|
---
|
|
license: mit
|
|
task_categories:
|
|
- text-classification
|
|
- text-generation
|
|
- question-answering
|
|
- summarization
|
|
language:
|
|
- en
|
|
tags:
|
|
- artificial-intelligence
|
|
- machine-learning
|
|
- deep-learning
|
|
- nlp
|
|
- computer-vision
|
|
- data-science
|
|
- technical-articles
|
|
- analytics-india-magazine
|
|
- ai-models
|
|
- programming
|
|
size_categories:
|
|
- 10K<n<100K
|
|
pretty_name: Analytics India Magazine Technical Articles Dataset
|
|
|
|
---
|
|
|
|
# Analytics India Magazine Technical Articles Dataset π
|
|
|
|
## Dataset Description
|
|
|
|
This comprehensive dataset contains **25,685 high-quality technical articles** from Analytics India Magazine, one of India's leading publications covering artificial intelligence, machine learning, data science, and emerging technologies.
|
|
|
|
### β¨ Dataset Highlights
|
|
|
|
- **π Comprehensive Coverage**: Latest AI models, frameworks, and tools
|
|
- **π¬ Technical Depth**: Extracted keywords and complexity scoring
|
|
- **π Industry Focus**: Real-world applications and insights
|
|
- **β‘ Multiple Formats**: JSON and optimized Parquet files
|
|
- **π― ML Ready**: Pre-processed and split for training
|
|
|
|
## Dataset Statistics
|
|
|
|
| Metric | Value |
|
|
|--------|-------|
|
|
| **Total Articles** | 25,685 |
|
|
| **Technical Articles** | 25,647 |
|
|
| **Average Word Count** | 724 words |
|
|
| **Language** | English |
|
|
| **Source** | [Analytics India Magazine](https://analyticsindiamag.com/) |
|
|
|
|
## π― Technologies Covered
|
|
|
|
### AI & Machine Learning
|
|
- **Large Language Models**: GPT, Claude, Gemini, Llama
|
|
- **Frameworks**: TensorFlow, PyTorch, Hugging Face
|
|
- **MLOps Tools**: MLflow, Weights & Biases, Kubeflow
|
|
- **Agent Frameworks**: LangChain, AutoGen, CrewAI
|
|
|
|
### Programming & Tools
|
|
- **Languages**: Python, JavaScript, SQL
|
|
- **Cloud Platforms**: AWS, Azure, GCP
|
|
- **Development**: APIs, Docker, Kubernetes
|
|
|
|
## π Dataset Structure
|
|
|
|
### Core Fields
|
|
- `title`: Article title
|
|
- `content`: Full article content (cleaned)
|
|
- `excerpt`: Article summary
|
|
- `author_name`: Article author
|
|
- `publish_date`: Publication date
|
|
- `url`: Original article URL
|
|
|
|
### Technical Metadata
|
|
- `extracted_tech_keywords`: Technical terms found in content
|
|
- `technical_depth`: Number of technical keywords
|
|
- `complexity_score`: Technical complexity (0-4)
|
|
- `word_count`: Article length
|
|
- `categories`: Article categories
|
|
- `tags`: Content tags
|
|
|
|
### Quality Indicators
|
|
- `has_code_examples`: Contains code snippets
|
|
- `has_tutorial_content`: Tutorial or how-to content
|
|
- `is_research_content`: Research or analysis
|
|
- `has_external_links`: Contains external references
|
|
|
|
## π Dataset Splits
|
|
|
|
| Split | Examples | Purpose |
|
|
|-------|----------|---------|
|
|
| **Train** | 19,221 | Model training |
|
|
| **Validation** | 2,136 | Hyperparameter tuning |
|
|
| **Test** | 3,769 | Final evaluation |
|
|
|
|
## π Quick Start
|
|
|
|
### Using Hugging Face Datasets
|
|
```python
|
|
from datasets import load_dataset
|
|
|
|
# Load the dataset
|
|
dataset = load_dataset("abhilash88/aim-technical-articles")
|
|
|
|
# Access splits
|
|
train_data = dataset["train"]
|
|
test_data = dataset["test"]
|
|
|
|
# Filter technical articles
|
|
technical_articles = dataset.filter(
|
|
lambda x: x["technical_depth"] >= 3
|
|
)
|
|
```
|
|
|
|
### Using Pandas
|
|
```python
|
|
import pandas as pd
|
|
|
|
# Load from JSON
|
|
df = pd.read_json("aim_full_dataset.json")
|
|
|
|
# Load from Parquet (faster)
|
|
df = pd.read_parquet("aim_full_dataset.parquet")
|
|
|
|
# Convert list columns back from JSON strings
|
|
import json
|
|
df['categories'] = df['categories'].apply(json.loads)
|
|
df['extracted_tech_keywords'] = df['extracted_tech_keywords'].apply(json.loads)
|
|
```
|
|
|
|
## π― Use Cases
|
|
|
|
### Machine Learning
|
|
- **Text Classification**: Topic classification, difficulty assessment
|
|
- **Content Generation**: Article summarization, content creation
|
|
- **Recommendation Systems**: Technical content recommendations
|
|
- **Question Answering**: Technical QA systems
|
|
|
|
### Business Intelligence
|
|
- **Trend Analysis**: Technology trend identification
|
|
- **Market Research**: Industry insights and analysis
|
|
- **Content Strategy**: Editorial planning and optimization
|
|
|
|
### Education & Research
|
|
- **Curriculum Development**: AI/ML course creation
|
|
- **Knowledge Mining**: Technical concept extraction
|
|
- **Academic Research**: Technology adoption studies
|
|
|
|
## π¦ Available Files
|
|
|
|
### Standard Formats
|
|
- `aim_full_dataset.json` - Complete dataset
|
|
- `aim_full_dataset.csv` - CSV format
|
|
- `aim_full_dataset.parquet` - Optimized Parquet format
|
|
|
|
### Specialized Subsets
|
|
- `aim_quality_dataset.json` - High-quality articles (300+ words)
|
|
- `aim_technical_dataset.json` - Highly technical content
|
|
- `aim_tutorial_dataset.json` - Educational content
|
|
- `aim_research_dataset.json` - Research and analysis articles
|
|
|
|
### ML-Ready Splits
|
|
- `train.json` / `train.parquet` - Training data
|
|
- `test.json` / `test.parquet` - Test data
|
|
- `validation.json` / `validation.parquet` - Validation data (if available)
|
|
|
|
## π Content Quality
|
|
|
|
- **Duplicate Removal**: All articles are unique by ID
|
|
- **Content Filtering**: Minimum word count requirements
|
|
- **Technical Validation**: Verified technical keywords
|
|
- **Clean Processing**: HTML removed, text normalized
|
|
- **Rich Metadata**: Comprehensive article classification
|
|
|
|
## βοΈ Ethics & Usage
|
|
|
|
### Licensing
|
|
- **License**: MIT License
|
|
- **Attribution**: Analytics India Magazine
|
|
- **Usage**: Educational and research purposes recommended
|
|
|
|
### Content Guidelines
|
|
- All content is publicly available from the source
|
|
- Original URLs provided for attribution
|
|
- Respects robots.txt and rate limiting
|
|
- No personal or private information included
|
|
|
|
## π Citation
|
|
|
|
```bibtex
|
|
@dataset{aim_technical_articles_2025,
|
|
title={Analytics India Magazine Technical Articles Dataset},
|
|
author={Abhilash Sahoo},
|
|
year={2025},
|
|
publisher={Hugging Face},
|
|
url={https://huggingface.co/datasets/abhilash88/aim-technical-articles}
|
|
}
|
|
```
|
|
|
|
## π€ Contact & Support
|
|
|
|
- **Dataset Creator**: Abhilash Sahoo
|
|
- **Hugging Face**: [@abhilash88](https://huggingface.co/abhilash88)
|
|
- **Source**: [Analytics India Magazine](https://analyticsindiamag.com/)
|
|
|
|
For questions, issues, or suggestions, please open a discussion on the Hugging Face dataset page.
|
|
|
|
## π Updates & Versions
|
|
|
|
- **Version 2.0** (Current): Enhanced processing, technical depth scoring
|
|
- **Last Updated**: 2025-07-11
|
|
- **Processing Pipeline**: Optimized extraction with 2025 tech coverage
|
|
|
|
---
|
|
|
|
**π― Ready to power your next AI project with comprehensive technical knowledge!**
|
|
|
|
*This dataset captures the cutting edge of AI and technology discourse, perfect for training models, research, and building intelligent applications.*
|
|
|