Module,
inputs: Union[Tensor, Tuple[Tensor, ...]],
) -> None:
self._model = model
self._inputs = inputs
self._op_handles: Dict[str, Handle] = {}
self._named_modules: Dict[str, nn.Module] = dict(_named_modules_with_dup(model))
self._aliases: Dict[Union[nn.Module, str], str] = self._get_aliases(model)
self._stats: Optional[Statistics] = None
self._enable_warn_unsupported_ops = True
self._enable_warn_uncalled_mods = True
self._warn_trace = "no_tracer_warning"
self._ignored_ops: Set[str] = copy(_IGNORED_OPS)
|
Args:
model: The model to analyze
inputs: The inputs to the model for analysis.
|
https://github.com/kevin-ssy/vip/blob/dedc27616ab24e78685e21291d1e6ef9b56de889/utils/flop_count/jit_analysis.py#L198-L219
|
import logging
import typing
import warnings
from collections import Counter
from copy import copy
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Set, Tuple, Union, Iterable
import torch
import torch.nn as nn
from torch import Tensor
from torch.jit import TracerWarning, _get_trace_graph
from .jit_handles import Handle
def _named_modules_with_dup(
model: nn.Module, prefix: str = ""
) -> Iterable[Tuple[str, nn.Module]]:
yield prefix, model
for name, module in model._modules.items():
if module is None:
continue
submodule_prefix = prefix + ("." if prefix else "") + name
yield from _named_modules_with_dup(module, submodule_prefix)
_IGNORED_OPS: Set[str] = {
"aten::Int",
"aten::ScalarImplicit",
"aten::__and__",
"aten::arange",
"aten::cat",
"aten::chunk",
"aten::clamp",
"aten::clamp_",
"aten::constant_pad_nd",
"aten::contiguous",
"aten::copy_",
"aten::detach",
"aten::dropout",
"aten::empty",
"aten::eq",
"aten::expand",
"aten::flatten",
"aten::floor",
"aten::floor_divide",
"aten::full",
"aten::ge",
"aten::gt",
"aten::index",
"aten::index_put_",
"aten::max",
"aten::nonzero",
"aten::permute",
"aten::relu",
"aten::relu_",
"aten::remainder",
"aten::reshape",
"aten::select",
"aten::size",
"aten::slice",
"aten::split",
"aten::split_with_sizes",
"aten::squeeze",
"aten::narrow",
"aten::unbind",
"aten::full_like",
"aten::stack",
"aten::t",
"aten::to",
"aten::transpose",
"aten::unsqueeze",
"aten::unsqueeze_",
"aten::view",
"aten::zeros",
"aten::zeros_like",
}
@dataclass
class Statistics:
counts: "Dict[str, Counter[str]]"
unsupported_ops: "Dict[str, Counter[str]]"
uncalled_mods: "Set[str]"
def _get_scoped_trace_graph(
module: nn.Module,
inputs: Union[Tensor, Tuple[Tensor, ...]],
aliases: Dict[Union[str, nn.Module], str],
) -> torch._C.Graph:
class ScopePushHook:
def __init__(self, name: str) -> None:
self.name = name
def __call__(self, module: nn.Module, inputs: Any) -> Any:
tracing_state = torch._C._get_tracing_state()
if tracing_state:
tracing_state.push_scope(self.name)
return inputs
class ScopePopHook:
def __call__(self, module: nn.Module, inputs: Any, outputs: Any) -> Any:
tracing_state = torch._C._get_tracing_state()
if tracing_state:
tracing_state.pop_scope()
return outputs
seen = set()
hook_handles: List[Any] = []
def register_hooks(mod: nn.Module, name: str) -> None:
prehook = mod.register_forward_pre_hook(ScopePushHook(name))
posthook = mod.register_forward_hook(ScopePopHook())
hook_handles.append(prehook)
hook_handles.append(posthook)
if isinstance(
module, (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel)
):
root_name = aliases[module]
module = module.module
register_hooks(module, root_name)
for name, mod in _named_modules_with_dup(module):
if mod not in seen:
name = aliases[mod]
register_hooks(mod, name)
seen.add(mod)
if hasattr(torch.jit, "get_trace_graph"):
trace, _ = torch.jit.get_trace_graph(module, inputs)
graph = trace.graph()
else:
graph, _ = _get_trace_graph(module, inputs)
for handle in hook_handles:
handle.remove()
return graph
class JitModelAnalysis:
|
MIT License
|
amzn/differential-privacy-bayesian-optimization
|
experiments/output_perturbation/scikit-learn/sklearn/kernel_ridge.py
|
KernelRidge.fit
|
python
|
def fit(self, X, y=None, sample_weight=None):
X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True,
y_numeric=True)
if sample_weight is not None and not isinstance(sample_weight, float):
sample_weight = check_array(sample_weight, ensure_2d=False)
K = self._get_kernel(X)
alpha = np.atleast_1d(self.alpha)
ravel = False
if len(y.shape) == 1:
y = y.reshape(-1, 1)
ravel = True
copy = self.kernel == "precomputed"
self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha,
sample_weight,
copy)
if ravel:
self.dual_coef_ = self.dual_coef_.ravel()
self.X_fit_ = X
return self
|
Fit Kernel Ridge regression model
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data. If kernel == "precomputed" this is instead
a precomputed kernel matrix, shape = [n_samples,
n_samples].
y : array-like, shape = [n_samples] or [n_samples, n_targets]
Target values
sample_weight : float or array-like of shape [n_samples]
Individual weights for each sample, ignored if None is passed.
Returns
-------
self : returns an instance of self.
|
https://github.com/amzn/differential-privacy-bayesian-optimization/blob/4f3c98d4b747e22ac4890089f46fd79137235492/experiments/output_perturbation/scikit-learn/sklearn/kernel_ridge.py#L131-L174
|
import numpy as np
from .base import BaseEstimator, RegressorMixin, MultiOutputMixin
from .metrics.pairwise import pairwise_kernels
from .linear_model.ridge import _solve_cholesky_kernel
from .utils import check_array, check_X_y
from .utils.validation import check_is_fitted
class KernelRidge(BaseEstimator, RegressorMixin, MultiOutputMixin):
def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1,
kernel_params=None):
self.alpha = alpha
self.kernel = kernel
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.kernel_params = kernel_params
def _get_kernel(self, X, Y=None):
if callable(self.kernel):
params = self.kernel_params or {}
else:
params = {"gamma": self.gamma,
"degree": self.degree,
"coef0": self.coef0}
return pairwise_kernels(X, Y, metric=self.kernel,
filter_params=True, **params)
@property
def _pairwise(self):
return self.kernel == "precomputed"
|
Apache License 2.0
|
dayyass/text-classification-baseline
|
text_clf/pr_roc_curve.py
|
_get_model_and_data
|
python
|
def _get_model_and_data(
path_to_model_folder: str,
) -> Tuple[Pipeline, np.ndarray, np.ndarray]:
path_to_model = os.path.join(path_to_model_folder, "model.joblib")
path_to_target_names = os.path.join(path_to_model_folder, "target_names.json")
with open(path_to_target_names, mode="r") as fp:
target_names = json.load(fp)
assert (
len(target_names) == 2
), f"The model must have 2 classes, but has {len(target_names)} classes."
path_to_model_folder_yaml_list = [
file for file in os.listdir(path_to_model_folder) if file.endswith(".yaml")
]
if len(path_to_model_folder_yaml_list) == 0:
raise FileNotFoundError("There is no config file (with .yaml extension).")
elif len(path_to_model_folder_yaml_list) > 1:
raise FileNotFoundError(
"There are more then one config files (with .yaml extension)."
)
path_to_config = os.path.join(
path_to_model_folder, path_to_model_folder_yaml_list[0]
)
config = get_config(path_to_config)
_, X_test, _, y_test = load_data(config)
model = joblib.load(path_to_model)
return model, X_test, y_test
|
Helper function to get model and data.
Args:
path_to_model_folder (str): Path to trained model folder.
Raises:
Exception: Not a binary classification error.
FileNotFoundError: No config error.
FileNotFoundError: More then 1 config error.
Returns:
Tuple[Pipeline, np.ndarray, np.ndarray]: model, X_test, y_test.
|
https://github.com/dayyass/text-classification-baseline/blob/c9d6876be567b05ffcae1a5e31bbf56c1e5cae78/text_clf/pr_roc_curve.py#L29-L80
|
import json
import os
from typing import Tuple
import joblib
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import (
PrecisionRecallDisplay,
RocCurveDisplay,
auc,
precision_recall_curve,
roc_curve,
)
from sklearn.pipeline import Pipeline
from .config import get_config
from .data import load_data
__all__ = [
"get_precision_recall_curve",
"get_roc_curve",
"plot_precision_recall_curve",
"plot_roc_curve",
"plot_precision_recall_f1_curves_for_thresholds",
]
|
MIT License
|
scikit-hep/pyhf
|
src/pyhf/constraints.py
|
poisson_constraint_combined.logpdf
|
python
|
def logpdf(self, auxdata, pars):
tensorlib, _ = get_backend()
pdf = self.make_pdf(pars)
if pdf is None:
return (
tensorlib.zeros(self.batch_size)
if self.batch_size is not None
else tensorlib.astensor(0.0)[0]
)
poisson_data = tensorlib.gather(auxdata, self.poisson_data)
return pdf.log_prob(poisson_data)
|
Args:
auxdata (:obj:`tensor`): The auxiliary data (a subset of the full data in a HistFactory model)
pars (:obj:`tensor`): The model parameters
Returns:
log pdf value: The log of the pdf value of the Poisson constraints
|
https://github.com/scikit-hep/pyhf/blob/7ecaa63f6673108d23e4bd984e32504a150cfbb8/src/pyhf/constraints.py#L251-L269
|
import pyhf
from pyhf.tensor.manager import get_backend
from pyhf import events
from pyhf import probability as prob
from pyhf.parameters import ParamViewer
__all__ = ["gaussian_constraint_combined", "poisson_constraint_combined"]
def __dir__():
return __all__
class gaussian_constraint_combined:
def __init__(self, pdfconfig, batch_size=None):
default_backend = pyhf.default_backend
self.batch_size = batch_size
self.data_indices = list(range(len(pdfconfig.auxdata)))
self.parsets = [pdfconfig.param_set(cname) for cname in pdfconfig.auxdata_order]
pars_constrained_by_normal = [
constrained_parameter
for constrained_parameter in pdfconfig.auxdata_order
if pdfconfig.param_set(constrained_parameter).pdf_type == 'normal'
]
parfield_shape = (self.batch_size or 1, pdfconfig.npars)
self.param_viewer = ParamViewer(
parfield_shape, pdfconfig.par_map, pars_constrained_by_normal
)
start_index = 0
normal_constraint_data = []
normal_constraint_sigmas = []
for parset in self.parsets:
end_index = start_index + parset.n_parameters
thisauxdata = self.data_indices[start_index:end_index]
start_index = end_index
if not parset.pdf_type == 'normal':
continue
normal_constraint_data.append(thisauxdata)
try:
normal_constraint_sigmas.append(parset.sigmas)
except AttributeError:
normal_constraint_sigmas.append([1.0] * len(thisauxdata))
self._normal_data = None
self._sigmas = None
self._access_field = None
if self.param_viewer.index_selection:
self._normal_data = default_backend.astensor(
default_backend.concatenate(normal_constraint_data), dtype='int'
)
_normal_sigmas = default_backend.concatenate(normal_constraint_sigmas)
if self.batch_size:
sigmas = default_backend.reshape(_normal_sigmas, (1, -1))
self._sigmas = default_backend.tile(sigmas, (self.batch_size, 1))
else:
self._sigmas = _normal_sigmas
access_field = default_backend.concatenate(
self.param_viewer.index_selection, axis=1
)
self._access_field = access_field
self._precompute()
events.subscribe('tensorlib_changed')(self._precompute)
def _precompute(self):
if not self.param_viewer.index_selection:
return
tensorlib, _ = get_backend()
self.sigmas = tensorlib.astensor(self._sigmas)
self.normal_data = tensorlib.astensor(self._normal_data, dtype='int')
self.access_field = tensorlib.astensor(self._access_field, dtype='int')
def has_pdf(self):
return bool(self.param_viewer.index_selection)
def make_pdf(self, pars):
tensorlib, _ = get_backend()
if not self.param_viewer.index_selection:
return None
if self.batch_size is None:
flat_pars = pars
else:
flat_pars = tensorlib.reshape(pars, (-1,))
normal_means = tensorlib.gather(flat_pars, self.access_field)
if self.batch_size is None:
normal_means = normal_means[0]
result = prob.Independent(
prob.Normal(normal_means, self.sigmas), batch_size=self.batch_size
)
return result
def logpdf(self, auxdata, pars):
tensorlib, _ = get_backend()
pdf = self.make_pdf(pars)
if pdf is None:
return (
tensorlib.zeros(self.batch_size)
if self.batch_size is not None
else tensorlib.astensor(0.0)[0]
)
normal_data = tensorlib.gather(auxdata, self.normal_data)
return pdf.log_prob(normal_data)
class poisson_constraint_combined:
def __init__(self, pdfconfig, batch_size=None):
default_backend = pyhf.default_backend
self.batch_size = batch_size
self.par_indices = list(range(pdfconfig.npars))
self.data_indices = list(range(len(pdfconfig.auxdata)))
self.parsets = [pdfconfig.param_set(cname) for cname in pdfconfig.auxdata_order]
pars_constrained_by_poisson = [
constrained_parameter
for constrained_parameter in pdfconfig.auxdata_order
if pdfconfig.param_set(constrained_parameter).pdf_type == 'poisson'
]
parfield_shape = (self.batch_size or 1, pdfconfig.npars)
self.param_viewer = ParamViewer(
parfield_shape, pdfconfig.par_map, pars_constrained_by_poisson
)
start_index = 0
poisson_constraint_data = []
poisson_constraint_rate_factors = []
for parset in self.parsets:
end_index = start_index + parset.n_parameters
thisauxdata = self.data_indices[start_index:end_index]
start_index = end_index
if not parset.pdf_type == 'poisson':
continue
poisson_constraint_data.append(thisauxdata)
poisson_constraint_rate_factors.append(parset.factors)
self._poisson_data = None
self._access_field = None
self._batched_factors = None
if self.param_viewer.index_selection:
self._poisson_data = default_backend.astensor(
default_backend.concatenate(poisson_constraint_data), dtype='int'
)
_poisson_rate_fac = default_backend.astensor(
default_backend.concatenate(poisson_constraint_rate_factors),
dtype='float',
)
factors = default_backend.reshape(_poisson_rate_fac, (1, -1))
self._batched_factors = default_backend.tile(
factors, (self.batch_size or 1, 1)
)
access_field = default_backend.concatenate(
self.param_viewer.index_selection, axis=1
)
self._access_field = access_field
self._precompute()
events.subscribe('tensorlib_changed')(self._precompute)
def _precompute(self):
if not self.param_viewer.index_selection:
return
tensorlib, _ = get_backend()
self.poisson_data = tensorlib.astensor(self._poisson_data, dtype='int')
self.access_field = tensorlib.astensor(self._access_field, dtype='int')
self.batched_factors = tensorlib.astensor(self._batched_factors)
def has_pdf(self):
return bool(self.param_viewer.index_selection)
def make_pdf(self, pars):
if not self.param_viewer.index_selection:
return None
tensorlib, _ = get_backend()
if self.batch_size is None:
flat_pars = pars
else:
flat_pars = tensorlib.reshape(pars, (-1,))
nuispars = tensorlib.gather(flat_pars, self.access_field)
pois_rates = tensorlib.product(
tensorlib.stack([nuispars, self.batched_factors]), axis=0
)
if self.batch_size is None:
pois_rates = pois_rates[0]
return prob.Independent(prob.Poisson(pois_rates), batch_size=self.batch_size)
|
Apache License 2.0
|
googlecloudplatform/perfkitbenchmarker
|
perfkitbenchmarker/providers/aws/aws_virtual_machine.py
|
AwsVirtualMachine._InstallEfa
|
python
|
def _InstallEfa(self):
if not self.TryRemoteCommand('ulimit -l | grep unlimited'):
self.RemoteCommand(f'echo "{self.user_name} - memlock unlimited" | '
'sudo tee -a /etc/security/limits.conf')
self.RemoteCommand('cd aws-efa-installer; sudo ./efa_installer.sh -y')
if not self.TryRemoteCommand('ulimit -l | grep unlimited'):
self.Reboot()
|
Installs AWS EFA packages.
See https://aws.amazon.com/hpc/efa/
|
https://github.com/googlecloudplatform/perfkitbenchmarker/blob/c14a122016d414351d41167029c79c9a19709384/perfkitbenchmarker/providers/aws/aws_virtual_machine.py#L720-L731
|
import base64
import collections
import json
import logging
import posixpath
import re
import threading
import time
import uuid
from absl import flags
from perfkitbenchmarker import disk
from perfkitbenchmarker import errors
from perfkitbenchmarker import linux_virtual_machine
from perfkitbenchmarker import placement_group
from perfkitbenchmarker import resource
from perfkitbenchmarker import virtual_machine
from perfkitbenchmarker import vm_util
from perfkitbenchmarker import windows_virtual_machine
from perfkitbenchmarker.configs import option_decoders
from perfkitbenchmarker.providers import aws
from perfkitbenchmarker.providers.aws import aws_disk
from perfkitbenchmarker.providers.aws import aws_network
from perfkitbenchmarker.providers.aws import util
from six.moves import range
FLAGS = flags.FLAGS
HVM = 'hvm'
PV = 'paravirtual'
NON_HVM_PREFIXES = ['m1', 'c1', 't1', 'm2']
NON_PLACEMENT_GROUP_PREFIXES = frozenset(['t2', 'm3', 't3'])
DRIVE_START_LETTER = 'b'
TERMINATED = 'terminated'
SHUTTING_DOWN = 'shutting-down'
INSTANCE_EXISTS_STATUSES = frozenset(['running', 'stopping', 'stopped'])
INSTANCE_DELETED_STATUSES = frozenset([SHUTTING_DOWN, TERMINATED])
INSTANCE_TRANSITIONAL_STATUSES = frozenset(['pending'])
INSTANCE_KNOWN_STATUSES = (INSTANCE_EXISTS_STATUSES | INSTANCE_DELETED_STATUSES
| INSTANCE_TRANSITIONAL_STATUSES)
HOST_EXISTS_STATES = frozenset(
['available', 'under-assessment', 'permanent-failure'])
HOST_RELEASED_STATES = frozenset(['released', 'released-permanent-failure'])
KNOWN_HOST_STATES = HOST_EXISTS_STATES | HOST_RELEASED_STATES
AWS_INITIATED_SPOT_TERMINATING_TRANSITION_STATUSES = frozenset(
['marked-for-termination', 'marked-for-stop'])
AWS_INITIATED_SPOT_TERMINAL_STATUSES = frozenset(
['instance-terminated-by-price', 'instance-terminated-by-service',
'instance-terminated-no-capacity',
'instance-terminated-capacity-oversubscribed',
'instance-terminated-launch-group-constraint'])
USER_INITIATED_SPOT_TERMINAL_STATUSES = frozenset(
['request-canceled-and-instance-running', 'instance-terminated-by-user'])
AMAZON_LINUX_IMAGE_PROJECT = [
'137112412989',
'210953353124',
'910595266909',
'071630900071',
]
DEBIAN_9_IMAGE_PROJECT = ['379101102735']
DEBIAN_IMAGE_PROJECT = ['136693071363']
CENTOS_IMAGE_PROJECT = ['125523088429']
MARKETPLACE_IMAGE_PROJECT = ['679593333241']
RHEL_IMAGE_PROJECT = ['309956199498']
UBUNTU_IMAGE_PROJECT = ['099720109477']
WINDOWS_IMAGE_PROJECT = ['801119661308']
ARM = 'arm64'
X86 = 'x86_64'
_MACHINE_TYPE_PREFIX_TO_ARM_ARCH = {
'a1': 'cortex-a72',
'c6g': 'graviton2',
'm6g': 'graviton2',
'r6g': 'graviton2',
}
_EFA_PARAMS = {
'InterfaceType': 'efa',
'DeviceIndex': 0,
'NetworkCardIndex': 0,
'Groups': '',
'SubnetId': ''
}
_EFA_URL = ('https://s3-us-west-2.amazonaws.com/aws-efa-installer/'
'aws-efa-installer-{version}.tar.gz')
class AwsTransitionalVmRetryableError(Exception):
class AwsDriverDoesntSupportFeatureError(Exception):
class AwsUnexpectedWindowsAdapterOutputError(Exception):
class AwsUnknownStatusError(Exception):
class AwsImageNotFoundError(Exception):
def GetRootBlockDeviceSpecForImage(image_id, region):
command = util.AWS_PREFIX + [
'ec2',
'describe-images',
'--region=%s' % region,
'--image-ids=%s' % image_id,
'--query', 'Images[]']
stdout, _ = util.IssueRetryableCommand(command)
images = json.loads(stdout)
assert images
assert len(images) == 1, (
'Expected to receive only one image description for %s' % image_id)
image_spec = images[0]
root_device_name = image_spec['RootDeviceName']
block_device_mappings = image_spec['BlockDeviceMappings']
root_block_device_dict = next((x for x in block_device_mappings if
x['DeviceName'] == root_device_name))
return root_block_device_dict
def GetBlockDeviceMap(machine_type, root_volume_size_gb=None,
image_id=None, region=None):
mappings = []
if root_volume_size_gb is not None:
if image_id is None:
raise ValueError(
'image_id must be provided if root_volume_size_gb is specified')
if region is None:
raise ValueError(
'region must be provided if image_id is specified')
root_block_device = GetRootBlockDeviceSpecForImage(image_id, region)
root_block_device['Ebs']['VolumeSize'] = root_volume_size_gb
if not FLAGS.aws_vm_hibernate:
root_block_device['Ebs'].pop('Encrypted')
else:
root_block_device['Ebs']['Encrypted'] = True
mappings.append(root_block_device)
if (machine_type in aws_disk.NUM_LOCAL_VOLUMES and
not aws_disk.LocalDriveIsNvme(machine_type)):
for i in range(aws_disk.NUM_LOCAL_VOLUMES[machine_type]):
od = collections.OrderedDict()
od['VirtualName'] = 'ephemeral%s' % i
od['DeviceName'] = '/dev/xvd%s' % chr(ord(DRIVE_START_LETTER) + i)
mappings.append(od)
if mappings:
return json.dumps(mappings)
return None
def IsPlacementGroupCompatible(machine_type):
prefix = machine_type.split('.')[0]
return prefix not in NON_PLACEMENT_GROUP_PREFIXES
def GetArmArchitecture(machine_type):
prefix = re.split(r'[dn]?\.', machine_type)[0]
return _MACHINE_TYPE_PREFIX_TO_ARM_ARCH.get(prefix)
def GetProcessorArchitecture(machine_type):
if GetArmArchitecture(machine_type):
return ARM
else:
return X86
class AwsDedicatedHost(resource.BaseResource):
def __init__(self, machine_type, zone):
super(AwsDedicatedHost, self).__init__()
self.machine_type = machine_type
self.zone = zone
self.region = util.GetRegionFromZone(self.zone)
self.client_token = str(uuid.uuid4())
self.id = None
self.fill_fraction = 0.0
def _Create(self):
create_cmd = util.AWS_PREFIX + [
'ec2',
'allocate-hosts',
'--region=%s' % self.region,
'--client-token=%s' % self.client_token,
'--instance-type=%s' % self.machine_type,
'--availability-zone=%s' % self.zone,
'--auto-placement=off',
'--quantity=1']
vm_util.IssueCommand(create_cmd)
def _Delete(self):
if self.id:
delete_cmd = util.AWS_PREFIX + [
'ec2',
'release-hosts',
'--region=%s' % self.region,
'--host-ids=%s' % self.id]
vm_util.IssueCommand(delete_cmd, raise_on_failure=False)
@vm_util.Retry()
def _Exists(self):
describe_cmd = util.AWS_PREFIX + [
'ec2',
'describe-hosts',
'--region=%s' % self.region,
'--filter=Name=client-token,Values=%s' % self.client_token]
stdout, _, _ = vm_util.IssueCommand(describe_cmd)
response = json.loads(stdout)
hosts = response['Hosts']
assert len(hosts) < 2, 'Too many hosts.'
if not hosts:
return False
host = hosts[0]
self.id = host['HostId']
state = host['State']
assert state in KNOWN_HOST_STATES, state
return state in HOST_EXISTS_STATES
class AwsVmSpec(virtual_machine.BaseVmSpec):
CLOUD = aws.CLOUD
@classmethod
def _ApplyFlags(cls, config_values, flag_values):
super(AwsVmSpec, cls)._ApplyFlags(config_values, flag_values)
if flag_values['aws_boot_disk_size'].present:
config_values['boot_disk_size'] = flag_values.aws_boot_disk_size
if flag_values['aws_spot_instances'].present:
config_values['use_spot_instance'] = flag_values.aws_spot_instances
if flag_values['aws_spot_price'].present:
config_values['spot_price'] = flag_values.aws_spot_price
if flag_values['aws_spot_block_duration_minutes'].present:
config_values['spot_block_duration_minutes'] = int(
flag_values.aws_spot_block_duration_minutes)
@classmethod
def _GetOptionDecoderConstructions(cls):
result = super(AwsVmSpec, cls)._GetOptionDecoderConstructions()
result.update({
'use_spot_instance': (option_decoders.BooleanDecoder, {
'default': False
}),
'spot_price': (option_decoders.FloatDecoder, {
'default': None
}),
'spot_block_duration_minutes': (option_decoders.IntDecoder, {
'default': None
}),
'boot_disk_size': (option_decoders.IntDecoder, {
'default': None
})
})
return result
def _GetKeyfileSetKey(region):
return (region, FLAGS.run_uri)
class AwsKeyFileManager(object):
_lock = threading.Lock()
imported_keyfile_set = set()
deleted_keyfile_set = set()
@classmethod
def ImportKeyfile(cls, region):
with cls._lock:
if _GetKeyfileSetKey(region) in cls.imported_keyfile_set:
return
cat_cmd = ['cat',
vm_util.GetPublicKeyPath()]
keyfile, _ = vm_util.IssueRetryableCommand(cat_cmd)
formatted_tags = util.FormatTagSpecifications('key-pair',
util.MakeDefaultTags())
import_cmd = util.AWS_PREFIX + [
'ec2', '--region=%s' % region,
'import-key-pair',
'--key-name=%s' % cls.GetKeyNameForRun(),
'--public-key-material=%s' % keyfile,
'--tag-specifications=%s' % formatted_tags,
]
_, stderr, retcode = vm_util.IssueCommand(
import_cmd, raise_on_failure=False)
if retcode:
if 'KeyPairLimitExceeded' in stderr:
raise errors.Benchmarks.QuotaFailure(
'KeyPairLimitExceeded in %s: %s' % (region, stderr))
else:
raise errors.Benchmarks.PrepareException(stderr)
cls.imported_keyfile_set.add(_GetKeyfileSetKey(region))
if _GetKeyfileSetKey(region) in cls.deleted_keyfile_set:
cls.deleted_keyfile_set.remove(_GetKeyfileSetKey(region))
@classmethod
def DeleteKeyfile(cls, region):
with cls._lock:
if _GetKeyfileSetKey(region) in cls.deleted_keyfile_set:
return
delete_cmd = util.AWS_PREFIX + [
'ec2', '--region=%s' % region,
'delete-key-pair',
'--key-name=%s' % cls.GetKeyNameForRun()]
util.IssueRetryableCommand(delete_cmd)
cls.deleted_keyfile_set.add(_GetKeyfileSetKey(region))
if _GetKeyfileSetKey(region) in cls.imported_keyfile_set:
cls.imported_keyfile_set.remove(_GetKeyfileSetKey(region))
@classmethod
def GetKeyNameForRun(cls):
return 'perfkit-key-{0}'.format(FLAGS.run_uri)
class AwsVirtualMachine(virtual_machine.BaseVirtualMachine):
CLOUD = aws.CLOUD
IMAGE_NAME_FILTER = None
IMAGE_NAME_REGEX = None
IMAGE_OWNER = MARKETPLACE_IMAGE_PROJECT
IMAGE_PRODUCT_CODE_FILTER = None
IMAGE_DESCRIPTION_FILTER = None
DEFAULT_ROOT_DISK_TYPE = 'gp2'
DEFAULT_USER_NAME = 'ec2-user'
_lock = threading.Lock()
deleted_hosts = set()
host_map = collections.defaultdict(list)
def __init__(self, vm_spec):
super(AwsVirtualMachine, self).__init__(vm_spec)
self.region = util.GetRegionFromZone(self.zone)
self.user_name = FLAGS.aws_user_name or self.DEFAULT_USER_NAME
if self.machine_type in aws_disk.NUM_LOCAL_VOLUMES:
self.max_local_disks = aws_disk.NUM_LOCAL_VOLUMES[self.machine_type]
self.user_data = None
self.network = aws_network.AwsNetwork.GetNetwork(self)
self.placement_group = getattr(vm_spec, 'placement_group',
self.network.placement_group)
self.firewall = aws_network.AwsFirewall.GetFirewall()
self.use_dedicated_host = vm_spec.use_dedicated_host
self.num_vms_per_host = vm_spec.num_vms_per_host
self.use_spot_instance = vm_spec.use_spot_instance
self.spot_price = vm_spec.spot_price
self.spot_block_duration_minutes = vm_spec.spot_block_duration_minutes
self.boot_disk_size = vm_spec.boot_disk_size
self.client_token = str(uuid.uuid4())
self.host = None
self.id = None
self.metadata.update({
'spot_instance':
self.use_spot_instance,
'spot_price':
self.spot_price,
'spot_block_duration_minutes':
self.spot_block_duration_minutes,
'placement_group_strategy':
self.placement_group.strategy
if self.placement_group else placement_group.PLACEMENT_GROUP_NONE,
'aws_credit_specification':
FLAGS.aws_credit_specification
if FLAGS.aws_credit_specification else 'none'
})
self.spot_early_termination = False
self.spot_status_code = None
self._smp_affinity_script = 'smp_affinity.sh'
if self.use_dedicated_host and util.IsRegion(self.zone):
raise ValueError(
'In order to use dedicated hosts, you must specify an availability '
'zone, not a region ("zone" was %s).' % self.zone)
if self.use_dedicated_host and self.use_spot_instance:
raise ValueError(
'Tenancy=host is not supported for Spot Instances')
self.allocation_id = None
self.association_id = None
self.aws_tags = {}
@property
def host_list(self):
return self.host_map[(self.machine_type, self.zone)]
@property
def group_id(self):
return self.network.regional_network.vpc.default_security_group_id
@classmethod
def GetDefaultImage(cls, machine_type, region):
if not cls.IMAGE_OWNER:
raise NotImplementedError('AWS OSMixins require IMAGE_OWNER')
if not cls.IMAGE_NAME_FILTER:
raise NotImplementedError('AWS OSMixins require IMAGE_NAME_FILTER')
if FLAGS.aws_image_name_filter:
cls.IMAGE_NAME_FILTER = FLAGS.aws_image_name_filter
if FLAGS.aws_image_name_regex:
cls.IMAGE_NAME_REGEX = FLAGS.aws_image_name_regex
prefix = machine_type.split('.')[0]
virt_type = PV if prefix in NON_HVM_PREFIXES else HVM
processor_architecture = GetProcessorArchitecture(machine_type)
describe_cmd = util.AWS_PREFIX + [
'--region=%s' % region,
'ec2',
'describe-images',
'--query', ('Images[*].{Name:Name,ImageId:ImageId,'
'CreationDate:CreationDate}'),
'--filters',
'Name=name,Values=%s' % cls.IMAGE_NAME_FILTER,
'Name=block-device-mapping.volume-type,Values=%s' %
cls.DEFAULT_ROOT_DISK_TYPE,
'Name=virtualization-type,Values=%s' % virt_type,
'Name=architecture,Values=%s' % processor_architecture]
if cls.IMAGE_PRODUCT_CODE_FILTER:
describe_cmd.extend(['Name=product-code,Values=%s' %
cls.IMAGE_PRODUCT_CODE_FILTER])
if cls.IMAGE_DESCRIPTION_FILTER:
describe_cmd.extend(['Name=description,Values=%s' %
cls.IMAGE_DESCRIPTION_FILTER])
describe_cmd.extend(['--owners'] + cls.IMAGE_OWNER)
stdout, _ = util.IssueRetryableCommand(describe_cmd)
if not stdout:
raise AwsImageNotFoundError('aws describe-images did not produce valid '
'output.')
if cls.IMAGE_NAME_REGEX:
image_name_regex = cls.IMAGE_NAME_REGEX.format(
virt_type=virt_type, disk_type=cls.DEFAULT_ROOT_DISK_TYPE,
architecture=processor_architecture)
images = []
excluded_images = []
for image in json.loads(stdout):
if re.search(image_name_regex, image['Name']):
images.append(image)
else:
excluded_images.append(image)
if excluded_images:
logging.debug('Excluded the following images with regex "%s": %s',
image_name_regex,
sorted(image['Name'] for image in excluded_images))
else:
images = json.loads(stdout)
if not images:
raise AwsImageNotFoundError('No AMIs with given filters found.')
return max(images, key=lambda image: image['CreationDate'])['ImageId']
@vm_util.Retry(max_retries=2)
def _PostCreate(self):
describe_cmd = util.AWS_PREFIX + [
'ec2',
'describe-instances',
'--region=%s' % self.region,
'--instance-ids=%s' % self.id]
logging.info('Getting instance %s public IP. This will fail until '
'a public IP is available, but will be retried.', self.id)
stdout, _ = util.IssueRetryableCommand(describe_cmd)
response = json.loads(stdout)
instance = response['Reservations'][0]['Instances'][0]
self.internal_ip = instance['PrivateIpAddress']
if util.IsRegion(self.zone):
self.zone = str(instance['Placement']['AvailabilityZone'])
assert self.group_id == instance['SecurityGroups'][0]['GroupId'], (
self.group_id, instance['SecurityGroups'][0]['GroupId'])
if FLAGS.aws_efa:
self._ConfigureEfa(instance)
elif 'PublicIpAddress' in instance:
self.ip_address = instance['PublicIpAddress']
else:
raise errors.Resource.RetryableCreationError('Public IP not ready.')
def _ConfigureEfa(self, instance):
if FLAGS.aws_efa_count > 1:
self._ConfigureElasticIp(instance)
else:
self.ip_address = instance['PublicIpAddress']
if FLAGS.aws_efa_version:
self.InstallPackages('curl')
url = _EFA_URL.format(version=FLAGS.aws_efa_version)
tarfile = posixpath.basename(url)
self.RemoteCommand(f'curl -O {url}; tar -xzf {tarfile}')
self._InstallEfa()
self.RemoteCommand('cd aws-efa-installer; '
'PATH=${PATH}:/opt/amazon/efa/bin ./efa_test.sh')
def _ConfigureElasticIp(self, instance):
network_interface_id = None
for network_interface in instance['NetworkInterfaces']:
if network_interface['Attachment']['DeviceIndex'] == 0:
network_interface_id = network_interface['NetworkInterfaceId']
break
assert network_interface_id is not None
stdout, _, _ = vm_util.IssueCommand(util.AWS_PREFIX +
['ec2', 'allocate-address',
f'--region={self.region}',
'--domain=vpc'])
response = json.loads(stdout)
self.ip_address = response['PublicIp']
self.allocation_id = response['AllocationId']
util.AddDefaultTags(self.allocation_id, self.region)
stdout, _, _ = vm_util.IssueCommand(
util.AWS_PREFIX + ['ec2', 'associate-address',
f'--region={self.region}',
f'--allocation-id={self.allocation_id}',
f'--network-interface-id={network_interface_id}'])
response = json.loads(stdout)
self.association_id = response['AssociationId']
|
Apache License 2.0
|
joeyespo/gitpress
|
gitpress/repository.py
|
init
|
python
|
def init(directory=None):
repo = repo_path(directory)
if os.path.isdir(repo):
raise RepositoryAlreadyExistsError(directory, repo)
shutil.copytree(default_template_path, repo)
message = '"Default presentation content."'
subprocess.call(['git', 'init', '-q', repo])
subprocess.call(['git', 'add', '.'], cwd=repo)
subprocess.call(['git', 'commit', '-q', '-m', message], cwd=repo)
return repo
|
Initializes a Gitpress presentation repository at the specified directory.
|
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/repository.py#L45-L59
|
import os
import re
import shutil
import fnmatch
import subprocess
repo_dir = '.gitpress'
templates_path = os.path.join(os.path.dirname(__file__), 'templates')
default_template_path = os.path.join(templates_path, 'default')
specials = ['.*', '_*']
specials_re = re.compile('|'.join([fnmatch.translate(x) for x in specials]))
class RepositoryAlreadyExistsError(Exception):
def __init__(self, directory=None, repo=None):
super(RepositoryAlreadyExistsError, self).__init__()
self.directory = os.path.abspath(directory if directory else os.getcwd())
self.repo = os.path.abspath(repo or repo_path(self.directory))
class RepositoryNotFoundError(Exception):
def __init__(self, directory=None):
super(RepositoryNotFoundError, self).__init__()
self.directory = os.path.abspath(directory if directory else os.getcwd())
def require_repo(directory=None):
if directory and not os.path.isdir(directory):
raise ValueError('Directory not found: ' + repr(directory))
repo = repo_path(directory)
if not os.path.isdir(repo):
raise RepositoryNotFoundError(directory)
return repo
def repo_path(directory=None):
return os.path.join(directory, repo_dir) if directory else repo_dir
|
MIT License
|
kozea/weasyprint
|
tests/test_text.py
|
make_text
|
python
|
def make_text(text, width=None, **style):
new_style = dict(INITIAL_VALUES)
new_style['font_family'] = MONO_FONTS.split(',')
new_style.update(style)
return split_first_line(
text, new_style, context=None, max_width=width,
justification_spacing=0)
|
Wrapper for split_first_line() creating a style dict.
|
https://github.com/kozea/weasyprint/blob/a149af9aaf902901d5d19134f5393e2637bcd219/tests/test_text.py#L16-L23
|
import pytest
from weasyprint.css.properties import INITIAL_VALUES
from weasyprint.text.line_break import split_first_line
from .testing_utils import MONO_FONTS, SANS_FONTS, assert_no_logs, render_pages
|
BSD 3-Clause New or Revised License
|
laurentrdc/npstreams
|
npstreams/utils.py
|
deprecated
|
python
|
def deprecated(message):
def decorator(func):
@wraps(func)
def newfunc(*args, **kwargs):
full_message = f"""Calls to {func.__name__} deprecated: {message}.
{name} will be removed in a future release."""
with contextwarnings("always", DeprecationWarning):
warn(full_message, category=DeprecationWarning, stacklevel=2)
return func(*args, **kwargs)
return newfunc
return decorator
|
Decorator factory that warns of deprecation
Parameters
----------
message : str
Message will be dressed up with the name of the function.
Returns
-------
decorator : callable
|
https://github.com/laurentrdc/npstreams/blob/730e77eed3ee594e212ccd500558558fc7f37642/npstreams/utils.py#L15-L40
|
from contextlib import contextmanager
from functools import wraps
from warnings import resetwarnings, simplefilter, warn
@contextmanager
def contextwarnings(*args, **kwargs):
simplefilter(*args, **kwargs)
yield
resetwarnings()
|
BSD 3-Clause New or Revised License
|
numba/numba
|
numba/np/arrayobj.py
|
mark_positive
|
python
|
def mark_positive(builder, load):
upper_bound = (1 << (load.type.width - 1)) - 1
set_range_metadata(builder, load, 0, upper_bound)
|
Mark the result of a load instruction as positive (or zero).
|
https://github.com/numba/numba/blob/8d4559a83b7b12da9121c030b8e3780874204a34/numba/np/arrayobj.py#L49-L54
|
import functools
import math
import operator
from llvmlite import ir
import llvmlite.llvmpy.core as lc
from llvmlite.llvmpy.core import Constant
import numpy as np
from numba import pndindex, literal_unroll
from numba.core import types, utils, typing, errors, cgutils, extending
from numba.np.numpy_support import (as_dtype, carray, farray, is_contiguous,
is_fortran, check_is_integer)
from numba.np.numpy_support import type_can_asarray, is_nonelike
from numba.core.imputils import (lower_builtin, lower_getattr,
lower_getattr_generic,
lower_setattr_generic,
lower_cast, lower_constant,
iternext_impl, impl_ret_borrowed,
impl_ret_new_ref, impl_ret_untracked,
RefType)
from numba.core.typing import signature
from numba.core.extending import (register_jitable, overload, overload_method,
intrinsic)
from numba.misc import quicksort, mergesort
from numba.cpython import slicing
from numba.cpython.unsafe.tuple import tuple_setitem, build_full_slice_tuple
from numba.core.overload_glue import glue_lowering
from numba.core.extending import overload_classmethod
def set_range_metadata(builder, load, lower_bound, upper_bound):
range_operands = [Constant.int(load.type, lower_bound),
Constant.int(load.type, upper_bound)]
md = builder.module.add_metadata(range_operands)
load.set_metadata("range", md)
|
BSD 2-Clause Simplified License
|
caserec2018/caserecommender
|
caserec/recommenders/rating_prediction/base_knn.py
|
BaseKNN.compute_bu
|
python
|
def compute_bu(self):
self.bu = dict()
for user in self.users:
count = 0
for item in self.train_set['items_seen_by_user'].get(user, []):
self.bu[user] = self.bu.get(user, 0) + float(self.train_set['feedback'][user].get(item, 0)) - self.train_set['mean_value'] - self.bi.get(item, 0)
count += 1
if count > 1:
self.bu[user] = float(self.bu[user]) / float(self.reg_bu + count)
elif count == 0:
self.bu[user] = self.train_set['mean_value']
|
Method to compute bu values
bu = (rui - mi - bi) / (regBu + number of interactions)
|
https://github.com/caserec2018/caserecommender/blob/1b63fe79aa26786c99f35e6b8f0a0dd9e591811b/caserec/recommenders/rating_prediction/base_knn.py#L111-L131
|
from caserec.recommenders.rating_prediction.base_rating_prediction import BaseRatingPrediction
__author__ = 'removed for double blind review'
class BaseKNN(BaseRatingPrediction):
def __init__(self, train_file, test_file, output_file=None, reg_bi=10, reg_bu=15, similarity_metric='cosine',
sep='\t', output_sep='\t'):
super(BaseKNN, self).__init__(train_file=train_file, test_file=test_file, output_file=output_file,
similarity_metric=similarity_metric, sep=sep, output_sep=output_sep)
self.reg_bi = reg_bi
self.reg_bu = reg_bu
self.number_users = None
self.number_items = None
self.bu = {}
self.bi = {}
self.bui = {}
def init_model(self):
self.number_users = len(self.users)
self.number_items = len(self.items)
self.create_matrix()
def train_baselines(self):
self.bu = {}
self.bi = {}
self.bui = {}
for i in range(10):
self.compute_bi()
self.compute_bu()
self.compute_bui()
def compute_bi(self):
self.bi = dict()
for item in self.items:
count = 0
for user in self.train_set['users_viewed_item'].get(item, []):
self.bi[item] = self.bi.get(item, 0) + float(self.train_set['feedback'][user].get(item, 0)) - self.train_set['mean_value'] - self.bu.get(user, 0)
count += 1
if count > 1:
self.bi[item] = float(self.bi[item]) / float(self.reg_bi + count)
elif count == 0:
self.bi[item] = self.train_set['mean_value']
|
MIT License
|
catalyst-cooperative/pudl
|
src/pudl/extract/ferc1.py
|
drop_tables
|
python
|
def drop_tables(engine):
md = sa.MetaData()
md.reflect(engine)
md.drop_all(engine)
conn = engine.connect()
conn.execute("VACUUM")
conn.close()
|
Drop all FERC Form 1 tables from the SQLite database.
Creates an sa.schema.MetaData object reflecting the structure of the
database that the passed in ``engine`` refers to, and uses that schema to
drop all existing tables.
Todo:
Treat DB connection as a context manager (with/as).
Args:
engine (:class:`sqlalchemy.engine.Engine`): A DB Engine pointing at an
exising SQLite database to be deleted.
Returns:
None
|
https://github.com/catalyst-cooperative/pudl/blob/6a75069b90219a2da55262737b92fe0a024c4fb8/src/pudl/extract/ferc1.py#L182-L205
|
import csv
import importlib
import io
import logging
from pathlib import Path
from typing import Dict
import dbfread
import pandas as pd
import sqlalchemy as sa
from dbfread import DBF
from sqlalchemy import or_
import pudl
from pudl import constants as pc
from pudl.workspace.datastore import Datastore
logger = logging.getLogger(__name__)
PUDL_RIDS = {
514: "AEP Texas",
519: "Upper Michigan Energy Resources Company",
522: "Luning Energy Holdings LLC, Invenergy Investments",
529: "Tri-State Generation and Transmission Association",
531: "Basin Electric Power Cooperative",
}
def missing_respondents(reported, observed, identified):
records = []
for rid in observed:
if rid in reported:
continue
elif rid in identified:
records.append(
{
"respondent_id": rid,
"respondent_name": f"{identified[rid]} (PUDL determined)"
},
)
else:
records.append(
{
"respondent_id": rid,
"respondent_name": f"Missing Respondent {rid}"
},
)
return records
def observed_respondents(ferc1_engine):
f1_table_meta = pudl.output.pudltabl.get_table_meta(ferc1_engine)
observed = set([])
for table in f1_table_meta.values():
if table.name != "f1_respondent_id" and "respondent_id" in table.columns:
observed = observed.union(set(pd.read_sql_table(
table.name, ferc1_engine, columns=["respondent_id"]).respondent_id))
return observed
class Ferc1Datastore:
PACKAGE_PATH = "pudl.package_data.meta.ferc1_row_maps"
def __init__(self, datastore: Datastore):
self.datastore = datastore
self._cache = {}
self.dbc_path = {}
with importlib.resources.open_text(self.PACKAGE_PATH, "file_map.csv") as f:
for row in csv.DictReader(f):
year = int(row["year"])
path = Path(row["path"])
self.dbc_path[year] = path
def get_dir(self, year: int) -> Path:
if year not in self.dbc_path:
raise ValueError(f"No ferc1 data for year {year}")
return self.dbc_path[year]
def get_file(self, year: int, filename: str):
if year not in self._cache:
self._cache[year] = self.datastore.get_zipfile_resource("ferc1", year=year)
archive = self._cache[year]
try:
return archive.open((self.get_dir(year) / filename).as_posix())
except KeyError:
raise KeyError(f"{filename} not availabe for year {year} in ferc1.")
|
MIT License
|
sepandhaghighi/pycm
|
pycm/pycm_class_func.py
|
dInd_calc
|
python
|
def dInd_calc(TNR, TPR):
try:
result = math.sqrt(((1 - TNR)**2) + ((1 - TPR)**2))
return result
except (TypeError, ValueError):
return "None"
|
Calculate dInd (Distance index).
:param TNR: specificity or true negative rate
:type TNR : float
:param TPR: sensitivity, recall, hit rate, or true positive rate
:type TPR : float
:return: dInd as float
|
https://github.com/sepandhaghighi/pycm/blob/efca98f6dc92fd1eb5ac05a48aec01680cd344bc/pycm/pycm_class_func.py#L527-L541
|
from __future__ import division
import math
from .pycm_util import normal_quantile
from .pycm_interpret import *
def sensitivity_index_calc(TPR, FPR):
try:
return normal_quantile(TPR) - normal_quantile(FPR)
except TypeError:
return "None"
def NB_calc(TP, FP, POP, w):
try:
NB = (TP - w * FP) / POP
return NB
except (ZeroDivisionError, TypeError):
return "None"
def TI_calc(TP, FP, FN, alpha, beta):
try:
TI = TP / (TP + alpha * FN + beta * FP)
return TI
except (ZeroDivisionError, TypeError):
return "None"
def OOC_calc(TP, TOP, P):
try:
OOC = TP / (math.sqrt(TOP * P))
return OOC
except (ZeroDivisionError, TypeError, ValueError):
return "None"
def OC_calc(TP, TOP, P):
try:
overlap_coef = TP / min(TOP, P)
return overlap_coef
except (ZeroDivisionError, TypeError):
return "None"
def AGF_calc(TP, FP, FN, TN):
try:
F2 = F_calc(TP=TP, FP=FP, FN=FN, beta=2)
F05_inv = F_calc(TP=TN, FP=FN, FN=FP, beta=0.5)
AGF = math.sqrt(F2 * F05_inv)
return AGF
except (TypeError, ValueError):
return "None"
def AGM_calc(TPR, TNR, GM, N, POP):
try:
n = N / POP
if TPR == 0:
result = 0
else:
result = (GM + TNR * n) / (1 + n)
return result
except (ZeroDivisionError, TypeError):
return "None"
def Q_calc(TP, TN, FP, FN):
try:
OR = (TP * TN) / (FP * FN)
result = (OR - 1) / (OR + 1)
return result
except (ZeroDivisionError, TypeError):
return "None"
def TTPN_calc(item1, item2):
try:
result = item1 / (item1 + item2)
return result
except (ZeroDivisionError, TypeError):
return "None"
def FXR_calc(item):
try:
result = 1 - item
return result
except TypeError:
return "None"
def ACC_calc(TP, TN, FP, FN):
try:
result = (TP + TN) / (TP + TN + FN + FP)
return result
except (ZeroDivisionError, TypeError):
return "None"
def F_calc(TP, FP, FN, beta):
try:
result = ((1 + (beta)**2) * TP) / ((1 + (beta)**2) * TP + FP + (beta**2) * FN)
return result
except (ZeroDivisionError, TypeError):
return "None"
def MCC_calc(TP, TN, FP, FN):
try:
result = (TP * TN - FP * FN) / (math.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)))
return result
except (ZeroDivisionError, TypeError, ValueError):
return "None"
def MK_BM_calc(item1, item2):
try:
result = item1 + item2 - 1
return result
except TypeError:
return "None"
def LR_calc(item1, item2):
try:
result = item1 / item2
return result
except (ZeroDivisionError, TypeError):
return "None"
def PRE_calc(P, POP):
try:
result = P / POP
return result
except (ZeroDivisionError, TypeError):
return "None"
def G_calc(item1, item2):
try:
result = math.sqrt(item1 * item2)
return result
except (TypeError, ValueError):
return "None"
def RACC_calc(TOP, P, POP):
try:
result = (TOP * P) / ((POP) ** 2)
return result
except (ZeroDivisionError, TypeError):
return "None"
def RACCU_calc(TOP, P, POP):
try:
result = ((TOP + P) / (2 * POP))**2
return result
except (ZeroDivisionError, TypeError):
return "None"
def ERR_calc(ACC):
try:
return 1 - ACC
except TypeError:
return "None"
def jaccard_index_calc(TP, TOP, P):
try:
return TP / (TOP + P - TP)
except (ZeroDivisionError, TypeError):
return "None"
def IS_calc(TP, FP, FN, POP):
try:
result = -math.log(((TP + FN) / POP), 2) + math.log((TP / (TP + FP)), 2)
return result
except (ZeroDivisionError, TypeError, ValueError):
return "None"
def CEN_misclassification_calc(
table,
TOP,
P,
i,
j,
subject_class,
modified=False):
try:
result = TOP + P
if modified:
result -= table[subject_class][subject_class]
result = table[i][j] / result
return result
except (ZeroDivisionError, TypeError):
return "None"
def CEN_calc(classes, table, TOP, P, class_name, modified=False):
try:
result = 0
class_number = len(classes)
for k in classes:
if k != class_name:
P_j_k = CEN_misclassification_calc(
table, TOP, P, class_name, k, class_name, modified)
P_k_j = CEN_misclassification_calc(
table, TOP, P, k, class_name, class_name, modified)
if P_j_k != 0:
result += P_j_k * math.log(P_j_k, 2 * (class_number - 1))
if P_k_j != 0:
result += P_k_j * math.log(P_k_j, 2 * (class_number - 1))
if result != 0:
result = result * (-1)
return result
except (ZeroDivisionError, TypeError, ValueError):
return "None"
def AUC_calc(item, TPR):
try:
return (item + TPR) / 2
except TypeError:
return "None"
|
MIT License
|
bitmovin/bitmovin-api-sdk-python
|
bitmovin_api_sdk/models/gce_account_region_settings.py
|
GceAccountRegionSettings.subnet_id
|
python
|
def subnet_id(self, subnet_id):
if subnet_id is not None:
if not isinstance(subnet_id, string_types):
raise TypeError("Invalid type for `subnet_id`, type has to be `string_types`")
self._subnet_id = subnet_id
|
Sets the subnet_id of this GceAccountRegionSettings.
Id of the subnet for encoding instances (required)
:param subnet_id: The subnet_id of this GceAccountRegionSettings.
:type: string_types
|
https://github.com/bitmovin/bitmovin-api-sdk-python/blob/79dd938804197151af7cbe5501c7ec1d97872c15/bitmovin_api_sdk/models/gce_account_region_settings.py#L110-L124
|
from enum import Enum
from six import string_types, iteritems
from bitmovin_api_sdk.common.poscheck import poscheck_model
from bitmovin_api_sdk.models.bitmovin_resource import BitmovinResource
from bitmovin_api_sdk.models.google_cloud_region import GoogleCloudRegion
import pprint
import six
class GceAccountRegionSettings(BitmovinResource):
@poscheck_model
def __init__(self,
id_=None,
name=None,
description=None,
created_at=None,
modified_at=None,
custom_data=None,
network=None,
subnet_id=None,
region=None):
super(GceAccountRegionSettings, self).__init__(id_=id_, name=name, description=description, created_at=created_at, modified_at=modified_at, custom_data=custom_data)
self._network = None
self._subnet_id = None
self._region = None
self.discriminator = None
if network is not None:
self.network = network
if subnet_id is not None:
self.subnet_id = subnet_id
if region is not None:
self.region = region
@property
def openapi_types(self):
types = {}
if hasattr(super(GceAccountRegionSettings, self), 'openapi_types'):
types = getattr(super(GceAccountRegionSettings, self), 'openapi_types')
types.update({
'network': 'string_types',
'subnet_id': 'string_types',
'region': 'GoogleCloudRegion'
})
return types
@property
def attribute_map(self):
attributes = {}
if hasattr(super(GceAccountRegionSettings, self), 'attribute_map'):
attributes = getattr(super(GceAccountRegionSettings, self), 'attribute_map')
attributes.update({
'network': 'network',
'subnet_id': 'subnetId',
'region': 'region'
})
return attributes
@property
def network(self):
return self._network
@network.setter
def network(self, network):
if network is not None:
if not isinstance(network, string_types):
raise TypeError("Invalid type for `network`, type has to be `string_types`")
self._network = network
@property
def subnet_id(self):
return self._subnet_id
@subnet_id.setter
|
MIT License
|
brainix/pottery
|
pottery/deque.py
|
RedisDeque.insert
|
python
|
def insert(self, index: int, value: JSONTypes) -> None:
with self._watch() as pipeline:
current_length = cast(int, pipeline.llen(self.key))
if self.maxlen is not None and current_length >= self.maxlen:
raise IndexError(
f'{self.__class__.__name__} already at its maximum size'
)
super()._insert(index, value, pipeline=pipeline)
|
Insert an element into the RedisDeque before the given index. O(n)
|
https://github.com/brainix/pottery/blob/6432d21a3e8405a661fb1fab8c281d8bfe06f04c/pottery/deque.py#L79-L87
|
import collections
from typing import Iterable
from typing import Optional
from typing import Tuple
from typing import Union
from typing import cast
from redis import Redis
from redis.client import Pipeline
from .base import JSONTypes
from .list import RedisList
class RedisDeque(RedisList, collections.deque):
def __init__(self,
iterable: Iterable[JSONTypes] = tuple(),
maxlen: Optional[int] = None,
*,
redis: Optional[Redis] = None,
key: Optional[str] = None,
) -> None:
if maxlen is not None and not isinstance(maxlen, int):
raise TypeError('an integer is required')
self._maxlen = maxlen
super().__init__(iterable, redis=redis, key=key)
if not iterable and self.maxlen is not None and len(self) > self.maxlen:
raise IndexError(
f'persistent {self.__class__.__name__} beyond its maximum size'
)
def _populate(self,
pipeline: Pipeline,
iterable: Iterable[JSONTypes] = tuple(),
) -> None:
if self.maxlen is not None:
if self.maxlen:
iterable = tuple(iterable)[-self.maxlen:]
else:
iterable = tuple()
super()._populate(pipeline, iterable)
@property
def maxlen(self) -> Optional[int]:
return self._maxlen
@maxlen.setter
def maxlen(self, value: int) -> None:
raise AttributeError(
f"attribute 'maxlen' of '{self.__class__.__name__}' objects is not "
'writable'
)
|
Apache License 2.0
|
earthlab/earthpy
|
earthpy/clip.py
|
clip_shp
|
python
|
def clip_shp(shp, clip_obj):
raise Warning(
"clip_shp is deprecated in earthpy and has been moved to Geopandas. "
"Please use the Geopandas clip() function. Exiting..."
)
sys.exit()
|
This function has been deprecated from earthpy.
Please use the clip() function in GeoPandas instead.
|
https://github.com/earthlab/earthpy/blob/9ad455e85002a2b026c78685329f8c5b360fde5a/earthpy/clip.py#L65-L74
|
import sys
def _clip_points(shp, clip_obj):
raise Warning(
"_clip_points is deprecated. Use the _clip_points() function in "
"GeoPandas. Exiting..."
)
sys.exit()
def _clip_multi_point(shp, clip_obj):
raise Warning(
"_clip_multi_point is deprecated. Use the _clip_points() function in "
"GeoPandas. Exiting..."
)
sys.exit()
def _clip_line_poly(shp, clip_obj):
raise Warning(
"_clip_line_poly is deprecated. Use the _clip_line_poly() function in "
"GeoPandas. Exiting..."
)
sys.exit()
def _clip_multi_poly_line(shp, clip_obj):
raise Warning(
"_clip_multi_poly_line is deprecated. Use the _clip_line_poly() "
"function in GeoPandas. Exiting..."
)
sys.exit()
|
BSD 3-Clause New or Revised License
|
suchydev/kivy-dynamic-screens-template
|
screens/resource_registers.py
|
register_kv_and_data
|
python
|
def register_kv_and_data():
global _registered
if _registered:
return
for path in _data_paths + _kv_paths:
p = os.path.join(_base_path, path)
resource_add_path(p)
_registered = True
|
Registers the data and kv paths in Kivy resources system.
|
https://github.com/suchydev/kivy-dynamic-screens-template/blob/7fbab74c5693430ea486ac359fa7a032596c232b/screens/resource_registers.py#L23-L31
|
import os.path
from kivy.resources import resource_add_path
_base_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
_data_paths = (
'data/images',
'data/fonts',
'data/audio'
)
_kv_paths = ('kv', )
_registered = False
|
MIT License
|
thefourgreaterrors/alpha-rptr
|
src/binance_futures.py
|
BinanceFutures.get_market_price
|
python
|
def get_market_price(self):
self.__init_client()
if self.market_price != 0:
return self.market_price
else:
self.market_price = float(retry(lambda: self.client
.futures_symbol_ticker(symbol=self.pair))['price'])
return self.market_price
|
get current price
:return:
|
https://github.com/thefourgreaterrors/alpha-rptr/blob/17fc54b1fb044978aab337a0a4814840e328b6f9/src/binance_futures.py#L245-L256
|
import json
import math
import os
import traceback
from datetime import datetime, timezone
import time
import pandas as pd
from bravado.exception import HTTPNotFound
from pytz import UTC
from src import logger, allowed_range, to_data_frame, resample, delta, FatalError, notify, ord_suffix
from src import retry_binance_futures as retry
from src.config import config as conf
from src.binance_futures_api import Client
from src.binance_futures_websocket import BinanceFuturesWs
from src.orderbook import OrderBook
class BinanceFutures:
account = ''
pair = 'BTCUSDT'
wallet = None
market_price = 0
order_update = None
order_update_log = True
position = None
position_size = None
entry_price = None
margin = None
account_information = None
bin_size = '1h'
client = None
is_running = True
crawler = None
strategy = None
enable_trade_log = True
ohlcv_len = 100
data = None
sltp_values = {
'profit_long': 0,
'profit_short': 0,
'stop_long': 0,
'stop_short': 0,
'eval_tp_next_candle': False,
'profit_long_callback': None,
'profit_short_callback': None,
'stop_long_callback': None,
'stop_short_callback': None
}
round_decimals = 2
exit_order = {
'profit': 0,
'loss': 0,
'trail_offset': 0,
'profit_callback': None,
'loss_callback': None,
'trail_callbak': None
}
trail_price = 0
last_action_time = None
best_bid_price = None
best_ask_price = None
callbacks = {}
def __init__(self, account, pair, demo=False, threading=True):
self.account = account
self.pair = pair
self.demo = demo
self.is_running = threading
def __init_client(self):
if self.client is not None:
return
api_key = conf['binance_keys'][self.account]['API_KEY']
api_secret = conf['binance_keys'][self.account]['SECRET_KEY']
self.client = Client(api_key=api_key, api_secret=api_secret)
def now_time(self):
return datetime.now().astimezone(UTC)
def get_retain_rate(self):
return 0.8
def lot_leverage(self):
return 20
def get_lot(self, round_decimals=3):
account_information = self.get_account_information()
return round(float(account_information['totalMarginBalance']) / self.get_market_price() * self.lot_leverage(), round_decimals)
def get_balance(self):
self.__init_client()
ret = self.get_margin()
if len(ret) > 0:
balances = [p for p in ret if p["asset"] == "USDT"]
return float(balances[0]["balance"])
else: return None
def get_margin(self):
self.__init_client()
if self.margin is not None:
return self.margin
else:
self.margin = retry(lambda: self.client
.futures_account_balance_v2())
return self.margin
def get_leverage(self):
self.__init_client()
return float(self.get_position()["leverage"])
def get_account_information(self):
self.account_information = retry(lambda: self.client
.futures_account_v2())
return self.account_information
def get_position(self):
self.__init_client()
ret = retry(lambda: self.client
.futures_position_information())
if len(ret) > 0:
self.position = [p for p in ret if p["symbol"] == self.pair]
return self.position[0]
else: return None
def get_position_size(self):
self.__init_client()
if self.position_size is not None:
return self.position_size
position = self.get_position()
if position['symbol'] == self.pair:
return float(position['positionAmt'])
else: return 0
def get_position_avg_price(self):
self.__init_client()
return float(self.get_position()['entryPrice'])
|
MIT License
|
henglan/siamfc-pytorch
|
ILSVRC15-curation/gen_imdb_VID.py
|
generate_image_imdb
|
python
|
def generate_image_imdb(vid_root_path, vid_curated_path):
anno_str = "Annotations/VID/train/"
data_str = "Data/VID/train/"
vid_anno_path = os.path.join(vid_root_path, anno_str)
vid_data_path = os.path.join(vid_root_path, data_str)
num_videos = 0
all_dirs_level1 = os.listdir(vid_anno_path)
for i in range(len(all_dirs_level1)):
all_dirs_level2 = os.listdir(os.path.join(vid_anno_path, all_dirs_level1[i]))
num_videos = num_videos + len(all_dirs_level2)
train_video_num = round(num_videos * (1-validation_ratio))
val_video_num = num_videos - train_video_num
imdb_video_train = dict()
imdb_video_train['num_videos'] = train_video_num
imdb_video_train['data_str'] = data_str
imdb_video_val = dict()
imdb_video_val['num_videos'] = val_video_num
imdb_video_val['data_str'] = data_str
videos_train = dict()
videos_val = dict()
vid_idx = 0
for i in range(len(all_dirs_level1)):
all_dirs_level2 = os.listdir(os.path.join(vid_anno_path, all_dirs_level1[i]))
for j in range(len(all_dirs_level2)):
if vid_idx < train_video_num:
if not videos_train.has_key(all_dirs_level2[j]):
videos_train[all_dirs_level2[j]] = []
else:
if not videos_val.has_key(all_dirs_level2[j]):
videos_val[all_dirs_level2[j]] = []
frame_list = glob.glob(os.path.join(vid_anno_path, all_dirs_level1[i], all_dirs_level2[j], "*.xml"))
frame_list.sort()
video_ids = dict()
for k in range(len(frame_list)):
frame_id = k
frame_xml_name = os.path.join(vid_anno_path, all_dirs_level1[i], all_dirs_level2[j], frame_list[k])
frame_xml_tree = ET.parse(frame_xml_name)
frame_xml_root = frame_xml_tree.getroot()
crop_path = os.path.join(all_dirs_level1[i], all_dirs_level2[j])
frame_filename = frame_xml_root.find('filename').text
print ("processing: %s, %s, %s ..." % (all_dirs_level1[i], all_dirs_level2[j], frame_filename))
for object in frame_xml_root.iter("object"):
id = object.find("trackid").text
if not video_ids.has_key(id):
video_ids[id] = []
bbox_node = object.find("bndbox")
xmax = float(bbox_node.find('xmax').text)
xmin = float(bbox_node.find('xmin').text)
ymax = float(bbox_node.find('ymax').text)
ymin = float(bbox_node.find('ymin').text)
width = xmax - xmin + 1
height = ymax - ymin + 1
bbox = np.array([xmin, ymin, width, height])
tmp_instance = dict()
tmp_instance['instance_path'] = os.path.join(all_dirs_level1[i], all_dirs_level2[j], '{}.{:02d}.crop.x.jpg'.format(frame_filename, int(id)))
tmp_instance['bbox'] =bbox.tolist()
video_ids[id].append(tmp_instance)
tmp_keys = video_ids.keys()
for ki in range(len(tmp_keys)):
if len(video_ids[tmp_keys[ki]]) < 2:
del video_ids[tmp_keys[ki]]
tmp_keys = video_ids.keys()
if len(tmp_keys) > 0:
if vid_idx < train_video_num:
videos_train[all_dirs_level2[j]].append(video_ids)
else:
videos_val[all_dirs_level2[j]].append(video_ids)
vid_idx = vid_idx + 1
imdb_video_train['videos'] = videos_train
imdb_video_val['videos'] = videos_val
json.dump(imdb_video_train, open('imdb_video_train.json', 'w'), indent=2)
json.dump(imdb_video_val, open('imdb_video_val.json', 'w'), indent=2)
|
# save image crops to the vid_curated_path
|
https://github.com/henglan/siamfc-pytorch/blob/6cb921f5ac58b612ebface176d9a84d5e033150a/ILSVRC15-curation/gen_imdb_VID.py#L14-L125
|
import numpy as np
import os
import glob
import xml.etree.ElementTree as ET
import json
validation_ratio = 0.1
|
Apache License 2.0
|
tensorflow/tensor2tensor
|
tensor2tensor/models/evolved_transformer_test.py
|
get_var
|
python
|
def get_var(name):
variables = [var for var in tf.trainable_variables() if var.name == name]
if len(variables) == 1:
return variables[0]
raise ValueError("`name` must match exactly one variable. '%s' matched %d" %
(name, len(variables)))
|
Get trainable variable by name.
|
https://github.com/tensorflow/tensor2tensor/blob/c22a226704e5887862bf9edd9f269892c9016ad4/tensor2tensor/models/evolved_transformer_test.py#L45-L51
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensor2tensor.data_generators import problem_hparams
from tensor2tensor.models import evolved_transformer
from tensor2tensor.models import transformer
import tensorflow.compat.v1 as tf
BATCH_SIZE = 3
INPUT_LENGTH = 5
TARGET_LENGTH = 7
VOCAB_SIZE = 10
DECODE_LENGTH = 3
def print_vars(all_vars=None):
if not all_vars:
all_vars = tf.trainable_variables()
tf.logging.info("Format: <name>, <shape>, <(soft) device placement>")
for var in all_vars:
tf.logging.info(" %s, %s, %s" %
(var.name, str(var.get_shape()), var.op.device))
|
Apache License 2.0
|
lehrblogger/where-do-you-go
|
geo/geocell.py
|
point_distance
|
python
|
def point_distance(cell, point):
bbox = compute_box(cell)
between_w_e = bbox.west <= point.lon and point.lon <= bbox.east
between_n_s = bbox.south <= point.lat and point.lat <= bbox.north
if between_w_e:
if between_n_s:
return min(geomath.distance(point, (bbox.south, point.lon)),
geomath.distance(point, (bbox.north, point.lon)),
geomath.distance(point, (point.lat, bbox.east)),
geomath.distance(point, (point.lat, bbox.west)))
else:
return min(geomath.distance(point, (bbox.south, point.lon)),
geomath.distance(point, (bbox.north, point.lon)))
else:
if between_n_s:
return min(geomath.distance(point, (point.lat, bbox.east)),
geomath.distance(point, (point.lat, bbox.west)))
else:
return min(geomath.distance(point, (bbox.south, bbox.east)),
geomath.distance(point, (bbox.north, bbox.east)),
geomath.distance(point, (bbox.south, bbox.west)),
geomath.distance(point, (bbox.north, bbox.west)))
|
Returns the shortest distance between a point and a geocell bounding box.
If the point is inside the cell, the shortest distance is always to a 'edge'
of the cell rectangle. If the point is outside the cell, the shortest distance
will be to either a 'edge' or 'corner' of the cell rectangle.
Returns:
The shortest distance from the point to the geocell's rectangle, in meters.
|
https://github.com/lehrblogger/where-do-you-go/blob/51c1fb3a66d8babe00a9412c72ebbd66fe348d88/geo/geocell.py#L333-L367
|
__author__ = 'api.roman.public@gmail.com (Roman Nurik)'
import os.path
import sys
import geomath
import geotypes
_GEOCELL_GRID_SIZE = 4
_GEOCELL_ALPHABET = '0123456789abcdef'
MAX_GEOCELL_RESOLUTION = 13
MAX_FEASIBLE_BBOX_SEARCH_CELLS = 300
NORTHWEST = (-1, 1)
NORTH = (0, 1)
NORTHEAST = (1, 1)
EAST = (1, 0)
SOUTHEAST = (1, -1)
SOUTH = (0, -1)
SOUTHWEST = (-1, -1)
WEST = (-1, 0)
def best_bbox_search_cells(bbox, cost_function):
cell_ne = compute(bbox.north_east, resolution=MAX_GEOCELL_RESOLUTION)
cell_sw = compute(bbox.south_west, resolution=MAX_GEOCELL_RESOLUTION)
min_cost = 1e10000
min_cost_cell_set = None
min_resolution = len(os.path.commonprefix([cell_sw, cell_ne]))
for cur_resolution in range(min_resolution, MAX_GEOCELL_RESOLUTION + 1):
cur_ne = cell_ne[:cur_resolution]
cur_sw = cell_sw[:cur_resolution]
num_cells = interpolation_count(cur_ne, cur_sw)
if num_cells > MAX_FEASIBLE_BBOX_SEARCH_CELLS:
continue
cell_set = sorted(interpolate(cur_ne, cur_sw))
simplified_cells = []
cost = cost_function(num_cells=len(cell_set), resolution=cur_resolution)
if cost <= min_cost:
min_cost = cost
min_cost_cell_set = cell_set
else:
break
return min_cost_cell_set
def collinear(cell1, cell2, column_test):
for i in range(min(len(cell1), len(cell2))):
x1, y1 = _subdiv_xy(cell1[i])
x2, y2 = _subdiv_xy(cell2[i])
if not column_test and y1 != y2:
return False
if column_test and x1 != x2:
return False
return True
def interpolate(cell_ne, cell_sw):
cell_set = [[cell_sw]]
while not collinear(cell_set[0][-1], cell_ne, True):
cell_tmp = adjacent(cell_set[0][-1], (1, 0))
if cell_tmp is None:
break
cell_set[0].append(cell_tmp)
while cell_set[-1][-1] != cell_ne:
cell_tmp_row = [adjacent(g, (0, 1)) for g in cell_set[-1]]
if cell_tmp_row[0] is None:
break
cell_set.append(cell_tmp_row)
return [g for inner in cell_set for g in inner]
def interpolation_count(cell_ne, cell_sw):
bbox_ne = compute_box(cell_ne)
bbox_sw = compute_box(cell_sw)
cell_lat_span = bbox_sw.north - bbox_sw.south
cell_lon_span = bbox_sw.east - bbox_sw.west
num_cols = int((bbox_ne.east - bbox_sw.west) / cell_lon_span)
num_rows = int((bbox_ne.north - bbox_sw.south) / cell_lat_span)
return num_cols * num_rows
def all_adjacents(cell):
return [adjacent(cell, d) for d in [NORTHWEST, NORTH, NORTHEAST, EAST,
SOUTHEAST, SOUTH, SOUTHWEST, WEST]]
def adjacent(cell, dir):
if cell is None:
return None
dx = dir[0]
dy = dir[1]
cell_adj_arr = list(cell)
i = len(cell_adj_arr) - 1
while i >= 0 and (dx != 0 or dy != 0):
x, y = _subdiv_xy(cell_adj_arr[i])
if dx == -1:
if x == 0:
x = _GEOCELL_GRID_SIZE - 1
else:
x -= 1
dx = 0
elif dx == 1:
if x == _GEOCELL_GRID_SIZE - 1:
x = 0
else:
x += 1
dx = 0
if dy == 1:
if y == _GEOCELL_GRID_SIZE - 1:
y = 0
else:
y += 1
dy = 0
elif dy == -1:
if y == 0:
y = _GEOCELL_GRID_SIZE - 1
else:
y -= 1
dy = 0
cell_adj_arr[i] = _subdiv_char((x,y))
i -= 1
if dy != 0:
return None
return ''.join(cell_adj_arr)
def contains_point(cell, point):
return compute(point, len(cell)) == cell
|
MIT License
|
google/clusterfuzz
|
src/clusterfuzz/_internal/platforms/android/adb.py
|
run_command
|
python
|
def run_command(cmd,
log_output=False,
log_error=True,
timeout=None,
recover=True):
if isinstance(cmd, list):
cmd = ' '.join([str(i) for i in cmd])
if log_output:
logs.log('Running: adb %s' % cmd)
if not timeout:
timeout = ADB_TIMEOUT
output = execute_command(get_adb_command_line(cmd), timeout, log_error)
if not recover or environment.is_android_emulator():
if log_output:
logs.log('Output: (%s)' % output)
return output
device_not_found_string_with_serial = DEVICE_NOT_FOUND_STRING.format(
serial=environment.get_value('ANDROID_SERIAL'))
if (output in [
DEVICE_HANG_STRING, DEVICE_OFFLINE_STRING,
device_not_found_string_with_serial
]):
logs.log_warn('Unable to query device, resetting device connection.')
if reset_device_connection():
output = execute_command(get_adb_command_line(cmd), timeout, log_error)
else:
output = DEVICE_HANG_STRING
if output is DEVICE_HANG_STRING:
logs.log_warn('Unable to query device, restarting device to recover.')
hard_reset()
wait_until_fully_booted()
output = execute_command(get_adb_command_line(cmd), timeout, log_error)
if log_output:
logs.log('Output: (%s)' % output)
return output
|
Run a command in adb shell.
|
https://github.com/google/clusterfuzz/blob/e9e105d66f009356c4f3fe9ae7873ffff126b234/src/clusterfuzz/_internal/platforms/android/adb.py#L609-L654
|
import collections
import os
import re
import signal
import socket
import subprocess
import tempfile
import threading
import time
from clusterfuzz._internal.base import persistent_cache
from clusterfuzz._internal.base import utils
from clusterfuzz._internal.metrics import logs
from clusterfuzz._internal.system import environment
from clusterfuzz._internal.system import shell
ADB_TIMEOUT = 1200
BAD_STATE_WAIT = 900
BOOT_WAIT_INTERVAL = 30
CUTTLEFISH_USER = 'vsoc-01'
CUTTLEFISH_CVD_PORT = 6520
DEFAULT_DEVICE_MEMORY_MB = 2048
DEVICE = collections.namedtuple('Device', ['serial', 'path'])
DEVICE_HANG_STRING = None
DEVICE_NOT_FOUND_STRING = 'error: device \'{serial}\' not found'
DEVICE_OFFLINE_STRING = 'error: device offline'
FACTORY_RESET_WAIT = 60
KERNEL_LOG_FILES = [
'/proc/last_kmsg',
'/sys/fs/pstore/console-ramoops',
]
MONKEY_PROCESS_NAME = 'monkey'
WAIT_FOR_DEVICE_TIMEOUT = 600
REBOOT_TIMEOUT = 3600
RECOVERY_CMD_TIMEOUT = 60
STOP_CVD_WAIT = 20
LSUSB_BUS_RE = re.compile(r'Bus\s+(\d+)\s+Device\s+(\d+):.*')
LSUSB_SERIAL_RE = re.compile(r'\s+iSerial\s+\d\s+(.*)')
USBDEVFS_RESET = ord('U') << 8 | 20
def bad_state_reached():
persistent_cache.clear_values()
logs.log_fatal_and_exit(
'Device in bad state.', wait_before_exit=BAD_STATE_WAIT)
def connect_to_cuttlefish_device():
logs.log('Connect to cuttlefish device.')
device_serial = environment.get_value('ANDROID_SERIAL')
connect_cmd = f'{get_adb_path()} connect {device_serial}'
return execute_command(connect_cmd, timeout=RECOVERY_CMD_TIMEOUT)
def copy_local_directory_to_remote(local_directory, remote_directory):
create_directory_if_needed(remote_directory)
if os.listdir(local_directory):
run_command(['push', '%s/.' % local_directory, remote_directory])
def copy_local_file_to_remote(local_file_path, remote_file_path):
create_directory_if_needed(os.path.dirname(remote_file_path))
run_command(['push', local_file_path, remote_file_path])
def copy_remote_directory_to_local(remote_directory, local_directory):
run_command(['pull', '%s/.' % remote_directory, local_directory])
def copy_remote_file_to_local(remote_file_path, local_file_path):
shell.create_directory(
os.path.dirname(local_file_path), create_intermediates=True)
run_command(['pull', remote_file_path, local_file_path])
def create_directory_if_needed(device_directory):
run_shell_command(['mkdir', '-p', device_directory])
def directory_exists(directory_path):
expected = '0'
result = run_shell_command(
'\'test -d "%s"; echo $?\'' % directory_path, log_error=False)
return result == expected
def execute_command(cmd, timeout=None, log_error=True,
on_cuttlefish_host=False):
if on_cuttlefish_host and environment.is_android_cuttlefish():
cmd = ('ssh -o StrictHostKeyChecking=no '
f'{get_cuttlefish_ssh_target()} "{cmd}"')
so = []
output_dest = tempfile.TemporaryFile()
pipe = subprocess.Popen(
cmd,
executable='/bin/bash',
stdout=output_dest,
stderr=subprocess.STDOUT,
shell=True,
preexec_fn=lambda: signal.signal(signal.SIGPIPE, signal.SIG_DFL),
bufsize=0)
def run():
try:
pipe.communicate()
output_dest.seek(0)
output = output_dest.read()
output_dest.close()
if output:
so.append(output)
except OSError as _:
logs.log_warn('Failed to retrieve stdout from: %s' % cmd)
if pipe.returncode:
if log_error:
logs.log_warn(
'%s returned %d error code.' % (cmd, pipe.returncode),
output=output)
thread = threading.Thread(target=run)
thread.start()
thread.join(timeout)
if thread.is_alive():
logs.log_warn('Command %s timed out. Killing process.' % cmd)
try:
pipe.kill()
except OSError:
pass
return None
bytes_output = b''.join(so)
return bytes_output.strip().decode('utf-8', errors='ignore')
def copy_to_cuttlefish(src_path, dest_path, timeout=None):
cvd_address = get_cuttlefish_ssh_target()
return execute_command(
'scp -o StrictHostKeyChecking=no '
f'-r {src_path} {cvd_address}:{dest_path}',
timeout=timeout)
def factory_reset():
if environment.is_android_cuttlefish() or environment.is_android_emulator():
bad_state_reached()
revert_asan_device_setup_if_needed()
run_as_root()
run_shell_command([
'am', 'broadcast', '-a', 'android.intent.action.MASTER_CLEAR', '-n',
'android/com.android.server.MasterClearReceiver'
])
time.sleep(FACTORY_RESET_WAIT)
def file_exists(file_path):
expected = '0'
result = run_shell_command(
'\'test -f "%s"; echo $?\'' % file_path, log_error=False)
return result == expected
def get_adb_command_line(adb_cmd):
device_serial = environment.get_value('ANDROID_SERIAL')
adb_cmd_line = '%s -s %s %s' % (get_adb_path(), device_serial, adb_cmd)
return adb_cmd_line
def get_adb_path():
adb_path = environment.get_value('ADB')
if adb_path:
return adb_path
return os.path.join(environment.get_platform_resources_directory(), 'adb')
def get_device_state():
state_cmd = get_adb_command_line('get-state')
return execute_command(state_cmd, timeout=RECOVERY_CMD_TIMEOUT)
def get_fastboot_command_line(fastboot_cmd):
fastboot_cmd_line = '%s %s' % (get_fastboot_path(), fastboot_cmd)
return fastboot_cmd_line
def get_fastboot_path():
return os.path.join(environment.get_platform_resources_directory(),
'fastboot')
def get_file_checksum(file_path):
if not file_exists(file_path):
return None
return run_shell_command(['md5sum', '-b', file_path])
def get_file_size(file_path):
if not file_exists(file_path):
return None
return int(run_shell_command(['stat', '-c%s', file_path]))
def get_kernel_log_content():
kernel_log_content = ''
for kernel_log_file in KERNEL_LOG_FILES:
kernel_log_content += read_data_from_file(kernel_log_file) or ''
return kernel_log_content
def get_ps_output():
return run_shell_command(['ps', '-A'])
def get_process_and_child_pids(process_name):
pids = []
ps_output_lines = get_ps_output().splitlines()
while True:
old_pids_length = len(pids)
for line in ps_output_lines:
data = line.split()
try:
line_process_pid = int(data[1])
line_parent_pid = int(data[2])
except:
continue
if line_process_pid in pids:
continue
line_process_name = data[-1]
if (process_name in line_process_name or
MONKEY_PROCESS_NAME in line_process_name):
if process_name == line_process_name:
pids.insert(0, line_process_pid)
else:
pids.append(line_process_pid)
continue
if line_parent_pid in pids:
pids.append(line_process_pid)
new_pids_length = len(pids)
if old_pids_length == new_pids_length:
break
return pids
def get_property(property_name):
return run_shell_command(['getprop', property_name])
def hard_reset():
if environment.is_android_cuttlefish() or environment.is_android_emulator():
bad_state_reached()
hard_reset_sysrq_cmd = get_adb_command_line(
'shell echo b \\> /proc/sysrq-trigger')
execute_command(hard_reset_sysrq_cmd, timeout=RECOVERY_CMD_TIMEOUT)
soft_reset_cmd = get_adb_command_line('reboot')
execute_command(soft_reset_cmd, timeout=RECOVERY_CMD_TIMEOUT)
def kill_processes_and_children_matching_name(process_name):
process_and_child_pids = get_process_and_child_pids(process_name)
if not process_and_child_pids:
return
kill_command = ['kill', '-9'] + process_and_child_pids
run_shell_command(kill_command)
def read_data_from_file(file_path):
if not file_exists(file_path):
return None
return run_shell_command(['cat', '"%s"' % file_path])
def reboot():
run_command('reboot')
def start_cuttlefish_device(use_kernel=False):
cvd_dir = environment.get_value('CVD_DIR')
cvd_bin_dir = os.path.join(cvd_dir, 'bin')
launch_cvd_path = os.path.join(cvd_bin_dir, 'launch_cvd')
device_memory_mb = environment.get_value('DEVICE_MEMORY_MB',
DEFAULT_DEVICE_MEMORY_MB)
launch_cvd_command_line = (
f'{launch_cvd_path} -daemon -memory_mb {device_memory_mb} '
'-report_anonymous_usage_stats Y')
if use_kernel:
kernel_path = os.path.join(cvd_dir, 'bzImage')
initramfs_path = os.path.join(cvd_dir, 'initramfs.img')
launch_cvd_command_line += (
f' -kernel_path={kernel_path} -initramfs_path={initramfs_path}')
execute_command(launch_cvd_command_line, on_cuttlefish_host=True)
def stop_cuttlefish_device():
cvd_dir = environment.get_value('CVD_DIR')
cvd_bin_dir = os.path.join(cvd_dir, 'bin')
stop_cvd_cmd = os.path.join(cvd_bin_dir, 'stop_cvd')
execute_command(
stop_cvd_cmd, timeout=RECOVERY_CMD_TIMEOUT, on_cuttlefish_host=True)
time.sleep(STOP_CVD_WAIT)
def restart_cuttlefish_device():
cvd_dir = environment.get_value('CVD_DIR')
cvd_bin_dir = os.path.join(cvd_dir, 'bin')
restart_cvd_cmd = os.path.join(cvd_bin_dir, 'restart_cvd')
execute_command(restart_cvd_cmd, on_cuttlefish_host=True)
def recreate_cuttlefish_device():
logs.log('Reimaging cuttlefish device.')
cvd_dir = environment.get_value('CVD_DIR')
stop_cuttlefish_device()
rm_cmd = f'rm -rf {cvd_dir}/*'
execute_command(rm_cmd, timeout=RECOVERY_CMD_TIMEOUT, on_cuttlefish_host=True)
image_directory = environment.get_value('IMAGES_DIR')
for image_filename in os.listdir(image_directory):
if image_filename.endswith('.zip') or image_filename.endswith('.tar.gz'):
continue
image_src = os.path.join(image_directory, image_filename)
image_dest = os.path.join(cvd_dir, image_filename)
copy_to_cuttlefish(image_src, image_dest)
start_cuttlefish_device()
def remount():
run_as_root()
run_command('remount')
wait_for_device()
run_as_root()
def remove_directory(device_directory, recreate=False):
run_shell_command('rm -rf %s' % device_directory, root=True)
if recreate:
create_directory_if_needed(device_directory)
def remove_file(file_path):
run_shell_command('rm -f %s' % file_path, root=True)
def reset_device_connection():
if environment.is_android_cuttlefish():
restart_cuttlefish_device()
else:
reset_usb()
state = get_device_state()
if state != 'device':
logs.log_warn('Device state is %s, unable to recover using usb reset/'
'cuttlefish reconnect.' % str(state))
return False
return True
def get_cuttlefish_device_ip():
try:
return socket.gethostbyname('cuttlefish')
except socket.gaierror:
logs.log_fatal_and_exit('Unable to get cvd ip address on cuttlefish host.')
return None
def set_cuttlefish_device_serial():
device_serial = '%s:%d' % (get_cuttlefish_device_ip(), CUTTLEFISH_CVD_PORT)
environment.set_value('ANDROID_SERIAL', device_serial)
logs.log('Set cuttlefish device serial: %s' % device_serial)
def get_cuttlefish_ssh_target():
return f'{CUTTLEFISH_USER}@{get_cuttlefish_device_ip()}'
def get_device_path():
def _get_usb_devices():
usb_list_cmd = 'lsusb -v'
output = execute_command(usb_list_cmd, timeout=RECOVERY_CMD_TIMEOUT)
if output is None:
logs.log_error('Failed to populate usb devices using lsusb, '
'host restart might be needed.')
bad_state_reached()
devices = []
path = None
for line in output.splitlines():
match = LSUSB_BUS_RE.match(line)
if match:
path = '/dev/bus/usb/%s/%s' % (match.group(1), match.group(2))
continue
match = LSUSB_SERIAL_RE.match(line)
if path and match and match.group(1):
serial = match.group(1)
devices.append(DEVICE(serial, path))
return devices
def _get_device_path_for_serial():
devices = _get_usb_devices()
for device in devices:
if device_serial == device.serial:
return device.path
return None
def _get_device_path_for_usb():
device_id = device_serial[len('usb:'):]
bus_number = int(
open('/sys/bus/usb/devices/%s/busnum' % device_id).read().strip())
device_number = int(
open('/sys/bus/usb/devices/%s/devnum' % device_id).read().strip())
return '/dev/bus/usb/%03d/%03d' % (bus_number, device_number)
if environment.is_android_cuttlefish():
return None
device_serial = environment.get_value('ANDROID_SERIAL')
if device_serial.startswith('usb:'):
return _get_device_path_for_usb()
return _get_device_path_for_serial()
def reset_usb():
if environment.is_android_cuttlefish() or environment.is_android_emulator():
return True
import fcntl
try:
device_path = get_device_path()
except IOError:
device_path = None
if not device_path:
device_path = environment.get_value('DEVICE_PATH')
if not device_path:
logs.log_warn('No device path found, unable to reset usb.')
return False
try:
with open(device_path, 'w') as f:
fcntl.ioctl(f, USBDEVFS_RESET)
except:
logs.log_warn('Failed to reset usb.')
return False
wait_for_device(recover=False)
return True
def revert_asan_device_setup_if_needed():
if not environment.get_value('ASAN_DEVICE_SETUP'):
return
device_id = environment.get_value('ANDROID_SERIAL')
device_argument = '--device %s' % device_id
revert_argument = '--revert'
asan_device_setup_script_path = os.path.join(
environment.get_platform_resources_directory(), 'third_party',
'asan_device_setup.sh')
command = '%s %s %s' % (asan_device_setup_script_path, device_argument,
revert_argument)
execute_command(command, timeout=RECOVERY_CMD_TIMEOUT)
def run_as_root():
if get_property('service.adb.root') == '1':
return
wait_for_device()
run_command('root')
wait_for_device()
|
Apache License 2.0
|
yandex-cloud/python-sdk
|
yandex/cloud/mdb/redis/v1/cluster_service_pb2_grpc.py
|
ClusterServiceServicer.Delete
|
python
|
def Delete(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
|
Deletes the specified Redis cluster.
|
https://github.com/yandex-cloud/python-sdk/blob/6ddaaaf0ad01d8fc36cb72957f70a6e7943a5ce7/yandex/cloud/mdb/redis/v1/cluster_service_pb2_grpc.py#L177-L182
|
import grpc
from yandex.cloud.mdb.redis.v1 import cluster_pb2 as yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__pb2
from yandex.cloud.mdb.redis.v1 import cluster_service_pb2 as yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2
from yandex.cloud.operation import operation_pb2 as yandex_dot_cloud_dot_operation_dot_operation__pb2
class ClusterServiceStub(object):
def __init__(self, channel):
self.Get = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Get',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.GetClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__pb2.Cluster.FromString,
)
self.List = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/List',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClustersRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClustersResponse.FromString,
)
self.Create = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Create',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.CreateClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Update = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Update',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.UpdateClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Delete = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Delete',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.DeleteClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Start = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Start',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.StartClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Stop = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Stop',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.StopClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Move = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Move',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.MoveClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Backup = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Backup',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.BackupClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Restore = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Restore',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.RestoreClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.RescheduleMaintenance = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/RescheduleMaintenance',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.RescheduleMaintenanceRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.StartFailover = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/StartFailover',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.StartClusterFailoverRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.ListLogs = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/ListLogs',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterLogsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterLogsResponse.FromString,
)
self.StreamLogs = channel.unary_stream(
'/yandex.cloud.mdb.redis.v1.ClusterService/StreamLogs',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.StreamClusterLogsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.StreamLogRecord.FromString,
)
self.ListOperations = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/ListOperations',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterOperationsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterOperationsResponse.FromString,
)
self.ListBackups = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/ListBackups',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterBackupsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterBackupsResponse.FromString,
)
self.ListHosts = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/ListHosts',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterHostsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterHostsResponse.FromString,
)
self.AddHosts = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/AddHosts',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.AddClusterHostsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.DeleteHosts = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/DeleteHosts',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.DeleteClusterHostsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.GetShard = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/GetShard',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.GetClusterShardRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__pb2.Shard.FromString,
)
self.ListShards = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/ListShards',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterShardsRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.ListClusterShardsResponse.FromString,
)
self.AddShard = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/AddShard',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.AddClusterShardRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.DeleteShard = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/DeleteShard',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.DeleteClusterShardRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
self.Rebalance = channel.unary_unary(
'/yandex.cloud.mdb.redis.v1.ClusterService/Rebalance',
request_serializer=yandex_dot_cloud_dot_mdb_dot_redis_dot_v1_dot_cluster__service__pb2.RebalanceClusterRequest.SerializeToString,
response_deserializer=yandex_dot_cloud_dot_operation_dot_operation__pb2.Operation.FromString,
)
class ClusterServiceServicer(object):
def Get(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def List(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Create(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Update(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
|
MIT License
|
gmum/huggingmolecules
|
src/huggingmolecules/models/models_grover.py
|
ReadoutSelfAttention.forward
|
python
|
def forward(self, X):
x = torch.tanh(torch.matmul(self.w1, X.transpose(1, 0)))
x = torch.matmul(self.w2, x)
attn = torch.nn.functional.softmax(x, dim=-1)
x = torch.matmul(attn, X)
return x, attn
|
The forward function.
:param X: The input feature map. $X \in \mathbb{R}^{n \times in_feature}$.
:return: The final embeddings and attention matrix.
|
https://github.com/gmum/huggingmolecules/blob/adc581c97fbc21d9967dd9334afa94b22fb77651/src/huggingmolecules/models/models_grover.py#L945-L955
|
import math
from typing import Union, Dict, Type
import numpy as np
import scipy.stats as stats
import torch
import torch.nn as nn
import torch.nn.functional as F
from .models_api import PretrainedModelBase
from .models_common_utils import MultiHeadedAttention, PositionwiseFeedForward, SublayerConnection, get_activation_function
from .models_grover_utils import select_neighbor_and_aggregate
from ..configuration import GroverConfig
from ..featurization.featurization_grover import GroverBatchEncoding, GroverFeaturizer
GROVER_MODEL_ARCH = {
'grover_base': 'https://drive.google.com/uc?id=1FbBQFRbEIItfCjumjvY_zepGq56dSClU',
'grover_large': 'https://drive.google.com/uc?id=1eQfPPWghmaq-dvWNO-bhom1UsovKn2h5'
}
class GroverModel(PretrainedModelBase[GroverBatchEncoding, GroverConfig]):
@classmethod
def _get_archive_dict(cls) -> dict:
return GROVER_MODEL_ARCH
@classmethod
def get_config_cls(cls) -> Type[GroverConfig]:
return GroverConfig
@classmethod
def get_featurizer_cls(cls) -> Type[GroverFeaturizer]:
return GroverFeaturizer
def __init__(self, config: GroverConfig):
super(GroverModel, self).__init__(config)
self.hidden_size = config.d_model
self.grover = GroverEncoderWrapper(config)
if config.readout_self_attention:
self.readout = Readout(rtype="self_attention", hidden_size=self.hidden_size,
attn_hidden=config.readout_attn_hidden,
attn_out=config.readout_attn_out)
else:
self.readout = Readout(rtype="mean", hidden_size=self.hidden_size)
self.mol_atom_from_atom_ffn = self.create_ffn(config)
self.mol_atom_from_bond_ffn = self.create_ffn(config)
self.init_weights(config.init_type)
def create_ffn(self, config: GroverConfig):
if config.ffn_features_only:
first_linear_dim = config.features_size + config.ffn_d_features
else:
if config.readout_self_attention:
first_linear_dim = config.d_model * config.readout_attn_out
first_linear_dim += config.ffn_d_features
else:
first_linear_dim = config.d_model + config.ffn_d_features
dropout = nn.Dropout(config.dropout)
activation = get_activation_function(config.activation)
if config.ffn_n_layers == 1:
ffn = [
dropout,
nn.Linear(first_linear_dim, config.readout_n_outputs)
]
else:
ffn = [
dropout,
nn.Linear(first_linear_dim, config.ffn_d_hidden)
]
for _ in range(config.ffn_n_layers - 2):
ffn.extend([
activation,
dropout,
nn.Linear(config.ffn_d_hidden, config.ffn_d_hidden),
])
ffn.extend([
activation,
dropout,
nn.Linear(config.ffn_d_hidden, config.readout_n_outputs),
])
return nn.Sequential(*ffn)
def forward(self, batch: GroverBatchEncoding):
_, _, _, _, _, a_scope, _, _ = batch.get_components()
output = self.grover(batch)
mol_atom_from_bond_output = self.readout(output["atom_from_bond"], a_scope)
mol_atom_from_atom_output = self.readout(output["atom_from_atom"], a_scope)
atom_ffn_output = self.mol_atom_from_atom_ffn(mol_atom_from_atom_output)
bond_ffn_output = self.mol_atom_from_bond_ffn(mol_atom_from_bond_output)
return atom_ffn_output, bond_ffn_output
class GroverEncoderWrapper(nn.Module):
def __init__(self, config: GroverConfig):
super(GroverEncoderWrapper, self).__init__()
self.embedding_output_type = config.encoder_output_type
edge_dim = config.d_bond + config.d_atom
node_dim = config.d_atom
if not hasattr(config, "backbone"):
print("No backbone specified in args, use gtrans backbone.")
config.backbone = "gtrans"
if config.backbone == "gtrans" or config.backbone == "dualtrans":
self.encoders = GroverEncoder(config,
hidden_size=config.d_model,
edge_fdim=edge_dim,
node_fdim=node_dim,
dropout=config.dropout,
activation=config.activation,
num_mt_block=config.encoder_n_blocks,
num_attn_head=config.encoder_n_attn_heads,
atom_emb_output=self.embedding_output_type,
bias=config.encoder_attn_output_bias)
def forward(self, batch: GroverBatchEncoding) -> Dict:
output = self.encoders(batch)
if self.embedding_output_type == 'atom':
return {"atom_from_atom": output[0], "atom_from_bond": output[1],
"bond_from_atom": None, "bond_from_bond": None}
elif self.embedding_output_type == 'bond':
return {"atom_from_atom": None, "atom_from_bond": None,
"bond_from_atom": output[0], "bond_from_bond": output[1]}
elif self.embedding_output_type == "both":
return {"atom_from_atom": output[0][0], "bond_from_atom": output[0][1],
"atom_from_bond": output[1][0], "bond_from_bond": output[1][1]}
class GroverEncoder(nn.Module):
def __init__(self,
config: GroverConfig,
hidden_size,
edge_fdim,
node_fdim,
dropout=0.0,
activation="ReLU",
num_mt_block=1,
num_attn_head=4,
atom_emb_output: Union[bool, str] = False,
bias=False,
res_connection=False):
super(GroverEncoder, self).__init__()
if atom_emb_output is False:
atom_emb_output = None
if atom_emb_output is True:
atom_emb_output = 'atom'
self.hidden_size = hidden_size
self.dropout = dropout
self.activation = activation
self.bias = bias
self.res_connection = res_connection
self.edge_blocks = nn.ModuleList()
self.node_blocks = nn.ModuleList()
edge_input_dim = edge_fdim
node_input_dim = node_fdim
edge_input_dim_i = edge_input_dim
node_input_dim_i = node_input_dim
for i in range(num_mt_block):
if i != 0:
edge_input_dim_i = self.hidden_size
node_input_dim_i = self.hidden_size
self.edge_blocks.append(MTBlock(config=config,
num_attn_head=num_attn_head,
input_dim=edge_input_dim_i,
hidden_size=self.hidden_size,
activation=activation,
dropout=dropout,
bias=self.bias,
atom_messages=False))
self.node_blocks.append(MTBlock(config=config,
num_attn_head=num_attn_head,
input_dim=node_input_dim_i,
hidden_size=self.hidden_size,
activation=activation,
dropout=dropout,
bias=self.bias,
atom_messages=True))
self.atom_emb_output = atom_emb_output
self.ffn_atom_from_atom = PositionwiseFeedForward(d_input=self.hidden_size + node_fdim,
d_hidden=self.hidden_size * 4,
activation=self.activation,
dropout=self.dropout,
d_output=self.hidden_size,
n_layers=2)
self.ffn_atom_from_bond = PositionwiseFeedForward(d_input=self.hidden_size + node_fdim,
d_hidden=self.hidden_size * 4,
activation=self.activation,
dropout=self.dropout,
d_output=self.hidden_size,
n_layers=2)
self.ffn_bond_from_atom = PositionwiseFeedForward(d_input=self.hidden_size + edge_fdim,
d_hidden=self.hidden_size * 4,
activation=self.activation,
dropout=self.dropout,
d_output=self.hidden_size,
n_layers=2)
self.ffn_bond_from_bond = PositionwiseFeedForward(d_input=self.hidden_size + edge_fdim,
d_hidden=self.hidden_size * 4,
activation=self.activation,
dropout=self.dropout,
d_output=self.hidden_size,
n_layers=2)
self.atom_from_atom_sublayer = SublayerConnection(size=self.hidden_size, dropout=self.dropout)
self.atom_from_bond_sublayer = SublayerConnection(size=self.hidden_size, dropout=self.dropout)
self.bond_from_atom_sublayer = SublayerConnection(size=self.hidden_size, dropout=self.dropout)
self.bond_from_bond_sublayer = SublayerConnection(size=self.hidden_size, dropout=self.dropout)
self.act_func_node = get_activation_function(self.activation)
self.act_func_edge = get_activation_function(self.activation)
self.dropout_layer = nn.Dropout(p=config.dropout)
def pointwise_feed_forward_to_atom_embedding(self, emb_output, atom_fea, index, ffn_layer):
aggr_output = select_neighbor_and_aggregate(emb_output, index)
aggr_outputx = torch.cat([atom_fea, aggr_output], dim=1)
return ffn_layer(aggr_outputx), aggr_output
def pointwise_feed_forward_to_bond_embedding(self, emb_output, bond_fea, a2nei, b2revb, ffn_layer):
aggr_output = select_neighbor_and_aggregate(emb_output, a2nei)
aggr_output = self.remove_rev_bond_message(emb_output, aggr_output, b2revb)
aggr_outputx = torch.cat([bond_fea, aggr_output], dim=1)
return ffn_layer(aggr_outputx), aggr_output
@staticmethod
def remove_rev_bond_message(orginal_message, aggr_message, b2revb):
rev_message = orginal_message[b2revb]
return aggr_message - rev_message
def atom_bond_transform(self,
to_atom=True,
atomwise_input=None,
bondwise_input=None,
original_f_atoms=None,
original_f_bonds=None,
a2a=None,
a2b=None,
b2a=None,
b2revb=None
):
if to_atom:
atomwise_input, _ = self.pointwise_feed_forward_to_atom_embedding(atomwise_input, original_f_atoms, a2a,
self.ffn_atom_from_atom)
atom_in_atom_out = self.atom_from_atom_sublayer(None, atomwise_input)
bondwise_input, _ = self.pointwise_feed_forward_to_atom_embedding(bondwise_input, original_f_atoms, a2b,
self.ffn_atom_from_bond)
bond_in_atom_out = self.atom_from_bond_sublayer(None, bondwise_input)
return atom_in_atom_out, bond_in_atom_out
else:
atom_list_for_bond = torch.cat([b2a.unsqueeze(dim=1), a2a[b2a]], dim=1)
atomwise_input, _ = self.pointwise_feed_forward_to_bond_embedding(atomwise_input, original_f_bonds,
atom_list_for_bond,
b2a[b2revb], self.ffn_bond_from_atom)
atom_in_bond_out = self.bond_from_atom_sublayer(None, atomwise_input)
bond_list_for_bond = a2b[b2a]
bondwise_input, _ = self.pointwise_feed_forward_to_bond_embedding(bondwise_input, original_f_bonds,
bond_list_for_bond,
b2revb, self.ffn_bond_from_bond)
bond_in_bond_out = self.bond_from_bond_sublayer(None, bondwise_input)
return atom_in_bond_out, bond_in_bond_out
def forward(self, batch: GroverBatchEncoding, features_batch=None):
f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a = batch.get_components()
node_batch = f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a
edge_batch = f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a
original_f_atoms, original_f_bonds = f_atoms, f_bonds
for nb in self.node_blocks:
node_batch, features_batch = nb(node_batch, features_batch)
for eb in self.edge_blocks:
edge_batch, features_batch = eb(edge_batch, features_batch)
atom_output, _, _, _, _, _, _, _ = node_batch
_, bond_output, _, _, _, _, _, _ = edge_batch
if self.atom_emb_output is None:
return atom_output, bond_output
if self.atom_emb_output == 'atom':
return self.atom_bond_transform(to_atom=True,
atomwise_input=atom_output,
bondwise_input=bond_output,
original_f_atoms=original_f_atoms,
original_f_bonds=original_f_bonds,
a2a=a2a,
a2b=a2b,
b2a=b2a,
b2revb=b2revb)
elif self.atom_emb_output == 'bond':
return self.atom_bond_transform(to_atom=False,
atomwise_input=atom_output,
bondwise_input=bond_output,
original_f_atoms=original_f_atoms,
original_f_bonds=original_f_bonds,
a2a=a2a,
a2b=a2b,
b2a=b2a,
b2revb=b2revb)
else:
atom_embeddings = self.atom_bond_transform(to_atom=True,
atomwise_input=atom_output,
bondwise_input=bond_output,
original_f_atoms=original_f_atoms,
original_f_bonds=original_f_bonds,
a2a=a2a,
a2b=a2b,
b2a=b2a,
b2revb=b2revb)
bond_embeddings = self.atom_bond_transform(to_atom=False,
atomwise_input=atom_output,
bondwise_input=bond_output,
original_f_atoms=original_f_atoms,
original_f_bonds=original_f_bonds,
a2a=a2a,
a2b=a2b,
b2a=b2a,
b2revb=b2revb)
return ((atom_embeddings[0], bond_embeddings[0]),
(atom_embeddings[1], bond_embeddings[1]))
class MPNEncoder(nn.Module):
def __init__(self, config: GroverConfig,
atom_messages: bool,
init_message_dim: int,
attached_fea_fdim: int,
hidden_size: int,
bias: bool,
depth: int,
dropout: float,
undirected: bool,
dense: bool,
aggregate_to_atom: bool,
attach_fea: bool,
input_layer="fc",
dynamic_depth='none'
):
super(MPNEncoder, self).__init__()
self.init_message_dim = init_message_dim
self.attached_fea_fdim = attached_fea_fdim
self.hidden_size = hidden_size
self.bias = bias
self.depth = depth
self.dropout = dropout
self.input_layer = input_layer
self.layers_per_message = 1
self.undirected = undirected
self.atom_messages = atom_messages
self.dense = dense
self.aggreate_to_atom = aggregate_to_atom
self.attached_fea = attach_fea
self.dynamic_depth = dynamic_depth
self.dropout_layer = nn.Dropout(p=self.dropout)
self.act_func = get_activation_function(config.activation)
if self.input_layer == "fc":
input_dim = self.init_message_dim
self.W_i = nn.Linear(input_dim, self.hidden_size, bias=self.bias)
if self.attached_fea:
w_h_input_size = self.hidden_size + self.attached_fea_fdim
else:
w_h_input_size = self.hidden_size
self.W_h = nn.Linear(w_h_input_size, self.hidden_size, bias=self.bias)
def forward(self,
init_messages,
init_attached_features,
a2nei,
a2attached,
b2a=None,
b2revb=None,
adjs=None
) -> torch.FloatTensor:
if self.input_layer == 'fc':
input = self.W_i(init_messages)
message = self.act_func(input)
elif self.input_layer == 'none':
input = init_messages
message = input
attached_fea = init_attached_features
if self.training and self.dynamic_depth != "none":
if self.dynamic_depth == "uniform":
ndepth = np.random.randint(self.depth - 3, self.depth + 3)
else:
mu = self.depth
sigma = 1
lower = mu - 3 * sigma
upper = mu + 3 * sigma
X = stats.truncnorm((lower - mu) / sigma, (upper - mu) / sigma, loc=mu, scale=sigma)
ndepth = int(X.rvs(1))
else:
ndepth = self.depth
for _ in range(ndepth - 1):
if self.undirected:
message = (message + message[b2revb]) / 2
nei_message = select_neighbor_and_aggregate(message, a2nei)
a_message = nei_message
if self.attached_fea:
attached_nei_fea = select_neighbor_and_aggregate(attached_fea, a2attached)
a_message = torch.cat((nei_message, attached_nei_fea), dim=1)
if not self.atom_messages:
rev_message = message[b2revb]
if self.attached_fea:
atom_rev_message = attached_fea[b2a[b2revb]]
rev_message = torch.cat((rev_message, atom_rev_message), dim=1)
message = a_message[b2a] - rev_message
else:
message = a_message
message = self.W_h(message)
if self.dense:
message = self.act_func(message)
else:
message = self.act_func(input + message)
message = self.dropout_layer(message)
output = message
return output
class MTBlock(nn.Module):
def __init__(self,
config: GroverConfig,
num_attn_head,
input_dim,
hidden_size,
activation="ReLU",
dropout=0.0,
bias=True,
atom_messages=False,
res_connection=False):
super(MTBlock, self).__init__()
self.atom_messages = atom_messages
self.hidden_size = hidden_size
self.heads = nn.ModuleList()
self.input_dim = input_dim
self.res_connection = res_connection
self.act_func = get_activation_function(activation)
self.dropout_layer = nn.Dropout(p=dropout)
self.layernorm = nn.LayerNorm(self.hidden_size, elementwise_affine=True)
self.W_i = nn.Linear(self.input_dim, self.hidden_size, bias=bias)
self.attn = MultiHeadedAttention(h=num_attn_head,
d_model=self.hidden_size,
output_bias=bias,
dropout=dropout,
attention=GroverAttention())
self.W_o = nn.Linear(self.hidden_size * num_attn_head, self.hidden_size, bias=bias)
self.sublayer = SublayerConnection(size=self.hidden_size, dropout=dropout)
for _ in range(num_attn_head):
self.heads.append(Head(config, hidden_size=hidden_size, atom_messages=atom_messages))
def forward(self, batch, features_batch=None):
f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a = batch
if self.atom_messages:
if f_atoms.shape[1] != self.hidden_size:
f_atoms = self.W_i(f_atoms)
f_atoms = self.dropout_layer(self.layernorm(self.act_func(f_atoms)))
else:
if f_bonds.shape[1] != self.hidden_size:
f_bonds = self.W_i(f_bonds)
f_bonds = self.dropout_layer(self.layernorm(self.act_func(f_bonds)))
queries = []
keys = []
values = []
for head in self.heads:
q, k, v = head(f_atoms, f_bonds, a2b, a2a, b2a, b2revb)
queries.append(q.unsqueeze(1))
keys.append(k.unsqueeze(1))
values.append(v.unsqueeze(1))
queries = torch.cat(queries, dim=1)
keys = torch.cat(keys, dim=1)
values = torch.cat(values, dim=1)
x_out = self.attn(queries, keys, values)
x_out = x_out.view(x_out.shape[0], -1)
x_out = self.W_o(x_out)
x_in = None
if self.res_connection:
if self.atom_messages:
x_in = f_atoms
else:
x_in = f_bonds
if self.atom_messages:
f_atoms = self.sublayer(x_in, x_out)
else:
f_bonds = self.sublayer(x_in, x_out)
batch = f_atoms, f_bonds, a2b, b2a, b2revb, a_scope, b_scope, a2a
features_batch = features_batch
return batch, features_batch
class GroverAttention(nn.Module):
def forward(self, query, key, value, mask=None, dropout=None):
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(query.size(-1))
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class Head(nn.Module):
def __init__(self, config: GroverConfig, hidden_size, atom_messages=False):
super(Head, self).__init__()
atom_fdim = hidden_size
bond_fdim = hidden_size
hidden_size = hidden_size
self.atom_messages = atom_messages
if self.atom_messages:
init_message_dim = atom_fdim
attached_fea_dim = bond_fdim
else:
init_message_dim = bond_fdim
attached_fea_dim = atom_fdim
self.mpn_q = MPNEncoder(config=config,
atom_messages=atom_messages,
init_message_dim=init_message_dim,
attached_fea_fdim=attached_fea_dim,
hidden_size=hidden_size,
bias=config.encoder_attn_output_bias,
depth=config.mpn_depth,
dropout=config.dropout,
undirected=config.mpn_undirected,
dense=config.mpn_dense,
aggregate_to_atom=False,
attach_fea=False,
input_layer="none",
dynamic_depth="truncnorm")
self.mpn_k = MPNEncoder(config=config,
atom_messages=atom_messages,
init_message_dim=init_message_dim,
attached_fea_fdim=attached_fea_dim,
hidden_size=hidden_size,
bias=config.encoder_attn_output_bias,
depth=config.mpn_depth,
dropout=config.dropout,
undirected=config.mpn_undirected,
dense=config.mpn_dense,
aggregate_to_atom=False,
attach_fea=False,
input_layer="none",
dynamic_depth="truncnorm")
self.mpn_v = MPNEncoder(config=config,
atom_messages=atom_messages,
init_message_dim=init_message_dim,
attached_fea_fdim=attached_fea_dim,
hidden_size=hidden_size,
bias=config.encoder_attn_output_bias,
depth=config.mpn_depth,
dropout=config.dropout,
undirected=config.mpn_undirected,
dense=config.mpn_dense,
aggregate_to_atom=False,
attach_fea=False,
input_layer="none",
dynamic_depth="truncnorm")
def forward(self, f_atoms, f_bonds, a2b, a2a, b2a, b2revb):
if self.atom_messages:
init_messages = f_atoms
init_attached_features = f_bonds
a2nei = a2a
a2attached = a2b
b2a = b2a
b2revb = b2revb
else:
init_messages = f_bonds
init_attached_features = f_atoms
a2nei = a2b
a2attached = a2a
b2a = b2a
b2revb = b2revb
q = self.mpn_q(init_messages=init_messages,
init_attached_features=init_attached_features,
a2nei=a2nei,
a2attached=a2attached,
b2a=b2a,
b2revb=b2revb)
k = self.mpn_k(init_messages=init_messages,
init_attached_features=init_attached_features,
a2nei=a2nei,
a2attached=a2attached,
b2a=b2a,
b2revb=b2revb)
v = self.mpn_v(init_messages=init_messages,
init_attached_features=init_attached_features,
a2nei=a2nei,
a2attached=a2attached,
b2a=b2a,
b2revb=b2revb)
return q, k, v
class Readout(nn.Module):
def __init__(self,
rtype: str = "none",
hidden_size: int = 0,
attn_hidden: int = None,
attn_out: int = None,
):
super(Readout, self).__init__()
self.cached_zero_vector = nn.Parameter(torch.zeros(hidden_size), requires_grad=False)
self.rtype = "mean"
if rtype == "self_attention":
self.attn = ReadoutSelfAttention(hidden=attn_hidden,
in_feature=hidden_size,
out_feature=attn_out)
self.rtype = "self_attention"
def forward(self, embeddings, scope):
mol_vecs = []
self.attns = []
for _, (a_start, a_size) in enumerate(scope):
if a_size == 0:
mol_vecs.append(self.cached_zero_vector)
else:
cur_hiddens = embeddings.narrow(0, a_start, a_size)
if self.rtype == "self_attention":
cur_hiddens, attn = self.attn(cur_hiddens)
cur_hiddens = cur_hiddens.flatten()
else:
cur_hiddens = cur_hiddens.sum(dim=0) / a_size
mol_vecs.append(cur_hiddens)
mol_vecs = torch.stack(mol_vecs, dim=0)
return mol_vecs
class ReadoutSelfAttention(nn.Module):
def __init__(self, *, hidden, in_feature, out_feature):
super(ReadoutSelfAttention, self).__init__()
self.w1 = torch.nn.Parameter(torch.FloatTensor(hidden, in_feature))
self.w2 = torch.nn.Parameter(torch.FloatTensor(out_feature, hidden))
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_normal_(self.w1)
nn.init.xavier_normal_(self.w2)
|
Apache License 2.0
|
corakwue/ftrace
|
ftrace/common.py
|
filter_by_task
|
python
|
def filter_by_task(iterable, attr, value, how='first'):
def filter_func(event):
try:
return getattr(event.task, attr, None) == value
except AttributeError:
return getattr(event.event.task, attr, None) == value
except:
return False
filtered = ifilter(filter_func, iterable)
rv = None
try:
if how in ('any', 'all'):
rv = iter(filtered)
elif how == 'first':
rv = filtered.next()
elif how == 'last':
for rv in filtered:
pass
except:
rv = None
finally:
return rv
|
Filter iterable to objects whose `attr` has `value`.
Parameters
----------
iterable : iterable
Iterable <list, set> object
attr : string
Name of attribute to compare.
value : object
Value to filter by.
how : string
Which events to return. Valid args: 'any'/'all', 'first', 'last'
|
https://github.com/corakwue/ftrace/blob/d46139a562418146087f11f25528e0ab29c1c2c2/ftrace/common.py#L100-L137
|
import sys
import types
import math
import functools
from .third_party.enum.enum import Enum, unique
from itertools import ifilter
from .utils.decorators import memoize
def is_list_like(arg):
return (hasattr(arg, '__iter__') and
not isinstance(arg, str))
@unique
class ConstantBase(Enum):
def __new__(cls):
value = len(cls.__members__) + 1
obj = object.__new__(cls)
obj._value_ = value
return obj
def __str__(self):
return self.__repr__()
def __repr__(self):
return self.name
def describe(self):
return self.name, self.value
@classmethod
def universe(cls):
return cls.__members__.values()
@classmethod
def exclude(cls, items):
if is_list_like(items):
return cls.universe() - items
universe_list = cls.universe()
universe_list.remove(items)
return universe_list
@classmethod
@memoize
def map(cls, name):
for item in cls.universe():
if item.name == name:
return item
return
def bind_method(cls, name, func):
if not sys.version_info[0] >= 3:
setattr(cls, name, types.MethodType(func, None, cls))
else:
setattr(cls, name, func)
|
Apache License 2.0
|
amzn/differential-privacy-bayesian-optimization
|
experiments/output_perturbation/scikit-learn/sklearn/_build_utils/openmp_helpers.py
|
check_openmp_support
|
python
|
def check_openmp_support():
ccompiler = new_compiler()
customize_compiler(ccompiler)
if os.getenv('SKLEARN_NO_OPENMP'):
return False
start_dir = os.path.abspath('.')
with tempfile.TemporaryDirectory() as tmp_dir:
try:
os.chdir(tmp_dir)
with open('test_openmp.c', 'w') as f:
f.write(CCODE)
os.mkdir('objects')
openmp_flags = get_openmp_flag(ccompiler)
ccompiler.compile(['test_openmp.c'], output_dir='objects',
extra_postargs=openmp_flags)
extra_preargs = os.getenv('LDFLAGS', None)
if extra_preargs is not None:
extra_preargs = extra_preargs.split(" ")
else:
extra_preargs = []
objects = glob.glob(
os.path.join('objects', '*' + ccompiler.obj_extension))
ccompiler.link_executable(objects, 'test_openmp',
extra_preargs=extra_preargs,
extra_postargs=openmp_flags)
output = subprocess.check_output('./test_openmp')
output = output.decode(sys.stdout.encoding or 'utf-8').splitlines()
if 'nthreads=' in output[0]:
nthreads = int(output[0].strip().split('=')[1])
openmp_supported = (len(output) == nthreads)
else:
openmp_supported = False
except (CompileError, LinkError, subprocess.CalledProcessError):
openmp_supported = False
finally:
os.chdir(start_dir)
err_message = textwrap.dedent(
"""
***
It seems that scikit-learn cannot be built with OpenMP support.
- Make sure you have followed the installation instructions:
https://scikit-learn.org/dev/developers/advanced_installation.html
- If your compiler supports OpenMP but the build still fails, please
submit a bug report at:
https://github.com/scikit-learn/scikit-learn/issues
- If you want to build scikit-learn without OpenMP support, you can set
the environment variable SKLEARN_NO_OPENMP and rerun the build
command. Note however that some estimators will run in sequential
mode and their `n_jobs` parameter will have no effect anymore.
***
""")
if not openmp_supported:
raise CompileError(err_message)
return True
|
Check whether OpenMP test code can be compiled and run
|
https://github.com/amzn/differential-privacy-bayesian-optimization/blob/4f3c98d4b747e22ac4890089f46fd79137235492/experiments/output_perturbation/scikit-learn/sklearn/_build_utils/openmp_helpers.py#L60-L142
|
import os
import sys
import glob
import tempfile
import textwrap
import subprocess
from numpy.distutils.ccompiler import new_compiler
from distutils.sysconfig import customize_compiler
from distutils.errors import CompileError, LinkError
CCODE = textwrap.dedent(
"""\
#include <omp.h>
#include <stdio.h>
int main(void) {
#pragma omp parallel
printf("nthreads=%d\\n", omp_get_num_threads());
return 0;
}
""")
def get_openmp_flag(compiler):
if hasattr(compiler, 'compiler'):
compiler = compiler.compiler[0]
else:
compiler = compiler.__class__.__name__
if sys.platform == "win32" and ('icc' in compiler or 'icl' in compiler):
return ['/Qopenmp']
elif sys.platform == "win32":
return ['/openmp']
elif sys.platform == "darwin" and ('icc' in compiler or 'icl' in compiler):
return ['-openmp']
elif sys.platform == "darwin" and 'openmp' in os.getenv('CPPFLAGS', ''):
return []
return ['-fopenmp']
|
Apache License 2.0
|
autonomousvision/convolutional_occupancy_networks
|
src/checkpoints.py
|
CheckpointIO.load
|
python
|
def load(self, filename):
if is_url(filename):
return self.load_url(filename)
else:
return self.load_file(filename)
|
Loads a module dictionary from local file or url.
Args:
filename (str): name of saved module dictionary
|
https://github.com/autonomousvision/convolutional_occupancy_networks/blob/f44d413f8d455657a44c24d06163934c69141a09/src/checkpoints.py#L40-L49
|
import os
import urllib
import torch
from torch.utils import model_zoo
class CheckpointIO(object):
def __init__(self, checkpoint_dir='./chkpts', **kwargs):
self.module_dict = kwargs
self.checkpoint_dir = checkpoint_dir
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
def register_modules(self, **kwargs):
self.module_dict.update(kwargs)
def save(self, filename, **kwargs):
if not os.path.isabs(filename):
filename = os.path.join(self.checkpoint_dir, filename)
outdict = kwargs
for k, v in self.module_dict.items():
outdict[k] = v.state_dict()
torch.save(outdict, filename)
|
MIT License
|
tlc-pack/tenset
|
tests/python/contrib/test_arm_compute_lib/test_pooling.py
|
_get_pooling_model
|
python
|
def _get_pooling_model(
shape, dtype, typef, sizes, strides, padding, ceil_mode, count_include_pad, var_names
):
if len(padding) == 2:
padding = (padding[0], padding[1], padding[0], padding[1])
out = relay.var(next(var_names), shape=shape, dtype=dtype)
if typef == "nn.max_pool2d":
out = relay.nn.max_pool2d(
out,
pool_size=sizes,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
layout="NHWC",
)
elif typef == "nn.avg_pool2d":
if dtype == "uint8":
out = relay.cast(out, "int32")
out = relay.nn.avg_pool2d(
out,
pool_size=sizes,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
layout="NHWC",
)
if dtype == "uint8":
out = relay.cast(out, "uint8")
elif typef == "nn.l2_pool2d":
out = relay.power(out, relay.const(2.0))
out = relay.nn.avg_pool2d(
out,
pool_size=sizes,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad,
layout="NHWC",
)
out = relay.sqrt(out)
else:
raise ValueError("Function not supported")
return out
|
Return a model and any parameters it may have.
|
https://github.com/tlc-pack/tenset/blob/3f7ed0291df47331d43f43a064fffacdc2914b47/tests/python/contrib/test_arm_compute_lib/test_pooling.py#L42-L88
|
import numpy as np
import tvm
from tvm import relay
from tvm import testing
from test_arm_compute_lib.infrastructure import (
skip_runtime_test,
skip_codegen_test,
build_and_run,
verify,
verify_codegen,
)
from test_arm_compute_lib.infrastructure import Device
def _calculate_output_shape(shape, sizes, padding, strides):
output_height = ((shape[1] - sizes[0] + padding[0] + padding[2]) / strides[0]) + 1
output_width = ((shape[2] - sizes[1] + padding[1] + padding[3]) / strides[1]) + 1
return 1, int(output_height), int(output_width), shape[3]
|
Apache License 2.0
|
thomasgerstenberg/blatann
|
blatann/gatt/gatts_attribute.py
|
GattsAttribute.parent
|
python
|
def parent(self) -> GattsCharacteristic:
return self._parent
|
**Read Only**
Gets the parent characteristic which owns this attribute
|
https://github.com/thomasgerstenberg/blatann/blob/86366bc38d84f3ddb22314aa1ca50ee28be8b916/blatann/gatt/gatts_attribute.py#L66-L72
|
from __future__ import annotations
import typing
import binascii
import logging
from collections import namedtuple
from blatann.exceptions import InvalidOperationException
from blatann.gatt import Attribute
from blatann.services.ble_data_types import BleDataStream
from blatann.event_args import WriteEventArgs
from blatann.nrf import nrf_events, nrf_types
from blatann.event_type import EventSource, Event
from blatann import gatt
from blatann.uuid import Uuid
if typing.TYPE_CHECKING:
from blatann.peer import Peer
from blatann.device import BleDevice
from blatann.gatt.gatts import GattsCharacteristic
logger = logging.getLogger(__name__)
class GattsAttributeProperties(object):
def __init__(self, read=True, write=False, security_level=gatt.SecurityLevel.OPEN,
max_length=20, variable_length=True, read_auth=False, write_auth=False):
self.read = read
self.write = write
self.security_level = security_level
self.max_len = max_length
self.variable_length = variable_length
self.read_auth = read_auth
self.write_auth = write_auth
class GattsAttribute(Attribute):
_QueuedChunk = namedtuple("QueuedChunk", ["offset", "data"])
def __init__(self, ble_device: BleDevice, peer: Peer, parent: GattsCharacteristic,
uuid: Uuid, handle: int, properties: GattsAttributeProperties,
initial_value=b"", string_encoding="utf8"):
super(GattsAttribute, self).__init__(uuid, handle, initial_value, string_encoding)
self._ble_device = ble_device
self._peer = peer
self._parent = parent
self._properties = properties
self._on_write = EventSource("Write Event", logger)
self._on_read = EventSource("Read Event", logger)
if properties.write:
self._ble_device.ble_driver.event_subscribe(self._on_gatts_write, nrf_events.GattsEvtWrite)
if properties.read_auth or properties.write_auth:
self._ble_device.ble_driver.event_subscribe(self._on_rw_auth_request,
nrf_events.GattsEvtReadWriteAuthorizeRequest)
self._write_queued = False
self._read_in_process = False
self._queued_write_chunks = []
@property
|
BSD 3-Clause New or Revised License
|
hewlettpackard/dlcookbook-dlbs
|
python/mxnet_benchmarks/models/deep_speech2.py
|
DeepSpeech2.shape
|
python
|
def shape(self, v):
return str(v.infer_shape(data=self.__data_shape)[1])
|
Return shape of v's output tensor.
|
https://github.com/hewlettpackard/dlcookbook-dlbs/blob/42b9ce648c2bbfa0f306e95022b80f1fe9230dce/python/mxnet_benchmarks/models/deep_speech2.py#L329-L331
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import math
import logging
import itertools
import numpy as np
import mxnet as mx
from mxnet_benchmarks.models.model import Model
from mxnet_benchmarks.contrib.ctc_metrics import CtcMetrics
class DeepSpeech2(Model):
implements = 'deep_speech2'
CONV_ARCHS = [
'1-layer-1D', '2-layer-1D', '3-layer-1D',
'1-layer-2D', '2-layer-2D', '3-layer-2D',
'2-layer-2D-v2'
]
RNN_TYPES = ['rnn_relu', 'rnn_tanh', 'lstm', 'gru']
BRNN_OUTPUT = ['concat', 'sum']
CTC_LOSSES = ['mxnet_ctc_loss', 'warp_ctc_loss']
@property
def output(self):
return self.__output
@property
def batch_size(self):
return self.__batch_size
@property
def output_length(self):
return self.__output_length
def __init__(self, params):
Model.check_parameters(
params,
{
'name': 'DeepSpeech2', 'input_shape': (1, 200, 161),
'num_classes': 29*29 + 1,
'phase': 'training', 'dtype': 'float32', 'model_opts': {}
}
)
Model.check_parameters(
params['model_opts'],
{
'conv_batch_norm': True,
'conv_arch': '2-layer-2D-v2',
'num_rnn_layers': 3,
'rnn_layer_size': 2048,
'bidirectional': True,
'rnn_type': 'rnn_relu',
'rnn_batch_norm': False,
'brnn_share_i2h': False,
'brnn_output': 'concat',
'rnn_dropout': 0.0,
'ctc_loss': 'mxnet_ctc_loss'
}
)
Model.__init__(self, params)
self.__batch_size = params['batch_size']
self.__output_length = 0
self.__data_shape = (self.batch_size,) + self.input_shape
self.__debug = logging.getLogger().isEnabledFor(logging.DEBUG) or os.environ.get('DLBS_DEBUG', '0') == '1'
if self.model_opts['conv_arch'] not in DeepSpeech2.CONV_ARCHS:
raise "Invalid conv arch ('%s'), must be one of '%s'" % (self.model_opts['conv_arch'], str(DeepSpeech2.CONV_ARCHS))
if self.model_opts['rnn_type'] not in DeepSpeech2.RNN_TYPES:
raise "Invalid RNN type ('%s'), must be one of '%s'" % (self.model_opts['rnn_type'], str(DeepSpeech2.RNN_TYPES))
if self.model_opts['brnn_output'] not in DeepSpeech2.BRNN_OUTPUT:
raise "Invalid BRNN output function ('%s'), must be one of '%s'" % (self.model_opts['brnn_output'], str(DeepSpeech2.BRNN_OUTPUT))
if self.model_opts['ctc_loss'] not in DeepSpeech2.CTC_LOSSES:
raise "Invalid ctc loss ('%s'), must be one of '%s'" % (self.model_opts['ctc_loss'], str(DeepSpeech2.CTC_LOSSES))
if self.model_opts['rnn_batch_norm'] is True:
self.model_opts['rnn_batch_norm'] = False
print("[WARNING] Batch norm is not supported in RNNs.")
if self.model_opts['brnn_share_i2h'] is True:
self.model_opts['brnn_share_i2h'] = False
print("[WARNING] Sharing input2hidden weights in BRNNs is not supported.")
print("Model options: " + str(self.model_opts))
logging.debug("Batch size: %d", self.batch_size)
logging.debug("Input length: %d", self.input_shape[1])
logging.debug("Num input features: %d", self.input_shape[2])
v = self.add_data_node()
self.log_shape("Input shape: %s", v)
v, length = self.add_conv_layers(v)
v, nrnn_features = self.add_rnn_layers(v, length)
v = mx.sym.Reshape(data=v, shape=(-1, nrnn_features))
self.log_shape("FC input shape: %s", v)
v = mx.sym.FullyConnected(data=v,
num_hidden=self.num_classes)
self.log_shape("FC output shape: %s", v)
if self.dtype == 'float16':
print("Casting logits to np.float32")
v = mx.sym.cast(data=v, dtype=np.float32)
if self.phase == 'training':
v_ctc = mx.sym.Reshape(data=v, shape=(length, self.batch_size, self.num_classes))
labels = mx.sym.Variable(name="softmax_label",
shape=(self.batch_size, length),
init=mx.init.Zero())
self.log_shape("CTC input shape: %s", v_ctc)
if self.model_opts['ctc_loss'] == 'warp_ctc_loss':
print("Using Baidu's Warp CTC Loss.")
print("[WARNING] WarpCTC was not tested and may not work.")
try:
v = mx.symbol.WarpCTC(data=v_ctc, label=labels)
except AttributeError:
print("[ERROR] WarpCTC symbol is not available. Recompile MXNET with WarpCTC support.")
raise
else:
print("Using CTCLoss from mx.symbol.contrib.")
ctc_loss = mx.sym.MakeLoss(mx.symbol.contrib.CTCLoss(data=v_ctc, label=labels, name='ctc'))
predictions = mx.sym.MakeLoss(mx.sym.SoftmaxActivation(data=v, name='softmax'))
v = mx.sym.Group([mx.sym.BlockGrad(predictions), ctc_loss])
else:
v = mx.symbol.softmax(data=v, name='softmax')
self.log_shape("Output shape: %s", v)
self.__output = v
self.__output_length = length
self._labels_shape = (self.__output_length, )
self._labels_range = (1, self.num_classes)
self.__ctc_metrics = CtcMetrics(seq_len=self.__output_length)
self._eval_metric = mx.metric.CustomMetric(feval=self.__ctc_metrics.accuracy, name='ctc_metric',
allow_extra_outputs=True)
def add_conv_layers(self, v):
length = self.input_shape[1]
nfeatures = self.input_shape[2]
defs = {
'1-layer-1D': {'channels': [1280], 'filters': [(11, nfeatures)], 'strides': [(2, 1)], 'pads': [(0, 0)]},
'2-layer-1D': {'channels': [640, 640], 'filters': [(5, nfeatures), (5, 1)], 'strides': [(1, 1), (2, 1)],
'pads': [(0, 0), (0, 0)]},
'3-layer-1D': {'channels': [512, 512, 512], 'filters': [(5, nfeatures), (5, 1), (5, 1)],
'strides': [(1, 1), (1, 1), (2, 1)], 'pads': [(0, 0), (0, 0), (0, 0)]},
'1-layer-2D': {'channels': [32], 'filters': [(11, 41)], 'strides': [(2, 2)], 'pads': [(0, 0)]},
'2-layer-2D': {'channels': [32, 32], 'filters': [(11, 41), (11, 21)], 'strides': [(2, 2), (1, 2)],
'pads': [(0, 0), (0, 0)]},
'3-layer-2D': {'channels': [32, 32, 96], 'filters': [(11, 41), (11, 21), (11, 21)],
'strides': [(2, 2), (1, 2), (1, 2)], 'pads': [(0, 0), (0, 0), (0, 0)]},
'2-layer-2D-v2': {'channels': [32, 32], 'filters': [(11, 41), (11, 21)],
'strides': [(3, 2), (1, 2)], 'pads': [(5, 20), (5, 10)]}
}
arch = defs[self.model_opts['conv_arch']]
for i in range(len(arch['filters'])):
name = 'conv%d' % i
v = DeepSpeech2.conv_bn(
name,
v,
kernel=arch['filters'][i],
stride=arch['strides'][i],
num_channels_out=arch['channels'][i],
pad=arch['pads'][i],
batch_norm=self.model_opts['conv_batch_norm'])
length = int(math.floor((length + 2*arch['pads'][i][0] - arch['filters'][i][0])/arch['strides'][i][0])) + 1
self.log_shape("Conv '" + name + "' output shape: %s", v)
logging.debug("Utterance length after conv layers is %d", length)
return v, length
def add_rnn_layers(self, v, length):
def _begin_state(rnn_cell, func=mx.sym.zeros, **kwargs):
if self.dtype == 'float32':
return None
assert not rnn_cell._modified, "After applying modifier cells (e.g. DropoutCell) the base " "cell cannot be called directly. Call the modifier cell instead."
states = []
for info in rnn_cell.state_info:
rnn_cell._init_counter += 1
if info is None:
state = func(name='%sbegin_state_%d' % (rnn_cell._prefix, rnn_cell._init_counter),
dtype=np.float16,
**kwargs)
else:
kwargs.update(info)
state = func(name='%sbegin_state_%d' % (rnn_cell._prefix, rnn_cell._init_counter),
dtype=np.float16,
**kwargs)
states.append(state)
return states
rnn_cell = mx.rnn.FusedRNNCell(
num_hidden=self.model_opts['rnn_layer_size'],
num_layers=self.model_opts['num_rnn_layers'],
bidirectional=self.model_opts['bidirectional'],
mode=self.model_opts['rnn_type'],
prefix='rnn',
dropout=self.model_opts['rnn_dropout']
)
v = mx.sym.Reshape(data=v, shape=(length, self.batch_size, -1))
self.log_shape("RNN input shape: %s", v)
v, _ = rnn_cell.unroll(
length=length,
inputs=v,
begin_state=_begin_state(rnn_cell),
layout='TNC',
merge_outputs=True
)
self.log_shape("RNN output shape: %s", v)
nfeatures = self.model_opts['rnn_layer_size']
if self.model_opts['bidirectional']:
if self.model_opts['brnn_output'] == 'sum':
outputs = mx.sym.split(data=v, num_outputs=2, axis=2)
v = outputs[0] + outputs[1]
else:
nfeatures = nfeatures * 2
return v, nfeatures
@staticmethod
def conv_bn(name, input, kernel, stride, num_channels_out, pad=(0, 0), batch_norm=False, activation='relu'):
logging.debug("Adding convolution layer kernel=%s, stride=%s, num_filters=%d, padding=%s",
str(kernel), str(stride), num_channels_out, str(pad))
v = mx.symbol.Convolution(name=name+'_conv', data=input, kernel=kernel,
stride=stride, num_filter=num_channels_out,
no_bias=batch_norm is True, pad=pad)
if batch_norm:
logging.debug("Adding batch norm layer")
v = mx.sym.BatchNorm(name=name+"_bn", data=v, fix_gamma=False,
eps=2e-5, momentum=0.9)
if activation:
logging.debug("Adding activation layer '%s'", activation)
v = mx.symbol.Activation(name=name+'_act', data=v, act_type=activation)
return v
|
Apache License 2.0
|
rlenglet/openfaucet
|
src/openfaucet/ofcontroller.py
|
OpenflowControllerStub.get_stats_flow
|
python
|
def get_stats_flow(self, match, table_id, out_port, callback,
timeout_callback=None, timeout=None):
xid = self.initiate_operation(
callback, timeout_callback, timeout=timeout,
cookie=(ofproto.OFPT_STATS_REQUEST, ofproto.OFPST_FLOW))
self.send_stats_request_flow(xid, match, table_id, out_port)
|
Request individual flow stats.
This operation is asynchronous: the flow stats are passed back
by calling the given callback as:
callback(flow_stats, reply_more)
with arguments:
flow_stats: A tuple of FlowStats objects containing each
the stats for an individual flow.
reply_more: If True, more callbacks will be made to the
callable after this one to completely terminate this
operation. If False, this is the last callback in this
operation.
Args:
match: A Match object describing the fields of the flows
to match.
table_id: The ID of the table to read, as an 8-bit
unsigned integer. 0xff for all tables or 0xfe for
emergency.
out_port: Require matching flows to include this as an
output port. A value of OFPP_NONE indicates no
restriction.
callback: The callable to be called with the replied data.
timeout_callback: The callable to be called in case the
operation times out.
timeout: The period, in seconds, before the operation times
out. If None, defaults to the default timeout.
|
https://github.com/rlenglet/openfaucet/blob/4ef1783fc74320e66ee7a71576dc91511f238a81/src/openfaucet/ofcontroller.py#L677-L712
|
import collections
import logging
import threading
import weakref
import twisted.internet.reactor
from zope import interface
from openfaucet import oferror
from openfaucet import ofproto
from openfaucet import ofprotoops
class IOpenflowController(interface.Interface):
def connection_made():
def connection_lost(reason):
def handle_packet_in(buffer_id, total_len, in_port, reason, data):
def handle_flow_removed(
match, cookie, priority, reason, duration_sec, duration_nsec,
idle_timeout, packet_count, byte_count):
def handle_port_status(reason, desc):
class IOpenflowControllerStub(interface.Interface):
def get_features(callback, timeout_callback=None, timeout=None):
features = interface.Attribute(
"""The SwitchFeatures object describing the switch features.
None if the handshake with the datapath has not yet been
completed.
This SwitchFeatures object is automatically updated by this
stub when any port status changes.
""")
def get_config(callback, timeout_callback=None, timeout=None):
def send_set_config(switch_config):
def send_packet_out(buffer_id, in_port, actions, data):
def send_flow_mod_add(
match, cookie, idle_timeout, hard_timeout, priority, buffer_id,
send_flow_rem, check_overlap, emerg, actions):
def send_flow_mod_modify(
strict, match, cookie, idle_timeout, hard_timeout, priority,
buffer_id, send_flow_rem, check_overlap, emerg, actions):
def send_flow_mod_delete(strict, match, priority, out_port):
def send_port_mod(port_no, hw_addr, config, mask, advertise):
def get_stats_desc(callback, timeout_callback=None, timeout=None):
def get_stats_flow(match, table_id, out_port, callback,
timeout_callback=None, timeout=None):
def get_stats_aggregate(match, table_id, out_port, callback,
timeout_callback=None, timeout=None):
def get_stats_table(callback, timeout_callback=None, timeout=None):
def get_stats_port(port_no, callback, timeout_callback=None,
timeout=None):
def get_stats_queue(port_no, queue_id, callback, timeout_callback=None,
timeout=None):
def barrier(callback, timeout_callback=None, timeout=None):
def get_queue_config(port_no, callback, timeout_callback=None,
timeout=None):
def raise_error_with_request(error_type, error_code):
class OpenflowControllerStub(ofprotoops.OpenflowProtocolOperations):
interface.implements(IOpenflowControllerStub)
def __init__(self):
ofprotoops.OpenflowProtocolOperations.__init__(self)
self._features = None
self._features_lock = threading.Lock()
def connectionMade(self):
ofprotoops.OpenflowProtocolOperations.connectionMade(self)
self._features = None
self.logger.info('controller stub configuration: controller=%r',
self.controller, extra=self.log_extra)
self.get_features(None, timeout_callback=self.transport.loseConnection)
def connectionLost(self, reason):
ofprotoops.OpenflowProtocolOperations.connectionLost(self, reason)
self.controller.connection_lost(reason)
@property
def features(self):
with self._features_lock:
return self._features
def get_features(self, callback, timeout_callback=None, timeout=None):
xid = self.initiate_operation(
callback, timeout_callback, timeout=timeout,
cookie=ofproto.OFPT_FEATURES_REQUEST)
self.send_features_request(xid)
def get_config(self, callback, timeout_callback=None, timeout=None):
xid = self.initiate_operation(
callback, timeout_callback, timeout=timeout,
cookie=ofproto.OFPT_GET_CONFIG_REQUEST)
self.send_get_config_request(xid)
def get_stats_desc(self, callback, timeout_callback=None, timeout=None):
xid = self.initiate_operation(
callback, timeout_callback, timeout=timeout,
cookie=(ofproto.OFPT_STATS_REQUEST, ofproto.OFPST_DESC))
self.send_stats_request_desc(xid)
|
Apache License 2.0
|
artyompal/tpu_models
|
models/official/retinanet/retinanet_model.py
|
_predict_postprocess
|
python
|
def _predict_postprocess(cls_outputs, box_outputs, labels, params):
predict_anchors = anchors.Anchors(
params['min_level'], params['max_level'], params['num_scales'],
params['aspect_ratios'], params['anchor_scale'], params['image_size'])
cls_outputs, box_outputs, anchor_boxes = postprocess.reshape_outputs(
cls_outputs, box_outputs, predict_anchors.boxes, params['min_level'],
params['max_level'], params['num_classes'])
boxes, scores, classes, num_detections = postprocess.generate_detections(
cls_outputs, box_outputs, anchor_boxes)
predictions = {
'detection_boxes': boxes,
'detection_classes': classes,
'detection_scores': scores,
'num_detections': num_detections,
}
if labels is not None:
predictions.update({
'image_info': labels['image_info'],
'source_id': labels['source_ids'],
'groundtruth_data': labels['groundtruth_data'],
})
return predictions
|
Post processes prediction outputs.
|
https://github.com/artyompal/tpu_models/blob/639306f30e085bb1cdb5b1118a4c96a2dbe14e3e/models/official/retinanet/retinanet_model.py#L331-L356
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import anchors
import coco_metric
import postprocess
import retinanet_architecture
_DEFAULT_BATCH_SIZE = 64
_WEIGHT_DECAY = 1e-4
def update_learning_rate_schedule_parameters(params):
batch_size = (
params['batch_size'] * params['num_shards']
if params['use_tpu'] else params['batch_size'])
params['adjusted_learning_rate'] = (
params['learning_rate'] * batch_size / _DEFAULT_BATCH_SIZE)
steps_per_epoch = params['num_examples_per_epoch'] / batch_size
params['lr_warmup_step'] = int(params['lr_warmup_epoch'] * steps_per_epoch)
params['first_lr_drop_step'] = int(
params['first_lr_drop_epoch'] * steps_per_epoch)
params['second_lr_drop_step'] = int(
params['second_lr_drop_epoch'] * steps_per_epoch)
def learning_rate_schedule(adjusted_learning_rate, lr_warmup_init,
lr_warmup_step, first_lr_drop_step,
second_lr_drop_step, global_step):
linear_warmup = (
lr_warmup_init + (tf.cast(global_step, dtype=tf.float32) / lr_warmup_step
* (adjusted_learning_rate - lr_warmup_init)))
learning_rate = tf.where(global_step < lr_warmup_step, linear_warmup,
adjusted_learning_rate)
lr_schedule = [[1.0, lr_warmup_step], [0.1, first_lr_drop_step],
[0.01, second_lr_drop_step]]
for mult, start_global_step in lr_schedule:
learning_rate = tf.where(global_step < start_global_step, learning_rate,
adjusted_learning_rate * mult)
return learning_rate
def focal_loss(logits, targets, alpha, gamma, normalizer):
with tf.name_scope('focal_loss'):
positive_label_mask = tf.equal(targets, 1.0)
cross_entropy = (
tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=logits))
probs = tf.sigmoid(logits)
probs_gt = tf.where(positive_label_mask, probs, 1.0 - probs)
modulator = tf.pow(1.0 - probs_gt, gamma)
loss = modulator * cross_entropy
weighted_loss = tf.where(positive_label_mask, alpha * loss,
(1.0 - alpha) * loss)
total_loss = tf.reduce_sum(weighted_loss)
total_loss /= normalizer
return total_loss
def _classification_loss(cls_outputs,
cls_targets,
num_positives,
alpha=0.25,
gamma=2.0):
normalizer = num_positives
classification_loss = focal_loss(cls_outputs, cls_targets, alpha, gamma,
normalizer)
return classification_loss
def _box_loss(box_outputs, box_targets, num_positives, delta=0.1):
normalizer = num_positives * 4.0
mask = tf.not_equal(box_targets, 0.0)
box_loss = tf.losses.huber_loss(
box_targets,
box_outputs,
weights=mask,
delta=delta,
reduction=tf.losses.Reduction.SUM)
box_loss /= normalizer
return box_loss
def detection_loss(cls_outputs, box_outputs, labels, params):
num_positives_sum = tf.reduce_sum(labels['mean_num_positives']) + 1.0
levels = cls_outputs.keys()
cls_losses = []
box_losses = []
for level in levels:
cls_targets_at_level = tf.one_hot(labels['cls_targets_%d' % level],
params['num_classes'])
bs, width, height, _, _ = cls_targets_at_level.get_shape().as_list()
cls_targets_at_level = tf.reshape(cls_targets_at_level,
[bs, width, height, -1])
box_targets_at_level = labels['box_targets_%d' % level]
cls_losses.append(
_classification_loss(
cls_outputs[level],
cls_targets_at_level,
num_positives_sum,
alpha=params['alpha'],
gamma=params['gamma']))
box_losses.append(
_box_loss(
box_outputs[level],
box_targets_at_level,
num_positives_sum,
delta=params['delta']))
cls_loss = tf.add_n(cls_losses)
box_loss = tf.add_n(box_losses)
total_loss = cls_loss + params['box_loss_weight'] * box_loss
return total_loss, cls_loss, box_loss
def add_metric_fn_inputs(params, cls_outputs, box_outputs, metric_fn_inputs):
cls_outputs_all = []
box_outputs_all = []
batch_size = tf.shape(cls_outputs[params['min_level']])[0]
for level in range(params['min_level'], params['max_level'] + 1):
cls_outputs_all.append(
tf.reshape(cls_outputs[level], [batch_size, -1, params['num_classes']]))
box_outputs_all.append(tf.reshape(box_outputs[level], [batch_size, -1, 4]))
cls_outputs_all = tf.concat(cls_outputs_all, 1)
box_outputs_all = tf.concat(box_outputs_all, 1)
cls_outputs_all_after_topk = []
box_outputs_all_after_topk = []
indices_all = []
classes_all = []
def _compute_top_k(x):
cls_outputs_per_sample, box_outputs_per_sample = x
cls_outputs_per_sample_reshape = tf.reshape(cls_outputs_per_sample, [-1])
_, cls_topk_indices = tf.nn.top_k(cls_outputs_per_sample_reshape,
k=anchors.MAX_DETECTION_POINTS)
indices = tf.div(cls_topk_indices, params['num_classes'])
classes = tf.mod(cls_topk_indices, params['num_classes'])
cls_indices = tf.stack([indices, classes], axis=1)
cls_outputs_after_topk = tf.gather_nd(cls_outputs_per_sample, cls_indices)
box_outputs_after_topk = tf.gather_nd(box_outputs_per_sample,
tf.expand_dims(indices, 1))
return [indices, classes, cls_outputs_after_topk, box_outputs_after_topk]
(indices_all, classes_all, cls_outputs_all_after_topk,
box_outputs_all_after_topk) = tf.map_fn(
_compute_top_k, [cls_outputs_all, box_outputs_all],
back_prop=False,
dtype=[tf.int32, tf.int32, tf.float32, tf.float32])
metric_fn_inputs['cls_outputs_all'] = cls_outputs_all_after_topk
metric_fn_inputs['box_outputs_all'] = box_outputs_all_after_topk
metric_fn_inputs['indices_all'] = indices_all
metric_fn_inputs['classes_all'] = classes_all
def coco_metric_fn(batch_size, anchor_labeler, filename=None, **kwargs):
detections_bs = []
for index in range(batch_size):
cls_outputs_per_sample = kwargs['cls_outputs_all'][index]
box_outputs_per_sample = kwargs['box_outputs_all'][index]
indices_per_sample = kwargs['indices_all'][index]
classes_per_sample = kwargs['classes_all'][index]
detections = anchor_labeler.generate_detections(
cls_outputs_per_sample, box_outputs_per_sample, indices_per_sample,
classes_per_sample, tf.slice(kwargs['source_ids'], [index], [1]),
tf.slice(kwargs['image_scales'], [index], [1]))
detections_bs.append(detections)
eval_metric = coco_metric.EvaluationMetric(filename=filename)
coco_metrics = eval_metric.estimator_metric_fn(detections_bs,
kwargs['groundtruth_data'])
return coco_metrics
|
Apache License 2.0
|
timbrel/gitsavvy
|
core/interfaces/status.py
|
StatusInterface.render
|
python
|
def render(self, nuke_cursors=False):
self.refresh_view_state()
self.just_render(nuke_cursors)
if nuke_cursors:
self.reset_cursor()
|
Refresh view state and render.
|
https://github.com/timbrel/gitsavvy/blob/10bd373e39462f7b404c28446dba428b32877b38/core/interfaces/status.py#L243-L249
|
from functools import partial, wraps
from itertools import chain
import os
import threading
import sublime
from sublime_plugin import WindowCommand, TextCommand
from ..git_mixins.status import FileStatus
from ..commands import GsNavigate
from ...common import ui
from ..git_command import GitCommand
from ...common import util
from GitSavvy.core import store
flatten = chain.from_iterable
MYPY = False
if MYPY:
from typing import Iterable, Iterator, List, Optional, Tuple
EXTRACT_FILENAME_RE = (
r"^(?: .+ -> | [ -] (?!\(\d+\) ))"
r"(?!Your working directory is clean\.)"
r"(\S.*)$"
)
def distinct_until_state_changed(just_render_fn):
previous_state = {}
@wraps(just_render_fn)
def wrapper(self, *args, **kwargs):
nonlocal previous_state
current_state = self.state
if current_state != previous_state:
just_render_fn(self, *args, **kwargs)
previous_state = current_state.copy()
return wrapper
class GsShowStatusCommand(WindowCommand, GitCommand):
def run(self):
StatusInterface(repo_path=self.repo_path)
class StatusInterface(ui.Interface, GitCommand):
interface_type = "status"
syntax_file = "Packages/GitSavvy/syntax/status.sublime-syntax"
template = """\
BRANCH: {branch_status}
ROOT: {git_root}
HEAD: {head}
{< unstaged_files}
{< untracked_files}
{< staged_files}
{< merge_conflicts}
{< no_status_message}
{< stashes}
{< help}
"""
template_help = """
################### ###############
## SELECTED FILE ## ## ALL FILES ##
################### ###############
[o] open file [a] stage all unstaged files
[s] stage file [A] stage all unstaged and untracked files
[u] unstage file [U] unstage all staged files
[d] discard changes to file [D] discard all unstaged changes
[h] open file on remote
[M] launch external merge tool
[l] diff file inline [f] diff all files
[e] diff file [F] diff all cached files
############# #############
## ACTIONS ## ## STASHES ##
############# #############
[c] commit [t][a] apply stash
[C] commit, including unstaged [t][p] pop stash
[m] amend previous commit [t][s] show stash
[p] push current branch [t][c] create stash
[t][u] create stash including untracked files
[i] ignore file [t][g] create stash of staged changes only
[I] ignore pattern [t][d] drop stash
[B] abort merge
###########
## OTHER ##
###########
[g] show graph repop history
[?] toggle this help menu
[tab] transition to next dashboard
[SHIFT-tab] transition to previous dashboard
[.] move cursor to next file
[,] move cursor to previous file
{conflicts_bindings}
-
"""
conflicts_keybindings = """
###############
## CONFLICTS ##
###############
[y] use version from your commit
[b] use version from the base
"""
template_staged = """
STAGED:
{}
"""
template_unstaged = """
UNSTAGED:
{}
"""
template_untracked = """
UNTRACKED:
{}
"""
template_merge_conflicts = """
MERGE CONFLICTS:
{}
"""
template_stashes = """
STASHES:
{}
"""
def __init__(self, *args, **kwargs):
if self._initialized:
return
self.conflicts_keybindings = "\n".join(line[2:] for line in self.conflicts_keybindings.split("\n"))
self._lock = threading.Lock()
self.state = {
'staged_files': [],
'unstaged_files': [],
'untracked_files': [],
'merge_conflicts': [],
'clean': True,
'long_status': '',
'git_root': '',
'show_help': True,
'head': '',
'stashes': []
}
super().__init__(*args, **kwargs)
def title(self):
return "STATUS: {}".format(os.path.basename(self.repo_path))
def refresh_view_state(self):
for thunk in (
lambda: {'head': self.get_latest_commit_msg_for_head()},
lambda: {'stashes': self.get_stashes()},
):
sublime.set_timeout_async(
partial(self.update_state, thunk, then=self.just_render)
)
self.view.run_command("gs_update_status")
status = store.current_state(self.repo_path).get("status")
if status:
self.update_state(status._asdict())
self.update_state({
'git_root': self.short_repo_path,
'show_help': not self.view.settings().get("git_savvy.help_hidden")
})
def update_state(self, data, then=None):
if callable(data):
data = data()
with self._lock:
self.state.update(data)
if callable(then):
then()
|
MIT License
|
lordmauve/adventurelib
|
test_adventurelib.py
|
active_context
|
python
|
def active_context(ctx):
prev_ctx = adventurelib.current_context
adventurelib.set_context(ctx)
try:
yield
finally:
adventurelib.set_context(prev_ctx)
|
Context manager to set the current command context.
|
https://github.com/lordmauve/adventurelib/blob/9e182659186e8721e7daa91ba92cc6d82fd594c3/test_adventurelib.py#L14-L21
|
from unittest.mock import patch
from contextlib import redirect_stdout, contextmanager
from io import StringIO
import pytest
import adventurelib
from adventurelib import Pattern, when, _handle_command, say, Room, Item, Bag
orig_commands = adventurelib.commands[:]
@contextmanager
|
MIT License
|
google/eclipse2017
|
image-processor/daemon/app/pipeline.py
|
get_file_from_gcs
|
python
|
def get_file_from_gcs(storage_client, fname):
try:
blob = storage_client.get_bucket(config.GCS_BUCKET).get_blob(fname)
except Exception, e:
msg = 'Failed to download {0} from Cloud Storage.'
logging.exception(msg.format(fname))
return False
if blob:
fpath = '{0}/{1}'.format(constants.IMAGE_PROCESSOR_DATA_DIR, fname)
if not os.path.isfile(fpath):
with open(fpath, 'w+') as file_obj:
try:
blob.download_to_file(file_obj)
msg = 'Successfully downloaded {0} from GCS'
logging.info(msg.format(fname))
except Exception, e:
msg = 'Failed to download {0} from Cloud Storage.'
logging.exception(msg.format(fname))
return None
return fname
else:
return None
|
Download all new files from GCS bucket w/ url <src> to destination folder.
Must be outside of pipeline class for use as multiprocess map worker
|
https://github.com/google/eclipse2017/blob/a328c6d437638b1fe89aa8a24579406f01fe970d/image-processor/daemon/app/pipeline.py#L33-L63
|
from datetime import datetime
import logging
import subprocess
from functools import partial
from multiprocessing import Pool
from itertools import compress
import os
import random
import cv2
from google.cloud import datastore, storage
from common import config, constants
from common import datastore_schema as ds
from common.find_circles import findCircles
import numpy as np
from eclipse_gis import eclipse_gis
from shapely.geometry import Point
|
Apache License 2.0
|
facebookresearch/compilergym
|
compiler_gym/bin/manual_env.py
|
ActionHistoryElement.has_no_effect
|
python
|
def has_no_effect(self):
return self.info.get("action_had_no_effect")
|
Determine if the service thinks this action had no effect
|
https://github.com/facebookresearch/compilergym/blob/00ae8c0d080da4d429f95398be1df01b5d6e7b71/compiler_gym/bin/manual_env.py#L259-L261
|
import cmd
import random
import readline
import sys
from itertools import islice
from absl import app, flags
from compiler_gym.envs import CompilerEnv
from compiler_gym.util.flags.benchmark_from_flags import benchmark_from_flags
from compiler_gym.util.flags.env_from_flags import env_from_flags
from compiler_gym.util.shell_format import emph
from compiler_gym.util.tabulate import tabulate
from compiler_gym.util.timer import Timer
FLAGS = flags.FLAGS
tutorial = "**************************".join(
__doc__.split("**************************")[1:]
)
class ActionHistoryElement:
def __init__(self, action_name, action_index, observation, reward, done, info):
self.action_name = action_name
self.action_index = action_index
self.observation = observation
self.reward = reward
self.done = done
self.info = info
|
MIT License
|
docusign/docusign-python-client
|
docusign_esign/models/list.py
|
List.conditional_parent_label
|
python
|
def conditional_parent_label(self, conditional_parent_label):
self._conditional_parent_label = conditional_parent_label
|
Sets the conditional_parent_label of this List.
For conditional fields this is the TabLabel of the parent tab that controls this tab's visibility. # noqa: E501
:param conditional_parent_label: The conditional_parent_label of this List. # noqa: E501
:type: str
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/list.py#L958-L967
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class List(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'anchor_allow_white_space_in_characters': 'str',
'anchor_allow_white_space_in_characters_metadata': 'PropertyMetadata',
'anchor_case_sensitive': 'str',
'anchor_case_sensitive_metadata': 'PropertyMetadata',
'anchor_horizontal_alignment': 'str',
'anchor_horizontal_alignment_metadata': 'PropertyMetadata',
'anchor_ignore_if_not_present': 'str',
'anchor_ignore_if_not_present_metadata': 'PropertyMetadata',
'anchor_match_whole_word': 'str',
'anchor_match_whole_word_metadata': 'PropertyMetadata',
'anchor_string': 'str',
'anchor_string_metadata': 'PropertyMetadata',
'anchor_tab_processor_version': 'str',
'anchor_tab_processor_version_metadata': 'PropertyMetadata',
'anchor_units': 'str',
'anchor_units_metadata': 'PropertyMetadata',
'anchor_x_offset': 'str',
'anchor_x_offset_metadata': 'PropertyMetadata',
'anchor_y_offset': 'str',
'anchor_y_offset_metadata': 'PropertyMetadata',
'bold': 'str',
'bold_metadata': 'PropertyMetadata',
'conditional_parent_label': 'str',
'conditional_parent_label_metadata': 'PropertyMetadata',
'conditional_parent_value': 'str',
'conditional_parent_value_metadata': 'PropertyMetadata',
'custom_tab_id': 'str',
'custom_tab_id_metadata': 'PropertyMetadata',
'document_id': 'str',
'document_id_metadata': 'PropertyMetadata',
'error_details': 'ErrorDetails',
'font': 'str',
'font_color': 'str',
'font_color_metadata': 'PropertyMetadata',
'font_metadata': 'PropertyMetadata',
'font_size': 'str',
'font_size_metadata': 'PropertyMetadata',
'form_order': 'str',
'form_order_metadata': 'PropertyMetadata',
'form_page_label': 'str',
'form_page_label_metadata': 'PropertyMetadata',
'form_page_number': 'str',
'form_page_number_metadata': 'PropertyMetadata',
'height': 'str',
'height_metadata': 'PropertyMetadata',
'italic': 'str',
'italic_metadata': 'PropertyMetadata',
'list_items': 'list[ListItem]',
'list_selected_value': 'str',
'list_selected_value_metadata': 'PropertyMetadata',
'locale_policy': 'LocalePolicyTab',
'locked': 'str',
'locked_metadata': 'PropertyMetadata',
'merge_field': 'MergeField',
'merge_field_xml': 'str',
'page_number': 'str',
'page_number_metadata': 'PropertyMetadata',
'recipient_id': 'str',
'recipient_id_guid': 'str',
'recipient_id_guid_metadata': 'PropertyMetadata',
'recipient_id_metadata': 'PropertyMetadata',
'require_all': 'str',
'require_all_metadata': 'PropertyMetadata',
'required': 'str',
'required_metadata': 'PropertyMetadata',
'require_initial_on_shared_change': 'str',
'require_initial_on_shared_change_metadata': 'PropertyMetadata',
'sender_required': 'str',
'sender_required_metadata': 'PropertyMetadata',
'shared': 'str',
'shared_metadata': 'PropertyMetadata',
'share_to_recipients': 'str',
'share_to_recipients_metadata': 'PropertyMetadata',
'smart_contract_information': 'SmartContractInformation',
'source': 'str',
'status': 'str',
'status_metadata': 'PropertyMetadata',
'tab_group_labels': 'list[str]',
'tab_group_labels_metadata': 'PropertyMetadata',
'tab_id': 'str',
'tab_id_metadata': 'PropertyMetadata',
'tab_label': 'str',
'tab_label_metadata': 'PropertyMetadata',
'tab_order': 'str',
'tab_order_metadata': 'PropertyMetadata',
'tab_type': 'str',
'tab_type_metadata': 'PropertyMetadata',
'template_locked': 'str',
'template_locked_metadata': 'PropertyMetadata',
'template_required': 'str',
'template_required_metadata': 'PropertyMetadata',
'tooltip': 'str',
'tool_tip_metadata': 'PropertyMetadata',
'underline': 'str',
'underline_metadata': 'PropertyMetadata',
'value': 'str',
'value_metadata': 'PropertyMetadata',
'width': 'str',
'width_metadata': 'PropertyMetadata',
'x_position': 'str',
'x_position_metadata': 'PropertyMetadata',
'y_position': 'str',
'y_position_metadata': 'PropertyMetadata'
}
attribute_map = {
'anchor_allow_white_space_in_characters': 'anchorAllowWhiteSpaceInCharacters',
'anchor_allow_white_space_in_characters_metadata': 'anchorAllowWhiteSpaceInCharactersMetadata',
'anchor_case_sensitive': 'anchorCaseSensitive',
'anchor_case_sensitive_metadata': 'anchorCaseSensitiveMetadata',
'anchor_horizontal_alignment': 'anchorHorizontalAlignment',
'anchor_horizontal_alignment_metadata': 'anchorHorizontalAlignmentMetadata',
'anchor_ignore_if_not_present': 'anchorIgnoreIfNotPresent',
'anchor_ignore_if_not_present_metadata': 'anchorIgnoreIfNotPresentMetadata',
'anchor_match_whole_word': 'anchorMatchWholeWord',
'anchor_match_whole_word_metadata': 'anchorMatchWholeWordMetadata',
'anchor_string': 'anchorString',
'anchor_string_metadata': 'anchorStringMetadata',
'anchor_tab_processor_version': 'anchorTabProcessorVersion',
'anchor_tab_processor_version_metadata': 'anchorTabProcessorVersionMetadata',
'anchor_units': 'anchorUnits',
'anchor_units_metadata': 'anchorUnitsMetadata',
'anchor_x_offset': 'anchorXOffset',
'anchor_x_offset_metadata': 'anchorXOffsetMetadata',
'anchor_y_offset': 'anchorYOffset',
'anchor_y_offset_metadata': 'anchorYOffsetMetadata',
'bold': 'bold',
'bold_metadata': 'boldMetadata',
'conditional_parent_label': 'conditionalParentLabel',
'conditional_parent_label_metadata': 'conditionalParentLabelMetadata',
'conditional_parent_value': 'conditionalParentValue',
'conditional_parent_value_metadata': 'conditionalParentValueMetadata',
'custom_tab_id': 'customTabId',
'custom_tab_id_metadata': 'customTabIdMetadata',
'document_id': 'documentId',
'document_id_metadata': 'documentIdMetadata',
'error_details': 'errorDetails',
'font': 'font',
'font_color': 'fontColor',
'font_color_metadata': 'fontColorMetadata',
'font_metadata': 'fontMetadata',
'font_size': 'fontSize',
'font_size_metadata': 'fontSizeMetadata',
'form_order': 'formOrder',
'form_order_metadata': 'formOrderMetadata',
'form_page_label': 'formPageLabel',
'form_page_label_metadata': 'formPageLabelMetadata',
'form_page_number': 'formPageNumber',
'form_page_number_metadata': 'formPageNumberMetadata',
'height': 'height',
'height_metadata': 'heightMetadata',
'italic': 'italic',
'italic_metadata': 'italicMetadata',
'list_items': 'listItems',
'list_selected_value': 'listSelectedValue',
'list_selected_value_metadata': 'listSelectedValueMetadata',
'locale_policy': 'localePolicy',
'locked': 'locked',
'locked_metadata': 'lockedMetadata',
'merge_field': 'mergeField',
'merge_field_xml': 'mergeFieldXml',
'page_number': 'pageNumber',
'page_number_metadata': 'pageNumberMetadata',
'recipient_id': 'recipientId',
'recipient_id_guid': 'recipientIdGuid',
'recipient_id_guid_metadata': 'recipientIdGuidMetadata',
'recipient_id_metadata': 'recipientIdMetadata',
'require_all': 'requireAll',
'require_all_metadata': 'requireAllMetadata',
'required': 'required',
'required_metadata': 'requiredMetadata',
'require_initial_on_shared_change': 'requireInitialOnSharedChange',
'require_initial_on_shared_change_metadata': 'requireInitialOnSharedChangeMetadata',
'sender_required': 'senderRequired',
'sender_required_metadata': 'senderRequiredMetadata',
'shared': 'shared',
'shared_metadata': 'sharedMetadata',
'share_to_recipients': 'shareToRecipients',
'share_to_recipients_metadata': 'shareToRecipientsMetadata',
'smart_contract_information': 'smartContractInformation',
'source': 'source',
'status': 'status',
'status_metadata': 'statusMetadata',
'tab_group_labels': 'tabGroupLabels',
'tab_group_labels_metadata': 'tabGroupLabelsMetadata',
'tab_id': 'tabId',
'tab_id_metadata': 'tabIdMetadata',
'tab_label': 'tabLabel',
'tab_label_metadata': 'tabLabelMetadata',
'tab_order': 'tabOrder',
'tab_order_metadata': 'tabOrderMetadata',
'tab_type': 'tabType',
'tab_type_metadata': 'tabTypeMetadata',
'template_locked': 'templateLocked',
'template_locked_metadata': 'templateLockedMetadata',
'template_required': 'templateRequired',
'template_required_metadata': 'templateRequiredMetadata',
'tooltip': 'tooltip',
'tool_tip_metadata': 'toolTipMetadata',
'underline': 'underline',
'underline_metadata': 'underlineMetadata',
'value': 'value',
'value_metadata': 'valueMetadata',
'width': 'width',
'width_metadata': 'widthMetadata',
'x_position': 'xPosition',
'x_position_metadata': 'xPositionMetadata',
'y_position': 'yPosition',
'y_position_metadata': 'yPositionMetadata'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._anchor_allow_white_space_in_characters = None
self._anchor_allow_white_space_in_characters_metadata = None
self._anchor_case_sensitive = None
self._anchor_case_sensitive_metadata = None
self._anchor_horizontal_alignment = None
self._anchor_horizontal_alignment_metadata = None
self._anchor_ignore_if_not_present = None
self._anchor_ignore_if_not_present_metadata = None
self._anchor_match_whole_word = None
self._anchor_match_whole_word_metadata = None
self._anchor_string = None
self._anchor_string_metadata = None
self._anchor_tab_processor_version = None
self._anchor_tab_processor_version_metadata = None
self._anchor_units = None
self._anchor_units_metadata = None
self._anchor_x_offset = None
self._anchor_x_offset_metadata = None
self._anchor_y_offset = None
self._anchor_y_offset_metadata = None
self._bold = None
self._bold_metadata = None
self._conditional_parent_label = None
self._conditional_parent_label_metadata = None
self._conditional_parent_value = None
self._conditional_parent_value_metadata = None
self._custom_tab_id = None
self._custom_tab_id_metadata = None
self._document_id = None
self._document_id_metadata = None
self._error_details = None
self._font = None
self._font_color = None
self._font_color_metadata = None
self._font_metadata = None
self._font_size = None
self._font_size_metadata = None
self._form_order = None
self._form_order_metadata = None
self._form_page_label = None
self._form_page_label_metadata = None
self._form_page_number = None
self._form_page_number_metadata = None
self._height = None
self._height_metadata = None
self._italic = None
self._italic_metadata = None
self._list_items = None
self._list_selected_value = None
self._list_selected_value_metadata = None
self._locale_policy = None
self._locked = None
self._locked_metadata = None
self._merge_field = None
self._merge_field_xml = None
self._page_number = None
self._page_number_metadata = None
self._recipient_id = None
self._recipient_id_guid = None
self._recipient_id_guid_metadata = None
self._recipient_id_metadata = None
self._require_all = None
self._require_all_metadata = None
self._required = None
self._required_metadata = None
self._require_initial_on_shared_change = None
self._require_initial_on_shared_change_metadata = None
self._sender_required = None
self._sender_required_metadata = None
self._shared = None
self._shared_metadata = None
self._share_to_recipients = None
self._share_to_recipients_metadata = None
self._smart_contract_information = None
self._source = None
self._status = None
self._status_metadata = None
self._tab_group_labels = None
self._tab_group_labels_metadata = None
self._tab_id = None
self._tab_id_metadata = None
self._tab_label = None
self._tab_label_metadata = None
self._tab_order = None
self._tab_order_metadata = None
self._tab_type = None
self._tab_type_metadata = None
self._template_locked = None
self._template_locked_metadata = None
self._template_required = None
self._template_required_metadata = None
self._tooltip = None
self._tool_tip_metadata = None
self._underline = None
self._underline_metadata = None
self._value = None
self._value_metadata = None
self._width = None
self._width_metadata = None
self._x_position = None
self._x_position_metadata = None
self._y_position = None
self._y_position_metadata = None
self.discriminator = None
setattr(self, "_{}".format('anchor_allow_white_space_in_characters'), kwargs.get('anchor_allow_white_space_in_characters', None))
setattr(self, "_{}".format('anchor_allow_white_space_in_characters_metadata'), kwargs.get('anchor_allow_white_space_in_characters_metadata', None))
setattr(self, "_{}".format('anchor_case_sensitive'), kwargs.get('anchor_case_sensitive', None))
setattr(self, "_{}".format('anchor_case_sensitive_metadata'), kwargs.get('anchor_case_sensitive_metadata', None))
setattr(self, "_{}".format('anchor_horizontal_alignment'), kwargs.get('anchor_horizontal_alignment', None))
setattr(self, "_{}".format('anchor_horizontal_alignment_metadata'), kwargs.get('anchor_horizontal_alignment_metadata', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present'), kwargs.get('anchor_ignore_if_not_present', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present_metadata'), kwargs.get('anchor_ignore_if_not_present_metadata', None))
setattr(self, "_{}".format('anchor_match_whole_word'), kwargs.get('anchor_match_whole_word', None))
setattr(self, "_{}".format('anchor_match_whole_word_metadata'), kwargs.get('anchor_match_whole_word_metadata', None))
setattr(self, "_{}".format('anchor_string'), kwargs.get('anchor_string', None))
setattr(self, "_{}".format('anchor_string_metadata'), kwargs.get('anchor_string_metadata', None))
setattr(self, "_{}".format('anchor_tab_processor_version'), kwargs.get('anchor_tab_processor_version', None))
setattr(self, "_{}".format('anchor_tab_processor_version_metadata'), kwargs.get('anchor_tab_processor_version_metadata', None))
setattr(self, "_{}".format('anchor_units'), kwargs.get('anchor_units', None))
setattr(self, "_{}".format('anchor_units_metadata'), kwargs.get('anchor_units_metadata', None))
setattr(self, "_{}".format('anchor_x_offset'), kwargs.get('anchor_x_offset', None))
setattr(self, "_{}".format('anchor_x_offset_metadata'), kwargs.get('anchor_x_offset_metadata', None))
setattr(self, "_{}".format('anchor_y_offset'), kwargs.get('anchor_y_offset', None))
setattr(self, "_{}".format('anchor_y_offset_metadata'), kwargs.get('anchor_y_offset_metadata', None))
setattr(self, "_{}".format('bold'), kwargs.get('bold', None))
setattr(self, "_{}".format('bold_metadata'), kwargs.get('bold_metadata', None))
setattr(self, "_{}".format('conditional_parent_label'), kwargs.get('conditional_parent_label', None))
setattr(self, "_{}".format('conditional_parent_label_metadata'), kwargs.get('conditional_parent_label_metadata', None))
setattr(self, "_{}".format('conditional_parent_value'), kwargs.get('conditional_parent_value', None))
setattr(self, "_{}".format('conditional_parent_value_metadata'), kwargs.get('conditional_parent_value_metadata', None))
setattr(self, "_{}".format('custom_tab_id'), kwargs.get('custom_tab_id', None))
setattr(self, "_{}".format('custom_tab_id_metadata'), kwargs.get('custom_tab_id_metadata', None))
setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None))
setattr(self, "_{}".format('document_id_metadata'), kwargs.get('document_id_metadata', None))
setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None))
setattr(self, "_{}".format('font'), kwargs.get('font', None))
setattr(self, "_{}".format('font_color'), kwargs.get('font_color', None))
setattr(self, "_{}".format('font_color_metadata'), kwargs.get('font_color_metadata', None))
setattr(self, "_{}".format('font_metadata'), kwargs.get('font_metadata', None))
setattr(self, "_{}".format('font_size'), kwargs.get('font_size', None))
setattr(self, "_{}".format('font_size_metadata'), kwargs.get('font_size_metadata', None))
setattr(self, "_{}".format('form_order'), kwargs.get('form_order', None))
setattr(self, "_{}".format('form_order_metadata'), kwargs.get('form_order_metadata', None))
setattr(self, "_{}".format('form_page_label'), kwargs.get('form_page_label', None))
setattr(self, "_{}".format('form_page_label_metadata'), kwargs.get('form_page_label_metadata', None))
setattr(self, "_{}".format('form_page_number'), kwargs.get('form_page_number', None))
setattr(self, "_{}".format('form_page_number_metadata'), kwargs.get('form_page_number_metadata', None))
setattr(self, "_{}".format('height'), kwargs.get('height', None))
setattr(self, "_{}".format('height_metadata'), kwargs.get('height_metadata', None))
setattr(self, "_{}".format('italic'), kwargs.get('italic', None))
setattr(self, "_{}".format('italic_metadata'), kwargs.get('italic_metadata', None))
setattr(self, "_{}".format('list_items'), kwargs.get('list_items', None))
setattr(self, "_{}".format('list_selected_value'), kwargs.get('list_selected_value', None))
setattr(self, "_{}".format('list_selected_value_metadata'), kwargs.get('list_selected_value_metadata', None))
setattr(self, "_{}".format('locale_policy'), kwargs.get('locale_policy', None))
setattr(self, "_{}".format('locked'), kwargs.get('locked', None))
setattr(self, "_{}".format('locked_metadata'), kwargs.get('locked_metadata', None))
setattr(self, "_{}".format('merge_field'), kwargs.get('merge_field', None))
setattr(self, "_{}".format('merge_field_xml'), kwargs.get('merge_field_xml', None))
setattr(self, "_{}".format('page_number'), kwargs.get('page_number', None))
setattr(self, "_{}".format('page_number_metadata'), kwargs.get('page_number_metadata', None))
setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None))
setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None))
setattr(self, "_{}".format('recipient_id_guid_metadata'), kwargs.get('recipient_id_guid_metadata', None))
setattr(self, "_{}".format('recipient_id_metadata'), kwargs.get('recipient_id_metadata', None))
setattr(self, "_{}".format('require_all'), kwargs.get('require_all', None))
setattr(self, "_{}".format('require_all_metadata'), kwargs.get('require_all_metadata', None))
setattr(self, "_{}".format('required'), kwargs.get('required', None))
setattr(self, "_{}".format('required_metadata'), kwargs.get('required_metadata', None))
setattr(self, "_{}".format('require_initial_on_shared_change'), kwargs.get('require_initial_on_shared_change', None))
setattr(self, "_{}".format('require_initial_on_shared_change_metadata'), kwargs.get('require_initial_on_shared_change_metadata', None))
setattr(self, "_{}".format('sender_required'), kwargs.get('sender_required', None))
setattr(self, "_{}".format('sender_required_metadata'), kwargs.get('sender_required_metadata', None))
setattr(self, "_{}".format('shared'), kwargs.get('shared', None))
setattr(self, "_{}".format('shared_metadata'), kwargs.get('shared_metadata', None))
setattr(self, "_{}".format('share_to_recipients'), kwargs.get('share_to_recipients', None))
setattr(self, "_{}".format('share_to_recipients_metadata'), kwargs.get('share_to_recipients_metadata', None))
setattr(self, "_{}".format('smart_contract_information'), kwargs.get('smart_contract_information', None))
setattr(self, "_{}".format('source'), kwargs.get('source', None))
setattr(self, "_{}".format('status'), kwargs.get('status', None))
setattr(self, "_{}".format('status_metadata'), kwargs.get('status_metadata', None))
setattr(self, "_{}".format('tab_group_labels'), kwargs.get('tab_group_labels', None))
setattr(self, "_{}".format('tab_group_labels_metadata'), kwargs.get('tab_group_labels_metadata', None))
setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None))
setattr(self, "_{}".format('tab_id_metadata'), kwargs.get('tab_id_metadata', None))
setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None))
setattr(self, "_{}".format('tab_label_metadata'), kwargs.get('tab_label_metadata', None))
setattr(self, "_{}".format('tab_order'), kwargs.get('tab_order', None))
setattr(self, "_{}".format('tab_order_metadata'), kwargs.get('tab_order_metadata', None))
setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None))
setattr(self, "_{}".format('tab_type_metadata'), kwargs.get('tab_type_metadata', None))
setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None))
setattr(self, "_{}".format('template_locked_metadata'), kwargs.get('template_locked_metadata', None))
setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None))
setattr(self, "_{}".format('template_required_metadata'), kwargs.get('template_required_metadata', None))
setattr(self, "_{}".format('tooltip'), kwargs.get('tooltip', None))
setattr(self, "_{}".format('tool_tip_metadata'), kwargs.get('tool_tip_metadata', None))
setattr(self, "_{}".format('underline'), kwargs.get('underline', None))
setattr(self, "_{}".format('underline_metadata'), kwargs.get('underline_metadata', None))
setattr(self, "_{}".format('value'), kwargs.get('value', None))
setattr(self, "_{}".format('value_metadata'), kwargs.get('value_metadata', None))
setattr(self, "_{}".format('width'), kwargs.get('width', None))
setattr(self, "_{}".format('width_metadata'), kwargs.get('width_metadata', None))
setattr(self, "_{}".format('x_position'), kwargs.get('x_position', None))
setattr(self, "_{}".format('x_position_metadata'), kwargs.get('x_position_metadata', None))
setattr(self, "_{}".format('y_position'), kwargs.get('y_position', None))
setattr(self, "_{}".format('y_position_metadata'), kwargs.get('y_position_metadata', None))
@property
def anchor_allow_white_space_in_characters(self):
return self._anchor_allow_white_space_in_characters
@anchor_allow_white_space_in_characters.setter
def anchor_allow_white_space_in_characters(self, anchor_allow_white_space_in_characters):
self._anchor_allow_white_space_in_characters = anchor_allow_white_space_in_characters
@property
def anchor_allow_white_space_in_characters_metadata(self):
return self._anchor_allow_white_space_in_characters_metadata
@anchor_allow_white_space_in_characters_metadata.setter
def anchor_allow_white_space_in_characters_metadata(self, anchor_allow_white_space_in_characters_metadata):
self._anchor_allow_white_space_in_characters_metadata = anchor_allow_white_space_in_characters_metadata
@property
def anchor_case_sensitive(self):
return self._anchor_case_sensitive
@anchor_case_sensitive.setter
def anchor_case_sensitive(self, anchor_case_sensitive):
self._anchor_case_sensitive = anchor_case_sensitive
@property
def anchor_case_sensitive_metadata(self):
return self._anchor_case_sensitive_metadata
@anchor_case_sensitive_metadata.setter
def anchor_case_sensitive_metadata(self, anchor_case_sensitive_metadata):
self._anchor_case_sensitive_metadata = anchor_case_sensitive_metadata
@property
def anchor_horizontal_alignment(self):
return self._anchor_horizontal_alignment
@anchor_horizontal_alignment.setter
def anchor_horizontal_alignment(self, anchor_horizontal_alignment):
self._anchor_horizontal_alignment = anchor_horizontal_alignment
@property
def anchor_horizontal_alignment_metadata(self):
return self._anchor_horizontal_alignment_metadata
@anchor_horizontal_alignment_metadata.setter
def anchor_horizontal_alignment_metadata(self, anchor_horizontal_alignment_metadata):
self._anchor_horizontal_alignment_metadata = anchor_horizontal_alignment_metadata
@property
def anchor_ignore_if_not_present(self):
return self._anchor_ignore_if_not_present
@anchor_ignore_if_not_present.setter
def anchor_ignore_if_not_present(self, anchor_ignore_if_not_present):
self._anchor_ignore_if_not_present = anchor_ignore_if_not_present
@property
def anchor_ignore_if_not_present_metadata(self):
return self._anchor_ignore_if_not_present_metadata
@anchor_ignore_if_not_present_metadata.setter
def anchor_ignore_if_not_present_metadata(self, anchor_ignore_if_not_present_metadata):
self._anchor_ignore_if_not_present_metadata = anchor_ignore_if_not_present_metadata
@property
def anchor_match_whole_word(self):
return self._anchor_match_whole_word
@anchor_match_whole_word.setter
def anchor_match_whole_word(self, anchor_match_whole_word):
self._anchor_match_whole_word = anchor_match_whole_word
@property
def anchor_match_whole_word_metadata(self):
return self._anchor_match_whole_word_metadata
@anchor_match_whole_word_metadata.setter
def anchor_match_whole_word_metadata(self, anchor_match_whole_word_metadata):
self._anchor_match_whole_word_metadata = anchor_match_whole_word_metadata
@property
def anchor_string(self):
return self._anchor_string
@anchor_string.setter
def anchor_string(self, anchor_string):
self._anchor_string = anchor_string
@property
def anchor_string_metadata(self):
return self._anchor_string_metadata
@anchor_string_metadata.setter
def anchor_string_metadata(self, anchor_string_metadata):
self._anchor_string_metadata = anchor_string_metadata
@property
def anchor_tab_processor_version(self):
return self._anchor_tab_processor_version
@anchor_tab_processor_version.setter
def anchor_tab_processor_version(self, anchor_tab_processor_version):
self._anchor_tab_processor_version = anchor_tab_processor_version
@property
def anchor_tab_processor_version_metadata(self):
return self._anchor_tab_processor_version_metadata
@anchor_tab_processor_version_metadata.setter
def anchor_tab_processor_version_metadata(self, anchor_tab_processor_version_metadata):
self._anchor_tab_processor_version_metadata = anchor_tab_processor_version_metadata
@property
def anchor_units(self):
return self._anchor_units
@anchor_units.setter
def anchor_units(self, anchor_units):
self._anchor_units = anchor_units
@property
def anchor_units_metadata(self):
return self._anchor_units_metadata
@anchor_units_metadata.setter
def anchor_units_metadata(self, anchor_units_metadata):
self._anchor_units_metadata = anchor_units_metadata
@property
def anchor_x_offset(self):
return self._anchor_x_offset
@anchor_x_offset.setter
def anchor_x_offset(self, anchor_x_offset):
self._anchor_x_offset = anchor_x_offset
@property
def anchor_x_offset_metadata(self):
return self._anchor_x_offset_metadata
@anchor_x_offset_metadata.setter
def anchor_x_offset_metadata(self, anchor_x_offset_metadata):
self._anchor_x_offset_metadata = anchor_x_offset_metadata
@property
def anchor_y_offset(self):
return self._anchor_y_offset
@anchor_y_offset.setter
def anchor_y_offset(self, anchor_y_offset):
self._anchor_y_offset = anchor_y_offset
@property
def anchor_y_offset_metadata(self):
return self._anchor_y_offset_metadata
@anchor_y_offset_metadata.setter
def anchor_y_offset_metadata(self, anchor_y_offset_metadata):
self._anchor_y_offset_metadata = anchor_y_offset_metadata
@property
def bold(self):
return self._bold
@bold.setter
def bold(self, bold):
self._bold = bold
@property
def bold_metadata(self):
return self._bold_metadata
@bold_metadata.setter
def bold_metadata(self, bold_metadata):
self._bold_metadata = bold_metadata
@property
def conditional_parent_label(self):
return self._conditional_parent_label
@conditional_parent_label.setter
|
MIT License
|
google/cloud-forensics-utils
|
libcloudforensics/providers/aws/internal/ec2.py
|
EC2._GetBootVolumeConfigByAmi
|
python
|
def _GetBootVolumeConfigByAmi(self,
ami: str,
boot_volume_size: int,
boot_volume_type: str) -> Dict[str, Any]:
client = self.aws_account.ClientApi(common.EC2_SERVICE)
try:
image = client.describe_images(ImageIds=[ami])
except client.exceptions.ClientError as exception:
raise errors.ResourceNotFoundError(
'Could not find image information for AMI {0:s}: {1!s}'.format(
ami, exception), __name__) from exception
block_device_mapping = image['Images'][0]['BlockDeviceMappings'][0]
block_device_mapping['Ebs']['VolumeSize'] = boot_volume_size
block_device_mapping['Ebs']['VolumeType'] = boot_volume_type
if boot_volume_type == 'io1':
block_device_mapping['Ebs']['Iops'] = boot_volume_size * 50
return block_device_mapping
|
Return a boot volume configuration for a given AMI and boot volume size.
Args:
ami (str): The Amazon Machine Image ID.
boot_volume_size (int): Size of the boot volume, in GB.
boot_volume_type (str): Type of the boot volume.
Returns:
Dict[str, str|Dict]]: A BlockDeviceMappings configuration for the
specified AMI.
Raises:
ResourceNotFoundError: If AMI details cannot be found.
|
https://github.com/google/cloud-forensics-utils/blob/38142cf3e00f70d976aa42aa2f9a1981c0240b19/libcloudforensics/providers/aws/internal/ec2.py#L503-L544
|
import binascii
import ipaddress
import os
import random
from typing import TYPE_CHECKING, Dict, Optional, List, Any, Tuple
import botocore
from libcloudforensics import errors
from libcloudforensics.providers.aws.internal import common
if TYPE_CHECKING:
from libcloudforensics.providers.aws.internal import account
from libcloudforensics.providers.aws.internal import ebs
class AWSInstance:
def __init__(self,
aws_account: 'account.AWSAccount',
instance_id: str,
region: str,
availability_zone: str,
vpc: str,
name: Optional[str] = None) -> None:
self.aws_account = aws_account
self.instance_id = instance_id
self.region = region
self.availability_zone = availability_zone
self.vpc = vpc
self.name = name
def GetBootVolume(self) -> 'ebs.AWSVolume':
boot_device = self.aws_account.ResourceApi(
common.EC2_SERVICE).Instance(self.instance_id).root_device_name
volumes = self.ListVolumes()
for volume_id in volumes:
if volumes[volume_id].device_name == boot_device:
return volumes[volume_id]
raise errors.ResourceNotFoundError(
'Boot volume not found for instance: {0:s}'.format(self.instance_id),
__name__)
def GetVolume(self, volume_id: str) -> 'ebs.AWSVolume':
volume = self.ListVolumes().get(volume_id)
if not volume:
raise errors.ResourceNotFoundError(
'Volume {0:s} is not attached to instance {1:s}'.format(
volume_id, self.instance_id), __name__)
return volume
def ListVolumes(self) -> Dict[str, 'ebs.AWSVolume']:
return self.aws_account.ebs.ListVolumes(
filters=[{
'Name': 'attachment.instance-id',
'Values': [self.instance_id]}])
def AttachVolume(self,
volume: 'ebs.AWSVolume',
device_name: str) -> None:
client = self.aws_account.ClientApi(common.EC2_SERVICE)
try:
client.attach_volume(Device=device_name,
InstanceId=self.instance_id,
VolumeId=volume.volume_id)
except client.exceptions.ClientError as exception:
raise RuntimeError('Could not attach volume {0:s}: {1:s}'.format(
volume.volume_id, str(exception))) from exception
volume.device_name = device_name
def Delete(self, force_delete: bool = False) -> None:
client = self.aws_account.ClientApi(common.EC2_SERVICE)
if force_delete:
try:
common.ExecuteRequest(
client,
'modify_instance_attribute',
{
'InstanceId': self.instance_id,
'Attribute': 'disableApiTermination',
'Value': 'False'
})
except client.exceptions.ClientError as exception:
raise errors.ResourceDeletionError(
'Could not toggle instance attribute disableApiTermination: '
'{0!s}'.format(exception), __name__) from exception
resource_client = self.aws_account.ResourceApi(common.EC2_SERVICE)
try:
resource_client.Instance(self.instance_id).terminate()
client.get_waiter('instance_terminated').wait(
InstanceIds=[self.instance_id])
except client.exceptions.ClientError as exception:
raise errors.ResourceDeletionError(
'Could not delete instance: {0!s}'.format(
exception), __name__) from exception
class EC2:
def __init__(self,
aws_account: 'account.AWSAccount') -> None:
self.aws_account = aws_account
def ListInstances(
self,
region: Optional[str] = None,
filters: Optional[List[Dict[str, Any]]] = None,
show_terminated: bool = False) -> Dict[str, AWSInstance]:
if not filters:
filters = []
instances = {}
client = self.aws_account.ClientApi(common.EC2_SERVICE, region=region)
responses = common.ExecuteRequest(
client, 'describe_instances', {'Filters': filters})
for response in responses:
for reservation in response['Reservations']:
for instance in reservation['Instances']:
if instance['State']['Name'] == 'terminated' and not show_terminated:
continue
zone = instance['Placement']['AvailabilityZone']
instance_id = instance['InstanceId']
vpc = instance['VpcId']
aws_instance = AWSInstance(
self.aws_account, instance_id, zone[:-1], zone, vpc)
for tag in instance.get('Tags', []):
if tag.get('Key') == 'Name':
aws_instance.name = tag.get('Value')
break
instances[instance_id] = aws_instance
return instances
def GetInstancesByNameOrId(
self,
instance_name: Optional[str] = None,
instance_id: Optional[str] = None,
region: Optional[str] = None) -> List[AWSInstance]:
if (not instance_name and not instance_id) or (instance_name and instance_id):
raise ValueError('You must specify exactly one of [instance_name, '
'instance_id]. Got instance_name: {0:s}, instance_id: '
'{1:s}'.format(str(instance_name), str(instance_id)))
if instance_name:
return self.GetInstancesByName(instance_name, region=region)
return [self.GetInstanceById(instance_id, region=region)]
def GetInstancesByName(self,
instance_name: str,
region: Optional[str] = None) -> List[AWSInstance]:
instances = self.ListInstances(region=region)
return [instance for instance in instances.values() if
instance.name == instance_name]
def GetInstanceById(self,
instance_id: str,
region: Optional[str] = None) -> AWSInstance:
instances = self.ListInstances(region=region)
instance = instances.get(instance_id)
if not instance:
raise errors.ResourceNotFoundError(
'Instance {0:s} was not found in AWS account'.format(instance_id),
__name__)
return instance
def ListImages(
self,
qfilter: Optional[List[Dict[str, Any]]] = None) -> List[Dict[str, Any]]:
if not qfilter:
qfilter = []
client = self.aws_account.ClientApi(common.EC2_SERVICE)
try:
images = client.describe_images(
Filters=qfilter)
except client.exceptions.ClientError as exception:
raise RuntimeError(str(exception)) from exception
return images['Images']
def GetOrCreateVm(
self,
vm_name: str,
boot_volume_size: int,
ami: str,
cpu_cores: int,
boot_volume_type: str = 'gp2',
ssh_key_name: Optional[str] = None,
tags: Optional[Dict[str, str]] = None,
subnet_id: Optional[str] = None,
security_group_id: Optional[str] = None,
userdata: Optional[str] = None,
instance_profile: Optional[str] = None,
terminate_on_shutdown: bool = False,
wait_for_health_checks: bool = True
) -> Tuple[AWSInstance, bool]:
instances = self.GetInstancesByName(vm_name)
if instances:
created = False
return instances[0], created
instance_type = common.GetInstanceTypeByCPU(cpu_cores)
if not tags:
tags = {}
tags['Name'] = vm_name
client = self.aws_account.ClientApi(common.EC2_SERVICE)
vm_args = {
'BlockDeviceMappings':
[self._GetBootVolumeConfigByAmi(
ami, boot_volume_size, boot_volume_type)],
'ImageId': ami,
'MinCount': 1,
'MaxCount': 1,
'InstanceType': instance_type,
'TagSpecifications': [common.CreateTags(common.INSTANCE, tags)],
'Placement': {
'AvailabilityZone': self.aws_account.default_availability_zone}
}
if ssh_key_name:
vm_args['KeyName'] = ssh_key_name
if subnet_id:
interface = {
'AssociatePublicIpAddress': True,
'DeleteOnTermination': True,
'DeviceIndex': 0,
'SubnetId': subnet_id}
if security_group_id:
interface['Groups'] = [security_group_id]
vm_args['NetworkInterfaces']=[interface]
elif security_group_id:
vm_args['SecurityGroupIds'] = [security_group_id]
if userdata:
vm_args['UserData'] = userdata
if instance_profile:
vm_args['IamInstanceProfile'] = {'Arn': instance_profile}
if terminate_on_shutdown:
vm_args['InstanceInitiatedShutdownBehavior'] = 'terminate'
try:
instance = client.run_instances(**vm_args)
instance_id = instance['Instances'][0]['InstanceId']
if wait_for_health_checks:
client.get_waiter('instance_running').wait(InstanceIds=[instance_id])
client.get_waiter('instance_status_ok').wait(InstanceIds=[instance_id])
vpc = instance['Instances'][0]['VpcId']
except (client.exceptions.ClientError,
botocore.exceptions.WaiterError) as exception:
raise errors.ResourceCreationError(
'Could not create instance {0:s}: {1!s}'.format(vm_name, exception),
__name__) from exception
instance = AWSInstance(self.aws_account,
instance_id,
self.aws_account.default_region,
self.aws_account.default_availability_zone,
vpc,
name=vm_name)
created = True
return instance, created
|
Apache License 2.0
|
akleroy/phangs_imaging_scripts
|
phangsPipeline/handlerTemplate.py
|
HandlerTemplate.get_targets
|
python
|
def get_targets(
self
):
if self._targets_list is None:
return([])
else:
return(self._targets_list)
|
Return the list of targets to consider.
|
https://github.com/akleroy/phangs_imaging_scripts/blob/11217d813382d7a0d9cae36d1dd3966b3c07c0d9/phangsPipeline/handlerTemplate.py#L345-L354
|
import os
import glob
import numpy as np
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
class HandlerTemplate:
def __init__(
self,
key_handler = None,
dry_run = False,
):
self._targets_first = None
self._targets_last = None
self._targets_skip = None
self._targets_only = None
self._cont_skip = None
self._cont_only = None
self._lines_skip = None
self._lines_only = None
self._interf_configs_skip = None
self._interf_configs_only = None
self._feather_configs_skip = None
self._feather_configs_only = None
self._targets_list = []
self._line_products_list = []
self._cont_products_list = []
self._interf_configs_list = []
self._feather_configs_list = []
self._no_interf = False
self._no_feather = False
self._no_cont = False
self._no_line = False
if key_handler is not None:
self.set_key_handler(key_handler, nobuild=True)
self.set_targets(nobuild=True)
self.set_line_products(nobuild=True)
self.set_cont_products(nobuild=True)
self.set_interf_configs(nobuild=True)
self.set_feather_configs(nobuild=True)
self._build_lists()
self.set_dry_run(dry_run)
def set_key_handler(
self,
key_handler = None,
nobuild = False):
self._kh = key_handler
if not nobuild:
self._build_lists()
return(None)
def set_dry_run(
self,
dry_run = False):
self._dry_run = dry_run
return(None)
def set_targets(
self,
first=None,
last=None,
skip=[],
only=[],
nobuild=False):
self._targets_first = first
self._targets_last = last
if np.isscalar(skip):
self._targets_skip = [skip]
else:
self._targets_skip = skip
if np.isscalar(only):
self._targets_only = [only]
else:
self._targets_only = only
if not nobuild:
self._build_lists()
return(None)
def set_line_products(
self,
skip=[],
only=[],
nobuild=False,
):
if np.isscalar(skip):
self._lines_skip = [skip]
else:
self._lines_skip = skip
if np.isscalar(only):
self._lines_only = [only]
else:
self._lines_only = only
if not nobuild:
self._build_lists()
return(None)
def set_cont_products(
self,
skip=[],
only=[],
nobuild=False,
):
if np.isscalar(skip):
self._cont_skip = [skip]
else:
self._cont_skip = skip
if np.isscalar(only):
self._cont_only = [only]
else:
self._cont_only = only
if not nobuild:
self._build_lists()
return(None)
def set_interf_configs(
self,
skip=[],
only=[],
nobuild=False,
):
if np.isscalar(skip):
self._interf_configs_skip = [skip]
else:
self._interf_configs_skip = skip
if np.isscalar(only):
self._interf_configs_only = [only]
else:
self._interf_configs_only = only
if not nobuild:
self._build_lists()
return(None)
def set_feather_configs(
self,
skip=[],
only=[],
nobuild=False,
):
if np.isscalar(skip):
self._feather_configs_skip = [skip]
else:
self._feather_configs_skip = skip
if np.isscalar(only):
self._feather_configs_only = [only]
else:
self._feather_configs_only = only
if not nobuild:
self._build_lists()
return(None)
def set_no_line_products(
self,
no_line = False):
self._no_line = no_line
self._build_lists()
def set_no_cont_products(
self,
no_cont = False):
self._no_cont = no_cont
self._build_lists()
def set_no_interf_configs(
self,
no_interf = False):
self._no_interf = no_interf
self._build_lists()
def set_no_feather_configs(
self,
no_feather = False):
self._no_feather = no_feather
self._build_lists()
def _build_lists(
self
):
if self._kh is None:
logger.error("Cannot build lists without a handlerKeys.")
raise Exception("Cannot build lists without a handlerKeys.")
return(None)
self._targets_list = self._kh.get_targets(
only = self._targets_only,
skip = self._targets_skip,
first = self._targets_first,
last = self._targets_last,
)
if self._no_line:
self._line_products_list = []
else:
self._line_products_list = self._kh.get_line_products(
only = self._lines_only,
skip = self._lines_skip,
)
if self._no_cont:
self._cont_products_list = []
else:
self._cont_products_list = self._kh.get_continuum_products(
only = self._cont_only,
skip = self._cont_skip,
)
if self._no_interf:
self._interf_configs_list = []
else:
self._interf_configs_list = self._kh.get_interf_configs(
only = self._interf_configs_only,
skip = self._interf_configs_skip,
)
if self._no_feather:
self._feather_configs_list = []
else:
self._feather_configs_list = self._kh.get_feather_configs(
only = self._feather_configs_only,
skip = self._feather_configs_skip,
)
return()
|
MIT License
|
osmr/imgclsmob
|
gluon/gluoncv2/models/resnet_cifar.py
|
resnet164bn_svhn
|
python
|
def resnet164bn_svhn(classes=10, **kwargs):
return get_resnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="resnet164bn_svhn", **kwargs)
|
ResNet-164(BN) model for SVHN from 'Deep Residual Learning for Image Recognition,'
https://arxiv.org/abs/1512.03385.
Parameters:
----------
classes : int, default 10
Number of classification classes.
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
|
https://github.com/osmr/imgclsmob/blob/ea5f784eea865ce830f3f97c5c1d1f6491d9cbb2/gluon/gluoncv2/models/resnet_cifar.py#L360-L376
|
__all__ = ['CIFARResNet', 'resnet20_cifar10', 'resnet20_cifar100', 'resnet20_svhn',
'resnet56_cifar10', 'resnet56_cifar100', 'resnet56_svhn',
'resnet110_cifar10', 'resnet110_cifar100', 'resnet110_svhn',
'resnet164bn_cifar10', 'resnet164bn_cifar100', 'resnet164bn_svhn',
'resnet272bn_cifar10', 'resnet272bn_cifar100', 'resnet272bn_svhn',
'resnet542bn_cifar10', 'resnet542bn_cifar100', 'resnet542bn_svhn',
'resnet1001_cifar10', 'resnet1001_cifar100', 'resnet1001_svhn',
'resnet1202_cifar10', 'resnet1202_cifar100', 'resnet1202_svhn']
import os
from mxnet import cpu
from mxnet.gluon import nn, HybridBlock
from .common import conv3x3_block
from .resnet import ResUnit
class CIFARResNet(HybridBlock):
def __init__(self,
channels,
init_block_channels,
bottleneck,
bn_use_global_stats=False,
in_channels=3,
in_size=(32, 32),
classes=10,
**kwargs):
super(CIFARResNet, self).__init__(**kwargs)
self.in_size = in_size
self.classes = classes
with self.name_scope():
self.features = nn.HybridSequential(prefix="")
self.features.add(conv3x3_block(
in_channels=in_channels,
out_channels=init_block_channels,
bn_use_global_stats=bn_use_global_stats))
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
stage = nn.HybridSequential(prefix="stage{}_".format(i + 1))
with stage.name_scope():
for j, out_channels in enumerate(channels_per_stage):
strides = 2 if (j == 0) and (i != 0) else 1
stage.add(ResUnit(
in_channels=in_channels,
out_channels=out_channels,
strides=strides,
bn_use_global_stats=bn_use_global_stats,
bottleneck=bottleneck,
conv1_stride=False))
in_channels = out_channels
self.features.add(stage)
self.features.add(nn.AvgPool2D(
pool_size=8,
strides=1))
self.output = nn.HybridSequential(prefix="")
self.output.add(nn.Flatten())
self.output.add(nn.Dense(
units=classes,
in_units=in_channels))
def hybrid_forward(self, F, x):
x = self.features(x)
x = self.output(x)
return x
def get_resnet_cifar(classes,
blocks,
bottleneck,
model_name=None,
pretrained=False,
ctx=cpu(),
root=os.path.join("~", ".mxnet", "models"),
**kwargs):
assert (classes in [10, 100])
if bottleneck:
assert ((blocks - 2) % 9 == 0)
layers = [(blocks - 2) // 9] * 3
else:
assert ((blocks - 2) % 6 == 0)
layers = [(blocks - 2) // 6] * 3
channels_per_layers = [16, 32, 64]
init_block_channels = 16
channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)]
if bottleneck:
channels = [[cij * 4 for cij in ci] for ci in channels]
net = CIFARResNet(
channels=channels,
init_block_channels=init_block_channels,
bottleneck=bottleneck,
classes=classes,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import get_model_file
net.load_parameters(
filename=get_model_file(
model_name=model_name,
local_model_store_dir_path=root),
ctx=ctx)
return net
def resnet20_cifar10(classes=10, **kwargs):
return get_resnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="resnet20_cifar10", **kwargs)
def resnet20_cifar100(classes=100, **kwargs):
return get_resnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="resnet20_cifar100", **kwargs)
def resnet20_svhn(classes=10, **kwargs):
return get_resnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="resnet20_svhn", **kwargs)
def resnet56_cifar10(classes=10, **kwargs):
return get_resnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="resnet56_cifar10", **kwargs)
def resnet56_cifar100(classes=100, **kwargs):
return get_resnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="resnet56_cifar100", **kwargs)
def resnet56_svhn(classes=10, **kwargs):
return get_resnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="resnet56_svhn", **kwargs)
def resnet110_cifar10(classes=10, **kwargs):
return get_resnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="resnet110_cifar10", **kwargs)
def resnet110_cifar100(classes=100, **kwargs):
return get_resnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="resnet110_cifar100", **kwargs)
def resnet110_svhn(classes=10, **kwargs):
return get_resnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="resnet110_svhn", **kwargs)
def resnet164bn_cifar10(classes=10, **kwargs):
return get_resnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="resnet164bn_cifar10", **kwargs)
def resnet164bn_cifar100(classes=100, **kwargs):
return get_resnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="resnet164bn_cifar100", **kwargs)
|
MIT License
|
riga/law
|
law/contrib/arc/util.py
|
get_arc_proxy_vo
|
python
|
def get_arc_proxy_vo(proxy_file=None):
return _arc_proxy_info(args=["--infoitem=vomsVO"], proxy_file=proxy_file)[1].strip()
|
Returns the virtual organization name of the arc proxy. When *proxy_file* is *None*, it defaults
to the result of :py:func:`get_arc_proxy_file`. Otherwise, when it evaluates to *False*,
``arcproxy`` is queried without a custom proxy file.
|
https://github.com/riga/law/blob/be56987dd1ca7e2e54b08fa8aac2ce63b6236e74/law/contrib/arc/util.py#L92-L98
|
__all__ = [
"get_arc_proxy_file", "get_arc_proxy_user", "get_arc_proxy_lifetime", "get_arc_proxy_vo",
"check_arc_proxy_validity", "renew_arc_proxy",
]
import os
import re
import subprocess
from law.util import interruptable_popen, tmp_file, parse_duration, quote_cmd
from law.logger import get_logger
logger = get_logger(__name__)
def get_arc_proxy_file():
if "X509_USER_PROXY" in os.environ:
return os.environ["X509_USER_PROXY"]
else:
tmp = "/tmp"
for v in ["TMPDIR", "TMP", "TEMP"]:
if os.getenv(v):
tmp = os.environ[v]
break
return os.path.join(tmp, "x509up_u{}".format(os.getuid()))
def _arc_proxy_info(args=None, proxy_file=None, silent=False):
if args is None:
args = ["--info"]
cmd = ["arcproxy"] + (args or [])
if proxy_file is None:
proxy_file = get_arc_proxy_file()
if proxy_file:
proxy_file = os.path.expandvars(os.path.expanduser(proxy_file))
cmd.extend(["--proxy", proxy_file])
code, out, err = interruptable_popen(quote_cmd(cmd), shell=True, executable="/bin/bash",
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if err:
code = 1
if not silent and code != 0:
raise Exception("arcproxy failed: {}".format(err))
return code, out, err
def get_arc_proxy_user(proxy_file=None):
out = _arc_proxy_info(args=["--infoitem=identity"], proxy_file=proxy_file)[1].strip()
try:
return re.match(r".*\/CN\=([^\/]+).*", out.strip()).group(1)
except:
raise Exception("no valid identity found in arc proxy: {}".format(out))
def get_arc_proxy_lifetime(proxy_file=None):
out = _arc_proxy_info(args=["--infoitem=validityLeft"], proxy_file=proxy_file)[1].strip()
try:
return int(out)
except:
raise Exception("no valid lifetime found in arc proxy: {}".format(out))
|
BSD 3-Clause New or Revised License
|
azure/autorest.python
|
test/vanilla/legacy/Expected/AcceptanceTests/Xml/xmlservice/models/_models_py3.py
|
Container.__init__
|
python
|
def __init__(
self, *, name: str, properties: "ContainerProperties", metadata: Optional[Dict[str, str]] = None, **kwargs
):
super(Container, self).__init__(**kwargs)
self.name = name
self.properties = properties
self.metadata = metadata
|
:keyword name: Required.
:paramtype name: str
:keyword properties: Required. Properties of a container.
:paramtype properties: ~xmlservice.models.ContainerProperties
:keyword metadata: Dictionary of :code:`<string>`.
:paramtype metadata: dict[str, str]
|
https://github.com/azure/autorest.python/blob/90d60a965788e3b4c0809e6686bdc3525acac89c/test/vanilla/legacy/Expected/AcceptanceTests/Xml/xmlservice/models/_models_py3.py#L533-L547
|
import datetime
from typing import Dict, List, Optional, Union
from azure.core.exceptions import HttpResponseError
import msrest.serialization
from ._auto_rest_swagger_batxml_service_enums import *
class AccessPolicy(msrest.serialization.Model):
_validation = {
"start": {"required": True},
"expiry": {"required": True},
"permission": {"required": True},
}
_attribute_map = {
"start": {"key": "Start", "type": "iso-8601"},
"expiry": {"key": "Expiry", "type": "iso-8601"},
"permission": {"key": "Permission", "type": "str"},
}
def __init__(self, *, start: datetime.datetime, expiry: datetime.datetime, permission: str, **kwargs):
super(AccessPolicy, self).__init__(**kwargs)
self.start = start
self.expiry = expiry
self.permission = permission
class AppleBarrel(msrest.serialization.Model):
_attribute_map = {
"good_apples": {"key": "GoodApples", "type": "[str]", "xml": {"wrapped": True, "itemsName": "Apple"}},
"bad_apples": {"key": "BadApples", "type": "[str]", "xml": {"wrapped": True, "itemsName": "Apple"}},
}
def __init__(self, *, good_apples: Optional[List[str]] = None, bad_apples: Optional[List[str]] = None, **kwargs):
super(AppleBarrel, self).__init__(**kwargs)
self.good_apples = good_apples
self.bad_apples = bad_apples
class Banana(msrest.serialization.Model):
_attribute_map = {
"name": {"key": "name", "type": "str", "xml": {"name": "name"}},
"flavor": {"key": "flavor", "type": "str", "xml": {"name": "flavor"}},
"expiration": {"key": "expiration", "type": "iso-8601", "xml": {"name": "expiration"}},
}
_xml_map = {"name": "banana"}
def __init__(
self,
*,
name: Optional[str] = None,
flavor: Optional[str] = None,
expiration: Optional[datetime.datetime] = None,
**kwargs
):
super(Banana, self).__init__(**kwargs)
self.name = name
self.flavor = flavor
self.expiration = expiration
class Blob(msrest.serialization.Model):
_validation = {
"name": {"required": True},
"deleted": {"required": True},
"snapshot": {"required": True},
"properties": {"required": True},
}
_attribute_map = {
"name": {"key": "Name", "type": "str"},
"deleted": {"key": "Deleted", "type": "bool"},
"snapshot": {"key": "Snapshot", "type": "str"},
"properties": {"key": "Properties", "type": "BlobProperties"},
"metadata": {"key": "Metadata", "type": "{str}"},
}
_xml_map = {"name": "Blob"}
def __init__(
self,
*,
name: str,
deleted: bool,
snapshot: str,
properties: "BlobProperties",
metadata: Optional[Dict[str, str]] = None,
**kwargs
):
super(Blob, self).__init__(**kwargs)
self.name = name
self.deleted = deleted
self.snapshot = snapshot
self.properties = properties
self.metadata = metadata
class BlobPrefix(msrest.serialization.Model):
_validation = {
"name": {"required": True},
}
_attribute_map = {
"name": {"key": "Name", "type": "str"},
}
def __init__(self, *, name: str, **kwargs):
super(BlobPrefix, self).__init__(**kwargs)
self.name = name
class BlobProperties(msrest.serialization.Model):
_validation = {
"last_modified": {"required": True},
"etag": {"required": True},
}
_attribute_map = {
"last_modified": {"key": "Last-Modified", "type": "rfc-1123"},
"etag": {"key": "Etag", "type": "str"},
"content_length": {"key": "Content-Length", "type": "long"},
"content_type": {"key": "Content-Type", "type": "str"},
"content_encoding": {"key": "Content-Encoding", "type": "str"},
"content_language": {"key": "Content-Language", "type": "str"},
"content_md5": {"key": "Content-MD5", "type": "str"},
"content_disposition": {"key": "Content-Disposition", "type": "str"},
"cache_control": {"key": "Cache-Control", "type": "str"},
"blob_sequence_number": {"key": "x-ms-blob-sequence-number", "type": "int"},
"blob_type": {"key": "BlobType", "type": "str"},
"lease_status": {"key": "LeaseStatus", "type": "str"},
"lease_state": {"key": "LeaseState", "type": "str"},
"lease_duration": {"key": "LeaseDuration", "type": "str"},
"copy_id": {"key": "CopyId", "type": "str"},
"copy_status": {"key": "CopyStatus", "type": "str"},
"copy_source": {"key": "CopySource", "type": "str"},
"copy_progress": {"key": "CopyProgress", "type": "str"},
"copy_completion_time": {"key": "CopyCompletionTime", "type": "rfc-1123"},
"copy_status_description": {"key": "CopyStatusDescription", "type": "str"},
"server_encrypted": {"key": "ServerEncrypted", "type": "bool"},
"incremental_copy": {"key": "IncrementalCopy", "type": "bool"},
"destination_snapshot": {"key": "DestinationSnapshot", "type": "str"},
"deleted_time": {"key": "DeletedTime", "type": "rfc-1123"},
"remaining_retention_days": {"key": "RemainingRetentionDays", "type": "int"},
"access_tier": {"key": "AccessTier", "type": "str"},
"access_tier_inferred": {"key": "AccessTierInferred", "type": "bool"},
"archive_status": {"key": "ArchiveStatus", "type": "str"},
}
def __init__(
self,
*,
last_modified: datetime.datetime,
etag: str,
content_length: Optional[int] = None,
content_type: Optional[str] = None,
content_encoding: Optional[str] = None,
content_language: Optional[str] = None,
content_md5: Optional[str] = None,
content_disposition: Optional[str] = None,
cache_control: Optional[str] = None,
blob_sequence_number: Optional[int] = None,
blob_type: Optional[Union[str, "BlobType"]] = None,
lease_status: Optional[Union[str, "LeaseStatusType"]] = None,
lease_state: Optional[Union[str, "LeaseStateType"]] = None,
lease_duration: Optional[Union[str, "LeaseDurationType"]] = None,
copy_id: Optional[str] = None,
copy_status: Optional[Union[str, "CopyStatusType"]] = None,
copy_source: Optional[str] = None,
copy_progress: Optional[str] = None,
copy_completion_time: Optional[datetime.datetime] = None,
copy_status_description: Optional[str] = None,
server_encrypted: Optional[bool] = None,
incremental_copy: Optional[bool] = None,
destination_snapshot: Optional[str] = None,
deleted_time: Optional[datetime.datetime] = None,
remaining_retention_days: Optional[int] = None,
access_tier: Optional[Union[str, "AccessTier"]] = None,
access_tier_inferred: Optional[bool] = None,
archive_status: Optional[Union[str, "ArchiveStatus"]] = None,
**kwargs
):
super(BlobProperties, self).__init__(**kwargs)
self.last_modified = last_modified
self.etag = etag
self.content_length = content_length
self.content_type = content_type
self.content_encoding = content_encoding
self.content_language = content_language
self.content_md5 = content_md5
self.content_disposition = content_disposition
self.cache_control = cache_control
self.blob_sequence_number = blob_sequence_number
self.blob_type = blob_type
self.lease_status = lease_status
self.lease_state = lease_state
self.lease_duration = lease_duration
self.copy_id = copy_id
self.copy_status = copy_status
self.copy_source = copy_source
self.copy_progress = copy_progress
self.copy_completion_time = copy_completion_time
self.copy_status_description = copy_status_description
self.server_encrypted = server_encrypted
self.incremental_copy = incremental_copy
self.destination_snapshot = destination_snapshot
self.deleted_time = deleted_time
self.remaining_retention_days = remaining_retention_days
self.access_tier = access_tier
self.access_tier_inferred = access_tier_inferred
self.archive_status = archive_status
class Blobs(msrest.serialization.Model):
_attribute_map = {
"blob_prefix": {"key": "BlobPrefix", "type": "[BlobPrefix]"},
"blob": {"key": "Blob", "type": "[Blob]"},
}
def __init__(
self, *, blob_prefix: Optional[List["BlobPrefix"]] = None, blob: Optional[List["Blob"]] = None, **kwargs
):
super(Blobs, self).__init__(**kwargs)
self.blob_prefix = blob_prefix
self.blob = blob
class ComplexTypeNoMeta(msrest.serialization.Model):
_attribute_map = {
"id": {"key": "ID", "type": "str"},
}
def __init__(self, *, id: Optional[str] = None, **kwargs):
super(ComplexTypeNoMeta, self).__init__(**kwargs)
self.id = id
class ComplexTypeWithMeta(msrest.serialization.Model):
_attribute_map = {
"id": {"key": "ID", "type": "str"},
}
_xml_map = {"name": "XMLComplexTypeWithMeta"}
def __init__(self, *, id: Optional[str] = None, **kwargs):
super(ComplexTypeWithMeta, self).__init__(**kwargs)
self.id = id
class Container(msrest.serialization.Model):
_validation = {
"name": {"required": True},
"properties": {"required": True},
}
_attribute_map = {
"name": {"key": "Name", "type": "str"},
"properties": {"key": "Properties", "type": "ContainerProperties"},
"metadata": {"key": "Metadata", "type": "{str}"},
}
|
MIT License
|
dragonfly/dragonfly
|
dragonfly/utils/euclidean_synthetic_functions.py
|
get_mf_borehole_function
|
python
|
def get_mf_borehole_function():
opt_val = 309.523221
opt_pt = None
mf_borehole_function = lambda z, x: borehole_function(x, z, opt_val)
domain_bounds = [[0.05, 0.15],
[100, 50000],
[63070, 115600],
[990, 1110],
[63.1, 116],
[700, 820],
[1120, 1680],
[9855, 12045]]
fidel_bounds = [[0, 1]]
fidel_to_opt = np.array([1])
def sf_borehole_obj(x):
return borehole_function(x, fidel_to_opt, opt_val)
return mf_borehole_function, sf_borehole_obj, opt_pt, opt_val, fidel_to_opt, fidel_bounds, domain_bounds
|
Gets the MF BoreHole function.
|
https://github.com/dragonfly/dragonfly/blob/a579b5eadf452e23b07d4caf27b402703b0012b7/dragonfly/utils/euclidean_synthetic_functions.py#L171-L192
|
from __future__ import division
import numpy as np
from .general_utils import map_to_cube
from ..exd.experiment_caller import EuclideanFunctionCaller
def hartmann(x, alpha, A, P, max_val=np.inf):
log_sum_terms = (A * (P - x)**2).sum(axis=1)
return min(max_val, alpha.dot(np.exp(-log_sum_terms)))
def _get_hartmann_data(domain_dim):
if domain_dim == 3:
A = np.array([[3.0, 10, 30],
[0.1, 10, 35],
[3.0, 10, 30],
[0.1, 10, 35]], dtype=np.float64)
P = 1e-4 * np.array([[3689, 1170, 2673],
[4699, 4387, 7470],
[1091, 8732, 5547],
[ 381, 5743, 8828]], dtype=np.float64)
alpha = np.array([1.0, 1.2, 3.0, 3.2])
domain = [[0, 1]] * 3
opt_pt = np.array([0.114614, 0.555649, 0.852547])
max_val = 3.86278
elif domain_dim == 6:
A = np.array([[ 10, 3, 17, 3.5, 1.7, 8],
[0.05, 10, 17, 0.1, 8, 14],
[ 3, 3.5, 1.7, 10, 17, 8],
[ 17, 8, 0.05, 10, 0.1, 14]], dtype=np.float64)
P = 1e-4 * np.array([[1312, 1696, 5569, 124, 8283, 5886],
[2329, 4135, 8307, 3736, 1004, 9991],
[2348, 1451, 3522, 2883, 3047, 6650],
[4047, 8828, 8732, 5743, 1091, 381]], dtype=np.float64)
alpha = np.array([1.0, 1.2, 3.0, 3.2])
domain = [[0, 1]] * 6
opt_pt = np.array([0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573])
max_val = 3.322368
else:
raise NotImplementedError('Only implemented in 3 and 6 dimensions.')
return A, P, alpha, opt_pt, domain, max_val
def get_mf_hartmann_function_data(fidel_dim, domain_dim):
A, P, alpha, opt_pt, domain_bounds, max_val = _get_hartmann_data(domain_dim)
delta = np.array([0.1] * fidel_dim + [0] * (4-fidel_dim))
def mf_hart_obj(z, x):
assert len(z) == fidel_dim
z_extended = np.append(z, [0] * (4-fidel_dim))
alpha_z = alpha - (1 - z_extended) * delta
return hartmann(x, alpha_z, A, P, max_val)
def hart_obj(x):
return hartmann(x, alpha, A, P, max_val)
fidel_to_opt = np.ones(fidel_dim)
fidel_bounds = [[0, 1]] * fidel_dim
opt_val = hart_obj(opt_pt)
return mf_hart_obj, hart_obj, opt_pt, opt_val, fidel_to_opt, fidel_bounds, domain_bounds
def currin_exp(x, alpha):
x1 = x[0]
x2 = x[1]
val_1 = 1 - alpha * np.exp(-1/(2 * x2))
val_2 = (2300*x1**3 + 1900*x1**2 + 2092*x1 + 60) / (100*x1**3 + 500*x1**2 + 4*x1 + 20)
return val_1 * val_2
def get_mf_currin_exp_function_data():
opt_val = 13.7986850
def mf_currin_exp_obj(z, x):
alpha_z = 1 - 0.1 * z
return min(opt_val, currin_exp(x, alpha_z))
fidel_to_opt = np.array([1])
opt_pt = None
def sf_currin_exp_obj(x):
return min(opt_val, currin_exp(x, fidel_to_opt))
fidel_bounds = np.array([[0, 1]])
domain_bounds = np.array([[0, 1], [0, 1]])
return mf_currin_exp_obj, sf_currin_exp_obj, opt_pt, opt_val, fidel_to_opt, fidel_bounds, domain_bounds
def branin_function(x, a, b, c, r, s, t):
x1 = x[0]
x2 = x[1]
neg_ret = float(a * (x2 - b*x1**2 + c*x1 - r)**2 + s*(1-t)*np.cos(x1) + s)
return -neg_ret
def branin_function_alpha(x, alpha, a, r, s):
return branin_function(x, a, alpha[0], alpha[1], r, s, alpha[2])
def get_mf_branin_function(fidel_dim):
a0 = 1
b0 = 5.1/(4*np.pi**2)
c0 = 5/np.pi
r0 = 6
s0 = 10
t0 = 1/(8*np.pi)
alpha = np.array([b0, c0, t0])
delta = [0.01, 0.1, -0.005]
delta = np.array(delta[0:fidel_dim] + [0] * (3 - fidel_dim))
def mf_branin_obj(z, x):
assert len(z) == fidel_dim
z_extended = np.append(z, [0] * (3-fidel_dim))
alpha_z = alpha - (1 - z_extended) * delta
return branin_function_alpha(x, alpha_z, a0, r0, s0)
def sf_branin_obj(x):
return branin_function(x, a0, b0, c0, r0, s0, t0)
fidel_to_opt = np.ones((fidel_dim))
fidel_bounds = [[0, 1]] * fidel_dim
opt_pt = np.array([np.pi, 2.275])
opt_val = sf_branin_obj(opt_pt)
domain_bounds = [[-5, 10], [0, 15]]
return mf_branin_obj, sf_branin_obj, opt_pt, opt_val, fidel_to_opt, fidel_bounds, domain_bounds
def borehole_function(x, z, max_val):
rw = x[0]
r = x[1]
Tu = x[2]
Hu = x[3]
Tl = x[4]
Hl = x[5]
L = x[6]
Kw = x[7]
frac2 = 2*L*Tu/(np.log(r/rw) * rw**2 * Kw)
f2 = min(max_val, 2 * np.pi * Tu * (Hu - Hl)/(np.log(r/rw) * (1 + frac2 + Tu/Tl)))
f1 = 5 * Tu * (Hu - Hl)/(np.log(r/rw) * (1.5 + frac2 + Tu/Tl))
return float(f2*z + f1*(1-z))
|
MIT License
|
python-openxml/python-docx
|
docx/image/jpeg.py
|
_Marker.segment_length
|
python
|
def segment_length(self):
return self._segment_length
|
The length in bytes of this marker's segment
|
https://github.com/python-openxml/python-docx/blob/36cac78de080d412e9e50d56c2784e33655cad59/docx/image/jpeg.py#L314-L318
|
from __future__ import absolute_import, division, print_function
from ..compat import BytesIO
from .constants import JPEG_MARKER_CODE, MIME_TYPE
from .helpers import BIG_ENDIAN, StreamReader
from .image import BaseImageHeader
from .tiff import Tiff
class Jpeg(BaseImageHeader):
@property
def content_type(self):
return MIME_TYPE.JPEG
@property
def default_ext(self):
return 'jpg'
class Exif(Jpeg):
@classmethod
def from_stream(cls, stream):
markers = _JfifMarkers.from_stream(stream)
px_width = markers.sof.px_width
px_height = markers.sof.px_height
horz_dpi = markers.app1.horz_dpi
vert_dpi = markers.app1.vert_dpi
return cls(px_width, px_height, horz_dpi, vert_dpi)
class Jfif(Jpeg):
@classmethod
def from_stream(cls, stream):
markers = _JfifMarkers.from_stream(stream)
px_width = markers.sof.px_width
px_height = markers.sof.px_height
horz_dpi = markers.app0.horz_dpi
vert_dpi = markers.app0.vert_dpi
return cls(px_width, px_height, horz_dpi, vert_dpi)
class _JfifMarkers(object):
def __init__(self, markers):
super(_JfifMarkers, self).__init__()
self._markers = list(markers)
def __str__(self):
header = ' offset seglen mc name\n======= ====== == ====='
tmpl = '%7d %6d %02X %s'
rows = []
for marker in self._markers:
rows.append(tmpl % (
marker.offset, marker.segment_length,
ord(marker.marker_code), marker.name
))
lines = [header] + rows
return '\n'.join(lines)
@classmethod
def from_stream(cls, stream):
marker_parser = _MarkerParser.from_stream(stream)
markers = []
for marker in marker_parser.iter_markers():
markers.append(marker)
if marker.marker_code == JPEG_MARKER_CODE.SOS:
break
return cls(markers)
@property
def app0(self):
for m in self._markers:
if m.marker_code == JPEG_MARKER_CODE.APP0:
return m
raise KeyError('no APP0 marker in image')
@property
def app1(self):
for m in self._markers:
if m.marker_code == JPEG_MARKER_CODE.APP1:
return m
raise KeyError('no APP1 marker in image')
@property
def sof(self):
for m in self._markers:
if m.marker_code in JPEG_MARKER_CODE.SOF_MARKER_CODES:
return m
raise KeyError('no start of frame (SOFn) marker in image')
class _MarkerParser(object):
def __init__(self, stream_reader):
super(_MarkerParser, self).__init__()
self._stream = stream_reader
@classmethod
def from_stream(cls, stream):
stream_reader = StreamReader(stream, BIG_ENDIAN)
return cls(stream_reader)
def iter_markers(self):
marker_finder = _MarkerFinder.from_stream(self._stream)
start = 0
marker_code = None
while marker_code != JPEG_MARKER_CODE.EOI:
marker_code, segment_offset = marker_finder.next(start)
marker = _MarkerFactory(
marker_code, self._stream, segment_offset
)
yield marker
start = segment_offset + marker.segment_length
class _MarkerFinder(object):
def __init__(self, stream):
super(_MarkerFinder, self).__init__()
self._stream = stream
@classmethod
def from_stream(cls, stream):
return cls(stream)
def next(self, start):
position = start
while True:
position = self._offset_of_next_ff_byte(start=position)
position, byte_ = self._next_non_ff_byte(start=position+1)
if byte_ == b'\x00':
continue
marker_code, segment_offset = byte_, position+1
break
return marker_code, segment_offset
def _next_non_ff_byte(self, start):
self._stream.seek(start)
byte_ = self._read_byte()
while byte_ == b'\xFF':
byte_ = self._read_byte()
offset_of_non_ff_byte = self._stream.tell() - 1
return offset_of_non_ff_byte, byte_
def _offset_of_next_ff_byte(self, start):
self._stream.seek(start)
byte_ = self._read_byte()
while byte_ != b'\xFF':
byte_ = self._read_byte()
offset_of_ff_byte = self._stream.tell() - 1
return offset_of_ff_byte
def _read_byte(self):
byte_ = self._stream.read(1)
if not byte_:
raise Exception('unexpected end of file')
return byte_
def _MarkerFactory(marker_code, stream, offset):
if marker_code == JPEG_MARKER_CODE.APP0:
marker_cls = _App0Marker
elif marker_code == JPEG_MARKER_CODE.APP1:
marker_cls = _App1Marker
elif marker_code in JPEG_MARKER_CODE.SOF_MARKER_CODES:
marker_cls = _SofMarker
else:
marker_cls = _Marker
return marker_cls.from_stream(stream, marker_code, offset)
class _Marker(object):
def __init__(self, marker_code, offset, segment_length):
super(_Marker, self).__init__()
self._marker_code = marker_code
self._offset = offset
self._segment_length = segment_length
@classmethod
def from_stream(cls, stream, marker_code, offset):
if JPEG_MARKER_CODE.is_standalone(marker_code):
segment_length = 0
else:
segment_length = stream.read_short(offset)
return cls(marker_code, offset, segment_length)
@property
def marker_code(self):
return self._marker_code
@property
def name(self):
return JPEG_MARKER_CODE.marker_names[self._marker_code]
@property
def offset(self):
return self._offset
@property
|
MIT License
|
svanoort/pyresttest
|
pyresttest/validators.py
|
ExtractTestValidator.get_readable_config
|
python
|
def get_readable_config(self, context=None):
return "Extractor: " + self.extractor.get_readable_config(context=context)
|
Get a human-readable config string
|
https://github.com/svanoort/pyresttest/blob/f92acf8e838c4623ddd8e12e880f31046ff9317f/pyresttest/validators.py#L460-L462
|
import logging
import json
import operator
import traceback
import string
import os
import re
import sys
from . import parsing
from . import six
from .six import binary_type
from .six import text_type
PYTHON_MAJOR_VERSION = sys.version_info[0]
if PYTHON_MAJOR_VERSION > 2:
from past.builtins import basestring
from past.builtins import long
logger = logging.getLogger('pyresttest.validators')
COMPARATORS = {
'count_eq': lambda x, y: safe_length(x) == y,
'lt': operator.lt,
'less_than': operator.lt,
'le': operator.lt,
'less_than_or_equal': operator.lt,
'eq': operator.eq,
'equals': operator.eq,
'str_eq': lambda x, y: operator.eq(str(x), str(y)),
'ne': operator.ne,
'not_equals': operator.ne,
'ge': operator.ge,
'greater_than_or_equal': operator.ge,
'gt': operator.gt,
'greater_than': operator.gt,
'contains': lambda x, y: x and operator.contains(x, y),
'contained_by': lambda x, y: y and operator.contains(y, x),
'regex': lambda x, y: regex_compare(str(x), str(y)),
'type': lambda x, y: test_type(x, y)
}
COMPARATORS['length_eq'] = COMPARATORS['count_eq']
TYPES = {
'null': type(None),
'none': type(None),
'number': (int, long, float),
'int': (int, long),
'float': float,
'boolean': bool,
'string': basestring,
'array': list,
'list': list,
'dict': dict,
'map': dict,
'scalar': (bool, int, long, float, basestring, type(None)),
'collection': (list, dict, set)
}
def test_type(val, mytype):
typelist = TYPES.get(mytype.lower())
if typelist is None:
raise TypeError(
"Type {0} is not a valid type to test against!".format(mytype.lower()))
try:
for testtype in typelist:
if isinstance(val, testtype):
return True
return False
except TypeError:
return isinstance(val, typelist)
VALIDATOR_TESTS = {
'exists': lambda x: x is not None,
'not_exists': lambda x: x is None
}
EXTRACTORS = dict()
VALIDATORS = dict()
def safe_length(var):
output = -1
try:
output = len(var)
except:
pass
return output
def regex_compare(input, regex):
return bool(re.search(regex, input))
FAILURE_INVALID_RESPONSE = 'Invalid HTTP Response Code'
FAILURE_CURL_EXCEPTION = 'Curl Exception'
FAILURE_TEST_EXCEPTION = 'Test Execution Exception'
FAILURE_VALIDATOR_FAILED = 'Validator Failed'
FAILURE_VALIDATOR_EXCEPTION = 'Validator Exception'
FAILURE_EXTRACTOR_EXCEPTION = 'Extractor Exception'
class Failure(object):
message = None
failure_type = None
details = None
validator = None
def __nonzero__(self):
return False
def __bool__(self):
return False
def __str__(self):
return self.message
def __init__(self, message="", details="", failure_type=None, validator=None):
self.message = message
self.details = details
self.validator = validator
self.failure_type = failure_type
class AbstractExtractor(object):
extractor_type = None
query = None
is_templated = False
is_body_extractor = False
is_header_extractor = False
args = None
def __str__(self):
return "Extractor type: {0}, query: {1}, is_templated: {2}, args: {3}".format(self.extractor_type, self.query, self.is_templated, self.args)
def extract_internal(self, query=None, body=None, headers=None, args=None):
pass
def extract(self, body=None, headers=None, context=None):
query = self.templated_query(context=context)
args = self.args
return self.extract_internal(query=query, body=body, headers=headers, args=self.args)
def templated_query(self, context=None):
query = self.query
if context and self.is_templated:
query = string.Template(query).safe_substitute(
context.get_values())
return query
def get_readable_config(self, context=None):
query = self.templated_query(context=context)
output = 'Extractor Type: {0}, Query: "{1}", Templated?: {2}'.format(
self.extractor_type, query, self.is_templated)
args_string = None
if self.args:
args_string = ", Args: " + str(self.args)
output = output + args_string
return output
@classmethod
def configure_base(cls, config, extractor_base):
if isinstance(config, dict):
try:
config = config['template']
extractor_base.is_templated = True
extractor_base.query = config
except KeyError:
raise ValueError(
"Cannot define a dictionary config for abstract extractor without it having template key")
elif isinstance(config, basestring):
extractor_base.query = config
extractor_base.is_templated = False
else:
raise TypeError(
"Base extractor must have a string or {template: querystring} configuration node!")
return extractor_base
class MiniJsonExtractor(AbstractExtractor):
extractor_type = 'jsonpath_mini'
is_body_extractor = True
def extract_internal(self, query=None, args=None, body=None, headers=None):
if PYTHON_MAJOR_VERSION > 2 and isinstance(body, binary_type):
body = text_type(body, 'utf-8')
try:
body = json.loads(body)
return self.query_dictionary(query, body)
except ValueError:
raise ValueError("Not legal JSON!")
@staticmethod
def query_dictionary(query, dictionary, delimiter='.'):
try:
stripped_query = query.strip(delimiter)
if stripped_query:
for x in stripped_query.split(delimiter):
try:
x = int(x)
dictionary = dictionary[x]
except ValueError:
dictionary = dictionary[x]
except:
return None
return dictionary
@classmethod
def parse(cls, config):
base = MiniJsonExtractor()
return cls.configure_base(config, base)
return base
class HeaderExtractor(AbstractExtractor):
extractor_type = 'header'
is_header_extractor = True
def extract_internal(self, query=None, args=None, body=None, headers=None):
low = query.lower()
extracted = [y[1] for y in filter(lambda x: x[0] == low, headers)]
if len(extracted) == 0:
raise ValueError("Invalid header name {0}".format(query))
elif len(extracted) == 1:
return extracted[0]
else:
return extracted
@classmethod
def parse(cls, config, extractor_base=None):
base = HeaderExtractor()
return cls.configure_base(config, base)
class RawBodyExtractor(AbstractExtractor):
extractor_type = 'raw_body'
is_header_extractor = False
is_body_extractor = True
def extract_internal(self, query=None, args=None, body=None, headers=None):
return body
@classmethod
def parse(cls, config, extractor_base=None):
base = RawBodyExtractor()
return base
def _get_extractor(config_dict):
extractor = None
extract_config = None
for key, value in config_dict.items():
if key in EXTRACTORS:
return parse_extractor(key, value)
else:
raise Exception(
'No valid extractor name to use in input: {0}'.format(config_dict))
class AbstractValidator(object):
name = None
config = None
def validate(self, body=None, headers=None, context=None):
pass
class ComparatorValidator(AbstractValidator):
name = 'ComparatorValidator'
config = None
extractor = None
comparator = None
comparator_name = ""
expected = None
isTemplateExpected = False
def get_readable_config(self, context=None):
string_frags = list()
string_frags.append(
"Extractor: " + self.extractor.get_readable_config(context=context))
if isinstance(self.expected, AbstractExtractor):
string_frags.append("Expected value extractor: " +
self.expected.get_readable_config(context=context))
elif self.isTemplateExpected:
string_frags.append(
'Expected is templated, raw value: {0}'.format(self.expected))
return os.linesep.join(string_frags)
def validate(self, body=None, headers=None, context=None):
try:
extracted_val = self.extractor.extract(
body=body, headers=headers, context=context)
except Exception as e:
trace = traceback.format_exc()
return Failure(message="Extractor threw exception", details=trace, validator=self, failure_type=FAILURE_EXTRACTOR_EXCEPTION)
expected_val = None
if isinstance(self.expected, AbstractExtractor):
try:
expected_val = self.expected.extract(
body=body, headers=headers, context=context)
except Exception as e:
trace = traceback.format_exc()
return Failure(message="Expected value extractor threw exception", details=trace, validator=self, failure_type=FAILURE_EXTRACTOR_EXCEPTION)
elif self.isTemplateExpected and context:
expected_val = string.Template(
self.expected).safe_substitute(context.get_values())
else:
expected_val = self.expected
if isinstance(extracted_val, binary_type) and isinstance(expected_val, text_type):
expected_val = expected_val.encode('utf-8')
comparison = self.comparator(extracted_val, expected_val)
if not comparison:
failure = Failure(validator=self)
failure.message = "Comparison failed, evaluating {0}({1}, {2}) returned False".format(
self.comparator_name, extracted_val, expected_val)
failure.details = self.get_readable_config(context=context)
failure.failure_type = FAILURE_VALIDATOR_FAILED
return failure
else:
return True
@staticmethod
def parse(config):
output = ComparatorValidator()
config = parsing.lowercase_keys(parsing.flatten_dictionaries(config))
output.config = config
output.extractor = _get_extractor(config)
if output.extractor is None:
raise ValueError(
"Extract function for comparison is not valid or not found!")
if 'comparator' not in config:
output.comparator_name = 'eq'
else:
output.comparator_name = config['comparator'].lower()
output.comparator = COMPARATORS[output.comparator_name]
if not output.comparator:
raise ValueError("Invalid comparator given!")
try:
expected = config['expected']
except KeyError:
raise ValueError(
"No expected value found in comparator validator config, one must be!")
if isinstance(expected, basestring) or isinstance(expected, (int, long, float, complex)):
output.expected = expected
elif isinstance(expected, dict):
expected = parsing.lowercase_keys(expected)
template = expected.get('template')
if template:
if not isinstance(template, basestring):
raise ValueError(
"Can't template a comparator-validator unless template value is a string")
output.isTemplateExpected = True
output.expected = template
else:
output.expected = _get_extractor(expected)
if not output.expected:
raise ValueError(
"Can't supply a non-template, non-extract dictionary to comparator-validator")
return output
class ExtractTestValidator(AbstractValidator):
name = 'ExtractTestValidator'
extractor = None
test_fn = None
test_name = None
config = None
|
Apache License 2.0
|
owasp/python-honeypot
|
api/server.py
|
error_401
|
python
|
def error_401(error):
return jsonify(
msg_structure(status="error", msg=error.description)
), 401
|
handle the 401 HTTP error
Args:
error: the flask error
Returns:
401 JSON error
|
https://github.com/owasp/python-honeypot/blob/a082d1de72e22aea135eab85c5245514adf93c2b/api/server.py#L142-L154
|
import os
import binascii
import io
from flask import (Flask,
Response,
abort,
jsonify,
render_template,
send_file)
from flask import request as flask_request
from api.database_queries import (
filter_by_date,
filter_by_fields,
filter_by_module_name,
filter_by_regex,
event_types,
group_by_elements,
filter_by_element)
from api.utility import (
all_mime_types,
fix_limit,
fix_skip,
fix_filter_query,
msg_structure,
root_dir)
from config import (
api_configuration,
user_configuration)
from core.alert import write_to_api_console
from core.get_modules import load_all_modules
from database.connector import elasticsearch_events
from flask_swagger import swagger
from flask_swagger_ui import get_swaggerui_blueprint
from core.messages import load_messages
DOCS_URL = '/api/docs'
API_URL = 'http://localhost:5000/docs-configuration'
documentation_settings = get_swaggerui_blueprint(
DOCS_URL,
API_URL,
config={
'app_name': "Python Honeypot Api"
},
)
template_dir = os.path.join(
os.path.join(
os.path.dirname(
os.path.dirname(__file__)
),
"web"
),
"static"
)
app = Flask(
__name__,
template_folder=template_dir
)
app.config.from_object(
__name__
)
def get_file(filename):
try:
src = os.path.join(root_dir(), filename)
return open(src, 'rb').read()
except IOError:
abort(404)
def get_value_from_request(_key):
try:
value = flask_request.args[_key]
except Exception:
try:
value = flask_request.form[_key]
except Exception:
try:
value = flask_request.cookies[_key]
except Exception:
value = None
return value
def is_authorized():
api_access_key = app.config["OWASP_HONEYPOT_CONFIG"]["api_access_key"]
key_from_request = get_value_from_request("key")
if api_access_key is not None and api_access_key != key_from_request:
abort(401, "invalid API key")
return True
@app.errorhandler(400)
def error_400(error):
return jsonify(
msg_structure(status="error", msg=error.description)
), 400
@app.errorhandler(401)
|
Apache License 2.0
|
wdm0006/git-pandas
|
gitpandas/repository.py
|
Repository.commit_history
|
python
|
def commit_history(self, branch='master', limit=None, days=None, ignore_globs=None, include_globs=None):
if limit is None:
if days is None:
ds = [[
x.author.name,
x.committer.name,
x.committed_date,
x.message,
self.__check_extension(x.stats.files, ignore_globs=ignore_globs, include_globs=include_globs)
] for x in self.repo.iter_commits(branch, max_count=sys.maxsize)]
else:
ds = []
c_date = time.time()
commits = self.repo.iter_commits(branch, max_count=sys.maxsize)
dlim = time.time() - days * 24 * 3600
while c_date > dlim:
try:
if sys.version_info.major == 2:
x = commits.next()
else:
x = commits.__next__()
except StopIteration:
break
c_date = x.committed_date
if c_date > dlim:
ds.append([
x.author.name,
x.committer.name,
x.committed_date,
x.message,
self.__check_extension(x.stats.files, ignore_globs=ignore_globs,
include_globs=include_globs)
])
else:
ds = [[
x.author.name,
x.committer.name,
x.committed_date,
x.message,
self.__check_extension(x.stats.files, ignore_globs=ignore_globs, include_globs=include_globs)
] for x in self.repo.iter_commits(branch, max_count=limit)]
ds = [x[:-1] + [sum([x[-1][key]['lines'] for key in x[-1].keys()]),
sum([x[-1][key]['insertions'] for key in x[-1].keys()]),
sum([x[-1][key]['deletions'] for key in x[-1].keys()]),
sum([x[-1][key]['insertions'] for key in x[-1].keys()]) - sum(
[x[-1][key]['deletions'] for key in x[-1].keys()])
] for x in ds if len(x[-1].keys()) > 0]
df = DataFrame(ds,
columns=['author', 'committer', 'date', 'message', 'lines', 'insertions', 'deletions', 'net'])
df['date'] = to_datetime(df['date'].map(datetime.datetime.fromtimestamp))
df.set_index(keys=['date'], drop=True, inplace=True)
return df
|
Returns a pandas DataFrame containing all of the commits for a given branch. Included in that DataFrame will be
the columns:
* date (index)
* author
* committer
* message
* lines
* insertions
* deletions
* net
:param branch: the branch to return commits for
:param limit: (optional, default=None) a maximum number of commits to return, None for no limit
:param days: (optional, default=None) number of days to return, if limit is None
:param ignore_globs: (optional, default=None) a list of globs to ignore, default none excludes nothing
:param include_globs: (optinal, default=None) a list of globs to include, default of None includes everything.
:return: DataFrame
|
https://github.com/wdm0006/git-pandas/blob/0afe5c97cd34a463ea998128370d5da7a5ef0365/gitpandas/repository.py#L235-L316
|
import os
import sys
import datetime
import time
import json
import logging
import tempfile
import fnmatch
import shutil
import warnings
import numpy as np
from git import Repo, GitCommandError
from gitpandas.cache import multicache, EphemeralCache, RedisDFCache
from pandas import DataFrame, to_datetime
try:
from joblib import delayed, Parallel
_has_joblib = True
except ImportError as e:
_has_joblib = False
__author__ = 'willmcginnis'
def _parallel_cumulative_blame_func(self_, x, committer, ignore_globs, include_globs):
blm = self_.blame(
rev=x['rev'],
committer=committer,
ignore_globs=ignore_globs,
include_globs=include_globs
)
x.update(json.loads(blm.to_json())['loc'])
return x
class Repository(object):
def __init__(self, working_dir=None, verbose=False, tmp_dir=None, cache_backend=None):
self.verbose = verbose
self.log = logging.getLogger('gitpandas')
self.__delete_hook = False
self._git_repo_name = None
self.cache_backend = cache_backend
if working_dir is not None:
if working_dir[:3] == 'git':
if tmp_dir is None:
if self.verbose:
print('cloning repository: %s into a temporary location' % (working_dir,))
dir_path = tempfile.mkdtemp()
else:
dir_path = tmp_dir
self.repo = Repo.clone_from(working_dir, dir_path)
self._git_repo_name = working_dir.split(os.sep)[-1].split('.')[0]
self.git_dir = dir_path
self.__delete_hook = True
else:
self.git_dir = working_dir
self.repo = Repo(self.git_dir)
else:
self.git_dir = os.getcwd()
self.repo = Repo(self.git_dir)
if self.verbose:
print('Repository [%s] instantiated at directory: %s' % (self._repo_name(), self.git_dir))
def __del__(self):
if self.__delete_hook:
if os.path.exists(self.git_dir):
shutil.rmtree(self.git_dir)
def is_bare(self):
return self.repo.bare
def has_coverage(self):
if os.path.exists(self.git_dir + os.sep + '.coverage'):
try:
with open(self.git_dir + os.sep + '.coverage', 'r') as f:
blob = f.read()
blob = blob.split('!')[2]
json.loads(blob)
return True
except Exception:
return False
else:
return False
def coverage(self):
if not self.has_coverage():
return DataFrame(columns=['filename', 'lines_covered', 'total_lines', 'coverage'])
with open(self.git_dir + os.sep + '.coverage', 'r') as f:
blob = f.read()
blob = blob.split('!')[2]
cov = json.loads(blob)
ds = []
for filename in cov['lines'].keys():
idx = 0
try:
with open(filename, 'r') as f:
for idx, _ in enumerate(f):
pass
except FileNotFoundError as e:
if self.verbose:
warnings.warn('Could not find file %s for coverage' % (filename, ))
num_lines = idx + 1
try:
short_filename = filename.split(self.git_dir + os.sep)[1]
ds.append([short_filename, len(cov['lines'][filename]), num_lines])
except IndexError as e:
if self.verbose:
warnings.warn('Could not find file %s for coverage' % (filename, ))
df = DataFrame(ds, columns=['filename', 'lines_covered', 'total_lines'])
df['coverage'] = df['lines_covered'] / df['total_lines']
return df
def hours_estimate(self, branch='master', grouping_window=0.5, single_commit_hours=0.5, limit=None, days=None,
committer=True, ignore_globs=None, include_globs=None):
max_diff_in_minutes = grouping_window * 60.0
first_commit_addition_in_minutes = single_commit_hours * 60.0
ch = self.commit_history(branch=branch, limit=limit, days=days, ignore_globs=ignore_globs,
include_globs=include_globs)
if committer:
by = 'committer'
else:
by = 'author'
people = set(ch[by].values)
ds = []
for person in people:
commits = ch[ch[by] == person]
commits_ts = [x * 10e-10 for x in sorted(commits.index.values.tolist())]
if len(commits_ts) < 2:
ds.append([person, 0])
continue
def estimate(index, date):
next_ts = commits_ts[index + 1]
diff_in_minutes = next_ts - date
diff_in_minutes /= 60.0
if diff_in_minutes < max_diff_in_minutes:
return diff_in_minutes / 60.0
return first_commit_addition_in_minutes / 60.0
hours = [estimate(a, b) for a, b in enumerate(commits_ts[:-1])]
hours = sum(hours)
ds.append([person, hours])
df = DataFrame(ds, columns=[by, 'hours'])
return df
|
BSD 3-Clause New or Revised License
|
pipermerriam/eth-testrpc
|
testrpc/client/client.py
|
EthTesterClient._send_transaction
|
python
|
def _send_transaction(self, _from=None, to=None, gas=None, gas_price=None,
value=0, data=b''):
if _from is None:
_from = self.get_coinbase()
_from = normalize_address(_from)
try:
sender = t.keys[t.accounts.index(_from)]
except ValueError:
if _from in self.unlocked_accounts:
unlock_expiration = self.unlocked_accounts[_from]
if unlock_expiration is None or unlock_expiration > time.time():
sender = self.passphrase_account_keys[_from]
else:
raise ValueError("Account locked. Unlock before sending tx")
else:
raise
if to is None:
to = b''
to = normalize_address(to, allow_blank=True)
if data is None:
data = b''
data = decode_hex(data)
try:
if gas is not None:
t.gas_limit = gas
if gas_price is not None:
t.gas_price = gas_price
output = self.evm.send(sender=sender, to=to, value=value, evmdata=data)
finally:
t.gas_limit = t.GAS_LIMIT
t.gas_price = t.GAS_PRICE
return output
|
The tester doesn't care about gas so we discard it.
|
https://github.com/pipermerriam/eth-testrpc/blob/328e1ba3dfce6273527773505701522febef79a0/testrpc/client/client.py#L188-L230
|
import os
import time
import itertools
import functools
from testrpc.compat import threading
import rlp
from ethereum import transactions
from ethereum import tester as t
from ethereum import config
from ethereum.utils import (
privtoaddr,
)
from .utils import (
is_string,
coerce_args_to_bytes,
strip_0x,
encode_32bytes,
encode_address,
encode_data,
normalize_number,
normalize_address,
decode_hex,
mk_random_privkey,
is_array,
normalize_block_identifier)
from .serializers import (
serialize_txn,
serialize_txn_receipt,
serialize_block,
)
from .filters import (
check_filter_topics_validity,
process_block,
get_filter_bounds,
)
DEFAULT_GAS_LIMIT = t.gas_limit = t.GAS_LIMIT = int(os.environ.get('TESTRPC_GAS_LIMIT', 4000000))
config.default_config['GENESIS_GAS_LIMIT'] = DEFAULT_GAS_LIMIT
def with_lock(client_method):
@functools.wraps(client_method)
def inner(self, *args, **kwargs):
self._evm_lock.acquire()
try:
return client_method(self, *args, **kwargs)
finally:
self._evm_lock.release()
return inner
class EthTesterClient(object):
locked_accounts = None
homestead_block_number = 0
dao_fork_block_number = 0
anti_dos_fork_block_number = 0
clearing_fork_block_number = 0
dao_fork_support = True
def __init__(self):
self._evm_lock = threading.Lock()
self.snapshots = []
self.reset_evm()
self.evm.block.config['HOMESTEAD_FORK_BLKNUM'] = self.homestead_block_number
self.evm.block.config['DAO_FORK_BLKNUM'] = self.dao_fork_block_number
self.evm.block.config['ANTI_DOS_FORK_BLKNUM'] = self.anti_dos_fork_block_number
self.evm.block.config['CLEARING_FORK_BLKNUM'] = self.clearing_fork_block_number
self.passphrase_accounts = {}
self.passphrase_account_keys = {}
self.unlocked_accounts = {}
self.log_filters = {}
self.log_filters_id_generator = itertools.count()
@with_lock
def reset_evm(self, snapshot_idx=None):
if snapshot_idx is not None:
self.revert_evm(snapshot_idx)
else:
self.evm = t.state()
self.evm.block.gas_limit = DEFAULT_GAS_LIMIT
@with_lock
def snapshot_evm(self):
self.snapshots.append((self.evm.block.number, self.evm.snapshot()))
return len(self.snapshots) - 1
@with_lock
def revert_evm(self, snapshot_idx=None, reset_logs=False):
if len(self.snapshots) == 0:
raise ValueError("No snapshots to revert to")
if snapshot_idx is not None:
block_number, snapshot = self.snapshots.pop(snapshot_idx)
else:
block_number, snapshot = self.snapshots.pop()
del self.evm.blocks[block_number:]
self.evm.revert(snapshot)
self.evm.blocks.append(self.evm.block)
@with_lock
def mine_block(self):
self.evm.mine()
def wait_for_block(self, block_number, max_wait=0):
while self.get_block_number() < block_number:
self.mine_block()
return self.get_block_by_number(self.get_block_number())
def wait_for_transaction(self, txn_hash, max_wait=0):
return self.get_transaction_receipt(txn_hash)
def get_max_gas(self):
return t.gas_limit
def _get_transaction_by_hash(self, txn_hash):
txn_hash = strip_0x(txn_hash)
if len(txn_hash) == 64:
txn_hash = decode_hex(txn_hash)
for block in reversed(self.evm.blocks):
txn_hashes = block.get_transaction_hashes()
if txn_hash in txn_hashes:
txn_index = txn_hashes.index(txn_hash)
txn = block.transaction_list[txn_index]
break
else:
raise ValueError("Transaction not found")
return block, txn, txn_index
def _get_block_by_number(self, block_number="latest"):
if block_number == "latest":
if not self.evm.blocks:
raise ValueError("No blocks")
elif len(self.evm.blocks) > 1:
return self.evm.blocks[-2]
else:
return self.evm.blocks[-1]
elif block_number == "earliest":
return self.evm.blocks[0]
elif block_number == "pending":
return self.evm.block
else:
block_number = normalize_number(block_number)
if block_number >= len(self.evm.blocks):
raise ValueError("Invalid block number")
return self.evm.blocks[block_number]
def _get_block_by_hash(self, block_hash):
if len(block_hash) > 32:
block_hash = decode_hex(strip_0x(block_hash))
for block in self.evm.blocks:
if block.hash == block_hash:
return block
else:
raise ValueError("Could not find block for provided hash")
@with_lock
@coerce_args_to_bytes
|
MIT License
|
vlsida/openram
|
compiler/base/verilog.py
|
verilog.register_inputs
|
python
|
def register_inputs(self, port):
self.add_regs(port)
self.add_flops(port)
|
Register the control signal, address and data inputs.
|
https://github.com/vlsida/openram/blob/f66aac3264598eeae31225c62b6a4af52412d407/compiler/base/verilog.py#L113-L118
|
import math
from tech import spice
class verilog:
def __init__(self):
pass
def verilog_write(self, verilog_name):
self.vf = open(verilog_name, "w")
self.vf.write("// OpenRAM SRAM model\n")
self.vf.write("// Words: {0}\n".format(self.num_words))
self.vf.write("// Word size: {0}\n".format(self.word_size))
if self.write_size:
self.vf.write("// Write size: {0}\n\n".format(self.write_size))
else:
self.vf.write("\n")
try:
self.vdd_name = spice["power"]
except KeyError:
self.vdd_name = "vdd"
try:
self.gnd_name = spice["ground"]
except KeyError:
self.gnd_name = "gnd"
self.vf.write("module {0}(\n".format(self.name))
self.vf.write("`ifdef USE_POWER_PINS\n")
self.vf.write(" {},\n".format(self.vdd_name))
self.vf.write(" {},\n".format(self.gnd_name))
self.vf.write("`endif\n")
for port in self.all_ports:
if port in self.readwrite_ports:
self.vf.write("// Port {0}: RW\n".format(port))
elif port in self.read_ports:
self.vf.write("// Port {0}: R\n".format(port))
elif port in self.write_ports:
self.vf.write("// Port {0}: W\n".format(port))
if port in self.readwrite_ports:
self.vf.write(" clk{0},csb{0},web{0},".format(port))
if self.write_size:
self.vf.write("wmask{},".format(port))
if self.num_spare_cols > 0:
self.vf.write("spare_wen{0},".format(port))
self.vf.write("addr{0},din{0},dout{0}".format(port))
elif port in self.write_ports:
self.vf.write(" clk{0},csb{0},".format(port))
if self.write_size:
self.vf.write("wmask{},".format(port))
if self.num_spare_cols > 0:
self.vf.write("spare_wen{0},".format(port))
self.vf.write("addr{0},din{0}".format(port))
elif port in self.read_ports:
self.vf.write(" clk{0},csb{0},addr{0},dout{0}".format(port))
if port != self.all_ports[-1]:
self.vf.write(",\n")
self.vf.write("\n );\n\n")
if self.write_size:
self.num_wmasks = int(math.ceil(self.word_size / self.write_size))
self.vf.write(" parameter NUM_WMASKS = {0} ;\n".format(self.num_wmasks))
self.vf.write(" parameter DATA_WIDTH = {0} ;\n".format(self.word_size + self.num_spare_cols))
self.vf.write(" parameter ADDR_WIDTH = {0} ;\n".format(self.addr_size))
self.vf.write(" parameter RAM_DEPTH = 1 << ADDR_WIDTH;\n")
self.vf.write(" // FIXME: This delay is arbitrary.\n")
self.vf.write(" parameter DELAY = 3 ;\n")
self.vf.write(" parameter VERBOSE = 1 ; //Set to 0 to only display warnings\n")
self.vf.write(" parameter T_HOLD = 1 ; //Delay to hold dout value after posedge. Value is arbitrary\n")
self.vf.write("\n")
self.vf.write("`ifdef USE_POWER_PINS\n")
self.vf.write(" inout {};\n".format(self.vdd_name))
self.vf.write(" inout {};\n".format(self.gnd_name))
self.vf.write("`endif\n")
for port in self.all_ports:
self.add_inputs_outputs(port)
self.vf.write("\n")
for port in self.all_ports:
self.register_inputs(port)
self.vf.write("reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];\n")
for port in self.all_ports:
if port in self.write_ports:
self.add_write_block(port)
if port in self.read_ports:
self.add_read_block(port)
self.vf.write("\n")
self.vf.write("endmodule\n")
self.vf.close()
|
BSD 3-Clause New or Revised License
|
irmen/pyro5
|
Pyro5/nameserver.py
|
BroadcastServer.runInThread
|
python
|
def runInThread(self):
thread = threading.Thread(target=self.__requestLoop)
thread.setDaemon(True)
thread.start()
log.debug("broadcast server loop running in own thread")
return thread
|
Run the broadcast server loop in its own thread.
|
https://github.com/irmen/pyro5/blob/3310d49aebcdb57b5e153b59b0b3f0d92cbd90a8/Pyro5/nameserver.py#L613-L619
|
import warnings
import re
import sys
import logging
import socket
import time
import contextlib
import threading
from collections.abc import MutableMapping
try:
import sqlite3
except ImportError:
pass
from . import config, core, socketutil, server, errors
from .errors import NamingError, PyroError, ProtocolError
__all__ = ["start_ns_loop", "start_ns"]
log = logging.getLogger("Pyro5.naming")
class MemoryStorage(dict):
def __init__(self, **kwargs):
super(MemoryStorage, self).__init__(**kwargs)
def __setitem__(self, key, value):
uri, metadata = value
super(MemoryStorage, self).__setitem__(key, (uri, metadata or frozenset()))
def optimized_prefix_list(self, prefix, return_metadata=False):
return None
def optimized_regex_list(self, regex, return_metadata=False):
return None
def optimized_metadata_search(self, metadata_all=None, metadata_any=None, return_metadata=False):
return None
def everything(self, return_metadata=False):
if return_metadata:
return self.copy()
return {name: uri for name, (uri, metadata) in self.items()}
def remove_items(self, items):
for item in items:
if item in self:
del self[item]
def close(self):
pass
class SqlStorage(MutableMapping):
def __init__(self, dbfile):
if dbfile == ":memory:":
raise ValueError("We don't support the sqlite :memory: database type. Just use the default volatile in-memory store.")
self.dbfile = dbfile
with sqlite3.connect(dbfile) as db:
db.execute("PRAGMA foreign_keys=ON")
try:
db.execute("SELECT COUNT(*) FROM pyro_names").fetchone()
except sqlite3.OperationalError:
self._create_schema(db)
else:
try:
db.execute("SELECT COUNT(*) FROM pyro_metadata").fetchone()
except sqlite3.OperationalError:
db.execute("ALTER TABLE pyro_names RENAME TO pyro_names_old")
self._create_schema(db)
db.execute("INSERT INTO pyro_names(name, uri) SELECT name, uri FROM pyro_names_old")
db.execute("DROP TABLE pyro_names_old")
db.commit()
def _create_schema(self, db):
db.execute("""CREATE TABLE pyro_names
(
id integer PRIMARY KEY,
name nvarchar NOT NULL UNIQUE,
uri nvarchar NOT NULL
);""")
db.execute("""CREATE TABLE pyro_metadata
(
object integer NOT NULL,
metadata nvarchar NOT NULL,
FOREIGN KEY(object) REFERENCES pyro_names(id)
);""")
def __getattr__(self, item):
raise NotImplementedError("SqlStorage doesn't implement method/attribute '" + item + "'")
def __getitem__(self, item):
try:
with sqlite3.connect(self.dbfile) as db:
result = db.execute("SELECT id, uri FROM pyro_names WHERE name=?", (item,)).fetchone()
if result:
dbid, uri = result
metadata = {m[0] for m in db.execute("SELECT metadata FROM pyro_metadata WHERE object=?", (dbid,)).fetchall()}
return uri, metadata
else:
raise KeyError(item)
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in getitem: " + str(e))
def __setitem__(self, key, value):
uri, metadata = value
try:
with sqlite3.connect(self.dbfile) as db:
cursor = db.cursor()
cursor.execute("PRAGMA foreign_keys=ON")
dbid = cursor.execute("SELECT id FROM pyro_names WHERE name=?", (key,)).fetchone()
if dbid:
dbid = dbid[0]
cursor.execute("DELETE FROM pyro_metadata WHERE object=?", (dbid,))
cursor.execute("DELETE FROM pyro_names WHERE id=?", (dbid,))
cursor.execute("INSERT INTO pyro_names(name, uri) VALUES(?,?)", (key, uri))
if metadata:
object_id = cursor.lastrowid
for m in metadata:
cursor.execute("INSERT INTO pyro_metadata(object, metadata) VALUES (?,?)", (object_id, m))
cursor.close()
db.commit()
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in setitem: " + str(e))
def __len__(self):
try:
with sqlite3.connect(self.dbfile) as db:
return db.execute("SELECT count(*) FROM pyro_names").fetchone()[0]
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in len: " + str(e))
def __contains__(self, item):
try:
with sqlite3.connect(self.dbfile) as db:
return db.execute("SELECT EXISTS(SELECT 1 FROM pyro_names WHERE name=? LIMIT 1)", (item,)).fetchone()[0]
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in contains: " + str(e))
def __delitem__(self, key):
try:
with sqlite3.connect(self.dbfile) as db:
db.execute("PRAGMA foreign_keys=ON")
dbid = db.execute("SELECT id FROM pyro_names WHERE name=?", (key,)).fetchone()
if dbid:
dbid = dbid[0]
db.execute("DELETE FROM pyro_metadata WHERE object=?", (dbid,))
db.execute("DELETE FROM pyro_names WHERE id=?", (dbid,))
db.commit()
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in delitem: " + str(e))
def __iter__(self):
try:
with sqlite3.connect(self.dbfile) as db:
result = db.execute("SELECT name FROM pyro_names")
return iter([n[0] for n in result.fetchall()])
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in iter: " + str(e))
def clear(self):
try:
with sqlite3.connect(self.dbfile) as db:
db.execute("PRAGMA foreign_keys=ON")
db.execute("DELETE FROM pyro_metadata")
db.execute("DELETE FROM pyro_names")
db.commit()
with sqlite3.connect(self.dbfile, isolation_level=None) as db:
db.execute("VACUUM")
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in clear: " + str(e))
def optimized_prefix_list(self, prefix, return_metadata=False):
try:
with sqlite3.connect(self.dbfile) as db:
names = {}
if return_metadata:
for dbid, name, uri in db.execute("SELECT id, name, uri FROM pyro_names WHERE name LIKE ?", (prefix + '%',)).fetchall():
metadata = {m[0] for m in db.execute("SELECT metadata FROM pyro_metadata WHERE object=?", (dbid,)).fetchall()}
names[name] = uri, metadata
else:
for name, uri in db.execute("SELECT name, uri FROM pyro_names WHERE name LIKE ?", (prefix + '%',)).fetchall():
names[name] = uri
return names
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in optimized_prefix_list: " + str(e))
def optimized_regex_list(self, regex, return_metadata=False):
return None
def optimized_metadata_search(self, metadata_all=None, metadata_any=None, return_metadata=False):
try:
with sqlite3.connect(self.dbfile) as db:
if metadata_any:
params = list(metadata_any)
sql = "SELECT id, name, uri FROM pyro_names WHERE id IN (SELECT object FROM pyro_metadata WHERE metadata IN ({seq}))" .format(seq=",".join(['?'] * len(metadata_any)))
else:
params = list(metadata_all)
params.append(len(metadata_all))
sql = "SELECT id, name, uri FROM pyro_names WHERE id IN (SELECT object FROM pyro_metadata WHERE metadata IN ({seq}) " "GROUP BY object HAVING COUNT(metadata)=?)".format(seq=",".join(['?'] * len(metadata_all)))
result = db.execute(sql, params).fetchall()
if return_metadata:
names = {}
for dbid, name, uri in result:
metadata = {m[0] for m in db.execute("SELECT metadata FROM pyro_metadata WHERE object=?", (dbid,)).fetchall()}
names[name] = uri, metadata
else:
names = {name: uri for (dbid, name, uri) in result}
return names
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in optimized_metadata_search: " + str(e))
def remove_items(self, items):
try:
with sqlite3.connect(self.dbfile) as db:
db.execute("PRAGMA foreign_keys=ON")
for item in items:
dbid = db.execute("SELECT id FROM pyro_names WHERE name=?", (item,)).fetchone()
if dbid:
dbid = dbid[0]
db.execute("DELETE FROM pyro_metadata WHERE object=?", (dbid,))
db.execute("DELETE FROM pyro_names WHERE id=?", (dbid,))
db.commit()
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in remove_items: " + str(e))
def everything(self, return_metadata=False):
try:
with sqlite3.connect(self.dbfile) as db:
names = {}
if return_metadata:
for dbid, name, uri in db.execute("SELECT id, name, uri FROM pyro_names").fetchall():
metadata = {m[0] for m in db.execute("SELECT metadata FROM pyro_metadata WHERE object=?", (dbid,)).fetchall()}
names[name] = uri, metadata
else:
for name, uri in db.execute("SELECT name, uri FROM pyro_names").fetchall():
names[name] = uri
return names
except sqlite3.DatabaseError as e:
raise NamingError("sqlite error in everything: " + str(e))
def close(self):
pass
@server.expose
class NameServer(object):
def __init__(self, storageProvider=None):
self.storage = storageProvider
if storageProvider is None:
self.storage = MemoryStorage()
log.debug("using volatile in-memory dict storage")
self.lock = threading.RLock()
def count(self):
return len(self.storage)
def lookup(self, name, return_metadata=False):
try:
uri, metadata = self.storage[name]
uri = core.URI(uri)
if return_metadata:
return uri, set(metadata or [])
return uri
except KeyError:
raise NamingError("unknown name: " + name)
def register(self, name, uri, safe=False, metadata=None):
if isinstance(uri, core.URI):
uri = str(uri)
elif not isinstance(uri, str):
raise TypeError("only URIs or strings can be registered")
else:
core.URI(uri)
if not isinstance(name, str):
raise TypeError("name must be a str")
if isinstance(metadata, str):
raise TypeError("metadata should not be a str, but another iterable (set, list, etc)")
metadata and iter(metadata)
with self.lock:
if safe and name in self.storage:
raise NamingError("name already registered: " + name)
self.storage[name] = uri, set(metadata) if metadata else None
def set_metadata(self, name, metadata):
if not isinstance(name, str):
raise TypeError("name must be a str")
if isinstance(metadata, str):
raise TypeError("metadata should not be a str, but another iterable (set, list, etc)")
metadata and iter(metadata)
with self.lock:
try:
uri, old_meta = self.storage[name]
self.storage[name] = uri, set(metadata) if metadata else None
except KeyError:
raise NamingError("unknown name: " + name)
def remove(self, name=None, prefix=None, regex=None):
if name and name in self.storage and name != core.NAMESERVER_NAME:
with self.lock:
del self.storage[name]
return 1
if prefix:
items = list(self.list(prefix=prefix).keys())
if core.NAMESERVER_NAME in items:
items.remove(core.NAMESERVER_NAME)
self.storage.remove_items(items)
return len(items)
if regex:
items = list(self.list(regex=regex).keys())
if core.NAMESERVER_NAME in items:
items.remove(core.NAMESERVER_NAME)
self.storage.remove_items(items)
return len(items)
return 0
def list(self, prefix=None, regex=None, return_metadata=False):
if prefix and regex:
raise ValueError("you can only filter on one thing at a time")
with self.lock:
if prefix:
result = self.storage.optimized_prefix_list(prefix, return_metadata)
if result is not None:
return result
result = {}
for name in self.storage:
if name.startswith(prefix):
result[name] = self.storage[name] if return_metadata else self.storage[name][0]
return result
elif regex:
result = self.storage.optimized_regex_list(regex, return_metadata)
if result is not None:
return result
result = {}
try:
regex = re.compile(regex)
except re.error as x:
raise errors.NamingError("invalid regex: " + str(x))
else:
for name in self.storage:
if regex.match(name):
result[name] = self.storage[name] if return_metadata else self.storage[name][0]
return result
else:
return self.storage.everything(return_metadata)
def yplookup(self, meta_all=None, meta_any=None, return_metadata=True):
if meta_all and meta_any:
raise ValueError("you can't use meta_all or meta_any at the same time")
with self.lock:
if meta_all:
if isinstance(meta_all, str):
raise TypeError("metadata_all should not be a str, but another iterable (set, list, etc)")
meta_all and iter(meta_all)
result = self.storage.optimized_metadata_search(metadata_all=meta_all, return_metadata=return_metadata)
if result is not None:
return result
meta_all = frozenset(meta_all)
result = {}
for name, (uri, meta) in self.storage.everything(return_metadata=True).items():
if meta_all.issubset(meta):
result[name] = (uri, meta) if return_metadata else uri
return result
elif meta_any:
if isinstance(meta_any, str):
raise TypeError("metadata_any should not be a str, but another iterable (set, list, etc)")
meta_any and iter(meta_any)
result = self.storage.optimized_metadata_search(metadata_any=meta_any, return_metadata=return_metadata)
if result is not None:
return result
meta_any = frozenset(meta_any)
result = {}
for name, (uri, meta) in self.storage.everything(return_metadata=True).items():
if meta_any & meta:
result[name] = (uri, meta) if return_metadata else uri
return result
else:
return {}
def ping(self):
pass
class NameServerDaemon(server.Daemon):
def __init__(self, host=None, port=None, unixsocket=None, nathost=None, natport=None, storage=None):
if host is None:
host = config.HOST
elif not isinstance(host, str):
host = str(host)
if port is None:
port = config.NS_PORT
if nathost is None:
nathost = config.NATHOST
elif not isinstance(nathost, str):
nathost = str(nathost)
if natport is None:
natport = config.NATPORT or None
storage = storage or "memory"
if storage == "memory":
log.debug("using volatile in-memory dict storage")
self.nameserver = NameServer(MemoryStorage())
elif storage.startswith("sql:") and len(storage) > 4:
sqlfile = storage[4:]
log.debug("using persistent sql storage in file %s", sqlfile)
self.nameserver = NameServer(SqlStorage(sqlfile))
else:
raise ValueError("invalid storage type '%s'" % storage)
existing_count = self.nameserver.count()
if existing_count > 0:
log.debug("number of existing entries in storage: %d", existing_count)
super(NameServerDaemon, self).__init__(host, port, unixsocket, nathost=nathost, natport=natport)
self.register(self.nameserver, core.NAMESERVER_NAME)
metadata = {"class:Pyro5.nameserver.NameServer"}
self.nameserver.register(core.NAMESERVER_NAME, self.uriFor(self.nameserver), metadata=metadata)
if config.NS_AUTOCLEAN > 0:
if not AutoCleaner.override_autoclean_min and config.NS_AUTOCLEAN < AutoCleaner.min_autoclean_value:
raise ValueError("NS_AUTOCLEAN cannot be smaller than " + str(AutoCleaner.min_autoclean_value))
log.debug("autoclean enabled")
self.cleaner_thread = AutoCleaner(self.nameserver)
self.cleaner_thread.start()
else:
log.debug("autoclean not enabled")
self.cleaner_thread = None
log.info("nameserver daemon created")
def close(self):
super(NameServerDaemon, self).close()
if self.nameserver is not None:
self.nameserver.storage.close()
self.nameserver = None
if self.cleaner_thread:
self.cleaner_thread.stop = True
self.cleaner_thread.join()
self.cleaner_thread = None
def __enter__(self):
if not self.nameserver:
raise PyroError("cannot reuse this object")
return self
def __exit__(self, exc_type, exc_value, traceback):
if self.nameserver is not None:
self.nameserver.storage.close()
self.nameserver = None
if self.cleaner_thread:
self.cleaner_thread.stop = True
self.cleaner_thread.join()
self.cleaner_thread = None
return super(NameServerDaemon, self).__exit__(exc_type, exc_value, traceback)
def handleRequest(self, conn):
try:
return super(NameServerDaemon, self).handleRequest(conn)
except ProtocolError as x:
warnings.warn("Pyro protocol error occurred: " + str(x))
raise
class AutoCleaner(threading.Thread):
min_autoclean_value = 3
max_unreachable_time = 20.0
loop_delay = 2.0
override_autoclean_min = False
def __init__(self, nameserver):
assert config.NS_AUTOCLEAN > 0
if not self.override_autoclean_min and config.NS_AUTOCLEAN < self.min_autoclean_value:
raise ValueError("NS_AUTOCLEAN cannot be smaller than " + str(self.min_autoclean_value))
super(AutoCleaner, self).__init__()
self.nameserver = nameserver
self.stop = False
self.daemon = True
self.last_cleaned = time.time()
self.unreachable = {}
def run(self):
while not self.stop:
time.sleep(self.loop_delay)
time_since_last_autoclean = time.time() - self.last_cleaned
if time_since_last_autoclean < config.NS_AUTOCLEAN:
continue
for name, uri in self.nameserver.list().items():
if name in (core.DAEMON_NAME, core.NAMESERVER_NAME):
continue
try:
uri_obj = core.URI(uri)
timeout = config.COMMTIMEOUT or 5
sock = socketutil.create_socket(connect=(uri_obj.host, uri_obj.port), timeout=timeout)
sock.close()
if name in self.unreachable:
del self.unreachable[name]
except socket.error:
if name not in self.unreachable:
self.unreachable[name] = time.time()
if time.time() - self.unreachable[name] >= self.max_unreachable_time:
log.info("autoclean: unregistering %s; cannot connect uri %s for %d sec", name, uri, self.max_unreachable_time)
self.nameserver.remove(name)
del self.unreachable[name]
continue
self.last_cleaned = time.time()
if self.unreachable:
log.debug("autoclean: %d/%d names currently unreachable", len(self.unreachable), self.nameserver.count())
class BroadcastServer(object):
class TransportServerAdapter(object):
def __init__(self, bcserver):
self.sockets = [bcserver]
def events(self, eventobjects):
for bc in eventobjects:
bc.processRequest()
def __init__(self, nsUri, bchost=None, bcport=None, ipv6=False):
self.transportServer = self.TransportServerAdapter(self)
self.nsUri = nsUri
if bcport is None:
bcport = config.NS_BCPORT
if bchost is None:
bchost = config.NS_BCHOST
elif not isinstance(bchost, str):
bchost = str(bchost)
if ":" in nsUri.host or ipv6:
bchost = bchost or "::"
self.sock = socketutil.create_bc_socket((bchost, bcport, 0, 0), reuseaddr=config.SOCK_REUSE, timeout=2.0)
else:
self.sock = socketutil.create_bc_socket((bchost, bcport), reuseaddr=config.SOCK_REUSE, timeout=2.0)
self._sockaddr = self.sock.getsockname()
bchost = bchost or self._sockaddr[0]
bcport = bcport or self._sockaddr[1]
if ":" in bchost:
self.locationStr = "[%s]:%d" % (bchost, bcport)
else:
self.locationStr = "%s:%d" % (bchost, bcport)
log.info("ns broadcast server created on %s - %s", self.locationStr, socketutil.family_str(self.sock))
self.running = True
def close(self):
log.debug("ns broadcast server closing")
self.running = False
with contextlib.suppress(OSError, socket.error):
self.sock.shutdown(socket.SHUT_RDWR)
self.sock.close()
def getPort(self):
return self.sock.getsockname()[1]
def fileno(self):
return self.sock.fileno()
|
MIT License
|
shannonturner/python-lessons
|
section_05_(loops)/loops.py
|
loop_example
|
python
|
def loop_example(list_to_loop_through):
print "I'm going to begin to loop through this list: ", list_to_loop_through, "\n"
list_items_squared = []
for each_item in list_to_loop_through:
print "Now I'm on: ", each_item
print "{0} squared is {1}\n".format(each_item, each_item**2)
list_items_squared.append(each_item**2)
print "Now I'm done looping through the list, and I'm going to return the new list, where each list item has been squared."
return list_items_squared
|
Assuming each item in list_to_loop_through is a number, return a list of each item in that list squared.
|
https://github.com/shannonturner/python-lessons/blob/38409c318e7a62d30b2ffd68f8a7a5a5ec00778d/section_05_(loops)/loops.py#L2-L19
|
MIT License
|
|
facebookresearch/pytorchvideo
|
pytorchvideo/data/encoded_video.py
|
select_video_class
|
python
|
def select_video_class(decoder: str) -> Video:
if DecoderType(decoder) == DecoderType.PYAV:
from .encoded_video_pyav import EncodedVideoPyAV
video_cls = EncodedVideoPyAV
elif DecoderType(decoder) == DecoderType.TORCHVISION:
from .encoded_video_torchvision import EncodedVideoTorchVision
video_cls = EncodedVideoTorchVision
else:
raise NotImplementedError(f"Unknown decoder type {decoder}")
return video_cls
|
Select the class for accessing clips based on provided decoder string
Args:
decoder (str): Defines what type of decoder used to decode a video.
|
https://github.com/facebookresearch/pytorchvideo/blob/832a6bc683257f07e74c95a1f9441ebaa64d95d8/pytorchvideo/data/encoded_video.py#L16-L34
|
import io
import logging
import pathlib
from iopath.common.file_io import g_pathmgr
from pytorchvideo.data.decoder import DecoderType
from .video import Video
logger = logging.getLogger(__name__)
|
Apache License 2.0
|
bbn-q/qgl
|
QGL/PulseSequencePlotter.py
|
plot_pulse_files
|
python
|
def plot_pulse_files(metafile, time=True, backend='bqplot'):
with open(metafile, 'r') as FID:
meta_info = json.load(FID)
fileNames = []
for el in meta_info["instruments"].values():
if isinstance(el, str):
fileNames.append(el)
elif isinstance(el, dict):
for file in el.values():
fileNames.append(file)
line_names, num_seqs, data_dicts = extract_waveforms(fileNames, time=time)
localname = os.path.split(fileNames[0])[1]
sequencename = localname.split('-')[0]
if backend=='matplotlib':
import matplotlib.pyplot as plt
from ipywidgets import interact, IntSlider
def update_plot(seq_ind):
for line_name in line_names:
dat = data_dicts[f"{line_name}_{seq_ind}"]
plt.plot(dat['x'], dat['y'], label=line_name, linewidth=1.0)
interact(update_plot, seq_ind=IntSlider(min=1,max=num_seqs,step=1,value=1,description="Sequence Number"))
elif backend=='bqplot':
from bqplot import DateScale, LinearScale, Axis, Lines, Figure, Tooltip
from bqplot.colorschemes import CATEGORY10, CATEGORY20
from ipywidgets import interact, IntSlider, VBox
sx = LinearScale()
sy = LinearScale(min=-1.0, max=2*len(line_names)-1.0)
if time:
ax = Axis(label='Time (ns)', scale=sx)
else:
ax = Axis(label="Samples", scale=sx)
ay = Axis(label='Amplitude', scale=sy, orientation='vertical')
colors = CATEGORY10 if len(line_names)<10 else CATEGORY20
lines = []
tt = Tooltip(fields=['name'], labels=['Channel'])
x_mult = 1.0e9 if time else 1
for i, line_name in enumerate(line_names):
dat = data_dicts[f"{line_name}_1"]
lines.append(Lines(labels=[line_name], x=x_mult*dat['x'], y=dat['y'], scales={'x': sx, 'y': sy},
tooltip=tt, animate=False, colors=[colors[i]]))
slider = IntSlider(min=1, max=num_seqs, step=1, description='Segment', value=1)
def segment_changed(change):
for line, line_name in zip(lines, line_names):
dat = data_dicts[f"{line_name}_{slider.value}"]
line.x = x_mult*dat['x']
line.y = dat['y']
slider.observe(segment_changed, 'value')
fig = Figure(marks=lines, axes=[ax, ay], title='Waveform Plotter',animation_duration=50)
return VBox([slider, fig])
|
plot_pulse_files(metafile)
Helper function to plot a list of AWG files. A jupyter slider widget allows choice of sequence number.
|
https://github.com/bbn-q/qgl/blob/8df9ce5d68dca61c8c057d34a1c08b98eb910a43/QGL/PulseSequencePlotter.py#L68-L129
|
import os.path
import json
from importlib import import_module
import numpy as np
from . import config
from . import drivers
import pkgutil
def all_zero_seqs(seqs):
return all([np.allclose([_[1] for _ in seq], 0) for seq in seqs])
def build_awg_translator_map():
translators_map = {}
translators = [_[1] for _ in pkgutil.walk_packages(drivers.__path__)]
for translator in translators:
module = import_module('QGL.drivers.' + translator)
ext = module.get_seq_file_extension()
if ext in translators_map:
translators_map[ext].append(module)
else:
translators_map[ext] = [module]
return translators_map
translators = build_awg_translator_map()
def resolve_translator(filename, translators):
ext = os.path.splitext(filename)[1]
if ext not in translators:
raise NameError("No translator found to open the given file %s",
filename)
if len(translators[ext]) == 1:
return translators[ext][0]
for t in translators[ext]:
if t.is_compatible_file(filename):
return t
raise NameError("No translator found to open the given file %s", filename)
|
Apache License 2.0
|
abhisharma404/vault
|
src/lib/attacks/ddos/ddos.py
|
DDoS.generatePacket
|
python
|
def generatePacket(self, ip, source_port):
IP_PACKET = IP(src=ip, dst=self.target_ip)
TCP_PACKET = TCP(sport=source_port, dport=self.dport)
PKT = IP_PACKET/TCP_PACKET
return PKT
|
Generates scapy packet
|
https://github.com/abhisharma404/vault/blob/0303cf425f028ce38cfaf40640d625861b7c805a/src/lib/attacks/ddos/ddos.py#L100-L107
|
import random
from scapy.all import *
import threading
import socket
import sys
from urllib.parse import urlparse
import colors
import time
class DDoS(object):
def __init__(self, url, ip, start_port, end_port, dport, threads,
interval):
if url is not None and ip is not None:
colors.error('Please provide either the URL or the IP address...')
sys.exit(1)
if ip is not None:
self.target_ip = ip
elif url is not None:
self.target_ip = self.getIP(url)
else:
colors.error('Please provide URL or the IP address to attack...')
if start_port is not None:
if start_port > 0 and start_port < 65355:
self.start_port = int(start_port)
else:
self.start_port = random.randint(1, 100)
if end_port is not None:
if end_port > 1 and end_port < 65356:
self.end_port = int(end_port)
else:
self.end_port = random.randint(1000, 65355)
if dport is None:
self.dport = 80
else:
if dport < 65356 and dport > 0:
self.dport = int(dport)
else:
colors.error('Please provide a valid destination port')
sys.exit(1)
if interval is not None:
self.INTER = int(interval)
else:
self.INTER = 0.0001
if threads is not None:
threads = int(threads)
self.threadValidator(threads)
else:
self.threads = 1
self.number_of_packets = 0
def threadValidator(self, threads):
if threads > 100:
choice = input('Are you sure you want to use {} threads...?'
'This can slow down your system.(Y/N)'
.format(threads))
if choice == 'N' or choice == 'n':
threads = int(input('>> Please enter the number of threads'
' you want to use...'))
self.threadValidator(threads)
else:
self.threads = threads
else:
self.threads = threads
@staticmethod
def getIP(url):
url = urlparse(url)
return socket.gethostbyname(url.netloc)
@staticmethod
def generateIP():
ip = str(random.randint(1, 254)) + '.' + str(random.randint(0, 255)) + '.' + str(random.randint(0, 255)) + '.' + str(random.randint(0, 255))
return ip
|
MIT License
|
zzzeek/sqlalchemy
|
lib/sqlalchemy/future/engine.py
|
Connection.rollback
|
python
|
def rollback(self):
if self._transaction:
self._transaction.rollback()
|
Roll back the transaction that is currently in progress.
This method rolls back the current transaction if one has been started.
If no transaction was started, the method has no effect. If a
transaction was started and the connection is in an invalidated state,
the transaction is cleared using this method.
A transaction is begun on a :class:`_future.Connection` automatically
whenever a statement is first executed, or when the
:meth:`_future.Connection.begin` method is called.
.. note:: The :meth:`_future.Connection.rollback` method only acts
upon the primary database transaction that is linked to the
:class:`_future.Connection` object. It does not operate upon a
SAVEPOINT that would have been invoked from the
:meth:`_future.Connection.begin_nested` method; for control of a
SAVEPOINT, call :meth:`_engine.NestedTransaction.rollback` on the
:class:`_engine.NestedTransaction` that is returned by the
:meth:`_future.Connection.begin_nested` method itself.
|
https://github.com/zzzeek/sqlalchemy/blob/979ea6b21f71605314dc0ac1231dd385eced98c4/lib/sqlalchemy/future/engine.py#L213-L237
|
from .. import util
from ..engine import Connection as _LegacyConnection
from ..engine import create_engine as _create_engine
from ..engine import Engine as _LegacyEngine
from ..engine.base import OptionEngineMixin
NO_OPTIONS = util.immutabledict()
def create_engine(*arg, **kw):
kw["_future_engine_class"] = Engine
return _create_engine(*arg, **kw)
class Connection(_LegacyConnection):
_is_future = True
def _branch(self):
raise NotImplementedError(
"sqlalchemy.future.Connection does not support "
"'branching' of new connections."
)
def begin(self):
return super(Connection, self).begin()
def begin_nested(self):
return super(Connection, self).begin_nested()
def commit(self):
if self._transaction:
self._transaction.commit()
|
MIT License
|
oubiwann-unsupported/django-riak-engine
|
django_riak_engine/util/dist.py
|
has_docutils
|
python
|
def has_docutils():
try:
import docutils
return True
except ImportError:
return False
|
Check to see if docutils is installed.
|
https://github.com/oubiwann-unsupported/django-riak-engine/blob/cd4adc6c1e7dfa3d4e94346624578a1c3990efd5/django_riak_engine/util/dist.py#L48-L56
|
import os
rest_error_help = """
ReST validation error
See the following:
http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
"""
legalReSTFiles = [
"README",
"TODO",
"DEPENDENCIES",
]
def setup(*args, **kwds):
try:
from setuptools import setup
except ImportError:
from distutils.core import setup
return setup(*args, **kwds)
def find_packages(library_name):
try:
from setuptools import find_packages
return find_packages()
except ImportError:
pass
packages = []
for directory, subdirectories, files in os.walk(library_name):
if "__init__.py" in files:
packages.append(directory.replace(os.sep, "."))
return packages
|
BSD 2-Clause Simplified License
|
voxel51/eta
|
eta/core/events.py
|
VideoEvent.is_empty
|
python
|
def is_empty(self):
return not (
self.has_label
or self.has_event_attributes
or self.has_video_objects
or self.has_detections
)
|
Whether the event has no labels of any kind.
|
https://github.com/voxel51/eta/blob/e51510fda0722ac7cadb17b109bad413a6602ed3/eta/core/events.py#L638-L645
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from builtins import *
from future.utils import iteritems, itervalues
from collections import defaultdict
from copy import deepcopy
import logging
import eta.core.data as etad
import eta.core.frameutils as etaf
import eta.core.geometry as etag
import eta.core.labels as etal
import eta.core.objects as etao
import eta.core.serial as etas
import eta.core.utils as etau
logger = logging.getLogger(__name__)
class DetectedEvent(etal.Labels, etag.HasBoundingBox):
def __init__(
self,
label=None,
bounding_box=None,
mask=None,
confidence=None,
name=None,
top_k_probs=None,
index=None,
frame_number=None,
attrs=None,
objects=None,
):
self.type = etau.get_class_name(self)
self.label = label
self.bounding_box = bounding_box
self.mask = mask
self.confidence = confidence
self.name = name
self.top_k_probs = top_k_probs
self.index = index
self.frame_number = frame_number
self.attrs = attrs or etad.AttributeContainer()
self.objects = objects or etao.DetectedObjectContainer()
@property
def is_empty(self):
return not (
self.has_label
or self.has_bounding_box
or self.has_mask
or self.has_attributes
or self.has_objects
)
@property
def has_label(self):
return self.label is not None
@property
def has_bounding_box(self):
return self.bounding_box is not None
@property
def has_mask(self):
return self.mask is not None
@property
def has_confidence(self):
return self.confidence is not None
@property
def has_name(self):
return self.name is not None
@property
def has_top_k_probs(self):
return self.top_k_probs is not None
@property
def has_index(self):
return self.index is not None
@property
def has_frame_number(self):
return self.frame_number is not None
@property
def has_attributes(self):
return bool(self.attrs)
@property
def has_objects(self):
return bool(self.objects)
@classmethod
def get_schema_cls(cls):
return EventSchema
def iter_attributes(self):
return iter(self.attrs)
def iter_objects(self):
return iter(self.objects)
def get_bounding_box(self):
return self.bounding_box
def get_index(self):
return self.index
def offset_index(self, offset):
if self.has_index:
self.index += offset
def clear_index(self):
self.index = None
def get_object_indexes(self):
return self.objects.get_indexes()
def offset_object_indexes(self, offset):
self.objects.offset_indexes(offset)
def clear_object_indexes(self):
self.objects.clear_indexes()
def add_attribute(self, attr):
self.attrs.add(attr)
def add_attributes(self, attrs):
self.attrs.add_container(attrs)
def add_object(self, obj):
self.objects.add(obj)
def add_objects(self, objs):
self.objects.add_container(objs)
def pop_attributes(self):
attrs = self.attrs
self.clear_attributes()
return attrs
def pop_objects(self):
objects = self.objects
self.clear_objects()
return objects
def clear_attributes(self):
self.attrs = etad.AttributeContainer()
def clear_objects(self):
self.objects = etao.DetectedObjectContainer()
def clear_object_attributes(self):
for obj in self.objects:
obj.clear_attributes()
def filter_by_schema(self, schema, allow_none_label=False):
if self.label is None:
if not allow_none_label:
raise EventSchemaError(
"None event label is not allowed by the schema"
)
elif self.label != schema.get_label():
raise EventSchemaError(
"Label '%s' does not match event schema" % self.label
)
self.attrs.filter_by_schema(
schema.frames, constant_schema=schema.attrs
)
self.objects.filter_by_schema(schema.objects)
def remove_objects_without_attrs(self, labels=None):
self.objects.remove_objects_without_attrs(labels=labels)
def attributes(self):
_attrs = ["type"]
_noneable_attrs = [
"label",
"bounding_box",
"mask",
"confidence",
"name",
"top_k_probs",
"index",
"frame_number",
]
_attrs.extend(
[a for a in _noneable_attrs if getattr(self, a) is not None]
)
if self.attrs:
_attrs.append("attrs")
if self.objects:
_attrs.append("objects")
return _attrs
@classmethod
def from_dict(cls, d):
bounding_box = d.get("bounding_box", None)
if bounding_box is not None:
bounding_box = etag.BoundingBox.from_dict(bounding_box)
mask = d.get("mask", None)
if mask is not None:
mask = etas.deserialize_numpy_array(mask)
attrs = d.get("attrs", None)
if attrs is not None:
attrs = etad.AttributeContainer.from_dict(attrs)
objects = d.get("objects", None)
if objects is not None:
objects = etao.DetectedObjectContainer.from_dict(objects)
return cls(
label=d.get("label", None),
bounding_box=bounding_box,
mask=mask,
confidence=d.get("confidence", None),
name=d.get("name", None),
top_k_probs=d.get("top_k_probs", None),
index=d.get("index", None),
frame_number=d.get("frame_number", None),
attrs=attrs,
objects=objects,
)
class DetectedEventContainer(etal.LabelsContainer):
_ELE_CLS = DetectedEvent
_ELE_CLS_FIELD = "_EVENT_CLS"
_ELE_ATTR = "events"
def get_labels(self):
return set(devent.label for devent in self)
def get_indexes(self):
return set(devent.index for devent in self if devent.has_index)
def offset_indexes(self, offset):
for devent in self:
devent.offset_index(offset)
def clear_indexes(self):
for devent in self:
devent.clear_index()
def get_object_indexes(self):
obj_indexes = set()
for devent in self:
obj_indexes.update(devent.get_object_indexes())
return obj_indexes
def offset_object_indexes(self, offset):
for devent in self:
devent.offset_object_indexes(offset)
def clear_object_indexes(self):
for devent in self:
devent.clear_object_indexes()
def sort_by_confidence(self, reverse=False):
self.sort_by("confidence", reverse=reverse)
def sort_by_index(self, reverse=False):
self.sort_by("index", reverse=reverse)
def sort_by_frame_number(self, reverse=False):
self.sort_by("frame_number", reverse=reverse)
def filter_by_schema(self, schema):
filter_func = lambda event: schema.has_event_label(event.label)
self.filter_elements([filter_func])
for event in self:
event_schema = schema.get_event_schema(event.label)
event.filter_by_schema(event_schema)
def remove_objects_without_attrs(self, labels=None):
for event in self:
event.remove_objects_without_attrs(labels=labels)
class VideoEvent(
etal.Labels,
etal.HasLabelsSupport,
etal.HasFramewiseView,
etal.HasSpatiotemporalView,
):
def __init__(
self,
label=None,
confidence=None,
name=None,
index=None,
support=None,
attrs=None,
objects=None,
frames=None,
):
self.type = etau.get_class_name(self)
self.label = label
self.confidence = confidence
self.name = name
self.index = index
self.attrs = attrs or etad.AttributeContainer()
self.objects = objects or etao.VideoObjectContainer()
self.frames = frames or {}
etal.HasLabelsSupport.__init__(self, support=support)
@property
|
Apache License 2.0
|
elife-asu/pyinform
|
pyinform/utils/encoding.py
|
encode
|
python
|
def encode(state, b=None):
xs = np.ascontiguousarray(state, dtype=np.int32)
data = xs.ctypes.data_as(POINTER(c_int))
if xs.size == 0:
raise ValueError("cannot encode an empty array")
if b is None:
b = max(2, np.amax(xs) + 1)
e = ErrorCode(0)
encoding = _inform_encode(data, c_ulong(xs.size), c_int(b), byref(e))
error_guard(e)
return encoding
|
Encode a base-*b* array of integers into a single integer.
This function uses a `big-endian`__ encoding scheme. That is, the most
significant bits of the encoded integer are determined by the left-most
end of the unencoded state.
.. doctest:: utils
>>> utils.encode([0,0,1], b=2)
1
>>> utils.encode([0,1,0], b=3)
3
>>> utils.encode([1,0,0], b=4)
16
>>> utils.encode([1,0,4], b=5)
29
If *b* is not provided (or is None), the base is inferred from the state
with a minimum value of 2.
.. doctest:: utils
>>> utils.encode([0,0,2])
2
>>> utils.encode([0,2,0])
6
>>> utils.encode([1,2,1])
16
See also :py:func:`.decode`.
.. __: https://en.wikipedia.org/wiki/Endianness#Examples
:param sequence state: the state to encode
:param int b: the base in which to encode
:return: the encoded state
:rtype: int
:raises ValueError: if the state is empty
:raises InformError: if an error occurs in the ``inform`` C call
|
https://github.com/elife-asu/pyinform/blob/832d8f28d3ac214f631753bab4907b39dee25442/pyinform/utils/encoding.py#L34-L89
|
import numpy as np
from ctypes import byref, c_int, c_ulong, POINTER
from pyinform import _inform
from pyinform.error import ErrorCode, error_guard
|
MIT License
|
packtpublishing/conversational-ai-with-rasa
|
Chapter10/service/normalization.py
|
text_to_coordinate
|
python
|
def text_to_coordinate(text_city: str) -> Tuple[float, float]:
list_of_locations = reg.locations_for(text_city)
city = list_of_locations[0]
return city.lat, city.lon
|
parse city name to coordinate
return latitude, longitude
|
https://github.com/packtpublishing/conversational-ai-with-rasa/blob/850dc56c3b724a5fc6e2b66e7582a7f62b302b74/Chapter10/service/normalization.py#L9-L20
|
import datetime
from typing import Optional, Tuple
from pyowm.owm import OWM
reg = OWM("not-actually-used-key").city_id_registry()
|
MIT License
|
mirantis/ceph-lcm
|
decapodlib/decapodlib/client.py
|
json_response
|
python
|
def json_response(func):
@six.wraps(func)
def decorator(*args, **kwargs):
raw_response = kwargs.pop("raw_response", False)
response = func(*args, **kwargs)
if raw_response:
return response
if isinstance(response, dict):
return response
if response.ok:
content_type = response.headers.get("Content-Type")
content_type = content_type or "application/json"
if content_type == "application/json":
return response.json()
return response.text
raise exceptions.DecapodAPIError(response)
return decorator
|
Decorator which parses :py:class:`requests.Response` and
returns unpacked JSON. If ``Content-Type`` of response is not
``application/json``, then it returns text.
:return: Data of :py:class:`requests.Response` from decorated
function.
:raises decapodlib.exceptions.DecapodAPIError: if decoding is not possible
or response status code is not ``200``.
|
https://github.com/mirantis/ceph-lcm/blob/fad9bad0b94f2ef608362953583b10a54a841d24/decapodlib/decapodlib/client.py#L135-L165
|
from __future__ import absolute_import
from __future__ import unicode_literals
import abc
import inspect
import logging
import socket
import warnings
import pkg_resources
import requests
import requests.adapters
import six
from decapodlib import auth
from decapodlib import exceptions
try:
import simplejson as json
except ImportError:
import json
LOG = logging.getLogger(__name__)
try:
VERSION = pkg_resources.get_distribution("decapodlib").version
except pkg_resources.DistributionNotFound as exc:
warnings.warn("Module is imported outside of distribution.", ImportWarning)
VERSION = "unknown"
__all__ = "VERSION", "Client", "V1Client"
def json_dumps(data):
return json.dumps(data, separators=(",", ":"))
def make_query_params(**request_params):
params = {}
for key, value in six.iteritems(request_params):
if value is not None:
params[key] = value
return params
|
Apache License 2.0
|
microsoft/deepspeedexamples
|
Megatron-LM-v1.1.5-3D_parallelism/megatron/mpu/initialize.py
|
set_model_parallel_world_size
|
python
|
def set_model_parallel_world_size(world_size):
global _MPU_WORLD_SIZE
_MPU_WORLD_SIZE = world_size
|
Set the model parallel size
|
https://github.com/microsoft/deepspeedexamples/blob/174ae3bc8dbb688cfaccb4afa15d6e2cdbe19ce5/Megatron-LM-v1.1.5-3D_parallelism/megatron/mpu/initialize.py#L184-L187
|
import torch
from .utils import ensure_divisibility
_MODEL_PARALLEL_GROUP = None
_DATA_PARALLEL_GROUP = None
_PIPE_PARALLEL_GROUP = None
_IO_PARALLEL_GROUP = None
_MPU_WORLD_SIZE = None
_MPU_RANK = None
_MPU_TOPOLOGY = None
def is_unitialized():
return _DATA_PARALLEL_GROUP is None
def initialize_model_parallel(model_parallel_size_, topology=None):
if torch.distributed.get_rank() == 0:
print('> initializing model parallel with size {}'.format(
model_parallel_size_))
assert torch.distributed.is_initialized()
world_size = torch.distributed.get_world_size()
model_parallel_size = min(model_parallel_size_, world_size)
ensure_divisibility(world_size, model_parallel_size)
rank = torch.distributed.get_rank()
global _MPU_TOPOLOGY
if topology:
_MPU_TOPOLOGY = topology
global _DATA_PARALLEL_GROUP
assert _DATA_PARALLEL_GROUP is None, 'data parallel group is already initialized'
if topology:
for dp_group in topology.get_axis_comm_lists('data'):
group = torch.distributed.new_group(ranks=dp_group)
if rank == 0:
print(f'MPU DP:', dp_group)
if rank in dp_group:
_DATA_PARALLEL_GROUP = group
else:
for i in range(model_parallel_size):
ranks = range(i, world_size, model_parallel_size)
group = torch.distributed.new_group(ranks)
if i == (rank % model_parallel_size):
_DATA_PARALLEL_GROUP = group
if topology is not None:
global _PIPE_PARALLEL_GROUP
for pp_group in topology.get_axis_comm_lists('pipe'):
group = torch.distributed.new_group(ranks=pp_group)
if rank == 0:
print(f'MPU PP:', pp_group)
if rank in pp_group:
_PIPE_PARALLEL_GROUP = group
global _IO_PARALLEL_GROUP
if topology and topology.get_dim('pipe') > 1:
io_stages = [0, topology.get_dim('pipe') - 1]
io_group = []
for stage in io_stages:
io_group.extend(topology.filter_match(pipe=stage, model=0))
if rank == 0:
print(f'MPU IO:', io_group)
group = torch.distributed.new_group(ranks=io_group)
if rank in io_group:
_IO_PARALLEL_GROUP = group
else:
_IO_PARALLEL_GROUP = get_data_parallel_group()
global _MODEL_PARALLEL_GROUP
assert _MODEL_PARALLEL_GROUP is None, 'model parallel group is already initialized'
if topology:
if model_parallel_size == 1:
for group_rank in range(world_size):
group = torch.distributed.new_group(ranks=[group_rank])
if rank == 0:
print(f'MPU MP:', [group_rank])
if rank == group_rank:
_MODEL_PARALLEL_GROUP = group
return
for mp_group in topology.get_axis_comm_lists('model'):
group = torch.distributed.new_group(ranks=mp_group)
if rank == 0:
print(f'MPU MP:', mp_group)
if rank in mp_group:
_MODEL_PARALLEL_GROUP = group
else:
for i in range(world_size // model_parallel_size):
ranks = range(i * model_parallel_size,
(i + 1) * model_parallel_size)
group = torch.distributed.new_group(ranks)
if i == (rank // model_parallel_size):
_MODEL_PARALLEL_GROUP = group
def model_parallel_is_initialized():
if _MODEL_PARALLEL_GROUP is None or _DATA_PARALLEL_GROUP is None:
return False
return True
def get_model_parallel_group():
assert _MODEL_PARALLEL_GROUP is not None, 'model parallel group is not initialized'
return _MODEL_PARALLEL_GROUP
def get_data_parallel_group():
assert _DATA_PARALLEL_GROUP is not None, 'data parallel group is not initialized'
return _DATA_PARALLEL_GROUP
def get_io_parallel_group():
assert _IO_PARALLEL_GROUP is not None, 'IO parallel group is not initialized'
return _IO_PARALLEL_GROUP
|
MIT License
|
ganeti/ganeti
|
lib/storage/bdev.py
|
LogicalVolume.Snapshot
|
python
|
def Snapshot(self, snap_name=None, snap_size=None):
if not snap_name:
snap_name = self._lv_name + ".snap"
if not snap_size:
snap_size = self.size
snap = LogicalVolume((self._vg_name, snap_name), None, snap_size,
self.params, self.dyn_params)
base.IgnoreError(snap.Remove)
vg_info = self.GetVGInfo([self._vg_name], False)
if not vg_info:
base.ThrowError("Can't compute VG info for vg %s", self._vg_name)
free_size, _, _ = vg_info[0]
if free_size < snap_size:
base.ThrowError("Not enough free space: required %s,"
" available %s", snap_size, free_size)
_CheckResult(utils.RunCmd(["lvcreate", "-L%dm" % snap_size, "-s",
"-n%s" % snap_name, self.dev_path]))
return (self._vg_name, snap_name)
|
Create a snapshot copy of an lvm block device.
@returns: tuple (vg, lv)
|
https://github.com/ganeti/ganeti/blob/4d21019c72cba4d746f5d17ca22098f4c7682e9c/lib/storage/bdev.py#L616-L646
|
import re
import stat
import os
import logging
import math
from ganeti import utils
from ganeti import errors
from ganeti import constants
from ganeti import objects
from ganeti import compat
from ganeti import serializer
from ganeti.storage import base
from ganeti.storage import drbd
from ganeti.storage.filestorage import FileStorage
from ganeti.storage.gluster import GlusterStorage
from ganeti.storage.extstorage import ExtStorageDevice
class RbdShowmappedJsonError(Exception):
pass
def _CheckResult(result):
if result.failed:
base.ThrowError("Command: %s error: %s - %s",
result.cmd, result.fail_reason, result.output)
class LogicalVolume(base.BlockDev):
_VALID_NAME_RE = re.compile("^[a-zA-Z0-9+_.-]*$")
_PARSE_PV_DEV_RE = re.compile(r"^([^ ()]+)\([0-9]+\)$")
_INVALID_NAMES = compat.UniqueFrozenset([".", "..", "snapshot", "pvmove"])
_INVALID_SUBSTRINGS = compat.UniqueFrozenset(["_mlog", "_mimage"])
def __init__(self, unique_id, children, size, params, dyn_params, **kwargs):
super(LogicalVolume, self).__init__(unique_id, children, size, params,
dyn_params, **kwargs)
if not isinstance(unique_id, (tuple, list)) or len(unique_id) != 2:
raise ValueError("Invalid configuration data %s" % str(unique_id))
self._vg_name, self._lv_name = unique_id
self._ValidateName(self._vg_name)
self._ValidateName(self._lv_name)
self.dev_path = utils.PathJoin("/dev", self._vg_name, self._lv_name)
self._degraded = True
self.major = self.minor = self.pe_size = self.stripe_count = None
self.pv_names = None
lvs_cache = kwargs.get("lvs_cache")
if lvs_cache:
lv_info = lvs_cache.get(self.dev_path)
self.Attach(lv_info=lv_info)
else:
self.Attach()
@staticmethod
def _GetStdPvSize(pvs_info):
assert len(pvs_info) > 0
smallest = min([pv.size for pv in pvs_info])
return smallest // (1 + constants.PART_MARGIN + constants.PART_RESERVED)
@staticmethod
def _ComputeNumPvs(size, pvs_info):
assert len(pvs_info) > 0
pv_size = float(LogicalVolume._GetStdPvSize(pvs_info))
return int(math.ceil(float(size) / pv_size))
@staticmethod
def _GetEmptyPvNames(pvs_info, max_pvs=None):
empty_pvs = [pv for pv in pvs_info if objects.LvmPvInfo.IsEmpty(pv)]
if max_pvs is not None:
empty_pvs = empty_pvs[:max_pvs]
return [pv.name for pv in empty_pvs]
@classmethod
def Create(cls, unique_id, children, size, spindles, params, excl_stor,
dyn_params, **kwargs):
if not isinstance(unique_id, (tuple, list)) or len(unique_id) != 2:
raise errors.ProgrammerError("Invalid configuration data %s" %
str(unique_id))
vg_name, lv_name = unique_id
cls._ValidateName(vg_name)
cls._ValidateName(lv_name)
pvs_info = cls.GetPVInfo([vg_name])
if not pvs_info:
if excl_stor:
msg = "No (empty) PVs found"
else:
msg = "Can't compute PV info for vg %s" % vg_name
base.ThrowError(msg)
pvs_info.sort(key=(lambda pv: pv.free), reverse=True)
pvlist = [pv.name for pv in pvs_info]
if compat.any(":" in v for v in pvlist):
base.ThrowError("Some of your PVs have the invalid character ':' in their"
" name, this is not supported - please filter them out"
" in lvm.conf using either 'filter' or 'preferred_names'")
current_pvs = len(pvlist)
desired_stripes = params[constants.LDP_STRIPES]
stripes = min(current_pvs, desired_stripes)
if excl_stor:
if spindles is None:
base.ThrowError("Unspecified number of spindles: this is required"
"when exclusive storage is enabled, try running"
" gnt-cluster repair-disk-sizes")
(err_msgs, _) = utils.LvmExclusiveCheckNodePvs(pvs_info)
if err_msgs:
for m in err_msgs:
logging.warning(m)
req_pvs = cls._ComputeNumPvs(size, pvs_info)
if spindles < req_pvs:
base.ThrowError("Requested number of spindles (%s) is not enough for"
" a disk of %d MB (at least %d spindles needed)",
spindles, size, req_pvs)
else:
req_pvs = spindles
pvlist = cls._GetEmptyPvNames(pvs_info, req_pvs)
current_pvs = len(pvlist)
if current_pvs < req_pvs:
base.ThrowError("Not enough empty PVs (spindles) to create a disk of %d"
" MB: %d available, %d needed",
size, current_pvs, req_pvs)
assert current_pvs == len(pvlist)
stripes = current_pvs
if stripes > desired_stripes:
logging.warning("Using %s stripes instead of %s, to be able to use"
" %s spindles", stripes, desired_stripes, current_pvs)
else:
if stripes < desired_stripes:
logging.warning("Could not use %d stripes for VG %s, as only %d PVs are"
" available.", desired_stripes, vg_name, current_pvs)
free_size = sum([pv.free for pv in pvs_info])
if free_size < size:
base.ThrowError("Not enough free space: required %s,"
" available %s", size, free_size)
cmd = ["lvcreate", "-Wn", "-L%dm" % size, "-n%s" % lv_name]
for stripes_arg in range(stripes, 0, -1):
result = utils.RunCmd(cmd + ["-i%d" % stripes_arg] + [vg_name] + pvlist)
if not result.failed:
break
if result.failed:
base.ThrowError("LV create failed (%s): %s",
result.fail_reason, result.output)
return LogicalVolume(unique_id, children, size, params,
dyn_params, **kwargs)
@staticmethod
def _GetVolumeInfo(lvm_cmd, fields):
if not fields:
raise errors.ProgrammerError("No fields specified")
sep = "|"
cmd = [lvm_cmd, "--noheadings", "--nosuffix", "--units=m", "--unbuffered",
"--separator=%s" % sep, "-o%s" % ",".join(fields)]
result = utils.RunCmd(cmd)
if result.failed:
raise errors.CommandError("Can't get the volume information: %s - %s" %
(result.fail_reason, result.output))
data = []
for line in result.stdout.splitlines():
splitted_fields = line.strip().split(sep)
if len(fields) != len(splitted_fields):
raise errors.CommandError("Can't parse %s output: line '%s'" %
(lvm_cmd, line))
data.append(splitted_fields)
return data
@classmethod
def GetPVInfo(cls, vg_names, filter_allocatable=True, include_lvs=False):
if include_lvs:
lvfield = "lv_name"
else:
lvfield = "pv_name"
try:
info = cls._GetVolumeInfo("pvs", ["pv_name", "vg_name", "pv_free",
"pv_attr", "pv_size", lvfield])
except errors.GenericError as err:
logging.error("Can't get PV information: %s", err)
return None
if include_lvs:
info.sort(key=(lambda i: (i[0], i[5])))
data = []
lastpvi = None
for (pv_name, vg_name, pv_free, pv_attr, pv_size, lv_name) in info:
if filter_allocatable and pv_attr[0] != "a":
continue
if vg_names and vg_name not in vg_names:
continue
if lastpvi and lastpvi.name == pv_name:
if include_lvs and lv_name:
if not lastpvi.lv_list or lastpvi.lv_list[-1] != lv_name:
lastpvi.lv_list.append(lv_name)
else:
if include_lvs and lv_name:
lvl = [lv_name]
else:
lvl = []
lastpvi = objects.LvmPvInfo(name=pv_name, vg_name=vg_name,
size=float(pv_size), free=float(pv_free),
attributes=pv_attr, lv_list=lvl)
data.append(lastpvi)
return data
@classmethod
def _GetRawFreePvInfo(cls, vg_name):
pvs_info = cls.GetPVInfo([vg_name])
if not pvs_info:
pv_size = 0.0
free_pvs = 0
num_pvs = 0
else:
pv_size = cls._GetStdPvSize(pvs_info)
free_pvs = len(cls._GetEmptyPvNames(pvs_info))
num_pvs = len(pvs_info)
return (pv_size, free_pvs, num_pvs)
@classmethod
def _GetExclusiveStorageVgFree(cls, vg_name):
(pv_size, free_pvs, _) = cls._GetRawFreePvInfo(vg_name)
return pv_size * free_pvs
@classmethod
def GetVgSpindlesInfo(cls, vg_name):
(_, free_pvs, num_pvs) = cls._GetRawFreePvInfo(vg_name)
return (free_pvs, num_pvs)
@classmethod
def GetVGInfo(cls, vg_names, excl_stor, filter_readonly=True):
try:
info = cls._GetVolumeInfo("vgs", ["vg_name", "vg_free", "vg_attr",
"vg_size"])
except errors.GenericError as err:
logging.error("Can't get VG information: %s", err)
return None
data = []
for vg_name, vg_free, vg_attr, vg_size in info:
if filter_readonly and vg_attr[0] == "r":
continue
if vg_names and vg_name not in vg_names:
continue
if excl_stor:
es_free = cls._GetExclusiveStorageVgFree(vg_name)
assert es_free <= vg_free
vg_free = es_free
data.append((float(vg_free), float(vg_size), vg_name))
return data
@classmethod
def _ValidateName(cls, name):
if (not cls._VALID_NAME_RE.match(name) or
name in cls._INVALID_NAMES or
compat.any(substring in name for substring in cls._INVALID_SUBSTRINGS)):
base.ThrowError("Invalid LVM name '%s'", name)
def Remove(self):
if not self.minor and not self.Attach():
return
result = utils.RunCmd(["lvremove", "-f", "%s/%s" %
(self._vg_name, self._lv_name)])
if result.failed:
base.ThrowError("Can't lvremove: %s - %s",
result.fail_reason, result.output)
def Rename(self, new_id):
if not isinstance(new_id, (tuple, list)) or len(new_id) != 2:
raise errors.ProgrammerError("Invalid new logical id '%s'" % new_id)
new_vg, new_name = new_id
if new_vg != self._vg_name:
raise errors.ProgrammerError("Can't move a logical volume across"
" volume groups (from %s to to %s)" %
(self._vg_name, new_vg))
result = utils.RunCmd(["lvrename", new_vg, self._lv_name, new_name])
if result.failed:
base.ThrowError("Failed to rename the logical volume: %s", result.output)
self._lv_name = new_name
self.dev_path = utils.PathJoin("/dev", self._vg_name, self._lv_name)
@staticmethod
def _ParseLvInfoLine(line, sep):
elems = line.strip().split(sep)
if len(elems) == 9 and elems[-1] == "":
elems.pop()
if len(elems) != 8:
base.ThrowError("Can't parse LVS output, len(%s) != 8", str(elems))
(vg_name, lv_name, status, major, minor, pe_size, stripes, pvs) = elems
path = os.path.join(os.environ.get('DM_DEV_DIR', '/dev'), vg_name, lv_name)
if len(status) < 6:
base.ThrowError("lvs lv_attr is not at least 6 characters (%s)", status)
try:
major = int(major)
minor = int(minor)
except (TypeError, ValueError) as err:
base.ThrowError("lvs major/minor cannot be parsed: %s", str(err))
try:
pe_size = int(float(pe_size))
except (TypeError, ValueError) as err:
base.ThrowError("Can't parse vg extent size: %s", err)
try:
stripes = int(stripes)
except (TypeError, ValueError) as err:
base.ThrowError("Can't parse the number of stripes: %s", err)
pv_names = []
if pvs != "":
for pv in pvs.split(","):
m = re.match(LogicalVolume._PARSE_PV_DEV_RE, pv)
if not m:
base.ThrowError("Can't parse this device list: %s", pvs)
pv_names.append(m.group(1))
return (path, (status, major, minor, pe_size, stripes, pv_names))
@staticmethod
def GetLvGlobalInfo(_run_cmd=utils.RunCmd):
sep = "|"
result = _run_cmd(["lvs", "--noheadings", "--separator=%s" % sep,
"--units=k", "--nosuffix",
"-ovg_name,lv_name,lv_attr,lv_kernel_major,"
"lv_kernel_minor,vg_extent_size,stripes,devices"])
if result.failed:
logging.warning("lvs command failed, the LV cache will be empty!")
logging.info("lvs failure: %r", result.stderr)
return {}
out = result.stdout.splitlines()
if not out:
logging.warning("lvs command returned an empty output, the LV cache will"
"be empty!")
return {}
return dict([LogicalVolume._ParseLvInfoLine(line, sep) for line in out])
def Attach(self, lv_info=None, **kwargs):
self.attached = False
if not lv_info:
lv_info = LogicalVolume.GetLvGlobalInfo().get(self.dev_path)
if not lv_info:
return False
(status, major, minor, pe_size, stripes, pv_names) = lv_info
self.major = major
self.minor = minor
self.pe_size = pe_size
self.stripe_count = stripes
self._degraded = status[0] == "v"
self.pv_names = pv_names
self.attached = True
return True
def Assemble(self):
result = utils.RunCmd(["lvchange", "-ay", self.dev_path])
if result.failed:
base.ThrowError("Can't activate lv %s: %s", self.dev_path, result.output)
def Shutdown(self):
pass
def GetSyncStatus(self):
if self._degraded:
ldisk_status = constants.LDS_FAULTY
else:
ldisk_status = constants.LDS_OKAY
return objects.BlockDevStatus(dev_path=self.dev_path,
major=self.major,
minor=self.minor,
sync_percent=None,
estimated_time=None,
is_degraded=self._degraded,
ldisk_status=ldisk_status)
def Open(self, force=False, exclusive=True):
pass
def Close(self):
pass
|
BSD 2-Clause Simplified License
|
distributedsystemsgroup/zoe
|
zoe_api/tests/mock_master_api.py
|
MockAPIManager.execution_delete
|
python
|
def execution_delete(self, exec_id: int) -> APIReturnType:
assert isinstance(exec_id, int)
return self._request_reply()
|
Delete an execution.
|
https://github.com/distributedsystemsgroup/zoe/blob/c8e0c908af1954a8b41d0f6de23d08589564f0ab/zoe_api/tests/mock_master_api.py#L51-L54
|
import logging
from typing import Tuple, Union
log = logging.getLogger(__name__)
APIReturnType = Tuple[bool, Union[str, dict]]
class MockAPIManager:
def __init__(self):
self.fails = False
def _request_reply(self) -> APIReturnType:
if not self.fails:
return True, 'No error message'
else:
return False, 'Fake error message'
def execution_start(self, exec_id: int) -> APIReturnType:
assert isinstance(exec_id, int)
return self._request_reply()
def execution_terminate(self, exec_id: int) -> APIReturnType:
assert isinstance(exec_id, int)
return self._request_reply()
|
Apache License 2.0
|
red-hat-storage/ocs-ci
|
tests/fixtures.py
|
create_pods
|
python
|
def create_pods(request):
class_instance = request.node.cls
def finalizer():
if hasattr(class_instance, "pod_objs"):
for pod in class_instance.pod_objs:
pod.delete()
request.addfinalizer(finalizer)
class_instance.pod_objs = list()
for pvc_obj in class_instance.pvc_objs:
class_instance.pod_objs.append(
helpers.create_pod(
interface_type=class_instance.interface,
pvc_name=pvc_obj.name,
do_reload=False,
namespace=class_instance.namespace,
)
)
for pod in class_instance.pod_objs:
helpers.wait_for_resource_state(pod, constants.STATUS_RUNNING)
|
Create multiple pods
|
https://github.com/red-hat-storage/ocs-ci/blob/81bc3dd3c2bccbf875ffa8fa5fa2eb0ac9d52b7e/tests/fixtures.py#L250-L278
|
import pytest
from ocs_ci.ocs.resources.pod import delete_deploymentconfig_pods
from ocs_ci.helpers import helpers
from ocs_ci.ocs import constants, ocp
@pytest.fixture()
def create_rbd_secret(request):
class_instance = request.node.cls
def finalizer():
if hasattr(class_instance, "rbd_secret_obj"):
class_instance.rbd_secret_obj.delete()
class_instance.rbd_secret_obj.ocp.wait_for_delete(
class_instance.rbd_secret_obj.name
)
request.addfinalizer(finalizer)
class_instance.rbd_secret_obj = helpers.create_secret(
interface_type=constants.CEPHBLOCKPOOL
)
assert class_instance.rbd_secret_obj, "Failed to create secret"
@pytest.fixture()
def create_cephfs_secret(request):
class_instance = request.node.cls
def finalizer():
if hasattr(class_instance, "cephfs_secret_obj"):
class_instance.cephfs_secret_obj.delete()
class_instance.cephfs_secret_obj.ocp.wait_for_delete(
class_instance.cephfs_secret_obj.name
)
request.addfinalizer(finalizer)
class_instance.cephfs_secret_obj = helpers.create_secret(
interface_type=constants.CEPHFILESYSTEM
)
assert class_instance.cephfs_secret_obj, "Failed to create secret"
@pytest.fixture()
def create_ceph_block_pool(request):
class_instance = request.node.cls
def finalizer():
if hasattr(class_instance, "cbp_obj"):
class_instance.cbp_obj.delete()
request.addfinalizer(finalizer)
class_instance.cbp_obj = helpers.create_ceph_block_pool()
assert class_instance.cbp_obj, "Failed to create block pool"
@pytest.fixture()
def create_rbd_storageclass(request):
class_instance = request.node.cls
def finalizer():
if class_instance.sc_obj.get():
class_instance.sc_obj.delete()
class_instance.sc_obj.ocp.wait_for_delete(class_instance.sc_obj.name)
request.addfinalizer(finalizer)
if not hasattr(class_instance, "reclaim_policy"):
class_instance.reclaim_policy = constants.RECLAIM_POLICY_DELETE
class_instance.sc_obj = helpers.create_storage_class(
interface_type=constants.CEPHBLOCKPOOL,
interface_name=class_instance.cbp_obj.name,
secret_name=class_instance.rbd_secret_obj.name,
reclaim_policy=class_instance.reclaim_policy,
)
assert class_instance.sc_obj, "Failed to create storage class"
@pytest.fixture()
def create_cephfs_storageclass(request):
class_instance = request.node.cls
def finalizer():
if class_instance.sc_obj.get():
class_instance.sc_obj.delete()
class_instance.sc_obj.ocp.wait_for_delete(class_instance.sc_obj.name)
request.addfinalizer(finalizer)
class_instance.sc_obj = helpers.create_storage_class(
interface_type=constants.CEPHFILESYSTEM,
interface_name=helpers.get_cephfs_data_pool_name(),
secret_name=class_instance.cephfs_secret_obj.name,
)
assert class_instance.sc_obj, "Failed to create storage class"
@pytest.fixture()
def create_project(request):
class_instance = request.node.cls
def finalizer():
ocp.switch_to_default_rook_cluster_project()
class_instance.project_obj.delete(resource_name=class_instance.namespace)
class_instance.project_obj.wait_for_delete(class_instance.namespace)
request.addfinalizer(finalizer)
class_instance.project_obj = helpers.create_project()
class_instance.namespace = class_instance.project_obj.namespace
@pytest.fixture()
def create_pvc(request):
class_instance = request.node.cls
class_instance.pvc_obj = helpers.create_pvc(
sc_name=class_instance.sc_obj.name, namespace=class_instance.namespace
)
helpers.wait_for_resource_state(class_instance.pvc_obj, constants.STATUS_BOUND)
class_instance.pvc_obj.reload()
@pytest.fixture()
def delete_pvc(request):
class_instance = request.node.cls
def finalizer():
if hasattr(class_instance, "pvc_obj"):
class_instance.pvc_obj.delete()
request.addfinalizer(finalizer)
@pytest.fixture()
def create_rbd_pod(request):
class_instance = request.node.cls
class_instance.pod_obj = helpers.create_pod(
interface_type=constants.CEPHBLOCKPOOL,
pvc_name=class_instance.pvc_obj.name,
namespace=class_instance.namespace,
)
helpers.wait_for_resource_state(class_instance.pod_obj, constants.STATUS_RUNNING)
class_instance.pod_obj.reload()
@pytest.fixture()
def delete_pod(request):
class_instance = request.node.cls
def finalizer():
if hasattr(class_instance, "pod_obj"):
class_instance.pod_obj.delete()
request.addfinalizer(finalizer)
@pytest.fixture()
def create_pvcs(request):
class_instance = request.node.cls
def finalizer():
if hasattr(class_instance, "pvc_objs"):
for pvc_obj in class_instance.pvc_objs:
pvc_obj.reload()
backed_pv_name = pvc_obj.backed_pv
pvc_obj.delete()
for pvc_obj in class_instance.pvc_objs:
pvc_obj.ocp.wait_for_delete(pvc_obj.name)
helpers.validate_pv_delete(backed_pv_name)
request.addfinalizer(finalizer)
class_instance.pvc_objs, _ = helpers.create_multiple_pvcs(
sc_name=class_instance.sc_obj.name,
number_of_pvc=class_instance.num_of_pvcs,
size=class_instance.pvc_size,
namespace=class_instance.namespace,
)
for pvc_obj in class_instance.pvc_objs:
helpers.wait_for_resource_state(pvc_obj, constants.STATUS_BOUND)
pvc_obj.reload()
@pytest.fixture()
|
MIT License
|
resonantgeodata/resonantgeodata
|
django-rgd/rgd/filters.py
|
SpatialEntryFilter.filter_distance
|
python
|
def filter_distance(self, queryset, name, value):
if value and self._has_geom:
geom = self._geometry
if value.start is not None:
queryset = queryset.filter(footprint__distance_gte=(geom, D(m=value.start)))
if value.stop is not None:
queryset = queryset.filter(footprint__distance_lte=(geom, D(m=value.stop)))
return queryset
|
Filter the queryset by distance to the queried geometry.
We may wish to use the distance in degrees later on. This is
very taxing on the DBMS right now. The distance in degrees
can be provided by the initial geometry query.
|
https://github.com/resonantgeodata/resonantgeodata/blob/0b2577aaa2138c3365885033ba9206e4dadf94f0/django-rgd/rgd/filters.py#L111-L124
|
from django.contrib.gis import forms
from django.contrib.gis.db.models.functions import GeometryDistance
from django.contrib.gis.measure import D
from django.core.validators import RegexValidator
from django.db.models import F
from django_filters import rest_framework as filters
from rgd.models import SpatialEntry
class GeometryFilter(filters.Filter):
field_class = forms.GeometryField
field_class.widget.map_srid = 4326
class SpatialEntryFilter(filters.FilterSet):
q = GeometryFilter(
help_text='A Well-known text (WKT) representation of a geometry or a GeoJSON.',
label='WKT/GeoJSON',
method='filter_q',
)
predicate = filters.ChoiceFilter(
choices=(
('contains', 'contains'),
('crosses', 'crosses'),
('disjoint', 'disjoint'),
('equals', 'equals'),
('intersects', 'intersects'),
('overlaps', 'overlaps'),
('touches', 'touches'),
('within', 'within'),
),
help_text=(
'A named spatial predicate based on the DE-9IM. This spatial predicate will be used '
'to filter data such that `predicate(a, b)` where `b` is the queried geometry.'
),
label='Spatial predicate',
method='filter_predicate',
)
relates = filters.CharFilter(
help_text=(
'Specify exactly how the queried geometry should relate to the data using a DE-9IM '
'string code.'
),
label='DE-9IM string code',
max_length=9,
method='filter_relates',
min_length=9,
validators=(
RegexValidator(regex=r'^[\*012TF]{9}$', message='Enter a valid DE-9IM string code.'),
),
)
distance = filters.RangeFilter(
help_text='The minimum/maximum distance around the queried geometry in meters.',
label='Distance',
method='filter_distance',
)
acquired = filters.IsoDateTimeFromToRangeFilter(
field_name='acquisition_date',
help_text='The ISO 8601 formatted date and time when data was acquired.',
label='Acquired',
)
instrumentation = filters.CharFilter(
field_name='instrumentation',
help_text='The instrumentation used to acquire at least one of these data.',
label='Instrumentation',
lookup_expr='icontains',
)
time_of_day = filters.TimeRangeFilter(
help_text='The minimum/maximum times during the day the records were acquired.',
label='Time of Day',
method='filter_time_of_day',
)
@property
def _geometry(self):
return self.form.cleaned_data['q']
@property
def _has_geom(self):
return self._geometry is not None
def filter_q(self, queryset, name, value):
if value:
queryset = queryset.annotate(distance=GeometryDistance('footprint', value)).order_by(
'distance'
)
return queryset
def filter_predicate(self, queryset, name, value):
if value and self._has_geom:
queryset = queryset.filter(**{f'footprint__{value}': self._geometry})
return queryset
def filter_relates(self, queryset, name, value):
if value and self._has_geom:
queryset = queryset.filter(footprint__relates=(self._geometry, value))
return queryset
|
Apache License 2.0
|
hobson/aima
|
aima/logic.py
|
variables
|
python
|
def variables(s):
result = set([])
def walk(s):
if is_variable(s):
result.add(s)
else:
for arg in s.args:
walk(arg)
walk(s)
return result
|
Return a set of the variables in expression s.
>>> ppset(variables(F(x, A, y)))
set([x, y])
>>> ppset(variables(F(G(x), z)))
set([x, z])
>>> ppset(variables(expr('F(x, x) & G(x, y) & H(y, z) & R(A, z, z)')))
set([x, y, z])
|
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/logic.py#L258-L275
|
import itertools, re
import agents
from utils import *
class KB:
def __init__(self, sentence=None):
abstract
def tell(self, sentence):
abstract
def ask(self, query):
for result in self.ask_generator(query):
return result
return False
def ask_generator(self, query):
abstract
def retract(self, sentence):
abstract
class PropKB(KB):
def __init__(self, sentence=None):
self.clauses = []
if sentence:
self.tell(sentence)
def tell(self, sentence):
self.clauses.extend(conjuncts(to_cnf(sentence)))
def ask_generator(self, query):
if tt_entails(Expr('&', *self.clauses), query):
yield {}
def retract(self, sentence):
for c in conjuncts(to_cnf(sentence)):
if c in self.clauses:
self.clauses.remove(c)
def KB_AgentProgram(KB):
steps = itertools.count()
def program(percept):
t = steps.next()
KB.tell(make_percept_sentence(percept, t))
action = KB.ask(make_action_query(t))
KB.tell(make_action_sentence(action, t))
return action
def make_percept_sentence(self, percept, t):
return Expr("Percept")(percept, t)
def make_action_query(self, t):
return expr("ShouldDo(action, %d)" % t)
def make_action_sentence(self, action, t):
return Expr("Did")(action[expr('action')], t)
return program
class Expr:
def __init__(self, op, *args):
assert isinstance(op, str) or (isnumber(op) and not args)
self.op = num_or_str(op)
self.args = map(expr, args)
def __call__(self, *args):
assert is_symbol(self.op) and not self.args
return Expr(self.op, *args)
def __repr__(self):
if not self.args:
return str(self.op)
elif is_symbol(self.op):
return '%s(%s)' % (self.op, ', '.join(map(repr, self.args)))
elif len(self.args) == 1:
return self.op + repr(self.args[0])
else:
return '(%s)' % (' '+self.op+' ').join(map(repr, self.args))
def __eq__(self, other):
return (other is self) or (isinstance(other, Expr)
and self.op == other.op and self.args == other.args)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.op) ^ hash(tuple(self.args))
def __lt__(self, other): return Expr('<', self, other)
def __le__(self, other): return Expr('<=', self, other)
def __ge__(self, other): return Expr('>=', self, other)
def __gt__(self, other): return Expr('>', self, other)
def __add__(self, other): return Expr('+', self, other)
def __sub__(self, other): return Expr('-', self, other)
def __and__(self, other): return Expr('&', self, other)
def __div__(self, other): return Expr('/', self, other)
def __truediv__(self, other):return Expr('/', self, other)
def __invert__(self): return Expr('~', self)
def __lshift__(self, other): return Expr('<<', self, other)
def __rshift__(self, other): return Expr('>>', self, other)
def __mul__(self, other): return Expr('*', self, other)
def __neg__(self): return Expr('-', self)
def __or__(self, other): return Expr('|', self, other)
def __pow__(self, other): return Expr('**', self, other)
def __xor__(self, other): return Expr('^', self, other)
def __mod__(self, other): return Expr('<=>', self, other)
def expr(s):
if isinstance(s, Expr): return s
if isnumber(s): return Expr(s)
s = s.replace('==>', '>>').replace('<==', '<<')
s = s.replace('<=>', '%').replace('=/=', '^')
s = re.sub(r'([a-zA-Z0-9_.]+)', r'Expr("\1")', s)
return eval(s, {'Expr':Expr})
def is_symbol(s):
return isinstance(s, str) and s[:1].isalpha()
def is_var_symbol(s):
return is_symbol(s) and s[0].islower()
def is_prop_symbol(s):
return is_symbol(s) and s[0].isupper() and s != 'TRUE' and s != 'FALSE'
|
MIT License
|
backtick-se/cowait
|
cowait/engine/docker/docker.py
|
DockerProvider.destroy_all
|
python
|
def destroy_all(self) -> None:
try:
containers = self.docker.containers.list(
all=True,
filters={
'label': LABEL_TASK_ID,
},
)
for container in containers:
container.remove(force=True)
except requests.exceptions.ConnectionError:
raise ProviderError('Docker engine unavailable')
|
Destroys all running tasks
|
https://github.com/backtick-se/cowait/blob/ca1efb9857b5e0dda3ed0b4237c1ad4b7bb62454/cowait/engine/docker/docker.py#L86-L100
|
import docker
import requests.exceptions
from cowait.network import get_remote_url
from cowait.tasks import TaskDefinition
from cowait.utils import json_stream
from cowait.engine.const import LABEL_TASK_ID, LABEL_PARENT_ID
from cowait.engine.cluster import ClusterProvider
from cowait.engine.errors import ProviderError
from cowait.engine.routers import create_router
from .task import DockerTask
from .volumes import create_volumes
from .utils import create_env, create_ports, extract_container_taskdef
DEFAULT_NETWORK = 'cowait'
class DockerProvider(ClusterProvider):
def __init__(self, args={}):
super().__init__('docker', args)
self.docker = docker.from_env()
self.router = create_router(self, self.args.get('router', 'local'))
@property
def network(self):
return self.args.get('network', DEFAULT_NETWORK)
def spawn(self, taskdef: TaskDefinition, deploy: bool = False) -> DockerTask:
try:
self.ensure_network()
self.emit_sync('prepare', taskdef=taskdef)
cpu_period = 100000
cpu_quota = float(taskdef.cpu_limit or 0) * cpu_period
container = self.docker.containers.run(
detach=True,
image=taskdef.image,
name=taskdef.id,
hostname=taskdef.id,
network=self.network,
ports=create_ports(taskdef),
environment=create_env(self, taskdef),
mounts=create_volumes(taskdef.volumes),
cpu_quota=int(cpu_quota),
cpu_period=int(cpu_period),
mem_reservation=str(taskdef.memory or 0),
mem_limit=str(taskdef.memory_limit or 0),
restart_policy=None if not deploy else {'Name': 'always'},
labels={
LABEL_TASK_ID: taskdef.id,
LABEL_PARENT_ID: taskdef.parent,
**taskdef.meta,
},
)
task = DockerTask(self, taskdef, container)
self.emit_sync('spawn', task=task)
return task
except docker.errors.APIError as e:
raise ProviderError(e.explanation)
except requests.exceptions.ConnectionError:
raise ProviderError('Docker engine unavailable')
def wait(self, task: DockerTask) -> bool:
result = task.container.wait()
return result['StatusCode'] == 0
def list_all(self) -> list:
try:
containers = self.docker.containers.list(
filters={'label': LABEL_TASK_ID},
)
return [extract_container_taskdef(c) for c in containers]
except requests.exceptions.ConnectionError:
raise ProviderError('Docker engine unavailable')
|
Apache License 2.0
|
lark-parser/lark
|
lark/parsers/earley_forest.py
|
ForestTransformer.transform_intermediate_node
|
python
|
def transform_intermediate_node(self, node, data):
return node
|
Transform an intermediate node.
|
https://github.com/lark-parser/lark/blob/ee664b57201fb6e31bdb106d509ceab22ef1dd66/lark/parsers/earley_forest.py#L404-L406
|
from random import randint
from collections import deque
from operator import attrgetter
from importlib import import_module
from functools import partial
from ..parse_tree_builder import AmbiguousIntermediateExpander
from ..visitors import Discard
from ..lexer import Token
from ..utils import logger
from ..tree import Tree
class ForestNode:
pass
class SymbolNode(ForestNode):
__slots__ = ('s', 'start', 'end', '_children', 'paths', 'paths_loaded', 'priority', 'is_intermediate', '_hash')
def __init__(self, s, start, end):
self.s = s
self.start = start
self.end = end
self._children = set()
self.paths = set()
self.paths_loaded = False
self.priority = float('-inf')
self.is_intermediate = isinstance(s, tuple)
self._hash = hash((self.s, self.start, self.end))
def add_family(self, lr0, rule, start, left, right):
self._children.add(PackedNode(self, lr0, rule, start, left, right))
def add_path(self, transitive, node):
self.paths.add((transitive, node))
def load_paths(self):
for transitive, node in self.paths:
if transitive.next_titem is not None:
vn = SymbolNode(transitive.next_titem.s, transitive.next_titem.start, self.end)
vn.add_path(transitive.next_titem, node)
self.add_family(transitive.reduction.rule.origin, transitive.reduction.rule, transitive.reduction.start, transitive.reduction.node, vn)
else:
self.add_family(transitive.reduction.rule.origin, transitive.reduction.rule, transitive.reduction.start, transitive.reduction.node, node)
self.paths_loaded = True
@property
def is_ambiguous(self):
return len(self.children) > 1
@property
def children(self):
if not self.paths_loaded: self.load_paths()
return sorted(self._children, key=attrgetter('sort_key'))
def __iter__(self):
return iter(self._children)
def __eq__(self, other):
if not isinstance(other, SymbolNode):
return False
return self is other or (type(self.s) == type(other.s) and self.s == other.s and self.start == other.start and self.end is other.end)
def __hash__(self):
return self._hash
def __repr__(self):
if self.is_intermediate:
rule = self.s[0]
ptr = self.s[1]
before = ( expansion.name for expansion in rule.expansion[:ptr] )
after = ( expansion.name for expansion in rule.expansion[ptr:] )
symbol = "{} ::= {}* {}".format(rule.origin.name, ' '.join(before), ' '.join(after))
else:
symbol = self.s.name
return "({}, {}, {}, {})".format(symbol, self.start, self.end, self.priority)
class PackedNode(ForestNode):
__slots__ = ('parent', 's', 'rule', 'start', 'left', 'right', 'priority', '_hash')
def __init__(self, parent, s, rule, start, left, right):
self.parent = parent
self.s = s
self.start = start
self.rule = rule
self.left = left
self.right = right
self.priority = float('-inf')
self._hash = hash((self.left, self.right))
@property
def is_empty(self):
return self.left is None and self.right is None
@property
def sort_key(self):
return self.is_empty, -self.priority, self.rule.order
@property
def children(self):
return [x for x in [self.left, self.right] if x is not None]
def __iter__(self):
yield self.left
yield self.right
def __eq__(self, other):
if not isinstance(other, PackedNode):
return False
return self is other or (self.left == other.left and self.right == other.right)
def __hash__(self):
return self._hash
def __repr__(self):
if isinstance(self.s, tuple):
rule = self.s[0]
ptr = self.s[1]
before = ( expansion.name for expansion in rule.expansion[:ptr] )
after = ( expansion.name for expansion in rule.expansion[ptr:] )
symbol = "{} ::= {}* {}".format(rule.origin.name, ' '.join(before), ' '.join(after))
else:
symbol = self.s.name
return "({}, {}, {}, {})".format(symbol, self.start, self.priority, self.rule.order)
class TokenNode(ForestNode):
__slots__ = ('token', 'term', 'priority', '_hash')
def __init__(self, token, term, priority=None):
self.token = token
self.term = term
if priority is not None:
self.priority = priority
else:
self.priority = term.priority if term is not None else 0
self._hash = hash(token)
def __eq__(self, other):
if not isinstance(other, TokenNode):
return False
return self is other or (self.token == other.token)
def __hash__(self):
return self._hash
def __repr__(self):
return repr(self.token)
class ForestVisitor:
def __init__(self, single_visit=False):
self.single_visit = single_visit
def visit_token_node(self, node):
pass
def visit_symbol_node_in(self, node):
pass
def visit_symbol_node_out(self, node):
pass
def visit_packed_node_in(self, node):
pass
def visit_packed_node_out(self, node):
pass
def on_cycle(self, node, path):
pass
def get_cycle_in_path(self, node, path):
index = len(path) - 1
while id(path[index]) != id(node):
index -= 1
return path[index:]
def visit(self, root):
visiting = set()
visited = set()
path = []
input_stack = deque([root])
vpno = getattr(self, 'visit_packed_node_out')
vpni = getattr(self, 'visit_packed_node_in')
vsno = getattr(self, 'visit_symbol_node_out')
vsni = getattr(self, 'visit_symbol_node_in')
vino = getattr(self, 'visit_intermediate_node_out', vsno)
vini = getattr(self, 'visit_intermediate_node_in', vsni)
vtn = getattr(self, 'visit_token_node')
oc = getattr(self, 'on_cycle')
while input_stack:
current = next(reversed(input_stack))
try:
next_node = next(current)
except StopIteration:
input_stack.pop()
continue
except TypeError:
pass
else:
if next_node is None:
continue
if id(next_node) in visiting:
oc(next_node, path)
continue
input_stack.append(next_node)
continue
if isinstance(current, TokenNode):
vtn(current.token)
input_stack.pop()
continue
current_id = id(current)
if current_id in visiting:
if isinstance(current, PackedNode):
vpno(current)
elif current.is_intermediate:
vino(current)
else:
vsno(current)
input_stack.pop()
path.pop()
visiting.remove(current_id)
visited.add(current_id)
elif self.single_visit and current_id in visited:
input_stack.pop()
else:
visiting.add(current_id)
path.append(current)
if isinstance(current, PackedNode):
next_node = vpni(current)
elif current.is_intermediate:
next_node = vini(current)
else:
next_node = vsni(current)
if next_node is None:
continue
if not isinstance(next_node, ForestNode):
next_node = iter(next_node)
elif id(next_node) in visiting:
oc(next_node, path)
continue
input_stack.append(next_node)
class ForestTransformer(ForestVisitor):
def __init__(self):
super(ForestTransformer, self).__init__()
self.data = dict()
self.node_stack = deque()
def transform(self, root):
self.node_stack.append('result')
self.data['result'] = []
self.visit(root)
assert len(self.data['result']) <= 1
if self.data['result']:
return self.data['result'][0]
def transform_symbol_node(self, node, data):
return node
|
MIT License
|
veeso/attila
|
attila/virtual/virtualserial.py
|
VirtualSerial.read_line
|
python
|
def read_line(self) -> bytes:
return self.__readCB(0).encode("utf-8")
|
Read line
:returns bytes
|
https://github.com/veeso/attila/blob/b354251433e03fc7531cd2c7556881327c74079b/attila/virtual/virtualserial.py#L142-L148
|
from attila.virtual.exceptions import VirtualSerialException
from typing import Callable, Optional
class VirtualSerial(object):
def __init__(self, serial_port: str, baudrate: int, timeout: int = 0, read_callback: Optional[Callable[[], str]] = None, write_callback: Optional[Callable[[str], None]] = None, in_waiting_callback: Optional[Callable[[], int]] = None):
self.serial_port = serial_port
self.baudrate = baudrate
self.timeout = timeout
self.__writeCB = write_callback
self.__readCB = read_callback
self.__in_waiting_callback = in_waiting_callback
@property
def serial_port(self):
return self._serial_port
@serial_port.setter
def serial_port(self, serial_port: str):
self._serial_port = serial_port
@property
def baudrate(self):
return self._baudrate
@baudrate.setter
def baudrate(self, baud_rate: int):
self._baudrate = baud_rate
@property
def timeout(self):
return self._timeout
@timeout.setter
def timeout(self, timeout: int):
if timeout:
if timeout > 0:
self._timeout = timeout
else:
self._timeout = 10
else:
self._timeout = 10
@property
def in_waiting(self):
if self.__in_waiting_callback:
return self.__in_waiting_callback()
else:
return False
def open(self):
if not self.serial_port or not self.baudrate:
raise VirtualSerialException(
"Could not open %s" % self.serial_port)
return True
def close(self):
if not self.serial_port or not self.baudrate:
raise VirtualSerialException(
"Could not close %s" % self.serial_port)
return True
def write(self, data: bytes) -> bool:
if self.__writeCB:
self.__writeCB(data)
return True
def read(self, nbytes: int = 1) -> bytes:
if self.__readCB:
response = self.__readCB(nbytes)
return response.encode("utf-8")
def read_lines(self) -> bytearray:
response = []
str_tokens = self.__readCB(-1).splitlines()
for token in str_tokens:
response.append(token.encode("utf-8"))
return response
|
MIT License
|
devopshq/teamcity
|
dohq_teamcity/models/agent.py
|
Agent.ip
|
python
|
def ip(self, ip):
self._ip = ip
|
Sets the ip of this Agent.
:param ip: The ip of this Agent. # noqa: E501
:type: str
|
https://github.com/devopshq/teamcity/blob/84f1757ec1fddef27d39246a75739d047be0e831/dohq_teamcity/models/agent.py#L321-L329
|
from dohq_teamcity.custom.base_model import TeamCityObject
class Agent(TeamCityObject):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'id': 'int',
'name': 'str',
'type_id': 'int',
'connected': 'bool',
'enabled': 'bool',
'authorized': 'bool',
'uptodate': 'bool',
'ip': 'str',
'protocol': 'str',
'version': 'str',
'last_activity_time': 'str',
'disconnection_comment': 'str',
'href': 'str',
'web_url': 'str',
'build': 'Build',
'links': 'Links',
'enabled_info': 'EnabledInfo',
'authorized_info': 'AuthorizedInfo',
'properties': 'Properties',
'environment': 'Environment',
'pool': 'AgentPool',
'compatible_build_types': 'BuildTypes',
'incompatible_build_types': 'Compatibilities',
'locator': 'str'
}
attribute_map = {
'id': 'id',
'name': 'name',
'type_id': 'typeId',
'connected': 'connected',
'enabled': 'enabled',
'authorized': 'authorized',
'uptodate': 'uptodate',
'ip': 'ip',
'protocol': 'protocol',
'version': 'version',
'last_activity_time': 'lastActivityTime',
'disconnection_comment': 'disconnectionComment',
'href': 'href',
'web_url': 'webUrl',
'build': 'build',
'links': 'links',
'enabled_info': 'enabledInfo',
'authorized_info': 'authorizedInfo',
'properties': 'properties',
'environment': 'environment',
'pool': 'pool',
'compatible_build_types': 'compatibleBuildTypes',
'incompatible_build_types': 'incompatibleBuildTypes',
'locator': 'locator'
}
def __init__(self, id=None, name=None, type_id=None, connected=False, enabled=False, authorized=False, uptodate=False, ip=None, protocol=None, version=None, last_activity_time=None, disconnection_comment=None, href=None, web_url=None, build=None, links=None, enabled_info=None, authorized_info=None, properties=None, environment=None, pool=None, compatible_build_types=None, incompatible_build_types=None, locator=None, teamcity=None):
self._id = None
self._name = None
self._type_id = None
self._connected = None
self._enabled = None
self._authorized = None
self._uptodate = None
self._ip = None
self._protocol = None
self._version = None
self._last_activity_time = None
self._disconnection_comment = None
self._href = None
self._web_url = None
self._build = None
self._links = None
self._enabled_info = None
self._authorized_info = None
self._properties = None
self._environment = None
self._pool = None
self._compatible_build_types = None
self._incompatible_build_types = None
self._locator = None
self.discriminator = None
if id is not None:
self.id = id
if name is not None:
self.name = name
if type_id is not None:
self.type_id = type_id
if connected is not None:
self.connected = connected
if enabled is not None:
self.enabled = enabled
if authorized is not None:
self.authorized = authorized
if uptodate is not None:
self.uptodate = uptodate
if ip is not None:
self.ip = ip
if protocol is not None:
self.protocol = protocol
if version is not None:
self.version = version
if last_activity_time is not None:
self.last_activity_time = last_activity_time
if disconnection_comment is not None:
self.disconnection_comment = disconnection_comment
if href is not None:
self.href = href
if web_url is not None:
self.web_url = web_url
if build is not None:
self.build = build
if links is not None:
self.links = links
if enabled_info is not None:
self.enabled_info = enabled_info
if authorized_info is not None:
self.authorized_info = authorized_info
if properties is not None:
self.properties = properties
if environment is not None:
self.environment = environment
if pool is not None:
self.pool = pool
if compatible_build_types is not None:
self.compatible_build_types = compatible_build_types
if incompatible_build_types is not None:
self.incompatible_build_types = incompatible_build_types
if locator is not None:
self.locator = locator
super(Agent, self).__init__(teamcity=teamcity)
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
def type_id(self):
return self._type_id
@type_id.setter
def type_id(self, type_id):
self._type_id = type_id
@property
def connected(self):
return self._connected
@connected.setter
def connected(self, connected):
self._connected = connected
@property
def enabled(self):
return self._enabled
@enabled.setter
def enabled(self, enabled):
self._enabled = enabled
@property
def authorized(self):
return self._authorized
@authorized.setter
def authorized(self, authorized):
self._authorized = authorized
@property
def uptodate(self):
return self._uptodate
@uptodate.setter
def uptodate(self, uptodate):
self._uptodate = uptodate
@property
def ip(self):
return self._ip
@ip.setter
|
MIT License
|
kriaga/health-checker
|
HealthChecker/venv/Lib/site-packages/nltk/chunk/api.py
|
ChunkParserI.parse
|
python
|
def parse(self, tokens):
raise NotImplementedError()
|
Return the best chunk structure for the given tokens
and return a tree.
:param tokens: The list of (word, tag) tokens to be chunked.
:type tokens: list(tuple)
:rtype: Tree
|
https://github.com/kriaga/health-checker/blob/3d9ce933f131bcbb897103b0f509cc45393cae4a/HealthChecker/venv/Lib/site-packages/nltk/chunk/api.py#L25-L34
|
from nltk.parse import ParserI
from nltk.chunk.util import ChunkScore
class ChunkParserI(ParserI):
|
MIT License
|
yelp/paasta
|
paasta_tools/mesos_maintenance.py
|
get_hosts_forgotten_draining
|
python
|
def get_hosts_forgotten_draining(grace=0):
draining_hosts = get_draining_hosts()
log.debug("draining_hosts: %s" % draining_hosts)
hosts_past_maintenance_start = get_hosts_past_maintenance_start(grace=grace)
log.debug("hosts_past_maintenance_start: %s" % hosts_past_maintenance_start)
forgotten_draining = list(
set(draining_hosts).intersection(hosts_past_maintenance_start)
)
log.debug("forgotten_draining: %s" % forgotten_draining)
return forgotten_draining
|
Find hosts that are still marked as draining (rather than down) after the start
of their maintenance window.
:param grace: integer number of nanoseconds to allow a host to be left in the draining
state after the start of its maintenance window before we consider it forgotten.
:returns: a list of hostnames of hosts forgotten draining
|
https://github.com/yelp/paasta/blob/bc1716253bbe003cec01bd02016010910c2b039c/paasta_tools/mesos_maintenance.py#L258-L276
|
import argparse
import datetime
import json
import logging
from socket import gaierror
from socket import getfqdn
from socket import gethostbyname
from typing import List
from typing import NamedTuple
from typing import Optional
import a_sync
from dateutil import parser
from pytimeparse import timeparse
from requests import Request
from requests import Session
from requests.exceptions import HTTPError
from paasta_tools.mesos_tools import get_count_running_tasks_on_slave
from paasta_tools.mesos_tools import get_mesos_config_path
from paasta_tools.mesos_tools import get_mesos_leader
from paasta_tools.mesos_tools import get_mesos_master
from paasta_tools.mesos_tools import MESOS_MASTER_PORT
from paasta_tools.utils import SystemPaastaConfig
from paasta_tools.utils import time_cache
from paasta_tools.utils import to_bytes
log = logging.getLogger(__name__)
class Hostname(NamedTuple):
host: str
ip: str
class Credentials(NamedTuple):
file: str
principal: str
secret: str
class Resource(NamedTuple):
name: str
amount: int
MAINTENANCE_ROLE = "maintenance"
def base_api(mesos_config_path: Optional[str] = None):
leader = get_mesos_leader(mesos_config_path)
def execute_request(method, endpoint, timeout=(3, 2), **kwargs):
url = "http://%s:%d%s" % (leader, MESOS_MASTER_PORT, endpoint)
s = Session()
s.auth = (get_principal(), get_secret())
req = Request(method, url, **kwargs)
prepared = s.prepare_request(req)
try:
resp = s.send(prepared, timeout=timeout)
resp.raise_for_status()
return resp
except HTTPError:
raise HTTPError("Error executing API request calling %s." % url)
return execute_request
def master_api(mesos_config_path: Optional[str] = None):
def execute_master_api_request(method, endpoint, **kwargs):
base_api_client = base_api(mesos_config_path=mesos_config_path)
return base_api_client(method, "/master%s" % endpoint, **kwargs)
return execute_master_api_request
def operator_api(mesos_config_path: Optional[str] = None):
def execute_operator_api_request(**kwargs):
base_api_client = base_api(mesos_config_path=mesos_config_path)
if "headers" in kwargs:
kwargs["headers"]["Content-Type"] = "application/json"
else:
kwargs["headers"] = {"Content-Type": "application/json"}
data = kwargs.pop("data")
return base_api_client("POST", "/api/v1", data=json.dumps(data), **kwargs)
return execute_operator_api_request
def reserve_api():
def execute_reserve_api_request(method, endpoint, **kwargs):
master_api_client = master_api()
return master_api_client(method, "/reserve%s" % endpoint, **kwargs)
return execute_reserve_api_request
def unreserve_api():
def execute_unreserve_api_request(method, endpoint, **kwargs):
master_api_client = master_api()
return master_api_client(method, "/unreserve%s" % endpoint, **kwargs)
return execute_unreserve_api_request
def maintenance_api():
def execute_schedule_api_request(method, endpoint, **kwargs):
master_api_client = master_api()
return master_api_client(
method, "/maintenance%s" % endpoint, timeout=(3, 10), **kwargs
)
return execute_schedule_api_request
def get_schedule_client():
def execute_schedule_api_request(method, endpoint, **kwargs):
maintenance_api_client = maintenance_api()
return maintenance_api_client(method, "/schedule%s" % endpoint, **kwargs)
return execute_schedule_api_request
def get_maintenance_schedule():
client_fn = operator_api()
return client_fn(data={"type": "GET_MAINTENANCE_SCHEDULE"})
@time_cache(ttl=10)
def get_maintenance_status(mesos_config_path: Optional[str] = None):
client_fn = operator_api(mesos_config_path=mesos_config_path)
return client_fn(data={"type": "GET_MAINTENANCE_STATUS"})
def schedule():
try:
schedule = get_maintenance_schedule()
except HTTPError:
raise HTTPError("Error getting maintenance schedule.")
return schedule.text
def get_hosts_with_state(
state, system_paasta_config: Optional[SystemPaastaConfig] = None
) -> List[str]:
mesos_config_path = get_mesos_config_path(system_paasta_config)
try:
status = get_maintenance_status(mesos_config_path).json()
status = status["get_maintenance_status"]["status"]
except HTTPError:
raise HTTPError("Error getting maintenance status.")
if not status or state not in status:
return []
if "id" in status[state][0]:
return [machine["id"]["hostname"] for machine in status[state]]
else:
return [machine["hostname"] for machine in status[state]]
def get_draining_hosts(system_paasta_config: Optional[SystemPaastaConfig] = None):
return get_hosts_with_state(
state="draining_machines", system_paasta_config=system_paasta_config
)
def get_down_hosts():
return get_hosts_with_state(state="down_machines")
def is_host_draining(hostname=getfqdn()):
return hostname in get_draining_hosts()
def is_host_down(hostname=getfqdn()):
return hostname in get_down_hosts()
|
Apache License 2.0
|
humanbrainproject/neuroglancer-scripts
|
src/neuroglancer_scripts/scripts/scale_stats.py
|
show_scale_file_info
|
python
|
def show_scale_file_info(url, options={}):
accessor = neuroglancer_scripts.accessor.get_accessor_for_url(url, options)
io = precomputed_io.get_IO_for_existing_dataset(accessor)
info = io.info
show_scales_info(info)
|
Show information about a list of scales.
|
https://github.com/humanbrainproject/neuroglancer-scripts/blob/5f301df5fc3e487f31d48244fb18ffbfce91e9ae/src/neuroglancer_scripts/scripts/scale_stats.py#L46-L51
|
import sys
import numpy as np
import neuroglancer_scripts.accessor
from neuroglancer_scripts import precomputed_io
from neuroglancer_scripts.utils import readable_count
def show_scales_info(info):
total_size = 0
total_chunks = 0
total_directories = 0
dtype = np.dtype(info["data_type"]).newbyteorder("<")
num_channels = info["num_channels"]
for scale in info["scales"]:
scale_name = scale["key"]
size = scale["size"]
for chunk_size in scale["chunk_sizes"]:
size_in_chunks = [(s - 1) // cs + 1 for s,
cs in zip(size, chunk_size)]
num_chunks = np.prod(size_in_chunks)
num_directories = size_in_chunks[0] * (1 + size_in_chunks[1])
size_bytes = np.prod(size) * dtype.itemsize * num_channels
print("Scale {}, chunk size {}:"
" {:,d} chunks, {:,d} directories, raw uncompressed size {}B"
.format(scale_name, chunk_size,
num_chunks, num_directories,
readable_count(size_bytes)))
total_size += size_bytes
total_chunks += num_chunks
total_directories += num_directories
print("---")
print("Total: {:,d} chunks, {:,d} directories, raw uncompressed size {}B"
.format(total_chunks, total_directories,
readable_count(total_size)))
|
MIT License
|
schemaorg/sdopythonapp
|
lib/pyRdfa/rdfs/cache.py
|
CachedVocabIndex._give_preference_path
|
python
|
def _give_preference_path(self) :
from pyRdfa import CACHE_DIR_VAR
if CACHE_DIR_VAR in os.environ :
return os.environ[CACHE_DIR_VAR]
else :
platform = sys.platform
if platform in self.architectures :
system = self.architectures[platform]
else :
system = "unix"
if system == "win" :
app_data = os.path.expandvars("%APPDATA%")
return os.path.join(app_data,self.preference_path[system])
else :
return os.path.join(os.path.expanduser('~'),self.preference_path[system])
|
Find the vocab cache directory.
|
https://github.com/schemaorg/sdopythonapp/blob/128be97d359178b26e5211a3e758933ff3a7b3df/lib/pyRdfa/rdfs/cache.py#L203-L223
|
import os, sys, datetime, re
PY3 = (sys.version_info[0] >= 3)
import rdflib
from rdflib import URIRef
from rdflib import Literal
from rdflib import BNode
from rdflib import Namespace
if rdflib.__version__ >= "3.0.0" :
from rdflib import RDF as ns_rdf
from rdflib import RDFS as ns_rdfs
from rdflib import Graph
else :
from rdflib.RDFS import RDFSNS as ns_rdfs
from rdflib.RDF import RDFNS as ns_rdf
from rdflib.Graph import Graph
from .. import HTTPError, RDFaError
from ..host import MediaTypes, HostLanguage
from ..utils import create_file_name, URIOpener, quote_URI
from ..options import Options
from .. import ns_rdfa
from . import err_outdated_cache
from . import err_unreachable_vocab
from . import err_unparsable_Turtle_vocab
from . import err_unparsable_xml_vocab
from . import err_unparsable_ntriples_vocab
from . import err_unparsable_rdfa_vocab
from . import err_unrecognised_vocab_type
from . import VocabCachingInfo
xml_application_media_type = re.compile("application/[a-zA-Z0-9]+\+xml")
from ..utils import URIOpener
if PY3 :
import pickle
else :
import cPickle as pickle
_Pickle_Protocol = 1
def _load(fname) :
try :
f = open(fname)
return pickle.load(f)
finally :
f.close()
def _dump(obj, fname) :
try :
f = open(fname, "w")
pickle.dump(obj, f, _Pickle_Protocol)
f.flush()
finally :
f.close()
class CachedVocabIndex :
vocabs = "cache_index"
preference_path = {
"mac" : "Library/Application Support/pyRdfa-cache",
"win" : "pyRdfa-cache",
"unix" : ".pyRdfa-cache"
}
architectures = {
"darwin" : "mac",
"nt" : "win",
"win32" : "win",
"cygwin" : "win"
}
def __init__(self, options = None) :
self.options = options
self.report = (options != None) and options.vocab_cache_report
self.app_data_dir = self._give_preference_path()
self.index_fname = os.path.join(self.app_data_dir, self.vocabs)
self.indeces = {}
if not os.path.isdir(self.app_data_dir) :
try :
os.mkdir(self.app_data_dir)
except Exception :
(type,value,traceback) = sys.exc_info()
if self.report: options.add_info("Could not create the vocab cache area %s" % value, VocabCachingInfo)
return
else :
if not os.access(self.app_data_dir, os.R_OK) :
if self.report: options.add_info("Vocab cache directory is not readable", VocabCachingInfo)
return
if not os.access(self.app_data_dir, os.W_OK) :
if self.report: options.add_info("Vocab cache directory is not writeable, but readable", VocabCachingInfo)
return
if os.path.exists(self.index_fname) :
if os.access(self.index_fname, os.R_OK) :
self.indeces = _load(self.index_fname)
else :
if self.report: options.add_info("Vocab cache index not readable", VocabCachingInfo)
else :
if os.access(self.app_data_dir, os.W_OK) :
try :
_dump(self.indeces, self.index_fname)
except Exception :
(type,value,traceback) = sys.exc_info()
if self.report: options.add_info("Could not create the vocabulary index %s" % value, VocabCachingInfo)
else :
if self.report: options.add_info("Vocabulary cache directory is not writeable", VocabCachingInfo)
self.cache_writeable = False
def add_ref(self, uri, vocab_reference) :
self.indeces[uri] = vocab_reference
try :
_dump(self.indeces, self.index_fname)
except Exception :
(type,value,traceback) = sys.exc_info()
if self.report: self.options.add_info("Could not store the cache index %s" % value, VocabCachingInfo)
def get_ref(self, uri) :
if uri in self.indeces :
return tuple(self.indeces[uri])
else :
return None
|
Apache License 2.0
|
ciwpython/ciw
|
ciw/network.py
|
Network.__init__
|
python
|
def __init__(self, service_centres, customer_classes):
self.service_centres = service_centres
self.customer_classes = customer_classes
self.number_of_nodes = len(service_centres)
self.number_of_classes = len(customer_classes)
self.number_of_priority_classes = len(set([clss.priority_class for clss in customer_classes]))
self.priority_class_mapping = {i: clss.priority_class for i, clss in enumerate(customer_classes)}
|
Initialises the Network object
|
https://github.com/ciwpython/ciw/blob/8d5978108f797a6c3e42d8f70f31510f889f2dd0/ciw/network.py#L63-L72
|
class ServiceCentre(object):
def __init__(self,
number_of_servers,
queueing_capacity,
class_change_matrix=None,
schedule=None,
preempt=False,
ps_threshold=1):
self.number_of_servers = number_of_servers
self.queueing_capacity = queueing_capacity
self.class_change_matrix = class_change_matrix
self.schedule = schedule
self.preempt = preempt
self.ps_threshold = ps_threshold
class CustomerClass(object):
def __init__(self,
arrival_distributions,
service_distributions,
routing,
priority_class,
baulking_functions,
batching_distributions):
self.arrival_distributions = arrival_distributions
self.service_distributions = service_distributions
self.batching_distributions = batching_distributions
self.routing = routing
self.priority_class = priority_class
self.baulking_functions = baulking_functions
class Network(object):
|
MIT License
|
aliyun/aliyun-log-python-sdk
|
aliyun/log/etl_core/trans_comp/trans_json.py
|
json_transformer.__init__
|
python
|
def __init__(self, jmes=None, jmes_ignore_none=None, output=None,
expand=None, depth=None, include_node=None, exclude_node=None,
include_path=None, exclude_path=None,
fmt=None, sep=None, prefix=None, suffix=None,
expand_array=None, fmt_array=None, mode=None
):
super(json_transformer, self).__init__(mode=mode)
self.expand = expand
if expand is None:
self.expand = not jmes or not output
self.jmes = self._u(jmes or "")
self.prefix = self._u("" if prefix is None else prefix)
self.suffix = self._u("" if suffix is None else suffix)
self.sep = self._u(self.DEFAULT_SEP if sep is None else sep)
self.output = self._u(output or "")
self.jmes_filter = None
self.jmes_ignore_none = True if jmes_ignore_none is None else jmes_ignore_none
if jmes:
try:
self.jmes_filter = jmespath.compile(jmes)
except jmespath.exceptions.ParseError as ex:
raise SettingError(ex=ex, msg="Invalid JMES filter setting", settings=jmes)
elif self.output:
logger.warning(u"json_transformer: parameter output '{0}' will be ignored as there's no filter is selected."
.format(output))
self.depth = min((depth or self.DEFAULT_DEPTH), self.DEFAULT_DEPTH)
self.include_node = self._u(include_node or self.DEFAULT_INCLUDE_NODE)
self.exclude_node = self._u(exclude_node or self.DEFAULT_EXCLUDE_NODE)
self.include_path = self._u(include_path or self.DEFAULT_INCLUDE_PATH)
self.exclude_path = self._u(exclude_path or self.DEFAULT_EXCLUDE_PATH)
self.fmt = self._u(fmt or self.DEFAULT_FMT)
try:
self.include_node_match = get_re_full_match(self.include_node)
self.exclude_node_match = get_re_full_match(self.exclude_node)
self.include_path_match = re.compile(self.include_path).match
self.exclude_path_match = re.compile(self.exclude_path).match
except Exception as ex:
raise SettingError(ex=ex, msg="Invalid regex string for include/exclude")
self.expand_array = True if expand_array is None else expand_array
self.format_array = self._u(fmt_array or self.DEFAULT_FMT_ARRAY)
|
:param jmes: jmes filter to select or generate new field
:param jmes_ignore_none: if jmes filter is null, ignore it (default). Or else consider it as "". default is
:param output: put the value parsed from jmes filter to this field
:param expand: If jmes filter is configure, expand the result or not (Default is False in this case), If jmes is not configured, directly expand the field passed or not (Default is True in this case).
:param depth: depth to scan, 1 means first layer, default is 100.
:param include_node: keys to expand and include. regex string. using '|' for multiple ones. default is all.
:param exclude_node: keys to skip, regex string. using '|' for multiple ones. default is nothing.
:param include_path: path to expand and include. regex string to match from begin. using '|' for multiple ones. default is all. e.g. r"data\.k1", all sub-keys in data.k1 will be included.
:param exclude_path: path to skip, regex string to match from begin. using '|' for multiple ones. default is nothing. . e.g. r"data\.k2", all sub-keys in data.k2 will be excluded.
:param fmt: during expansion, how to format the key name, there're several types or customized as described in FMT_MAP
:param sep: sep used in formatting during expansion
:param prefix: prefix used in formatting during expansion
:param suffix: suffix used in formatting during expansion
:param expand_array: if expand array or just render it. default is True. item in array will be with name index, e.g. [1,2,3] will be considered as {"0": 1, "1": 2, "2": 3}
:param fmt_array: format string for key name of each array element, default is "{parent_rlist[0]}_{index}", can be custom formatting string using placehodler: parent_list, parent_list, current
|
https://github.com/aliyun/aliyun-log-python-sdk/blob/49b7b92798729d962268252dbbae9d7c098e60f8/aliyun/log/etl_core/trans_comp/trans_json.py#L62-L125
|
import inspect
import json
import logging
try:
from collections.abc import Iterable
except ImportError:
from collections import Iterable
import jmespath
import re
import six
from jmespath.exceptions import ParseError
from .trans_base import trans_comp_check_mdoe_base
from ..etl_util import get_re_full_match
from ..exceptions import SettingError
__all__ = ['trans_comp_json']
logger = logging.getLogger(__name__)
def trans_comp_json(*args, **kwargs):
if (args and isinstance(args[0], dict)) or ('event' in kwargs and isinstance(kwargs['event'], dict)):
trans = json_transformer()
return trans(*args, **kwargs)
else:
return json_transformer(*args, **kwargs)
class json_transformer(trans_comp_check_mdoe_base):
DEFAULT_SEP = u'.'
DEFAULT_FMT = "simple"
DEFAULT_DEPTH = 100
DEFAULT_INCLUDE_NODE = trans_comp_check_mdoe_base.DEFAULT_KEYWORD_PTN
DEFAULT_EXCLUDE_NODE = u''
DEFAULT_INCLUDE_PATH = u''
DEFAULT_EXCLUDE_PATH = u''
DEFAULT_FMT_ARRAY = u"{parent_rlist[0]}_{index}"
FMT_MAP = {
"simple": lambda prefix, current, suffix, *args, **kwargs: u"{prefix}{current}{suffix}".format(prefix=prefix,
current=current,
suffix=suffix),
"full": lambda parent_list, sep, prefix, current, suffix, *args,
**kwargs: u"{parent_list_str}{sep}{prefix}{current}{suffix}".format(
parent_list_str=sep.join(parent_list), current=current, sep=sep, prefix=prefix, suffix=suffix),
"parent": lambda parent_list, sep, prefix, current, suffix, *args,
**kwargs: u"{parent}{sep}{prefix}{current}{suffix}".format(parent=parent_list[-1],
current=current, sep=sep,
prefix=prefix, suffix=suffix),
"root": lambda parent_list, sep, prefix, current, suffix, *args,
**kwargs: u"{parent_list[0]}{sep}{prefix}{current}{suffix}".format(parent_list=parent_list,
current=current, sep=sep,
prefix=prefix, suffix=suffix)
}
|
MIT License
|
ybrs/pydisque
|
pydisque/client.py
|
Client.qscan
|
python
|
def qscan(self, cursor=0, count=None, busyloop=None, minlen=None,
maxlen=None, importrate=None):
command = ["QSCAN", cursor]
if count:
command += ["COUNT", count]
if busyloop:
command += ["BUSYLOOP"]
if minlen:
command += ["MINLEN", minlen]
if maxlen:
command += ["MAXLEN", maxlen]
if importrate:
command += ["IMPORTRATE", importrate]
return self.execute_command(*command)
|
Iterate all the existing queues in the local node.
:param count: An hint about how much work to do per iteration.
:param busyloop: Block and return all the elements in a busy loop.
:param minlen: Don't return elements with less than count jobs queued.
:param maxlen: Don't return elements with more than count jobs queued.
:param importrate: Only return elements with an job import rate
(from other nodes) >= rate.
|
https://github.com/ybrs/pydisque/blob/ea5ce1576b66398c1cce32cad0f15709b1ea8df8/pydisque/client.py#L453-L477
|
import redis
from redis.exceptions import ConnectionError, RedisError
from functools import wraps
try:
from itertools import zip_longest
except ImportError:
from itertools import izip_longest as zip_longest
import logging
logger = logging.getLogger(__name__)
class Job(object):
def __init__(self, id, queue_name, payload):
self.id = id
self.queue_name = queue_name
self.payload = payload
def __repr__(self):
return '<Job id:%s queue_name:%s>' % (self.id, self.queue_name)
class Node(object):
def __init__(self, node_id, host, port, connection):
self.node_id = node_id
self.host = host
self.port = port
self.connection = connection
def __repr__(self):
return '<Node %s:%s>' % (self.host, self.port)
class retry(object):
def __init__(self, retry_count=2):
self.retry_count = retry_count
def __call__(self, fn):
@wraps(fn)
def wrapped_f(*args, **kwargs):
c = 0
while c <= self.retry_count:
try:
return fn(*args, **kwargs)
except RedisError:
logging.critical("retrying because of this exception - %s",
c)
logging.exception("exception to retry ")
if c == self.retry_count:
raise
c += 1
return wrapped_f
class Client(object):
def __init__(self, nodes=None, **kwargs):
if nodes is None:
nodes = ['localhost:7711']
self.nodes = {}
for n in nodes:
self.nodes[n] = None
self.client_kw_args = kwargs
self.connected_node = None
def connect(self):
self.connected_node = None
for i, node in self.nodes.items():
host, port = i.split(':')
port = int(port)
redis_client = redis.Redis(host, port, **self.client_kw_args)
try:
ret = redis_client.execute_command('HELLO')
format_version, node_id = ret[0], ret[1]
others = ret[2:]
self.nodes[i] = Node(node_id, host, port, redis_client)
self.connected_node = self.nodes[i]
except redis.exceptions.ConnectionError:
pass
if not self.connected_node:
raise ConnectionError('couldnt connect to any nodes')
logger.info("connected to node %s" % self.connected_node)
def get_connection(self):
if self.connected_node:
return self.connected_node.connection
else:
raise ConnectionError("not connected")
@retry()
def execute_command(self, *args, **kwargs):
try:
return self.get_connection().execute_command(*args, **kwargs)
except ConnectionError as e:
logger.warn('trying to reconnect')
self.connect()
logger.warn('connected')
raise
def _grouper(self, iterable, n, fillvalue=None):
args = [iter(iterable)] * n
return zip_longest(fillvalue=fillvalue, *args)
def info(self):
return self.execute_command("INFO")
def add_job(self, queue_name, job, timeout=200, replicate=None, delay=None,
retry=None, ttl=None, maxlen=None, asynchronous=None):
command = ['ADDJOB', queue_name, job, timeout]
if replicate:
command += ['REPLICATE', replicate]
if delay:
command += ['DELAY', delay]
if retry is not None:
command += ['RETRY', retry]
if ttl:
command += ['TTL', ttl]
if maxlen:
command += ['MAXLEN', maxlen]
if asynchronous:
command += ['ASYNC']
logger.debug("sending job - %s", command)
job_id = self.execute_command(*command)
logger.debug("sent job - %s", command)
logger.debug("job_id: %s " % job_id)
return job_id
def get_job(self, queues, timeout=None, count=None, nohang=False, withcounters=False):
assert queues
command = ['GETJOB']
if nohang:
command += ['NOHANG']
if timeout:
command += ['TIMEOUT', timeout]
if count:
command += ['COUNT', count]
if withcounters:
command += ['WITHCOUNTERS']
command += ['FROM'] + queues
results = self.execute_command(*command)
if not results:
return []
if withcounters:
return [(job_id, queue_name, job, nacks, additional_deliveries) for
job_id, queue_name, job, _, nacks, _, additional_deliveries in results]
else:
return [(job_id, queue_name, job) for
job_id, queue_name, job in results]
def ack_job(self, *job_ids):
self.execute_command('ACKJOB', *job_ids)
def nack_job(self, *job_ids):
self.execute_command('NACK', *job_ids)
def fast_ack(self, *job_ids):
self.execute_command('FASTACK', *job_ids)
def working(self, job_id):
return self.execute_command('WORKING', job_id)
def qlen(self, queue_name):
return self.execute_command('QLEN', queue_name)
def qstat(self, queue_name, return_dict=False):
rtn = self.execute_command('QSTAT', queue_name)
if return_dict:
grouped = self._grouper(rtn, 2)
rtn = dict((a, b) for a, b in grouped)
return rtn
def qpeek(self, queue_name, count):
return self.execute_command("QPEEK", queue_name, count)
def enqueue(self, *job_ids):
return self.execute_command("ENQUEUE", *job_ids)
def dequeue(self, *job_ids):
return self.execute_command("DEQUEUE", *job_ids)
def del_job(self, *job_ids):
return self.execute_command("DELJOB", *job_ids)
def show(self, job_id, return_dict=False):
rtn = self.execute_command('SHOW', job_id)
if return_dict:
grouped = self._grouper(rtn, 2)
rtn = dict((a, b) for a, b in grouped)
return rtn
def pause(self, queue_name, kw_in=None, kw_out=None, kw_all=None,
kw_none=None, kw_state=None, kw_bcast=None):
command = ["PAUSE", queue_name]
if kw_in:
command += ["in"]
if kw_out:
command += ["out"]
if kw_all:
command += ["all"]
if kw_none:
command += ["none"]
if kw_state:
command += ["state"]
if kw_bcast:
command += ["bcast"]
return self.execute_command(*command)
|
MIT License
|
chargepoint/pydnp3
|
examples/master_cmd.py
|
MasterCmd.do_o1
|
python
|
def do_o1(self, line):
self.application.send_direct_operate_command(opendnp3.ControlRelayOutputBlock(opendnp3.ControlCode.LATCH_ON),
5,
command_callback)
|
Send a DirectOperate BinaryOutput (group 12) index 5 LATCH_ON to the Outstation. Command syntax is: o1
|
https://github.com/chargepoint/pydnp3/blob/3699581dc80409b82e0d64a71b26e0db1863525a/examples/master_cmd.py#L93-L97
|
import cmd
import logging
import sys
from datetime import datetime
from pydnp3 import opendnp3, openpal
from master import MyMaster, MyLogger, AppChannelListener, SOEHandler, MasterApplication
from master import command_callback, restart_callback
stdout_stream = logging.StreamHandler(sys.stdout)
stdout_stream.setFormatter(logging.Formatter('%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s'))
_log = logging.getLogger(__name__)
_log.addHandler(stdout_stream)
_log.setLevel(logging.DEBUG)
class MasterCmd(cmd.Cmd):
def __init__(self):
cmd.Cmd.__init__(self)
self.prompt = 'master> '
self.application = MyMaster(log_handler=MyLogger(),
listener=AppChannelListener(),
soe_handler=SOEHandler(),
master_application=MasterApplication())
def startup(self):
print('Welcome to the DNP3 master request command line. Supported commands include:')
self.do_menu('')
self.cmdloop('Please enter a command.')
exit()
def do_menu(self, line):
print('\tchan_log_all\tSet the channel log level to ALL_COMMS.')
print('\tchan_log_normal\tSet the channel log level to NORMAL.')
print('\tdisable_unsol\tPerform the function DISABLE_UNSOLICITED.')
print('\thelp\t\tDisplay command-line help.')
print('\tmast_log_all\tSet the master log level to ALL_COMMS.')
print('\tmast_log_normal\tSet the master log level to NORMAL.')
print('\tmenu\t\tDisplay this menu.')
print('\to1\t\tSend a DirectOperate LATCH_ON command.')
print('\to2\t\tSend a DirectOperate analog value.')
print('\to3\t\tSend a DirectOperate CommandSet.')
print('\tquit')
print('\trestart\t\tRequest an outstation cold restart.')
print('\ts1\t\tSend a SelectAndOperate LATCH_ON command.')
print('\ts2\t\tSend a SelectAndOperate CommandSet.')
print('\tscan_all\tRead data from the outstation (ScanAllObjects).')
print('\tscan_fast\tDemand immediate execution of the fast (every 1 mins) Class 1 scan.')
print('\tscan_range\tPerform an ad-hoc scan (ScanRange) of GroupVariation 1.2, range 0..3.')
print('\tscan_slow\tDemand immediate execution of the slow (every 30 mins) All-Classes scan.')
print('\twrite_time\tWrite a TimeAndInterval to the outstation.')
def do_chan_log_all(self, line):
self.application.channel.SetLogFilters(openpal.LogFilters(opendnp3.levels.ALL_COMMS))
print('Channel log filtering level is now: {0}'.format(opendnp3.levels.ALL_COMMS))
def do_chan_log_normal(self, line):
self.application.channel.SetLogFilters(openpal.LogFilters(opendnp3.levels.NORMAL))
print('Channel log filtering level is now: {0}'.format(opendnp3.levels.NORMAL))
def do_disable_unsol(self, line):
headers = [opendnp3.Header().AllObjects(60, 2),
opendnp3.Header().AllObjects(60, 3),
opendnp3.Header().AllObjects(60, 4)]
self.application.master.PerformFunction("disable unsolicited",
opendnp3.FunctionCode.DISABLE_UNSOLICITED,
headers,
opendnp3.TaskConfig().Default())
def do_mast_log_all(self, line):
self.application.master.SetLogFilters(openpal.LogFilters(opendnp3.levels.ALL_COMMS))
_log.debug('Master log filtering level is now: {0}'.format(opendnp3.levels.ALL_COMMS))
def do_mast_log_normal(self, line):
self.application.master.SetLogFilters(openpal.LogFilters(opendnp3.levels.NORMAL))
_log.debug('Master log filtering level is now: {0}'.format(opendnp3.levels.NORMAL))
|
Apache License 2.0
|
tensorflow/graphics
|
tensorflow_graphics/math/sampling.py
|
stratified_1d
|
python
|
def stratified_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
name="stratified_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
bin_borders = tf.linspace(0.0, 1.0, num_samples + 1, axis=-1)
bin_below = bin_borders[..., :-1]
bin_above = bin_borders[..., 1:]
target_shape = tf.concat([tf.shape(near), [num_samples]], axis=-1)
random_point_in_bin = tf.random.uniform(target_shape)
z_values = bin_below + (bin_above - bin_below) * random_point_in_bin
z_values = (tf.expand_dims(near, -1) * (1. - z_values)
+ tf.expand_dims(far, -1) * z_values)
return z_values
|
Stratified sampling based on evenly-spaced bin size of an interval.
Args:
near: A tensor of shape `[A1, ... An]` containing the starting points of
the sampling interval.
far: A tensor of shape `[A1, ... An]` containing the ending points of
the sampling interval.
num_samples: The number M of points to be sampled.
name: A name for this op that defaults to "stratified_1d".
Returns:
A tensor of shape `[A1, ..., An, M]` indicating the M points on the ray
|
https://github.com/tensorflow/graphics/blob/d0817aec7dee35635814e925a59d83955459d93c/tensorflow_graphics/math/sampling.py#L120-L156
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow_graphics.util import export_api
from tensorflow_graphics.util import safe_ops
from tensorflow_graphics.util import shape
from tensorflow_graphics.util.type_alias import TensorLike
def regular_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
name="regular_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
return tf.linspace(near, far, num_samples, axis=-1)
def regular_inverse_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
name="regular_inverse_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
return 1. / tf.linspace(1. / near, 1. / far, num_samples, axis=-1)
def uniform_1d(near: TensorLike,
far: TensorLike,
num_samples: int,
name="uniform_1d") -> tf.Tensor:
with tf.name_scope(name):
near = tf.convert_to_tensor(near)
far = tf.convert_to_tensor(far)
shape.compare_batch_dimensions(
tensors=(tf.expand_dims(near, axis=-1), tf.expand_dims(far, axis=-1)),
tensor_names=("near", "far"),
last_axes=-1,
broadcast_compatible=True)
target_shape = tf.concat([tf.shape(near), [num_samples]], axis=-1)
random_samples = tf.random.uniform(target_shape,
minval=tf.expand_dims(near, -1),
maxval=tf.expand_dims(far, -1))
return tf.sort(random_samples, axis=-1)
|
Apache License 2.0
|
cisco-en-programmability/dnacentersdk
|
dnacentersdk/api/v1_3_0/pnp.py
|
Pnp.update_pnp_server_profile
|
python
|
def update_pnp_server_profile(self,
autoSyncPeriod=None,
ccoUser=None,
expiry=None,
lastSync=None,
profile=None,
smartAccountId=None,
syncResult=None,
syncResultStr=None,
syncStartTime=None,
syncStatus=None,
tenantId=None,
token=None,
virtualAccountId=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
_payload = {
'autoSyncPeriod':
autoSyncPeriod,
'ccoUser':
ccoUser,
'expiry':
expiry,
'lastSync':
lastSync,
'profile':
profile,
'smartAccountId':
smartAccountId,
'syncResult':
syncResult,
'syncResultStr':
syncResultStr,
'syncStartTime':
syncStartTime,
'syncStatus':
syncStatus,
'tenantId':
tenantId,
'token':
token,
'virtualAccountId':
virtualAccountId,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_6f9819e84178870c_v1_3_0') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-settings/savacct')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_6f9819e84178870c_v1_3_0', json_data)
|
Updates the PnP Server profile in a registered Virtual Account
in the PnP database. The response payload returns the
updated smart & virtual account info.
Args:
autoSyncPeriod(number): SAVAMapping's autoSyncPeriod.
ccoUser(string): SAVAMapping's ccoUser.
expiry(number): SAVAMapping's expiry.
lastSync(number): SAVAMapping's lastSync.
profile(object): SAVAMapping's profile.
smartAccountId(string): SAVAMapping's smartAccountId.
syncResult(object): SAVAMapping's syncResult.
syncResultStr(string): SAVAMapping's syncResultStr.
syncStartTime(number): SAVAMapping's syncStartTime.
syncStatus(string): SAVAMapping's syncStatus. Available values are 'NOT_SYNCED', 'SYNCING', 'SUCCESS'
and 'FAILURE'.
tenantId(string): SAVAMapping's tenantId.
token(string): SAVAMapping's token.
virtualAccountId(string): SAVAMapping's virtualAccountId.
headers(dict): Dictionary of HTTP Headers to send with the Request
.
payload(dict): A JSON serializable Python object to send in the
body of the Request.
active_validation(bool): Enable/Disable payload validation.
Defaults to True.
**request_parameters: Additional request parameters (provides
support for parameters that may be added in the future).
Returns:
MyDict: JSON response. Access the object's properties by using
the dot notation or the bracket notation.
Raises:
TypeError: If the parameter types are incorrect.
MalformedRequest: If the request body created is invalid.
ApiError: If the DNA Center cloud returns an error.
|
https://github.com/cisco-en-programmability/dnacentersdk/blob/ef2adde6113e7a6acd28a287007eb470fa39d31f/dnacentersdk/api/v1_3_0/pnp.py#L871-L994
|
from __future__ import (
absolute_import,
division,
print_function,
unicode_literals,
)
from builtins import *
from past.builtins import basestring
from ...restsession import RestSession
from ...utils import (
check_type,
dict_from_items_with_values,
apply_path_params,
dict_of_str,
)
class Pnp(object):
def __init__(self, session, object_factory, request_validator):
check_type(session, RestSession)
super(Pnp, self).__init__()
self._session = session
self._object_factory = object_factory
self._request_validator = request_validator
def un_claim_device(self,
deviceIdList=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
_payload = {
'deviceIdList':
deviceIdList,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_0b836b7b4b6a9fd5_v1_3_0') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-device/unclaim')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_0b836b7b4b6a9fd5_v1_3_0', json_data)
def get_sync_result_for_virtual_account(self,
domain,
name,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(domain, basestring,
may_be_none=False)
check_type(name, basestring,
may_be_none=False)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'domain': domain,
'name': name,
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-'
+ 'device/sacct/${domain}/vacct/${name}/sync-result')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.get(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.get(endpoint_full_url, params=_params)
return self._object_factory('bpm_0a9c988445cb91c8_v1_3_0', json_data)
def update_device(self,
id,
_id=None,
deviceInfo=None,
runSummaryList=None,
systemResetWorkflow=None,
systemWorkflow=None,
tenantId=None,
version=None,
workflow=None,
workflowParameters=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
check_type(id, basestring,
may_be_none=False)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'id': id,
}
_payload = {
'_id':
_id,
'deviceInfo':
deviceInfo,
'runSummaryList':
runSummaryList,
'systemResetWorkflow':
systemResetWorkflow,
'systemWorkflow':
systemWorkflow,
'tenantId':
tenantId,
'version':
version,
'workflow':
workflow,
'workflowParameters':
workflowParameters,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_09b0f9ce4239ae10_v1_3_0') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-device/${id}')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_09b0f9ce4239ae10_v1_3_0', json_data)
def deregister_virtual_account(self,
domain,
name,
headers=None,
**request_parameters):
check_type(headers, dict)
check_type(domain, basestring,
may_be_none=False)
check_type(name, basestring,
may_be_none=False)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
'domain':
domain,
'name':
name,
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-settings/vacct')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.delete(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.delete(endpoint_full_url, params=_params)
return self._object_factory('bpm_2499e9ad42e8ae5b_v1_3_0', json_data)
def add_virtual_account(self,
autoSyncPeriod=None,
ccoUser=None,
expiry=None,
lastSync=None,
profile=None,
smartAccountId=None,
syncResult=None,
syncResultStr=None,
syncStartTime=None,
syncStatus=None,
tenantId=None,
token=None,
virtualAccountId=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
_payload = {
'autoSyncPeriod':
autoSyncPeriod,
'ccoUser':
ccoUser,
'expiry':
expiry,
'lastSync':
lastSync,
'profile':
profile,
'smartAccountId':
smartAccountId,
'syncResult':
syncResult,
'syncResultStr':
syncResultStr,
'syncStartTime':
syncStartTime,
'syncStatus':
syncStatus,
'tenantId':
tenantId,
'token':
token,
'virtualAccountId':
virtualAccountId,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_1e962af345b8b59f_v1_3_0') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-settings/savacct')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_1e962af345b8b59f_v1_3_0', json_data)
def import_devices_in_bulk(self,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, list)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
_payload = payload or []
if active_validation:
self._request_validator('jsd_21a6db2540298f55_v1_3_0') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-device/import')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_21a6db2540298f55_v1_3_0', json_data)
def update_workflow(self,
id,
_id=None,
addToInventory=None,
addedOn=None,
configId=None,
currTaskIdx=None,
description=None,
endTime=None,
execTime=None,
imageId=None,
instanceType=None,
lastupdateOn=None,
name=None,
startTime=None,
state=None,
tasks=None,
tenantId=None,
type=None,
useState=None,
version=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
check_type(id, basestring,
may_be_none=False)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
'id': id,
}
_payload = {
'_id':
_id,
'addToInventory':
addToInventory,
'addedOn':
addedOn,
'configId':
configId,
'currTaskIdx':
currTaskIdx,
'description':
description,
'endTime':
endTime,
'execTime':
execTime,
'imageId':
imageId,
'instanceType':
instanceType,
'lastupdateOn':
lastupdateOn,
'name':
name,
'startTime':
startTime,
'state':
state,
'tasks':
tasks,
'tenantId':
tenantId,
'type':
type,
'useState':
useState,
'version':
version,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_3086c9624f498b85_v1_3_0') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-workflow/${id}')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.put(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_3086c9624f498b85_v1_3_0', json_data)
def get_smart_account_list(self,
headers=None,
**request_parameters):
check_type(headers, dict)
if headers is not None:
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-settings/sacct')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.get(endpoint_full_url, params=_params,
headers=_headers)
else:
json_data = self._session.get(endpoint_full_url, params=_params)
return self._object_factory('bpm_3cb24acb486b89d2_v1_3_0', json_data)
def claim_a_device_to_a_site(self,
deviceId=None,
siteId=None,
type=None,
headers=None,
payload=None,
active_validation=True,
**request_parameters):
check_type(headers, dict)
check_type(payload, dict)
if headers is not None:
if 'Content-Type' in headers:
check_type(headers.get('Content-Type'),
basestring, may_be_none=False)
if 'X-Auth-Token' in headers:
check_type(headers.get('X-Auth-Token'),
basestring, may_be_none=False)
_params = {
}
_params.update(request_parameters)
_params = dict_from_items_with_values(_params)
path_params = {
}
_payload = {
'deviceId':
deviceId,
'siteId':
siteId,
'type':
type,
}
_payload.update(payload or {})
_payload = dict_from_items_with_values(_payload)
if active_validation:
self._request_validator('jsd_5889fb844939a13b_v1_3_0') .validate(_payload)
with_custom_headers = False
_headers = self._session.headers or {}
if headers:
_headers.update(dict_of_str(headers))
with_custom_headers = True
e_url = ('/dna/intent/api/v1/onboarding/pnp-device/site-claim')
endpoint_full_url = apply_path_params(e_url, path_params)
if with_custom_headers:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload,
headers=_headers)
else:
json_data = self._session.post(endpoint_full_url, params=_params,
json=_payload)
return self._object_factory('bpm_5889fb844939a13b_v1_3_0', json_data)
|
MIT License
|
pyro-ppl/pyro
|
pyro/contrib/tracking/dynamic_models.py
|
DynamicModel.mean2pv
|
python
|
def mean2pv(self, x):
raise NotImplementedError
|
Compute and return PV state from native state. Useful for combining
state estimates of different types in IMM (Interacting Multiple Model)
filtering.
:param x: native state estimate mean.
:return: PV state estimate mean.
|
https://github.com/pyro-ppl/pyro/blob/751843a16ffca0fec0ec722aa4d57cad246db648/pyro/contrib/tracking/dynamic_models.py#L79-L88
|
from abc import ABCMeta, abstractmethod
import torch
from torch import nn
from torch.nn import Parameter
import pyro.distributions as dist
from pyro.distributions.util import eye_like
class DynamicModel(nn.Module, metaclass=ABCMeta):
def __init__(self, dimension, dimension_pv, num_process_noise_parameters=None):
self._dimension = dimension
self._dimension_pv = dimension_pv
self._num_process_noise_parameters = num_process_noise_parameters
super().__init__()
@property
def dimension(self):
return self._dimension
@property
def dimension_pv(self):
return self._dimension_pv
@property
def num_process_noise_parameters(self):
return self._num_process_noise_parameters
@abstractmethod
def forward(self, x, dt, do_normalization=True):
raise NotImplementedError
def geodesic_difference(self, x1, x0):
return x1 - x0
@abstractmethod
|
Apache License 2.0
|
gabstopper/smc-python
|
smc/elements/other.py
|
ContactAddress.addresses
|
python
|
def addresses(self):
return self.data['addresses']
|
List of addresses set as contact address
:rtype: list
|
https://github.com/gabstopper/smc-python/blob/54386c8a710727cc1acf69334a57b155d2f5408c/smc/elements/other.py#L302-L308
|
from smc.base.model import Element, ElementCreator, ElementList
from smc.api.exceptions import ModificationFailed
from smc.base.util import element_resolver
from smc.base.structs import NestedDict
from smc.base.decorators import cached_property
class Category(Element):
typeof = 'category_tag'
categories = ElementList('category_parent_ref')
@classmethod
def create(cls, name, comment=None):
json = {'name': name,
'comment': comment}
return ElementCreator(cls, json)
def search_elements(self):
return [Element.from_meta(**tag)
for tag in
self.make_request(resource='search_elements_from_category_tag')]
def add_element(self, element):
element = element_resolver(element)
self.make_request(
ModificationFailed,
method='create',
resource='category_add_element',
json={'value': element})
def remove_element(self, element):
element = element_resolver(element)
self.make_request(
ModificationFailed,
method='create',
resource='category_remove_element',
json={'value': element})
def add_category_tag(self, tags, append_lists=True):
tags = element_resolver(tags)
self.update(
category_parent_ref=tags,
append_lists=append_lists)
def add_category(self, tags):
pass
class CategoryTag(Element):
typeof = 'category_group_tag'
child_categories = ElementList('category_child_ref')
parent_categories = ElementList('parent_categories')
@classmethod
def create(cls, name, comment=None):
json = {'name': name,
'comment': comment}
return ElementCreator(cls, json)
def remove_category(self, categories):
categories = element_resolver(categories)
diff = [category for category in self.data['category_child_ref']
if category not in categories]
self.update(category_child_ref=diff)
class SituationTag(Category):
typeof = 'situation_tag'
class FilterExpression(Element):
typeof = 'filter_expression'
class Location(Element):
typeof = 'location'
@classmethod
def create(cls, name, comment=None):
json = {'name': name,
'comment': comment}
return ElementCreator(cls, json)
@property
def used_on(self):
return [Element.from_meta(**element)
for element in
self.make_request(resource='search_nated_elements_from_location')]
class LogicalInterface(Element):
typeof = 'logical_interface'
@classmethod
def create(cls, name, comment=None):
json = {'name': name,
'comment': comment}
return ElementCreator(cls, json)
class MacAddress(Element):
typeof = 'mac_address'
@classmethod
def create(cls, name, mac_address, comment=None):
json = {'name': name,
'address': mac_address,
'comment': comment}
return ElementCreator(cls, json)
class ContactAddress(NestedDict):
@property
|
Apache License 2.0
|
laszukdawid/pyemd
|
PyEMD/EMD.py
|
EMD._not_duplicate
|
python
|
def _not_duplicate(S: np.ndarray) -> np.ndarray:
dup = np.r_[S[1:-1]==S[0:-2]] & np.r_[S[1:-1]==S[2:]]
not_dup_idx = np.arange(1, len(S)-1)[~dup]
idx = np.empty(len(not_dup_idx)+2, dtype=np.int)
idx[0] = 0
idx[-1] = len(S)-1
idx[1:-1] = not_dup_idx
return idx
|
Returns indices for not repeating values, where there is no extremum.
Example
-------
>>> S = [0, 1, 1, 1, 2, 3]
>>> idx = self._not_duplicate(S)
[0, 1, 3, 4, 5]
|
https://github.com/laszukdawid/pyemd/blob/3d8ec292cd2ba8cba327d3e0ad576366a8ead6ff/PyEMD/EMD.py#L479-L497
|
from __future__ import division, print_function
import logging
import numpy as np
from typing import Optional, Tuple
from scipy.interpolate import interp1d
from PyEMD.splines import akima, cubic_spline_3pts
from PyEMD.utils import get_timeline
FindExtremaOutput = Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]
class EMD:
logger = logging.getLogger(__name__)
def __init__(self, spline_kind: str = 'cubic', nbsym: int = 2, **kwargs):
self.energy_ratio_thr = float(kwargs.get('energy_ratio_thr', 0.2))
self.std_thr = float(kwargs.get('std_thr', 0.2))
self.svar_thr = float(kwargs.get('svar_thr', 0.001))
self.total_power_thr = float(kwargs.get('total_power_thr', 0.005))
self.range_thr = float(kwargs.get('range_thr', 0.001))
self.nbsym = int(kwargs.get('nbsym', nbsym))
self.scale_factor = float(kwargs.get('scale_factor', 1.))
self.spline_kind = spline_kind
self.extrema_detection = kwargs.get('extrema_detection', 'simple')
assert self.extrema_detection in ('simple', 'parabol'), "Only 'simple' and 'parabol' values supported"
self.DTYPE = kwargs.get('DTYPE', np.float64)
self.FIXE = int(kwargs.get('FIXE', 0))
self.FIXE_H = int(kwargs.get('FIXE_H', 0))
self.MAX_ITERATION = int(kwargs.get('MAX_ITERATION', 1000))
self.imfs = None
self.residue = None
def __call__(self, S: np.ndarray, T: Optional[np.ndarray] = None, max_imf: int = -1) -> np.ndarray:
return self.emd(S, T=T, max_imf=max_imf)
def extract_max_min_spline(self, T: np.ndarray, S: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
ext_res = self.find_extrema(T, S)
max_pos, max_val = ext_res[0], ext_res[1]
min_pos, min_val = ext_res[2], ext_res[3]
if len(max_pos) + len(min_pos) < 3:
return [-1]*4
max_extrema, min_extrema = self.prepare_points(T, S, max_pos, max_val, min_pos, min_val)
_, max_spline = self.spline_points(T, max_extrema)
_, min_spline = self.spline_points(T, min_extrema)
return max_spline, min_spline, max_extrema, min_extrema
def prepare_points(
self, T: np.ndarray, S: np.ndarray,
max_pos: np.ndarray, max_val: np.ndarray,
min_pos: np.ndarray, min_val: np.ndarray
):
if self.extrema_detection == "parabol":
return self._prepare_points_parabol(T, S, max_pos, max_val, min_pos, min_val)
elif self.extrema_detection == "simple":
return self._prepare_points_simple(T, S, max_pos, max_val, min_pos, min_val)
else:
msg = "Incorrect extrema detection type. Please try: 'simple' or 'parabol'."
raise ValueError(msg)
def _prepare_points_parabol(self, T, S, max_pos, max_val, min_pos, min_val) -> Tuple[np.ndarray, np.ndarray]:
max_extrema = np.zeros((2,len(max_pos)), dtype=self.DTYPE)
min_extrema = np.zeros((2,len(min_pos)), dtype=self.DTYPE)
max_extrema[0], min_extrema[0] = max_pos, min_pos
max_extrema[1], min_extrema[1] = max_val, min_val
nbsym = self.nbsym
end_min, end_max = len(min_pos), len(max_pos)
d_pos = max_pos[0] - min_pos[0]
left_ext_max_type = d_pos<0
if left_ext_max_type:
if (S[0]>min_val[0]) and (np.abs(d_pos)>(max_pos[0]-T[0])):
expand_left_max_pos = 2*max_pos[0] - max_pos[1:nbsym+1]
expand_left_min_pos = 2*max_pos[0] - min_pos[0:nbsym]
expand_left_max_val = max_val[1:nbsym+1]
expand_left_min_val = min_val[0:nbsym]
else:
expand_left_max_pos = 2*T[0] - max_pos[0:nbsym]
expand_left_min_pos = 2*T[0] - np.append(T[0], min_pos[0:nbsym-1])
expand_left_max_val = max_val[0:nbsym]
expand_left_min_val = np.append(S[0], min_val[0:nbsym-1])
else:
if (S[0] < max_val[0]) and (np.abs(d_pos)>(min_pos[0]-T[0])):
expand_left_max_pos = 2*min_pos[0] - max_pos[0:nbsym]
expand_left_min_pos = 2*min_pos[0] - min_pos[1:nbsym+1]
expand_left_max_val = max_val[0:nbsym]
expand_left_min_val = min_val[1:nbsym+1]
else:
expand_left_max_pos = 2*T[0] - np.append(T[0], max_pos[0:nbsym-1])
expand_left_min_pos = 2*T[0] - min_pos[0:nbsym]
expand_left_max_val = np.append(S[0], max_val[0:nbsym-1])
expand_left_min_val = min_val[0:nbsym]
if not expand_left_min_pos.shape:
expand_left_min_pos, expand_left_min_val = min_pos, min_val
if not expand_left_max_pos.shape:
expand_left_max_pos, expand_left_max_val = max_pos, max_val
expand_left_min = np.vstack((expand_left_min_pos[::-1], expand_left_min_val[::-1]))
expand_left_max = np.vstack((expand_left_max_pos[::-1], expand_left_max_val[::-1]))
d_pos = max_pos[-1] - min_pos[-1]
right_ext_max_type = d_pos > 0
if not right_ext_max_type:
if (S[-1] < max_val[-1]) and (np.abs(d_pos)>(T[-1]-min_pos[-1])):
idx_max = max(0, end_max-nbsym)
idx_min = max(0, end_min-nbsym-1)
expand_right_max_pos = 2*min_pos[-1] - max_pos[idx_max:]
expand_right_min_pos = 2*min_pos[-1] - min_pos[idx_min:-1]
expand_right_max_val = max_val[idx_max:]
expand_right_min_val = min_val[idx_min:-1]
else:
idx_max = max(0, end_max-nbsym+1)
idx_min = max(0, end_min-nbsym)
expand_right_max_pos = 2*T[-1] - np.append(max_pos[idx_max:], T[-1])
expand_right_min_pos = 2*T[-1] - min_pos[idx_min:]
expand_right_max_val = np.append(max_val[idx_max:],S[-1])
expand_right_min_val = min_val[idx_min:]
else:
if (S[-1] > min_val[-1]) and len(max_pos)>1 and (np.abs(d_pos)>(T[-1]-max_pos[-1])):
idx_max = max(0, end_max-nbsym-1)
idx_min = max(0, end_min-nbsym)
expand_right_max_pos = 2*max_pos[-1] - max_pos[idx_max:-1]
expand_right_min_pos = 2*max_pos[-1] - min_pos[idx_min:]
expand_right_max_val = max_val[idx_max:-1]
expand_right_min_val = min_val[idx_min:]
else:
idx_max = max(0, end_max-nbsym)
idx_min = max(0, end_min-nbsym+1)
expand_right_max_pos = 2*T[-1] - max_pos[idx_max:]
expand_right_min_pos = 2*T[-1] - np.append(min_pos[idx_min:], T[-1])
expand_right_max_val = max_val[idx_max:]
expand_right_min_val = np.append(min_val[idx_min:], S[-1])
if not expand_right_min_pos.shape:
expand_right_min_pos, expand_right_min_val = min_pos, min_val
if not expand_right_max_pos.shape:
expand_right_max_pos, expand_right_max_val = max_pos, max_val
expand_right_min = np.vstack((expand_right_min_pos[::-1], expand_right_min_val[::-1]))
expand_right_max = np.vstack((expand_right_max_pos[::-1], expand_right_max_val[::-1]))
max_extrema = np.hstack((expand_left_max, max_extrema, expand_right_max))
min_extrema = np.hstack((expand_left_min, min_extrema, expand_right_min))
return max_extrema, min_extrema
def _prepare_points_simple(
self, T: np.ndarray, S: np.ndarray,
max_pos: np.ndarray, max_val: Optional[np.ndarray],
min_pos: np.ndarray, min_val: Optional[np.ndarray]
) -> Tuple[np.ndarray, np.ndarray]:
ind_min = min_pos.astype(int)
ind_max = max_pos.astype(int)
nbsym = self.nbsym
end_min, end_max = len(min_pos), len(max_pos)
if ind_max[0] < ind_min[0]:
if S[0] > S[ind_min[0]]:
lmax = ind_max[1:min(end_max,nbsym+1)][::-1]
lmin = ind_min[0:min(end_min,nbsym+0)][::-1]
lsym = ind_max[0]
else:
lmax = ind_max[0:min(end_max,nbsym)][::-1]
lmin = np.append(ind_min[0:min(end_min,nbsym-1)][::-1],0)
lsym = 0
else:
if S[0] < S[ind_max[0]]:
lmax = ind_max[0:min(end_max,nbsym+0)][::-1]
lmin = ind_min[1:min(end_min,nbsym+1)][::-1]
lsym = ind_min[0]
else:
lmax = np.append(ind_max[0:min(end_max,nbsym-1)][::-1],0)
lmin = ind_min[0:min(end_min,nbsym)][::-1]
lsym = 0
if ind_max[-1] < ind_min[-1]:
if S[-1] < S[ind_max[-1]]:
rmax = ind_max[max(end_max-nbsym,0):][::-1]
rmin = ind_min[max(end_min-nbsym-1,0):-1][::-1]
rsym = ind_min[-1]
else:
rmax = np.append(ind_max[max(end_max-nbsym+1,0):], len(S)-1)[::-1]
rmin = ind_min[max(end_min-nbsym,0):][::-1]
rsym = len(S)-1
else:
if S[-1] > S[ind_min[-1]]:
rmax = ind_max[max(end_max-nbsym-1,0):-1][::-1]
rmin = ind_min[max(end_min-nbsym,0):][::-1]
rsym = ind_max[-1]
else:
rmax = ind_max[max(end_max-nbsym,0):][::-1]
rmin = np.append(ind_min[max(end_min-nbsym+1,0):], len(S)-1)[::-1]
rsym = len(S)-1
if not lmin.size: lmin = ind_min
if not rmin.size: rmin = ind_min
if not lmax.size: lmax = ind_max
if not rmax.size: rmax = ind_max
tlmin = 2*T[lsym]-T[lmin]
tlmax = 2*T[lsym]-T[lmax]
trmin = 2*T[rsym]-T[rmin]
trmax = 2*T[rsym]-T[rmax]
if tlmin[0] > T[0] or tlmax[0] > T[0]:
if lsym == ind_max[0]:
lmax = ind_max[0:min(end_max,nbsym)][::-1]
else:
lmin = ind_min[0:min(end_min,nbsym)][::-1]
if lsym == 0:
raise Exception('Left edge BUG')
lsym = 0
tlmin = 2*T[lsym]-T[lmin]
tlmax = 2*T[lsym]-T[lmax]
if trmin[-1] < T[-1] or trmax[-1] < T[-1]:
if rsym == ind_max[-1]:
rmax = ind_max[max(end_max-nbsym,0):][::-1]
else:
rmin = ind_min[max(end_min-nbsym,0):][::-1]
if rsym == len(S)-1:
raise Exception('Right edge BUG')
rsym = len(S)-1
trmin = 2*T[rsym]-T[rmin]
trmax = 2*T[rsym]-T[rmax]
zlmax = S[lmax]
zlmin = S[lmin]
zrmax = S[rmax]
zrmin = S[rmin]
tmin = np.append(tlmin, np.append(T[ind_min], trmin))
tmax = np.append(tlmax, np.append(T[ind_max], trmax))
zmin = np.append(zlmin, np.append(S[ind_min], zrmin))
zmax = np.append(zlmax, np.append(S[ind_max], zrmax))
max_extrema = np.array([tmax, zmax])
min_extrema = np.array([tmin, zmin])
max_dup_idx = np.where(max_extrema[0, 1:] == max_extrema[0,:-1])
max_extrema = np.delete(max_extrema, max_dup_idx, axis=1)
min_dup_idx = np.where(min_extrema[0, 1:] == min_extrema[0,:-1])
min_extrema = np.delete(min_extrema, min_dup_idx, axis=1)
return max_extrema, min_extrema
def spline_points(self, T: np.ndarray, extrema: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
kind = self.spline_kind.lower()
t = T[np.r_[T>=extrema[0,0]] & np.r_[T<=extrema[0,-1]]]
if kind == "akima":
return t, akima(extrema[0], extrema[1], t)
elif kind == 'cubic':
if extrema.shape[1] > 3:
return t, interp1d(extrema[0], extrema[1], kind=kind)(t)
else:
return cubic_spline_3pts(extrema[0], extrema[1], t)
elif kind in ['slinear', 'quadratic', 'linear']:
return T, interp1d(extrema[0], extrema[1], kind=kind)(t).astype(self.DTYPE)
else:
raise ValueError("No such interpolation method!")
@staticmethod
|
Apache License 2.0
|
aws/sagemaker-containers
|
src/sagemaker_containers/_mapping.py
|
to_cmd_args
|
python
|
def to_cmd_args(mapping):
sorted_keys = sorted(mapping.keys())
def arg_name(obj):
string = _decode(obj)
if string:
return u"--%s" % string if len(string) > 1 else u"-%s" % string
else:
return u""
arg_names = [arg_name(argument) for argument in sorted_keys]
def arg_value(value):
if hasattr(value, "items"):
map_items = ["%s=%s" % (k, v) for k, v in sorted(value.items())]
return ",".join(map_items)
return _decode(value)
arg_values = [arg_value(mapping[key]) for key in sorted_keys]
items = zip(arg_names, arg_values)
return [item for item in itertools.chain.from_iterable(items)]
|
Transform a dictionary in a list of cmd arguments.
Example:
>>>args = mapping.to_cmd_args({'model_dir': '/opt/ml/model', 'batch_size': 25})
>>>
>>>print(args)
['--model_dir', '/opt/ml/model', '--batch_size', 25]
Args:
mapping (dict[str, object]): A Python mapping.
Returns:
(list): List of cmd arguments
|
https://github.com/aws/sagemaker-containers/blob/526dda90d636c7fb0c25791e6c57d077bd972000/src/sagemaker_containers/_mapping.py#L60-L94
|
from __future__ import absolute_import
import collections
import itertools
import json
import six
SplitResultSpec = collections.namedtuple("SplitResultSpec", "included excluded")
def to_env_vars(mapping):
def format_key(key):
if key:
decoded_name = "SM_%s" % str(key).upper()
return decoded_name
else:
return ""
def format_value(_mapping):
if six.PY3 and isinstance(_mapping, six.binary_type):
return _mapping.decode("latin1")
elif _mapping is None:
return ""
elif isinstance(_mapping, six.string_types):
return str(_mapping)
else:
return json.dumps(_mapping, sort_keys=True, separators=(",", ":"), ensure_ascii=True)
return {format_key(k): format_value(v) for k, v in mapping.items()}
|
Apache License 2.0
|
academysoftwarefoundation/opencue
|
pycue/opencue/wrappers/job.py
|
NestedJob.markAsWaiting
|
python
|
def markAsWaiting(self, **request):
self.asJob().markAsWaiting(**request)
|
Changes the matching frames from the depend state to the waiting state.
:type request: Dict
:param request: FrameSearch parameters
|
https://github.com/academysoftwarefoundation/opencue/blob/da28ae905b81e7d1125db2073a369fdc0ae9acd4/pycue/opencue/wrappers/job.py#L833-L839
|
import enum
import os
import time
from opencue import Cuebot
from opencue.compiled_proto import comment_pb2
from opencue.compiled_proto import job_pb2
import opencue.search
import opencue.wrappers.comment
import opencue.wrappers.depend
import opencue.wrappers.frame
import opencue.wrappers.layer
class Job(object):
class JobState(enum.IntEnum):
PENDING = job_pb2.PENDING
FINISHED = job_pb2.FINISHED
STARTUP = job_pb2.STARTUP
SHUTDOWN = job_pb2.SHUTDOWN
POSTED = job_pb2.POSTED
def __init__(self, job=None):
self.data = job
self.stub = Cuebot.getStub('job')
self.__frameStateTotals = {}
def kill(self):
self.stub.Kill(job_pb2.JobKillRequest(job=self.data), timeout=Cuebot.Timeout)
def pause(self):
self.stub.Pause(job_pb2.JobPauseRequest(job=self.data), timeout=Cuebot.Timeout)
def resume(self):
self.stub.Resume(job_pb2.JobResumeRequest(job=self.data), timeout=Cuebot.Timeout)
def killFrames(self, **request):
criteria = opencue.search.FrameSearch.criteriaFromOptions(**request)
self.stub.KillFrames(job_pb2.JobKillFramesRequest(job=self.data, req=criteria),
timeout=Cuebot.Timeout)
def eatFrames(self, **request):
criteria = opencue.search.FrameSearch.criteriaFromOptions(**request)
return self.stub.EatFrames(job_pb2.JobEatFramesRequest(job=self.data, req=criteria),
timeout=Cuebot.Timeout)
def retryFrames(self, **request):
criteria = opencue.search.FrameSearch.criteriaFromOptions(**request)
return self.stub.RetryFrames(job_pb2.JobRetryFramesRequest(job=self.data, req=criteria),
timeout=Cuebot.Timeout)
def markdoneFrames(self, **request):
criteria = opencue.search.FrameSearch.criteriaFromOptions(**request)
return self.stub.MarkDoneFrames(
job_pb2.JobMarkDoneFramesRequest(job=self.data, req=criteria),
timeout=Cuebot.Timeout)
def markAsWaiting(self, **request):
criteria = opencue.search.FrameSearch.criteriaFromOptions(**request)
return self.stub.MarkAsWaiting(
job_pb2.JobMarkAsWaitingRequest(job=self.data, req=criteria),
timeout=Cuebot.Timeout)
def setMinCores(self, minCores):
self.stub.SetMinCores(job_pb2.JobSetMinCoresRequest(job=self.data, val=minCores),
timeout=Cuebot.Timeout)
def setMaxCores(self, maxCores):
self.stub.SetMaxCores(job_pb2.JobSetMaxCoresRequest(job=self.data, val=maxCores),
timeout=Cuebot.Timeout)
def setMinGpus(self, minGpus):
self.stub.SetMinGpus(job_pb2.JobSetMinGpusRequest(job=self.data, val=minGpus),
timeout=Cuebot.Timeout)
def setMaxGpus(self, maxGpus):
self.stub.SetMaxGpus(job_pb2.JobSetMaxGpusRequest(job=self.data, val=maxGpus),
timeout=Cuebot.Timeout)
def setPriority(self, priority):
self.stub.SetPriority(job_pb2.JobSetPriorityRequest(job=self.data, val=priority),
timeout=Cuebot.Timeout)
def setMaxRetries(self, maxRetries):
self.stub.SetMaxRetries(
job_pb2.JobSetMaxRetriesRequest(job=self.data, max_retries=maxRetries),
timeout=Cuebot.Timeout)
def getLayers(self):
response = self.stub.GetLayers(job_pb2.JobGetLayersRequest(job=self.data),
timeout=Cuebot.Timeout)
layerSeq = response.layers
return [opencue.wrappers.layer.Layer(lyr) for lyr in layerSeq.layers]
def getFrames(self, **options):
criteria = opencue.search.FrameSearch.criteriaFromOptions(**options)
response = self.stub.GetFrames(job_pb2.JobGetFramesRequest(job=self.data, req=criteria),
timeout=Cuebot.Timeout)
frameSeq = response.frames
return [opencue.wrappers.frame.Frame(frm) for frm in frameSeq.frames]
def getUpdatedFrames(self, lastCheck, layers=None):
if layers is not None:
layerSeq = job_pb2.LayerSeq()
layerSeq.layers.extend(layers)
else:
layerSeq = None
return self.stub.GetUpdatedFrames(
job_pb2.JobGetUpdatedFramesRequest(job=self.data, last_check=lastCheck,
layer_filter=layerSeq),
timeout=Cuebot.Timeout)
def setAutoEating(self, value):
self.stub.SetAutoEat(job_pb2.JobSetAutoEatRequest(job=self.data, value=value),
timeout=Cuebot.Timeout)
def addRenderPartition(self, hostname, threads, max_cores, num_mem, max_gpus, max_gpu_memory):
self.stub.AddRenderPartition(
job_pb2.JobAddRenderPartRequest(job=self.data,
host=hostname,
threads=threads,
max_cores=max_cores,
max_memory=num_mem,
max_gpus=max_gpus,
max_gpu_memory=max_gpu_memory,
username=os.getenv("USER", "unknown")))
def getWhatDependsOnThis(self):
response = self.stub.GetWhatDependsOnThis(
job_pb2.JobGetWhatDependsOnThisRequest(job=self.data),
timeout=Cuebot.Timeout)
dependSeq = response.depends
return [opencue.wrappers.depend.Depend(dep) for dep in dependSeq.depends]
def getWhatThisDependsOn(self):
response = self.stub.GetWhatThisDependsOn(
job_pb2.JobGetWhatThisDependsOnRequest(job=self.data),
timeout=Cuebot.Timeout)
dependSeq = response.depends
return [opencue.wrappers.depend.Depend(dep) for dep in dependSeq.depends]
def getDepends(self):
response = self.stub.GetDepends(
job_pb2.JobGetDependsRequest(job=self.data),
timeout=Cuebot.Timeout)
dependSeq = response.depends
return [opencue.wrappers.depend.Depend(dep) for dep in dependSeq.depends]
def dropDepends(self, target):
return self.stub.DropDepends(job_pb2.JobDropDependsRequest(job=self.data, target=target),
timeout=Cuebot.Timeout)
def createDependencyOnJob(self, job):
response = self.stub.CreateDependencyOnJob(
job_pb2.JobCreateDependencyOnJobRequest(job=self.data, on_job=job.data),
timeout=Cuebot.Timeout)
return opencue.wrappers.depend.Depend(response.depend)
def createDependencyOnLayer(self, layer):
response = self.stub.CreateDependencyOnLayer(
job_pb2.JobCreateDependencyOnLayerRequest(job=self.data, layer=layer.data),
timeout=Cuebot.Timeout)
return opencue.wrappers.depend.Depend(response.depend)
def createDependencyOnFrame(self, frame):
response = self.stub.CreateDependencyOnFrame(
job_pb2.JobCreateDependencyOnFrameRequest(job=self.data, frame=frame.data),
timeout=Cuebot.Timeout)
return opencue.wrappers.depend.Depend(response.depend)
def addComment(self, subject, message):
comment = comment_pb2.Comment(
user=os.getenv("USER", "unknown"),
subject=subject,
message=message or " ",
timestamp=0)
self.stub.AddComment(job_pb2.JobAddCommentRequest(job=self.data, new_comment=comment),
timeout=Cuebot.Timeout)
def getComments(self):
response = self.stub.GetComments(job_pb2.JobGetCommentsRequest(job=self.data),
timeout=Cuebot.Timeout)
commentSeq = response.comments
return [opencue.wrappers.comment.Comment(cmt) for cmt in commentSeq.comments]
def setGroup(self, group):
self.stub.SetGroup(job_pb2.JobSetGroupRequest(job=self.data, group_id=group.id()),
timeout=Cuebot.Timeout)
def reorderFrames(self, frame_range, order):
self.stub.ReorderFrames(
job_pb2.JobReorderFramesRequest(job=self.data, range=frame_range, order=order),
timeout=Cuebot.Timeout)
def staggerFrames(self, frame_range, stagger):
self.stub.StaggerFrames(
job_pb2.JobStaggerFramesRequest(job=self.data, range=frame_range, stagger=stagger),
timeout=Cuebot.Timeout)
def facility(self):
return self.data.facility
def id(self):
return self.data.id
def name(self):
return self.data.name
def show(self):
return self.data.show
def shot(self):
return self.data.shot
def logDir(self):
return self.data.log_dir
def uid(self):
return self.data.uid if self.data.HasField("uid") else None
def user(self):
return self.data.user
def username(self):
return self.user()
def state(self):
return self.data.state
def priority(self):
return self.data.priority
def minCores(self):
return self.data.min_cores
def maxCores(self):
return self.data.max_cores
def minGpus(self):
return self.data.min_gpus
def maxGpus(self):
return self.data.max_gpus
def os(self):
return self.data.os
def startTime(self, format=None):
if not format:
return self.data.start_time
return time.strftime(format, time.localtime(self.data.start_time))
def stopTime(self, format=None):
if not format:
return self.data.stop_time
return time.strftime(format, time.localtime(self.data.stop_time))
def runTime(self):
if self.data.stop_time == 0:
return int(time.time() - self.data.start_time)
return self.data.stop_time - self.data.start_time
def coreSecondsRemaining(self):
return self.data.job_stats.remaining_core_sec
def age(self):
return int(time.time() - self.data.start_time)
def isPaused(self):
return self.data.is_paused
def isAutoEating(self):
return self.data.auto_eat
def isCommented(self):
return self.data.has_comment
def setAutoEat(self, value):
self.setAutoEating(value)
self.data.auto_eat = value
def coresReserved(self):
return self.data.job_stats.reserved_cores
def totalFrames(self):
return self.data.job_stats.total_frames
def totalLayers(self):
return self.data.job_stats.total_layers
def dependFrames(self):
return self.data.job_stats.depend_frames
def succeededFrames(self):
return self.data.job_stats.succeeded_frames
def runningFrames(self):
return self.data.job_stats.running_frames
def deadFrames(self):
return self.data.job_stats.dead_frames
def waitingFrames(self):
return self.data.job_stats.waiting_frames
def eatenFrames(self):
return self.data.job_stats.eaten_frames
def pendingFrames(self):
return self.data.job_stats.pending_frames
def frameStateTotals(self):
if not self.__frameStateTotals:
self.__frameStateTotals.clear()
for state in job_pb2.FrameState.keys():
frameCount = getattr(self.data.job_stats, '{}_frames'.format(state.lower()), 0)
self.__frameStateTotals[getattr(job_pb2, state)] = frameCount
return self.__frameStateTotals
def percentCompleted(self):
try:
return self.data.job_stats.succeeded_frames / float(self.data.job_stats.total_frames) * 100.0
except ZeroDivisionError:
return 0
def group(self):
return self.data.group
def avgFrameTime(self):
return self.data.job_stats.avg_frame_sec
def averageCoreTime(self):
return self.data.job_stats.avg_core_sec
def maxRss(self):
return self.data.job_stats.max_rss
class NestedJob(Job):
def __init__(self, nestedJob=None):
super(NestedJob, self).__init__(nestedJob)
self.__children = []
def children(self):
return self.__children
def kill(self):
self.asJob().kill()
def pause(self):
self.asJob().pause()
def resume(self):
self.asJob().resume()
def killFrames(self, **request):
self.asJob().killFrames(**request)
def eatFrames(self, **request):
self.asJob().eatFrames(**request)
def retryFrames(self, **request):
self.asJob().retryFrames(**request)
def markdoneFrames(self, **request):
self.asJob().markdoneFrames(**request)
|
Apache License 2.0
|
dvska/gdata-python3
|
src/gdata/gauth.py
|
generate_client_login_request_body
|
python
|
def generate_client_login_request_body(email, password, service, source,
account_type='HOSTED_OR_GOOGLE', captcha_token=None,
captcha_response=None):
request_fields = {'Email': email,
'Passwd': password,
'accountType': account_type,
'service': service,
'source': source}
if captcha_token and captcha_response:
request_fields['logintoken'] = captcha_token
request_fields['logincaptcha'] = captcha_response
return urllib.parse.urlencode(request_fields)
|
Creates the body of the autentication request
See http://code.google.com/apis/accounts/AuthForInstalledApps.html#Request
for more details.
Args:
email: str
password: str
service: str
source: str
account_type: str (optional) Defaul is 'HOSTED_OR_GOOGLE', other valid
values are 'GOOGLE' and 'HOSTED'
captcha_token: str (optional)
captcha_response: str (optional)
Returns:
The HTTP body to send in a request for a client login token.
|
https://github.com/dvska/gdata-python3/blob/a34c35901473e4ba7223ea4607136141301fbe88/src/gdata/gauth.py#L177-L209
|
import datetime
import random
import time
import urllib.error
import urllib.parse
import urllib.parse
import urllib.request
import atom.http_core
try:
import simplejson
from simplejson.decoder import JSONDecodeError
except ImportError:
JSONDecodeError = None
try:
from django.utils import simplejson
except ImportError:
import json as simplejson
try:
from urllib.parse import parse_qsl
except ImportError:
from cgi import parse_qsl
PROGRAMMATIC_AUTH_LABEL = 'GoogleLogin auth='
AUTHSUB_AUTH_LABEL = 'AuthSub token='
OAUTH2_AUTH_LABEL = 'Bearer '
AUTH_SCOPES = {
'cl': (
'https://www.google.com/calendar/feeds/',
'http://www.google.com/calendar/feeds/'),
'gbase': (
'http://base.google.com/base/feeds/',
'http://www.google.com/base/feeds/'),
'blogger': (
'http://www.blogger.com/feeds/',),
'codesearch': (
'http://www.google.com/codesearch/feeds/',),
'cp': (
'https://www.google.com/m8/feeds/',
'http://www.google.com/m8/feeds/'),
'finance': (
'http://finance.google.com/finance/feeds/',),
'health': (
'https://www.google.com/health/feeds/',),
'writely': (
'https://docs.google.com/feeds/',
'https://spreadsheets.google.com/feeds/',
'https://docs.googleusercontent.com/'),
'lh2': (
'http://picasaweb.google.com/data/',),
'apps': (
'https://apps-apis.google.com/a/feeds/user/',
'https://apps-apis.google.com/a/feeds/policies/',
'https://apps-apis.google.com/a/feeds/alias/',
'https://apps-apis.google.com/a/feeds/groups/',
'https://apps-apis.google.com/a/feeds/compliance/audit/',
'https://apps-apis.google.com/a/feeds/migration/',
'https://apps-apis.google.com/a/feeds/emailsettings/2.0/'),
'weaver': (
'https://www.google.com/h9/feeds/',),
'wise': (
'https://spreadsheets.google.com/feeds/',),
'sitemaps': (
'https://www.google.com/webmasters/tools/feeds/',),
'youtube': (
'http://gdata.youtube.com/feeds/api/',
'http://uploads.gdata.youtube.com/feeds/api',
'http://gdata.youtube.com/action/GetUploadToken'),
'books': (
'http://www.google.com/books/feeds/',),
'analytics': (
'https://www.google.com/analytics/feeds/',),
'jotspot': (
'http://sites.google.com/feeds/',
'https://sites.google.com/feeds/'),
'local': (
'http://maps.google.com/maps/feeds/',),
'code': (
'http://code.google.com/feeds/issues',)}
class Error(Exception):
pass
class UnsupportedTokenType(Error):
pass
class OAuth2AccessTokenError(Error):
def __init__(self, error_message):
self.error_message = error_message
class OAuth2RevokeError(Error):
def __init__(self, http_response, response_body=None):
body = response_body or http_response.read()
self.status = http_response.status
self.reason = http_response.reason
self.body = body
self.headers = atom.http_core.get_headers(http_response)
self.error_msg = 'Invalid response %s.' % self.status
try:
json_from_body = simplejson.loads(body.decode('utf-8'))
if isinstance(json_from_body, dict):
self.error_msg = json_from_body.get('error', self.error_msg)
except (ValueError, JSONDecodeError):
pass
def __str__(self):
return 'OAuth2RevokeError(status=%i, error=%s)' % (self.status,
self.error_msg)
|
Apache License 2.0
|
ronreiter/interactive-tutorials
|
suds/mx/appender.py
|
Appender.resume
|
python
|
def resume(self, content):
self.marshaller.resume(content)
|
Notify I{marshaller} that appending this content has resumed.
@param content: The content for which proccessing has been resumed.
@type content: L{Object}
|
https://github.com/ronreiter/interactive-tutorials/blob/aee01e7198f454fc8ca37b2f9575f7d12b94eced/suds/mx/appender.py#L168-L174
|
from logging import getLogger
from suds import null, tostr
from suds.mx import Content
from suds.sudsobject import footprint
from suds.sudsobject import Object, Property
from suds.sax.element import Element
from suds.sax.text import Text
log = getLogger(__name__)
class Matcher:
def __init__(self, cls):
self.cls = cls
def __eq__(self, x):
if self.cls is None:
return x is None
else:
return isinstance(x, self.cls)
class ContentAppender:
def __init__(self, marshaller):
self.default = PrimativeAppender(marshaller)
self.appenders = (
(Matcher(None),
NoneAppender(marshaller)),
(Matcher(null),
NoneAppender(marshaller)),
(Matcher(Property),
PropertyAppender(marshaller)),
(Matcher(Object),
ObjectAppender(marshaller)),
(Matcher(Element),
ElementAppender(marshaller)),
(Matcher(Text),
TextAppender(marshaller)),
(Matcher(list),
ListAppender(marshaller)),
(Matcher(tuple),
ListAppender(marshaller)),
(Matcher(dict),
DictAppender(marshaller)),
)
def append(self, parent, content):
appender = self.default
for a in self.appenders:
if a[0] == content.value:
appender = a[1]
break
appender.append(parent, content)
class Appender:
def __init__(self, marshaller):
self.marshaller = marshaller
def node(self, content):
return self.marshaller.node(content)
def setnil(self, node, content):
self.marshaller.setnil(node, content)
def setdefault(self, node, content):
return self.marshaller.setdefault(node, content)
def optional(self, content):
return self.marshaller.optional(content)
def suspend(self, content):
self.marshaller.suspend(content)
|
Apache License 2.0
|
cigna/ibis
|
ibis/utilities/sqoop_helper.py
|
SqoopHelper.get_ddl_query
|
python
|
def get_ddl_query(self, jdbc, database, tbl, schema=None):
db_type = self.get_jdbc_source(jdbc)
if db_type == SQLSERVER:
params = {'db': database, 'tbl': tbl, 'schema': schema}
elif db_type == MYSQL:
params = {'db': database, 'tbl': tbl}
elif db_type == POSTGRESQL:
params = {'db': database, 'tbl': tbl, 'schema': schema}
else:
params = {'db': database.upper(), 'tbl': tbl.upper()}
columns_and_types = {
'db2': ("SELECT NAME, COLTYPE FROM SYSIBM.SYSCOLUMNS"
" WHERE TBCREATOR='{db}' AND TBNAME='{tbl}'"),
'sqlserver': ("SELECT COLUMN_NAME, DATA_TYPE FROM "
"INFORMATION_SCHEMA.COLUMNS WHERE "
"TABLE_CATALOG='{db}' AND TABLE_NAME='{tbl}' "
"AND TABLE_SCHEMA='{schema}'"),
'oracle': ("SELECT COLUMN_NAME, DATA_TYPE FROM all_tab_columns"
" WHERE OWNER='{db}' AND TABLE_NAME='{tbl}'"),
'teradata': "HELP COLUMN {db}.{tbl}.*;",
'mysql': ("SELECT COLUMN_NAME, DATA_TYPE FROM "
"INFORMATION_SCHEMA.COLUMNS WHERE "
"TABLE_SCHEMA = '{db}' and TABLE_NAME = '{tbl}'"),
'postgresql': ("SELECT COLUMN_NAME, DATA_TYPE FROM "
"INFORMATION_SCHEMA.COLUMNS WHERE "
"TABLE_CATALOG='{db}' AND TABLE_NAME='{tbl}' "
"AND TABLE_SCHEMA='{schema}'")}
sql_stmt = columns_and_types[db_type]
sql_stmt = sql_stmt.format(**params)
return sql_stmt
|
Get ddl query
|
https://github.com/cigna/ibis/blob/f99e3b7a677652a8a1c00a069e645d97682e839c/ibis/utilities/sqoop_helper.py#L180-L210
|
import subprocess
import re
import sys
from ibis.custom_logging import get_logger
ORACLE = 'oracle'
DB2 = 'db2'
TERADATA = 'teradata'
SQLSERVER = 'sqlserver'
MYSQL = 'mysql'
POSTGRESQL = 'postgresql'
VALID_SOURCES = [ORACLE, DB2, SQLSERVER, TERADATA, MYSQL, POSTGRESQL]
DRIVERS = {
"teradata": "com.teradata.jdbc.TeraDriver",
"oracle": "com.quest.oraoop.OraOopManagerFactory",
"db2": "com.cloudera.sqoop.manager.DefaultManagerFactory",
"sqlserver": ['com.cloudera.sqoop.manager.DefaultManagerFactory',
'net.sourceforge.jtds.jdbc.Driver'],
"mysql": "com.cloudera.sqoop.manager.DefaultManagerFactory",
"postgresql": "com.cloudera.sqoop.manager.DefaultManagerFactory"}
SQOOP_CACHE = {}
SQOOP_CACHE_VIEW = {}
class SqoopHelper(object):
def __init__(self, cfg_mgr):
self.cfg_mgr = cfg_mgr
self.pattern_non_alphanumeric = re.compile(r'[^A-Za-z0-9_]')
self.pattern_numeric_at_start = r'^\d'
self.pattern_underscore_at_start = r'^_'
self.logger = get_logger(self.cfg_mgr)
def get_sqoop_eval(self):
sqoop_eval = True
try:
subprocess.Popen('sqoop-eval', stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
except OSError as oe:
sqoop_eval = False
msg = "sqoop-eval command not available"
self.logger.warning(msg)
err_msg = "Error: sqoop-eval command not available - reason %s"
err_msg = err_msg % oe.message
sys.exit(err_msg)
return sqoop_eval
def eval(self, jdbc, sql_stmt, db_username, password_file):
src = self.get_jdbc_source(jdbc)
driver = self.get_driver(jdbc)
results = []
if self.get_sqoop_eval():
if 'jceks' in password_file:
try:
jceks, password_alias = password_file.split('#')
except ValueError as err_exp:
msg = ('Error unpacking jceks path and password alias '
'from {password}. '
'Expecting jceks:path#password_alias. Example: '
'jceks://hdfs/user/dev/fake.passwords.jceks#'
'fake.password.alias')
msg = msg.format(password=password_file)
self.logger.error(msg)
err_msg = ('Error found in sqoop_helper, exit from process'
' with errors - reason {0}')
self.logger.error(err_msg.format(err_exp.message))
sys.exit(1)
cmd_list = [
'sqoop-eval',
'-D hadoop.security.credential.provider.path=' + jceks,
'--driver', driver, '--verbose', '--connect', jdbc,
'--query', sql_stmt, '--username', db_username,
'--password-alias', password_alias]
else:
cmd_list = [
'sqoop-eval', '--driver', driver, '--verbose',
'--connect', jdbc, '--query', sql_stmt, '--username',
db_username, '--password-file', password_file]
self.logger.info('Sqoop eval: {stmt}'.format(stmt=sql_stmt))
proc = subprocess.Popen(cmd_list, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output, err = proc.communicate()
if err:
if 'updateCount=-1' not in err:
self.logger.error(output)
self.logger.error(err)
raise ValueError('Failed on sqoop eval!')
re_expr = re.compile(r"\|.*\|")
cleaned_lines = re_expr.findall(output)
cleaned_lines = [line.split('|') for line in cleaned_lines]
results = [[y.strip() for y in c] for c in cleaned_lines]
results = [x[1:-1] for x in results[1:]]
else:
msg = 'Warning sqoop-eval not available'
self.logger.warning(msg)
sys.exit("Error: Command not available - reason %s" % msg)
return results
def _eval(self, jdbc, sql_stmt, db_username, password_file):
src = self.get_jdbc_source(jdbc)
driver = self.get_driver(jdbc)
if 'jceks' in password_file:
jceks, password_alias = password_file.split('#')
cmd_list = ['sqoop-eval',
'-D hadoop.security.credential.provider.path=' + jceks,
'--driver', driver, '--verbose',
'--connect', jdbc, '--query', sql_stmt,
'--username', db_username, '--password-alias',
password_alias]
else:
cmd_list = ['sqoop-eval', '--driver', driver, '--verbose',
'--connect', jdbc, '--query', sql_stmt, '--username',
db_username, '--password-file', password_file]
proc = subprocess.Popen(cmd_list, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output, err = proc.communicate()
return proc.returncode, output, err
def get_driver(self, jdbc):
driver = ''
windows_auth = 'domain'
for db_src in VALID_SOURCES:
if db_src == SQLSERVER:
if db_src in jdbc and windows_auth in jdbc:
driver = DRIVERS[db_src][1]
else:
driver = DRIVERS[db_src][0]
elif db_src in jdbc:
driver = DRIVERS[db_src]
return driver
def get_jdbc_source(self, jdbc):
src = ''
for db_src in VALID_SOURCES:
if db_src in jdbc:
src = db_src
return src
|
Apache License 2.0
|
oboynitro/django-frontier
|
venv/Lib/site-packages/setuptools/pep425tags.py
|
get_darwin_arches
|
python
|
def get_darwin_arches(major, minor, machine):
arches = []
def _supports_arch(major, minor, arch):
if arch == 'ppc':
return (major, minor) <= (10, 5)
if arch == 'ppc64':
return (major, minor) == (10, 5)
if arch == 'i386':
return (major, minor) >= (10, 4)
if arch == 'x86_64':
return (major, minor) >= (10, 5)
if arch in groups:
for garch in groups[arch]:
if _supports_arch(major, minor, garch):
return True
return False
groups = OrderedDict([
("fat", ("i386", "ppc")),
("intel", ("x86_64", "i386")),
("fat64", ("x86_64", "ppc64")),
("fat32", ("x86_64", "i386", "ppc")),
])
if _supports_arch(major, minor, machine):
arches.append(machine)
for garch in groups:
if machine in groups[garch] and _supports_arch(major, minor, garch):
arches.append(garch)
arches.append('universal')
return arches
|
Return a list of supported arches (including group arches) for
the given major, minor and machine architecture of a macOS machine.
|
https://github.com/oboynitro/django-frontier/blob/89bec0199aadcc5e976a1cc42ad9284603f6439a/venv/Lib/site-packages/setuptools/pep425tags.py#L162-L220
|
from __future__ import absolute_import
import distutils.util
from distutils import log
import platform
import re
import sys
import sysconfig
import warnings
from collections import OrderedDict
from .extern import six
from . import glibc
_osx_arch_pat = re.compile(r'(.+)_(\d+)_(\d+)_(.+)')
def get_config_var(var):
try:
return sysconfig.get_config_var(var)
except IOError as e:
warnings.warn("{}".format(e), RuntimeWarning)
return None
def get_abbr_impl():
if hasattr(sys, 'pypy_version_info'):
pyimpl = 'pp'
elif sys.platform.startswith('java'):
pyimpl = 'jy'
elif sys.platform == 'cli':
pyimpl = 'ip'
else:
pyimpl = 'cp'
return pyimpl
def get_impl_ver():
impl_ver = get_config_var("py_version_nodot")
if not impl_ver or get_abbr_impl() == 'pp':
impl_ver = ''.join(map(str, get_impl_version_info()))
return impl_ver
def get_impl_version_info():
if get_abbr_impl() == 'pp':
return (sys.version_info[0], sys.pypy_version_info.major,
sys.pypy_version_info.minor)
else:
return sys.version_info[0], sys.version_info[1]
def get_impl_tag():
return "{}{}".format(get_abbr_impl(), get_impl_ver())
def get_flag(var, fallback, expected=True, warn=True):
val = get_config_var(var)
if val is None:
if warn:
log.debug("Config variable '%s' is unset, Python ABI tag may "
"be incorrect", var)
return fallback()
return val == expected
def get_abi_tag():
soabi = get_config_var('SOABI')
impl = get_abbr_impl()
if not soabi and impl in {'cp', 'pp'} and hasattr(sys, 'maxunicode'):
d = ''
m = ''
u = ''
if get_flag('Py_DEBUG',
lambda: hasattr(sys, 'gettotalrefcount'),
warn=(impl == 'cp')):
d = 'd'
if get_flag('WITH_PYMALLOC',
lambda: impl == 'cp',
warn=(impl == 'cp')):
m = 'm'
if get_flag('Py_UNICODE_SIZE',
lambda: sys.maxunicode == 0x10ffff,
expected=4,
warn=(impl == 'cp' and
six.PY2)) and six.PY2:
u = 'u'
abi = '%s%s%s%s%s' % (impl, get_impl_ver(), d, m, u)
elif soabi and soabi.startswith('cpython-'):
abi = 'cp' + soabi.split('-')[1]
elif soabi:
abi = soabi.replace('.', '_').replace('-', '_')
else:
abi = None
return abi
def _is_running_32bit():
return sys.maxsize == 2147483647
def get_platform():
if sys.platform == 'darwin':
release, _, machine = platform.mac_ver()
split_ver = release.split('.')
if machine == "x86_64" and _is_running_32bit():
machine = "i386"
elif machine == "ppc64" and _is_running_32bit():
machine = "ppc"
return 'macosx_{}_{}_{}'.format(split_ver[0], split_ver[1], machine)
result = distutils.util.get_platform().replace('.', '_').replace('-', '_')
if result == "linux_x86_64" and _is_running_32bit():
result = "linux_i686"
return result
def is_manylinux1_compatible():
if get_platform() not in {"linux_x86_64", "linux_i686"}:
return False
try:
import _manylinux
return bool(_manylinux.manylinux1_compatible)
except (ImportError, AttributeError):
pass
return glibc.have_compatible_glibc(2, 5)
|
MIT License
|
vertexproject/synapse
|
synapse/lib/jupyter.py
|
getDocData
|
python
|
def getDocData(fp, root=None):
fpath = getDocPath(fp, root)
if fpath.endswith('.yaml'):
return s_common.yamlload(fpath)
if fpath.endswith('.json'):
return s_common.jsload(fpath)
with s_common.genfile(fpath) as fd:
if fpath.endswith('.mpk'):
return s_msgpack.un(fd.read())
if fpath.endswith('.jsonl'):
recs = []
for line in fd.readlines():
recs.append(json.loads(line.decode()))
return recs
return fd.read()
|
Args:
fn (str): Name of the file to retrieve the data of.
root (str): Optional root path to look for a docdata directory in.
Notes:
Will detect json/jsonl/yaml/mpk extensions and automatically
decode that data if found; otherwise it returns bytes.
Defaults to looking for the ``docdata`` directory in the current
working directory. This behavior works fine for notebooks nested
in the docs directory of synapse; but this root directory that
is looked for may be overridden by providing an alternative root.
Returns:
data: May be deserialized data or bytes.
Raises:
ValueError if the file does not exist or directory traversal attempted..
|
https://github.com/vertexproject/synapse/blob/a9d62ffacd9cc236ac52f92a734deef55c66ecf3/synapse/lib/jupyter.py#L63-L98
|
import os
import copy
import json
import logging
import pathlib
import contextlib
import synapse.common as s_common
import synapse.cortex as s_cortex
import synapse.lib.base as s_base
import synapse.lib.cmdr as s_cmdr
import synapse.lib.msgpack as s_msgpack
loggers_to_supress = (
'synapse.lib.view',
)
def getDocPath(fn, root=None):
cwd = pathlib.Path(os.getcwd())
if root:
cwd = pathlib.Path(root)
while True:
dpath = cwd.joinpath('docdata')
if dpath.is_dir():
break
parent = cwd.parent
if parent == cwd:
raise ValueError(f'Unable to find data directory from {os.getcwd()}.')
cwd = parent
fpath = os.path.abspath(os.path.join(dpath.as_posix(), fn))
if not fpath.startswith(dpath.as_posix()):
raise ValueError(f'Path escaping detected: {fn}')
if not os.path.isfile(fpath):
raise ValueError(f'File does not exist: {fn}')
return fpath
|
Apache License 2.0
|
muxinc/mux-python
|
mux_python/models/asset_response.py
|
AssetResponse.__init__
|
python
|
def __init__(self, data=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration.get_default_copy()
self.local_vars_configuration = local_vars_configuration
self._data = None
self.discriminator = None
if data is not None:
self.data = data
|
AssetResponse - a model defined in OpenAPI
|
https://github.com/muxinc/mux-python/blob/57c10a3002a0bc65a0dc8938f08176bd5b030a93/mux_python/models/asset_response.py#L44-L54
|
import inspect
import pprint
import re
import six
from mux_python.configuration import Configuration
class AssetResponse(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'data': 'Asset'
}
attribute_map = {
'data': 'data'
}
|
MIT License
|
google/transitfeed
|
merge.py
|
ApproximateDistanceBetweenPoints
|
python
|
def ApproximateDistanceBetweenPoints(pa, pb):
alat, alon = pa
blat, blon = pb
sa = transitfeed.Stop(lat=alat, lng=alon)
sb = transitfeed.Stop(lat=blat, lng=blon)
return transitfeed.ApproximateDistanceBetweenStops(sa, sb)
|
Finds the distance between two points on the Earth's surface.
This is an approximate distance based on assuming that the Earth is a sphere.
The points are specified by their lattitude and longitude.
Args:
pa: the first (lat, lon) point tuple
pb: the second (lat, lon) point tuple
Returns:
The distance as a float in metres.
|
https://github.com/google/transitfeed/blob/d727e97cb66ac2ca2d699a382ea1d449ee26c2a1/merge.py#L63-L80
|
from __future__ import print_function
__author__ = 'timothy.stranex@gmail.com (Timothy Stranex)'
import datetime
import optparse
import os
import re
import sys
import time
import transitfeed
from transitfeed import util
import webbrowser
|
Apache License 2.0
|
laurencium/causalinference
|
causalinference/causal.py
|
CausalModel.est_via_blocking
|
python
|
def est_via_blocking(self, adj=1):
self.estimates['blocking'] = Blocking(self.strata, adj)
|
Estimates average treatment effects using regression within
blocks.
This method should only be executed after the sample has been
stratified.
Parameters
----------
adj: int (0, 1, or 2)
Indicates how covariate adjustments are to be
performed for each within-bin regression.
Set adj = 0 to not include any covariates.
Set adj = 1 to include treatment indicator D
and covariates X separately. Set adj = 2 to
additionally include interaction terms between
D and X. Defaults to 1.
|
https://github.com/laurencium/causalinference/blob/630e8fb195754a720da41791b725d3dadabfb257/causalinference/causal.py#L251-L272
|
from __future__ import division
import numpy as np
from itertools import combinations_with_replacement
from .core import Data, Summary, Propensity, PropensitySelect, Strata
from .estimators import OLS, Blocking, Weighting, Matching, Estimators
class CausalModel(object):
def __init__(self, Y, D, X):
self.old_data = Data(Y, D, X)
self.reset()
def reset(self):
Y, D, X = self.old_data['Y'], self.old_data['D'], self.old_data['X']
self.raw_data = Data(Y, D, X)
self.summary_stats = Summary(self.raw_data)
self.propensity = None
self.cutoff = None
self.blocks = None
self.strata = None
self.estimates = Estimators()
def est_propensity(self, lin='all', qua=None):
lin_terms = parse_lin_terms(self.raw_data['K'], lin)
qua_terms = parse_qua_terms(self.raw_data['K'], qua)
self.propensity = Propensity(self.raw_data, lin_terms, qua_terms)
self.raw_data._dict['pscore'] = self.propensity['fitted']
self._post_pscore_init()
def est_propensity_s(self, lin_B=None, C_lin=1, C_qua=2.71):
lin_basic = parse_lin_terms(self.raw_data['K'], lin_B)
self.propensity = PropensitySelect(self.raw_data, lin_basic,
C_lin, C_qua)
self.raw_data._dict['pscore'] = self.propensity['fitted']
self._post_pscore_init()
def trim(self):
if 0 < self.cutoff <= 0.5:
pscore = self.raw_data['pscore']
keep = (pscore >= self.cutoff) & (pscore <= 1-self.cutoff)
Y_trimmed = self.raw_data['Y'][keep]
D_trimmed = self.raw_data['D'][keep]
X_trimmed = self.raw_data['X'][keep]
self.raw_data = Data(Y_trimmed, D_trimmed, X_trimmed)
self.raw_data._dict['pscore'] = pscore[keep]
self.summary_stats = Summary(self.raw_data)
self.strata = None
self.estimates = Estimators()
elif self.cutoff == 0:
pass
else:
raise ValueError('Invalid cutoff.')
def trim_s(self):
pscore = self.raw_data['pscore']
g = 1.0/(pscore*(1-pscore))
self.cutoff = select_cutoff(g)
self.trim()
def stratify(self):
Y, D, X = self.raw_data['Y'], self.raw_data['D'], self.raw_data['X']
pscore = self.raw_data['pscore']
if isinstance(self.blocks, int):
blocks = split_equal_bins(pscore, self.blocks)
else:
blocks = self.blocks[:]
blocks[0] = 0
def subset(p_low, p_high):
return (p_low < pscore) & (pscore <= p_high)
subsets = [subset(*ps) for ps in zip(blocks, blocks[1:])]
strata = [CausalModel(Y[s], D[s], X[s]) for s in subsets]
self.strata = Strata(strata, subsets, pscore)
def stratify_s(self):
pscore_order = self.raw_data['pscore'].argsort()
pscore = self.raw_data['pscore'][pscore_order]
D = self.raw_data['D'][pscore_order]
logodds = np.log(pscore / (1-pscore))
K = self.raw_data['K']
blocks_uniq = set(select_blocks(pscore, logodds, D, K, 0, 1))
self.blocks = sorted(blocks_uniq)
self.stratify()
def est_via_ols(self, adj=2):
self.estimates['ols'] = OLS(self.raw_data, adj)
|
BSD 3-Clause New or Revised License
|
icb-dcm/pyabc
|
pyabc/sampler/redis_eps/sampler.py
|
post_check_acceptance
|
python
|
def post_check_acceptance(
sample_with_id, ana_id, t, redis, ana_vars,
logger: RedisSamplerLogger,
) -> Tuple:
sample: Sample = sample_with_id[1]
if not any(particle.preliminary for particle in sample.all_particles):
n_accepted = len(sample.accepted_particles)
if n_accepted != 1:
raise AssertionError(
"Expected exactly one accepted particle in sample.")
logger.n_accepted += 1
if sample.is_look_ahead:
logger.n_lookahead_accepted += 1
return sample_with_id, True
if len(sample.all_particles) != 1:
raise AssertionError(
"Expected number of particles in sample: 1. "
f"Got: {len(sample.all_particles)}")
logger.n_preliminary += 1
for particle in sample.all_particles:
particle = evaluate_preliminary_particle(particle, t, ana_vars)
if particle.accepted:
sample.accepted_particles = [particle]
sample.rejected_particles = []
redis.incr(idfy(N_ACC, ana_id, t), 1)
logger.n_accepted += 1
logger.n_lookahead_accepted += 1
else:
sample.accepted_particles = []
if sample.record_rejected:
sample.rejected_particles = [particle]
else:
sample.rejected_particles = []
return sample_with_id, len(sample.accepted_particles) > 0
|
Check whether the sample is really acceptable.
This is where evaluation of preliminary samples happens, using the analysis
variables from the actual generation `t` and the previously simulated data.
The sample is modified in-place.
Returns
-------
sample_with_id, any_accepted:
The (maybe post-evaluated) id-sample tuple, and an indicator whether
any particle in the sample was accepted, s.t. the sample should be
kept.
|
https://github.com/icb-dcm/pyabc/blob/3cef3237a819caba40efe6eb4f775822b4d66955/pyabc/sampler/redis_eps/sampler.py#L604-L673
|
import numpy as np
from time import sleep
from datetime import datetime
import cloudpickle as pickle
import copy
import logging
from redis import StrictRedis
from typing import Callable, Dict, List, Tuple
from jabbar import jabbar
from ...inference_util import (
AnalysisVars,
create_simulate_function,
evaluate_preliminary_particle,
termination_criteria_fulfilled,
)
from ...distance import Distance
from ...epsilon import Epsilon
from ...acceptor import Acceptor
from ...sampler import Sampler
from ...weighted_statistics import effective_sample_size
from ...population import Sample
from .cmd import (
SSA, N_EVAL, N_ACC, N_REQ, N_FAIL, N_LOOKAHEAD_EVAL, ALL_ACCEPTED,
N_WORKER, QUEUE, MSG, START, MODE, DYNAMIC, SLEEP_TIME, BATCH_SIZE,
IS_LOOK_AHEAD, ANALYSIS_ID, GENERATION, MAX_N_EVAL_LOOK_AHEAD, DONE_IXS,
idfy,
)
from .redis_logging import RedisSamplerLogger
logger = logging.getLogger("ABC.Sampler")
class RedisSamplerBase(Sampler):
def __init__(
self,
host: str = "localhost",
port: int = 6379,
password: str = None,
log_file: str = None,
):
super().__init__()
logger.debug(
f"Redis sampler: host={host} port={port}")
self.redis: StrictRedis = StrictRedis(
host=host, port=port, password=password)
self.logger = RedisSamplerLogger(log_file)
def n_worker(self) -> int:
return self.redis.pubsub_numsub(MSG)[0][-1]
def set_analysis_id(self, analysis_id: str):
super().set_analysis_id(analysis_id)
if self.redis.get(ANALYSIS_ID):
raise AssertionError(
"The server seems busy with an analysis already")
self.redis.set(ANALYSIS_ID, analysis_id)
def sample_until_n_accepted(
self,
n: int,
simulate_one: Callable,
t: int,
*,
max_eval: int = np.inf,
all_accepted: bool = False,
ana_vars: AnalysisVars = None,
) -> Sample:
raise NotImplementedError()
def stop(self):
self.redis.delete(ANALYSIS_ID)
self.redis.delete(idfy(GENERATION, self.analysis_id))
class RedisEvalParallelSampler(RedisSamplerBase):
def __init__(
self,
host: str = "localhost",
port: int = 6379,
password: str = None,
batch_size: int = 1,
look_ahead: bool = False,
look_ahead_delay_evaluation: bool = True,
max_n_eval_look_ahead_factor: float = 10.,
wait_for_all_samples: bool = False,
log_file: str = None,
):
super().__init__(
host=host, port=port, password=password, log_file=log_file)
self.batch_size: int = batch_size
self.look_ahead: bool = look_ahead
self.look_ahead_delay_evaluation: bool = look_ahead_delay_evaluation
self.max_n_eval_look_ahead_factor: float = max_n_eval_look_ahead_factor
self.wait_for_all_samples: bool = wait_for_all_samples
def sample_until_n_accepted(
self, n, simulate_one, t, *,
max_eval=np.inf, all_accepted=False, ana_vars=None) -> Sample:
ana_id = self.analysis_id
def get_int(var: str):
return int(self.redis.get(idfy(var, ana_id, t)).decode())
if self.generation_t_was_started(t):
self.redis.set(
idfy(SSA, ana_id, t),
pickle.dumps((simulate_one, self.sample_factory)))
self.redis.set(idfy(N_REQ, ana_id, t), n)
self.redis.set(idfy(IS_LOOK_AHEAD, ana_id, t), int(False))
if get_int(N_WORKER) == 0 and get_int(N_ACC) < get_int(N_REQ):
self.redis.publish(MSG, START)
else:
self.start_generation_t(
n=n, t=t, simulate_one=simulate_one, all_accepted=all_accepted,
is_look_ahead=False)
id_results = []
self.logger.reset_counters()
with jabbar(total=n, enable=self.show_progress, keep=False) as bar:
while len(id_results) < n:
dump = self.redis.blpop(idfy(QUEUE, ana_id, t))[1]
sample_with_id = pickle.loads(dump)
sample_with_id, any_particle_accepted = post_check_acceptance(
sample_with_id, ana_id=ana_id, t=t, redis=self.redis,
ana_vars=ana_vars, logger=self.logger)
if any_particle_accepted:
id_results.append(sample_with_id)
bar.update(len(id_results))
self.maybe_start_next_generation(
t=t, n=n, id_results=id_results, all_accepted=all_accepted,
ana_vars=ana_vars)
if self.wait_for_all_samples:
while get_int(N_WORKER) > 0:
sleep(SLEEP_TIME)
else:
max_ix = sorted(id_result[0] for id_result in id_results)[n-1]
missing_ixs = set(range(1, max_ix+1))
while (
missing_ixs
and get_int(N_WORKER) > 0
):
_var = idfy(DONE_IXS, ana_id, t)
with self.redis.pipeline(transaction=True) as p:
p.lrange(_var, 0, -1).delete(_var)
vals = p.execute()[0]
for val in vals:
done_ix = int(val.decode())
if done_ix in missing_ixs:
missing_ixs.discard(done_ix)
sleep(SLEEP_TIME)
while self.redis.llen(idfy(QUEUE, ana_id, t)) > 0:
dump = self.redis.blpop(idfy(QUEUE, ana_id, t))[1]
sample_with_id = pickle.loads(dump)
sample_with_id, any_particle_accepted = post_check_acceptance(
sample_with_id, ana_id=ana_id, t=t, redis=self.redis,
ana_vars=ana_vars, logger=self.logger)
if any_particle_accepted:
id_results.append(sample_with_id)
self.nr_evaluations_ = get_int(N_EVAL)
n_lookahead_eval = get_int(N_LOOKAHEAD_EVAL)
if self.wait_for_all_samples:
self.clear_generation_t(t=t)
else:
for _t in range(-1, t+1):
n_worker_b = self.redis.get(idfy(N_WORKER, ana_id, _t))
if n_worker_b is not None and int(n_worker_b.decode()) == 0:
pass
sample = self.create_sample(id_results, n)
self.logger.add_row(
t=t, n_evaluated=self.nr_evaluations_,
n_lookahead=n_lookahead_eval)
self.logger.write()
sample = self_normalize_within_subpopulations(sample, n)
return sample
def start_generation_t(
self,
n: int,
t: int,
simulate_one: Callable,
all_accepted: bool,
is_look_ahead: bool,
max_n_eval_look_ahead: float = np.inf,
) -> None:
ana_id = self.analysis_id
(self.redis.pipeline()
.set(idfy(SSA, ana_id, t),
pickle.dumps((simulate_one, self.sample_factory)))
.set(idfy(N_EVAL, ana_id, t), 0)
.set(idfy(N_ACC, ana_id, t), 0)
.set(idfy(N_REQ, ana_id, t), n)
.set(idfy(N_FAIL, ana_id, t), 0)
.set(idfy(N_LOOKAHEAD_EVAL, ana_id, t), 0)
.set(idfy(ALL_ACCEPTED, ana_id, t), int(all_accepted))
.set(idfy(N_WORKER, ana_id, t), 0)
.set(idfy(BATCH_SIZE, ana_id, t), self.batch_size)
.set(idfy(IS_LOOK_AHEAD, ana_id, t), int(is_look_ahead))
.set(idfy(MAX_N_EVAL_LOOK_AHEAD, ana_id, t), max_n_eval_look_ahead)
.set(idfy(MODE, ana_id, t), DYNAMIC)
.set(idfy(GENERATION, ana_id), t)
.execute())
self.redis.publish(MSG, START)
def generation_t_was_started(self, t: int) -> bool:
return self.redis.exists(idfy(N_REQ, self.analysis_id, t))
def clear_generation_t(self, t: int) -> None:
ana_id = self.analysis_id
(self.redis.pipeline()
.delete(idfy(SSA, ana_id, t))
.delete(idfy(N_EVAL, ana_id, t))
.delete(idfy(N_ACC, ana_id, t))
.delete(idfy(N_REQ, ana_id, t))
.delete(idfy(N_FAIL, ana_id, t))
.delete(idfy(N_LOOKAHEAD_EVAL, ana_id, t))
.delete(idfy(ALL_ACCEPTED, ana_id, t))
.delete(idfy(N_WORKER, ana_id, t))
.delete(idfy(BATCH_SIZE, ana_id, t))
.delete(idfy(IS_LOOK_AHEAD, ana_id, t))
.delete(idfy(MAX_N_EVAL_LOOK_AHEAD, ana_id, t))
.delete(idfy(MODE, ana_id, t))
.delete(idfy(DONE_IXS, ana_id, t))
.delete(idfy(QUEUE, ana_id, t))
.execute())
def maybe_start_next_generation(
self,
t: int,
n: int,
id_results: List,
all_accepted: bool,
ana_vars: AnalysisVars,
) -> None:
if not self.look_ahead:
return
if all_accepted:
return
sample = self.create_sample(id_results, n)
sample = copy.deepcopy(sample)
sample = self_normalize_within_subpopulations(sample, n)
sample.normalize_weights()
population = sample.get_accepted_population()
nr_evaluations = int(
self.redis.get(idfy(N_EVAL, self.analysis_id, t)).decode())
acceptance_rate = len(population) / nr_evaluations
total_nr_simulations = ana_vars.prev_total_nr_simulations + nr_evaluations
walltime = datetime.now() - ana_vars.init_walltime
if termination_criteria_fulfilled(
current_eps=ana_vars.eps(t),
min_eps=ana_vars.min_eps,
stop_if_single_model_alive=
ana_vars.stop_if_single_model_alive,
nr_of_models_alive=population.nr_of_models_alive(),
acceptance_rate=acceptance_rate,
min_acceptance_rate=ana_vars.min_acceptance_rate,
total_nr_simulations=total_nr_simulations,
max_total_nr_simulations=ana_vars.max_total_nr_simulations,
walltime=walltime,
max_walltime=ana_vars.max_walltime,
t=t, max_t=ana_vars.max_t,
):
return
simulate_one_prel = create_preliminary_simulate_one(
t=t + 1, population=population,
delay_evaluation=self.look_ahead_delay_evaluation,
ana_vars=ana_vars)
if self.look_ahead_delay_evaluation:
nr_evaluations_ = int(
self.redis.get(idfy(N_EVAL, self.analysis_id, t)).decode())
max_n_eval_look_ahead = nr_evaluations_ * self.max_n_eval_look_ahead_factor
else:
max_n_eval_look_ahead = np.inf
self.start_generation_t(
n=n, t=t + 1, simulate_one=simulate_one_prel,
all_accepted=False, is_look_ahead=True,
max_n_eval_look_ahead=max_n_eval_look_ahead)
def create_sample(self, id_results: List[Tuple], n: int) -> Sample:
id_results.sort(key=lambda x: x[0])
id_results = id_results[:n]
results = [res[1] for res in id_results]
sample = self._create_empty_sample()
for j in range(n):
sample += results[j]
return sample
def check_analysis_variables(
self,
distance_function: Distance,
eps: Epsilon,
acceptor: Acceptor,
) -> None:
if self.look_ahead_delay_evaluation:
return
def check_bad(var):
if var.is_adaptive():
raise AssertionError(
f"{var.__class__.__name__} cannot be used in look-ahead "
"mode without delayed acceptance. Consider setting the "
"sampler's `look_ahead_delay_evaluation` flag.")
check_bad(acceptor)
check_bad(distance_function)
check_bad(eps)
def create_preliminary_simulate_one(
t, population, delay_evaluation: bool, ana_vars: AnalysisVars,
) -> Callable:
model_probabilities = population.get_model_probabilities()
transitions = copy.deepcopy(ana_vars.transitions)
for m in population.get_alive_models():
parameters, w = population.get_distribution(m)
transitions[m].fit(parameters, w)
return create_simulate_function(
t=t, model_probabilities=model_probabilities,
model_perturbation_kernel=ana_vars.model_perturbation_kernel,
transitions=transitions, model_prior=ana_vars.model_prior,
parameter_priors=ana_vars.parameter_priors,
models=ana_vars.models, summary_statistics=ana_vars.summary_statistics,
x_0=ana_vars.x_0, distance_function=ana_vars.distance_function,
eps=ana_vars.eps, acceptor=ana_vars.acceptor,
evaluate=not delay_evaluation, proposal_id=-1,
)
|
BSD 3-Clause New or Revised License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.