repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
clusterhq/flocker
|
flocker/provision/_install.py
|
apt_get_update
|
python
|
def apt_get_update(sudo=False):
return _from_args(sudo)(["apt-get", "update"])
|
Update apt's package metadata cache.
|
https://github.com/clusterhq/flocker/blob/eaa586248986d7cd681c99c948546c2b507e44de/flocker/provision/_install.py#L169-L173
|
from pipes import quote
import posixpath
from textwrap import dedent
from urlparse import urljoin, urlparse
from effect import Func, Effect, Constant, parallel
from effect.retry import retry
from time import time
import yaml
from zope.interface import implementer
from eliot import write_failure
from characteristic import attributes
from pyrsistent import PClass, field
from txeffect import perform
from twisted.internet.error import ProcessTerminated
from ._libcloud import INode
from ._common import PackageSource, Variants
from ._ssh import (
Run, Sudo,
run_network_interacting_from_args, sudo_network_interacting_from_args,
run, run_from_args, sudo_from_args,
put,
run_remotely,
)
from ._ssh._conch import make_dispatcher
from ._effect import sequence, http_get
from ..common import retry_effect_with_timeout
from flocker import __version__ as version
from flocker.cli import configure_ssh
from flocker.common.version import (
get_installable_version, get_package_key_suffix, is_release,
)
START = "restart"
ZFS_REPO = {
'centos-7': "https://s3.amazonaws.com/archive.zfsonlinux.org/"
"epel/zfs-release.el7.noarch.rpm",
}
ARCHIVE_BUCKET = 'clusterhq-archive'
class UnknownAction(Exception):
def __init__(self, action):
Exception.__init__(self, action)
def tag_as_test_install(flocker_version, distribution, package_name):
repository_url = get_repository_url(
distribution=distribution,
flocker_version=flocker_version)
repository_host = urlparse(repository_url).hostname
tag_url = bytes(
"https://{host}/clusterhq-internal-acceptance-test/{distribution}/"
"{package}/{version}".format(
host=repository_host,
distribution=distribution,
package=package_name,
version=flocker_version
)
)
return http_get(tag_url)
def is_rhel(distribution):
return distribution.startswith("rhel-")
def is_centos_or_rhel(distribution):
return (distribution.startswith(("centos-", "rhel-")))
def is_systemd_distribution(distribution):
return (
is_centos_or_rhel(distribution) or
distribution == "ubuntu-16.04"
)
def _from_args(sudo):
if sudo:
return sudo_network_interacting_from_args
else:
return run_network_interacting_from_args
def yum_install(args, package_manager="yum", sudo=False):
return _from_args(sudo)([package_manager, "install", "-y"] + args)
def apt_get_install(args, sudo=False):
return _from_args(sudo)(
["apt-get", "-y", "install", ] + args
)
|
Apache License 2.0
|
amz-driverless/rbb_core
|
rbb_client/src/rbb_client/models/bag_detailed.py
|
BagDetailed.store_data
|
python
|
def store_data(self):
return self._store_data
|
Gets the store_data of this BagDetailed.
Data that is specific to the bag store type.
:return: The store_data of this BagDetailed.
:rtype: object
|
https://github.com/amz-driverless/rbb_core/blob/618617270314af5335de30179072244e1f440c4c/rbb_client/src/rbb_client/models/bag_detailed.py#L142-L150
|
from pprint import pformat
from six import iteritems
class BagDetailed(object):
def __init__(self):
self.swagger_types = {
'detail_type': 'str',
'name': 'str',
'store_data': 'object',
'discovered': 'datetime',
'extraction_failure': 'bool',
'in_trash': 'bool',
'is_extracted': 'bool',
'meta_available': 'bool',
'size': 'int',
'start_time': 'datetime',
'end_time': 'datetime',
'duration': 'float',
'messages': 'int',
'tags': 'list[Tag]',
'topics': 'list[Topic]',
'products': 'list[Product]',
'comment': 'str'
}
self.attribute_map = {
'detail_type': 'detail_type',
'name': 'name',
'store_data': 'store_data',
'discovered': 'discovered',
'extraction_failure': 'extraction_failure',
'in_trash': 'in_trash',
'is_extracted': 'is_extracted',
'meta_available': 'meta_available',
'size': 'size',
'start_time': 'start_time',
'end_time': 'end_time',
'duration': 'duration',
'messages': 'messages',
'tags': 'tags',
'topics': 'topics',
'products': 'products',
'comment': 'comment'
}
self._detail_type = None
self._name = None
self._store_data = None
self._discovered = None
self._extraction_failure = None
self._in_trash = None
self._is_extracted = None
self._meta_available = None
self._size = None
self._start_time = None
self._end_time = None
self._duration = None
self._messages = None
self._tags = None
self._topics = None
self._products = None
self._comment = None
@property
def detail_type(self):
return self._detail_type
@detail_type.setter
def detail_type(self, detail_type):
self._detail_type = detail_type
@property
def name(self):
return self._name
@name.setter
def name(self, name):
self._name = name
@property
|
MIT License
|
drexly/openhgsenti
|
lib/django/contrib/gis/db/backends/postgis/operations.py
|
PostGISOperations.spatial_version
|
python
|
def spatial_version(self):
if hasattr(settings, 'POSTGIS_VERSION'):
version = settings.POSTGIS_VERSION
else:
self._get_postgis_func('version')
try:
vtup = self.postgis_version_tuple()
except ProgrammingError:
raise ImproperlyConfigured(
'Cannot determine PostGIS version for database "%s" '
'using command "SELECT postgis_lib_version()". '
'GeoDjango requires at least PostGIS version 2.0. '
'Was the database created from a spatial database '
'template?' % self.connection.settings_dict['NAME']
)
version = vtup[1:]
return version
|
Determine the version of the PostGIS library.
|
https://github.com/drexly/openhgsenti/blob/d7806f58c81127d32091d9875a99ac13aef94a8a/lib/django/contrib/gis/db/backends/postgis/operations.py#L145-L172
|
import re
from django.conf import settings
from django.contrib.gis.db.backends.base.operations import BaseSpatialOperations
from django.contrib.gis.db.backends.postgis.adapter import PostGISAdapter
from django.contrib.gis.db.backends.postgis.pgraster import (
from_pgraster, to_pgraster,
)
from django.contrib.gis.db.backends.utils import SpatialOperator
from django.contrib.gis.geometry.backend import Geometry
from django.contrib.gis.measure import Distance
from django.core.exceptions import ImproperlyConfigured
from django.db.backends.postgresql.operations import DatabaseOperations
from django.db.utils import ProgrammingError
from django.utils.functional import cached_property
from .models import PostGISGeometryColumns, PostGISSpatialRefSys
from .pgraster import get_pgraster_srid
class PostGISOperator(SpatialOperator):
def __init__(self, geography=False, **kwargs):
self.geography = geography
super(PostGISOperator, self).__init__(**kwargs)
def as_sql(self, connection, lookup, *args):
if lookup.lhs.output_field.geography and not self.geography:
raise ValueError('PostGIS geography does not support the "%s" '
'function/operator.' % (self.func or self.op,))
return super(PostGISOperator, self).as_sql(connection, lookup, *args)
class PostGISDistanceOperator(PostGISOperator):
sql_template = '%(func)s(%(lhs)s, %(rhs)s) %(op)s %%s'
def as_sql(self, connection, lookup, template_params, sql_params):
if not lookup.lhs.output_field.geography and lookup.lhs.output_field.geodetic(connection):
sql_template = self.sql_template
if len(lookup.rhs) == 3 and lookup.rhs[-1] == 'spheroid':
template_params.update({'op': self.op, 'func': 'ST_Distance_Spheroid'})
sql_template = '%(func)s(%(lhs)s, %(rhs)s, %%s) %(op)s %%s'
else:
template_params.update({'op': self.op, 'func': 'ST_Distance_Sphere'})
return sql_template % template_params, sql_params
return super(PostGISDistanceOperator, self).as_sql(connection, lookup, template_params, sql_params)
class PostGISOperations(BaseSpatialOperations, DatabaseOperations):
name = 'postgis'
postgis = True
geography = True
geom_func_prefix = 'ST_'
version_regex = re.compile(r'^(?P<major>\d)\.(?P<minor1>\d)\.(?P<minor2>\d+)')
Adapter = PostGISAdapter
Adaptor = Adapter
gis_operators = {
'bbcontains': PostGISOperator(op='~'),
'bboverlaps': PostGISOperator(op='&&', geography=True),
'contained': PostGISOperator(op='@'),
'contains': PostGISOperator(func='ST_Contains'),
'overlaps_left': PostGISOperator(op='&<'),
'overlaps_right': PostGISOperator(op='&>'),
'overlaps_below': PostGISOperator(op='&<|'),
'overlaps_above': PostGISOperator(op='|&>'),
'left': PostGISOperator(op='<<'),
'right': PostGISOperator(op='>>'),
'strictly_below': PostGISOperator(op='<<|'),
'strictly_above': PostGISOperator(op='|>>'),
'same_as': PostGISOperator(op='~='),
'exact': PostGISOperator(op='~='),
'contains_properly': PostGISOperator(func='ST_ContainsProperly'),
'coveredby': PostGISOperator(func='ST_CoveredBy', geography=True),
'covers': PostGISOperator(func='ST_Covers', geography=True),
'crosses': PostGISOperator(func='ST_Crosses'),
'disjoint': PostGISOperator(func='ST_Disjoint'),
'equals': PostGISOperator(func='ST_Equals'),
'intersects': PostGISOperator(func='ST_Intersects', geography=True),
'overlaps': PostGISOperator(func='ST_Overlaps'),
'relate': PostGISOperator(func='ST_Relate'),
'touches': PostGISOperator(func='ST_Touches'),
'within': PostGISOperator(func='ST_Within'),
'dwithin': PostGISOperator(func='ST_DWithin', geography=True),
'distance_gt': PostGISDistanceOperator(func='ST_Distance', op='>', geography=True),
'distance_gte': PostGISDistanceOperator(func='ST_Distance', op='>=', geography=True),
'distance_lt': PostGISDistanceOperator(func='ST_Distance', op='<', geography=True),
'distance_lte': PostGISDistanceOperator(func='ST_Distance', op='<=', geography=True),
}
unsupported_functions = set()
function_names = {
'BoundingCircle': 'ST_MinimumBoundingCircle',
'MemSize': 'ST_Mem_Size',
'NumPoints': 'ST_NPoints',
}
def __init__(self, connection):
super(PostGISOperations, self).__init__(connection)
prefix = self.geom_func_prefix
self.area = prefix + 'Area'
self.bounding_circle = prefix + 'MinimumBoundingCircle'
self.centroid = prefix + 'Centroid'
self.collect = prefix + 'Collect'
self.difference = prefix + 'Difference'
self.distance = prefix + 'Distance'
self.distance_sphere = prefix + 'distance_sphere'
self.distance_spheroid = prefix + 'distance_spheroid'
self.envelope = prefix + 'Envelope'
self.extent = prefix + 'Extent'
self.extent3d = prefix + '3DExtent'
self.force_rhr = prefix + 'ForceRHR'
self.geohash = prefix + 'GeoHash'
self.geojson = prefix + 'AsGeoJson'
self.gml = prefix + 'AsGML'
self.intersection = prefix + 'Intersection'
self.kml = prefix + 'AsKML'
self.length = prefix + 'Length'
self.length3d = prefix + '3DLength'
self.length_spheroid = prefix + 'length_spheroid'
self.makeline = prefix + 'MakeLine'
self.mem_size = prefix + 'mem_size'
self.num_geom = prefix + 'NumGeometries'
self.num_points = prefix + 'npoints'
self.perimeter = prefix + 'Perimeter'
self.perimeter3d = prefix + '3DPerimeter'
self.point_on_surface = prefix + 'PointOnSurface'
self.polygonize = prefix + 'Polygonize'
self.reverse = prefix + 'Reverse'
self.scale = prefix + 'Scale'
self.snap_to_grid = prefix + 'SnapToGrid'
self.svg = prefix + 'AsSVG'
self.sym_difference = prefix + 'SymDifference'
self.transform = prefix + 'Transform'
self.translate = prefix + 'Translate'
self.union = prefix + 'Union'
self.unionagg = prefix + 'Union'
@cached_property
|
Apache License 2.0
|
subutux/rmapy
|
rmapy/document.py
|
from_request_stream
|
python
|
def from_request_stream(_id: str, stream: Response) -> ZipDocument:
tmp = BytesIO()
for chunk in stream.iter_content(chunk_size=8192):
tmp.write(chunk)
zd = ZipDocument(_id=_id)
zd.load(tmp)
return zd
|
Return a ZipDocument from a request stream containing a zipfile.
This is used with the BlobGETUrl from a :class:`rmapy.document.Document`.
Args:
_id: The object ID this zipfile represents.
stream: a stream containing the zipfile.
Returns:
the object of the downloaded zipfile.
|
https://github.com/subutux/rmapy/blob/8916261afd9452751dd822aab0c8a3325d02624a/rmapy/document.py#L410-L427
|
import os
from io import BytesIO
from zipfile import ZipFile, ZIP_DEFLATED
import shutil
from uuid import uuid4
import json
from typing import TypeVar, List, Tuple
from logging import getLogger
from requests import Response
from .meta import Meta
log = getLogger("rmapy")
BytesOrString = TypeVar("BytesOrString", BytesIO, str)
class RmPage(object):
def __init__(self, page, metadata=None, order=0, thumbnail=None, _id=None):
self.page = page
if metadata:
self.metadata = metadata
else:
self.metadata = {"layers": [{"name": "Layer 1"}]}
self.order = order
if thumbnail:
self.thumbnail = thumbnail
if _id:
self.ID = _id
else:
self.ID = str(uuid4())
def __str__(self) -> str:
return f"<rmapy.document.RmPage {self.order} for {self.ID}>"
def __repr__(self) -> str:
return self.__str__()
class Highlight(object):
def __init__(self, page_id: str, highlight_data: str):
self.page_id = page_id
self.highlight_data = json.loads(highlight_data)
def __str__(self) -> str:
return f"<rmapy.document.Highlight {self.page_id}>"
def __repr__(self) -> str:
return self.__str__()
class Document(Meta):
def __init__(self, **kwargs):
super(Document, self).__init__(**kwargs)
self.Type = "DocumentType"
def __str__(self):
return f"<rmapy.document.Document {self.ID}>"
def __repr__(self):
return self.__str__()
class ZipDocument(object):
def __init__(self, _id=None, doc=None, file=None):
self.content = {
"extraMetadata": {
},
"lastOpenedPage": 0,
"lineHeight": -1,
"margins": 180,
"pageCount": 0,
"textScale": 1,
"transform": {
}
}
self.metadata = {
"deleted": False,
"lastModified": "1568368808000",
"metadatamodified": False,
"modified": False,
"parent": "",
"pinned": False,
"synced": True,
"type": "DocumentType",
"version": 1,
"VissibleName": "New Document"
}
self.pagedata = "b''"
self.zipfile = BytesIO()
self.pdf = None
self.epub = None
self.rm: List[RmPage] = []
self.ID = None
self.highlights: List[Highlight] = []
if not _id:
_id = str(uuid4())
self.ID = _id
if doc:
ext = doc[-4:]
if ext.endswith("pdf"):
self.content["fileType"] = "pdf"
self.pdf = BytesIO()
with open(doc, 'rb') as fb:
self.pdf.write(fb.read())
self.pdf.seek(0)
if ext.endswith("epub"):
self.content["fileType"] = "epub"
self.epub = BytesIO()
with open(doc, 'rb') as fb:
self.epub.write(fb.read())
self.epub.seek(0)
elif ext.endswith("rm"):
self.content["fileType"] = "notebook"
with open(doc, 'rb') as fb:
self.rm.append(RmPage(page=BytesIO(fb.read())))
name = os.path.splitext(os.path.basename(doc))[0]
self.metadata["VissibleName"] = name
if file:
self.load(file)
def __str__(self) -> str:
return f"<rmapy.document.ZipDocument {self.ID}>"
def __repr__(self) -> str:
return self.__str__()
def create_request(self) -> Tuple[BytesIO, dict]:
return self.zipfile, {
"ID": self.ID,
"Type": "DocumentType",
"Version": self.metadata["version"]
}
def dump(self, file: BytesOrString) -> None:
with ZipFile(file, "w", ZIP_DEFLATED) as zf:
zf.writestr(f"{self.ID}.content",
json.dumps(self.content))
zf.writestr(f"{self.ID}.pagedata",
self.pagedata)
if self.pdf:
zf.writestr(f"{self.ID}.pdf",
self.pdf.read())
if self.epub:
zf.writestr(f"{self.ID}.epub",
self.epub.read())
for highlight in self.highlights:
zf.writestr(f"{self.ID}.highlights/{highlight.page_id}.json",
json.dumps(highlight.highlight_data))
for page in self.rm:
zf.writestr(f"{self.ID}/{page.order}.rm",
page.page.read())
zf.writestr(f"{self.ID}/{page.order}-metadata.json",
json.dumps(page.metadata))
page.page.seek(0)
try:
zf.writestr(f"{self.ID}.thumbnails/{page.order}.jpg",
page.thumbnail.read())
except AttributeError:
log.debug(f"missing thumbnail during dump: {self.ID}: {page.order}")
pass
if isinstance(file, BytesIO):
file.seek(0)
def load(self, file: BytesOrString) -> None:
self.zipfile = BytesIO()
self.zipfile.seek(0)
if isinstance(file, str):
with open(file, 'rb') as f:
shutil.copyfileobj(f, self.zipfile)
elif isinstance(file, BytesIO):
self.zipfile = file
self.zipfile.seek(0)
else:
raise Exception("Unsupported file type.")
with ZipFile(self.zipfile, 'r') as zf:
with zf.open(f"{self.ID}.content", 'r') as content:
self.content = json.load(content)
try:
with zf.open(f"{self.ID}.metadata", 'r') as metadata:
self.metadata = json.load(metadata)
except KeyError:
pass
try:
with zf.open(f"{self.ID}.pagedata", 'r') as pagedata:
self.pagedata = str(pagedata.read())
except KeyError:
pass
try:
with zf.open(f"{self.ID}.pdf", 'r') as pdf:
self.pdf = BytesIO(pdf.read())
except KeyError:
pass
try:
with zf.open(f"{self.ID}.epub", 'r') as epub:
self.epub = BytesIO(epub.read())
except KeyError:
pass
highlights = [x for x in zf.namelist()
if x.startswith(f"{self.ID}.highlights/") and x.endswith('.json')]
for highlight in highlights:
with zf.open(highlight, 'r') as highlight_fp:
page_id = highlight.replace(f"{self.ID}.highlights/", "").replace(".json", "")
self.highlights.append(Highlight(page_id, highlight_fp.read()))
pages = [x for x in zf.namelist()
if x.startswith(f"{self.ID}/") and x.endswith('.rm')]
for p in pages:
page_number = int(p.replace(f"{self.ID}/", "")
.replace(".rm", ""))
with zf.open(p, 'r') as rm:
page = BytesIO(rm.read())
page.seek(0)
p_meta = p.replace(".rm", "-metadata.json")
try:
with zf.open(p_meta, 'r') as md:
metadata = json.load(md)
except KeyError:
log.debug(f"missing metadata: {p_meta}")
metadata = None
thumbnail_name = p.replace(".rm", ".jpg")
thumbnail_name = thumbnail_name.replace("/", ".thumbnails/")
try:
with zf.open(thumbnail_name, 'r') as tn:
thumbnail = BytesIO(tn.read())
thumbnail.seek(0)
except KeyError:
log.debug(f"missing thumbnail: {thumbnail_name}")
thumbnail = None
self.rm.append(RmPage(page, metadata, page_number, thumbnail,
self.ID))
self.zipfile.seek(0)
def from_zip(_id: str, file: str) -> ZipDocument:
return ZipDocument(_id, file=file)
|
MIT License
|
partho-maple/coding-interview-gym
|
leetcode.com/python/21_Merge_Two_Sorted_Lists.py
|
MyLinkedList.addAtTail
|
python
|
def addAtTail(self, val):
self.addAtIndex(self.size, val)
|
:type val: int
:rtype: None
|
https://github.com/partho-maple/coding-interview-gym/blob/f11c78b6e42d1014296fc0f360aa6fc530600493/leetcode.com/python/21_Merge_Two_Sorted_Lists.py#L43-L48
|
class ListNode(object):
def __init__(self, x, next=None):
self.val = x
self.next = next
class MyLinkedList(object):
INVALID = -1
def __init__(self):
self.first = None
self.size = 0
def get(self, index):
node = self.getNode(index)
return node.val if node else self.INVALID
def getNode(self, index):
if index >= self.size or index < 0:
return None
node = self.first
while index > 0:
node = node.next
index -= 1
return node
def addAtHead(self, val):
self.addAtIndex(0, val)
|
MIT License
|
python-openxml/python-docx
|
docx/oxml/text/font.py
|
CT_RPr._new_color
|
python
|
def _new_color(self):
return parse_xml('<w:color %s w:val="000000"/>' % nsdecls('w'))
|
Override metaclass method to set `w:color/@val` to RGB black on
create.
|
https://github.com/python-openxml/python-docx/blob/36cac78de080d412e9e50d56c2784e33655cad59/docx/oxml/text/font.py#L94-L99
|
from .. import parse_xml
from ...enum.dml import MSO_THEME_COLOR
from ...enum.text import WD_COLOR, WD_UNDERLINE
from ..ns import nsdecls, qn
from ..simpletypes import (
ST_HexColor, ST_HpsMeasure, ST_String, ST_VerticalAlignRun
)
from ..xmlchemy import (
BaseOxmlElement, OptionalAttribute, RequiredAttribute, ZeroOrOne
)
class CT_Color(BaseOxmlElement):
val = RequiredAttribute('w:val', ST_HexColor)
themeColor = OptionalAttribute('w:themeColor', MSO_THEME_COLOR)
class CT_Fonts(BaseOxmlElement):
ascii = OptionalAttribute('w:ascii', ST_String)
hAnsi = OptionalAttribute('w:hAnsi', ST_String)
class CT_Highlight(BaseOxmlElement):
val = RequiredAttribute('w:val', WD_COLOR)
class CT_HpsMeasure(BaseOxmlElement):
val = RequiredAttribute('w:val', ST_HpsMeasure)
class CT_RPr(BaseOxmlElement):
_tag_seq = (
'w:rStyle', 'w:rFonts', 'w:b', 'w:bCs', 'w:i', 'w:iCs', 'w:caps',
'w:smallCaps', 'w:strike', 'w:dstrike', 'w:outline', 'w:shadow',
'w:emboss', 'w:imprint', 'w:noProof', 'w:snapToGrid', 'w:vanish',
'w:webHidden', 'w:color', 'w:spacing', 'w:w', 'w:kern', 'w:position',
'w:sz', 'w:szCs', 'w:highlight', 'w:u', 'w:effect', 'w:bdr', 'w:shd',
'w:fitText', 'w:vertAlign', 'w:rtl', 'w:cs', 'w:em', 'w:lang',
'w:eastAsianLayout', 'w:specVanish', 'w:oMath'
)
rStyle = ZeroOrOne('w:rStyle', successors=_tag_seq[1:])
rFonts = ZeroOrOne('w:rFonts', successors=_tag_seq[2:])
b = ZeroOrOne('w:b', successors=_tag_seq[3:])
bCs = ZeroOrOne('w:bCs', successors=_tag_seq[4:])
i = ZeroOrOne('w:i', successors=_tag_seq[5:])
iCs = ZeroOrOne('w:iCs', successors=_tag_seq[6:])
caps = ZeroOrOne('w:caps', successors=_tag_seq[7:])
smallCaps = ZeroOrOne('w:smallCaps', successors=_tag_seq[8:])
strike = ZeroOrOne('w:strike', successors=_tag_seq[9:])
dstrike = ZeroOrOne('w:dstrike', successors=_tag_seq[10:])
outline = ZeroOrOne('w:outline', successors=_tag_seq[11:])
shadow = ZeroOrOne('w:shadow', successors=_tag_seq[12:])
emboss = ZeroOrOne('w:emboss', successors=_tag_seq[13:])
imprint = ZeroOrOne('w:imprint', successors=_tag_seq[14:])
noProof = ZeroOrOne('w:noProof', successors=_tag_seq[15:])
snapToGrid = ZeroOrOne('w:snapToGrid', successors=_tag_seq[16:])
vanish = ZeroOrOne('w:vanish', successors=_tag_seq[17:])
webHidden = ZeroOrOne('w:webHidden', successors=_tag_seq[18:])
color = ZeroOrOne('w:color', successors=_tag_seq[19:])
sz = ZeroOrOne('w:sz', successors=_tag_seq[24:])
highlight = ZeroOrOne('w:highlight', successors=_tag_seq[26:])
u = ZeroOrOne('w:u', successors=_tag_seq[27:])
vertAlign = ZeroOrOne('w:vertAlign', successors=_tag_seq[32:])
rtl = ZeroOrOne('w:rtl', successors=_tag_seq[33:])
cs = ZeroOrOne('w:cs', successors=_tag_seq[34:])
specVanish = ZeroOrOne('w:specVanish', successors=_tag_seq[38:])
oMath = ZeroOrOne('w:oMath', successors=_tag_seq[39:])
del _tag_seq
|
MIT License
|
purestorage-openconnect/py-pure-client
|
pypureclient/flasharray/FA_2_2/api/support_api.py
|
SupportApi.api22_support_get_with_http_info
|
python
|
def api22_support_get_with_http_info(
self,
authorization=None,
x_request_id=None,
continuation_token=None,
filter=None,
limit=None,
offset=None,
sort=None,
total_item_count=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if sort is not None:
if not isinstance(sort, list):
sort = [sort]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if 'limit' in params and params['limit'] < 1:
raise ValueError("Invalid value for parameter `limit` when calling `api22_support_get`, must be a value greater than or equal to `1`")
if 'offset' in params and params['offset'] < 0:
raise ValueError("Invalid value for parameter `offset` when calling `api22_support_get`, must be a value greater than or equal to `0`")
collection_formats = {}
path_params = {}
query_params = []
if 'continuation_token' in params:
query_params.append(('continuation_token', params['continuation_token']))
if 'filter' in params:
query_params.append(('filter', params['filter']))
if 'limit' in params:
query_params.append(('limit', params['limit']))
if 'offset' in params:
query_params.append(('offset', params['offset']))
if 'sort' in params:
query_params.append(('sort', params['sort']))
collection_formats['sort'] = 'csv'
if 'total_item_count' in params:
query_params.append(('total_item_count', params['total_item_count']))
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.2/support', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='SupportGetResponse',
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
|
List connection paths
Displays connection paths between the current array and each connected array.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.api22_support_get_with_http_info(async_req=True)
>>> result = thread.get()
:param str authorization: Access token (in JWT format) required to use any API endpoint (except `/oauth2`, `/login`, and `/logout`)
:param str x_request_id: Supplied by client during request or generated by server.
:param str continuation_token: A token used to retrieve the next page of data with some consistency guaranteed. The token is a Base64 encoded value. Set `continuation_token` to the system-generated token taken from the `x-next-token` header field of the response. A query has reached its last page when the response does not include a token. Pagination requires the `limit` and `continuation_token` query parameters.
:param str filter: Narrows down the results to only the response objects that satisfy the filter criteria.
:param int limit: Limits the size of the response to the specified number of objects on each page. To return the total number of resources, set `limit=0`. The total number of resources is returned as a `total_item_count` value. If the page size requested is larger than the system maximum limit, the server returns the maximum limit, disregarding the requested page size.
:param int offset: The starting position based on the results of the query in relation to the full set of response objects returned.
:param list[str] sort: Returns the response objects in the order specified. Set `sort` to the name in the response by which to sort. Sorting can be performed on any of the names in the response, and the objects can be sorted in ascending or descending order. By default, the response objects are sorted in ascending order. To sort in descending order, append the minus sign (`-`) to the name. A single request can be sorted on multiple objects. For example, you can sort all volumes from largest to smallest volume size, and then sort volumes of the same size in ascending order by volume name. To sort on multiple names, list the names as comma-separated values.
:param bool total_item_count: If set to `true`, the `total_item_count` matching the specified query parameters is calculated and returned in the response. If set to `false`, the `total_item_count` is `null` in the response. This may speed up queries where the `total_item_count` is large. If not specified, defaults to `false`.
:param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.
:param bool _return_http_data_only: Returns only data field.
:param bool _preload_content: Response is converted into objects.
:param int _request_timeout: Total request timeout in seconds.
It can also be a tuple of (connection time, read time) timeouts.
:return: SupportGetResponse
If the method is called asynchronously,
returns the request thread.
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_2/api/support_api.py#L29-L139
|
from __future__ import absolute_import
import re
import six
from typing import List, Optional
from .. import models
class SupportApi(object):
def __init__(self, api_client):
self.api_client = api_client
|
BSD 2-Clause Simplified License
|
janasunrise/hypixelio
|
hypixelio/models/skyblock/active_auctions/active_auctions.py
|
SkyblockActiveAuction.__init__
|
python
|
def __init__(self, data: dict) -> None:
self.PAGE_NUMBER = data["page"]
self.TOTAL_PAGES = data["totalPages"]
self.TOTAL_AUCTION = data["totalAuctions"]
self.AUCTIONS = [SkyblockAuction(auction) for auction in data["auctions"]]
|
Parameters
----------
data: dict
The data from the Hypixel API endpoint.
|
https://github.com/janasunrise/hypixelio/blob/ec34fb664e7f3bc114624195a48f3e374d6e53c5/hypixelio/models/skyblock/active_auctions/active_auctions.py#L7-L17
|
import typing as t
from hypixelio.models.skyblock.auction import SkyblockAuction
class SkyblockActiveAuction:
|
MIT License
|
myriadrf/pylms7002soapy
|
pyLMS7002Soapy/LMS7002_SX.py
|
LMS7002_SX.CMPLO_CTRL
|
python
|
def CMPLO_CTRL(self, value):
if self.chip.chipID == self.chip.chipIDMR3:
if value not in [0, 1]:
raise ValueError("Value must be [0,1]")
self._writeReg('PFDCP', 'CMPLO_CTRL', value)
else:
raise ValueError("Bitfield CMPLO_CTRL is not supported on chip version " + str(self.chip.chipID))
|
Set the value of CMPLO_CTRL
|
https://github.com/myriadrf/pylms7002soapy/blob/4f828eb9282c302dc6b187d91df5e77c8a6f2d61/pyLMS7002Soapy/LMS7002_SX.py#L722-L731
|
from pyLMS7002Soapy.LMS7002_base import LMS7002_base
from time import sleep
from math import floor
class LMS7002_SX(LMS7002_base):
__slots__ = []
def __init__(self, chip, Channel):
if Channel not in ['R', 'T']:
raise ValueError("Parameter Channel must be 'R' or 'T'")
self.chip = chip
self.channel = Channel
self.prefix = "SXT_SXR_"
@property
def EN_DIR(self):
prefix = self.prefix
self.prefix = ""
en_dir = self._readReg('TRX_EN_DIR', 'EN_DIR')
self.prefix = prefix
return en_dir
@EN_DIR.setter
def EN_DIR(self, value):
if value not in [0, 1]:
raise ValueError("Value must be [0,1]")
prefix = self.prefix
self.prefix = ""
self._writeReg('TRX_EN_DIR', 'EN_DIR', value)
self.prefix = prefix
@property
def RESET_N(self):
return self._readReg('CFG0', 'RESET_N')
@RESET_N.setter
def RESET_N(self, value):
if value not in [0, 1, 'RESET', 'NORMAL']:
raise ValueError("Value must be [0,1,'RESET', 'NORMAL']")
if value == 0 or value == 'RESET':
val = 0
else:
val = 1
self._writeReg('CFG0', 'RESET_N', val)
@property
def SPDUP_VCO(self):
return self._readReg('CFG0', 'SPDUP_VCO')
@SPDUP_VCO.setter
def SPDUP_VCO(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG0', 'SPDUP_VCO', val)
@property
def BYPLDO_VCO(self):
return self._readReg('CFG0', 'BYPLDO_VCO')
@BYPLDO_VCO.setter
def BYPLDO_VCO(self, value):
if value not in [0, 1, 'BYP', 'ACT']:
raise ValueError("Value must be [0,1,'BYP', 'ACT']")
if value == 0 or value == 'ACT':
val = 0
else:
val = 1
self._writeReg('CFG0', 'BYPLDO_VCO', val)
@property
def EN_COARSEPLL(self):
return self._readReg('CFG0', 'EN_COARSEPLL')
@EN_COARSEPLL.setter
def EN_COARSEPLL(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG0', 'EN_COARSEPLL', val)
@property
def CURLIM_VCO(self):
return self._readReg('CFG0', 'CURLIM_VCO')
@CURLIM_VCO.setter
def CURLIM_VCO(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG0', 'CURLIM_VCO', val)
@property
def EN_DIV2_DIVPROG(self):
return self._readReg('CFG0', 'EN_DIV2_DIVPROG')
@EN_DIV2_DIVPROG.setter
def EN_DIV2_DIVPROG(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG0', 'EN_DIV2_DIVPROG', val)
@property
def EN_INTONLY_SDM(self):
return self._readReg('CFG0', 'EN_INTONLY_SDM')
@EN_INTONLY_SDM.setter
def EN_INTONLY_SDM(self, value):
if value not in [0, 1, 'FRACN', 'INTN']:
raise ValueError("Value must be [0,1,'FRACN', 'INTN']")
if value == 0 or value == 'FRACN':
val = 0
else:
val = 1
self._writeReg('CFG0', 'EN_INTONLY_SDM', val)
@property
def EN_SDM_CLK(self):
return self._readReg('CFG0', 'EN_SDM_CLK')
@EN_SDM_CLK.setter
def EN_SDM_CLK(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG0', 'EN_SDM_CLK', val)
@property
def PD_FBDIV(self):
return self._readReg('CFG0', 'PD_FBDIV')
@PD_FBDIV.setter
def PD_FBDIV(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG0', 'PD_FBDIV', val)
@property
def PD_LOCH_T2RBUF(self):
return self._readReg('CFG0', 'PD_LOCH_T2RBUF')
@PD_LOCH_T2RBUF.setter
def PD_LOCH_T2RBUF(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG0', 'PD_LOCH_T2RBUF', val)
@property
def PD_CP(self):
return self._readReg('CFG0', 'PD_CP')
@PD_CP.setter
def PD_CP(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG0', 'PD_CP', val)
@property
def PD_FDIV(self):
return self._readReg('CFG0', 'PD_FDIV')
@PD_FDIV.setter
def PD_FDIV(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG0', 'PD_FDIV', val)
@property
def PD_SDM(self):
return self._readReg('CFG0', 'PD_SDM')
@PD_SDM.setter
def PD_SDM(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG0', 'PD_SDM', val)
@property
def PD_VCO_COMP(self):
return self._readReg('CFG0', 'PD_VCO_COMP')
@PD_VCO_COMP.setter
def PD_VCO_COMP(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG0', 'PD_VCO_COMP', val)
@property
def PD_VCO(self):
return self._readReg('CFG0', 'PD_VCO')
@PD_VCO.setter
def PD_VCO(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'ON':
val = 0
else:
val = 1
self._writeReg('CFG0', 'PD_VCO', val)
@property
def EN_G(self):
return self._readReg('CFG0', 'EN_G')
@EN_G.setter
def EN_G(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG0', 'EN_G', val)
@property
def FRAC_SDM(self):
lsb = self._readReg('FRACL', 'FRAC_SDM_L<15:0>')
msb = self._readReg('FRACH', 'FRAC_SDM_H<3:0>')
return (msb << 16) + lsb
@FRAC_SDM.setter
def FRAC_SDM(self, value):
if not (0 <= value <= 2 ** 20 - 1):
raise ValueError("Value must be [0,2*20-1]")
lsb = value & 0xFFFF
msb = (value >> 16) & 0xF
self._writeReg('FRACL', 'FRAC_SDM_L<15:0>', lsb)
self._writeReg('FRACH', 'FRAC_SDM_H<3:0>', msb)
@property
def INT_SDM(self):
return self._readReg('FRACH', 'INT_SDM<9:0>')
@INT_SDM.setter
def INT_SDM(self, value):
if not (0 <= value <= 1023):
raise ValueError("Value must be [0..1023]")
self._writeReg('FRACH', 'INT_SDM<9:0>', value)
@property
def PW_DIV2_LOCH(self):
return self._readReg('CFG1', 'PW_DIV2_LOCH<2:0>')
@PW_DIV2_LOCH.setter
def PW_DIV2_LOCH(self, value):
if not (0 <= value <= 7):
raise ValueError("Value must be [0..7]")
self._writeReg('CFG1', 'PW_DIV2_LOCH<2:0>', value)
@property
def PW_DIV4_LOCH(self):
return self._readReg('CFG1', 'PW_DIV4_LOCH<2:0>')
@PW_DIV4_LOCH.setter
def PW_DIV4_LOCH(self, value):
if not (0 <= value <= 7):
raise ValueError("Value must be [0..7]")
self._writeReg('CFG1', 'PW_DIV4_LOCH<2:0>', value)
@property
def DIV_LOCH(self):
return self._readReg('CFG1', 'DIV_LOCH<2:0>')
@DIV_LOCH.setter
def DIV_LOCH(self, value):
if not (0 <= value <= 7):
raise ValueError("Value must be [0..7]")
self._writeReg('CFG1', 'DIV_LOCH<2:0>', value)
@property
def TST_SX(self):
return self._readReg('CFG1', 'TST_SX<2:0>')
@TST_SX.setter
def TST_SX(self, value):
if not (0 <= value <= 7):
raise ValueError("Value must be [0..7]")
self._writeReg('CFG1', 'TST_SX<2:0>', value)
@property
def SEL_SDMCLK(self):
return self._readReg('CFG1', 'SEL_SDMCLK')
@SEL_SDMCLK.setter
def SEL_SDMCLK(self, value):
if value not in [0, 1, 'CLK_DIV', 'CLK_REF']:
raise ValueError("Value must be [0,1,'CLK_DIV', 'CLK_REF']")
if value == 0 or value == 'CLK_DIV':
val = 0
else:
val = 1
self._writeReg('CFG1', 'SEL_SDMCLK', val)
@property
def SX_DITHER_EN(self):
return self._readReg('CFG1', 'SX_DITHER_EN')
@SX_DITHER_EN.setter
def SX_DITHER_EN(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG1', 'SX_DITHER_EN', val)
@property
def REV_SDMCLK(self):
return self._readReg('CFG1', 'REV_SDMCLK')
@REV_SDMCLK.setter
def REV_SDMCLK(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('CFG1', 'REV_SDMCLK', val)
@property
def VDIV_VCO(self):
return self._readReg('VCO_BIAS', 'VDIV_VCO<7:0>')
@VDIV_VCO.setter
def VDIV_VCO(self, value):
if not (0 <= value <= 255):
raise ValueError("Value must be [0..255]")
self._writeReg('VCO_BIAS', 'VDIV_VCO<7:0>', value)
@property
def ICT_VCO(self):
return self._readReg('VCO_BIAS', 'ICT_VCO<7:0>')
@ICT_VCO.setter
def ICT_VCO(self, value):
if not (0 <= value <= 255):
raise ValueError("Value must be [0..255]")
self._writeReg('VCO_BIAS', 'ICT_VCO<7:0>', value)
@property
def RSEL_LDO_VCO(self):
return self._readReg('VCO_CFG', 'RSEL_LDO_VCO<4:0>')
@RSEL_LDO_VCO.setter
def RSEL_LDO_VCO(self, value):
if not (0 <= value <= 31):
raise ValueError("Value must be [0..31]")
self._writeReg('VCO_CFG', 'RSEL_LDO_VCO<4:0>', value)
@property
def CSW_VCO(self):
return self._readReg('VCO_CFG', 'CSW_VCO<7:0>')
@CSW_VCO.setter
def CSW_VCO(self, value):
if not (0 <= value <= 255):
raise ValueError("Value must be [0..255]")
self._writeReg('VCO_CFG', 'CSW_VCO<7:0>', value)
@property
def SEL_VCO(self):
return self._readReg('VCO_CFG', 'SEL_VCO<1:0>')
@SEL_VCO.setter
def SEL_VCO(self, value):
if value not in [0, 1, 2, 'VCOL', 'VCOM', 'VCOH']:
raise ValueError("Value must be [0,1,2, 'VCOL', 'VCOM', 'VCOH']")
if value == 0 or value == 'VCOL':
val = 0
elif value == 1 or value == 'VCOM':
val = 1
else:
val = 2
self._writeReg('VCO_CFG', 'SEL_VCO<1:0>', val)
@property
def COARSE_START(self):
return self._readReg('VCO_CFG', 'COARSE_START')
@COARSE_START.setter
def COARSE_START(self, value):
if value not in [0, 1, 'ON', 'OFF']:
raise ValueError("Value must be [0,1,'ON', 'OFF']")
if value == 0 or value == 'OFF':
val = 0
else:
val = 1
self._writeReg('VCO_CFG', 'COARSE_START', val)
@property
def RZ_CTRL(self):
if self.chip.chipID == self.chip.chipIDMR3:
return self._readReg('PFDCP', 'RZ_CTRL<1:0>')
else:
raise ValueError("Bitfield RZ_CTRL<1:0> is not supported on chip version " + str(self.chip.chipID))
@RZ_CTRL.setter
def RZ_CTRL(self, value):
if self.chip.chipID == self.chip.chipIDMR3:
if value not in [0, 1, 2, 3]:
raise ValueError("Value must be [0,1, 2, 3]")
self._writeReg('PFDCP', 'RZ_CTRL<1:0>', value)
else:
raise ValueError("Bitfield RZ_CTRL<1:0> is not supported on chip version " + str(self.chip.chipID))
@property
def CMPLO_CTRL(self):
if self.chip.chipID == self.chip.chipIDMR3:
return self._readReg('PFDCP', 'CMPLO_CTRL')
else:
raise ValueError("Bitfield CMPLO_CTRL is not supported on chip version " + str(self.chip.chipID))
@CMPLO_CTRL.setter
|
Apache License 2.0
|
google-research/language
|
language/search_agents/muzero/env.py
|
NQEnv._final_reward
|
python
|
def _final_reward(self) -> float:
if common_flags.INACTION_PENALTY.value < 0:
if not len(self.state.history) > 1:
return common_flags.INACTION_PENALTY.value
current_documents_list = self.get_final_document_list()
return self._compute_reward(
current_documents=current_documents_list) - self._compute_reward(
current_documents=self.state.history[0].documents)
|
Computes the final step reward, r_T = S(d_T | q) - S(d_0 | q).
Returns:
The final reward.
|
https://github.com/google-research/language/blob/240cd2a1fd0307c6822b6f1f6c2abf1349a5a4da/language/search_agents/muzero/env.py#L783-L798
|
import collections
import functools
import pickle
import random
import string
from typing import Any, Collection, Dict, List, Mapping, Optional, Sequence, Set, Tuple, Union
from absl import logging
import dataclasses
import grpc
import gym
from language.search_agents import environment_pb2
from language.search_agents.muzero import bert_state_lib
from language.search_agents.muzero import common_flags
from language.search_agents.muzero import grammar_lib
from language.search_agents.muzero import server
from language.search_agents.muzero import state_tree
from language.search_agents.muzero import types
from language.search_agents.muzero import utils
import numpy as np
import pygtrie
from seed_rl.common import common_flags as seed_common_flags
import tensorflow as tf
import transformers
from muzero import core as mzcore
from muzero import learner_flags
from official.nlp.bert import configs
@dataclasses.dataclass
class ValidWords:
tfidf_tokens: Dict[int, int]
word_piece_actions: Sequence[int]
words: List[str]
full_words: Set[str]
@dataclasses.dataclass
class ValidWordsByType:
all_valid_words: ValidWords
question_valid_words: ValidWords
answer_valid_words: ValidWords
document_valid_words: ValidWords
title_valid_words: ValidWords
diff_valid_words: ValidWords
intersect_valid_words: ValidWords
@dataclasses.dataclass
class Observations:
observation: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]
valid_words: ValidWordsByType
def new_valid_words() -> ValidWords:
return ValidWords(
tfidf_tokens=collections.defaultdict(int),
word_piece_actions=[],
words=[],
full_words=set())
def get_descriptor() -> mzcore.EnvironmentDescriptor:
sequence_length = common_flags.BERT_SEQUENCE_LENGTH.value
bert_config = configs.BertConfig.from_json_file(
common_flags.BERT_CONFIG.value)
grammar_config = grammar_lib.grammar_config_from_flags()
max_len_type_vocab = max(map(len, bert_state_lib.TYPE_VOCABS.values()))
tokenizer = bert_state_lib.get_tokenizer()
grammar = grammar_lib.construct_grammar(
grammar_config=grammar_config, vocab=list(tokenizer.get_vocab().keys()))
observation_space = gym.spaces.Tuple([
gym.spaces.Box(0, bert_config.vocab_size, (sequence_length,), np.int32),
gym.spaces.Box(0, max_len_type_vocab,
(sequence_length, len(bert_state_lib.TYPE_VOCABS)),
np.int32),
gym.spaces.Box(-np.inf, np.inf,
(sequence_length, len(bert_state_lib.FLOAT_NAMES)),
np.float32),
gym.spaces.Box(0,
len(grammar.productions()) + 1,
(common_flags.N_ACTIONS_ENCODING.value,),
np.int32),
])
max_episode_length = common_flags.MAX_NUM_ACTIONS.value
min_possible_score, max_possible_score = {
'curiosity+dcg': (-1, 1),
}.get(common_flags.REWARD.value, (-1, 1))
min_possible_cumulative_score, max_possible_cumulative_score = {
'curiosity+dcg': (-2, 2),
}.get(common_flags.REWARD.value, (min_possible_score, max_possible_score))
logging.info('Max episode length: %d; Score range: [%.2f, %.2f]',
max_episode_length, min_possible_score, max_possible_score)
learner_stats = (
('ndcg_score', tf.float32),
('ndcg_score_improvement', tf.float32),
('em_at_1', tf.float32),
('em_at_1_improvement', tf.float32),
(f'em_at_{int(common_flags.K.value)}', tf.float32),
(f'em_at_{int(common_flags.K.value)}_improvement', tf.float32),
(f'recall_at_{int(common_flags.K.value)}', tf.float32),
(f'recall_at_{int(common_flags.K.value)}_improvement', tf.float32),
('recall_at_1', tf.float32),
('recall_at_1_improvement', tf.float32),
('documents_explored', tf.float32),
)
return mzcore.EnvironmentDescriptor(
observation_space=observation_space,
action_space=gym.spaces.Discrete(len(grammar.productions())),
reward_range=mzcore.Range(min_possible_score, max_possible_score),
value_range=mzcore.Range(min_possible_cumulative_score,
max_possible_cumulative_score),
pretraining_space=gym.spaces.Tuple([
observation_space,
gym.spaces.Box(0, len(grammar.productions()), (), np.int32),
gym.spaces.Box(0., 1., (), np.float32),
gym.spaces.Box(0., 1., (), np.float32),
gym.spaces.Box(0., 1., (), np.float32),
] * common_flags.PRETRAINING_NUM_UNROLL_STEPS.value),
extras={
'bert_config':
bert_config,
'sequence_length':
sequence_length,
'float_names':
bert_state_lib.FLOAT_NAMES,
'type_vocabs':
bert_state_lib.TYPE_VOCABS,
'num_float_features':
len(bert_state_lib.FLOAT_NAMES),
'type_vocab_sizes': [
len(v) for v in bert_state_lib.TYPE_VOCABS.values()
],
'grammar':
grammar,
'max_episode_length':
max_episode_length +
5,
'learner_stats':
learner_stats,
'bert_init_ckpt':
common_flags.BERT_INIT_CKPT.value
if learner_flags.INIT_CHECKPOINT.value is None else None,
'action_encoder_hidden_size':
common_flags.ACTION_ENCODER_HIDDEN_SIZE.value,
'tokenizer':
tokenizer,
'grammar_config':
grammar_config,
'pretraining_num_unroll_steps':
common_flags.PRETRAINING_NUM_UNROLL_STEPS.value,
})
def to_action_tuple(
word: str,
grammar: state_tree.NQCFG,
tokenizer: transformers.BertTokenizer,
valid_actions: Optional[Collection[int]] = None) -> Tuple[int, ...]:
if (common_flags.EXCLUDE_PUNCTUATION_FROM_TRIE.value == 1 and
word in string.punctuation):
return ()
tokens = tokenizer.tokenize(word)
actions = []
for i, token in enumerate(tokens):
if i > 0 and not token.startswith('##'):
break
token = state_tree.NQStateTree.clean_escape_characters(token)
if token not in grammar.terminal_to_action:
return ()
token_action = grammar.terminal_to_action[token]
if valid_actions is not None:
if token_action not in valid_actions:
return ()
actions.append(token_action)
return tuple(actions)
class NQEnv(gym.Env):
def __init__(self,
nq_server: server.NQServer,
state: Optional[types.EnvState] = None,
random_state: Optional[np.random.RandomState] = None,
training: bool = True,
stop_after_seeing_new_results: bool = False):
super().__init__()
self.nq_server = nq_server
self.training = training
self.first_time = True
self.stop_after_seeing_new_results = stop_after_seeing_new_results
self.descriptor = get_descriptor()
self.grammar = self.descriptor.extras['grammar']
self.tokenizer = self.descriptor.extras['tokenizer']
self.action_space = len(self.grammar.productions())
self.idf_lookup = utils.IDFLookup.get_instance(
path=common_flags.IDF_LOOKUP_PATH.value)
trie_start_time = tf.timestamp()
if common_flags.GLOBAL_TRIE_PATH.value is None:
self.global_trie = pygtrie.Trie.fromkeys((x for x in map(
functools.partial(
to_action_tuple, grammar=self.grammar, tokenizer=self.tokenizer),
self.idf_lookup.lookup) if x))
self._logging_info('Built trie of size %s in %s s', len(self.global_trie),
tf.timestamp() - trie_start_time)
else:
with tf.io.gfile.GFile(common_flags.GLOBAL_TRIE_PATH.value,
'rb') as trie_f:
self.global_trie = pickle.load(trie_f)
self._logging_info('Restored trie of size %s in %s s',
len(self.global_trie),
tf.timestamp() - trie_start_time)
self.training_steps = 0
self.known_word_tries = None
self.valid_word_actions = None
self.use_rf_restrict = False
self.state = state
if state and state.tree is None:
self.state.tree = state_tree.NQStateTree(grammar=self.grammar)
self.bert_config: configs.BertConfig = self.descriptor.extras['bert_config']
self.sequence_length: int = self.descriptor.extras['sequence_length']
self.action_history = []
self.n_episode = 0
self._rand = np.random.RandomState()
if random_state:
self._rand.set_state(random_state)
def _logging_info(self, prefix, *args, **kwargs):
if self.training:
prefix = 'TRAIN: ' + prefix
else:
prefix = 'TEST : ' + prefix
logging.info(prefix, *args, **kwargs)
def _get_query(self, index: Optional[int] = None):
try:
query = self.nq_server.get_query(
index=index, dataset_type='TRAIN' if self.training else 'DEV')
except grpc.RpcError as rpc_exception:
raise mzcore.RLEnvironmentError from rpc_exception
return query
def _get_env_output(
self,
query: str,
original_query: environment_pb2.GetQueryResponse,
documents: Optional[Sequence[environment_pb2.Document]] = None
) -> types.HistoryEntry:
if documents is None:
try:
response = self.nq_server.get_documents(
query,
original_query=original_query.query,
num_documents=common_flags.NUM_DOCUMENTS_TO_RETRIEVE.value,
num_ir_documents=common_flags.NUM_IR_DOCUMENTS_TO_RETRIEVE.value)
except grpc.RpcError as rpc_exception:
raise mzcore.RLEnvironmentError from rpc_exception
docs = response.documents
else:
docs = documents
ranked_docs = sorted(
docs, key=lambda doc: doc.answer.mr_score, reverse=True)
entry = types.HistoryEntry(
query=query, original_query=original_query, documents=ranked_docs)
return entry
def _obs(self) -> Observations:
def special_convert_tokens_to_ids(*args, **kwargs):
ids = self.tokenizer.convert_tokens_to_ids(*args, **kwargs)
original_vocab_size = self.tokenizer.vocab_size
return [
id_ if id_ < original_vocab_size else (id_ % original_vocab_size) + 1
for id_ in ids
]
bert_state = make_bert_state(
environment_state=self.state,
tokenizer=self.tokenizer,
idf_lookup=self.idf_lookup)
token_ids, type_ids, float_values = utils.ObsFragment.combine_and_expand(
fragments=bert_state,
length=self.sequence_length,
type_vocabs=self.descriptor.extras['type_vocabs'],
float_names=self.descriptor.extras['float_names'],
tokens_to_id_fn=special_convert_tokens_to_ids,
)
def _add_token(token: str, tfidf_score: float, valid_words: ValidWords):
valid_words.words.append(token)
target_tok_id = self.grammar.terminal_to_action[
state_tree.NQStateTree.clean_escape_characters(token)]
valid_words.tfidf_tokens[target_tok_id] += tfidf_score
def _convert_word_tokens_to_full_words(valid_words_list: List[ValidWords]):
for valid_words in valid_words_list:
for full_word in ' '.join(valid_words.words).replace(' ##', '').split():
valid_words.full_words.add(full_word)
def _convert_tokens_to_actions(valid_words_list: List[ValidWords]):
for valid_words in valid_words_list:
tfidf_tokens = valid_words.tfidf_tokens
valid_words.word_piece_actions = sorted(
tfidf_tokens, key=lambda x: tfidf_tokens[x], reverse=True)
def _discard_full_word(full_word: str, valid_words_list: List[ValidWords]):
for valid_words in valid_words_list:
valid_words.full_words.discard(full_word)
def _add_tokens(valid_words: ValidWords):
for full_word in valid_words.full_words:
tfidf_score = self.idf_lookup[full_word]
tokens = self.tokenizer.tokenize(full_word)
for token in tokens:
_add_token(token, tfidf_score, valid_words)
def _extract_vocabulary(bert_state, token_ids):
all_valid_words = new_valid_words()
question_valid_words = new_valid_words()
answer_valid_words = new_valid_words()
document_valid_words = new_valid_words()
title_valid_words = new_valid_words()
for obs in bert_state:
for (token, label, tfidf_score) in zip(obs.token_list(),
obs.type_values['state_part'],
obs.float_values['idf_score']):
if token == '[UNK]':
continue
source_tok_id = self.tokenizer.convert_tokens_to_ids(token)
if source_tok_id in token_ids and tfidf_score > 0:
if label == 'history_context':
_add_token(token, tfidf_score, all_valid_words)
_add_token(token, tfidf_score, document_valid_words)
elif label == 'history_answer':
_add_token(token, tfidf_score, answer_valid_words)
elif label == 'history_title':
_add_token(token, tfidf_score, all_valid_words)
_add_token(token, tfidf_score, title_valid_words)
elif label == 'original_query':
_add_token(token, tfidf_score, question_valid_words)
return ValidWordsByType(
all_valid_words=all_valid_words,
question_valid_words=question_valid_words,
answer_valid_words=answer_valid_words,
document_valid_words=document_valid_words,
title_valid_words=title_valid_words,
diff_valid_words=new_valid_words(),
intersect_valid_words=new_valid_words())
valid_words_by_type = _extract_vocabulary(bert_state, token_ids)
valid_words_list = [
valid_words_by_type.all_valid_words,
valid_words_by_type.question_valid_words,
valid_words_by_type.answer_valid_words,
valid_words_by_type.document_valid_words,
valid_words_by_type.title_valid_words
]
target_valid_words_by_type = None
if self.use_rf_restrict and self.state.target_documents:
target_bert_state = make_bert_state(
environment_state=self.state,
tokenizer=self.tokenizer,
idf_lookup=self.idf_lookup,
use_target_documents=True)
target_token_ids, _, _ = utils.ObsFragment.combine_and_expand(
fragments=target_bert_state,
length=self.sequence_length,
type_vocabs=self.descriptor.extras['type_vocabs'],
float_names=self.descriptor.extras['float_names'],
tokens_to_id_fn=special_convert_tokens_to_ids,
)
target_valid_words_by_type = _extract_vocabulary(target_bert_state,
target_token_ids)
valid_words_list.append(target_valid_words_by_type.all_valid_words)
_convert_word_tokens_to_full_words(valid_words_list)
for history_entry in self.state.history:
query_substr = history_entry.query[len(self.state.original_query.query):]
_, adjustments = state_tree.from_lucene_str(query_substr)
if adjustments:
for adjustment, _, _ in adjustments:
_discard_full_word(adjustment.term, valid_words_list)
for word in query_substr.split():
_discard_full_word(word, valid_words_list)
if target_valid_words_by_type:
v_t = target_valid_words_by_type.all_valid_words.full_words
v_current = valid_words_by_type.all_valid_words.full_words
valid_words_by_type.diff_valid_words.full_words = v_current - v_t
valid_words_by_type.intersect_valid_words.full_words = (
v_current.intersection(v_t))
_add_tokens(valid_words_by_type.diff_valid_words)
_add_tokens(valid_words_by_type.intersect_valid_words)
valid_words_list.append(valid_words_by_type.diff_valid_words)
valid_words_list.append(valid_words_by_type.intersect_valid_words)
_convert_tokens_to_actions(valid_words_list)
token_ids = np.array(token_ids, np.int32)
type_ids = np.array(type_ids, np.int32).T
float_values = np.array(float_values, np.float32).T
return Observations(
observation=(
token_ids, type_ids, float_values,
np.array(
self.action_history[-common_flags.N_ACTIONS_ENCODING.value:]
+ [self.action_space + 1] *
(common_flags.N_ACTIONS_ENCODING.value -
len(self.action_history)), np.int32)),
valid_words=valid_words_by_type,
)
def seed(self, seed=None) -> None:
self._rand = np.random.RandomState(seed)
def get_final_document_list(self):
if common_flags.USE_AGGREGATED_DOCUMENTS.value == 1:
if self.stop_after_seeing_new_results:
return get_aggregated_documents(self.state.history[:-1])
else:
return get_aggregated_documents(self.state.history)
else:
if self.stop_after_seeing_new_results and len(self.state.history) > 1:
return self.state.history[-2].documents
else:
return self.state.history[-1].documents
def special_episode_statistics_learner(self, return_as_dict=False):
stats = {}
documents_list = self.get_final_document_list()
original_documents_list = self.state.history[0].documents
stats['ndcg_score'] = self.state.score(
'ndcg', documents_list=documents_list, k=int(common_flags.K.value))
stats['ndcg_score_improvement'] = stats['ndcg_score'] - self.state.score(
'ndcg',
documents_list=original_documents_list,
k=int(common_flags.K.value))
stats['em_at_1'] = self.state.score(
'em_at_k', documents_list=documents_list, k=1)
stats['em_at_1_improvement'] = stats['em_at_1'] - self.state.score(
'em_at_k', documents_list=original_documents_list, k=1)
stats[f'em_at_{int(common_flags.K.value)}'] = self.state.score(
'em_at_k',
documents_list=documents_list,
k=int(common_flags.K.value))
stats[f'em_at_{int(common_flags.K.value)}_improvement'] = stats[
f'em_at_{int(common_flags.K.value)}'] - self.state.score(
'em_at_k',
documents_list=original_documents_list,
k=int(common_flags.K.value))
stats[f'recall_at_{int(common_flags.K.value)}'] = self.state.score(
'recall_at_k',
documents_list=documents_list,
k=int(common_flags.K.value))
stats[f'recall_at_{int(common_flags.K.value)}_improvement'] = stats[
f'recall_at_{int(common_flags.K.value)}'] - self.state.score(
'recall_at_k',
documents_list=original_documents_list,
k=int(common_flags.K.value))
stats['recall_at_1'] = self.state.score(
'recall_at_k', documents_list=documents_list, k=1)
stats['recall_at_1_improvement'] = stats['recall_at_1'] - self.state.score(
'recall_at_k', documents_list=original_documents_list, k=1)
stats['documents_explored'] = len(
self.state.sorted_unique_documents(
step=self.state.num_completed_requests))
if return_as_dict:
return stats
return (
np.float32(stats['ndcg_score']),
np.float32(stats['ndcg_score_improvement']),
np.float32(stats['em_at_1']),
np.float32(stats['em_at_1_improvement']),
np.float32(stats[f'em_at_{int(common_flags.K.value)}']),
np.float32(stats[f'em_at_{int(common_flags.K.value)}_improvement']),
np.float32(stats[f'recall_at_{int(common_flags.K.value)}']),
np.float32(
stats[f'recall_at_{int(common_flags.K.value)}_improvement']),
np.float32(stats['recall_at_1']),
np.float32(stats['recall_at_1_improvement']),
np.float32(stats['documents_explored']),
)
def special_episode_statistics(self):
stats = {}
stats['num_queries'] = len(self.state.history)
stats['queries'] = ('\n' + '-' * 20 + '\n').join(
[str(entry) for entry in self.state.history])
return stats
def reset(
self,
index: Optional[Union[int, environment_pb2.GetQueryResponse]] = None,
documents: Optional[Sequence[environment_pb2.Document]] = None
) -> Tuple[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray], Mapping[
str, Any]]:
if index is None or isinstance(index, int):
query = self._get_query(index)
else:
query = index
self._logging_info('Original Query [%d/%d]: %s | gold answers: %s.',
query.index, query.total, query.query, query.gold_answer)
self.state = types.EnvState(original_query=query, k=common_flags.K.value)
self.state.add_history_entry(
self._get_env_output(
query=utils.escape_for_lucene(query.query),
original_query=query,
documents=documents))
if (common_flags.RELEVANCE_FEEDBACK_RESTRICT.value == 1 and
self.training and query.gold_answer):
target_query = (
f'{utils.escape_for_lucene(query.query)} '
f'+(contents:"{utils.escape_for_lucene(query.gold_answer[0])}")')
self.state.target_documents = self._get_env_output(
query=target_query, original_query=query).documents
if self._target_reward() < self._initial_reward():
self.state.target_documents = None
self.known_word_tries = None
self.valid_word_actions = None
self.use_rf_restrict = False
documents = self.state.history[-1].documents
if not documents:
raise mzcore.SkipEpisode(f'No documents for original query {query.query}')
self.state.tree = state_tree.NQStateTree(grammar=self.grammar)
self._logging_info('Initial result score: %s',
self._compute_reward(self.state.history[0].documents))
self.action_history = []
self.n_episode += 1
obs = self._obs()
info = self._info_dict(obs=obs)
return obs.observation, info
def _apply_action(self, action) -> None:
self.state.tree.apply_action(action)
def _episode_reward(self, metric: str) -> float:
stats = self.special_episode_statistics_learner(return_as_dict=True)
self._logging_info('Episode Statistics: %s',
' '.join([f'{k}: {v}' for k, v in stats.items()]))
if metric not in stats:
raise NotImplementedError(
f'Final episode reward for type {metric} is not implemented.')
return stats[metric]
def _get_current_documents_list(self,
step: int) -> List[environment_pb2.Document]:
if common_flags.USE_AGGREGATED_DOCUMENTS.value == 1:
return get_aggregated_documents(self.state.history[:step])
else:
return self.state.history[step - 1].documents
def _get_previous_documents_list(self,
step: int) -> List[environment_pb2.Document]:
if common_flags.USE_AGGREGATED_DOCUMENTS.value == 1:
return get_aggregated_documents(self.state.history[:step - 1])
else:
return self.state.history[step - 2].documents
def _intermediate_reward(self, step: int) -> float:
assert step >= 2, (f'Intermediate reward computation requires at least 2 '
f'history entries. Requested was "{step}".')
current_documents_list = self._get_current_documents_list(step)
previous_documents_list = self._get_previous_documents_list(step)
if common_flags.REWARD.value == 'curiosity+dcg':
curiosity = len(
set([d.content for d in current_documents_list]) -
set([d.content for d in previous_documents_list])) / float(
common_flags.NUM_DOCUMENTS_TO_RETRIEVE.value)
dcg_current = self.state.score(
identifier='dcg',
documents_list=current_documents_list,
k=common_flags.K.value)
dcg_previous = self.state.score(
identifier='dcg',
documents_list=previous_documents_list,
k=common_flags.K.value)
ideal_dcg = utils.dcg_score(relevances=[1.] * common_flags.K.value)
ndcg_improvement = (dcg_current - dcg_previous) / ideal_dcg
return common_flags.REWARD_INTERPOLATION_VALUE.value * curiosity + (
1 -
common_flags.REWARD_INTERPOLATION_VALUE.value) * ndcg_improvement
else:
reward = common_flags.REWARD.value
raise NotImplementedError(
f'Intermediate episode reward for type {reward} is not implemented.')
def _compute_reward(
self, current_documents: List[environment_pb2.Document]) -> float:
if common_flags.REWARD.value == 'curiosity+dcg':
curiosity = len(
set([d.content for d in current_documents]) -
set([d.content for d in self.state.history[0].documents])) / float(
common_flags.NUM_DOCUMENTS_TO_RETRIEVE.value)
dcg_current = self.state.score(
identifier='dcg',
documents_list=current_documents,
k=common_flags.K.value)
ideal_dcg = utils.dcg_score(relevances=[1.] * common_flags.K.value)
ndcg = dcg_current / ideal_dcg
return common_flags.REWARD_INTERPOLATION_VALUE.value * curiosity + (
1 - common_flags.REWARD_INTERPOLATION_VALUE.value) * ndcg
else:
reward = common_flags.REWARD.value
raise NotImplementedError(
f'Episode reward for type {reward} is not implemented.')
|
Apache License 2.0
|
dswah/pygam
|
pygam/links.py
|
InvSquaredLink.__init__
|
python
|
def __init__(self):
super(InvSquaredLink, self).__init__(name='inv_squared')
|
creates an instance of an InverseLink object
Parameters
----------
name : str, default: None
Returns
-------
self
|
https://github.com/dswah/pygam/blob/b57b4cf8783a90976031e1857e748ca3e6ec650b/pygam/links.py#L276-L288
|
from __future__ import division, absolute_import
import numpy as np
from pygam.core import Core
class Link(Core):
def __init__(self, name=None):
super(Link, self).__init__(name=name)
class IdentityLink(Link):
def __init__(self):
super(IdentityLink, self).__init__(name='identity')
def link(self, mu, dist):
return mu
def mu(self, lp, dist):
return lp
def gradient(self, mu, dist):
return np.ones_like(mu)
class LogitLink(Link):
def __init__(self):
super(LogitLink, self).__init__(name='logit')
def link(self, mu, dist):
return np.log(mu) - np.log(dist.levels - mu)
def mu(self, lp, dist):
elp = np.exp(lp)
return dist.levels * elp / (elp + 1)
def gradient(self, mu, dist):
return dist.levels/(mu*(dist.levels - mu))
class LogLink(Link):
def __init__(self):
super(LogLink, self).__init__(name='log')
def link(self, mu, dist):
return np.log(mu)
def mu(self, lp, dist):
return np.exp(lp)
def gradient(self, mu, dist):
return 1. / mu
class InverseLink(Link):
def __init__(self):
super(InverseLink, self).__init__(name='inverse')
def link(self, mu, dist):
return mu ** -1.
def mu(self, lp, dist):
return lp ** -1.
def gradient(self, mu, dist):
return -1 * mu**-2.
class InvSquaredLink(Link):
|
Apache License 2.0
|
cohesity/management-sdk-python
|
cohesity_management_sdk/models/object_search_results.py
|
ObjectSearchResults.__init__
|
python
|
def __init__(self,
object_snapshot_info=None,
total_count=None):
self.object_snapshot_info = object_snapshot_info
self.total_count = total_count
|
Constructor for the ObjectSearchResults class
|
https://github.com/cohesity/management-sdk-python/blob/1c085d5a10f5f1a87b700e7ad1fc1dcabda41ae5/cohesity_management_sdk/models/object_search_results.py#L31-L38
|
import cohesity_management_sdk.models.object_snapshot_info
class ObjectSearchResults(object):
_names = {
"object_snapshot_info":'objectSnapshotInfo',
"total_count":'totalCount'
}
|
Apache License 2.0
|
pytorchlightning/metrics
|
torchmetrics/functional/pairwise/helpers.py
|
_reduce_distance_matrix
|
python
|
def _reduce_distance_matrix(distmat: Tensor, reduction: Optional[str] = None) -> Tensor:
if reduction == "mean":
return distmat.mean(dim=-1)
if reduction == "sum":
return distmat.sum(dim=-1)
if reduction is None or reduction == "none":
return distmat
raise ValueError(f"Expected reduction to be one of `['mean', 'sum', None]` but got {reduction}")
|
Final reduction of distance matrix.
Args:
distance: a ``[N,M]`` matrix
reduction: string determining how to reduce along last dimension
|
https://github.com/pytorchlightning/metrics/blob/8242b0bdee70432b932084111e365b075d8f404f/torchmetrics/functional/pairwise/helpers.py#L46-L59
|
from typing import Optional, Tuple
from torch import Tensor
def _check_input(
x: Tensor, y: Optional[Tensor] = None, zero_diagonal: Optional[bool] = None
) -> Tuple[Tensor, Tensor, bool]:
if x.ndim != 2:
raise ValueError(f"Expected argument `x` to be a 2D tensor of shape `[N, d]` but got {x.shape}")
if y is not None:
if y.ndim != 2 or y.shape[1] != x.shape[1]:
raise ValueError(
"Expected argument `y` to be a 2D tensor of shape `[M, d]` where"
" `d` should be same as the last dimension of `x`"
)
zero_diagonal = False if zero_diagonal is None else zero_diagonal
else:
y = x.clone()
zero_diagonal = True if zero_diagonal is None else zero_diagonal
return x, y, zero_diagonal
|
Apache License 2.0
|
nuagenetworks/vspk-python
|
vspk/v5_0/nuapplication.py
|
NUApplication.read_only
|
python
|
def read_only(self, value):
self._read_only = value
|
Set read_only value.
Notes:
determines whether this entity is read only. Read only objects cannot be modified or deleted.
This attribute is named `readOnly` in VSD API.
|
https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v5_0/nuapplication.py#L301-L311
|
from .fetchers import NUMetadatasFetcher
from .fetchers import NUGlobalMetadatasFetcher
from .fetchers import NUMonitorscopesFetcher
from .fetchers import NUApplicationBindingsFetcher
from bambou import NURESTObject
class NUApplication(NURESTObject):
__rest_name__ = "application"
__resource_name__ = "applications"
CONST_POST_CLASSIFICATION_PATH_ANY = "ANY"
CONST_PROTOCOL_NONE = "NONE"
CONST_PERFORMANCE_MONITOR_TYPE_FIRST_PACKET = "FIRST_PACKET"
CONST_PRE_CLASSIFICATION_PATH_PRIMARY = "PRIMARY"
CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL"
CONST_PRE_CLASSIFICATION_PATH_SECONDARY = "SECONDARY"
CONST_PERFORMANCE_MONITOR_TYPE_CONTINUOUS = "CONTINUOUS"
CONST_OPTIMIZE_PATH_SELECTION_PACKETLOSS = "PACKETLOSS"
CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE"
CONST_OPTIMIZE_PATH_SELECTION_LATENCY = "LATENCY"
CONST_OPTIMIZE_PATH_SELECTION_JITTER = "JITTER"
CONST_PROTOCOL_UDP = "UDP"
CONST_POST_CLASSIFICATION_PATH_PRIMARY = "PRIMARY"
CONST_POST_CLASSIFICATION_PATH_SECONDARY = "SECONDARY"
CONST_PERFORMANCE_MONITOR_TYPE_FIRST_PACKET_AND_CONTINUOUS = "FIRST_PACKET_AND_CONTINUOUS"
CONST_PROTOCOL_TCP = "TCP"
CONST_PRE_CLASSIFICATION_PATH_DEFAULT = "DEFAULT"
def __init__(self, **kwargs):
super(NUApplication, self).__init__()
self._dscp = None
self._name = None
self._bandwidth = None
self._last_updated_by = None
self._read_only = None
self._performance_monitor_type = None
self._certificate_common_name = None
self._description = None
self._destination_ip = None
self._destination_port = None
self._network_symmetry = None
self._enable_pps = None
self._one_way_delay = None
self._one_way_jitter = None
self._one_way_loss = None
self._entity_scope = None
self._post_classification_path = None
self._source_ip = None
self._source_port = None
self._app_id = None
self._optimize_path_selection = None
self._pre_classification_path = None
self._protocol = None
self._associated_l7_application_signature_id = None
self._ether_type = None
self._external_id = None
self._symmetry = None
self.expose_attribute(local_name="dscp", remote_name="DSCP", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="bandwidth", remote_name="bandwidth", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="read_only", remote_name="readOnly", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="performance_monitor_type", remote_name="performanceMonitorType", attribute_type=str, is_required=False, is_unique=False, choices=[u'CONTINUOUS', u'FIRST_PACKET', u'FIRST_PACKET_AND_CONTINUOUS'])
self.expose_attribute(local_name="certificate_common_name", remote_name="certificateCommonName", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="description", remote_name="description", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="destination_ip", remote_name="destinationIP", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="destination_port", remote_name="destinationPort", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="network_symmetry", remote_name="networkSymmetry", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="enable_pps", remote_name="enablePPS", attribute_type=bool, is_required=False, is_unique=False)
self.expose_attribute(local_name="one_way_delay", remote_name="oneWayDelay", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="one_way_jitter", remote_name="oneWayJitter", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="one_way_loss", remote_name="oneWayLoss", attribute_type=float, is_required=False, is_unique=False)
self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL'])
self.expose_attribute(local_name="post_classification_path", remote_name="postClassificationPath", attribute_type=str, is_required=False, is_unique=False, choices=[u'ANY', u'PRIMARY', u'SECONDARY'])
self.expose_attribute(local_name="source_ip", remote_name="sourceIP", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="source_port", remote_name="sourcePort", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="app_id", remote_name="appId", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="optimize_path_selection", remote_name="optimizePathSelection", attribute_type=str, is_required=False, is_unique=False, choices=[u'JITTER', u'LATENCY', u'PACKETLOSS'])
self.expose_attribute(local_name="pre_classification_path", remote_name="preClassificationPath", attribute_type=str, is_required=False, is_unique=False, choices=[u'DEFAULT', u'PRIMARY', u'SECONDARY'])
self.expose_attribute(local_name="protocol", remote_name="protocol", attribute_type=str, is_required=False, is_unique=False, choices=[u'NONE', u'TCP', u'UDP'])
self.expose_attribute(local_name="associated_l7_application_signature_id", remote_name="associatedL7ApplicationSignatureID", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="ether_type", remote_name="etherType", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True)
self.expose_attribute(local_name="symmetry", remote_name="symmetry", attribute_type=bool, is_required=False, is_unique=False)
self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.monitorscopes = NUMonitorscopesFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.application_bindings = NUApplicationBindingsFetcher.fetcher_with_object(parent_object=self, relationship="member")
self._compute_args(**kwargs)
@property
def dscp(self):
return self._dscp
@dscp.setter
def dscp(self, value):
self._dscp = value
@property
def name(self):
return self._name
@name.setter
def name(self, value):
self._name = value
@property
def bandwidth(self):
return self._bandwidth
@bandwidth.setter
def bandwidth(self, value):
self._bandwidth = value
@property
def last_updated_by(self):
return self._last_updated_by
@last_updated_by.setter
def last_updated_by(self, value):
self._last_updated_by = value
@property
def read_only(self):
return self._read_only
@read_only.setter
|
BSD 3-Clause New or Revised License
|
cmu-delphi/delphi-epidata
|
src/acquisition/covidcast/csv_importer.py
|
CsvImporter.load_csv
|
python
|
def load_csv(filepath, geo_type, pandas=pandas):
logger = get_structured_logger('load_csv')
try:
table = pandas.read_csv(filepath, dtype=CsvImporter.DTYPES)
except ValueError as e:
logger.warning(event='Failed to open CSV with specified dtypes, switching to str', detail=str(e), file=filepath)
table = pandas.read_csv(filepath, dtype='str')
if not CsvImporter.is_header_valid(table.columns):
logger.warning(event='invalid header', detail=table.columns, file=filepath)
yield None
return
table.rename(columns={"val": "value", "se": "stderr", "missing_val": "missing_value", "missing_se": "missing_stderr"}, inplace=True)
for row in table.itertuples(index=False):
row_values, error = CsvImporter.extract_and_check_row(row, geo_type, filepath)
if error:
logger.warning(event = 'invalid value for row', detail=(str(row), error), file=filepath)
yield None
continue
yield row_values
|
Load, validate, and yield data as `RowValues` from a CSV file.
filepath: the CSV file to be loaded
geo_type: the geographic resolution (e.g. county)
In case of a validation error, `None` is yielded for the offending row,
including the header.
|
https://github.com/cmu-delphi/delphi-epidata/blob/e0c4cf81c940b55ee7efbd2ed335deb3062e54ec/src/acquisition/covidcast/csv_importer.py#L341-L371
|
from datetime import date
import glob
import math
import os
import re
import pandas
import epiweeks as epi
from delphi_utils import Nans
from delphi.utils.epiweek import delta_epiweeks
from delphi.epidata.acquisition.covidcast.logger import get_structured_logger
class CsvImporter:
PATTERN_DAILY = re.compile(r'^.*/([^/]*)/(\d{8})_(\w+?)_(\w+)\.csv$')
PATTERN_WEEKLY = re.compile(r'^.*/([^/]*)/weekly_(\d{6})_(\w+?)_(\w+)\.csv$')
PATTERN_ISSUE_DIR = re.compile(r'^.*/([^/]*)/issue_(\d{8})$')
GEOGRAPHIC_RESOLUTIONS = {'county', 'hrr', 'msa', 'dma', 'state', 'hhs', 'nation'}
REQUIRED_COLUMNS = {'geo_id', 'val', 'se', 'sample_size'}
MIN_YEAR = 2019
MAX_YEAR = 2030
DTYPES = {
"geo_id": str,
"val": float,
"se": float,
"sample_size": float,
"missing_val": int,
"missing_se": int,
"missing_sample_size": int
}
class RowValues:
def __init__(self, geo_value, value, stderr, sample_size, missing_value, missing_stderr, missing_sample_size):
self.geo_value = geo_value
self.value = value
self.stderr = stderr
self.sample_size = sample_size
self.missing_value = missing_value
self.missing_stderr = missing_stderr
self.missing_sample_size = missing_sample_size
@staticmethod
def is_sane_day(value):
year, month, day = value // 10000, (value % 10000) // 100, value % 100
nearby_year = CsvImporter.MIN_YEAR <= year <= CsvImporter.MAX_YEAR
valid_month = 1 <= month <= 12
sensible_day = 1 <= day <= 31
if not (nearby_year and valid_month and sensible_day):
return False
return date(year=year,month=month,day=day)
@staticmethod
def is_sane_week(value):
year, week = value // 100, value % 100
nearby_year = CsvImporter.MIN_YEAR <= year <= CsvImporter.MAX_YEAR
sensible_week = 1 <= week <= 53
if not (nearby_year and sensible_week):
return False
return value
@staticmethod
def find_issue_specific_csv_files(scan_dir, glob=glob):
logger = get_structured_logger('find_issue_specific_csv_files')
for path in sorted(glob.glob(os.path.join(scan_dir, '*'))):
issuedir_match = CsvImporter.PATTERN_ISSUE_DIR.match(path.lower())
if issuedir_match and os.path.isdir(path):
issue_date_value = int(issuedir_match.group(2))
issue_date = CsvImporter.is_sane_day(issue_date_value)
if issue_date:
logger.info(event='processing csv files from issue', detail=issue_date, file=path)
yield from CsvImporter.find_csv_files(path, issue=(issue_date, epi.Week.fromdate(issue_date)), glob=glob)
else:
logger.warning(event='invalid issue directory day', detail=issue_date_value, file=path)
@staticmethod
def find_csv_files(scan_dir, issue=(date.today(), epi.Week.fromdate(date.today())), glob=glob):
logger = get_structured_logger('find_csv_files')
issue_day,issue_epiweek=issue
issue_day_value=int(issue_day.strftime("%Y%m%d"))
issue_epiweek_value=int(str(issue_epiweek))
issue_value=-1
lag_value=-1
for path in sorted(glob.glob(os.path.join(scan_dir, '*', '*'))):
if not path.lower().endswith('.csv'):
continue
daily_match = CsvImporter.PATTERN_DAILY.match(path.lower())
weekly_match = CsvImporter.PATTERN_WEEKLY.match(path.lower())
if not daily_match and not weekly_match:
logger.warning(event='invalid csv path/filename', detail=path, file=path)
yield (path, None)
continue
if daily_match:
time_type = 'day'
time_value = int(daily_match.group(2))
match = daily_match
time_value_day = CsvImporter.is_sane_day(time_value)
if not time_value_day:
logger.warning(event='invalid filename day', detail=time_value, file=path)
yield (path, None)
continue
issue_value=issue_day_value
lag_value=(issue_day-time_value_day).days
else:
time_type = 'week'
time_value = int(weekly_match.group(2))
match = weekly_match
time_value_week=CsvImporter.is_sane_week(time_value)
if not time_value_week:
logger.warning(event='invalid filename week', detail=time_value, file=path)
yield (path, None)
continue
issue_value=issue_epiweek_value
lag_value=delta_epiweeks(time_value_week, issue_epiweek_value)
geo_type = match.group(3).lower()
if geo_type not in CsvImporter.GEOGRAPHIC_RESOLUTIONS:
logger.warning(event='invalid geo_type', detail=geo_type, file=path)
yield (path, None)
continue
source = match.group(1).lower()
signal = match.group(4).lower()
if len(signal) > 64:
logger.warning(event='invalid signal name (64 char limit)',detail=signal, file=path)
yield (path, None)
continue
yield (path, (source, signal, time_type, geo_type, time_value, issue_value, lag_value))
@staticmethod
def is_header_valid(columns):
return set(columns) >= CsvImporter.REQUIRED_COLUMNS
@staticmethod
def floaty_int(value):
float_value = float(value)
if not float_value.is_integer():
raise ValueError('not an int: "%s"' % str(value))
return int(float_value)
@staticmethod
def maybe_apply(func, quantity):
if str(quantity).lower() in ('inf', '-inf'):
raise ValueError("Quantity given was an inf.")
elif str(quantity).lower() in ('', 'na', 'nan', 'none'):
return None
else:
return func(quantity)
@staticmethod
def validate_quantity(row, attr_quantity):
try:
quantity = CsvImporter.maybe_apply(float, getattr(row, attr_quantity))
return quantity
except (ValueError, AttributeError) as e:
return "Error"
@staticmethod
def validate_missing_code(row, attr_quantity, attr_name, filepath=None, logger=None):
logger = get_structured_logger('load_csv') if logger is None else logger
missing_entry = getattr(row, "missing_" + attr_name, None)
try:
missing_entry = CsvImporter.floaty_int(missing_entry)
except (ValueError, TypeError):
missing_entry = None
if missing_entry is None and attr_quantity is not None:
return Nans.NOT_MISSING.value
if missing_entry is None and attr_quantity is None:
return Nans.OTHER.value
if missing_entry != Nans.NOT_MISSING.value and attr_quantity is not None:
logger.warning(event = f"missing_{attr_name} column contradicting {attr_name} presence.", detail = (str(row)), file = filepath)
return Nans.NOT_MISSING.value
if missing_entry == Nans.NOT_MISSING.value and attr_quantity is None:
logger.warning(event = f"missing_{attr_name} column contradicting {attr_name} presence.", detail = (str(row)), file = filepath)
return Nans.OTHER.value
return missing_entry
@staticmethod
def extract_and_check_row(row, geo_type, filepath=None):
try:
geo_id = row.geo_id.lower()
except AttributeError as e:
return (None, 'geo_id')
if geo_type in ('hrr', 'msa', 'dma', 'hhs'):
try:
geo_id = str(CsvImporter.floaty_int(geo_id))
except ValueError:
return (None, 'geo_id')
if geo_type == 'county':
if len(geo_id) != 5 or not '01000' <= geo_id <= '80000':
return (None, 'geo_id')
elif geo_type == 'hrr':
if not 1 <= int(geo_id) <= 500:
return (None, 'geo_id')
elif geo_type == 'msa':
if len(geo_id) != 5 or not '10000' <= geo_id <= '99999':
return (None, 'geo_id')
elif geo_type == 'dma':
if not 450 <= int(geo_id) <= 950:
return (None, 'geo_id')
elif geo_type == 'state':
if len(geo_id) != 2 or not 'aa' <= geo_id <= 'zz':
return (None, 'geo_id')
elif geo_type == 'hhs':
if not 1 <= int(geo_id) <= 10:
return (None, 'geo_id')
elif geo_type == 'nation':
if len(geo_id) != 2 or not 'aa' <= geo_id <= 'zz':
return (None, 'geo_id')
else:
return (None, 'geo_type')
value = CsvImporter.validate_quantity(row, "value")
if value == "Error":
return (None, 'value')
stderr = CsvImporter.validate_quantity(row, "stderr")
if stderr == "Error" or (stderr is not None and stderr < 0):
return (None, 'stderr')
sample_size = CsvImporter.validate_quantity(row, "sample_size")
if sample_size == "Error" or (sample_size is not None and sample_size < 0):
return (None, 'sample_size')
missing_value = CsvImporter.validate_missing_code(row, value, "value", filepath)
missing_stderr = CsvImporter.validate_missing_code(row, stderr, "stderr", filepath)
missing_sample_size = CsvImporter.validate_missing_code(row, sample_size, "sample_size", filepath)
row_values = CsvImporter.RowValues(
geo_id, value, stderr, sample_size,
missing_value, missing_stderr, missing_sample_size
)
return (row_values, None)
@staticmethod
|
MIT License
|
mars-project/mars
|
mars/tensor/arithmetic/arctan2.py
|
arctan2
|
python
|
def arctan2(x1, x2, out=None, where=None, **kwargs):
op = TensorArctan2(**kwargs)
return op(x1, x2, out=out, where=where)
|
Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly.
The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is
the signed angle in radians between the ray ending at the origin and
passing through the point (1,0), and the ray ending at the origin and
passing through the point (`x2`, `x1`). (Note the role reversal: the
"`y`-coordinate" is the first function parameter, the "`x`-coordinate"
is the second.) By IEEE convention, this function is defined for
`x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see
Notes for specific values).
This function is not defined for complex-valued arguments; for the
so-called argument of complex values, use `angle`.
Parameters
----------
x1 : array_like, real-valued
`y`-coordinates.
x2 : array_like, real-valued
`x`-coordinates. `x2` must be broadcastable to match the shape of
`x1` or vice versa.
out : Tensor, None, or tuple of Tensor and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated tensor is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values
of False indicate to leave the value in the output alone.
**kwargs
Returns
-------
angle : Tensor
Array of angles in radians, in the range ``[-pi, pi]``.
See Also
--------
arctan, tan, angle
Notes
-----
*arctan2* is identical to the `atan2` function of the underlying
C library. The following special values are defined in the C
standard: [1]_
====== ====== ================
`x1` `x2` `arctan2(x1,x2)`
====== ====== ================
+/- 0 +0 +/- 0
+/- 0 -0 +/- pi
> 0 +/-inf +0 / +pi
< 0 +/-inf -0 / -pi
+/-inf +inf +/- (pi/4)
+/-inf -inf +/- (3*pi/4)
====== ====== ================
Note that +0 and -0 are distinct floating point numbers, as are +inf
and -inf.
References
----------
.. [1] ISO/IEC standard 9899:1999, "Programming language C."
Examples
--------
Consider four points in different quadrants:
>>> import mars.tensor as mt
>>> x = mt.array([-1, +1, +1, -1])
>>> y = mt.array([-1, -1, +1, +1])
>>> (mt.arctan2(y, x) * 180 / mt.pi).execute()
array([-135., -45., 45., 135.])
Note the order of the parameters. `arctan2` is defined also when `x2` = 0
and at several other special points, obtaining values in
the range ``[-pi, pi]``:
>>> mt.arctan2([1., -1.], [0., 0.]).execute()
array([ 1.57079633, -1.57079633])
>>> mt.arctan2([0., 0., mt.inf], [+0., -0., mt.inf]).execute()
array([ 0. , 3.14159265, 0.78539816])
|
https://github.com/mars-project/mars/blob/d50d9f8d8e966756e8b9dc80aca53a3e4607e7e0/mars/tensor/arithmetic/arctan2.py#L42-L128
|
import numpy as np
from ... import opcodes as OperandDef
from ..utils import infer_dtype
from .core import TensorBinOp
from .utils import arithmetic_operand
@arithmetic_operand
class TensorArctan2(TensorBinOp):
_op_type_ = OperandDef.ARCTAN2
_func_name = "arctan2"
@classmethod
def _is_sparse(cls, x1, x2):
if hasattr(x1, "issparse") and x1.issparse():
return True
elif np.isscalar(x1) and x1 == 0:
return x2.issparse() if hasattr(x2, "issparse") else False
return False
@infer_dtype(np.arctan2)
|
Apache License 2.0
|
ivy-dl/ivy
|
ivy/core/general.py
|
array_equal
|
python
|
def array_equal(x0: Union[ivy.Array, ivy.NativeArray], x1: Union[ivy.Array, ivy.NativeArray], f: ivy.Framework = None) -> bool:
return _cur_framework(x0, f=f).array_equal(x0, x1)
|
Determines whether two input arrays are equal across all elements.
:param x0: The first input array to compare.
:type x0: array
:param x1: The second input array to compare.
:type x1: array
:param f: Machine learning framework. Inferred from inputs if None.
:type f: ml_framework, optional
:return: Boolean, whether or not the input arrays are equal across all elements.
|
https://github.com/ivy-dl/ivy/blob/52cc1dddba0638f25e48fb03c0b3a20d637d4ce3/ivy/core/general.py#L78-L91
|
import math
import einops
import numpy as np
from numbers import Number
from typing import Callable, Any, Union, List, Tuple, Dict, Iterable
import ivy
from ivy.core.device import dev_str
from ivy.framework_handler import current_framework as _cur_framework
FN_CACHE = dict()
INF = float('inf')
TIMEOUT = 10.0
def array(object_in: Union[List, np.ndarray, ivy.Array, ivy.NativeArray], dtype_str: str = None,
dev_str: str = None, f: ivy.Framework = None) -> Union[ivy.Array, ivy.NativeArray]:
return _cur_framework(object_in, f=f).array(object_in, dtype_str, dev_str)
def is_array(x: Any, exclusive: bool = False, f: ivy.Framework = None) -> bool:
try:
return _cur_framework(x, f=f).is_array(x, exclusive)
except ValueError:
return False
def copy_array(x: Union[ivy.Array, ivy.NativeArray], f: ivy.Framework = None) -> Union[ivy.Array, ivy.NativeArray]:
return _cur_framework(x, f=f).copy_array(x)
|
Apache License 2.0
|
hsdp/python-cf-api
|
cf_api/deploy_manifest.py
|
Deploy._create_app_params
|
python
|
def _create_app_params(self):
self._assert_org_and_space()
self._get_stack()
params = dict(
name=self.name,
space_guid=self._space.guid,
)
if self.stack:
params['stack_guid'] = self._stack.guid
if self.buildpack:
params['buildpack'] = self.buildpack
if self.env:
params['environment_json'] = self.env
if self.command:
params['command'] = self.command
if self.docker_image:
username = self.docker_image.get('username')
password = self.docker_image.get(
'password', os.getenv('CF_DOCKER_PASSWORD'))
params['docker_image'] = self.docker_image.get('image')
params['docker_credentials'] = {
'username': username,
'password': password,
}
if not self.no_route:
params['health_check_type'] = self.health_check_type or 'port'
params['health_check_timeout'] = self.health_check_timeout or 60
else:
if self.health_check_type:
params['health_check_type'] = self.health_check_type
if self.health_check_timeout:
params['health_check_timeout'] = self.health_check_timeout
params['instances'] = self.instances or 2
params['memory'] = self.memory or 512
params['disk_quota'] = self.disk_quota or 512
return params
|
Assembles a POST body (dict) of values to be sent in creating the
app based on the app manifest dictionary.
|
https://github.com/hsdp/python-cf-api/blob/13fc605e2ea3b5c09cc8a556c58e8c36ae290c8c/cf_api/deploy_manifest.py#L385-L425
|
from __future__ import print_function
import argparse
import fnmatch
import hashlib
import json
import os
import random
import re
import string
import zipfile
import sys
import time
import yaml
import logging
import signal
import traceback
from getpass import getpass
from uuid import uuid4
import cf_api
from . import logs_util
from . import routes_util
from . import dropsonde_util
from . import exceptions as exc
manifest_map = {
'health_check_timeout': 'timeout',
'health_check_type': 'health-check-type',
'no_hostname': 'no-hostname',
'random_route': 'random-route',
'no_route': 'no-route',
'docker_image': 'docker',
}
logger = logging.getLogger('cf_api.deploy_manifest')
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
class Deploy(object):
_manifest_dict = None
_manifest_filename = None
_existing_app = None
_existing_services = None
_upload_job = None
_space = None
_org = None
_app = None
_stack = None
_domain = None
_service_instances = None
_domains = None
_source_dirname = None
_tailing_thread = None
is_debug = False
def __init__(self, cc, manifest_filename, **manifest):
self._cc = cc
self._manifest_filename = manifest_filename
self._manifest_dict = manifest
self._service_instances = {}
def __getattr__(self, item):
item = manifest_map.get(item, item)
value = self._manifest_dict.get(item, None)
if 'memory' == item:
value = to_mb(value)
elif 'disk_quota' == item:
value = to_mb(value)
return value
def clone(self, new_name):
cl = Deploy(self._cc, self._manifest_filename, **self._manifest_dict)
cl._manifest_dict['name'] = new_name
cl._space = self._space
cl._org = self._org
cl.is_debug = self.is_debug
return cl
def set_org_and_space(self, org_name, space_name):
res = self._cc.organizations().get_by_name(org_name)
self._assert_no_error(res)
self._org = res.resource
res = self._cc.request(self._org.spaces_url).get_by_name(space_name)
self._assert_no_error(res)
self._space = res.resource
return self
def set_org_and_space_dicts(self, org_dict, space_dict):
self._space = space_dict
self._org = org_dict
return self
def set_source_dirname(self, dirname):
self._source_dirname = dirname
return self
def set_debug(self, is_debug):
self.is_debug = is_debug
return self
def log(self, *args, **kwargs):
if self.is_debug:
return log(*args, **kwargs)
def _assert_org_and_space(self):
if not self._org:
raise exc.InvalidArgsException(
'Org is required to get the app', 500)
if not self._space:
raise exc.InvalidArgsException(
'Space is required to get the app', 500)
def _get_source_dirname(self):
if self._source_dirname:
return self._source_dirname
manifest_dirname = os.path.dirname(self._manifest_filename)
if self.path:
path = self.path
if not path.startswith(os.path.sep):
path = os.path.join(manifest_dirname, path)
if os.path.isdir(path):
self._source_dirname = os.path.normpath(path)
if not self._source_dirname:
self._source_dirname = manifest_dirname
if not self._source_dirname.endswith(os.path.sep):
self._source_dirname += os.path.sep
return self._source_dirname
def _get_archive_filename(self):
if self._archive_filename:
return self._archive_filename
if self.path:
path = self.path
if not path.startswith(os.path.sep):
manifest_dirname = os.path.dirname(self._manifest_filename)
path = os.path.join(manifest_dirname, path)
if os.path.isfile(path):
self._archive_filename = os.path.normpath(path)
return path
filename = os.path.basename(self.name) + '-' + str(uuid4()) + '.zip'
self._archive_filename = os.path.normpath(os.path.join(os.path.sep, 'tmp', filename))
return self._archive_filename
def _cleanup_archive(self):
if not self._archive_filename:
raise exc.InvalidStateException(
'Archive has not been created!', 500)
filename = self._get_archive_filename()
if os.path.isfile(filename):
os.unlink(filename)
def _get_stack(self):
self.log('get stack', self.stack)
if self._stack is not None:
return self._stack
self._stack = self._cc.stacks().get_by_name(self.stack).resource
return self._stack
def _get_primary_domain(self):
if self._domain is not None:
return self._domain
self._domain = self._cc.shared_domains().get().resource
return self._domain
def _get_domain(self, name=None, guid=None):
if self._domains is None:
self._domains = {}
if name in self._domains:
return self._domains[name]
else:
for domain in self._domains.values():
if domain.guid == guid:
return domain
try:
domain = self._cc.shared_domains().get_by_name(name).resource
except exc.ResponseException as e:
print(str(e))
domain = None
if not domain:
domain = self._cc.request('private_domains') .get_by_name(name).resource
self._domains[name] = domain
return domain
def _get_app(self, use_cache=True):
self.log('get app', self.name)
self._assert_org_and_space()
if self._app is not None and use_cache:
return self._app
res = self._cc.request(self._space.apps_url).get_by_name(self.name)
if res.has_error:
if 'not found' in res.error_message:
return None
else:
res.raise_error()
self._app = res.resource
return res.resource
def _search_routes(self, routes_url,
host=None, domain_guid=None, domain_name=None,
port=None, path=None, **kwargs):
if domain_name is not None and domain_guid is not None:
raise exc.InvalidArgsException('domain_name and domain_guid may '
'not both be set')
if domain_guid is None:
if domain_name is not None:
domain = self._get_domain(name=domain_name)
else:
domain = self._get_primary_domain()
domain_name = domain.name
domain_guid = domain.guid
args = ['domain_guid', domain_guid, 'host', host]
if port is not None:
args.extend(['port', port])
if path is not None:
args.extend(['path', path])
self.log('searching routes', format_route(
host=host,
domain_name=domain_name,
port=port,
path=path,
))
return self._cc.request(routes_url).search(*args).resources
def _get_service_instances(self, name):
if self._service_instances is not None and name in self._service_instances:
return self._service_instances[name]
res = self._cc.request(self._space.service_instances_url) .get_by_name(name)
self._service_instances[name] = res.resource
return self._service_instances[name]
|
Apache License 2.0
|
udst/urbansim
|
urbansim/developer/developer.py
|
Developer.merge
|
python
|
def merge(old_df, new_df, return_index=False):
maxind = np.max(old_df.index.values)
new_df = new_df.reset_index(drop=True)
new_df.index = new_df.index + maxind + 1
concat_df = pd.concat([old_df, new_df], verify_integrity=True)
concat_df.index.name = 'building_id'
if return_index:
return concat_df, new_df.index
return concat_df
|
Merge two dataframes of buildings. The old dataframe is
usually the buildings dataset and the new dataframe is a modified
(by the user) version of what is returned by the pick method.
Parameters
----------
old_df : dataframe
Current set of buildings
new_df : dataframe
New buildings to add, usually comes from this module
return_index : bool
If return_index is true, this method will return the new
index of new_df (which changes in order to create a unique
index after the merge)
Returns
-------
df : dataframe
Combined DataFrame of buildings, makes sure indexes don't overlap
index : pd.Index
If and only if return_index is True, return the new index for the
new_df dataframe (which changes in order to create a unique index
after the merge)
|
https://github.com/udst/urbansim/blob/0db75668ada0005352b7c7e0a405265f78ccadd7/urbansim/developer/developer.py#L234-L269
|
from __future__ import print_function
from __future__ import division
import pandas as pd
import numpy as np
class Developer(object):
def __init__(self, feasibility):
if isinstance(feasibility, dict):
feasibility = pd.concat(feasibility.values(), keys=feasibility.keys(), axis=1)
self.feasibility = feasibility
@staticmethod
def _max_form(f, colname):
df = f.stack(level=0)[[colname]].stack().unstack(level=1).reset_index(level=1, drop=True)
return df.idxmax(axis=1)
def keep_form_with_max_profit(self, forms=None):
f = self.feasibility
if forms is not None:
f = f[forms]
if len(f) > 0:
mu = self._max_form(f, "max_profit")
indexes = [tuple(x) for x in mu.reset_index().values]
else:
indexes = []
df = f.stack(level=0).loc[indexes]
df.index.names = ["parcel_id", "form"]
df = df.reset_index(level=1)
return df
@staticmethod
def compute_units_to_build(num_agents, num_units, target_vacancy):
print("Number of agents: {:,}".format(num_agents))
print("Number of agent spaces: {:,}".format(int(num_units)))
assert target_vacancy < 1.0
target_units = int(max(num_agents / (1 - target_vacancy) - num_units, 0))
print("Current vacancy = {:.2f}"
.format(1 - num_agents / float(num_units)))
print("Target vacancy = {:.2f}, target of new units = {:,}"
.format(target_vacancy, target_units))
return target_units
def pick(self, form, target_units, parcel_size, ave_unit_size,
current_units, max_parcel_size=200000, min_unit_size=400,
drop_after_build=True, residential=True, bldg_sqft_per_job=400.0,
profit_to_prob_func=None):
if len(self.feasibility) == 0:
return
if form is None:
df = self.feasibility
elif isinstance(form, list):
df = self.keep_form_with_max_profit(form)
else:
df = self.feasibility[form]
df = df[df.max_profit_far > 0]
ave_unit_size[ave_unit_size < min_unit_size] = min_unit_size
df["ave_unit_size"] = ave_unit_size
df["parcel_size"] = parcel_size
df['current_units'] = current_units
df = df[df.parcel_size < max_parcel_size]
df['residential_units'] = (df.residential_sqft / df.ave_unit_size).round()
df['job_spaces'] = (df.non_residential_sqft / bldg_sqft_per_job).round()
if residential:
df['net_units'] = df.residential_units - df.current_units
else:
df['net_units'] = df.job_spaces - df.current_units
df = df[df.net_units > 0]
if len(df) == 0:
print("WARNING THERE ARE NO FEASIBLE BUILDING TO CHOOSE FROM")
return
print("Sum of net units that are profitable: {:,}"
.format(int(df.net_units.sum())))
if profit_to_prob_func:
p = profit_to_prob_func(df)
else:
df['max_profit_per_size'] = df.max_profit / df.parcel_size
p = df.max_profit_per_size.values / df.max_profit_per_size.sum()
if df.net_units.sum() < target_units:
print("WARNING THERE WERE NOT ENOUGH PROFITABLE UNITS TO",
"MATCH DEMAND")
build_idx = df.index.values
elif target_units <= 0:
build_idx = []
else:
choices = np.random.choice(df.index.values, size=min(len(df.index), target_units),
replace=False, p=p)
tot_units = df.net_units.loc[choices].values.cumsum()
ind = int(np.searchsorted(tot_units, target_units, side="left")) + 1
build_idx = choices[:ind]
if drop_after_build:
self.feasibility = self.feasibility.drop(build_idx)
new_df = df.loc[build_idx]
new_df.index.name = "parcel_id"
return new_df.reset_index()
@staticmethod
|
BSD 3-Clause New or Revised License
|
gofrendiasgard/kokoropy
|
kokoropy/packages/sqlalchemy/interfaces.py
|
ConnectionProxy.rollback_savepoint
|
python
|
def rollback_savepoint(self, conn, rollback_savepoint, name, context):
return rollback_savepoint(name, context)
|
Intercept rollback_savepoint() events.
|
https://github.com/gofrendiasgard/kokoropy/blob/49c8ca4b7dd2a084f2ced33fc5987b8a8b62c995/kokoropy/packages/sqlalchemy/interfaces.py#L284-L287
|
from . import event, util
class PoolListener(object):
@classmethod
def _adapt_listener(cls, self, listener):
listener = util.as_interface(listener,
methods=('connect', 'first_connect',
'checkout', 'checkin'))
if hasattr(listener, 'connect'):
event.listen(self, 'connect', listener.connect)
if hasattr(listener, 'first_connect'):
event.listen(self, 'first_connect', listener.first_connect)
if hasattr(listener, 'checkout'):
event.listen(self, 'checkout', listener.checkout)
if hasattr(listener, 'checkin'):
event.listen(self, 'checkin', listener.checkin)
def connect(self, dbapi_con, con_record):
def first_connect(self, dbapi_con, con_record):
def checkout(self, dbapi_con, con_record, con_proxy):
def checkin(self, dbapi_con, con_record):
class ConnectionProxy(object):
@classmethod
def _adapt_listener(cls, self, listener):
def adapt_execute(conn, clauseelement, multiparams, params):
def execute_wrapper(clauseelement, *multiparams, **params):
return clauseelement, multiparams, params
return listener.execute(conn, execute_wrapper,
clauseelement, *multiparams,
**params)
event.listen(self, 'before_execute', adapt_execute)
def adapt_cursor_execute(conn, cursor, statement,
parameters, context, executemany):
def execute_wrapper(
cursor,
statement,
parameters,
context,
):
return statement, parameters
return listener.cursor_execute(
execute_wrapper,
cursor,
statement,
parameters,
context,
executemany,
)
event.listen(self, 'before_cursor_execute', adapt_cursor_execute)
def do_nothing_callback(*arg, **kw):
pass
def adapt_listener(fn):
def go(conn, *arg, **kw):
fn(conn, do_nothing_callback, *arg, **kw)
return util.update_wrapper(go, fn)
event.listen(self, 'begin', adapt_listener(listener.begin))
event.listen(self, 'rollback',
adapt_listener(listener.rollback))
event.listen(self, 'commit', adapt_listener(listener.commit))
event.listen(self, 'savepoint',
adapt_listener(listener.savepoint))
event.listen(self, 'rollback_savepoint',
adapt_listener(listener.rollback_savepoint))
event.listen(self, 'release_savepoint',
adapt_listener(listener.release_savepoint))
event.listen(self, 'begin_twophase',
adapt_listener(listener.begin_twophase))
event.listen(self, 'prepare_twophase',
adapt_listener(listener.prepare_twophase))
event.listen(self, 'rollback_twophase',
adapt_listener(listener.rollback_twophase))
event.listen(self, 'commit_twophase',
adapt_listener(listener.commit_twophase))
def execute(self, conn, execute, clauseelement, *multiparams, **params):
return execute(clauseelement, *multiparams, **params)
def cursor_execute(self, execute, cursor, statement, parameters,
context, executemany):
return execute(cursor, statement, parameters, context)
def begin(self, conn, begin):
return begin()
def rollback(self, conn, rollback):
return rollback()
def commit(self, conn, commit):
return commit()
def savepoint(self, conn, savepoint, name=None):
return savepoint(name=name)
|
MIT License
|
z-zheng/simplecv
|
simplecv/data/seg_transforms.py
|
THRandomCrop.__call__
|
python
|
def __call__(self, images, masks=None):
im_h, im_w, _ = images.shape
c_h, c_w = self.crop_size
pad_h = c_h - im_h
pad_w = c_w - im_w
if pad_h > 0 or pad_w > 0:
images = F.pad(images, [0, 0, 0, max(pad_w, 0), 0, max(pad_h, 0)], mode='constant', value=0)
masks = F.pad(masks, [0, max(pad_w, 0), 0, max(pad_h, 0)], mode='constant', value=0)
im_h, im_w, _ = images.shape
y_lim = im_h - c_h + 1
x_lim = im_w - c_w + 1
ymin = int(np.random.randint(0, y_lim, 1))
xmin = int(np.random.randint(0, x_lim, 1))
xmax = xmin + c_w
ymax = ymin + c_h
ret = list()
images_tensor = images[ymin:ymax, xmin:xmax, :]
ret.append(images_tensor)
if masks is not None:
masks_tensor = masks[ymin:ymax, xmin:xmax]
ret.append(masks_tensor)
return ret
|
Args:
images: 3-D tensor of shape [height, width, channel]
masks: 2-D tensor of shape [height, width]
Returns:
images_tensor
masks_tensor
|
https://github.com/z-zheng/simplecv/blob/4fa67581441ad150e82b3aa2c394a921f74e4ecd/simplecv/data/seg_transforms.py#L120-L155
|
import numpy as np
import torch
import torch.nn.functional as F
from simplecv.util import tensor_util
from simplecv.data import preprocess
class THToTensor(object):
def __call__(self, images, masks):
return tensor_util.to_tensor([images, masks])
class THNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, images, masks=None):
images_tensor = preprocess.mean_std_normalize(images,
self.mean,
self.std)
return images_tensor, masks
class THRandomRotate90k(object):
def __init__(self, p=0.5, k=None):
self.p = p
self.k = k
def __call__(self, images, masks=None):
k = int(np.random.choice([1, 2, 3], 1)[0]) if self.k is None else self.k
ret = list()
images_tensor = torch.rot90(images, k, [0, 1])
ret.append(images_tensor)
if masks is not None:
masks_tensor = torch.rot90(masks, k, [0, 1])
ret.append(masks_tensor)
return ret if len(ret) > 1 else ret[0]
class THRandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, images, masks=None):
ret = list()
if self.p < np.random.uniform():
ret.append(images)
if masks is not None:
ret.append(masks)
return ret if len(ret) > 1 else ret[0]
images_tensor = torch.flip(images, [1])
ret.append(images_tensor)
if masks is not None:
masks_tensor = torch.flip(masks, [1])
ret.append(masks_tensor)
return ret if len(ret) > 1 else ret[0]
class THRandomVerticalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, images, masks=None):
ret = list()
if self.p < np.random.uniform():
ret.append(images)
if masks is not None:
ret.append(masks)
return ret if len(ret) > 1 else ret[0]
images_tensor = torch.flip(images, [0])
ret.append(images_tensor)
if masks is not None:
masks_tensor = torch.flip(masks, [0])
ret.append(masks_tensor)
return ret if len(ret) > 1 else ret[0]
class THRandomCrop(object):
def __init__(self, crop_size=(512, 512)):
self.crop_size = crop_size
|
MIT License
|
huntermcgushion/hyperparameter_hunter
|
hyperparameter_hunter/i_o/recorders.py
|
BaseRecorder.format_result
|
python
|
def format_result(self):
|
Set :attr:`BaseRecorder.result` to the final result object to be saved by
:meth:`BaseRecorder.save_result`
|
https://github.com/huntermcgushion/hyperparameter_hunter/blob/28b1d48e01a993818510811b82a677e0a7a232b2/hyperparameter_hunter/i_o/recorders.py#L99-L101
|
from hyperparameter_hunter.data import OOFDataset, HoldoutDataset, TestDataset
from hyperparameter_hunter.i_o.exceptions import EnvironmentInactiveError, EnvironmentInvalidError
from hyperparameter_hunter.i_o.leaderboards import GlobalLeaderboard
from hyperparameter_hunter.settings import G
from hyperparameter_hunter.utils.file_utils import write_json, add_to_json, make_dirs, read_json
from hyperparameter_hunter.utils.file_utils import RetryMakeDirs
from hyperparameter_hunter.utils.general_utils import subdict
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from platform import node
import shutil
from sys import exc_info
class BaseRecorder(metaclass=ABCMeta):
def __init__(self):
self.result_path = None
self.result = None
try:
self.result_path = G.Env.result_paths[self.result_path_key]
except AttributeError as _ex:
if G.Env is None:
raise EnvironmentInactiveError(str(_ex)).with_traceback(exc_info()[2])
if not hasattr(G.Env, "result_paths"):
_err_message = f"{_ex!s}\nG.Env missing 'result_paths' attr"
raise EnvironmentInvalidError(_err_message).with_traceback(exc_info()[2])
except KeyError as _ex:
_err_message = f"{_ex!s}\nG.Env.result_paths missing the key: '{self.result_path_key}'"
raise EnvironmentInvalidError(_err_message).with_traceback(exc_info()[2])
if self.result_path is None:
return
for required_attribute in self.required_attributes:
try:
setattr(self, required_attribute, getattr(G.Env.current_task, required_attribute))
except AttributeError as _ex:
if G.Env.current_task is None:
_err_message = f"{_ex!s}\nNo active experiment found"
raise EnvironmentInvalidError(_err_message).with_traceback(exc_info()[2])
raise EnvironmentInvalidError(str(_ex)).with_traceback(exc_info()[2])
@property
@abstractmethod
def result_path_key(self) -> str:
@property
@abstractmethod
def required_attributes(self) -> list:
@abstractmethod
|
MIT License
|
jameskbowler/fxcollect
|
fx_collect/broker/fxcm/tools.py
|
FXCMOffersTable.get_market_status
|
python
|
def get_market_status(self, offer):
status = self._session.get_offer_trading_status(offer)
return status
|
TODO Doc string.....
|
https://github.com/jameskbowler/fxcollect/blob/02d8a552aad55f5002eda864d674a9f0c21dff8f/fx_collect/broker/fxcm/tools.py#L45-L50
|
import numpy as np
try:
from fx_collect.utils.date_utils import fm_ole, to_ole
except ImportError:
from utils.date_utils import fm_ole, to_ole
from datetime import datetime, timedelta
from .base import AbstractFXCMBroker
class FXCMOffersTable(AbstractFXCMBroker):
def __init__(self):
self._session = self._offers_table()
def get_status(self, offers):
offers_dict = {}
for o in offers:
offers_dict[o] = {
'status': self.get_market_status(o),
'timestamp': self.get_offer_timestamp(o)
}
return offers_dict
def get_current_bid_ask(self, offer):
bid, ask = self._session.get_bid_ask(offer)
if bid > 0 and ask > 0:
return bid, ask
return None, None
def get_offers(self):
return self._session.get_offers()
|
MIT License
|
qecsim/qecsim
|
src/qecsim/app.py
|
merge
|
python
|
def merge(*data_list):
grp_keys = ('code', 'n_k_d', 'error_model', 'decoder', 'error_probability', 'time_steps',
'measurement_error_probability')
scalar_val_keys = ('n_run', 'n_fail', 'n_success', 'error_weight_total', 'wall_time')
scalar_zero_vals = (0, 0, 0, 0, 0.0)
array_val_keys = ('n_logical_commutations', 'custom_totals',)
grps_to_scalar_sums = collections.OrderedDict()
grps_to_array_sums = {}
for runs_data in itertools.chain(*data_list):
defaults_0_16 = {'time_steps': 1, 'measurement_error_probability': 0.0}
defaults_1_0b6 = {'n_logical_commutations': None, 'custom_totals': None}
runs_data = dict(itertools.chain(defaults_0_16.items(), defaults_1_0b6.items(), runs_data.items()))
group_id = tuple(tuple(v) if isinstance(v, list) else v for v in (runs_data[k] for k in grp_keys))
scalar_vals = tuple(runs_data[k] for k in scalar_val_keys)
scalar_sums = grps_to_scalar_sums.get(group_id, scalar_zero_vals)
scalar_sums = tuple(sum(x) for x in zip(scalar_vals, scalar_sums))
grps_to_scalar_sums[group_id] = scalar_sums
array_vals = tuple(None if runs_data[k] is None else tuple(runs_data[k]) for k in array_val_keys)
try:
array_sums = []
for array_sum, array_val in zip(grps_to_array_sums[group_id], array_vals):
if array_sum is None and array_val is None:
array_sums.append(None)
elif (array_sum is None or array_val is None) or (len(array_sum) != len(array_val)):
raise ValueError('Mismatch between array values to sum: {}, {}'.format(array_sum, array_val))
else:
array_sums.append(tuple(sum(x) for x in zip(array_sum, array_val)))
array_sums = tuple(array_sums)
except KeyError:
array_sums = array_vals
grps_to_array_sums[group_id] = array_sums
merged_data_list = [dict(zip(grp_keys + scalar_val_keys + array_val_keys,
group_id + scalar_sums + grps_to_array_sums[group_id]))
for group_id, scalar_sums in grps_to_scalar_sums.items()]
for runs_data in merged_data_list:
_add_rate_statistics(runs_data)
return merged_data_list
|
Merge any number of lists of aggregated runs data.
Notes:
* The runs data is in the format specified in :func:`run` and :func:`fun_ftp`.
* Merged data is grouped by: `(code, n_k_d, error_model, decoder, error_probability, time_steps,
measurement_error_probability)`.
* The following scalar values are summed: `n_run`, `n_success`, `n_fail`, `error_weight_total`, `wall_time`.
* The following array values are summed: `n_logical_commutations`, `custom_totals`.
* The following values are recalculated: `logical_failure_rate`, `physical_error_rate`.
* The following values are *not* currently recalculated: `error_weight_pvar`.
:param data_list: List of aggregated runs data.
:type data_list: list of dict
:return: Merged list of aggregated runs data.
:rtype: list of dict
:raises ValueError: if there is a mismatch between array values to be summed.
|
https://github.com/qecsim/qecsim/blob/24d6b8a320b292461b66b68fe4fba40c9ddc2257/src/qecsim/app.py#L535-L602
|
import collections
import itertools
import json
import logging
import statistics
import time
import numpy as np
from qecsim import paulitools as pt
from qecsim.error import QecsimError
from qecsim.model import DecodeResult
logger = logging.getLogger(__name__)
def _run_once(mode, code, time_steps, error_model, decoder, error_probability, measurement_error_probability, rng):
assert (mode == 'ideal' and time_steps == 1) or mode == 'ftp'
step_errors, step_syndromes, step_measurement_errors = [], [], []
for _ in range(time_steps):
step_error = error_model.generate(code, error_probability, rng)
step_errors.append(step_error)
step_syndrome = pt.bsp(step_error, code.stabilizers.T)
step_syndromes.append(step_syndrome)
if measurement_error_probability:
step_measurement_error = rng.choice(
(0, 1),
size=step_syndrome.shape,
p=(1 - measurement_error_probability, measurement_error_probability)
)
else:
step_measurement_error = np.zeros(step_syndrome.shape, dtype=int)
step_measurement_errors.append(step_measurement_error)
if logger.isEnabledFor(logging.DEBUG):
logger.debug('run: step_errors={}'.format(step_errors))
logger.debug('run: step_syndromes={}'.format(step_syndromes))
logger.debug('run: step_measurement_errors={}'.format(step_measurement_errors))
error = np.bitwise_xor.reduce(step_errors)
if logger.isEnabledFor(logging.DEBUG):
logger.debug('run: error={}'.format(error))
syndrome = []
for t in range(time_steps):
syndrome.append(step_measurement_errors[t - 1] ^ step_syndromes[t] ^ step_measurement_errors[t])
syndrome = np.array(syndrome)
if logger.isEnabledFor(logging.DEBUG):
logger.debug('run: syndrome={}'.format(syndrome))
ctx = {'error_model': error_model, 'error_probability': error_probability, 'error': error,
'step_errors': step_errors, 'measurement_error_probability': measurement_error_probability,
'step_measurement_errors': step_measurement_errors}
if mode == 'ideal':
decoding = decoder.decode(code, syndrome[0], **ctx)
if mode == 'ftp':
decoding = decoder.decode_ftp(code, time_steps, syndrome, **ctx)
if logger.isEnabledFor(logging.DEBUG):
logger.debug('run: decoding={}'.format(decoding))
if not isinstance(decoding, DecodeResult):
decoding = DecodeResult(recovery=decoding)
success = decoding.success
logical_commutations = decoding.logical_commutations
custom_values = decoding.custom_values
if decoding.recovery is not None:
recovered = decoding.recovery ^ error
commutes_with_stabilizers = np.all(pt.bsp(recovered, code.stabilizers.T) == 0)
if not commutes_with_stabilizers:
log_data = {
'code': repr(code), 'error_model': repr(error_model), 'decoder': repr(decoder),
'error': pt.pack(error), 'recovery': pt.pack(decoding.recovery),
'step_errors': [pt.pack(v) for v in step_errors],
'step_measurement_errors': [pt.pack(v) for v in step_measurement_errors],
}
logger.warning('RECOVERY DOES NOT RETURN TO CODESPACE: {}'.format(json.dumps(log_data, sort_keys=True)))
resolved_logical_commutations = pt.bsp(recovered, code.logicals.T)
commutes_with_logicals = np.all(resolved_logical_commutations == 0)
resolved_success = commutes_with_stabilizers and commutes_with_logicals
success = resolved_success if success is None else success
logical_commutations = resolved_logical_commutations if logical_commutations is None else logical_commutations
if logger.isEnabledFor(logging.DEBUG):
logger.debug('run: success={}'.format(success))
logger.debug('run: logical_commutations={!r}'.format(logical_commutations))
logger.debug('run: custom_values={!r}'.format(custom_values))
data = {
'error_weight': pt.bsf_wt(np.array(step_errors)),
'success': bool(success),
'logical_commutations': logical_commutations,
'custom_values': custom_values,
}
return data
def run_once(code, error_model, decoder, error_probability, rng=None):
if not (0 <= error_probability <= 1):
raise ValueError('Error probability must be in [0, 1].')
rng = np.random.default_rng() if rng is None else rng
return _run_once('ideal', code, 1, error_model, decoder, error_probability, 0.0, rng)
def run_once_ftp(code, time_steps, error_model, decoder, error_probability,
measurement_error_probability=None, rng=None):
if not time_steps >= 1:
raise ValueError('Time steps must be integer >= 1.')
if not (0 <= error_probability <= 1):
raise ValueError('Error probability must be in [0, 1].')
if not (measurement_error_probability is None or (0 <= measurement_error_probability <= 1)):
raise ValueError('Measurement error probability must be None or in [0, 1].')
if measurement_error_probability is None:
measurement_error_probability = 0.0 if time_steps == 1 else error_probability
rng = np.random.default_rng() if rng is None else rng
return _run_once('ftp', code, time_steps, error_model, decoder, error_probability, measurement_error_probability,
rng)
def _run(mode, code, time_steps, error_model, decoder, error_probability, measurement_error_probability,
max_runs=None, max_failures=None, random_seed=None):
assert (mode == 'ideal' and time_steps == 1) or mode == 'ftp'
if max_runs is None and max_failures is None:
max_runs = 1
if logger.isEnabledFor(logging.DEBUG):
logger.debug('run: code={}, time_steps={}, error_model={}, decoder={}, error_probability={},'
'measurement_error_probability={} max_runs={}, max_failures={}, random_seed={}.'
.format(code, time_steps, error_model, decoder, error_probability,
measurement_error_probability, max_runs, max_failures, random_seed))
wall_time_start = time.perf_counter()
runs_data = {
'code': code.label,
'n_k_d': code.n_k_d,
'time_steps': time_steps,
'error_model': error_model.label,
'decoder': decoder.label,
'error_probability': error_probability,
'measurement_error_probability': measurement_error_probability,
'n_run': 0,
'n_success': 0,
'n_fail': 0,
'n_logical_commutations': None,
'custom_totals': None,
'error_weight_total': 0,
'error_weight_pvar': 0.0,
'logical_failure_rate': 0.0,
'physical_error_rate': 0.0,
'wall_time': 0.0,
}
seed_sequence = np.random.SeedSequence(random_seed)
logger.info('run: np.random.SeedSequence.entropy={}'.format(seed_sequence.entropy))
rng = np.random.default_rng(seed_sequence)
array_sum_keys = ('n_logical_commutations', 'custom_totals',)
array_val_keys = ('logical_commutations', 'custom_values',)
error_weights = []
while ((max_runs is None or runs_data['n_run'] < max_runs)
and (max_failures is None or runs_data['n_fail'] < max_failures)):
data = _run_once(mode, code, time_steps, error_model, decoder, error_probability,
measurement_error_probability, rng)
runs_data['n_run'] += 1
if data['success']:
runs_data['n_success'] += 1
else:
runs_data['n_fail'] += 1
for array_sum_key, array_val_key in zip(array_sum_keys, array_val_keys):
array_sum = runs_data[array_sum_key]
array_val = data[array_val_key]
if runs_data['n_run'] == 1 and array_val is not None:
array_sum = np.zeros_like(array_val)
if array_sum is None and array_val is None:
array_sum = None
elif (array_sum is None or array_val is None) or (array_sum.shape != array_val.shape):
raise QecsimError(
'Mismatch between {} values to sum: {}, {}'.format(array_val_key, array_sum, array_val))
else:
array_sum = array_sum + array_val
runs_data[array_sum_key] = array_sum
error_weights.append(data['error_weight'])
runs_data['error_weight_total'] = sum(error_weights)
runs_data['error_weight_pvar'] = statistics.pvariance(error_weights)
_add_rate_statistics(runs_data)
for array_sum_key in array_sum_keys:
if runs_data[array_sum_key] is not None:
runs_data[array_sum_key] = tuple(runs_data[array_sum_key].tolist())
runs_data['wall_time'] = time.perf_counter() - wall_time_start
if logger.isEnabledFor(logging.DEBUG):
logger.debug('run: aggregated_data={}'.format(runs_data))
return runs_data
def run(code, error_model, decoder, error_probability, max_runs=None, max_failures=None, random_seed=None):
if not (0 <= error_probability <= 1):
raise ValueError('Error probability must be in [0, 1].')
return _run('ideal', code, 1, error_model, decoder, error_probability, 0.0, max_runs, max_failures, random_seed)
def run_ftp(code, time_steps, error_model, decoder, error_probability,
measurement_error_probability=None, max_runs=None, max_failures=None, random_seed=None):
if not (0 <= error_probability <= 1):
raise ValueError('Error probability must be in [0, 1].')
if not time_steps >= 1:
raise ValueError('Time steps must be integer >= 1.')
if not (measurement_error_probability is None or (0 <= measurement_error_probability <= 1)):
raise ValueError('Measurement error probability must be None or in [0, 1].')
if measurement_error_probability is None:
measurement_error_probability = 0.0 if time_steps == 1 else error_probability
return _run('ftp', code, time_steps, error_model, decoder, error_probability, measurement_error_probability,
max_runs, max_failures, random_seed)
def _add_rate_statistics(runs_data):
time_steps = runs_data['time_steps']
n_run = runs_data['n_run']
n_fail = runs_data['n_fail']
error_weight_total = runs_data['error_weight_total']
code_n_qubits = runs_data['n_k_d'][0]
runs_data['logical_failure_rate'] = n_fail / n_run
runs_data['physical_error_rate'] = error_weight_total / code_n_qubits / time_steps / n_run
|
BSD 3-Clause New or Revised License
|
mfitzp/padua
|
padua/analysis.py
|
enrichment_from_evidence
|
python
|
def enrichment_from_evidence(dfe, modification="Phospho (STY)"):
dfe = dfe.reset_index().set_index('Experiment')
dfe['Modifications'] = np.array([modification in m for m in dfe['Modifications']])
dfe = dfe.set_index('Modifications', append=True)
dfes = dfe.sum(axis=0, level=[0,1]).T
columns = dfes.sum(axis=1, level=0).columns
total = dfes.sum(axis=1, level=0).values.flatten()
modified = dfes.iloc[0, dfes.columns.get_level_values('Modifications').values ].values
enrichment = modified / total
return pd.DataFrame([enrichment], columns=columns, index=['% Enrichment'])
|
Calculate relative enrichment of peptide modifications from evidence.txt.
Taking a modifiedsitepeptides ``DataFrame`` returns the relative enrichment of the specified
modification in the table.
The returned data columns are generated from the input data columns.
:param df: Pandas ``DataFrame`` of evidence
:return: Pandas ``DataFrame`` of percentage modifications in the supplied data.
|
https://github.com/mfitzp/padua/blob/8b14bf4d2f895da6aea5d7885d409315bd303ec6/padua/analysis.py#L232-L258
|
import pandas as pd
import numpy as np
import requests
import warnings
import scipy as sp
from scipy import stats
try:
import sklearn
except ImportError:
sklearn = False
else:
from sklearn.decomposition import PCA
try:
from StringIO import StringIO
except ImportError:
from io import StringIO
from . import filters, process
from .utils import get_protein_id
def correlation(df, rowvar=False):
df = df.copy()
maskv = np.ma.masked_where(np.isnan(df.values), df.values)
cdf = np.ma.corrcoef(maskv, rowvar=False)
cdf = pd.DataFrame(np.array(cdf))
cdf.columns = df.columns
cdf.index = df.columns
cdf = cdf.sort_index(level=0, axis=1)
cdf = cdf.sort_index(level=0)
return cdf
def pca(df, n_components=2, mean_center=False, **kwargs):
if not sklearn:
assert('This library depends on scikit-learn (sklearn) to perform PCA analysis')
from sklearn.decomposition import PCA
df = df.copy()
df[ np.isnan(df) ] = 0
if mean_center:
mean = np.mean(df.values, axis=0)
df = df - mean
pca = PCA(n_components=n_components, **kwargs)
pca.fit(df.values.T)
scores = pd.DataFrame(pca.transform(df.values.T)).T
scores.index = ['Principal Component %d (%.2f%%)' % ( (n+1), pca.explained_variance_ratio_[n]*100 ) for n in range(0, scores.shape[0])]
scores.columns = df.columns
weights = pd.DataFrame(pca.components_).T
weights.index = df.index
weights.columns = ['Weights on Principal Component %d' % (n+1) for n in range(0, weights.shape[1])]
return scores, weights
def plsda(df, a, b, n_components=2, mean_center=False, scale=True, **kwargs):
if not sklearn:
assert('This library depends on scikit-learn (sklearn) to perform PLS-DA')
from sklearn.cross_decomposition import PLSRegression
df = df.copy()
df[ np.isnan(df) ] = 0
if mean_center:
mean = np.mean(df.values, axis=0)
df = df - mean
sxa, _ = df.columns.get_loc_level(a)
sxb, _ = df.columns.get_loc_level(b)
dfa = df.iloc[:, sxa]
dfb = df.iloc[:, sxb]
dff = pd.concat([dfa, dfb], axis=1)
y = np.ones(dff.shape[1])
y[np.arange(dfa.shape[1])] = 0
plsr = PLSRegression(n_components=n_components, scale=scale, **kwargs)
plsr.fit(dff.values.T, y)
x_scores = plsr.transform(df.values.T)
scores = pd.DataFrame(x_scores.T)
scores.index = ['Latent Variable %d' % (n+1) for n in range(0, scores.shape[0])]
scores.columns = df.columns
weights = pd.DataFrame(plsr.x_weights_)
weights.index = df.index
weights.columns = ['Weights on Latent Variable %d' % (n+1) for n in range(0, weights.shape[1])]
loadings = pd.DataFrame(plsr.x_loadings_)
loadings.index = df.index
loadings.columns = ['Loadings on Latent Variable %d' % (n+1) for n in range(0, loadings.shape[1])]
return scores, weights, loadings
def plsr(df, v, n_components=2, mean_center=False, scale=True, **kwargs):
if not sklearn:
assert('This library depends on scikit-learn (sklearn) to perform PLS-DA')
from sklearn.cross_decomposition import PLSRegression
df = df.copy()
df[ np.isnan(df) ] = 0
if mean_center:
mean = np.mean(df.values, axis=0)
df = df - mean
plsr = PLSRegression(n_components=n_components, scale=scale, **kwargs)
plsr.fit(df.values.T, v)
scores = pd.DataFrame(plsr.x_scores_.T)
scores.index = ['Latent Variable %d' % (n+1) for n in range(0, scores.shape[0])]
scores.columns = df.columns
weights = pd.DataFrame(plsr.x_weights_)
weights.index = df.index
weights.columns = ['Weights on Latent Variable %d' % (n+1) for n in range(0, weights.shape[1])]
loadings = pd.DataFrame(plsr.x_loadings_)
loadings.index = df.index
loadings.columns = ['Loadings on Latent Variable %d' % (n+1) for n in range(0, loadings.shape[1])]
predicted = plsr.predict(df.values.T)
return scores, weights, loadings, predicted
def _non_zero_sum(df):
dfo = df.sum(axis=0, level=0)
for c in df.columns.values:
dft = df[c]
dfo[c] = dft[ dft > 0].sum(axis=0, level=0)
return dfo
|
BSD 2-Clause Simplified License
|
matttunny/aws-transit-gateway-demo-multiaccount
|
share-resources/docutils/parsers/rst/__init__.py
|
Directive.directive_error
|
python
|
def directive_error(self, level, message):
return DirectiveError(level, message)
|
Return a DirectiveError suitable for being thrown as an exception.
Call "raise self.directive_error(level, message)" from within
a directive implementation to return one single system message
at level `level`, which automatically gets the directive block
and the line number added.
Preferably use the `debug`, `info`, `warning`, `error`, or `severe`
wrapper methods, e.g. ``self.error(message)`` to generate an
ERROR-level directive error.
|
https://github.com/matttunny/aws-transit-gateway-demo-multiaccount/blob/5766f8b96ee5c6af22eea02c79c580493ad5e880/share-resources/docutils/parsers/rst/__init__.py#L337-L350
|
__docformat__ = 'reStructuredText'
import docutils.parsers
import docutils.statemachine
from docutils.parsers.rst import states
from docutils import frontend, nodes, Component
from docutils.transforms import universal
class Parser(docutils.parsers.Parser):
supported = ('restructuredtext', 'rst', 'rest', 'restx', 'rtxt', 'rstx')
settings_spec = (
'reStructuredText Parser Options',
None,
(('Recognize and link to standalone PEP references (like "PEP 258").',
['--pep-references'],
{'action': 'store_true', 'validator': frontend.validate_boolean}),
('Base URL for PEP references '
'(default "http://www.python.org/dev/peps/").',
['--pep-base-url'],
{'metavar': '<URL>', 'default': 'http://www.python.org/dev/peps/',
'validator': frontend.validate_url_trailing_slash}),
('Template for PEP file part of URL. (default "pep-%04d")',
['--pep-file-url-template'],
{'metavar': '<URL>', 'default': 'pep-%04d'}),
('Recognize and link to standalone RFC references (like "RFC 822").',
['--rfc-references'],
{'action': 'store_true', 'validator': frontend.validate_boolean}),
('Base URL for RFC references (default "http://tools.ietf.org/html/").',
['--rfc-base-url'],
{'metavar': '<URL>', 'default': 'http://tools.ietf.org/html/',
'validator': frontend.validate_url_trailing_slash}),
('Set number of spaces for tab expansion (default 8).',
['--tab-width'],
{'metavar': '<width>', 'type': 'int', 'default': 8,
'validator': frontend.validate_nonnegative_int}),
('Remove spaces before footnote references.',
['--trim-footnote-reference-space'],
{'action': 'store_true', 'validator': frontend.validate_boolean}),
('Leave spaces before footnote references.',
['--leave-footnote-reference-space'],
{'action': 'store_false', 'dest': 'trim_footnote_reference_space'}),
('Disable directives that insert the contents of external file '
'("include" & "raw"); replaced with a "warning" system message.',
['--no-file-insertion'],
{'action': 'store_false', 'default': 1,
'dest': 'file_insertion_enabled',
'validator': frontend.validate_boolean}),
('Enable directives that insert the contents of external file '
'("include" & "raw"). Enabled by default.',
['--file-insertion-enabled'],
{'action': 'store_true'}),
('Disable the "raw" directives; replaced with a "warning" '
'system message.',
['--no-raw'],
{'action': 'store_false', 'default': 1, 'dest': 'raw_enabled',
'validator': frontend.validate_boolean}),
('Enable the "raw" directive. Enabled by default.',
['--raw-enabled'],
{'action': 'store_true'}),
('Token name set for parsing code with Pygments: one of '
'"long", "short", or "none (no parsing)". Default is "long".',
['--syntax-highlight'],
{'choices': ['long', 'short', 'none'],
'default': 'long', 'metavar': '<format>'}),
('Change straight quotation marks to typographic form: '
'one of "yes", "no", "alt[ernative]" (default "no").',
['--smart-quotes'],
{'default': False, 'metavar': '<yes/no/alt>',
'validator': frontend.validate_ternary}),
('Characters to use as "smart quotes" for <language>. ',
['--smartquotes-locales'],
{'metavar': '<language:quotes[,language:quotes,...]>',
'action': 'append',
'validator': frontend.validate_smartquotes_locales}),
('Inline markup recognized at word boundaries only '
'(adjacent to punctuation or whitespace). '
'Force character-level inline markup recognition with '
'"\\ " (backslash + space). Default.',
['--word-level-inline-markup'],
{'action': 'store_false', 'dest': 'character_level_inline_markup'}),
('Inline markup recognized anywhere, regardless of surrounding '
'characters. Backslash-escapes must be used to avoid unwanted '
'markup recognition. Useful for East Asian languages. '
'Experimental.',
['--character-level-inline-markup'],
{'action': 'store_true', 'default': False,
'dest': 'character_level_inline_markup'}),
))
config_section = 'restructuredtext parser'
config_section_dependencies = ('parsers',)
def __init__(self, rfc2822=False, inliner=None):
if rfc2822:
self.initial_state = 'RFC2822Body'
else:
self.initial_state = 'Body'
self.state_classes = states.state_classes
self.inliner = inliner
def get_transforms(self):
return Component.get_transforms(self) + [
universal.SmartQuotes]
def parse(self, inputstring, document):
self.setup_parse(inputstring, document)
self.statemachine = states.RSTStateMachine(
state_classes=self.state_classes,
initial_state=self.initial_state,
debug=document.reporter.debug_flag)
inputlines = docutils.statemachine.string2lines(
inputstring, tab_width=document.settings.tab_width,
convert_whitespace=True)
self.statemachine.run(inputlines, document, inliner=self.inliner)
self.finish_parse()
class DirectiveError(Exception):
def __init__(self, level, message):
Exception.__init__(self)
self.level = level
self.msg = message
class Directive(object):
required_arguments = 0
optional_arguments = 0
final_argument_whitespace = False
option_spec = None
has_content = False
def __init__(self, name, arguments, options, content, lineno,
content_offset, block_text, state, state_machine):
self.name = name
self.arguments = arguments
self.options = options
self.content = content
self.lineno = lineno
self.content_offset = content_offset
self.block_text = block_text
self.state = state
self.state_machine = state_machine
def run(self):
raise NotImplementedError('Must override run() is subclass.')
|
MIT License
|
intel/dffml
|
dffml/service/dev.py
|
Install.dep_check
|
python
|
def dep_check(
plugin_deps: Dict[Tuple[str, str], Dict[str, Callable[[], bool]]],
skip: Optional[List[Tuple[str, str]]] = None,
):
if skip is None:
skip = []
missing_deps = {}
for package, deps in plugin_deps.items():
plugin_path = "/".join(package)
if plugin_path in skip:
continue
missing_plugin_deps = {
name: check_if_dep_found()
for name, check_if_dep_found in deps.items()
}
if not all(missing_plugin_deps.values()):
missing_deps[plugin_path] = [
name
for name, found in missing_plugin_deps.items()
if not found
]
if missing_deps:
msg = "The following plugins have unmet dependencies and could not be installed\n\n"
for plugin_path, deps in missing_deps.items():
msg += f" {plugin_path}\n\n"
for name in deps:
msg += f" {name}\n"
msg += "\n"
msg += "Install missing dependencies and re-run plugin install, or skip with\n\n"
msg += " -skip "
msg += " ".join(missing_deps.keys())
raise MissingDependenciesError(msg)
|
Check if all dependencies are installed prior to running setup.py
installs of plugins
|
https://github.com/intel/dffml/blob/e7a356dfe8fd6fdf3cac7f8c218abc7d650fd93c/dffml/service/dev.py#L370-L406
|
import os
import re
import sys
import ast
import json
import pydoc
import shutil
import asyncio
import pathlib
import getpass
import tempfile
import platform
import functools
import importlib
import itertools
import contextlib
import http.server
import configparser
import socketserver
import pkg_resources
import unittest.mock
import urllib.request
import importlib.util
from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple
from ..util.os import chdir, MODE_BITS_SECURE
from ..version import VERSION
from ..util.skel import Skel, SkelTemplateConfig
from ..util.cli.cmd import CMD
from ..util.entrypoint import load
from ..base import MissingConfig, config as configdataclass, field
from ..util.packaging import is_develop
from ..util.net import cached_download
from ..util.data import traverse_config_get, export
from ..util.subprocess import run_command
from ..df.types import Input, DataFlow
from ..df.memory import MemoryOrchestrator
from ..configloader.configloader import BaseConfigLoader
from ..configloader.json import JSONConfigLoader
from ..operation.output import GetSingle
from ..plugins import (
CORE_PLUGINS,
CORE_PLUGIN_DEPS,
PACKAGE_NAMES_TO_DIRECTORY,
PACKAGE_DIRECTORY_TO_NAME,
)
config = configparser.ConfigParser()
config.read(Path("~", ".gitconfig").expanduser())
USER = "unknown"
with contextlib.suppress(KeyError):
USER = getpass.getuser()
NAME = config.get("user", "name", fallback="Unknown")
EMAIL = config.get("user", "email", fallback="unknown@example.com")
REPO_ROOT = pathlib.Path(__file__).parents[2]
async def get_cmd_output(cmd: List[str]):
print(f"$ {' '.join(cmd)}")
proc = await asyncio.create_subprocess_shell(
" ".join(cmd),
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
cwd=REPO_ROOT,
)
await proc.wait()
stdout, stderr = await proc.communicate()
if proc.returncode != 0:
raise RuntimeError(stderr)
output = stdout.decode().strip()
return output
def create_from_skel(plugin_type):
@configdataclass
class CreateCMDConfig:
package: str = field("Name of python package to create")
user: str = field(f"Your username (default: {USER})", default=USER)
name: str = field(
f"Your name (default: {NAME})", default=NAME,
)
email: str = field(
f"Your email (default: {EMAIL})", default=EMAIL,
)
description: str = field(
f"Description of python package (default: DFFML {plugin_type} {{package name}})",
default=None,
)
target: str = field(
f"Directory to put code in (default: same as package name)",
default=None,
)
class CreateCMD(CMD):
skel = Skel()
CONFIG = CreateCMDConfig
async def run(self):
if not self.description:
self.description = f"DFFML {plugin_type} {self.package}"
if not self.target:
self.target = self.package
self.skel.from_template(
plugin_type,
self.target,
SkelTemplateConfig(
org=self.user,
package=self.package,
description=self.description,
name=self.name,
email=self.email,
dffml_version=VERSION,
),
)
for cmd in [
["git", "init"],
["git", "add", "-A"],
["git", "commit", "-snm", "housekeeping: Initial Commit"],
]:
await run_command(
cmd, logger=self.logger, cwd=str(self.target)
)
return CreateCMD
class Create(CMD):
model = create_from_skel("model")
operations = create_from_skel("operations")
service = create_from_skel("service")
source = create_from_skel("source")
config = create_from_skel("config")
blank = create_from_skel("blank")
class Link(CMD):
skel = Skel()
async def run(self):
for plugin in self.skel.plugins():
self.skel.create_symlinks(plugin)
class Skeleton(CMD):
link = Link
@configdataclass
class RunConfig:
operation: str = field("Python path to operation")
class Run(CMD):
CONFIG = RunConfig
async def run(self):
sys.path.insert(0, os.getcwd())
modname, qualname_separator, qualname = self.operation.partition(":")
obj = importlib.import_module(modname)
if qualname_separator:
for attr in qualname.split("."):
obj = getattr(obj, attr)
self.logger.debug("Loaded operation: %s(%s)", attr, obj)
return await self.run_op(attr, obj)
def config_get(self, op, key, definition):
try:
value = traverse_config_get(self.extra_config, key)
except KeyError as error:
raise MissingConfig("%s missing %s" % (op.name, key))
if "Dict" in definition.primitive:
self.logger.critical(
"Dict / spec'd arguments are not yet completely handled"
)
value = json.loads(value[0])
else:
typecast = pydoc.locate(
definition.primitive.replace("List[", "").replace("]", "")
)
if definition.primitive.startswith("List["):
value = list(map(typecast, value))
else:
value = typecast(value[0])
if typecast is str and value in ["True", "False"]:
raise MissingConfig("%s missing %s" % (op.name, key))
return value
async def run_op(self, name, opimp):
inputs = []
for name, definition in opimp.op.inputs.items():
try:
inputs.append(
Input(
value=self.config_get(opimp.op, name, definition),
definition=definition,
)
)
except MissingConfig as error:
error.args = (f"{opimp.op.inputs}: {error.args[0]}",)
raise error
config = {}
extra_config = self.extra_config
for i in range(0, 2):
if "config" in extra_config and len(extra_config["config"]):
extra_config = extra_config["config"]
if extra_config:
config = extra_config
dataflow = DataFlow.auto(GetSingle, opimp)
if config:
dataflow.configs[opimp.op.name] = config
async with MemoryOrchestrator.withconfig({}) as orchestrator:
async with orchestrator(dataflow) as octx:
async for ctx, results in octx.run(
[
Input(
value=[
definition.name
for definition in opimp.op.outputs.values()
],
definition=GetSingle.op.inputs["spec"],
),
*inputs,
]
):
return results
@configdataclass
class ListEntrypointsConfig:
entrypoint: str = field("Entrypoint to list, example: dffml.model")
class ListEntrypoints(CMD):
CONFIG = ListEntrypointsConfig
async def run(self):
for entrypoint in pkg_resources.iter_entry_points(self.entrypoint):
print(f"{entrypoint} -> {entrypoint.dist!r}")
class Entrypoints(CMD):
_list = ListEntrypoints
@configdataclass
class ExportConfig:
export: str = field("Python path to object to export",)
configloader: BaseConfigLoader = field(
"ConfigLoader to use", default=JSONConfigLoader,
)
not_linked: bool = field(
"Do not export dataflows as linked",
default=False,
action="store_true",
)
class Export(CMD):
CONFIG = ExportConfig
async def run(self):
async with self.configloader() as configloader:
async with configloader() as loader:
for obj in load(self.export, relative=os.getcwd()):
self.logger.debug("Loaded %s: %s", self.export, obj)
if isinstance(obj, DataFlow):
sys.stdout.buffer.write(
await loader.dumpb(
obj.export(linked=not self.not_linked)
)
)
elif hasattr(obj, "export"):
sys.stdout.buffer.write(
await loader.dumpb(obj.export())
)
elif hasattr(obj, "_asdict"):
sys.stdout.buffer.write(
await loader.dumpb(obj._asdict())
)
else:
sys.stdout.buffer.write(
await loader.dumpb(export(obj))
)
class MissingDependenciesError(Exception):
@configdataclass
class InstallConfig:
skip: List[str] = field(
"List of plugin paths not to install (Example: model/scikit)",
default_factory=lambda: [],
)
nocheck: bool = field(
"Do not perform pre-install dependency checks", default=False
)
user: bool = field(
"Perform user install", default=False, action="store_true"
)
class Install(CMD):
CONFIG = InstallConfig
@staticmethod
|
MIT License
|
ubunatic/ohlc
|
ohlc/cli.py
|
ArgumentParser.add_parse_callback
|
python
|
def add_parse_callback(p, fn):
if p.callbacks is None: p.callbacks = []
p.callbacks.append(fn)
|
add_parse_callback adds the given callbacks which are excuted once
after parsing the parser's arguments
|
https://github.com/ubunatic/ohlc/blob/b6cece5e7745bedf7e30da1df5584a9f338556cb/ohlc/cli.py#L57-L61
|
import argparse, logging, sys
log = logging.getLogger(__name__)
def setup_logging(args):
if getattr(args,'debug', False): level = logging.DEBUG
else: level = logging.INFO
log.debug('setup logging')
logging.basicConfig(level=level)
class ArgumentParser(argparse.ArgumentParser):
callbacks = None
opti = argparse.ArgumentParser.add_argument
def flag(p, flag, *args, **kwargs):
if 'action' not in kwargs:
kwargs['action'] = 'store_true'
return p.add_argument(flag, *args, **kwargs)
def with_debug(p):
p.add_argument('--debug', help='enable debug log', action='store_true')
return p
def with_version(p):
p.add_argument('--version', help='show version info', action='store_true')
return p
def with_input(p, default='-', nargs='?', help='input file descriptor', **argparse_args):
p.add_argument('input', help=help, default=default, nargs=nargs, **argparse_args)
return p
def with_logging(p):
p.add_parse_callback(p.setup_logging)
return p
def setup_logging(p):
args, _ = p.parse_known_args()
setup_logging(args)
def show_version(p):
args, _ = p.parse_known_args()
if args.version:
py = sys.version.split('\n')[0]
ver = '0.0.0'
sys.stdout.write('{} {}\n'.format(ver, py))
sys.exit(0)
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/sensor/zha.py
|
Sensor.should_poll
|
python
|
def should_poll(self) -> bool:
return False
|
State gets pushed from device.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/sensor/zha.py#L71-L73
|
import asyncio
import logging
from homeassistant.components.sensor import DOMAIN
from homeassistant.components import zha
from homeassistant.const import TEMP_CELSIUS
from homeassistant.util.temperature import convert as convert_temperature
_LOGGER = logging.getLogger(__name__)
DEPENDENCIES = ['zha']
@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
discovery_info = zha.get_discovery_info(hass, discovery_info)
if discovery_info is None:
return
sensor = yield from make_sensor(discovery_info)
async_add_devices([sensor], update_before_add=True)
@asyncio.coroutine
def make_sensor(discovery_info):
from zigpy.zcl.clusters.measurement import (
RelativeHumidity, TemperatureMeasurement, PressureMeasurement,
IlluminanceMeasurement
)
from zigpy.zcl.clusters.smartenergy import Metering
in_clusters = discovery_info['in_clusters']
if RelativeHumidity.cluster_id in in_clusters:
sensor = RelativeHumiditySensor(**discovery_info)
elif TemperatureMeasurement.cluster_id in in_clusters:
sensor = TemperatureSensor(**discovery_info)
elif PressureMeasurement.cluster_id in in_clusters:
sensor = PressureSensor(**discovery_info)
elif IlluminanceMeasurement.cluster_id in in_clusters:
sensor = IlluminanceMeasurementSensor(**discovery_info)
elif Metering.cluster_id in in_clusters:
sensor = MeteringSensor(**discovery_info)
else:
sensor = Sensor(**discovery_info)
if discovery_info['new_join']:
cluster = list(in_clusters.values())[0]
yield from cluster.bind()
yield from cluster.configure_reporting(
sensor.value_attribute, 300, 600, sensor.min_reportable_change,
)
return sensor
class Sensor(zha.Entity):
_domain = DOMAIN
value_attribute = 0
min_reportable_change = 1
@property
|
MIT License
|
loglabs/mltrace
|
mltrace/client.py
|
backtrace
|
python
|
def backtrace(output_pointer: str):
store = Store(_db_uri)
trace = store.trace(output_pointer)
component_runs = []
for depth, cr in trace:
inputs = [IOPointer.from_dictionary(iop.__dict__) for iop in cr.inputs]
outputs = [
IOPointer.from_dictionary(iop.__dict__) for iop in cr.outputs
]
dependencies = [dep.component_name for dep in cr.dependencies]
d = copy.deepcopy(cr.__dict__)
d.update(
{
"inputs": inputs,
"outputs": outputs,
"dependencies": dependencies,
}
)
component_runs.append((depth, ComponentRun.from_dictionary(d)))
return component_runs
|
Prints trace for an output id.
Returns list of tuples (level, ComponentRun) where level is how
many hops away the node is from the node that produced the output_id.
|
https://github.com/loglabs/mltrace/blob/87d1249eeb3579a57f1dfed56d96a879db318a51/mltrace/client.py#L547-L572
|
from datetime import datetime
from mltrace.db import Store, PointerTypeEnum
from mltrace.entities import Component, ComponentRun, IOPointer
import copy
import functools
import git
import inspect
import logging
import os
import sys
import typing
import uuid
def _set_address_helper(old_uri: str, address: str):
first = old_uri.split("@")[0]
last = old_uri.split("@")[1].split(":")[1]
return first + "@" + address + ":" + last
_db_uri = os.environ.get("DB_URI")
if _db_uri is None:
_db_uri = "postgresql://admin:admin@localhost:5432/sqlalchemy"
if os.environ.get("DB_SERVER"):
_db_uri = _set_address_helper(_db_uri, os.environ.get("DB_SERVER"))
else:
logging.warning(
f"Please set DB_URI or DB_SERVER as an environment variable. \
Otherwise, DB_URI is set to {_db_uri}."
)
def set_db_uri(uri: str):
global _db_uri
_db_uri = uri
def get_db_uri() -> str:
global _db_uri
return _db_uri
def set_address(address: str):
global _db_uri
_db_uri = _set_address_helper(_db_uri, address)
def clean_db():
store = Store(_db_uri, delete_first=True)
def create_component(
name: str, description: str, owner: str, tags: typing.List[str] = []
):
store = Store(_db_uri)
store.create_component(name, description, owner, tags)
def tag_component(component_name: str, tags: typing.List[str]):
store = Store(_db_uri)
store.add_tags_to_component(component_name, tags)
def log_component_run(
component_run: ComponentRun,
set_dependencies_from_inputs=True,
staleness_threshold: int = (60 * 60 * 24 * 30),
):
store = Store(_db_uri)
component_run_dict = component_run.to_dictionary()
component_run_sql = store.initialize_empty_component_run(
component_run.component_name
)
if component_run_dict["start_timestamp"]:
component_run_sql.set_start_timestamp(
component_run_dict["start_timestamp"]
)
if component_run_dict["end_timestamp"]:
component_run_sql.set_end_timestamp(
component_run_dict["end_timestamp"]
)
if component_run_dict["notes"]:
component_run_sql.add_notes(component_run_dict["notes"])
component_run_sql.set_git_hash(component_run_dict["git_hash"])
component_run_sql.set_git_tags(component_run_dict["git_tags"])
component_run_sql.set_code_snapshot(component_run_dict["code_snapshot"])
component_run_sql.add_inputs(
[
store.get_io_pointer(
inp.name, inp.value, pointer_type=inp.pointer_type
)
for inp in component_run_dict["inputs"]
]
)
component_run_sql.add_outputs(
[
store.get_io_pointer(
out.name, out.value, pointer_type=out.pointer_type
)
for out in component_run_dict["outputs"]
]
)
create_component(component_run.component_name, "", "")
if set_dependencies_from_inputs:
store.set_dependencies_from_inputs(component_run_sql)
for dependency in component_run_dict["dependencies"]:
cr = store.get_history(dependency, 1)[0]
component_run_sql.set_upstream(cr)
store.commit_component_run(
component_run_sql, staleness_threshold=staleness_threshold
)
def create_random_ids(num_outputs=1) -> typing.List[str]:
return [str(uuid.uuid4()) for _ in range(num_outputs)]
def register(
component_name: str,
inputs: typing.List[str] = [],
outputs: typing.List[str] = [],
input_vars: typing.List[str] = [],
output_vars: typing.List[str] = [],
input_kwargs: typing.Dict[str, str] = {},
output_kwargs: typing.Dict[str, str] = {},
endpoint: bool = False,
staleness_threshold: int = (60 * 60 * 24 * 30),
):
def actual_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
filename = inspect.getfile(func)
function_name = func.__name__
store = Store(_db_uri)
component_run = store.initialize_empty_component_run(
component_name
)
component_run.set_start_timestamp()
frame = None
trace = sys.gettrace()
def trace_helper(_frame, event, arg):
nonlocal frame
if frame is None and event == "call":
frame = _frame
sys.settrace(trace)
return trace
sys.settrace(trace_helper)
try:
value = func(*args, **kwargs)
finally:
sys.settrace(trace)
logging.info(f"Inspecting {frame.f_code.co_filename}")
input_pointers = []
output_pointers = []
local_vars = frame.f_locals
for var in input_vars:
if var not in local_vars:
raise ValueError(
f"Variable {var} not in current stack frame."
)
val = local_vars[var]
if val is None:
logging.debug(f"Variable {var} has value {val}.")
continue
if isinstance(val, list):
input_pointers += store.get_io_pointers(val)
else:
input_pointers.append(store.get_io_pointer(str(val)))
for var in output_vars:
if var not in local_vars:
raise ValueError(
f"Variable {var} not in current stack frame."
)
val = local_vars[var]
if val is None:
logging.debug(f"Variable {var} has value {val}.")
continue
if isinstance(val, list):
output_pointers += (
store.get_io_pointers(
val, pointer_type=PointerTypeEnum.ENDPOINT
)
if endpoint
else store.get_io_pointers(val)
)
else:
output_pointers += (
[
store.get_io_pointer(
str(val), pointer_type=PointerTypeEnum.ENDPOINT
)
]
if endpoint
else [store.get_io_pointer(str(val))]
)
for key, val in input_kwargs.items():
if key not in local_vars or val not in local_vars:
raise ValueError(
f"Variables ({key}, {val}) not in current stack frame."
)
if local_vars[key] is None:
logging.debug(
f"Variable {key} has value {local_vars[key]}."
)
continue
if isinstance(local_vars[key], list):
if not isinstance(local_vars[val], list) or len(
local_vars[key]
) != len(local_vars[val]):
raise ValueError(
f'Value "{val}" does not have the same length as'
+ f' the key "{key}."'
)
input_pointers += store.get_io_pointers(
local_vars[key], values=local_vars[val]
)
else:
input_pointers.append(
store.get_io_pointer(
str(local_vars[key]), local_vars[val]
)
)
for key, val in output_kwargs.items():
if key not in local_vars or val not in local_vars:
raise ValueError(
f"Variables ({key}, {val}) not in current stack frame."
)
if local_vars[key] is None:
logging.debug(
f"Variable {key} has value {local_vars[key]}."
)
continue
if isinstance(local_vars[key], list):
if not isinstance(local_vars[val], list) or len(
local_vars[key]
) != len(local_vars[val]):
raise ValueError(
f'Value "{val}" does not have the same length as'
+ f' the key "{key}."'
)
output_pointers += (
store.get_io_pointers(
local_vars[key],
local_vars[val],
pointer_type=PointerTypeEnum.ENDPOINT,
)
if endpoint
else store.get_io_pointers(
local_vars[key], local_vars[val]
)
)
else:
output_pointers += (
[
store.get_io_pointer(
str(local_vars[key]),
local_vars[val],
pointer_type=PointerTypeEnum.ENDPOINT,
)
]
if endpoint
else [
store.get_io_pointer(
str(local_vars[key]), local_vars[val]
)
]
)
component_run.add_inputs(input_pointers)
component_run.add_outputs(output_pointers)
component_run.set_end_timestamp()
try:
repo = git.Repo(search_parent_directories=True)
component_run.set_git_hash(str(repo.head.object.hexsha))
except Exception as e:
logging.info("No git repo found.")
if get_git_tags() is not None:
component_run.set_git_tags(get_git_tags())
func_source_code = inspect.getsource(func)
if len(func_source_code) < 2 ** 16:
component_run.set_code_snapshot(
bytes(func_source_code, "ascii")
)
input_pointers = [store.get_io_pointer(inp) for inp in inputs]
output_pointers = (
[
store.get_io_pointer(
out, pointer_type=PointerTypeEnum.ENDPOINT
)
for out in outputs
]
if endpoint
else [store.get_io_pointer(out) for out in outputs]
)
component_run.add_inputs(input_pointers)
component_run.add_outputs(output_pointers)
create_component(component_run.component_name, "", "")
store.set_dependencies_from_inputs(component_run)
store.commit_component_run(
component_run, staleness_threshold=staleness_threshold
)
return value
return wrapper
return actual_decorator
def get_git_hash() -> str:
try:
repo = git.Repo(search_parent_directories=True)
return str(repo.head.object.hexsha)
except Exception as e:
logging.info("No git repo found.")
return None
def get_git_tags() -> str:
try:
tagmap = {}
repo = git.Repo(search_parent_directories=True)
for t in repo.tags:
tagmap.setdefault(repo.commit(t), []).append(t)
tags = tagmap[repo.commit(repo.head.object.hexsha)]
return [tag.name for tag in tags]
except Exception as e:
logging.info("No git tag found")
def add_notes_to_component_run(component_run_id: str, notes: str) -> str:
store = Store(_db_uri)
return store.add_notes_to_component_run(component_run_id, notes)
def flag_output_id(output_id: str) -> bool:
store = Store(_db_uri)
return store.set_io_pointer_flag(output_id, True)
def unflag_output_id(output_id: str) -> bool:
store = Store(_db_uri)
return store.set_io_pointer_flag(output_id, False)
def unflag_all():
store = Store(_db_uri)
store.unflag_all()
def get_history(
component_name: str,
limit: int = 10,
date_lower: typing.Union[datetime, str] = datetime.min,
date_upper: typing.Union[datetime, str] = datetime.max,
) -> typing.List[ComponentRun]:
store = Store(_db_uri)
if not date_lower:
date_lower = datetime.min
if not date_upper:
date_upper = datetime.max
history = store.get_history(component_name, limit, date_lower, date_upper)
component_runs = []
for cr in history:
inputs = [
IOPointer.from_dictionary(iop.__dict__).to_dictionary()
for iop in cr.inputs
]
outputs = [
IOPointer.from_dictionary(iop.__dict__).to_dictionary()
for iop in cr.outputs
]
dependencies = [dep.component_name for dep in cr.dependencies]
d = copy.deepcopy(cr.__dict__)
d.update(
{
"inputs": inputs,
"outputs": outputs,
"dependencies": dependencies,
}
)
component_runs.append(ComponentRun.from_dictionary(d))
return component_runs
def get_component_information(component_name: str) -> Component:
store = Store(_db_uri)
c = store.get_component(component_name)
if not c:
raise RuntimeError(f"Component with name {component_name} not found.")
tags = [tag.name for tag in c.tags]
d = copy.deepcopy(c.__dict__)
d.update({"tags": tags})
return Component.from_dictionary(d)
def get_component_run_information(component_run_id: str) -> ComponentRun:
store = Store(_db_uri)
cr = store.get_component_run(component_run_id)
if not cr:
raise RuntimeError(f"Component run with id {id} not found.")
inputs = [
IOPointer.from_dictionary(iop.__dict__).to_dictionary()
for iop in cr.inputs
]
outputs = [
IOPointer.from_dictionary(iop.__dict__).to_dictionary()
for iop in cr.outputs
]
dependencies = [dep.component_name for dep in cr.dependencies]
d = copy.deepcopy(cr.__dict__)
if cr.code_snapshot:
d.update({"code_snapshot": str(cr.code_snapshot.decode("utf-8"))})
d.update(
{"inputs": inputs, "outputs": outputs, "dependencies": dependencies}
)
return ComponentRun.from_dictionary(d)
def get_components(tag="", owner="") -> typing.List[Component]:
store = Store(_db_uri)
res = store.get_components(tag=tag, owner=owner)
components = []
for c in res:
tags = [tag.name for tag in c.tags]
d = copy.deepcopy(c.__dict__)
d.update({"tags": tags})
components.append(Component.from_dictionary(d))
return components
def get_recent_run_ids(limit: int = 5, last_run_id=None):
store = Store(_db_uri)
return store.get_recent_run_ids(limit, last_run_id)
def get_io_pointer(
io_pointer_id: str, io_pointer_val: typing.Any = None, create=True
):
store = Store(_db_uri)
iop = store.get_io_pointer(io_pointer_id, io_pointer_val, create=create)
return IOPointer.from_dictionary(iop.__dict__)
def get_all_tags() -> typing.List[str]:
store = Store(_db_uri)
res = store.get_all_tags()
tags = [t.name for t in res]
return tags
|
Apache License 2.0
|
rlenglet/openfaucet
|
src/openfaucet/ofcontroller.py
|
IOpenflowController.handle_port_status
|
python
|
def handle_port_status(reason, desc):
|
Handle the reception of a OFPT_PORT_STATUS message.
Args:
reason: The reason for the port status change, either
OFPPR_ADD (the port was added), OFPPR_DELETE (the port
was removed), or OFPPR_MODIFY (some attribute of the
port has changed).
desc: A PhyPort object defining the physical port.
|
https://github.com/rlenglet/openfaucet/blob/4ef1783fc74320e66ee7a71576dc91511f238a81/src/openfaucet/ofcontroller.py#L97-L106
|
import collections
import logging
import threading
import weakref
import twisted.internet.reactor
from zope import interface
from openfaucet import oferror
from openfaucet import ofproto
from openfaucet import ofprotoops
class IOpenflowController(interface.Interface):
def connection_made():
def connection_lost(reason):
def handle_packet_in(buffer_id, total_len, in_port, reason, data):
def handle_flow_removed(
match, cookie, priority, reason, duration_sec, duration_nsec,
idle_timeout, packet_count, byte_count):
|
Apache License 2.0
|
zachchristensen28/ta-opnsense
|
bin/ta_opnsense/aob_py3/future/backports/email/iterators.py
|
walk
|
python
|
def walk(self):
yield self
if self.is_multipart():
for subpart in self.get_payload():
for subsubpart in subpart.walk():
yield subsubpart
|
Walk over the message tree, yielding each subpart.
The walk is performed in depth-first order. This method is a
generator.
|
https://github.com/zachchristensen28/ta-opnsense/blob/fc736f4c6f0fa7866b4f6d2dcf9761b6b693d6cf/bin/ta_opnsense/aob_py3/future/backports/email/iterators.py#L23-L33
|
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
__all__ = [
'body_line_iterator',
'typed_subpart_iterator',
'walk',
]
import sys
from io import StringIO
|
MIT License
|
react-native-skia/react-native-skia
|
build/android/gyp/util/md5_check.py
|
_Metadata.AddZipFile
|
python
|
def AddZipFile(self, path, entries):
self._AssertNotQueried()
tag = _ComputeInlineMd5(itertools.chain((e[0] for e in entries),
(e[1] for e in entries)))
self._files.append({
'path': path,
'tag': tag,
'entries': [{"path": e[0], "tag": e[1]} for e in entries],
})
|
Adds metadata for a zip file.
Args:
path: Path to the file.
entries: List of (subpath, tag) tuples for entries within the zip.
|
https://github.com/react-native-skia/react-native-skia/blob/91ecc74444b163f128541dbc1a42e27a9c0fb40b/build/android/gyp/util/md5_check.py#L376-L390
|
from __future__ import print_function
import difflib
import hashlib
import itertools
import json
import os
import sys
import zipfile
from util import build_utils
sys.path.insert(1, os.path.join(build_utils.DIR_SOURCE_ROOT, 'build'))
import print_python_deps
PRINT_EXPLANATIONS = int(os.environ.get('PRINT_BUILD_EXPLANATIONS', 0))
_FORCE_REBUILD = int(os.environ.get('FORCE_REBUILD', 0))
def CallAndWriteDepfileIfStale(on_stale_md5,
options,
record_path=None,
input_paths=None,
input_strings=None,
output_paths=None,
force=False,
pass_changes=False,
track_subpaths_allowlist=None,
depfile_deps=None):
if not output_paths:
raise Exception('At least one output_path must be specified.')
input_paths = list(input_paths or [])
input_strings = list(input_strings or [])
output_paths = list(output_paths or [])
input_paths += print_python_deps.ComputePythonDependencies()
CallAndRecordIfStale(
on_stale_md5,
record_path=record_path,
input_paths=input_paths,
input_strings=input_strings,
output_paths=output_paths,
force=force,
pass_changes=pass_changes,
track_subpaths_allowlist=track_subpaths_allowlist)
if hasattr(options, 'depfile') and options.depfile:
build_utils.WriteDepfile(options.depfile, output_paths[0], depfile_deps)
def CallAndRecordIfStale(function,
record_path=None,
input_paths=None,
input_strings=None,
output_paths=None,
force=False,
pass_changes=False,
track_subpaths_allowlist=None):
assert record_path or output_paths
input_paths = input_paths or []
input_strings = input_strings or []
output_paths = output_paths or []
record_path = record_path or output_paths[0] + '.md5.stamp'
assert record_path.endswith('.stamp'), (
'record paths must end in \'.stamp\' so that they are easy to find '
'and delete')
new_metadata = _Metadata(track_entries=pass_changes or PRINT_EXPLANATIONS)
new_metadata.AddStrings(input_strings)
zip_allowlist = set(track_subpaths_allowlist or [])
for path in input_paths:
if path in zip_allowlist:
entries = _ExtractZipEntries(path)
new_metadata.AddZipFile(path, entries)
else:
new_metadata.AddFile(path, _ComputeTagForPath(path))
old_metadata = None
force = force or _FORCE_REBUILD
missing_outputs = [x for x in output_paths if force or not os.path.exists(x)]
too_new = []
if not missing_outputs and os.path.exists(record_path):
record_mtime = os.path.getmtime(record_path)
too_new = [x for x in output_paths if os.path.getmtime(x) > record_mtime]
if not too_new:
with open(record_path, 'r') as jsonfile:
try:
old_metadata = _Metadata.FromFile(jsonfile)
except:
pass
changes = Changes(old_metadata, new_metadata, force, missing_outputs, too_new)
if not changes.HasChanges():
return
if PRINT_EXPLANATIONS:
print('=' * 80)
print('Target is stale: %s' % record_path)
print(changes.DescribeDifference())
print('=' * 80)
args = (changes,) if pass_changes else ()
function(*args)
with open(record_path, 'w') as f:
new_metadata.ToFile(f)
class Changes(object):
def __init__(self, old_metadata, new_metadata, force, missing_outputs,
too_new):
self.old_metadata = old_metadata
self.new_metadata = new_metadata
self.force = force
self.missing_outputs = missing_outputs
self.too_new = too_new
def _GetOldTag(self, path, subpath=None):
return self.old_metadata and self.old_metadata.GetTag(path, subpath)
def HasChanges(self):
return (self.HasStringChanges()
or self.old_metadata.FilesMd5() != self.new_metadata.FilesMd5())
def HasStringChanges(self):
return (self.force or not self.old_metadata
or self.old_metadata.StringsMd5() != self.new_metadata.StringsMd5())
def AddedOrModifiedOnly(self):
if self.HasStringChanges():
return False
if any(self.IterRemovedPaths()):
return False
for path in self.IterModifiedPaths():
if any(self.IterRemovedSubpaths(path)):
return False
return True
def IterAllPaths(self):
return self.new_metadata.IterPaths();
def IterAllSubpaths(self, path):
return self.new_metadata.IterSubpaths(path);
def IterAddedPaths(self):
for path in self.new_metadata.IterPaths():
if self._GetOldTag(path) is None:
yield path
def IterAddedSubpaths(self, path):
for subpath in self.new_metadata.IterSubpaths(path):
if self._GetOldTag(path, subpath) is None:
yield subpath
def IterRemovedPaths(self):
if self.old_metadata:
for path in self.old_metadata.IterPaths():
if self.new_metadata.GetTag(path) is None:
yield path
def IterRemovedSubpaths(self, path):
if self.old_metadata:
for subpath in self.old_metadata.IterSubpaths(path):
if self.new_metadata.GetTag(path, subpath) is None:
yield subpath
def IterModifiedPaths(self):
for path in self.new_metadata.IterPaths():
old_tag = self._GetOldTag(path)
new_tag = self.new_metadata.GetTag(path)
if old_tag is not None and old_tag != new_tag:
yield path
def IterModifiedSubpaths(self, path):
for subpath in self.new_metadata.IterSubpaths(path):
old_tag = self._GetOldTag(path, subpath)
new_tag = self.new_metadata.GetTag(path, subpath)
if old_tag is not None and old_tag != new_tag:
yield subpath
def IterChangedPaths(self):
return itertools.chain(self.IterRemovedPaths(),
self.IterModifiedPaths(),
self.IterAddedPaths())
def IterChangedSubpaths(self, path):
return itertools.chain(self.IterRemovedSubpaths(path),
self.IterModifiedSubpaths(path),
self.IterAddedSubpaths(path))
def DescribeDifference(self):
if self.force:
return 'force=True'
elif self.missing_outputs:
return 'Outputs do not exist:\n ' + '\n '.join(self.missing_outputs)
elif self.too_new:
return 'Outputs newer than stamp file:\n ' + '\n '.join(self.too_new)
elif self.old_metadata is None:
return 'Previous stamp file not found.'
if self.old_metadata.StringsMd5() != self.new_metadata.StringsMd5():
ndiff = difflib.ndiff(self.old_metadata.GetStrings(),
self.new_metadata.GetStrings())
changed = [s for s in ndiff if not s.startswith(' ')]
return 'Input strings changed:\n ' + '\n '.join(changed)
if self.old_metadata.FilesMd5() == self.new_metadata.FilesMd5():
return "There's no difference."
lines = []
lines.extend('Added: ' + p for p in self.IterAddedPaths())
lines.extend('Removed: ' + p for p in self.IterRemovedPaths())
for path in self.IterModifiedPaths():
lines.append('Modified: ' + path)
lines.extend(' -> Subpath added: ' + p
for p in self.IterAddedSubpaths(path))
lines.extend(' -> Subpath removed: ' + p
for p in self.IterRemovedSubpaths(path))
lines.extend(' -> Subpath modified: ' + p
for p in self.IterModifiedSubpaths(path))
if lines:
return 'Input files changed:\n ' + '\n '.join(lines)
return 'I have no idea what changed (there is a bug).'
class _Metadata(object):
def __init__(self, track_entries=False):
self._track_entries = track_entries
self._files_md5 = None
self._strings_md5 = None
self._files = []
self._strings = []
self._file_map = None
@classmethod
def FromFile(cls, fileobj):
ret = cls()
obj = json.load(fileobj)
ret._files_md5 = obj['files-md5']
ret._strings_md5 = obj['strings-md5']
ret._files = obj.get('input-files', [])
ret._strings = obj.get('input-strings', [])
return ret
def ToFile(self, fileobj):
obj = {
'files-md5': self.FilesMd5(),
'strings-md5': self.StringsMd5(),
}
if self._track_entries:
obj['input-files'] = sorted(self._files, key=lambda e: e['path'])
obj['input-strings'] = self._strings
json.dump(obj, fileobj, indent=2)
def _AssertNotQueried(self):
assert self._files_md5 is None
assert self._strings_md5 is None
assert self._file_map is None
def AddStrings(self, values):
self._AssertNotQueried()
self._strings.extend(str(v) for v in values)
def AddFile(self, path, tag):
self._AssertNotQueried()
self._files.append({
'path': path,
'tag': tag,
})
|
MIT License
|
ucam-smt/sgnmt
|
cam/sgnmt/predictors/bow.py
|
BagOfWordsPredictor.predict_next
|
python
|
def predict_next(self):
if not self.bag:
return {utils.EOS_ID : 0.0}
ret = {w : 0.0 for w in self.bag}
if self.accept_subsets:
ret[utils.EOS_ID] = 0.0
return ret
|
If the bag is empty, the only allowed symbol is EOS.
Otherwise, return the list of keys in the bag.
|
https://github.com/ucam-smt/sgnmt/blob/c663ec7b251552e36b6b4f992f0ac21aad87cb7b/cam/sgnmt/predictors/bow.py#L131-L140
|
import logging
from cam.sgnmt import utils
from cam.sgnmt.decoding.beam import BeamDecoder
from cam.sgnmt.decoding.core import CLOSED_VOCAB_SCORE_NORM_NONE
from cam.sgnmt.misc.trie import SimpleTrie
from cam.sgnmt.misc.unigram import FileUnigramTable, BestStatsUnigramTable, FullStatsUnigramTable, AllStatsUnigramTable
from cam.sgnmt.predictors.core import Predictor
from cam.sgnmt.utils import INF, NEG_INF, MESSAGE_TYPE_FULL_HYPO, MESSAGE_TYPE_DEFAULT
class BagOfWordsPredictor(Predictor):
def __init__(self,
trg_test_file,
accept_subsets=False,
accept_duplicates=False,
heuristic_scores_file="",
collect_stats_strategy='best',
heuristic_add_consumed = False,
heuristic_add_remaining = True,
diversity_heuristic_factor = -1.0,
equivalence_vocab=-1):
super(BagOfWordsPredictor, self).__init__()
with open(trg_test_file) as f:
self.lines = f.read().splitlines()
if heuristic_scores_file:
self.estimates = FileUnigramTable(heuristic_scores_file)
elif collect_stats_strategy == 'best':
self.estimates = BestStatsUnigramTable()
elif collect_stats_strategy == 'full':
self.estimates = FullStatsUnigramTable()
elif collect_stats_strategy == 'all':
self.estimates = AllStatsUnigramTable()
else:
logging.error("Unknown statistics collection strategy")
self.accept_subsets = accept_subsets
self.accept_duplicates = accept_duplicates
self.heuristic_add_consumed = heuristic_add_consumed
self.heuristic_add_remaining = heuristic_add_remaining
self.equivalence_vocab = equivalence_vocab
if accept_duplicates and not accept_subsets:
logging.error("You enabled bow_accept_duplicates but not bow_"
"accept_subsets. Therefore, the bow predictor will "
"never accept end-of-sentence and could cause "
"an infinite loop in the search strategy.")
self.diversity_heuristic_factor = diversity_heuristic_factor
self.diverse_heuristic = (diversity_heuristic_factor > 0.0)
def get_unk_probability(self, posterior):
return NEG_INF
|
Apache License 2.0
|
blueqat/blueqat
|
blueqat/circuit_funcs/circuit_to_unitary.py
|
circuit_to_unitary
|
python
|
def circuit_to_unitary(circ: Circuit, *runargs, **runkwargs) -> np.ndarray:
runkwargs.setdefault('returns', 'statevector')
runkwargs.setdefault('ignore_global', False)
n_qubits = circ.n_qubits
vecs = []
if n_qubits == 0:
return np.array([[1]])
for i in range(1 << n_qubits):
bitmask = tuple(k for k in range(n_qubits) if (1 << k) & i)
c = Circuit()
if bitmask:
c.x[bitmask]
c += circ
vecs.append(c.run(*runargs, **runkwargs))
return np.array(vecs).T
|
Make circuit to unitary. This function is experimental feature and
may changed or deleted in the future.
|
https://github.com/blueqat/blueqat/blob/098debdce97c8652397ef9a3ab79a2a464ffbb05/blueqat/circuit_funcs/circuit_to_unitary.py#L5-L21
|
import numpy as np
from blueqat import Circuit
|
Apache License 2.0
|
aws/aws-encryption-sdk-cli
|
src/aws_encryption_sdk_cli/internal/arg_parsing.py
|
CommentIgnoringArgumentParser.__init__
|
python
|
def __init__(self, *args, **kwargs):
self.__dummy_arguments = []
self.__is_windows = any(platform.win32_ver())
super(CommentIgnoringArgumentParser, self).__init__(*args, **kwargs)
|
Sets up the dummy argument registry.
|
https://github.com/aws/aws-encryption-sdk-cli/blob/ba6365817d7dc226f64bd9506ac28e5c32368c5a/src/aws_encryption_sdk_cli/internal/arg_parsing.py#L53-L60
|
import argparse
import copy
import logging
import os
import platform
import shlex
from collections import OrderedDict, defaultdict
from enum import Enum
import aws_encryption_sdk
import six
from aws_encryption_sdk_cli.exceptions import ParameterParseError
from aws_encryption_sdk_cli.internal.identifiers import ALGORITHM_NAMES, DEFAULT_MASTER_KEY_PROVIDER, __version__
from aws_encryption_sdk_cli.internal.logging_utils import LOGGER_NAME
from aws_encryption_sdk_cli.internal.metadata import MetadataWriter
try:
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from aws_encryption_sdk_cli.internal.mypy_types import (
ARGPARSE_TEXT,
CACHING_CONFIG,
COLLAPSED_CONFIG,
MASTER_KEY_PROVIDER_CONFIG,
PARSED_CONFIG,
RAW_CONFIG,
)
except ImportError:
cast = lambda typ, val: val
__all__ = ("parse_args",)
_LOGGER = logging.getLogger(LOGGER_NAME)
class CommentIgnoringArgumentParser(argparse.ArgumentParser):
|
Apache License 2.0
|
wxglade/wxglade
|
wcodegen/__init__.py
|
BaseWidgetWriter.generate_code_bitmap
|
python
|
def generate_code_bitmap(self, bitmap, required=False):
assert self.tmpl_inline_bitmap
if not bitmap and not required:
return self.codegen.cn('wxNullBitmap')
preview = self.codegen.preview
if ( preview and ( bitmap.startswith('var:') or bitmap.startswith('code:') ) ) or (not bitmap and required):
preview_icon = os.path.join(config.icons_path, "icon.png")
return self.tmpl_inline_bitmap % { 'name': self.codegen.cn('wxBitmap'),
'bitmap': self.codegen.quote_path(preview_icon),
'bitmap_type': self.codegen.cn('wxBITMAP_TYPE_ANY') }
if bitmap.startswith('var:'):
return self.tmpl_inline_bitmap % { 'name': self.codegen.cn('wxBitmap'),
'bitmap': bitmap[4:].strip(),
'bitmap_type': self.codegen.cn('wxBITMAP_TYPE_ANY') }
if bitmap.startswith('empty:'): return self.get_inline_stmt_emptybitmap(bitmap)
if bitmap.startswith('art:'): return self.get_inline_stmt_artprovider(bitmap)
if bitmap.startswith('code:'): return '%s' % self.codegen.cn(bitmap[5:].strip())
if preview:
bitmap = misc.get_absolute_path(bitmap, True)
return self.tmpl_inline_bitmap % { 'name': self.codegen.cn('wxBitmap'),
'bitmap': self.codegen.quote_path(bitmap),
'bitmap_type': self.codegen.cn('wxBITMAP_TYPE_ANY') }
|
Returns a code fragment that generates an wxBitmap object
bitmap: Bitmap definition string
see: tmpl_inline_bitmap, get_inline_stmt_emptybitmap(), get_inline_stmt_artprovider()
|
https://github.com/wxglade/wxglade/blob/56a1acd3e44cd3fb777db004ec38f4bb85461f3e/wcodegen/__init__.py#L484-L517
|
from __future__ import absolute_import
import common, config, misc, compat
import new_properties as np
import copy, logging, os.path
from gui_mixins import StylesMixin
class BaseCodeWriter(object):
def __init__(self):
pass
def get_code(self, obj):
return [], []
def get_properties_code(self, obj):
return []
def get_init_code(self, obj):
return []
def get_layout_code(self, obj):
return []
def get_code_per_child(self, obj, child):
return []
class BaseLanguageMixin(StylesMixin):
comment_sign = ''
default_extensions = []
format_flags = False
language = None
lang_prefix = None
scope_sep = ''
tmpl_flag_join = '|'
def cn(self, name):
return name
def cn_class(self, klass):
return klass
def get_class(self, scope):
if self.scope_sep:
scope_list = scope.rsplit(self.scope_sep, 1)
if len(scope_list) == 2:
return scope_list[1]
else:
return scope
return scope
def get_scope(self, scope):
if self.scope_sep:
scope_list = scope.rsplit(self.scope_sep, 1)
if len(scope_list) == 2:
return scope_list[0]
else:
return ''
return ''
def _get_style_list(self):
try:
groups = self.config['style_list']
except (AttributeError, KeyError):
groups = []
return groups
style_list = property(_get_style_list)
class CppMixin(BaseLanguageMixin):
comment_sign = '//'
default_extensions = ['cpp', 'cc', 'C', 'cxx', 'c++', 'h', 'hh', 'hpp', 'H', 'hxx', ]
language = 'C++'
lang_prefix = 'cpp'
scope_sep = '::'
def cn_class(self, klass):
if not klass:
return klass
klass = klass.replace('::', '_')
return klass
class LispMixin(BaseLanguageMixin):
comment_sign = ';;;'
default_extensions = ['lisp']
format_flags = True
language = 'lisp'
lang_prefix = 'lisp'
def cn(self, name):
if name[:2] == 'wx':
return 'wx' + name[2:]
elif name[:4] == 'EVT_':
return 'wx' + name
return name
def cn_f(self, flags):
flags = BaseLanguageMixin.cn_f(self, flags)
flags = flags.split('|')
if len(flags) == 1:
flags = flags[0]
else:
flags = '(logior %s)' % ' '.join(flags)
return flags
class PerlMixin(BaseLanguageMixin):
comment_sign = '#'
default_extensions = ['pl', 'pm']
language = 'perl'
lang_prefix = 'perl'
scope_sep = '::'
_perl_constant_list = [
"wxALL", "wxTOP", "wxBOTTOM", "wxLEFT", "wxRIGHT", "wxDOWN",
"wxNORTH", "wxSOUTH", "wxWEST", "wxEAST",
"wxEXPAND", "wxGROW", "wxSHAPED", "wxFIXED_MINSIZE",
"wxCAPTION", "wxMINIMIZE_BOX", "wxMAXIMIZE_BOX", "wxRESIZE_BORDER",
"wxYES_NO", "wxYES", "wxNO", 'wxYES_DEFAULT', 'wxNO_DEFAULT', "wxCANCEL", "wxOK",
"wxBLACK", "wxWHITE", "wxRED", "wxBLUE", "wxGREEN", "wxCYAN", "wxLIGHT_GREY",
'wxDEFAULT', 'wxDECORATIVE', 'wxROMAN', 'wxSWISS', 'wxSCRIPT', 'wxMODERN', 'wxTELETYPE',
'wxNORMAL', 'wxSLANT', 'wxITALIC', 'wxNORMAL', 'wxLIGHT', 'wxBOLD',
'wxNORMAL_FONT', 'wxSMALL_FONT', 'wxITALIC_FONT', 'wxSWISS_FONT',
'wxHORIZONTAL', 'wxVERTICAL',
'wxALIGN_CENTER', 'wxALIGN_CENTRE', 'wxALIGN_LEFT', 'wxALIGN_RIGHT',
'wxALIGN_TOP', 'wxALIGN_BOTTOM', 'wxALIGN_CENTER_VERTICAL',
'wxALIGN_CENTRE_VERTICAL', 'wxALIGN_CENTER_HORIZONTAL', 'wxALIGN_CENTRE_HORIZONTAL',
'wxSTANDARD_CURSOR', 'wxHOURGLASS_CURSOR', 'wxCROSS_CURSOR',
'wxTheClipboard', 'wxFormatInvalid', 'wxThePrintPaperDatabase',
'wxNullAnimation', 'wxNullBitmap', 'wxNullIcon',
'wxNullColour', 'wxNullCursor', 'wxNullFont', 'wxNullPen',
'wxNullBrush', 'wxNullPalette', 'wxNullAcceleratorTable',
'wxLI_HORIZONTAL', 'wxLI_VERTICAL',
'wxHL_CONTEXTMENU', 'wxHL_ALIGN_LEFT', 'wxHL_ALIGN_RIGHT', 'wxHL_ALIGN_CENTRE', 'wxHL_DEFAULT_STYLE',
'wxMAJOR_VERSION', 'wxMINOR_VERSION',
'wxSPLIT_HORIZONTAL', 'wxSPLIT_VERTICAL',
]
def cn(self, name):
if name.startswith('wxBITMAP_TYPE_') or name.startswith("wxDefault") or name.startswith('wxSYS_COLOUR_'):
return name
if "_" in name:
start = name.split("_",1)[0]
if start in {'wxART', 'wxBORDER', 'wxBRUSHSTYLE', 'wxBU', 'wxCB', 'wxCC', 'wxCHB', 'wxCHK',
'wxCURSOR', 'wxDD', 'wxEVT', 'wxFONTENCODING', 'wxFONTFAMILY', 'wxFONTSTYLE',
'wxFONTWEIGHT', 'wxFONTFLAG', 'wxFRAME', 'wxGA', 'wxICON', 'wxID', 'wxK', 'wxLANGUAGE',
'wxLB', 'wxMOD', 'wxNB', 'wxALIGN', 'wxDefault', 'wxPD', 'wxPROPSHEET', 'wxRA', 'wxRB',
'wxSL', 'wxSP', 'wxSPLASH', 'wxST', 'wxSys', 'wxSW', 'wxSASH',
'wxTB', 'wxTE', 'wxWIZARD'}:
return name
if name in self._perl_constant_list: return name
if name.startswith('Wx::'): return name
if name[:2] == 'wx': return 'Wx::' + name[2:]
if name[:4] == 'EVT_': return 'Wx::Event::' + name
return name
class PythonMixin(BaseLanguageMixin):
comment_sign = '#'
default_extensions = ['py', 'pyw']
format_flags = True
language = 'python'
lang_prefix = 'py'
scope_sep = '.'
tmpl_flag_join = ' | '
def cn(self, name):
if name.startswith('wx.'): return name
if name.startswith('wx'): return 'wx.' + name[2:]
if name.startswith('EVT_'): return 'wx.' + name
return name
def cn_class(self, klass):
if not klass:
return klass
if not klass.startswith('wx.'):
klass = self.get_class(klass)
klass = klass.replace('::', '_')
return klass
class XRCMixin(BaseLanguageMixin):
default_extensions = ['xrc']
language = 'XRC'
lang_prefix = 'xrc'
class BaseWidgetWriter(StylesMixin, BaseCodeWriter):
import_modules = []
__import_modules = []
supported_by = ()
tmpl_after = []
tmpl_before = []
tmpl_layout = []
tmpl_props = []
tmpl = ''
tmpl_concatenate_choices = ', '
tmpl_dict = {}
tmpl_flags = '%s'
tmpl_inline_artprovider = ''
tmpl_inline_bitmap = ''
tmpl_inline_emptybitmap = ''
tmpl_import_artprovider = ''
tmpl_inline_wxSize = ''
has_selection = False
tmpl_selection = ''
has_setdefault = False
tmpl_setdefault = ''
has_setvalue = False
has_setvalue1 = False
tmpl_setvalue = ''
prefix_style = False
set_default_style = False
use_names_for_binding_events = True
def __init__(self, klass=None):
BaseCodeWriter.__init__(self)
self.config = {}
self.klass = klass
if hasattr(self, 'import_modules'):
self.__import_modules = self.import_modules[:]
else:
self.__import_modules = []
if klass in config.widget_config:
for item in config.widget_config[self.klass]:
if item == 'style_defs':
continue
self.config[item] = copy.deepcopy(config.widget_config[self.klass][item])
self.codegen = common.code_writers[self.language]
self._reset_vars()
def format_widget_access(self, obj):
return self.codegen.format_generic_access(obj)
def stmt2list(self, stmt):
temp = ['%s\n' % line for line in stmt.split('\n')]
return temp
def _reset_vars(self):
self.import_modules = self.__import_modules[:]
self.has_selection = False
self.has_setdefault = False
self.has_setvalue = False
self.has_setvalue1 = False
self.tmpl_before = []
self.tmpl_after = []
self.tmpl_layout = []
self.tmpl_props = []
self.tmpl_dict = {}
def _prepare_style(self, style):
style_s = style.get_string_value()
fmt_style = self.cn_f(style_s)
fmt_default_style = self.cn_f(self.default_style)
if fmt_style and fmt_style != fmt_default_style:
style = self.tmpl_flags % fmt_style
elif not style_s and fmt_default_style:
style = self.tmpl_flags % '0'
else:
if self.set_default_style:
if style and not fmt_style:
logging.debug( _('Unsupported attribute %s use default %s instead'), style, self.default_style)
style = self.tmpl_flags % fmt_default_style
else:
style = ''
if style and self.prefix_style:
style = ', %s, %s, %s' % ( self.cn('wxDefaultPosition'), self.cn('wxDefaultSize'), style )
return style
def _prepare_tmpl_content(self, obj):
self.tmpl_dict['comment'] = self.codegen.comment_sign
self.tmpl_dict['tab'] = self.codegen.tabs(1)
self.tmpl_dict['store_as_attr'] = self.codegen.store_as_attr(obj)
self.tmpl_dict['id_name'], self.tmpl_dict['id_number'] = self.codegen.generate_code_id(obj)
self.tmpl_dict['id'] = self.tmpl_dict['id_number']
self.tmpl_dict['obj_name'] = self.codegen._format_name(obj.name)
self.tmpl_dict['klass'] = obj.get_instantiation_class(self.cn, self.cn_class, self.codegen.preview)
self.tmpl_dict['store_as_attr'] = self.codegen.store_as_attr(obj)
if obj.check_prop('style'): self.tmpl_dict['style'] = self._prepare_style(obj.properties["style"])
if obj.check_prop('label'):
self.tmpl_dict['label'] = self.codegen.quote_str( obj.label )
if obj.check_prop('value'): self.tmpl_dict['value'] = self.codegen.quote_str( compat.unicode(obj.value) )
if obj.check_prop('value_unquoted'): self.tmpl_dict['value_unquoted'] = obj.value
return
def _get_default_style(self):
try:
name = self.config['default_style']
except (AttributeError, KeyError):
name = ''
return name
default_style = property(_get_default_style)
def _prepare_bitmaps(self, obj):
need_artprovider = have_constructor_argument = False
for p_name in obj.property_names:
p = obj.properties[p_name]
if not isinstance(p, np.BitmapProperty): continue
value = p.get_value()
if value.startswith('art:'): need_artprovider = True
self.tmpl_dict[p_name] = self.generate_code_bitmap(value)
if '%%(%s)s'%p_name in self.tmpl:
have_constructor_argument = True
elif value and (not p.min_version or self.codegen.for_version>=p.min_version):
setname = p_name.replace( "_bitmap", "").capitalize()
if compat.IS_CLASSIC and setname=="Pressed":
setname = "Selected"
if setname=="Bitmap": setname = ""
tmpl = self.tmpl2_bitmap_property%(setname, p_name)
if p_name=="bitmap" and obj.check_prop_nodefault("bitmap_dir"):
direction = self.cn( obj.properties["bitmap_dir"].get_string_value() )
tmpl = self.tmpl2_bitmap_property_with_dir%(setname, p_name, direction)
self.tmpl_props.append(tmpl)
if need_artprovider and self.tmpl_import_artprovider:
self.import_modules.append(self.tmpl_import_artprovider)
if have_constructor_argument and not obj.check_prop('size') and self.tmpl_SetBestSize:
self.tmpl_props.append(self.tmpl_SetBestSize)
self.has_setdefault = "default" in obj.properties and obj.default or False
def _prepare_choice(self, obj):
choices = [c[0] for c in obj.choices]
choices_str = self.tmpl_concatenate_choices.join( [self.codegen.quote_str(c) for c in choices] )
self.tmpl_dict['choices'] = choices_str
self.tmpl_dict['choices_len'] = len(choices)
if choices:
selection_p = obj.properties.get("selection", None)
if selection_p and selection_p.is_active():
self.tmpl_dict['selection'] = selection_p.get()
self.has_selection = True
|
MIT License
|
cpburnz/python-sql-parameters
|
sqlparams/_converting.py
|
_NumericToNamedConverter._regex_replace
|
python
|
def _regex_replace(self, in_params, param_conversions, match):
result = match.groupdict()
escape = result.get('escape')
if escape is not None:
return escape[self._escape_start:]
else:
in_num_str = result['param']
in_index = int(in_num_str) - self._in_start
value = in_params[in_index]
if self._expand_tuples and isinstance(value, tuple):
out_names = []
out_replacements = []
for i, sub_value in enumerate(value):
out_name = "_{}_{}".format(in_num_str, i)
out_repl = self._out_format.format(param=out_name)
out_names.append(out_name)
out_replacements.append(out_repl)
param_conversions.append((True, in_index, out_names))
return "({})".format(",".join(out_replacements))
else:
out_name = "_" + in_num_str
out_repl = self._out_format.format(param=out_name)
param_conversions.append((False, in_index, out_name))
return out_repl
|
Regular expression replace callback.
*in_params* (:class:`~collections.abc.Sequence`) contains the
in-style parameters to sample.
*param_conversions* (:class:`list`) will be outputted with each
parameter conversion to perform (:class:`tuple`).
*match* (:class:`re.Match`) is the in-parameter match.
Returns the out-parameter replacement string (:class:`str`).
|
https://github.com/cpburnz/python-sql-parameters/blob/8e58cc68c05b857ee928667d5709109a19076462/sqlparams/_converting.py#L897-L942
|
import itertools
from collections.abc import Mapping
from functools import partial
from . import _styles
from ._util import _is_sequence
class _Converter(object):
def __init__(self, escape_char, expand_tuples, in_regex, in_style, out_style):
self._escape_start = len(escape_char) if escape_char is not None else 0
self._expand_tuples = expand_tuples
self._in_regex = in_regex
self._in_style = in_style
self._out_format = out_style.out_format
self._out_style = out_style
def convert(self, sql, params):
raise NotImplementedError("{} must implement convert().".format(self.__class__.__qualname__))
def convert_many(self, sql, many_params):
raise NotImplementedError("{} must implement convert_many().".format(self.__class__.__qualname__))
class _NamedToNamedConverter(_Converter):
def convert(self, sql, params):
if not isinstance(params, Mapping):
raise TypeError("params:{!r} is not a mapping.".format(params))
param_conversions = []
out_sql = self._in_regex.sub(partial(self._regex_replace, params, param_conversions), sql)
out_params = self._convert_params(params, param_conversions)
return out_sql, out_params
def convert_many(self, sql, many_params):
iter_params = iter(many_params)
first_params = next(iter_params)
if not isinstance(first_params, Mapping):
raise TypeError("many_params[0]:{!r} is not a mapping.".format(first_params))
param_conversions = []
out_sql = self._in_regex.sub(partial(self._regex_replace, first_params, param_conversions), sql)
out_params = self._convert_many_params(itertools.chain((first_params,), iter_params), param_conversions)
return out_sql, out_params
def _convert_many_params(self, many_in_params, param_conversions):
many_out_params = []
for i, in_params in enumerate(many_in_params):
if i and not isinstance(in_params, Mapping):
raise TypeError("many_params[{}]:{!r} is not a mapping.".format(i, in_params))
out_params = {}
for expand_tuple, in_name, out_name in param_conversions:
if expand_tuple:
out_names = out_name
values = in_params[in_name]
if not isinstance(values, tuple):
raise TypeError("many_params[{}][{!r}]:{!r} was expected to be a tuple.".format(i, in_name, values))
elif len(values) != len(out_names):
raise ValueError("many_params[{}][{!r}]:{!r} length was expected to be {}.".format(i, in_name, values, len(out_names)))
for sub_name, sub_value in zip(out_names, values):
out_params[sub_name] = sub_value
else:
out_params[out_name] = in_params[in_name]
many_out_params.append(out_params)
return many_out_params
def _convert_params(self, in_params, param_conversions):
out_params = {}
for expand_tuple, in_name, out_name in param_conversions:
if expand_tuple:
out_names = out_name
for sub_name, sub_value in zip(out_names, in_params[in_name]):
out_params[sub_name] = sub_value
else:
out_params[out_name] = in_params[in_name]
return out_params
def _regex_replace(self, in_params, param_conversions, match):
result = match.groupdict()
escape = result.get('escape')
if escape is not None:
return escape[self._escape_start:]
else:
in_name = result['param']
value = in_params[in_name]
if self._expand_tuples and isinstance(value, tuple):
out_names = []
out_replacements = []
for i, sub_value in enumerate(value):
out_name = "{}__{}_sqlp".format(in_name, i)
out_repl = self._out_format.format(param=out_name)
out_names.append(out_name)
out_replacements.append(out_repl)
param_conversions.append((True, in_name, out_names))
return "({})".format(",".join(out_replacements))
else:
out_repl = self._out_format.format(param=in_name)
param_conversions.append((False, in_name, in_name))
return out_repl
class _NamedToNumericConverter(_Converter):
def __init__(self, **kw):
super().__init__(**kw)
self._out_start = self._out_style.start
def convert(self, sql, params):
if not isinstance(params, Mapping):
raise TypeError("params:{!r} is not a mapping.".format(params))
param_conversions = []
out_counter = itertools.count()
out_lookup = {}
out_sql = self._in_regex.sub(partial(self._regex_replace, params, param_conversions, out_counter, out_lookup), sql)
out_params = self._convert_params(params, param_conversions)
return out_sql, out_params
def convert_many(self, sql, many_params):
iter_params = iter(many_params)
first_params = next(iter_params)
if not isinstance(first_params, Mapping):
raise TypeError("many_params[0]:{!r} is not a mapping.".format(first_params))
param_conversions = []
out_counter = itertools.count()
out_lookup = {}
out_sql = self._in_regex.sub(partial(self._regex_replace, first_params, param_conversions, out_counter, out_lookup), sql)
out_params = self._convert_many_params(itertools.chain((first_params,), iter_params), param_conversions)
return out_sql, out_params
def _convert_many_params(self, many_in_params, param_conversions):
last_conv = param_conversions[-1]
size = (last_conv[2][-1] if last_conv[0] else last_conv[2]) + 1
many_out_params = []
for i, in_params in enumerate(many_in_params):
if i and not isinstance(in_params, Mapping):
raise TypeError("many_params[{}]:{!r} is not a mapping.".format(i, in_params))
out_params = [None] * size
for expand_tuple, in_name, out_index in param_conversions:
if expand_tuple:
values = in_params[in_name]
out_indices = out_index
if not isinstance(values, tuple):
raise TypeError("many_params[{}][{!r}]:{!r} was expected to be a tuple.".format(i, in_name, values))
elif len(values) != len(out_indices):
raise ValueError("many_params[{}][{!r}]:{!r} length was expected to be {}.".format(i, in_name, values, len(out_indices)))
for sub_index, sub_value in zip(out_indices, values):
out_params[sub_index] = sub_value
else:
out_params[out_index] = in_params[in_name]
many_out_params.append(out_params)
return many_out_params
def _convert_params(self, in_params, param_conversions):
last_conv = param_conversions[-1]
size = (last_conv[2][-1] if last_conv[0] else last_conv[2]) + 1
out_params = [None] * size
for expand_tuple, in_name, out_index in param_conversions:
if expand_tuple:
out_indices = out_index
for sub_index, sub_value in zip(out_indices, in_params[in_name]):
out_params[sub_index] = sub_value
else:
out_params[out_index] = in_params[in_name]
return out_params
def _regex_replace(self, in_params, param_conversions, out_counter, out_lookup, match):
result = match.groupdict()
escape = result.get('escape')
if escape is not None:
return escape[self._escape_start:]
else:
in_name = result['param']
value = in_params[in_name]
if self._expand_tuples and isinstance(value, tuple):
is_new = True
out_indices = []
out_replacements = []
for i, sub_value in enumerate(value):
out_key = (in_name, i)
out_result = out_lookup.get(out_key)
if out_result is not None:
out_index, out_repl = out_result
is_new = False
else:
out_index = next(out_counter)
out_num = out_index + self._out_start
out_repl = self._out_format.format(param=out_num)
out_lookup[out_key] = (out_index, out_repl)
out_indices.append(out_index)
out_replacements.append(out_repl)
if is_new:
param_conversions.append((True, in_name, out_indices))
return "({})".format(",".join(out_replacements))
else:
out_result = out_lookup.get(in_name)
if out_result is not None:
out_repl = out_result[1]
else:
out_index = next(out_counter)
out_num = out_index + self._out_start
out_repl = self._out_format.format(param=out_num)
out_lookup[in_name] = (out_index, out_repl)
param_conversions.append((False, in_name, out_index))
return out_repl
class _NamedToOrdinalConverter(_Converter):
def convert(self, sql, params):
if not isinstance(params, Mapping):
raise TypeError("params:{!r} is not a mapping.".format(params))
param_conversions = []
out_format = self._out_style.out_format
out_sql = self._in_regex.sub(partial(self._regex_replace, params, param_conversions, out_format), sql)
out_params = self._convert_params(params, param_conversions)
return out_sql, out_params
def convert_many(self, sql, many_params):
iter_params = iter(many_params)
first_params = next(iter_params)
if not isinstance(first_params, Mapping):
raise TypeError("many_params[0]:{!r} is not a mapping.".format(first_params))
param_conversions = []
out_format = self._out_style.out_format
out_sql = self._in_regex.sub(partial(self._regex_replace, first_params, param_conversions, out_format), sql)
out_params = self._convert_many_params(itertools.chain((first_params,), iter_params), param_conversions)
return out_sql, out_params
def _convert_many_params(self, many_in_params, param_conversions):
many_out_params = []
for i, in_params in enumerate(many_in_params):
if i and not isinstance(in_params, Mapping):
raise TypeError("many_params[{}]:{!r} is not a mapping.".format(i, in_params))
out_params = []
for expand_tuple, in_name, out_count in param_conversions:
if expand_tuple:
values = in_params[in_name]
if not isinstance(values, tuple):
raise TypeError("many_params[{}][{!r}]:{!r} was expected to be a tuple.".format(i, in_name, values))
elif len(values) != out_count:
raise ValueError("many_params[{}][{!r}]:{!r} length was expected to be {}.".format(i, in_name, values, out_count))
for sub_value in values:
out_params.append(sub_value)
else:
out_params.append(in_params[in_name])
many_out_params.append(out_params)
return many_out_params
def _convert_params(self, in_params, param_conversions):
out_params = []
for expand_tuple, in_name, _out_count in param_conversions:
if expand_tuple:
for sub_value in in_params[in_name]:
out_params.append(sub_value)
else:
out_params.append(in_params[in_name])
return out_params
def _regex_replace(self, in_params, param_conversions, out_format, match):
result = match.groupdict()
escape = result.get('escape')
if escape is not None:
return escape[self._escape_start:]
else:
in_name = result['param']
value = in_params[in_name]
if self._expand_tuples and isinstance(value, tuple):
param_conversions.append((True, in_name, len(value)))
return "({})".format(",".join(out_format for _ in value))
else:
param_conversions.append((False, in_name, None))
return out_format
class _NumericConverter(_Converter):
def __init__(self, **kw):
super().__init__(**kw)
self._in_start = self._in_style.start
def _mapping_as_sequence(self, in_params):
start = self._in_start
return {int(__key) - start: __value for __key, __value in in_params.items() if isinstance(__key, int) or (isinstance(__key, (str, bytes)) and __key.isdigit())}
class _NumericToNamedConverter(_NumericConverter):
def convert(self, sql, params):
if _is_sequence(params):
pass
elif isinstance(params, Mapping):
params = self._mapping_as_sequence(params)
else:
raise TypeError("params:{!r} is not a sequence or mapping.".format(params))
param_conversions = []
out_sql = self._in_regex.sub(partial(self._regex_replace, params, param_conversions), sql)
out_params = self._convert_params(params, param_conversions)
return out_sql, out_params
def convert_many(self, sql, many_params):
iter_params = iter(many_params)
first_params = next(iter_params)
if _is_sequence(first_params):
pass
elif isinstance(first_params, Mapping):
first_params = self._mapping_as_sequence(first_params)
else:
raise TypeError("many_params[0]:{!r} is not a sequence or mapping.".format(first_params))
param_conversions = []
out_sql = self._in_regex.sub(partial(self._regex_replace, first_params, param_conversions), sql)
out_params = self._convert_many_params(itertools.chain((first_params,), iter_params), param_conversions)
return out_sql, out_params
def _convert_many_params(self, many_in_params, param_conversions):
many_out_params = []
for i, in_params in enumerate(many_in_params):
if i:
if _is_sequence(in_params):
pass
elif isinstance(in_params, Mapping):
in_params = self._mapping_as_sequence(in_params)
else:
raise TypeError("many_params[{}]:{!r} is not a sequence or mapping.".format(i, in_params))
out_params = {}
for expand_tuple, in_index, out_name in param_conversions:
if expand_tuple:
out_names = out_name
values = in_params[in_index]
if not isinstance(values, tuple):
raise TypeError("many_params[{}][{!r}]:{!r} was expected to be a tuple.".format(i, in_index, values))
elif len(values) != len(out_names):
raise ValueError("many_params[{}][{!r}]:{!r} length was expected to be {}.".format(i, in_index, values, len(out_names)))
for sub_name, sub_value in zip(out_names, values):
out_params[sub_name] = sub_value
else:
out_params[out_name] = in_params[in_index]
many_out_params.append(out_params)
return many_out_params
def _convert_params(self, in_params, param_conversions):
out_params = {}
for expand_tuple, in_index, out_name in param_conversions:
if expand_tuple:
out_names = out_name
for sub_name, sub_value in zip(out_names, in_params[in_index]):
out_params[sub_name] = sub_value
else:
out_params[out_name] = in_params[in_index]
return out_params
|
MIT License
|
thomasgerstenberg/serial_monitor
|
serial_monitor_commands.py
|
SerialOptionSelector.show
|
python
|
def show(self, callback, starting_index=0):
starting_index = max(starting_index, 0)
if self.header:
starting_index += 1
starting_index = min(starting_index, len(self.items))
def item_selected(selected_index):
if selected_index == -1:
return
if self.header and selected_index == 0:
self.show(callback, -1)
return
item = self.items[selected_index]
if self.header:
selected_index -= 1
callback(item, selected_index)
sublime.active_window().show_quick_panel(self.items, item_selected, flags=sublime.KEEP_OPEN_ON_FOCUS_LOST, selected_index=starting_index)
|
Shows the list for the user to choose from
:param callback: function to call when the user has selected an item.
Should take 2 positional arguments: the string selected, the index selected
:param starting_index: the index of the initial item to be highlighted when shown
:type starting_index: int
|
https://github.com/thomasgerstenberg/serial_monitor/blob/6e25172aca9ad755b8ec2f7e3efc5664ce35ed7e/serial_monitor_commands.py#L41-L70
|
import sys
import os
import time
import sublime
import sublime_plugin
sys.path.append(os.path.dirname(__file__))
import logger
import serial_monitor_thread
from serial_settings import SerialSettings
from filter.serial_filter import FilterFile, FilterException
from . import command_history_event_listener
from hardware import serial, hardware_factory
from stream.serial_text_stream import SerialTextStream
import serial_constants
BAUD_RATES = ["9600", "19200", "38400", "57600", "115200"]
class SerialOptionSelector(object):
def __init__(self, items, header=None):
self.items = items.copy()
self.header = header
if header:
self.items.insert(0, header)
|
BSD 3-Clause New or Revised License
|
ciscodevnet/webex-teams-archiver
|
webexteamsarchiver/webexteamsarchiver.py
|
WebexTeamsArchiver.archive_room
|
python
|
def archive_room(self, room_id: str, text_format: bool = True, html_format: bool = True,
json_format: bool = True, **options) -> str:
compress_folder = options.get("compress_folder", True)
delete_folder = options.get("delete_folder", False)
reverse_order = options.get("reverse_order", True)
download_attachments = options.get("download_attachments", True)
download_avatars = options.get("download_avatars", True)
download_workers = options.get("download_workers", 15)
timestamp_format = options.get("timestamp_format", "%Y-%m-%dT%H:%M:%S")
file_format = options.get("file_format", "gztar")
if delete_folder and not compress_folder:
raise ValueError("delete_folder cannot be True while compress_folder is False")
self._gather_room_information(room_id, download_avatars)
self._setup_folder(download_attachments, download_avatars, html_format)
try:
self._archive(reverse_order, download_attachments, download_avatars, download_workers,
text_format, html_format, json_format, timestamp_format)
if compress_folder:
filename = self._compress_folder(file_format)
else:
filename = self.archive_folder_name
except Exception:
self._tear_down_folder()
raise
if delete_folder:
self._tear_down_folder()
return filename
|
Archives a Webex Teams room. This creates a file called roomTitle_timestamp_roomId with the
appropriate file extension as defined by file_format param with the following contents:
- roomTitle_roomId.txt - Text version of the conversations (if `text_format` is True)
- roomTitle_roomId.html - HTML version of the conversations (if `html_format` is True)
- files/ - Attachments added to the room (if `download_attachments` is True)
Args:
room_id: ID of the room to archive.
text_format: Create a text version of the archive.
html_format: Create an HTML version of the archive.
json_format: Create a json version of the archive.
Options:
compress_folder: Compress archive folder.
delete_folder: Delete the archive folder when done.
reverse_order: Order messages by most recent on the bottom.
download_attachments: Download attachments sent to the room.
download_avatars: Download avatar images.
download_workers: Number of download workers for downloading files.
timestamp_format: Timestamp strftime format.
file_format: Archive format as supported by shutil.make_archive
Returns:
Name of archive file.
Raises:
IOError: Error occurred while creating/writing to files.
shutil.Error: Error occurred creating/copying/deleting files/folders.
ValueError: Exception message will contain more details.
TypeError: Messages contained non JSON serializable data.
webexteamssdkException: An error occurred calling the Webex Teams API.
|
https://github.com/ciscodevnet/webex-teams-archiver/blob/9813e008b527259d9c62e6bb75aae3b16dbc8568/webexteamsarchiver/webexteamsarchiver.py#L115-L183
|
import concurrent.futures
import os
import re
import requests
import shutil
import logging
import json
import datetime
from collections import namedtuple
from webexteamssdk import WebexTeamsAPI
from webexteamssdk.exceptions import MalformedResponse, ApiError
from webexteamssdk.models.immutable import Person
from webexteamssdk.generator_containers import GeneratorContainer
from .jinja_env import env as jinja_env
from .jinja_env import sanitize_name
__all__ = ['WebexTeamsArchiver', 'File', 'UserNotFound', 'UserApiFailed']
File = namedtuple(
"File", "content_disposition content_length content_type filename deleted")
UserNotFound = namedtuple(
"UserNotFound", "id emails displayName avatar"
)
UserApiFailed = namedtuple(
"UserApiFailed", "id emails displayName avatar"
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class WebexTeamsArchiver:
def __init__(self, access_token: str, single_request_timeout: int = 60, special_token: bool = False) -> None:
self.access_token = access_token
self.special_token = special_token
self.sdk = WebexTeamsAPI(
self.access_token, single_request_timeout=single_request_timeout)
def file_details(self, url: str) -> File:
headers = {
"Authorization": f"Bearer {self.access_token}",
"Accept-Encoding": "",
}
r = requests.head(url, headers=headers)
if r.status_code == 404:
return File("", 0, "", "", True)
if r.ok:
filename_re = re.search(r"filename=\"(.+?)\"",
r.headers.get("Content-Disposition", ""), re.I)
if not filename_re:
new_filename = re.sub(r'^.+/([^/]+)$', r'\1', url)
message = (
f"Set filename to '{new_filename}' in {r.headers.get('Content-Disposition', '')} for url {url}"
)
logger.debug(message)
filename_re = re.search(r"filename=\"(.+?)\"", f"filename=\"{new_filename}\"", re.I)
return File(r.headers.get("Content-Disposition", ""),
r.headers.get("Content-Length", 0),
r.headers.get("Content-Type", ""),
sanitize_name(filename_re.group(1)),
False)
else:
return File("", 0, "", "UNKNOWN", True)
|
MIT License
|
paulalbert31/labelnoisecorrection
|
utils.py
|
mixup_data_Boot
|
python
|
def mixup_data_Boot(x, y, alpha=1.0, device='cuda'):
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
if device=='cuda':
index = torch.randperm(batch_size).to(device)
else:
index = torch.randperm(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam, index
|
Returns mixed inputs, pairs of targets, and lambda
|
https://github.com/paulalbert31/labelnoisecorrection/blob/5e9a73ee52b7685d93a4fd1d0e66fb0ab5db955a/utils.py#L238-L253
|
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import scipy.stats as stats
import math
import numpy as np
from matplotlib import pyplot as plt
from sklearn.mixture import GaussianMixture as GMM
from sklearn import preprocessing as preprocessing
import sys
from tqdm import tqdm
def get_data_cifar(loader):
data = loader.sampler.data_source.train_data.copy()
labels = loader.sampler.data_source.train_labels
labels = torch.Tensor(labels[:]).long()
return (data, labels)
def get_data_cifar_2(loader):
labels = loader.sampler.data_source.train_labels
labels = torch.Tensor(labels[:]).long()
return labels
def add_noise_cifar_wo(loader, noise_percentage = 20):
torch.manual_seed(2)
np.random.seed(42)
noisy_labels = [sample_i for sample_i in loader.sampler.data_source.train_labels]
images = [sample_i for sample_i in loader.sampler.data_source.train_data]
probs_to_change = torch.randint(100, (len(noisy_labels),))
idx_to_change = probs_to_change >= (100.0 - noise_percentage)
percentage_of_bad_labels = 100 * (torch.sum(idx_to_change).item() / float(len(noisy_labels)))
for n, label_i in enumerate(noisy_labels):
if idx_to_change[n] == 1:
set_labels = list(
set(range(10)) - set([label_i]))
set_index = np.random.randint(len(set_labels))
noisy_labels[n] = set_labels[set_index]
loader.sampler.data_source.train_data = images
loader.sampler.data_source.train_labels = noisy_labels
return noisy_labels
def add_noise_cifar_w(loader, noise_percentage = 20):
torch.manual_seed(2)
np.random.seed(42)
noisy_labels = [sample_i for sample_i in loader.sampler.data_source.train_labels]
images = [sample_i for sample_i in loader.sampler.data_source.train_data]
probs_to_change = torch.randint(100, (len(noisy_labels),))
idx_to_change = probs_to_change >= (100.0 - noise_percentage)
percentage_of_bad_labels = 100 * (torch.sum(idx_to_change).item() / float(len(noisy_labels)))
for n, label_i in enumerate(noisy_labels):
if idx_to_change[n] == 1:
set_labels = list(set(range(10)))
set_index = np.random.randint(len(set_labels))
noisy_labels[n] = set_labels[set_index]
loader.sampler.data_source.train_data = images
loader.sampler.data_source.train_labels = noisy_labels
return noisy_labels
def track_training_loss(args, model, device, train_loader, epoch, bmm_model1, bmm_model_maxLoss1, bmm_model_minLoss1):
model.eval()
all_losses = torch.Tensor()
all_predictions = torch.Tensor()
all_probs = torch.Tensor()
all_argmaxXentropy = torch.Tensor()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
prediction = model(data)
prediction = F.log_softmax(prediction, dim=1)
idx_loss = F.nll_loss(prediction, target, reduction = 'none')
idx_loss.detach_()
all_losses = torch.cat((all_losses, idx_loss.cpu()))
probs = prediction.clone()
probs.detach_()
all_probs = torch.cat((all_probs, probs.cpu()))
arg_entr = torch.max(prediction, dim=1)[1]
arg_entr = F.nll_loss(prediction.float(), arg_entr.to(device), reduction='none')
arg_entr.detach_()
all_argmaxXentropy = torch.cat((all_argmaxXentropy, arg_entr.cpu()))
loss_tr = all_losses.data.numpy()
max_perc = np.percentile(loss_tr, 95)
min_perc = np.percentile(loss_tr, 5)
loss_tr = loss_tr[(loss_tr<=max_perc) & (loss_tr>=min_perc)]
bmm_model_maxLoss = torch.FloatTensor([max_perc]).to(device)
bmm_model_minLoss = torch.FloatTensor([min_perc]).to(device) + 10e-6
loss_tr = (loss_tr - bmm_model_minLoss.data.cpu().numpy()) / (bmm_model_maxLoss.data.cpu().numpy() - bmm_model_minLoss.data.cpu().numpy() + 1e-6)
loss_tr[loss_tr>=1] = 1-10e-4
loss_tr[loss_tr <= 0] = 10e-4
bmm_model = BetaMixture1D(max_iters=10)
bmm_model.fit(loss_tr)
bmm_model.create_lookup(1)
return all_losses.data.numpy(), all_probs.data.numpy(), all_argmaxXentropy.numpy(), bmm_model, bmm_model_maxLoss, bmm_model_minLoss
def train_CrossEntropy(args, model, device, train_loader, optimizer, epoch):
model.train()
loss_per_batch = []
acc_train_per_batch = []
correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
output = F.log_softmax(output, dim=1)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
loss_per_batch.append(loss.item())
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
acc_train_per_batch.append(100. * correct / ((batch_idx+1)*args.batch_size))
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, Accuracy: {:.0f}%, Learning rate: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item(),
100. * correct / ((batch_idx + 1) * args.batch_size),
optimizer.param_groups[0]['lr']))
loss_per_epoch = [np.average(loss_per_batch)]
acc_train_per_epoch = [np.average(acc_train_per_batch)]
return (loss_per_epoch, acc_train_per_epoch)
def mixup_data(x, y, alpha=1.0, device='cuda'):
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
if device=='cuda':
index = torch.randperm(batch_size).cuda()
else:
index = torch.randperm(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(pred, y_a, y_b, lam):
return lam * F.nll_loss(pred, y_a) + (1 - lam) * F.nll_loss(pred, y_b)
def train_mixUp(args, model, device, train_loader, optimizer, epoch, alpha):
model.train()
loss_per_batch = []
acc_train_per_batch = []
correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
inputs, targets_a, targets_b, lam = mixup_data(data, target, alpha, device)
output = model(inputs)
output = F.log_softmax(output, dim=1)
loss = mixup_criterion(output, targets_a, targets_b, lam)
loss.backward()
optimizer.step()
loss_per_batch.append(loss.item())
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
acc_train_per_batch.append(100. * correct / ((batch_idx+1)*args.batch_size))
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}, Accuracy: {:.0f}%, Learning rate: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item(),
100. * correct / ((batch_idx + 1) * args.batch_size),
optimizer.param_groups[0]['lr']))
loss_per_epoch = [np.average(loss_per_batch)]
acc_train_per_epoch = [np.average(acc_train_per_batch)]
return (loss_per_epoch, acc_train_per_epoch)
def reg_loss_class(mean_tab,num_classes=10):
loss = 0
for items in mean_tab:
loss += (1./num_classes)*torch.log((1./num_classes)/items)
return loss
|
MIT License
|
benmezger/dotfiles
|
dot_weechat/python/anotify.py
|
notify_dcc_chat_request
|
python
|
def notify_dcc_chat_request(match):
if weechat.config_get_plugin("show_dcc") == "on":
nick = match.group(1)
a_notify(
'DCC',
'Direct Chat Request',
'{0} wants to chat directly.'.format(nick))
|
Notify on DCC chat request.
|
https://github.com/benmezger/dotfiles/blob/42a329fb4ffb842716cb53a04c6c5c6ac4fec419/dot_weechat/python/anotify.py#L297-L304
|
SCRIPT_NAME = 'anotify'
SCRIPT_AUTHOR = 'magnific0'
SCRIPT_VERSION = '1.0.2'
SCRIPT_LICENSE = 'MIT'
SCRIPT_DESC = 'Sends libnotify notifications upon events.'
SETTINGS = {
'show_public_message': 'off',
'show_private_message': 'on',
'show_public_action_message': 'off',
'show_private_action_message': 'on',
'show_notice_message': 'off',
'show_invite_message': 'on',
'show_highlighted_message': 'on',
'show_server': 'on',
'show_channel_topic': 'on',
'show_dcc': 'on',
'show_upgrade_ended': 'on',
'sticky': 'off',
'sticky_away': 'on',
'icon': '/usr/share/pixmaps/weechat.xpm',
}
try:
import re
import os
import weechat
import notify2
IMPORT_OK = True
except ImportError as error:
IMPORT_OK = False
if str(error).find('weechat') != -1:
print('This script must be run under WeeChat.')
print('Get WeeChat at http://www.weechat.org.')
else:
weechat.prnt('', 'anotify: {0}'.format(error))
TAGGED_MESSAGES = {
'public message or action': set(['irc_privmsg', 'notify_message']),
'private message or action': set(['irc_privmsg', 'notify_private']),
'notice message': set(['irc_notice', 'notify_private']),
'invite message': set(['irc_invite', 'notify_highlight']),
'channel topic': set(['irc_topic', ]),
}
UNTAGGED_MESSAGES = {
'away status':
re.compile(r'^You ((\w+).){2,3}marked as being away', re.UNICODE),
'dcc chat request':
re.compile(r'^xfer: incoming chat request from (\w+)', re.UNICODE),
'dcc chat closed':
re.compile(r'^xfer: chat closed with (\w+)', re.UNICODE),
'dcc get request':
re.compile(
r'^xfer: incoming file from (\w+) [^:]+: ((?:,\w|[^,])+),',
re.UNICODE),
'dcc get completed':
re.compile(r'^xfer: file ([^\s]+) received from \w+: OK', re.UNICODE),
'dcc get failed':
re.compile(
r'^xfer: file ([^\s]+) received from \w+: FAILED',
re.UNICODE),
'dcc send completed':
re.compile(r'^xfer: file ([^\s]+) sent to \w+: OK', re.UNICODE),
'dcc send failed':
re.compile(r'^xfer: file ([^\s]+) sent to \w+: FAILED', re.UNICODE),
}
DISPATCH_TABLE = {
'away status': 'set_away_status',
'public message or action': 'notify_public_message_or_action',
'private message or action': 'notify_private_message_or_action',
'notice message': 'notify_notice_message',
'invite message': 'notify_invite_message',
'channel topic': 'notify_channel_topic',
'dcc chat request': 'notify_dcc_chat_request',
'dcc chat closed': 'notify_dcc_chat_closed',
'dcc get request': 'notify_dcc_get_request',
'dcc get completed': 'notify_dcc_get_completed',
'dcc get failed': 'notify_dcc_get_failed',
'dcc send completed': 'notify_dcc_send_completed',
'dcc send failed': 'notify_dcc_send_failed',
}
STATE = {
'icon': None,
'is_away': False
}
def cb_irc_server_connected(data, signal, signal_data):
if weechat.config_get_plugin('show_server') == 'on':
a_notify(
'Server',
'Server Connected',
'Connected to network {0}.'.format(signal_data))
return weechat.WEECHAT_RC_OK
def cb_irc_server_disconnected(data, signal, signal_data):
if weechat.config_get_plugin('show_server') == 'on':
a_notify(
'Server',
'Server Disconnected',
'Disconnected from network {0}.'.format(signal_data))
return weechat.WEECHAT_RC_OK
def cb_notify_upgrade_ended(data, signal, signal_data):
if weechat.config_get_plugin('show_upgrade_ended') == 'on':
a_notify(
'WeeChat',
'WeeChat Upgraded',
'WeeChat has been upgraded.')
return weechat.WEECHAT_RC_OK
def notify_highlighted_message(prefix, message):
if weechat.config_get_plugin("show_highlighted_message") == "on":
a_notify(
'Highlight',
'Highlighted Message',
"{0}: {1}".format(prefix, message),
priority=notify2.URGENCY_CRITICAL)
def notify_public_message_or_action(prefix, message, highlighted):
if prefix == ' *':
regex = re.compile(r'^(\w+) (.+)$', re.UNICODE)
match = regex.match(message)
if match:
prefix = match.group(1)
message = match.group(2)
notify_public_action_message(prefix, message, highlighted)
else:
if highlighted:
notify_highlighted_message(prefix, message)
elif weechat.config_get_plugin("show_public_message") == "on":
a_notify(
'Public',
'Public Message',
'{0}: {1}'.format(prefix, message))
def notify_private_message_or_action(prefix, message, highlighted):
regex = re.compile(r'^CTCP_MESSAGE.+?ACTION (.+)$', re.UNICODE)
match = regex.match(message)
if match:
notify_private_action_message(prefix, match.group(1), highlighted)
else:
if prefix == ' *':
regex = re.compile(r'^(\w+) (.+)$', re.UNICODE)
match = regex.match(message)
if match:
prefix = match.group(1)
message = match.group(2)
notify_private_action_message(prefix, message, highlighted)
else:
if highlighted:
notify_highlighted_message(prefix, message)
elif weechat.config_get_plugin("show_private_message") == "on":
a_notify(
'Private',
'Private Message',
'{0}: {1}'.format(prefix, message))
def notify_public_action_message(prefix, message, highlighted):
if highlighted:
notify_highlighted_message(prefix, message)
elif weechat.config_get_plugin("show_public_action_message") == "on":
a_notify(
'Action',
'Public Action Message',
'{0}: {1}'.format(prefix, message),
priority=notify2.URGENCY_NORMAL)
def notify_private_action_message(prefix, message, highlighted):
if highlighted:
notify_highlighted_message(prefix, message)
elif weechat.config_get_plugin("show_private_action_message") == "on":
a_notify(
'Action',
'Private Action Message',
'{0}: {1}'.format(prefix, message),
priority=notify2.URGENCY_NORMAL)
def notify_notice_message(prefix, message, highlighted):
regex = re.compile(r'^([^\s]*) [^:]*: (.+)$', re.UNICODE)
match = regex.match(message)
if match:
prefix = match.group(1)
message = match.group(2)
if highlighted:
notify_highlighted_message(prefix, message)
elif weechat.config_get_plugin("show_notice_message") == "on":
a_notify(
'Notice',
'Notice Message',
'{0}: {1}'.format(prefix, message))
def notify_invite_message(prefix, message, highlighted):
if weechat.config_get_plugin("show_invite_message") == "on":
regex = re.compile(
r'^You have been invited to ([^\s]+) by ([^\s]+)$', re.UNICODE)
match = regex.match(message)
if match:
channel = match.group(1)
nick = match.group(2)
a_notify(
'Invite',
'Channel Invitation',
'{0} has invited you to join {1}.'.format(nick, channel))
def notify_channel_topic(prefix, message, highlighted):
if weechat.config_get_plugin("show_channel_topic") == "on":
regex = re.compile(
r'^\w+ has (?:changed|unset) topic for ([^\s]+)' +
'(?:(?: from "(?:(?:"\w|[^"])+)")? to "((?:"\w|[^"])+)")?',
re.UNICODE)
match = regex.match(message)
if match:
channel = match.group(1)
topic = match.group(2) or ''
a_notify(
'Channel',
'Channel Topic',
"{0}: {1}".format(channel, topic))
|
MIT License
|
spoclab-ca/covfefe
|
utils/lexicosyntactic/feature.py
|
FeatureSet.__init__
|
python
|
def __init__(self, features=[]):
self.features = features
|
Parameters:
features : optional, list. A list of Feature objects.
|
https://github.com/spoclab-ca/covfefe/blob/905e8e5eb0905791de869db18c6f755838657203/utils/lexicosyntactic/feature.py#L39-L43
|
import collections
import csv
import glob
import os
import re
import nltk.probability
import nltk.tree
from nltk.corpus import wordnet_ic as wnic
from nltk.corpus import cmudict
from utils.lexicosyntactic import lexical_features
from utils.lexicosyntactic import pragmatic_features
from utils.lexicosyntactic import semantic_features
from utils.lexicosyntactic import syntactic_features
from utils.lexicosyntactic import functions
from utils.lexicosyntactic import transcript
from utils.lexicosyntactic import yngve
from utils import file_utils
import config
class Feature(object):
def __init__(self, feature_type, name, value):
self.feature_type = feature_type
self.name = name
self.value = value
class FeatureSet(object):
|
Apache License 2.0
|
googleapis/gapic-generator-python
|
tests/integration/goldens/logging/samples/generated_samples/logging_generated_logging_v2_config_service_v2_get_cmek_settings_sync.py
|
sample_get_cmek_settings
|
python
|
def sample_get_cmek_settings():
client = logging_v2.ConfigServiceV2Client()
request = logging_v2.GetCmekSettingsRequest(
name="projects/{project}/cmekSettings",
)
response = client.get_cmek_settings(request=request)
print(response)
|
Snippet for get_cmek_settings
|
https://github.com/googleapis/gapic-generator-python/blob/582fed9c43bd8c1a3c5a9a7705fa2e39b729b910/tests/integration/goldens/logging/samples/generated_samples/logging_generated_logging_v2_config_service_v2_get_cmek_settings_sync.py#L30-L45
|
from google.cloud import logging_v2
|
Apache License 2.0
|
thecesrom/ignition
|
src/system/db.py
|
refresh
|
python
|
def refresh(component, propertyName):
print(component, propertyName)
return True
|
This function will programmatically cause a SQL Query or DB
Browse property binding to execute immediately.
This is most often used for bindings that are set to Polling - Off.
In this way, you cause a binding to execute on demand, when you know
that the results of its query will return a new result. To use it,
you simply specify the component and name of the property on whose
binding you'd like to refresh.
Args:
component (JComponent): The component whose property you want to
refresh.
propertyName (str): The name of the property that has a SQL
Query binding that needs to be refreshed
Returns:
bool: True (1) if the property was found and refreshed
successfully.
|
https://github.com/thecesrom/ignition/blob/c784e573530a217f4c430bd110889ce569152747/src/system/db.py#L376-L397
|
from __future__ import print_function
__all__ = [
"addDatasource",
"beginNamedQueryTransaction",
"beginTransaction",
"clearAllNamedQueryCaches",
"clearNamedQueryCache",
"closeTransaction",
"commitTransaction",
"createSProcCall",
"dateFormat",
"execSProcCall",
"getConnectionInfo",
"getConnections",
"refresh",
"removeDatasource",
"rollbackTransaction",
"runNamedQuery",
"runPrepQuery",
"runPrepUpdate",
"runQuery",
"runSFNamedQuery",
"runSFPrepUpdate",
"runSFUpdateQuery",
"runScalarPrepQuery",
"runScalarQuery",
"runUpdateQuery",
"setDatasourceConnectURL",
"setDatasourceEnabled",
"setDatasourceMaxConnections",
]
from com.inductiveautomation.ignition.common import BasicDataset
from com.inductiveautomation.ignition.common.script.builtin import (
DatasetUtilities,
SProcCall,
)
from javax.swing import JComponent
BIT = -7
REAL = 7
LONGVARCHAR = -1
LONGVARBINARY = -4
TINYINT = -6
DOUBLE = 8
DATE = 91
NULL = 0
SMALLINT = 5
NUMERIC = 2
TIME = 92
ROWID = -8
INTEGER = 4
DECIMAL = 3
TIMESTAMP = 93
CLOB = 2005
BIGINT = -5
CHAR = 1
BINARY = -2
NCLOB = 2011
FLOAT = 6
VARCHAR = 12
VARBINARY = -3
BLOB = 2004
NCHAR = -15
NVARCHAR = -9
LONGNVARCHAR = -16
BOOLEAN = 16
ORACLE_CURSOR = -10
DISTINCT = 2001
STRUCT = 2002
REF = 2006
JAVA_OBJECT = 2000
SQLXML = 2009
ARRAY = 2003
DATALINK = 70
OTHER = 1111
READ_COMMITTED = 2
READ_UNCOMMITTED = 1
REPEATABLE_READ = 4
SERIALIZABLE = 8
def addDatasource(
jdbcDriver,
name,
description=None,
connectUrl=None,
username=None,
password=None,
props=None,
validationQuery=None,
maxConnections=8,
):
print(
jdbcDriver,
name,
description,
connectUrl,
username,
password,
props,
validationQuery,
maxConnections,
)
def beginNamedQueryTransaction(*args):
print(args)
return "transaction_id"
def beginTransaction(database=None, isolationLevel=None, timeout=None):
print(database, isolationLevel, timeout)
return "transaction_id"
def clearAllNamedQueryCaches(*args):
print(args)
def clearNamedQueryCache(*args):
print(args)
def closeTransaction(tx):
print(tx)
def commitTransaction(tx):
print(tx)
def createSProcCall(procedureName, database=None, tx=None, skipAudit=None):
print(procedureName, database, tx, skipAudit)
return SProcCall()
def dateFormat(date, formatPattern):
print(date, formatPattern)
return ""
def execSProcCall(callContext):
print(callContext)
def getConnectionInfo(name=""):
print(name)
return BasicDataset()
def getConnections():
return BasicDataset()
|
MIT License
|
unbit/pysftpserver
|
examples/mongodb_gridfs/mongostorage.py
|
SFTPServerMongoStorage.close
|
python
|
def close(self, handle):
handle.close()
|
Close the file handle.
|
https://github.com/unbit/pysftpserver/blob/ed2762cc9d39eb40e5e288e8fc9da7b2ac31ed59/examples/mongodb_gridfs/mongostorage.py#L35-L37
|
from pysftpserver.abstractstorage import SFTPAbstractServerStorage
from pysftpserver.pysftpexceptions import SFTPNotFound
import pymongo
import gridfs
class SFTPServerMongoStorage(SFTPAbstractServerStorage):
def __init__(self, home, remote, port, db_name):
self.home = "/"
client = pymongo.MongoClient(remote, port)
db = client[db_name]
self.gridfs = gridfs.GridFS(db)
def open(self, filename, flags, mode):
filename = filename.decode()
if self.gridfs.exists(filename=filename):
return self.gridfs.find({'filename': filename})[0]
raise SFTPNotFound
def read(self, handle, off, size):
return handle.read(size)
|
MIT License
|
dbis-ilm/grizzly
|
grizzly/dataframes/frame.py
|
DataFrame.to_numpy
|
python
|
def to_numpy(self):
raise NotImplementedError("This method has not been implemented yet")
|
Return a Numpy representation of the DataFrame.
|
https://github.com/dbis-ilm/grizzly/blob/113e00b3cb980986f1f33e54fd7d84bf30763506/grizzly/dataframes/frame.py#L484-L488
|
from grizzly.aggregates import AggregateType
import queue
from typing import List, Tuple, Callable
from grizzly.expression import ArithmExpr, ArithmeticOperation, BinaryExpression, BoolExpr, Constant, Expr, ColRef, FuncCall, ComputedCol, ExpressionException, ExprTraverser, LogicExpr, BooleanOperation, SetExpr, SetOperation
from grizzly.generator import GrizzlyGenerator
from grizzly.expression import ModelUDF,UDF, Param, ModelType
import inspect
from collections import namedtuple
import logging
logger = logging.getLogger(__name__)
class DataFrame(object):
def __init__(self, columns, parents, alias: str = "", index=None):
super(DataFrame, self).__init__()
self.index = index
if not columns:
self.columns = []
elif not isinstance(columns, list):
self.columns = [columns]
else:
self.columns = columns
self.computedCols = []
if parents is None or type(parents) is list:
self.parents = parents
else:
self.parents = [parents]
self.alias = alias
def updateRef(self, x):
if isinstance(x,ColRef):
x.df = self
return x
elif isinstance(x, FuncCall):
for ic in x.inputCols:
self.updateRef(ic)
return x
elif isinstance(x, str):
ref = ColRef(x, self)
return ref
elif isinstance(x, BinaryExpression):
if x.left:
x.left = self.updateRef(x.left) if isinstance(x.left, Expr) else x.left
if x.right:
x.right = self.updateRef(x.right) if isinstance(x.right, Expr) else x.right
return x
else:
return x
def hasColumn(self, colName):
if not self.columns:
return True
for ref in self.columns:
if ref.column == colName:
return True
return False
def filter(self, expr):
return Filter(expr, self)
def project(self, cols, distinct = False):
return Projection(cols, self, doDistinct=distinct)
def distinct(self):
if isinstance(self, Projection):
self.doDistinct = True
return self
else:
return Projection(None, self, doDistinct = True)
def join(self, other, on, how="inner", comp = "="):
if isinstance(on, list):
lOn = None
rOn = None
from grizzly.expression import ExpressionException
if not self.hasColumn(on[0]):
raise ExpressionException(f"No such column {on[0]} for join in left hand side")
else:
lOn = ColRef(on[0], self)
if not other.hasColumn(on[1]):
raise ExpressionException(f"No such column {on[1]} for join in right hand side")
else:
rOn = ColRef(on[1], other)
on = [lOn, rOn]
return Join(self, other, on, how, comp)
def groupby(self, groupCols):
if not isinstance(groupCols, list):
groupCols = [groupCols]
return Grouping(groupCols, self)
def limit(self, n: int, offset = None):
if n < 0:
raise ValueError(f"LIMIT must not be negative (got {n})")
if isinstance(offset, int):
offset = Constant(offset)
return Limit(Constant(n), offset, self)
def sort_values(self, by, ascending:bool=True):
if not isinstance(by, list):
by = [by]
return Ordering(by,ascending, self)
def _map(self, func, lines=[]):
if inspect.isfunction(func):
if not isinstance(self, Projection):
ValueError("functions can only be applied to projections currently")
funcName = func.__name__
sig = inspect.signature(func)
fparams = sig.parameters
params = []
for fp in fparams:
fptype = sig.parameters[fp].annotation.__name__
p = Param(fp,fptype)
params.append(p)
if lines == []:
(lines,_) = inspect.getsourcelines(func)
returns = sig.return_annotation.__name__
udf = UDF(funcName, params, lines, returns)
call = FuncCall(funcName, self.columns, udf)
return call
elif isinstance(func, DataFrame):
return self.join(func, on = None, how = "natural")
else:
print(f"error: {func} is not a function or other DataFrame")
exit(1)
def apply_torch_model(self, path: str, toTensorFunc, clazz, outputDict, clazzParameters: List, n_predictions: int = 1, *helperFuncs):
if not isinstance(self, Projection):
ValueError("classification can only be applied to a projection")
if len(outputDict) <= 0:
raise ValueError("output dict must not be empty")
sqlGenerator = GrizzlyGenerator._backend.queryGenerator
modelPathHash = abs(hash(path))
funcName = f"grizzly_predict_{modelPathHash}"
attrsString = "_".join([r.column for r in self.columns])
sig = inspect.signature(toTensorFunc)
fparams = sig.parameters
if len(fparams) != 1:
raise ValueError("toTensor converter must have exactly one parameter")
toTensorInputType = sig.parameters[list(sig.parameters)[0]].annotation.__name__
params = [Param("invalue", toTensorInputType), Param("n_predictions", "int")]
paramsStr = ",".join([f"{p.name} {sqlGenerator._mapTypes(p.type)}" for p in params])
predictedType = "str"
helpers = list(helperFuncs)
helperCode = "\n"
for helperFunc in helpers:
(funcLines, _) = inspect.getsourcelines(helperFunc)
funcLines = sqlGenerator._unindent(funcLines)
helperCode += "".join(funcLines)
(encoderCode, _) = inspect.getsourcelines(toTensorFunc)
encoderCode = sqlGenerator._unindent(encoderCode)
encoderCode = "".join(encoderCode)
converter = lambda x: f"\"{x}\"" if type(x) == str else f"{x}"
outDictCode = "[" + ",".join(map(converter, outputDict)) + "]"
modelParameters = ",".join(map(converter, clazzParameters)) if clazzParameters else ""
(clazzCodeLst, _) = inspect.getsourcelines(clazz)
clazzCode = "".join(clazzCodeLst)
template_replacement_dict = {}
template_replacement_dict["$$modelpathhash$$"] = modelPathHash
template_replacement_dict["$$modelpath$$"] = path
template_replacement_dict["$$encoderfuncname$$"] = toTensorFunc.__name__
template_replacement_dict["$$helpers$$"] = helperCode
template_replacement_dict["$$encoder$$"] = encoderCode
template_replacement_dict["$$inputcols$$"] = paramsStr
template_replacement_dict["$$outputdict$$"] = outDictCode
template_replacement_dict["$$modelclassparameters$$"] = modelParameters
template_replacement_dict["$$modelclassname$$"] = clazz.__name__
template_replacement_dict["$$modelclassdef$$"] = clazzCode
udf = ModelUDF(funcName, params, predictedType, ModelType.TORCH, template_replacement_dict)
call = FuncCall(funcName, self.columns + [n_predictions] , udf, f"predicted_{attrsString}")
return call
def apply_onnx_model(self, onnx_path, input_to_tensor, tensor_to_output):
funcName = "apply"
attrsString = "_".join([r.column for r in self.columns])
in_sig = inspect.signature(input_to_tensor)
input_names = list(in_sig.parameters.keys())
input_names_str = ','.join(input_names)
(lines1, _) = inspect.getsourcelines(input_to_tensor)
params = []
for param in in_sig.parameters:
type = in_sig.parameters[param].annotation.__name__
if (type == "_empty"):
raise ValueError("Input converter function must specify parameter types")
params.append(Param(param, type))
out_sig = inspect.signature(tensor_to_output)
(lines2, _) = inspect.getsourcelines(tensor_to_output)
returntype = out_sig.return_annotation.__name__
if (returntype == "_empty"):
raise ValueError("Output converter function must specify the return type")
template_replacement_dict = {}
template_replacement_dict["$$inputs$$"] = str(in_sig)
template_replacement_dict["$$returntype$$"] = returntype
template_replacement_dict["$$input_to_tensor_func$$"] = "".join(lines1)
template_replacement_dict["$$tensor_to_output_func$$"] = "".join(lines2)
template_replacement_dict["$$input_names$$"] = input_names_str
template_replacement_dict["$$onnx_file_path$$"] = onnx_path
template_replacement_dict["$$input_to_tensor_func_name$$"] = input_to_tensor.__name__
template_replacement_dict["$$tensor_to_output_func_name$$"] = tensor_to_output.__name__
udf = ModelUDF(funcName, params, returntype, ModelType.ONNX, template_replacement_dict)
call = FuncCall(funcName, self.columns, udf, f"predicted_{attrsString}")
return call
def apply_tensorflow_model(self, tf_checkpoint_file: str, network_input_names, constants=[], vocab_file: str = ""):
funcName = "apply"
attrsString = "_".join([r.column for r in self.columns])
params = [Param("a", "str")]
returntype = "int"
template_replacement_dict = {}
template_replacement_dict["$$tf_checkpoint_file$$"] = tf_checkpoint_file
template_replacement_dict["$$vocab_file$$"] = vocab_file
template_replacement_dict["$$network_input_names$$"] = f"""[{', '.join('"%s"' % n for n in network_input_names)}]"""
template_replacement_dict["$$constants$$"] = f"[{','.join(str(item) for item in constants)}]"
udf = ModelUDF(funcName, params, returntype, ModelType.TF, template_replacement_dict)
call = FuncCall(funcName, self.columns, udf, f"predicted_{attrsString}")
return call
def map(self, func):
return self._map(func)
def __iter__(self):
return GrizzlyGenerator.iterator(self)
def iterrows(self):
num = 0
for row in self:
yield (num, list(row))
num += 1
def itertuples(self, name="Grizzly",index=None):
theIter = GrizzlyGenerator.iterator(self, includeHeader=True)
headerRow = next(theIter)
RowType = namedtuple(name, headerRow)
for row in theIter:
yield RowType._make(row)
def items(self):
arr = self.collect(includeHeader=True)
header = arr[0]
data = arr[1:]
col = 0
for colname in header:
columndata = [row[col] for row in data]
yield (colname, columndata)
col += 1
def __getattr__(self, name):
return ColRef(name, self)
def __setitem__(self, key, value):
if isinstance(value, Grouping):
f = value.aggFunc[-1]
f.alias = key
elif isinstance(value, Expr) or isinstance(value, DataFrame):
if isinstance(value, FuncCall):
value.alias = key
newCol = value
self.updateRef(value)
else:
newCol = ComputedCol(value, key)
self.computedCols.append(newCol)
else:
newCol = ComputedCol(Constant(value), key)
self.computedCols.append(newCol)
def __getitem__(self, key):
theType = type(key)
if isinstance(key, slice):
if key.step is not None:
logger.warn("Step is not supported for slice access on DataFrames")
n = key.stop
offset = key.start if key.start is not None else None
return self.limit(n, offset)
elif theType is ColRef :
return self.project(key)
elif isinstance(key, BoolExpr) or isinstance(key, LogicExpr):
return self.filter(key)
elif theType is str:
return ColRef(key,self)
elif theType is list:
projList = []
for e in key:
t = type(e)
if t is str:
projList.append(ColRef(e, self))
elif t is ColRef:
c = ColRef(e.colName(), self)
projList.append(c)
else:
raise ExpressionException(f"expected a column name string or column reference, but got {e}")
return self.project(projList)
else:
print(f"{key} has type {theType} -- ignoring")
return self
def info(self, verbose = None, buf=None, max_cols=None, memory_usage=None, show_counts=None, null_counts=None):
raise NotImplementedError("This method has not been implemented yet")
def select_types(include=None, exclude=None):
raise NotImplementedError("This method has not been implemented yet")
def values(self):
raise NotImplementedError("This method has not been implemented yet")
|
MIT License
|
geier/pycarddav
|
pycarddav/carddav.py
|
PyCardDAV.upload_new_card
|
python
|
def upload_new_card(self, card):
self._check_write_support()
card = card.encode('utf-8')
for _ in range(0, 5):
rand_string = get_random_href()
remotepath = str(self.url.resource + rand_string + ".vcf")
headers = self.headers
headers['content-type'] = 'text/vcard'
headers['If-None-Match'] = '*'
response = requests.put(remotepath, data=card, headers=headers,
**self._settings)
if response.ok:
parsed_url = urlparse.urlparse(remotepath)
if 'etag' not in response.headers.keys() or response.headers['etag'] is None:
etag = ''
else:
etag = response.headers['etag']
return (parsed_url.path, etag)
response.raise_for_status()
|
upload new card to the server
:param card: vcard to be uploaded
:type card: unicode
:rtype: tuple of string (path of the vcard on the server) and etag of
new card (string or None)
|
https://github.com/geier/pycarddav/blob/edc9150f4b21cf027f42e77c42a6030d091e0624/pycarddav/carddav.py#L196-L224
|
from collections import namedtuple
import requests
import urlparse
import logging
import lxml.etree as ET
def get_random_href():
import random
tmp_list = list()
for _ in xrange(3):
rand_number = random.randint(0, 0x100000000)
tmp_list.append("{0:x}".format(rand_number))
return "-".join(tmp_list).upper()
class UploadFailed(Exception):
pass
class NoWriteSupport(Exception):
pass
class PyCardDAV(object):
def __init__(self, resource, debug='', user='', passwd='',
verify=True, write_support=False, auth='basic'):
urllog = logging.getLogger('requests.packages.urllib3.connectionpool')
urllog.setLevel(logging.CRITICAL)
urllog = logging.getLogger('urllib3.connectionpool')
urllog.setLevel(logging.CRITICAL)
try:
import urllib3.contrib.pyopenssl
except ImportError:
pass
else:
urllib3.contrib.pyopenssl.inject_into_urllib3()
split_url = urlparse.urlparse(resource)
url_tuple = namedtuple('url', 'resource base path')
self.url = url_tuple(resource,
split_url.scheme + '://' + split_url.netloc,
split_url.path)
self.debug = debug
self.session = requests.session()
self.write_support = write_support
self._settings = {'verify': verify}
if auth == 'basic':
self._settings['auth'] = (user, passwd,)
if auth == 'digest':
from requests.auth import HTTPDigestAuth
self._settings['auth'] = HTTPDigestAuth(user, passwd)
self._default_headers = {"User-Agent": "pyCardDAV"}
headers = self.headers
headers['Depth'] = '1'
response = self.session.request('OPTIONS',
self.url.resource,
headers=headers,
**self._settings)
response.raise_for_status()
if 'addressbook' not in response.headers.get('DAV', ''):
raise Exception("URL is not a CardDAV resource")
@property
def verify(self):
return self._settings['verify']
@verify.setter
def verify(self, verify):
self._settings['verify'] = verify
@property
def headers(self):
return dict(self._default_headers)
def _check_write_support(self):
if not self.write_support:
raise NoWriteSupport
def get_abook(self):
xml = self._get_xml_props()
abook = self._process_xml_props(xml)
return abook
def get_vcard(self, href):
response = self.session.get(self.url.base + href,
headers=self.headers,
**self._settings)
response.raise_for_status()
return response.content
def update_vcard(self, card, href, etag):
self._check_write_support()
remotepath = str(self.url.base + href)
headers = self.headers
headers['content-type'] = 'text/vcard'
if etag is not None:
headers['If-Match'] = etag
self.session.put(remotepath, data=card, headers=headers,
**self._settings)
def delete_vcard(self, href, etag):
self._check_write_support()
remotepath = str(self.url.base + href)
headers = self.headers
headers['content-type'] = 'text/vcard'
if etag is not None:
headers['If-Match'] = etag
response = self.session.delete(remotepath,
headers=headers,
**self._settings)
response.raise_for_status()
|
MIT License
|
gandersen101/spaczz
|
tests/test_matcher/test_regexmatcher.py
|
add_gpe_ent
|
python
|
def add_gpe_ent(
matcher: RegexMatcher,
doc: Doc,
i: int,
matches: List[Tuple[str, int, int, Tuple[int, int, int]]],
) -> None:
_match_id, start, end, _fuzzy_counts = matches[i]
entity = Span(doc, start, end, label="GPE")
doc.ents += (entity,)
|
Callback on match function for later testing. Adds "GPE" entities to doc.
|
https://github.com/gandersen101/spaczz/blob/0139082a33353c7ba5cbfa689fa0da7692347ecb/tests/test_matcher/test_regexmatcher.py#L14-L23
|
import pickle
from typing import List, Tuple
import warnings
import pytest
from spacy.language import Language
from spacy.tokens import Doc, Span
from spaczz.exceptions import KwargsWarning
from spaczz.matcher.regexmatcher import RegexMatcher
|
MIT License
|
rootpy/rootpy
|
rootpy/stl.py
|
make_string
|
python
|
def make_string(obj):
if inspect.isclass(obj):
if issubclass(obj, Object):
return obj._ROOT.__name__
if issubclass(obj, string_types):
return 'string'
return obj.__name__
if not isinstance(obj, string_types):
raise TypeError("expected string or class")
return obj
|
If ``obj`` is a string, return that, otherwise attempt to figure out the
name of a type.
|
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/stl.py#L302-L315
|
from __future__ import absolute_import
import sys
import inspect
import hashlib
import os
import re
from os.path import join as pjoin, exists
import ROOT
from .extern.pyparsing import ParseException
from .extern.six import string_types
from .base import Object
from .defaults import extra_initialization
from .utils.cpp import CPPGrammar
from .utils.path import mkdir_p
from .utils.lock import lock
from . import compiled
from . import userdata
from . import lookup_by_name, register, QROOT
from . import log; log = log[__name__]
__all__ = []
STL = QROOT.std.stlclasses
HAS_ITERATORS = [
'map',
'vector',
'list'
]
KNOWN_TYPES = {
"pair": "<utility>",
"string": "<string>",
}
compiled.register_code("""
#include <string>
// PyROOT builtin
namespace PyROOT { namespace Utility {
const std::string ResolveTypedef( const std::string& name );
} }
// cint magic
int G__defined_tagname(const char*, int);
// Returns true if the given type does not require a dictionary
bool _rootpy_dictionary_already_exists(const char* type) {
const std::string full_typedef = PyROOT::Utility::ResolveTypedef(type);
return G__defined_tagname(full_typedef.c_str(), 4) != -1;
}
""", ["_rootpy_dictionary_already_exists"])
LINKDEF = '''\
%(includes)s
#ifdef __CINT__
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ nestedclasses;
#pragma link C++ nestedtypedefs;
#pragma link C++ class %(declaration)s;
#pragma link C++ class %(declaration)s::*;
#ifdef HAS_ITERATOR
#pragma link C++ operators %(declaration)s::iterator;
#pragma link C++ operators %(declaration)s::const_iterator;
#pragma link C++ operators %(declaration)s::reverse_iterator;
#pragma link C++ operators %(declaration)s::const_reverse_iterator;
#endif
#endif
'''
NEW_DICTS = False
LOOKUP_TABLE_NAME = 'lookup'
LOADED_DICTS = {}
DICTS_PATH = os.path.join(userdata.BINARY_PATH, 'dicts')
if not os.path.exists(DICTS_PATH):
mkdir_p(DICTS_PATH)
include_list = os.path.join(userdata.BINARY_PATH, 'include_paths.list')
log.debug('Using {0} to get additional include paths'.format(include_list))
if os.path.exists(include_list):
with open(include_list) as inc_list:
for line in inc_list:
line = line.strip()
log.debug('adding {0} to the include paths'.format(line))
ROOT.gInterpreter.AddIncludePath(line)
@extra_initialization
def initialize():
global DICTS_PATH
path = ":".join([DICTS_PATH, ROOT.gSystem.GetDynamicPath()])
ROOT.gSystem.SetDynamicPath(path)
ROOT.gSystem.AddLinkedLibs("-Wl,-rpath,{0}".format(DICTS_PATH))
class CPPType(CPPGrammar):
def __init__(self, parse_result):
self.parse_result = parse_result
self.prefix = parse_result.type_prefix
self.name = ' '.join(parse_result.type_name)
self.params = parse_result.template_params
self.member = parse_result.template_member
self.suffix = parse_result.type_suffix
def __repr__(self):
return self.parse_result.dump()
@classmethod
def make(cls, string, location, tokens):
return cls(tokens)
@property
def is_template(self):
return bool(self.params)
def ensure_built(self, headers=None):
if not self.params:
return
else:
for child in self.params:
child.ensure_built(headers=headers)
if headers is None:
headers = self.guess_headers
generate(str(self), headers,
has_iterators=self.name in HAS_ITERATORS)
@property
def guess_headers(self):
name = self.name.replace("*", "")
headers = []
if name in KNOWN_TYPES:
headers.append(KNOWN_TYPES[name])
elif name in STL:
headers.append('<{0}>'.format(name))
elif hasattr(ROOT, name) and name.startswith("T"):
headers.append('<{0}.h>'.format(name))
elif '::' in name:
headers.append('<{0}.h>'.format(name.replace('::', '/')))
elif name == 'allocator':
headers.append('<memory>')
else:
try:
CPPGrammar.BASIC_TYPE.parseString(name, parseAll=True)
except ParseException as e:
log.warning(
"unable to guess headers required for {0}".format(name))
if self.params:
for child in self.params:
headers.extend(child.guess_headers)
return list(set(headers))
@property
def cls(self):
return SmartTemplate(self.name)(", ".join(map(str, self.params)))
@classmethod
def try_parse(cls, string):
try:
with log.ignore("^Failed to parse.*$"):
return cls.from_string(string)
except ParseException:
return None
@classmethod
def from_string(cls, string):
cls.TYPE.setParseAction(cls.make)
try:
return cls.TYPE.parseString(string, parseAll=True)[0]
except ParseException:
log.error("Failed to parse '{0}'".format(string))
raise
def __str__(self):
prefix = ' '.join(self.prefix)
if prefix:
prefix += ' '
name = self.name
args = [str(p) for p in self.params] if self.params else []
templatize = '<{0} >' if args and args[-1].endswith('>') else '<{0}>'
args = '' if not self.params else templatize.format(', '.join(args))
member = ('::' + self.member[0]) if self.member else ''
suffix = ' '.join(self.suffix)
return "{0}{1}{2}{3}{4}".format(prefix, name, args, member, suffix)
|
BSD 3-Clause New or Revised License
|
narimiran/tably
|
tably.py
|
Tably.create_row
|
python
|
def create_row(self, line, indent):
return r'{indent}{indent}{content} \\'.format(
indent=indent,
content=' & '.join(self.tex_str(line)))
|
Creates a row based on `line` content
|
https://github.com/narimiran/tably/blob/57e4b21b709e558a693de5ae6cdf8b4ba8a0bc38/tably.py#L169-L173
|
import argparse
import csv
import os
PREAMBLE = r"""\documentclass[11pt, a4paper]{article}
\usepackage{booktabs}
\begin{document}"""
HEADER = r"""\begin{{table}}[htb]
{indent}\centering{caption}{label}
{indent}\begin{{tabular}}{{@{{}}{align}@{{}}}}
{indent}{indent}\toprule"""
FOOTER = r"""{indent}{indent}\bottomrule
{indent}\end{{tabular}}
\end{{table}}"""
LABEL = '\n{indent}\\label{{{label}}}'
CAPTION = '\n{indent}\\caption{{{caption}}}'
class Tably:
def __init__(self, args):
self.files = args.files
self.no_header = args.no_header
self.caption = args.caption
self.label = args.label
self.align = args.align
self.no_indent = args.no_indent
self.outfile = args.outfile
self.separate_outfiles = args.separate_outfiles
self.skip = args.skip
self.preamble = args.preamble
self.sep = get_sep(args.sep)
self.units = args.units
self.fragment = args.fragment
self.fragment_skip_header = args.fragment_skip_header
self.replace = args.replace
self.tex_str = escape if not args.no_escape else lambda x: x
def run(self):
if self.fragment_skip_header:
self.skip = 1
self.no_header = True
self.fragment = True
if self.fragment:
self.no_indent = True
self.label = None
self.preamble = False
if self.outfile or self.separate_outfiles is None:
final_content = self.combine_tables()
if not final_content:
return
if self.outfile:
try:
save_content(final_content, self.outfile, self.replace)
except FileNotFoundError:
print('{} is not a valid/known path. Could not save there.'.format(self.outfile))
else:
print(final_content)
if self.separate_outfiles is not None:
outs = self.separate_outfiles
if len(outs) == 0:
outs = [ os.path.splitext(file)[0]+'.tex' for file in self.files ]
elif os.path.isdir(outs[0]):
outs = [ os.path.join(outs[0], os.path.splitext(os.path.basename(file))[0])+'.tex' for file in self.files ]
elif len(outs) != len(self.files):
print('WARNING: Number of .csv files and number of output files do not match!')
for file, out in zip(self.files, outs):
self.save_single_table(file, out)
def create_table(self, file):
rows = []
indent = 4*' ' if not self.no_indent else ''
try:
with open(file) as infile:
for i, columns in enumerate(csv.reader(infile, delimiter=self.sep)):
if i < self.skip:
continue
rows.append(self.create_row(columns, indent))
except FileNotFoundError:
print("File {} doesn't exist!!\n".format(file))
return ''
if not rows:
print("No table created from the {} file. Check if the file is empty "
"or you used too high skip value.\n".format(file))
return ''
if not self.no_header:
rows.insert(1, r'{0}{0}\midrule'.format(indent))
if self.units:
rows[0] = rows[0] + r'\relax'
units = self.get_units()
rows.insert(1, r'{0}{0}{1} \\'.format(indent, units))
content = '\n'.join(rows)
if not self.fragment:
header = HEADER.format(
label=add_label(self.label, indent),
caption=add_caption(self.caption, indent),
align=format_alignment(self.align, len(columns)),
indent=indent,
)
footer = FOOTER.format(indent=indent)
return '\n'.join((header, content, footer))
else:
return content
|
MIT License
|
colcon/colcon-core
|
colcon_core/command.py
|
verb_main
|
python
|
def verb_main(context, logger):
try:
rc = context.args.main(context=context)
except RuntimeError as e:
logger.error(
'{context.command_name} {context.args.verb_name}: {e}'
.format_map(locals()))
return 1
except Exception as e:
exc = traceback.format_exc()
logger.error(
'{context.command_name} {context.args.verb_name}: {e}\n{exc}'
.format_map(locals()))
return 1
return rc
|
Invoke the logic of the selected verb.
If the invocation is interrupted the returned error code is
`signal.SIGINT`.
If the verb raises a `RuntimeException` an error message is logged which
contains the message of the exception.
For any other exception a traceback is included in the logged error
message.
:param context: The :class:`CommandContext`
:param logger: The logger
:returns: The return code
|
https://github.com/colcon/colcon-core/blob/7d930eaa58342a0c1579b3614a945ea484640f7d/colcon_core/command.py#L510-L542
|
import argparse
import datetime
import logging
import os
from pathlib import Path
import shutil
import signal
import sys
import traceback
from colcon_core.environment_variable import EnvironmentVariable
WARNINGS_ENVIRONMENT_VARIABLE = EnvironmentVariable(
'COLCON_WARNINGS',
'Set the warnings filter similar to PYTHONWARNINGS except that the module '
"entry is implicitly set to 'colcon.*'")
warnings_filters = os.environ.get(WARNINGS_ENVIRONMENT_VARIABLE.name)
if warnings_filters:
import warnings
for f in warnings_filters.split(','):
fields = f.split(':', 4)
if len(fields) < 5:
fields += [''] * (5 - len(fields))
action, message, category, module, line = fields
try:
category = warnings._getcategory(category)
except Exception:
print(
"The category field '{category}' must be a valid warnings "
'class name'.format_map(locals()), file=sys.stderr)
sys.exit(1)
if module:
print(
'The module field of the {WARNINGS_ENVIRONMENT_VARIABLE.name} '
'filter should be empty, otherwise use PYTHONWARNINGS instead'
.format_map(locals()), file=sys.stderr)
sys.exit(1)
warnings.filterwarnings(
action, message=message, category=category or Warning,
module='colcon.*', lineno=line if line else 0)
from colcon_core.argument_parser import decorate_argument_parser
from colcon_core.argument_parser import SuppressUsageOutput
from colcon_core.entry_point import load_entry_points
from colcon_core.location import create_log_path
from colcon_core.location import get_log_path
from colcon_core.location import set_default_config_path
from colcon_core.location import set_default_log_path
from colcon_core.logging import add_file_handler
from colcon_core.logging import colcon_logger
from colcon_core.logging import get_numeric_log_level
from colcon_core.logging import set_logger_level_from_env
from colcon_core.plugin_system import get_first_line_doc
from colcon_core.verb import get_verb_extensions
LOG_LEVEL_ENVIRONMENT_VARIABLE = EnvironmentVariable(
'COLCON_LOG_LEVEL',
'Set the log level (debug|10, info|20, warn|30, error|40, critical|50, or '
'any other positive numeric value)')
HOME_ENVIRONMENT_VARIABLE = EnvironmentVariable(
'COLCON_HOME',
'Set the configuration directory (default: ~/.colcon)')
_command_exit_handlers = []
def register_command_exit_handler(handler):
global _command_exit_handlers
if handler not in _command_exit_handlers:
_command_exit_handlers.append(handler)
def main(*, command_name='colcon', argv=None):
global _command_exit_handlers
try:
return _main(command_name=command_name, argv=argv)
except KeyboardInterrupt:
return signal.SIGINT
finally:
while _command_exit_handlers:
handler = _command_exit_handlers.pop()
handler()
def _main(*, command_name, argv):
global colcon_logger
colcon_logger.setLevel(logging.WARNING)
set_logger_level_from_env(
colcon_logger, '{command_name}_LOG_LEVEL'.format_map(locals()).upper())
colcon_logger.debug(
'Command line arguments: {argv}'
.format(argv=argv if argv is not None else sys.argv))
set_default_config_path(
path=(
Path('~') / '.{command_name}'.format_map(locals())).expanduser(),
env_var='{command_name}_HOME'.format_map(locals()).upper())
parser = create_parser('colcon_core.environment_variable')
verb_extensions = get_verb_extensions()
subparser = create_subparser(
parser, command_name, verb_extensions, attribute='verb_name')
verb_parsers = add_parsers_without_arguments(
parser, subparser, verb_extensions, attribute='verb_name')
with SuppressUsageOutput([parser] + list(verb_parsers.values())):
known_args, _ = parser.parse_known_args(args=argv)
if known_args.verb_name:
add_parser_arguments(known_args.verb_parser, known_args.verb_extension)
args = parser.parse_args(args=argv)
context = CommandContext(command_name=command_name, args=args)
if args.log_level:
colcon_logger.setLevel(get_numeric_log_level(args.log_level))
colcon_logger.debug(
'Parsed command line arguments: {args}'.format_map(locals()))
if args.verb_name is None:
print(parser.format_usage())
return 'Error: No verb provided'
now = datetime.datetime.now()
now_str = str(now)[:-7].replace(' ', '_').replace(':', '-')
set_default_log_path(
base_path=args.log_base,
env_var='{command_name}_LOG_PATH'.format_map(locals()).upper(),
subdirectory='{args.verb_name}_{now_str}'.format_map(locals()))
log_path = get_log_path()
if log_path is not None:
create_log_path(args.verb_name)
handler = add_file_handler(
colcon_logger, log_path / 'logger_all.log')
log_record = colcon_logger.makeRecord(
colcon_logger.name, logging.DEBUG, __file__, 0,
'Command line arguments: {argv}'
.format(argv=argv if argv is not None else sys.argv),
None, None)
handler.handle(log_record)
log_record = colcon_logger.makeRecord(
colcon_logger.name, logging.DEBUG, __file__, 0,
'Parsed command line arguments: {args}'.format_map(locals()),
None, None)
handler.handle(log_record)
if command_name.upper() not in os.environ:
os.environ[command_name.upper()] = '1'
return verb_main(context, colcon_logger)
def create_parser(environment_variables_group_name):
class CustomArgumentParser(argparse.ArgumentParser):
def _parse_optional(self, arg_string):
result = super()._parse_optional(arg_string)
if result == (None, arg_string, None):
return None
return result
parser = CustomArgumentParser(
prog=get_prog_name(),
formatter_class=CustomFormatter,
epilog=(
get_environment_variables_epilog(
environment_variables_group_name
) + '\n\n' + READTHEDOCS_MESSAGE))
parser = decorate_argument_parser(parser)
add_log_level_argument(parser)
return parser
def get_prog_name():
prog = sys.argv[0]
basename = os.path.basename(prog)
if basename == '__main__.py':
prog = os.path.basename(os.path.dirname(prog))
elif shutil.which(basename) == prog:
prog = basename
return prog
class CustomFormatter(argparse.RawDescriptionHelpFormatter):
def _split_lines(self, text, width):
lines = []
for line in text.splitlines():
if len(line) <= width:
lines.append(line)
else:
lines += super()._split_lines(line, width)
return lines
def get_environment_variables_epilog(group_name):
entry_points = load_entry_points(group_name)
env_vars = {
env_var.name: env_var.description for env_var in entry_points.values()}
epilog_lines = []
for name in sorted(env_vars.keys()):
epilog_lines += _format_pair(name, env_vars[name], indent=2, align=24)
return 'Environment variables:\n' + '\n'.join(epilog_lines)
READTHEDOCS_MESSAGE = 'For more help and usage tips, see ' 'https://colcon.readthedocs.io'
def add_log_level_argument(parser):
parser.add_argument(
'--log-base',
help='The base path for all log directories (default: ./log, to '
'disable: {os.devnull})'.format_map(globals()))
parser.add_argument(
'--log-level', action=LogLevelAction,
help='Set log level for the console output, either by numeric or '
'string value (default: warning)')
class LogLevelAction(argparse.Action):
def __init__(self, option_strings, dest, *, nargs=None, **kwargs):
if nargs is not None:
raise ValueError('nargs not allowed')
super().__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
try:
value = get_numeric_log_level(values)
except ValueError as e:
parser.error(
'{option_string} has unsupported value, {e}'
.format_map(locals()))
setattr(namespace, self.dest, value)
def add_subparsers(parser, cmd_name, verb_extensions, *, attribute):
subparser = create_subparser(
parser, cmd_name, verb_extensions, attribute=attribute)
verb_parsers = add_parsers_without_arguments(
parser, subparser, verb_extensions, attribute=attribute)
for name, verb_parser in verb_parsers.items():
add_parser_arguments(
verb_parser, verb_extensions[name])
def create_subparser(parser, cmd_name, verb_extensions, *, attribute):
global colcon_logger
assert verb_extensions, 'No verb extensions'
verbs = []
for name, extension in verb_extensions.items():
verbs += _format_pair(
name, get_first_line_doc(extension), indent=0, align=22)
subparser = parser.add_subparsers(
title='{cmd_name} verbs'.format_map(locals()),
description='\n'.join(verbs),
dest=attribute,
help='call `{cmd_name} VERB -h` for specific help'
.format_map(locals())
)
return subparser
def add_parsers_without_arguments(
parser, subparser, verb_extensions, *, attribute
):
verb_parsers = {}
for name, extension in verb_extensions.items():
verb_parser = subparser.add_parser(
getattr(extension, attribute.upper()),
description=get_first_line_doc(extension) + '.',
formatter_class=parser.formatter_class,
)
verb_parser.set_defaults(
verb_parser=verb_parser, verb_extension=extension,
main=extension.main)
verb_parsers[name] = verb_parser
return verb_parsers
def add_parser_arguments(verb_parser, extension):
if hasattr(extension, 'add_arguments'):
retval = extension.add_arguments(parser=verb_parser)
if retval is not None:
colcon_logger.error(
"Exception in verb extension '{extension.VERB_NAME}': "
'add_arguments() should return None'.format_map(locals()))
def _format_pair(key, value, *, indent, align):
lines = []
prefix = ' ' * indent + key
minimum_gap = 2
if len(prefix) + minimum_gap <= align:
lines.append(prefix + ' ' * (align - len(prefix)))
else:
lines.append(prefix)
lines.append(' ' * align)
maximum_line_length = 80
maximum_value_length = maximum_line_length - align
while value:
if len(value) > maximum_value_length:
try:
i = value.rindex(' ', 0, maximum_value_length)
except ValueError:
pass
else:
lines[-1] += value[0:i]
value = value[i + 1:].lstrip()
lines.append(' ' * align)
continue
lines[-1] += value
break
return lines
class CommandContext:
__slots__ = ('command_name', 'args')
def __init__(self, *, command_name: str, args: object):
self.command_name = command_name
self.args = args
|
Apache License 2.0
|
neurodiffgym/neurodiffeq
|
neurodiffeq/pde.py
|
solve2D_system
|
python
|
def solve2D_system(
pde_system, conditions, xy_min=None, xy_max=None,
single_net=None, nets=None, train_generator=None, valid_generator=None,
optimizer=None, criterion=None, n_batches_train=1, n_batches_valid=4,
additional_loss_term=None, metrics=None, max_epochs=1000,
monitor=None, return_internal=False, return_best=False, batch_size=None, shuffle=None,
):
warnings.warn(
"The `solve2D_system` function is deprecated, use a `neurodiffeq.solvers.Solver2D` instance instead",
FutureWarning,
)
if single_net and nets:
raise ValueError('Only one of net and nets should be specified')
if (not single_net) and (not nets):
single_net = FCNN(
n_input_units=2,
n_output_units=len(conditions),
hidden_units=(32, 32),
actv=nn.Tanh,
)
if single_net:
for ith, con in enumerate(conditions):
con.set_impose_on(ith)
nets = [single_net] * len(conditions)
if additional_loss_term:
class CustomSolver2D(Solver2D):
def additional_loss(self, residual, funcs, coords):
return additional_loss_term(*funcs, *coords)
else:
class CustomSolver2D(Solver2D):
pass
solver = CustomSolver2D(
pde_system=pde_system,
conditions=conditions,
xy_min=xy_min,
xy_max=xy_max,
nets=nets,
train_generator=train_generator,
valid_generator=valid_generator,
optimizer=optimizer,
criterion=criterion,
n_batches_train=n_batches_train,
n_batches_valid=n_batches_valid,
metrics=metrics,
batch_size=batch_size,
shuffle=shuffle,
)
solver.fit(max_epochs=max_epochs, monitor=monitor)
solution = solver.get_solution(copy=True, best=return_best)
ret = (solution, solver.metrics_history)
if return_internal:
params = ['nets', 'conditions', 'train_generator', 'valid_generator', 'optimizer', 'criterion']
internals = solver.get_internals(params, return_type="dict")
ret = ret + (internals,)
return ret
|
r"""Train a neural network to solve a PDE with 2 independent variables.
:param pde_system:
The PDE system to solve.
If the PDE is :math:`F_i(u_1, u_2, ..., u_n, x, y) = 0`
where :math:`u_i` is the i-th dependent variable and :math:`x` and :math:`y` are the independent variables,
then `pde_system` should be a function that maps :math:`(u_1, u_2, ..., u_n, x, y)`
to a list where the i-th entry is :math:`F_i(u_1, u_2, ..., u_n, x, y)`.
:type pde_system: callable
:param conditions:
The initial/boundary conditions.
The ith entry of the conditions is the condition that :math:`x_i` should satisfy.
:type conditions: list[`neurodiffeq.conditions.BaseCondition`]
:param xy_min:
The lower bound of 2 dimensions.
If we only care about :math:`x \geq x_0` and :math:`y \geq y_0`,
then `xy_min` is `(x_0, y_0)`.
Only needed when train_generator or valid_generator are not specified.
Defaults to None
:type xy_min: tuple[float, float], optional
:param xy_max:
The upper bound of 2 dimensions.
If we only care about :math:`x \leq x_1` and :math:`y \leq y_1`, then `xy_min` is `(x_1, y_1)`.
Only needed when train_generator or valid_generator are not specified.
Defaults to None
:type xy_max: tuple[float, float], optional
:param single_net:
The single neural network used to approximate the solution.
Only one of `single_net` and `nets` should be specified.
Defaults to None
:param single_net: `torch.nn.Module`, optional
:param nets:
The neural networks used to approximate the solution.
Defaults to None.
:type nets: list[`torch.nn.Module`], optional
:param train_generator:
The example generator to generate 1-D training points.
Default to None.
:type train_generator: `neurodiffeq.generators.Generator2D`, optional
:param valid_generator:
The example generator to generate 1-D validation points.
Default to None.
:type valid_generator: `neurodiffeq.generators.Generator2D`, optional
:param optimizer:
The optimization method to use for training.
Defaults to None.
:type optimizer: `torch.optim.Optimizer`, optional
:param criterion:
The loss function to use for training.
Defaults to None.
:type criterion: `torch.nn.modules.loss._Loss`, optional
:param n_batches_train:
Number of batches to train in every epoch, where batch-size equals ``train_generator.size``.
Defaults to 1.
:type n_batches_train: int, optional
:param n_batches_valid:
Number of batches to validate in every epoch, where batch-size equals ``valid_generator.size``.
Defaults to 4.
:type n_batches_valid: int, optional
:param additional_loss_term:
Extra terms to add to the loss function besides the part specified by `criterion`.
The input of `additional_loss_term` should be the same as `pde_system`.
:type additional_loss_term: callable
:param metrics:
Metrics to keep track of during training.
The metrics should be passed as a dictionary where the keys are the names of the metrics,
and the values are the corresponding function.
The input functions should be the same as `pde_system` and the output should be a numeric value.
The metrics are evaluated on both the training set and validation set.
:type metrics: dict[string, callable]
:param max_epochs:
The maximum number of epochs to train.
Defaults to 1000.
:type max_epochs: int, optional
:param monitor:
The monitor to check the status of nerual network during training.
Defaults to None.
:type monitor: `neurodiffeq.pde.Monitor2D`, optional
:param return_internal:
Whether to return the nets, conditions, training generator,
validation generator, optimizer and loss function.
Defaults to False.
:type return_internal: bool, optional
:param return_best:
Whether to return the nets that achieved the lowest validation loss.
Defaults to False.
:type return_best: bool, optional
:param batch_size:
**[DEPRECATED and IGNORED]**
Each batch will use all samples generated.
Please specify ``n_batches_train`` and ``n_batches_valid`` instead.
:type batch_size: int
:param shuffle:
**[DEPRECATED and IGNORED]**
Shuffling should be performed by generators.
:type shuffle: bool
:return:
The solution of the PDE.
The history of training loss and validation loss.
Optionally, the nets, conditions, training generator, validation generator, optimizer and loss function.
The solution is a function that has the signature `solution(xs, ys, as_type)`.
:rtype: tuple[`neurodiffeq.pde.Solution`, dict] or tuple[`neurodiffeq.pde.Solution`, dict, dict]
.. note::
This function is deprecated, use a ``neurodiffeq.solvers.Solver2D`` instead.
|
https://github.com/neurodiffgym/neurodiffeq/blob/ab670a1af2e58766849f3bc683f7e6b0a6444124/neurodiffeq/pde.py#L170-L338
|
import torch
import warnings
import torch.optim as optim
import torch.nn as nn
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from .networks import FCNN
from .neurodiffeq import safe_diff as diff
from .generators import Generator2D, PredefinedGenerator
from ._version_utils import warn_deprecate_class
from .conditions import IrregularBoundaryCondition
from .conditions import NoCondition, DirichletBVP2D, IBVP1D
from .monitors import Monitor2D
from .solvers import Solution2D
from .solvers import Solver2D
from copy import deepcopy
ExampleGenerator2D = warn_deprecate_class(Generator2D)
PredefinedExampleGenerator2D = warn_deprecate_class(PredefinedGenerator)
Solution = warn_deprecate_class(Solution2D)
def _network_output_2input(net, xs, ys, ith_unit):
xys = torch.cat((xs, ys), 1)
nn_output = net(xys)
if ith_unit is not None:
return nn_output[:, ith_unit].reshape(-1, 1)
else:
return nn_output
def _trial_solution_2input(single_net, nets, xs, ys, conditions):
if single_net:
us = [
con.enforce(single_net, xs, ys)
for con in conditions
]
else:
us = [
con.enforce(net, xs, ys)
for con, net in zip(conditions, nets)
]
return us
def solve2D(
pde, condition, xy_min=None, xy_max=None,
net=None, train_generator=None, valid_generator=None, optimizer=None,
criterion=None, n_batches_train=1, n_batches_valid=4,
additional_loss_term=None, metrics=None, max_epochs=1000,
monitor=None, return_internal=False, return_best=False, batch_size=None, shuffle=None,
):
nets = None if not net else [net]
return solve2D_system(
pde_system=lambda u, x, y: [pde(u, x, y)], conditions=[condition],
xy_min=xy_min, xy_max=xy_max, nets=nets,
train_generator=train_generator, shuffle=shuffle, valid_generator=valid_generator,
optimizer=optimizer, criterion=criterion, n_batches_train=n_batches_train, n_batches_valid=n_batches_valid,
additional_loss_term=additional_loss_term, metrics=metrics, batch_size=batch_size,
max_epochs=max_epochs, monitor=monitor, return_internal=return_internal, return_best=return_best
)
|
MIT License
|
pantsbuild/pex
|
pex/executor.py
|
Executor.execute
|
python
|
def execute(cls, cmd, stdin_payload=None, **kwargs):
process = cls.open_process(
cmd=cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs
)
stdout_raw, stderr_raw = process.communicate(input=stdin_payload)
stdout = stdout_raw.decode("utf-8") if stdout_raw is not None else stdout_raw
stderr = stderr_raw.decode("utf-8") if stderr_raw is not None else stderr_raw
if process.returncode != 0:
raise cls.NonZeroExit(cmd, process.returncode, stdout, stderr)
return stdout, stderr
|
Execute a command via subprocess.Popen and returns the stdio.
:param string|list cmd: A list or string representing the command to run.
:param string stdin_payload: A string representing the stdin payload, if any, to send.
:param **kwargs: Additional kwargs to pass through to subprocess.Popen.
:return: A tuple of strings representing (stdout, stderr), pre-decoded for utf-8.
:raises: `Executor.ExecutableNotFound` when the executable requested to run does not exist.
`Executor.NonZeroExit` when the execution fails with a non-zero exit code.
|
https://github.com/pantsbuild/pex/blob/a2eb72e4f627ce0630cd120b5411b2fda7974ce9/pex/executor.py#L80-L101
|
from __future__ import absolute_import
import errno
import os
from pex.compatibility import PY2, string
from pex.tracer import TRACER
if os.name == "posix" and PY2:
try:
import subprocess32 as subprocess
except ImportError:
TRACER.log(
"Please build pex with the subprocess32 module for more reliable requirement "
"installation and interpreter execution."
)
import subprocess
else:
import subprocess
class Executor(object):
class ExecutionError(Exception):
def __init__(self, msg, cmd, exc=None):
super(Executor.ExecutionError, self).__init__(
"%s while trying to execute `%s`" % (msg, cmd)
)
self.executable = cmd.split()[0] if isinstance(cmd, string) else cmd[0]
self.cmd = cmd
self.exc = exc
class NonZeroExit(ExecutionError):
def __init__(self, cmd, exit_code, stdout, stderr):
super(Executor.NonZeroExit, self).__init__(
"received exit code %s during execution of `%s`" % (exit_code, cmd), cmd
)
self.exit_code = exit_code
self.stdout = stdout
self.stderr = stderr
class ExecutableNotFound(ExecutionError):
def __init__(self, cmd, exc):
super(Executor.ExecutableNotFound, self).__init__(
"caught %r while trying to execute `%s`" % (exc, cmd), cmd
)
self.exc = exc
@classmethod
def open_process(cls, cmd, **kwargs):
assert len(cmd) > 0, "cannot execute an empty command!"
try:
return subprocess.Popen(cmd, **kwargs)
except (IOError, OSError) as e:
if e.errno == errno.ENOENT:
raise cls.ExecutableNotFound(cmd, e)
else:
raise cls.ExecutionError(repr(e), cmd, e)
@classmethod
|
Apache License 2.0
|
commvault/cvpysdk
|
cvpysdk/security/role.py
|
Roles.has_role
|
python
|
def has_role(self, role_name):
if not isinstance(role_name, basestring):
raise SDKException('Role', '101')
return self._roles and role_name.lower() in self._roles
|
Checks if any role with specified name exists on this commcell
Args:
role_name (str) -- name of the role which has to be
checked if exists
Retruns:
Bool- True if specified role is presnt on th ecommcell else false
Raises:
SDKException:
if data type of input is invalid
|
https://github.com/commvault/cvpysdk/blob/66df30e6e31d619812b7756cb4f7e130b220a08f/cvpysdk/security/role.py#L140-L157
|
from past.builtins import basestring
from ..exception import SDKException
class Roles(object):
def __init__(self, commcell_object):
self._commcell_object = commcell_object
self._roles = self._get_roles()
def __str__(self):
representation_string = '{:^5}\t{:^20}\n\n'.format('S. No.', 'Roles')
for index, role in enumerate(self._roles):
sub_str = '{:^5}\t{:20}\n'.format(index + 1, role)
representation_string += sub_str
return representation_string.strip()
def __repr__(self):
return "Roles class instance for Commcell: '{0}'".format(
self._commcell_object.commserv_name
)
def _get_roles(self):
get_all_roles_service = self._commcell_object._services['ROLES']
flag, response = self._commcell_object._cvpysdk_object.make_request(
'GET', get_all_roles_service
)
if flag:
if response.json() and 'roleProperties' in response.json():
roles_dict = {}
for role in response.json()['roleProperties']:
temp_id = role['role']['roleId']
temp_name = role['role']['roleName'].lower()
roles_dict[temp_name] = temp_id
return roles_dict
else:
return {}
else:
response_string = self._commcell_object._update_response_(response.text)
raise SDKException('Response', '101', response_string)
|
Apache License 2.0
|
ncullen93/pybn
|
pyBN/io/read.py
|
read_bn
|
python
|
def read_bn(path):
if '.bif' in path:
return read_bif(path)
elif '.bn' in path:
return read_json(path)
elif '.mat' in path:
return read_mat(path)
else:
print("Path Extension not recognized")
|
Wrapper function for reading BayesNet objects
from various file types.
Arguments
---------
*path* : a string
The path (relative or absolute) - MUST
include extension -> that's how we know
which file reader to call.
Returns
-------
*bn* : a BayesNet object
Effects
-------
None
Notes
-----
|
https://github.com/ncullen93/pybn/blob/58bf684b4ac0bbfa7e2aa394ba3dd302d3dd22db/pyBN/io/read.py#L24-L55
|
__author__ = """Nicholas Cullen <ncullen.th@dartouth.edu>"""
import json
import numpy as np
import copy
from pyBN.classes.bayesnet import BayesNet
from pyBN.classes.factor import Factor
from pyBN.utils.graph import topsort
|
MIT License
|
cheind/pytorch-blender
|
pkg_pytorch/blendtorch/btt/dataset.py
|
RemoteIterableDataset.enable_recording
|
python
|
def enable_recording(self, fname):
self.record_path_prefix = fname
|
Enable recording to given prefix path `fname`.
Needs to be set before receiving items from the dataset.
|
https://github.com/cheind/pytorch-blender/blob/eb5effb033094d037e7bdc2238c00806be7012ae/pkg_pytorch/blendtorch/btt/dataset.py#L54-L59
|
import zmq
import pickle
from contextlib import ExitStack
from glob import glob
import torch.utils as utils
from .file import FileRecorder, FileReader
from .constants import DEFAULT_TIMEOUTMS
def _identity_item_transform(x):
return x
class RemoteIterableDataset(utils.data.IterableDataset):
def __init__(self, addresses, queue_size=10, timeoutms=DEFAULT_TIMEOUTMS, max_items=100000, item_transform=None, record_path_prefix=None):
self.addresses = addresses
self.queue_size = queue_size
self.timeoutms = timeoutms
self.max_items = max_items
self.record_path_prefix = record_path_prefix
self.item_transform = item_transform or _identity_item_transform
|
MIT License
|
milkpku/betaelephant
|
data/datatransfer.py
|
state2fen
|
python
|
def state2fen(cstate):
fen = ''
[m,n] = cstate.state.shape
for i in range(m):
zcnt = 0
for j in range(n):
if cstate.state[i][j] != ' ':
if zcnt != 0:
fen += str(zcnt)
zcnt = 0
fen += cstate.state[i][j]
else:
zcnt += 1
if zcnt != 0:
fen += str(zcnt)
zcnt = 0
fen += '/'
fen = fen[:-1]
fen += ' ' + cstate.turn
fen += ' - - 0 '
fen += str(cstate.roundcnt)
return fen
|
transfer the chessboard to fen string
state: state of the current chessboard
turn: which player to play
round: count of round
return: fen string
|
https://github.com/milkpku/betaelephant/blob/0db6140d328355ac0a3c7f9f667ca760f5096711/data/datatransfer.py#L21-L49
|
import numpy as np
class chessboradstate:
def __init__(self):
self.state = np.zeros([10,9], dtype=np.string_)
self.turn = 'w'
self.roundcnt = 1
|
MIT License
|
flyteorg/flytekit
|
flytekit/interfaces/data/gcs/gcs_proxy.py
|
GCSProxy.__init__
|
python
|
def __init__(self, raw_output_data_prefix_override: str = None):
self._raw_output_data_prefix_override = raw_output_data_prefix_override
super(GCSProxy, self).__init__(name="gcs-gsutil")
|
:param raw_output_data_prefix_override: Instead of relying on the AWS or GCS configuration (see
S3_SHARD_FORMATTER for AWS and GCS_PREFIX for GCP) setting when computing the shard
path (_get_shard_path), use this prefix instead as a base. This code assumes that the
path passed in is correct. That is, an S3 path won't be passed in when running on GCP.
|
https://github.com/flyteorg/flytekit/blob/6c032035563ae645b0b93558b3fe3362080057ea/flytekit/interfaces/data/gcs/gcs_proxy.py#L29-L37
|
import os as _os
import sys as _sys
import uuid as _uuid
from flytekit.common.exceptions.user import FlyteUserException as _FlyteUserException
from flytekit.configuration import gcp as _gcp_config
from flytekit.interfaces import random as _flyte_random
from flytekit.interfaces.data import common as _common_data
from flytekit.tools import subprocess as _subprocess
if _sys.version_info >= (3,):
from shutil import which as _which
else:
from distutils.spawn import find_executable as _which
def _update_cmd_config_and_execute(cmd):
env = _os.environ.copy()
return _subprocess.check_call(cmd, env=env)
def _amend_path(path):
return _os.path.join(path, "*") if not path.endswith("*") else path
class GCSProxy(_common_data.DataProxy):
_GS_UTIL_CLI = "gsutil"
|
Apache License 2.0
|
mapnik/cascadenik
|
cascadenik/compile.py
|
fs2url
|
python
|
def fs2url(url):
return safe64.decode(url)
|
decode a filename to the URL it is derived from
|
https://github.com/mapnik/cascadenik/blob/82f66859340a31dfcb24af127274f262d4f3ad85/cascadenik/compile.py#L109-L111
|
import os, sys
import math
import urllib
import urllib2
import tempfile
import StringIO
import operator
import base64
import posixpath
import os.path as systempath
import zipfile
import shutil
from hashlib import md5
from datetime import datetime
from time import strftime, localtime
from re import sub, compile, MULTILINE
from urlparse import urlparse, urljoin
from operator import lt, le, eq, ge, gt
def _relpath(path, start=posixpath.curdir):
if not path:
raise ValueError("no path specified")
start_list = posixpath.abspath(start).split(posixpath.sep)
path_list = posixpath.abspath(path).split(posixpath.sep)
i = len(posixpath.commonprefix([start_list, path_list]))
rel_list = [posixpath.pardir] * (len(start_list)-i) + path_list[i:]
if not rel_list:
return posixpath.curdir
return posixpath.join(*rel_list)
if sys.hexversion >= 0x020600F0:
from httplib import HTTPConnection, HTTPSConnection
else:
posixpath.relpath = _relpath
from httplib import HTTPConnection as _HTTPConnection
from httplib import HTTPSConnection as _HTTPSConnection
import socket
def HTTPConnection(host, port=None, strict=None, timeout=None):
if timeout:
socket.setdefaulttimeout(timeout)
return _HTTPConnection(host, port=port, strict=strict)
def HTTPSConnection(host, port=None, strict=None, timeout=None):
if timeout:
socket.setdefaulttimeout(timeout)
return _HTTPSConnection(host, port=port, strict=strict)
from . import safe64, style, output, sources
from . import MAPNIK_VERSION, MAPNIK_VERSION_STR
from .nonposix import un_posix, to_posix
from .parse import stylesheet_declarations
from .style import uri
try:
from PIL import Image
except ImportError:
try:
import Image
except ImportError:
Image = False
if not Image:
warn = 'Warning: PIL (Python Imaging Library) is required for proper handling of image symbolizers when using JPEG format images or not running Mapnik >=0.7.0\n'
sys.stderr.write(warn)
DEFAULT_ENCODING = 'utf-8'
try:
import xml.etree.ElementTree as ElementTree
from xml.etree.ElementTree import Element
except ImportError:
try:
import lxml.etree as ElementTree
from lxml.etree import Element
except ImportError:
import elementtree.ElementTree as ElementTree
from elementtree.ElementTree import Element
opsort = {lt: 1, le: 2, eq: 3, ge: 4, gt: 5}
opstr = {lt: '<', le: '<=', eq: '==', ge: '>=', gt: '>'}
VERBOSE = False
def msg(msg):
if VERBOSE:
sys.stderr.write('Cascadenik debug: %s\n' % msg)
counter = 0
def next_counter():
global counter
counter += 1
return counter
def url2fs(url):
uri, extension = posixpath.splitext(url)
return safe64.dir(uri) + extension
|
BSD 3-Clause New or Revised License
|
beta-team/beta-recsys
|
beta_rec/datasets/instacart.py
|
Instacart_25.preprocess
|
python
|
def preprocess(self):
print("Start loading data from raw data")
order_products_prior_file = os.path.join(
self.raw_path, "order_products__prior.csv"
)
order_products_train_file = os.path.join(
self.raw_path, "order_products__train.csv"
)
if not os.path.exists(order_products_prior_file) or not os.path.exists(
order_products_train_file
):
print("Raw file doesn't exist, try to download it.")
self.download()
file_name = os.path.join(self.raw_path + ".gz")
un_zip(file_name)
orders_file = os.path.join(self.raw_path, "orders.csv")
prior_products = pd.read_csv(
order_products_prior_file,
usecols=["order_id", "product_id", "add_to_cart_order"],
)
train_products = pd.read_csv(
order_products_train_file,
usecols=["order_id", "product_id", "add_to_cart_order"],
)
order_products = pd.concat([prior_products, train_products])
orders = pd.read_csv(
orders_file, usecols=["user_id", "order_id", "order_number", "eval_set"]
)
user_products = order_products.merge(orders, how="left", on="order_id")
order_addtocart_user = (
user_products.groupby(
["order_id", "add_to_cart_order", "user_id", "product_id", "eval_set"]
)
.size()
.rename("ratings")
.reset_index()
)
order_addtocart_user.rename(
columns={
"order_id": DEFAULT_ORDER_COL,
"user_id": DEFAULT_USER_COL,
"product_id": DEFAULT_ITEM_COL,
"ratings": DEFAULT_RATING_COL,
"eval_set": DEFAULT_FLAG_COL,
},
inplace=True,
)
timestamp_col = {DEFAULT_TIMESTAMP_COL: order_addtocart_user.index}
order_addtocart_user = order_addtocart_user.assign(**timestamp_col)
print("Start sampling 25% users from the raw data")
users = list(order_addtocart_user[DEFAULT_USER_COL].unique())
sampled_users = random.sample(users, int(len(users) * 0.25))
order_addtocart_user = order_addtocart_user[
order_addtocart_user[DEFAULT_USER_COL].isin(sampled_users)
]
print("Loading raw data completed")
self.save_dataframe_as_npz(
order_addtocart_user,
os.path.join(self.processed_path, f"{self.dataset_name}_interaction.npz"),
)
|
Preprocess the raw file.
Preprocess the file downloaded via the url,
convert it to a dataframe consist of the user-item interaction
and save in the processed directory
Download and load datasets
1. Download instacart dataset if this dataset is not existed.
2. Load <order> table and <order_products> table from "orders.csv" and "order_products__train.csv".
3. Merge the two tables above.
4. Add additional columns [rating, timestamp].
5. Rename columns and save data model.
|
https://github.com/beta-team/beta-recsys/blob/be6a5c9307e00cc7bb06cbfd407a637e9d5afbb0/beta_rec/datasets/instacart.py#L181-L264
|
import os
import random
import pandas as pd
from ..datasets.dataset_base import DatasetBase
from ..utils.common_util import un_zip
from ..utils.constants import (
DEFAULT_FLAG_COL,
DEFAULT_ITEM_COL,
DEFAULT_ORDER_COL,
DEFAULT_RATING_COL,
DEFAULT_TIMESTAMP_COL,
DEFAULT_USER_COL,
)
INSTACART_URL = "https://www.kaggle.com/c/instacart-market-basket-analysis/data"
INSTACART_RANDOM_SPLIT_URL = (
r"https://1drv.ms/u/s!AjMahLyQeZqugX4W4zLO6Jkx8P-W?e=oKymnV"
)
INSTACART_TEMPORAL_SPLIT_URL = (
r"https://1drv.ms/u/s!AjMahLyQeZquggAblxVFSYeu3nzh?e=pzBaAa"
)
INSTACART_LEAVE_ONE_OUT_URL = (
r"https://1drv.ms/u/s!AjMahLyQeZquggLQynzcCWfNUdIg?e=HDhUjL"
)
INSTACART_TIPS = """
Instacart dataset can not be downloaded by this url automatically, and you need to do:
1. Download this dataset via 'https://www.kaggle.com/c/instacart-market-basket-analysis/data',
2. Put 'instacart-market-basket-analysis.zip' into the directory `instacart/raw/`,
3. Unzip 'instacart-market-basket-analysis.zip', put all the *.csv files into 'instacart/raw/'.
4. Rerun this program.
"""
class Instacart(DatasetBase):
def __init__(
self, dataset_name="instacart", min_u_c=0, min_i_c=3, min_o_c=0, root_dir=None
):
super().__init__(
dataset_name=dataset_name,
min_u_c=min_u_c,
min_i_c=min_i_c,
min_o_c=min_o_c,
root_dir=root_dir,
manual_download_url=INSTACART_URL,
processed_leave_one_out_url=INSTACART_LEAVE_ONE_OUT_URL,
processed_random_split_url=INSTACART_RANDOM_SPLIT_URL,
processed_temporal_split_url=INSTACART_TEMPORAL_SPLIT_URL,
tips=INSTACART_TIPS,
)
def preprocess(self):
print("Start loading data from raw data")
order_products_prior_file = os.path.join(
self.raw_path, "order_products__prior.csv"
)
order_products_train_file = os.path.join(
self.raw_path, "order_products__train.csv"
)
if not os.path.exists(order_products_prior_file) or not os.path.exists(
order_products_train_file
):
print("Raw file doesn't exist, try to download it.")
self.download()
orders_file = os.path.join(self.raw_path, "orders.csv")
prior_products = pd.read_csv(
order_products_prior_file,
usecols=["order_id", "product_id", "add_to_cart_order"],
)
train_products = pd.read_csv(
order_products_train_file,
usecols=["order_id", "product_id", "add_to_cart_order"],
)
order_products = pd.concat([prior_products, train_products])
orders = pd.read_csv(
orders_file, usecols=["user_id", "order_id", "order_number", "eval_set"]
)
user_products = order_products.merge(orders, how="left", on="order_id")
order_addtocart_user = (
user_products.groupby(
["order_id", "add_to_cart_order", "user_id", "product_id", "eval_set"]
)
.size()
.rename("ratings")
.reset_index()
)
order_addtocart_user.rename(
columns={
"order_id": DEFAULT_ORDER_COL,
"user_id": DEFAULT_USER_COL,
"product_id": DEFAULT_ITEM_COL,
"ratings": DEFAULT_RATING_COL,
"eval_set": DEFAULT_FLAG_COL,
},
inplace=True,
)
timestamp_col = {DEFAULT_TIMESTAMP_COL: order_addtocart_user.index}
order_addtocart_user = order_addtocart_user.assign(**timestamp_col)
print("Loading raw data completed")
self.save_dataframe_as_npz(
order_addtocart_user,
os.path.join(self.processed_path, f"{self.dataset_name}_interaction.npz"),
)
class Instacart_25(DatasetBase):
def __init__(
self,
dataset_name="instacart_25",
min_u_c=0,
min_i_c=3,
min_o_c=0,
):
super().__init__(
dataset_name=dataset_name,
min_u_c=min_u_c,
min_i_c=min_i_c,
min_o_c=min_o_c,
manual_download_url="https://www.kaggle.com/c/6644/download-all",
processed_random_split_url=INSTACART_RANDOM_SPLIT_URL,
processed_temporal_split_url=INSTACART_TEMPORAL_SPLIT_URL,
)
|
MIT License
|
napari/napari
|
napari/_vispy/utils/visual.py
|
get_view_direction_in_scene_coordinates
|
python
|
def get_view_direction_in_scene_coordinates(
view: ViewBox,
ndim: int,
dims_displayed: Tuple[int],
) -> np.ndarray:
if len(dims_displayed) == 2:
return None
tform = view.scene.transform
w, h = view.canvas.size
screen_center = np.array([w / 2, h / 2, 0, 1])
d1 = np.array([0, 0, 1, 0])
point_in_front_of_screen_center = screen_center + d1
p1 = tform.imap(point_in_front_of_screen_center)
p0 = tform.imap(screen_center)
d2 = p1 - p0
d3 = d2[0:3]
d4 = d3 / np.linalg.norm(d3)
d4 = d4[[2, 1, 0]]
view_dir_world = np.zeros((ndim,))
for i, d in enumerate(dims_displayed):
view_dir_world[d] = d4[i]
return view_dir_world
|
Calculate the unit vector pointing in the direction of the view.
This is only for 3D viewing, so it returns None when
len(dims_displayed) == 2.
Adapted From:
https://stackoverflow.com/questions/37877592/
get-view-direction-relative-to-scene-in-vispy/37882984
Parameters
----------
view : vispy.scene.widgets.viewbox.ViewBox
The vispy view box object to get the view direction from.
ndim : int
The number of dimensions in the full nD dims model.
This is typically from viewer.dims.ndim
dims_displayed : Tuple[int]
The indices of the dims displayed in the viewer.
This is typically from viewer.dims.displayed.
Returns
-------
view_vector : np.ndarray
Unit vector in the direction of the view in scene coordinates.
Axes are ordered zyx. If the viewer is in 2D
(i.e., len(dims_displayed) == 2), view_vector is None.
|
https://github.com/napari/napari/blob/c4c987c880fe125da608edf427767eafe7f2b3f4/napari/_vispy/utils/visual.py#L73-L133
|
from typing import Tuple
import numpy as np
from vispy.scene.widgets.viewbox import ViewBox
from ...layers import (
Image,
Labels,
Layer,
Points,
Shapes,
Surface,
Tracks,
Vectors,
)
from ...utils.config import async_octree
from ...utils.translations import trans
from ..layers.base import VispyBaseLayer
from ..layers.image import VispyImageLayer
from ..layers.points import VispyPointsLayer
from ..layers.shapes import VispyShapesLayer
from ..layers.surface import VispySurfaceLayer
from ..layers.tracks import VispyTracksLayer
from ..layers.vectors import VispyVectorsLayer
layer_to_visual = {
Image: VispyImageLayer,
Labels: VispyImageLayer,
Points: VispyPointsLayer,
Shapes: VispyShapesLayer,
Surface: VispySurfaceLayer,
Vectors: VispyVectorsLayer,
Tracks: VispyTracksLayer,
}
if async_octree:
from ..layers.image.experimental.octree_image import _OctreeImageBase
from .experimental.vispy_tiled_image_layer import VispyTiledImageLayer
new_mapping = {_OctreeImageBase: VispyTiledImageLayer}
new_mapping.update(layer_to_visual)
layer_to_visual = new_mapping
def create_vispy_visual(layer: Layer) -> VispyBaseLayer:
for layer_type, visual_class in layer_to_visual.items():
if isinstance(layer, layer_type):
return visual_class(layer)
raise TypeError(
trans._(
'Could not find VispyLayer for layer of type {dtype}',
deferred=True,
dtype=type(layer),
)
)
|
BSD 3-Clause New or Revised License
|
fisher60/friendo_bot
|
bot/cogs/fun.py
|
Fun.eight_ball
|
python
|
async def eight_ball(self, ctx: Context, *, question: str) -> None:
responses = [
"It is certain",
"Yes, definitely",
"Without a doubt",
"That's for sure",
"Most likely",
"Umm, try again",
"Didnt quite get that",
"Concentrate and try again",
"Not likely at all",
"My reply is no",
"Obviously not",
"No...",
"My sources say no",
]
await ctx.send(f"Question: {question}\nAnswer: {choice(responses)}")
|
Returns an 8ball response to a user's question.
|
https://github.com/fisher60/friendo_bot/blob/715fd1b08ac9f0b4f29ad38a4f3a9e59ea3af5d9/bot/cogs/fun.py#L180-L198
|
import functools
from itertools import product
from random import choice, randint, shuffle
import re
import string
from typing import List
from discord.ext.commands import Cog, Context, command
from bot.bot import Friendo
UWU_WORDS = {
"fi": "fwi",
"l": "w",
"r": "w",
"some": "sum",
"th": "d",
"thing": "fing",
"tho": "fo",
"you're": "yuw'we",
"your": "yur",
"you": "yuw",
}
def get_factorial(num: int) -> int:
answer = 1
for i in range(num, 0, -1):
answer *= i
return answer
def _replace_many(
sentence: str,
replacements: dict,
*,
ignore_case: bool = False,
match_case: bool = False,
) -> str:
if ignore_case:
replacements = dict(
(word.lower(), replacement) for word, replacement in replacements.items()
)
words_to_replace = sorted(replacements, key=lambda s: (-len(s), s))
pattern = "|".join(re.escape(word) for word in words_to_replace)
regex = re.compile(pattern, re.I if ignore_case else 0)
def _repl(match: re.Match) -> str:
word = match.group(0)
replacement = replacements[word.lower() if ignore_case else word]
if not match_case:
return replacement
cleaned_word = word.translate(str.maketrans("", "", string.punctuation))
if cleaned_word.isupper():
return replacement.upper()
elif cleaned_word[0].isupper():
return replacement.capitalize()
else:
return replacement.lower()
return regex.sub(_repl, sentence)
class Fun(Cog):
def __init__(self, bot: Friendo) -> None:
self.bot = bot
@command(brief="Send a number and get the factorial of it")
async def factorial(self, ctx: Context, number: int) -> None:
if number > 69:
await ctx.send("Hey woah don't break me. Give me a number upto 69")
return
result = await self.bot.loop.run_in_executor(None, get_factorial, number)
await ctx.send(
f"The factorial of **{number}** is **{result}** ({number}! = {result})"
)
@command(
brief="Alternate case of inputted text",
description="converts a phrase to alternating case",
)
async def spongify(self, ctx: Context, *, phrase: str) -> None:
count = 0
new = ""
for i in phrase.lower():
if i in string.punctuation:
new += i
else:
if count % 2 == 0:
new += i
else:
new += i.upper()
count += 1
await ctx.send(new)
@command(
brief="simulates a coin toss",
description="accepts 'heads' or 'tails' and tells if the output matches the user input.",
name="flip",
)
async def coin_toss(self, ctx: Context, toss: str) -> None:
outcomes = ["heads", "tails"]
if toss == choice(outcomes):
msg = f"{ctx.author.mention} wins!"
else:
msg = f"{ctx.author.mention} loses!"
await ctx.send(msg)
@command(
brief="simulates a dice roll",
description=".dice [quantity] [sides]\n"
"`quantity` - how many to roll\n"
"`sides` - how many sides each die will have",
)
async def dice(self, ctx: Context, n: int, sides: int) -> None:
if n <= 0:
await ctx.send("you must roll at least one die")
elif sides < 2:
await ctx.send(f"you can't roll a {sides}-sided die")
else:
result = sum(randint(1, sides) for _ in range(n))
await ctx.send(f"you rolled {result}")
@command(
brief="Ask any question to the 8ball",
description="accepts a question and gives you an 8ball answer",
name="8ball",
)
|
MIT License
|
maier/cadvisor-collectd
|
src/cadvisor/python/cadvisor.py
|
CAdvisor.output_metrics
|
python
|
def output_metrics(self, container_name, container_id, metrics, fs_metrics=False):
if metrics['has_cpu'] and 'cpu' in self.active_metrics:
self.emit_cpu_metrics(container_name, container_id, metrics['cpu'])
if metrics['has_memory'] and 'memory' in self.active_metrics:
self.emit_memory_metrics(container_name, container_id, metrics['memory'])
if metrics['has_network'] and 'network' in self.active_metrics:
self.emit_network_metrics(container_name, container_id, metrics['network'])
if metrics['has_diskio'] and 'diskio' in self.active_metrics:
self.emit_diskio_metrics(container_name, container_id, metrics['diskio'])
if metrics['has_load'] and 'load_stats' in self.active_metrics:
self.emit_load_metrics(container_name, container_id, metrics['load_stats'])
if metrics['has_filesystem'] and fs_metrics:
self.emit_filesystem_metrics(container_name, container_id, metrics['filesystem'])
|
parcel out the various metric sections to dedicated (isolated) handlers for each of the distinct structures.
|
https://github.com/maier/cadvisor-collectd/blob/7cc8a77161d8d1e413ee548c3e19b6c737c282c9/src/cadvisor/python/cadvisor.py#L511-L530
|
from __future__ import print_function
import sys
from abc import ABCMeta, abstractmethod
import json
import yaml
import urllib2
import socket
import docker
import re
class CAdvisor(object):
__metaclass__ = ABCMeta
def __init__(self, config):
super(CAdvisor, self).__init__()
self.name = self.__class__.__name__
self.doc_url = 'https://github.com/maier/cadvisor-collectd/wiki/Configuring-CAdvisor'
self.config_host = config.get('host', 'cadvisor/docker')
self.config_port = config.get('port', 8080)
self.config_file = config.get('config_file', '/etc/collectd/cadvisor.yaml')
self.host = None
self.port = None
self.config = {}
try:
f = open(self.config_file, 'r')
self.config = yaml.load(f)
except Exception, e:
self.log_error('Unable to load configuration "{}": {}'.format(self.config_file, e))
sys.exit(1)
self.docker_socket = self.config.get('docker_socket', '/var/run/docker.sock')
self.active_metrics = self.get_active_metrics()
self.system_enabled = self.config.get('system_enabled', False)
self.system_fs_metrics = self.config.get('system_fs_metrics', False)
self.system_services = self.config.get('system_services', {
'options': {
'include_mounts': False,
'include_sockets': False,
'include_docker_scopes': False,
'include_system_slice': False,
'include_user_slice': False,
'include_other_slices': False
},
'include': [],
'exclude': ['*']
})
self.service_filter = None
if type(self.system_services['include']).__name__ != 'list':
self.system_services['include'] = []
if type(self.system_services['exclude']).__name__ != 'list':
self.system_services['exclude'] = []
if not self.system_services['include'] and not self.system_services['exclude']:
self.service_filter = 'all'
elif '*' in self.system_services['exclude'] and '*' not in self.system_services['include']:
self.service_filter = 'include'
elif '*' in self.system_services['include'] and '*' not in self.system_services['exclude']:
self.service_filter = 'exclude'
elif'*' in self.system_services['include'] and '*' in self.system_services['exclude']:
self.log_error('Conflicting service filter configuration, cannot be include and exclude simultaneously. See documentation: {}'.format(self.doc_url))
sys.exit(1)
else:
self.log_error('No service filter configuration identified. See documentation: {}'.format(self.doc_url))
sys.exit(1)
self.docker_enabled = self.config.get('docker_enabled', True)
self.docker_container_config = self.config.get('docker_containers', [])
if type(self.docker_container_config).__name__ != 'list':
self.docker_container_config = []
self.host_namespec = self.config.get('ns_host', '{hn}')
self.plugin_namespec = self.config.get('ns_plugin', '{cn}.')
def log(self, message, level='INFO'):
msg = '{level} -- {msg}'.format(level=level, msg=message)
if level == 'ERR':
print(msg, file=sys.stderr)
else:
print(msg)
@abstractmethod
def log_error(self, message):
self.log('{name}: {msg}'.format(name=self.name, msg=message), 'ERR')
@abstractmethod
def log_warning(self, message):
self.log('{name}: {msg}'.format(name=self.name, msg=message), 'ERR')
@abstractmethod
def log_notice(self, message):
self.log('{name}: {msg}'.format(name=self.name, msg=message))
@abstractmethod
def log_info(self, message):
self.log('{name}: {msg}'.format(name=self.name, msg=message))
@abstractmethod
def log_debug(self, message):
self.log('{name}: {msg}'.format(name=self.name, msg=message))
@abstractmethod
def dispatch_metric(self, container_name, container_id, plugin, plugin_instance, metric_type, type_instance, metric_value):
pass
def gen_host_name(self, hostname, container_name, container_id):
return(self.host_namespec.format(hn=hostname, cn=container_name, cid=container_id))
def gen_plugin_name(self, hostname, container_name, container_id, plugin):
return('{}{}'.format(self.plugin_namespec.format(hn=hostname, cn=container_name, cid=container_id), plugin))
def is_container_id(self, id):
try:
if int(id, 16):
return True
except ValueError:
return False
def fix_container_name(self, name):
if name[0:1] != '/':
return('/' + name)
else:
return(name)
def container_match(self, target, container_id, container_names):
if self.is_container_id(target):
if container_id[0:len(target)] == target:
return True
else:
if self.fix_container_name(target) in container_names:
return True
return False
def set_container_slice_ids(self):
docker_container_config = self.docker_container_config
all_containers = '*' in docker_container_config
for container_idx, container in enumerate(self.docker_container_list):
self.docker_container_list[container_idx]['SliceId'] = None
slice_id = "/system.slice/docker-{cid}.scope".format(cid=container['Id'])
if all_containers:
self.docker_container_list[container_idx]['SliceId'] = slice_id
else:
for include_container in docker_container_config:
if self.container_match(include_container, container['Id'], container['Names']):
self.docker_container_list[container_idx]['SliceId'] = slice_id
break
def set_cadvisor_connect_info(self):
host_spec = self.config_host
port_spec = self.config_port
docker_prefix = 'docker/'
if self.host and self.port and not host_spec.lower().startswith(docker_prefix):
return True
ip = None
port = port_spec
if re.match('^\d{1,3}(\.\d{1,3}){3}$', host_spec):
ip = host_spec
elif host_spec.lower().startswith(docker_prefix):
container_identifier = host_spec[len(docker_prefix):]
cadvisor_container = None
try:
cli = docker.Client(base_url='unix:/{}'.format(self.docker_socket))
cadvisor_container = cli.inspect_container(container_identifier)
if not cadvisor_container['State']['Running']:
self.log_error('Error specified CAdvisor container "{}" is not running.'.format(host_spec))
sys.exit(1)
ip = cadvisor_container['NetworkSettings']['IPAddress']
for exposed_port in cadvisor_container['Config']['ExposedPorts']:
if '/tcp' in exposed_port:
port = exposed_port.split('/')[0]
break
except docker.errors.APIError, e:
self.log_error('Error retrieving container from docker: {}'.format(e))
sys.exit(1)
except IOError, e:
self.log_error('Error connecting to docker socket "{}": {}'.format(self.docker_socket, e))
sys.exit(1)
else:
self.log_error('Invalid cadvisor connection method specified "{}".'.format(host_spec))
sys.exit(2)
connection_specifier = '{}:{}'.format(ip, port)
if not re.match('^\d{1,3}(\.\d{1,3}){3}:\d+$', connection_specifier):
self.log_error('No valid connection specifier found for cadvisor "{}" = "{}".'.format(host_spec, connection_specifier))
sys.exit(2)
self.host = ip
self.port = port
return(True)
def set_docker_container_list(self):
try:
cli = docker.Client(base_url='unix:/{}'.format(self.docker_socket))
self.docker_container_list = cli.containers(all=False)
except docker.errors.APIError, e:
self.log_error('Error retrieving from docker: {}'.format(e))
sys.exit(1)
except IOError, e:
self.log_error('Error connecting to docker socket "{}": {}'.format(self.docker_socket, e))
sys.exit(1)
return(True)
def get_active_metrics(self):
key_prefix = 'metrics_'
active_metrics = {}
for k, v in self.config.iteritems():
if k.startswith(key_prefix):
if 'none' not in map(str.lower, self.config[k]):
active_metrics[k[len(key_prefix):]] = v
return(active_metrics)
def fetch_metrics(self):
self.set_cadvisor_connect_info()
url = "http://{}:{}/api/v2.0/stats?recursive=true&count=1".format(self.host, self.port)
stats = {}
try:
response = urllib2.urlopen(url, None, 5)
stats = json.loads(response.read())
except urllib2.URLError, e:
if hasattr(e, 'reason'):
self.log_error("Failed to reach server, reason {}".format(e.reason))
elif hasattr(e, 'code'):
self.log_error("Server unable to fulfill request {}".format(e.code))
sys.exit(1)
except socket.timeout:
self.log_error("Timeout connecting to {}".format(url))
sys.exit(1)
return(stats)
def emit_cpu_metrics(self, container_name, container_id, metrics):
plugin = 'cpu'
plugin_instance = None
metric_type = 'gauge'
type_instance = 'avg'
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [metrics['load_average']])
plugin_instance = None
metric_type = 'time_ns'
for key in ('system', 'total', 'user'):
type_instance = key
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [metrics['usage'][key]])
metric_type = 'time_ns'
type_instance = None
for i, v in enumerate(metrics['usage']['per_cpu_usage']):
plugin_instance = str(i)
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [v])
def emit_memory_metrics(self, container_name, container_id, metrics):
plugin = 'memory'
plugin_instance = None
metric_type = 'memory'
type_instance = 'usage'
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [metrics['usage']])
plugin_instance = None
metric_type = 'memory'
type_instance = 'working_set'
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [metrics['working_set']])
plugin_instance = None
metric_type = 'gauge'
type_instance = None
for item in ('hierarchical', 'container'):
item_key = '{}_data'.format(item)
plugin_instance = item_key
for key in metrics[item_key]:
type_instance = key
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [metrics[item_key][key]])
def emit_network_metrics(self, container_name, container_id, metrics):
plugin = 'net'
plugin_instance = None
metric_type = None
type_instance = None
if 'interfaces' in metrics.keys():
metrics = metrics['interfaces']
for i, v in enumerate(metrics):
plugin_instance = 'if{}'.format(i)
for item in ('dropped', 'packets', 'bytes', 'errors'):
rx_key = 'rx_{}'.format(item)
tx_key = 'tx_{}'.format(item)
metric_type = 'if_{}'.format('octets' if item == 'bytes' else item)
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [v[rx_key], v[tx_key]])
def emit_diskio_metrics(self, container_name, container_id, metrics):
plugin = 'blkio'
plugin_instance = None
metric_type = None
type_instance = None
metric = 'io_time'
if metric in metrics:
metric_type = 'time_ms'
type_instance = metric
for device in metrics[metric]:
plugin_instance = '{}_{}'.format(device['major'], device['minor'])
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device['stats']['Count']])
metric_type = 'time_ns'
for metric in ('io_wait_time', 'io_service_time'):
if metric in metrics:
for device in metrics[metric]:
plugin_instance = '{}_{}'.format(device['major'], device['minor'])
for stat in device['stats']:
type_instance = '{}_{}'.format(metric, stat)
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device['stats'][stat]])
metric = 'io_service_bytes'
metric_type = 'bytes'
if metric in metrics:
for device in metrics[metric]:
plugin_instance = '{}_{}'.format(device['major'], device['minor'])
for stat in device['stats']:
type_instance = '{}_{}'.format(metric, stat)
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device['stats'][stat]])
metric = 'sectors'
metric_type = 'gauge'
if metric in metrics:
type_instance = '{}'.format(metric)
for device in metrics[metric]:
plugin_instance = '{}_{}'.format(device['major'], device['minor'])
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device['stats']['Count']])
metric_type = 'gauge'
for metric in ('io_serviced', 'io_merged'):
if metric in metrics:
for device in metrics[metric]:
plugin_instance = '{}_{}'.format(device['major'], device['minor'])
for stat in device['stats']:
type_instance = '{}_{}'.format(metric, stat)
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device['stats'][stat]])
metric = 'io_queued'
metric_type = 'counter'
if metric in metrics:
for device in metrics[metric]:
plugin_instance = '{}_{}'.format(device['major'], device['minor'])
for stat in device['stats']:
type_instance = '{}_{}'.format(metric, stat)
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device['stats'][stat]])
def emit_load_metrics(self, container_name, container_id, metrics):
plugin = 'load_stats'
plugin_instance = None
metric_type = 'gauge'
type_instance = None
for metric in metrics:
type_instance = '-{}'.format(metric)
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [metrics[metric]])
def emit_filesystem_metrics(self, container_name, container_id, metrics):
plugin = 'fs'
plugin_instance = None
metric_type = None
type_instance = None
for device in metrics:
device_name = device['device']
if device_name[0:19].lower() == '/dev/mapper/docker-':
device_name = device_name.replace('/dev/mapper/', '')
device_name_parts = device_name.split('-')
device_name_parts[-1] = device_name_parts[-1][0:12]
device_name = '_'.join(device_name_parts)
plugin_instance = device_name
metric_type = 'bytes'
for stat in ('capacity', 'usage'):
type_instance = stat
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device[stat]])
metric_type = 'time_ms'
for stat in ('read_time', 'io_time', 'weighted_io_time', 'write_time'):
type_instance = stat
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device[stat]])
metric_type = 'gauge'
for stat in ('writes_completed', 'reads_completed', 'writes_merged', 'sectors_written', 'reads_merged', 'sectors_read'):
type_instance = stat
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device[stat]])
metric_type = 'counter'
type_instance = 'io_in_progress'
self.dispatch_metric(container_name, container_id, plugin, plugin_instance, metric_type, type_instance, [device['io_in_progress']])
|
Apache License 2.0
|
paddlepaddle/paddlesleeve
|
Robustness/perceptron/utils/adversarial/detection.py
|
DetAdversarial.predictions_and_gradient
|
python
|
def predictions_and_gradient(
self, image=None, annotation=None, strict=True, return_details=False):
assert self.has_gradient()
if image is None:
image = self._original_image
assert not strict or self.in_bounds(image)
in_bounds = self.in_bounds(image)
assert not strict or in_bounds
self._total_prediction_calls += 1
self._total_gradient_calls += 1
predictions, loss, gradient = self._model.predictions_and_gradient(image, self._criterion)
is_adversarial, is_best, distance = self._is_adversarial(
image, predictions, in_bounds)
assert gradient.shape == image.shape
if return_details:
return predictions, loss, gradient, is_adversarial, is_best, distance
else:
return predictions, loss, gradient, is_adversarial
|
Interface to model.predictions_and_gradient for attacks.
Parameters
----------
image : `numpy.ndarray`
Image with shape (height, width, channels).
Defaults to the original image.
label : int
Label used to calculate the loss that is differentiated.
Defaults to the original label.
strict : bool
Controls if the bounds for the pixel values should be checked.
|
https://github.com/paddlepaddle/paddlesleeve/blob/18cc4b83ae311365b8d132ea4619d60abf3945bf/Robustness/perceptron/utils/adversarial/detection.py#L70-L105
|
import numpy as np
import numbers
from .base import Adversarial
from .base import StopAttack
from perceptron.utils.distances import MSE
from perceptron.utils.distances import Distance
class DetAdversarial(Adversarial):
def __init__(
self,
model,
criterion,
original_image,
original_pred,
threshold=None,
distance=MSE,
verbose=False):
super(DetAdversarial, self).__init__(
model,
criterion,
original_image,
original_pred,
threshold,
distance,
verbose)
self._task = 'det'
def model_task(self):
return self._task
def gradient(self, image=None, label=None, strict=True):
pass
|
Apache License 2.0
|
theislab/sfaira
|
sfaira/data/store/single_store.py
|
DistributedStoreSingleFeatureSpace.write_config
|
python
|
def write_config(self, fn: Union[str, os.PathLike]):
with open(fn + '.pickle', 'wb') as f:
pickle.dump(self.indices, f)
|
Writes a config file that describes the current data sub-setting.
This config file can be loaded later to recreate a sub-setting.
This config file contains observation-wise subsetting information.
:param fn: Output file without file type extension.
|
https://github.com/theislab/sfaira/blob/9590015acbc4f84454d3d75ff03b191c2472a219/sfaira/data/store/single_store.py#L330-L340
|
import abc
import anndata
import dask.array
import dask.dataframe
import numpy as np
import os
import pandas as pd
import pickle
import scipy.sparse
from typing import Dict, List, Tuple, Union
from sfaira.consts import AdataIdsSfaira, OCS
from sfaira.data.dataloaders.base.utils import is_child, UNS_STRING_META_IN_OBS
from sfaira.data.store.base import DistributedStoreBase
from sfaira.data.store.generators import GeneratorAnndata, GeneratorDask, GeneratorSingle
from sfaira.versions.genomes.genomes import GenomeContainer
def _process_batch_size(batch_size: int, retrival_batch_size: int) -> Tuple[int, int]:
if batch_size != 1:
raise ValueError("batch size is only supported as 1")
return batch_size, retrival_batch_size
class DistributedStoreSingleFeatureSpace(DistributedStoreBase):
_adata_by_key: Dict[str, anndata.AnnData]
_indices: Dict[str, np.ndarray]
_obs_by_key: Union[None, Dict[str, dask.dataframe.DataFrame]]
data_source: str
def __init__(self, adata_by_key: Dict[str, anndata.AnnData], indices: Dict[str, np.ndarray],
obs_by_key: Union[None, Dict[str, dask.dataframe.DataFrame]] = None, data_source: str = "X"):
self.adata_by_key = adata_by_key
self.indices = indices
self.obs_by_key = obs_by_key
self.ontology_container = OCS
self._genome_container = None
self._adata_ids_sfaira = AdataIdsSfaira()
self.data_source = data_source
self._celltype_universe = None
@property
def idx(self) -> np.ndarray:
idx_global = np.arange(0, np.sum([len(v) for v in self.indices.values()]))
return idx_global
@property
def organisms_by_key(self) -> Dict[str, str]:
ks = self.indices.keys()
organisms = [self._adata_by_key[k].uns[self._adata_ids_sfaira.organism] for k in ks]
organisms = [x[0] if (isinstance(x, list) or isinstance(x, tuple)) else x for x in organisms]
return dict(list(zip(ks, organisms)))
@property
def organism(self):
organisms = np.unique(list(self.organisms_by_key.values()))
assert len(organisms) == 1, organisms
return organisms[0]
def _validate_feature_space_homogeneity(self) -> List[str]:
reference_k = list(self._adata_by_key.keys())[0]
var_names = self._adata_by_key[reference_k].var_names.tolist()
for k in list(self._adata_by_key.keys()):
assert len(var_names) == len(self._adata_by_key[k].var_names), f"number of features in store differed in object {k} compared to {reference_k}"
assert np.all(var_names == self._adata_by_key[k].var_names), f"var_names in store were not matched in object {k} compared to {reference_k}"
return var_names
@property
def adata_by_key(self) -> Dict[str, anndata.AnnData]:
return self._adata_by_key
@adata_by_key.setter
def adata_by_key(self, x: Dict[str, anndata.AnnData]):
self._adata_by_key = x
@property
def data_by_key(self):
return dict([(k, v.X) for k, v in self.adata_by_key.items()])
@property
def indices(self) -> Dict[str, np.ndarray]:
return self._indices
@indices.setter
def indices(self, x: Dict[str, np.ndarray]):
for k, v in x.items():
assert k in self._adata_by_key.keys(), f"did not find key {k}"
assert np.max(v) < self._adata_by_key[k].n_obs, f"found index for key {k} that exceeded data set size"
assert len(v) == len(np.unique(v)), f"found duplicated indices for key {k}"
assert np.all(np.diff(v) >= 0), f"indices not sorted for key {k}"
self._indices = x
@property
def obs_by_key(self) -> Dict[str, Union[pd.DataFrame, dask.dataframe.DataFrame]]:
if self._obs_by_key is not None:
assert np.all(list(self._adata_by_key.keys()) == list(self._obs_by_key.keys()))
assert np.all([self._obs_by_key[k].shape[0] == self._adata_by_key[k].shape[0]
for k in self._obs_by_key.keys()])
return self._obs_by_key
else:
return dict([(k, v.obs) for k, v in self.adata_by_key.items()])
@obs_by_key.setter
def obs_by_key(self, x: Union[None, Dict[str, dask.dataframe.DataFrame]]):
if x is not None:
for k, v in x.items():
if not (isinstance(v, dask.dataframe.DataFrame) or isinstance(v, pd.DataFrame)):
raise ValueError(f"value of entry {k} was not a dask.dataframe.DataFrame but {type(v)}")
self._obs_by_key = x
@property
def genome_container(self) -> Union[GenomeContainer, None]:
return self._genome_container
@genome_container.setter
def genome_container(self, x: Union[GenomeContainer]):
var_names = self._validate_feature_space_homogeneity()
assert np.all([y in var_names for y in x.ensembl]), "did not find variable names from genome container in store"
self._genome_container = x
@property
def dataset_weights(self):
return self._dataset_weights
@dataset_weights.setter
def dataset_weights(self, x: Dict[str, float]):
assert np.all([k in self.adata_by_key.keys() for k in x.keys()]), "did not recognize some keys"
assert np.all([k in x.keys() for k in self.indices.keys()]), "some data sets in index were omitted"
self._dataset_weights = x
def get_subset_idx(self, attr_key, values: Union[str, List[str], None],
excluded_values: Union[str, List[str], None]) -> dict:
if not isinstance(values, list):
values = [values]
assert (values is None or excluded_values is not None) or (values is not None or excluded_values is None), "supply either values or excluded_values"
def get_idx(adata, obs, k, v, xv, dataset):
read_from_uns = (getattr(self._adata_ids_sfaira, k) in adata.uns.keys() and
adata.uns[getattr(self._adata_ids_sfaira, k)] != UNS_STRING_META_IN_OBS and
getattr(self._adata_ids_sfaira, k) not in obs.columns)
read_from_obs = not read_from_uns and getattr(self._adata_ids_sfaira, k) in obs.columns
if read_from_uns:
values_found = adata.uns[getattr(self._adata_ids_sfaira, k)]
if isinstance(values_found, np.ndarray):
values_found = values_found.tolist()
elif not isinstance(values_found, list):
values_found = [values_found]
if len(values_found) > 1:
values_found = None
else:
values_found = [values_found[0] for _ in range(adata.n_obs)]
elif read_from_obs:
values_found = obs[getattr(self._adata_ids_sfaira, k)].values
else:
values_found = []
print(f"WARNING: did not find attribute {k} in data set {dataset}")
values_found_unique = np.unique(values_found)
try:
ontology = getattr(self.ontology_container, k)
except AttributeError:
raise ValueError(f"{k} not a valid property of ontology_container object")
if v is not None:
values_found_unique_matched = [
x for x in values_found_unique if np.any([
is_child(query=x, ontology=ontology, ontology_parent=y)
for y in v
])
]
else:
values_found_unique_matched = [
x for x in values_found_unique if np.all([
not is_child(query=x, ontology=ontology, ontology_parent=y)
for y in xv
])
]
idx = np.where([x in values_found_unique_matched for x in values_found])[0]
return idx
indices = {}
for key in self.indices.keys():
if key not in self.adata_by_key.keys():
raise ValueError(f"data set {key} queried by indices does not exist in store (.adata_by_key)")
adata_k = self.adata_by_key[key]
obs_k = self.obs_by_key[key]
idx_old = self.indices[key]
idx_subset = get_idx(adata=adata_k, obs=obs_k, k=attr_key, v=values, xv=excluded_values, dataset=key)
idx_new = np.sort(list(set(np.asarray(idx_old).tolist()).intersection(
set(np.asarray(idx_subset).tolist()))))
if len(idx_new) > 0:
indices[key] = np.asarray(idx_new, dtype="int32")
return indices
def subset(self, attr_key, values: Union[str, List[str], None] = None,
excluded_values: Union[str, List[str], None] = None, verbose: int = 1):
self.indices = self.get_subset_idx(attr_key=attr_key, values=values, excluded_values=excluded_values)
if self.n_obs == 0 and verbose > 0:
print(f"WARNING: store is now empty after subsetting {attr_key} for {values}, excluding {excluded_values}.")
|
BSD 3-Clause New or Revised License
|
tensorflow/recommenders-addons
|
tensorflow_recommenders_addons/dynamic_embedding/python/ops/cuckoo_hashtable_ops.py
|
CuckooHashTable._gather_saveables_for_checkpoint
|
python
|
def _gather_saveables_for_checkpoint(self):
full_name = self._table_name
return {
"table":
functools.partial(
CuckooHashTable._Saveable,
table=self,
name=self._name,
full_name=full_name,
)
}
|
For object-based checkpointing.
|
https://github.com/tensorflow/recommenders-addons/blob/009d0956772522267717df771fa1b9a1df3c07d9/tensorflow_recommenders_addons/dynamic_embedding/python/ops/cuckoo_hashtable_ops.py#L341-L353
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops.lookup_ops import LookupInterface
from tensorflow.python.training.saver import BaseSaverBuilder
from tensorflow_recommenders_addons.utils.resource_loader import LazySO
from tensorflow_recommenders_addons.utils.resource_loader import prefix_op_name
cuckoo_ops = LazySO("dynamic_embedding/core/_cuckoo_hashtable_ops.so").ops
class CuckooHashTable(LookupInterface):
def __init__(
self,
key_dtype,
value_dtype,
default_value,
name="CuckooHashTable",
checkpoint=True,
init_size=0,
config=None,
):
self._default_value = ops.convert_to_tensor(default_value,
dtype=value_dtype)
self._value_shape = self._default_value.get_shape()
self._checkpoint = checkpoint
self._key_dtype = key_dtype
self._value_dtype = value_dtype
self._init_size = init_size
self._name = name
self._shared_name = None
if context.executing_eagerly():
self._shared_name = "table_%d" % (ops.uid(),)
super(CuckooHashTable, self).__init__(key_dtype, value_dtype)
self._resource_handle = self._create_resource()
if checkpoint:
_ = CuckooHashTable._Saveable(self, name)
if not context.executing_eagerly():
self.saveable = CuckooHashTable._Saveable(
self,
name=self._resource_handle.op.name,
full_name=self._resource_handle.op.name,
)
ops.add_to_collection(ops.GraphKeys.SAVEABLE_OBJECTS, self.saveable)
else:
self.saveable = CuckooHashTable._Saveable(self,
name=name,
full_name=name)
def _create_resource(self):
use_node_name_sharing = self._checkpoint and self._shared_name is None
table_ref = cuckoo_ops.tfra_cuckoo_hash_table_of_tensors(
shared_name=self._shared_name,
use_node_name_sharing=use_node_name_sharing,
key_dtype=self._key_dtype,
value_dtype=self._value_dtype,
value_shape=self._default_value.get_shape(),
init_size=self._init_size,
name=self._name,
)
if context.executing_eagerly():
self._table_name = None
else:
self._table_name = table_ref.op.name.split("/")[-1]
return table_ref
@property
def name(self):
return self._table_name
def size(self, name=None):
with ops.name_scope(name, "%s_Size" % self.name, [self.resource_handle]):
with ops.colocate_with(self.resource_handle):
return cuckoo_ops.tfra_cuckoo_hash_table_size(self.resource_handle)
def remove(self, keys, name=None):
if keys.dtype != self._key_dtype:
raise TypeError("Signature mismatch. Keys must be dtype %s, got %s." %
(self._key_dtype, keys.dtype))
with ops.name_scope(
name,
"%s_lookup_table_remove" % self.name,
(self.resource_handle, keys, self._default_value),
):
op = cuckoo_ops.tfra_cuckoo_hash_table_remove(self.resource_handle, keys)
return op
def clear(self, name=None):
with ops.name_scope(name, "%s_lookup_table_clear" % self.name,
(self.resource_handle, self._default_value)):
op = cuckoo_ops.tfra_cuckoo_hash_table_clear(
self.resource_handle,
key_dtype=self._key_dtype,
value_dtype=self._value_dtype)
return op
def lookup(self,
keys,
dynamic_default_values=None,
return_exists=False,
name=None):
with ops.name_scope(
name,
"%s_lookup_table_find" % self.name,
(self.resource_handle, keys, self._default_value),
):
keys = ops.convert_to_tensor(keys, dtype=self._key_dtype, name="keys")
with ops.colocate_with(self.resource_handle, ignore_existing=True):
if return_exists:
values, exists = cuckoo_ops.tfra_cuckoo_hash_table_find_with_exists(
self.resource_handle,
keys,
dynamic_default_values
if dynamic_default_values is not None else self._default_value,
)
else:
values = cuckoo_ops.tfra_cuckoo_hash_table_find(
self.resource_handle,
keys,
dynamic_default_values
if dynamic_default_values is not None else self._default_value,
)
return (values, exists) if return_exists else values
def insert(self, keys, values, name=None):
with ops.name_scope(
name,
"%s_lookup_table_insert" % self.name,
[self.resource_handle, keys, values],
):
keys = ops.convert_to_tensor(keys, self._key_dtype, name="keys")
values = ops.convert_to_tensor(values, self._value_dtype, name="values")
with ops.colocate_with(self.resource_handle, ignore_existing=True):
op = cuckoo_ops.tfra_cuckoo_hash_table_insert(self.resource_handle,
keys, values)
return op
def accum(self, keys, values_or_deltas, exists, name=None):
with ops.name_scope(
name,
"%s_lookup_table_accum" % self.name,
[self.resource_handle, keys, values_or_deltas],
):
keys = ops.convert_to_tensor(keys, self._key_dtype, name="keys")
values_or_deltas = ops.convert_to_tensor(values_or_deltas,
self._value_dtype,
name="values_or_deltas")
exists = ops.convert_to_tensor(exists, dtypes.bool, name="exists")
with ops.colocate_with(self.resource_handle, ignore_existing=True):
op = cuckoo_ops.tfra_cuckoo_hash_table_accum(self.resource_handle, keys,
values_or_deltas, exists)
return op
def export(self, name=None):
with ops.name_scope(name, "%s_lookup_table_export_values" % self.name,
[self.resource_handle]):
with ops.colocate_with(self.resource_handle):
keys, values = cuckoo_ops.tfra_cuckoo_hash_table_export(
self.resource_handle, self._key_dtype, self._value_dtype)
return keys, values
|
Apache License 2.0
|
clericpy/torequests
|
torequests/main.py
|
tPool.post
|
python
|
def post(self,
url,
data=None,
json=None,
callback=None,
retry=0,
response_validator=None,
**kwargs):
return self.request("post",
url=url,
data=data,
json=json,
callback=callback,
retry=retry,
response_validator=response_validator,
**kwargs)
|
Similar to `requests.post`, but return as NewFuture.
|
https://github.com/clericpy/torequests/blob/e57ce331aa850db45c198dc90b9d01e437384b61/torequests/main.py#L634-L650
|
import atexit
from concurrent.futures import (ProcessPoolExecutor, ThreadPoolExecutor,
as_completed)
from concurrent.futures._base import (CANCELLED, CANCELLED_AND_NOTIFIED,
FINISHED, PENDING, RUNNING,
CancelledError, Error, Executor, Future,
TimeoutError)
from concurrent.futures.thread import _threads_queues, _WorkItem
from functools import wraps
from logging import getLogger
from threading import Thread, Timer
from time import sleep
from time import time as time_time
from weakref import WeakSet
from requests import PreparedRequest, RequestException, Session
from requests.adapters import HTTPAdapter
from urllib3 import disable_warnings
from .configs import Config
from .exceptions import FailureException, ValidationError
from .frequency_controller.sync_tools import Frequency
from .versions import PY2, PY3
try:
from queue import Empty, Queue
except ImportError:
from Queue import Empty, Queue
if PY3:
from concurrent.futures.process import BrokenProcessPool
__all__ = [
"Pool", "ProcessPool", "NewFuture", "Async", "threads",
"get_results_generator", "run_after_async", "tPool", "get", "post",
"options", "delete", "put", "head", "patch", "request", "disable_warnings",
"Workshop"
]
logger = getLogger("torequests")
def _abandon_all_tasks():
_threads_queues.clear()
def ensure_waiting_for_threads():
if Config.wait_futures_before_exiting:
_abandon_all_tasks()
atexit.register(ensure_waiting_for_threads)
class NewExecutorPoolMixin(Executor):
def async_func(self, function):
@wraps(function)
def wrapped(*args, **kwargs):
return self.submit(function, *args, **kwargs)
return wrapped
def close(self, wait=True):
return self.shutdown(wait=wait)
def _get_cpu_count(self):
try:
from multiprocessing import cpu_count
return cpu_count()
except Exception as e:
logger.error("_get_cpu_count failed for %s" % e)
@property
def x(self):
return self.wait_futures_done(list(self._all_futures))
def wait_futures_done(self, tasks=None):
tasks = tasks or self._all_futures
fs = []
try:
for f in as_completed(tasks, timeout=self._timeout):
fs.append(f.x)
except TimeoutError:
pass
return fs
class Pool(ThreadPoolExecutor, NewExecutorPoolMixin):
def __init__(self,
n=None,
timeout=None,
default_callback=None,
catch_exception=True,
*args,
**kwargs):
n = n or kwargs.pop("max_workers", None)
if PY2 and n is None:
n = (self._get_cpu_count() or 1) * 5
super(Pool, self).__init__(n, *args, **kwargs)
self._timeout = timeout
self.default_callback = default_callback
self._all_futures = WeakSet()
self.catch_exception = catch_exception
@property
def all_tasks(self):
return self._all_futures
def submit(self, func, *args, **kwargs):
with self._shutdown_lock:
if self._shutdown:
raise RuntimeError("cannot schedule new futures after shutdown")
callback = kwargs.pop("callback", self.default_callback)
future = NewFuture(
self._timeout,
args,
kwargs,
callback=callback,
catch_exception=self.catch_exception,
)
w = _WorkItem(future, func, args, kwargs)
self._work_queue.put(w)
self._adjust_thread_count()
self._all_futures.add(future)
return future
class ProcessPool(ProcessPoolExecutor, NewExecutorPoolMixin):
def __init__(self,
n=None,
timeout=None,
default_callback=None,
catch_exception=True,
*args,
**kwargs):
n = n or kwargs.pop("max_workers", None)
if PY2 and n is None:
n = self._get_cpu_count() or 1
super(ProcessPool, self).__init__(n, *args, **kwargs)
self._timeout = timeout
self.default_callback = default_callback
self._all_futures = WeakSet()
self.catch_exception = catch_exception
def submit(self, func, *args, **kwargs):
with self._shutdown_lock:
if PY3 and self._broken:
raise BrokenProcessPool(
"A child process terminated "
"abruptly, the process pool is not usable anymore")
if self._shutdown_thread:
raise RuntimeError("cannot schedule new futures after shutdown")
callback = kwargs.pop("callback", self.default_callback)
future = NewFuture(
self._timeout,
args,
kwargs,
callback=callback,
catch_exception=self.catch_exception,
)
w = _WorkItem(future, func, args, kwargs)
self._pending_work_items[self._queue_count] = w
self._work_ids.put(self._queue_count)
self._queue_count += 1
self._result_queue.put(None)
self._start_queue_management_thread()
if PY2:
self._adjust_process_count()
self._all_futures.add(future)
return future
def async_func(self, *args):
raise NotImplementedError
class NewFuture(Future):
if PY3:
from ._py3_patch import _new_future_await
__await__ = _new_future_await
def __init__(self,
timeout=None,
args=None,
kwargs=None,
callback=None,
catch_exception=True):
super(NewFuture, self).__init__()
self._timeout = timeout
self._args = args or ()
self._kwargs = kwargs or {}
self._callback_result = None
self.catch_exception = catch_exception
self.task_start_time = time_time()
self.task_end_time = 0
self.task_cost_time = 0
self._user_callbacks = set()
if callback:
if not isinstance(callback, (list, tuple)):
callback = [callback]
for fn in callback:
self.add_done_callback(fn)
self._user_callbacks.add(fn)
def __getattr__(self, name):
return getattr(self.x, name)
def _invoke_callbacks(self):
self.task_end_time = time_time()
self.task_cost_time = self.task_end_time - self.task_start_time
with self._condition:
for callback in self._done_callbacks:
try:
result = callback(self)
if callback in self._user_callbacks:
self._callback_result = result
except Exception as e:
logger.error("exception calling callback for %s" % e)
self._condition.notify_all()
@property
def _callbacks(self):
return self._done_callbacks
@property
def cx(self):
return self.callback_result
@property
def callback_result(self):
if self._state in [PENDING, RUNNING]:
self.x
if self._user_callbacks:
return self._callback_result
else:
return self.x
@property
def x(self):
with self._condition:
result = None
if not self.done():
self._condition.wait(self._timeout)
if not self.done():
self.set_exception(TimeoutError())
if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
result = CancelledError()
elif self._state == FINISHED:
if self._exception:
result = self._exception
else:
result = self._result
if isinstance(result, Exception):
if self.catch_exception:
result = FailureException(result)
return result
else:
raise result
return result
def Async(f, n=None, timeout=None):
return threads(n=n, timeout=timeout)(f)
def threads(n=None, timeout=None):
return Pool(n, timeout).async_func
def get_results_generator(future_list, timeout=None, sort_by_completed=False):
try:
if sort_by_completed:
for future in as_completed(future_list, timeout=timeout):
yield future.x
else:
for future in future_list:
yield future.x
except TimeoutError:
return
def run_after_async(seconds, func, *args, **kwargs):
t = Timer(seconds, func, args, kwargs)
t.daemon = True
t.start()
return t
class FailedRequest(PreparedRequest):
allow_keys = {
"method",
"url",
"headers",
"files",
"data",
"params",
"auth",
"cookies",
"hooks",
"json",
}
def __init__(self, **kwargs):
self.kwargs = kwargs
filted_kwargs = {
key: value
for key, value in kwargs.items()
if key in self.allow_keys
}
super(FailedRequest, self).__init__()
self.prepare(**filted_kwargs)
class tPool(object):
def __init__(
self,
n=None,
interval=0,
timeout=None,
session=None,
catch_exception=True,
default_callback=None,
retry_exceptions=(RequestException, Error),
):
self.pool = Pool(n, timeout)
self.session = session if session else Session()
self.n = n or 10
custom_adapter = HTTPAdapter(pool_connections=self.n,
pool_maxsize=self.n)
self.session.mount("http://", custom_adapter)
self.session.mount("https://", custom_adapter)
self.interval = interval
self.catch_exception = catch_exception
self.default_callback = default_callback
self.frequency = Frequency(self.n, self.interval)
self.retry_exceptions = retry_exceptions
@property
def all_tasks(self):
return self.pool._all_futures
@property
def x(self):
return self.pool.x
def close(self, wait=False):
self.session.close()
self.pool.shutdown(wait=wait)
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
def __del__(self):
self.close()
def _request(self, method, url, retry=0, response_validator=None, **kwargs):
if not url:
raise ValueError("url should not be null, but given: %s" % url)
kwargs["url"] = url
kwargs["method"] = method
referer_info = kwargs.pop("referer_info", None)
encoding = kwargs.pop("encoding", None)
error = Exception()
for _ in range(retry + 1):
with self.frequency:
try:
resp = self.session.request(**kwargs)
if encoding:
resp.encoding = encoding
logger.debug("%s done, %s" % (url, kwargs))
resp.referer_info = referer_info
if response_validator and not response_validator(resp):
raise ValidationError(response_validator.__name__)
return resp
except self.retry_exceptions as e:
error = e
logger.debug(
"Retry %s for the %s time, Exception: %r . kwargs= %s" %
(url, _ + 1, e, kwargs))
continue
kwargs["retry"] = retry
if referer_info:
kwargs["referer_info"] = referer_info
if encoding:
kwargs["encoding"] = encoding
logger.debug("Retry %s times failed again: %s." % (retry, error))
failure = FailureException(error)
failure.request = FailedRequest(**kwargs)
if self.catch_exception:
return failure
else:
raise failure
def request(self,
method,
url,
callback=None,
retry=0,
response_validator=None,
**kwargs):
return self.pool.submit(self._request,
method=method,
url=url,
retry=retry,
response_validator=response_validator,
callback=callback or self.default_callback,
**kwargs)
def get(self,
url,
params=None,
callback=None,
retry=0,
response_validator=None,
**kwargs):
kwargs.setdefault("allow_redirects", True)
return self.request("get",
url=url,
params=params,
callback=callback,
retry=retry,
response_validator=response_validator,
**kwargs)
|
MIT License
|
rob-blackbourn/bareasgi
|
examples/chunking.py
|
without_chunking
|
python
|
async def without_chunking(request: HttpRequest) -> HttpResponse:
return HttpResponse(
200,
[(b'content-type', b'text/plain')],
non_chunking_writer(request.info['text'])
)
|
A response handler which sends it's body as a single chunk without content length
|
https://github.com/rob-blackbourn/bareasgi/blob/5966ab6b54bc99420b06fb90cff05d15447e98b7/examples/chunking.py#L61-L67
|
import logging
from typing import AsyncIterable
from bareasgi import (
Application,
HttpRequest,
HttpResponse
)
logging.basicConfig(level=logging.DEBUG)
async def non_chunking_writer(
text: str,
encoding: str = 'utf-8'
) -> AsyncIterable[bytes]:
yield text.encode(encoding=encoding)
async def chunking_writer(
text: str,
encoding: str = 'utf-8',
bufsiz: int = 512
) -> AsyncIterable[bytes]:
start, end = 0, bufsiz
while start < len(text):
yield text[start:end].encode(encoding=encoding)
start, end = end, end + bufsiz
async def with_chunking(request: HttpRequest) -> HttpResponse:
return HttpResponse(
200,
[(b'content-type', b'text/plain')],
chunking_writer(request.info['text'], bufsiz=64)
)
|
Apache License 2.0
|
gesturegeneration/speech_driven_gesture_generation_with_autoencoder
|
motion_repr_learning/ae/DAE.py
|
DAE.run_less_layers
|
python
|
def run_less_layers(self, input_pl, n, is_target=False):
assert n > 0
assert n <= self.num_hidden_layers
last_output = input_pl
for i in range(n - 1):
w = self._w(i + 1, "_pretrained")
b = self._b(i + 1, "_pretrained")
last_output = self._feedforward(last_output, w, b)
if is_target:
return last_output
last_output = self._feedforward(last_output, self._w(n), self._b(n))
out = self._feedforward(last_output, self._w(n), self["bias" + str(n) + "_out"])
return out
|
Return result of a net after n layers or n-1 layer (if is_target is true)
This function will be used for the layer-wise pretraining of the AE
Args:
input_pl: TensorFlow placeholder of AE inputs
n: int specifying pretrain step
is_target: bool specifying if required tensor
should be the target tensor
meaning if we should run n layers or n-1 (if is_target)
Returns:
Tensor giving pretraining net result or pretraining target
|
https://github.com/gesturegeneration/speech_driven_gesture_generation_with_autoencoder/blob/59e8ebdb0f6e87b0e81268046c99a4d6c9bf62a8/motion_repr_learning/ae/DAE.py#L310-L340
|
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
from utils.utils import add_noise, loss_reconstruction
from utils.flags import FLAGS
class DAE:
def __init__(self, shape, sess, variance_coef, data_info):
self.__shape = shape
self.__variables = {}
self.__sess = sess
self.num_hidden_layers = np.size(shape) - 2
self.batch_size = FLAGS.batch_size
self.sequence_length = FLAGS.chunk_length
self.scaling_factor = 1
self.max_val = data_info.max_val
self.mean_pose = data_info.mean_pose
self._train_data_initializer = tf.placeholder(dtype=tf.float32,
shape=data_info.train_shape)
self._train_data = tf.Variable(self._train_data_initializer,
trainable=False, collections=[], name='Train_data')
train_epochs = FLAGS.training_epochs + FLAGS.pretraining_epochs * FLAGS.num_hidden_layers
train_frames = tf.train.slice_input_producer([self._train_data], num_epochs=train_epochs)
self._train_batch = tf.train.shuffle_batch(train_frames,
batch_size=FLAGS.batch_size, capacity=5000,
min_after_dequeue=1000, name='Train_batch')
self._valid_data_initializer = tf.placeholder(dtype=tf.float32,
shape=data_info.eval_shape)
self._valid_data = tf.Variable(self._valid_data_initializer,
trainable=False, collections=[], name='Valid_data')
valid_frames = tf.train.slice_input_producer([self._valid_data],
num_epochs=FLAGS.training_epochs)
self._valid_batch = tf.train.shuffle_batch(valid_frames,
batch_size=FLAGS.batch_size, capacity=5000,
min_after_dequeue=1000, name='Valid_batch')
if FLAGS.weight_decay is not None:
print('\nWe apply weight decay')
with sess.graph.as_default():
with tf.variable_scope("AE_Variables"):
for i in range(self.num_hidden_layers + 1):
self._create_variables(i, FLAGS.weight_decay)
''' 1 - Setup network for TRAINing '''
self._input_ = add_noise(self._train_batch, variance_coef, data_info.data_sigma)
self._target_ = self._train_batch
self._output, _, _ = self.construct_graph(self._input_, FLAGS.dropout)
self._reconstruction_loss = loss_reconstruction(self._output,
self._target_, self.max_val)
tf.add_to_collection('losses', self._reconstruction_loss)
self._loss = tf.add_n(tf.get_collection('losses'), name='total_loss')
''' 2 - Setup network for TESTing '''
self._valid_input_ = self._valid_batch
self._valid_target_ = self._valid_batch
self._valid_output, self._encode, self._decode = self.construct_graph(self._valid_input_, 1)
self._valid_loss = loss_reconstruction(self._valid_output,
self._valid_target_, self.max_val)
@property
def session(self):
return self.__sess
@property
def shape(self):
return self.__shape
def _w(self, n, suffix=""):
return self["matrix"+str(n)+suffix]
def _b(self, n, suffix=""):
return self["bias"+str(n)+suffix]
@staticmethod
def _feedforward(x, w, b):
y = tf.tanh(tf.nn.bias_add(tf.matmul(x, w), b))
return y
def construct_graph(self, input_seq_pl, dropout):
network_input = input_seq_pl
curr_layer = tf.reshape(network_input, [self.batch_size,
FLAGS.chunk_length * FLAGS.frame_size])
numb_layers = self.num_hidden_layers + 1
with tf.name_scope("Joint_run"):
for i in range(numb_layers):
if i == FLAGS.middle_layer:
with tf.name_scope('middle_layer'):
middle_layer = tf.identity(curr_layer)
with tf.name_scope('hidden'+str(i)):
curr_layer = tf.nn.dropout(curr_layer, dropout)
w = self._w(i + 1)
b = self._b(i + 1)
curr_layer = self._feedforward(curr_layer, w, b)
output = curr_layer
with tf.name_scope("Decoding"):
layer = self._representation = tf.placeholder (dtype=tf.float32, shape=middle_layer.get_shape().as_list(), name="Respres.")
for i in range(FLAGS.middle_layer, numb_layers):
with tf.name_scope('hidden' + str(i)):
layer = tf.nn.dropout(layer, dropout)
w = self._w(i + 1)
b = self._b(i + 1)
layer = self._feedforward(layer, w, b)
decoding = layer
return output, middle_layer, decoding
def __getitem__(self, item):
return self.__variables[item]
def __setitem__(self, key, value):
self.__variables[key] = value
def _create_variables(self, i, wd):
w_shape = (self.__shape[i], self.__shape[i + 1])
a = tf.multiply(2.0, tf.sqrt(6.0 / (w_shape[0] + w_shape[1])))
name_w = "matrix"+str(i + 1)
self[name_w] = tf.get_variable("Variables/"+name_w,
initializer=tf.random_uniform(w_shape, -1 * a, a))
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(self[name_w]), wd, name='wgt_'+str(i)+'_loss')
tf.add_to_collection('losses', weight_decay)
tf.summary.histogram(name_w, self[name_w])
name_b = "bias"+str(i + 1)
b_shape = (self.__shape[i + 1],)
self[name_b] = tf.get_variable("Variables/"+name_b, initializer=tf.zeros(b_shape))
if i < self.num_hidden_layers:
self[name_w + "_pretr"] = tf.get_variable(name="Var/" + name_w + "_pretr", initializer=
tf.random_uniform(w_shape, -1 * a, a),
trainable=False)
self[name_b + "_pretr"] = tf.get_variable("Var/"+name_b+"_pretr", trainable=False,
initializer=tf.zeros(b_shape))
name_b_out = "bias" + str(i+1) + "_out"
b_shape = (self.__shape[i],)
b_init = tf.zeros(b_shape)
self[name_b_out] = tf.get_variable(name="Var/"+name_b_out, initializer=b_init,
trainable=True)
|
Apache License 2.0
|
jaymon/captain
|
captain/reflection.py
|
ReflectCommand.parseargs
|
python
|
def parseargs(self):
for pa in self.method().parseargs():
yield pa
|
yield all the ParseArg instances of the arguments defined for this command
|
https://github.com/jaymon/captain/blob/12fe62189c53d810ce8ff308c164967048a3d309/captain/reflection.py#L52-L55
|
from __future__ import unicode_literals, division, print_function, absolute_import
import re
import inspect
import types
import argparse
from .compat import *
class ReflectCommand(object):
@property
def desc(self):
def get_desc(o):
desc = ""
comment_regex = re.compile(r"^\s*#\s*", flags=re.M)
desc = inspect.getdoc(o)
if not desc:
desc = inspect.getcomments(o)
if desc:
desc = comment_regex.sub("", desc).strip()
desc = re.sub(r"^(?:\s*#\s*)?\-\*\-.*", "", desc, flags=re.M).strip()
return desc
desc = get_desc(self.command_class.handle)
if not desc:
desc = get_desc(self.command_class)
if not desc:
desc = get_desc(self.command_class.module)
if not desc:
desc = ""
return desc
def __init__(self, command):
self.command_class = command if inspect.isclass(command) else command.__class__
def method(self, method_name="handle"):
return ReflectMethod(self.command_class.handle)
|
MIT License
|
qiskit/qiskit-aqua
|
test/aqua/operators/test_cvar.py
|
TestCVaRMeasurement.expected_cvar
|
python
|
def expected_cvar(self, statevector, operator, alpha):
probabilities = statevector * np.conj(statevector)
num_bits = int(np.log2(len(statevector)))
energies = []
for i, _ in enumerate(probabilities):
basis_state = np.binary_repr(i, num_bits)
energies += [operator.eval(basis_state).eval(basis_state)]
i_sorted = np.argsort(energies)
energies = [energies[i] for i in i_sorted]
probabilities = [probabilities[i] for i in i_sorted]
result = 0
accumulated_probabilities = 0
for energy, probability in zip(energies, probabilities):
accumulated_probabilities += probability
if accumulated_probabilities <= alpha:
result += probability * energy
else:
result += (alpha - accumulated_probabilities + probability) * energy
break
return result / alpha
|
Compute the expected CVaR expected value.
|
https://github.com/qiskit/qiskit-aqua/blob/5ccf0e20129880e78a57f2f78c59b9a362ebb208/test/aqua/operators/test_cvar.py#L31-L59
|
from test.aqua import QiskitAquaTestCase
import numpy as np
from ddt import ddt, data
from qiskit import QuantumCircuit
from qiskit.aqua import AquaError
from qiskit.aqua.operators import (
CVaRMeasurement, StateFn, Z, I, X, Y, Plus, PauliExpectation, MatrixExpectation,
CVaRExpectation, ListOp, CircuitOp, AerPauliExpectation, MatrixOp
)
class TestCVaRMeasurement(QiskitAquaTestCase):
|
Apache License 2.0
|
castagnait/plugin.video.netflix
|
resources/lib/common/misc_utils.py
|
is_numeric
|
python
|
def is_numeric(string):
try:
int(string)
except ValueError:
return False
return True
|
Return true if string represents an integer, else false
|
https://github.com/castagnait/plugin.video.netflix/blob/1c68c7d4c399603a5dcbeef1e7637de7a9036a72/resources/lib/common/misc_utils.py#L72-L78
|
import operator
from urllib.parse import quote, urlencode
from resources.lib.globals import G
def find(value_to_find, attribute, search_space):
for video in search_space:
if video[attribute] == value_to_find:
return video
raise KeyError(f'Metadata for {value_to_find} does not exist')
def find_episode_metadata(episode_videoid, metadata):
season = find(int(episode_videoid.seasonid), 'id', metadata['seasons'])
episode = find(int(episode_videoid.episodeid), 'id', season.get('episodes', {}))
return episode, season
def get_class_methods(class_item=None):
from types import FunctionType
_type = FunctionType
return [x for x, y in class_item.__dict__.items()
if isinstance(y, _type)]
def build_url(pathitems=None, videoid=None, params=None, mode=None):
if not (pathitems or videoid):
raise ValueError('Either pathitems or videoid must be set.')
path = f'{G.BASE_URL}/{_encode_path(mode, pathitems, videoid)}/{_encode_params(params)}'
return path
def _expand_mode(mode):
return [mode] if mode else []
def _expand_videoid(videoid):
return videoid.to_path() if videoid else []
def _encode_path(mode, pathitems, videoid):
return quote(
'/'.join(_expand_mode(mode) +
(pathitems or []) +
_expand_videoid(videoid)).encode('utf-8'))
def _encode_params(params):
return f'?{urlencode(params)}' if params else ''
|
MIT License
|
rapidsai/cuml
|
python/cuml/metrics/_ranking.py
|
_binary_roc_auc_score
|
python
|
def _binary_roc_auc_score(y_true, y_score):
if cp.unique(y_true).shape[0] == 1:
raise ValueError("roc_auc_score cannot be used when "
"only one class present in y_true. ROC AUC score "
"is not defined in that case.")
if cp.unique(y_score).shape[0] == 1:
return 0.5
fps, tps, thresholds = _binary_clf_curve(y_true, y_score)
tpr = tps/tps[-1]
fpr = fps/fps[-1]
return _calculate_area_under_curve(fpr, tpr).item()
|
Compute binary roc_auc_score using cupy
|
https://github.com/rapidsai/cuml/blob/91abe6747ea61a5b59526f76568ea14d52814454/python/cuml/metrics/_ranking.py#L192-L207
|
import typing
import cupy as cp
import numpy as np
import cuml.internals
from cuml.common.array import CumlArray
from cuml.common.input_utils import input_to_cupy_array
import math
@cuml.internals.api_return_generic(get_output_type=True)
def precision_recall_curve(
y_true, probs_pred) -> typing.Tuple[CumlArray, CumlArray, CumlArray]:
y_true, n_rows, n_cols, ytype = input_to_cupy_array(y_true, check_dtype=[np.int32, np.int64,
np.float32, np.float64])
y_score, _, _, _ = input_to_cupy_array(probs_pred, check_dtype=[np.int32, np.int64,
np.float32, np.float64],
check_rows=n_rows, check_cols=n_cols)
if cp.any(y_true) == 0:
raise ValueError("precision_recall_curve cannot be used when "
"y_true is all zero.")
fps, tps, thresholds = _binary_clf_curve(y_true, y_score)
precision = cp.flip(tps/(tps+fps), axis=0)
recall = cp.flip(tps/tps[-1], axis=0)
n = (recall == 1).sum()
if n > 1:
precision = precision[n-1:]
recall = recall[n-1:]
thresholds = thresholds[n-1:]
precision = cp.concatenate([precision, cp.ones(1)])
recall = cp.concatenate([recall, cp.zeros(1)])
return precision, recall, thresholds
@cuml.internals.api_return_any()
def roc_auc_score(y_true, y_score):
y_true, n_rows, n_cols, ytype = input_to_cupy_array(y_true, check_dtype=[np.int32, np.int64,
np.float32, np.float64])
y_score, _, _, _ = input_to_cupy_array(y_score, check_dtype=[np.int32, np.int64,
np.float32, np.float64],
check_rows=n_rows, check_cols=n_cols)
return _binary_roc_auc_score(y_true, y_score)
def _binary_clf_curve(y_true, y_score):
if y_true.dtype.kind == 'f' and np.any(y_true != y_true.astype(int)):
raise ValueError("Continuous format of y_true "
"is not supported.")
ids = cp.argsort(-y_score)
sorted_score = y_score[ids]
ones = y_true[ids].astype('float32')
zeros = 1 - ones
group = _group_same_scores(sorted_score)
num = int(group[-1])
tps = cp.zeros(num, dtype='float32')
fps = cp.zeros(num, dtype='float32')
tps = _addup_x_in_group(group, ones, tps)
fps = _addup_x_in_group(group, zeros, fps)
tps = cp.cumsum(tps)
fps = cp.cumsum(fps)
thresholds = cp.unique(y_score)
return fps, tps, thresholds
|
Apache License 2.0
|
adamcharnock/seed
|
seed/vcs/git.py
|
GitVcs.parse_log_messages
|
python
|
def parse_log_messages(self, text):
regex = r"commit ([0-9a-f]+)\nAuthor: (.*?)\n\n(.*?)(?:\n\n|$)"
messages = re.findall(regex, text, re.DOTALL)
parsed = []
for commit, author, message in messages:
parsed.append((
commit[:10],
re.sub(r"\s*<.*?>", "", author),
message.strip()
))
return parsed
|
Will parse git log messages in the 'short' format
|
https://github.com/adamcharnock/seed/blob/48232a2497bd94c5e1466a5b33a929f253ab5112/seed/vcs/git.py#L44-L56
|
import re
from pipes import quote
from seed.vcs import BaseVcs
from seed.utilities import run_command
from seed.exceptions import ShellCommandError
class GitVcs(BaseVcs):
name = "git"
def get_suitability(self):
try:
run_command("git status")
except ShellCommandError:
return 0
return 1
def get_changes(self, since_version):
log_range = "%s..HEAD" % self.make_tag_name(since_version)
commits = run_command("git log --pretty=short %s" % quote(log_range))
return self.parse_log_messages(commits)
def commit(self, message, files):
quoted_files = " ".join(map(quote, files))
run_command("git add %s" % quoted_files)
run_command("git commit -m %s %s" % (quote(message), quoted_files))
def tag(self, version):
name = self.make_tag_name(version)
run_command("git tag %s" % quote(name))
def push(self):
run_command("git push")
run_command("git push --tags")
def add(self, file_path):
run_command("git add %s" % quote(file_path))
def get_download_url(self, version):
return None
|
MIT License
|
hopeit-git/hopeit.engine
|
engine/src/hopeit/server/web.py
|
_handle_multipart_invocation
|
python
|
async def _handle_multipart_invocation(
app_engine: AppEngine,
impl: AppEngine,
event_name: str,
datatype: Optional[Type[DataObject]],
auth_types: List[AuthType],
request: web.Request) -> ResponseType:
context = None
try:
event_settings = get_event_settings(app_engine.settings, event_name)
context = _request_start(app_engine, impl, event_name, event_settings, request)
query_args = dict(request.query)
_validate_authorization(app_engine.app_config, context, auth_types, request)
hook = PreprocessHook(
headers=request.headers, multipart_reader=await request.multipart()
)
return await _request_execute(
impl, event_name, context,
query_args, payload=None,
preprocess_hook=hook
)
except Unauthorized as e:
return _ignored_response(context, 401, e)
except BadRequest as e:
return _ignored_response(context, 400, e)
except Exception as e:
return _failed_response(context, e)
|
Handler to execute POST calls
|
https://github.com/hopeit-git/hopeit.engine/blob/79137e483a9577f336524f7e3b22a26a8d5a7ea3/engine/src/hopeit/server/web.py#L621-L650
|
import aiohttp
setattr(aiohttp.http, 'SERVER_SOFTWARE', '')
import argparse
import asyncio
import gc
import logging
import re
import sys
import uuid
from datetime import datetime, timezone
from functools import partial
from typing import (
Any, Callable, Coroutine, Dict, List, Optional, Tuple, Type, Union
)
import aiohttp_cors
import aiojobs
import aiojobs.aiohttp as aiojobs_http
from aiohttp import web
from aiohttp.web_response import Response
from aiohttp_cors import CorsConfig
from aiojobs import Scheduler
from stringcase import snakecase, titlecase
from hopeit.app.config import (
AppConfig, EventDescriptor, EventPlugMode, EventSettings, EventType, parse_app_config_json
)
from hopeit.app.context import (
EventContext, NoopMultiparReader, PostprocessHook, PreprocessHook
)
from hopeit.app.errors import BadRequest, Unauthorized
from hopeit.dataobjects import DataObject, EventPayload, EventPayloadType
from hopeit.dataobjects.payload import Payload
from hopeit.server import api, runtime
from hopeit.server.api import app_route_name
from hopeit.server.config import (
AuthType, ServerConfig, parse_server_config_json
)
from hopeit.server.engine import AppEngine, Server
from hopeit.server.errors import ErrorInfo
from hopeit.server.events import get_event_settings
from hopeit.server.logger import (
EngineLoggerWrapper, combined, engine_logger, extra_logger
)
from hopeit.server.metrics import metrics
from hopeit.server.names import route_name
from hopeit.server.steps import find_datatype_handler
from hopeit.toolkit import auth
__all__ = ['parse_args',
'main',
'start_server',
'start_app',
'stop_server']
logger: EngineLoggerWrapper = logging.getLogger(__name__)
extra = extra_logger()
ResponseType = Union[web.Response, web.FileResponse]
web_server = web.Application()
aiojobs_http.setup(web_server)
auth_info_default = {}
def main(host: Optional[str], port: Optional[int], path: Optional[str], start_streams: bool,
config_files: List[str], api_file: Optional[str]):
loop = asyncio.get_event_loop()
scheduler = loop.run_until_complete(aiojobs.create_scheduler())
logger.info("Loading engine config file=%s...", config_files[0])
server_config = _load_engine_config(config_files[0])
loop.run_until_complete(start_server(server_config))
if server_config.auth.domain:
auth_info_default['domain'] = server_config.auth.domain
if api_file is not None:
api.load_api_file(api_file)
api.register_server_config(server_config)
apps_config = []
for config_file in config_files[1:]:
logger.info(__name__, f"Loading app config file={config_file}...")
config = _load_app_config(config_file)
config.server = server_config
apps_config.append(config)
api.register_apps(apps_config)
api.enable_swagger(server_config, web_server)
for config in apps_config:
loop.run_until_complete(start_app(config, scheduler, start_streams))
logger.debug(__name__, "Performing forced garbage collection...")
gc.collect()
web.run_app(web_server, path=path, port=port, host=host)
def init_logger():
global logger
logger = engine_logger()
async def start_server(config: ServerConfig):
await runtime.server.start(config=config)
init_logger()
async def stop_server():
global web_server
await runtime.server.stop()
await web_server.shutdown()
runtime.server = Server()
web_server = web.Application()
async def start_app(config: AppConfig, scheduler: Scheduler, start_streams: bool = False):
app_engine = await runtime.server.start_app(app_config=config)
cors_origin = aiohttp_cors.setup(web_server, defaults={
config.engine.cors_origin: aiohttp_cors.ResourceOptions(
allow_credentials=True,
expose_headers="*",
allow_headers="*",
)
}) if config.engine.cors_origin else None
_setup_app_event_routes(app_engine)
for plugin in config.plugins:
plugin_engine = runtime.server.app_engine(app_key=plugin.app_key())
_setup_app_event_routes(app_engine, plugin_engine)
if cors_origin:
app = app_engine.app_config.app
_enable_cors(route_name('api', app.name, app.version), cors_origin)
if start_streams:
await _start_streams(app_engine, scheduler)
def _effective_events(app_engine: AppEngine, plugin: Optional[AppEngine] = None):
if plugin is None:
return {
k: v for k, v in app_engine.effective_events.items()
if v.plug_mode == EventPlugMode.STANDALONE
}
return {
k: v for k, v in plugin.effective_events.items()
if v.plug_mode == EventPlugMode.ON_APP
}
def _load_engine_config(path: str):
with open(path, encoding="utf-8") as f:
return parse_server_config_json(f.read())
def _load_app_config(path: str) -> AppConfig:
with open(path, encoding="utf-8") as f:
return parse_app_config_json(f.read())
def _enable_cors(prefix: str, cors: CorsConfig):
for route in web_server.router.routes():
if route.resource and route.resource.canonical.startswith(prefix):
cors.add(route)
def _setup_app_event_routes(app_engine: AppEngine,
plugin: Optional[AppEngine] = None):
for event_name, event_info in _effective_events(app_engine, plugin).items():
if event_info.type == EventType.POST:
web_server.add_routes([
_create_post_event_route(
app_engine, plugin=plugin, event_name=event_name, override_route_name=event_info.route
)
])
elif event_info.type == EventType.GET:
web_server.add_routes([
_create_get_event_route(
app_engine, plugin=plugin, event_name=event_name, override_route_name=event_info.route
)
])
elif event_info.type == EventType.MULTIPART:
web_server.add_routes([
_create_multipart_event_route(
app_engine, plugin=plugin, event_name=event_name, override_route_name=event_info.route
)
])
elif event_info.type == EventType.STREAM and plugin is None:
web_server.add_routes(
_create_event_management_routes(
app_engine, event_name=event_name, event_info=event_info
)
)
elif event_info.type == EventType.SERVICE and plugin is None:
web_server.add_routes(
_create_event_management_routes(
app_engine, event_name=event_name, event_info=event_info
)
)
else:
raise ValueError(f"Invalid event_type:{event_info.type} for event:{event_name}")
def _auth_types(app_engine: AppEngine, event_name: str):
assert app_engine.app_config.server
event_info = app_engine.app_config.events[event_name]
if event_info.auth:
return event_info.auth
return app_engine.app_config.server.auth.default_auth_methods
def _create_post_event_route(
app_engine: AppEngine, *,
plugin: Optional[AppEngine] = None,
event_name: str,
override_route_name: Optional[str]) -> web.RouteDef:
datatype = find_datatype_handler(app_config=app_engine.app_config, event_name=event_name)
route = app_route_name(app_engine.app_config.app, event_name=event_name,
plugin=None if plugin is None else plugin.app_config.app,
override_route_name=override_route_name)
logger.info(__name__, f"POST path={route} input={str(datatype)}")
impl = plugin if plugin else app_engine
handler = partial(_handle_post_invocation, app_engine, impl,
event_name, datatype, _auth_types(impl, event_name))
setattr(handler, '__closure__', None)
setattr(handler, '__code__', _handle_post_invocation.__code__)
api_handler = api.add_route('post', route, handler)
return web.post(route, api_handler)
def _create_get_event_route(
app_engine: AppEngine, *,
plugin: Optional[AppEngine] = None,
event_name: str,
override_route_name: Optional[str]) -> web.RouteDef:
route = app_route_name(app_engine.app_config.app, event_name=event_name,
plugin=None if plugin is None else plugin.app_config.app,
override_route_name=override_route_name)
logger.info(__name__, f"GET path={route}")
impl = plugin if plugin else app_engine
handler = partial(_handle_get_invocation, app_engine, impl, event_name, _auth_types(impl, event_name))
setattr(handler, '__closure__', None)
setattr(handler, '__code__', _handle_post_invocation.__code__)
api_handler = api.add_route('get', route, handler)
return web.get(route, api_handler)
def _create_multipart_event_route(
app_engine: AppEngine, *,
plugin: Optional[AppEngine] = None,
event_name: str,
override_route_name: Optional[str]) -> web.RouteDef:
datatype = find_datatype_handler(app_config=app_engine.app_config, event_name=event_name)
route = app_route_name(app_engine.app_config.app, event_name=event_name,
plugin=None if plugin is None else plugin.app_config.app,
override_route_name=override_route_name)
logger.info(__name__, f"MULTIPART path={route} input={str(datatype)}")
impl = plugin if plugin else app_engine
handler = partial(_handle_multipart_invocation, app_engine, impl,
event_name, datatype, _auth_types(impl, event_name))
setattr(handler, '__closure__', None)
setattr(handler, '__code__', _handle_multipart_invocation.__code__)
api_handler = api.add_route('post', route, handler)
return web.post(route, api_handler)
def _create_event_management_routes(
app_engine: AppEngine, *,
event_name: str,
event_info: EventDescriptor) -> List[web.RouteDef]:
evt = event_name.replace('.', '/').replace('$', '/')
base_route = app_route_name(app_engine.app_config.app, event_name=evt,
prefix='mgmt', override_route_name=event_info.route)
logger.info(__name__, f"{event_info.type.value.upper()} path={base_route}/[start|stop]")
handler: Optional[partial[Coroutine[Any, Any, Response]]] = None
if event_info.type == EventType.STREAM:
handler = partial(_handle_stream_start_invocation, app_engine, event_name)
elif event_info.type == EventType.SERVICE:
handler = partial(_handle_service_start_invocation, app_engine, event_name)
assert handler is not None, f"No handler for event={event_name} type={event_info.type}"
return [
web.get(base_route + '/start', handler),
web.get(
base_route + '/stop',
partial(_handle_event_stop_invocation, app_engine, event_name)
)
]
def _response(*, track_ids: Dict[str, str], key: str,
payload: EventPayload, hook: PostprocessHook) -> ResponseType:
response: ResponseType
headers = {
**hook.headers,
**{f"X-{re.sub(' ', '-', titlecase(k))}": v for k, v in track_ids.items()}
}
if hook.file_response is not None:
response = web.FileResponse(
path=hook.file_response,
headers={'Content-Type': hook.content_type, **headers}
)
else:
serializer: Callable[..., str] = CONTENT_TYPE_BODY_SER.get(
hook.content_type, _text_response
)
body = serializer(payload, key=key)
response = web.Response(
body=body,
headers=headers,
content_type=hook.content_type
)
for name, cookie in hook.cookies.items():
value, args, kwargs = cookie
response.set_cookie(name, value, *args, **kwargs)
for name, args, kwargs in hook.del_cookies:
response.del_cookie(name, *args, **kwargs)
if hook.status:
response.set_status(hook.status)
return response
def _response_info(response: ResponseType):
return extra(prefix='response.', status=str(response.status))
def _track_ids(request: web.Request) -> Dict[str, str]:
return {
'track.operation_id': str(uuid.uuid4()),
'track.request_id': str(uuid.uuid4()),
'track.request_ts': datetime.now().astimezone(timezone.utc).isoformat(),
**{
"track." + snakecase(k[8:].lower()): v
for k, v in request.headers.items() if k.lower().startswith('x-track-')
}
}
def _failed_response(context: Optional[EventContext],
e: Exception) -> web.Response:
if context:
logger.error(context, e)
logger.failed(context)
else:
logger.error(__name__, e)
info = ErrorInfo.from_exception(e)
return web.Response(
status=500,
body=Payload.to_json(info)
)
def _ignored_response(context: Optional[EventContext],
status: int,
e: BaseException) -> web.Response:
if context:
logger.error(context, e)
logger.ignored(context)
else:
logger.error(__name__, e)
info = ErrorInfo.from_exception(e)
return web.Response(
status=status,
body=Payload.to_json(info)
)
def _request_start(app_engine: AppEngine,
plugin: AppEngine,
event_name: str,
event_settings: EventSettings,
request: web.Request) -> EventContext:
context = EventContext(
app_config=app_engine.app_config,
plugin_config=plugin.app_config,
event_name=event_name,
settings=event_settings,
track_ids=_track_ids(request),
auth_info=auth_info_default
)
logger.start(context)
return context
def _extract_auth_header(request: web.Request, context: EventContext) -> Optional[str]:
return request.headers.get("Authorization")
def _extract_refresh_cookie(request: web.Request, context: EventContext) -> Optional[str]:
return request.cookies.get(f"{context.app_key}.refresh")
def _ignore_auth(request: web.Request, context: EventContext) -> str:
return 'Unsecured -'
AUTH_HEADER_EXTRACTORS = {
AuthType.BASIC: _extract_auth_header,
AuthType.BEARER: _extract_auth_header,
AuthType.REFRESH: _extract_refresh_cookie,
AuthType.UNSECURED: _ignore_auth
}
def _extract_authorization(auth_methods: List[AuthType], request: web.Request, context: EventContext):
for auth_type in auth_methods:
auth_header = AUTH_HEADER_EXTRACTORS[auth_type](request, context)
if auth_header is not None:
return auth_header
return 'Unsecured -'
def _validate_authorization(app_config: AppConfig,
context: EventContext,
auth_types: List[AuthType],
request: web.Request):
auth_methods = context.event_info.auth
if (len(auth_methods) == 0) and (app_config.server is not None):
auth_methods = app_config.server.auth.default_auth_methods
auth_header = _extract_authorization(auth_methods, request, context)
try:
method, data = auth_header.split(" ")
except ValueError as e:
raise BadRequest("Malformed Authorization") from e
context.auth_info['allowed'] = False
for auth_type in auth_types:
if method.upper() == auth_type.name.upper():
auth.validate_auth_method(auth_type, data, context)
if context.auth_info.get('allowed'):
return None
raise Unauthorized(method)
def _application_json_response(result: DataObject, key: str, *args, **kwargs) -> str:
return Payload.to_json(result, key=key)
def _text_response(result: str, *args, **kwargs) -> str:
return str(result)
CONTENT_TYPE_BODY_SER: Dict[str, Callable[..., str]] = {
'application/json': _application_json_response,
'text/html': _text_response,
'text/plain': _text_response
}
async def _request_execute(
app_engine: AppEngine,
event_name: str,
context: EventContext,
query_args: Dict[str, Any],
payload: Optional[EventPayloadType],
preprocess_hook: PreprocessHook) -> ResponseType:
response_hook = PostprocessHook()
result = await app_engine.preprocess(
context=context, query_args=query_args, payload=payload, request=preprocess_hook)
if (preprocess_hook.status is None) or (preprocess_hook.status == 200):
result = await app_engine.execute(context=context, query_args=query_args, payload=result)
result = await app_engine.postprocess(context=context, payload=result, response=response_hook)
else:
response_hook.set_status(preprocess_hook.status)
response = _response(
track_ids=context.track_ids,
key=event_name,
payload=result,
hook=response_hook
)
logger.done(context, extra=combined(
_response_info(response), metrics(context)
))
return response
async def _request_process_payload(
context: EventContext,
datatype: Optional[Type[EventPayloadType]],
request: web.Request) -> Optional[EventPayloadType]:
try:
payload_raw = await request.read()
if (payload_raw is None) or (payload_raw == b''):
return None
payload = Payload.from_json(payload_raw, datatype) if datatype else payload_raw.decode()
return payload
except ValueError as e:
logger.error(context, e)
raise BadRequest(e) from e
async def _handle_post_invocation(
app_engine: AppEngine,
impl: AppEngine,
event_name: str,
datatype: Optional[Type[DataObject]],
auth_types: List[AuthType],
request: web.Request) -> ResponseType:
context = None
try:
event_settings = get_event_settings(app_engine.settings, event_name)
context = _request_start(app_engine, impl, event_name, event_settings, request)
query_args = dict(request.query)
_validate_authorization(app_engine.app_config, context, auth_types, request)
payload = await _request_process_payload(context, datatype, request)
hook: PreprocessHook[NoopMultiparReader] = PreprocessHook(headers=request.headers)
return await _request_execute(
impl, event_name, context, query_args, payload, preprocess_hook=hook
)
except Unauthorized as e:
return _ignored_response(context, 401, e)
except BadRequest as e:
return _ignored_response(context, 400, e)
except Exception as e:
return _failed_response(context, e)
async def _handle_get_invocation(
app_engine: AppEngine,
impl: AppEngine,
event_name: str,
auth_types: List[AuthType],
request: web.Request) -> ResponseType:
context = None
try:
event_settings = get_event_settings(app_engine.settings, event_name)
context = _request_start(app_engine, impl, event_name, event_settings, request)
_validate_authorization(app_engine.app_config, context, auth_types, request)
query_args = dict(request.query)
payload = query_args.get('payload')
if payload is not None:
del query_args['payload']
hook: PreprocessHook[NoopMultiparReader] = PreprocessHook(headers=request.headers)
return await _request_execute(
impl, event_name, context,
query_args, payload=payload,
preprocess_hook=hook
)
except Unauthorized as e:
return _ignored_response(context, 401, e)
except BadRequest as e:
return _ignored_response(context, 400, e)
except Exception as e:
return _failed_response(context, e)
|
Apache License 2.0
|
navneet-nmk/hierarchical-meta-reinforcement-learning
|
rlkit/rlkit/data_management/obs_dict_replay_buffer.py
|
postprocess_obs_dict
|
python
|
def postprocess_obs_dict(obs_dict):
for obs_key, obs in obs_dict.items():
if 'image' in obs_key and obs is not None:
obs_dict[obs_key] = normalize_image(obs)
return obs_dict
|
Undo internal replay buffer representation changes: save images as bytes
|
https://github.com/navneet-nmk/hierarchical-meta-reinforcement-learning/blob/4ef92cebfa11760d9de55d54fc8e827271982a63/rlkit/rlkit/data_management/obs_dict_replay_buffer.py#L294-L301
|
import numpy as np
from gym.spaces import Dict, Discrete
from rlkit.data_management.replay_buffer import ReplayBuffer
class ObsDictRelabelingBuffer(ReplayBuffer):
def __init__(
self,
max_size,
env,
fraction_goals_rollout_goals=1.0,
fraction_goals_env_goals=0.0,
internal_keys=None,
goal_keys=None,
observation_key='observation',
desired_goal_key='desired_goal',
achieved_goal_key='achieved_goal',
):
if internal_keys is None:
internal_keys = []
self.internal_keys = internal_keys
if goal_keys is None:
goal_keys = []
if desired_goal_key not in goal_keys:
goal_keys.append(desired_goal_key)
self.goal_keys = goal_keys
assert isinstance(env.observation_space, Dict)
assert 0 <= fraction_goals_rollout_goals
assert 0 <= fraction_goals_env_goals
assert 0 <= fraction_goals_rollout_goals + fraction_goals_env_goals
assert fraction_goals_rollout_goals + fraction_goals_env_goals <= 1
self.max_size = max_size
self.env = env
self.fraction_goals_rollout_goals = fraction_goals_rollout_goals
self.fraction_goals_env_goals = fraction_goals_env_goals
self.ob_keys_to_save = [
observation_key,
desired_goal_key,
achieved_goal_key,
]
self.observation_key = observation_key
self.desired_goal_key = desired_goal_key
self.achieved_goal_key = achieved_goal_key
if isinstance(self.env.action_space, Discrete):
self._action_dim = env.action_space.n
else:
self._action_dim = env.action_space.low.size
self._actions = np.zeros((max_size, self._action_dim))
self._terminals = np.zeros((max_size, 1), dtype='uint8')
self._obs = {}
self._next_obs = {}
self.ob_spaces = self.env.observation_space.spaces
for key in self.ob_keys_to_save + internal_keys:
assert key in self.ob_spaces, "Key not found in the observation space: %s" % key
type = np.float64
if key.startswith('image'):
type = np.uint8
self._obs[key] = np.zeros(
(max_size, self.ob_spaces[key].low.size), dtype=type)
self._next_obs[key] = np.zeros(
(max_size, self.ob_spaces[key].low.size), dtype=type)
self._top = 0
self._size = 0
self._idx_to_future_obs_idx = [None] * max_size
def add_sample(self, observation, action, reward, terminal,
next_observation, **kwargs):
raise NotImplementedError("Only use add_path")
def terminate_episode(self):
pass
def num_steps_can_sample(self):
return self._size
def add_path(self, path):
obs = path["observations"]
actions = path["actions"]
rewards = path["rewards"]
next_obs = path["next_observations"]
terminals = path["terminals"]
path_len = len(rewards)
actions = flatten_n(actions)
if isinstance(self.env.action_space, Discrete):
actions = np.eye(self._action_dim)[actions].reshape((-1, self._action_dim))
obs = flatten_dict(obs, self.ob_keys_to_save + self.internal_keys)
next_obs = flatten_dict(next_obs, self.ob_keys_to_save + self.internal_keys)
obs = preprocess_obs_dict(obs)
next_obs = preprocess_obs_dict(next_obs)
if self._top + path_len >= self.max_size:
num_pre_wrap_steps = self.max_size - self._top
pre_wrap_buffer_slice = np.s_[
self._top:self._top + num_pre_wrap_steps, :
]
pre_wrap_path_slice = np.s_[0:num_pre_wrap_steps, :]
num_post_wrap_steps = path_len - num_pre_wrap_steps
post_wrap_buffer_slice = slice(0, num_post_wrap_steps)
post_wrap_path_slice = slice(num_pre_wrap_steps, path_len)
for buffer_slice, path_slice in [
(pre_wrap_buffer_slice, pre_wrap_path_slice),
(post_wrap_buffer_slice, post_wrap_path_slice),
]:
self._actions[buffer_slice] = actions[path_slice]
self._terminals[buffer_slice] = terminals[path_slice]
for key in self.ob_keys_to_save + self.internal_keys:
self._obs[key][buffer_slice] = obs[key][path_slice]
self._next_obs[key][buffer_slice] = next_obs[key][path_slice]
for i in range(self._top, self.max_size):
self._idx_to_future_obs_idx[i] = np.hstack((
np.arange(i, self.max_size),
np.arange(0, num_post_wrap_steps)
))
for i in range(0, num_post_wrap_steps):
self._idx_to_future_obs_idx[i] = np.arange(
i,
num_post_wrap_steps,
)
else:
slc = np.s_[self._top:self._top + path_len, :]
self._actions[slc] = actions
self._terminals[slc] = terminals
for key in self.ob_keys_to_save + self.internal_keys:
self._obs[key][slc] = obs[key]
self._next_obs[key][slc] = next_obs[key]
for i in range(self._top, self._top + path_len):
self._idx_to_future_obs_idx[i] = np.arange(
i, self._top + path_len
)
self._top = (self._top + path_len) % self.max_size
self._size = min(self._size + path_len, self.max_size)
def _sample_indices(self, batch_size):
return np.random.randint(0, self._size, batch_size)
def random_batch(self, batch_size):
indices = self._sample_indices(batch_size)
resampled_goals = self._next_obs[self.desired_goal_key][indices]
num_env_goals = int(batch_size * self.fraction_goals_env_goals)
num_rollout_goals = int(batch_size * self.fraction_goals_rollout_goals)
num_future_goals = batch_size - (num_env_goals + num_rollout_goals)
new_obs_dict = self._batch_obs_dict(indices)
new_next_obs_dict = self._batch_next_obs_dict(indices)
if num_env_goals > 0:
env_goals = self.env.sample_goals(num_env_goals)
env_goals = preprocess_obs_dict(env_goals)
last_env_goal_idx = num_rollout_goals + num_env_goals
resampled_goals[num_rollout_goals:last_env_goal_idx] = (
env_goals[self.desired_goal_key]
)
for goal_key in self.goal_keys:
new_obs_dict[goal_key][num_rollout_goals:last_env_goal_idx] = env_goals[goal_key]
new_next_obs_dict[goal_key][
num_rollout_goals:last_env_goal_idx] = env_goals[goal_key]
if num_future_goals > 0:
future_obs_idxs = []
for i in indices[-num_future_goals:]:
possible_future_obs_idxs = self._idx_to_future_obs_idx[i]
num_options = len(possible_future_obs_idxs)
next_obs_i = int(np.random.randint(0, num_options))
future_obs_idxs.append(possible_future_obs_idxs[next_obs_i])
future_obs_idxs = np.array(future_obs_idxs)
resampled_goals[-num_future_goals:] = self._next_obs[
self.achieved_goal_key
][future_obs_idxs]
for goal_key in self.goal_keys:
new_obs_dict[goal_key][-num_future_goals:] = self._next_obs[goal_key][future_obs_idxs]
new_next_obs_dict[goal_key][-num_future_goals:] = self._next_obs[goal_key][future_obs_idxs]
new_obs_dict[self.desired_goal_key] = resampled_goals
new_next_obs_dict[self.desired_goal_key] = resampled_goals
new_obs_dict = postprocess_obs_dict(new_obs_dict)
new_next_obs_dict = postprocess_obs_dict(new_next_obs_dict)
resampled_goals = new_next_obs_dict[self.desired_goal_key]
new_actions = self._actions[indices]
if hasattr(self.env, 'compute_rewards'):
new_rewards = self.env.compute_rewards(
new_actions,
new_next_obs_dict,
)
else:
new_rewards = np.ones((batch_size, 1))
for i in range(batch_size):
new_rewards[i] = self.env.compute_reward(
new_next_obs_dict[self.achieved_goal_key][i],
new_next_obs_dict[self.desired_goal_key][i],
None
)
new_rewards = new_rewards.reshape(-1, 1)
new_obs = new_obs_dict[self.observation_key]
new_next_obs = new_next_obs_dict[self.observation_key]
batch = {
'observations': new_obs,
'actions': new_actions,
'rewards': new_rewards,
'terminals': self._terminals[indices],
'next_observations': new_next_obs,
'resampled_goals': resampled_goals,
'indices': np.array(indices).reshape(-1, 1),
}
return batch
def _batch_obs_dict(self, indices):
return {
key: self._obs[key][indices]
for key in self.ob_keys_to_save
}
def _batch_next_obs_dict(self, indices):
return {
key: self._next_obs[key][indices]
for key in self.ob_keys_to_save
}
def flatten_n(xs):
xs = np.asarray(xs)
return xs.reshape((xs.shape[0], -1))
def flatten_dict(dicts, keys):
return {
key: flatten_n([d[key] for d in dicts])
for key in keys
}
def preprocess_obs_dict(obs_dict):
for obs_key, obs in obs_dict.items():
if 'image' in obs_key and obs is not None:
obs_dict[obs_key] = unnormalize_image(obs)
return obs_dict
|
MIT License
|
swaglyrics/swspotify
|
SwSpotify/spotify.py
|
get_info_windows
|
python
|
def get_info_windows():
import win32gui
windows = []
old_window = win32gui.FindWindow("SpotifyMainWindow", None)
old = win32gui.GetWindowText(old_window)
def find_spotify_uwp(hwnd, windows):
text = win32gui.GetWindowText(hwnd)
classname = win32gui.GetClassName(hwnd)
if classname == "Chrome_WidgetWin_0" and len(text) > 0:
windows.append(text)
if old:
windows.append(old)
else:
win32gui.EnumWindows(find_spotify_uwp, windows)
if len(windows) == 0:
raise SpotifyClosed
try:
artist, track = windows[0].split(" - ", 1)
except ValueError:
artist = ""
track = windows[0]
if windows[0].startswith("Spotify"):
raise SpotifyPaused
return track, artist
|
Reads the window titles to get the data.
Older Spotify versions simply use FindWindow for "SpotifyMainWindow",
the newer ones create an EnumHandler and flood the list with
Chrome_WidgetWin_0s
|
https://github.com/swaglyrics/swspotify/blob/2e7f389294754f0164de7bbc6306dccee505cf63/SwSpotify/spotify.py#L6-L48
|
import sys
import subprocess
from SwSpotify import SpotifyClosed, SpotifyPaused, SpotifyNotRunning
|
MIT License
|
pallets/werkzeug
|
src/werkzeug/sansio/request.py
|
Request.cache_control
|
python
|
def cache_control(self) -> RequestCacheControl:
cache_control = self.headers.get("Cache-Control")
return parse_cache_control_header(cache_control, None, RequestCacheControl)
|
A :class:`~werkzeug.datastructures.RequestCacheControl` object
for the incoming cache control headers.
|
https://github.com/pallets/werkzeug/blob/d4987ee711c3d69ca665bf3b7e5e84705b2f91b5/src/werkzeug/sansio/request.py#L418-L423
|
import typing as t
from datetime import datetime
from .._internal import _to_str
from ..datastructures import Accept
from ..datastructures import Authorization
from ..datastructures import CharsetAccept
from ..datastructures import ETags
from ..datastructures import Headers
from ..datastructures import HeaderSet
from ..datastructures import IfRange
from ..datastructures import ImmutableList
from ..datastructures import ImmutableMultiDict
from ..datastructures import LanguageAccept
from ..datastructures import MIMEAccept
from ..datastructures import MultiDict
from ..datastructures import Range
from ..datastructures import RequestCacheControl
from ..http import parse_accept_header
from ..http import parse_authorization_header
from ..http import parse_cache_control_header
from ..http import parse_cookie
from ..http import parse_date
from ..http import parse_etags
from ..http import parse_if_range_header
from ..http import parse_list_header
from ..http import parse_options_header
from ..http import parse_range_header
from ..http import parse_set_header
from ..urls import url_decode
from ..user_agent import UserAgent
from ..useragents import _UserAgent as _DeprecatedUserAgent
from ..utils import cached_property
from ..utils import header_property
from .utils import get_current_url
from .utils import get_host
class Request:
charset = "utf-8"
encoding_errors = "replace"
parameter_storage_class: t.Type[MultiDict] = ImmutableMultiDict
dict_storage_class: t.Type[MultiDict] = ImmutableMultiDict
list_storage_class: t.Type[t.List] = ImmutableList
user_agent_class = _DeprecatedUserAgent
trusted_hosts: t.Optional[t.List[str]] = None
def __init__(
self,
method: str,
scheme: str,
server: t.Optional[t.Tuple[str, t.Optional[int]]],
root_path: str,
path: str,
query_string: bytes,
headers: Headers,
remote_addr: t.Optional[str],
) -> None:
self.method = method.upper()
self.scheme = scheme
self.server = server
self.root_path = root_path.rstrip("/")
self.path = "/" + path.lstrip("/")
self.query_string = query_string
self.headers = headers
self.remote_addr = remote_addr
def __repr__(self) -> str:
try:
url = self.url
except Exception as e:
url = f"(invalid URL: {e})"
return f"<{type(self).__name__} {url!r} [{self.method}]>"
@property
def url_charset(self) -> str:
return self.charset
@cached_property
def args(self) -> "MultiDict[str, str]":
return url_decode(
self.query_string,
self.url_charset,
errors=self.encoding_errors,
cls=self.parameter_storage_class,
)
@cached_property
def access_route(self) -> t.List[str]:
if "X-Forwarded-For" in self.headers:
return self.list_storage_class(
parse_list_header(self.headers["X-Forwarded-For"])
)
elif self.remote_addr is not None:
return self.list_storage_class([self.remote_addr])
return self.list_storage_class()
@cached_property
def full_path(self) -> str:
return f"{self.path}?{_to_str(self.query_string, self.url_charset)}"
@property
def is_secure(self) -> bool:
return self.scheme in {"https", "wss"}
@cached_property
def url(self) -> str:
return get_current_url(
self.scheme, self.host, self.root_path, self.path, self.query_string
)
@cached_property
def base_url(self) -> str:
return get_current_url(self.scheme, self.host, self.root_path, self.path)
@cached_property
def root_url(self) -> str:
return get_current_url(self.scheme, self.host, self.root_path)
@cached_property
def host_url(self) -> str:
return get_current_url(self.scheme, self.host)
@cached_property
def host(self) -> str:
return get_host(
self.scheme, self.headers.get("host"), self.server, self.trusted_hosts
)
@cached_property
def cookies(self) -> "ImmutableMultiDict[str, str]":
wsgi_combined_cookie = ";".join(self.headers.getlist("Cookie"))
return parse_cookie(
wsgi_combined_cookie,
self.charset,
self.encoding_errors,
cls=self.dict_storage_class,
)
content_type = header_property[str](
"Content-Type",
doc="""The Content-Type entity-header field indicates the media
type of the entity-body sent to the recipient or, in the case of
the HEAD method, the media type that would have been sent had
the request been a GET.""",
read_only=True,
)
@cached_property
def content_length(self) -> t.Optional[int]:
if self.headers.get("Transfer-Encoding", "") == "chunked":
return None
content_length = self.headers.get("Content-Length")
if content_length is not None:
try:
return max(0, int(content_length))
except (ValueError, TypeError):
pass
return None
content_encoding = header_property[str](
"Content-Encoding",
doc="""The Content-Encoding entity-header field is used as a
modifier to the media-type. When present, its value indicates
what additional content codings have been applied to the
entity-body, and thus what decoding mechanisms must be applied
in order to obtain the media-type referenced by the Content-Type
header field.
.. versionadded:: 0.9""",
read_only=True,
)
content_md5 = header_property[str](
"Content-MD5",
doc="""The Content-MD5 entity-header field, as defined in
RFC 1864, is an MD5 digest of the entity-body for the purpose of
providing an end-to-end message integrity check (MIC) of the
entity-body. (Note: a MIC is good for detecting accidental
modification of the entity-body in transit, but is not proof
against malicious attacks.)
.. versionadded:: 0.9""",
read_only=True,
)
referrer = header_property[str](
"Referer",
doc="""The Referer[sic] request-header field allows the client
to specify, for the server's benefit, the address (URI) of the
resource from which the Request-URI was obtained (the
"referrer", although the header field is misspelled).""",
read_only=True,
)
date = header_property(
"Date",
None,
parse_date,
doc="""The Date general-header field represents the date and
time at which the message was originated, having the same
semantics as orig-date in RFC 822.
.. versionchanged:: 2.0
The datetime object is timezone-aware.
""",
read_only=True,
)
max_forwards = header_property(
"Max-Forwards",
None,
int,
doc="""The Max-Forwards request-header field provides a
mechanism with the TRACE and OPTIONS methods to limit the number
of proxies or gateways that can forward the request to the next
inbound server.""",
read_only=True,
)
def _parse_content_type(self) -> None:
if not hasattr(self, "_parsed_content_type"):
self._parsed_content_type = parse_options_header(
self.headers.get("Content-Type", "")
)
@property
def mimetype(self) -> str:
self._parse_content_type()
return self._parsed_content_type[0].lower()
@property
def mimetype_params(self) -> t.Dict[str, str]:
self._parse_content_type()
return self._parsed_content_type[1]
@cached_property
def pragma(self) -> HeaderSet:
return parse_set_header(self.headers.get("Pragma", ""))
@cached_property
def accept_mimetypes(self) -> MIMEAccept:
return parse_accept_header(self.headers.get("Accept"), MIMEAccept)
@cached_property
def accept_charsets(self) -> CharsetAccept:
return parse_accept_header(self.headers.get("Accept-Charset"), CharsetAccept)
@cached_property
def accept_encodings(self) -> Accept:
return parse_accept_header(self.headers.get("Accept-Encoding"))
@cached_property
def accept_languages(self) -> LanguageAccept:
return parse_accept_header(self.headers.get("Accept-Language"), LanguageAccept)
@cached_property
|
BSD 3-Clause New or Revised License
|
deepmind/jax_verify
|
jax_verify/src/nonconvex/nonconvex.py
|
_nonconvex_dotproductattention
|
python
|
def _nonconvex_dotproductattention(
bound_cls: Type[NnCvx],
index: Index,
inp: NnCvx,
weights_query: Tuple[Tensor, Tensor],
weights_key: Tuple[Tensor, Tensor],
) -> NnCvx:
inp_lb = inp.lower
inp_ub = inp.upper
wq, bq = weights_query
wk, bk = weights_key
assert wq.shape[-1] == inp_lb.shape[-1]
assert wk.shape[-1] == inp_lb.shape[-1]
assert len(wq.shape) == 3
assert len(wk.shape) == 3
inp_dim = wq.shape[2]
def word_pair_attention(attention_matrix, lb_a, ub_a, x_a, lb_b, ub_b, x_b):
def accumulate_attention_by_inputfeat(carry, cross_inp_indx):
feat_x, feat_y = jnp.divmod(cross_inp_indx, inp_dim)
att_mat_elt = attention_matrix[feat_x, feat_y]
pos_att_mat_elt = jnp.maximum(att_mat_elt, 0.)
neg_att_mat_elt = jnp.minimum(att_mat_elt, 0.)
x_a_feat = x_a[feat_x]
lb_a_feat = lb_a[feat_x]
ub_a_feat = ub_a[feat_x]
x_b_feat = x_b[feat_y]
lb_b_feat = lb_b[feat_y]
ub_b_feat = ub_b[feat_y]
(mc_l, mc_u) = mccormick.mccormick_outer_product(
x_a_feat, x_b_feat,
lb_a_feat, ub_a_feat,
lb_b_feat, ub_b_feat)
mc_l = mc_l.squeeze()
mc_u = mc_u.squeeze()
(carry_l, carry_u) = carry
new_carry = (carry_l + pos_att_mat_elt * mc_l + neg_att_mat_elt * mc_u,
carry_u + neg_att_mat_elt * mc_l + pos_att_mat_elt * mc_u)
return new_carry, None
inp_cross_indxs = jnp.arange(inp_dim**2)
ini_attention = (jnp.array(0.), jnp.array(0.))
attention, _ = jax.lax.scan(accumulate_attention_by_inputfeat,
ini_attention, inp_cross_indxs)
return attention
all_words_attention = jax.vmap(jax.vmap(word_pair_attention,
in_axes=(None,) + (0,)*3 + (None,)*3,
out_axes=0),
in_axes=(None,) + (None,)*3 + (0,)*3,
out_axes=0)
def per_head_attention(wq, bq, wk, bk, x_lb, x_ub, x):
attention_matrix = jnp.dot(wq.T, wk)
wq_bk = jnp.dot(wq.T, bk)
wk_bq = jnp.dot(wk.T, bq)
bk_bq = jnp.dot(bq.T, bk)
quad_term_lower, quad_term_upper = all_words_attention(attention_matrix,
x_lb, x_ub, x,
x_lb, x_ub, x)
lin_term = (jnp.expand_dims(jnp.dot(x, wq_bk), 0)
+ jnp.expand_dims(jnp.dot(x, wk_bq), 1))
constant_term = bk_bq
return (quad_term_lower + lin_term + constant_term,
quad_term_upper + lin_term + constant_term)
all_words_all_heads_attention = jax.vmap(per_head_attention,
in_axes=(0,)*4 + (None, None, None),
out_axes=0)
batched_awah_attention = jax.vmap(all_words_all_heads_attention,
in_axes=(None,)*4 + (0,)*3,
out_axes=0)
batched_per_target_awah_attention = jax.vmap(batched_awah_attention,
in_axes=(None,)*6 + (0,),
out_axes=0)
folded_arguments = functools.partial(batched_per_target_awah_attention,
wq, bq, wk, bk, inp_lb, inp_ub)
lb_fun = lambda x: jnp.transpose(folded_arguments(x)[0], (0, 1, 2, 4, 3))
ub_fun = lambda x: jnp.transpose(folded_arguments(x)[1], (0, 1, 2, 4, 3))
return _activation_convex_relaxation(
bound_cls, index, [inp], 'DotProductSA', lb_fun, ub_fun,
None)
|
Builds the NonConvexBound object corresponding to dot product.
The weights are in the form: [num_heads, emb_dim, inp_dim]
The bias are in the form: [num_heads, emb_dim]
Bounds on the inputs are [batch_size, num_words, inp_dim]
When evaluating the bounds, there will be an additional target dimension, so
Inputs should evaluate to [nb_targets, batch_size, num_words, inp_dim]
Output is going to be [nb_targets, batch_size,
num_heads, num_words, num_words]
Compute bounds on (inp @ wq + bq)' @ (inp @ wk + bk).
Args:
bound_cls: Bound class to use.
index: Index of input.
inp: Input of the non-linearity.
weights_query: Query weights (wq, bq)
weights_key: Key weights (wk, bk)
Returns:
out_bounds: NonConvexBound for the output of the non-linearity
|
https://github.com/deepmind/jax_verify/blob/96e4abb160f5022af4bf1aa8bb854822eb45a59b/jax_verify/src/nonconvex/nonconvex.py#L713-L892
|
import abc
import functools
from typing import Callable, Dict, Generic, List, Optional, Tuple, Type, TypeVar, Union
from absl import logging
import jax
from jax import lax
import jax.numpy as jnp
from jax_verify.src import activation_relaxation
from jax_verify.src import bound_propagation
from jax_verify.src import graph_traversal
from jax_verify.src import ibp
from jax_verify.src import intersection
from jax_verify.src import mccormick
from jax_verify.src import synthetic_primitives
from jax_verify.src import utils
NnCvx = TypeVar('NnCvx', bound='NonConvexBound')
Tensor = jnp.ndarray
Index = bound_propagation.Index
TransformContext = bound_propagation.TransformContext
ParamSet = Dict[Index, Tensor]
PrimitiveInput = Union[Tensor, 'NonConvexBound']
Nest = bound_propagation.Nest
def _sum_fn(fn, *args, **kwargs):
out = fn(*args, **kwargs)
summand = out[0] if isinstance(out, tuple) else out
return summand.sum(), out
def _sum_over_acts(var: Tensor) -> Tensor:
return var.sum(axis=tuple(range(1, var.ndim)))
class NonConvexBound(bound_propagation.Bound, metaclass=abc.ABCMeta):
def __init__(self,
index: Index,
shape: Tuple[int, ...],
previous_bounds: Dict[Index, 'NonConvexBound'],
eval_fn: Callable[[ParamSet, ParamSet, ParamSet], Tensor],
variables: Dict[Index, Tuple[int, ...]],
concretized_bounds: Optional[bound_propagation.Bound] = None
):
self.index = index
self._shape = shape
self.previous_bounds = previous_bounds
self.previous_bounds[index] = self
self._eval_fn = eval_fn
self.variables = variables
self._concretized_bounds = concretized_bounds
def primal(var_set: ParamSet,
objectives: ParamSet,
dummy_inps: Optional[ParamSet] = None
) -> Tuple[Tensor, ParamSet]:
acts = {}
self.evaluate(var_set, dummy_inps, acts)
primals = self._objective_fn(acts, objectives)
return primals, acts
self.primal_fn = primal
self.primal_sumfn = functools.partial(_sum_fn, primal)
def _objective_fn(self, acts, objectives):
primal_objs = sum(_sum_over_acts(acts[index] * act_objectives)
for index, act_objectives in objectives.items())
return primal_objs
@property
def shape(self):
return self._shape
@property
def lower(self) -> Tensor:
if self._concretized_bounds is None:
logging.warning('.lower called on a non-concretized bound.'
'Returning spurious bounds.')
return -float('inf') * jnp.ones(self.shape)
return self._concretized_bounds.lower
@property
def upper(self) -> Tensor:
if self._concretized_bounds is None:
logging.warning('.upper called on a non-concretized bound.'
'Returning spurious bounds.')
return float('inf') * jnp.ones(self.shape)
return self._concretized_bounds.upper
def evaluate(self,
var_set: ParamSet,
dummy_inps: Optional[ParamSet] = None,
acts: Optional[ParamSet] = None) -> Tensor:
if acts is None:
acts = {}
if dummy_inps is None:
dummy_inps = {}
if self.index in acts:
return acts[self.index]
else:
val = self._eval_fn(var_set, dummy_inps, acts)
if self.index in dummy_inps:
val = val + dummy_inps[self.index]
acts[self.index] = val
return val
@abc.abstractmethod
def dual(self, var_set: ParamSet, objectives: ParamSet) -> Tensor:
@classmethod
@abc.abstractmethod
def get_initial_bound_constructor(
cls: Type[NnCvx],
index: Index,
lb: Tensor,
ub: Tensor) -> Callable[..., NnCvx]:
raise NotImplementedError('Initial bound constructor not implemented')
@classmethod
@abc.abstractmethod
def get_linear_activation_constructor(
cls: Type[NnCvx],
index: Index,
vlin_fun: Callable[..., Tensor],
in_vals: Tuple[Tensor, ...]) -> Callable[..., NnCvx]:
raise NotImplementedError('Linear activation constructor not implemented')
@classmethod
@abc.abstractmethod
def get_nonlinearity_activation_constructor(
cls: Type[NnCvx],
index: Index,
inp: NnCvx,
act_type: str,
lb_fun: Callable[[Tensor], Tensor],
ub_fun: Callable[[Tensor], Tensor]) -> Callable[..., NnCvx]:
raise NotImplementedError('Nonlinearity activation constructor not'
'implemented')
@abc.abstractmethod
def requires_concretizing(self, primitive) -> bool:
raise NotImplementedError('Specification of when concretization is required'
'is not implemented.')
def _compute_dualvars_nonconvexgrad(self,
var_set: ParamSet,
objectives: ParamSet
) -> Tuple[ParamSet, ParamSet]:
grad_fun = jax.grad(self.primal_sumfn, argnums=2, has_aux=True)
dummy_acts = {key: 0*val for key, val in var_set.items()}
dual_vars, (_, acts) = grad_fun(var_set, objectives, dummy_acts)
return dual_vars, acts
def _compute_dualvars_convexgrad(self,
var_set: ParamSet,
objectives: ParamSet
) -> Tuple[ParamSet, ParamSet]:
acts = {}
self.evaluate(var_set, {}, acts)
primal_gradfun_wrt_act = utils.batch_value_and_grad(
self._objective_fn, (0,))
_, dual_vars = primal_gradfun_wrt_act(acts, objectives)
return dual_vars, acts
def concretize(self, concretizer: 'Concretizer'):
self._concretized_bounds = concretizer.get_bounds(self)
@classmethod
def initial_nonconvex_bound(
cls: Type[NnCvx],
index: Index,
lower_bound: Tensor,
upper_bound: Tensor) -> NnCvx:
shape = lower_bound.shape
variables = {index: lower_bound.shape}
lb = jnp.expand_dims(lower_bound, axis=0)
ub = jnp.expand_dims(upper_bound, axis=0)
previous_bounds = {}
def eval_fn(var_set, *_):
val = lb + (ub - lb) * var_set[index]
return val
bound_ctor = cls.get_initial_bound_constructor(index, lb, ub)
return bound_ctor(index, shape, previous_bounds,
eval_fn, variables, ibp.IntervalBound(lower_bound,
upper_bound))
class ConstrainedNonConvexBound(NonConvexBound, metaclass=abc.ABCMeta):
def __init__(self,
index: Index,
shape: Tuple[int, ...],
previous_bounds: Dict[Index, 'ConstrainedNonConvexBound'],
eval_fn: Callable[[ParamSet, ParamSet, ParamSet], Tensor],
variables: Dict[Index, Tuple[int, ...]],
concretized_bounds: Optional[bound_propagation.Bound] = None):
super().__init__(index, shape, previous_bounds,
eval_fn, variables, concretized_bounds)
self._imposed_bounds = None
def is_constrained(self) -> bool:
return self._imposed_bounds is not None
def set_imposed_bounds(self, imposed_bounds: bound_propagation.Bound):
self._imposed_bounds = imposed_bounds
if self._concretized_bounds is not None:
self._concretized_bounds = intersection.IntersectionBound(
self._concretized_bounds, self._imposed_bounds)
def evaluate(self,
var_set: ParamSet,
dummy_inps: Optional[ParamSet] = None,
acts: Optional[ParamSet] = None) -> Tensor:
unconstrained_eval = super().evaluate(var_set, dummy_inps, acts)
if not self.is_constrained():
return unconstrained_eval
brd_lower = jnp.expand_dims(self.lower, 0)
brd_upper = jnp.expand_dims(self.upper, 0)
if dummy_inps and (self.index in dummy_inps):
dummy_inp = dummy_inps[self.index]
constrained_eval = jnp.clip(unconstrained_eval,
brd_lower + dummy_inp, brd_upper + dummy_inp)
else:
constrained_eval = jnp.clip(unconstrained_eval, brd_lower, brd_upper)
if acts:
acts[self.index] = constrained_eval
return constrained_eval
@property
def lower(self) -> Tensor:
if self._imposed_bounds is not None and self._concretized_bounds is None:
return self._imposed_bounds.lower
return super().lower
@property
def upper(self) -> Tensor:
if self._imposed_bounds is not None and self._concretized_bounds is None:
return self._imposed_bounds.upper
return super().upper
def concretize(self, concretizer: 'Concretizer'):
super().concretize(concretizer)
if self._imposed_bounds is not None:
self._concretized_bound = intersection.IntersectionBound(
self._concretized_bounds, self._imposed_bounds)
class Concretizer(abc.ABC):
@abc.abstractmethod
def accept_input(
self,
context: TransformContext,
lower_bound: Tensor, upper_bound: Tensor):
@abc.abstractmethod
def accept_primitive(
self,
context: TransformContext,
primitive: bound_propagation.Primitive,
*in_vals: PrimitiveInput,
**params):
@abc.abstractmethod
def get_bounds(
self, nonconvex_bound: NonConvexBound) -> bound_propagation.Bound:
class BaseBoundConcretizer(Concretizer):
def __init__(self, bound_transform: bound_propagation.BoundTransform):
self._bound_transform = bound_transform
self._base_bounds = {}
def accept_input(
self,
context: TransformContext,
lower_bound: Tensor, upper_bound: Tensor):
self._base_bounds[context.index] = self._bound_transform.input_transform(
context, lower_bound, upper_bound)
def accept_primitive(
self,
context: TransformContext,
primitive: bound_propagation.Primitive,
*in_vals: PrimitiveInput,
**params):
base_in_vals = [
self._base_bounds[inp.index] if isinstance(inp, NonConvexBound) else inp
for inp in in_vals]
self._base_bounds[context.index] = (
self._bound_transform.equation_transform(
context, primitive, *base_in_vals, **params))
def get_bounds(self, nonconvex_bound: NonConvexBound
) -> bound_propagation.Bound:
return self._base_bounds[nonconvex_bound.index]
def eval_if_nonconvexbound(inp: Union[NonConvexBound, Tensor],
var_set: ParamSet,
dummy_inps: Optional[ParamSet],
activations: Optional[ParamSet]) -> Tensor:
if isinstance(inp, NonConvexBound):
return inp.evaluate(var_set, dummy_inps, activations)
else:
return inp
def _nonconvex_linear_op(primitive: bound_propagation.Primitive,
bound_cls: Type[NnCvx],
index: Index,
*in_vals: PrimitiveInput, **kwargs) -> NnCvx:
in_axes_to_vmap = [0 if isinstance(inp, NonConvexBound) else None
for inp in in_vals]
kwarged_lin_fun = lambda args: primitive.bind(*args, **kwargs)
vlin_fun = jax.vmap(kwarged_lin_fun, [in_axes_to_vmap], 0)
bound_parents = [inp for inp in in_vals if isinstance(inp, NonConvexBound)]
variables = {}
previous_bounds = {}
for parent in bound_parents:
variables.update(parent.variables)
previous_bounds.update(parent.previous_bounds)
placeholder_invals = []
for inp in in_vals:
if isinstance(inp, NonConvexBound):
placeholder_invals.append(jax.core.ShapedArray(inp.shape, jnp.float32))
else:
placeholder_invals.append(inp)
output_shape = jax.eval_shape(kwarged_lin_fun, placeholder_invals).shape
def eval_fn(var_set: ParamSet,
dummy_inps: Optional[ParamSet],
activations: Optional[ParamSet]) -> Tensor:
inps = [eval_if_nonconvexbound(inp, var_set, dummy_inps, activations)
for inp in in_vals]
out = vlin_fun(inps)
return out
variables[index] = output_shape
new_bound_ctor = bound_cls.get_linear_activation_constructor(
index, vlin_fun, in_vals)
return new_bound_ctor(index, output_shape, previous_bounds,
eval_fn, variables)
def _nonconvex_div(bound_cls: Type[NnCvx],
index: Index,
lhs: PrimitiveInput,
rhs: PrimitiveInput) -> NnCvx:
if isinstance(rhs, bound_propagation.Bound):
raise ValueError('Bound propagation through the denominator unsupported.')
return _nonconvex_linear_op(lax.mul_p, bound_cls, index, lhs, 1. / rhs)
def _nonconvex_softplus(bound_cls: Type[NnCvx],
index: Index,
inp: NnCvx) -> NnCvx:
inp_lb = inp.lower
inp_ub = inp.upper
out_lb = jax.nn.softplus(inp_lb)
out_ub = jax.nn.softplus(inp_ub)
slope = (out_ub - out_lb) / jnp.maximum(inp_ub - inp_lb, 1e-12)
offset = out_lb - slope * inp_lb
broad_slope = jnp.expand_dims(slope, 0)
broad_offset = jnp.expand_dims(offset, 0)
lb_fun = jax.nn.softplus
ub_fun = lambda x: broad_slope * x + broad_offset
return _activation_convex_relaxation(
bound_cls, index, [inp], 'Softplus', lb_fun, ub_fun,
ibp.IntervalBound(jax.nn.softplus(inp_lb), jax.nn.softplus(inp_ub)))
def _nonconvex_relu(bound_cls: Type[NnCvx],
index: Index,
inp: NnCvx) -> NnCvx:
inp_lb = inp.lower
inp_ub = inp.upper
relu_on = (inp_lb >= 0.)
relu_amb = jnp.logical_and(inp_lb < 0., inp_ub >= 0.)
slope = relu_on.astype(jnp.float32)
slope += jnp.where(relu_amb,
inp_ub / jnp.maximum(inp_ub - inp_lb, 1e-12),
jnp.zeros_like(inp_lb))
offset = jnp.where(relu_amb, -slope * inp_lb,
jnp.zeros_like(inp_lb))
broad_slope = jnp.expand_dims(slope, 0)
broad_offset = jnp.expand_dims(offset, 0)
lb_fun = lambda x: lax.max(x, 0.)
ub_fun = lambda x: broad_slope * x + broad_offset
return _activation_convex_relaxation(
bound_cls, index, [inp], 'ReLU', lb_fun, ub_fun,
ibp.IntervalBound(lax.max(inp_lb, 0.), lax.max(inp_ub, 0.)))
def _activation_convex_relaxation(
bound_cls: Type[NnCvx],
index: Index,
inputs: List[NnCvx],
act_type: str,
lb_fun: Callable[..., Tensor],
ub_fun: Callable[..., Tensor],
precomputed_bound: Optional[bound_propagation.Bound]) -> NnCvx:
bound_parents = [inp for inp in inputs if isinstance(inp, NonConvexBound)]
variables = {}
previous_bounds = {}
for parent in bound_parents:
variables.update(parent.variables)
previous_bounds.update(parent.previous_bounds)
inputs_lb = [jnp.expand_dims(inp.lower, 0) for inp in inputs]
output_shape_with_target = jax.eval_shape(lb_fun, *inputs_lb).shape
output_shape = output_shape_with_target[1:]
variables[index] = output_shape
def eval_fn(var_set, dummy_inps, activations):
inp_eval = [inp.evaluate(var_set, dummy_inps, activations) for inp in
inputs]
lb_val = lb_fun(*inp_eval)
ub_val = ub_fun(*inp_eval)
theta = var_set[index]
out_val = lb_val + theta * (ub_val - lb_val)
return out_val
shape = output_shape
new_bound_ctor = bound_cls.get_nonlinearity_activation_constructor(
index, act_type, lb_fun, ub_fun, *inputs)
return new_bound_ctor(index, shape, previous_bounds,
eval_fn, variables, precomputed_bound)
|
Apache License 2.0
|
kuri65536/python-for-android
|
python-modules/twisted/twisted/plugins/cred_memory.py
|
InMemoryCheckerFactory.generateChecker
|
python
|
def generateChecker(self, argstring):
checker = InMemoryUsernamePasswordDatabaseDontUse()
if argstring:
pieces = argstring.split(':')
if len(pieces) % 2:
from twisted.cred.strcred import InvalidAuthArgumentString
raise InvalidAuthArgumentString(
"argstring must be in format U:P:...")
for i in range(0, len(pieces), 2):
username, password = pieces[i], pieces[i+1]
checker.addUser(username, password)
return checker
|
This checker factory expects to get a list of
username:password pairs, with each pair also separated by a
colon. For example, the string 'alice:f:bob:g' would generate
two users, one named 'alice' and one named 'bob'.
|
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-modules/twisted/twisted/plugins/cred_memory.py#L47-L64
|
from zope.interface import implements
from twisted import plugin
from twisted.cred.strcred import ICheckerFactory
from twisted.cred.checkers import InMemoryUsernamePasswordDatabaseDontUse
from twisted.cred.credentials import IUsernamePassword, IUsernameHashedPassword
inMemoryCheckerFactoryHelp = """
A checker that uses an in-memory user database.
This is only of use in one-off test programs or examples which
don't want to focus too much on how credentials are verified. You
really don't want to use this for anything else. It is a toy.
"""
class InMemoryCheckerFactory(object):
implements(ICheckerFactory, plugin.IPlugin)
authType = 'memory'
authHelp = inMemoryCheckerFactoryHelp
argStringFormat = 'A colon-separated list (name:password:...)'
credentialInterfaces = (IUsernamePassword,
IUsernameHashedPassword)
|
Apache License 2.0
|
parashardhapola/scarf
|
scarf/readers.py
|
LoomReader.feature_ids
|
python
|
def feature_ids(self) -> List[str]:
if self.featureAttrsKey not in self.h5:
pass
elif self.featureIdsKey is None:
pass
elif self.featureIdsKey not in self.h5[self.featureAttrsKey]:
logger.warning(
f"Feature names key ({self.featureIdsKey}) is missing in attributes"
)
else:
return self.h5[self.featureAttrsKey][self.featureIdsKey][:]
return [f"feature_{x}" for x in range(self.nFeatures)]
|
Returns a list of feature IDs.
|
https://github.com/parashardhapola/scarf/blob/95d27b05a07973214cf71a2e5af3c3a089791093/scarf/readers.py#L889-L903
|
from abc import ABC, abstractmethod
from typing import Generator, Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import os
import sparse
from typing import IO
import h5py
from .utils import logger, tqdmbar
__all__ = [
"CrH5Reader",
"CrDirReader",
"CrReader",
"H5adReader",
"NaboH5Reader",
"LoomReader",
]
def get_file_handle(fn: str) -> IO:
import gzip
try:
if fn.rsplit(".", 1)[-1] == "gz":
return gzip.open(fn, mode="rt")
else:
return open(fn, "r")
except (OSError, IOError, FileNotFoundError):
raise FileNotFoundError("ERROR: FILE NOT FOUND: %s" % fn)
def read_file(fn: str):
fh = get_file_handle(fn)
for line in fh:
yield line.rstrip()
class CrReader(ABC):
def __init__(self, grp_names, file_type: str = None):
self.autoNames = {
"Gene Expression": "RNA",
"Peaks": "ATAC",
"Antibody Capture": "ADT",
}
self.grpNames: Dict = grp_names
self.nFeatures: int = len(self.feature_names())
self.nCells: int = len(self.cell_names())
self.assayFeats = self._make_feat_table()
self._auto_rename_assay_names()
@abstractmethod
def _handle_version(self):
pass
@abstractmethod
def _read_dataset(self, key: Optional[str] = None) -> List:
pass
@abstractmethod
def consume(self, batch_size: int, lines_in_mem: int):
pass
def _subset_by_assay(self, v, assay) -> List:
if assay is None:
return v
elif assay not in self.assayFeats:
raise ValueError(f"ERROR: Assay ID {assay} is not valid")
if len(self.assayFeats[assay].shape) == 2:
ret_val = []
for i in self.assayFeats[assay].values[1:3].T:
ret_val.extend(list(v[i[0] : i[1]]))
return ret_val
elif len(self.assayFeats[assay].shape) == 1:
idx = self.assayFeats[assay]
return v[idx.start : idx.end]
else:
raise ValueError(
"ERROR: assay feats is 3D. Something went really wrong. Create a github issue"
)
def _make_feat_table(self) -> pd.DataFrame:
s = self.feature_types()
span: List[Tuple] = []
last = s[0]
last_n: int = 0
for n, i in enumerate(s[1:], 1):
if i != last:
span.append((last, last_n, n))
last_n = n
elif n == len(s) - 1:
span.append((last, last_n, n + 1))
last = i
df = pd.DataFrame(span, columns=["type", "start", "end"])
df.index = ["ASSAY%s" % str(x + 1) for x in df.index]
df["nFeatures"] = df.end - df.start
return df.T
def _auto_rename_assay_names(self):
new_names = []
for k, v in self.assayFeats.T["type"].to_dict().items():
if v in self.autoNames:
new_names.append(self.autoNames[v])
else:
new_names.append(k)
self.assayFeats.columns = new_names
def rename_assays(self, name_map: Dict[str, str]) -> None:
self.assayFeats.rename(columns=name_map, inplace=True)
def feature_ids(self, assay: str = None) -> List[str]:
return self._subset_by_assay(self._read_dataset("feature_ids"), assay)
def feature_names(self, assay: str = None) -> List[str]:
vals = self._read_dataset("feature_names")
if vals is None:
logger.warning("Feature names extraction failed using feature IDs")
vals = self._read_dataset("feature_ids")
return self._subset_by_assay(vals, assay)
def feature_types(self) -> List[str]:
if self.grpNames["feature_types"] is not None:
ret_val = self._read_dataset("feature_types")
if ret_val is not None:
return ret_val
default_name = list(self.autoNames.keys())[0]
return [default_name for _ in range(self.nFeatures)]
def cell_names(self) -> List[str]:
return self._read_dataset("cell_names")
class CrH5Reader(CrReader):
def __init__(self, h5_fn, file_type: str = None):
self.h5obj = h5py.File(h5_fn, mode="r")
self.grp = None
super().__init__(self._handle_version(), file_type)
def _handle_version(self):
root_key = list(self.h5obj.keys())[0]
self.grp = self.h5obj[root_key]
if root_key == "matrix":
grps = {
"feature_ids": "features/id",
"feature_names": "features/name",
"feature_types": "features/feature_type",
"cell_names": "barcodes",
}
else:
grps = {
"feature_ids": "genes",
"feature_names": "gene_names",
"feature_types": None,
"cell_names": "barcodes",
}
return grps
def _read_dataset(self, key: Optional[str] = None):
return [x.decode("UTF-8") for x in self.grp[self.grpNames[key]][:]]
def consume(self, batch_size: int, lines_in_mem: int):
s = 0
for ind_n in range(0, self.nCells, batch_size):
i = self.grp["indptr"][ind_n : ind_n + batch_size]
e = i[-1]
if s != 0:
idx = np.array([s] + list(i))
idx = idx - idx[0]
else:
idx = np.array(i)
n = idx.shape[0] - 1
nidx = np.repeat(range(n), np.diff(idx).astype("int32"))
yield sparse.COO(
[nidx, self.grp["indices"][s:e]],
self.grp["data"][s:e],
shape=(n, self.nFeatures),
)
s = e
def close(self) -> None:
self.h5obj.close()
class CrDirReader(CrReader):
def __init__(
self,
loc,
file_type: str = None,
mtx_separator: str = " ",
index_offset: int = -1,
):
self.loc: str = loc.rstrip("/") + "/"
self.matFn = None
self.sep = mtx_separator
self.indexOffset = index_offset
super().__init__(self._handle_version())
def _handle_version(self):
show_error = False
if os.path.isfile(self.loc + "matrix.mtx.gz"):
self.matFn = self.loc + "matrix.mtx.gz"
elif os.path.isfile(self.loc + "matrix.mtx"):
self.matFn = self.loc + "matrix.mtx"
else:
show_error = True
if os.path.isfile(self.loc + "features.tsv.gz"):
feat_fn = "features.tsv.gz"
elif os.path.isfile(self.loc + "features.tsv"):
feat_fn = "features.tsv"
elif os.path.isfile(self.loc + "genes.tsv.gz"):
feat_fn = "genes.tsv.gz"
elif os.path.isfile(self.loc + "genes.tsv"):
feat_fn = "genes.tsv"
elif os.path.isfile(self.loc + "peaks.bed"):
feat_fn = "peaks.bed"
elif os.path.isfile(self.loc + "peaks.bed.gz"):
feat_fn = "peaks.bed.gz"
else:
feat_fn = None
show_error = True
if os.path.isfile(self.loc + "barcodes.tsv.gz"):
cell_fn = "barcodes.tsv.gz"
elif os.path.isfile(self.loc + "barcodes.tsv"):
cell_fn = "barcodes.tsv"
else:
cell_fn = None
show_error = True
if show_error:
raise IOError(
"ERROR: Couldn't find either of these expected combinations of files:\n"
"\t- matrix.mtx, barcodes.tsv and genes.tsv\n"
"\t- matrix.mtx.gz, barcodes.tsv.gz and features.tsv.gz\n"
"Please make sure that you have not compressed or uncompressed the Cellranger output files "
"manually"
)
return {
"feature_ids": (feat_fn, 0),
"feature_names": (feat_fn, 1),
"feature_types": (feat_fn, 2),
"cell_names": (cell_fn, 0),
}
def _read_dataset(self, key: Optional[str] = None):
try:
vals = [
x.split("\t")[self.grpNames[key][1]]
for x in read_file(self.loc + self.grpNames[key][0])
]
except IndexError:
logger.warning(
f"{key} extraction failed from {self.grpNames[key][0]} "
f"in column {self.grpNames[key][1]}",
flush=True,
)
vals = None
return vals
def to_sparse(self, a: np.ndarray) -> sparse.COO:
idx = np.where(np.diff(a[:, 1]) > 0)[0] + 1
return sparse.COO(
[(a[:, 1] - a[0, 1]).astype(int), (a[:, 0] + self.indexOffset).astype(int)],
a[:, 2],
shape=(len(idx) + 1, self.nFeatures),
)
def consume(
self, batch_size: int, lines_in_mem: int = int(1e5)
) -> Generator[List[np.ndarray], None, None]:
stream = pd.read_csv(
self.matFn, skiprows=3, sep=self.sep, header=None, chunksize=lines_in_mem
)
start = 1
dfs = []
for df in stream:
if df.iloc[-1, 1] - start >= batch_size:
idx = df[1] < batch_size + start
dfs.append(df[idx])
yield self.to_sparse(np.vstack(dfs))
dfs = [df[~idx]]
start += batch_size
else:
dfs.append(df)
yield self.to_sparse(np.vstack(dfs))
class H5adReader:
def __init__(
self,
h5ad_fn: str,
cell_attrs_key: str = "obs",
cell_ids_key: str = "_index",
feature_attrs_key: str = "var",
feature_ids_key: str = "_index",
feature_name_key: str = "gene_short_name",
matrix_key: str = "X",
category_names_key: str = "__categories",
dtype: str = None,
):
self.h5 = h5py.File(h5ad_fn, mode="r")
self.matrixKey = matrix_key
self.cellAttrsKey, self.featureAttrsKey = cell_attrs_key, feature_attrs_key
self.groupCodes = {
self.cellAttrsKey: self._validate_group(self.cellAttrsKey),
self.featureAttrsKey: self._validate_group(self.featureAttrsKey),
self.matrixKey: self._validate_group(self.matrixKey),
}
self.nCells, self.nFeatures = self._get_n(self.cellAttrsKey), self._get_n(
self.featureAttrsKey
)
self.cellIdsKey = self._fix_name_key(self.cellAttrsKey, cell_ids_key)
self.featIdsKey = self._fix_name_key(self.featureAttrsKey, feature_ids_key)
self.featNamesKey = feature_name_key
self.catNamesKey = category_names_key
self.matrixDtype = self._get_matrix_dtype() if dtype is None else dtype
def _validate_group(self, group: str) -> int:
if group not in self.h5:
logger.warning(f"`{group}` group not found in the H5ad file")
ret_val = 0
elif type(self.h5[group]) == h5py.Dataset:
ret_val = 1
elif type(self.h5[group]) == h5py.Group:
ret_val = 2
else:
logger.warning(
f"`{group}` slot in H5ad file is not of Dataset or Group type. "
f"Due to this, no information in `{group}` can be used"
)
ret_val = 0
if ret_val == 2:
if len(self.h5[group].keys()) == 0:
logger.warning(f"`{group}` slot in H5ad file is empty.")
ret_val = 0
elif (
len(
set(
[
self.h5[group][x].shape[0]
for x in self.h5[group].keys()
if type(self.h5[group][x]) == h5py.Dataset
]
)
)
> 1
):
if sorted(self.h5[group].keys()) != ["data", "indices", "indptr"]:
logger.info(
f"`{group}` slot in H5ad file has unequal sized child groups"
)
return ret_val
def _get_matrix_dtype(self):
if self.groupCodes[self.matrixKey] == 1:
return self.h5[self.matrixKey].dtype
elif self.groupCodes[self.matrixKey] == 2:
return self.h5[self.matrixKey]["data"].dtype
else:
raise ValueError(
f"ERROR: {self.matrixKey} is neither Dataset or Group type. Will not consume data"
)
def _check_exists(self, group: str, key: str) -> bool:
if group in self.groupCodes:
group_code = self.groupCodes[group]
else:
group_code = self._validate_group(group)
self.groupCodes[group] = group_code
if group_code == 1:
if key in list(self.h5[group].dtype.names):
return True
if group_code == 2:
if key in self.h5[group].keys():
return True
return False
def _fix_name_key(self, group: str, key: str) -> str:
if self._check_exists(group, key) is False:
if key.startswith("_"):
temp_key = key[1:]
if self._check_exists(group, temp_key):
return temp_key
return key
def _get_n(self, group: str) -> int:
if self.groupCodes[group] == 0:
if self._check_exists(self.matrixKey, "shape"):
return self.h5[self.matrixKey]["shape"][0]
else:
raise KeyError(
f"ERROR: `{group}` not found and `shape` key is missing in the {self.matrixKey} group. "
f"Aborting read process."
)
elif self.groupCodes[group] == 1:
return self.h5[group].shape[0]
else:
for i in self.h5[group].keys():
if type(self.h5[group][i]) == h5py.Dataset:
return self.h5[group][i].shape[0]
raise KeyError(
f"ERROR: `{group}` key doesn't contain any child node of Dataset type."
f"Aborting because unexpected H5ad format."
)
def cell_ids(self) -> np.ndarray:
if self._check_exists(self.cellAttrsKey, self.cellIdsKey):
if self.groupCodes[self.cellAttrsKey] == 1:
return self.h5[self.cellAttrsKey][self.cellIdsKey]
else:
return self.h5[self.cellAttrsKey][self.cellIdsKey][:]
logger.warning(f"Could not find cells ids key: {self.cellIdsKey} in `obs`.")
return np.array([f"cell_{x}" for x in range(self.nCells)])
def feat_ids(self) -> np.ndarray:
if self._check_exists(self.featureAttrsKey, self.featIdsKey):
if self.groupCodes[self.featureAttrsKey] == 1:
return self.h5[self.featureAttrsKey][self.featIdsKey]
else:
return self.h5[self.featureAttrsKey][self.featIdsKey][:]
logger.warning(
f"Could not find feature ids key: {self.featIdsKey} in {self.featureAttrsKey}."
)
return np.array([f"feature_{x}" for x in range(self.nFeatures)])
def feat_names(self) -> np.ndarray:
if self._check_exists(self.featureAttrsKey, self.featNamesKey):
if self.groupCodes[self.featureAttrsKey] == 1:
values = self.h5[self.featureAttrsKey][self.featNamesKey]
else:
values = self.h5[self.featureAttrsKey][self.featNamesKey][:]
return self._replace_category_values(
values, self.featNamesKey, self.featureAttrsKey
).astype(object)
logger.warning(
f"Could not find feature names key: {self.featNamesKey} in self.featureAttrsKey."
)
return self.feat_ids()
def _replace_category_values(self, v: np.ndarray, key: str, group: str):
if self.catNamesKey is not None:
if self._check_exists(group, self.catNamesKey):
cat_g = self.h5[group][self.catNamesKey]
if type(cat_g) == h5py.Group:
if key in cat_g:
c = cat_g[key][:]
try:
return np.array([c[x] for x in v])
except (IndexError, TypeError):
return v
if "uns" in self.h5:
if key + "_categories" in self.h5["uns"]:
c = self.h5["uns"][key + "_categories"][:]
try:
return np.array([c[x] for x in v])
except (IndexError, TypeError):
return v
return v
def _get_col_data(
self, group: str, ignore_keys: List[str]
) -> Generator[Tuple[str, np.ndarray], None, None]:
if self.groupCodes[group] == 1:
for i in tqdmbar(
self.h5[group].dtype.names,
desc=f"Reading attributes from group {group}",
):
if i in ignore_keys:
continue
yield i, self._replace_category_values(self.h5[group][i][:], i, group)
if self.groupCodes[group] == 2:
for i in tqdmbar(
self.h5[group].keys(), desc=f"Reading attributes from group {group}"
):
if i in ignore_keys:
continue
if type(self.h5[group][i]) == h5py.Dataset:
yield i, self._replace_category_values(
self.h5[group][i][:], i, group
)
def get_cell_columns(self) -> Generator[Tuple[str, np.ndarray], None, None]:
for i, j in self._get_col_data(self.cellAttrsKey, [self.cellIdsKey]):
yield i, j
def get_feat_columns(self) -> Generator[Tuple[str, np.ndarray], None, None]:
for i, j in self._get_col_data(
self.featureAttrsKey, [self.featIdsKey, self.featNamesKey]
):
yield i, j
def consume_dataset(
self, batch_size: int = 1000
) -> Generator[sparse.COO, None, None]:
dset = self.h5[self.matrixKey]
s = 0
for e in range(batch_size, dset.shape[0] + batch_size, batch_size):
if e > dset.shape[0]:
e = dset.shape[0]
yield dset[s:e]
s = e
def consume_group(self, batch_size: int) -> Generator[sparse.COO, None, None]:
grp = self.h5[self.matrixKey]
s = 0
for ind_n in range(0, self.nCells, batch_size):
i = grp["indptr"][ind_n : ind_n + batch_size]
e = i[-1]
if s != 0:
idx = np.array([s] + list(i))
idx = idx - idx[0]
else:
idx = np.array(i)
n = idx.shape[0] - 1
nidx = np.repeat(range(n), np.diff(idx).astype("int32"))
yield sparse.COO(
[nidx, grp["indices"][s:e]], grp["data"][s:e], shape=(n, self.nFeatures)
).todense()
s = e
def consume(self, batch_size: int = 1000):
if self.groupCodes[self.matrixKey] == 1:
return self.consume_dataset(batch_size)
elif self.groupCodes[self.matrixKey] == 2:
return self.consume_group(batch_size)
class NaboH5Reader:
def __init__(self, h5_fn: str):
self.h5 = h5py.File(h5_fn, mode="r")
self._check_integrity()
self.nCells = self.h5["names"]["cells"].shape[0]
self.nFeatures = self.h5["names"]["genes"].shape[0]
def _check_integrity(self) -> bool:
for i in ["cell_data", "gene_data", "names"]:
if i not in self.h5:
raise KeyError(f"ERROR: Expected group: {i} is missing in the H5 file")
return True
def cell_ids(self) -> List[str]:
return [x.decode("UTF-8") for x in self.h5["names"]["cells"][:]]
def feat_ids(self) -> np.ndarray:
return np.array([f"feature_{x}" for x in range(self.nFeatures)])
def feat_names(self) -> List[str]:
return [
x.decode("UTF-8").rsplit("_", 1)[0] for x in self.h5["names"]["genes"][:]
]
def consume(self, batch_size: int = 100) -> Generator[np.ndarray, None, None]:
batch = []
for i in self.h5["cell_data"]:
a = np.zeros(self.nFeatures).astype(int)
v = self.h5["cell_data"][i][:][::-1]
a[v["idx"]] = v["val"]
batch.append(a)
if len(batch) >= batch_size:
batch = np.array(batch)
yield batch
batch = []
if len(batch) > 0:
yield np.array(batch)
class LoomReader:
def __init__(
self,
loom_fn: str,
matrix_key: str = "matrix",
cell_attrs_key="col_attrs",
cell_names_key: str = "obs_names",
feature_attrs_key: str = "row_attrs",
feature_names_key: str = "var_names",
feature_ids_key: str = None,
dtype: str = None,
) -> None:
self.h5 = h5py.File(loom_fn, mode="r")
self.matrixKey = matrix_key
self.cellAttrsKey, self.featureAttrsKey = cell_attrs_key, feature_attrs_key
self.cellNamesKey, self.featureNamesKey = cell_names_key, feature_names_key
self.featureIdsKey = feature_ids_key
self.matrixDtype = self.h5[self.matrixKey].dtype if dtype is None else dtype
self._check_integrity()
self.nFeatures, self.nCells = self.h5[self.matrixKey].shape
def _check_integrity(self) -> bool:
if self.matrixKey not in self.h5:
raise KeyError(
f"ERROR: Matrix key (location): {self.matrixKey} is missing in the H5 file"
)
if self.cellAttrsKey not in self.h5:
logger.warning(
f"Cell attributes are missing. Key {self.cellAttrsKey} was not found"
)
if self.featureAttrsKey not in self.h5:
logger.warning(
f"Feature attributes are missing. Key {self.featureAttrsKey} was not found"
)
return True
def cell_names(self) -> List[str]:
if self.cellAttrsKey not in self.h5:
pass
elif self.cellNamesKey not in self.h5[self.cellAttrsKey]:
logger.warning(
f"Cell names/ids key ({self.cellNamesKey}) is missing in attributes"
)
else:
return self.h5[self.cellAttrsKey][self.cellNamesKey][:]
return [f"cell_{x}" for x in range(self.nCells)]
def cell_ids(self) -> List[str]:
return self.cell_names()
def _stream_attrs(
self, key, ignore
) -> Generator[Tuple[str, np.ndarray], None, None]:
if key in self.h5:
for i in tqdmbar(self.h5[key].keys(), desc=f"Reading {key} attributes"):
if i in [ignore]:
continue
vals = self.h5[key][i][:]
if vals.dtype.names is None:
yield i, vals
else:
for j in vals.dtype.names:
yield i + "_" + str(j), vals[j]
def get_cell_attrs(self) -> Generator[Tuple[str, np.ndarray], None, None]:
return self._stream_attrs(self.cellAttrsKey, [self.cellNamesKey])
def feature_names(self) -> List[str]:
if self.featureAttrsKey not in self.h5:
pass
elif self.featureNamesKey not in self.h5[self.featureAttrsKey]:
logger.warning(
f"Feature names key ({self.featureNamesKey}) is missing in attributes"
)
else:
return self.h5[self.featureAttrsKey][self.featureNamesKey][:]
return [f"feature_{x}" for x in range(self.nFeatures)]
|
BSD 3-Clause New or Revised License
|
gdikov/adversarial-variational-bayes
|
third_party/ite/cost/meta_a.py
|
MASpearmanUT.estimation
|
python
|
def estimation(self, y, ds=None):
if ds is None:
ds = ones(y.shape[1], dtype='int')
self.verification_compatible_subspace_dimensions(y, ds)
self.verification_one_dimensional_subspaces(ds)
num_of_samples = y.shape[0]
k = int(floor(sqrt(num_of_samples)))
self.spearman_cond_ut_co.p = k / num_of_samples
a = self.spearman_cond_ut_co.estimation(y, ds)
return a
|
Estimate upper tail dependence.
Parameters
----------
y : (number of samples, dimension)-ndarray
One row of y corresponds to one sample.
ds : int vector, vector of ones
ds[i] = 1 (for all i): the i^th subspace is one-dimensional.
If ds is not given (ds=None), the vector of ones [ds =
ones(y.shape[1],dtype='int')] is emulated inside the function.
Returns
-------
a : float
Estimated upper tail dependence.
References
----------
Friedrich Schmid and Rafael Schmidt. Multivariate conditional
versions of Spearman's rho and related measures of tail
dependence. Journal of Multivariate Analysis, 98:1123-1140, 2007.
C. Spearman. The proof and measurement of association between two
things. The American Journal of Psychology, 15:72-101, 1904.
Examples
--------
a = co.estimation(y,ds)
|
https://github.com/gdikov/adversarial-variational-bayes/blob/ebd692c70349f34bcb3a2086269bd814cafce96f/third_party/ite/cost/meta_a.py#L156-L202
|
from numpy import sqrt, floor, ones
from ite.cost.x_initialization import InitX
from ite.cost.x_verification import VerOneDSubspaces, VerCompSubspaceDims
from ite.cost.x_factory import co_factory
class MASpearmanLT(InitX, VerOneDSubspaces, VerCompSubspaceDims):
def __init__(self, mult=True,
spearman_cond_lt_co_name='BASpearmanCondLT',
spearman_cond_lt_co_pars=None):
spearman_cond_lt_co_pars = spearman_cond_lt_co_pars or {}
super().__init__(mult=mult)
spearman_cond_lt_co_pars['mult'] = mult
self.spearman_cond_lt_co = co_factory(spearman_cond_lt_co_name,
**spearman_cond_lt_co_pars)
def estimation(self, y, ds=None):
if ds is None:
ds = ones(y.shape[1], dtype='int')
self.verification_compatible_subspace_dimensions(y, ds)
self.verification_one_dimensional_subspaces(ds)
num_of_samples = y.shape[0]
k = int(floor(sqrt(num_of_samples)))
self.spearman_cond_lt_co.p = k / num_of_samples
a = self.spearman_cond_lt_co.estimation(y, ds)
return a
class MASpearmanUT(InitX, VerOneDSubspaces, VerCompSubspaceDims):
def __init__(self, mult=True,
spearman_cond_ut_co_name='BASpearmanCondUT',
spearman_cond_ut_co_pars=None):
super().__init__(mult=mult)
spearman_cond_ut_co_pars = spearman_cond_ut_co_pars or {}
spearman_cond_ut_co_pars['mult'] = mult
self.spearman_cond_ut_co = co_factory(spearman_cond_ut_co_name,
**spearman_cond_ut_co_pars)
|
MIT License
|
mozilla/make.mozilla.org
|
vendor-local/lib/python/south/orm.py
|
_FakeORM.eval_in_context
|
python
|
def eval_in_context(self, code, app, extra_imports={}):
fake_locals = dict(inspect.getmodule(self.cls).__dict__)
for key, value in fake_locals.items():
if isinstance(value, type) and issubclass(value, models.Model) and hasattr(value, "_meta"):
del fake_locals[key]
fake_locals.update(dict([
(name.split(".")[-1], model)
for name, model in self.models.items()
]))
fake_locals.update(dict([
(name.split(".")[-1], model)
for name, model in self.models.items()
if name.split(".")[0] == app
]))
fake_locals['orm'] = self
fake_locals['_'] = lambda x: x
fake_locals['datetime'] = datetime_utils
for name, value in extra_imports.items():
parts = value.split(".")
try:
obj = fake_locals[parts[0]]
for part in parts[1:]:
obj = getattr(obj, part)
except (KeyError, AttributeError):
pass
else:
fake_locals[name] = obj
continue
try:
fake_locals[name] = ask_for_it_by_name(value)
except ImportError:
if name == "SouthFieldClass":
raise ValueError("Cannot import the required field '%s'" % value)
else:
print "WARNING: Cannot import '%s'" % value
fake_locals = ModelsLocals(fake_locals)
return eval(code, globals(), fake_locals)
|
Evaluates the given code in the context of the migration file.
|
https://github.com/mozilla/make.mozilla.org/blob/98b87c517b463a5bae09f29284b1dabca97bb376/vendor-local/lib/python/south/orm.py#L177-L235
|
import inspect
from django.db import models
from django.db.models.loading import cache
from django.core.exceptions import ImproperlyConfigured
from south.db import db
from south.utils import ask_for_it_by_name, datetime_utils
from south.hacks import hacks
from south.exceptions import UnfreezeMeLater, ORMBaseNotIncluded, ImpossibleORMUnfreeze
class ModelsLocals(object):
def __init__(self, data):
self.data = data
def __getitem__(self, key):
try:
return self.data[key]
except KeyError:
return self.data[key.lower()]
_orm_cache = {}
def FakeORM(*args):
if not args in _orm_cache:
_orm_cache[args] = _FakeORM(*args)
return _orm_cache[args]
class LazyFakeORM(object):
def __init__(self, *args):
self._args = args
self.orm = None
def __get__(self, obj, type=None):
if not self.orm:
self.orm = FakeORM(*self._args)
return self.orm
class _FakeORM(object):
def __init__(self, cls, app):
self.default_app = app
self.cls = cls
self.models = {}
try:
self.models_source = cls.models
except AttributeError:
return
hacks.clear_app_cache()
model_names = []
for name, data in self.models_source.items():
if "Meta" not in data:
data['Meta'] = {}
try:
app_label, model_name = name.split(".", 1)
except ValueError:
app_label = self.default_app
model_name = name
if "object_name" in data['Meta']:
model_name = data['Meta']['object_name']
del data['Meta']['object_name']
name = "%s.%s" % (app_label, model_name)
self.models[name.lower()] = name
model_names.append((name.lower(), app_label, model_name, data))
last_size = None
while model_names:
if len(model_names) == last_size:
raise ImpossibleORMUnfreeze()
last_size = len(model_names)
postponed_model_names = []
for name, app_label, model_name, data in model_names:
try:
self.models[name] = self.make_model(app_label, model_name, data)
except UnfreezeMeLater:
postponed_model_names.append((name, app_label, model_name, data))
model_names = postponed_model_names
self.retry_failed_fields()
for model in self.models.values():
model._meta.get_all_field_names()
hacks.unclear_app_cache()
def __iter__(self):
return iter(self.models.values())
def __getattr__(self, key):
fullname = (self.default_app+"."+key).lower()
try:
return self.models[fullname]
except KeyError:
raise AttributeError("The model '%s' from the app '%s' is not available in this migration. (Did you use orm.ModelName, not orm['app.ModelName']?)" % (key, self.default_app))
def __getitem__(self, key):
if ":" in key:
key, fname = key.split(":")
else:
fname = None
key = key.lower()
try:
model = self.models[key]
except KeyError:
try:
app, model = key.split(".", 1)
except ValueError:
raise KeyError("The model '%s' is not in appname.modelname format." % key)
else:
raise KeyError("The model '%s' from the app '%s' is not available in this migration." % (model, app))
if fname:
return model._meta.get_field_by_name(fname)[0]
else:
return model
|
BSD 3-Clause New or Revised License
|
andrewsayre/pysmartthings
|
pysmartthings/device.py
|
Device.device_type_id
|
python
|
def device_type_id(self) -> str:
return self._device_type_id
|
Get the SmartThings device type handler id.
|
https://github.com/andrewsayre/pysmartthings/blob/cc9538f2bfef09055891e7bb432a20a8d918d524/pysmartthings/device.py#L173-L175
|
from collections import defaultdict, namedtuple
import colorsys
import re
from typing import Any, Dict, Mapping, Optional, Sequence, Tuple
from .api import Api
from .capability import ATTRIBUTE_OFF_VALUES, ATTRIBUTE_ON_VALUES, Attribute, Capability
from .entity import Entity
DEVICE_TYPE_OCF = "OCF"
DEVICE_TYPE_DTH = "DTH"
DEVICE_TYPE_UNKNOWN = "UNKNOWN"
DEVICE_TYPE_ENDPOINT_APP = "ENDPOINT_APP"
DEVICE_TYPE_VIPER = "VIPER"
COLOR_HEX_MATCHER = re.compile("^#[A-Fa-f0-9]{6}$")
Status = namedtuple("status", "value unit data")
STATUS_NONE = Status(None, None, None)
def hs_to_hex(hue: float, saturation: float) -> str:
rgb = colorsys.hsv_to_rgb(hue / 100, saturation / 100, 100)
return "#{:02x}{:02x}{:02x}".format(
round(rgb[0]), round(rgb[1]), round(rgb[2])
).upper()
def hex_to_hs(color_hex: str) -> (int, int):
color_hex = color_hex.lstrip("#")
rgb = [
int(color_hex[i : i + len(color_hex) // 3], 16) / 255.0
for i in range(0, len(color_hex), len(color_hex) // 3)
]
hsv = colorsys.rgb_to_hsv(rgb[0], rgb[1], rgb[2])
return round(hsv[0] * 100, 3), round(hsv[1] * 100, 3)
def bool_to_value(attribute: str, value: bool) -> str:
return ATTRIBUTE_ON_VALUES[attribute] if value else ATTRIBUTE_OFF_VALUES[attribute]
class Command:
close = "close"
execute = "execute"
lock = "lock"
off = "off"
open = "open"
on = "on"
override_drlc_action = "overrideDrlcAction"
preset_position = "presetPosition"
request_drlc_action = "requestDrlcAction"
set_air_flow_direction = "setAirFlowDirection"
set_air_conditioner_mode = "setAirConditionerMode"
set_color = "setColor"
set_color_temperature = "setColorTemperature"
set_cooling_setpoint = "setCoolingSetpoint"
set_fan_mode = "setFanMode"
set_fan_speed = "setFanSpeed"
set_heating_setpoint = "setHeatingSetpoint"
set_hue = "setHue"
set_level = "setLevel"
set_saturation = "setSaturation"
set_thermostat_fan_mode = "setThermostatFanMode"
set_thermostat_mode = "setThermostatMode"
unlock = "unlock"
mute = "mute"
unmute = "unmute"
set_volume = "setVolume"
volume_up = "volumeUp"
volume_down = "volumeDown"
play = "play"
pause = "pause"
stop = "stop"
fast_forward = "fastForward"
rewind = "rewind"
set_input_source = "setInputSource"
set_playback_shuffle = "setPlaybackShuffle"
set_playback_repeat_mode = "setPlaybackRepeatMode"
set_tv_channel = "setTvChannel"
channel_up = "channelUp"
channel_down = "channelDown"
class Device:
def __init__(self):
self._device_id = None
self._name = None
self._label = None
self._location_id = None
self._room_id = None
self._type = DEVICE_TYPE_UNKNOWN
self._device_type_id = None
self._device_type_name = None
self._device_type_network = None
self._components = dict()
self._capabilities = []
def apply_data(self, data: dict):
self._device_id = data.get("deviceId")
self._name = data.get("name")
self._label = data.get("label")
self._location_id = data.get("locationId")
self._room_id = data.get("roomId")
self._type = data.get("type")
self._components.clear()
self._capabilities.clear()
components = data.get("components")
if components:
for component in components:
capabilities = [c["id"] for c in component["capabilities"]]
component_id = component["id"]
if component_id == "main":
self._capabilities.extend(capabilities)
else:
self._components[component_id] = capabilities
if self._type == DEVICE_TYPE_DTH:
dth = data.get("dth")
if dth:
self._device_type_id = dth.get("deviceTypeId")
self._device_type_name = dth.get("deviceTypeName")
self._device_type_network = dth.get("deviceNetworkType")
def get_capability(self, *capabilities) -> Optional[str]:
for capability in capabilities:
if capability in self._capabilities:
return capability
return None
@property
def device_id(self) -> str:
return self._device_id
@property
def name(self) -> str:
return self._name
@property
def label(self) -> str:
return self._label
@property
def location_id(self) -> str:
return self._location_id
@property
def room_id(self):
return self._room_id
@property
def type(self) -> str:
return self._type
@property
|
Apache License 2.0
|
reliaqualassociates/ramstk
|
src/ramstk/exim/imports.py
|
Import._do_insert_hardware
|
python
|
def _do_insert_hardware(self, row: pd.Series) -> RAMSTKHardwareRecord:
_hardware = RAMSTKHardwareRecord()
_map = self._dic_field_map["Hardware"]
_hardware.revision_id = _get_input_value(_map, row, "Revision ID", 1)
_hardware.hardware_id = _get_input_value(_map, row, "Hardware ID", 1)
_hardware.alt_part_number = _get_input_value(
_map, row, "Alternate Part Number", ""
)
_hardware.cage_code = _get_input_value(_map, row, "CAGE Code", "")
_hardware.category_id = _get_input_value(_map, row, "Category ID", 0)
_hardware.comp_ref_des = _get_input_value(_map, row, "Composite Ref. Des.", "")
_hardware.cost = _get_input_value(_map, row, "Cost", 0.0)
_hardware.cost_type_id = _get_input_value(_map, row, "Cost Type", 0)
_hardware.description = _get_input_value(_map, row, "Description", "")
_hardware.duty_cycle = _get_input_value(_map, row, "Duty Cycle", 100.0)
_hardware.figure_number = _get_input_value(_map, row, "Figure Number", "")
_hardware.lcn = _get_input_value(_map, row, "LCN", "")
_hardware.level = _get_input_value(_map, row, "Level", 0)
_hardware.manufacturer_id = _get_input_value(_map, row, "Manufacturer", 0)
_hardware.mission_time = _get_input_value(_map, row, "Mission Time", 24.0)
_hardware.name = _get_input_value(_map, row, "Name", "")
_hardware.nsn = _get_input_value(_map, row, "NSN", "")
_hardware.page_number = _get_input_value(_map, row, "Page Number", "")
_hardware.parent_id = _get_input_value(_map, row, "Parent Assembly", 1)
_hardware.part = _get_input_value(_map, row, "Part", 0)
_hardware.part_number = _get_input_value(_map, row, "Part Number", "")
_hardware.quantity = _get_input_value(_map, row, "Quantity", 1)
_hardware.ref_des = _get_input_value(_map, row, "Reference Designator", "")
_hardware.remarks = _get_input_value(_map, row, "Remarks", "")
_hardware.repairable = _get_input_value(_map, row, "Repairable", 1)
_hardware.specification_number = _get_input_value(
_map, row, "Specification", ""
)
_hardware.subcategory_id = _get_input_value(_map, row, "Subcategory ID", 0)
_hardware.tagged_part = _get_input_value(_map, row, "Tagged Part", 0)
_hardware.year_of_manufacture = _get_input_value(
_map, row, "Year of Manufacture", 1900
)
return _hardware
|
Insert a new Hardware entity to the RAMSTK db.
:param row: the row from the pandas DataFrame containing the input
data.
:return: _entity
:rtype: :class:`ramstk.models.programdb.ramstkhardware.RAMSTKHardware`
|
https://github.com/reliaqualassociates/ramstk/blob/ffec5a107424914cf0026c6dfe26369c221f79f9/src/ramstk/exim/imports.py#L667-L714
|
import inspect
import math
from collections import OrderedDict
from datetime import date
from typing import Any, Dict
import numpy as np
import pandas as pd
from dateutil import parser
from pubsub import pub
from ramstk.db.base import BaseDatabase
from ramstk.exceptions import DataAccessError
from ramstk.models import (
RAMSTKAllocationRecord,
RAMSTKDesignElectricRecord,
RAMSTKDesignMechanicRecord,
RAMSTKFunctionRecord,
RAMSTKHardwareRecord,
RAMSTKMilHdbk217FRecord,
RAMSTKNSWCRecord,
RAMSTKReliabilityRecord,
RAMSTKRequirementRecord,
RAMSTKSimilarItemRecord,
RAMSTKValidationRecord,
)
def _do_replace_nan(value: Any, default: Any) -> Any:
_value = value
try:
if math.isnan(value):
_value = default
except TypeError:
pass
if value is np.nan:
_value = default
return _value
def _get_input_value(
mapper: Dict[str, Any], df_row: pd.Series, field: str, default: Any
) -> Any:
try:
_value = df_row.at[mapper[field]]
except KeyError:
_value = default
_value = _do_replace_nan(_value, default)
if default == date.today():
_value = parser.parse(_value)
return _value
class Import:
_dic_field_map = {
"Function": OrderedDict(
[
("Revision ID", ""),
("Function ID", ""),
("Level", ""),
("Function Code", ""),
("Function Name", ""),
("Parent", ""),
("Remarks", ""),
("Safety Critical", ""),
("Type", ""),
]
),
"Requirement": OrderedDict(
[
("Revision ID", ""),
("Requirement ID", ""),
("Derived?", ""),
("Requirement", ""),
("Figure Number", ""),
("Owner", ""),
("Page Number", ""),
("Parent ID", ""),
("Priority", ""),
("Requirement Code", ""),
("Specification", ""),
("Requirement Type", ""),
("Validated?", ""),
("Validated Date", ""),
]
),
"Hardware": OrderedDict(
[
("Revision ID", ""),
("Hardware ID", ""),
("Alternate Part Number", ""),
("CAGE Code", ""),
("Category ID", ""),
("Composite Ref. Des.", ""),
("Cost", ""),
("Cost Type", ""),
("Description", ""),
("Duty Cycle", ""),
("Figure Number", ""),
("LCN", ""),
("Level", ""),
("Manufacturer", ""),
("Mission Time", ""),
("Name", ""),
("NSN", ""),
("Page Number", ""),
("Parent Assembly", ""),
("Part", ""),
("Part Number", ""),
("Quantity", ""),
("Reference Designator", ""),
("Remarks", ""),
("Repairable", ""),
("Specification", ""),
("Subcategory ID", ""),
("Tagged Part", ""),
("Year of Manufacture", ""),
]
),
"Design Electric": OrderedDict(
[
("Hardware ID", ""),
("Application ID", ""),
("Area", ""),
("Capacitance", ""),
("Configuration ID", ""),
("Construction ID", ""),
("Contact Form ID", ""),
("Contact Gauge", ""),
("Contact Rating ID", ""),
("Current Operating", ""),
("Current Rated", ""),
("Current Ratio", ""),
("Environment Active ID", ""),
("Environment Dormant ID", ""),
("Family ID", ""),
("Feature Size", ""),
("Frequency Operating", ""),
("Insert ID", ""),
("Insulation ID", ""),
("Manufacturing ID", ""),
("Matching ID", ""),
("N Active Pins", ""),
("N Circuit Planes", ""),
("N Cycles", ""),
("N Elements", ""),
("N Hand Soldered", ""),
("N Wave Soldered", ""),
("Operating Life", ""),
("Overstress", ""),
("Package ID", ""),
("Power Operating", ""),
("Power Rated", ""),
("Power Ratio", ""),
("Reason", ""),
("Resistance", ""),
("Specification ID", ""),
("Technology ID", ""),
("Temperature, Active", ""),
("Temperature, Case", ""),
("Temperature, Dormant", ""),
("Temperature, Hot Spot", ""),
("Temperature, Junction", ""),
("Temperature, Knee", ""),
("Temperature, Rated Max", ""),
("Temperature, Rated Min", ""),
("Temperature Rise", ""),
("Theta JC", ""),
("Type ID", ""),
("Voltage, AC Operating", ""),
("Voltage, DC Operating", ""),
("Voltage ESD", ""),
("Voltage, Rated", ""),
("Voltage Ratio", ""),
("Weight", ""),
("Years in Production", ""),
]
),
"Design Mechanic": OrderedDict(
[
("Hardware ID", ""),
("Altitude, Operating", ""),
("Application ID", ""),
("Balance ID", ""),
("Clearance", ""),
("Casing ID", ""),
("Contact Pressure", ""),
("Deflection", ""),
("Diameter, Coil", ""),
("Diameter, Inner", ""),
("Diameter, Outer", ""),
("Diameter, Wire", ""),
("Filter Size", ""),
("Flow, Design", ""),
("Flow, Operating", ""),
("Frequency, Operating", ""),
("Friction", ""),
("Impact ID", ""),
("Allowable Leakage", ""),
("Length", ""),
("Length, Compressed", ""),
("Length, Relaxed", ""),
("Design Load", ""),
("Load ID", ""),
("Operating Load", ""),
("Lubrication ID", ""),
("Manufacturing ID", ""),
("Material ID", ""),
("Meyer Hardness", ""),
("Misalignment Angle", ""),
("N Ten", ""),
("N Cycles", ""),
("N Elements", ""),
("Offset", ""),
("Particle Size", ""),
("Contact Pressure", ""),
("Differential Pressure", ""),
("Downstream Pressure", ""),
("Rated Pressure", ""),
("Upstream Pressure", ""),
("Design RPM", ""),
("Operating RPM", ""),
("Service ID", ""),
("Spring Index", ""),
("Surface Finish", ""),
("Technology ID", ""),
("Thickness", ""),
("Torque ID", ""),
("Type ID", ""),
("Design Viscosity", ""),
("Dynamic Viscosity", ""),
("% Water", ""),
("Minimum Width", ""),
]
),
"Reliability": OrderedDict(
[
("Hardware ID", ""),
("Additive Adjustment Factor", ""),
("Failure Distribution ID", ""),
("Failure Rate Method ID", ""),
("Failure Rate Model", ""),
("Specified Failure Rate", ""),
("Failure Rate Type ID", ""),
("Location Parameter", ""),
("Specified MTBF", ""),
("Multiplicative Adjustment Factor", ""),
("Quality ID", ""),
("Reliability Goal", ""),
("Reliability Goal Measure ID", ""),
("Scale Parameter", ""),
("Shape Parameter", ""),
("Survival Analysis ID", ""),
]
),
"Validation": OrderedDict(
[
("Revision ID", ""),
("Validation ID", ""),
("Acceptable Maximum", ""),
("Acceptable Mean", ""),
("Acceptable Minimum", ""),
("Acceptable Variance", ""),
("s-Confidence", ""),
("Average Task Cost", ""),
("Maximum Task Cost", ""),
("Minimum Task Cost", ""),
("Start Date", ""),
("End Date", ""),
("Task Description", ""),
("Unit of Measure", ""),
("Name", ""),
("Task Status", ""),
("Task Type", ""),
("Task Specification", ""),
("Average Task Time", ""),
("Maximum Task Time", ""),
("Minimum Task Time", ""),
]
),
}
def __init__(self) -> None:
self._dao: BaseDatabase = BaseDatabase()
self._df_input_data: pd.DataFrame = pd.DataFrame({})
pub.subscribe(self._do_connect, "succeed_connect_program_database")
pub.subscribe(self._do_map_to_field, "request_map_to_field")
pub.subscribe(self._do_read_db_fields, "request_db_fields")
pub.subscribe(self._do_read_file, "request_read_import_file")
pub.subscribe(self._do_import, "request_import")
def _do_connect(self, dao: BaseDatabase) -> None:
self._dao = dao
def _do_import(self, module: str) -> None:
_entities = []
for __, _row in self._df_input_data.iterrows():
if module == "Function":
_entity = self._do_insert_function(_row)
_entities.append(_entity)
elif module == "Requirement":
_entity = self._do_insert_requirement(_row)
_entities.append(_entity)
elif module == "Hardware":
_entity = self._do_insert_hardware(_row)
_entities.append(_entity)
_entity = self._do_insert_allocation(_row)
_entities.append(_entity)
_entity = self._do_insert_similar_item(_row)
_entities.append(_entity)
_entity = self._do_insert_design_electric(_row)
_entities.append(_entity)
_entity = self._do_insert_mil_hdbk_f(_row)
_entities.append(_entity)
_entity = self._do_insert_design_mechanic(_row)
_entities.append(_entity)
_entity = self._do_insert_nswc(_row)
_entities.append(_entity)
_entity = self._do_insert_reliability(_row)
_entities.append(_entity)
elif module == "Validation":
_entity = self._do_insert_validation(_row)
_entities.append(_entity)
try:
self._dao.do_insert_many(_entities)
pub.sendMessage(
"succeed_import_module",
module=module,
)
except (AttributeError, DataAccessError):
_method_name: str = inspect.currentframe().f_code.co_name
_error_msg: str = (
"{1}: There was a problem importing {0} records. "
"This is usually caused by key violations; check the "
"ID and/or parent ID fields in the import file."
).format(module, _method_name)
pub.sendMessage(
"fail_import_module",
error_message=_error_msg,
)
def _do_insert_allocation(self, row: pd.Series) -> RAMSTKAllocationRecord:
_allocation = RAMSTKAllocationRecord()
_map = self._dic_field_map["Hardware"]
_allocation.revision_id = _get_input_value(_map, row, "Revision ID", 1)
_allocation.hardware_id = _get_input_value(_map, row, "Hardware ID", 1)
_allocation.parent_id = _get_input_value(_map, row, "Parent Assembly", 1)
return _allocation
def _do_insert_design_electric(self, row: pd.Series) -> RAMSTKDesignElectricRecord:
_design_electric = RAMSTKDesignElectricRecord()
_map = self._dic_field_map["Hardware"]
_design_electric.hardware_id = _get_input_value(_map, row, "Hardware ID", 1)
_map = self._dic_field_map["Design Electric"]
_design_electric.set_attributes(
{
"application_id": _get_input_value(_map, row, "Application ID", 0),
"area": _get_input_value(_map, row, "Area", 0.0),
"capacitance": _get_input_value(_map, row, "Capacitance", 0.000001),
"configuration_id": _get_input_value(_map, row, "Configuration ID", 0),
"construction_id": _get_input_value(_map, row, "Construction ID", 0),
"contact_form_id": _get_input_value(_map, row, "Contact Form ID", 0),
"contact_gauge": _get_input_value(_map, row, "Contact Gauge", 20),
"contact_rating_id": _get_input_value(
_map, row, "Contact Rating ID", 0
),
"current_operating": _get_input_value(
_map, row, "Current Operating", 0.0
),
"current_rated": _get_input_value(_map, row, "Current Rated", 0.0),
"current_ratio": _get_input_value(_map, row, "Current Ratio", 0.0),
"environment_active_id": _get_input_value(
_map, row, "Environment Active ID", 0
),
"environment_dormant_id": _get_input_value(
_map, row, "Environment Dormant ID", 0
),
"family_id": _get_input_value(_map, row, "Family ID", 0),
"feature_size": _get_input_value(_map, row, "Feature Size", 1.0),
"frequency_operating": _get_input_value(
_map, row, "Frequency Operating", 0.0
),
"insert_id": _get_input_value(_map, row, "Insert ID", 0),
"insulation_id": _get_input_value(_map, row, "Insulation ID", 0),
"manufacturing_id": _get_input_value(_map, row, "Manufacturing ID", 0),
"matching_id": _get_input_value(_map, row, "Matching ID", 0),
"n_active_pins": _get_input_value(_map, row, "N Active Pins", 0),
"n_circuit_planes": _get_input_value(_map, row, "N Circuit Planes", 1),
"n_cycles": _get_input_value(_map, row, "N Cycles", 0),
"n_elements": _get_input_value(_map, row, "N Elements", 0),
"n_hand_soldered": _get_input_value(_map, row, "N Hand Soldered", 0),
"n_wave_soldered": _get_input_value(_map, row, "N Wave Soldered", 0),
"operating_life": _get_input_value(_map, row, "Operating Life", 0.0),
"overstress": _get_input_value(_map, row, "Overstress", 0),
"package_id": _get_input_value(_map, row, "Package ID", 0),
"power_operating": _get_input_value(_map, row, "Power Operating", 0.0),
"power_rated": _get_input_value(_map, row, "Power Rated", 0.0),
"power_ratio": _get_input_value(_map, row, "Power Ratio", 0.0),
"reason": _get_input_value(_map, row, "Reason", ""),
"resistance": _get_input_value(_map, row, "Resistance", 0.0),
"specification_id": _get_input_value(_map, row, "Specification ID", 0),
"technology_id": _get_input_value(_map, row, "Technology ID", 0),
"temperature_active": _get_input_value(
_map, row, "Temperature, Active", 30.0
),
"temperature_case": _get_input_value(
_map, row, "Temperature, Case", 0.0
),
"temperature_dormant": _get_input_value(
_map, row, "Temperature, Dormant", 25.0
),
"temperature_hot_spot": _get_input_value(
_map, row, "Temperature, Hot Spot", 0.0
),
"temperature_junction": _get_input_value(
_map, row, "Temperature, Junction", 0.0
),
"temperature_knee": _get_input_value(
_map, row, "Temperature, Knee", 25.0
),
"temperature_rated_max": _get_input_value(
_map, row, "Temperature, Rated Max", 0.0
),
"temperature_rated_min": _get_input_value(
_map, row, "Temperature, Rated Min", 0.0
),
"temperature_rise": _get_input_value(
_map, row, "Temperature Rise", 0.0
),
"theta_jc": _get_input_value(_map, row, "Theta JC", 0.0),
"type_id": _get_input_value(_map, row, "Type ID", 0),
"voltage_ac_operating": _get_input_value(
_map, row, "Voltage, AC Operating", 0.0
),
"voltage_dc_operating": _get_input_value(
_map, row, "Voltage, DC Operating", 0.0
),
"voltage_esd": _get_input_value(_map, row, "Voltage ESD", 0.0),
"voltage_rated": _get_input_value(_map, row, "Voltage, Rated", 0.0),
"voltage_ratio": _get_input_value(_map, row, "Voltage Ratio", 0.0),
"weight": _get_input_value(_map, row, "Weight", 1.0),
"years_in_production": _get_input_value(
_map, row, "Years in Production", 2
),
}
)
return _design_electric
def _do_insert_design_mechanic(self, row: pd.Series) -> RAMSTKDesignMechanicRecord:
_design_mechanic = RAMSTKDesignMechanicRecord()
_map = self._dic_field_map["Hardware"]
_design_mechanic.hardware_id = _get_input_value(_map, row, "Hardware ID", 1)
_map = self._dic_field_map["Design Mechanic"]
_design_mechanic.set_attributes(
{
"altitude_operating": _get_input_value(
_map, row, "Altitude, Operating", 0.0
),
"application_id": _get_input_value(_map, row, "Application ID", 0),
"balance_id": _get_input_value(_map, row, "Balance ID", 0),
"clearance": _get_input_value(_map, row, "Clearance", 0.0),
"casing_id": _get_input_value(_map, row, "Casing ID", 0),
"contact_pressure": _get_input_value(
_map, row, "Contact Pressure", 0.0
),
"deflection": _get_input_value(_map, row, "Deflection", 0.0),
"diameter_coil": _get_input_value(_map, row, "Diameter, Coil", 0.0),
"diameter_inner": _get_input_value(_map, row, "Diameter, Inner", 0.0),
"diameter_outer": _get_input_value(_map, row, "Diameter, Outer", 0.0),
"diameter_wire": _get_input_value(_map, row, "Diameter, Wire", 0.0),
"filter_size": _get_input_value(_map, row, "Filter Size", 0.0),
"flow_design": _get_input_value(_map, row, "Flow, Design", 0.0),
"flow_operating": _get_input_value(_map, row, "Flow, Operating", 0.0),
"frequency_operating": _get_input_value(
_map, row, "Frequency, Operating", 0.0
),
"friction": _get_input_value(_map, row, "Friction", 0.0),
"impact_id": _get_input_value(_map, row, "Impact ID", 0),
"leakage_allowable": _get_input_value(
_map, row, "Allowable Leakage", 0.0
),
"length": _get_input_value(_map, row, "Length", 0.0),
"length_compressed": _get_input_value(
_map, row, "Length, Compressed", 0.0
),
"length_relaxed": _get_input_value(_map, row, "Length, Relaxed", 0.0),
"load_design": _get_input_value(_map, row, "Design Load", 0.0),
"load_id": _get_input_value(_map, row, "Load ID", 0),
"load_operating": _get_input_value(_map, row, "Operating Load", 0.0),
"lubrication_id": _get_input_value(_map, row, "Lubrication ID", 0),
"manufacturing_id": _get_input_value(_map, row, "Manufacturing ID", 0),
"material_id": _get_input_value(_map, row, "Material ID", 0),
"meyer_hardness": _get_input_value(_map, row, "Meyer Hardness", 0.0),
"misalignment_angle": _get_input_value(
_map, row, "Misalignment Angle", 0.0
),
"n_ten": _get_input_value(_map, row, "N Ten", 0),
"n_cycles": _get_input_value(_map, row, "N Cycles", 0.0),
"n_elements": _get_input_value(_map, row, "N Elements", 0),
"offset": _get_input_value(_map, row, "Offset", 0.0),
"particle_size": _get_input_value(_map, row, "Particle Size", 0.0),
"pressure_contact": _get_input_value(
_map, row, "Contact Pressure", 0.0
),
"pressure_delta": _get_input_value(
_map, row, "Differential Pressure", 0.0
),
"pressure_downstream": _get_input_value(
_map, row, "Downstream Pressure", 0.0
),
"pressure_rated": _get_input_value(_map, row, "Rated Pressure", 0.0),
"pressure_upstream": _get_input_value(
_map, row, "Upstream Pressure", 0.0
),
"rpm_design": _get_input_value(_map, row, "Design RPM", 0.0),
"rpm_operating": _get_input_value(_map, row, "Operating RPM", 0.0),
"service_id": _get_input_value(_map, row, "Service ID", 0),
"spring_index": _get_input_value(_map, row, "Spring Index", 0),
"surface_finish": _get_input_value(_map, row, "Surface Finish", 0.0),
"technology_id": _get_input_value(_map, row, "Technology ID", 0),
"thickness": _get_input_value(_map, row, "Thickness", 0.0),
"torque_id": _get_input_value(_map, row, "Torque ID", 0),
"type_id": _get_input_value(_map, row, "Type ID", 0),
"viscosity_design": _get_input_value(
_map, row, "Design Viscosity", 0.0
),
"viscosity_dynamic": _get_input_value(
_map, row, "Dynamic Viscosity", 0.0
),
"water_per_cent": _get_input_value(_map, row, "% Water", 0.0),
"width_minimum": _get_input_value(_map, row, "Minimum Width", 0.0),
}
)
return _design_mechanic
def _do_insert_function(self, row: pd.Series) -> RAMSTKFunctionRecord:
_function = RAMSTKFunctionRecord()
_map = self._dic_field_map["Function"]
_function.revision_id = _get_input_value(_map, row, "Revision ID", 1)
_function.function_id = _get_input_value(_map, row, "Function ID", 1)
_function.function_code = _get_input_value(_map, row, "Function Code", "")
_function.level = _get_input_value(_map, row, "Level", 0)
_function.name = _get_input_value(_map, row, "Function Name", "")
_function.parent_id = _get_input_value(_map, row, "Parent", 1)
_function.remarks = _get_input_value(_map, row, "Remarks", "")
_function.safety_critical = _get_input_value(_map, row, "Safety Critical", 0)
_function.type_id = _get_input_value(_map, row, "Type", "")
return _function
|
BSD 3-Clause New or Revised License
|
kchen92/graphnav
|
src/semnav/learning/evaluator.py
|
Evaluator.get_seq_path
|
python
|
def get_seq_path(frame_path):
return os.path.dirname(frame_path)
|
Return the sequence name as a String for a given (full) frame path.
|
https://github.com/kchen92/graphnav/blob/7c2159b876ac377e6ff075ae6c7201036144f4f2/src/semnav/learning/evaluator.py#L127-L130
|
from __future__ import print_function
from __future__ import division
import os
import torch
from semnav.config import get_config
from semnav.dataset import get_split_datasets
from semnav.dataset.dataset_utils import get_frame_idx
from semnav.dataset.dataset_visualizer import DatasetVisualizer
from semnav.dataset.graph_net_frame_dataset import GraphNetFrameDataset
from semnav.lib.categories import BehaviorCategory
from semnav.learning.behavior_net.behavior_cnn import BehaviorCNN
from semnav.learning.behavior_net.behavior_rnn import BehaviorRNN
from semnav.learning.graph_net.graph_net import GraphNet
from semnav.learning.phase_net.phase_rnn import PhaseRNN
from semnav.learning import decode_batch, get_net
from torch.utils.data import DataLoader
class Evaluator(object):
def __init__(self, cfg=None):
if cfg is None:
self.cfg = get_config()
else:
self.cfg = cfg
self.hidden = None
self.depth_stack = None
if self.cfg.visualize_results is True:
self.dataset_visualizer = DatasetVisualizer()
@staticmethod
def load_eval_datasets(cfg):
cur_dataset_type = cfg.dataset_type
if cfg.dataset_type == 'graph_net':
cfg.dataset_type = 'single_frame_graph_net'
else:
cfg.dataset_type = 'frame_by_frame'
train_set, val_set, test_set = get_split_datasets(cfg.dataset)
cfg.dataset_type = cur_dataset_type
return train_set, val_set, test_set
@staticmethod
def get_evaluation_batch_size():
return 1
def predict(self, net, depth, is_new_episode):
net.eval()
if is_new_episode is True:
print('New episode!')
if isinstance(net, GraphNet) and isinstance(depth, dict):
depth, graph_net_input = (depth['depth'], depth['graph_net_input'])
if ((isinstance(net, BehaviorCNN) and (self.cfg.dataset_type == 'temporal'))
or (isinstance(net, GraphNet) and (self.cfg.dataset_type == 'graph_net'))):
if self.cfg.use_semantic_class is not None:
n_channels_per_frame = 2
else:
n_channels_per_frame = 1
if is_new_episode:
self.depth_stack = depth.repeat(1, self.cfg.n_frames_per_sample, 1, 1)
else:
self.depth_stack = torch.cat([self.depth_stack[:, n_channels_per_frame:, :, :], depth], dim=1)
depth = self.depth_stack
if (isinstance(net, BehaviorRNN) or isinstance(net, PhaseRNN)) and is_new_episode:
print('Resetting hidden state')
batch_size = depth.size(0)
hidden = net.initial_hidden(batch_size=batch_size)
if isinstance(hidden, list):
self.hidden = [x.to(self.cfg.device) for x in hidden]
else:
self.hidden = hidden.to(self.cfg.device)
if isinstance(net, BehaviorCNN):
output = net(depth)
elif isinstance(net, GraphNet):
output = net(depth, graph_net_input)
elif isinstance(net, BehaviorRNN) or isinstance(net, PhaseRNN):
output, self.hidden = net(depth, self.hidden)
else:
raise ValueError('Validation on this network is not supported.')
return output
@staticmethod
|
MIT License
|
probml/pyprobml
|
scripts/vb_logreg.py
|
EBLogisticRegression._get_sigma
|
python
|
def _get_sigma(self,X):
return np.asarray([ np.sum(X**2*s,axis = 1) for s in self.sigma_])
|
Compute variance of predictive distribution
|
https://github.com/probml/pyprobml/blob/9d5a94449ee76c0ca37ca953c502864315ae7724/scripts/vb_logreg.py#L257-L259
|
import superimport
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
from sklearn.utils.optimize import newton_cg
from scipy.special import expit, exprel
from scipy.linalg import eigvalsh
from sklearn.utils.multiclass import check_classification_targets
from sklearn.linear_model.base import LinearClassifierMixin, BaseEstimator
from sklearn.utils import check_X_y
from scipy.linalg import solve_triangular
from sklearn.linear_model.logistic import ( _logistic_loss_and_grad, _logistic_loss,
_logistic_grad_hess,)
class BayesianLogisticRegression(LinearClassifierMixin, BaseEstimator):
def __init__(self, n_iter, tol, fit_intercept, verbose):
self.n_iter = n_iter
self.tol = tol
self.fit_intercept = fit_intercept
self.verbose = verbose
def fit(self,X,y):
X,y = check_X_y( X, y , dtype = np.float64)
check_classification_targets(y)
self.classes_ = np.unique(y)
n_classes = len(self.classes_)
n_samples, n_features = X.shape
if self.fit_intercept:
X = self._add_intercept(X)
if n_classes < 2:
raise ValueError("Need samples of at least 2 classes")
if n_classes > 2:
self.coef_, self.sigma_ = [0]*n_classes,[0]*n_classes
self.intercept_ = [0]*n_classes
else:
self.coef_, self.sigma_, self.intercept_ = [0],[0],[0]
for i in range(len(self.coef_)):
if n_classes == 2:
pos_class = self.classes_[1]
else:
pos_class = self.classes_[i]
mask = (y == pos_class)
y_bin = np.ones(y.shape, dtype=np.float64)
y_bin[~mask] = self._mask_val
coef_, sigma_ = self._fit(X,y_bin)
if self.fit_intercept:
self.intercept_[i],self.coef_[i] = self._get_intercept(coef_)
else:
self.coef_[i] = coef_
self.sigma_[i] = sigma_
self.coef_ = np.asarray(self.coef_)
return self
def predict_proba(self,X):
scores = self.decision_function(X)
if self.fit_intercept:
X = self._add_intercept(X)
sigma = self._get_sigma(X)
ks = 1. / ( 1. + np.pi*sigma / 8)**0.5
probs = expit(scores.T*ks).T
if probs.shape[1] == 1:
probs = np.hstack([1 - probs, probs])
else:
probs /= np.reshape(np.sum(probs, axis = 1), (probs.shape[0],1))
return probs
def _add_intercept(self,X):
raise NotImplementedError
def _get_intercept(self,coef):
raise NotImplementedError
def _get_sigma(self,X):
raise NotImplementedError
class EBLogisticRegression(BayesianLogisticRegression):
def __init__(self, n_iter = 50, tol = 1e-3,solver = 'lbfgs_b',n_iter_solver = 15,
tol_solver = 1e-3, fit_intercept = True, alpha = 1e-6, verbose = False):
super(EBLogisticRegression,self).__init__(n_iter, tol, fit_intercept, verbose)
self.n_iter_solver = n_iter_solver
self.tol_solver = tol_solver
self.alpha = alpha
if solver not in ['lbfgs_b','newton_cg']:
raise ValueError(('Only "lbfgs_b" and "newton_cg" '
'solvers are implemented'))
self.solver = solver
self._mask_val = -1.
def _fit(self,X,y):
alpha = self.alpha
n_samples,n_features = X.shape
w0 = np.zeros(n_features)
for i in range(self.n_iter):
alpha0 = alpha
w, d = self._posterior(X, y, alpha, w0)
mu_sq = np.sum(w**2)
alpha = X.shape[1] / (mu_sq + np.sum(d))
delta_alpha = abs(alpha - alpha0)
if delta_alpha < self.tol or i==self.n_iter-1:
break
coef_, sigma_ = self._posterior(X, y, alpha , w)
self.alpha_ = alpha
return coef_, sigma_
def _add_intercept(self,X):
return np.hstack((X,np.ones([X.shape[0],1])))
def _get_intercept(self,coef):
return coef[-1], coef[:-1]
|
MIT License
|
technige/py2neo
|
py2neo/__init__.py
|
ConnectionProfile.protocol
|
python
|
def protocol(self):
return self.__protocol
|
The name of the underlying point-to-point protocol, derived
from the URI scheme. This will either be ``'bolt'`` or
``'http'``, regardless of security and verification settings.
If unspecified, and uninfluenced by environment variables, this
will default to ``'bolt'``.
|
https://github.com/technige/py2neo/blob/603abd4d5f672bde039d4362cbec77d0d471f034/py2neo/__init__.py#L402-L409
|
from __future__ import absolute_import, print_function
__all__ = [
"__author__",
"__copyright__",
"__email__",
"__license__",
"__package__",
"__version__",
"DEFAULT_PROTOCOL",
"DEFAULT_SECURE",
"DEFAULT_VERIFY",
"DEFAULT_USER",
"DEFAULT_PASSWORD",
"DEFAULT_HOST",
"DEFAULT_BOLT_PORT",
"DEFAULT_HTTP_PORT",
"DEFAULT_HTTPS_PORT",
"ConnectionProfile",
"ServiceProfile",
]
from os import getenv
from py2neo.addressing import Address
from py2neo.compat import Mapping, string_types, urlsplit
from py2neo.meta import get_metadata
try:
from py2neo.database import *
from py2neo.errors import *
from py2neo.matching import *
from py2neo.data import *
except ImportError:
pass
else:
__all__ += database.__all__
__all__ += errors.__all__
__all__ += matching.__all__
__all__ += data.__all__
metadata = get_metadata()
__author__ = metadata["author"]
__copyright__ = "2011, {}".format(metadata["author"])
__email__ = metadata["author_email"]
__license__ = metadata["license"]
__package__ = metadata["name"]
__version__ = metadata["version"]
NEO4J_URI = getenv("NEO4J_URI")
NEO4J_AUTH = getenv("NEO4J_AUTH")
NEO4J_SECURE = getenv("NEO4J_SECURE")
NEO4J_VERIFY = getenv("NEO4J_VERIFY")
DEFAULT_PROTOCOL = "bolt"
DEFAULT_SECURE = False
DEFAULT_VERIFY = True
DEFAULT_USER = "neo4j"
DEFAULT_PASSWORD = "password"
DEFAULT_HOST = "localhost"
DEFAULT_BOLT_PORT = 7687
DEFAULT_HTTP_PORT = 7474
DEFAULT_HTTPS_PORT = 7473
class ConnectionProfile(Mapping):
_keys = ("secure", "verify", "scheme", "user", "password", "address",
"auth", "host", "port", "port_number", "protocol", "uri")
_hash_keys = ("protocol", "secure", "verify", "user", "password", "address")
def __init__(self, profile=None, **settings):
self.__protocol = DEFAULT_PROTOCOL
self.__secure = DEFAULT_SECURE
self.__verify = DEFAULT_VERIFY
self.__user = DEFAULT_USER
self.__password = DEFAULT_PASSWORD
self.__address = Address.parse("")
self._apply_env_vars()
if profile is None:
pass
elif isinstance(profile, string_types):
self._apply_uri(profile)
elif isinstance(profile, self.__class__):
self._apply_settings(**{k: profile[k] for k in self._hash_keys})
elif isinstance(profile, Mapping):
self._apply_settings(**profile)
else:
raise TypeError("Profile %r is neither a ConnectionProfile "
"nor a string URI" % profile)
self._apply_settings(**settings)
if not self.address.port:
addr = list(self.address)
if self.protocol == "http":
addr[1] = DEFAULT_HTTPS_PORT if self.secure else DEFAULT_HTTP_PORT
else:
addr[1] = DEFAULT_BOLT_PORT
self.__address = Address(addr)
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self.uri)
def __str__(self):
return "«{}»".format(self.uri)
def __getitem__(self, key):
if key in self._keys:
return getattr(self, key)
else:
raise KeyError(key)
def __len__(self):
return len(self._keys)
def __iter__(self):
return iter(self._keys)
def _apply_env_vars(self):
if NEO4J_URI:
self._apply_uri(NEO4J_URI)
if NEO4J_AUTH:
self._apply_settings(auth=NEO4J_AUTH)
if NEO4J_SECURE:
self._apply_settings(secure=(NEO4J_SECURE == "1"))
if NEO4J_VERIFY:
self._apply_settings(verify=(NEO4J_VERIFY == "1"))
def _apply_uri(self, uri):
settings = {}
parsed = urlsplit(uri)
if parsed.scheme is not None:
self._apply_scheme(parsed.scheme)
if "@" in parsed.netloc:
settings["address"] = parsed.netloc.partition("@")[-1]
else:
settings["address"] = parsed.netloc
if parsed.username:
settings["user"] = parsed.username
if parsed.password:
settings["password"] = parsed.password
self._apply_settings(**settings)
def _apply_scheme(self, scheme):
if scheme == "https":
protocol, ext = "http", "s"
else:
protocol, _, ext = scheme.partition("+")
if ext == "":
self._apply_settings(protocol=protocol, secure=False, verify=True)
elif ext == "s":
self._apply_settings(protocol=protocol, secure=True, verify=True)
elif ext == "ssc":
self._apply_settings(protocol=protocol, secure=True, verify=False)
else:
raise ValueError("Unknown scheme extension %r" % ext)
def _apply_settings(self, uri=None, scheme=None, protocol=None, secure=None, verify=None,
address=None, host=None, port=None, port_number=None,
auth=None, user=None, password=None, **other):
if uri:
self._apply_uri(uri)
if scheme:
self._apply_scheme(scheme)
if protocol:
self._apply_protocol(protocol)
if secure is not None:
self.__secure = secure
if verify is not None:
self.__verify = verify
if isinstance(address, tuple):
self.__address = Address(address)
elif address:
self.__address = Address.parse(address)
if host and port:
self.__address = Address.parse("%s:%s" % (host, port))
elif host:
self.__address = Address.parse("%s:%s" % (host, self.port))
elif port:
self.__address = Address.parse("%s:%s" % (self.host, port))
if isinstance(auth, tuple):
self.__user, self.__password = auth
elif auth:
self.__user, _, self.__password = auth.partition(":")
if user:
self.__user = user
if password:
self.__password = password
if other:
raise ValueError("The following settings are not supported: %r" % other)
def _apply_protocol(self, protocol):
if protocol not in ("bolt", "http"):
raise ValueError("Unknown protocol %r" % protocol)
self.__protocol = protocol
def __hash__(self):
values = tuple(getattr(self, key) for key in self._hash_keys)
return hash(values)
def __eq__(self, other):
self_values = tuple(getattr(self, key) for key in self._hash_keys)
try:
other_values = tuple(getattr(other, key) for key in self._hash_keys)
except AttributeError:
return False
else:
return self_values == other_values
@property
def secure(self):
return self.__secure
@property
def verify(self):
return self.__verify
@property
def scheme(self):
if self.secure and self.verify:
return "https" if self.protocol == "http" else self.protocol + "+s"
elif self.secure:
return self.protocol + "+ssc"
else:
return self.protocol
@property
def user(self):
return self.__user
@property
def password(self):
return self.__password
@property
def address(self):
return self.__address
@property
def auth(self):
return self.user, self.password
@property
def host(self):
return self.address.host
@property
def port(self):
return self.address.port
@property
def port_number(self):
return self.address.port_number
@property
|
Apache License 2.0
|
lemonsaurus/blackbox
|
blackbox/utils/workflows.py
|
get_handlers_by_id
|
python
|
def get_handlers_by_id(
id_: t.Union[str, list[str]],
handlers: HandlerById[Handler]
) -> set[Handler]:
if not isinstance(id_, (str, list)):
raise TypeError
ids = [id_] if isinstance(id_, str) else id_
match = set()
for i in ids:
match.update(handlers[i])
return match
|
Given ids and a mapping of id to handlers, return handlers matching the ids.
`id_` can be a string or a list of strings corresponding to ids.
Raises TypeError if id_ is not a string or a list.
Raises KeyError if id_ does not correspond to a handler in `handlers`.
|
https://github.com/lemonsaurus/blackbox/blob/4d78910a7e0b995e641092f5ef1a2ec5ed40cc64/blackbox/utils/workflows.py#L66-L86
|
import dataclasses
import typing as t
from collections import defaultdict
from itertools import chain
from blackbox import exceptions
from blackbox.handlers import BlackboxDatabase
from blackbox.handlers import BlackboxNotifier
from blackbox.handlers import BlackboxStorage
from blackbox.handlers._base import BlackboxHandler
Handler = t.TypeVar("Handler", bound=BlackboxHandler)
HandlerById = t.Mapping[str, set[Handler]]
@dataclasses.dataclass
class Workflow:
database: BlackboxDatabase
storage_providers: set[BlackboxStorage] = dataclasses.field(default_factory=set)
notifiers: set[BlackboxNotifier] = dataclasses.field(default_factory=set)
components = (BlackboxDatabase, BlackboxNotifier, BlackboxStorage)
HANDLER_MAPPING: dict[str, t.Type[BlackboxHandler]] = {
handler.__name__.lower(): handler
for handler in chain.from_iterable(component.__subclasses__() for component in components)
}
def get_configured_handlers(config: dict) -> dict:
handler_dict = defaultdict(set)
for handler_type, handler_config in config.items():
try:
Handler = HANDLER_MAPPING[handler_type]
except KeyError:
raise exceptions.InvalidHandler(handler_type)
for handler_id, handler_fields in handler_config.items():
handler_instance = Handler(**handler_fields, id=handler_id)
handler_dict["all"].add(handler_instance)
handler_dict[handler_type].add(handler_instance)
handler_dict[handler_id].add(handler_instance)
return handler_dict
|
MIT License
|
vlsida/openram
|
compiler/verify/run_script.py
|
run_script
|
python
|
def run_script(cell_name, script="lvs"):
echo_cmd_output = OPTS.verbose_level > 1
cwd = os.getcwd()
os.chdir(OPTS.openram_temp)
errfile = "{0}{1}.{2}.err".format(OPTS.openram_temp, cell_name, script)
outfile = "{0}{1}.{2}.out".format(OPTS.openram_temp, cell_name, script)
resultsfile = "{0}{1}.{2}.report".format(OPTS.openram_temp, cell_name, script)
scriptpath = '{0}run_{1}.sh'.format(OPTS.openram_temp, script)
debug.info(2, "Starting {}".format(scriptpath))
start = time.time()
with open(outfile, 'wb') as fo, open(errfile, 'wb') as fe:
p = subprocess.Popen(
[scriptpath], stdout=fo, stderr=fe, cwd=OPTS.openram_temp)
if echo_cmd_output:
tailo = subprocess.Popen([
'tail',
'-f',
'--pid', str(p.pid),
outfile,
])
taile = subprocess.Popen([
'tail',
'-f',
'--pid', str(p.pid),
errfile,
])
lastoutput = start
while p.poll() == None:
runningfor = time.time() - start
outputdelta = time.time() - lastoutput
if outputdelta > 30:
lastoutput = time.time()
debug.info(1, "Still running {} ({:.0f} seconds)".format(scriptpath, runningfor))
time.sleep(1)
assert p.poll() != None, (p.poll(), p)
p.wait()
if echo_cmd_output:
if tailo.poll() != None:
tailo.kill()
tailo.wait()
if taile.poll() != None:
taile.kill()
taile.wait()
debug.info(2, "Finished {} with {}".format(scriptpath, p.returncode))
os.chdir(cwd)
return (outfile, errfile, resultsfile)
|
Run script and create output files.
|
https://github.com/vlsida/openram/blob/f66aac3264598eeae31225c62b6a4af52412d407/compiler/verify/run_script.py#L19-L76
|
import os
import debug
import subprocess
import time
from globals import OPTS
|
BSD 3-Clause New or Revised License
|
alteryx/evalml
|
evalml/pipelines/component_graph.py
|
ComponentGraph.instantiate
|
python
|
def instantiate(self, parameters=None):
if self._is_instantiated:
raise ValueError(
f"Cannot reinstantiate a component graph that was previously instantiated"
)
parameters = parameters or {}
param_set = set(s for s in parameters.keys() if s not in ["pipeline"])
diff = param_set.difference(set(self.component_instances.keys()))
if len(diff):
warnings.warn(ParameterNotUsedWarning(diff))
self._is_instantiated = True
component_instances = {}
for component_name, component_class in self.component_instances.items():
component_parameters = parameters.get(component_name, {})
if inspect.isclass(component_class):
try:
new_component = component_class(
**component_parameters, random_seed=self.random_seed
)
except (ValueError, TypeError) as e:
self._is_instantiated = False
err = "Error received when instantiating component {} with the following arguments {}".format(
component_name, component_parameters
)
raise ValueError(err) from e
component_instances[component_name] = new_component
elif isinstance(component_class, ComponentBase):
component_instances[component_name] = component_class
self.component_instances = component_instances
return self
|
Instantiates all uninstantiated components within the graph using the given parameters. An error will be raised if a component is already instantiated but the parameters dict contains arguments for that component.
Args:
parameters (dict): Dictionary with component names as keys and dictionary of that component's parameters as values.
An empty dictionary {} or None implies using all default values for component parameters. If a component
in the component graph is already instantiated, it will not use any of its parameters defined in this dictionary. Defaults to None.
Returns:
self
Raises:
ValueError: If component graph is already instantiated or if a component errored while instantiating.
|
https://github.com/alteryx/evalml/blob/12ea29f4cb62948566804f624d37442c2e5aeeea/evalml/pipelines/component_graph.py#L135-L177
|
import inspect
import warnings
import networkx as nx
import pandas as pd
import woodwork as ww
from networkx.algorithms.dag import topological_sort
from networkx.exception import NetworkXUnfeasible
from evalml.exceptions.exceptions import (
MethodPropertyNotFoundError,
MissingComponentError,
ParameterNotUsedWarning,
)
from evalml.pipelines.components import ComponentBase, Estimator, Transformer
from evalml.pipelines.components.utils import handle_component_class
from evalml.utils import get_logger, import_or_raise, infer_feature_types
logger = get_logger(__file__)
class ComponentGraph:
def __init__(self, component_dict=None, random_seed=0):
self.random_seed = random_seed
self.component_dict = component_dict or {}
if not isinstance(self.component_dict, dict):
raise ValueError(
"component_dict must be a dictionary which specifies the components and edges between components"
)
self._validate_component_dict()
self.component_instances = {}
self._is_instantiated = False
for component_name, component_info in self.component_dict.items():
component_class = handle_component_class(component_info[0])
self.component_instances[component_name] = component_class
self._validate_component_dict_edges()
self.input_feature_names = {}
self._feature_provenance = {}
self._i = 0
self._compute_order = self.generate_order(self.component_dict)
def _validate_component_dict(self):
for _, component_inputs in self.component_dict.items():
if not isinstance(component_inputs, list):
raise ValueError(
"All component information should be passed in as a list"
)
def _validate_component_dict_edges(self):
for _, component_inputs in self.component_dict.items():
component_inputs = component_inputs[1:]
has_feature_input = any(
component_input.endswith(".x") or component_input == "X"
for component_input in component_inputs
)
num_target_inputs = sum(
component_input.endswith(".y") or component_input == "y"
for component_input in component_inputs
)
if not has_feature_input:
raise ValueError(
"All components must have at least one input feature (.x/X) edge."
)
if num_target_inputs != 1:
raise ValueError(
"All components must have exactly one target (.y/y) edge."
)
def check_all_inputs_have_correct_syntax(edge):
return not (
edge.endswith(".y")
or edge == "y"
or edge.endswith(".x")
or edge == "X"
)
if (
len(
list(filter(check_all_inputs_have_correct_syntax, component_inputs))
)
!= 0
):
raise ValueError(
"All edges must be specified as either an input feature ('X'/.x) or input target ('y'/.y)."
)
target_inputs = [
component
for component in component_inputs
if (component.endswith(".y"))
]
if target_inputs:
target_component_name = target_inputs[0][:-2]
target_component_class = self.get_component(target_component_name)
if not target_component_class.modifies_target:
raise ValueError(
f"{target_inputs[0]} is not a valid input edge because {target_component_name} does not return a target."
)
@property
def compute_order(self):
return self._compute_order
@property
def default_parameters(self):
defaults = {}
for component in self.component_instances.values():
if component.default_parameters:
defaults[component.name] = component.default_parameters
return defaults
|
BSD 3-Clause New or Revised License
|
jmcgeheeiv/pyfakefs
|
pyfakefs/fake_filesystem.py
|
FakeFile.st_mtime
|
python
|
def st_mtime(self) -> float:
return self.stat_result.st_mtime
|
Return the modification time of the fake file.
|
https://github.com/jmcgeheeiv/pyfakefs/blob/589bae0c58298d92fea0e463ab5104166cd6e63c/pyfakefs/fake_filesystem.py#L369-L371
|
import errno
import heapq
import io
import locale
import os
import random
import sys
import traceback
import uuid
from collections import namedtuple
from doctest import TestResults
from enum import Enum
from stat import (
S_IFREG, S_IFDIR, S_ISLNK, S_IFMT, S_ISDIR, S_IFLNK, S_ISREG, S_IFSOCK
)
from types import ModuleType, TracebackType
from typing import (
List, Optional, Callable, Union, Any, Dict, Tuple, cast, AnyStr, overload,
NoReturn, ClassVar, IO, Iterator, TextIO, Type
)
from pyfakefs.deprecator import Deprecator
from pyfakefs.extra_packages import use_scandir
from pyfakefs.fake_scandir import scandir, walk, ScanDirIter
from pyfakefs.helpers import (
FakeStatResult, BinaryBufferIO, TextBufferIO,
is_int_type, is_byte_string, is_unicode_string, make_string_path,
IS_PYPY, to_string, matching_string, real_encoding, now, AnyPath, to_bytes
)
from pyfakefs import __version__
PERM_READ = 0o400
PERM_WRITE = 0o200
PERM_EXE = 0o100
PERM_DEF = 0o777
PERM_DEF_FILE = 0o666
PERM_ALL = 0o7777
_OpenModes = namedtuple(
'_OpenModes',
'must_exist can_read can_write truncate append must_not_exist'
)
_OPEN_MODE_MAP = {
'r': (True, True, False, False, False, False),
'w': (False, False, True, True, False, False),
'a': (False, False, True, False, True, False),
'r+': (True, True, True, False, False, False),
'w+': (False, True, True, True, False, False),
'a+': (False, True, True, False, True, False),
'x': (False, False, True, False, False, True),
'x+': (False, True, True, False, False, True)
}
AnyFileWrapper = Union[
"FakeFileWrapper", "FakeDirWrapper",
"StandardStreamWrapper", "FakePipeWrapper"
]
AnyString = Union[str, bytes]
AnyFile = Union["FakeFile", "FakeDirectory"]
if sys.platform.startswith('linux'):
_MAX_LINK_DEPTH = 40
else:
_MAX_LINK_DEPTH = 32
NR_STD_STREAMS = 3
if sys.platform == 'win32':
USER_ID = 1
GROUP_ID = 1
else:
USER_ID = os.getuid()
GROUP_ID = os.getgid()
class OSType(Enum):
LINUX = "linux"
MACOS = "macos"
WINDOWS = "windows"
class PatchMode(Enum):
OFF = 1
AUTO = 2
ON = 3
def set_uid(uid: int) -> None:
global USER_ID
USER_ID = uid
def set_gid(gid: int) -> None:
global GROUP_ID
GROUP_ID = gid
def reset_ids() -> None:
if sys.platform == 'win32':
set_uid(1)
set_gid(1)
else:
set_uid(os.getuid())
set_gid(os.getgid())
def is_root() -> bool:
return USER_ID == 0
class FakeLargeFileIoException(Exception):
def __init__(self, file_path: str) -> None:
super(FakeLargeFileIoException, self).__init__(
'Read and write operations not supported for '
'fake large file: %s' % file_path)
def _copy_module(old: ModuleType) -> ModuleType:
saved = sys.modules.pop(old.__name__, None)
new = __import__(old.__name__)
if saved is not None:
sys.modules[old.__name__] = saved
return new
class FakeFile:
stat_types = (
'st_mode', 'st_ino', 'st_dev', 'st_nlink', 'st_uid', 'st_gid',
'st_size', 'st_atime', 'st_mtime', 'st_ctime',
'st_atime_ns', 'st_mtime_ns', 'st_ctime_ns'
)
def __init__(self, name: AnyStr,
st_mode: int = S_IFREG | PERM_DEF_FILE,
contents: Optional[AnyStr] = None,
filesystem: Optional["FakeFilesystem"] = None,
encoding: Optional[str] = None,
errors: Optional[str] = None,
side_effect: Optional[Callable[["FakeFile"], None]] = None):
if filesystem is None:
raise ValueError('filesystem shall not be None')
self.filesystem: FakeFilesystem = filesystem
self._side_effect: Optional[Callable] = side_effect
self.name: AnyStr = name
self.stat_result = FakeStatResult(
filesystem.is_windows_fs, USER_ID, GROUP_ID, now())
if st_mode >> 12 == 0:
st_mode |= S_IFREG
self.stat_result.st_mode = st_mode
self.st_size: int = 0
self.encoding: Optional[str] = real_encoding(encoding)
self.errors: str = errors or 'strict'
self._byte_contents: Optional[bytes] = self._encode_contents(contents)
self.stat_result.st_size = (
len(self._byte_contents) if self._byte_contents is not None else 0)
self.epoch: int = 0
self.parent_dir: Optional[FakeDirectory] = None
self.xattr: Dict = {}
self.opened_as: AnyString = ''
@property
def byte_contents(self) -> Optional[bytes]:
return self._byte_contents
@property
def contents(self) -> Optional[str]:
if isinstance(self.byte_contents, bytes):
return self.byte_contents.decode(
self.encoding or locale.getpreferredencoding(False),
errors=self.errors)
return None
@property
def st_ctime(self) -> float:
return self.stat_result.st_ctime
@st_ctime.setter
def st_ctime(self, val: float) -> None:
self.stat_result.st_ctime = val
@property
def st_atime(self) -> float:
return self.stat_result.st_atime
@st_atime.setter
def st_atime(self, val: float) -> None:
self.stat_result.st_atime = val
@property
|
Apache License 2.0
|
koalixswitzerland/koalixcrm
|
koalixcrm/plugin.py
|
PluginProcessor.resolve_name
|
python
|
def resolve_name(name, package, level):
if not hasattr(package, 'rindex'):
raise ValueError("'package' not set to a string")
dot = len(package)
for x in xrange(level, 1, -1):
try:
dot = package.rindex('.', 0, dot)
except ValueError:
raise ValueError("attempted relative import beyond top-level "
"package")
return "%s.%s" % (package[:dot], name)
|
Return the absolute name of the module to be imported.
|
https://github.com/koalixswitzerland/koalixcrm/blob/87d125379845d6ab990c19500d63cbed4051040a/koalixcrm/plugin.py#L26-L37
|
import sys
from django.conf import settings
class PluginProcessor(object):
@staticmethod
def converttorelativestring(pluginmodule, nameofinline):
output = []
if len(nameofinline) != 0:
output.append(pluginmodule.__name__ + "." + nameofinline[0])
return output
else:
return []
@staticmethod
def getAllPlugins():
allpluginmodules = []
for plugin in settings.KOALIXCRM_PLUGINS:
temp = __import__(plugin + ".admin")
allpluginmodules.append(sys.modules[plugin + ".admin"]);
return allpluginmodules
@staticmethod
|
BSD 3-Clause New or Revised License
|
twitivity/twitivity
|
twitivity.py
|
Activity.webhooks
|
python
|
def webhooks(self) -> json:
try:
return self.api(method="GET", endpoint=f"all/webhooks.json").json()
except Exception as e:
raise e
|
Returns all environments, webhook URLs and their statuses for the authenticating app.
Only one webhook URL can be registered to each environment.
|
https://github.com/twitivity/twitivity/blob/ca6d29413423409bc8e9c8841a21c6c3f86f60ea/twitivity.py#L98-L105
|
import json
import hmac
import os
import hashlib
import base64
import re
import requests
from typing import NoReturn
from abc import ABC, abstractmethod
from tweepy.error import TweepError
from tweepy import OAuthHandler
from flask import Flask, request
class Activity:
_protocol: str = "https:/"
_host: str = "api.twitter.com"
_version: str = "1.1"
_product: str = "account_activity"
_auth: OAuthHandler = OAuthHandler(
os.environ["consumer_key"], os.environ["consumer_secret"]
)
_auth.set_access_token(
os.environ["access_token"], os.environ["access_token_secret"]
)
def api(self, method: str, endpoint: str, data: dict = None) -> json:
try:
with requests.Session() as r:
response = r.request(
url="/".join(
[
self._protocol,
self._host,
self._version,
self._product,
endpoint,
]
),
method=method,
auth=self._auth.apply_auth(),
data=data,
)
return response
except TweepError:
raise
def register_webhook(self, callback_url: str) -> json:
try:
return self.api(
method="POST",
endpoint=f"all/{os.environ['env_name']}/webhooks.json",
data={"url": callback_url},
).json()
except Exception as e:
raise e
def refresh(self, webhook_id: str) -> NoReturn:
try:
return self.api(
method="PUT",
endpoint=f"all/{os.environ['env_name']}/webhooks/{webhook_id}.json",
)
except Exception as e:
raise e
def delete (self, webhook_id: str) -> NoReturn:
try:
return self.api(
method="DELETE",
endpoint=f"all/{os.environ['env_name']}/webhooks/{webhook_id}.json",
)
except Exception as e:
raise e
def subscribe(self) -> NoReturn:
try:
return self.api(
method="POST",
endpoint=f"all/{os.environ['env_name']}/subscriptions.json",
)
except Exception:
raise
|
MIT License
|
iscre4m/pycarddeck
|
pyCardDeck/deck.py
|
Deck.__str__
|
python
|
def __str__(self) -> str:
if self.name:
return self.name
else:
return 'Deck of cards'
|
Used for representation of the object for humans
called with str(Deck)
This method is also called when you are providing arguments to str.format(), you can just provide
your Deck instance and it will magically know the name, yay!
:return: Name of the deck if it has a name or 'Deck of cards' if it has none
:rtype: string
|
https://github.com/iscre4m/pycarddeck/blob/2171ca53852aeb690019a27f2e774ffb5efaff5c/pyCardDeck/deck.py#L477-L493
|
import logging
import os
import yaml
import jsonpickle
from typing import List, Union, Optional, Iterator
from random import shuffle, randint, randrange
from .errors import OutOfCards, NotACard, NoCards, CardNotFound, UnknownFormat
from .cards import CardType
log = logging.getLogger(__name__)
class Deck:
def __init__(self, cards: Optional[List[CardType]] = None, reshuffle: object = True, name: str = None,
discard: Optional['Deck'] = None):
self.name = name
if cards is None:
self._cards = []
else:
self._cards = cards
if discard is None:
self._discard_pile = []
else:
self._discard_pile = discard
self._reshuffle = reshuffle
self.set_file_location("exported_deck")
def _get_card(self, position: str = "top") -> CardType:
if len(self._cards):
positions = {
"top": 0,
"bottom": len(self._cards) - 1,
"random": randrange(len(self._cards))
}
card = self._cards.pop(positions[position])
self.reshuffle_if_empty()
log.debug('Card drawn from %s: %s', (position, card))
return card
elif not self._reshuffle:
log.debug('You tried to draw. No more cards to be drawn. Position: %s', position)
raise OutOfCards('You tried to draw. No more cards to be drawn. Position: %s', position)
else:
log.debug('You tried to draw from an empty deck. Position: %s', position)
raise NoCards('You tried to draw from an empty deck. Position: %s', position)
def draw(self) -> CardType:
return self._get_card("top")
def draw_bottom(self) -> CardType:
return self._get_card("bottom")
def draw_random(self) -> CardType:
return self._get_card("random")
def draw_specific(self, specific_card: CardType) -> CardType:
log.debug('Attempting to find card: %s', specific_card)
if len(self._cards):
for available_card in self._cards:
if _card_compare(specific_card, available_card):
card = available_card
break
else:
log.debug('Specific card not found in the deck')
raise CardNotFound('Specific card not found in the deck')
self._cards.remove(card)
self.reshuffle_if_empty()
log.debug('Specific card drawn: %s', card)
return card
else:
log.debug('You tried to draw a specific card from an empty deck')
raise NoCards('You tried to draw a specific card from an empty deck')
def card_exists(self, card: CardType) -> bool:
found = False
for available_card in self._cards:
if _card_compare(card, available_card):
found = True
break
log.debug('Card %s exists in the deck: %s', card, found)
return found
def shuffle(self) -> None:
if len(self._cards):
shuffle(self._cards)
log.debug('Deck shuffled')
else:
log.warning('You tried to shuffle an empty deck')
raise NoCards('You tried to shuffle an empty deck')
def reshuffle_if_empty(self) -> None:
if not len(self._cards) and self._reshuffle:
self.shuffle_back()
def shuffle_back(self) -> None:
for card in self._discard_pile:
self._cards.append(card)
self.shuffle()
if isinstance(self._discard_pile, Deck):
self._discard_pile.clear()
else:
self._discard_pile = []
log.debug('Cards have been shuffled back from the discard pile')
def discard(self, card: CardType) -> None:
log.debug("Card being discarded: %s", card)
if card or type(card) == int:
if isinstance(self._discard_pile, Deck):
self._discard_pile.add_single(card, 0)
else:
self._discard_pile.append(card)
log.debug('Card %s discarded', card)
else:
log.warning('You tried to insert %s (rank(%s) into a discard pile',
card, type(card).__name__)
raise NotACard('You tried to insert {} (rank({}) into a discard pile'
.format(card, type(card).__name__))
def clear(self) -> None:
self._cards = []
def add_single(self, card: CardType, position: int = False) -> None:
if position is not False:
self._cards.insert(position, card)
log.debug("Card %s inserted to position %i", card, position)
log.debug(self._cards)
else:
self._cards.insert(randint(0, len(self._cards)), card)
log.debug('Card %s shuffled into the deck', card)
def add_many(self, cards: List[CardType]) -> None:
for card in cards:
self.add_single(card)
log.debug('New cards shuffled into the deck')
def show_top(self, number: int) -> List[CardType]:
return self._cards[0:number]
def set_file_location(self, location) -> None:
self._save_location = os.path.abspath(os.path.expanduser(location))
def export(self, fmt: str, to_file: bool = False, location: str = None) -> str:
format_stripped = fmt.lower().strip()
if location:
self.set_file_location(location)
else:
self.set_file_location("exported_deck")
temp_location = self._save_location
self._save_location = None
exported = _get_exported_string(format_stripped, self)
self._save_location = temp_location
if to_file:
with open(self._save_location, 'w') as target_file:
target_file.writelines(exported)
log.debug("File exported to: %s", self._save_location)
return exported
def load(self, to_load: str, is_file: bool = False) -> None:
if is_file:
self.set_file_location(to_load)
with open(self._save_location, 'r') as file:
loadable = file.read()
else:
loadable = to_load
try:
result = jsonpickle.decode(loadable)
log.debug("loading JSON")
except Exception:
result = yaml.load(loadable)
log.debug("loading YAML")
try:
del result.__dict__["_save_location"]
self.__dict__.update(result.__dict__)
except AttributeError:
raise UnknownFormat
def load_standard_deck(self) -> None:
location = os.path.join(os.path.dirname(__file__), "standard_deck.yml")
data = yaml.load(open(location)).__dict__
del data["_save_location"]
self.__dict__.update(data)
@property
def cards_left(self) -> int:
if len(self._cards):
return len(self._cards)
else:
return 0
@property
def discarded(self) -> int:
return len(self._discard_pile)
@property
def json(self) -> str:
return self.export("json", to_file=False)
@property
def yaml(self) -> str:
return self.export("yaml")
@property
def empty(self) -> bool:
if len(self._cards):
return False
else:
return True
@property
def file_location(self) -> str:
return self._save_location
def __repr__(self) -> str:
return 'Deck(cards={0}, discarded={3}, reshuffle={1}, name={2})' .format(self.cards_left, self._reshuffle, self.name, self.discarded)
|
MIT License
|
beanbaginc/django-evolution
|
django_evolution/mutations.py
|
BaseModelMutation.mutate
|
python
|
def mutate(self, mutator, model):
raise NotImplementedError
|
Schedule a model mutation on the mutator.
This will instruct the mutator to perform one or more database
mutations for a model. Those will be scheduled and later executed on
the database, if not optimized out.
Args:
mutator (django_evolution.mutators.ModelMutator):
The mutator to perform an operation on.
model (MockModel):
The model being mutated.
Raises:
django_evolution.errors.EvolutionNotImplementedError:
The configured mutation is not supported on this type of
database.
|
https://github.com/beanbaginc/django-evolution/blob/fb76e44a2361a69a440dca086c0cc67ac6a4300d/django_evolution/mutations.py#L522-L541
|
from __future__ import unicode_literals
import inspect
from functools import partial
from django.db import models
from django.db.utils import DEFAULT_DB_ALIAS
from django_evolution.compat import six
from django_evolution.compat.datastructures import OrderedDict
from django_evolution.consts import UpgradeMethod
from django_evolution.db import EvolutionOperationsMulti
from django_evolution.db.sql_result import SQLResult
from django_evolution.db.state import DatabaseState
from django_evolution.errors import (CannotSimulate, SimulationFailure,
EvolutionNotImplementedError)
from django_evolution.mock_models import MockModel, MockRelated, create_field
from django_evolution.signature import (AppSignature,
ConstraintSignature,
FieldSignature,
IndexSignature,
ProjectSignature)
from django_evolution.utils.models import get_database_for_model_name
class Simulation(object):
def __init__(self, mutation, app_label, project_sig, database_state,
legacy_app_label=None, database=DEFAULT_DB_ALIAS):
assert isinstance(project_sig, ProjectSignature), 'project_sig must be a ProjectSignature instance'
assert (database_state is None or
isinstance(database_state, DatabaseState)), 'database_state must be None or a DatabaseState instance'
self.mutation = mutation
self.app_label = app_label
self.legacy_app_label = legacy_app_label or app_label
self.project_sig = project_sig
self.database_state = database_state
self.database = database
def get_evolver(self):
return EvolutionOperationsMulti(self.database,
self.database_state).get_evolver()
def get_app_sig(self):
app_sig = self.project_sig.get_app_sig(self.app_label)
if (app_sig is None and
self.legacy_app_label is not None and
self.legacy_app_label != self.app_label):
app_sig = self.project_sig.get_app_sig(self.legacy_app_label)
if app_sig:
return app_sig
self.fail('The application could not be found in the signature.')
def get_model_sig(self, model_name):
model_sig = self.get_app_sig().get_model_sig(model_name)
if model_sig:
return model_sig
self.fail('The model could not be found in the signature.',
model_name=model_name)
def get_field_sig(self, model_name, field_name):
field_sig = self.get_model_sig(model_name).get_field_sig(field_name)
if field_sig:
return field_sig
self.fail('The field could not be found in the signature.',
model_name=model_name,
field_name=field_name)
def fail(self, error, **error_vars):
msg = '%s %s' % (self.mutation.simulation_failure_error, error)
error_dict = {
'app_label': self.app_label,
}
error_dict.update(
(key, getattr(self.mutation, value))
for key, value in six.iteritems(self.mutation.error_vars)
)
error_dict.update(error_vars)
raise SimulationFailure(msg % error_dict)
class BaseMutation(object):
simulation_failure_error = 'Cannot simulate the mutation.'
error_vars = {}
def generate_hint(self):
return '%s(%s)' % (self.__class__.__name__,
', '.join(self.get_hint_params()))
def get_hint_params(self):
return []
def generate_dependencies(self, app_label, **kwargs):
return {}
def run_simulation(self, **kwargs):
self.simulate(Simulation(self, **kwargs))
def simulate(self, simulation):
raise NotImplementedError
def mutate(self, mutator):
raise NotImplementedError
def is_mutable(self, app_label, project_sig, database_state, database):
return False
def serialize_value(self, value):
if isinstance(value, six.string_types):
value = repr(six.text_type(value))
if value.startswith('u'):
value = value[1:]
elif isinstance(value, list):
value = '[%s]' % ', '.join(
self.serialize_value(item)
for item in value
)
elif isinstance(value, tuple):
if len(value) == 1:
suffix = ','
else:
suffix = ''
value = '(%s%s)' % (
', '.join(
self.serialize_value(item)
for item in value
),
suffix,
)
elif isinstance(value, dict):
value = '{%s}' % ', '.join(
'%s: %s' % (self.serialize_value(dict_key),
self.serialize_value(dict_value))
for dict_key, dict_value in six.iteritems(value)
)
elif inspect.isclass(value):
if value.__module__.startswith('django.db.models'):
prefix = 'models.'
else:
prefix = ''
return prefix + value.__name__
elif hasattr(value, 'deconstruct'):
path, args, kwargs = value.deconstruct()
if path.startswith('django.db.models'):
path = 'models.%s' % path.rsplit('.', 1)[-1]
parts = ['%s(' % path]
if args:
parts.append(', '.join(
self.serialize_value(arg)
for arg in args
))
if kwargs:
parts.append(', '.join(
self.serialize_attr(key, value)
for key, value in six.iteritems(kwargs)
))
parts.append(')')
value = ''.join(parts)
else:
value = repr(value)
return value
def serialize_attr(self, attr_name, attr_value):
return '%s=%s' % (attr_name, self.serialize_value(attr_value))
def __hash__(self):
return id(self)
def __eq__(self, other):
return (type(self) is type(other) and
self.generate_hint() == other.generate_hint())
def __str__(self):
return self.generate_hint()
def __repr__(self):
return '<%s>' % self
class BaseModelMutation(BaseMutation):
error_vars = dict({
'model_name': 'model_name',
}, **BaseMutation.error_vars)
def __init__(self, model_name):
super(BaseModelMutation, self).__init__()
self.model_name = model_name
def evolver(self, model, database_state, database=None):
if database is None:
database = get_database_for_model_name(model.app_label,
model.model_name)
return EvolutionOperationsMulti(database, database_state).get_evolver()
|
BSD 3-Clause New or Revised License
|
tanwanirahul/django-batch-requests
|
batch_requests/settings.py
|
import_class
|
python
|
def import_class(class_path):
module_name, class_name = class_path.rsplit(".", 1)
module = import_module(module_name)
claz = getattr(module, class_name)
return claz
|
Imports the class for the given class name.
|
https://github.com/tanwanirahul/django-batch-requests/blob/9c5afc42f7542f466247f4ffed9c44e1c49fa20d/batch_requests/settings.py#L27-L34
|
from django.conf import settings
from django.utils.importlib import import_module
import multiprocessing
DEFAULTS = {
"HEADERS_TO_INCLUDE": ["HTTP_USER_AGENT", "HTTP_COOKIE"],
"DEFAULT_CONTENT_TYPE": "application/json",
"USE_HTTPS": False,
"EXECUTE_PARALLEL": False,
"CONCURRENT_EXECUTOR": "batch_requests.concurrent.executor.ThreadBasedExecutor",
"NUM_WORKERS": multiprocessing.cpu_count() * 4,
"ADD_DURATION_HEADER": True,
"DURATION_HEADER_NAME": "batch_requests.duration",
"MAX_LIMIT": 20
}
USER_DEFINED_SETTINGS = getattr(settings, 'BATCH_REQUESTS', {})
|
MIT License
|
decred/tinydecred
|
decred/decred/util/helpers.py
|
mktime
|
python
|
def mktime(year, month=None, day=None):
if month:
if day:
return calendar.timegm(
time.strptime(
"%i-%s-%s" % (year, str(month).zfill(2), str(day).zfill(2)),
"%Y-%m-%d",
)
)
return calendar.timegm(
time.strptime("%i-%s" % (year, str(month).zfill(2)), "%Y-%m")
)
return calendar.timegm(time.strptime(str(year), "%Y"))
|
Make a timestamp from year, month, day.
Args:
year (int): the year.
month (int), optional: the month.
day (int), optional: the day.
|
https://github.com/decred/tinydecred/blob/f7f7d9f7da8d49d9ae9a72e5579b07a3b8572267/decred/decred/util/helpers.py#L50-L70
|
import calendar
import configparser
import logging
from logging.handlers import RotatingFileHandler
import os
import platform
import sys
import time
import traceback
from urllib.parse import urlsplit, urlunsplit
from appdirs import AppDirs
def formatTraceback(err):
return "".join(traceback.format_exception(None, err, err.__traceback__))
def mkdir(path):
if os.path.isdir(path):
return True
if os.path.isfile(path):
return False
os.makedirs(path)
return True
|
ISC License
|
googleapis/python-speech
|
google/cloud/speech_v1/services/speech/transports/grpc_asyncio.py
|
SpeechGrpcAsyncIOTransport.long_running_recognize
|
python
|
def long_running_recognize(
self,
) -> Callable[
[cloud_speech.LongRunningRecognizeRequest], Awaitable[operations_pb2.Operation]
]:
if "long_running_recognize" not in self._stubs:
self._stubs["long_running_recognize"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1.Speech/LongRunningRecognize",
request_serializer=cloud_speech.LongRunningRecognizeRequest.serialize,
response_deserializer=operations_pb2.Operation.FromString,
)
return self._stubs["long_running_recognize"]
|
r"""Return a callable for the long running recognize method over gRPC.
Performs asynchronous speech recognition: receive results via
the google.longrunning.Operations interface. Returns either an
``Operation.error`` or an ``Operation.response`` which contains
a ``LongRunningRecognizeResponse`` message. For more information
on asynchronous speech recognition, see the
`how-to <https://cloud.google.com/speech-to-text/docs/async-recognize>`__.
Returns:
Callable[[~.LongRunningRecognizeRequest],
Awaitable[~.Operation]]:
A function that, when called, will call the underlying RPC
on the server.
|
https://github.com/googleapis/python-speech/blob/cc97a580bb4e693a1c3e5170064164e0c5d8482b/google/cloud/speech_v1/services/speech/transports/grpc_asyncio.py#L280-L310
|
import warnings
from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union
from google.api_core import gapic_v1
from google.api_core import grpc_helpers_async
from google.api_core import operations_v1
from google.auth import credentials as ga_credentials
from google.auth.transport.grpc import SslCredentials
import packaging.version
import grpc
from grpc.experimental import aio
from google.cloud.speech_v1.types import cloud_speech
from google.longrunning import operations_pb2
from .base import SpeechTransport, DEFAULT_CLIENT_INFO
from .grpc import SpeechGrpcTransport
class SpeechGrpcAsyncIOTransport(SpeechTransport):
_grpc_channel: aio.Channel
_stubs: Dict[str, Callable] = {}
@classmethod
def create_channel(
cls,
host: str = "speech.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: Optional[str] = None,
scopes: Optional[Sequence[str]] = None,
quota_project_id: Optional[str] = None,
**kwargs,
) -> aio.Channel:
return grpc_helpers_async.create_channel(
host,
credentials=credentials,
credentials_file=credentials_file,
quota_project_id=quota_project_id,
default_scopes=cls.AUTH_SCOPES,
scopes=scopes,
default_host=cls.DEFAULT_HOST,
**kwargs,
)
def __init__(
self,
*,
host: str = "speech.googleapis.com",
credentials: ga_credentials.Credentials = None,
credentials_file: Optional[str] = None,
scopes: Optional[Sequence[str]] = None,
channel: aio.Channel = None,
api_mtls_endpoint: str = None,
client_cert_source: Callable[[], Tuple[bytes, bytes]] = None,
ssl_channel_credentials: grpc.ChannelCredentials = None,
client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None,
quota_project_id=None,
client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
always_use_jwt_access: Optional[bool] = False,
) -> None:
self._grpc_channel = None
self._ssl_channel_credentials = ssl_channel_credentials
self._stubs: Dict[str, Callable] = {}
self._operations_client = None
if api_mtls_endpoint:
warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning)
if client_cert_source:
warnings.warn("client_cert_source is deprecated", DeprecationWarning)
if channel:
credentials = False
self._grpc_channel = channel
self._ssl_channel_credentials = None
else:
if api_mtls_endpoint:
host = api_mtls_endpoint
if client_cert_source:
cert, key = client_cert_source()
self._ssl_channel_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
else:
self._ssl_channel_credentials = SslCredentials().ssl_credentials
else:
if client_cert_source_for_mtls and not ssl_channel_credentials:
cert, key = client_cert_source_for_mtls()
self._ssl_channel_credentials = grpc.ssl_channel_credentials(
certificate_chain=cert, private_key=key
)
super().__init__(
host=host,
credentials=credentials,
credentials_file=credentials_file,
scopes=scopes,
quota_project_id=quota_project_id,
client_info=client_info,
always_use_jwt_access=always_use_jwt_access,
)
if not self._grpc_channel:
self._grpc_channel = type(self).create_channel(
self._host,
credentials=self._credentials,
credentials_file=credentials_file,
scopes=self._scopes,
ssl_credentials=self._ssl_channel_credentials,
quota_project_id=quota_project_id,
options=[
("grpc.max_send_message_length", -1),
("grpc.max_receive_message_length", -1),
],
)
self._prep_wrapped_messages(client_info)
@property
def grpc_channel(self) -> aio.Channel:
return self._grpc_channel
@property
def operations_client(self) -> operations_v1.OperationsAsyncClient:
if self._operations_client is None:
self._operations_client = operations_v1.OperationsAsyncClient(
self.grpc_channel
)
return self._operations_client
@property
def recognize(
self,
) -> Callable[
[cloud_speech.RecognizeRequest], Awaitable[cloud_speech.RecognizeResponse]
]:
if "recognize" not in self._stubs:
self._stubs["recognize"] = self.grpc_channel.unary_unary(
"/google.cloud.speech.v1.Speech/Recognize",
request_serializer=cloud_speech.RecognizeRequest.serialize,
response_deserializer=cloud_speech.RecognizeResponse.deserialize,
)
return self._stubs["recognize"]
@property
|
Apache License 2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.