Datasets:
Formats:
parquet
Size:
10K - 100K
tags: | |
- computer-vision | |
- audio | |
- keypoint-detection | |
- animal-behavior | |
- multi-modal | |
- jsonl | |
dataset_info: | |
features: | |
- name: bird_id | |
dtype: string | |
- name: back_bbox_2d | |
sequence: float64 | |
- name: back_keypoints_2d | |
sequence: float64 | |
- name: back_view_boundary | |
sequence: int64 | |
- name: bird_name | |
dtype: string | |
- name: video_name | |
dtype: string | |
- name: frame_name | |
dtype: string | |
- name: frame_path | |
dtype: image | |
- name: keypoints_3d | |
sequence: | |
sequence: float64 | |
- name: radio_path | |
dtype: binary | |
- name: reprojection_error | |
sequence: float64 | |
- name: side_bbox_2d | |
sequence: float64 | |
- name: side_keypoints_2d | |
sequence: float64 | |
- name: side_view_boundary | |
sequence: int64 | |
- name: backpack_color | |
dtype: string | |
- name: experiment_id | |
dtype: string | |
- name: split | |
dtype: string | |
- name: top_bbox_2d | |
sequence: float64 | |
- name: top_keypoints_2d | |
sequence: float64 | |
- name: top_view_boundary | |
sequence: int64 | |
- name: video_path | |
dtype: video | |
- name: acc_ch_map | |
struct: | |
- name: '0' | |
dtype: string | |
- name: '1' | |
dtype: string | |
- name: '2' | |
dtype: string | |
- name: '3' | |
dtype: string | |
- name: '4' | |
dtype: string | |
- name: '5' | |
dtype: string | |
- name: '6' | |
dtype: string | |
- name: '7' | |
dtype: string | |
- name: acc_sr | |
dtype: float64 | |
- name: has_overlap | |
dtype: bool | |
- name: mic_ch_map | |
struct: | |
- name: '0' | |
dtype: string | |
- name: '1' | |
dtype: string | |
- name: '2' | |
dtype: string | |
- name: '3' | |
dtype: string | |
- name: '4' | |
dtype: string | |
- name: '5' | |
dtype: string | |
- name: '6' | |
dtype: string | |
- name: mic_sr | |
dtype: float64 | |
- name: acc_path | |
dtype: audio | |
- name: mic_path | |
dtype: audio | |
- name: vocalization | |
list: | |
- name: overlap_type | |
dtype: string | |
- name: has_bird | |
dtype: bool | |
- name: 2ddistance | |
dtype: bool | |
- name: small_2ddistance | |
dtype: float64 | |
- name: voc_metadata | |
sequence: float64 | |
splits: | |
- name: train | |
num_bytes: 74517864701.0153 | |
num_examples: 6804 | |
- name: val | |
num_bytes: 32619282428.19056 | |
num_examples: 2916 | |
- name: test | |
num_bytes: 38018415640.55813 | |
num_examples: 3431 | |
download_size: 35456328366 | |
dataset_size: 145155562769.764 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: val | |
path: data/val-* | |
- split: test | |
path: data/test-* | |
# Bird3M Dataset | |
## Dataset Description | |
**Bird3M** is the first synchronized, multi-modal, multi-individual dataset designed for comprehensive behavioral analysis of freely interacting birds, specifically zebra finches, in naturalistic settings. It addresses the critical need for benchmark datasets that integrate precisely synchronized multi-modal recordings to support tasks such as 3D pose estimation, multi-animal tracking, sound source localization, and vocalization attribution. The dataset facilitates research in machine learning, neuroscience, and ethology by enabling the development of robust, unified models for long-term tracking and interpretation of complex social behaviors. | |
### Purpose | |
Bird3M bridges the gap in publicly available datasets for multi-modal animal behavior analysis by providing: | |
1. A benchmark for unified machine learning models tackling multiple behavioral tasks. | |
2. A platform for exploring efficient multi-modal information fusion. | |
3. A resource for ethological studies linking movement, vocalization, and social context to uncover neural and evolutionary mechanisms. | |
## Dataset Structure | |
The dataset is organized into three splits: `train`, `val`, and `test`, each as a Hugging Face `Dataset` object. Each row corresponds to a single bird instance in a video frame, with associated multi-modal data. | |
### Accessing Splits | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("anonymous-submission000/bird3m") | |
train_dataset = dataset["train"] | |
val_dataset = dataset["val"] | |
test_dataset = dataset["test"] | |
``` | |
## Dataset Fields | |
Each example includes the following fields: | |
- **`bird_id`** (`string`): Unique identifier for the bird instance (e.g., "bird_1"). | |
- **`back_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the back view, format `[x_min, y_min, x_max, y_max]`. | |
- **`back_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the back view, format `[x1, y1, v1, x2, y2, v2, ...]`, where `v` is visibility (0: not labeled, 1: labeled but invisible, 2: visible). | |
- **`back_view_boundary`** (`Sequence[int64]`): Back view boundary, format `[x, y, width, height]`. | |
- **`bird_name`** (`string`): Biological identifier (e.g., "b13k20_f"). | |
- **`video_name`** (`string`): Video file identifier (e.g., "BP_2020-10-13_19-44-38_564726_0240000"). | |
- **`frame_name`** (`string`): Frame filename (e.g., "img00961.png"). | |
- **`frame_path`** (`Image`): Path to the frame image (`.png`), loaded as a PIL Image. | |
- **`keypoints_3d`** (`Sequence[Sequence[float64]]`): 3D keypoints, format `[[x1, y1, z1], [x2, y2, z2], ...]`. | |
- **`radio_path`** (`binary`): Path to radio data (`.npz`), stored as binary. | |
- **`reprojection_error`** (`Sequence[float64]`): Reprojection errors for 3D keypoints. | |
- **`side_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the side view. | |
- **`side_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the side view. | |
- **`side_view_boundary`** (`Sequence[int64]`): Side view boundary. | |
- **`backpack_color`** (`string`): Backpack tag color (e.g., "purple"). | |
- **`experiment_id`** (`string`): Experiment identifier (e.g., "CopExpBP03"). | |
- **`split`** (`string`): Dataset split ("train", "val", "test"). | |
- **`top_bbox_2d`** (`Sequence[float64]`): 2D bounding box for the top view. | |
- **`top_keypoints_2d`** (`Sequence[float64]`): 2D keypoints for the top view. | |
- **`top_view_boundary`** (`Sequence[int64]`): Top view boundary. | |
- **`video_path`** (`Video`): Path to the video clip (`.mp4`), loaded as a Video object. | |
- **`acc_ch_map`** (`struct`): Maps accelerometer channels to bird identifiers. | |
- **`acc_sr`** (`float64`): Accelerometer sampling rate (Hz). | |
- **`has_overlap`** (`bool`): Indicates if accelerometer events overlap with vocalizations. | |
- **`mic_ch_map`** (`struct`): Maps microphone channels to descriptions. | |
- **`mic_sr`** (`float64`): Microphone sampling rate (Hz). | |
- **`acc_path`** (`Audio`): Path to accelerometer audio (`.wav`), loaded as an Audio signal. | |
- **`mic_path`** (`Audio`): Path to microphone audio (`.wav`), loaded as an Audio signal. | |
- **`vocalization`** (`list[struct]`): Vocalization events, each with: | |
- `overlap_type` (`string`): Overlap/attribution confidence. | |
- `has_bird` (`bool`): Indicates if attributed to a bird. | |
- `2ddistance` (`bool`): Indicates if 2D keypoint distance is <20px. | |
- `small_2ddistance` (`float64`): Minimum 2D keypoint distance (px). | |
- `voc_metadata` (`Sequence[float64]`): Onset/offset times `[onset_sec, offset_sec]`. | |
## How to Use | |
### Loading and Accessing Data | |
```python | |
from datasets import load_dataset | |
import numpy as np | |
# Load dataset | |
dataset = load_dataset("anonymous-submission000/bird3m") | |
train_data = dataset["train"] | |
# Access an example | |
example = train_data[0] | |
# Access fields | |
bird_id = example["bird_id"] | |
keypoints_3d = example["keypoints_3d"] | |
top_bbox = example["top_bbox_2d"] | |
vocalizations = example["vocalization"] | |
# Load multimedia | |
image = example["frame_path"] # PIL Image | |
video = example["video_path"] # Video object | |
mic_audio = example["mic_path"] # Audio signal | |
acc_audio = example["acc_path"] # Audio signal | |
# Access audio arrays | |
mic_array = mic_audio["array"] | |
mic_sr = mic_audio["sampling_rate"] | |
acc_array = acc_audio["array"] | |
acc_sr = acc_audio["sampling_rate"] | |
# Load radio data | |
radio_bytes = example["radio_path"] | |
try: | |
from io import BytesIO | |
radio_data = np.load(BytesIO(radio_bytes)) | |
print("Radio data keys:", list(radio_data.keys())) | |
except Exception as e: | |
print(f"Could not load radio data: {e}") | |
# Print example info | |
print(f"Bird ID: {bird_id}") | |
print(f"Number of 3D keypoints: {len(keypoints_3d)}") | |
print(f"Top Bounding Box: {top_bbox}") | |
print(f"Number of vocalization events: {len(vocalizations)}") | |
if vocalizations: | |
first_vocal = vocalizations[0] | |
print(f"First vocal event metadata: {first_vocal['voc_metadata']}") | |
print(f"First vocal event overlap type: {first_vocal['overlap_type']}") | |
``` | |
### Example: Extracting Vocalization Audio Clip | |
```python | |
if vocalizations and mic_sr: | |
onset, offset = vocalizations[0]["voc_metadata"] | |
onset_sample = int(onset * mic_sr) | |
offset_sample = int(offset * mic_sr) | |
vocal_audio_clip = mic_array[onset_sample:offset_sample] | |
print(f"Duration of first vocal clip: {offset - onset:.3f} seconds") | |
print(f"Shape of first vocal audio clip: {vocal_audio_clip.shape}") | |
``` | |
**Code Availability**: Baseline code is available at [https://github.com/anonymoussubmission0000/bird3m](https://github.com/anonymoussubmission0000/bird3m). | |
## Citation | |
```bibtex | |
@article{2025bird3m, | |
title={Bird3M: A Multi-Modal Dataset for Social Behavior Analysis Tool Building}, | |
author={tbd}, | |
journal={arXiv preprint arXiv:XXXX.XXXXX}, | |
year={2025} | |
} | |
``` |