repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
itsthejoker/filamentcolors.xyz
|
filamentcolors/colors.py
|
hsl_to_rgb
|
python
|
def hsl_to_rgb(in_col):
assert is_hsl(in_col), f"Error, {str(in_col)} is not a valid HSL color."
h, s, l = in_col
r, g, b = colorsys.hls_to_rgb(h, l, s)
r = int(round(255 * r))
g = int(round(255 * g))
b = int(round(255 * b))
return (r, g, b)
|
Convert HSL colors to RGB.
Input should be a tuple of floats between 0.0 and 1.0.
Output is a tuple of integers (R, G, B) where each is between 0 and 255.
|
https://github.com/itsthejoker/filamentcolors.xyz/blob/10cdc3b573093f4122ec3300d4fcc1c72771659d/filamentcolors/colors.py#L168-L187
|
__version__ = "0.13.0"
import colorsys
import math
import re
from typing import List, Tuple, Union
import numpy
def ColorDistance(rgb1: Union[Tuple, List], rgb2: Union[Tuple, List]) -> float:
rgb1 = numpy.array(rgb1)
rgb2 = numpy.array(rgb2)
rm = 0.5 * (rgb1[0] + rgb2[0])
distance = math.sqrt(sum((2 + rm, 4, 3 - rm) * (rgb1 - rgb2) ** 2))
return distance
def is_rgb(in_col):
if len(in_col) == 3 and type(in_col) == tuple:
if (
type(in_col[0]) is int
and type(in_col[1])
and type(in_col[2])
and 0 <= in_col[0] <= 255
and 0 <= in_col[1] <= 255
and 0 <= in_col[2] <= 255
):
return True
else:
return False
else:
return False
def is_hex(in_col):
if type(in_col) is not str:
return False
regular_expression = re.compile(
r"""^ # match beginning of string
[#]? # exactly one hash, but optional
[0-9a-fA-F]{6} # exactly six of the hex symbols 0 to 9, a to f
$ # match end of string
""",
re.VERBOSE | re.MULTILINE,
)
if regular_expression.match(in_col) == None:
return False
else:
return True
def is_hsl(in_col):
if len(in_col) == 3 and type(in_col) == tuple:
if 0 <= in_col[0] <= 1 and 0 <= in_col[1] <= 1 and 0 <= in_col[2] <= 1:
return True
else:
return False
else:
return False
def rgb_to_hex(rgb):
assert is_rgb(rgb) is True, "Error, %s is not a valid RGB color." % rgb
return "#%02x%02x%02x".lower() % rgb
def hex_to_rgb(in_col):
assert is_hex(in_col) is True, f"Error, {in_col} is not a valid hex color."
in_col = in_col.lstrip("#")
return tuple([int(in_col[s : s + 2], 16) for s in range(0, len(in_col), 2)])
def rgb_to_hsl(in_col):
assert is_rgb(in_col), "Error, %s is not a valid RGB color." % in_col
r, g, b = [x / 255.0 for x in in_col]
h, l, s = colorsys.rgb_to_hls(r, g, b)
return (h, s, l)
|
MIT License
|
elcorto/pwtools
|
pwtools/visualize.py
|
ViewFactory.__init__
|
python
|
def __init__(self, cmd=None, assert_cmd=None, suffix='.axsf',
writer=io.write_axsf):
self.cmd = cmd
self.assert_cmd = assert_cmd
self.suffix = suffix
self.writer = writer
|
Parameters
----------
cmd : str
Shell command to call the viewer. Used as ``<cmd>
<structfile>``. Example: 'jmol', 'xcrysden --axsf'.
assert_cmd : callable
Function which accepts a single arg. Called as ``assert_cmd(obj)``
where `obj` = Structure or Trajectory instance usually). Will be
called early. Use to make additional tests on `obj`.
suffix : str
File end for written structure file.
writer : callable
Called as ``writer(obj, structfile)``. Write struct file to read by
viewer.
Examples
--------
>>> viewer = ViewFactory(...)
>>> viewer(struct)
>>> # To start more than one viewer, use bg=True to send the spawned
>>> # process to the background. Will leave temp files on disk.
>>> viewer(struct1, bg=True)
>>> viewer(struct2, bg=True)
|
https://github.com/elcorto/pwtools/blob/99831540c6eb1fc7e8bd9b1ce61375b330f4f43e/pwtools/visualize.py#L44-L74
|
from tempfile import mkstemp
import os
from pwtools import io, common
class ViewFactory:
|
BSD 3-Clause New or Revised License
|
pystruct/pystruct
|
pystruct/models/node_type_edge_feature_graph_crf.py
|
NodeTypeEdgeFeatureGraphCRF._set_size_joint_feature
|
python
|
def _set_size_joint_feature(self):
if self.l_n_features:
self.size_unaries = sum(n_states * n_features for n_states,
n_features in zip(self.l_n_states,
self.l_n_features))
self.size_pairwise = 0
for typ1, typ2 in self._iter_type_pairs():
self.size_pairwise += self.a_n_edge_features[typ1, typ2] * self.l_n_states[typ1] * self.l_n_states[typ2]
self.size_joint_feature = self.size_unaries + self.size_pairwise
|
We have:
- 1 weight per node feature per label per node type
- 1 weight per edge feature per label of node1 type, per label of node2
type
NOTE: for now, a typ1, typ2 type of edge with 0 features is simply
ignored. While it could get a state x state matrix of weights
|
https://github.com/pystruct/pystruct/blob/957193a40f3933ae5709336d46289c8ad4a60b7a/pystruct/models/node_type_edge_feature_graph_crf.py#L141-L163
|
import numpy as np
import random
from ..inference import inference_dispatch
from .utils import loss_augment_unaries
from .typed_crf import TypedCRF, InconsistentLabel
class NodeTypeEdgeFeatureGraphCRF(TypedCRF):
def __init__(self,
n_types,
l_n_states,
l_n_features,
a_n_edge_features,
inference_method="ad3",
l_class_weight=None):
self.a_n_edge_features = np.array(a_n_edge_features)
if self.a_n_edge_features.shape != (n_types, n_types):
raise ValueError("Expected a feature number matrix for edges of "
"shape (%d, %d), got "
"%s." % (n_types, n_types,
self.a_n_edge_features.shape))
self.a_n_edge_features = self.a_n_edge_features.reshape(n_types,
n_types)
if not (self.a_n_edge_features == self.a_n_edge_features.T).all():
raise ValueError("Expected a symmetric array of edge feature "
"numbers")
self.l_n_edge_features = self.a_n_edge_features.ravel()
self._n_edge_features = self.a_n_edge_features.sum(axis=None)
TypedCRF.__init__(self, n_types, l_n_states, l_n_features,
inference_method=inference_method,
l_class_weight=l_class_weight)
self._get_pairwise_potentials_initialize()
|
BSD 2-Clause Simplified License
|
dico-api/dico
|
dico/base/http.py
|
HTTPRequestBase.request_reactions
|
python
|
def request_reactions(self, channel_id, message_id, emoji: str, after=None, limit=None) -> RESPONSE:
params = {}
if after is not None:
params["after"] = after
if limit is not None:
params["limit"] = limit
return self.request(f"/channels/{channel_id}/messages/{message_id}/reactions/{emoji}", "GET", params=params)
|
Sends get reactions request.
:param channel_id: ID of the channel.
:param message_id: ID of the message to request.
:param emoji: Emoji to request.
:param after: User ID to request after this user.
:param limit: Maximum number to request.
|
https://github.com/dico-api/dico/blob/d4dc8f022d0838017a3ae1d692dbf4b591b853a9/dico/base/http.py#L337-L352
|
import io
import typing
import datetime
from abc import ABC, abstractmethod
class __EmptyObject:
def __bool__(self) -> bool:
return False
def __len__(self) -> int:
return 0
def __repr__(self) -> str:
return "Empty"
EmptyObject: __EmptyObject = __EmptyObject()
_R = typing.Optional[typing.Union[dict, list, str, bytes]]
RESPONSE = typing.Union[_R, typing.Awaitable[_R]]
class HTTPRequestBase(ABC):
BASE_URL: str = "https://discord.com/api/v9"
@abstractmethod
def request(self, route: str, meth: str, body: typing.Any = None, *, is_json: bool = False, reason_header: str = None, retry: int = 3, **kwargs) -> RESPONSE:
pass
def request_guild_audit_log(self, guild_id, user_id: str = None, action_type: int = None, before: str = None, limit: int = None) -> RESPONSE:
params = {}
if user_id is not None:
params["user_id"] = user_id
if action_type is not None:
params["action_type"] = action_type
if before is not None:
params["before"] = before
if limit is not None:
params["limit"] = limit
return self.request(f"/guilds/{guild_id}/audit-logs", "GET", params=params)
def request_channel(self, channel_id) -> RESPONSE:
return self.request(f"/channels/{channel_id}", "GET")
def modify_guild_channel(self,
channel_id,
name: str = None,
channel_type: int = None,
position: int = EmptyObject,
topic: str = EmptyObject,
nsfw: bool = EmptyObject,
rate_limit_per_user: int = EmptyObject,
bitrate: int = EmptyObject,
user_limit: int = EmptyObject,
permission_overwrites: typing.List[dict] = EmptyObject,
parent_id: str = EmptyObject,
rtc_region: str = EmptyObject,
video_quality_mode: int = EmptyObject,
reason: str = None) -> RESPONSE:
body = {}
if name is not None:
body["name"] = name
if channel_type is not None:
body["channel_type"] = channel_type
if position is not EmptyObject:
body["position"] = position
if topic is not EmptyObject:
body["topic"] = topic
if nsfw is not EmptyObject:
body["nsfw"] = nsfw
if rate_limit_per_user is not EmptyObject:
body["rate_limit_per_user"] = rate_limit_per_user
if bitrate is not EmptyObject:
body["bitrate"] = bitrate
if user_limit is not EmptyObject:
body["user_limit"] = user_limit
if permission_overwrites is not EmptyObject:
body["permission_overwrites"] = permission_overwrites
if parent_id is not EmptyObject:
body["parent_id"] = parent_id
if rtc_region is not EmptyObject:
body["rtc_region"] = rtc_region
if video_quality_mode is not EmptyObject:
body["video_quality_mode"] = video_quality_mode
return self.request(f"/channels/{channel_id}", "PATCH", body, is_json=True, reason_header=reason)
def modify_group_dm_channel(self, channel_id, name: str = None, icon: bin = None, reason: str = None) -> RESPONSE:
body = {}
if name is not None:
body["name"] = name
if icon is not None:
body["icon"] = icon
return self.request(f"/channels/{channel_id}", "PATCH", body, is_json=True, reason_header=reason)
def modify_thread_channel(self,
channel_id,
name: str = None,
archived: bool = None,
auto_archive_duration: int = None,
locked: bool = None,
rate_limit_per_user: int = EmptyObject,
reason: str = None) -> RESPONSE:
body = {}
if name is not None:
body["name"] = name
if archived is not None:
body["archived"] = archived
if auto_archive_duration is not None:
body["auto_archive_duration"] = auto_archive_duration
if locked is not None:
body["locked"] = locked
if rate_limit_per_user is not EmptyObject:
body["rate_limit_per_user"] = rate_limit_per_user
return self.request(f"/channels/{channel_id}", "PATCH", body, is_json=True, reason_header=reason)
def delete_channel(self, channel_id, reason: str = None) -> RESPONSE:
return self.request(f"/channels/{channel_id}", "DELETE", reason_header=reason)
@property
def close_channel(self):
return self.delete_channel
def request_channel_messages(self, channel_id, around=None, before=None, after=None, limit: int = None) -> RESPONSE:
if around and before and after:
raise ValueError("Only around or before or after must be passed.")
query = {}
if around:
query["around"] = around
if before:
query["before"] = before
if after:
query["after"] = after
if limit:
query["limit"] = limit
return self.request(f"/channels/{channel_id}/messages", "GET", params=query)
def request_channel_message(self, channel_id, message_id) -> RESPONSE:
return self.request(f"/channels/{channel_id}/messages/{message_id}", "GET")
def create_message(self,
channel_id,
content: str = None,
nonce: typing.Union[int, str] = None,
tts: bool = False,
embeds: typing.List[dict] = None,
allowed_mentions: dict = None,
message_reference: dict = None,
components: typing.List[dict] = None,
sticker_ids: typing.List[str] = None) -> RESPONSE:
if not (content or embeds or sticker_ids):
raise ValueError("either content or embed or sticker_ids must be passed.")
body = {}
if content is not None:
body["content"] = content
if embeds is not None:
body["embeds"] = embeds
if nonce is not None:
body["nonce"] = nonce
if tts is not None:
body["tts"] = tts
if allowed_mentions is not None:
body["allowed_mentions"] = allowed_mentions
if message_reference is not None:
body["message_reference"] = message_reference
if components is not None:
body["components"] = components
if sticker_ids is not None:
body["sticker_ids"] = sticker_ids
return self.request(f"/channels/{channel_id}/messages", "POST", body, is_json=True)
@abstractmethod
def create_message_with_files(self,
channel_id,
content: str = None,
files: typing.List[io.FileIO] = None,
nonce: typing.Union[int, str] = None,
tts: bool = None,
embeds: typing.List[dict] = None,
allowed_mentions: dict = None,
message_reference: dict = None,
components: typing.List[dict] = None,
sticker_ids: typing.List[str] = None) -> RESPONSE:
pass
def crosspost_message(self, channel_id, message_id) -> RESPONSE:
return self.request(f"/channels/{channel_id}/messages/{message_id}/crosspost", "POST")
def create_reaction(self, channel_id, message_id, emoji: str) -> RESPONSE:
return self.request(f"/channels/{channel_id}/messages/{message_id}/reactions/{emoji}/@me", "PUT")
def delete_reaction(self, channel_id, message_id, emoji: str, user_id="@me") -> RESPONSE:
return self.request(f"/channels/{channel_id}/messages/{message_id}/reactions/{emoji}/{user_id}", "DELETE")
|
MIT License
|
uwescience/myria-web
|
appengine/networkx/classes/graph.py
|
Graph.nodes_iter
|
python
|
def nodes_iter(self, data=False):
if data:
return iter(self.node.items())
return iter(self.adj)
|
Return an iterator over the nodes.
Parameters
----------
data : boolean, optional (default=False)
If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary
Returns
-------
niter : iterator
An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)
Notes
-----
If the node data is not required it is simpler and equivalent
to use the expression 'for n in G'.
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]
|
https://github.com/uwescience/myria-web/blob/b1c175a5cbe76d4f2219b192635085ece1326588/appengine/networkx/classes/graph.py#L527-L560
|
from copy import deepcopy
import networkx as nx
from networkx.exception import NetworkXError
import networkx.convert as convert
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
'Pieter Swart (swart@lanl.gov)',
'Dan Schult(dschult@colgate.edu)'])
class Graph(object):
def __init__(self, data=None, **attr):
self.graph = {}
self.node = {}
self.adj = {}
if data is not None:
convert.to_networkx_graph(data,create_using=self)
self.graph.update(attr)
self.edge = self.adj
@property
def name(self):
return self.graph.get('name','')
@name.setter
def name(self, s):
self.graph['name']=s
def __str__(self):
return self.name
def __iter__(self):
return iter(self.adj)
def __contains__(self,n):
try:
return n in self.adj
except TypeError:
return False
def __len__(self):
return len(self.adj)
def __getitem__(self, n):
return self.adj[n]
def add_node(self, n, attr_dict=None, **attr):
if attr_dict is None:
attr_dict=attr
else:
try:
attr_dict.update(attr)
except AttributeError:
raise NetworkXError( "The attr_dict argument must be a dictionary.")
if n not in self.adj:
self.adj[n] = {}
self.node[n] = attr_dict
else:
self.node[n].update(attr_dict)
def add_nodes_from(self, nodes, **attr):
for n in nodes:
try:
newnode=n not in self.adj
except TypeError:
nn,ndict = n
if nn not in self.adj:
self.adj[nn] = {}
newdict = attr.copy()
newdict.update(ndict)
self.node[nn] = newdict
else:
olddict = self.node[nn]
olddict.update(attr)
olddict.update(ndict)
continue
if newnode:
self.adj[n] = {}
self.node[n] = attr.copy()
else:
self.node[n].update(attr)
def remove_node(self,n):
adj = self.adj
try:
nbrs = list(adj[n].keys())
del self.node[n]
except KeyError:
raise NetworkXError("The node %s is not in the graph."%(n,))
for u in nbrs:
del adj[u][n]
del adj[n]
def remove_nodes_from(self, nodes):
adj = self.adj
for n in nodes:
try:
del self.node[n]
for u in list(adj[n].keys()):
del adj[u][n]
del adj[n]
except KeyError:
pass
|
BSD 3-Clause New or Revised License
|
richrd/suplemon
|
suplemon/viewer.py
|
BaseViewer.jump_up
|
python
|
def jump_up(self):
self.move_cursors((0, -3))
self.scroll_up()
|
Jump up 3 lines.
|
https://github.com/richrd/suplemon/blob/8bb67d6758e5bc5ca200fdce7a0fb6635abb66f4/suplemon/viewer.py#L807-L810
|
import os
import re
import sys
import curses
import logging
try:
import importlib
except ImportError:
importlib = False
from . import helpers
from .line import Line
from .cursor import Cursor
from .themes import scope_to_pair
import suplemon.linelight
try:
import pygments.lexers
from .lexer import Lexer
except ImportError:
pygments = False
class BaseViewer:
def __init__(self, app, window):
self.app = app
self.window = window
self.logger = logging.getLogger(__name__)
self.config = {}
self.data = ""
self.lines = [Line()]
self.file_extension = ""
self.extension_map = {
"scss": "css",
"less": "css",
"tmtheme": "xml",
"ts": "js",
}
self.show_line_ends = True
self.cursor_style = curses.A_UNDERLINE
self.y_scroll = 0
self.x_scroll = 0
self.cursors = [Cursor()]
self.buffer = []
self.last_find = ""
self.operations = {
"arrow_right": self.arrow_right,
"arrow_left": self.arrow_left,
"arrow_up": self.arrow_up,
"arrow_down": self.arrow_down,
"jump_left": self.jump_left,
"jump_right": self.jump_right,
"jump_up": self.jump_up,
"jump_down": self.jump_down,
"page_up": self.page_up,
"page_down": self.page_down,
"home": self.home,
"end": self.end,
"find": self.find_query,
"find_next": self.find_next,
"find_all": self.find_all,
}
self.pygments_syntax = None
self.lexer = None
def init(self):
pass
def get_buffer(self):
if self.config["use_global_buffer"]:
return self.app.global_buffer
else:
return self.buffer
def get_size(self):
y, x = self.window.getmaxyx()
return (x, y)
@property
def scroll_pos(self):
return self.y_scroll, self.x_scroll
@scroll_pos.setter
def scroll_pos(self, pos):
self.y_scroll = pos[0]
self.x_scroll = pos[1]
def get_cursor(self):
return self.cursors[0]
def get_first_cursor(self):
highest = None
for cursor in self.cursors:
if highest is None or cursor.y < highest.y:
highest = cursor
return highest
def get_last_cursor(self):
lowest = None
for cursor in self.cursors:
if lowest is None:
lowest = cursor
elif cursor.y > lowest.y:
lowest = cursor
elif cursor.y == lowest.y and cursor.x > lowest.x:
lowest = cursor
return lowest
def get_cursors_on_line(self, line_no):
cursors = []
for cursor in self.cursors:
if cursor.y == line_no:
cursors.append(cursor)
return cursors
def get_line(self, n):
return self.lines[n]
def get_lines_with_cursors(self):
line_nums = []
for cursor in self.cursors:
if cursor.y not in line_nums:
line_nums.append(cursor.y)
line_nums.sort()
return line_nums
def get_data(self):
str_lines = []
for line in self.lines:
if isinstance(line, str):
str_lines.append(line)
else:
str_lines.append(line.get_data())
data = str(self.config["end_of_line"].join(str_lines))
return data
def set_data(self, data):
self.data = data
self.lines = []
lines = self.data.splitlines()
if not len(lines) or self.data.endswith(("\n", "\r\n", "\r")):
lines.append(Line())
for line in lines:
self.lines.append(Line(line))
def set_config(self, config):
self.config = config
self.set_cursor_style(self.config["cursor_style"])
def set_cursor_style(self, cursor_style):
if cursor_style == "underline":
self.cursor_style = curses.A_UNDERLINE
elif cursor_style == "reverse":
self.cursor_style = curses.A_REVERSE
else:
return False
return True
def set_cursor(self, cursor):
self.logger.warning("set_cursor is deprecated, use set_cursor_style instead.")
return self.set_cursor_style(cursor)
def set_cursors(self, cursors):
self.cursors = [Cursor(c) for c in cursors]
def set_single_cursor(self, cursor):
self.cursors = [Cursor(cursor)]
def setup_linelight(self):
raise NotImplementedError("Needs to be implemented in derived classes")
def setup_highlight(self):
raise NotImplementedError("Needs to be implemented in derived classes")
def set_file_extension(self, ext):
ext = ext.lower()
if ext and ext != self.file_extension:
self.file_extension = ext
self.setup_linelight()
if self.config["show_highlighting"]:
self.setup_highlight()
def add_cursor(self, cursor):
self.cursors.append(Cursor(cursor))
def max_line_length(self):
return self.get_size()[0]-self.line_offset()-1
def line_offset(self):
if not self.config["show_line_nums"]:
return 0
return len(str(len(self.lines)))+1
def toggle_line_nums(self):
self.config["show_line_nums"] = not self.config["show_line_nums"]
self.render()
def toggle_line_ends(self):
self.show_line_ends = not self.show_line_ends
self.render()
def toggle_highlight(self):
return False
def move_win(self, yx):
try:
self.window.mvwin(yx[0], yx[1])
except:
self.logger.warning("Moving window failed!", exc_info=True)
def refresh(self):
self.move_cursors()
self.render()
self.window.refresh()
def resize(self, yx=None):
if not yx:
yx = self.window.getmaxyx()
self.window.resize(yx[0], yx[1])
self.move_cursors()
self.refresh()
def render(self):
if self.app.block_rendering:
return
self.window.erase()
max_y = self.get_size()[1]
max_len = self.max_line_length()
lnum_len = self.line_offset() - 1
lnum_pad = ">" if self.config["line_nums_pad_space"] else "0"
for i in range(max_y):
x_offset = self.line_offset()
lnum = i + self.y_scroll
if lnum >= len(self.lines):
break
line = self.lines[lnum]
attribs = None
if self.config["highlight_current_line"] and self._is_current_line(i):
attribs = self.window.getbkgd()
self.window.bkgdset(" ", attribs | curses.A_BOLD)
if self.config["show_line_nums"]:
curs_color = curses.color_pair(line.number_color)
padded_num = "{:{}{}d} ".format(lnum + 1, lnum_pad, lnum_len)
self.window.addstr(i, 0, padded_num, curs_color)
pos = (x_offset, i)
try:
self.render_line_contents(line, pos, x_offset, max_len)
except:
self.logger.error("Failed rendering line #{0} @{1} DATA:'{2}'!".format(lnum+1, pos, line),
exc_info=True)
if attribs is not None:
self.window.bkgdset(" ", attribs)
self.render_cursors()
def _is_current_line(self, y):
for cursor in self.cursors:
if cursor.y - self.y_scroll == y:
return True
return False
def render_line_contents(self, line, pos, x_offset, max_len):
show_highlighting = self.config["show_highlighting"]
if pygments and show_highlighting and self.pygments_syntax and self.app.themes.current_theme:
self.render_line_pygments(line, pos, x_offset, max_len)
elif self.config["show_line_colors"]:
self.render_line_linelight(line, pos, x_offset, max_len)
else:
self.render_line_normal(line, pos, x_offset, max_len)
def render_line_pygments(self, line, pos, x_offset, max_len):
x, y = pos
line_data = line.get_data()
line_data = self._prepare_line_for_rendering(line_data,
max_len,
no_wspace=True)
tokens = self.lexer.lex(line_data, self.pygments_syntax)
first_token = True
for token in tokens:
if token[1] == "\n":
break
scope = token[0]
text = self.replace_whitespace(token[1])
if token[1].isspace() and not self.app.ui.limited_colors:
pair = 9
settings = self.app.themes.get_scope("global")
if settings and settings.get("invisibles"):
fg = int(settings.get("invisibles") or -1)
bg = int(settings.get("background") or -1)
curses.init_pair(pair, fg, bg)
curs_color = curses.color_pair(pair)
if first_token and self.config["show_tab_indicators"]:
text = self.add_tab_indicators(text)
self.window.addstr(y, x_offset, text, curs_color)
else:
settings = self.app.themes.get_scope(scope)
pair = scope_to_pair.get(scope)
if settings and pair is not None:
fg = int(settings.get("foreground") or -1)
bg = int(settings.get("background") or -1)
curses.init_pair(pair, fg, bg)
curs_color = curses.color_pair(pair)
self.window.addstr(y, x_offset, text, curs_color)
else:
self.window.addstr(y, x_offset, text)
if first_token:
first_token = False
x_offset += len(text)
def get_line_color(self, line):
raise NotImplementedError("Needs to be implemented in derived classes")
def render_line_linelight(self, line, pos, x_offset, max_len):
y = pos[1]
line_data = line.get_data()
line_data = self._prepare_line_for_rendering(line_data, max_len)
curs_color = curses.color_pair(self.get_line_color(line))
self.window.addstr(y, x_offset, line_data, curs_color)
def render_line_normal(self, line, pos, x_offset, max_len):
y = pos[1]
line_data = line.get_data()
line_data = self._prepare_line_for_rendering(line_data, max_len)
self.window.addstr(y, x_offset, line_data)
def add_tab_indicators(self, data):
new_data = ""
i = 0
for char in data:
if i == 0:
new_data += self.config["tab_indicator_character"]
else:
new_data += char
i += 1
if i > self.config["tab_width"]-1:
i = 0
return new_data
def replace_whitespace(self, data):
for key in self.config["white_space_map"]:
char = " "
if self.config["show_white_space"]:
char = self.config["white_space_map"][key]
data = data.replace(key, char)
data = data.replace("\n", "")
return data
def _prepare_line_for_rendering(self, line_data, max_len, no_wspace=False):
if self.show_line_ends:
line_data += self.config["line_end_char"]
line_data = self._slice_line_for_rendering(line_data, max_len)
if not no_wspace:
line_data = self.replace_whitespace(line_data)
if sys.version_info[0] == 3 and sys.version_info[1] > 2:
line_data = line_data.encode("utf-8")
return line_data
def _slice_line_for_rendering(self, line, max_len):
line = line[min(self.x_scroll, len(line)):]
if not line:
return ""
line = line[:min(len(line), max_len)]
return line
def render_cursors(self):
if self.app.block_rendering:
return
max_x, max_y = self.get_size()
for cursor in self.cursors:
x = cursor.x - self.x_scroll + self.line_offset()
y = cursor.y - self.y_scroll
if y < 0:
continue
if y >= max_y:
break
if x < self.line_offset():
continue
if x > max_x-1:
continue
self.window.chgat(y, cursor.x+self.line_offset()-self.x_scroll, 1, self.cursor_style)
def scroll_up(self):
cursor = self.get_first_cursor()
if cursor.y - self.y_scroll < 0:
self.y_scroll = cursor.y
def scroll_down(self):
cursor = self.get_last_cursor()
size = self.get_size()
if cursor.y - self.y_scroll >= size[1]:
self.y_scroll = cursor.y - size[1]+1
def scroll_to_line(self, line_no):
if line_no >= len(self.lines):
line_no = len(self.lines)-1
new_y = line_no - int(self.get_size()[1] / 2)
if new_y < 0:
new_y = 0
self.y_scroll = new_y
def move_y_scroll(self, delta):
self.y_scroll += delta
def move_cursors(self, delta=None):
for cursor in self.cursors:
if delta:
if delta[0] != 0 and cursor.x >= 0:
cursor.move_right(delta[0])
if delta[1] != 0 and cursor.y >= 0:
cursor.move_down(delta[1])
if cursor.x < 0:
cursor.x = 0
if cursor.y < 0:
cursor.y = 0
if cursor.y >= len(self.lines)-1:
cursor.y = len(self.lines)-1
if cursor.x >= len(self.lines[cursor.y]):
cursor.x = len(self.lines[cursor.y])
elif cursor.persistent_x != cursor.x:
cursor.x = min(cursor.persistent_x, len(self.lines[cursor.y]))
cur = self.get_cursor()
size = self.get_size()
offset = self.line_offset()
if cur.x - self.x_scroll+offset > size[0] - 1:
self.x_scroll = len(self.lines[cur.y]) - size[0]+offset+1
if cur.x - self.x_scroll < 0:
self.x_scroll -= abs(cur.x - self.x_scroll)
if cur.x - self.x_scroll+offset < offset:
self.x_scroll -= 1
self.purge_cursors()
def move_x_cursors(self, line, col, delta):
for cursor in self.cursors:
if cursor.y == line:
if cursor.x > col:
cursor.move_right(delta)
def move_y_cursors(self, line, delta, exclude=None):
for cursor in self.cursors:
if cursor == exclude:
continue
if cursor.y > line:
cursor.move_down(delta)
def cursor_exists(self, cursor):
return cursor.tuple() in [cur.tuple() for cur in self.cursors]
def remove_cursor(self, cursor):
try:
index = self.cursors.index(cursor)
except:
return False
self.cursors.pop(index)
return True
def purge_cursors(self):
new = []
ref = []
for cursor in self.cursors:
if not cursor.tuple() in ref:
ref.append(cursor.tuple())
new.append(cursor)
self.cursors = new
def purge_line_cursors(self, line_no):
line_cursors = []
for cursor in self.cursors:
if cursor.y == line_no:
line_cursors.append(cursor)
if len(line_cursors) < 2:
return False
line_cursors.pop(0)
for line_cursors in cursor:
self.remove_cursor(cursor)
return True
def get_key_bindings(self):
return self.app.get_key_bindings()
def handle_input(self, event):
if event.type == "mouse":
return False
key = event.key_code
name = event.key_name
key_bindings = self.get_key_bindings()
operation = None
if key in key_bindings:
operation = key_bindings[key]
elif name in key_bindings:
operation = key_bindings[name]
if operation:
self.run_operation(operation)
return True
return False
def run_operation(self, operation):
if operation in self.operations:
cancel = self.app.trigger_event_before(operation)
if cancel:
return False
result = self.operations[operation]()
self.app.trigger_event_after(operation)
return result
return False
def arrow_right(self):
for cursor in self.cursors:
line = self.lines[cursor.y]
if cursor.x >= len(line) or len(line) == 0:
if cursor.y != len(self.lines)-1:
cursor.move_down()
cursor.set_x(0)
else:
cursor.move_right()
self.move_cursors()
self.scroll_down()
def arrow_left(self):
for cursor in self.cursors:
if cursor.y != 0 and cursor.x == 0:
cursor.move_up()
cursor.set_x(len(self.lines[cursor.y])+1)
self.move_cursors((-1, 0))
self.scroll_up()
def arrow_up(self):
self.move_cursors((0, -1))
self.scroll_up()
def arrow_down(self):
self.move_cursors((0, 1))
self.scroll_down()
def home(self):
for cursor in self.cursors:
wspace = helpers.whitespace(self.lines[cursor.y])
if cursor.x == wspace:
cursor.set_x(0)
else:
cursor.set_x(wspace)
self.move_cursors()
def end(self):
for cursor in self.cursors:
cursor.set_x(len(self.lines[cursor.y]))
self.move_cursors()
def page_up(self):
amount = int(self.get_size()[1]/2) * -1
self.move_cursors((0, amount))
self.scroll_up()
def page_down(self):
amount = int(self.get_size()[1]/2)
self.move_cursors((0, amount))
self.scroll_down()
def jump_left(self):
chars = self.config["punctuation"]
for cursor in self.cursors:
line = self.lines[cursor.y]
if cursor.x == 0:
if cursor.y > 0:
cursor.set_x(len(self.lines[cursor.y-1]))
cursor.move_up()
continue
if cursor.x <= len(line):
cur_chr = line[cursor.x-1]
else:
cur_chr = line[cursor.x]
while cursor.x > 0:
next = cursor.x-2
if next < 0:
next = 0
if cur_chr == " ":
cursor.move_left()
if line[next] != " ":
break
else:
cursor.move_left()
if line[next] in chars:
break
self.move_cursors()
def jump_right(self):
chars = self.config["punctuation"]
for cursor in self.cursors:
line = self.lines[cursor.y]
if cursor.x == len(line):
if cursor.y < len(self.lines):
cursor.set_x(0)
cursor.move_down()
continue
cur_chr = line[cursor.x]
while cursor.x < len(line):
next = cursor.x+1
if next == len(line):
next -= 1
if cur_chr == " ":
cursor.move_right()
if line[next] != " ":
break
else:
cursor.move_right()
if line[next] in chars:
break
self.move_cursors()
|
MIT License
|
bitcraft/pyglet
|
pyglet/media/__init__.py
|
SourceGroup.get_audio_data
|
python
|
def get_audio_data(self, bytes_):
data = self._sources[0].get_audio_data(bytes_)
eos = False
while not data:
eos = True
if self._loop and not self._advance_after_eos:
self._timestamp_offset += self._sources[0].duration
self._dequeued_durations.insert(0, self._sources[0].duration)
self._sources[0].seek(0)
else:
self._advance_after_eos = False
if len(self._sources) > 1:
self._advance()
else:
return None
data = self._sources[0].get_audio_data(bytes_)
data.timestamp += self._timestamp_offset
if eos:
if _debug:
print('adding on_eos event to audio data')
data.events.append(MediaEvent(0, 'on_eos'))
return data
|
Get next audio packet.
:Parameters:
`bytes` : int
Hint for preferred size of audio packet; may be ignored.
:rtype: `AudioData`
:return: Audio data, or None if there is no more data.
|
https://github.com/bitcraft/pyglet/blob/144257c365ca85528c6a4c5bed8141e683d7a9b6/pyglet/media/__init__.py#L775-L811
|
import atexit
import ctypes
import heapq
import sys
import threading
import time
import pyglet
from pyglet.compat import bytes_type, BytesIO
_debug = pyglet.options['debug_media']
class MediaException(Exception):
pass
class MediaFormatException(MediaException):
pass
class CannotSeekException(MediaException):
pass
class MediaThread:
_threads = set()
_threads_lock = threading.Lock()
def __init__(self, target=None):
self._thread = threading.Thread(target=self._thread_run)
self._thread.setDaemon(True)
if target is not None:
self.run = target
self.condition = threading.Condition()
self.stopped = False
@classmethod
def _atexit(cls):
cls._threads_lock.acquire()
threads = list(cls._threads)
cls._threads_lock.release()
for thread in threads:
thread.stop()
def run(self):
pass
def _thread_run(self):
if pyglet.options['debug_trace']:
pyglet._install_trace()
self._threads_lock.acquire()
self._threads.add(self)
self._threads_lock.release()
self.run()
self._threads_lock.acquire()
self._threads.remove(self)
self._threads_lock.release()
def start(self):
self._thread.start()
def stop(self):
if _debug:
print('MediaThread.stop()')
self.condition.acquire()
self.stopped = True
self.condition.notify()
self.condition.release()
self._thread.join()
def sleep(self, timeout):
if _debug:
print('MediaThread.sleep(%r)' % timeout)
self.condition.acquire()
self.condition.wait(timeout)
self.condition.release()
def notify(self):
if _debug:
print('MediaThread.notify()')
self.condition.acquire()
self.condition.notify()
self.condition.release()
atexit.register(MediaThread._atexit)
class WorkerThread(MediaThread):
def __init__(self, target=None):
super().__init__(target)
self._jobs = list()
def run(self):
while True:
job = self.get_job()
if not job:
break
job()
def get_job(self):
self.condition.acquire()
while self._empty() and not self.stopped:
self.condition.wait()
if self.stopped:
result = None
else:
result = self._get()
self.condition.release()
return result
def put_job(self, job):
self.condition.acquire()
self._put(job)
self.condition.notify()
self.condition.release()
def clear_jobs(self):
self.condition.acquire()
self._clear()
self.condition.notify()
self.condition.release()
def _empty(self):
return not self._jobs
def _get(self):
return self._jobs.pop(0)
def _put(self, job):
self._jobs.append(job)
def _clear(self):
del self._jobs[:]
class AudioFormat:
def __init__(self, channels, sample_size, sample_rate):
self.channels = channels
self.sample_size = sample_size
self.sample_rate = sample_rate
self.bytes_per_sample = (sample_size >> 3) * channels
self.bytes_per_second = self.bytes_per_sample * sample_rate
def __eq__(self, other):
return (self.channels == other.channels and
self.sample_size == other.sample_size and
self.sample_rate == other.sample_rate)
def __ne__(self, other):
return not self.__eq__(other)
def __repr__(self):
return '%s(channels=%d, sample_size=%d, sample_rate=%d)' % (
self.__class__.__name__, self.channels, self.sample_size,
self.sample_rate)
class VideoFormat:
def __init__(self, width, height, sample_aspect=1.0):
self.width = width
self.height = height
self.sample_aspect = sample_aspect
self.frame_rate = None
class AudioData:
def __init__(self, data, length, timestamp, duration, events):
self.data = data
self.length = length
self.timestamp = timestamp
self.duration = duration
self.events = events
def consume(self, bytes_, audio_format):
self.events = ()
if bytes_ == self.length:
self.data = None
self.length = 0
self.timestamp += self.duration
self.duration = 0.
return
elif bytes_ == 0:
return
if not isinstance(self.data, str):
data = ctypes.create_string_buffer(self.length)
ctypes.memmove(data, self.data, self.length)
self.data = data
self.data = self.data[bytes_:]
self.length -= bytes_
self.duration -= bytes_ / float(audio_format.bytes_per_second)
self.timestamp += bytes_ / float(audio_format.bytes_per_second)
def get_string_data(self):
if isinstance(self.data, bytes_type):
return self.data
buf = ctypes.create_string_buffer(self.length)
ctypes.memmove(buf, self.data, self.length)
return buf.raw
class MediaEvent:
def __init__(self, timestamp, event, *args):
self.timestamp = timestamp
self.event = event
self.args = args
def _sync_dispatch_to_player(self, player):
pyglet.app.platform_event_loop.post_event(
player, self.event, *self.args)
time.sleep(0)
def __repr__(self):
return '%s(%r, %r, %r)' % (self.__class__.__name__,
self.timestamp, self.event, self.args)
def __lt__(self, other):
return hash(self) < hash(other)
class SourceInfo:
title = ''
author = ''
copyright = ''
comment = ''
album = ''
year = 0
track = 0
genre = ''
class Source:
_duration = None
audio_format = None
video_format = None
info = None
@property
def duration(self):
return self._duration
def play(self):
player = Player()
player.queue(self)
player.play()
return player
def get_animation(self):
from pyglet.image import Animation, AnimationFrame
if not self.video_format:
return Animation(list())
else:
frames = list()
last_ts = 0
next_ts = self.get_next_video_timestamp()
while next_ts is not None:
image = self.get_next_video_frame()
if image is not None:
delay = next_ts - last_ts
frames.append(AnimationFrame(image, delay))
last_ts = next_ts
next_ts = self.get_next_video_timestamp()
return Animation(frames)
def get_next_video_timestamp(self):
pass
def get_next_video_frame(self):
pass
def seek(self, timestamp):
raise CannotSeekException()
def get_queue_source(self):
return self
def get_audio_data(self, bytes_):
pass
class StreamingSource(Source):
_is_queued = False
@property
def is_queued(self):
return self._is_queued
def get_queue_source(self):
if self._is_queued:
raise MediaException('This source is already queued on a player.')
self._is_queued = True
return self
class StaticSource(Source):
def __init__(self, source):
source = source.get_queue_source()
if source.video_format:
raise NotImplementedError(
'Static sources not supported for video yet.')
self.audio_format = source.audio_format
if not self.audio_format:
return
buffer_size = 1 << 20
data = BytesIO()
while True:
audio_data = source.get_audio_data(buffer_size)
if not audio_data:
break
data.write(audio_data.get_string_data())
self._data = data.getvalue()
self._duration = len(self._data) / float(self.audio_format.bytes_per_second)
def get_queue_source(self):
return StaticMemorySource(self._data, self.audio_format)
def get_audio_data(self, bytes_):
raise RuntimeError('StaticSource cannot be queued.')
class StaticMemorySource(StaticSource):
def __init__(self, data, audio_format):
self._file = BytesIO(data)
self._max_offset = len(data)
self.audio_format = audio_format
self._duration = len(data) / float(audio_format.bytes_per_second)
def seek(self, timestamp):
offset = int(timestamp * self.audio_format.bytes_per_second)
if self.audio_format.bytes_per_sample == 2:
offset &= 0xfffffffe
elif self.audio_format.bytes_per_sample == 4:
offset &= 0xfffffffc
self._file.seek(offset)
def get_audio_data(self, bytes_):
offset = self._file.tell()
timestamp = float(offset) / self.audio_format.bytes_per_second
if self.audio_format.bytes_per_sample == 2:
bytes_ &= 0xfffffffe
elif self.audio_format.bytes_per_sample == 4:
bytes_ &= 0xfffffffc
data = self._file.read(bytes_)
if not len(data):
return None
duration = float(len(data)) / self.audio_format.bytes_per_second
return AudioData(data, len(data), timestamp, duration, list())
class SourceGroup:
_advance_after_eos = False
_loop = False
def __init__(self, audio_format, video_format):
self.audio_format = audio_format
self.video_format = video_format
self.duration = 0.
self._timestamp_offset = 0.
self._dequeued_durations = list()
self._sources = list()
def seek(self, time):
if self._sources:
self._sources[0].seek(time)
def queue(self, source):
source = source.get_queue_source()
assert(source.audio_format == self.audio_format)
self._sources.append(source)
self.duration += source.duration
def has_next(self):
return len(self._sources) > 1
def next_source(self, immediate=True):
if immediate:
self._advance()
else:
self._advance_after_eos = True
def get_current_source(self):
if self._sources:
return self._sources[0]
def _advance(self):
if self._sources:
self._timestamp_offset += self._sources[0].duration
self._dequeued_durations.insert(0, self._sources[0].duration)
old_source = self._sources.pop(0)
self.duration -= old_source.duration
@property
def loop(self):
return self._loop
@loop.setter
def loop(self, loop):
self._loop = loop
@property
def advance_after_eos(self):
return self._advance_after_eos
@advance_after_eos.setter
def advance_after_eos(self, advance):
self._advance_after_eos = advance
|
BSD 3-Clause New or Revised License
|
hqsquantumsimulations/pyquest-cffi
|
pyquest_cffi/ops/ops.py
|
sGate.matrix
|
python
|
def matrix(self, **kwargs) -> np.ndarray:
matrix = np.array([[1, 0], [0, 1j]], dtype=complex)
return matrix
|
r"""The definition of the gate as a unitary matrix
Args:
**kwargs: Additional keyword arguments
Returns:
np.ndarray
|
https://github.com/hqsquantumsimulations/pyquest-cffi/blob/38dafab739364fd42b2e1f94e0c6617e11fe6229/pyquest_cffi/ops/ops.py#L196-L206
|
from pyquest_cffi.questlib import (
quest, _PYQUEST, ffi_quest, qreal, tqureg, tquestenv, paulihamil
)
import numpy as np
from typing import Sequence, Optional, Tuple
from pyquest_cffi import cheat
class hadamard(_PYQUEST):
def call_interactive(self, qureg: tqureg, qubit: int) -> None:
quest.hadamard(qureg, qubit)
def matrix(self, **kwargs) -> np.ndarray:
matrix = 1 / np.sqrt(2) * np.array([[1, 1], [1, -1]], dtype=complex)
return matrix
class pauliX(_PYQUEST):
def call_interactive(self, qureg: tqureg, qubit: int) -> None:
quest.pauliX(qureg, qubit)
def matrix(self, **kwargs) -> np.ndarray:
matrix = np.array([[0, 1], [1, 0]], dtype=complex)
return matrix
class pauliY(_PYQUEST):
def call_interactive(self, qureg: tqureg, qubit: int) -> None:
quest.pauliY(qureg, qubit)
def matrix(self, **kwargs) -> np.ndarray:
matrix = np.array([[0, -1j], [1j, 0]], dtype=complex)
return matrix
class pauliZ(_PYQUEST):
def call_interactive(self, qureg: tqureg, qubit: int) -> None:
quest.pauliZ(qureg, qubit)
def matrix(self, **kwargs) -> np.ndarray:
matrix = np.array([[1, 0], [0, -1]], dtype=complex)
return matrix
class sGate(_PYQUEST):
def call_interactive(self, qureg: tqureg, qubit: int) -> None:
quest.sGate(qureg, qubit)
|
Apache License 2.0
|
pymeasure/pymeasure
|
pymeasure/instruments/keithley/keithley6517b.py
|
Keithley6517B.apply_voltage
|
python
|
def apply_voltage(self, voltage_range=None):
log.info("%s is sourcing voltage.", self.name)
if voltage_range is None:
self.auto_range_source()
else:
self.source_voltage_range = voltage_range
self.check_errors()
|
Configures the instrument to apply a source voltage, and
uses an auto range unless a voltage range is specified.
:param voltage_range: A :attr:`~.Keithley6517B.voltage_range` value
or None (activates auto range)
|
https://github.com/pymeasure/pymeasure/blob/658d8fb9a02bdb62f64cc3838875c0de12f49ca1/pymeasure/instruments/keithley/keithley6517b.py#L268-L280
|
import logging
import time
import re
import numpy as np
from pymeasure.instruments import Instrument
from pymeasure.instruments.validators import truncated_range
from .buffer import KeithleyBuffer
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())
class Keithley6517B(Instrument, KeithleyBuffer):
source_enabled = Instrument.measurement(
"OUTPUT?",
""" Reads a boolean value that is True if the source is enabled. """,
cast=bool
)
@staticmethod
def extract_value(result):
m = re.fullmatch(r'([+\-0-9E.]+)[A-Z]{4}', result[0])
if m:
return float(m.group(1))
return None
current = Instrument.measurement(
":MEAS?",
""" Reads the current in Amps, if configured for this reading.
""", get_process=extract_value
)
current_range = Instrument.control(
":SENS:CURR:RANG?", ":SENS:CURR:RANG:AUTO 0;:SENS:CURR:RANG %g",
""" A floating point property that controls the measurement current
range in Amps, which can take values between -20 and +20 mA.
Auto-range is disabled when this property is set. """,
validator=truncated_range,
values=[-20e-3, 20e-3]
)
current_nplc = Instrument.control(
":SENS:CURR:NPLC?", ":SENS:CURR:NPLC %g",
""" A floating point property that controls the number of power
line cycles (NPLC) for the DC current measurements, which sets the
integration period and measurement speed. Takes values from 0.01 to
10, where 0.1, 1, and 10 are Fast, Medium, and Slow respectively. """,
values=[0.01, 10]
)
source_current_resistance_limit = Instrument.control(
":SOUR:CURR:RLIM?", ":SOUR:CURR:RLIM %g",
""" Boolean property which enables or disables resistance
current limit """,
cast=bool
)
voltage = Instrument.measurement(
":MEAS:VOLT?",
""" Reads the voltage in Volts, if configured for this reading.
""", get_process=extract_value
)
voltage_range = Instrument.control(
":SENS:VOLT:RANG?", ":SENS:VOLT:RANG:AUTO 0;:SENS:VOLT:RANG %g",
""" A floating point property that controls the measurement voltage
range in Volts, which can take values from -1000 to 1000 V.
Auto-range is disabled when this property is set. """,
validator=truncated_range,
values=[-1000, 1000]
)
voltage_nplc = Instrument.control(
":SENS:VOLT:NPLC?", ":SENS:VOLT:NPLC %g",
""" A floating point property that controls the number of power
line cycles (NPLC) for the DC voltage measurements, which sets the
integration period and measurement speed. Takes values from 0.01 to
10, where 0.1, 1, and 10 are Fast, Medium, and Slow respectively. """
)
source_voltage = Instrument.control(
":SOUR:VOLT?", ":SOUR:VOLT:LEV %g",
""" A floating point property that controls the source voltage
in Volts. """
)
source_voltage_range = Instrument.control(
":SOUR:VOLT:RANG?", ":SOUR:VOLT:RANG:AUTO 0;:SOUR:VOLT:RANG %g",
""" A floating point property that controls the source voltage
range in Volts, which can take values from -1000 to 1000 V.
Auto-range is disabled when this property is set. """,
validator=truncated_range,
values=[-1000, 1000]
)
resistance = Instrument.measurement(
":READ?",
""" Reads the resistance in Ohms, if configured for this reading.
""", get_process=extract_value
)
resistance_range = Instrument.control(
":SENS:RES:RANG?", ":SENS:RES:RANG:AUTO 0;:SENS:RES:RANG %g",
""" A floating point property that controls the resistance range
in Ohms, which can take values from 0 to 100e18 Ohms.
Auto-range is disabled when this property is set. """,
validator=truncated_range,
values=[0, 100e18]
)
resistance_nplc = Instrument.control(
":SENS:RES:NPLC?", ":SENS:RES:NPLC %g",
""" A floating point property that controls the number of power line cycles
(NPLC) for the 2-wire resistance measurements, which sets the
integration period and measurement speed. Takes values from 0.01
to 10, where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.
"""
)
buffer_points = Instrument.control(
":TRAC:POIN?", ":TRAC:POIN %d",
""" An integer property that controls the number of buffer points. This
does not represent actual points in the buffer, but the configuration
value instead. """,
validator=truncated_range,
values=[1, 6875000],
cast=int
)
def __init__(self, adapter, **kwargs):
super(Keithley6517B, self).__init__(
adapter, "Keithley 6517B Electrometer/High Resistance Meter",
**kwargs
)
def enable_source(self):
self.write("OUTPUT ON")
def disable_source(self):
self.write("OUTPUT OFF")
def measure_resistance(self, nplc=1, resistance=2.1e5, auto_range=True):
log.info("%s is measuring resistance.", self.name)
self.write(":SENS:FUNC 'RES';"
":SENS:RES:NPLC %f;" % nplc)
if auto_range:
self.write(":SENS:RES:RANG:AUTO 1;")
else:
self.resistance_range = resistance
self.check_errors()
def measure_voltage(self, nplc=1, voltage=21.0, auto_range=True):
log.info("%s is measuring voltage.", self.name)
self.write(":SENS:FUNC 'VOLT';"
":SENS:VOLT:NPLC %f;" % nplc)
if auto_range:
self.write(":SENS:VOLT:RANG:AUTO 1;")
else:
self.voltage_range = voltage
self.check_errors()
def measure_current(self, nplc=1, current=1.05e-4, auto_range=True):
log.info("%s is measuring current.", self.name)
self.write(":SENS:FUNC 'CURR';"
":SENS:CURR:NPLC %f;" % nplc)
if auto_range:
self.write(":SENS:CURR:RANG:AUTO 1;")
else:
self.current_range = current
self.check_errors()
def auto_range_source(self):
self.write(":SOUR:VOLT:RANG:AUTO 1")
|
MIT License
|
christopher-dg/gpymusic
|
gpymusic/start.py
|
get_windows
|
python
|
def get_windows():
main = crs.initscr()
main.resize(crs.LINES - 3, crs.COLS)
inbar = crs.newwin(1, crs.COLS, crs.LINES - 1, 0)
infobar = crs.newwin(1, crs.COLS, crs.LINES - 2, 0)
outbar = crs.newwin(1, crs.COLS, crs.LINES - 3, 0)
return main, inbar, infobar, outbar
|
Initialize the curses windows.
Returns: Curses windows.
|
https://github.com/christopher-dg/gpymusic/blob/e16ee3122bfd15dd5558824dd9781aee2edf79e1/gpymusic/start.py#L162-L173
|
from . import common
from getpass import getpass
from os.path import basename, exists, expanduser, isfile, join
from time import sleep
import curses as crs
import json
import sys
def validate_config(config):
user_fields = ['email', 'password', 'deviceid']
colour_fields = [
'background', 'foreground', 'highlight', 'content1', 'content2'
]
if 'user' not in config:
common.w.goodbye('No user info in config file: Exiting.')
if not all([k in config['user'] for k in user_fields]):
common.w.goodbye('Missing user info in config file: Exiting.')
if 'nowplaying' in config and 'enable' not in config['nowplaying']:
common.w.goodbye(
'Missing nowplaying enable flag in config file: Exiting.')
else:
nowplaying = config['nowplaying']['enable'] == 'yes'
if nowplaying:
if 'filename' in config['nowplaying']:
filename = config['nowplaying']['filename']
else:
filename = '~/.nowplaying'
common.np.initialise(expanduser(filename))
if 'colour' in config and 'enable' not in config['colour']:
common.w.goodbye('Missing colour enable flag in config file: Exiting.')
else:
colour = config['colour']['enable'] == 'yes'
if colour and not all([c in config['colour'] for c in colour_fields]):
common.w.outbar_msg(
'One or more colours are missing: Not using colour.')
colour = False
sleep(1.5)
elif colour and not all(
[validate_colour(c, config['colour'][c]) for c in colour_fields]
):
common.w.outbar_msg(
'One or more colours are invalid: Not using colour.'
)
colour = False
sleep(1.5)
return colour
def validate_colour(field, hex):
if field == 'background' and hex == 'default':
return True
c = tuple(range(48, 58)) + tuple(range(65, 91)) + tuple(range(97, 123))
return (hex.startswith('#') and len(hex) == 7 and
all([ord(ch) in c for ch in hex[1:]]))
def check_dirs():
msg = 'At least one required directory does not exist: '
msg += 'did you run gpymusic-setup?'
if not exists(common.CONFIG_DIR) or not exists(common.DATA_DIR):
common.w.goodbye(msg)
if not exists(join(common.DATA_DIR, 'playlists')):
common.w.goodbye(msg)
if not exists(join(common.DATA_DIR, 'songs')):
common.w.goodbye(msg)
def password(config):
if not config['user']['password']:
if not common.w.curses:
try:
config['user']['password'] = getpass()
except KeyboardInterrupt:
common.w.goodbye('Exiting.')
else:
crs.noecho()
common.w.addstr(common.w.inbar, 'Enter your password: ')
try:
config['user']['password'] = (
common.w.inbar.getstr().decode('utf-8')
)
except KeyboardInterrupt:
common.w.goodbye('Exiting.')
crs.echo()
return config
def read_config():
path = join(common.CONFIG_DIR, 'config.json')
if not isfile(path):
common.w.goodbye(
'Config file not found at %s: Exiting.' % basename(path)
)
with open(path) as f:
try:
config = json.load(f)
except json.decoder.JSONDecodeError:
common.w.goodbye(
'Invalid config file, refer to config.example.json: Exiting.'
)
return password(config)
|
MIT License
|
reliaqualassociates/ramstk
|
src/ramstk/analyses/fha.py
|
set_user_defined_floats
|
python
|
def set_user_defined_floats(fha: Dict[str, Any], floats: List[float]) -> Dict[str, Any]:
_key = ""
for _idx in [0, 1, 2]:
try:
_key = list(fha.keys())[_idx]
fha[_key] = float(floats[_idx])
except IndexError:
fha[_key] = 0.0
return fha
|
Set the user-defined float values for the user-defined calculations.
:param fha: the functional hazard assessment dict.
:param list floats: the list of float values.
:return: fha; the functional hazard assessment dict with updated float
values.
:rtype: dict
|
https://github.com/reliaqualassociates/ramstk/blob/ffec5a107424914cf0026c6dfe26369c221f79f9/src/ramstk/analyses/fha.py#L162-L179
|
from typing import Any, Dict, List
from sympy import symbols, sympify
from ramstk.exceptions import OutOfRangeError
PROBABILITY = {
"Level E - Extremely Unlikely": 1,
"Level D - Remote": 2,
"Level C - Occasional": 3,
"Level B - Reasonably Probable": 4,
"Level A - Frequent": 5,
}
SEVERITY = {
"Insignificant": 1,
"Slight": 2,
"Low": 3,
"Medium": 4,
"High": 5,
"Major": 6,
}
def calculate_hri(probability: str, severity: str) -> int:
try:
return PROBABILITY[probability] * SEVERITY[severity]
except KeyError as _error:
raise OutOfRangeError(
(
"calculate_hri() was passed an unknown hazard "
"probability ({0:s}) or severity ({1:s}) "
"description."
).format(probability, severity)
) from _error
def calculate_user_defined(fha: Dict[str, Any]) -> Dict[str, Any]:
(uf1, uf2, uf3, ui1, ui2, ui3, res1, res2, res3, res4, res5) = symbols(
"uf1 uf2 uf3 ui1 ui2 ui3 res1 res2 res3 res4 res5"
)
fha["res1"] = sympify(fha["equation1"]).evalf(
subs={
uf1: fha["uf1"],
uf2: fha["uf2"],
uf3: fha["uf3"],
ui1: fha["ui1"],
ui2: fha["ui2"],
ui3: fha["ui3"],
res1: fha["res1"],
res2: fha["res2"],
res3: fha["res3"],
res4: fha["res4"],
res5: fha["res5"],
}
)
fha["res2"] = sympify(fha["equation2"]).evalf(
subs={
uf1: fha["uf1"],
uf2: fha["uf2"],
uf3: fha["uf3"],
ui1: fha["ui1"],
ui2: fha["ui2"],
ui3: fha["ui3"],
res1: fha["res1"],
res2: fha["res2"],
res3: fha["res3"],
res4: fha["res4"],
res5: fha["res5"],
}
)
fha["res3"] = sympify(fha["equation3"]).evalf(
subs={
uf1: fha["uf1"],
uf2: fha["uf2"],
uf3: fha["uf3"],
ui1: fha["ui1"],
ui2: fha["ui2"],
ui3: fha["ui3"],
res1: fha["res1"],
res2: fha["res2"],
res3: fha["res3"],
res4: fha["res4"],
res5: fha["res5"],
}
)
fha["res4"] = sympify(fha["equation4"]).evalf(
subs={
uf1: fha["uf1"],
uf2: fha["uf2"],
uf3: fha["uf3"],
ui1: fha["ui1"],
ui2: fha["ui2"],
ui3: fha["ui3"],
res1: fha["res1"],
res2: fha["res2"],
res3: fha["res3"],
res4: fha["res4"],
res5: fha["res5"],
}
)
fha["res5"] = sympify(fha["equation5"]).evalf(
subs={
uf1: fha["uf1"],
uf2: fha["uf2"],
uf3: fha["uf3"],
ui1: fha["ui1"],
ui2: fha["ui2"],
ui3: fha["ui3"],
res1: fha["res1"],
res2: fha["res2"],
res3: fha["res3"],
res4: fha["res4"],
res5: fha["res5"],
}
)
return fha
|
BSD 3-Clause New or Revised License
|
haorand/faceantispoofing_dl
|
Code/Landmark_5p_caffe.py
|
list2colmatrix
|
python
|
def list2colmatrix(pts_list):
assert len(pts_list) > 0
colMat = []
for i in range(len(pts_list)):
colMat.append(pts_list[i][0])
colMat.append(pts_list[i][1])
colMat = np.matrix(colMat).transpose()
return colMat
|
convert list to column matrix
Parameters:
----------
pts_list:
input list
Retures:
-------
colMat:
|
https://github.com/haorand/faceantispoofing_dl/blob/40e12ee9db6fbaded03c7aff1f933fe8be5e4ff3/Code/Landmark_5p_caffe.py#L23-L41
|
import numpy as np
import math
import cv2
import os
from os import listdir
import json
import time
import sys
from MtcnnDetector import FaceDetector
TRAINING = 0
TESTING = 1
CPU = 0
GPU = 1
CASIA = 0
REPLAYATTACK = 1
OULU = 2
|
MIT License
|
sanand0/xmljson
|
xmljson/__init__.py
|
XMLData._tostring
|
python
|
def _tostring(value):
if value is True:
value = 'true'
elif value is False:
value = 'false'
elif value is None:
value = ''
return unicode(value)
|
Convert value to XML compatible string
|
https://github.com/sanand0/xmljson/blob/20817db7eecd057b23ed7055d32bb339c3c5a496/xmljson/__init__.py#L61-L69
|
import sys
from collections import Counter, OrderedDict
try:
from lxml.etree import Element
except ImportError:
from xml.etree.cElementTree import Element
__author__ = 'S Anand'
__email__ = 'root.node@gmail.com'
__version__ = '0.2.0'
if sys.version_info[0] == 3:
unicode = str
basestring = str
class XMLData(object):
def __init__(self, xml_fromstring=True, xml_tostring=True, element=None, dict_type=None,
list_type=None, attr_prefix=None, text_content=None, simple_text=False,
invalid_tags=None):
if callable(xml_fromstring):
self._fromstring = xml_fromstring
elif not xml_fromstring:
self._fromstring = lambda v: v
if callable(xml_tostring):
self._tostring = xml_tostring
self.element = Element if element is None else element
self.dict = OrderedDict if dict_type is None else dict_type
self.list = list if list_type is None else list_type
self.attr_prefix = attr_prefix
self.text_content = text_content
self.simple_text = simple_text
if invalid_tags == 'drop':
self._element = self.element
self.element = self._make_valid_element
elif invalid_tags is not None:
raise TypeError('invalid_tags can be "drop" or None, not "%s"' % invalid_tags)
def _make_valid_element(self, key):
try:
return self._element(key)
except (TypeError, ValueError):
pass
@staticmethod
|
MIT License
|
chriswilson1982/black-and-white
|
black_white.py
|
Game.timing
|
python
|
def timing(self):
if self.can_play:
time_allowed = 61 - (difficulty * 10) - (self.level * 0.5 * difficulty)
time_allowed = max(time_allowed, 5)
time_elapsed = self.t - self.timestamp
angle = 2 * pi * time_elapsed / time_allowed
if time_elapsed >= time_allowed:
self.can_play = False
self.timer_mark.run_action(A.fade_to(0, 0))
self.timer_mark_2.run_action(A.fade_to(0, 0))
self.sparkle(color3, self.restart_button.position,
image='shp:Circle', spread=50, z_position=0.2, n=20)
self.commit()
return
elif time_elapsed > time_allowed - 8 and not self.low_time and not self.warning_flag:
self.warning_flag = True
self.level_label.text = choice(hurry_text)
elif time_elapsed > time_allowed - 5 and not self.low_time:
self.low_time = True
self.green_timer_background.fill_color = color3
self.timer_sound()
radius = 28.0
p = ui.Path()
p.add_arc(0, 0, radius, 0, angle)
p.stroke()
p.close()
self.timer.path = p
mid_frame = (self.timer.frame[2] / 2.0, self.timer.frame[3] / 2.0)
rp = self.restart_button.position
if angle < pi:
self.timer.position = (
rp[0] + mid_frame[0], rp[1] + radius - mid_frame[1])
else:
self.timer.position = (
rp[0] + radius - mid_frame[0], rp[1] + radius - mid_frame[1])
self.timer_mark_2.rotation = 2 * pi - (time_elapsed / time_allowed * 2 * pi)
|
Use timestamp for countdown.
This is called with each update.
|
https://github.com/chriswilson1982/black-and-white/blob/e275e6f534aa51f12f4545730b627ce280aae8c3/black_white.py#L870-L923
|
from scene import *
import ui
from math import pi
from random import choice, randint, randrange, random, uniform
from time import sleep, time
from datetime import date
import dialogs
import pickle
import sound
import os
import webbrowser
from database import check_final_score, get_all_scores
from square import Square
from start_finish import StartFinish
from powerup import Powerup
from configuration import save_settings
from common import *
class Game (Scene):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
self._score = value
self.score_label.text = str(self._score)
def setup(self):
self.background_color = background_color
self.alpha = 0
self._score = 0
self.run_action(A.fade_to(1, 0.2))
bg = ui.Path().rounded_rect(0, 0, square_size, square_size, 4)
bg.fill()
bg.close()
self.bg_list = []
for x in range(randrange(20, 100)):
self.random_bg = ShapeNode(bg, color=choice(all_colors), position=(
randint(0, screen_w), randint(0, screen_h)), size=(square_size, square_size))
self.random_bg.alpha = 0.05 * randrange(1, 9)
self.random_bg.speed = randrange(1, 6)
self.random_bg.z_position = 0.2
self.add_child(self.random_bg)
self.bg_list.append(self.random_bg)
self.title = LabelNode("black white", font=(
'Helvetica Neue', title_font_size), color=text_color, position=title_position)
self.title.z_position = 1.0
self.add_child(self.title)
self.title2 = LabelNode("&", font=(
'Helvetica-bold', title_font_size), color=text_color, position=title_position)
self.title2.z_position = 1.0
self.add_child(self.title2)
self.settings = SpriteNode(make_texture('Cog', text_color), position=(
top_button_side_gap, screen_h - top_button_top_gap), scale=top_button_scale)
self.settings.z_position = 0.9
self.add_child(self.settings)
self.highscore_button = SpriteNode(make_texture('Group', text_color), position=(
screen_w - top_button_side_gap, screen_h - top_button_top_gap), scale=top_button_scale)
self.highscore_button.z_position = 0.9
self.add_child(self.highscore_button)
self.level = 0
self.level_bg = SpriteNode(color=background_color, position=(
screen_w / 2, label_height), size=(screen_w, 26), alpha=0.7)
self.level_bg.z_position = 0.8
self.add_child(self.level_bg)
self.level_label = LabelNode("Level 1", font=(
'Helvetica-bold', 20), color=text_color, position=(screen_w / 2, label_height))
self.level_label.z_position = 0.9
self.add_child(self.level_label)
self.powerup_1 = Powerup(1, starting_powerups, (
screen_w / 2 - square_size * 2, powerup_vertical))
self.add_child(self.powerup_1)
self.powerup_2 = Powerup(2, starting_powerups,
(screen_w / 2, powerup_vertical))
self.add_child(self.powerup_2)
self.powerup_3 = Powerup(3, starting_powerups, (
screen_w / 2 + square_size * 2, powerup_vertical))
self.add_child(self.powerup_3)
self.black_count = LabelNode("0", font=(
'Helvetica', counter_font_size), color=color2, position=(-100, -100), z_position=0.55)
self.add_child(self.black_count)
self.white_count = LabelNode("0", font=(
'Helvetica', counter_font_size), color=color1, position=(-100, -100), z_position=0.55)
self.add_child(self.white_count)
self.squares = []
self.start = StartFinish(row=randint(1, rows), type="start")
self.add_child(self.start)
self.finish = StartFinish(row=randint(1, rows), type="finish")
self.add_child(self.finish)
self.backdrop3a = SpriteNode(position=self.start.position, size=(
8 * square_size, square_size + 10), color=text_color)
self.backdrop3a.anchor_point = (0.965, 0.5)
self.backdrop3a.z_position = 0.4
self.add_child(self.backdrop3a)
self.backdrop3b = SpriteNode(position=self.finish.position, size=(
8 * square_size, square_size + 10), color=text_color)
self.backdrop3b.anchor_point = (0.035, 0.5)
self.backdrop3b.z_position = 0.4
self.add_child(self.backdrop3b)
bd4 = ui.Path().rounded_rect(0, 0, square_size * 2, 50, 8)
bd4.fill()
bd4.close()
self.backdrop4 = ShapeNode(bd4, position=(
screen_w / 2, bottom_vertical), color=color1, size=(square_size * 2, 50))
self.backdrop4.z_position = 0.8
self.add_child(self.backdrop4)
bd5 = ui.Path().rounded_rect(0, 0, square_size * 2 - 10, 40, 4)
bd5.fill()
bd5.close()
self.backdrop5 = ShapeNode(bd5, stroke_color=color2, position=(
screen_w / 2, bottom_vertical), size=(2 * square_size - 10, 40))
self.backdrop5.line_width = 2
self.backdrop5.z_position = 0.85
self.add_child(self.backdrop5)
self.commit_button = SpriteNode(texture=make_texture('Check', text_color), color=text_color, position=(
screen_w / 2, bottom_vertical), size=(square_size, square_size), z_position=0.9)
self.add_child(self.commit_button)
circle1 = ui.Path()
circle1.add_arc(0, 0, 24, 0, pi * 2)
circle1.line_width = 4
circle1.stroke()
circle1.close()
circle2 = ui.Path()
circle2.add_arc(0, 0, 15, 0, pi * 2)
circle2.close()
circle3 = ui.Path()
circle3.add_arc(0, 0, 26, 0, 2 * pi)
circle3.line_width = 2
circle3.stroke()
circle3.close()
tex_res = Texture('iob:ios7_refresh_32')
self.restart_button = SpriteNode(texture=tex_res, position=(
screen_w / 2 + square_size * 2.5, bottom_vertical), scale=1)
self.restart_button.z_position = 0.4
self.add_child(self.restart_button)
self.green_timer_background = ShapeNode(
circle1, color4, color1, position=self.restart_button.position)
self.green_timer_background.rotation = pi / 2
self.green_timer_background.z_position = 0.18
self.add_child(self.green_timer_background)
self.white_timer_background = ShapeNode(
circle2, fill_color=color4, position=self.restart_button.position)
self.white_timer_background.z_position = 0.35
self.add_child(self.white_timer_background)
p = ui.Path()
p.add_arc(0, 0, 26, 0, 0)
p.stroke()
p.close()
self.timer = ShapeNode(p, background_color, background_color)
self.timer.z_position = 0.19
self.timer.rotation = pi / 2
self.timer.position = self.restart_button.position
self.timer.alpha = 1
self.add_child(self.timer)
line = ui.Path().rect(0, 0, 4, 25)
line.fill()
line.close()
self.timer_mark = ShapeNode(
line, color1, color1, position=self.restart_button.position, size=(4, 25))
self.timer_mark.anchor_point = (0.5, 0)
self.timer_mark.z_position = 0.3
self.add_child(self.timer_mark)
self.timer_mark_2 = ShapeNode(
line, color1, color1, position=self.restart_button.position, size=(4, 25))
self.timer_mark_2.anchor_point = (0.5, 0)
self.timer_mark_2.z_position = 0.3
self.add_child(self.timer_mark_2)
self.timer_ring = ShapeNode(circle3)
self.timer_ring.alpha = 0
self.warning_flag = False
self.score_label = LabelNode("0", font=('Helvetica-bold', 40), color=text_color, position=(
screen_w / 2 - square_size * 2.5, bottom_vertical), size=(square_size, square_size), z_position=0.9)
self.add_child(self.score_label)
self.can_play = True
self.can_settings = True
self.can_highscore = True
self.unlock = False
self.can_restart = False
self.win = False
self.no_whites = False
self.punishment = False
self.reward = False
self.can_flip = False
self.low_time = False
self.green_list = []
self.new_game(False)
if not username or username == "Player":
self.get_name()
@ui.in_background
def get_name(self):
global username
sleep(1)
try:
username = dialogs.input_alert(
"Enter your name", "This will be used on the high score leaderboard!")
if username == '':
username = 'Player'
except KeyboardInterrupt:
username = "Player"
first_time = False
new_data = (background_color, color3, color4,
text_color, difficulty, username, first_time)
save_settings(new_data)
def commit(self):
self.stop_squares_moving()
self.destroy_crosses()
self.can_play = False
self.low_time = False
self.can_settings = False
self.highscore_button.alpha = 1
sound.play_effect(button_sound)
for square in self.squares:
if square.row == self.start.row and square.col == 1:
if square.state == 2:
square.state = 3
square.color = color4
self.go(square)
else:
self.losing()
def go(self, start_square):
def cascade(node, progress):
if progress == 1 and node.state == 3 and self.win:
node.state = 4
self.sparkle(color4, node.position, image='shp:RoundRect')
node.color = color4
elif progress == 1 and node.state == 4 and self.win:
self.sparkle(color4, node.position, image='shp:RoundRect')
node.color = color4
self.finish.color = color4
elif progress == 1 and node.state == 0 and not self.win:
self.sparkle(color3, node.position, image='shp:RoundRect')
node.color = color3
self.green_list.append(start_square)
index = 0.01
while self.green_list:
square = self.green_list.pop(randint(0, len(self.green_list) - 1))
square.state = 3
square.run_action(A.call(cascade, index))
index += 0.01
for n in square.white_neighbours(self.squares):
if n not in self.green_list:
self.green_list.append(n)
self.check_win()
def check_win(self):
self.can_play = False
self.can_flip = False
self.unlock = False
for square in self.squares:
square.rotation = 0.0
if square.row == self.finish.row and square.col == cols:
if square.state == 3:
square.state = 4
self.win = True
self.can_play = False
self.winning()
return
elif square.state == 4:
return
self.losing()
def winning(self):
square_states = [square.state for square in self.squares]
self.black_count.text = str(square_states.count(1))
self.white_count.text = str(square_states.count(2))
add_score = 0
for square in self.squares:
if square.state >= 3:
add_score += 1
self.commit_button.texture = make_texture('Right', text_color)
self.restart_button.texture = Texture('iob:checkmark_circled_32')
if self.star_square:
if self.star_square.state >= 3:
self.sparkle(text_color, self.star_square.position,
image='shp:Star', spread=40, z_position=1.1)
p_list = []
for item in (self.powerup_1, self.powerup_2, self.powerup_3):
if item.count < 9:
p_list.append(item)
if not p_list:
p_list.append(self.score_label)
target = choice(p_list)
pos = target.position
self.powerup_indicator = target
if text_color == 1:
self.star_square.star_icon.scale = 0.8
self.star_square.star_icon.texture = Texture('typw:Star')
self.star_square.star_icon.z_position = 0.9
self.star_square.star_icon.run_action(A.sequence(A.scale_by(0.2, 0.1), A.scale_by(-0.2, 0.1), A.group(A.move_to(
pos[0], pos[1], 1.8, TIMING_SINODIAL), A.fade_to(0, 1.8, TIMING_EASE_IN), A.rotate_by(2 * pi, 2)), A.remove()))
if target != self.score_label:
target.run_action(A.sequence(A.wait(1.8), A.scale_to(
1.2, 0.2, TIMING_BOUNCE_IN_OUT), A.scale_to(1, 0.2)))
if target == self.score_label:
self.score += self.level
self.ten = LabelNode("+" + str(self.level), font=('Helvetica-bold', 30),
position=self.star_square.position + (0, 30), color=text_color, z_position=0.81)
self.add_child(self.ten)
self.ten.run_action(A.sequence(A.wait(0.2), A.group(A.move_to(
pos[0], pos[1] + 50, 1.8, TIMING_SINODIAL), A.fade_to(0, 1.9, TIMING_EASE_IN)), A.remove()))
for item in (self.powerup_1, self.powerup_2, self.powerup_3):
self.sparkle(color4, item.position, image='shp:Star')
item.run_action(A.sequence(
A.scale_to(1.2, 0.4), A.scale_to(1, 0.4)))
else:
def powerup_increment(pu, progress):
if progress == 1 and pu.count < 9:
sound.play_effect(powerup_sound)
pu.count += 1
target.run_action(A.call(powerup_increment, 1.8))
for bg in self.bg_list:
bg.color = color4
self.backdrop5.color = color4
self.move_counters()
self.score_change(add_score, self.win)
self.end_sound()
def losing(self):
score_value = self.score
self.green_timer_background.fill_color = color3
for square in self.squares:
if square.star:
square.star_icon.z_position = 1
square.star_icon.run_action(
A.sequence(A.scale_to(0, 1), A.remove()))
if square.state == 3:
square.state = 0
if square.state == 0:
square.z_position = 0.25
bg_target = choice(self.bg_list).position
square.run_action(A.sequence(A.wait(random() + 1), A.group(A.scale_to(0, 3), A.fade_to(
0, 2), A.move_to(bg_target[0], bg_target[1], 2, TIMING_SINODIAL)), A.remove()))
self.start.color = color3
self.score_label.color = color3
self.backdrop5.color = color3
self.commit_button.texture = make_texture('Cross', text_color)
if self.level == 1:
self.level_label.text = choice(quick_fail_text)
elif score_value == 0 and self.level > 1:
self.level_label.text = choice(zero_fail_text)
elif score_value < 0:
self.level_label.text = choice(neg_fail_text)
else:
self.level_label.text = choice(fail_text)
self.move_counters()
self.save(score_value)
for bg in self.bg_list:
bg.color = color3
self.can_settings = True
self.end_sound()
def score_change(self, num, win):
if num > 0:
text = "+" + str(num)
elif num < 0:
text = str(num)
else:
text = ""
red_count = len(
[square for square in self.squares if square.state == 0])
if win:
self.score_label1 = LabelNode(text, font=('Helvetica', score_label_font_size), color=color4, position=(
screen_w / 2, 100 + score_label_gap), size=(square_size, square_size), z_position=0.8, alpha=0)
self.add_child(self.score_label1)
self.score_label1.run_action(score_action_1)
self.score_label2 = LabelNode("-" + str(self.white_count.text), font=('Helvetica', score_label_font_size),
color=color2, position=(screen_w / 2, 100), size=(square_size, square_size), z_position=0.8, alpha=0)
self.add_child(self.score_label2)
self.score_label2.run_action(score_action_1)
self.score_label3 = LabelNode("-" + str(red_count), font=('Helvetica', score_label_font_size), color=color3, position=(
screen_w / 2, 100 - score_label_gap), size=(square_size, square_size), z_position=0.8, alpha=0)
self.add_child(self.score_label3)
self.score_label3.run_action(score_action_1)
sq = ui.Path().rounded_rect(0, 0, square_size * 4 - 12, square_size * 4 - 12, 4)
sq.fill()
sq.close()
self.score_label_back = ShapeNode(
sq, color=color1, position=(screen_w / 2, 100), alpha=0)
self.score_label_back.z_position = 0.7
self.score_label_back.size = (
4 * square_size - 14, 4 * square_size - 14)
self.add_child(self.score_label_back)
self.score_label_back.run_action(score_action_2)
if self.no_whites:
self.score_label2.text = "+" + str(rows + cols)
num += rows + cols
total_score_change = num - int(self.white_count.text) - red_count
self.total_score_change_label = LabelNode("+" + str(total_score_change), font=(
'Helvetica-bold', 40), color=text_color, position=self.score_label.position)
self.total_score_change_label.z_position = 0.6
if self.no_whites:
if total_score_change < rows * cols:
self.level_label.text = choice(no_white_text)
else:
self.reward = True
if self.powerup_1.count + self.powerup_2.count + self.powerup_3.count < 18:
self.level_label.text = choice(reward_text)
else:
self.level_label.text = choice(no_white_text)
for item in (self.powerup_1, self.powerup_2, self.powerup_3):
if item.count < 9:
item.count += 1
item.run_action(A.sequence(A.scale_to(
1.2, 0.2, TIMING_BOUNCE_IN_OUT), A.scale_to(1, 0.2)))
self.sparkle(
color4, item.position - (square_size / 4.0, 0), image='shp:RoundRect')
else:
if total_score_change > 0:
self.level_label.text = choice(win_text)
self.total_score_change_label.text = "+" + str(total_score_change)
elif total_score_change == 0:
self.level_label.text = choice(zero_text)
self.total_score_change_label.text = "+" + str(total_score_change)
self.punishment = True
elif total_score_change < 0:
self.level_label.text = choice(neg_text)
self.total_score_change_label.text = str(
total_score_change)
self.total_score_change_label.color = color3
self.punishment = True
else:
total_score_change = -1 * self.score
self.total_score_change_label = LabelNode(str(total_score_change), font=(
'Helvetica-bold', 40), color=color3, position=self.score_label.position)
self.add_child(self.total_score_change_label)
self.score += total_score_change
self.total_score_change_label.run_action(A.sequence(A.fade_to(1, 0.1), A.wait(
1), A.move_to(screen_w / 2, bottom_vertical, 2, TIMING_EASE_IN_OUT), A.remove()))
self.score_label.run_action(A.sequence(
A.fade_to(0, 0), A.wait(1.8), A.fade_to(1, 0.5)))
def new_game(self, win):
self.can_restart = False
for item in (self.timer_mark, self.timer_mark_2):
item.alpha = 1
item.run_action(A.sequence(
A.scale_y_to(0.6, 0), A.scale_y_to(1, 0.3)))
for item in (self.green_timer_background, self.white_timer_background):
item.run_action(A.sequence(A.scale_to(0.6, 0), A.scale_to(1, 0.3)))
self.restart_button.texture = Texture('iob:ios7_refresh_32')
if self.can_play and self.score != 0:
for square in self.squares:
square.rotation = 0
try:
dialogs.alert("Do you want to start again?",
"Your score will be reset to zero!", "Restart")
self.level = 0
self.level_label.text = 'level ' + str(self.level)
self.losing()
except KeyboardInterrupt:
self.can_restart = True
return
self.can_play = False
self.no_whites = False
self.win = False
self.level += 1
self.level_label.text = 'Level ' + str(self.level)
self.white_timer_background.fill_color = color2
self.green_timer_background.fill_color = color4
p = ui.Path()
p.add_arc(0, 0, 28.0, 0, 0)
p.stroke()
p.close()
self.timer.path = p
self.timer.position = self.restart_button.position
self.timer_mark_2.rotation = 0
self.warning_flag = False
for bg in self.bg_list:
bg.run_action(A.move_to(randint(0, screen_w),
randint(0, screen_h), random()))
bg.color = choice(all_colors)
self.make_grid()
try:
for item in (self.score_label1, self.score_label2, self.score_label3, self.score_label_back):
item.run_action(A.remove())
except:
pass
if not win:
self.score = 0
self.level = 0
self.level_label.text = 'Level ' + str(self.level)
self.can_settings = True
for pu in (self.powerup_1, self.powerup_2, self.powerup_3):
pu.count = starting_powerups
self.move_counters()
self.score_label.color = text_color
self.backdrop5.color = color4
self.commit_button.texture = make_texture('Check', text_color)
self.restart_button.remove_all_actions()
sound.play_effect(new_game_sound)
def make_grid(self):
global rows, cols, top_left
if self.punishment:
rows, cols = 4, 4
self.level_label.text = choice(punishment_text)
else:
rows = randrange(4, 11, 2)
if rows == 4:
cols = 6
else:
cols = randrange(4, 7, 2)
top_left = (centre[0] - square_size * (cols / 2.0 - 0.5),
(centre[1] + square_size * (rows / 2.0 - 0.5)))
for square in self.squares:
bg_target = choice(self.bg_list).position
square.alpha = 0.6
square.scale = 0.6
square.run_action(A.sequence(A.group(A.scale_to(0, 2), A.fade_to(
0, 2), A.move_to(bg_target[0], bg_target[1], 2, TIMING_SINODIAL)), A.remove()))
self.start.row = randint(1, rows)
self.start.color = color4
self.finish.row = randint(1, rows)
self.finish.color = color2
border = ui.Path().rounded_rect(
0, 0, cols * square_size + 20, rows * square_size + 20, 4)
border.line_width = 6
border.stroke()
border.close()
fine_border = ui.Path().rect(0, 0, cols * square_size, rows * square_size)
fine_border.line_width = 1
fine_border.stroke()
fine_border.close()
try:
self.backdrop.run_action(A.remove())
self.backdrop2.run_action(A.remove())
except:
pass
self.backdrop = ShapeNode(border, (0, 0, 0, 0), text_color, position=centre, size=(
square_size * cols + 20, square_size * rows + 20))
self.backdrop.blend_mode = BLEND_NORMAL
self.backdrop.z_position = 0.3
self.add_child(self.backdrop)
self.backdrop2 = ShapeNode(fine_border, (0, 0, 0, 0), text_color, position=centre, size=(
square_size * cols, square_size * rows))
self.backdrop2.z_position = 0.2
self.add_child(self.backdrop2)
self.start.run_action(A.move_to(
top_left[0] - square_size, top_left[1] - square_size * (self.start.row - 1), 0.3))
self.finish.run_action(A.move_to(
top_left[0] + square_size * cols, top_left[1] - square_size * (self.finish.row - 1), 0.3))
self.backdrop3a.run_action(A.move_to(
top_left[0] - square_size, top_left[1] - square_size * (self.start.row - 1), 0.3))
self.backdrop3b.run_action(A.move_to(
top_left[0] + square_size * cols, top_left[1] - square_size * (self.finish.row - 1), 0.3))
horizontal = top_left[0]
vertical = top_left[1]
self.squares = []
for x in range(cols):
for y in range(rows):
self.square = Square(col=x + 1, row=y + 1, position=(horizontal, vertical), size=(
square_size, square_size), state=choice((1, 2)), color=None)
self.square.z_position = 0.5
self.add_child(self.square)
self.squares.append(self.square)
vertical -= square_size
vertical = top_left[1]
horizontal += square_size - 0.05
longest_square = choice(self.squares)
for square in self.squares:
bg_target = choice(self.bg_list).position
pos = square.position
if square != longest_square:
square.run_action(A.sequence(A.group(A.scale_to(0, 0), A.fade_to(0, 0), A.rotate_to(randrange(0, 6), 0), A.move_to(bg_target[0], bg_target[1], 0)), A.group(A.scale_to(
1, randrange(5, 10) * 0.1), A.fade_to(0.8, randrange(1, 10) * 0.1), A.rotate_to(0, randrange(1, 10) * 0.1), A.move_to(pos[0], pos[1], randrange(1, 10) * 0.1, TIMING_SINODIAL))))
elif square == longest_square:
def now_can_play():
self.can_play = True
self.can_restart = True
self.timestamp = self.t
square.run_action(A.sequence(A.group(A.scale_to(0, 0), A.fade_to(0, 0), A.rotate_to(randrange(0, 6), 0), A.move_to(bg_target[0], bg_target[1], 0)), A.group(
A.scale_to(1, 1), A.fade_to(0.8, 1), A.rotate_to(0, 1), A.move_to(pos[0], pos[1], 1, TIMING_SINODIAL)), A.wait(0.2), A.call(now_can_play)))
try:
self.star_square.star_icon.run_action(A.sequence(
A.group(A.scale_to(0.3, 1), A.fade_to(0, 1)), A.remove()))
except:
pass
if randrange(1, 3) == 1:
self.star_square = choice(self.squares)
self.star_square.go_star()
else:
self.star_square = None
self.punishment = False
self.reward = False
self.can_flip = False
self.unlock = False
def move_counters(self):
black_list = [square for square in self.squares if square.state == 1]
white_list = [square for square in self.squares if square.state == 2]
self.black_count.text = str(len(black_list))
self.white_count.text = str(len(white_list))
wc = len(white_list)
try:
if self.star_square:
if self.star_square in black_list:
black_list.remove(self.star_square)
elif self.star_square in white_list:
white_list.remove(self.star_square)
except:
pass
try:
b = choice(black_list)
self.black_count.position = b.position
except:
self.black_count.position = (-100, -100)
try:
w = choice(white_list)
self.white_count.position = w.position
except:
self.white_count.position = (-100, -100)
if not wc:
self.no_whites = True
@ui.in_background
def save(self, number):
result = check_final_score(username, number, difficulty)
if result == "g":
sleep(1)
try:
sound.play_effect(star_bonus_sound)
dialogs.alert("New High Score!", "Well done " + username +
"!\n\nYou are the new champion with a score of " + str(number), "OK", hide_cancel_button=True)
except KeyboardInterrupt:
pass
elif result == "p":
sleep(1)
try:
sound.play_effect(star_bonus_sound)
dialogs.alert("New Personal Best!", "Well done " + username +
"!\n\nYour top score is " + str(number), "OK", hide_cancel_button=True)
except KeyboardInterrupt:
pass
@ui.in_background
def display_scores(self):
all_scores = get_all_scores(difficulty)
if not all_scores:
sound.play_effect(fail_sound)
dialogs.hud_alert("Cannot get high scores", icon="error")
self.highscore_button.alpha = 1
self.can_highscore = True
return
if self.can_play:
can_play_marker = True
self.can_play = False
else:
can_play_marker = False
if not self.win:
for square in self.squares:
if square.state == 0:
square.run_action(A.fade_to(0, 0.2))
paused_time = self.t
sheet = ui.load_view("ui/highscores.pyui")
score_table = sheet["score_table"]
title_label = sheet["title_label"]
title_label.text = "High Scores - " + ["Easy", "Regular", "Hard"][difficulty - 1]
champion = sheet["champion"]
champion_label = sheet["champion_label"]
high_score_strings = ["{}{}{}".format(str(index + 1).ljust(4, ' '), str(item[0])[:20].ljust(
22, ' '), str(item[1]).rjust(5, ' ').ljust(8, ' ')) for index, item in enumerate(all_scores)]
data_source = ui.ListDataSource(high_score_strings)
data_source.font = ("Inconsolata-Regular", 18)
score_table.data_source = data_source
score_table.reload_data()
score_table.separator_color = color4
champion.text = all_scores[0][0][:20] + " : " + str(all_scores[0][1])
score_table.bounces = False
sheet.present(hide_title_bar=True)
if can_play_marker:
self.can_play = True
self.can_restart = True
self.can_highscore = True
self.highscore_button.alpha = 1
self.timestamp += self.t - paused_time
|
MIT License
|
tianxiaohu/gomokuagent
|
genetic_algo/gomoku.py
|
Gomoku.delay
|
python
|
def delay(self, n):
if not self.fastmode:
time.sleep(n)
|
Delay n seconds if not in fastmode
|
https://github.com/tianxiaohu/gomokuagent/blob/8cb05025059945692846cbb0541a834e9f985ce2/genetic_algo/gomoku.py#L184-L187
|
from __future__ import print_function, division
import os, sys, time, collections
from functools import update_wrapper
import pickle
def decorator(d):
def _d(fn):
return update_wrapper(d(fn), fn)
update_wrapper(_d, d)
return _d
@decorator
def memo(f):
cache = {}
def _f(*args):
try:
return cache[args]
except KeyError:
cache[args] = result = f(*args)
return result
except TypeError:
return f(args)
_f.cache = cache
return _f
@memo
def colored(s, color=''):
if color.lower() == 'green':
return '\033[92m' + s + '\033[0m'
elif color.lower() == 'yellow':
return '\033[93m' + s + '\033[0m'
elif color.lower() == 'red':
return '\033[91m' + s + '\033[0m'
elif color.lower() == 'blue':
return '\033[94m' + s + '\033[0m'
elif color.lower() == 'bold':
return '\033[1m' + s + '\033[0m'
else:
return s
class Gomoku(object):
def __init__(self, board_size=15, players=None, fastmode=False, first_center=None, silent_mode=False, winning_num=5):
self.reset()
self.board_size = board_size
self.fastmode = fastmode
self.playing = None
self.players = [Player(player_name) for player_name in players]
self.winning_stones = set()
self.last_move = None
self.first_center = first_center
self.silent_mode = silent_mode
self.winning_num = winning_num
@property
def state(self):
return (self.board, self.last_move, self.playing, self.board_size)
def load_state(self, state):
(self.board, self.last_move, self.playing, self.board_size) = state
def reset(self):
self.board = (set(), set())
def print_board(self):
print(' '*4 + ' '.join([chr(97+i) for i in range(self.board_size)]))
print(' '*3 + '='*(2*self.board_size))
for x in range(1, self.board_size+1):
row = ['%2s|'%x]
for y in range(1, self.board_size+1):
if (x,y) in self.board[0]:
c = 'x'
elif (x,y) in self.board[1]:
c = 'o'
else:
c = '-'
if (x,y) in self.winning_stones or (x,y) == self.last_move:
c = colored(c, 'green')
row.append(c)
print(' '.join(row))
def play(self):
if self.fastmode < 2: print("Game Start!")
i_turn = len(self.board[0]) + len(self.board[1])
new_step = None
while True:
if self.fastmode < 2: print("----- Turn %d -------" % i_turn)
self.playing = i_turn % 2
if self.fastmode < 2 and not self.silent_mode:
self.print_board()
current_player = self.players[self.playing]
other_player = self.players[int(not self.playing)]
if self.fastmode < 2: print("--- %s's turn ---" % current_player.name)
max_try = 5
for i_try in range(max_try):
action = current_player.strategy(self.state)
if action == (0, 0):
print("Player %s admit defeat!" % current_player.name)
winner = other_player.name
if self.fastmode < 2: print("Winner is %s"%winner)
return winner
self.last_move = action
if self.place_stone() is True:
break
if i_try == max_try-1:
print("Player %s has made %d illegal moves, he lost."%(current_player.name, max_try))
winner = other_player.name
print("Winner is %s"%winner)
return winner
winner = self.check_winner()
if winner:
if not self.silent_mode:
self.print_board()
print("########## %s is the WINNER! #########" % current_player.name)
return winner
elif i_turn == self.board_size ** 2 - 1:
print("This game is a tie!")
return "Tie"
i_turn += 1
def place_stone(self):
r, c = self.last_move
if r < 1 or r > self.board_size or c < 1 or c > self.board_size:
print("This position is outside the board!")
return False
taken_pos = self.board[0] | self.board[1]
if self.first_center is True and len(taken_pos) == 0:
center = int((self.board_size+1)/2)
if r != center or c != center:
print("This is the first move, please put it on the center (%s%s)!"% (str(center),chr(center+96)))
return False
elif self.last_move in taken_pos:
print("This position is already taken!")
return False
self.board[self.playing].add(self.last_move)
return True
def check_winner(self):
r, c = self.last_move
my_stones = self.board[self.playing]
nearby_stones = set()
for x in range(max(r-1, 1), min(r+2, self.board_size+1)):
for y in range(max(c-1, 1), min(c+2, self.board_size+1)):
stone = (x,y)
if stone in my_stones and (2*r-x, 2*c-y) not in nearby_stones:
nearby_stones.add(stone)
for nearby_s in nearby_stones:
winning_stones = {self.last_move, nearby_s}
nr, nc = nearby_s
dx, dy = nr-r, nc-c
for i in range(1,4):
ext_stone = (nr+dx*i, nc+dy*i)
if ext_stone in my_stones:
winning_stones.add(ext_stone)
else:
break
for i in range(1,5):
ext_stone = (r-dx*i, c-dy*i)
if ext_stone in my_stones:
winning_stones.add(ext_stone)
else:
break
if len(winning_stones) >= self.winning_num:
self.winning_stones = winning_stones
return self.players[self.playing].name
return None
|
MIT License
|
cta-observatory/ctapipe
|
ctapipe/tools/utils.py
|
get_installed_tools
|
python
|
def get_installed_tools():
from pkg_resources import get_entry_map
console_tools = get_entry_map("ctapipe")["console_scripts"]
return console_tools
|
Get list of installed scripts via ``pkg-resources``.
See http://peak.telecommunity.com/DevCenter/PkgResources#convenience-api
TODO: not sure if this will be useful ... maybe to check if the list
of installed packages matches the available scripts somehow?
|
https://github.com/cta-observatory/ctapipe/blob/8851e1214409eac4564996cc0f4b76dfe05cf9cf/ctapipe/tools/utils.py#L33-L44
|
import argparse
import importlib
from collections import OrderedDict
__all__ = [
"ArgparseFormatter",
"get_parser",
"get_installed_tools",
"get_all_descriptions",
]
class ArgparseFormatter(
argparse.ArgumentDefaultsHelpFormatter, argparse.RawTextHelpFormatter
):
pass
def get_parser(function=None, description="N/A"):
if function:
description = function.__doc__
parser = argparse.ArgumentParser(
description=description, formatter_class=ArgparseFormatter
)
return parser
|
BSD 3-Clause New or Revised License
|
wapm-packages/python
|
Python-3.6.7/Lib/multiprocessing/semaphore_tracker.py
|
SemaphoreTracker.ensure_running
|
python
|
def ensure_running(self):
with self._lock:
if self._pid is not None:
pid, status = os.waitpid(self._pid, os.WNOHANG)
if not pid:
return
os.close(self._fd)
self._fd = None
self._pid = None
warnings.warn('semaphore_tracker: process died unexpectedly, '
'relaunching. Some semaphores might leak.')
fds_to_pass = []
try:
fds_to_pass.append(sys.stderr.fileno())
except Exception:
pass
cmd = 'from multiprocessing.semaphore_tracker import main;main(%d)'
r, w = os.pipe()
try:
fds_to_pass.append(r)
exe = spawn.get_executable()
args = [exe] + util._args_from_interpreter_flags()
args += ['-c', cmd % r]
pid = util.spawnv_passfds(exe, args, fds_to_pass)
except:
os.close(w)
raise
else:
self._fd = w
self._pid = pid
finally:
os.close(r)
|
Make sure that semaphore tracker process is running.
This can be run from any process. Usually a child process will use
the semaphore created by its parent.
|
https://github.com/wapm-packages/python/blob/658c1822f430f6d604ecf2bcc388e469cedb2238/Python-3.6.7/Lib/multiprocessing/semaphore_tracker.py#L38-L79
|
import os
import signal
import sys
import threading
import warnings
import _multiprocessing
from . import spawn
from . import util
__all__ = ['ensure_running', 'register', 'unregister']
class SemaphoreTracker(object):
def __init__(self):
self._lock = threading.Lock()
self._fd = None
self._pid = None
def getfd(self):
self.ensure_running()
return self._fd
|
Apache License 2.0
|
informatica-eic/rest-api-samples
|
python/edcutils.py
|
updateResourceDefUsingSession
|
python
|
def updateResourceDefUsingSession(url, session, resourceName, resJson):
print("\tupdating resource for catalog:-" + url + " resource=" + resourceName)
apiURL = url + "/access/1/catalog/resources/" + resourceName
header = {"Accept": "application/json", "Content-Type": "application/json"}
tResp = session.put(
apiURL,
data=json.dumps(resJson),
headers=header,
)
if tResp.status_code == 200:
print(f"\tresource successfully updated, rc={tResp.status_code}")
return tResp.status_code
else:
print("\tupdate resource failed... rc={tResp.status_code}")
return tResp.status_code
|
update a setting in an existing resource
returns rc=200 (valid) & other rc's from the put
resourceDef (json)
|
https://github.com/informatica-eic/rest-api-samples/blob/bad412404a2807e3e5d3a1e9f09a292d2fccf76e/python/edcutils.py#L185-L214
|
import requests
import json
from requests.auth import HTTPBasicAuth
import os
def getFactValue(item, attrName):
value = ""
for facts in item["facts"]:
if facts.get("attributeId") == attrName:
value = facts.get("value")
break
return value
def exportLineageLink(fromObject, toObject, linkType, csvFile):
row = [linkType, "", "", fromObject, toObject]
csvFile.writerow(row)
return
def getAllResource(url, user, pWd):
print("getting resource for catalog:-" + url + " user=" + user)
apiURL = url + "/access/1/catalog/resources/"
header = {"Accept": "application/json"}
tResp = requests.get(
apiURL, params={}, headers=header, auth=HTTPBasicAuth(user, pWd), verify=False
)
print("\tresponse=" + str(tResp.status_code))
if tResp.status_code == 200:
return tResp.status_code, json.loads(tResp.text)
else:
return tResp.status_code, None
def getResourceDefUsingSession(url, session, resourceName, sensitiveOptions=False):
print("getting resource for catalog:-" + url + " resource=" + resourceName)
apiURL = url + "/access/1/catalog/resources/" + resourceName
if sensitiveOptions:
apiURL += "?sensitiveOptions=true"
header = {"Accept": "application/json"}
tResp = session.get(
apiURL,
params={},
headers=header,
)
print("\tresponse=" + str(tResp.status_code))
if tResp.status_code == 200:
return tResp.status_code, json.loads(tResp.text)
else:
return tResp.status_code, None
def getResourceDef(url, user, pWd, resourceName, sensitiveOptions=False):
print(
"getting resource for catalog:-"
+ url
+ " resource="
+ resourceName
+ " user="
+ user
)
apiURL = url + "/access/1/catalog/resources/" + resourceName
if sensitiveOptions:
apiURL += "?sensitiveOptions=true"
header = {"Accept": "application/json"}
tResp = requests.get(
apiURL, params={}, headers=header, auth=HTTPBasicAuth(user, pWd), verify=False
)
print("\tresponse=" + str(tResp.status_code))
if tResp.status_code == 200:
return tResp.status_code, json.loads(tResp.text)
else:
return tResp.status_code, None
def updateResourceDef(url, user, pWd, resourceName, resJson):
print(
"\tupdating resource for catalog:-"
+ url
+ " resource="
+ resourceName
+ " user="
+ user
)
print("\t" + json.dumps(resJson))
apiURL = url + "/access/1/catalog/resources/" + resourceName
print("\turl=" + apiURL)
header = {"Accept": "application/json", "Content-Type": "application/json"}
tResp = requests.put(
apiURL,
data=json.dumps(resJson),
headers=header,
auth=HTTPBasicAuth(user, pWd),
verify=False,
)
print("\tresponse=" + str(tResp.status_code))
if tResp.status_code == 200:
print("\tyay - update resource worked...")
print(tResp)
return tResp.status_code
else:
print("\tdarn - update resource failed...")
print(tResp)
return tResp.status_code
|
MIT License
|
dmlc/gluon-cv
|
gluoncv/model_zoo/action_recognition/slowfast.py
|
SlowFast._make_layer_slow
|
python
|
def _make_layer_slow(self,
inplanes,
planes,
num_blocks,
num_block_temp_kernel_slow=None,
block=Bottleneck,
strides=1,
head_conv=1,
norm_layer=BatchNorm,
norm_kwargs=None,
layer_name=''):
downsample = None
if strides != 1 or inplanes != planes * block.expansion:
downsample = nn.HybridSequential(prefix=layer_name+'downsample_')
with downsample.name_scope():
downsample.add(nn.Conv3D(in_channels=inplanes,
channels=planes * block.expansion,
kernel_size=1,
strides=(1, strides, strides),
use_bias=False))
downsample.add(norm_layer(in_channels=planes * block.expansion, **({} if norm_kwargs is None else norm_kwargs)))
layers = nn.HybridSequential(prefix=layer_name)
cnt = 0
with layers.name_scope():
layers.add(block(inplanes=inplanes,
planes=planes,
strides=strides,
downsample=downsample,
head_conv=head_conv,
layer_name='block%d_' % cnt))
inplanes = planes * block.expansion
cnt += 1
for _ in range(1, num_blocks):
if num_block_temp_kernel_slow is not None:
if cnt < num_block_temp_kernel_slow:
layers.add(block(inplanes=inplanes,
planes=planes,
head_conv=head_conv,
layer_name='block%d_' % cnt))
else:
layers.add(block(inplanes=inplanes,
planes=planes,
head_conv=1,
layer_name='block%d_' % cnt))
else:
layers.add(block(inplanes=inplanes,
planes=planes,
head_conv=head_conv,
layer_name='block%d_' % cnt))
cnt += 1
return layers
|
Build each stage of within the slow branch.
|
https://github.com/dmlc/gluon-cv/blob/f22650a5d31c31956d9392530a0e619689cdb3c5/gluoncv/model_zoo/action_recognition/slowfast.py#L481-L533
|
__all__ = ['SlowFast', 'slowfast_4x16_resnet50_kinetics400', 'slowfast_8x8_resnet50_kinetics400',
'slowfast_4x16_resnet101_kinetics400', 'slowfast_8x8_resnet101_kinetics400',
'slowfast_16x8_resnet101_kinetics400', 'slowfast_16x8_resnet101_50_50_kinetics400',
'slowfast_4x16_resnet50_custom']
from mxnet import init
from mxnet.context import cpu
from mxnet.gluon.block import HybridBlock
from mxnet.gluon import nn
from mxnet.gluon.nn import BatchNorm
class Bottleneck(HybridBlock):
expansion = 4
def __init__(self,
inplanes,
planes,
strides=1,
downsample=None,
head_conv=1,
norm_layer=BatchNorm,
norm_kwargs=None,
layer_name=''):
super(Bottleneck, self).__init__()
bottleneck = nn.HybridSequential(prefix=layer_name)
with bottleneck.name_scope():
if head_conv == 1:
self.conv1 = nn.Conv3D(in_channels=inplanes, channels=planes, kernel_size=1, use_bias=False)
self.bn1 = norm_layer(in_channels=planes, **({} if norm_kwargs is None else norm_kwargs))
elif head_conv == 3:
self.conv1 = nn.Conv3D(in_channels=inplanes, channels=planes, kernel_size=(3, 1, 1), padding=(1, 0, 0), use_bias=False)
self.bn1 = norm_layer(in_channels=planes, **({} if norm_kwargs is None else norm_kwargs))
else:
raise ValueError("Unsupported head_conv!")
self.conv2 = nn.Conv3D(in_channels=planes, channels=planes, kernel_size=(1, 3, 3), strides=(1, strides, strides), padding=(0, 1, 1), use_bias=False)
self.bn2 = norm_layer(in_channels=planes, **({} if norm_kwargs is None else norm_kwargs))
self.conv3 = nn.Conv3D(in_channels=planes, channels=planes * self.expansion, kernel_size=1, strides=1, use_bias=False)
self.bn3 = norm_layer(in_channels=planes * self.expansion, gamma_initializer='zeros', **({} if norm_kwargs is None else norm_kwargs))
self.relu = nn.Activation('relu')
self.downsample = downsample
def hybrid_forward(self, F, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = F.Activation(out + identity, act_type='relu')
return out
class SlowFast(HybridBlock):
def __init__(self,
nclass,
block=Bottleneck,
layers=None,
num_block_temp_kernel_fast=None,
num_block_temp_kernel_slow=None,
pretrained=False,
pretrained_base=False,
feat_ext=False,
num_segments=1,
num_crop=1,
bn_eval=True,
bn_frozen=False,
partial_bn=False,
frozen_stages=-1,
dropout_ratio=0.5,
init_std=0.01,
alpha=8,
beta_inv=8,
fusion_conv_channel_ratio=2,
fusion_kernel_size=5,
width_per_group=64,
num_groups=1,
slow_temporal_stride=16,
fast_temporal_stride=2,
slow_frames=4,
fast_frames=32,
norm_layer=BatchNorm,
norm_kwargs=None,
ctx=None,
**kwargs):
super(SlowFast, self).__init__()
self.num_segments = num_segments
self.num_crop = num_crop
self.dropout_ratio = dropout_ratio
self.init_std = init_std
self.alpha = alpha
self.beta_inv = beta_inv
self.fusion_conv_channel_ratio = fusion_conv_channel_ratio
self.fusion_kernel_size = fusion_kernel_size
self.width_per_group = width_per_group
self.num_groups = num_groups
self.dim_inner = self.num_groups * self.width_per_group
self.out_dim_ratio = self.beta_inv // self.fusion_conv_channel_ratio
self.slow_temporal_stride = slow_temporal_stride
self.fast_temporal_stride = fast_temporal_stride
self.slow_frames = slow_frames
self.fast_frames = fast_frames
self.feat_ext = feat_ext
with self.name_scope():
fast = nn.HybridSequential(prefix='fast_')
with fast.name_scope():
self.fast_conv1 = nn.Conv3D(in_channels=3, channels=self.width_per_group // self.beta_inv,
kernel_size=(5, 7, 7), strides=(1, 2, 2), padding=(2, 3, 3), use_bias=False)
self.fast_bn1 = norm_layer(in_channels=self.width_per_group // self.beta_inv,
**({} if norm_kwargs is None else norm_kwargs))
self.fast_relu = nn.Activation('relu')
self.fast_maxpool = nn.MaxPool3D(pool_size=(1, 3, 3), strides=(1, 2, 2), padding=(0, 1, 1))
self.fast_res2 = self._make_layer_fast(inplanes=self.width_per_group // self.beta_inv,
planes=self.dim_inner // self.beta_inv,
num_blocks=layers[0],
head_conv=3,
norm_layer=norm_layer,
norm_kwargs=norm_kwargs,
layer_name='fast_res2_')
self.fast_res3 = self._make_layer_fast(inplanes=self.width_per_group * 4 // self.beta_inv,
planes=self.dim_inner * 2 // self.beta_inv,
num_blocks=layers[1],
strides=2,
head_conv=3,
norm_layer=norm_layer,
norm_kwargs=norm_kwargs,
layer_name='fast_res3_')
self.fast_res4 = self._make_layer_fast(inplanes=self.width_per_group * 8 // self.beta_inv,
planes=self.dim_inner * 4 // self.beta_inv,
num_blocks=layers[2],
num_block_temp_kernel_fast=num_block_temp_kernel_fast,
strides=2,
head_conv=3,
norm_layer=norm_layer,
norm_kwargs=norm_kwargs,
layer_name='fast_res4_')
self.fast_res5 = self._make_layer_fast(inplanes=self.width_per_group * 16 // self.beta_inv,
planes=self.dim_inner * 8 // self.beta_inv,
num_blocks=layers[3],
strides=2,
head_conv=3,
norm_layer=norm_layer,
norm_kwargs=norm_kwargs,
layer_name='fast_res5_')
self.lateral_p1 = nn.HybridSequential(prefix='lateral_p1_')
with self.lateral_p1.name_scope():
self.lateral_p1.add(nn.Conv3D(in_channels=self.width_per_group // self.beta_inv,
channels=self.width_per_group // self.beta_inv * self.fusion_conv_channel_ratio,
kernel_size=(self.fusion_kernel_size, 1, 1),
strides=(self.alpha, 1, 1),
padding=(self.fusion_kernel_size // 2, 0, 0),
use_bias=False))
self.lateral_p1.add(norm_layer(in_channels=self.width_per_group // self.beta_inv * self.fusion_conv_channel_ratio,
**({} if norm_kwargs is None else norm_kwargs)))
self.lateral_p1.add(nn.Activation('relu'))
self.lateral_res2 = nn.HybridSequential(prefix='lateral_res2_')
with self.lateral_res2.name_scope():
self.lateral_res2.add(nn.Conv3D(in_channels=self.width_per_group * 4 // self.beta_inv,
channels=self.width_per_group * 4 // self.beta_inv * self.fusion_conv_channel_ratio,
kernel_size=(self.fusion_kernel_size, 1, 1),
strides=(self.alpha, 1, 1),
padding=(self.fusion_kernel_size // 2, 0, 0),
use_bias=False))
self.lateral_res2.add(norm_layer(in_channels=self.width_per_group * 4 // self.beta_inv * self.fusion_conv_channel_ratio,
**({} if norm_kwargs is None else norm_kwargs)))
self.lateral_res2.add(nn.Activation('relu'))
self.lateral_res3 = nn.HybridSequential(prefix='lateral_res3_')
with self.lateral_res3.name_scope():
self.lateral_res3.add(nn.Conv3D(in_channels=self.width_per_group * 8 // self.beta_inv,
channels=self.width_per_group * 8 // self.beta_inv * self.fusion_conv_channel_ratio,
kernel_size=(self.fusion_kernel_size, 1, 1),
strides=(self.alpha, 1, 1),
padding=(self.fusion_kernel_size // 2, 0, 0),
use_bias=False))
self.lateral_res3.add(norm_layer(in_channels=self.width_per_group * 8 // self.beta_inv * self.fusion_conv_channel_ratio,
**({} if norm_kwargs is None else norm_kwargs)))
self.lateral_res3.add(nn.Activation('relu'))
self.lateral_res4 = nn.HybridSequential(prefix='lateral_res4_')
with self.lateral_res4.name_scope():
self.lateral_res4.add(nn.Conv3D(in_channels=self.width_per_group * 16 // self.beta_inv,
channels=self.width_per_group * 16 // self.beta_inv * self.fusion_conv_channel_ratio,
kernel_size=(self.fusion_kernel_size, 1, 1),
strides=(self.alpha, 1, 1),
padding=(self.fusion_kernel_size // 2, 0, 0),
use_bias=False))
self.lateral_res4.add(norm_layer(in_channels=self.width_per_group * 16 // self.beta_inv * self.fusion_conv_channel_ratio,
**({} if norm_kwargs is None else norm_kwargs)))
self.lateral_res4.add(nn.Activation('relu'))
slow = nn.HybridSequential(prefix='slow_')
with slow.name_scope():
self.slow_conv1 = nn.Conv3D(in_channels=3, channels=self.width_per_group,
kernel_size=(1, 7, 7), strides=(1, 2, 2), padding=(0, 3, 3), use_bias=False)
self.slow_bn1 = norm_layer(in_channels=self.width_per_group,
**({} if norm_kwargs is None else norm_kwargs))
self.slow_relu = nn.Activation('relu')
self.slow_maxpool = nn.MaxPool3D(pool_size=(1, 3, 3), strides=(1, 2, 2), padding=(0, 1, 1))
self.slow_res2 = self._make_layer_slow(inplanes=self.width_per_group + self.width_per_group // self.out_dim_ratio,
planes=self.dim_inner,
num_blocks=layers[0],
head_conv=1,
norm_layer=norm_layer,
norm_kwargs=norm_kwargs,
layer_name='slow_res2_')
self.slow_res3 = self._make_layer_slow(inplanes=self.width_per_group * 4 + self.width_per_group * 4 // self.out_dim_ratio,
planes=self.dim_inner * 2,
num_blocks=layers[1],
strides=2,
head_conv=1,
norm_layer=norm_layer,
norm_kwargs=norm_kwargs,
layer_name='slow_res3_')
self.slow_res4 = self._make_layer_slow(inplanes=self.width_per_group * 8 + self.width_per_group * 8 // self.out_dim_ratio,
planes=self.dim_inner * 4,
num_blocks=layers[2],
num_block_temp_kernel_slow=num_block_temp_kernel_slow,
strides=2,
head_conv=3,
norm_layer=norm_layer,
norm_kwargs=norm_kwargs,
layer_name='slow_res4_')
self.slow_res5 = self._make_layer_slow(inplanes=self.width_per_group * 16 + self.width_per_group * 16 // self.out_dim_ratio,
planes=self.dim_inner * 8,
num_blocks=layers[3],
strides=2,
head_conv=3,
norm_layer=norm_layer,
norm_kwargs=norm_kwargs,
layer_name='slow_res5_')
self.avg = nn.GlobalAvgPool3D()
self.dp = nn.Dropout(rate=self.dropout_ratio)
self.feat_dim = self.width_per_group * 32 // self.beta_inv + self.width_per_group * 32
self.fc = nn.Dense(in_units=self.feat_dim, units=nclass, weight_initializer=init.Normal(sigma=self.init_std), use_bias=True)
self.initialize(init.MSRAPrelu(), ctx=ctx)
def hybrid_forward(self, F, x):
fast_input = F.slice(x, begin=(None, None, 0, None, None), end=(None, None, self.fast_frames, None, None))
slow_input = F.slice(x, begin=(None, None, self.fast_frames, None, None), end=(None, None, self.fast_frames + self.slow_frames, None, None))
fast, lateral = self.FastPath(F, fast_input)
slow = self.SlowPath(F, slow_input, lateral)
x = F.concat(slow, fast, dim=1)
x = F.reshape(x, shape=(-1, self.num_segments * self.num_crop, self.feat_dim))
x = F.mean(x, axis=1)
if self.feat_ext:
return x
x = self.dp(x)
x = self.fc(x)
return x
def SlowPath(self, F, x, lateral):
x = self.slow_conv1(x)
x = self.slow_bn1(x)
x = self.slow_relu(x)
pool1 = self.slow_maxpool(x)
pool1_lat = F.concat(pool1, lateral[0], dim=1)
res2 = self.slow_res2(pool1_lat)
res2_lat = F.concat(res2, lateral[1], dim=1)
res3 = self.slow_res3(res2_lat)
res3_lat = F.concat(res3, lateral[2], dim=1)
res4 = self.slow_res4(res3_lat)
res4_lat = F.concat(res4, lateral[3], dim=1)
res5 = self.slow_res5(res4_lat)
out = self.avg(res5)
out = F.squeeze(out, axis=(2, 3, 4))
return out
def FastPath(self, F, x):
lateral = []
x = self.fast_conv1(x)
x = self.fast_bn1(x)
x = self.fast_relu(x)
pool1 = self.fast_maxpool(x)
lateral_p = self.lateral_p1(pool1)
lateral.append(lateral_p)
res2 = self.fast_res2(pool1)
lateral_res2 = self.lateral_res2(res2)
lateral.append(lateral_res2)
res3 = self.fast_res3(res2)
lateral_res3 = self.lateral_res3(res3)
lateral.append(lateral_res3)
res4 = self.fast_res4(res3)
lateral_res4 = self.lateral_res4(res4)
lateral.append(lateral_res4)
res5 = self.fast_res5(res4)
out = self.avg(res5)
out = F.squeeze(out, axis=(2, 3, 4))
return out, lateral
def _make_layer_fast(self,
inplanes,
planes,
num_blocks,
num_block_temp_kernel_fast=None,
block=Bottleneck,
strides=1,
head_conv=1,
norm_layer=BatchNorm,
norm_kwargs=None,
layer_name=''):
downsample = None
if strides != 1 or inplanes != planes * block.expansion:
downsample = nn.HybridSequential(prefix=layer_name+'downsample_')
with downsample.name_scope():
downsample.add(nn.Conv3D(in_channels=inplanes,
channels=planes * block.expansion,
kernel_size=1,
strides=(1, strides, strides),
use_bias=False))
downsample.add(norm_layer(in_channels=planes * block.expansion,
**({} if norm_kwargs is None else norm_kwargs)))
layers = nn.HybridSequential(prefix=layer_name)
cnt = 0
with layers.name_scope():
layers.add(block(inplanes=inplanes,
planes=planes,
strides=strides,
downsample=downsample,
head_conv=head_conv,
layer_name='block%d_' % cnt))
inplanes = planes * block.expansion
cnt += 1
for _ in range(1, num_blocks):
if num_block_temp_kernel_fast is not None:
if cnt < num_block_temp_kernel_fast:
layers.add(block(inplanes=inplanes,
planes=planes,
head_conv=head_conv,
layer_name='block%d_' % cnt))
else:
layers.add(block(inplanes=inplanes,
planes=planes,
head_conv=1,
layer_name='block%d_' % cnt))
else:
layers.add(block(inplanes=inplanes,
planes=planes,
head_conv=head_conv,
layer_name='block%d_' % cnt))
cnt += 1
return layers
|
Apache License 2.0
|
gavento/gamegym
|
gamegym/games/goofspiel.py
|
Goofspiel.initial_state
|
python
|
def initial_state(self) -> StateInfo:
cset = list(range(1, self.cards + 1))
state = ([tuple(cset)] * 3, (0.0, 0.0))
return StateInfo.new_chance(state, tuple(cset), None)
|
Return the initial internal state and active player.
|
https://github.com/gavento/gamegym/blob/818c89b43b7e49a377698387e4098f86640c13b0/gamegym/games/goofspiel.py#L29-L35
|
from ..game import ObservationSequenceGame, Action
from ..situation import Situation, StateInfo
from ..utils import uniform
from typing import Any, Tuple
import enum
import numpy as np
class Goofspiel(ObservationSequenceGame):
EPS = 1e-6
class Scoring(enum.Enum):
WINLOSS = 0
ZEROSUM = 1
ABSOLUTE = 2
def __init__(self, cards: int, scoring=None, rewards=None):
assert cards >= 1
super().__init__(2, range(1, cards + 1))
self.cards = cards
self.custom_rewards = rewards is not None
if rewards is None:
rewards = range(1, self.cards + 1)
self.rewards = np.array(rewards, dtype=float)
assert len(self.rewards) == self.cards
self.scoring = self.Scoring.ZEROSUM if scoring is None else scoring
|
MIT License
|
eleurent/rl-agents
|
rl_agents/agents/tree_search/graph_based_stochastic.py
|
GraphDecisionNode.__init__
|
python
|
def __init__(self, planner, state, observation):
super().__init__(planner, state, observation)
self.count = 0
self.cumulative_reward = 0
self.mu_ucb = 1
self.mu_lcb = 0
|
Visit count N(s) (when in planner.nodes) or N(s,a,s') (when child of a chance node)
|
https://github.com/eleurent/rl-agents/blob/d55126007fcc5d2a882843f6c3a63000b4fc7c92/rl_agents/agents/tree_search/graph_based_stochastic.py#L31-L40
|
import operator
from collections import OrderedDict, defaultdict
import numpy as np
import logging
from rl_agents.agents.common.factory import safe_deepcopy_env
from rl_agents.agents.dynamic_programming.value_iteration import ValueIterationAgent
from rl_agents.agents.tree_search.graph_based import GraphBasedPlannerAgent, GraphNode, GraphBasedPlanner
from rl_agents.agents.tree_search.olop import OLOP
from rl_agents.utils import kl_upper_bound, max_expectation_under_constraint
logger = logging.getLogger(__name__)
class GraphDecisionNode(GraphNode):
|
MIT License
|
aws/aws-parallelcluster-node
|
src/common/schedulers/slurm_commands.py
|
is_static_node
|
python
|
def is_static_node(nodename):
_, node_type, _ = parse_nodename(nodename)
return "st" == node_type
|
Check if the node is static or dynamic.
Valid NodeName format: {queue_name}-{st/dy}-{instancetype}-{number}
|
https://github.com/aws/aws-parallelcluster-node/blob/00cee467f983b18075752ed3fbc3bfe52420147c/src/common/schedulers/slurm_commands.py#L62-L69
|
import logging
import re
from common.utils import check_command_output, grouper, run_command
from retrying import retry
from slurm_plugin.slurm_resources import (
DynamicNode,
InvalidNodenameError,
PartitionStatus,
SlurmPartition,
StaticNode,
parse_nodename,
)
log = logging.getLogger(__name__)
PENDING_RESOURCES_REASONS = [
"Resources",
"Nodes required for job are DOWN, DRAINED or reserved for jobs in higher priority partitions",
"BeginTime",
"NodeDown",
"Priority",
"ReqNodeNotAvail, May be reserved for other job",
]
SQUEUE_FIELD_SIZE = 200
_SQUEUE_FIELDS = [
"jobid",
"statecompact",
"numnodes",
"numcpus",
"numtasks",
"cpus-per-task",
"mincpus",
"reason",
"tres-per-job",
"tres-per-task",
"tres-per-node",
"cpus-per-tres",
]
SQUEUE_FIELD_STRING = ",".join([field + ":{size}" for field in _SQUEUE_FIELDS]).format(size=SQUEUE_FIELD_SIZE)
SCONTROL = "sudo /opt/slurm/bin/scontrol"
SINFO = "/opt/slurm/bin/sinfo"
DEFAULT_GET_INFO_COMMAND_TIMEOUT = 30
DEFAULT_UPDATE_COMMAND_TIMEOUT = 60
|
Apache License 2.0
|
econ-ark/hark
|
HARK/interpolation.py
|
HARKinterpolator1D._evaluate
|
python
|
def _evaluate(self, x):
raise NotImplementedError()
|
Interpolated function evaluator, to be defined in subclasses.
|
https://github.com/econ-ark/hark/blob/d59269d4ca41afd5e2c3bf8c50ebf99b2073b998/HARK/interpolation.py#L127-L131
|
import warnings
from copy import deepcopy
import numpy as np
from scipy.interpolate import CubicHermiteSpline
from HARK.utilities import CRRAutility, CRRAutilityP, CRRAutilityPP
from .core import MetricObject
def _isscalar(x):
return np.isscalar(x) or hasattr(x, "shape") and x.shape == ()
def _check_grid_dimensions(dimension, *args):
if dimension == 1:
if len(args[0]) != len(args[1]):
raise ValueError("Grid dimensions of x and f(x) do not match")
elif dimension == 2:
if args[0].shape != (args[1].size, args[2].size):
raise ValueError("Grid dimensions of x, y and f(x, y) do not match")
elif dimension == 3:
if args[0].shape != (args[1].size, args[2].size, args[3].size):
raise ValueError("Grid dimensions of x, y, z and f(x, y, z) do not match")
elif dimension == 4:
if args[0].shape != (args[1].size, args[2].size, args[3].size, args[4].size):
raise ValueError("Grid dimensions of x, y, z and f(x, y, z) do not match")
else:
raise ValueError("Dimension should be between 1 and 4 inclusive.")
def _check_flatten(dimension, *args):
if dimension == 1:
if isinstance(args[0], np.ndarray) and args[0].shape != args[0].flatten().shape:
warnings.warn("input not of the size (n, ), attempting to flatten")
return False
else:
return True
class HARKinterpolator1D(MetricObject):
distance_criteria = []
def __call__(self, x):
z = np.asarray(x)
return (self._evaluate(z.flatten())).reshape(z.shape)
def derivative(self, x):
z = np.asarray(x)
return (self._der(z.flatten())).reshape(z.shape)
def eval_with_derivative(self, x):
z = np.asarray(x)
y, dydx = self._evalAndDer(z.flatten())
return y.reshape(z.shape), dydx.reshape(z.shape)
|
Apache License 2.0
|
sofia-netsurv/python-netsurv
|
env/lib/python3.5/site-packages/_pytest/nodes.py
|
Collector.repr_failure
|
python
|
def repr_failure(self, excinfo):
if excinfo.errisinstance(self.CollectError):
exc = excinfo.value
return str(exc.args[0])
tbstyle = self.config.getoption("tbstyle", "auto")
if tbstyle == "auto":
tbstyle = "short"
return self._repr_failure_py(excinfo, style=tbstyle)
|
represent a collection failure.
|
https://github.com/sofia-netsurv/python-netsurv/blob/429fb07a2b06cc505fdd9350148266a6b4e23e64/env/lib/python3.5/site-packages/_pytest/nodes.py#L318-L330
|
import os
import warnings
import py
import _pytest._code
from _pytest.compat import getfslineno
from _pytest.mark.structures import NodeKeywords
from _pytest.outcomes import fail
SEP = "/"
tracebackcutdir = py.path.local(_pytest.__file__).dirpath()
def _splitnode(nodeid):
if nodeid == "":
return []
parts = nodeid.split(SEP)
parts[-1:] = parts[-1].split("::")
return parts
def ischildnode(baseid, nodeid):
base_parts = _splitnode(baseid)
node_parts = _splitnode(nodeid)
if len(node_parts) < len(base_parts):
return False
return node_parts[: len(base_parts)] == base_parts
class Node:
def __init__(
self, name, parent=None, config=None, session=None, fspath=None, nodeid=None
):
self.name = name
self.parent = parent
self.config = config or parent.config
self.session = session or parent.session
self.fspath = fspath or getattr(parent, "fspath", None)
self.keywords = NodeKeywords(self)
self.own_markers = []
self.extra_keyword_matches = set()
self._name2pseudofixturedef = {}
if nodeid is not None:
assert "::()" not in nodeid
self._nodeid = nodeid
else:
self._nodeid = self.parent.nodeid
if self.name != "()":
self._nodeid += "::" + self.name
@property
def ihook(self):
return self.session.gethookproxy(self.fspath)
def __repr__(self):
return "<{} {}>".format(self.__class__.__name__, getattr(self, "name", None))
def warn(self, warning):
from _pytest.warning_types import PytestWarning
if not isinstance(warning, PytestWarning):
raise ValueError(
"warning must be an instance of PytestWarning or subclass, got {!r}".format(
warning
)
)
path, lineno = get_fslocation_from_item(self)
warnings.warn_explicit(
warning,
category=None,
filename=str(path),
lineno=lineno + 1 if lineno is not None else None,
)
@property
def nodeid(self):
return self._nodeid
def __hash__(self):
return hash(self.nodeid)
def setup(self):
pass
def teardown(self):
pass
def listchain(self):
chain = []
item = self
while item is not None:
chain.append(item)
item = item.parent
chain.reverse()
return chain
def add_marker(self, marker, append=True):
from _pytest.mark import MarkDecorator, MARK_GEN
if isinstance(marker, str):
marker = getattr(MARK_GEN, marker)
elif not isinstance(marker, MarkDecorator):
raise ValueError("is not a string or pytest.mark.* Marker")
self.keywords[marker.name] = marker
if append:
self.own_markers.append(marker.mark)
else:
self.own_markers.insert(0, marker.mark)
def iter_markers(self, name=None):
return (x[1] for x in self.iter_markers_with_node(name=name))
def iter_markers_with_node(self, name=None):
for node in reversed(self.listchain()):
for mark in node.own_markers:
if name is None or getattr(mark, "name", None) == name:
yield node, mark
def get_closest_marker(self, name, default=None):
return next(self.iter_markers(name=name), default)
def listextrakeywords(self):
extra_keywords = set()
for item in self.listchain():
extra_keywords.update(item.extra_keyword_matches)
return extra_keywords
def listnames(self):
return [x.name for x in self.listchain()]
def addfinalizer(self, fin):
self.session._setupstate.addfinalizer(fin, self)
def getparent(self, cls):
current = self
while current and not isinstance(current, cls):
current = current.parent
return current
def _prunetraceback(self, excinfo):
pass
def _repr_failure_py(self, excinfo, style=None):
if excinfo.errisinstance(fail.Exception):
if not excinfo.value.pytrace:
return str(excinfo.value)
fm = self.session._fixturemanager
if excinfo.errisinstance(fm.FixtureLookupError):
return excinfo.value.formatrepr()
tbfilter = True
if self.config.getoption("fulltrace", False):
style = "long"
else:
tb = _pytest._code.Traceback([excinfo.traceback[-1]])
self._prunetraceback(excinfo)
if len(excinfo.traceback) == 0:
excinfo.traceback = tb
tbfilter = False
if style == "auto":
style = "long"
if style is None:
if self.config.getoption("tbstyle", "auto") == "short":
style = "short"
else:
style = "long"
if self.config.getoption("verbose", 0) > 1:
truncate_locals = False
else:
truncate_locals = True
try:
os.getcwd()
abspath = False
except OSError:
abspath = True
return excinfo.getrepr(
funcargs=True,
abspath=abspath,
showlocals=self.config.getoption("showlocals", False),
style=style,
tbfilter=tbfilter,
truncate_locals=truncate_locals,
)
repr_failure = _repr_failure_py
def get_fslocation_from_item(item):
result = getattr(item, "location", None)
if result is not None:
return result[:2]
obj = getattr(item, "obj", None)
if obj is not None:
return getfslineno(obj)
return getattr(item, "fspath", "unknown location"), -1
class Collector(Node):
class CollectError(Exception):
def collect(self):
raise NotImplementedError("abstract")
|
MIT License
|
sunspec/pysunspec
|
sunspec/core/device.py
|
Device.to_pics
|
python
|
def to_pics(self, parent, single_repeating=True):
attr = {pics.PICS_ATTR_VERSION: str(pics.PICS_VERSION)}
e = ET.SubElement(parent, pics.PICS_DEVICE, attrib=attr)
for model in self.models_list:
model.to_pics(e, single_repeating=single_repeating)
|
Adds the device and all elements within the device to the parent
element. If *single_repeating* is True, only the first repeating block
for each model is added to the document.
Parameters:
parent :
Element Tree element on which to place the device element.
single_repeating :
Flag to indicate whether to include a single or all repeating
blocks within each model in the PICS document.
|
https://github.com/sunspec/pysunspec/blob/119b17600c8f20243dfdb694aacdaffefec2521b/sunspec/core/device.py#L216-L236
|
import contextlib
import os
import math
try:
import xml.etree.ElementTree as ET
except:
import elementtree.ElementTree as ET
import sunspec.core.pics as pics
import sunspec.core.smdx as smdx
import sunspec.core.suns as suns
import sunspec.core.util as util
from sunspec.core.util import SunSpecError
fspath = getattr(os, 'fspath', str)
file_pathlist = None
@contextlib.contextmanager
def fresh_file_pathlist(*paths):
global file_pathlist
original_pathlist = file_pathlist
file_pathlist = util.PathList()
for path in paths:
file_pathlist.add(fspath(path))
try:
yield file_pathlist
finally:
file_pathlist = original_pathlist
MAX_READ_COUNT = 125
class Device(object):
def __init__(self, addr=suns.SUNS_BASE_ADDR_DEFAULT):
self.base_addr = addr
self.models_list = []
self.models = {}
def add_model(self, model):
models = self.models.get(model.id)
if models is None:
self.models[model.id] = []
models = self.models.get(model.id)
models.append(model)
self.models_list.append(model)
def from_pics(self, element=None, filename=None, pathlist=None):
global file_pathlist
pics_data = ''
try:
if element is None:
if pathlist is not None:
try:
pics_data = pathlist.read(filename)
except NameError:
pass
if not pics_data and file_pathlist is not None:
try:
pics_data = file_pathlist.read(filename)
except NameError:
pass
if not pics_data:
f = open(filename, 'r')
pics_data = f.read()
f.close()
root = ET.fromstring(pics_data)
if root.tag != pics.PICS_ROOT:
raise SunSpecError("Unexpected root element: %s" % (root.tag))
d = root.find(pics.PICS_DEVICE)
if d is None:
raise SunSpecError("No '{}' elements found in '{}' element".format(pics.PICS_DEVICE, root.tag))
else:
d = element
if d.tag != pics.PICS_DEVICE:
raise SunSpecError("Unexpected device tag: '%s'" % (d.tag))
self.base_addr = d.attrib.get(pics.PICS_ATTR_BASE_ADDR, pics.PICS_BASE_ADDR_DEFAULT)
addr = self.base_addr + 2
for m in d.findall('*'):
if m is None:
raise SunSpecError("No '{}' elements found in '{}' element".format(pics.PICS_MODEL, d.tag))
if m.tag != pics.PICS_MODEL:
raise SunSpecError("Unexpected '{}' element in '{}' element".format(m.tag, d.tag))
model_id = m.attrib.get(pics.PICS_ATTR_ID)
if model_id is None:
raise SunSpecError('Module id error')
model_len = m.attrib.get(pics.PICS_ATTR_LEN)
if model_len is not None:
model_len = int(model_len)
model = Model(self, model_id, addr + 2, model_len)
try:
model.load()
except Exception as e:
model.load_error = str(e)
model.from_pics(m)
self.add_model(model)
addr += model.len + 2
except Exception as e:
raise SunSpecError('Error loading PICS: %s' % str(e))
"""
def to_pics(self, pretty_print=False, single_repeating=True):
attr = {pics.PICS_ATTR_VERSION: str(pics.PICS_VERSION)}
root = ET.Element(pics.PICS_ROOT)
e = ET.SubElement(root, pics.PICS_DEVICE, attrib=attr)
for model in self.models_list:
model.to_pics(e, single_repeating=single_repeating)
if pretty_print:
util.indent(root)
return ET.tostring(root)
"""
|
MIT License
|
deepanshs/mrsimulator
|
src/mrsimulator/utils/spectral_fitting.py
|
_post_sim_LMFIT_params
|
python
|
def _post_sim_LMFIT_params(params, process, index):
_ = [
params.add(
name=f"SP_{index}_operation_{i}_{operation.__class__.__name__}_{attr}",
value=getattr(operation, attr),
)
for i, operation in enumerate(process.operations)
if operation.__class__.__name__ in POST_SIM_DICT
for attr in POST_SIM_DICT[operation.__class__.__name__]
]
|
Creates a LMFIT Parameters object for SignalProcessor operations involved in
spectrum fitting.
Args:
params: LMFIT parameters object.
process: SignalProcessor object at index *index*.
int index: List index of the SingalProcessor object.
Returns:
Parameters object.
|
https://github.com/deepanshs/mrsimulator/blob/9ab8a5edfa66434301b9d79da0c01a294e173704/src/mrsimulator/utils/spectral_fitting.py#L145-L165
|
import mrsimulator.signal_processing as sp
import numpy as np
from lmfit import Parameters
from mrsimulator import Simulator
__author__ = ["Maxwell C Venetos", "Deepansh Srivastava"]
__email__ = ["maxvenetos@gmail.com", "srivastava.89@osu.edu"]
START = "sys_"
ENCODING_PAIRS = [
["spin_systems[", START],
["].abundance", "_abundance"],
["].sites[", "_site_"],
["].isotropic_chemical_shift", "_isotropic_chemical_shift"],
["].shielding_symmetric.", "_shielding_symmetric_"],
["].quadrupolar.", "_quadrupolar_"],
["].couplings[", "_coupling_"],
["].isotropic_j", "_isotropic_j"],
["].j_symmetric.", "_j_symmetric_"],
["].dipolar.", "_dipolar_"],
]
DECODING_PAIRS = [
["spin_systems.", "sys_"],
[".abundance", "_abundance"],
[".sites.", "_site_"],
[".isotropic_chemical_shift", "_isotropic_chemical_shift"],
[".shielding_symmetric.", "_shielding_symmetric_"],
[".quadrupolar.", "_quadrupolar_"],
[".couplings.", "_coupling_"],
[".isotropic_j", "_isotropic_j"],
[".j_symmetric.", "_j_symmetric_"],
[".dipolar.", "_dipolar_"],
]
EXCLUDE = [
"property_units",
"isotope",
"name",
"label",
"description",
"transition_pathways",
]
POST_SIM_DICT = {
"Gaussian": {"FWHM": "FWHM"},
"Exponential": {"FWHM": "FWHM"},
"Scale": {"factor": "factor"},
"ConstantOffset": {"offset": "offset"},
"Linear": {"amplitude": "amplitude", "offset": "offset"},
}
def _str_encode(my_string):
for item in ENCODING_PAIRS:
my_string = my_string.replace(*item)
return my_string
def _str_decode(my_string):
for item in DECODING_PAIRS:
my_string = my_string.replace(*item[::-1])
my_string = my_string.split(".")
return my_string
def _list_of_dictionaries(my_list):
return [item.dict() for item in my_list]
def _traverse_dictionaries(instance, parent="spin_systems"):
if isinstance(instance, list):
return [
value
for i, obj in enumerate(instance)
for value in _traverse_dictionaries(obj, _str_encode(f"{parent}[{i}]"))
]
if isinstance(instance, dict):
return [
item
for key, value in instance.items()
if key not in EXCLUDE and value is not None
for item in (
_traverse_dictionaries(value, _str_encode(f"{parent}.{key}"))
if isinstance(value, (dict, list))
else [_str_encode(f"{parent}.{key}")]
)
]
return []
|
BSD 3-Clause New or Revised License
|
powervm/pypowervm
|
pypowervm/utils/validation.py
|
ProcValidator._validate_deploy
|
python
|
def _validate_deploy(self):
self._validate_host_has_available_res(
self.des_procs, self.procs_avail, self.res_name)
|
Enforce validation rules specific to LPAR deployment.
|
https://github.com/powervm/pypowervm/blob/68f2b586b4f17489f379534ab52fc56a524b6da5/pypowervm/utils/validation.py#L362-L365
|
import abc
import six
from oslo_log import log as logging
from pypowervm.i18n import _
from pypowervm.wrappers import base_partition as bp
LOG = logging.getLogger(__name__)
class ValidatorException(Exception):
pass
class LPARWrapperValidator(object):
def __init__(self, lpar_w, host_w, cur_lpar_w=None):
self.lpar_w = lpar_w
self.host_w = host_w
self.cur_lpar_w = cur_lpar_w
def validate_all(self, check_dlpar=True):
ProcValidator(self.lpar_w, self.host_w,
cur_lpar_w=self.cur_lpar_w).validate(
check_dlpar=check_dlpar)
MemValidator(self.lpar_w, self.host_w,
cur_lpar_w=self.cur_lpar_w).validate(
check_dlpar=check_dlpar)
CapabilitiesValidator(self.lpar_w, self.host_w,
cur_lpar_w=self.cur_lpar_w).validate(
check_dlpar=check_dlpar)
@six.add_metaclass(abc.ABCMeta)
class BaseValidator(object):
def __init__(self, lpar_w, host_w, cur_lpar_w=None):
self.lpar_w = lpar_w
self.host_w = host_w
self.cur_lpar_w = cur_lpar_w
def validate(self, check_dlpar=True):
self._populate_new_values()
if self.cur_lpar_w is None:
self._validate_deploy()
else:
if check_dlpar:
self._can_modify()
self._populate_resize_diffs()
if self.cur_lpar_w.state == bp.LPARState.NOT_ACTIVATED:
self._validate_inactive_resize()
else:
self._validate_active_resize()
self._validate_common()
@abc.abstractmethod
def _populate_new_values(self):
@abc.abstractmethod
def _populate_resize_diffs(self):
@abc.abstractmethod
def _validate_deploy(self):
@abc.abstractmethod
def _validate_active_resize(self):
@abc.abstractmethod
def _validate_inactive_resize(self):
@abc.abstractmethod
def _validate_common(self):
@abc.abstractmethod
def _can_modify(self):
def _validate_host_has_available_res(self, des, avail, res_name):
if round(des, 2) > round(avail, 2):
ex_args = {'requested': '%.2f' % des,
'avail': '%.2f' % avail,
'instance_name': self.lpar_w.name,
'res_name': res_name}
msg = _("Insufficient available %(res_name)s on host for virtual "
"machine '%(instance_name)s' (%(requested)s "
"requested, %(avail)s available)") % ex_args
LOG.error(msg)
raise ValidatorException(msg)
class MemValidator(BaseValidator):
def __init__(self, lpar_w, host_w, cur_lpar_w=None):
super(MemValidator, self).__init__(lpar_w, host_w,
cur_lpar_w=cur_lpar_w)
self.ppt_ratio = None
def _populate_new_values(self):
mem_cfg = self.lpar_w.mem_config
self.des_mem = mem_cfg.desired
self.max_mem = mem_cfg.max
self.min_mem = mem_cfg.min
self.exp_fact = mem_cfg.exp_factor
self.avail_mem = self.host_w.memory_free
self.ppt_ratio = mem_cfg.ppt_ratio
self.res_name = _('memory')
def _populate_resize_diffs(self):
deltas = self._calculate_resize_deltas()
self.delta_des_mem = deltas['delta_mem']
self.delta_max_mem = deltas['delta_max_mem']
self.delta_exp_fact = deltas['delta_exp_factor']
def _validate_deploy(self):
self._validate_host_has_available_res(
self.des_mem, self.avail_mem, self.res_name)
def _validate_active_resize(self):
curr_mem_cfg = self.cur_lpar_w.mem_config
curr_min_mem = curr_mem_cfg.min
curr_max_mem = curr_mem_cfg.max
if self.max_mem != curr_max_mem or self.min_mem != curr_min_mem:
msg = (_("The virtual machine must be powered off before changing "
"the minimum or maximum memory. Power off virtual "
"machine %s and try again.") % self.cur_lpar_w.name)
raise ValidatorException(msg)
if self.delta_exp_fact != 0:
msg = (_("The virtual machine must be powered off before changing "
"the expansion factor. Power off virtual machine %s and "
"try again.") % self.cur_lpar_w.name)
raise ValidatorException(msg)
if (self.ppt_ratio is not None and
self.ppt_ratio != curr_mem_cfg.ppt_ratio):
msg = ("The virtual machine must be powered off before changing "
"the physical page table ratio. Power off virtual "
"machine %s and try again.") % self.cur_lpar_w.name
raise ValidatorException(msg)
self._validate_resize_common()
def _validate_inactive_resize(self):
self._validate_resize_common()
def _validate_common(self):
pass
def _can_modify(self):
modifiable, reason = self.cur_lpar_w.can_modify_mem()
if not modifiable:
LOG.error(reason)
raise ValidatorException(reason)
def _validate_resize_common(self):
self._validate_host_has_available_res(self.delta_des_mem,
self.avail_mem,
self.res_name)
def _calculate_resize_deltas(self):
deltas = {}
curr_mem_cfg = self.cur_lpar_w.mem_config
curr_des_mem = curr_mem_cfg.desired
curr_max_mem = curr_mem_cfg.max
curr_exp_fact = curr_mem_cfg.exp_factor
deltas['delta_mem'] = self.des_mem - curr_des_mem
deltas['delta_max_mem'] = self.max_mem - curr_max_mem
deltas['delta_exp_factor'] = self.exp_fact - curr_exp_fact
return deltas
class ProcValidator(BaseValidator):
def _populate_new_values(self):
self.has_dedicated = self.lpar_w.proc_config.has_dedicated
self.procs_avail = self.host_w.proc_units_avail
self.proc_compat_mode = self.lpar_w.proc_compat_mode
if self.has_dedicated:
self._populate_dedicated_proc_values()
else:
self._populate_shared_proc_values()
def _populate_dedicated_proc_values(self):
ded_proc_cfg = self.lpar_w.proc_config.dedicated_proc_cfg
self.des_procs = ded_proc_cfg.desired
self.res_name = _('CPUs')
self.max_procs_per_aix_linux_lpar = (
self.host_w.max_procs_per_aix_linux_lpar)
self.max_sys_procs_limit = self.host_w.max_sys_procs_limit
self.des_vcpus = self.des_procs
self.max_vcpus = ded_proc_cfg.max
self.min_vcpus = ded_proc_cfg.min
def _populate_shared_proc_values(self):
shr_proc_cfg = self.lpar_w.proc_config.shared_proc_cfg
self.des_procs = shr_proc_cfg.desired_units
self.res_name = _('processing units')
self.max_procs_per_aix_linux_lpar = (
self.host_w.max_vcpus_per_aix_linux_lpar)
self.max_sys_procs_limit = self.host_w.max_sys_vcpus_limit
self.des_vcpus = shr_proc_cfg.desired_virtual
self.max_vcpus = shr_proc_cfg.max_virtual
self.min_vcpus = shr_proc_cfg.min_virtual
self.max_proc_units = shr_proc_cfg.max_units
self.min_proc_units = shr_proc_cfg.min_units
self.pool_id = shr_proc_cfg.pool_id
def _populate_resize_diffs(self):
deltas = self._calculate_resize_deltas()
self.delta_des_vcpus = deltas['delta_vcpu']
|
Apache License 2.0
|
a5kin/xentica
|
xentica/core/topology/lattice.py
|
OrthogonalLattice.is_off_board_code
|
python
|
def is_off_board_code(self, coord_prefix):
self._define_constants_once()
conditions = []
for i in range(self.dimensions):
condition = "{x}{i} < 0 || {x}{i} >= {w}{i}".format(
x=coord_prefix, i=i, w=self.width_prefix
)
conditions.append(condition)
return " || ".join(conditions)
|
Generate C code to test if the cell's coordinates are off board.
See :meth:`Lattice.is_off_board_code` for details.
|
https://github.com/a5kin/xentica/blob/ca08fac9f85af71c9d6d98545a33d50323f851b3/xentica/core/topology/lattice.py#L206-L221
|
import abc
from xentica.core.mixins import DimensionsMixin, BscaDetectorMixin
from xentica.core.variables import Constant
from xentica.core.exceptions import XenticaException
__all__ = ['Lattice', 'OrthogonalLattice', ]
class Lattice(DimensionsMixin, BscaDetectorMixin, metaclass=abc.ABCMeta):
width_prefix = "_w"
def _define_constants_once(self):
num_dimensions = self.bsca.topology.dimensions
for i in range(num_dimensions):
if not hasattr(self.bsca, "size") or i >= len(self.bsca.size):
msg = "Wrong field's dimensionality ({} instead of {})."
msg = msg.format(len(self.bsca.size), num_dimensions)
raise XenticaException(msg)
size = self.bsca.size[i]
constant = Constant("%s%d" % (self.width_prefix, i), size)
self.bsca.define_constant(constant)
@abc.abstractmethod
def index_to_coord_code(self, index_name, coord_prefix):
@abc.abstractmethod
def index_to_coord(self, idx, bsca):
@abc.abstractmethod
def coord_to_index_code(self, coord_prefix):
@abc.abstractmethod
def is_off_board_code(self, coord_prefix):
class OrthogonalLattice(Lattice):
supported_dimensions = list(range(1, 100))
def index_to_coord_code(self, index_name, coord_prefix):
self._define_constants_once()
i = 0
def wrap_format(text):
return text.format(x=coord_prefix, i=i,
index=index_name, w=self.width_prefix)
for i in range(self.dimensions):
if i == 0:
code = wrap_format("int _{index} = {index};\n")
index_name = "_" + index_name
if i < self.dimensions - 1:
code += wrap_format("int {x}{i} = {index} % {w}{i};\n")
code += wrap_format("{index} /= {w}{i};\n")
else:
code += wrap_format("int {x}{i} = {index};\n")
return code
def index_to_coord(self, idx, bsca):
coord = []
for i in range(bsca.topology.dimensions):
if i < self.dimensions - 1:
x_i = idx % bsca.size[i]
idx //= bsca.size[i]
else:
x_i = idx
coord.append(x_i)
return coord
def coord_to_index_code(self, coord_prefix):
self._define_constants_once()
summands = []
for i in range(self.dimensions):
summand = coord_prefix + str(i)
for j in range(i):
summand = self.width_prefix + str(j) + " * " + summand
summands.append(summand)
return " + ".join(summands)
|
MIT License
|
google-research/dice_rl
|
scripts/create_dataset.py
|
get_onpolicy_dataset
|
python
|
def get_onpolicy_dataset(load_dir, env_name, tabular_obs, max_trajectory_length,
alpha, seed):
tf_env, tf_policy = env_policies.get_env_and_policy(
load_dir, env_name, alpha, env_seed=seed, tabular_obs=tabular_obs)
dataset = tf_agents_onpolicy_dataset.TFAgentsOnpolicyDataset(
tf_env, tf_policy,
episode_step_limit=max_trajectory_length)
return dataset
|
Get on-policy dataset.
|
https://github.com/google-research/dice_rl/blob/4855e16a475ff0685068190c0504b28b5ed64233/scripts/create_dataset.py#L57-L66
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
import numpy as np
import os
import tensorflow.compat.v2 as tf
tf.compat.v1.enable_v2_behavior()
import pickle
from tf_agents.environments import gym_wrapper
from tf_agents.environments import tf_py_environment
import dice_rl.environments.env_policies as env_policies
import dice_rl.data.tf_agents_onpolicy_dataset as tf_agents_onpolicy_dataset
import dice_rl.estimators.estimator as estimator_lib
import dice_rl.utils.common as common_utils
from dice_rl.data.dataset import Dataset, EnvStep, StepType
from dice_rl.data.tf_offpolicy_dataset import TFOffpolicyDataset
FLAGS = flags.FLAGS
flags.DEFINE_string('env_name', 'taxi', 'Environment name.')
flags.DEFINE_integer('seed', 0, 'Initial random seed.')
flags.DEFINE_integer('num_trajectory', 100,
'Number of trajectories to collect.')
flags.DEFINE_integer('max_trajectory_length', 500,
'Cutoff trajectory at this step.')
flags.DEFINE_float('alpha', 1.0,
'How close to target policy.')
flags.DEFINE_bool('tabular_obs', True,
'Whether to use tabular observations.')
flags.DEFINE_string('save_dir', None, 'Directory to save dataset to.')
flags.DEFINE_string('load_dir', None, 'Directory to load policies from.')
flags.DEFINE_bool('force', False,
'Whether to force overwriting any existing dataset.')
|
Apache License 2.0
|
suomichain/suomi-core
|
sdk/python/suomi_sdk/processor/config.py
|
_get_dir
|
python
|
def _get_dir(toml_config_setting,
suomi_home_dir,
windows_dir,
default_dir):
conf_file = os.path.join(get_config_dir(), 'path.toml')
if os.path.exists(conf_file):
with open(conf_file) as fd:
raw_config = fd.read()
toml_config = toml.loads(raw_config)
if toml_config_setting in toml_config:
return toml_config[toml_config_setting]
if 'SUOMI_HOME' in os.environ:
return os.path.join(os.environ['SUOMI_HOME'], suomi_home_dir)
if os.name == 'nt':
base_dir = os.path.dirname(os.path.dirname(os.path.abspath(sys.argv[0])))
return os.path.join(base_dir, windows_dir)
return default_dir
|
Determines the directory path based on configuration.
Arguments:
toml_config_setting (str): The name of the config setting related
to the directory which will appear in path.toml.
suomi_home_dir (str): The directory under the SUOMI_HOME
environment variable. For example, for 'data' if the data
directory is $SUOMI_HOME/data.
windows_dir (str): The windows path relative to the computed base
directory.
default_dir (str): The default path on Linux.
Returns:
directory (str): The path.
|
https://github.com/suomichain/suomi-core/blob/dada0499ddc2b4b4a5d9a975de5af63b87ded9d2/sdk/python/suomi_sdk/processor/config.py#L36-L71
|
import os
import sys
import toml
import yaml
def get_config_dir():
if 'SUOMI_HOME' in os.environ:
return os.path.join(os.environ['SUOMI_HOME'], 'etc')
if os.name == 'nt':
base_dir = os.path.dirname(os.path.dirname(os.path.abspath(sys.argv[0])))
return os.path.join(base_dir, 'conf')
return '/etc/suomi'
|
Apache License 2.0
|
batzner/tensorlm
|
tensorlm/common/util.py
|
restore_possible
|
python
|
def restore_possible(out_dir):
ckpt = tf.train.get_checkpoint_state(out_dir)
return ckpt and ckpt.model_checkpoint_path
|
Check if a directory contains the necessary files for loading a TF model from it.
|
https://github.com/batzner/tensorlm/blob/4c47c0ff9e31df5960a1bf83dcbdd370eaf7ce5e/tensorlm/common/util.py#L34-L37
|
import tensorflow as tf
def get_chunks(items, size):
chunks = []
for i in range(0, len(items), size):
chunks.append(items[i:i + size])
return chunks
|
MIT License
|
binaryanalysisplatform/bap-ida-python
|
plugins/bap/utils/trace.py
|
machine_id
|
python
|
def machine_id(state, fromto):
state['machine-id'] = int(fromto[1])
|
tracks machine identifier
Maintains the 'machine-id' field in the state.
|
https://github.com/binaryanalysisplatform/bap-ida-python/blob/d8d4679de2f50bb75f556419565821d95404034e/plugins/bap/utils/trace.py#L187-L192
|
from .sexp import Parser
handlers = {}
filters = {}
class Loader(object):
def __init__(self, *args):
self.parser = Parser(*args)
self.state = {}
self._handlers = []
self._filters = []
self._filter_reqs = set()
def __iter__(self):
return self
def __next__(self):
return self.next()
def enable_handlers(self, names):
self._handlers = satisfy_requirements(self._handlers + names)
for name in self._handlers:
handlers[name].init(self.state)
def enable_filter(self, filter_name, *args, **kwargs):
filter = filters[filter_name]
requires = satisfy_requirements(filter.requires)
self.enable_handlers(requires)
for req in requires:
self._filter_reqs.add(req)
self._filters.append(filter(*args, **kwargs))
def next(self):
event = self.parser.next()
if len(event) != 2:
raise ValueError('Malformed Observation {}'.format(event))
event, payload = event
completed = set()
self.state['event'] = event
for h in self._handlers:
if h in self._filter_reqs and event in handlers[h].events:
completed.add(h)
handlers[h](self.state, payload)
for accept in self._filters:
if not accept(self.state):
break
else:
for h in self._handlers:
if h not in completed and event in handlers[h].events:
handlers[h](self.state, payload)
return self.state
def run(self):
for state in self:
pass
def attach_meta_attributes(h, **kwargs):
if 'name' not in kwargs:
name = h.__name__.replace('_', '-')
h.__dict__['name'] = name
req = kwargs.get('requires', [])
if 'requires' in kwargs:
del kwargs['requires']
h.__dict__['requires'] = req if isinstance(req, list) else [req]
h.__dict__.update(kwargs)
def handler(*args, **kwargs):
def make_handler(f):
f.__dict__['events'] = args
if 'init' in kwargs:
default = kwargs['init']
f.__dict__['init'] = lambda s: s.update(default)
del kwargs['init']
else:
f.__dict__['init'] = lambda x: None
attach_meta_attributes(f, **kwargs)
handlers[f.name] = f
return make_handler
def filter(**kwargs):
def make_filter(f):
def init(**kwargs):
return lambda state: f(state, **kwargs)
attach_meta_attributes(f, **kwargs)
attach_meta_attributes(init, name=f.name, **kwargs)
filters[init.name] = init
return make_filter
@handler('machine-switch', 'machine-fork', init={'machine-id': 0})
|
MIT License
|
francocruces/mioconnect
|
src/myodriver.py
|
MyoDriver.run
|
python
|
def run(self):
self.disconnect_all()
while len(self.myos) < self.config.MYO_AMOUNT:
print(
"*** Connecting myo " + str(len(self.myos) + 1) + " out of " + str(self.config.MYO_AMOUNT) + " ***")
print()
self.add_myo_connection()
self.receive()
|
Main. Disconnects possible connections and starts as many connections as needed.
|
https://github.com/francocruces/mioconnect/blob/c58c9646fe6bb005e8f4d5e85551d1a0d31aeb91/src/myodriver.py#L30-L40
|
import sys
import time
from src.public.myohw import *
from src.myo import Myo
from src.bluetooth import Bluetooth
from src.data_handler import DataHandler
class MyoDriver:
def __init__(self, config):
self.config = config
print("OSC Address: " + str(self.config.OSC_ADDRESS))
print("OSC Port: " + str(self.config.OSC_PORT))
print()
self.data_handler = DataHandler(self.config)
self.bluetooth = Bluetooth(self.config.MESSAGE_DELAY)
self.myos = []
self.myo_to_connect = None
self.scanning = False
self.set_handlers()
|
MIT License
|
parquery/icontract
|
icontract/_decorators.py
|
ensure.__call__
|
python
|
def __call__(self, func: CallableT) -> CallableT:
if not self.enabled:
return func
contract_checker = icontract._checkers.find_checker(func=func)
if contract_checker is None:
contract_checker = icontract._checkers.decorate_with_checker(func=func)
result = contract_checker
assert self._contract is not None
icontract._checkers.add_postcondition_to_checker(checker=contract_checker, contract=self._contract)
return result
|
Add the postcondition to the list of postconditions of the function ``func``.
The function ``func`` is decorated with a contract checker if there is no contract checker in
the decorator stack.
:param func: function to be wrapped
:return: contract checker around ``func`` if no contract checker on the decorator stack, or ``func`` otherwise
|
https://github.com/parquery/icontract/blob/8d3193144a0b92e96f548b2ee828eb36a405ed40/icontract/_decorators.py#L242-L267
|
import inspect
import reprlib
import traceback
from typing import Callable, Optional, Union, Any, List, Type, TypeVar
import icontract._checkers
from icontract._globals import CallableT, ExceptionT, ClassT
from icontract._types import Contract, Snapshot
class require:
def __init__(self,
condition: Callable[..., Any],
description: Optional[str] = None,
a_repr: reprlib.Repr = icontract._globals.aRepr,
enabled: bool = __debug__,
error: Optional[Union[Callable[..., ExceptionT], Type[ExceptionT], BaseException]] = None) -> None:
self.enabled = enabled
self._contract = None
if not enabled:
return
if error is None:
pass
elif isinstance(error, type):
if not issubclass(error, BaseException):
raise ValueError(("The error of the contract is given as a type, "
"but the type does not inherit from BaseException: {}").format(error))
else:
if not inspect.isfunction(error) and not inspect.ismethod(error) and not isinstance(error, BaseException):
raise ValueError(
("The error of the contract must be either a callable (a function or a method), "
"a class (subclass of BaseException) or an instance of BaseException, but got: {}").format(error))
location = None
tb_stack = traceback.extract_stack(limit=2)[:1]
if len(tb_stack) > 0:
frame = tb_stack[0]
location = 'File {}, line {} in {}'.format(frame.filename, frame.lineno, frame.name)
self._contract = Contract(
condition=condition, description=description, a_repr=a_repr, error=error, location=location)
def __call__(self, func: CallableT) -> CallableT:
if not self.enabled:
return func
contract_checker = icontract._checkers.find_checker(func=func)
if contract_checker is None:
contract_checker = icontract._checkers.decorate_with_checker(func=func)
result = contract_checker
assert self._contract is not None
icontract._checkers.add_precondition_to_checker(checker=contract_checker, contract=self._contract)
return result
class snapshot:
def __init__(self, capture: Callable[..., Any], name: Optional[str] = None, enabled: bool = __debug__) -> None:
self._snapshot = None
self.enabled = enabled
if enabled:
location = None
tb_stack = traceback.extract_stack(limit=2)[:1]
if len(tb_stack) > 0:
frame = tb_stack[0]
location = 'File {}, line {} in {}'.format(frame.filename, frame.lineno, frame.name)
self._snapshot = Snapshot(capture=capture, name=name, location=location)
def __call__(self, func: CallableT) -> CallableT:
if not self.enabled:
return func
contract_checker = icontract._checkers.find_checker(func=func)
if contract_checker is None:
raise ValueError("You are decorating a function with a snapshot, but no postcondition was defined "
"on the function before.")
assert self._snapshot is not None, "Expected the enabled snapshot to have the property ``snapshot`` set."
icontract._checkers.add_snapshot_to_checker(checker=contract_checker, snapshot=self._snapshot)
return func
class ensure:
def __init__(self,
condition: Callable[..., Any],
description: Optional[str] = None,
a_repr: reprlib.Repr = icontract._globals.aRepr,
enabled: bool = __debug__,
error: Optional[Union[Callable[..., ExceptionT], Type[ExceptionT], BaseException]] = None) -> None:
self.enabled = enabled
self._contract = None
if not enabled:
return
if error is None:
pass
elif isinstance(error, type):
if not issubclass(error, BaseException):
raise ValueError(("The error of the contract is given as a type, "
"but the type does not inherit from BaseException: {}").format(error))
else:
if not inspect.isfunction(error) and not inspect.ismethod(error) and not isinstance(error, BaseException):
raise ValueError(
("The error of the contract must be either a callable (a function or a method), "
"a class (subclass of BaseException) or an instance of BaseException, but got: {}").format(error))
location = None
tb_stack = traceback.extract_stack(limit=2)[:1]
if len(tb_stack) > 0:
frame = tb_stack[0]
location = 'File {}, line {} in {}'.format(frame.filename, frame.lineno, frame.name)
self._contract = Contract(
condition=condition, description=description, a_repr=a_repr, error=error, location=location)
|
MIT License
|
pennylaneai/pennylane-sf
|
pennylane_sf/tf.py
|
StrawberryFieldsTF.apply
|
python
|
def apply(self, operation, wires, par):
device_wires = self.map_wires(wires)
if operation not in self.matrix_gates:
param_labels = [str(uuid.uuid4()) for _ in range(len(par))]
for l, v in zip(param_labels, par):
self.params[l] = v
par = self.prog.params(*param_labels)
if not isinstance(par, Sequence):
par = (par,)
op = self._operation_map[operation](*par)
op | [self.q[i] for i in device_wires.labels]
|
Apply a quantum operation.
Args:
operation (str): name of the operation
wires (Wires): subsystems the operation is applied on
par (tuple): parameters for the operation
|
https://github.com/pennylaneai/pennylane-sf/blob/d5188553bdb19ee758a0464cfdc08e19505bcd06/pennylane_sf/tf.py#L195-L222
|
from collections import OrderedDict
from collections.abc import Sequence
import uuid
import numpy as np
import tensorflow as tf
import strawberryfields as sf
from strawberryfields.backends.tfbackend.states import FockStateTF
from strawberryfields.ops import (
Coherent,
DensityMatrix,
DisplacedSqueezed,
Fock,
Ket,
Squeezed,
Thermal,
Gaussian,
)
from strawberryfields.ops import (
BSgate,
CKgate,
CXgate,
CZgate,
Dgate,
Kgate,
Pgate,
Rgate,
S2gate,
Sgate,
Vgate,
Interferometer,
)
from pennylane.wires import Wires
from .expectations import mean_photon, number_expectation, homodyne, poly_xp
from .simulator import StrawberryFieldsSimulator
def identity(state, device_wires, params):
N = state.num_modes
D = state.cutoff_dim
if N == len(device_wires):
tr = state.trace()
return tr, tr - tr ** 2
N = len(device_wires)
dm = state.reduced_dm(modes=device_wires.tolist())
new_ax = np.arange(2 * N).reshape([N, 2]).T.flatten()
tr = tf.math.real(tf.linalg.trace(tf.reshape(tf.transpose(dm, new_ax), [D ** N, D ** N])))
return tr, tr - tr ** 2
def fock_state(state, device_wires, params):
n = params[0]
N = state.num_modes
if N == len(device_wires):
ex = state.fock_prob(n)
return ex, ex - ex ** 2
dm = state.reduced_dm(modes=device_wires.tolist())
ex = tf.math.real(dm[tuple(n[i // 2] for i in range(len(n) * 2))])
var = ex - ex ** 2
return ex, var
class StrawberryFieldsTF(StrawberryFieldsSimulator):
name = "Strawberry Fields TensorFlow PennyLane plugin"
short_name = "strawberryfields.tf"
_capabilities = {"model": "cv", "passthru_interface": "tf"}
_operation_map = {
"CoherentState": Coherent,
"FockDensityMatrix": DensityMatrix,
"DisplacedSqueezedState": DisplacedSqueezed,
"FockState": Fock,
"FockStateVector": Ket,
"SqueezedState": Squeezed,
"ThermalState": Thermal,
"GaussianState": Gaussian,
"Beamsplitter": BSgate,
"CrossKerr": CKgate,
"ControlledAddition": CXgate,
"ControlledPhase": CZgate,
"Displacement": Dgate,
"Kerr": Kgate,
"QuadraticPhase": Pgate,
"Rotation": Rgate,
"TwoModeSqueezing": S2gate,
"Squeezing": Sgate,
"CubicPhase": Vgate,
"InterferometerUnitary": Interferometer,
}
_observable_map = {
"NumberOperator": mean_photon,
"TensorN": number_expectation,
"X": homodyne(0),
"P": homodyne(np.pi / 2),
"QuadOperator": homodyne(),
"PolyXP": poly_xp,
"FockStateProjector": fock_state,
"Identity": identity,
}
matrix_gates = {
"FockDensityMatrix",
"GaussianState",
"InterferometerUnitary",
"FockStateVector",
}
_circuits = {}
_asarray = staticmethod(tf.convert_to_tensor)
def __init__(self, wires, *, cutoff_dim, shots=None, hbar=2):
super().__init__(wires, shots=shots, hbar=hbar)
self.cutoff = cutoff_dim
self.params = {}
|
Apache License 2.0
|
cisco/mindmeld
|
mindmeld/auto_annotator.py
|
SpacyAnnotator._is_plural_entity
|
python
|
def _is_plural_entity(self, entity):
return (
self.language == ENGLISH_LANGUAGE_CODE
and len(entity["body"]) >= 2
and entity["body"][-2:] == "'s"
)
|
Check if an entity is plural.
Args:
entity (dict): A dictionary representing an entity.
Returns:
is_plural (bool): Whether the entity is plural.
|
https://github.com/cisco/mindmeld/blob/d3a0606b5eaa92733dd12674438d45de4b124c63/mindmeld/auto_annotator.py#L779-L792
|
import logging
import os
import re
from abc import ABC, abstractmethod
from enum import Enum
from typing import List
from tqdm import tqdm
from .resource_loader import ResourceLoader
from .components._config import (
ENGLISH_LANGUAGE_CODE,
ENGLISH_US_LOCALE,
)
from .components.translators import NoOpTranslator, TranslatorFactory
from .text_preparation.spacy_model_factory import SpacyModelFactory
from .system_entity_recognizer import (
DucklingRecognizer,
duckling_item_to_query_entity,
)
from .markup import load_query, dump_queries
from .core import Entity, Span, QueryEntity, _get_overlap, NestedEntity
from .exceptions import MarkupError
from .models.helpers import register_annotator
from .constants import (
DUCKLING_TO_SYS_ENTITY_MAPPINGS,
ANNOTATOR_TO_SYS_ENTITY_MAPPINGS,
SPACY_SYS_ENTITIES_NOT_IN_DUCKLING,
CURRENCY_SYMBOLS,
SYSTEM_ENTITY_PREFIX,
)
from .components import NaturalLanguageProcessor
from .path import get_entity_types
from .query_factory import QueryFactory
logger = logging.getLogger(__name__)
class AnnotatorAction(Enum):
ANNOTATE = "annotate"
UNANNOTATE = "unannotate"
class Annotator(ABC):
def __init__(
self,
app_path,
annotation_rules=None,
language=ENGLISH_LANGUAGE_CODE,
locale=ENGLISH_US_LOCALE,
overwrite=False,
unannotate_supported_entities_only=True,
unannotation_rules=None,
**kwargs,
):
self.app_path = app_path
self.language = language
self.locale = locale
self.overwrite = overwrite
self.annotation_rules = annotation_rules or []
self.unannotate_supported_entities_only = unannotate_supported_entities_only
self.unannotation_rules = unannotation_rules or []
self._resource_loader = ResourceLoader.create_resource_loader(app_path)
self.duckling = DucklingRecognizer.get_instance()
def _get_file_entities_map(self, action: AnnotatorAction):
all_file_paths = self._resource_loader.get_all_file_paths()
file_entities_map = {path: [] for path in all_file_paths}
if action == AnnotatorAction.ANNOTATE:
rules = self.annotation_rules
elif action == AnnotatorAction.UNANNOTATE:
rules = self.unannotation_rules
else:
raise AssertionError(f"{action} is an invalid Annotator action.")
for rule in rules:
pattern = Annotator._get_pattern(rule)
compiled_pattern = re.compile(pattern)
filtered_paths = self._resource_loader.filter_file_paths(
compiled_pattern=compiled_pattern, file_paths=all_file_paths
)
for path in filtered_paths:
entities = self._get_entities(rule)
file_entities_map[path] = entities
return file_entities_map
@staticmethod
def _get_pattern(rule):
pattern = [rule[x] for x in ["domains", "intents", "files"]]
return ".*/" + "/".join(pattern)
def _get_entities(self, rule):
if rule["entities"].strip() in ["*", ".*", ".+"]:
return ["*"]
entities = re.sub("[()]", "", rule["entities"]).split("|")
valid_entities = []
for entity in entities:
entity = entity.strip()
if self.valid_entity_check(entity):
valid_entities.append(entity)
else:
logger.warning("%s is not a valid entity. Skipping entity.", entity)
return valid_entities
@property
@abstractmethod
def supported_entity_types(self):
raise NotImplementedError("Subclasses must implement this method")
def valid_entity_check(self, entity):
entity = entity.lower().strip()
return entity in self.supported_entity_types
def annotate(self):
if not self.annotation_rules:
logger.warning(
"""'annotate' field is not configured or misconfigured in the `config.py`.
We can't find any file to annotate."""
)
return
self._modify_queries(action=AnnotatorAction.ANNOTATE)
def unannotate(self):
if not self.unannotate:
logger.warning(
"""'unannotate' field is not configured or misconfigured in the `config.py`.
We can't find any file to unannotate."""
)
return
self._modify_queries(action=AnnotatorAction.UNANNOTATE)
def _modify_queries(self, action: AnnotatorAction):
file_entities_map = self._get_file_entities_map(action=action)
query_factory = QueryFactory.create_query_factory(self.app_path)
path_list = [p for p in file_entities_map if file_entities_map[p]]
for path in path_list:
processed_queries = Annotator._get_processed_queries(
file_path=path, query_factory=query_factory
)
tqdm_desc = "Processing " + path + ": "
for processed_query in tqdm(processed_queries, ascii=True, desc=tqdm_desc):
entity_types = file_entities_map[path]
if action == AnnotatorAction.ANNOTATE:
self._annotate_query(
processed_query=processed_query,
entity_types=entity_types,
)
elif action == AnnotatorAction.UNANNOTATE:
self._unannotate_query(
processed_query=processed_query,
remove_entities=entity_types,
)
with open(path, "w") as outfile:
outfile.write("".join(list(dump_queries(processed_queries))))
outfile.close()
@staticmethod
def _get_processed_queries(file_path, query_factory):
with open(file_path) as infile:
queries = infile.readlines()
processed_queries = []
domain, intent = file_path.split(os.sep)[-3:-1]
for query in queries:
try:
processed_query = load_query(
markup=query,
domain=domain,
intent=intent,
query_factory=query_factory,
)
processed_queries.append(processed_query)
except (AssertionError, MarkupError):
logger.warning("Skipping query. Error in processing: %s", query)
return processed_queries
def _annotate_query(self, processed_query, entity_types):
current_entities = list(processed_query.entities)
annotated_entities = self._get_annotated_entities(
processed_query=processed_query, entity_types=entity_types
)
final_entities = Annotator._resolve_conflicts(
target_entities=annotated_entities if self.overwrite else current_entities,
other_entities=current_entities if self.overwrite else annotated_entities,
)
processed_query.entities = tuple(final_entities)
def _get_annotated_entities(self, processed_query, entity_types=None):
if len(entity_types) == 0:
return []
entity_types = None if entity_types == ["*"] else entity_types
return self.parse(
sentence=processed_query.query.text,
entity_types=entity_types,
domain=processed_query.domain,
intent=processed_query.intent,
)
@staticmethod
def _item_to_query_entity(item, processed_query):
span = Span(start=item["start"], end=item["end"] - 1)
role = item.get("role")
entity = Entity(
text=item["body"], entity_type=item["dim"], role=role, value=item["value"]
)
query_entity = QueryEntity.from_query(
query=processed_query.query, span=span, entity=entity
)
return query_entity
@staticmethod
def _resolve_conflicts(target_entities, other_entities):
additional_entities = []
for o_entity in other_entities:
no_overlaps = [
not _get_overlap(o_entity.span, t_entity.span)
for t_entity in target_entities
]
if all(no_overlaps):
additional_entities.append(o_entity)
target_entities.extend(additional_entities)
return target_entities
def _unannotate_query(self, processed_query, remove_entities):
keep_entities = []
for query_entity in processed_query.entities:
if remove_entities == ["*"]:
is_supported_entity = self.valid_entity_check(query_entity.entity.type)
if self.unannotate_supported_entities_only and not is_supported_entity:
keep_entities.append(query_entity)
elif query_entity.entity.type not in remove_entities:
keep_entities.append(query_entity)
processed_query.entities = tuple(keep_entities)
@abstractmethod
def parse(self, sentence, **kwargs):
raise NotImplementedError("Subclasses must implement this method")
class SpacyAnnotator(Annotator):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.spacy_model_size = kwargs.get("spacy_model_size", "lg")
self.nlp = SpacyModelFactory.get_spacy_language_model(
self.language, self.spacy_model_size
)
@property
def supported_entity_types(self):
spacy_supported_entities = [e.lower() for e in self.nlp.get_pipe("ner").labels]
supported_entities = set()
for entity in spacy_supported_entities:
if entity == "misc":
continue
if entity in ["time", "date", "datetime"]:
supported_entities.update(["sys_time", "sys_duration", "sys_interval"])
elif entity in ANNOTATOR_TO_SYS_ENTITY_MAPPINGS:
supported_entities.add(ANNOTATOR_TO_SYS_ENTITY_MAPPINGS[entity])
else:
supported_entities.add(f"sys_{entity}")
if "sys_weight" in supported_entities:
supported_entities.update(["sys_distance", "sys_other-quantity"])
supported_entities = self._remove_unresolvable_entities(supported_entities)
return supported_entities
def _remove_unresolvable_entities(self, entities):
filtered_entities = []
for entity in entities:
if entity not in SPACY_SYS_ENTITIES_NOT_IN_DUCKLING:
if (
self.language in DUCKLING_TO_SYS_ENTITY_MAPPINGS
and entity in DUCKLING_TO_SYS_ENTITY_MAPPINGS[self.language]
):
filtered_entities.append(entity)
else:
filtered_entities.append(entity)
return filtered_entities
def parse(self, sentence, entity_types=None, **kwargs):
doc = self.nlp(sentence)
spacy_entities = [
{
"body": ent.text,
"start": ent.start_char,
"end": ent.end_char,
"value": {"value": ent.text},
"dim": ent.label_.lower(),
}
for ent in doc.ents
]
entity_resolution_func_map = {
"time": self._resolve_time_date,
"date": self._resolve_time_date,
"datetime": self._resolve_time_date,
"cardinal": self._resolve_cardinal,
"money": self._resolve_money,
"ordinal": self._resolve_ordinal,
"quantity": self._resolve_quantity,
"percent": self._resolve_percent,
"person": self._resolve_person,
}
entities = []
for entity in spacy_entities:
if entity["dim"] in ["per", "persName"]:
entity["dim"] = "person"
elif entity["dim"] == "misc":
continue
if entity["dim"] in entity_resolution_func_map:
params = {"entity": entity}
if entity["dim"] in ["time", "date", "datetime"]:
params["entity_types"] = entity_types
elif entity["dim"] in ["money"]:
params["sentence"] = sentence
entity = entity_resolution_func_map[entity["dim"]](**params)
else:
entity["dim"] = SYSTEM_ENTITY_PREFIX + entity["dim"].replace("_", "-")
if entity:
entities.append(entity)
if entity_types:
entities = [e for e in entities if e["dim"] in entity_types]
processed_query = load_query(
sentence,
query_factory=self._resource_loader.query_factory,
domain=kwargs.get("domain"),
intent=kwargs.get("intent"),
)
return [
Annotator._item_to_query_entity(entity, processed_query)
for entity in entities
]
def _resolve_time_date(self, entity, entity_types=None):
candidates = self.duckling.get_candidates_for_text(
entity["body"], language=self.language, locale=self.locale
)
if len(candidates) == 0:
return
time_entities = ["sys_duration", "sys_interval", "sys_time"]
if entity_types:
time_entities = [e for e in time_entities if e in entity_types]
if SpacyAnnotator._resolve_time_exact_match(entity, candidates, time_entities):
return entity
elif SpacyAnnotator._resolve_largest_substring(
entity, candidates, entity_types=time_entities, is_time_related=True
):
return entity
@staticmethod
def _get_time_entity_type(candidate):
if candidate["dim"] == "duration":
return "sys_duration"
if candidate["dim"] == "time":
if candidate["value"]["type"] == "interval":
return "sys_interval"
else:
return "sys_time"
@staticmethod
def _resolve_time_exact_match(entity, candidates, time_entities):
for candidate in candidates:
candidate_entity = SpacyAnnotator._get_time_entity_type(candidate)
if (
candidate_entity in time_entities
and candidate["body"] == entity["body"]
):
entity["dim"] = candidate_entity
entity["value"] = candidate["value"]
return entity
@staticmethod
def _resolve_largest_substring(entity, candidates, entity_types, is_time_related):
largest_candidate = None
resolved_entity_type = None
for entity_type in entity_types:
for candidate in candidates:
if is_time_related:
candidate_entity = SpacyAnnotator._get_time_entity_type(candidate)
else:
candidate_entity = candidate["entity_type"]
if (
candidate_entity == entity_type
and candidate["body"] in entity["body"]
and (
largest_candidate is None
or len(candidate["body"]) > len(largest_candidate["body"])
)
):
largest_candidate = candidate
resolved_entity_type = entity_type
if largest_candidate:
entity["body"] = largest_candidate["body"]
offset = entity["start"]
entity["start"] = offset + largest_candidate["start"]
entity["end"] = offset + largest_candidate["end"]
entity["value"] = largest_candidate["value"]
entity["dim"] = resolved_entity_type
return entity
def _resolve_cardinal(self, entity):
if self._resolve_exact_match(entity):
return entity
candidates = self.duckling.get_candidates_for_text(
entity["body"], language=self.language, locale=self.locale
)
if self._resolve_largest_substring(
entity, candidates, entity_types=["sys_number"], is_time_related=False
):
return entity
def _resolve_money(self, entity, sentence):
for symbol in CURRENCY_SYMBOLS:
if symbol in sentence:
start = entity["start"]
if (start == 1 and sentence[0] == symbol) or (
start >= 2 and sentence[start - 2 : start] == " " + symbol
):
entity["start"] -= 1
entity["body"] = sentence[entity["start"] : entity["end"]]
return self._resolve_exact_match(entity)
def _resolve_ordinal(self, entity):
return self._resolve_exact_match(entity)
def _resolve_exact_match(self, entity):
entity["dim"] = ANNOTATOR_TO_SYS_ENTITY_MAPPINGS[entity["dim"]]
candidates = self.duckling.get_candidates_for_text(
entity["body"], language=self.language, locale=self.locale
)
if len(candidates) == 0:
return
for candidate in candidates:
if (
candidate["entity_type"] == entity["dim"]
and entity["body"] == candidate["body"]
):
entity["value"] = candidate["value"]
return entity
def _resolve_quantity(self, entity):
candidates = self.duckling.get_candidates_for_text(entity["body"])
if len(candidates) == 0:
entity["dim"] = "sys_other-quantity"
return entity
entity_types = ["distance", "quantity"]
for entity_type in entity_types:
for candidate in candidates:
if (
candidate["dim"] == entity_type
and candidate["body"] == entity["body"]
):
entity["value"] = candidate["value"]
entity["dim"] = ANNOTATOR_TO_SYS_ENTITY_MAPPINGS[entity_type]
return entity
if SpacyAnnotator._resolve_largest_substring(
entity, candidates, entity_types=entity_types, is_time_related=False
):
return entity
else:
entity["dim"] = "sys_other-quantity"
return entity
def _resolve_percent(self, entity):
entity["dim"] = ANNOTATOR_TO_SYS_ENTITY_MAPPINGS[entity["dim"]]
candidates = self.duckling.get_candidates_for_text(
entity["body"], language=self.language, locale=self.locale
)
if len(candidates) == 0:
return
possible_values = []
for candidate in candidates:
if candidate["entity_type"] == "sys_number":
value = candidate["value"]["value"]
if isinstance(value, float):
entity["value"]["value"] = value / 100
return entity
else:
possible_values.append(value)
entity["value"]["value"] = max(possible_values) / 100
return entity
def _resolve_person(self, entity):
entity["dim"] = ANNOTATOR_TO_SYS_ENTITY_MAPPINGS[entity["dim"]]
if self._is_plural_entity(entity):
entity["value"] = {"value": entity["body"][:-2]}
entity["body"] = entity["body"][:-2]
entity["end"] -= 2
return entity
|
Apache License 2.0
|
daxm/fmcapi
|
fmcapi/api_objects/deployment_services/deploymentrequests.py
|
DeploymentRequests.__init__
|
python
|
def __init__(self, fmc):
logging.debug("In __init__ for DeploymentRequests() class.")
self.fmc = fmc
self.URL = f"{self.fmc.configuration_url}{self.URL_SUFFIX}"
self.uuids = None
|
Initialize DeploymentRequests object.
:param fmc (object): FMC object
:return: None
|
https://github.com/daxm/fmcapi/blob/fc4bad7ff733a6283e83970d7844c73e7e88a50c/fmcapi/api_objects/deployment_services/deploymentrequests.py#L19-L30
|
import logging
from .deployabledevices import DeployableDevices
import datetime
class DeploymentRequests(
object
):
URL_SUFFIX = "/deployment/deploymentrequests"
|
BSD 3-Clause New or Revised License
|
hfaran/ubc-timetabler
|
timetabler/scheduler.py
|
Scheduler.add_constraint
|
python
|
def add_constraint(self, constraint):
self._constraints.append(constraint)
|
Add constraint ``constraint`` to list of constraints
:type constraint: callable
:param constraint: A callable that takes a Schedule
and returns True or False depending on whether
a constraint is met
|
https://github.com/hfaran/ubc-timetabler/blob/ce8fd668fd60c847e9524288ace58a9ec5677cbc/timetabler/scheduler.py#L97-L105
|
import logging
from itertools import combinations, ifilter, product
from timetabler.ssc import SSCConnection
from timetabler.util import check_equal, all_unique
from timetabler.schedule import Schedule
class NoActivitiesError(Exception):
def __init__(self, course_name):
self.course_name = course_name
def __str__(self):
return self.course_name
class Scheduler(object):
def __init__(self, courses, session="2014W", terms=(1, 2),
refresh=False, duplicates=True, ssc_conn=None):
self.ssc_conn = SSCConnection() if ssc_conn is None else ssc_conn
self.courses = {c: self.ssc_conn.get_course(c, session, refresh=refresh,
duplicates=duplicates)
for c in courses}
self.terms = terms
self.session = session
self._constraints = []
def generate_schedules(self, bad_statuses=("Full", "Blocked")):
schedules_by_course = {}
for name, course in self.courses.items():
logging.info("Generating schedules for {} ...".format(name))
if not course.activities:
raise NoActivitiesError(name)
acts = course.activities
r = sum(c[1] for c in course.num_section_constraints)
combs = combinations(acts, r)
filter_func = lambda combo: all([
all(
sum(int(isinstance(act, constraint[0])) for act in combo) == constraint[1]
for constraint in course.num_section_constraints
),
all(act.term in self.terms for act in combo),
(check_equal([act.term for act in combo]) or
any(act.is_multi_term for act in combo)),
all(a.status not in bad_statuses for a in combo),
all(c(combo) for c in course.constraints)
])
filtered_combs = filter(filter_func, combs)
schedules_by_course[name] = filtered_combs
logging.info("Schedules for {} generated.".format(name))
all_scheds = self._generate_combinations(schedules_by_course)
filter_func = lambda s: all([
not self._check_schedule_conflicts(s)
])
filtered_all_scheds = ifilter(filter_func, all_scheds)
logging.info("Generating all valid schedules ...")
schedules = [Schedule(sched) for sched in filtered_all_scheds]
filter_func = lambda s: all(c(s) for c in self._constraints)
schedules = filter(filter_func, schedules)
logging.info("Found {} valid schedules.".format(len(schedules)))
return schedules
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/sensor/gitter.py
|
GitterSensor.update
|
python
|
def update(self):
data = self._data.user.unread_items(self._room)
if 'error' not in data.keys():
self._mention = len(data['mention'])
self._state = len(data['chat'])
else:
_LOGGER.error("Not joined: %s", self._room)
|
Get the latest data and updates the state.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/sensor/gitter.py#L97-L104
|
import logging
import voluptuous as vol
import homeassistant.helpers.config_validation as cv
from homeassistant.components.sensor import PLATFORM_SCHEMA
from homeassistant.const import CONF_NAME, CONF_API_KEY, CONF_ROOM
from homeassistant.helpers.entity import Entity
REQUIREMENTS = ['gitterpy==0.1.6']
_LOGGER = logging.getLogger(__name__)
ATTR_MENTION = 'mention'
ATTR_ROOM = 'room'
ATTR_USERNAME = 'username'
DEFAULT_NAME = 'Gitter messages'
DEFAULT_ROOM = 'home-assistant/home-assistant'
ICON = 'mdi:message-settings-variant'
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_API_KEY): cv.string,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_ROOM, default=DEFAULT_ROOM): cv.string,
})
def setup_platform(hass, config, add_devices, discovery_info=None):
from gitterpy.client import GitterClient
from gitterpy.errors import GitterTokenError
name = config.get(CONF_NAME)
api_key = config.get(CONF_API_KEY)
room = config.get(CONF_ROOM)
gitter = GitterClient(api_key)
try:
username = gitter.auth.get_my_id['name']
except GitterTokenError:
_LOGGER.error("Token is not valid")
return False
add_devices([GitterSensor(gitter, room, name, username)], True)
class GitterSensor(Entity):
def __init__(self, data, room, name, username):
self._name = name
self._data = data
self._room = room
self._username = username
self._state = None
self._mention = 0
self._unit_of_measurement = 'Msg'
@property
def name(self):
return self._name
@property
def state(self):
return self._state
@property
def unit_of_measurement(self):
return self._unit_of_measurement
@property
def device_state_attributes(self):
return {
ATTR_USERNAME: self._username,
ATTR_ROOM: self._room,
ATTR_MENTION: self._mention,
}
@property
def icon(self):
return ICON
|
MIT License
|
charanpald/apgl
|
apgl/graph/DictGraph.py
|
DictGraph.getNumEdges
|
python
|
def getNumEdges(self):
numEdges = 0
for vertex1 in self.adjacencies.keys():
numEdges += len(self.adjacencies[vertex1])
if not self.undirected:
return numEdges
else:
for vertex1 in self.adjacencies.keys():
if vertex1 in self.adjacencies[vertex1]:
numEdges += 1
return numEdges/2
|
Returns the total number of edges in graph.
|
https://github.com/charanpald/apgl/blob/f8b71be2c49c62ace7ce5691216d2ff041ff978b/apgl/graph/DictGraph.py#L108-L123
|
import numpy
import heapq
import scipy.sparse
from apgl.graph.AbstractSingleGraph import AbstractSingleGraph
class DictGraph(AbstractSingleGraph):
def __init__(self, undirected=True):
self.undirected = undirected
self.adjacencies = {}
self.vertices = {}
def addEdge(self, vertex1, vertex2, value=1.0):
if value == None:
raise ValueError("Cannot have None as edge value")
self.__touchVertex(vertex1)
self.__touchVertex(vertex2)
self.adjacencies[vertex1][vertex2] = value
if self.undirected:
self.adjacencies[vertex2][vertex1] = value
def addEdges(self, edgeList, edgeValues=None):
i = 0
for edge in edgeList:
(vertex1, vertex2) = edge
if edgeValues == None:
value = 1
else:
value = edgeValues[i]
self.__touchVertex(vertex1)
self.__touchVertex(vertex2)
self.adjacencies[vertex1][vertex2] = value
if self.undirected:
self.adjacencies[vertex2][vertex1] = value
i += 1
def __touchVertex(self, vertexId):
if vertexId not in self.vertices:
self.vertices[vertexId] = None
if vertexId not in self.adjacencies:
self.adjacencies[vertexId] = {}
def removeEdge(self, vertex1, vertex2):
self.__removeDirectedEdge(vertex1, vertex2)
if self.undirected:
self.__removeDirectedEdge(vertex2, vertex1)
def __removeDirectedEdge(self, vertex1, vertex2):
if vertex1 not in self.adjacencies:
raise ValueError("Vertex is not present in graph: " + str(vertex1))
if vertex2 not in self.adjacencies[vertex1]:
raise ValueError("Vertex is not a neighbour of " + str(vertex1) + " in graph: " + str(vertex2))
del self.adjacencies[vertex1][vertex2]
def isUndirected(self):
return self.undirected
|
BSD 3-Clause New or Revised License
|
vmware/vsphere-automation-sdk-python
|
samples/vsphere/vcenter/vm/hardware/serial.py
|
cleanup_backends
|
python
|
def cleanup_backends():
datacenter_name = testbed.config['SERIAL_PORT_DATACENTER_NAME']
datastore_path = testbed.config['SERIAL_PORT_DATASTORE_PATH']
delete_file(client,
service_instance,
'Serial Port',
datacenter_name,
datastore_path)
|
Cleanup after the serial port samples.
The files backing the serial port file backing needs to be removed or else
the next time the VM is powered on and connected to the serial port, the VM
will post a question asking if the file should be Replaced or Appended.
This is only an issue for backings that are write-only.
|
https://github.com/vmware/vsphere-automation-sdk-python/blob/73624d9e20083002af770cf8763683f3c4681a16/samples/vsphere/vcenter/vm/hardware/serial.py#L232-L248
|
__author__ = 'VMware, Inc.'
__vcenter_version__ = '6.5+'
import atexit
from vmware.vapi.vsphere.client import create_vsphere_client
from com.vmware.vcenter.vm.hardware_client import Serial
from pyVim.connect import SmartConnect, Disconnect
from samples.vsphere.common.sample_util import parse_cli_args_vm
from samples.vsphere.common.sample_util import pp
from samples.vsphere.common.ssl_helper import get_unverified_context
from samples.vsphere.common.vim.file import delete_file
from samples.vsphere.vcenter.helper.vm_helper import get_vm
from samples.vsphere.vcenter.setup import testbed
from samples.vsphere.common.ssl_helper import get_unverified_session
vm = None
vm_name = None
client = None
service_instance = None
cleardata = False
serials_to_delete = []
orig_serial_summaries = None
def setup(context=None):
global vm_name, client, service_instance, cleardata
if context:
client = context.client
vm_name = testbed.config['VM_NAME_DEFAULT']
service_instance = context.service_instance
else:
server, username, password, cleardata, skip_verification, vm_name = parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])
session = get_unverified_session() if skip_verification else None
client = create_vsphere_client(server=server,
username=username,
password=password,
session=session)
context = None
if skip_verification:
context = get_unverified_context()
service_instance = SmartConnect(host=server,
user=username,
pwd=password,
sslContext=context)
atexit.register(Disconnect, service_instance)
def run():
global vm
vm = get_vm(client, vm_name)
if not vm:
raise Exception('Sample requires an existing vm with name ({}). '
'Please create the vm first.'.format(vm_name))
print("Using VM '{}' ({}) for Serial Sample".format(vm_name, vm))
print('\n# Example: List all Serial ports for a VM')
serial_summaries = client.vcenter.vm.hardware.Serial.list(vm=vm)
print('vm.hardware.Serial.list({}) -> {}'.format(vm, serial_summaries))
global orig_serial_summaries
orig_serial_summaries = serial_summaries
for serial_summary in serial_summaries:
serial = serial_summary.port
serial_info = client.vcenter.vm.hardware.Serial.get(vm=vm, port=serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.format(vm, serial,
pp(serial_info)))
global serials_to_delete
print('\n# Example: Create Serial port with defaults')
serial_create_spec = Serial.CreateSpec()
serial = client.vcenter.vm.hardware.Serial.create(vm, serial_create_spec)
print('vm.hardware.Serial.create({}, {}) -> {}'.
format(vm, serial_create_spec, serial))
serials_to_delete.append(serial)
serial_info = client.vcenter.vm.hardware.Serial.get(vm, serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.
format(vm, serial, pp(serial_info)))
cleanup_backends()
print('\n# Example: Create Serial port with FILE backing')
serial_port_datastore_path = testbed.config['SERIAL_PORT_DATASTORE_PATH']
serial_create_spec = Serial.CreateSpec(
start_connected=True,
allow_guest_control=True,
backing=Serial.BackingSpec(type=Serial.BackingType.FILE,
file=serial_port_datastore_path))
serial = client.vcenter.vm.hardware.Serial.create(vm, serial_create_spec)
print('vm.hardware.Serial.create({}, {}) -> {}'.
format(vm, serial_create_spec, serial))
serials_to_delete.append(serial)
serial_info = client.vcenter.vm.hardware.Serial.get(vm, serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.
format(vm, serial, pp(serial_info)))
print('\n# Example: Create Serial port to use NETWORK_SERVER')
serial_port_network_server_location = testbed.config['SERIAL_PORT_NETWORK_SERVER_LOCATION']
serial_create_spec = Serial.CreateSpec(
start_connected=True,
allow_guest_control=True,
backing=Serial.BackingSpec(type=Serial.BackingType.NETWORK_SERVER,
network_location=serial_port_network_server_location))
serial = client.vcenter.vm.hardware.Serial.create(vm, serial_create_spec)
print('vm.hardware.Serial.create({}, {}) -> {}'.
format(vm, serial_create_spec, serial))
serials_to_delete.append(serial)
serial_info = client.vcenter.vm.hardware.Serial.get(vm, serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.
format(vm, serial, pp(serial_info)))
print('\n# Example: Update Serial port to use NETWORK_CLIENT')
serial_port_network_client_location = testbed.config['SERIAL_PORT_NETWORK_CLIENT_LOCATION']
serial_port_network_proxy = testbed.config['SERIAL_PORT_NETWORK_PROXY']
serial_update_spec = Serial.UpdateSpec(
start_connected=False,
allow_guest_control=False,
backing=Serial.BackingSpec(type=Serial.BackingType.NETWORK_CLIENT,
network_location=serial_port_network_client_location,
proxy=serial_port_network_proxy))
client.vcenter.vm.hardware.Serial.update(vm, serial, serial_update_spec)
print('vm.hardware.Serial.update({}, {}) -> {}'.
format(vm, serial_update_spec, serial))
serial_info = client.vcenter.vm.hardware.Serial.get(vm, serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.
format(vm, serial, pp(serial_info)))
print('\n# Starting VM to run connect/disconnect sample')
print('vm.Power.start({})'.format(vm))
client.vcenter.vm.Power.start(vm)
serial_info = client.vcenter.vm.hardware.Serial.get(vm, serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.
format(vm, serial, pp(serial_info)))
print('\n# Example: Connect Serial port after powering on VM')
client.vcenter.vm.hardware.Serial.connect(vm, serial)
print('vm.hardware.Serial.connect({}, {})'.format(vm, serial))
serial_info = client.vcenter.vm.hardware.Serial.get(vm, serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.
format(vm, serial, pp(serial_info)))
print('\n# Example: Disconnect Serial port while VM is powered on')
client.vcenter.vm.hardware.Serial.disconnect(vm, serial)
print('vm.hardware.Serial.disconnect({}, {})'.format(vm, serial))
serial_info = client.vcenter.vm.hardware.Serial.get(vm, serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.
format(vm, serial, pp(serial_info)))
print('\n# Stopping VM after connect/disconnect sample')
print('vm.Power.start({})'.format(vm))
client.vcenter.vm.Power.stop(vm)
serial_info = client.vcenter.vm.hardware.Serial.get(vm, serial)
print('vm.hardware.Serial.get({}, {}) -> {}'.
format(vm, serial, pp(serial_info)))
serial_summaries = client.vcenter.vm.hardware.Serial.list(vm=vm)
print('vm.hardware.Serial.list({}) -> {}'.format(vm, serial_summaries))
cleanup_backends()
def cleanup():
print('\n# Delete VM Serial ports that were added')
for serial in serials_to_delete:
client.vcenter.vm.hardware.Serial.delete(vm, serial)
print('vm.hardware.Serial.delete({}, {})'.format(vm, serial))
serial_summaries = client.vcenter.vm.hardware.Serial.list(vm)
print('vm.hardware.Serial.list({}) -> {}'.format(vm, serial_summaries))
if set(orig_serial_summaries) != set(serial_summaries):
print('vm.hardware.Serial WARNING: '
'Final Serial ports info does not match original')
|
MIT License
|
diofant/diofant
|
diofant/tensor/array/dense_ndim_array.py
|
DenseNDimArray.reshape
|
python
|
def reshape(self, *newshape):
new_total_size = functools.reduce(lambda x, y: x*y, newshape)
if new_total_size != self._loop_size:
raise ValueError('Invalid reshape parameters ' + str(newshape))
return type(self)(self._array, newshape)
|
Returns MutableDenseNDimArray instance with new shape. Elements number
must be suitable to new shape. The only argument of method sets
new shape.
Examples
========
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
>>> a.shape
(2, 3)
>>> a
[[1, 2, 3], [4, 5, 6]]
>>> b = a.reshape(3, 2)
>>> b.shape
(3, 2)
>>> b
[[1, 2], [3, 4], [5, 6]]
|
https://github.com/diofant/diofant/blob/05c50552b0e0533f1dbf2ec05e65b6c45b7e2c11/diofant/tensor/array/dense_ndim_array.py#L89-L115
|
import functools
import itertools
from ...core import Basic, Tuple
from ...core.sympify import sympify
from ...matrices import Matrix
from ...utilities import flatten
from .mutable_ndim_array import MutableNDimArray
from .ndim_array import ImmutableNDimArray, NDimArray
class DenseNDimArray(NDimArray):
def __getitem__(self, index):
syindex = self._check_symbolic_index(index)
if syindex is not None:
return syindex
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
def slice_expand(s, dim):
if not isinstance(s, slice):
return s,
start, stop, step = s.indices(dim)
return [start + i*step for i in range((stop-start)//step)]
sl_factors = [slice_expand(i, dim) for (i, dim) in zip(index, self.shape)]
eindices = itertools.product(*sl_factors)
array = [self._array[self._parse_index(i)] for i in eindices]
nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)]
return type(self)(array, nshape)
else:
if isinstance(index, slice):
return self._array[index]
else:
index = self._parse_index(index)
return self._array[index]
@classmethod
def zeros(cls, *shape):
list_length = functools.reduce(lambda x, y: x*y, shape)
return cls._new(([0]*list_length,), shape)
def tomatrix(self):
if self.rank() != 2:
raise ValueError('Dimensions must be of size of 2')
return Matrix(self.shape[0], self.shape[1], self._array)
def __iter__(self):
return self._array.__iter__()
|
BSD 3-Clause New or Revised License
|
quantumlib/openfermion-cirq
|
openfermioncirq/gates/fermionic_simulation.py
|
InteractionOperatorFermionicGate.interaction_operator_generator
|
python
|
def interaction_operator_generator(
self,
*,
operator: Optional[openfermion.InteractionOperator] = None,
modes: Optional[Sequence[int]] = None
) -> openfermion.InteractionOperator:
if modes is None:
modes = tuple(range(self.num_qubits()))
if operator is None:
n_modes = max(modes) + 1
operator = openfermion.InteractionOperator.zero(n_modes)
else:
n_modes = operator.n_qubits
fermion_operator = self.fermion_generator
return openfermion.get_interaction_operator(fermion_operator,
n_qubits=n_modes)
|
Constructs the Hamiltonian corresponding to the gate's generator.
|
https://github.com/quantumlib/openfermion-cirq/blob/655b00fee21c94cc96c343c63f7c52ea1aa329dc/openfermioncirq/gates/fermionic_simulation.py#L372-L388
|
import abc
import itertools
from typing import (cast, Dict, Optional, Sequence, Tuple, TYPE_CHECKING, Union)
import cirq
import numpy as np
import openfermion
import scipy.linalg as la
import sympy
if TYPE_CHECKING:
import openfermioncirq as ofc
def _arg(x):
if x == 0:
return 0
if cirq.is_parameterized(x):
return sympy.arg(x)
return np.angle(x)
def _canonicalize_weight(w):
if w == 0:
return (0, 0)
if cirq.is_parameterized(w):
return (cirq.PeriodicValue(abs(w), 2 * sympy.pi), sympy.arg(w))
period = 2 * np.pi
return (np.round((w.real % period) if (w == np.real(w)) else
(abs(w) % period) * w / abs(w), 8), 0)
def state_swap_eigen_component(x: str, y: str, sign: int = 1, angle: float = 0):
if not (isinstance(x, str) and isinstance(y, str)):
raise TypeError('not (isinstance(x, str) and isinstance(y, str))')
if len(x) != len(y):
raise ValueError('len(x) != len(y)')
if set(x).union(y).difference('01'):
raise ValueError('Arguments must be 0-1 strings.')
if x == y:
raise ValueError('x == y')
if sign not in (-1, 1):
raise ValueError('sign not in (-1, 1)')
dim = 2**len(x)
i, j = int(x, 2), int(y, 2)
component = np.zeros((dim, dim), dtype=np.complex128)
component[i, i] = component[j, j] = 0.5
component[j, i] = sign * 0.5 * 1j**(angle * 2 / np.pi)
component[i, j] = sign * 0.5 * 1j**(-angle * 2 / np.pi)
return component
def fermionic_simulation_gates_from_interaction_operator(
operator: openfermion.InteractionOperator):
n_qubits = operator.n_qubits
gates: Dict[Tuple[int, ...], cirq.Gate] = {}
if operator.constant:
gates[()] = operator.constant
for p in range(n_qubits):
coeff = operator.one_body_tensor[p, p]
if coeff:
gates[(p,)] = cirq.Z**(coeff / np.pi)
for modes in itertools.combinations(range(n_qubits), 2):
gate: Optional[InteractionOperatorFermionicGate] = (
QuadraticFermionicSimulationGate.from_interaction_operator(
operator=operator, modes=modes))
if gate:
gates[modes] = gate
for modes in itertools.combinations(range(n_qubits), 3):
gate = CubicFermionicSimulationGate.from_interaction_operator(
operator=operator, modes=modes)
if gate:
gates[modes] = gate
for modes in itertools.combinations(range(n_qubits), 4):
gate = QuarticFermionicSimulationGate.from_interaction_operator(
operator=operator, modes=modes)
if gate:
gates[modes] = gate
return gates
def sum_of_interaction_operator_gate_generators(
n_modes: int,
gates: Dict[Tuple[int, ...], Union[float, cirq.Gate]],
) -> openfermion.InteractionOperator:
operator = openfermion.InteractionOperator.zero(n_modes)
for indices, gate in gates.items():
if not indices:
operator.constant += gate
elif isinstance(gate, cirq.ZPowGate):
coeff = gate._exponent * np.pi
operator.constant += gate._exponent * gate._global_shift * np.pi
operator.one_body_tensor[indices * 2] += coeff
elif isinstance(gate, InteractionOperatorFermionicGate):
gate.interaction_operator_generator(operator=operator,
modes=indices)
else:
raise TypeError(f'Gate type {gate} not supported.')
return operator
@cirq.value_equality(approximate=True)
class ParityPreservingFermionicGate(cirq.Gate, metaclass=abc.ABCMeta):
def __init__(
self,
weights: Optional[Tuple[complex, ...]] = None,
absorb_exponent: bool = False,
exponent: cirq.TParamVal = 1.0,
global_shift: float = 0.0,
) -> None:
if weights is None:
weights = (1.,) * self.num_weights()
self.weights = weights
self._exponent = exponent
self._global_shift = global_shift
self._canonical_exponent_cached = None
if absorb_exponent:
self.absorb_exponent_into_weights()
@staticmethod
@abc.abstractmethod
def fermion_generator_components() -> Tuple[openfermion.FermionOperator]:
@abc.abstractmethod
def fswap(self, i: int):
@classmethod
def num_weights(cls) -> int:
return len(cls.fermion_generator_components())
@property
def qubit_generator_matrix(self) -> np.ndarray:
return openfermion.jordan_wigner_sparse(self.fermion_generator,
self.num_qubits()).toarray()
@property
def fermion_generator(self) -> openfermion.FermionOperator:
half_generator = sum((
w * G
for w, G in zip(self.weights, self.fermion_generator_components())),
openfermion.FermionOperator())
return half_generator + openfermion.hermitian_conjugated(half_generator)
def _diagram_exponent(self,
args: cirq.CircuitDiagramInfoArgs,
*,
ignore_global_phase: bool = True):
if not isinstance(self._exponent, (int, float)):
return self._exponent
result = float(self._exponent)
if args.precision is not None:
result = np.around(result, args.precision)
return result
@classmethod
def wire_symbol(cls, use_unicode: bool):
return cls.__name__
def _resolve_parameters_(self, resolver):
resolved_weights = cirq.resolve_parameters(self.weights, resolver)
resolved_exponent = cirq.resolve_parameters(self._exponent, resolver)
resolved_global_shift = cirq.resolve_parameters(self._global_shift,
resolver)
return type(self)(resolved_weights,
exponent=resolved_exponent,
global_shift=resolved_global_shift)
def _value_equality_values_(self):
return tuple(
_canonicalize_weight(w * self.exponent)
for w in list(self.weights) + [self._global_shift])
def _is_parameterized_(self) -> bool:
return any(
cirq.is_parameterized(v)
for V in self._value_equality_values_()
for v in V)
def absorb_exponent_into_weights(self):
period = (2 * sympy.pi) if self._is_parameterized_() else 2 * (np.pi)
new_weights = []
for weight in self.weights:
if not weight:
new_weights.append(weight)
continue
old_abs = abs(weight)
new_abs = (old_abs * self._exponent) % period
new_weights.append(weight * new_abs / old_abs)
self.weights = tuple(new_weights)
self._global_shift *= self._exponent
self._exponent = 1
def permute(self, init_pos: Sequence[int]):
I = range(self.num_qubits())
if sorted(init_pos) != list(I):
raise ValueError(f'{init_pos} is not a permutation of {I}.')
curr_pos = list(init_pos)
for i in I:
for j in I[i % 2:-1:2]:
if curr_pos[j] > curr_pos[j + 1]:
self.fswap(j)
curr_pos[j:j + 2] = reversed(curr_pos[j:j + 2])
assert curr_pos == list(I)
def permuted(self, init_pos: Sequence[int]):
gate = self.__copy__()
gate.permute(init_pos)
return gate
def __copy__(self):
return type(self)(self.weights,
exponent=self.exponent,
global_shift=self._global_shift)
def _circuit_diagram_info_(self, args: cirq.CircuitDiagramInfoArgs
) -> cirq.CircuitDiagramInfo:
wire_symbols = [self.wire_symbol(args.use_unicode_characters)
] * self.num_qubits()
wire_symbols[0] += f'{tuple(self.weights)}'
exponent = self._diagram_exponent(args)
return cirq.CircuitDiagramInfo(wire_symbols=wire_symbols,
exponent=exponent)
class InteractionOperatorFermionicGate(ParityPreservingFermionicGate):
@classmethod
@abc.abstractmethod
def from_interaction_operator(
cls,
*,
operator: openfermion.InteractionOperator,
modes: Optional[Sequence[int]] = None,
) -> Optional['ParityPreservingFermionicGate']:
|
Apache License 2.0
|
openforcefield/openff-interchange
|
openff/interchange/interop/internal/gromacs.py
|
to_top
|
python
|
def to_top(openff_sys: "Interchange", file_path: Union[Path, str]):
if isinstance(file_path, str):
path = Path(file_path)
if isinstance(file_path, Path):
path = file_path
with open(path, "w") as top_file:
top_file.write("; Generated by OpenFF Interchange\n")
_write_top_defaults(openff_sys, top_file)
typemap = _build_typemap(openff_sys)
virtual_site_map = _build_virtual_site_map(openff_sys)
_write_atomtypes(openff_sys, top_file, typemap, virtual_site_map)
_write_moleculetype(top_file)
_write_atoms(top_file, openff_sys, typemap, virtual_site_map)
_write_valence(top_file, openff_sys)
_write_virtual_sites(
top_file,
openff_sys,
virtual_site_map,
)
_write_system(top_file, openff_sys)
|
Write a GROMACS topology (.top) file.
See https://manual.gromacs.org/documentation/current/reference-manual/file-formats.html#top
for more details.
This code is partially copied from InterMol, see
https://github.com/shirtsgroup/InterMol/tree/v0.1/intermol/gromacs
|
https://github.com/openforcefield/openff-interchange/blob/a080e348b62c36c3c6a6b04e8afde64556f3186e/openff/interchange/interop/internal/gromacs.py#L209-L243
|
import math
from pathlib import Path
from typing import IO, TYPE_CHECKING, Callable, Dict, Set, Tuple, Union
import mdtraj as md
import numpy as np
from openff.units import unit
from openff.interchange.components.base import (
BaseAngleHandler,
BaseBondHandler,
BaseElectrostaticsHandler,
BaseImproperTorsionHandler,
BaseProperTorsionHandler,
BasevdWHandler,
)
from openff.interchange.components.mdtraj import (
_iterate_angles,
_iterate_impropers,
_iterate_pairs,
_iterate_propers,
_OFFBioTop,
_store_bond_partners,
)
from openff.interchange.components.potentials import Potential
from openff.interchange.exceptions import UnsupportedExportError
from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey
if TYPE_CHECKING:
from openff.interchange.components.interchange import Interchange
def to_gro(openff_sys: "Interchange", file_path: Union[Path, str], decimal=8):
if isinstance(file_path, str):
path = Path(file_path)
if isinstance(file_path, Path):
path = file_path
rounded_positions = np.round(openff_sys.positions, decimal)
rounded_positions = rounded_positions.to(unit.nanometer).magnitude
n = decimal
n_particles = openff_sys.positions.shape[0]
typemap = _build_typemap(openff_sys)
virtual_site_map = _build_virtual_site_map(openff_sys)
n_particles += len(virtual_site_map)
with open(path, "w") as gro:
gro.write("Generated by OpenFF\n")
gro.write(f"{n_particles}\n")
for atom in openff_sys.topology.mdtop.atoms:
res = atom.residue
residue_idx = (res.index + 1) % 100000
residue_name = res.name[:5]
atom_name = typemap[atom.index]
atom_index = (atom.index + 1) % 100000
gro.write(
f"%5d%-5s%5s%5d%{n+5}.{n}f%{n+5}.{n}f%{n+5}.{n}f\n"
% (
residue_idx,
residue_name,
atom_name,
atom_index,
rounded_positions[atom.index, 0],
rounded_positions[atom.index, 1],
rounded_positions[atom.index, 2],
)
)
for virtual_site_key in virtual_site_map:
atom_name = "VS"
residue_idx = 1
residue_name = ""
atom_index = virtual_site_map[virtual_site_key]
gro.write(
f"%5d%-5s%5s%5d%{n+5}.{n}f%{n+5}.{n}f%{n+5}.{n}f\n"
% (
residue_idx,
residue_name,
atom_name,
atom_index,
0.0,
0.0,
0.0,
)
)
if openff_sys.box is None:
box = 11 * np.eye(3)
else:
box = openff_sys.box.to(unit.nanometer).magnitude
if (box == np.diag(np.diagonal(box))).all():
for i in range(3):
gro.write(f"{box[i, i]:11.7f}")
else:
for i in range(3):
gro.write(f"{box[i, i]:11.7f}")
for i in range(3):
for j in range(3):
if i != j:
gro.write(f"{box[i, j]:11.7f}")
gro.write("\n")
def _read_coordinates(file_path: Union[Path, str]) -> np.ndarray:
def _infer_coord_precision(file_path: Union[Path, str]) -> int:
with open(file_path) as file_in:
file_in.readline()
file_in.readline()
atom_line = file_in.readline()
period_indices = [i for i, x in enumerate(atom_line) if x == "."]
spacing_between_periods = period_indices[-1] - period_indices[-2]
precision = spacing_between_periods - 5
return precision
precision = _infer_coord_precision(file_path)
coordinate_width = precision + 5
coordinate_columns = [
20,
20 + coordinate_width,
20 + 2 * coordinate_width,
20 + 3 * coordinate_width,
]
with open(file_path) as gro_file:
gro_file.readline()
n_atoms = int(gro_file.readline())
unitless_coordinates = np.zeros((n_atoms, 3))
for coordinate_index in range(n_atoms):
line = gro_file.readline()
_ = int(line[:5])
_ = line[5:10]
_ = line[10:15]
_ = int(line[15:20])
x = float(line[coordinate_columns[0] : coordinate_columns[1]])
y = float(line[coordinate_columns[1] : coordinate_columns[2]])
z = float(line[coordinate_columns[2] : coordinate_columns[3]])
unitless_coordinates[coordinate_index] = np.array([x, y, z])
coordinates = unitless_coordinates * unit.nanometer
return coordinates
def _read_box(file_path: Union[Path, str]) -> np.ndarray:
with open(file_path) as gro_file:
gro_file.readline()
n_atoms = int(gro_file.readline())
box_line = gro_file.readlines()[n_atoms]
parsed_box = [float(val) for val in box_line.split()]
if len(parsed_box) == 3:
box = parsed_box * np.eye(3) * unit.nanometer
return box
def from_gro(file_path: Union[Path, str]) -> "Interchange":
if isinstance(file_path, str):
path = Path(file_path)
if isinstance(file_path, Path):
path = file_path
coordinates = _read_coordinates(path)
box = _read_box(path)
from openff.interchange.components.interchange import Interchange
interchange = Interchange()
interchange.box = box
interchange.positions = coordinates
return interchange
|
MIT License
|
asyml/texar-pytorch
|
texar/torch/data/vocabulary.py
|
Vocab.unk_token
|
python
|
def unk_token(self) -> str:
return self._unk_token
|
r"""A string of the special token indicating unknown token.
|
https://github.com/asyml/texar-pytorch/blob/5d67ae957763a3683ce8dd5e4d1208cc9fdb4d33/texar/torch/data/vocabulary.py#L225-L228
|
import warnings
from collections import defaultdict
from typing import DefaultDict, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
from texar.torch.utils.utils import (
_recur_split, dict_lookup, str_join, strip_special_tokens)
__all__ = [
"SpecialTokens",
"Vocab",
"map_ids_to_strs",
]
class SpecialTokens:
PAD = "<PAD>"
BOS = "<BOS>"
EOS = "<EOS>"
UNK = "<UNK>"
def _make_defaultdict(keys: Sequence[Union[int, str]],
values: Sequence[Union[int, str]],
default_value: Union[int, str]) -> DefaultDict[Union[int, str], Union[int, str]]:
dict_: DefaultDict[Union[int, str], Union[int, str]]
dict_ = defaultdict(lambda: default_value)
for k, v in zip(keys, values):
dict_[k] = v
return dict_
class Vocab:
def __init__(self,
filename: str,
pad_token: str = SpecialTokens.PAD,
bos_token: str = SpecialTokens.BOS,
eos_token: str = SpecialTokens.EOS,
unk_token: str = SpecialTokens.UNK):
self._filename = filename
self._pad_token = pad_token
self._bos_token = bos_token
self._eos_token = eos_token
self._unk_token = unk_token
self._id_to_token_map_py, self._token_to_id_map_py = self.load(self._filename)
def load(self, filename: str) -> Tuple[Dict[int, str], Dict[str, int]]:
with open(filename, "r") as vocab_file:
vocab = list(line.strip() for line in vocab_file)
warnings.simplefilter("ignore", UnicodeWarning)
if self._bos_token in vocab:
raise ValueError("Special begin-of-seq token already exists in the "
"vocabulary: '%s'" % self._bos_token)
if self._eos_token in vocab:
raise ValueError("Special end-of-seq token already exists in the "
"vocabulary: '%s'" % self._eos_token)
if self._unk_token in vocab:
raise ValueError("Special UNK token already exists in the "
"vocabulary: '%s'" % self._unk_token)
if self._pad_token in vocab:
raise ValueError("Special padding token already exists in the "
"vocabulary: '%s'" % self._pad_token)
warnings.simplefilter("default", UnicodeWarning)
vocab = [self._pad_token, self._bos_token, self._eos_token,
self._unk_token] + vocab
vocab_size = len(vocab)
id_to_token_map_py = dict(zip(range(vocab_size), vocab))
token_to_id_map_py = dict(zip(vocab, range(vocab_size)))
return id_to_token_map_py, token_to_id_map_py
def map_ids_to_tokens_py(self, ids: Union[List[int], np.ndarray]) -> np.ndarray:
return dict_lookup(self.id_to_token_map_py, ids, self.unk_token)
def map_tokens_to_ids_py(self, tokens: List[str]) -> np.ndarray:
return dict_lookup(self.token_to_id_map_py, tokens, self.unk_token_id)
@property
def id_to_token_map_py(self) -> Dict[int, str]:
return self._id_to_token_map_py
@property
def token_to_id_map_py(self) -> Dict[str, int]:
return self._token_to_id_map_py
@property
def size(self) -> int:
return len(self.token_to_id_map_py)
@property
def bos_token(self) -> str:
return self._bos_token
@property
def bos_token_id(self) -> int:
return self.token_to_id_map_py[self._bos_token]
@property
def eos_token(self) -> str:
return self._eos_token
@property
def eos_token_id(self) -> int:
return self.token_to_id_map_py[self._eos_token]
@property
|
Apache License 2.0
|
protothis/python-synology
|
src/synology_dsm/helpers.py
|
SynoFormatHelper.bytes_to_readable
|
python
|
def bytes_to_readable(num):
if num < 512:
return "0 Kb"
elif num < 1024:
return "1 Kb"
for unit in ["", "Kb", "Mb", "Gb", "Tb", "Pb", "Eb", "Zb"]:
if abs(num) < 1024.0:
return "%3.1f%s" % (num, unit)
num /= 1024.0
return "%.1f%s" % (num, "Yb")
|
Converts bytes to a human readable format.
|
https://github.com/protothis/python-synology/blob/645b818be2013231ac126c6962d2f9092a5c3aae/src/synology_dsm/helpers.py#L8-L19
|
class SynoFormatHelper:
@staticmethod
|
MIT License
|
monaen/lightfieldreconstruction
|
evaluation_ViewSynthesis.py
|
ApertureWisePSNR
|
python
|
def ApertureWisePSNR(Groundtruth, Reconstruction):
h, w, s, t = Groundtruth.shape[:4]
PSNRs = np.zeros([s, t])
for i in range(s):
for j in range(t):
gtimg = Groundtruth[:, :, i, j, ...]
gtimg = np.squeeze(gtimg)
recons = Reconstruction[:, :, i, j, ...]
recons = np.squeeze(recons)
PSNRs[i, j] = psnr(gtimg, recons)
return PSNRs
|
Calculate the PSNR value for each sub-aperture image of the
input reconstructed light field.
:param Groundtruth: input groundtruth light field
:param Reconstruction: input reconstruced light field
:return: aperture-wise PSNR values
|
https://github.com/monaen/lightfieldreconstruction/blob/5bc51c93d320a1a74e2050257ed16d95cb6edb5e/evaluation_ViewSynthesis.py#L113-L132
|
import tensorflow as tf
import numpy as np
import argparse
import sys
import cv2
import scipy.io as sio
from tqdm import tqdm
from utils.utils import psnr, ssim_exact, downsampling, LF_split_patches, shaveLF, shave_batch_LFs, shaveLF_by_factor, shaved_LF_reconstruct
from tool.log_config import *
log_config()
tf.logging.set_verbosity(tf.logging.ERROR)
parser = argparse.ArgumentParser(description="HDDRNet Tensorflow Implementation")
parser.add_argument("--datapath", type=str, default="./data/testset/occlusions20/occlusions_48.mat", help="The evaluation data path")
parser.add_argument("--batchSize", type=int, default=1, help="The batchsize of the input data")
parser.add_argument("--imageSize", type=int, default=96, help="Spatial size of the input light fields")
parser.add_argument("--viewSize", type=int, default=5, help="Angular size of the input light fields")
parser.add_argument("--channels", type=int, default=1,
help="Channels=1 means only the luma channel; Channels=3 means RGB channels (not supported)")
parser.add_argument("--verbose", default=True, action="store_true", help="Whether print the network structure or not")
parser.add_argument("--gamma_S", type=int, default=1, choices=[1, 2, 3, 4], help="Spatial downscaling factor")
parser.add_argument("--gamma_A", type=int, default=4, choices=[0, 1, 2, 3, 4],
help="Angular downscaling factor, '0' represents 3x3->7x7")
parser.add_argument("--num_GRL_HRB", type=int, default=5, help="The number of HRB in GRLNet (only for AAAI model)")
parser.add_argument("--num_SRe_HRB", type=int, default=3, help="The number of HRB in SReNet (only for AAAI model)")
parser.add_argument("--pretrained_model", type=str, default="pretrained_models/M-HDDRNet/Ax4/M-HDDRNet",
help="Path to store the pretrained model.")
parser.add_argument("--select_gpu", type=str, default="3", help="Select the gpu for training or evaluation")
args = parser.parse_args()
def import_model(scale_S, scale_A):
if scale_A == 1:
if scale_S == 4:
from networks.HDDRNet_Sx4 import HDDRNet
if scale_S == 3:
from networks.HDDRNet_Sx3 import HDDRNet
if scale_S == 2:
from networks.HDDRNet_Sx2 import HDDRNet
elif scale_S == 1:
if scale_A == 0:
from networks.HDDRNet_A3x3_7x7 import HDDRNet
if scale_A == 2:
from networks.HDDRNet_Ax2 import HDDRNet
if scale_A == 3:
from networks.HDDRNet_Ax3 import HDDRNet
if scale_A == 4:
from networks.HDDRNet_Ax4 import HDDRNet
else:
if scale_A == 2 and scale_S == 2:
from networks.HDDRNet_Sx2Ax2 import HDDRNet
return HDDRNet
def get_state(spatial_scale, angular_scale):
statetype = ""
if spatial_scale != 1:
statetype += "Sx{:d}".format(spatial_scale)
if angular_scale != 1:
statetype += "Ax{:d}".format(angular_scale)
return statetype
|
MIT License
|
mplewis/csvtomd
|
csvtomd/csvtomd.py
|
pad_to
|
python
|
def pad_to(unpadded, target_len):
under = target_len - len(unpadded)
if under <= 0:
return unpadded
return unpadded + (' ' * under)
|
Pad a string to the target length in characters, or return the original
string if it's longer than the target length.
|
https://github.com/mplewis/csvtomd/blob/1a23a5b37a973a1dc69ad4c69e81edea5d096ac9/csvtomd/csvtomd.py#L31-L39
|
import argparse
import csv
import sys
DEFAULT_PADDING = 2
def check_negative(value):
try:
ivalue = int(value)
except ValueError:
raise argparse.ArgumentTypeError(
'"%s" must be an integer' % value)
if ivalue < 0:
raise argparse.ArgumentTypeError(
'"%s" must not be a negative value' % value)
return ivalue
|
MIT License
|
hobson/aima
|
aima/search.py
|
Problem.actions
|
python
|
def actions(self, state):
abstract
|
Return the actions that can be executed in the given
state. The result would typically be a list, but if there are
many actions, consider yielding them one at a time in an
iterator, rather than building them all at once.
|
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L30-L35
|
from utils import PriorityQueue, FIFOQueue, Stack, Dict
from utils import name, print_table, ignore
from utils import if_, unimplemented, memoize, infinity, update
from utils import probability, argmax, argmax_random_tie, random_tests
from utils import distance, weighted_sample_with_replacement
import math, random, sys, bisect
import string
import time
class Problem(object):
def __init__(self, initial, goal=None):
self.initial = initial; self.goal = goal
|
MIT License
|
algrx/algorithmx-python
|
algorithmx/api/EdgeSelection.py
|
EdgeSelection.length
|
python
|
def length(self: S, length: ElementArg[NumAttr]) -> S:
return self.attrs(length=length)
|
Sets the length of the edge. This will only take effect when
:meth:`~api.Canvas.edgelayout` is set to "individual".
:param length: The length of the edge.
:type length: :data:`~api.types.ElementArg`\\[:data:`~api.types.NumAttr`]
|
https://github.com/algrx/algorithmx-python/blob/1028a69d54c0d4776c4ed47d9f5609c863a9102d/algorithmx/api/EdgeSelection.py#L94-L101
|
from typing import Union, Mapping, Tuple, List, Iterable, Optional, TypeVar, Any
from dataclasses import dataclass, replace
from .ElementSelection import ElementSelection
from .LabelSelection import LabelSelection
from .types import ElementArg, NumAttr, AnyId
from .utils import ElementContext, apply_attrs, eval_element_value, eval_element_dict
EdgeId = Union[
Tuple[AnyId, AnyId],
Tuple[AnyId, AnyId, AnyId],
]
@dataclass
class EdgeContext(ElementContext):
edges: Optional[List[EdgeId]] = None
S = TypeVar("S", bound="EdgeSelection")
class EdgeSelection(ElementSelection):
def __init__(self: S, context: EdgeContext):
self._selection: EdgeContext = context
def add(
self: S,
attrs: ElementArg[Mapping[str, ElementArg[Any]]] = {},
**kwargs: ElementArg[Any],
) -> S:
def attr_fn(data, data_index: int, element_index: int):
attr_obj = {
**(
eval_element_dict(attrs, data, data_index)
if attrs is not None
else {}
),
**eval_element_dict(kwargs, data, data_index),
}
return (
{
"source": str(self._selection.edges[element_index][0]),
"target": str(self._selection.edges[element_index][1]),
**attr_obj,
}
if self._selection.edges is not None
else attr_obj
)
apply_attrs(self._selection, attr_fn)
return self.duration(0)
def label(self, id: AnyId = 0) -> LabelSelection:
return self.labels([id])
def labels(self, ids: Iterable[AnyId]) -> LabelSelection:
return LabelSelection(
replace(
self._selection,
ids=[str(l) for l in ids],
data=None,
parentkey="labels",
parent=self._selection,
)
)
def directed(self: S, directed: ElementArg[bool]) -> S:
return self.attrs(directed=directed)
|
MIT License
|
allegro/django-powerdns-dnssec
|
powerdns/models/requests.py
|
DomainRequest.as_history_dump
|
python
|
def as_history_dump(self):
return {}
|
We don't care about domain history for now
|
https://github.com/allegro/django-powerdns-dnssec/blob/333bdc668b6cda1a2ff240efd814a1896a1a8e07/powerdns/models/requests.py#L346-L348
|
import logging
from django.db import models, transaction
from django.conf import settings
from django_extensions.db.fields.json import JSONField
from dj.choices import Choices
from dj.choices.fields import ChoiceField
from django.contrib.contenttypes.fields import ContentType, GenericForeignKey
from django.utils.translation import ugettext_lazy as _
from threadlocals.threadlocals import get_current_user
from .powerdns import (
Domain,
Owned,
Record,
validate_domain_name,
)
from .ownership import Service
from ..utils import AutoPtrOptions, RecordLike, TimeTrackable, flat_dict_diff
log = logging.getLogger(__name__)
def can_auto_accept_record_request(user_request, user, action):
def _validate_domain(domain):
if not domain:
raise Exception(
"Can't check auto acceptance without domain set"
)
can_auto_accept = False
domain = (
user_request.domain
if action != 'delete' else user_request.target.domain
)
_validate_domain(domain)
if action == 'create':
can_auto_accept = (
user_request.domain.can_auto_accept(user) and
not user_request.is_sec_acceptance_required()
)
elif action == 'update':
can_auto_accept = (
user_request.domain.can_auto_accept(user) and
user_request.record.can_auto_accept(user) and
not user_request.is_sec_acceptance_required()
)
elif action == 'delete':
can_auto_accept = (
user_request.target.domain.can_auto_accept(user) and
user_request.target.can_auto_accept(user) and
not user_request.is_seo_acceptance_required()
)
return can_auto_accept
class RequestStates(Choices):
_ = Choices.Choice
OPEN = _('Open')
ACCEPTED = _('Accepted')
REJECTED = _('Rejected')
class Request(Owned, TimeTrackable):
class Meta:
abstract = True
state = ChoiceField(
choices=RequestStates,
default=RequestStates.OPEN,
)
key = models.CharField(
max_length=255,
null=True,
blank=True
)
last_change_json = JSONField(null=True, blank=True)
def save(self, *args, **kwargs):
if self.owner is None:
self.owner = get_current_user()
super().save(*args, **kwargs)
def _log_processed_request_message(self):
log.warning('{} (id:{}) already {}'.format(
self._meta.object_name,
self.id,
RequestStates.DescFromID(self.state).lower(),
))
class DeleteRequest(Request):
content_type = models.ForeignKey(ContentType)
target_id = models.PositiveIntegerField()
target = GenericForeignKey('content_type', 'target_id')
@transaction.atomic
def accept(self):
if self.state != RequestStates.OPEN:
self._log_processed_request_message()
return
old_dict = self.target.as_history_dump()
new_dict = self.target.as_empty_history()
result = flat_dict_diff(old_dict, new_dict)
result['_request_type'] = 'delete'
self.last_change_json = result
self.target.delete()
self.state = RequestStates.ACCEPTED
self.save()
@transaction.atomic
def reject(self):
if self.state != RequestStates.OPEN:
self._log_processed_request_message()
return
self.state = RequestStates.REJECTED
self.save()
def __str__(self):
return 'Delete {}'.format(self.target)
def is_seo_acceptance_required(self):
if self.owner and self.owner.is_superuser:
return False
return (
isinstance(self.target, Record) and
self.target.type in settings.SEO_ACCEPTANCE_FOR_RECORD_TYPE and
(
not self.target.domain.template or
self.target.domain.template.is_public_domain
) and
self.target.domain.require_seo_acceptance
)
class ChangeCreateRequest(Request):
ignore_fields = {'created', 'modified'}
prefix = 'target_'
class Meta:
abstract = True
def _get_json_history(self, object_):
if object_.id:
old_dict = object_.as_history_dump()
else:
old_dict = object_.as_empty_history()
new_dict = self.as_history_dump()
result = flat_dict_diff(old_dict, new_dict)
result['_request_type'] = 'update' if object_.id else 'create'
return result
def _set_json_history(self, object_):
self.last_change_json = self._get_json_history(object_)
@transaction.atomic
def accept(self):
object_ = self.get_object()
if self.state != RequestStates.OPEN:
self._log_processed_request_message()
return object_
self._set_json_history(object_)
for field_name in type(self).copy_fields:
if field_name in self.ignore_fields:
continue
if field_name == 'target_owner' and not getattr(self, field_name):
continue
setattr(
object_,
field_name[len(self.prefix):],
getattr(self, field_name)
)
object_.save()
self.assign_object(object_)
self.state = RequestStates.ACCEPTED
self.save()
return object_
@transaction.atomic
def reject(self):
if self.state != RequestStates.OPEN:
self._log_processed_request_message()
return
object_ = self.get_object()
self._set_json_history(object_)
self.state = RequestStates.REJECTED
self.save()
def copy_records_data(self, fields_to_copy):
all_fields = self._meta.get_all_field_names()
for field_name, value in fields_to_copy:
if field_name in all_fields:
setattr(self, field_name, value)
elif 'target_' + field_name in all_fields:
setattr(self, 'target_' + field_name, value)
else:
log.warning("Unknown field {}:{}".format(field_name, value))
class DomainRequest(ChangeCreateRequest):
copy_fields = [
'target_name',
'target_master',
'target_type',
'target_account',
'target_remarks',
'target_template',
'target_reverse_template',
'target_auto_ptr',
'target_owner',
'target_service',
]
domain = models.ForeignKey(
Domain,
related_name='requests',
null=True,
blank=True,
help_text=_(
'The domain for which a change is requested'
),
)
parent_domain = models.ForeignKey(
Domain,
related_name='child_requests',
null=True,
blank=True,
help_text=_(
'The parent domain for which a new subdomain is to be created'
),
)
target_service = models.ForeignKey(Service, blank=True, null=True)
target_name = models.CharField(
_("name"),
max_length=255,
validators=[validate_domain_name],
blank=False,
null=False,
)
target_master = models.CharField(
_("master"), max_length=128, blank=True, null=True,
)
target_type = models.CharField(
_("type"),
max_length=6,
blank=True,
null=True,
choices=Domain.DOMAIN_TYPE,
)
target_account = models.CharField(
_("account"), max_length=40, blank=True, null=True,
)
target_remarks = models.TextField(_('Additional remarks'), blank=True)
target_template = models.ForeignKey(
'powerdns.DomainTemplate',
verbose_name=_('Template'),
blank=True,
null=True,
related_name='template_for_requests'
)
target_reverse_template = models.ForeignKey(
'powerdns.DomainTemplate',
verbose_name=_('Reverse template'),
blank=True,
null=True,
related_name='reverse_template_for_requests',
help_text=_(
'A template that should be used for reverse domains when '
'PTR templates are automatically created for A records in this '
'template.'
)
)
target_auto_ptr = ChoiceField(
choices=AutoPtrOptions,
default=AutoPtrOptions.ALWAYS,
help_text=_(
'Should A records have auto PTR by default'
)
)
target_unrestricted = models.BooleanField(
_('Unrestricted'),
null=False,
default=False,
help_text=_(
"Can users that are not owners of this domain add records"
"to it without owner's permission?"
)
)
target_owner = models.ForeignKey(
settings.AUTH_USER_MODEL,
verbose_name=_('Owner'),
null=True,
blank=False,
related_name='+',
)
def __str__(self):
return self.target_name
def get_object(self):
if self.domain is not None:
return self.domain
else:
return Domain()
def assign_object(self, obj):
self.domain = obj
|
BSD 2-Clause Simplified License
|
googlecloudplatform/gsutil
|
gslib/metrics.py
|
MetricsCollector._CollectPerformanceSummaryMetric
|
python
|
def _CollectPerformanceSummaryMetric(self):
if self.perf_sum_params is None:
return
custom_params = {}
for attr_name, label in (
('num_processes', 'Num Processes'),
('num_threads', 'Num Threads'),
('num_retryable_service_errors', 'Num Retryable Service Errors'),
('num_retryable_network_errors', 'Num Retryable Network Errors'),
('avg_throughput', 'Average Overall Throughput'),
('num_objects_transferred', 'Number of Files/Objects Transferred'),
('total_bytes_transferred', 'Size of Files/Objects Transferred'),
):
custom_params[_GA_LABEL_MAP[label]] = getattr(self.perf_sum_params,
attr_name)
if system_util.IS_LINUX:
disk_start = self.perf_sum_params.disk_counters_start
disk_end = system_util.GetDiskCounters()
custom_params[_GA_LABEL_MAP['Disk I/O Time']] = (
sum([stat[4] + stat[5] for stat in disk_end.values()]) -
sum([stat[4] + stat[5] for stat in disk_start.values()]))
if self.perf_sum_params.has_cloud_src:
src_url_type = 'both' if self.perf_sum_params.has_file_src else 'cloud'
else:
src_url_type = 'file'
custom_params[_GA_LABEL_MAP['Source URL Type']] = src_url_type
if self.perf_sum_params.uses_fan:
strategy = 'both' if self.perf_sum_params.uses_slice else 'fan'
else:
strategy = 'slice' if self.perf_sum_params.uses_slice else 'none'
custom_params[_GA_LABEL_MAP['Parallelism Strategy']] = strategy
total_time = (self.perf_sum_params.thread_idle_time +
self.perf_sum_params.thread_execution_time)
if total_time:
custom_params[_GA_LABEL_MAP['Thread Idle Time Percent']] = (
float(self.perf_sum_params.thread_idle_time) / float(total_time))
if self.perf_sum_params.thread_throughputs:
throughputs = [
thread.GetThroughput()
for thread in self.perf_sum_params.thread_throughputs.values()
]
custom_params[_GA_LABEL_MAP['Slowest Thread Throughput']] = min(
throughputs)
custom_params[_GA_LABEL_MAP['Fastest Thread Throughput']] = max(
throughputs)
custom_params[_GA_LABEL_MAP['Provider Types']] = ','.join(
sorted(self.perf_sum_params.provider_types))
transfer_types = {
'CloudToCloud':
self.perf_sum_params.has_cloud_src
and self.perf_sum_params.has_cloud_dst,
'CloudToFile':
self.perf_sum_params.has_cloud_src
and self.perf_sum_params.has_file_dst,
'DaisyChain':
self.perf_sum_params.is_daisy_chain,
'FileToCloud':
self.perf_sum_params.has_file_src
and self.perf_sum_params.has_cloud_dst,
'FileToFile':
self.perf_sum_params.has_file_src
and self.perf_sum_params.has_file_dst,
}
action = ','.join(
sorted([
transfer_type
for transfer_type, cond in six.iteritems(transfer_types)
if cond
]))
apply_execution_time = _GetTimeInMillis(
self.perf_sum_params.total_elapsed_time)
self.CollectGAMetric(category=_GA_PERFSUM_CATEGORY,
action=action,
execution_time=apply_execution_time,
**custom_params)
|
Aggregates PerformanceSummary info and adds the metric to the list.
|
https://github.com/googlecloudplatform/gsutil/blob/b1361dd5e9c2a246b328e871603f3a2b0d5fd5fa/gslib/metrics.py#L638-L740
|
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
import atexit
from collections import defaultdict
from functools import wraps
import logging
import os
import pickle
import platform
import re
import socket
import subprocess
import sys
import tempfile
import textwrap
import time
import uuid
import six
from six.moves import input
from six.moves import urllib
import boto
from gslib import VERSION
from gslib.metrics_tuple import Metric
from gslib.utils import system_util
from gslib.utils.unit_util import CalculateThroughput
from gslib.utils.unit_util import HumanReadableToBytes
_GA_ENDPOINT = 'https://ssl.google-analytics.com/collect'
_GA_TID = 'UA-36037335-16'
_GA_TID_TESTING = 'UA-36037335-17'
_GA_COMMANDS_CATEGORY = 'Command'
_GA_ERRORRETRY_CATEGORY = 'RetryableError'
_GA_ERRORFATAL_CATEGORY = 'FatalError'
_GA_PERFSUM_CATEGORY = 'PerformanceSummary'
_GOOGLE_CORP_HOST_RE = re.compile(r'.*google\.com$')
_UUID_FILE_PATH = os.path.expanduser(os.path.join('~',
'.gsutil/analytics-uuid'))
_DISABLED_TEXT = 'DISABLED'
_GA_LABEL_MAP = {
'Event Category': 'ec',
'Event Action': 'ea',
'Event Label': 'el',
'Event Value': 'ev',
'Command Name': 'cd1',
'Global Options': 'cd2',
'Command-Level Options': 'cd3',
'Config': 'cd4',
'Command Alias': 'cd5',
'Fatal Error': 'cd6',
'Parallelism Strategy': 'cd7',
'Source URL Type': 'cd8',
'Provider Types': 'cd9',
'Timestamp': 'cd10',
'Execution Time': 'cm1',
'Retryable Errors': 'cm2',
'Is Google Corp User': 'cm3',
'Num Processes': 'cm4',
'Num Threads': 'cm5',
'Number of Files/Objects Transferred': 'cm6',
'Size of Files/Objects Transferred': 'cm7',
'Average Overall Throughput': 'cm8',
'Num Retryable Service Errors': 'cm9',
'Num Retryable Network Errors': 'cm10',
'Thread Idle Time Percent': 'cm11',
'Slowest Thread Throughput': 'cm12',
'Fastest Thread Throughput': 'cm13',
'Disk I/O Time': 'cm14',
}
class MetricsCollector(object):
def __init__(self, ga_tid=_GA_TID, endpoint=_GA_ENDPOINT):
self.start_time = _GetTimeInMillis()
self.endpoint = endpoint
self.logger = logging.getLogger()
cid = MetricsCollector._GetCID()
use_test_property = boto.config.getbool('GSUtil', 'use_test_GA_property')
if use_test_property:
ga_tid = _GA_TID_TESTING
config_values = self._ValidateAndGetConfigValues()
is_corp_user = 0
if _GOOGLE_CORP_HOST_RE.match(socket.gethostname()):
is_corp_user = 1
self.ga_params = {
'v': '1',
'tid': ga_tid,
'cid': cid,
't': 'event',
_GA_LABEL_MAP['Config']: config_values,
_GA_LABEL_MAP['Is Google Corp User']: is_corp_user,
}
self.user_agent = '{system}/{release}'.format(system=platform.system(),
release=platform.release())
self._metrics = []
self.retryable_errors = defaultdict(int)
self.perf_sum_params = None
_instance = None
_disabled_cache = None
def _ValidateAndGetConfigValues(self):
config_values = []
invalid_value_string = 'INVALID'
def GetAndValidateConfigValue(section, category, validation_fn):
try:
config_value = boto.config.get_value(section, category)
if config_value and validation_fn(config_value):
config_values.append((category, config_value))
elif config_value:
config_values.append((category, invalid_value_string))
except:
config_values.append((category, invalid_value_string))
for section, bool_category in (('Boto', 'https_validate_certificates'),
('GSUtil', 'disable_analytics_prompt'),
('GSUtil', 'use_magicfile'),
('GSUtil', 'tab_completion_time_logs')):
GetAndValidateConfigValue(section=section,
category=bool_category,
validation_fn=lambda val: str(val).lower() in
('true', 'false'))
small_int_threshold = 2000
for section, small_int_category in (
('Boto', 'debug'),
('Boto', 'http_socket_timeout'),
('Boto', 'num_retries'),
('Boto', 'max_retry_delay'),
('GSUtil', 'default_api_version'),
('GSUtil', 'sliced_object_download_max_components'),
('GSUtil', 'parallel_process_count'),
('GSUtil', 'parallel_thread_count'),
('GSUtil', 'software_update_check_period'),
('GSUtil', 'tab_completion_timeout'),
('OAuth2', 'oauth2_refresh_retries'),
):
GetAndValidateConfigValue(section=section,
category=small_int_category,
validation_fn=lambda val: str(val).isdigit() and
int(val) < small_int_threshold)
for section, large_int_category in (('GSUtil', 'resumable_threshold'),
('GSUtil', 'rsync_buffer_lines'),
('GSUtil',
'task_estimation_threshold')):
GetAndValidateConfigValue(section=section,
category=large_int_category,
validation_fn=lambda val: str(val).isdigit())
for section, data_size_category in (
('GSUtil', 'parallel_composite_upload_component_size'),
('GSUtil', 'parallel_composite_upload_threshold'),
('GSUtil', 'sliced_object_download_component_size'),
('GSUtil', 'sliced_object_download_threshold'),
):
config_value = boto.config.get_value(section, data_size_category)
if config_value:
try:
size_in_bytes = HumanReadableToBytes(config_value)
config_values.append((data_size_category, size_in_bytes))
except ValueError:
config_values.append((data_size_category, invalid_value_string))
GetAndValidateConfigValue(
section='GSUtil',
category='check_hashes',
validation_fn=lambda val: val in
('if_fast_else_fail', 'if_fast_else_skip', 'always', 'never'))
GetAndValidateConfigValue(
section='GSUtil',
category='content_language',
validation_fn=lambda val: val.isalpha() and len(val) <= 3)
GetAndValidateConfigValue(
section='GSUtil',
category='json_api_version',
validation_fn=lambda val: val[0].lower() == 'v' and val[1:].isdigit())
GetAndValidateConfigValue(section='GSUtil',
category='prefer_api',
validation_fn=lambda val: val in ('json', 'xml'))
GetAndValidateConfigValue(section='OAuth2',
category='token_cache',
validation_fn=lambda val: val in
('file_system', 'in_memory'))
return ','.join(
sorted([
'{0}:{1}'.format(config[0], config[1]) for config in config_values
]))
@staticmethod
def GetCollector(ga_tid=_GA_TID):
if MetricsCollector.IsDisabled():
return None
if not MetricsCollector._instance:
MetricsCollector._instance = MetricsCollector(ga_tid)
return MetricsCollector._instance
@staticmethod
def IsDisabled():
if MetricsCollector._disabled_cache is None:
MetricsCollector._CheckAndSetDisabledCache()
return MetricsCollector._disabled_cache
@classmethod
def _CheckAndSetDisabledCache(cls):
if os.environ.get('GSUTIL_TEST_ANALYTICS') == '1':
cls._disabled_cache = True
elif os.environ.get('GSUTIL_TEST_ANALYTICS') == '2':
cls._disabled_cache = False
cls.StartTestCollector()
elif system_util.InvokedViaCloudSdk():
cls._disabled_cache = not os.environ.get('GA_CID')
elif os.path.exists(_UUID_FILE_PATH):
with open(_UUID_FILE_PATH) as f:
cls._disabled_cache = (f.read() == _DISABLED_TEXT)
else:
cls._disabled_cache = True
@classmethod
def StartTestCollector(cls,
endpoint='https://example.com',
user_agent='user-agent-007',
ga_params=None):
if cls.IsDisabled():
os.environ['GSUTIL_TEST_ANALYTICS'] = '0'
cls._disabled_cache = False
cls._instance = cls(_GA_TID_TESTING, endpoint)
if ga_params is None:
ga_params = {'a': 'b', 'c': 'd'}
cls._instance.ga_params = ga_params
cls._instance.user_agent = user_agent
if os.environ['GSUTIL_TEST_ANALYTICS'] != '2':
cls._instance.start_time = 0
@classmethod
def StopTestCollector(cls, original_instance=None):
os.environ['GSUTIL_TEST_ANALYTICS'] = '1'
cls._disabled_cache = None
cls._instance = original_instance
@staticmethod
def _GetCID():
if os.path.exists(_UUID_FILE_PATH):
with open(_UUID_FILE_PATH) as f:
cid = f.read()
if cid:
return cid
return os.environ.get('GA_CID')
def ExtendGAParams(self, new_params):
self.ga_params.update(new_params)
def GetGAParam(self, param_name):
return self.ga_params.get(_GA_LABEL_MAP[param_name])
def CollectGAMetric(self,
category,
action,
label=VERSION,
value=0,
execution_time=None,
**custom_params):
params = [('ec', category), ('ea', action), ('el', label), ('ev', value),
(_GA_LABEL_MAP['Timestamp'], _GetTimeInMillis())]
params.extend([
(k, v) for k, v in six.iteritems(custom_params) if v is not None
])
params.extend([
(k, v) for k, v in six.iteritems(self.ga_params) if v is not None
])
if execution_time is None:
execution_time = _GetTimeInMillis() - self.start_time
params.append((_GA_LABEL_MAP['Execution Time'], execution_time))
data = urllib.parse.urlencode(sorted(params))
self._metrics.append(
Metric(endpoint=self.endpoint,
method='POST',
body=data,
user_agent=self.user_agent))
class _PeformanceSummaryParams(object):
def __init__(self):
self.num_processes = 0
self.num_threads = 0
self.num_retryable_service_errors = 0
self.num_retryable_network_errors = 0
self.provider_types = set()
if system_util.IS_LINUX:
self.disk_counters_start = system_util.GetDiskCounters()
self.uses_fan = False
self.uses_slice = False
self.thread_idle_time = 0
self.thread_execution_time = 0
self.thread_throughputs = defaultdict(self._ThreadThroughputInformation)
self.avg_throughput = None
self.total_elapsed_time = None
self.total_bytes_transferred = None
self.num_objects_transferred = 0
self.is_daisy_chain = False
self.has_file_dst = False
self.has_cloud_dst = False
self.has_file_src = False
self.has_cloud_src = False
class _ThreadThroughputInformation(object):
def __init__(self):
self.total_bytes_transferred = 0
self.total_elapsed_time = 0
self.task_start_time = None
self.task_size = None
def LogTaskStart(self, start_time, bytes_to_transfer):
self.task_start_time = start_time
self.task_size = bytes_to_transfer
def LogTaskEnd(self, end_time):
self.total_elapsed_time += end_time - self.task_start_time
self.total_bytes_transferred += self.task_size
self.task_start_time = None
self.task_size = None
def GetThroughput(self):
return CalculateThroughput(self.total_bytes_transferred,
self.total_elapsed_time)
def UpdatePerformanceSummaryParams(self, params):
if self.GetGAParam('Command Name') not in ('cp', 'rsync'):
return
if self.perf_sum_params is None:
self.perf_sum_params = self._PeformanceSummaryParams()
if 'file_message' in params:
self._ProcessFileMessage(file_message=params['file_message'])
return
for param_name, param in six.iteritems(params):
if param_name in ('uses_fan', 'uses_slice', 'avg_throughput',
'is_daisy_chain', 'has_file_dst', 'has_cloud_dst',
'has_file_src', 'has_cloud_src', 'total_elapsed_time',
'total_bytes_transferred', 'num_objects_transferred'):
cur_value = getattr(self.perf_sum_params, param_name)
if not cur_value:
setattr(self.perf_sum_params, param_name, param)
if param_name in ('thread_idle_time', 'thread_execution_time',
'num_retryable_service_errors',
'num_retryable_network_errors'):
cur_value = getattr(self.perf_sum_params, param_name)
setattr(self.perf_sum_params, param_name, cur_value + param)
if param_name in ('num_processes', 'num_threads'):
cur_value = getattr(self.perf_sum_params, param_name)
if cur_value < param:
setattr(self.perf_sum_params, param_name, param)
if param_name == 'provider_types':
self.perf_sum_params.provider_types.update(param)
def _ProcessFileMessage(self, file_message):
thread_info = (self.perf_sum_params.thread_throughputs[(
file_message.process_id, file_message.thread_id)])
if file_message.finished:
if not (self.perf_sum_params.uses_slice or self.perf_sum_params.uses_fan):
self.perf_sum_params.num_objects_transferred += 1
thread_info.LogTaskEnd(file_message.time)
else:
thread_info.LogTaskStart(file_message.time, file_message.size)
def _CollectCommandAndErrorMetrics(self):
command_name = self.GetGAParam('Command Name')
if command_name:
self.CollectGAMetric(category=_GA_COMMANDS_CATEGORY,
action=command_name,
**{
_GA_LABEL_MAP['Retryable Errors']:
sum(self.retryable_errors.values())
})
for error_type, num_errors in six.iteritems(self.retryable_errors):
self.CollectGAMetric(category=_GA_ERRORRETRY_CATEGORY,
action=error_type,
**{_GA_LABEL_MAP['Retryable Errors']: num_errors})
fatal_error_type = self.GetGAParam('Fatal Error')
if fatal_error_type:
self.CollectGAMetric(category=_GA_ERRORFATAL_CATEGORY,
action=fatal_error_type)
|
Apache License 2.0
|
vincent-lg/tsunami
|
src/primaires/combat/types/armure.py
|
Armure.objets_contenus
|
python
|
def objets_contenus(self, conteneur):
objets = []
if conteneur.au_fourreau:
objet = conteneur.au_fourreau
objets.append(objet)
objets.extend(objet.prototype.objets_contenus(objet))
return objets
|
Retourne les objets contenus.
|
https://github.com/vincent-lg/tsunami/blob/36b3b974f6eefbf15cd5d5f099fc14630e66570b/src/primaires/combat/types/armure.py#L152-L160
|
from random import randint
from bases.objet.attribut import Attribut
from primaires.combat.types.editeurs.fourreau import EdtFourreau
from primaires.format.fonctions import oui_ou_non
from primaires.interpreteur.editeur.entier import Entier
from primaires.objet.types.base import BaseType
class Armure(BaseType):
nom_type = "armure"
_nom = "prototype_armure"
_version = 1
empilable_sur = ["vêtement"]
def __init__(self, cle=""):
BaseType.__init__(self, cle)
self.encaissement_fixe = 5
self.encaissement_variable = 0
self.fourreau = False
self.fourreau_visible = True
self.poids_max_fourreau = 1
self.types_fourreau = []
self._attributs = {
"au_fourreau": Attribut(None),
}
self.etendre_editeur("f", "encaissement fixe", Entier, self,
"encaissement_fixe")
self.etendre_editeur("v", "encaissement variable", Entier, self,
"encaissement_variable")
self.etendre_editeur("fo", "fourreau", EdtFourreau, self, "")
@property
def str_types_fourreau(self):
if len(self.types_fourreau) == 0:
return "aucun"
else:
return ", ".join(self.types_fourreau)
@property
def str_fourreau(self):
return oui_ou_non(self.fourreau)
def travailler_enveloppes(self, enveloppes):
fixe = enveloppes["f"]
fixe.apercu = "{objet.encaissement_fixe}"
fixe.prompt = "Encaissement fixe de l'armure : "
fixe.aide_courte = "Entrez l'|ent|encaissement fixe|ff| de l'armure. Il " "représente\nla quantité de dégâts fixes que l'armure peut " "encaisser.\nÀ cet encaissement s'ajoute l'encaissement " "variable. Si les\ndégâts dépassent l'encaissement de l'armure, " "l'armure n'encaisse\nque ce qu'elle a été configurée pour " "et le personnage derrière\nreçoit les dégâts compensés. Si " "les dégâts sont inférieurs à\nl'enciassement de l'armure, " "le personnage ne reçoit rien.\n\n" "Encaissement fixe actuel : {objet.encaissement_fixe}"
variable = enveloppes["v"]
variable.apercu = "{objet.encaissement_variable}"
variable.prompt = "Encaissement variable de l'armure : "
variable.aide_courte = "Entrez l'|ent|encaissement variable|ff| de l'armure. Il " "représente\nla partie variable de l'encaissement global, " "celui-ci étant\nl'encaissement fixe plus l'encaissement " "variable déterminé aléatoirement,\nentre |ent|0|ff| et " "l'encaissement variable configuré. Une armure\navec un " "encaissement fixe de |ent|5|ff| et des dégâts variables de " "|ent|2|ff|\naura un encaissement entre |ent|5|ff| et " "|ent|7|ff|.\n\nEncaissement variable actuel : " "{objet.encaissement_variable}"
fourreau = enveloppes["fo"]
fourreau.apercu = "{objet.str_fourreau}"
def encaisser(self, personnage, arme, degats):
if degats <= 1:
return 0
taux = 0.5 + personnage.stats.robustesse / 200
encaissement = self.encaissement_fixe
if self.encaissement_variable > 0:
encaissement = randint(self.encaissement_fixe,
self.encaissement_fixe + self.encaissement_variable)
encaissement = int(taux * encaissement)
if encaissement > degats - 1:
encaissement = degats - 1
return encaissement
def calculer_poids(self):
poids = self.poids_unitaire
if self.au_fourreau:
poids += self.au_fourreau.poids
return round(poids, 3)
|
BSD 3-Clause New or Revised License
|
rasahq/rasa
|
rasa/utils/tensorflow/layers_utils.py
|
reduce_mean_equal
|
python
|
def reduce_mean_equal(
x: tf.Tensor, y: tf.Tensor, mask: Optional[tf.Tensor] = None
) -> tf.Tensor:
if mask is None:
mask = tf.ones_like(x, dtype=tf.float32)
equal_indices = tf.cast(tf.math.equal(x, y), tf.float32) * mask
return tf.reduce_mean(
tf.math.divide_no_nan(
tf.reduce_sum(equal_indices, axis=-1), tf.reduce_sum(mask, axis=-1)
)
)
|
Computes the mean number of matches between x and y.
If `x` and `y` have `n` dimensions, then the mean equal
number of indices is calculated for the last dimension by
only taking the valid indices into consideration
(from the mask) and then it is averaged over all
other `n-1` dimensions.
For e.g., if:
x = [[1,2,3,4]
[5,6,7,8]]
y = [[1,2,3,4]
[5,6,0,0]]
mask = [[1,1,1,1],
[1,1,1,0]]
then the output will be calculated as `((4/4) + 2/3) / 2`
Args:
x: Any numeric tensor.
y: Another tensor with same shape and type as x.
mask: Tensor with a mask to distinguish actual indices from padding indices.
Shape should be the same as `x` and `y`.
Returns:
The mean of "x == y"
|
https://github.com/rasahq/rasa/blob/83eb56d257c2cd744183a2c5613a489f0a5b15d4/rasa/utils/tensorflow/layers_utils.py#L74-L113
|
import tensorflow as tf
from tensorflow import Tensor
from typing import Union, Optional
def random_indices(
batch_size: Union[Tensor, int], n: Union[Tensor, int], n_max: Union[Tensor, int]
) -> Tensor:
return tf.random.uniform(shape=(batch_size, n), maxval=n_max, dtype=tf.int32)
def batch_flatten(x: Tensor) -> Tensor:
return tf.reshape(x, (-1, x.shape[-1]))
def get_candidate_values(
x: tf.Tensor,
candidate_ids: tf.Tensor,
) -> tf.Tensor:
tiled_x = tf.tile(
tf.expand_dims(batch_flatten(x), 0), (tf.shape(candidate_ids)[0], 1, 1),
)
candidate_values = tf.gather(tiled_x, candidate_ids, batch_dims=1)
return candidate_values
|
Apache License 2.0
|
jdasoftwaregroup/kartothek
|
kartothek/io/eager.py
|
store_dataframes_as_dataset
|
python
|
def store_dataframes_as_dataset(
store: KeyValueStore,
dataset_uuid: str,
dfs: List[Union[pd.DataFrame, Dict[str, pd.DataFrame]]],
metadata: Optional[Dict[str, Dict[str, Any]]] = None,
partition_on: Optional[List[str]] = None,
df_serializer: Optional[ParquetSerializer] = None,
overwrite: bool = False,
secondary_indices=None,
metadata_storage_format: str = DEFAULT_METADATA_STORAGE_FORMAT,
metadata_version: int = DEFAULT_METADATA_VERSION,
):
if isinstance(dfs, (pd.DataFrame, dict)):
dfs = [dfs]
warnings.warn(
"Passing a single dataframe instead of an iterable is deprecated and may "
"be removed in the next major release.",
DeprecationWarning,
)
return store_dataframes_as_dataset__iter(
dfs,
store=store,
dataset_uuid=dataset_uuid,
metadata=metadata,
partition_on=partition_on,
df_serializer=df_serializer,
overwrite=overwrite,
secondary_indices=secondary_indices,
metadata_storage_format=metadata_storage_format,
metadata_version=metadata_version,
)
|
Utility function to store a list of dataframes as a partitioned dataset with multiple tables (files).
Useful for very small datasets where all data fits into memory.
Parameters
----------
dfs:
The dataframe(s) to be stored.
|
https://github.com/jdasoftwaregroup/kartothek/blob/6bc7e868435e98cbda0b695900f29d1ff7d49110/kartothek/io/eager.py#L521-L563
|
import warnings
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, cast
import pandas as pd
from simplekv import KeyValueStore
from kartothek.core.common_metadata import (
empty_dataframe_from_schema,
make_meta,
store_schema_metadata,
)
from kartothek.core.dataset import DatasetMetadata, DatasetMetadataBuilder
from kartothek.core.docs import default_docs
from kartothek.core.factory import DatasetFactory, _ensure_factory
from kartothek.core.naming import (
DEFAULT_METADATA_STORAGE_FORMAT,
DEFAULT_METADATA_VERSION,
METADATA_BASE_SUFFIX,
METADATA_FORMAT_JSON,
PARQUET_FILE_SUFFIX,
get_partition_file_prefix,
)
from kartothek.core.typing import StoreInput
from kartothek.core.utils import lazy_store
from kartothek.io.iter import store_dataframes_as_dataset__iter
from kartothek.io_components.delete import (
delete_common_metadata,
delete_indices,
delete_top_level_metadata,
)
from kartothek.io_components.gc import delete_files, dispatch_files_to_gc
from kartothek.io_components.index import update_indices_from_partitions
from kartothek.io_components.metapartition import (
SINGLE_TABLE,
MetaPartition,
parse_input_to_metapartition,
)
from kartothek.io_components.read import dispatch_metapartitions_from_factory
from kartothek.io_components.update import update_dataset_from_partitions
from kartothek.io_components.utils import (
_ensure_compatible_indices,
align_categories,
normalize_args,
sort_values_categorical,
validate_partition_keys,
)
from kartothek.io_components.write import raise_if_dataset_exists
from kartothek.serialization import DataFrameSerializer
from kartothek.serialization._parquet import ParquetSerializer
from kartothek.utils.ktk_adapters import get_dataset_keys
from kartothek.utils.store import copy_rename_keys
__all__ = (
"delete_dataset",
"read_dataset_as_dataframes",
"read_table",
"commit_dataset",
"store_dataframes_as_dataset",
"create_empty_dataset_header",
"write_single_partition",
"update_dataset_from_dataframes",
"build_dataset_indices",
"garbage_collect_dataset",
"copy_dataset",
)
@default_docs
@normalize_args
def delete_dataset(dataset_uuid=None, store=None, factory=None):
ds_factory = _ensure_factory(
dataset_uuid=dataset_uuid,
load_schema=False,
store=store,
factory=factory,
load_dataset_metadata=False,
)
garbage_collect_dataset(factory=ds_factory)
delete_indices(dataset_factory=ds_factory)
for metapartition in dispatch_metapartitions_from_factory(ds_factory):
metapartition = cast(MetaPartition, metapartition)
metapartition.delete_from_store(dataset_uuid=dataset_uuid, store=store)
delete_common_metadata(dataset_factory=ds_factory)
delete_top_level_metadata(dataset_factory=ds_factory)
@default_docs
def read_dataset_as_dataframes(
dataset_uuid: Optional[str] = None,
store=None,
tables: Optional[List[str]] = None,
columns: Dict[str, List[str]] = None,
concat_partitions_on_primary_index: bool = False,
predicate_pushdown_to_io: bool = True,
categoricals: Dict[str, List[str]] = None,
label_filter: Callable = None,
dates_as_object: bool = False,
predicates: Optional[List[List[Tuple[str, str, Any]]]] = None,
factory: Optional[DatasetFactory] = None,
dispatch_by: Optional[List[str]] = None,
) -> List[pd.DataFrame]:
ds_factory = _ensure_factory(
dataset_uuid=dataset_uuid,
store=store,
factory=factory,
load_dataset_metadata=True,
)
mps = read_dataset_as_metapartitions(
tables=tables,
columns=columns,
concat_partitions_on_primary_index=concat_partitions_on_primary_index,
predicate_pushdown_to_io=predicate_pushdown_to_io,
categoricals=categoricals,
label_filter=label_filter,
dates_as_object=dates_as_object,
predicates=predicates,
factory=ds_factory,
dispatch_by=dispatch_by,
dispatch_metadata=False,
)
return [mp.data for mp in mps]
@default_docs
def read_dataset_as_metapartitions(
dataset_uuid=None,
store=None,
tables=None,
columns=None,
concat_partitions_on_primary_index=False,
predicate_pushdown_to_io=True,
categoricals=None,
label_filter=None,
dates_as_object=False,
predicates=None,
factory=None,
dispatch_by=None,
dispatch_metadata=True,
):
ds_factory = _ensure_factory(
dataset_uuid=dataset_uuid,
store=store,
factory=factory,
load_dataset_metadata=False,
)
if len(ds_factory.tables) > 1:
warnings.warn(
"Trying to read a dataset with multiple internal tables. This functionality will be removed in the next "
"major release. If you require a multi tabled data format, we recommend to switch to the kartothek Cube "
"functionality. "
"https://kartothek.readthedocs.io/en/stable/guide/cube/kartothek_cubes.html",
DeprecationWarning,
)
from .iter import read_dataset_as_metapartitions__iterator
ds_iter = read_dataset_as_metapartitions__iterator(
tables=tables,
columns=columns,
concat_partitions_on_primary_index=concat_partitions_on_primary_index,
predicate_pushdown_to_io=predicate_pushdown_to_io,
categoricals=categoricals,
label_filter=label_filter,
dates_as_object=dates_as_object,
predicates=predicates,
factory=ds_factory,
dispatch_by=dispatch_by,
dispatch_metadata=dispatch_metadata,
)
return list(ds_iter)
def _check_compatible_list(table, obj, argument_name=""):
if obj is None:
return obj
elif isinstance(obj, dict):
if table not in obj:
raise ValueError(
"Provided table {} is not compatible with input from argument {}.".format(
table, argument_name
)
)
return obj
elif isinstance(obj, list):
return {table: obj}
else:
raise TypeError(
"Unknown type encountered for argument {}. Expected `list`, got `{}` instead".format(
argument_name, type(obj)
)
)
@default_docs
def read_table(
dataset_uuid: Optional[str] = None,
store=None,
table: Optional[str] = SINGLE_TABLE,
columns: Dict[str, List[str]] = None,
concat_partitions_on_primary_index: bool = False,
predicate_pushdown_to_io: bool = True,
categoricals: Dict[str, List[str]] = None,
label_filter: Callable = None,
dates_as_object: bool = False,
predicates: Optional[List[List[Tuple[str, str, Any]]]] = None,
factory: Optional[DatasetFactory] = None,
) -> pd.DataFrame:
if concat_partitions_on_primary_index is not False:
warnings.warn(
"The keyword `concat_partitions_on_primary_index` is deprecated and will be removed in the next major release.",
DeprecationWarning,
)
if not isinstance(table, str):
raise TypeError("Argument `table` needs to be a string")
columns = _check_compatible_list(table, columns, "columns")
categoricals = _check_compatible_list(table, categoricals, "categoricals")
ds_factory = _ensure_factory(
dataset_uuid=dataset_uuid,
store=store,
factory=factory,
load_dataset_metadata=False,
)
partitions = read_dataset_as_dataframes(
tables=[table],
columns=columns,
concat_partitions_on_primary_index=concat_partitions_on_primary_index,
predicate_pushdown_to_io=predicate_pushdown_to_io,
categoricals=categoricals,
label_filter=label_filter,
dates_as_object=dates_as_object,
predicates=predicates,
factory=ds_factory,
)
empty_df = empty_dataframe_from_schema(
schema=ds_factory.table_meta[table],
columns=columns[table] if columns is not None else None,
)
if categoricals:
empty_df = empty_df.astype({col: "category" for col in categoricals[table]})
dfs = [partition_data[table] for partition_data in partitions] + [empty_df]
if categoricals:
dfs = align_categories(dfs, categoricals[table])
df = pd.concat(dfs, ignore_index=True, sort=False)
if len(empty_df.columns) > 0 and list(empty_df.columns) != list(df.columns):
df = df.reindex(empty_df.columns, copy=False, axis=1)
return df
@default_docs
@normalize_args
def commit_dataset(
store: Optional[StoreInput] = None,
dataset_uuid: Optional[str] = None,
new_partitions: Optional[Iterable[MetaPartition]] = None,
output_dataset_uuid: Optional[str] = None,
delete_scope: Optional[Iterable[Dict[str, Any]]] = None,
metadata: Dict = None,
df_serializer: DataFrameSerializer = None,
metadata_merger: Callable[[List[Dict]], Dict] = None,
default_metadata_version: int = DEFAULT_METADATA_VERSION,
partition_on: Optional[Iterable[str]] = None,
factory: Optional[DatasetFactory] = None,
secondary_indices: Optional[Iterable[str]] = None,
):
if output_dataset_uuid is not None:
warnings.warn(
"The keyword `output_dataset_uuid` has no use and will be removed in the next major release ",
DeprecationWarning,
)
if df_serializer is not None:
warnings.warn(
"The keyword `df_serializer` is deprecated and will be removed in the next major release.",
DeprecationWarning,
)
if not new_partitions and not metadata and not delete_scope:
raise ValueError(
"Need to provide either new data, new metadata or a delete scope. None of it was provided."
)
store = lazy_store(store)
ds_factory, metadata_version, partition_on = validate_partition_keys(
dataset_uuid=dataset_uuid,
store=store,
ds_factory=factory,
default_metadata_version=default_metadata_version,
partition_on=partition_on,
)
mps = parse_input_to_metapartition(
new_partitions, metadata_version=metadata_version
)
if secondary_indices:
mps = mps.build_indices(columns=secondary_indices)
mps_list = [_maybe_infer_files_attribute(mp, dataset_uuid) for mp in mps]
dmd = update_dataset_from_partitions(
mps_list,
store_factory=store,
dataset_uuid=dataset_uuid,
ds_factory=ds_factory,
delete_scope=delete_scope,
metadata=metadata,
metadata_merger=metadata_merger,
)
return dmd
def _maybe_infer_files_attribute(metapartition, dataset_uuid):
new_mp = metapartition.as_sentinel()
for mp in metapartition:
if len(mp.files) == 0:
if mp.data is None or len(mp.data) == 0:
raise ValueError(
"Trying to commit partitions without `data` or `files` information."
"Either one is necessary to infer the dataset tables"
)
new_files = {}
for table in mp.data:
new_files[table] = (
get_partition_file_prefix(
dataset_uuid=dataset_uuid,
partition_label=mp.label,
table=table,
metadata_version=mp.metadata_version,
)
+ PARQUET_FILE_SUFFIX
)
mp = mp.copy(files=new_files)
new_mp = new_mp.add_metapartition(mp)
return new_mp
@default_docs
@normalize_args
|
MIT License
|
lemmonation/jm-nat
|
fairseq/sequence_generator.py
|
SequenceGenerator.generate
|
python
|
def generate(
self,
models,
sample,
prefix_tokens=None,
bos_token=None,
**kwargs
):
model = EnsembleModel(models)
if not self.retain_dropout:
model.eval()
encoder_input = {
k: v for k, v in sample['net_input'].items()
if k != 'prev_output_tokens'
}
src_tokens = encoder_input['src_tokens']
src_lengths = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1)
input_size = src_tokens.size()
bsz = input_size[0]
src_len = input_size[1]
beam_size = self.beam_size
use_golden_length = self.use_golden_length
finalized = [[] for i in range(bsz)]
def get_hypo_nat(decoded_id):
return {
'tokens': decoded_id,
'score': 0.0,
'attention': None,
'alignment': None,
'positional_scores': torch.Tensor([0.0]),
}
def copy_batches(tensor, num_copies):
if tensor is None:
return None
x_size = tensor.size()
tensor = tensor.contiguous().view(x_size[0], 1, -1)
tensor = tensor.repeat(1, num_copies, 1)
if len(x_size)==2:
return tensor.view(-1, x_size[1])
elif len(x_size)==3:
return tensor.view(-1, x_size[1], x_size[2])
else:
raise NotImplementedError
def select_worst(token_probs, num_mask):
bsz, seq_len = token_probs.size()
masks = [token_probs[batch, :].topk(max(1, num_mask[batch]), largest=False, sorted=False)[1] for batch in range(bsz)]
masks = [torch.cat([mask, mask.new(seq_len - mask.size(0)).fill_(mask[0])], dim=0) for mask in masks]
return torch.stack(masks, dim=0)
encoder_outs = model.forward_encoder(encoder_input)
if use_golden_length:
gold_target_len = sample['target'].ne(self.pad).sum(-1)
beam_starts = gold_target_len - (beam_size - 1) // 2
beam_ends = gold_target_len + beam_size // 2 + 1
beam = torch.stack([torch.arange(beam_starts[batch], beam_ends[batch], device=beam_starts.device) for batch in range(gold_target_len.size(0))], dim=0)
else:
predicted_lengths = encoder_outs[0]['predicted_lengths']
beam = predicted_lengths.topk(beam_size, dim=1)[1]
beam[beam<2] = 2
max_len = beam.max().item()
length_mask = torch.triu(src_tokens.new(max_len, max_len).fill_(1).long(), 1)
length_mask = torch.stack([length_mask[beam[batch] - 1] for batch in range(bsz)], dim=0)
tgt_tokens = src_tokens.new(bsz, beam_size, max_len).fill_(self.mask)
tgt_tokens = (1 - length_mask) * tgt_tokens + length_mask * self.pad
tgt_tokens = tgt_tokens.view(bsz * beam_size, max_len)
pad_mask = tgt_tokens.eq(self.pad)
seq_lens = tgt_tokens.size(1) - pad_mask.sum(dim=1)
encoder_outs_value = copy_batches(encoder_outs[0]['encoder_out'].transpose(0,1), beam_size)
encoder_outs_value = encoder_outs_value.transpose(0,1)
encoder_padding = copy_batches(encoder_outs[0]['encoder_padding_mask'], beam_size)
encoder_outs = [{'encoder_out': encoder_outs_value, 'encoder_padding_mask': encoder_padding, 'predicted_lengths': encoder_outs[0]['predicted_lengths']}]
tgt_tokens, token_probs, _ = model.forward_decoder(
tgt_tokens, encoder_outs,
temperature=self.temperature,
)
assign_single_value_byte(tgt_tokens, pad_mask, self.pad)
assign_single_value_byte(token_probs, pad_mask, 1.0)
for i in range(1, self.mask_pred_iter+1):
num_mask = (seq_lens.float()*(1.0-i/self.mask_pred_iter)).long()
assign_single_value_byte(token_probs, pad_mask, 1.0)
mask_ind = select_worst(token_probs, num_mask)
assign_single_value_long(tgt_tokens, mask_ind, self.mask)
assign_single_value_byte(tgt_tokens, pad_mask, self.pad)
new_tgt_tokens, new_token_probs, all_token_probs = model.forward_decoder(
tgt_tokens, encoder_outs,
temperature=self.temperature,
)
assign_multi_value_long(token_probs, mask_ind, new_token_probs)
assign_single_value_byte(token_probs, pad_mask, 1.0)
assign_multi_value_long(tgt_tokens, mask_ind, new_tgt_tokens)
assign_single_value_byte(tgt_tokens, pad_mask, self.pad)
lprobs = token_probs.log().sum(-1)
hypotheses = tgt_tokens.view(bsz, beam_size, max_len)
lprobs = lprobs.view(bsz, beam_size)
tgt_lengths = (1 - length_mask).sum(-1)
length_penalty = ((5.0 + tgt_lengths.float()) ** self.len_penalty
/ (6.0 ** self.len_penalty))
length_penalty = length_penalty.view((bsz, beam_size))
avg_log_prob = lprobs / length_penalty
best_lengths = avg_log_prob.max(-1)[1]
hypotheses = torch.stack([hypotheses[b, l, :] for b, l in enumerate(best_lengths)], dim=0)
for i in range(bsz):
finalized[i].append(get_hypo_nat(hypotheses[i]))
return finalized
|
Generate a batch of translations.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models
sample (dict): batch
prefix_tokens (torch.LongTensor, optional): force decoder to begin
with these tokens
|
https://github.com/lemmonation/jm-nat/blob/12d00a7dbbf956e0882348d4ce2bc65f5801acd8/fairseq/sequence_generator.py#L130-L265
|
import math
import torch
import torch.nn.functional as F
from fairseq import search, utils, checkpoint_utils
from fairseq.models import FairseqIncrementalDecoder
def assign_single_value_byte(x, i, y):
x.view(-1)[i.view(-1).nonzero()] = y
def assign_multi_value_byte(x, i, y):
x.view(-1)[i.view(-1).nonzero()] = y.view(-1)[i.view(-1).nonzero()]
def assign_single_value_long(x, i, y):
b, l = x.size()
i = i + torch.arange(0, b*l, l, device=i.device).unsqueeze(1)
x.view(-1)[i.view(-1)] = y
def assign_multi_value_long(x, i, y):
b, l = x.size()
i = i + torch.arange(0, b*l, l, device=i.device).unsqueeze(1)
x.view(-1)[i.view(-1)] = y.view(-1)[i.view(-1)]
class SequenceGenerator(object):
def __init__(
self,
tgt_dict,
beam_size=1,
max_len_a=0,
max_len_b=200,
min_len=1,
stop_early=True,
normalize_scores=True,
len_penalty=1.,
unk_penalty=0.,
retain_dropout=False,
sampling=False,
sampling_topk=-1,
temperature=1.,
diverse_beam_groups=-1,
diverse_beam_strength=0.5,
match_source_len=False,
no_repeat_ngram_size=0,
mask_pred_iter=10,
use_golden_length=False,
args=None,
):
self.pad = tgt_dict.pad()
self.unk = tgt_dict.unk()
self.eos = tgt_dict.eos()
self.mask = tgt_dict.mask()
self.vocab_size = len(tgt_dict)
self.beam_size = beam_size
self.use_golden_length = use_golden_length
self.beam_size = min(beam_size, self.vocab_size - 1)
self.max_len_a = max_len_a
self.max_len_b = max_len_b
self.min_len = min_len
self.stop_early = stop_early
self.normalize_scores = normalize_scores
self.len_penalty = len_penalty
self.unk_penalty = unk_penalty
self.retain_dropout = retain_dropout
self.temperature = temperature
self.match_source_len = match_source_len
self.no_repeat_ngram_size = no_repeat_ngram_size
self.mask_pred_iter = mask_pred_iter
assert sampling_topk < 0 or sampling, '--sampling-topk requires --sampling'
assert temperature > 0, '--temperature must be greater than 0'
if sampling:
self.search = search.Sampling(tgt_dict, sampling_topk)
elif diverse_beam_groups > 0:
self.search = search.DiverseBeamSearch(tgt_dict, diverse_beam_groups, diverse_beam_strength)
elif match_source_len:
self.search = search.LengthConstrainedBeamSearch(
tgt_dict, min_len_a=1, min_len_b=0, max_len_a=1, max_len_b=0,
)
else:
self.search = search.BeamSearch(tgt_dict)
@torch.no_grad()
|
MIT License
|
nestauk/old_nesta_daps
|
nesta/packages/arxiv/collect_arxiv.py
|
update_existing_articles
|
python
|
def update_existing_articles(article_batch, engine):
Session = sessionmaker(engine)
session = Session()
logging.info(f"Updating a batch of {len(article_batch)} existing articles")
for article in article_batch:
if article.get('institutes'):
raise ValueError("Institute links cannot be written using this method. Use add_article_institutes instead")
article_categories = [dict(article_id=article['id'], category_id=cat_id)
for article in article_batch
for cat_id in article.pop('categories', [])]
article_fields_of_study = [dict(article_id=article['id'], fos_id=fos_id)
for article in article_batch
for fos_id in article.pop('fields_of_study', [])]
for row in article_batch:
if 'institute_match_attempted' not in row.keys():
row.update({'institute_match_attempted': False})
logging.debug("bulk update mapping on articles")
session.bulk_update_mappings(Article, article_batch)
if article_categories:
article_cats_table = Base.metadata.tables['arxiv_article_categories']
art_ids = {a['id'] for a in article_batch}
logging.debug("core orm delete on categories")
session.execute(article_cats_table.delete()
.where(article_cats_table.columns['article_id'].in_(art_ids)))
logging.debug("core orm insert on categories")
session.execute(article_cats_table.insert(),
article_categories)
if article_fields_of_study:
article_fos_table = Base.metadata.tables['arxiv_article_fields_of_study']
art_ids = {a['id'] for a in article_batch}
logging.debug("core orm delete on fields of study")
session.execute(article_fos_table.delete()
.where(article_fos_table.columns['article_id'].in_(art_ids)))
logging.debug("core orm insert on fields of study")
session.execute(Base.metadata.tables['arxiv_article_fields_of_study'].insert(),
article_fields_of_study)
session.commit()
session.close()
|
Updates existing articles from a list of dictionaries. Bulk method is used for
non relationship fields, with the relationship fields updated using the core orm
method.
Args:
article_batch (:obj:`list` of `dict`): articles to add to database
engine (:obj:`sqlalchemy.engine`): connection engine to use
|
https://github.com/nestauk/old_nesta_daps/blob/4b3ae79922cebde0ad33e08ac4c40b9a10e8e7c3/nesta/packages/arxiv/collect_arxiv.py#L365-L426
|
from collections import defaultdict
import datetime
import json
import logging
import pandas as pd
import re
import requests
from retrying import retry
import s3fs
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm.exc import NoResultFound
import time
import xml.etree.ElementTree as ET
from nesta.packages.mag.query_mag_api import prepare_title
from nesta.packages.misc_utils.batches import split_batches
from nesta.core.orms.orm_utils import get_mysql_engine, try_until_allowed
from nesta.core.orms.orm_utils import db_session, _filter_out_duplicates
from nesta.core.orms.arxiv_orm import Base, Article, Category
OAI = "{http://www.openarchives.org/OAI/2.0/}"
ARXIV = "{http://arxiv.org/OAI/arXiv/}"
DELAY = 10
API_URL = 'http://export.arxiv.org/oai2'
def _category_exists(session, cat_id):
try:
session.query(Category).filter(Category.id == cat_id).one()
except NoResultFound:
return False
return True
def _add_category(session, cat_id, description):
logging.info(f"adding {cat_id} to database")
session.add(Category(id=cat_id, description=description))
session.commit()
def load_arxiv_categories(db_config, db, bucket, cat_file):
target = f's3://{bucket}/{cat_file}'
categories = pd.read_csv(target)
engine = get_mysql_engine(db_config, "mysqldb", db)
try_until_allowed(Base.metadata.create_all, engine)
Session = try_until_allowed(sessionmaker, engine)
session = try_until_allowed(Session)
logging.info(f'found {session.query(Category).count()} existing categories')
for idx, data in categories.iterrows():
if not _category_exists(session, data['id']):
_add_category(session, cat_id=data['id'], description=data['description'])
session.close()
@retry(stop_max_attempt_number=10)
def _arxiv_request(url, delay=DELAY, **kwargs):
params = dict(verb='ListRecords', **kwargs)
r = requests.get(url, params=params)
r.raise_for_status()
time.sleep(delay)
try:
root = ET.fromstring(r.text)
except ET.ParseError as e:
logging.error(r.text)
raise e
return root
def total_articles():
root = _arxiv_request(API_URL, metadataPrefix='arXiv')
token = root.find(OAI+'ListRecords').find(OAI+"resumptionToken")
list_size = token.attrib['completeListSize']
return int(list_size)
def request_token():
root = _arxiv_request(API_URL, metadataPrefix='arXiv')
token = root.find(OAI+'ListRecords').find(OAI+"resumptionToken")
resumption_token = token.text.split("|")[0]
logging.info(f"resumptionToken: {resumption_token}")
return resumption_token
def xml_to_json(element, tag, prefix=''):
tag = ''.join([prefix, tag])
all_data = [{field.tag[len(prefix):]: field.text
for field in fields.getiterator()
if field.tag != tag}
for fields in element.getiterator(tag)]
return json.dumps(all_data)
def arxiv_batch(resumption_token=None, **kwargs):
if resumption_token is not None:
root = _arxiv_request(API_URL, resumptionToken=resumption_token)
else:
root = _arxiv_request(API_URL, metadataPrefix='arXiv', **kwargs)
records = root.find(OAI+'ListRecords')
output = []
if records is None:
raise ValueError('No new records to collect from arXiv')
for record in records.findall(OAI+"record"):
header = record.find(OAI+'header')
header_id = header.find(OAI+'identifier').text
row = dict(datestamp=header.find(OAI+'datestamp').text)
logging.debug(f"article {header_id} datestamp: {row['datestamp']}")
meta = record.find(OAI+'metadata')
if meta is None:
logging.warning(f"No metadata for article {header_id}")
else:
info = meta.find(ARXIV+'arXiv')
fields = ['id', 'created', 'updated', 'title', 'categories',
'journal-ref', 'doi', 'msc-class', 'abstract']
for field in fields:
try:
row[field.replace('-', '_')] = info.find(ARXIV+field).text
except AttributeError:
logging.debug(f"{field} not found in article {header_id}")
for date_field in ['datestamp', 'created', 'updated']:
try:
date = row[date_field]
row[date_field] = datetime.datetime.strptime(date, '%Y-%m-%d').date()
except ValueError:
del row[date_field]
except KeyError:
pass
try:
row['categories'] = row['categories'].split(' ')
row['title'] = row['title'].strip()
row['authors'] = xml_to_json(info, 'author', prefix=ARXIV)
except KeyError:
pass
row['article_source'] = 'arxiv'
output.append(row)
new_token = root.find(OAI+'ListRecords').find(OAI+"resumptionToken")
if new_token is None or new_token.text is None:
resumption_token = None
logging.info(f"Hit end of arXiv data. {len(output)} records in this final batch.")
else:
if resumption_token is None:
total_articles = new_token.attrib.get('completeListSize', 0)
logging.info(f"Total records to retrieve in batches: {total_articles}")
resumption_token = new_token.text
logging.info(f"next resumptionCursor: {resumption_token.split('|')[1]}")
return output, resumption_token
def retrieve_arxiv_batch_rows(start_cursor, end_cursor, token):
resumption_token = '|'.join([token, str(start_cursor)])
while resumption_token is not None and start_cursor < end_cursor:
batch, resumption_token = arxiv_batch(resumption_token)
if resumption_token is not None:
start_cursor = int(resumption_token.split("|")[1])
for row in batch:
yield row
def retrieve_all_arxiv_rows(**kwargs):
resumption_token = None
while True:
try:
batch, resumption_token = arxiv_batch(resumption_token, **kwargs)
except ValueError as e:
logging.info(e)
break
for row in batch:
yield row
if resumption_token is None:
break
def extract_last_update_date(prefix, updates):
date_pattern = r'(\d{4}-\d{2}-\d{2})'
pattern = re.compile(f'^{prefix}_{date_pattern}$')
matches = [re.search(pattern, update) for update in updates]
dates = []
for match in matches:
try:
dates.append(datetime.datetime.strptime(match.group(1), '%Y-%m-%d'))
except (AttributeError, ValueError):
pass
try:
return sorted(dates)[-1]
except IndexError:
raise ValueError("Latest date could not be identified")
class BatchedTitles():
def __init__(self, ids, batch_size, session):
self.ids = ids
self.batch_size = batch_size
self.session = session
self.title_articles_lookup = defaultdict(list)
def __getitem__(self, key):
matching_articles = self.title_articles_lookup.get(key)
if matching_articles is None:
raise KeyError(f"Title not found in lookup {key}")
else:
return matching_articles
def __iter__(self):
for batch_of_ids in split_batches(self.ids, self.batch_size):
self.title_articles_lookup.clear()
for article in (self.session.query(Article)
.filter(Article.id.in_(batch_of_ids))
.all()):
self.title_articles_lookup[prepare_title(article.title)].append(article.id)
for title in self.title_articles_lookup:
yield title
def add_new_articles(article_batch, session):
logging.info(f"Inserting a batch of {len(article_batch)} new Articles")
objs, existing_objs, failed_objs = _filter_out_duplicates(session, Base, Article,
article_batch, low_memory=True)
articles = [Article(**obj) for obj in objs]
session.add_all(articles)
session.commit()
|
MIT License
|
tyrylu/pyfmodex
|
pyfmodex/system.py
|
System.attach_file_system
|
python
|
def attach_file_system(self, user_open, user_close, user_read, user_seek):
if user_open:
user_open = FILE_OPEN_CALLBACK(user_open)
if user_close:
user_close = FILE_CLOSE_CALLBACK(user_close)
if user_read:
user_read = FILE_READ_CALLBACK(user_read)
if user_seek:
user_seek = FILE_SEEK_CALLBACK(user_seek)
self._call_fmod(
"FMOD_System_AttachFileSystem", user_open, user_close, user_read, user_seek
)
self._user_open = user_open
self._user_close = user_close
self._user_read = user_read
self._user_seek = user_seek
|
Piggyback' on FMOD file reading routines to capture data as it's read.
This allows users to capture data as FMOD reads it, which may be useful
for extracting the raw data that FMOD reads for hard to support sources
(for example Internet streams).
To detach, pass None as the callback parameters.
Note: This function is not to replace FMOD's file system. For this
functionality, see :py:meth:`set_file_system`.
:param callable user_open: Callback for after a file is opened.
:param callable user_close: Callback for after a file is closed.
:param callable user_read: Callback for after a read operation.
:param callable user_seek: Callback for after a seek operation.
|
https://github.com/tyrylu/pyfmodex/blob/b3f89fdb40ecebe528b229a3c5310ec7d7f66f55/pyfmodex/system.py#L280-L311
|
from ctypes import *
from .callback_prototypes import ROLLOFF_CALLBACK, SYSTEM_CALLBACK
from .enums import OUTPUTTYPE, PLUGINTYPE, SPEAKERMODE, TIMEUNIT, RESULT
from .flags import INIT_FLAGS, MODE
from .fmodobject import FmodObject
from .globalvars import DLL as _dll
from .globalvars import get_class
from .structobject import Structobject as so
from .structures import *
from .utils import *
class Listener:
def __init__(self, sptr, aaidee):
pos_vec = VECTOR()
vel_vec = VECTOR()
fwd_vec = VECTOR()
up_vec = VECTOR()
self._sysptr = sptr
self._id = aaidee
ckresult(
_dll.FMOD_System_Get3DListenerAttributes(
self._sysptr,
aaidee,
byref(pos_vec),
byref(vel_vec),
byref(fwd_vec),
byref(up_vec),
)
)
self._pos = pos_vec
self._vel = vel_vec
self._fwd = fwd_vec
self._up = up_vec
self._rolloff_callback = None
@property
def position(self):
return self._pos.to_list()
@position.setter
def position(self, poslist):
self._pos = VECTOR.from_list(poslist)
self._commit()
@property
def velocity(self):
return self._vel.to_list()
@velocity.setter
def velocity(self, vellist):
self._vel = VECTOR.from_list(vellist)
self._commit()
@property
def forward(self):
return self._fwd.to_list()
@forward.setter
def forward(self, fwdlist):
self._fwd = VECTOR.from_list(fwdlist)
self._commit()
@property
def up(self):
return self._up.to_list()
@up.setter
def up(self, uplist):
self._up = VECTOR.from_list(uplist)
self._commit()
def _commit(self):
ckresult(
_dll.FMOD_System_Set3DListenerAttributes(
self._sysptr,
self._id,
byref(self._pos),
byref(self._vel),
byref(self._fwd),
byref(self._up),
)
)
class DSPBufferSizeInfo:
def __init__(self, sptr, size, count):
self._sysptr = sptr
self._size = size
self._count = count
@property
def size(self):
return self._size
@size.setter
def size(self, size):
ckresult(_dll.FMOD_System_SetDSPBufferSize(self._sysptr, size, self._count))
self._size = size
@property
def count(self):
return self._count
@count.setter
def count(self, count):
ckresult(_dll.FMOD_System_SetDSPBufferSize(self._sysptr, self._size, count))
self._count = count
class ThreedSettings:
def __init__(self, sptr, dopplerscale, distancefactor, rolloffscale):
self._sysptr = sptr
self._distancefactor = distancefactor
self._dopplerscale = dopplerscale
self._rolloffscale = rolloffscale
@property
def distance_factor(self):
return self._distancefactor
@distance_factor.setter
def distance_factor(self, factor):
ckresult(
_dll.FMOD_System_Set3DSettings(
self._sysptr,
c_float(self._dopplerscale),
c_float(factor),
c_float(self._rolloffscale),
)
)
self._distancefactor = factor
@property
def doppler_scale(self):
return self._dopplerscale
@doppler_scale.setter
def doppler_scale(self, scale):
ckresult(
_dll.FMOD_System_Set3DSettings(
self._sysptr,
c_float(scale),
c_float(self._distancefactor),
c_float(self._rolloffscale),
)
)
self._dopplerscale = scale
@property
def rolloff_scale(self):
return self._rolloffscale
@rolloff_scale.setter
def rolloff_scale(self, rscale):
ckresult(
_dll.FMOD_System_Set3DSettings(
self._sysptr,
c_float(self._distancefactor),
c_float(self._dopplerscale),
c_float(rscale),
)
)
self._rolloffscale = rscale
class System(FmodObject):
def __init__(self, ptr=None, header_version=0x20200):
self._system_callbacks = {}
if ptr is None:
self._ptr = c_void_p()
try:
ckresult(_dll.FMOD_System_Create(byref(self._ptr)))
except FmodError as exc:
if exc.result is not RESULT.HEADER_MISMATCH:
raise
ckresult(_dll.FMOD_System_Create(byref(self._ptr), header_version))
else:
self._ptr = ptr
self._user_open = None
self._user_close = None
self._user_read = None
self._user_seek = None
def attach_channel_group_to_port(
self, port_type, port_index, group, passthru=False
):
ckresult(
_dll.FMOD_System_AttachChannelGroupToPort(
self._ptr, port_type, port_index, group._ptr, passthru
)
)
|
MIT License
|
audunarn/anystructure
|
ANYstructure_local/calc_structure.py
|
Structure.get_moment_of_intertia
|
python
|
def get_moment_of_intertia(self, efficent_se=None):
tf1 = self.plate_th
b1 = self.spacing if efficent_se==None else efficent_se
h = self.flange_th+self.web_height+self.plate_th
tw = self.web_th
hw = self.web_height
tf2 = self.flange_th
b2 = self.flange_width
Ax = tf1 * b1 + tf2 * b2 + (h-tf1-tf2) * tw
Iyc = (1 / 12) * (b1 * math.pow(tf1, 3) + b2 * math.pow(tf2, 3) + tw * math.pow(hw, 3))
ez = (tf1 * b1 * (h - tf1 / 2) + hw * tw * (tf2 + hw / 2) + tf2 * b2 * (tf2 / 2)) / Ax
Iy = Iyc + (tf1 * b1 * math.pow(tf2 + hw + tf1 / 2, 2) + tw * hw * math.pow(tf2 + hw / 2, 2) +
tf2 * b2 * math.pow(tf2 / 2, 2)) - Ax * math.pow(ez, 2)
return Iy
|
Returning moment of intertia.
:return:
|
https://github.com/audunarn/anystructure/blob/6ea9914bc763ab4131c5d8ecedfcfd6cb193d211/ANYstructure_local/calc_structure.py#L335-L353
|
from scipy.special import gammaln
from scipy.stats import gamma as gammadist
import numpy as np
import ANYstructure_local.helper as hlp
import os, time, datetime, json, random, math
import ANYstructure_local.SN_curve_parameters as snc
class Structure():
def __init__(self, main_dict, *args, **kwargs):
super(Structure,self).__init__()
self.main_dict = main_dict
self.plate_th = main_dict['plate_thk'][0]
self.web_height = main_dict['stf_web_height'][0]
self.web_th = main_dict['stf_web_thk'][0]
self.flange_width = main_dict['stf_flange_width'][0]
self.flange_th = main_dict['stf_flange_thk'][0]
self.mat_yield = main_dict['mat_yield'][0]
self.mat_factor = main_dict['mat_factor'][0]
self.span = main_dict['span'][0]
self.spacing = main_dict['spacing'][0]
self.structure_type = main_dict['structure_type'][0]
self.sigma_y1=main_dict['sigma_y1'][0]
self.sigma_y2=main_dict['sigma_y2'][0]
self.sigma_x=main_dict['sigma_x'][0]
self.tauxy=main_dict['tau_xy'][0]
self.plate_kpp = main_dict['plate_kpp'][0]
self.stf_kps = main_dict['stf_kps'][0]
self.km1 = main_dict['stf_km1'][0]
self.km2 = main_dict['stf_km2'][0]
self.km3 = main_dict['stf_km3'][0]
self.stiffener_type=main_dict['stf_type'][0]
self.structure_types = main_dict['structure_types'][0]
self.dynamic_variable_orientation = None
if self.structure_type in self.structure_types['vertical']:
self.dynamic_variable_orientation = 'z - vertical'
elif self.structure_type in self.structure_types['horizontal']:
self.dynamic_variable_orientation = 'x - horizontal'
self._puls_method = main_dict['puls buckling method'][0]
self._puls_boundary = main_dict['puls boundary'][0]
self._puls_stf_end = main_dict['puls stiffener end'][0]
self._puls_sp_or_up = main_dict['puls sp or up'][0]
self._puls_up_boundary = main_dict['puls up boundary'][0]
self._zstar_optimization = main_dict['zstar_optimization'][0]
try:
self.girder_lg=main_dict['girder_lg'][0]
except KeyError:
self.girder_lg = 10
try:
self.pressure_side = main_dict['press_side'][0]
except KeyError:
self.pressure_side = 'p'
def __str__(self):
return str(
'\n Plate field span: ' + str(round(self.span,3)) + ' meters' +
'\n Stiffener spacing: ' + str(self.spacing*1000)+' mm'+
'\n Plate thickness: ' + str(self.plate_th*1000)+' mm'+
'\n Stiffener web height: ' + str(self.web_height*1000)+' mm'+
'\n Stiffener web thickness: ' + str(self.web_th*1000)+' mm'+
'\n Stiffener flange width: ' + str(self.flange_width*1000)+' mm'+
'\n Stiffener flange thickness: ' + str(self.flange_th*1000)+' mm'+
'\n Material yield: ' + str(self.mat_yield/1e6)+' MPa'+
'\n Structure/stiffener type: ' + str(self.structure_type)+'/'+(self.stiffener_type)+
'\n Dynamic load varible_ ' + str(self.dynamic_variable_orientation)+
'\n Plate fixation paramter,kpp: ' + str(self.plate_kpp) + ' ' +
'\n Stf. fixation paramter,kps: ' + str(self.stf_kps) + ' ' +
'\n Global stress, sig_y1/sig_y2: ' + str(round(self.sigma_y1,3))+'/'+str(round(self.sigma_y2,3))+ ' MPa' +
'\n Global stress, sig_x: ' + str(round(self.sigma_x,3)) + ' MPa' +
'\n Global shear, tau_xy: ' + str(round(self.tauxy,3)) + ' MPa' +
'\n km1,km2,km3: ' + str(self.km1)+'/'+str(self.km2)+'/'+str(self.km3)+
'\n Pressure side (p-plate/s-stf): ' + str(self.pressure_side) + ' ')
def get_beam_string(self):
base_name = self.stiffener_type+ '_' + str(round(self.web_height*1000, 0)) + 'x' + str(round(self.web_th*1000, 0))
if self.stiffener_type == 'FB':
ret_str = base_name
else:
ret_str = base_name + '__' + str(round(self.flange_width*1000, 0)) + 'x' + str(round(self.flange_th*1000, 0))
ret_str = ret_str.replace('.', '_')
return ret_str
def get_structure_types(self):
return self.structure_types
def get_z_opt(self):
return self._zstar_optimization
def get_puls_method(self):
return self._puls_method
def get_puls_boundary(self):
return self._puls_boundary
def get_puls_stf_end(self):
return self._puls_stf_end
def get_puls_sp_or_up(self):
return self._puls_sp_or_up
def get_puls_up_boundary(self):
return self._puls_up_boundary
def get_one_line_string(self):
return 'pl_'+str(round(self.spacing*1000, 1))+'x'+str(round(self.plate_th*1000,1))+' stf_'+self.stiffener_type+ str(round(self.web_height*1000,1))+'x'+str(round(self.web_th*1000,1))+'+' +str(round(self.flange_width*1000,1))+'x'+ str(round(self.flange_th*1000,1))
def get_report_stresses(self):
return 'sigma_y1: '+str(round(self.sigma_y1,1))+' sigma_y2: '+str(round(self.sigma_y2,1))+ ' sigma_x: ' + str(round(self.sigma_x,1))+' tauxy: '+ str(round(self.tauxy,1))
def get_extended_string(self):
return 'span: '+str(round(self.span,4))+' structure type: '+ self.structure_type + ' stf. type: ' + self.stiffener_type + ' pressure side: ' + self.pressure_side
def get_sigma_y1(self):
return self.sigma_y1
def get_sigma_y2(self):
return self.sigma_y2
def get_sigma_x(self):
return self.sigma_x
def get_tau_xy(self):
return self.tauxy
def get_s(self):
return self.spacing
def get_pl_thk(self):
return self.plate_th
def get_web_h(self):
return self.web_height
def get_web_thk(self):
return self.web_th
def get_fl_w(self):
return self.flange_width
def get_fl_thk(self):
return self.flange_th
def get_fy(self):
return self.mat_yield
def get_mat_factor(self):
return self.mat_factor
def get_span(self):
return self.span
def get_lg(self):
return self.girder_lg
def get_kpp(self):
return self.plate_kpp
def get_kps(self):
return self.stf_kps
def get_km1(self):
return self.km1
def get_km2(self):
return self.km2
def get_km3(self):
return self.km3
def get_side(self):
return self.pressure_side
def get_tuple(self):
return (self.spacing, self.plate_th, self.web_height, self.web_th, self.flange_width,
self.flange_th, self.span, self.girder_lg, self.stiffener_type)
def get_section_modulus(self, efficient_se = None, dnv_table = False):
b1 = self.spacing if efficient_se==None else efficient_se
tf1 = self.plate_th
tf2 = self.flange_th
b2 = self.flange_width
h = self.flange_th+self.web_height+self.plate_th
tw = self.web_th
hw = self.web_height
Ax = tf1 * b1 + tf2 * b2 + hw * tw
assert Ax != 0, 'Ax cannot be 0'
ez = (tf1 * b1 * tf1 / 2 + hw * tw * (tf1 + hw / 2) + tf2 * b2 * (tf1 + hw + tf2 / 2)) / Ax
Iyc = (1 / 12) * (b1 * math.pow(tf1, 3) + b2 * math.pow(tf2, 3) + tw * math.pow(hw, 3))
Iy = Iyc + (tf1 * b1 * math.pow(tf1 / 2, 2) + tw * hw * math.pow(tf1+hw / 2, 2) +
tf2 * b2 * math.pow(tf1+hw+tf2 / 2, 2)) - Ax * math.pow(ez, 2)
Wey1 = Iy / (h - ez)
Wey2 = Iy / ez
return Wey1, Wey2
def get_plasic_section_modulus(self):
tf1 = self.plate_th
tf2 = self.flange_th
b1 = self.spacing
b2 = self.flange_width
h = self.flange_th+self.web_height+self.plate_th
tw = self.web_th
hw = self.web_height
Ax = tf1 * b1 + tf2 * b2 + (h-tf1-tf2) * tw
ezpl = (Ax/2-b1*tf1)/tw+tf1
az1 = h-ezpl-tf1
az2 = ezpl-tf2
Wy1 = b1*tf1*(az1+tf1/2) + (tw/2)*math.pow(az1,2)
Wy2 = b2*tf2*(az2+tf2/2)+(tw/2)*math.pow(az2,2)
return Wy1+Wy2
def get_shear_center(self):
tf1 = self.plate_th
tf2 = self.flange_th
b1 = self.spacing
b2 = self.flange_width
h = self.flange_th+self.web_height+self.plate_th
tw = self.web_th
hw = self.web_height
Ax = tf1 * b1 + tf2 * b2 + (h-tf1-tf2) * tw
ez = (b2*tf2*tf2/2 + tw*hw*(tf2+hw/2)+tf1*b1*(tf2+hw+tf1/2)) / Ax
Iz1 = tf1 * math.pow(b1, 3)
Iz2 = tf2 * math.pow(b2, 3)
ht = h - tf1 / 2 - tf2 / 2
return (Iz1 * ht) / (Iz1 + Iz2) + tf2 / 2 - ez
|
MIT License
|
prooffreader/pytabby
|
src/pytabby/formatting.py
|
format_menu
|
python
|
def format_menu(config, current_tab_number, line_length, message=None):
tabs = config["tabs"]
menu = [""]
if len(tabs) > 1:
menu += _format_headers(tabs, current_tab_number, line_length)
current_tab = tabs[current_tab_number]
items = current_tab["items"]
max_choice_len = 0
for item in items:
max_choice_len = max(max_choice_len, len(item["item_choice_displayed"]))
for item in items:
choice = item["item_choice_displayed"]
description = item["item_description"]
spacer = " " * (max_choice_len - len(choice))
menu.append("[{0}{1}] {2}".format(choice, spacer, description))
if message is not None:
menu.append(message)
return "\n".join(menu)
|
Creates menu to be displayed to user, called from menu.Menu only, not by user
Args:
config (dict): the config dict passed to the Menu instantiator, after normalization
current_tab_number (int): number of currently selected tab (always 0 for single-tabbed menus)
line_length (int): value from config
message (str or None): a message to print from Menu.message
Returns:
(str) menu to send to stdout
|
https://github.com/prooffreader/pytabby/blob/9bb7e5dcb2ef6d4b2a7e2a983402cbf4542d9d41/src/pytabby/formatting.py#L7-L44
|
MIT License
|
|
fabiocaccamo/python-fsutil
|
fsutil/__init__.py
|
create_dir
|
python
|
def create_dir(path, overwrite=False):
if not overwrite:
assert_not_exists(path)
make_dirs(path)
|
Create directory at the given path.
If overwrite is not allowed and path exists, an OSError is raised.
|
https://github.com/fabiocaccamo/python-fsutil/blob/261c11990253901129d7df23f1dc32d33dc96be4/fsutil/__init__.py#L187-L194
|
from fsutil.metadata import (
__author__,
__copyright__,
__description__,
__email__,
__license__,
__title__,
__version__,
)
import datetime as dt
import errno
import glob
import hashlib
import os
import requests
import shutil
import sys
import zipfile
try:
from urlparse import urlsplit
except ImportError:
from urllib.parse import urlsplit
PY2 = bool(sys.version_info.major == 2)
SIZE_UNITS = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB', 'ZB', 'YB']
def assert_dir(path):
if not is_dir(path):
raise OSError('Invalid directory path: {}'.format(path))
def assert_exists(path):
if not exists(path):
raise OSError('Invalid item path: {}'.format(path))
def assert_file(path):
if not is_file(path):
raise OSError('Invalid file path: {}'.format(path))
def assert_not_dir(path):
if is_dir(path):
raise OSError('Invalid path, directory already exists: {}'.format(path))
def assert_not_exists(path):
if exists(path):
raise OSError('Invalid path, item already exists: {}'.format(path))
def assert_not_file(path):
if is_file(path):
raise OSError('Invalid path, file already exists: {}'.format(path))
def _clean_dir_empty_dirs(path):
for basepath, dirnames, _ in os.walk(path, topdown=False):
for dirname in dirnames:
dirpath = os.path.join(basepath, dirname)
if is_empty_dir(dirpath):
remove_dir(dirpath)
def _clean_dir_empty_files(path):
for basepath, _, filenames in os.walk(path, topdown=False):
for filename in filenames:
filepath = os.path.join(basepath, filename)
if is_empty_file(filepath):
remove_file(filepath)
def clean_dir(path, dirs=True, files=True):
if files:
_clean_dir_empty_files(path)
if dirs:
_clean_dir_empty_dirs(path)
def convert_size_bytes_to_string(size):
size = float(size)
units = SIZE_UNITS
factor = 0
factor_limit = len(units) - 1
while (size >= 1024) and (factor <= factor_limit):
size /= 1024
factor += 1
s_format = '{:.2f} {}' if (factor > 1) else '{:.0f} {}'
s = s_format.format(size, units[factor])
return s
def convert_size_string_to_bytes(size):
units = [item.lower() for item in SIZE_UNITS]
parts = size.strip().replace(' ', ' ').split(' ')
amount = float(parts[0])
unit = parts[1]
factor = units.index(unit.lower())
if not factor:
return amount
return int((1024 ** factor) * amount)
def copy_dir(path, dest, overwrite=False, **kwargs):
assert_not_file(path)
dirname = os.path.basename(os.path.normpath(path))
dest = os.path.join(dest, dirname)
if not overwrite:
assert_not_exists(dest)
else:
if not (sys.version_info.major >= 3 and sys.version_info.minor >= 8):
if is_dir(dest):
remove_dir(dest)
copy_dir_content(path, dest, **kwargs)
def copy_dir_content(path, dest, **kwargs):
assert_dir(path)
if sys.version_info.major >= 3 and sys.version_info.minor >= 8:
make_dirs(dest)
kwargs.setdefault('dirs_exist_ok', True)
shutil.copytree(path, dest, **kwargs)
def copy_file(path, dest, overwrite=False, **kwargs):
assert_file(path)
if not overwrite:
assert_not_exists(dest)
make_dirs_for_file(dest)
shutil.copy2(path, dest, **kwargs)
|
MIT License
|
hunch/hunch-gift-app
|
django/contrib/gis/db/backends/base.py
|
SpatialRefSysMixin.projected
|
python
|
def projected(self):
if gdal.HAS_GDAL:
return self.srs.projected
else:
return self.wkt.startswith('PROJCS')
|
Is this Spatial Reference projected?
|
https://github.com/hunch/hunch-gift-app/blob/8c7cad24cc0d9900deb4175e6b768c64a3d7adcf/django/contrib/gis/db/backends/base.py#L210-L215
|
import re
from django.conf import settings
from django.contrib.gis import gdal
class BaseSpatialOperations(object):
distance_functions = {}
geometry_functions = {}
geometry_operators = {}
geography_operators = {}
geography_functions = {}
gis_terms = {}
truncate_params = {}
postgis = False
spatialite = False
mysql = False
oracle = False
spatial_version = None
select = None
geography = False
area = False
centroid = False
difference = False
distance = False
distance_sphere = False
distance_spheroid = False
envelope = False
force_rhr = False
mem_size = False
bounding_circle = False
num_geom = False
num_points = False
perimeter = False
perimeter3d = False
point_on_surface = False
polygonize = False
reverse = False
scale = False
snap_to_grid = False
sym_difference = False
transform = False
translate = False
union = False
collect = False
extent = False
extent3d = False
make_line = False
unionagg = False
geohash = False
geojson = False
gml = False
kml = False
svg = False
from_text = False
from_wkb = False
def convert_extent(self, box):
raise NotImplementedError('Aggregate extent not implemented for this spatial backend.')
def convert_extent3d(self, box):
raise NotImplementedError('Aggregate 3D extent not implemented for this spatial backend.')
def convert_geom(self, geom_val, geom_field):
raise NotImplementedError('Aggregate method not implemented for this spatial backend.')
def geo_quote_name(self, name):
if isinstance(name, unicode):
name = name.encode('ascii')
return "'%s'" % name
def geo_db_type(self, f):
raise NotImplementedError
def get_distance(self, f, value, lookup_type):
raise NotImplementedError('Distance operations not available on this spatial backend.')
def get_geom_placeholder(self, f, value):
raise NotImplementedError
def spatial_aggregate_sql(self, agg):
raise NotImplementedError('Aggregate support not implemented for this spatial backend.')
def spatial_lookup_sql(self, lvalue, lookup_type, value, field):
raise NotImplmentedError
def geometry_columns(self):
raise NotImplementedError
def spatial_ref_sys(self):
raise NotImplementedError
class SpatialRefSysMixin(object):
spheroid_regex = re.compile(r'.+SPHEROID\[\"(?P<name>.+)\",(?P<major>\d+(\.\d+)?),(?P<flattening>\d{3}\.\d+),')
units_regex = re.compile(r'.+UNIT ?\["(?P<unit_name>[\w \'\(\)]+)", ?(?P<unit>[\d\.]+)(,AUTHORITY\["(?P<unit_auth_name>[\w \'\(\)]+)","(?P<unit_auth_val>\d+)"\])?\]([\w ]+)?(,AUTHORITY\["(?P<auth_name>[\w \'\(\)]+)","(?P<auth_val>\d+)"\])?\]$')
@property
def srs(self):
if gdal.HAS_GDAL:
if hasattr(self, '_srs'):
return self._srs.clone()
else:
try:
self._srs = gdal.SpatialReference(self.wkt)
return self.srs
except Exception, msg:
pass
try:
self._srs = gdal.SpatialReference(self.proj4text)
return self.srs
except Exception, msg:
pass
raise Exception('Could not get OSR SpatialReference from WKT: %s\nError:\n%s' % (self.wkt, msg))
else:
raise Exception('GDAL is not installed.')
@property
def ellipsoid(self):
if gdal.HAS_GDAL:
return self.srs.ellipsoid
else:
m = self.spheroid_regex.match(self.wkt)
if m: return (float(m.group('major')), float(m.group('flattening')))
else: return None
@property
def name(self):
return self.srs.name
@property
def spheroid(self):
return self.srs['spheroid']
@property
def datum(self):
return self.srs['datum']
@property
|
MIT License
|
bukun/torcms
|
torcms/model/reply_model.py
|
MReply.count_of_certain
|
python
|
def count_of_certain():
return TabReply.select().count(None)
|
Get the count of certain kind.
|
https://github.com/bukun/torcms/blob/5d7480865fd46e706b84f5f65a5c24cd03bb2142/torcms/model/reply_model.py#L71-L76
|
import datetime
import tornado.escape
from config import CMS_CFG
from torcms.core import tools
from torcms.model.core_tab import TabReply, TabUser2Reply
from torcms.model.replyid_model import TabReplyid
class MReply():
@staticmethod
def get_by_uid(uid):
recs = TabReply.select().where(TabReply.uid == uid)
if recs.count():
return recs.get()
return None
@staticmethod
def update_vote(reply_id, count):
entry = TabReply.update(vote=count).where(TabReply.uid == reply_id)
entry.execute()
@staticmethod
def create_reply(post_data):
uid = tools.get_uuid()
TabReply.create(
uid=uid,
post_id=post_data['post_id'],
user_name=post_data['user_name'],
user_id=post_data['user_id'],
category=post_data['category'] if 'category' in post_data else '0',
timestamp=tools.timestamp(),
date=datetime.datetime.now(),
cnt_md=tornado.escape.xhtml_escape(post_data['cnt_reply']),
cnt_html=tools.markdown2html(post_data['cnt_reply']),
vote=0)
return uid
@staticmethod
def query_by_post(postid):
return TabReply.select().where((TabReply.post_id == postid)
& (TabReply.category != '1')).order_by(
TabReply.timestamp.desc())
@staticmethod
def get_by_zan(reply_id):
return TabUser2Reply.select().where(
TabUser2Reply.reply_id == reply_id).count()
@staticmethod
def query_all():
return TabReply.select().order_by(TabReply.timestamp.desc())
@staticmethod
def delete(del_id):
return TabReply.delete().where(TabReply.post_id == del_id)
@staticmethod
|
MIT License
|
epsy/sigtools
|
sigtools/support.py
|
bind_callsig
|
python
|
def bind_callsig(sig, args, kwargs):
assigned = {}
varkwargs = next(
(param for param in sig.parameters.values()
if param.kind == param.VAR_KEYWORD), None)
if varkwargs:
assigned[varkwargs.name] = {}
params = iter(sig.parameters.values())
args_ = iter(args)
i = 0
for (i, posarg), param in zip(enumerate(args_, 1), params):
if param.kind in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD):
assigned[param.name] = posarg
elif param.kind == param.VAR_POSITIONAL:
assigned[param.name] = (posarg,) + tuple(args_)
break
else:
raise TypeError('too many positional arguments')
else:
if args[:i] != args:
raise TypeError('too many positional arguments')
for key, value in kwargs.items():
if key in sig.parameters:
param = sig.parameters[key]
if param.kind == param.POSITIONAL_ONLY:
raise TypeError('{0!r} is positional-only'.format(key))
elif param.kind in (param.POSITIONAL_OR_KEYWORD,
param.KEYWORD_ONLY):
if key in assigned:
raise TypeError('{0!r} was specified twice'.format(key))
assigned[key] = value
continue
if varkwargs:
assigned[varkwargs.name][key] = value
else:
raise TypeError('unknown parameter {0!r}'.format(key))
for param in sig.parameters.values():
if param.name not in assigned:
if param.kind == param.VAR_POSITIONAL:
assigned[param.name] = ()
elif param.default != param.empty:
assigned[param.name] = param.default
else:
raise TypeError('omitted required parameter {0!r}'.format(
param.name))
return assigned
|
Returns a dict with each parameter name from ``sig`` mapped to
values from ``args``, ``kwargs`` as if a function with ``sig``
was called with ``(*args, **kwargs)``.
Similar to `inspect.Signature.bind`.
|
https://github.com/epsy/sigtools/blob/fa205804a089726a1d360a92bfc6c6f61d73f226/sigtools/support.py#L245-L300
|
import re
import sys
import itertools
from warnings import warn
from sigtools import _util, modifiers, signatures, specifiers
__all__ = [
's', 'f', 'read_sig', 'func_code', 'make_func', 'func_from_sig',
'make_up_callsigs', 'bind_callsig', 'sort_callsigs',
'test_func_sig_coherent',
]
try:
zip = itertools.izip
except AttributeError:
pass
re_paramname = re.compile(
r'^'
r'\s*([^:=]+)'
r'\s*(?::(.+?))?'
r'\s*(?:=(.+))?'
r'$')
re_posoarg = re.compile(r'^<(.*)>$')
def read_sig(sig_str, ret=None):
names = []
return_annotation = ret
annotations = {}
posoarg_n = []
kwoarg_n = []
params = []
found_star = False
varargs = None
varkwargs = None
default_index = None
for i, param in enumerate(sig_str.split(',')):
if not param:
continue
arg, annotation, default = re_paramname.match(param).groups()
is_posoarg = re_posoarg.match(arg)
if is_posoarg:
name = arg = is_posoarg.group(1)
posoarg_n.append(name)
else:
name = arg.lstrip('*')
if annotation:
annotations[name.lstrip('*')] = annotation
if default:
if default_index is None:
if found_star:
default_index = i - 1
else:
default_index = i
insert = arg + '=' + default
else:
insert = arg
if arg == '/':
posoarg_n.extend(names)
elif arg.startswith('*'):
found_star = True
if name:
params.append(insert)
if arg.startswith('**'):
varkwargs = name
else:
varargs = name
elif found_star:
kwoarg_n.append(arg)
if not default and default_index is not None:
params.insert(default_index, insert)
default_index += 1
else:
if params and params[-1].startswith('*'):
params.insert(-1, insert)
else:
params.append(insert)
names.append(name)
else:
params.append(insert)
names.append(name)
if varargs:
names.append(varargs)
if varkwargs:
names.append(varkwargs)
return (
names, return_annotation, annotations, posoarg_n, kwoarg_n,
', '.join(params))
def func_code(names, return_annotation, annotations, posoarg_n,
kwoarg_n, params, pre='', name='func'):
code = [pre]
if return_annotation and annotations:
code.append('@modifiers.annotate({0}, {1})'.format(
return_annotation, ', '.join(
'{0}={1}'.format(key, value)
for key, value in annotations.items())))
elif return_annotation:
code.append('@modifiers.annotate({0})'.format(return_annotation))
elif annotations:
code.append('@modifiers.annotate({0})'.format(
', '.join('{0}={1}'.format(key, value)
for key, value in annotations.items())))
if posoarg_n:
code.append('@modifiers.posoargs({0})'.format(
', '.join("'{0}'".format(name) for name in posoarg_n)))
if kwoarg_n:
code.append('@modifiers.kwoargs({0})'.format(
', '.join("'{0}'".format(name) for name in kwoarg_n)))
code.append('def {0}({1}):'.format(name, params))
code.append(' return {{{0}}}'.format(
', '.join('{0!r}: {0}'.format(name) for name in names)))
return '\n'.join(code)
def make_func(code, locals=None, name='func'):
if locals is None:
locals = {}
exec(code, globals(), locals)
return locals[name]
@modifiers.autokwoargs
def f(pre='', locals=None, name='func', *args, **kwargs):
return make_func(
func_code(*read_sig(*args, **kwargs), pre=pre, name=name),
locals=locals, name=name)
def s(*args, **kwargs):
return specifiers.signature(f(*args, **kwargs))
def func_from_sig(sig):
ret, sep, sig_str = str(sig).rpartition(' -> ')
ret = ret if sep else None
return f(sig_str[1:-1], ret)
def make_up_callsigs(sig, extra=2):
pospars, pokpars, varargs, kwopars, varkwargs = signatures.sort_params(sig)
names = [
arg.name for arg in itertools.chain(
pospars, pokpars, kwopars.values()
)]
for i in range(extra):
names.append('__make_up_callsigs__extra_{0}'.format(i))
args = [
tuple(names[:i])
for i in range(len(names) + 1)
]
if varargs:
names.append(varargs.name)
if varkwargs:
names.append(varkwargs.name)
kwargs = [
dict((name, name) for name in names_)
for names_ in itertools.chain.from_iterable(
itertools.combinations(names, i)
for i in range(len(names) + 1)
)
]
ret = list(itertools.product(args, kwargs))
return ret
|
MIT License
|
ucbdrive/3d-vehicle-tracking
|
faster-rcnn.pytorch/demo.py
|
parse_args
|
python
|
def parse_args():
parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='pascal_voc', type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default='cfgs/vgg16.yml', type=str)
parser.add_argument('--net', dest='net',
help='vgg16, res50, res101, res152',
default='res101', type=str)
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--load_dir', dest='load_dir',
help='directory to load models',
default="/srv/share/jyang375/models")
parser.add_argument('--image_dir', dest='image_dir',
help='directory to load images for demo',
default="images")
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--mGPUs', dest='mGPUs',
help='whether use multiple GPUs',
action='store_true')
parser.add_argument('--cag', dest='class_agnostic',
help='whether perform class_agnostic bbox regression',
action='store_true')
parser.add_argument('--parallel_type', dest='parallel_type',
help='which part of model to parallel, 0: all, '
'1: model before roi pooling',
default=0, type=int)
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=1, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load network',
default=1, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load network',
default=10021, type=int)
parser.add_argument('--bs', dest='batch_size',
help='batch_size',
default=1, type=int)
parser.add_argument('--vis', dest='vis',
help='visualization mode',
action='store_true')
parser.add_argument('--webcam_num', dest='webcam_num',
help='webcam ID number',
default=-1, type=int)
args = parser.parse_args()
return args
|
Parse input arguments
|
https://github.com/ucbdrive/3d-vehicle-tracking/blob/8ee189f6792897651bb56bb2950ce07c9629a89d/faster-rcnn.pytorch/demo.py#L37-L93
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import _init_paths
import os
import sys
import numpy as np
import argparse
import pprint
import time
import cv2
import torch
from torch.autograd import Variable
from matplotlib.pyplot import imread
from model.utils.config import cfg, cfg_from_file, cfg_from_list
from model.rpn.bbox_transform import clip_boxes
from model.roi_layers.nms import nms
from model.rpn.bbox_transform import bbox_transform_inv
from model.utils.net_utils import vis_detections
from model.utils.blob import im_list_to_blob
from model.faster_rcnn.vgg16 import vgg16
from model.faster_rcnn.resnet import resnet
try:
xrange
except NameError:
xrange = range
|
BSD 3-Clause New or Revised License
|
juliaregistries/tagbot
|
tagbot/action/repo.py
|
Repo.create_dispatch_event
|
python
|
def create_dispatch_event(self, payload: Mapping[str, object]) -> None:
self._repo.create_repository_dispatch("TagBot", payload)
|
Create a repository dispatch event.
|
https://github.com/juliaregistries/tagbot/blob/a42e7df2d9b63e8017c19a96fd26da319fdfec40/tagbot/action/repo.py#L434-L437
|
import json
import os
import re
import subprocess
import sys
import traceback
import docker
import pexpect
import requests
import toml
from base64 import b64decode
from datetime import datetime, timedelta
from stat import S_IREAD, S_IWRITE, S_IEXEC
from subprocess import DEVNULL
from tempfile import mkdtemp, mkstemp
from typing import Dict, List, Mapping, MutableMapping, Optional, TypeVar, Union, cast
from urllib.parse import urlparse
from github import Github, GithubException, InputGitAuthor, UnknownObjectException
from github.PullRequest import PullRequest
from gnupg import GPG
from semver import VersionInfo
from .. import logger
from . import TAGBOT_WEB, Abort, InvalidProject
from .changelog import Changelog
from .git import Git
RequestException = requests.RequestException
T = TypeVar("T")
class Repo:
def __init__(
self,
*,
repo: str,
registry: str,
github: str,
github_api: str,
token: str,
changelog: str,
changelog_ignore: List[str],
ssh: bool,
gpg: bool,
draft: bool,
registry_ssh: str,
user: str,
email: str,
lookback: int,
branch: Optional[str],
github_kwargs: Optional[Dict[str, object]] = None,
) -> None:
if github_kwargs is None:
github_kwargs = {}
if not urlparse(github).scheme:
github = f"https://{github}"
if not urlparse(github_api).scheme:
github_api = f"https://{github_api}"
self._gh_url = github
self._gh_api = github_api
self._gh = Github(
token, base_url=self._gh_api, per_page=100, **github_kwargs
)
self._repo = self._gh.get_repo(repo, lazy=True)
self._registry_name = registry
try:
self._registry = self._gh.get_repo(registry)
except UnknownObjectException:
if not registry_ssh:
raise Abort(f"Registry {registry} is not accessible")
self._registry_ssh_key = registry_ssh
logger.debug("Will access registry via Git clone")
self._clone_registry = True
except Exception:
if "pytest" in sys.modules:
self._registry = self._gh.get_repo(registry, lazy=True)
self._clone_registry = False
else:
raise
else:
self._clone_registry = False
self._token = token
self._changelog = Changelog(self, changelog, changelog_ignore)
self._ssh = ssh
self._gpg = gpg
self._draft = draft
self._user = user
self._email = email
self._git = Git(self._gh_url, repo, token, user, email)
self._lookback = timedelta(days=lookback, hours=1)
self.__registry_clone_dir: Optional[str] = None
self.__release_branch = branch
self.__project: Optional[MutableMapping[str, object]] = None
self.__registry_path: Optional[str] = None
def _project(self, k: str) -> str:
if self.__project is not None:
return str(self.__project[k])
for name in ["Project.toml", "JuliaProject.toml"]:
try:
contents = self._only(self._repo.get_contents(name))
break
except UnknownObjectException:
pass
else:
raise InvalidProject("Project file was not found")
self.__project = toml.loads(contents.decoded_content.decode())
return str(self.__project[k])
@property
def _registry_clone_dir(self) -> str:
if self.__registry_clone_dir is not None:
return self.__registry_clone_dir
repo = mkdtemp(prefix="tagbot_registry_")
self._git.command("init", repo, repo=None)
self.configure_ssh(self._registry_ssh_key, None, repo=repo)
url = f"git@{urlparse(self._gh_url).hostname}:{self._registry_name}.git"
self._git.command("remote", "add", "origin", url, repo=repo)
self._git.command("fetch", "origin", repo=repo)
self._git.command("checkout", self._git.default_branch(repo=repo), repo=repo)
self.__registry_clone_dir = repo
return repo
@property
def _registry_path(self) -> Optional[str]:
if self.__registry_path is not None:
return self.__registry_path
try:
uuid = self._project("uuid")
except KeyError:
raise InvalidProject("Project file has no UUID")
if self._clone_registry:
with open(os.path.join(self._registry_clone_dir, "Registry.toml")) as f:
registry = toml.load(f)
else:
contents = self._only(self._registry.get_contents("Registry.toml"))
registry = toml.loads(contents.decoded_content.decode())
if uuid in registry["packages"]:
self.__registry_path = registry["packages"][uuid]["path"]
return self.__registry_path
return None
@property
def _release_branch(self) -> str:
return self.__release_branch or self._repo.default_branch
def _only(self, val: Union[T, List[T]]) -> T:
return val[0] if isinstance(val, list) else val
def _maybe_decode_private_key(self, key: str) -> str:
return key if "PRIVATE KEY" in key else b64decode(key).decode()
def _create_release_branch_pr(self, version: str, branch: str) -> None:
self._repo.create_pull(
title=f"Merge release branch for {version}",
body="",
head=branch,
base=self._repo.default_branch,
)
def _registry_pr(self, version: str) -> Optional[PullRequest]:
if self._clone_registry:
return None
name = self._project("name")
uuid = self._project("uuid")
head = f"registrator/{name.lower()}/{uuid[:8]}/{version}"
logger.debug(f"Looking for PR from branch {head}")
now = datetime.now()
registry = self._registry
owner = registry.owner.login
logger.debug(f"Trying to find PR by registry owner first ({owner})")
prs = registry.get_pulls(head=f"{owner}:{head}", state="closed")
for pr in prs:
if pr.merged and now - pr.merged_at < self._lookback:
return pr
logger.debug("Did not find registry PR by registry owner")
prs = registry.get_pulls(state="closed")
for pr in prs:
if now - cast(datetime, pr.closed_at) > self._lookback:
break
if pr.merged and pr.head.ref == head:
return pr
return None
def _commit_sha_from_registry_pr(self, version: str, tree: str) -> Optional[str]:
pr = self._registry_pr(version)
if not pr:
logger.info("Did not find registry PR")
return None
m = re.search("- Commit: ([a-f0-9]{32})", pr.body)
if not m:
logger.info("Registry PR body did not match")
return None
commit = self._repo.get_commit(m[1])
if commit.commit.tree.sha == tree:
return commit.sha
else:
logger.warning("Tree SHA of commit from registry PR does not match")
return None
def _commit_sha_of_tree_from_branch(
self, branch: str, tree: str, since: datetime
) -> Optional[str]:
for commit in self._repo.get_commits(sha=branch, since=since):
if commit.commit.tree.sha == tree:
return commit.sha
return None
def _commit_sha_of_tree(self, tree: str) -> Optional[str]:
since = datetime.now() - self._lookback
sha = self._commit_sha_of_tree_from_branch(self._release_branch, tree, since)
if sha:
return sha
for branch in self._repo.get_branches():
if branch.name == self._release_branch:
continue
sha = self._commit_sha_of_tree_from_branch(branch.name, tree, since)
if sha:
return sha
return self._git.commit_sha_of_tree(tree)
def _commit_sha_of_tag(self, version: str) -> Optional[str]:
try:
ref = self._repo.get_git_ref(f"tags/{version}")
except UnknownObjectException:
return None
ref_type = getattr(ref.object, "type", None)
if ref_type == "commit":
return ref.object.sha
elif ref_type == "tag":
tag = self._repo.get_git_tag(ref.object.sha)
return tag.object.sha
else:
return None
def _commit_sha_of_release_branch(self) -> str:
branch = self._repo.get_branch(self._release_branch)
return branch.commit.sha
def _filter_map_versions(self, versions: Dict[str, str]) -> Dict[str, str]:
valid = {}
for version, tree in versions.items():
version = f"v{version}"
expected = self._commit_sha_from_registry_pr(version, tree)
if not expected:
expected = self._commit_sha_of_tree(tree)
if not expected:
logger.warning(
f"No matching commit was found for version {version} ({tree})"
)
continue
sha = self._commit_sha_of_tag(version)
if sha:
if sha != expected:
msg = f"Existing tag {version} points at the wrong commit (expected {expected})"
logger.error(msg)
else:
logger.info(f"Tag {version} already exists")
continue
valid[version] = expected
return valid
def _versions(self, min_age: Optional[timedelta] = None) -> Dict[str, str]:
if self._clone_registry:
return self._versions_clone(min_age=min_age)
root = self._registry_path
if not root:
logger.debug("Package is not registered")
return {}
kwargs = {}
if min_age:
until = datetime.now() - min_age
commits = self._registry.get_commits(until=until)
for commit in commits:
kwargs["ref"] = commit.commit.sha
break
else:
logger.debug("No registry commits were found")
return {}
try:
contents = self._only(
self._registry.get_contents(f"{root}/Versions.toml", **kwargs)
)
except UnknownObjectException:
logger.debug(f"Versions.toml was not found ({kwargs})")
return {}
versions = toml.loads(contents.decoded_content.decode())
return {v: versions[v]["git-tree-sha1"] for v in versions}
def _versions_clone(self, min_age: Optional[timedelta] = None) -> Dict[str, str]:
registry = self._registry_clone_dir
if min_age:
default_sha = self._git.command("rev-parse", "HEAD", repo=registry)
earliest = datetime.now() - min_age
shas = self._git.command("log", "--format=%H", repo=registry).split("\n")
for sha in shas:
dt = self._git.time_of_commit(sha, repo=registry)
if dt < earliest:
self._git.command("checkout", sha, repo=registry)
break
else:
logger.debug("No registry commits were found")
return {}
try:
root = self._registry_path
if not root:
logger.debug("Package is not registered")
return {}
path = os.path.join(registry, root, "Versions.toml")
if not os.path.isfile(path):
logger.debug("Versions.toml was not found")
return {}
with open(path) as f:
versions = toml.load(f)
return {v: versions[v]["git-tree-sha1"] for v in versions}
finally:
if min_age:
self._git.command("checkout", default_sha, repo=registry)
def _pr_exists(self, branch: str) -> bool:
owner = self._repo.owner.login
for pr in self._repo.get_pulls(head=f"{owner}:{branch}"):
return True
return False
def _run_url(self) -> str:
url = f"{self._repo.html_url}/actions"
run = os.getenv("GITHUB_RUN_ID")
if run:
url += f"/runs/{run}"
return url
def _image_id(self) -> str:
host = os.getenv("HOSTNAME", "")
if not host:
logger.warning("HOSTNAME is not set")
return "Unknown"
client = docker.from_env()
container = client.containers.get(host)
return container.image.id
def _report_error(self, trace: str) -> None:
if self._repo.private or os.getenv("GITHUB_ACTIONS") != "true":
logger.debug("Not reporting")
return
logger.debug("Reporting error")
data = {
"image": self._image_id(),
"repo": self._repo.full_name,
"run": self._run_url(),
"stacktrace": trace,
}
resp = requests.post(f"{TAGBOT_WEB}/report", json=data)
output = json.dumps(resp.json(), indent=2)
logger.info(f"Response ({resp.status_code}): {output}")
def is_registered(self) -> bool:
try:
root = self._registry_path
except InvalidProject as e:
logger.debug(e.message)
return False
if not root:
return False
if self._clone_registry:
with open(
os.path.join(self._registry_clone_dir, root, "Package.toml")
) as f:
package = toml.load(f)
else:
contents = self._only(self._registry.get_contents(f"{root}/Package.toml"))
package = toml.loads(contents.decoded_content.decode())
gh = cast(str, urlparse(self._gh_url).hostname).replace(".", r"\.")
if "@" in package["repo"]:
pattern = rf"{gh}:(.*?)(?:\.git)?$"
else:
pattern = rf"{gh}/(.*?)(?:\.git)?$"
m = re.search(pattern, package["repo"])
if not m:
return False
return cast(bool, m[1].casefold() == self._repo.full_name.casefold())
def new_versions(self) -> Dict[str, str]:
current = self._versions()
logger.debug(f"There are {len(current)} total versions")
old = self._versions(min_age=self._lookback)
logger.debug(f"There are {len(current) - len(old)} new versions")
versions = {}
for v in sorted(current.keys(), key=VersionInfo.parse):
if v not in old:
versions[v] = current[v]
return self._filter_map_versions(versions)
|
MIT License
|
kneron/onnx_convertor
|
keras-onnx/onnx_keras/helper.py
|
constructConstantNode
|
python
|
def constructConstantNode(name, data, output=None):
if data is None:
raise ValueError("data param cannot be None.")
tensor = O.helper.make_tensor(
name + 'tensor',
convertKerasType(data.dtype),
data.shape,
data.ravel())
if output is None:
output = name
node = O.helper.make_node(
"Constant",
[],
[output],
name=name,
value=tensor)
node_list = [node]
info = O.helper.make_tensor_value_info(
name,
convertKerasType(data.dtype),
data.shape
)
value_infos = [info]
return node_list, value_infos
|
Construct a constant node for weights and other uses.
# Arguments:
name: Name of the node. Usually a node name with usage,
e.g."conv0_weight"
data: The data in numpy format
output: The output name of current node. By default, it is the current
node name.
|
https://github.com/kneron/onnx_convertor/blob/ecf24114d64be274a2df0d120f370358717ee0a0/keras-onnx/onnx_keras/helper.py#L153-L185
|
import logging
import numpy as np
import onnx as O
from onnx import TensorProto
from .exceptions import OnnxNotSupport
logger = logging.getLogger("onnx-keras")
batchReplace = False
custom_name2type = dict()
custom_type2opid = dict()
data_format = None
compatibility = False
dtype = int(TensorProto.FLOAT)
warning_msgs = []
known_tensors = dict()
opid_counter = 0
final_output_change = []
is_sequential = False
duplicate_weights = False
RNN_start = False
RNN_start_node = None
def set_compatibility(enable_compatibility):
global compatibility
compatibility = enable_compatibility
def set_duplicate_weights(enable_duplicate):
global duplicate_weights
duplicate_weights = enable_duplicate
def set_custom_layer(custom_list):
global custom_name2type
global custom_type2opid
global opid_counter
for custom_layer in custom_list:
opid = opid_counter
opid_counter += 1
custom_type2opid[custom_layer["layer_type"]] = opid
for custom_name in custom_layer["layer_names"]:
custom_name2type[custom_name] = custom_layer["layer_type"]
def warning_once(msg):
global warning_msgs
if msg not in warning_msgs:
warning_msgs.append(msg)
logger.warning(msg)
def getKerasLayerType(layer):
return str(type(layer)).split('.')[-1][:-2]
def hasActivation(activation):
return activation.__name__ != 'linear'
def convertKerasType(dtype):
if dtype not in O.mapping.NP_TYPE_TO_TENSOR_TYPE:
logger.warning("Unknown data type %s is treated as float", str(dtype))
dtype = np.dtype('float32')
return O.mapping.NP_TYPE_TO_TENSOR_TYPE[dtype]
def formatShape(shape_in):
global batchReplace
shape = np.array(shape_in).tolist()
if shape[0] is None:
if not batchReplace:
logger.info('Replace None batch size with 1.')
batchReplace = True
shape[0] = 1
for i in range(len(shape)):
if shape[i] is None:
raise OnnxNotSupport("Dimension none in shape " + str(shape))
else:
shape[i] = int(shape[i])
return shape
def convertShape(shape_in):
global RNN_start
shape_in = formatShape(shape_in)
shape_size = len(shape_in)
if shape_size < 3:
return shape_in
if data_format == 'channels_first':
return shape_in
shape_out = []
shape_out.append(shape_in[0])
index_so_far = 1
if RNN_start:
shape_out.append(shape_in[index_so_far])
index_so_far += 1
shape_out.append(shape_in[shape_size - 1])
start = index_so_far
end = shape_size -1
for i in range(start, end):
shape_out.append(shape_in[i])
return shape_out
def getPadding(size, kernel_size, strides):
if size[0] % strides[0] == 0:
pad_h = max(kernel_size[0] - strides[0], 0)
else:
pad_h = max(kernel_size[0] - (size[0] % strides[0]), 0)
if size[1] % strides[1] == 0:
pad_w = max(kernel_size[1] - strides[1], 0)
else:
pad_w = max(kernel_size[1] - (size[1] % strides[1]), 0)
return [pad_h//2, pad_w//2, pad_h-pad_h//2, pad_w-pad_w//2]
def getConstantNodeByName(tensor_name, weight=None):
global known_tensors
if tensor_name in known_tensors:
logger.debug(tensor_name + " value_info is reused.")
return [], []
else:
if weight is None:
raise ValueError("Unexpected None value")
nodes, values = constructConstantNode(tensor_name, weight)
known_tensors[tensor_name] = weight.shape
return nodes, values
|
MIT License
|
akusok/scikit-elm
|
skelm/utils.py
|
PairwiseRandomProjection.__init__
|
python
|
def __init__(self, n_components=100, pairwise_metric='l2', n_jobs=None, random_state=None):
self.n_components = n_components
self.pairwise_metric = pairwise_metric
self.n_jobs = n_jobs
self.random_state = random_state
|
Pairwise distances projection with random centroids.
Parameters
----------
n_components : int
Number of components (centroids) in the projection. Creates the same number of output features.
pairwise_metric : str
A valid pairwise distance metric, see pairwise-distances_.
.. _pairwise-distances: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances
n_jobs : int or None, optional, default=None
Number of jobs to use in distance computations, or `None` for no parallelism.
Passed to _pairwise-distances function.
random_state
Used for random generation of centroids.
|
https://github.com/akusok/scikit-elm/blob/799ecbddc3a4feffac52be0f71b441705cd445a1/skelm/utils.py#L41-L63
|
import scipy as sp
from enum import Enum
from sklearn.metrics import pairwise_distances
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils.validation import check_array, check_is_fitted, check_random_state
class HiddenLayerType(Enum):
RANDOM = 1
SPARSE = 2
PAIRWISE = 3
def dummy(x):
return x
def flatten(items):
for x in items:
if hasattr(x, '__iter__') and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def _is_list_of_strings(obj):
return obj is not None and all(isinstance(elem, str) for elem in obj)
def _dense(X):
if sp.sparse.issparse(X):
return X.todense()
else:
return X
class PairwiseRandomProjection(BaseEstimator, TransformerMixin):
|
MIT License
|
chryswoods/acquire
|
Acquire/Identity/_authorisation.py
|
Authorisation.identifiers
|
python
|
def identifiers(self):
return {"user_guid": self.user_guid()}
|
Return a dictionary of the full set of identifiers attached
to this authorisation (e.g. user_guid, group_guid(s) etc.)
|
https://github.com/chryswoods/acquire/blob/bf8a0465a531f3b485cb2a14c69dc9aea79451fd/Acquire/Identity/_authorisation.py#L195-L199
|
__all__ = ["Authorisation"]
class Authorisation:
def __init__(self, resource=None, user=None,
testing_key=None, testing_user_guid=None):
if resource is not None:
resource = str(resource)
self._signature = None
self._last_validated_datetime = None
self._scope = None
self._permissions = None
self._pubcert = None
if resource is not None:
if user is None and testing_key is None:
raise ValueError(
"You must pass in an authenticated user who will "
"provide authorisation for resource '%s'" % resource)
from Acquire.ObjectStore import get_datetime_now as _get_datetime_now
from Acquire.ObjectStore import create_uuid as _create_uuid
if user is not None:
from Acquire.Client import User as _User
if not isinstance(user, _User):
raise TypeError("The passed user must be of type User")
elif not user.is_logged_in():
raise PermissionError(
"The passed user '%s' must be authenticated to enable "
"you to generate an authorisation for the account")
self._user_uid = user.uid()
self._session_uid = user.session_uid()
self._identity_url = user.identity_service().canonical_url()
self._identity_uid = user.identity_service_uid()
self._auth_datetime = _get_datetime_now()
self._uid = _create_uuid(short_uid=True,
include_date=self._auth_datetime)
self._siguid = user.signing_key().sign(self._uid)
message = self._get_message(resource)
self._signature = user.signing_key().sign(message)
self._last_validated_datetime = _get_datetime_now()
self._last_verified_resource = resource
self._last_verified_key = None
if user.guid() != self.user_guid():
raise PermissionError(
"We do not yet support a single user being identified "
"by multiple identity services: %s versus %s" %
(user.guid(), self.user_guid()))
elif testing_key is not None:
self._user_uid = "some user uid"
self._session_uid = "some session uid"
self._identity_url = "some identity_url"
self._identity_uid = "some identity uid"
self._auth_datetime = _get_datetime_now()
self._uid = _create_uuid(short_uid=True,
include_date=self._auth_datetime)
self._is_testing = True
self._testing_key = testing_key
if testing_user_guid is not None:
parts = testing_user_guid.split("@")
self._user_uid = parts[0]
self._identity_uid = parts[1]
message = self._get_message(resource)
self._signature = testing_key.sign(message)
self._siguid = testing_key.sign(self._uid)
self._last_validated_datetime = _get_datetime_now()
self._last_verified_resource = resource
self._last_verified_key = testing_key.public_key()
def is_null(self):
return self._signature is None
def _get_message(self, resource=None, matched_resource=False):
from Acquire.ObjectStore import datetime_to_string as _datetime_to_string
if matched_resource:
resource = self._last_verified_resource
if resource is None:
return "%s|%s|%s|%s" % (
self._user_uid, self._session_uid,
self._identity_uid,
_datetime_to_string(self._auth_datetime))
else:
return "%s|%s|%s|%s|%s" % (
self._user_uid, self._session_uid,
self._identity_uid, str(resource),
_datetime_to_string(self._auth_datetime))
def __str__(self):
try:
return "Authorisation(signature=%s)" % self._signature
except:
return "Authorisation()"
def __repr__(self):
return self.__str__()
def __eq__(self, other):
if isinstance(other, self.__class__):
return self._signature == other._signature
else:
return False
def __ne__(self, other):
return not self.__eq__(other)
def _fix_integer(self, value, max_value):
max_value = int(max_value)
if value is None:
return max_value
else:
try:
value = int(value)
except:
return max_value
if value <= 0 or value > max_value:
return max_value
else:
return value
def from_user(self, user_uid, service_uid):
return (user_uid == self._user_uid) and (service_uid == self._identity_uid)
def uid(self):
if self.is_null():
return None
else:
return self._uid
def user_uid(self):
if self.is_null():
return None
else:
return self._user_uid
def user_guid(self):
return "%s@%s" % (self.user_uid(), self.identity_uid())
|
Apache License 2.0
|
city-bureau/city-scrapers
|
city_scrapers/spiders/chi_ssa_52.py
|
ChiSsa52Spider._parse_links
|
python
|
def _parse_links(self, item):
return []
|
Parse or generate links.
|
https://github.com/city-bureau/city-scrapers/blob/b295d0aa612e3979a9fccab7c5f55ecea9ed074c/city_scrapers/spiders/chi_ssa_52.py#L134-L136
|
import re
from datetime import datetime
from difflib import SequenceMatcher
from city_scrapers_core.constants import COMMISSION
from city_scrapers_core.items import Meeting
from city_scrapers_core.spiders import CityScrapersSpider
class ChiSsa52Spider(CityScrapersSpider):
name = "chi_ssa_52"
agency = "Chicago Special Service Area #52 51st Street"
timezone = "America/Chicago"
start_urls = ["https://www.51ststreetchicago.com/about.html"]
def parse(self, response):
items = response.css("div.paragraph")[3:4]
title = items.css("strong::text").get()
meeting = items.css("ul")[0]
item = (title, meeting)
for meet in meeting.css("li"):
meet = self._clean_meet(meet)
meeting = Meeting(
title=self._parse_title(title),
description=self._parse_description(item),
classification=self._parse_classification(item),
start=self._parse_start(meet),
end=self._parse_end(item),
all_day=self._parse_all_day(item),
time_notes=self._parse_time_notes(item),
location=self._parse_location(item),
links=self._parse_links(item),
source=self._parse_source(response),
)
meeting["status"] = self._get_status(meeting)
meeting["id"] = self._get_id(meeting)
yield meeting
def _clean_meet(self, meet):
meet = meet.css("::text").get()
meet = meet.replace("\xa0", "")
clean_str = re.sub(r"[^\w:]+", " ", meet)
meet_info = clean_str.split()
return meet_info
def _check_am_pm(self, time):
time = time.split(":")
hour = time[0]
minutes = time[1]
if int(hour) >= 8 and int(hour) <= 12:
return f"{hour}:{minutes} AM"
return f"{hour}:{minutes} PM"
def _parse_title(self, item):
return "Commission"
def _parse_description(self, item):
return ""
def _parse_classification(self, item):
return COMMISSION
def _parse_start(self, item):
months = [
"JANUARY",
"FEBRUARY",
"MARCH",
"APRIL",
"MAY",
"JUNE",
"JULY",
"AUGUST",
"SEPTEMBER",
"OCTOBER",
"NOVEMBER",
"DECEMBER",
]
time = item[4]
time = self._check_am_pm(time)
try:
date = datetime.strptime(
f"{item[2]} {item[1]} {item[3]} {time}", "%d %B %Y %I:%M %p",
)
except ValueError:
for month in months:
ratio = SequenceMatcher(None, month, item[1]).ratio()
if ratio > 0.5:
date = datetime.strptime(
f"{item[2]} {month} {item[3]} {time}", "%d %B %Y %I:%M %p",
)
return date
def _parse_end(self, item):
return None
def _parse_time_notes(self, item):
return ""
def _parse_all_day(self, item):
return False
def _parse_location(self, item):
return {
"address": "220 E 51st St Chicago, IL 60615",
"name": "51st Street Business Association",
}
|
MIT License
|
jonathanfeng/new_horizons
|
venv/lib/python3.7/site-packages/jinja2/compiler.py
|
has_safe_repr
|
python
|
def has_safe_repr(value):
if value is None or value is NotImplemented or value is Ellipsis:
return True
if type(value) in (bool, int, float, complex, range_type, Markup) + string_types:
return True
if type(value) in (tuple, list, set, frozenset):
for item in value:
if not has_safe_repr(item):
return False
return True
elif type(value) is dict:
for key, value in iteritems(value):
if not has_safe_repr(key):
return False
if not has_safe_repr(value):
return False
return True
return False
|
Does the node have a safe representation?
|
https://github.com/jonathanfeng/new_horizons/blob/0ec21c8f8423932611e1e0bf24548dcef912bc54/venv/lib/python3.7/site-packages/jinja2/compiler.py#L92-L110
|
from collections import namedtuple
from functools import update_wrapper
from itertools import chain
from keyword import iskeyword as is_python_keyword
from markupsafe import escape
from markupsafe import Markup
from . import nodes
from ._compat import imap
from ._compat import iteritems
from ._compat import izip
from ._compat import NativeStringIO
from ._compat import range_type
from ._compat import string_types
from ._compat import text_type
from .exceptions import TemplateAssertionError
from .idtracking import Symbols
from .idtracking import VAR_LOAD_ALIAS
from .idtracking import VAR_LOAD_PARAMETER
from .idtracking import VAR_LOAD_RESOLVE
from .idtracking import VAR_LOAD_UNDEFINED
from .nodes import EvalContext
from .optimizer import Optimizer
from .utils import concat
from .visitor import NodeVisitor
operators = {
"eq": "==",
"ne": "!=",
"gt": ">",
"gteq": ">=",
"lt": "<",
"lteq": "<=",
"in": "in",
"notin": "not in",
}
if hasattr(dict, "iteritems"):
dict_item_iter = "iteritems"
else:
dict_item_iter = "items"
code_features = ["division"]
try:
exec("from __future__ import generator_stop")
code_features.append("generator_stop")
except SyntaxError:
pass
try:
exec("def f(): yield from x()")
except SyntaxError:
supports_yield_from = False
else:
supports_yield_from = True
def optimizeconst(f):
def new_func(self, node, frame, **kwargs):
if self.optimized and not frame.eval_ctx.volatile:
new_node = self.optimizer.visit(node, frame.eval_ctx)
if new_node != node:
return self.visit(new_node, frame)
return f(self, node, frame, **kwargs)
return update_wrapper(new_func, f)
def generate(
node, environment, name, filename, stream=None, defer_init=False, optimized=True
):
if not isinstance(node, nodes.Template):
raise TypeError("Can't compile non template nodes")
generator = environment.code_generator_class(
environment, name, filename, stream, defer_init, optimized
)
generator.visit(node)
if stream is None:
return generator.stream.getvalue()
|
MIT License
|
pranjaldatta/pyvision
|
pyvision/misc/mtcnn/stage_two.py
|
pad
|
python
|
def pad(bboxes, width, height):
x, y, ex, ey = [bboxes[:, i] for i in range(4)]
w, h = ex - x + 1.0, ey - y + 1.0
num_boxes = bboxes.shape[0]
dx, dy = np.zeros((num_boxes,)), np.zeros((num_boxes,))
edx, edy = w.copy() - 1.0, h.copy() - 1.0
ind = np.where(x < 0.0)[0]
dx[ind] = 0.0 - x[ind]
x[ind] = 0.0
ind = np.where(y < 0.0)[0]
dy[ind] = 0.0 - y[ind]
y[ind] = 0.0
ind = np.where(ex > width - 1.0 )[0]
edx[ind] = w[ind] + width - 2.0 - ex[ind]
ex[ind] = width - 1.0
ind = np.where(ey > height - 1.0)[0]
edy[ind] = h[ind] + height - 2.0 - ey[ind]
ey[ind] = height - 1.0
return_list = [dy, edy, dx, edx, y, ey, x, ex, w, h]
return_list = [r.astype('int32') for r in return_list]
return return_list
|
Output:
dy, dx, edy, edx: Coordinates of cut boxes
y, x, ey, ex: Coordinates of box in image
h, w: Heights and widths of boxes.
|
https://github.com/pranjaldatta/pyvision/blob/ad57b27cf790c267772402e47bd9e140ba6f549e/pyvision/misc/mtcnn/stage_two.py#L40-L78
|
from .utils.utils import preprocess
import numpy as np
from PIL import Image
from .utils.visualize import show_boxes
def get_image_boxes(bounding_boxes, img, size=24):
num_boxes = len(bounding_boxes)
w, h = img.size
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = pad(bounding_boxes, w, h)
img_boxes = np.zeros((num_boxes, 3, size, size), 'float32')
for i in range(num_boxes):
img_box = np.zeros((tmph[i], tmpw[i], 3), 'uint8')
img_array = np.asarray(img, 'uint8')
try:
img_box[dy[i]:(edy[i] + 1), dx[i]:(edx[i] + 1), :] = img_array[y[i]:(ey[i] + 1), x[i]:(ex[i] + 1), :]
except ValueError as ve:
print("Value error at index {}".format(i))
img_box = Image.fromarray(img_box)
img_box = img_box.resize((size, size), Image.BILINEAR)
img_box = np.asarray(img_box, 'float32')
img_boxes[i, :, :, :] = preprocess(img_box)
return img_boxes
|
BSD 3-Clause New or Revised License
|
botfront/rasa-for-botfront
|
scripts/release.py
|
write_version_to_pyproject
|
python
|
def write_version_to_pyproject(version: Version) -> None:
pyproject_file = pyproject_file_path()
try:
data = toml.load(pyproject_file)
data["tool"]["poetry"]["version"] = str(version)
with pyproject_file.open("w", encoding="utf8") as f:
toml.dump(data, f)
except (FileNotFoundError, TypeError):
print(f"Unable to update {pyproject_file}: file not found.")
sys.exit(1)
except toml.TomlDecodeError:
print(f"Unable to parse {pyproject_file}: incorrect TOML file.")
sys.exit(1)
check_call(["git", "add", str(pyproject_file.absolute())])
|
Dump a new version into the pyproject.toml.
|
https://github.com/botfront/rasa-for-botfront/blob/6e0e48d0059e197b5f686df1e27935769c3641b7/scripts/release.py#L74-L90
|
import argparse
import os
import re
import sys
from pathlib import Path
from subprocess import CalledProcessError, check_call, check_output
from typing import Text, Set
import questionary
import toml
from pep440_version_utils import Version, is_valid_version
VERSION_FILE_PATH = "rasa/version.py"
PYPROJECT_FILE_PATH = "pyproject.toml"
REPO_BASE_URL = "https://github.com/RasaHQ/rasa"
RELEASE_BRANCH_PREFIX = "prepare-release-"
PRERELEASE_FLAVORS = ("alpha", "rc")
RELEASE_BRANCH_PATTERN = re.compile(r"^\d+\.\d+\.x$")
def create_argument_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="prepare the next library release")
parser.add_argument(
"--next_version",
type=str,
help="Either next version number or 'major', 'minor', 'micro', 'alpha', 'rc'",
)
return parser
def project_root() -> Path:
return Path(os.path.dirname(__file__)).parent
def version_file_path() -> Path:
return project_root() / VERSION_FILE_PATH
def pyproject_file_path() -> Path:
return project_root() / PYPROJECT_FILE_PATH
def write_version_file(version: Version) -> None:
with version_file_path().open("w") as f:
f.write(
f"# this file will automatically be changed,\n"
f"# do not add anything but the version number here!\n"
f'__version__ = "{version}"\n'
)
check_call(["git", "add", str(version_file_path().absolute())])
|
Apache License 2.0
|
youngbin-ro/multi2oie
|
carb/oieReader.py
|
OieReader.split_to_corpus
|
python
|
def split_to_corpus(self, corpus_fn, out_fn):
raw_sents = [line.strip() for line in open(corpus_fn)]
with open(out_fn, 'w') as fout:
for line in self.get_tabbed().split('\n'):
data = line.split('\t')
sent = data[0]
if sent in raw_sents:
fout.write(line + '\n')
|
Given a corpus file name, containing a list of sentences
print only the extractions pertaining to it to out_fn in a tab separated format:
sent, prob, pred, arg1, arg2, ...
|
https://github.com/youngbin-ro/multi2oie/blob/3964e9c68aa9721800791de02d1ec7bdcb5fe3a7/carb/oieReader.py#L12-L24
|
class OieReader:
def read(self, fn, includeNominal):
raise Exception("Don't run me")
def count(self):
return sum([len(extractions) for _, extractions in self.oie.items()])
|
MIT License
|
hyperion-rt/hyperion
|
hyperion/model/image.py
|
Image.lon_max
|
python
|
def lon_max(self):
return self._lon_max
|
Upper extent of the image in the x direction (in degrees).
|
https://github.com/hyperion-rt/hyperion/blob/2159b39f5cafaeb653f2541502eef194a78102d6/hyperion/model/image.py#L222-L226
|
import numpy as np
import six
from ..util.functions import FreezableClass, is_numpy_array
from ..util.constants import c
class Image(FreezableClass):
def __init__(self, nu, val=None, unc=None, units=None):
self.nu = nu
self.val = val
self.unc = unc
self.units = units
self.x_min = None
self.x_max = None
self.y_min = None
self.y_max = None
self.lon_min = None
self.lon_max = None
self.lat_min = None
self.lat_max = None
self.d_min = None
self.d_max = None
self.distance = None
self.pix_area_sr = None
self.inside_observer = False
self._freeze()
@property
def nu(self):
return self._nu
@nu.setter
def nu(self, value):
if type(value) in [list, tuple]:
value = np.array(value)
if value is None:
self._nu = value
elif isinstance(value, np.ndarray) and value.ndim == 1:
self._nu = value
else:
raise TypeError("nu should be a 1-d sequence")
@property
def val(self):
return self._val
@val.setter
def val(self, value):
if type(value) in [list, tuple]:
value = np.array(value)
if value is None:
self._val = value
elif isinstance(value, np.ndarray) and value.ndim >= 1:
if self.nu is not None and len(self.nu) != value.shape[-1]:
raise ValueError("the last dimension of the value array should match the length of the nu array (expected {0} but found {1})".format(len(self.nu), value.shape[-1]))
else:
if hasattr(self, 'unc') and self.unc is not None:
if value.shape != self.unc.shape:
raise ValueError("dimensions should match that of unc")
self._val = value
else:
raise TypeError("val should be a multi-dimensional array")
@property
def unc(self):
return self._unc
@unc.setter
def unc(self, value):
if type(value) in [list, tuple]:
value = np.array(value)
if value is None:
self._unc = value
elif isinstance(value, np.ndarray) and value.ndim >= 1:
if self.nu is not None and len(self.nu) != value.shape[-1]:
raise ValueError("the last dimension of the unc array should match the length of the nu array (expected {0} but found {1})".format(len(self.nu), value.shape[-1]))
else:
if hasattr(self, 'val') and self.val is not None:
if value.shape != self.val.shape:
raise ValueError("dimensions should match that of val")
self._unc = value
else:
raise TypeError("unc should be a multi-dimensional array")
@property
def unit(self):
return self._unit
@unit.setter
def unit(self, value):
if value is None or isinstance(value, six.string_types):
self._unit = value
else:
raise ValueError("unit should be a string")
@property
def wav(self):
if self.nu is None:
return None
else:
return c / self.nu * 1e4
def __iter__(self):
if self.unc is None:
return (x for x in [self.wav, self.val])
else:
return (x for x in [self.wav, self.val, self.unc])
@property
def x_min(self):
return self._x_min
@x_min.setter
def x_min(self, value):
if value is None or (np.isscalar(value) and np.isreal(value)):
self._x_min = value
else:
raise ValueError("x_min should be a real scalar value")
@property
def x_max(self):
return self._x_max
@x_max.setter
def x_max(self, value):
if value is None or (np.isscalar(value) and np.isreal(value)):
self._x_max = value
else:
raise ValueError("x_max should be a real scalar value")
@property
def y_min(self):
return self._y_min
@y_min.setter
def y_min(self, value):
if value is None or (np.isscalar(value) and np.isreal(value)):
self._y_min = value
else:
raise ValueError("y_min should be a real scalar value")
@property
def y_max(self):
return self._y_max
@y_max.setter
def y_max(self, value):
if value is None or (np.isscalar(value) and np.isreal(value)):
self._y_max = value
else:
raise ValueError("y_max should be a real scalar value")
@property
def lon_min(self):
return self._lon_min
@lon_min.setter
def lon_min(self, value):
if value is None or (np.isscalar(value) and np.isreal(value)):
self._lon_min = value
else:
raise ValueError("lon_min should be a real scalar value")
@property
|
BSD 2-Clause Simplified License
|
shallowtoil/drol
|
pysot/utils/bbox.py
|
cxy_wh_2_rect1
|
python
|
def cxy_wh_2_rect1(pos, sz):
return np.array([pos[0]-sz[0]/2+1, pos[1]-sz[1]/2+1, sz[0], sz[1]])
|
convert (cx, cy, w, h) to (x1, y1, w, h), 1-index
|
https://github.com/shallowtoil/drol/blob/4aebe575394bc035e9924c8711c7d5d76bfef37a/pysot/utils/bbox.py#L97-L100
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from collections import namedtuple
import numpy as np
Corner = namedtuple('Corner', 'x1 y1 x2 y2')
BBox = Corner
Center = namedtuple('Center', 'x y w h')
def corner2center(corner):
if isinstance(corner, Corner):
x1, y1, x2, y2 = corner
return Center((x1 + x2) * 0.5, (y1 + y2) * 0.5, (x2 - x1), (y2 - y1))
else:
x1, y1, x2, y2 = corner[0], corner[1], corner[2], corner[3]
x = (x1 + x2) * 0.5
y = (y1 + y2) * 0.5
w = x2 - x1
h = y2 - y1
return x, y, w, h
def center2corner(center):
if isinstance(center, Center):
x, y, w, h = center
return Corner(x - w * 0.5, y - h * 0.5, x + w * 0.5, y + h * 0.5)
else:
x, y, w, h = center[0], center[1], center[2], center[3]
x1 = x - w * 0.5
y1 = y - h * 0.5
x2 = x + w * 0.5
y2 = y + h * 0.5
return x1, y1, x2, y2
def IoU(rect1, rect2):
x1, y1, x2, y2 = rect1[0], rect1[1], rect1[2], rect1[3]
tx1, ty1, tx2, ty2 = rect2[0], rect2[1], rect2[2], rect2[3]
xx1 = np.maximum(tx1, x1)
yy1 = np.maximum(ty1, y1)
xx2 = np.minimum(tx2, x2)
yy2 = np.minimum(ty2, y2)
ww = np.maximum(0, xx2 - xx1)
hh = np.maximum(0, yy2 - yy1)
area = (x2-x1) * (y2-y1)
target_a = (tx2-tx1) * (ty2 - ty1)
inter = ww * hh
iou = inter / (area + target_a - inter)
return iou
def cxy_wh_2_rect(pos, sz):
return np.array([pos[0]-sz[0]/2, pos[1]-sz[1]/2, sz[0], sz[1]])
def rect_2_cxy_wh(rect):
return np.array([rect[0]+rect[2]/2, rect[1]+rect[3]/2]), np.array([rect[2], rect[3]])
|
Apache License 2.0
|
gabstopper/smc-python
|
smc/core/interfaces.py
|
QoS.dscp_marking_and_throttling
|
python
|
def dscp_marking_and_throttling(self, qos_policy):
self._interface.data.update(qos_limit=-1,
qos_mode='dscp',
qos_policy_ref=qos_policy.href)
|
Enable DSCP marking and throttling on the interface. This requires that
you provide a QoS policy to which identifies DSCP tags and how to prioritize
that traffic.
:param QoSPolicy qos_policy: the qos policy to apply to the interface
|
https://github.com/gabstopper/smc-python/blob/54386c8a710727cc1acf69334a57b155d2f5408c/smc/core/interfaces.py#L369-L379
|
import copy
from smc.base.model import SubElement, lookup_class, ElementCache
from smc.api.exceptions import InterfaceNotFound
from smc.core.route import del_invalid_routes
from smc.core.sub_interfaces import (
NodeInterface, SingleNodeInterface, ClusterVirtualInterface,
InlineInterface, CaptureInterface, get_sub_interface, SubInterfaceCollection)
from smc.compat import string_types
from smc.elements.helpers import zone_helper, logical_intf_helper
from smc.elements.network import Zone
from smc.base.structs import BaseIterable
from smc.policy.qos import QoSPolicy
class InterfaceOptions(object):
def __init__(self, engine):
self._engine = engine
self.interface = InterfaceEditor(engine)
@property
def primary_mgt(self):
return self.interface.find_mgmt_interface('primary_mgt')
@property
def backup_mgt(self):
return self.interface.find_mgmt_interface('backup_mgt')
@property
def primary_heartbeat(self):
return self.interface.find_mgmt_interface('primary_heartbeat')
@property
def backup_heartbeat(self):
return self.interface.find_mgmt_interface('backup_heartbeat')
@property
def outgoing(self):
return self.interface.find_mgmt_interface('outgoing')
@property
def auth_request(self):
return self.interface.find_mgmt_interface('auth_request')
def set_auth_request(self, interface_id, address=None):
self.interface.set_auth_request(interface_id, address)
self._engine.update()
def set_primary_heartbeat(self, interface_id):
self.interface.set_unset(interface_id, 'primary_heartbeat')
self._engine.update()
def set_backup_heartbeat(self, interface_id):
self.interface.set_unset(interface_id, 'backup_heartbeat')
self._engine.update()
def set_primary_mgt(self, interface_id, auth_request=None,
address=None):
intfattr = ['primary_mgt', 'outgoing']
if self.interface.engine.type in ('virtual_fw',):
intfattr.remove('primary_mgt')
for attribute in intfattr:
self.interface.set_unset(interface_id, attribute, address)
if auth_request is not None:
self.interface.set_auth_request(auth_request)
else:
self.interface.set_auth_request(interface_id, address)
self._engine.update()
def set_backup_mgt(self, interface_id):
self.interface.set_unset(interface_id, 'backup_mgt')
self._engine.update()
def set_outgoing(self, interface_id):
self.interface.set_unset(interface_id, 'outgoing')
self._engine.update()
class QoS(object):
def __init__(self, interface):
self._interface = interface
def disable(self):
self._interface.data.update(qos_limit=-1, qos_mode='no_qos',
qos_policy_ref=None)
@property
def qos_policy(self):
return QoSPolicy.from_href(self._interface.data.get(
'qos_policy_ref', None))
@property
def qos_mode(self):
return self._interface.data.get('qos_mode', 'no_qos')
@property
def qos_limit(self):
return self._interface.data.get('qos_limit', -1)
def statistics_only(self):
self._interface.data.update(qos_limit=-1, qos_mode='statistics_only',
qos_policy_ref=None)
def full_qos(self, qos_limit, qos_policy):
self._interface.data.update(qos_limit=qos_limit,
qos_mode='full_qos',
qos_policy_ref=qos_policy.href)
|
Apache License 2.0
|
shaohua0116/demo2program
|
models/baselines/model_induction.py
|
PoolingAttentionWrapper.__init__
|
python
|
def __init__(self,
cell,
attention_mechanism,
attention_layer_size=None,
alignment_history=False,
cell_input_fn=None,
output_attention=True,
initial_cell_state=None,
pooling='avgpool',
name=None):
super(PoolingAttentionWrapper, self).__init__(
cell,
attention_mechanism,
attention_layer_size=None,
alignment_history=alignment_history,
cell_input_fn=cell_input_fn,
output_attention=output_attention,
initial_cell_state=initial_cell_state,
name=name)
self.pooling = pooling
if attention_layer_size is not None:
if not isinstance(attention_layer_size, (int, float)):
raise ValueError('attention_layer_size should be a single number.')
self._attention_layers = tuple(
layers_core.Dense(
attention_layer_size, name="attention_layer", use_bias=False)
for _ in range(len(self._attention_mechanisms)))
self._attention_layer_size = attention_layer_size
else:
attention_layer_sizes = [
attention_mechanism.values.get_shape()[-1].value
for attention_mechanism in self._attention_mechanisms]
if max(attention_layer_sizes) != min(attention_layer_sizes):
raise ValueError('When attention_layer_size is None, '
'attention mechanisms should output with the '
'same dimension.')
self._attention_layers = None
self._attention_layer_size = min(attention_layer_sizes)
|
Construct the `PoolingAttentionWrapper`.
Args:
attention_layer_size: single Python integer.
Otherwise, this is same as the AtentionWrapper.
|
https://github.com/shaohua0116/demo2program/blob/23464a69bfbf6fac9752fd423d14b03d37d1d1c6/models/baselines/model_induction.py#L59-L105
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import tensorflow as tf
import tensorflow.contrib.rnn as rnn
import tensorflow.contrib.seq2seq as seq2seq
from tensorflow.python.framework import ops
from tensorflow.python.layers import core as layers_core
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from collections import namedtuple
from models.util import log
from models.ops import fc, conv2d
SequenceLossOutput = namedtuple(
'SequenceLossOutput',
'mask loss output token_acc seq_acc syntax_acc ' +
'is_correct_syntax pred_tokens is_same_seq')
def _compute_attention(attention_mechanism, cell_output, previous_alignments,
attention_layer, reuse=False):
with tf.variable_scope('compute_attention', reuse=reuse):
alignments = attention_mechanism(
cell_output, previous_alignments=previous_alignments)
expanded_alignments = array_ops.expand_dims(alignments, 1)
context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
context = array_ops.squeeze(context, [1])
if attention_layer is not None:
with tf.variable_scope('compute_attention', reuse=reuse):
attention = attention_layer(array_ops.concat([cell_output, context], 1))
else:
attention = context
return attention, alignments
class PoolingAttentionWrapper(seq2seq.AttentionWrapper):
|
MIT License
|
locustio/locust
|
locust/stats.py
|
StatsEntry.extend
|
python
|
def extend(self, other):
old_last_request_timestamp = self.last_request_timestamp
if self.last_request_timestamp is not None and other.last_request_timestamp is not None:
self.last_request_timestamp = max(self.last_request_timestamp, other.last_request_timestamp)
elif other.last_request_timestamp is not None:
self.last_request_timestamp = other.last_request_timestamp
self.start_time = min(self.start_time, other.start_time)
self.num_requests = self.num_requests + other.num_requests
self.num_none_requests = self.num_none_requests + other.num_none_requests
self.num_failures = self.num_failures + other.num_failures
self.total_response_time = self.total_response_time + other.total_response_time
self.max_response_time = max(self.max_response_time, other.max_response_time)
if self.min_response_time is not None and other.min_response_time is not None:
self.min_response_time = min(self.min_response_time, other.min_response_time)
elif other.min_response_time is not None:
self.min_response_time = other.min_response_time
self.total_content_length = self.total_content_length + other.total_content_length
for key in other.response_times:
self.response_times[key] = self.response_times.get(key, 0) + other.response_times[key]
for key in other.num_reqs_per_sec:
self.num_reqs_per_sec[key] = self.num_reqs_per_sec.get(key, 0) + other.num_reqs_per_sec[key]
for key in other.num_fail_per_sec:
self.num_fail_per_sec[key] = self.num_fail_per_sec.get(key, 0) + other.num_fail_per_sec[key]
if self.use_response_times_cache:
last_time = self.last_request_timestamp and int(self.last_request_timestamp) or None
if last_time and last_time > (old_last_request_timestamp and int(old_last_request_timestamp) or 0):
self._cache_response_times(last_time)
|
Extend the data from the current StatsEntry with the stats from another
StatsEntry instance.
|
https://github.com/locustio/locust/blob/58487b526075826584690cdd2ad4ab1218afa146/locust/stats.py#L424-L467
|
import datetime
import hashlib
import time
from collections import namedtuple, OrderedDict
from copy import copy
from itertools import chain
import os
import csv
import gevent
from .exception import StopUser, CatchResponseError
import logging
console_logger = logging.getLogger("locust.stats_logger")
try:
STATS_NAME_WIDTH = max(min(os.get_terminal_size()[0] - 80, 80), 0)
except OSError:
STATS_NAME_WIDTH = 80
STATS_TYPE_WIDTH = 8
CONSOLE_STATS_INTERVAL_SEC = 2
HISTORY_STATS_INTERVAL_SEC = 5
CSV_STATS_INTERVAL_SEC = 1
CSV_STATS_FLUSH_INTERVAL_SEC = 10
CURRENT_RESPONSE_TIME_PERCENTILE_WINDOW = 10
CachedResponseTimes = namedtuple("CachedResponseTimes", ["response_times", "num_requests"])
PERCENTILES_TO_REPORT = [0.50, 0.66, 0.75, 0.80, 0.90, 0.95, 0.98, 0.99, 0.999, 0.9999, 1.0]
class RequestStatsAdditionError(Exception):
pass
def get_readable_percentiles(percentile_list):
return [
f"{int(percentile * 100) if (percentile * 100).is_integer() else round(100 * percentile, 6)}%"
for percentile in percentile_list
]
def calculate_response_time_percentile(response_times, num_requests, percent):
num_of_request = int((num_requests * percent))
processed_count = 0
for response_time in sorted(response_times.keys(), reverse=True):
processed_count += response_times[response_time]
if num_requests - processed_count <= num_of_request:
return response_time
return 0
def diff_response_time_dicts(latest, old):
new = {}
for t in latest:
diff = latest[t] - old.get(t, 0)
if diff:
new[t] = diff
return new
class RequestStats:
def __init__(self, use_response_times_cache=True):
self.use_response_times_cache = use_response_times_cache
self.entries = {}
self.errors = {}
self.total = StatsEntry(self, "Aggregated", None, use_response_times_cache=self.use_response_times_cache)
self.history = []
@property
def num_requests(self):
return self.total.num_requests
@property
def num_none_requests(self):
return self.total.num_none_requests
@property
def num_failures(self):
return self.total.num_failures
@property
def last_request_timestamp(self):
return self.total.last_request_timestamp
@property
def start_time(self):
return self.total.start_time
def log_request(self, method, name, response_time, content_length):
self.total.log(response_time, content_length)
self.get(name, method).log(response_time, content_length)
def log_error(self, method, name, error):
self.total.log_error(error)
self.get(name, method).log_error(error)
key = StatsError.create_key(method, name, error)
entry = self.errors.get(key)
if not entry:
entry = StatsError(method, name, error)
self.errors[key] = entry
entry.occurred()
def get(self, name, method):
entry = self.entries.get((name, method))
if not entry:
entry = StatsEntry(self, name, method, use_response_times_cache=self.use_response_times_cache)
self.entries[(name, method)] = entry
return entry
def reset_all(self):
self.total.reset()
self.errors = {}
for r in self.entries.values():
r.reset()
self.history = []
def clear_all(self):
self.total = StatsEntry(self, "Aggregated", None, use_response_times_cache=self.use_response_times_cache)
self.entries = {}
self.errors = {}
self.history = []
def serialize_stats(self):
return [
self.entries[key].get_stripped_report()
for key in self.entries.keys()
if not (self.entries[key].num_requests == 0 and self.entries[key].num_failures == 0)
]
def serialize_errors(self):
return dict([(k, e.to_dict()) for k, e in self.errors.items()])
class StatsEntry:
name = None
method = None
num_requests = None
num_none_requests = None
num_failures = None
total_response_time = None
min_response_time = None
max_response_time = None
num_reqs_per_sec = None
num_fail_per_sec = None
response_times = None
use_response_times_cache = False
response_times_cache = None
total_content_length = None
start_time = None
last_request_timestamp = None
def __init__(self, stats, name, method, use_response_times_cache=False):
self.stats = stats
self.name = name
self.method = method
self.use_response_times_cache = use_response_times_cache
self.reset()
def reset(self):
self.start_time = time.time()
self.num_requests = 0
self.num_none_requests = 0
self.num_failures = 0
self.total_response_time = 0
self.response_times = {}
self.min_response_time = None
self.max_response_time = 0
self.last_request_timestamp = None
self.num_reqs_per_sec = {}
self.num_fail_per_sec = {}
self.total_content_length = 0
if self.use_response_times_cache:
self.response_times_cache = OrderedDict()
self._cache_response_times(int(time.time()))
def log(self, response_time, content_length):
current_time = time.time()
t = int(current_time)
if self.use_response_times_cache and self.last_request_timestamp and t > int(self.last_request_timestamp):
self._cache_response_times(t - 1)
self.num_requests += 1
self._log_time_of_request(current_time)
self._log_response_time(response_time)
self.total_content_length += content_length
def _log_time_of_request(self, current_time):
t = int(current_time)
self.num_reqs_per_sec[t] = self.num_reqs_per_sec.setdefault(t, 0) + 1
self.last_request_timestamp = current_time
def _log_response_time(self, response_time):
if response_time is None:
self.num_none_requests += 1
return
self.total_response_time += response_time
if self.min_response_time is None:
self.min_response_time = response_time
self.min_response_time = min(self.min_response_time, response_time)
self.max_response_time = max(self.max_response_time, response_time)
if response_time < 100:
rounded_response_time = round(response_time)
elif response_time < 1000:
rounded_response_time = round(response_time, -1)
elif response_time < 10000:
rounded_response_time = round(response_time, -2)
else:
rounded_response_time = round(response_time, -3)
self.response_times.setdefault(rounded_response_time, 0)
self.response_times[rounded_response_time] += 1
def log_error(self, error):
self.num_failures += 1
t = int(time.time())
self.num_fail_per_sec[t] = self.num_fail_per_sec.setdefault(t, 0) + 1
@property
def fail_ratio(self):
try:
return float(self.num_failures) / self.num_requests
except ZeroDivisionError:
if self.num_failures > 0:
return 1.0
else:
return 0.0
@property
def avg_response_time(self):
try:
return float(self.total_response_time) / (self.num_requests - self.num_none_requests)
except ZeroDivisionError:
return 0
@property
def median_response_time(self):
if not self.response_times:
return 0
median = median_from_dict(self.num_requests - self.num_none_requests, self.response_times) or 0
if median > self.max_response_time:
median = self.max_response_time
elif median < self.min_response_time:
median = self.min_response_time
return median
@property
def current_rps(self):
if self.stats.last_request_timestamp is None:
return 0
slice_start_time = max(int(self.stats.last_request_timestamp) - 12, int(self.stats.start_time or 0))
reqs = [
self.num_reqs_per_sec.get(t, 0) for t in range(slice_start_time, int(self.stats.last_request_timestamp) - 2)
]
return avg(reqs)
@property
def current_fail_per_sec(self):
if self.stats.last_request_timestamp is None:
return 0
slice_start_time = max(int(self.stats.last_request_timestamp) - 12, int(self.stats.start_time or 0))
reqs = [
self.num_fail_per_sec.get(t, 0) for t in range(slice_start_time, int(self.stats.last_request_timestamp) - 2)
]
return avg(reqs)
@property
def total_rps(self):
if not self.stats.last_request_timestamp or not self.stats.start_time:
return 0.0
try:
return self.num_requests / (self.stats.last_request_timestamp - self.stats.start_time)
except ZeroDivisionError:
return 0.0
@property
def total_fail_per_sec(self):
if not self.stats.last_request_timestamp or not self.stats.start_time:
return 0.0
try:
return self.num_failures / (self.stats.last_request_timestamp - self.stats.start_time)
except ZeroDivisionError:
return 0.0
@property
def avg_content_length(self):
try:
return self.total_content_length / self.num_requests
except ZeroDivisionError:
return 0
|
MIT License
|
deepchem/torchchem
|
contrib/MolDQN/utils.py
|
contains_scaffold
|
python
|
def contains_scaffold(mol, scaffold):
pattern = Chem.MolFromSmiles(scaffold)
matches = mol.GetSubstructMatches(pattern)
return bool(matches)
|
Returns whether mol contains the given scaffold.
NOTE: This is more advanced than simply computing scaffold equality (i.e.
scaffold(mol_a) == scaffold(mol_b)). This method allows the target scaffold to
be a subset of the (possibly larger) scaffold in mol.
Args:
mol: RDKit Mol.
scaffold: String scaffold SMILES.
Returns:
Boolean whether scaffold is found in mol.
|
https://github.com/deepchem/torchchem/blob/b4cee54088c2d1d52c349c3ed67126bc86940ba8/contrib/MolDQN/utils.py#L80-L96
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from rdkit import Chem
from rdkit.Chem import Descriptors
from rdkit.Chem.Scaffolds import MurckoScaffold
import torch.nn as nn
from rdkit import DataStructs
from rdkit.Chem import AllChem
from rdkit.Chem import RDConfig
import numpy as np
import hyp
import sys
import os
sys.path.append(os.path.join(RDConfig.RDContribDir, "SA_Score"))
import sascorer
def get_fingerprint(smiles, fingerprint_length, fingerprint_radius):
if smiles is None:
return np.zeros((hyp.fingerprint_length,))
molecule = Chem.MolFromSmiles(smiles)
if molecule is None:
return np.zeros((hyp.fingerprint_length,))
fingerprint = AllChem.GetMorganFingerprintAsBitVect(
molecule, hyp.fingerprint_radius, hyp.fingerprint_length)
arr = np.zeros((1,))
DataStructs.ConvertToNumpyArray(fingerprint, arr)
return arr
def atom_valences(atom_types):
periodic_table = Chem.GetPeriodicTable()
return [
max(list(periodic_table.GetValenceList(atom_type)))
for atom_type in atom_types
]
def get_scaffold(mol):
return Chem.MolToSmiles(
MurckoScaffold.GetScaffoldForMol(mol), isomericSmiles=True)
|
MIT License
|
dallinger/dallinger
|
demos/dlgr/demos/chatroom/experiment.py
|
CoordinationChatroom.__init__
|
python
|
def __init__(self, session=None):
super(CoordinationChatroom, self).__init__(session)
if session:
self.setup()
|
Initialize the experiment.
|
https://github.com/dallinger/dallinger/blob/2bc309c422935d372a7568cc18340e3b5b3f6a21/demos/dlgr/demos/chatroom/experiment.py#L30-L34
|
import logging
from dallinger import networks
from dallinger.compat import unicode
from dallinger.config import get_config
from dallinger.experiment import Experiment
from dallinger.nodes import Agent
try:
from .bots import Bot
Bot = Bot
except ImportError:
pass
logger = logging.getLogger(__file__)
def extra_parameters():
config = get_config()
config.register("network", unicode)
config.register("repeats", int)
config.register("n", int)
class CoordinationChatroom(Experiment):
|
MIT License
|
qiskit/qiskit-aqua
|
qiskit/optimization/converters/quadratic_program_to_qubo.py
|
QuadraticProgramToQubo.convert
|
python
|
def convert(self, problem: QuadraticProgram) -> QuadraticProgram:
msg = self.get_compatibility_msg(problem)
if len(msg) > 0:
raise QiskitOptimizationError('Incompatible problem: {}'.format(msg))
problem_ = self._ineq_to_eq.convert(problem)
problem_ = self._int_to_bin.convert(problem_)
problem_ = self._penalize_lin_eq_constraints.convert(problem_)
return problem_
|
Convert a problem with linear equality constraints into new one with a QUBO form.
Args:
problem: The problem with linear equality constraints to be solved.
Returns:
The problem converted in QUBO format.
Raises:
QiskitOptimizationError: In case of an incompatible problem.
|
https://github.com/qiskit/qiskit-aqua/blob/5ccf0e20129880e78a57f2f78c59b9a362ebb208/qiskit/optimization/converters/quadratic_program_to_qubo.py#L50-L78
|
from typing import Optional, Union, List
import numpy as np
from .quadratic_program_converter import QuadraticProgramConverter
from ..exceptions import QiskitOptimizationError
from ..problems.quadratic_program import QuadraticProgram
class QuadraticProgramToQubo(QuadraticProgramConverter):
def __init__(self, penalty: Optional[float] = None) -> None:
from ..converters.integer_to_binary import IntegerToBinary
from ..converters.inequality_to_equality import InequalityToEquality
from ..converters.linear_equality_to_penalty import LinearEqualityToPenalty
self._int_to_bin = IntegerToBinary()
self._ineq_to_eq = InequalityToEquality(mode='integer')
self._penalize_lin_eq_constraints = LinearEqualityToPenalty(penalty=penalty)
|
Apache License 2.0
|
chaingreenorg/chaingreen-blockchain
|
chaingreen/consensus/block_rewards.py
|
calculate_pool_reward
|
python
|
def calculate_pool_reward(height: uint32) -> uint64:
if height == 0:
return uint64(0)
elif height < 4 * _blocks_per_year:
return uint64(int((7 / 8) * 500 * _mio_per_chaingreen))
elif height < 8 * _blocks_per_year:
return uint64(int((7 / 8) * 250 * _mio_per_chaingreen))
elif height < 12 * _blocks_per_year:
return uint64(int((7 / 8) * 125 * _mio_per_chaingreen))
elif height < 16 * _blocks_per_year:
return uint64(int((7 / 8) * 72.5 * _mio_per_chaingreen))
elif height < 20 * _blocks_per_year:
return uint64(int((7 / 8) * 31.25 * _mio_per_chaingreen))
elif height < 24 * _blocks_per_year:
return uint64(int((7 / 8) * 15.625 * _mio_per_chaingreen))
elif height < 28 * _blocks_per_year:
return uint64(int((7 / 8) * 7.8125 * _mio_per_chaingreen))
else:
return uint64(0)
|
Returns the pool reward at a certain block height. The pool earns 7/8 of the reward in each block. If the farmer
is solo farming, they act as the pool, and therefore earn the entire block reward.
These halving events will not be hit at the exact times
(3 years, etc), due to fluctuations in difficulty. They will likely come early, if the network space and VDF
rates increase continuously.
|
https://github.com/chaingreenorg/chaingreen-blockchain/blob/43a0cd41fdefc93a891e70d2430ed330730715f3/chaingreen/consensus/block_rewards.py#L8-L33
|
from chaingreen.util.ints import uint32, uint64
_mio_per_chaingreen = 1000000000000
_blocks_per_year = 1681920
|
Apache License 2.0
|
walkerning/aw_nas
|
aw_nas/rollout/mutation.py
|
MutationRollout.random_sample
|
python
|
def random_sample(cls, population, parent_index, num_mutations=1, primitive_prob=0.5):
search_space = population.search_space
base_arch = search_space.rollout_from_genotype(
population.get_model(parent_index).genotype).arch
mutations = []
primitive_choices = collections.defaultdict(list)
primitive_mutated = collections.defaultdict(int)
node_choices = collections.defaultdict(list)
node_mutated = collections.defaultdict(int)
for _ in range(num_mutations):
mutation_type = CellMutation.PRIMITIVE if np.random.rand() < primitive_prob else CellMutation.NODE
cell = np.random.randint(low=0, high=search_space.num_cell_groups)
step = np.random.randint(low=0, high=search_space.num_steps)
connection = np.random.randint(low=0, high=search_space.num_node_inputs)
if mutation_type == CellMutation.PRIMITIVE:
if (cell, step, connection) in primitive_choices:
choices = primitive_choices[(cell, step, connection)]
else:
ori = base_arch[cell][1][search_space.num_node_inputs * step + connection]
num_prims = search_space._num_primitives if not search_space.cellwise_primitives else search_space._num_primitives_list[cell]
choices = list(range(num_prims))
choices.remove(ori)
primitive_choices[(cell, step, connection)] = choices
expect(choices,
("There are no non-duplicate primitive mutation available"
" anymore for ({}, {}, {}) after {} mutations").format(
cell, step, connection, primitive_mutated[(cell, step, connection)]))
new_choice = np.random.choice(choices)
choices.remove(new_choice)
base_arch[cell][1][search_space.num_node_inputs * step + connection] = new_choice
primitive_mutated[(cell, step, connection)] += 1
else:
if (cell, step, connection) in node_choices:
choices = node_choices[(cell, step, connection)]
else:
ori = base_arch[cell][0][search_space.num_node_inputs * step + connection]
choices = list(range(search_space.num_init_nodes + step))
choices.remove(ori)
node_choices[(cell, step, connection)] = choices
expect(choices,
("There are no non-duplicate input node mutation available"
" anymore for ({}, {}, {}) after {} mutations").format(
cell, step, connection, node_mutated[(cell, step, connection)]))
new_choice = np.random.choice(choices)
choices.remove(new_choice)
base_arch[cell][0][search_space.num_node_inputs * step + connection] = new_choice
node_mutated[(cell, step, connection)] += 1
mutations.append(CellMutation(search_space, mutation_type, cell, step, connection,
modified=new_choice))
return cls(population, parent_index, mutations, search_space)
|
Random sample a MutationRollout with mutations.
Duplication is checked for multiple mutations.
|
https://github.com/walkerning/aw_nas/blob/8a32196ce342b8ad9e3885895735d1286e25beba/aw_nas/rollout/mutation.py#L346-L406
|
import os
import copy
import glob
import shutil
import collections
import six
import yaml
import numpy as np
from aw_nas import utils
from aw_nas.utils import expect
from aw_nas.base import Component
from aw_nas.rollout.base import BaseRollout
from aw_nas.common import get_genotype_substr, genotype_from_str, ConfigTemplate
from aw_nas.utils import getLogger
class ModelRecord(object):
def __init__(self, genotype, config, search_space,
info_path=None, checkpoint_path=None, finished=False,
confidence=None, perfs=None):
self._genotype = genotype
self.search_space = search_space
self.config = config
self.info_path = info_path
self.checkpoint_path = checkpoint_path
self.finished = finished
self.confidence = confidence
self.perfs = perfs
def __repr__(self):
return ("ModelRecord({_genotype}, info_path={info_path}, ckpt_path={ckpt_path}, "
"finished={finished}, perfs={perfs}").format(
_genotype=self._genotype,
info_path=self.info_path, ckpt_path=self.checkpoint_path,
finished=self.finished, perfs=self.perfs)
@property
def genotype(self):
return genotype_from_str(self._genotype, self.search_space)
def save(self, path):
meta_info = collections.OrderedDict()
meta_info["genotypes"] = get_genotype_substr(str(self.genotype))
meta_info["config"] = dict(self.config)
meta_info["checkpoint_path"] = self.checkpoint_path
meta_info["finished"] = self.finished
meta_info["confidence"] = self.confidence
meta_info["perfs"] = self.perfs
self.info_path = path
with open(path, "w") as o_stream:
yaml.safe_dump(meta_info, stream=o_stream, default_flow_style=False)
def save_config(self, fname):
with open(fname, "w") as c_f:
yaml.safe_dump(dict(self.config), c_f)
@classmethod
def init_from_file(cls, path, search_space):
with open(path, "r") as meta_f:
meta_info = yaml.safe_load(meta_f)
record = cls(
str(genotype_from_str(meta_info["genotypes"], search_space)),
meta_info["config"], search_space,
os.path.abspath(path),
meta_info["checkpoint_path"], finished=meta_info["finished"],
confidence=meta_info.get("confidence", None), perfs=meta_info["perfs"])
return record
class Population(Component):
def __init__(self, search_space, model_records, cfg_template, next_index=None):
super(Population, self).__init__(schedule_cfg=None)
self.search_space = search_space
self._model_records = model_records
self.genotype_records = collections.OrderedDict([
(ind, genotype_from_str(
record.genotype, self.search_space))
for ind, record in six.iteritems(self._model_records)])
self._size = len(model_records)
self.cfg_template = cfg_template
if next_index is None:
self._next_index = np.max(list(model_records.keys())) + 1 if model_records else 0
else:
self._next_index = next_index
self.start_save_index = self._next_index
def __getstate__(self):
state = super(Population, self).__getstate__().copy()
del state["genotype_records"]
return state
def __setstate__(self, state):
super(Population, self).__setstate__(state)
self.genotype_records = collections.OrderedDict([
(ind, genotype_from_str(
record.genotype, self.search_space))
for ind, record in six.iteritems(self._model_records)])
@property
def model_records(self):
return self._model_records
@property
def next_index(self):
return self._next_index
@property
def size(self):
return self._size
def get_model(self, index):
return self.model_records[index]
def add_model(self, model_record, index=None):
index = self._next_index if index is None else index
self.model_records[index] = model_record
self.genotype_records[index] = genotype_from_str(model_record.genotype, self.search_space)
self._next_index += 1
self._size += 1
return index
def save(self, path, start_index=None):
path = utils.makedir(path)
backuped = 0
saved = 0
start_save_index = self.start_save_index if start_index is None else start_index
for ind, record in six.iteritems(self.model_records):
if ind < start_save_index:
continue
save_path = os.path.join(path, "{}.yaml".format(ind))
if os.path.exists(save_path):
backup_dir = utils.makedir(os.path.join(path, "overwrite_backup"))
backup_path = os.path.join(backup_dir, "{}.yaml".format(ind))
self.logger.warning("%s already exists; overwrite and backup to %s",
save_path, backup_path)
shutil.copyfile(save_path, backup_path)
backuped += 1
record.save(save_path)
saved += 1
self.logger.info("Saving start from index %d. %d/%d records saved "
"(%d records overwrited and backuped). By default "
"next save will start from index %d.",
self.start_save_index, saved, len(self.model_records),
backuped, self._next_index)
self.start_save_index = self._next_index
return saved
def contain_rollout(self, rollout):
return rollout.genotype in self.genotype_records.values()
def remove_age(self, args):
def remove_perf(self, args):
def __repr__(self):
return "{}(size={}, search_space={}, next_index={})".format(
self.__class__.__name__, self.size, self.search_space, self.next_index)
@classmethod
def init_from_dirs(cls, dirs, search_space=None, cfg_template_file=None):
assert dirs, "No dirs specified!"
if cfg_template_file is None:
cfg_template_file = os.path.join(dirs[0], "template.yaml")
with open(cfg_template_file, "r") as cfg_f:
cfg_template = ConfigTemplate(yaml.safe_load(cfg_f))
getLogger("population").info("Read the template config from %s", cfg_template_file)
model_records = collections.OrderedDict()
if search_space is None:
from aw_nas.common import get_search_space
search_space = get_search_space(cfg_template["search_space_type"],
**cfg_template["search_space_cfg"])
for _, dir_ in enumerate(dirs):
meta_files = glob.glob(os.path.join(dir_, "*.yaml"))
for fname in meta_files:
if "template.yaml" in fname:
continue
index = int(os.path.basename(fname).rsplit(".", 1)[0])
expect(index not in model_records,
"There are duplicate index: {}. rename or soft-link the files".format(index))
model_records[index] = ModelRecord.init_from_file(fname, search_space)
getLogger("population").info("Parsed %d directories, total %d model records loaded.",
len(dirs), len(model_records))
return Population(search_space, model_records, cfg_template)
class CellMutation(object):
NODE = 0
PRIMITIVE = 1
def __init__(self, search_space, mutation_type, cell, step, connection, modified=None):
assert mutation_type in {CellMutation.PRIMITIVE, CellMutation.NODE}, "invalid mutation_type"
self.search_space = search_space
self.mutation_type = mutation_type
self.cell = cell
self.step = step
self.connection = connection
self.modified = modified
self.node = modified if self.mutation_type == CellMutation.NODE else None
self.primitive = modified if self.mutation_type == CellMutation.PRIMITIVE else None
if self.primitive:
self.primitive_str = search_space.cell_shared_primitives[self.cell][self.primitive] if search_space.cellwise_primitives else search_space.shared_primitives[self.primitive]
def apply(self, arch):
arch[self.cell][self.mutation_type] [self.search_space.num_node_inputs * self.step + self.connection] = self.modified
return arch
def __repr__(self):
return "Mutation({}, {}, {}, {}, {}{})".format(
self.cell,
self.step,
self.connection,
"primitive" if self.mutation_type == CellMutation.PRIMITIVE else "node",
self.modified,
", {}".format(self.primitive_str) if self.mutation_type == CellMutation.PRIMITIVE else ""
)
class MutationRollout(BaseRollout):
NAME = "mutation"
def __init__(self, population, parent_index, mutations, search_space, candidate_net=None):
super(MutationRollout, self).__init__()
self.population = population
self.parent_index = parent_index
self.mutations = mutations
self.search_space = search_space
self.candidate_net = candidate_net
self.arch = self.apply_mutation(
self.search_space,
self.search_space.rollout_from_genotype(
self.population.get_model(parent_index).genotype).arch,
self.mutations
)
self._genotype = None
self.model_record = ModelRecord(
str(self.genotype),
self.population.cfg_template.create_cfg(self.genotype),
search_space,
perfs=self.perf)
def __getstate__(self):
state = self.__dict__.copy()
if "_genotype" in state:
del state["_genotype"]
return state
@classmethod
def apply_mutation(cls, search_space, arch, mutations):
arch = copy.deepcopy(arch)
for mutation in mutations:
mutation.apply(arch)
return arch
def set_candidate_net(self, c_net):
self.candidate_net = c_net
def set_ckpt_path(self, path):
assert self.model_record is not None
self.model_record.checkpoint_path = path
def set_perf(self, value, name="reward"):
assert self.model_record
self.perf[name] = value
if not self.model_record.perfs is self.perf:
self.model_record.perfs[name] = value
return self
def genotype_list(self):
return list(self.genotype._asdict().items())
def plot_arch(self, filename, label="", edge_labels=None):
return self.search_space.plot_arch(self.genotype_list(),
filename,
label=label,
edge_labels=edge_labels)
@property
def genotype(self):
if self._genotype is None:
self._genotype = self.search_space.genotype(self.arch)
return self._genotype
@classmethod
|
MIT License
|
rapid7/vm-console-client-python
|
rapid7vmconsole/models/syslog_alert.py
|
SyslogAlert.notification
|
python
|
def notification(self):
return self._notification
|
Gets the notification of this SyslogAlert. # noqa: E501
The type of alert. # noqa: E501
:return: The notification of this SyslogAlert. # noqa: E501
:rtype: str
|
https://github.com/rapid7/vm-console-client-python/blob/55e1f573967bce27cc9a2d10c12a949b1142c2b3/rapid7vmconsole/models/syslog_alert.py#L250-L258
|
import pprint
import re
import six
class SyslogAlert(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'enabled': 'bool',
'enabled_scan_events': 'ScanEvents',
'enabled_vulnerability_events': 'VulnerabilityEvents',
'id': 'int',
'links': 'list[Link]',
'maximum_alerts': 'int',
'name': 'str',
'notification': 'str',
'server': 'str'
}
attribute_map = {
'enabled': 'enabled',
'enabled_scan_events': 'enabledScanEvents',
'enabled_vulnerability_events': 'enabledVulnerabilityEvents',
'id': 'id',
'links': 'links',
'maximum_alerts': 'maximumAlerts',
'name': 'name',
'notification': 'notification',
'server': 'server'
}
def __init__(self, enabled=None, enabled_scan_events=None, enabled_vulnerability_events=None, id=None, links=None, maximum_alerts=None, name=None, notification=None, server=None):
self._enabled = None
self._enabled_scan_events = None
self._enabled_vulnerability_events = None
self._id = None
self._links = None
self._maximum_alerts = None
self._name = None
self._notification = None
self._server = None
self.discriminator = None
self.enabled = enabled
if enabled_scan_events is not None:
self.enabled_scan_events = enabled_scan_events
if enabled_vulnerability_events is not None:
self.enabled_vulnerability_events = enabled_vulnerability_events
if id is not None:
self.id = id
if links is not None:
self.links = links
if maximum_alerts is not None:
self.maximum_alerts = maximum_alerts
self.name = name
self.notification = notification
self.server = server
@property
def enabled(self):
return self._enabled
@enabled.setter
def enabled(self, enabled):
if enabled is None:
raise ValueError("Invalid value for `enabled`, must not be `None`")
self._enabled = enabled
@property
def enabled_scan_events(self):
return self._enabled_scan_events
@enabled_scan_events.setter
def enabled_scan_events(self, enabled_scan_events):
self._enabled_scan_events = enabled_scan_events
@property
def enabled_vulnerability_events(self):
return self._enabled_vulnerability_events
@enabled_vulnerability_events.setter
def enabled_vulnerability_events(self, enabled_vulnerability_events):
self._enabled_vulnerability_events = enabled_vulnerability_events
@property
def id(self):
return self._id
@id.setter
def id(self, id):
self._id = id
@property
def links(self):
return self._links
@links.setter
def links(self, links):
self._links = links
@property
def maximum_alerts(self):
return self._maximum_alerts
@maximum_alerts.setter
def maximum_alerts(self, maximum_alerts):
if maximum_alerts is not None and maximum_alerts < 1:
raise ValueError("Invalid value for `maximum_alerts`, must be a value greater than or equal to `1`")
self._maximum_alerts = maximum_alerts
@property
def name(self):
return self._name
@name.setter
def name(self, name):
if name is None:
raise ValueError("Invalid value for `name`, must not be `None`")
self._name = name
@property
|
MIT License
|
babylonhealth/simba
|
simba/utils/vmf.py
|
fit_concentration
|
python
|
def fit_concentration(X):
X = np.array(X)
n, d = X.shape
R = la.norm(X.sum(axis=0)) / n
Rs = R**2
return R * (d - Rs) / (1.0 - Rs)
|
Computes the vMF MLE sol for the concentration parameter
NOTE: This is an approximate solution to a transcendental eq
:param X [nxd ndarray]: Design matrix of normalised word vectors
:return [float]: MLE concentration parameter solution
|
https://github.com/babylonhealth/simba/blob/b0124281c0efd59b088520e28add36d1038bce3b/simba/utils/vmf.py#L27-L38
|
from scipy.special import ive
import numpy as np
import numpy.linalg as la
def to_cartesian(phi):
d = len(phi)
X = np.cos(phi[0])
for i in range(1, d):
X += np.prod(np.sin(phi[:i]), axis=1) * np.cos(phi[i])
X += np.prod(np.sin(phi))
return X
def fit_mean_direction(X):
return X.sum(axis=0) / la.norm(X.sum(axis=0))
|
Apache License 2.0
|
hewlettpackard/python-hponeview
|
hpOneView/resources/storage/storage_volume_attachments.py
|
StorageVolumeAttachments.remove_extra_presentations
|
python
|
def remove_extra_presentations(self, resource, timeout=-1):
uri = self.URI + "/repair"
custom_headers = {'Accept-Language': 'en_US'}
return self._client.create(resource, uri=uri, timeout=timeout, custom_headers=custom_headers)
|
Removes extra presentations from a specified server profile.
Args:
resource (dict):
Object to create
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
Returns:
dict: Associated storage attachment resource.
|
https://github.com/hewlettpackard/python-hponeview/blob/678d53b338f6bc7af7adb63153d7d8d99dc94ac0/hpOneView/resources/storage/storage_volume_attachments.py#L98-L113
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from future import standard_library
standard_library.install_aliases()
from hpOneView.resources.resource import ResourceClient
class StorageVolumeAttachments(object):
URI = '/rest/storage-volume-attachments'
def __init__(self, con):
self._connection = con
self._client = ResourceClient(con, self.URI)
def get_all(self, start=0, count=-1, filter='', sort=''):
return self._client.get_all(start, count, filter=filter, sort=sort)
def get_extra_unmanaged_storage_volumes(self, start=0, count=-1, filter='', sort=''):
uri = self.URI + "/repair?alertFixType=ExtraUnmanagedStorageVolumes"
return self._client.get_all(start=start, count=count, filter=filter, sort=sort, uri=uri)
|
MIT License
|
breakingbytes/simkit
|
simkit/core/data_readers.py
|
NumPyGenFromTxtReader.load_data
|
python
|
def load_data(self, filename, *args, **kwargs):
header_param = self.parameters.get('header')
data_param = self.parameters['data']
dtype = data_param.get('dtype')
_utf8_list_to_ascii_tuple(dtype) if dtype else None
delimiter = data_param.get('delimiter')
skip_header = data_param.get('skip_header')
usecols = data_param.get('usecols')
names = data_param.get('names')
names = [str(_) for _ in names] if names else None
excludelist = data_param.get('excludelist')
deletechars = data_param.get('deletechars')
data_units = data_param.get('units', {})
if not (dtype or names):
raise UnnamedDataError(filename)
data = {}
with open(filename, 'r') as fid:
if header_param:
data.update(_read_header(fid, header_param))
fid.seek(0)
data_data = np.genfromtxt(fid, dtype, delimiter=delimiter,
skip_header=skip_header, usecols=usecols,
names=names, excludelist=excludelist,
deletechars=deletechars)
data.update(_apply_units(data_data, data_units, fid.name))
return data
|
load data from text file.
:param filename: name of file to read
:type filename: str
:returns: data read from file using :func:`numpy.genfromtxt`
:rtype: dict
:raises: :exc:`~simkit.core.exceptions.UnnamedDataError`
|
https://github.com/breakingbytes/simkit/blob/c247b6ecf46d727703c03cb0d987e35fd054eaa6/simkit/core/data_readers.py#L456-L498
|
from past.builtins import basestring
from io import StringIO
from simkit.core import UREG, Q_
from simkit.core.exceptions import (
UnnamedDataError, MixedTextNoMatchError
)
from xlrd import open_workbook
import csv
import numpy as np
import json
import os
import time
import re
EFG_PATTERN = '([-+]?(?:\\d+(?:\\.\\d*)?|\\.\\d+)(?:[eE][-+]?\\d+)?)'
RE_METH = ['search', 'match', 'findall', 'split']
class DataReader(object):
is_file_reader = True
def __init__(self, parameters, meta=None):
self.parameters = parameters
self.meta = meta
def load_data(self, *args, **kwargs):
raise NotImplementedError('load_data')
def apply_units_to_cache(self, data):
raise NotImplementedError('apply_units_to_cache')
class JSONReader(DataReader):
def __init__(self, parameters, meta=None):
super(JSONReader, self).__init__(parameters, meta)
self.orig_data_reader = meta.data_reader
def load_data(self, filename, *args, **kwargs):
if not filename.endswith('.json'):
filename += '.json'
with open(filename, 'r') as fid:
json_data = json.load(fid)
if (not self.orig_data_reader or
isinstance(self, self.orig_data_reader)):
return self.apply_units_to_cache(json_data['data'])
utc_mod_time = json_data.get('utc_mod_time')
orig_data_reader_obj = self.orig_data_reader(self.parameters, self.meta)
if utc_mod_time:
utc_mod_time = time.struct_time(utc_mod_time)
orig_filename = filename[:-5]
if utc_mod_time < time.gmtime(os.path.getmtime(orig_filename)):
os.remove(filename)
return orig_data_reader_obj.load_data(orig_filename)
return orig_data_reader_obj.apply_units_to_cache(json_data['data'])
def apply_units_to_cache(self, data):
for k, val in self.parameters.items():
if 'units' in val:
data[k] = Q_(data[k], val.get('units'))
return data
class XLRDReader(DataReader):
def load_data(self, filename, *args, **kwargs):
workbook = open_workbook(filename, verbosity=True)
data = {}
for param, pval in self.parameters.items():
sheet = pval['extras']['sheet']
worksheet = workbook.sheet_by_name(sheet)
prng0, prng1 = pval['extras']['range']
punits = str(pval.get('units') or '')
if prng0 is None:
prng0 = []
if prng1 is None:
prng1 = []
if isinstance(prng0, int) and isinstance(prng1, int):
datum = worksheet.cell_value(prng0, prng1)
elif isinstance(prng0, list) and isinstance(prng1, int):
datum = worksheet.col_values(prng1, *prng0)
elif isinstance(prng0, int) and isinstance(prng1, list):
datum = worksheet.row_values(prng0, *prng1)
else:
datum = []
for col in xrange(prng0[1], prng1[1]):
datum.append(worksheet.col_values(col, prng0[0],
prng1[0]))
try:
npdatum = np.array(datum, dtype=np.float)
except ValueError as err:
if not datum:
data[param] = None
elif all(isinstance(_, basestring) for _ in datum):
data[param] = datum
elif all(not _ for _ in datum):
data[param] = None
else:
raise err
else:
data[param] = npdatum * UREG(punits)
return data
def apply_units_to_cache(self, data):
for param, pval in self.parameters.items():
try:
data[param] *= UREG(str(pval.get('units') or ''))
except TypeError:
continue
return data
class NumPyLoadTxtReader(DataReader):
def load_data(self, filename, *args, **kwargs):
header_param = self.parameters.get('header')
data_param = self.parameters['data']
dtype = data_param['dtype']
_utf8_list_to_ascii_tuple(dtype) if dtype else None
delimiter = data_param.get('delimiter')
skiprows = data_param.get('skiprows')
data_units = data_param.get('units', {})
data = {}
with open(filename, 'r') as fid:
if header_param:
data.update(_read_header(fid, header_param))
fid.seek(0)
data_data = np.loadtxt(fid, dtype, delimiter=delimiter,
skiprows=skiprows)
data.update(_apply_units(data_data, data_units, fid.name))
return data
def apply_units_to_cache(self, data):
return _apply_units_to_numpy_data_readers(self.parameters, data)
class NumPyGenFromTxtReader(DataReader):
|
BSD 3-Clause New or Revised License
|
mrtango/rispy
|
rispy/parser.py
|
BaseParser.is_header
|
python
|
def is_header(self, line: str) -> bool:
return False
|
Determine whether a line is a header and should be skipped.
Only operates on lines outside of the reference.
|
https://github.com/mrtango/rispy/blob/d795f51264823ce666b36dd1538d3c8955f6d26f/rispy/parser.py#L242-L247
|
from collections import defaultdict
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, TextIO, Union, Optional
import re
from .config import LIST_TYPE_TAGS, TAG_KEY_MAPPING, WOK_TAG_KEY_MAPPING, WOK_LIST_TYPE_TAGS
__all__ = ["load", "loads", "BaseParser", "WokParser", "RisParser"]
class NextLine(Exception):
pass
class BaseParser(ABC):
START_TAG: str
END_TAG: str = "ER"
PATTERN: str
DEFAULT_IGNORE: List[str] = []
DEFAULT_MAPPING: Dict
DEFAULT_LIST_TAGS: List[str]
def __init__(
self,
*,
mapping: Optional[Dict] = None,
list_tags: Optional[List[str]] = None,
ignore: Optional[List[str]] = None,
skip_missing_tags: bool = False,
skip_unknown_tags: bool = False,
enforce_list_tags: bool = True,
):
self.pattern = re.compile(self.PATTERN)
self.mapping = mapping if mapping is not None else self.DEFAULT_MAPPING
self.list_tags = list_tags if list_tags is not None else self.DEFAULT_LIST_TAGS
self.ignore = ignore if ignore is not None else self.DEFAULT_IGNORE
self.skip_missing_tags = skip_missing_tags
self.skip_unknown_tags = skip_unknown_tags
self.enforce_list_tags = enforce_list_tags
def parse(self, text: str) -> List[Dict]:
clean_body = self.clean_text(text)
lines = clean_body.split("\n")
return list(self._parse_lines(lines))
def _parse_lines(self, lines):
self.in_ref = False
self.current = {}
self.last_tag = None
for line_number, line in enumerate(lines):
if not line.strip():
continue
if self.is_tag(line):
try:
yield self._parse_tag(line, line_number)
self.current = {}
self.in_ref = False
self.last_tag = None
except NextLine:
continue
else:
try:
yield self._parse_other(line, line_number)
except NextLine:
continue
def _parse_tag(self, line, line_number):
tag = self.get_tag(line)
if tag in self.ignore:
raise NextLine
if tag == self.END_TAG:
return self.current
if tag == self.START_TAG:
if self.in_ref:
raise IOError(f"Missing end of record tag in line {line_number}:\n {line}")
self._add_tag(tag, line)
self.in_ref = True
raise NextLine
if not self.in_ref:
raise IOError(f"Invalid start tag in line {line_number}:\n {line}")
if tag in self.mapping:
self._add_tag(tag, line)
raise NextLine
elif not self.skip_unknown_tags:
self._add_unknown_tag(tag, line)
raise NextLine
raise NextLine
def _parse_other(self, line, line_number):
if self.skip_missing_tags:
raise NextLine
if self.in_ref:
if self.last_tag is None:
raise IOError(f"Expected tag in line {line_number}:\n {line}")
self._add_tag(self.last_tag, line, all_line=True)
raise NextLine
if self.is_header(line):
raise NextLine
raise IOError(f"Expected start tag in line {line_number}:\n {line}")
def _add_single_value(self, name, value, is_multi=False):
if not is_multi:
if self.enforce_list_tags or name not in self.current:
ignore_this_if_has_one = value
self.current.setdefault(name, ignore_this_if_has_one)
else:
self._add_list_value(name, value)
return
value_must_exist_or_is_bug = self.current[name]
self.current[name] = " ".join((value_must_exist_or_is_bug, value))
def _add_list_value(self, name, value):
try:
self.current[name].append(value)
except KeyError:
self.current[name] = [value]
except AttributeError:
if not isinstance(self.current[name], str):
raise
must_exist = self.current[name]
self.current[name] = [must_exist] + [value]
def _add_tag(self, tag, line, all_line=False):
self.last_tag = tag
name = self.mapping[tag]
if all_line:
new_value = line.strip()
else:
new_value = self.get_content(line)
if tag not in self.list_tags:
self._add_single_value(name, new_value, is_multi=all_line)
return
self._add_list_value(name, new_value)
def _add_unknown_tag(self, tag, line):
name = self.mapping["UK"]
value = self.get_content(line)
if name not in self.current:
self.current[name] = defaultdict(list)
self.current[name][tag].append(value)
def clean_text(self, text: str) -> str:
text = text.lstrip("\ufeff")
return text
def get_tag(self, line: str) -> str:
return line[0:2]
def is_tag(self, line: str) -> bool:
return bool(self.pattern.match(line))
@abstractmethod
def get_content(self, line: str) -> str:
raise NotImplementedError
|
MIT License
|
wikimedia/pywikibot
|
pywikibot/site/_apisite.py
|
APISite.logout
|
python
|
def logout(self):
if self.is_oauth_token_available():
pywikibot.warning('Using OAuth suppresses logout function')
req_params = {'action': 'logout'}
with suppress(Error):
req_params['token'] = self.tokens['csrf']
uirequest = self._simple_request(**req_params)
uirequest.submit()
self._loginstatus = _LoginStatus.NOT_LOGGED_IN
del self.userinfo
self.tokens = TokenWallet(self)
self._paraminfo = api.ParamInfo(self)
api._invalidate_superior_cookies(self.family)
|
Logout of the site and load details for the logged out user.
Also logs out of the global account if linked to the user.
https://www.mediawiki.org/wiki/API:Logout
:raises APIError: Logout is not available when OAuth enabled.
|
https://github.com/wikimedia/pywikibot/blob/5097f5b9a7ef9d39f35f17edd11faf3086a01d1d/pywikibot/site/_apisite.py#L407-L432
|
import datetime
import mimetypes
import os
import re
import time
import typing
from collections import OrderedDict, defaultdict, namedtuple
from collections.abc import Iterable
from contextlib import suppress
from textwrap import fill
from typing import Optional, Union
from warnings import warn
import pywikibot
import pywikibot.family
from pywikibot.backports import List
from pywikibot.comms.http import get_authentication
from pywikibot.data import api
from pywikibot.exceptions import (
AbuseFilterDisallowedError,
APIError,
ArticleExistsConflictError,
CaptchaError,
CascadeLockedPageError,
CircularRedirectError,
EditConflictError,
Error,
InconsistentTitleError,
InterwikiRedirectPageError,
IsNotRedirectPageError,
LockedNoPageError,
LockedPageError,
NoCreateError,
NoPageError,
NoUsernameError,
PageCreatedConflictError,
PageDeletedConflictError,
PageRelatedError,
PageSaveRelatedError,
SiteDefinitionError,
SpamblacklistError,
TitleblacklistError,
UnknownExtensionError,
UploadError,
)
from pywikibot.login import LoginStatus as _LoginStatus
from pywikibot.site._basesite import BaseSite
from pywikibot.site._decorators import need_right, need_version
from pywikibot.site._extensions import (
EchoMixin,
FlowMixin,
GeoDataMixin,
GlobalUsageMixin,
LinterMixin,
PageImagesMixin,
ProofreadPageMixin,
ThanksFlowMixin,
ThanksMixin,
UrlShortenerMixin,
WikibaseClientMixin,
)
from pywikibot.site._generators import GeneratorsMixin
from pywikibot.site._interwikimap import _InterwikiMap
from pywikibot.site._namespace import Namespace
from pywikibot.site._siteinfo import Siteinfo
from pywikibot.site._tokenwallet import TokenWallet
from pywikibot.tools import (
MediaWikiVersion,
compute_file_hash,
deprecated,
issue_deprecation_warning,
merge_unique_dicts,
normalize_username,
)
__all__ = ('APISite', )
_logger = 'wiki.apisite'
_mw_msg_cache = defaultdict(dict)
class APISite(
BaseSite,
EchoMixin,
FlowMixin,
GeneratorsMixin,
GeoDataMixin,
GlobalUsageMixin,
LinterMixin,
PageImagesMixin,
ProofreadPageMixin,
ThanksFlowMixin,
ThanksMixin,
UrlShortenerMixin,
WikibaseClientMixin,
):
def __init__(self, code, fam=None, user=None):
super().__init__(code, fam, user)
self._msgcache = {}
self._loginstatus = _LoginStatus.NOT_ATTEMPTED
self._siteinfo = Siteinfo(self)
self._paraminfo = api.ParamInfo(self)
self._interwikimap = _InterwikiMap(self)
self.tokens = TokenWallet(self)
def __getstate__(self):
new = super().__getstate__()
del new['tokens']
del new['_interwikimap']
return new
def __setstate__(self, attrs):
super().__setstate__(attrs)
self._interwikimap = _InterwikiMap(self)
self.tokens = TokenWallet(self)
def interwiki(self, prefix):
return self._interwikimap[prefix].site
def interwiki_prefix(self, site):
assert site is not None, 'Site must not be None'
prefixes = set()
for url in site._interwiki_urls():
prefixes.update(self._interwikimap.get_by_url(url))
if not prefixes:
raise KeyError(
"There is no interwiki prefix to '{}'".format(site))
return sorted(prefixes, key=lambda p: (len(p), p))
def local_interwiki(self, prefix):
return self._interwikimap[prefix].local
@classmethod
def fromDBName(cls, dbname, site=None):
if not site:
site = pywikibot.Site('meta', 'meta')
req = site._request(expiry=datetime.timedelta(days=10),
parameters={'action': 'sitematrix'})
data = req.submit()
for key, val in data['sitematrix'].items():
if key == 'count':
continue
if 'code' in val:
lang = val['code']
for site in val['site']:
if site['dbname'] == dbname:
if site['code'] == 'wiki':
site['code'] = 'wikipedia'
return pywikibot.Site(lang, site['code'])
else:
for site in val:
if site['dbname'] == dbname:
return pywikibot.Site(url=site['url'] + '/w/index.php')
raise ValueError('Cannot parse a site out of {}.'.format(dbname))
def _generator(self, gen_class, type_arg: Optional[str] = None,
namespaces=None, total: Optional[int] = None, **args):
req_args = {'site': self}
if 'g_content' in args:
req_args['g_content'] = args.pop('g_content')
if 'parameters' in args:
req_args.update(args)
else:
req_args['parameters'] = args
if type_arg is not None:
gen = gen_class(type_arg, **req_args)
else:
gen = gen_class(**req_args)
if namespaces is not None:
gen.set_namespace(namespaces)
gen.set_maximum_items(total)
return gen
@staticmethod
def _request_class(kwargs):
if 'expiry' in kwargs and kwargs['expiry'] is not None:
return api.CachedRequest
return api.Request
def _request(self, **kwargs):
if 'expiry' in kwargs and kwargs['expiry'] is None:
del kwargs['expiry']
return self._request_class(kwargs)(site=self, **kwargs)
def _simple_request(self, **kwargs):
return self._request_class({'parameters': kwargs}).create_simple(
self, **kwargs)
def logged_in(self):
if not hasattr(self, '_userinfo'):
return False
if 'anon' in self.userinfo or not self.userinfo.get('id'):
return False
if not self.userinfo.get('name'):
return False
if self.userinfo['name'] != self.username():
return False
return True
def is_oauth_token_available(self):
auth_token = get_authentication(self.base_url(''))
return auth_token is not None and len(auth_token) == 4
def login(self, autocreate: bool = False, user: Optional[str] = None):
if self._loginstatus == _LoginStatus.IN_PROGRESS:
pywikibot.log(
'{!r}.login() called when a previous login was in progress.'
.format(self))
if self.logged_in():
self._loginstatus = _LoginStatus.AS_USER
return
self._loginstatus = _LoginStatus.IN_PROGRESS
if user:
self._username = normalize_username(user)
try:
del self.userinfo
if self.userinfo['name'] == self.user():
return
except APIError:
pass
except NoUsernameError as e:
if not autocreate:
raise e
if self.is_oauth_token_available():
if self.userinfo['name'] == self.username():
error_msg = ('Logging in on {} via OAuth failed'
.format(self))
elif self.username() is None:
error_msg = ('No username has been defined in your '
'user-config.py: you have to add in this '
'file the following line:\n'
'usernames[{family!r}][{lang!r}]= {username!r}'
.format(family=self.family,
lang=self.lang,
username=self.userinfo['name']))
else:
error_msg = ('Logged in on {site} via OAuth as {wrong}, but '
'expect as {right}'
.format(site=self,
wrong=self.userinfo['name'],
right=self.username()))
raise NoUsernameError(error_msg)
login_manager = api.LoginManager(site=self, user=self.username())
if login_manager.login(retry=True, autocreate=autocreate):
self._username = login_manager.username
del self.userinfo
assert self.userinfo['name'] == self.username(), '{} != {}'.format(self.userinfo['name'], self.username())
self._loginstatus = _LoginStatus.AS_USER
else:
self._loginstatus = _LoginStatus.NOT_LOGGED_IN
def _relogin(self):
del self.userinfo
self._loginstatus = _LoginStatus.NOT_LOGGED_IN
self.login()
|
MIT License
|
ethereum/py-evm
|
eth/tools/fixtures/loading.py
|
load_json_fixture
|
python
|
def load_json_fixture(fixture_path: str) -> Dict[str, Any]:
with open(fixture_path) as fixture_file:
file_fixtures = json.load(fixture_file)
return file_fixtures
|
Loads a fixture file, caching the most recent files it loaded.
|
https://github.com/ethereum/py-evm/blob/21759ee681315f7099b14893b6ac6d1a5e659bc0/eth/tools/fixtures/loading.py#L54-L60
|
import functools
import json
import os
from typing import (
Any,
Callable,
Dict,
Iterable,
Tuple,
)
from eth_utils.toolz import (
curry,
identity,
)
from eth_utils import to_tuple
from ._utils import (
recursive_find_files,
require_pytest,
)
def find_fixture_files(fixtures_base_dir: str) -> Iterable[str]:
all_fixture_paths = recursive_find_files(fixtures_base_dir, "*.json")
return all_fixture_paths
@to_tuple
def find_fixtures(fixtures_base_dir: str) -> Iterable[Tuple[str, str]]:
all_fixture_paths = find_fixture_files(fixtures_base_dir)
for fixture_path in sorted(all_fixture_paths):
with open(fixture_path) as fixture_file:
fixtures = json.load(fixture_file)
for fixture_key in sorted(fixtures.keys()):
yield (fixture_path, fixture_key)
@functools.lru_cache(maxsize=16)
|
MIT License
|
q-stream/q-stream
|
Player.py
|
Ui_Form.mediaStateChanged
|
python
|
def mediaStateChanged(self, state):
print('[ ! CHANGING MEDIA STATE ]')
if self.mediaPlayer.state() == QMediaPlayer.PlayingState:
self.play_button.setProperty('play',False)
self.play_button.setStyle(self.play_button.style())
else:
self.play_button.setProperty('play',True)
self.play_button.setStyle(self.play_button.style())
|
Toggle between play and pause of `Video` State
|
https://github.com/q-stream/q-stream/blob/461249f203c09c4343052158890d8bb2af0b8423/Player.py#L965-L973
|
from lib import playlist
from PyQt5 import QtCore, QtGui, QtWidgets, QtMultimediaWidgets, QtMultimedia
from PyQt5.QtGui import QFocusEvent, QIcon, QFont, QPalette, QColor, QMoveEvent, QKeySequence, QPainter, QImage
from PyQt5.QtCore import QDir, QModelIndex, QUrl, QSize, Qt, QPoint, QRect, pyqtSignal
from PyQt5.QtMultimedia import QMediaContent, QMediaPlayer, QVideoFrame, QAbstractVideoBuffer, QVideoSurfaceFormat, QAbstractVideoSurface
from PyQt5.QtMultimediaWidgets import QVideoWidget
from PyQt5.QtWidgets import (QApplication, QFileDialog, QHBoxLayout, QLabel,
QPushButton, QSizePolicy, QSlider, QStyle, QVBoxLayout, QWidget, QStatusBar, QShortcut,
QDialog)
import os
import requests, json, pickle
import pyautogui, uuid, getpass
class window(QWidget):
import time
@staticmethod
def leaveEvent(event):
if ui.isMini:
ui.frame_2.hide()
ui.pos_frame.hide()
ui.frame.hide()
@staticmethod
def enterEvent(event):
ui.frame_2.show()
ui.pos_frame.show()
ui.frame.show()
class Videowidget(QVideoWidget):
def __init__(self,master):
super().__init__(parent = master)
@staticmethod
def mouseMoveEvent (event):
if event.buttons() == Qt.LeftButton:
Form.move(event.globalPos() - QPoint(int(Form.geometry().width() / 2), int(Form.geometry().height() / 2)))
event.accept()
@staticmethod
def mouseDoubleClickEvent (event):
if event.buttons() == Qt.LeftButton:
ui.fullscreen_video()
class PosSlider(QSlider):
def __init__(self,master):
super().__init__(parent = master)
def mousePressEvent (self, event):
if event.buttons() == Qt.LeftButton:
ui.mediaPlayer.setPosition(QStyle.sliderValueFromPosition(self.minimum(), self.maximum(), event.x(), self.width()))
def mouseMoveEvent (self, event):
if event.buttons() == Qt.LeftButton:
ui.mediaPlayer.setPosition(QStyle.sliderValueFromPosition(self.minimum(), self.maximum(), event.x(), self.width()))
class VolSlider(QSlider):
def __init__(self,master):
super().__init__(parent = master)
def mousePressEvent (self, event):
if event.buttons() == Qt.LeftButton:
self.setValue(QStyle.sliderValueFromPosition(self.minimum(), self.maximum(), event.x(), self.width()))
def mouseMoveEvent (self, event):
if event.buttons() == Qt.LeftButton:
self.setValue(QStyle.sliderValueFromPosition(self.minimum(), self.maximum(), event.x(), self.width()))
class Ui_Form(object):
currentMedia = dict()
playlist = []
def setupUi(self, Form):
Form.setObjectName("Form")
Form.resize(640, 400)
Form.setMinimumSize(QtCore.QSize(200, 199))
Form.setStyleSheet("background-color:black;")
self.isOnline = False
self.isMini = False
self.isOnTop = True
self.mediaPlayer = QMediaPlayer(None, QMediaPlayer.VideoSurface)
self.verticalLayout_2 = QtWidgets.QVBoxLayout(Form)
self.verticalLayout_2.setContentsMargins(0, 0, 0, 0)
self.verticalLayout_2.setSpacing(0)
self.verticalLayout_2.setObjectName("verticalLayout_2")
self.mainFrame = QtWidgets.QFrame(Form)
self.mainFrame.setMinimumSize(QtCore.QSize(200, 82))
self.mainFrame.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.mainFrame.setFrameShadow(QtWidgets.QFrame.Raised)
self.mainFrame.setObjectName("mainFrame")
self.verticalLayout = QtWidgets.QVBoxLayout(self.mainFrame)
self.verticalLayout.setContentsMargins(0, 0, 0, 0)
self.verticalLayout.setSpacing(0)
self.verticalLayout.setObjectName("verticalLayout")
self.frame_3 = QtWidgets.QFrame(self.mainFrame)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.frame_3.sizePolicy().hasHeightForWidth())
self.frame_3.setSizePolicy(sizePolicy)
self.frame_3.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame_3.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame_3.setObjectName("frame_3")
self.horizontalLayout_6 = QtWidgets.QHBoxLayout(self.frame_3)
self.horizontalLayout_6.setContentsMargins(0, 0, 0, 0)
self.horizontalLayout_6.setObjectName("horizontalLayout_6")
self.Player_name = QtWidgets.QLabel(self.frame_3)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Preferred)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.Player_name.sizePolicy().hasHeightForWidth())
self.Player_name.setSizePolicy(sizePolicy)
self.Player_name.setStyleSheet("QLabel\n"
" {\n"
" font: 12pt \"Helvetica\";\n"
" color: white;\n"
" border: 0px solid #076100;\n"
" }")
self.Player_name.setObjectName("status_label")
self.horizontalLayout_6.addWidget(self.Player_name)
spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum)
self.horizontalLayout_6.addItem(spacerItem)
self.minimize_button = QtWidgets.QPushButton(self.frame_3)
self.minimize_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.minimize_button.setText("")
icon = QtGui.QIcon()
icon.addPixmap(QtGui.QPixmap("icon_sets/minimize.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.minimize_button.setIconSize(QSize(25,17))
self.minimize_button.setMaximumSize(QSize(25,17))
self.minimize_button.setIcon(icon)
self.minimize_button.setIconSize(QtCore.QSize(27, 20))
self.minimize_button.setObjectName("minimize_button")
self.horizontalLayout_6.addWidget(self.minimize_button)
self.maximize_button = QtWidgets.QPushButton(self.frame_3)
self.maximize_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.maximize_button.setText("")
icon1 = QtGui.QIcon()
icon1.addPixmap(QtGui.QPixmap("icon_sets/maximize.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.maximize_button.setIcon(icon1)
self.maximize_button.setIconSize(QSize(25,17))
self.maximize_button.setMaximumSize(QSize(25,17))
self.maximize_button.setIconSize(QtCore.QSize(27, 20))
self.maximize_button.setObjectName("maximize_button")
self.horizontalLayout_6.addWidget(self.maximize_button)
self.cross_button = QtWidgets.QPushButton(self.frame_3)
self.cross_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.cross_button.setText("")
self.cross_button.setIconSize(QSize(25,17))
self.cross_button.setMaximumSize(QSize(25,17))
icon2 = QtGui.QIcon()
icon2.addPixmap(QtGui.QPixmap("icon_sets/cross.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.cross_button.setIcon(icon2)
self.cross_button.setIconSize(QtCore.QSize(27, 20))
self.cross_button.setObjectName("cross_button")
self.horizontalLayout_6.addWidget(self.cross_button)
self.verticalLayout.addWidget(self.frame_3)
self.video_playback = Videowidget(self.frame_3)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(200)
sizePolicy.setHeightForWidth(self.video_playback.sizePolicy().hasHeightForWidth())
self.video_playback.setSizePolicy(sizePolicy)
self.video_playback.setMinimumSize(QtCore.QSize(200, 100))
self.video_playback.setMouseTracking(False)
self.video_playback.setTabletTracking(False)
self.video_playback.setAcceptDrops(False)
self.video_playback.setAutoFillBackground(False)
self.video_playback.setObjectName("video_playback")
self.video_playback.setStyleSheet("background-color:grey")
self.verticalLayout.addWidget(self.video_playback)
self.pos_frame = QtWidgets.QFrame(self.mainFrame)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(10)
sizePolicy.setHeightForWidth(self.pos_frame.sizePolicy().hasHeightForWidth())
self.pos_frame.setSizePolicy(sizePolicy)
self.pos_frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.pos_frame.setFrameShadow(QtWidgets.QFrame.Raised)
self.pos_frame.setObjectName("pos_frame")
self.horizontalLayout = QtWidgets.QHBoxLayout(self.pos_frame)
self.horizontalLayout.setObjectName("horizontalLayout")
self.position_slider = PosSlider(self.pos_frame)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(100)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.position_slider.sizePolicy().hasHeightForWidth())
self.position_slider.setSizePolicy(sizePolicy)
self.position_slider.setMouseTracking(True)
self.position_slider.setAutoFillBackground(False)
self.position_slider.setStyleSheet("QSlider::handle:horizontal \n"
" {\n"
" background: transparent;\n"
" width: 8px;\n"
" }\n"
"QSlider::groove:horizontal {\n"
" border: 1px solid white;\n"
" height: 8px;\n"
" background: qlineargradient(y1: 0, y2: 1,stop: 0 #2e3436, stop: 1.0 #353941);\n"
"}\n"
" QSlider::sub-page:horizontal {\n"
" background:qlineargradient( y1: 0, y2: 1,\n"
" stop: 0 #42a6db, stop: 1 #0074e0); \n"
" border: 1px solid white;\n"
" height: 8px;\n"
"}\n"
"QSlider::handle:horizontal:hover {\n"
" background: black;\n"
" height: 8px;\n"
" width: 8px;\n"
" border: 1px solid white;\n"
" }\n"
"")
self.position_slider.setOrientation(QtCore.Qt.Horizontal)
self.position_slider.setInvertedAppearance(False)
self.position_slider.setInvertedControls(False)
self.position_slider.setObjectName("position_slider")
self.horizontalLayout.addWidget(self.position_slider)
self.time_status = QtWidgets.QLabel(self.pos_frame)
font = QtGui.QFont()
font.setFamily("Arial Rounded MT Bold")
font.setPointSize(8)
font.setBold(False)
font.setItalic(False)
font.setWeight(50)
self.time_status.setFont(font)
self.time_status.setStyleSheet("QLabel\n"
" {\n"
" \n"
" font: 8pt \"Arial Rounded MT Bold\";\n"
" color: white;\n"
" border: 0px solid #076100;\n"
"\n"
" }")
self.time_status.setObjectName("time_status")
self.horizontalLayout.addWidget(self.time_status)
self.backslash = QtWidgets.QLabel(self.pos_frame)
font = QtGui.QFont()
font.setFamily("Arial Rounded MT Bold")
font.setPointSize(8)
font.setBold(False)
font.setItalic(False)
font.setWeight(50)
self.backslash.setFont(font)
self.backslash.setStyleSheet("QLabel\n"
" {\n"
" \n"
" font: 8pt \"Arial Rounded MT Bold\";\n"
" color: white;\n"
" border: 0px solid #076100;\n"
"\n"
" }")
self.backslash.setObjectName("backslash")
self.horizontalLayout.addWidget(self.backslash)
self.duration_status = QtWidgets.QLabel(self.pos_frame)
font = QtGui.QFont()
font.setFamily("Arial Rounded MT Bold")
font.setPointSize(8)
font.setBold(False)
font.setItalic(False)
font.setWeight(50)
self.duration_status.setFont(font)
self.duration_status.setStyleSheet("QLabel\n"
" {\n"
" \n"
" font: 8pt \"Arial Rounded MT Bold\";\n"
" color: white;\n"
" border: 0px solid #076100;\n"
"\n"
" }")
self.duration_status.setObjectName("duration_status")
self.horizontalLayout.addWidget(self.duration_status)
self.verticalLayout.addWidget(self.pos_frame)
self.frame_2 = QtWidgets.QFrame(self.mainFrame)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(22)
self.frame_2.setSizePolicy(sizePolicy)
self.frame_2.setContentsMargins(0,0,0,0)
self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame_2.setObjectName("frame_2")
self.frame_2.setStyleSheet("")
self.horizontalLayout_4 = QtWidgets.QHBoxLayout(self.frame_2)
self.horizontalLayout_4.setObjectName("horizontalLayout_4")
self.play_button = QtWidgets.QPushButton(self.frame_2)
self.play_button.setEnabled(False)
self.play_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.play_button.setStyleSheet("QPushButton[play=true]{image:url(icon_sets/play/play.png);width:22px;height:22px}\n"
"QPushButton[play=false]{image:url(icon_sets/pause/pause.png);width:22px;height:22px }\n"
)
self.play_button.setProperty("play", True)
self.play_button.setText("")
self.play_button.setObjectName("play_button")
self.horizontalLayout_4.addWidget(self.play_button)
self.playback_button = QtWidgets.QPushButton(self.frame_2)
self.playback_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.playback_button.setStyleSheet("QPushButton{image:url(icon_sets/playback/playback.png);width:22px;height:22px }\n")
self.playback_button.setText("")
self.playback_button.setObjectName("playback_button")
self.horizontalLayout_4.addWidget(self.playback_button)
self.always_on_top_button = QtWidgets.QPushButton(self.frame_2)
self.always_on_top_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.always_on_top_button.setStyleSheet("QPushButton[top=false]{image : url(icon_sets/always_on_top/top_off.png) }\n"
"QPushButton[top=true]{image : url(icon_sets/always_on_top/top_on.png) }\n"
)
self.always_on_top_button.setProperty("top", True)
self.always_on_top_button.setText("")
self.always_on_top_button.setObjectName("always_on_top_button")
self.horizontalLayout_4.addWidget(self.always_on_top_button)
self.miniplayer_button = QtWidgets.QPushButton(self.frame_2)
self.miniplayer_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.miniplayer_button.setStyleSheet("QPushButton[mini=false]{image : url(icon_sets/standard_player/standard.png) }\n"
"QPushButton[mini=true]{image : url(icon_sets/mini_player/mini.png) }\n"
)
self.miniplayer_button.setProperty("mini",False)
self.miniplayer_button.setContentsMargins(0,0,0,0)
self.miniplayer_button.setText("")
self.miniplayer_button.setObjectName("miniplayer_button")
self.horizontalLayout_4.addWidget(self.miniplayer_button)
self.open_File_button = QtWidgets.QPushButton(self.frame_2)
self.open_File_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.open_File_button.setStyleSheet("QPushButton{image:url(icon_sets/new_file/new_file.png);width:22px;height:22px }\n")
self.open_File_button.setText("")
self.open_File_button.setObjectName("playback_button")
self.horizontalLayout_4.addWidget(self.open_File_button)
self.add_to_playlist_button = QtWidgets.QPushButton(self.frame_2)
self.add_to_playlist_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.add_to_playlist_button.setStyleSheet("QPushButton{image:url(icon_sets/playlist/add_to_playlist.png);width:22px;height:22px }\n")
self.add_to_playlist_button.setText("")
self.add_to_playlist_button.setObjectName("add_to_playlist_button")
self.horizontalLayout_4.addWidget(self.add_to_playlist_button)
self.playlist_button = QtWidgets.QPushButton(self.frame_2)
self.playlist_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.playlist_button.setStyleSheet("QPushButton{image:url(icon_sets/playlist/playlist_icon.png);width:22px;height:22px }\n")
self.playlist_button.setText("")
self.playlist_button.setObjectName("playlist_button")
self.horizontalLayout_4.addWidget(self.playlist_button)
spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum)
self.horizontalLayout_4.addItem(spacerItem1)
self.screenshot_button = QtWidgets.QPushButton(self.frame_2)
self.screenshot_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.screenshot_button.setStyleSheet("QPushButton{image : url(icon_sets/snapshot/snapshot.png);width:22px;height:22px} \n"
)
self.screenshot_button.setText("")
self.screenshot_button.setObjectName("screenshot_button")
self.horizontalLayout_4.addWidget(self.screenshot_button)
''' Video Setting button for Video subs and dubs'''
self.setting_button = QtWidgets.QPushButton(self.frame_2)
self.setting_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.setting_button.setStyleSheet("QPushButton{image : url(icon_sets/settings/settings.png) }\n"
)
self.setting_button.setText("")
self.setting_button.setObjectName("setting_button")
self.horizontalLayout_4.addWidget(self.setting_button)
self.Quality_box = QtWidgets.QComboBox(self.frame_2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.Quality_box.sizePolicy().hasHeightForWidth())
self.Quality_box.setSizePolicy(sizePolicy)
self.Quality_box.setStyleSheet("QComboBox\n"
" {\n"
" border-image :url(icon_sets/quality/border.png);\n"
" color: #fcffff;\n"
" font-size: 8pt;\n"
" font-weight: bold;\n"
" background-color: #353941;\n"
" }\n"
" QComboBox QAbstractItemView \n"
" {\n"
" background: #fcffff;\n"
" border: 2px solid darkgray;\n"
" selection-background-color: #353941;\n"
" }\n"
"QComboBox::drop-down {\n"
" border: 0px;\n"
" subcontrol-origin: padding;\n"
" subcontrol-position: top right;\n"
"\n"
" border-top-right-radius: 3px;\n"
" border-bottom-right-radius: 3px;\n"
"}\n"
)
self.Quality_box.setIconSize(QtCore.QSize(0, 0))
self.Quality_box.setDuplicatesEnabled(False)
self.Quality_box.setObjectName("comboBox")
self.Quality_box.addItem(" -")
self.horizontalLayout_4.addWidget(self.Quality_box)
self.volume_button = QtWidgets.QPushButton(self.frame_2)
self.volume_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.volume_button.setText("")
icon9 = QtGui.QIcon()
icon9.addPixmap(QtGui.QPixmap("icon_sets/volume/volume1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.volume_button.setIcon(icon9)
self.volume_button.setIconSize(QtCore.QSize(22, 22))
self.volume_button.setCheckable(True)
self.volume_button.setObjectName("volume_button")
self.horizontalLayout_4.addWidget(self.volume_button)
self.volumeslider = VolSlider(self.frame_2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.volumeslider.sizePolicy().hasHeightForWidth())
self.volumeslider.setSizePolicy(sizePolicy)
self.volumeslider.setAutoFillBackground(False)
self.volumeslider.setStyleSheet("QSlider::handle:horizontal \n"
" {\n"
" background: transparent;\n"
" width: 5px;\n"
" }\n"
"QSlider::groove:horizontal {\n"
" border: 1px solid #444444;\n"
" height: 5px;\n"
" background: qlineargradient(y1: 0, y2: 1,stop: 0 grey, stop: 1.0 grey);\n"
"}\n"
" QSlider::sub-page:horizontal {\n"
" background:qlineargradient( y1: 0, y2: 1,\n"
" stop: 0 #42a6db, stop: 1 #0074e0); \n"
" border: 1px solid #777;\n"
" height: 5px;\n"
"}\n"
"QSlider::handle:horizontal:hover {\n"
" background: #353941;\n"
" height: 5px;\n"
" width: 5px;\n"
" border: 1px solid #0074e0;\n"
" }\n"
"QSlider::sub-page:horizontal:disabled{background:qlineargradient( y1: 0, y2: 1,\n"
" stop: 0 #909090, stop: 1 #A8A8A8 );}\n"
"")
self.volumeslider.setOrientation(QtCore.Qt.Horizontal)
self.volumeslider.setObjectName("volume_slider")
self.horizontalLayout_4.addWidget(self.volumeslider)
self.volume_percentage = QtWidgets.QLabel(self.frame_2)
self.volume_percentage.setStyleSheet("QLabel\n"
" {\n"
" font: 7pt \"Arial Rounded MT Bold\";\n"
" color: white;\n"
" border: 0px solid #076100;\n"
" }")
self.volume_percentage.setObjectName("volume_status")
self.volume_percentage.setMinimumWidth(35)
self.volume_percentage.setText(" 20 %")
self.horizontalLayout_4.addWidget(self.volume_percentage)
self.verticalLayout.addWidget(self.frame_2)
self.frame = QtWidgets.QFrame(self.mainFrame)
font = QtGui.QFont()
font.setFamily("Lucida Console")
self.frame.setFont(font)
self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
self.frame.setObjectName("frame")
self.horizontalLayout_5 = QtWidgets.QHBoxLayout(self.frame)
self.horizontalLayout_5.setObjectName("horizontalLayout_5")
sizegrip_2 = QtWidgets.QSizeGrip(Form)
sizegrip_2.setStyleSheet("image:url(icon_sets/.png)")
self.horizontalLayout_5.addWidget(sizegrip_2, 0, QtCore.Qt.AlignBottom | QtCore.Qt.AlignLeft)
self.url_box = QtWidgets.QComboBox(self.frame)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(200)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.url_box.sizePolicy().hasHeightForWidth())
self.url_box.setSizePolicy(sizePolicy)
self.url_box.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor))
self.url_box.setMouseTracking(False)
self.url_box.setAcceptDrops(False)
self.url_box.setWhatsThis("")
self.url_box.setAccessibleDescription("")
self.url_box.setAutoFillBackground(True)
self.url_box.setStyleSheet("QComboBox\n"
" {\n"
" border: 2px solid #0074e0;\n"
" color: #fcffff;\n"
" font-size: 10pt;\n"
" font-family: Arial;\n"
" font-weight: Bold;\n"
" background-color: #353941;\n"
" border-radius: 5px;\n"
" }\n"
" QComboBox QAbstractItemView \n"
" {\n"
" background: #dddddd;\n"
" border: 2px solid darkgray;\n"
" selection-background-color: #5a5a5a;\n"
" }\n"
"QComboBox::down-arrow {\n"
" width : 20px\n"
" background-color: #5f85db\n"
"}\n"
"QComboBox::down-arrow:pressed\n"
"{\n"
"background-color : #5f85db;\n"
"}\n"
"QComboBox::drop-down {\n"
" subcontrol-origin: padding;\n"
" subcontrol-position: top right;\n"
" width: 20px;\n"
" \n"
" border-top-right-radius: 3px;\n"
" border-bottom-right-radius: 3px;\n"
"}")
self.url_box.setInputMethodHints(QtCore.Qt.ImhUrlCharactersOnly)
self.url_box.setEditable(True)
self.url_box.setMaxVisibleItems(100)
self.url_box.setMaxCount(100)
self.url_box.setInsertPolicy(QtWidgets.QComboBox.InsertAfterCurrent)
self.url_box.setSizeAdjustPolicy(QtWidgets.QComboBox.AdjustToContentsOnFirstShow)
self.url_box.setMinimumContentsLength(2)
self.url_box.setIconSize(QtCore.QSize(20, 20))
self.url_box.setDuplicatesEnabled(False)
self.url_box.setFrame(True)
self.url_box.setObjectName("url_box")
self.horizontalLayout_5.addWidget(self.url_box)
self.playOnline_button = QtWidgets.QPushButton(self.frame)
self.playOnline_button.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor))
self.playOnline_button.setStyleSheet("QPushButton{image : url(icon_sets/globe.png) }\n")
self.playOnline_button.setText("")
self.playOnline_button.setObjectName("playOnline_button")
self.horizontalLayout_5.addWidget(self.playOnline_button)
self.verticalLayout.addWidget(self.frame)
sizegrip_1 = QtWidgets.QSizeGrip(Form)
sizegrip_1.setStyleSheet("image:url(icon_sets/size.png);width:15; height:18;")
self.horizontalLayout_5.addWidget(sizegrip_1, 0, QtCore.Qt.AlignBottom | QtCore.Qt.AlignRight)
self.verticalLayout_2.addWidget(self.mainFrame)
self.retranslateUi(Form)
self.url_box.setCurrentIndex(-1)
QtCore.QMetaObject.connectSlotsByName(Form)
def retranslateUi(self, Form):
_translate = QtCore.QCoreApplication.translate
Form.setWindowTitle(_translate("Form", "Q-Stream Player"))
self.Player_name.setText(_translate("Form", "Q-Stream Player"))
self.time_status.setText(_translate("Form", "00:00:00"))
self.backslash.setText(_translate("Form", "/"))
self.duration_status.setText(_translate("Form", "00:00:00"))
self.volumeslider.setRange(0, 100)
self.volumeslider.setValue(20)
self.mediaPlayer.setVolume(20)
self.position_slider.setRange(0, 100)
self.miniplayer_button.clicked.connect(self.setupMiniPlayer)
self.position_slider.sliderMoved.connect(self.setPosition)
self.position_slider.sliderMoved.connect(self.handleLabel)
self.volume_button.clicked.connect(self.mute)
self.volumeslider.valueChanged.connect(self.setVolume)
self.screenshot_button.clicked.connect(self.screenshot)
self.playback_button.clicked.connect(self.stopplayback)
self.always_on_top_button.clicked.connect(self.checkOnTop)
self.play_button.clicked.connect(self.play)
self.open_File_button.clicked.connect(self.openFile)
self.add_to_playlist_button.clicked.connect(self.addToPlaylist)
self.playlist_button.clicked.connect(self.playlistWidget)
self.setting_button.clicked.connect(self.handleSetting)
self.Quality_box.currentTextChanged.connect(self.handleQuality)
self.cross_button.clicked.connect(self.exit)
self.maximize_button.clicked.connect(self.max)
self.minimize_button.clicked.connect(self.min)
self.playOnline_button.clicked.connect(self.onlineThread)
shortcut = QShortcut(QKeySequence('Esc'), self.video_playback)
shortcut.activated.connect(self.EscFun)
shortcut = QShortcut(QKeySequence('Space'), self.video_playback)
shortcut.activated.connect(self.play)
shortcut = QShortcut(QKeySequence('f'), self.video_playback)
shortcut.activated.connect(self.fullscreen_video)
shortcut = QShortcut(QKeySequence('c'), self.video_playback)
shortcut.activated.connect(self.setupMiniPlayer)
shortcut = QShortcut(QKeySequence('o'), self.video_playback)
shortcut.activated.connect(self.openFile)
shortcut = QShortcut(QKeySequence('a'), self.video_playback)
shortcut.activated.connect(self.checkOnTop)
shortcut = QShortcut(QKeySequence("Return"), self.video_playback)
shortcut.activated.connect(self.onlineThread)
shortcut = QShortcut(QKeySequence('m'), self.video_playback)
shortcut.activated.connect(self.mute)
shortcut = QShortcut(QKeySequence(Qt.Key_Right), self.video_playback)
shortcut.activated.connect(self.forwardSlider)
shortcut = QShortcut(QKeySequence(Qt.Key_Left), self.video_playback)
shortcut.activated.connect(self.backSlider)
self.volupshortcut = QShortcut(QKeySequence(Qt.Key_Up), self.video_playback)
self.volupshortcut.activated.connect(self.volumeUp)
self.voldownshortcut = QShortcut(QKeySequence(Qt.Key_Down), self.video_playback)
self.voldownshortcut.activated.connect(self.volumeDown)
shortcut = QShortcut(QKeySequence(Qt.ControlModifier + Qt.Key_Right), self.video_playback)
shortcut.activated.connect(self.forwardSlider10)
shortcut = QShortcut(QKeySequence(Qt.ControlModifier + Qt.Key_Left), self.video_playback)
shortcut.activated.connect(self.backSlider10)
shortcut = QShortcut(QKeySequence(Qt.AltModifier + Qt.Key_Left), self.video_playback)
shortcut.activated.connect(self.backSlider5)
shortcut = QShortcut(QKeySequence(Qt.AltModifier + Qt.Key_Right), self.video_playback)
shortcut.activated.connect(self.forwardSlider5)
items = self.load()
self.url_box.addItems(items)
self.url_box.setCurrentIndex(-1)
btnSize = QSize(22,22)
self.play_button.setMaximumSize(btnSize)
self.playback_button.setMaximumSize(btnSize)
self.screenshot_button.setMaximumSize(btnSize)
self.always_on_top_button.setMaximumSize(btnSize)
self.miniplayer_button.setMaximumSize(btnSize)
self.setting_button.setMaximumSize(btnSize)
self.volume_button.setMaximumSize(btnSize)
self.horizontalLayout.setContentsMargins(10, 5, 9, 0)
self.horizontalLayout_4.setContentsMargins(9, 0, 9, 0)
self.horizontalLayout_4.setSpacing(4)
self.horizontalLayout_5.setContentsMargins(0, 5, 5, 5)
self.horizontalLayout_6.setContentsMargins(9, 0, 9, 0)
self.mediaPlayer.setVideoOutput(self.video_playback)
self.mediaPlayer.stateChanged.connect(self.mediaStateChanged)
self.mediaPlayer.positionChanged.connect(self.positionChanged)
self.mediaPlayer.positionChanged.connect(self.handleLabel)
self.mediaPlayer.durationChanged.connect(self.durationChanged)
def handleLabel(self):
self.time_status.clear()
mtime = QtCore.QTime(0, 0, 0, 0)
self.time = mtime.addMSecs(self.mediaPlayer.position())
self.time_status.setText(self.time.toString())
def hide_all(self):
self.frame_3.close()
self.url_box.close()
self.playOnline_button.close()
self.playback_button.close()
self.screenshot_button.close()
self.Quality_box.close()
self.volume_button.close()
def show_all(self):
self.frame_3.show()
self.url_box.show()
self.playOnline_button.show()
self.playback_button.show()
self.screenshot_button.show()
self.Quality_box.show()
self.volume_button.show()
self.setting_button.show()
def checkOnTop(self):
self.isOnTop = not self.isOnTop
if self.isOnTop:
self.always_on_top_button.setProperty("top", True)
self.always_on_top_button.setStyle(self.always_on_top_button.style())
Form.setWindowFlags(Form.windowFlags() | QtCore.Qt.WindowStaysOnTopHint)
else:
self.always_on_top_button.setProperty("top", False)
self.always_on_top_button.setStyle(self.always_on_top_button.style())
Form.setWindowFlags(Form.windowFlags() & ~QtCore.Qt.WindowStaysOnTopHint)
Form.show()
def miniProperty(self):
self.video_playback.setMinimumSize(QSize(200,100))
Form.setMinimumSize(QSize(200,175))
self.mainFrame.setMinimumSize(QSize(200,60))
def standardProperty(self):
self.video_playback.setMinimumSize(QSize(200,100))
self.mainFrame.setMinimumSize(QSize(200,82))
Form.setMinimumSize(QSize(200,202))
def setupMiniPlayer(self):
self.isMini = not self.isMini
if self.isMini :
self.miniplayer_button.setProperty("mini",True)
self.miniplayer_button.setStyle(self.miniplayer_button.style())
self.hide_all()
self.miniProperty()
else:
self.miniplayer_button.setProperty("mini",False)
self.miniplayer_button.setStyle(self.miniplayer_button.style())
self.standardProperty()
self.show_all()
@staticmethod
def load():
scorefile = "db.bat"
if os.path.exists(scorefile):
with open(scorefile, 'rb') as sf:
scores = pickle.load(sf)
else:
scores = []
with open(scorefile, "wb") as sf:
pickle.dump(scores, sf)
return scores
@staticmethod
def scor_func(url):
scorefile = "db.bat"
if os.path.exists(scorefile):
with open(scorefile, 'rb') as sf:
scores = pickle.load(sf)
else:
scores = []
scores.append(url)
with open(scorefile, "wb") as sf:
if len(scores) > 100:
print("here", scores)
scores = scores[1:]
pickle.dump(scores, sf)
return scores
def mute(self):
if self.mediaPlayer.isMuted() :
print('[ ! Full Volume]')
self.mediaPlayer.setMuted(False)
icon9 = QtGui.QIcon()
icon9.addPixmap(QtGui.QPixmap("icon_sets/volume/volume1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.volume_button.setIcon(icon9)
self.volume_button.setIconSize(QSize(22,22))
self.volumeslider.setEnabled(True)
self.volupshortcut.setEnabled(True)
self.voldownshortcut.setEnabled(True)
else:
print('[ ! Mute Volume]')
self.mediaPlayer.setMuted(True)
icon9 = QtGui.QIcon()
icon9.addPixmap(QtGui.QPixmap("icon_sets/volume/volume2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.volume_button.setIcon(icon9)
self.volume_button.setIconSize(QSize(22,22))
self.volumeslider.setEnabled(False)
self.volupshortcut.setEnabled(False)
self.voldownshortcut.setEnabled(False)
def play(self):
if self.mediaPlayer.isVideoAvailable():
if self.mediaPlayer.state() == QMediaPlayer.PlayingState:
print("[ ! PAUSE PRESSED ]")
self.mediaPlayer.pause()
else:
print("[ ! PLAY PRESSED ]")
self.mediaPlayer.play()
def onlineThread(self):
import threading
urlThread = threading.Thread(target= self.playOnline)
print("Url Thread Start ")
urlThread.start()
print("Url Thread waiting to complete ")
print("Url Thread complete ")
def playOnline(self, playlist=False):
if playlist:
self.currentMedia = self.playlist[self.currentItem]
self.currentMedia["error"] = False
else:
self.currentMedia = {"type": "url", "src": self.url_box.currentText(), "error": False}
print('[ ! GETTING VIDEO ONLINE ]')
fileName = self.currentMedia["src"]
res = requests.get('https://q-stream-media-player.herokuapp.com/', params={"key": fileName})
try:
self.streams = json.loads(res.text)
try:
self.mediaPlayer.setMedia(QMediaContent(QUrl(self.streams['best'])))
self.play_video()
self.isOnline = True
self.addQuality()
if self.url_box.findText(fileName, Qt.MatchExactly) < 0:
self.url_box.addItem(fileName)
self.scor_func(fileName)
except KeyError:
self.currentMedia["error"] = True
print("[ ! Error Video Not Supported By platform]")
except json.JSONDecodeError:
self.currentMedia["error"] = True
print("[ ! Error NoPluginError]")
finally:
self.url_box.clearEditText()
self.url_box.clearFocus()
def openFile(self):
print('[ ! OPEN FILE ]')
username = getpass.getuser()
if sys.platform == 'win32':
path = 'C:/Users/' + username + '/Videos/'
elif sys.platform == 'linux' or sys.platform == 'Darwin':
path = '/home/' + username + '/Videos/'
fileName, _ = QFileDialog.getOpenFileName(self.video_playback, "Select media file",
path, "Video Files (*.mp3 *.mp4 *.flv *.ts *.mts *.avi *.mkv)")
if fileName:
self.currentMedia = {"type": "file", "src": fileName, "error": False}
self.mediaPlayer.setMedia(QMediaContent(QUrl.fromLocalFile(fileName)))
self.play_video()
def addToPlaylist(self):
if self.currentMedia == {}:
print("Select a media file/url first!!")
return None
elif self.currentMedia.get("error"):
print("Current Media cannot be added in the playlist!!")
elif self.currentMedia != {} and self.currentMedia.get("error", None) == None:
print("Media has already been added to the playlist")
else:
del self.currentMedia["error"]
self.playlist.append(self.currentMedia)
def play_video(self):
print('[ ! PLAYING VIDEO ]')
self.play_button.setEnabled(True)
if self.mediaPlayer.state() == QMediaPlayer.PlayingState:
self.mediaPlayer.pause()
else:
self.mediaPlayer.play()
|
MIT License
|
openstack/horizon
|
horizon/tabs/views.py
|
TabbedTableView.load_tabs
|
python
|
def load_tabs(self):
tab_group = self.get_tabs(self.request, **self.kwargs)
tabs = tab_group.get_tabs()
for tab in [t for t in tabs if issubclass(t.__class__, TableTab)]:
self.table_classes.extend(tab.table_classes)
for table in tab._tables.values():
self._table_dict[table._meta.name] = {'table': table,
'tab': tab}
|
Loads the tab group.
It compiles the table instances for each table attached to
any :class:`horizon.tabs.TableTab` instances on the tab group.
This step is necessary before processing any tab or table actions.
|
https://github.com/openstack/horizon/blob/5e405d71926764b8aa60c75794b62f668f4e8122/horizon/tabs/views.py#L80-L93
|
from django import http
from horizon import exceptions
from horizon import tables
from horizon.tabs.base import TableTab
from horizon import views
class TabView(views.HorizonTemplateView):
tab_group_class = None
_tab_group = None
def __init__(self):
if not self.tab_group_class:
raise AttributeError("You must set the tab_group_class attribute "
"on %s." % self.__class__.__name__)
def get_tabs(self, request, **kwargs):
if self._tab_group is None:
self._tab_group = self.tab_group_class(request, **kwargs)
return self._tab_group
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
try:
tab_group = self.get_tabs(self.request, **kwargs)
context["tab_group"] = tab_group
context["tab_group"].load_tab_data()
except Exception:
exceptions.handle(self.request)
return context
def handle_tabbed_response(self, tab_group, context):
if self.request.is_ajax():
if tab_group.selected:
return http.HttpResponse(tab_group.selected.render())
return http.HttpResponse(tab_group.render())
return self.render_to_response(context)
def get(self, request, *args, **kwargs):
context = self.get_context_data(**kwargs)
return self.handle_tabbed_response(context["tab_group"], context)
class TabbedTableView(tables.MultiTableMixin, TabView):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.table_classes = []
self._table_dict = {}
|
Apache License 2.0
|
wuzheng-sjtu/fastfpn
|
libs/nets/pyramid_network.py
|
my_sigmoid
|
python
|
def my_sigmoid(x):
return (tf.nn.sigmoid(x) - tf.cast(0.5, tf.float32)) * 6.0
|
add an active function for the box output layer, which is linear around 0
|
https://github.com/wuzheng-sjtu/fastfpn/blob/a60a618665b11481e95bd184073a2ac09febc9d4/libs/nets/pyramid_network.py#L77-L79
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import tensorflow.contrib.slim as slim
from libs.boxes.roi import roi_cropping
from libs.layers import anchor_encoder
from libs.layers import anchor_decoder
from libs.layers import roi_encoder
from libs.layers import roi_decoder
from libs.layers import mask_encoder
from libs.layers import mask_decoder
from libs.layers import gen_all_anchors
from libs.layers import ROIAlign
from libs.layers import sample_rpn_outputs
from libs.layers import sample_rpn_outputs_with_gt
from libs.layers import assign_boxes
_networks_map = {
'resnet50': {'C1':'resnet_v1_50/conv1/Relu:0',
'C2':'resnet_v1_50/block1/unit_2/bottleneck_v1',
'C3':'resnet_v1_50/block2/unit_3/bottleneck_v1',
'C4':'resnet_v1_50/block3/unit_5/bottleneck_v1',
'C5':'resnet_v1_50/block4/unit_3/bottleneck_v1',
},
'resnet101': {'C1': '', 'C2': '',
'C3': '', 'C4': '',
'C5': '',
}
}
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
activation_fn=None,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS_EXTRA,
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None):
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose],
padding='SAME',
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,) as arg_sc:
with slim.arg_scope(
[slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn) as arg_sc:
return arg_sc
|
Apache License 2.0
|
blockchain-etl/polygon-etl
|
airflow/dags/polygonetl_airflow/gcs_utils.py
|
download_from_gcs
|
python
|
def download_from_gcs(bucket, object, filename):
from google.cloud import storage
storage_client = storage.Client()
bucket = storage_client.get_bucket(bucket)
blob_meta = bucket.get_blob(object)
if blob_meta.size > 10 * MEGABYTE:
blob = bucket.blob(object, chunk_size=10 * MEGABYTE)
else:
blob = bucket.blob(object)
blob.download_to_filename(filename)
|
Download a file from GCS. Can download big files unlike gcs_hook.download which saves files in memory first
|
https://github.com/blockchain-etl/polygon-etl/blob/c1a8e09b6725f9f3c063097ba1069224b361d5ea/airflow/dags/polygonetl_airflow/gcs_utils.py#L45-L59
|
import logging
import os
MEGABYTE = 1024 * 1024
def upload_to_gcs(gcs_hook, bucket, object, filename, mime_type='application/octet-stream'):
from apiclient.http import MediaFileUpload
from googleapiclient import errors
service = gcs_hook.get_conn()
if os.path.getsize(filename) > 10 * MEGABYTE:
media = MediaFileUpload(filename, mime_type, resumable=True)
try:
request = service.objects().insert(bucket=bucket, name=object, media_body=media)
response = None
while response is None:
status, response = request.next_chunk()
if status:
logging.info("Uploaded %d%%." % int(status.progress() * 100))
return True
except errors.HttpError as ex:
if ex.resp['status'] == '404':
return False
raise
else:
media = MediaFileUpload(filename, mime_type)
try:
service.objects().insert(bucket=bucket, name=object, media_body=media).execute()
return True
except errors.HttpError as ex:
if ex.resp['status'] == '404':
return False
raise
|
MIT License
|
scalyr/scalyr-agent-2
|
scalyr_agent/json_lib/objects.py
|
JsonObject.__setitem__
|
python
|
def __setitem__(self, key, value):
self.__map[key] = value
return self
|
Set the specified key to the specified value.
@param key: The name of the field to set.
@param value: The value for the field.
@return: This object.
|
https://github.com/scalyr/scalyr-agent-2/blob/6d32b861889078f044c9ab3f1f7157f2c89ba04a/scalyr_agent/json_lib/objects.py#L91-L99
|
from __future__ import unicode_literals
from __future__ import absolute_import
__author__ = "czerwin@scalyr.com"
if False:
from typing import List
from typing import Any
import six
from six.moves import range
from scalyr_agent.json_lib.exceptions import JsonConversionException
from scalyr_agent.json_lib.exceptions import JsonMissingFieldException
class JsonObject(object):
def __init__(self, content=None, **key_values):
if content is None:
self.__map = {}
else:
self.__map = content
for key, value in six.iteritems(key_values):
self.__map[six.ensure_text(key)] = value
def to_json(self):
def __repr__(self):
return repr(self.__map)
def __len__(self):
return len(self.__map)
|
Apache License 2.0
|
beijbom/coralnet
|
project/images/models.py
|
Source.get_member_role
|
python
|
def get_member_role(self, user):
perms = get_perms(user, self)
for permType in [Source.PermTypes.ADMIN,
Source.PermTypes.EDIT,
Source.PermTypes.VIEW]:
if permType.code in perms:
return permType.verbose
|
Get a user's conceptual "role" in the source.
If they have admin perms, their role is admin.
Otherwise, if they have edit perms, their role is edit.
Otherwise, if they have view perms, their role is view.
Role is None if user is not a Source member.
|
https://github.com/beijbom/coralnet/blob/1f47f666a783f5ed4bcb5057513a4ae76e3d2d8c/project/images/models.py#L217-L232
|
import posixpath
from django.conf import settings
from django.contrib.auth.models import User
from django.core.exceptions import ImproperlyConfigured, ObjectDoesNotExist
from django.core.mail import mail_admins
from django.core.validators import MaxValueValidator, MinValueValidator
from django.db import models
from easy_thumbnails.fields import ThumbnailerImageField
from guardian.shortcuts import (
get_objects_for_user, get_users_with_perms, get_perms, assign_perm, remove_perm)
from .model_utils import PointGen
from accounts.utils import is_robot_user
from annotations.model_utils import AnnotationAreaUtils
from labels.models import LabelSet
from lib.utils import rand_string
class SourceManager(models.Manager):
def get_by_natural_key(self, name):
return self.get(name=name)
class Source(models.Model):
objects = SourceManager()
class VisibilityTypes:
PUBLIC = 'b'
PUBLIC_VERBOSE = 'Public'
PRIVATE = 'v'
PRIVATE_VERBOSE = 'Private'
name = models.CharField(max_length=200, unique=True)
VISIBILITY_CHOICES = (
(VisibilityTypes.PUBLIC, VisibilityTypes.PUBLIC_VERBOSE),
(VisibilityTypes.PRIVATE, VisibilityTypes.PRIVATE_VERBOSE),
)
visibility = models.CharField(
max_length=1, choices=VISIBILITY_CHOICES,
default=VisibilityTypes.PUBLIC)
create_date = models.DateTimeField(
'Date created',
auto_now_add=True, editable=False)
description = models.TextField()
affiliation = models.CharField(max_length=200)
labelset = models.ForeignKey(
LabelSet, on_delete=models.PROTECT,
null=True)
key1 = models.CharField('Aux. metadata 1', max_length=50, default="Aux1")
key2 = models.CharField('Aux. metadata 2', max_length=50, default="Aux2")
key3 = models.CharField('Aux. metadata 3', max_length=50, default="Aux3")
key4 = models.CharField('Aux. metadata 4', max_length=50, default="Aux4")
key5 = models.CharField('Aux. metadata 5', max_length=50, default="Aux5")
POINT_GENERATION_CHOICES = (
(PointGen.Types.SIMPLE, PointGen.Types.SIMPLE_VERBOSE),
(PointGen.Types.STRATIFIED, PointGen.Types.STRATIFIED_VERBOSE),
(PointGen.Types.UNIFORM, PointGen.Types.UNIFORM_VERBOSE),
)
default_point_generation_method = models.CharField(
"Point generation method",
help_text=(
"When we create annotation points for uploaded images, this is how"
" we'll generate the point locations. Note that if you change this"
" setting later on, it will NOT apply to images that are already"
" uploaded."),
max_length=50,
default=PointGen.args_to_db_format(
point_generation_type=PointGen.Types.SIMPLE,
simple_number_of_points=200)
)
image_annotation_area = models.CharField(
"Default image annotation area",
help_text=(
"This defines a rectangle of the image where annotation points are"
" allowed to be generated.\n"
"For example, X boundaries of 10% and 95% mean that the leftmost"
" 10% and the rightmost 5% of the image will not have any points."
" Decimals like 95.6% are allowed.\n"
"Later, you can also set these boundaries as pixel counts on a"
" per-image basis; for images that don't have a specific value"
" set, these percentages will be used."),
max_length=50,
null=True
)
cpce_code_filepath = models.CharField(
"Local absolute path to the CPCe code file",
max_length=1000,
default='',
)
cpce_image_dir = models.CharField(
"Local absolute path to the directory with image files",
help_text="Ending slash can be present or not",
max_length=1000,
default='',
)
confidence_threshold = models.IntegerField(
"Confidence threshold (%)",
validators=[MinValueValidator(0),
MaxValueValidator(100)],
default=100,
)
enable_robot_classifier = models.BooleanField(
"Enable robot classifier",
default=True,
help_text=(
"With this option on, the automatic classification system will"
" go through your images and add unconfirmed annotations to them."
" Then when you enter the annotation tool, you will be able to"
" start from the system's suggestions instead of from a blank"
" slate."),
)
FEATURE_EXTRACTOR_CHOICES = (
('efficientnet_b0_ver1', "EfficientNet (default)"),
('vgg16_coralnet_ver1', "VGG16 (legacy)"),
)
feature_extractor_setting = models.CharField(
"Feature extractor",
max_length=50,
choices=FEATURE_EXTRACTOR_CHOICES,
default='efficientnet_b0_ver1')
longitude = models.CharField(max_length=20, blank=True)
latitude = models.CharField(max_length=20, blank=True)
class Meta:
permissions = (
('source_view', 'View'),
('source_edit', 'Edit'),
('source_admin', 'Admin'),
)
class PermTypes:
class ADMIN:
code = 'source_admin'
fullCode = 'images.' + code
verbose = 'Admin'
class EDIT:
code = 'source_edit'
fullCode = 'images.' + code
verbose = 'Edit'
class VIEW:
code = 'source_view'
fullCode = 'images.' + code
verbose = 'View'
@property
def feature_extractor(self) -> str:
if settings.FORCE_DUMMY_EXTRACTOR:
return 'dummy'
return self.feature_extractor_setting
@staticmethod
def get_public_sources():
return Source.objects.filter(visibility=Source.VisibilityTypes.PUBLIC) .order_by('name')
@staticmethod
def get_sources_of_user(user):
if user.is_authenticated:
return get_objects_for_user(user, Source.PermTypes.VIEW.fullCode) .order_by('name')
else:
return Source.objects.none()
@staticmethod
def get_other_public_sources(user):
return Source.get_public_sources() .exclude(pk__in=Source.get_sources_of_user(user))
def has_member(self, user):
return user in self.get_members()
def get_members(self):
return get_users_with_perms(self).order_by('username')
|
BSD 2-Clause Simplified License
|
flora-network/flora-blockchain
|
tests/core/util/test_config.py
|
write_config
|
python
|
def write_config(root_path: Path, config: Dict):
sleep(random.random())
save_config(root_path=root_path, filename="config.yaml", config_data=config)
|
Wait for a random amount of time and write out the config data. With a large
config, we expect save_config() to require multiple writes.
|
https://github.com/flora-network/flora-blockchain/blob/8557b3bd6f71a0d45160e155b3a4731bc5cfd0aa/tests/core/util/test_config.py#L23-L31
|
import asyncio
import copy
import pytest
import random
import yaml
from chia.util.config import create_default_chia_config, initial_config_file, load_config, save_config
from chia.util.path import mkdir
from multiprocessing import Pool
from pathlib import Path
from threading import Thread
from time import sleep
from typing import Dict
|
Apache License 2.0
|
optibus/playback
|
playback/interception/files/file_interception.py
|
FileInterception._deserialize_file
|
python
|
def _deserialize_file(serialized_file):
file_content = serialized_file['file_content']
if file_content != FileInterception.ABOVE_LIMIT_CONTENT:
if six.PY2:
file_content = file_content.decode('base64')
else:
file_content = base64.b64decode(file_content)
return serialized_file['file_path'], file_content
|
Deserialize the content into file path and file content
:param serialized_file: Serialized form of file
:type serialized_file: dict[str, str]
:return: File path and file content
:rtype: str, str
|
https://github.com/optibus/playback/blob/7e8ea29f764a52753aef4e3334fd9bcf7826e082/playback/interception/files/file_interception.py#L143-L159
|
from __future__ import absolute_import
import logging
import os
import base64
import six
from playback.utils.timing_utils import Timed
_logger = logging.getLogger(__name__)
class FileInterception(object):
ABOVE_LIMIT_CONTENT = six.b('above interception limit')
def __init__(self, file_path_arg_index, file_path_arg_name, intercepted_size_limit=None):
self.file_path_arg_index = file_path_arg_index
self.file_path_arg_name = file_path_arg_name
self.intercepted_size_limit = self._calculate_max_intercepted_size_limit(intercepted_size_limit)
@staticmethod
def _mb_size(size):
return size / (1024.0 * 1024.0)
@staticmethod
def _calculate_max_intercepted_size_limit(intercepted_size_limit):
if intercepted_size_limit is not None:
return intercepted_size_limit
return int(float(os.getenv('PLAYBACK_INTERCEPTED_FILE_SIZE_LIMIT', "500")))
def _get_file_path(self, args, kwargs):
file_path = kwargs.get(self.file_path_arg_name)
if not file_path:
file_path = args[self.file_path_arg_index]
return file_path
def _intercept_file(self, args, kwargs):
file_path = self._get_file_path(args, kwargs)
if self._is_file_above_size_limit(file_path):
return self._above_limit_result(file_path)
_logger.info(u'Reading intercepted file ({})'.format(file_path))
with Timed() as timed:
with open(file_path, "rb") as f:
content = f.read()
_logger.info(u'Done reading content size is {:.2f}MB ({})'.format(self._mb_size(len(content)), file_path))
result = self._serialize_file(content, file_path)
_logger.info(u'Done preparing file for recording with in {:.2f}s ({})'.format(timed.duration, file_path))
return result
def _is_file_above_size_limit(self, file_path):
if self.intercepted_size_limit is not None:
file_size_in_mb = self._mb_size(os.path.getsize(file_path))
if file_size_in_mb > self.intercepted_size_limit:
_logger.info(u'Intercepted file is {:.2f}MB which is above interception limit of {:.2f}MB, '
u'ignoring content in file {}'.format(
file_size_in_mb, self.intercepted_size_limit, file_path))
return True
return False
@staticmethod
def _above_limit_result(file_path):
return {
'file_path': file_path,
'file_content': FileInterception.ABOVE_LIMIT_CONTENT
}
@staticmethod
def _serialize_file(content, file_path):
if six.PY2:
encoded_content = content.encode('base64')
else:
encoded_content = base64.b64encode(content)
return {
'file_path': file_path,
'file_content': encoded_content
}
@staticmethod
|
BSD 3-Clause New or Revised License
|
acq4/acq4
|
acq4/devices/MultiClamp/multiclamp.py
|
MultiClampTask.getConfigOrder
|
python
|
def getConfigOrder(self):
return ([], [self.dev.getDAQName("primary")])
|
return lists of devices that should be configured (before, after) this device
|
https://github.com/acq4/acq4/blob/4c0d9cdaf4740359023fd323f671e9af3c115d2e/acq4/devices/MultiClamp/multiclamp.py#L373-L375
|
from __future__ import print_function
from __future__ import with_statement
import time
import numpy as np
from acq4.Manager import logMsg
from acq4.devices.PatchClamp import PatchClamp
from pyqtgraph import multiprocess
from acq4.util.Mutex import Mutex
from pyqtgraph.metaarray import MetaArray, axis
from .DeviceGui import MCDeviceGui
from .taskGUI import MultiClampTaskGui
from ..Device import DeviceTask
from ...util.debug import printExc
class MultiClamp(PatchClamp):
proc = None
def __init__(self, dm, config, name):
PatchClamp.__init__(self, dm, config, name)
self.config = config
self.index = None
self.devRackGui = None
self.mc = None
self._paramCache = {}
self.mode_dependent_params = [
'PrimarySignal', 'SecondarySignal',
'PrimarySignalGain', 'SecondarySignalGain',
'Holding', 'HoldingEnable',
'PipetteOffset',
]
self.stateLock = Mutex(Mutex.Recursive)
self.lastState = {}
self.lastMode = None
self._switchingToMode = None
self.holding = {
'VC': -50e-3,
'IC': 0.0,
'I=0': 0.0
}
executable = self.config.get('pythonExecutable', None)
if executable is not None:
if MultiClamp.proc is False:
raise Exception("Already connected to multiclamp locally; cannot connect via remote process at the same time.")
if MultiClamp.proc is None:
MultiClamp.proc = multiprocess.Process(executable=executable, copySysPath=False)
try:
self.proc.mc_mod = self.proc._import('acq4.drivers.MultiClamp')
self.proc.mc_mod._setProxyOptions(deferGetattr=False)
except:
MultiClamp.proc.close()
MultiClamp.proc = None
raise
mcmod = self.proc.mc_mod
else:
if MultiClamp.proc not in (None, False):
raise Exception("Already connected to multiclamp via remote process; cannot connect locally at the same time.")
else:
MultiClamp.proc = False
try:
import acq4.drivers.MultiClamp as MultiClampDriver
except RuntimeError as exc:
if "32-bit" in exc.message:
raise Exception("MultiClamp commander does not support access by 64-bit processes. To circumvent this problem, "
"Use the 'pythonExecutable' device configuration option to connect via a 32-bit python instead.")
else:
raise
mcmod = MultiClampDriver
dllPath = self.config.get('dllPath', None)
if dllPath is not None:
mcmod.getAxlib(dllPath)
mc = mcmod.MultiClamp.instance()
if executable is not None:
self.mc = mc.getChannel(self.config['channelID'], multiprocess.proxy(self.mcUpdate, callSync='off'))
else:
self.mc = mc.getChannel(self.config['channelID'], self.mcUpdate)
start = time.time()
while self.mc.getState() is None:
time.sleep(0.1)
if time.time() - start > 10:
raise Exception("Timed out waiting for first update from multi clamp commander.")
print("Created MultiClamp device", self.config['channelID'])
if 'vcHolding' in self.config:
self.holding['VC'] = self.config['vcHolding']
if 'icHolding' in self.config:
self.holding['IC'] = self.config['icHolding']
defaults = self.config.get('defaults', self.config.get('settings', None))
for mode in ['IC', 'VC']:
self.setMode(mode)
if defaults is not None and mode in defaults:
self.mc.setParams(defaults[mode])
self.setMode('I=0')
dm.declareInterface(name, ['clamp'], self)
def listChannels(self):
chans = {}
for ch in ['commandChannel', 'primaryChannel', 'secondaryChannel']:
chans[ch] = self.config[ch].copy()
return chans
def quit(self):
if self.mc is not None:
self.mc.mc.quit()
def mcUpdate(self, state=None, mode=None):
with self.stateLock:
self._paramCache = {}
if state is None:
state = self.lastState[mode]
mode = state['mode']
state['holding'] = self.holding[mode]
self.lastState[mode] = state.copy()
if self.lastMode != state['mode']:
if self.lastMode is not None and state['mode'] != self._switchingToMode and state['mode'] != 'I=0':
self.setHolding(state['mode'])
logMsg("Warning: MultiClamp mode should be changed from ACQ4, not from the MultiClamp Commander window.", msgType='error')
self.lastMode = state['mode']
self._switchingToMode = None
self.sigStateChanged.emit(state)
def getLastState(self, mode=None):
if mode is None:
mode = self.mc.getMode()
with self.stateLock:
if mode in self.lastState:
return self.lastState[mode]
def extCmdScale(self, mode):
s = self.getLastState(mode)
if s is not None:
return s['extCmdScale']
else:
if mode == 'VC':
return 50
else:
return 2.5e9
def getState(self):
return self.mc.getState()
def getParam(self, param):
if param not in self._paramCache:
val = self.mc.getParam(param)
if self.config.get('enableParameterCache', False):
self._paramCache[param] = val
return self._paramCache[param]
def setParam(self, param, value):
if self.config.get('enableParameterCache', False):
if param in self._paramCache and self._paramCache[param] == value:
return
if param == 'PrimarySignal':
self.mc.setPrimarySignal(value)
elif param == 'SecondarySignal':
self.mc.setSecondarySignal(value)
else:
self.mc.setParam(param, value)
self._paramCache.pop(param)
self.getParam(param)
else:
self.mc.setParam(param, value)
def deviceInterface(self, win):
return MCDeviceGui(self, win)
def taskInterface(self, taskRunner):
return MultiClampTaskGui(self, taskRunner)
def createTask(self, cmd, parentTask):
return MultiClampTask(self, cmd, parentTask)
def getHolding(self, mode=None):
if mode is None:
mode = self.mc.getMode()
if mode == 'I=0':
return 0.0
else:
return self.holding[mode]
def setHolding(self, mode=None, value=None):
with self.dm.reserveDevices([self, self.config['commandChannel']['device']]):
currentMode = self.mc.getMode()
if mode is None:
mode = currentMode
if mode == 'I=0':
return
if mode == 'I=0':
raise Exception("Can't set holding value for I=0 mode.")
if value is not None:
if self.holding[mode] == value:
return
self.holding[mode] = value
state = self.lastState[mode]
state['holding'] = value
if mode == currentMode:
self.sigStateChanged.emit(state)
self.sigHoldingChanged.emit(self, mode)
if mode != currentMode and currentMode != 'I=0':
return
holding = self.holding[mode]
daq = self.getDAQName('command')
chan = self.config['commandChannel']['channel']
daqDev = self.dm.getDevice(daq)
s = self.extCmdScale(mode)
if s == 0:
if holding == 0.0:
s = 1.0
else:
raise Exception('Can not set holding value for multiclamp--external command sensitivity is disabled by commander.')
scale = 1.0 / s
daqDev.setChannelValue(chan, holding*scale, block=False)
def autoPipetteOffset(self):
with self.dm.reserveDevices([self]):
self.mc.autoPipetteOffset()
def autoBridgeBalance(self):
with self.dm.reserveDevices([self]):
self.mc.autoBridgeBal()
def autoCapComp(self):
with self.dm.reserveDevices([self]):
self.mc.autoFastComp()
self.mc.autoSlowComp()
def listSignals(self, mode):
return self.mc.listSignals(mode)
def getMode(self):
return self.mc.getMode()
def setMode(self, mode):
mode = mode.upper()
if mode not in ['VC', 'IC', 'I=0']:
raise Exception('MultiClamp mode "%s" not recognized.' % mode)
for param in self.mode_dependent_params:
self._paramCache.pop(param, None)
with self.dm.reserveDevices([self, self.config['commandChannel']['device']]):
mcMode = self.mc.getMode()
if mcMode == mode:
return
if (mcMode=='IC' and mode=='VC') or (mcMode=='VC' and mode=='IC'):
self._switchingToMode = 'I=0'
self.mc.setMode('I=0')
mcMode = 'I=0'
if mcMode=='I=0':
self.setHolding(mode)
self._switchingToMode = mode
self.mc.setMode(mode)
time.sleep(0.5)
def getDAQName(self, channel):
return self.config[channel + 'Channel']['device']
class MultiClampTask(DeviceTask):
recordParams = [
'BridgeBalEnable',
'BridgeBalResist',
'FastCompCap',
'FastCompTau',
'Holding',
'HoldingEnable',
'LeakSubEnable',
'LeakSubResist',
'NeutralizationCap',
'NeutralizationEnable',
'OutputZeroAmplitude',
'OutputZeroEnable',
'PipetteOffset',
'PrimarySignalHPF',
'PrimarySignalLPF',
'RsCompBandwidth',
'RsCompCorrection',
'RsCompEnable',
'SlowCompCap',
'SlowCompTau',
'WholeCellCompCap',
'WholeCellCompEnable',
'WholeCellCompResist',
]
def __init__(self, dev, cmd, parentTask):
DeviceTask.__init__(self, dev, cmd, parentTask)
self.cmd = cmd
self.usedChannels = None
self.daqTasks = {}
if ('mode' not in self.cmd) or (type(self.cmd['mode']) is not str) or (self.cmd['mode'].upper() not in ['IC', 'VC', 'I=0']):
raise Exception("Multiclamp command must specify clamp mode (IC, VC, or I=0)")
self.cmd['mode'] = self.cmd['mode'].upper()
for ch in ['primary', 'secondary']:
if ch not in self.cmd:
self.cmd[ch] = None
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.