repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
msu-coinlab/pymop
|
pymop/problem.py
|
Problem.pareto_set
|
python
|
def pareto_set(self, *args, **kwargs):
if self._pareto_set is None:
self._pareto_set = self._calc_pareto_set(*args, **kwargs)
return self._pareto_set
|
Returns
-------
S : np.array
Returns the pareto set for a problem. Points in the X space to be known to be optimal!
|
https://github.com/msu-coinlab/pymop/blob/7b7e789e640126c6d254e86ede5d7f4baad7eaa5/pymop/problem.py#L109-L119
|
import warnings
from abc import abstractmethod
import autograd
import autograd.numpy as anp
import numpy as np
from pymop.gradient import run_and_trace, calc_jacobian
class Problem:
def __init__(self, n_var=-1, n_obj=-1, n_constr=0, xl=None, xu=None, type_var=np.double, evaluation_of="auto"):
self.n_var = n_var
self.type_var = type_var
self.n_obj = n_obj
self.n_constr = n_constr
if n_var > 0 and isinstance(xl, int) and isinstance(xu, int):
self.xl = xl if type(xl) is np.ndarray else np.ones(n_var) * xl
self.xu = xu if type(xu) is np.ndarray else np.ones(n_var) * xu
else:
self.xl = xl
self.xu = xu
self._pareto_front = None
self._pareto_set = None
if evaluation_of == "auto":
self.evaluation_of = ["F"]
if self.n_constr > 0:
self.evaluation_of.append("G")
else:
self.evaluation_of = evaluation_of
def nadir_point(self):
return np.max(self.pareto_front(), axis=0)
def ideal_point(self):
return np.min(self.pareto_front(), axis=0)
def pareto_front(self, *args, **kwargs):
if self._pareto_front is None:
self._pareto_front = self._calc_pareto_front(*args, **kwargs)
return self._pareto_front
|
Apache License 2.0
|
spulec/moto
|
moto/batch/models.py
|
Job.__init__
|
python
|
def __init__(
self,
name,
job_def,
job_queue,
log_backend,
container_overrides,
depends_on,
all_jobs,
):
threading.Thread.__init__(self)
DockerModel.__init__(self)
self.job_name = name
self.job_id = str(uuid.uuid4())
self.job_definition = job_def
self.container_overrides = container_overrides or {}
self.job_queue = job_queue
self.job_state = "SUBMITTED"
self.job_queue.jobs.append(self)
self.job_started_at = datetime.datetime(1970, 1, 1)
self.job_stopped_at = datetime.datetime(1970, 1, 1)
self.job_stopped = False
self.job_stopped_reason = None
self.depends_on = depends_on
self.all_jobs = all_jobs
self.stop = False
self.daemon = True
self.name = "MOTO-BATCH-" + self.job_id
self._log_backend = log_backend
self.log_stream_name = None
|
Docker Job
:param name: Job Name
:param job_def: Job definition
:type: job_def: JobDefinition
:param job_queue: Job Queue
:param log_backend: Log backend
:type log_backend: moto.logs.models.LogsBackend
|
https://github.com/spulec/moto/blob/7240e8f9657601e8e6e1b3e1f923dd28819cf7b9/moto/batch/models.py#L324-L367
|
import re
from itertools import cycle
import datetime
import time
import uuid
import logging
import docker
import threading
import dateutil.parser
from boto3 import Session
from moto.core import BaseBackend, BaseModel, CloudFormationModel
from moto.iam import iam_backends
from moto.ec2 import ec2_backends
from moto.ecs import ecs_backends
from moto.logs import logs_backends
from .exceptions import InvalidParameterValueException, ClientException, ValidationError
from .utils import (
make_arn_for_compute_env,
make_arn_for_job_queue,
make_arn_for_task_def,
lowercase_first_key,
)
from moto.ec2.exceptions import InvalidSubnetIdError
from moto.ec2.models import INSTANCE_TYPES as EC2_INSTANCE_TYPES
from moto.iam.exceptions import IAMNotFoundException
from moto.core import ACCOUNT_ID as DEFAULT_ACCOUNT_ID
from moto.utilities.docker_utilities import DockerModel, parse_image_ref
from ..utilities.tagging_service import TaggingService
logger = logging.getLogger(__name__)
COMPUTE_ENVIRONMENT_NAME_REGEX = re.compile(
r"^[A-Za-z0-9][A-Za-z0-9_-]{1,126}[A-Za-z0-9]$"
)
def datetime2int(date):
return int(time.mktime(date.timetuple()))
class ComputeEnvironment(CloudFormationModel):
def __init__(
self,
compute_environment_name,
_type,
state,
compute_resources,
service_role,
region_name,
):
self.name = compute_environment_name
self.env_type = _type
self.state = state
self.compute_resources = compute_resources
self.service_role = service_role
self.arn = make_arn_for_compute_env(
DEFAULT_ACCOUNT_ID, compute_environment_name, region_name
)
self.instances = []
self.ecs_arn = None
self.ecs_name = None
def add_instance(self, instance):
self.instances.append(instance)
def set_ecs(self, arn, name):
self.ecs_arn = arn
self.ecs_name = name
@property
def physical_resource_id(self):
return self.arn
@staticmethod
def cloudformation_name_type():
return "ComputeEnvironmentName"
@staticmethod
def cloudformation_type():
return "AWS::Batch::ComputeEnvironment"
@classmethod
def create_from_cloudformation_json(
cls, resource_name, cloudformation_json, region_name
):
backend = batch_backends[region_name]
properties = cloudformation_json["Properties"]
env = backend.create_compute_environment(
resource_name,
properties["Type"],
properties.get("State", "ENABLED"),
lowercase_first_key(properties["ComputeResources"]),
properties["ServiceRole"],
)
arn = env[1]
return backend.get_compute_environment_by_arn(arn)
class JobQueue(CloudFormationModel):
def __init__(
self, name, priority, state, environments, env_order_json, region_name
):
self.name = name
self.priority = priority
self.state = state
self.environments = environments
self.env_order_json = env_order_json
self.arn = make_arn_for_job_queue(DEFAULT_ACCOUNT_ID, name, region_name)
self.status = "VALID"
self.jobs = []
def describe(self):
result = {
"computeEnvironmentOrder": self.env_order_json,
"jobQueueArn": self.arn,
"jobQueueName": self.name,
"priority": self.priority,
"state": self.state,
"status": self.status,
}
return result
@property
def physical_resource_id(self):
return self.arn
@staticmethod
def cloudformation_name_type():
return "JobQueueName"
@staticmethod
def cloudformation_type():
return "AWS::Batch::JobQueue"
@classmethod
def create_from_cloudformation_json(
cls, resource_name, cloudformation_json, region_name
):
backend = batch_backends[region_name]
properties = cloudformation_json["Properties"]
compute_envs = [
lowercase_first_key(dict_item)
for dict_item in properties["ComputeEnvironmentOrder"]
]
queue = backend.create_job_queue(
queue_name=resource_name,
priority=properties["Priority"],
state=properties.get("State", "ENABLED"),
compute_env_order=compute_envs,
)
arn = queue[1]
return backend.get_job_queue_by_arn(arn)
class JobDefinition(CloudFormationModel):
def __init__(
self,
name,
parameters,
_type,
container_properties,
region_name,
tags={},
revision=0,
retry_strategy=0,
):
self.name = name
self.retries = retry_strategy
self.type = _type
self.revision = revision
self._region = region_name
self.container_properties = container_properties
self.arn = None
self.status = "ACTIVE"
self.tagger = TaggingService()
if parameters is None:
parameters = {}
self.parameters = parameters
self._validate()
self._update_arn()
tags = self._format_tags(tags)
errmsg = self.tagger.validate_tags(tags or [])
if errmsg:
raise ValidationError(errmsg)
self.tagger.tag_resource(self.arn, tags or [])
def _format_tags(self, tags):
return [{"Key": k, "Value": v} for k, v in tags.items()]
def _update_arn(self):
self.revision += 1
self.arn = make_arn_for_task_def(
DEFAULT_ACCOUNT_ID, self.name, self.revision, self._region
)
def _validate(self):
if self.type not in ("container",):
raise ClientException('type must be one of "container"')
if self.type != "container":
raise NotImplementedError()
if not isinstance(self.parameters, dict):
raise ClientException("parameters must be a string to string map")
if "image" not in self.container_properties:
raise ClientException("containerProperties must contain image")
if "memory" not in self.container_properties:
raise ClientException("containerProperties must contain memory")
if self.container_properties["memory"] < 4:
raise ClientException("container memory limit must be greater than 4")
if "vcpus" not in self.container_properties:
raise ClientException("containerProperties must contain vcpus")
if self.container_properties["vcpus"] < 1:
raise ClientException("container vcpus limit must be greater than 0")
def update(self, parameters, _type, container_properties, retry_strategy):
if parameters is None:
parameters = self.parameters
if _type is None:
_type = self.type
if container_properties is None:
container_properties = self.container_properties
if retry_strategy is None:
retry_strategy = self.retries
return JobDefinition(
self.name,
parameters,
_type,
container_properties,
region_name=self._region,
revision=self.revision,
retry_strategy=retry_strategy,
)
def describe(self):
result = {
"jobDefinitionArn": self.arn,
"jobDefinitionName": self.name,
"parameters": self.parameters,
"revision": self.revision,
"status": self.status,
"type": self.type,
"tags": self.tagger.get_tag_dict_for_resource(self.arn),
}
if self.container_properties is not None:
result["containerProperties"] = self.container_properties
if self.retries is not None and self.retries > 0:
result["retryStrategy"] = {"attempts": self.retries}
return result
@property
def physical_resource_id(self):
return self.arn
@staticmethod
def cloudformation_name_type():
return "JobDefinitionName"
@staticmethod
def cloudformation_type():
return "AWS::Batch::JobDefinition"
@classmethod
def create_from_cloudformation_json(
cls, resource_name, cloudformation_json, region_name
):
backend = batch_backends[region_name]
properties = cloudformation_json["Properties"]
res = backend.register_job_definition(
def_name=resource_name,
parameters=lowercase_first_key(properties.get("Parameters", {})),
_type="container",
tags=lowercase_first_key(properties.get("Tags", {})),
retry_strategy=lowercase_first_key(properties["RetryStrategy"]),
container_properties=lowercase_first_key(properties["ContainerProperties"]),
)
arn = res[1]
return backend.get_job_definition_by_arn(arn)
class Job(threading.Thread, BaseModel, DockerModel):
|
Apache License 2.0
|
peopledoc/django-agnocomplete
|
agnocomplete/views.py
|
UserContextFormViewMixin.get_agnocomplete_context
|
python
|
def get_agnocomplete_context(self):
return self.request.user
|
Return the view current user.
You may want to change this value by overrding this method.
|
https://github.com/peopledoc/django-agnocomplete/blob/1ef67a0a808cfe61c6d1ac5ec449ee1a0f0246e8/agnocomplete/views.py#L114-L120
|
from six import with_metaclass
from abc import abstractmethod, ABCMeta
from django.core.exceptions import PermissionDenied, SuspiciousOperation
from django.http import Http404, JsonResponse
from django.utils.encoding import force_text as text
from django.utils.functional import cached_property
from django.views.generic import View
from .register import get_agnocomplete_registry
from .exceptions import (
AuthenticationRequiredAgnocompleteException,
ImproperlyConfiguredView
)
from requests.exceptions import HTTPError, Timeout
def get_error(exc):
if isinstance(exc, HTTPError):
return exc.response.status_code, text(exc.response.content)
if isinstance(exc, Timeout):
return 408, exc
if isinstance(exc, Http404):
return 404, exc
if isinstance(exc, PermissionDenied):
return 403, exc
if isinstance(exc, SuspiciousOperation):
return 400, exc
return 500, exc
class AgnocompleteJSONView(with_metaclass(ABCMeta, View)):
@property
def content_type(self):
if 'HTTP_X_REQUESTED_WITH' in self.request.META:
return "application/json;charset=utf-8"
else:
return "text/html"
@abstractmethod
def get_dataset(self, **kwargs):
pass
def get_extra_arguments(self):
extra = filter(lambda x: x[0] != 'q', self.request.GET.items())
return dict(extra)
def get(self, *args, **kwargs):
try:
dataset = self.get_dataset(**self.get_extra_arguments())
return JsonResponse(
{'data': dataset},
content_type=self.content_type,
)
except Exception as exc:
status, message = get_error(exc)
return JsonResponse(
{"errors": [{
"title": "An error has occurred",
"detail": "{}".format(message)
}]},
content_type=self.content_type,
status=status,
)
class RegistryMixin(object):
@cached_property
def registry(self):
return get_agnocomplete_registry()
class UserContextFormViewMixin(object):
|
MIT License
|
mcw0/dahuaconsole
|
net.py
|
Network.__init__
|
python
|
def __init__(self):
super(Network, self).__init__()
self.args = None
""" If we don't have own udp server running in main app, will be False and we do not send anything """
self.tcp_server = None
self.console_attach = None
self.DeviceClass = None
self.DeviceType = None
self.AuthCode = None
self.ErrorCode = None
self.ID = 0
self.SessionID = 0
self.header = None
self.instance_serviceDB = {}
self.multicall_query_args = []
self.multicall_query = []
self.multicall_return_check = None
self.fuzzDB = {}
self.RestoreEventHandler = {}
self.params_tmp = {}
self.attachParamsTMP = []
self.RemoteServicesCache = {}
self.RemoteMethodsCache = {}
self.RemoteConfigCache = {}
self.rhost = None
self.rport = None
self.proto = None
self.events = None
self.ssl = None
self.relay_host = None
self.timeout = None
self.udp_server = None
self.proto = None
self.relay = None
self.remote = None
self.debug = None
self.debugCalls = None
self.event = threading.Event()
self.socket_event = threading.Event()
self.lock = threading.Lock()
self.recv_stream_status = threading.Event()
self.terminate = False
|
If we don't have own udp server running in main app, will be False and we do not send anything
|
https://github.com/mcw0/dahuaconsole/blob/976dbaa6e5cbbe09413a9476eb67e5a9d7e4d585/net.py#L31-L86
|
import ast
import ndjson
import copy
import inspect
import _thread
from utils import *
from pwdmanager import PwdManager
from relay import init_relay, DahuaHttp
def dahua_proto(proto):
headers = [
b'\xa0\x00',
b'\xa0\x01',
b'\xa0\x05',
b'\xb0\x00',
b'\xb0\x01',
b'\xa3\x01',
b'\xb3\x00',
b'\xf6\x00',
]
if proto[:2] in headers:
return True
return False
class Network(object):
|
MIT License
|
seecode-audit/clocwalk
|
clocwalk/libs/core/update_mysql.py
|
Upgrade.__init__
|
python
|
def __init__(self, proxies=None, upgrade_interval_day='7d', http_timeout=15):
self.http_timeout = int(http_timeout)
self.cve_path = paths.CVE_PATH
self.cve_cpe_db = paths.DB_FILE
self.cpe_file = os.path.join(self.cve_path, 'nvdcpematch-1.0.json')
interval_type = re.search(r'(\d+)(\w)', upgrade_interval_day)
if interval_type and interval_type.group(2) in ('d', 'h'):
if interval_type.group(2) == 'd':
self.upgrade_interval = 60 * 60 * 24 * int(interval_type.group(1))
elif interval_type.group(2) == 'h':
self.upgrade_interval = 60 * 60 * int(interval_type.group(1))
else:
self.upgrade_interval = 60 * 60 * 24 * 7
self.headers = {
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3",
"accept-encoding": "gzip, deflate, br",
"accept-language": "en;q=0.9",
"connection": "keep-alive",
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108"
}
self.headers.update(conf['http']['headers'])
self.pool = ThreadPool(10)
logger.info('Proxies: {0}'.format(proxies))
self.proxies = proxies
|
:param proxies:
:param upgrade_interval_day:
:param http_timeout:
|
https://github.com/seecode-audit/clocwalk/blob/9ae41a841c159212ee1da25d97c93f9daa3c1d5c/clocwalk/libs/core/update_mysql.py#L27-L57
|
import datetime
import glob
import gzip
import json
import os
import re
import shutil
import time
import gevent
import requests
from gevent.threadpool import ThreadPool
from clocwalk.libs.core.data import conf
from clocwalk.libs.core.data import kb
from clocwalk.libs.core.data import logger
from clocwalk.libs.core.data import paths
from clocwalk.libs.core.mysql_helper import MySQLHelper
from clocwalk.libs.detector.cvecpe import cpe_parse
class Upgrade(object):
|
Apache License 2.0
|
facebookresearch/crypten
|
crypten/communicator/communicator.py
|
Communicator.broadcast
|
python
|
def broadcast(self, tensor, src, async_op=False):
raise NotImplementedError("broadcast is not implemented")
|
Broadcasts the tensor to all parties.
|
https://github.com/facebookresearch/crypten/blob/3f190af0ab2932fdbdcd3c53fdb33d27cb706684/crypten/communicator/communicator.py#L66-L68
|
import sys
import timeit
from crypten.config import cfg
class Communicator:
@classmethod
def is_initialized(cls):
raise NotImplementedError("is_initialized is not implemented")
@classmethod
def get(cls):
raise NotImplementedError("get is not implemented")
@classmethod
def initialize(cls, **kwargs):
raise NotImplementedError("initialize is not implemented")
@classmethod
def shutdown(cls):
raise NotImplementedError("shutdown is not implemented")
def send(self, tensor, dst):
raise NotImplementedError("send is not implemented")
def recv(self, tensor, src=None):
raise NotImplementedError("recv is not implemented")
def scatter(self, scatter_list, src, size=None, async_op=False):
raise NotImplementedError("scatter is not implemented")
def reduce(self, tensor, op=None, async_op=False):
raise NotImplementedError("tensor is not implemented")
def all_reduce(self, tensor, op=None, async_op=False):
raise NotImplementedError("tensor is not implemented")
def gather(self, tensor, dst, async_op=False):
raise NotImplementedError("gather is not implemented")
def all_gather(self, tensor, async_op=False):
raise NotImplementedError("all_gather is not implemented")
|
MIT License
|
zachchristensen28/ta-opnsense
|
bin/ta_opnsense/aob_py3/jinja2/utils.py
|
object_type_repr
|
python
|
def object_type_repr(obj):
if obj is None:
return "None"
elif obj is Ellipsis:
return "Ellipsis"
cls = type(obj)
if cls.__module__ in ("__builtin__", "builtins"):
name = cls.__name__
else:
name = cls.__module__ + "." + cls.__name__
return "%s object" % name
|
Returns the name of the object's type. For some recognized
singletons the name of the object is returned instead. (For
example for `None` and `Ellipsis`).
|
https://github.com/zachchristensen28/ta-opnsense/blob/fc736f4c6f0fa7866b4f6d2dcf9761b6b693d6cf/bin/ta_opnsense/aob_py3/jinja2/utils.py#L147-L165
|
import json
import os
import re
import warnings
from collections import deque
from random import choice
from random import randrange
from string import ascii_letters as _letters
from string import digits as _digits
from threading import Lock
from markupsafe import escape
from markupsafe import Markup
from ._compat import abc
from ._compat import string_types
from ._compat import text_type
from ._compat import url_quote
missing = type("MissingType", (), {"__repr__": lambda x: "missing"})()
internal_code = set()
concat = u"".join
_slash_escape = "\\/" not in json.dumps("/")
def contextfunction(f):
f.contextfunction = True
return f
def evalcontextfunction(f):
f.evalcontextfunction = True
return f
def environmentfunction(f):
f.environmentfunction = True
return f
def internalcode(f):
internal_code.add(f.__code__)
return f
def is_undefined(obj):
from .runtime import Undefined
return isinstance(obj, Undefined)
def consume(iterable):
for _ in iterable:
pass
def clear_caches():
from .environment import _spontaneous_environments
from .lexer import _lexer_cache
_spontaneous_environments.clear()
_lexer_cache.clear()
def import_string(import_name, silent=False):
try:
if ":" in import_name:
module, obj = import_name.split(":", 1)
elif "." in import_name:
module, _, obj = import_name.rpartition(".")
else:
return __import__(import_name)
return getattr(__import__(module, None, None, [obj]), obj)
except (ImportError, AttributeError):
if not silent:
raise
def open_if_exists(filename, mode="rb"):
if not os.path.isfile(filename):
return None
return open(filename, mode)
|
MIT License
|
bandoche/pypinksign
|
pypinksign/pypinksign.py
|
pbkdf1
|
python
|
def pbkdf1(password: bytes, salt: bytes, c: int = 1200, dk_len: int = 20):
dk_max_len = hashlib.sha1().digest_size
if dk_len > dk_max_len:
raise ValueError("derived key too long")
if len(salt) != 8:
raise ValueError('Salt should be 8 bytes')
t = sha1(password + salt).digest()
for _ in range(2, c + 1):
t = sha1(t).digest()
return t[:dk_len]
|
From PKCS#5 2.0 sect 5.1
PBKDF1 (P, S, c, dkLen)
Options: Hash underlying hash function
Input: P password, an octet string
S salt, an eight-octet string
c iteration count, a positive integer
dkLen intended length in octets of derived key, a positive integer, at most
16 for MD2 or MD5 and 20 for SHA-1
Output: DK derived key, a dkLen-octet string
|
https://github.com/bandoche/pypinksign/blob/ed1609a9bfdffbfff94cebbacae0984b90c03cad/pypinksign/pypinksign.py#L567-L589
|
import base64
import hashlib
import logging
import os
import random
from datetime import datetime
from hashlib import sha1
from os.path import expanduser
from sys import platform as _platform
from cryptography import x509
from cryptography.exceptions import InvalidSignature, UnsupportedAlgorithm
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding, hashes, serialization
from cryptography.hazmat.primitives.asymmetric.padding import PKCS1v15
from cryptography.hazmat.primitives.asymmetric.rsa import RSAPublicNumbers, RSAPrivateNumbers, rsa_crt_iqmp, rsa_crt_dmp1, rsa_crt_dmq1, RSAPublicKey, RSAPrivateKey
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives.serialization import pkcs12
from pyasn1.codec.der import decoder as der_decoder
from pyasn1.codec.der import encoder as der_encoder
from pyasn1.codec.der.encoder import encode
from pyasn1.type import tag
from pyasn1.type.namedtype import NamedTypes, NamedType
from pyasn1.type.univ import Sequence, Integer, OctetString, ObjectIdentifier, Set, BitString, Null
ID_SEED_CBC = (1, 2, 410, 200004, 1, 4)
ID_SEED_CBC_WITH_SHA1 = (1, 2, 410, 200004, 1, 15)
ID_PBES2 = (1, 2, 840, 113549, 1, 5, 13)
ID_PKCS7_ENVELOPED_DATA = (1, 2, 840, 113549, 1, 7, 3)
ID_PKCS1_ENCRYPTION = (1, 2, 840, 113549, 1, 1, 1)
ID_KISA_NPKI_RAND_NUM = (1, 2, 410, 200004, 10, 1, 1, 3)
class PinkSign:
def __init__(self, pubkey_path: str = None, pubkey_data: bytes = None, prikey_path: str = None,
prikey_data: bytes = None, prikey_password: bytes = None, p12_path: str = None,
p12_data: bytes = None):
self.pubkey_path = pubkey_path
self.prikey_path = prikey_path
self.prikey_data = prikey_data
if prikey_password:
if isinstance(prikey_password, str):
logging.warning("Please use bytes for passphrase")
prikey_password = str.encode(prikey_password)
self.prikey_password = prikey_password
self.p12_path = p12_path
self.p12_data = p12_data
self.pub_cert = None
self.prikey: RSAPrivateKey = None
self.pub_data: bytes = None
self.pubkey: RSAPublicKey = None
self.rand_num = None
if p12_path is not None:
self.load_p12()
elif p12_data is not None:
self.load_p12(p12_data=p12_data)
else:
if pubkey_path is not None:
self.load_pubkey()
elif pubkey_data is not None:
self.load_pubkey(pubkey_data=pubkey_data)
if prikey_path is not None and prikey_password is not None:
self.load_prikey()
return
def load_pubkey(self, pubkey_path: str = None, pubkey_data: bytes = None) -> None:
if not any([self.pubkey_path, pubkey_path, pubkey_data]):
raise ValueError("Neither pubkey_path nor pubkey_data is exist.")
if pubkey_data is not None:
self.pub_data = pubkey_data
else:
if pubkey_path is not None:
self.pubkey_path = pubkey_path
self.pub_data = open(self.pubkey_path, 'rb').read()
self.pub_cert = x509.load_der_x509_certificate(self.pub_data, default_backend())
self.pubkey = self.pub_cert.public_key()
return
def load_prikey(self, prikey_path: str = None, prikey_data: bytes = None, prikey_password: str = None) -> None:
if self.pubkey is None:
raise ValueError("public key file should be loaded before load private key.")
if not any([self.prikey_path, prikey_path, self.prikey_data, prikey_data]):
raise ValueError("prikey_path(prikey_data) is not defined.")
if not any([self.prikey_password, prikey_password]):
raise ValueError("prikey_password is not defined.")
if prikey_path is not None:
self.prikey_path = prikey_path
if prikey_data is not None:
self.prikey_data = prikey_data
if prikey_password is not None:
self.prikey_password = prikey_password
if self.prikey_path is not None:
d = open(self.prikey_path, 'rb').read()
else:
d = self.prikey_data
der = der_decoder.decode(d)[0]
algorithm_type = der[0][0].asTuple()
private_key_decryption_key_functions = {
ID_SEED_CBC_WITH_SHA1: self.get_private_key_decryption_key_for_seed_cbc_with_sha1,
ID_SEED_CBC: self.get_private_key_decryption_key_for_seed_cbc,
ID_PBES2: self.get_private_key_decryption_key_for_pbes2,
}
if algorithm_type not in private_key_decryption_key_functions.keys():
raise ValueError("prikey is not correct K-PKI private key file")
k, iv = private_key_decryption_key_functions[algorithm_type](der)
cipher_key = der[1].asOctets()
prikey_data = seed_cbc_128_decrypt(k, cipher_key, iv)
self._load_prikey_with_decrypted_data(decrypted_prikey_data=prikey_data)
return
def _load_prikey_with_decrypted_data(self, decrypted_prikey_data: bytes) -> None:
der_pri = der_decoder.decode(decrypted_prikey_data)
der_pri2 = der_decoder.decode(der_pri[0][2])
(n, e, d, p, q) = (der_pri2[0][1], der_pri2[0][2], der_pri2[0][3], der_pri2[0][4], der_pri2[0][5])
(n, e, d, p, q) = (int(n), int(e), int(d), int(p), int(q))
iqmp = rsa_crt_iqmp(p, q)
dmp1 = rsa_crt_dmp1(d, p)
dmq1 = rsa_crt_dmq1(d, q)
pn = RSAPublicNumbers(n=n, e=e)
self.prikey = RSAPrivateNumbers(p=p, q=q, d=d, dmp1=dmp1, dmq1=dmq1, iqmp=iqmp,
public_numbers=pn).private_key(backend=default_backend())
if len(der_pri[0]) > 3:
self._rand_num = der_pri[0][3][1][0]
return
def load_p12(self, p12_data: bytes = None) -> None:
if p12_data is None:
p12_data = open(self.p12_path, 'rb').read()
pubkey_data, prikey_data = separate_p12_into_npki(p12_data, self.prikey_password)
self.load_pubkey(pubkey_data=pubkey_data)
self._load_prikey_with_decrypted_data(decrypted_prikey_data=prikey_data)
return
def cn(self) -> str:
if self.pub_cert is None:
raise ValueError("Public key should be loaded before fetching DN.")
for dn in self.pub_cert.subject.rdns:
if dn.rfc4514_string().startswith('CN='):
return dn.rfc4514_string()[3:]
return ''
def issuer(self) -> str:
if self.pub_cert is None:
raise ValueError("Public key should be loaded before fetching issuer.")
for dn in self.pub_cert.issuer.rdns:
if dn.rfc4514_string().startswith('O='):
return dn.rfc4514_string()[2:]
def cert_class(self) -> str:
if self.pub_cert is None:
raise ValueError("Public key should be loaded before fetching cert class.")
for dn in self.pub_cert.issuer.rdns:
if dn.rfc4514_string().startswith('CN='):
return dn.rfc4514_string()[3:]
def cert_type_oid(self) -> str:
if self.pub_cert is None:
raise ValueError("Public key should be loaded before fetching cert type.")
for ext in self.pub_cert.extensions:
if ext.oid.dotted_string == '2.5.29.32':
return ext.value[0].policy_identifier.dotted_string
def valid_date(self) -> (datetime, datetime):
if self.pub_cert is None:
raise ValueError("Public key should be loaded before fetching valid date.")
return self.pub_cert.not_valid_before, self.pub_cert.not_valid_after
def serialnum(self) -> int:
if self.pub_cert is None:
raise ValueError("Public key should be loaded before fetching serial number.")
return self.pub_cert.serial_number
def sign(self, msg: bytes, algorithm=hashes.SHA256(), padding_=PKCS1v15()):
if self.prikey is None:
raise ValueError("Private key is required for signing.")
return self.prikey.sign(data=msg, padding=padding_, algorithm=algorithm)
def verify(self, signature: bytes, msg: bytes, algorithm=hashes.SHA256(), padding_=PKCS1v15()) -> bool:
if self.pubkey is None:
raise ValueError("Public key is required for verification.")
try:
self.pubkey.verify(data=msg, signature=signature, padding=padding_, algorithm=algorithm)
return True
except InvalidSignature:
return False
except Exception as e:
raise e
def decrypt(self, msg, padding_=PKCS1v15()):
if self.prikey is None:
raise ValueError("Private key is required for decryption.")
return self.prikey.decrypt(ciphertext=msg, padding=padding_)
def encrypt(self, msg, padding_=PKCS1v15()):
if self.pubkey is None:
raise ValueError("Public key is required for encryption.")
return self.pubkey.encrypt(msg, padding=padding_)
def pkcs7_signed_msg(self, msg: bytes):
signed = self.sign(msg)
owner_cert_pub = der_decoder.decode(self.pub_data)[0]
oi_pkcs7_signed = ObjectIdentifier((1, 2, 840, 113549, 1, 7, 2))
oi_pkcs7_data = ObjectIdentifier((1, 2, 840, 113549, 1, 7, 1))
oi_sha256 = ObjectIdentifier((2, 16, 840, 1, 101, 3, 4, 2, 1))
oi_pkcs7_rsa_enc = ObjectIdentifier((1, 2, 840, 113549, 1, 1, 1))
der = Sequence().setComponentByPosition(0, oi_pkcs7_signed)
data = Sequence()
data = data.setComponentByPosition(0, Integer(1))
data = data.setComponentByPosition(
1, Set().setComponentByPosition(
0, Sequence().setComponentByPosition(
0, oi_sha256).setComponentByPosition(
1, Null(''))))
data = data.setComponentByPosition(
2, Sequence().setComponentByPosition(
0, oi_pkcs7_data).setComponentByPosition(
1,
Sequence().subtype(implicitTag=tag.Tag(tag.tagClassContext,
tag.tagFormatSimple,
0)).
setComponentByPosition(0, OctetString(hexValue=msg.hex()))))
data = data.setComponentByPosition(3, Sequence().subtype(
implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 0)).setComponentByPosition(0, owner_cert_pub))
data4001 = Sequence().setComponentByPosition(0, owner_cert_pub[0][3])
data4001 = data4001.setComponentByPosition(1, owner_cert_pub[0][1])
data4002 = Sequence().setComponentByPosition(0, oi_sha256).setComponentByPosition(1, Null(''))
data4003 = Sequence().setComponentByPosition(0, oi_pkcs7_rsa_enc).setComponentByPosition(1, Null(''))
data4004 = OctetString(hexValue=signed.hex())
data = data.setComponentByPosition(
4, Set().setComponentByPosition(
0, Sequence().setComponentByPosition(
0, Integer(1)).setComponentByPosition(
1, data4001).setComponentByPosition(
2, data4002).setComponentByPosition(
3, data4003).setComponentByPosition(
4, data4004)))
der = der.setComponentByPosition(1, Sequence().subtype(
implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 0)).setComponentByPosition(0, data))
return der_encoder.encode(der)
def get_private_key_decryption_key_for_seed_cbc_with_sha1(self, der: Sequence) -> (bytes, bytes):
salt = der[0][1][0].asOctets()
iter_cnt = int(der[0][1][1])
dk = pbkdf1(self.prikey_password, salt, iter_cnt, 20)
k = dk[:16]
div = hashlib.sha1(dk[16:20]).digest()
iv = div[:16]
return k, iv
def get_private_key_decryption_key_for_seed_cbc(self, der: Sequence) -> (bytes, bytes):
salt = der[0][1][0].asOctets()
iter_cnt = int(der[0][1][1])
dk = pbkdf1(self.prikey_password, salt, iter_cnt, 20)
k = dk[:16]
iv = b"0123456789012345"
return k, iv
def get_private_key_decryption_key_for_pbes2(self, der: Sequence) -> (bytes, bytes):
salt = der[0][1][0][1][0].asOctets()
iter_cnt = int(der[0][1][0][1][1])
kdf = PBKDF2HMAC(
algorithm=hashes.SHA1(),
length=16,
salt=salt,
iterations=iter_cnt,
backend=default_backend(),
)
k = kdf.derive(self.prikey_password)
iv = der[0][1][1][1].asOctets()
return k, iv
def get_npki_path():
if _platform == "linux" or _platform == "linux2":
path = expanduser("~/NPKI/")
elif _platform == "darwin":
suspect = ["~/Documents/NPKI/", "~/NPKI/", "~/Library/Preferences/NPKI/"]
for p in suspect:
path = expanduser(p)
if os.path.isdir(path):
return path
raise ValueError("can't find certificate folder")
elif _platform == "win32":
suspect = ["C:/Program Files/NPKI/", "~/AppData/LocalLow/NPKI/"]
for p in suspect:
path = expanduser(p)
if os.path.isdir(path):
return path
raise ValueError("can't find certificate folder")
else:
path = expanduser("~/NPKI/")
return path
def choose_cert(base_path: str = None, cn: str = None, pw: str = None):
cert_list = []
if base_path is not None:
path = base_path
else:
path = get_npki_path()
for root, dirs, files in os.walk(path):
if root[-5:] == "/USER":
for cert_dir in dirs:
if cert_dir[:3] == "cn=":
cert_path = "%s/%s" % (root, cert_dir)
cert = PinkSign(pubkey_path="%s/signCert.der" % cert_path)
cert.prikey_path = "%s/signPri.key" % cert_path
if cn is not None:
if cn in cert.cn():
if pw is not None:
cert.load_prikey(prikey_path="%s/signPri.key" % cert_path, prikey_password=pw)
return cert
cert_list.append(cert)
i = 1
for cert in cert_list:
(cn, (valid_from, valid_until), issuer) = (cert.cn(), cert.valid_date(), cert.issuer())
print("[%d] %s (%s ~ %s) issued by %s" % (i, cn, valid_from, valid_until, issuer))
i += 1
i = int(input("Choose your certifiacte: "))
return cert_list[i - 1]
def seed_cbc_128_encrypt(key: bytes, plaintext: bytes, iv: bytes = b'0123456789012345') -> bytes:
try:
return seed_cbc_128_encrypt_openssl(key, plaintext, iv)
except UnsupportedAlgorithm:
return seed_cbc_128_encrypt_pure(key, plaintext, iv)
def seed_cbc_128_decrypt(key: bytes, ciphertext: bytes, iv: bytes = b'0123456789012345') -> bytes:
try:
return seed_cbc_128_decrypt_openssl(key, ciphertext, iv)
except UnsupportedAlgorithm:
return seed_cbc_128_decrypt_pure(key, ciphertext, iv)
def seed_cbc_128_encrypt_openssl(key: bytes, plaintext: bytes, iv: bytes = b'0123456789012345') -> bytes:
backend = default_backend()
cipher = Cipher(algorithms.SEED(key), modes.CBC(iv), backend=backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(128).padder()
padded_text = padder.update(plaintext) + padder.finalize()
encrypted_text = encryptor.update(padded_text)
return encrypted_text
def byte_xor(ba1, ba2):
return bytes([_a ^ _b for _a, _b in zip(ba1, ba2)])
def seed_cbc_128_encrypt_pure(key: bytes, plaintext: bytes, iv: bytes = b'0123456789012345') -> bytes:
from . import process_block
padder = padding.PKCS7(128).padder()
padded_text = padder.update(plaintext) + padder.finalize()
n = 16
chunks = [padded_text[i:i + n] for i in range(0, len(padded_text), n)]
vector = iv
result = b''
for ch in chunks:
new_ch = byte_xor(ch, vector)
result_ba = process_block(True, key, new_ch)
vector = result_ba
result += result_ba
return result
def seed_cbc_128_decrypt_openssl(key: bytes, ciphertext: bytes, iv: bytes = b'0123456789012345') -> bytes:
backend = default_backend()
cipher = Cipher(algorithms.SEED(key), modes.CBC(iv), backend=backend)
decryptor = cipher.decryptor()
decrypted_text = decryptor.update(ciphertext)
unpadder = padding.PKCS7(128).unpadder()
unpadded_text = unpadder.update(decrypted_text) + unpadder.finalize()
return unpadded_text
def seed_cbc_128_decrypt_pure(key: bytes, ciphertext: bytes, iv: bytes = b'0123456789012345') -> bytes:
from . import process_block
n = 16
chunks = [ciphertext[i:i + n] for i in range(0, len(ciphertext), n)]
vector = iv
result = b''
for ch in chunks:
dec = process_block(False, key, ch)
result += byte_xor(dec, vector)
vector = ch
unpadder = padding.PKCS7(128).unpadder()
unpadded_text = unpadder.update(result) + unpadder.finalize()
return unpadded_text
def seed_generator(size: int) -> bytes:
return bytes([random.choice(range(255)) + 1 for _ in range(size)])
|
MIT License
|
dedsecinside/awesome-scripts
|
APIs/Telegram API/telethon/tl/custom/inlinebuilder.py
|
InlineBuilder._message
|
python
|
async def _message(
self, *,
text=None, parse_mode=(), link_preview=True,
geo=None, period=60, contact=None, game=False, buttons=None
):
|
Use this method to edit_preview.
Args:
self: (todo): write your description
text: (str): write your description
parse_mode: (todo): write your description
link_preview: (str): write your description
geo: (str): write your description
period: (str): write your description
contact: (str): write your description
game: (todo): write your description
buttons: (str): write your description
|
https://github.com/dedsecinside/awesome-scripts/blob/856835e5ff5f8a6af2d74bb25800c620feb712e3/APIs/Telegram API/telethon/tl/custom/inlinebuilder.py#L278-L296
|
import hashlib
from .. import functions, types
from ... import utils
class InlineBuilder:
def __init__(self, client):
self._client = client
async def article(
self, title, description=None,
*, url=None, thumb=None, content=None,
id=None, text=None, parse_mode=(), link_preview=True,
geo=None, period=60, contact=None, game=False, buttons=None
):
result = types.InputBotInlineResult(
id=id or '',
type='article',
send_message=await self._message(
text=text, parse_mode=parse_mode, link_preview=link_preview,
geo=geo, period=period,
contact=contact,
game=game,
buttons=buttons
),
title=title,
description=description,
url=url,
thumb=thumb,
content=content
)
if id is None:
result.id = hashlib.sha256(bytes(result)).hexdigest()
return result
async def photo(
self, file, *, id=None,
text=None, parse_mode=(), link_preview=True,
geo=None, period=60, contact=None, game=False, buttons=None
):
try:
fh = utils.get_input_photo(file)
except TypeError:
_, media, _ = await self._client._file_to_media(
file, allow_cache=True, as_image=True
)
if isinstance(media, types.InputPhoto):
fh = media
else:
r = await self._client(functions.messages.UploadMediaRequest(
types.InputPeerSelf(), media=media
))
fh = utils.get_input_photo(r.photo)
result = types.InputBotInlineResultPhoto(
id=id or '',
type='photo',
photo=fh,
send_message=await self._message(
text=text or '',
parse_mode=parse_mode,
link_preview=link_preview,
geo=geo,
period=period,
contact=contact,
game=game,
buttons=buttons
)
)
if id is None:
result.id = hashlib.sha256(bytes(result)).hexdigest()
return result
async def document(
self, file, title=None, *, description=None, type=None,
mime_type=None, attributes=None, force_document=False,
voice_note=False, video_note=False, use_cache=True, id=None,
text=None, parse_mode=(), link_preview=True,
geo=None, period=60, contact=None, game=False, buttons=None
):
if type is None:
if voice_note:
type = 'voice'
else:
type = 'document'
try:
fh = utils.get_input_document(file)
except TypeError:
_, media, _ = await self._client._file_to_media(
file,
mime_type=mime_type,
attributes=attributes,
force_document=True,
voice_note=voice_note,
video_note=video_note,
allow_cache=use_cache
)
if isinstance(media, types.InputDocument):
fh = media
else:
r = await self._client(functions.messages.UploadMediaRequest(
types.InputPeerSelf(), media=media
))
fh = utils.get_input_document(r.document)
result = types.InputBotInlineResultDocument(
id=id or '',
type=type,
document=fh,
send_message=await self._message(
text=text or '',
parse_mode=parse_mode,
link_preview=link_preview,
geo=geo,
period=period,
contact=contact,
game=game,
buttons=buttons
),
title=title,
description=description
)
if id is None:
result.id = hashlib.sha256(bytes(result)).hexdigest()
return result
async def game(
self, short_name, *, id=None,
text=None, parse_mode=(), link_preview=True,
geo=None, period=60, contact=None, game=False, buttons=None
):
result = types.InputBotInlineResultGame(
id=id or '',
short_name=short_name,
send_message=await self._message(
text=text, parse_mode=parse_mode, link_preview=link_preview,
geo=geo, period=period,
contact=contact,
game=game,
buttons=buttons
)
)
if id is None:
result.id = hashlib.sha256(bytes(result)).hexdigest()
return result
|
MIT License
|
hazyresearch/pdftotree
|
pdftotree/utils/pdf/pdf_utils.py
|
_allowed_char
|
python
|
def _allowed_char(c):
c = ord(c)
if c < 0:
return False
if c < 128:
return _ascii_allowed[c]
return True
|
Returns whether the given unicode char is allowed in output
|
https://github.com/hazyresearch/pdftotree/blob/0686a1845c7901aa975544a9107fc10594523986/pdftotree/utils/pdf/pdf_utils.py#L249-L260
|
import collections
import re
import string
from collections import Counter
from typing import List, NamedTuple, Optional, Tuple, Union
from pdfminer.converter import PDFPageAggregator
from pdfminer.layout import (
LTAnno,
LTChar,
LTComponent,
LTContainer,
LTCurve,
LTFigure,
LTLayoutContainer,
LTLine,
LTPage,
LTTextContainer,
LTTextLine,
)
from pdfminer.utils import INF, apply_matrix_pt
from pdftotree.utils.img_utils import normalize_bbox, normalize_pts
class PDFElems(NamedTuple):
mentions: List[LTTextLine]
segments: List[LTLine]
curves: List[LTCurve]
figures: List[LTFigure]
layout: LTPage
chars: List[Union[LTChar, LTAnno]]
class CustomPDFPageAggregator(PDFPageAggregator):
line_only_shape = re.compile("ml+h?")
def paint_path(self, gstate, stroke, fill, evenodd, path):
shape = "".join(x[0] for x in path)
prev_split = 0
for i in range(len(shape)):
if shape[i] == "m" and prev_split != i:
self.paint_single_path(
gstate, stroke, fill, evenodd, path[prev_split:i]
)
prev_split = i
if shape[i] == "h":
self.paint_single_path(
gstate, stroke, fill, evenodd, path[prev_split : i + 1]
)
prev_split = i + 1
if prev_split < len(shape):
self.paint_single_path(gstate, stroke, fill, evenodd, path[prev_split:])
def paint_single_path(self, gstate, stroke, fill, evenodd, path):
if len(path) < 2:
return
shape = "".join(x[0] for x in path)
pts = []
for p in path:
for i in range(1, len(p), 2):
pts.append(apply_matrix_pt(self.ctm, (p[i], p[i + 1])))
if self.line_only_shape.match(shape):
has_slope = False
for i in range(len(pts) - 1):
if pts[i][0] != pts[i + 1][0] and pts[i][1] != pts[i + 1][1]:
has_slope = True
break
if not has_slope:
for i in range(len(pts) - 1):
self.cur_item.add(LTLine(gstate.linewidth, pts[i], pts[i + 1]))
if shape.endswith("h"):
self.cur_item.add(LTLine(gstate.linewidth, pts[0], pts[-1]))
return
self.cur_item.add(LTCurve(gstate.linewidth, pts))
def normalize_pdf(self, layout: LTPage, scaler) -> Tuple[PDFElems, Counter]:
chars = []
mentions: List[LTTextContainer] = []
height = scaler * layout.height
font_size_counter = collections.Counter()
pts_thres = 2.0 * scaler
segments = []
curves = []
figures = []
container: LTContainer = None
_font = None
def processor(m, parent):
if isinstance(m, LTContainer):
for child in m:
processor(child, m)
if isinstance(m, LTComponent):
m.set_bbox(normalize_bbox(m.bbox, height, scaler))
if isinstance(m, LTCurve):
m.pts = normalize_pts(m.pts, height, scaler)
if isinstance(m, LTLine) and max(m.width, m.height) > pts_thres:
segments.append(m)
else:
curves.append(m)
elif isinstance(m, LTFigure):
figures.append(m)
elif isinstance(m, LTChar):
if not isinstance(parent, LTTextLine):
nonlocal _font
nonlocal container
font = (m.fontname, m.size)
dummy_bbox = (+INF, +INF, -INF, -INF)
if font != _font:
if _font is not None:
layout_container = LTLayoutContainer(dummy_bbox)
for textline in layout_container.group_objects(
self.laparams, container
):
cleaned_textline = _clean_textline(textline)
if cleaned_textline is not None:
mentions.append(cleaned_textline)
container = LTContainer(dummy_bbox)
_font = font
container.add(m)
chars.append(m)
font_size = _font_size_of(m)
font_size_counter[font_size] += 1
elif isinstance(m, LTTextLine):
cleaned_textline = _clean_textline(m)
if cleaned_textline is not None:
mentions.append(cleaned_textline)
elif isinstance(m, LTAnno):
chars.append(m)
return
processor(layout, None)
for m in mentions:
alphanum_c = next((c for c in m if c.get_text().isalnum()), None)
if alphanum_c:
m.set_bbox((m.x0, alphanum_c.y0, m.x1, alphanum_c.y1))
elems = PDFElems(mentions, segments, curves, figures, layout, chars)
return elems, font_size_counter
def _print_dict(elem_dict):
for key, value in sorted(elem_dict.iteritems()):
if isinstance(value, collections.Iterable):
print(key, len(value))
else:
print(key, value)
def _font_size_of(ch):
if isinstance(ch, LTChar):
return max(map(abs, ch.matrix[:4]))
return -1
def _clean_textline(item: LTTextLine) -> Optional[LTTextLine]:
clean_text = keep_allowed_chars(item.get_text()).strip()
if clean_text:
item.clean_text = clean_text
item.font_name, item.font_size = _font_of_mention(item)
return item
else:
return None
def _font_of_mention(m):
for ch in m:
if isinstance(ch, LTChar) and ch.get_text().isalnum():
return (ch.fontname, _font_size_of(ch))
return (None, 0)
_ascii_allowed = [False] * 128
_forbidden_chars = "\n\t"
for c in string.printable:
_ascii_allowed[ord(c)] = True
for c in _forbidden_chars:
_ascii_allowed[ord(c)] = False
|
MIT License
|
unofficial-memsource/memsource-cli-client
|
memsource_cli/models/sdl_xlf_settings_dto.py
|
SdlXlfSettingsDto.save_confirmed_segments
|
python
|
def save_confirmed_segments(self, save_confirmed_segments):
self._save_confirmed_segments = save_confirmed_segments
|
Sets the save_confirmed_segments of this SdlXlfSettingsDto.
Default: true # noqa: E501
:param save_confirmed_segments: The save_confirmed_segments of this SdlXlfSettingsDto. # noqa: E501
:type: bool
|
https://github.com/unofficial-memsource/memsource-cli-client/blob/a6639506b74e95476da87f4375953448b76ea90c/memsource_cli/models/sdl_xlf_settings_dto.py#L252-L261
|
import pprint
import re
import six
class SdlXlfSettingsDto(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'skip_import_rules': 'str',
'import_as_confirmed_rules': 'str',
'import_as_locked_rules': 'str',
'export_attrs_when_confirmed_and_locked': 'str',
'export_attrs_when_confirmed_and_not_locked': 'str',
'export_attrs_when_not_confirmed_and_locked': 'str',
'export_attrs_when_not_confirmed_and_not_locked': 'str',
'save_confirmed_segments': 'bool'
}
attribute_map = {
'skip_import_rules': 'skipImportRules',
'import_as_confirmed_rules': 'importAsConfirmedRules',
'import_as_locked_rules': 'importAsLockedRules',
'export_attrs_when_confirmed_and_locked': 'exportAttrsWhenConfirmedAndLocked',
'export_attrs_when_confirmed_and_not_locked': 'exportAttrsWhenConfirmedAndNotLocked',
'export_attrs_when_not_confirmed_and_locked': 'exportAttrsWhenNotConfirmedAndLocked',
'export_attrs_when_not_confirmed_and_not_locked': 'exportAttrsWhenNotConfirmedAndNotLocked',
'save_confirmed_segments': 'saveConfirmedSegments'
}
def __init__(self, skip_import_rules=None, import_as_confirmed_rules=None, import_as_locked_rules=None, export_attrs_when_confirmed_and_locked=None, export_attrs_when_confirmed_and_not_locked=None, export_attrs_when_not_confirmed_and_locked=None, export_attrs_when_not_confirmed_and_not_locked=None, save_confirmed_segments=None):
self._skip_import_rules = None
self._import_as_confirmed_rules = None
self._import_as_locked_rules = None
self._export_attrs_when_confirmed_and_locked = None
self._export_attrs_when_confirmed_and_not_locked = None
self._export_attrs_when_not_confirmed_and_locked = None
self._export_attrs_when_not_confirmed_and_not_locked = None
self._save_confirmed_segments = None
self.discriminator = None
if skip_import_rules is not None:
self.skip_import_rules = skip_import_rules
if import_as_confirmed_rules is not None:
self.import_as_confirmed_rules = import_as_confirmed_rules
if import_as_locked_rules is not None:
self.import_as_locked_rules = import_as_locked_rules
if export_attrs_when_confirmed_and_locked is not None:
self.export_attrs_when_confirmed_and_locked = export_attrs_when_confirmed_and_locked
if export_attrs_when_confirmed_and_not_locked is not None:
self.export_attrs_when_confirmed_and_not_locked = export_attrs_when_confirmed_and_not_locked
if export_attrs_when_not_confirmed_and_locked is not None:
self.export_attrs_when_not_confirmed_and_locked = export_attrs_when_not_confirmed_and_locked
if export_attrs_when_not_confirmed_and_not_locked is not None:
self.export_attrs_when_not_confirmed_and_not_locked = export_attrs_when_not_confirmed_and_not_locked
if save_confirmed_segments is not None:
self.save_confirmed_segments = save_confirmed_segments
@property
def skip_import_rules(self):
return self._skip_import_rules
@skip_import_rules.setter
def skip_import_rules(self, skip_import_rules):
self._skip_import_rules = skip_import_rules
@property
def import_as_confirmed_rules(self):
return self._import_as_confirmed_rules
@import_as_confirmed_rules.setter
def import_as_confirmed_rules(self, import_as_confirmed_rules):
self._import_as_confirmed_rules = import_as_confirmed_rules
@property
def import_as_locked_rules(self):
return self._import_as_locked_rules
@import_as_locked_rules.setter
def import_as_locked_rules(self, import_as_locked_rules):
self._import_as_locked_rules = import_as_locked_rules
@property
def export_attrs_when_confirmed_and_locked(self):
return self._export_attrs_when_confirmed_and_locked
@export_attrs_when_confirmed_and_locked.setter
def export_attrs_when_confirmed_and_locked(self, export_attrs_when_confirmed_and_locked):
self._export_attrs_when_confirmed_and_locked = export_attrs_when_confirmed_and_locked
@property
def export_attrs_when_confirmed_and_not_locked(self):
return self._export_attrs_when_confirmed_and_not_locked
@export_attrs_when_confirmed_and_not_locked.setter
def export_attrs_when_confirmed_and_not_locked(self, export_attrs_when_confirmed_and_not_locked):
self._export_attrs_when_confirmed_and_not_locked = export_attrs_when_confirmed_and_not_locked
@property
def export_attrs_when_not_confirmed_and_locked(self):
return self._export_attrs_when_not_confirmed_and_locked
@export_attrs_when_not_confirmed_and_locked.setter
def export_attrs_when_not_confirmed_and_locked(self, export_attrs_when_not_confirmed_and_locked):
self._export_attrs_when_not_confirmed_and_locked = export_attrs_when_not_confirmed_and_locked
@property
def export_attrs_when_not_confirmed_and_not_locked(self):
return self._export_attrs_when_not_confirmed_and_not_locked
@export_attrs_when_not_confirmed_and_not_locked.setter
def export_attrs_when_not_confirmed_and_not_locked(self, export_attrs_when_not_confirmed_and_not_locked):
self._export_attrs_when_not_confirmed_and_not_locked = export_attrs_when_not_confirmed_and_not_locked
@property
def save_confirmed_segments(self):
return self._save_confirmed_segments
@save_confirmed_segments.setter
|
Apache License 2.0
|
microsoft/restler-fuzzer
|
restler/engine/core/driver.py
|
apply_checkers
|
python
|
def apply_checkers(checkers, renderings, global_lock):
for checker in checkers:
try:
if checker.enabled:
RAW_LOGGING(f"Checker: {checker.__class__.__name__} kicks in\n")
checker.apply(renderings, global_lock)
RAW_LOGGING(f"Checker: {checker.__class__.__name__} kicks out\n")
except Exception as error:
print(f"Exception {error!s} applying checker {checker}")
raise
|
Calls each enabled checker from a list of Checker objects
@param checkers: A list of checkers to apply
@type checkers: List[Checker]
@param renderings: Object containing the rendered sequence information
@type renderings: RenderedSequence
@param global_lock: Lock object used for sync of more than one fuzzing jobs.
@type global_lock: thread.Lock
@return: None
@rtype : None
|
https://github.com/microsoft/restler-fuzzer/blob/d74a267467a2d43fb37c8a16754d0b28e80b649a/restler/engine/core/driver.py#L132-L154
|
from __future__ import print_function
import sys, os
import copy
import time
import random
import inspect
import itertools
import functools
import multiprocessing
from multiprocessing.dummy import Pool as ThreadPool
from collections import deque
import re
from restler_settings import Settings
import utils.logger as logger
import utils.saver as saver
import utils.formatting as formatting
import engine.dependencies as dependencies
import engine.core.sequences as sequences
import engine.core.requests as requests
import engine.core.fuzzing_monitor as fuzzing_monitor
from engine.core.fuzzing_requests import FuzzingRequestCollection
from engine.core.requests import GrammarRequestCollection
from engine.core.requests import FailureInformation
from engine.core.request_utilities import execute_token_refresh_cmd
from engine.core.request_utilities import get_hostname_from_line
from engine.core.fuzzing_monitor import Monitor
from engine.errors import TimeOutException
from engine.errors import ExhaustSeqCollectionException
from engine.errors import InvalidDictionaryException
from engine.transport_layer import messaging
from utils.logger import raw_network_logging as RAW_LOGGING
def validate_dependencies(consumer_req, producer_seq):
producer_requests = []
for req in producer_seq:
producer_requests.extend(req.produces)
return consumer_req.consumes <= set(producer_requests)
def extend(seq_collection, fuzzing_requests, lock):
prev_len = len(seq_collection)
extended_requests = []
Monitor().current_fuzzing_generation += 1
for req in fuzzing_requests:
for i in range(prev_len):
seq = seq_collection[i]
if not validate_dependencies(req, seq) and not Settings().ignore_dependencies:
continue
extended_requests.append(req)
req_copy = copy.copy(req)
req_copy._current_combination_id = 0
if seq.is_empty_sequence():
new_seq = sequences.Sequence(req_copy)
else:
new_seq = seq + sequences.Sequence(req_copy)
seq_collection.append(new_seq)
if Settings().fuzzing_mode in ['bfs-fast', 'bfs-minimal']:
break
Monitor().current_fuzzing_generation -= 1
if Settings().fuzzing_mode == 'random-walk':
if len(seq_collection) > 0:
rand_int = random.randint(prev_len, len(seq_collection) - 1)
return seq_collection[rand_int: rand_int + 1], extended_requests[rand_int: rand_int + 1]
else:
return [], []
return seq_collection[prev_len:], extended_requests
|
MIT License
|
canerturkmen/hawkeslib
|
hawkeslib/model/uv_bayes.py
|
BayesianUVExpHawkesProcess.log_posterior
|
python
|
def log_posterior(self, t, T=None):
t, T = self._prep_t_T(t, T)
mu, alpha, theta = self.get_params()
return self._log_posterior(t, T)([mu, alpha, theta])
|
Get the log unnormalized posterior for parameters already fit, under observed timestamps ``t``.
:param numpy.array[float] t: Observation timestamps of the process up to time T. 1-d array of timestamps.
must be sorted (asc)
:param T: (optional) maximum time
:type T: float or None
:rtype: float
:return: the log unnormalized posterior (log potential)
|
https://github.com/canerturkmen/hawkeslib/blob/37f7b0c247568bb5ae96eb83d89a2d9bbbc4d43c/hawkeslib/model/uv_bayes.py#L194-L208
|
import numpy as np
import numdifftools as nd
from hawkeslib.util.multitrace import MultiTrace
from .model import BayesianPointProcessMixin
from .c.c_uv_exp import uv_exp_ll, uv_exp_ll_grad
from .uv_exp import UnivariateExpHawkesProcess
from scipy.stats import gamma, beta
from scipy.optimize import minimize
class BayesianUVExpHawkesProcess(UnivariateExpHawkesProcess, BayesianPointProcessMixin):
def __init__(self, mu_hyp, alpha_hyp, theta_hyp):
super(BayesianUVExpHawkesProcess, self).__init__()
self.mu_hyp = mu_hyp
self.alpha_hyp = alpha_hyp
self.theta_hyp = theta_hyp
self._log_posterior = lambda t, T: self._get_log_posterior_pot_grad_fns(t, T, mu_hyp, alpha_hyp, theta_hyp)[0]
self._log_posterior_grad = lambda t, T: self._get_log_posterior_pot_grad_fns(t, T, mu_hyp, alpha_hyp, theta_hyp)[1]
@classmethod
def _get_log_posterior_pot_grad_fns(cls, t, T, mu_hyp, alpha_hyp, theta_hyp):
t, T = cls._prep_t_T(t, T)
def f0(x):
mu, a, th = x[0], x[1], x[2]
res = uv_exp_ll(t, mu, a, th, T)
res += gamma.logpdf(mu, mu_hyp[0], scale=mu_hyp[1]) + gamma.logpdf(th, theta_hyp[0], scale=theta_hyp[1]) + beta.logpdf(a, alpha_hyp[0], alpha_hyp[1])
return res
def g0(x):
mu, a, th = x[0], x[1], x[2]
res = uv_exp_ll_grad(t, mu, a, th, T)
res[0] += (mu_hyp[0] - 1) / mu - 1. / mu_hyp[1]
res[1] += (alpha_hyp[0] - 1) / a - (alpha_hyp[1] - 1) / (1 - a)
res[2] += (theta_hyp[0] - 1) / th - 1. / theta_hyp[1]
return res
return f0, g0
def _fit_grad_desc(self, t, T=None, nr_restarts=5):
t, T = self._prep_t_T(t, T)
N = len(t)
ress = []
f = self._log_posterior(t, T)
g = self._log_posterior_grad(t, T)
best_minres = None
best_ll = np.inf
for epoch in range(nr_restarts):
mu0 = np.random.gamma(self.mu_hyp[0], scale=self.mu_hyp[1])
th0 = np.random.gamma(self.theta_hyp[0], scale=self.theta_hyp[1])
a0 = np.random.beta(self.alpha_hyp[0], self.alpha_hyp[1])
minres = minimize(lambda x: -f(x), x0=np.array([mu0, a0, th0]),
jac=lambda x: -g(x),
bounds=[(1e-5, None), (1e-5, 1), (1e-5, None)],
method="L-BFGS-B", options={"disp": False, "ftol": 1e-8, "gtol": 1e-8})
ress.append(minres)
mu, a, _ = minres.x
if minres.fun < best_ll:
best_ll = minres.fun
best_minres = minres
return best_minres
def marginal_likelihood(self, t, T = None):
t, T = self._prep_t_T(t, T)
f = self._log_posterior(t, T)
g = self._log_posterior_grad(t, T)
xopt = np.array(self.get_params())
H = nd.Jacobian(g)(xopt)
return f(xopt) + 1.5 * np.log(2 * np.pi) - .5 * np.linalg.slogdet(H)[1]
def log_posterior_with_params(self, t, mu, alpha, theta, T=None):
t, T = self._prep_t_T(t, T)
return self._log_posterior(t, T)([mu, alpha, theta])
|
MIT License
|
yingzhangdut/cross-modal-projection-learning
|
evaluation/retrieval_eval.py
|
average_precision_at_k
|
python
|
def average_precision_at_k(rank, plabels=None, glabels=None, k=50):
n_probe, n_gallery = rank.shape
match = 0
average_precision = 1.0 * np.zeros_like(plabels)
for i in range(n_probe):
relevant_size = sum(glabels == plabels[i])
hit_index = np.where(glabels[rank[i, :k]] == plabels[i])
precision = 1.0 * np.zeros_like(hit_index[0])
for j in range(hit_index[0].shape[0]):
hitid = max(1, hit_index[0][j])
precision[j] = sum(glabels[rank[i, :hitid]] == plabels[i]) * 1.0 / (hit_index[0][j] + 1)
average_precision[i] = np.sum(precision) * 1.0 / relevant_size
score = np.mean(average_precision)
return score
|
Compute AP@K: We report the AP@K, the percent of top-K scoring images whose
class matches that of the text query, averaged over all the test classes.
---------------------------------------------------
Inputs:
distmat : numpy.ndarray
The distance matrix. ``distmat[i, j]`` is the distance between i-th
probe sample and j-th gallery sample.
glabels : numpy.ndarray or None, optional
plabels : numpy.ndarray or None, optional
---------------------------------------------------
Outputs:
out : numpy.ndarray, The AP@K accuracy
---------------------------------------------------
|
https://github.com/yingzhangdut/cross-modal-projection-learning/blob/447d6427528ba2ef721e8c0e2f745578686bca64/evaluation/retrieval_eval.py#L29-L59
|
import numpy as np
def recall_at_k(rank, plabels=None, glabels=None, k=1):
n_probe, n_gallery = rank.shape
match = 0
for i in range(n_probe):
match += int(sum(glabels[rank[i, :k]] == plabels[i]) > 0)
score = match * 1.0 / n_probe
return score
|
MIT License
|
windelbouwman/ppci
|
ppci/lang/c3/codegenerator.py
|
CodeGenerator.gen
|
python
|
def gen(self, context):
self.context = context
ir_module = ir.Module("c3_code", debug_db=self.debug_db)
self.builder = irutils.Builder()
self.builder.module = ir_module
for module in context.modules:
self.gen_globals(module)
for module in context.modules:
self.gen_module(module)
return ir_module
|
Generate code for a whole context
|
https://github.com/windelbouwman/ppci/blob/915c069e0667042c085ec42c78e9e3c9a5295324/ppci/lang/c3/codegenerator.py#L33-L48
|
import logging
from ... import ir
from ... import irutils
from ...binutils import debuginfo
from . import astnodes as ast
from .scope import SemanticError
class CodeGenerator:
logger = logging.getLogger("c3cgen")
def __init__(self, diag):
self.builder = irutils.Builder()
self.diag = diag
self.context = None
self.debug_db = debuginfo.DebugDb()
self.module_ok = False
|
BSD 2-Clause Simplified License
|
fastats/fastats
|
fastats/scaling/scaling.py
|
demean
|
python
|
def demean(A):
assert A.ndim > 1
n = A.shape[1]
res = empty_like(A, dtype=np_float64)
for i in range(n):
data_i = A[:, i]
res[:, i] = data_i - mean(data_i)
return res
|
Subtract the mean from the supplied data column-wise.
|
https://github.com/fastats/fastats/blob/5915423714b32ed7e953e1e3a311fe50c3f30943/fastats/scaling/scaling.py#L103-L116
|
from numba import prange
from numpy import empty_like, mean, std, sqrt, argsort, ones, nonzero, empty
from numpy import float64 as np_float64
from numpy import int32 as np_int32
from numpy import max as np_max
from numpy import min as np_min
def scale(A):
return A
def standard(A, ddof=0):
assert A.ndim > 1
if ddof not in (0, 1):
raise ValueError('ddof must be either 0 or 1')
n = A.shape[1]
res = empty_like(A, dtype=np_float64)
for i in range(n):
data_i = A[:, i]
res[:, i] = (data_i - mean(data_i)) / std(data_i)
if ddof == 1:
m = A.shape[0]
res *= sqrt((m - 1) / m)
return res
def min_max(A):
assert A.ndim > 1
n = A.shape[1]
res = empty_like(A, dtype=np_float64)
for i in range(n):
data_i = A[:, i]
data_min = np_min(data_i)
res[:, i] = (data_i - data_min) / (np_max(data_i) - data_min)
return res
def rank(A):
assert A.ndim > 1
A = A.astype(np_float64)
res = empty_like(A)
m, n = A.shape
for i in range(n):
data_i = A[:, i]
data_i_std = empty_like(data_i, dtype=np_int32)
sort_order = argsort(data_i)
data_i = data_i[sort_order]
obs = ones(m, dtype=np_int32)
for j in range(m):
idx = sort_order[j]
data_i_std[idx] = j
if j > 0:
if data_i[j] == data_i[j - 1]:
obs[j] = 0
dense = obs.cumsum()[data_i_std]
non_zero_indices = nonzero(obs)[0]
count = empty(len(non_zero_indices) + 1)
count[:-1] = non_zero_indices
count[-1] = m
res[:, i] = (count[dense] + count[dense - 1] + 1) / 2.0
return res
|
MIT License
|
google/mobly
|
mobly/test_runner.py
|
TestRunner.time_elapsed_sec
|
python
|
def time_elapsed_sec(self):
if self._start_counter is None or self._end_counter is None:
return None
return self._end_counter - self._start_counter
|
The total time elapsed for a test run in seconds.
This value is None until the test run has completed.
|
https://github.com/google/mobly/blob/542a78a7198256d172f56546ab8a6493166b3d9b/mobly/test_runner.py#L268-L275
|
import argparse
import contextlib
import logging
import os
import sys
import time
from mobly import base_test
from mobly import config_parser
from mobly import logger
from mobly import records
from mobly import signals
from mobly import utils
class Error(Exception):
pass
def main(argv=None):
args = parse_mobly_cli_args(argv)
test_class = _find_test_class()
if args.list_tests:
_print_test_names(test_class)
sys.exit(0)
test_configs = config_parser.load_test_config_file(args.config, args.test_bed)
tests = None
if args.tests:
tests = args.tests
ok = True
for config in test_configs:
runner = TestRunner(log_dir=config.log_path,
testbed_name=config.testbed_name)
with runner.mobly_logger():
runner.add_test_class(config, test_class, tests)
try:
runner.run()
ok = runner.results.is_all_pass and ok
except signals.TestAbortAll:
pass
except Exception:
logging.exception('Exception when executing %s.', config.testbed_name)
ok = False
if not ok:
sys.exit(1)
def parse_mobly_cli_args(argv):
parser = argparse.ArgumentParser(description='Mobly Test Executable.')
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('-c',
'--config',
type=str,
metavar='<PATH>',
help='Path to the test configuration file.')
group.add_argument(
'-l',
'--list_tests',
action='store_true',
help='Print the names of the tests defined in a script without '
'executing them.')
parser.add_argument('--tests',
'--test_case',
nargs='+',
type=str,
metavar='[test_a test_b...]',
help='A list of tests in the test class to execute.')
parser.add_argument('-tb',
'--test_bed',
nargs='+',
type=str,
metavar='[<TEST BED NAME1> <TEST BED NAME2> ...]',
help='Specify which test beds to run tests on.')
if not argv:
argv = sys.argv[1:]
return parser.parse_known_args(argv)[0]
def _find_test_class():
try:
return utils.find_subclass_in_module(base_test.BaseTestClass,
sys.modules['__main__'])
except ValueError:
logging.exception('Exactly one subclass of `base_test.BaseTestClass`'
' should be in the main file.')
sys.exit(1)
def _print_test_names(test_class):
cls = test_class(config_parser.TestRunConfig())
test_names = []
try:
cls.setup_generated_tests()
test_names = cls.get_existing_test_names()
except Exception:
logging.exception('Failed to retrieve generated tests.')
finally:
cls._controller_manager.unregister_controllers()
print('==========> %s <==========' % cls.TAG)
for name in test_names:
print(name)
class TestRunner:
class _TestRunInfo:
def __init__(self,
config,
test_class,
tests=None,
test_class_name_suffix=None):
self.config = config
self.test_class = test_class
self.test_class_name_suffix = test_class_name_suffix
self.tests = tests
class _TestRunMetaData:
def __init__(self, log_dir, testbed_name):
self._log_dir = log_dir
self._testbed_name = testbed_name
self._logger_start_time = None
self._start_counter = None
self._end_counter = None
self.root_output_path = log_dir
def generate_test_run_log_path(self):
self._logger_start_time = logger.get_log_file_timestamp()
self.root_output_path = os.path.join(self._log_dir, self._testbed_name,
self._logger_start_time)
return self.root_output_path
def set_start_point(self):
self._start_counter = time.perf_counter()
def set_end_point(self):
self._end_counter = time.perf_counter()
@property
def run_id(self):
return f'{self._testbed_name}@{self._logger_start_time}'
@property
|
Apache License 2.0
|
johndmcmaster/uvscada
|
uvscada/k2750.py
|
K2700.tim_int
|
python
|
def tim_int(self):
return float(self.instrument.ask('TRIGger:TIMer?'))
|
Query timer interval
|
https://github.com/johndmcmaster/uvscada/blob/0b2bc4af49c51060d385da003fda13540cf9af4e/uvscada/k2750.py#L64-L66
|
from pymeasure.instruments.keithley import Keithley2700
from pymeasure.adapters import PrologixAdapter
import re
import time
import glob
volt_dc_re = re.compile("(.*)VDC,(.*)SECS,(.*)RDNG#")
curr_dc_re = re.compile("(.*)ADC,(.*)SECS,(.*)RDNG#")
res_re = re.compile("(.*),(.*)SECS,(.*)RDNG#")
class K2700(object):
def __init__(self, port=None, clr=True, ident=True):
if port is None:
devices = glob.glob("/dev/serial/by-id/usb-Prologix_Prologix_GPIB-USB_Controller_*")
assert len(devices), "No GPIB found"
port = devices[0]
self.adapter = PrologixAdapter(port)
self.instrument = Keithley2700(self.adapter.gpib(5))
self.func = None
self.vendor = None
self.model = None
self.sn = None
if ident:
vendor, model = self.ident()
if (vendor, model) != ('KEITHLEY INSTRUMENTS INC.', 'MODEL 2750') and (vendor, model) != ('KEITHLEY INSTRUMENTS INC.', 'MODEL 2700'):
raise ValueError('Bad instrument: %s, %s' % (vendor, model))
def ident(self):
return self.ident_ex()[0:2]
def ident_ex(self):
tmp = self.instrument.ask("*IDN?")
ret = tmp.split(',')
self.vendor = ret[0]
self.model = ret[1]
sn = ret[2]
fw = ret[3]
return (self.vendor, self.model, sn, fw)
def card_sn(self):
return self.gpib.ask("SYSTem:CARD1:SNUMber?")
|
BSD 2-Clause Simplified License
|
devopshq/vspheretools
|
pysphere/ZSI/ServiceContainer.py
|
SimpleWSResource.getNode
|
python
|
def getNode(self, post):
return self._nodes.getNode(post)
|
post -- POST HTTP value
|
https://github.com/devopshq/vspheretools/blob/10890423bfbba976e3ddee61204e9eed4b73fe92/pysphere/ZSI/ServiceContainer.py#L476-L479
|
import urlparse, sys, thread,re
from BaseHTTPServer import HTTPServer
from pysphere.ZSI import ParseException, FaultFromException, FaultFromZSIException, Fault
from pysphere.ZSI import _get_element_nsuri_name, resolvers
from pysphere.ZSI import _get_idstr
from pysphere.ZSI.address import Address
from pysphere.ZSI.parse import ParsedSoap
from pysphere.ZSI.writer import SoapWriter
from pysphere.ZSI.dispatch import SOAPRequestHandler as BaseSOAPRequestHandler
class NoSuchService(Exception): pass
class UnknownRequestException(Exception): pass
class PostNotSpecified(Exception): pass
class SOAPActionNotSpecified(Exception): pass
class WSActionException(Exception): pass
class WSActionNotSpecified(WSActionException): pass
class NotAuthorized(Exception): pass
class ServiceAlreadyPresent(Exception): pass
class SOAPContext:
def __init__(self, container, xmldata, ps, connection, httpheaders,
soapaction):
self.container = container
self.xmldata = xmldata
self.parsedsoap = ps
self.connection = connection
self.httpheaders= httpheaders
self.soapaction = soapaction
_contexts = dict()
def GetSOAPContext():
global _contexts
return _contexts[thread.get_ident()]
def _Dispatch(ps, server, SendResponse, SendFault, post, action, nsdict={}, **kw):
localURL = 'http://%s:%d%s' %(server.server_name,server.server_port,post)
address = action
service = server.getNode(post)
isWSResource = False
if isinstance(service, WSAResource):
isWSResource = True
service.setServiceURL(localURL)
address = Address()
try:
address.parse(ps)
except Exception, e:
return SendFault(FaultFromException(e, 0, sys.exc_info()[2]), **kw)
if action and action != address.getAction():
e = WSActionException('SOAP Action("%s") must match WS-Action("%s") if specified.' %(action,address.getAction()))
return SendFault(FaultFromException(e, 0, None), **kw)
action = address.getAction()
if isinstance(service, ServiceInterface) is False:
e = NoSuchService('no service at POST(%s) in container: %s' %(post,server))
return SendFault(FaultFromException(e, 0, sys.exc_info()[2]), **kw)
if not service.authorize(None, post, action):
return SendFault(Fault(Fault.Server, "Not authorized"), code=401)
try:
method = service.getOperation(ps, address)
except Exception, e:
return SendFault(FaultFromException(e, 0, sys.exc_info()[2]), **kw)
try:
if isWSResource is True:
_,result = method(ps, address)
else:
_,result = method(ps)
except Exception, e:
return SendFault(FaultFromException(e, 0, sys.exc_info()[2]), **kw)
service.verify(ps)
if result is None:
return SendResponse('', **kw)
sw = SoapWriter(nsdict=nsdict)
try:
sw.serialize(result)
except Exception, e:
return SendFault(FaultFromException(e, 0, sys.exc_info()[2]), **kw)
if isWSResource is True:
action = service.getResponseAction(ps, action)
addressRsp = Address(action=action)
try:
addressRsp.setResponseFromWSAddress(address, localURL)
addressRsp.serialize(sw)
except Exception, e:
return SendFault(FaultFromException(e, 0, sys.exc_info()[2]), **kw)
service.sign(sw)
try:
soapdata = str(sw)
return SendResponse(soapdata, **kw)
except Exception, e:
return SendFault(FaultFromException(e, 0, sys.exc_info()[2]), **kw)
def AsServer(port=80, services=()):
address = ('', port)
sc = ServiceContainer(address, services)
sc.serve_forever()
class ServiceInterface:
soapAction = {}
wsAction = {}
root = {}
def __init__(self, post):
self.post = post
def authorize(self, auth_info, post, action):
return 1
def __str__(self):
return '%s(%s) POST(%s)' %(self.__class__.__name__, _get_idstr(self), self.post)
def sign(self, sw):
return
def verify(self, ps):
return
def getPost(self):
return self.post
def getOperation(self, ps, action):
opName = self.getOperationName(ps, action)
return getattr(self, opName)
def getOperationName(self, ps, action):
method = self.root.get(_get_element_nsuri_name(ps.body_root)) or self.soapAction.get(action)
if method is None:
raise UnknownRequestException(
'failed to map request to a method: action(%s), root%s'
%(action,_get_element_nsuri_name(ps.body_root)))
return method
class ServiceSOAPBinding(ServiceInterface):
def __init__(self, post):
ServiceInterface.__init__(self, post)
def __call___(self, action, ps):
return self.getOperation(ps, action)(ps)
class WSAResource(ServiceSOAPBinding):
encoding = "UTF-8"
def __init__(self, post):
assert isinstance(self.soapAction, dict), "soapAction must be a dict"
assert isinstance(self.wsAction, dict), "wsAction must be a dict"
ServiceSOAPBinding.__init__(self, post)
def __call___(self, action, ps, address):
return self.getOperation(ps, action)(ps, address)
def getServiceURL(self):
return self._url
def setServiceURL(self, url):
self._url = url
def getOperation(self, ps, address):
action = address.getAction()
opName = self.getOperationName(ps, action)
return getattr(self, opName)
def getResponseAction(self, ps, action):
opName = self.getOperationName(ps, action)
if not opName in self.wsAction:
raise WSActionNotSpecified('wsAction dictionary missing key(%s)'
% opName)
return self.wsAction[opName]
def do_POST(self):
global _contexts
soapAction = self.headers.getheader('SOAPAction')
post = self.path
if not post:
raise PostNotSpecified('HTTP POST not specified in request')
if soapAction:
soapAction = soapAction.strip('\'"')
post = post.strip('\'"')
try:
ct = self.headers['content-type']
if ct.startswith('multipart/'):
cid = resolvers.MIMEResolver(ct, self.rfile)
xml = cid.GetSOAPPart()
ps = ParsedSoap(xml, resolver=cid.Resolve)
else:
length = int(self.headers['content-length'])
ps = ParsedSoap(self.rfile.read(length))
except ParseException, e:
self.send_fault(FaultFromZSIException(e))
except Exception, e:
self.send_fault(FaultFromException(e, 1, sys.exc_info()[2]))
else:
thread_id = thread.get_ident()
_contexts[thread_id] = SOAPContext(self.server, xml, ps,
self.connection,
self.headers, soapAction)
try:
_Dispatch(ps, self.server, self.send_xml, self.send_fault,
post=post, action=soapAction)
except Exception, e:
self.send_fault(FaultFromException(e, 0, sys.exc_info()[2]))
if thread_id in _contexts:
del _contexts[thread_id]
class SOAPRequestHandler(BaseSOAPRequestHandler):
def do_POST(self):
soapAction = self.headers.getheader('SOAPAction')
post = self.path
if not post:
raise PostNotSpecified('HTTP POST not specified in request')
if soapAction:
soapAction = soapAction.strip('\'"')
post = post.strip('\'"')
try:
ct = self.headers['content-type']
if ct.startswith('multipart/'):
cid = resolvers.MIMEResolver(ct, self.rfile)
xml = cid.GetSOAPPart()
ps = ParsedSoap(xml, resolver=cid.Resolve)
else:
length = int(self.headers['content-length'])
xml = self.rfile.read(length)
ps = ParsedSoap(xml)
except ParseException, e:
self.send_fault(FaultFromZSIException(e))
except Exception, e:
self.send_fault(FaultFromException(e, 1, sys.exc_info()[2]))
else:
thread_id = thread.get_ident()
_contexts[thread_id] = SOAPContext(self.server, xml, ps,
self.connection,
self.headers, soapAction)
try:
_Dispatch(ps, self.server, self.send_xml, self.send_fault,
post=post, action=soapAction)
except Exception, e:
self.send_fault(FaultFromException(e, 0, sys.exc_info()[2]))
if thread_id in _contexts:
del _contexts[thread_id]
def do_GET(self):
if self.path.lower().endswith("?wsdl"):
service_path = self.path[:-5]
service = self.server.getNode(service_path)
if hasattr(service, "_wsdl"):
wsdl = service._wsdl
proto = 'http'
if hasattr(self.server,'proto'):
proto = self.server.proto
serviceUrl = '%s://%s:%d%s' % (proto,
self.server.server_name,
self.server.server_port,
service_path)
soapAddress = '<soap:address location="%s"/>' % serviceUrl
wsdlre = re.compile('\<soap:address[^\>]*>',re.IGNORECASE)
wsdl = re.sub(wsdlre,soapAddress,wsdl)
self.send_xml(wsdl)
else:
self.send_error(404, "WSDL not available for that service [%s]." % self.path)
else:
self.send_error(404, "Service not found [%s]." % self.path)
class ServiceContainer(HTTPServer):
class NodeTree:
def __init__(self):
self.__dict = {}
def __str__(self):
return str(self.__dict)
def listNodes(self):
print list(self.__dict.iterkeys())
def getNode(self, url):
path = urlparse.urlsplit(url)[2]
if path.startswith("/"):
path = path[1:]
if path in self.__dict:
return self.__dict[path]
else:
raise NoSuchService('No service(%s) in ServiceContainer' % path)
def setNode(self, service, url):
path = urlparse.urlsplit(url)[2]
if path.startswith("/"):
path = path[1:]
if not isinstance(service, ServiceSOAPBinding):
raise TypeError('A Service must implement class ServiceSOAPBinding')
if path in self.__dict:
raise ServiceAlreadyPresent('Service(%s) already in ServiceContainer' % path)
else:
self.__dict[path] = service
def removeNode(self, url):
path = urlparse.urlsplit(url)[2]
if path.startswith("/"):
path = path[1:]
if path in self.__dict:
node = self.__dict[path]
del self.__dict[path]
return node
else:
raise NoSuchService('No service(%s) in ServiceContainer' % path)
def __init__(self, server_address, services=[], RequestHandlerClass=SOAPRequestHandler):
HTTPServer.__init__(self, server_address, RequestHandlerClass)
self._nodes = self.NodeTree()
[self.setNode(s) for s in services]
def __str__(self):
return '%s(%s) nodes( %s )' %(self.__class__, _get_idstr(self), str(self._nodes))
def __call__(self, ps, post, action, address=None):
method = self.getCallBack(ps, post, action)
if (isinstance(method.im_self, WSAResource) or
isinstance(method.im_self, SimpleWSResource)):
return method(ps, address)
return method(ps)
def setNode(self, service, url=None):
if url is None:
url = service.getPost()
self._nodes.setNode(service, url)
def getNode(self, url):
return self._nodes.getNode(url)
def removeNode(self, url):
self._nodes.removeNode(url)
class SimpleWSResource(ServiceSOAPBinding):
|
MIT License
|
user-cont/conu
|
conu/backend/docker/container.py
|
DockerContainer.execute
|
python
|
def execute(self, command, blocking=True, exec_create_kwargs=None, exec_start_kwargs=None):
logger.info("running command %s", command)
exec_create_kwargs = exec_create_kwargs or {}
exec_start_kwargs = exec_start_kwargs or {}
exec_start_kwargs["stream"] = True
exec_i = self.d.exec_create(self.get_id(), command, **exec_create_kwargs)
output = self.d.exec_start(exec_i, **exec_start_kwargs)
if blocking:
response = []
for line in output:
response.append(line)
logger.info("%s", line.decode("utf-8").strip("\n\r"))
e_inspect = self.d.exec_inspect(exec_i)
exit_code = e_inspect["ExitCode"]
if exit_code:
logger.error("command failed")
logger.info("exec metadata: %s", e_inspect)
raise ConuException("failed to execute command %s, exit code %s" % (
command, exit_code))
return response
return output
|
Execute a command in this container -- the container needs to be running.
If the command fails, a ConuException is thrown.
This is a blocking call by default and writes output of the command to logger
using the INFO level -- this behavior can be changed if you set
the argument `blocking` to `False`.
If not blocking, you should consume the returned iterator in order to see logs or know
when the command finished:
::
for line in container.execute(["ping", "-c", "4", "8.8.8.8"], blocking=False):
print(line)
print("command finished")
:param command: list of str, command to execute in the container
:param blocking: bool, if True blocks until the command finishes
:param exec_create_kwargs: dict, params to pass to exec_create()
:param exec_start_kwargs: dict, params to pass to exec_start()
:return: iterator if non-blocking or list of bytes if blocking
|
https://github.com/user-cont/conu/blob/0d8962560f6f7f17fe1be0d434a4809e2a0ea51d/conu/backend/docker/container.py#L449-L496
|
from __future__ import print_function, unicode_literals
import functools
import logging
import shutil
import subprocess
from tempfile import mkdtemp
from docker.errors import NotFound
from docker.types import Healthcheck
from conu.apidefs.container import Container
from conu.apidefs.image import Image
from conu.apidefs.metadata import ContainerStatus
from conu.backend.docker.container_parameters import DockerContainerParameters
from conu.apidefs.filesystem import Filesystem
from conu.apidefs.metadata import ContainerMetadata
from conu.backend.docker.client import get_client
from conu.backend.docker.utils import inspect_to_container_metadata
from conu.exceptions import ConuException
from conu.utils import check_port, run_cmd, export_docker_container_to_directory, graceful_get
from conu.utils.probes import Probe
from conu.backend.docker.constants import CONU_ARTIFACT_TAG
logger = logging.getLogger(__name__)
class DockerRunBuilder(object):
def __init__(self, command=None, additional_opts=None):
self.binary = ["docker"]
self.global_options = []
self.command = ["run"]
self.options = additional_opts or []
self.image_name = None
self.arguments = command or []
def __str__(self):
return str(self.build())
def build(self):
return self.binary + self.global_options + self.command + self.options + ["-l", CONU_ARTIFACT_TAG] + [self.image_name] + self.arguments
def get_parameters(self):
import argparse
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument("-i", "--interactive", action="store_true", dest="stdin_open")
parser.add_argument("-d", "--detach", action="store_true", dest="detach")
parser.add_argument("-t", "--tty", action="store_true", dest="tty")
parser.add_argument("--init", action="store_true", dest="init")
parser.add_argument("--privileged", action="store_true", dest="privileged")
parser.add_argument("-P", "--publish-all", action="store_true", dest="publish_all_ports")
parser.add_argument("--read-only", action="store_true", dest="read_only")
parser.add_argument("--rm", action="store_true", dest="remove")
parser.add_argument("--entrypoint", action="store", dest="entrypoint")
parser.add_argument("-h", "--hostname", action="store", dest="hostname")
parser.add_argument("--name", action="store", dest="name")
parser.add_argument("--ipc", action="store", dest="ipc_mode")
parser.add_argument("--isolation", action="store", dest="isolation")
parser.add_argument("--mac-address", action="store", dest="mac_address")
parser.add_argument("-m", "--memory", action="store", dest="mem_limit")
parser.add_argument("--network", action="store", dest="network")
parser.add_argument("--platform", action="store", dest="platform")
parser.add_argument("--runtime", action="store", dest="runtime")
parser.add_argument("--stop-signal", action="store", dest="stop_signal")
parser.add_argument("-u", "--user", action="store", dest="user")
parser.add_argument("-w", "--workdir", action="store", dest="working_dir")
parser.add_argument("--pids-limit", action="store", dest="pids_limit", type=int)
parser.add_argument("-e", "--env", action="append", dest="env_variables")
parser.add_argument("--cap-add", action="append", dest="cap_add")
parser.add_argument("--cap-drop", action="append", dest="cap_drop")
parser.add_argument("--device", action="append", dest="devices")
parser.add_argument("--dns", action="append", dest="dns")
parser.add_argument("--group-add", action="append", dest="group_add")
parser.add_argument("--mount", action="append", dest="mounts")
parser.add_argument("-v", "--volume", action="append", dest="volumes")
parser.add_argument("-l", "--label", action="append", dest="labels")
parser.add_argument("-p", "--publish", action="append", dest="port_mappings")
parser.add_argument("--health-cmd", action="store", dest="health_cmd")
parser.add_argument("--health-interval", action="store", dest="health_interval", type=int)
parser.add_argument("--health-retries", action="store", dest="health_retries", type=int)
parser.add_argument("--health-timeout", action="store", dest="health_timeout", type=int)
parser.add_argument("--no-healthcheck", action="store_true", dest="no_healthcheck")
args, _ = parser.parse_known_args(args=self.options)
command = self.arguments
options_dict = vars(args)
if not options_dict.pop("no_healthcheck", None):
options_dict["healthcheck"] = Healthcheck(
test=options_dict.pop("health_cmd", None),
interval=options_dict.pop("health_interval", None),
timeout=options_dict.pop("health_timeout", None),
retries=options_dict.pop("health_retries", None)
)
else:
options_dict['healthcheck'] = None
with_dictionary_parameter = {'labels': '='}
for name, separator in with_dictionary_parameter.items():
if options_dict[name] is not None:
dictionary = {}
for item in options_dict[name]:
try:
key, value = item.split(separator)
dictionary[key] = value
except ValueError:
dictionary = options_dict[name]
raise ConuException('Wrong format of dictionary: {name}'.format(name=name))
break
options_dict[name] = dictionary
if options_dict['port_mappings'] is not None:
dictionary = {}
for port_string in options_dict['port_mappings']:
colon_count = port_string.count(':')
if colon_count == 2:
split_array = port_string.split(':')
if split_array[1] == '':
dictionary[split_array[2]] = (split_array[0], None)
else:
dictionary[split_array[2]] = (split_array[0], int(split_array[1]))
elif colon_count == 1:
split_array = port_string.split(':')
dictionary[split_array[1]] = int(split_array[0])
elif colon_count == 0:
dictionary[port_string] = None
else:
raise ConuException('Wrong format of port mappings')
options_dict['port_mappings'] = dictionary
container_parameters = DockerContainerParameters(cap_add=options_dict['cap_add'],
cap_drop=options_dict['cap_drop'],
command=command, detach=options_dict['detach'],
devices=options_dict['devices'], dns=options_dict['dns'],
entrypoint=options_dict['entrypoint'],
env_variables=options_dict['env_variables'],
group_add=options_dict['group_add'],
healthcheck=options_dict['healthcheck'],
hostname=options_dict['hostname'],
init=options_dict['init'],
ipc_mode=options_dict['ipc_mode'],
isolation=options_dict['isolation'],
labels=options_dict['labels'],
mac_address=options_dict['mac_address'],
mem_limit=options_dict['mem_limit'],
mounts=options_dict['mounts'],
name=options_dict['name'],
network=options_dict['network'],
pids_limit=options_dict['pids_limit'],
platform=options_dict['platform'],
port_mappings=options_dict['port_mappings'],
privileged=options_dict['privileged'],
publish_all_ports=options_dict['publish_all_ports'],
read_only=options_dict['read_only'],
remove=options_dict['remove'],
runtime=options_dict['runtime'],
stdin_open=options_dict['stdin_open'],
stop_signal=options_dict['stop_signal'],
tty=options_dict['tty'],
user=options_dict['user'],
volumes=options_dict['volumes'],
working_dir=options_dict['working_dir']
)
return container_parameters
class DockerContainerViaExportFS(Filesystem):
def __init__(self, container, mount_point=None):
super(DockerContainerViaExportFS, self).__init__(container, mount_point=mount_point)
self.container = container
@property
def mount_point(self):
if self._mount_point is None:
self._mount_point = mkdtemp(prefix="conu", dir="/var/tmp")
self.mount_point_provided = False
return self._mount_point
def __enter__(self):
client = get_client()
export_docker_container_to_directory(client, self.container, self.mount_point)
return super(DockerContainerViaExportFS, self).__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
if not self.mount_point_provided:
run_cmd(["chmod", "-R", "u+w", self.mount_point])
shutil.rmtree(self.mount_point)
class DockerContainer(Container):
def __init__(self, image, container_id, name=None, popen_instance=None):
self.d = get_client()
super(DockerContainer, self).__init__(image, container_id, name)
self.popen_instance = popen_instance
self._inspect_data = None
self.metadata = ContainerMetadata()
def __repr__(self):
return "DockerContainer(image=%s, id=%s)" % (self.image, self.get_id())
def __str__(self):
return self.get_id()
def get_id(self):
if self._id is None:
self._id = self.inspect(refresh=False)["Id"]
return self._id
def inspect(self, refresh=True):
if refresh or not self._inspect_data:
ident = self._id or self.name
if not ident:
raise ConuException("This container does not have a valid identifier.")
self._inspect_data = self.d.inspect_container(ident)
return self._inspect_data
def is_running(self):
try:
return self.inspect(refresh=True)["State"]["Running"]
except NotFound:
return False
def get_IPv4s(self):
self.get_metadata()
return self.metadata.ipv4_addresses
def get_IPv6s(self):
self.get_metadata()
return self.metadata.ipv6_addresses
def get_ports(self):
ports = []
container_ports = self.inspect(refresh=True)["NetworkSettings"]["Ports"]
if not container_ports:
return ports
for p in container_ports:
ports.append(p.split("/")[0])
return ports
def is_port_open(self, port, timeout=2):
addresses = self.get_IPv4s()
if not addresses:
return False
return check_port(port, host=addresses[0], timeout=timeout)
def get_port_mappings(self, port=None):
port_mappings = self.inspect(refresh=True)["NetworkSettings"]["Ports"]
if not port:
return port_mappings
if str(port) not in self.get_ports():
return []
for p in port_mappings:
if p.split("/")[0] == str(port):
return port_mappings[p]
def get_image_name(self):
metadata = self.inspect()
if "Config" in metadata:
return metadata["Config"].get("Image", None)
return None
def wait_for_port(self, port, timeout=10, **probe_kwargs):
Probe(timeout=timeout, fnc=functools.partial(self.is_port_open, port), **probe_kwargs).run()
def copy_to(self, src, dest):
logger.debug("copying %s from host to container at %s", src, dest)
cmd = ["docker", "cp", src, "%s:%s" % (self.get_id(), dest)]
run_cmd(cmd)
def copy_from(self, src, dest):
logger.debug("copying %s from host to container at %s", src, dest)
cmd = ["docker", "cp", "%s:%s" % (self.get_id(), src), dest]
run_cmd(cmd)
def start(self):
self.d.start(self.get_id())
|
MIT License
|
continuumio/pykit
|
pykit/transform/inline.py
|
assert_inlinable
|
python
|
def assert_inlinable(func, call, callee, uses):
if not isinstance(callee, Function):
return CompileError("Cannot inline external function: %s" % (callee,))
yields = findallops(callee, 'yield')
if yields:
for use in uses[call]:
if use.opcode not in ('iter', 'next'):
return CompileError(
"Cannot inline generator with use %s" % (use,))
if len(uses[call]) != 2:
return CompileError("Can only")
loops = loop_detection.find_natural_loops(func)
|
Verify that a function call can be inlined.
We can inline generators if they are consumed in a single loop:
- iter(g) must be in a loop header
- next(g) must be in the loop body
:return: None if inlineable, or an exception with a message
|
https://github.com/continuumio/pykit/blob/1730d7b831e0cf12a641ac23b5cf03e17e0dc550/pykit/transform/inline.py#L63-L86
|
from pykit.error import CompileError
from pykit.analysis import loop_detection
from pykit.ir import Function, Builder, findallops, copy_function, verify
from pykit.transform import ret as ret_normalization
def rewrite_return(func):
ret_normalization.run(func)
[ret] = findallops(func, 'ret')
[value] = ret.args
ret.delete()
return value
def inline(func, call, uses=None):
callee = call.args[0]
builder = Builder(func)
builder.position_before(call)
inline_header, inline_exit = builder.splitblock()
new_callee = copy_function(callee, temper=func.temp)
result = rewrite_return(new_callee)
for funcarg, arg in zip(new_callee.args, call.args[1]):
funcarg.replace_uses(arg)
after = inline_header
for block in new_callee.blocks:
block.parent = None
func.add_block(block, after=after)
after = block
builder.jump(new_callee.startblock)
with builder.at_end(new_callee.exitblock):
builder.jump(inline_exit)
if result is not None:
result.unlink()
result.result = call.result
call.replace(result)
else:
call.delete()
func.reset_uses()
verify(func)
|
BSD 3-Clause New or Revised License
|
jbasko/configmanager
|
configmanager/item_types.py
|
_ItemType.includes
|
python
|
def includes(self, obj):
if self.builtin_types:
return isinstance(obj, self.builtin_types)
|
Returns:
``True`` if ``obj`` belongs to this type.
|
https://github.com/jbasko/configmanager/blob/6547224f11ae643aeaa6b141180a2149cd432032/configmanager/item_types.py#L23-L29
|
import six
from builtins import str as text
from .utils import not_set
class _ItemType(object):
aliases = ()
builtin_types = ()
def serialize(self, instance, **kwargs):
return instance
def deserialize(self, payload, **kwargs):
if payload is None or payload is not_set:
return payload
if self.builtin_types:
return self.builtin_types[0](payload)
else:
return payload
|
MIT License
|
nii-cloud/dodai-compute
|
nova/virt/xenapi/vm_utils.py
|
find_iso_sr
|
python
|
def find_iso_sr(session):
host = session.get_xenapi_host()
sr_refs = session.get_xenapi().SR.get_all()
for sr_ref in sr_refs:
sr_rec = session.get_xenapi().SR.get_record(sr_ref)
LOG.debug(_("ISO: looking at SR %(sr_rec)s") % locals())
if not sr_rec['content_type'] == 'iso':
LOG.debug(_("ISO: not iso content"))
continue
if not 'i18n-key' in sr_rec['other_config']:
LOG.debug(_("ISO: iso content_type, no 'i18n-key' key"))
continue
if not sr_rec['other_config']['i18n-key'] == 'local-storage-iso':
LOG.debug(_("ISO: iso content_type, i18n-key value not "
"'local-storage-iso'"))
continue
LOG.debug(_("ISO: SR MATCHing our criteria"))
for pbd_ref in sr_rec['PBDs']:
LOG.debug(_("ISO: ISO, looking to see if it is host local"))
pbd_rec = session.get_xenapi().PBD.get_record(pbd_ref)
pbd_rec_host = pbd_rec['host']
LOG.debug(_("ISO: PBD matching, want %(pbd_rec)s, have %(host)s") %
locals())
if pbd_rec_host == host:
LOG.debug(_("ISO: SR with local PBD"))
return sr_ref
return None
|
Return the storage repository to hold ISO images
|
https://github.com/nii-cloud/dodai-compute/blob/d9bea632913c0ddc6f59c6120f60daea369d09cc/nova/virt/xenapi/vm_utils.py#L960-L989
|
import json
import os
import pickle
import re
import sys
import tempfile
import time
import urllib
import uuid
from xml.dom import minidom
from nova import db
from nova import exception
from nova import flags
from nova.image import glance
from nova import log as logging
from nova import utils
from nova.compute import instance_types
from nova.compute import power_state
from nova.virt import disk
from nova.virt import images
from nova.virt.xenapi import HelperBase
from nova.virt.xenapi.volume_utils import StorageError
LOG = logging.getLogger("nova.virt.xenapi.vm_utils")
FLAGS = flags.FLAGS
flags.DEFINE_string('default_os_type', 'linux', 'Default OS type')
flags.DEFINE_integer('block_device_creation_timeout', 10,
'time to wait for a block device to be created')
flags.DEFINE_integer('max_kernel_ramdisk_size', 16 * 1024 * 1024,
'maximum size in bytes of kernel or ramdisk images')
XENAPI_POWER_STATE = {
'Halted': power_state.SHUTDOWN,
'Running': power_state.RUNNING,
'Paused': power_state.PAUSED,
'Suspended': power_state.SUSPENDED,
'Crashed': power_state.CRASHED}
SECTOR_SIZE = 512
MBR_SIZE_SECTORS = 63
MBR_SIZE_BYTES = MBR_SIZE_SECTORS * SECTOR_SIZE
KERNEL_DIR = '/boot/guest'
class ImageType:
KERNEL = 0
RAMDISK = 1
DISK = 2
DISK_RAW = 3
DISK_VHD = 4
DISK_ISO = 5
_ids = (KERNEL, RAMDISK, DISK, DISK_RAW, DISK_VHD, DISK_ISO)
KERNEL_STR = "kernel"
RAMDISK_STR = "ramdisk"
DISK_STR = "os"
DISK_RAW_STR = "os_raw"
DISK_VHD_STR = "vhd"
DISK_ISO_STR = "iso"
_strs = (KERNEL_STR, RAMDISK_STR, DISK_STR, DISK_RAW_STR, DISK_VHD_STR,
DISK_ISO_STR)
@classmethod
def to_string(cls, image_type):
return dict(zip(ImageType._ids, ImageType._strs)).get(image_type)
@classmethod
def from_string(cls, image_type_str):
return dict(zip(ImageType._strs, ImageType._ids)).get(image_type_str)
class VMHelper(HelperBase):
@classmethod
def create_vm(cls, session, instance, kernel, ramdisk,
use_pv_kernel=False):
inst_type_id = instance.instance_type_id
instance_type = instance_types.get_instance_type(inst_type_id)
mem = str(long(instance_type['memory_mb']) * 1024 * 1024)
vcpus = str(instance_type['vcpus'])
rec = {
'actions_after_crash': 'destroy',
'actions_after_reboot': 'restart',
'actions_after_shutdown': 'destroy',
'affinity': '',
'blocked_operations': {},
'ha_always_run': False,
'ha_restart_priority': '',
'HVM_boot_params': {},
'HVM_boot_policy': '',
'is_a_template': False,
'memory_dynamic_min': mem,
'memory_dynamic_max': mem,
'memory_static_min': '0',
'memory_static_max': mem,
'memory_target': mem,
'name_description': '',
'name_label': instance.name,
'other_config': {'allowvssprovider': False},
'other_config': {},
'PCI_bus': '',
'platform': {'acpi': 'true', 'apic': 'true', 'pae': 'true',
'viridian': 'true', 'timeoffset': '0'},
'PV_args': '',
'PV_bootloader': '',
'PV_bootloader_args': '',
'PV_kernel': '',
'PV_legacy_args': '',
'PV_ramdisk': '',
'recommendations': '',
'tags': [],
'user_version': '0',
'VCPUs_at_startup': vcpus,
'VCPUs_max': vcpus,
'VCPUs_params': {},
'xenstore_data': {}}
if use_pv_kernel:
rec['platform']['nx'] = 'false'
if instance.kernel_id:
rec['PV_args'] = 'root=/dev/xvda1'
rec['PV_kernel'] = kernel
rec['PV_ramdisk'] = ramdisk
else:
rec['PV_bootloader'] = 'pygrub'
else:
rec['platform']['nx'] = 'true'
rec['HVM_boot_params'] = {'order': 'dc'}
rec['HVM_boot_policy'] = 'BIOS order'
LOG.debug(_('Created VM %s...'), instance.name)
vm_ref = session.call_xenapi('VM.create', rec)
instance_name = instance.name
LOG.debug(_('Created VM %(instance_name)s as %(vm_ref)s.') % locals())
return vm_ref
@classmethod
def ensure_free_mem(cls, session, instance):
inst_type_id = instance.instance_type_id
instance_type = instance_types.get_instance_type(inst_type_id)
mem = long(instance_type['memory_mb']) * 1024 * 1024
host = session.get_xenapi_host()
host_free_mem = long(session.get_xenapi().host.
compute_free_memory(host))
return host_free_mem >= mem
@classmethod
def create_vbd(cls, session, vm_ref, vdi_ref, userdevice, bootable):
vbd_rec = {}
vbd_rec['VM'] = vm_ref
vbd_rec['VDI'] = vdi_ref
vbd_rec['userdevice'] = str(userdevice)
vbd_rec['bootable'] = bootable
vbd_rec['mode'] = 'RW'
vbd_rec['type'] = 'disk'
vbd_rec['unpluggable'] = True
vbd_rec['empty'] = False
vbd_rec['other_config'] = {}
vbd_rec['qos_algorithm_type'] = ''
vbd_rec['qos_algorithm_params'] = {}
vbd_rec['qos_supported_algorithms'] = []
LOG.debug(_('Creating VBD for VM %(vm_ref)s,'
' VDI %(vdi_ref)s ... ') % locals())
vbd_ref = session.call_xenapi('VBD.create', vbd_rec)
LOG.debug(_('Created VBD %(vbd_ref)s for VM %(vm_ref)s,'
' VDI %(vdi_ref)s.') % locals())
return vbd_ref
@classmethod
def create_cd_vbd(cls, session, vm_ref, vdi_ref, userdevice, bootable):
vbd_rec = {}
vbd_rec['VM'] = vm_ref
vbd_rec['VDI'] = vdi_ref
vbd_rec['userdevice'] = str(userdevice)
vbd_rec['bootable'] = bootable
vbd_rec['mode'] = 'RO'
vbd_rec['type'] = 'CD'
vbd_rec['unpluggable'] = True
vbd_rec['empty'] = False
vbd_rec['other_config'] = {}
vbd_rec['qos_algorithm_type'] = ''
vbd_rec['qos_algorithm_params'] = {}
vbd_rec['qos_supported_algorithms'] = []
LOG.debug(_('Creating a CDROM-specific VBD for VM %(vm_ref)s,'
' VDI %(vdi_ref)s ... ') % locals())
vbd_ref = session.call_xenapi('VBD.create', vbd_rec)
LOG.debug(_('Created a CDROM-specific VBD %(vbd_ref)s '
' for VM %(vm_ref)s, VDI %(vdi_ref)s.') % locals())
return vbd_ref
@classmethod
def find_vbd_by_number(cls, session, vm_ref, number):
vbd_refs = session.get_xenapi().VM.get_VBDs(vm_ref)
if vbd_refs:
for vbd_ref in vbd_refs:
try:
vbd_rec = session.get_xenapi().VBD.get_record(vbd_ref)
if vbd_rec['userdevice'] == str(number):
return vbd_ref
except cls.XenAPI.Failure, exc:
LOG.exception(exc)
raise StorageError(_('VBD not found in instance %s') % vm_ref)
@classmethod
def unplug_vbd(cls, session, vbd_ref):
try:
vbd_ref = session.call_xenapi('VBD.unplug', vbd_ref)
except cls.XenAPI.Failure, exc:
LOG.exception(exc)
if exc.details[0] != 'DEVICE_ALREADY_DETACHED':
raise StorageError(_('Unable to unplug VBD %s') % vbd_ref)
@classmethod
def destroy_vbd(cls, session, vbd_ref):
try:
task = session.call_xenapi('Async.VBD.destroy', vbd_ref)
session.wait_for_task(task)
except cls.XenAPI.Failure, exc:
LOG.exception(exc)
raise StorageError(_('Unable to destroy VBD %s') % vbd_ref)
@classmethod
def destroy_vdi(cls, session, vdi_ref):
try:
task = session.call_xenapi('Async.VDI.destroy', vdi_ref)
session.wait_for_task(task)
except cls.XenAPI.Failure, exc:
LOG.exception(exc)
raise StorageError(_('Unable to destroy VDI %s') % vdi_ref)
@classmethod
def create_vdi(cls, session, sr_ref, name_label, virtual_size, read_only):
vdi_ref = session.get_xenapi().VDI.create(
{'name_label': name_label,
'name_description': '',
'SR': sr_ref,
'virtual_size': str(virtual_size),
'type': 'User',
'sharable': False,
'read_only': read_only,
'xenstore_data': {},
'other_config': {},
'sm_config': {},
'tags': []})
LOG.debug(_('Created VDI %(vdi_ref)s (%(name_label)s,'
' %(virtual_size)s, %(read_only)s) on %(sr_ref)s.')
% locals())
return vdi_ref
@classmethod
def get_vdi_for_vm_safely(cls, session, vm_ref):
vbd_refs = session.get_xenapi().VM.get_VBDs(vm_ref)
for vbd in vbd_refs:
vbd_rec = session.get_xenapi().VBD.get_record(vbd)
if vbd_rec['userdevice'] == '0':
vdi_rec = session.get_xenapi().VDI.get_record(vbd_rec['VDI'])
return vbd_rec['VDI'], vdi_rec
raise exception.Error(_("No primary VDI found for"
"%(vm_ref)s") % locals())
@classmethod
def create_snapshot(cls, session, instance_id, vm_ref, label):
LOG.debug(_("Snapshotting VM %(vm_ref)s with label '%(label)s'...")
% locals())
vm_vdi_ref, vm_vdi_rec = cls.get_vdi_for_vm_safely(session, vm_ref)
sr_ref = vm_vdi_rec["SR"]
original_parent_uuid = get_vhd_parent_uuid(session, vm_vdi_ref)
task = session.call_xenapi('Async.VM.snapshot', vm_ref, label)
template_vm_ref = session.wait_for_task(task, instance_id)
template_vdi_rec = cls.get_vdi_for_vm_safely(session,
template_vm_ref)[1]
template_vdi_uuid = template_vdi_rec["uuid"]
LOG.debug(_('Created snapshot %(template_vm_ref)s from'
' VM %(vm_ref)s.') % locals())
parent_uuid = wait_for_vhd_coalesce(
session, instance_id, sr_ref, vm_vdi_ref, original_parent_uuid)
template_vdi_uuids = {'image': parent_uuid,
'snap': template_vdi_uuid}
return template_vm_ref, template_vdi_uuids
@classmethod
def get_sr_path(cls, session):
sr_ref = safe_find_sr(session)
sr_rec = session.get_xenapi().SR.get_record(sr_ref)
sr_uuid = sr_rec["uuid"]
return os.path.join(FLAGS.xenapi_sr_base_path, sr_uuid)
@classmethod
def upload_image(cls, context, session, instance, vdi_uuids, image_id):
logging.debug(_("Asking xapi to upload %(vdi_uuids)s as"
" ID %(image_id)s") % locals())
os_type = instance.os_type or FLAGS.default_os_type
glance_host, glance_port = glance.pick_glance_api_server()
params = {'vdi_uuids': vdi_uuids,
'image_id': image_id,
'glance_host': glance_host,
'glance_port': glance_port,
'sr_path': cls.get_sr_path(session),
'os_type': os_type,
'auth_token': getattr(context, 'auth_token', None)}
kwargs = {'params': pickle.dumps(params)}
task = session.async_call_plugin('glance', 'upload_vhd', kwargs)
session.wait_for_task(task, instance.id)
@classmethod
def fetch_blank_disk(cls, session, instance_type_id):
one_gig = 1024 * 1024 * 1024
req_type = instance_types.get_instance_type(instance_type_id)
req_size = req_type['local_gb']
LOG.debug("Creating blank HD of size %(req_size)d gigs"
% locals())
vdi_size = one_gig * req_size
LOG.debug("ISO vm create: Looking for the SR")
sr_ref = safe_find_sr(session)
vdi_ref = cls.create_vdi(session, sr_ref, 'blank HD', vdi_size, False)
return vdi_ref
@classmethod
def fetch_image(cls, context, session, instance, image, user_id,
project_id, image_type):
if image_type == ImageType.DISK_VHD:
return cls._fetch_image_glance_vhd(context,
session, instance, image, image_type)
else:
return cls._fetch_image_glance_disk(context,
session, instance, image, image_type)
@classmethod
def _fetch_image_glance_vhd(cls, context, session, instance, image,
image_type):
instance_id = instance.id
LOG.debug(_("Asking xapi to fetch vhd image %(image)s")
% locals())
sr_ref = safe_find_sr(session)
uuid_stack = [str(uuid.uuid4()) for i in xrange(2)]
glance_host, glance_port = glance.pick_glance_api_server()
params = {'image_id': image,
'glance_host': glance_host,
'glance_port': glance_port,
'uuid_stack': uuid_stack,
'sr_path': cls.get_sr_path(session),
'auth_token': getattr(context, 'auth_token', None)}
kwargs = {'params': pickle.dumps(params)}
task = session.async_call_plugin('glance', 'download_vhd', kwargs)
result = session.wait_for_task(task, instance_id)
vdis = json.loads(result)
for vdi in vdis:
LOG.debug(_("xapi 'download_vhd' returned VDI of "
"type '%(vdi_type)s' with UUID '%(vdi_uuid)s'" % vdi))
cls.scan_sr(session, instance_id, sr_ref)
os_vdi_uuid = vdis[0]['vdi_uuid']
vdi_ref = session.get_xenapi().VDI.get_by_uuid(os_vdi_uuid)
primary_name_label = get_name_label_for_image(image)
session.get_xenapi().VDI.set_name_label(vdi_ref, primary_name_label)
cls._check_vdi_size(context, session, instance, os_vdi_uuid)
return vdis
@classmethod
def _get_vdi_chain_size(cls, context, session, vdi_uuid):
size_bytes = 0
for vdi_rec in walk_vdi_chain(session, vdi_uuid):
cur_vdi_uuid = vdi_rec['uuid']
vdi_size_bytes = int(vdi_rec['physical_utilisation'])
LOG.debug(_('vdi_uuid=%(cur_vdi_uuid)s vdi_size_bytes='
'%(vdi_size_bytes)d' % locals()))
size_bytes += vdi_size_bytes
return size_bytes
@classmethod
def _check_vdi_size(cls, context, session, instance, vdi_uuid):
size_bytes = cls._get_vdi_chain_size(context, session, vdi_uuid)
instance_type_id = instance['instance_type_id']
instance_type = db.instance_type_get(context,
instance_type_id)
allowed_size_gb = instance_type['local_gb']
allowed_size_bytes = allowed_size_gb * 1024 * 1024 * 1024
LOG.debug(_("image_size_bytes=%(size_bytes)d, allowed_size_bytes="
"%(allowed_size_bytes)d") % locals())
if size_bytes > allowed_size_bytes:
LOG.info(_("Image size %(size_bytes)d exceeded"
" instance_type allowed size "
"%(allowed_size_bytes)d")
% locals())
raise exception.ImageTooLarge()
@classmethod
def _fetch_image_glance_disk(cls, context, session, instance, image,
image_type):
instance_id = instance.id
LOG.debug(_("Fetching image %(image)s") % locals())
LOG.debug(_("Image Type: %s"), ImageType.to_string(image_type))
if image_type == ImageType.DISK_ISO:
sr_ref = safe_find_iso_sr(session)
LOG.debug(_("ISO: Found sr possibly containing the ISO image"))
else:
sr_ref = safe_find_sr(session)
glance_client, image_id = glance.get_glance_client(context, image)
glance_client.set_auth_token(getattr(context, 'auth_token', None))
meta, image_file = glance_client.get_image(image_id)
virtual_size = int(meta['size'])
vdi_size = virtual_size
LOG.debug(_("Size for image %(image)s:" +
"%(virtual_size)d") % locals())
if image_type == ImageType.DISK:
vdi_size += MBR_SIZE_BYTES
elif image_type in (ImageType.KERNEL, ImageType.RAMDISK) and vdi_size > FLAGS.max_kernel_ramdisk_size:
max_size = FLAGS.max_kernel_ramdisk_size
raise exception.Error(
_("Kernel/Ramdisk image is too large: %(vdi_size)d bytes, "
"max %(max_size)d bytes") % locals())
name_label = get_name_label_for_image(image)
vdi_ref = cls.create_vdi(session, sr_ref, name_label, vdi_size, False)
try:
filename = None
vdi_uuid = session.get_xenapi().VDI.get_uuid(vdi_ref)
with_vdi_attached_here(session, vdi_ref, False,
lambda dev:
_stream_disk(dev, image_type,
virtual_size, image_file))
if image_type in (ImageType.KERNEL, ImageType.RAMDISK):
LOG.debug(_("Copying VDI %s to /boot/guest on dom0"), vdi_ref)
fn = "copy_kernel_vdi"
args = {}
args['vdi-ref'] = vdi_ref
args['image-size'] = str(vdi_size)
task = session.async_call_plugin('glance', fn, args)
filename = session.wait_for_task(task, instance_id)
session.get_xenapi().VDI.destroy(vdi_ref)
LOG.debug(_("Kernel/Ramdisk VDI %s destroyed"), vdi_ref)
return [dict(vdi_type=ImageType.to_string(image_type),
vdi_uuid=None,
file=filename)]
else:
return [dict(vdi_type=ImageType.to_string(image_type),
vdi_uuid=vdi_uuid,
file=None)]
except (cls.XenAPI.Failure, IOError, OSError) as e:
LOG.exception(_("instance %s: Failed to fetch glance image"),
instance_id, exc_info=sys.exc_info())
e.args = e.args + ([dict(vdi_type=ImageType.
to_string(image_type),
vdi_uuid=vdi_uuid,
file=filename)],)
raise e
@classmethod
def determine_disk_image_type(cls, instance, context):
def log_disk_format(image_type):
pretty_format = {ImageType.KERNEL: 'KERNEL',
ImageType.RAMDISK: 'RAMDISK',
ImageType.DISK: 'DISK',
ImageType.DISK_RAW: 'DISK_RAW',
ImageType.DISK_VHD: 'DISK_VHD',
ImageType.DISK_ISO: 'DISK_ISO'}
disk_format = pretty_format[image_type]
image_ref = instance.image_ref
instance_id = instance.id
LOG.debug(_("Detected %(disk_format)s format for image "
"%(image_ref)s, instance %(instance_id)s") % locals())
def determine_from_glance():
glance_disk_format2nova_type = {
'ami': ImageType.DISK,
'aki': ImageType.KERNEL,
'ari': ImageType.RAMDISK,
'raw': ImageType.DISK_RAW,
'vhd': ImageType.DISK_VHD,
'iso': ImageType.DISK_ISO}
image_ref = instance.image_ref
glance_client, image_id = glance.get_glance_client(context,
image_ref)
meta = glance_client.get_image_meta(image_id)
disk_format = meta['disk_format']
try:
return glance_disk_format2nova_type[disk_format]
except KeyError:
raise exception.InvalidDiskFormat(disk_format=disk_format)
def determine_from_instance():
if instance.kernel_id:
return ImageType.DISK
else:
return ImageType.DISK_RAW
image_type = determine_from_glance()
log_disk_format(image_type)
return image_type
@classmethod
def determine_is_pv(cls, session, instance_id, vdi_ref, disk_image_type,
os_type):
LOG.debug(_("Looking up vdi %s for PV kernel"), vdi_ref)
if disk_image_type == ImageType.DISK_VHD:
if os_type == 'windows':
is_pv = False
else:
is_pv = True
elif disk_image_type == ImageType.DISK_RAW:
is_pv = with_vdi_attached_here(session, vdi_ref, True, _is_vdi_pv)
elif disk_image_type == ImageType.DISK:
is_pv = True
elif disk_image_type == ImageType.DISK_ISO:
is_pv = False
else:
raise exception.Error(_("Unknown image format %(disk_image_type)s")
% locals())
return is_pv
@classmethod
def lookup(cls, session, name_label):
vm_refs = session.get_xenapi().VM.get_by_name_label(name_label)
n = len(vm_refs)
if n == 0:
return None
elif n > 1:
raise exception.InstanceExists(name=name_label)
else:
return vm_refs[0]
@classmethod
def lookup_vm_vdis(cls, session, vm_ref):
vbd_refs = session.get_xenapi().VM.get_VBDs(vm_ref)
vdi_refs = []
if vbd_refs:
for vbd_ref in vbd_refs:
try:
vdi_ref = session.get_xenapi().VBD.get_VDI(vbd_ref)
record = session.get_xenapi().VDI.get_record(vdi_ref)
LOG.debug(_('VDI %s is still available'), record['uuid'])
except cls.XenAPI.Failure, exc:
LOG.exception(exc)
else:
vdi_refs.append(vdi_ref)
if len(vdi_refs) > 0:
return vdi_refs
else:
return None
@classmethod
def preconfigure_instance(cls, session, instance, vdi_ref, network_info):
mount_required = False
key, net, metadata = _prepare_injectables(instance, network_info)
mount_required = key or net or metadata
if not mount_required:
return
with_vdi_attached_here(session, vdi_ref, False,
lambda dev: _mounted_processing(dev, key, net,
metadata))
@classmethod
def lookup_kernel_ramdisk(cls, session, vm):
vm_rec = session.get_xenapi().VM.get_record(vm)
if 'PV_kernel' in vm_rec and 'PV_ramdisk' in vm_rec:
return (vm_rec['PV_kernel'], vm_rec['PV_ramdisk'])
else:
return (None, None)
@classmethod
def compile_info(cls, record):
LOG.info(_("(VM_UTILS) xenserver vm state -> |%s|"),
record['power_state'])
LOG.info(_("(VM_UTILS) xenapi power_state -> |%s|"),
XENAPI_POWER_STATE[record['power_state']])
return {'state': XENAPI_POWER_STATE[record['power_state']],
'max_mem': long(record['memory_static_max']) >> 10,
'mem': long(record['memory_dynamic_max']) >> 10,
'num_cpu': record['VCPUs_max'],
'cpu_time': 0}
@classmethod
def compile_diagnostics(cls, session, record):
try:
host = session.get_xenapi_host()
host_ip = session.get_xenapi().host.get_record(host)["address"]
except (cls.XenAPI.Failure, KeyError) as e:
return {"Unable to retrieve diagnostics": e}
try:
diags = {}
xml = get_rrd(host_ip, record["uuid"])
if xml:
rrd = minidom.parseString(xml)
for i, node in enumerate(rrd.firstChild.childNodes):
if i >= 3 and i <= 11:
ref = node.childNodes
if len(ref) > 6:
diags[ref[0].firstChild.data] = ref[6].firstChild.data
return diags
except cls.XenAPI.Failure as e:
return {"Unable to retrieve diagnostics": e}
@classmethod
def scan_sr(cls, session, instance_id=None, sr_ref=None):
if sr_ref:
LOG.debug(_("Re-scanning SR %s"), sr_ref)
task = session.call_xenapi('Async.SR.scan', sr_ref)
session.wait_for_task(task, instance_id)
@classmethod
def scan_default_sr(cls, session):
sr_ref = find_sr(session)
session.call_xenapi('SR.scan', sr_ref)
def get_rrd(host, vm_uuid):
try:
xml = urllib.urlopen("http://%s:%s@%s/vm_rrd?uuid=%s" % (
FLAGS.xenapi_connection_username,
FLAGS.xenapi_connection_password,
host,
vm_uuid))
return xml.read()
except IOError:
return None
def get_vhd_parent(session, vdi_rec):
if 'vhd-parent' in vdi_rec['sm_config']:
parent_uuid = vdi_rec['sm_config']['vhd-parent']
parent_ref = session.get_xenapi().VDI.get_by_uuid(parent_uuid)
parent_rec = session.get_xenapi().VDI.get_record(parent_ref)
vdi_uuid = vdi_rec['uuid']
LOG.debug(_("VHD %(vdi_uuid)s has parent %(parent_ref)s") % locals())
return parent_ref, parent_rec
else:
return None
def get_vhd_parent_uuid(session, vdi_ref):
vdi_rec = session.get_xenapi().VDI.get_record(vdi_ref)
ret = get_vhd_parent(session, vdi_rec)
if ret:
parent_ref, parent_rec = ret
return parent_rec["uuid"]
else:
return None
def walk_vdi_chain(session, vdi_uuid):
while True:
vdi_ref = session.get_xenapi().VDI.get_by_uuid(vdi_uuid)
vdi_rec = session.get_xenapi().VDI.get_record(vdi_ref)
yield vdi_rec
parent_uuid = vdi_rec['sm_config'].get('vhd-parent')
if parent_uuid:
vdi_uuid = parent_uuid
else:
break
def wait_for_vhd_coalesce(session, instance_id, sr_ref, vdi_ref,
original_parent_uuid):
max_attempts = FLAGS.xenapi_vhd_coalesce_max_attempts
attempts = {'counter': 0}
def _poll_vhds():
attempts['counter'] += 1
if attempts['counter'] > max_attempts:
counter = attempts['counter']
msg = (_("VHD coalesce attempts exceeded (%(counter)d >"
" %(max_attempts)d), giving up...") % locals())
raise exception.Error(msg)
VMHelper.scan_sr(session, instance_id, sr_ref)
parent_uuid = get_vhd_parent_uuid(session, vdi_ref)
if original_parent_uuid and (parent_uuid != original_parent_uuid):
LOG.debug(_("Parent %(parent_uuid)s doesn't match original parent"
" %(original_parent_uuid)s, waiting for coalesce...")
% locals())
else:
raise utils.LoopingCallDone(parent_uuid)
loop = utils.LoopingCall(_poll_vhds)
loop.start(FLAGS.xenapi_vhd_coalesce_poll_interval, now=True)
parent_uuid = loop.wait()
return parent_uuid
def get_vdi_for_vm_safely(session, vm_ref):
vdi_refs = VMHelper.lookup_vm_vdis(session, vm_ref)
if vdi_refs is None:
raise Exception(_("No VDIs found for VM %s") % vm_ref)
else:
num_vdis = len(vdi_refs)
if num_vdis != 1:
raise exception.Error(_("Unexpected number of VDIs"
"(%(num_vdis)s) found"
" for VM %(vm_ref)s") % locals())
vdi_ref = vdi_refs[0]
vdi_rec = session.get_xenapi().VDI.get_record(vdi_ref)
return vdi_ref, vdi_rec
def safe_find_sr(session):
sr_ref = find_sr(session)
if sr_ref is None:
raise exception.StorageRepositoryNotFound()
return sr_ref
def find_sr(session):
host = session.get_xenapi_host()
sr_refs = session.get_xenapi().SR.get_all()
for sr_ref in sr_refs:
sr_rec = session.get_xenapi().SR.get_record(sr_ref)
if not ('i18n-key' in sr_rec['other_config'] and
sr_rec['other_config']['i18n-key'] == 'local-storage'):
continue
for pbd_ref in sr_rec['PBDs']:
pbd_rec = session.get_xenapi().PBD.get_record(pbd_ref)
if pbd_rec['host'] == host:
return sr_ref
return None
def safe_find_iso_sr(session):
sr_ref = find_iso_sr(session)
if sr_ref is None:
raise exception.NotFound(_('Cannot find SR of content-type ISO'))
return sr_ref
|
Apache License 2.0
|
yuchdev/code_generator
|
cpp_generator.py
|
CppLanguageElement.render_to_string
|
python
|
def render_to_string(self, cpp):
raise NotImplementedError('CppLanguageElement is an abstract class')
|
@param: cpp - handle that supports code generation interface (see code_generator.py)
Typically it is passed to all child elements so that render their content
|
https://github.com/yuchdev/code_generator/blob/f6391b53f83a99b24e76277f6108eb5fe176699e/cpp_generator.py#L139-L144
|
__doc__ = """The module encapsutates C++ code generation logics for main C++ language primitives:
classes, methods and functions, variables, enums.
Every C++ element could render its current state to a string that could be evaluated as
a legal C++ construction.
Some elements could be rendered to a pair of representations (i.e. declaration and definition)
Example:
# Python code
cpp_class = CppClass(name = 'MyClass', is_struct = True)
cpp_class.add_variable(CppVariable(name = "m_var",
type = 'size_t',
is_static = True,
is_const = True,
initialization_value = 255))
// Generated C++ declaration
struct MyClass
{
static const size_t m_var;
}
// Generated C++ definition
const size_t MyClass::m_var = 255;
That module uses and highly depends on code_generator.py as it uses
code generating and formatting primitives implemented there.
The main object referenced from code_generator.py is CppFile,
which is passed as a parameter to render_to_string(cpp) Python method
It could also be used for composing more complicated C++ code,
that does not supported by cpp_generator
It support:
- functional calls:
cpp('int a = 10;')
- 'with' semantic:
with cpp.block('class MyClass', ';')
class_definition(cpp)
- append code to the last string without EOL:
cpp.append(', p = NULL);')
- empty lines:
cpp.newline(2)
For detailed information see code_generator.py documentation.
"""
from textwrap import dedent
class CppDeclaration(object):
def __init__(self, cpp_element):
self.cpp_element = cpp_element
def render_to_string(self, cpp):
self.cpp_element.render_to_string_declaration(cpp)
class CppImplementation(object):
def __init__(self, cpp_element):
self.cpp_element = cpp_element
def render_to_string(self, cpp):
self.cpp_element.render_to_string_implementation(cpp)
class CppLanguageElement(object):
availablePropertiesNames = {'name', 'ref_to_parent'}
def __init__(self, properties):
self.name = properties.get('name')
self.ref_to_parent = properties.get('ref_to_parent')
def check_input_properties_names(self, input_property_names):
unknown_properties = input_property_names.difference(self.availablePropertiesNames)
if unknown_properties:
raise AttributeError(
f'Error: try to initialize {self.__class__.__name__} with unknown property: {repr(unknown_properties)}')
def init_class_properties(self, current_class_properties, input_properties_dict, default_property_value=None):
for propertyName in current_class_properties:
if propertyName not in CppLanguageElement.availablePropertiesNames:
setattr(self, propertyName, default_property_value)
for (propertyName, propertyValue) in input_properties_dict.items():
if propertyName not in CppLanguageElement.availablePropertiesNames:
setattr(self, propertyName, propertyValue)
|
MIT License
|
andela/troupon
|
troupon/deals/tests/test_views.py
|
CreateDeal.create_deal
|
python
|
def create_deal(self):
merchant = self.create_merchant()
price = 5000
original_price = 6000
currency = 1
country = 2
location = 84
quorum = 0
disclaimer = ''
description = 'Holiday for two to the luxurious Masai Mara.'
title = 'Masai Mara Holiday'
address = 'Masai Mara'
max_quantity_available = 20
active = True
advertiser_id = merchant.advertiser_ptr.id
date_end = "2020-09-09"
category = Category.objects.create(name="Travel N Hotels",
slug="masai-mara-holiday")
advertiser = Advertiser.objects.get(id=advertiser_id)
deal = Deal(
price=price, original_price=original_price, currency=currency,
country=country, location=location, category=category,
quorum=quorum, disclaimer=disclaimer, description=description,
address=address, max_quantity_available=max_quantity_available,
date_end=date_end, active=active, title=title,
advertiser=advertiser, duration=20
)
deal.save()
|
Create the test deal
|
https://github.com/andela/troupon/blob/3704cbe6e69ba3e4c53401d3bbc339208e9ebccd/troupon/deals/tests/test_views.py#L116-L147
|
import unittest
from django.contrib.auth.models import User
from django.test import LiveServerTestCase
from selenium import webdriver
from accounts.models import UserProfile
from deals.models import Advertiser, Category, Deal
from merchant.models import Merchant
TEST_USER_EMAIL = 'testuser@myemail.com'
TEST_USER_PASSWORD = 'testpassword'
TEST_SEARCH_TERM = "Holiday"
TEST_SEARCH_LOCATION = "Nairobi"
xpath_search_term = "//div[@class='custom-input-group']/input[@id='search']"
xpath_search_location = "//div[@class='custom-input-group']/select"
xpath_search_button = "//button[@class='btn-action']"
xpath_search_results_title = "//h1[@class='title']"
xpath_search_results_desc = "//p[@class='description']"
xpath_search_results_deal = "//div[@class='packery-grid deal-grid']" "/div[@class='grid-item card']/form[@class='overlay row']"
xpath_deals_page_title = "//h1[@class='title']"
xpath_deals_first_deal = "//div[@class='grid-item card'][1]/form[@class='overlay row']"
xpath_more_details_button = "//div[@class='grid-item card'][1]" "/form[@class='overlay row']/div[@class='row']/div/a[@class='btn-action']"
xpath_deal_specs = "//div[@class='deals-specs']"
class HomepageViewTests(LiveServerTestCase):
@classmethod
def setUpClass(cls):
cls.driver = webdriver.Chrome()
super(HomepageViewTests, cls).setUpClass()
def setUp(self,):
self.driver = HomepageViewTests.driver
super(HomepageViewTests, self).setUp()
def test_title(self,):
self.driver.get(self.live_server_url + '/')
self.assertIn("Troupon - Get Some", self.driver.title)
def test_can_subscribe(self,):
self.driver.get("%s" % (self.live_server_url))
self.assertTrue("driver.find_element_by_id('subscriberEmail')")
def test_about_us_present(self,):
self.driver.get(self.live_server_url + '/')
body = self.driver.find_element_by_tag_name('body')
self.assertIn("About", body.text)
def tearDown(self,):
super(HomepageViewTests, self).tearDown()
@classmethod
def tearDownClass(cls):
cls.driver.quit()
super(HomepageViewTests, cls).tearDownClass()
class CreateDeal(object):
def create_user(self):
User.objects.create_user(username='mytestuser',
email=TEST_USER_EMAIL,
password=TEST_USER_PASSWORD)
def login_user(self):
self.driver.get(
'%s%s' % (self.live_server_url, "/login/")
)
self.driver.find_element_by_id('email').send_keys(TEST_USER_EMAIL)
self.driver.find_element_by_id(
'password').send_keys(TEST_USER_PASSWORD)
self.driver.find_element_by_id("loginBtn").click()
def create_user_profile(self):
user_object = User.objects.all()[:1].get()
user_profile = UserProfile.objects.create(
user=user_object,
occupation='Travel Agent',
intlnumber='0705123456')
return user_profile
def create_merchant(self):
merchant = Merchant.objects.create(
userprofile=self.create_user_profile(),
intlnumber='0705123456', enabled=True,
approved=True, trusted=True)
return merchant
|
MIT License
|
romansalin/django-seo2
|
djangoseo/backends.py
|
MetadataBaseModel._resolve_template
|
python
|
def _resolve_template(value, model_instance=None, context=None):
if isinstance(value, string_types) and "{" in value:
if context is None:
context = Context()
if model_instance is not None:
context[model_instance._meta.model_name] = model_instance
value = Template(value).render(context)
return value
|
Resolves any template references in the given value.
|
https://github.com/romansalin/django-seo2/blob/f788699a88e286ab9a698759d9b42f57852865d8/djangoseo/backends.py#L75-L83
|
from __future__ import unicode_literals
import collections
from django.utils.translation import ugettext_lazy as _
from django.db.utils import IntegrityError
from django.conf import settings
from django.db import models
from django.contrib.sites.models import Site
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes.fields import GenericForeignKey
from django.template import Template, Context
from django.utils.encoding import python_2_unicode_compatible
from six import string_types, with_metaclass
from djangoseo.utils import resolve_to_name, NotSet, Literal
RESERVED_FIELD_NAMES = ('_metadata', '_path', '_content_type', '_object_id',
'_content_object', '_view', '_site', 'objects',
'_resolve_value', '_set_context', 'id', 'pk')
backend_registry = collections.OrderedDict()
class MetadataBaseModel(models.Model):
class Meta:
abstract = True
def __init__(self, *args, **kwargs):
super(MetadataBaseModel, self).__init__(*args, **kwargs)
self._metadata = self.__class__._metadata()
def _resolve_value(self, name):
name = str(name)
if name in self._metadata._meta.elements:
element = self._metadata._meta.elements[name]
if element.editable:
value = getattr(self, name)
if value:
return value
populate_from = element.populate_from
if isinstance(populate_from, collections.Callable):
return populate_from(self, **self._populate_from_kwargs())
elif isinstance(populate_from, Literal):
return populate_from.value
elif populate_from is not NotSet:
return self._resolve_value(populate_from)
try:
value = getattr(self._metadata, name)
except AttributeError:
pass
else:
if isinstance(value, collections.Callable):
if getattr(value, '__self__', None):
return value(self)
else:
return value(self._metadata, obj=self)
return value
def _populate_from_kwargs(self):
return {}
@staticmethod
|
MIT License
|
interpretml/interpret-community
|
python/interpret_community/mimic/mimic_explainer.py
|
MimicExplainer._get_teacher_model_predictions
|
python
|
def _get_teacher_model_predictions(self, evaluation_examples):
transformed_evaluation_examples = self._get_transformed_data(evaluation_examples)
return self.model.predict(transformed_evaluation_examples)
|
Return the predictions given by the teacher model.
:param evaluation_examples: A matrix of feature vector examples (# examples x # features) on which to
explain the model's output. If specified, computes feature importance through aggregation.
:type evaluation_examples: numpy.array or pandas.DataFrame or scipy.sparse.csr_matrix
:return: predictions of the surrogate model.
:rtype: numpy.array
|
https://github.com/interpretml/interpret-community/blob/c8ce475a8224dd401bfa5358dbad1fd6b224a695/python/interpret_community/mimic/mimic_explainer.py#L355-L365
|
import numpy as np
from scipy.sparse import issparse
from sklearn.metrics import accuracy_score, r2_score
from ..common.explanation_utils import _order_imp
from ..common.exception import ScenarioNotSupportedException
from ..common.model_wrapper import _wrap_model
from .._internal.raw_explain.raw_explain_utils import get_datamapper_and_transformed_data, transform_with_datamapper
from ..common.blackbox_explainer import BlackBoxExplainer
from .model_distill import _model_distill, _inverse_soft_logit
from .models import LGBMExplainableModel
from ..explanation.explanation import _create_local_explanation, _create_global_explanation, _aggregate_global_from_local_explanation, _aggregate_streamed_local_explanations, _create_raw_feats_global_explanation, _create_raw_feats_local_explanation, _get_raw_explainer_create_explanation_kwargs
from ..dataset.decorator import tabular_decorator, init_tabular_decorator
from ..dataset.dataset_wrapper import DatasetWrapper
from ..common.constants import ExplainParams, ExplainType, ModelTask, ShapValuesOutput, MimicSerializationConstants, ExplainableModelType, LightGBMParams, Defaults, Extension, ResetIndex
import logging
import json
import warnings
with warnings.catch_warnings():
warnings.filterwarnings('ignore', 'Starting from version 2.2.1', UserWarning)
class MimicExplainer(BlackBoxExplainer):
available_explanations = [Extension.GLOBAL, Extension.LOCAL]
explainer_type = Extension.BLACKBOX
"""The Mimic Explainer for explaining black box models or functions.
:param model: The black box model or function (if is_function is True) to be explained. Also known
as the teacher model.
A model that implements sklearn.predict or sklearn.predict_proba or function that accepts a 2d ndarray.
:type model: object
:param initialization_examples: A matrix of feature vector examples (# examples x # features) for
initializing the explainer.
:type initialization_examples: numpy.array or pandas.DataFrame or scipy.sparse.csr_matrix
:param explainable_model: The uninitialized surrogate model used to explain the black box model.
Also known as the student model.
:type explainable_model: interpret_community.mimic.models.BaseExplainableModel
:param explainable_model_args: An optional map of arguments to pass to the explainable model
for initialization.
:type explainable_model_args: dict
:param is_function: Default is False. Set to True if passing function instead of model.
:type is_function: bool
:param augment_data: If True, oversamples the initialization examples to improve surrogate
model accuracy to fit teacher model. Useful for high-dimensional data where
the number of rows is less than the number of columns.
:type augment_data: bool
:param max_num_of_augmentations: Maximum number of times we can increase the input data size.
:type max_num_of_augmentations: int
:param explain_subset: List of feature indices. If specified, only selects a subset of the
features in the evaluation dataset for explanation. Note for mimic explainer this will
not affect the execution time of getting the global explanation. This argument is not supported when
transformations are set.
:type explain_subset: list[int]
:param features: A list of feature names.
:type features: list[str]
:param classes: Class names as a list of strings. The order of the class names should match
that of the model output. Only required if explaining classifier.
:type classes: list[str]
:param transformations: sklearn.compose.ColumnTransformer or a list of tuples describing the column name and
transformer. When transformations are provided, explanations are of the features before the transformation.
The format for a list of transformations is same as the one here:
https://github.com/scikit-learn-contrib/sklearn-pandas.
If you are using a transformation that is not in the list of sklearn.preprocessing transformations that
are supported by the `interpret-community <https://github.com/interpretml/interpret-community>`_
package, then this parameter cannot take a list of more than one column as input for the transformation.
You can use the following sklearn.preprocessing transformations with a list of columns since these are
already one to many or one to one: Binarizer, KBinsDiscretizer, KernelCenterer, LabelEncoder, MaxAbsScaler,
MinMaxScaler, Normalizer, OneHotEncoder, OrdinalEncoder, PowerTransformer, QuantileTransformer,
RobustScaler, StandardScaler.
Examples for transformations that work::
[
(["col1", "col2"], sklearn_one_hot_encoder),
(["col3"], None) #col3 passes as is
]
[
(["col1"], my_own_transformer),
(["col2"], my_own_transformer),
]
An example of a transformation that would raise an error since it cannot be interpreted as one to many::
[
(["col1", "col2"], my_own_transformer)
]
The last example would not work since the interpret-community package can't determine whether
my_own_transformer gives a many to many or one to many mapping when taking a sequence of columns.
:type transformations: sklearn.compose.ColumnTransformer or list[tuple]
:param shap_values_output: The shap values output from the explainer. Only applies to
tree-based models that are in terms of raw feature values instead of probabilities.
Can be default, probability or teacher_probability. If probability or teacher_probability
are specified, we approximate the feature importance values as probabilities instead
of using the default values. If teacher probability is specified, we use the probabilities
from the teacher model as opposed to the surrogate model.
:type shap_values_output: interpret_community.common.constants.ShapValuesOutput
:param categorical_features: Categorical feature names or indexes.
If names are passed, they will be converted into indexes first.
Note if pandas indexes are categorical, you can either pass the name of the index or the index
as if the pandas index was inserted at the end of the input dataframe.
:type categorical_features: Union[list[str], list[int]]
:param allow_all_transformations: Allow many to many and many to one transformations
:type allow_all_transformations: bool
:param model_task: Optional parameter to specify whether the model is a classification or regression model.
In most cases, the type of the model can be inferred based on the shape of the output, where a classifier
has a predict_proba method and outputs a 2 dimensional array, while a regressor has a predict method and
outputs a 1 dimensional array.
:type model_task: str
:param reset_index: Uses the pandas DataFrame index column as part of the features when training
the surrogate model.
:type reset_index: str
"""
@init_tabular_decorator
def __init__(self, model, initialization_examples, explainable_model, explainable_model_args=None,
is_function=False, augment_data=True, max_num_of_augmentations=10, explain_subset=None,
features=None, classes=None, transformations=None, allow_all_transformations=False,
shap_values_output=ShapValuesOutput.DEFAULT, categorical_features=None,
model_task=ModelTask.Unknown, reset_index=ResetIndex.Ignore, **kwargs):
if transformations is not None and explain_subset is not None:
raise ValueError("explain_subset not supported with transformations")
self.reset_index = reset_index
self._datamapper = None
if transformations is not None:
self._datamapper, new_initialization_examples = get_datamapper_and_transformed_data(
examples=initialization_examples, transformations=transformations,
allow_all_transformations=allow_all_transformations)
initialization_examples._clear()
initialization_examples = new_initialization_examples
if reset_index != ResetIndex.Ignore:
initialization_examples.reset_index()
wrapped_model, eval_ml_domain = _wrap_model(model, initialization_examples, model_task, is_function)
super(MimicExplainer, self).__init__(wrapped_model, is_function=is_function,
model_task=eval_ml_domain, **kwargs)
if explainable_model_args is None:
explainable_model_args = {}
if categorical_features is None:
categorical_features = []
self._logger.debug('Initializing MimicExplainer')
self._init_features = initialization_examples.get_features(features=features)
self.features = features
if augment_data:
initialization_examples.augment_data(max_num_of_augmentations=max_num_of_augmentations)
original_training_data = initialization_examples.typed_dataset
else:
original_training_data = initialization_examples.original_dataset_with_type
if reset_index == ResetIndex.ResetTeacher:
initialization_examples.set_index()
if not all(isinstance(categorical_feature, int) for categorical_feature in categorical_features):
categorical_features = initialization_examples.get_column_indexes(self._init_features,
categorical_features)
self._timestamp_featurizer = initialization_examples.timestamp_featurizer()
is_tree_model = explainable_model.explainable_model_type() == ExplainableModelType.TREE_EXPLAINABLE_MODEL_TYPE
if is_tree_model and self._supports_categoricals(explainable_model):
self._column_indexer = initialization_examples.string_index(columns=categorical_features)
self._one_hot_encoder = None
if categorical_features:
explainable_model_args[LightGBMParams.CATEGORICAL_FEATURE] = categorical_features
else:
self._column_indexer = initialization_examples.string_index(columns=categorical_features)
self._one_hot_encoder = initialization_examples.one_hot_encode(columns=categorical_features)
self.classes = classes
self.explain_subset = explain_subset
self.transformations = transformations
self._shap_values_output = shap_values_output
training_data = initialization_examples.dataset
self.initialization_examples = initialization_examples
if str(type(training_data)).endswith(".DenseData'>"):
training_data = training_data.data
explainable_model_args[ExplainParams.CLASSIFICATION] = self.predict_proba_flag
if self._supports_shap_values_output(explainable_model):
explainable_model_args[ExplainParams.SHAP_VALUES_OUTPUT] = shap_values_output
self.surrogate_model = _model_distill(self.function, explainable_model, training_data,
original_training_data, explainable_model_args)
self._method = self.surrogate_model._method
self._original_eval_examples = None
self._allow_all_transformations = allow_all_transformations
def _get_transformed_data(self, evaluation_examples):
if self.transformations is not None:
_, transformed_evaluation_examples = get_datamapper_and_transformed_data(
examples=evaluation_examples, transformations=self.transformations,
allow_all_transformations=self._allow_all_transformations)
else:
transformed_evaluation_examples = evaluation_examples
return transformed_evaluation_examples
def _get_surrogate_model_predictions(self, evaluation_examples):
transformed_evaluation_examples = self._get_transformed_data(evaluation_examples)
if self.classes is not None and len(self.classes) == 2:
index_predictions = _inverse_soft_logit(self.surrogate_model.predict(transformed_evaluation_examples))
actual_predictions = []
for index in index_predictions:
actual_predictions.append(self.classes[index])
return np.array(actual_predictions)
else:
return self.surrogate_model.predict(transformed_evaluation_examples)
|
MIT License
|
openkmip/pykmip
|
kmip/core/messages/payloads/encrypt.py
|
EncryptResponsePayload.read
|
python
|
def read(self, input_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
super(EncryptResponsePayload, self).read(
input_stream,
kmip_version=kmip_version
)
local_stream = utils.BytearrayStream(input_stream.read(self.length))
if self.is_tag_next(enums.Tags.UNIQUE_IDENTIFIER, local_stream):
self._unique_identifier = primitives.TextString(
tag=enums.Tags.UNIQUE_IDENTIFIER
)
self._unique_identifier.read(
local_stream,
kmip_version=kmip_version
)
else:
raise ValueError(
"invalid payload missing the unique identifier attribute"
)
if self.is_tag_next(enums.Tags.DATA, local_stream):
self._data = primitives.ByteString(tag=enums.Tags.DATA)
self._data.read(
local_stream,
kmip_version=kmip_version
)
else:
raise ValueError("invalid payload missing the data attribute")
if self.is_tag_next(enums.Tags.IV_COUNTER_NONCE, local_stream):
self._iv_counter_nonce = primitives.ByteString(
tag=enums.Tags.IV_COUNTER_NONCE
)
self._iv_counter_nonce.read(
local_stream,
kmip_version=kmip_version
)
if kmip_version >= enums.KMIPVersion.KMIP_1_4:
if self.is_tag_next(
enums.Tags.AUTHENTICATED_ENCRYPTION_TAG, local_stream
):
self._auth_tag = primitives.ByteString(
tag=enums.Tags.AUTHENTICATED_ENCRYPTION_TAG
)
self._auth_tag.read(
local_stream,
kmip_version=kmip_version
)
self.is_oversized(local_stream)
|
Read the data encoding the Encrypt response payload and decode it
into its constituent parts.
Args:
input_stream (stream): A data stream containing encoded object
data, supporting a read method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be decoded. Optional,
defaults to KMIP 1.0.
Raises:
ValueError: Raised if the unique_identifier or data attributes
are missing from the encoded payload.
|
https://github.com/openkmip/pykmip/blob/c0c980395660ea1b1a8009e97f17ab32d1100233/kmip/core/messages/payloads/encrypt.py#L474-L540
|
import six
from kmip.core import attributes
from kmip.core import enums
from kmip.core import primitives
from kmip.core import utils
from kmip.core.messages.payloads import base
class EncryptRequestPayload(base.RequestPayload):
def __init__(self,
unique_identifier=None,
cryptographic_parameters=None,
data=None,
iv_counter_nonce=None,
auth_additional_data=None):
super(EncryptRequestPayload, self).__init__()
self._unique_identifier = None
self._cryptographic_parameters = None
self._data = None
self._iv_counter_nonce = None
self._auth_additional_data = None
self.unique_identifier = unique_identifier
self.cryptographic_parameters = cryptographic_parameters
self.data = data
self.iv_counter_nonce = iv_counter_nonce
self.auth_additional_data = auth_additional_data
@property
def unique_identifier(self):
if self._unique_identifier:
return self._unique_identifier.value
else:
return None
@unique_identifier.setter
def unique_identifier(self, value):
if value is None:
self._unique_identifier = None
elif isinstance(value, six.string_types):
self._unique_identifier = primitives.TextString(
value=value,
tag=enums.Tags.UNIQUE_IDENTIFIER
)
else:
raise TypeError("unique identifier must be a string")
@property
def cryptographic_parameters(self):
return self._cryptographic_parameters
@cryptographic_parameters.setter
def cryptographic_parameters(self, value):
if value is None:
self._cryptographic_parameters = None
elif isinstance(value, attributes.CryptographicParameters):
self._cryptographic_parameters = value
else:
raise TypeError(
"cryptographic parameters must be a CryptographicParameters "
"struct"
)
@property
def data(self):
if self._data:
return self._data.value
else:
return None
@data.setter
def data(self, value):
if value is None:
self._data = None
elif isinstance(value, six.binary_type):
self._data = primitives.ByteString(
value=value,
tag=enums.Tags.DATA
)
else:
raise TypeError("data must be bytes")
@property
def iv_counter_nonce(self):
if self._iv_counter_nonce:
return self._iv_counter_nonce.value
else:
return None
@iv_counter_nonce.setter
def iv_counter_nonce(self, value):
if value is None:
self._iv_counter_nonce = None
elif isinstance(value, six.binary_type):
self._iv_counter_nonce = primitives.ByteString(
value=value,
tag=enums.Tags.IV_COUNTER_NONCE
)
else:
raise TypeError("IV/counter/nonce must be bytes")
@property
def auth_additional_data(self):
if self._auth_additional_data:
return self._auth_additional_data.value
else:
return None
@auth_additional_data.setter
def auth_additional_data(self, value):
if value is None:
self._auth_additional_data = None
elif isinstance(value, six.binary_type):
self._auth_additional_data = primitives.ByteString(
value=value,
tag=enums.Tags.AUTHENTICATED_ENCRYPTION_ADDITIONAL_DATA
)
else:
raise TypeError("authenticated additional data must be bytes")
def read(self, input_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
super(EncryptRequestPayload, self).read(
input_stream,
kmip_version=kmip_version
)
local_stream = utils.BytearrayStream(input_stream.read(self.length))
if self.is_tag_next(enums.Tags.UNIQUE_IDENTIFIER, local_stream):
self._unique_identifier = primitives.TextString(
tag=enums.Tags.UNIQUE_IDENTIFIER
)
self._unique_identifier.read(
local_stream,
kmip_version=kmip_version
)
if self.is_tag_next(
enums.Tags.CRYPTOGRAPHIC_PARAMETERS,
local_stream
):
self._cryptographic_parameters = attributes.CryptographicParameters()
self._cryptographic_parameters.read(
local_stream,
kmip_version=kmip_version
)
if self.is_tag_next(enums.Tags.DATA, local_stream):
self._data = primitives.ByteString(tag=enums.Tags.DATA)
self._data.read(local_stream, kmip_version=kmip_version)
else:
raise ValueError("invalid payload missing the data attribute")
if self.is_tag_next(enums.Tags.IV_COUNTER_NONCE, local_stream):
self._iv_counter_nonce = primitives.ByteString(
tag=enums.Tags.IV_COUNTER_NONCE
)
self._iv_counter_nonce.read(
local_stream,
kmip_version=kmip_version
)
if kmip_version >= enums.KMIPVersion.KMIP_1_4:
if self.is_tag_next(
enums.Tags.AUTHENTICATED_ENCRYPTION_ADDITIONAL_DATA,
local_stream
):
self._auth_additional_data = primitives.ByteString(
tag=enums.Tags.AUTHENTICATED_ENCRYPTION_ADDITIONAL_DATA
)
self._auth_additional_data.read(
local_stream,
kmip_version=kmip_version
)
self.is_oversized(local_stream)
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
local_stream = utils.BytearrayStream()
if self._unique_identifier:
self._unique_identifier.write(
local_stream,
kmip_version=kmip_version
)
if self._cryptographic_parameters:
self._cryptographic_parameters.write(
local_stream,
kmip_version=kmip_version
)
if self._data:
self._data.write(local_stream, kmip_version=kmip_version)
else:
raise ValueError("invalid payload missing the data attribute")
if self._iv_counter_nonce:
self._iv_counter_nonce.write(
local_stream,
kmip_version=kmip_version
)
if kmip_version >= enums.KMIPVersion.KMIP_1_4:
if self._auth_additional_data:
self._auth_additional_data.write(
local_stream,
kmip_version=kmip_version
)
self.length = local_stream.length()
super(EncryptRequestPayload, self).write(
output_stream,
kmip_version=kmip_version
)
output_stream.write(local_stream.buffer)
def __eq__(self, other):
if isinstance(other, EncryptRequestPayload):
if self.unique_identifier != other.unique_identifier:
return False
elif self.cryptographic_parameters != other.cryptographic_parameters:
return False
elif self.data != other.data:
return False
elif self.iv_counter_nonce != other.iv_counter_nonce:
return False
elif self.auth_additional_data != other.auth_additional_data:
return False
else:
return True
else:
return NotImplemented
def __ne__(self, other):
if isinstance(other, EncryptRequestPayload):
return not (self == other)
else:
return NotImplemented
def __repr__(self):
args = ", ".join([
"unique_identifier='{0}'".format(self.unique_identifier),
"cryptographic_parameters={0}".format(
repr(self.cryptographic_parameters)
),
"data={0}".format(self.data),
"iv_counter_nonce={0}".format(self.iv_counter_nonce),
"auth_additional_data={0}".format(self.auth_additional_data)
])
return "EncryptRequestPayload({0})".format(args)
def __str__(self):
return str({
'unique_identifier': self.unique_identifier,
'cryptographic_parameters': self.cryptographic_parameters,
'data': self.data,
'iv_counter_nonce': self.iv_counter_nonce,
'auth_additional_data': self.auth_additional_data
})
class EncryptResponsePayload(base.ResponsePayload):
def __init__(self,
unique_identifier=None,
data=None,
iv_counter_nonce=None,
auth_tag=None):
super(EncryptResponsePayload, self).__init__()
self._unique_identifier = None
self._data = None
self._iv_counter_nonce = None
self._auth_tag = None
self.unique_identifier = unique_identifier
self.data = data
self.iv_counter_nonce = iv_counter_nonce
self.auth_tag = auth_tag
@property
def unique_identifier(self):
if self._unique_identifier:
return self._unique_identifier.value
else:
return None
@unique_identifier.setter
def unique_identifier(self, value):
if value is None:
self._unique_identifier = None
elif isinstance(value, six.string_types):
self._unique_identifier = primitives.TextString(
value=value,
tag=enums.Tags.UNIQUE_IDENTIFIER
)
else:
raise TypeError("unique identifier must be a string")
@property
def data(self):
if self._data:
return self._data.value
else:
return None
@data.setter
def data(self, value):
if value is None:
self._data = None
elif isinstance(value, six.binary_type):
self._data = primitives.ByteString(
value=value,
tag=enums.Tags.DATA
)
else:
raise TypeError("data must be bytes")
@property
def iv_counter_nonce(self):
if self._iv_counter_nonce:
return self._iv_counter_nonce.value
else:
return None
@iv_counter_nonce.setter
def iv_counter_nonce(self, value):
if value is None:
self._iv_counter_nonce = None
elif isinstance(value, six.binary_type):
self._iv_counter_nonce = primitives.ByteString(
value=value,
tag=enums.Tags.IV_COUNTER_NONCE
)
else:
raise TypeError("IV/counter/nonce must be bytes")
@property
def auth_tag(self):
if self._auth_tag:
return self._auth_tag.value
else:
return None
@auth_tag.setter
def auth_tag(self, value):
if value is None:
self._auth_tag = None
elif isinstance(value, six.binary_type):
self._auth_tag = primitives.ByteString(
value=value,
tag=enums.Tags.AUTHENTICATED_ENCRYPTION_TAG
)
else:
raise TypeError("authenticated encryption tag must be bytes")
|
Apache License 2.0
|
mandiant/capa
|
capa/features/extractors/ida/insn.py
|
extract_insn_number_features
|
python
|
def extract_insn_number_features(f, bb, insn):
if idaapi.is_ret_insn(insn):
return
if capa.features.extractors.ida.helpers.is_sp_modified(insn):
return
for op in capa.features.extractors.ida.helpers.get_insn_ops(insn, target_ops=(idaapi.o_imm, idaapi.o_mem)):
if capa.features.extractors.ida.helpers.is_op_offset(insn, op):
continue
if op.type == idaapi.o_imm:
const = capa.features.extractors.ida.helpers.mask_op_val(op)
else:
const = op.addr
yield Number(const), insn.ea
yield Number(const, bitness=get_bitness(f.ctx)), insn.ea
|
parse instruction number features
args:
f (IDA func_t)
bb (IDA BasicBlock)
insn (IDA insn_t)
example:
push 3136B0h ; dwControlCode
|
https://github.com/mandiant/capa/blob/23a0aec1e6de99363023d327d1746b10968658c1/capa/features/extractors/ida/insn.py#L119-L152
|
import idc
import idaapi
import idautils
import capa.features.extractors.helpers
import capa.features.extractors.ida.helpers
from capa.features.insn import API, Number, Offset, Mnemonic
from capa.features.common import (
BITNESS_X32,
BITNESS_X64,
MAX_BYTES_FEATURE_SIZE,
THUNK_CHAIN_DEPTH_DELTA,
Bytes,
String,
Characteristic,
)
SECURITY_COOKIE_BYTES_DELTA = 0x40
def get_bitness(ctx):
if "bitness" not in ctx:
info = idaapi.get_inf_structure()
if info.is_64bit():
ctx["bitness"] = BITNESS_X64
elif info.is_32bit():
ctx["bitness"] = BITNESS_X32
else:
raise ValueError("unexpected bitness")
return ctx["bitness"]
def get_imports(ctx):
if "imports_cache" not in ctx:
ctx["imports_cache"] = capa.features.extractors.ida.helpers.get_file_imports()
return ctx["imports_cache"]
def check_for_api_call(ctx, insn):
info = ()
ref = insn.ea
for _ in range(THUNK_CHAIN_DEPTH_DELTA):
try:
ref = tuple(idautils.CodeRefsFrom(ref, False))[0]
except IndexError:
try:
ref = tuple(idautils.DataRefsFrom(ref))[0]
except IndexError:
break
info = get_imports(ctx).get(ref, ())
if info:
break
f = idaapi.get_func(ref)
if not f or not (f.flags & idaapi.FUNC_THUNK):
break
if info:
yield "%s.%s" % (info[0], info[1])
def extract_insn_api_features(f, bb, insn):
if not insn.get_canon_mnem() in ("call", "jmp"):
return
for api in check_for_api_call(f.ctx, insn):
dll, _, symbol = api.rpartition(".")
for name in capa.features.extractors.helpers.generate_symbols(dll, symbol):
yield API(name), insn.ea
targets = tuple(idautils.CodeRefsFrom(insn.ea, False))
if not targets:
return
target = targets[0]
target_func = idaapi.get_func(target)
if not target_func or target_func.start_ea != target:
return
if target_func.flags & idaapi.FUNC_LIB:
name = idaapi.get_name(target_func.start_ea)
yield API(name), insn.ea
|
Apache License 2.0
|
ericssonresearch/calvin-base
|
calvin/runtime/north/authentication/authentication_retrieval_point.py
|
FileAuthenticationRetrievalPoint.delete_users_db
|
python
|
def delete_users_db(self):
_log.debug("delete_users_db")
os.remove(os.path.join(self.path, "users.json"))
self.users_db=None
|
Delete the policy named policy_id
|
https://github.com/ericssonresearch/calvin-base/blob/bc4645c2061c30ca305a660e48dc86e3317f5b6f/calvin/runtime/north/authentication/authentication_retrieval_point.py#L169-L173
|
from abc import ABCMeta, abstractmethod
import os
import glob
import json
from calvin.utilities import calvinuuid
from calvin.utilities.calvinlogger import get_logger
from calvin.utilities import calvinconfig
from passlib.hash import pbkdf2_sha256
_log = get_logger(__name__)
_conf = calvinconfig.get()
_sec_conf = _conf
class AuthenticationRetrievalPoint(object):
__metaclass__ = ABCMeta
@abstractmethod
def get_users_db(self):
return
@abstractmethod
def create_users_db(self, data):
return
@abstractmethod
def update_users_db(self, data):
return
@abstractmethod
def delete_users_db(self):
return
class FileAuthenticationRetrievalPoint(object):
def __init__(self, path):
_log.debug("FileAuthenticationRetrievalPoint::__init__")
self.path = os.path.expanduser(path)
self.users_db=self.get_users_db()
self.groups_db=self.get_groups_db()
if not os.path.exists(self.path):
try:
os.makedirs(self.path)
except OSError as exc:
_log.error("Failed to create path, path={}".format(path))
if exc.errno != errno.EEXIST:
raise
def get_users_db(self):
_log.debug("get_users_db")
try:
self.check_stored_users_db_for_unhashed_passwords()
except Exception as err:
_log.error("Failed to check for unhashed passwords in users file, err={}".format(err))
return None
try:
users_db_path = os.path.join(self.path,'users.json')
with open(users_db_path,'rt') as data:
users_db = json.load(data)
except Exception as err:
_log.error("No users.json file can be found at path={}, err={}".format(users_db_path, err))
return None
return users_db
def create_users_db(self, data):
_log.debug("create_users_db")
hashed_data = self.hash_passwords(data)
with open(os.path.join(self.path, "users.json"), "w") as file:
json.dump(hashed_data, file)
def hash_passwords(self, data):
import time
_log.debug("hash_passwords\n\tdata={}".format(data))
updates_made = False
start = time.time()
for username in data:
user_data = data[username]
try:
is_pbkdf2 = pbkdf2_sha256.identify(user_data['password'])
except Exception as err:
_log.error("Failed to identify if password is PBKDF2 or not:"
"\n\tusername={}"
"\n\tuser_data={}"
"\n\terr={}".format(username, user_data, err))
raise
if ('password' in user_data) and not (is_pbkdf2):
try:
hash = pbkdf2_sha256.encrypt(user_data['password'], rounds=200000, salt_size=16)
except Exception as err:
_log.error("Failed to calculate PBKDF2 of password, err={}".format(err))
raise
user_data['password']=hash
updates_made = True
_log.debug("hashed_passwords"
"\n\tdata={}"
"\n\ttime it took to hash passwords={}".format(data, time.time()-start))
return updates_made
def update_users_db(self, data):
_log.debug("update_users_db"
"\n\tdata={}".format(data))
try:
self.hash_passwords(data)
except Exception as err:
_log.error("Failed to hash passwords, err={}".format(err))
raise
file_path = os.path.join(self.path, "users.json")
if os.path.isfile(file_path):
with open(file_path, "w") as file:
json.dump(data, file)
else:
_log.error("update_users_db: file does not exist, file_path={}".format(file_path))
raise IOError
self.users_db = data
def check_stored_users_db_for_unhashed_passwords(self):
_log.debug("check_stored_users_db_for_unhashed_passwords")
file_path = os.path.join(self.path, "users.json")
if os.path.isfile(file_path):
try:
with open(file_path, "r+") as file:
data = json.load(file)
if self.hash_passwords(data):
file.seek(0)
json.dump(data, file)
file.truncate()
except Exception as exc:
_log.exception("Failed to open users.json, exc={}".format(exc))
else:
_log.error("No users.json file, looking at {}".format(file_path))
raise IOError
|
Apache License 2.0
|
kubevirt/client-python
|
kubevirt/models/v1_volume.py
|
V1Volume.host_disk
|
python
|
def host_disk(self, host_disk):
self._host_disk = host_disk
|
Sets the host_disk of this V1Volume.
HostDisk represents a disk created on the cluster level
:param host_disk: The host_disk of this V1Volume.
:type: V1HostDisk
|
https://github.com/kubevirt/client-python/blob/c9f9d3bc429f783076982b46b194d5f7669eab1b/kubevirt/models/v1_volume.py#L339-L348
|
from pprint import pformat
from six import iteritems
import re
class V1Volume(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'cloud_init_config_drive': 'V1CloudInitConfigDriveSource',
'cloud_init_no_cloud': 'V1CloudInitNoCloudSource',
'config_map': 'V1ConfigMapVolumeSource',
'container_disk': 'V1ContainerDiskSource',
'data_volume': 'V1DataVolumeSource',
'downward_api': 'V1DownwardAPIVolumeSource',
'downward_metrics': 'V1DownwardMetricsVolumeSource',
'empty_disk': 'V1EmptyDiskSource',
'ephemeral': 'V1EphemeralVolumeSource',
'host_disk': 'V1HostDisk',
'name': 'str',
'persistent_volume_claim': 'V1PersistentVolumeClaimVolumeSource',
'secret': 'V1SecretVolumeSource',
'service_account': 'V1ServiceAccountVolumeSource',
'sysprep': 'V1SysprepSource'
}
attribute_map = {
'cloud_init_config_drive': 'cloudInitConfigDrive',
'cloud_init_no_cloud': 'cloudInitNoCloud',
'config_map': 'configMap',
'container_disk': 'containerDisk',
'data_volume': 'dataVolume',
'downward_api': 'downwardAPI',
'downward_metrics': 'downwardMetrics',
'empty_disk': 'emptyDisk',
'ephemeral': 'ephemeral',
'host_disk': 'hostDisk',
'name': 'name',
'persistent_volume_claim': 'persistentVolumeClaim',
'secret': 'secret',
'service_account': 'serviceAccount',
'sysprep': 'sysprep'
}
def __init__(self, cloud_init_config_drive=None, cloud_init_no_cloud=None, config_map=None, container_disk=None, data_volume=None, downward_api=None, downward_metrics=None, empty_disk=None, ephemeral=None, host_disk=None, name=None, persistent_volume_claim=None, secret=None, service_account=None, sysprep=None):
self._cloud_init_config_drive = None
self._cloud_init_no_cloud = None
self._config_map = None
self._container_disk = None
self._data_volume = None
self._downward_api = None
self._downward_metrics = None
self._empty_disk = None
self._ephemeral = None
self._host_disk = None
self._name = None
self._persistent_volume_claim = None
self._secret = None
self._service_account = None
self._sysprep = None
if cloud_init_config_drive is not None:
self.cloud_init_config_drive = cloud_init_config_drive
if cloud_init_no_cloud is not None:
self.cloud_init_no_cloud = cloud_init_no_cloud
if config_map is not None:
self.config_map = config_map
if container_disk is not None:
self.container_disk = container_disk
if data_volume is not None:
self.data_volume = data_volume
if downward_api is not None:
self.downward_api = downward_api
if downward_metrics is not None:
self.downward_metrics = downward_metrics
if empty_disk is not None:
self.empty_disk = empty_disk
if ephemeral is not None:
self.ephemeral = ephemeral
if host_disk is not None:
self.host_disk = host_disk
self.name = name
if persistent_volume_claim is not None:
self.persistent_volume_claim = persistent_volume_claim
if secret is not None:
self.secret = secret
if service_account is not None:
self.service_account = service_account
if sysprep is not None:
self.sysprep = sysprep
@property
def cloud_init_config_drive(self):
return self._cloud_init_config_drive
@cloud_init_config_drive.setter
def cloud_init_config_drive(self, cloud_init_config_drive):
self._cloud_init_config_drive = cloud_init_config_drive
@property
def cloud_init_no_cloud(self):
return self._cloud_init_no_cloud
@cloud_init_no_cloud.setter
def cloud_init_no_cloud(self, cloud_init_no_cloud):
self._cloud_init_no_cloud = cloud_init_no_cloud
@property
def config_map(self):
return self._config_map
@config_map.setter
def config_map(self, config_map):
self._config_map = config_map
@property
def container_disk(self):
return self._container_disk
@container_disk.setter
def container_disk(self, container_disk):
self._container_disk = container_disk
@property
def data_volume(self):
return self._data_volume
@data_volume.setter
def data_volume(self, data_volume):
self._data_volume = data_volume
@property
def downward_api(self):
return self._downward_api
@downward_api.setter
def downward_api(self, downward_api):
self._downward_api = downward_api
@property
def downward_metrics(self):
return self._downward_metrics
@downward_metrics.setter
def downward_metrics(self, downward_metrics):
self._downward_metrics = downward_metrics
@property
def empty_disk(self):
return self._empty_disk
@empty_disk.setter
def empty_disk(self, empty_disk):
self._empty_disk = empty_disk
@property
def ephemeral(self):
return self._ephemeral
@ephemeral.setter
def ephemeral(self, ephemeral):
self._ephemeral = ephemeral
@property
def host_disk(self):
return self._host_disk
@host_disk.setter
|
Apache License 2.0
|
rajammanabrolu/worldgeneration
|
evennia-engine/evennia/evennia/server/initial_setup.py
|
get_god_account
|
python
|
def get_god_account():
try:
god_account = AccountDB.objects.get(id=1)
except AccountDB.DoesNotExist:
raise AccountDB.DoesNotExist(ERROR_NO_SUPERUSER)
return god_account
|
Creates the god user and don't take no for an answer.
|
https://github.com/rajammanabrolu/worldgeneration/blob/5e97df013399e1a401d0a7ec184c4b9eb3100edd/evennia-engine/evennia/evennia/server/initial_setup.py#L46-L55
|
import time
from django.conf import settings
from django.utils.translation import ugettext as _
from evennia.accounts.models import AccountDB
from evennia.server.models import ServerConfig
from evennia.utils import create, logger
ERROR_NO_SUPERUSER = """
No superuser exists yet. The superuser is the 'owner' account on
the Evennia server. Create a new superuser using the command
evennia createsuperuser
Follow the prompts, then restart the server.
"""
LIMBO_DESC = _(
"""
Welcome to your new |wEvennia|n-based game! Visit http://www.evennia.com if you need
help, want to contribute, report issues or just join the community.
As Account #1 you can create a demo/tutorial area with |w@batchcommand tutorial_world.build|n.
"""
)
WARNING_POSTGRESQL_FIX = """
PostgreSQL-psycopg2 compatibility fix:
The in-game channels {chan1}, {chan2} and {chan3} were created,
but the superuser was not yet connected to them. Please use in
game commands to connect Account #1 to those channels when first
logging in.
"""
|
MIT License
|
pytorchlightning/lightning-bolts
|
pl_bolts/datamodules/vision_datamodule.py
|
VisionDataModule.default_transforms
|
python
|
def default_transforms(self) -> Callable:
|
Default transform for the dataset.
|
https://github.com/pytorchlightning/lightning-bolts/blob/f4f6d53a039c521f3441750fa5297c7694320119/pl_bolts/datamodules/vision_datamodule.py#L108-L109
|
import os
from abc import abstractmethod
from typing import Any, Callable, List, Optional, Union
import torch
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader, Dataset, random_split
class VisionDataModule(LightningDataModule):
EXTRA_ARGS: dict = {}
name: str = ""
dataset_cls: type
dims: tuple
def __init__(
self,
data_dir: Optional[str] = None,
val_split: Union[int, float] = 0.2,
num_workers: int = 0,
normalize: bool = False,
batch_size: int = 32,
seed: int = 42,
shuffle: bool = True,
pin_memory: bool = True,
drop_last: bool = False,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__(*args, **kwargs)
self.data_dir = data_dir if data_dir is not None else os.getcwd()
self.val_split = val_split
self.num_workers = num_workers
self.normalize = normalize
self.batch_size = batch_size
self.seed = seed
self.shuffle = shuffle
self.pin_memory = pin_memory
self.drop_last = drop_last
def prepare_data(self, *args: Any, **kwargs: Any) -> None:
self.dataset_cls(self.data_dir, train=True, download=True)
self.dataset_cls(self.data_dir, train=False, download=True)
def setup(self, stage: Optional[str] = None) -> None:
if stage == "fit" or stage is None:
train_transforms = self.default_transforms() if self.train_transforms is None else self.train_transforms
val_transforms = self.default_transforms() if self.val_transforms is None else self.val_transforms
dataset_train = self.dataset_cls(self.data_dir, train=True, transform=train_transforms, **self.EXTRA_ARGS)
dataset_val = self.dataset_cls(self.data_dir, train=True, transform=val_transforms, **self.EXTRA_ARGS)
self.dataset_train = self._split_dataset(dataset_train)
self.dataset_val = self._split_dataset(dataset_val, train=False)
if stage == "test" or stage is None:
test_transforms = self.default_transforms() if self.test_transforms is None else self.test_transforms
self.dataset_test = self.dataset_cls(
self.data_dir, train=False, transform=test_transforms, **self.EXTRA_ARGS
)
def _split_dataset(self, dataset: Dataset, train: bool = True) -> Dataset:
len_dataset = len(dataset)
splits = self._get_splits(len_dataset)
dataset_train, dataset_val = random_split(dataset, splits, generator=torch.Generator().manual_seed(self.seed))
if train:
return dataset_train
return dataset_val
def _get_splits(self, len_dataset: int) -> List[int]:
if isinstance(self.val_split, int):
train_len = len_dataset - self.val_split
splits = [train_len, self.val_split]
elif isinstance(self.val_split, float):
val_len = int(self.val_split * len_dataset)
train_len = len_dataset - val_len
splits = [train_len, val_len]
else:
raise ValueError(f"Unsupported type {type(self.val_split)}")
return splits
@abstractmethod
|
Apache License 2.0
|
packit/ogr
|
ogr/abstract.py
|
Comment.edited
|
python
|
def edited(self) -> datetime.datetime:
return self._edited
|
Datetime of last edit of the comment.
|
https://github.com/packit/ogr/blob/2f2eec1a71b58efff0dc43cdbca28a4b8de8c38a/ogr/abstract.py#L188-L190
|
import datetime
import functools
import warnings
from enum import Enum, IntEnum
from typing import (
Optional,
Match,
List,
Dict,
Set,
TypeVar,
Any,
Sequence,
Union,
Callable,
)
from urllib.request import urlopen
import github
import gitlab
import requests
from ogr.deprecation import deprecate_and_set_removal
from ogr.exceptions import (
OgrException,
GitlabAPIException,
GithubAPIException,
OgrNetworkError,
)
from ogr.parsing import parse_git_repo
try:
from functools import cached_property as _cached_property
except ImportError:
from functools import lru_cache
def _cached_property(func):
return property(lru_cache()(func))
AnyComment = TypeVar("AnyComment", bound="Comment")
def catch_common_exceptions(function: Callable) -> Any:
@functools.wraps(function)
def wrapper(*args, **kwargs):
try:
return function(*args, **kwargs)
except github.BadCredentialsException as ex:
raise GithubAPIException("Invalid Github credentials") from ex
except gitlab.GitlabAuthenticationError as ex:
raise GitlabAPIException("Invalid Gitlab credentials") from ex
except requests.exceptions.ConnectionError as ex:
raise OgrNetworkError(
"Could not perform the request due to a network error"
) from ex
return wrapper
class CatchCommonErrors(type):
def __new__(cls, name, bases, namespace):
for key, value in namespace.items():
if isinstance(value, staticmethod):
namespace[key] = staticmethod(catch_common_exceptions(value.__func__))
elif isinstance(value, classmethod):
namespace[key] = classmethod(catch_common_exceptions(value.__func__))
elif callable(namespace[key]):
namespace[key] = catch_common_exceptions(namespace[key])
return super().__new__(cls, name, bases, namespace)
class OgrAbstractClass(metaclass=CatchCommonErrors):
def __repr__(self) -> str:
return f"<{str(self)}>"
class Reaction(OgrAbstractClass):
def __init__(self, raw_reaction: Any) -> None:
self._raw_reaction = raw_reaction
def __str__(self):
return f"Reaction(raw_reaction={self._raw_reaction})"
def delete(self) -> None:
raise NotImplementedError()
class Comment(OgrAbstractClass):
def __init__(
self,
raw_comment: Optional[Any] = None,
parent: Optional[Any] = None,
body: Optional[str] = None,
author: Optional[str] = None,
created: Optional[datetime.datetime] = None,
edited: Optional[datetime.datetime] = None,
) -> None:
if raw_comment:
self._from_raw_comment(raw_comment)
elif body and author:
self._body = body
self._author = author
self._created = created
self._edited = edited
else:
raise ValueError("cannot construct comment without body and author")
self._parent = parent
def __str__(self) -> str:
body = f"{self.body[:10]}..." if self.body is not None else "None"
return (
f"Comment("
f"comment='{body}', "
f"author='{self.author}', "
f"created='{self.created}', "
f"edited='{self.edited}')"
)
def _from_raw_comment(self, raw_comment: Any) -> None:
raise NotImplementedError()
@property
def comment(self) -> str:
warnings.warn(
"Using deprecated property, that will be removed in 0.14.0"
" (or 1.0.0 if it comes sooner). Please use body. "
)
return self.body
@property
def body(self) -> str:
return self._body
@body.setter
def body(self, new_body: str) -> None:
self._body = new_body
@property
def author(self) -> str:
return self._author
@property
def created(self) -> datetime.datetime:
return self._created
@property
|
MIT License
|
testproject-io/python-sdk
|
src/testproject/classes/web_driver_wait.py
|
TestProjectWebDriverWait.get_report_details
|
python
|
def get_report_details(self, method):
step_name = " ".join(method.__class__.__name__.split("_"))
attributes_dict = {
attribute: json.dumps(getattr(method, attribute)) for attribute in self.get_user_attributes(method)
}
return step_name, attributes_dict
|
Returns the inferred report details.
Attributes:
method: is a callable expected condition class.
Examples:
Assuming the method sent to the WebDriverWait's wait function is title_is(title="some title")...
The method class is name 'title_is' and the returned step_name will be 'title is'
The method attributes dict will be {"title": "some title"}
Returns:
step_name (str): The method class's name, underscores are replaces with spaces.
attributes_dict (dict): is all the method's attributes and their values.
|
https://github.com/testproject-io/python-sdk/blob/efae0de04936bacc5358e3cdc3b86fe6c14434fb/src/testproject/classes/web_driver_wait.py#L105-L125
|
import os
import json
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support.wait import WebDriverWait
from src.testproject.classes import DriverStepSettings, StepSettings
class TestProjectWebDriverWait(WebDriverWait):
def __init__(self, driver, timeout):
super().__init__(driver, timeout)
self._driver = driver
def until(self, method, message=""):
return self.execute("until", method, message)
def until_not(self, method, message=""):
return self.execute("until_not", method, message)
def execute(self, function_name, method, message):
timeout_exception = None
result = None
step_helper = self.driver.command_executor.step_helper
step_settings = self.driver.command_executor.settings
reports_disabled = self._driver.command_executor.disable_reports
self._driver.report().disable_reports(True)
step_helper.handle_timeout(timeout=step_settings.timeout)
step_helper.handle_sleep(
sleep_timing_type=step_settings.sleep_timing_type,
sleep_time=step_settings.sleep_time,
)
with DriverStepSettings(self._driver, StepSettings()):
try:
result = getattr(super(), function_name)(method, message)
passed = True if result else False
except TimeoutException as e:
passed = False
timeout_exception = e
step_helper.handle_sleep(
sleep_timing_type=step_settings.sleep_timing_type,
sleep_time=step_settings.sleep_time,
step_executed=True,
)
passed, step_message = step_helper.handle_step_result(
step_result=passed,
invert_result=step_settings.invert_result,
always_pass=step_settings.always_pass,
)
screenshot = step_helper.take_screenshot(step_settings.screenshot_condition, passed)
self._driver.report().disable_reports(reports_disabled)
function_name = " ".join(function_name.split("_"))
step_name, step_attributes = self.get_report_details(method)
self._driver.report().step(
description=f"Wait {function_name} {step_name}",
message=f"{step_message}{os.linesep}",
passed=passed,
inputs=step_attributes,
screenshot=screenshot,
)
if not result and step_settings.always_pass:
return True
if timeout_exception:
raise timeout_exception
return result
|
Apache License 2.0
|
hackatbrown/2015.hackatbrown.org
|
hack-at-brown-2015/cssutils/css/cssvariablesrule.py
|
CSSVariablesRule._setCssText
|
python
|
def _setCssText(self, cssText):
super(CSSVariablesRule, self)._setCssText(cssText)
tokenizer = self._tokenize2(cssText)
attoken = self._nexttoken(tokenizer, None)
if self._type(attoken) != self._prods.VARIABLES_SYM:
self._log.error(u'CSSVariablesRule: No CSSVariablesRule found: %s' %
self._valuestr(cssText),
error=xml.dom.InvalidModificationErr)
else:
newVariables = CSSVariablesDeclaration(parentRule=self)
ok = True
beforetokens, brace = self._tokensupto2(tokenizer,
blockstartonly=True,
separateEnd=True)
if self._tokenvalue(brace) != u'{':
ok = False
self._log.error(u'CSSVariablesRule: No start { of variable '
u'declaration found: %r'
% self._valuestr(cssText), brace)
new = {'wellformed': True}
newseq = self._tempSeq()
beforewellformed, expected = self._parse(expected=':',
seq=newseq, tokenizer=self._tokenize2(beforetokens),
productions={})
ok = ok and beforewellformed and new['wellformed']
variablestokens, braceorEOFtoken = self._tokensupto2(tokenizer,
blockendonly=True,
separateEnd=True)
val, type_ = self._tokenvalue(braceorEOFtoken), self._type(braceorEOFtoken)
if val != u'}' and type_ != 'EOF':
ok = False
self._log.error(u'CSSVariablesRule: No "}" after variables '
u'declaration found: %r'
% self._valuestr(cssText))
nonetoken = self._nexttoken(tokenizer)
if nonetoken:
ok = False
self._log.error(u'CSSVariablesRule: Trailing content found.',
token=nonetoken)
if 'EOF' == type_:
variablestokens.append(braceorEOFtoken)
newVariables.cssText = variablestokens
if ok:
self._setSeq(newseq)
self.variables = newVariables
|
:exceptions:
- :exc:`~xml.dom.SyntaxErr`:
Raised if the specified CSS string value has a syntax error and
is unparsable.
- :exc:`~xml.dom.InvalidModificationErr`:
Raised if the specified CSS string value represents a different
type of rule than the current one.
- :exc:`~xml.dom.HierarchyRequestErr`:
Raised if the rule cannot be inserted at this point in the
style sheet.
- :exc:`~xml.dom.NoModificationAllowedErr`:
Raised if the rule is readonly.
Format::
variables
: VARIABLES_SYM S* medium [ COMMA S* medium ]* LBRACE S*
variableset* '}' S*
;
variableset
: LBRACE S* vardeclaration [ ';' S* vardeclaration ]* '}' S*
;
|
https://github.com/hackatbrown/2015.hackatbrown.org/blob/6e6e10b010421228deb562909a1c8bb4272b759f/hack-at-brown-2015/cssutils/css/cssvariablesrule.py#L82-L165
|
__all__ = ['CSSVariablesRule']
__docformat__ = 'restructuredtext'
__version__ = '$Id: cssfontfacerule.py 1818 2009-07-30 21:39:00Z cthedot $'
from cssvariablesdeclaration import CSSVariablesDeclaration
import cssrule
import cssutils
import xml.dom
class CSSVariablesRule(cssrule.CSSRule):
def __init__(self, mediaText=None, variables=None, parentRule=None,
parentStyleSheet=None, readonly=False):
super(CSSVariablesRule, self).__init__(parentRule=parentRule,
parentStyleSheet=parentStyleSheet)
self._atkeyword = u'@variables'
self._media = cssutils.stylesheets.MediaList(mediaText,
readonly=readonly)
if variables:
self.variables = variables
else:
self.variables = CSSVariablesDeclaration(parentRule=self)
self._readonly = readonly
def __repr__(self):
return u"cssutils.css.%s(mediaText=%r, variables=%r)" % (
self.__class__.__name__,
self._media.mediaText,
self.variables.cssText)
def __str__(self):
return u"<cssutils.css.%s object mediaText=%r variables=%r valid=%r " u"at 0x%x>" % (self.__class__.__name__,
self._media.mediaText,
self.variables.cssText,
self.valid,
id(self))
def _getCssText(self):
return cssutils.ser.do_CSSVariablesRule(self)
|
MIT License
|
pyglet/pyglet
|
pyglet/math.py
|
Vec2.clamp
|
python
|
def clamp(self, min_val, max_val):
return Vec2(clamp(self[0], min_val, max_val), clamp(self[1], min_val, max_val))
|
Restrict the value of the X and Y components of the vector to be within the given values.
:parameters:
`min_val` : int or float :
The minimum value
`max_val` : int or float :
The maximum value
:returns: A new vector with clamped X and Y components.
:rtype: Vec2
|
https://github.com/pyglet/pyglet/blob/b9a63ea179735c8f252ac31d51751bdf8a741c9d/pyglet/math.py#L255-L267
|
import math as _math
import warnings as _warnings
from operator import mul as _mul
def clamp(num, min_val, max_val):
return max(min(num, max_val), min_val)
class Vec2(tuple):
def __new__(cls, *args):
assert len(args) in (0, 2), "0 or 2 values are required for Vec2 types."
return super().__new__(Vec2, args or (0, 0))
@staticmethod
def from_polar(mag, angle):
return Vec2(mag * _math.cos(angle), mag * _math.sin(angle))
@property
def x(self):
return self[0]
@property
def y(self):
return self[1]
@property
def heading(self):
return _math.atan2(self[1], self[0])
@property
def mag(self):
return self.__abs__()
def __add__(self, other):
return Vec2(self[0] + other[0], self[1] + other[1])
def __sub__(self, other):
return Vec2(self[0] - other[0], self[1] - other[1])
def __mul__(self, other):
return Vec2(self[0] * other[0], self[1] * other[1])
def __truediv__(self, other):
return Vec2(self[0] / other[0], self[1] / other[1])
def __abs__(self):
return _math.sqrt(self[0] ** 2 + self[1] ** 2)
def __neg__(self):
return Vec2(-self[0], -self[1])
def __round__(self, ndigits=None):
return Vec2(*(round(v, ndigits) for v in self))
def __radd__(self, other):
if other == 0:
return self
else:
return self.__add__(other)
def from_magnitude(self, magnitude):
return self.normalize().scale(magnitude)
def from_heading(self, heading):
mag = self.__abs__()
return Vec2(mag * _math.cos(heading), mag * _math.sin(heading))
def limit(self, max):
if self[0] ** 2 + self[1] ** 2 > max * max:
return self.from_magnitude(max)
return self
def lerp(self, other, alpha):
return Vec2(self[0] + (alpha * (other[0] - self[0])),
self[1] + (alpha * (other[1] - self[1])))
def scale(self, value):
return Vec2(self[0] * value, self[1] * value)
def rotate(self, angle):
mag = self.mag
heading = self.heading
return Vec2(mag * _math.cos(heading + angle), mag * _math.sin(heading+angle))
def distance(self, other):
return _math.sqrt(((other[0] - self[0]) ** 2) + ((other[1] - self[1]) ** 2))
def normalize(self):
d = self.__abs__()
if d:
return Vec2(self[0] / d, self[1] / d)
return self
|
BSD 3-Clause New or Revised License
|
cn-uofbasel/picn
|
PiCN/Layers/AutoconfigLayer/AutoconfigServerLayer.py
|
AutoconfigServerLayer.__init__
|
python
|
def __init__(self,
linklayer: BasicLinkLayer,
address: str = '127.0.0.1',
registration_prefixes: List[Tuple[Name, bool]] = list(),
log_level: int = 255):
super().__init__(logger_name='AutoconfigLayer', log_level=log_level)
self._linklayer: BasicLinkLayer = linklayer
self.fib: BaseForwardingInformationBase = None
self.rib: BaseRoutingInformationBase = None
self._announce_addr: str = address
self._known_services: List[Tuple[Name, Tuple[str, int], datetime]] = []
self._service_registration_prefixes: List[Tuple[Name, bool]] = registration_prefixes
self._service_registration_timeout = timedelta(hours=1)
self._bc_interfaces: List[int] = list()
if self._linklayer is not None:
for i in range(len(self._linklayer.interfaces)):
interface = self._linklayer.interfaces[i]
if interface.enable_broadcast():
self._bc_interfaces.append(i)
|
:param linklayer:
:param address:
:param log_level:
|
https://github.com/cn-uofbasel/picn/blob/64ed40242657238e9f1d522d5873173f0b93a30e/PiCN/Layers/AutoconfigLayer/AutoconfigServerLayer.py#L23-L49
|
from typing import List, Tuple, Optional
import multiprocessing
from datetime import datetime, timedelta
from PiCN.Layers.LinkLayer import BasicLinkLayer
from PiCN.Layers.LinkLayer.Interfaces import AddressInfo, UDP4Interface
from PiCN.Processes import LayerProcess
from PiCN.Packets import Packet, Interest, Content, Nack, NackReason, Name
from PiCN.Layers.ICNLayer.ForwardingInformationBase import ForwardingInformationBaseEntry, BaseForwardingInformationBase
from PiCN.Layers.RoutingLayer.RoutingInformationBase import BaseRoutingInformationBase
_AUTOCONFIG_PREFIX: Name = Name('/autoconfig')
_AUTOCONFIG_FORWARDERS_PREFIX: Name = Name('/autoconfig/forwarders')
_AUTOCONFIG_SERVICE_LIST_PREFIX: Name = Name('/autoconfig/services')
_AUTOCONFIG_SERVICE_REGISTRATION_PREFIX: Name = Name('/autoconfig/service')
class AutoconfigServerLayer(LayerProcess):
|
BSD 3-Clause New or Revised License
|
sergioteula/python-amazon-paapi
|
amazon/paapi5_python_sdk/item_info.py
|
ItemInfo.classifications
|
python
|
def classifications(self):
return self._classifications
|
Gets the classifications of this ItemInfo. # noqa: E501
:return: The classifications of this ItemInfo. # noqa: E501
:rtype: Classifications
|
https://github.com/sergioteula/python-amazon-paapi/blob/9cb744bef17f5127231367430191df12126e9c24/amazon/paapi5_python_sdk/item_info.py#L145-L152
|
import pprint
import re
import six
from .by_line_info import ByLineInfo
from .classifications import Classifications
from .content_info import ContentInfo
from .content_rating import ContentRating
from .external_ids import ExternalIds
from .manufacture_info import ManufactureInfo
from .multi_valued_attribute import MultiValuedAttribute
from .product_info import ProductInfo
from .single_string_valued_attribute import SingleStringValuedAttribute
from .technical_info import TechnicalInfo
from .trade_in_info import TradeInInfo
class ItemInfo(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'by_line_info': 'ByLineInfo',
'classifications': 'Classifications',
'content_info': 'ContentInfo',
'content_rating': 'ContentRating',
'external_ids': 'ExternalIds',
'features': 'MultiValuedAttribute',
'manufacture_info': 'ManufactureInfo',
'product_info': 'ProductInfo',
'technical_info': 'TechnicalInfo',
'title': 'SingleStringValuedAttribute',
'trade_in_info': 'TradeInInfo'
}
attribute_map = {
'by_line_info': 'ByLineInfo',
'classifications': 'Classifications',
'content_info': 'ContentInfo',
'content_rating': 'ContentRating',
'external_ids': 'ExternalIds',
'features': 'Features',
'manufacture_info': 'ManufactureInfo',
'product_info': 'ProductInfo',
'technical_info': 'TechnicalInfo',
'title': 'Title',
'trade_in_info': 'TradeInInfo'
}
def __init__(self, by_line_info=None, classifications=None, content_info=None, content_rating=None, external_ids=None, features=None, manufacture_info=None, product_info=None, technical_info=None, title=None, trade_in_info=None):
self._by_line_info = None
self._classifications = None
self._content_info = None
self._content_rating = None
self._external_ids = None
self._features = None
self._manufacture_info = None
self._product_info = None
self._technical_info = None
self._title = None
self._trade_in_info = None
self.discriminator = None
if by_line_info is not None:
self.by_line_info = by_line_info
if classifications is not None:
self.classifications = classifications
if content_info is not None:
self.content_info = content_info
if content_rating is not None:
self.content_rating = content_rating
if external_ids is not None:
self.external_ids = external_ids
if features is not None:
self.features = features
if manufacture_info is not None:
self.manufacture_info = manufacture_info
if product_info is not None:
self.product_info = product_info
if technical_info is not None:
self.technical_info = technical_info
if title is not None:
self.title = title
if trade_in_info is not None:
self.trade_in_info = trade_in_info
@property
def by_line_info(self):
return self._by_line_info
@by_line_info.setter
def by_line_info(self, by_line_info):
self._by_line_info = by_line_info
@property
|
MIT License
|
google-research/tapas
|
tapas/utils/pretrain_utils.py
|
split_by_table_id_and_write
|
python
|
def split_by_table_id_and_write(
examples,
output_dir,
train_suffix = ".tfrecord",
test_suffix = ".tfrecord",
num_splits = 100,
proto_message=interaction_pb2.Interaction,
):
train, test = (
examples
| "Partition" >> beam.Partition(partition_fn, 2, num_splits))
for name, suffix, data in zip(
["train", "test"],
[train_suffix, test_suffix],
[train, test],
):
output_file = os.path.join(output_dir, name + suffix)
write_proto_outputs(output_file, name, data, proto_message)
|
Split interactions into train and test and write them to disc.
|
https://github.com/google-research/tapas/blob/733aca5273e560ad8c6380b7be984a3a680e97f6/tapas/utils/pretrain_utils.py#L209-L228
|
import os
import random
from typing import Iterable, Tuple, Text, Optional, Union
import apache_beam as beam
from tapas.protos import interaction_pb2
from tapas.utils import number_annotation_utils
from tapas.utils import tf_example_utils
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
_NS = "main"
_KeyInteraction = Tuple[Text, interaction_pb2.Interaction]
_KeyInteractionTable = Tuple[Text, Tuple[interaction_pb2.Interaction,
Optional[interaction_pb2.Table]]]
_Proto = Union[interaction_pb2.Interaction, interaction_pb2.Table,
tf.train.Example]
def fingerprint(key):
return "%08X" % abs(tf_example_utils.fingerprint(key))
def prepand_fingerprint(key):
return "%s_%s" % (fingerprint(key), key)
def _has_valid_shape(table):
if not table.columns:
return False
if not table.rows:
return False
num_columns = len(table.columns)
for row in table.rows:
if len(row.cells) != num_columns:
return False
return True
def check_table_id_fn(
key_interaction):
key, interaction = key_interaction
if not _has_valid_shape(interaction.table):
beam.metrics.Metrics.counter(_NS, "Tables empty or of ragged shape").inc()
return
if interaction.id and interaction.table.table_id and all(
bool(q.id) for q in interaction.questions):
yield key_interaction
else:
new_interaction = interaction_pb2.Interaction()
new_interaction.CopyFrom(interaction)
for question in new_interaction.questions:
if not question.id:
question.id = key
beam.metrics.Metrics.counter(_NS, "Question Ids added").inc()
if not new_interaction.table.table_id:
new_interaction.table.table_id = key
beam.metrics.Metrics.counter(_NS, "Table Ids added").inc()
if not new_interaction.id:
new_interaction.id = key
beam.metrics.Metrics.counter(_NS, "Interaction Ids added").inc()
yield key, new_interaction
def check_tale_size_fn(key_interaction, min_num_rows,
min_num_columns):
beam.metrics.Metrics.counter(_NS, "Inputs").inc()
_, interaction = key_interaction
num_rows = len(interaction.table.rows)
if num_rows < min_num_rows:
beam.metrics.Metrics.counter(_NS, "Inputs: Too few rows").inc()
return
num_cols = len(interaction.table.columns)
if num_cols < min_num_columns:
beam.metrics.Metrics.counter(_NS, "Inputs: Too few columns").inc()
return
yield key_interaction
def add_numeric_values_fn(element):
key, interaction = element
new_interaction = interaction_pb2.Interaction()
new_interaction.CopyFrom(interaction)
number_annotation_utils.add_numeric_values(new_interaction)
return key, new_interaction
def duplicate_fn(key_interaction,
dupe_factor):
key, interaction = key_interaction
for dupe_index in range(dupe_factor):
new_id = "%s_%d" % (key, dupe_index)
yield new_id, interaction
def _parse_text_proto(
text_proto_line,
proto_message,
):
message = text_format.Parse(text_proto_line, proto_message())
return (_get_input_id(message), message)
def _parse_text_interaction(text_proto_line,):
output = _parse_text_proto(text_proto_line, interaction_pb2.Interaction)
assert isinstance(output[1], interaction_pb2.Interaction)
return output
def _proto_to_text(message):
return text_format.MessageToString(message, as_one_line=True)
class ToTensorflowExample(beam.DoFn):
def __init__(self, config):
self._config = config
def start_bundle(self):
self._converter = tf_example_utils.ToPretrainingTensorflowExample(
self._config)
def process(
self,
element):
beam.metrics.Metrics.counter(_NS, "Interactions").inc()
key, (interaction, random_table) = element
seed = tf_example_utils.fingerprint(
"%s_%d_%d" %
(key, self._config.random_seed, self._config.max_seq_length))
rng = random.Random(seed)
example = self._converter.convert(rng, interaction, random_table)
if example:
beam.metrics.Metrics.counter(_NS, "Examples").inc()
yield prepand_fingerprint(key), example
_MAX_INT = 2**32 - 1
def to_numpy_seed(obj):
return tf_example_utils.fingerprint(repr(obj)) % _MAX_INT
def partition_fn(
example,
partition_count,
num_splits,
):
assert partition_count == 2
example_id = _get_table_id(example[1])
shard = to_numpy_seed(example_id) % num_splits
if shard == 0:
return 1
return 0
def write_proto_outputs(output_file, name, data, proto_message):
if output_file.endswith((".txtpb.gz", ".txtpb")):
_ = (
data
| "DropKey_%s" % name >> beam.Values()
| "ToTextProto" % name >> beam.Map(
_proto_to_text,
proto_message=proto_message,
)
| "WriteTextExamples_%s" % name >> beam.io.WriteToText(output_file))
return
elif output_file.endswith(".tfrecord"):
_ = (
data
| "DropKey_%s" % name >> beam.Values()
| "WriteTFRecordsExamples_%s" % name >> beam.io.WriteToTFRecord(
file_path_prefix=output_file,
shard_name_template="",
coder=beam.coders.ProtoCoder(proto_message)))
return
raise ValueError(f"Unsupported output format: {output_file}")
|
Apache License 2.0
|
pokerregion/poker
|
poker/handhistory.py
|
_BaseHandHistory._parse_date
|
python
|
def _parse_date(self, date_string):
date = datetime.strptime(date_string, self._DATE_FORMAT)
self.date = self._TZ.localize(date).astimezone(pytz.UTC)
|
Parse the date_string and return a datetime object as UTC.
|
https://github.com/pokerregion/poker/blob/ca132b218a484382bfb4a6a5c372c5ae82bb7667/poker/handhistory.py#L187-L190
|
import io
import itertools
from datetime import datetime
import attr
import pytz
from zope.interface import Interface, Attribute
from cached_property import cached_property
from .card import Rank
@attr.s(slots=True)
class _Player:
name = attr.ib()
stack = attr.ib()
seat = attr.ib()
combo = attr.ib()
@attr.s(slots=True)
class _PlayerAction:
name = attr.ib()
action = attr.ib()
amount = attr.ib()
class IStreet(Interface):
actions = Attribute("_StreetAction instances.")
cards = Attribute("Cards.")
pot = Attribute("Pot size after actions.")
class IHandHistory(Interface):
header_parsed = Attribute("Shows wheter header is parsed already or not.")
parsed = Attribute("Shows wheter the whole hand history is parsed already or not.")
date = Attribute("Date of the hand history.")
preflop = Attribute("_Street instance for preflop actions.")
flop = Attribute("_Street instance for flop actions.")
turn = Attribute("_Street instance for turn actions.")
river = Attribute("_Street instance for river actions.")
show_down = Attribute("_Street instance for showdown.")
table_name = Attribute("Name of")
max_players = Attribute("Maximum number of players can sit on the table.")
players = Attribute("Tuple of player instances.")
hero = Attribute("_Player instance with hero data.")
button = Attribute("_Player instance of button.")
winners = Attribute("Tuple of _Player instances with winners.")
game_type = Attribute("GameType enum value (CASH, TOUR or SNG)")
sb = Attribute("Small blind size.")
bb = Attribute("Big blind size.")
buyin = Attribute("Buyin with rake.")
rake = Attribute("Rake only.")
game = Attribute("Game enum value (HOLDEM, OMAHA? OHILO, RAZZ or STUD)")
limit = Attribute("Limit enum value (NL, PL or FL)")
ident = Attribute("Unique id of the hand history.")
currency = Attribute("Currency of the hand history.")
total_pot = Attribute("Total pot Decimal.")
tournament_ident = Attribute("Unique tournament id.")
tournament_name = Attribute("Name of the tournament.")
tournament_level = Attribute("Tournament level.")
def parse_header():
def parse():
class _BaseStreet:
def __init__(self, flop):
self.pot = None
self.actions = None
self.cards = None
self._parse_cards(flop[0])
self._parse_actions(flop[1:])
self._all_combinations = itertools.combinations(self.cards, 2)
@cached_property
def is_rainbow(self):
return all(
first.suit != second.suit for first, second in self._all_combinations
)
@cached_property
def is_monotone(self):
return all(
first.suit == second.suit for first, second in self._all_combinations
)
@cached_property
def is_triplet(self):
return all(
first.rank == second.rank for first, second in self._all_combinations
)
@cached_property
def has_pair(self):
return any(
first.rank == second.rank for first, second in self._all_combinations
)
@cached_property
def has_straightdraw(self):
return any(1 <= diff <= 3 for diff in self._get_differences())
@cached_property
def has_gutshot(self):
return any(1 <= diff <= 4 for diff in self._get_differences())
@cached_property
def has_flushdraw(self):
return any(
first.suit == second.suit for first, second in self._all_combinations
)
@cached_property
def players(self):
if not self.actions:
return None
player_names = []
for action in self.actions:
player_name = action.name
if player_name not in player_names:
player_names.append(player_name)
return tuple(player_names)
def _get_differences(self):
return (
Rank.difference(first.rank, second.rank)
for first, second in self._all_combinations
)
class _BaseHandHistory:
def __init__(self, hand_text):
self.raw = hand_text.strip()
self.header_parsed = False
self.parsed = False
@classmethod
def from_file(cls, filename):
with io.open(filename, "rt", encoding="utf-8-sig") as f:
return cls(f.read())
def __str__(self):
return f"<{self.__class__.__name__}: #{self.ident}>"
@property
def board(self):
board = []
if self.flop:
board.extend(self.flop.cards)
if self.turn:
board.append(self.turn)
if self.river:
board.append(self.river)
return tuple(board) if board else None
|
MIT License
|
prajdabre/yanmtt
|
transformers/src/transformers/utils/versions.py
|
require_version_examples
|
python
|
def require_version_examples(requirement):
hint = "Try: pip install -r examples/requirements.txt"
return require_version(requirement, hint)
|
require_version wrapper which emits examples-specific hint on failure
|
https://github.com/prajdabre/yanmtt/blob/4d329c3bcb81ca432d5947bb4673897086ee7f32/transformers/src/transformers/utils/versions.py#L97-L100
|
import operator
import re
import sys
from typing import Optional
from packaging import version
import pkg_resources
ops = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def require_version(requirement: str, hint: Optional[str] = None) -> None:
hint = f"\n{hint}" if hint is not None else ""
if re.match(r"^[\w_\-\d]+$", requirement):
pkg, op, want_ver = requirement, None, None
else:
match = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2})(.+)", requirement)
if not match:
raise ValueError(
f"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but got {requirement}"
)
pkg, op, want_ver = match[0]
if op not in ops:
raise ValueError(f"need one of {list(ops.keys())}, but got {op}")
if pkg == "python":
got_ver = ".".join([str(x) for x in sys.version_info[:3]])
if not ops[op](version.parse(got_ver), version.parse(want_ver)):
raise pkg_resources.VersionConflict(
f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}."
)
return
try:
got_ver = pkg_resources.get_distribution(pkg).version
except pkg_resources.DistributionNotFound:
raise pkg_resources.DistributionNotFound(requirement, ["this application", hint])
if want_ver is not None and not ops[op](version.parse(got_ver), version.parse(want_ver)):
raise pkg_resources.VersionConflict(
f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}"
)
def require_version_core(requirement):
hint = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git master"
return require_version(requirement, hint)
|
MIT License
|
pythonfreecourse/calendar
|
app/internal/import_file.py
|
_get_data_from_txt_file
|
python
|
def _get_data_from_txt_file(txt_file_path: str) -> List[Dict[str, Any]]:
calendar_content: List[Dict[str, Any]] = []
for event in _get_event_from_txt_file(txt_file_path):
if not _is_event_text_valid(event):
return []
event_data = _get_event_data_from_text(event)
if not _is_event_dates_valid(
event_data["start_date"], event_data["end_date"]):
return []
_add_event_component_txt(event_data, calendar_content)
return calendar_content
|
Returns a list of event data in dictionaries from a *.txt file.
Args:
txt_file_path: The file path.
Returns:
A list of event data in dictionaries, or an empty list
if the data is not valid.
|
https://github.com/pythonfreecourse/calendar/blob/23a33703a0038d0eae8ce7299a93ad172c8f68e9/app/internal/import_file.py#L204-L227
|
from collections import defaultdict
from datetime import datetime
from pathlib import Path
import re
from typing import (
Any, DefaultDict, Dict, Iterator, List, Optional, Tuple, Union
)
from icalendar import cal, Calendar
from loguru import logger
from sqlalchemy.orm.session import Session
from app.config import (
EVENT_CONTENT_LIMIT,
EVENT_DURATION_LIMIT,
EVENT_HEADER_LIMIT,
EVENT_HEADER_NOT_EMPTY,
EVENT_VALID_YEARS,
LOCATION_LIMIT,
MAX_EVENTS_START_DATE,
MAX_FILE_SIZE_MB,
VALID_FILE_EXTENSION,
)
from app.routers.event import create_event
DATE_FORMAT = "%m-%d-%Y"
DATE_FORMAT2 = "%m-%d-%Y %H:%M"
DESC_EVENT = "VEVENT"
EVENT_PATTERN = re.compile(r"^(\w{" + str(int(EVENT_HEADER_NOT_EMPTY)) + "," +
str(EVENT_HEADER_LIMIT) + r"}),\s(\w{0," +
str(EVENT_CONTENT_LIMIT) +
r"}),\s(\d{2}-\d{2}-\d{4})," +
r"\s(\d{2}-\d{2}-\d{4})(?:,\s([\w\s-]{0," +
str(LOCATION_LIMIT) +
r"}))?$")
EVENT_PATTERN2 = re.compile(r"^(\w{" + str(int(EVENT_HEADER_NOT_EMPTY)) + "," +
str(EVENT_HEADER_LIMIT) + r"}),\s(\w{0," +
str(EVENT_CONTENT_LIMIT) +
r"}),\s(\d{2}-\d{2}-\d{4}\s\d{2}:\d{2})," +
r"\s(\d{2}-\d{2}-\d{4}\s\d{2}:\d{2})" +
r"(?:,\s([\w\s-]{0," + str(LOCATION_LIMIT) +
r"}))?$")
def import_events(path: str, user_id: int, session: Session) -> bool:
if _is_file_valid_to_import(path):
if _is_file_extension_valid(path, ".ics"):
event_data = _get_data_from_ics_file(path)
else:
event_data = _get_data_from_txt_file(path)
if event_data and _is_file_valid_to_save_to_database(event_data):
_save_events_to_database(event_data, user_id, session)
return True
return False
def _is_file_valid_to_import(path: str) -> bool:
return (_is_file_exists(path) and _is_file_extension_valid(path)
and _is_file_size_valid(path))
def _is_file_exists(path: str) -> bool:
return Path(path).is_file()
def _is_file_extension_valid(
path: str,
extension: Union[str, Tuple[str, ...]] = VALID_FILE_EXTENSION,
) -> bool:
return Path(path).suffix.lower() in extension
def _is_file_size_valid(path: str, max_size: int = MAX_FILE_SIZE_MB) -> bool:
file_size = Path(path).stat().st_size / 1048576
return file_size <= max_size
def _get_data_from_ics_file(ics_file_path: str) -> List[Dict[str, Any]]:
calendar_content: List[Dict[str, Any]] = []
calendar = _get_calendar_from_ics(ics_file_path)
if not calendar:
return []
for component in calendar.walk():
if component.name == DESC_EVENT:
if not _is_valid_data_event_ics(component):
return []
_add_event_component_ics(component, calendar_content)
return calendar_content
def _get_calendar_from_ics(ics_file_path: str) -> Optional[Calendar]:
with open(ics_file_path, "r") as ics:
try:
return Calendar.from_ical(ics.read())
except (IndexError, ValueError) as e:
logger.error(f"open_ics function failed error message: {e}")
return None
def _is_valid_data_event_ics(component: cal.Event) -> bool:
return not (str(component.get('summary')) is None
or component.get('dtstart') is None
or component.get('dtend') is None
or not _is_date_in_range(component.get('dtstart').dt)
or not _is_date_in_range(component.get('dtend').dt)
)
def _add_event_component_ics(
component: cal.Event, calendar_content: List[Dict[str, Any]]) -> None:
calendar_content.append({
"Head": str(component.get('summary')),
"Content": str(component.get('description')),
"S_Date": component.get('dtstart').dt.replace(tzinfo=None),
"E_Date": component.get('dtend').dt.replace(tzinfo=None),
"Location": str(component.get('location')),
})
|
Apache License 2.0
|
doc-doc/next-qa
|
networks/VQAModel/HGA.py
|
HGA.forward
|
python
|
def forward(self, vid_feats, qas, qas_lengths):
if self.qns_encoder.use_bert:
cand_qas = qas.permute(1, 0, 2, 3)
else:
cand_qas = qas.permute(1, 0, 2)
cand_len = qas_lengths.permute(1, 0)
v_output, v_hidden = self.vid_encoder(vid_feats)
v_last_hidden = torch.squeeze(v_hidden)
out = []
for idx, qa in enumerate(cand_qas):
encoder_out = self.vq_encoder(v_output, v_last_hidden, qa, cand_len[idx])
out.append(encoder_out)
out = torch.stack(out, 0).transpose(1, 0)
_, predict_idx = torch.max(out, 1)
return out, predict_idx
|
:param vid_feats:
:param qns:
:param qns_lengths:
:param mode:
:return:
|
https://github.com/doc-doc/next-qa/blob/f54f850a91e64dca4452598154838924548f3b2f/networks/VQAModel/HGA.py#L53-L79
|
import torch
import torch.nn as nn
import sys
sys.path.insert(0, 'networks')
from q_v_transformer import CoAttention
from gcn import AdjLearner, GCN
from block import fusions
class HGA(nn.Module):
def __init__(self, vid_encoder, qns_encoder, device):
super(HGA, self).__init__()
self.vid_encoder = vid_encoder
self.qns_encoder = qns_encoder
self.device = device
hidden_size = vid_encoder.dim_hidden
input_dropout_p = vid_encoder.input_dropout_p
self.q_input_ln = nn.LayerNorm(hidden_size, elementwise_affine=False)
self.v_input_ln = nn.LayerNorm(hidden_size, elementwise_affine=False)
self.co_attn = CoAttention(
hidden_size, n_layers=vid_encoder.n_layers, dropout_p=input_dropout_p)
self.adj_learner = AdjLearner(
hidden_size, hidden_size, dropout=input_dropout_p)
self.gcn = GCN(
hidden_size,
hidden_size,
hidden_size,
num_layers=2,
dropout=input_dropout_p)
self.gcn_atten_pool = nn.Sequential(
nn.Linear(hidden_size, hidden_size // 2),
nn.Tanh(),
nn.Linear(hidden_size // 2, 1),
nn.Softmax(dim=-1))
self.global_fusion = fusions.Block(
[hidden_size, hidden_size], hidden_size, dropout_input=input_dropout_p)
self.fusion = fusions.Block([hidden_size, hidden_size], 1)
|
MIT License
|
rcos/observatory-retired
|
observatory/lib/dulwich/client.py
|
GitClient.send_pack
|
python
|
def send_pack(self, path, determine_wants, generate_pack_contents):
proto, unused_can_read = self._connect('receive-pack', path)
old_refs, server_capabilities = self.read_refs(proto)
if 'report-status' not in server_capabilities:
self._send_capabilities.remove('report-status')
new_refs = determine_wants(old_refs)
if not new_refs:
proto.write_pkt_line(None)
return {}
want = []
have = [x for x in old_refs.values() if not x == ZERO_SHA]
sent_capabilities = False
for refname in set(new_refs.keys() + old_refs.keys()):
old_sha1 = old_refs.get(refname, ZERO_SHA)
new_sha1 = new_refs.get(refname, ZERO_SHA)
if old_sha1 != new_sha1:
if sent_capabilities:
proto.write_pkt_line("%s %s %s" % (old_sha1, new_sha1,
refname))
else:
proto.write_pkt_line(
"%s %s %s\0%s" % (old_sha1, new_sha1, refname,
' '.join(self._send_capabilities)))
sent_capabilities = True
if new_sha1 not in have and new_sha1 != ZERO_SHA:
want.append(new_sha1)
proto.write_pkt_line(None)
if not want:
return new_refs
objects = generate_pack_contents(have, want)
entries, sha = write_pack_data(proto.write_file(), objects,
len(objects))
if 'report-status' in self._send_capabilities:
self._parse_status_report(proto)
data = proto.read()
if data:
raise SendPackError('Unexpected response %r' % data)
return new_refs
|
Upload a pack to a remote repository.
:param path: Repository path
:param generate_pack_contents: Function that can return the shas of the
objects to upload.
:raises SendPackError: if server rejects the pack data
:raises UpdateRefsError: if the server supports report-status
and rejects ref updates
|
https://github.com/rcos/observatory-retired/blob/cada27eaf96998ca1ba97a4cca30d2b5ce5021ac/observatory/lib/dulwich/client.py#L138-L187
|
__docformat__ = 'restructuredText'
import select
import socket
import subprocess
import urlparse
from lib.dulwich.errors import (
SendPackError,
UpdateRefsError,
)
from lib.dulwich.protocol import (
Protocol,
TCP_GIT_PORT,
ZERO_SHA,
extract_capabilities,
)
from lib.dulwich.pack import (
write_pack_data,
)
def _fileno_can_read(fileno):
return len(select.select([fileno], [], [], 0)[0]) > 0
COMMON_CAPABILITIES = ["ofs-delta"]
FETCH_CAPABILITIES = ["multi_ack", "side-band-64k"] + COMMON_CAPABILITIES
SEND_CAPABILITIES = ['report-status'] + COMMON_CAPABILITIES
class GitClient(object):
def __init__(self, thin_packs=True, report_activity=None):
self._report_activity = report_activity
self._fetch_capabilities = list(FETCH_CAPABILITIES)
self._send_capabilities = list(SEND_CAPABILITIES)
if thin_packs:
self._fetch_capabilities.append("thin-pack")
def _connect(self, cmd, path):
raise NotImplementedError()
def read_refs(self, proto):
server_capabilities = None
refs = {}
for pkt in proto.read_pkt_seq():
(sha, ref) = pkt.rstrip("\n").split(" ", 1)
if server_capabilities is None:
(ref, server_capabilities) = extract_capabilities(ref)
refs[ref] = sha
return refs, server_capabilities
def _parse_status_report(self, proto):
unpack = proto.read_pkt_line().strip()
if unpack != 'unpack ok':
st = True
while st is not None:
st = proto.read_pkt_line()
raise SendPackError(unpack)
statuses = []
errs = False
ref_status = proto.read_pkt_line()
while ref_status:
ref_status = ref_status.strip()
statuses.append(ref_status)
if not ref_status.startswith('ok '):
errs = True
ref_status = proto.read_pkt_line()
if errs:
ref_status = {}
ok = set()
for status in statuses:
if ' ' not in status:
continue
status, ref = status.split(' ', 1)
if status == 'ng':
if ' ' in ref:
ref, status = ref.split(' ', 1)
else:
ok.add(ref)
ref_status[ref] = status
raise UpdateRefsError('%s failed to update' %
', '.join([ref for ref in ref_status
if ref not in ok]),
ref_status=ref_status)
|
ISC License
|
linkedin/naarad
|
src/naarad/utils.py
|
initialize_metric
|
python
|
def initialize_metric(section, infile_list, hostname, aggr_metrics, output_directory, resource_path, label, ts_start, ts_end, rule_strings,
important_sub_metrics, anomaly_detection_metrics, other_options):
metric = None
metric_type = section.split('-')[0]
if metric_type in metric_classes:
if 'SAR' in metric_type:
metric = metric_classes['SAR'](section, infile_list, hostname, aggr_metrics, output_directory, resource_path, label, ts_start, ts_end,
rule_strings, important_sub_metrics, anomaly_detection_metrics, **other_options)
else:
metric = metric_classes[metric_type](section, infile_list, hostname, aggr_metrics, output_directory, resource_path, label, ts_start, ts_end,
rule_strings, important_sub_metrics, anomaly_detection_metrics, **other_options)
else:
metric = Metric(section, infile_list, hostname, aggr_metrics, output_directory, resource_path, label, ts_start, ts_end, rule_strings,
important_sub_metrics, anomaly_detection_metrics, **other_options)
return metric
|
Initialize appropriate metric based on type of metric.
:param: section: config section name or auto discovered metric type
:param: infile_list: list of input log files for the metric
:param: hostname: hostname associated with the logs origin
:param: output_directory: report location
:param: resource_path: resource path for report
:param: label: label for config section or auto discovered metric type
:param: ts_start: start time for analysis
:param: ts_end: end time for analysis
:param: rule_strings: list of slas
:param: important_sub_metrics: list of important sub metrics
:param: anomaly_detection_metrics: list of metrics to use for anomaly detection.
:param: other_options: kwargs
:return: metric object
|
https://github.com/linkedin/naarad/blob/261e2c0760fd6a6b0ee59064180bd8e3674311fe/src/naarad/utils.py#L934-L964
|
import argparse
import calendar
import ConfigParser
import datetime
import imp
import logging
import numpy
import os
import pytz
from pytz import timezone
import re
import sys
import time
import urllib
from naarad.naarad_imports import metric_classes, aggregate_metric_classes
from naarad.sla import SLA
from naarad.metrics.sar_metric import SARMetric
from naarad.metrics.metric import Metric
from naarad.graphing.plot_data import PlotData
from naarad.run_steps.local_cmd import Local_Cmd
import naarad.naarad_constants as CONSTANTS
logger = logging.getLogger('naarad.utils')
def import_modules(module_dict, is_class_type=True):
return_dict = {}
for module_name, module_string in module_dict.items():
try:
if is_class_type:
file_name, class_name = module_string.rsplit('.', 1)
mod = __import__(file_name, fromlist=[class_name])
return_dict[module_name] = getattr(mod, class_name)
else:
return_dict[module_name] = __import__(module_string, fromlist=[module_string])
except ImportError:
pass
return return_dict
def parse_user_defined_metric_classes(config_obj, metric_classes):
user_defined_metric_list = config_obj.get('GLOBAL', 'user_defined_metrics').split()
for udm_string in user_defined_metric_list:
try:
metric_name, metric_class_name, metric_file = udm_string.split(':')
except ValueError:
logger.error('Bad user defined metric specified')
continue
module_name = os.path.splitext(os.path.basename(metric_file))[0]
try:
new_module = imp.load_source(module_name, metric_file)
new_class = getattr(new_module, metric_class_name)
if metric_name in metric_classes.keys():
logger.warn('Overriding pre-defined metric class definition for ', metric_name)
metric_classes[metric_name] = new_class
except ImportError:
logger.error('Something wrong with importing a user defined metric class. Skipping metric: ', metric_name)
continue
def is_valid_url(url):
regex = re.compile(r'^(?:http|ftp)s?://'
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|'
r'localhost|'
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'
r'(?::\d+)?'
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
if regex.match(url):
logger.info("URL given as config")
return True
else:
return False
def download_file(url):
try:
(local_file, headers) = urllib.urlretrieve(url)
except:
sys.exit("ERROR: Problem downloading config file. Please check the URL (" + url + "). Exiting...")
return local_file
def sanitize_string_section_name(string):
string = string.replace('/', '_')
string = string.replace('%', '_')
return string
def is_valid_metric_name(metric_name):
reg = re.compile('^[a-zA-Z0-9\.\-\_]+$')
if reg.match(metric_name) and not metric_name.startswith('.'):
return True
else:
return False
def get_run_time_period(run_steps):
init_ts_start = get_standardized_timestamp('now', None)
ts_start = init_ts_start
ts_end = '0'
for run_step in run_steps:
if run_step.ts_start and run_step.ts_end:
if run_step.ts_start < ts_start:
ts_start = run_step.ts_start
if run_step.ts_end > ts_end:
ts_end = run_step.ts_end
if ts_end == '0':
ts_end = None
if ts_start == init_ts_start:
ts_start = None
logger.info('get_run_time_period range returned ' + str(ts_start) + ' to ' + str(ts_end))
return ts_start, ts_end
def get_rule_strings(config_obj, section):
rule_strings = {}
kwargs = dict(config_obj.items(section))
for key in kwargs.keys():
if key.endswith('.sla'):
rule_strings[key.replace('.sla', '')] = kwargs[key]
del kwargs[key]
return rule_strings, kwargs
def extract_diff_sla_from_config_file(obj, options_file):
rule_strings = {}
config_obj = ConfigParser.ConfigParser()
config_obj.optionxform = str
config_obj.read(options_file)
for section in config_obj.sections():
rule_strings, kwargs = get_rule_strings(config_obj, section)
for (key, val) in rule_strings.iteritems():
set_sla(obj, section, key, val)
def parse_basic_metric_options(config_obj, section):
infile = {}
aggr_hosts = None
aggr_metrics = None
ts_start = None
ts_end = None
precision = None
hostname = "localhost"
rule_strings = {}
important_sub_metrics = None
anomaly_detection_metrics = None
try:
if config_obj.has_option(section, 'important_sub_metrics'):
important_sub_metrics = config_obj.get(section, 'important_sub_metrics').split()
config_obj.remove_option(section, 'important_sub_metrics')
if config_obj.has_option(section, 'hostname'):
hostname = config_obj.get(section, 'hostname')
config_obj.remove_option(section, 'hostname')
if config_obj.has_option(section, 'infile'):
infile = config_obj.get(section, 'infile').split()
config_obj.remove_option(section, 'infile')
label = sanitize_string_section_name(section)
if config_obj.has_option(section, 'ts_start'):
ts_start = get_standardized_timestamp(config_obj.get(section, 'ts_start'), None)
config_obj.remove_option(section, 'ts_start')
if config_obj.has_option(section, 'ts_end'):
ts_end = get_standardized_timestamp(config_obj.get(section, 'ts_end'), None)
config_obj.remove_option(section, 'ts_end')
if config_obj.has_option(section, 'precision'):
precision = config_obj.get(section, 'precision')
config_obj.remove_option(section, 'precision')
if config_obj.has_option(section, 'aggr_hosts'):
aggr_hosts = config_obj.get(section, 'aggr_hosts')
config_obj.remove_option(section, 'aggr_hosts')
if config_obj.has_option(section, 'aggr_metrics'):
aggr_metrics = config_obj.get(section, 'aggr_metrics')
config_obj.remove_option(section, 'aggr_metrics')
if config_obj.has_option(section, 'anomaly_detection_metrics'):
anomaly_detection_metrics = config_obj.get(section, 'anomaly_detection_metrics').split()
config_obj.remove_option(section, 'anomaly_detection_metrics')
rule_strings, other_options = get_rule_strings(config_obj, section)
except ConfigParser.NoOptionError:
logger.exception("Exiting.... some mandatory options are missing from the config file in section: " + section)
sys.exit()
return (hostname, infile, aggr_hosts, aggr_metrics, label, ts_start, ts_end, precision, aggr_metrics, other_options,
rule_strings, important_sub_metrics, anomaly_detection_metrics)
def parse_metric_section(config_obj, section, metric_classes, metrics, aggregate_metric_classes, outdir_default, resource_path):
(hostname, infile, aggr_hosts, aggr_metrics, label, ts_start, ts_end, precision, aggr_metrics, other_options,
rule_strings, important_sub_metrics, anomaly_detection_metrics) = parse_basic_metric_options(config_obj, section)
metric_type = section.split('-')[0]
if metric_type in aggregate_metric_classes:
new_metric = initialize_aggregate_metric(section, aggr_hosts, aggr_metrics, metrics, outdir_default, resource_path, label, ts_start, ts_end, rule_strings,
important_sub_metrics, anomaly_detection_metrics, other_options)
else:
new_metric = initialize_metric(section, infile, hostname, aggr_metrics, outdir_default, resource_path, label, ts_start, ts_end, rule_strings,
important_sub_metrics, anomaly_detection_metrics, other_options)
if config_obj.has_option(section, 'ignore') and config_obj.getint(section, 'ignore') == 1:
new_metric.ignore = True
if config_obj.has_option(section, 'calc_metrics'):
new_metric.calc_metrics = config_obj.get(section, 'calc_metrics')
new_metric.precision = precision
return new_metric
def parse_global_section(config_obj, section):
ts_start = None
ts_end = None
if config_obj.has_option(section, 'ts_start'):
ts_start = get_standardized_timestamp(config_obj.get(section, 'ts_start'), None)
config_obj.remove_option(section, 'ts_start')
if config_obj.has_option(section, 'ts_end'):
ts_end = get_standardized_timestamp(config_obj.get(section, 'ts_end'), None)
config_obj.remove_option(section, 'ts_end')
return ts_start, ts_end
def parse_run_step_section(config_obj, section):
kill_after_seconds = None
try:
run_cmd = config_obj.get(section, 'run_cmd')
run_rank = int(config_obj.get(section, 'run_rank'))
except ConfigParser.NoOptionError:
logger.exception("Exiting.... some mandatory options are missing from the config file in section: " + section)
sys.exit()
except ValueError:
logger.error("Bad run_rank %s specified in section %s, should be integer. Exiting.", config_obj.get(section, 'run_rank'), section)
sys.exit()
if config_obj.has_option(section, 'run_type'):
run_type = config_obj.get(section, 'run_type')
else:
run_type = CONSTANTS.RUN_TYPE_WORKLOAD
if config_obj.has_option(section, 'run_order'):
run_order = config_obj.get(section, 'run_order')
else:
run_order = CONSTANTS.PRE_ANALYSIS_RUN
if config_obj.has_option(section, 'call_type'):
call_type = config_obj.get(section, 'call_type')
else:
call_type = 'local'
if config_obj.has_option(section, 'kill_after_seconds'):
try:
kill_after_seconds = int(config_obj.get(section, 'kill_after_seconds'))
except ValueError:
logger.error("Bad kill_after_seconds %s specified in section %s, should be integer.", config_obj.get(section, 'kill_after_seconds'), section)
if call_type == 'local':
run_step_obj = Local_Cmd(run_type, run_cmd, call_type, run_order, run_rank, kill_after_seconds=kill_after_seconds)
else:
logger.error('Unsupported RUN_STEP supplied, call_type should be local')
run_step_obj = None
return run_step_obj
def parse_graph_section(config_obj, section, outdir_default, indir_default):
graph_timezone = None
graphing_library = CONSTANTS.DEFAULT_GRAPHING_LIBRARY
crossplots = []
if config_obj.has_option(section, 'graphing_library'):
graphing_library = config_obj.get(section, 'graphing_library')
if config_obj.has_option(section, 'graphs'):
graphs_string = config_obj.get(section, 'graphs')
crossplots = graphs_string.split()
if config_obj.has_option(section, 'outdir'):
outdir_default = config_obj.get(section, 'outdir')
if config_obj.has_option(section, 'output_dir'):
outdir_default = config_obj.get(section, 'output_dir')
if config_obj.has_option(section, 'input_dir'):
indir_default = config_obj.get(section, 'input_dir')
if config_obj.has_option(section, 'graph_timezone'):
graph_timezone = config_obj.get(section, 'graph_timezone')
if graph_timezone not in ("UTC", "PST", "PDT"):
logger.warn('Unsupported timezone ' + graph_timezone + ' specified in option graph_timezone. Will use UTC instead')
graph_timezone = "UTC"
return graphing_library, crossplots, outdir_default, indir_default, graph_timezone
def parse_report_section(config_obj, section):
report_kwargs = {}
if config_obj.has_option(section, 'stylesheet_includes'):
report_kwargs['stylesheet_includes'] = config_obj.get(section, 'stylesheet_includes')
if config_obj.has_option(section, 'javascript_includes'):
report_kwargs['javascript_includes'] = config_obj.get(section, 'javascript_includes')
if config_obj.has_option(section, 'header_template'):
report_kwargs['header_template'] = config_obj.get(section, 'header_template')
if config_obj.has_option(section, 'footer_template'):
report_kwargs['footer_template'] = config_obj.get(section, 'footer_template')
if config_obj.has_option(section, 'summary_content_template'):
report_kwargs['summary_content_template'] = config_obj.get(section, 'summary_content_template')
if config_obj.has_option(section, 'summary_page_template'):
report_kwargs['summary_page_template'] = config_obj.get(section, 'summary_page_template')
if config_obj.has_option(section, 'metric_page_template'):
report_kwargs['metric_page_template'] = config_obj.get(section, 'metric_page_template')
if config_obj.has_option(section, 'client_charting_template'):
report_kwargs['client_charting_template'] = config_obj.get(section, 'client_charting_template')
if config_obj.has_option(section, 'diff_client_charting_template'):
report_kwargs['diff_client_charting_template'] = config_obj.get(section, 'diff_client_charting_template')
if config_obj.has_option(section, 'diff_page_template'):
report_kwargs['diff_page_template'] = config_obj.get(section, 'diff_page_template')
return report_kwargs
def reconcile_timezones(begin_ts, ts_timezone, graph_timezone):
if not graph_timezone:
return begin_ts
if graph_timezone != ts_timezone:
utc = pytz.utc
pst = timezone('US/Pacific')
if graph_timezone == "UTC":
try:
dt = pst.localize(datetime.datetime.strptime(begin_ts, "%Y-%m-%d %H:%M:%S"))
except ValueError:
dt = pst.localize(datetime.datetime.strptime(begin_ts, "%Y-%m-%d %H:%M:%S.%f"))
begin_ts = dt.astimezone(utc).strftime("%Y-%m-%d %H:%M:%S.%f")
else:
try:
dt = utc.localize(datetime.datetime.strptime(begin_ts, "%Y-%m-%d %H:%M:%S"))
except ValueError:
dt = utc.localize(datetime.datetime.strptime(begin_ts, "%Y-%m-%d %H:%M:%S.%f"))
begin_ts = dt.astimezone(pst).strftime("%Y-%m-%d %H:%M:%S.%f")
return begin_ts
def convert_to_unixts(ts_string):
try:
dt_obj = datetime.datetime.strptime(ts_string, "%Y-%m-%d %H:%M:%S.%f")
except ValueError:
dt_obj = datetime.datetime.strptime(ts_string, "%Y-%m-%d %H:%M:%S")
return float(calendar.timegm(dt_obj.utctimetuple()) * 1000.0 + dt_obj.microsecond / 1000.0)
def is_number(string):
try:
float(string)
return True
except ValueError:
return False
def get_all_sar_objects(metrics, indir, hostname, output_directory, label, ts_start, ts_end, options):
metrics = []
sar_types = ('device', 'cpuusage', 'cpuhz', 'memory', 'memutil', 'paging')
for sar_metric_type in sar_types:
infile = os.path.join(indir, 'sar.' + sar_metric_type + '.out')
if os.path.exists(infile):
obj_type = 'SAR-' + sar_metric_type
metric = SARMetric(obj_type, infile, hostname, output_directory, label, ts_start, ts_end, options)
metrics.append(metric)
return metrics
def sanitize_string(string):
string = string.replace('/', '-per-')
if string.startswith('%'):
string = string.replace('%', 'percent-')
else:
string = string.replace('.%', '.percent-')
string = string.replace('%', '-percent-')
return string
def get_default_csv(output_directory, val):
val = sanitize_string(val)
return os.path.join(output_directory, val + '.csv')
def convert_to_24hr_format(ts):
words = ts.split()
if len(words) == 1:
return ts
if words[1] == 'PM':
tmp = words[0].split(':')
if tmp[0] != '12':
hour = int(tmp[0]) + 12
tmp[0] = str(hour)
ts = ":".join(tmp)
elif words[1] == 'AM':
tmp = words[0].split(':')
if tmp[0] == '12':
tmp[0] = '00'
ts = ":".join(tmp)
return ts
def get_merged_csvname(output_directory, vals):
return os.path.join(output_directory, '-'.join(vals) + '.csv')
def get_merged_charttitle(vals):
return " vs ".join(vals)
def get_merged_plot_link_name(vals):
return '-'.join(vals)
def get_merged_png_name(vals):
return '-'.join(vals)
def generate_html_report(output_directory, html_string):
htmlfilename = os.path.join(output_directory, 'Report.html')
with open(htmlfilename, 'w') as htmlf:
header = '<html><head><title>naarad analysis report</title>'
dygraphs_include = '''<script type='text/javascript'
src='http://dygraphs.com/dygraph-combined.js'></script>
'''
sorttable_include = '<script type="text/javascript" src="http://www.kryogenix.org/code/browser/sorttable/sorttable.js"></script>'
body = '</head><body>'
footer = '</body></html>'
htmlf.write(header)
htmlf.write(sorttable_include)
htmlf.write(dygraphs_include)
htmlf.write(body)
htmlf.write(html_string)
htmlf.write(footer)
def tscsv_nway_file_merge(outfile, filelist, filler):
logger.info('called nway merge with %s', filelist)
with open(outfile, 'w') as outf:
filehandlers = [None] * len(filelist)
currlines = [None] * len(filelist)
for i in range(len(filelist)):
try:
filehandlers[i] = open(filelist[i], 'r')
except IOError:
logger.error('Cannot open: ' + filelist[i])
return
currlines[i] = filehandlers[i].readline().strip()
while True:
future_time = str(datetime.datetime.utcnow() + datetime.timedelta(days=365))
min_ts = future_time
for i in range(len(currlines)):
if currlines[i] == "":
continue
ts = currlines[i].split(',')[0]
if ts < min_ts:
min_ts = ts
if min_ts == future_time:
break
outwords = []
outwords.append(min_ts)
for i in range(len(currlines)):
if currlines[i] == "":
outwords.append(filler)
else:
ts = currlines[i].split(',')[0]
val = currlines[i].split(',')[1]
if ts == min_ts:
outwords.append(val)
currlines[i] = filehandlers[i].readline().strip()
else:
outwords.append(filler)
outf.write(','.join(outwords) + '\n')
def nway_plotting(crossplots, metrics, output_directory, resource_path, graphing_library):
listlen = len(crossplots)
if listlen == 0:
return ''
i = 0
correlated_plots = []
while i < listlen:
plot = crossplots[i]
vals = plot.split(',')
i += 1
if 'all' not in vals:
plot_data = []
for val in vals:
csv_file = get_default_csv(output_directory, val)
plot_data.append(PlotData(input_csv=csv_file, csv_column=1, series_name=sanitize_string(val), y_label=sanitize_string(val), precision=None,
graph_height=500, graph_width=1200, graph_type='line'))
png_name = get_merged_plot_link_name(vals)
graphed, div_file = Metric.graphing_modules[graphing_library].graph_data(plot_data, output_directory, resource_path, png_name)
if graphed:
correlated_plots.append(div_file)
else:
vals.remove('all')
for metric in metrics:
for csv in metric.csv_files:
csv_filename = csv.split('/')[-1]
metric_name = '.'.join(csv_filename.split('.')[0:-1])
if metric_name in vals:
continue
new_val = []
new_val.extend(vals)
new_val.append(metric_name)
new_val_str = ','.join(new_val)
crossplots.append(new_val_str)
listlen += 1
return correlated_plots
def normalize_float_for_display(data_val):
try:
data_val = float(data_val)
except ValueError:
return data_val
if data_val > 1:
return '%.2f' % round(data_val, 2)
else:
return '%s' % float('%.2g' % data_val)
def calculate_stats(data_list, stats_to_calculate=['mean', 'std'], percentiles_to_calculate=[]):
stats_to_numpy_method_map = {
'mean': numpy.mean,
'avg': numpy.mean,
'std': numpy.std,
'standard_deviation': numpy.std,
'median': numpy.median,
'min': numpy.amin,
'max': numpy.amax
}
calculated_stats = {}
calculated_percentiles = {}
if len(data_list) == 0:
return calculated_stats, calculated_percentiles
for stat in stats_to_calculate:
if stat in stats_to_numpy_method_map.keys():
calculated_stats[stat] = stats_to_numpy_method_map[stat](data_list)
else:
logger.error("Unsupported stat : " + str(stat))
for percentile in percentiles_to_calculate:
if isinstance(percentile, float) or isinstance(percentile, int):
calculated_percentiles[percentile] = numpy.percentile(data_list, percentile)
else:
logger.error("Unsupported percentile requested (should be int or float): " + str(percentile))
return calculated_stats, calculated_percentiles
def is_valid_file(filename):
if os.path.exists(filename):
if not os.path.getsize(filename):
logger.warning('%s : file is empty.', filename)
return False
else:
logger.warning('%s : file does not exist.', filename)
return False
return True
def detect_timestamp_format(timestamp):
time_formats = {
'epoch': re.compile(r'^[0-9]{10}$'),
'epoch_ms': re.compile(r'^[0-9]{13}$'),
'epoch_fraction': re.compile(r'^[0-9]{10}\.[0-9]{3,9}$'),
'%Y-%m-%d %H:%M:%S': re.compile(r'^[0-9]{4}-[0-1][0-9]-[0-3][0-9] [0-2][0-9]:[0-5][0-9]:[0-5][0-9]$'),
'%Y-%m-%dT%H:%M:%S': re.compile(r'^[0-9]{4}-[0-1][0-9]-[0-3][0-9]T[0-2][0-9]:[0-5][0-9]:[0-5][0-9]$'),
'%Y-%m-%d_%H:%M:%S': re.compile(r'^[0-9]{4}-[0-1][0-9]-[0-3][0-9]_[0-2][0-9]:[0-5][0-9]:[0-5][0-9]$'),
'%Y-%m-%d %H:%M:%S.%f': re.compile(r'^[0-9]{4}-[0-1][0-9]-[0-3][0-9] [0-2][0-9]:[0-5][0-9]:[0-5][0-9].[0-9]+$'),
'%Y-%m-%dT%H:%M:%S.%f': re.compile(r'^[0-9]{4}-[0-1][0-9]-[0-3][0-9]T[0-2][0-9]:[0-5][0-9]:[0-5][0-9].[0-9]+$'),
'%Y-%m-%d_%H:%M:%S.%f': re.compile(r'^[0-9]{4}-[0-1][0-9]-[0-3][0-9]_[0-2][0-9]:[0-5][0-9]:[0-5][0-9].[0-9]+$'),
'%Y%m%d %H:%M:%S': re.compile(r'^[0-9]{4}[0-1][0-9][0-3][0-9] [0-2][0-9]:[0-5][0-9]:[0-5][0-9]$'),
'%Y%m%dT%H:%M:%S': re.compile(r'^[0-9]{4}[0-1][0-9][0-3][0-9]T[0-2][0-9]:[0-5][0-9]:[0-5][0-9]$'),
'%Y%m%d_%H:%M:%S': re.compile(r'^[0-9]{4}[0-1][0-9][0-3][0-9]_[0-2][0-9]:[0-5][0-9]:[0-5][0-9]$'),
'%Y%m%d %H:%M:%S.%f': re.compile(r'^[0-9]{4}[0-1][0-9][0-3][0-9] [0-2][0-9]:[0-5][0-9]:[0-5][0-9].[0-9]+$'),
'%Y%m%dT%H:%M:%S.%f': re.compile(r'^[0-9]{4}[0-1][0-9][0-3][0-9]T[0-2][0-9]:[0-5][0-9]:[0-5][0-9].[0-9]+$'),
'%Y%m%d_%H:%M:%S.%f': re.compile(r'^[0-9]{4}[0-1][0-9][0-3][0-9]_[0-2][0-9]:[0-5][0-9]:[0-5][0-9].[0-9]+$'),
'%H:%M:%S': re.compile(r'^[0-2][0-9]:[0-5][0-9]:[0-5][0-9]$'),
'%H:%M:%S.%f': re.compile(r'^[0-2][0-9]:[0-5][0-9]:[0-5][0-9].[0-9]+$'),
'%Y-%m-%dT%H:%M:%S.%f%z': re.compile(r'^[0-9]{4}-[0-1][0-9]-[0-3][0-9]T[0-2][0-9]:[0-5][0-9]:[0-5][0-9].[0-9]+[+-][0-9]{4}$')
}
for time_format in time_formats:
if re.match(time_formats[time_format], timestamp):
return time_format
return 'unknown'
def get_standardized_timestamp(timestamp, ts_format):
if not timestamp:
return None
if timestamp == 'now':
timestamp = str(datetime.datetime.now())
if not ts_format:
ts_format = detect_timestamp_format(timestamp)
try:
if ts_format == 'unknown':
logger.error('Unable to determine timestamp format for : %s', timestamp)
return -1
elif ts_format == 'epoch':
ts = int(timestamp) * 1000
elif ts_format == 'epoch_ms':
ts = timestamp
elif ts_format == 'epoch_fraction':
ts = int(timestamp[:10]) * 1000 + int(timestamp[11:])
elif ts_format in ('%H:%M:%S', '%H:%M:%S.%f'):
date_today = str(datetime.date.today())
dt_obj = datetime.datetime.strptime(date_today + ' ' + timestamp, '%Y-%m-%d ' + ts_format)
ts = calendar.timegm(dt_obj.utctimetuple()) * 1000 + dt_obj.microsecond / 1000
else:
dt_obj = datetime.datetime.strptime(timestamp, ts_format)
ts = calendar.timegm(dt_obj.utctimetuple()) * 1000 + dt_obj.microsecond / 1000
except ValueError:
return -1
return str(ts)
def set_sla(obj, metric, sub_metric, rules):
if not hasattr(obj, 'sla_map'):
return False
rules_list = rules.split()
for rule in rules_list:
if '<' in rule:
stat, threshold = rule.split('<')
sla = SLA(metric, sub_metric, stat, threshold, 'lt')
elif '>' in rule:
stat, threshold = rule.split('>')
sla = SLA(metric, sub_metric, stat, threshold, 'gt')
else:
if hasattr(obj, 'logger'):
obj.logger.error('Unsupported SLA type defined : ' + rule)
sla = None
obj.sla_map[metric][sub_metric][stat] = sla
if hasattr(obj, 'sla_list'):
obj.sla_list.append(sla)
return True
def check_slas(metric):
if not hasattr(metric, 'sla_map'):
return
for metric_label in metric.sla_map.keys():
for sub_metric in metric.sla_map[metric_label].keys():
for stat_name in metric.sla_map[metric_label][sub_metric].keys():
sla = metric.sla_map[metric_label][sub_metric][stat_name]
if stat_name[0] == 'p' and hasattr(metric, 'calculated_percentiles'):
if sub_metric in metric.calculated_percentiles.keys():
percentile_num = int(stat_name[1:])
if isinstance(percentile_num, float) or isinstance(percentile_num, int):
if percentile_num in metric.calculated_percentiles[sub_metric].keys():
if not sla.check_sla_passed(metric.calculated_percentiles[sub_metric][percentile_num]):
logger.info("Failed SLA for " + sub_metric)
metric.status = CONSTANTS.SLA_FAILED
if sub_metric in metric.calculated_stats.keys() and hasattr(metric, 'calculated_stats'):
if stat_name in metric.calculated_stats[sub_metric].keys():
if not sla.check_sla_passed(metric.calculated_stats[sub_metric][stat_name]):
logger.info("Failed SLA for " + sub_metric)
metric.status = CONSTANTS.SLA_FAILED
if len(metric.sla_map.keys()) > 0 and hasattr(metric, 'get_sla_csv'):
sla_csv_file = metric.get_sla_csv()
with open(sla_csv_file, 'w') as FH:
for metric_label in metric.sla_map.keys():
for sub_metric in metric.sla_map[metric_label].keys():
for stat, sla in metric.sla_map[metric_label][sub_metric].items():
FH.write('%s\n' % (sla.get_csv_repr()))
def parse_and_plot_single_metrics(metric, graph_timezone, outdir_default, indir_default, graphing_library,
skip_plots):
metric.graph_timezone = graph_timezone
if metric.outdir is None:
metric.outdir = os.path.normpath(outdir_default)
updated_infile_list = []
for infile in metric.infile_list:
if not infile.startswith('http://') and not infile.startswith('https://'):
updated_infile_list.append(os.path.join(indir_default, infile))
else:
updated_infile_list.append(infile)
metric.infile_list = updated_infile_list
if not metric.ignore:
if metric.collect():
if metric.parse():
metric.calc()
metric.calculate_stats()
check_slas(metric)
metric.detect_anomaly()
if not skip_plots:
metric.graph(graphing_library)
else:
logger.error('Parsing failed for metric: ' + metric.label)
else:
logger.error('Fetch/Collect failed for metric: ' + metric.label)
def init_logging(logger, log_file, log_level):
with open(log_file, 'w'):
pass
numeric_level = getattr(logging, log_level.upper(), None) if log_level else logging.INFO
if not isinstance(numeric_level, int):
raise ValueError('Invalid log level: %s' % log_level)
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(log_file)
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(numeric_level)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
return CONSTANTS.OK
def get_argument_parser():
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-c', '--config', help="file with specifications for each metric and graphs")
arg_parser.add_argument('--start', help="Start time in the format of HH:MM:SS or YYYY-mm-dd_HH:MM:SS")
arg_parser.add_argument('--end', help="End time in the format of HH:MM:SS or YYYY-mm-dd_HH:MM:SS")
arg_parser.add_argument('-i', '--input_dir', help="input directory used to construct full path name of the metric infile")
arg_parser.add_argument('-o', '--output_dir', help="output directory where the plots and Report.html will be generated")
arg_parser.add_argument('-V', '--variables', action="append",
help="User defined variables (in form key=value) for substitution in the config file. "
"Config should have the variable names in format %%(key)s")
arg_parser.add_argument('-s', '--show_config', help="Print config associated with the provided template name", action="store_true")
arg_parser.add_argument('-l', '--log', help="log level")
arg_parser.add_argument('-d', '--diff', nargs=2,
help="Specify the location of two naarad reports to diff separated by a space. Can be local or http(s) "
"locations. The first report is used as a baseline.", metavar=("report-1", "report-2"))
arg_parser.add_argument('-n', '--no_plots',
help="Don't generate plot images. Useful when you only want SLA calculations. Note that on-demand charts can "
"still be generated through client-charting.", action="store_true")
arg_parser.add_argument('-e', '--exit_code', help="optional argument to enable exit_code for naarad", action="store_true")
return arg_parser
def get_variables(args):
variables_dict = {}
if args.variables:
for var in args.variables:
words = var.split('=')
variables_dict[words[0]] = words[1]
return variables_dict
def validate_arguments(args):
if args.diff:
if not args.output_dir:
logger.error('No Output location specified')
print_usage()
sys.exit(0)
elif not args.output_dir:
print_usage()
sys.exit(0)
def print_usage():
print ("Usage: "
"\n To generate a diff report : naarad -d report1 report2 -o <output_location> -c <optional: config-file> -e <optional: turn on exit code>"
"\n To generate an analysis report : naarad -i <input_location> -o <output_location> -c <optional: config_file> -e <optional: turn on exit code> "
"-n <optional: disable plotting of images>")
def discover_by_name(input_directory, output_directory):
metric_list = []
log_files = os.listdir(input_directory)
for log_file in log_files:
if log_file in CONSTANTS.SUPPORTED_FILENAME_MAPPING.keys():
metric_list.append(initialize_metric(CONSTANTS.SUPPORTED_FILENAME_MAPPING[log_file], [log_file], None, [], output_directory, CONSTANTS.RESOURCE_PATH,
CONSTANTS.SUPPORTED_FILENAME_MAPPING[log_file], None, None, {}, None, None, {}))
else:
logger.warning('Unable to determine metric type for file: %s', log_file)
return metric_list
|
Apache License 2.0
|
openstack/networking-bagpipe
|
networking_bagpipe/agent/bagpipe_bgp_agent.py
|
HTTPClientBase.__init__
|
python
|
def __init__(self, host="127.0.0.1", port=8082,
client_name="HTTP client base"):
self.host = host
self.port = port
self.client_name = client_name
|
Create a new HTTP client
:param host: HTTP server IP address
:param port: HTTP server port
|
https://github.com/openstack/networking-bagpipe/blob/8a8279a61fbbf6ae70c8e7b25c89a6a6d71e898d/networking_bagpipe/agent/bagpipe_bgp_agent.py#L88-L97
|
import socket
import httplib2
import json
from oslo_config import cfg
from oslo_log import helpers as log_helpers
from oslo_log import log as logging
from oslo_concurrency import lockutils
from oslo_serialization import jsonutils
from oslo_service import loopingcall
from networking_bagpipe._i18n import _
from networking_bagpipe.bagpipe_bgp import constants as bbgp_const
from neutron.conf.agent import common as config
from neutron_lib import constants as n_const
from neutron_lib import exceptions as n_exc
LOG = logging.getLogger(__name__)
bagpipe_bgp_opts = [
cfg.IntOpt('ping_interval', default=10,
help=_("The number of seconds the bagpipe-bgp client will "
"wait between polling for restart detection.")),
cfg.PortOpt('bagpipe_bgp_port', default=8082,
help=_("bagpipe-bgp REST service IP port.")),
]
internal_opts = [
cfg.HostAddressOpt('bagpipe_bgp_ip', default='127.0.0.1',
help=_("bagpipe-bgp REST service IP address.")),
]
cfg.CONF.register_opts(bagpipe_bgp_opts, "BAGPIPE")
cfg.CONF.register_opts(internal_opts, "BAGPIPE")
config.register_agent_state_opts_helper(cfg.CONF)
VPN_TYPES = [bbgp_const.EVPN, bbgp_const.IPVPN]
class BaGPipeBGPException(n_exc.NeutronException):
message = "An exception occurred when calling bagpipe-bgp \
REST service: %(reason)s"
class SetJSONEncoder(jsonutils.JSONEncoder):
def default(self, obj):
if isinstance(obj, set):
return list(obj)
return json.JSONEncoder.default(self, obj)
class HTTPClientBase(object):
|
Apache License 2.0
|
khammernik/sigmanet
|
reconstruction/common/mytorch/models/datalayer.py
|
DataGDLayer.__init__
|
python
|
def __init__(self, lambda_init, learnable=True):
super(DataGDLayer, self).__init__()
self.lambda_init = lambda_init
self.data_weight = torch.nn.Parameter(torch.Tensor(1))
self.data_weight.data = torch.tensor(
lambda_init,
dtype=self.data_weight.dtype,
)
self.data_weight.requires_grad = learnable
|
Args:
lambda_init (float): Init value of data term weight lambda.
|
https://github.com/khammernik/sigmanet/blob/6eb8dbd1ee350bb9baee60eb254080f7d660bbc5/reconstruction/common/mytorch/models/datalayer.py#L36-L48
|
import torch
import torch.nn as nn
import common.mytorch as mytorch
from common.mytorch.fft import fft2, ifft2
from common.mytorch.mri import (
adjointSoftSenseOpNoShift,
forwardSoftSenseOpNoShift,
)
class DataIDLayer(nn.Module):
def __init__(self, *args, **kwargs):
super(DataIDLayer, self).__init__()
def forward(self, x, *args, **kwargs):
return x
def __repr__(self):
return f'DataIDLayer()'
class DataGDLayer(nn.Module):
|
MIT License
|
uzumaxy/pyvalid
|
pyvalid/validators/__iterable.py
|
IterableValidator.empty_checker
|
python
|
def empty_checker(cls, val, empty_allowed):
if not empty_allowed:
return len(val) != 0
else:
warnings.warn("Iterable is empty, but does not impact the execution.")
return True
|
Checks if the iterable is empty or not.
Args:
val (collections.abc.Iterable):
Iterable whose contents needs to be validated.
empty_allowed (bool):
If this flag is set to ``False``, this method raises exception and
terminates the execution if the iterable is empty.
If set to ``True``, it raises a warning and continues with
the execution.
Returns (bool):
True:
If the iterable is not empty.
False:
If the iterable is empty.
|
https://github.com/uzumaxy/pyvalid/blob/38f1d19b612fc67a2877d6b2e637c971e2ceea77/pyvalid/validators/__iterable.py#L51-L73
|
import warnings
try:
from collections.abc import Iterable
except ImportError:
from collections import Iterable
from pyvalid import accepts
from pyvalid.validators import AbstractValidator
class IterableValidator(AbstractValidator):
@classmethod
def iterable_type_checker(cls, val, iterable_type):
return type(val) == iterable_type
@classmethod
|
BSD 3-Clause New or Revised License
|
kentaroy47/datasetculling
|
lib/datasets/ds_utils.py
|
validate_boxes
|
python
|
def validate_boxes(boxes, width=0, height=0):
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
assert (x1 >= 0).all()
assert (y1 >= 0).all()
assert (x2 >= x1).all()
assert (y2 >= y1).all()
assert (x2 < width).all()
assert (y2 < height).all()
|
Check that a set of boxes are valid.
|
https://github.com/kentaroy47/datasetculling/blob/d4597ac2117537e6513a70a45c275325c4f0517b/lib/datasets/ds_utils.py#L31-L42
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def unique_boxes(boxes, scale=1.0):
v = np.array([1, 1e3, 1e6, 1e9])
hashes = np.round(boxes * scale).dot(v)
_, index = np.unique(hashes, return_index=True)
return np.sort(index)
def xywh_to_xyxy(boxes):
return np.hstack((boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1))
def xyxy_to_xywh(boxes):
return np.hstack((boxes[:, 0:2], boxes[:, 2:4] - boxes[:, 0:2] + 1))
|
MIT License
|
holoclean/holoclean
|
dataset/dataset.py
|
Dataset.get_cell_id
|
python
|
def get_cell_id(self, tuple_id, attr_name):
vid = tuple_id*self.attr_count + self.attr_to_idx[attr_name]
return vid
|
get_cell_id returns cell ID: a unique ID for every cell.
Cell ID: _tid_ * (# of attributes) + attr_idx
|
https://github.com/holoclean/holoclean/blob/d4f5929a8e4d92d4f41eb058c04c96cdcb0af767/dataset/dataset.py#L190-L197
|
from enum import Enum
import logging
import os
import time
import pandas as pd
from .dbengine import DBengine
from .table import Table, Source
from utils import dictify_df, NULL_REPR
class AuxTables(Enum):
c_cells = 1
dk_cells = 2
cell_domain = 3
pos_values = 4
cell_distr = 5
inf_values_idx = 6
inf_values_dom = 7
class CellStatus(Enum):
NOT_SET = 0
WEAK_LABEL = 1
SINGLE_VALUE = 2
class Dataset:
def __init__(self, name, env):
self.id = name
self.raw_data = None
self.repaired_data = None
self.constraints = None
self.aux_table = {}
for tab in AuxTables:
self.aux_table[tab] = None
self.engine = DBengine(
env['db_user'],
env['db_pwd'],
env['db_name'],
env['db_host'],
pool_size=env['threads'],
timeout=env['timeout']
)
self.attr_to_idx = {}
self.attr_count = 0
self.stats_ready = False
self.total_tuples = 0
self.single_attr_stats = {}
self.pair_attr_stats = {}
def load_data(self, name, fpath, na_values=None, entity_col=None, src_col=None):
tic = time.clock()
try:
exclude_attr_cols = ['_tid_']
if src_col is not None:
exclude_attr_cols.append(src_col)
self.raw_data = Table(name, Source.FILE, na_values=na_values, exclude_attr_cols=exclude_attr_cols, fpath=fpath)
df = self.raw_data.df
if entity_col is None:
df.insert(0, '_tid_', range(0,len(df)))
else:
df.rename({entity_col: '_tid_'}, axis='columns', inplace=True)
df.fillna(NULL_REPR, inplace=True)
logging.info("Loaded %d rows with %d cells", self.raw_data.df.shape[0], self.raw_data.df.shape[0] * self.raw_data.df.shape[1])
self.raw_data.store_to_db(self.engine.engine)
status = 'DONE Loading {fname}'.format(fname=os.path.basename(fpath))
for attr in self.raw_data.get_attributes():
self.raw_data.create_db_index(self.engine,[attr])
self.attr_to_idx = {attr: idx for idx, attr in enumerate(self.raw_data.get_attributes())}
self.attr_count = len(self.attr_to_idx)
except Exception:
logging.error('loading data for table %s', name)
raise
toc = time.clock()
load_time = toc - tic
return status, load_time
def set_constraints(self, constraints):
self.constraints = constraints
def generate_aux_table(self, aux_table, df, store=False, index_attrs=False):
try:
self.aux_table[aux_table] = Table(aux_table.name, Source.DF, df=df)
if store:
self.aux_table[aux_table].store_to_db(self.engine.engine)
if index_attrs:
self.aux_table[aux_table].create_df_index(index_attrs)
if store and index_attrs:
self.aux_table[aux_table].create_db_index(self.engine, index_attrs)
except Exception:
logging.error('generating aux_table %s', aux_table.name)
raise
def generate_aux_table_sql(self, aux_table, query, index_attrs=False):
try:
self.aux_table[aux_table] = Table(aux_table.name, Source.SQL, table_query=query, db_engine=self.engine)
if index_attrs:
self.aux_table[aux_table].create_df_index(index_attrs)
self.aux_table[aux_table].create_db_index(self.engine, index_attrs)
except Exception:
logging.error('generating aux_table %s', aux_table.name)
raise
def get_raw_data(self):
if self.raw_data is None:
raise Exception('ERROR No dataset loaded')
return self.raw_data.df
def get_attributes(self):
if self.raw_data is None:
raise Exception('ERROR No dataset loaded')
return self.raw_data.get_attributes()
|
Apache License 2.0
|
myriadrf/pylms7002soapy
|
pyLMS7002Soapy/LMS7002_mSPI.py
|
LMS7002_mSPI.P1
|
python
|
def P1(self):
return self._readReg('P1', 'P1<7:0>')
|
Get the value of P1<7:0>
|
https://github.com/myriadrf/pylms7002soapy/blob/4f828eb9282c302dc6b187d91df5e77c8a6f2d61/pyLMS7002Soapy/LMS7002_mSPI.py#L240-L244
|
from pyLMS7002Soapy.LMS7002_base import LMS7002_base
import time
class LMS7002_mSPI(LMS7002_base):
__slots__ = []
def __init__(self, chip):
self.chip = chip
self.channel = None
self.prefix = "mSPI_"
@staticmethod
def getOpCode(opCode):
if opCode == "SFR":
return 0x7E
elif opCode == "IRAM_READ":
return 0x78
elif opCode == "RESET_PC":
return 0x70
elif opCode == "RUN_INSTR":
return 0x74
else:
raise ValueError("Unknown MCU opcode :" + str(opCode))
@staticmethod
def _readHex(hexFileName, isString=False):
if not isString:
inFile = open(hexFileName, 'r')
else:
inFile = hexFileName.split('\n')
ret = [0] * 16384
maxAddr = 0
for line in inFile:
line = line.strip()
if line == '':
continue
if line[0] != ':':
raise ValueError("Line does not start with :. Is this an Intel hex file?")
lineData = []
for i in range(1, len(line), 2):
lineData.append(int("0x" + line[i:i + 2], 16))
nBytes = lineData[0]
offset = (lineData[1] << 8) + lineData[2]
data = lineData[4:4 + nBytes]
ckSum = 0
for i in range(0, len(lineData) - 1):
ckSum += lineData[i]
ckSum = ~ckSum + 1
ckSum = ckSum % 256
if ckSum != lineData[len(lineData) - 1]:
raise ValueError("Checksum error in line : " + line)
for i in range(0, len(data)):
if offset + i > maxAddr:
maxAddr = offset + i
ret[offset + i] = data[i]
if not isString:
inFile.close()
if maxAddr < 8192:
ret = ret[:8192]
return ret
def loadHex(self, hexFileName, mode='SRAM', isString=False):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
mcuProgram = self._readHex(hexFileName, isString)
self.chip._MCUProgram(mcuProgram, mode)
self.chip.SPIImmediate = immMode
def reset(self):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
self.MODE = 'RESET'
self.DEBUG = 0
self.EXT_INT = 0
self.RXD = 0
self.P0 = 0
self.chip.SPIImmediate = immMode
def resetPC(self):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
ret = self._command([self.getOpCode("RESET_PC")], 1)
self.chip.SPIImmediate = immMode
return ret
def runInstr(self):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
data = self._command([self.getOpCode("RUN_INSTR"), 0, 0], 3)
self.chip.SPIImmediate = immMode
return data[1] * 256 + data[2]
def call(self, data):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
self.P0 = 0
if data != 0:
self.SPISW_CTRL = 1
else:
self.SPISW_CTRL = 0
self.P0 = data
self.chip.SPIImmediate = immMode
def waitForMCU(self, timeout=1):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
t0 = time.time()
while time.time() - t0 < timeout:
val = self.P1
if val != 0xFF:
break
if time.time() - t0 > timeout:
raise ValueError("Timeout expired in waitForMCU")
self.chip.SPIImmediate = immMode
return val
def startDebugMode(self):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
self.DEBUG = 1
self.chip.SPIImmediate = immMode
def exitDebugMode(self):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
self.DEBUG = 0
self.chip.SPIImmediate = immMode
def _waitUntilWritten(self, timeout=1):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
t0 = time.time()
while (self.WRITE_REQ == 1) and (time.time() - t0 < timeout):
pass
self.chip.SPIImmediate = immMode
if time.time() - t0 > timeout:
raise ValueError("Timeout expired in waitUntilWritten")
def _readOneByte(self, timeout=1):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
t0 = time.time()
while (self.READ_REQ == 0) and (time.time() - t0 < timeout):
pass
data = self.DFM
self.chip.SPIImmediate = immMode
if time.time() - t0 > timeout:
raise ValueError("Timeout expired in readOneByte")
return data
def _command(self, writeData, bytesToReceive):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
for data in writeData:
self.DTM = data
self._waitUntilWritten()
recData = []
for i in range(0, bytesToReceive):
recData.append(self._readOneByte())
self.chip.SPIImmediate = immMode
return recData
def _wait(self, n):
immMode = self.chip.SPIImmediate
self.chip.SPIImmediate = True
for i in range(0, n // 64):
pass
self.chip.SPIImmediate = immMode
def changeMCUFrequency(self, value):
self._command([self.getOpCode("SFR"), 0x8E, value], 3)
def readIRAM(self):
data = [0] * 256
opCode = self.getOpCode("IRAM_READ")
for i in range(0, 256):
res = self._command([opCode, i, 0], 3)
data[i] = res[2]
self._wait(64)
return data
@property
def P0(self):
return self._readReg('P0', 'P0<7:0>')
@P0.setter
def P0(self, value):
if not (0 <= value <= 1023):
raise ValueError("Value must be [0..255]")
self._writeReg('P0', 'P0<7:0>', value)
@property
|
Apache License 2.0
|
obi-wan3/ob13-cogs
|
github/github.py
|
GitHub._set_rename
|
python
|
async def _set_rename(self, ctx: commands.Context, user: discord.Member, old_name: str, new_name: str):
async with self.config.member(user).feeds() as feeds:
if new_name in feeds:
return await ctx.send("The new name is already being used!")
if old_name not in feeds:
return await ctx.send(NOT_FOUND)
feeds[new_name] = feeds.pop(old_name)
return await ctx.send("Feed successfully renamed.")
|
Rename a user's GitHub RSS feed.
|
https://github.com/obi-wan3/ob13-cogs/blob/716527f8581e0345802ea2626d43324f87edf941/github/github.py#L378-L390
|
import re
import typing
import aiohttp
import html2text
import feedparser
from urllib.parse import urlparse
from datetime import datetime, timezone
import discord
from discord.ext import tasks
from .converters import ExplicitNone
from redbot.core import commands, Config
from redbot.core.utils import AsyncIter
from redbot.core.utils.chat_formatting import escape, pagify
COLOR = 0x7289da
TIME_FORMAT = "%Y-%m-%dT%H:%M:%SZ"
TOKEN_REGEX: re.Pattern = re.compile(r"token=(.*)")
COMMIT_REGEX: re.Pattern = re.compile(r"https://github\.com/.*?/.*?/commit/(.*?)")
USER_REPO_BRANCH_REGEX: re.Pattern = re.compile(r"/(.*?)/(.*?)/?(commits)?/(.*?(?=\.atom))?")
LONG_COMMIT_REGEX: re.Pattern = re.compile(r"^<pre.*?>|</pre>$|(?<=\n)\n+")
LONG_RELEASE_REGEX: re.Pattern = re.compile(r"^<pre.*?>|</pre>$|(?<=\n)\n+")
NO_ROLE = "You do not have the required role!"
NOT_FOUND = "I could not find that feed."
class GitHub(commands.Cog):
def __init__(self, bot):
self.bot = bot
self.config = Config.get_conf(self, 14000605, force_registration=True)
default_global = {
"interval": 3
}
default_guild = {
"channel": None,
"role": None,
"limit": 5,
"color": None,
"notify": True,
"timestamp": True,
"short": True
}
default_member = {
"feeds": {}
}
self.config.register_global(**default_global)
self.config.register_guild(**default_guild)
self.config.register_member(**default_member)
self._github_rss.start()
def cog_unload(self):
self._github_rss.cancel()
async def initialize(self):
global_conf = await self.config.all()
if global_conf["interval"] != 3:
self._github_rss.change_interval(minutes=global_conf["interval"])
if global_conf.get("migrated"):
return
for guild_id, guild_data in (await self.config.all_guilds()).items():
if guild_data.get("migrated") or not guild_data.get("feeds"):
continue
for member_id, member_data in guild_data["feeds"].items():
async with self.config.member_from_ids(guild_id=guild_id, member_id=int(member_id)).feeds() as member_feeds:
for feed_name, feed_data in member_data.items():
user, repo, branch, token = await self._parse_url(feed_data["url"])
member_feeds[feed_name] = {
"user": user,
"repo": repo,
"branch": branch,
"token": token,
"channel": feed_data.get("channel", None),
"time": feed_data["time"]
}
async with self.config.guild_from_id(guild_id).all() as guild_config:
guild_config["migrated"] = True
async with self.config.all() as global_config:
global_config["migrated"] = True
@staticmethod
def _escape(text: str):
return escape(text, formatting=True)
@staticmethod
async def _repo_url(**user_and_repo):
return f"https://github.com/{user_and_repo['user']}/{user_and_repo['repo']}/"
@staticmethod
async def _invalid_url(ctx: commands.Context):
return f"Invalid GitHub URL. Try doing `{ctx.clean_prefix}github whatlinks` to see the accepted formats."
@staticmethod
async def _url_from_config(feed_config: dict):
final_url = f"https://github.com/{feed_config['user']}/{feed_config['repo']}"
if feed_config['branch']:
token = f"?token={feed_config['token']}" if feed_config["token"] else ""
if feed_config['branch'] == "releases":
return final_url + f"/{feed_config['branch']}.atom{token}"
return final_url + f"/commits/{feed_config['branch']}.atom{token}"
else:
return final_url + f"/commits.atom"
@staticmethod
async def _fetch(url: str, valid_statuses: list):
async with aiohttp.ClientSession() as session:
async with session.get(url) as resp:
html = await resp.read()
if resp.status not in valid_statuses:
return False
return feedparser.parse(html)
@staticmethod
async def new_entries(entries, last_time):
entries_new = []
for e in entries:
e_time = datetime.strptime(e.updated, TIME_FORMAT).replace(tzinfo=timezone.utc).timestamp()
if e_time > last_time:
entries_new.insert(0, e)
else:
break
return entries_new, datetime.now(tz=timezone.utc)
@staticmethod
async def _parse_url(url: str):
if url[0] == "<" and url[-1] == ">":
url = url[1:-1]
parsed_url = urlparse(url)
if not (user_repo_branch := USER_REPO_BRANCH_REGEX.search(parsed_url.path if (parsed_url.path.endswith("/") or ".atom" in parsed_url.path) else parsed_url.path+"/")):
return None, None, None, None
user, repo, branch, token = user_repo_branch.group(1), user_repo_branch.group(2), user_repo_branch.group(4), TOKEN_REGEX.fullmatch(parsed_url.query).group(1) if parsed_url.query else None
if branch == "commits":
branch = None
if (
parsed_url.scheme != "https" or
parsed_url.netloc != "github.com" or
not user or not repo or
(token and not branch) or
(not user_repo_branch.group(3) and branch and branch != "releases")
):
return None, None, None, None
return user, repo, branch, token
async def _parse_url_input(self, url: str, branch: str):
user, repo, parsed_branch, token = await self._parse_url(url)
if not any([user, repo, parsed_branch, token]):
return None
return {"user": user, "repo": repo, "branch": parsed_branch if token else branch, "token": token}
async def _get_feed_channel(self, bot: discord.Member, guild_channel: int, feed_channel):
channel = None
if feed_channel:
channel = self.bot.get_channel(feed_channel)
elif guild_channel:
channel = self.bot.get_channel(guild_channel)
if not(channel and channel.permissions_for(bot).send_messages and channel.permissions_for(bot).embed_links):
channel = None
return channel
async def _commit_embeds(self, entries: list, feed_link: str, color: int, timestamp: bool, short: bool):
if not entries:
return None
user, repo, branch, __ = await self._parse_url(feed_link+".atom")
if branch == "releases":
embed = discord.Embed(
title=f"[{user}/{repo}] New release published: {entries[0].title}",
color=color if color is not None else COLOR,
url=entries[0].link
)
if not short:
embed.description = html2text.html2text(entries[0].content[0].value)
else:
num = min(len(entries), 10)
desc = ""
for e in entries[:num]:
if short:
desc += f"[`{COMMIT_REGEX.fullmatch(e.link).group(1)[:7]}`]({e.link}) {self._escape(e.title)} – {self._escape(e.author)}\n"
else:
desc += f"[`{COMMIT_REGEX.fullmatch(e.link).group(1)[:7]}`]({e.link}) – {self._escape(e.author)}\n{LONG_COMMIT_REGEX.sub('', e.content[0].value)}\n\n"
embed = discord.Embed(
title=f"[{repo}:{branch}] {num} new commit{'s' if num > 1 else ''}",
color=color if color is not None else COLOR,
description=desc,
url=feed_link if num > 1 else entries[0].link
)
if timestamp:
embed.timestamp = datetime.strptime(entries[0].updated, TIME_FORMAT).replace(tzinfo=timezone.utc)
embed.set_author(
name=entries[0].author,
url=f"https://github.com/{entries[0].author}",
icon_url=entries[0].media_thumbnail[0]["url"]
)
return embed
@commands.is_owner()
@commands.command(name="ghinterval", hidden=True)
async def _interval(self, ctx: commands.Context, interval_in_minutes: int):
await self.config.interval.set(interval_in_minutes)
self._github_rss.change_interval(minutes=interval_in_minutes)
return await ctx.send(f"I will now check for commit updates every {interval_in_minutes} minutes (change takes effect next loop).")
@commands.guild_only()
@commands.bot_has_permissions(embed_links=True)
@commands.admin_or_permissions(administrator=True)
@commands.group(name="githubset", aliases=["ghset"])
async def _github_set(self, ctx: commands.Context):
@_github_set.command(name="short")
async def _set_short(self, ctx: commands.Context, short: bool):
await self.config.guild(ctx.guild).short.set(short)
return await ctx.send(f"The GitHub RSS feed message content length has been set to `{'short' if short else 'full'}`.")
@_github_set.command(name="color")
async def _set_color(self, ctx: commands.Context, hex_color: typing.Union[discord.Color, ExplicitNone]):
await self.config.guild(ctx.guild).color.set(hex_color.value if hex_color is not None else None)
return await ctx.send(f"The GitHub RSS feed embed color has been set to {hex_color if hex_color else 'the default'}.")
@_github_set.command(name="notify")
async def _set_notify(self, ctx: commands.Context, true_or_false: bool):
await self.config.guild(ctx.guild).notify.set(true_or_false)
return await ctx.send(f"Repo addition/removal notifications will {'now' if true_or_false else 'no longer'} be sent.")
@_github_set.command(name="channel")
async def _set_channel(self, ctx: commands.Context, channel: discord.TextChannel):
perms = channel.permissions_for(ctx.guild.me)
if not (perms.send_messages and perms.embed_links):
return await ctx.send(f"I do not have the necessary permissions (send messages & embed links) in {channel.mention}!")
await self.config.guild(ctx.guild).channel.set(channel.id)
return await ctx.send(f"The GitHub RSS feed channel has been set to {channel.mention}.")
@_github_set.command(name="role")
async def _set_role(self, ctx: commands.Context, role: discord.Role = None):
if not role:
await self.config.guild(ctx.guild).role.set(None)
return await ctx.send(f"The GitHub RSS feed role requirement has been removed.")
else:
await self.config.guild(ctx.guild).role.set(role.id)
return await ctx.send(f"The GitHub RSS feed role has been set to {role.mention}.")
@_github_set.command(name="limit")
async def _set_limit(self, ctx: commands.Context, num: int = 5):
if num < 1:
return await ctx.send("Please enter a positive integer!")
await self.config.guild(ctx.guild).limit.set(num)
return await ctx.send(f"The GitHub RSS feed limit per user has been set to {num}.")
@_github_set.command(name="timestamp")
async def _set_timestamp(self, ctx: commands.Context, true_or_false: bool):
await self.config.guild(ctx.guild).timestamp.set(true_or_false)
return await ctx.send(f"GitHub feed embeds will {'now' if true_or_false else 'no longer'} have timestamps.")
@_github_set.command(name="force")
async def _force(self, ctx: commands.Context, user: discord.Member, name: str):
async with self.config.member(user).feeds() as feeds:
if not (feed_config := feeds.get(name)):
return await ctx.send(NOT_FOUND)
url = await self._url_from_config(feed_config)
if not (parsed := await self._fetch(url, [200])):
return await ctx.send(await self._invalid_url(ctx))
if feed_config["channel"]:
channel = ctx.guild.get_channel(feed_config["channel"])
else:
channel = ctx.guild.get_channel(await self.config.guild(ctx.guild).channel())
guild_config = await self.config.guild(ctx.guild).all()
if channel and channel.permissions_for(ctx.guild.me).embed_links:
return await channel.send(embed=await self._commit_embeds(
entries=[parsed.entries[0]],
feed_link=parsed.feed.link,
color=guild_config["color"],
timestamp=guild_config["timestamp"],
short=guild_config["short"]
))
else:
return await ctx.send("Either the set channel has been removed or I do not have permissions to send embeds in the channel.")
@_github_set.command(name="forceall")
async def _force_all(self, ctx: commands.context):
async with ctx.typing():
await self._github_rss.coro(self, guild_to_check=ctx.guild.id)
return await ctx.tick()
@_github_set.command(name="rename")
|
MIT License
|
seenaburns/tungsten
|
tungsten/core.py
|
Pod.format
|
python
|
def format(self):
formats = {}
for subpod in self.root.findall('subpod'):
for elem in list(subpod):
if elem.tag == 'state':
continue
content = elem.text
if elem.tag == 'img':
content = {'url': elem.get('src'),
'alt': elem.get('alt'),
'title': elem.get('title'),
'width': int(elem.get('width', 0)),
'height': int(elem.get('height', 0))}
if elem.tag not in formats:
formats[elem.tag] = [content]
else:
formats[elem.tag].append(content)
return formats
|
Dictionary of available formats, corresponding to a list of the values
Example: pod.format['plaintext'] will return a list of every plaintext
content in the pod's subpods
|
https://github.com/seenaburns/tungsten/blob/9e865c77a11c512464f226a6b025bc43b798a8be/tungsten/core.py#L108-L144
|
import requests
from xml.etree.ElementTree import fromstring, ElementTree
class Tungsten(object):
def __init__(self, appid):
self.appid = appid
def query(self, input = '', params = {}):
payload = {'input': input,
'appid': self.appid}
for key, value in params.items():
if isinstance(value, (list, tuple)):
payload[key] = ','.join(value)
else:
payload[key] = value
try:
r = requests.get("http://api.wolframalpha.com/v2/query", params=payload)
if r.status_code != 200:
raise Exception('Invalid response status code: %s' % (r.status_code))
if r.encoding != 'utf-8':
raise Exception('Invalid encoding: %s' % (r.encoding))
except Exception, e:
return Result(error = e)
return Result(xml = r.text)
class Result(object):
def __init__(self, xml = '', error = None):
self.xml_tree = None
if xml:
self.xml_tree = ElementTree(fromstring(xml.encode('utf-8')))
self.error_msg = error
@property
def success(self):
if not self.error_msg:
return self.xml_tree.getroot().get('success') == 'true'
else:
return False
@property
def error(self):
if self.error_msg:
return self.error_msg
error = self.xml_tree.find('error')
if error is not None:
return error.find('msg').text
return None
@property
def pods(self):
if not self.xml_tree:
return []
return [Pod(elem) for elem in self.xml_tree.findall('pod')]
class Pod(object):
def __init__(self, pod_root):
self.root = pod_root
self.xml_tree = ElementTree(pod_root)
@property
def title(self):
return self.root.get('title')
@property
def id(self):
return self.root.get('id')
@property
def scanner(self):
return self.root.get('scanner')
@property
|
BSD 3-Clause New or Revised License
|
lobocv/crashreporter
|
crashreporter/crashreporter.py
|
CrashReporter.start_watcher
|
python
|
def start_watcher(self):
if self._watcher and self._watcher.is_alive:
self._watcher_running = True
else:
self.logger.info('CrashReporter: Starting watcher.')
self._watcher = Thread(target=self._watcher_thread, name='offline_reporter')
self._watcher.setDaemon(True)
self._watcher_running = True
self._watcher.start()
|
Start the watcher that periodically checks for offline reports and attempts to upload them.
|
https://github.com/lobocv/crashreporter/blob/a5bbb3f37977dc64bc865dfedafc365fd5469ef8/crashreporter/crashreporter.py#L155-L166
|
__author__ = 'calvin'
import ConfigParser
import datetime
import glob
import json
import logging
import os
import re
import shutil
import smtplib
import sys
import time
from email import encoders
from email.mime.base import MIMEBase
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from threading import Thread
import jinja2
from api import upload_report, upload_many_reports, HQ_DEFAULT_TIMEOUT, SMTP_DEFAULT_TIMEOUT
from process import CrashReportingProcess
from tools import analyze_traceback, repr as safe_repr
class CrashReporter(object):
_report_name = "crash_report_%d"
html_template = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'email_report.html')
active = False
application_name = None
application_version = None
user_identifier = None
offline_report_limit = 10
recursion_depth_limit = 10
send_at_most = 3
max_string_length = 1000
obj_ref_regex = re.compile("[A-z]+[0-9]*\.(?:[A-z]+[0-9]*\.?)+(?!\')")
def __init__(self, report_dir=None, config='', logger=None, activate=True,
watcher=True, check_interval=5*60):
self.logger = logger if logger else logging.getLogger('CrashReporter')
self.report_dir = report_dir
self.check_interval = check_interval
self.watcher_enabled = watcher
self._watcher = None
self._watcher_running = False
self.etype = None
self.evalue = None
self.tb = None
self._recursion_error = False
self.analyzed_traceback = None
self.payload = None
self._excepthook = None
self.inspection_level = 1
self._smtp = None
self._hq = None
if os.path.isfile(config):
self.load_configuration(config)
if activate:
self.enable()
def setup_smtp(self, host, port, user, passwd, recipients, **kwargs):
self._smtp = kwargs
self._smtp.update({'host': host, 'port': port, 'user': user, 'passwd': passwd, 'recipients': recipients})
try:
self._smtp['timeout'] = int(kwargs.get('timeout', SMTP_DEFAULT_TIMEOUT))
except Exception as e:
logging.error(e)
self._smtp['timeout'] = None
self._smtp['from'] = kwargs.get('from', user)
def setup_hq(self, server, **kwargs):
self._hq = kwargs
try:
self._hq['timeout'] = int(kwargs.get('timeout', HQ_DEFAULT_TIMEOUT))
except Exception as e:
logging.error(e)
self._hq['timeout'] = None
self._hq.update({'server': server})
def enable(self):
if not CrashReporter.active:
CrashReporter.active = True
self._excepthook = sys.excepthook
sys.excepthook = self.exception_handler
self.logger.info('CrashReporter: Enabled')
if self.report_dir:
if os.path.exists(self.report_dir):
if self.get_offline_reports():
self.submit_offline_reports()
remaining_reports = len(self.get_offline_reports())
if remaining_reports and self.watcher_enabled:
self.start_watcher()
else:
os.makedirs(self.report_dir)
def disable(self):
if CrashReporter.active:
CrashReporter.active = False
sys.excepthook = self._excepthook
self.stop_watcher()
self.logger.info('CrashReporter: Disabled')
|
MIT License
|
forseti-security/forseti-security
|
google/cloud/forseti/common/gcp_api/_base_repository.py
|
GCPRepository._request_supports_pagination
|
python
|
def _request_supports_pagination(self, verb):
return getattr(self._component, verb + '_next', None)
|
Determines if the API action supports pagination.
Args:
verb (str): Request verb (ex. insert, update, delete).
Returns:
bool: True when API supports pagination, False otherwise.
|
https://github.com/forseti-security/forseti-security/blob/de5d0f4d047c293a2a72545a76c3783980865551/google/cloud/forseti/common/gcp_api/_base_repository.py#L429-L438
|
from builtins import str
from builtins import object
import json
import logging
import os
import threading
from urllib.parse import urljoin
from future import standard_library
import google_auth_httplib2
import pkg_resources
import uritemplate
from googleapiclient import discovery
from ratelimiter import RateLimiter
from retrying import retry
import google.auth
from google.auth.credentials import with_scopes_if_required
from google.cloud.forseti.common.gcp_api import _supported_apis
from google.cloud.forseti.common.gcp_api import errors as api_errors
from google.cloud.forseti.common.util import http_helpers
from google.cloud.forseti.common.util import logger
from google.cloud.forseti.common.util import replay
from google.cloud.forseti.common.util import retryable_exceptions
import google.oauth2.credentials
standard_library.install_aliases()
CLOUD_SCOPES = frozenset(['https://www.googleapis.com/auth/cloud-platform'])
LOCAL_THREAD = threading.local()
LOGGER = logger.get_logger(__name__)
NUM_HTTP_RETRIES = 5
SUPPORT_DISCOVERY_CACHE = (
pkg_resources.get_distribution(
'google-api-python-client').version >= '1.4.2')
REQUEST_RECORDER = dict()
REQUEST_REPLAYER = dict()
DISCOVERY_DOCS_BASE_DIR = os.path.join(os.path.abspath(
os.path.dirname(__file__)), 'discovery_documents')
@retry(retry_on_exception=retryable_exceptions.is_retryable_exception,
wait_exponential_multiplier=1000, wait_exponential_max=10000,
stop_max_attempt_number=5)
def _create_service_api(credentials, service_name, version, is_private_api,
developer_key=None, cache_discovery=False, cache=None,
use_versioned_discovery_doc=False):
try:
if LOGGER.getEffectiveLevel() > logging.DEBUG:
logging.getLogger(discovery.__name__).setLevel(logging.WARNING)
except Exception as e:
LOGGER.debug('Logging cannot be set: %s', e)
if is_private_api:
if use_versioned_discovery_doc:
service_json = '{}_{}.json'.format(service_name, version)
service_path = os.path.join(DISCOVERY_DOCS_BASE_DIR, service_json)
return _build_service_from_document(
credentials,
service_path)
discovery_kwargs = {
'serviceName': service_name,
'version': version,
'developerKey': developer_key,
'credentials': credentials}
if SUPPORT_DISCOVERY_CACHE:
discovery_kwargs['cache_discovery'] = cache_discovery
discovery_kwargs['cache'] = cache
return discovery.build(**discovery_kwargs)
def _build_service_from_document(credentials, document_path):
with open(document_path, 'r') as f:
discovery_data = json.load(f)
return discovery.build_from_document(
service=discovery_data,
credentials=credentials
)
class BaseRepositoryClient(object):
def __init__(self,
api_name,
versions=None,
credentials=None,
quota_max_calls=None,
quota_period=None,
use_rate_limiter=False,
read_only=False,
use_versioned_discovery_doc=False,
cache_discovery=False,
cache=None,
**kwargs):
self._use_cached_http = False
if not credentials:
self._use_cached_http = True
credentials, _ = google.auth.default()
self._credentials = with_scopes_if_required(credentials,
list(CLOUD_SCOPES))
self._repository_lock = threading.RLock()
if use_rate_limiter:
self._rate_limiter = RateLimiter(max_calls=quota_max_calls,
period=quota_period)
else:
self._rate_limiter = None
self._read_only = read_only
self.name = api_name
supported_api = _supported_apis.SUPPORTED_APIS.get(api_name)
if not supported_api:
LOGGER.warning('API "%s" is not formally supported in Forseti, '
'proceed at your own risk.', api_name)
if not versions and supported_api:
versions = [supported_api.get('default_version')]
self.versions = versions
if supported_api:
for version in versions:
if version not in supported_api.get('supported_versions', []):
LOGGER.warning('API "%s" version %s is not formally '
'supported in Forseti, proceed at your '
'own risk.',
api_name, version)
self.is_private_api = None
if supported_api:
self.is_private_api = (
_supported_apis.SUPPORTED_APIS.get(api_name)
.get('is_private_api'))
self.gcp_services = {}
for version in versions:
self.gcp_services[version] = _create_service_api(
self._credentials,
self.name,
version,
self.is_private_api,
kwargs.get('developer_key'),
cache_discovery,
cache,
use_versioned_discovery_doc)
def __repr__(self):
return 'API: name=%s, versions=%s' % (self.name, self.versions)
def _init_repository(self, repository_class, version=None):
if not version:
version = (
_supported_apis.SUPPORTED_APIS.get(self.name, {})
.get('default_version'))
if not version or version not in self.gcp_services:
version = sorted(self.gcp_services.keys())[0]
with self._repository_lock:
return repository_class(gcp_service=self.gcp_services[version],
credentials=self._credentials,
rate_limiter=self._rate_limiter,
use_cached_http=self._use_cached_http,
read_only=self._read_only)
class GCPRepository(object):
def __init__(self, gcp_service, credentials, component,
num_retries=NUM_HTTP_RETRIES, key_field='project',
entity_field=None, list_key_field=None, get_key_field=None,
max_results_field='maxResults', search_query_field='query',
resource_path_template=None, rate_limiter=None,
use_cached_http=True, read_only=False):
self.gcp_service = gcp_service
self.read_only = read_only
self._credentials = credentials
components = component.split('.')
self._component = getattr(
self.gcp_service, components.pop(0))()
for nested_component in components:
self._component = getattr(
self._component, nested_component)()
self._entity_field = entity_field
self._num_retries = num_retries
if list_key_field:
self._list_key_field = list_key_field
else:
self._list_key_field = key_field
if get_key_field:
self._get_key_field = get_key_field
else:
self._get_key_field = key_field
self._max_results_field = max_results_field
self._search_query_field = search_query_field
self._resource_path_template = resource_path_template
self._rate_limiter = rate_limiter
self._use_cached_http = use_cached_http
self._local = LOCAL_THREAD
@property
def http(self):
if self._use_cached_http and hasattr(self._local, 'http'):
return self._local.http
authorized_http = google_auth_httplib2.AuthorizedHttp(
self._credentials, http=http_helpers.build_http())
if self._use_cached_http:
self._local.http = authorized_http
return authorized_http
def _build_request(self, verb, verb_arguments):
method = getattr(self._component, verb)
method_args = {str(k): v for k, v in verb_arguments.items()}
return method(**method_args)
def _build_next_request(self, verb, prior_request, prior_response):
method = getattr(self._component, verb + '_next')
return method(prior_request, prior_response)
def _build_resource_link(self, **kwargs):
expanded_url = uritemplate.expand(self._resource_path_template, kwargs)
return urljoin(self.gcp_service._baseUrl, expanded_url)
|
Apache License 2.0
|
python-distro/distro
|
distro.py
|
LinuxDistribution.distro_release_attr
|
python
|
def distro_release_attr(self, attribute: str) -> str:
return self._distro_release_info.get(attribute, "")
|
Return a single named information item from the distro release file
data source of the OS distribution.
For details, see :func:`distro.distro_release_attr`.
|
https://github.com/python-distro/distro/blob/28f624c116024c21e0d6aef9a8c7985b8ea80e6a/distro.py#L998-L1005
|
import argparse
import json
import logging
import os
import re
import shlex
import subprocess
import sys
import warnings
from typing import (
Any,
Callable,
Dict,
Iterable,
Optional,
Sequence,
TextIO,
Tuple,
Type,
)
try:
from typing import TypedDict
except ImportError:
TypedDict = dict
__version__ = "1.6.0"
class VersionDict(TypedDict):
major: str
minor: str
build_number: str
class InfoDict(TypedDict):
id: str
version: str
version_parts: VersionDict
like: str
codename: str
_UNIXCONFDIR = os.environ.get("UNIXCONFDIR", "/etc")
_UNIXUSRLIBDIR = os.environ.get("UNIXUSRLIBDIR", "/usr/lib")
_OS_RELEASE_BASENAME = "os-release"
NORMALIZED_OS_ID = {
"ol": "oracle",
}
NORMALIZED_LSB_ID = {
"enterpriseenterpriseas": "oracle",
"enterpriseenterpriseserver": "oracle",
"redhatenterpriseworkstation": "rhel",
"redhatenterpriseserver": "rhel",
"redhatenterprisecomputenode": "rhel",
}
NORMALIZED_DISTRO_ID = {
"redhat": "rhel",
}
_DISTRO_RELEASE_CONTENT_REVERSED_PATTERN = re.compile(
r"(?:[^)]*\)(.*)\()? *(?:STL )?([\d.+\-a-z]*\d) *(?:esaeler *)?(.+)"
)
_DISTRO_RELEASE_BASENAME_PATTERN = re.compile(r"(\w+)[-_](release|version)$")
_DISTRO_RELEASE_IGNORE_BASENAMES = (
"debian_version",
"lsb-release",
"oem-release",
_OS_RELEASE_BASENAME,
"system-release",
"plesk-release",
"iredmail-release",
)
def linux_distribution(full_distribution_name: bool = True) -> Tuple[str, str, str]:
warnings.warn(
"distro.linux_distribution() is deprecated. It should only be used as a "
"compatibility shim with Python's platform.linux_distribution(). Please use "
"distro.id(), distro.version() and distro.name() instead.",
DeprecationWarning,
stacklevel=2,
)
return _distro.linux_distribution(full_distribution_name)
def id() -> str:
return _distro.id()
def name(pretty: bool = False) -> str:
return _distro.name(pretty)
def version(pretty: bool = False, best: bool = False) -> str:
return _distro.version(pretty, best)
def version_parts(best: bool = False) -> Tuple[str, str, str]:
return _distro.version_parts(best)
def major_version(best: bool = False) -> str:
return _distro.major_version(best)
def minor_version(best: bool = False) -> str:
return _distro.minor_version(best)
def build_number(best: bool = False) -> str:
return _distro.build_number(best)
def like() -> str:
return _distro.like()
def codename() -> str:
return _distro.codename()
def info(pretty: bool = False, best: bool = False) -> InfoDict:
return _distro.info(pretty, best)
def os_release_info() -> Dict[str, str]:
return _distro.os_release_info()
def lsb_release_info() -> Dict[str, str]:
return _distro.lsb_release_info()
def distro_release_info() -> Dict[str, str]:
return _distro.distro_release_info()
def uname_info() -> Dict[str, str]:
return _distro.uname_info()
def os_release_attr(attribute: str) -> str:
return _distro.os_release_attr(attribute)
def lsb_release_attr(attribute: str) -> str:
return _distro.lsb_release_attr(attribute)
def distro_release_attr(attribute: str) -> str:
return _distro.distro_release_attr(attribute)
def uname_attr(attribute: str) -> str:
return _distro.uname_attr(attribute)
try:
from functools import cached_property
except ImportError:
class cached_property:
def __init__(self, f: Callable[[Any], Any]) -> None:
self._fname = f.__name__
self._f = f
def __get__(self, obj: Any, owner: Type[Any]) -> Any:
assert obj is not None, f"call {self._fname} on an instance"
ret = obj.__dict__[self._fname] = self._f(obj)
return ret
class LinuxDistribution:
def __init__(
self,
include_lsb: bool = True,
os_release_file: str = "",
distro_release_file: str = "",
include_uname: bool = True,
root_dir: Optional[str] = None,
) -> None:
self.root_dir = root_dir
self.etc_dir = os.path.join(root_dir, "etc") if root_dir else _UNIXCONFDIR
self.usr_lib_dir = (
os.path.join(root_dir, "usr/lib") if root_dir else _UNIXUSRLIBDIR
)
if os_release_file:
self.os_release_file = os_release_file
else:
etc_dir_os_release_file = os.path.join(self.etc_dir, _OS_RELEASE_BASENAME)
usr_lib_os_release_file = os.path.join(
self.usr_lib_dir, _OS_RELEASE_BASENAME
)
if os.path.isfile(etc_dir_os_release_file) or not os.path.isfile(
usr_lib_os_release_file
):
self.os_release_file = etc_dir_os_release_file
else:
self.os_release_file = usr_lib_os_release_file
self.distro_release_file = distro_release_file or ""
self.include_lsb = include_lsb
self.include_uname = include_uname
def __repr__(self) -> str:
return (
"LinuxDistribution("
"os_release_file={self.os_release_file!r}, "
"distro_release_file={self.distro_release_file!r}, "
"include_lsb={self.include_lsb!r}, "
"include_uname={self.include_uname!r}, "
"_os_release_info={self._os_release_info!r}, "
"_lsb_release_info={self._lsb_release_info!r}, "
"_distro_release_info={self._distro_release_info!r}, "
"_uname_info={self._uname_info!r})".format(self=self)
)
def linux_distribution(
self, full_distribution_name: bool = True
) -> Tuple[str, str, str]:
return (
self.name() if full_distribution_name else self.id(),
self.version(),
self.codename(),
)
def id(self) -> str:
def normalize(distro_id: str, table: Dict[str, str]) -> str:
distro_id = distro_id.lower().replace(" ", "_")
return table.get(distro_id, distro_id)
distro_id = self.os_release_attr("id")
if distro_id:
return normalize(distro_id, NORMALIZED_OS_ID)
distro_id = self.lsb_release_attr("distributor_id")
if distro_id:
return normalize(distro_id, NORMALIZED_LSB_ID)
distro_id = self.distro_release_attr("id")
if distro_id:
return normalize(distro_id, NORMALIZED_DISTRO_ID)
distro_id = self.uname_attr("id")
if distro_id:
return normalize(distro_id, NORMALIZED_DISTRO_ID)
return ""
def name(self, pretty: bool = False) -> str:
name = (
self.os_release_attr("name")
or self.lsb_release_attr("distributor_id")
or self.distro_release_attr("name")
or self.uname_attr("name")
)
if pretty:
name = self.os_release_attr("pretty_name") or self.lsb_release_attr(
"description"
)
if not name:
name = self.distro_release_attr("name") or self.uname_attr("name")
version = self.version(pretty=True)
if version:
name = f"{name} {version}"
return name or ""
def version(self, pretty: bool = False, best: bool = False) -> str:
versions = [
self.os_release_attr("version_id"),
self.lsb_release_attr("release"),
self.distro_release_attr("version_id"),
self._parse_distro_release_content(self.os_release_attr("pretty_name")).get(
"version_id", ""
),
self._parse_distro_release_content(
self.lsb_release_attr("description")
).get("version_id", ""),
self.uname_attr("release"),
]
version = ""
if best:
for v in versions:
if v.count(".") > version.count(".") or version == "":
version = v
else:
for v in versions:
if v != "":
version = v
break
if pretty and version and self.codename():
version = f"{version} ({self.codename()})"
return version
def version_parts(self, best: bool = False) -> Tuple[str, str, str]:
version_str = self.version(best=best)
if version_str:
version_regex = re.compile(r"(\d+)\.?(\d+)?\.?(\d+)?")
matches = version_regex.match(version_str)
if matches:
major, minor, build_number = matches.groups()
return major, minor or "", build_number or ""
return "", "", ""
def major_version(self, best: bool = False) -> str:
return self.version_parts(best)[0]
def minor_version(self, best: bool = False) -> str:
return self.version_parts(best)[1]
def build_number(self, best: bool = False) -> str:
return self.version_parts(best)[2]
def like(self) -> str:
return self.os_release_attr("id_like") or ""
def codename(self) -> str:
try:
return self._os_release_info["codename"]
except KeyError:
return (
self.lsb_release_attr("codename")
or self.distro_release_attr("codename")
or ""
)
def info(self, pretty: bool = False, best: bool = False) -> InfoDict:
return dict(
id=self.id(),
version=self.version(pretty, best),
version_parts=dict(
major=self.major_version(best),
minor=self.minor_version(best),
build_number=self.build_number(best),
),
like=self.like(),
codename=self.codename(),
)
def os_release_info(self) -> Dict[str, str]:
return self._os_release_info
def lsb_release_info(self) -> Dict[str, str]:
return self._lsb_release_info
def distro_release_info(self) -> Dict[str, str]:
return self._distro_release_info
def uname_info(self) -> Dict[str, str]:
return self._uname_info
def os_release_attr(self, attribute: str) -> str:
return self._os_release_info.get(attribute, "")
def lsb_release_attr(self, attribute: str) -> str:
return self._lsb_release_info.get(attribute, "")
|
Apache License 2.0
|
kuri65536/python-for-android
|
python-build/python-libs/gdata/build/lib/gdata/youtube/service.py
|
YouTubeService.AddVideoResponse
|
python
|
def AddVideoResponse(self, video_id_to_respond_to, video_response):
post_uri = '%s/%s/%s' % (YOUTUBE_VIDEO_URI, video_id_to_respond_to,
'responses')
return self.Post(video_response, uri=post_uri)
|
Add a video response.
Needs authentication.
Args:
video_id_to_respond_to: A string representing the ID of the video to be
responded to.
video_response: YouTubeVideoEntry to be posted as a response.
Returns:
True if video response was posted successfully.
|
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-build/python-libs/gdata/build/lib/gdata/youtube/service.py#L810-L825
|
__author__ = ('api.stephaniel@gmail.com (Stephanie Liu), '
'api.jhartmann@gmail.com (Jochen Hartmann)')
try:
from xml.etree import cElementTree as ElementTree
except ImportError:
try:
import cElementTree as ElementTree
except ImportError:
try:
from xml.etree import ElementTree
except ImportError:
from elementtree import ElementTree
import os
import atom
import gdata
import gdata.service
import gdata.youtube
YOUTUBE_SERVER = 'gdata.youtube.com'
YOUTUBE_SERVICE = 'youtube'
YOUTUBE_CLIENTLOGIN_AUTHENTICATION_URL = 'https://www.google.com/youtube/accounts/ClientLogin'
YOUTUBE_SUPPORTED_UPLOAD_TYPES = ('mov', 'avi', 'wmv', 'mpg', 'quicktime',
'flv')
YOUTUBE_QUERY_VALID_TIME_PARAMETERS = ('today', 'this_week', 'this_month',
'all_time')
YOUTUBE_QUERY_VALID_ORDERBY_PARAMETERS = ('published', 'viewCount', 'rating',
'relevance')
YOUTUBE_QUERY_VALID_RACY_PARAMETERS = ('include', 'exclude')
YOUTUBE_QUERY_VALID_FORMAT_PARAMETERS = ('1', '5', '6')
YOUTUBE_STANDARDFEEDS = ('most_recent', 'recently_featured',
'top_rated', 'most_viewed','watch_on_mobile')
YOUTUBE_UPLOAD_URI = 'http://uploads.gdata.youtube.com/feeds/api/users'
YOUTUBE_UPLOAD_TOKEN_URI = 'http://gdata.youtube.com/action/GetUploadToken'
YOUTUBE_VIDEO_URI = 'http://gdata.youtube.com/feeds/api/videos'
YOUTUBE_USER_FEED_URI = 'http://gdata.youtube.com/feeds/api/users'
YOUTUBE_PLAYLIST_FEED_URI = 'http://gdata.youtube.com/feeds/api/playlists'
YOUTUBE_STANDARD_FEEDS = 'http://gdata.youtube.com/feeds/api/standardfeeds'
YOUTUBE_STANDARD_TOP_RATED_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS, 'top_rated')
YOUTUBE_STANDARD_MOST_VIEWED_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS,
'most_viewed')
YOUTUBE_STANDARD_RECENTLY_FEATURED_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS,
'recently_featured')
YOUTUBE_STANDARD_WATCH_ON_MOBILE_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS,
'watch_on_mobile')
YOUTUBE_STANDARD_TOP_FAVORITES_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS,
'top_favorites')
YOUTUBE_STANDARD_MOST_RECENT_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS,
'most_recent')
YOUTUBE_STANDARD_MOST_DISCUSSED_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS,
'most_discussed')
YOUTUBE_STANDARD_MOST_LINKED_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS,
'most_linked')
YOUTUBE_STANDARD_MOST_RESPONDED_URI = '%s/%s' % (YOUTUBE_STANDARD_FEEDS,
'most_responded')
YOUTUBE_SCHEMA = 'http://gdata.youtube.com/schemas'
YOUTUBE_RATING_LINK_REL = '%s#video.ratings' % YOUTUBE_SCHEMA
YOUTUBE_COMPLAINT_CATEGORY_SCHEME = '%s/%s' % (YOUTUBE_SCHEMA,
'complaint-reasons.cat')
YOUTUBE_SUBSCRIPTION_CATEGORY_SCHEME = '%s/%s' % (YOUTUBE_SCHEMA,
'subscriptiontypes.cat')
YOUTUBE_COMPLAINT_CATEGORY_TERMS = ('PORN', 'VIOLENCE', 'HATE', 'DANGEROUS',
'RIGHTS', 'SPAM')
YOUTUBE_CONTACT_STATUS = ('accepted', 'rejected')
YOUTUBE_CONTACT_CATEGORY = ('Friends', 'Family')
UNKOWN_ERROR = 1000
YOUTUBE_BAD_REQUEST = 400
YOUTUBE_CONFLICT = 409
YOUTUBE_INTERNAL_SERVER_ERROR = 500
YOUTUBE_INVALID_ARGUMENT = 601
YOUTUBE_INVALID_CONTENT_TYPE = 602
YOUTUBE_NOT_A_VIDEO = 603
YOUTUBE_INVALID_KIND = 604
class Error(Exception):
pass
class RequestError(Error):
pass
class YouTubeError(Error):
pass
class YouTubeService(gdata.service.GDataService):
def __init__(self, email=None, password=None, source=None,
server=YOUTUBE_SERVER, additional_headers=None, client_id=None,
developer_key=None, **kwargs):
if developer_key and not client_id:
raise YouTubeError('You must also specify the clientId')
gdata.service.GDataService.__init__(
self, email=email, password=password, service=YOUTUBE_SERVICE,
source=source, server=server, additional_headers=additional_headers,
**kwargs)
if client_id is not None and developer_key is not None:
self.additional_headers['X-Gdata-Client'] = client_id
self.additional_headers['X-GData-Key'] = 'key=%s' % developer_key
self.auth_service_url = YOUTUBE_CLIENTLOGIN_AUTHENTICATION_URL
def GetYouTubeVideoFeed(self, uri):
return self.Get(uri, converter=gdata.youtube.YouTubeVideoFeedFromString)
def GetYouTubeVideoEntry(self, uri=None, video_id=None):
if uri is None and video_id is None:
raise YouTubeError('You must provide at least a uri or a video_id '
'to the GetYouTubeVideoEntry() method')
elif video_id and not uri:
uri = '%s/%s' % (YOUTUBE_VIDEO_URI, video_id)
return self.Get(uri, converter=gdata.youtube.YouTubeVideoEntryFromString)
def GetYouTubeContactFeed(self, uri=None, username='default'):
if uri is None:
uri = '%s/%s/%s' % (YOUTUBE_USER_FEED_URI, username, 'contacts')
return self.Get(uri, converter=gdata.youtube.YouTubeContactFeedFromString)
def GetYouTubeContactEntry(self, uri):
return self.Get(uri, converter=gdata.youtube.YouTubeContactEntryFromString)
def GetYouTubeVideoCommentFeed(self, uri=None, video_id=None):
if uri is None and video_id is None:
raise YouTubeError('You must provide at least a uri or a video_id '
'to the GetYouTubeVideoCommentFeed() method')
elif video_id and not uri:
uri = '%s/%s/%s' % (YOUTUBE_VIDEO_URI, video_id, 'comments')
return self.Get(
uri, converter=gdata.youtube.YouTubeVideoCommentFeedFromString)
def GetYouTubeVideoCommentEntry(self, uri):
return self.Get(
uri, converter=gdata.youtube.YouTubeVideoCommentEntryFromString)
def GetYouTubeUserFeed(self, uri=None, username=None):
if uri is None and username is None:
raise YouTubeError('You must provide at least a uri or a username '
'to the GetYouTubeUserFeed() method')
elif username and not uri:
uri = '%s/%s/%s' % (YOUTUBE_USER_FEED_URI, username, 'uploads')
return self.Get(uri, converter=gdata.youtube.YouTubeUserFeedFromString)
def GetYouTubeUserEntry(self, uri=None, username=None):
if uri is None and username is None:
raise YouTubeError('You must provide at least a uri or a username '
'to the GetYouTubeUserEntry() method')
elif username and not uri:
uri = '%s/%s' % (YOUTUBE_USER_FEED_URI, username)
return self.Get(uri, converter=gdata.youtube.YouTubeUserEntryFromString)
def GetYouTubePlaylistFeed(self, uri=None, username='default'):
if uri is None:
uri = '%s/%s/%s' % (YOUTUBE_USER_FEED_URI, username, 'playlists')
return self.Get(uri, converter=gdata.youtube.YouTubePlaylistFeedFromString)
def GetYouTubePlaylistEntry(self, uri):
return self.Get(uri, converter=gdata.youtube.YouTubePlaylistEntryFromString)
def GetYouTubePlaylistVideoFeed(self, uri=None, playlist_id=None):
if uri is None and playlist_id is None:
raise YouTubeError('You must provide at least a uri or a playlist_id '
'to the GetYouTubePlaylistVideoFeed() method')
elif playlist_id and not uri:
uri = '%s/%s' % (YOUTUBE_PLAYLIST_FEED_URI, playlist_id)
return self.Get(
uri, converter=gdata.youtube.YouTubePlaylistVideoFeedFromString)
def GetYouTubeVideoResponseFeed(self, uri=None, video_id=None):
if uri is None and video_id is None:
raise YouTubeError('You must provide at least a uri or a video_id '
'to the GetYouTubeVideoResponseFeed() method')
elif video_id and not uri:
uri = '%s/%s/%s' % (YOUTUBE_VIDEO_URI, video_id, 'responses')
return self.Get(
uri, converter=gdata.youtube.YouTubeVideoResponseFeedFromString)
def GetYouTubeVideoResponseEntry(self, uri):
return self.Get(
uri, converter=gdata.youtube.YouTubeVideoResponseEntryFromString)
def GetYouTubeSubscriptionFeed(self, uri=None, username='default'):
if uri is None:
uri = '%s/%s/%s' % (YOUTUBE_USER_FEED_URI, username, 'subscriptions')
return self.Get(
uri, converter=gdata.youtube.YouTubeSubscriptionFeedFromString)
def GetYouTubeSubscriptionEntry(self, uri):
return self.Get(
uri, converter=gdata.youtube.YouTubeSubscriptionEntryFromString)
def GetYouTubeRelatedVideoFeed(self, uri=None, video_id=None):
if uri is None and video_id is None:
raise YouTubeError('You must provide at least a uri or a video_id '
'to the GetYouTubeRelatedVideoFeed() method')
elif video_id and not uri:
uri = '%s/%s/%s' % (YOUTUBE_VIDEO_URI, video_id, 'related')
return self.Get(
uri, converter=gdata.youtube.YouTubeVideoFeedFromString)
def GetTopRatedVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_TOP_RATED_URI)
def GetMostViewedVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_MOST_VIEWED_URI)
def GetRecentlyFeaturedVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_RECENTLY_FEATURED_URI)
def GetWatchOnMobileVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_WATCH_ON_MOBILE_URI)
def GetTopFavoritesVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_TOP_FAVORITES_URI)
def GetMostRecentVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_MOST_RECENT_URI)
def GetMostDiscussedVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_MOST_DISCUSSED_URI)
def GetMostLinkedVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_MOST_LINKED_URI)
def GetMostRespondedVideoFeed(self):
return self.GetYouTubeVideoFeed(YOUTUBE_STANDARD_MOST_RESPONDED_URI)
def GetUserFavoritesFeed(self, username='default'):
favorites_feed_uri = '%s/%s/%s' % (YOUTUBE_USER_FEED_URI, username,
'favorites')
return self.GetYouTubeVideoFeed(favorites_feed_uri)
def InsertVideoEntry(self, video_entry, filename_or_handle,
youtube_username='default',
content_type='video/quicktime'):
try:
assert(isinstance(video_entry, gdata.youtube.YouTubeVideoEntry))
except AssertionError:
raise YouTubeError({'status':YOUTUBE_INVALID_ARGUMENT,
'body':'`video_entry` must be a gdata.youtube.VideoEntry instance',
'reason':'Found %s, not VideoEntry' % type(video_entry)
})
majtype, mintype = content_type.split('/')
try:
assert(mintype in YOUTUBE_SUPPORTED_UPLOAD_TYPES)
except (ValueError, AssertionError):
raise YouTubeError({'status':YOUTUBE_INVALID_CONTENT_TYPE,
'body':'This is not a valid content type: %s' % content_type,
'reason':'Accepted content types: %s' %
['video/%s' % (t) for t in YOUTUBE_SUPPORTED_UPLOAD_TYPES]})
if (isinstance(filename_or_handle, (str, unicode))
and os.path.exists(filename_or_handle)):
mediasource = gdata.MediaSource()
mediasource.setFile(filename_or_handle, content_type)
elif hasattr(filename_or_handle, 'read'):
import StringIO
if hasattr(filename_or_handle, 'seek'):
filename_or_handle.seek(0)
file_handle = StringIO.StringIO(filename_or_handle.read())
name = 'video'
if hasattr(filename_or_handle, 'name'):
name = filename_or_handle.name
mediasource = gdata.MediaSource(file_handle, content_type,
content_length=file_handle.len, file_name=name)
else:
raise YouTubeError({'status':YOUTUBE_INVALID_ARGUMENT, 'body':
'`filename_or_handle` must be a path name or a file-like object',
'reason': ('Found %s, not path name or object '
'with a .read() method' % type(filename_or_handle))})
upload_uri = '%s/%s/%s' % (YOUTUBE_UPLOAD_URI, youtube_username,
'uploads')
self.additional_headers['Slug'] = mediasource.file_name
try:
try:
return self.Post(video_entry, uri=upload_uri, media_source=mediasource,
converter=gdata.youtube.YouTubeVideoEntryFromString)
except gdata.service.RequestError, e:
raise YouTubeError(e.args[0])
finally:
del(self.additional_headers['Slug'])
def CheckUploadStatus(self, video_entry=None, video_id=None):
if video_entry is None and video_id is None:
raise YouTubeError('You must provide at least a uri or a video_id '
'to the CheckUploadStatus() method')
elif video_id and not video_entry:
video_entry = self.GetYouTubeVideoEntry(video_id=video_id)
control = video_entry.control
if control is not None:
draft = control.draft
if draft is not None:
if draft.text == 'yes':
yt_state = control.extension_elements[0]
if yt_state is not None:
state_value = yt_state.attributes['name']
message = ''
if yt_state.text is not None:
message = yt_state.text
return (state_value, message)
def GetFormUploadToken(self, video_entry, uri=YOUTUBE_UPLOAD_TOKEN_URI):
try:
response = self.Post(video_entry, uri)
except gdata.service.RequestError, e:
raise YouTubeError(e.args[0])
tree = ElementTree.fromstring(response)
for child in tree:
if child.tag == 'url':
post_url = child.text
elif child.tag == 'token':
youtube_token = child.text
return (post_url, youtube_token)
def UpdateVideoEntry(self, video_entry):
for link in video_entry.link:
if link.rel == 'edit':
edit_uri = link.href
return self.Put(video_entry, uri=edit_uri,
converter=gdata.youtube.YouTubeVideoEntryFromString)
def DeleteVideoEntry(self, video_entry):
for link in video_entry.link:
if link.rel == 'edit':
edit_uri = link.href
return self.Delete(edit_uri)
def AddRating(self, rating_value, video_entry):
if rating_value < 1 or rating_value > 5:
raise YouTubeError('rating_value must be between 1 and 5 in AddRating()')
entry = gdata.GDataEntry()
rating = gdata.youtube.Rating(min='1', max='5')
rating.extension_attributes['name'] = 'value'
rating.extension_attributes['value'] = str(rating_value)
entry.extension_elements.append(rating)
for link in video_entry.link:
if link.rel == YOUTUBE_RATING_LINK_REL:
rating_uri = link.href
return self.Post(entry, uri=rating_uri)
def AddComment(self, comment_text, video_entry):
content = atom.Content(text=comment_text)
comment_entry = gdata.youtube.YouTubeVideoCommentEntry(content=content)
comment_post_uri = video_entry.comments.feed_link[0].href
return self.Post(comment_entry, uri=comment_post_uri)
|
Apache License 2.0
|
alliefitter/boto3_type_annotations
|
boto3_type_annotations_with_docs/boto3_type_annotations/config/client.py
|
Client.delete_configuration_aggregator
|
python
|
def delete_configuration_aggregator(self, ConfigurationAggregatorName: str):
pass
|
Deletes the specified configuration aggregator and the aggregated data associated with the aggregator.
See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/config-2014-11-12/DeleteConfigurationAggregator>`_
**Request Syntax**
::
response = client.delete_configuration_aggregator(
ConfigurationAggregatorName='string'
)
:type ConfigurationAggregatorName: string
:param ConfigurationAggregatorName: **[REQUIRED]**
The name of the configuration aggregator.
:returns: None
|
https://github.com/alliefitter/boto3_type_annotations/blob/2a88aa562b1aee6e8a6cc30402980884b3707fbb/boto3_type_annotations_with_docs/boto3_type_annotations/config/client.py#L305-L320
|
from typing import Optional
from botocore.client import BaseClient
from typing import Dict
from botocore.paginate import Paginator
from datetime import datetime
from botocore.waiter import Waiter
from typing import Union
from typing import List
class Client(BaseClient):
def batch_get_aggregate_resource_config(self, ConfigurationAggregatorName: str, ResourceIdentifiers: List) -> Dict:
pass
def batch_get_resource_config(self, resourceKeys: List) -> Dict:
pass
def can_paginate(self, operation_name: str = None):
pass
def delete_aggregation_authorization(self, AuthorizedAccountId: str, AuthorizedAwsRegion: str):
pass
def delete_config_rule(self, ConfigRuleName: str):
pass
|
MIT License
|
s2e/pykvm
|
pykvm/kvm.py
|
VCPU.run
|
python
|
def run(self):
logger.info('Running KVM')
while True:
try:
fcntl.ioctl(self._vcpu_fd, KVM_RUN)
except IOError as e:
if e.errno != errno.EINTR:
raise
reason = KVMExitReason(self._run_obj.exit_reason)
if reason == KVMExitReason.KVM_EXIT_INTERNAL_ERROR:
raise RuntimeError(KVMInternalError(self._run_obj.exit_reasons.internal.suberror))
elif reason == KVMExitReason.KVM_EXIT_IO:
logger.info('%s %s', reason, self._run_obj.exit_reasons.io)
break
elif reason == KVMExitReason.KVM_EXIT_MMIO:
logger.info('%s %s', reason, self._run_obj.exit_reasons.mmio)
break
elif reason == KVMExitReason.KVM_EXIT_HLT:
logger.info('CPU halted, exiting (%s)', reason)
break
elif reason == KVMExitReason.KVM_EXIT_SHUTDOWN:
logger.info('Shutting down')
break
elif reason == KVMExitReason.KVM_EXIT_INTR:
pass
elif reason == KVMExitReason.KVM_EXIT_FLUSH_DISK:
pass
elif reason == KVMExitReason.KVM_EXIT_SAVE_DEV_STATE:
pass
elif reason == KVMExitReason.KVM_EXIT_RESTORE_DEV_STATE:
pass
elif reason == KVMExitReason.KVM_EXIT_CLONE_PROCESS:
raise RuntimeError('Multi-core mode not supported')
else:
raise RuntimeError('Unhandled exit code %s' % reason)
|
Runs the virtual machine until an exit condition occurs.
One way to terminate execution is for the guest to execute the HLT instruction.
We don't support I/O, MMIO, and some other cases, so this function will terminate when it encounters them.
|
https://github.com/s2e/pykvm/blob/c7c71c8c3c9cc94423ca55459123ed8e01cb2b27/pykvm/kvm.py#L221-L277
|
import array
import errno
import fcntl
import logging
import mmap
import os
from argparse import ArgumentParser
import ctypes
from ctypes import c_int, c_size_t, c_void_p
from ctypes.util import find_library as ctypes_find_library
from hexdump import hexdump
from pykvm.kvm_types import *
logger = logging.getLogger(__name__)
libc = ctypes.cdll.LoadLibrary(ctypes_find_library('c'))
libc.mmap.argtypes = [c_void_p, c_size_t, c_int, c_int, c_size_t]
libc.mmap.restype = c_void_p
MAP_FAILED = 0xffffffffffffffff
class RAM(object):
def __init__(self, size, vm):
if size % 0x1000:
raise RuntimeError('Ram size must be a multiple of 4KB')
self._size = size
self._vm = vm
logger.debug('Allocating %d bytes for RAM', size)
self._pointer = libc.mmap(-1, self._size, mmap.PROT_READ | mmap.PROT_WRITE,
mmap.MAP_ANON | mmap.MAP_PRIVATE, -1, 0)
if self._pointer == MAP_FAILED or not self._pointer:
raise RuntimeError('Could not allocate buffer of size %#x' % size)
logger.debug('RAM is at %#lx', self._pointer)
self.obj = (ctypes.c_ubyte * size).from_address(self._pointer)
def get_kvm_region(self, slot):
ram = KVMUserSpaceMemoryRegion()
ram.slot = slot
ram.flags = 0
ram.guest_phys_addr = 0
ram.memory_size = self._size
ram.userspace_addr = self._pointer
return ram
def write(self, addr, data):
if addr + len(data) > self._size:
raise RuntimeError('Buffer overflow')
if self._vm.has_mem_rw:
b = (ctypes.c_ubyte * len(data)).from_buffer_copy(data)
m = KVMMemRW()
m.source = ctypes.addressof(b)
m.dest = self._pointer + addr
m.is_write = 1
m.length = len(data)
logger.debug('Writing to %#lx from %#lx, size=%#lx', m.dest, m.source, m.length)
fcntl.ioctl(self._vm.fd, KVM_MEM_RW, m)
else:
for i, c in enumerate(data):
self.obj[addr + i] = ord(c)
def read(self, addr, size):
if addr + size > self._size:
raise RuntimeError('Buffer overflow')
if self._vm.has_mem_rw:
ret = (ctypes.c_ubyte * size)()
m = KVMMemRW()
m.source = self._pointer + addr
m.dest = ctypes.addressof(ret)
m.is_write = 0
m.length = size
fcntl.ioctl(self._vm.fd, KVM_MEM_RW, m)
else:
ret = self.obj[addr:addr+size]
return array.array('B', ret).tostring()
def _get_32bit_code_segment():
s = KVMSegment()
s.base = 0
s.limit = 0xffffffff
s.selector = 0
s.type = 0xc
s.present = 1
s.dpl = 0
s.db = 1
s.s = 1
s.l = 0
s.g = 1
return s
def _get_32bit_data_segment():
s = KVMSegment()
s.base = 0
s.limit = 0xffffffff
s.selector = 0
s.type = 0x2
s.present = 1
s.dpl = 0
s.db = 1
s.s = 1
s.l = 0
s.g = 1
return s
class VCPU(object):
def __init__(self, kvm_fd, vm_fd):
self._vm_fd = vm_fd
self._vcpu_fd = fcntl.ioctl(vm_fd, KVM_CREATE_VCPU)
logger.debug('Created VCPU fd=%d', self._vcpu_fd)
self._vcpu_size = fcntl.ioctl(kvm_fd, KVM_GET_VCPU_MMAP_SIZE)
logger.debug('VCPU requires %d bytes for kvm_run structure', self._vcpu_size)
self._pointer = mmap.mmap(self._vcpu_fd, self._vcpu_size)
self._run_obj = KVMRun.from_buffer(self._pointer)
def init_state(self, rip=0, rsp=0, bits=32):
sregs = KVMSRegs()
fcntl.ioctl(self._vcpu_fd, KVM_GET_SREGS, sregs)
if bits == 16:
sregs.cs.base = 0
sregs.cs.selector = 0
elif bits == 32:
sregs.cs = _get_32bit_code_segment()
sregs.ds = _get_32bit_data_segment()
sregs.es = sregs.ds
sregs.ss = sregs.ds
sregs.fs = sregs.ds
sregs.gs = sregs.ds
sregs.cr0 = 0x1
else:
raise ValueError('Unsupported number of bits %d' % bits)
fcntl.ioctl(self._vcpu_fd, KVM_SET_SREGS, sregs)
regs = KVMRegs()
fcntl.ioctl(self._vcpu_fd, KVM_GET_REGS, regs)
regs.rip = rip
regs.rsp = rsp
regs.rflags = 2
fcntl.ioctl(self._vcpu_fd, KVM_SET_REGS, regs)
def dump_regs(self):
regs = KVMRegs()
fcntl.ioctl(self._vcpu_fd, KVM_GET_REGS, regs)
logger.info('rax=%#lx rbx=%#lx rcx=%#lx rdx=%#lx', regs.rax, regs.rbx, regs.rcx, regs.rdx)
logger.info('rsi=%#lx rdi=%#lx rbp=%#lx rsp=%#lx', regs.rsi, regs.rdi, regs.rbp, regs.rsp)
logger.info('rip=%#lx', regs.rip)
|
MIT License
|
googleapis/python-iot
|
samples/api-client/accesstoken_example/accesstoken.py
|
parse_command_line_args
|
python
|
def parse_command_line_args():
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument(
"--algorithm",
default="RS256",
choices=("RS256", "ES256"),
help="Encryption algorithm used to generate the device JWT.",
)
parser.add_argument("--private_key_file", help="Path to private key file.")
parser.add_argument(
"--cloud_region", default="us-central1", help="GCP cloud region."
)
parser.add_argument("--device_id", default=None, help="Device ID.")
parser.add_argument(
"--scope",
default=None,
help="Scope for OAuth 2.0 access token. Space delimited strings. See the full list of scopes at: https://developers.google.com/identity/protocols/oauth2/scopes",
)
parser.add_argument(
"--project_id",
default=os.environ.get("GOOGLE_CLOUD_PROJECT"),
help="GCP cloud project name.",
)
parser.add_argument(
"--registry_id", default=None, help="Registry ID.",
)
parser.add_argument(
"--topic_id", default=None, help="Cloud Pub/Sub topic ID.",
)
parser.add_argument(
"--bucket_name", default=None, help="Cloud Storage bucket name.",
)
parser.add_argument(
"--data_path", default=None, help="Path to file to be uploaded.",
)
parser.add_argument(
"--service_account_email",
default=None,
help="Service account email to exchange device access token to service account token.",
)
parser.add_argument(
"--device_access_token",
default=None,
help="Device access token to exchange for service account access token.",
)
parser.add_argument(
"--command_to_be_sent_to_device",
default=None,
help="Command to be sent to the IoT device.",
)
command = parser.add_subparsers(dest="command")
command.add_parser("generate-access-token", help=generate_access_token.__doc__)
command.add_parser("publish-pubsub-message", help=publish_pubsub_message.__doc__)
command.add_parser(
"send-command-to-iot-device", help=send_iot_command_to_device.__doc__
)
command.add_parser(
"download-cloud-storage-file", help=download_cloud_storage_file.__doc__
)
command.add_parser(
"exchange-device-token-for-service-account-token",
help=exchange_device_access_token_for_service_account_access_token.__doc__,
)
return parser.parse_args()
|
Parse command line arguments.
|
https://github.com/googleapis/python-iot/blob/87df16600d419be91ae91dc9600e9d31c3b267f0/samples/api-client/accesstoken_example/accesstoken.py#L360-L431
|
import argparse
import base64
from datetime import datetime, timedelta
import io
import json
import os
import time
import jwt
import requests as req
def create_jwt(project_id, algorithm, private_key_file):
jwt_payload = '{{"iat":{},"exp":{},"aud":"{}"}}'.format(
time.time(),
time.mktime((datetime.now() + timedelta(hours=6)).timetuple()),
project_id,
)
private_key_bytes = ""
with io.open(private_key_file) as f:
private_key_bytes = f.read()
encoded_jwt = jwt.encode(
json.loads(jwt_payload), private_key_bytes, algorithm=algorithm
)
return encoded_jwt.decode() if isinstance(encoded_jwt, bytes) else encoded_jwt
def generate_access_token(
cloud_region, project_id, registry_id, device_id, scope, algorithm, private_key_file
):
jwt = create_jwt(project_id, algorithm, private_key_file)
resource_path = "projects/{}/locations/{}/registries/{}/devices/{}".format(
project_id, cloud_region, registry_id, device_id
)
request_url = "https://cloudiottoken.googleapis.com/v1beta1/{}:generateAccessToken".format(
resource_path
)
headers = {"authorization": "Bearer {}".format(jwt)}
request_payload = {"scope": scope, "device": resource_path}
resp = req.post(url=request_url, data=request_payload, headers=headers)
assert resp.ok, resp.raise_for_status()
access_token = resp.json()["access_token"]
print("Device access token: {}".format(access_token))
return access_token
def publish_pubsub_message(
cloud_region,
project_id,
registry_id,
device_id,
algorithm,
rsa_private_key_path,
topic_id,
):
scope = "https://www.googleapis.com/auth/pubsub"
access_token = generate_access_token(
cloud_region,
project_id,
registry_id,
device_id,
scope,
algorithm,
rsa_private_key_path,
)
request_path = "https://pubsub.googleapis.com/v1/projects/{}/topics/{}".format(
project_id, topic_id
)
headers = {
"Authorization": "Bearer {}".format(access_token),
"content-type": "application/json",
"cache-control": "no-cache",
}
resp = req.put(url=request_path, data={}, headers=headers)
assert resp.ok, resp.raise_for_status()
print("Successfully created Pub/Sub topic: {}.".format(topic_id))
publish_payload = {
"messages": [
{"data": str(base64.b64encode(bytes("MESSAGE_DATA", "utf-8")), "utf-8")}
]
}
publish_request_path = "https://pubsub.googleapis.com/v1/projects/{}/topics/{}:publish".format(
project_id, topic_id
)
publish_resp = req.post(
url=publish_request_path, data=json.dumps(publish_payload), headers=headers
)
assert publish_resp.ok, publish_resp.raise_for_status()
print(
"Pub/Sub message has been successfully published to {}: {}".format(
topic_id, publish_resp.json()
)
)
pubsub_delete_request_path = "https://pubsub.googleapis.com/v1/projects/{}/topics/{}".format(
project_id, topic_id
)
delete_resp = req.delete(url=pubsub_delete_request_path, headers=headers)
assert delete_resp.ok, delete_resp.raise_for_status()
print("Successfully deleted Pub/Sub topic: {}".format(topic_id))
def download_cloud_storage_file(
cloud_region,
project_id,
registry_id,
device_id,
algorithm,
rsa_private_key_path,
bucket_name,
data_path,
):
scope = "https://www.googleapis.com/auth/devstorage.full_control"
access_token = generate_access_token(
cloud_region,
project_id,
registry_id,
device_id,
scope,
algorithm,
rsa_private_key_path,
)
create_payload = {
"name": bucket_name,
"location": cloud_region,
"storageClass": "STANDARD",
"iamConfiguration": {"uniformBucketLevelAccess": {"enabled": True}},
}
create_request_path = "https://storage.googleapis.com/storage/v1/b?project={}".format(
project_id
)
headers = {
"authorization": "Bearer {}".format(access_token),
"content-type": "application/json",
"cache-control": "no-cache",
}
create_resp = req.post(
url=create_request_path,
data=bytes(json.dumps(create_payload), "utf-8"),
headers=headers,
)
assert create_resp.ok, create_resp.raise_for_status()
print("Successfully created Storage bucket: {}".format(bucket_name))
data_name = "testFile.ext"
binary_data = open(data_path, "rb").read()
upload_request_path = "https://storage.googleapis.com/upload/storage/v1/b/{}/o?uploadType=media&name={}".format(
bucket_name, data_name
)
upload_resp = req.post(url=upload_request_path, data=binary_data, headers=headers)
assert upload_resp.ok, upload_resp.raise_for_status()
print(
"Successfully uploaded {} as {} to bucket {}.".format(
data_path, data_name, bucket_name
)
)
download_request_path = "https://storage.googleapis.com/storage/v1/b/{}/o/{}?alt=media".format(
bucket_name, data_name
)
download_resp = req.get(url=download_request_path, headers=headers)
assert download_resp.ok, download_resp.raise_for_status()
print("Successfully downloaded {} from bucket {}.".format(data_name, bucket_name))
delete_request_path = "https://storage.googleapis.com/storage/v1/b/{}/o/{}".format(
bucket_name, data_name
)
delete_data_resp = req.delete(url=delete_request_path, headers=headers)
assert delete_data_resp.ok, delete_data_resp.raise_for_status()
print("Successfully deleted {} from bucket {}.".format(data_name, bucket_name))
gcs_delete_request_path = "https://storage.googleapis.com/storage/v1/b/{}".format(
bucket_name
)
delete_resp = req.delete(url=gcs_delete_request_path, headers=headers)
assert delete_resp.ok, delete_resp.raise_for_status()
print("Successfully deleted bucket: {}".format(bucket_name))
def exchange_device_access_token_for_service_account_access_token(
device_access_token, service_account_email
):
scope = "https://www.googleapis.com/auth/cloud-platform"
headers = {
"Authorization": "Bearer {}".format(device_access_token),
"content-type": "application/json",
"cache-control": "no-cache",
}
exchange_payload = {"scope": [scope]}
exchange_url = "https://iamcredentials.googleapis.com/v1/projects/-/serviceAccounts/{}:generateAccessToken".format(
service_account_email
)
exchange_resp = req.post(
url=exchange_url, data=json.dumps(exchange_payload), headers=headers
)
assert exchange_resp.ok, exchange_resp.raise_for_status()
service_account_token = exchange_resp.json()["accessToken"]
print("Service account access token: {}".format(service_account_token))
return service_account_token
def send_iot_command_to_device(
cloud_region,
project_id,
registry_id,
device_id,
algorithm,
rsa_private_key_path,
service_account_email,
command_to_be_sent_to_device,
):
scope = "https://www.googleapis.com/auth/cloud-platform"
access_token = generate_access_token(
cloud_region,
project_id,
registry_id,
device_id,
scope,
algorithm,
rsa_private_key_path,
)
service_account_token = exchange_device_access_token_for_service_account_access_token(
access_token, service_account_email
)
command_payload = json.dumps(
{
"binaryData": base64.urlsafe_b64encode(
command_to_be_sent_to_device.encode("utf-8")
).decode("utf-8")
}
)
command_url = "https://cloudiot.googleapis.com/v1/projects/{}/locations/{}/registries/{}/devices/{}:sendCommandToDevice".format(
project_id, cloud_region, registry_id, device_id
)
command_resp = req.post(
url=command_url,
data=command_payload,
headers={
"authorization": "Bearer {}".format(service_account_token),
"content-type": "application/json",
"cache-control": "no-cache",
},
)
assert command_resp.ok, command_resp.raise_for_status()
print(
"Successfully sent command {} to device.".format(command_to_be_sent_to_device)
)
|
Apache License 2.0
|
maxjiang93/space_time_pde
|
src/unet3d.py
|
UNet3d.__init__
|
python
|
def __init__(self, in_features=4, out_features=32, igres=(4, 32, 32), ogres=None,
nf=16, mf=512):
super(UNet3d, self).__init__()
self.igres = igres
self.nf = nf
self.mf = mf
self.in_features = in_features
self.out_features = out_features
if ogres is None:
self.ogres = self.igres
else:
self.ogres = ogres
mul = np.array(self.ogres) / np.array(self.igres)
fac = np.log2(mul)
if not np.allclose(fac%1, np.zeros_like(fac)):
raise ValueError("ogres must be 2^k times greater than igres where k >= 0. "
"Instead igres: {}, ogres: {}".format(igres, ogres))
if not np.all(fac>=0):
raise ValueError("ogres must be greater or equal to igres. "
"Instead igres: {}, ogres: {}".format(igres, ogres))
self.exp_fac = fac.astype(np.int32)
if not np.allclose(self.exp_fac, np.zeros_like(self.exp_fac)):
self.expand = True
else:
self.expand = False
if isinstance(self.igres, int):
self.igres = tuple([self.igres] * 3)
if isinstance(self.ogres, int):
self.ogres = tuple([self.ogres] * 3)
self._check_grid_res()
self.li = math.log(np.max(np.array(self.igres)), 2)
self.lo = math.log(np.max(np.array(self.ogres)), 2)
assert self.li % 1 == 0
assert self.lo % 1 == 0
self.li = int(self.li)
self.lo = int(self.lo)
self._create_layers()
|
initialize 3D UNet.
Args:
in_features: int, number of input features.
out_features: int, number of output features.
igres: tuple, input grid resolution in each dimension. each dimension must be integer
powers of 2.
ogres: tuple, output grid resolution in each dimension. each dimension must be integer
powers of 2. #NOTE for now must be same as igres or must be 2^k multipliers of igres.
nf: int, number of base feature layers.
mf: int, a cap for max number of feature layers throughout the network.
|
https://github.com/maxjiang93/space_time_pde/blob/5e355b0434baf1757d071ce993b84073c8426223/src/unet3d.py#L63-L120
|
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResBlock3D(nn.Module):
def __init__(self, in_channels, neck_channels, out_channels, final_relu=True):
super(ResBlock3D, self).__init__()
self.in_channels = in_channels
self.neck_channels = neck_channels
self.out_channels = out_channels
self.conv1 = nn.Conv3d(in_channels, neck_channels, kernel_size=1, stride=1)
self.conv2 = nn.Conv3d(neck_channels, neck_channels, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv3d(neck_channels, out_channels, kernel_size=1, stride=1)
self.bn1 = nn.BatchNorm3d(num_features=neck_channels)
self.bn2 = nn.BatchNorm3d(num_features=neck_channels)
self.bn3 = nn.BatchNorm3d(num_features=out_channels)
self.shortcut = nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1)
self.final_relu = final_relu
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x += self.shortcut(identity)
if self.final_relu:
x = F.relu(x)
return x
class UNet3d(nn.Module):
|
MIT License
|
aws-samples/aws-device-farm-appium-python-tests-for-android-sample-app
|
tests/pages/alerts_page.py
|
AlertsPage.alert_text_is_displayed
|
python
|
def alert_text_is_displayed(self):
alert_text = self.driver.find_element_by_name(self.ALERT_MESSAGE_NAME)
return alert_text.is_displayed()
|
Returns visibility of alert's message as a boolean.
|
https://github.com/aws-samples/aws-device-farm-appium-python-tests-for-android-sample-app/blob/86182ec2fae531f7376fc4b7261529700d67eb0f/tests/pages/alerts_page.py#L28-L31
|
from tests.pages.base_pages.base_page import BasePage
class AlertsPage(BasePage):
ALERT_BUTTON_NAME = "ALERT"
ALERT_MESSAGE_NAME = "This is the alert message"
OK_BUTTON_NAME = "OK"
def click_alert_button(self):
alert_button = self.driver.find_element_by_name(self.ALERT_BUTTON_NAME)
alert_button.click()
|
Apache License 2.0
|
googlecloudplatform/data-pipeline
|
app/src/pipelines/stages/hadoopshutdown.py
|
HadoopShutdown.run
|
python
|
def run(self, config):
ShutdownHadoopCluster(config)
|
Deletes Google Compute Engine instances of the Hadoop cluster.
|
https://github.com/googlecloudplatform/data-pipeline/blob/0bdd1664bc9ff5e36928c4609ef6127ef1e1fb3f/app/src/pipelines/stages/hadoopshutdown.py#L90-L92
|
import logging
from src import auth
from src.hadoop import datastore
from src.hadoop import hadoop_cluster
from src.pipelines import pipeline
SCOPE = ['https://www.googleapis.com/auth/compute']
class HadoopShutdownError(Exception):
def ShutdownHadoopCluster(config):
logging.debug('Shutdown Hadoop cluster: %s', str(config))
try:
project = config['project']
prefix = config['prefix']
except KeyError as e:
raise HadoopShutdownError(
'Hadoop Shutdown: Missing required parameter: %s' % str(e))
clusters = datastore.ClusterInfo.query(
datastore.ClusterInfo.project == project,
datastore.ClusterInfo.prefix == prefix).fetch()
if not clusters:
raise HadoopShutdownError(
'Hadoop Shutdown: No cluster found in project "%s" with prefix "%s"',
project, prefix)
for cluster_info in clusters:
logging.info('Shutdown Hadoop cluster: %s', str(cluster_info.key.id()))
cluster = hadoop_cluster.HadoopCluster(
auth.Service.HttpFromServiceAccount(SCOPE),
cluster_id=cluster_info.key.id())
cluster.TeardownCluster()
class HadoopShutdown(pipeline.Pipeline):
@staticmethod
def GetHelp():
return """Shutdown the hadoop cluster.
The stage config should look like this:
```python
{
"project": "hadoop project name",
"prefix": ""
}
```
"""
|
Apache License 2.0
|
idea-fasoc/fasoc
|
generators/memory-gen/bin/MemGen.py
|
MemGen.toolenv
|
python
|
def toolenv(self):
self.hspicepath=os.popen("which hspice").read().replace('\n','')
self.spectrepath=os.popen("which spectre").read().replace('\n','')
self.liberatepath=os.popen("which liberate").read().replace('\n','')
self.virtuosopath=os.popen("which virtuoso").read().replace('\n','')
if os.path.exists(self.hspicepath):
vli=os.popen("hspice -v").read().split()
self.hversion=vli[vli.index("Version")+1]
log.info(" Using %s hspice version for the library characterization"%self.hversion)
elif os.path.exists(self.spectrepath):
log.info(" Using spectre for the library characterization")
else:
log.warning("No simulators are set. Lib generation for SRAM might fail...")
if os.path.exists(self.virtuosopath):
log.info(" Using Ocean for the design space exploration")
else:
log.error("OCEAN is not set. Can not generate the SRAM. Exiting now...")
sys.exit(1)
if os.path.exists(self.spectrepath):
log.info(" Using spectre for the design space exploration")
else:
log.error("Spectre simulator is not set. Can not generate the SRAM. Exiting now...")
sys.exit(1)
if os.path.exists(self.liberatepath):
log.info(" Using Liberate for Lib characterization")
else:
log.warning("Liberate is not set. Can not generate Lib files for SRAM ")
|
Checks the environment of the required tools for running the sims.
|
https://github.com/idea-fasoc/fasoc/blob/bb978c68e92b2f4cf8eb52d98a347b7643be83b3/generators/memory-gen/bin/MemGen.py#L590-L633
|
import os
import sys
import re
import datetime
import time
import smtplib
import logging
import getpass
from optparse import OptionParser
import math
import shutil
import tempfile
import subprocess as sp
import json
global log
log=logging.getLogger(__name__)
class PDKError(Exception):
pass
class MemGen():
def __init__(self):
if p_options['Toolenvt']:
pass
else:
try:
os.mkdir('runfiles')
except OSError:
if os.path.exists('runfiles'):
log.debug("Directory already exists")
else:
log.error("Unable to create the dir, check the permissions of the run dir %s"%rundir)
sys.exit(1)
self.runfilesdir = os.path.join(rundir,'runfiles')
self.digitalflowdir = os.path.join(rundir, 'apr')
self.digitalflowsrcdir = os.path.join(self.digitalflowdir, 'src')
if p_options['Mode'] == 'verilog':
self.ConfigParser()
self.SRAMConfig()
self.VerilogGen()
self.Filemanage()
elif p_options['Mode'] == 'macro':
binDir = os.path.dirname(os.path.abspath(__file__))
genDir = os.path.dirname(binDir)
genName = os.path.split(genDir)[1]
genParentdir = os.path.split(genDir)[0]
genParentdirName = os.path.split(genParentdir)[1]
Fasocdir = os.path.split(genParentdir)[0]
self.Fasocdir = Fasocdir
self.digitalflowdir = os.path.join(Fasocdir, 'private', genParentdirName, genName, 'apr')
self.digitalflowsrcdir = os.path.join(self.digitalflowdir, 'src')
self.ConfigParser()
self.SRAMConfig()
self.VerilogGen()
log.info("Successfully generated the SRAM verilog files")
if os.path.exists(os.path.join(Fasocdir, 'private')):
self.DataPrep()
self.Synthesis()
self.PNR()
self.Filemanage()
log.info("Successfully generated the syntehsizable SRAM. Refer the outputs dir for all the generated outputs")
else:
log.error("Unable to find the directory %s with MemGen synthesis and apr scripts. Unable to run the synthesis and PNR of the memory"%os.path.join(Fasocdir, 'private'))
sys.exit(1)
def ConfigParser(self):
log.info(" Loading the memory specs config file %s"%p_options['Config'])
try:
with open(p_options['Config']) as file:
self.config = json.load(file)
except ValueError as e:
log.error('Error occurred opening or loading json file.')
log.error('Exception: %s' % str(e))
sys.exit(1)
self.sram_name = self.config["module_name"]
self.nowords = self.config["specifications"]["nowords"]
self.word_size = self.config["specifications"]["word_size"]
def SRAMConfig(self):
log.info("Determining the SRAM Configuration")
nbfra, nbwhole = math.modf((self.nowords*self.word_size)/16384);
if nbfra:
log.error("The memory for the specified words %d can not be generated"%self.nowords)
log.error("Due to current limitations of the tool, the memory not in multiples of 2 Kilo Bytes can not be generated")
log.error("Please specify the size in multiples of 2KB and re-run")
sys.exit(1)
elif not nbfra:
bsbfra, bsbwhole = math.modf(math.log2(nbwhole))
if bsbfra:
log.error("The number of banks should be integer powers of 2 Ex: 2^n, where n=natural number (1,2,3,4). Please specify the correct size and re-run the MemGen")
sys.exit(1)
else:
self.no_banks = int(nbwhole)
self.banksel_bits = int(bsbwhole)
self.bank_address_size = 9
self.address_size = (self.banksel_bits+self.bank_address_size)
self.decoder_bits = self.banksel_bits
self.muxsel_bits = self.banksel_bits
log.info("Below is the SRAM configuration:\n SRAM Capacity : %d KB \n No of Banks : %d \n Address bits : %d \n Bank Address Size : %d \n"%(self.no_banks*2, self.no_banks, self.address_size, self.bank_address_size))
def VerilogGen(self):
log.info("Generating the verilog modules")
self.Verilogrundir = os.path.join(self.runfilesdir, 'VerilogGen')
try:
os.mkdir(self.Verilogrundir)
os.chdir(self.Verilogrundir)
except OSError:
if os.path.exists(self.Verilogrundir):
log.info("Directory %s already exists"%self.Verilogrundir)
log.info(" Cleaning up the existing SRAM verilog files")
os.chdir(self.Verilogrundir)
evs=li=os.popen("ls *.v*").read().split()
for l in evs:
log.info("Removing %s"%l)
os.remove(l)
else:
log.error("Unable to create the dir %s, Can not run the VerilogGen. Exitting MemGen.."%self.Verilogrundir)
sys.exit(1)
self.decoder_name = "decoder_%dto%d"%(self.decoder_bits, self.no_banks)
self.mux_name = "mux_%dto1"%self.no_banks
self.VerilogGen_decoder()
self.VerilogGen_mux()
self.VerilogGen_SRAM()
log.info("Successfully completed the generation of all the required verilog modules.")
os.chdir(rundir)
def VerilogGen_decoder(self):
self.decoder=os.path.join(self.Verilogrundir,self.decoder_name+'.v')
log.info("Generating the verilog file %s"%self.decoder_name)
dfh=open(self.decoder, 'w')
dfh.write("module %s (DATA_REQ, ADDR, DATA_REQIN);\n"%self.decoder_name)
dfh.write(" parameter no_banks = %d;\n"%self.no_banks)
dfh.write(" parameter banksel_bits = %d;\n"%self.banksel_bits)
dfh.write(" output [no_banks-1:0] DATA_REQ;\n")
dfh.write(" input [banksel_bits-1:0] ADDR;\n")
dfh.write(" input DATA_REQIN;\n")
dfh.write(" reg [no_banks-1:0] DATA_REQ;\n")
dfh.write(" always @(DATA_REQIN or ADDR) begin\n")
dfh.write(" if (DATA_REQIN == 1'b1)\n")
dfh.write(" case (ADDR)\n")
addr = '0'*self.banksel_bits
for i in range (1, self.no_banks+1):
decoded_addr='0'*self.no_banks
if i!=1:
addr=self.add('1',addr)
decoded_addr=decoded_addr[0:self.no_banks-i]+'1'+decoded_addr[self.no_banks-i:self.no_banks-1]
dfh.write(" %d'b%s: DATA_REQ = %d'b%s;\n"%(self.banksel_bits, addr, self.no_banks, decoded_addr))
dfh.write(" endcase\n")
dfh.write(" else if (DATA_REQIN == 0)\n")
data_req_val = '0'*self.no_banks
dfh.write(" DATA_REQ = %d'b%s;\n"%(self.no_banks, data_req_val))
dfh.write(" end\n")
dfh.write("endmodule\n")
dfh.close()
log.info("Successfully generated the verilog file %s"%self.decoder_name)
def VerilogGen_mux(self):
self.mux=os.path.join(self.Verilogrundir,self.mux_name+'.v')
log.info("Generating the verilog file %s"%self.mux_name)
mfh=open(self.mux, 'w')
mfh.write("module %s (DATA_OUT, DATA_IN, DATA_SEL);\n"%self.mux_name)
mfh.write(" parameter word_size = %d;\n"%self.word_size)
mfh.write(" parameter no_banks = %d;\n"%self.no_banks)
mfh.write(" parameter banksel_bits = %d;\n"%self.banksel_bits)
mfh.write(" output [word_size-1:0] DATA_OUT;\n")
mfh.write(" input [word_size-1:0] DATA_IN [no_banks-1:0];\n")
mfh.write(" input [banksel_bits-1:0] DATA_SEL;\n")
mfh.write(" reg [word_size-1:0] DATA_OUT;\n")
DATA_IN_str =''
for ba in range(0, self.no_banks):
DATA_IN_str=DATA_IN_str+"DATA_IN[%d]"%ba
DATA_IN_str=DATA_IN_str+' or '
mfh.write(" always @(%s DATA_SEL) begin\n"%DATA_IN_str)
mfh.write(" case ( DATA_SEL )\n")
addr = '0'*self.banksel_bits
for k in range(0, self.no_banks):
if k!=0:
addr=self.add('1',addr)
mfh.write(" %d'b%s: DATA_OUT = DATA_IN[%d];\n"%(self.banksel_bits, addr, k))
default_data_out = 'x'*self.word_size
mfh.write(" default: DATA_OUT = %d'b%s;\n"%(self.word_size, default_data_out))
mfh.write(" endcase\n")
mfh.write(" end\n")
mfh.write("endmodule\n")
mfh.close()
log.info("Successfully generated the verilog file %s"%self.mux_name)
def VerilogGen_SRAM(self):
self.sram=os.path.join(self.Verilogrundir,self.sram_name+'.v')
log.info("Generating the verilog file %s"%self.sram_name)
sfh=open(self.sram, 'w')
sfh.write("`timescale 1ns / 1ns\n")
sfh.write('`include "%s.v"\n'%self.decoder_name)
sfh.write('`include "%s.v"\n\n\n'%self.mux_name)
if p_options['PDK'] =='gf12lp':
sfh.write("module %s (DOUT, ADDR, CLK, CEN, DIN, WE);\n"%self.sram_name)
else:
sfh.write("module %s (DOUT, ADDR, CLK, DBE, CEN, DIN, WE);\n"%self.sram_name)
sfh.write(" parameter address_size = %d;\n"%self.address_size)
sfh.write(" parameter no_banks = %d;\n"%self.no_banks)
sfh.write(" parameter bank_address_size = %d;\n"%self.bank_address_size)
sfh.write(" parameter word_size = %d;\n"%self.word_size)
sfh.write(" input CLK, CEN, WE;\n")
if p_options['PDK'] !='gf12lp':
sfh.write(" input [3:0] DBE;\n")
sfh.write(" input [address_size-1:0] ADDR;\n")
sfh.write(" input [word_size-1:0] DIN;\n")
sfh.write(" output [word_size-1:0] DOUT;\n")
sfh.write(" wire [no_banks-1:0] DATA_REQ;\n")
sfh.write(" wire [word_size-1:0] DATA_SRAM_BANK_OUT [no_banks-1:0];\n")
sfh.write(" %s DI (.DATA_REQ(DATA_REQ), .ADDR(ADDR[address_size-1:bank_address_size]), .DATA_REQIN(CEN));\n"%(self.decoder_name))
for j in range(0, self.no_banks):
if p_options['PDK'] =='gf12lp':
sfh.write(" SRAM_2KB_GF12 SR%d ( .DOUT(DATA_SRAM_BANK_OUT[%d]), .ADDR_IN(ADDR[bank_address_size-1:0]), .CLK_IN(CLK), .CE_IN(DATA_REQ[%d]), .DIN(DIN), .WE_IN(WE));\n"%(j, j, j))
else:
sfh.write(" SRAM_2KB SR%d ( .DOUT(DATA_SRAM_BANK_OUT[%d]), .ADDR_IN(ADDR[bank_address_size-1:0]), .CLK_IN(CLK), .DATA_BE_IN(DBE), .DATA_REQ_IN(DATA_REQ[%d]), .DIN(DIN), .WE_IN(WE));\n"%(j, j, j))
sfh.write(" %s MI (.DATA_OUT(DOUT), .DATA_IN(DATA_SRAM_BANK_OUT), .DATA_SEL(ADDR[address_size-1:bank_address_size]));\n"%(self.mux_name))
sfh.write("endmodule\n")
sfh.close()
log.info("Successfully generated the verilog file %s"%self.sram_name)
def DataPrep(self):
log.info("Preparing the Data for running the synthesis and PNR")
if not os.path.isdir(self.digitalflowsrcdir):
log.info("The dir %s does not exists"%self.digitalflowsrcdir)
try:
log.info("Creating the directory %s"%self.digitalflowsrcdir)
os.mkdir(self.digitalflowsrcdir)
except OSError:
log.error("Unable to create the %s directory"%self.digitalflowsrcdir)
log.error("Can not proceed to synthesis and PNR. Exiting.....")
sys.exit(1)
try:
shutil.copy(self.sram, self.digitalflowsrcdir)
except IOError as e:
log.error("Unable to copy the file to %s under the digital flow source directory %s"%(self.sram, self.digitalflowsrcdir))
if not os.path.exists(self.sram):
log.error("%s verilog is not created. Check the run log for the errors"%self.sram)
log.error("SRAM generation failed. Check the log file for more information.")
sys.exit(1)
try:
shutil.copy(self.decoder, self.digitalflowsrcdir)
except IOError as e:
log.error("Unable to copy the file to %s under the digital flow source directory %s"%(self.decoder, self.digitalflowsrcdir))
if not os.path.exists(self.decoder):
log.error("%s verilog is not created. Check the run log for the errors"%self.decoder)
log.error("Decoder generation failed. Check the log file for more information.")
sys.exit(1)
try:
shutil.copy(self.mux, self.digitalflowsrcdir)
except IOError as e:
log.error("Unable to copy the file to %s under the digital flow source directory %s"%(self.mux, self.digitalflowsrcdir))
if not os.path.exists(self.mux):
log.error("%s verilog is not created. Check the run log for the errors"%self.mux)
log.error("Multiplexer generation failed. Check the log file for more information.")
sys.exit(1)
log.info("Updating the include.mk file")
with open(self.digitalflowdir + '/include.mk', 'r') as file:
filedata = file.read()
filedata = re.sub(r'export DESIGN_NAME :=.*', r'export DESIGN_NAME := ' + self.sram_name, filedata)
filedata = re.sub(r'export PLATFORM *:=.*', r'export PLATFORM := ' + p_options["PDK"], filedata)
with open(self.digitalflowdir + '/include.mk', 'w') as file:
file.write(filedata)
self.scriptsdir=self.digitalflowdir + '/scripts/'
if not os.path.exists(self.scriptsdir):
log.error("%s does not exist. The PDK specific are not found. Make sure the apr scripts exists"%self.scriptsdir)
sys.exit(1)
else:
self.dcscriptsdir=self.scriptsdir+'dc'
self.invscriptsdir=self.scriptsdir+'innovus'
if not os.path.isdir(self.dcscriptsdir):
os.makedirs(self.dcscriptsdir)
if not os.path.isdir(self.invscriptsdir):
os.makedirs(self.invscriptsdir)
try:
pdkdcdir=self.scriptsdir+'%s/dc'%p_options["PDK"]
files = os.listdir(pdkdcdir)
for f in files:
file_name = os.path.join(pdkdcdir, f)
if (os.path.isfile(file_name)):
shutil.copy(file_name, self.dcscriptsdir)
except IOError as e:
log.error("Unable to copy the pdk specific dc compiler scripts under the directory %s"%(pdkdcdir))
if not os.path.exists(pdkdcdir):
log.error("%s does not exist. Make sure the apr scripts are present in the path"%pdkdcdir)
sys.exit(1)
try:
pdkinvdir=self.scriptsdir+'%s/innovus'%p_options["PDK"]
files = os.listdir(pdkinvdir)
for f in files:
file_name = os.path.join(pdkinvdir, f)
if (os.path.isfile(file_name)):
shutil.copy(file_name, self.invscriptsdir)
except IOError as e:
log.error("Unable to copy the pdk specific innovus scripts under the directory %s"%(pdkinvdir))
if not os.path.exists(pdkinvdir):
log.error("%s does not exist. Make sure the apr scripts are present in the path"%pdkinvdir)
sys.exit(1)
with open(self.digitalflowdir + '/scripts/dc/dc.filelist.tcl', 'r') as file:
filedata = file.read()
sourcefile = "./src/"+self.sram_name+'.v'
filedata = re.sub(r'set SVERILOG_SOURCE_FILES ".*"', r'set SVERILOG_SOURCE_FILES "' + sourcefile + '\"', filedata)
with open(self.digitalflowdir + '/scripts/dc/dc.filelist.tcl', 'w') as file:
file.write(filedata)
log.info('Loading platform_config file...')
try:
with open(self.Fasocdir+'/config/platform_config.json') as file:
platformConfig = json.load(file)
except ValueError as e:
log.error('Error occurred opening or loading json file.')
log.error('Exception: %s' % str(e))
sys.exit(1)
digitalflowexprdir=os.path.join(self.digitalflowdir,'blocks/SRAM_2KB/export')
SRAM_2KB_dir=os.path.join(platformConfig["platforms"][p_options["PDK"]]["aux_lib"],'SRAM_2KB/latest')
if not os.path.isdir(digitalflowexprdir):
os.makedirs(digitalflowexprdir)
log.info("Copying the SRAM_2KB macro related files to %s dir "%digitalflowexprdir)
try:
files = os.listdir(SRAM_2KB_dir)
for f in files:
file_name = os.path.join(SRAM_2KB_dir, f)
if (os.path.isfile(file_name)):
shutil.copy(file_name, digitalflowexprdir)
except IOError as e:
log.error("Unable to copy the SRAM_2KB library under the directory %s"%(digitalflowexprdir))
if not os.path.exists(SRAM_2KB_dir):
log.error("%s does not exist. Provide the correct path in the config json file"%SRAM_2KB_dir)
sys.exit(1)
def Synthesis(self):
log.info("Running the synthesis for the design %s"%self.sram_name)
os.chdir(self.digitalflowdir)
p1=sp.Popen("make synth", shell=True)
p1.wait()
with open(self.digitalflowdir + '/reports/dc/' + self.sram_name + '.mapped.area.rpt', 'r')as file:
filedata = file.read()
m = re.search('Total cell area: *([0-9.]*)', filedata)
if m:
self.coreCellArea = float(m.group(1))
log.info("Completed the synthesis for the design %s"%self.sram_name)
else:
log.error('Synthesis Failed')
sys.exit(1)
os.chdir(rundir)
def PNR(self):
log.info("Running the APR for the design %s"%self.sram_name)
os.chdir(self.digitalflowdir)
p2 = sp.Popen("make design", shell=True)
p2.wait()
p3 = sp.Popen(['make','lvs'], shell=True)
p3.wait()
p4 = sp.Popen(['make','drc'], shell=True)
p4.wait()
p5 = sp.Popen("make export", shell=True)
p5.wait()
with open(self.digitalflowdir + '/reports/innovus/' + self.sram_name + '.main.htm.ascii', 'r') as file:
filedata = file.read()
m = re.search('Total area of Chip: ([0-9.]*)', filedata)
if m:
self.designArea = float(m.group(1))
log.info("Completed the APR for the design %s"%self.sram_name)
else:
log.error('APR Failed')
sys.exit(1)
os.chdir(rundir)
def Filemanage(self):
fileName= self.digitalflowdir +'/export/'+self.sram_name
if p_options['Mode'] == 'verilog':
try:
shutil.copy(self.decoder, p_options['Opdir'])
shutil.copy(self.mux, p_options['Opdir'])
shutil.copy(self.sram, p_options['Opdir'])
except IOError as e:
log.error("Unable to copy the generated verilog files to the outputs dir, %s"%(p_options['Opdir']))
if not os.path.exists(self.decoder):
log.error("SRAM decoder verilog is not created.")
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1)
if not os.path.exists(self.mux):
log.error("SRAM Multiplexer verilog is not created.")
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1)
if not os.path.exists(self.sram):
log.error("SRAM macro verilog is not created.")
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1)
self.config['results'] = {'platform': p_options['PDK']}
mem_x = 310.05 ;
mem_y = 198.06 ;
BLOCK_OFFSET = 10 ;
nofbanks = self.no_banks ;
cols = nofbanks/2 ;
rows=2 ;
MACROS_WIDTH = cols*(BLOCK_OFFSET+mem_x+BLOCK_OFFSET) ;
MACROS_HEIGHT = rows*(BLOCK_OFFSET+mem_y+BLOCK_OFFSET) ;
CORE_WIDTH = MACROS_WIDTH
CORE_HEIGHT = MACROS_HEIGHT+50 ;
mem_area = CORE_WIDTH*CORE_HEIGHT
mem_ar = CORE_WIDTH/CORE_HEIGHT
mem_power = nofbanks*100e-6*1.2 ;
self.config['results'].update({'area': mem_area})
self.config['results'].update({'AspectRatio': mem_ar})
self.config['results'].update({'Power': mem_power})
self.config['results'].update({'word_size': self.word_size })
self.config['results'].update({'nowords': self.nowords})
with open(p_options['Opdir'] + '/' + self.sram_name + '.json', 'w') as resultSpecfile:
json.dump(self.config, resultSpecfile, indent=True)
elif p_options['Mode'] == 'macro':
fileName= self.digitalflowdir +'/export/'+self.sram_name
try:
vf = fileName+'.lvs.v'
shutil.copy(vf, p_options['Opdir'])
except IOError as e:
log.error("Unable to copy the file %s to the outputs dir, %s"%(vf, p_options['Opdir']))
if not os.path.exists(vf):
log.error("%s verilog is not created. Check if the APR is successful and the verilog file is generated. Check the run log"%vf)
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1)
try:
gds = fileName+'.gds.gz'
shutil.copy(gds, p_options['Opdir'])
except IOError as e:
log.error("Unable to copy the file %s to the outputs dir, %s"%(gds, p_options['Opdir']))
if not os.path.exists(gds):
log.error("%s GDS is not created. Check if the APR is successful and the GDS is generated. Check the run log"%gds)
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1)
try:
lef = fileName+'.lef'
shutil.copy(lef, p_options['Opdir'])
except IOError as e:
log.error("Unable to copy the file %s to the outputs dir, %s"%(lef, p_options['Opdir']))
if not os.path.exists(lef):
log.error("%s LEF is not created. Check if the APR is successful and the GDS is generated. Check the run log"%lef)
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1)
try:
lib = fileName+'_typ.lib'
shutil.copy(lib, p_options['Opdir'])
except IOError as e:
log.error("Unable to copy the file %s to the outputs dir, %s"%(lib, p_options['Opdir']))
if not os.path.exists(lib):
log.error("%s Lib is not created. Check if the APR is successful and the GDS is generated. Check the run log"%lib)
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1)
try:
db = fileName+'_typ.db'
shutil.copy(db, p_options['Opdir'])
except IOError as e:
log.error("Unable to copy the file %s to the outputs dir, %s"%(db, p_options['Opdir']))
if not os.path.exists(db):
log.error("%s DB is not created. Check if the APR is successful and the GDS is generated. Check the run log"%db)
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1)
''' #CDL #Commented out for now as CADRE is not enabled for calibre DRC and LVS. CDL will generated as part of LVS process.
try:
cdl = fileName+'.spi'
shutil.copy(cdl, p_options['Opdir'])
except IOError as e:
log.error("Unable to copy the file %s to the outputs dir, %s"%(cdl, p_options['Opdir']))
if not os.path.exists(cdl):
log.error("%s Spice netlist is not created. Check if the APR is successful and the GDS is generated. Check the run log"%cdl)
log.error("SRAM Macro Generation Failed. Check the log file for more information.")
sys.exit(1) '''
self.config['results'] = {'platform': p_options['PDK']}
mem_x = 310.05 ;
mem_y = 198.06 ;
BLOCK_OFFSET = 10 ;
nofbanks = self.no_banks ;
cols = nofbanks/2 ;
rows=2 ;
MACROS_WIDTH = cols*(BLOCK_OFFSET+mem_x+BLOCK_OFFSET) ;
MACROS_HEIGHT = rows*(BLOCK_OFFSET+mem_y+BLOCK_OFFSET) ;
CORE_WIDTH = MACROS_WIDTH
CORE_HEIGHT = MACROS_HEIGHT+50 ;
mem_area = CORE_WIDTH*CORE_HEIGHT
mem_ar = CORE_WIDTH/CORE_HEIGHT
mem_power = nofbanks*100e-6*1.2 ;
self.config['results'].update({'area': mem_area})
self.config['results'].update({'AspectRatio': mem_ar})
self.config['results'].update({'Power': mem_power})
self.config['results'].update({'AspectRatio': mem_ar})
self.config['results'].update({'Power': mem_power})
self.config['results'].update({'word_size': self.word_size })
self.config['results'].update({'nowords': self.nowords})
with open(p_options['Opdir'] + '/' + self.sram_name + '.json', 'w') as resultSpecfile:
json.dump(self.config, resultSpecfile, indent=True)
|
MIT License
|
cortex-lab/phy
|
phy/cluster/supervisor.py
|
TaskLogger._eval
|
python
|
def _eval(self, task):
sender, name, args, kwargs = task
logger.log(5, "Calling %s.%s(%s)", sender.__class__.__name__, name, args, kwargs)
f = getattr(sender, name)
callback = partial(self._callback, task)
argspec = inspect.getfullargspec(f)
argspec = argspec.args + argspec.kwonlyargs
if 'callback' in argspec:
f(*args, **kwargs, callback=callback)
else:
def _cluster_callback(tsender, up):
self._callback(task, up)
connect(_cluster_callback, event='cluster', sender=self.supervisor)
f(*args, **kwargs)
unconnect(_cluster_callback)
|
Evaluate a task and call a callback function.
|
https://github.com/cortex-lab/phy/blob/9a330b9437a3d0b40a37a201d147224e6e7fb462/phy/cluster/supervisor.py#L101-L117
|
from functools import partial
import inspect
import logging
import numpy as np
from ._history import GlobalHistory
from ._utils import create_cluster_meta
from .clustering import Clustering
from phylib.utils import Bunch, emit, connect, unconnect
from phy.gui.actions import Actions
from phy.gui.qt import _block, set_busy, _wait
from phy.gui.widgets import Table, HTMLWidget, _uniq, Barrier
logger = logging.getLogger(__name__)
def _process_ups(ups):
if len(ups) == 0:
return
elif len(ups) == 1:
return ups[0]
elif len(ups) == 2:
up = ups[0]
up.update(ups[1])
return up
else:
raise NotImplementedError()
def _ensure_all_ints(l):
if (l is None or l == []):
return
for i in range(len(l)):
l[i] = int(l[i])
class TaskLogger(object):
auto_select_after_action = False
def __init__(self, cluster_view=None, similarity_view=None, supervisor=None):
self.cluster_view = cluster_view
self.similarity_view = similarity_view
self.supervisor = supervisor
self._processing = False
self._history = []
self._queue = []
def enqueue(self, sender, name, *args, output=None, **kwargs):
logger.log(
5, "Enqueue %s %s %s %s (%s)", sender.__class__.__name__, name, args, kwargs, output)
self._queue.append((sender, name, args, kwargs))
def dequeue(self):
return self._queue.pop(0) if self._queue else None
def _callback(self, task, output):
self._log(task, output)
self.enqueue_after(task, output)
self.process()
|
BSD 3-Clause New or Revised License
|
raamana/pyradigm
|
pyradigm/pyradigm.py
|
MLDataset.__iter__
|
python
|
def __iter__(self):
for subject, data in self.data.items():
yield subject, data
|
Iterator over samples
|
https://github.com/raamana/pyradigm/blob/7c40b228fcd3b447c738852ef9c870a8d679da98/pyradigm/pyradigm.py#L991-L995
|
__all__ = ['MLDataset', 'cli_run', 'check_compatibility']
import argparse
import copy
import logging
import numpy as np
import os
import pickle
import random
import sys
import traceback
from warnings import warn, catch_warnings, filterwarnings, simplefilter
from collections.abc import Sequence
from collections import Counter, OrderedDict
from itertools import islice
from os.path import basename, dirname, exists as pexists, isfile, join as pjoin, realpath
class MLDataset(object):
def __init__(self, filepath=None,
in_dataset=None,
arff_path=None,
data=None, labels=None, classes=None,
description='',
feature_names=None,
encode_nonnumeric=False):
if filepath is not None:
if isfile(realpath(filepath)):
self.__load(filepath)
else:
raise IOError('Specified file could not be read.')
elif arff_path is not None:
arff_path = realpath(arff_path)
if isfile(arff_path):
self.__load_arff(arff_path, encode_nonnumeric)
else:
raise IOError('Given ARFF can not be found!')
elif in_dataset is not None:
if not isinstance(in_dataset, MLDataset):
raise ValueError('Invalid class input: MLDataset expected!')
if in_dataset.num_samples <= 0:
raise ValueError('Dataset to copy is empty.')
self.__copy(in_dataset)
elif data is None and labels is None and classes is None:
self.__data = OrderedDict()
self.__labels = OrderedDict()
self.__classes = OrderedDict()
self.__num_features = 0
self.__dtype = None
self.__description = ''
self.__feature_names = None
elif data is not None and labels is not None and classes is not None:
self.__validate(data, labels, classes)
self.__data = OrderedDict(data)
self.__labels = OrderedDict(labels)
self.__classes = OrderedDict(classes)
self.__description = description
sample_ids = list(data)
features0 = data[sample_ids[0]]
self.__num_features = features0.size if isinstance(features0,
np.ndarray) else len(
features0)
self.__dtype = type(data[sample_ids[0]])
if feature_names is None:
self.__feature_names = self.__str_names(self.num_features)
else:
self.__feature_names = feature_names
else:
raise ValueError('Incorrect way to construct the dataset.')
@property
def data(self):
return self.__data
def data_and_labels(self):
sample_ids = np.array(self.keys)
label_dict = self.labels
matrix = np.full([self.num_samples, self.num_features], np.nan)
labels = np.full([self.num_samples, 1], np.nan)
for ix, sample in enumerate(sample_ids):
matrix[ix, :] = self.__data[sample]
labels[ix] = label_dict[sample]
return matrix, np.ravel(labels), sample_ids
@data.setter
def data(self, values, feature_names=None):
if isinstance(values, dict):
if self.__labels is not None and len(self.__labels) != len(values):
raise ValueError(
'number of samples do not match the previously assigned labels')
elif len(values) < 1:
raise ValueError('There must be at least 1 sample in the dataset!')
else:
self.__data = values
self.__num_features = len(values[self.keys[0]])
if feature_names is None:
self.__feature_names = self.__str_names(self.num_features)
else:
self.feature_names = feature_names
else:
raise ValueError('data input must be a dictionary!')
@property
def labels(self):
return self.__labels
@labels.setter
def labels(self, values):
if isinstance(values, dict):
if self.__data is not None and len(self.__data) != len(values):
raise ValueError(
'number of samples do not match the previously assigned data')
elif set(self.keys) != set(list(values)):
raise ValueError('sample ids do not match the previously assigned ids.')
else:
self.__labels = values
else:
raise ValueError('labels input must be a dictionary!')
@property
def classes(self):
return self.__classes
@classes.setter
def classes(self, values):
if isinstance(values, dict):
if self.__data is not None and len(self.__data) != len(values):
raise ValueError(
'number of samples do not match the previously assigned data')
elif set(self.keys) != set(list(values)):
raise ValueError('sample ids do not match the previously assigned ids.')
else:
self.__classes = values
else:
raise ValueError('classes input must be a dictionary!')
@property
def feature_names(self):
return self.__feature_names
@feature_names.setter
def feature_names(self, names):
if len(names) != self.num_features:
raise ValueError("Number of names do not match the number of features!")
if not isinstance(names, (Sequence, np.ndarray, np.generic)):
raise ValueError("Input is not a sequence. "
"Ensure names are in the same order "
"and length as features.")
self.__feature_names = np.array(names)
@property
def class_sizes(self):
return Counter(self.classes.values())
@staticmethod
def __take(nitems, iterable):
return dict(islice(iterable, int(nitems)))
@staticmethod
def __str_names(num):
return np.array(['f{}'.format(x) for x in range(num)])
def glance(self, nitems=5):
nitems = max([1, min([nitems, self.num_samples - 1])])
return self.__take(nitems, iter(self.__data.items()))
def summarize_classes(self):
class_sizes = np.zeros(len(self.class_set))
for idx, cls in enumerate(self.class_set):
class_sizes[idx] = self.class_sizes[cls]
return self.class_set, self.label_set, class_sizes
@classmethod
def check_features(self, features):
if not isinstance(features, np.ndarray):
features = np.asarray(features)
if features.size <= 0:
raise ValueError('provided features are empty.')
if features.ndim > 1:
features = np.ravel(features)
return features
def add_sample(self, sample_id, features, label,
class_id=None,
overwrite=False,
feature_names=None):
if sample_id in self.__data and not overwrite:
raise ValueError('{} already exists in this dataset!'.format(sample_id))
if class_id is None:
class_id = str(label)
features = self.check_features(features)
if self.num_samples <= 0:
self.__data[sample_id] = features
self.__labels[sample_id] = label
self.__classes[sample_id] = class_id
self.__dtype = type(features)
self.__num_features = features.size if isinstance(features,
np.ndarray) else len(
features)
if feature_names is None:
self.__feature_names = self.__str_names(self.num_features)
else:
if self.__num_features != features.size:
raise ValueError('dimensionality of this sample ({}) '
'does not match existing samples ({})'
''.format(features.size, self.__num_features))
if not isinstance(features, self.__dtype):
raise TypeError("Mismatched dtype. Provide {}".format(self.__dtype))
self.__data[sample_id] = features
self.__labels[sample_id] = label
self.__classes[sample_id] = class_id
if feature_names is not None:
if self.__feature_names is None:
self.__feature_names = np.array(feature_names)
else:
if not np.array_equal(self.feature_names, np.array(feature_names)):
raise ValueError(
"supplied feature names do not match the existing names!")
def del_sample(self, sample_id):
if sample_id not in self.__data:
warn('Sample to delete not found in the dataset - nothing to do.')
else:
self.__data.pop(sample_id)
self.__classes.pop(sample_id)
self.__labels.pop(sample_id)
print('{} removed.'.format(sample_id))
def get_feature_subset(self, subset_idx):
subset_idx = np.asarray(subset_idx)
if not (max(subset_idx) < self.__num_features) and (min(subset_idx) >= 0):
raise UnboundLocalError('indices out of range for the dataset. '
'Max index: {} Min index : 0'.format(
self.__num_features))
sub_data = {sample: features[subset_idx] for sample, features in
self.__data.items()}
new_descr = 'Subset features derived from: \n ' + self.__description
subdataset = MLDataset(data=sub_data,
labels=self.__labels, classes=self.__classes,
description=new_descr,
feature_names=self.__feature_names[subset_idx])
return subdataset
@staticmethod
def keys_with_value(dictionary, value):
subset = [key for key in dictionary if dictionary[key] == value]
return subset
def get_class(self, class_id):
if class_id in [None, '']:
raise ValueError("class id can not be empty or None.")
if isinstance(class_id, str):
class_ids = [class_id, ]
else:
class_ids = class_id
non_existent = set(self.class_set).intersection(set(class_ids))
if len(non_existent) < 1:
raise ValueError(
'These classes {} do not exist in this dataset.'.format(non_existent))
subsets = list()
for class_id in class_ids:
subsets_this_class = self.keys_with_value(self.__classes, class_id)
subsets.extend(subsets_this_class)
return self.get_subset(subsets)
def transform(self, func, func_description=None):
if not callable(func):
raise TypeError('Given function {} is not a callable'.format(func))
xfm_ds = MLDataset()
for sample, data in self.__data.items():
try:
xfm_data = func(data)
except:
print('Unable to transform features for {}. Quitting.'.format(sample))
raise
xfm_ds.add_sample(sample, xfm_data,
label=self.__labels[sample],
class_id=self.__classes[sample])
xfm_ds.description = "{}\n{}".format(func_description, self.__description)
return xfm_ds
def train_test_split_ids(self, train_perc=None, count_per_class=None):
_ignore1, _ignore2, class_sizes = self.summarize_classes()
smallest_class_size = np.min(class_sizes)
if count_per_class is None and (0.0 < train_perc < 1.0):
if train_perc < 1.0 / smallest_class_size:
raise ValueError('Training percentage selected too low '
'to return even one sample from the smallest class!')
train_set = self.random_subset_ids(perc_per_class=train_perc)
elif train_perc is None and count_per_class > 0:
if count_per_class >= smallest_class_size:
raise ValueError(
'Selections would exclude the smallest class from test set. '
'Reduce sample count per class for the training set!')
train_set = self.random_subset_ids_by_count(count_per_class=count_per_class)
else:
raise ValueError('Invalid or out of range selection: '
'only one of count or percentage can be used to select subset.')
test_set = list(set(self.keys) - set(train_set))
if len(train_set) < 1 or len(test_set) < 1:
raise ValueError(
'Selection resulted in empty training or test set - check your selections or dataset!')
return train_set, test_set
def random_subset_ids_by_count(self, count_per_class=1):
class_sizes = self.class_sizes
subsets = list()
if count_per_class < 1:
warn('Atleast one sample must be selected from each class')
return list()
elif count_per_class >= self.num_samples:
warn('All samples requested - returning a copy!')
return self.keys
for class_id, class_size in class_sizes.items():
this_class = self.keys_with_value(self.classes, class_id)
random.shuffle(this_class)
subset_size_this_class = max(0, min(class_size, count_per_class))
if subset_size_this_class < 1 or this_class is None:
warn('No subjects from class {} were selected.'.format(class_id))
else:
subsets_this_class = this_class[0:count_per_class]
subsets.extend(subsets_this_class)
if len(subsets) > 0:
return subsets
else:
warn('Zero samples were selected. Returning an empty list!')
return list()
def random_subset_ids(self, perc_per_class=0.5):
class_sizes = self.class_sizes
subsets = list()
if perc_per_class <= 0.0:
warn('Zero percentage requested - returning an empty dataset!')
return list()
elif perc_per_class >= 1.0:
warn('Full or a larger dataset requested - returning a copy!')
return self.keys
for class_id, class_size in class_sizes.items():
this_class = self.keys_with_value(self.classes, class_id)
random.shuffle(this_class)
subset_size_this_class = np.int64(np.floor(class_size * perc_per_class))
subset_size_this_class = max(1, min(class_size, subset_size_this_class))
if subset_size_this_class < 1 or len(this_class) < 1 or this_class is None:
raise ValueError(
'No subjects from class {} were selected.'.format(class_id))
else:
subsets_this_class = this_class[0:subset_size_this_class]
subsets.extend(subsets_this_class)
if len(subsets) > 0:
return subsets
else:
warn('Zero samples were selected. Returning an empty list!')
return list()
def random_subset(self, perc_in_class=0.5):
subsets = self.random_subset_ids(perc_in_class)
if len(subsets) > 0:
return self.get_subset(subsets)
else:
warn('Zero samples were selected. Returning an empty dataset!')
return MLDataset()
def sample_ids_in_class(self, class_id):
subset_ids = self.keys_with_value(self.classes, class_id)
return subset_ids
def get_subset(self, subset_ids):
num_existing_keys = sum([1 for key in subset_ids if key in self.__data])
if subset_ids is not None and num_existing_keys > 0:
data = self.__get_subset_from_dict(self.__data, subset_ids)
labels = self.__get_subset_from_dict(self.__labels, subset_ids)
if self.__classes is not None:
classes = self.__get_subset_from_dict(self.__classes, subset_ids)
else:
classes = None
subdataset = MLDataset(data=data, labels=labels, classes=classes)
subdataset.description += '\n Subset derived from: ' + self.description
subdataset.feature_names = self.__feature_names
subdataset.__dtype = self.dtype
return subdataset
else:
warn('subset of IDs requested do not exist in the dataset!')
return MLDataset()
def get_data_matrix_in_order(self, subset_ids):
if len(subset_ids) < 1:
warn('subset must have atleast one ID - returning empty matrix!')
return np.empty((0, 0))
if isinstance(subset_ids, set):
raise TypeError('Input set is not ordered, hence can not guarantee order! '
'Must provide a list or tuple.')
if isinstance(subset_ids, str):
subset_ids = [subset_ids, ]
num_existing_keys = sum([1 for key in subset_ids if key in self.__data])
if num_existing_keys < len(subset_ids):
raise ValueError('One or more IDs from subset do not exist in the dataset!')
matrix = np.full((num_existing_keys, self.num_features), np.nan)
for idx, sid in enumerate(subset_ids):
matrix[idx, :] = self.__data[sid]
return matrix
def __contains__(self, item):
if item in self.keys:
return True
else:
return False
def get(self, item, not_found_value=None):
if item in self.keys:
return self.__data[item]
else:
return not_found_value
def __getitem__(self, item):
if item in self.keys:
return self.__data[item]
else:
raise KeyError('{} not found in dataset.'.format(item))
def __setitem__(self, item, features):
if item in self.__data:
features = self.check_features(features)
if self.__num_features != features.size:
raise ValueError('dimensionality of supplied features ({}) '
'does not match existing samples ({})'
''.format(features.size, self.__num_features))
self.__data[item] = features
else:
raise KeyError('{} not found in dataset.'
' Can not replace features of a non-existing sample.'
' Add it first via .add_sample()'.format(item))
|
MIT License
|
openstack/manila
|
manila/share/drivers/generic.py
|
GenericShareDriver.get_network_allocations_number
|
python
|
def get_network_allocations_number(self):
return 0
|
Get number of network interfaces to be created.
|
https://github.com/openstack/manila/blob/34d209484366cd921e052d37c5f9daef5e97af20/manila/share/drivers/generic.py#L888-L893
|
import os
import time
from oslo_concurrency import processutils
from oslo_config import cfg
from oslo_log import log
from oslo_utils import importutils
from oslo_utils import units
import six
from manila.common import constants as const
from manila import compute
from manila import context
from manila import exception
from manila.i18n import _
from manila.share import driver
from manila.share.drivers import service_instance
from manila import utils
from manila import volume
LOG = log.getLogger(__name__)
share_opts = [
cfg.StrOpt('smb_template_config_path',
default='$state_path/smb.conf',
help="Path to smb config."),
cfg.StrOpt('volume_name_template',
default='manila-share-%s',
help="Volume name template."),
cfg.StrOpt('volume_snapshot_name_template',
default='manila-snapshot-%s',
help="Volume snapshot name template."),
cfg.StrOpt('share_mount_path',
default='/shares',
help="Parent path in service instance where shares "
"will be mounted."),
cfg.IntOpt('max_time_to_create_volume',
default=180,
help="Maximum time to wait for creating cinder volume."),
cfg.IntOpt('max_time_to_extend_volume',
default=180,
help="Maximum time to wait for extending cinder volume."),
cfg.IntOpt('max_time_to_attach',
default=120,
help="Maximum time to wait for attaching cinder volume."),
cfg.StrOpt('service_instance_smb_config_path',
default='$share_mount_path/smb.conf',
help="Path to SMB config in service instance."),
cfg.ListOpt('share_helpers',
default=[
'CIFS=manila.share.drivers.helpers.CIFSHelperIPAccess',
'NFS=manila.share.drivers.helpers.NFSHelper',
],
help='Specify list of share export helpers.'),
cfg.StrOpt('share_volume_fstype',
default='ext4',
choices=['ext4', 'ext3'],
help='Filesystem type of the share volume.'),
cfg.StrOpt('cinder_volume_type',
help='Name or id of cinder volume type which will be used '
'for all volumes created by driver.'),
]
CONF = cfg.CONF
CONF.register_opts(share_opts)
BLOCK_DEVICE_SIZE_INDEX = 1
USED_SPACE_INDEX = 2
def ensure_server(f):
def wrap(self, context, *args, **kwargs):
server = kwargs.get('share_server')
if not self.driver_handles_share_servers:
if not server:
server = self.service_instance_manager.get_common_server()
kwargs['share_server'] = server
else:
raise exception.ManilaException(
_("Share server handling is not available. "
"But 'share_server' was provided. '%s'. "
"Share network should not be used.") % server.get('id'))
elif not server:
raise exception.ManilaException(
_("Share server handling is enabled. But 'share_server' "
"is not provided. Make sure you used 'share_network'."))
if not server.get('backend_details'):
raise exception.ManilaException(
_("Share server '%s' does not have backend details.") %
server['id'])
if not self.service_instance_manager.ensure_service_instance(
context, server['backend_details']):
raise exception.ServiceInstanceUnavailable()
return f(self, context, *args, **kwargs)
return wrap
class GenericShareDriver(driver.ExecuteMixin, driver.ShareDriver):
def __init__(self, *args, **kwargs):
super(GenericShareDriver, self).__init__(
[False, True], *args, **kwargs)
self.admin_context = context.get_admin_context()
self.configuration.append_config_values(share_opts)
self._helpers = {}
self.backend_name = self.configuration.safe_get(
'share_backend_name') or "Cinder_Volumes"
self.ssh_connections = {}
self._setup_service_instance_manager()
self.private_storage = kwargs.get('private_storage')
def _setup_service_instance_manager(self):
self.service_instance_manager = (
service_instance.ServiceInstanceManager(
driver_config=self.configuration))
def _ssh_exec(self, server, command, check_exit_code=True):
LOG.debug("_ssh_exec - server: %s, command: %s, check_exit_code: %s",
server, command, check_exit_code)
connection = self.ssh_connections.get(server['instance_id'])
ssh_conn_timeout = self.configuration.ssh_conn_timeout
if not connection:
ssh_pool = utils.SSHPool(server['ip'],
22,
ssh_conn_timeout,
server['username'],
server.get('password'),
server.get('pk_path'),
max_size=1)
ssh = ssh_pool.create()
self.ssh_connections[server['instance_id']] = (ssh_pool, ssh)
else:
ssh_pool, ssh = connection
if not ssh.get_transport().is_active():
ssh_pool.remove(ssh)
ssh = ssh_pool.create()
self.ssh_connections[server['instance_id']] = (ssh_pool, ssh)
wrap = lambda token: "\"" + token + "\""
command = [wrap(tkn) if tkn.count(' ') else tkn for tkn in command]
return processutils.ssh_execute(ssh, ' '.join(command),
check_exit_code=check_exit_code)
def check_for_setup_error(self):
def do_setup(self, context):
super(GenericShareDriver, self).do_setup(context)
self.compute_api = compute.API()
self.volume_api = volume.API()
self._setup_helpers()
common_sv_available = False
share_server = None
sv_fetch_retry_interval = 5
while not (common_sv_available or self.driver_handles_share_servers):
try:
share_server = (
self.service_instance_manager.get_common_server())
common_sv_available = self._is_share_server_active(
context, share_server)
except Exception as ex:
LOG.error(ex)
if not common_sv_available:
time.sleep(sv_fetch_retry_interval)
LOG.warning("Waiting for the common service VM to become "
"available. "
"Driver is currently uninitialized. "
"Share server: %(share_server)s "
"Retry interval: %(retry_interval)s",
dict(share_server=share_server,
retry_interval=sv_fetch_retry_interval))
def _setup_helpers(self):
helpers = self.configuration.share_helpers
if helpers:
for helper_str in helpers:
share_proto, __, import_str = helper_str.partition('=')
helper = importutils.import_class(import_str)
self._helpers[share_proto.upper()] = helper(
self._execute,
self._ssh_exec,
self.configuration)
else:
raise exception.ManilaException(
"No protocol helpers selected for Generic Driver. "
"Please specify using config option 'share_helpers'.")
@ensure_server
def create_share(self, context, share, share_server=None):
return self._create_share(
context, share,
snapshot=None,
share_server=share_server,
)
def _create_share(self, context, share, snapshot, share_server=None):
helper = self._get_helper(share)
server_details = share_server['backend_details']
volume = self._allocate_container(
self.admin_context, share, snapshot=snapshot)
volume = self._attach_volume(
self.admin_context, share, server_details['instance_id'], volume)
if not snapshot:
self._format_device(server_details, volume)
self._mount_device(share, server_details, volume)
export_locations = helper.create_exports(
server_details, share['name'])
return export_locations
@utils.retry(retry_param=exception.ProcessExecutionError, backoff_rate=1)
def _is_device_file_available(self, server_details, volume):
command = ['sudo', 'test', '-b', volume['mountpoint']]
self._ssh_exec(server_details, command)
def _format_device(self, server_details, volume):
self._is_device_file_available(server_details, volume)
command = ['sudo', 'mkfs.%s' % self.configuration.share_volume_fstype,
volume['mountpoint']]
self._ssh_exec(server_details, command)
def _is_device_mounted(self, mount_path, server_details, volume=None):
log_data = {
'mount_path': mount_path,
'server_id': server_details['instance_id'],
}
if volume and volume.get('mountpoint', ''):
log_data['volume_id'] = volume['id']
log_data['dev_mount_path'] = volume['mountpoint']
msg = ("Checking whether volume '%(volume_id)s' with mountpoint "
"'%(dev_mount_path)s' is mounted on mount path '%(mount_p"
"ath)s' on server '%(server_id)s' or not." % log_data)
else:
msg = ("Checking whether mount path '%(mount_path)s' exists on "
"server '%(server_id)s' or not." % log_data)
LOG.debug(msg)
mounts_list_cmd = ['sudo', 'mount']
output, __ = self._ssh_exec(server_details, mounts_list_cmd)
mounts = output.split('\n')
for mount in mounts:
mount_elements = mount.split(' ')
if (len(mount_elements) > 2 and mount_path == mount_elements[2]):
if volume:
if (volume.get('mountpoint', '') == mount_elements[0]):
return True
else:
return True
return False
def _add_mount_permanently(self, share_id, server_details):
try:
self._ssh_exec(
server_details,
['grep', share_id, const.MOUNT_FILE_TEMP,
'|', 'sudo', 'tee', '-a', const.MOUNT_FILE],
)
except exception.ProcessExecutionError as e:
LOG.error("Failed to add 'Share-%(share_id)s' mount "
"permanently on server '%(instance_id)s'.",
{"share_id": share_id,
"instance_id": server_details['instance_id']})
raise exception.ShareBackendException(msg=six.text_type(e))
try:
self._ssh_exec(server_details, ['sudo', 'mount', '-a'])
except exception.ProcessExecutionError:
LOG.error("Failed to mount all shares on server '%s'.",
server_details['instance_id'])
def _remove_mount_permanently(self, share_id, server_details):
try:
self._ssh_exec(
server_details,
['sudo', 'sed', '-i', '\'/%s/d\'' % share_id,
const.MOUNT_FILE],
)
except exception.ProcessExecutionError as e:
LOG.error("Failed to remove 'Share-%(share_id)s' mount "
"permanently on server '%(instance_id)s'.",
{"share_id": share_id,
"instance_id": server_details['instance_id']})
raise exception.ShareBackendException(msg=six.text_type(e))
def _mount_device(self, share, server_details, volume):
@utils.synchronized('generic_driver_mounts_'
'%s' % server_details['instance_id'])
def _mount_device_with_lock():
mount_path = self._get_mount_path(share)
device_path = volume['mountpoint']
log_data = {
'dev': device_path,
'path': mount_path,
'server': server_details['instance_id'],
}
try:
if not self._is_device_mounted(mount_path, server_details,
volume):
LOG.debug("Mounting '%(dev)s' to path '%(path)s' on "
"server '%(server)s'.", log_data)
mount_cmd = (
'sudo', 'mkdir', '-p', mount_path,
'&&', 'sudo', 'mount', device_path, mount_path,
'&&', 'sudo', 'chmod', '777', mount_path,
'&&', 'sudo', 'umount', mount_path,
'&&', 'sudo', 'e2fsck', '-y', '-f', device_path,
'&&', 'sudo', 'tune2fs', '-U', 'random', device_path,
'&&', 'sudo', 'mount', device_path, mount_path,
)
self._ssh_exec(server_details, mount_cmd)
self._add_mount_permanently(share.id, server_details)
else:
LOG.warning("Mount point '%(path)s' already exists on "
"server '%(server)s'.", log_data)
except exception.ProcessExecutionError as e:
raise exception.ShareBackendException(msg=six.text_type(e))
return _mount_device_with_lock()
@utils.retry(retry_param=exception.ProcessExecutionError)
def _unmount_device(self, share, server_details):
@utils.synchronized('generic_driver_mounts_'
'%s' % server_details['instance_id'])
def _unmount_device_with_lock():
mount_path = self._get_mount_path(share)
log_data = {
'path': mount_path,
'server': server_details['instance_id'],
}
if self._is_device_mounted(mount_path, server_details):
LOG.debug("Unmounting path '%(path)s' on server "
"'%(server)s'.", log_data)
unmount_cmd = ['sudo', 'umount', mount_path, '&&', 'sudo',
'rmdir', mount_path]
self._ssh_exec(server_details, unmount_cmd)
self._remove_mount_permanently(share.id, server_details)
else:
LOG.warning("Mount point '%(path)s' does not exist on "
"server '%(server)s'.", log_data)
return _unmount_device_with_lock()
def _get_mount_path(self, share):
return os.path.join(self.configuration.share_mount_path, share['name'])
def _attach_volume(self, context, share, instance_id, volume):
@utils.synchronized(
"generic_driver_attach_detach_%s" % instance_id, external=True)
def do_attach(volume):
if volume['status'] == 'in-use':
attached_volumes = [vol.id for vol in
self.compute_api.instance_volumes_list(
self.admin_context, instance_id)]
if volume['id'] in attached_volumes:
return volume
else:
raise exception.ManilaException(
_('Volume %s is already attached to another instance')
% volume['id'])
@utils.retry(retries=3,
interval=2,
backoff_rate=1)
def attach_volume():
self.compute_api.instance_volume_attach(
self.admin_context, instance_id, volume['id'])
attach_volume()
t = time.time()
while time.time() - t < self.configuration.max_time_to_attach:
volume = self.volume_api.get(context, volume['id'])
if volume['status'] == 'in-use':
return volume
elif volume['status'] not in ('attaching', 'reserved'):
raise exception.ManilaException(
_('Failed to attach volume %s') % volume['id'])
time.sleep(1)
else:
err_msg = {
'volume_id': volume['id'],
'max_time': self.configuration.max_time_to_attach
}
raise exception.ManilaException(
_('Volume %(volume_id)s has not been attached in '
'%(max_time)ss. Giving up.') % err_msg)
return do_attach(volume)
def _get_volume_name(self, share_id):
return self.configuration.volume_name_template % share_id
def _get_volume(self, context, share_id):
volume_id = self.private_storage.get(share_id, 'volume_id')
if volume_id is not None:
return self.volume_api.get(context, volume_id)
else:
return self._get_volume_legacy(context, share_id)
def _get_volume_legacy(self, context, share_id):
volume_name = self._get_volume_name(share_id)
search_opts = {'name': volume_name}
if context.is_admin:
search_opts['all_tenants'] = True
volumes_list = self.volume_api.get_all(context, search_opts)
if len(volumes_list) == 1:
return volumes_list[0]
elif len(volumes_list) > 1:
LOG.error(
"Expected only one volume in volume list with name "
"'%(name)s', but got more than one in a result - "
"'%(result)s'.", {
'name': volume_name, 'result': volumes_list})
raise exception.ManilaException(
_("Error. Ambiguous volumes for name '%s'") % volume_name)
return None
def _get_volume_snapshot(self, context, snapshot_id):
volume_snapshot_id = self.private_storage.get(
snapshot_id, 'volume_snapshot_id')
if volume_snapshot_id is not None:
return self.volume_api.get_snapshot(context, volume_snapshot_id)
else:
return self._get_volume_snapshot_legacy(context, snapshot_id)
def _get_volume_snapshot_legacy(self, context, snapshot_id):
volume_snapshot_name = (
self.configuration.volume_snapshot_name_template % snapshot_id)
volume_snapshot_list = self.volume_api.get_all_snapshots(
context, {'name': volume_snapshot_name})
volume_snapshot = None
if len(volume_snapshot_list) == 1:
volume_snapshot = volume_snapshot_list[0]
elif len(volume_snapshot_list) > 1:
LOG.error(
"Expected only one volume snapshot in list with name "
"'%(name)s', but got more than one in a result - "
"'%(result)s'.", {
'name': volume_snapshot_name,
'result': volume_snapshot_list})
raise exception.ManilaException(
_('Error. Ambiguous volume snaphots'))
return volume_snapshot
def _detach_volume(self, context, share, server_details):
instance_id = server_details['instance_id']
@utils.synchronized(
"generic_driver_attach_detach_%s" % instance_id, external=True)
def do_detach():
attached_volumes = [vol.id for vol in
self.compute_api.instance_volumes_list(
self.admin_context, instance_id)]
try:
volume = self._get_volume(context, share['id'])
except exception.VolumeNotFound:
LOG.warning("Volume not found for share %s. "
"Possibly already deleted.", share['id'])
volume = None
if volume and volume['id'] in attached_volumes:
self.compute_api.instance_volume_detach(
self.admin_context,
instance_id,
volume['id']
)
t = time.time()
while time.time() - t < self.configuration.max_time_to_attach:
volume = self.volume_api.get(context, volume['id'])
if volume['status'] in (const.STATUS_AVAILABLE,
const.STATUS_ERROR):
break
time.sleep(1)
else:
err_msg = {
'volume_id': volume['id'],
'max_time': self.configuration.max_time_to_attach
}
raise exception.ManilaException(
_('Volume %(volume_id)s has not been detached in '
'%(max_time)ss. Giving up.') % err_msg)
do_detach()
def _allocate_container(self, context, share, snapshot=None):
volume_snapshot = None
if snapshot:
volume_snapshot = self._get_volume_snapshot(context,
snapshot['id'])
volume = self.volume_api.create(
context,
share['size'],
self.configuration.volume_name_template % share['id'], '',
snapshot=volume_snapshot,
volume_type=self.configuration.cinder_volume_type,
availability_zone=share['availability_zone'])
self.private_storage.update(
share['id'], {'volume_id': volume['id']})
msg_error = _('Failed to create volume')
msg_timeout = (
_('Volume has not been created in %ss. Giving up') %
self.configuration.max_time_to_create_volume
)
return self._wait_for_available_volume(
volume, self.configuration.max_time_to_create_volume,
msg_error=msg_error, msg_timeout=msg_timeout
)
def _wait_for_available_volume(self, volume, timeout,
msg_error, msg_timeout,
expected_size=None):
t = time.time()
while time.time() - t < timeout:
if volume['status'] == const.STATUS_AVAILABLE:
if expected_size and volume['size'] != expected_size:
LOG.debug("The volume %(vol_id)s is available but the "
"volume size does not match the expected size. "
"A volume resize operation may be pending. "
"Expected size: %(expected_size)s, "
"Actual size: %(volume_size)s.",
dict(vol_id=volume['id'],
expected_size=expected_size,
volume_size=volume['size']))
else:
break
elif 'error' in volume['status'].lower():
raise exception.ManilaException(msg_error)
time.sleep(1)
volume = self.volume_api.get(self.admin_context, volume['id'])
else:
raise exception.ManilaException(msg_timeout)
return volume
def _deallocate_container(self, context, share):
try:
volume = self._get_volume(context, share['id'])
except exception.VolumeNotFound:
LOG.info("Volume not found. Already deleted?")
volume = None
if volume:
if volume['status'] == 'in-use':
raise exception.ManilaException(
_('Volume is still in use and '
'cannot be deleted now.'))
self.volume_api.delete(context, volume['id'])
t = time.time()
while (time.time() - t <
self.configuration.max_time_to_create_volume):
try:
volume = self.volume_api.get(context, volume['id'])
except exception.VolumeNotFound:
LOG.debug('Volume was deleted successfully')
break
time.sleep(1)
else:
raise exception.ManilaException(
_('Volume have not been '
'deleted in %ss. Giving up')
% self.configuration.max_time_to_create_volume)
def _update_share_stats(self):
data = dict(
share_backend_name=self.backend_name,
storage_protocol='NFS_CIFS',
reserved_percentage=self.configuration.reserved_share_percentage,
reserved_snapshot_percentage=(
self.configuration.reserved_share_from_snapshot_percentage
or self.configuration.reserved_share_percentage),
)
super(GenericShareDriver, self)._update_share_stats(data)
@ensure_server
def create_share_from_snapshot(self, context, share, snapshot,
share_server=None, parent_share=None):
return self._create_share(
context, share,
snapshot=snapshot,
share_server=share_server,
)
@ensure_server
def extend_share(self, share, new_size, share_server=None):
server_details = share_server['backend_details']
helper = self._get_helper(share)
helper.disable_access_for_maintenance(server_details, share['name'])
self._unmount_device(share, server_details)
volume = self._get_volume(self.admin_context, share['id'])
if int(new_size) > volume['size']:
self._detach_volume(self.admin_context, share, server_details)
volume = self._extend_volume(self.admin_context, volume, new_size)
volume = self._attach_volume(
self.admin_context,
share,
server_details['instance_id'],
volume)
self._resize_filesystem(server_details, volume, new_size=new_size)
self._mount_device(share, server_details, volume)
helper.restore_access_after_maintenance(server_details,
share['name'])
def _extend_volume(self, context, volume, new_size):
self.volume_api.extend(context, volume['id'], new_size)
msg_error = _('Failed to extend volume %s') % volume['id']
msg_timeout = (
_('Volume has not been extended in %ss. Giving up') %
self.configuration.max_time_to_extend_volume
)
return self._wait_for_available_volume(
volume, self.configuration.max_time_to_extend_volume,
msg_error=msg_error, msg_timeout=msg_timeout,
expected_size=new_size
)
@ensure_server
def shrink_share(self, share, new_size, share_server=None):
server_details = share_server['backend_details']
helper = self._get_helper(share)
export_location = share['export_locations'][0]['path']
mount_path = helper.get_share_path_by_export_location(
server_details, export_location)
consumed_space = self._get_consumed_space(mount_path, server_details)
LOG.debug("Consumed space on share: %s", consumed_space)
if consumed_space >= new_size:
raise exception.ShareShrinkingPossibleDataLoss(
share_id=share['id'])
volume = self._get_volume(self.admin_context, share['id'])
helper.disable_access_for_maintenance(server_details, share['name'])
self._unmount_device(share, server_details)
try:
self._resize_filesystem(server_details, volume, new_size=new_size)
except exception.Invalid:
raise exception.ShareShrinkingPossibleDataLoss(
share_id=share['id'])
except Exception as e:
msg = _("Cannot shrink share: %s") % six.text_type(e)
raise exception.Invalid(msg)
finally:
self._mount_device(share, server_details, volume)
helper.restore_access_after_maintenance(server_details,
share['name'])
def _resize_filesystem(self, server_details, volume, new_size=None):
check_command = ['sudo', 'fsck', '-pf', volume['mountpoint']]
self._ssh_exec(server_details, check_command)
command = ['sudo', 'resize2fs', volume['mountpoint']]
if new_size:
command.append("%sG" % six.text_type(new_size))
try:
self._ssh_exec(server_details, command)
except processutils.ProcessExecutionError as e:
if e.stderr.find('New size smaller than minimum') != -1:
msg = (_("Invalid 'new_size' provided: %s")
% six.text_type(new_size))
raise exception.Invalid(msg)
else:
msg = _("Cannot resize file-system: %s") % six.text_type(e)
raise exception.ManilaException(msg)
def _is_share_server_active(self, context, share_server):
has_active_share_server = (
share_server and share_server.get('backend_details') and
self.service_instance_manager.ensure_service_instance(
context, share_server['backend_details']))
return has_active_share_server
def delete_share(self, context, share, share_server=None):
helper = self._get_helper(share)
if not self.driver_handles_share_servers:
share_server = self.service_instance_manager.get_common_server()
if self._is_share_server_active(context, share_server):
helper.remove_exports(
share_server['backend_details'], share['name'])
self._unmount_device(share, share_server['backend_details'])
self._detach_volume(self.admin_context, share,
share_server['backend_details'])
self._deallocate_container(self.admin_context, share)
self.private_storage.delete(share['id'])
def create_snapshot(self, context, snapshot, share_server=None):
model_update = {}
volume = self._get_volume(
self.admin_context, snapshot['share_instance_id'])
volume_snapshot_name = (self.configuration.
volume_snapshot_name_template % snapshot['id'])
volume_snapshot = self.volume_api.create_snapshot_force(
self.admin_context, volume['id'], volume_snapshot_name, '')
t = time.time()
while time.time() - t < self.configuration.max_time_to_create_volume:
if volume_snapshot['status'] == const.STATUS_AVAILABLE:
break
if volume_snapshot['status'] == const.STATUS_ERROR:
raise exception.ManilaException(_('Failed to create volume '
'snapshot'))
time.sleep(1)
volume_snapshot = self.volume_api.get_snapshot(
self.admin_context,
volume_snapshot['id'])
self.private_storage.update(
snapshot['id'], {'volume_snapshot_id': volume_snapshot['id']})
model_update['provider_location'] = volume_snapshot['id']
else:
raise exception.ManilaException(
_('Volume snapshot have not been '
'created in %ss. Giving up') %
self.configuration.max_time_to_create_volume)
return model_update
def delete_snapshot(self, context, snapshot, share_server=None):
volume_snapshot = self._get_volume_snapshot(self.admin_context,
snapshot['id'])
if volume_snapshot is None:
return
self.volume_api.delete_snapshot(self.admin_context,
volume_snapshot['id'])
t = time.time()
while time.time() - t < self.configuration.max_time_to_create_volume:
try:
snapshot = self.volume_api.get_snapshot(self.admin_context,
volume_snapshot['id'])
except exception.VolumeSnapshotNotFound:
LOG.debug('Volume snapshot was deleted successfully')
self.private_storage.delete(snapshot['id'])
break
time.sleep(1)
else:
raise exception.ManilaException(
_('Volume snapshot have not been '
'deleted in %ss. Giving up') %
self.configuration.max_time_to_create_volume)
@ensure_server
def ensure_share(self, context, share, share_server=None):
helper = self._get_helper(share)
volume = self._get_volume(context, share['id'])
if volume:
volume = self._attach_volume(
context,
share,
share_server['backend_details']['instance_id'],
volume)
self._mount_device(share, share_server['backend_details'], volume)
helper.create_exports(
share_server['backend_details'], share['name'], recreate=True)
@ensure_server
def update_access(self, context, share, access_rules, add_rules,
delete_rules, share_server=None):
self._get_helper(share).update_access(share_server['backend_details'],
share['name'], access_rules,
add_rules=add_rules,
delete_rules=delete_rules)
def _get_helper(self, share):
helper = self._helpers.get(share['share_proto'])
if helper:
return helper
else:
raise exception.InvalidShare(
reason="Wrong, unsupported or disabled protocol")
|
Apache License 2.0
|
pyxll/remote-notebook
|
pyxll_notebook/client/kernel.py
|
Kernel.run_notebook
|
python
|
async def run_notebook(self, path):
url = self.__url + "/api/contents/" + path
async with aiohttp.ClientSession(cookie_jar=self.__authenticator.cookie_jar) as session:
async with session.get(url, headers=self.__authenticator.headers) as response:
try:
await response.read()
response.raise_for_status()
file = await response.json()
except Exception:
self.__authenticator.reset()
raise
await self.execute(f"__pyxll_notebook_session__ = '{self.__session_id}'")
await self.execute(f"__pyxll_pickle_protocol__ = {pickle.HIGHEST_PROTOCOL}")
cells = file["content"]["cells"]
code = [c["source"] for c in cells if len(c["source"]) > 0 and c["cell_type"] == "code"]
for c in code:
await self.execute(c)
|
Run all cells in a notebook
|
https://github.com/pyxll/remote-notebook/blob/321c3fd6978a7e6a7c8500cb7d6d1727d21ecbee/pyxll_notebook/client/kernel.py#L100-L121
|
from .handler import Handler
from .events import MessageReplyEvent
from ..errors import *
from typing import *
import datetime as dt
import urllib.parse
import websockets
import logging
import aiohttp
import asyncio
import pickle
import json
import uuid
import os
import re
_log = logging.getLogger(__name__)
class Kernel:
default_handler_cls = Handler
message_protocol_version = "5.0"
def __init__(self, url, authenticator, handler=None):
if handler is None:
handler = self.default_handler_cls(self)
self.__url = url
self.__handler = handler
self.__kernel = None
self.__ws = None
self.__session_id = uuid.uuid1().hex
self.__username = os.getlogin()
self.__kernel_url = None
self.__ws_url = None
self.__authenticator = authenticator
self.__message_events: Dict[str, MessageReplyEvent] = {}
async def start(self):
url = self.__url
ws_url = None
if not self.__authenticator.authenticated:
await self.__authenticator.authenticate()
kernels_url = url + "/api/kernels"
async with aiohttp.ClientSession(cookie_jar=self.__authenticator.cookie_jar) as session:
async with session.post(kernels_url, headers=self.__authenticator.headers) as response:
try:
await response.read()
response.raise_for_status()
except Exception:
self.__authenticator.reset()
raise
if not re.match(r"^application/(?:[\w.+-]+?\+)?json", response.content_type, re.IGNORECASE):
raise KernelStartError("Response ito kernel start request is not JSON data. "
"Check the notebook server is running.")
kernel = await response.json()
if not "id" in kernel:
raise KernelStartError(kernel.get("message"))
kernel_id = kernel["id"]
_log.debug(f"Started new kernel {kernel_id}.")
self.__kernel = kernel
self.__id = kernel_id
self.__kernel_url = kernels_url + "/" + self.__kernel["id"]
if ws_url is None:
u = urllib.parse.urlparse(url)
scheme = "wss" if u.scheme == "https" else "ws"
port = f":{u.port}" if u.port else ""
ws_url = f"{scheme}://{u.hostname}{port}{u.path}"
ws_headers = dict(self.__authenticator.headers)
cookies = self.__authenticator.cookie_jar.filter_cookies(kernels_url)
cookies = [f"{k}={c.value};" for k, c in cookies.items()]
ws_headers["Cookie"] = " ".join(cookies)
self.__ws_url = f"{ws_url}/api/kernels/{kernel_id}/channels?session_id={self.__session_id}"
self.__ws = await websockets.connect(self.__ws_url, max_size=None, extra_headers=ws_headers)
loop = asyncio.get_event_loop()
loop.create_task(self.__poll_ws())
|
MIT License
|
trustyjaid/trusty-cogs
|
hockey/gamedaychannels.py
|
GameDayChannels.gdc_delete
|
python
|
async def gdc_delete(self, ctx: commands.Context) -> None:
await self.delete_gdc(ctx.guild)
await ctx.send(_("Game day channels deleted."))
|
Delete all current game day channels for the server
|
https://github.com/trustyjaid/trusty-cogs/blob/41978fa07fc2964f0dec8c0bbfc5d112802df321/hockey/gamedaychannels.py#L101-L106
|
import logging
from datetime import datetime
from typing import Optional
import discord
from redbot.core import commands
from redbot.core.i18n import Translator
from redbot.core.utils.chat_formatting import humanize_list
from redbot.core.utils.menus import start_adding_reactions
from .abc import MixinMeta
from .constants import TEAMS
from .game import Game
from .helper import HockeyStates, HockeyTeams, utc_to_local
log = logging.getLogger("red.trusty-cogs.Hockey")
_ = Translator("Hockey", __file__)
class GameDayChannels(MixinMeta):
@commands.group()
@commands.mod_or_permissions(manage_channels=True)
@commands.guild_only()
async def gdc(self, ctx: commands.Context) -> None:
@gdc.command(name="settings")
async def gdc_settings(self, ctx: commands.Context) -> None:
async with ctx.typing():
guild = ctx.message.guild
create_channels = await self.config.guild(guild).create_channels()
if create_channels is None:
return
team = await self.config.guild(guild).gdc_team()
if team is None:
team = "None"
channels = await self.config.guild(guild).gdc()
category = guild.get_channel(await self.config.guild(guild).category())
delete_gdc = await self.config.guild(guild).delete_gdc()
game_states = await self.config.guild(guild).gdc_state_updates()
if category is not None:
category = category.name
if channels is not None:
created_channels = ""
for channel in channels:
chn = guild.get_channel(channel)
if chn is not None:
created_channels += chn.mention
else:
created_channels += "<#{}>\n".format(channel)
if len(channels) == 0:
created_channels = "None"
else:
created_channels = "None"
if not ctx.channel.permissions_for(guild.me).embed_links:
msg = _(
"```GDC settings for {guild}\nCreate Game Day Channels: {create_channels}"
"\nDelete Game Day Channels: {delete_gdc}\nTeam: {team}\n"
"Current Channels: {created_channels}\nDefault Game State: {game_states}\n```"
).format(
guild=guild.name,
create_channels=create_channels,
delete_gdc=delete_gdc,
team=team,
created_channels=created_channels,
game_states=humanize_list(game_states),
)
await ctx.send(msg)
if ctx.channel.permissions_for(guild.me).embed_links:
em = discord.Embed(title=_("GDC settings for ") + guild.name)
em.colour = await ctx.embed_colour()
em.add_field(name=_("Create Game Day Channels"), value=str(create_channels))
em.add_field(name=_("Delete Game Day Channels"), value=str(delete_gdc))
em.add_field(name=_("Team"), value=str(team))
em.add_field(name=_("Current Channels"), value=created_channels[:1024])
if not game_states:
game_states = ["None"]
em.add_field(name=_("Default Game States"), value=humanize_list(game_states))
await ctx.send(embed=em)
@gdc.command(name="delete")
|
MIT License
|
wright-group/wrighttools
|
WrightTools/_open.py
|
open
|
python
|
def open(filepath, edit_local=False):
filepath = os.fspath(filepath)
ds = np.DataSource(None)
if edit_local is False:
tf = tempfile.mkstemp(prefix="", suffix=".wt5")
with _open(tf[1], "w+b") as tff:
with ds.open(str(filepath), "rb") as f:
tff.write(f.read())
filepath = tf[1]
f = h5py.File(filepath, "r")
class_name = f["/"].attrs["class"]
name = f["/"].attrs["name"]
f.close()
if class_name == "Data":
obj = wt_data.Data(filepath=str(filepath), name=name, edit_local=True)
elif class_name == "Collection":
obj = wt_collection.Collection(filepath=str(filepath), name=name, edit_local=True)
else:
obj = wt_group.Group(filepath=str(filepath), name=name, edit_local=True)
if edit_local is False:
setattr(obj, "_tmpfile", tf)
weakref.finalize(obj, obj.close)
return obj
|
Open any wt5 file, returning the top-level object (data or collection).
Parameters
----------
filepath : path-like
Path to file.
Can be either a local or remote file (http/ftp).
Can be compressed with gz/bz2, decompression based on file name.
edit_local : boolean (optional)
If True, the file itself will be opened for editing. Otherwise, a
copy will be created. Default is False.
Returns
-------
WrightTools Collection or Data
Root-level object in file.
|
https://github.com/wright-group/wrighttools/blob/7531965dec9a8f52557fbd3c60e12dcd3b6e000b/WrightTools/_open.py#L30-L70
|
import os
import tempfile
import weakref
import h5py
import numpy as np
from . import collection as wt_collection
from . import data as wt_data
from . import _group as wt_group
__all__ = ["open"]
_open = open
|
MIT License
|
vemel/mypy_boto3_builder
|
mypy_boto3_builder/import_helpers/import_record.py
|
ImportRecord.is_standalone
|
python
|
def is_standalone(self) -> bool:
if not self.name or self.fallback:
return True
return False
|
Whether import record should not be grouped.
|
https://github.com/vemel/mypy_boto3_builder/blob/07c9a4273404ea0bb8aa6c14b9ed8b3af1f1a3dd/mypy_boto3_builder/import_helpers/import_record.py#L163-L170
|
from __future__ import annotations
from mypy_boto3_builder.constants import MODULE_NAME, TYPE_DEFS_NAME
from mypy_boto3_builder.import_helpers.import_string import ImportString
class ImportRecord:
builtins_import_string = ImportString("builtins")
third_party_import_strings = (
ImportString("boto3"),
ImportString("botocore"),
)
def __init__(
self,
source: ImportString,
name: str = "",
alias: str = "",
min_version: tuple[int, ...] = (3, 8),
fallback: ImportRecord | None = None,
) -> None:
self.source = source
self.name = name
self.alias = alias
self.min_version = min_version
self.fallback = fallback
def __bool__(self) -> bool:
return bool(self.source)
@classmethod
def empty(cls) -> ImportRecord:
return cls(ImportString.empty())
def render(self) -> str:
if self.name and self.alias:
return f"from {self.source} import {self.name} as {self.alias}"
if self.name:
return f"from {self.source} import {self.name}"
if self.alias:
return f"import {self.source} as {self.alias}"
if self.source:
return f"import {self.source}"
return ""
def __str__(self) -> str:
return self.render()
def __hash__(self) -> int:
return hash(str(self))
def __eq__(self, other: object) -> bool:
if not isinstance(other, ImportRecord):
raise ValueError(f"Cannot compare ImportString with {other}")
return str(self) == str(other)
def __ne__(self, other: object) -> bool:
if not isinstance(other, ImportRecord):
raise ValueError(f"Cannot compare ImportString with {other}")
return not self == other
def __gt__(self, other: ImportRecord) -> bool:
if self.fallback is not None and other.fallback is None:
return True
if other.fallback is not None and self.fallback is None:
return False
if self.source == other.source:
return self.name > other.name
if self.is_local() and not other.is_local():
return True
if other.is_local() and not self.is_local():
return False
if self.is_third_party() and not other.is_third_party():
return True
if other.is_third_party() and not self.is_third_party():
return False
return self.source > other.source
def __lt__(self, other: "ImportRecord") -> bool:
return not self > other
def get_local_name(self) -> str:
return self.alias or self.name or self.source.render()
def is_builtins(self) -> bool:
return self.source.startswith(self.builtins_import_string)
def is_type_defs(self) -> bool:
return self.source.parts[-1] == TYPE_DEFS_NAME
def is_third_party(self) -> bool:
for third_party_import_string in self.third_party_import_strings:
if self.source.startswith(third_party_import_string):
return True
return False
def is_local(self) -> bool:
if not self.source:
return False
if self.source.master_name.startswith(MODULE_NAME):
return True
if self.is_type_defs():
return True
return False
def get_external(self, module_name: str) -> "ImportRecord":
return self
|
MIT License
|
fhpythonutils/cli2gui
|
cli2gui/application/widgets.py
|
Widgets.dropdown
|
python
|
def dropdown(self, key: str, argItems: list[str]) -> Element:
return self.pySimpleGui.Drop(
tuple(argItems),
size=self.sizes["input_size"],
pad=self.sizes["padding"],
key=key,
)
|
Return a dropdown.
|
https://github.com/fhpythonutils/cli2gui/blob/73c3755a66c5cb9bf25ced2125c08e1205a52b12/cli2gui/application/widgets.py#L101-L108
|
from __future__ import annotations
import io
from typing import Any
from PIL import Image, ImageTk
from PySimpleGUI import Element
class Widgets:
def __init__(self, sizes: dict[str, Any], pySimpleGui: Any):
self.sizes = sizes
self.pySimpleGui = pySimpleGui
"""Utility functions that manipulate images and text.
"""
def getImgData(self, imagePath: str, first: bool = False) -> bytes:
img = Image.open(imagePath)
img.thumbnail((self.sizes["title_size"] * 3, self.sizes["title_size"] * 3))
if first:
bio = io.BytesIO()
img.save(bio, format="PNG")
del img
return bio.getvalue()
return ImageTk.PhotoImage(img)
def stringTitlecase(self, string: str, splitStr: str = "ALL"):
_ = self
titleCase = ""
if len(string) > 0:
if splitStr == "ALL":
titleCase = " ".join(
(part[0].upper() + part[1:]) for part in string.replace("-", "_").split("_")
)
else:
titleCase = " ".join(
(part[0].upper() + part[1:]) for part in string.split(splitStr)
)
return titleCase
def stringSentencecase(self, string: str) -> str:
_ = self
if string:
return string[0].upper() + string[1:]
return ""
"""Individual widgets
"""
def inputText(self, key: str) -> Element:
return self.pySimpleGui.InputText(
size=self.sizes["input_size"],
pad=self.sizes["padding"],
key=key,
font=("sans", self.sizes["text_size"]),
)
def check(self, key: str) -> Element:
return self.pySimpleGui.Check(
"", size=self.sizes["input_size"], pad=self.sizes["padding"], key=key
)
def button(self, text: str) -> Element:
return self.pySimpleGui.Button(
text,
size=self.sizes["button"],
pad=self.sizes["padding"],
font=("sans", self.sizes["text_size"]),
)
def label(self, text: str, font: int = 11) -> Element:
return self.pySimpleGui.Text(
text,
size=(
int(self.sizes["label_size"][0] * 11 / font),
self.sizes["label_size"][1],
),
pad=self.sizes["padding"],
font=("sans", font),
)
|
MIT License
|
joshuaskelly/quake-cli-tools
|
qcli/bsp2svg/converter.py
|
simplify_number
|
python
|
def simplify_number(number):
return int(number) if int(number) == number else number
|
Will convert the given number to an integer if number has not fractional
part.
Args:
number: The number to convert to an integer.
Returns:
A number.
|
https://github.com/joshuaskelly/quake-cli-tools/blob/3322e71724a7a13f899281e7acae6c9f2bf2ad55/qcli/bsp2svg/converter.py#L9-L19
|
import os
import svgwrite
from progress.bar import IncrementalBar
from .api import Bsp
|
MIT License
|
dmlc/dgl
|
examples/pytorch/ogb/deepwalk/model.py
|
init_empty_grad
|
python
|
def init_empty_grad(emb_dimension, walk_length, batch_size):
grad_u = torch.zeros((batch_size * walk_length, emb_dimension))
grad_v = torch.zeros((batch_size * walk_length, emb_dimension))
return grad_u, grad_v
|
initialize gradient matrix
|
https://github.com/dmlc/dgl/blob/8341244a2dac850bd0c1153c7641c3b8a2bbfc30/examples/pytorch/ogb/deepwalk/model.py#L93-L98
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import random
import numpy as np
import dgl.multiprocessing as mp
from dgl.multiprocessing import Queue
def init_emb2pos_index(walk_length, window_size, batch_size):
idx_list_u = []
idx_list_v = []
for b in range(batch_size):
for i in range(walk_length):
for j in range(i-window_size, i):
if j >= 0:
idx_list_u.append(j + b * walk_length)
idx_list_v.append(i + b * walk_length)
for j in range(i + 1, i + 1 + window_size):
if j < walk_length:
idx_list_u.append(j + b * walk_length)
idx_list_v.append(i + b * walk_length)
index_emb_posu = torch.LongTensor(idx_list_u)
index_emb_posv = torch.LongTensor(idx_list_v)
return index_emb_posu, index_emb_posv
def init_emb2neg_index(walk_length, window_size, negative, batch_size):
idx_list_u = []
for b in range(batch_size):
for i in range(walk_length):
for j in range(i-window_size, i):
if j >= 0:
idx_list_u += [i + b * walk_length] * negative
for j in range(i+1, i+1+window_size):
if j < walk_length:
idx_list_u += [i + b * walk_length] * negative
idx_list_v = list(range(batch_size * walk_length)) * negative * window_size * 2
random.shuffle(idx_list_v)
idx_list_v = idx_list_v[:len(idx_list_u)]
index_emb_negu = torch.LongTensor(idx_list_u)
index_emb_negv = torch.LongTensor(idx_list_v)
return index_emb_negu, index_emb_negv
def init_weight(walk_length, window_size, batch_size):
weight = []
for b in range(batch_size):
for i in range(walk_length):
for j in range(i-window_size, i):
if j >= 0:
weight.append(1. - float(i - j - 1)/float(window_size))
for j in range(i + 1, i + 1 + window_size):
if j < walk_length:
weight.append(1. - float(j - i - 1)/float(window_size))
return torch.Tensor(weight).unsqueeze(1)
|
Apache License 2.0
|
yxgeee/bake
|
imagenet/pycls/core/builders.py
|
register_model
|
python
|
def register_model(name, ctor):
_models[name] = ctor
|
Registers a model dynamically.
|
https://github.com/yxgeee/bake/blob/07c4f668ea19311d5b50121026e73d2f035d5765/imagenet/pycls/core/builders.py#L56-L58
|
import torch
from pycls.core.config import cfg
from pycls.models.anynet import AnyNet
from pycls.models.effnet import EffNet
from pycls.models.resnet import ResNet
from pycls.models.mobilenetv2 import MobileNetV2
from pycls.models.resnest import ResNeSt
_models = {
"anynet": AnyNet,
"effnet": EffNet,
"resnet": ResNet,
"mobilenetv2": MobileNetV2,
"resnest": ResNeSt,
}
_loss_funs = {"cross_entropy": torch.nn.CrossEntropyLoss}
def get_model():
err_str = "Model type '{}' not supported"
assert cfg.MODEL.TYPE in _models.keys(), err_str.format(cfg.MODEL.TYPE)
return _models[cfg.MODEL.TYPE]
def get_loss_fun():
err_str = "Loss function type '{}' not supported"
assert cfg.MODEL.LOSS_FUN in _loss_funs.keys(), err_str.format(cfg.TRAIN.LOSS)
return _loss_funs[cfg.MODEL.LOSS_FUN]
def build_model():
return get_model()()
def build_loss_fun():
return get_loss_fun()()
|
MIT License
|
kjosib/booze-tools
|
boozetools/parsing/automata.py
|
find_conflicts
|
python
|
def find_conflicts(graph, follow_sets, grammar) -> List[ConflictData]:
result = []
for q, state in enumerate(graph):
degree = collections.Counter(state.shift.keys())
for rule_id in state.reduce:
for token in follow_sets[q,rule_id]:
prefer_shift = token in state.shift and grammar.decide_shift_reduce(token, rule_id) == context_free.RIGHT
if not prefer_shift: degree[token] += 1
conflicted_tokens = set(token for token, count in degree.items() if count > 1)
conflict = ConflictData({token: set() for token in conflicted_tokens}, {})
for rule_id in state.reduce:
contribution = conflicted_tokens & follow_sets[q,rule_id]
conflict.rules[rule_id] = contribution
for token in contribution: conflict.tokens[token].add(rule_id)
result.append(conflict)
return result
|
This drives one of the central ideas of the Minimal-LR(1) algorithm:
Learn which tokens are involved in conflicts, and which rules contribute
to those conflicts for each token (as known to LALR).
Subtleties:
1. If an S/R conflict is DECLARED to shift, then it does not impugn the token,
but the token still refers to the rule in case some other rule MAY reduce.
This routine (and the stuff that uses it) is coded with the idea that the
grammar may leave certain things deliberately non-deterministic. Wherever that
is the case, these algorithms will respect it.
2. There is a way to improve the treatment of R/R conflicts if it is known in
advance that the table will be used deterministically, or if the R/R is
resolved by rule precedence. It involves a pass over the LR(1) item cores
considering the groups that eventually lead to a R/R conflict (they have the
same suffix and follower): among those groups only the "winning" reduction
item needs to stay in the core. This "normalizes" the LR(1) cores so that
potentially fewer distinct ones might be generated.
Alas, idea #2 is not yet implemented. Complex R/R conflicts may still lead to
more states than strictly necessary for a deterministic table. In practice,
this is unlikely to be a real problem: deterministic tables are usually made
from grammars with few LALR conflicts, and in the non-deterministic case
nothing is wasted. Nevertheless, this remains an avenue for improvement.
|
https://github.com/kjosib/booze-tools/blob/ed3333643e0df99231202c024da8c86a9bb5b2bc/boozetools/parsing/automata.py#L580-L623
|
import collections, sys
from typing import NamedTuple, Iterable, TypeVar, Generic, List, Dict, Set, Tuple
from ..support import foundation, pretty, interfaces
from . import context_free
T = TypeVar('T')
class PurityError(ValueError):
class HFA(Generic[T]):
graph: List[T]
initial: List[int]
accept: List[int]
grammar: context_free.ContextFreeGrammar
bft: foundation.BreadthFirstTraversal
def __init__(self, *, graph, initial, accept, grammar, bft):
self.graph, self.initial,self.accept, self.grammar, self.bft = graph, initial, accept, grammar, bft
def display_situation(self, q: int, lookahead: str):
head, *tail = self.bft.shortest_path_to(q)
print('==============\nIn language %r, consider:' % self.grammar.start[self.initial.index(head)])
print('\t' + ' '.join(map(self.bft.breadcrumbs.__getitem__, tail)), pretty.DOT, lookahead)
def earley_core(self, q:int):
return sorted(set((r,p) for r, p, *_ in self.bft.traversal[q]))
def traverse(self, q: int, symbols:Iterable) -> int:
for s in symbols: q = self.graph[q].shift[s]
return q
def make_dot_file(self, path):
with open(path, 'w') as fh:
fh.write("digraph {\n")
for q, state in enumerate(self.graph):
sym = self.bft.breadcrumbs[q] or ''
sym = sym.replace('"', r'\"')
if sym.endswith('\\'): sym = sym + ' '
fh.write("%d [label=\"%d: %s\"]\n"%(q, q, sym))
for i in state.shift.values():
fh.write("\t%d -> %d\n"%(q,i))
fh.write('}\n')
pass
def trial_parse(self, sentence: Iterable):
language_index = 0
initial, accept = self.initial[language_index], self.accept[language_index]
def reduce(stack, rule_id):
rule = self.grammar.rules[rule_id]
for i in range(len(rule.rhs)): stack = stack[1]
return self.graph[stack[0]].shift[rule.lhs], stack
root = (initial, None)
alive = [root]
for lexeme in sentence:
next = []
for stack in alive:
state = self.graph[stack[0]]
if lexeme in state.shift: next.append((state.shift[lexeme], stack))
for rule_id in state.reductions_before(lexeme): alive.append(reduce(stack, rule_id))
alive = next
if not alive: raise interfaces.GeneralizedParseError("Parser died midway at something ungrammatical.")
for stack in alive:
q = stack[0]
if q == accept: return True
for rule_id in self.graph[q].reductions_before(interfaces.END_OF_TOKENS):
alive.append(reduce(stack, rule_id))
raise interfaces.GeneralizedParseError("Parser recognized a viable prefix, but not a complete sentence.")
class LR0_State(NamedTuple):
shift: Dict[str, int]
reduce: Set[int]
def reductions_before(self, lexeme): return self.reduce
def lr0_construction(grammar: context_free.ContextFreeGrammar) -> HFA[LR0_State]:
def build_state(core: frozenset):
step, reduce = collections.defaultdict(set), set()
def visit(item):
rule_id, position = item
if position < len(RHS[rule_id]):
next_symbol = RHS[rule_id][position]
step[next_symbol].add((rule_id,position+1))
return symbol_front.get(next_symbol)
elif rule_id<len(grammar.rules): reduce.add(rule_id)
foundation.transitive_closure(core, visit)
graph.append(LR0_State(shift=ure.find_shifts(step), reduce=reduce, ))
assert grammar.start
RHS = grammar.augmented_rules()
def front(rule_ids): return frozenset([(r,0) for r in rule_ids])
symbol_front = {symbol: front(rule_ids) for symbol, rule_ids in grammar.symbol_rule_ids.items()}
bft = foundation.BreadthFirstTraversal()
ure = UnitReductionEliminator(grammar, bft)
graph = []
initial = [bft.lookup(front([rule_id])) for rule_id in grammar.initial()]
bft.execute(build_state)
accept = [graph[qi].shift[language] for qi, language in zip(initial, grammar.start)]
return HFA(graph=graph, initial=initial, accept=accept, grammar=grammar, bft=bft)
class UnitReductionEliminator:
def __init__(self, grammar: context_free.ContextFreeGrammar, bft: foundation.BreadthFirstTraversal):
self.bft = bft
self.unit_rules = {}
self.eligible_rhs = set()
for rule_id, rule in enumerate(grammar.rules):
if rule.is_rename():
self.unit_rules[rule_id] = rule.lhs
self.eligible_rhs.add(rule.rhs[0])
def find_shifts(self, step: dict) -> dict:
replace = {}
for symbol in self.eligible_rhs & step.keys():
each_item = iter(step[symbol])
rule_id = next(each_item)[0]
if rule_id in self.unit_rules and all(item[0] == rule_id for item in each_item):
replace[symbol] = self.unit_rules[rule_id]
shifts = {}
for symbol in step.keys():
proxy = symbol
while proxy in replace: proxy = replace[proxy]
shifts[symbol] = self.bft.lookup(frozenset(step[proxy]), breadcrumb=proxy)
return shifts
class LA_State(NamedTuple):
shift: Dict[str, int]
reduce: Dict[str, List[int]]
def reductions_before(self, lexeme): return self.reduce.get(lexeme, ())
def lalr_construction(grammar: context_free.ContextFreeGrammar) -> HFA[LA_State]:
lr0 = lr0_construction(grammar)
token_sets, follow = lalr_first_and_follow(lr0)
def make_lalr_state(q:int, node:LR0_State) -> LA_State:
reduce = {}
for rule_id in node.reduce:
for token in token_sets[follow[q, rule_id]]:
assert isinstance(token, str)
if token not in reduce: reduce[token] = [rule_id]
else: reduce[token].append(rule_id)
step = reachable(node.shift, reduce, grammar)
return LA_State(step, reduce)
return HFA(
graph=[make_lalr_state(q, node) for q, node in enumerate(lr0.graph)],
initial=lr0.initial, accept=lr0.accept, grammar=grammar, bft=lr0.bft
)
def lalr_first_and_follow(lr0:HFA[LR0_State]) -> Tuple[list, dict]:
grammar = lr0.grammar
terminals = grammar.apparent_terminals()
token_sets = [terminals.intersection(node.shift.keys()) for node in lr0.graph]
for q in lr0.accept:
token_sets[q].add(interfaces.END_OF_TOKENS)
follow = {}
for q, node in enumerate(lr0.graph):
for rule_id in node.reduce:
follow[q,rule_id] = foundation.allocate(token_sets, set())
inflow:List[Set[int]] = [set() for _ in token_sets]
for q, node in enumerate(lr0.graph):
for symbol, target in node.shift.items():
if symbol in grammar.symbol_rule_ids:
for rule_id in grammar.symbol_rule_ids[symbol]:
rule_end = lr0.traverse(q, grammar.rules[rule_id].rhs)
if (rule_end, rule_id) in follow:
inflow[rule_end].add(target)
inflow[follow[rule_end, rule_id]].add(target)
for component in foundation.strongly_connected_components_by_tarjan(inflow):
tokens = set()
for k in component:
tokens.update(token_sets[k])
tokens.update(*[token_sets[j] for j in inflow[k]])
token_sets[k] = tokens
return token_sets, follow
def canonical_lr1(grammar: context_free.ContextFreeGrammar) -> HFA[LA_State]:
def front(symbol, follower, goto_transparent, iso_q):
iso_state = lr0.graph[iso_q]
goto_state = lr0.graph[iso_state.shift[symbol]]
after = set(goto_state.shift.keys()) & terminals
if goto_transparent: after.add(follower)
items = []
for rule_id in grammar.symbol_rule_ids[symbol]:
items.extend((rule_id, 0, lookahead) for lookahead in after)
return items
lr0 = lr0_construction(grammar)
terminals = grammar.apparent_terminals()
return abstract_lr1_construction(
grammar, front = front,
note_reduce = lambda reduce, follower, rule_id, iso_q: reduce[follower].append(rule_id),
initial_item = lambda rule_id: (rule_id, 0, interfaces.END_OF_TOKENS),
lr0_catalog=lr0.bft.catalog,
)
def abstract_lr1_construction(
grammar: context_free.ContextFreeGrammar, *,
front, note_reduce, initial_item, lr0_catalog,
) -> HFA[LA_State]:
def build_state(core: frozenset):
iso_q = lr0_catalog[frozenset((r, p) for (r, p, f) in core)]
step, reduce = collections.defaultdict(set), collections.defaultdict(list)
def visit(item):
rule_id, position, follower = item
rhs = RHS[rule_id]
if position < len(rhs):
next_symbol = rhs[position]
step[next_symbol].add((rule_id, position+1, follower))
if next_symbol in grammar.symbol_rule_ids:
return front(next_symbol, follower, transparent(rule_id, position + 1), iso_q)
elif rule_id<len(grammar.rules): note_reduce(reduce, follower, rule_id, iso_q)
foundation.transitive_closure(core, visit)
graph.append(LA_State(shift=ure.find_shifts(reachable(step, reduce, grammar)), reduce=reduce,))
RHS = grammar.augmented_rules()
transparent = find_transparent(grammar.find_epsilon(), RHS)
bft = foundation.BreadthFirstTraversal()
ure = UnitReductionEliminator(grammar, bft)
graph = []
initial = [bft.lookup(frozenset([initial_item(rule_id)])) for rule_id in grammar.initial()]
bft.execute(build_state)
accept = [graph[qi].shift[language] for qi, language in zip(initial, grammar.start)]
return HFA(graph=graph, initial=initial, accept=accept, grammar=grammar, bft=bft)
def find_transparent(epsilon:Set[str], right_hand_sides:List[List[str]]):
def transparency_threshold(rhs):
position = len(rhs)
while position > 0 and rhs[position-1] in epsilon: position -= 1
return position
thresholds = list(map(transparency_threshold, right_hand_sides))
return lambda rule_id, position: thresholds[rule_id] <= position
def minimal_lr1(grammar: context_free.ContextFreeGrammar) -> HFA[LA_State]:
def front(symbol, follower, goto_transparent, iso_q):
isostate = lr0.graph[iso_q]
items = []
goto_q = isostate.shift[symbol]
goto_conflict = conflict_data[goto_q].tokens.keys()
for sub_rule_id in grammar.symbol_rule_ids[symbol]:
reach = lr0.traverse(iso_q, grammar.rules[sub_rule_id].rhs)
if follower is None:
items.append((sub_rule_id, 0, None))
reach_conflict = conflict_data[reach].rules.get(sub_rule_id, EMPTY)
possible_follow = reach_conflict & token_sets[goto_q]
if reach != iso_q: possible_follow -= goto_conflict
for token in possible_follow: items.append((sub_rule_id, 0, token))
else:
if follower in conflict_data[reach].tokens and goto_transparent:
assert follower in goto_conflict
items.append((sub_rule_id, 0, follower))
return items
def note_reduce(reduce, follower, rule_id, iso_q):
if follower is None:
for t in token_sets[follow[iso_q, rule_id]] - conflict_data[iso_q].rules[rule_id]:
assert t not in reduce
reduce[t] = [rule_id]
else:
assert follower in conflict_data[iso_q].rules[rule_id]
if follower in reduce:
assert rule_id not in reduce[follower]
reduce[follower].append(rule_id)
else: reduce[follower] = [rule_id]
EMPTY = frozenset()
lr0 = lr0_construction(grammar)
token_sets, follow = lalr_first_and_follow(lr0)
conflict_data = find_conflicts(lr0.graph, {(q,r):token_sets[i] for (q,r),i in follow.items()}, grammar)
return abstract_lr1_construction(
grammar,
front = front, note_reduce = note_reduce,
initial_item = lambda rule_id: (rule_id, 0, None),
lr0_catalog=lr0.bft.catalog,
)
def reachable(step:dict, reduce:dict, grammar) -> dict:
for token, rule_id_list in list(reduce.items()):
if token not in step: continue
decide = [grammar.decide_shift_reduce(token, rule_id) for rule_id in rule_id_list]
ways = set(decide)
assert context_free.BOGUS not in ways, "This is guaranteed by grammar.validate(...), called earlier."
if len(ways) == 1:
decision = ways.pop()
if decision == context_free.LEFT: del step[token]
elif decision == context_free.RIGHT: del reduce[token]
elif decision == context_free.NONASSOC:
del step[token]
reduce[token] = ()
else: assert decision is None
elif ways == {context_free.LEFT, context_free.NONASSOC}:
del step[token]
reduce[token] = tuple(r for r,d in zip(rule_id_list, decide) if d == context_free.LEFT)
elif ways == {context_free.RIGHT, None}:
reduce[token] = tuple(r for r, d in zip(rule_id_list, decide) if d != context_free.RIGHT)
else:
print("Fair Warning:", token, "triggers a bizarre operator-precedence corner case.", file=sys.stderr)
return step
class ConflictData(NamedTuple):
tokens: Dict[str, Set[int]]
rules: Dict[int, Set[str]]
|
MIT License
|
html5rocks/updates.html5rocks.com
|
lib/pygments/lexer.py
|
Lexer.add_filter
|
python
|
def add_filter(self, filter_, **options):
if not isinstance(filter_, Filter):
filter_ = get_filter_by_name(filter_, **options)
self.filters.append(filter_)
|
Add a new stream filter to this lexer.
|
https://github.com/html5rocks/updates.html5rocks.com/blob/144b5ff9a36a7d37924d30c14810a0debdbd76ff/lib/pygments/lexer.py#L99-L105
|
import re
try:
set
except NameError:
from sets import Set as set
from pygments.filter import apply_filters, Filter
from pygments.filters import get_filter_by_name
from pygments.token import Error, Text, Other, _TokenType
from pygments.util import get_bool_opt, get_int_opt, get_list_opt, make_analysator
__all__ = ['Lexer', 'RegexLexer', 'ExtendedRegexLexer', 'DelegatingLexer',
'LexerContext', 'include', 'flags', 'bygroups', 'using', 'this']
_default_analyse = staticmethod(lambda x: 0.0)
class LexerMeta(type):
def __new__(cls, name, bases, d):
if 'analyse_text' in d:
d['analyse_text'] = make_analysator(d['analyse_text'])
return type.__new__(cls, name, bases, d)
class Lexer(object):
name = None
aliases = []
filenames = []
alias_filenames = []
mimetypes = []
__metaclass__ = LexerMeta
def __init__(self, **options):
self.options = options
self.stripnl = get_bool_opt(options, 'stripnl', True)
self.stripall = get_bool_opt(options, 'stripall', False)
self.tabsize = get_int_opt(options, 'tabsize', 0)
self.encoding = options.get('encoding', 'latin1')
self.filters = []
for filter_ in get_list_opt(options, 'filters', ()):
self.add_filter(filter_)
def __repr__(self):
if self.options:
return '<pygments.lexers.%s with %r>' % (self.__class__.__name__,
self.options)
else:
return '<pygments.lexers.%s>' % self.__class__.__name__
|
Apache License 2.0
|
petercorke/spatialmath-python
|
spatialmath/geom2d.py
|
Polygon2.__init__
|
python
|
def __init__(self, vertices=None):
if isinstance(vertices, (list, tuple)):
vertices = np.array(vertices).T
elif isinstance(vertices, np.ndarray):
if vertices.shape[0] != 2:
raise ValueError('ndarray must be 2xN')
elif vertices is None:
return
else:
raise TypeError('expecting list of 2-tuples or ndarray(2,N)')
vertices = np.hstack((vertices, vertices[:, 0:1]))
self.path = Path(vertices.T, closed=True)
self.path0 = self.path
|
Create planar polygon from vertices
:param vertices: vertices of polygon, defaults to None
:type vertices: ndarray(2, N), optional
Create a polygon from a set of points provided as columns of the 2D
array ``vertices``.
A closed polygon is created so the last vertex should not equal the
first.
Example:
.. runblock:: pycon
>>> from spatialmath import Polygon2
>>> p = Polygon2([[1, 3, 2], [2, 2, 4]])
.. warning:: The points must be sequential around the perimeter and
counter clockwise.
.. note:: The polygon is represented by a Matplotlib ``Path``
|
https://github.com/petercorke/spatialmath-python/blob/a3116021b8bd95b4f6015b180053941599ebd6cc/spatialmath/geom2d.py#L27-L68
|
from functools import reduce
from spatialmath.base.graphics import axes_logic
from spatialmath import base, SE2
import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch
from matplotlib.transforms import Affine2D
from matplotlib.collections import PatchCollection
import numpy as np
class Polygon2:
|
MIT License
|
rouge8/20questions
|
web/session.py
|
Session._generate_session_id
|
python
|
def _generate_session_id(self):
while True:
rand = os.urandom(16)
now = time.time()
secret_key = self._config.secret_key
session_id = sha1("%s%s%s%s" %(rand, now, utils.safestr(web.ctx.ip), secret_key))
session_id = session_id.hexdigest()
if session_id not in self.store:
break
return session_id
|
Generate a random id for session
|
https://github.com/rouge8/20questions/blob/8845184114109c7e34eecd69c2689d6ef6fc3084/web/session.py#L113-L124
|
import os, time, datetime, random, base64
try:
import cPickle as pickle
except ImportError:
import pickle
try:
import hashlib
sha1 = hashlib.sha1
except ImportError:
import sha
sha1 = sha.new
import utils
import webapi as web
__all__ = [
'Session', 'SessionExpired',
'Store', 'DiskStore', 'DBStore',
]
web.config.session_parameters = utils.storage({
'cookie_name': 'webpy_session_id',
'cookie_domain': None,
'timeout': 86400,
'ignore_expiry': True,
'ignore_change_ip': True,
'secret_key': 'fLjUfxqXtfNoIldA0A0J',
'expired_message': 'Session expired',
})
class SessionExpired(web.HTTPError):
def __init__(self, message):
web.HTTPError.__init__(self, '200 OK', {}, data=message)
class Session(utils.ThreadedDict):
def __init__(self, app, store, initializer=None):
self.__dict__['store'] = store
self.__dict__['_initializer'] = initializer
self.__dict__['_last_cleanup_time'] = 0
self.__dict__['_config'] = utils.storage(web.config.session_parameters)
if app:
app.add_processor(self._processor)
def _processor(self, handler):
self._cleanup()
self._load()
try:
return handler()
finally:
self._save()
def _load(self):
cookie_name = self._config.cookie_name
cookie_domain = self._config.cookie_domain
self.session_id = web.cookies().get(cookie_name)
if self.session_id and not self._valid_session_id(self.session_id):
self.session_id = None
self._check_expiry()
if self.session_id:
d = self.store[self.session_id]
self.update(d)
self._validate_ip()
if not self.session_id:
self.session_id = self._generate_session_id()
if self._initializer:
if isinstance(self._initializer, dict):
self.update(self._initializer)
elif hasattr(self._initializer, '__call__'):
self._initializer()
self.ip = web.ctx.ip
def _check_expiry(self):
if self.session_id and self.session_id not in self.store:
if self._config.ignore_expiry:
self.session_id = None
else:
return self.expired()
def _validate_ip(self):
if self.session_id and self.get('ip', None) != web.ctx.ip:
if not self._config.ignore_change_ip:
return self.expired()
def _save(self):
cookie_name = self._config.cookie_name
cookie_domain = self._config.cookie_domain
if not self.get('_killed'):
web.setcookie(cookie_name, self.session_id, domain=cookie_domain)
self.store[self.session_id] = dict(self)
else:
web.setcookie(cookie_name, self.session_id, expires=-1, domain=cookie_domain)
|
MIT License
|
replicahq/doppelganger
|
doppelganger/bayesnets.py
|
BayesianNetworkModel.train
|
python
|
def train(input_data, structure, fields, prior_data=None):
type_to_network = {}
for type_, data in input_data.type_to_data.items():
if prior_data is not None:
data = list(data) + list(prior_data)
bayesian_network = BayesianNetwork.from_structure(data, structure)
type_to_network[type_] = bayesian_network
return BayesianNetworkModel(type_to_network, fields, segmenter=input_data.segmenter)
|
Creates bayesian networks from the given data with the given structure.
The given data cannot contain any missing data. If called multiple
times, the old model will be replaced. To update the model with new
data, see `update`.
Args:
input_data (SegmentedData): typed data to train on
structure (iterable(iterable)): structure as returned from
define_bayes_net_structure
fields (list(unicode)): field names to learn
prior_data (list(data)): optional list of training samples to use
as a prior for each network.
Return:
BayesianNetworkModel: A predictive model training on the given data
|
https://github.com/replicahq/doppelganger/blob/dc4709b87d48794b48c05d9776fb606fad4a8038/doppelganger/bayesnets.py#L172-L198
|
from __future__ import (
absolute_import, division, print_function, unicode_literals
)
from builtins import range, str
from collections import defaultdict, Counter
import json
import itertools
import sys
import pandas
from pomegranate import BayesianNetwork
def default_segmenter(x):
return 'one_segment'
class SegmentedData(object):
def __init__(self, type_to_data, segmenter=None):
self.type_to_data = type_to_data
self.segmenter = segmenter
@staticmethod
def from_data(cleaned_data, fields, weight_field=None, segmenter=None):
segmenter = segmenter or default_segmenter
type_to_data = defaultdict(list)
for _, row in cleaned_data.data.iterrows():
type_ = segmenter(row)
weight = row[weight_field] if weight_field else 1
cleaned_row = tuple(row[fields])
for _ in range(weight):
type_to_data[type_].append(cleaned_row)
return SegmentedData(type_to_data, segmenter)
def num_rows_data(self):
return sum(len(data) for data in self.type_to_data.values())
def types(self):
return self.type_to_data.keys()
class BayesianNetworkModel(object):
def __init__(self, type_to_network, fields, segmenter=None):
self.type_to_network = type_to_network
self.fields = fields
self.distribution_cache = {}
self.segmenter = segmenter or default_segmenter
@staticmethod
def from_file(filename, segmenter=None):
with open(filename) as infile:
json_string = infile.read()
return BayesianNetworkModel.from_json(json_string, segmenter)
def write(self, outfilename):
with open(outfilename, 'w') as outfile:
json_string = self.to_json()
outfile.write(json_string)
def to_json(self):
blob = {'fieldnames': self.fields}
blob['type_to_network'] = {
type_: json.loads(network.to_json()) for type_, network in self.type_to_network.items()
}
return json.dumps(blob, indent=4, sort_keys=True)
@staticmethod
def _df_from_conditional(probabilities):
state_map = defaultdict(dict)
for row in probabilities:
evidence = tuple(row[:-2])
value = row[-2]
probability = float(row[-1])
state_map[evidence][value] = probability
return pandas.DataFrame.from_dict(state_map).transpose()
@staticmethod
def _df_from_discrete(probabilities):
return pandas.DataFrame(probabilities)
def probabilities_as_dataframes(self):
segment_to_states = {}
for segment, network in self.type_to_network.items():
state_to_dataframes = []
for state in network.states:
distribution = json.loads(str(state))['distribution']
if distribution['name'] == 'ConditionalProbabilityTable':
probabilities = BayesianNetworkModel._df_from_conditional(
distribution['table'])
else:
probabilities = BayesianNetworkModel._df_from_discrete(
distribution['parameters']
)
state_to_dataframes.append(probabilities)
segment_to_states[segment] = state_to_dataframes
return segment_to_states
@staticmethod
def from_json(json_string, segmenter=None):
json_blob = json.loads(json_string)
type_to_network = {}
for type_, network_json in json_blob['type_to_network'].items():
type_to_network[type_] = BayesianNetwork.from_json(json.dumps(network_json))
fields = list(json_blob['fieldnames'])
return BayesianNetworkModel(type_to_network, fields, segmenter)
@staticmethod
|
Apache License 2.0
|
talaia-labs/python-teos
|
teos/watcher.py
|
Watcher.get_all_responder_trackers
|
python
|
def get_all_responder_trackers(self):
return self.db_manager.load_responder_trackers()
|
Returns a dictionary with all the trackers stored in the db for the responder.
|
https://github.com/talaia-labs/python-teos/blob/66bc075d2432c45691af77cde20cbecd46341107/teos/watcher.py#L729-L731
|
from queue import Queue
from threading import Thread
from collections import OrderedDict
from readerwriterlock import rwlock
from teos.logger import get_logger
import common.receipts as receipts
from common.appointment import AppointmentStatus
from common.tools import compute_locator
from common.exceptions import BasicException, EncryptionError, InvalidParameter, SignatureError
from common.cryptographer import Cryptographer, hash_160
from teos.cleaner import Cleaner
from teos.chain_monitor import ChainMonitor
from teos.gatekeeper import SubscriptionExpired
from teos.extended_appointment import ExtendedAppointment
from teos.block_processor import InvalidTransactionFormat
class AppointmentLimitReached(BasicException):
class AppointmentAlreadyTriggered(BasicException):
class AppointmentNotFound(BasicException):
class LocatorCache:
def __init__(self, blocks_in_cache):
self.logger = get_logger(component=LocatorCache.__name__)
self.cache = dict()
self.blocks = OrderedDict()
self.cache_size = blocks_in_cache
self.rw_lock = rwlock.RWLockWrite()
def init(self, last_known_block, block_processor):
target_block_hash = last_known_block
for _ in range(self.cache_size):
if not target_block_hash:
break
target_block = block_processor.get_block(target_block_hash, blocking=True)
if not target_block:
break
locator_txid_map = {compute_locator(txid): txid for txid in target_block.get("tx")}
self.cache.update(locator_txid_map)
self.blocks[target_block_hash] = list(locator_txid_map.keys())
target_block_hash = target_block.get("previousblockhash")
self.blocks = OrderedDict(reversed((list(self.blocks.items()))))
def get_txid(self, locator):
with self.rw_lock.gen_rlock():
return self.cache.get(locator)
def update(self, block_hash, locator_txid_map):
with self.rw_lock.gen_wlock():
self.cache.update(locator_txid_map)
self.blocks[block_hash] = list(locator_txid_map.keys())
self.logger.debug("Block added to cache", block_hash=block_hash)
if self.is_full():
self.remove_oldest_block()
def is_full(self):
with self.rw_lock.gen_rlock():
full = len(self.blocks) > self.cache_size
return full
def remove_oldest_block(self):
with self.rw_lock.gen_wlock():
block_hash, locators = self.blocks.popitem(last=False)
for locator in locators:
del self.cache[locator]
self.logger.debug("Block removed from cache", block_hash=block_hash)
def fix(self, last_known_block, block_processor):
tmp_cache = LocatorCache(self.cache_size)
target_block_hash = last_known_block
for _ in range(tmp_cache.cache_size):
target_block = block_processor.get_block(target_block_hash, blocking=True)
if target_block:
locator_txid_map = {compute_locator(txid): txid for txid in target_block.get("tx")}
tmp_cache.cache.update(locator_txid_map)
tmp_cache.blocks[target_block_hash] = list(locator_txid_map.keys())
target_block_hash = target_block.get("previousblockhash")
with self.rw_lock.gen_wlock():
self.blocks = OrderedDict(reversed((list(tmp_cache.blocks.items()))))
self.cache = tmp_cache.cache
class Watcher:
def __init__(self, db_manager, gatekeeper, block_processor, responder, sk, max_appointments, blocks_in_cache):
self.logger = get_logger(component=Watcher.__name__)
self.appointments = dict()
self.locator_uuid_map = dict()
self.block_queue = Queue()
self.db_manager = db_manager
self.gatekeeper = gatekeeper
self.block_processor = block_processor
self.responder = responder
self.max_appointments = max_appointments
self.signing_key = sk
self.last_known_block = db_manager.load_last_block_hash_watcher()
self.locator_cache = LocatorCache(blocks_in_cache)
self.rw_lock = rwlock.RWLockWrite()
@property
def tower_id(self):
return Cryptographer.get_compressed_pk(self.signing_key.public_key)
@property
def n_registered_users(self):
return self.gatekeeper.n_registered_users
@property
def n_watcher_appointments(self):
with self.rw_lock.gen_rlock():
return len(self.appointments)
@property
def n_responder_trackers(self):
return self.responder.n_responder_trackers
def awake(self):
watcher_thread = Thread(target=self.do_watch, daemon=True)
watcher_thread.start()
return watcher_thread
def register(self, user_id):
available_slots, subscription_expiry, registration_receipt = self.gatekeeper.add_update_user(user_id)
signature = Cryptographer.sign(registration_receipt, self.signing_key)
return available_slots, subscription_expiry, signature
def get_appointment(self, locator, user_signature):
message = "get appointment {}".format(locator).encode("utf-8")
user_id = self.gatekeeper.authenticate_user(message, user_signature)
has_expired, expiry = self.gatekeeper.has_subscription_expired(user_id)
if has_expired:
raise SubscriptionExpired(f"Your subscription expired at block {expiry}")
uuid = hash_160("{}{}".format(locator, user_id))
with self.rw_lock.gen_rlock():
if uuid in self.appointments:
appointment_data = self.db_manager.load_watcher_appointment(uuid)
status = AppointmentStatus.BEING_WATCHED
elif self.responder.has_tracker(uuid):
appointment_data = self.db_manager.load_responder_tracker(uuid)
status = AppointmentStatus.DISPUTE_RESPONDED
else:
raise AppointmentNotFound("Cannot find {}".format(locator))
return appointment_data, status
def add_appointment(self, appointment, user_signature):
with self.rw_lock.gen_wlock():
if len(self.appointments) >= self.max_appointments:
message = "Maximum appointments reached, appointment rejected"
self.logger.info(message, locator=appointment.locator)
raise AppointmentLimitReached(message)
user_id = self.gatekeeper.authenticate_user(appointment.serialize(), user_signature)
has_subscription_expired, expiry = self.gatekeeper.has_subscription_expired(user_id)
if has_subscription_expired:
raise SubscriptionExpired(f"Your subscription expired at block {expiry}")
start_block = self.block_processor.get_block(self.last_known_block).get("height")
extended_appointment = ExtendedAppointment(
appointment.locator,
appointment.encrypted_blob,
appointment.to_self_delay,
user_id,
user_signature,
start_block,
)
uuid = hash_160("{}{}".format(extended_appointment.locator, user_id))
if self.responder.has_tracker(uuid):
message = "Appointment already in Responder"
self.logger.info(message)
raise AppointmentAlreadyTriggered(message)
available_slots = self.gatekeeper.add_update_appointment(user_id, uuid, extended_appointment)
dispute_txid = self.locator_cache.get_txid(extended_appointment.locator)
if dispute_txid:
try:
penalty_txid, penalty_rawtx = self.check_breach(uuid, extended_appointment, dispute_txid)
receipt = self.responder.handle_breach(
uuid,
extended_appointment.locator,
dispute_txid,
penalty_txid,
penalty_rawtx,
user_id,
self.last_known_block,
)
if receipt.delivered:
self.db_manager.store_watcher_appointment(uuid, extended_appointment.to_dict())
self.db_manager.create_triggered_appointment_flag(uuid)
except (EncryptionError, InvalidTransactionFormat):
pass
else:
self.appointments[uuid] = extended_appointment.get_summary()
if extended_appointment.locator in self.locator_uuid_map:
if uuid not in self.locator_uuid_map[extended_appointment.locator]:
self.locator_uuid_map[extended_appointment.locator].append(uuid)
else:
self.locator_uuid_map[extended_appointment.locator] = [uuid]
self.db_manager.store_watcher_appointment(uuid, extended_appointment.to_dict())
try:
signature = Cryptographer.sign(
receipts.create_appointment_receipt(user_signature, start_block), self.signing_key
)
except (InvalidParameter, SignatureError):
self.logger.error("Data couldn't be signed", appointment=extended_appointment.to_dict())
signature = None
self.logger.info("New appointment accepted", locator=extended_appointment.locator)
return {
"locator": extended_appointment.locator,
"start_block": extended_appointment.start_block,
"signature": signature,
"available_slots": available_slots,
"subscription_expiry": self.gatekeeper.get_user_info(user_id).subscription_expiry,
}
def do_watch(self):
if self.last_known_block is None:
self.last_known_block = self.block_processor.get_best_block_hash(blocking=True)
self.db_manager.store_last_block_hash_watcher(self.last_known_block)
self.locator_cache.init(self.last_known_block, self.block_processor)
while True:
block_hash = self.block_queue.get()
if block_hash == ChainMonitor.END_MESSAGE:
break
block = self.block_processor.get_block(block_hash, blocking=True)
self.logger.info(
"New block received", block_hash=block_hash, prev_block_hash=block.get("previousblockhash")
)
if self.last_known_block != block.get("previousblockhash"):
self.locator_cache.fix(block_hash, self.block_processor)
txids = block.get("tx")
locator_txid_map = {compute_locator(txid): txid for txid in txids}
self.locator_cache.update(block_hash, locator_txid_map)
with self.rw_lock.gen_wlock():
if len(self.appointments) > 0 and locator_txid_map:
outdated_appointments = self.gatekeeper.get_outdated_appointments(block["height"])
outdated_appointments = list(set(outdated_appointments).intersection(self.appointments.keys()))
Cleaner.delete_appointments(
outdated_appointments, self.appointments, self.locator_uuid_map, self.db_manager, outdated=True
)
valid_breaches, invalid_breaches = self.filter_breaches(self.get_breaches(locator_txid_map))
triggered_flags = []
appointments_to_delete = []
for uuid, breach in valid_breaches.items():
self.logger.info(
"Notifying responder and deleting appointment",
penalty_txid=breach["penalty_txid"],
locator=breach["locator"],
uuid=uuid,
)
receipt = self.responder.handle_breach(
uuid,
breach["locator"],
breach["dispute_txid"],
breach["penalty_txid"],
breach["penalty_rawtx"],
self.appointments[uuid].get("user_id"),
block_hash,
)
if receipt.delivered:
Cleaner.delete_appointment_from_memory(uuid, self.appointments, self.locator_uuid_map)
triggered_flags.append(uuid)
else:
appointments_to_delete.append(uuid)
appointments_to_delete.extend(invalid_breaches)
appointments_to_delete_gatekeeper = {
uuid: self.appointments[uuid].get("user_id") for uuid in appointments_to_delete
}
self.db_manager.batch_create_triggered_appointment_flag(triggered_flags)
Cleaner.delete_appointments(
appointments_to_delete, self.appointments, self.locator_uuid_map, self.db_manager
)
self.gatekeeper.delete_appointments(appointments_to_delete_gatekeeper)
if not self.appointments:
self.logger.info("No more pending appointments")
self.db_manager.store_last_block_hash_watcher(block_hash)
self.last_known_block = block.get("hash")
self.block_queue.task_done()
def get_breaches(self, locator_txid_map):
intersection = set(self.locator_uuid_map.keys()).intersection(locator_txid_map.keys())
breaches = {locator: locator_txid_map[locator] for locator in intersection}
if len(breaches) > 0:
self.logger.info("List of breaches", breaches=breaches)
else:
self.logger.info("No breaches found")
return breaches
def check_breach(self, uuid, appointment, dispute_txid):
try:
penalty_rawtx = Cryptographer.decrypt(appointment.encrypted_blob, dispute_txid)
penalty_tx = self.block_processor.decode_raw_transaction(penalty_rawtx, blocking=True)
except EncryptionError as e:
self.logger.info("Transaction cannot be decrypted", uuid=uuid)
raise e
except InvalidTransactionFormat as e:
self.logger.info("The breach contained an invalid transaction", uuid=uuid)
raise e
self.logger.info(
"Breach found for locator", locator=appointment.locator, uuid=uuid, penalty_txid=penalty_tx.get("txid")
)
return penalty_tx.get("txid"), penalty_rawtx
def filter_breaches(self, breaches):
valid_breaches = {}
invalid_breaches = []
decrypted_blobs = {}
for locator, dispute_txid in breaches.items():
for uuid in self.locator_uuid_map[locator]:
appointment = ExtendedAppointment.from_dict(self.db_manager.load_watcher_appointment(uuid))
if appointment.encrypted_blob in decrypted_blobs:
penalty_txid, penalty_rawtx = decrypted_blobs[appointment.encrypted_blob]
valid_breaches[uuid] = {
"locator": appointment.locator,
"dispute_txid": dispute_txid,
"penalty_txid": penalty_txid,
"penalty_rawtx": penalty_rawtx,
}
else:
try:
penalty_txid, penalty_rawtx = self.check_breach(uuid, appointment, dispute_txid)
valid_breaches[uuid] = {
"locator": appointment.locator,
"dispute_txid": dispute_txid,
"penalty_txid": penalty_txid,
"penalty_rawtx": penalty_rawtx,
}
decrypted_blobs[appointment.encrypted_blob] = (penalty_txid, penalty_rawtx)
except (EncryptionError, InvalidTransactionFormat):
invalid_breaches.append(uuid)
return valid_breaches, invalid_breaches
def get_registered_user_ids(self):
return self.gatekeeper.user_ids
def get_user_info(self, user_id):
return self.gatekeeper.get_user_info(user_id)
def get_subscription_info(self, signature):
message = "get subscription info".encode("utf-8")
user_id = self.gatekeeper.authenticate_user(message, signature)
has_expired, expiry = self.gatekeeper.has_subscription_expired(user_id)
if has_expired:
raise SubscriptionExpired(f"Your subscription expired at block {expiry}")
subscription_info = self.gatekeeper.get_user_info(user_id)
with self.rw_lock.gen_rlock():
locators = []
for appt_uuid in subscription_info.appointments:
if appt_uuid in self.appointments:
locators.append(self.appointments.get(appt_uuid).get("locator"))
elif self.responder.has_tracker(appt_uuid):
locators.append(self.responder.get_tracker(appt_uuid).get("locator"))
else:
self.logger.debug("The appointment uuid was not found in the watcher or the responder.")
return subscription_info, locators
def get_all_watcher_appointments(self):
return self.db_manager.load_watcher_appointments()
|
MIT License
|
stifael/offboard
|
src/bezier_mapping.py
|
start
|
python
|
def start():
nh = rospy.init_node('beziermapping')
mp = mapping(nh)
rospy.spin()
'''r = rospy.Rate(150)
while not rospy.is_shutdown():
if mp._run_bz_controller:
mp._pub_thrust_sp_desired()
r.sleep()'''
|
r = rospy.Rate(150)
while not rospy.is_shutdown():
if mp._run_bz_controller:
mp._pub_thrust_sp_desired()
r.sleep()
|
https://github.com/stifael/offboard/blob/d8258cd81e3f51943f89ca6c23d5529dfe090313/src/bezier_mapping.py#L574-L593
|
import rospy
from mavros_msgs.msg import State, AttitudeTarget, PositionTarget, AvoidanceTriplet
from nav_msgs.msg import Odometry
from geometry_msgs.msg import PoseStamped, TwistStamped, Vector3Stamped, Quaternion, Vector3, Point
from sensor_msgs.msg import Imu
from nav_msgs.msg import Path
import time
from tf.transformations import *
import numpy as np
import common_functions as cf
import bezier_fn as bf
import pub_bezier
from dynamic_reconfigure.server import Server
from offboard.cfg import PIDConfig
from offboard.msg import ThreePointMsg
import controller
RATE_STATE = 1
class pidCoeff():
def __init__(self):
self.Pp = np.zeros(3)
self.Pv = np.zeros(3)
self.Iv = np.zeros(3)
self.Dv = np.zeros(3)
self.Pa = np.zeros(3)
self.Ia = np.zeros(3)
self.Da = np.zeros(3)
self.Mxy = 0.0
self.Mz = 0.0
class mapping():
def __init__(self, nh):
self._run_bz_controller = False
self._vel_pub = rospy.Publisher('mavros/setpoint_velocity/cmd_vel', TwistStamped, queue_size=10 )
self._vel_msg = TwistStamped()
self._accel_pub = rospy.Publisher('/mavros/setpoint_accel/accel', Vector3Stamped, queue_size=10 )
self._accel_msg = Vector3Stamped()
self._att_pub = rospy.Publisher('/mavros/setpoint_raw/attitude', AttitudeTarget, queue_size=10)
self._att_msg = AttitudeTarget()
self._att_msg.type_mask = 7
self._acc_yaw_pub = rospy.Publisher('/mavros/setpoint_raw/local', PositionTarget, queue_size= 10)
self._acc_yaw_msg = PositionTarget()
self._acc_yaw_msg.type_mask = 2048 + 32 + 16 + 8 + 4 + 2 + 1
self._vel_yaw_pub = rospy.Publisher('/mavros/setpoint_raw/local', PositionTarget, queue_size= 10)
self._vel_yaw_msg = PositionTarget()
self._vel_yaw_msg.type_mask = 1 + 2 + 4 + 64 + 128 + 256 + 2048
self._bezier_triplet_pub = rospy.Publisher('/mavros/avoidance_triplet', AvoidanceTriplet, queue_size=10)
self._bezier_triplet_msg = AvoidanceTriplet()
self._bezier_duration = 1.0
self._pub_visualize = pub_bezier.pub_bezier()
self._dt = 0.0
self._pid_coeff = pidCoeff()
Server(PIDConfig, self._pidcallback)
self._ctr = controller.controller(self._pid_coeff, 9.91)
self._rate_state = rospy.Rate(RATE_STATE)
self._current_state = State()
rospy.Subscriber('/mavros/state', State , self._current_state_cb)
self._local_pose = PoseStamped()
self._local_pose.pose.position = cf.p_numpy_to_ros([0.0,0.0,0.0])
rospy.Subscriber('/mavros/local_position/pose', PoseStamped, self._local_pose_cb)
self._local_vel = TwistStamped()
self._local_vel.twist.linear = cf.p_numpy_to_ros([0.0,0.0,0.0])
rospy.Subscriber('/mavros/local_position/velocity', TwistStamped, self._local_vel_cb)
self._bezier_pt = []
rospy.Subscriber('/path/bezier_pt', Path, self._bezier_cb)
rospy.Subscriber('/path/three_point_message', ThreePointMsg, self._three_point_msg_cb)
self._linear_acc = Vector3()
self._linear_acc = cf.p_numpy_to_ros_vector([0.0,0.0,0.0])
rospy.Subscriber('/mavros/imu/data', Imu, self._imu_cb)
def _pub_thrust_sp_desired(self):
p_c = cf.p_ros_to_numpy(self._local_pose.pose.position)
q_c = cf.q_ros_to_numpy(self._local_pose.pose.orientation)
v_c =cf.p_ros_to_numpy(self._local_vel.twist.linear)
a_c = cf.p_ros_to_numpy(self._linear_acc)
a_c = np.dot(cf.rotation_from_q_transpose(q_c), a_c)
bz = [cf.p_ros_to_numpy(self._bezier_pt[0]), cf.p_ros_to_numpy(self._bezier_pt[1]), cf.p_ros_to_numpy(self._bezier_pt[2])]
p_star, v_star, a_star = bf.point_closest_to_bezier(bz, p_c, self._bezier_duration)
'''p_star = np.array([0.0,0.0,5.0])
v_star = np.array([0.0,0.0,0.0])
a_star = np.array([0.0,0.0,0])'''
self._ctr.set_states(p_c, v_c, a_c, p_star, v_star, a_star, self._pid_coeff)
thrust_des, v_sp, vc = self._ctr.update_thrust_old(time.time())
self._visualize_vel(p_c, vc)
self._visualize_acc(p_c, v_sp )
self._visualize_x(p_c)
self._visualize_target(p_star)
yaw_desired = 0.0
v_star_norm= np.linalg.norm(v_star)
z = np.array([0.0,0.0,1.0])
if (v_star_norm > 0.0) and not (np.array_equal(np.abs(v_star/v_star_norm), z)):
yaw_desired = self.get_desired_yaw(v_star) - np.pi/2.0
self._acc_yaw_msg.acceleration_or_force = cf.p_numpy_to_ros_vector(thrust_des)
self._acc_yaw_msg.yaw = yaw_desired
self._acc_yaw_pub.publish(self._acc_yaw_msg)
def _pub_att_desired(self):
q = Quaternion()
q.x =0.0
q.y = 0.0
q.z = 1.0
q.w = 0.0
self._att_msg.orientation = q
self._att_msg.thrust =1.0
self._att_pub.publish(self._att_msg)
def _pub_acc_yaw_desired(self):
a = Vector3()
a.x = 0.0
a.y = 0.0
a.z = 0.2
self._acc_yaw_msg.acceleration_or_force = a
self._local_pub.publish(self._acc_yaw_msg)
def _pub_v_desired(self):
pose = cf.p_ros_to_numpy(self._local_pose.pose.position)
bz = [cf.p_ros_to_numpy(self._bezier_pt[0]), cf.p_ros_to_numpy(self._bezier_pt[1]), cf.p_ros_to_numpy(self._bezier_pt[2])]
p_des, v_des, a_des = bf.point_closest_to_bezier(bz, pose, self._bezier_duration)
print a_des
self._visualize_vel(p_des, v_des)
self._visualize_x(pose)
v_final = bf.vel_adjusted(p_des, v_des, pose)
v_final *= min(np.linalg.norm(v_final), 3.0) / np.linalg.norm(v_final)
theta = 0.0
v_des_norm= np.linalg.norm(v_des)
z = np.array([0.0,0.0,1.0])
if (v_des_norm > 0.0) and not (np.array_equal(np.abs(v_des/v_des_norm), z)):
theta = self.angle_error(v_des)
yaw_desired = self.get_desired_yaw(v_des) - np.pi/2.0
self._vel_yaw_msg.velocity = cf.p_numpy_to_ros_vector(v_final)
self._vel_yaw_msg.yaw = yaw_desired
self._vel_yaw_pub.publish(self._vel_yaw_msg)
def _visualize_x(self, pose):
q_c = cf.q_ros_to_numpy(self._local_pose.pose.orientation)
x_b = np.array([1.0,0.0,0.0])
x = np.dot(cf.rotation_from_q_transpose(q_c), x_b)
pt = cf.p_numpy_to_ros(pose)
pt2 = cf.p_numpy_to_ros(pose + x)
pts = [pt, pt2]
self._pub_visualize.pub_x_vec(pts)
def _visualize_target(self, p):
pt = cf.p_numpy_to_ros(p)
self._pub_visualize.pub_target(pt)
def _visualize_vel(self, p, v):
pt = cf.p_numpy_to_ros(p)
pt2 = cf.p_numpy_to_ros(v + p)
points = [pt, pt2]
self._pub_visualize.pub_velocity(points)
def _visualize_acc(self, p, a):
pt = cf.p_numpy_to_ros(p)
pt2 = cf.p_numpy_to_ros( p + a)
points = [pt, pt2]
self._pub_visualize.pub_a_vec(points)
def _pub_a_desired(self):
pose = cf.p_ros_to_numpy(self._local_pose.pose.position)
velocity = cf.p_ros_to_numpy(self._local_vel.twist.linear)
bz = [cf.p_ros_to_numpy(self._bezier_pt[0]), cf.p_ros_to_numpy(self._bezier_pt[1]), cf.p_ros_to_numpy(self._bezier_pt[2])]
p_des, v_des, a_des = bf.point_closest_to_bezier(bz, pose, self._bezier_duration)
print a_des
'''theta = 0.0
v_des_norm= np.linalg.norm(v_des)
z = np.array([0.0,0.0,1.0])
if (v_des_norm > 0.0) and not (np.array_equal(np.abs(v_des/v_des_norm), z)): #yaw not defined if norm(v_des) or v_des == z
theta = self.angle_error(v_des)'''
self._accel_msg.vector = cf.p_numpy_to_ros(a_des)
self._accel_pub.publish(self._accel_msg)
def angle_error(self, v_des):
q_c = cf.q_ros_to_numpy(self._local_pose.pose.orientation)
vb_des = np.dot(cf.rotation_from_q(q_c), v_des)
z = np.array([0.0,0.0,1.0])
x = np.array([1.0,0.0,0.0])
vb_des_proj = vb_des - z * np.dot(z, np.transpose(vb_des))
vb_proj_n = vb_des_proj / np.linalg.norm(vb_des_proj)
theta = np.arccos(np.dot(x, np.transpose(vb_proj_n)))
cross = np.cross(x, vb_proj_n)
if ( cross[2] < 0.0 ):
theta *= -1.0
return theta
def get_desired_yaw(self, v_des):
z = np.array([0.0,0.0,1.0])
x = np.array([1.0,0.0,0.0])
v_des_proj = v_des - z * np.dot(z, np.transpose(v_des))
v_des_p_n = v_des_proj / np.linalg.norm(v_des_proj)
angle = np.arccos(np.dot(x, np.transpose(v_des_p_n)))
cross = np.cross(x, v_des_p_n)
if (cross[2] < 0.0):
angle *= -1
return angle
def get_current_yaw(self):
q_c = cf.q_ros_to_numpy(self._local_pose.pose.orientation)
x_b = np.array([1.0,0.0,0.0])
x_w = np.dot(cf.rotation_from_q_transpose(q_c), x_b)
z = np.array([0.0,0.0,1.0])
x = np.array([1.0,0.0,0.0])
x_w_proj = x_w - z * np.dot(z, np.transpose(x_w))
x_w_proj_n = x_w_proj / np.linalg.norm(x_w_proj)
yaw = np.arccos(np.dot(x, np.transpose(x_w_proj_n)))
cross = np.cross(x, x_w_proj_n)
if (cross[2] < 0.0):
yaw *= -1.0
return yaw
def send_bezier_triplet(self):
self._bezier_triplet_msg.prev = self._bezier_pt[0]
self._bezier_triplet_msg.ctrl = self._bezier_pt[1]
self._bezier_triplet_msg.next = self._bezier_pt[2]
self._bezier_triplet_msg.acc_per_err = 0.0
self._bezier_triplet_msg.duration = 1.0
self._bezier_triplet_msg.max_acc = 5.0
print self._bezier_pt
self._bezier_triplet_pub.publish(self._bezier_triplet_msg)
def _current_state_cb(self, data):
self._current_state = data
def _local_pose_cb(self, data):
self._local_pose = data
def _local_vel_cb(self, data):
self._local_vel = data
def _imu_cb(self, data):
self._linear_acc = data.linear_acceleration
if self._run_bz_controller:
self._pub_thrust_sp_desired()
def _bezier_cb(self, data):
self._bezier_pt = [pose.pose.position for pose in data.poses]
self._run_bz_controller = True
def _three_point_msg_cb(self, data):
self._bezier_pt = [data.prev, data.ctrl, data.next]
self._bezier_duration = data.duration
self._run_bz_controller = True
def _pidcallback(self, config, level):
rospy.loginfo("""Reconfigure Request: {Pxy_p}, {Pz_p},\
#{Pxy_v}, {Pz_v}, {Ixy_v}, {Ixy_v}, {Iz_v}, {Dxy_v}, {Dz_v}, {Mz}, {Mxy}""".format(**config))
pid = pidCoeff()
pid.Pp[0] = config.Pxy_p
pid.Pp[1] = config.Pxy_p
pid.Pp[2] = config.Pz_p
pid.Pv[0] = config.Pxy_v
pid.Pv[1] = config.Pxy_v
pid.Pv[2] = config.Pz_v
pid.Iv[0] = config.Ixy_v
pid.Iv[1] = config.Ixy_v
pid.Iv[2] = config.Iz_v
pid.Dv[0] = config.Dxy_v
pid.Dv[1] = config.Dxy_v
pid.Dv[2] = config.Dz_v
pid.Pa[0] = config.Pxy_a
pid.Pa[1] = config.Pxy_a
pid.Pa[2] = config.Pz_a
pid.Ia[0] = config.Ixy_a
pid.Ia[1] = config.Ixy_a
pid.Ia[2] = config.Iz_a
pid.Da[0] = config.Dxy_a
pid.Da[1] = config.Dxy_a
pid.Da[2] = config.Dz_a
pid.Mxy= config.Mxy
pid.Mz = config.Mz
self._pid_coeff = pid
print self._pid_coeff.Pp
return config
|
BSD 3-Clause New or Revised License
|
reliaqualassociates/ramstk
|
src/ramstk/views/gtk3/validation/view.py
|
ValidationGeneralDataView._do_request_calculate_all
|
python
|
def _do_request_calculate_all(self, __button: Gtk.ToolButton) -> None:
super().do_set_cursor_busy()
pub.sendMessage(
"request_calculate_validation_tasks",
)
|
Request to calculate program cost and time.
:param __button: the Gtk.ToolButton() that called this method.
:return: None
:rtype: None
|
https://github.com/reliaqualassociates/ramstk/blob/ffec5a107424914cf0026c6dfe26369c221f79f9/src/ramstk/views/gtk3/validation/view.py#L301-L311
|
from typing import Any, Dict
from pubsub import pub
from ramstk.configuration import RAMSTKUserConfiguration
from ramstk.logger import RAMSTKLogManager
from ramstk.views.gtk3 import Gtk, _
from ramstk.views.gtk3.widgets import (
RAMSTKMessageDialog,
RAMSTKModuleView,
RAMSTKPanel,
RAMSTKWorkView,
)
from . import (
ValidationTaskDescriptionPanel,
ValidationTaskEffortPanel,
ValidationTreePanel,
)
class ValidationModuleView(RAMSTKModuleView):
_tag: str = "validation"
_tablabel: str = "Verification"
_tabtooltip: str = _(
"Displays the list of verification tasks for the selected Revision."
)
def __init__(
self, configuration: RAMSTKUserConfiguration, logger: RAMSTKLogManager
) -> None:
super().__init__(configuration, logger)
self._dic_icons["tab"] = (
self.RAMSTK_USER_CONFIGURATION.RAMSTK_ICON_DIR + "/32x32/validation.png"
)
self._lst_mnu_labels = [
_("Add Verification Task"),
_("Delete Selected Task"),
_("Save Selected Task"),
_("Save All Tasks"),
]
self._lst_tooltips = [
_("Add a new verification task."),
_("Remove the currently selected verification task."),
_("Save changes to the currently selected verification task."),
_("Save changes to all verification tasks."),
]
self._pnlPanel = ValidationTreePanel()
self.__make_ui()
pub.subscribe(self._do_set_record_id, f"selected_{self._tag}")
def do_request_delete(self, __button: Gtk.ToolButton) -> None:
_parent = self.get_parent().get_parent().get_parent().get_parent().get_parent()
_prompt = _(
"You are about to delete Validation {0:d} and all "
"data associated with it. Is this really what "
"you want to do?"
).format(self._record_id)
_dialog: RAMSTKMessageDialog = RAMSTKMessageDialog(parent=_parent)
_dialog.do_set_message(_prompt)
_dialog.do_set_message_type("question")
if _dialog.do_run() == Gtk.ResponseType.YES:
super().do_set_cursor_busy()
pub.sendMessage("request_delete_validation", node_id=self._record_id)
_dialog.do_destroy()
def _do_set_record_id(self, attributes: Dict[str, Any]) -> None:
self._record_id = attributes["validation_id"]
def __make_ui(self) -> None:
super().make_ui()
self._pnlPanel.do_load_measurement_units(
self.RAMSTK_USER_CONFIGURATION.RAMSTK_MEASUREMENT_UNITS
)
self._pnlPanel.do_load_verification_types(
self.RAMSTK_USER_CONFIGURATION.RAMSTK_VALIDATION_TYPE
)
self._pnlPanel.do_set_cell_callbacks(
"mvw_editing_validation",
[
"acceptable_maximum",
"acceptable_mean",
"acceptable_minimum",
"acceptable_variance",
"confidence",
"cost_average",
"cost_maximum",
"cost_minimum",
"date_end",
"date_start",
"description",
"measurement_unit",
"name",
"status",
"task_specification",
"task_type",
"time_average",
"time_maximum",
"time_minimum",
],
)
self._pnlPanel.tvwTreeView.dic_handler_id[
"button-press"
] = self._pnlPanel.tvwTreeView.connect(
"button_press_event", super().on_button_press
)
class ValidationGeneralDataView(RAMSTKWorkView):
_tag: str = "validation"
_tablabel: str = _("General\nData")
_tabtooltip: str = _(
"Displays general information for the selected Verification task."
)
def __init__(
self, configuration: RAMSTKUserConfiguration, logger: RAMSTKLogManager
) -> None:
super().__init__(configuration, logger)
self._lst_callbacks = [
self._do_request_calculate,
self._do_request_calculate_all,
super().do_request_update,
super().do_request_update_all,
]
self._lst_icons = ["calculate", "calculate_all", "save", "save-all"]
self._lst_mnu_labels = [
_("Calculate Task"),
_("Calculate Program"),
_("Save"),
_("Save All"),
]
self._lst_tooltips = [
_(
"Calculate the expected cost and time of the selected "
"Validation task."
),
_(
"Calculate the cost and time of the program (i.e., all "
"Validation tasks)."
),
_("Save changes to the selected Validation task."),
_("Save changes to all Validation tasks."),
]
self._pnlTaskDescription: RAMSTKPanel = ValidationTaskDescriptionPanel()
self._pnlTaskEffort: RAMSTKPanel = ValidationTaskEffortPanel()
self.__make_ui()
pub.subscribe(super().do_set_cursor_active, "succeed_calculate_validation_task")
pub.subscribe(
super().do_set_cursor_active_on_fail, "fail_calculate_validation_task"
)
pub.subscribe(self._do_set_record_id, "selected_validation")
def _do_request_calculate(self, __button: Gtk.ToolButton) -> None:
super().do_set_cursor_busy()
pub.sendMessage(
"request_calculate_validation_task",
node_id=self._record_id,
)
|
BSD 3-Clause New or Revised License
|
alontalmor/leapofthought
|
LeapOfThought/common/file_utils.py
|
s3_get
|
python
|
def s3_get(url: str, temp_file: IO) -> None:
s3_resource = get_s3_resource()
bucket_name, s3_path = split_s3_path(url)
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
|
Pull a file directly from S3.
|
https://github.com/alontalmor/leapofthought/blob/8912a34bebf25dac4397db011613a25b62b3d4ae/LeapOfThought/common/file_utils.py#L173-L177
|
import os
import re
import gzip
import logging
import shutil
import tempfile
import json
from urllib.parse import urlparse
from pathlib import Path
from typing import Optional, Tuple, Union, IO, Callable, Set
from hashlib import sha256
from functools import wraps
import boto3
import botocore
from botocore.exceptions import ClientError
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from allennlp.common.tqdm import Tqdm
logger = logging.getLogger(__name__)
CACHE_ROOT = Path(os.getenv('LEAPOFTHOUGHT_CACHE_ROOT', Path.home() / '.teachyourai'))
CACHE_DIRECTORY = str(CACHE_ROOT / "cache")
DEPRECATED_CACHE_DIRECTORY = str(CACHE_ROOT / "datasets")
DATASET_CACHE = CACHE_DIRECTORY
if os.path.exists(DEPRECATED_CACHE_DIRECTORY):
logger = logging.getLogger(__name__)
logger.warning(f"Deprecated cache directory found ({DEPRECATED_CACHE_DIRECTORY}). "
f"Please remove this directory from your system to free up space.")
def url_to_filename(url: str, etag: str = None) -> str:
url_bytes = url.encode('utf-8')
url_hash = sha256(url_bytes)
filename = url_hash.hexdigest()
if etag:
etag_bytes = etag.encode('utf-8')
etag_hash = sha256(etag_bytes)
filename += '.' + etag_hash.hexdigest()
return filename
def filename_to_url(filename: str, cache_dir: str = None) -> Tuple[str, str]:
if cache_dir is None:
cache_dir = CACHE_DIRECTORY
cache_path = os.path.join(cache_dir, filename)
if not os.path.exists(cache_path):
raise FileNotFoundError("file {} not found".format(cache_path))
meta_path = cache_path + '.json'
if not os.path.exists(meta_path):
raise FileNotFoundError("file {} not found".format(meta_path))
with open(meta_path) as meta_file:
metadata = json.load(meta_file)
url = metadata['url']
etag = metadata['etag']
return url, etag
def cached_path(url_or_filename: Union[str, Path], cache_dir: str = None) -> str:
if cache_dir is None:
cache_dir = CACHE_DIRECTORY
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
url_or_filename = os.path.expanduser(url_or_filename)
parsed = urlparse(url_or_filename)
if parsed.scheme in ('http', 'https', 's3'):
return get_from_cache(url_or_filename, cache_dir)
elif os.path.exists(url_or_filename):
return url_or_filename
elif parsed.scheme == '':
raise FileNotFoundError("file {} not found".format(url_or_filename))
else:
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
def is_url_or_existing_file(url_or_filename: Union[str, Path, None]) -> bool:
if url_or_filename is None:
return False
url_or_filename = os.path.expanduser(str(url_or_filename))
parsed = urlparse(url_or_filename)
return parsed.scheme in ('http', 'https', 's3') or os.path.exists(url_or_filename)
def split_s3_path(url: str) -> Tuple[str, str]:
parsed = urlparse(url)
if not parsed.netloc or not parsed.path:
raise ValueError("bad s3 path {}".format(url))
bucket_name = parsed.netloc
s3_path = parsed.path
if s3_path.startswith("/"):
s3_path = s3_path[1:]
return bucket_name, s3_path
def s3_request(func: Callable):
@wraps(func)
def wrapper(url: str, *args, **kwargs):
try:
return func(url, *args, **kwargs)
except ClientError as exc:
if int(exc.response["Error"]["Code"]) == 404:
raise FileNotFoundError("file {} not found".format(url))
else:
raise
return wrapper
def get_s3_resource():
session = boto3.session.Session()
if session.get_credentials() is None:
s3_resource = session.resource("s3", config=botocore.client.Config(signature_version=botocore.UNSIGNED))
else:
s3_resource = session.resource("s3")
return s3_resource
@s3_request
def s3_etag(url: str) -> Optional[str]:
s3_resource = get_s3_resource()
bucket_name, s3_path = split_s3_path(url)
s3_object = s3_resource.Object(bucket_name, s3_path)
return s3_object.e_tag
@s3_request
|
MIT License
|
pytorch/fairseq
|
examples/MMPT/mmpt/models/mmfusion.py
|
MMFusionMTM.__init__
|
python
|
def __init__(self, config, **kwargs):
super().__init__(config)
from .transformermodel import MMBertForMTM
model_config = AutoConfig.from_pretrained(config.dataset.bert_name)
model_config.max_video_len = config.dataset.max_video_len
model_config.use_seg_emb = config.model.use_seg_emb
self.mm_encoder = MMBertForMTM.from_pretrained(
config.dataset.bert_name, config=model_config)
|
For reproducibility:
self.mm_encoder will be initialized then discarded.
|
https://github.com/pytorch/fairseq/blob/fcca32258c8e8bcc9f9890bf4714fa2f96b6b3e1/examples/MMPT/mmpt/models/mmfusion.py#L352-L363
|
import torch
from torch import nn
try:
from transformers import AutoConfig, AutoTokenizer
except ImportError:
pass
from . import transformermodel
class MMPTModel(nn.Module):
@classmethod
def from_pretrained(cls, config, checkpoint="checkpoint_best.pt"):
import os
from ..utils import recursive_config
from ..tasks import Task
config = recursive_config(config)
mmtask = Task.config_task(config)
checkpoint_path = os.path.join(config.eval.save_path, checkpoint)
mmtask.build_model(checkpoint=checkpoint_path)
from ..processors.models.s3dg import S3D
video_encoder = S3D('pretrained_models/s3d_dict.npy', 512)
video_encoder.load_state_dict(
torch.load('pretrained_models/s3d_howto100m.pth'))
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
config.dataset.bert_name, use_fast=config.dataset.use_fast
)
from ..processors import Aligner
aligner = Aligner(config.dataset)
return (
MMPTModel(config, mmtask.model, video_encoder),
tokenizer,
aligner
)
def __init__(self, config, model, video_encoder, **kwargs):
super().__init__()
self.max_video_len = config.dataset.max_video_len
self.video_encoder = video_encoder
self.model = model
def forward(self, video_frames, caps, cmasks, return_score=False):
bsz = video_frames.size(0)
assert bsz == 1, "only bsz=1 is supported now."
seq_len = video_frames.size(1)
video_frames = video_frames.view(-1, *video_frames.size()[2:])
vfeats = self.video_encoder(video_frames.permute(0, 4, 1, 2, 3))
vfeats = vfeats['video_embedding']
vfeats = vfeats.view(bsz, seq_len, vfeats.size(-1))
padding = torch.zeros(
bsz, self.max_video_len - seq_len, vfeats.size(-1))
vfeats = torch.cat([vfeats, padding], dim=1)
vmasks = torch.cat([
torch.ones((bsz, seq_len), dtype=torch.bool),
torch.zeros((bsz, self.max_video_len - seq_len), dtype=torch.bool)
],
dim=1
)
output = self.model(caps, cmasks, vfeats, vmasks)
if return_score:
output = {"score": torch.bmm(
output["pooled_video"][:, None, :],
output["pooled_text"][:, :, None]
).squeeze(-1).squeeze(-1)}
return output
class MMFusion(nn.Module):
def __init__(self, config, **kwargs):
super().__init__()
transformer_config = AutoConfig.from_pretrained(
config.dataset.bert_name)
self.hidden_size = transformer_config.hidden_size
self.is_train = False
if config.dataset.train_path is not None:
self.is_train = True
self.num_hidden_layers = transformer_config.num_hidden_layers
self.last_iso_layer = 0
if config.dataset.num_iso_layer is not None:
self.last_iso_layer = config.dataset.num_iso_layer - 1 + 1
if config.model.mm_encoder_cls is not None:
mm_encoder_cls = getattr(transformermodel, config.model.mm_encoder_cls)
model_config = AutoConfig.from_pretrained(config.dataset.bert_name)
model_config.max_video_len = config.dataset.max_video_len
model_config.use_seg_emb = config.model.use_seg_emb
self.mm_encoder = mm_encoder_cls.from_pretrained(
config.dataset.bert_name, config=model_config)
elif config.model.video_encoder_cls is not None and config.model.text_encoder_cls is not None:
video_encoder_cls = getattr(transformermodel, config.model.video_encoder_cls)
model_config = AutoConfig.from_pretrained(config.dataset.bert_name)
model_config.max_video_len = config.dataset.max_video_len
if hasattr(model_config, "num_layers"):
model_config.num_layers = config.model.num_hidden_video_layers
else:
model_config.num_hidden_layers = config.model.num_hidden_video_layers
self.video_encoder = video_encoder_cls.from_pretrained(
config.dataset.bert_name, config=model_config)
text_encoder_cls = getattr(transformermodel, config.model.text_encoder_cls)
self.text_encoder = text_encoder_cls.from_pretrained(
config.dataset.bert_name)
else:
raise ValueError("the encoder must be either MM or two backbones.")
def forward(
self,
caps,
cmasks,
vfeats,
vmasks,
**kwargs
):
raise NotImplementedError(
"Please derive MMFusion module."
)
def _mm_on_the_fly(
self,
cmasks,
vmasks,
attention_mask
):
if attention_mask is None:
attention_mask = self._mm_attention_mask(cmasks, vmasks)
"""
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
"""
token_type_ids = torch.cat(
[
torch.zeros(
(vmasks.size(0), vmasks.size(1) + 2),
dtype=torch.long,
device=vmasks.device,
),
torch.ones(
(cmasks.size(0), cmasks.size(1) - 2),
dtype=torch.long,
device=cmasks.device,
),
],
dim=1,
)
return attention_mask, token_type_ids
def _mm_attention_mask(self, cmasks, vmasks):
assert cmasks.size(0) == vmasks.size(0), "{}, {}, {}, {}".format(
str(cmasks.size()),
str(vmasks.size()),
str(cmasks.size(0)),
str(vmasks.size(0)),
)
mm_mask = torch.cat([cmasks[:, :1], vmasks, cmasks[:, 1:]], dim=1)
if self.last_iso_layer == 0:
return mm_mask
else:
batch_size = cmasks.size(0)
iso_mask = self._make_iso_mask(batch_size, cmasks, vmasks)
mm_mask = mm_mask[:, None, :].repeat(1, mm_mask.size(-1), 1)
iso_mm_masks = []
iso_mask = iso_mask[:, None, :, :].repeat(
1, self.last_iso_layer, 1, 1)
iso_mm_masks.append(iso_mask)
if self.last_iso_layer < self.num_hidden_layers:
mm_mask = mm_mask[:, None, :, :].repeat(
1, self.num_hidden_layers - self.last_iso_layer, 1, 1
)
iso_mm_masks.append(mm_mask)
iso_mm_masks = torch.cat(iso_mm_masks, dim=1)
return iso_mm_masks
def _make_iso_mask(self, batch_size, cmasks, vmasks):
cls_self_mask = torch.cat(
[
torch.ones(
(batch_size, 1), dtype=torch.bool, device=cmasks.device),
torch.zeros(
(batch_size, cmasks.size(1) + vmasks.size(1) - 1),
dtype=torch.bool, device=cmasks.device)
], dim=1)
iso_video_mask = torch.cat(
[
torch.zeros(
(batch_size, 1), dtype=torch.bool, device=cmasks.device
),
vmasks,
cmasks[:, 1:2],
torch.zeros(
(batch_size, cmasks.size(1) - 2),
dtype=torch.bool,
device=cmasks.device,
),
],
dim=1,
)
iso_text_mask = torch.cat(
[
torch.zeros(
(batch_size, 2 + vmasks.size(1)),
dtype=torch.bool,
device=cmasks.device,
),
cmasks[:, 2:],
],
dim=1,
)
cls_self_mask = cls_self_mask[:, None, :]
iso_video_mask = iso_video_mask[:, None, :].repeat(
1, vmasks.size(1) + 1, 1)
iso_text_mask = iso_text_mask[:, None, :].repeat(
1, cmasks.size(1) - 2, 1)
return torch.cat([cls_self_mask, iso_video_mask, iso_text_mask], dim=1)
def _pooling_vt_layer(
self,
layered_sequence_output,
cmasks,
vmasks
):
layer_idx = self.last_iso_layer if self.last_iso_layer > 0 else self.num_hidden_layers
hidden_state = layered_sequence_output[layer_idx]
batch_size = cmasks.size(0)
text_offset = vmasks.size(1) + 2
video_outputs = hidden_state[:, 1:text_offset]
video_attention_mask = torch.cat(
[
vmasks,
torch.ones(
(batch_size, 1), dtype=torch.bool, device=vmasks.device),
],
dim=1,
)
assert video_outputs.size(1) == video_attention_mask.size(1)
pooled_video = torch.sum(
video_outputs * video_attention_mask.unsqueeze(-1), dim=1
) / video_attention_mask.sum(1, keepdim=True)
text_attention_mask = cmasks[:, 2:]
text_outputs = hidden_state[:, text_offset:]
assert text_outputs.size(1) == text_attention_mask.size(1)
pooled_text = torch.sum(
text_outputs * text_attention_mask.unsqueeze(-1), dim=1
) / text_attention_mask.sum(1, keepdim=True)
return pooled_video, pooled_text
class MMFusionMFMMLM(MMFusion):
def forward(
self,
caps,
cmasks,
vfeats,
vmasks,
attention_mask=None,
video_label=None,
text_label=None,
**kwargs
):
output_hidden_states = False if self.is_train else True
target_vfeats, non_masked_frame_mask = None, None
if video_label is not None:
target_vfeats = vfeats.masked_select(
video_label.unsqueeze(-1)).view(
-1, vfeats.size(-1)
)
vfeats[video_label] = 0.0
non_masked_frame_mask = vmasks.clone()
non_masked_frame_mask[video_label] = False
attention_mask, token_type_ids = self._mm_on_the_fly(
cmasks, vmasks, attention_mask)
outputs = self.mm_encoder(
input_ids=caps,
input_video_embeds=vfeats,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
masked_frame_labels=video_label,
target_video_hidden_states=target_vfeats,
non_masked_frame_mask=non_masked_frame_mask,
masked_lm_labels=text_label,
output_hidden_states=output_hidden_states,
)
video_logits, text_logits = outputs[0], outputs[1]
if self.is_train:
return {
"video_logits": video_logits,
"text_logits": text_logits,
}
pooled_video, pooled_text = self._pooling_vt_layer(
outputs[2], cmasks, vmasks)
return {"pooled_video": pooled_video, "pooled_text": pooled_text}
class MMFusionMTM(MMFusionMFMMLM):
|
MIT License
|
arsenlosenko/python-ripple-lib
|
ripple_api/data_api.py
|
RippleDataAPIClient.get_validations
|
python
|
def get_validations(self, **query_params) -> dict:
url_params = 'network', 'validations'
return self._call(url_params, query_params)
|
Retrieve validation votes, including votes for ledger versions that are outside the main ledger chain.
Reference: https://developers.ripple.com/data-api.html#get-validations
|
https://github.com/arsenlosenko/python-ripple-lib/blob/3f04e7a47dbae8ad6bd76c61cefb6d9a1541c3ec/ripple_api/data_api.py#L275-L281
|
import json
from urllib.request import Request, urlopen
from urllib.parse import urljoin, urlencode
from urllib.error import HTTPError, URLError
class RippleDataAPIClient(object):
def __init__(self, node: str = 'https://data.ripple.com'):
self.node = node
def __repr__(self):
return '<RippleDataAPIClient node=%r>' % self.node
def _call(self, url_params: tuple, params: dict) -> dict:
api_version = "/v2/"
endpoint = "/".join(url_params)
api_url = "".join((api_version, endpoint))
url = urljoin(self.node, api_url)
url = url + "?" + urlencode(params)
req = Request(method='GET', url=url)
try:
with urlopen(req) as res:
res_json = json.loads(res.fp.read().decode('utf-8'))
return res_json
except HTTPError as err:
return {"status": "error", "msg": err}
except URLError as err:
return {"status": "error", "msg": err}
def get_ledger(self, ledger_identifier: str, **query_params) -> dict:
url_params = 'ledgers', ledger_identifier
return self._call(url_params, query_params)
def get_ledger_validations(self, ledger_hash: str, **query_params) -> dict:
endpoint = 'ledgers', ledger_hash, 'validations'
return self._call(endpoint, query_params)
def get_ledger_validation(self, ledger_hash: str,
pubkey: str, **query_params) -> dict:
url_params = 'ledgers', ledger_hash, 'validations', pubkey
return self._call(url_params, query_params)
def get_transaction(self, hash: str, **query_params) -> dict:
url_params = 'transactions', hash
return self._call(url_params, query_params)
def get_transactions(self, **query_params) -> dict:
return self._call(('transactions', ), query_params)
def get_payments(self, currency: str = None, **query_params) -> dict:
url_params = ('payments', )
if currency:
url_params = 'payments', currency
return self._call(url_params, query_params)
def get_exchanges(self, base: str, counter: str, **query_params) -> dict:
url_params = 'exchanges', base, counter
return self._call(url_params, query_params)
def get_exchange_rates(self, base: str, counter: str,
**query_params) -> dict:
url_params = 'exchange_rates', base, counter
return self._call(url_params, query_params)
def normalize(self, **query_params) -> dict:
return self._call(('normalize', ), query_params)
def get_daily_reports(self, date: str = None, **query_params) -> dict:
url_params = ('reports', )
if date:
url_params = 'reports', date
return self._call(url_params, query_params)
def get_stats(self, **query_params) -> dict:
return self._call(('stats', ), query_params)
def get_active_accounts(self, base: str, counter: str,
**query_params) -> dict:
url_params = 'active_accounts', base, counter
return self._call(url_params, query_params)
def get_exchange_volume(self, **query_params) -> dict:
url_params = 'network', 'exchange_volume'
return self._call(url_params, query_params)
def get_payment_volume(self, **query_params) -> dict:
url_params = 'network', 'payment_volume'
return self._call(url_params, query_params)
def get_external_markets(self, **query_params) -> dict:
url_params = 'network', 'external_markets'
return self._call(url_params, query_params)
def get_xrp_distribution(self, **query_params) -> dict:
url_params = 'network', 'xrp_distribution'
return self._call(url_params, query_params)
def get_top_currencies(self, date: str = None, **query_params) -> dict:
url_params = 'network', 'top_currencies'
if date:
url_params = 'network', 'top_currencies', date
return self._call(url_params, query_params)
def get_top_markets(self, date: str = None, **query_params) -> dict:
url_params = 'network', 'top_markets'
if date:
url_params = 'network', 'top_markets', date
return self._call(url_params, query_params)
def get_transaction_costs(self, **query_params) -> dict:
url_params = 'network', 'fees'
return self._call(url_params, query_params)
def get_fee_stats(self, **query_params) -> dict:
url_params = 'network', 'fee_stats'
return self._call(url_params, query_params)
def get_topology(self, **query_params) -> dict:
url_params = 'network', 'topology'
return self._call(url_params, query_params)
def get_topology_nodes(self, **query_params) -> dict:
url_params = 'network', 'topology', 'nodes'
return self._call(url_params, query_params)
def get_topology_node(self, pubkey: str, **query_params) -> dict:
url_params = 'network', 'topology', 'nodes', pubkey
return self._call(url_params, query_params)
def get_topology_links(self, **query_params) -> dict:
url_params = 'network', 'topology', 'links'
return self._call(url_params, query_params)
def get_validator(self, pubkey: str, **query_params) -> dict:
url_params = 'network', 'validators', pubkey
return self._call(url_params, query_params)
def get_validators(self, **query_params) -> dict:
url_params = 'network', 'validators'
return self._call(url_params, query_params)
def get_validator_validations(self, pubkey: str, **query_params) -> dict:
url_params = 'network', 'validators', pubkey, 'validations'
return self._call(url_params, query_params)
|
MIT License
|
seetaresearch/dragon
|
dragon/python/core/autograph/context.py
|
Context.mode
|
python
|
def mode(self, mode):
ctx = self._thread_local_data
old_mode = ctx.mode
old_is_eager = ctx.is_eager
ctx.mode = mode
ctx.is_eager = mode == 'EAGER_MODE'
try:
yield
finally:
ctx.mode = old_mode
ctx.is_eager = old_is_eager
|
Context-manager to allow setting the mode to EAGER/GRAPH.
|
https://github.com/seetaresearch/dragon/blob/3dfb6ea55d90d2fb2da9b1b471f5e1e7d7667810/dragon/python/core/autograph/context.py#L45-L56
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import threading
class _ThreadLocalData(threading.local):
def __init__(self):
super(_ThreadLocalData, self).__init__()
self.mode = 'EAGER_MODE'
self.is_eager = self.mode == 'EAGER_MODE'
class Context(object):
def __init__(self):
self._thread_local_data = _ThreadLocalData()
def executing_eagerly(self):
return self._thread_local_data.is_eager
@contextlib.contextmanager
|
BSD 2-Clause Simplified License
|
mila-iqia/babyai
|
babyai/rl/algos/base.py
|
BaseAlgo.collect_experiences
|
python
|
def collect_experiences(self):
for i in range(self.num_frames_per_proc):
preprocessed_obs = self.preprocess_obss(self.obs, device=self.device)
with torch.no_grad():
model_results = self.acmodel(preprocessed_obs, self.memory * self.mask.unsqueeze(1))
dist = model_results['dist']
value = model_results['value']
memory = model_results['memory']
extra_predictions = model_results['extra_predictions']
action = dist.sample()
obs, reward, done, env_info = self.env.step(action.cpu().numpy())
if self.aux_info:
env_info = self.aux_info_collector.process(env_info)
self.obss[i] = self.obs
self.obs = obs
self.memories[i] = self.memory
self.memory = memory
self.masks[i] = self.mask
self.mask = 1 - torch.tensor(done, device=self.device, dtype=torch.float)
self.actions[i] = action
self.values[i] = value
if self.reshape_reward is not None:
self.rewards[i] = torch.tensor([
self.reshape_reward(obs_, action_, reward_, done_)
for obs_, action_, reward_, done_ in zip(obs, action, reward, done)
], device=self.device)
else:
self.rewards[i] = torch.tensor(reward, device=self.device)
self.log_probs[i] = dist.log_prob(action)
if self.aux_info:
self.aux_info_collector.fill_dictionaries(i, env_info, extra_predictions)
self.log_episode_return += torch.tensor(reward, device=self.device, dtype=torch.float)
self.log_episode_reshaped_return += self.rewards[i]
self.log_episode_num_frames += torch.ones(self.num_procs, device=self.device)
for i, done_ in enumerate(done):
if done_:
self.log_done_counter += 1
self.log_return.append(self.log_episode_return[i].item())
self.log_reshaped_return.append(self.log_episode_reshaped_return[i].item())
self.log_num_frames.append(self.log_episode_num_frames[i].item())
self.log_episode_return *= self.mask
self.log_episode_reshaped_return *= self.mask
self.log_episode_num_frames *= self.mask
preprocessed_obs = self.preprocess_obss(self.obs, device=self.device)
with torch.no_grad():
next_value = self.acmodel(preprocessed_obs, self.memory * self.mask.unsqueeze(1))['value']
for i in reversed(range(self.num_frames_per_proc)):
next_mask = self.masks[i+1] if i < self.num_frames_per_proc - 1 else self.mask
next_value = self.values[i+1] if i < self.num_frames_per_proc - 1 else next_value
next_advantage = self.advantages[i+1] if i < self.num_frames_per_proc - 1 else 0
delta = self.rewards[i] + self.discount * next_value * next_mask - self.values[i]
self.advantages[i] = delta + self.discount * self.gae_lambda * next_advantage * next_mask
exps = DictList()
exps.obs = [self.obss[i][j]
for j in range(self.num_procs)
for i in range(self.num_frames_per_proc)]
exps.memory = self.memories.transpose(0, 1).reshape(-1, *self.memories.shape[2:])
exps.mask = self.masks.transpose(0, 1).reshape(-1).unsqueeze(1)
exps.action = self.actions.transpose(0, 1).reshape(-1)
exps.value = self.values.transpose(0, 1).reshape(-1)
exps.reward = self.rewards.transpose(0, 1).reshape(-1)
exps.advantage = self.advantages.transpose(0, 1).reshape(-1)
exps.returnn = exps.value + exps.advantage
exps.log_prob = self.log_probs.transpose(0, 1).reshape(-1)
if self.aux_info:
exps = self.aux_info_collector.end_collection(exps)
exps.obs = self.preprocess_obss(exps.obs, device=self.device)
keep = max(self.log_done_counter, self.num_procs)
log = {
"return_per_episode": self.log_return[-keep:],
"reshaped_return_per_episode": self.log_reshaped_return[-keep:],
"num_frames_per_episode": self.log_num_frames[-keep:],
"num_frames": self.num_frames,
"episodes_done": self.log_done_counter,
}
self.log_done_counter = 0
self.log_return = self.log_return[-self.num_procs:]
self.log_reshaped_return = self.log_reshaped_return[-self.num_procs:]
self.log_num_frames = self.log_num_frames[-self.num_procs:]
return exps, log
|
Collects rollouts and computes advantages.
Runs several environments concurrently. The next actions are computed
in a batch mode for all environments at the same time. The rollouts
and advantages from all environments are concatenated together.
Returns
-------
exps : DictList
Contains actions, rewards, advantages etc as attributes.
Each attribute, e.g. `exps.reward` has a shape
(self.num_frames_per_proc * num_envs, ...). k-th block
of consecutive `self.num_frames_per_proc` frames contains
data obtained from the k-th environment. Be careful not to mix
data from different environments!
logs : dict
Useful stats about the training process, including the average
reward, policy loss, value loss, etc.
|
https://github.com/mila-iqia/babyai/blob/863f3529371ba45ef0148a48b48f5ae6e61e06cc/babyai/rl/algos/base.py#L110-L251
|
from abc import ABC, abstractmethod
import torch
import numpy
from babyai.rl.format import default_preprocess_obss
from babyai.rl.utils import DictList, ParallelEnv
from babyai.rl.utils.supervised_losses import ExtraInfoCollector
class BaseAlgo(ABC):
def __init__(self, envs, acmodel, num_frames_per_proc, discount, lr, gae_lambda, entropy_coef,
value_loss_coef, max_grad_norm, recurrence, preprocess_obss, reshape_reward, aux_info):
self.env = ParallelEnv(envs)
self.acmodel = acmodel
self.acmodel.train()
self.num_frames_per_proc = num_frames_per_proc
self.discount = discount
self.lr = lr
self.gae_lambda = gae_lambda
self.entropy_coef = entropy_coef
self.value_loss_coef = value_loss_coef
self.max_grad_norm = max_grad_norm
self.recurrence = recurrence
self.preprocess_obss = preprocess_obss or default_preprocess_obss
self.reshape_reward = reshape_reward
self.aux_info = aux_info
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.num_procs = len(envs)
self.num_frames = self.num_frames_per_proc * self.num_procs
assert self.num_frames_per_proc % self.recurrence == 0
shape = (self.num_frames_per_proc, self.num_procs)
self.obs = self.env.reset()
self.obss = [None]*(shape[0])
self.memory = torch.zeros(shape[1], self.acmodel.memory_size, device=self.device)
self.memories = torch.zeros(*shape, self.acmodel.memory_size, device=self.device)
self.mask = torch.ones(shape[1], device=self.device)
self.masks = torch.zeros(*shape, device=self.device)
self.actions = torch.zeros(*shape, device=self.device, dtype=torch.int)
self.values = torch.zeros(*shape, device=self.device)
self.rewards = torch.zeros(*shape, device=self.device)
self.advantages = torch.zeros(*shape, device=self.device)
self.log_probs = torch.zeros(*shape, device=self.device)
if self.aux_info:
self.aux_info_collector = ExtraInfoCollector(self.aux_info, shape, self.device)
self.log_episode_return = torch.zeros(self.num_procs, device=self.device)
self.log_episode_reshaped_return = torch.zeros(self.num_procs, device=self.device)
self.log_episode_num_frames = torch.zeros(self.num_procs, device=self.device)
self.log_done_counter = 0
self.log_return = [0] * self.num_procs
self.log_reshaped_return = [0] * self.num_procs
self.log_num_frames = [0] * self.num_procs
|
BSD 3-Clause New or Revised License
|
sqlfluff/sqlfluff
|
src/sqlfluff/core/linter/linter.py
|
Linter.lint_paths
|
python
|
def lint_paths(
self,
paths: Tuple[str, ...],
fix: bool = False,
ignore_non_existent_files: bool = False,
ignore_files: bool = True,
processes: int = 1,
) -> LintingResult:
if len(paths) == 0:
paths = (os.getcwd(),)
result = LintingResult()
for path in paths:
result.add(
self.lint_path(
path,
fix=fix,
ignore_non_existent_files=ignore_non_existent_files,
ignore_files=ignore_files,
processes=processes,
)
)
result.stop_timer()
return result
|
Lint an iterable of paths.
|
https://github.com/sqlfluff/sqlfluff/blob/ce4e5a344526f7ee61a0950adc079e4d3b5af438/src/sqlfluff/core/linter/linter.py#L833-L860
|
import os
import time
import logging
from typing import (
Any,
List,
Sequence,
Optional,
Tuple,
Union,
cast,
Iterable,
Iterator,
)
import pathspec
from sqlfluff.core.errors import (
SQLBaseError,
SQLLexError,
SQLLintError,
SQLParseError,
SQLTemplaterSkipFile,
)
from sqlfluff.core.parser import Lexer, Parser
from sqlfluff.core.file_helpers import get_encoding
from sqlfluff.core.templaters import TemplatedFile
from sqlfluff.core.rules import get_ruleset
from sqlfluff.core.config import FluffConfig, ConfigLoader
from sqlfluff.core.linter.runner import get_runner
from sqlfluff.core.parser.segments.base import BaseSegment
from sqlfluff.core.parser.segments.meta import MetaSegment
from sqlfluff.core.parser.segments.raw import RawSegment
from sqlfluff.core.rules.base import BaseRule
from sqlfluff.core.linter.common import (
RuleTuple,
ParsedString,
NoQaDirective,
RenderedFile,
)
from sqlfluff.core.linter.linted_file import LintedFile
from sqlfluff.core.linter.linted_dir import LintedDir
from sqlfluff.core.linter.linting_result import LintingResult
WalkableType = Iterable[Tuple[str, Optional[List[str]], List[str]]]
linter_logger: logging.Logger = logging.getLogger("sqlfluff.linter")
class Linter:
allow_process_parallelism = True
def __init__(
self,
config: Optional[FluffConfig] = None,
formatter: Any = None,
dialect: Optional[str] = None,
rules: Optional[Union[str, List[str]]] = None,
user_rules: Optional[Union[str, List[str]]] = None,
) -> None:
self.config = FluffConfig.from_kwargs(
config=config, dialect=dialect, rules=rules
)
self.dialect = self.config.get("dialect_obj")
self.templater = self.config.get("templater_obj")
self.formatter = formatter
self.user_rules = user_rules or []
def get_ruleset(self, config: Optional[FluffConfig] = None) -> List[BaseRule]:
rs = get_ruleset()
for rule in self.user_rules:
rs.register(rule)
cfg = config or self.config
return rs.get_rulelist(config=cfg)
def rule_tuples(self) -> List[RuleTuple]:
rs = self.get_ruleset()
return [RuleTuple(rule.code, rule.description) for rule in rs]
@staticmethod
def _load_raw_file_and_config(fname, root_config):
file_config = root_config.make_child_from_path(fname)
encoding = get_encoding(fname=fname, config=file_config)
with open(fname, encoding=encoding, errors="backslashreplace") as target_file:
raw_file = target_file.read()
file_config.process_raw_file_for_config(raw_file)
return raw_file, file_config, encoding
@staticmethod
def _lex_templated_file(
templated_file: TemplatedFile, config: FluffConfig
) -> Tuple[Optional[Sequence[BaseSegment]], List[SQLLexError], FluffConfig]:
violations = []
linter_logger.info("LEXING RAW (%s)", templated_file.fname)
lexer = Lexer(config=config)
try:
tokens, lex_vs = lexer.lex(templated_file)
violations += lex_vs
linter_logger.info(
"Lexed tokens: %s", [seg.raw for seg in tokens] if tokens else None
)
except SQLLexError as err:
linter_logger.info("LEXING FAILED! (%s): %s", templated_file.fname, err)
violations.append(err)
return None, violations, config
if not tokens:
return None, violations, config
templating_blocks_indent = config.get("template_blocks_indent", "indentation")
if isinstance(templating_blocks_indent, str):
force_block_indent = templating_blocks_indent.lower().strip() == "force"
else:
force_block_indent = False
templating_blocks_indent = bool(templating_blocks_indent)
if templating_blocks_indent and not force_block_indent:
indent_balance = sum(
getattr(elem, "indent_val", 0)
for elem in cast(Tuple[BaseSegment, ...], tokens)
)
if indent_balance != 0:
linter_logger.debug(
"Indent balance test failed for %r. Template indents will not be linted for this file.",
templated_file.fname,
)
templating_blocks_indent = False
new_tokens = []
for token in cast(Tuple[BaseSegment, ...], tokens):
if token.is_meta:
token = cast(MetaSegment, token)
if token.indent_val != 0:
if not templating_blocks_indent:
continue
new_tokens.append(token)
return new_tokens, violations, config
@staticmethod
def _parse_tokens(
tokens: Sequence[BaseSegment],
config: FluffConfig,
recurse: bool = True,
fname: Optional[str] = None,
) -> Tuple[Optional[BaseSegment], List[SQLParseError]]:
parser = Parser(config=config)
violations = []
try:
parsed: Optional[BaseSegment] = parser.parse(
tokens, recurse=recurse, fname=fname
)
except SQLParseError as err:
linter_logger.info("PARSING FAILED! : %s", err)
violations.append(err)
return None, violations
if parsed:
linter_logger.info("\n###\n#\n# {}\n#\n###".format("Parsed Tree:"))
linter_logger.info("\n" + parsed.stringify())
for unparsable in parsed.iter_unparsables():
violations.append(
SQLParseError(
"Line {0[0]}, Position {0[1]}: Found unparsable section: {1!r}".format(
unparsable.pos_marker.working_loc,
unparsable.raw
if len(unparsable.raw) < 40
else unparsable.raw[:40] + "...",
),
segment=unparsable,
)
)
linter_logger.info("Found unparsable segment...")
linter_logger.info(unparsable.stringify())
return parsed, violations
@staticmethod
def parse_noqa(comment: str, line_no: int):
if comment.startswith("noqa"):
comment_remainder = comment[4:]
if comment_remainder:
if not comment_remainder.startswith(":"):
return SQLParseError(
"Malformed 'noqa' section. Expected 'noqa: <rule>[,...]",
line_no=line_no,
)
comment_remainder = comment_remainder[1:].strip()
if comment_remainder:
action: Optional[str]
if "=" in comment_remainder:
action, rule_part = comment_remainder.split("=", 1)
if action not in {"disable", "enable"}:
return SQLParseError(
"Malformed 'noqa' section. "
"Expected 'noqa: enable=<rule>[,...] | all' "
"or 'noqa: disable=<rule>[,...] | all",
line_no=line_no,
)
else:
action = None
rule_part = comment_remainder
if rule_part in {"disable", "enable"}:
return SQLParseError(
"Malformed 'noqa' section. "
"Expected 'noqa: enable=<rule>[,...] | all' "
"or 'noqa: disable=<rule>[,...] | all",
line_no=line_no,
)
rules: Optional[Tuple[str, ...]]
if rule_part != "all":
rules = tuple(r.strip() for r in rule_part.split(","))
else:
rules = None
return NoQaDirective(line_no, rules, action)
return NoQaDirective(line_no, None, None)
return None
@staticmethod
def remove_templated_errors(
linting_errors: List[SQLBaseError],
) -> List[SQLBaseError]:
result: List[SQLBaseError] = []
for e in linting_errors:
if isinstance(e, SQLLintError):
if (
e.segment.pos_marker.is_literal()
or e.rule.targets_templated
):
result.append(e)
else:
result.append(e)
return result
@staticmethod
def _warn_unfixable(code: str):
linter_logger.warning(
f"One fix for {code} not applied, it would re-cause the same error."
)
@classmethod
def parse_rendered(cls, rendered: RenderedFile, recurse: bool = True):
t0 = time.monotonic()
violations = cast(List[SQLBaseError], rendered.templater_violations)
tokens: Optional[Sequence[BaseSegment]]
if rendered.templated_file:
tokens, lvs, config = cls._lex_templated_file(
rendered.templated_file, rendered.config
)
violations += lvs
else:
tokens = None
t1 = time.monotonic()
linter_logger.info("PARSING (%s)", rendered.fname)
if tokens:
parsed, pvs = cls._parse_tokens(
tokens, rendered.config, recurse=recurse, fname=rendered.fname
)
violations += pvs
else:
parsed = None
time_dict = {
**rendered.time_dict,
"lexing": t1 - t0,
"parsing": time.monotonic() - t1,
}
return ParsedString(
parsed,
violations,
time_dict,
rendered.templated_file,
rendered.config,
rendered.fname,
)
@classmethod
def extract_ignore_from_comment(cls, comment: RawSegment):
comment_content = comment.raw_trimmed().strip()
comment_line, _ = comment.pos_marker.source_position()
result = cls.parse_noqa(comment_content, comment_line)
if isinstance(result, SQLParseError):
result.segment = comment
return result
@classmethod
def extract_ignore_mask(
cls, tree: BaseSegment
) -> Tuple[List[NoQaDirective], List[SQLBaseError]]:
ignore_buff: List[NoQaDirective] = []
violations: List[SQLBaseError] = []
for comment in tree.recursive_crawl("comment"):
if comment.name == "inline_comment":
ignore_entry = cls.extract_ignore_from_comment(comment)
if isinstance(ignore_entry, SQLParseError):
violations.append(ignore_entry)
elif ignore_entry:
ignore_buff.append(ignore_entry)
if ignore_buff:
linter_logger.info("Parsed noqa directives from file: %r", ignore_buff)
return ignore_buff, violations
@classmethod
def lint_fix_parsed(
cls,
tree: BaseSegment,
config: FluffConfig,
rule_set: List[BaseRule],
fix: bool = False,
fname: Optional[str] = None,
templated_file: Optional[TemplatedFile] = None,
formatter: Any = None,
) -> Tuple[BaseSegment, List[SQLBaseError], List[NoQaDirective]]:
all_linting_errors = []
last_fixes = None
previous_versions = {tree.raw}
loop_limit = config.get("runaway_limit") if fix else 1
if formatter:
formatter.dispatch_lint_header(fname)
ignore_buff, ivs = cls.extract_ignore_mask(tree)
all_linting_errors += ivs
for loop in range(loop_limit):
changed = False
for crawler in rule_set:
linting_errors, _, fixes, _ = crawler.crawl(
tree,
ignore_mask=ignore_buff,
dialect=config.get("dialect_obj"),
fname=fname,
templated_file=templated_file,
)
all_linting_errors += linting_errors
if fix and fixes:
linter_logger.info(f"Applying Fixes [{crawler.code}]: {fixes}")
if fixes == last_fixes:
cls._warn_unfixable(crawler.code)
else:
last_fixes = fixes
new_tree, _ = tree.apply_fixes(fixes)
if new_tree.raw not in previous_versions:
tree = new_tree
previous_versions.add(tree.raw)
changed = True
continue
else:
cls._warn_unfixable(crawler.code)
if loop == 0:
initial_linting_errors = all_linting_errors.copy()
if fix and not changed:
linter_logger.info(
f"Fix loop complete. Stability achieved after {loop}/{loop_limit} loops."
)
break
if fix and loop + 1 == loop_limit:
linter_logger.warning(f"Loop limit on fixes reached [{loop_limit}].")
if config.get("ignore_templated_areas", default=True):
initial_linting_errors = cls.remove_templated_errors(initial_linting_errors)
return tree, initial_linting_errors, ignore_buff
@classmethod
def lint_parsed(
cls,
parsed: ParsedString,
rule_set: List[BaseRule],
fix: bool = False,
formatter: Any = None,
encoding: str = "utf8",
):
violations = parsed.violations
time_dict = parsed.time_dict
tree: Optional[BaseSegment]
if parsed.tree:
t0 = time.monotonic()
linter_logger.info("LINTING (%s)", parsed.fname)
tree, initial_linting_errors, ignore_buff = cls.lint_fix_parsed(
parsed.tree,
config=parsed.config,
rule_set=rule_set,
fix=fix,
fname=parsed.fname,
templated_file=parsed.templated_file,
formatter=formatter,
)
time_dict["linting"] = time.monotonic() - t0
violations += initial_linting_errors
else:
tree = None
ignore_buff = []
for violation in violations:
violation.ignore_if_in(parsed.config.get("ignore"))
linted_file = LintedFile(
parsed.fname,
violations,
time_dict,
tree,
ignore_mask=ignore_buff,
templated_file=parsed.templated_file,
encoding=encoding,
)
if formatter:
formatter.dispatch_file_violations(
parsed.fname, linted_file, only_fixable=fix
)
if parsed.config.get("dialect") == "ansi" and linted_file.get_violations(
fixable=True if fix else None, types=SQLParseError
):
if formatter:
formatter.dispatch_dialect_warning()
return linted_file
@classmethod
def lint_rendered(
cls,
rendered: RenderedFile,
rule_set: List[BaseRule],
fix: bool = False,
formatter: Any = None,
) -> LintedFile:
parsed = cls.parse_rendered(rendered)
return cls.lint_parsed(
parsed,
rule_set=rule_set,
fix=fix,
formatter=formatter,
encoding=rendered.encoding,
)
def render_string(
self, in_str: str, fname: str, config: FluffConfig, encoding: str
) -> RenderedFile:
linter_logger.info("TEMPLATING RAW [%s] (%s)", self.templater.name, fname)
t0 = time.monotonic()
if not config.get("templater_obj") == self.templater:
linter_logger.warning(
(
f"Attempt to set templater to {config.get('templater_obj').name} failed. Using {self.templater.name} "
"templater. Templater cannot be set in a .sqlfluff file in a subdirectory of the current working "
"directory. It can be set in a .sqlfluff in the current working directory. See Nesting section of the "
"docs for more details."
)
)
try:
templated_file, templater_violations = self.templater.process(
in_str=in_str, fname=fname, config=config, formatter=self.formatter
)
except SQLTemplaterSkipFile as s:
linter_logger.warning(str(s))
templated_file = None
templater_violations = []
if not templated_file:
linter_logger.info("TEMPLATING FAILED: %s", templater_violations)
time_dict = {"templating": time.monotonic() - t0}
return RenderedFile(
templated_file, templater_violations, config, time_dict, fname, encoding
)
def render_file(self, fname: str, root_config: FluffConfig) -> RenderedFile:
raw_file, config, encoding = self._load_raw_file_and_config(fname, root_config)
return self.render_string(raw_file, fname, config, encoding)
def parse_string(
self,
in_str: str,
fname: str = "<string>",
recurse: bool = True,
config: Optional[FluffConfig] = None,
encoding: str = "utf-8",
) -> ParsedString:
violations: List[SQLBaseError] = []
if self.formatter:
self.formatter.dispatch_template_header(fname, self.config, config)
config = config or self.config
config.process_raw_file_for_config(in_str)
rendered = self.render_string(in_str, fname, config, encoding)
violations += rendered.templater_violations
if self.formatter:
self.formatter.dispatch_parse_header(fname)
return self.parse_rendered(rendered, recurse=recurse)
def fix(
self,
tree: BaseSegment,
config: Optional[FluffConfig] = None,
fname: Optional[str] = None,
templated_file: Optional[TemplatedFile] = None,
) -> Tuple[BaseSegment, List[SQLBaseError]]:
config = config or self.config
rule_set = self.get_ruleset(config=config)
fixed_tree, violations, _ = self.lint_fix_parsed(
tree,
config,
rule_set,
fix=True,
fname=fname,
templated_file=templated_file,
formatter=self.formatter,
)
return fixed_tree, violations
def lint(
self,
tree: BaseSegment,
config: Optional[FluffConfig] = None,
fname: Optional[str] = None,
templated_file: Optional[TemplatedFile] = None,
) -> List[SQLBaseError]:
config = config or self.config
rule_set = self.get_ruleset(config=config)
_, violations, _ = self.lint_fix_parsed(
tree,
config,
rule_set,
fix=False,
fname=fname,
templated_file=templated_file,
formatter=self.formatter,
)
return violations
def lint_string(
self,
in_str: str = "",
fname: str = "<string input>",
fix: bool = False,
config: Optional[FluffConfig] = None,
encoding: str = "utf8",
) -> LintedFile:
config = config or self.config
parsed = self.parse_string(in_str=in_str, fname=fname, config=config)
rule_set = self.get_ruleset(config=config)
return self.lint_parsed(
parsed, rule_set, fix=fix, formatter=self.formatter, encoding=encoding
)
def paths_from_path(
self,
path: str,
ignore_file_name: str = ".sqlfluffignore",
ignore_non_existent_files: bool = False,
ignore_files: bool = True,
working_path: str = os.getcwd(),
) -> List[str]:
if not os.path.exists(path):
if ignore_non_existent_files:
return []
else:
raise OSError("Specified path does not exist")
is_exact_file = os.path.isfile(path)
if is_exact_file:
dirpath = os.path.dirname(path)
files = [os.path.basename(path)]
ignore_file_paths = ConfigLoader.find_ignore_config_files(
path=path, working_path=working_path, ignore_file_name=ignore_file_name
)
path_walk_ignore_file = [
(
os.path.dirname(ignore_file_path),
None,
[os.path.basename(ignore_file_path)],
)
for ignore_file_path in ignore_file_paths
]
path_walk: WalkableType = [(dirpath, None, files)] + path_walk_ignore_file
else:
path_walk = os.walk(path)
buffer = []
ignores = {}
for dirpath, _, filenames in path_walk:
for fname in filenames:
fpath = os.path.join(dirpath, fname)
if ignore_files and fname == ignore_file_name:
with open(fpath) as fh:
spec = pathspec.PathSpec.from_lines("gitwildmatch", fh)
ignores[dirpath] = spec
continue
for ext in self.config.get("sql_file_exts", default=".sql").split(","):
if fname.endswith(ext):
buffer.append(fpath)
if not ignore_files:
return sorted(buffer)
filtered_buffer = []
for fpath in buffer:
abs_fpath = os.path.abspath(fpath)
for ignore_base, ignore_spec in ignores.items():
abs_ignore_base = os.path.abspath(ignore_base)
if abs_fpath.startswith(
abs_ignore_base + os.sep
) and ignore_spec.match_file(
os.path.relpath(abs_fpath, abs_ignore_base)
):
if is_exact_file:
linter_logger.warning(
"Exact file path %s was given but "
"it was ignored by a %s pattern in %s, "
"re-run with `--disregard-sqlfluffignores` to "
"skip %s"
% (
path,
ignore_file_name,
ignore_base,
ignore_file_name,
)
)
break
else:
filtered_buffer.append(os.path.normpath(fpath))
return sorted(filtered_buffer)
def lint_string_wrapped(
self, string: str, fname: str = "<string input>", fix: bool = False
) -> LintingResult:
result = LintingResult()
linted_path = LintedDir(fname)
linted_path.add(self.lint_string(string, fname=fname, fix=fix))
result.add(linted_path)
result.stop_timer()
return result
def lint_path(
self,
path: str,
fix: bool = False,
ignore_non_existent_files: bool = False,
ignore_files: bool = True,
processes: int = 1,
) -> LintedDir:
linted_path = LintedDir(path)
if self.formatter:
self.formatter.dispatch_path(path)
fnames = list(
self.paths_from_path(
path,
ignore_non_existent_files=ignore_non_existent_files,
ignore_files=ignore_files,
)
)
runner = get_runner(
self,
self.config,
processes=processes,
allow_process_parallelism=self.allow_process_parallelism,
)
for linted_file in runner.run(fnames, fix):
linted_path.add(linted_file)
if any(v.fatal for v in linted_file.violations):
linter_logger.error("Fatal linting error. Halting further linting.")
break
return linted_path
|
MIT License
|
mabuchilab/qnet
|
src/qnet/algebra/toolbox/commutator_manipulation.py
|
expand_commutators_leibniz
|
python
|
def expand_commutators_leibniz(expr, expand_expr=True):
recurse = partial(expand_commutators_leibniz, expand_expr=expand_expr)
A = wc('A', head=Operator)
C = wc('C', head=Operator)
AB = wc('AB', head=OperatorTimes)
BC = wc('BC', head=OperatorTimes)
def leibniz_right(A, BC):
B = BC.operands[0]
C = OperatorTimes.create(*BC.operands[1:])
return Commutator.create(A, B) * C + B * Commutator.create(A, C)
def leibniz_left(AB, C):
A = AB.operands[0]
B = OperatorTimes(*AB.operands[1:])
return A * Commutator.create(B, C) + Commutator.create(A, C) * B
rules = OrderedDict([
('leibniz1', (
pattern(Commutator, A, BC),
lambda A, BC: recurse(leibniz_right(A, BC).expand()))),
('leibniz2', (
pattern(Commutator, AB, C),
lambda AB, C: recurse(leibniz_left(AB, C).expand())))])
if expand_expr:
res = _apply_rules(expr.expand(), rules).expand()
else:
res = _apply_rules(expr, rules)
return res
|
Recursively expand commutators in `expr` according to the Leibniz rule.
.. math::
[A B, C] = A [B, C] + [A, C] B
.. math::
[A, B C] = [A, B] C + B [A, C]
If `expand_expr` is True, expand products of sums in `expr`, as well as in
the result.
|
https://github.com/mabuchilab/qnet/blob/cc20d26dad78691d34c67173e5cd67dcac94208a/src/qnet/algebra/toolbox/commutator_manipulation.py#L14-L58
|
from collections.__init__ import OrderedDict
from functools import partial
from ..core.abstract_algebra import _apply_rules
from ..core.operator_algebra import (
Operator, OperatorTimes,
Commutator, )
from ..pattern_matching import wc, pattern
__all__ = ['expand_commutators_leibniz']
|
MIT License
|
faucetsdn/daq
|
subset/dot1x/authenticator/radius.py
|
RadiusAttributesList.extract_attributes
|
python
|
def extract_attributes(cls, attributes_data, attributes, attributes_to_concat):
total_length = len(attributes_data)
pos = 0
index = -1
last_attribute = -1
while pos < total_length:
try:
type_, attr_length = struct.unpack("!BB",
attributes_data[pos:pos + Attribute.HEADER_SIZE])
except struct.error as exception:
raise MessageParseError('Unable to unpack first 2 bytes of attribute header') from exception
data = attributes_data[pos + Attribute.HEADER_SIZE: pos + attr_length]
pos += attr_length
packed_value = data[:attr_length - Attribute.HEADER_SIZE]
try:
attribute = ATTRIBUTE_TYPES[type_].parse(packed_value)
except KeyError as exception:
raise MessageParseError('Cannot find parser for RADIUS attribute %s' %
type_) from exception
if attribute.DATA_TYPE != Concat or last_attribute != attribute.TYPE:
index += 1
last_attribute = attribute.TYPE
if attribute.DATA_TYPE.DATA_TYPE_VALUE == Concat.DATA_TYPE_VALUE:
if attribute.TYPE not in attributes_to_concat:
attributes_to_concat[attribute.TYPE] = []
attributes_to_concat[attribute.TYPE].append((attribute, index))
attributes.append(attribute)
|
Extracts Radius Attributes from a packed payload.
Keeps track of attribute ordering.
Args:
attributes_data (): data to extract from (input).
attributes: attributes extracted (output variable).
attributes_to_concat (dict): (output variable).
Raises:
MessageParseError: RadiusAttribute.parse will raise error
if it cannot parse the attribute's data
|
https://github.com/faucetsdn/daq/blob/5a5f46d76bb36519bd2ee44ee63c51f2f19fce0f/subset/dot1x/authenticator/radius.py#L282-L325
|
import copy
import hashlib
import hmac
import struct
import binascii
from radius_attributes import ATTRIBUTE_TYPES, Attribute, MessageAuthenticator
from radius_datatypes import Concat
from utils import MessageParseError
RADIUS_HEADER_LENGTH = 1 + 1 + 2 + 16
PACKET_TYPE_PARSERS = {}
class InvalidResponseAuthenticatorError(Exception):
pass
class InvalidMessageAuthenticatorError(Exception):
pass
class Radius:
ACCESS_REQUEST = 1
ACCESS_ACCEPT = 2
ACCESS_REJECT = 3
ACCOUNTING_REQUEST = 4
ACCOUNTING_RESPONSE = 5
ACCESS_CHALLENGE = 11
STATUS_SERVER = 12
STATUS_CLIENT = 13
@staticmethod
def parse(packed_message, secret, packet_id_to_request_authenticator):
try:
code, packet_id, length, authenticator = struct.unpack(
"!BBH16s", packed_message[:RADIUS_HEADER_LENGTH])
except struct.error as exception:
raise MessageParseError('Unable to unpack first 20 bytes of RADIUS header') from exception
if code in PACKET_TYPE_PARSERS.keys():
radius_packet = PACKET_TYPE_PARSERS[code](packet_id, authenticator,
RadiusAttributesList.parse(
packed_message[RADIUS_HEADER_LENGTH:]))
if code == Radius.ACCESS_REQUEST:
request_authenticator = authenticator
else:
try:
request_authenticator = packet_id_to_request_authenticator[packet_id]
except KeyError as exception:
raise MessageParseError('Unknown RAIDUS packet_id: %s' % packet_id, ) from exception
try:
return radius_packet.validate_packet(secret,
request_authenticator=request_authenticator,
code=code)
except (InvalidMessageAuthenticatorError,
InvalidResponseAuthenticatorError) as exception:
raise MessageParseError("Unable to validate Radius packet") from exception
raise MessageParseError("Unable to parse radius code: %d" % code)
def pack(self):
pass
def register_packet_type_parser(cls):
PACKET_TYPE_PARSERS[cls.CODE] = cls.parse
return cls
class RadiusPacket(Radius):
CODE = None
packed = None
def __init__(self, packet_id, authenticator, attributes):
self.packet_id = packet_id
self.authenticator = authenticator
self.attributes = attributes
@classmethod
def parse(cls, packet_id, request_authenticator, attributes):
return cls(packet_id, request_authenticator, attributes)
def pack(self):
header = struct.pack("!BBH16s", self.CODE, self.packet_id,
RADIUS_HEADER_LENGTH + self.attributes.__len__(),
self.authenticator)
packed_attributes = self.attributes.pack()
self.packed = bytearray(header + packed_attributes)
return self.packed
def build(self, secret=None):
if not self.packed:
self.pack()
try:
position = self.attributes.indexof(MessageAuthenticator.DESCRIPTION) + RADIUS_HEADER_LENGTH + Attribute.HEADER_SIZE
except ValueError as err:
print(err)
return self.packed
if secret:
message_authenticator = bytearray(hmac.new(secret.encode(), self.packed, 'md5')
.digest())
for i in range(16):
self.packed[i + position] = message_authenticator[i]
return self.packed
def validate_packet(self, secret, request_authenticator=None, code=None):
radius_packet = copy.deepcopy(self)
if not secret:
raise ValueError("secret cannot be None for hashing")
self.validate_response_authenticator(radius_packet, request_authenticator, secret, code)
self.validate_message_authenticator(radius_packet, secret, request_authenticator)
return self
@staticmethod
def validate_response_authenticator(radius_packet, request_authenticator, secret, code):
if request_authenticator and code in [Radius.ACCESS_REJECT,
Radius.ACCESS_ACCEPT,
Radius.ACCESS_CHALLENGE]:
response_authenticator = radius_packet.authenticator
radius_packet.authenticator = request_authenticator
radius_packet.pack()
calculated_response_authenticator = hashlib.md5(radius_packet.packed +
bytearray(secret, 'utf-8')).digest()
if calculated_response_authenticator != response_authenticator:
raise InvalidResponseAuthenticatorError(
"Original ResponseAuthenticator: '%s', does not match calculated: '%s' %s" % (
response_authenticator,
calculated_response_authenticator,
binascii.hexlify(radius_packet.packed)))
@staticmethod
def validate_message_authenticator(radius_packet, secret, request_authenticator):
message_authenticator = radius_packet.attributes.find(MessageAuthenticator.DESCRIPTION)
if message_authenticator:
radius_packet.authenticator = request_authenticator
original_ma = message_authenticator.bytes_data
message_authenticator.bytes_data = bytes.fromhex(
"00000000000000000000000000000000")
radius_packet.pack()
new_ma = hmac.new(secret.encode(), radius_packet.packed, 'md5').digest()
if original_ma != new_ma:
raise InvalidMessageAuthenticatorError(
"Original Message-Authenticator: '%s', does not match calculated: '%s'" %
(binascii.hexlify(original_ma), binascii.hexlify(new_ma)))
@register_packet_type_parser
class RadiusAccessRequest(RadiusPacket):
CODE = Radius.ACCESS_REQUEST
@register_packet_type_parser
class RadiusAccessAccept(RadiusPacket):
CODE = Radius.ACCESS_ACCEPT
@register_packet_type_parser
class RadiusAccessReject(RadiusPacket):
CODE = Radius.ACCESS_REJECT
@register_packet_type_parser
class RadiusAccessChallenge(RadiusPacket):
CODE = Radius.ACCESS_CHALLENGE
class RadiusAttributesList:
def __init__(self, attributes):
self.attributes = attributes
@classmethod
def parse(cls, attributes_data):
attributes = []
attributes_to_concat = {}
cls.extract_attributes(attributes_data, attributes, attributes_to_concat)
attributes = cls.merge_concat_attributes(attributes, attributes_to_concat)
return cls(attributes)
@classmethod
def merge_concat_attributes(cls, attributes, attributes_to_concat):
concatenated_attributes = []
for value, list_ in attributes_to_concat.items():
concatenated_data = b""
for d, i in list_:
concatenated_data += d.bytes_data
concatenated_attributes.append(tuple((ATTRIBUTE_TYPES[value].parse(concatenated_data),
i)))
for ca, _ in concatenated_attributes:
attributes = [x for x in attributes if x.TYPE != ca.TYPE]
for ca, i in concatenated_attributes:
attributes.insert(i, ca)
return attributes
@classmethod
|
Apache License 2.0
|
datera/rtslib
|
rtslib/node.py
|
CFSNode.list_auth_attrs
|
python
|
def list_auth_attrs(self, writable=None):
self._check_self()
path = "%s/auth" % self.path
return self._list_files(path, writable)
|
@param writable: If None (default), returns all auth attrs, if True,
returns read-write auth attrs, if False, returns just the read-only
auth attrs.
@type writable: bool or None
@return: A list of existing attribute names as strings.
|
https://github.com/datera/rtslib/blob/6fd0bbfc20947143eb2e4c3bfd34c65bf8551468/rtslib/node.py#L160-L170
|
import os
import stat
from utils import fread, fwrite, RTSLibError, RTSLibNotInCFS
class CFSNode(object):
configfs_dir = '/sys/kernel/config/target'
alua_metadata_dir = "/var/target/alua/iSCSI"
def __init__(self):
self._path = self.configfs_dir
def __nonzero__(self):
if os.path.isdir(self.path):
return True
else:
return False
def __str__(self):
return self.path
def _get_path(self):
return self._path
def _create_in_cfs_ine(self, mode):
if mode not in ['any', 'lookup', 'create']:
raise RTSLibError("Invalid mode: %s" % mode)
if self and mode == 'create':
raise RTSLibError("This %s already exists in configFS."
% self.__class__.__name__)
elif not self and mode == 'lookup':
raise RTSLibNotInCFS("No such %s in configfs: %s."
% (self.__class__.__name__, self.path))
if self:
self._fresh = False
return
try:
os.mkdir(self.path)
self._fresh = True
except Exception as e:
raise RTSLibError("Could not create %s: %s"
% (self.path, e))
def _exists(self):
return bool(self)
def _check_self(self):
if not self:
raise RTSLibNotInCFS("This %s does not exist in configFS."
% self.__class__.__name__)
def _is_fresh(self):
return self._fresh
def _list_files(self, path, writable=None):
if not os.path.isdir(path):
return []
if writable is None:
names = os.listdir(path)
elif writable:
names = [name for name in os.listdir(path)
if (os.stat("%s/%s" % (path, name))[stat.ST_MODE] & stat.S_IWUSR)]
else:
names = [os.path.basename(name) for name in os.listdir(path)
if not (os.stat("%s/%s" % (path, name))[stat.ST_MODE] & stat.S_IWUSR)]
names.sort()
return names
def list_parameters(self, writable=None):
self._check_self()
path = "%s/param" % self.path
return self._list_files(path, writable)
def list_attributes(self, writable=None):
self._check_self()
path = "%s/attrib" % self.path
attributes = self._list_files(path, writable)
backstore = getattr(self, "backstore", None)
plugin = getattr(backstore, "plugin", None)
edited_attributes = []
force_ro_attrs = ["block_size", "emulate_fua_write", "optimal_sectors"]
if writable is True and plugin == "pscsi":
edited_attributes = [attr for attr in attributes
if attr not in force_ro_attrs]
elif writable is False and plugin == "pscsi":
edited_attributes = list(set(attributes + force_ro_attrs))
else:
edited_attributes = attributes
return edited_attributes
|
Apache License 2.0
|
aparo/pyes
|
pyes/tests.py
|
ESTestCase.dump
|
python
|
def dump(self, result):
pprint(result)
|
dump to stdout the result
|
https://github.com/aparo/pyes/blob/96965174760cb5aa5c92eac7ccff346fb5d53cf1/pyes/tests.py#L109-L113
|
from __future__ import absolute_import
import os
import logging
import unittest
from pprint import pprint
from pyes.es import ES
from pyes.helpers import SettingsBuilder
def get_conn(*args, **kwargs):
return ES(("http", "127.0.0.1", 9200), *args, **kwargs)
DEFAULT_TEST_MAPPING = {
u'parsedtext': {
'store': 'true',
'type': u'text',
"term_vector": "with_positions_offsets"},
u'name': {
'store': 'true',
'type': u'text',
"term_vector": "with_positions_offsets"},
u'title': {
'store': 'true',
'type': u'text',
"term_vector": "with_positions_offsets"},
u'pos': {
'store': 'true',
'type': u'integer'},
u'position': {
'store': 'true',
'type': u'integer'},
u'doubles': {
'store': 'true',
'type': u'double'},
u'uuid': {
'store': 'true',
'type': u'keyword'},
u'tag': {'store': 'true',
'type': u'keyword'},
u'array': {'store': 'true',
'type': u'integer'},
u'inserted': {'store': 'true',
'type': u'date'},
u'date': {'store': 'true',
'type': u'date'},
u'resellers': {
'type': 'nested',
'properties': {
'name': {'type': 'text'},
'price': {'type': 'double'}
}},
}
class ESTestCase(unittest.TestCase):
def setUp(self):
self.log = open("/tmp/%s.sh" % self._testMethodName, "wb")
self.conn = get_conn(timeout=300.0, log_curl=True, dump_curl=self.log)
self.index_name = "test-index"
self.document_type = "test-type"
self.conn.indices.delete_index_if_exists(self.index_name)
def tearDown(self):
self.conn.indices.delete_index_if_exists(self.index_name)
if self.log:
self.log.close()
def assertResultContains(self, result, expected):
for (key, value) in expected.items():
found = False
try:
found = value == result[key]
except KeyError:
if result.has_key('meta'):
found = value == result['meta'][key]
self.assertEqual(True, found)
def checkRaises(self, excClass, callableObj, *args, **kwargs):
try:
callableObj(*args, **kwargs)
except excClass as e:
return e
else:
raise self.failureException("Expected exception %s not raised" % excClass)
def get_datafile(self, filename):
return open(os.path.join(os.path.dirname(__file__), "data", filename), "rb").read()
def get_datafile_path(self, filename):
return os.path.join(os.path.dirname(__file__), "data", filename)
|
BSD 3-Clause New or Revised License
|
liqunchen0606/graph-optimal-transport
|
NLP/TexarTransformer/utils/preprocess.py
|
make_array
|
python
|
def make_array(word_id, words):
ids = [word_id.get(word, unk_token_id) for word in words]
return np.array(ids, 'i')
|
generate id numpy array from plain text words.
|
https://github.com/liqunchen0606/graph-optimal-transport/blob/950c31d362afd3993f276a9503a251ea245cb057/NLP/TexarTransformer/utils/preprocess.py#L74-L77
|
from __future__ import unicode_literals
import collections
import re
import json
import os
import numpy as np
import pickle
import argparse
from io import open
split_pattern = re.compile(r'([.,!?"\':;)(])')
digit_pattern = re.compile(r'\d')
pad_token_id, bos_token_id, eos_token_id, unk_token_id = 0, 1, 2, 3
def split_sentence(s, tok=False):
if tok:
s = s.lower()
s = s.replace('\u2019', "'")
s = digit_pattern.sub('0', s)
words = []
for word in s.split():
if tok:
words.extend(split_pattern.split(word))
else:
words.append(word)
words = [w for w in words if w]
return words
def open_file(path):
return open(path, encoding='utf-8')
def read_file(path, tok=False):
with open_file(path) as f:
for line in f.readlines():
words = split_sentence(line.strip(), tok)
yield words
def count_words(path, max_vocab_size=40000, tok=False):
counts = collections.Counter()
for words in read_file(path, tok):
for word in words:
counts[word] += 1
vocab = [word for (word, _) in counts.most_common(max_vocab_size)]
return vocab
|
MIT License
|
pocket/recommendation-api
|
app/models/topic.py
|
TopicModel.get_topic
|
python
|
async def get_topic(slug: str) -> Optional['TopicModel']:
async with aioboto3.resource('dynamodb', endpoint_url=dynamodb_config['endpoint_url']) as dynamodb:
table = await dynamodb.Table(dynamodb_config['metadata']['table'])
response = await table.query(IndexName='slug', Limit=1, KeyConditionExpression=Key('slug').eq(slug))
if response['Items']:
return TopicModel.parse_obj(response['Items'][0])
raise ValueError('Topic not found')
|
Retrieves a single topic from dynamo db
:param slug: string slug of the topic to be retrieved
:return: a TopicModel object
|
https://github.com/pocket/recommendation-api/blob/7bac8144fd3b896a021cb7e8e443eef5200498fb/app/models/topic.py#L53-L65
|
import aioboto3
from aws_xray_sdk.core import xray_recorder
from boto3.dynamodb.conditions import Key
from enum import Enum
from pydantic import BaseModel
from typing import Optional
from app.config import dynamodb as dynamodb_config
class PageType(str, Enum):
editorial_collection = 'editorial_collection'
topic_page = 'topic_page'
class TopicModel(BaseModel):
id: str
display_name: str
page_type: PageType
slug: str
query: str
curator_label: str
is_displayed: bool
is_promoted: bool
display_note: str = None
social_title: str = None
social_description: str = None
social_image: str = None
custom_feed_id: str = None
@staticmethod
@xray_recorder.capture_async('models_topic_get_all')
async def get_all() -> ['TopicModel']:
async with aioboto3.resource('dynamodb', endpoint_url=dynamodb_config['endpoint_url']) as dynamodb:
table = await dynamodb.Table(dynamodb_config['metadata']['table'])
response = await table.scan()
return sorted(list(map(TopicModel.parse_obj, response['Items'])), key=lambda topic: topic.slug)
@staticmethod
@xray_recorder.capture_async('models_topic_get_topic')
|
Apache License 2.0
|
vincent-lg/tsunami
|
src/secondaires/calendrier/commandes/calendrier/__init__.py
|
CmdCalendrier.__init__
|
python
|
def __init__(self):
Commande.__init__(self, "calendrier", "calendar")
self.groupe = "administrateur"
self.aide_courte = "permet de consulter le calendrier"
self.aide_longue = "Cette commande permet de consulter le calendrier et de " "créer des évènements, de les éditer ou commenter."
|
Constructeur de la commande
|
https://github.com/vincent-lg/tsunami/blob/36b3b974f6eefbf15cd5d5f099fc14630e66570b/src/secondaires/calendrier/commandes/calendrier/__init__.py#L44-L51
|
from primaires.interpreteur.commande.commande import Commande
from .editer import PrmEditer
from .creer import PrmCreer
from .detail import PrmDetail
from .voir import PrmVoir
class CmdCalendrier(Commande):
|
BSD 3-Clause New or Revised License
|
jobovy/galpy
|
galpy/df/jeans.py
|
sigmar
|
python
|
def sigmar(Pot,r,dens=None,beta=0.):
Pot= flatten_pot(Pot)
if dens is None:
dens= lambda r: evaluateDensities(Pot,r*_INVSQRTTWO,r*_INVSQRTTWO,
phi=numpy.pi/4.,
use_physical=False)
if callable(beta):
intFactor= lambda x: numpy.exp(2.*integrate.quad(lambda y: beta(y)/y,
1.,x)[0])
else:
intFactor= lambda x: x**(2.*beta)
return numpy.sqrt(integrate.quad(lambda x: -intFactor(x)*dens(x)
*evaluaterforces(Pot,
x*_INVSQRTTWO,
x*_INVSQRTTWO,
phi=numpy.pi/4.,
use_physical=False),
r,numpy.inf)[0]/
dens(r)/intFactor(r))
|
NAME:
sigmar
PURPOSE:
Compute the radial velocity dispersion using the spherical Jeans equation
INPUT:
Pot - potential or list of potentials (evaluated at R=r/sqrt(2),z=r/sqrt(2), sphericity not checked)
r - Galactocentric radius (can be Quantity)
dens= (None) tracer density profile (function of r); if None, the density is assumed to be that corresponding to the potential
beta= (0.) anisotropy; can be a constant or a function of r
OUTPUT:
sigma_r(r)
HISTORY:
2018-07-05 - Written - Bovy (UofT)
|
https://github.com/jobovy/galpy/blob/0470fa3e990f44319e9340497f669699d1bf1008/galpy/df/jeans.py#L11-L57
|
import numpy
from scipy import integrate
from ..potential.Potential import evaluateDensities, evaluaterforces, evaluateSurfaceDensities
from ..potential.Potential import flatten as flatten_pot
from ..util.conversion import physical_conversion, potential_physical_input
_INVSQRTTWO= 1./numpy.sqrt(2.)
@potential_physical_input
@physical_conversion('velocity',pop=True)
|
BSD 3-Clause New or Revised License
|
timothyb0912/pylogit
|
tests/test_construct_estimator.py
|
ConstructorTests.setUp
|
python
|
def setUp(self):
self.asym_model = self.make_asym_model()
self.uneven_model, self.scobit_model = self.make_uneven_and_scobit_models()
self.clog_model, self.mnl_model = self.make_clog_and_mnl_models()
self.mixed_model = self.make_mixed_model()
self.nested_model = self.make_nested_model()
return None
|
Create the real model objects.
|
https://github.com/timothyb0912/pylogit/blob/cffc9c523b5368966ef2481c7dc30f0a5d296de8/tests/test_construct_estimator.py#L563-L573
|
import unittest
from collections import OrderedDict
from copy import deepcopy
import numpy as np
import numpy.testing as npt
import pandas as pd
from scipy.sparse import csr_matrix, eye
import pylogit.asym_logit as asym
import pylogit.conditional_logit as mnl
import pylogit.clog_log as clog
import pylogit.scobit as scobit
import pylogit.uneven_logit as uneven
import pylogit.mixed_logit_calcs as mlc
import pylogit.mixed_logit as mixed_logit
import pylogit.nested_logit as nested_logit
import pylogit.construct_estimator as constructor
class ConstructorTests(unittest.TestCase):
def make_asym_model(self):
fake_betas = np.array([-0.6])
fake_intercepts = np.array([1, 0.5])
fake_intercept_names = ["ASC 1", "ASC 2"]
fake_intercept_ref_pos = 2
fake_shapes = np.array([-1, 1])
fake_shape_names = ["Shape 1", "Shape 2"]
fake_shape_ref_pos = 2
natural_shapes = asym._convert_eta_to_c(fake_shapes,
fake_shape_ref_pos)
fake_all_params = np.concatenate((fake_shapes,
fake_intercepts,
fake_betas))
fake_rows_to_obs = csr_matrix(np.array([[1, 0],
[1, 0],
[1, 0],
[0, 1],
[0, 1]]))
fake_design = np.array([[1],
[2],
[3],
[1.5],
[3.5]])
fake_index = fake_design.dot(fake_betas)
fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2],
"alt_id": [1, 2, 3, 1, 3],
"choice": [0, 1, 0, 0, 1],
"x": fake_design[:, 0],
"intercept": [1 for i in range(5)]})
alt_id_col = "alt_id"
obs_id_col = "obs_id"
choice_col = "choice"
fake_specification = OrderedDict()
fake_names = OrderedDict()
fake_specification["x"] = [[1, 2, 3]]
fake_names["x"] = ["x (generic coefficient)"]
constructor_args = [fake_df,
alt_id_col,
obs_id_col,
choice_col,
fake_specification]
constructor_kwargs = {"intercept_ref_pos": fake_intercept_ref_pos,
"shape_ref_pos": fake_shape_ref_pos,
"names": fake_names,
"intercept_names": fake_intercept_names,
"shape_names": fake_shape_names}
model_obj = asym.MNAL(*constructor_args, **constructor_kwargs)
model_obj.coefs = pd.Series(fake_betas, index=fake_names["x"])
model_obj.intercepts = pd.Series(fake_intercepts, index=fake_intercept_names)
model_obj.shapes = pd.Series(fake_shapes, index=fake_shape_names)
model_obj.nests = None
model_obj.params = pd.concat([model_obj.shapes,
model_obj.intercepts,
model_obj.coefs],
axis=0, ignore_index=False)
return model_obj
def make_uneven_and_scobit_models(self):
fake_betas = np.array([-0.6])
fake_intercepts = np.array([1, 0.5])
fake_intercept_names = ["ASC 1", "ASC 2"]
fake_intercept_ref_pos = 2
fake_shapes = np.array([-1, 1, 2])
fake_shape_names = ["Shape 1", "Shape 2", "Shape 3"]
fake_all_params = np.concatenate((fake_shapes,
fake_intercepts,
fake_betas))
fake_rows_to_obs = csr_matrix(np.array([[1, 0],
[1, 0],
[1, 0],
[0, 1],
[0, 1]]))
fake_design = np.array([[1],
[2],
[3],
[1.5],
[3.5]])
fake_index = fake_design.dot(fake_betas)
fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2],
"alt_id": [1, 2, 3, 1, 3],
"choice": [0, 1, 0, 0, 1],
"x": fake_design[:, 0],
"intercept": [1 for i in range(5)]})
alt_id_col = "alt_id"
obs_id_col = "obs_id"
choice_col = "choice"
fake_specification = OrderedDict()
fake_names = OrderedDict()
fake_specification["x"] = [[1, 2, 3]]
fake_names["x"] = ["x (generic coefficient)"]
constructor_args = [fake_df,
alt_id_col,
obs_id_col,
choice_col,
fake_specification]
constructor_kwargs = {"intercept_ref_pos": fake_intercept_ref_pos,
"names": fake_names,
"intercept_names": fake_intercept_names,
"shape_names": fake_shape_names}
uneven_obj = uneven.MNUL(*constructor_args, **constructor_kwargs)
scobit_obj = scobit.MNSL(*constructor_args, **constructor_kwargs)
for model_obj in [uneven_obj, scobit_obj]:
model_obj.coefs = pd.Series(fake_betas, index=fake_names["x"])
model_obj.intercepts = pd.Series(fake_intercepts, index=fake_intercept_names)
model_obj.shapes = pd.Series(fake_shapes, index=fake_shape_names)
model_obj.nests = None
model_obj.params = pd.concat([model_obj.shapes,
model_obj.intercepts,
model_obj.coefs],
axis=0, ignore_index=False)
return uneven_obj, scobit_obj
def make_clog_and_mnl_models(self):
fake_betas = np.array([-0.6])
fake_intercepts = np.array([1, 0.5])
fake_intercept_names = ["ASC 1", "ASC 2"]
fake_intercept_ref_pos = 2
fake_all_params = np.concatenate((fake_intercepts, fake_betas))
fake_rows_to_obs = csr_matrix(np.array([[1, 0],
[1, 0],
[1, 0],
[0, 1],
[0, 1]]))
fake_design = np.array([[1],
[2],
[3],
[1.5],
[3.5]])
fake_index = fake_design.dot(fake_betas)
fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2],
"alt_id": [1, 2, 3, 1, 3],
"choice": [0, 1, 0, 0, 1],
"x": fake_design[:, 0],
"intercept": [1 for i in range(5)]})
alt_id_col = "alt_id"
obs_id_col = "obs_id"
choice_col = "choice"
fake_specification = OrderedDict()
fake_names = OrderedDict()
fake_specification["x"] = [[1, 2, 3]]
fake_names["x"] = ["x (generic coefficient)"]
mnl_spec = OrderedDict()
mnl_names = OrderedDict()
mnl_spec["intercept"] =[1, 2]
mnl_names["intercept"] = fake_intercept_names
mnl_spec["x"] = fake_specification["x"]
mnl_names["x"] = fake_names["x"]
clog_args = [fake_df,
alt_id_col,
obs_id_col,
choice_col,
fake_specification]
mnl_args = deepcopy(clog_args)
mnl_args[-1] = mnl_spec
clog_kwargs = {"names": fake_names,
"intercept_ref_pos": fake_intercept_ref_pos,
"intercept_names": fake_intercept_names}
mnl_kwargs = {"names": mnl_names}
clog_obj = clog.MNCL(*clog_args, **clog_kwargs)
mnl_obj = mnl.MNL(*mnl_args, **mnl_kwargs)
clog_obj.coefs = pd.Series(fake_betas, index=fake_names["x"])
clog_obj.intercepts = pd.Series(fake_intercepts, index=fake_intercept_names)
clog_obj.shapes = None
clog_obj.nests = None
clog_obj.params = pd.concat([clog_obj.intercepts, clog_obj.coefs],
axis=0, ignore_index=False)
mnl_obj.params = clog_obj.params.copy()
mnl_obj.coefs = mnl_obj.params.copy()
mnl_obj.intercepts = None
mnl_obj.shapes = None
mnl_obj.nests = None
return clog_obj, mnl_obj
def make_mixed_model(self):
fake_draws = mlc.get_normal_draws(2, 2, 1, seed=1)[0]
fake_betas = np.array([0.3, -0.6, 0.2])
fake_std = 1
fake_betas_ext = np.concatenate((fake_betas,
np.array([fake_std])),
axis=0)
fake_design = np.array([[1, 0, 1],
[0, 1, 2],
[0, 0, 3],
[1, 0, 1.5],
[0, 1, 2.5],
[0, 0, 3.5],
[1, 0, 0.5],
[0, 1, 1.0],
[0, 0, 1.5]])
mixing_pos = [2]
situation_ids = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3])
individual_ids = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2])
alternative_ids = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3])
choice_array = np.array([0, 1, 0, 0, 0, 1, 1, 0, 0])
obs_1_rows = np.ones(fake_design.shape[0])
obs_1_rows[-3:] = 0
obs_2_rows = 1 - obs_1_rows
fake_rows_to_mixers = csr_matrix(obs_1_rows[:, None] ==
np.array([1, 0])[None, :])
fake_rows_to_obs = csr_matrix(situation_ids[:, None] ==
np.arange(1, 4)[None, :])
arrays_to_join = (fake_design.copy(),
fake_design.copy()[:, -1][:, None])
fake_design_draw_1 = np.concatenate(arrays_to_join, axis=1)
fake_design_draw_2 = fake_design_draw_1.copy()
fake_design_draw_1[:, -1] *= (obs_1_rows *
fake_draws[0, 0] +
obs_2_rows *
fake_draws[1, 0])
fake_design_draw_2[:, -1] *= (obs_1_rows *
fake_draws[0, 1] +
obs_2_rows *
fake_draws[1, 1])
extended_design_draw_1 = fake_design_draw_1[:, None, :]
extended_design_draw_2 = fake_design_draw_2[:, None, :]
fake_design_3d = np.concatenate((extended_design_draw_1,
extended_design_draw_2),
axis=1)
sys_utilities_draw_1 = fake_design_draw_1.dot(fake_betas_ext)
sys_utilities_draw_2 = fake_design_draw_2.dot(fake_betas_ext)
long_exp_draw_1 = np.exp(sys_utilities_draw_1)
long_exp_draw_2 = np.exp(sys_utilities_draw_2)
ind_exp_sums_draw_1 = fake_rows_to_obs.T.dot(long_exp_draw_1)
ind_exp_sums_draw_2 = fake_rows_to_obs.T.dot(long_exp_draw_2)
long_exp_sum_draw_1 = fake_rows_to_obs.dot(ind_exp_sums_draw_1)
long_exp_sum_draw_2 = fake_rows_to_obs.dot(ind_exp_sums_draw_2)
long_probs_draw_1 = long_exp_draw_1 / long_exp_sum_draw_1
long_probs_draw_2 = long_exp_draw_2 / long_exp_sum_draw_2
prob_array = np.concatenate((long_probs_draw_1[:, None],
long_probs_draw_2[:, None]),
axis=1)
alt_id_column = "alt_id"
situation_id_column = "situation_id"
obs_id_column = "observation_id"
choice_column = "choice"
data = {"x": fake_design[:, 2],
alt_id_column: alternative_ids,
situation_id_column: situation_ids,
obs_id_column: individual_ids,
choice_column: choice_array}
fake_old_df = pd.DataFrame(data)
fake_old_df["intercept"] = 1
fake_spec = OrderedDict()
fake_names = OrderedDict()
fake_spec["intercept"] = [1, 2]
fake_names["intercept"] = ["ASC 1", "ASC 2"]
fake_spec["x"] = [[1, 2, 3]]
fake_names["x"] = ["beta_x"]
fake_mixing_vars = ["beta_x"]
args = [fake_old_df,
alt_id_column,
situation_id_column,
choice_column,
fake_spec]
kwargs = {"names": fake_names,
"mixing_id_col": obs_id_column,
"mixing_vars": fake_mixing_vars}
mixl_obj = mixed_logit.MixedLogit(*args, **kwargs)
mixl_obj.design_3d = fake_design_3d
mixl_obj.ind_var_names += ["Sigma X"]
mixl_obj.coefs = pd.Series(fake_betas_ext, index=mixl_obj.ind_var_names)
mixl_obj.intercepts = None
mixl_obj.shapes = None
mixl_obj.nests = None
mixl_obj.params = mixl_obj.coefs.copy()
return mixl_obj
def make_nested_model(self):
fake_betas = np.array([0.3, -0.6, 0.2])
natural_nest_coefs = np.array([1 - 1e-16, 0.5])
fake_all_params = np.concatenate((natural_nest_coefs,
fake_betas))
fake_rows_to_nests = csr_matrix(np.array([[1, 0],
[1, 0],
[0, 1],
[1, 0],
[0, 1]]))
fake_rows_to_obs = csr_matrix(np.array([[1, 0],
[1, 0],
[1, 0],
[0, 1],
[0, 1]]))
fake_design = np.array([[1, 0, 1],
[0, 1, 2],
[0, 0, 3],
[1, 0, 1.5],
[0, 0, 3.5]])
fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2],
"alt_id": [1, 2, 3, 1, 3],
"choice": [0, 1, 0, 0, 1],
"x": range(5),
"intercept": [1 for i in range(5)]})
alt_id_col = "alt_id"
obs_id_col = "obs_id"
choice_col = "choice"
choice_array = fake_df[choice_col].values
fake_chosen_rows_to_obs = csr_matrix(np.array([[0, 0],
[1, 0],
[0, 0],
[0, 0],
[0, 1]]))
fake_specification = OrderedDict()
fake_specification["intercept"] = [1, 2]
fake_specification["x"] = [[1, 2, 3]]
fake_names = OrderedDict()
fake_names["intercept"] = ["ASC 1", "ASC 2"]
fake_names["x"] = ["x (generic coefficient)"]
fake_nest_spec = OrderedDict()
fake_nest_spec["Nest 1"] = [1, 2]
fake_nest_spec["Nest 2"] = [3]
args = [fake_df,
alt_id_col,
obs_id_col,
choice_col,
fake_specification]
kwargs = {"names": fake_names,
"nest_spec": fake_nest_spec}
model_obj = nested_logit.NestedLogit(*args, **kwargs)
model_obj.coefs = pd.Series(fake_betas, index=model_obj.ind_var_names)
model_obj.intercepts = None
model_obj.shapes = None
def logit(x):
return np.log(x / (1 - x))
model_obj.nests = pd.Series(logit(natural_nest_coefs), index=fake_nest_spec.keys())
model_obj.params = pd.concat([model_obj.nests, model_obj.coefs],
axis=0, ignore_index=False)
return model_obj
|
BSD 3-Clause New or Revised License
|
facebookincubator/reindeer
|
build/fbcode_builder/CMake/make_fbpy_archive.py
|
build_install_dir
|
python
|
def build_install_dir(args, path_map):
dest_dir = os.path.dirname(args.output)
with tempfile.TemporaryDirectory(prefix="make_fbpy.", dir=dest_dir) as tmpdir:
inst_dir = os.path.join(tmpdir, "tree")
populate_install_tree(inst_dir, path_map)
create_main_module(args, inst_dir, path_map)
os.rename(inst_dir, args.output)
|
Create a directory that contains all of the sources, with a __main__
module to run the program.
|
https://github.com/facebookincubator/reindeer/blob/d3a70b069cd6774f2be374fa19bea68a3cb6142c/build/fbcode_builder/CMake/make_fbpy_archive.py#L167-L179
|
import argparse
import collections
import errno
import os
import shutil
import sys
import tempfile
import zipapp
MANIFEST_SEPARATOR = " :: "
MANIFEST_HEADER_V1 = "FBPY_MANIFEST 1\n"
class UsageError(Exception):
def __init__(self, message):
self.message = message
def __str__(self):
return self.message
class BadManifestError(UsageError):
def __init__(self, path, line_num, message):
full_msg = "%s:%s: %s" % (path, line_num, message)
super().__init__(full_msg)
self.path = path
self.line_num = line_num
self.raw_message = message
PathInfo = collections.namedtuple(
"PathInfo", ("src", "dest", "manifest_path", "manifest_line")
)
def parse_manifest(manifest, path_map):
bad_prefix = ".." + os.path.sep
manifest_dir = os.path.dirname(manifest)
with open(manifest, "r") as f:
line_num = 1
line = f.readline()
if line != MANIFEST_HEADER_V1:
raise BadManifestError(
manifest, line_num, "Unexpected manifest file header"
)
for line in f:
line_num += 1
if line.startswith("#"):
continue
line = line.rstrip("\n")
parts = line.split(MANIFEST_SEPARATOR)
if len(parts) != 2:
msg = "line must be of the form SRC %s DEST" % MANIFEST_SEPARATOR
raise BadManifestError(manifest, line_num, msg)
src, dest = parts
dest = os.path.normpath(dest)
if dest.startswith(bad_prefix):
msg = "destination path starts with %s: %s" % (bad_prefix, dest)
raise BadManifestError(manifest, line_num, msg)
if not os.path.isabs(src):
src = os.path.normpath(os.path.join(manifest_dir, src))
if dest in path_map:
prev_info = path_map[dest]
msg = (
"multiple source paths specified for destination "
"path %s. Previous source was %s from %s:%s"
% (
dest,
prev_info.src,
prev_info.manifest_path,
prev_info.manifest_line,
)
)
raise BadManifestError(manifest, line_num, msg)
info = PathInfo(
src=src,
dest=dest,
manifest_path=manifest,
manifest_line=line_num,
)
path_map[dest] = info
def populate_install_tree(inst_dir, path_map):
os.mkdir(inst_dir)
dest_dirs = {"": False}
def make_dest_dir(path):
if path in dest_dirs:
return
parent = os.path.dirname(path)
make_dest_dir(parent)
abs_path = os.path.join(inst_dir, path)
os.mkdir(abs_path)
dest_dirs[path] = False
def install_file(info):
dir_name, base_name = os.path.split(info.dest)
make_dest_dir(dir_name)
if base_name == "__init__.py":
dest_dirs[dir_name] = True
abs_dest = os.path.join(inst_dir, info.dest)
shutil.copy2(info.src, abs_dest)
for info in path_map.values():
install_file(info)
for dir_path, has_init in dest_dirs.items():
if has_init:
continue
init_path = os.path.join(inst_dir, dir_path, "__init__.py")
with open(init_path, "w"):
pass
def build_zipapp(args, path_map):
dest_dir = os.path.dirname(args.output)
with tempfile.TemporaryDirectory(prefix="make_fbpy.", dir=dest_dir) as tmpdir:
inst_dir = os.path.join(tmpdir, "tree")
populate_install_tree(inst_dir, path_map)
tmp_output = os.path.join(tmpdir, "output.exe")
zipapp.create_archive(
inst_dir, target=tmp_output, interpreter=args.python, main=args.main
)
os.replace(tmp_output, args.output)
def create_main_module(args, inst_dir, path_map):
if not args.main:
assert "__main__.py" in path_map
return
dest_path = os.path.join(inst_dir, "__main__.py")
main_module, main_fn = args.main.split(":")
main_contents = """\
#!{python}
if __name__ == "__main__":
import {main_module}
{main_module}.{main_fn}()
""".format(
python=args.python, main_module=main_module, main_fn=main_fn
)
with open(dest_path, "w") as f:
f.write(main_contents)
os.chmod(dest_path, 0o755)
|
MIT License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.