repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
wdm0006/dummyrdd
|
dummy_spark/rdd.py
|
RDD.countByKey
|
python
|
def countByKey(self):
raise NotImplementedError
|
NotImplemented
:return:
|
https://github.com/wdm0006/dummyrdd/blob/d66c30495cbaa001a744128c89d41fb55741fba5/dummy_spark/rdd.py#L845-L851
|
import random
import uuid
from collections import OrderedDict
from functools import reduce
from dummy_spark.resultsiterable import ResultIterable
__author__ = 'willmcginnis'
class RDD(object):
def __init__(self, jrdd, ctx, jrdd_deserializer=None):
self._id = str(uuid.uuid4())
if jrdd is None:
self._jrdd = []
else:
if isinstance(jrdd, list):
self._jrdd = jrdd
elif isinstance(jrdd, set):
self._jrdd = list(jrdd)
else:
raise AttributeError('Type %s for jrdd not supported' % (type(jrdd), ))
self.ctx = ctx
self.is_cached = True
self._name = 'dummpy-rdd'
self.is_checkpointed = False
self._jrdd_deserializer = jrdd_deserializer
self.partitioner = None
def id(self):
return self._id
@property
def context(self):
return self.ctx
def name(self):
return self._name
def setName(self, name):
self._name = name
return self
def __repr__(self):
return str(self._jrdd)
def cache(self):
return self
def persist(self, storageLevel=None):
return self
def unpersist(self):
return self
def _reserialize(self, serializer=None):
return self
def checkpoint(self):
pass
def isCheckpointed(self):
return True
def getCheckpointFile(self):
return None
def map(self, f, preservesPartitioning=False):
data = list(map(f, self._jrdd))
return RDD(data, self.ctx)
def flatMap(self, f, preservesPartitioning=False):
data = [item for sl in map(f, self._jrdd) for item in sl]
return RDD(data, self.ctx)
def mapPartitions(self, f, preservesPartitioning=False):
return self.map(f, preservesPartitioning=preservesPartitioning)
def getNumPartitions(self):
return 1
def filter(self, f):
data = list(filter(f, self._jrdd))
return RDD(data, self.ctx)
def distinct(self, numPartitions=None):
data = set(self._jrdd)
return RDD(data, self.ctx)
def sample(self, withReplacement, fraction, seed=None):
assert fraction >= 0.0, "Negative fraction value: %s" % fraction
if seed is not None:
random.seed(seed)
idx_list = list(range(len(self._jrdd)))
if withReplacement:
data = [self._jrdd[random.choice(idx_list)] for _ in list(range(int(fraction * len(self._jrdd))))]
else:
random.shuffle(idx_list)
data = [self._jrdd[idx] for idx in idx_list[:int(fraction * len(self._jrdd))]]
return RDD(data, self.ctx)
def randomSplit(self, weights, seed=None):
pass
def takeSample(self, withReplacement, num, seed=None):
assert num >= 0.0, "Negative sample num: %s" % num
if seed is not None:
random.seed(seed)
if withReplacement:
out = [self._jrdd[random.choice(list(range(len(self._jrdd))))] for _ in num]
else:
idx_list = list(range(len(self._jrdd)))
random.shuffle(idx_list)
out = [self._jrdd[idx] for idx in idx_list[:num]]
return out
def union(self, other):
return RDD(self._jrdd + other._jrdd, self.ctx)
def intersection(self, other):
data = [item for item in self._jrdd if item in other._jrdd]
return RDD(data, self.ctx)
def __add__(self, other):
if not isinstance(other, RDD):
raise TypeError
return self.union(other)
def repartitionAndSortWithinPartitions(self, numPartitions=None, partitionFunc=None, ascending=True, keyfunc=lambda x: x):
data = sorted(self._jrdd, key=keyfunc, reverse=ascending)
return RDD(data, self.ctx)
def sortByKey(self, ascending=True, numPartitions=None, keyfunc=lambda x: x):
data = sorted(self._jrdd, key=keyfunc, reverse=not ascending)
return RDD(data, self.ctx)
def sortBy(self, keyfunc, ascending=True, numPartitions=None):
data = sorted(self._jrdd, key=keyfunc, reverse=not ascending)
return RDD(data, self.ctx)
def glom(self):
return self._jrdd
def cartesian(self, other):
data = [(t, u) for t in self._jrdd for u in other._jrdd]
return RDD(data, self.ctx)
def groupBy(self, f, numPartitions=None):
return self.map(lambda x: (f(x), x)).groupByKey(numPartitions)
def foreach(self, f):
return self.map(f)
def foreachPartition(self, f):
return f(self._jrdd)
def collect(self):
return self._jrdd
def sum(self):
return sum(self._jrdd)
def count(self):
return len(self._jrdd)
def mean(self):
return float(sum(self._jrdd)) / len(self._jrdd)
def take(self, num):
return self._jrdd[:num]
def first(self):
return self._jrdd[0]
def isEmpty(self):
return len(self._jrdd) == 0
def reduceByKey(self, func, numPartitions=None):
keys = {kv[0] for kv in self._jrdd}
data = [(key, reduce(func, [kv[1] for kv in self._jrdd if kv[0] == key])) for key in keys]
return RDD(data, self.ctx)
def groupByKey(self, numPartitions=None):
keys = {x[0] for x in self._jrdd}
out = {k: ResultIterable([x[1] for x in self._jrdd if x[0] == k]) for k in keys}
data = list(out.items())
return RDD(data, self.ctx)
def flatMapValues(self, f):
flat_map_fn = lambda kv: ((kv[0], x) for x in f(kv[1]))
return self.flatMap(flat_map_fn, preservesPartitioning=True)
def mapValues(self, f):
map_values_fn = lambda kv: (kv[0], f(kv[1]))
return self.map(map_values_fn, preservesPartitioning=True)
def cogroup(self, other, numPartitions=None):
vs = {x[0] for x in self._jrdd}
us = {x[0] for x in other._jrdd}
keys = vs.union(us)
data = [
(
k,
([v[1] for v in self._jrdd if v[0] == k]),
([u[1] for u in other._jrdd if u[0] == k])
)
for k in keys
]
return RDD(data, self.ctx)
def zip(self, other):
data = list(zip(other, self._jrdd))
return RDD(data, self.ctx)
def zipWithIndex(self):
data = [(b, a) for a, b in list(enumerate(self._jrdd))]
return RDD(data, self.ctx)
def _defaultReducePartitions(self):
return 1
def lookup(self, key):
return [x for x in self._jrdd if x[0] == key]
def countApprox(self, timeout, confidence=0.95):
return len(self._jrdd)
def sumApprox(self, timeout, confidence=0.95):
return sum(self._jrdd)
def meanApprox(self, timeout, confidence=0.95):
return float(sum(self._jrdd)) / len(self._jrdd)
def countApproxDistinct(self, relativeSD=0.05):
return len(set(self._jrdd))
def toLocalIterator(self):
for row in self._jrdd:
yield row
def max(self, key=None):
if key is None:
return max(self._jrdd)
else:
raise NotImplementedError
def min(self, key=None):
if key is None:
return min(self._jrdd)
else:
raise NotImplementedError
def _pickled(self):
raise NotImplementedError
def mapPartitionsWithIndex(self, f, preservesPartitioning=False):
raise NotImplementedError
@staticmethod
def _computeFractionForSampleSize(sampleSizeLowerBound, total, withReplacement):
raise NotImplementedError
def pipe(self, command, env=None):
raise NotImplementedError
def reduce(self, f):
raise NotImplementedError
def treeReduce(self, f, depth=2):
raise NotImplementedError
def fold(self, zeroValue, op):
raise NotImplementedError
def aggregate(self, zeroValue, seqOp, combOp):
raise NotImplementedError
def treeAggregate(self, zeroValue, seqOp, combOp, depth=2):
raise NotImplementedError
def stats(self):
raise NotImplementedError
def histogram(self, buckets):
raise NotImplementedError
def variance(self):
raise NotImplementedError
def stdev(self):
raise NotImplementedError
def sampleStdev(self):
raise NotImplementedError
def sampleVariance(self):
raise NotImplementedError
def countByValue(self):
raise NotImplementedError
def top(self, num, key=None):
raise NotImplementedError
def takeOrdered(self, num, key=None):
raise NotImplementedError
def saveAsNewAPIHadoopDataset(self, conf, keyConverter=None, valueConverter=None):
raise NotImplementedError
def saveAsNewAPIHadoopFile(self, path, outputFormatClass, keyClass=None, valueClass=None, keyConverter=None, valueConverter=None, conf=None):
raise NotImplementedError
def saveAsHadoopDataset(self, conf, keyConverter=None, valueConverter=None):
raise NotImplementedError
def saveAsHadoopFile(self, path, outputFormatClass, keyClass=None, valueClass=None, keyConverter=None, valueConverter=None, conf=None, compressionCodecClass=None):
raise NotImplementedError
def saveAsSequenceFile(self, path, compressionCodecClass=None):
raise NotImplementedError
def saveAsPickleFile(self, path, batchSize=10):
raise NotImplementedError
def saveAsTextFile(self, path, compressionCodecClass=None):
raise NotImplementedError
def collectAsMap(self):
raise NotImplementedError
def keys(self):
return RDD(list(OrderedDict(self._jrdd).keys()), self.ctx)
def values(self):
return RDD(list(OrderedDict(self._jrdd).values()), self.ctx)
def reduceByKeyLocally(self, func):
raise NotImplementedError
|
BSD 3-Clause New or Revised License
|
lmjohns3/kohonen
|
kohonen/kohonen.py
|
weighted_euclidean_metric
|
python
|
def weighted_euclidean_metric(weights):
def calculate(x, y):
d = x - y
return np.sqrt(np.sum(d * d * weights, axis=-1))
return calculate
|
Implements a standard euclidean distance with weighted dimensions.
|
https://github.com/lmjohns3/kohonen/blob/2155cf9e99dbf5e7082c4294d561ffd70e96341c/kohonen/kohonen.py#L70-L75
|
import numpy as np
def cosine_metric(x, y):
nx = np.sqrt(np.sum(x * x, axis=-1))
ny = np.sqrt(np.sum(y * y, axis=-1))
return 1 - np.sum(x * y, axis=-1) / nx / ny
def euclidean_metric(x, y):
d = x - y
return np.sqrt(np.sum(d * d, axis=-1))
def manhattan_metric(x, y):
d = x - y
return np.sum(np.abs(d), axis=-1)
|
MIT License
|
jborean93/ntlm-auth
|
ntlm_auth/session_security.py
|
SessionSecurity.get_signature
|
python
|
def get_signature(self, message):
signature = calc_signature(message, self.negotiate_flags,
self.outgoing_signing_key,
self.outgoing_seq_num, self.outgoing_handle)
self.outgoing_seq_num += 1
return signature.get_data()
|
[MS-NLMP] v28.0 2016-07-14
3.4.4 Message Signature Functions
Will create the signature based on the message to send to the server.
Depending on the negotiate_flags set this could either be an NTLMv1
signature or NTLMv2 with Extended Session Security signature.
:param message: The message data that will be signed
:return signature: Either _NtlmMessageSignature1 or
_NtlmMessageSignature2 depending on the flags set
|
https://github.com/jborean93/ntlm-auth/blob/417db8b6fb0f9b5f86f314e257b8a4893f74c057/ntlm_auth/session_security.py#L209-L227
|
import binascii
import hashlib
import hmac
import struct
import ntlm_auth.compute_keys as compkeys
from ntlm_auth.constants import NegotiateFlags, SignSealConstants
from ntlm_auth.rc4 import ARC4
class _NtlmMessageSignature1(object):
EXPECTED_BODY_LENGTH = 16
def __init__(self, random_pad, checksum, seq_num):
self.version = b"\x01\x00\x00\x00"
self.random_pad = random_pad
self.checksum = checksum
self.seq_num = seq_num
def get_data(self):
signature = self.version
signature += self.random_pad
signature += self.checksum
signature += self.seq_num
assert self.EXPECTED_BODY_LENGTH == len(signature), "BODY_LENGTH: %d != signature: %d" % (self.EXPECTED_BODY_LENGTH, len(signature))
return signature
class _NtlmMessageSignature2(object):
EXPECTED_BODY_LENGTH = 16
def __init__(self, checksum, seq_num):
self.version = b"\x01\x00\x00\x00"
self.checksum = checksum
self.seq_num = seq_num
def get_data(self):
signature = self.version
signature += self.checksum
signature += self.seq_num
assert self.EXPECTED_BODY_LENGTH == len(signature), "BODY_LENGTH: %d != signature: %d" % (self.EXPECTED_BODY_LENGTH, len(signature))
return signature
class SessionSecurity(object):
def __init__(self, negotiate_flags, exported_session_key, source="client"):
self.negotiate_flags = negotiate_flags
self.exported_session_key = exported_session_key
self.outgoing_seq_num = 0
self.incoming_seq_num = 0
self._source = source
self._client_sealing_key = compkeys.get_seal_key(self.negotiate_flags, exported_session_key,
SignSealConstants.CLIENT_SEALING)
self._server_sealing_key = compkeys.get_seal_key(self.negotiate_flags, exported_session_key,
SignSealConstants.SERVER_SEALING)
self.outgoing_handle = None
self.incoming_handle = None
self.reset_rc4_state(True)
self.reset_rc4_state(False)
if source == "client":
self.outgoing_signing_key = compkeys.get_sign_key(exported_session_key, SignSealConstants.CLIENT_SIGNING)
self.incoming_signing_key = compkeys.get_sign_key(exported_session_key, SignSealConstants.SERVER_SIGNING)
elif source == "server":
self.outgoing_signing_key = compkeys.get_sign_key(exported_session_key, SignSealConstants.SERVER_SIGNING)
self.incoming_signing_key = compkeys.get_sign_key(exported_session_key, SignSealConstants.CLIENT_SIGNING)
else:
raise ValueError("Invalid source parameter %s, must be client "
"or server" % source)
def reset_rc4_state(self, outgoing=True):
csk = self._client_sealing_key
ssk = self._server_sealing_key
if outgoing:
self.outgoing_handle = ARC4(csk if self._source == 'client' else ssk)
else:
self.incoming_handle = ARC4(ssk if self._source == 'client' else csk)
def wrap(self, message):
if self.negotiate_flags & NegotiateFlags.NTLMSSP_NEGOTIATE_SEAL:
encrypted_message = self._seal_message(message)
signature = self.get_signature(message)
message = encrypted_message
elif self.negotiate_flags & NegotiateFlags.NTLMSSP_NEGOTIATE_SIGN:
signature = self.get_signature(message)
else:
signature = None
return message, signature
def unwrap(self, message, signature):
if self.negotiate_flags & NegotiateFlags.NTLMSSP_NEGOTIATE_SEAL:
message = self._unseal_message(message)
self.verify_signature(message, signature)
elif self.negotiate_flags & NegotiateFlags.NTLMSSP_NEGOTIATE_SIGN:
self.verify_signature(message, signature)
return message
def _seal_message(self, message):
encrypted_message = self.outgoing_handle.update(message)
return encrypted_message
def _unseal_message(self, message):
decrypted_message = self.incoming_handle.update(message)
return decrypted_message
|
MIT License
|
qin2dim/campusdailyautosign
|
src/BusinessCentralLayer/scaffold.py
|
_ScaffoldGuider._scaffold_refresh_cookie
|
python
|
def _scaffold_refresh_cookie():
from src.BusinessLogicLayer.apis.manager_cookie import check_admin_cookie
check_admin_cookie()
|
Check the timeliness of the cookie, and automatically pull the cookie if the cookie fails
:return:
|
https://github.com/qin2dim/campusdailyautosign/blob/1123bf9c54d2bbfc7d22de58987c558ddea2b1c3/src/BusinessCentralLayer/scaffold.py#L231-L238
|
from gevent import monkey
monkey.patch_all()
import gevent
from sys import argv
from typing import List
from src.BusinessCentralLayer.setting import *
_command_set = {
'deploy': "部署项目(定时任务/Flask 开启与否取决于yaml配置文件)",
"ping": "测试接口可用性",
"sign [StuNumbers]": "为某个/一系列账号签到(立即执行)",
"group": "为config.yaml group中的账号越权签到(General)",
"refresh_cookie": "检测并刷新越权cookie",
"example": "调用示例,如 python main.py ping"
}
class _ConfigQuarantine(object):
def __init__(self):
self.root = [
SERVER_DIR_DATABASE, SERVER_DIR_SCREENSHOT, SERVER_DIR_CACHE, SERVER_DIR_CACHE_FOR_TIMER
]
self.flag = False
def set_up_file_tree(self, root):
for child_ in root:
if not os.path.exists(child_):
self.flag = True
try:
if os.path.isdir(child_) or not os.path.splitext(child_)[-1]:
os.mkdir(child_)
logger.success(f"系统文件链接成功->{child_}")
else:
if child_ == SERVER_PATH_COOKIES:
try:
with open(child_, 'w', encoding='utf-8', newline='') as fpx:
fpx.write("")
logger.success(f"系统文件链接成功->{child_}")
except Exception as ep:
logger.exception(f"Exception{child_}{ep}")
except Exception as ep:
logger.exception(ep)
@staticmethod
def check_config():
if not all(SMTP_SCKEY.values()):
logger.warning('<ConfigQuarantine> 您未正确配置<通信邮箱>信息(SMTP_SCKEY)')
if not all([MySQL_SETTING.get("host"), MySQL_SETTING.get("password")]):
logger.error('<ConfigQuarantine> 您未正确配置<MySQL_SETTING> 请配置后重启项目!')
exit()
if not all([SDK_OSS_SCKEY.get("id"), SDK_OSS_SCKEY.get("bucket_name")]):
logger.warning("您未正确配置<SDK_OSS_SCKEY> 本项目将无法正常启用截图上传功能")
def run(self):
try:
if [cq for cq in reversed(self.root) if not os.path.exists(cq)]:
logger.warning('系统文件残缺!')
logger.debug("启动<工程重构>模块...")
self.set_up_file_tree(self.root)
self.check_config()
finally:
if self.flag:
logger.success(">>> 运行环境链接完成,请重启项目")
exec("if self.flag:\n\texit()")
_ConfigQuarantine().run()
class _ScaffoldGuider(object):
def __init__(self):
self.scaffold_ruler = [i for i in self.__dir__() if i.startswith('_scaffold_')]
@logger.catch()
def startup(self, driver_command_set: List[str]):
driver_command: List[str] = []
if len(driver_command_set) == 1:
print("\n".join([f">>> {menu[0].ljust(30, '-')}|| {menu[-1]}" for menu in _command_set.items()]))
return True
if len(driver_command_set) == 2:
driver_command = [driver_command_set[-1].lower(), ]
elif len(driver_command_set) > 2:
driver_command = list(set([command.lower() for command in driver_command_set[1:]]))
if not isinstance(driver_command, list):
return True
if "group" in driver_command:
driver_command.remove('group')
group_ = set(config_['group'])
group_ = [{'username': j} for j in group_]
self._scaffold_group(stu_numbers=group_)
elif "sign" in driver_command:
driver_command.remove('sign')
student_numbers: list = driver_command.copy()
for pc_ in reversed(student_numbers):
try:
int(pc_)
except ValueError:
student_numbers.remove(pc_)
if student_numbers.__len__() == 0:
logger.error(f"<ScaffoldGuider> 参数缺失 'sign [StuNumber] or sign group' but not {driver_command}")
return False
else:
group_ = [{'username': j} for j in student_numbers]
return self._scaffold_group(stu_numbers=group_)
task_list = []
while driver_command.__len__() > 0:
_pending_command = driver_command.pop()
try:
task_list.append(gevent.spawn(eval(f"self._scaffold_{_pending_command}")))
except AttributeError:
pass
except Exception as e:
logger.warning(f'未知错误 <{_pending_command}> {e}')
else:
gevent.joinall(task_list)
if 'deploy' in driver_command:
self._scaffold_deploy()
@staticmethod
def _scaffold_deploy():
from src.BusinessCentralLayer.middleware.interface_io import sei
sei.startup_system()
@staticmethod
def _scaffold_group(stu_numbers: List[dict]):
logger.info(f"<ScaffoldGuider> StartupSignInGroup-debug || {stu_numbers}")
from src.BusinessLogicLayer.apis.vulcan_ash import SignInSpeedup
SignInSpeedup(task_docker=stu_numbers).interface()
@staticmethod
def _scaffold_ping():
import pycurl
test_url = [
'https://ehall.hainanu.edu.cn/jsonp/ywtb/searchServiceItem?flag=0',
'https://ehall.hainanu.edu.cn/qljfwapp/sys/lwHainanuStuTempReport/*default/index.do#/stuTempReport'
]
for url in test_url:
c = pycurl.Curl()
c.setopt(pycurl.URL, url)
c.setopt(pycurl.CONNECTTIMEOUT, 5)
c.setopt(pycurl.TIMEOUT, 5)
c.setopt(pycurl.NOPROGRESS, 1)
c.setopt(pycurl.FORBID_REUSE, 1)
c.setopt(pycurl.MAXREDIRS, 1)
c.setopt(pycurl.DNS_CACHE_TIMEOUT, 30)
index_file = open(os.path.dirname(os.path.realpath(__file__)) + "/content.txt", "wb")
c.setopt(pycurl.WRITEHEADER, index_file)
c.setopt(pycurl.WRITEDATA, index_file)
c.perform()
print("\n测试网站: ", url)
print("HTTP状态码: {}".format(c.getinfo(c.HTTP_CODE)))
print("DNS解析时间:{} ms".format(round(c.getinfo(c.NAMELOOKUP_TIME) * 1000), 2))
print("建立连接时间:{} ms".format(round(c.getinfo(c.CONNECT_TIME) * 1000), 2))
print("准备传输时间:{} ms".format(round(c.getinfo(c.PRETRANSFER_TIME) * 1000), 2))
print("传输开始时间:{} ms".format(round(c.getinfo(c.STARTTRANSFER_TIME) * 1000), 2))
print("传输结束总时间:{} ms".format(round(c.getinfo(c.TOTAL_TIME) * 1000), 2))
c.close()
@staticmethod
|
MIT License
|
hasgeek/coaster
|
tests/test_sqlalchemy_registry.py
|
PropertyRegistry
|
python
|
def PropertyRegistry():
class PropertyRegistry:
registry = Registry(property=True)
return PropertyRegistry
|
Registry with property and a positional parameter.
|
https://github.com/hasgeek/coaster/blob/3ffbc9d33c981284593445299aaee0c3cc0cdb0b/tests/test_sqlalchemy_registry.py#L25-L31
|
from types import SimpleNamespace
import pytest
from coaster.db import db
from coaster.sqlalchemy import BaseMixin
from coaster.sqlalchemy.registry import Registry
@pytest.fixture()
def CallableRegistry():
class CallableRegistry:
registry = Registry()
return CallableRegistry
@pytest.fixture()
|
BSD 2-Clause Simplified License
|
testproject-io/python-sdk
|
src/testproject/sdk/internal/agent/agent_client.py
|
AgentClient.execute_proxy
|
python
|
def execute_proxy(self, action: ActionProxy) -> AddonExecutionResponse:
operation_result = self.send_request(
"POST",
urljoin(self._remote_address, Endpoint.AddonExecution.value),
self._create_action_proxy_payload(action),
{"skipReporting": "true"},
)
if operation_result.status_code == HTTPStatus.NOT_FOUND:
logging.error(
f"Action [{action.proxydescriptor.classname}] in addon [{action.proxydescriptor.guid}]"
f" is not installed in your account."
)
raise AddonNotInstalledException
return AddonExecutionResponse(
execution_result_type=(
ExecutionResultType.Passed
if operation_result.data["resultType"] == "Passed"
else ExecutionResultType.Failed
),
message=operation_result.data["message"],
fields=(
[]
if not operation_result.data["fields"]
else [ResultField(**field) for field in operation_result.data["fields"]]
),
)
|
Sends a custom action to the Agent
Args:
action (ActionProxy): The custom action to be executed
Returns:
AddonExecutionResponse: object containing the result of the action execution
|
https://github.com/testproject-io/python-sdk/blob/efae0de04936bacc5358e3cdc3b86fe6c14434fb/src/testproject/sdk/internal/agent/agent_client.py#L417-L452
|
import logging
import uuid
from distutils.util import strtobool
from enum import Enum, unique
from http import HTTPStatus
from urllib.parse import urljoin, urlparse, ParseResult
import requests
import os
from requests import HTTPError
from src.testproject.classes import ActionExecutionResponse
from src.testproject.classes.resultfield import ResultField
from src.testproject.enums import ExecutionResultType
from src.testproject.enums.report_type import ReportType
from src.testproject.executionresults import OperationResult
from src.testproject.helpers import ConfigHelper, SeleniumHelper
from src.testproject.rest import ReportSettings
from src.testproject.rest.messages import (
SessionRequest,
SessionResponse,
DriverCommandReport,
StepReport,
CustomTestReport,
AddonExecutionResponse,
)
from src.testproject.rest.messages.agentstatusresponse import AgentStatusResponse
from src.testproject.sdk.addons import ActionProxy
from src.testproject.sdk.exceptions import (
SdkException,
AgentConnectException,
InvalidTokenException,
ObsoleteVersionException,
)
from src.testproject.sdk.exceptions.addonnotinstalled import AddonNotInstalledException
from src.testproject.sdk.internal.agent.agent_client_singleton import AgentClientSingleton
from src.testproject.sdk.internal.agent.reports_queue import ReportsQueue
from src.testproject.sdk.internal.agent.reports_queue_batch import ReportsQueueBatch
from src.testproject.sdk.internal.session import AgentSession
from src.testproject.tcp import SocketManager
from packaging import version
class AgentClient(metaclass=AgentClientSingleton):
MIN_SESSION_REUSE_CAPABLE_VERSION = "0.64.20"
MIN_LOCAL_REPORT_SUPPORTED_VERSION = "2.1.0"
MIN_BATCH_REPORT_SUPPORTED_VERSION = "3.1.0"
NEW_SESSION_SOCKET_TIMEOUT_MS = 120 * 1000
__agent_version: str = None
def __init__(
self,
token: str,
capabilities: dict,
agent_url: str,
report_settings: ReportSettings,
socket_session_timeout: int,
):
self.agent_url = agent_url
self._is_local_execution = True
self._agent_session = None
self._agent_response = None
self._remote_address = agent_url if agent_url is not None else ConfigHelper.get_agent_service_address()
self.__check_local_execution()
self._report_settings = report_settings
self._capabilities = capabilities
self._token = token
self._session_socket_timeout = socket_session_timeout
self.__start_session()
self.__verify_local_reports_supported(report_settings.report_type)
if version.parse(self.__agent_version) >= version.parse(self.MIN_BATCH_REPORT_SUPPORTED_VERSION):
url = urljoin(self._remote_address, Endpoint.ReportBatch.value)
self._reports_queue = ReportsQueueBatch(token=token, url=url)
else:
self._reports_queue = ReportsQueue(token)
@property
def agent_session(self):
return self._agent_session
@property
def report_settings(self) -> ReportSettings:
return self._report_settings
def __verify_local_reports_supported(self, report_type: ReportType):
if report_type is ReportType.LOCAL and version.parse(self.__agent_version) < version.parse(
self.MIN_LOCAL_REPORT_SUPPORTED_VERSION
):
raise AgentConnectException(
f"Target Agent version [{self.__agent_version}] doesn't support local reports."
f" Upgrade the Agent to the latest version and try again."
)
def __start_session(self):
sdk_version = ConfigHelper.get_sdk_version()
logging.info(f"SDK version: {sdk_version}")
self._request_session_from_agent()
self.log_warnings()
AgentClient.__agent_version = self._agent_response.agent_version
if self._agent_response.local_report_url is not None and self._agent_response.local_report_url:
parsed_report_url = urlparse(self._agent_response.local_report_url)
report_url = ParseResult(
scheme=parsed_report_url.scheme,
netloc=f"{urlparse(self._remote_address).hostname}:{parsed_report_url.port}",
path=parsed_report_url.path,
params=parsed_report_url.params,
query=parsed_report_url.query,
fragment=parsed_report_url.fragment,
).geturl()
logging.info("Report URL: " + report_url)
self._agent_session = AgentSession(
self._agent_response.server_address,
self._agent_response.session_id,
self._agent_response.dialect,
self._agent_response.capabilities,
)
SocketManager.instance().open_socket(
urlparse(self._remote_address).hostname,
self._agent_response.dev_socket_port,
self._agent_response.uuid,
)
logging.info("Development session started...")
def log_warnings(self):
if self._agent_response.warnings is not None:
for warning in self._agent_response.warnings:
logging.warning(warning)
@staticmethod
def can_reuse_session() -> bool:
if AgentClient.__agent_version is None:
return False
return version.parse(AgentClient.__agent_version) >= version.parse(
AgentClient.MIN_SESSION_REUSE_CAPABLE_VERSION
)
def _request_session_from_agent(self):
session_request = SessionRequest(self._capabilities, self._report_settings)
logging.info(f"Session request: {session_request.to_json()}")
try:
response = self.send_request(
"POST",
urljoin(self._remote_address, Endpoint.DevelopmentSession.value),
session_request.to_json(),
timeout=self._session_socket_timeout,
)
except requests.exceptions.ConnectionError:
logging.error(f"Could not start new session on {self._remote_address}. Is your Agent running?")
logging.error("You can download the TestProject Agent from https://app.testproject.io/#/agents")
raise AgentConnectException(f"Connection error trying to connect to Agent on {self._remote_address}")
if not response.passed:
self.__handle_new_session_error(response)
self._agent_response = SessionResponse(
dev_socket_port=response.data["devSocketPort"],
server_address=response.data.get("serverAddress"),
session_id=response.data.get("sessionId", uuid.uuid4()),
dialect=response.data.get("dialect"),
capabilities=response.data.get("capabilities", {}),
agent_version=response.data.get("version"),
local_report=response.data.get("localReport"),
local_report_url=response.data.get("localReportUrl"),
uuid=response.data.get("uuid"),
warnings=response.data.get("warnings"),
)
def update_job_name(self, job_name):
if strtobool(os.getenv("TP_UPDATE_JOB_NAME")):
logging.info(f"Updating job name to: {job_name}")
try:
response = self.send_request(
"PUT",
urljoin(self._remote_address, Endpoint.DevelopmentSession.value),
{"jobName": job_name},
)
if not response.passed:
logging.error("Failed to update job name")
except requests.exceptions.RequestException:
logging.error("Failed to update job name")
def send_request(self, method, path, body=None, params=None, timeout=None) -> OperationResult:
with requests.Session() as session:
if params:
session.params = params
if method == "GET":
response = session.get(path, headers={"Authorization": self._token})
elif method == "POST":
response = session.post(path, headers={"Authorization": self._token}, json=body, timeout=timeout)
elif method == "DELETE":
response = session.delete(path, headers={"Authorization": self._token})
elif method == "PUT":
response = session.put(path, headers={"Authorization": self._token}, json=body)
else:
raise SdkException(f"Unsupported HTTP method {method} in send_request()")
response_json = {}
try:
response_json = response.json()
except ValueError:
pass
try:
response.raise_for_status()
return OperationResult(True, response.status_code, "", response_json)
except HTTPError as http_error:
return OperationResult(
False,
response.status_code,
response_json.get("message", str(http_error)),
response_json if response_json else None,
)
def send_action_execution_request(self, codeblock_guid: str, body: dict) -> ActionExecutionResponse:
response = self.send_request(
"POST",
urljoin(
urljoin(self._remote_address, Endpoint.ActionExecution.value),
codeblock_guid,
),
body,
)
if not response.passed:
result = ExecutionResultType.Failed
else:
result = (
ExecutionResultType.Passed if response.data["resultType"] == "Passed" else ExecutionResultType.Failed
)
result_data = response.data["outputs"] if response.passed else None
return ActionExecutionResponse(result, response.message, result_data)
@staticmethod
def get_agent_version(token: str):
with requests.Session() as session:
response = session.get(
urljoin(ConfigHelper.get_agent_service_address(), Endpoint.GetStatus.value),
headers={"Authorization": token},
)
try:
response.raise_for_status()
try:
response_json = response.json()
agent_version = response_json["tag"]
except ValueError:
raise SdkException("Could not parse Agent status response: no JSON response body present")
except KeyError:
raise SdkException(
"Could not parse Agent status response: element 'tag' not found in JSON response body"
)
except HTTPError:
raise AgentConnectException(
f"Agent returned HTTP {response.status_code} when trying to retrieve Agent status"
)
return AgentStatusResponse(agent_version)
def report_driver_command(self, driver_command_report: DriverCommandReport):
self._reports_queue.submit(
report_as_json=driver_command_report.to_json(),
url=urljoin(self._remote_address, Endpoint.ReportDriverCommand.value),
block=False,
)
def report_step(self, step_report: StepReport):
self._reports_queue.submit(
report_as_json=step_report.to_json(),
url=urljoin(self._remote_address, Endpoint.ReportStep.value),
block=False,
)
def report_test(self, test_report: CustomTestReport):
self._reports_queue.submit(
report_as_json=test_report.to_json(),
url=urljoin(self._remote_address, Endpoint.ReportTest.value),
block=False,
)
|
Apache License 2.0
|
nasa/bingo
|
bingo/symbolic_regression/agraph/component_generator.py
|
ComponentGenerator.random_terminal_parameter
|
python
|
def random_terminal_parameter(self, terminal_number):
if terminal_number == 0:
param = np.random.randint(self.input_x_dimension)
else:
param = -1
return param
|
Get random terminal parameter
Parameters
----------
terminal_number : int
terminal number for which random parameter should be
generated
Returns
-------
int
parameter to be used in a terminal command
|
https://github.com/nasa/bingo/blob/fad1547105d66fe91c58fb1c771af57cb26126c1/bingo/symbolic_regression/agraph/component_generator.py#L191-L209
|
import logging
import numpy as np
from .maps import OPERATOR_NAMES
from ...util.probability_mass_function import ProbabilityMassFunction
from ...util.argument_validation import argument_validation
LOGGER = logging.getLogger(__name__)
class ComponentGenerator:
@argument_validation(input_x_dimension={">=": 0},
num_initial_load_statements={">=": 1},
terminal_probability={">=": 0.0, "<=": 1.0},
constant_probability={">=": 0.0, "<=": 1.0})
def __init__(self, input_x_dimension, num_initial_load_statements=1,
terminal_probability=0.1,
constant_probability=None,
automatic_constant_optimization=True,
numerical_constant_range=100,
numerical_constant_std=None):
self.input_x_dimension = input_x_dimension
self._num_initial_load_statements = num_initial_load_statements
self._terminal_pmf = self._make_terminal_pdf(constant_probability)
self._operator_pmf = ProbabilityMassFunction()
self._random_command_function_pmf = self._make_random_command_pmf(terminal_probability)
self.automatic_constant_optimization = automatic_constant_optimization
self._numerical_constant_range = numerical_constant_range
if numerical_constant_std is None:
numerical_constant_std = numerical_constant_range / 100
self._numerical_constant_std = numerical_constant_std
def _make_terminal_pdf(self, constant_probability):
if constant_probability is None:
terminal_weight = [1, self.input_x_dimension]
else:
terminal_weight = [constant_probability,
1.0 - constant_probability]
return ProbabilityMassFunction(items=[1, 0], weights=terminal_weight)
def _make_random_command_pmf(self, terminal_probability):
command_weights = [terminal_probability,
1.0 - terminal_probability]
return ProbabilityMassFunction(items=[self._random_terminal_command,
self._random_operator_command],
weights=command_weights)
def add_operator(self, operator_to_add, operator_weight=None):
if isinstance(operator_to_add, str):
operator_number = self._get_operator_number_from_string(
operator_to_add)
else:
operator_number = operator_to_add
self._operator_pmf.add_item(operator_number, operator_weight)
@staticmethod
def _get_operator_number_from_string(operator_string):
for operator_number, operator_names in OPERATOR_NAMES.items():
if operator_string in operator_names:
return operator_number
raise ValueError("Could not find operator %s. " % operator_string)
def random_command(self, stack_location):
if stack_location < self._num_initial_load_statements:
return self._random_terminal_command(stack_location)
return self._random_command_function_pmf.draw_sample()(stack_location)
def _random_operator_command(self, stack_location):
return np.array([self.random_operator(),
self.random_operator_parameter(stack_location),
self.random_operator_parameter(stack_location)],
dtype=int)
def random_operator(self):
return self._operator_pmf.draw_sample()
@staticmethod
def random_operator_parameter(stack_location):
return np.random.randint(stack_location)
def _random_terminal_command(self, _=None):
terminal = self.random_terminal()
return np.array([terminal,
self.random_terminal_parameter(terminal),
self.random_terminal_parameter(terminal)],
dtype=int)
def random_terminal(self):
return self._terminal_pmf.draw_sample()
|
Apache License 2.0
|
mindspore-ai/mindinsight
|
mindinsight/datavisual/data_transform/graph/msgraph.py
|
MSGraph._get_data_type_by_parse_type_proto
|
python
|
def _get_data_type_by_parse_type_proto(self, type_proto, node):
data_type_name = self._get_data_type_name_by_value(type_proto, type_proto.data_type, field_name='data_type')
if type_proto.data_type == DataType.DT_TENSOR:
tensor_type_proto = type_proto.tensor_type
value = type_proto.tensor_type.elem_type
elem_type_name = self._get_data_type_name_by_value(tensor_type_proto, value, field_name='elem_type')
node.elem_types.append(elem_type_name)
return f'{data_type_name}[{elem_type_name}]'
if type_proto.data_type == DataType.DT_TUPLE:
data_types = []
for elem_type in type_proto.sequence_type.elem_types:
data_types.append(self._get_data_type_by_parse_type_proto(elem_type, node))
return f'{data_type_name}{str(data_types)}'
node.elem_types.append(data_type_name)
return data_type_name
|
Get data type by parse type proto object.
The name of the DataType, refer to `anf_ir_pb2.DataType` object.
If data type is tensor or tuple, the data name we return is `data_type[element_type, element_type]`.
Args:
type_proto (anf_ir_pb2.TypeProto): Refer to anf_ir_pb2.TypeProto.
Returns:
str, the data type.
|
https://github.com/mindspore-ai/mindinsight/blob/253a210719dbb1e55b826f2e489322f402d66676/mindinsight/datavisual/data_transform/graph/msgraph.py#L181-L211
|
from mindinsight.datavisual.common.enums import PluginNameEnum
from mindinsight.datavisual.common.log import logger
from mindinsight.datavisual.data_transform.graph.graph import EdgeTypeEnum, Graph, check_invalid_character
from mindinsight.datavisual.data_transform.graph.node import Node, NodeTypeEnum
from mindinsight.datavisual.data_transform.graph.node_tree import NodeTree
from mindinsight.datavisual.proto_files.mindinsight_anf_ir_pb2 import DataType
from mindinsight.debugger.stream_cache.source import DebuggerSource
class MSGraph(Graph):
def _parse_data(self, proto_data):
logger.info("Start to parse graph proto data.")
self._parse_op_nodes(proto_data.node)
self._parse_parameters(proto_data.parameters)
self._parse_consts(proto_data.const_vals)
self._update_input_after_create_node()
self._update_output_after_create_node()
logger.info("Parse proto data end, normal node count(only contain op node, "
"parameter, const): %s.", self.normal_node_count)
def _parse_op_nodes(self, node_protos):
logger.debug("Start to parse op nodes from proto.")
for topological_index, node_proto in enumerate(node_protos):
if not node_proto.name:
logger.warning("Finding a node with an empty name will not save it.")
continue
if node_proto.op_type == "Load":
node_name = Node.create_node_name(scope=node_proto.scope,
base_name=f'{node_proto.op_type}-op{node_proto.name}')
node_proto.full_name = node_name
elif not node_proto.full_name or any(
node_proto.full_name.lower().endswith(f'[:{plugin.value.lower()}]') for plugin in PluginNameEnum):
node_name = Node.create_node_name(scope=node_proto.scope,
base_name=f'{node_proto.op_type}{node_proto.name}')
else:
node_name = node_proto.full_name
check_invalid_character(node_name)
node = Node(name=node_name, node_id=node_proto.name, topological_index=topological_index)
node.full_name = node_proto.full_name
node.type = node_proto.op_type
if getattr(node_proto, 'source_address', None):
node.stack = DebuggerSource.build_stack_from_source_address(node_proto.source_address)
self._parse_attributes(node_proto.attribute, node)
self._parse_inputs(node_proto.input, node)
node.output_i = node_proto.output_i
node.scope = node_proto.scope
node.output_shape = self._get_shape_by_parse_type_proto(node_proto.output_type)
node.output_nums = len(node.output_shape)
node.output_data_type = self._get_data_type_by_parse_type_proto(node_proto.output_type, node)
self._cache_node(node)
def _parse_parameters(self, parameter_protos):
logger.debug("Start to parse parameters from proto.")
for parameter in parameter_protos:
if not parameter.name:
logger.warning("Finding a parameter with an empty name will not save it.")
continue
check_invalid_character(parameter.name)
node = Node(name=parameter.name, node_id=parameter.name)
node.type = NodeTypeEnum.PARAMETER.value
node.output_shape = self._get_shape_by_parse_type_proto(parameter.type)
node.output_nums = len(node.output_shape)
node.output_data_type = self._get_data_type_by_parse_type_proto(parameter.type, node)
attr = dict(
type=self._get_data_type_by_parse_type_proto(parameter.type, node),
shape=str(self._get_shape_by_parse_type_proto(parameter.type))
)
node.add_attr(attr)
self._cache_node(node)
logger.debug("Foreach graph proto parameters, node id: %s, node name: %s, "
"node def name: %s", node.node_id, node.name, parameter.name)
def _parse_consts(self, consts):
logger.debug("Start to parse consts from proto.")
for const in consts:
if not const.key:
logger.warning("Finding a const with an empty key will not save it.")
continue
check_invalid_character(const.key)
node = Node(name=const.key, node_id=const.key)
node.type = NodeTypeEnum.CONST.value
if const.value.ByteSize() > self.MAX_NODE_ATTRIBUTE_VALUE_BYTES:
node.add_attr({const.key: 'dtype: ' + DataType.Name(const.value.dtype)})
else:
node.add_attr({const.key: str(const.value)})
if const.value.dtype == DataType.DT_TENSOR:
shape = list(const.value.tensor_val.dims)
node.output_shape.append(shape)
if const.value.tensor_val.HasField('data_type'):
node.elem_types.append(DataType.Name(const.value.tensor_val.data_type))
else:
node.elem_types.append(DataType.Name(const.value.dtype))
node.output_shape.append([])
node.output_nums = len(node.output_shape)
self._cache_node(node)
def _get_shape_by_parse_type_proto(self, type_proto):
shapes = []
if type_proto.HasField('data_type'):
if type_proto.data_type != DataType.DT_TENSOR and type_proto.data_type != DataType.DT_TUPLE:
shapes.append([])
return shapes
if type_proto.HasField('tensor_type'):
tensor_type = type_proto.tensor_type
tensor_shape_proto = tensor_type.shape
shape = [dim.size for dim in tensor_shape_proto.dim]
shapes.append(shape)
if type_proto.HasField('sequence_type'):
for elem_type in type_proto.sequence_type.elem_types:
shapes.extend(self._get_shape_by_parse_type_proto(elem_type))
return shapes
|
Apache License 2.0
|
paddlepaddle/paddle
|
python/paddle/distributed/fleet/base/distributed_strategy.py
|
DistributedStrategy.hierarchical_allreduce_inter_nranks
|
python
|
def hierarchical_allreduce_inter_nranks(self):
return self.strategy.hierarchical_allreduce_inter_nranks
|
Number of ranks for low level node groups in hierarchical allreduce
Default value: number of GPU cards on each single GPU machine
Example:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.hierarchical_allreduce_inter_nranks = 8
|
https://github.com/paddlepaddle/paddle/blob/056b87414880e0520bb4560fc40d5b62db9c5175/python/paddle/distributed/fleet/base/distributed_strategy.py#L584-L597
|
import paddle
from paddle.distributed.fleet.proto import distributed_strategy_pb2
from paddle.fluid.framework import Variable, set_flags, core, _global_flags
from paddle.fluid.wrapped_decorator import wrap_decorator
import google.protobuf.text_format
import google.protobuf
__all__ = []
non_auto_func_called = True
def __non_auto_func_called__(func):
def __impl__(*args, **kwargs):
global non_auto_func_called
non_auto_func_called = False
return func(*args, **kwargs)
return __impl__
is_strict_auto = wrap_decorator(__non_auto_func_called__)
def get_msg_dict(msg):
res_dict = {}
fields = msg.DESCRIPTOR.fields
for f in fields:
res_dict[f.name] = getattr(msg, f.name)
return res_dict
def assign_configs_value(msg, config):
fields = msg.DESCRIPTOR.fields
for key in config:
for f in fields:
if key == f.name:
if f.label == 3:
getattr(msg, f.name).extend(config[f.name])
elif f.label == 1 or f.label == 2:
setattr(msg, f.name, config[f.name])
def check_configs_key(msg, config, field_name):
key_list = msg.DESCRIPTOR.fields_by_name.keys()
for key in config:
assert key in key_list, "key:{} not in {}".format(key, field_name)
class DistributedJobInfo(object):
def __init__(self):
self.job_info = distributed_strategy_pb2.DistributedJobInfo()
def _set_worker_num(self, worker_num):
self.job_info.worker_num = worker_num
def _set_server_num(self, server_num):
self.job_info.server_num = server_num
def _set_worker_ips(self, worker_ips):
self.job_info.worker_ips.extend(worker_ips)
def _set_server_endpoints(self, server_endpoints):
self.job_info.server_endpoints.extend(server_endpoints)
def _set_origin_startup(self, origin_startup_prog):
self.job_info.origin_startup = str(origin_startup_prog)
def _set_origin_main(self, origin_main_prog):
self.job_info.origin_main = str(origin_main_prog)
def _distributed_main(self, distributed_main_prog):
self.job_info.distributed_main = str(distributed_main_prog)
def _optimizer_name(self, optimizer_name):
self.job_info.optimizer_name = optimizer_name
def _set_distributed_strategy(self, dist_strategy):
self.job_info.strategy = dist_strategy
class DistributedStrategy(object):
__lock_attr = False
def __init__(self):
self.strategy = distributed_strategy_pb2.DistributedStrategy()
key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
if _global_flags().is_public(key):
self.strategy.cudnn_batchnorm_spatial_persistent = bool(
_global_flags()[key])
key = 'FLAGS_conv_workspace_size_limit'
if _global_flags().is_public(key):
self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
key = 'FLAGS_cudnn_exhaustive_search'
if _global_flags().is_public(key):
self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
key = 'FLAGS_sync_nccl_allreduce'
if _global_flags().is_public(key):
self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
self.__lock_attr = True
def __setattr__(self, key, value):
if self.__lock_attr and not hasattr(self, key):
raise TypeError("%s is not a attribute of %s" %
(key, self.__class__.__name__))
object.__setattr__(self, key, value)
def save_to_prototxt(self, output):
with open(output, "w") as fout:
fout.write(str(self.strategy))
def load_from_prototxt(self, pb_file):
with open(pb_file, 'r') as f:
self.strategy = google.protobuf.text_format.Merge(
str(f.read()), self.strategy)
@property
def execution_strategy(self):
execution_strategy = paddle.fluid.ExecutionStrategy()
fields = self.strategy.execution_strategy.DESCRIPTOR.fields
for f in fields:
setattr(execution_strategy, f.name,
getattr(self.strategy.execution_strategy, f.name))
return execution_strategy
@execution_strategy.setter
@is_strict_auto
def execution_strategy(self, strategy):
fields = self.strategy.execution_strategy.DESCRIPTOR.fields
for f in fields:
setattr(self.strategy.execution_strategy, f.name,
getattr(strategy, f.name))
@property
def build_strategy(self):
build_strategy = paddle.fluid.BuildStrategy()
fields = self.strategy.build_strategy.DESCRIPTOR.fields
for f in fields:
setattr(build_strategy, f.name,
getattr(self.strategy.build_strategy, f.name))
return build_strategy
@build_strategy.setter
@is_strict_auto
def build_strategy(self, strategy):
fields = self.strategy.build_strategy.DESCRIPTOR.fields
for f in fields:
if f.label == 1 or f.label == 2:
setattr(self.strategy.build_strategy, f.name,
getattr(strategy, f.name))
elif f.label == 3:
getattr(self.strategy.build_strategy,
f.name).extend(getattr(strategy, f.name))
@property
def gradient_scale_configs(self):
return get_msg_dict(self.strategy.gradient_scale_configs)
@gradient_scale_configs.setter
@is_strict_auto
def gradient_scale_configs(self, config):
check_configs_key(self.strategy.gradient_scale_configs, config,
'gradient_scale_configs')
assign_configs_value(self.strategy.gradient_scale_configs, config)
@property
def a_sync(self):
return self.strategy.a_sync
@a_sync.setter
@is_strict_auto
def a_sync(self, flag):
if isinstance(flag, bool):
self.strategy.a_sync = flag
self.a_sync_configs = {"k_steps": 0}
else:
raise ValueError(
"The type of `flag` is invalid, expected type is bool, but received {}".
format(type(flag)))
@property
def a_sync_configs(self):
return get_msg_dict(self.strategy.a_sync_configs)
@a_sync_configs.setter
@is_strict_auto
def a_sync_configs(self, configs):
check_configs_key(self.strategy.a_sync_configs, configs,
"a_sync_configs")
assign_configs_value(self.strategy.a_sync_configs, configs)
@property
def trainer_desc_configs(self):
return get_msg_dict(self.strategy.trainer_desc_configs)
@trainer_desc_configs.setter
@is_strict_auto
def trainer_desc_configs(self, configs):
check_configs_key(self.strategy.trainer_desc_configs, configs,
"trainer_desc_configs")
assign_configs_value(self.strategy.trainer_desc_configs, configs)
@property
def amp(self):
return self.strategy.amp
@amp.setter
@is_strict_auto
def amp(self, flag):
if isinstance(flag, bool):
self.strategy.amp = flag
else:
print("WARNING: amp should have value of bool type")
@property
def amp_configs(self):
return get_msg_dict(self.strategy.amp_configs)
@amp_configs.setter
@is_strict_auto
def amp_configs(self, configs):
check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
assign_configs_value(self.strategy.amp_configs, configs)
@property
def asp(self):
return self.strategy.asp
@asp.setter
@is_strict_auto
def asp(self, flag):
if isinstance(flag, bool):
self.strategy.asp = flag
else:
print("WARNING: asp should have value of bool type")
@property
def recompute(self):
return self.strategy.recompute
@property
def sync_nccl_allreduce(self):
return self.strategy.sync_nccl_allreduce
@sync_nccl_allreduce.setter
@is_strict_auto
def sync_nccl_allreduce(self, flag):
if isinstance(flag, bool):
self.strategy.sync_nccl_allreduce = flag
else:
print("WARNING: sync_nccl_allreduce should have value of bool type")
@property
def use_hierarchical_allreduce(self):
return self.strategy.use_hierarchical_allreduce
@use_hierarchical_allreduce.setter
@is_strict_auto
def use_hierarchical_allreduce(self, flag):
if isinstance(flag, bool):
self.strategy.use_hierarchical_allreduce = flag
else:
print(
"WARNING: use_hierarchical_allreduce should have value of bool type"
)
@property
|
Apache License 2.0
|
mozilla/make.mozilla.org
|
vendor-local/lib/python/celery/app/base.py
|
BaseApp.backend
|
python
|
def backend(self):
return self._get_backend()
|
Storing/retrieving task state. See
:class:`~celery.backend.base.BaseBackend`.
|
https://github.com/mozilla/make.mozilla.org/blob/98b87c517b463a5bae09f29284b1dabca97bb376/vendor-local/lib/python/celery/app/base.py#L357-L360
|
from __future__ import absolute_import
from __future__ import with_statement
import os
import warnings
import platform as _platform
from contextlib import contextmanager
from copy import deepcopy
from functools import wraps
from kombu.clocks import LamportClock
from .. import datastructures
from .. import platforms
from ..exceptions import AlwaysEagerIgnored
from ..utils import cached_property, instantiate, lpmerge
from .defaults import DEFAULTS, find_deprecated_settings, find
import kombu
if kombu.VERSION < (2, 0):
raise ImportError("Celery requires Kombu version 1.1.0 or higher.")
BUGREPORT_INFO = """
platform -> system:%(system)s arch:%(arch)s imp:%(py_i)s
software -> celery:%(celery_v)s kombu:%(kombu_v)s py:%(py_v)s
settings -> transport:%(transport)s results:%(results)s
"""
class Settings(datastructures.ConfigurationView):
@property
def CELERY_RESULT_BACKEND(self):
return self.get("CELERY_RESULT_BACKEND") or self.get("CELERY_BACKEND")
@property
def BROKER_TRANSPORT(self):
return (self.get("BROKER_TRANSPORT") or
self.get("BROKER_BACKEND") or
self.get("CARROT_BACKEND"))
@property
def BROKER_BACKEND(self):
return self.BROKER_TRANSPORT
@property
def BROKER_HOST(self):
return (os.environ.get("CELERY_BROKER_URL") or
self.get("BROKER_URL") or
self.get("BROKER_HOST"))
def find_option(self, name, namespace="celery"):
return find(name, namespace)
def get_by_parts(self, *parts):
return self["_".join(filter(None, parts))]
def find_value_for_key(self, name, namespace="celery"):
ns, key, _ = self.find_option(name, namespace=namespace)
return self.get_by_parts(ns, key)
class BaseApp(object):
SYSTEM = platforms.SYSTEM
IS_OSX = platforms.IS_OSX
IS_WINDOWS = platforms.IS_WINDOWS
amqp_cls = "celery.app.amqp:AMQP"
backend_cls = None
events_cls = "celery.events:Events"
loader_cls = "celery.loaders.app:AppLoader"
log_cls = "celery.log:Logging"
control_cls = "celery.task.control:Control"
_pool = None
def __init__(self, main=None, loader=None, backend=None,
amqp=None, events=None, log=None, control=None,
set_as_current=True, accept_magic_kwargs=False, **kwargs):
self.main = main
self.amqp_cls = amqp or self.amqp_cls
self.backend_cls = backend or self.backend_cls
self.events_cls = events or self.events_cls
self.loader_cls = loader or self.loader_cls
self.log_cls = log or self.log_cls
self.control_cls = control or self.control_cls
self.set_as_current = set_as_current
self.accept_magic_kwargs = accept_magic_kwargs
self.clock = LamportClock()
self.on_init()
def on_init(self):
pass
def config_from_object(self, obj, silent=False):
del(self.conf)
return self.loader.config_from_object(obj, silent=silent)
def config_from_envvar(self, variable_name, silent=False):
del(self.conf)
return self.loader.config_from_envvar(variable_name, silent=silent)
def config_from_cmdline(self, argv, namespace="celery"):
self.conf.update(self.loader.cmdline_config_parser(argv, namespace))
def send_task(self, name, args=None, kwargs=None, countdown=None,
eta=None, task_id=None, publisher=None, connection=None,
connect_timeout=None, result_cls=None, expires=None,
queues=None, **options):
if self.conf.CELERY_ALWAYS_EAGER:
warnings.warn(AlwaysEagerIgnored(
"CELERY_ALWAYS_EAGER has no effect on send_task"))
router = self.amqp.Router(queues)
result_cls = result_cls or self.AsyncResult
options.setdefault("compression",
self.conf.CELERY_MESSAGE_COMPRESSION)
options = router.route(options, name, args, kwargs)
exchange = options.get("exchange")
exchange_type = options.get("exchange_type")
with self.default_connection(connection, connect_timeout) as conn:
publish = publisher or self.amqp.TaskPublisher(conn,
exchange=exchange,
exchange_type=exchange_type)
try:
new_id = publish.delay_task(name, args, kwargs,
task_id=task_id,
countdown=countdown, eta=eta,
expires=expires, **options)
finally:
publisher or publish.close()
return result_cls(new_id)
def AsyncResult(self, task_id, backend=None, task_name=None):
from ..result import BaseAsyncResult
return BaseAsyncResult(task_id, app=self, task_name=task_name,
backend=backend or self.backend)
def TaskSetResult(self, taskset_id, results, **kwargs):
from ..result import TaskSetResult
return TaskSetResult(taskset_id, results, app=self)
def broker_connection(self, hostname=None, userid=None,
password=None, virtual_host=None, port=None, ssl=None,
insist=None, connect_timeout=None, transport=None,
transport_options=None, **kwargs):
conf = self.conf
return self.amqp.BrokerConnection(
hostname or conf.BROKER_HOST,
userid or conf.BROKER_USER,
password or conf.BROKER_PASSWORD,
virtual_host or conf.BROKER_VHOST,
port or conf.BROKER_PORT,
transport=transport or conf.BROKER_TRANSPORT,
insist=self.either("BROKER_INSIST", insist),
ssl=self.either("BROKER_USE_SSL", ssl),
connect_timeout=self.either(
"BROKER_CONNECTION_TIMEOUT", connect_timeout),
transport_options=dict(conf.BROKER_TRANSPORT_OPTIONS,
**transport_options or {}))
@contextmanager
def default_connection(self, connection=None, connect_timeout=None):
if connection:
yield connection
else:
with self.pool.acquire(block=True) as connection:
yield connection
def with_default_connection(self, fun):
@wraps(fun)
def _inner(*args, **kwargs):
connection = kwargs.pop("connection", None)
with self.default_connection(connection) as c:
return fun(*args, **dict(kwargs, connection=c))
return _inner
def prepare_config(self, c):
find_deprecated_settings(c)
return c
def now(self):
return self.loader.now(utc=self.conf.CELERY_ENABLE_UTC)
def mail_admins(self, subject, body, fail_silently=False):
if self.conf.ADMINS:
to = [admin_email for _, admin_email in self.conf.ADMINS]
return self.loader.mail_admins(subject, body, fail_silently, to=to,
sender=self.conf.SERVER_EMAIL,
host=self.conf.EMAIL_HOST,
port=self.conf.EMAIL_PORT,
user=self.conf.EMAIL_HOST_USER,
password=self.conf.EMAIL_HOST_PASSWORD,
timeout=self.conf.EMAIL_TIMEOUT,
use_ssl=self.conf.EMAIL_USE_SSL,
use_tls=self.conf.EMAIL_USE_TLS)
def select_queues(self, queues=None):
if queues:
return self.amqp.queues.select_subset(queues,
self.conf.CELERY_CREATE_MISSING_QUEUES)
def either(self, default_key, *values):
for value in values:
if value is not None:
return value
return self.conf.get(default_key)
def merge(self, l, r):
return lpmerge(l, r)
def _get_backend(self):
from ..backends import get_backend_cls
return get_backend_cls(
self.backend_cls or self.conf.CELERY_RESULT_BACKEND,
loader=self.loader)(app=self)
def _get_config(self):
return Settings({}, [self.prepare_config(self.loader.conf),
deepcopy(DEFAULTS)])
def _after_fork(self, obj_):
if self._pool:
self._pool.force_close_all()
self._pool = None
def bugreport(self):
import celery
import kombu
return BUGREPORT_INFO % {"system": _platform.system(),
"arch": _platform.architecture(),
"py_i": platforms.pyimplementation(),
"celery_v": celery.__version__,
"kombu_v": kombu.__version__,
"py_v": _platform.python_version(),
"transport": self.conf.BROKER_TRANSPORT,
"results": self.conf.CELERY_RESULT_BACKEND}
@property
def pool(self):
if self._pool is None:
try:
from multiprocessing.util import register_after_fork
register_after_fork(self, self._after_fork)
except ImportError:
pass
self._pool = self.broker_connection().Pool(
limit=self.conf.BROKER_POOL_LIMIT)
return self._pool
@cached_property
def amqp(self):
return instantiate(self.amqp_cls, app=self)
@cached_property
|
BSD 3-Clause New or Revised License
|
bids-standard/pybids
|
bids/layout/models.py
|
Entity.match_file
|
python
|
def match_file(self, f):
if self.regex is None:
return None
m = self.regex.search(f.path)
val = m.group(1) if m is not None else None
return self._astype(val)
|
Determine whether the passed file matches the Entity.
Parameters
----------
f : BIDSFile
The BIDSFile instance to match against.
Returns
-------
the matched value if a match was found, otherwise None.
|
https://github.com/bids-standard/pybids/blob/bafd148900d12f115d0e1133a731a706f370d8ad/bids/layout/models.py#L561-L579
|
import re
import os
from pathlib import Path
import warnings
import json
from copy import deepcopy
from itertools import chain
from functools import lru_cache
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.associationproxy import association_proxy
from sqlalchemy.orm.collections import attribute_mapped_collection
from sqlalchemy import (Column, String, Boolean, ForeignKey, Table)
from sqlalchemy.orm import reconstructor, relationship, backref, object_session
from ..utils import listify
from .writing import build_path, write_to_file
from ..config import get_option
from .utils import BIDSMetadata
Base = declarative_base()
class LayoutInfo(Base):
__tablename__ = 'layout_info'
root = Column(String, primary_key=True)
absolute_paths = Column(Boolean)
_derivatives = Column(String)
_config = Column(String)
def __init__(self, **kwargs):
init_args = self._sanitize_init_args(kwargs)
raw_cols = ['root', 'absolute_paths']
json_cols = ['derivatives', 'config']
all_cols = raw_cols + json_cols
missing_cols = set(all_cols) - set(init_args.keys())
if missing_cols:
raise ValueError("Missing mandatory initialization args: {}"
.format(missing_cols))
for col in all_cols:
setattr(self, col, init_args[col])
if col in json_cols:
json_data = json.dumps(init_args[col])
setattr(self, '_' + col, json_data)
@reconstructor
def _init_on_load(self):
for col in ['derivatives', 'config']:
db_val = getattr(self, '_' + col)
setattr(self, col, json.loads(db_val))
def _sanitize_init_args(self, kwargs):
if 'root' in kwargs:
kwargs['root'] = str(Path(kwargs['root']).absolute())
if kwargs.get('derivatives') not in (None, True, False):
kwargs['derivatives'] = [
str(Path(der).absolute())
for der in listify(kwargs['derivatives'])
]
return kwargs
class Config(Base):
__tablename__ = 'configs'
name = Column(String, primary_key=True)
_default_path_patterns = Column(String)
entities = relationship(
"Entity", secondary="config_to_entity_map",
collection_class=attribute_mapped_collection('name'))
def __init__(self, name, entities=None, default_path_patterns=None,
session=None):
self.name = name
self.default_path_patterns = default_path_patterns
self._default_path_patterns = json.dumps(default_path_patterns)
if entities:
for ent in entities:
if session is not None:
existing = (session.query(Config)
.filter_by(name=ent['name']).first())
else:
existing = None
ent = existing or Entity(**ent)
self.entities[ent.name] = ent
if session is not None:
session.add_all(list(self.entities.values()))
session.commit()
@reconstructor
def _init_on_load(self):
self.default_path_patterns = json.loads(self._default_path_patterns)
@classmethod
def load(self, config, session=None):
if isinstance(config, str):
config_paths = get_option('config_paths')
if config in config_paths:
config = config_paths[config]
if not Path(config).exists():
raise ValueError("{} is not a valid path.".format(config))
else:
with open(config, 'r') as f:
config = json.load(f)
if session is not None:
result = session.query(Config).filter_by(name=config['name']).first()
if result:
return result
return Config(session=session, **config)
class BIDSFile(Base):
__tablename__ = 'files'
path = Column(String, primary_key=True)
filename = Column(String)
dirname = Column(String)
entities = association_proxy("tags", "value")
is_dir = Column(Boolean, index=True)
class_ = Column(String(20))
_associations = relationship('BIDSFile', secondary='associations',
primaryjoin='FileAssociation.dst == BIDSFile.path',
secondaryjoin='FileAssociation.src == BIDSFile.path')
__mapper_args__ = {
'polymorphic_on': class_,
'polymorphic_identity': 'file'
}
def __init__(self, filename):
self.path = str(filename)
self.filename = self._path.name
self.dirname = str(self._path.parent)
self.is_dir = not self.filename
@property
def _path(self):
return Path(self.path)
@property
def _dirname(self):
return Path(self.dirname)
def __getattr__(self, attr):
if not attr.startswith('_') and attr in self.entities:
warnings.warn("Accessing entities as attributes is deprecated as "
"of 0.7. Please use the .entities dictionary instead"
" (i.e., .entities['%s'] instead of .%s."
% (attr, attr))
return self.entities[attr]
raise AttributeError("%s object has no attribute named %r" %
(self.__class__.__name__, attr))
def __repr__(self):
return "<{} filename='{}'>".format(self.__class__.__name__, self.path)
def __fspath__(self):
return self.path
@property
@lru_cache()
def relpath(self):
root = object_session(self).query(LayoutInfo).first().root
return str(Path(self.path).relative_to(root))
def get_associations(self, kind=None, include_parents=False):
if kind is None and not include_parents:
return self._associations
session = object_session(self)
q = (session.query(BIDSFile)
.join(FileAssociation, BIDSFile.path == FileAssociation.dst)
.filter_by(src=self.path))
if kind is not None:
q = q.filter_by(kind=kind)
associations = q.all()
if not include_parents:
return associations
def collect_associations(results, bidsfile):
results.append(bidsfile)
for p in bidsfile.get_associations('Child'):
results = collect_associations(results, p)
return results
return list(chain(*[collect_associations([], bf) for bf in associations]))
def get_metadata(self):
md = BIDSMetadata(self.path)
md.update(self.get_entities(metadata=True))
return md
def get_entities(self, metadata=False, values='tags'):
session = object_session(self)
query = (session.query(Tag)
.filter_by(file_path=self.path)
.join(Entity))
if metadata not in (None, 'all'):
query = query.filter(Tag.is_metadata == metadata)
results = query.all()
if values.startswith('obj'):
return {t.entity_name: t.entity for t in results}
return {t.entity_name: t.value for t in results}
def copy(self, path_patterns, symbolic_link=False, root=None,
conflicts='fail'):
new_filename = build_path(self.entities, path_patterns)
if not new_filename:
return None
if new_filename[-1] == os.sep:
new_filename += self.filename
if self._path.is_absolute() or root is None:
path = self._path
else:
path = Path(root) / self._path
if not path.exists():
raise ValueError("Target filename to copy/symlink (%s) doesn't "
"exist." % path)
kwargs = dict(path=new_filename, root=root, conflicts=conflicts)
if symbolic_link:
kwargs['link_to'] = path
else:
kwargs['copy_from'] = path
write_to_file(**kwargs)
class BIDSDataFile(BIDSFile):
__mapper_args__ = {
'polymorphic_identity': 'data_file'
}
def get_df(self, include_timing=True, adjust_onset=False,
enforce_dtypes=True, **pd_args):
import pandas as pd
import numpy as np
if enforce_dtypes:
dtype = {
'subject_id': str,
'session_id': str,
'participant_id': str
}
else:
dtype = None
suffix = self.entities['suffix']
header = None if suffix in {'physio', 'stim'} else 'infer'
self.data = pd.read_csv(self.path, sep='\t', na_values='n/a',
dtype=dtype, header=header, **pd_args)
data = self.data.copy()
if self.entities['extension'] == '.tsv.gz':
md = self.get_metadata()
data.columns = md['Columns']
if include_timing:
onsets = np.arange(len(data)) / md['SamplingFrequency']
if adjust_onset:
onsets += md['StartTime']
data.insert(0, 'onset', onsets)
return data
class BIDSImageFile(BIDSFile):
__mapper_args__ = {
'polymorphic_identity': 'image_file'
}
def get_image(self, **kwargs):
try:
import nibabel as nb
return nb.load(self.path, **kwargs)
except Exception as e:
raise ValueError("'{}' does not appear to be an image format "
"NiBabel can read.".format(self.path)) from e
class BIDSJSONFile(BIDSFile):
__mapper_args__ = {
'polymorphic_identity': 'json_file'
}
def get_dict(self):
d = json.loads(self.get_json())
if not isinstance(d, dict):
raise ValueError("File %s is a json containing %s, not a dict which was expected" % (self.path, type(d)))
return d
def get_json(self):
with open(self.path, 'r') as f:
return f.read()
class Entity(Base):
__tablename__ = 'entities'
name = Column(String, primary_key=True)
mandatory = Column(Boolean, default=False)
pattern = Column(String)
directory = Column(String, nullable=True)
_dtype = Column(String, default='str')
files = association_proxy("tags", "value")
def __init__(self, name, pattern=None, mandatory=False, directory=None,
dtype='str'):
self.name = name
self.pattern = pattern
self.mandatory = mandatory
self.directory = directory
if not isinstance(dtype, str):
dtype = dtype.__name__
self._dtype = dtype
self._init_on_load()
@reconstructor
def _init_on_load(self):
if self._dtype not in ('str', 'float', 'int', 'bool'):
raise ValueError("Invalid dtype '{}'. Must be one of 'int', "
"'float', 'bool', or 'str'.".format(self._dtype))
self.dtype = eval(self._dtype)
self.regex = re.compile(self.pattern) if self.pattern is not None else None
def __iter__(self):
for i in self.unique():
yield i
def __deepcopy__(self, memo):
cls = self.__class__
result = cls.__new__(cls)
result._sa_instance_state = self._sa_instance_state
memo[id(self)] = result
for k, v in self.__dict__.items():
if k == '_sa_instance_state':
continue
new_val = getattr(self, k) if k == 'regex' else deepcopy(v, memo)
setattr(result, k, new_val)
return result
|
MIT License
|
fdalvi/neurox
|
neurox/analysis/corpus.py
|
get_top_words
|
python
|
def get_top_words(tokens, activations, neuron, num_tokens=0):
MIN_THRESHOLD = 0.1
activation_values = [
sentence_activations[:, neuron] for sentence_activations in activations
]
activation_values = np.concatenate(activation_values)
tokens = [token for sentence in tokens["source"] for token in sentence]
mean = np.mean(activation_values)
std = np.std(activation_values)
token_wise_scores = np.abs((activation_values - mean) / std)
type_wise_scores_aggregation = defaultdict(lambda: (0, 0))
for idx, token in enumerate(tokens):
curr_sum, curr_count = type_wise_scores_aggregation[token]
type_wise_scores_aggregation[token] = (
curr_sum + token_wise_scores[idx],
curr_count + 1,
)
type_wise_scores = [
(k, v[0] / v[1]) for k, v in type_wise_scores_aggregation.items()
]
max_score = max([s for _, s in type_wise_scores])
type_wise_scores = [(k, v / max_score) for k, v in type_wise_scores]
sorted_types_scores = sorted(type_wise_scores, key=lambda x: -x[1])
sorted_types_scores = [
(k, v) for (k, v) in sorted_types_scores if v > MIN_THRESHOLD
]
if num_tokens > 0:
sorted_types_scores = sorted_types_scores[:num_tokens]
return sorted_types_scores
|
Get top activating words for any given neuron.
This method compares the activations of the given neuron across all tokens,
and extracts tokens that account for the largest variance for that given
neuron. It also returns a normalized score for each token, depicting their
contribution to the overall variance.
Parameters
----------
tokens : dict
Dictionary containing atleast one list with the key ``source``. Usually
returned from ``data.loader.load_data``
activations : list of numpy.ndarray
List of *sentence representations*, where each *sentence representation*
is a numpy matrix of shape
``[num tokens in sentence x concatenated representation size]``. Usually
retured from ``data.loader.load_activations``
neuron : int
Index of the neuron relative to ``X``
num_tokens: int, optional
Number of top tokens to return. Defaults to 0, which returns all tokens
with a non-neglible contribution to the variance
Returns
-------
top_neurons : list of tuples
List of tuples, where each tuple is a (token, score) element
|
https://github.com/fdalvi/neurox/blob/fe7d981508f2ab9bef9df3f923c3f813537bdd98/neurox/analysis/corpus.py#L12-L81
|
from collections import defaultdict
import numpy as np
|
BSD 3-Clause New or Revised License
|
ueg1990/imgur-cli
|
imgur_cli/cli_api.py
|
cmd_album_delete
|
python
|
def cmd_album_delete(client, args):
delete_album = client.album_delete(args.album_id)
generate_output({'delete_album': delete_album})
|
Delete an album with a given ID. You are required to be logged in as the user
to delete the album. For anonymous albums, {album} should be the deletehash
that is returned at creation
|
https://github.com/ueg1990/imgur-cli/blob/359508a8806d9e583849f5de9115a5bbcd5e04b4/imgur_cli/cli_api.py#L312-L319
|
import os
import imgurpython
from imgur_cli import exceptions
from imgur_cli.utils import (cli_arg, cli_subparser, data_fields, generate_output,
format_comment_tree)
from imgur_cli.utils import cli_subparser
from imgur_cli.utils import data_fields
from imgur_cli.utils import generate_output
SUBPARSERS = {'gallery': 'Gallery subparser', 'album': 'Album subparser',
'image': 'Image subparser', 'comment': 'Comment subparser',
'memegen': 'Memegen subparser', 'account': 'Account subparser',
'conversation': 'Conversation subparser',
'notification': 'Notification subparser',
'auth': 'Authentication subparser'}
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
def cmd_account_user(client, args):
account_user = client.get_account(args.username)
data = account_user.__dict__
generate_output({'account_user': data})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--output-file', default=None, metavar='<output_file>',
help='Save output to a JSON file')
def cmd_account_gallery_favorites(client, args):
gallery_favorites = client.get_gallery_favorites(args.username)
data = [item.__dict__ for item in gallery_favorites]
generate_output({'gallery_favorites': data}, args.output_file)
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--output-file', default=None, metavar='<output_file>',
help='Save output to a JSON file')
def cmd_account_favorites(client, args):
account_favorites = client.get_account_favorites(args.username)
data = [item.__dict__ for item in account_favorites]
generate_output({'account_favorites': data}, args.output_file)
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--page', default=0, metavar='<page>', type=int,
help='The data paging number (defaults to %(default)s)')
@cli_arg('--output-file', default=None, metavar='<output_file>',
help='Save output to a JSON file')
def cmd_account_submissions(client, args):
account_submissions = client.get_account_submissions(args.username, args.page)
data = [item.__dict__ for item in account_submissions]
generate_output({'account_submissions': data}, args.output_file)
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
def cmd_account_settings(client, args):
account_settings = client.get_account_settings(args.username)
data = account_settings.__dict__
generate_output({'account_settings': data})
@cli_subparser('account')
@cli_arg('user', help='Username of Account')
@cli_arg('--bio', metavar='<bio>', help='The biography of the user, '
'is displayed in the gallery profile page')
@cli_arg('--public-images', metavar='<public-images>',
choices=['true', 'false'], help='Set the users images to private '
'or public by default')
@cli_arg('--messaging-enabled', metavar='<messaging-enabled>',
choices=['true', 'false'], help='Allows the user to enable or '
'disable private messages')
@cli_arg('--album-privacy', metavar='<album-privacy>',
choices=['public', 'hidden', 'secret'], help='public | hidden | secret - '
'Sets the default privacy level of albums the users creates')
@cli_arg('--accepted-gallery-terms', metavar='<accepted-gallery-terms>',
choices=['true', 'false'], help='The user agreement to the Imgur '
'Gallery terms')
@cli_arg('--username', metavar='<username>',
help='A valid Imgur username (between 4 and 63 alphanumeric characters)')
def cmd_account_change_settings(client, args):
fields = data_fields(args, client.allowed_account_fields)
account_settings = client.change_account_settings(args.user, fields)
generate_output({'account_settings': account_settings})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
def cmd_account_verification_status(client, args):
email_verification_status = client.get_email_verification_status(args.username)
generate_output({'email_verification_status': email_verification_status})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
def cmd_account_send_verification(client, args):
verification_email = client.send_verification_email(args.username)
generate_output({'verification_email': verification_email})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--page', default=0, metavar='<page>', type=int,
help='Page number (defaults to %(default)s)')
@cli_arg('--output-file', default=None, metavar='<output_file>',
help='Save output to a JSON file')
def cmd_account_albums(client, args):
account_albums = client.get_account_albums(args.username, args.page)
data = [item.__dict__ for item in account_albums]
generate_output({'account_albums': data}, args.output_file)
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--page', default=0, metavar='<page>', type=int,
help='Page number (defaults to %(default)s)')
def cmd_account_album_ids(client, args):
account_album_ids = client.get_account_album_ids(args.username, args.page)
generate_output({'account_album_ids': account_album_ids})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
def cmd_account_album_count(client, args):
account_album_count = client.get_account_album_count(args.username)
generate_output({'account_album_count': account_album_count})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--sort', default='newest', metavar='<sort>',
choices=['best', 'worst', 'oldest', 'newest'],
help='best | worst | oldest | newest - defaults to %(default)s')
@cli_arg('--page', default=0, metavar='<page>', type=int,
help='Page number (defaults to %(default)s)')
def cmd_account_comments(client, args):
account_comments = client.get_account_comments(args.username, args.sort,
args.page)
data = format_comment_tree(account_comments)
generate_output({'account_comments': data})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--sort', default='newest', metavar='<sort>',
choices=['best', 'worst', 'oldest', 'newest'],
help='best | worst | oldest | newest - defaults to %(default)s')
@cli_arg('--page', default=0, metavar='<page>', type=int,
help='Page number (defaults to %(default)s)')
def cmd_account_comment_ids(client, args):
account_comment_ids = client.get_account_comment_ids(args.username, args.sort,
args.page)
generate_output({'account_comment_ids': account_comment_ids})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
def cmd_account_comment_count(client, args):
account_comment_count = client.get_account_comment_count(args.username)
generate_output({'account_comment_count': account_comment_count})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--page', default=0, metavar='<page>', type=int,
help='Page number (defaults to %(default)s)')
@cli_arg('--output-file', default=None, metavar='<output_file>',
help='Save output to a JSON file')
def cmd_account_images(client, args):
account_images = client.get_account_images(args.username, args.page)
data = [item.__dict__ for item in account_images]
generate_output({'account_images': data}, args.output_file)
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
@cli_arg('--page', default=0, metavar='<page>', type=int,
help='Page number (defaults to %(default)s)')
def cmd_account_image_ids(client, args):
account_image_ids = client.get_account_image_ids(args.username, args.page)
generate_output({'account_image_ids': account_image_ids})
@cli_subparser('account')
@cli_arg('username', help='Username of Account')
def cmd_account_image_count(client, args):
account_image_count = client.get_account_images_count(args.username)
generate_output({'account_image_count': account_image_count})
@cli_subparser('album')
@cli_arg('album_id', help='Album ID')
def cmd_album_id(client, args):
album = client.get_album(args.album_id)
data = album.__dict__
generate_output({'album': data})
@cli_subparser('album')
@cli_arg('album_id', help='Album ID')
@cli_arg('--output-file', default=None, metavar='<output_file>',
help='Save output to a JSON file')
def cmd_album_images(client, args):
album_images = client.get_album_images(args.album_id)
data = [item.__dict__ for item in album_images]
generate_output({'album_images': data}, args.output_file)
@cli_subparser('album')
@cli_arg('--ids', metavar='<ids>', help='Comma separated list of image ids that you '
'want to be included in the album; you have to be logged in as the user '
'for adding the image ids')
@cli_arg('--title', metavar='<title>', help='The title of the album')
@cli_arg('--description', metavar='<description>',
help='The description of the album')
@cli_arg('--privacy', metavar='<privacy>', choices=['public', 'hidden', 'secret'],
help="Sets the privacy level of the album."
"Values are : public | hidden | secret."
"Defaults to user's privacy settings for logged in users")
@cli_arg('--layout', metavar='<layout>',
choices=['blog', 'grid', 'horizontal', 'vertical'],
help='Sets the layout to display the album. '
'Values are : blog | grid | horizontal | vertical')
@cli_arg('--cover', metavar='<cover>',
help='The ID of an image that you want to be the cover of the album; '
'you have to be logged in as the user')
def cmd_album_create(client, args):
fields = data_fields(args, client.allowed_album_fields)
album = client.create_album(fields)
generate_output({'album': album})
@cli_subparser('album')
@cli_arg('album_id', help='Album ID')
@cli_arg('--ids', metavar='<ids>', help='Comma separated list of image ids that you '
'want to be included in the album; you have to be logged in as the user '
'for adding the image ids')
@cli_arg('--title', metavar='<title>', help='The title of the album')
@cli_arg('--description', metavar='<description>',
help='The description of the album')
@cli_arg('--privacy', metavar='<privacy>', choices=['public', 'hidden', 'secret'],
help="Sets the privacy level of the album."
"Values are : public | hidden | secret."
"Defaults to user's privacy settings for logged in users")
@cli_arg('--layout', metavar='<layout>',
choices=['blog', 'grid', 'horizontal', 'vertical'],
help='Sets the layout to display the album. '
'Values are : blog | grid | horizontal | vertical')
@cli_arg('--cover', metavar='<cover>',
help='The ID of an image that you want to be the cover of the album; '
'you have to be logged in as the user')
def cmd_album_update(client, args):
fields = data_fields(args, client.allowed_album_fields)
album = client.update_album(args.album_id, fields)
generate_output({'album': album})
@cli_subparser('album')
@cli_arg('album_id', help='Album ID')
|
MIT License
|
futuresharks/invokust
|
invokust/aws_lambda/lambda_load_test.py
|
LambdaLoadTest.increase_lambda_execution_time
|
python
|
def increase_lambda_execution_time(self, time):
with self.lock:
self.lambda_total_execution_time += time
|
Add Lambda execution time to the total
|
https://github.com/futuresharks/invokust/blob/6cf8871a811b8efa2f977ec89ad9cd1543b53bf9/invokust/aws_lambda/lambda_load_test.py#L162-L167
|
import json
import time
import logging
import threading
from boto3.session import Session
from botocore.client import Config
logger = logging.getLogger(__name__)
logging.getLogger("botocore").setLevel(logging.CRITICAL)
session = Session()
config = Config(connect_timeout=10, read_timeout=310)
client = session.client("lambda", config=config)
class LambdaLoadTest(object):
def __init__(
self,
lambda_function_name,
threads,
ramp_time,
time_limit,
lambda_payload,
lambda_timeout=300000,
):
self.lock = threading.Lock()
self.start_time = time.time()
self.logger = logging.getLogger()
self.threads = threads
self.ramp_time = ramp_time
self.time_limit = (
time_limit
)
self.lambda_function_name = lambda_function_name
self.lambda_payload = lambda_payload
self.lambda_invocation_errors = 0
self.lambda_invocation_count = 0
self.lambda_invocation_error_threshold = 20
self.lambda_total_execution_time = 0
self.requests_fail = 0
self.request_fail_ratio_threshold = 0.5
self.requests_total = 0
self.locust_results = []
self.thread_data = {}
self.print_stats_delay = 3
self.exit_threads = False
self.lambda_timeout = lambda_timeout
def update_thread_data(self, thread_id, key, value):
with self.lock:
if thread_id not in self.thread_data:
self.thread_data[thread_id] = {}
self.thread_data[thread_id][key] = value
def get_thread_count(self):
return len([t for t in threading.enumerate() if t.getName() != "MainThread"])
def get_time_elapsed(self):
return round(time.time() - self.start_time)
def increase_lambda_invocation_error(self):
with self.lock:
self.lambda_invocation_errors += 1
def increase_lambda_invocation_count(self):
with self.lock:
self.lambda_invocation_count += 1
def get_invocation_error_ratio(self):
try:
return self.lambda_invocation_errors / float(self.lambda_invocation_count)
except ZeroDivisionError:
return 0
def increase_requests_total(self, requests):
with self.lock:
self.requests_total += requests
def increase_requests_fail(self, requests):
with self.lock:
self.requests_fail += requests
def get_request_fail_ratio(self):
try:
return self.requests_fail / float(self.requests_total)
except ZeroDivisionError:
return 0
def append_locust_results(self, results):
with self.lock:
self.locust_results.append(results)
def get_summary_stats(self):
return {
"lambda_invocation_count": self.lambda_invocation_count,
"total_lambda_execution_time": self.lambda_total_execution_time,
"requests_total": self.requests_total,
"request_fail_ratio": self.get_request_fail_ratio(),
"invocation_error_ratio": self.get_invocation_error_ratio(),
}
def get_stats(self):
return {
"thread_count": self.get_thread_count(),
"rpm": self.calculate_rpm(),
"time_elapsed": self.get_time_elapsed(),
"requests_total": self.requests_total,
"request_fail_ratio": self.get_request_fail_ratio(),
"invocation_error_ratio": self.get_invocation_error_ratio(),
}
def get_locust_results(self):
return self.locust_results
|
MIT License
|
cleancut/green
|
green/output.py
|
GreenStream.writelines
|
python
|
def writelines(self, lines):
for line in lines:
self.write(line)
|
Just for better compatibility with real file objects
|
https://github.com/cleancut/green/blob/55625649869d44f8c9577f5f10626b1cbdcc48ad/green/output.py#L181-L186
|
from __future__ import unicode_literals
from colorama import init, deinit, Fore, Style
from colorama.ansi import Cursor
from colorama.initialise import wrap_stream
import logging
import os
import platform
import re
import sys
from unidecode import unidecode
global debug_level
debug_level = 0
if sys.version_info[0] == 3:
text_type = str
unicode = None
else:
text_type = unicode
def debug(message, level=1):
if level <= debug_level:
logging.debug(" " * (level - 1) * 2 + str(message))
class Colors:
def __init__(self, termcolor=None):
if termcolor is None:
self.termcolor = sys.stdout.isatty()
else:
self.termcolor = termcolor
def wrap(self, text, style):
if self.termcolor:
return "%s%s%s" % (style, text, Style.RESET_ALL)
else:
return text
def start_of_line(self):
return "\r"
def up(self, lines=1):
return Cursor.UP(lines)
def bold(self, text):
return self.wrap(text, Style.BRIGHT)
def blue(self, text):
if platform.system() == "Windows":
return self.wrap(text, Fore.CYAN)
else:
return self.wrap(text, Fore.BLUE)
def green(self, text):
return self.wrap(text, Fore.GREEN)
def red(self, text):
return self.wrap(text, Fore.RED)
def yellow(self, text):
return self.wrap(text, Fore.YELLOW)
def passing(self, text):
return self.green(text)
def failing(self, text):
return self.red(text)
def error(self, text):
return self.red(text)
def skipped(self, text):
return self.blue(text)
def unexpectedSuccess(self, text):
return self.yellow(text)
def expectedFailure(self, text):
return self.yellow(text)
def moduleName(self, text):
return self.bold(text)
def className(self, text):
return text
class GreenStream(object):
indent_spaces = 2
_ascii_only_output = False
coverage_pattern = re.compile(r"TOTAL\s+\d+\s+\d+\s+(?P<percent>\d+)%")
def __init__(
self,
stream,
override_appveyor=False,
disable_windows=False,
disable_unidecode=False,
):
self.disable_unidecode = disable_unidecode
self.stream = stream
on_windows = platform.system() == "Windows"
on_windows_ci = os.environ.get("GITHUB_ACTIONS", False) or os.environ.get(
"APPVEYOR", False
)
if override_appveyor or (
(on_windows and not on_windows_ci) and not disable_windows
):
self.stream = wrap_stream(self.stream, None, None, None, True)
self._ascii_only_output = True
self.closed = False
try:
self.encoding = stream.encoding
except:
self.encoding = "UTF-8"
self.coverage_percent = None
def flush(self):
self.stream.flush()
def writeln(self, text=""):
self.write(text + "\n")
def write(self, text):
if type(text) == bytes:
text = text.decode("utf-8")
if self._ascii_only_output and not self.disable_unidecode:
text = text_type(unidecode(text))
match = self.coverage_pattern.search(text)
if match:
percent_str = match.groupdict().get("percent")
if percent_str:
self.coverage_percent = int(percent_str)
self.stream.write(text)
|
MIT License
|
jweyn/dlwp
|
DLWP/data/era5.py
|
ERA5Reanalysis.__init__
|
python
|
def __init__(self, root_directory=None, file_id=''):
self.raw_files = []
self.dataset_variables = []
self.dataset_levels = []
self.dataset_dates = None
if root_directory is None:
self._root_directory = '%s/.era5' % os.path.expanduser('~')
else:
self._root_directory = root_directory
self._file_id = file_id
self._delete_temp = False
self.level_coord = [1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750] + list(range(775, 1001, 25))
self.inverse_lat = True
self.Dataset = None
self.basemap = None
self._lat_array = None
self._lon_array = None
|
Initialize an instance of the ERA5Reanalysis class.
:param root_directory: str: local directory where raw files are stored. If None, defaults to ~/.era5
:param file_id: str: prepended to the processed file names. Useful if files for the same dates will be created
with different parameters, i.e., hours or variables or levels.
|
https://github.com/jweyn/dlwp/blob/3f32bfab98eacee2abe880d5bd214b6060627edd/DLWP/data/era5.py#L93-L118
|
import os
import warnings
import itertools as it
import numpy as np
import netCDF4 as nc
import pandas as pd
import xarray as xr
from datetime import datetime, timedelta
try:
import cdsapi
except ImportError:
warnings.warn("module 'cdsapi' not found; retrieval of ERA5 data unavailable.")
def _check_exists(file_name, path=False):
if os.path.exists(file_name):
exists = True
local_file = file_name
else:
exists = False
local_file = None
if path:
return exists, local_file
else:
return exists
def call_fetch(args):
obj = args[0]
obj._fetch(*args[1:])
netcdf_file_format = ''
data_start_date = datetime(1979, 1, 1)
data_end_date = datetime(2018, 12, 31)
reforecast_start_date = datetime(1999, 1, 1)
reforecast_end_date = datetime(2009, 12, 31, 18)
fill_value = np.array(nc.default_fillvals['f4']).astype(np.float32)
variable_names = {
'divergence': 'd',
'fraction_of_cloud_cover': 'cc',
'geopotential': 'z',
'ozone_mass_mixing_ratio': 'o3',
'potential_vorticity': 'pv',
'relative_humidity': 'r',
'specific_cloud_ice_water_content': 'ciwc',
'specific_cloud_liquid_water_content': 'clwc',
'specific_humidity': 'q',
'specific_rain_water_content': 'crwc',
'specific_snow_water_content': 'cswc',
'temperature': 't',
'u_component_of_wind': 'u',
'v_component_of_wind': 'v',
'vertical_velocity': 'w',
'vorticity': 'vo'
}
class ERA5Reanalysis(object):
|
MIT License
|
edwardoughton/pysim5g
|
src/pysim5g/generate_hex.py
|
find_site_locations
|
python
|
def find_site_locations(site_area, interfering_site_areas):
site_area_site = Polygon(
site_area[0]['geometry']['coordinates'][0]
).centroid
transmitter = []
transmitter.append({
'type': 'Feature',
'geometry': mapping(site_area_site),
'properties': {
'site_id': 'transmitter'
}
})
interfering_transmitters = []
for interfering_site in interfering_site_areas:
interfering_transmitters.append({
'type': 'Feature',
'geometry': mapping(interfering_site['centroid']),
'properties': {
'site_id': interfering_site['properties']['site_id']
}
})
return transmitter, interfering_transmitters
|
Get the centroid for each site area and intefering site areas.
Parameters
----------
site_area : List of dicts
Contains the geojson site area for the transmitter.
interfering_site_areas : List of dicts
Contains the geojson interfering site areas.
Returns
-------
transmitter : List of dicts
Contains the geojson site location for the transmitter.
interfering_site_areas : List of dicts
Contains the geojson site locations for interfering sites.
|
https://github.com/edwardoughton/pysim5g/blob/b352151edb56f4bc686b69ecce8dbae6ff202854/src/pysim5g/generate_hex.py#L218-L261
|
import os
import configparser
import math
import fiona
from shapely.ops import transform
from shapely.geometry import Point, mapping, shape, Polygon
from functools import partial
from rtree import index
import pyproj
from collections import OrderedDict
def convert_point_to_projected_crs(point, original_crs, new_crs):
project = partial(
pyproj.transform,
pyproj.Proj(original_crs),
pyproj.Proj(new_crs)
)
new_geom = transform(project, Point(point))
output = {
'type': 'Feature',
'geometry': mapping(new_geom),
'properties': 'Crystal Palace Radio Tower'
}
return output
def calculate_polygons(startx, starty, endx, endy, radius):
sl = (2 * radius) * math.tan(math.pi / 6)
p = sl * 0.5
b = sl * math.cos(math.radians(30))
w = b * 2
h = 2 * sl
startx = startx - w
starty = starty - h
endx = endx + w
endy = endy + h
origx = startx
origy = starty
xoffset = b
yoffset = 3 * p
polygons = []
row = 1
counter = 0
while starty < endy:
if row % 2 == 0:
startx = origx + xoffset
else:
startx = origx
while startx < endx:
p1x = startx
p1y = starty + p
p2x = startx
p2y = starty + (3 * p)
p3x = startx + b
p3y = starty + h
p4x = startx + w
p4y = starty + (3 * p)
p5x = startx + w
p5y = starty + p
p6x = startx + b
p6y = starty
poly = [
(p1x, p1y),
(p2x, p2y),
(p3x, p3y),
(p4x, p4y),
(p5x, p5y),
(p6x, p6y),
(p1x, p1y)]
polygons.append(poly)
counter += 1
startx += w
starty += yoffset
row += 1
return polygons
def find_closest_site_areas(hexagons, geom_shape):
idx = index.Index()
for site in hexagons:
coords = site['centroid']
idx.insert(0, coords.bounds, site)
transmitter = mapping(geom_shape.centroid)
site_area = list(
idx.nearest(
(transmitter['coordinates'][0],
transmitter['coordinates'][1],
transmitter['coordinates'][0],
transmitter['coordinates'][1]),
1, objects='raw')
)[0]
closest_site_area_centroid = Polygon(
site_area['geometry']['coordinates'][0]
).centroid
all_closest_sites = list(
idx.nearest(
closest_site_area_centroid.bounds,
7, objects='raw')
)
interfering_site_areas = all_closest_sites[1:7]
site_area = []
site_area.append(all_closest_sites[0])
return site_area, interfering_site_areas
|
MIT License
|
facebookresearch/compilergym
|
compiler_gym/bin/manual_env.py
|
CompilerGymShell.complete_set_benchmark
|
python
|
def complete_set_benchmark(self, text, line, begidx, endidx):
return self.simple_complete(text, self.benchmarks)
|
Complete the set_benchmark argument
|
https://github.com/facebookresearch/compilergym/blob/00ae8c0d080da4d429f95398be1df01b5d6e7b71/compiler_gym/bin/manual_env.py#L357-L359
|
import cmd
import random
import readline
import sys
from itertools import islice
from absl import app, flags
from compiler_gym.envs import CompilerEnv
from compiler_gym.util.flags.benchmark_from_flags import benchmark_from_flags
from compiler_gym.util.flags.env_from_flags import env_from_flags
from compiler_gym.util.shell_format import emph
from compiler_gym.util.tabulate import tabulate
from compiler_gym.util.timer import Timer
FLAGS = flags.FLAGS
tutorial = "**************************".join(
__doc__.split("**************************")[1:]
)
class ActionHistoryElement:
def __init__(self, action_name, action_index, observation, reward, done, info):
self.action_name = action_name
self.action_index = action_index
self.observation = observation
self.reward = reward
self.done = done
self.info = info
def has_no_effect(self):
return self.info.get("action_had_no_effect")
def has_effect(self):
return not self.has_no_effect()
class CompilerGymShell(cmd.Cmd):
intro = """Welcome to the CompilerGym Shell!
---------------------------------
Type help or ? for more information.
The 'tutorial' command will give a step by step guide."""
def __init__(self, env: CompilerEnv):
super().__init__()
self.env = env
self.benchmarks = []
for dataset in self.env.datasets:
self.benchmarks += islice(dataset.benchmark_uris(), 50)
self.benchmarks.sort()
for i, benchmark in enumerate(self.benchmarks):
if benchmark.startswith("benchmark://"):
self.benchmarks[i] = benchmark[len("benchmark://") :]
self.observations = sorted(self.env.observation.spaces.keys())
self.rewards = sorted(self.env.reward.spaces.keys())
self.stack = []
self.set_prompt()
def __del__(self):
if self.env:
self.env.close()
self.env = None
def do_tutorial(self, arg):
print(tutorial)
def preloop(self):
self.old_completer_delims = readline.get_completer_delims()
readline.set_completer_delims(" \t\n")
def postloop(self):
readline.set_completer_delims(self.old_completer_delims)
self.stack.clear()
self.env.close()
self.env = None
def set_prompt(self):
benchmark_name = self.env.benchmark.uri
if benchmark_name.startswith("benchmark://"):
benchmark_name = benchmark_name[len("benchmark://") :]
prompt = f"compiler_gym:{benchmark_name}>"
self.prompt = f"\n{emph(prompt)} "
def simple_complete(self, text, options):
if text:
return [opt for opt in options if opt.startswith(text)]
else:
return options
def get_datasets(self):
return sorted([k.name for k in self.env.datasets.datasets()])
def do_list_datasets(self, arg):
print(", ".join(self.get_datasets()))
def do_list_benchmarks(self, arg):
print(", ".join(self.benchmarks))
|
MIT License
|
humancellatlas/table-testing
|
distributed_test/filter_merge_lambda/matrix_map_reduce.py
|
increment_state_field
|
python
|
def increment_state_field(request_id, field_name, increment_size):
return dynamo_utils.increment_field(
CFN_VARS["state_table"], {"RequestId": request_id}, field_name, increment_size)
|
Increment a field in the state table.
This is used to keep track of how many lambda executions have completed and are
expected to complete.
|
https://github.com/humancellatlas/table-testing/blob/66af81f0162502660e92ae94edaaa76b48fa07ca/distributed_test/filter_merge_lambda/matrix_map_reduce.py#L96-L103
|
import datetime
import json
import os
import uuid
import boto3
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch
patch(["boto3"])
import dynamo_utils
CFN_VARS = {
"mapper_fn": os.environ.get("MAPPER_FN"),
"work_fn": os.environ.get("WORK_FN"),
"reducer_fn": os.environ.get("REDUCER_FN"),
"state_table": os.environ.get("STATE_TABLE"),
"timing_table": os.environ.get("TIMING_TABLE"),
"result_bucket": os.environ.get("RESULT_BUCKET")
}
LAMBDA_CLIENT = boto3.client("lambda", region_name="us-east-1")
STATE_TABLE = boto3.resource("dynamodb", region_name="us-east-1").Table(CFN_VARS["state_table"])
TIMING_TABLE = boto3.resource("dynamodb", region_name="us-east-1").Table(CFN_VARS["timing_table"])
FORMAT_HANDLERS = {}
try:
import parquet_impl
FORMAT_HANDLERS["parquet"] = {
"driver": parquet_impl.driver,
"mapper": parquet_impl.mapper,
"work": parquet_impl.work,
"reducer": parquet_impl.reducer
}
except ImportError:
pass
try:
import zarr_impl
FORMAT_HANDLERS["zarr"] = {
"driver": zarr_impl.driver,
"mapper": zarr_impl.mapper,
"work": zarr_impl.work,
"reducer": zarr_impl.reducer
}
except ImportError:
pass
|
MIT License
|
jhl-hust/ibcln
|
util/util.py
|
tensor2im
|
python
|
def tensor2im(input_image, imtype=np.uint8):
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor):
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].cpu().float().numpy()
if image_numpy.shape[0] == 1:
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (np.transpose(image_numpy, (1, 2, 0))) * 255.0
else:
image_numpy = input_image
return image_numpy.astype(imtype)
|
Converts a Tensor array into a numpy image array.
Parameters:
input_image (tensor) -- the input image tensor array
imtype (type) -- the desired type of the converted numpy array
|
https://github.com/jhl-hust/ibcln/blob/66056ffd83e873536cf26b76fa9532a40cbfa7fa/util/util.py#L9-L33
|
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
|
BSD 2-Clause Simplified License
|
microsoft/azure-devops-python-api
|
azure-devops/azure/devops/v6_0/core/core_client.py
|
CoreClient.queue_create_project
|
python
|
def queue_create_project(self, project_to_create):
content = self._serialize.body(project_to_create, 'TeamProject')
response = self._send(http_method='POST',
location_id='603fe2ac-9723-48b9-88ad-09305aa6c6e1',
version='6.0-preview.4',
content=content)
return self._deserialize('OperationReference', response)
|
QueueCreateProject.
[Preview API] Queues a project to be created. Use the [GetOperation](../../operations/operations/get) to periodically check for create project status.
:param :class:`<TeamProject> <azure.devops.v6_0.core.models.TeamProject>` project_to_create: The project to create.
:rtype: :class:`<OperationReference> <azure.devops.v6_0.core.models.OperationReference>`
|
https://github.com/microsoft/azure-devops-python-api/blob/451cade4c475482792cbe9e522c1fee32393139e/azure-devops/azure/devops/v6_0/core/core_client.py#L247-L258
|
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class CoreClient(Client):
def __init__(self, base_url=None, creds=None):
super(CoreClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = '79134c72-4a58-4b42-976c-04e7115f32bf'
def remove_project_avatar(self, project_id):
route_values = {}
if project_id is not None:
route_values['projectId'] = self._serialize.url('project_id', project_id, 'str')
self._send(http_method='DELETE',
location_id='54b2a2a0-859b-4d05-827c-ec4c862f641a',
version='6.0-preview.1',
route_values=route_values)
def set_project_avatar(self, avatar_blob, project_id):
route_values = {}
if project_id is not None:
route_values['projectId'] = self._serialize.url('project_id', project_id, 'str')
content = self._serialize.body(avatar_blob, 'ProjectAvatar')
self._send(http_method='PUT',
location_id='54b2a2a0-859b-4d05-827c-ec4c862f641a',
version='6.0-preview.1',
route_values=route_values,
content=content)
def create_connected_service(self, connected_service_creation_data, project_id):
route_values = {}
if project_id is not None:
route_values['projectId'] = self._serialize.url('project_id', project_id, 'str')
content = self._serialize.body(connected_service_creation_data, 'WebApiConnectedServiceDetails')
response = self._send(http_method='POST',
location_id='b4f70219-e18b-42c5-abe3-98b07d35525e',
version='6.0-preview.1',
route_values=route_values,
content=content)
return self._deserialize('WebApiConnectedService', response)
def get_connected_service_details(self, project_id, name):
route_values = {}
if project_id is not None:
route_values['projectId'] = self._serialize.url('project_id', project_id, 'str')
if name is not None:
route_values['name'] = self._serialize.url('name', name, 'str')
response = self._send(http_method='GET',
location_id='b4f70219-e18b-42c5-abe3-98b07d35525e',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('WebApiConnectedServiceDetails', response)
def get_connected_services(self, project_id, kind=None):
route_values = {}
if project_id is not None:
route_values['projectId'] = self._serialize.url('project_id', project_id, 'str')
query_parameters = {}
if kind is not None:
query_parameters['kind'] = self._serialize.query('kind', kind, 'str')
response = self._send(http_method='GET',
location_id='b4f70219-e18b-42c5-abe3-98b07d35525e',
version='6.0-preview.1',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[WebApiConnectedService]', self._unwrap_collection(response))
def get_team_members_with_extended_properties(self, project_id, team_id, top=None, skip=None):
route_values = {}
if project_id is not None:
route_values['projectId'] = self._serialize.url('project_id', project_id, 'str')
if team_id is not None:
route_values['teamId'] = self._serialize.url('team_id', team_id, 'str')
query_parameters = {}
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
response = self._send(http_method='GET',
location_id='294c494c-2600-4d7e-b76c-3dd50c3c95be',
version='6.0-preview.2',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('[TeamMember]', self._unwrap_collection(response))
def get_process_by_id(self, process_id):
route_values = {}
if process_id is not None:
route_values['processId'] = self._serialize.url('process_id', process_id, 'str')
response = self._send(http_method='GET',
location_id='93878975-88c5-4e6a-8abb-7ddd77a8a7d8',
version='6.0-preview.1',
route_values=route_values)
return self._deserialize('Process', response)
def get_processes(self):
response = self._send(http_method='GET',
location_id='93878975-88c5-4e6a-8abb-7ddd77a8a7d8',
version='6.0-preview.1')
return self._deserialize('[Process]', self._unwrap_collection(response))
def get_project_collection(self, collection_id):
route_values = {}
if collection_id is not None:
route_values['collectionId'] = self._serialize.url('collection_id', collection_id, 'str')
response = self._send(http_method='GET',
location_id='8031090f-ef1d-4af6-85fc-698cd75d42bf',
version='6.0-preview.2',
route_values=route_values)
return self._deserialize('TeamProjectCollection', response)
def get_project_collections(self, top=None, skip=None):
query_parameters = {}
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
response = self._send(http_method='GET',
location_id='8031090f-ef1d-4af6-85fc-698cd75d42bf',
version='6.0-preview.2',
query_parameters=query_parameters)
return self._deserialize('[TeamProjectCollectionReference]', self._unwrap_collection(response))
def get_project(self, project_id, include_capabilities=None, include_history=None):
route_values = {}
if project_id is not None:
route_values['projectId'] = self._serialize.url('project_id', project_id, 'str')
query_parameters = {}
if include_capabilities is not None:
query_parameters['includeCapabilities'] = self._serialize.query('include_capabilities', include_capabilities, 'bool')
if include_history is not None:
query_parameters['includeHistory'] = self._serialize.query('include_history', include_history, 'bool')
response = self._send(http_method='GET',
location_id='603fe2ac-9723-48b9-88ad-09305aa6c6e1',
version='6.0-preview.4',
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize('TeamProject', response)
def get_projects(self, state_filter=None, top=None, skip=None, continuation_token=None, get_default_team_image_url=None):
query_parameters = {}
if state_filter is not None:
query_parameters['stateFilter'] = self._serialize.query('state_filter', state_filter, 'str')
if top is not None:
query_parameters['$top'] = self._serialize.query('top', top, 'int')
if skip is not None:
query_parameters['$skip'] = self._serialize.query('skip', skip, 'int')
if continuation_token is not None:
query_parameters['continuationToken'] = self._serialize.query('continuation_token', continuation_token, 'str')
if get_default_team_image_url is not None:
query_parameters['getDefaultTeamImageUrl'] = self._serialize.query('get_default_team_image_url', get_default_team_image_url, 'bool')
response = self._send(http_method='GET',
location_id='603fe2ac-9723-48b9-88ad-09305aa6c6e1',
version='6.0-preview.4',
query_parameters=query_parameters)
return self._deserialize('[TeamProjectReference]', self._unwrap_collection(response))
|
MIT License
|
elephantmipt/bert-distillation
|
src/experiment.py
|
Experiment.get_datasets
|
python
|
def get_datasets(
self,
stage: str,
path_to_data: str,
train_filename: str,
valid_filename: str,
max_sequence_length: int,
text_field: str,
model_name: str,
**kwargs,
):
datasets = OrderedDict()
path_to_data = Path(path_to_data)
train_df = pd.read_csv(path_to_data / train_filename)
valid_df = pd.read_csv(path_to_data / valid_filename)
data_params = dict(self.stages_config[stage]["data_params"])
model_name = data_params["model_name"]
tokenizer = AutoTokenizer.from_pretrained(model_name)
train_dataset = LanguageModelingDataset(
texts=train_df[text_field],
max_seq_length=max_sequence_length,
tokenizer=tokenizer,
sort=False,
lazy=True,
)
valid_dataset = LanguageModelingDataset(
texts=valid_df[text_field],
max_seq_length=max_sequence_length,
tokenizer=tokenizer,
sort=False,
lazy=True,
)
datasets["train"] = train_dataset
datasets["valid"] = valid_dataset
return datasets
|
@TODO: Docs. Contribution is welcome
|
https://github.com/elephantmipt/bert-distillation/blob/e414df9d913ff9c1ba971bb9f72b537edffdd039/src/experiment.py#L67-L111
|
from typing import Dict, Union
from collections import OrderedDict
import logging
from pathlib import Path
from catalyst.dl import ConfigExperiment, utils
from catalyst.tools.typing import Model, Optimizer
import pandas as pd
from src.data import LanguageModelingDataset
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.data.data_collator import DataCollatorForLanguageModeling
logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR)
class Experiment(ConfigExperiment):
def __init__(self, config: Dict):
super().__init__(config)
self.config = config
def get_transforms(self, stage: str = None, mode: str = None):
return []
def get_optimizer(
self, stage: str, model: Union[Model, Dict[str, Model]]
) -> Union[Optimizer, Dict[str, Optimizer]]:
optimizer_params = self.stages_config[stage].get(
"optimizer_params", {}
)
key_value_flag = optimizer_params.pop("_key_value", False)
if key_value_flag:
optimizer = {}
for key, params_ in optimizer_params.items():
optimizer_key = "optimizer_key"
assert optimizer_key not in params_, "keyword reserved"
params_[optimizer_key] = key
optimizer[key] = self._get_optimizer(
stage, model["student"], **params_
)
else:
optimizer = self._get_optimizer(
stage, model["student"], **optimizer_params
)
return optimizer
|
MIT License
|
google/upvote
|
upvote/gae/lib/bit9/scripts/build_from_docs.py
|
_FindFromNext
|
python
|
def _FindFromNext(start_tag, search_tag):
tag = start_tag.next_sibling
while tag is not None:
if isinstance(tag, bs4.element.Tag):
if tag.name == search_tag:
return tag, tag
child_matches = tag.find_all(search_tag)
if child_matches:
return tag, child_matches[0]
tag = tag.next_sibling
if tag is None:
return None, None
|
Finds a sibling that either is or contains a given tag.
Because the REST API HTML in bedlam is non-heirarchical (i.e. blocks are flat,
not nested), we need to search through all sibling nodes in the tree instead
of child nodes.
Args:
start_tag: bs4.element.Tag, The tag from which siblings should be searched.
search_tag: str, The name of the tag to look for.
Returns:
(parent_tag, target_tag), both bs4.element.Tags. parent_tag is the sibling
tag of start_tag that encloses the tag matching search_tag. target_tag is
the tag that matches the search_tag type exactly.
parent_tag can be the same as target_tag if it's the one matching
search_tag.
If the search_tag is not found, (None, None) is returned.
|
https://github.com/google/upvote/blob/0b4477d40676a46ad58aaa7e14f9b13770d55c0c/upvote/gae/lib/bit9/scripts/build_from_docs.py#L57-L89
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import bs4
from upvote.gae.lib.bit9 import utils
from absl import app
from absl import flags
FLAGS = flags.FLAGS
flags.DEFINE_string(
'docs_path', None,
'The path to the HTML file containing the Bit9 REST API documentation.')
flags.DEFINE_list(
'objects_to_output', [u'approvalRequest', u'fileInstance', u'fileCatalog',
u'publisher', u'fileRule', u'certificate', u'policy',
u'event', u'computer'],
'The list of Bit9 API object names for which models should be generated.')
_TYPE_TO_PROPERTY = {
'String': 'StringProperty',
'DateTime': 'DateTimeProperty',
'Int16': 'Int16Property',
'Int32': 'Int32Property',
'Int64': 'Int64Property',
'Boolean': 'BooleanProperty',
'Decimal': 'DecimalProperty',
'Double': 'DoubleProperty',
}
|
Apache License 2.0
|
pyansys/pyaedt
|
pyaedt/modeler/PrimitivesCircuit.py
|
CircuitComponents.__getitem__
|
python
|
def __getitem__(self, partname):
if type(partname) is int:
return self.components[partname]
for el in self.components:
if self.components[el].name == partname or self.components[el].composed_name == partname or el == partname:
return self.components[el]
return None
|
Retrieve a part.
Parameters
----------
partname : int or str
Part ID or part name.
Returns
-------
type
Part object details.
|
https://github.com/pyansys/pyaedt/blob/817c7d706a2d10942470ccac959645e16e9ea971/pyaedt/modeler/PrimitivesCircuit.py#L16-L35
|
import random
import warnings
from collections import defaultdict
from ..generic.general_methods import aedt_exception_handler, retry_ntimes
from .Object3d import CircuitComponent
class CircuitComponents(object):
@aedt_exception_handler
|
MIT License
|
alttch/finac
|
finac/__init__.py
|
ls
|
python
|
def ls(account=None,
asset=None,
tp=None,
passive=None,
start=None,
end=None,
tag=None,
pending=True,
hide_empty=False,
order_by=['tp', 'asset', 'account', 'balance'],
group_by=None,
base=None):
if account and account.find('%') != -1:
code = account
account = None
else:
code = None
if account:
result = account_statement_summary(
account=account,
start=start if start else datetime.datetime.today().replace(
day=1, hour=0, minute=0, second=0, microsecond=0).timestamp(),
end=end,
tag=tag,
pending=pending,
datefmt=True)
stmt = result['statement'].copy()
acc_info = account_info(account=account)
precision = asset_precision(asset=acc_info['asset'])
for i, r in enumerate(stmt):
r = r.copy()
del r['is_completed']
r['amount'] = format_money(r['amount'], precision)
stmt[i] = r
ft = rapidtables.format_table(
stmt,
fmt=rapidtables.FORMAT_GENERATOR,
align=(rapidtables.ALIGN_LEFT, rapidtables.ALIGN_RIGHT,
rapidtables.ALIGN_LEFT, rapidtables.ALIGN_LEFT,
rapidtables.ALIGN_LEFT, rapidtables.ALIGN_LEFT,
rapidtables.ALIGN_LEFT))
rcur = base.upper() if base else acc_info['asset']
if ft:
h, tbl = ft
neotermcolor.cprint(h, '@finac:title')
neotermcolor.cprint('-' * len(h), '@finac:separator')
for t, s in zip(tbl, result['statement']):
neotermcolor.cprint(
t,
'@finac:credit' if s['amount'] < 0 else '@finac:debit',
attrs='')
neotermcolor.cprint('-' * len(h), '@finac:separator')
print('Debit turnover: ', end='')
neotermcolor.cprint(format_money(result['debit'], precision),
style='finac:debit_sum',
end=', ')
print('credit turnover: ', end='')
neotermcolor.cprint(format_money(result['credit'], precision),
style='finac:credit_sum')
print()
if base:
precision = asset_precision(base)
print('Net profit/loss: ', end='')
pl = result['debit'] - result['credit']
if base:
pl = pl * asset_rate(acc_info['asset'], base, date=end)
neotermcolor.cprint('{} {}'.format(format_money(pl, precision),
rcur),
attrs='bold',
end='')
print(', balance', end='')
else:
print('Balance', end='')
balance = account_balance(account=account, date=end)
if base:
balance = balance * asset_rate(acc_info['asset'], base, date=end)
print('{}: '.format(' to date' if end else ''), end='')
neotermcolor.cprint('{} {}'.format(format_money(balance, precision),
rcur),
attrs='bold',
end='')
print()
else:
if not base:
base = config.base_asset
base = base.upper()
result = account_list_summary(asset=asset,
tp=tp,
passive=passive,
code=code,
date=end,
order_by=order_by,
group_by=group_by,
hide_empty=hide_empty,
base=base)
if not group_by:
kf = 'accounts'
rt_align = (rapidtables.ALIGN_LEFT, rapidtables.ALIGN_LEFT,
rapidtables.ALIGN_CENTER, rapidtables.ALIGN_CENTER,
rapidtables.ALIGN_RIGHT, rapidtables.ALIGN_RIGHT)
elif group_by == 'asset':
kf = 'assets'
rt_align = (rapidtables.ALIGN_LEFT, rapidtables.ALIGN_RIGHT,
rapidtables.ALIGN_RIGHT)
else:
kf = 'account_types'
rt_align = (rapidtables.ALIGN_LEFT, rapidtables.ALIGN_RIGHT)
res = result[kf]
data = res.copy()
bcp = asset_precision(asset=base)
for i, r in enumerate(res):
r = r.copy()
if group_by not in ['type', 'tp']:
r['balance'] = format_money(r['balance'],
asset_precision(asset=r['asset']))
r['balance ' + base] = format_money(r['balance_bc'], bcp)
del r['balance_bc']
if not group_by:
del r['note']
if 'passive' in r:
r['passive'] = 'P' if r['passive'] else ''
res[i] = r
ft = rapidtables.format_table(res,
fmt=rapidtables.FORMAT_GENERATOR,
align=rt_align)
if not ft:
return
h, tbl = ft
neotermcolor.cprint(h, '@finac:title')
neotermcolor.cprint('-' * len(h), '@finac:separator')
for t, s in zip(tbl, data):
if s.get('passive'):
style = 'finac:passive'
else:
style = 'finac:credit' if s['balance_bc'] < 0 else None
neotermcolor.cprint(t, style=style, attrs='')
neotermcolor.cprint('-' * len(h), '@finac:separator')
neotermcolor.cprint('Total: ', end='')
neotermcolor.cprint('{} {}'.format(format_money(result['total'], bcp),
base),
style='finac:sum')
print()
|
Primary interactive function. Prints account statement if account code
is specified, otherwise prints summary for all accounts
Account code may contain '%' symbol as a wildcard.
Args:
account: account code
asset: filter by asset code
tp: filter by account type (or types)
passive: list passive, active or all (if None) accounts
start: start date (for statement), default: first day of current month
end: end date (or balance date for summary)
tag: filter transactions by tag (for statement)
pending: include pending transactions
hide_empty: hide empty accounts (for summary)
order_by: column ordering (ordering by base is not supported)
base: specify base asset
|
https://github.com/alttch/finac/blob/956dd3bda113cb65d57d6ffa5568440a87656177/finac/__init__.py#L149-L309
|
__author__ = 'Altertech, https://www.altertech.com/'
__copyright__ = 'Copyright (C) 2019 Altertech'
__license__ = 'MIT'
__version__ = '0.5.7'
import rapidtables
import neotermcolor
import datetime, time
from functools import partial
from collections import OrderedDict
from finac.core import init, config
from finac.core import ResourceNotFound, RateNotFound
from finac.core import OverdraftError, OverlimitError
from finac.core import ResourceAlreadyExists
from finac.core import asset_create, asset_delete
from finac.core import asset_set_rate, asset_rate
from finac.core import asset_delete_rate, asset_rate_range
from finac.core import asset_update
from finac.core import asset_precision
from finac.core import asset_list, asset_list_rates
from finac.core import account_create, account_delete
from finac.core import account_info
from finac.core import account_update
from finac.core import archive_transactions
from finac.core import transaction_create, transaction_complete
from finac.core import transaction_move, transaction_delete
from finac.core import transaction_copy
from finac.core import transaction_update, transaction_apply
from finac.core import account_credit, account_debit, account_balance
from finac.core import account_balance_range
from finac.core import account_statement, account_statement_summary
from finac.core import account_list, account_list_summary
from finac.core import purge, transaction_purge, cleanup
from finac.core import preload, exec_query
from finac.plot import account_plot as plot
from finac.plot import account_pie as pie
from finac.df import df
from finac.core import parse_number, parse_date, get_version
tr = transaction_create
tc = transaction_copy
mv = transaction_move
rm = transaction_delete
cp = transaction_copy
apply = transaction_apply
complete = transaction_complete
rate = asset_rate
stmt = account_statement_summary
def query(q):
t_start = time.time()
result = list(exec_query(q))
t_spent = time.time() - t_start
ft = rapidtables.format_table(result, fmt=rapidtables.FORMAT_GENERATOR)
if ft:
h, tbl = ft
neotermcolor.cprint(h, '@finac:title')
neotermcolor.cprint('-' * len(h), '@finac:separator')
for t in tbl:
print(t)
neotermcolor.cprint('-' * len(h), '@finac:separator')
print(f'SELECT {len(result)}')
print(f'Time: {t_spent:.3f}s')
def check_version(warn=False):
core_version = get_version()
if __version__ != core_version:
if warn:
print('WARNING: client version: {}, core version: {}'.format(
__version__, core_version))
return False
else:
return True
def balance(account=None,
asset=None,
tp=None,
passive=None,
base=None,
date=None):
if account and account.find('%') == -1:
return account_balance(account, tp=tp, base=base, date=date)
else:
return account_list_summary(asset=asset,
tp=tp,
passive=passive,
code=account,
date=date,
base=base)['total']
balance_range = partial(account_balance_range, return_timestamp=False)
def format_money(amnt, precision=2):
return ('{:,.' + str(precision) + 'f}').format(amnt).replace(',', ' ')
neotermcolor.set_style('finac:title', color='blue')
neotermcolor.set_style('finac:separator', color='grey')
neotermcolor.set_style('finac:sum', attrs='bold')
neotermcolor.set_style('finac:debit', color='green')
neotermcolor.set_style('finac:credit', color='red')
neotermcolor.set_style('finac:passive', color='magenta')
neotermcolor.set_style('finac:debit_sum', color='green', attrs='bold')
neotermcolor.set_style('finac:credit_sum', color='red', attrs='bold')
|
MIT License
|
kengz/slm-lab
|
slm_lab/agent/__init__.py
|
Body.get_mean_lr
|
python
|
def get_mean_lr(self):
if not hasattr(self.agent.algorithm, 'net_names'):
return np.nan
lrs = []
for attr, obj in self.agent.algorithm.__dict__.items():
if attr.endswith('lr_scheduler'):
lrs.append(obj.get_lr())
return np.mean(lrs)
|
Gets the average current learning rate of the algorithm's nets.
|
https://github.com/kengz/slm-lab/blob/faca82c00c51a993e1773e115d5528ffb7ad4ade/slm_lab/agent/__init__.py#L192-L200
|
from slm_lab.agent import algorithm, memory
from slm_lab.agent.algorithm import policy_util
from slm_lab.agent.net import net_util
from slm_lab.lib import logger, util, viz
from slm_lab.lib.decorator import lab_api
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import os
import pandas as pd
import pydash as ps
import torch
import warnings
logger = logger.get_logger(__name__)
class Agent:
def __init__(self, spec, body, global_nets=None):
self.spec = spec
self.agent_spec = spec['agent'][0]
self.name = self.agent_spec['name']
assert not ps.is_list(global_nets), f'single agent global_nets must be a dict, got {global_nets}'
self.body = body
body.agent = self
MemoryClass = getattr(memory, ps.get(self.agent_spec, 'memory.name'))
self.body.memory = MemoryClass(self.agent_spec['memory'], self.body)
AlgorithmClass = getattr(algorithm, ps.get(self.agent_spec, 'algorithm.name'))
self.algorithm = AlgorithmClass(self, global_nets)
logger.info(util.self_desc(self))
@lab_api
def act(self, state):
with torch.no_grad():
action = self.algorithm.act(state)
return action
@lab_api
def update(self, state, action, reward, next_state, done):
self.body.update(state, action, reward, next_state, done)
if util.in_eval_lab_mode():
return
self.body.memory.update(state, action, reward, next_state, done)
loss = self.algorithm.train()
if not np.isnan(loss):
self.body.loss = loss
explore_var = self.algorithm.update()
return loss, explore_var
@lab_api
def save(self, ckpt=None):
if util.in_eval_lab_mode():
return
self.algorithm.save(ckpt=ckpt)
@lab_api
def close(self):
self.save()
class Body:
def __init__(self, env, spec, aeb=(0, 0, 0)):
self.agent = None
self.env = env
self.spec = spec
self.a, self.e, self.b = self.aeb = aeb
self.explore_var = np.nan
self.entropy_coef = np.nan
self.loss = np.nan
self.mean_entropy = np.nan
self.mean_grad_norm = np.nan
self.best_total_reward_ma = -np.inf
self.total_reward_ma = np.nan
self.train_df = pd.DataFrame(columns=[
'epi', 't', 'wall_t', 'opt_step', 'frame', 'fps', 'total_reward', 'total_reward_ma', 'loss', 'lr',
'explore_var', 'entropy_coef', 'entropy', 'grad_norm'])
if util.in_train_lab_mode() and self.spec['meta']['resume']:
train_df_filepath = util.get_session_df_path(self.spec, 'train')
if os.path.exists(train_df_filepath):
self.train_df = util.read(train_df_filepath)
self.env.clock.load(self.train_df)
if self.spec['meta']['rigorous_eval']:
self.eval_df = self.train_df.copy()
else:
self.eval_df = self.train_df
self.observation_space = self.env.observation_space
self.action_space = self.env.action_space
self.observable_dim = self.env.observable_dim
self.state_dim = self.observable_dim['state']
self.action_dim = self.env.action_dim
self.is_discrete = self.env.is_discrete
self.action_type = policy_util.get_action_type(self.action_space)
self.action_pdtype = ps.get(spec, f'agent.{self.a}.algorithm.action_pdtype')
if self.action_pdtype in (None, 'default'):
self.action_pdtype = policy_util.ACTION_PDS[self.action_type][0]
self.ActionPD = policy_util.get_action_pd_cls(self.action_pdtype, self.action_type)
def update(self, state, action, reward, next_state, done):
if util.get_lab_mode() == 'dev':
self.track_tensorboard(action)
def __str__(self):
class_attr = util.get_class_attr(self)
class_attr.pop('spec')
return f'body: {util.to_json(class_attr)}'
def calc_df_row(self, env):
frame = self.env.clock.frame
wall_t = self.env.clock.wall_t
fps = 0 if wall_t == 0 else frame / wall_t
with warnings.catch_warnings():
warnings.filterwarnings('ignore')
total_reward = np.nanmean(env.total_reward)
if net_util.to_check_train_step():
grad_norms = net_util.get_grad_norms(self.agent.algorithm)
self.mean_grad_norm = np.nan if ps.is_empty(grad_norms) else np.mean(grad_norms)
row = pd.Series({
'epi': self.env.clock.epi,
't': env.clock.t,
'wall_t': wall_t,
'opt_step': self.env.clock.opt_step,
'frame': frame,
'fps': fps,
'total_reward': total_reward,
'total_reward_ma': np.nan,
'loss': self.loss,
'lr': self.get_mean_lr(),
'explore_var': self.explore_var,
'entropy_coef': self.entropy_coef if hasattr(self, 'entropy_coef') else np.nan,
'entropy': self.mean_entropy,
'grad_norm': self.mean_grad_norm,
}, dtype=np.float32)
assert all(col in self.train_df.columns for col in row.index), f'Mismatched row keys: {row.index} vs df columns {self.train_df.columns}'
return row
def ckpt(self, env, df_mode):
row = self.calc_df_row(env)
df = getattr(self, f'{df_mode}_df')
df.loc[len(df)] = row
df.iloc[-1]['total_reward_ma'] = total_reward_ma = df[-viz.PLOT_MA_WINDOW:]['total_reward'].mean()
df.drop_duplicates('frame', inplace=True)
self.total_reward_ma = total_reward_ma
|
MIT License
|
frawau/aiolifx
|
aiolifx/aiolifx.py
|
Device.get_version
|
python
|
def get_version(self, callb=None):
if self.vendor is None:
mypartial = partial(self.resp_set_version)
if callb:
mycallb = lambda x, y: (mypartial(y), callb(x, y))
else:
mycallb = lambda x, y: mypartial(y)
response = self.req_with_resp(GetVersion, StateVersion, callb=mycallb)
return (self.host_firmware_version, self.host_firmware_build_timestamp)
|
Convenience method to request the version from the device
This method will check whether the value has already been retrieved from the device,
if so, it will simply return it. If no, it will request the information from the device
and request that callb be executed when a response is received. The default callback
will simply cache the value.
:param callb: Callable to be used when the response is received. If not set,
self.resp_set_label will be used.
:type callb: callable
:returns: The cached value
:rtype: str
|
https://github.com/frawau/aiolifx/blob/7ba0a3775e273ac878f286e9685939f8fa19da70/aiolifx/aiolifx.py#L709-L730
|
import asyncio as aio
from .message import BROADCAST_MAC, BROADCAST_SOURCE_ID
from .msgtypes import *
from .products import *
from .unpack import unpack_lifx_message
from functools import partial
import time, random, datetime, socket, ifaddr
LISTEN_IP = "0.0.0.0"
UDP_BROADCAST_IP = "255.255.255.255"
UDP_BROADCAST_PORT = 56700
DEFAULT_TIMEOUT = 0.5
DEFAULT_ATTEMPTS = 3
DISCOVERY_INTERVAL = 180
DISCOVERY_STEP = 5
def mac_to_ipv6_linklocal(mac, prefix="fe80::"):
mac_value = int(
mac.translate(str.maketrans(dict([(x, None) for x in [" ", ".", ":", "-"]]))),
16,
)
high2 = mac_value >> 32 & 0xFFFF ^ 0x0200
high1 = mac_value >> 24 & 0xFF
low1 = mac_value >> 16 & 0xFF
low2 = mac_value & 0xFFFF
return prefix + ":{:04x}:{:02x}ff:fe{:02x}:{:04x}".format(high2, high1, low1, low2)
def nanosec_to_hours(ns):
return ns / (1000000000.0 * 60 * 60)
class Device(aio.DatagramProtocol):
def __init__(self, loop, mac_addr, ip_addr, port, parent=None):
self.loop = loop
self.mac_addr = mac_addr
self.ip_addr = ip_addr
self.port = port
self.parent = parent
self.registered = False
self.retry_count = DEFAULT_ATTEMPTS
self.timeout = DEFAULT_TIMEOUT
self.unregister_timeout = DEFAULT_TIMEOUT
self.transport = None
self.task = None
self.seq = 0
self.message = {}
self.source_id = random.randint(0, (2 ** 32) - 1)
self.default_callb = None
self.label = None
self.location = None
self.group = None
self.power_level = None
self.vendor = None
self.product = None
self.version = None
self.host_firmware_version = None
self.host_firmware_build_timestamp = None
self.wifi_firmware_version = None
self.wifi_firmware_build_timestamp = None
self.lastmsg = datetime.datetime.now()
def seq_next(self):
self.seq = (self.seq + 1) % 128
return self.seq
def connection_made(self, transport):
self.transport = transport
self.register()
def datagram_received(self, data, addr):
self.register()
response = unpack_lifx_message(data)
self.lastmsg = datetime.datetime.now()
if response.seq_num in self.message:
response_type, myevent, callb = self.message[response.seq_num]
if type(response) == response_type:
if response.source_id == self.source_id:
if "State" in response.__class__.__name__:
setmethod = (
"resp_set_"
+ response.__class__.__name__.replace("State", "").lower()
)
if setmethod in dir(self) and callable(
getattr(self, setmethod)
):
getattr(self, setmethod)(response)
if callb:
callb(self, response)
myevent.set()
del self.message[response.seq_num]
elif type(response) == Acknowledgement:
pass
else:
del self.message[response.seq_num]
elif self.default_callb:
self.default_callb(response)
def register(self):
if not self.registered:
self.registered = True
if self.parent:
self.parent.register(self)
def unregister(self):
if self.registered:
if (
datetime.datetime.now()
- datetime.timedelta(seconds=self.unregister_timeout)
> self.lastmsg
):
self.registered = False
if self.parent:
self.parent.unregister(self)
def cleanup(self):
if self.transport:
self.transport.close()
self.transport = None
if self.task:
self.task.cancel()
self.task = None
async def fire_sending(self, msg, num_repeats):
if num_repeats is None:
num_repeats = self.retry_count
sent_msg_count = 0
sleep_interval = 0.05
while sent_msg_count < num_repeats:
if self.transport:
self.transport.sendto(msg.packed_message)
sent_msg_count += 1
await aio.sleep(
sleep_interval
)
def fire_and_forget(
self, msg_type, payload={}, timeout_secs=None, num_repeats=None
):
msg = msg_type(
self.mac_addr,
self.source_id,
seq_num=0,
payload=payload,
ack_requested=False,
response_requested=False,
)
xx = self.loop.create_task(self.fire_sending(msg, num_repeats))
return True
async def try_sending(self, msg, timeout_secs, max_attempts):
if timeout_secs is None:
timeout_secs = self.timeout
if max_attempts is None:
max_attempts = self.retry_count
attempts = 0
while attempts < max_attempts:
if msg.seq_num not in self.message:
return
event = aio.Event()
self.message[msg.seq_num][1] = event
attempts += 1
if self.transport:
self.transport.sendto(msg.packed_message)
try:
myresult = await aio.wait_for(event.wait(), timeout_secs)
break
except Exception as inst:
if attempts >= max_attempts:
if msg.seq_num in self.message:
callb = self.message[msg.seq_num][2]
if callb:
callb(self, None)
del self.message[msg.seq_num]
self.unregister()
def req_with_ack(
self, msg_type, payload, callb=None, timeout_secs=None, max_attempts=None
):
msg = msg_type(
self.mac_addr,
self.source_id,
seq_num=self.seq_next(),
payload=payload,
ack_requested=True,
response_requested=False,
)
self.message[msg.seq_num] = [Acknowledgement, None, callb]
xx = self.loop.create_task(self.try_sending(msg, timeout_secs, max_attempts))
return True
def req_with_resp(
self,
msg_type,
response_type,
payload={},
callb=None,
timeout_secs=None,
max_attempts=None,
):
msg = msg_type(
self.mac_addr,
self.source_id,
seq_num=self.seq_next(),
payload=payload,
ack_requested=False,
response_requested=True,
)
self.message[msg.seq_num] = [response_type, None, callb]
xx = self.loop.create_task(self.try_sending(msg, timeout_secs, max_attempts))
return True
def req_with_ack_resp(
self,
msg_type,
response_type,
payload,
callb=None,
timeout_secs=None,
max_attempts=None,
):
msg = msg_type(
self.mac_addr,
self.source_id,
seq_num=self.seq_next(),
payload=payload,
ack_requested=True,
response_requested=True,
)
self.message[msg.seq_num] = [response_type, None, callb]
xx = self.loop.create_task(self.try_sending(msg, timeout_secs, max_attempts))
return True
def get_label(self, callb=None):
if self.label is None:
mypartial = partial(self.resp_set_label)
if callb:
mycallb = lambda x, y: (mypartial(y), callb(x, y))
else:
mycallb = lambda x, y: mypartial(y)
response = self.req_with_resp(GetLabel, StateLabel, callb=mycallb)
return self.label
def set_label(self, value, callb=None):
if len(value) > 32:
value = value[:32]
mypartial = partial(self.resp_set_label, label=value)
if callb:
self.req_with_ack(
SetLabel, {"label": value}, lambda x, y: (mypartial(y), callb(x, y))
)
else:
self.req_with_ack(SetLabel, {"label": value}, lambda x, y: mypartial(y))
def resp_set_label(self, resp, label=None):
if label:
self.label = label
elif resp:
self.label = resp.label.decode().replace("\x00", "")
def get_location(self, callb=None):
if self.location is None:
mypartial = partial(self.resp_set_location)
if callb:
mycallb = lambda x, y: (mypartial(y), callb(x, y))
else:
mycallb = lambda x, y: mypartial(y)
response = self.req_with_resp(GetLocation, StateLocation, callb=mycallb)
return self.location
def resp_set_location(self, resp, location=None):
if location:
self.location = location
elif resp:
self.location = resp.label.decode().replace("\x00", "")
def get_group(self, callb=None):
if self.group is None:
mypartial = partial(self.resp_set_group)
if callb:
mycallb = lambda x, y: (mypartial(y), callb(x, y))
else:
mycallb = lambda x, y: mypartial(y)
response = self.req_with_resp(GetGroup, StateGroup, callb=callb)
return self.group
def resp_set_group(self, resp, group=None):
if group:
self.group = group
elif resp:
self.group = resp.label.decode().replace("\x00", "")
def get_power(self, callb=None):
if self.power_level is None:
response = self.req_with_resp(GetPower, StatePower, callb=callb)
return self.power_level
def set_power(self, value, callb=None, rapid=False):
on = [True, 1, "on"]
off = [False, 0, "off"]
mypartial = partial(self.resp_set_power, power_level=value)
if callb:
mycallb = lambda x, y: (mypartial(y), callb(x, y))
else:
mycallb = lambda x, y: mypartial(y)
if value in on and not rapid:
response = self.req_with_ack(SetPower, {"power_level": 65535}, mycallb)
elif value in off and not rapid:
response = self.req_with_ack(SetPower, {"power_level": 0}, mycallb)
elif value in on and rapid:
response = self.fire_and_forget(SetPower, {"power_level": 65535})
self.power_level = 65535
elif value in off and rapid:
response = self.fire_and_forget(SetPower, {"power_level": 0})
self.power_level = 0
def resp_set_power(self, resp, power_level=None):
if power_level is not None:
self.power_level = power_level
elif resp:
self.power_level = resp.power_level
def get_wififirmware(self, callb=None):
if self.wifi_firmware_version is None:
mypartial = partial(self.resp_set_wififirmware)
if callb:
mycallb = lambda x, y: (mypartial(y), callb(x, y))
else:
mycallb = lambda x, y: mypartial(y)
response = self.req_with_resp(GetWifiFirmware, StateWifiFirmware, mycallb)
return (self.wifi_firmware_version, self.wifi_firmware_build_timestamp)
def resp_set_wififirmware(self, resp):
if resp:
self.wifi_firmware_version = float(
str(str(resp.version >> 16) + "." + str(resp.version & 0xFF))
)
self.wifi_firmware_build_timestamp = resp.build
def get_wifiinfo(self, callb=None):
response = self.req_with_resp(GetWifiInfo, StateWifiInfo, callb=callb)
return None
def get_hostfirmware(self, callb=None):
if self.host_firmware_version is None:
mypartial = partial(self.resp_set_hostfirmware)
if callb:
mycallb = lambda x, y: (mypartial(y), callb(x, y))
else:
mycallb = lambda x, y: mypartial(y)
response = self.req_with_resp(GetHostFirmware, StateHostFirmware, mycallb)
return (self.host_firmware_version, self.host_firmware_build_timestamp)
def resp_set_hostfirmware(self, resp):
if resp:
self.host_firmware_version = (
str(resp.version >> 16) + "." + str(resp.version & 0xFFFF)
)
self.host_firmware_build_timestamp = resp.build
def get_hostinfo(self, callb=None):
response = self.req_with_resp(GetInfo, StateInfo, callb=callb)
return None
|
MIT License
|
academysoftwarefoundation/opencue
|
cuegui/cuegui/DarkPalette.py
|
GreyF
|
python
|
def GreyF(value):
c = QtGui.QColor()
c.setRgbF(value, value, value)
return c
|
Creates a grey color.
|
https://github.com/academysoftwarefoundation/opencue/blob/da28ae905b81e7d1125db2073a369fdc0ae9acd4/cuegui/cuegui/DarkPalette.py#L104-L108
|
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import platform
from PySide2 import QtGui
from PySide2 import QtWidgets
import cuegui.Constants
def init():
QtGui.qApp.setPalette(DarkPalette())
if platform.system() in ['Darwin', 'Linux']:
setDarkStyleSheet()
elif platform.system() == 'Windows':
QtGui.qApp.setStyle('Fusion')
else:
QtGui.qApp.setStyle(QtWidgets.QStyleFactory.create(cuegui.Constants.COLOR_THEME))
def setDarkStyleSheet():
QtGui.qApp.setStyleSheet(open(cuegui.Constants.DARK_STYLE_SHEET).read())
def DarkPalette():
p = QtGui.QPalette()
c = GreyF(0.175)
p.setColor(p.Window, c)
p.setColor(p.Button, c)
c = GreyF(0.79)
p.setColor(p.WindowText, c)
p.setColor(p.Text, c)
p.setColor(p.ButtonText, c)
p.setColor(p.BrightText, c)
c = ColorF(0.6, 0.6, 0.8)
p.setColor(p.Link, c)
c = ColorF(0.8, 0.6, 0.8)
p.setColor(p.LinkVisited, c)
c = GreyF(0.215)
p.setColor(p.Base, c)
c = GreyF(0.25)
p.setColor(p.AlternateBase, c)
c = GreyF(0.0)
p.setColor(p.Shadow, c)
c = GreyF(0.13)
p.setColor(p.Dark, c)
c = GreyF(0.21)
p.setColor(p.Mid, c)
c = GreyF(0.25)
p.setColor(p.Midlight, c)
c = GreyF(0.40)
p.setColor(p.Light, c)
c = ColorF(0.31, 0.31, 0.25)
p.setColor(p.Highlight, c)
c = GreyF(0.46)
p.setColor(QtGui.QPalette.Disabled, p.WindowText, c)
p.setColor(QtGui.QPalette.Disabled, p.Text, c)
p.setColor(QtGui.QPalette.Disabled, p.ButtonText, c)
c = GreyF(0.55)
p.setColor(QtGui.QPalette.Disabled, p.BrightText, c)
return p
|
Apache License 2.0
|
ucam-smt/sgnmt
|
cam/sgnmt/predictors/structure.py
|
BracketPredictor.predict_next
|
python
|
def predict_next(self, words):
if self.cur_depth == 0:
if self.ends_with_opening:
ret = self._no_closing_bracket()
ret[utils.EOS_ID] = utils.NEG_INF
return ret
return {utils.EOS_ID: self.cur_length_scores.get(
self.n_terminals, utils.NEG_INF)
if self.length_scores else 0.0}
ret = {utils.EOS_ID: utils.NEG_INF}
if (self.cur_depth >= self.max_depth
or self.n_terminals >= self.max_length):
ret.update({w: utils.NEG_INF for w in words
if (w > self.max_terminal_id
and not w in self.closing_bracket_ids)})
if (self.length_scores
and self.cur_depth == 1
and self.n_terminals > 0
and not self.n_terminals in self.cur_length_scores):
ret.update(self._no_closing_bracket())
return ret
|
If the maximum depth is reached, exclude all opening
brackets. If history is not balanced, exclude EOS. If the
current depth is zero, exclude closing brackets.
Args:
words (list): Set of words to score
Returns:
dict.
|
https://github.com/ucam-smt/sgnmt/blob/c663ec7b251552e36b6b4f992f0ac21aad87cb7b/cam/sgnmt/predictors/structure.py#L462-L495
|
import logging
from cam.sgnmt import utils
from cam.sgnmt.predictors.core import Predictor, UnboundedVocabularyPredictor
OSM_EOP_ID = 4
OSM_SRC_POP_ID = 4
OSM_SET_MARKER_ID = 5
OSM_JUMP_FWD_ID = 6
OSM_JUMP_BWD_ID = 7
OSM_SRC_POP2_ID = 8
OSM_COPY_ID = 8
OSM_SRC_UNPOP_ID = 9
def load_external_lengths(path):
lengths = []
with open(path) as f:
for line in f:
scores = {}
for pair in line.strip().split():
if ':' in pair:
length, score = pair.split(':')
scores[int(length)] = float(score)
else:
scores[int(pair)] = 0.0
lengths.append(scores)
return lengths
def update_trg_osm_ids(wmap_path):
global OSM_SRC_POP_ID, OSM_SET_MARKER_ID, OSM_JUMP_FWD_ID, OSM_JUMP_BWD_ID, OSM_SRC_POP2_ID, OSM_COPY_ID, OSM_SRC_UNPOP_ID
if not wmap_path:
return
with open(wmap_path) as f:
for line in f:
word, word_id = line.strip().split()
if word == "<SRC_POP>":
OSM_SRC_POP_ID = int(word_id)
logging.debug("OSM SRC_POP = %d" % OSM_SRC_POP_ID)
elif word == "<SET_MARKER>":
OSM_SET_MARKER_ID = int(word_id)
logging.debug("OSM SET_MARKER = %d" % OSM_SET_MARKER_ID)
elif word == "<JUMP_FWD>":
OSM_JUMP_FWD_ID = int(word_id)
logging.debug("OSM JUMP_FWD = %d" % OSM_JUMP_FWD_ID)
elif word == "<JUMP_BWD>":
OSM_JUMP_BWD_ID = int(word_id)
logging.debug("OSM JUMP_BWD = %d" % OSM_JUMP_BWD_ID)
elif word == "<SRC_POP2>":
OSM_SRC_POP2_ID = int(word_id)
logging.debug("OSM SRC_POP2 = %d" % OSM_SRC_POP2_ID)
elif word == "<COPY>":
OSM_COPY_ID = int(word_id)
logging.debug("OSM COPY = %d" % OSM_COPY_ID)
elif word == "<SRC_UNPOP>":
OSM_SRC_UNPOP_ID = int(word_id)
logging.debug("SRC_UNPOP = %d" % OSM_SRC_UNPOP_ID)
def update_src_osm_ids(wmap_path):
global OSM_EOP_ID
if not wmap_path:
return
with open(wmap_path) as f:
for line in f:
word, word_id = line.strip().split()
if word == "<EOP>":
OSM_EOP_ID = int(word_id)
logging.debug("OSM EOP = %d" % OSM_EOP_ID)
class OSMPredictor(Predictor):
def __init__(self, src_wmap, trg_wmap, use_jumps=True, use_auto_pop=False,
use_unpop=False, use_pop2=False, use_src_eop=False,
use_copy=False):
super(OSMPredictor, self).__init__()
update_trg_osm_ids(trg_wmap)
self.use_jumps = use_jumps
self.use_auto_pop = use_auto_pop
self.use_unpop = use_unpop
self.use_src_eop = use_src_eop
if use_src_eop:
update_src_osm_ids(src_wmap)
self.pop_ids = set([OSM_SRC_POP_ID])
if use_pop2:
self.pop_ids.add(OSM_SRC_POP2_ID)
if use_copy:
self.pop_ids.add(OSM_COPY_ID)
self.illegal_sequences = []
if use_jumps:
self.illegal_sequences.extend([
[OSM_SET_MARKER_ID, OSM_SET_MARKER_ID]
])
if use_auto_pop:
self.no_auto_pop = set()
if use_jumps:
self.no_auto_pop.add(OSM_JUMP_FWD_ID)
self.no_auto_pop.add(OSM_JUMP_BWD_ID)
self.no_auto_pop.add(OSM_SET_MARKER_ID)
if use_unpop:
self.no_auto_pop.add(OSM_SRC_UNPOP_ID)
def _is_pop(self, token):
if token in self.pop_ids:
return True
return self.use_auto_pop and token not in self.no_auto_pop
def initialize(self, src_sentence):
if self.use_src_eop:
self.src_len = src_sentence.count(OSM_EOP_ID) + 1
else:
self.src_len = len(src_sentence)
self.n_holes = 0
self.head = 0
self.n_pop = 0
self.history = []
def predict_next(self):
ret = {}
if self.n_pop >= self.src_len:
return {utils.EOS_ID: 0.0}
else:
ret[utils.EOS_ID] = utils.NEG_INF
if self.use_unpop and self.n_pop <= 0:
ret[OSM_SRC_UNPOP_ID] = utils.NEG_INF
if self.use_jumps:
if self.head <= 0:
ret[OSM_JUMP_BWD_ID] = utils.NEG_INF
if self.head >= self.n_holes:
ret[OSM_JUMP_FWD_ID] = utils.NEG_INF
for seq in self.illegal_sequences:
hist = seq[:-1]
if self.history[-len(hist):] == hist:
ret[seq[-1]] = utils.NEG_INF
return ret
def get_unk_probability(self, posterior):
if self.n_pop >= self.src_len:
return utils.NEG_INF
return 0.0
def consume(self, word):
if not self._is_pop(word):
if self.use_unpop and word == OSM_SRC_UNPOP_ID:
self.n_pop -= 1
else:
self.history.append(word)
else:
self.n_pop += 1
if self.use_jumps:
if word == OSM_SET_MARKER_ID:
self.n_holes += 1
self.head += 1
elif word == OSM_JUMP_FWD_ID:
self.head += 1
elif word == OSM_JUMP_BWD_ID:
self.head -= 1
def get_state(self):
return self.n_holes, self.head, self.n_pop
def set_state(self, state):
self.n_holes, self.head, self.n_pop = state
def is_equal(self, state1, state2):
return state1 == state2
class ForcedOSMPredictor(Predictor):
def __init__(self, trg_wmap, trg_test_file):
super(ForcedOSMPredictor, self).__init__()
update_trg_osm_ids(trg_wmap)
self.trg_sentences = []
with open(trg_test_file) as f:
for line in f:
self.trg_sentences.append([int(w)
for w in line.strip().split()])
def initialize(self, src_sentence):
self.compiled = ["X"]
self.head = 0
self.cur_trg_sentence = self.trg_sentences[self.current_sen_id]
def _is_complete(self):
n_terminals = len([s for s in self.compiled if s != "X"])
return n_terminals == len(self.cur_trg_sentence)
def _generate_alignments(self, align_stub=[], compiled_start_pos=0,
sentence_start_pos=0):
for pos in range(compiled_start_pos, len(self.compiled)):
if self.compiled[pos] != 'X':
word = int(self.compiled[pos])
for sen_pos in range(sentence_start_pos,
len(self.cur_trg_sentence)):
if self.cur_trg_sentence[sen_pos] == word:
self._generate_alignments(
align_stub + [(pos, sen_pos)],
pos+1,
sen_pos+1)
return
self.alignments.append(align_stub)
def _align(self):
possible_words = [set() for _ in range(len(self.compiled))]
self.alignments = []
self._generate_alignments(align_stub=[])
for alignment in self.alignments:
alignment.append((len(self.compiled), len(self.cur_trg_sentence)))
prev_compiled_pos = -1
prev_sentence_pos = -1
for compiled_pos, sentence_pos in alignment:
section_words = set(
self.cur_trg_sentence[prev_sentence_pos+1:sentence_pos])
if section_words:
seen_gap = False
for section_pos in range(prev_compiled_pos+1,
compiled_pos):
if self.compiled[section_pos] == "X":
if seen_gap:
possible_words[section_pos] |= section_words
else:
possible_words[section_pos].add(
self.cur_trg_sentence[prev_sentence_pos
+ section_pos
- prev_compiled_pos])
seen_gap = True
prev_compiled_pos = compiled_pos
prev_sentence_pos = sentence_pos
return possible_words
def predict_next(self):
ret = {OSM_SRC_POP_ID: 0.0}
possible_words = self._align()
if possible_words[self.head]:
ret[OSM_SET_MARKER_ID] = 0.0
if any(possible_words[:self.head]):
ret[OSM_JUMP_BWD_ID] = 0.0
if any(possible_words[self.head+1:]):
ret[OSM_JUMP_FWD_ID] = 0.0
if self._is_complete():
ret[utils.EOS_ID] = 0.0
for word in possible_words[self.head]:
ret[word] = 0.0
return ret
def get_unk_probability(self, posterior):
return utils.NEG_INF
def _jump_op(self, step):
self.head += step
while self.compiled[self.head] != "X":
self.head += step
def _insert_op(self, op):
self.compiled = self.compiled[:self.head] + [op] + self.compiled[self.head:]
self.head += 1
def consume(self, word):
if word == OSM_SET_MARKER_ID:
self._insert_op("X")
elif word == OSM_JUMP_FWD_ID:
self._jump_op(1)
elif word == OSM_JUMP_BWD_ID:
self._jump_op(-1)
elif word != OSM_SRC_POP_ID:
self._insert_op(str(word))
def get_state(self):
return self.compiled, self.head
def set_state(self, state):
self.compiled, self.head = state
def is_equal(self, state1, state2):
return state1 == state2
class BracketPredictor(UnboundedVocabularyPredictor):
def __init__(self, max_terminal_id, closing_bracket_id, max_depth=-1,
extlength_path=""):
super(BracketPredictor, self).__init__()
self.max_terminal_id = max_terminal_id
try:
self.closing_bracket_ids = utils.split_comma(closing_bracket_id, int)
except:
self.closing_bracket_ids = [int(closing_bracket_id)]
self.max_depth = max_depth if max_depth >= 0 else 1000000
if extlength_path:
self.length_scores = load_external_lengths(extlength_path)
else:
self.length_scores = None
self.max_length = 1000000
def initialize(self, src_sentence):
self.cur_depth = 0
self.ends_with_opening = True
self.n_terminals = 0
if self.length_scores:
self.cur_length_scores = self.length_scores[self.current_sen_id]
self.max_length = max(self.cur_length_scores)
def _no_closing_bracket(self):
return {i: utils.NEG_INF for i in self.closing_bracket_ids}
|
Apache License 2.0
|
iexcloud/pyex
|
pyEX/studies/technicals/math.py
|
sinh
|
python
|
def sinh(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.SINH(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "sinh": x})
|
This will return a dataframe of
Vector Trigonometric Sinh
for the given symbol across the given timeframe
Args:
client (pyEX.Client); Client
symbol (string); Ticker
timeframe (string); timeframe to use, for pyEX.chart
col (string); column to use to calculate
Returns:
DataFrame: result
|
https://github.com/iexcloud/pyex/blob/48223a046d120703e8cc8f6c57f8a1450ee3f835/pyEX/studies/technicals/math.py#L221-L237
|
import pandas as pd
import talib as t
def acos(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.ACOS(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "acos": x})
def asin(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.ASIN(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "asin": x})
def atan(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.ATAN(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "atan": x})
def ceil(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.CEIL(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "ceil": x})
def cos(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.COS(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "cos": x})
def cosh(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.COSH(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "cosh": x})
def exp(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.EXP(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "exp": x})
def floor(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.FLOOR(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "floor": x})
def ln(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.LN(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "ln": x})
def log10(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.LOG10(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "log10": x})
def sin(client, symbol, timeframe="6m", col="close"):
df = client.chartDF(symbol, timeframe)
x = t.SIN(df[col].values.astype(float))
return pd.DataFrame({col: df[col].values, "sin": x})
|
Apache License 2.0
|
robotichead/nearbeach
|
NearBeach/views/request_for_change_views.py
|
new_request_for_change
|
python
|
def new_request_for_change(request, *args, **kwargs):
t = loader.get_template('NearBeach/request_for_change/new_request_for_change.html')
group_results = group.objects.filter(
is_deleted=False,
)
user_group_results = user_group.objects.filter(
is_deleted=False,
username=request.user,
).values(
'group_id',
'group__group_name',
).distinct()
user_results = User.objects.filter(
is_active=True,
)
c = {
'group_results': serializers.serialize('json', group_results),
'nearbeach_title': 'New RFC',
'user_group_results': json.dumps(list(user_group_results), cls=DjangoJSONEncoder),
'user_results': serializers.serialize('json', user_results),
}
return HttpResponse(t.render(c, request))
|
:param request:
:return:
|
https://github.com/robotichead/nearbeach/blob/4f5cd541cc6093c6ff047322500e326157d1f30c/NearBeach/views/request_for_change_views.py#L50-L86
|
from django.http import HttpResponse, HttpResponseBadRequest, HttpResponseRedirect, Http404
from django.urls import reverse
from django.template import loader
from django.core.serializers.json import DjangoJSONEncoder
from django.contrib.auth.decorators import login_required
from django.views.decorators.http import require_http_methods
from django.core import serializers
from NearBeach.decorators.check_user_permissions import check_user_permissions, check_rfc_permissions
from NearBeach.models import request_for_change, User, user_group, object_assignment, group, change_task, request_for_change_group_approval, RFC_STATUS
from NearBeach.forms import NewRequestForChangeForm, RfcModuleForm, RfcInformationSaveForm, NewChangeTaskForm, UpdateRFCStatus
import json
def get_rfc_context(rfc_id):
rfc_results = request_for_change.objects.get(rfc_id=rfc_id)
rfc_change_lead = User.objects.get(id=rfc_results.rfc_lead.id)
user_list = User.objects.filter(
is_active=True,
id__in=user_group.objects.filter(
is_deleted=False,
group_id__in=object_assignment.objects.filter(
is_deleted=False,
request_for_change_id=rfc_id,
).values('group_id')
).values('username_id')
)
c = {
'nearbeach_title': 'RFC %s' % rfc_id,
'rfc_id': rfc_id,
'rfc_results': serializers.serialize('json', [rfc_results]),
'rfc_change_lead': serializers.serialize('json', [rfc_change_lead]),
'user_list': serializers.serialize('json', user_list),
}
return c
@login_required(login_url='login', redirect_field_name="")
@check_rfc_permissions(min_permission_level=3)
|
MIT License
|
chaffelson/whoville
|
whoville/cloudbreak/apis/v1blueprints_api.py
|
V1blueprintsApi.delete_private_blueprint_with_http_info
|
python
|
def delete_private_blueprint_with_http_info(self, name, **kwargs):
all_params = ['name']
all_params.append('callback')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method delete_private_blueprint" % key
)
params[key] = val
del params['kwargs']
if ('name' not in params) or (params['name'] is None):
raise ValueError("Missing the required parameter `name` when calling `delete_private_blueprint`")
collection_formats = {}
path_params = {}
if 'name' in params:
path_params['name'] = params['name']
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client. select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json'])
auth_settings = ['tokenAuth']
return self.api_client.call_api('/v1/blueprints/user/{name}', 'DELETE',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
callback=params.get('callback'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
|
delete private blueprint by name
Ambari Blueprints are a declarative definition of a Hadoop cluster. With a Blueprint, you specify a stack, the component layout and the configurations to materialize a Hadoop cluster instance. Hostgroups defined in blueprints can be associated to different templates, thus you can spin up a highly available cluster running on different instance types. This will give you the option to group your Hadoop services based on resource needs (e.g. high I/O, CPU or memory) and create an infrastructure which fits your workload best.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.delete_private_blueprint_with_http_info(name, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param str name: (required)
:return: None
If the method is called asynchronously,
returns the request thread.
|
https://github.com/chaffelson/whoville/blob/f71fda629c9fd50d0a482120165ea5abcc754522/whoville/cloudbreak/apis/v1blueprints_api.py#L175-L253
|
from __future__ import absolute_import
import sys
import os
import re
from six import iteritems
from ..configuration import Configuration
from ..api_client import ApiClient
class V1blueprintsApi(object):
def __init__(self, api_client=None):
config = Configuration()
if api_client:
self.api_client = api_client
else:
if not config.api_client:
config.api_client = ApiClient()
self.api_client = config.api_client
def delete_blueprint(self, id, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('callback'):
return self.delete_blueprint_with_http_info(id, **kwargs)
else:
(data) = self.delete_blueprint_with_http_info(id, **kwargs)
return data
def delete_blueprint_with_http_info(self, id, **kwargs):
all_params = ['id']
all_params.append('callback')
all_params.append('_return_http_data_only')
all_params.append('_preload_content')
all_params.append('_request_timeout')
params = locals()
for key, val in iteritems(params['kwargs']):
if key not in all_params:
raise TypeError(
"Got an unexpected keyword argument '%s'"
" to method delete_blueprint" % key
)
params[key] = val
del params['kwargs']
if ('id' not in params) or (params['id'] is None):
raise ValueError("Missing the required parameter `id` when calling `delete_blueprint`")
collection_formats = {}
path_params = {}
if 'id' in params:
path_params['id'] = params['id']
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client. select_header_accept(['application/json'])
header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json'])
auth_settings = ['tokenAuth']
return self.api_client.call_api('/v1/blueprints/{id}', 'DELETE',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type=None,
auth_settings=auth_settings,
callback=params.get('callback'),
_return_http_data_only=params.get('_return_http_data_only'),
_preload_content=params.get('_preload_content', True),
_request_timeout=params.get('_request_timeout'),
collection_formats=collection_formats)
def delete_private_blueprint(self, name, **kwargs):
kwargs['_return_http_data_only'] = True
if kwargs.get('callback'):
return self.delete_private_blueprint_with_http_info(name, **kwargs)
else:
(data) = self.delete_private_blueprint_with_http_info(name, **kwargs)
return data
|
Apache License 2.0
|
plotly/dash-technical-charting
|
quantmod/utils.py
|
update
|
python
|
def update(dict1, dict2):
for key, value in dict2.items():
if isinstance(value, collections.Mapping):
temp = update(dict1.get(key, {}), value)
dict1[key] = temp
elif isinstance(dict1, collections.Mapping):
dict1[key] = dict2[key]
else:
dict1 = {key: dict2[key]}
return dict1
|
Recursivel update dict-like objects and returns it.
Need return to work properly even though dict1 is updated inplace.
Parameters
----------
dict1 : dict
Dictionary that contains the values to update.
dict2 : dict
Dictionary to be updated.
|
https://github.com/plotly/dash-technical-charting/blob/72af2c0c19bc2c56231061bff2fbd118b71a9819/quantmod/utils.py#L15-L37
|
from __future__ import absolute_import
import collections
import json
import os
|
MIT License
|
reliaqualassociates/ramstk
|
src/ramstk/models/programdb/stakeholder/table.py
|
RAMSTKStakeholderTable.do_calculate_stakeholder
|
python
|
def do_calculate_stakeholder(self, node_id: int) -> None:
self._do_calculate_improvement(node_id)
pub.sendMessage(
"succeed_calculate_stakeholder2",
node_id=node_id,
)
|
Calculate improvement factor and weight for currently selected item.
:param node_id: the ID of the record to calculate.
:return: None
:rtype: None
|
https://github.com/reliaqualassociates/ramstk/blob/ffec5a107424914cf0026c6dfe26369c221f79f9/src/ramstk/models/programdb/stakeholder/table.py#L80-L92
|
from typing import Any, Dict, Type
from pubsub import pub
from ramstk.analyses import improvementfactor
from ramstk.models import RAMSTKBaseTable, RAMSTKStakeholderRecord
class RAMSTKStakeholderTable(RAMSTKBaseTable):
_db_id_colname = "fld_stakeholder_id"
_db_tablename = "ramstk_stakeholder"
_select_msg = "selected_revision"
_tag = "stakeholder"
def __init__(self, **kwargs: Dict[Any, Any]) -> None:
super().__init__(**kwargs)
self._lst_id_columns = [
"revision_id",
"stakeholder_id",
]
self._record: Type[RAMSTKStakeholderRecord] = RAMSTKStakeholderRecord
self.pkey = "stakeholder_id"
pub.subscribe(self.do_calculate_stakeholder, "request_calculate_stakeholder")
def do_get_new_record(
self, attributes: Dict[str, Any]
) -> object:
_new_record = self._record()
_new_record.revision_id = attributes["revision_id"]
_new_record.stakeholder_id = self.last_id + 1
_new_record.description = "New Stakeholder Input"
return _new_record
|
BSD 3-Clause New or Revised License
|
chplushsieh/carvana-challenge
|
util/exp.py
|
load_checkpoint
|
python
|
def load_checkpoint(exp_name, ckpt_path):
if ckpt_path is not None and os.path.isfile(ckpt_path):
print("=> loading checkpoint '{}'".format(ckpt_path))
checkpoint = torch.load(ckpt_path)
assert exp_name == checkpoint['exp_name']
model = get_network(exp_name)
model.load_state_dict(checkpoint['state_dict'])
optimizer = get_optimizer(model, exp_name)
optimizer.load_state_dict(checkpoint['optimizer'])
saved_epoch = checkpoint['epoch']
print("=> loaded checkpoint '{}' (epoch {})"
.format(ckpt_path, saved_epoch))
else:
model = get_network(exp_name)
optimizer = get_optimizer(model, exp_name)
saved_epoch = 0
criterion = get_criterion(exp_name)
return model, optimizer, criterion, saved_epoch
|
load previously saved model
|
https://github.com/chplushsieh/carvana-challenge/blob/cba536657714df7c1c33150b92e3e152195b68db/util/exp.py#L120-L148
|
import torch
import os
from datetime import datetime
import util.const as const
import config
import model.unet as unet
import model.loss as loss
def create_dir_if_not_exist(dir):
if not os.path.exists(dir):
os.makedirs(dir)
return dir
def get_network(exp_name):
model_name = exp_name.split('_')[0]
model_type = getattr(unet, model_name)
model = model_type()
return model
def get_optimizer(model, exp_name):
cfg = config.load_config_file(exp_name)
optimizer_name = cfg['optimizer']
optimizer_method = getattr(torch.optim, optimizer_name)
optimizer = optimizer_method(
model.parameters(),
lr=cfg['learning_rate'],
momentum=cfg['momentum'],
weight_decay=cfg['weight_decay']
)
return optimizer
def get_criterion(exp_name):
cfg = config.load_config_file(exp_name)
criterion_name = cfg['criterion']
loss_method = getattr(loss, criterion_name)
criterion = loss_method()
return criterion
def save_checkpoint(exp_name, epoch, model_state_dict, optimizer_state_dict):
state = {
'exp_name': exp_name,
'epoch': epoch,
'state_dict': model_state_dict,
'optimizer' : optimizer_state_dict,
}
filename = str(epoch) + '.pth.tar'
save_path = os.path.join(const.OUTPUT_DIR, exp_name, filename)
torch.save(state, save_path)
return
def get_latest_ckpt(save_dir):
ckpts = os.listdir(save_dir)
ckpt_names = [ckpt.split('.')[0] for ckpt in ckpts if ckpt.endswith('.pth.tar')]
if not ckpt_names:
print("No checkpoints found. It's a new experiment. ")
return None
print("All checkpoints:")
print(ckpt_names)
ckpt_epochs = [ int(ckpt_name) for ckpt_name in ckpt_names]
latest_epoch = max(ckpt_epochs)
latest_path = os.path.join(save_dir, str(latest_epoch) + '.pth.tar')
return latest_path
def load_exp(exp_name):
save_dir = os.path.join(const.OUTPUT_DIR, exp_name)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
ckpt_path = get_latest_ckpt(save_dir)
model, optimizer, criterion, saved_epoch = load_checkpoint(exp_name, ckpt_path)
start_epoch = saved_epoch + 1
return model, optimizer, criterion, start_epoch
|
MIT License
|
gabrielstanovsky/props
|
props/bottle.py
|
Response.set_cookie
|
python
|
def set_cookie(self, key, value, secret=None, **kargs):
if secret:
value = touni(cookie_encode((key, value), secret))
elif not isinstance(value, basestring):
raise TypeError('Secret missing for non-string Cookie.')
self.COOKIES[key] = value
for k, v in kargs.iteritems():
self.COOKIES[key][k.replace('_', '-')] = v
|
Add a cookie. If the `secret` parameter is set, this creates a
`Secure Cookie` (described below).
:param key: the name of the cookie.
:param value: the value of the cookie.
:param secret: required for secure cookies. (default: None)
:param max_age: maximum age in seconds. (default: None)
:param expires: a datetime object or UNIX timestamp. (defaut: None)
:param domain: the domain that is allowed to read the cookie.
(default: current domain)
:param path: limits the cookie to a given path (default: /)
If neither `expires` nor `max_age` are set (default), the cookie
lasts only as long as the browser is not closed.
Secure cookies may store any pickle-able object and are
cryptographically signed to prevent manipulation. Keep in mind that
cookies are limited to 4kb in most browsers.
Warning: Secure cookies are not encrypted (the client can still see
the content) and not copy-protected (the client can restore an old
cookie). The main intention is to make pickling and unpickling
save, not to store secret information at client side.
|
https://github.com/gabrielstanovsky/props/blob/c6392016214ee582de4eaf364e518078f9bd182b/props/bottle.py#L973-L1005
|
from __future__ import with_statement
__author__ = 'Marcel Hellkamp'
__version__ = '0.9.dev'
__license__ = 'MIT'
import base64
import cgi
import email.utils
import functools
import hmac
import httplib
import itertools
import mimetypes
import os
import re
import subprocess
import sys
import tempfile
import thread
import threading
import time
import warnings
from Cookie import SimpleCookie
from tempfile import TemporaryFile
from traceback import format_exc
from urllib import quote as urlquote
from urlparse import urlunsplit, urljoin
try: from collections import MutableMapping as DictMixin
except ImportError:
from UserDict import DictMixin
try: from urlparse import parse_qs
except ImportError:
from cgi import parse_qs
try: import cPickle as pickle
except ImportError:
import pickle
try: from json import dumps as json_dumps
except ImportError:
try: from simplejson import dumps as json_dumps
except ImportError:
try: from django.utils.simplejson import dumps as json_dumps
except ImportError:
json_dumps = None
if sys.version_info >= (3,0,0):
from io import BytesIO
from io import TextIOWrapper
class NCTextIOWrapper(TextIOWrapper):
def close(self): pass
def touni(x, enc='utf8'):
return str(x, encoding=enc) if isinstance(x, bytes) else str(x)
else:
from StringIO import StringIO as BytesIO
bytes = str
NCTextIOWrapper = None
def touni(x, enc='utf8'):
return x if isinstance(x, unicode) else unicode(str(x), encoding=enc)
def tob(data, enc='utf8'):
return data.encode(enc) if isinstance(data, unicode) else bytes(data)
if sys.version_info >= (3,0,0):
tonat = touni
else:
tonat = tob
tonat.__doc__ = """ Convert anything to native strings """
def depr(message, critical=False):
if critical: raise DeprecationWarning(message)
warnings.warn(message, DeprecationWarning, stacklevel=3)
def makelist(data):
if isinstance(data, (tuple, list, set, dict)): return list(data)
elif data: return [data]
else: return []
class DictProperty(object):
def __init__(self, attr, key=None, read_only=False):
self.attr, self.key, self.read_only = attr, key, read_only
def __call__(self, func):
functools.update_wrapper(self, func, updated=[])
self.getter, self.key = func, self.key or func.__name__
return self
def __get__(self, obj, cls):
if not obj: return self
key, storage = self.key, getattr(obj, self.attr)
if key not in storage: storage[key] = self.getter(obj)
return storage[key]
def __set__(self, obj, value):
if self.read_only: raise ApplicationError("Read-Only property.")
getattr(obj, self.attr)[self.key] = value
def __delete__(self, obj):
if self.read_only: raise ApplicationError("Read-Only property.")
del getattr(obj, self.attr)[self.key]
def cached_property(func):
return DictProperty('__dict__')(func)
class lazy_attribute(object):
def __init__(self, func):
functools.update_wrapper(self, func, updated=[])
self.getter = func
def __get__(self, obj, cls):
value = self.getter(cls)
setattr(cls, self.__name__, value)
return value
class BottleException(Exception):
pass
class HTTPResponse(BottleException):
def __init__(self, output='', status=200, header=None):
super(BottleException, self).__init__("HTTP Response %d" % status)
self.status = int(status)
self.output = output
self.headers = HeaderDict(header) if header else None
def apply(self, response):
if self.headers:
for key, value in self.headers.iterallitems():
response.headers[key] = value
response.status = self.status
class HTTPError(HTTPResponse):
def __init__(self, code=500, output='Unknown Error', exception=None, traceback=None, header=None):
super(HTTPError, self).__init__(output, code, header)
self.exception = exception
self.traceback = traceback
def __repr__(self):
return template(ERROR_PAGE_TEMPLATE, e=self)
class RouteError(BottleException):
class RouteSyntaxError(RouteError):
class RouteBuildError(RouteError):
class Router(object):
default = '[^/]+'
@lazy_attribute
def syntax(cls):
return re.compile(r'(?<!\\):([a-zA-Z_][a-zA-Z_0-9]*)?(?:#(.*?)#)?')
def __init__(self):
self.routes = {}
self.rules = []
self.named = {}
self.static = {}
self.dynamic = []
def add(self, rule, method, target, name=None):
if rule in self.routes:
self.routes[rule][method.upper()] = target
else:
self.routes[rule] = {method.upper(): target}
self.rules.append(rule)
if self.static or self.dynamic:
self.static, self.dynamic = {}, {}
if name:
self.named[name] = (rule, None)
def delete(self, rule, method=None):
if rule not in self.routes and rule in self.named:
rule = self.named[rule][0]
if rule in self.routes:
if method: del self.routes[rule][method]
else: self.routes[rule].clear()
if not self.routes[rule]:
del self.routes[rule]
self.rules.remove(rule)
def build(self, _name, *anon, **args):
if _name not in self.named:
raise RouteBuildError("No route with that name.", _name)
rule, pairs = self.named[_name]
if not pairs:
token = self.syntax.split(rule)
parts = [p.replace('\\:',':') for p in token[::3]]
names = token[1::3]
if len(parts) > len(names): names.append(None)
pairs = zip(parts, names)
self.named[_name] = (rule, pairs)
try:
anon = list(anon)
url = [s if k is None
else s+str(args.pop(k)) if k else s+str(anon.pop())
for s, k in pairs]
except IndexError:
msg = "Not enough arguments to fill out anonymous wildcards."
raise RouteBuildError(msg)
except KeyError, e:
raise RouteBuildError(*e.args)
if args: url += ['?', urlencode(args.iteritems())]
return ''.join(url)
def match(self, environ):
targets, urlargs = self._match_path(environ)
if not targets:
raise HTTPError(404, "Not found: " + environ['PATH_INFO'])
environ['router.url_args'] = urlargs
method = environ['REQUEST_METHOD'].upper()
if method in targets:
return targets[method], urlargs
if method == 'HEAD' and 'GET' in targets:
return targets['GET'], urlargs
if 'ANY' in targets:
return targets['ANY'], urlargs
allowed = [verb for verb in targets if verb != 'ANY']
if 'GET' in allowed and 'HEAD' not in allowed:
allowed.append('HEAD')
raise HTTPError(405, "Method not allowed.",
header=[('Allow',",".join(allowed))])
def _match_path(self, environ):
path = environ['PATH_INFO'] or '/'
match = self.static.get(path)
if match: return match, {}
for combined, rules in self.dynamic:
match = combined.match(path)
if not match: continue
gpat, match = rules[match.lastindex - 1]
return match, gpat.match(path).groupdict() if gpat else {}
if self.static or self.dynamic or not self.routes: return None, {}
if not environ.get('wsgi.run_once'):
self._compile()
return self._match_path(environ)
epath = path.replace(':','\\:')
match = self.routes.get(epath)
if match: return match, {}
for rule in self.rules:
if rule.count(':') < rule.count('\\:'): continue
match = self._compile_pattern(rule).match(path)
if match: return self.routes[rule], match.groupdict()
return None, {}
def _compile(self):
self.static = {}
self.dynamic = []
def fpat_sub(m):
return m.group(0) if len(m.group(1)) % 2 else m.group(1) + '(?:'
for rule in self.rules:
target = self.routes[rule]
if not self.syntax.search(rule):
self.static[rule.replace('\\:',':')] = target
continue
gpat = self._compile_pattern(rule)
fpat = re.sub(r'(\\*)(\(\?P<[^>]*>|\((?!\?))', fpat_sub, gpat.pattern)
gpat = gpat if gpat.groupindex else None
try:
combined = '%s|(%s)' % (self.dynamic[-1][0].pattern, fpat)
self.dynamic[-1] = (re.compile(combined), self.dynamic[-1][1])
self.dynamic[-1][1].append((gpat, target))
except (AssertionError, IndexError), e:
self.dynamic.append((re.compile('(^%s$)'%fpat),
[(gpat, target)]))
except re.error, e:
raise RouteSyntaxError("Could not add Route: %s (%s)" % (rule, e))
def _compile_pattern(self, rule):
out = ''
for i, part in enumerate(self.syntax.split(rule)):
if i%3 == 0: out += re.escape(part.replace('\\:',':'))
elif i%3 == 1: out += '(?P<%s>' % part if part else '(?:'
else: out += '%s)' % (part or '[^/]+')
return re.compile('^%s$'%out)
class Bottle(object):
def __init__(self, catchall=True, autojson=True, config=None):
self.routes = []
self.callbacks = {}
self.router = Router()
self.mounts = {}
self.error_handler = {}
self.catchall = catchall
self.config = config or {}
self.serve = True
self.castfilter = []
if autojson and json_dumps:
self.add_filter(dict, dict2json)
self.hooks = {'before_request': [], 'after_request': []}
def optimize(self, *a, **ka):
depr("Bottle.optimize() is obsolete.")
def mount(self, app, script_path):
if not isinstance(app, Bottle):
raise TypeError('Only Bottle instances are supported for now.')
script_path = '/'.join(filter(None, script_path.split('/')))
path_depth = script_path.count('/') + 1
if not script_path:
raise TypeError('Empty script_path. Perhaps you want a merge()?')
for other in self.mounts:
if other.startswith(script_path):
raise TypeError('Conflict with existing mount: %s' % other)
@self.route('/%s/:#.*#' % script_path, method="ANY")
def mountpoint():
request.path_shift(path_depth)
return app.handle(request.environ)
self.mounts[script_path] = app
def add_filter(self, ftype, func):
if not isinstance(ftype, type):
raise TypeError("Expected type object, got %s" % type(ftype))
self.castfilter = [(t, f) for (t, f) in self.castfilter if t != ftype]
self.castfilter.append((ftype, func))
self.castfilter.sort()
def match_url(self, path, method='GET'):
return self.match({'PATH_INFO': path, 'REQUEST_METHOD': method})
def match(self, environ):
target, args = self.router.match(environ)
try:
return self.callbacks[target], args
except KeyError:
callback, decorators = self.routes[target]
wrapped = callback
for wrapper in decorators[::-1]:
wrapped = wrapper(wrapped)
functools.update_wrapper(wrapped, callback)
self.callbacks[target] = wrapped
return wrapped, args
def get_url(self, routename, **kargs):
scriptname = request.environ.get('SCRIPT_NAME', '').strip('/') + '/'
location = self.router.build(routename, **kargs).lstrip('/')
return urljoin(urljoin('/', scriptname), location)
def route(self, path=None, method='GET', no_hooks=False, decorate=None,
template=None, template_opts={}, callback=None, name=None,
static=False):
if callable(path): path, callback = None, path
decorators = makelist(decorate)
if template: decorators.insert(0, view(template, **template_opts))
if not no_hooks: decorators.append(self._add_hook_wrapper)
def wrapper(func):
for rule in makelist(path) or yieldroutes(func):
for verb in makelist(method):
if static:
rule = rule.replace(':','\\:')
depr("Use backslash to escape ':' in routes.")
self.router.add(rule, verb, len(self.routes), name=name)
self.routes.append((func, decorators))
return func
return wrapper(callback) if callback else wrapper
def _add_hook_wrapper(self, func):
@functools.wraps(func)
def wrapper(*a, **ka):
for hook in self.hooks['before_request']: hook()
response.output = func(*a, **ka)
for hook in self.hooks['after_request']: hook()
return response.output
return wrapper
def get(self, path=None, method='GET', **kargs):
return self.route(path, method, **kargs)
def post(self, path=None, method='POST', **kargs):
return self.route(path, method, **kargs)
def put(self, path=None, method='PUT', **kargs):
return self.route(path, method, **kargs)
def delete(self, path=None, method='DELETE', **kargs):
return self.route(path, method, **kargs)
def error(self, code=500):
def wrapper(handler):
self.error_handler[int(code)] = handler
return handler
return wrapper
def hook(self, name):
def wrapper(func):
self.add_hook(name, func)
return func
return wrapper
def add_hook(self, name, func):
if name not in self.hooks:
raise ValueError("Unknown hook name %s" % name)
if name in ('after_request'):
self.hooks[name].insert(0, func)
else:
self.hooks[name].append(func)
def remove_hook(self, name, func):
if name not in self.hooks:
raise ValueError("Unknown hook name %s" % name)
self.hooks[name].remove(func)
def handle(self, environ):
if not self.serve:
return HTTPError(503, "Server stopped")
try:
handler, args = self.match(environ)
return handler(**args)
except HTTPResponse, e:
return e
except Exception, e:
if isinstance(e, (KeyboardInterrupt, SystemExit, MemoryError)) or not self.catchall:
raise
return HTTPError(500, 'Unhandled exception', e, format_exc(10))
def _cast(self, out, request, response, peek=None):
for testtype, filterfunc in self.castfilter:
if isinstance(out, testtype):
return self._cast(filterfunc(out), request, response)
if not out:
response.headers['Content-Length'] = 0
return []
if isinstance(out, (tuple, list)) and isinstance(out[0], (bytes, unicode)):
out = out[0][0:0].join(out)
if isinstance(out, unicode):
out = out.encode(response.charset)
if isinstance(out, bytes):
response.headers['Content-Length'] = str(len(out))
return [out]
if isinstance(out, HTTPError):
out.apply(response)
return self._cast(self.error_handler.get(out.status, repr)(out), request, response)
if isinstance(out, HTTPResponse):
out.apply(response)
return self._cast(out.output, request, response)
if hasattr(out, 'read'):
if 'wsgi.file_wrapper' in request.environ:
return request.environ['wsgi.file_wrapper'](out)
elif hasattr(out, 'close') or not hasattr(out, '__iter__'):
return WSGIFileWrapper(out)
try:
out = iter(out)
first = out.next()
while not first:
first = out.next()
except StopIteration:
return self._cast('', request, response)
except HTTPResponse, e:
first = e
except Exception, e:
first = HTTPError(500, 'Unhandled exception', e, format_exc(10))
if isinstance(e, (KeyboardInterrupt, SystemExit, MemoryError)) or not self.catchall:
raise
if isinstance(first, HTTPResponse):
return self._cast(first, request, response)
if isinstance(first, bytes):
return itertools.chain([first], out)
if isinstance(first, unicode):
return itertools.imap(lambda x: x.encode(response.charset),
itertools.chain([first], out))
return self._cast(HTTPError(500, 'Unsupported response type: %s' % type(first)), request, response)
def wsgi(self, environ, start_response):
try:
environ['bottle.app'] = self
request.bind(environ)
response.bind()
out = self.handle(environ)
out = self._cast(out, request, response)
if response.status in (100, 101, 204, 304) or request.method == 'HEAD':
if hasattr(out, 'close'): out.close()
out = []
status = '%d %s' % (response.status, HTTP_CODES[response.status])
start_response(status, response.headerlist)
return out
except (KeyboardInterrupt, SystemExit, MemoryError):
raise
except Exception, e:
if not self.catchall: raise
err = '<h1>Critical error while processing request: %s</h1>' % environ.get('PATH_INFO', '/')
if DEBUG:
err += '<h2>Error:</h2>\n<pre>%s</pre>\n' % repr(e)
err += '<h2>Traceback:</h2>\n<pre>%s</pre>\n' % format_exc(10)
environ['wsgi.errors'].write(err)
start_response('500 INTERNAL SERVER ERROR', [('Content-Type', 'text/html')])
return [tob(err)]
def __call__(self, environ, start_response):
return self.wsgi(environ, start_response)
class Request(threading.local, DictMixin):
def __init__(self, environ=None):
self.bind(environ or {},)
def bind(self, environ):
self.environ = environ
self.path = '/' + environ.get('PATH_INFO', '/').lstrip('/')
self.method = environ.get('REQUEST_METHOD', 'GET').upper()
@property
def _environ(self):
depr("Request._environ renamed to Request.environ")
return self.environ
def copy(self):
return Request(self.environ.copy())
def path_shift(self, shift=1):
script_name = self.environ.get('SCRIPT_NAME','/')
self['SCRIPT_NAME'], self.path = path_shift(script_name, self.path, shift)
self['PATH_INFO'] = self.path
def __getitem__(self, key): return self.environ[key]
def __delitem__(self, key): self[key] = ""; del(self.environ[key])
def __iter__(self): return iter(self.environ)
def __len__(self): return len(self.environ)
def keys(self): return self.environ.keys()
def __setitem__(self, key, value):
self.environ[key] = value
todelete = []
if key in ('PATH_INFO','REQUEST_METHOD'):
self.bind(self.environ)
elif key == 'wsgi.input': todelete = ('body','forms','files','params')
elif key == 'QUERY_STRING': todelete = ('get','params')
elif key.startswith('HTTP_'): todelete = ('headers', 'cookies')
for key in todelete:
if 'bottle.' + key in self.environ:
del self.environ['bottle.' + key]
@property
def query_string(self):
return self.environ.get('QUERY_STRING', '')
@property
def fullpath(self):
return self.environ.get('SCRIPT_NAME', '').rstrip('/') + self.path
@property
def url(self):
scheme = self.environ.get('wsgi.url_scheme', 'http')
host = self.environ.get('HTTP_X_FORWARDED_HOST')
host = host or self.environ.get('HTTP_HOST', None)
if not host:
host = self.environ.get('SERVER_NAME')
port = self.environ.get('SERVER_PORT', '80')
if (scheme, port) not in (('https','443'), ('http','80')):
host += ':' + port
parts = (scheme, host, urlquote(self.fullpath), self.query_string, '')
return urlunsplit(parts)
@property
def content_length(self):
return int(self.environ.get('CONTENT_LENGTH', '') or -1)
@property
def header(self):
depr("The Request.header property was renamed to Request.headers")
return self.headers
@DictProperty('environ', 'bottle.headers', read_only=True)
def headers(self):
return WSGIHeaderDict(self.environ)
@DictProperty('environ', 'bottle.get', read_only=True)
def GET(self):
data = parse_qs(self.query_string, keep_blank_values=True)
get = self.environ['bottle.get'] = MultiDict()
for key, values in data.iteritems():
for value in values:
get[key] = value
return get
@DictProperty('environ', 'bottle.post', read_only=True)
def POST(self):
post = MultiDict()
safe_env = {'QUERY_STRING':''}
for key in ('REQUEST_METHOD', 'CONTENT_TYPE', 'CONTENT_LENGTH'):
if key in self.environ: safe_env[key] = self.environ[key]
if NCTextIOWrapper:
fb = NCTextIOWrapper(self.body, encoding='ISO-8859-1', newline='\n')
else:
fb = self.body
data = cgi.FieldStorage(fp=fb, environ=safe_env, keep_blank_values=True)
for item in data.list or []:
post[item.name] = item if item.filename else item.value
return post
@DictProperty('environ', 'bottle.forms', read_only=True)
def forms(self):
forms = MultiDict()
for name, item in self.POST.iterallitems():
if not hasattr(item, 'filename'):
forms[name] = item
return forms
@DictProperty('environ', 'bottle.files', read_only=True)
def files(self):
files = MultiDict()
for name, item in self.POST.iterallitems():
if hasattr(item, 'filename'):
files[name] = item
return files
@DictProperty('environ', 'bottle.params', read_only=True)
def params(self):
params = MultiDict(self.GET)
for key, value in self.forms.iterallitems():
params[key] = value
return params
@DictProperty('environ', 'bottle.body', read_only=True)
def _body(self):
maxread = max(0, self.content_length)
stream = self.environ['wsgi.input']
body = BytesIO() if maxread < MEMFILE_MAX else TemporaryFile(mode='w+b')
while maxread > 0:
part = stream.read(min(maxread, MEMFILE_MAX))
if not part: break
body.write(part)
maxread -= len(part)
self.environ['wsgi.input'] = body
body.seek(0)
return body
@property
def body(self):
self._body.seek(0)
return self._body
@property
def auth(self):
return parse_auth(self.headers.get('Authorization',''))
@DictProperty('environ', 'bottle.cookies', read_only=True)
def COOKIES(self):
raw_dict = SimpleCookie(self.headers.get('Cookie',''))
cookies = {}
for cookie in raw_dict.itervalues():
cookies[cookie.key] = cookie.value
return cookies
def get_cookie(self, key, secret=None):
value = self.COOKIES.get(key)
if secret and value:
dec = cookie_decode(value, secret)
return dec[1] if dec and dec[0] == key else None
return value or None
@property
def is_ajax(self):
return self.header.get('X-Requested-With') == 'XMLHttpRequest'
class Response(threading.local):
def __init__(self):
self.bind()
def bind(self):
self._COOKIES = None
self.status = 200
self.headers = HeaderDict()
self.content_type = 'text/html; charset=UTF-8'
@property
def header(self):
depr("Response.header renamed to Response.headers")
return self.headers
def copy(self):
copy = Response()
copy.status = self.status
copy.headers = self.headers.copy()
copy.content_type = self.content_type
return copy
def wsgiheader(self):
for c in self.COOKIES.values():
if c.OutputString() not in self.headers.getall('Set-Cookie'):
self.headers.append('Set-Cookie', c.OutputString())
if self.status in (204, 304) and 'content-type' in self.headers:
del self.headers['content-type']
if self.status == 304:
for h in ('allow', 'content-encoding', 'content-language',
'content-length', 'content-md5', 'content-range',
'content-type', 'last-modified'):
if h in self.headers:
del self.headers[h]
return list(self.headers.iterallitems())
headerlist = property(wsgiheader)
@property
def charset(self):
if 'charset=' in self.content_type:
return self.content_type.split('charset=')[-1].split(';')[0].strip()
return 'UTF-8'
@property
def COOKIES(self):
if not self._COOKIES:
self._COOKIES = SimpleCookie()
return self._COOKIES
|
MIT License
|
stefan-korner/spacepylibrary
|
EGSE/EDENPDU.py
|
TC_Escoe.initAttributes
|
python
|
def initAttributes(self):
TCscoe.initAttributes(self)
self.pduType = PDU_TYPE_TC_E
|
hook for initializing attributes, delegates to parent class
|
https://github.com/stefan-korner/spacepylibrary/blob/6a9f0827005c03cbc59557def78bbc035a97bbea/EGSE/EDENPDU.py#L303-L306
|
from UTIL.DU import BITS, BYTES, UNSIGNED, STRING, TIME, BinaryUnit
PDU_HEADER_BYTE_SIZE = 42
PDU_HEADER_ATTRIBUTES = {
"pduType": ( 0, 4, STRING),
"subType": ( 4, 10, STRING),
"field1": (14, 16, STRING),
"field2": (30, 4, UNSIGNED),
"field3": (34, 4, UNSIGNED),
"dataFieldLength": (38, 4, UNSIGNED)}
CCSDS_PDU_SEC_HEADER_BYTE_SIZE = 36
TC_SPACE_SEC_HEADER_BYTE_SIZE = CCSDS_PDU_SEC_HEADER_BYTE_SIZE
TC_SPACE_SEC_HEADER_ATTRIBUTES = {
"structureType": ( 0, 1, UNSIGNED),
"channel": ( 1, 1, UNSIGNED),
"spare": ( 2, 1, BYTES),
"telecommandType": ( 3, 1, UNSIGNED),
"tcIdentificationWord": ( 4, 4, UNSIGNED),
"telecommandOrigin": ( 8, 1, UNSIGNED),
"telecommandProtMode": ( 9, 1, UNSIGNED),
"time": (10, 22, BYTES),
"mapId": (32, 1, UNSIGNED),
"ancillaryInformation": (33, 1, UNSIGNED),
"telecommandEchoStatus": (34, 1, UNSIGNED),
"sequenceFlags": (35, 1, UNSIGNED)}
TC_SCOE_SEC_HEADER_BYTE_SIZE = CCSDS_PDU_SEC_HEADER_BYTE_SIZE
TC_SCOE_SEC_HEADER_ATTRIBUTES = {
"structureType": ( 0, 1, UNSIGNED),
"spare1": ( 1, 3, BYTES),
"tcIdentificationWord": ( 4, 4, UNSIGNED),
"telecommandOrigin": ( 8, 1, UNSIGNED),
"spare2": ( 9, 1, UNSIGNED),
"time": (10, 22, BYTES),
"spare3": (32, 2, BYTES),
"telecommandEchoStatus": (34, 1, UNSIGNED),
"spare4": (35, 1, BYTES)}
TM_SPACE_SEC_HEADER_BYTE_SIZE = CCSDS_PDU_SEC_HEADER_BYTE_SIZE
TM_SPACE_SEC_HEADER_ATTRIBUTES = {
"structureType": ( 0, 1, UNSIGNED),
"channel": ( 1, 1, UNSIGNED),
"dataQuality": ( 2, 1, UNSIGNED),
"spare1": ( 3, 1, BYTES),
"clcw": ( 4, 4, UNSIGNED),
"spare2": ( 8, 2, BYTES),
"time": (10, 22, BYTES),
"masterChannelFrameCount": (32, 1, UNSIGNED),
"virtualChannelFrameCount": (33, 1, UNSIGNED),
"spare3": (34, 2, BYTES)}
TM_SCOE_SEC_HEADER_BYTE_SIZE = CCSDS_PDU_SEC_HEADER_BYTE_SIZE
TM_SCOE_SEC_HEADER_ATTRIBUTES = {
"structureType": ( 0, 1, UNSIGNED),
"spare1": ( 1, 9, BYTES),
"time": (10, 22, BYTES),
"spare2": (32, 4, BYTES)}
PDU_TYPE_NULL = "????"
PDU_TYPE_TC = "TC "
PDU_TYPE_TC_E = "TC-E"
PDU_TYPE_TC_A = "TC-A"
PDU_TYPE_TM = "TM "
PDU_TYPE_TM_D = "TM-D"
PDU_TYPE_TC_D = "TC-D"
PDU_TYPE_USER = "USER"
PDU_TYPE_SEQ = "SEQ "
PDU_TYPE_ERR = "ERR "
PDU_TYPE_CMD = "CMD "
PDU_TYPE_DUMP = "DUMP"
PDU_TYPE_PAR = "PAR "
SUB_TYPE_NULL = "??????????"
SUB_TYPE_ANSW = "ANSW "
SUB_TYPE_CLTU = "CLTU "
SUB_TYPE_ENVELOPE = "ENVELOPE "
SUB_TYPE_ERR = "ERR "
SUB_TYPE_EXEC = "EXEC "
SUB_TYPE_FRAME = "FRAME "
SUB_TYPE_LOG = "LOG "
SUB_TYPE_PHYSICAL = "PHYSICAL "
SUB_TYPE_PROTOCOL = "PROTOCOL "
SUB_TYPE_SEGMENT = "SEGMENT "
SUB_TYPE_SCOE = "SCOE "
SUB_TYPE_SPACE = "SPACE "
SUB_TYPE_SPECIF_OND = "SPECIF_OND"
SUB_TYPE_STATUS = "STATUS "
SUB_TYPE_STOP = "STOP "
SUB_TYPE_TIMEOUT = "TIMEOUT "
SUB_TYPE_UNKNOWN = "UNKNOWN "
FIELD1_NULL = "????????????????"
TC_SPACE_STRUCTURE_TYPE = 0
TC_SCOE_STRUCTURE_TYPE = 2
TC_TYPE_PACKET = 0
TC_TYPE_SEGMENT = 1
TC_TYPE_FRAME = 2
TC_TYPE_CLTU = 3
TC_TYPE_PHYSICAL = 4
TC_ORIGIN_LOCAL = 0
TC_ORIGIN_CCS = 1
TC_ORIGIN_OCC = 2
TC_ORIGIN_OCC_NDIU = 3
TC_ORIGIN_PLAYBACK = 4
TC_PROT_MODE = 255
TC_ANCILLARY_INFORMATION = 0
TC_ECHO_STATUS_OK = 0
TC_SEQUENCE_FLAGS_CONTINUATION = 0
TC_SEQUENCE_FLAGS_FIRST = 1
TC_SEQUENCE_FLAGS_LAST = 2
TC_SEQUENCE_FLAGS_UN_SEGMENTED = 3
TM_SPACE_STRUCTURE_TYPE = 1
TM_SCOE_STRUCTURE_TYPE = 3
class PDU(BinaryUnit):
def __init__(self, binaryString=None, attributesSize2=0, attributeMap2=None):
BinaryUnit.__init__(self,
binaryString,
PDU_HEADER_BYTE_SIZE,
PDU_HEADER_ATTRIBUTES,
attributesSize2,
attributeMap2)
def initAttributes(self):
BinaryUnit.initAttributes(self)
self.pduType = PDU_TYPE_NULL
self.subType = SUB_TYPE_NULL
self.field1 = FIELD1_NULL
self.setDataFieldLength()
def getDataField(self):
headerByteSize = PDU_HEADER_BYTE_SIZE
return self.getBytes(headerByteSize, self.dataFieldLength)
def setDataField(self, dataField):
self.setLen(PDU_HEADER_BYTE_SIZE)
self.append(dataField)
self.dataFieldLength = len(dataField)
def setDataFieldLength(self):
self.dataFieldLength = len(self) - PDU_HEADER_BYTE_SIZE
class CCSDSpdu(PDU):
def __init__(self, binaryString=None, attributesSize2=0, attributeMap2=None):
PDU.__init__(self,
binaryString,
attributesSize2,
attributeMap2)
def getCCSDSpacket(self):
headersByteSize = PDU_HEADER_BYTE_SIZE + CCSDS_PDU_SEC_HEADER_BYTE_SIZE
return self.getBytes(headersByteSize,
self.dataFieldLength - CCSDS_PDU_SEC_HEADER_BYTE_SIZE)
def setCCSDSpacket(self, packet):
self.setLen(PDU_HEADER_BYTE_SIZE + CCSDS_PDU_SEC_HEADER_BYTE_SIZE)
self.append(packet)
self.setDataFieldLength()
class TCspace(CCSDSpdu):
def __init__(self, binaryString=None):
CCSDSpdu.__init__(self,
binaryString,
TC_SPACE_SEC_HEADER_BYTE_SIZE,
TC_SPACE_SEC_HEADER_ATTRIBUTES)
def initAttributes(self):
CCSDSpdu.initAttributes(self)
self.pduType = PDU_TYPE_TC
self.subType = SUB_TYPE_SPACE
self.field1 = FIELD1_NULL
self.structureType = TC_SPACE_STRUCTURE_TYPE
self.telecommandType = TC_TYPE_PACKET
self.telecommandOrigin = TC_ORIGIN_CCS
self.telecommandProtMode = TC_PROT_MODE
self.ancillaryInformation = TC_ANCILLARY_INFORMATION
self.telecommandEchoStatus = TC_ECHO_STATUS_OK
self.sequenceFlags = TC_SEQUENCE_FLAGS_UN_SEGMENTED
class TC_Espace(TCspace):
def __init__(self, binaryString=None):
TCspace.__init__(self, binaryString)
self.pduType = PDU_TYPE_TC_E
def initAttributes(self):
TCspace.initAttributes(self)
self.pduType = PDU_TYPE_TC_E
class TCscoe(CCSDSpdu):
def __init__(self, binaryString=None):
CCSDSpdu.__init__(self,
binaryString,
TC_SCOE_SEC_HEADER_BYTE_SIZE,
TC_SCOE_SEC_HEADER_ATTRIBUTES)
def initAttributes(self):
CCSDSpdu.initAttributes(self)
self.setDataFieldLength()
self.pduType = PDU_TYPE_TC
self.subType = SUB_TYPE_SCOE
self.field1 = FIELD1_NULL
self.structureType = TC_SCOE_STRUCTURE_TYPE
self.telecommandOrigin = TC_ORIGIN_CCS
self.telecommandEchoStatus = TC_ECHO_STATUS_OK
class TC_Escoe(TCscoe):
def __init__(self, binaryString=None):
TCscoe.__init__(self, binaryString)
self.pduType = PDU_TYPE_TC_E
|
MIT License
|
p0cl4bs/wifipumpkin3
|
wifipumpkin3/modules/spoof/dns_spoof.py
|
ModPump.do_start
|
python
|
def do_start(self, args):
if self._background_mode:
print(
display_messages(
"there are a dnsspoof module in brackground.", error=True
)
)
return
redirectTo = self.options.get("redirectTo")[0]
if not self.options.get("domains")[0]:
print(
display_messages(
"please, select a domains to perform attack ", error=True
)
)
return
print(display_messages("DnsSpoof attack", info=True, sublime=True))
print(
display_messages(
"Redirect to: {} ".format(setcolor(redirectTo, color="blue")),
info=True,
)
)
print(display_messages("Targets:", info=True, sublime=True))
for target in self.options.get("domains")[0].split(","):
print(
display_messages(
"-> [{}] ".format(setcolor(target, color="red")), info=True,
)
)
self.handler_dnshosts = open(self.filepath_dns_hosts, "a")
for target in self.options.get("domains")[0].split(","):
self.handler_dnshosts.write(
self.rules_model.format(dns=target, redirect=redirectTo)
)
self.handler_dnshosts.close()
self.set_background_mode(True)
|
start update dns zones file
|
https://github.com/p0cl4bs/wifipumpkin3/blob/47d79c3c21cd63eb2deedaf7a25e8e219abec48b/wifipumpkin3/modules/spoof/dns_spoof.py#L101-L143
|
from wifipumpkin3.core.common.terminal import ModuleUI
from wifipumpkin3.core.config.globalimport import *
from wifipumpkin3.core.utility.printer import display_messages, setcolor
from wifipumpkin3.core.common.threads import ProcessThread
class ModPump(ModuleUI):
name = "dns_spoof"
default_hosts = [
"# this is an example zones file",
"# each line with parts split on white space are considered thus:",
"# 1: the host",
"# 2: the record type",
'# everything else: either a single string or json list if it starts with "["',
"# lines starting with white space are striped of white space (including newline)",
"# and added to the previous line",
"example.com A 10.0.0.1",
"example.com CNAME whatever.com",
'example.com MX ["whatever.com.", 5]',
'example.com MX ["mx2.whatever.com.", 10]',
'example.com MX ["mx3.whatever.com.", 20]',
"example.com NS ns1.whatever.com.",
"example.com NS ns2.whatever.com.",
"example.com TXT hello this is some text",
'example.com SOA ["ns1.example.com", "dns.example.com"]',
"# because the next record exceeds 255 in length dnserver will automatically",
"# split it into a multipart record, the new lines here have no effect on that",
"testing.com TXT one long value: IICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAg",
" FWZUed1qcBziAsqZ/LzT2ASxJYuJ5sko1CzWFhFuxiluNnwKjSknSjanyYnm0vro4dhAtyiQ7O",
" PVROOaNy9Iyklvu91KuhbYi6l80Rrdnuq1yjM//xjaB6DGx8+m1ENML8PEdSFbKQbh9akm2bkN",
" w5DC5a8Slp7j+eEVHkgV3k3oRhkPcrKyoPVvniDNH+Ln7DnSGC+Aw5Sp+fhu5aZmoODhhX5/1m",
" ANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEA26JaFWZUed1qcBziAsqZ/LzTF2ASxJYuJ5sk",
]
options = {
"redirectTo": ["10.0.0.1", "ip address to redirect traffic"],
"domains": [None, "the targets domain's name server"],
}
completions = list(options.keys())
domains = []
def __init__(self, parse_args=None, root=None):
self.parse_args = parse_args
self.root = root
self.name_module = self.name
self.filepath_dns_hosts = C.DNSHOSTS
self.rules_model = "{dns} A {redirect}\n"
super(ModPump, self).__init__(parse_args=self.parse_args, root=self.root)
self.options["redirectTo"][0] = self.conf.get("dhcp", "router")
def do_add(self, args):
if not self.options.get("domains")[0]:
self.options["domains"][0] = ",".join([args])
return
targets = self.options.get("domains")[0].split(",")
targets.append(args)
self.options["domains"][0] = ",".join(targets)
def do_rm(self, args):
if not self.options.get("domains")[0]:
return print(display_messages("the list of domains is empty", error=True))
targets = self.options.get("domains")[0].split(",")
try:
targets.remove(args)
if targets != []:
self.options["domains"][0] = ",".join(targets)
else:
self.options["domains"][0] = None
except ValueError:
return print(
display_messages(
"the value {} not in the domains list".format(args), error=True
)
)
|
Apache License 2.0
|
phixion/home-assistantconfig
|
custom_components/sleep_as_android/device_trigger.py
|
async_get_triggers
|
python
|
async def async_get_triggers(hass, device_id):
device_registry = await hass.helpers.device_registry.async_get_registry()
device = device_registry.async_get(device_id)
triggers = []
for t in TRIGGERS:
triggers.append({
CONF_PLATFORM: "device",
CONF_DOMAIN: DOMAIN,
CONF_DEVICE_ID: device_id,
CONF_TYPE: t,
})
return triggers
|
Return a list of triggers.
|
https://github.com/phixion/home-assistantconfig/blob/9e042c2205477e1bf21eeca3f91d471f1a49dffc/custom_components/sleep_as_android/device_trigger.py#L52-L69
|
import logging
import voluptuous as vol
from homeassistant.const import (CONF_TYPE, CONF_PLATFORM, CONF_DOMAIN, CONF_DEVICE_ID, )
from homeassistant.components.homeassistant.triggers import event as event_trigger
from homeassistant.core import HomeAssistant
from homeassistant.components.device_automation import DEVICE_TRIGGER_BASE_SCHEMA as HA_TRIGGER_BASE_SCHEMA
from .const import DOMAIN
_LOGGER = logging.getLogger(__name__)
TRIGGERS = [
"sleep_tracking_started",
"sleep_tracking_stopped",
"sleep_tracking_paused",
"sleep_tracking_resumed",
"alarm_snooze_clicked",
"alarm_snooze_canceled",
"time_to_bed_alarm_alert",
"alarm_alert_start",
"alarm_alert_dismiss",
"alarm_skip_next",
"rem",
"smart_period",
"before_smart_period",
"lullaby_start",
"lullaby_stop",
"lullaby_volume_down",
"deep_sleep",
"light_sleep",
"awake",
"not_awake",
"apnea_alarm",
"antisnoring",
"sound_event_snore",
"sound_event_talk",
"sound_event_cough",
"sound_event_baby",
"sound_event_laugh"
]
TRIGGER_SCHEMA = HA_TRIGGER_BASE_SCHEMA.extend(
{
vol.Required(CONF_TYPE): vol.In(TRIGGERS),
}
)
|
MIT License
|
rpi-distro/thonny
|
thonny/running.py
|
BackendProxy.kill_current_process
|
python
|
def kill_current_process(self):
pass
|
Kill the backend.
Is called when Thonny no longer needs this backend
(Thonny gets closed or new backend gets selected)
|
https://github.com/rpi-distro/thonny/blob/78a289c5948310377aacfe5349cb1a43d75ed7d8/thonny/running.py#L508-L514
|
from _thread import start_new_thread
from logging import debug
import os.path
import subprocess
import sys
from thonny.common import serialize_message, ToplevelCommand, InlineCommand, parse_shell_command, CommandSyntaxError, parse_message, DebuggerCommand, InputSubmission, UserError
from thonny.globals import get_workbench, get_runner
import shlex
from thonny import THONNY_USER_DIR
from thonny.misc_utils import running_on_windows, running_on_mac_os, eqfn
from shutil import which
import shutil
import tokenize
import collections
import signal
import logging
DEFAULT_CPYTHON_INTERPRETER = "default"
WINDOWS_EXE = "python.exe"
class Runner:
def __init__(self):
get_workbench().set_default("run.working_directory", os.path.expanduser("~"))
get_workbench().set_default("run.auto_cd", True)
get_workbench().set_default("run.backend_configuration", "Python (%s)" % DEFAULT_CPYTHON_INTERPRETER)
get_workbench().set_default("run.used_interpreters", [])
get_workbench().add_backend("Python", CPythonProxy)
from thonny.shell import ShellView
get_workbench().add_view(ShellView, "Shell", "s",
visible_by_default=True,
default_position_key='A')
self._init_commands()
self._state = None
self._proxy = None
self._postponed_commands = []
self._current_toplevel_command = None
self._current_command = None
self._check_alloc_console()
def start(self):
try:
self.reset_backend()
finally:
self._poll_vm_messages()
def _init_commands(self):
shell = get_workbench().get_view("ShellView")
shell.add_command("Run", self.handle_execute_from_shell)
shell.add_command("Reset", self._handle_reset_from_shell)
shell.add_command("cd", self._handle_cd_from_shell)
get_workbench().add_command('run_current_script', "run", 'Run current script',
handler=self._cmd_run_current_script,
default_sequence="<F5>",
tester=self._cmd_run_current_script_enabled,
group=10,
image_filename="run.run_current_script.gif",
include_in_toolbar=True)
get_workbench().add_command('reset', "run", 'Interrupt/Reset',
handler=self.cmd_interrupt_reset,
default_sequence="<Control-F2>",
tester=self._cmd_interrupt_reset_enabled,
group=70,
image_filename="run.stop.gif",
include_in_toolbar=True)
get_workbench().add_command('interrupt', "run", "Interrupt execution",
handler=self._cmd_interrupt,
tester=self._cmd_interrupt_enabled,
default_sequence="<Control-c>",
bell_when_denied=False)
def get_cwd(self):
if hasattr(self._proxy, "cwd"):
return self._proxy.cwd
else:
return ""
def get_state(self):
return self._state
def _set_state(self, state):
if self._state != state:
logging.debug("Runner state changed: %s ==> %s" % (self._state, state))
self._state = state
if self._state == "waiting_toplevel_command":
self._current_toplevel_command = None
if self._state != "running":
self._current_command = None
def get_current_toplevel_command(self):
return self._current_toplevel_command
def get_current_command(self):
return self._current_command
def get_sys_path(self):
return self._proxy.get_sys_path()
def send_command(self, cmd):
if self._proxy is None:
return
if not self._state_is_suitable(cmd):
if isinstance(cmd, DebuggerCommand) and self.get_state() == "running":
self._postpone_command(cmd)
return
elif isinstance(cmd, InlineCommand):
self._postpone_command(cmd)
return
else:
raise AssertionError("Trying to send " + str(cmd) + " in state " + self.get_state())
if cmd.command in ("Run", "Debug", "Reset"):
get_workbench().event_generate("BackendRestart")
accepted = self._proxy.send_command(cmd)
if (accepted and isinstance(cmd, (ToplevelCommand, DebuggerCommand, InlineCommand))):
self._set_state("running")
self._current_command = cmd
if isinstance(cmd, ToplevelCommand):
self._current_toplevel_command = cmd
def send_program_input(self, data):
assert self.get_state() == "waiting_input"
self._proxy.send_program_input(data)
self._set_state("running")
def execute_script(self, script_path, args, working_directory=None, command_name="Run"):
if (working_directory is not None and self._proxy.cwd != working_directory):
cmd_line = "%cd " + shlex.quote(working_directory) + "\n"
next_cwd = working_directory
else:
cmd_line = ""
next_cwd = self._proxy.cwd
rel_filename = os.path.relpath(script_path, next_cwd)
cmd_line += "%" + command_name + " " + shlex.quote(rel_filename)
for arg in args:
cmd_line += " " + shlex.quote(arg)
cmd_line += "\n"
get_workbench().get_view("ShellView").submit_command(cmd_line)
def execute_current(self, command_name, always_change_to_script_dir=False):
editor = get_workbench().get_current_editor()
if not editor:
return
filename = editor.get_filename(True)
if not filename:
return
if editor.is_modified():
filename = editor.save_file()
if not filename:
return
script_dir = os.path.realpath(os.path.dirname(filename))
if (get_workbench().get_option("run.auto_cd")
and command_name[0].isupper() or always_change_to_script_dir):
working_directory = script_dir
else:
working_directory = None
self.execute_script(filename, [], working_directory, command_name)
def handle_execute_from_shell(self, cmd_line):
command, args = parse_shell_command(cmd_line)
if len(args) >= 1:
get_workbench().get_editor_notebook().save_all_named_editors()
cmd = ToplevelCommand(command=command,
filename=args[0],
args=args[1:])
if os.path.isabs(cmd.filename):
cmd.full_filename = cmd.filename
else:
cmd.full_filename = os.path.join(self.get_cwd(), cmd.filename)
if command in ["Run", "run", "Debug", "debug"]:
with tokenize.open(cmd.full_filename) as fp:
cmd.source = fp.read()
self.send_command(cmd)
else:
raise CommandSyntaxError("Command '%s' takes at least one argument", command)
def _handle_reset_from_shell(self, cmd_line):
command, args = parse_shell_command(cmd_line)
assert command == "Reset"
if len(args) == 0:
self.send_command(ToplevelCommand(command="Reset"))
else:
raise CommandSyntaxError("Command 'Reset' doesn't take arguments")
def _handle_cd_from_shell(self, cmd_line):
command, args = parse_shell_command(cmd_line)
assert command == "cd"
if len(args) == 1:
self.send_command(ToplevelCommand(command="cd", path=args[0]))
else:
raise CommandSyntaxError("Command 'cd' takes one argument")
def _cmd_run_current_script_enabled(self):
return (get_workbench().get_editor_notebook().get_current_editor() is not None
and get_runner().get_state() == "waiting_toplevel_command"
and "run" in get_runner().supported_features())
def _cmd_run_current_script(self):
self.execute_current("Run")
def _cmd_interrupt(self):
self.interrupt_backend()
def _cmd_interrupt_enabled(self):
widget = get_workbench().focus_get()
if not running_on_mac_os():
if hasattr(widget, "selection_get"):
try:
if widget.selection_get() != "":
return False
except:
pass
return get_runner().get_state() != "waiting_toplevel_command"
def cmd_interrupt_reset(self):
if self.get_state() == "waiting_toplevel_command":
get_workbench().get_view("ShellView").submit_command("%Reset\n")
else:
get_runner().interrupt_backend()
def _cmd_interrupt_reset_enabled(self):
return True
def _postpone_command(self, cmd):
if isinstance(cmd, InlineCommand):
for older_cmd in self._postponed_commands:
if older_cmd.command == cmd.command:
self._postponed_commands.remove(older_cmd)
if len(self._postponed_commands) > 10:
else:
self._postponed_commands.append(cmd)
def _state_is_suitable(self, cmd):
if isinstance(cmd, ToplevelCommand):
return (self.get_state() == "waiting_toplevel_command"
or cmd.command in ["Reset", "Run", "Debug"])
elif isinstance(cmd, DebuggerCommand):
return self.get_state() == "waiting_debugger_command"
elif isinstance(cmd, InlineCommand):
return self.get_state() in self._proxy.allowed_states_for_inline_commands()
else:
raise RuntimeError("Unknown command class: " + str(type(cmd)))
def _send_postponed_commands(self):
remaining = []
for cmd in self._postponed_commands:
if self._state_is_suitable(cmd):
logging.debug("Sending postponed command", cmd)
self.send_command(cmd)
else:
remaining.append(cmd)
self._postponed_commands = remaining
def _poll_vm_messages(self):
try:
initial_state = self.get_state()
while self._proxy is not None:
msg = self._proxy.fetch_next_message()
if not msg:
break
if msg.get("SystemExit", False):
self.reset_backend()
return
if "command_context" in msg:
self._set_state(msg["command_context"])
elif msg["message_type"] == "ToplevelResult":
self._set_state("waiting_toplevel_command")
elif msg["message_type"] == "InputRequest":
self._set_state("waiting_input")
else:
if msg["message_type"] == "ToplevelResult":
self._current_toplevel_command = None
get_workbench().event_generate(msg["message_type"], **msg)
get_workbench().set_option("run.working_directory", self.get_cwd())
if self.get_state() != initial_state:
self._send_postponed_commands()
finally:
get_workbench().after(50, self._poll_vm_messages)
def reset_backend(self):
self.kill_backend()
configuration = get_workbench().get_option("run.backend_configuration")
backend_name, configuration_option = parse_configuration(configuration)
if backend_name not in get_workbench().get_backends():
raise UserError("Can't find backend '{}'. Please select another backend from options"
.format(backend_name))
backend_class = get_workbench().get_backends()[backend_name]
self._set_state("running")
self._proxy = None
self._proxy = backend_class(configuration_option)
def interrupt_backend(self):
if self._proxy is not None:
self._proxy.interrupt()
def kill_backend(self):
self._current_toplevel_command = None
self._current_command = None
self._postponed_commands = []
if self._proxy:
self._proxy.kill_current_process()
self._proxy = None
def get_interpreter_command(self):
return self._proxy.get_interpreter_command()
def get_backend_description(self):
return self._proxy.get_description()
def _check_alloc_console(self):
if (sys.executable.endswith("thonny.exe")
or sys.executable.endswith("pythonw.exe")):
import ctypes
kernel32 = ctypes.WinDLL('kernel32', use_last_error=True)
exe = (sys.executable
.replace("thonny.exe", "python.exe")
.replace("pythonw.exe", "python.exe"))
cmd = [exe, "-c", "print('Hi!'); input()"]
child = subprocess.Popen(cmd,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True)
child.stdout.readline()
result = kernel32.AttachConsole(child.pid)
if not result:
err = ctypes.get_last_error()
logging.info("Could not allocate console. Error code: " +str(err))
child.stdin.write(b"\n")
child.stdin.flush()
def supported_features(self):
if self._proxy is None:
return []
else:
return self._proxy.supported_features()
def get_frontend_python(self):
return sys.executable.replace("thonny.exe", "pythonw.exe")
def using_venv(self):
return isinstance(self._proxy, CPythonProxy) and self._proxy.in_venv
class BackendProxy:
def __init__(self, configuration_option):
@classmethod
def get_configuration_options(cls):
raise NotImplementedError()
def get_description(self):
raise NotImplementedError()
def send_command(self, cmd):
raise NotImplementedError()
def allowed_states_for_inline_commands(self):
return ["waiting_toplevel_command"]
def send_program_input(self, data):
raise NotImplementedError()
def fetch_next_message(self):
raise NotImplementedError()
def get_sys_path(self):
return []
def interrupt(self):
self.kill_current_process()
|
MIT License
|
rundherum/pymia
|
pymia/filtering/registration.py
|
PlotOnResolutionChangeCallback.registration_started
|
python
|
def registration_started(self):
self.resolution = 0
|
Callback for the StartEvent.
|
https://github.com/rundherum/pymia/blob/446192d56dfeee2293027b9b041a1e2140e38ae7/pymia/filtering/registration.py#L300-L302
|
import abc
import enum
import os
import typing
import SimpleITK as sitk
import pymia.filtering.filter as pymia_fltr
class RegistrationType(enum.Enum):
AFFINE = 1
SIMILARITY = 2
RIGID = 3
BSPLINE = 4
class RegistrationCallback(abc.ABC):
def __init__(self) -> None:
self.registration_method = None
self.fixed_image = None
self.moving_image = None
self.transform = None
def set_params(self, registration_method: sitk.ImageRegistrationMethod,
fixed_image: sitk.Image,
moving_image: sitk.Image,
transform: sitk.Transform):
self.registration_method = registration_method
self.fixed_image = fixed_image
self.moving_image = moving_image
self.transform = transform
self.registration_method.AddCommand(sitk.sitkStartEvent, self.registration_started)
self.registration_method.AddCommand(sitk.sitkEndEvent, self.registration_ended)
self.registration_method.AddCommand(sitk.sitkMultiResolutionIterationEvent,
self.registration_resolution_changed)
self.registration_method.AddCommand(sitk.sitkIterationEvent, self.registration_iteration_ended)
def registration_ended(self):
pass
def registration_started(self):
pass
def registration_resolution_changed(self):
pass
def registration_iteration_ended(self):
pass
class MultiModalRegistrationParams(pymia_fltr.FilterParams):
def __init__(self, fixed_image: sitk.Image, fixed_image_mask: sitk.Image = None,
callbacks: typing.List[RegistrationCallback] = None):
self.fixed_image = fixed_image
self.fixed_image_mask = fixed_image_mask
self.callbacks = callbacks
class MultiModalRegistration(pymia_fltr.Filter):
def __init__(self,
registration_type: RegistrationType = RegistrationType.RIGID,
number_of_histogram_bins: int = 200,
learning_rate: float = 1.0,
step_size: float = 0.001,
number_of_iterations: int = 200,
relaxation_factor: float = 0.5,
shrink_factors: typing.List[int] = (2, 1, 1),
smoothing_sigmas: typing.List[float] = (2, 1, 0),
sampling_percentage: float = 0.2,
sampling_seed: int = sitk.sitkWallClock,
resampling_interpolator=sitk.sitkBSpline):
super().__init__()
if len(shrink_factors) != len(smoothing_sigmas):
raise ValueError("shrink_factors and smoothing_sigmas need to be same length")
self.registration_type = registration_type
self.number_of_histogram_bins = number_of_histogram_bins
self.learning_rate = learning_rate
self.step_size = step_size
self.number_of_iterations = number_of_iterations
self.relaxation_factor = relaxation_factor
self.shrink_factors = shrink_factors
self.smoothing_sigmas = smoothing_sigmas
self.sampling_percentage = sampling_percentage
self.sampling_seed = sampling_seed
self.resampling_interpolator = resampling_interpolator
registration = sitk.ImageRegistrationMethod()
registration.SetMetricAsMattesMutualInformation(self.number_of_histogram_bins)
registration.SetMetricSamplingStrategy(registration.RANDOM)
registration.SetMetricSamplingPercentage(self.sampling_percentage, self.sampling_seed)
registration.SetMetricUseFixedImageGradientFilter(False)
registration.SetMetricUseMovingImageGradientFilter(False)
registration.SetInterpolator(sitk.sitkLinear)
if self.registration_type == RegistrationType.BSPLINE:
registration.SetOptimizerAsLBFGSB()
else:
registration.SetOptimizerAsRegularStepGradientDescent(learningRate=self.learning_rate,
minStep=self.step_size,
numberOfIterations=self.number_of_iterations,
relaxationFactor=self.relaxation_factor,
gradientMagnitudeTolerance=1e-4,
estimateLearningRate=registration.EachIteration,
maximumStepSizeInPhysicalUnits=0.0)
registration.SetOptimizerScalesFromPhysicalShift()
registration.SetShrinkFactorsPerLevel(self.shrink_factors)
registration.SetSmoothingSigmasPerLevel(self.smoothing_sigmas)
registration.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()
self.registration = registration
self.transform = None
def execute(self, image: sitk.Image, params: MultiModalRegistrationParams = None) -> sitk.Image:
if params is None:
raise ValueError("params is not defined")
dimension = image.GetDimension()
if dimension not in (2, 3):
raise ValueError('Image dimension {} is not among the accepted (2, 3)'.format(dimension))
if self.registration_type == RegistrationType.BSPLINE:
transform_domain_mesh_size = [10] * image.GetDimension()
initial_transform = sitk.BSplineTransformInitializer(params.fixed_image, transform_domain_mesh_size)
else:
if self.registration_type == RegistrationType.RIGID:
transform_type = sitk.VersorRigid3DTransform() if dimension == 3 else sitk.Euler2DTransform()
elif self.registration_type == RegistrationType.AFFINE:
transform_type = sitk.AffineTransform(dimension)
elif self.registration_type == RegistrationType.SIMILARITY:
transform_type = sitk.Similarity3DTransform() if dimension == 3 else sitk.Similarity2DTransform()
else:
raise ValueError('not supported registration_type')
initial_transform = sitk.CenteredTransformInitializer(sitk.Cast(params.fixed_image,
image.GetPixelIDValue()),
image,
transform_type,
sitk.CenteredTransformInitializerFilter.GEOMETRY)
self.registration.SetInitialTransform(initial_transform, inPlace=True)
if params.fixed_image_mask:
self.registration.SetMetricFixedMask(params.fixed_image_mask)
if params.callbacks is not None:
for callback in params.callbacks:
callback.set_params(self.registration, params.fixed_image, image, initial_transform)
self.transform = self.registration.Execute(sitk.Cast(params.fixed_image, sitk.sitkFloat32),
sitk.Cast(image, sitk.sitkFloat32))
if self.verbose:
print('MultiModalRegistration:\n Final metric value: {0}'.format(self.registration.GetMetricValue()))
print(' Optimizer\'s stopping condition, {0}'.format(
self.registration.GetOptimizerStopConditionDescription()))
elif self.number_of_iterations == self.registration.GetOptimizerIteration():
print('MultiModalRegistration: Optimizer terminated at number of iterations and did not converge!')
return sitk.Resample(image, params.fixed_image, self.transform, self.resampling_interpolator, 0.0,
image.GetPixelIDValue())
def __str__(self):
return 'MultiModalRegistration:\n' ' registration_type: {self.registration_type}\n' ' number_of_histogram_bins: {self.number_of_histogram_bins}\n' ' learning_rate: {self.learning_rate}\n' ' step_size: {self.step_size}\n' ' number_of_iterations: {self.number_of_iterations}\n' ' relaxation_factor: {self.relaxation_factor}\n' ' shrink_factors: {self.shrink_factors}\n' ' smoothing_sigmas: {self.smoothing_sigmas}\n' ' sampling_percentage: {self.sampling_percentage}\n' ' resampling_interpolator: {self.resampling_interpolator}\n' .format(self=self)
class PlotOnResolutionChangeCallback(RegistrationCallback):
def __init__(self, plot_dir: str, file_name_prefix: str = '') -> None:
super().__init__()
self.plot_dir = plot_dir
self.file_name_prefix = file_name_prefix
self.resolution = 0
def registration_ended(self):
self._write_image('end')
|
Apache License 2.0
|
roseou/flasky
|
venv/lib/python2.7/site-packages/flask_login.py
|
confirm_login
|
python
|
def confirm_login():
session['_fresh'] = True
session['_id'] = _create_identifier()
user_login_confirmed.send(current_app._get_current_object())
|
This sets the current session as fresh. Sessions become stale when they
are reloaded from a cookie.
|
https://github.com/roseou/flasky/blob/0ebf366ddfe9604acfba99756f69a6d63063b3f9/venv/lib/python2.7/site-packages/flask_login.py#L749-L756
|
__version_info__ = ('0', '3', '1')
__version__ = '.'.join(__version_info__)
__author__ = 'Matthew Frazier'
__maintainer__ = 'Max Countryman'
__license__ = 'MIT/X11'
__copyright__ = '(c) 2011 by Matthew Frazier'
__all__ = ['LoginManager']
from flask import (_request_ctx_stack, abort, current_app, flash, redirect,
request, session, url_for, has_request_context)
from flask.signals import Namespace
from werkzeug.local import LocalProxy
from werkzeug.security import safe_str_cmp
from werkzeug.urls import url_decode, url_encode
from datetime import datetime, timedelta
from functools import wraps
from hashlib import sha512
import hmac
import warnings
import sys
if sys.version < '3':
from urlparse import urlparse, urlunparse
else:
from urllib.parse import urlparse, urlunparse
unicode = str
_signals = Namespace()
current_user = LocalProxy(lambda: _get_user())
COOKIE_NAME = 'remember_token'
COOKIE_DURATION = timedelta(days=365)
COOKIE_SECURE = None
COOKIE_HTTPONLY = False
LOGIN_MESSAGE = u'Please log in to access this page.'
LOGIN_MESSAGE_CATEGORY = 'message'
REFRESH_MESSAGE = u'Please reauthenticate to access this page.'
REFRESH_MESSAGE_CATEGORY = 'message'
ID_ATTRIBUTE = 'get_id'
AUTH_HEADER_NAME = 'Authorization'
SESSION_KEYS = {'user_id', '_id', '_fresh'}
class LoginManager(object):
def __init__(self, app=None, add_context_processor=True):
self.anonymous_user = AnonymousUserMixin
self.login_view = None
self.blueprint_login_views = {}
self.login_message = LOGIN_MESSAGE
self.login_message_category = LOGIN_MESSAGE_CATEGORY
self.refresh_view = None
self.needs_refresh_message = REFRESH_MESSAGE
self.needs_refresh_message_category = REFRESH_MESSAGE_CATEGORY
self.session_protection = 'basic'
self.localize_callback = None
self.token_callback = None
self.user_callback = None
self.unauthorized_callback = None
self.needs_refresh_callback = None
self.id_attribute = ID_ATTRIBUTE
self.header_callback = None
self.request_callback = None
if app is not None:
self.init_app(app, add_context_processor)
def setup_app(self, app, add_context_processor=True):
warnings.warn('Warning setup_app is deprecated. Please use init_app.',
DeprecationWarning)
self.init_app(app, add_context_processor)
def init_app(self, app, add_context_processor=True):
app.login_manager = self
app.after_request(self._update_remember_cookie)
self._login_disabled = app.config.get('LOGIN_DISABLED', False)
if add_context_processor:
app.context_processor(_user_context_processor)
def unauthorized(self):
user_unauthorized.send(current_app._get_current_object())
if self.unauthorized_callback:
return self.unauthorized_callback()
if request.blueprint in self.blueprint_login_views:
login_view = self.blueprint_login_views[request.blueprint]
else:
login_view = self.login_view
if not login_view:
abort(401)
if self.login_message:
if self.localize_callback is not None:
flash(self.localize_callback(self.login_message),
category=self.login_message_category)
else:
flash(self.login_message, category=self.login_message_category)
return redirect(login_url(login_view, request.url))
def user_loader(self, callback):
self.user_callback = callback
return callback
def header_loader(self, callback):
self.header_callback = callback
return callback
def request_loader(self, callback):
self.request_callback = callback
return callback
def token_loader(self, callback):
self.token_callback = callback
return callback
def unauthorized_handler(self, callback):
self.unauthorized_callback = callback
return callback
def needs_refresh_handler(self, callback):
self.needs_refresh_callback = callback
return callback
def needs_refresh(self):
user_needs_refresh.send(current_app._get_current_object())
if self.needs_refresh_callback:
return self.needs_refresh_callback()
if not self.refresh_view:
abort(401)
if self.localize_callback is not None:
flash(self.localize_callback(self.needs_refresh_message),
category=self.needs_refresh_message_category)
else:
flash(self.needs_refresh_message,
category=self.needs_refresh_message_category)
return redirect(login_url(self.refresh_view, request.url))
def reload_user(self, user=None):
ctx = _request_ctx_stack.top
if user is None:
user_id = session.get('user_id')
if user_id is None:
ctx.user = self.anonymous_user()
else:
if self.user_callback is None:
raise Exception(
"No user_loader has been installed for this "
"LoginManager. Add one with the "
"'LoginManager.user_loader' decorator.")
user = self.user_callback(user_id)
if user is None:
ctx.user = self.anonymous_user()
else:
ctx.user = user
else:
ctx.user = user
def _load_user(self):
user_accessed.send(current_app._get_current_object())
config = current_app.config
if config.get('SESSION_PROTECTION', self.session_protection):
deleted = self._session_protection()
if deleted:
return self.reload_user()
is_missing_user_id = 'user_id' not in session
if is_missing_user_id:
cookie_name = config.get('REMEMBER_COOKIE_NAME', COOKIE_NAME)
header_name = config.get('AUTH_HEADER_NAME', AUTH_HEADER_NAME)
has_cookie = (cookie_name in request.cookies and
session.get('remember') != 'clear')
if has_cookie:
return self._load_from_cookie(request.cookies[cookie_name])
elif self.request_callback:
return self._load_from_request(request)
elif header_name in request.headers:
return self._load_from_header(request.headers[header_name])
return self.reload_user()
def _session_protection(self):
sess = session._get_current_object()
ident = _create_identifier()
app = current_app._get_current_object()
mode = app.config.get('SESSION_PROTECTION', self.session_protection)
if sess and ident != sess.get('_id', None):
if mode == 'basic' or sess.permanent:
sess['_fresh'] = False
session_protected.send(app)
return False
elif mode == 'strong':
for k in SESSION_KEYS:
sess.pop(k, None)
sess['remember'] = 'clear'
session_protected.send(app)
return True
return False
def _load_from_cookie(self, cookie):
if self.token_callback:
user = self.token_callback(cookie)
if user is not None:
session['user_id'] = getattr(user, self.id_attribute)()
session['_fresh'] = False
_request_ctx_stack.top.user = user
else:
self.reload_user()
else:
user_id = decode_cookie(cookie)
if user_id is not None:
session['user_id'] = user_id
session['_fresh'] = False
self.reload_user()
if _request_ctx_stack.top.user is not None:
app = current_app._get_current_object()
user_loaded_from_cookie.send(app, user=_get_user())
def _load_from_header(self, header):
user = None
if self.header_callback:
user = self.header_callback(header)
if user is not None:
self.reload_user(user=user)
app = current_app._get_current_object()
user_loaded_from_header.send(app, user=_get_user())
else:
self.reload_user()
def _load_from_request(self, request):
user = None
if self.request_callback:
user = self.request_callback(request)
if user is not None:
self.reload_user(user=user)
app = current_app._get_current_object()
user_loaded_from_request.send(app, user=_get_user())
else:
self.reload_user()
def _update_remember_cookie(self, response):
if 'remember' in session:
operation = session.pop('remember', None)
if operation == 'set' and 'user_id' in session:
self._set_cookie(response)
elif operation == 'clear':
self._clear_cookie(response)
return response
def _set_cookie(self, response):
config = current_app.config
cookie_name = config.get('REMEMBER_COOKIE_NAME', COOKIE_NAME)
duration = config.get('REMEMBER_COOKIE_DURATION', COOKIE_DURATION)
domain = config.get('REMEMBER_COOKIE_DOMAIN')
path = config.get('REMEMBER_COOKIE_PATH', '/')
secure = config.get('REMEMBER_COOKIE_SECURE', COOKIE_SECURE)
httponly = config.get('REMEMBER_COOKIE_HTTPONLY', COOKIE_HTTPONLY)
if self.token_callback:
data = current_user.get_auth_token()
else:
data = encode_cookie(unicode(session['user_id']))
expires = datetime.utcnow() + duration
response.set_cookie(cookie_name,
value=data,
expires=expires,
domain=domain,
path=path,
secure=secure,
httponly=httponly)
def _clear_cookie(self, response):
config = current_app.config
cookie_name = config.get('REMEMBER_COOKIE_NAME', COOKIE_NAME)
domain = config.get('REMEMBER_COOKIE_DOMAIN')
path = config.get('REMEMBER_COOKIE_PATH', '/')
response.delete_cookie(cookie_name, domain=domain, path=path)
class UserMixin(object):
@property
def is_active(self):
return True
@property
def is_authenticated(self):
return True
@property
def is_anonymous(self):
return False
def get_id(self):
try:
return unicode(self.id)
except AttributeError:
raise NotImplementedError('No `id` attribute - override `get_id`')
def __eq__(self, other):
if isinstance(other, UserMixin):
return self.get_id() == other.get_id()
return NotImplemented
def __ne__(self, other):
equal = self.__eq__(other)
if equal is NotImplemented:
return NotImplemented
return not equal
if sys.version_info[0] != 2:
__hash__ = object.__hash__
class AnonymousUserMixin(object):
@property
def is_authenticated(self):
return False
@property
def is_active(self):
return False
@property
def is_anonymous(self):
return True
def get_id(self):
return
def encode_cookie(payload):
return u'{0}|{1}'.format(payload, _cookie_digest(payload))
def decode_cookie(cookie):
try:
payload, digest = cookie.rsplit(u'|', 1)
if hasattr(digest, 'decode'):
digest = digest.decode('ascii')
except ValueError:
return
if safe_str_cmp(_cookie_digest(payload), digest):
return payload
def make_next_param(login_url, current_url):
l = urlparse(login_url)
c = urlparse(current_url)
if (not l.scheme or l.scheme == c.scheme) and (not l.netloc or l.netloc == c.netloc):
return urlunparse(('', '', c.path, c.params, c.query, ''))
return current_url
def login_url(login_view, next_url=None, next_field='next'):
if login_view.startswith(('https://', 'http://', '/')):
base = login_view
else:
base = url_for(login_view)
if next_url is None:
return base
parts = list(urlparse(base))
md = url_decode(parts[4])
md[next_field] = make_next_param(base, next_url)
parts[4] = url_encode(md, sort=True)
return urlunparse(parts)
def make_secure_token(*args, **options):
key = options.get('key')
key = _secret_key(key)
l = [s if isinstance(s, bytes) else s.encode('utf-8') for s in args]
payload = b'\0'.join(l)
token_value = hmac.new(key, payload, sha512).hexdigest()
if hasattr(token_value, 'decode'):
token_value = token_value.decode('utf-8')
return token_value
def login_fresh():
return session.get('_fresh', False)
def login_user(user, remember=False, force=False, fresh=True):
if not force and not user.is_active:
return False
user_id = getattr(user, current_app.login_manager.id_attribute)()
session['user_id'] = user_id
session['_fresh'] = fresh
session['_id'] = _create_identifier()
if remember:
session['remember'] = 'set'
_request_ctx_stack.top.user = user
user_logged_in.send(current_app._get_current_object(), user=_get_user())
return True
def logout_user():
user = _get_user()
if 'user_id' in session:
session.pop('user_id')
if '_fresh' in session:
session.pop('_fresh')
cookie_name = current_app.config.get('REMEMBER_COOKIE_NAME', COOKIE_NAME)
if cookie_name in request.cookies:
session['remember'] = 'clear'
user_logged_out.send(current_app._get_current_object(), user=user)
current_app.login_manager.reload_user()
return True
|
MIT License
|
joeyhendricks/quickpotato
|
QuickPotato/database/operations.py
|
ContextManager.execute_query
|
python
|
def execute_query(connection, query):
return connection.execute(query)
|
:param connection:
:param query:
:return:
|
https://github.com/joeyhendricks/quickpotato/blob/5e33e64d77997b00a43f5573353138436b1f1a34/QuickPotato/database/operations.py#L56-L63
|
from QuickPotato.configuration.management import options
from QuickPotato.database.schemas import RawStatisticsSchemas, UnitPerformanceTestResultSchemas
from sqlalchemy import create_engine
from sqlalchemy.exc import ProgrammingError
from QuickPotato.utilities.exceptions import DatabaseConnectionCannotBeSpawned, DatabaseSchemaCannotBeSpawned
from sqlalchemy_utils import database_exists, create_database, drop_database
import tempfile
class ContextManager(RawStatisticsSchemas, UnitPerformanceTestResultSchemas):
URL = options.connection_url
def __init__(self):
RawStatisticsSchemas.__init__(self)
UnitPerformanceTestResultSchemas.__init__(self)
def spawn_engine(self, database_name):
try:
url = self._validate_connection_url(database_name=database_name)
engine = create_engine(url, echo=options.enable_database_echo)
return engine
except Exception:
raise DatabaseConnectionCannotBeSpawned()
def spawn_connection(self, database_name):
try:
engine = self.spawn_engine(database_name)
return engine, engine.connect()
except Exception:
raise DatabaseConnectionCannotBeSpawned()
@staticmethod
def close_connection(engine, connection):
connection.close()
engine.dispose()
return True
@staticmethod
|
MIT License
|
baderlab/saber
|
saber/utils/data_utils.py
|
get_data_partitions
|
python
|
def get_data_partitions(training_data, train_valid_indices):
partitioned_data = []
for i, _ in enumerate(train_valid_indices):
partitioned_data.append([])
for j, _ in enumerate(train_valid_indices[i]):
train_indices, valid_indices = train_valid_indices[i][j]
x_word_train, x_char_train = training_data[i]['x_train']
y_train = training_data[i]['y_train']
x_word_train, x_word_valid = x_word_train[train_indices], x_word_train[valid_indices]
x_char_train, x_char_valid = x_char_train[train_indices], x_char_train[valid_indices]
y_train, y_valid = y_train[train_indices], y_train[valid_indices]
partitioned_data[i].append({'x_train': [x_word_train, x_char_train],
'x_valid': [x_word_valid, x_char_valid],
'y_train': y_train,
'y_valid': y_valid,
'x_test': training_data[i]['x_test'],
'y_test': training_data[i]['y_test'],})
return partitioned_data
|
Get train and valid partitions for all k-folds for all datasets.
For all Dataset objects in `datasets`, gets the train and valid partitions for the current
k-fold (`fold`) using the indices given at `train_valid_indices`. Returns a list of lists
of four-tuples: (x_train, x_valid, y_train, y_valid), where index i, j contains the data
for the ith dataset and jth k-fold.
Args:
datasets (list): A list of Dataset objects.
train_valid_indices (list): A list of list of two-tuples, where train_valid_indices[i][j].
is a tuple containing the train and valid indices (in that order) for the ith dataset.
and jth fold.
fold (int): The current fold in k-fold cross-validation.
Returns:
A list of lists, `partitioned_data`, where `partitioned_data[i][j]` contains the data for
the ith dataset and jth fold.
|
https://github.com/baderlab/saber/blob/876be6bfdb1bc5b18cbcfa848c94b0d20c940f02/saber/utils/data_utils.py#L210-L252
|
import glob
import logging
import os
from itertools import chain
from sklearn.model_selection import KFold, train_test_split
from .. import constants
from ..preprocessor import Preprocessor
LOGGER = logging.getLogger(__name__)
def get_filepaths(filepath):
partition_filepaths = {}
train_partition = glob.glob(os.path.join(filepath, constants.TRAIN_FILE))
valid_partition = glob.glob(os.path.join(filepath, constants.VALID_FILE))
test_partition = glob.glob(os.path.join(filepath, constants.TEST_FILE))
if not train_partition:
err_msg = "Must supply at least one file, train.* at {}".format(filepath)
LOGGER.error('ValueError %s', err_msg)
raise ValueError(err_msg)
partition_filepaths['train'] = train_partition[0]
partition_filepaths['valid'] = valid_partition[0] if valid_partition else None
partition_filepaths['test'] = test_partition[0] if test_partition else None
return partition_filepaths
def load_single_dataset(config):
from ..dataset import Dataset
dataset = Dataset(directory=config.dataset_folder[0],
replace_rare_tokens=config.replace_rare_tokens)
dataset.load()
return [dataset]
def load_compound_dataset(config):
from ..dataset import Dataset
compound_dataset = []
for dir_ in config.dataset_folder:
dataset = Dataset(directory=dir_, replace_rare_tokens=config.replace_rare_tokens)
dataset.load()
compound_dataset.append(dataset)
combined_types = {'word': [dataset.type_to_idx['word'] for dataset in compound_dataset],
'char': [dataset.type_to_idx['char'] for dataset in compound_dataset]}
combined_types['word'] = list(set(chain.from_iterable(combined_types['word'])))
combined_types['char'] = list(set(chain.from_iterable(combined_types['char'])))
type_to_idx = {
'word': Preprocessor.type_to_idx(combined_types['word'], constants.INITIAL_MAPPING['word']),
'char': Preprocessor.type_to_idx(combined_types['char'], constants.INITIAL_MAPPING['word']),
}
for dataset in compound_dataset:
word_types, char_types = list(dataset.type_to_idx['word']), list(dataset.type_to_idx['char'])
dataset.type_to_idx['word'] = Preprocessor.type_to_idx(word_types, type_to_idx['word'])
dataset.type_to_idx['char'] = Preprocessor.type_to_idx(char_types, type_to_idx['char'])
dataset.get_idx_seq()
return compound_dataset
def setup_dataset_for_transfer(dataset, type_to_idx):
dataset.type_to_idx['word'] = type_to_idx['word']
dataset.type_to_idx['char'] = type_to_idx['char']
dataset.get_idx_seq()
def collect_valid_data(training_data, test_size=0.10):
if any(['x_train' not in data or 'y_train' not in data for data in training_data]):
err_msg = "Argument `training_data` must contain the keys 'x_train' and 'y_train'"
LOGGER.error("ValueError: %s", err_msg)
raise ValueError(err_msg)
for i, data in enumerate(training_data):
x_train_word, x_valid_word, x_train_char, x_valid_char, y_train, y_valid = train_test_split(data['x_train'][0],
data['x_train'][1],
data['y_train'],
test_size=test_size,
random_state=42,
shuffle=False)
training_data[i] = {'x_train': [x_train_word, x_train_char],
'x_valid': [x_valid_word, x_valid_char],
'y_train': y_train,
'y_valid': y_valid,
'x_test': data['x_test'],
'y_test': data['y_test'],
}
return training_data
def get_train_valid_indices(training_data, k_folds):
train_valid_indices = []
kf = KFold(n_splits=k_folds, random_state=42)
for i, _ in enumerate(training_data):
X, _ = training_data[i]['x_train']
train_valid_indices.append([(ti, vi) for ti, vi in kf.split(X)])
return train_valid_indices
|
MIT License
|
icb-dcm/pypesto
|
pypesto/objective/pre_post_process.py
|
FixedParametersProcessor.reduce
|
python
|
def reduce(self, x: np.ndarray) -> np.ndarray:
x = super().reduce(x)
if x.size:
return x[self.x_free_indices]
else:
return x
|
Embed simulation vector to subsetted vector with optimization
parameters.
|
https://github.com/icb-dcm/pypesto/blob/fb2be819b41411dc1686d8429ce5efa6c535b70b/pypesto/objective/pre_post_process.py#L117-L126
|
import numpy as np
from typing import Dict, Sequence
from .constants import GRAD, HESS, RES, SRES
class PrePostProcessor:
def __init__(self):
pass
def preprocess(
self, x: np.ndarray
) -> np.ndarray:
return x
def postprocess(
self, result: Dict
) -> Dict:
result = PrePostProcessor.as_ndarrays(result)
return result
def reduce(
self, x: np.ndarray
) -> np.ndarray:
return x
@staticmethod
def as_ndarrays(
result: Dict
) -> Dict:
keys = [GRAD, HESS, RES, SRES]
for key in keys:
if key in result:
value = result[key]
if value is not None:
result[key] = np.array(value)
return result
class FixedParametersProcessor(PrePostProcessor):
def __init__(self,
dim_full: int,
x_free_indices: Sequence[int],
x_fixed_indices: Sequence[int],
x_fixed_vals: Sequence[float]):
super().__init__()
self.dim_full: int = dim_full
self.x_free_indices: np.ndarray = np.array(x_free_indices, dtype=int)
self.x_fixed_indices: np.ndarray = np.array(x_fixed_indices, dtype=int)
self.x_fixed_vals: np.ndarray = np.array(x_fixed_vals, dtype=float)
def preprocess(self, x: np.ndarray) -> np.ndarray:
x = super().preprocess(x)
x_full = np.zeros(self.dim_full)
x_full[self.x_free_indices] = x
x_full[self.x_fixed_indices] = self.x_fixed_vals
return x_full
|
BSD 3-Clause New or Revised License
|
noxrepo/pox
|
pox/lib/packet/icmpv6.py
|
icmp_base._init_
|
python
|
def _init_ (self):
pass
|
Called during initialization
Override me
In most other hierarchies that follow a similar pattern, this method
would be named "_init", but that name is already used in the
packet_base hierarchy.
|
https://github.com/noxrepo/pox/blob/5f82461e01f8822bd7336603b361bff4ffbd2380/pox/lib/packet/icmpv6.py#L423-L433
|
import struct
import random
from .packet_utils import *
from .packet_base import packet_base
from pox.lib.addresses import IPAddr6,EthAddr
from pox.lib.util import hexdump, init_helper
TYPE_DEST_UNREACH = 1
TYPE_PACKET_TOO_BIG = 2
TYPE_TIME_EXCEED = 3
TYPE_PARAM_PROB = 4
TYPE_ECHO_REQUEST = 128
TYPE_ECHO_REPLY = 129
TYPE_MC_LISTENER_QUERY = 130
TYPE_MC_LISTENER_REPORT = 131
TYPE_MC_LISTENER_DONE = 132
TYPE_ROUTER_SOLICITATION = 133
TYPE_ROUTER_ADVERTISEMENT = 134
TYPE_NEIGHBOR_SOLICITATION = 135
TYPE_NEIGHBOR_ADVERTISEMENT = 136
TYPE_REDIRECT = 137
TYPE_ROUTER_RENUMBER = 138
TYPE_MC_LISTENER_REPORT_V2 = 143
TYPE_MRD_ADVERTISEMENT = 151
TYPE_MRD_SOLICITATION = 152
TYPE_MRD_TERMINATION = 153
CODE_UNREACH_NO_ROUTE = 0
CODE_UNREACH_ADMIN_PROHIBIT = 1
CODE_UNREACH_BEYOND_SRC_SCOPE = 2
CODE_UNREACH_ADDR_UNREACHABLE = 3
CODE_UNREACH_PORT_UNREACHABLE = 4
CODE_UNREACH_SRC_POLICY_FAIL = 5
CODE_UNREACH_DST_ROUTE_REJECT = 6
CODE_UNREACH_SRC_ROUTE_ERROR = 7
CODE_TIME_HOP_EXCEEDED = 0
CODE_TIME_FRAG_TIME_EXCEEDED = 1
CODE_PARAM_BAD_HEADER = 0
CODE_PARAM_BAD_NEXT_HEADER = 1
CODE_PARAM_BAD_OPTION = 2
_type_to_name = {
1 : "TYPE_DEST_UNREACH",
2 : "TYPE_PACKET_TOO_BIG",
3 : "TYPE_TIME_EXCEED",
4 : "TYPE_PARAM_PROB",
128 : "TYPE_ECHO_REQUEST",
129 : "TYPE_ECHO_REPLY",
130 : "TYPE_MC_LISTENER_QUERY",
131 : "TYPE_MC_LISTENER_REPORT",
132 : "TYPE_MC_LISTENER_DONE",
133 : "TYPE_ROUTER_SOLICITATION",
134 : "TYPE_ROUTER_ADVERTISEMENT",
135 : "TYPE_NEIGHBOR_SOLICITATION",
136 : "TYPE_NEIGHBOR_ADVERTISEMENT",
137 : "TYPE_REDIRECT",
138 : "TYPE_ROUTER_RENUMBER",
143 : "TYPE_MC_LISTENER_REPORT_V2",
151 : "TYPE_MRD_ADVERTISEMENT",
152 : "TYPE_MRD_SOLICITATION",
153 : "TYPE_MRD_TERMINATION",
}
_nd_options = {}
def nd_option_def (cls):
_nd_options[cls.TYPE] = cls
return cls
def _parse_ndp_options (raw, prev, offset = 0, buf_len = None):
_offset = offset
if buf_len is None: buf_len = len(raw)
remaining = buf_len - offset
r = []
while offset < buf_len - 2:
if (buf_len - offset) % 8 != 0:
raise RuntimeError("Bad option data length")
offset,o = NDOptionBase.unpack_new(raw, offset, buf_len, prev=prev)
r.append(o)
return offset,r
class NDOptionBase (packet_base):
def __init__ (self, *args, **kw):
self.prev = kw.pop('prev', None)
self._init(*args, **kw)
init_helper(self, kw)
def __repr__ (self):
s = type(self).__name__
if s.startswith("NDOption"):
s = s[8:]
elif s.startswith("NDOpt"):
s = s[5:]
ss = self._fields()
if ss:
s += ' '
s += " ".join(["%s:%s" % (k,v) for k,v in ss.items()])
return "[" + s + "]"
@property
def type (self):
return self.prev.type
@property
def code (self):
return self.prev.code
def _fields (self):
return None
def _init (self, *args, **kw):
pass
def __len__ (self):
assert self.LENGTH is not None
return self.LENGTH
@staticmethod
def unpack_new (raw, offset = 0, buf_len = None, prev = None):
if buf_len is None: buf_len = len(raw)
if buf_len < 2:
raise TruncatedException()
t,l = struct.unpack_from("BB", raw, offset)
if l == 0:
raise RuntimeError("Zero-length NDP option")
offset += 2
length_bytes = l * 8 - 2
if (buf_len - offset) < length_bytes:
raise TruncatedException()
c = _nd_options.get(t)
if c is None:
c = NDOptionGeneric
if c.LENGTH is not None and c.LENGTH != length_bytes:
raise RuntimeError("Bad length for NDP option")
new_off,o = c._unpack_new(raw, offset, t, length_bytes, prev=prev)
assert new_off == offset+length_bytes
return new_off,o
def pack (self):
d = self._pack_body()
while (len(d)+2) % 8: d += "\x00"
return struct.pack("BB", self.TYPE, (len(d)+2)//8) + d
@classmethod
def _unpack_new (cls, raw, offset, t, length, prev):
raise RuntimeError("Not implemented")
def _pack_body (self):
raise RuntimeError("Not implemented")
class NDOptionGeneric (NDOptionBase):
LENGTH = None
TYPE = None
def __repr__ (self):
return "<NDP Option Type %s>" % (self.TYPE,)
def _init (self, *args, **kw):
self.raw = b''
def __len__ (self):
return len(self.raw)
def _pack_body (self):
return self.raw
@classmethod
def _unpack_new (cls, raw, offset, t, length, prev):
o = cls()
o._init()
o.TYPE = t
o.prev = prev
o.raw = raw[offset:offset+length]
return offset+length,o
class NDOptLinkLayerAddress (NDOptionBase):
LENGTH = 6
def _init (self, *args, **kw):
a = kw.pop('address',None)
if a is None:
self.address = None
else:
self.address = EthAddr(a)
def _fields (self):
return {'addr':self.address}
@classmethod
def _unpack_new (cls, raw, offset, t, length, prev):
return offset+length,cls(address = EthAddr(raw[offset:offset+length]),
prev=prev)
def _pack_body (self):
return self.address.raw
@nd_option_def
class NDOptSourceLinkLayerAddress (NDOptLinkLayerAddress):
TYPE = 1
@nd_option_def
class NDOptTargetLinkLayerAddress (NDOptLinkLayerAddress):
TYPE = 2
@nd_option_def
class NDOptPrefixInformation (NDOptionBase):
LENGTH = 1 + 1 + 4 + 4 + 4 + 4 * 4
TYPE = 3
ON_LINK_FLAG = 0x80
AUTONOMOUS_FLAG = 0x40
def _init (self, *args, **kw):
self.prefix_length = 0
self.on_link = False
self.is_autonomous = False
self.valid_lifetime = 0
self.preferred_lifetime = 0
self.prefix = IPAddr6.UNDEFINED
def _fields (self):
r = {}
if self.on_link: r['on_link'] = True
if self.is_autonomous: r['autonomous'] = True
r['valid'] = self.valid_lifetime
r['preferred'] = self.preferred_lifetime
r['prefix'] = "%s/%s" % (self.prefix, self.prefix_length)
return r
@classmethod
def _unpack_new (cls, raw, offset, t, length, prev):
o = cls()
o.prefix_length,flags,o.valid_lifetime,o.preferred_lifetime = struct.unpack_from('!BBII', raw, offset)
offset += 1 + 1 + 4 + 4
offset += 4
o.prefix = IPAddr6(raw=raw[offset:offset+16])
offset += 16
o.on_link = (flags & cls.ON_LINK_FLAG) != 0
o.is_autonomous = (flags & cls.AUTONOMOUS_FLAG) != 0
o.prev = prev
return offset,o
@property
def flags (self):
f = 0
if self.on_link: f |= self.ON_LINK_FLAG
if self.is_autonomous: f |= self.AUTONOMOUS_FLAG
return f
def pack (self):
s = struct.pack("!BBII", self.prefix_length, self.flags,
self.valid_lifetime,self.preferred_lifetime)
s += '\x00' * 4
s += self.prefix.raw
return s
@nd_option_def
class NDOptMTU (NDOptionBase):
LENGTH = 6
TYPE = 5
def _init (self, *args, **kw):
self.mtu = 0
def _fields (self):
return {'mtu':self.mtu}
@classmethod
def _unpack_new (cls, raw, offset, t, length, prev):
o = cls()
o.prev = prev
_,o.mtu = struct.unpack_from('!HI', raw, offset)
offset += 2 + 4
return offset,o
def pack (self):
return struct.pack("!HI", 0, self.mtu)
class icmp_base (packet_base):
def __str__ (self):
s = "[ICMPv6/" + self.__class__.__name__
ss = self._fields()
if ss:
s += ' '
s += " ".join(["%s:%s" % (k,v) for k,v in ss.items()])
return s + "]"
def _fields (self):
return {}
|
Apache License 2.0
|
mcouthon/r2k
|
r2k/cli/feed/feed_show.py
|
feed_show
|
python
|
def feed_show() -> None:
if config.feeds:
feeds = yaml.safe_dump(config.feeds)
logger.info("Here are the existing feeds:")
logger.secho(feeds, fg="white", bold=False)
else:
logger.info("There are no feeds available.\nAdd more by running `r2k feeds import/add`")
|
List all existing RSS feeds.
|
https://github.com/mcouthon/r2k/blob/10db38d965c5883d4bf129584880a80a020e9509/r2k/cli/feed/feed_show.py#L10-L17
|
import click
import yaml
from r2k.cli import cli_utils, logger
from r2k.config import config
@click.command("show")
@cli_utils.config_path_option()
|
MIT License
|
facebookresearch/pycls
|
pycls/models/resnet.py
|
ResNet.complexity
|
python
|
def complexity(cx):
if "cifar" in cfg.TRAIN.DATASET:
d = int((cfg.MODEL.DEPTH - 2) / 6)
cx = ResStemCifar.complexity(cx, 3, 16)
cx = ResStage.complexity(cx, 16, 16, stride=1, d=d)
cx = ResStage.complexity(cx, 16, 32, stride=2, d=d)
cx = ResStage.complexity(cx, 32, 64, stride=2, d=d)
cx = ResHead.complexity(cx, 64, cfg.MODEL.NUM_CLASSES)
else:
g, gw = cfg.RESNET.NUM_GROUPS, cfg.RESNET.WIDTH_PER_GROUP
(d1, d2, d3, d4) = _IN_STAGE_DS[cfg.MODEL.DEPTH]
w_b = gw * g
cx = ResStemIN.complexity(cx, 3, 64)
cx = ResStage.complexity(cx, 64, 256, 1, d=d1, w_b=w_b, groups=g)
cx = ResStage.complexity(cx, 256, 512, 2, d=d2, w_b=w_b * 2, groups=g)
cx = ResStage.complexity(cx, 512, 1024, 2, d=d3, w_b=w_b * 4, groups=g)
cx = ResStage.complexity(cx, 1024, 2048, 2, d=d4, w_b=w_b * 8, groups=g)
cx = ResHead.complexity(cx, 2048, cfg.MODEL.NUM_CLASSES)
return cx
|
Computes model complexity. If you alter the model, make sure to update.
|
https://github.com/facebookresearch/pycls/blob/8c79a8e2adfffa7cae3a88aace28ef45e52aa7e5/pycls/models/resnet.py#L268-L287
|
from pycls.core.config import cfg
from pycls.models.blocks import (
activation,
conv2d,
conv2d_cx,
gap2d,
gap2d_cx,
init_weights,
linear,
linear_cx,
norm2d,
norm2d_cx,
pool2d,
pool2d_cx,
)
from torch.nn import Module
_IN_STAGE_DS = {50: (3, 4, 6, 3), 101: (3, 4, 23, 3), 152: (3, 8, 36, 3)}
def get_trans_fun(name):
trans_funs = {
"basic_transform": BasicTransform,
"bottleneck_transform": BottleneckTransform,
}
err_str = "Transformation function '{}' not supported"
assert name in trans_funs.keys(), err_str.format(name)
return trans_funs[name]
class ResHead(Module):
def __init__(self, w_in, num_classes):
super(ResHead, self).__init__()
self.avg_pool = gap2d(w_in)
self.fc = linear(w_in, num_classes, bias=True)
def forward(self, x):
x = self.avg_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
@staticmethod
def complexity(cx, w_in, num_classes):
cx = gap2d_cx(cx, w_in)
cx = linear_cx(cx, w_in, num_classes, bias=True)
return cx
class BasicTransform(Module):
def __init__(self, w_in, w_out, stride, w_b=None, groups=1):
err_str = "Basic transform does not support w_b and groups options"
assert w_b is None and groups == 1, err_str
super(BasicTransform, self).__init__()
self.a = conv2d(w_in, w_out, 3, stride=stride)
self.a_bn = norm2d(w_out)
self.a_af = activation()
self.b = conv2d(w_out, w_out, 3)
self.b_bn = norm2d(w_out)
self.b_bn.final_bn = True
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
@staticmethod
def complexity(cx, w_in, w_out, stride, w_b=None, groups=1):
err_str = "Basic transform does not support w_b and groups options"
assert w_b is None and groups == 1, err_str
cx = conv2d_cx(cx, w_in, w_out, 3, stride=stride)
cx = norm2d_cx(cx, w_out)
cx = conv2d_cx(cx, w_out, w_out, 3)
cx = norm2d_cx(cx, w_out)
return cx
class BottleneckTransform(Module):
def __init__(self, w_in, w_out, stride, w_b, groups):
super(BottleneckTransform, self).__init__()
(s1, s3) = (stride, 1) if cfg.RESNET.STRIDE_1X1 else (1, stride)
self.a = conv2d(w_in, w_b, 1, stride=s1)
self.a_bn = norm2d(w_b)
self.a_af = activation()
self.b = conv2d(w_b, w_b, 3, stride=s3, groups=groups)
self.b_bn = norm2d(w_b)
self.b_af = activation()
self.c = conv2d(w_b, w_out, 1)
self.c_bn = norm2d(w_out)
self.c_bn.final_bn = True
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
@staticmethod
def complexity(cx, w_in, w_out, stride, w_b, groups):
(s1, s3) = (stride, 1) if cfg.RESNET.STRIDE_1X1 else (1, stride)
cx = conv2d_cx(cx, w_in, w_b, 1, stride=s1)
cx = norm2d_cx(cx, w_b)
cx = conv2d_cx(cx, w_b, w_b, 3, stride=s3, groups=groups)
cx = norm2d_cx(cx, w_b)
cx = conv2d_cx(cx, w_b, w_out, 1)
cx = norm2d_cx(cx, w_out)
return cx
class ResBlock(Module):
def __init__(self, w_in, w_out, stride, trans_fun, w_b=None, groups=1):
super(ResBlock, self).__init__()
self.proj, self.bn = None, None
if (w_in != w_out) or (stride != 1):
self.proj = conv2d(w_in, w_out, 1, stride=stride)
self.bn = norm2d(w_out)
self.f = trans_fun(w_in, w_out, stride, w_b, groups)
self.af = activation()
def forward(self, x):
x_p = self.bn(self.proj(x)) if self.proj else x
return self.af(x_p + self.f(x))
@staticmethod
def complexity(cx, w_in, w_out, stride, trans_fun, w_b, groups):
if (w_in != w_out) or (stride != 1):
h, w = cx["h"], cx["w"]
cx = conv2d_cx(cx, w_in, w_out, 1, stride=stride)
cx = norm2d_cx(cx, w_out)
cx["h"], cx["w"] = h, w
cx = trans_fun.complexity(cx, w_in, w_out, stride, w_b, groups)
return cx
class ResStage(Module):
def __init__(self, w_in, w_out, stride, d, w_b=None, groups=1):
super(ResStage, self).__init__()
for i in range(d):
b_stride = stride if i == 0 else 1
b_w_in = w_in if i == 0 else w_out
trans_fun = get_trans_fun(cfg.RESNET.TRANS_FUN)
res_block = ResBlock(b_w_in, w_out, b_stride, trans_fun, w_b, groups)
self.add_module("b{}".format(i + 1), res_block)
def forward(self, x):
for block in self.children():
x = block(x)
return x
@staticmethod
def complexity(cx, w_in, w_out, stride, d, w_b=None, groups=1):
for i in range(d):
b_stride = stride if i == 0 else 1
b_w_in = w_in if i == 0 else w_out
trans_f = get_trans_fun(cfg.RESNET.TRANS_FUN)
cx = ResBlock.complexity(cx, b_w_in, w_out, b_stride, trans_f, w_b, groups)
return cx
class ResStemCifar(Module):
def __init__(self, w_in, w_out):
super(ResStemCifar, self).__init__()
self.conv = conv2d(w_in, w_out, 3)
self.bn = norm2d(w_out)
self.af = activation()
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
@staticmethod
def complexity(cx, w_in, w_out):
cx = conv2d_cx(cx, w_in, w_out, 3)
cx = norm2d_cx(cx, w_out)
return cx
class ResStemIN(Module):
def __init__(self, w_in, w_out):
super(ResStemIN, self).__init__()
self.conv = conv2d(w_in, w_out, 7, stride=2)
self.bn = norm2d(w_out)
self.af = activation()
self.pool = pool2d(w_out, 3, stride=2)
def forward(self, x):
for layer in self.children():
x = layer(x)
return x
@staticmethod
def complexity(cx, w_in, w_out):
cx = conv2d_cx(cx, w_in, w_out, 7, stride=2)
cx = norm2d_cx(cx, w_out)
cx = pool2d_cx(cx, w_out, 3, stride=2)
return cx
class ResNet(Module):
def __init__(self):
datasets = ["cifar10", "imagenet"]
err_str = "Dataset {} is not supported"
assert cfg.TRAIN.DATASET in datasets, err_str.format(cfg.TRAIN.DATASET)
assert cfg.TEST.DATASET in datasets, err_str.format(cfg.TEST.DATASET)
super(ResNet, self).__init__()
if "cifar" in cfg.TRAIN.DATASET:
self._construct_cifar()
else:
self._construct_imagenet()
self.apply(init_weights)
def _construct_cifar(self):
err_str = "Model depth should be of the format 6n + 2 for cifar"
assert (cfg.MODEL.DEPTH - 2) % 6 == 0, err_str
d = int((cfg.MODEL.DEPTH - 2) / 6)
self.stem = ResStemCifar(3, 16)
self.s1 = ResStage(16, 16, stride=1, d=d)
self.s2 = ResStage(16, 32, stride=2, d=d)
self.s3 = ResStage(32, 64, stride=2, d=d)
self.head = ResHead(64, cfg.MODEL.NUM_CLASSES)
def _construct_imagenet(self):
g, gw = cfg.RESNET.NUM_GROUPS, cfg.RESNET.WIDTH_PER_GROUP
(d1, d2, d3, d4) = _IN_STAGE_DS[cfg.MODEL.DEPTH]
w_b = gw * g
self.stem = ResStemIN(3, 64)
self.s1 = ResStage(64, 256, stride=1, d=d1, w_b=w_b, groups=g)
self.s2 = ResStage(256, 512, stride=2, d=d2, w_b=w_b * 2, groups=g)
self.s3 = ResStage(512, 1024, stride=2, d=d3, w_b=w_b * 4, groups=g)
self.s4 = ResStage(1024, 2048, stride=2, d=d4, w_b=w_b * 8, groups=g)
self.head = ResHead(2048, cfg.MODEL.NUM_CLASSES)
def forward(self, x):
for module in self.children():
x = module(x)
return x
@staticmethod
|
MIT License
|
sylvainde/didyoumean-python
|
didyoumean/didyoumean_sugg_tests.py
|
PythonEnvRange.contains_current_env
|
python
|
def contains_current_env(self):
return version_in_range(self.version_range) and interpreter_in(self.interpreters)
|
Check if current environment is in PythonEnvRange object.
|
https://github.com/sylvainde/didyoumean-python/blob/cd34238829349b652a3668413c8b8f2524fab0d9/didyoumean/didyoumean_sugg_tests.py#L285-L288
|
from didyoumean_internal import get_suggestions_for_exception, quote, STAND_MODULES, AVOID_REC_MSG, APPLY_REMOVED_MSG, BUFFER_REMOVED_MSG, CMP_REMOVED_MSG, CMP_ARG_REMOVED_MSG, EXC_ATTR_REMOVED_MSG, LONG_REMOVED_MSG, MEMVIEW_ADDED_MSG, RELOAD_REMOVED_MSG, STDERR_REMOVED_MSG, BREAKPOINT_ADDED_MSG, NO_KEYWORD_ARG_MSG, COMMA_INSTEAD_OF_PERIOD_MSG
import didyoumean_common_tests as common
import didyoumean_re as re
import warnings
import sys
import math
import os
import tempfile
from shutil import rmtree
unittest_module = common.unittest_module
exc_history = None
this_is_a_global_list = []
initial_recursion_limit = sys.getrecursionlimit()
def indent_code(string, tab="\t"):
return ''.join(tab + l for l in string.splitlines(True))
def func_gen(name='some_func', param='', body='pass', args=None):
function = "def {0}({1}):\n{2}\n".format(name, param, indent_code(body))
if args is None:
return function
else:
call = "{0}({1})\n".format(name, args)
return function + call
def meth_gen(class_name='MyClass', name='some_method',
param='', body='pass', args=None):
indent_body = indent_code(body, tab="\t\t")
method = "def {0}({1}):\n{2}\n".format(name, param, indent_code(body))
class_def = "class {0}():\n{1}\n".format(class_name, indent_code(method))
if args is None:
return class_def
else:
call = "{0}().{1}({2})\n".format(class_name, name, args)
return class_def + call
def my_generator():
for i in range(5):
yield i
def endlessly_recursive_func(n):
return endlessly_recursive_func(n-1)
class FoobarClass():
def __init__(self):
self.babar = 2
@classmethod
def this_is_cls_mthd(cls):
return 5
def nameerror_self(self):
return babar
def nameerror_self2(self):
return this_is_cls_mthd
@classmethod
def nameerror_cls(cls):
return this_is_cls_mthd
def some_method(self):
pass
def some_method2(self, x):
pass
def _some_semi_private_method(self):
pass
def __some_private_method(self):
pass
def some_method_missing_self_arg():
pass
def some_method_missing_self_arg2(x):
pass
@classmethod
def some_cls_method_missing_cls():
pass
@classmethod
def some_cls_method_missing_cls2(x):
pass
class CustomClass():
pass
class IndexClass():
def __index__(self):
return 2
class CallClass():
def __call__(self):
return 0
class GetItemClass():
def __getitem__(self, key):
return 0
class DelItemClass():
def __delitem__(self, key):
pass
class SetItemClass():
def __setitem__(self, key, val):
pass
class LenClass():
def __len__(self):
return 0
FIRST_VERSION = (0, 0)
LAST_VERSION = (10, 0)
ALL_VERSIONS = (FIRST_VERSION, LAST_VERSION)
INTERPRETERS = ['cpython', 'pypy']
def from_version(version):
return (version, LAST_VERSION)
def up_to_version(version):
return (FIRST_VERSION, version)
def before_and_after(version):
return up_to_version(version), from_version(version)
def before_mid_and_after(vers1, vers2):
assert vers1 < vers2
return up_to_version(vers1), (vers1, vers2), from_version(vers2)
def ranges_between(*versions):
first = up_to_version(versions[0])
mid = list(zip(versions, versions[1:]))
last = from_version(versions[-1])
return [first] + mid + [last]
def version_in_range(version_range):
beg, end = version_range
return beg <= sys.version_info < end
def interpreter_in(interpreters):
is_pypy = hasattr(sys, "pypy_translation_info")
interpreter = 'pypy' if is_pypy else 'cpython'
return interpreter in interpreters
def format_str(template, *args):
return [template.format(arg) for arg in args]
class PythonEnvRange(object):
def __init__(self, version_range=None, interpreters=None):
self.interpreters = listify(interpreters, INTERPRETERS, str)
self.version_range = ALL_VERSIONS if version_range is None else version_range
|
MIT License
|
xrplf/xrpl-py
|
xrpl/core/addresscodec/codec.py
|
encode_seed
|
python
|
def encode_seed(entropy: bytes, encoding_type: CryptoAlgorithm) -> str:
if len(entropy) != SEED_LENGTH:
raise XRPLAddressCodecException(f"Entropy must have length {SEED_LENGTH}")
if encoding_type not in CryptoAlgorithm:
raise XRPLAddressCodecException(
f"Encoding type must be one of {CryptoAlgorithm}"
)
prefix = _ALGORITHM_TO_PREFIX_MAP[encoding_type]
return _encode(entropy, prefix, SEED_LENGTH)
|
Returns an encoded seed.
Args:
entropy: Entropy bytes of SEED_LENGTH.
encoding_type: Either ED25519 or SECP256K1.
Returns:
An encoded seed.
Raises:
XRPLAddressCodecException: If entropy is not of length SEED_LENGTH
or the encoding type is not one of CryptoAlgorithm.
|
https://github.com/xrplf/xrpl-py/blob/3635339bfb579353e56f126bbcf303d931b26d65/xrpl/core/addresscodec/codec.py#L65-L88
|
from typing import Dict, List, Tuple
import base58
from typing_extensions import Final
from xrpl.constants import CryptoAlgorithm
from xrpl.core.addresscodec.exceptions import XRPLAddressCodecException
from xrpl.core.addresscodec.utils import XRPL_ALPHABET
_CLASSIC_ADDRESS_PREFIX: Final[List[int]] = [0x0]
_ACCOUNT_PUBLIC_KEY_PREFIX: Final[List[int]] = [0x23]
_FAMILY_SEED_PREFIX: Final[List[int]] = [0x21]
_NODE_PUBLIC_KEY_PREFIX: Final[List[int]] = [0x1C]
_ED25519_SEED_PREFIX: Final[List[int]] = [0x01, 0xE1, 0x4B]
SEED_LENGTH: Final[int] = 16
_CLASSIC_ADDRESS_LENGTH: Final[int] = 20
_NODE_PUBLIC_KEY_LENGTH: Final[int] = 33
_ACCOUNT_PUBLIC_KEY_LENGTH: Final[int] = 33
_ALGORITHM_TO_PREFIX_MAP: Final[Dict[CryptoAlgorithm, List[int]]] = {
CryptoAlgorithm.ED25519: _ED25519_SEED_PREFIX,
CryptoAlgorithm.SECP256K1: _FAMILY_SEED_PREFIX,
}
def _encode(bytestring: bytes, prefix: List[int], expected_length: int) -> str:
if expected_length and len(bytestring) != expected_length:
error_message = """unexpected_payload_length: len(bytestring) does not match expected_length.
Ensure that the bytes are a bytestring."""
raise XRPLAddressCodecException(error_message)
encoded_prefix = bytes(prefix)
payload = encoded_prefix + bytestring
return base58.b58encode_check(payload, alphabet=XRPL_ALPHABET).decode("utf-8")
def _decode(b58_string: str, prefix: bytes) -> bytes:
prefix_length = len(prefix)
decoded = base58.b58decode_check(b58_string, alphabet=XRPL_ALPHABET)
if decoded[:prefix_length] != prefix:
raise XRPLAddressCodecException("Provided prefix is incorrect")
return decoded[prefix_length:]
|
ISC License
|
stanford-iprl-lab/torchfilter
|
torchfilter/data/_single_step_dataset.py
|
SingleStepDataset.__getitem__
|
python
|
def __getitem__(
self, index: int
) -> Tuple[
types.StatesNumpy,
types.StatesNumpy,
types.ObservationsNumpy,
types.ControlsNumpy,
]:
return self.samples[index]
|
Get a single-step prediction sample from our dataset.
Args:
index (int): Subsequence number in our dataset.
Returns:
tuple: `(previous_state, state, observation, control)` tuple that
contains data for a single subsequence. Each tuple member should be either a
numpy array or dict of numpy arrays with shape `(subsequence_length, ...)`.
|
https://github.com/stanford-iprl-lab/torchfilter/blob/da0250baf2197f59b6e67f37cafdd63015380cbb/torchfilter/data/_single_step_dataset.py#L44-L61
|
from typing import List, Tuple
import fannypack as fp
from torch.utils.data import Dataset
from .. import types
class SingleStepDataset(Dataset):
def __init__(self, trajectories: List[types.TrajectoryNumpy]):
self.samples: List[
Tuple[
types.StatesNumpy,
types.StatesNumpy,
types.ObservationsNumpy,
types.ControlsNumpy,
]
] = []
for traj in trajectories:
T = len(traj.states)
for t in range(T - 1):
self.samples.append(
(
traj.states[t],
traj.states[t + 1],
fp.utils.SliceWrapper(traj.observations)[t + 1],
fp.utils.SliceWrapper(traj.controls)[t + 1],
)
)
|
MIT License
|
stackstorm/st2contrib
|
packs/duo/actions/auth_ping.py
|
AuthPingAction.run
|
python
|
def run(self):
try:
data = self.duo_auth.ping()
except RuntimeError, e:
self.send_user_error("Ping failed! %s" % e)
raise ValueError("Ping failed! %s" % e)
else:
return data
|
Ping the Duo Platorm.
Returns: An dict with info returned by Duo.
Raises:
RuntimeError: On ping failure.
|
https://github.com/stackstorm/st2contrib/blob/095b021a31ba134728deb7c707240196d016e729/packs/duo/actions/auth_ping.py#L22-L38
|
from lib.actions import AuthBaseAction
class AuthPingAction(AuthBaseAction):
|
Apache License 2.0
|
wintoncode/winton-kafka-streams
|
winton_kafka_streams/processor/_context.py
|
Context.send
|
python
|
def send(self, topic, key, obj):
print(f"Send {obj} to {topic}")
pass
|
Send the key value-pair to a Kafka topic
|
https://github.com/wintoncode/winton-kafka-streams/blob/5867a1c42fc80bba07173fd1d004b2849b429fdf/winton_kafka_streams/processor/_context.py#L37-L43
|
import functools
import logging
from typing import Any, Callable
from winton_kafka_streams.state.key_value_state_store import KeyValueStateStore
from ..errors.kafka_streams_error import KafkaStreamsError
log = logging.getLogger(__name__)
def _raise_if_null_record(fn: Callable[..., Any]) -> Callable[..., Any]:
@functools.wraps(fn)
def _inner(*args, **kwargs):
if args[0].current_record is None:
raise KafkaStreamsError(f"Record cannot be unset when retrieving {fn.__name__}")
return fn(*args, **kwargs)
return _inner
class Context:
def __init__(self, _state_record_collector, _state_stores):
self.current_node = None
self.current_record = None
self.state_record_collector = _state_record_collector
self._state_stores = _state_stores
|
Apache License 2.0
|
graphsense/graphsense-rest
|
openapi_server/models/stats_version.py
|
StatsVersion.timestamp
|
python
|
def timestamp(self):
return self._timestamp
|
Gets the timestamp of this StatsVersion.
:return: The timestamp of this StatsVersion.
:rtype: str
|
https://github.com/graphsense/graphsense-rest/blob/2e4a9c20835e54d971e3fc3aae5780bc87d48647/openapi_server/models/stats_version.py#L115-L122
|
from __future__ import absolute_import
from datetime import date, datetime
from typing import List, Dict
from openapi_server.models.base_model_ import Model
from openapi_server import util
class StatsVersion(Model):
def __init__(self, nr=None, hash=None, timestamp=None, file=None):
self.openapi_types = {
'nr': str,
'hash': str,
'timestamp': str,
'file': str
}
self.attribute_map = {
'nr': 'nr',
'hash': 'hash',
'timestamp': 'timestamp',
'file': 'file'
}
self._nr = nr
self._hash = hash
self._timestamp = timestamp
self._file = file
@classmethod
def from_dict(cls, dikt) -> 'StatsVersion':
return util.deserialize_model(dikt, cls)
def to_dict(self, prefix=""):
return { 'nr': self._nr,
'hash': self._hash,
'timestamp': self._timestamp,
'file': self._file }
@property
def nr(self):
return self._nr
@nr.setter
def nr(self, nr):
self._nr = nr
@property
def hash(self):
return self._hash
@hash.setter
def hash(self, hash):
self._hash = hash
@property
|
MIT License
|
lumaku/ctc-segmentation
|
ctc_segmentation/ctc_segmentation.py
|
prepare_token_list
|
python
|
def prepare_token_list(config, text):
ground_truth = [-1]
utt_begin_indices = []
for utt in text:
if not ground_truth[-1] == config.blank:
ground_truth += [config.blank]
utt_begin_indices.append(len(ground_truth) - 1)
ground_truth += utt.tolist()
if not ground_truth[-1] == config.blank:
ground_truth += [config.blank]
logging.debug(f"ground_truth: {ground_truth}")
utt_begin_indices.append(len(ground_truth) - 1)
ground_truth_mat = np.array(ground_truth, dtype=np.int64).reshape(-1, 1)
return ground_truth_mat, utt_begin_indices
|
Prepare the given token list for CTC segmentation.
This function expects the text input in form of a list
of numpy arrays: [np.array([2, 5]), np.array([7, 9])]
:param config: an instance of CtcSegmentationParameters
:param text: list of numpy arrays with tokens
:return: label matrix, character index matrix
|
https://github.com/lumaku/ctc-segmentation/blob/6f1e89c518c9ecd5b178b22c046aac5eaec43976/ctc_segmentation/ctc_segmentation.py#L328-L357
|
import logging
import numpy as np
try:
from .ctc_segmentation_dyn import cython_fill_table
except ImportError:
import pyximport
pyximport.install(setup_args={"include_dirs": np.get_include()})
from .ctc_segmentation_dyn import cython_fill_table
class CtcSegmentationParameters:
max_prob = -10000000000.0
skip_prob = -10000000000.0
min_window_size = 8000
max_window_size = 100000
index_duration = 0.025
score_min_mean_over_L = 30
space = "·"
blank = 0
replace_spaces_with_blanks = False
blank_transition_cost_zero = False
preamble_transition_cost_zero = True
backtrack_from_max_t = False
self_transition = "ε"
start_of_ground_truth = "#"
excluded_characters = ".,»«•❍·"
tokenized_meta_symbol = "▁"
char_list = None
subsampling_factor = None
frame_duration_ms = None
@property
def index_duration_in_seconds(self):
if self.subsampling_factor and self.frame_duration_ms:
t = self.frame_duration_ms * self.subsampling_factor / 1000
else:
t = self.index_duration
return t
@property
def flags(self):
flags = int(self.blank_transition_cost_zero)
flags += 2 * int(self.preamble_transition_cost_zero)
return flags
def update_excluded_characters(self):
self.excluded_characters = "".join(
[
char
for char in self.excluded_characters
if True not in [char == j for j in self.char_list]
]
)
logging.debug(f"Excluded characters: {self.excluded_characters}")
def __init__(self, **kwargs):
self.set(**kwargs)
def set(self, **kwargs):
for key in kwargs:
if (
not key.startswith("_")
and hasattr(self, key)
and kwargs[key] is not None
):
setattr(self, key, kwargs[key])
def __repr__(self):
output = "CtcSegmentationParameters( "
for attribute in self.__dict__.keys():
value = self.__dict__[attribute]
output += f"{attribute}={value}, "
output += ")"
return output
def ctc_segmentation(config, lpz, ground_truth):
blank = config.blank
offset = 0
audio_duration = lpz.shape[0] * config.index_duration_in_seconds
logging.info(
f"CTC segmentation of {len(ground_truth)} chars "
f"to {audio_duration:.2f}s audio "
f"({lpz.shape[0]} indices)."
)
if len(ground_truth) > lpz.shape[0] and config.skip_prob <= config.max_prob:
raise AssertionError("Audio is shorter than text!")
window_size = config.min_window_size
while True:
table = np.zeros(
[min(window_size, lpz.shape[0]), len(ground_truth)], dtype=np.float32
)
table.fill(config.max_prob)
offsets = np.zeros([len(ground_truth)], dtype=np.int64)
t, c = cython_fill_table(
table,
lpz.astype(np.float32),
np.array(ground_truth, dtype=np.int64),
np.array(offsets, dtype=np.int64),
config.blank,
config.flags,
)
if config.backtrack_from_max_t:
t = table.shape[0] - 1
logging.debug(
f"Max. joint probability to align text to audio: "
f"{table[:, c].max()} at time index {t}"
)
timings = np.zeros([len(ground_truth)])
char_probs = np.zeros([lpz.shape[0]])
state_list = [""] * lpz.shape[0]
try:
while t != 0 or c != 0:
min_s = None
min_switch_prob_delta = np.inf
max_lpz_prob = config.max_prob
for s in range(ground_truth.shape[1]):
if ground_truth[c, s] != -1:
offset = offsets[c] - (offsets[c - 1 - s] if c - s > 0 else 0)
switch_prob = (
lpz[t + offsets[c], ground_truth[c, s]]
if c > 0
else config.max_prob
)
est_switch_prob = table[t, c] - table[t - 1 + offset, c - 1 - s]
if abs(switch_prob - est_switch_prob) < min_switch_prob_delta:
min_switch_prob_delta = abs(switch_prob - est_switch_prob)
min_s = s
max_lpz_prob = max(max_lpz_prob, switch_prob)
stay_prob = (
max(lpz[t + offsets[c], blank], max_lpz_prob)
if t > 0
else config.max_prob
)
est_stay_prob = table[t, c] - table[t - 1, c]
if abs(stay_prob - est_stay_prob) > min_switch_prob_delta:
if c > 0:
for s in range(0, min_s + 1):
timings[c - s] = (
offsets[c] + t
) * config.index_duration_in_seconds
char_probs[offsets[c] + t] = max_lpz_prob
char_index = ground_truth[c, min_s]
state_list[offsets[c] + t] = config.char_list[char_index]
c -= 1 + min_s
t -= 1 - offset
else:
char_probs[offsets[c] + t] = stay_prob
state_list[offsets[c] + t] = config.self_transition
t -= 1
except IndexError:
logging.warning(
"IndexError: Backtracking was not successful, "
"the window size might be too small."
)
window_size *= 2
if window_size < config.max_window_size:
logging.warning("Increasing the window size to: " + str(window_size))
continue
else:
logging.error("Maximum window size reached.")
logging.error("Check data and character list!")
raise
break
return timings, char_probs, state_list
def prepare_text(config, text, char_list=None):
if type(config.blank) == str:
config.blank = 0
if char_list is not None:
config.char_list = char_list
blank = config.char_list[config.blank]
ground_truth = config.start_of_ground_truth
utt_begin_indices = []
for utt in text:
if not ground_truth.endswith(config.space):
ground_truth += config.space
utt_begin_indices.append(len(ground_truth) - 1)
for char in utt:
if char.isspace() and config.replace_spaces_with_blanks:
if not ground_truth.endswith(config.space):
ground_truth += config.space
elif char in config.char_list and char not in config.excluded_characters:
ground_truth += char
if not ground_truth.endswith(config.space):
ground_truth += config.space
logging.debug(f"ground_truth: {ground_truth}")
utt_begin_indices.append(len(ground_truth) - 1)
max_char_len = max([len(c) for c in config.char_list])
ground_truth_mat = np.ones([len(ground_truth), max_char_len], np.int64) * -1
for i in range(len(ground_truth)):
for s in range(max_char_len):
if i - s < 0:
continue
span = ground_truth[i - s : i + 1]
span = span.replace(config.space, blank)
if span in config.char_list:
char_index = config.char_list.index(span)
ground_truth_mat[i, s] = char_index
return ground_truth_mat, utt_begin_indices
def prepare_tokenized_text(config, text):
ground_truth = [config.start_of_ground_truth]
utt_begin_indices = []
for utt in text:
if not ground_truth[-1] == config.space:
ground_truth += [config.space]
utt_begin_indices.append(len(ground_truth) - 1)
for token in utt.split():
if token in config.char_list:
if config.replace_spaces_with_blanks and not token.beginswith(
config.tokenized_meta_symbol
):
ground_truth += [config.space]
ground_truth += [token]
if not ground_truth[-1] == config.space:
ground_truth += [config.space]
logging.debug(f"ground_truth: {ground_truth}")
utt_begin_indices.append(len(ground_truth) - 1)
max_char_len = 1
ground_truth_mat = np.ones([len(ground_truth), max_char_len], np.int64) * -1
for i in range(1, len(ground_truth)):
if ground_truth[i] == config.space:
ground_truth_mat[i, 0] = config.blank
else:
char_index = config.char_list.index(ground_truth[i])
ground_truth_mat[i, 0] = char_index
return ground_truth_mat, utt_begin_indices
|
Apache License 2.0
|
imjoy-team/imjoy-engine
|
imjoy/minio.py
|
kwarg_to_flag
|
python
|
def kwarg_to_flag(**kwargs):
_args = []
for _key, _value in kwargs.items():
key = "--" + _key.replace("_", "-")
if _value in (True, False):
_args.append(key)
else:
_args.append(f"{key} {_value}")
return " ".join(_args)
|
Convert key arguments into flags.
|
https://github.com/imjoy-team/imjoy-engine/blob/e529f02ff5ccfb39385a192ef62ee32e1d2bccf6/imjoy/minio.py#L52-L61
|
import json
import logging
import os
import re
import stat
import subprocess
import sys
import tempfile
import urllib.request
logging.basicConfig(stream=sys.stdout)
logger = logging.getLogger("minio")
logger.setLevel(logging.INFO)
MATH_PATTERN = re.compile("{(.+?)}")
EXECUTABLE_PATH = "bin"
def setup_minio_executables():
os.makedirs(EXECUTABLE_PATH, exist_ok=True)
assert (
sys.platform == "linux"
), "Manual setup required to, please download minio and minio client \
from https://min.io/ and place them under ./bin"
mc_path = EXECUTABLE_PATH + "/mc"
minio_path = EXECUTABLE_PATH + "/minio"
if not os.path.exists(minio_path):
print("Minio server executable not found, downloading... ")
urllib.request.urlretrieve(
"https://dl.min.io/server/minio/release/linux-amd64/minio", minio_path
)
if not os.path.exists(mc_path):
print("Minio client executable not found, downloading... ")
urllib.request.urlretrieve(
"https://dl.min.io/client/mc/release/linux-amd64/mc", mc_path
)
stat_result = os.stat(minio_path)
if not bool(stat_result.st_mode & stat.S_IEXEC):
os.chmod(minio_path, stat_result.st_mode | stat.S_IEXEC)
stat_result = os.stat(mc_path)
if not bool(stat_result.st_mode & stat.S_IEXEC):
os.chmod(mc_path, stat_result.st_mode | stat.S_IEXEC)
print("MinIO executables are ready.")
|
MIT License
|
jcyk/amr-gs
|
stog/data/iterators/multiprocess_iterator.py
|
_create_tensor_dicts
|
python
|
def _create_tensor_dicts(input_queue: Queue,
output_queue: Queue,
iterator: DataIterator,
shuffle: bool,
index: int) -> None:
def instances() -> Iterator[Instance]:
instance = input_queue.get()
while instance is not None:
yield instance
instance = input_queue.get()
for tensor_dict in iterator(instances(), num_epochs=1, shuffle=shuffle):
output_queue.put(tensor_dict)
output_queue.put(index)
|
Pulls at most ``max_instances_in_memory`` from the input_queue,
groups them into batches of size ``batch_size``, converts them
to ``TensorDict`` s, and puts them on the ``output_queue``.
|
https://github.com/jcyk/amr-gs/blob/5666215b04151cadf121917826376acc16cb8b30/stog/data/iterators/multiprocess_iterator.py#L15-L34
|
from typing import Iterable, Iterator, List, Optional
import logging
from torch.multiprocessing import Manager, Process, Queue, get_logger
from stog.utils.checks import ConfigurationError
from stog.data.instance import Instance
from stog.data.iterators.data_iterator import DataIterator, TensorDict
from stog.data.dataset import Batch
from stog.data.vocabulary import Vocabulary
logger = get_logger()
logger.setLevel(logging.INFO)
|
MIT License
|
tensorflow/tensor2tensor
|
tensor2tensor/layers/common_video.py
|
VideoWriter.write_multi
|
python
|
def write_multi(self, frames, encoded_frames=None):
if encoded_frames is None:
encoded_frames = iter(lambda: None, 1)
for (frame, encoded_frame) in zip(frames, encoded_frames):
self.write(frame, encoded_frame)
|
Writes multiple video frames.
|
https://github.com/tensorflow/tensor2tensor/blob/c22a226704e5887862bf9edd9f269892c9016ad4/tensor2tensor/layers/common_video.py#L666-L672
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensor2tensor.layers import common_layers
from tensor2tensor.utils import contrib
import tensorflow.compat.v1 as tf
from tensorflow.python.ops import summary_op_util
try:
from tensorflow.python.distribute import summary_op_util as distribute_summary_op_util
except ImportError:
distribute_summary_op_util = summary_op_util
tfl = common_layers.layers()
def swap_time_and_batch_axes(inputs):
transposed_axes = tf.concat([[1, 0], tf.range(2, tf.rank(inputs))], axis=0)
return tf.transpose(inputs, transposed_axes)
def encode_to_shape(inputs, shape, scope):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
w, h = shape[1], shape[2]
x = inputs
x = tfl.flatten(x)
x = tfl.dense(x, w * h, activation=None, name="enc_dense")
x = tf.reshape(x, (-1, w, h, 1))
return x
def decode_to_shape(inputs, shape, scope):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
x = inputs
x = tfl.flatten(x)
x = tfl.dense(x, shape[2], activation=None, name="dec_dense")
x = tf.expand_dims(x, axis=1)
return x
def basic_lstm(inputs, state, num_units, name=None):
input_shape = common_layers.shape_list(inputs)
cell = tf.nn.rnn_cell.BasicLSTMCell(
num_units, name=name, reuse=tf.AUTO_REUSE)
if state is None:
state = cell.zero_state(input_shape[0], tf.float32)
outputs, new_state = cell(inputs, state)
return outputs, new_state
def lstm_cell(inputs,
state,
num_units,
use_peepholes=False,
cell_clip=0.0,
initializer=None,
num_proj=None,
num_unit_shards=None,
num_proj_shards=None,
reuse=None,
name=None):
input_shape = common_layers.shape_list(inputs)
cell = tf.nn.rnn_cell.LSTMCell(num_units,
use_peepholes=use_peepholes,
cell_clip=cell_clip,
initializer=initializer,
num_proj=num_proj,
num_unit_shards=num_unit_shards,
num_proj_shards=num_proj_shards,
reuse=reuse,
name=name,
state_is_tuple=False)
if state is None:
state = cell.zero_state(input_shape[0], tf.float32)
outputs, new_state = cell(inputs, state)
return outputs, new_state
def conv_lstm_2d(inputs, state, output_channels,
kernel_size=5, name=None, spatial_dims=None):
input_shape = common_layers.shape_list(inputs)
batch_size, input_channels = input_shape[0], input_shape[-1]
if spatial_dims is None:
input_shape = input_shape[1:]
else:
input_shape = spatial_dims + [input_channels]
cell = contrib.rnn().ConvLSTMCell(
2, input_shape, output_channels, [kernel_size, kernel_size], name=name)
if state is None:
state = cell.zero_state(batch_size, tf.float32)
outputs, new_state = cell(inputs, state)
return outputs, new_state
def scheduled_sample_count(ground_truth_x,
generated_x,
batch_size,
scheduled_sample_var):
num_ground_truth = scheduled_sample_var
idx = tf.random_shuffle(tf.range(batch_size))
ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
generated_idx = tf.gather(idx, tf.range(num_ground_truth, batch_size))
ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
generated_examps = tf.gather(generated_x, generated_idx)
output = tf.dynamic_stitch([ground_truth_idx, generated_idx],
[ground_truth_examps, generated_examps])
if isinstance(batch_size, int):
output.set_shape([batch_size] + common_layers.shape_list(output)[1:])
return output
def inject_additional_input(layer, inputs, name, mode="concat"):
layer_shape = common_layers.shape_list(layer)
input_shape = common_layers.shape_list(inputs)
zeros_mask = tf.zeros(layer_shape, dtype=tf.float32)
if mode == "concat":
emb = encode_to_shape(inputs, layer_shape, name)
layer = tf.concat(values=[layer, emb], axis=-1)
elif mode == "multiplicative":
filters = layer_shape[-1]
input_reshaped = tf.reshape(inputs, [-1, 1, 1, input_shape[-1]])
input_mask = tf.layers.dense(input_reshaped, filters, name=name)
input_broad = input_mask + zeros_mask
layer *= input_broad
elif mode == "multi_additive":
filters = layer_shape[-1]
input_reshaped = tf.reshape(inputs, [-1, 1, 1, input_shape[-1]])
input_mul = tf.layers.dense(input_reshaped, filters, name=name + "_mul")
layer *= tf.nn.sigmoid(input_mul)
input_add = tf.layers.dense(input_reshaped, filters, name=name + "_add")
layer += input_add
else:
raise ValueError("Unknown injection mode: %s" % mode)
return layer
def scheduled_sample_prob(ground_truth_x,
generated_x,
batch_size,
scheduled_sample_var):
probability_threshold = scheduled_sample_var
probability_of_generated = tf.random_uniform([batch_size])
return tf.where(probability_of_generated > probability_threshold,
generated_x, ground_truth_x)
def dna_transformation(prev_image, dna_input, dna_kernel_size, relu_shift):
prev_image_pad = tf.pad(prev_image, [[0, 0], [2, 2], [2, 2], [0, 0]])
image_height = int(prev_image.get_shape()[1])
image_width = int(prev_image.get_shape()[2])
inputs = []
for xkern in range(dna_kernel_size):
for ykern in range(dna_kernel_size):
inputs.append(
tf.expand_dims(
tf.slice(prev_image_pad, [0, xkern, ykern, 0],
[-1, image_height, image_width, -1]), [3]))
inputs = tf.concat(axis=3, values=inputs)
kernel = tf.nn.relu(dna_input - relu_shift) + relu_shift
kernel = tf.expand_dims(
kernel / tf.reduce_sum(kernel, [3], keep_dims=True), [4])
return tf.reduce_sum(kernel * inputs, [3], keep_dims=False)
def cdna_transformation(prev_image, cdna_input, num_masks, color_channels,
dna_kernel_size, relu_shift):
batch_size = tf.shape(cdna_input)[0]
height = int(prev_image.get_shape()[1])
width = int(prev_image.get_shape()[2])
cdna_kerns = tfl.dense(
cdna_input, dna_kernel_size * dna_kernel_size * num_masks,
name="cdna_params",
activation=None)
cdna_kerns = tf.reshape(
cdna_kerns, [batch_size, dna_kernel_size, dna_kernel_size, 1, num_masks])
cdna_kerns = (tf.nn.relu(cdna_kerns - relu_shift) + relu_shift)
norm_factor = tf.reduce_sum(cdna_kerns, [1, 2, 3], keep_dims=True)
cdna_kerns /= norm_factor
cdna_kerns = tf.transpose(cdna_kerns, [1, 2, 0, 4, 3])
cdna_kerns = tf.reshape(
cdna_kerns, [dna_kernel_size, dna_kernel_size, batch_size, num_masks])
prev_image = tf.transpose(prev_image, [3, 1, 2, 0])
transformed = tf.nn.depthwise_conv2d(
prev_image, cdna_kerns, [1, 1, 1, 1], "SAME")
transformed = tf.reshape(
transformed, [color_channels, height, width, batch_size, num_masks])
transformed = tf.transpose(transformed, [3, 1, 2, 0, 4])
transformed = tf.unstack(transformed, axis=-1)
return transformed
def vgg_layer(inputs,
nout,
kernel_size=3,
activation=tf.nn.leaky_relu,
padding="SAME",
is_training=True,
has_batchnorm=False,
scope=None):
with tf.variable_scope(scope):
net = tfl.conv2d(inputs, nout, kernel_size=kernel_size, padding=padding,
activation=None, name="conv")
if has_batchnorm:
net = tfl.batch_normalization(net, training=is_training, name="bn")
net = activation(net)
return net
def tile_and_concat(image, latent, concat_latent=True):
if not concat_latent:
return image
image_shape = common_layers.shape_list(image)
latent_shape = common_layers.shape_list(latent)
height, width = image_shape[1], image_shape[2]
latent_dims = latent_shape[1]
height_multiples = height // latent_dims
pad = height - (height_multiples * latent_dims)
latent = tf.reshape(latent, (-1, latent_dims, 1, 1))
latent = tf.tile(latent, (1, height_multiples, width, 1))
latent = tf.pad(latent, [[0, 0], [pad // 2, pad // 2], [0, 0], [0, 0]])
return tf.concat([image, latent], axis=-1)
def _encode_gif(images, fps):
writer = WholeVideoWriter(fps)
writer.write_multi(images)
return writer.finish()
def ffmpeg_works():
images = np.zeros((2, 32, 32, 3), dtype=np.uint8)
try:
_encode_gif(images, 2)
return True
except (IOError, OSError):
return False
def py_gif_summary(tag, images, max_outputs, fps, return_summary_value=False):
images = np.asarray(images)
if images.dtype != np.uint8:
raise ValueError("Tensor must have dtype uint8 for gif summary.")
if images.ndim != 5:
raise ValueError("Tensor must be 5-D for gif summary.")
batch_size, _, height, width, channels = images.shape
if channels not in (1, 3):
raise ValueError("Tensors must have 1 or 3 channels for gif summary.")
summ = tf.Summary()
all_summ_values = []
num_outputs = min(batch_size, max_outputs)
for i in range(num_outputs):
image_summ = tf.Summary.Image()
image_summ.height = height
image_summ.width = width
image_summ.colorspace = channels
try:
image_summ.encoded_image_string = _encode_gif(images[i], fps)
except (IOError, OSError) as e:
tf.logging.warning(
"Unable to encode images to a gif string because either ffmpeg is "
"not installed or ffmpeg returned an error: %s. Falling back to an "
"image summary of the first frame in the sequence.", e)
try:
from PIL import Image
import io
with io.BytesIO() as output:
Image.fromarray(images[i][0]).save(output, "PNG")
image_summ.encoded_image_string = output.getvalue()
except ImportError as e:
tf.logging.warning(
"Gif summaries requires ffmpeg or PIL to be installed: %s", e)
image_summ.encoded_image_string = ""
if num_outputs == 1:
summ_tag = "{}/gif".format(tag)
else:
summ_tag = "{}/gif/{}".format(tag, i)
curr_summ_value = tf.Summary.Value(tag=summ_tag, image=image_summ)
all_summ_values.append(curr_summ_value)
summ.value.add(tag=summ_tag, image=image_summ)
summ_str = summ.SerializeToString()
if return_summary_value:
return all_summ_values, summ_str
return summ_str
def gif_summary(name, tensor, max_outputs=3, fps=10, collections=None,
family=None):
tensor = tf.convert_to_tensor(tensor)
if len(tensor.get_shape()) != 5:
raise ValueError("Assuming videos given as tensors in the format "
"[batch, time, height, width, channels] but got one "
"of shape: %s" % str(tensor.get_shape()))
tensor = tf.cast(tensor, tf.uint8)
if distribute_summary_op_util.skip_summary():
return tf.constant("")
with summary_op_util.summary_scope(
name, family, values=[tensor]) as (tag, scope):
val = tf.py_func(
py_gif_summary,
[tag, tensor, max_outputs, fps],
tf.string,
stateful=False,
name=scope)
summary_op_util.collect(val, collections, [tf.GraphKeys.SUMMARIES])
return val
def tinyify(array, tiny_mode, small_mode):
if tiny_mode:
return [1 for _ in array]
if small_mode:
return [max(x // 4, 1) for x in array]
return array
def get_gaussian_tensor(mean, log_var):
z = tf.random_normal(tf.shape(mean), 0, 1, dtype=tf.float32)
z = mean + tf.exp(log_var / 2.0) * z
return z
def conv_latent_tower(images, time_axis, latent_channels=1, min_logvar=-5,
is_training=False, random_latent=False,
tiny_mode=False, small_mode=False):
conv_size = tinyify([32, 64, 64], tiny_mode, small_mode)
with tf.variable_scope("latent", reuse=tf.AUTO_REUSE):
images = tf.to_float(images)
images = tf.unstack(images, axis=time_axis)
images = tf.concat(images, axis=3)
x = images
x = common_layers.make_even_size(x)
x = tfl.conv2d(x, conv_size[0], [3, 3], strides=(2, 2),
padding="SAME", activation=tf.nn.relu, name="latent_conv1")
x = contrib.layers().layer_norm(x)
if not small_mode:
x = tfl.conv2d(x, conv_size[1], [3, 3], strides=(2, 2),
padding="SAME", activation=tf.nn.relu, name="latent_conv2")
x = contrib.layers().layer_norm(x)
x = tfl.conv2d(x, conv_size[2], [3, 3], strides=(1, 1),
padding="SAME", activation=tf.nn.relu, name="latent_conv3")
x = contrib.layers().layer_norm(x)
nc = latent_channels
mean = tfl.conv2d(x, nc, [3, 3], strides=(2, 2),
padding="SAME", activation=None, name="latent_mean")
logv = tfl.conv2d(x, nc, [3, 3], strides=(2, 2),
padding="SAME", activation=tf.nn.relu, name="latent_std")
logvar = logv + min_logvar
if not is_training:
return tf.zeros_like(mean), tf.zeros_like(logvar)
ret_mean, ret_logvar = tf.cond(
random_latent,
lambda: (tf.zeros_like(mean), tf.zeros_like(logvar)),
lambda: (mean, logvar))
return ret_mean, ret_logvar
def beta_schedule(schedule, global_step, final_beta, decay_start, decay_end):
if decay_start > decay_end:
raise ValueError("decay_end is smaller than decay_end.")
if schedule == "constant":
decayed_value = 0.0
elif schedule == "linear":
decayed_value = tf.train.polynomial_decay(
learning_rate=final_beta,
global_step=global_step - decay_start,
decay_steps=decay_end - decay_start,
end_learning_rate=0.0)
elif schedule == "noisy_linear_cosine_decay":
decayed_value = tf.train.noisy_linear_cosine_decay(
learning_rate=final_beta,
global_step=global_step - decay_start,
decay_steps=decay_end - decay_start)
else:
raise ValueError("Unknown beta schedule.")
increased_value = final_beta - decayed_value
increased_value = tf.maximum(0.0, increased_value)
beta = tf.case(
pred_fn_pairs={
tf.less(global_step, decay_start): lambda: 0.0,
tf.greater(global_step, decay_end): lambda: final_beta},
default=lambda: increased_value)
return beta
def extract_random_video_patch(videos, num_frames=-1):
if num_frames == -1:
return videos
batch_size, num_total_frames, h, w, c = common_layers.shape_list(videos)
if num_total_frames < num_frames:
raise ValueError("Expected num_frames <= %d, got %d" %
(num_total_frames, num_frames))
frame_start = tf.random_uniform(
shape=(batch_size,), minval=0, maxval=num_total_frames - num_frames + 1,
dtype=tf.int32)
range_inds = tf.expand_dims(tf.range(num_frames), axis=0)
frame_inds = range_inds + tf.expand_dims(frame_start, axis=1)
frame_inds = tf.reshape(frame_inds, [-1])
batch_inds = tf.expand_dims(tf.range(batch_size), axis=1)
batch_inds = tf.tile(batch_inds, [1, num_frames])
batch_inds = tf.reshape(batch_inds, [-1])
gather_inds = tf.stack((batch_inds, frame_inds), axis=1)
video_patches = tf.gather_nd(videos, gather_inds)
return tf.reshape(video_patches, (batch_size, num_frames, h, w, c))
class VideoWriter(object):
def write(self, frame, encoded_frame=None):
raise NotImplementedError
|
Apache License 2.0
|
markvdw/gpflow-inter-domain
|
GPflow/transforms.py
|
Log1pe.backward
|
python
|
def backward(self, y):
ys = np.maximum(y - self._lower, np.finfo(np_float_type).eps)
return ys + np.log(-np.expm1(-ys))
|
Inverse of the softplus transform:
.. math::
x = \log( \exp(y) - 1)
The bound for the input y is [self._lower. inf[, self._lower is
subtracted prior to any calculations. The implementation avoids overflow
explicitly by applying the log sum exp trick:
.. math::
\log ( \exp(y) - \exp(0)) &= ys + \log( \exp(y-ys) - \exp(-ys)) \\
&= ys + \log( 1 - \exp(-ys)
ys = \max(0, y)
As y can not be negative, ys could be replaced with y itself.
However, in case :math:`y=0` this results in np.log(0). Hence the zero is
replaced by a machine epsilon.
.. math::
ys = \max( \epsilon, y)
|
https://github.com/markvdw/gpflow-inter-domain/blob/0cf621e1896a3e1996f863b586c6cd2f795dd9f0/GPflow/transforms.py#L157-L184
|
from __future__ import absolute_import
import numpy as np
import tensorflow as tf
from . import tf_wraps as tfw
from ._settings import settings
float_type = settings.dtypes.float_type
np_float_type = np.float32 if float_type is tf.float32 else np.float64
class Transform(object):
def forward(self, x):
raise NotImplementedError
def backward(self, y):
raise NotImplementedError
def tf_forward(self, x):
raise NotImplementedError
def tf_log_jacobian(self, x):
raise NotImplementedError
def free_state_size(self, variable_shape):
return np.prod(variable_shape)
def __str__(self):
raise NotImplementedError
def __getstate__(self):
return self.__dict__.copy()
def __setstate__(self, d):
self.__dict__ = d
class Identity(Transform):
def tf_forward(self, x):
return tf.identity(x)
def forward(self, x):
return x
def backward(self, y):
return y
def tf_log_jacobian(self, x):
return tf.zeros((1,), float_type)
def __str__(self):
return '(none)'
class Exp(Transform):
def __init__(self, lower=1e-6):
self._lower = lower
def tf_forward(self, x):
return tf.exp(x) + self._lower
def forward(self, x):
return np.exp(x) + self._lower
def backward(self, y):
return np.log(y - self._lower)
def tf_log_jacobian(self, x):
return tf.reduce_sum(x)
def __str__(self):
return '+ve'
class Log1pe(Transform):
def __init__(self, lower=1e-6):
self._lower = lower
def forward(self, x):
return np.logaddexp(0, x) + self._lower
def tf_forward(self, x):
return tf.nn.softplus(x) + self._lower
def tf_log_jacobian(self, x):
return -tf.reduce_sum(tf.log(1. + tf.exp(-x)))
|
Apache License 2.0
|
ploxiln/fab-classic
|
fabric/operations.py
|
run
|
python
|
def run(command, shell=True, pty=True, combine_stderr=None, quiet=False,
warn_only=False, stdin=None, stdout=None, stderr=None,
timeout=None, shell_escape=None, capture_buffer_size=None):
return _run_command(
command, shell, pty, combine_stderr, quiet=quiet, warn_only=warn_only,
stdin=stdin, stdout=stdout, stderr=stderr, timeout=timeout,
shell_escape=shell_escape, capture_buffer_size=capture_buffer_size,
)
|
Run a shell command on a remote host.
If ``shell`` is True (the default), `run` will execute the given command
string via a shell interpreter, the value of which may be controlled by
setting ``env.shell`` (defaulting to something similar to ``/bin/bash -l -c
"<command>"``.) Any double-quote (``"``) or dollar-sign (``$``) characters
in ``command`` will be automatically escaped when ``shell`` is True (unless
disabled by setting ``shell_escape=False``).
When ``shell=False``, no shell wrapping or escaping will occur. (It's
possible to specify ``shell=False, shell_escape=True`` if desired, which
will still trigger escaping of dollar signs, etc but will not wrap with a
shell program invocation).
`run` will return the result of the remote program's stdout as a single
(likely multiline) string. This string will exhibit ``failed`` and
``succeeded`` boolean attributes specifying whether the command failed or
succeeded, and will also include the return code as the ``return_code``
attribute. Furthermore, it includes a copy of the requested & actual
command strings executed, as ``.command`` and ``.real_command``,
respectively.
To lessen memory use when running extremely verbose programs (and,
naturally, when having access to their full output afterwards is not
necessary!) you may limit how much of the program's stdout/err is stored by
setting ``capture_buffer_size`` to an integer value.
.. warning::
Do not set ``capture_buffer_size`` to any value smaller than the length
of ``env.sudo_prompt`` or you will likely break the functionality of
`sudo`! Ditto any user prompts stored in ``env.prompts``.
.. note::
This value is used for each buffer independently, so e.g. ``1024`` may
result in storing a total of ``2048`` bytes if there's data in both
streams.)
Any text entered in your local terminal will be forwarded to the remote
program as it runs, thus allowing you to interact with password or other
prompts naturally. For more on how this works, see
:doc:`/usage/interactivity`.
You may pass ``pty=False`` to forego creation of a pseudo-terminal on the
remote end in case the presence of one causes problems for the command in
question. However, this will force Fabric itself to echo any and all input
you type while the command is running, including sensitive passwords. (With
``pty=True``, the remote pseudo-terminal will echo for you, and will
intelligently handle password-style prompts.) See :ref:`pseudottys` for
details.
Similarly, if you need to programmatically examine the stderr stream of the
remote program (exhibited as the ``stderr`` attribute on this function's
return value), you may set ``combine_stderr=False``. Doing so has a high
chance of causing garbled output to appear on your terminal (though the
resulting strings returned by `~fabric.operations.run` will be properly
separated). For more info, please read :ref:`combine_streams`.
To ignore non-zero return codes, specify ``warn_only=True``. To both ignore
non-zero return codes *and* force a command to run silently, specify
``quiet=True``.
To override which local streams are used to display remote stdout and/or
stderr, specify ``stdout`` or ``stderr``. (By default, the regular
``sys.stdout`` and ``sys.stderr`` Python stream objects are used.)
For example, ``run("command", stderr=sys.stdout)`` would print the remote
standard error to the local standard out, while preserving it as its own
distinct attribute on the return value (as per above.) Alternately, you
could even provide your own stream objects or loggers, e.g. ``myout =
StringIO(); run("command", stdout=myout)``.
If you want an exception raised when the remote program takes too long to
run, specify ``timeout=N`` where ``N`` is an integer number of seconds,
after which to time out. This will cause ``run`` to raise a
`~fabric.exceptions.CommandTimeout` exception.
If you want to disable Fabric's automatic attempts at escaping quotes,
dollar signs etc., specify ``shell_escape=False``.
Examples::
run("ls /var/www/")
run("ls /home/myuser", shell=False)
output = run('ls /var/www/site1')
run("take_a_long_time", timeout=5)
.. versionadded:: 1.5
The ``quiet``, ``warn_only``, ``stdout`` and ``stderr`` kwargs.
.. versionadded:: 1.5
The return value attributes ``.command`` and ``.real_command``.
.. versionadded:: 1.6
The ``timeout`` argument.
.. versionadded:: 1.7
The ``shell_escape`` argument.
.. versionadded:: 1.11
The ``capture_buffer_size`` argument.
.. versionadded:: 1.17
The ``stdin`` argument.
|
https://github.com/ploxiln/fab-classic/blob/6adf6765e87f694a70f32fedc197a754f7bf94f3/fabric/operations.py#L960-L1072
|
import errno
import os
import os.path
import posixpath
import re
import six
import subprocess
import sys
import time
from glob import glob
from collections import deque
from contextlib import closing, contextmanager
from fabric.context_managers import (settings, char_buffered, hide,
quiet as quiet_manager, warn_only as warn_only_manager)
from fabric.io import output_loop, input_loop
from fabric.network import needs_host, ssh, ssh_config
from fabric.sftp import SFTP
from fabric.state import env, connections, output, win32, default_channel
from fabric.thread_handling import ThreadHandler
from fabric.utils import (
abort, error, handle_prompt_abort, indent, _pty_size, warn, apply_lcwd,
)
def _shell_escape(string):
for char in ('"', '$', '`'):
string = string.replace(char, r'\%s' % char)
return string
class _stdoutString(str):
@property
def stdout(self):
return str(self)
class _stdoutBytes(bytes):
@property
def stdout(self):
return bytes(self)
class _AttributeList(list):
pass
def require(*keys, **kwargs):
missing_keys = [
k for k in keys
if k not in env or (isinstance(env[k], (dict, list, tuple, set)) and not env[k])
]
if not missing_keys:
return
if len(missing_keys) > 1:
variable = "variables were"
used = "These variables are"
else:
variable = "variable was"
used = "This variable is"
if 'command' in env:
prefix = "The command '%s' failed because the " % env.command
else:
prefix = "The "
msg = "%sfollowing required environment %s not defined:\n%s" % (
prefix, variable, indent(missing_keys)
)
if 'used_for' in kwargs:
msg += "\n\n%s used for %s" % (used, kwargs['used_for'])
if 'provided_by' in kwargs:
funcs = kwargs['provided_by']
if not hasattr(funcs, '__iter__'):
funcs = [funcs]
if len(funcs) > 1:
command = "one of the following commands"
else:
command = "the following command"
provided_by = [getattr(obj, '__name__', str(obj)) for obj in funcs]
msg += "\n\nTry running %s prior to this one, to fix the problem:\n%s" % (command, indent(provided_by))
abort(msg)
def prompt(text, key=None, default='', validate=None):
handle_prompt_abort("a user-specified prompt() call")
if key:
previous_value = env.get(key)
default_str = ""
if default != '':
default_str = " [%s] " % str(default).strip()
else:
default_str = " "
prompt_str = text.strip() + default_str
value = None
while value is None:
if six.PY3 is True:
value = input(prompt_str) or default
else:
value = raw_input(prompt_str) or default
if validate:
if callable(validate):
try:
value = validate(value)
except Exception as e:
value = None
print("Validation failed for the following reason:")
print(indent(e.message) + "\n")
else:
if not validate.startswith('^'):
validate = r'^' + validate
if not validate.endswith('$'):
validate += r'$'
result = re.findall(validate, value)
if not result:
print("Regular expression validation failed: '%s' does not match '%s'\n" % (value, validate))
value = None
if key:
env[key] = value
if key and previous_value is not None and previous_value != value:
warn("overwrote previous env variable '%s'; used to be '%s', is now '%s'." % (
key, previous_value, value
))
return value
@needs_host
def put(local_path=None, remote_path=None, use_sudo=False,
mirror_local_mode=False, mode=None, use_glob=True, temp_dir=None):
local_path = local_path or os.getcwd()
local_is_path = not (hasattr(local_path, 'read') and callable(local_path.read))
ftp = SFTP(env.host_string)
with closing(ftp) as ftp:
home = ftp.normalize('.')
remote_path = remote_path or home
if remote_path.startswith('~'):
remote_path = remote_path.replace('~', home, 1)
if temp_dir is None:
temp_dir = home
if not os.path.isabs(remote_path):
if env.get('cwd'):
remote_path = env.cwd.rstrip('/') + '/' + remote_path
else:
remote_path = posixpath.join(home, remote_path)
if local_is_path:
local_path = os.path.expanduser(local_path)
local_path = apply_lcwd(local_path, env)
if use_glob:
names = glob(local_path)
else:
if os.path.exists(local_path):
names = [local_path]
else:
names = []
else:
names = [local_path]
if local_is_path and not names:
err = "'%s' is not a valid local path or glob." % local_path
raise ValueError(err)
if ftp.exists(remote_path):
if local_is_path and len(names) != 1 and not ftp.isdir(remote_path):
raise ValueError("'%s' is not a directory" % remote_path)
remote_paths = []
failed_local_paths = []
for lpath in names:
try:
if local_is_path and os.path.isdir(lpath):
p = ftp.put_dir(lpath, remote_path, use_sudo,
mirror_local_mode, mode, temp_dir)
remote_paths.extend(p)
else:
p = ftp.put(lpath, remote_path, use_sudo, mirror_local_mode,
mode, local_is_path, temp_dir)
remote_paths.append(p)
except Exception as e:
msg = "put() encountered an exception while uploading '%s'"
failure = lpath if local_is_path else "<StringIO>"
failed_local_paths.append(failure)
error(message=msg % lpath, exception=e)
ret = _AttributeList(remote_paths)
ret.failed = failed_local_paths
ret.succeeded = not ret.failed
return ret
@needs_host
def get(remote_path, local_path=None, use_sudo=False, temp_dir=None):
local_path = local_path or "%(host)s/%(path)s"
local_is_path = not (hasattr(local_path, 'write') and callable(local_path.write))
if local_is_path:
local_path = apply_lcwd(local_path, env)
ftp = SFTP(env.host_string)
with closing(ftp) as ftp:
home = ftp.normalize('.')
if remote_path.startswith('~'):
remote_path = remote_path.replace('~', home, 1)
if local_is_path:
local_path = os.path.expanduser(local_path)
if temp_dir is None:
temp_dir = home
if not os.path.isabs(remote_path):
if env.get('cwd'):
remote_path_escaped = env.cwd.rstrip('/')
remote_path_escaped = remote_path_escaped.replace('\\ ', ' ')
remote_path = remote_path_escaped + '/' + remote_path
else:
remote_path = posixpath.join(home, remote_path)
local_files = []
failed_remote_files = []
try:
if '*' in remote_path or '?' in remote_path:
names = ftp.glob(remote_path)
if not names:
raise IOError(errno.ENOENT, "No such file")
else:
names = [remote_path]
if not local_is_path:
if len(names) > 1 or ftp.isdir(names[0]):
error("[%s] %s is a glob or directory, but local_path is a file object!" % (env.host_string, remote_path))
for remote_path in names:
if ftp.isdir(remote_path):
result = ftp.get_dir(remote_path, local_path, use_sudo, temp_dir)
local_files.extend(result)
else:
result = ftp.get(remote_path, local_path, use_sudo, local_is_path, os.path.basename(remote_path), temp_dir)
if local_is_path:
local_files.append(result)
except Exception as e:
failed_remote_files.append(remote_path)
msg = "get() encountered an exception while downloading '%s'"
error(message=msg % remote_path, exception=e)
ret = _AttributeList(local_files if local_is_path else [])
ret.failed = failed_remote_files
ret.succeeded = not ret.failed
return ret
def _sudo_prefix_argument(argument, value):
if value is None:
return ""
if str(value).isdigit():
value = "#%s" % value
return ' %s "%s"' % (argument, value)
def _sudo_prefix(user, group=None):
prefix = env.sudo_prefix % env
if user is not None or group is not None:
return "%s%s%s " % (prefix,
_sudo_prefix_argument('-u', user),
_sudo_prefix_argument('-g', group))
return prefix
def _shell_wrap(command, shell_escape, shell=True, sudo_prefix=None):
if shell and not env.use_shell:
shell = False
if sudo_prefix is None:
sudo_prefix = ""
else:
sudo_prefix += " "
if shell:
shell = env.shell + " "
if shell_escape:
command = _shell_escape(command)
command = '"%s"' % command
else:
shell = ""
return sudo_prefix + shell + command
def _prefix_commands(command, which):
prefixes = list(env.command_prefixes)
cwd = env.cwd if which == 'remote' else env.lcwd
redirect = " >/dev/null" if not win32 else ''
if cwd:
prefixes.insert(0, 'cd %s%s' % (cwd, redirect))
glue = " && "
prefix = (glue.join(prefixes) + glue) if prefixes else ""
return prefix + command
def _prefix_env_vars(command, local=False):
env_vars = {}
path = env.path
if path:
if env.path_behavior == 'append':
path = '$PATH:\"%s\"' % path
elif env.path_behavior == 'prepend':
path = '\"%s\":$PATH' % path
elif env.path_behavior == 'replace':
path = '\"%s\"' % path
env_vars['PATH'] = path
env_vars.update(env.shell_env)
if env_vars:
set_cmd, exp_cmd = '', ''
if win32 and local:
set_cmd = 'SET '
else:
exp_cmd = 'export '
exports = ' '.join(
'%s%s="%s"' % (set_cmd, k, v if k == 'PATH' else _shell_escape(v))
for k, v in six.iteritems(env_vars)
)
shell_env_str = '%s%s && ' % (exp_cmd, exports)
else:
shell_env_str = ''
return shell_env_str + command
def _execute(channel, command, pty=True, combine_stderr=None,
invoke_shell=False, stdin=None, stdout=None, stderr=None,
timeout=None, capture_buffer_size=None):
stdin = stdin or sys.stdin
stdout = stdout or sys.stdout
stderr = stderr or sys.stderr
timeout = env.command_timeout if (timeout is None) else timeout
using_pty = invoke_shell or (pty and env.always_use_pty and (stdin is sys.stdin))
remote_interrupt = env.remote_interrupt
if remote_interrupt is None:
remote_interrupt = invoke_shell
if remote_interrupt and not using_pty:
remote_interrupt = False
with char_buffered(stdin):
if combine_stderr is None:
combine_stderr = env.combine_stderr
channel.set_combine_stderr(combine_stderr)
if using_pty:
rows, cols = _pty_size()
channel.get_pty(width=cols, height=rows)
config_agent = ssh_config().get('forwardagent', 'no').lower() == 'yes'
forward = None
if env.forward_agent or config_agent:
forward = ssh.agent.AgentRequestHandler(channel)
if invoke_shell:
channel.invoke_shell()
if command:
channel.sendall(command + "\n")
else:
channel.exec_command(command=command)
stdout_buf = deque(maxlen=capture_buffer_size)
stderr_buf = deque(maxlen=capture_buffer_size)
if invoke_shell:
stdout_buf = stderr_buf = None
workers = (
ThreadHandler('out', output_loop, channel, "recv",
capture=stdout_buf, stream=stdout, timeout=timeout),
ThreadHandler('err', output_loop, channel, "recv_stderr",
capture=stderr_buf, stream=stderr, timeout=timeout),
ThreadHandler('in', input_loop, channel, stdin, using_pty)
)
while True:
if channel.exit_status_ready():
break
else:
for worker in workers:
worker.raise_if_needed()
try:
time.sleep(ssh.io_sleep)
except KeyboardInterrupt:
if not remote_interrupt:
raise
channel.send('\x03')
status = channel.recv_exit_status()
for worker in workers:
worker.thread.join()
worker.raise_if_needed()
channel.close()
if forward is not None:
forward.close()
if not invoke_shell:
stdout_buf = ''.join(stdout_buf).strip()
stderr_buf = ''.join(stderr_buf).strip()
if output.running and (output.stdout and stdout_buf and not stdout_buf.endswith("\n")) or (output.stderr and stderr_buf and not stderr_buf.endswith("\n")):
print("")
return stdout_buf, stderr_buf, status
@needs_host
def open_shell(command=None):
_execute(channel=default_channel(), command=command, pty=True,
combine_stderr=True, invoke_shell=True)
@contextmanager
def _noop():
yield
def _run_command(command, shell=True, pty=True, combine_stderr=True,
sudo=False, user=None, quiet=False, warn_only=False,
stdin=None, stdout=None, stderr=None, group=None,
timeout=None, shell_escape=None, capture_buffer_size=None):
manager = _noop
if warn_only:
manager = warn_only_manager
if quiet:
manager = quiet_manager
with manager():
given_command = command
if shell_escape is None:
shell_escape = env.get('shell_escape', True)
wrapped_command = _shell_wrap(
_prefix_env_vars(_prefix_commands(command, 'remote')),
shell_escape,
shell,
_sudo_prefix(user, group) if sudo else None
)
which = 'sudo' if sudo else 'run'
if output.debug:
print("[%s] %s: %s" % (env.host_string, which, wrapped_command))
elif output.running:
print("[%s] %s: %s" % (env.host_string, which, given_command))
result_stdout, result_stderr, status = _execute(
channel=default_channel(), command=wrapped_command, pty=pty,
combine_stderr=combine_stderr, invoke_shell=False,
stdin=stdin, stdout=stdout, stderr=stderr,
timeout=timeout, capture_buffer_size=capture_buffer_size)
out = _stdoutString(result_stdout)
err = result_stderr
out.failed = False
out.command = given_command
out.real_command = wrapped_command
if status not in env.ok_ret_codes:
out.failed = True
msg = "%s() received nonzero return code %s while executing" % (
which, status
)
if env.warn_only:
msg += " '%s'!" % given_command
else:
msg += "!\n\nRequested: %s\nExecuted: %s" % (
given_command, wrapped_command
)
error(message=msg, stdout=out, stderr=err)
out.return_code = status
out.succeeded = not out.failed
out.stderr = err
return out
@needs_host
|
BSD 2-Clause Simplified License
|
dedsecinside/awesome-scripts
|
APIs/Telegram API/telethon/extensions/binaryreader.py
|
BinaryReader.__init__
|
python
|
def __init__(self, data):
self.stream = BytesIO(data)
self._last = None
|
Initialize the stream.
Args:
self: (todo): write your description
data: (todo): write your description
|
https://github.com/dedsecinside/awesome-scripts/blob/856835e5ff5f8a6af2d74bb25800c620feb712e3/APIs/Telegram API/telethon/extensions/binaryreader.py#L23-L32
|
import os
import time
from datetime import datetime, timezone, timedelta
from io import BytesIO
from struct import unpack
from ..errors import TypeNotFoundError
from ..tl.alltlobjects import tlobjects
from ..tl.core import core_objects
_EPOCH_NAIVE = datetime(*time.gmtime(0)[:6])
_EPOCH = _EPOCH_NAIVE.replace(tzinfo=timezone.utc)
class BinaryReader:
|
MIT License
|
googleads/google-ads-python
|
examples/planning/forecast_reach.py
|
_forecast_suggested_mix
|
python
|
def _forecast_suggested_mix(
client, customer_id, location_id, currency_code, budget
):
preferences = client.get_type("Preferences")
preferences.has_guaranteed_price = True
preferences.starts_with_sound = True
preferences.is_skippable = False
preferences.top_content_only = True
preferences.ad_length = (
client.enums.ReachPlanAdLengthEnum.FIFTEEN_OR_TWENTY_SECONDS
)
reach_plan_service = client.get_service("ReachPlanService")
request = client.get_type("GenerateProductMixIdeasRequest")
request.customer_id = customer_id
request.plannable_location_id = location_id
request.preferences = preferences
request.currency_code = currency_code
request.budget_micros = int(budget * ONE_MILLION)
mix_response = reach_plan_service.generate_product_mix_ideas(
request=request
)
product_mix = []
for product in mix_response.product_allocation:
planned_product = client.get_type("PlannedProduct")
planned_product.plannable_product_code = product.plannable_product_code
planned_product.budget_micros = product.budget_micros
product_mix.append(planned_product)
_request_reach_curve(
client, customer_id, product_mix, location_id, currency_code
)
|
Pulls a forecast for a product mix based on your set of preferences.
Args:
client: an initialized GoogleAdsClient instance.
customer_id: The customer ID for the reach forecast.
product_mix: The product mix for the reach forecast.
location_id: The location ID to plan for.
currency_code: Three-character ISO 4217 currency code.
budget: Budget to allocate to the plan.
|
https://github.com/googleads/google-ads-python/blob/6794993e146abcfe21292677144c66cb546446bc/examples/planning/forecast_reach.py#L214-L257
|
import argparse
import math
import sys
from google.ads.googleads.client import GoogleAdsClient
from google.ads.googleads.errors import GoogleAdsException
ONE_MILLION = 1.0e6
def main(client, customer_id):
location_id = "2840"
currency_code = "USD"
budget = 500000
_show_plannable_locations(client)
_show_plannable_products(client, location_id)
_forecast_manual_mix(
client, customer_id, location_id, currency_code, budget
)
_forecast_suggested_mix(
client, customer_id, location_id, currency_code, budget
)
def _show_plannable_locations(client):
reach_plan_service = client.get_service("ReachPlanService")
response = reach_plan_service.list_plannable_locations()
print("Plannable Locations")
print("Name,\tId,\tParentCountryId")
for location in response.plannable_locations:
print(
f"'{location.name}',\t{location.id},\t{location.parent_country_id}"
)
def _show_plannable_products(client, location_id):
reach_plan_service = client.get_service("ReachPlanService")
response = reach_plan_service.list_plannable_products(
plannable_location_id=location_id
)
print(f"Plannable Products for Location ID {location_id}")
for product_metadata in response.product_metadata:
print(
f"{product_metadata.plannable_product_code} : "
f"{product_metadata.plannable_product_name}"
)
print("Age Ranges:")
for age_range in product_metadata.plannable_targeting.age_ranges:
print(f"\t- {age_range.name}")
print("Genders:")
for gender in product_metadata.plannable_targeting.genders:
print(f"\t- {gender.type_.name}")
print("Devices:")
for device in product_metadata.plannable_targeting.devices:
print(f"\t- {device.type_.name}")
def _request_reach_curve(
client, customer_id, product_mix, location_id, currency_code
):
request = client.get_type("GenerateReachForecastRequest")
request.customer_id = customer_id
request.campaign_duration.duration_in_days = 28
request.currency_code = currency_code
request.cookie_frequency_cap = 0
request.min_effective_frequency = 1
request.planned_products = product_mix
request.targeting.plannable_location_id = location_id
request.targeting.age_range = (
client.enums.ReachPlanAgeRangeEnum.AGE_RANGE_18_65_UP
)
for gender_type in [
client.enums.GenderTypeEnum.FEMALE,
client.enums.GenderTypeEnum.MALE,
]:
gender = client.get_type("GenderInfo")
gender.type_ = gender_type
request.targeting.genders.append(gender)
for device_type in [
client.enums.DeviceEnum.DESKTOP,
client.enums.DeviceEnum.MOBILE,
client.enums.DeviceEnum.TABLET,
]:
device = client.get_type("DeviceInfo")
device.type_ = device_type
request.targeting.devices.append(device)
reach_plan_service = client.get_service("ReachPlanService")
response = reach_plan_service.generate_reach_forecast(request=request)
print(
"Currency, Cost, On-Target Reach, On-Target Imprs, Total Reach,"
" Total Imprs, Products"
)
for point in response.reach_curve.reach_forecasts:
product_splits = []
for p in point.planned_product_reach_forecasts:
product_splits.append(
{p.plannable_product_code: p.cost_micros / ONE_MILLION}
)
print(
[
currency_code,
point.cost_micros / ONE_MILLION,
point.forecast.on_target_reach,
point.forecast.on_target_impressions,
point.forecast.total_reach,
point.forecast.total_impressions,
product_splits,
]
)
def _forecast_manual_mix(
client, customer_id, location_id, currency_code, budget
):
product_mix = []
trueview_allocation = 0.15
bumper_allocation = 1 - trueview_allocation
product_splits = [
("TRUEVIEW_IN_STREAM", trueview_allocation),
("BUMPER", bumper_allocation),
]
for product, split in product_splits:
planned_product = client.get_type("PlannedProduct")
planned_product.plannable_product_code = product
planned_product.budget_micros = math.trunc(budget * ONE_MILLION * split)
product_mix.append(planned_product)
_request_reach_curve(
client, customer_id, product_mix, location_id, currency_code
)
|
Apache License 2.0
|
splunk/addonfactory-ucc-generator
|
splunk_add_on_ucc_framework/__init__.py
|
install_libs
|
python
|
def install_libs(path, ucc_lib_target):
def _install_libs(requirements, ucc_target, installer="python3"):
if not os.path.exists(requirements):
logger.warning(f"Unable to find requirements file. {requirements}")
else:
if not os.path.exists(ucc_target):
os.makedirs(ucc_target)
install_cmd = (
installer
+ ' -m pip install -r "'
+ requirements
+ '" --no-compile --prefer-binary --ignore-installed --use-deprecated=legacy-resolver --target "'
+ ucc_target
+ '"'
)
os.system(installer + " -m pip install pip --upgrade")
os.system(install_cmd)
logger.info(f" Checking for requirements in {path}")
if os.path.exists(os.path.join(path, "lib", "requirements.txt")):
logger.info(" Uses common requirements")
_install_libs(
requirements=os.path.join(path, "lib", "requirements.txt"),
ucc_target=ucc_lib_target,
)
elif os.path.exists(
os.path.join(os.path.abspath(os.path.join(path, os.pardir)), "requirements.txt")
):
logger.info(" Uses common requirements")
_install_libs(
requirements=os.path.join(
os.path.abspath(os.path.join(path, os.pardir)), "requirements.txt"
),
ucc_target=ucc_lib_target,
)
else:
logger.info(" Not using common requirements")
noshipdirs = ["setuptools", "bin", "pip", "distribute", "wheel"]
p = Path(ucc_lib_target)
for nsd in noshipdirs:
try:
for o in p.glob(nsd + "*"):
if o.is_dir():
logging.info(f" removing directory {o} from output must not ship")
shutil.rmtree(o)
except FileNotFoundError:
pass
NO_USER_EXEC = ~stat.S_IEXEC
NO_GROUP_EXEC = ~stat.S_IXGRP
NO_OTHER_EXEC = ~stat.S_IXOTH
NO_EXEC = NO_USER_EXEC & NO_GROUP_EXEC & NO_OTHER_EXEC
for o in p.rglob("*"):
if not o.is_dir() and os.access(o, os.X_OK):
logging.info(f" fixing {o} execute bit")
current_permissions = stat.S_IMODE(os.lstat(o).st_mode)
os.chmod(o, current_permissions & NO_EXEC)
|
Install 3rd Party libraries in addon.
Args:
parent_path (str): Path of parent directory.
ucc_lib_target (str): Target path to install libraries.
|
https://github.com/splunk/addonfactory-ucc-generator/blob/e6f30a47cf4bea6bcc1b5669ec30784ff75b7d24/splunk_add_on_ucc_framework/__init__.py#L300-L377
|
__version__ = "5.9.0"
import argparse
import configparser
import json
import logging
import os
import shutil
import stat
import sys
from pathlib import Path
from defusedxml import ElementTree as defused_et
from dunamai import Style, Version
from jinja2 import Environment, FileSystemLoader
from .app_conf import AppConf
from .app_manifest import (
APP_MANIFEST_FILE_NAME,
APP_MANIFEST_WEBSITE,
AppManifest,
AppManifestFormatException,
)
from .global_config_validator import (
GlobalConfigValidator,
GlobalConfigValidatorException,
)
from .meta_conf import MetaConf
from .start_alert_build import alert_build
from .uccrestbuilder import build
from .uccrestbuilder.global_config import (
GlobalConfigBuilderSchema,
GlobalConfigPostProcessor,
)
sourcedir = os.path.dirname(os.path.realpath(__file__))
j2_env = Environment(loader=FileSystemLoader(os.path.join(sourcedir, "templates")))
logger = logging.getLogger("UCC")
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(name)s] %(levelname)s: %(message)s")
shandler = logging.StreamHandler()
shandler.setLevel(logging.INFO)
shandler.setFormatter(formatter)
logger.addHandler(shandler)
PARENT_DIR = ".."
def get_os_path(path):
if "\\\\" in path:
path = path.replace("\\\\", os.sep)
else:
path = path.replace("\\", os.sep)
path = path.replace("/", os.sep)
return path.strip(os.sep)
def recursive_overwrite(src, dest, ignore_list=None):
if os.path.isdir(src):
if not os.path.isdir(dest):
os.makedirs(dest)
files = os.listdir(src)
for f in files:
if not ignore_list or not os.path.join(dest, f) in ignore_list:
recursive_overwrite(
os.path.join(src, f), os.path.join(dest, f), ignore_list
)
else:
logger.info(f"Excluding : {os.path.join(dest, f)}")
else:
if os.path.exists(dest):
os.remove(dest)
shutil.copy(src, dest)
def clean_before_build(outputdir):
logger.info("Cleaning out directory " + outputdir)
shutil.rmtree(os.path.join(outputdir), ignore_errors=True)
os.makedirs(os.path.join(outputdir))
logger.info("Cleaned out directory " + outputdir)
def version_tuple(version_str):
filled = []
for point in version_str.split("."):
filled.append(point.zfill(8))
return tuple(filled)
def _handle_biased_terms(conf_entities: dict) -> dict:
for entity in conf_entities:
entity_option = entity.get("options")
if entity_option and "whiteList" in entity_option:
entity_option["allowList"] = entity_option.get("whiteList")
del entity_option["whiteList"]
if entity_option and "blackList" in entity_option:
entity_option["denyList"] = entity_option.get("blackList")
del entity_option["blackList"]
return conf_entities
def handle_biased_terms_update(schema_content: dict) -> dict:
pages = schema_content.get("pages", {})
ta_tabs = pages.get("configuration", {}).get("tabs", {})
for tab in ta_tabs:
conf_entities = tab.get("entity")
tab["entity"] = _handle_biased_terms(conf_entities)
if "inputs" in pages:
services = pages.get("inputs", {}).get("services", {})
for service in services:
conf_entities = service.get("entity")
service["entity"] = _handle_biased_terms(conf_entities)
schema_content["meta"]["schemaVersion"] = "0.0.1"
return schema_content
def handle_dropping_api_version_update(schema_content: dict) -> dict:
if schema_content["meta"].get("apiVersion"):
del schema_content["meta"]["apiVersion"]
schema_content["meta"]["schemaVersion"] = "0.0.3"
return schema_content
def handle_update(config_path):
with open(config_path) as config_file:
schema_content = json.load(config_file)
version = schema_content.get("meta").get("schemaVersion", "0.0.0")
if version_tuple(version) < version_tuple("0.0.1"):
schema_content = handle_biased_terms_update(schema_content)
with open(config_path, "w") as config_file:
json.dump(schema_content, config_file, ensure_ascii=False, indent=4)
if version_tuple(version) < version_tuple("0.0.2"):
ta_tabs = schema_content.get("pages").get("configuration", {}).get("tabs", {})
for tab in ta_tabs:
if tab["name"] == "account":
conf_entities = tab.get("entity")
oauth_state_enabled_entity = {}
for entity in conf_entities:
if entity.get("field") == "oauth_state_enabled":
logger.warning(
"oauth_state_enabled field is no longer a separate "
"entity since UCC version 5.0.0. It is now an "
"option in the oauth field. Please update the "
"globalconfig.json file accordingly."
)
oauth_state_enabled_entity = entity
if entity.get("field") == "oauth" and not entity.get(
"options", {}
).get("oauth_state_enabled"):
entity["options"]["oauth_state_enabled"] = False
if oauth_state_enabled_entity:
conf_entities.remove(oauth_state_enabled_entity)
tab_options = tab.get("options", {})
if tab_options.get("onChange"):
logger.error(
"The onChange option is no longer supported since UCC "
"version 5.0.0. You can use custom hooks to implement "
"these actions."
)
del tab_options["onChange"]
if tab_options.get("onLoad"):
logger.error(
"The onLoad option is no longer supported since UCC "
"version 5.0.0. You can use custom hooks to implement "
"these actions."
)
del tab_options["onLoad"]
is_inputs = "inputs" in schema_content.get("pages")
if is_inputs:
services = schema_content.get("pages").get("inputs", {}).get("services", {})
for service in services:
service_options = service.get("options", {})
if service_options.get("onChange"):
logger.error(
"The onChange option is no longer supported since UCC "
"version 5.0.0. You can use custom hooks to implement "
"these actions."
)
del service_options["onChange"]
if service_options.get("onLoad"):
logger.error(
"The onLoad option is no longer supported since UCC "
"version 5.0.0. You can use custom hooks to implement "
"these actions."
)
del service_options["onLoad"]
schema_content["meta"]["schemaVersion"] = "0.0.2"
with open(config_path, "w") as config_file:
json.dump(schema_content, config_file, ensure_ascii=False, indent=4)
if version_tuple(version) < version_tuple("0.0.3"):
schema_content = handle_dropping_api_version_update(schema_content)
with open(config_path, "w") as config_file:
json.dump(schema_content, config_file, ensure_ascii=False, indent=4)
return schema_content
def replace_token(ta_name, outputdir):
logger.info("Replace tokens in views")
views = ["inputs.xml", "configuration.xml", "redirect.xml"]
for view in views:
template_dir = os.path.join(
outputdir, ta_name, "default", "data", "ui", "views"
)
with open(os.path.join(template_dir, view)) as f:
s = f.read()
with open(os.path.join(template_dir, view), "w") as f:
s = s.replace("${package.name}", ta_name)
if view == "redirect.xml":
s = s.replace("${ta.name}", ta_name.lower())
f.write(s)
|
Apache License 2.0
|
decentralized-identity/keripy
|
src/keri/vdr/eventing.py
|
Tever.vcState
|
python
|
def vcState(self, vcpre):
vci = nsKey([self.prefixer.qb64, vcpre])
cnt = self.reger.cntTels(vci)
if cnt == 1:
return VcStates.issued
elif cnt == 2:
return VcStates.revoked
return None
|
Calculate state (issued/revoked) of VC from db.
Returns None if never issued from this Registry
Parameters:
vcpre: the VC identifier
|
https://github.com/decentralized-identity/keripy/blob/7bdaf57972d44c2435726bd2300b01a1a90a83b2/src/keri/vdr/eventing.py#L777-L792
|
import json
from collections import deque, namedtuple
from orderedset import OrderedSet as oset
from ..core.coring import (MtrDex, Serder, Serials, Versify, Prefixer,
Ilks, Seqner, Verfer)
from ..core.eventing import SealEvent, ample, TraitDex, verifySigs, validateSN
from ..db import basing
from ..db.dbing import dgKey, snKey
from ..help import helping
from ..kering import (MissingWitnessSignatureError, Version,
MissingAnchorError, ValidationError, OutOfOrderError, LikelyDuplicitousError)
from ..vdr.viring import Registry, nsKey
from .. import help
logger = help.ogler.getLogger()
VCP_LABELS = ["v", "i", "s", "t", "bt", "b", "c"]
VRT_LABELS = ["v", "i", "s", "t", "p", "bt", "b", "ba", "br"]
ISS_LABELS = ["v", "i", "s", "t", "ri", "dt"]
BIS_LABELS = ["v", "i", "s", "t", "ra", "dt"]
REV_LABELS = ["v", "i", "s", "t", "p", "dt"]
BRV_LABELS = ["v", "i", "s", "t", "ra", "p", "dt"]
VcState = namedtuple("VcState", 'issued revoked')
VcStates = VcState(issued='issued', revoked="revoked")
def incept(
pre,
toad=None,
baks=None,
cnfg=None,
version=Version,
kind=Serials.json,
code=None,
):
vs = Versify(version=version, kind=kind, size=0)
isn = 0
ilk = Ilks.vcp
cnfg = cnfg if cnfg is not None else []
baks = baks if baks is not None else []
if TraitDex.NoBackers in cnfg and len(baks) > 0:
raise ValueError("{} backers specified for NB vcp, 0 allowed".format(len(baks)))
if len(oset(baks)) != len(baks):
raise ValueError("Invalid baks = {}, has duplicates.".format(baks))
if isinstance(toad, str):
toad = "{:x}".format(toad)
elif toad is None:
if not baks:
toad = 0
else:
toad = ample(len(baks))
if baks:
if toad < 1 or toad > len(baks):
raise ValueError("Invalid toad = {} for baks = {}".format(toad, baks))
else:
if toad != 0:
raise ValueError("Invalid toad = {} for baks = {}".format(toad, baks))
ked = dict(v=vs,
i="",
ii=pre,
s="{:x}".format(isn),
t=ilk,
c=cnfg,
bt="{:x}".format(toad),
b=baks
)
prefixer = Prefixer(ked=ked, code=code, allows=[MtrDex.Blake3_256])
ked["i"] = prefixer.qb64
return Serder(ked=ked)
def rotate(
regk,
dig,
sn=1,
toad=None,
baks=None,
cuts=None,
adds=None,
version=Version,
kind=Serials.json,
):
if sn < 1:
raise ValueError("Invalid sn = {} for vrt.".format(sn))
vs = Versify(version=version, kind=kind, size=0)
ilk = Ilks.vrt
baks = baks if baks is not None else []
bakset = oset(baks)
if len(bakset) != len(baks):
raise ValueError("Invalid baks = {}, has duplicates.".format(baks))
cuts = cuts if cuts is not None else []
cutset = oset(cuts)
if len(cutset) != len(cuts):
raise ValueError("Invalid cuts = {}, has duplicates.".format(cuts))
if (bakset & cutset) != cutset:
raise ValueError("Invalid cuts = {}, not all members in baks.".format(cuts))
adds = adds if adds is not None else []
addset = oset(adds)
if len(addset) != len(adds):
raise ValueError("Invalid adds = {}, has duplicates.".format(adds))
if cutset & addset:
raise ValueError("Intersecting cuts = {} and adds = {}.".format(cuts, adds))
if bakset & addset:
raise ValueError("Intersecting baks = {} and adds = {}.".format(baks, adds))
newbakset = (bakset - cutset) | addset
if len(newbakset) != (len(baks) - len(cuts) + len(adds)):
raise ValueError("Invalid member combination among baks = {}, cuts ={}, "
"and adds = {}.".format(baks, cuts, adds))
if isinstance(toad, str):
toad = "{:x}".format(toad)
elif toad is None:
if not newbakset:
toad = 0
else:
toad = ample(len(newbakset))
if newbakset:
if toad < 1 or toad > len(newbakset):
raise ValueError("Invalid toad = {} for resultant wits = {}"
"".format(toad, list(newbakset)))
else:
if toad != 0:
raise ValueError("Invalid toad = {} for resultant wits = {}"
"".format(toad, list(newbakset)))
ked = dict(v=vs,
i=regk,
p=dig,
s="{:x}".format(sn),
t=ilk,
bt="{:x}".format(toad),
br=cuts,
ba=adds,
)
return Serder(ked=ked)
def issue(
vcdig,
regk,
version=Version,
kind=Serials.json,
):
vs = Versify(version=version, kind=kind, size=0)
ked = dict(v=vs,
i=vcdig,
s="{:x}".format(0),
t=Ilks.iss,
ri=regk,
dt=helping.nowIso8601()
)
return Serder(ked=ked)
def revoke(
vcdig,
regk,
dig,
version=Version,
kind=Serials.json,
):
vs = Versify(version=version, kind=kind, size=0)
isn = 1
ilk = Ilks.rev
ked = dict(v=vs,
i=vcdig,
s="{:x}".format(isn),
t=ilk,
ri=regk,
p=dig,
dt=helping.nowIso8601()
)
return Serder(ked=ked)
def backerIssue(
vcdig,
regk,
regsn,
regd,
version=Version,
kind=Serials.json,
):
vs = Versify(version=version, kind=kind, size=0)
isn = 0
ilk = Ilks.bis
seal = SealEvent(regk, regsn, regd)
ked = dict(v=vs,
i=vcdig,
ii=regk,
s="{:x}".format(isn),
t=ilk,
ra=seal._asdict(),
dt=helping.nowIso8601(),
)
return Serder(ked=ked)
def backerRevoke(
vcdig,
regk,
regsn,
regd,
dig,
version=Version,
kind=Serials.json,
):
vs = Versify(version=version, kind=kind, size=0)
isn = 1
ilk = Ilks.brv
seal = SealEvent(regk, regsn, regd)
ked = dict(v=vs,
i=vcdig,
s="{:x}".format(isn),
t=ilk,
p=dig,
ra=seal._asdict(),
dt=helping.nowIso8601(),
)
return Serder(ked=ked)
def query(regk,
vcid,
res,
dt=None,
dta=None,
dtb=None,
version=Version,
kind=Serials.json):
vs = Versify(version=version, kind=kind, size=0)
ilk = Ilks.req
qry = dict(
i=vcid,
ri=regk
)
if dt is not None:
qry["dt"] = dt
if dta is not None:
qry["dta"] = dt
if dtb is not None:
qry["dtb"] = dt
ked = dict(v=vs,
t=ilk,
r=res,
q=qry
)
return Serder(ked=ked)
class Tever:
NoBackers = False
def __init__(self, serder, seqner=None, diger=None, bigers=None, db=None,
reger=None, noBackers=None, regk=None, local=False):
self.reger = reger if reger is not None else Registry()
self.db = db if db is not None else basing.Baser()
self.version = serder.version
self.regk = regk
self.local = True if local else False
ilk = serder.ked["t"]
if ilk not in [Ilks.vcp]:
raise ValidationError("Expected ilk {} got {} for evt: {}".format(Ilks.vcp, ilk, serder))
self.ilk = ilk
labels = VCP_LABELS
for k in labels:
if k not in serder.ked:
raise ValidationError("Missing element = {} from {} event for "
"evt = {}.".format(k, ilk, serder.ked))
self.incept(serder=serder)
self.config(serder=serder, noBackers=noBackers)
bigers = self.valAnchorBigs(serder=serder,
seqner=seqner,
diger=diger,
bigers=bigers,
toad=self.toad,
baks=self.baks)
self.logEvent(pre=self.prefixer.qb64b,
sn=0,
serder=serder,
seqner=seqner,
diger=diger,
bigers=bigers,
baks=self.baks)
def incept(self, serder):
ked = serder.ked
self.pre = ked["ii"]
self.prefixer = Prefixer(qb64=serder.pre)
if not self.prefixer.verify(ked=ked, prefixed=True):
raise ValidationError("Invalid prefix = {} for registry inception evt = {}."
.format(self.prefixer.qb64, ked))
sn = ked["s"]
self.sn = validateSN(sn, inceptive=True)
self.cuts = []
self.adds = []
baks = ked["b"]
if len(oset(baks)) != len(baks):
raise ValidationError("Invalid baks = {}, has duplicates for evt = {}."
"".format(baks, ked))
self.baks = baks
toad = int(ked["bt"], 16)
if baks:
if toad < 1 or toad > len(baks):
raise ValidationError("Invalid toad = {} for baks = {} for evt = {}."
"".format(toad, baks, ked))
else:
if toad != 0:
raise ValidationError("Invalid toad = {} for baks = {} for evt = {}."
"".format(toad, baks, ked))
self.toad = toad
self.serder = serder
def config(self, serder, noBackers=None):
self.noBackers = (True if (noBackers if noBackers is not None
else self.NoBackers)
else False)
cnfg = serder.ked["c"]
if TraitDex.NoBackers in cnfg:
self.noBackers = True
def update(self, serder, seqner=None, diger=None, bigers=None):
ked = serder.ked
ilk = ked["t"]
sn = ked["s"]
icp = ilk in (Ilks.iss, Ilks.bis)
sn = validateSN(sn, inceptive=icp)
if ilk in (Ilks.vrt,):
if self.noBackers is True:
raise ValidationError("invalid rotation evt {} against backerless registry {}".
format(ked, self.regk))
toad, baks, cuts, adds = self.rotate(serder, sn=sn)
bigers = self.valAnchorBigs(serder=serder,
seqner=seqner,
diger=diger,
bigers=bigers,
toad=toad,
baks=baks)
self.sn = sn
self.serder = serder
self.ilk = ilk
self.toad = toad
self.baks = baks
self.cuts = cuts
self.adds = adds
self.logEvent(pre=self.prefixer.qb64b,
sn=sn,
serder=serder,
seqner=seqner,
diger=diger,
bigers=bigers,
baks=self.baks)
return
elif ilk in (Ilks.iss, Ilks.bis):
self.issue(serder, seqner=seqner, diger=diger, sn=sn, bigers=bigers)
elif ilk in (Ilks.rev, Ilks.brv):
self.revoke(serder, seqner=seqner, diger=diger, sn=sn, bigers=bigers)
else:
raise ValidationError("Unsupported ilk = {} for evt = {}.".format(ilk, ked))
def rotate(self, serder, sn):
ked = serder.ked
pre = ked["i"]
dig = ked["p"]
if serder.pre != self.prefixer.qb64:
raise ValidationError("Mismatch event aid prefix = {} expecting"
" = {} for evt = {}.".format(ked["i"],
self.prefixer.qb64,
ked))
if not sn == (self.sn + 1):
raise ValidationError("Invalid sn = {} expecting = {} for evt "
"= {}.".format(sn, self.sn + 1, ked))
if not self.serder.compare(dig=dig):
raise ValidationError("Mismatch event dig = {} with state dig"
" = {} for evt = {}.".format(ked["p"],
self.serder.diger.qb64,
ked))
witset = oset(self.baks)
cuts = ked["br"]
cutset = oset(cuts)
if len(cutset) != len(cuts):
raise ValidationError("Invalid cuts = {}, has duplicates for evt = "
"{}.".format(cuts, ked))
if (witset & cutset) != cutset:
raise ValidationError("Invalid cuts = {}, not all members in baks"
" for evt = {}.".format(cuts, ked))
adds = ked["ba"]
addset = oset(adds)
if len(addset) != len(adds):
raise ValidationError("Invalid adds = {}, has duplicates for evt = "
"{}.".format(adds, ked))
if cutset & addset:
raise ValidationError("Intersecting cuts = {} and adds = {} for "
"evt = {}.".format(cuts, adds, ked))
if witset & addset:
raise ValidationError("Intersecting baks = {} and adds = {} for "
"evt = {}.".format(self.baks, adds, ked))
baks = list((witset - cutset) | addset)
if len(baks) != (len(self.baks) - len(cuts) + len(adds)):
raise ValidationError("Invalid member combination among baks = {}, cuts ={}, "
"and adds = {} for evt = {}.".format(self.baks,
cuts,
adds,
ked))
toad = int(ked["bt"], 16)
if baks:
if toad < 1 or toad > len(baks):
raise ValidationError("Invalid toad = {} for baks = {} for evt "
"= {}.".format(toad, baks, ked))
else:
if toad != 0:
raise ValidationError("Invalid toad = {} for baks = {} for evt "
"= {}.".format(toad, baks, ked))
return toad, baks, cuts, adds
def issue(self, serder, seqner, diger, sn, bigers=None):
ked = serder.ked
vcpre = ked["i"]
ilk = ked["t"]
vci = nsKey([self.prefixer.qb64, vcpre])
labels = ISS_LABELS if ilk == Ilks.iss else BIS_LABELS
for k in labels:
if k not in ked:
raise ValidationError("Missing element = {} from {} event for "
"evt = {}.".format(k, ilk, ked))
if ilk == Ilks.iss:
if self.noBackers is False:
raise ValidationError("invalid simple issue evt {} against backer based registry {}".
format(ked, self.regk))
regi = ked["ri"]
if regi != self.prefixer.qb64:
raise ValidationError("Mismatch event regi prefix = {} expecting"
" = {} for evt = {}.".format(regi,
self.prefixer.qb64,
ked))
if not self.verifyAnchor(serder=serder, seqner=seqner, diger=diger):
self.escrowALEvent(serder=serder)
raise MissingAnchorError("Failure verify event = {} "
"".format(serder.ked,
))
self.logEvent(pre=vci, sn=sn, serder=serder, seqner=seqner, diger=diger)
elif ilk == Ilks.bis:
if self.noBackers is True:
raise ValidationError("invalid backer issue evt {} against backerless registry {}".
format(ked, self.regk))
rtoad, baks = self.getBackerState(ked)
bigers = self.valAnchorBigs(serder=serder,
seqner=seqner,
diger=diger,
bigers=bigers,
toad=rtoad,
baks=baks)
self.logEvent(pre=vci, sn=sn, serder=serder, seqner=seqner, diger=diger, bigers=bigers)
else:
raise ValidationError("Unsupported ilk = {} for evt = {}.".format(ilk, ked))
def revoke(self, serder, seqner, diger, sn, bigers=None):
ked = serder.ked
vcpre = ked["i"]
ilk = ked["t"]
labels = REV_LABELS if ilk == Ilks.rev else BRV_LABELS
for k in labels:
if k not in ked:
raise ValidationError("Missing element = {} from {} event for "
"evt = {}.".format(k, ilk, ked))
vci = nsKey([self.prefixer.qb64, vcpre])
dig = self.reger.getTel(snKey(pre=vci, sn=sn - 1))
ievt = self.reger.getTvt(dgKey(pre=vci, dig=dig))
if ievt is None:
raise ValidationError("revoke without issue... probably have to escrow")
ievt = bytes(ievt)
iserder = Serder(raw=ievt)
if not iserder.compare(dig=ked["p"]):
raise ValidationError("Mismatch event dig = {} with state dig"
" = {} for evt = {}.".format(ked["p"],
self.serder.diger.qb64,
ked))
if ilk is Ilks.rev:
if self.noBackers is False:
raise ValidationError("invalid simple issue evt {} against backer based registry {}".
format(ked, self.regk))
if not self.verifyAnchor(serder=serder, seqner=seqner, diger=diger):
self.escrowALEvent(serder=serder)
raise MissingAnchorError("Failure verify event = {} "
"".format(serder.ked))
self.logEvent(pre=vci, sn=sn, serder=serder, seqner=seqner, diger=diger)
elif ilk is Ilks.brv:
if self.noBackers is True:
raise ValidationError("invalid backer issue evt {} against backerless registry {}".
format(ked, self.regk))
rtoad, baks = self.getBackerState(ked)
bigers = self.valAnchorBigs(serder=serder,
seqner=seqner,
diger=diger,
bigers=bigers,
toad=rtoad,
baks=baks)
self.logEvent(pre=vci, sn=sn, serder=serder, seqner=seqner, diger=diger, bigers=bigers)
else:
raise ValidationError("Unsupported ilk = {} for evt = {}.".format(ilk, ked))
|
Apache License 2.0
|
bioconda/bioconda-utils
|
bioconda_utils/githandler.py
|
BiocondaRepoMixin.get_unblacklisted
|
python
|
def get_unblacklisted(self, ref=None, other=None):
merge_base = self.get_merge_base(ref, other)
orig_blacklist = self.get_blacklisted(merge_base)
cur_blacklist = self.get_blacklisted(ref)
return orig_blacklist.difference(cur_blacklist)
|
Get recipes unblacklisted by a merge of **ref** into **other**
Args:
ref: Branch or commit or reference, defaults to current branch
other: Same as **ref**, defaults to ``origin/master``
Returns:
`set` of unblacklisted recipes (full path to repo root)
|
https://github.com/bioconda/bioconda-utils/blob/df49b2169672255d5937b181cb86fbe08f7ebaaa/bioconda_utils/githandler.py#L450-L463
|
import asyncio
import atexit
import logging
import os
import re
import tempfile
import subprocess
from typing import List, Union
import git
import yaml
from . import utils
logger = logging.getLogger(__name__)
def install_gpg_key(key) -> str:
proc = subprocess.run(['gpg', '--import'],
input=key, stderr=subprocess.PIPE,
encoding='ascii')
for line in proc.stderr.splitlines():
match = re.match(r'gpg: key ([\dA-F]{8,16}): '
r'(secret key imported|already in secret keyring)',
line)
if match:
keyid = match.group(1)
break
else:
if r'\n' in key:
return install_gpg_key(key.replace(r'\n', '\n'))
raise ValueError(f"Unable to import GPG key: {proc.stderr}")
return keyid
class GitHandlerFailure(Exception):
class GitHandlerBase():
def __init__(self, repo: git.Repo,
dry_run: bool,
home='bioconda/bioconda-recipes',
fork=None,
allow_dirty=False) -> None:
self.repo: git.Repo = repo
if not allow_dirty and self.repo.is_dirty():
raise RuntimeError("Repository is in dirty state. Bailing out")
self.dry_run = dry_run
self.home_remote = self.get_remote(home)
if fork is not None:
self.fork_remote = self.get_remote(fork)
else:
self.fork_remote = self.home_remote
self.lock_working_dir = asyncio.Semaphore(1)
self._sign: Union[bool, str] = False
self.actor: git.Actor = None
def close(self):
self.repo.close()
def __str__(self):
def get_name(remote):
url = next(remote.urls)
return url[url.rfind('/', 0, url.rfind('/'))+1:]
name = get_name(self.home_remote)
if self.fork_remote != self.home_remote:
name = f"{name} <- {get_name(self.fork_remote)}"
return f"{self.__class__.__name__}({name})"
def enable_signing(self, key: Union[bool, str] = True) -> None:
self._sign = key
def get_remote(self, desc: str):
if desc in [r.name for r in self.repo.remotes]:
return self.repo.remotes[desc]
with self.repo.config_reader() as reader:
for section in reader.sections():
if section.startswith("url "):
new = section.lstrip("url ").strip('"')
try:
old = reader.get(section, 'insteadOf')
desc = desc.replace(old, new)
except KeyError:
pass
remotes = [r for r in self.repo.remotes
if any(filter(lambda x: desc in x, r.urls))]
if not remotes:
raise KeyError(f"No remote matching '{desc}' found")
if len(remotes) > 1:
logger.warning("Multiple remotes found. Using first")
return remotes[0]
async def branch_is_current(self, branch, path: str, master="master") -> bool:
proc = await asyncio.create_subprocess_exec(
'git', 'log', '-1', '--oneline', '--decorate',
f'{master}...{branch.name}', '--', path,
stdout=asyncio.subprocess.PIPE)
stdout, _ = await proc.communicate()
return branch.name in stdout.decode('ascii')
def delete_local_branch(self, branch) -> None:
git.Reference.delete(self.repo, branch)
def delete_remote_branch(self, branch_name: str) -> None:
if not self.dry_run:
logger.info("Deleting branch %s", branch_name)
self.fork_remote.push(":" + branch_name)
else:
logger.info("Would delete branch %s", branch_name)
def get_local_branch(self, branch_name: str):
if branch_name in self.repo.branches:
return self.repo.branches[branch_name]
try:
return self.repo.commit(branch_name)
except git.BadName:
pass
return None
@staticmethod
def is_sha(ref: str) -> bool:
if len(ref) == 40:
try:
int(ref, 16)
return True
except ValueError:
pass
return False
def get_remote_branch(self, branch_name: str, try_fetch=False):
if branch_name in self.fork_remote.refs:
return self.fork_remote.refs[branch_name]
if not self.is_sha(branch_name):
return None
depths = (0, 50, 200) if try_fetch else (None,)
for depth in depths:
logger.info("Trying depth %s", depth)
try:
if depth:
self.fork_remote.fetch(depth=depth)
remote_refs = self.fork_remote.fetch(branch_name, depth=depth)
else:
remote_refs = self.fork_remote.fetch(branch_name)
break
except git.GitCommandError:
pass
else:
logger.info("Failed to fetch %s", branch_name)
return None
for remote_ref in remote_refs:
if remote_ref.remote_ref_path == branch_name:
return remote_ref.ref
def get_latest_master(self):
return self.home_remote.fetch('master')[0].commit
def read_from_branch(self, branch, file_name: str) -> str:
abs_file_name = os.path.abspath(file_name)
abs_repo_root = os.path.abspath(self.repo.working_dir)
if not abs_file_name.startswith(abs_repo_root):
raise RuntimeError(
f"File {abs_file_name} not inside {abs_repo_root}"
)
rel_file_name = abs_file_name[len(abs_repo_root):].lstrip("/")
commit = getattr(branch, 'commit', branch)
blob = commit.tree / rel_file_name
if blob:
return blob.data_stream.read().decode("utf-8")
logger.error("File %s not found on branch %s commit %s",
rel_file_name, branch, commit)
return None
def create_local_branch(self, branch_name: str, remote_branch: str = None):
if remote_branch is None:
remote_branch = self.get_remote_branch(branch_name, try_fetch=False)
else:
remote_branch = self.get_remote_branch(remote_branch, try_fetch=False)
if remote_branch is None:
return None
self.repo.create_head(branch_name, remote_branch)
return self.get_local_branch(branch_name)
def get_merge_base(self, ref=None, other=None, try_fetch=False):
if not ref:
ref = self.repo.active_branch.commit
if not other:
other = self.home_remote.refs.master
depths = (0, 50, 200) if try_fetch else (0,)
for depth in depths:
if depth:
self.fork_remote.fetch(ref, depth=depth)
self.home_remote.fetch('master', depth=depth)
merge_bases = self.repo.merge_base(other, ref)
if merge_bases:
break
logger.debug("No merge base found for %s and master at depth %i", ref, depth)
else:
logger.error("No merge base found for %s and master", ref)
return None
if len(merge_bases) > 1:
logger.error("Multiple merge bases found for %s and master: %s",
ref, merge_bases)
return merge_bases[0]
def list_changed_files(self, ref=None, other=None):
if not ref:
ref = self.repo.active_branch.commit
merge_base = self.get_merge_base(ref, other)
for diffobj in merge_base.diff(ref):
if not diffobj.deleted_file:
yield diffobj.b_path
def list_modified_files(self):
seen = set()
for diffobj in self.repo.index.diff(None):
for fname in (diffobj.a_path, diffobj.b_path):
if fname not in seen:
seen.add(fname)
yield fname
def prepare_branch(self, branch_name: str) -> None:
if branch_name not in self.repo.heads:
logger.info("Creating new branch %s", branch_name)
from_commit = self.get_latest_master()
self.repo.create_head(branch_name, from_commit)
logger.info("Checking out branch %s", branch_name)
branch = self.repo.heads[branch_name]
branch.checkout()
def commit_and_push_changes(self, files: List[str], branch_name: str,
msg: str, sign=False) -> bool:
if branch_name is None:
branch_name = self.repo.active_branch.name
if not files:
files = list(self.list_modified_files())
self.repo.index.add(files)
if not self.repo.index.diff("HEAD"):
return False
if self._sign and not sign:
sign = self._sign
if sign:
args = [
'-S' + sign if isinstance(sign, str) else '-S',
'-m', msg,
]
if self.actor:
args += ['--author', f'{self.actor.name} <{self.actor.email}>']
self.repo.index.write()
self.repo.git.commit(*args)
else:
if self.actor:
self.repo.index.commit(msg, author=self.actor)
else:
self.repo.index.commit(msg)
if not self.dry_run:
logger.info("Pushing branch %s", branch_name)
try:
res = self.fork_remote.push(branch_name)
failed = res[0].flags & ~(git.PushInfo.FAST_FORWARD | git.PushInfo.NEW_HEAD)
text = res[0].summary
except git.GitCommandError as exc:
failed = True
text = str(exc)
if failed:
logger.error("Failed to push branch %s: %s", branch_name, text)
raise GitHandlerFailure(text)
else:
logger.info("Would push branch %s", branch_name)
return True
def set_user(self, user: str, email: str = None) -> None:
self.actor = git.Actor(user, email)
class BiocondaRepoMixin(GitHandlerBase):
recipes_folder = "recipes"
config_file = "config.yml"
def get_changed_recipes(self, ref=None, other=None, files=None):
if files is None:
files = ['meta.yaml', 'build.sh']
changed = set()
for path in self.list_changed_files(ref, other):
if not path.startswith(self.recipes_folder):
continue
for fname in files:
if os.path.basename(path) == fname:
changed.add(os.path.dirname(path))
return list(changed)
def get_blacklisted(self, ref=None):
if ref is None:
branch = self.repo.active_branch
elif isinstance(ref, str):
branch = self.get_local_branch(ref)
else:
branch = ref
config_data = self.read_from_branch(branch, self.config_file)
config = yaml.safe_load(config_data)
blacklists = config['blacklists']
blacklisted = set()
for blacklist in blacklists:
blacklist_data = self.read_from_branch(branch, blacklist)
for line in blacklist_data.splitlines():
if line.startswith("#") or not line.strip():
continue
recipe_folder, _, _ = line.partition(" #")
blacklisted.add(recipe_folder.strip())
return blacklisted
|
MIT License
|
ebranca/owasp-pysec
|
demo/import/paypal/exceptions.py
|
PayPalError._get_message
|
python
|
def _get_message(self):
return self._message
|
get the message from error
|
https://github.com/ebranca/owasp-pysec/blob/163e10a146db04f40648979e8d7c0c10e7737781/demo/import/paypal/exceptions.py#L22-L26
|
class PayPalError(Exception):
def __init__(self, message, error_code=None):
self.message = message
self.error_code = error_code
def __str__(self):
if self.error_code:
return "%s (Error Code: %s)" % (repr(self.message), self.error_code)
else:
return repr(self.message)
|
Apache License 2.0
|
ictu/quality-time
|
components/collector/src/source_collectors/gitlab/merge_requests.py
|
GitLabMergeRequests._get_merge_request_response
|
python
|
async def _get_merge_request_response(
self, client: GraphQLClient, approved_field: str, cursor: str = ""
) -> tuple[aiohttp.ClientResponse, bool, str]:
pagination = f'(after: "{cursor}")' if cursor else ""
merge_request_query = MERGE_REQUEST_QUERY.format(pagination=pagination, approved=approved_field)
response = await client.execute(merge_request_query, variables=dict(projectId=self._parameter("project")))
json = await response.json()
page_info = json["data"]["project"]["mergeRequests"]["pageInfo"]
return response, page_info["hasNextPage"], page_info.get("endCursor", "")
|
Return the merge request response, whether there are more pages, and a cursor to the next page, if any.
|
https://github.com/ictu/quality-time/blob/4bd5df14f584dcc174276da0d2ddb6fcfaf1d427/components/collector/src/source_collectors/gitlab/merge_requests.py#L94-L103
|
from typing import cast
import aiohttp
from aiogqlc import GraphQLClient
from collector_utilities.functions import match_string_or_regular_expression
from collector_utilities.type import URL, Value
from model import Entities, Entity, SourceResponses
from .base import GitLabBase
MERGE_REQUEST_FIELDS_QUERY = """
{
__type(name: "MergeRequest") {
fields {
name
}
}
}
"""
MERGE_REQUEST_QUERY = """
query MRs($projectId: ID!) {{
project(fullPath: $projectId) {{
mergeRequests{pagination} {{
count
pageInfo {{
endCursor
hasNextPage
}}
nodes {{
id
state
title
targetBranch
webUrl
upvotes
downvotes
createdAt
updatedAt
mergedAt
{approved}
}}
}}
}}
}}
"""
class GitLabMergeRequests(GitLabBase):
APPROVED_FIELD = "approved"
async def _landing_url(self, responses: SourceResponses) -> URL:
return URL(f"{str(await super()._landing_url(responses))}/{self._parameter('project')}/-/merge_requests")
async def _get_source_responses(self, *urls: URL, **kwargs) -> SourceResponses:
api_url = await self._api_url()
timeout = aiohttp.ClientTimeout(total=120)
async with aiohttp.ClientSession(raise_for_status=True, timeout=timeout, headers=self._headers()) as session:
client = GraphQLClient(f"{api_url}/api/graphql", session=session)
approved_field = await self._approved_field(client)
responses, has_next_page, cursor = SourceResponses(), True, ""
while has_next_page:
response, has_next_page, cursor = await self._get_merge_request_response(client, approved_field, cursor)
responses.append(response)
return responses
@classmethod
async def _approved_field(cls, client: GraphQLClient) -> str:
response = await client.execute(MERGE_REQUEST_FIELDS_QUERY)
json = await response.json()
fields = [field["name"] for field in json["data"]["__type"]["fields"]]
return cls.APPROVED_FIELD if cls.APPROVED_FIELD in fields else ""
|
Apache License 2.0
|
lscsoft/bilby
|
bilby/gw/conversion.py
|
convert_to_lal_binary_black_hole_parameters
|
python
|
def convert_to_lal_binary_black_hole_parameters(parameters):
converted_parameters = parameters.copy()
original_keys = list(converted_parameters.keys())
if 'redshift' in converted_parameters.keys():
converted_parameters['luminosity_distance'] = redshift_to_luminosity_distance(parameters['redshift'])
elif 'comoving_distance' in converted_parameters.keys():
converted_parameters['luminosity_distance'] = comoving_distance_to_luminosity_distance(
parameters['comoving_distance'])
for key in original_keys:
if key[-7:] == '_source':
if 'redshift' not in converted_parameters.keys():
converted_parameters['redshift'] = luminosity_distance_to_redshift(
parameters['luminosity_distance'])
converted_parameters[key[:-7]] = converted_parameters[key] * (
1 + converted_parameters['redshift'])
if 'chirp_mass' in converted_parameters.keys():
if "mass_1" in converted_parameters.keys():
converted_parameters["mass_ratio"] = chirp_mass_and_primary_mass_to_mass_ratio(
converted_parameters["chirp_mass"], converted_parameters["mass_1"])
if 'total_mass' in converted_parameters.keys():
converted_parameters['symmetric_mass_ratio'] = chirp_mass_and_total_mass_to_symmetric_mass_ratio(
converted_parameters['chirp_mass'],
converted_parameters['total_mass'])
if 'symmetric_mass_ratio' in converted_parameters.keys():
converted_parameters['mass_ratio'] = symmetric_mass_ratio_to_mass_ratio(
converted_parameters['symmetric_mass_ratio'])
if 'total_mass' not in converted_parameters.keys():
converted_parameters['total_mass'] = chirp_mass_and_mass_ratio_to_total_mass(
converted_parameters['chirp_mass'],
converted_parameters['mass_ratio'])
converted_parameters['mass_1'], converted_parameters['mass_2'] = total_mass_and_mass_ratio_to_component_masses(
converted_parameters['mass_ratio'],
converted_parameters['total_mass'])
elif 'total_mass' in converted_parameters.keys():
if 'symmetric_mass_ratio' in converted_parameters.keys():
converted_parameters['mass_ratio'] = symmetric_mass_ratio_to_mass_ratio(
converted_parameters['symmetric_mass_ratio'])
if 'mass_ratio' in converted_parameters.keys():
converted_parameters['mass_1'], converted_parameters['mass_2'] = total_mass_and_mass_ratio_to_component_masses(
converted_parameters['mass_ratio'],
converted_parameters['total_mass'])
elif 'mass_1' in converted_parameters.keys():
converted_parameters['mass_2'] = converted_parameters['total_mass'] - converted_parameters['mass_1']
elif 'mass_2' in converted_parameters.keys():
converted_parameters['mass_1'] = converted_parameters['total_mass'] - converted_parameters['mass_2']
elif 'symmetric_mass_ratio' in converted_parameters.keys():
converted_parameters['mass_ratio'] = symmetric_mass_ratio_to_mass_ratio(
converted_parameters['symmetric_mass_ratio'])
if 'mass_1' in converted_parameters.keys():
converted_parameters['mass_2'] = converted_parameters['mass_1'] * converted_parameters['mass_ratio']
elif 'mass_2' in converted_parameters.keys():
converted_parameters['mass_1'] = converted_parameters['mass_2'] / converted_parameters['mass_ratio']
elif 'mass_ratio' in converted_parameters.keys():
if 'mass_1' in converted_parameters.keys():
converted_parameters['mass_2'] = converted_parameters['mass_1'] * converted_parameters['mass_ratio']
if 'mass_2' in converted_parameters.keys():
converted_parameters['mass_1'] = converted_parameters['mass_2'] / converted_parameters['mass_ratio']
for idx in ['1', '2']:
key = 'chi_{}'.format(idx)
if key in original_keys:
if "chi_{}_in_plane".format(idx) in original_keys:
converted_parameters["a_{}".format(idx)] = (
converted_parameters[f"chi_{idx}"] ** 2
+ converted_parameters[f"chi_{idx}_in_plane"] ** 2
) ** 0.5
converted_parameters[f"cos_tilt_{idx}"] = (
converted_parameters[f"chi_{idx}"]
/ converted_parameters[f"a_{idx}"]
)
elif "a_{}".format(idx) not in original_keys:
converted_parameters['a_{}'.format(idx)] = abs(
converted_parameters[key])
converted_parameters['cos_tilt_{}'.format(idx)] = np.sign(converted_parameters[key])
converted_parameters['phi_jl'] = 0.0
converted_parameters['phi_12'] = 0.0
else:
converted_parameters[f"cos_tilt_{idx}"] = (
converted_parameters[key] / converted_parameters[f"a_{idx}"]
)
for angle in ['tilt_1', 'tilt_2', 'theta_jn']:
cos_angle = str('cos_' + angle)
if cos_angle in converted_parameters.keys():
with np.errstate(invalid="ignore"):
converted_parameters[angle] = np.arccos(converted_parameters[cos_angle])
if "delta_phase" in original_keys:
with np.errstate(invalid="ignore"):
converted_parameters["phase"] = np.mod(
converted_parameters["delta_phase"]
- np.sign(np.cos(converted_parameters["theta_jn"]))
* converted_parameters["psi"],
2 * np.pi
)
added_keys = [key for key in converted_parameters.keys()
if key not in original_keys]
return converted_parameters, added_keys
|
Convert parameters we have into parameters we need.
This is defined by the parameters of bilby.source.lal_binary_black_hole()
Mass: mass_1, mass_2
Spin: a_1, a_2, tilt_1, tilt_2, phi_12, phi_jl
Extrinsic: luminosity_distance, theta_jn, phase, ra, dec, geocent_time, psi
This involves popping a lot of things from parameters.
The keys in added_keys should be popped after evaluating the waveform.
Parameters
==========
parameters: dict
dictionary of parameter values to convert into the required parameters
Returns
=======
converted_parameters: dict
dict of the required parameters
added_keys: list
keys which are added to parameters during function call
|
https://github.com/lscsoft/bilby/blob/b1e02f1dfae03d4939cae9c95eff300c22919689/bilby/gw/conversion.py#L121-L273
|
import sys
import multiprocessing
import numpy as np
from pandas import DataFrame
from ..core.likelihood import MarginalizedLikelihoodReconstructionError
from ..core.utils import logger, solar_mass
from ..core.prior import DeltaFunction
from .utils import lalsim_SimInspiralTransformPrecessingNewInitialConditions
from .eos.eos import SpectralDecompositionEOS, EOSFamily, IntegrateTOV
from .cosmology import get_cosmology
def redshift_to_luminosity_distance(redshift, cosmology=None):
cosmology = get_cosmology(cosmology)
return cosmology.luminosity_distance(redshift).value
def redshift_to_comoving_distance(redshift, cosmology=None):
cosmology = get_cosmology(cosmology)
return cosmology.comoving_distance(redshift).value
@np.vectorize
def luminosity_distance_to_redshift(distance, cosmology=None):
from astropy import units
from astropy.cosmology import z_at_value
cosmology = get_cosmology(cosmology)
return z_at_value(cosmology.luminosity_distance, distance * units.Mpc)
@np.vectorize
def comoving_distance_to_redshift(distance, cosmology=None):
from astropy import units
from astropy.cosmology import z_at_value
cosmology = get_cosmology(cosmology)
return z_at_value(cosmology.comoving_distance, distance * units.Mpc)
def comoving_distance_to_luminosity_distance(distance, cosmology=None):
cosmology = get_cosmology(cosmology)
redshift = comoving_distance_to_redshift(distance, cosmology)
return redshift_to_luminosity_distance(redshift, cosmology)
def luminosity_distance_to_comoving_distance(distance, cosmology=None):
cosmology = get_cosmology(cosmology)
redshift = luminosity_distance_to_redshift(distance, cosmology)
return redshift_to_comoving_distance(redshift, cosmology)
def bilby_to_lalsimulation_spins(
theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1, mass_2,
reference_frequency, phase):
if (a_1 == 0 or tilt_1 in [0, np.pi]) and (a_2 == 0 or tilt_2 in [0, np.pi]):
spin_1x = 0
spin_1y = 0
spin_1z = a_1 * np.cos(tilt_1)
spin_2x = 0
spin_2y = 0
spin_2z = a_2 * np.cos(tilt_2)
iota = theta_jn
else:
iota, spin_1x, spin_1y, spin_1z, spin_2x, spin_2y, spin_2z = transform_precessing_spins(
theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1,
mass_2, reference_frequency, phase)
return iota, spin_1x, spin_1y, spin_1z, spin_2x, spin_2y, spin_2z
@np.vectorize
def transform_precessing_spins(theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1,
a_2, mass_1, mass_2, reference_frequency, phase):
iota, spin_1x, spin_1y, spin_1z, spin_2x, spin_2y, spin_2z = (
lalsim_SimInspiralTransformPrecessingNewInitialConditions(
theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1, a_2, mass_1, mass_2,
reference_frequency, phase))
return iota, spin_1x, spin_1y, spin_1z, spin_2x, spin_2y, spin_2z
|
MIT License
|
lorraine2/implicit-hyper-opt
|
train_augment_net_graph.py
|
init_ax
|
python
|
def init_ax(fontsize=24, nrows=1, ncols=1):
font = {'family': 'Times New Roman'}
mpl.rc('font', **font)
mpl.rcParams['legend.fontsize'] = fontsize
mpl.rcParams['axes.labelsize'] = fontsize
mpl.rcParams['xtick.labelsize'] = fontsize
mpl.rcParams['ytick.labelsize'] = fontsize
mpl.rcParams['axes.grid'] = False
fig = plt.figure(figsize=(6.4 / np.sqrt(nrows), 4.8 * nrows / np.sqrt(nrows)))
axs = [fig.add_subplot(nrows, ncols, i + 1) for i in range(nrows * ncols)]
for ax in axs:
ax.tick_params(axis='x', which='both', bottom=False, top=False)
ax.tick_params(axis='y', which='both', left=False, right=False)
ax.grid(False)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
return fig, axs
|
:param fontsize:
:return:
|
https://github.com/lorraine2/implicit-hyper-opt/blob/7e8ccadd2a1b66ff4814301b3cf091c448214182/train_augment_net_graph.py#L110-L132
|
from tqdm import tqdm
import copy
import torch
import csv
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
def save_learned(datas, is_mnist, batch_size, name, path='images'):
saturation_multiple = 1
if not is_mnist:
saturation_multiple = 1
datas = torch.sigmoid(datas.detach() * saturation_multiple).cpu().numpy()
col_size = 10
row_size = batch_size // col_size
if batch_size % row_size != 0:
row_size += 1
fig = plt.figure(figsize=(col_size, row_size))
for i, data in enumerate(datas):
ax = plt.subplot(row_size, col_size, i + 1)
if is_mnist:
plt.imshow(data[0], cmap='gray', interpolation='gaussian')
else:
plt.imshow(np.transpose(data, (1, 2, 0)), interpolation='gaussian')
plt.xticks([])
plt.yticks([])
ax.set_aspect('auto')
plt.subplots_adjust(wspace=0.05 * col_size / row_size, hspace=0.05)
plt.draw()
fig.savefig(f'{path}/{name}.pdf')
plt.close(fig)
def save_images(images, labels, augment_net, args):
is_mnist = False
if args.dataset == 'mnist':
is_mnist = True
num_save = 10
save_learned(images[:num_save], is_mnist, num_save, 'image_Original', path=args.save_loc)
num_sample = 10
augs = torch.zeros(num_sample, num_save, images.shape[1], images.shape[2], images.shape[3])
for i in range(num_sample):
augs[i] = augment_net(images[:num_save], class_label=labels[:num_save])
aug_1 = augment_net(images[:num_save], class_label=labels[:num_save])
save_learned(aug_1, is_mnist, num_save, 'image_Augment', path=args.save_loc)
aug_2 = augment_net(images[:num_save], use_zero_noise=True, class_label=labels[:num_save])
save_learned(aug_2, is_mnist, num_save, 'image_Augment2', path=args.save_loc)
std_augs = torch.std(augs, dim=0).cuda()
std_augs = torch.log(std_augs)
save_learned(std_augs, is_mnist, num_save, 'image_AugmentDiff', path=args.save_loc)
mean_augs = torch.mean(augs, dim=0).cuda()
save_learned(mean_augs - images[:num_save], is_mnist, num_save, 'image_OriginalDiff', path=args.save_loc)
def graph_single_args(args, save_loc=None):
from train_augment_net_multiple import get_id
if save_loc is None:
args.save_loc = finetune_location + get_id(args)
else:
args.save_loc = save_loc
args.load_baseline_checkpoint = None
args.load_finetune_checkpoint = args.save_loc + '/checkpoint.pt'
args.data_augmentation = False
from train_augment_net2 import get_models
model, train_loader, val_loader, test_loader, augment_net, reweighting_net, checkpoint = get_models(args)
progress_bar = tqdm(train_loader)
for i, (images, labels) in enumerate(progress_bar):
images, labels = images.cuda(), labels.cuda()
save_images(images, labels, augment_net, args)
|
MIT License
|
openvax/varcode
|
varcode/effects/effect_collection.py
|
EffectCollection.top_priority_effect_per_transcript_id
|
python
|
def top_priority_effect_per_transcript_id(self):
return OrderedDict(
(transcript_id, top_priority_effect(variant_effects))
for (transcript_id, variant_effects)
in self.groupby_transcript_id().items())
|
Highest priority effect for each unique transcript ID
|
https://github.com/openvax/varcode/blob/a51a7dd0868ef05aee4962e66a9226ab70935a3d/varcode/effects/effect_collection.py#L218-L223
|
from __future__ import print_function, division, absolute_import
from collections import OrderedDict
import pandas as pd
from sercol import Collection
from .effect_ordering import (
effect_priority,
multi_gene_effect_sort_key,
top_priority_effect,
transcript_effect_priority_dict
)
class EffectCollection(Collection):
def __init__(self, effects, distinct=False, sort_key=None, sources=set([])):
self.effects = effects
Collection.__init__(
self,
elements=effects,
distinct=distinct,
sort_key=sort_key,
sources=sources)
def to_dict(self):
return dict(
effects=self.effects,
sort_key=self.sort_key,
distinct=self.distinct,
sources=self.sources)
def clone_with_new_elements(self, new_elements):
return Collection.clone_with_new_elements(
self,
new_elements,
rename_dict={"elements": "effects"})
def groupby_variant(self):
return self.groupby(key_fn=lambda effect: effect.variant)
def groupby_transcript(self):
return self.groupby(key_fn=lambda effect: effect.transcript)
def groupby_transcript_name(self):
return self.groupby(key_fn=lambda effect: effect.transcript_name)
def groupby_transcript_id(self):
return self.groupby(key_fn=lambda effect: effect.transcript_id)
def groupby_gene(self):
return self.groupby(key_fn=lambda effect: effect.gene)
def groupby_gene_name(self):
return self.groupby(key_fn=lambda effect: effect.gene_name)
def groupby_gene_id(self):
return self.groupby(key_fn=lambda effect: effect.gene_id)
def gene_counts(self):
return {
gene_name: len(group)
for (gene_name, group)
in self.groupby_gene_name().items()
}
def filter_by_transcript_expression(
self,
transcript_expression_dict,
min_expression_value=0.0):
return self.filter_above_threshold(
key_fn=lambda effect: effect.transcript_id,
value_dict=transcript_expression_dict,
threshold=min_expression_value)
def filter_by_gene_expression(
self,
gene_expression_dict,
min_expression_value=0.0):
return self.filter_above_threshold(
key_fn=lambda effect: effect.gene_id,
value_dict=gene_expression_dict,
threshold=min_expression_value)
def filter_by_effect_priority(self, min_priority_class):
min_priority = transcript_effect_priority_dict[min_priority_class]
return self.filter(
lambda effect: effect_priority(effect) >= min_priority)
def drop_silent_and_noncoding(self):
return self.filter(lambda effect: effect.modifies_protein_sequence)
def detailed_string(self):
lines = []
for variant, variant_effects in self.groupby_variant().items():
lines.append("\n%s" % variant)
gene_effects_groups = variant_effects.groupby_gene_id()
for (gene_id, gene_effects) in gene_effects_groups.items():
if gene_id:
gene_name = variant.ensembl.gene_name_of_gene_id(gene_id)
lines.append(" Gene: %s (%s)" % (gene_name, gene_id))
for effect in sorted(
gene_effects,
key=effect_priority,
reverse=True):
lines.append(" -- %s" % effect)
if len(variant_effects) > 1:
best = variant_effects.top_priority_effect()
lines.append(" Highest Priority Effect: %s" % best)
return "\n".join(lines)
def top_priority_effect(self):
return top_priority_effect(self.elements)
def top_priority_effect_per_variant(self):
return OrderedDict(
(variant, top_priority_effect(variant_effects))
for (variant, variant_effects)
in self.groupby_variant().items())
|
Apache License 2.0
|
openstack/pbr
|
pbr/git.py
|
_iter_changelog
|
python
|
def _iter_changelog(changelog):
first_line = True
current_release = None
yield current_release, "CHANGES\n=======\n\n"
for hash, tags, msg in changelog:
if tags:
current_release = _get_highest_tag(tags)
underline = len(current_release) * '-'
if not first_line:
yield current_release, '\n'
yield current_release, (
"%(tag)s\n%(underline)s\n\n" %
dict(tag=current_release, underline=underline))
if not msg.startswith("Merge "):
if msg.endswith("."):
msg = msg[:-1]
msg = _clean_changelog_message(msg)
yield current_release, "* %(msg)s\n" % dict(msg=msg)
first_line = False
|
Convert a oneline log iterator to formatted strings.
:param changelog: An iterator of one line log entries like
that given by _iter_log_oneline.
:return: An iterator over (release, formatted changelog) tuples.
|
https://github.com/openstack/pbr/blob/4849d82da7e2f689206f980a6e609bc474fc6b48/pbr/git.py#L166-L191
|
from __future__ import unicode_literals
import distutils.errors
from distutils import log
import errno
import io
import os
import re
import subprocess
import time
import pkg_resources
from pbr import options
from pbr import version
def _run_shell_command(cmd, throw_on_error=False, buffer=True, env=None):
if buffer:
out_location = subprocess.PIPE
err_location = subprocess.PIPE
else:
out_location = None
err_location = None
newenv = os.environ.copy()
if env:
newenv.update(env)
output = subprocess.Popen(cmd,
stdout=out_location,
stderr=err_location,
env=newenv)
out = output.communicate()
if output.returncode and throw_on_error:
raise distutils.errors.DistutilsError(
"%s returned %d" % (cmd, output.returncode))
if len(out) == 0 or not out[0] or not out[0].strip():
return ''
return out[0].strip().decode('utf-8', 'replace')
def _run_git_command(cmd, git_dir, **kwargs):
if not isinstance(cmd, (list, tuple)):
cmd = [cmd]
return _run_shell_command(
['git', '--git-dir=%s' % git_dir] + cmd, **kwargs)
def _get_git_directory():
try:
return _run_shell_command(['git', 'rev-parse', '--git-dir'])
except OSError as e:
if e.errno == errno.ENOENT:
return ''
raise
def _git_is_installed():
try:
_run_shell_command(['git', '--version'])
except OSError:
return False
return True
def _get_highest_tag(tags):
return max(tags, key=pkg_resources.parse_version)
def _find_git_files(dirname='', git_dir=None):
file_list = []
if git_dir is None:
git_dir = _run_git_functions()
if git_dir:
log.info("[pbr] In git context, generating filelist from git")
file_list = _run_git_command(['ls-files', '-z'], git_dir)
file_list = file_list.split(b'\x00'.decode('utf-8'))
return [f for f in file_list if f]
def _get_raw_tag_info(git_dir):
describe = _run_git_command(['describe', '--always'], git_dir)
if "-" in describe:
return describe.rsplit("-", 2)[-2]
if "." in describe:
return 0
return None
def get_is_release(git_dir):
return _get_raw_tag_info(git_dir) == 0
def _run_git_functions():
git_dir = None
if _git_is_installed():
git_dir = _get_git_directory()
return git_dir or None
def get_git_short_sha(git_dir=None):
if not git_dir:
git_dir = _run_git_functions()
if git_dir:
return _run_git_command(
['log', '-n1', '--pretty=format:%h'], git_dir)
return None
def _clean_changelog_message(msg):
msg = msg.replace('*', r'\*')
msg = msg.replace('_', r'\_')
msg = msg.replace('`', r'\`')
return msg
|
Apache License 2.0
|
scottfreellc/alphapy
|
alphapy/transforms.py
|
dminus
|
python
|
def dminus(f):
c1 = 'downmove'
f[c1] = -net(f, 'low')
c2 = 'upmove'
f[c2] = net(f, 'high')
new_column = f.apply(gtval0, axis=1, args=[c1, c2])
return new_column
|
r"""Calculate the Minus Directional Movement (-DM).
Parameters
----------
f : pandas.DataFrame
Dataframe with columns ``high`` and ``low``.
Returns
-------
new_column : pandas.Series (float)
The array containing the new feature.
References
----------
*Directional movement is negative (minus) when the prior low minus
the current low is greater than the current high minus the prior high.
This so-called Minus Directional Movement (-DM) equals the prior low
minus the current low, provided it is positive. A negative value
would simply be entered as zero* [SC_ADX]_.
|
https://github.com/scottfreellc/alphapy/blob/fb0a52a822f3c5c58a9adf4c038204dea7d78f29/alphapy/transforms.py#L304-L331
|
from alphapy.calendrical import biz_day_month
from alphapy.calendrical import biz_day_week
from alphapy.globals import NULLTEXT
from alphapy.globals import BSEP, PSEP, USEP
from alphapy.variables import vexec
import itertools
import logging
import math
import numpy as np
import pandas as pd
logger = logging.getLogger(__name__)
def abovema(f, c, p = 50):
new_column = f[c] > ma(f, c, p)
return new_column
def adx(f, p = 14):
c1 = 'diplus'
vexec(f, c1)
c2 = 'diminus'
vexec(f, c2)
dip = f[c1]
dim = f[c2]
didiff = abs(dip - dim)
disum = dip + dim
new_column = 100 * didiff.ewm(span=p).mean() / disum
return new_column
def belowma(f, c, p = 50):
new_column = f[c] < ma(f, c, p)
return new_column
def c2max(f, c1, c2):
max_val = max(f[c1], f[c2])
return max_val
def c2min(f, c1, c2):
min_val = min(f[c1], f[c2])
return min_val
def diff(f, c, n = 1):
new_column = np.diff(f[c], n)
return new_column
def diminus(f, p = 14):
tr = 'truerange'
vexec(f, tr)
atr = USEP.join(['atr', str(p)])
vexec(f, atr)
dmm = 'dmminus'
f[dmm] = dminus(f)
new_column = 100 * dminus(f).ewm(span=p).mean() / f[atr]
return new_column
def diplus(f, p = 14):
tr = 'truerange'
vexec(f, tr)
atr = USEP.join(['atr', str(p)])
vexec(f, atr)
dmp = 'dmplus'
vexec(f, dmp)
new_column = 100 * f[dmp].ewm(span=p).mean() / f[atr]
return new_column
|
Apache License 2.0
|
swissdatasciencecenter/renku-python
|
renku/core/management/migrations/m_0004__submodules.py
|
_fetch_file_metadata
|
python
|
def _fetch_file_metadata(client, path):
paths = glob.glob(f"{client.path}/.renku/datasets/*/*.yml" "")
for dataset in _fetch_datasets(client, client.repo.head.commit, paths, [])[0]:
for file in dataset.files:
if file.entity.path == path:
return file
|
Return metadata for a single file.
|
https://github.com/swissdatasciencecenter/renku-python/blob/5e43e2eff67cdf20fc2805799fe2822e23bc503d/renku/core/management/migrations/m_0004__submodules.py#L159-L165
|
import glob
import os
import shutil
from pathlib import Path
from git import GitError, Repo
from renku.core import errors
from renku.core.management.client import LocalClient
from renku.core.management.command_builder.command import inject
from renku.core.management.interface.client_dispatcher import IClientDispatcher
from renku.core.management.interface.database_dispatcher import IDatabaseDispatcher
from renku.core.management.migrations.m_0009__new_metadata_storage import _fetch_datasets
from renku.core.management.migrations.models.v3 import DatasetFileSchemaV3, get_client_datasets
from renku.core.management.migrations.models.v9 import (
DatasetFile,
OldDatasetFileSchema,
generate_file_id,
generate_label,
)
from renku.core.utils.urls import remove_credentials
def migrate(migration_context):
_migrate_submodule_based_datasets(migration_context.client)
@inject.autoparams()
def _migrate_submodule_based_datasets(
client, client_dispatcher: IClientDispatcher, database_dispatcher: IDatabaseDispatcher
):
from renku.core.management.migrate import is_project_unsupported, migrate
submodules = client.repo.submodules
if not submodules:
return
repo_paths = []
symlinks = []
for dataset in get_client_datasets(client):
for file_ in dataset.files:
path = client.path / file_.path
if not path.is_symlink():
continue
target = path.resolve()
if "/.renku/vendors/" not in str(target):
continue
repo = Repo(target.parent, search_parent_directories=True)
repo_path = repo.working_dir
if repo_path not in repo_paths:
repo_paths.append(repo_path)
symlinks.append((file_.path, target, repo_path))
if not symlinks:
return
for s in submodules:
try:
s.update()
except GitError:
pass
submodules_urls = {s.path: s.url for s in submodules}
remote_clients = {p: LocalClient(p) for p in repo_paths}
for remote_client in remote_clients.values():
client_dispatcher.push_created_client_to_stack(remote_client)
database_dispatcher.push_database_to_stack(remote_client.database_path, commit=True)
try:
if not is_project_unsupported():
migrate(skip_template_update=True, skip_docker_update=True)
finally:
database_dispatcher.pop_database()
client_dispatcher.pop_client()
metadata = {}
for path, target, repo_path in symlinks:
remote_client = remote_clients[repo_path]
path_within_repo = target.relative_to(repo_path)
repo_is_remote = ".renku/vendors/local" not in repo_path
based_on = None
submodule_path = Path(repo_path).relative_to(client.path)
url = submodules_urls.get(str(submodule_path), "")
if repo_is_remote:
based_on = _fetch_file_metadata(remote_client, path_within_repo)
if based_on:
based_on.url = url
based_on.based_on = None
else:
based_on = DatasetFile.from_revision(remote_client, path=path_within_repo, url=url)
data = OldDatasetFileSchema(client=remote_client).dump(based_on)
based_on = DatasetFileSchemaV3(client=remote_client).load(data)
else:
if url:
full_path = Path(url) / path_within_repo
rel_path = os.path.relpath(full_path, client.path)
url = f"file://{rel_path}"
metadata[path] = (based_on, url)
path = client.path / path
path.unlink()
try:
shutil.move(target, path)
except FileNotFoundError:
raise errors.InvalidFileOperation(f"File was not found: {target}")
for s in submodules:
if s.path.startswith(".renku/vendors/"):
try:
s.remove(force=True)
except ValueError:
pass
for dataset in get_client_datasets(client):
for file_ in dataset.files:
if file_.path in metadata:
based_on, url = metadata[file_.path]
file_.based_on = based_on
file_.url = remove_credentials(url)
file_.commit = client.find_previous_commit(file_.path)
file_._id = generate_file_id(client, hexsha=file_.commit.hexsha, path=file_.path)
file_._label = generate_label(file_.path, file_.commit.hexsha)
dataset.to_yaml()
|
Apache License 2.0
|
gabstopper/smc-python
|
smc/policy/interface.py
|
InterfaceRule.layer2_ipv6_access_rules
|
python
|
def layer2_ipv6_access_rules(self):
pass
|
Layer 2 IPv6 access rule
|
https://github.com/gabstopper/smc-python/blob/54386c8a710727cc1acf69334a57b155d2f5408c/smc/policy/interface.py#L34-L41
|
from smc.base.collection import rule_collection
from smc.policy.policy import Policy
from smc.policy.rule import IPv4Layer2Rule, EthernetRule
from smc.api.exceptions import ElementNotFound, LoadPolicyFailed, CreateElementFailed, CreatePolicyFailed
from smc.base.model import ElementCreator
class InterfaceRule(object):
@property
def layer2_ipv4_access_rules(self):
return rule_collection(
self.get_relation('l2_interface_ipv4_access_rules'),
IPv4Layer2Rule)
@property
|
Apache License 2.0
|
vovanbo/aiohttp_json_api
|
aiohttp_json_api/context.py
|
JSONAPIContext.get_filter
|
python
|
def get_filter(self, field: str, name: str, default: Any = None) -> Any:
return self.filters.get((field, name), default)
|
Get filter from request context by name and field.
If the filter *name* has been applied on the *field*, the
*filter* is returned and *default* otherwise.
:arg str field:
Name of field
:arg str name:
Name of filter
:arg Any default:
A fallback rule value for the filter.
|
https://github.com/vovanbo/aiohttp_json_api/blob/1d4864a0f73e4df33278e16d499642a60fa89aaa/aiohttp_json_api/context.py#L324-L338
|
import json
import re
from collections import OrderedDict
from typing import Any, Optional, Tuple, Union
import inflection
from aiohttp import web
from multidict import MultiDict
from .common import Event, FilterRule, JSONAPI, logger, SortDirection
from .errors import HTTPBadRequest, HTTPNotFound
from .abc.schema import SchemaABC
from .typings import (
RequestFields, RequestFilters, RequestIncludes, RequestSorting
)
class JSONAPIContext:
FILTER_KEY = re.compile(r"filter\[(?P<field>\w[-\w_]*)\]")
FILTER_VALUE = re.compile(r"(?P<name>[a-z]+):(?P<value>.*)")
FIELDS_RE = re.compile(r"fields\[(?P<name>\w[-\w_]*)\]")
inflect = inflection.underscore
def __init__(self, request: web.Request,
resource_type: str = None) -> None:
self.__request = request
self.__resource_type = resource_type
if self.__resource_type is None:
self.__resource_type = self.__request.match_info.get('type', None)
if (self.__resource_type is None or
self.__resource_type not in self.registry):
raise HTTPNotFound()
self.__pagination = None
self.__filters = self.parse_request_filters(request)
self.__fields = self.parse_request_fields(request)
self.__include = self.parse_request_includes(request)
self.__sorting = self.parse_request_sorting(request)
self.__event = None
if self.__request.method in Event.__members__:
self.__event = Event[self.__request.method]
schema_cls, controller_cls = self.registry.get(self.resource_type)
self.__controller = controller_cls(self)
self.__schema = schema_cls(self)
logger.debug('Request context info:\n'
'Filters: %s\n'
'Fields: %s\n'
'Includes: %s\n'
'Sorting: %s\n'
'Event: %s\n'
'Schema: %s\n'
'Controller: %s\n',
self.filters, self.fields, self.include, self.sorting,
self.event, schema_cls.__name__, controller_cls.__name__)
@property
def request(self):
return self.__request
@property
def app(self):
return self.__request.app
@property
def resource_type(self):
return self.__resource_type
@property
def registry(self):
return self.app[JSONAPI]['registry']
@property
def schema(self) -> Optional[SchemaABC]:
return self.__schema
@property
def controller(self):
return self.__controller
@property
def filters(self):
return self.__filters
@property
def fields(self):
return self.__fields
@property
def include(self):
return self.__include
@property
def sorting(self):
return self.__sorting
@property
def event(self):
return self.__event
@property
def pagination(self):
if self.__pagination is not None:
return self.__pagination
if self.schema is not None:
pagination_type = self.schema.opts.pagination
if pagination_type:
self.__pagination = pagination_type(self.__request)
return self.__pagination
return None
@classmethod
def convert_field_name(cls, field_name):
return cls.inflect(field_name) if cls.inflect is not None else field_name
@classmethod
def parse_request_filters(cls, request: web.Request) -> RequestFilters:
filters = MultiDict()
for key, value in request.query.items():
key_match = re.fullmatch(cls.FILTER_KEY, key)
value_match = re.fullmatch(cls.FILTER_VALUE, value)
if key_match and not value_match:
field = key_match.group('field')
raise HTTPBadRequest(
detail=f"The filter '{field}' is not correct applied.",
source_parameter=key
)
elif key_match and value_match:
field = key_match.group('field')
name = value_match.group('name')
value = value_match.group('value')
try:
value = json.loads(value)
except Exception as err:
logger.debug(str(err), exc_info=False)
raise HTTPBadRequest(
detail=f"The value '{value}' is not JSON serializable",
source_parameter=key
)
filters.add(cls.convert_field_name(field),
FilterRule(name=name, value=value))
return filters
@classmethod
def parse_request_fields(cls, request: web.Request) -> RequestFields:
fields = OrderedDict()
for key, value in request.query.items():
match = re.fullmatch(cls.FIELDS_RE, key)
if match:
typename = match.group('name')
fields[typename] = tuple(
cls.convert_field_name(item.strip())
for item in value.split(',')
if item.strip()
)
return fields
@classmethod
def parse_request_includes(cls, request: web.Request) -> RequestIncludes:
return tuple(
tuple(cls.convert_field_name(p) for p in path.split('.'))
for path in request.query.get('include', '').split(',') if path
)
@classmethod
def parse_request_sorting(cls, request: web.Request) -> RequestSorting:
sort = OrderedDict()
if 'sort' not in request.query:
return sort
direction = SortDirection.ASC
for field in request.query.get('sort').split(','):
if field.startswith(('+', '-')):
direction = SortDirection(field[0])
field = field[1:]
field = tuple(cls.convert_field_name(e.strip())
for e in field.split('.'))
sort[field] = direction
return sort
def has_filter(self, field: str, name: str) -> bool:
return (field, name) in self.filters
|
MIT License
|
lorien/user_agent
|
user_agent/base.py
|
generate_navigator
|
python
|
def generate_navigator(os=None, navigator=None, platform=None,
device_type=None):
if platform is not None:
os = platform
warn('The `platform` option is deprecated.'
' Use `os` option instead.', stacklevel=3)
device_type, os_id, navigator_id = (
pick_config_ids(device_type, os, navigator)
)
system = build_system_components(
device_type, os_id, navigator_id)
app = build_app_components(os_id, navigator_id)
ua_template = choose_ua_template(
device_type, navigator_id, app)
user_agent = ua_template.format(system=system, app=app)
app_version = build_navigator_app_version(
os_id, navigator_id, system['platform_version'], user_agent)
return {
'os_id': os_id,
'navigator_id': navigator_id,
'platform': system['platform'],
'oscpu': system['oscpu'],
'build_version': app['build_version'],
'build_id': app['build_id'],
'app_version': app_version,
'app_name': app['name'],
'app_code_name': 'Mozilla',
'product': 'Gecko',
'product_sub': app['product_sub'],
'vendor': app['vendor'],
'vendor_sub': '',
'user_agent': user_agent,
}
|
Generates web navigator's config
:param os: limit list of oses for generation
:type os: string or list/tuple or None
:param navigator: limit list of browser engines for generation
:type navigator: string or list/tuple or None
:param device_type: limit possible oses by device type
:type device_type: list/tuple or None, possible values:
"desktop", "smartphone", "tablet", "all"
:return: User-Agent config
:rtype: dict with keys (os, name, platform, oscpu, build_version,
build_id, app_version, app_name, app_code_name,
product, product_sub, vendor, vendor_sub,
user_agent)
:raises InvalidOption: if could not generate user-agent for
any combination of allowed platforms and navigators
:raise InvalidOption: if any of passed options is invalid
|
https://github.com/lorien/user_agent/blob/6d697db1782320f49bf8f4482182dcdbf588daf9/user_agent/base.py#L509-L566
|
from random import SystemRandom
from datetime import datetime, timedelta
from itertools import product
import six
from .warning import warn
from .device import SMARTPHONE_DEV_IDS, TABLET_DEV_IDS
from .error import InvalidOption
__all__ = ['generate_user_agent', 'generate_navigator',
'generate_navigator_js']
randomizer = SystemRandom()
DEVICE_TYPE_OS = {
'desktop': ('win', 'mac', 'linux'),
'smartphone': ('android',),
'tablet': ('android',),
}
OS_DEVICE_TYPE = {
'win': ('desktop',),
'linux': ('desktop',),
'mac': ('desktop',),
'android': ('smartphone', 'tablet'),
}
DEVICE_TYPE_NAVIGATOR = {
'desktop': ('chrome', 'firefox', 'ie'),
'smartphone': ('firefox', 'chrome'),
'tablet': ('firefox', 'chrome'),
}
NAVIGATOR_DEVICE_TYPE = {
'ie': ('desktop',),
'chrome': ('desktop', 'smartphone', 'tablet'),
'firefox': ('desktop', 'smartphone', 'tablet'),
}
OS_PLATFORM = {
'win': (
'Windows NT 5.1',
'Windows NT 6.1',
'Windows NT 6.2',
'Windows NT 6.3',
'Windows NT 10.0',
),
'mac': (
'Macintosh; Intel Mac OS X 10.8',
'Macintosh; Intel Mac OS X 10.9',
'Macintosh; Intel Mac OS X 10.10',
'Macintosh; Intel Mac OS X 10.11',
'Macintosh; Intel Mac OS X 10.12',
),
'linux': (
'X11; Linux',
'X11; Ubuntu; Linux',
),
'android': (
'Android 4.4',
'Android 4.4.1',
'Android 4.4.2',
'Android 4.4.3',
'Android 4.4.4',
'Android 5.0',
'Android 5.0.1',
'Android 5.0.2',
'Android 5.1',
'Android 5.1.1',
'Android 6.0',
'Android 6.0.1',
),
}
OS_CPU = {
'win': (
'',
'Win64; x64',
'WOW64',
),
'linux': (
'i686',
'x86_64',
'i686 on x86_64',
),
'mac': (
'',
),
'android': (
'armv7l',
'armv8l',
),
}
OS_NAVIGATOR = {
'win': ('chrome', 'firefox', 'ie'),
'mac': ('firefox', 'chrome'),
'linux': ('chrome', 'firefox'),
'android': ('firefox', 'chrome'),
}
NAVIGATOR_OS = {
'chrome': ('win', 'linux', 'mac', 'android'),
'firefox': ('win', 'linux', 'mac', 'android'),
'ie': ('win',),
}
FIREFOX_VERSION = (
('45.0', datetime(2016, 3, 8)),
('46.0', datetime(2016, 4, 26)),
('47.0', datetime(2016, 6, 7)),
('48.0', datetime(2016, 8, 2)),
('49.0', datetime(2016, 9, 20)),
('50.0', datetime(2016, 11, 15)),
('51.0', datetime(2017, 1, 24)),
)
CHROME_BUILD = '''
80.0.3987.132
80.0.3987.149
80.0.3987.99
81.0.4044.117
81.0.4044.138
83.0.4103.101
83.0.4103.106
83.0.4103.96
84.0.4147.105
84.0.4147.111
84.0.4147.125
84.0.4147.135
84.0.4147.89
85.0.4183.101
85.0.4183.102
85.0.4183.120
85.0.4183.121
85.0.4183.127
85.0.4183.81
85.0.4183.83
86.0.4240.110
86.0.4240.111
86.0.4240.114
86.0.4240.183
86.0.4240.185
86.0.4240.75
86.0.4240.78
86.0.4240.80
86.0.4240.96
86.0.4240.99
'''.strip().splitlines()
IE_VERSION = (
(8, 'MSIE 8.0', '4.0'),
(9, 'MSIE 9.0', '5.0'),
(10, 'MSIE 10.0', '6.0'),
(11, 'MSIE 11.0', '7.0'),
)
USER_AGENT_TEMPLATE = {
'firefox': (
'Mozilla/5.0'
' ({system[ua_platform]}; rv:{app[build_version]})'
' Gecko/{app[geckotrail]}'
' Firefox/{app[build_version]}'
),
'chrome': (
'Mozilla/5.0'
' ({system[ua_platform]}) AppleWebKit/537.36'
' (KHTML, like Gecko)'
' Chrome/{app[build_version]} Safari/537.36'
),
'chrome_smartphone': (
'Mozilla/5.0'
' ({system[ua_platform]}) AppleWebKit/537.36'
' (KHTML, like Gecko)'
' Chrome/{app[build_version]} Mobile Safari/537.36'
),
'chrome_tablet': (
'Mozilla/5.0'
' ({system[ua_platform]}) AppleWebKit/537.36'
' (KHTML, like Gecko)'
' Chrome/{app[build_version]} Safari/537.36'
),
'ie_less_11': (
'Mozilla/5.0'
' (compatible; {app[build_version]}; {system[ua_platform]};'
' Trident/{app[trident_version]})'
),
'ie_11': (
'Mozilla/5.0'
' ({system[ua_platform]}; Trident/{app[trident_version]};'
' rv:11.0) like Gecko'
),
}
def get_firefox_build():
build_ver, date_from = randomizer.choice(FIREFOX_VERSION)
try:
idx = FIREFOX_VERSION.index((build_ver, date_from))
_, date_to = FIREFOX_VERSION[idx + 1]
except IndexError:
date_to = date_from + timedelta(days=1)
sec_range = (date_to - date_from).total_seconds() - 1
build_rnd_time = (
date_from + timedelta(seconds=randomizer.randint(0, sec_range))
)
return build_ver, build_rnd_time.strftime('%Y%m%d%H%M%S')
def get_chrome_build():
return randomizer.choice(CHROME_BUILD)
def get_ie_build():
return randomizer.choice(IE_VERSION)
MACOSX_CHROME_BUILD_RANGE = {
'10.8': (0, 8),
'10.9': (0, 5),
'10.10': (0, 5),
'10.11': (0, 6),
'10.12': (0, 2)
}
def fix_chrome_mac_platform(platform):
ver = platform.split('OS X ')[1]
build_range = range(*MACOSX_CHROME_BUILD_RANGE[ver])
build = randomizer.choice(build_range)
mac_ver = ver.replace('.', '_') + '_' + str(build)
return 'Macintosh; Intel Mac OS X %s' % mac_ver
def build_system_components(device_type, os_id, navigator_id):
if os_id == 'win':
platform_version = randomizer.choice(OS_PLATFORM['win'])
cpu = randomizer.choice(OS_CPU['win'])
if cpu:
platform = '%s; %s' % (platform_version, cpu)
else:
platform = platform_version
res = {
'platform_version': platform_version,
'platform': platform,
'ua_platform': platform,
'oscpu': platform,
}
elif os_id == 'linux':
cpu = randomizer.choice(OS_CPU['linux'])
platform_version = randomizer.choice(OS_PLATFORM['linux'])
platform = '%s %s' % (platform_version, cpu)
res = {
'platform_version': platform_version,
'platform': platform,
'ua_platform': platform,
'oscpu': 'Linux %s' % cpu,
}
elif os_id == 'mac':
cpu = randomizer.choice(OS_CPU['mac'])
platform_version = randomizer.choice(OS_PLATFORM['mac'])
platform = platform_version
if navigator_id == 'chrome':
platform = fix_chrome_mac_platform(platform)
res = {
'platform_version': platform_version,
'platform': 'MacIntel',
'ua_platform': platform,
'oscpu': 'Intel Mac OS X %s' % platform.split(' ')[-1],
}
elif os_id == 'android':
assert navigator_id in ('firefox', 'chrome')
assert device_type in ('smartphone', 'tablet')
platform_version = randomizer.choice(OS_PLATFORM['android'])
if navigator_id == 'firefox':
if device_type == 'smartphone':
ua_platform = '%s; Mobile' % platform_version
elif device_type == 'tablet':
ua_platform = '%s; Tablet' % platform_version
elif navigator_id == 'chrome':
device_id = randomizer.choice(SMARTPHONE_DEV_IDS)
ua_platform = 'Linux; %s; %s' % (platform_version, device_id)
oscpu = 'Linux %s' % randomizer.choice(OS_CPU['android'])
res = {
'platform_version': platform_version,
'ua_platform': ua_platform,
'platform': oscpu,
'oscpu': oscpu,
}
return res
def build_app_components(os_id, navigator_id):
if navigator_id == 'firefox':
build_version, build_id = get_firefox_build()
if os_id in ('win', 'linux', 'mac'):
geckotrail = '20100101'
else:
geckotrail = build_version
res = {
'name': 'Netscape',
'product_sub': '20100101',
'vendor': '',
'build_version': build_version,
'build_id': build_id,
'geckotrail': geckotrail,
}
elif navigator_id == 'chrome':
res = {
'name': 'Netscape',
'product_sub': '20030107',
'vendor': 'Google Inc.',
'build_version': get_chrome_build(),
'build_id': None,
}
elif navigator_id == 'ie':
num_ver, build_version, trident_version = get_ie_build()
if num_ver >= 11:
app_name = 'Netscape'
else:
app_name = 'Microsoft Internet Explorer'
res = {
'name': app_name,
'product_sub': None,
'vendor': '',
'build_version': build_version,
'build_id': None,
'trident_version': trident_version,
}
return res
def get_option_choices(opt_name, opt_value, default_value, all_choices):
choices = []
if isinstance(opt_value, six.string_types):
choices = [opt_value]
elif isinstance(opt_value, (list, tuple)):
choices = list(opt_value)
elif opt_value is None:
choices = default_value
else:
raise InvalidOption('Option %s has invalid'
' value: %s' % (opt_name, opt_value))
if 'all' in choices:
choices = all_choices
for item in choices:
if item not in all_choices:
raise InvalidOption('Choices of option %s contains invalid'
' item: %s' % (opt_name, item))
return choices
def pick_config_ids(device_type, os, navigator):
if os is None:
default_dev_types = ['desktop']
else:
default_dev_types = list(DEVICE_TYPE_OS.keys())
dev_type_choices = get_option_choices(
'device_type', device_type, default_dev_types,
list(DEVICE_TYPE_OS.keys())
)
os_choices = get_option_choices('os', os, list(OS_NAVIGATOR.keys()),
list(OS_NAVIGATOR.keys()))
nav_choices = get_option_choices('navigator', navigator,
list(NAVIGATOR_OS.keys()),
list(NAVIGATOR_OS.keys()))
variants = []
for dev, os, nav in product(dev_type_choices, os_choices,
nav_choices):
if (os in DEVICE_TYPE_OS[dev]
and nav in DEVICE_TYPE_NAVIGATOR[dev]
and nav in OS_NAVIGATOR[os]):
variants.append((dev, os, nav))
if not variants:
raise InvalidOption('Options device_type, os and navigator'
' conflicts with each other')
device_type, os_id, navigator_id = randomizer.choice(variants)
assert os_id in OS_PLATFORM
assert navigator_id in NAVIGATOR_OS
assert device_type in DEVICE_TYPE_OS
return device_type, os_id, navigator_id
def choose_ua_template(device_type, navigator_id, app):
tpl_name = navigator_id
if navigator_id == 'ie':
tpl_name = ('ie_11' if app['build_version'] == 'MSIE 11.0'
else 'ie_less_11')
if navigator_id == 'chrome':
if device_type == 'smartphone':
tpl_name = 'chrome_smartphone'
if device_type == 'tablet':
tpl_name = 'chrome_tablet'
return USER_AGENT_TEMPLATE[tpl_name]
def build_navigator_app_version(os_id, navigator_id,
platform_version, user_agent):
if navigator_id in ('chrome', 'ie'):
assert user_agent.startswith('Mozilla/')
app_version = user_agent.split('Mozilla/', 1)[1]
elif navigator_id == 'firefox':
if os_id == 'android':
app_version = '5.0 (%s)' % platform_version
else:
os_token = {
'win': 'Windows',
'mac': 'Macintosh',
'linux': 'X11',
}[os_id]
app_version = '5.0 (%s)' % os_token
return app_version
|
MIT License
|
centerforopenscience/osf.io
|
addons/base/models.py
|
BaseCitationsNodeSettings.complete
|
python
|
def complete(self):
return bool(self.has_auth and self.user_settings.verify_oauth_access(
node=self.owner,
external_account=self.external_account,
metadata={'folder': self.list_id},
))
|
Boolean indication of addon completeness
|
https://github.com/centerforopenscience/osf.io/blob/6552a01fe250997cd3eb67cf72fc7157d9bc5af6/addons/base/models.py#L881-L887
|
import abc
import os
import time
import markupsafe
import requests
from django.db import models
from django.utils import timezone
from framework.auth import Auth
from framework.auth.decorators import must_be_logged_in
from framework.exceptions import HTTPError, PermissionsError
from mako.lookup import TemplateLookup
from osf.models.base import BaseModel, ObjectIDMixin
from osf.models.external import ExternalAccount
from osf.models.node import AbstractNode
from osf.models.user import OSFUser
from osf.utils.datetime_aware_jsonfield import DateTimeAwareJSONField
from osf.utils.fields import NonNaiveDateTimeField
from website import settings
from addons.base import logger, serializer
from website.oauth.signals import oauth_complete
lookup = TemplateLookup(
directories=[
settings.TEMPLATES_PATH
],
default_filters=[
'unicode',
'temp_ampersand_fixer',
'h',
],
imports=[
'from website.util.sanitize import temp_ampersand_fixer',
]
)
class BaseAddonSettings(ObjectIDMixin, BaseModel):
is_deleted = models.BooleanField(default=False)
deleted = NonNaiveDateTimeField(null=True, blank=True)
class Meta:
abstract = True
@property
def config(self):
return self._meta.app_config
@property
def short_name(self):
return self.config.short_name
def delete(self, save=True):
self.is_deleted = True
self.deleted = timezone.now()
self.on_delete()
if save:
self.save()
def undelete(self, save=True):
self.is_deleted = False
self.deleted = None
self.on_add()
if save:
self.save()
def to_json(self, user):
return {
'addon_short_name': self.config.short_name,
'addon_full_name': self.config.full_name,
}
def on_add(self):
pass
def on_delete(self):
pass
class BaseUserSettings(BaseAddonSettings):
owner = models.OneToOneField(OSFUser, related_name='%(app_label)s_user_settings',
blank=True, null=True, on_delete=models.CASCADE)
class Meta:
abstract = True
@property
def public_id(self):
return None
@property
def has_auth(self):
return False
@property
def nodes_authorized(self):
model = self.config.node_settings
if not model:
return []
return [obj.owner for obj in model.objects.filter(user_settings=self, owner__is_deleted=False).select_related('owner')]
@property
def can_be_merged(self):
return hasattr(self, 'merge')
def to_json(self, user):
ret = super(BaseUserSettings, self).to_json(user)
ret['has_auth'] = self.has_auth
ret.update({
'nodes': [
{
'_id': node._id,
'url': node.url,
'title': node.title,
'registered': node.is_registration,
'api_url': node.api_url
}
for node in self.nodes_authorized
]
})
return ret
def __repr__(self):
if self.owner:
return '<{cls} owned by user {uid}>'.format(cls=self.__class__.__name__, uid=self.owner._id)
return '<{cls} with no owner>'.format(cls=self.__class__.__name__)
@oauth_complete.connect
def oauth_complete(provider, account, user):
if not user or not account:
return
user.add_addon(account.provider)
user.save()
class BaseOAuthUserSettings(BaseUserSettings):
oauth_grants = DateTimeAwareJSONField(default=dict, blank=True)
oauth_provider = None
serializer = serializer.OAuthAddonSerializer
class Meta:
abstract = True
@property
def has_auth(self):
return self.external_accounts.exists()
@property
def external_accounts(self):
return self.owner.external_accounts.filter(provider=self.oauth_provider.short_name)
def delete(self, save=True):
for account in self.external_accounts.filter(provider=self.config.short_name):
self.revoke_oauth_access(account, save=False)
super(BaseOAuthUserSettings, self).delete(save=save)
def grant_oauth_access(self, node, external_account, metadata=None):
if not self.owner.external_accounts.filter(id=external_account.id).exists():
raise PermissionsError()
metadata = metadata or {}
if node._id not in self.oauth_grants:
self.oauth_grants[node._id] = {}
if external_account._id not in self.oauth_grants[node._id]:
self.oauth_grants[node._id][external_account._id] = {}
for key, value in metadata.items():
self.oauth_grants[node._id][external_account._id][key] = value
self.save()
@must_be_logged_in
def revoke_oauth_access(self, external_account, auth, save=True):
for node in self.get_nodes_with_oauth_grants(external_account):
try:
node.get_addon(external_account.provider, is_deleted=True).deauthorize(auth=auth)
except AttributeError:
pass
if external_account.osfuser_set.count() == 1 and external_account.osfuser_set.filter(id=auth.user.id).exists():
self.revoke_remote_oauth_access(external_account)
for key in self.oauth_grants:
self.oauth_grants[key].pop(external_account._id, None)
if save:
self.save()
def revoke_remote_oauth_access(self, external_account):
pass
def verify_oauth_access(self, node, external_account, metadata=None):
metadata = metadata or {}
try:
grants = self.oauth_grants[node._id][external_account._id]
except KeyError:
return False
for key, value in metadata.items():
if key not in grants or grants[key] != value:
return False
return True
def get_nodes_with_oauth_grants(self, external_account):
for node_id, grants in self.oauth_grants.items():
node = AbstractNode.load(node_id)
if external_account._id in grants.keys() and not node.is_deleted:
yield node
def get_attached_nodes(self, external_account):
for node in self.get_nodes_with_oauth_grants(external_account):
if node is None:
continue
node_settings = node.get_addon(self.oauth_provider.short_name)
if node_settings is None:
continue
if node_settings.external_account == external_account:
yield node
def merge(self, user_settings):
if user_settings.__class__ is not self.__class__:
raise TypeError('Cannot merge different addons')
for node_id, data in user_settings.oauth_grants.items():
if node_id not in self.oauth_grants:
self.oauth_grants[node_id] = data
else:
node_grants = user_settings.oauth_grants[node_id].items()
for ext_acct, meta in node_grants:
if ext_acct not in self.oauth_grants[node_id]:
self.oauth_grants[node_id][ext_acct] = meta
else:
for k, v in meta:
if k not in self.oauth_grants[node_id][ext_acct]:
self.oauth_grants[node_id][ext_acct][k] = v
user_settings.oauth_grants = {}
user_settings.save()
try:
config = settings.ADDONS_AVAILABLE_DICT[
self.oauth_provider.short_name
]
Model = config.models['nodesettings']
except KeyError:
pass
else:
Model.objects.filter(user_settings=user_settings).update(user_settings=self)
self.save()
def to_json(self, user):
ret = super(BaseOAuthUserSettings, self).to_json(user)
ret['accounts'] = self.serializer(
user_settings=self
).serialized_accounts
return ret
def on_delete(self):
super(BaseOAuthUserSettings, self).on_delete()
nodes = [AbstractNode.load(node_id) for node_id in self.oauth_grants.keys()]
for node in nodes:
node_addon = node.get_addon(self.oauth_provider.short_name)
if node_addon and node_addon.user_settings == self:
node_addon.clear_auth()
class BaseNodeSettings(BaseAddonSettings):
owner = models.OneToOneField(AbstractNode, related_name='%(app_label)s_node_settings',
null=True, blank=True, on_delete=models.CASCADE)
class Meta:
abstract = True
@property
def complete(self):
raise NotImplementedError()
@property
def configured(self):
return self.complete
@property
def has_auth(self):
return False
def to_json(self, user):
ret = super(BaseNodeSettings, self).to_json(user)
ret.update({
'user': {
'permissions': self.owner.get_permissions(user)
},
'node': {
'id': self.owner._id,
'api_url': self.owner.api_url,
'url': self.owner.url,
'is_registration': self.owner.is_registration,
},
'node_settings_template': os.path.basename(self.config.node_settings_template),
})
return ret
def before_page_load(self, node, user):
pass
def before_remove_contributor(self, node, removed):
pass
def after_remove_contributor(self, node, removed, auth=None):
pass
def before_make_public(self, node):
pass
def before_make_private(self, node):
pass
def after_set_privacy(self, node, permissions):
pass
def before_fork(self, node, user):
if hasattr(self, 'user_settings'):
if self.user_settings is None:
return (
u'Because you have not configured the {addon} add-on, your authentication will not be '
u'transferred to the forked {category}. You may authorize and configure the {addon} add-on '
u'in the new fork on the settings page.'
).format(
addon=self.config.full_name,
category=node.project_or_component,
)
elif self.user_settings and self.user_settings.owner == user:
return (
u'Because you have authorized the {addon} add-on for this '
u'{category}, forking it will also transfer your authentication to '
u'the forked {category}.'
).format(
addon=self.config.full_name,
category=node.project_or_component,
)
else:
return (
u'Because the {addon} add-on has been authorized by a different '
u'user, forking it will not transfer authentication to the forked '
u'{category}. You may authorize and configure the {addon} add-on '
u'in the new fork on the settings page.'
).format(
addon=self.config.full_name,
category=node.project_or_component,
)
def after_fork(self, node, fork, user, save=True):
clone = self.clone()
clone.user_settings = None
clone.owner = fork
if save:
clone.save()
return clone
def before_register(self, node, user):
pass
def after_register(self, node, registration, user, save=True):
return None, None
def after_delete(self, user):
pass
class GenericRootNode(object):
path = '/'
name = ''
class BaseStorageAddon(object):
root_node = GenericRootNode()
class Meta:
abstract = True
@property
def archive_folder_name(self):
name = 'Archive of {addon}'.format(addon=self.config.full_name)
folder_name = getattr(self, 'folder_name', '').lstrip('/').strip()
if folder_name:
name = name + ': {folder}'.format(folder=folder_name)
return name
def _get_fileobj_child_metadata(self, filenode, user, cookie=None, version=None):
from api.base.utils import waterbutler_api_url_for
kwargs = {}
if version:
kwargs['version'] = version
if cookie:
kwargs['cookie'] = cookie
elif user:
kwargs['cookie'] = user.get_or_create_cookie().decode()
metadata_url = waterbutler_api_url_for(
self.owner._id,
self.config.short_name,
path=filenode.get('path', '/'),
user=user,
view_only=True,
_internal=True,
base_url=self.owner.osfstorage_region.waterbutler_url,
**kwargs
)
res = requests.get(metadata_url)
if res.status_code != 200:
raise HTTPError(res.status_code, data={'error': res.json()})
time.sleep(1.0 / 5.0)
data = res.json().get('data', None)
if data:
return [child['attributes'] for child in data]
return []
def _get_file_tree(self, filenode=None, user=None, cookie=None, version=None):
filenode = filenode or {
'path': '/',
'kind': 'folder',
'name': self.root_node.name,
}
if filenode.get('kind') == 'file':
return filenode
kwargs = {
'version': version,
'cookie': cookie,
}
filenode['children'] = [
self._get_file_tree(child, user, cookie=cookie)
for child in self._get_fileobj_child_metadata(filenode, user, **kwargs)
]
return filenode
class BaseOAuthNodeSettings(BaseNodeSettings):
external_account = models.ForeignKey(ExternalAccount, null=True, blank=True,
related_name='%(app_label)s_node_settings',
on_delete=models.CASCADE)
oauth_provider = None
class Meta:
abstract = True
@abc.abstractproperty
def folder_id(self):
raise NotImplementedError(
"BaseOAuthNodeSettings subclasses must expose a 'folder_id' property."
)
@abc.abstractproperty
def folder_name(self):
raise NotImplementedError(
"BaseOAuthNodeSettings subclasses must expose a 'folder_name' property."
)
@abc.abstractproperty
def folder_path(self):
raise NotImplementedError(
"BaseOAuthNodeSettings subclasses must expose a 'folder_path' property."
)
def fetch_folder_name(self):
return self.folder_name
@property
def nodelogger(self):
auth = None
if self.user_settings:
auth = Auth(self.user_settings.owner)
self._logger_class = getattr(
self,
'_logger_class',
type(
'{0}NodeLogger'.format(self.config.short_name.capitalize()),
(logger.AddonNodeLogger,),
{'addon_short_name': self.config.short_name}
)
)
return self._logger_class(
node=self.owner,
auth=auth
)
@property
def complete(self):
return bool(
self.has_auth and
self.external_account and
self.user_settings.verify_oauth_access(
node=self.owner,
external_account=self.external_account,
)
)
@property
def configured(self):
return bool(
self.complete and
(self.folder_id or self.folder_name or self.folder_path)
)
@property
def has_auth(self):
return bool(
self.user_settings and self.user_settings.has_auth
) and bool(
self.external_account and self.user_settings.verify_oauth_access(
node=self.owner,
external_account=self.external_account
)
)
def clear_settings(self):
raise NotImplementedError(
"BaseOAuthNodeSettings subclasses must expose a 'clear_settings' method."
)
def set_auth(self, external_account, user, metadata=None, log=True):
user_settings = user.get_or_add_addon(self.oauth_provider.short_name)
user_settings.grant_oauth_access(
node=self.owner,
external_account=external_account,
metadata=metadata
)
user_settings.save()
self.user_settings = user_settings
self.external_account = external_account
if log:
self.nodelogger.log(action='node_authorized', save=True)
self.save()
def deauthorize(self, auth=None, add_log=False):
self.clear_auth()
def clear_auth(self):
self.external_account = None
self.user_settings = None
self.save()
def before_remove_contributor_message(self, node, removed):
if self.has_auth and self.user_settings.owner == removed:
return (
u'The {addon} add-on for this {category} is authenticated by {name}. '
u'Removing this user will also remove write access to {addon} '
u'unless another contributor re-authenticates the add-on.'
).format(
addon=self.config.full_name,
category=node.project_or_component,
name=removed.fullname,
)
before_remove_contributor = before_remove_contributor_message
def after_remove_contributor(self, node, removed, auth=None):
if self.user_settings and self.user_settings.owner == removed:
self.user_settings.oauth_grants[self.owner._id].pop(self.external_account._id)
self.user_settings.save()
self.clear_auth()
message = (
u'Because the {addon} add-on for {category} "{title}" was authenticated '
u'by {user}, authentication information has been deleted.'
).format(
addon=self.config.full_name,
category=markupsafe.escape(node.category_display),
title=markupsafe.escape(node.title),
user=markupsafe.escape(removed.fullname)
)
if not auth or auth.user != removed:
url = node.web_url_for('node_addons')
message += (
u' You can re-authenticate on the <u><a href="{url}">add-ons</a></u> page.'
).format(url=url)
return message
def after_fork(self, node, fork, user, save=True):
clone = super(BaseOAuthNodeSettings, self).after_fork(
node=node,
fork=fork,
user=user,
save=False,
)
if self.has_auth and self.user_settings.owner == user:
metadata = None
if self.complete:
try:
metadata = self.user_settings.oauth_grants[node._id][self.external_account._id]
except (KeyError, AttributeError):
pass
clone.set_auth(self.external_account, user, metadata=metadata, log=False)
else:
clone.clear_settings()
if save:
clone.save()
return clone
def before_register_message(self, node, user):
if self.has_auth:
return (
u'The contents of {addon} add-ons cannot be registered at this time; '
u'the {addon} add-on linked to this {category} will not be included '
u'as part of this registration.'
).format(
addon=self.config.full_name,
category=node.project_or_component,
)
before_register = before_register_message
def serialize_waterbutler_credentials(self):
raise NotImplementedError("BaseOAuthNodeSettings subclasses must implement a \
'serialize_waterbutler_credentials' method.")
def serialize_waterbutler_settings(self):
raise NotImplementedError("BaseOAuthNodeSettings subclasses must implement a \
'serialize_waterbutler_settings' method.")
class BaseCitationsNodeSettings(BaseOAuthNodeSettings):
class Meta:
abstract = True
def serialize_waterbutler_settings(self, *args, **kwargs):
pass
def serialize_waterbutler_credentials(self, *args, **kwargs):
pass
def create_waterbutler_log(self, *args, **kwargs):
pass
@property
def api(self):
if self._api is None:
self._api = self.oauth_provider(account=self.external_account)
return self._api
@property
|
Apache License 2.0
|
ucfopen/canvasapi
|
canvasapi/blueprint.py
|
BlueprintTemplate.get_unsynced_changes
|
python
|
def get_unsynced_changes(self, **kwargs):
return PaginatedList(
ChangeRecord,
self._requester,
"GET",
"courses/{}/blueprint_templates/{}/unsynced_changes".format(
self.course_id, self.id
),
kwargs=combine_kwargs(**kwargs),
)
|
Return changes made to associated courses of a blueprint course.
:calls: `GET /api/v1/courses/:course_id/blueprint_templates/:template_id/unsynced_changes \
<https://canvas.instructure.com/doc/api/blueprint_courses.html#method.master_courses\
/master_templates.unsynced_changes>`_
:rtype: :class:`canvasapi.paginated_list.PaginatedList` of
:class:`canvasapi.blueprint.ChangeRecord`
|
https://github.com/ucfopen/canvasapi/blob/2ac9979d17979932a3f43eb8737b7648566c1c68/canvasapi/blueprint.py#L87-L107
|
from canvasapi.canvas_object import CanvasObject
from canvasapi.paginated_list import PaginatedList
from canvasapi.util import combine_kwargs, obj_or_id
class BlueprintTemplate(CanvasObject):
def __str__(self):
return "{}".format(self.id)
def associated_course_migration(self, **kwargs):
response = self._requester.request(
"POST",
"courses/{}/blueprint_templates/{}/migrations".format(
self.course_id, self.id
),
_kwargs=combine_kwargs(**kwargs),
)
response_json = response.json()
response_json.update({"course_id": self.course_id})
return BlueprintMigration(self._requester, response_json)
def change_blueprint_restrictions(
self, content_type, content_id, restricted, **kwargs
):
kwargs["content_type"] = content_type
kwargs["content_id"] = content_id
kwargs["restricted"] = restricted
response = self._requester.request(
"PUT",
"courses/{}/blueprint_templates/{}/restrict_item".format(
self.course_id, self.id
),
_kwargs=combine_kwargs(**kwargs),
)
return response.json().get("success", False)
def get_associated_courses(self, **kwargs):
from canvasapi.course import Course
return PaginatedList(
Course,
self._requester,
"GET",
"courses/{}/blueprint_templates/{}/associated_courses".format(
self.course_id, self.id
),
_kwargs=combine_kwargs(**kwargs),
)
|
MIT License
|
microsoft/seismic-deeplearning
|
interpretation/deepseismic_interpretation/segyconverter/convert_segy.py
|
filter_data
|
python
|
def filter_data(output_dir, stddev_file, k, min_range, max_range, clip, normalize):
txt_file = os.path.join(output_dir, stddev_file)
if not os.path.isfile(txt_file):
raise Exception("Std Deviation file could not be found")
with open(os.path.join(txt_file), "r") as f:
metadatastr = f.read()
try:
metadata = json.loads(metadatastr)
stddev = float(metadata["stddev"])
mean = float(metadata["mean"])
except ValueError:
raise Exception("stddev value not valid: {}".format(metadatastr))
npy_files = list(f for f in os.listdir(output_dir) if f.endswith(".npy"))
for local_filename in npy_files:
cube = np.load(os.path.join(output_dir, local_filename))
if normalize or clip:
cube = dataprep.apply(cube, stddev, mean, k, min_range, max_range, clip=clip, normalize=normalize)
np.save(os.path.join(output_dir, local_filename), cube)
|
Normalization step on all files in output_dir. This function overwrites the existing
data file
:param str output_dir: Directory path of all npy files to normalize
:param str stddev_file: txt file containing standard deviation result
:param int k: number of standard deviation to be used in normalization
:param float min_range: minium range value
:param float max_range: maximum range value
:param clip: flag to turn on/off clip
:param normalize: flag to turn on/off normalization.
|
https://github.com/microsoft/seismic-deeplearning/blob/3f74face5d087a3947419a698a6181733d8be8fd/interpretation/deepseismic_interpretation/segyconverter/convert_segy.py#L19-L49
|
import os
import timeit
import argparse
import numpy as np
from deepseismic_interpretation.segyconverter.utils import segyextract, dataprep
import json
K = 12
MIN_VAL = 0
MAX_VAL = 1
|
MIT License
|
quantmind/pulsar
|
pulsar/apps/wsgi/route.py
|
Route.url
|
python
|
def url(self, **urlargs):
if self.defaults:
d = self.defaults.copy()
d.update(urlargs)
urlargs = d
url = '/'.join(self._url_generator(urlargs))
if not url:
return '/'
else:
url = '/' + url
return url if self.is_leaf else url + '/'
|
Build a ``url`` from ``urlargs`` key-value parameters
|
https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/pulsar/apps/wsgi/route.py#L308-L320
|
import re
from collections import namedtuple
from pulsar.api import Http404
from pulsar.utils.httpurl import (iri_to_uri, remove_double_slash,
ENCODE_URL_METHODS, ENCODE_BODY_METHODS)
from pulsar.utils.string import to_string
from pulsar.utils.slugify import slugify
class rule_info(namedtuple('rinfo', 'rule method parameters position order')):
def override(self, parent):
if self.position is None:
return rule_info(self.rule, self.method, self.parameters,
parent.position, parent.order)
else:
return self
_rule_re = re.compile(r'''
(?:
(?P<converter>[a-zA-Z_][a-zA-Z0-9_]*) # converter name
(?:\((?P<args>.*?)\))? # converter parameters
\: # variable delimiter
)?
(?P<variable>[a-zA-Z_][a-zA-Z0-9_]*) # variable name
''', re.VERBOSE)
_converter_args_re = re.compile(r'''
((?P<name>\w+)\s*=\s*)?
(?P<value>
True|False|
\d+.\d+|
\d+.|
\d+|
\w+|
[urUR]?(?P<stringval>"[^"]*?"|'[^']*')
)\s*,
''', re.VERBOSE | re.UNICODE)
_PYTHON_CONSTANTS = {
'None': None,
'True': True,
'False': False
}
def _pythonize(value):
if value in _PYTHON_CONSTANTS:
return _PYTHON_CONSTANTS[value]
for convert in int, float:
try:
return convert(value)
except ValueError:
pass
if value[:1] == value[-1:] and value[0] in '"\'':
value = value[1:-1]
return str(value)
def parse_rule(rule):
m = _rule_re.match(rule)
if m is None or m.end() < len(rule):
raise ValueError('Error while parsing rule {0}'.format(rule))
data = m.groupdict()
converter = data['converter'] or 'default'
return converter, data['args'] or None, data['variable']
class route:
creation_count = 0
def __init__(self, rule=None, method=None, defaults=None,
position=None, re=False, **parameters):
self.__class__.creation_count += 1
self.position = position
self.creation_count = self.__class__.creation_count
self.rule = rule
self.re = re
self.defaults = defaults
self.method = method
self.parameters = parameters
@property
def order(self):
return self.creation_count if self.position is None else self.position
def __call__(self, callable):
bits = callable.__name__.split('_')
method = None
if len(bits) > 1:
m = bits[0].upper()
if m in ENCODE_URL_METHODS or m in ENCODE_BODY_METHODS:
method = m
bits = bits[1:]
name = self.parameters.get('name', '_'.join(bits))
self.parameters['name'] = name
method = self.method or method or 'get'
if isinstance(method, (list, tuple)):
method = tuple((m.lower() for m in method))
else:
method = method.lower()
rule = Route(self.rule or name, defaults=self.defaults, is_re=self.re)
callable.rule_method = rule_info(rule, method, self.parameters,
self.position, self.order)
return callable
class Route:
def __init__(self, rule, defaults=None, is_re=False):
rule = remove_double_slash('/%s' % rule)
self.defaults = defaults if defaults is not None else {}
self.is_leaf = not rule.endswith('/')
self.rule = rule[1:]
self.variables = set(map(str, self.defaults))
breadcrumbs = []
self._converters = {}
regex_parts = []
if self.rule:
for bit in self.rule.split('/'):
if not bit:
continue
s = bit[0]
e = bit[-1]
if s == '<' or e == '>':
if s + e != '<>':
raise ValueError(
'malformed rule {0}'.format(self.rule))
converter, parameters, variable = parse_rule(bit[1:-1])
if variable in self._converters:
raise ValueError('variable name {0} used twice in '
'rule {1}.'.format(variable,
self.rule))
convobj = get_converter(converter, parameters)
regex_parts.append('(?P<%s>%s)' % (variable,
convobj.regex))
breadcrumbs.append((True, variable))
self._converters[variable] = convobj
self.variables.add(str(variable))
else:
variable = bit if is_re else re.escape(bit)
regex_parts.append(variable)
breadcrumbs.append((False, bit))
self.breadcrumbs = tuple(breadcrumbs)
self._regex_string = '/'.join(regex_parts)
if self._regex_string and not self.is_leaf:
self._regex_string += '/'
self._regex = re.compile(self.regex, re.UNICODE)
@property
def level(self):
return len(self.breadcrumbs)
@property
def path(self):
return '/' + self.rule
@property
def name(self):
return slugify(self.rule, separator='_')
@property
def regex(self):
if self.is_leaf:
return '^' + self._regex_string + '$'
else:
return '^' + self._regex_string
@property
def bits(self):
return tuple((b[1] for b in self.breadcrumbs))
@property
def ordered_variables(self):
return tuple((b for dyn, b in self.breadcrumbs if dyn))
def __hash__(self):
return hash(self.rule)
def __repr__(self):
return self.path
def __eq__(self, other):
if isinstance(other, self.__class__):
return str(self) == str(other)
else:
return False
def __lt__(self, other):
if isinstance(other, self.__class__):
return to_string(self) < to_string(other)
else:
raise TypeError('Cannot compare {0} with {1}'.format(self, other))
def _url_generator(self, values):
for is_dynamic, val in self.breadcrumbs:
if is_dynamic:
val = self._converters[val].to_url(values[val])
yield val
|
BSD 3-Clause New or Revised License
|
openstack/rally-openstack
|
rally_openstack/common/services/storage/block.py
|
BlockStorage.delete_metadata
|
python
|
def delete_metadata(self, volume, keys, deletes=10, delete_size=3):
self._impl.delete_metadata(volume, keys, deletes=deletes,
delete_size=delete_size)
|
Delete volume metadata keys.
Note that ``len(keys)`` must be greater than or equal to
``deletes * delete_size``.
:param volume: The volume to delete metadata from
:param deletes: how many operations to perform
:param delete_size: number of metadata keys to delete in each operation
:param keys: a list of keys to choose deletion candidates from
|
https://github.com/openstack/rally-openstack/blob/d52e165320d87860930d6fbcca105e19bec0d879/rally_openstack/common/services/storage/block.py#L156-L168
|
from rally.common import cfg
from rally.common import logging
from rally.task import service
CONF = cfg.CONF
LOG = logging.getLogger(__name__)
Volume = service.make_resource_cls(
"Volume", properties=["id", "name", "size", "status"])
VolumeSnapshot = service.make_resource_cls(
"VolumeSnapshot", properties=["id", "name", "volume_id", "status"])
VolumeBackup = service.make_resource_cls(
"VolumeBackup", properties=["id", "name", "volume_id", "status"])
VolumeTransfer = service.make_resource_cls(
"VolumeTransfer", properties=["id", "name", "volume_id", "auth_key"])
VolumeEncryptionType = service.make_resource_cls(
"VolumeEncryptionType", properties=["id", "volume_type_id"])
QoSSpecs = service.make_resource_cls(
"QoSSpecs", properties=["id", "name", "specs"])
class BlockStorage(service.UnifiedService):
@service.should_be_overridden
def create_volume(self, size, consistencygroup_id=None,
group_id=None, snapshot_id=None, source_volid=None,
name=None, description=None,
volume_type=None, user_id=None,
project_id=None, availability_zone=None,
metadata=None, imageRef=None, scheduler_hints=None,
source_replica=None, backup_id=None):
if source_replica:
LOG.warning("The argument `source_replica` would be ignored"
" because it was removed from cinder api.")
return self._impl.create_volume(
size, consistencygroup_id=consistencygroup_id, group_id=group_id,
snapshot_id=snapshot_id, source_volid=source_volid,
name=name, description=description, volume_type=volume_type,
user_id=user_id, project_id=project_id,
availability_zone=availability_zone, metadata=metadata,
imageRef=imageRef, scheduler_hints=scheduler_hints,
backup_id=backup_id)
@service.should_be_overridden
def list_volumes(self, detailed=True, search_opts=None, marker=None,
limit=None, sort=None):
return self._impl.list_volumes(
detailed=detailed, search_opts=search_opts, marker=marker,
limit=limit, sort=sort)
@service.should_be_overridden
def get_volume(self, volume_id):
return self._impl.get_volume(volume_id)
@service.should_be_overridden
def update_volume(self, volume_id,
name=None, description=None):
return self._impl.update_volume(
volume_id, name=name, description=description)
@service.should_be_overridden
def delete_volume(self, volume):
self._impl.delete_volume(volume)
@service.should_be_overridden
def extend_volume(self, volume, new_size):
return self._impl.extend_volume(volume, new_size=new_size)
@service.should_be_overridden
def list_snapshots(self, detailed=True):
return self._impl.list_snapshots(detailed=detailed)
@service.should_be_overridden
def list_types(self, search_opts=None, is_public=None):
return self._impl.list_types(search_opts=search_opts,
is_public=is_public)
@service.should_be_overridden
def set_metadata(self, volume, sets=10, set_size=3):
return self._impl.set_metadata(volume, sets=sets, set_size=set_size)
@service.should_be_overridden
|
Apache License 2.0
|
netflix/dispatch
|
src/dispatch/incident_role/service.py
|
get_all
|
python
|
def get_all(*, db_session):
return db_session.query(IncidentRole)
|
Gets all incident role.
|
https://github.com/netflix/dispatch/blob/e30705938e970d8ef0dfdd04246a3f3004a6a44f/src/dispatch/incident_role/service.py#L32-L34
|
import logging
from typing import List, Optional
from operator import attrgetter
from pydantic.error_wrappers import ErrorWrapper, ValidationError
from dispatch.incident.models import Incident, ProjectRead
from dispatch.exceptions import NotFoundError
from dispatch.participant_role.models import ParticipantRoleType
from dispatch.tag import service as tag_service
from dispatch.incident_type import service as incident_type_service
from dispatch.incident_priority import service as incident_priority_service
from dispatch.individual import service as individual_contact_service
from dispatch.project import service as project_service
from dispatch.service import service as service_service
from .models import (
IncidentRole,
IncidentRoleCreateUpdate,
)
log = logging.getLogger(__name__)
def get(*, db_session, incident_role_id: int) -> Optional[IncidentRole]:
return db_session.query(IncidentRole).filter(IncidentRole.id == incident_role_id).one_or_none()
|
Apache License 2.0
|
bloomreach/briefly
|
src/briefly/process.py
|
LocalProcess.execute_error
|
python
|
def execute_error(self, exp):
try:
os.remove(self.output)
except:
pass
|
Remove partial output when error
|
https://github.com/bloomreach/briefly/blob/78e9b6682ce936b77e4ff3fef0344beabe4b582a/src/briefly/process.py#L105-L110
|
import os
import sys
import hashlib
import fs
from node import *
PROCESS_DEFS = []
class Process(Node):
def __init__(self, *args, **kargs):
super(Process, self).__init__()
self.args = args
self.kargs = kargs
self.hashcode = None
def build_dep(self):
super(Process, self).build_dep()
args = []
kargs = {}
for arg in self.args:
if isinstance(arg, Node):
arg.check_configure()
args.append(self.add_dep(arg))
for k, v in self.kargs.iteritems():
if isinstance(v, Node):
v.check_configure()
kargs[k] = self.add_dep(v)
self.args = args
self.kargs = kargs
def hash(self):
if self.hashcode:
return self.hashcode
op = type(self).__name__
elems = []
for v in self.deps + list(self.args) + self.kargs.values():
if isinstance(v, Process):
elems.append(v.hash())
else:
elems.append(str(v))
m = hashlib.md5()
m.update('%s(%s)' % (op, ','.join(elems)))
self.hashcode = '%s-%s' % (op, m.hexdigest()[:16])
return self.hashcode
def process_args(self, *args):
results = []
for arg in args:
results.append(self.prop.sub(arg, input=self.main_src.output, output=self.output))
return results
def execute(self):
raise NotImplementedError()
class LocalProcess(Process):
def add_dep(self, dep):
if isinstance(dep, Node) and (not dep.output is None) and fs.is_s3url(dep.output):
s3p = dep | S3Process()
dep = s3p.check_configure()
return super(LocalProcess, self).add_dep(dep)
def execute(self):
raise NotImplementedError()
|
Apache License 2.0
|
scikit-hep/cabinetry
|
src/cabinetry/histo.py
|
Histogram.save
|
python
|
def save(self, histo_path: pathlib.Path) -> None:
log.debug(f"saving histogram to {histo_path.with_suffix('.npz')}")
if not os.path.exists(histo_path.parent):
os.mkdir(histo_path.parent)
np.savez(
histo_path.with_suffix(".npz"),
yields=self.yields,
stdev=self.stdev,
bins=self.bins,
)
|
Saves a histogram to disk.
Args:
histo_path (pathlib.Path): where to save the histogram
|
https://github.com/scikit-hep/cabinetry/blob/b89bb09b97608e984864cde6d45f9b8901612a06/src/cabinetry/histo.py#L176-L192
|
import logging
import os
import pathlib
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
import boost_histogram as bh
import numpy as np
import cabinetry
from cabinetry._typing import Literal
log = logging.getLogger(__name__)
H = TypeVar("H", bound="Histogram")
class Histogram(bh.Histogram, family=cabinetry):
@classmethod
def from_arrays(
cls: Type[H],
bins: Union[List[float], np.ndarray],
yields: Union[List[float], np.ndarray],
stdev: Union[List[float], np.ndarray],
) -> H:
if len(bins) != len(yields) + 1:
raise ValueError("bin edges need one more entry than yields")
if len(yields) != len(stdev):
raise ValueError("yields and stdev need to have the same shape")
out = cls(
bh.axis.Variable(bins, underflow=False, overflow=False),
storage=bh.storage.Weight(),
)
yields = np.asarray(yields)
stdev = np.asarray(stdev)
out[...] = np.stack([yields, stdev ** 2], axis=-1)
return out
@classmethod
def from_path(
cls: Type[H], histo_path: pathlib.Path, *, modified: bool = True
) -> H:
if modified:
histo_path_modified = histo_path.parent / (histo_path.name + "_modified")
if not histo_path_modified.with_suffix(".npz").exists():
log.warning(
f"the modified histogram {histo_path_modified.with_suffix('.npz')} "
"does not exist"
)
log.warning("loading the un-modified histogram instead!")
else:
histo_path = histo_path_modified
histogram_npz = np.load(histo_path.with_suffix(".npz"))
bins = histogram_npz["bins"]
yields = histogram_npz["yields"]
stdev = histogram_npz["stdev"]
return cls.from_arrays(bins, yields, stdev)
@classmethod
def from_config(
cls: Type[H],
histo_folder: Union[str, pathlib.Path],
region: Dict[str, Any],
sample: Dict[str, Any],
systematic: Dict[str, Any],
*,
template: Optional[Literal["Up", "Down"]] = None,
modified: bool = True,
) -> H:
histo_name = name(region, sample, systematic, template=template)
histo_path = pathlib.Path(histo_folder) / histo_name
return cls.from_path(histo_path, modified=modified)
@property
def yields(self) -> np.ndarray:
return self.values()
@yields.setter
def yields(self, value: np.ndarray) -> None:
self.view().value = value
@property
def stdev(self) -> np.ndarray:
return np.sqrt(self.variances())
@stdev.setter
def stdev(self, value: np.ndarray) -> None:
self.view().variance = value ** 2
@property
def bins(self) -> np.ndarray:
return self.axes[0].edges
|
BSD 3-Clause New or Revised License
|
climdyn/qgs
|
qgs/inner_products/symbolic.py
|
AtmosphericSymbolicInnerProducts.s
|
python
|
def s(self, i, j):
if self.connected_to_ocean:
extra_subs = self.oceanic_basis.substitutions
elif self.connected_to_ground:
extra_subs = self.ground_basis.substitutions
else:
extra_subs = None
if self.connected_to_ocean or self.connected_to_ground:
if self.stored and self._s is not None:
return self._s[i, j]
else:
res = self.iip.symbolic_inner_product(self._F(i), self._phi(j))
return float(res.subs(self.subs).subs(self.atmospheric_basis.substitutions).subs(extra_subs))
else:
return 0
|
Function to compute the forcing (thermal) of the ocean on the atmosphere: :math:`s_{i,j} = (F_i, \phi_j)`.
|
https://github.com/climdyn/qgs/blob/33d79b1fa360de22b7ae595c142dbe9b6a8fb53a/qgs/inner_products/symbolic.py#L416-L432
|
import sparse as sp
from pebble import ProcessPool as Pool
from concurrent.futures import TimeoutError
from multiprocessing import cpu_count
from qgs.params.params import QgParams
from qgs.inner_products.base import AtmosphericInnerProducts, OceanicInnerProducts, GroundInnerProducts
from qgs.inner_products.definition import StandardSymbolicInnerProductDefinition
from sympy import lambdify
from scipy.integrate import dblquad
class AtmosphericSymbolicInnerProducts(AtmosphericInnerProducts):
def __init__(self, params=None, stored=True, inner_product_definition=None, interaction_inner_product_definition=None,
num_threads=None, quadrature=True, timeout=None):
AtmosphericInnerProducts.__init__(self)
if quadrature:
timeout = True
if params is not None:
if isinstance(params, QgParams):
self.n = params.scale_params.n
self.atmospheric_basis = params.atmospheric_basis
if params.oceanic_basis is not None:
goc_basis = params.oceanic_basis
oog = "ocean"
elif params.ground_basis is not None:
goc_basis = params.ground_basis
oog = "ground"
oro_basis = params.ground_params.orographic_basis
else:
goc_basis = None
oog = ""
oro_basis = params.ground_params.orographic_basis
else:
self.n = params[0]
self.atmospheric_basis = params[1]
goc_basis = params[2]
oog = params[3]
oro_basis = params[4]
self._gh = None
else:
self.n = None
self.atmospheric_basis = None
goc_basis = None
oog = ""
self._gh = None
stored = False
oro_basis = ""
self.oceanic_basis = None
self.connected_to_ocean = False
self.ground_basis = None
self.connected_to_ground = False
self.subs = [('n', self.n)]
if inner_product_definition is None:
self.ip = StandardSymbolicInnerProductDefinition()
else:
self.ip = inner_product_definition
if interaction_inner_product_definition is None:
self.iip = self.ip
else:
self.iip = interaction_inner_product_definition
self.stored = stored
if stored:
self.compute_inner_products(num_threads, timeout)
if goc_basis is not None:
if oog == 'ocean':
self.connect_to_ocean(goc_basis, num_threads, timeout)
else:
self.connect_to_ground(goc_basis, oro_basis, num_threads, timeout)
def _F(self, i):
if self.atmospheric_basis is not None:
return self.atmospheric_basis.functions[i]
def _phi(self, i):
if self.oceanic_basis is not None:
return self.oceanic_basis.functions[i]
def connect_to_ocean(self, ocean_basis, num_threads=None, timeout=None):
if isinstance(ocean_basis, OceanicSymbolicInnerProducts):
ocean_basis = ocean_basis.oceanic_basis
self.ground_basis = None
self.connected_to_ground = False
self.oceanic_basis = ocean_basis
self.connected_to_ocean = True
if self.stored:
if num_threads is None:
num_threads = cpu_count()
with Pool(max_workers=num_threads) as pool:
subs = self.subs + self.atmospheric_basis.substitutions + self.oceanic_basis.substitutions
noc = len(ocean_basis)
self._gh = None
self._d = sp.zeros((self.natm, noc), dtype=float, format='dok')
self._s = sp.zeros((self.natm, noc), dtype=float, format='dok')
args_list = [[(i, j), self.iip.ip_lap, (self._F(i), self._phi(j))] for i in range(self.natm)
for j in range(noc)]
_parallel_compute(pool, args_list, subs, self._d, timeout)
args_list = [[(i, j), self.iip.symbolic_inner_product, (self._F(i), self._phi(j))] for i in range(self.natm)
for j in range(noc)]
_parallel_compute(pool, args_list, subs, self._s, timeout)
self._s = self._s.to_coo()
self._d = self._d.to_coo()
def connect_to_ground(self, ground_basis, orographic_basis, num_threads=None, timeout=None):
if isinstance(ground_basis, GroundSymbolicInnerProducts):
ground_basis = ground_basis.ground_basis
self.oceanic_basis = None
self.connected_to_ocean = False
self.ground_basis = ground_basis
self.connected_to_ground = True
if self.stored:
if num_threads is None:
num_threads = cpu_count()
with Pool(max_workers=num_threads) as pool:
subs = self.subs + self.atmospheric_basis.substitutions + self.ground_basis.substitutions
ngr = len(ground_basis)
if orographic_basis == "atmospheric":
self._gh = None
else:
self._gh = sp.zeros((self.natm, self.natm, ngr), dtype=float, format='dok')
self._d = None
self._s = sp.zeros((self.natm, ngr), dtype=float, format='dok')
args_list = [[(i, j), self.iip.symbolic_inner_product, (self._F(i), self._phi(j))] for i in range(self.natm)
for j in range(ngr)]
_parallel_compute(pool, args_list, subs, self._s, timeout)
args_list = [[(i, j, k), self.iip.ip_jac, (self._F(i), self._F(j), self._phi(k))] for i in range(self.natm)
for j in range(self.natm) for k in range(ngr)]
_parallel_compute(pool, args_list, subs, self._gh, timeout)
self._s = self._s.to_coo()
if self._gh is not None:
self._gh = self._gh.to_coo()
def compute_inner_products(self, num_threads=None, timeout=None):
self._a = sp.zeros((self.natm, self.natm), dtype=float, format='dok')
self._u = sp.zeros((self.natm, self.natm), dtype=float, format='dok')
self._c = sp.zeros((self.natm, self.natm), dtype=float, format='dok')
self._b = sp.zeros((self.natm, self.natm, self.natm), dtype=float, format='dok')
self._g = sp.zeros((self.natm, self.natm, self.natm), dtype=float, format='dok')
if self.stored:
if num_threads is None:
num_threads = cpu_count()
with Pool(max_workers=num_threads) as pool:
subs = self.subs + self.atmospheric_basis.substitutions
args_list = [[(i, j), self.ip.ip_lap, (self._F(i), self._F(j))] for i in range(self.natm)
for j in range(self.natm)]
_parallel_compute(pool, args_list, subs, self._a, timeout)
args_list = [[(i, j), self.ip.symbolic_inner_product, (self._F(i), self._F(j))] for i in range(self.natm)
for j in range(self.natm)]
_parallel_compute(pool, args_list, subs, self._u, timeout)
args_list = [[(i, j), self.ip.ip_diff_x, (self._F(i), self._F(j))] for i in range(self.natm)
for j in range(self.natm)]
_parallel_compute(pool, args_list, subs, self._c, timeout)
args_list = [[(i, j, k), self.ip.ip_jac_lap, (self._F(i), self._F(j), self._F(k))] for i in range(self.natm)
for j in range(self.natm) for k in range(self.natm)]
_parallel_compute(pool, args_list, subs, self._b, timeout)
args_list = [[(i, j, k), self.ip.ip_jac, (self._F(i), self._F(j), self._F(k))] for i in range(self.natm)
for j in range(self.natm) for k in range(self.natm)]
_parallel_compute(pool, args_list, subs, self._g, timeout)
self._a = self._a.to_coo()
self._u = self._u.to_coo()
self._c = self._c.to_coo()
self._g = self._g.to_coo()
self._b = self._b.to_coo()
@property
def natm(self):
return len(self.atmospheric_basis.functions)
def a(self, i, j):
if not self.stored:
res = self.ip.ip_lap(self._F(i), self._F(j))
return float(res.subs(self.subs).subs(self.atmospheric_basis.substitutions))
else:
return self._a[i, j]
def u(self, i, j):
if not self.stored:
res = self.ip.symbolic_inner_product(self._F(i), self._F(j))
return float(res.subs(self.subs).subs(self.atmospheric_basis.substitutions))
else:
return self._u[i, j]
def b(self, i, j, k):
if not self.stored:
res = self.ip.ip_jac_lap(self._F(i), self._F(j), self._F(k))
return float(res.subs(self.subs).subs(self.atmospheric_basis.substitutions))
else:
return self._b[i, j, k]
def c(self, i, j):
if not self.stored:
res = self.ip.ip_diff_x(self._F(i), self._F(j))
return float(res.subs(self.subs).subs(self.atmospheric_basis.substitutions))
else:
return self._c[i, j]
def g(self, i, j, k):
if not self.stored:
res = self.ip.ip_jac(self._F(i), self._F(j), self._F(k))
return float(res.subs(self.subs).subs(self.atmospheric_basis.substitutions))
else:
return self._g[i, j, k]
def gh(self, i, j, k):
if self.connected_to_ocean:
extra_subs = self.oceanic_basis.substitutions
elif self.connected_to_ground:
extra_subs = self.ground_basis.substitutions
else:
extra_subs = None
if self.oceanic_basis or self.connected_to_ground:
if self.stored and self._gh is not None:
return self._gh[i, j, k]
else:
res = self.iip.ip_jac(self._F(i), self._F(j), self._phi(k))
return float(res.subs(self.subs).subs(self.atmospheric_basis.substitutions).subs(extra_subs))
else:
return 0
|
MIT License
|
algorand/py-algorand-sdk
|
algosdk/v2client/models/account.py
|
Account.apps_total_schema
|
python
|
def apps_total_schema(self, apps_total_schema):
self._apps_total_schema = apps_total_schema
|
Sets the apps_total_schema of this Account.
:param apps_total_schema: The apps_total_schema of this Account. # noqa: E501
:type apps_total_schema: ApplicationStateSchema
|
https://github.com/algorand/py-algorand-sdk/blob/e444328616d99c88b830366dedcbf75e9795dcb3/algosdk/v2client/models/account.py#L221-L229
|
import pprint
class Account(object):
openapi_types = {
"address": "str",
"amount": "int",
"amount_without_pending_rewards": "int",
"apps_local_state": "list[ApplicationLocalState]",
"apps_total_schema": "ApplicationStateSchema",
"assets": "list[AssetHolding]",
"created_apps": "list[Application]",
"created_assets": "list[Asset]",
"participation": "AccountParticipation",
"pending_rewards": "int",
"reward_base": "int",
"rewards": "int",
"round": "int",
"status": "str",
"sig_type": "str",
"auth_addr": "str",
}
attribute_map = {
"address": "address",
"amount": "amount",
"amount_without_pending_rewards": "amount-without-pending-rewards",
"apps_local_state": "apps-local-state",
"apps_total_schema": "apps-total-schema",
"assets": "assets",
"created_apps": "created-apps",
"created_assets": "created-assets",
"participation": "participation",
"pending_rewards": "pending-rewards",
"reward_base": "reward-base",
"rewards": "rewards",
"round": "round",
"status": "status",
"sig_type": "sig-type",
"auth_addr": "auth-addr",
}
def __init__(
self,
address=None,
amount=None,
amount_without_pending_rewards=None,
apps_local_state=None,
apps_total_schema=None,
assets=None,
created_apps=None,
created_assets=None,
participation=None,
pending_rewards=None,
reward_base=None,
rewards=None,
round=None,
status=None,
sig_type=None,
auth_addr=None,
):
self._address = None
self._amount = None
self._amount_without_pending_rewards = None
self._apps_local_state = None
self._apps_total_schema = None
self._assets = None
self._created_apps = None
self._created_assets = None
self._participation = None
self._pending_rewards = None
self._reward_base = None
self._rewards = None
self._round = None
self._status = None
self._sig_type = None
self._auth_addr = None
self.address = address
self.amount = amount
self.amount_without_pending_rewards = amount_without_pending_rewards
if apps_local_state is not None:
self.apps_local_state = apps_local_state
if apps_total_schema is not None:
self.apps_total_schema = apps_total_schema
if assets is not None:
self.assets = assets
if created_apps is not None:
self.created_apps = created_apps
if created_assets is not None:
self.created_assets = created_assets
if participation is not None:
self.participation = participation
self.pending_rewards = pending_rewards
if reward_base is not None:
self.reward_base = reward_base
self.rewards = rewards
self.round = round
self.status = status
if sig_type is not None:
self.sig_type = sig_type
if auth_addr is not None:
self.auth_addr = auth_addr
@property
def address(self):
return self._address
@address.setter
def address(self, address):
self._address = address
@property
def amount(self):
return self._amount
@amount.setter
def amount(self, amount):
self._amount = amount
@property
def amount_without_pending_rewards(self):
return self._amount_without_pending_rewards
@amount_without_pending_rewards.setter
def amount_without_pending_rewards(self, amount_without_pending_rewards):
self._amount_without_pending_rewards = amount_without_pending_rewards
@property
def apps_local_state(self):
return self._apps_local_state
@apps_local_state.setter
def apps_local_state(self, apps_local_state):
self._apps_local_state = apps_local_state
@property
def apps_total_schema(self):
return self._apps_total_schema
@apps_total_schema.setter
|
MIT License
|
nonegg/aredis
|
aredis/commands/server.py
|
ServerCommandMixin.slowlog_len
|
python
|
async def slowlog_len(self):
return await self.execute_command('SLOWLOG LEN')
|
Gets the number of items in the slowlog
|
https://github.com/nonegg/aredis/blob/b46e67163692cd0796763e5c9e17394821d9280c/aredis/commands/server.py#L292-L294
|
import datetime
from aredis.exceptions import RedisError
from aredis.utils import (b, bool_ok,
nativestr, dict_merge,
string_keys_to_dict,
list_keys_to_dict,
pairs_to_dict,
NodeFlag)
def parse_slowlog_get(response, **options):
return [{
'id': item[0],
'start_time': int(item[1]),
'duration': int(item[2]),
'command': b(' ').join(item[3])
} for item in response]
def parse_client_list(response, **options):
clients = []
for c in nativestr(response).splitlines():
clients.append(dict([pair.split('=', 1) for pair in c.split(' ')]))
return clients
def parse_config_get(response, **options):
response = [nativestr(i) if i is not None else None for i in response]
return response and pairs_to_dict(response) or {}
def timestamp_to_datetime(response):
if not response:
return None
try:
response = int(response)
except ValueError:
return None
return datetime.datetime.fromtimestamp(response)
def parse_debug_object(response):
response = nativestr(response)
response = 'type:' + response
response = dict([kv.split(':') for kv in response.split()])
int_fields = ('refcount', 'serializedlength', 'lru', 'lru_seconds_idle')
for field in int_fields:
if field in response:
response[field] = int(response[field])
return response
def parse_info(response):
info = {}
response = nativestr(response)
def get_value(value):
if ',' not in value or '=' not in value:
try:
if '.' in value:
return float(value)
else:
return int(value)
except ValueError:
return value
else:
sub_dict = {}
for item in value.split(','):
k, v = item.rsplit('=', 1)
sub_dict[k] = get_value(v)
return sub_dict
for line in response.splitlines():
if line and not line.startswith('#'):
if line.find(':') != -1:
key, value = line.split(':', 1)
info[key] = get_value(value)
else:
info.setdefault('__raw__', []).append(line)
return info
def parse_role(response):
role = nativestr(response[0])
def _parse_master(response):
offset, slaves = response[1:]
res = {
'role': role,
'offset': offset,
'slaves': []
}
for slave in slaves:
host, port, offset = slave
res['slaves'].append({
'host': host,
'port': int(port),
'offset': int(offset)
})
return res
def _parse_slave(response):
host, port, status, offset = response[1:]
return {
'role': role,
'host': host,
'port': port,
'status': status,
'offset': offset
}
def _parse_sentinel(response):
return {
'role': role,
'masters': response[1:]
}
parser = {
'master': _parse_master,
'slave': _parse_slave,
'sentinel': _parse_sentinel
}[role]
return parser(response)
class ServerCommandMixin:
RESPONSE_CALLBACKS = dict_merge(
string_keys_to_dict('BGREWRITEAOF BGSAVE', lambda r: True),
string_keys_to_dict(
'FLUSHALL FLUSHDB SAVE '
'SHUTDOWN SLAVEOF', bool_ok
),
{
'ROLE': parse_role,
'SLOWLOG GET': parse_slowlog_get,
'SLOWLOG LEN': int,
'SLOWLOG RESET': bool_ok,
'CLIENT GETNAME': lambda r: r and nativestr(r),
'CLIENT KILL': bool_ok,
'CLIENT LIST': parse_client_list,
'CLIENT SETNAME': bool_ok,
'CLIENT PAUSE': bool_ok,
'CONFIG GET': parse_config_get,
'CONFIG RESETSTAT': bool_ok,
'CONFIG SET': bool_ok,
'DEBUG OBJECT': parse_debug_object,
'INFO': parse_info,
'LASTSAVE': timestamp_to_datetime,
'TIME': lambda x: (int(x[0]), int(x[1])),
}
)
async def bgrewriteaof(self):
return await self.execute_command('BGREWRITEAOF')
async def bgsave(self):
return await self.execute_command('BGSAVE')
async def client_kill(self, address):
return await self.execute_command('CLIENT KILL', address)
async def client_list(self):
return await self.execute_command('CLIENT LIST')
async def client_getname(self):
return await self.execute_command('CLIENT GETNAME')
async def client_setname(self, name):
return await self.execute_command('CLIENT SETNAME', name)
async def client_pause(self, timeout=0):
return await self.execute_command('CLIENT PAUSE', timeout)
async def config_get(self, pattern="*"):
return await self.execute_command('CONFIG GET', pattern)
async def config_set(self, name, value):
return await self.execute_command('CONFIG SET', name, value)
async def config_resetstat(self):
return await self.execute_command('CONFIG RESETSTAT')
async def config_rewrite(self):
return await self.execute_command('CONFIG REWRITE')
async def dbsize(self):
return await self.execute_command('DBSIZE')
async def debug_object(self, key):
return await self.execute_command('DEBUG OBJECT', key)
async def flushall(self):
return await self.execute_command('FLUSHALL')
async def flushdb(self):
return await self.execute_command('FLUSHDB')
async def info(self, section=None):
if section is None:
return await self.execute_command('INFO')
else:
return await self.execute_command('INFO', section)
async def lastsave(self):
return await self.execute_command('LASTSAVE')
async def save(self):
return await self.execute_command('SAVE')
async def shutdown(self):
try:
await self.execute_command('SHUTDOWN')
except ConnectionError:
return
raise RedisError("SHUTDOWN seems to have failed.")
async def slaveof(self, host=None, port=None):
if host is None and port is None:
return await self.execute_command('SLAVEOF', b('NO'), b('ONE'))
return await self.execute_command('SLAVEOF', host, port)
async def slowlog_get(self, num=None):
args = ['SLOWLOG GET']
if num is not None:
args.append(num)
return await self.execute_command(*args)
|
MIT License
|
onecommons/unfurl
|
unfurl/runtime.py
|
NodeInstance.get_self_and_descendents
|
python
|
def get_self_and_descendents(self):
yield self
for r in self.instances:
for descendent in r.get_self_and_descendents():
yield descendent
|
Recursive descendent including self
|
https://github.com/onecommons/unfurl/blob/68aa0a6e08e154de2159653bba017ff15b52d2a2/unfurl/runtime.py#L746-L751
|
import six
from collections.abc import Mapping
from ansible.parsing.dataloader import DataLoader
from .util import UnfurlError, load_class, to_enum, make_temp_dir, ChainMap
from .result import ResourceRef, ChangeAware
from .support import AttributeManager, Defaults, Status, Priority, NodeState, Templar
from .tosca import (
CapabilitySpec,
RelationshipSpec,
NodeSpec,
TopologySpec,
ArtifactSpec,
)
import logging
logger = logging.getLogger("unfurl")
class Operational(ChangeAware):
@property
def priority(self):
return Defaults.shouldRun
@property
def local_status(self):
return Status.unknown
@property
def state(self):
return NodeState.initial
def get_operational_dependencies(self):
return ()
def get_operational_dependents(self):
return ()
@property
def manual_overide_status(self):
return None
@property
def operational(self):
return self.status == Status.ok or self.status == Status.degraded
@property
def active(self):
return self.status <= Status.error
@property
def present(self):
return self.operational or self.status == Status.error
@property
def missing(self):
return self.status == Status.pending or self.status == Status.absent
@property
def status(self):
if self.manual_overide_status is not None:
status = self.manual_overide_status
if status >= Status.error:
return status
else:
status = self.local_status
if not status:
return Status.unknown
if status >= Status.error:
return status
dependentStatus = self.aggregate_status(self.get_operational_dependencies())
if dependentStatus is None:
return status
else:
return max(status, dependentStatus)
@property
def required(self):
return self.priority == Priority.required
@property
def last_state_change(self):
return None
@property
def last_config_change(self):
return None
@property
def last_change(self):
if not self.last_state_change:
return self.last_config_change
elif not self.last_config_change:
return self.last_state_change
else:
return max(self.last_state_change, self.last_config_change)
def has_changed(self, changeset):
if not self.last_change:
return False
if not changeset:
return True
return self.last_change > changeset.changeId
@staticmethod
def aggregate_status(statuses):
aggregate = None
for status in statuses:
assert isinstance(status, Operational), status
if aggregate is None:
aggregate = Status.ok
if status.priority == Priority.ignore:
continue
elif status.required and not status.operational:
if status.status == Status.pending:
aggregate = Status.pending
else:
aggregate = Status.error
break
else:
if aggregate <= Status.degraded:
if not status.operational or status.status == Status.degraded:
aggregate = Status.degraded
return aggregate
class OperationalInstance(Operational):
def __init__(
self,
status=None,
priority=None,
manualOveride=None,
lastStateChange=None,
lastConfigChange=None,
state=None,
):
if isinstance(status, OperationalInstance):
self._localStatus = status._localStatus
self._manualOverideStatus = status._manualOverideStatus
self._priority = status._priority
self._lastStateChange = status._lastStateChange
self._lastConfigChange = status._lastConfigChange
self._state = status._state
self.dependencies = status.dependencies
else:
self._localStatus = to_enum(Status, status)
self._manualOverideStatus = to_enum(Status, manualOveride)
self._priority = to_enum(Priority, priority)
self._lastStateChange = lastStateChange
self._lastConfigChange = lastConfigChange
self._state = state
self.dependencies = []
def get_operational_dependencies(self):
return self.dependencies
def local_status():
doc = "The local_status property."
def fget(self):
return self._localStatus
def fset(self, value):
self._localStatus = value
def fdel(self):
del self._localStatus
return locals()
local_status = property(**local_status())
def manual_overide_status():
doc = "The manualOverideStatus property."
def fget(self):
return self._manualOverideStatus
def fset(self, value):
self._manualOverideStatus = value
def fdel(self):
del self._manualOverideStatus
return locals()
manual_overide_status = property(**manual_overide_status())
def priority():
doc = "The priority property."
def fget(self):
return Defaults.shouldRun if self._priority is None else self._priority
def fset(self, value):
self._priority = value
def fdel(self):
del self._priority
return locals()
priority = property(**priority())
@property
def last_state_change(self):
return self._lastStateChange
@property
def last_config_change(self):
return self._lastConfigChange
def state():
doc = "The state property."
def fget(self):
return self._state
def fset(self, value):
self._state = to_enum(NodeState, value)
return locals()
state = property(**state())
class _ChildResources(Mapping):
def __init__(self, resource):
self.resource = resource
def __getitem__(self, key):
return self.resource.find_resource(key)
def __iter__(self):
return iter(r.name for r in self.resource.get_self_and_descendents())
def __len__(self):
return len(tuple(self.resource.get_self_and_descendents()))
class EntityInstance(OperationalInstance, ResourceRef):
attributeManager = None
created = None
shadow = None
imports = None
envRules = None
_baseDir = ""
def __init__(
self, name="", attributes=None, parent=None, template=None, status=Status.ok
):
OperationalInstance.__init__(self, status)
self.name = name
self._attributes = attributes or {}
self.parent = parent
if parent:
p = getattr(parent, self.parentRelation)
p.append(self)
self.template = template or self.templateType()
def _resolve(self, key):
self.attributes[key]
return self.attributes._attributes[key]
def query(self, expr, vars=None, wantList=False):
from .eval import Ref, RefContext
return Ref(expr).resolve(RefContext(self, vars=vars), wantList)
def local_status():
doc = "The working_dir property."
def fget(self):
return self._localStatus
def fset(self, value):
if self.root.attributeManager:
self.root.attributeManager.set_status(self, value)
self._localStatus = value
def fdel(self):
del self._localStatus
return locals()
local_status = property(**local_status())
def get_operational_dependencies(self):
if self.parent and self.parent is not self.root:
yield self.parent
for d in self.dependencies:
yield d
@property
def key(self):
return f"{self.parent.key}::.{self.parentRelation[1:]}::{self.name}"
def as_ref(self, options=None):
return {"ref": self.key}
@property
def tosca_id(self):
return self.key
@property
def tosca_name(self):
return self.template.name
@property
def type(self):
return self.template.type
@property
def base_dir(self):
if self.shadow:
return self.shadow.base_dir
else:
return self.root._baseDir
@property
def artifacts(self):
return {}
@property
def attributes(self):
if not self.root.attributeManager:
if not self.attributeManager:
self.attributeManager = AttributeManager()
return self.attributeManager.get_attributes(self)
return self.root.attributeManager.get_attributes(self)
@property
def names(self):
return self.attributes
def get_default_relationships(self, relation=None):
return self.root.get_default_relationships(relation)
def __eq__(self, other):
if self is other:
return True
if self.__class__ != other.__class__:
return False
if self.root is not other.root:
if self.shadow and self.shadow == other:
return True
if other.shadow and other.shadow == self:
return True
else:
return False
if not self.last_change:
return False
return self.last_change == other.last_change and self.key == other.key
def __getstate__(self):
state = self.__dict__.copy()
if state.get("_templar"):
del state["_templar"]
if state.get("_interfaces"):
state["_interfaces"] = {}
if "attributeManager" in state:
del state["attributeManager"]
return state
def __repr__(self):
return f"{self.__class__}('{self.name}')"
class CapabilityInstance(EntityInstance):
parentRelation = "_capabilities"
templateType = CapabilitySpec
_relationships = None
@property
def relationships(self):
if self._relationships is None:
self._relationships = []
if len(self._relationships) != len(self.template.relationships):
instantiated = {id(c.template) for c in self._relationships}
for template in self.template.relationships:
if id(template) not in instantiated:
rel = RelationshipInstance(
template.name, parent=self, template=template
)
assert rel in self._relationships
sourceNode = self.root.find_resource(template.source.name)
if sourceNode:
rel.source = sourceNode
return self._relationships
@property
def key(self):
return f"{self.parent.key}::.{'capabilities'}::[.name={self.name}]"
class RelationshipInstance(EntityInstance):
parentRelation = "_relationships"
templateType = RelationshipSpec
source = None
@property
def target(self):
return self.parent.parent if self.parent else None
@property
def key(self):
if self.source:
return f"{self.source.key}::.requirements::[.name={self.name}]"
elif self.parent is self.root:
return f"::.requirements::[.name={self.name}]"
else:
return f"{self.parent.key}::.relationships::[.name={self.name}]"
def merge_props(self, matchfn):
env = {}
capability = self.parent
for name, val in capability.template.find_props(capability.attributes, matchfn):
if val is not None:
env[name] = val
for name, val in self.template.find_props(self.attributes, matchfn):
if val is not None:
env[name] = val
return env
class ArtifactInstance(EntityInstance):
parentRelation = "_artifacts"
templateType = ArtifactSpec
def __init__(
self, name="", attributes=None, parent=None, template=None, status=None
):
EntityInstance.__init__(self, name, attributes, parent, template, status)
@property
def base_dir(self):
return self.template.base_dir
@property
def file(self):
return self.template.file
@property
def repository(self):
return self.template.repository
def get_path(self, resolver=None):
return self.template.get_path_and_fragment(resolver)
def get_path_and_fragment(self, resolver=None, tpl=None):
return self.template.get_path_and_fragment(resolver, tpl)
def as_import_spec(self):
return self.template.as_import_spec()
def get_operational_dependencies(self):
for d in self.dependencies:
yield d
class NodeInstance(EntityInstance):
templateType = NodeSpec
parentRelation = "instances"
def __init__(
self, name="", attributes=None, parent=None, template=None, status=None
):
if parent:
if parent.root.find_resource(name):
raise UnfurlError(
f'can not create node instance "{name}", its name is already in use'
)
self._capabilities = []
self._requirements = []
self._artifacts = []
self._named_artifacts = None
self.instances = []
EntityInstance.__init__(self, name, attributes, parent, template, status)
if self.root is self:
self._all = _ChildResources(self)
self._templar = Templar(DataLoader())
self._interfaces = {}
self.get_interface("inherit")
self.get_interface("default")
def _find_relationship(self, relationship):
assert relationship and relationship.capability and relationship.target
targetNodeInstance = self.root.find_resource(relationship.target.name)
assert (
targetNodeInstance
), f"target instance {relationship.target.name} should have been already created"
for cap in targetNodeInstance.capabilities:
if cap.template is relationship.capability:
for relInstance in cap.relationships:
if relInstance.template is relationship:
return relInstance
return None
@property
def requirements(self):
if len(self._requirements) != len(self.template.requirements):
instantiated = {id(r.template) for r in self._requirements}
for name, template in self.template.requirements.items():
assert template.relationship
if id(template.relationship) not in instantiated:
relInstance = self._find_relationship(template.relationship)
if not relInstance:
raise UnfurlError(
f'can not find relation instance for requirement "{name}" on node "{self.name}"'
)
assert template.relationship is relInstance.template
assert self.template is relInstance.template.source
self._requirements.append(relInstance)
return self._requirements
def get_requirements(self, match):
if isinstance(match, six.string_types):
return [r for r in self.requirements if r.template.name == match]
elif isinstance(match, NodeInstance):
return [r for r in self.requirements if r.target == match]
elif isinstance(match, CapabilityInstance):
return [r for r in self.requirements if r.parent == match]
elif isinstance(match, ArtifactInstance):
return []
else:
raise UnfurlError(f'invalid match for get_requirements: "{match}"')
@property
def capabilities(self):
if len(self._capabilities) != len(self.template.capabilities):
instantiated = {id(c.template) for c in self._capabilities}
for name, template in self.template.capabilities.items():
if id(template) not in instantiated:
cap = CapabilityInstance(
template.name, parent=self, template=template
)
assert cap in self._capabilities
return self._capabilities
def get_capabilities(self, name):
return [
capability
for capability in self.capabilities
if capability.template.name == name
]
@property
def artifacts(self) -> dict:
if self._named_artifacts is None:
self._named_artifacts = {}
instantiated = {a.name: a for a in self._artifacts}
for name, template in self.template.artifacts.items():
artifact = instantiated.get(name)
if not artifact:
artifact = ArtifactInstance(
template.name, parent=self, template=template
)
assert artifact in self._artifacts
self._named_artifacts[template.name] = artifact
return self._named_artifacts
def _get_default_relationships(self, relation=None):
if self.root is self:
return
for rel in self.root.get_default_relationships(relation):
for capability in self.capabilities:
if rel.template.matches_target(capability.template):
yield rel
def get_default_relationships(self, relation=None):
return list(self._get_default_relationships(relation))
@property
def names(self):
return ChainMap(
self.attributes,
{r.name: r.parent for r in self.requirements},
{c.name: c for c in self.capabilities},
)
def _resolve(self, key):
try:
self.attributes[key]
return self.attributes._attributes[key]
except KeyError:
try:
inherit = self._interfaces.get("inherit")
if inherit:
return inherit(key)
else:
raise
except KeyError:
default = self._interfaces.get("default")
if default:
return default(key)
else:
raise
@property
def key(self):
return f"::{self.name}"
def get_operational_dependencies(self):
for dep in super().get_operational_dependencies():
yield dep
for instance in self.requirements:
if instance is not self.parent:
yield instance
def get_operational_dependents(self):
seen = set()
for cap in self.capabilities:
for rel in cap.relationships:
dep = rel.source
if dep and id(dep) not in seen:
seen.add(id(dep))
yield dep
for instance in self.instances:
if id(instance) not in seen:
seen.add(id(instance))
yield instance
|
MIT License
|
microsoft/sara
|
transform.py
|
find_component
|
python
|
def find_component(ui_xml, bounds, rid):
print(rid, bounds)
components = ui_xml.findAll(attrs={
'resource-id': rid
})
if len(components) == 0:
components = ui_xml.findAll(attrs={
'bounds': bounds
})
def _sort(x):
if 'bounds' not in x.attrs:
return -1
return check_bounds_overlap(parse_bounds(x['bounds']), parse_bounds(bounds))
components.sort(key=_sort, reverse=True)
return components
|
Find components with bounds and resource-id
|
https://github.com/microsoft/sara/blob/4d4636a93fb0356686ca143722ec29a87205cd97/transform.py#L244-L262
|
import re
import os
import bs4
import math
import json
import codecs
import argparse
from lxml import etree
from pprint import pprint
from bs4 import BeautifulSoup
source_width, source_height, source_dpi = None, None, None
target_width, target_height, target_dpi = None, None, None
BOUND_PATTERN = re.compile(r'\[([-+]?\d+),([-+]?\d+)\]\[[-+]?(\d+),([-+]?\d+)\]')
VIEW_ATTR_PATTERN = re.compile(r'^(?P<classname>.*)\{(?P<address>.*)\s(?P<visible>.)(?P<focusable>.)(?P<enabled>.)(?P<draw_mask>.)(?P<scroll_horiz>.)(?P<scroll_verti>.)(?P<clickable>.)(?P<long_clickable>.)((?P<context_clickable>.)\s|\s)(.+)\s(?P<left>-?\d+),(?P<top>-?\d+)\-(?P<right>-?\d+),(?P<bottom>-?\d+)((\s(?P<view_id>#[a-zA-Z0-9]+)\s(?P<resource_id>.+))|(\s*(.*)))\}')
REPLAY_ACTION_PATTERN = re.compile(r'\[ReplayAction\]-(?P<action_count>\d+):\s+\[(?P<action>.*)\]\-(?P<info>.*)')
REPLAY_VIEW_INSTRUMENTATION_PATTERN = re.compile(r'\[ReplayViewInstrumentation\]:\s+(.*)')
REPLAY_TIME_INTERVAL_PATTERN = re.compile(r'\[ReplayTimeInterval\]-(\d+):\s+(.*)')
def replace_package_name(rid, package_name):
if rid is None:
return ''
idx = rid.find(':id/')
if idx == -1:
return rid
prefix = rid[:idx]
if prefix.lower() == 'app':
return package_name + rid[idx:]
return rid
def parse_resolution(resolution):
resolution = resolution.strip()
splits = resolution.split(',')
return int(splits[0]), int(splits[1]), int(splits[2])
def parse_bounds(bounds):
match = BOUND_PATTERN.match(bounds)
return int(match.group(1)), int(match.group(2)), int(match.group(3)), int(match.group(4))
def get_bounds(left, top, right, bottom):
return '[%d,%d][%d,%d]' % (left, top, right, bottom)
def parse_view(line):
view_str = line.strip()
match = VIEW_ATTR_PATTERN.match(view_str)
if match is None:
return None
view_attrs = dict()
for attr in ['classname', 'address', 'visible', 'focusable', 'enabled', 'draw_mask', 'scroll_horiz', 'scroll_verti', 'clickable', 'long_clickable', 'context_clickable', 'left', 'top', 'right', 'bottom', 'view_id', 'resource_id']:
if attr in ['visible', 'focusable', 'enabled', 'draw_mask', 'scroll_horiz', 'scroll_verti', 'clickable', 'long_clickable', 'context_clickable']:
value = match.group(attr)
if attr == 'visible':
if value == 'V':
view_attrs[attr] = 'true'
else:
view_attrs[attr] = 'false'
else:
if value == '.':
view_attrs[attr] = 'false'
else:
view_attrs[attr] = 'true'
else:
view_attrs[attr] = match.group(attr)
return view_attrs
def read_ui_xml(xml_file):
with codecs.open(xml_file, 'r', encoding='utf8') as f:
return BeautifulSoup(f.read(), 'lxml')
def lxml_read_ui_xml(xml_file):
return etree.parse(xml_file)
def px2dp(px, dpi):
return (px * 160) / dpi
def dp2px(dp, dpi):
return dp * (dpi / 160)
def transform_coordinate(source_x, source_y):
source_x_dp, source_y_dp = px2dp(source_x, source_dpi), px2dp(source_y, source_dpi)
target_x, target_y = dp2px(source_x_dp, target_dpi), dp2px(source_y_dp, target_dpi)
return target_x, target_y
def parse_action(log, match):
action_count = int(match.group('action_count'))
action = match.group('action')
info = json.loads(match.group('info'))
action_block = {
'action_count': action_count,
'action': action,
'info': info,
'plid': info['plid'],
'package': info['package']
}
return action_block
def parse_instrumentation(log, match):
info = json.loads(match.group(1))['payload']
if 'action_count' not in info:
return None
return info
def parse_time_interval(log, match):
action_count = int(match.group(1))
info = json.loads(match.group(2))
info['action_count'] = action_count
return info
def parse_trace(trace_file):
actions = list()
instrumentations = list()
time_intervals = list()
with open(trace_file, 'r') as f:
for log in f:
log = log.strip()
match = REPLAY_ACTION_PATTERN.match(log)
if match:
actions.append(parse_action(log, match))
continue
match = REPLAY_VIEW_INSTRUMENTATION_PATTERN.match(log)
if match:
instrument = parse_instrumentation(log, match)
if instrument:
instrumentations.append(instrument)
continue
match = REPLAY_TIME_INTERVAL_PATTERN.match(log)
if match:
time_intervals.append(parse_time_interval(log, match))
continue
for instrumentation in reversed(instrumentations):
action_count = int(instrumentation['action_count'])
for action in actions:
if action['action_count'] == action_count:
if 'instrumentation' not in action:
action['instrumentation'] = list()
action['instrumentation'].append(instrumentation)
for ti in time_intervals:
action_count = ti['action_count']
_candidate = None
_candidate_action_count = -1
for action in actions:
if action['action_count'] == action_count:
action['time_interval'] = ti['interval']
_candidate = None
break
if action['action_count'] < action_count and action['action_count'] > _candidate_action_count:
_candidate = action
_candidate_action_count = action['action_count']
if _candidate is not None:
_candidate['time_interval'] += ti['interval']
pprint(actions)
return actions
def get_view_hierarchy_component_bounds(component):
width, height = int(component['right']) - int(component['left']), int(component['bottom']) - int(component['top'])
elements = list(component.parents)
elements.reverse()
elements.append(component)
left, top = 0, 0
for element in elements:
if 'left' in element.attrs and len(element['left']) > 0:
left += int(element['left'])
top += int(element['top'])
return get_bounds(left, top, left + width, top + height)
def find_best_match_candidate(candidates, x, y):
best_match_candidate = None
best_match_x_dis, best_match_y_dis = math.inf, math.inf
for cc in candidates:
left, top, right, bottom = cc['abs_left'], cc['abs_top'], cc['abs_right'], cc['abs_bottom']
if left <= x <= right and top <= y <= bottom:
x_dis = min(x - left, right - x)
y_dis = min(y - top, bottom - y)
if x_dis <= best_match_x_dis and y_dis <= best_match_y_dis:
best_match_candidate = cc
best_match_x_dis = x_dis
best_match_y_dis = y_dis
return best_match_candidate
def check_bounds_overlap(bounds_1, bounds_2):
left_1, top_1, right_1, bottom_1 = bounds_1[0], bounds_1[1], bounds_1[2], bounds_1[3]
left_2, top_2, right_2, bottom_2 = bounds_2[0], bounds_2[1], bounds_2[2], bounds_2[3]
width_1 = right_1 - left_1
height_1 = bottom_1 - top_1
width_2 = right_2 - left_2
height_2 = bottom_2 - top_2
overlap_width = width_1 + width_2 - (max(left_1 + width_1, left_2 + width_2) - min(left_1, left_2))
overlap_height = height_1 + height_2 - (max(top_1 + height_1, top_2 + height_2) - min(top_1, top_2))
if overlap_height <= 0 or overlap_width <= 0:
return False
overlap_area = overlap_height * overlap_width
bounds_1_area = width_1 * height_1
bounds_2_area = width_2 * height_2
ratio = overlap_area / (bounds_1_area + bounds_2_area - overlap_area)
return ratio
|
MIT License
|
kubernetes-client/python
|
kubernetes/client/models/v1_ingress_class_list.py
|
V1IngressClassList.metadata
|
python
|
def metadata(self, metadata):
self._metadata = metadata
|
Sets the metadata of this V1IngressClassList.
:param metadata: The metadata of this V1IngressClassList. # noqa: E501
:type: V1ListMeta
|
https://github.com/kubernetes-client/python/blob/96dade6021dc2e9ee1430172e1b65d9e9e232b10/kubernetes/client/models/v1_ingress_class_list.py#L151-L159
|
import pprint
import re
import six
from kubernetes.client.configuration import Configuration
class V1IngressClassList(object):
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'api_version': 'str',
'items': 'list[V1IngressClass]',
'kind': 'str',
'metadata': 'V1ListMeta'
}
attribute_map = {
'api_version': 'apiVersion',
'items': 'items',
'kind': 'kind',
'metadata': 'metadata'
}
def __init__(self, api_version=None, items=None, kind=None, metadata=None, local_vars_configuration=None):
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._api_version = None
self._items = None
self._kind = None
self._metadata = None
self.discriminator = None
if api_version is not None:
self.api_version = api_version
self.items = items
if kind is not None:
self.kind = kind
if metadata is not None:
self.metadata = metadata
@property
def api_version(self):
return self._api_version
@api_version.setter
def api_version(self, api_version):
self._api_version = api_version
@property
def items(self):
return self._items
@items.setter
def items(self, items):
if self.local_vars_configuration.client_side_validation and items is None:
raise ValueError("Invalid value for `items`, must not be `None`")
self._items = items
@property
def kind(self):
return self._kind
@kind.setter
def kind(self, kind):
self._kind = kind
@property
def metadata(self):
return self._metadata
@metadata.setter
|
Apache License 2.0
|
fastnlp/fastnlp
|
fastNLP/models/bert.py
|
BertForMultipleChoice.predict
|
python
|
def predict(self, words):
logits = self.forward(words)[Const.OUTPUT]
return {Const.OUTPUT: torch.argmax(logits, dim=-1)}
|
r"""
:param torch.LongTensor words: [batch_size, num_choices, seq_len]
:return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.LongTensor [batch_size]
|
https://github.com/fastnlp/fastnlp/blob/3cb01d15d8bc7d10f292b12e8fa803087d37e887/fastNLP/models/bert.py#L185-L191
|
__all__ = [
"BertForSequenceClassification",
"BertForSentenceMatching",
"BertForMultipleChoice",
"BertForTokenClassification",
"BertForQuestionAnswering"
]
import warnings
import torch
from torch import nn
from .base_model import BaseModel
from ..core._logger import logger
from ..core.const import Const
from ..embeddings.bert_embedding import BertEmbedding
class BertForSequenceClassification(BaseModel):
def __init__(self, embed: BertEmbedding, num_labels: int=2, dropout=0.1):
super(BertForSequenceClassification, self).__init__()
self.num_labels = num_labels
self.bert = embed
self.dropout = nn.Dropout(p=dropout)
self.classifier = nn.Linear(self.bert.embedding_dim, num_labels)
if not self.bert.model.include_cls_sep:
self.bert.model.include_cls_sep = True
warn_msg = "Bert for sequence classification excepts BertEmbedding `include_cls_sep` True, " "but got False. FastNLP has changed it to True."
logger.warning(warn_msg)
warnings.warn(warn_msg)
def forward(self, words):
hidden = self.dropout(self.bert(words))
cls_hidden = hidden[:, 0]
logits = self.classifier(cls_hidden)
if logits.size(-1) == 1:
logits = logits.squeeze(-1)
return {Const.OUTPUT: logits}
def predict(self, words):
logits = self.forward(words)[Const.OUTPUT]
if self.num_labels > 1:
return {Const.OUTPUT: torch.argmax(logits, dim=-1)}
else:
return {Const.OUTPUT: logits}
class BertForSentenceMatching(BaseModel):
def __init__(self, embed: BertEmbedding, num_labels: int=2, dropout=0.1):
super(BertForSentenceMatching, self).__init__()
self.num_labels = num_labels
self.bert = embed
self.dropout = nn.Dropout(p=dropout)
self.classifier = nn.Linear(self.bert.embedding_dim, num_labels)
if not self.bert.model.include_cls_sep:
self.bert.model.include_cls_sep = True
warn_msg = "Bert for sentence matching excepts BertEmbedding `include_cls_sep` True, " "but got False. FastNLP has changed it to True."
logger.warning(warn_msg)
warnings.warn(warn_msg)
def forward(self, words):
hidden = self.bert(words)
cls_hidden = self.dropout(hidden[:, 0])
logits = self.classifier(cls_hidden)
return {Const.OUTPUT: logits}
def predict(self, words):
logits = self.forward(words)[Const.OUTPUT]
return {Const.OUTPUT: torch.argmax(logits, dim=-1)}
class BertForMultipleChoice(BaseModel):
def __init__(self, embed: BertEmbedding, num_choices=2, dropout=0.1):
super(BertForMultipleChoice, self).__init__()
self.num_choices = num_choices
self.bert = embed
self.dropout = nn.Dropout(p=dropout)
self.classifier = nn.Linear(self.bert.embedding_dim, 1)
if not self.bert.model.include_cls_sep:
self.bert.model.include_cls_sep = True
warn_msg = "Bert for multiple choice excepts BertEmbedding `include_cls_sep` True, " "but got False. FastNLP has changed it to True."
logger.warning(warn_msg)
warnings.warn(warn_msg)
def forward(self, words):
batch_size, num_choices, seq_len = words.size()
input_ids = words.view(batch_size * num_choices, seq_len)
hidden = self.bert(input_ids)
pooled_output = self.dropout(hidden[:, 0])
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, self.num_choices)
return {Const.OUTPUT: reshaped_logits}
|
Apache License 2.0
|
seetaresearch/dragon
|
tensorrt/python/core/engine.py
|
check_input_validity
|
python
|
def check_input_validity(index, array, binding):
binding._set_shape(array.shape)
if array.dtype != binding.dtype:
if array.dtype == numpy.int64 and binding.dtype == numpy.int32:
casted_array = numpy.array(array, copy=True, dtype='int32')
if numpy.equal(array, casted_array).all():
array = casted_array
else:
raise TypeError(
'Wrong dtype for input %i.\n'
'Expected %s, got %s. Cannot safely cast.' %
(index, binding.dtype, array.dtype))
else:
raise TypeError(
'Wrong dtype for input %i.\n'
'Expected %s, got %s.' %
(index, binding.dtype, array.dtype))
return array
|
Check the input validity.
|
https://github.com/seetaresearch/dragon/blob/3dfb6ea55d90d2fb2da9b1b471f5e1e7d7667810/tensorrt/python/core/engine.py#L418-L437
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy
try:
from pycuda import driver
from pycuda import gpuarray
from pycuda import autoinit
import tensorrt as trt
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
except ImportError:
from dragon.core.util import deprecation
driver = deprecation.NotInstalled('pycuda')
gpuarray = deprecation.NotInstalled('pycuda')
autoinit = deprecation.NotInstalled('pycuda')
trt = deprecation.NotInstalled('tensorrt')
TRT_LOGGER = deprecation.NotInstalled('tensorrt')
from dragon.core.framework import device_spec
from dragon.core.framework import workspace
from dragon.core.framework.tensor import Tensor
from dragon.core.util import logging
from dragon.core.util import six
class Binding(object):
def __init__(self, cuda_engine, execution_context, idx_or_name, device_id):
self._device_id = device_id
self._context = execution_context
if isinstance(idx_or_name, six.string_types):
self._name = idx_or_name
self._index = cuda_engine.get_binding_index(self._name)
if self._index == -1:
raise IndexError('Binding name not found: %s' % self._name)
else:
self._index = idx_or_name
self._name = cuda_engine.get_binding_name(self._index)
if self._name is None:
raise IndexError('Binding index out of range: %i' % self._index)
dtype_map = {
trt.DataType.FLOAT: 'float32',
trt.DataType.HALF: 'float16',
trt.DataType.INT8: 'int8',
}
if hasattr(trt.DataType, 'INT32'):
dtype_map[trt.DataType.INT32] = 'int32'
self._is_input = cuda_engine.binding_is_input(self._index)
self._dtype = dtype_map[cuda_engine.get_binding_dtype(self._index)]
self._shape = tuple(cuda_engine.get_binding_shape(self.index))
self._has_dynamic_shape = -1 in self._shape
self._host_buf, self._device_buf = None, None
self._host_tensor, self._device_tensor = None, None
self._host_opt, self._device_opt = None, None
@property
def device_buffer(self):
if self._device_buf is None:
self._device_buf = gpuarray.empty(self._shape, self._dtype)
return self._device_buf
@property
def device_dlpack(self):
if self._device_tensor is None:
spec = device_spec.DeviceSpec('cuda', self.device_id)
self._device_opt = spec.to_proto(serialized=True)
default_ws = workspace.get_workspace()
impl = default_ws.create_tensor(scope='DLPack')
impl.FromPointer(self._shape, self._dtype,
self._device_opt, self.device_buffer.ptr)
self._device_tensor = Tensor(impl=impl, deleter=default_ws._handle_pool)
return self._device_tensor._impl.ToDLPack(self._device_opt, True)
@property
def device_id(self):
return self._device_id
@property
def dtype(self):
return self._dtype
@property
def host_buffer(self):
if self._host_buf is None:
self._host_buf = driver.pagelocked_empty(self.shape, self.dtype)
return self._host_buf
@property
def host_dlpack(self):
if self._host_tensor is None:
spec = device_spec.DeviceSpec('cpu')
self._host_opt = spec.to_proto(serialized=True)
default_ws = workspace.get_workspace()
impl = default_ws.create_tensor(scope='DLPack')
impl.FromPointer(self._shape, self._dtype,
self._host_opt, self.host_buffer.ctypes.data)
self._host_tensor = Tensor(impl=impl, deleter=default_ws._handle_pool)
return self._host_tensor._impl.ToDLPack(self._host_opt, True)
@property
def index(self):
return self._index
@property
def is_input(self):
return self._is_input
@property
def name(self):
return self._name
@property
def shape(self):
return self._shape
def get_async(self, stream):
src = self.device_buffer
dst = self.host_buffer
src.get_async(stream, dst)
return dst
def _check_size(self, new_shape):
if self._shape != new_shape:
if not (self._shape == (1,) and new_shape == ()):
return True
return False
def _reset_buffer(self):
self._host_buf, self._device_buf = None, None
self._host_tensor, self._device_tensor = None, None
self._host_opt, self._device_opt = None, None
def _set_shape(self, new_shape=None):
if self._is_input:
new_shape = tuple(new_shape)
if self._check_size(new_shape):
if self._has_dynamic_shape:
self._shape = new_shape
self._context.set_binding_shape(self._index, new_shape)
self._reset_buffer()
else:
raise ValueError(
'Wrong shape for input "%s".\n'
'Expected %s, got %s.' %
(self._name, self._shape, new_shape)
)
else:
new_shape = tuple(self._context.get_binding_shape(self._index))
if self._check_size(new_shape):
self._shape = new_shape
self._reset_buffer()
class Engine(object):
def __init__(self, cuda_engine, device_id=0):
self._cuda_engine = cuda_engine
self._device_id = device_id
self._context = cuda_engine.create_execution_context()
self._stream = driver.Stream(0)
num_binding = self._cuda_engine.num_bindings
self._bindings = [Binding(cuda_engine, self._context, i, device_id)
for i in range(num_binding)]
self._inputs = [b for b in self._bindings if b.is_input]
self._outputs = [b for b in self._bindings if not b.is_input]
logging.info('TensorRT engine built.')
binding_info = 'InputInfo: {\n'
for b in self._inputs:
binding_info += ' * Binding("{}", shape={}, dtype={})\n' .format(b.name, b.shape, b.dtype)
logging.info(binding_info + '}')
binding_info = 'OutputInfo: {\n'
for b in self._outputs:
binding_info += ' * Binding("{}", shape={}, dtype={})\n' .format(b.name, b.shape, b.dtype)
logging.info(binding_info + '}')
@property
def cuda_engine(self):
return self._cuda_engine
@property
def inputs(self):
return self._inputs
@property
def outputs(self):
return self._outputs
def get_results(self):
return [output.get_async(self._stream) for output in self._outputs]
def run(self, inputs, optimization_profile=None):
if len(inputs) < len(self.inputs):
raise ValueError(
'Not enough inputs. Expected %i, got %i.'
% (len(self.inputs), len(inputs)))
if isinstance(inputs, dict):
inputs = [inputs[b.name] for b in self.inputs]
for i, (array, binding) in enumerate(zip(inputs, self.inputs)):
array = check_input_validity(i, array, binding)
binding.device_buffer.set_async(array, self._stream)
for binding in self.outputs:
binding._set_shape()
if optimization_profile is not None:
self._context.active_optimization_profile = optimization_profile
binding_pointers = [b.device_buffer.ptr for b in self._bindings]
self._context.execute_async_v2(binding_pointers, self._stream.handle)
results = self.get_results()
self._stream.synchronize()
return results
def __del__(self):
if self._cuda_engine is not None:
del self._cuda_engine
|
BSD 2-Clause Simplified License
|
dragonfly/dragonfly
|
examples/synthetic/multiobjective_park/multiobjective_park.py
|
park1_euc
|
python
|
def park1_euc(x):
max_val = 25.5872304
x1 = x[0]
x2 = x[1]
x3 = x[2]
x4 = x[3]
ret1 = (x1/2) * (np.sqrt(1 + (x2 + x3**2)*x4/(x1**2 + 0.00001)) - 1)
ret2 = (x1 + 3*x4) * np.exp(1 + np.sin(x3))
return min(ret1 + ret2, max_val)
|
Computes the park1 function.
|
https://github.com/dragonfly/dragonfly/blob/a579b5eadf452e23b07d4caf27b402703b0012b7/examples/synthetic/multiobjective_park/multiobjective_park.py#L26-L35
|
import numpy as np
def _get_01_coords(x):
x1 = x[0][0]
x2 = x[0][1]
x3 = float(x[1]) / (194.0 - 103.0)
x4 = x[2] - 10.0
return [x1, x2, x3, x4]
|
MIT License
|
flatironinstitute/disbatch
|
disBatch.py
|
BatchContext.retireNode
|
python
|
def retireNode(self, node, ret):
if ret: self.error = True
if self.retireCmd:
logger.info('Retiring node "%s" with command %s', node, str(self.retireCmd))
env = self.retireEnv(node, ret)
try:
SUB.check_call(self.retireCmd, close_fds=True, shell=True, env=env)
except Exception as e:
logger.warn('Retirement planning needs improvement: %s', repr(e))
else:
logger.info('Retiring node "%s" (no-op)', node)
|
Called when a node has exited. May be overridden to release resources.
|
https://github.com/flatironinstitute/disbatch/blob/7997f3ddcd126df494670d1f905b4c8fcef1785b/disBatch.py#L165-L176
|
from __future__ import print_function
import json, logging, os, random, re, signal, socket, subprocess as SUB, sys, time
from multiprocessing import Process as mpProcess, Queue as mpQueue
try:
from queue import Queue, Empty
except ImportError:
from Queue import Queue, Empty
from threading import BoundedSemaphore, Thread, Lock
from ast import literal_eval
DisBatchPath, ImportDir, PathsFixed = None, None, False
if '__main__' == __name__ and sys.argv[1:] == ["--fix-paths"]:
import tempfile
DisBatchPath = os.path.realpath(__file__)
if not os.path.exists(DisBatchPath):
print('Unable to find myself; set DisBatchPath and ImportDir manually at the top of disBatch.py.', file=sys.stderr)
sys.exit(1)
DisBatchDir = os.path.dirname(DisBatchPath)
with open(DisBatchPath, 'r') as fi:
with tempfile.NamedTemporaryFile('w', prefix='disBatch.py.', dir=DisBatchDir, delete=False) as fo:
found = False
for l in fi:
if l.startswith('DisBatchPath, ImportDir, PathsFixed ='):
assert not found
found = True
l = 'DisBatchPath, ImportDir, PathsFixed = %r, %r, True\n'%(DisBatchPath, DisBatchDir)
print("Changing path info to %r"%l, file=sys.stderr)
fo.write(l)
assert found
os.fchmod(fo.fileno(), os.fstat(fi.fileno()).st_mode)
os.rename(DisBatchPath, DisBatchPath+'.prev')
os.rename(fo.name, DisBatchPath)
sys.exit(0)
if not PathsFixed:
DisBatchPath = os.path.realpath(__file__)
ImportDir = os.path.dirname(DisBatchPath)
PythonPath = os.getenv('PYTHONPATH', '')
if ImportDir:
sys.path.append(ImportDir)
PythonPath = PythonPath + ':' + ImportDir if PythonPath else ImportDir
os.environ['PYTHONPATH'] = PythonPath
try:
import kvsstcp
except ImportError:
if PathsFixed:
print('This script is looking in the wrong place for "kvssctp". Try running "%s --fix-paths" or editing it by hand.'%DisBatchPath, file=sys.stderr)
else:
print('''
Could not find kvsstcp. If there is a "kvsstcp" directory in "%s",
try running "%s --fix-paths". Otherwise review the installation
instructions.
'''%(ImportDir, DisBatchPath), file=sys.stderr)
sys.exit(1)
myHostname = socket.gethostname()
myPid = os.getpid()
dbbarrier = re.compile('^#DISBATCH BARRIER(?: (.+)?)?$', re.I)
dbcomment = re.compile('^\s*(#|$)')
dbprefix = re.compile('^#DISBATCH PREFIX (.*)$', re.I)
dbrepeat = re.compile('^#DISBATCH REPEAT\s+(?P<repeat>[0-9]+)(?:\s+start\s+(?P<start>[0-9]+))?(?:\s+step\s+(?P<step>[0-9]+))?(?: (?P<command>.+))?\s*$', re.I)
dbsuffix = re.compile('^#DISBATCH SUFFIX (.*)$', re.I)
dbpernode = re.compile('^#DISBATCH PERNODE (.*)$', re.I)
TaskIdOOB = -1
CmdPoison = '!!Poison!!'
def compHostnames(h0, h1):
return h0.split('.', 1)[0] == h1.split('.', 1)[0]
def logfile(context, suffix=''):
f = context.name
try:
f += "_%s"%context.node
except AttributeError:
pass
if suffix:
f += "_%s"%suffix
return f
def waitTimeout(sub, timeout, interval=1):
r = sub.poll()
while r is None and timeout > 0:
time.sleep(interval)
timeout -= interval
r = sub.poll()
return r
def killPatiently(sub, name, timeout=15):
if not sub: return
r = sub.poll()
if r is None:
logger.info('Waiting for %s to finish...', name)
r = waitTimeout(sub, timeout)
if r is None:
logger.warn('Terminating %s...', name)
try:
sub.terminate()
except OSError:
pass
r = waitTimeout(sub, timeout)
if r is None:
logger.warn('Killing %s.', name)
try:
sub.kill()
except OSError:
pass
r = sub.wait()
if r:
logger.info("%s returned %d", name, r)
return r
class BatchContext(object):
def __init__(self, sysid, jobid, nodes, cylinders):
self.sysid, self.jobid, self.nodes, self.cylinders = sysid, jobid, nodes, cylinders
self.wd = os.getcwd()
self.error = False
self.retireCmd = None
def __str__(self):
return 'Batch system: %s\nJobID: %s\nNodes: %r\nCylinders: %r\n'%(self.sysid, self.jobid, self.nodes, self.cylinders)
def launch(self, kvs):
kvs.put('.context', self)
self.engines = dict()
for n in self.nodes:
self.engines[n] = self.launchNode(n)
def poll(self):
for n, e in list(self.engines.items()):
r = e.poll()
if r is not None:
logger.info('Engine %s exited: %d', n, r)
del self.engines[n]
self.retireNode(n, r)
def launchNode(self, node):
raise NotImplementedError('%s.launchNode is not implemented' % type(self))
def retireEnv(self, node, ret):
env = os.environ.copy()
env['NODE'] = node
env['RETCODE'] = str(ret)
env['ACTIVE'] = ','.join(self.engines.keys())
env['RETIRED'] = ','.join(set(self.nodes).difference(self.engines))
return env
|
Apache License 2.0
|
blockstream/satellite-api
|
server/order_helpers.py
|
compute_auth_token
|
python
|
def compute_auth_token(uuid):
return hmac_sha256_digest(USER_AUTH_KEY, uuid)
|
Compute the authentication token for a given UUID
|
https://github.com/blockstream/satellite-api/blob/0fc668d490f558e02d821fe263722a9567857cb5/server/order_helpers.py#L19-L21
|
import datetime
import logging
import os
from flask import request
from sqlalchemy import and_, func
from bidding import calc_ota_msg_len, validate_bid
from constants import InvoiceStatus, OrderStatus
from database import db
from error import get_http_error_resp
from models import Order, RxConfirmation, TxConfirmation
import constants
from utils import hmac_sha256_digest
USER_AUTH_KEY = hmac_sha256_digest('user-token', constants.CHARGE_API_TOKEN)
|
MIT License
|
meltano/sdk
|
singer_sdk/streams/core.py
|
Stream.metadata
|
python
|
def metadata(self) -> MetadataMapping:
if self._metadata is not None:
return self._metadata
if self._tap_input_catalog:
catalog_entry = self._tap_input_catalog.get_stream(self.tap_stream_id)
if catalog_entry:
self._metadata = catalog_entry.metadata
return self._metadata
self._metadata = MetadataMapping.get_standard_metadata(
schema=self.schema,
replication_method=self.forced_replication_method,
key_properties=self.primary_keys or [],
valid_replication_keys=(
[self.replication_key] if self.replication_key else None
),
schema_name=None,
)
if self._tap_input_catalog is None:
self._metadata.root.selected = True
return self._metadata
|
Get stream metadata.
Metadata attributes (`inclusion`, `selected`, etc.) are part of the Singer spec.
Metadata from an input catalog will override standard metadata.
Returns:
A mapping from property breadcrumbs to metadata objects.
|
https://github.com/meltano/sdk/blob/5916ffee84eab15689558abe15757810dad5419e/singer_sdk/streams/core.py#L445-L478
|
import abc
import copy
import datetime
import json
import logging
from os import PathLike
from pathlib import Path
from types import MappingProxyType
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Mapping,
Optional,
Tuple,
Type,
TypeVar,
Union,
cast,
)
import pendulum
import requests
import singer
from singer import RecordMessage, SchemaMessage, StateMessage
from singer.schema import Schema
from singer_sdk.exceptions import InvalidStreamSortException, MaxRecordsLimitException
from singer_sdk.helpers._catalog import pop_deselected_record_properties
from singer_sdk.helpers._compat import final
from singer_sdk.helpers._singer import (
Catalog,
CatalogEntry,
MetadataMapping,
SelectionMask,
)
from singer_sdk.helpers._state import (
finalize_state_progress_markers,
get_starting_replication_value,
get_state_partitions_list,
get_writeable_state_dict,
increment_state,
log_sort_error,
reset_state_progress_markers,
write_replication_key_signpost,
write_starting_replication_value,
)
from singer_sdk.helpers._typing import conform_record_data_types, is_datetime_type
from singer_sdk.helpers._util import utc_now
from singer_sdk.mapper import SameRecordTransform, StreamMap
from singer_sdk.plugin_base import PluginBase as TapBaseClass
REPLICATION_FULL_TABLE = "FULL_TABLE"
REPLICATION_INCREMENTAL = "INCREMENTAL"
REPLICATION_LOG_BASED = "LOG_BASED"
FactoryType = TypeVar("FactoryType", bound="Stream")
METRICS_LOG_LEVEL_SETTING = "metrics_log_level"
class Stream(metaclass=abc.ABCMeta):
STATE_MSG_FREQUENCY = 10000
_MAX_RECORDS_LIMIT: Optional[int] = None
parent_stream_type: Optional[Type["Stream"]] = None
ignore_parent_replication_key: bool = False
def __init__(
self,
tap: TapBaseClass,
schema: Optional[Union[str, PathLike, Dict[str, Any], Schema]] = None,
name: Optional[str] = None,
) -> None:
if name:
self.name: str = name
if not self.name:
raise ValueError("Missing argument or class variable 'name'.")
self.logger: logging.Logger = tap.logger
self.tap_name: str = tap.name
self._config: dict = dict(tap.config)
self._tap = tap
self._tap_state = tap.state
self._tap_input_catalog: Optional[Catalog] = None
self._stream_maps: Optional[List[StreamMap]] = None
self.forced_replication_method: Optional[str] = None
self._replication_key: Optional[str] = None
self._primary_keys: Optional[List[str]] = None
self._state_partitioning_keys: Optional[List[str]] = None
self._schema_filepath: Optional[Path] = None
self._metadata: Optional[MetadataMapping] = None
self._mask: Optional[SelectionMask] = None
self._schema: dict
self.child_streams: List[Stream] = []
if schema:
if isinstance(schema, (PathLike, str)):
if not Path(schema).is_file():
raise FileNotFoundError(
f"Could not find schema file '{self.schema_filepath}'."
)
self._schema_filepath = Path(schema)
elif isinstance(schema, dict):
self._schema = schema
elif isinstance(schema, Schema):
self._schema = schema.to_dict()
else:
raise ValueError(
f"Unexpected type {type(schema).__name__} for arg 'schema'."
)
if self.schema_filepath:
self._schema = json.loads(Path(self.schema_filepath).read_text())
if not self.schema:
raise ValueError(
f"Could not initialize schema for stream '{self.name}'. "
"A valid schema object or filepath was not provided."
)
@property
def stream_maps(self) -> List[StreamMap]:
if self._stream_maps:
return self._stream_maps
if self._tap.mapper:
self._stream_maps = self._tap.mapper.stream_maps[self.name]
self.logger.info(
f"Tap has custom mapper. Using {len(self.stream_maps)} provided map(s)."
)
else:
self.logger.info(
f"No custom mapper provided for '{self.name}'. "
"Using SameRecordTransform as default."
)
self._stream_maps = [
SameRecordTransform(
stream_alias=self.name,
raw_schema=self.schema,
key_properties=self.primary_keys,
)
]
return self.stream_maps
@property
def is_timestamp_replication_key(self) -> bool:
if not self.replication_key:
return False
type_dict = self.schema.get("properties", {}).get(self.replication_key)
return is_datetime_type(type_dict)
def get_starting_replication_key_value(
self, context: Optional[dict]
) -> Optional[Any]:
state = self.get_context_state(context)
return get_starting_replication_value(state)
def get_starting_timestamp(
self, context: Optional[dict]
) -> Optional[datetime.datetime]:
value = self.get_starting_replication_key_value(context)
if value is None:
return None
if not self.is_timestamp_replication_key:
raise ValueError(
f"The replication key {self.replication_key} is not of timestamp type"
)
return cast(datetime.datetime, pendulum.parse(value))
@final
@property
def selected(self) -> bool:
return self.mask.get((), True)
@final
@property
def has_selected_descendents(self) -> bool:
for child in self.child_streams or []:
if child.selected or child.has_selected_descendents:
return True
return False
@final
@property
def descendent_streams(self) -> List["Stream"]:
result: List[Stream] = list(self.child_streams) or []
for child in self.child_streams:
result += child.descendent_streams or []
return result
def _write_replication_key_signpost(
self,
context: Optional[dict],
value: Union[datetime.datetime, str, int, float],
) -> None:
if not value:
return
state = self.get_context_state(context)
write_replication_key_signpost(state, value)
def _write_starting_replication_value(self, context: Optional[dict]) -> None:
value = None
state = self.get_context_state(context)
if self.replication_key:
replication_key_value = state.get("replication_key_value")
if replication_key_value and self.replication_key == state.get(
"replication_key"
):
value = replication_key_value
elif "start_date" in self.config:
value = self.config["start_date"]
write_starting_replication_value(state, value)
def get_replication_key_signpost(
self, context: Optional[dict]
) -> Optional[Union[datetime.datetime, Any]]:
if self.is_timestamp_replication_key:
return utc_now()
return None
@property
def schema_filepath(self) -> Optional[Path]:
return self._schema_filepath
@property
def schema(self) -> dict:
return self._schema
@property
def primary_keys(self) -> Optional[List[str]]:
if not self._primary_keys:
return []
return self._primary_keys
@primary_keys.setter
def primary_keys(self, new_value: List[str]) -> None:
self._primary_keys = new_value
@property
def state_partitioning_keys(self) -> Optional[List[str]]:
return self._state_partitioning_keys
@state_partitioning_keys.setter
def state_partitioning_keys(self, new_value: Optional[List[str]]) -> None:
self._state_partitioning_keys = new_value
@property
def replication_key(self) -> Optional[str]:
if not self._replication_key:
return None
return self._replication_key
@replication_key.setter
def replication_key(self, new_value: str) -> None:
self._replication_key = new_value
@property
def is_sorted(self) -> bool:
return False
@property
|
Apache License 2.0
|
docusign/docusign-python-client
|
docusign_esign/models/phone_number.py
|
PhoneNumber.anchor_y_offset
|
python
|
def anchor_y_offset(self):
return self._anchor_y_offset
|
Gets the anchor_y_offset of this PhoneNumber. # noqa: E501
Specifies the Y axis location of the tab, in anchorUnits, relative to the anchorString. # noqa: E501
:return: The anchor_y_offset of this PhoneNumber. # noqa: E501
:rtype: str
|
https://github.com/docusign/docusign-python-client/blob/c6aeafff0d046fa6c10a398be83ba9e24b05d4ea/docusign_esign/models/phone_number.py#L847-L855
|
import pprint
import re
import six
from docusign_esign.client.configuration import Configuration
class PhoneNumber(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'anchor_allow_white_space_in_characters': 'str',
'anchor_allow_white_space_in_characters_metadata': 'PropertyMetadata',
'anchor_case_sensitive': 'str',
'anchor_case_sensitive_metadata': 'PropertyMetadata',
'anchor_horizontal_alignment': 'str',
'anchor_horizontal_alignment_metadata': 'PropertyMetadata',
'anchor_ignore_if_not_present': 'str',
'anchor_ignore_if_not_present_metadata': 'PropertyMetadata',
'anchor_match_whole_word': 'str',
'anchor_match_whole_word_metadata': 'PropertyMetadata',
'anchor_string': 'str',
'anchor_string_metadata': 'PropertyMetadata',
'anchor_tab_processor_version': 'str',
'anchor_tab_processor_version_metadata': 'PropertyMetadata',
'anchor_units': 'str',
'anchor_units_metadata': 'PropertyMetadata',
'anchor_x_offset': 'str',
'anchor_x_offset_metadata': 'PropertyMetadata',
'anchor_y_offset': 'str',
'anchor_y_offset_metadata': 'PropertyMetadata',
'bold': 'str',
'bold_metadata': 'PropertyMetadata',
'conceal_value_on_document': 'str',
'conceal_value_on_document_metadata': 'PropertyMetadata',
'conditional_parent_label': 'str',
'conditional_parent_label_metadata': 'PropertyMetadata',
'conditional_parent_value': 'str',
'conditional_parent_value_metadata': 'PropertyMetadata',
'custom_tab_id': 'str',
'custom_tab_id_metadata': 'PropertyMetadata',
'disable_auto_size': 'str',
'disable_auto_size_metadata': 'PropertyMetadata',
'document_id': 'str',
'document_id_metadata': 'PropertyMetadata',
'error_details': 'ErrorDetails',
'font': 'str',
'font_color': 'str',
'font_color_metadata': 'PropertyMetadata',
'font_metadata': 'PropertyMetadata',
'font_size': 'str',
'font_size_metadata': 'PropertyMetadata',
'form_order': 'str',
'form_order_metadata': 'PropertyMetadata',
'form_page_label': 'str',
'form_page_label_metadata': 'PropertyMetadata',
'form_page_number': 'str',
'form_page_number_metadata': 'PropertyMetadata',
'height': 'str',
'height_metadata': 'PropertyMetadata',
'italic': 'str',
'italic_metadata': 'PropertyMetadata',
'locale_policy': 'LocalePolicyTab',
'locked': 'str',
'locked_metadata': 'PropertyMetadata',
'max_length': 'str',
'max_length_metadata': 'PropertyMetadata',
'merge_field': 'MergeField',
'merge_field_xml': 'str',
'name': 'str',
'name_metadata': 'PropertyMetadata',
'original_value': 'str',
'original_value_metadata': 'PropertyMetadata',
'page_number': 'str',
'page_number_metadata': 'PropertyMetadata',
'recipient_id': 'str',
'recipient_id_guid': 'str',
'recipient_id_guid_metadata': 'PropertyMetadata',
'recipient_id_metadata': 'PropertyMetadata',
'required': 'str',
'required_metadata': 'PropertyMetadata',
'smart_contract_information': 'SmartContractInformation',
'source': 'str',
'status': 'str',
'status_metadata': 'PropertyMetadata',
'tab_group_labels': 'list[str]',
'tab_group_labels_metadata': 'PropertyMetadata',
'tab_id': 'str',
'tab_id_metadata': 'PropertyMetadata',
'tab_label': 'str',
'tab_label_metadata': 'PropertyMetadata',
'tab_order': 'str',
'tab_order_metadata': 'PropertyMetadata',
'tab_type': 'str',
'tab_type_metadata': 'PropertyMetadata',
'template_locked': 'str',
'template_locked_metadata': 'PropertyMetadata',
'template_required': 'str',
'template_required_metadata': 'PropertyMetadata',
'tooltip': 'str',
'tool_tip_metadata': 'PropertyMetadata',
'underline': 'str',
'underline_metadata': 'PropertyMetadata',
'value': 'str',
'value_metadata': 'PropertyMetadata',
'width': 'str',
'width_metadata': 'PropertyMetadata',
'x_position': 'str',
'x_position_metadata': 'PropertyMetadata',
'y_position': 'str',
'y_position_metadata': 'PropertyMetadata'
}
attribute_map = {
'anchor_allow_white_space_in_characters': 'anchorAllowWhiteSpaceInCharacters',
'anchor_allow_white_space_in_characters_metadata': 'anchorAllowWhiteSpaceInCharactersMetadata',
'anchor_case_sensitive': 'anchorCaseSensitive',
'anchor_case_sensitive_metadata': 'anchorCaseSensitiveMetadata',
'anchor_horizontal_alignment': 'anchorHorizontalAlignment',
'anchor_horizontal_alignment_metadata': 'anchorHorizontalAlignmentMetadata',
'anchor_ignore_if_not_present': 'anchorIgnoreIfNotPresent',
'anchor_ignore_if_not_present_metadata': 'anchorIgnoreIfNotPresentMetadata',
'anchor_match_whole_word': 'anchorMatchWholeWord',
'anchor_match_whole_word_metadata': 'anchorMatchWholeWordMetadata',
'anchor_string': 'anchorString',
'anchor_string_metadata': 'anchorStringMetadata',
'anchor_tab_processor_version': 'anchorTabProcessorVersion',
'anchor_tab_processor_version_metadata': 'anchorTabProcessorVersionMetadata',
'anchor_units': 'anchorUnits',
'anchor_units_metadata': 'anchorUnitsMetadata',
'anchor_x_offset': 'anchorXOffset',
'anchor_x_offset_metadata': 'anchorXOffsetMetadata',
'anchor_y_offset': 'anchorYOffset',
'anchor_y_offset_metadata': 'anchorYOffsetMetadata',
'bold': 'bold',
'bold_metadata': 'boldMetadata',
'conceal_value_on_document': 'concealValueOnDocument',
'conceal_value_on_document_metadata': 'concealValueOnDocumentMetadata',
'conditional_parent_label': 'conditionalParentLabel',
'conditional_parent_label_metadata': 'conditionalParentLabelMetadata',
'conditional_parent_value': 'conditionalParentValue',
'conditional_parent_value_metadata': 'conditionalParentValueMetadata',
'custom_tab_id': 'customTabId',
'custom_tab_id_metadata': 'customTabIdMetadata',
'disable_auto_size': 'disableAutoSize',
'disable_auto_size_metadata': 'disableAutoSizeMetadata',
'document_id': 'documentId',
'document_id_metadata': 'documentIdMetadata',
'error_details': 'errorDetails',
'font': 'font',
'font_color': 'fontColor',
'font_color_metadata': 'fontColorMetadata',
'font_metadata': 'fontMetadata',
'font_size': 'fontSize',
'font_size_metadata': 'fontSizeMetadata',
'form_order': 'formOrder',
'form_order_metadata': 'formOrderMetadata',
'form_page_label': 'formPageLabel',
'form_page_label_metadata': 'formPageLabelMetadata',
'form_page_number': 'formPageNumber',
'form_page_number_metadata': 'formPageNumberMetadata',
'height': 'height',
'height_metadata': 'heightMetadata',
'italic': 'italic',
'italic_metadata': 'italicMetadata',
'locale_policy': 'localePolicy',
'locked': 'locked',
'locked_metadata': 'lockedMetadata',
'max_length': 'maxLength',
'max_length_metadata': 'maxLengthMetadata',
'merge_field': 'mergeField',
'merge_field_xml': 'mergeFieldXml',
'name': 'name',
'name_metadata': 'nameMetadata',
'original_value': 'originalValue',
'original_value_metadata': 'originalValueMetadata',
'page_number': 'pageNumber',
'page_number_metadata': 'pageNumberMetadata',
'recipient_id': 'recipientId',
'recipient_id_guid': 'recipientIdGuid',
'recipient_id_guid_metadata': 'recipientIdGuidMetadata',
'recipient_id_metadata': 'recipientIdMetadata',
'required': 'required',
'required_metadata': 'requiredMetadata',
'smart_contract_information': 'smartContractInformation',
'source': 'source',
'status': 'status',
'status_metadata': 'statusMetadata',
'tab_group_labels': 'tabGroupLabels',
'tab_group_labels_metadata': 'tabGroupLabelsMetadata',
'tab_id': 'tabId',
'tab_id_metadata': 'tabIdMetadata',
'tab_label': 'tabLabel',
'tab_label_metadata': 'tabLabelMetadata',
'tab_order': 'tabOrder',
'tab_order_metadata': 'tabOrderMetadata',
'tab_type': 'tabType',
'tab_type_metadata': 'tabTypeMetadata',
'template_locked': 'templateLocked',
'template_locked_metadata': 'templateLockedMetadata',
'template_required': 'templateRequired',
'template_required_metadata': 'templateRequiredMetadata',
'tooltip': 'tooltip',
'tool_tip_metadata': 'toolTipMetadata',
'underline': 'underline',
'underline_metadata': 'underlineMetadata',
'value': 'value',
'value_metadata': 'valueMetadata',
'width': 'width',
'width_metadata': 'widthMetadata',
'x_position': 'xPosition',
'x_position_metadata': 'xPositionMetadata',
'y_position': 'yPosition',
'y_position_metadata': 'yPositionMetadata'
}
def __init__(self, _configuration=None, **kwargs):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._anchor_allow_white_space_in_characters = None
self._anchor_allow_white_space_in_characters_metadata = None
self._anchor_case_sensitive = None
self._anchor_case_sensitive_metadata = None
self._anchor_horizontal_alignment = None
self._anchor_horizontal_alignment_metadata = None
self._anchor_ignore_if_not_present = None
self._anchor_ignore_if_not_present_metadata = None
self._anchor_match_whole_word = None
self._anchor_match_whole_word_metadata = None
self._anchor_string = None
self._anchor_string_metadata = None
self._anchor_tab_processor_version = None
self._anchor_tab_processor_version_metadata = None
self._anchor_units = None
self._anchor_units_metadata = None
self._anchor_x_offset = None
self._anchor_x_offset_metadata = None
self._anchor_y_offset = None
self._anchor_y_offset_metadata = None
self._bold = None
self._bold_metadata = None
self._conceal_value_on_document = None
self._conceal_value_on_document_metadata = None
self._conditional_parent_label = None
self._conditional_parent_label_metadata = None
self._conditional_parent_value = None
self._conditional_parent_value_metadata = None
self._custom_tab_id = None
self._custom_tab_id_metadata = None
self._disable_auto_size = None
self._disable_auto_size_metadata = None
self._document_id = None
self._document_id_metadata = None
self._error_details = None
self._font = None
self._font_color = None
self._font_color_metadata = None
self._font_metadata = None
self._font_size = None
self._font_size_metadata = None
self._form_order = None
self._form_order_metadata = None
self._form_page_label = None
self._form_page_label_metadata = None
self._form_page_number = None
self._form_page_number_metadata = None
self._height = None
self._height_metadata = None
self._italic = None
self._italic_metadata = None
self._locale_policy = None
self._locked = None
self._locked_metadata = None
self._max_length = None
self._max_length_metadata = None
self._merge_field = None
self._merge_field_xml = None
self._name = None
self._name_metadata = None
self._original_value = None
self._original_value_metadata = None
self._page_number = None
self._page_number_metadata = None
self._recipient_id = None
self._recipient_id_guid = None
self._recipient_id_guid_metadata = None
self._recipient_id_metadata = None
self._required = None
self._required_metadata = None
self._smart_contract_information = None
self._source = None
self._status = None
self._status_metadata = None
self._tab_group_labels = None
self._tab_group_labels_metadata = None
self._tab_id = None
self._tab_id_metadata = None
self._tab_label = None
self._tab_label_metadata = None
self._tab_order = None
self._tab_order_metadata = None
self._tab_type = None
self._tab_type_metadata = None
self._template_locked = None
self._template_locked_metadata = None
self._template_required = None
self._template_required_metadata = None
self._tooltip = None
self._tool_tip_metadata = None
self._underline = None
self._underline_metadata = None
self._value = None
self._value_metadata = None
self._width = None
self._width_metadata = None
self._x_position = None
self._x_position_metadata = None
self._y_position = None
self._y_position_metadata = None
self.discriminator = None
setattr(self, "_{}".format('anchor_allow_white_space_in_characters'), kwargs.get('anchor_allow_white_space_in_characters', None))
setattr(self, "_{}".format('anchor_allow_white_space_in_characters_metadata'), kwargs.get('anchor_allow_white_space_in_characters_metadata', None))
setattr(self, "_{}".format('anchor_case_sensitive'), kwargs.get('anchor_case_sensitive', None))
setattr(self, "_{}".format('anchor_case_sensitive_metadata'), kwargs.get('anchor_case_sensitive_metadata', None))
setattr(self, "_{}".format('anchor_horizontal_alignment'), kwargs.get('anchor_horizontal_alignment', None))
setattr(self, "_{}".format('anchor_horizontal_alignment_metadata'), kwargs.get('anchor_horizontal_alignment_metadata', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present'), kwargs.get('anchor_ignore_if_not_present', None))
setattr(self, "_{}".format('anchor_ignore_if_not_present_metadata'), kwargs.get('anchor_ignore_if_not_present_metadata', None))
setattr(self, "_{}".format('anchor_match_whole_word'), kwargs.get('anchor_match_whole_word', None))
setattr(self, "_{}".format('anchor_match_whole_word_metadata'), kwargs.get('anchor_match_whole_word_metadata', None))
setattr(self, "_{}".format('anchor_string'), kwargs.get('anchor_string', None))
setattr(self, "_{}".format('anchor_string_metadata'), kwargs.get('anchor_string_metadata', None))
setattr(self, "_{}".format('anchor_tab_processor_version'), kwargs.get('anchor_tab_processor_version', None))
setattr(self, "_{}".format('anchor_tab_processor_version_metadata'), kwargs.get('anchor_tab_processor_version_metadata', None))
setattr(self, "_{}".format('anchor_units'), kwargs.get('anchor_units', None))
setattr(self, "_{}".format('anchor_units_metadata'), kwargs.get('anchor_units_metadata', None))
setattr(self, "_{}".format('anchor_x_offset'), kwargs.get('anchor_x_offset', None))
setattr(self, "_{}".format('anchor_x_offset_metadata'), kwargs.get('anchor_x_offset_metadata', None))
setattr(self, "_{}".format('anchor_y_offset'), kwargs.get('anchor_y_offset', None))
setattr(self, "_{}".format('anchor_y_offset_metadata'), kwargs.get('anchor_y_offset_metadata', None))
setattr(self, "_{}".format('bold'), kwargs.get('bold', None))
setattr(self, "_{}".format('bold_metadata'), kwargs.get('bold_metadata', None))
setattr(self, "_{}".format('conceal_value_on_document'), kwargs.get('conceal_value_on_document', None))
setattr(self, "_{}".format('conceal_value_on_document_metadata'), kwargs.get('conceal_value_on_document_metadata', None))
setattr(self, "_{}".format('conditional_parent_label'), kwargs.get('conditional_parent_label', None))
setattr(self, "_{}".format('conditional_parent_label_metadata'), kwargs.get('conditional_parent_label_metadata', None))
setattr(self, "_{}".format('conditional_parent_value'), kwargs.get('conditional_parent_value', None))
setattr(self, "_{}".format('conditional_parent_value_metadata'), kwargs.get('conditional_parent_value_metadata', None))
setattr(self, "_{}".format('custom_tab_id'), kwargs.get('custom_tab_id', None))
setattr(self, "_{}".format('custom_tab_id_metadata'), kwargs.get('custom_tab_id_metadata', None))
setattr(self, "_{}".format('disable_auto_size'), kwargs.get('disable_auto_size', None))
setattr(self, "_{}".format('disable_auto_size_metadata'), kwargs.get('disable_auto_size_metadata', None))
setattr(self, "_{}".format('document_id'), kwargs.get('document_id', None))
setattr(self, "_{}".format('document_id_metadata'), kwargs.get('document_id_metadata', None))
setattr(self, "_{}".format('error_details'), kwargs.get('error_details', None))
setattr(self, "_{}".format('font'), kwargs.get('font', None))
setattr(self, "_{}".format('font_color'), kwargs.get('font_color', None))
setattr(self, "_{}".format('font_color_metadata'), kwargs.get('font_color_metadata', None))
setattr(self, "_{}".format('font_metadata'), kwargs.get('font_metadata', None))
setattr(self, "_{}".format('font_size'), kwargs.get('font_size', None))
setattr(self, "_{}".format('font_size_metadata'), kwargs.get('font_size_metadata', None))
setattr(self, "_{}".format('form_order'), kwargs.get('form_order', None))
setattr(self, "_{}".format('form_order_metadata'), kwargs.get('form_order_metadata', None))
setattr(self, "_{}".format('form_page_label'), kwargs.get('form_page_label', None))
setattr(self, "_{}".format('form_page_label_metadata'), kwargs.get('form_page_label_metadata', None))
setattr(self, "_{}".format('form_page_number'), kwargs.get('form_page_number', None))
setattr(self, "_{}".format('form_page_number_metadata'), kwargs.get('form_page_number_metadata', None))
setattr(self, "_{}".format('height'), kwargs.get('height', None))
setattr(self, "_{}".format('height_metadata'), kwargs.get('height_metadata', None))
setattr(self, "_{}".format('italic'), kwargs.get('italic', None))
setattr(self, "_{}".format('italic_metadata'), kwargs.get('italic_metadata', None))
setattr(self, "_{}".format('locale_policy'), kwargs.get('locale_policy', None))
setattr(self, "_{}".format('locked'), kwargs.get('locked', None))
setattr(self, "_{}".format('locked_metadata'), kwargs.get('locked_metadata', None))
setattr(self, "_{}".format('max_length'), kwargs.get('max_length', None))
setattr(self, "_{}".format('max_length_metadata'), kwargs.get('max_length_metadata', None))
setattr(self, "_{}".format('merge_field'), kwargs.get('merge_field', None))
setattr(self, "_{}".format('merge_field_xml'), kwargs.get('merge_field_xml', None))
setattr(self, "_{}".format('name'), kwargs.get('name', None))
setattr(self, "_{}".format('name_metadata'), kwargs.get('name_metadata', None))
setattr(self, "_{}".format('original_value'), kwargs.get('original_value', None))
setattr(self, "_{}".format('original_value_metadata'), kwargs.get('original_value_metadata', None))
setattr(self, "_{}".format('page_number'), kwargs.get('page_number', None))
setattr(self, "_{}".format('page_number_metadata'), kwargs.get('page_number_metadata', None))
setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None))
setattr(self, "_{}".format('recipient_id_guid'), kwargs.get('recipient_id_guid', None))
setattr(self, "_{}".format('recipient_id_guid_metadata'), kwargs.get('recipient_id_guid_metadata', None))
setattr(self, "_{}".format('recipient_id_metadata'), kwargs.get('recipient_id_metadata', None))
setattr(self, "_{}".format('required'), kwargs.get('required', None))
setattr(self, "_{}".format('required_metadata'), kwargs.get('required_metadata', None))
setattr(self, "_{}".format('smart_contract_information'), kwargs.get('smart_contract_information', None))
setattr(self, "_{}".format('source'), kwargs.get('source', None))
setattr(self, "_{}".format('status'), kwargs.get('status', None))
setattr(self, "_{}".format('status_metadata'), kwargs.get('status_metadata', None))
setattr(self, "_{}".format('tab_group_labels'), kwargs.get('tab_group_labels', None))
setattr(self, "_{}".format('tab_group_labels_metadata'), kwargs.get('tab_group_labels_metadata', None))
setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None))
setattr(self, "_{}".format('tab_id_metadata'), kwargs.get('tab_id_metadata', None))
setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None))
setattr(self, "_{}".format('tab_label_metadata'), kwargs.get('tab_label_metadata', None))
setattr(self, "_{}".format('tab_order'), kwargs.get('tab_order', None))
setattr(self, "_{}".format('tab_order_metadata'), kwargs.get('tab_order_metadata', None))
setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None))
setattr(self, "_{}".format('tab_type_metadata'), kwargs.get('tab_type_metadata', None))
setattr(self, "_{}".format('template_locked'), kwargs.get('template_locked', None))
setattr(self, "_{}".format('template_locked_metadata'), kwargs.get('template_locked_metadata', None))
setattr(self, "_{}".format('template_required'), kwargs.get('template_required', None))
setattr(self, "_{}".format('template_required_metadata'), kwargs.get('template_required_metadata', None))
setattr(self, "_{}".format('tooltip'), kwargs.get('tooltip', None))
setattr(self, "_{}".format('tool_tip_metadata'), kwargs.get('tool_tip_metadata', None))
setattr(self, "_{}".format('underline'), kwargs.get('underline', None))
setattr(self, "_{}".format('underline_metadata'), kwargs.get('underline_metadata', None))
setattr(self, "_{}".format('value'), kwargs.get('value', None))
setattr(self, "_{}".format('value_metadata'), kwargs.get('value_metadata', None))
setattr(self, "_{}".format('width'), kwargs.get('width', None))
setattr(self, "_{}".format('width_metadata'), kwargs.get('width_metadata', None))
setattr(self, "_{}".format('x_position'), kwargs.get('x_position', None))
setattr(self, "_{}".format('x_position_metadata'), kwargs.get('x_position_metadata', None))
setattr(self, "_{}".format('y_position'), kwargs.get('y_position', None))
setattr(self, "_{}".format('y_position_metadata'), kwargs.get('y_position_metadata', None))
@property
def anchor_allow_white_space_in_characters(self):
return self._anchor_allow_white_space_in_characters
@anchor_allow_white_space_in_characters.setter
def anchor_allow_white_space_in_characters(self, anchor_allow_white_space_in_characters):
self._anchor_allow_white_space_in_characters = anchor_allow_white_space_in_characters
@property
def anchor_allow_white_space_in_characters_metadata(self):
return self._anchor_allow_white_space_in_characters_metadata
@anchor_allow_white_space_in_characters_metadata.setter
def anchor_allow_white_space_in_characters_metadata(self, anchor_allow_white_space_in_characters_metadata):
self._anchor_allow_white_space_in_characters_metadata = anchor_allow_white_space_in_characters_metadata
@property
def anchor_case_sensitive(self):
return self._anchor_case_sensitive
@anchor_case_sensitive.setter
def anchor_case_sensitive(self, anchor_case_sensitive):
self._anchor_case_sensitive = anchor_case_sensitive
@property
def anchor_case_sensitive_metadata(self):
return self._anchor_case_sensitive_metadata
@anchor_case_sensitive_metadata.setter
def anchor_case_sensitive_metadata(self, anchor_case_sensitive_metadata):
self._anchor_case_sensitive_metadata = anchor_case_sensitive_metadata
@property
def anchor_horizontal_alignment(self):
return self._anchor_horizontal_alignment
@anchor_horizontal_alignment.setter
def anchor_horizontal_alignment(self, anchor_horizontal_alignment):
self._anchor_horizontal_alignment = anchor_horizontal_alignment
@property
def anchor_horizontal_alignment_metadata(self):
return self._anchor_horizontal_alignment_metadata
@anchor_horizontal_alignment_metadata.setter
def anchor_horizontal_alignment_metadata(self, anchor_horizontal_alignment_metadata):
self._anchor_horizontal_alignment_metadata = anchor_horizontal_alignment_metadata
@property
def anchor_ignore_if_not_present(self):
return self._anchor_ignore_if_not_present
@anchor_ignore_if_not_present.setter
def anchor_ignore_if_not_present(self, anchor_ignore_if_not_present):
self._anchor_ignore_if_not_present = anchor_ignore_if_not_present
@property
def anchor_ignore_if_not_present_metadata(self):
return self._anchor_ignore_if_not_present_metadata
@anchor_ignore_if_not_present_metadata.setter
def anchor_ignore_if_not_present_metadata(self, anchor_ignore_if_not_present_metadata):
self._anchor_ignore_if_not_present_metadata = anchor_ignore_if_not_present_metadata
@property
def anchor_match_whole_word(self):
return self._anchor_match_whole_word
@anchor_match_whole_word.setter
def anchor_match_whole_word(self, anchor_match_whole_word):
self._anchor_match_whole_word = anchor_match_whole_word
@property
def anchor_match_whole_word_metadata(self):
return self._anchor_match_whole_word_metadata
@anchor_match_whole_word_metadata.setter
def anchor_match_whole_word_metadata(self, anchor_match_whole_word_metadata):
self._anchor_match_whole_word_metadata = anchor_match_whole_word_metadata
@property
def anchor_string(self):
return self._anchor_string
@anchor_string.setter
def anchor_string(self, anchor_string):
self._anchor_string = anchor_string
@property
def anchor_string_metadata(self):
return self._anchor_string_metadata
@anchor_string_metadata.setter
def anchor_string_metadata(self, anchor_string_metadata):
self._anchor_string_metadata = anchor_string_metadata
@property
def anchor_tab_processor_version(self):
return self._anchor_tab_processor_version
@anchor_tab_processor_version.setter
def anchor_tab_processor_version(self, anchor_tab_processor_version):
self._anchor_tab_processor_version = anchor_tab_processor_version
@property
def anchor_tab_processor_version_metadata(self):
return self._anchor_tab_processor_version_metadata
@anchor_tab_processor_version_metadata.setter
def anchor_tab_processor_version_metadata(self, anchor_tab_processor_version_metadata):
self._anchor_tab_processor_version_metadata = anchor_tab_processor_version_metadata
@property
def anchor_units(self):
return self._anchor_units
@anchor_units.setter
def anchor_units(self, anchor_units):
self._anchor_units = anchor_units
@property
def anchor_units_metadata(self):
return self._anchor_units_metadata
@anchor_units_metadata.setter
def anchor_units_metadata(self, anchor_units_metadata):
self._anchor_units_metadata = anchor_units_metadata
@property
def anchor_x_offset(self):
return self._anchor_x_offset
@anchor_x_offset.setter
def anchor_x_offset(self, anchor_x_offset):
self._anchor_x_offset = anchor_x_offset
@property
def anchor_x_offset_metadata(self):
return self._anchor_x_offset_metadata
@anchor_x_offset_metadata.setter
def anchor_x_offset_metadata(self, anchor_x_offset_metadata):
self._anchor_x_offset_metadata = anchor_x_offset_metadata
@property
|
MIT License
|
pwcazenave/pyfvcom
|
PyFVCOM/validation.py
|
TideDB.insert_tide_file
|
python
|
def insert_tide_file(self, file_list):
for this_file in file_list:
print('Inserting data from file: ' + this_file)
this_file_obj = BODCAnnualTideFile(this_file)
try:
site_id = self.select_qry('sites', "site_tla == '" + this_file_obj.site_tla + "'", 'site_id')[0][0]
except:
try:
current_id_max = np.max(self.select_qry('sites', None, 'site_id'))
site_id = int(current_id_max + 1)
except:
site_id = 1
site_data = [(site_id, this_file_obj.site_tla, this_file_obj.site_name, this_file_obj.lon, this_file_obj.lat, '')]
self.debug_data = site_data
self.insert_into_table('sites', site_data)
site_id_list = [site_id] * len(this_file_obj.seconds_from_ref)
table_data = list(zip(site_id_list, this_file_obj.seconds_from_ref, this_file_obj.elevation_data,
this_file_obj.elevation_flag, this_file_obj.residual_data, this_file_obj.residual_flag))
self.insert_into_table('gauge_obs', table_data)
|
Add data from a set of files to the database.
Parameters
----------
file_list : list
List of file names.
|
https://github.com/pwcazenave/pyfvcom/blob/46b00c66c3802f27d73c2c3009291c75b449aad6/PyFVCOM/validation.py#L378-L407
|
import datetime as dt
import glob as gb
import os
import sqlite3 as sq
import subprocess as sp
import matplotlib.path as mplPath
import matplotlib.pyplot as plt
import numpy as np
from pandas import read_hdf
from PyFVCOM.grid import get_boundary_polygons, vincenty_distance
from PyFVCOM.plot import Time, Plotter
from PyFVCOM.read import FileReader
from PyFVCOM.stats import calculate_coefficient, rmse
SQL_UNIX_EPOCH = dt.datetime(1970, 1, 1, 0, 0, 0)
class ValidationDB(object):
def __init__(self, db_name):
if db_name[-3:] != '.db':
db_name += '.db'
self.conn = sq.connect(db_name)
self.create_table_sql = {}
self.retrieve_data_sql = {}
self.c = self.conn.cursor()
def execute_sql(self, sql_str):
self.c.execute(sql_str)
return self.c.fetchall()
def create_table(self, table_name, col_list):
create_str = 'CREATE TABLE IF NOT EXISTS {table} ({cols});'.format(table=table_name, cols=', '.join(col_list))
self.execute_sql(create_str)
def insert_into_table(self, table_name, data, column=None):
data = np.asarray(data)
if np.ndim(data) == 1:
no_cols = len(data)
no_rows = 1
data = data[np.newaxis, :]
else:
no_rows, no_cols = data.shape
qs_string = '({})'.format(','.join('?' * no_cols))
if column is not None:
column = '({})'.format(','.join(column))
else:
column = ''
if no_rows > 1:
self.c.executemany('insert or ignore into {tab} {col} values {val}'.format(tab=table_name, col=column, val=qs_string), data)
elif no_rows == 1:
self.c.execute('insert into {tab} {col} values {val}'.format(tab=table_name, col=column, val=qs_string), data[0])
self.conn.commit()
def select_qry(self, table_name, where_str, select_str='*', order_by_str=None, inner_join_str=None, group_by_str=None):
qry_string = 'select {} from {}'.format(select_str, table_name)
if inner_join_str:
qry_string += ' inner join {}'.format(inner_join_str)
if where_str:
qry_string += ' where {}'.format(where_str)
if order_by_str:
qry_string += ' order by {}'.format(order_by_str)
if group_by_str:
qry_string += ' group by {}'.format(group_by_str)
return self.execute_sql(qry_string)
def table_exists(self, variable):
pass
def close_conn(self):
self.conn.close()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.conn.close()
def dt_to_epochsec(time_to_convert):
return (time_to_convert - SQL_UNIX_EPOCH).total_seconds()
def epochsec_to_dt(time_to_convert):
return SQL_UNIX_EPOCH + dt.timedelta(seconds=time_to_convert)
def plot_map(fvcom, tide_db_path, threshold=np.inf, legend=False, **kwargs):
tide_db = TideDB(tide_db_path)
gauge_names, gauge_locations = tide_db.get_gauge_locations(long_names=True)
gauges_in_domain = []
fvcom_nodes = []
for gi, gauge in enumerate(gauge_locations):
river_index = fvcom.closest_node(gauge, threshold=threshold)
if river_index:
gauge_id, gauge_dist = tide_db.get_nearest_gauge_id(*gauge)
times, data = tide_db.get_tidal_series(gauge_id, np.min(fvcom.time.datetime), np.max(fvcom.time.datetime))
if not np.any(data):
continue
gauges_in_domain.append(gi)
fvcom_nodes.append(river_index)
plot = Plotter(fvcom, **kwargs)
fx, fy = plot.m(fvcom.grid.lon, fvcom.grid.lat)
plot.plot_field(-fvcom.grid.h)
plot.axes.plot(fx[fvcom_nodes], fy[fvcom_nodes], 'ro', markersize=3, zorder=202, label='Model')
rx, ry = plot.m(gauge_locations[:, 0], gauge_locations[:, 1])
plot.axes.plot(rx, ry, 'wo', label='Gauges')
for xx, yy, name in zip(rx, ry, gauge_names[gauges_in_domain]):
plot.axes.text(xx, yy, name, fontsize=10, rotation=45, rotation_mode='anchor', zorder=203)
if legend:
plot.axes.legend(numpoints=1, scatterpoints=1, ncol=2, loc='upper center', fontsize=10)
return plot
def plot_tides(fvcom, db_name, threshold=500, figsize=(10, 10), **kwargs):
tide_db = TideDB(db_name)
gauge_names, gauge_locations = tide_db.get_gauge_locations(long_names=True)
gauge_obs = {}
gauges_in_domain = []
fvcom_nodes = []
for gi, gauge in enumerate(gauge_locations):
river_index = fvcom.closest_node(gauge, threshold=threshold)
if river_index:
current_gauge = {}
current_gauge['gauge_id'], current_gauge['gauge_dist'] = tide_db.get_nearest_gauge_id(*gauge)
current_gauge['times'], current_gauge['data'] = tide_db.get_tidal_series(current_gauge['gauge_id'],
np.min(fvcom.time.datetime),
np.max(fvcom.time.datetime))
if not np.any(current_gauge['data']):
continue
current_gauge['lon'], current_gauge['lat'] = gauge_locations[gi, :]
current_gauge['gauge_clean'] = current_gauge['data'][:, 1] == 0
current_gauge['gauge_obs_clean'] = {'times': np.copy(current_gauge['times'])[current_gauge['gauge_clean']],
'data': np.copy(current_gauge['data'])[current_gauge['gauge_clean'], 0]}
current_gauge['rescale_zeta'] = fvcom.data.zeta[:, river_index] - np.mean(fvcom.data.zeta[:, river_index])
current_gauge['rescale_gauge_obs'] = current_gauge['gauge_obs_clean']['data'] - np.mean(current_gauge['gauge_obs_clean']['data'])
current_gauge['dates_mod'] = np.isin(fvcom.time.datetime, current_gauge['gauge_obs_clean']['times'])
current_gauge['dates_obs'] = np.isin(current_gauge['gauge_obs_clean']['times'], fvcom.time.datetime)
if not np.any(current_gauge['dates_mod']) or not np.any(current_gauge['dates_obs']):
continue
current_gauge['r'], current_gauge['p'] = calculate_coefficient(current_gauge['rescale_zeta'][current_gauge['dates_mod']], current_gauge['rescale_gauge_obs'][current_gauge['dates_obs']])
current_gauge['rms'] = rmse(current_gauge['rescale_zeta'][current_gauge['dates_mod']], current_gauge['rescale_gauge_obs'][current_gauge['dates_obs']])
current_gauge['std'] = np.std(current_gauge['rescale_zeta'][current_gauge['dates_mod']] - current_gauge['rescale_gauge_obs'][current_gauge['dates_obs']])
gauges_in_domain.append(gi)
fvcom_nodes.append(river_index)
name = gauge_names[gi]
gauge_obs[name] = current_gauge
del current_gauge
tide_db.close_conn()
if len(gauge_obs) > 5:
cols = np.ceil(len(gauge_obs) ** (1.0 / 3)).astype(int) + 1
else:
cols = 1
rows = np.ceil(len(gauge_obs) / cols).astype(int)
fig = plt.figure(figsize=figsize)
for count, site in enumerate(sorted(gauge_obs)):
ax = fig.add_subplot(rows, cols, count + 1)
time = Time(fvcom, figure=fig, axes=ax, hold=True, **kwargs)
time.plot_line(gauge_obs[site]['rescale_zeta'], label='Model', color='k')
time.axes.plot(gauge_obs[site]['gauge_obs_clean']['times'], gauge_obs[site]['rescale_gauge_obs'], label='Gauge', color='m')
time.axes.set_xlim(fvcom.time.datetime.min(), fvcom.time.datetime.max())
time.axes.set_ylim(np.min((gauge_obs[site]['rescale_gauge_obs'].min(), gauge_obs[site]['rescale_zeta'].min())),
np.max((gauge_obs[site]['rescale_gauge_obs'].max(), gauge_obs[site]['rescale_zeta'].max())))
time.axes.set_title(site)
return time, gauge_obs
def _make_normal_tide_series(h_series):
height_series = h_series - np.mean(h_series)
return height_series
class TideDB(ValidationDB):
def make_bodc_tables(self):
self._add_sql_strings()
for this_key, this_val in self.bodc_tables.items():
self.create_table(this_key, this_val)
error_data = [(0, '', 'No error'), (1, 'M', 'Improbable value flagged by QC'),
(2, 'N', 'Null Value'), (3, 'T', 'Value interpolated from adjacent values')]
self.insert_into_table('error_flags', error_data)
|
MIT License
|
cleancut/green
|
green/process.py
|
poolRunner
|
python
|
def poolRunner(
target, queue, coverage_number=None, omit_patterns=[], cov_config_file=True
):
saved_tempdir = tempfile.tempdir
tempfile.tempdir = tempfile.mkdtemp()
def raise_internal_failure(msg):
err = sys.exc_info()
t = ProtoTest()
t.module = "green.loader"
t.class_name = "N/A"
t.description = msg
t.method_name = "poolRunner"
result.startTest(t)
result.addError(t, err)
result.stopTest(t)
queue.put(result)
cleanup()
def cleanup():
tempfile.tempdir = saved_tempdir
queue.put(None)
if coverage_number:
cov.stop()
cov.save()
if coverage_number:
cov = coverage.coverage(
data_file=".coverage.{}_{}".format(
coverage_number, random.randint(0, 10000)
),
omit=omit_patterns,
config_file=cov_config_file,
)
cov._warn_no_data = False
cov.start()
already_sent = set()
def start_callback(test):
test = proto_test(test)
if test not in already_sent:
queue.put(test)
already_sent.add(test)
def finalize_callback(test_result):
queue.put(test_result)
result = ProtoTestResult(start_callback, finalize_callback)
test = None
try:
loader = GreenTestLoader()
test = loader.loadTargets(target)
except:
raise_internal_failure("Green encountered an error loading the unit test.")
return
if getattr(test, "run", False):
try:
test.run(result)
if (
result
and (not result.finalize_callback_called)
and getattr(result, "errors", False)
):
queue.put(test)
queue.put(result)
except:
if result.errors:
queue.put(result)
else:
try:
err = sys.exc_info()
result.startTest(test)
result.addError(test, err)
result.stopTest(test)
queue.put(result)
except:
raise_internal_failure(
"Green encountered an error when running the test."
)
return
else:
description = (
'Test loader returned an un-runnable object. Is "{}" '
"importable from your current location? Maybe you "
"forgot an __init__.py in your directory? Unrunnable "
"object looks like: {} of type {} with dir {}".format(
target, str(test), type(test), dir(test)
)
)
err = (TypeError, TypeError(description), None)
t = ProtoTest()
target_list = target.split(".")
t.module = ".".join(target_list[:-2]) if len(target_list) > 1 else target
t.class_name = target.split(".")[-2] if len(target_list) > 1 else "UnknownClass"
t.description = description
t.method_name = (
target.split(".")[-1] if len(target_list) > 1 else "unknown_method"
)
result.startTest(t)
result.addError(t, err)
result.stopTest(t)
queue.put(result)
cleanup()
|
I am the function that pool worker processes run. I run one unit test.
coverage_config_file is a special option that is either a string specifying
the custom coverage config file or the special default value True (which
causes coverage to search for it's standard config files).
|
https://github.com/cleancut/green/blob/55625649869d44f8c9577f5f10626b1cbdcc48ad/green/process.py#L345-L478
|
from __future__ import unicode_literals
import logging
import multiprocessing
from multiprocessing.pool import Pool, RUN, TERMINATE
import platform
import random
import shutil
import sys
import tempfile
import threading
import traceback
import coverage
from green.exceptions import InitializerOrFinalizerError
from green.loader import GreenTestLoader
from green.result import proto_test, ProtoTest, ProtoTestResult
def ddebug(msg, err=None):
import os
if err:
err = "".join(traceback.format_exception(*err))
else:
err = ""
sys.__stdout__.write("({}) {} {}".format(os.getpid(), msg, err) + "\n")
sys.__stdout__.flush()
class ProcessLogger(object):
def __init__(self, callable):
self.__callable = callable
def __call__(self, *args, **kwargs):
try:
result = self.__callable(*args, **kwargs)
except Exception:
logger = multiprocessing.get_logger()
if not logger.handlers:
logger.addHandler(logging.StreamHandler())
logger.error(traceback.format_exc())
logger.handlers[0].flush()
raise
return result
class LoggingDaemonlessPool37(Pool):
@staticmethod
def Process(*args, **kwargs):
kwargs["daemon"] = False
return multiprocessing.Process(*args, **kwargs)
def apply_async(self, func, args=(), kwds={}, callback=None):
return Pool.apply_async(self, ProcessLogger(func), args, kwds, callback)
_wrap_exception = True
def __init__(
self,
processes=None,
initializer=None,
initargs=(),
maxtasksperchild=None,
context=None,
finalizer=None,
finalargs=(),
):
self._finalizer = finalizer
self._finalargs = finalargs
super(LoggingDaemonlessPool37, self).__init__(
processes, initializer, initargs, maxtasksperchild
)
def _repopulate_pool(self):
for i in range(self._processes - len(self._pool)):
w = self.Process(
target=worker,
args=(
self._inqueue,
self._outqueue,
self._initializer,
self._initargs,
self._maxtasksperchild,
self._wrap_exception,
self._finalizer,
self._finalargs,
),
)
self._pool.append(w)
w.name = w.name.replace("Process", "PoolWorker")
w.start()
util.debug("added worker")
class LoggingDaemonlessPool38(Pool):
@staticmethod
def Process(ctx, *args, **kwds):
process = ctx.Process(daemon=False, *args, **kwds)
return process
def apply_async(self, func, args=(), kwds={}, callback=None, error_callback=None):
return Pool.apply_async(
self, ProcessLogger(func), args, kwds, callback, error_callback
)
_wrap_exception = True
def __init__(
self,
processes=None,
initializer=None,
initargs=(),
maxtasksperchild=None,
context=None,
finalizer=None,
finalargs=(),
):
self._finalizer = finalizer
self._finalargs = finalargs
super(LoggingDaemonlessPool38, self).__init__(
processes, initializer, initargs, maxtasksperchild, context
)
def _repopulate_pool(self):
return self._repopulate_pool_static(
self._ctx,
self.Process,
self._processes,
self._pool,
self._inqueue,
self._outqueue,
self._initializer,
self._initargs,
self._maxtasksperchild,
self._wrap_exception,
self._finalizer,
self._finalargs,
)
@staticmethod
def _repopulate_pool_static(
ctx,
Process,
processes,
pool,
inqueue,
outqueue,
initializer,
initargs,
maxtasksperchild,
wrap_exception,
finalizer,
finalargs,
):
for i in range(processes - len(pool)):
w = Process(
ctx,
target=worker,
args=(
inqueue,
outqueue,
initializer,
initargs,
maxtasksperchild,
wrap_exception,
finalizer,
finalargs,
),
)
w.name = w.name.replace("Process", "PoolWorker")
w.start()
pool.append(w)
util.debug("added worker")
LoggingDaemonlessPool = LoggingDaemonlessPool38
if tuple(map(int, platform.python_version_tuple()[:2])) < (3, 8):
LoggingDaemonlessPool = LoggingDaemonlessPool37
import platform
import multiprocessing.pool
from multiprocessing import util
try:
from multiprocessing.pool import MaybeEncodingError
except:
class MaybeEncodingError(Exception):
def __init__(self, exc, value):
self.exc = repr(exc)
self.value = repr(value)
super(MaybeEncodingError, self).__init__(self.exc, self.value)
def __str__(self):
return "Error sending result: '%s'. Reason: '%s'" % (self.value, self.exc)
def __repr__(self):
return "<MaybeEncodingError: %s>" % str(self)
if platform.python_version_tuple()[0] == "2":
PortableOSError = IOError
else:
PortableOSError = OSError
def worker(
inqueue,
outqueue,
initializer=None,
initargs=(),
maxtasks=None,
wrap_exception=False,
finalizer=None,
finalargs=(),
):
assert maxtasks is None or (type(maxtasks) == int and maxtasks > 0)
put = outqueue.put
get = inqueue.get
if hasattr(inqueue, "_writer"):
inqueue._writer.close()
outqueue._reader.close()
if initializer is not None:
try:
initializer(*initargs)
except InitializerOrFinalizerError as e:
print(str(e))
completed = 0
while maxtasks is None or (maxtasks and completed < maxtasks):
try:
task = get()
except (EOFError, PortableOSError):
util.debug("worker got EOFError or OSError -- exiting")
break
if task is None:
util.debug("worker got sentinel -- exiting")
break
job, i, func, args, kwds = task
try:
result = (True, func(*args, **kwds))
except Exception as e:
if wrap_exception:
e = ExceptionWithTraceback(e, e.__traceback__)
result = (False, e)
try:
put((job, i, result))
except Exception as e:
wrapped = MaybeEncodingError(e, result[1])
util.debug("Possible encoding error while sending result: %s" % (wrapped))
put((job, i, (False, wrapped)))
completed += 1
if finalizer:
try:
finalizer(*finalargs)
except InitializerOrFinalizerError as e:
print(str(e))
util.debug("worker exiting after %d tasks" % completed)
class RemoteTraceback(Exception):
def __init__(self, tb):
self.tb = tb
def __str__(self):
return self.tb
class ExceptionWithTraceback:
def __init__(self, exc, tb):
tb = traceback.format_exception(type(exc), exc, tb)
tb = "".join(tb)
self.exc = exc
self.tb = '\n"""\n%s"""' % tb
def __reduce__(self):
return rebuild_exc, (self.exc, self.tb)
def rebuild_exc(exc, tb):
exc.__cause__ = RemoteTraceback(tb)
return exc
multiprocessing.pool.worker = worker
|
MIT License
|
camelot-dev/camelot
|
camelot/plotting.py
|
PlotMethods.grid
|
python
|
def grid(self, table):
fig = plt.figure()
ax = fig.add_subplot(111, aspect="equal")
for row in table.cells:
for cell in row:
if cell.left:
ax.plot([cell.lb[0], cell.lt[0]], [cell.lb[1], cell.lt[1]])
if cell.right:
ax.plot([cell.rb[0], cell.rt[0]], [cell.rb[1], cell.rt[1]])
if cell.top:
ax.plot([cell.lt[0], cell.rt[0]], [cell.lt[1], cell.rt[1]])
if cell.bottom:
ax.plot([cell.lb[0], cell.rb[0]], [cell.lb[1], cell.rb[1]])
return fig
|
Generates a plot for the detected table grids
on the PDF page.
Parameters
----------
table : camelot.core.Table
Returns
-------
fig : matplotlib.fig.Figure
|
https://github.com/camelot-dev/camelot/blob/644bbe7c6d57b95aefa2f049a9aacdbc061cc04f/camelot/plotting.py#L74-L99
|
try:
import matplotlib.pyplot as plt
import matplotlib.patches as patches
except ImportError:
_HAS_MPL = False
else:
_HAS_MPL = True
class PlotMethods(object):
def __call__(self, table, kind="text", filename=None):
if not _HAS_MPL:
raise ImportError("matplotlib is required for plotting.")
if table.flavor == "lattice" and kind in ["textedge"]:
raise NotImplementedError(f"Lattice flavor does not support kind='{kind}'")
elif table.flavor == "stream" and kind in ["joint", "line"]:
raise NotImplementedError(f"Stream flavor does not support kind='{kind}'")
plot_method = getattr(self, kind)
fig = plot_method(table)
if filename is not None:
fig.savefig(filename)
return None
return fig
def text(self, table):
fig = plt.figure()
ax = fig.add_subplot(111, aspect="equal")
xs, ys = [], []
for t in table._text:
xs.extend([t[0], t[2]])
ys.extend([t[1], t[3]])
ax.add_patch(patches.Rectangle((t[0], t[1]), t[2] - t[0], t[3] - t[1]))
ax.set_xlim(min(xs) - 10, max(xs) + 10)
ax.set_ylim(min(ys) - 10, max(ys) + 10)
return fig
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.