id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
22,251
def test_loader(): class TestToolDirectory(object): def __init__(self): self.temp_directory = mkdtemp() def __enter__(self): return self def __exit__(self, type, value, tb): rmtree(self.temp_directory) def write(self, contents, name="tool.xml"): open(os.path.join(self.temp_directory, name), "w").write(contents) def load(self, name="tool.xml", preprocess=True): path = os.path.join(self.temp_directory, name) if preprocess: return load_tool(path) else: return parse_xml(path) # Test simple macro replacement. with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" /> <macros> <macro name="inputs"> <inputs /> </macro> </macros> </tool>''') xml = tool_dir.load(preprocess=False) assert xml.find("inputs") is None xml = tool_dir.load(preprocess=True) assert xml.find("inputs") is not None # Test importing macros from external files with TestToolDirectory() as tool_dir: tool_dir.write(SIMPLE_TOOL_WITH_MACRO) tool_dir.write(SIMPLE_MACRO.substitute(tool_version="2.0"), name="external.xml") xml = tool_dir.load(preprocess=False) assert xml.find("inputs") is None xml = tool_dir.load(preprocess=True) assert xml.find("inputs") is not None # Test macros with unnamed yield statements. with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs"> <input name="first_input" /> </expand> <expand macro="inputs"> <input name="second_input" /> </expand> <expand macro="inputs"> <input name="third_input" /> </expand> <macros> <macro name="inputs"> <expand macro="foo"> <yield /> </expand> </macro> <macro name="foo"> <inputs> <yield /> </inputs> </macro> </macros> </tool>''') xml = tool_dir.load() assert xml.findall("inputs")[0].find("input").get("name") == "first_input" assert xml.findall("inputs")[1].find("input").get("name") == "second_input" assert xml.findall("inputs")[2].find("input").get("name") == "third_input" # Test recursive macro applications. with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs"> <input name="first_input" /> <expand macro="second" /> </expand> <macros> <macro name="inputs"> <inputs> <yield /> <input name="third_input" /> </inputs> </macro> <macro name="second"> <input name="second_input" /> </macro> </macros> </tool>''') xml = tool_dir.load() assert xml.find("inputs").findall("input")[0].get("name") == "first_input" assert xml.find("inputs").findall("input")[1].get("name") == "second_input" assert xml.find("inputs").findall("input")[2].get("name") == "third_input" # Test recursive macro applications. with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs"> <input name="first_input" /> <expand macro="second" /> </expand> <macros> <macro name="inputs"> <inputs> <yield /> </inputs> </macro> <macro name="second"> <expand macro="second_delegate" /> <input name="third_input" /> </macro> <macro name="second_delegate"> <input name="second_input" /> </macro> </macros> </tool>''') xml = tool_dir.load() assert xml.find("inputs").findall("input")[0].get("name") == "first_input" assert xml.find("inputs").findall("input")[1].get("name") == "second_input" assert xml.find("inputs").findall("input")[2].get("name") == "third_input" with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool id="issue_647"> <macros> <macro name="a"> <param name="a1" type="text" value="a1" label="a1"/> <yield /> </macro> </macros> <inputs> <expand macro="a"> <param name="b" type="text" value="b" label="b" /> </expand> </inputs> </tool>''') xml = tool_dir.load() assert xml.find("inputs").findall("param")[0].get("name") == "a1" assert xml.find("inputs").findall("param")[1].get("name") == "b" # Test <xml> is shortcut for macro type="xml" with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" /> <macros> <xml name="inputs"> <inputs /> </xml> </macros> </tool>''') xml = tool_dir.load() assert xml.find("inputs") is not None with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <command interpreter="python">tool_wrapper.py #include source=$tool_params </command> <macros> <template name="tool_params">-a 1 -b 2</template> </macros> </tool> ''') xml = tool_dir.load() params_dict = template_macro_params(xml.getroot()) assert params_dict['tool_params'] == "-a 1 -b 2" with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <macros> <token name="@CITATION@">The citation.</token> </macros> <help>@CITATION@</help> <another> <tag /> </another> </tool> ''') xml = tool_dir.load() help_el = xml.find("help") assert help_el.text == "The citation.", help_el.text with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <macros> <token name="@TAG_VAL@">The value.</token> </macros> <another> <tag value="@TAG_VAL@" /> </another> </tool> ''') xml = tool_dir.load() tag_el = xml.find("another").find("tag") value = tag_el.get('value') assert value == "The value.", value with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <macros> <token name="@TAG_VAL@"><![CDATA[]]></token> </macros> <another> <tag value="@TAG_VAL@" /> </another> </tool> ''') xml = tool_dir.load() tag_el = xml.find("another").find("tag") value = tag_el.get('value') assert value == "", value # Test macros XML macros with $$ expansions in attributes with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" bar="hello" /> <expand macro="inputs" bar="my awesome" /> <expand macro="inputs" bar="doggo" /> <macros> <xml name="inputs" tokens="bar" token_quote="$$"> <inputs type="the type is $$BAR$$" /> </xml> </macros> </tool> ''') xml = tool_dir.load() input_els = xml.findall("inputs") assert len(input_els) == 3 assert input_els[0].attrib["type"] == "the type is hello" assert input_els[1].attrib["type"] == "the type is my awesome" assert input_els[2].attrib["type"] == "the type is doggo" # Test macros XML macros with @ expansions in text with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" foo="hello" /> <expand macro="inputs" foo="world" /> <expand macro="inputs" /> <macros> <xml name="inputs" token_foo="the_default"> <inputs>@FOO@</inputs> </xml> </macros> </tool> ''') xml = tool_dir.load() input_els = xml.findall("inputs") assert len(input_els) == 3 assert input_els[0].text == "hello" assert input_els[1].text == "world" assert input_els[2].text == "the_default" # Test macros XML macros with @ expansions and recurisve with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" foo="hello" /> <expand macro="inputs" foo="world" /> <expand macro="inputs" /> <macros> <xml name="inputs" token_foo="the_default"> <expand macro="real_inputs"><cow>@FOO@</cow></expand> </xml> <xml name="real_inputs"> <inputs><yield /></inputs> </xml> </macros> </tool> ''') xml = tool_dir.load() input_els = xml.findall("inputs") assert len(input_els) == 3 print(input_els[0].text) assert input_els[0].find("cow").text == "hello" assert input_els[1].find("cow").text == "world" assert input_els[2].find("cow").text == "the_default"
def test_loader(): class TestToolDirectory(object): def __init__(self): self.temp_directory = mkdtemp() def __enter__(self): return self def __exit__(self, type, value, tb): rmtree(self.temp_directory) def write(self, contents, name="tool.xml"): open(os.path.join(self.temp_directory, name), "w").write(contents) def load(self, name="tool.xml", preprocess=True): path = os.path.join(self.temp_directory, name) if preprocess: return load_tool(path) else: return parse_xml(path) # Test simple macro replacement. with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" /> <macros> <macro name="inputs"> <inputs /> </macro> </macros> </tool>''') xml = tool_dir.load(preprocess=False) assert xml.find("inputs") is None xml = tool_dir.load(preprocess=True) assert xml.find("inputs") is not None # Test importing macros from external files with TestToolDirectory() as tool_dir: tool_dir.write(SIMPLE_TOOL_WITH_MACRO) tool_dir.write(SIMPLE_MACRO.substitute(tool_version="2.0"), name="external.xml") xml = tool_dir.load(preprocess=False) assert xml.find("inputs") is None xml = tool_dir.load(preprocess=True) assert xml.find("inputs") is not None # Test macros with unnamed yield statements. with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs"> <input name="first_input" /> </expand> <expand macro="inputs"> <input name="second_input" /> </expand> <expand macro="inputs"> <input name="third_input" /> </expand> <macros> <macro name="inputs"> <expand macro="foo"> <yield /> </expand> </macro> <macro name="foo"> <inputs> <yield /> </inputs> </macro> </macros> </tool>''') xml = tool_dir.load() assert xml.findall("inputs")[0].find("input").get("name") == "first_input" assert xml.findall("inputs")[1].find("input").get("name") == "second_input" assert xml.findall("inputs")[2].find("input").get("name") == "third_input" # Test recursive macro applications. with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs"> <input name="first_input" /> <expand macro="second" /> </expand> <macros> <macro name="inputs"> <inputs> <yield /> <input name="third_input" /> </inputs> </macro> <macro name="second"> <input name="second_input" /> </macro> </macros> </tool>''') xml = tool_dir.load() assert xml.find("inputs").findall("input")[0].get("name") == "first_input" assert xml.find("inputs").findall("input")[1].get("name") == "second_input" assert xml.find("inputs").findall("input")[2].get("name") == "third_input" # Test recursive macro applications. with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs"> <input name="first_input" /> <expand macro="second" /> </expand> <macros> <macro name="inputs"> <inputs> <yield /> </inputs> </macro> <macro name="second"> <expand macro="second_delegate" /> <input name="third_input" /> </macro> <macro name="second_delegate"> <input name="second_input" /> </macro> </macros> </tool>''') xml = tool_dir.load() assert xml.find("inputs").findall("input")[0].get("name") == "first_input" assert xml.find("inputs").findall("input")[1].get("name") == "second_input" assert xml.find("inputs").findall("input")[2].get("name") == "third_input" with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool id="issue_647"> <macros> <macro name="a"> <param name="a1" type="text" value="a1" label="a1"/> <yield /> </macro> </macros> <inputs> <expand macro="a"> <param name="b" type="text" value="b" label="b" /> </expand> </inputs> </tool>''') xml = tool_dir.load() assert xml.find("inputs").findall("param")[0].get("name") == "a1" assert xml.find("inputs").findall("param")[1].get("name") == "b" # Test <xml> is shortcut for macro type="xml" with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" /> <macros> <xml name="inputs"> <inputs /> </xml> </macros> </tool>''') xml = tool_dir.load() assert xml.find("inputs") is not None with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <command interpreter="python">tool_wrapper.py #include source=$tool_params </command> <macros> <template name="tool_params">-a 1 -b 2</template> </macros> </tool> ''') xml = tool_dir.load() params_dict = template_macro_params(xml.getroot()) assert params_dict['tool_params'] == "-a 1 -b 2" with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <macros> <token name="@CITATION@">The citation.</token> </macros> <help>@CITATION@</help> <another> <tag /> </another> </tool> ''') xml = tool_dir.load() help_el = xml.find("help") assert help_el.text == "The citation.", help_el.text with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <macros> <token name="@TAG_VAL@">The value.</token> </macros> <another> <tag value="@TAG_VAL@" /> </another> </tool> ''') xml = tool_dir.load() tag_el = xml.find("another").find("tag") value = tag_el.get('value') assert value == "The value.", value with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <macros> <token name="@TAG_VAL@"><![CDATA[]]></token> </macros> <another> <tag value="@TAG_VAL@" /> </another> </tool> ''') xml = tool_dir.load() tag_el = xml.find("another").find("tag") value = tag_el.get('value') assert value == "", value # Test macros XML macros with $$ expansions in attributes with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" bar="hello" /> <expand macro="inputs" bar="my awesome" /> <expand macro="inputs" bar="doggo" /> <macros> <xml name="inputs" tokens="bar" token_quote="$$"> <inputs type="the type is $$BAR$$" /> </xml> </macros> </tool> ''') xml = tool_dir.load() input_els = xml.findall("inputs") assert len(input_els) == 3 assert input_els[0].attrib["type"] == "the type is hello" assert input_els[1].attrib["type"] == "the type is my awesome" assert input_els[2].attrib["type"] == "the type is doggo" # Test macros XML macros with @ expansions in text with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" foo="hello" /> <expand macro="inputs" foo="world" /> <expand macro="inputs" /> <macros> <xml name="inputs" token_foo="the_default"> <inputs>@FOO@</inputs> </xml> </macros> </tool> ''') xml = tool_dir.load() input_els = xml.findall("inputs") assert len(input_els) == 3 assert input_els[0].text == "hello" assert input_els[1].text == "world" assert input_els[2].text == "the_default" # Test macros XML macros with @ expansions and recursive with TestToolDirectory() as tool_dir: tool_dir.write(''' <tool> <expand macro="inputs" foo="hello" /> <expand macro="inputs" foo="world" /> <expand macro="inputs" /> <macros> <xml name="inputs" token_foo="the_default"> <expand macro="real_inputs"><cow>@FOO@</cow></expand> </xml> <xml name="real_inputs"> <inputs><yield /></inputs> </xml> </macros> </tool> ''') xml = tool_dir.load() input_els = xml.findall("inputs") assert len(input_els) == 3 print(input_els[0].text) assert input_els[0].find("cow").text == "hello" assert input_els[1].find("cow").text == "world" assert input_els[2].find("cow").text == "the_default"
20,015
def find_color_card(rgb_img, threshold_type='adaptgauss', threshvalue=125, blurry=False, background='dark', record_chip_size="median"): """Automatically detects a color card and output info to use in create_color_card_mask function Algorithm written by Brandon Hurr. Updated and implemented into PlantCV by Haley Schuhl. Inputs: rgb_img = Input RGB image data containing a color card. threshold = Threshold method, either 'normal', 'otsu', or 'adaptgauss', optional (default 'adaptgauss') threshvalue = Thresholding value, optional (default 125) blurry = Bool (default False) if True then image sharpening applied background = Type of image background either 'dark' or 'light' (default 'dark'); if 'light' then histogram expansion applied to better detect edges, but histogram expansion will be hindered if there is a dark background record_chip_size = Optional str for choosing chip size measurement to be recorded, either "median", "mean", or None Returns: df = Dataframe containing information about the filtered contours start_coord = Two element tuple of starting coordinates, location of the top left pixel detected spacing = Two element tuple of spacing between centers of chips :param rgb_img: numpy.ndarray :param threshold: str :param threshvalue: int :param blurry: bool :param background: str :param record_chip_size: str :return df: pandas.core.frame.DataFrame :return start_coord: tuple :return spacing: tuple """ # Imports import skimage import pandas as pd from scipy.spatial.distance import squareform, pdist # Get image attributes height, width, channels = rgb_img.shape total_pix = float(height * width) # Minimum and maximum square size based upon 12 MP image min_area = 1000. / 12000000. * total_pix max_area = 8000000. / 12000000. * total_pix # Create gray image for further processing gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) # Laplacian Fourier Transform detection of blurriness blurfactor = cv2.Laplacian(gray_img, cv2.CV_64F).var() # If image is blurry then try to deblur using kernel if blurry: # from https://www.packtpub.com/mapt/book/Application+Development/9781785283932/2/ch02lvl1sec22/Sharpening kernel = np.array([[-1, -1, -1, -1, -1], [-1, 2, 2, 2, -1], [-1, 2, 8, 2, -1], [-1, 2, 2, 2, -1], [-1, -1, -1, -1, -1]]) / 8.0 # Store result back out for further processing gray_img = cv2.filter2D(gray_img, -1, kernel) # In darker samples, the expansion of the histogram hinders finding the squares due to problems with the otsu # thresholding. If your image has a bright background then apply if background == 'light': clahe = cv2.createCLAHE(clipLimit=3.25, tileGridSize=(4, 4)) # apply CLAHE histogram expansion to find squares better with canny edge detection gray_img = clahe.apply(gray_img) elif background != 'dark': fatal_error('Background parameter ' + str(background) + ' is not "light" or "dark"!') # Thresholding if threshold_type.upper() == "OTSU": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) elif threshold_type.upper() == "NORMAL": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, threshvalue, 255, cv2.THRESH_BINARY) elif threshold_type.upper() == "ADAPTGAUSS": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (11, 11), 0) threshold = cv2.adaptiveThreshold(gaussian, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 51, 2) else: fatal_error('Input threshold=' + str(threshold_type) + ' but should be "otsu", "normal", or "adaptgauss"!') # Apply automatic Canny edge detection using the computed median canny_edges = skimage.feature.canny(threshold) canny_edges.dtype = 'uint8' # Compute contours to find the squares of the card contours, hierarchy = cv2.findContours(canny_edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:] # Variable of which contour is which mindex = [] # Variable to store moments mu = [] # Variable to x,y coordinates in tuples mc = [] # Variable to x coordinate as integer mx = [] # Variable to y coordinate as integer my = [] # Variable to store area marea = [] # Variable to store whether something is a square (1) or not (0) msquare = [] # Variable to store square approximation coordinates msquarecoords = [] # Variable to store child hierarchy element mchild = [] # Fitted rectangle height mheight = [] # Fitted rectangle width mwidth = [] # Ratio of height/width mwhratio = [] # Extract moments from contour image for x in range(0, len(contours)): mu.append(cv2.moments(contours[x])) marea.append(cv2.contourArea(contours[x])) mchild.append(int(hierarchy[0][x][2])) mindex.append(x) # Cycle through moment data and compute location for each moment for m in mu: if m['m00'] != 0: # This is the area term for a moment mc.append((int(m['m10'] / m['m00']), int(m['m01']) / m['m00'])) mx.append(int(m['m10'] / m['m00'])) my.append(int(m['m01'] / m['m00'])) else: mc.append((0, 0)) mx.append((0)) my.append((0)) # Loop over our contours and extract data about them for index, c in enumerate(contours): # Area isn't 0, but greater than min-area and less than max-area if marea[index] != 0 and min_area < marea[index] < max_area: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.1 * peri, True) center, wh, angle = cv2.minAreaRect(c) # Rotated rectangle mwidth.append(wh[0]) mheight.append(wh[1]) mwhratio.append(wh[0] / wh[1]) msquare.append(len(approx)) # If the approx contour has 4 points then we can assume we have 4-sided objects if len(approx) == 4 or len(approx) == 5: msquarecoords.append(approx) else: # It's not square # msquare.append(0) msquarecoords.append(0) else: # Contour has area of 0, not interesting msquare.append(0) msquarecoords.append(0) mwidth.append(0) mheight.append(0) mwhratio.append(0) # Make a pandas df from data for filtering out junk all_contours = {'index': mindex, 'x': mx, 'y': my, 'width': mwidth, 'height': mheight, 'res_ratio': mwhratio, 'area': marea, 'square': msquare, 'child': mchild} df = pd.DataFrame(all_contours) # Add calculated blur factor to output df['blurriness'] = blurfactor # Filter df for attributes that would isolate squares of reasonable size df = df[(df['area'] > min_area) & (df['area'] < max_area) & (df['child'] != -1) & (df['square'].isin([4, 5])) & (df['res_ratio'] < 1.2) & (df['res_ratio'] > 0.85)] # Filter nested squares from dataframe, was having issues with median being towards smaller nested squares df = df[~(df['index'].isin(df['index'] + 1))] # Count up squares that are within a given radius, more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 6 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['x', 'y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Compute how similar in area the squares are. lots of similar values indicates card isolate area measurements filtered_area = df['area'] # Create empty matrix for storing comparisons sizecomp = np.zeros((len(filtered_area), len(filtered_area))) # Double loop through all areas to compare to each other for p in range(0, len(filtered_area)): for o in range(0, len(filtered_area)): big = max(filtered_area.iloc[p], filtered_area.iloc[o]) small = min(filtered_area.iloc[p], filtered_area.iloc[o]) pct = 100. * (small / big) sizecomp[p][o] = pct # How many comparisons given 90% square similarity sizematrix = pd.DataFrame(sizecomp).apply(lambda sim: sim[sim >= 90].count() - 1, axis=1) # Append sizeprox summary to dataframe df = df.assign(sizeprox=sizematrix.values) # Reorder dataframe for better printing df = df[['index', 'x', 'y', 'width', 'height', 'res_ratio', 'area', 'square', 'child', 'blurriness', 'distprox', 'sizeprox']] # Loosely filter for size and distance (relative size to median) minsqwidth = median_sq_width_px * 0.80 maxsqwidth = median_sq_width_px * 1.2 df = df[(df['distprox'] >= 5) & (df['sizeprox'] >= 5) & (df['width'] > minsqwidth) & (df['width'] < maxsqwidth)] # Filter for proximity again to root out stragglers. Find and count up squares that are within given radius, # more squares = more likelihood of them being the card. Median width of square time 2.5 gives proximity radius # for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 5 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['x', 'y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Filter results for distance proximity to other squares df = df[(df['distprox'] >= 4)] # Remove all not numeric values use to_numeric with parameter, errors='coerce' - it replace non numeric to NaNs: df['x'] = pd.to_numeric(df['x'], errors='coerce') df['y'] = pd.to_numeric(df['y'], errors='coerce') # Remove NaN df = df.dropna() if df['x'].min() is np.nan or df['y'].min() is np.nan: fatal_error('No color card found under current parameters') else: # Extract the starting coordinate start_coord = (df['x'].min(), df['y'].min()) # start_coord = (int(df['X'].min()), int(df['Y'].min())) # Calculate the range spacingx_short = (df['x'].max() - df['x'].min()) / 3 spacingy_short = (df['y'].max() - df['y'].min()) / 3 spacingx_long = (df['x'].max() - df['x'].min()) / 5 spacingy_long = (df['y'].max() - df['y'].min()) / 5 # Chip spacing since 4x6 card assumed spacing_short = min(spacingx_short, spacingy_short) spacing_long = max(spacingx_long, spacingy_long) # Smaller spacing measurement might have a chip missing spacing = int(max(spacing_short, spacing_long)) spacing = (spacing, spacing) if record_chip_size is not None: if record_chip_size.upper() == "MEDIAN": chip_size = df.loc[:,"area"].median() elif record_chip_size.upper() == "MEAN": chip_size = df.loc[:,"area"].mean() else: print(str(record_chip_size) + " Is not a valid entry for record_chip_size." + " Must be either 'mean', 'median', or None.") chip_size = None # Store into global measurements outputs.add_observation(variable='color_chip_size', trait='size of color card chips identified', method='plantcv.plantcv.transform.find_color_card', scale='none', datatype=float, value=chip_size, label=str(record_chip_size)) return df, start_coord, spacing
def find_color_card(rgb_img, threshold_type='adaptgauss', threshvalue=125, blurry=False, background='dark', record_chip_size="median"): """Automatically detects a color card and output info to use in create_color_card_mask function Algorithm written by Brandon Hurr. Updated and implemented into PlantCV by Haley Schuhl. Inputs: rgb_img = Input RGB image data containing a color card. threshold_type = Threshold method, either 'normal', 'otsu', or 'adaptgauss', optional (default 'adaptgauss') threshvalue = Thresholding value, optional (default 125) blurry = Bool (default False) if True then image sharpening applied background = Type of image background either 'dark' or 'light' (default 'dark'); if 'light' then histogram expansion applied to better detect edges, but histogram expansion will be hindered if there is a dark background record_chip_size = Optional str for choosing chip size measurement to be recorded, either "median", "mean", or None Returns: df = Dataframe containing information about the filtered contours start_coord = Two element tuple of starting coordinates, location of the top left pixel detected spacing = Two element tuple of spacing between centers of chips :param rgb_img: numpy.ndarray :param threshold: str :param threshvalue: int :param blurry: bool :param background: str :param record_chip_size: str :return df: pandas.core.frame.DataFrame :return start_coord: tuple :return spacing: tuple """ # Imports import skimage import pandas as pd from scipy.spatial.distance import squareform, pdist # Get image attributes height, width, channels = rgb_img.shape total_pix = float(height * width) # Minimum and maximum square size based upon 12 MP image min_area = 1000. / 12000000. * total_pix max_area = 8000000. / 12000000. * total_pix # Create gray image for further processing gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) # Laplacian Fourier Transform detection of blurriness blurfactor = cv2.Laplacian(gray_img, cv2.CV_64F).var() # If image is blurry then try to deblur using kernel if blurry: # from https://www.packtpub.com/mapt/book/Application+Development/9781785283932/2/ch02lvl1sec22/Sharpening kernel = np.array([[-1, -1, -1, -1, -1], [-1, 2, 2, 2, -1], [-1, 2, 8, 2, -1], [-1, 2, 2, 2, -1], [-1, -1, -1, -1, -1]]) / 8.0 # Store result back out for further processing gray_img = cv2.filter2D(gray_img, -1, kernel) # In darker samples, the expansion of the histogram hinders finding the squares due to problems with the otsu # thresholding. If your image has a bright background then apply if background == 'light': clahe = cv2.createCLAHE(clipLimit=3.25, tileGridSize=(4, 4)) # apply CLAHE histogram expansion to find squares better with canny edge detection gray_img = clahe.apply(gray_img) elif background != 'dark': fatal_error('Background parameter ' + str(background) + ' is not "light" or "dark"!') # Thresholding if threshold_type.upper() == "OTSU": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) elif threshold_type.upper() == "NORMAL": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, threshvalue, 255, cv2.THRESH_BINARY) elif threshold_type.upper() == "ADAPTGAUSS": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (11, 11), 0) threshold = cv2.adaptiveThreshold(gaussian, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 51, 2) else: fatal_error('Input threshold=' + str(threshold_type) + ' but should be "otsu", "normal", or "adaptgauss"!') # Apply automatic Canny edge detection using the computed median canny_edges = skimage.feature.canny(threshold) canny_edges.dtype = 'uint8' # Compute contours to find the squares of the card contours, hierarchy = cv2.findContours(canny_edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:] # Variable of which contour is which mindex = [] # Variable to store moments mu = [] # Variable to x,y coordinates in tuples mc = [] # Variable to x coordinate as integer mx = [] # Variable to y coordinate as integer my = [] # Variable to store area marea = [] # Variable to store whether something is a square (1) or not (0) msquare = [] # Variable to store square approximation coordinates msquarecoords = [] # Variable to store child hierarchy element mchild = [] # Fitted rectangle height mheight = [] # Fitted rectangle width mwidth = [] # Ratio of height/width mwhratio = [] # Extract moments from contour image for x in range(0, len(contours)): mu.append(cv2.moments(contours[x])) marea.append(cv2.contourArea(contours[x])) mchild.append(int(hierarchy[0][x][2])) mindex.append(x) # Cycle through moment data and compute location for each moment for m in mu: if m['m00'] != 0: # This is the area term for a moment mc.append((int(m['m10'] / m['m00']), int(m['m01']) / m['m00'])) mx.append(int(m['m10'] / m['m00'])) my.append(int(m['m01'] / m['m00'])) else: mc.append((0, 0)) mx.append((0)) my.append((0)) # Loop over our contours and extract data about them for index, c in enumerate(contours): # Area isn't 0, but greater than min-area and less than max-area if marea[index] != 0 and min_area < marea[index] < max_area: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.1 * peri, True) center, wh, angle = cv2.minAreaRect(c) # Rotated rectangle mwidth.append(wh[0]) mheight.append(wh[1]) mwhratio.append(wh[0] / wh[1]) msquare.append(len(approx)) # If the approx contour has 4 points then we can assume we have 4-sided objects if len(approx) == 4 or len(approx) == 5: msquarecoords.append(approx) else: # It's not square # msquare.append(0) msquarecoords.append(0) else: # Contour has area of 0, not interesting msquare.append(0) msquarecoords.append(0) mwidth.append(0) mheight.append(0) mwhratio.append(0) # Make a pandas df from data for filtering out junk all_contours = {'index': mindex, 'x': mx, 'y': my, 'width': mwidth, 'height': mheight, 'res_ratio': mwhratio, 'area': marea, 'square': msquare, 'child': mchild} df = pd.DataFrame(all_contours) # Add calculated blur factor to output df['blurriness'] = blurfactor # Filter df for attributes that would isolate squares of reasonable size df = df[(df['area'] > min_area) & (df['area'] < max_area) & (df['child'] != -1) & (df['square'].isin([4, 5])) & (df['res_ratio'] < 1.2) & (df['res_ratio'] > 0.85)] # Filter nested squares from dataframe, was having issues with median being towards smaller nested squares df = df[~(df['index'].isin(df['index'] + 1))] # Count up squares that are within a given radius, more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 6 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['x', 'y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Compute how similar in area the squares are. lots of similar values indicates card isolate area measurements filtered_area = df['area'] # Create empty matrix for storing comparisons sizecomp = np.zeros((len(filtered_area), len(filtered_area))) # Double loop through all areas to compare to each other for p in range(0, len(filtered_area)): for o in range(0, len(filtered_area)): big = max(filtered_area.iloc[p], filtered_area.iloc[o]) small = min(filtered_area.iloc[p], filtered_area.iloc[o]) pct = 100. * (small / big) sizecomp[p][o] = pct # How many comparisons given 90% square similarity sizematrix = pd.DataFrame(sizecomp).apply(lambda sim: sim[sim >= 90].count() - 1, axis=1) # Append sizeprox summary to dataframe df = df.assign(sizeprox=sizematrix.values) # Reorder dataframe for better printing df = df[['index', 'x', 'y', 'width', 'height', 'res_ratio', 'area', 'square', 'child', 'blurriness', 'distprox', 'sizeprox']] # Loosely filter for size and distance (relative size to median) minsqwidth = median_sq_width_px * 0.80 maxsqwidth = median_sq_width_px * 1.2 df = df[(df['distprox'] >= 5) & (df['sizeprox'] >= 5) & (df['width'] > minsqwidth) & (df['width'] < maxsqwidth)] # Filter for proximity again to root out stragglers. Find and count up squares that are within given radius, # more squares = more likelihood of them being the card. Median width of square time 2.5 gives proximity radius # for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 5 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['x', 'y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Filter results for distance proximity to other squares df = df[(df['distprox'] >= 4)] # Remove all not numeric values use to_numeric with parameter, errors='coerce' - it replace non numeric to NaNs: df['x'] = pd.to_numeric(df['x'], errors='coerce') df['y'] = pd.to_numeric(df['y'], errors='coerce') # Remove NaN df = df.dropna() if df['x'].min() is np.nan or df['y'].min() is np.nan: fatal_error('No color card found under current parameters') else: # Extract the starting coordinate start_coord = (df['x'].min(), df['y'].min()) # start_coord = (int(df['X'].min()), int(df['Y'].min())) # Calculate the range spacingx_short = (df['x'].max() - df['x'].min()) / 3 spacingy_short = (df['y'].max() - df['y'].min()) / 3 spacingx_long = (df['x'].max() - df['x'].min()) / 5 spacingy_long = (df['y'].max() - df['y'].min()) / 5 # Chip spacing since 4x6 card assumed spacing_short = min(spacingx_short, spacingy_short) spacing_long = max(spacingx_long, spacingy_long) # Smaller spacing measurement might have a chip missing spacing = int(max(spacing_short, spacing_long)) spacing = (spacing, spacing) if record_chip_size is not None: if record_chip_size.upper() == "MEDIAN": chip_size = df.loc[:,"area"].median() elif record_chip_size.upper() == "MEAN": chip_size = df.loc[:,"area"].mean() else: print(str(record_chip_size) + " Is not a valid entry for record_chip_size." + " Must be either 'mean', 'median', or None.") chip_size = None # Store into global measurements outputs.add_observation(variable='color_chip_size', trait='size of color card chips identified', method='plantcv.plantcv.transform.find_color_card', scale='none', datatype=float, value=chip_size, label=str(record_chip_size)) return df, start_coord, spacing
5,017
def polar(*args, **kwargs): """ Make a polar plot. call signature:: polar(theta, r, **kwargs) Multiple *theta*, *r* arguments are supported, with format strings, as in `plot`. """ # If an axis already exists, check if it has a polar projection if gcf().get_axes(): ax = gca() if isinstance(gca(), PolarAxes): return ax else: _api.warn_external('Trying to create polar plot on an axis ' 'that does not have a polar projection.') ax = axes(polar=True) ret = ax.plot(*args, **kwargs) return ret
def polar(*args, **kwargs): """ Make a polar plot. call signature:: polar(theta, r, **kwargs) Multiple *theta*, *r* arguments are supported, with format strings, as in `plot`. """ # If an axis already exists, check if it has a polar projection if gcf().get_axes(): ax = gca() if isinstance(ax, PolarAxes): return ax else: _api.warn_external('Trying to create polar plot on an axis ' 'that does not have a polar projection.') ax = axes(polar=True) ret = ax.plot(*args, **kwargs) return ret
5,799
def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except Exception: return None # Use the original function object if it is wrapped. obj = obj.__wrapped__ if hasattr(obj, "__wrapped__") else obj # SciPy's distributions are instances of *_gen. Point to this # class since it contains the implementation of all the methods. if isinstance(obj, (rv_generic, multi_rv_generic)): obj = obj.__class__ try: fn = inspect.getsourcefile(obj) except Exception: fn = None if not fn: try: fn = inspect.getsourcefile(sys.modules[obj.__module__]) except Exception: fn = None if not fn: return None try: source, lineno = inspect.getsourcelines(obj) except Exception: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" startdir = os.path.abspath(os.path.join(dirname(scipy.__file__), '..')) fn = relpath(fn, start=startdir).replace(os.path.sep, '/') if fn.startswith('scipy/'): m = re.match(r'^.*dev0\+([a-f0-9]+)$', scipy.__version__) if m: return "https://github.com/scipy/scipy/blob/%s/%s%s" % ( m.group(1), fn, linespec) elif 'dev' in scipy.__version__: return "https://github.com/scipy/scipy/blob/main/%s%s" % ( fn, linespec) else: return "https://github.com/scipy/scipy/blob/v%s/%s%s" % ( scipy.__version__, fn, linespec) else: return None
def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except Exception: return None # Use the original function object if it is wrapped. obj = getattr(obj, "__wrapped__", obj) # SciPy's distributions are instances of *_gen. Point to this # class since it contains the implementation of all the methods. if isinstance(obj, (rv_generic, multi_rv_generic)): obj = obj.__class__ try: fn = inspect.getsourcefile(obj) except Exception: fn = None if not fn: try: fn = inspect.getsourcefile(sys.modules[obj.__module__]) except Exception: fn = None if not fn: return None try: source, lineno = inspect.getsourcelines(obj) except Exception: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" startdir = os.path.abspath(os.path.join(dirname(scipy.__file__), '..')) fn = relpath(fn, start=startdir).replace(os.path.sep, '/') if fn.startswith('scipy/'): m = re.match(r'^.*dev0\+([a-f0-9]+)$', scipy.__version__) if m: return "https://github.com/scipy/scipy/blob/%s/%s%s" % ( m.group(1), fn, linespec) elif 'dev' in scipy.__version__: return "https://github.com/scipy/scipy/blob/main/%s%s" % ( fn, linespec) else: return "https://github.com/scipy/scipy/blob/v%s/%s%s" % ( scipy.__version__, fn, linespec) else: return None
45,547
def _exception_leads_to_http_5xx(ex): # type: (Union[Exception, falcon.HTTPError, falcon.http_status.HTTPStatus]) -> bool is_server_error = isinstance(ex, falcon.HTTPError) and (ex.status or "").startswith( "5" ) is_unhandled_error = not isinstance( ex, (falcon.HTTPError, falcon.http_status.HTTPStatus) ) return is_server_error or is_unhandled_error
def _exception_leads_to_http_5xx(ex): # type: (BaseException) -> bool is_server_error = isinstance(ex, falcon.HTTPError) and (ex.status or "").startswith( "5" ) is_unhandled_error = not isinstance( ex, (falcon.HTTPError, falcon.http_status.HTTPStatus) ) return is_server_error or is_unhandled_error
14,637
def generate_learning_curve_plots(experiment_name, output_dir, learning_curve_tsv_file): """ Generate the learning curve plots given the TSV output file from a learning curve experiment. Parameters ---------- experiment_name : str The name of the experiment. output_dir : str Path to the output directory for the plots. learning_curve_tsv_file : str The path to the learning curve TSV file. """ # use pandas to read in the TSV file into a data frame # and massage it from wide to long format for plotting df = pd.read_csv(learning_curve_tsv_file, sep='\t') num_learners = len(df['learner_name'].unique()) num_metrics = len(df['metric'].unique()) df_melted = pd.melt(df, id_vars=[c for c in df.columns if c not in ['train_score_mean', 'test_score_mean']]) # make sure the "variable" column is cateogrical since it will be # mapped to hue levels in the learning curve below df_melted["variable"] = df_melted["variable"].astype("category") # if there are any training sizes greater than 1000, # then we should probably rotate the tick labels # since otherwise the labels are not clearly rendered rotate_labels = np.any([size >= 1000 for size in df['training_set_size'].unique()]) # set up and draw the actual learning curve figures, one for # each of the featuresets for fs_name, df_fs in df_melted.groupby('featureset_name'): fig = plt.figure() fig.set_size_inches(2.5 * num_learners, 2.5 * num_metrics) # compute ylimits for this feature set for each objective with sns.axes_style('whitegrid', {"grid.linestyle": ':', "xtick.major.size": 3.0}): g = sns.FacetGrid(df_fs, row="metric", col="learner_name", height=2.5, aspect=1, margin_titles=True, despine=True, sharex=False, sharey=False, legend_out=False) train_color, test_color = sns.color_palette(palette="Set1", n_colors=2) g = g.map_dataframe(sns.pointplot, x="training_set_size", y="value", hue="variable", scale=.5, errorbar=None, palette={"train_score_mean": train_color, "test_score_mean": test_color}) ylimits = _compute_ylimits_for_featureset(df_fs, g.row_names) for ax in g.axes.flat: plt.setp(ax.texts, text="") g = (g.set_titles(row_template='', col_template='{col_name}') .set_axis_labels('Training Examples', 'Score')) if rotate_labels: g = g.set_xticklabels(rotation=60) for i, row_name in enumerate(g.row_names): for j, col_name in enumerate(g.col_names): ax = g.axes[i][j] ax.set(ylim=ylimits[row_name]) df_ax_train = df_fs[(df_fs['learner_name'] == col_name) & (df_fs['metric'] == row_name) & (df_fs['variable'] == 'train_score_mean')] df_ax_test = df_fs[(df_fs['learner_name'] == col_name) & (df_fs['metric'] == row_name) & (df_fs['variable'] == 'test_score_mean')] ax.fill_between(list(range(len(df_ax_train))), df_ax_train['value'] - df_ax_train['train_score_std'], df_ax_train['value'] + df_ax_train['train_score_std'], alpha=0.1, color=train_color) ax.fill_between(list(range(len(df_ax_test))), df_ax_test['value'] - df_ax_test['test_score_std'], df_ax_test['value'] + df_ax_test['test_score_std'], alpha=0.1, color=test_color) if j == 0: ax.set_ylabel(row_name) if i == 0: # set up the legend handles for this plot plot_handles = [matplotlib.lines.Line2D([], [], color=c, label=l, linestyle='-') for c, l in zip([train_color, test_color], ['Training', 'Cross-validation'])] ax.legend(handles=plot_handles, loc=4, fancybox=True, fontsize='x-small', ncol=1, frameon=True) g.fig.tight_layout(w_pad=1) plt.savefig(join(output_dir, f'{experiment_name}_{fs_name}.png'), dpi=300) # explicitly close figure to save memory plt.close(fig)
def generate_learning_curve_plots(experiment_name, output_dir, learning_curve_tsv_file): """ Generate the learning curve plots given the TSV output file from a learning curve experiment. Parameters ---------- experiment_name : str The name of the experiment. output_dir : str Path to the output directory for the plots. learning_curve_tsv_file : str The path to the learning curve TSV file. """ # use pandas to read in the TSV file into a data frame # and massage it from wide to long format for plotting df = pd.read_csv(learning_curve_tsv_file, sep='\t') num_learners = len(df['learner_name'].unique()) num_metrics = len(df['metric'].unique()) df_melted = pd.melt(df, id_vars=[c for c in df.columns if c not in ['train_score_mean', 'test_score_mean']]) # make sure the "variable" column is categorical since it will be # mapped to hue levels in the learning curve below df_melted["variable"] = df_melted["variable"].astype("category") # if there are any training sizes greater than 1000, # then we should probably rotate the tick labels # since otherwise the labels are not clearly rendered rotate_labels = np.any([size >= 1000 for size in df['training_set_size'].unique()]) # set up and draw the actual learning curve figures, one for # each of the featuresets for fs_name, df_fs in df_melted.groupby('featureset_name'): fig = plt.figure() fig.set_size_inches(2.5 * num_learners, 2.5 * num_metrics) # compute ylimits for this feature set for each objective with sns.axes_style('whitegrid', {"grid.linestyle": ':', "xtick.major.size": 3.0}): g = sns.FacetGrid(df_fs, row="metric", col="learner_name", height=2.5, aspect=1, margin_titles=True, despine=True, sharex=False, sharey=False, legend_out=False) train_color, test_color = sns.color_palette(palette="Set1", n_colors=2) g = g.map_dataframe(sns.pointplot, x="training_set_size", y="value", hue="variable", scale=.5, errorbar=None, palette={"train_score_mean": train_color, "test_score_mean": test_color}) ylimits = _compute_ylimits_for_featureset(df_fs, g.row_names) for ax in g.axes.flat: plt.setp(ax.texts, text="") g = (g.set_titles(row_template='', col_template='{col_name}') .set_axis_labels('Training Examples', 'Score')) if rotate_labels: g = g.set_xticklabels(rotation=60) for i, row_name in enumerate(g.row_names): for j, col_name in enumerate(g.col_names): ax = g.axes[i][j] ax.set(ylim=ylimits[row_name]) df_ax_train = df_fs[(df_fs['learner_name'] == col_name) & (df_fs['metric'] == row_name) & (df_fs['variable'] == 'train_score_mean')] df_ax_test = df_fs[(df_fs['learner_name'] == col_name) & (df_fs['metric'] == row_name) & (df_fs['variable'] == 'test_score_mean')] ax.fill_between(list(range(len(df_ax_train))), df_ax_train['value'] - df_ax_train['train_score_std'], df_ax_train['value'] + df_ax_train['train_score_std'], alpha=0.1, color=train_color) ax.fill_between(list(range(len(df_ax_test))), df_ax_test['value'] - df_ax_test['test_score_std'], df_ax_test['value'] + df_ax_test['test_score_std'], alpha=0.1, color=test_color) if j == 0: ax.set_ylabel(row_name) if i == 0: # set up the legend handles for this plot plot_handles = [matplotlib.lines.Line2D([], [], color=c, label=l, linestyle='-') for c, l in zip([train_color, test_color], ['Training', 'Cross-validation'])] ax.legend(handles=plot_handles, loc=4, fancybox=True, fontsize='x-small', ncol=1, frameon=True) g.fig.tight_layout(w_pad=1) plt.savefig(join(output_dir, f'{experiment_name}_{fs_name}.png'), dpi=300) # explicitly close figure to save memory plt.close(fig)
5,891
def get_supported( version=None, # type: Optional[str] platform=None, # type: Optional[str] impl=None, # type: Optional[str] abi=None # type: Optional[str] ): # type: (...) -> List[Pep425Tag] """Return a list of supported tags for each version specified in `versions`. :param versions: a string versions, of the form "33" or "32", or None. The version will be assumed to support our ABI. :param platform: specify the exact platform you want valid tags for, or None. If None, use the local system platform. :param impl: specify the exact implementation you want valid tags for, or None. If None, use the local interpreter impl. :param abi: specify the exact abi you want valid tags for, or None. If None, use the local interpreter abi. """ supported = [] # Versions must be given with respect to the preference if version is None: version_info = get_impl_version_info() versions = get_all_minor_versions_as_strings(version_info) else: versions = [version] impl = impl or get_abbr_impl() abis = [] # type: List[str] abi = abi or get_abi_tag() if abi: abis[0:0] = [abi] abi3s = set() # type: Set[str] for suffix in get_extension_suffixes(): if suffix.startswith('.abi'): abi3s.add(suffix.split('.', 2)[1]) abis.extend(sorted(list(abi3s))) abis.append('none') arch = platform or get_platform() arch_prefix, arch_sep, arch_suffix = arch.partition('_') if arch.startswith('macosx'): # support macosx-10.6-intel on macosx-10.9-x86_64 match = _osx_arch_pat.match(arch) if match: name, major, minor, actual_arch = match.groups() tpl = '{}_{}_%i_%s'.format(name, major) arches = [] for m in reversed(range(int(minor) + 1)): for a in get_darwin_arches(int(major), m, actual_arch): arches.append(tpl % (m, a)) else: # arch pattern didn't match (?!) arches = [arch] elif arch_prefix == 'manylinux2014': arches = [arch] # manylinux1/manylinux2010 wheels run on most manylinux2014 systems # with the exception of wheels depending on ncurses. PEP 599 states # manylinux1/manylinux2010 wheels should be considered # manylinux2014 wheels: # https://www.python.org/dev/peps/pep-0599/#backwards-compatibility-with-manylinux2010-wheels if arch_suffix in {'i686', 'x86_64'}: arches.append('manylinux2010' + arch_sep + arch_suffix) arches.append('manylinux1' + arch_sep + arch_suffix) elif arch_prefix == 'manylinux2010': # manylinux1 wheels run on most manylinux2010 systems with the # exception of wheels depending on ncurses. PEP 571 states # manylinux1 wheels should be considered manylinux2010 wheels: # https://www.python.org/dev/peps/pep-0571/#backwards-compatibility-with-manylinux1-wheels arches = [arch, 'manylinux1' + arch_sep + arch_suffix] elif platform is None: arches = [] if is_manylinux2014_compatible(): arches.append('manylinux2014' + arch_sep + arch_suffix) if is_manylinux2010_compatible(): arches.append('manylinux2010' + arch_sep + arch_suffix) if is_manylinux1_compatible(): arches.append('manylinux1' + arch_sep + arch_suffix) arches.append(arch) else: arches = [arch] # Current version, current API (built specifically for our Python): for abi in abis: for arch in arches: supported.append(('%s%s' % (impl, versions[0]), abi, arch)) # abi3 modules compatible with older version of Python for version in versions[1:]: # abi3 was introduced in Python 3.2 if version in {'31', '30'}: break for abi in abi3s: # empty set if not Python 3 for arch in arches: supported.append(("%s%s" % (impl, version), abi, arch)) # Has binaries, does not use the Python API: for arch in arches: supported.append(('py%s' % (versions[0][0]), 'none', arch)) # No abi / arch, but requires our implementation: supported.append(('%s%s' % (impl, versions[0]), 'none', 'any')) # Tagged specifically as being cross-version compatible # (with just the major version specified) supported.append(('%s%s' % (impl, versions[0][0]), 'none', 'any')) # No abi / arch, generic Python for i, version in enumerate(versions): supported.append(('py%s' % (version,), 'none', 'any')) if i == 0: supported.append(('py%s' % (version[0]), 'none', 'any')) return supported
def get_supported( version=None, # type: Optional[str] platform=None, # type: Optional[str] impl=None, # type: Optional[str] abi=None # type: Optional[str] ): # type: (...) -> List[Pep425Tag] """Return a list of supported tags for each version specified in `versions`. :param version: a string versions, of the form "33" or "32", or None. The version will be assumed to support our ABI. :param platform: specify the exact platform you want valid tags for, or None. If None, use the local system platform. :param impl: specify the exact implementation you want valid tags for, or None. If None, use the local interpreter impl. :param abi: specify the exact abi you want valid tags for, or None. If None, use the local interpreter abi. """ supported = [] # Versions must be given with respect to the preference if version is None: version_info = get_impl_version_info() versions = get_all_minor_versions_as_strings(version_info) else: versions = [version] impl = impl or get_abbr_impl() abis = [] # type: List[str] abi = abi or get_abi_tag() if abi: abis[0:0] = [abi] abi3s = set() # type: Set[str] for suffix in get_extension_suffixes(): if suffix.startswith('.abi'): abi3s.add(suffix.split('.', 2)[1]) abis.extend(sorted(list(abi3s))) abis.append('none') arch = platform or get_platform() arch_prefix, arch_sep, arch_suffix = arch.partition('_') if arch.startswith('macosx'): # support macosx-10.6-intel on macosx-10.9-x86_64 match = _osx_arch_pat.match(arch) if match: name, major, minor, actual_arch = match.groups() tpl = '{}_{}_%i_%s'.format(name, major) arches = [] for m in reversed(range(int(minor) + 1)): for a in get_darwin_arches(int(major), m, actual_arch): arches.append(tpl % (m, a)) else: # arch pattern didn't match (?!) arches = [arch] elif arch_prefix == 'manylinux2014': arches = [arch] # manylinux1/manylinux2010 wheels run on most manylinux2014 systems # with the exception of wheels depending on ncurses. PEP 599 states # manylinux1/manylinux2010 wheels should be considered # manylinux2014 wheels: # https://www.python.org/dev/peps/pep-0599/#backwards-compatibility-with-manylinux2010-wheels if arch_suffix in {'i686', 'x86_64'}: arches.append('manylinux2010' + arch_sep + arch_suffix) arches.append('manylinux1' + arch_sep + arch_suffix) elif arch_prefix == 'manylinux2010': # manylinux1 wheels run on most manylinux2010 systems with the # exception of wheels depending on ncurses. PEP 571 states # manylinux1 wheels should be considered manylinux2010 wheels: # https://www.python.org/dev/peps/pep-0571/#backwards-compatibility-with-manylinux1-wheels arches = [arch, 'manylinux1' + arch_sep + arch_suffix] elif platform is None: arches = [] if is_manylinux2014_compatible(): arches.append('manylinux2014' + arch_sep + arch_suffix) if is_manylinux2010_compatible(): arches.append('manylinux2010' + arch_sep + arch_suffix) if is_manylinux1_compatible(): arches.append('manylinux1' + arch_sep + arch_suffix) arches.append(arch) else: arches = [arch] # Current version, current API (built specifically for our Python): for abi in abis: for arch in arches: supported.append(('%s%s' % (impl, versions[0]), abi, arch)) # abi3 modules compatible with older version of Python for version in versions[1:]: # abi3 was introduced in Python 3.2 if version in {'31', '30'}: break for abi in abi3s: # empty set if not Python 3 for arch in arches: supported.append(("%s%s" % (impl, version), abi, arch)) # Has binaries, does not use the Python API: for arch in arches: supported.append(('py%s' % (versions[0][0]), 'none', arch)) # No abi / arch, but requires our implementation: supported.append(('%s%s' % (impl, versions[0]), 'none', 'any')) # Tagged specifically as being cross-version compatible # (with just the major version specified) supported.append(('%s%s' % (impl, versions[0][0]), 'none', 'any')) # No abi / arch, generic Python for i, version in enumerate(versions): supported.append(('py%s' % (version,), 'none', 'any')) if i == 0: supported.append(('py%s' % (version[0]), 'none', 'any')) return supported
7,227
def difference_of_gaussians(image, sigma1, sigma2=None, *, mode='nearest', cval=0, multichannel=False, truncate=4.0): """Multi-dimensional band-pass filter using the Difference of Gaussians method. Parameters ---------- image : ndarray Input array to filter. sigma1 : scalar or sequence of scalars Standard deviation(s) for the Gaussian kernel with the smaller sigmas across all axes. The standard deviations are given for each axis as a sequence, or as a single number, in which case the single number is used as the standard deviation value for all axes. sigma2 : scalar or sequence of scalars, optional (default is None) Standard deviation(s) for the Gaussian kernel with the larger sigmas across all axes. The standard deviations are given for each axis as a sequence, or as a single number, in which case the single number is used as the standard deviation value for all axes. If None is given (default), sigmas for all axes are calculated as 1.6 * sigma1. mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'nearest'. cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 multichannel : bool, optional (default: False) Whether the last axis of the image is to be interpreted as multiple channels. If True, each channel is filtered separately (channels are not mixed together). truncate : float, optional (default is 4.0) Truncate the filter at this many standard deviations. Returns ------- filtered_image : ndarray the filtered array Notes ----- This function will subtract an array filtered with a guassian kernel with sigmas given by ``sigma2`` from an array filtered with a gaussian kernel with sigmas provided by ``sigma1``. The values for ``sigma2`` must always be greater than or equal to the corresponding values in ``sigma1``, or a ``ValueError`` will be raised. When ``sigma2`` is none, the values for ``sigma2`` will be calculated as 1.6x the corresponding values in ``sigma1``. This approximates the inverted Laplacian of Guassian, commonly used in edge and blob detection. Input image is converted according to the conventions of ``img_as_float``. Except for sigma values, all parameters are used for both filters. Examples -------- Apply a simple Difference of Gaussians filter to a color image: >>> from skimage.data import astronaut >>> from skimage.filters import difference_of_gaussians >>> image = astronaut() >>> filtered_image = difference_of_gaussians(image, 2, 10, ... multichannel=True) Apply a Laplacian of Gaussian filter as approximated by the Difference of Gaussians filter: >>> filtered_image = difference_of_gaussians(image, 2, multichannel=True) Apply a Difference of Gaussians filter to a grayscale image using different sigma values for each axis: >>> from skimage.data import camera >>> image = camera() >>> filtered_image = difference_of_gaussians(image, (2,5), (3,20)) """ image = img_as_float(image) sigma1 = np.array(sigma1, dtype='float', ndmin=1) if sigma2 is None: sigma2 = sigma1 * 1.6 else: sigma2 = np.array(sigma2, dtype='float', ndmin=1) if multichannel is True: spatial_dims = image.ndim - 1 else: spatial_dims = image.ndim if len(sigma1) != 1 and len(sigma1) != spatial_dims: raise ValueError('sigma1 must have length equal to number of spatial' ' dimensions of input') if len(sigma2) != 1 and len(sigma2) != spatial_dims: raise ValueError('sigma2 must have length equal to number of spatial' ' dimensions of input') sigma1 = sigma1 * np.ones(spatial_dims) sigma2 = sigma2 * np.ones(spatial_dims) if any(sigma2 < sigma1): raise ValueError('sigma2 must be equal to or larger than sigma1 for' ' all axes') im1 = gaussian(image, sigma1, mode=mode, cval=cval, multichannel=multichannel, truncate=truncate) im2 = gaussian(image, sigma2, mode=mode, cval=cval, multichannel=multichannel, truncate=truncate) return im1 - im2
def difference_of_gaussians(image, sigma1, sigma2=None, *, mode='nearest', cval=0, multichannel=False, truncate=4.0): """Multi-dimensional band-pass filter using the Difference of Gaussians method. Parameters ---------- image : ndarray Input array to filter. sigma1 : scalar or sequence of scalars Standard deviation(s) for the Gaussian kernel with the smaller sigmas across all axes. The standard deviations are given for each axis as a sequence, or as a single number, in which case the single number is used as the standard deviation value for all axes. sigma2 : scalar or sequence of scalars, optional (default is None) Standard deviation(s) for the Gaussian kernel with the larger sigmas across all axes. The standard deviations are given for each axis as a sequence, or as a single number, in which case the single number is used as the standard deviation value for all axes. If None is given (default), sigmas for all axes are calculated as 1.6 * sigma1. mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'nearest'. cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 multichannel : bool, optional (default: False) Whether the last axis of the image is to be interpreted as multiple channels. If True, each channel is filtered separately (channels are not mixed together). truncate : float, optional (default is 4.0) Truncate the filter at this many standard deviations. Returns ------- filtered_image : ndarray the filtered array Notes ----- This function will subtract an array filtered with a guassian kernel with sigmas given by ``sigma2`` from an array filtered with a gaussian kernel with sigmas provided by ``sigma1``. The values for ``sigma2`` must always be greater than or equal to the corresponding values in ``sigma1``, or a ``ValueError`` will be raised. When ``sigma2`` is none, the values for ``sigma2`` will be calculated as 1.6x the corresponding values in ``sigma1``. This approximates the inverted Laplacian of Gaussian, commonly used in edge and blob detection. Input image is converted according to the conventions of ``img_as_float``. Except for sigma values, all parameters are used for both filters. Examples -------- Apply a simple Difference of Gaussians filter to a color image: >>> from skimage.data import astronaut >>> from skimage.filters import difference_of_gaussians >>> image = astronaut() >>> filtered_image = difference_of_gaussians(image, 2, 10, ... multichannel=True) Apply a Laplacian of Gaussian filter as approximated by the Difference of Gaussians filter: >>> filtered_image = difference_of_gaussians(image, 2, multichannel=True) Apply a Difference of Gaussians filter to a grayscale image using different sigma values for each axis: >>> from skimage.data import camera >>> image = camera() >>> filtered_image = difference_of_gaussians(image, (2,5), (3,20)) """ image = img_as_float(image) sigma1 = np.array(sigma1, dtype='float', ndmin=1) if sigma2 is None: sigma2 = sigma1 * 1.6 else: sigma2 = np.array(sigma2, dtype='float', ndmin=1) if multichannel is True: spatial_dims = image.ndim - 1 else: spatial_dims = image.ndim if len(sigma1) != 1 and len(sigma1) != spatial_dims: raise ValueError('sigma1 must have length equal to number of spatial' ' dimensions of input') if len(sigma2) != 1 and len(sigma2) != spatial_dims: raise ValueError('sigma2 must have length equal to number of spatial' ' dimensions of input') sigma1 = sigma1 * np.ones(spatial_dims) sigma2 = sigma2 * np.ones(spatial_dims) if any(sigma2 < sigma1): raise ValueError('sigma2 must be equal to or larger than sigma1 for' ' all axes') im1 = gaussian(image, sigma1, mode=mode, cval=cval, multichannel=multichannel, truncate=truncate) im2 = gaussian(image, sigma2, mode=mode, cval=cval, multichannel=multichannel, truncate=truncate) return im1 - im2
8,594
def substring(geom, start_dist, end_dist, normalized=False): """Return a line segment between specified distances along a LineString Negative distance values are taken as measured in the reverse direction from the end of the geometry. Out-of-range index values are handled by clamping them to the valid range of values. If the start distance equals the end distance, a Point is returned. If the start distance is actually beyond the end distance, then the reversed substring is returned such that the start distance is at the first coordinate. Parameters ---------- geom : LineString The geometry to get a substring of. start_dist : float The distance along `goem` of the start of the substring. end_dist : float The distance along `geom` of the end of the substring. normalized : bool, False Whether the distance parameters are interpreted as a fraction of the geometry's length. Returns ------- Union[Point, LineString] The substring between `start_dist` and `end_dist` or a Point if they are at the same location. Raises ------ AssertionError If `geom` is not a LineString. Examples -------- >>> from shapely.geometry import LineString >>> from shapely.ops import substring >>> ls = LineString((i, 0) for i in range(6)) >>> ls.wkt 'LINESTRING (0 0, 1 0, 2 0, 3 0, 4 0, 5 0)' >>> substring(ls, start_dist=1, end_dist=3).wkt 'LINESTRING (1 0, 2 0, 3 0)' >>> substring(ls, start_dist=3, end_dist=1).wkt 'LINESTRING (3 0, 2 0, 1 0)' >>> substring(ls, start_dist=1, end_dist=-3).wkt 'LINESTRING (1 0, 2 0)' >>> substring(ls, start_dist=0.2, end_dist=-0.6, normalized=True).wkt 'LINESTRING (1 0, 2 0)' Returning a `Point` when `start_dist` and `end_dist` are at the same location. >>> substring(ls, 2.5, -2.5).wkt 'POINT (2.5 0)' """ assert(isinstance(geom, LineString)) # Filter out cases in which to return a point if start_dist == end_dist: return geom.interpolate(start_dist, normalized) elif not normalized and start_dist >= geom.length and end_dist >= geom.length: return geom.interpolate(geom.length, normalized) elif not normalized and -start_dist >= geom.length and -end_dist >= geom.length: return geom.interpolate(0, normalized) elif normalized and start_dist >= 1 and end_dist >= 1: return geom.interpolate(1, normalized) elif normalized and -start_dist >= 1 and -end_dist >= 1: return geom.interpolate(0, normalized) if normalized: start_dist *= geom.length end_dist *= geom.length # Filter out cases where distances meet at a middle point from opposite ends. if start_dist < 0 < end_dist and abs(start_dist) + end_dist == geom.length: return geom.interpolate(end_dist) elif end_dist < 0 < start_dist and abs(end_dist) + start_dist == geom.length: return geom.interpolate(start_dist) start_point = geom.interpolate(start_dist) end_point = geom.interpolate(end_dist) if start_dist < 0: start_dist = geom.length + start_dist # Values may still be negative, if end_dist < 0: # but only in the out-of-range end_dist = geom.length + end_dist # sense, not the wrap-around sense. reverse = start_dist > end_dist if reverse: start_dist, end_dist = end_dist, start_dist if start_dist < 0: start_dist = 0 # to avoid duplicating the first vertex if reverse: vertex_list = [(end_point.x, end_point.y)] else: vertex_list = [(start_point.x, start_point.y)] coords = list(geom.coords) current_distance = 0 for p1, p2 in zip(coords, coords[1:]): if start_dist < current_distance < end_dist: vertex_list.append(p1) elif current_distance >= end_dist: break current_distance += ((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) ** 0.5 if reverse: vertex_list.append((start_point.x, start_point.y)) # reverse direction result vertex_list = reversed(vertex_list) else: vertex_list.append((end_point.x, end_point.y)) return LineString(vertex_list)
def substring(geom, start_dist, end_dist, normalized=False): """Return a line segment between specified distances along a LineString Negative distance values are taken as measured in the reverse direction from the end of the geometry. Out-of-range index values are handled by clamping them to the valid range of values. If the start distance equals the end distance, a Point is returned. If the start distance is actually beyond the end distance, then the reversed substring is returned such that the start distance is at the first coordinate. Parameters ---------- geom : LineString The geometry to get a substring of. start_dist : float The distance along `geom` of the start of the substring. end_dist : float The distance along `geom` of the end of the substring. normalized : bool, False Whether the distance parameters are interpreted as a fraction of the geometry's length. Returns ------- Union[Point, LineString] The substring between `start_dist` and `end_dist` or a Point if they are at the same location. Raises ------ AssertionError If `geom` is not a LineString. Examples -------- >>> from shapely.geometry import LineString >>> from shapely.ops import substring >>> ls = LineString((i, 0) for i in range(6)) >>> ls.wkt 'LINESTRING (0 0, 1 0, 2 0, 3 0, 4 0, 5 0)' >>> substring(ls, start_dist=1, end_dist=3).wkt 'LINESTRING (1 0, 2 0, 3 0)' >>> substring(ls, start_dist=3, end_dist=1).wkt 'LINESTRING (3 0, 2 0, 1 0)' >>> substring(ls, start_dist=1, end_dist=-3).wkt 'LINESTRING (1 0, 2 0)' >>> substring(ls, start_dist=0.2, end_dist=-0.6, normalized=True).wkt 'LINESTRING (1 0, 2 0)' Returning a `Point` when `start_dist` and `end_dist` are at the same location. >>> substring(ls, 2.5, -2.5).wkt 'POINT (2.5 0)' """ assert(isinstance(geom, LineString)) # Filter out cases in which to return a point if start_dist == end_dist: return geom.interpolate(start_dist, normalized) elif not normalized and start_dist >= geom.length and end_dist >= geom.length: return geom.interpolate(geom.length, normalized) elif not normalized and -start_dist >= geom.length and -end_dist >= geom.length: return geom.interpolate(0, normalized) elif normalized and start_dist >= 1 and end_dist >= 1: return geom.interpolate(1, normalized) elif normalized and -start_dist >= 1 and -end_dist >= 1: return geom.interpolate(0, normalized) if normalized: start_dist *= geom.length end_dist *= geom.length # Filter out cases where distances meet at a middle point from opposite ends. if start_dist < 0 < end_dist and abs(start_dist) + end_dist == geom.length: return geom.interpolate(end_dist) elif end_dist < 0 < start_dist and abs(end_dist) + start_dist == geom.length: return geom.interpolate(start_dist) start_point = geom.interpolate(start_dist) end_point = geom.interpolate(end_dist) if start_dist < 0: start_dist = geom.length + start_dist # Values may still be negative, if end_dist < 0: # but only in the out-of-range end_dist = geom.length + end_dist # sense, not the wrap-around sense. reverse = start_dist > end_dist if reverse: start_dist, end_dist = end_dist, start_dist if start_dist < 0: start_dist = 0 # to avoid duplicating the first vertex if reverse: vertex_list = [(end_point.x, end_point.y)] else: vertex_list = [(start_point.x, start_point.y)] coords = list(geom.coords) current_distance = 0 for p1, p2 in zip(coords, coords[1:]): if start_dist < current_distance < end_dist: vertex_list.append(p1) elif current_distance >= end_dist: break current_distance += ((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) ** 0.5 if reverse: vertex_list.append((start_point.x, start_point.y)) # reverse direction result vertex_list = reversed(vertex_list) else: vertex_list.append((end_point.x, end_point.y)) return LineString(vertex_list)
8,554
def ipv6_address(addr: str) -> str: """ Validate an IPv6 address. :param addr: ipv6 address :returns: The ipv6 address. """ if not isinstance(addr, str): raise CX("Invalid input, addr must be a string") else: addr = addr.strip() if addr == "": return addr if not netaddr.valid_ipv6(addr): raise CX("Invalid IPv6 address format (%s)" % addr) return addr
def ipv6_address(addr: str) -> str: """ Validate an IPv6 address. :param addr: IPv6 address :returns: The ipv6 address. """ if not isinstance(addr, str): raise CX("Invalid input, addr must be a string") else: addr = addr.strip() if addr == "": return addr if not netaddr.valid_ipv6(addr): raise CX("Invalid IPv6 address format (%s)" % addr) return addr
31,041
def get_dlp_api_call(url): """ Makes a HTTPS Get call on the DLP API""" global ACCESS_TOKEN count = 0 while count < MAX_ATTEMPTS: res = requests.get(url=url, headers={'Authorization': "Bearer " + ACCESS_TOKEN}) if res.status_code != 403: break new_token = refreshtoken(ACCESS_TOKEN, REFRESH_TOKEN) if new_token: ACCESS_TOKEN = new_token count += 1 if res.status_code < 200 or res.status_code >= 300: raise Exception("Request to {} failed with status code {}".format(url, res.status_code)) result_json = {} if res.status_code == 204 else res.json() return result_json, res.status_code
def get_dlp_api_call(url): """ Makes a HTTPS Get call on the DLP API""" global ACCESS_TOKEN count = 0 while count < MAX_ATTEMPTS: res = requests.get(url=url, headers={'Authorization': "Bearer " + ACCESS_TOKEN}) if res.status_code != 403: break new_token = refreshtoken(ACCESS_TOKEN, REFRESH_TOKEN) if new_token: ACCESS_TOKEN = new_token count += 1 if res.status_code < 200 or res.status_code >= 300: raise DemistoException("Request to {} failed with status code {}".format(url, res.status_code)) result_json = {} if res.status_code == 204 else res.json() return result_json, res.status_code
5,833
def _contains_nan(a, nan_policy='propagate'): policies = ['propagate', 'raise', 'omit'] if nan_policy not in policies: raise ValueError("nan_policy must be one of {%s}" % ', '.join("'%s'" % s for s in policies)) try: # Calling np.sum to avoid creating a huge array into memory # e.g. np.isnan(a).any() with np.errstate(invalid='ignore', over='ignore'): contains_nan = np.isnan(np.sum(a)) except TypeError: # This can happen when attempting to sum things which are not # numbers (e.g. as in the function `mode`). Try an alternative method: try: contains_nan = np.any(np.isnan(a.ravel())) except TypeError: # Don't know what to do. Fall back to omitting nan values and # issue a warning. contains_nan = False nan_policy = 'omit' warnings.warn("The input array could not be properly " "checked for nan values. nan values " "will be ignored.", RuntimeWarning) if contains_nan and nan_policy == 'raise': raise ValueError("The input contains nan values") return contains_nan, nan_policy
def _contains_nan(a, nan_policy='propagate'): policies = ['propagate', 'raise', 'omit'] if nan_policy not in policies: raise ValueError("nan_policy must be one of {%s}" % ', '.join("'%s'" % s for s in policies)) try: # Calling np.sum to avoid creating a huge array into memory # e.g. np.isnan(a).any() with np.errstate(invalid='ignore', over='ignore'): contains_nan = np.isnan(np.sum(a)) except TypeError: # This can happen when attempting to sum things which are not # numbers (e.g. as in the function `mode`). Try an alternative method: try: contains_nan = np.any(np.isnan(a)) except TypeError: # Don't know what to do. Fall back to omitting nan values and # issue a warning. contains_nan = False nan_policy = 'omit' warnings.warn("The input array could not be properly " "checked for nan values. nan values " "will be ignored.", RuntimeWarning) if contains_nan and nan_policy == 'raise': raise ValueError("The input contains nan values") return contains_nan, nan_policy
59,146
def harmony_timeseries(data: AnnData, tp: str): """Harmony time series for data visualization with augmented affinity matrix at discrete time points [Nowotschin18i]_. Harmony time series is a framework for data visualization, trajectory detection and interpretation for scRNA-seq data measured at discrete time points. Harmony constructs an augmented affinity matrix by augmenting the kNN graph affinity matrix with mutually nearest neighbors between successive time points. This augmented affinity matrix forms the basis for generated a force directed layout for visualization and also serves as input for computing the diffusion operator which can be used for trajectory detection using **Palantir**. More about **Palantir** can be found here: https://github.com/dpeerlab/Palantir. .. note:: More information and bug reports `here <https://github.com/dpeerlab/Harmony>`__. Parameters ---------- data Annotated data matrix of shape n_obs `×` n_vars. Rows correspond to cells and columns to genes. Rows represent two or more time points, where replicates of the same time point are consecutive in order. tp key name of observation annotation `.obs` representing time points Returns ------- Updates `.uns` with `timepoint_connections` Example ------- >>> import scanpy as sc >>> import scanpy.external as sce **Load** `AnnData` A sample with real data is available `here <https://github.com/dpeerlab/Harmony/tree/master/data>`_. Random data sets of three time points with two replicates each: >>> adata_ref = sc.datasets.pbmc3k() >>> start = [596, 615, 1682, 1663, 1409, 1432] >>> adatas = [adata_ref[i : i + 1000] for i in start] >>> sample_names = [ "sa1_Rep1", "sa1_Rep2", "sa2_Rep1", "sa2_Rep2", "sa3_Rep1", "sa3_Rep2", ] >>> timepoints = [i.split("_")[0] for i in sample_names] >>> for ad, sn, tp in zip(adatas, sample_names, timepoints): ad.obs["time_points"] = tp ad.obs["sample_name"] = sn >>> adata = adatas[0].concatenate(*adatas[1:], join="outer") Normalize and filter for highly expressed genes >>> sc.pp.normalize_total(adata, target_sum=10000) >>> sc.pp.log1p(adata) >>> sc.pp.highly_variable_genes(adata, n_top_genes=1000, subset=True) Run harmony_timeseries >>> d = sce.tl.harmony_timeseries(data=adata, tp="time_points") **Harmony augmented affinity matrix** >>> aug_aff, aff = d.harmony_timeseries.core.augmented_affinity_matrix( data_df=adata.to_df(), timepoints=adata.obs["time_points"], timepoint_connections=adata.uns["timepoint_connections"], ) **Visualization using force directed layouts** >>> layout = d.harmony_timeseries.plot.force_directed_layout( affinity_matrix=aug_aff, cell_names=adata.obs.index ) Use any of Scanpy or Harmony methods for plotting. Example: >>> d.harmony_timeseries.plot.plot_timepoints( layout=layout, timepoints=adata.obs.time_points ) For further demonstration of Harmony visualizations please follow this notebook `Harmony_sample_notebook.ipynb <https://github.com/dpeerlab/Harmony/blob/master/notebooks/ Harmony_sample_notebook.ipynb>`_. It provides a comprehensive guide to draw *gene expression trends*, amongst other things. """ logg.info("Harmony augmented affinity matrix") class _wrapper_cls(object): """/ A wrapper class to instantiate a new object that wraps `Harmony` as an attribute reference attached to the class, together with other attribute references. The class uses instance variables, to preprocess and generate data using the embedded harmony package. harmony accepts as input AnnData: Cells x Genes. Methods used are: - instantiation initiation - instance function to embed harmony - processing of input data """ def __init__( self, adata: AnnData, tp: str, func=None, ): """/ Parameters ---------- adata Annotated data matrix of shape n_obs `×` n_vars. Rows correspond to cells and columns to genes. Rows represent two or more time points, where replicates of the same time point are consecutive in order. tp key name of observation annotation `.obs` representing time points func function wrapper to import harmony (not to be used) """ # instantiate variables self.func = func timepoint_connections = pd.DataFrame(columns=[0, 1]) index = 0 timepoints = adata.obs[tp].unique().tolist() for i in range(len(timepoints) - 1): timepoint_connections.loc[index, :] = timepoints[i : i + 2] index += 1 adata.uns["timepoint_connections"] = timepoint_connections # load harmony_timeseries self.__call__() logg.info("harmony_timeseries loaded ...") def __call__(self): """/ Call for function to import harmony_timeseries and instantiate it as a class attribute """ self.harmony_timeseries = self.func() def wrapper_cls(df, tpoints, func=None): """/ Class wrapper to pass a function to the class alongside positional argument """ if func: return _wrapper_cls(func) else: def wrapper(f): return _wrapper_cls(df, tpoints, f) return wrapper # import Harmony and wrap it in a function passed to the wrapper class this # method allows passing positional argument of data to `_wrapper_cls` @wrapper_cls(data, tp) def _run(): import importlib try: import palantir except ImportError: raise ImportError( " please install palantir: \n\n\t" "git clone git://github.com/dpeerlab/Palantir.git\n\t" "cd Palantir\n\t" "sudo -H pip3 install .\n" ) try: harmony = importlib.import_module("harmony") except ImportError: raise ImportError( "\nplease install harmony: \n\n\t" "git clone git://github.com/dpeerlab/Harmony.git\n\t" "cd Harmony\n\t" "sudo -H pip3 install .\n" ) return harmony return _run
def harmony_timeseries(data: AnnData, tp: str): """Harmony time series for data visualization with augmented affinity matrix at discrete time points [Nowotschin18i]_. Harmony time series is a framework for data visualization, trajectory detection and interpretation for scRNA-seq data measured at discrete time points. Harmony constructs an augmented affinity matrix by augmenting the kNN graph affinity matrix with mutually nearest neighbors between successive time points. This augmented affinity matrix forms the basis for generated a force directed layout for visualization and also serves as input for computing the diffusion operator which can be used for trajectory detection using Palantir_. .. _Palantir: https://github.com/dpeerlab/Palantir More about **Palantir** can be found here: https://github.com/dpeerlab/Palantir. .. note:: More information and bug reports `here <https://github.com/dpeerlab/Harmony>`__. Parameters ---------- data Annotated data matrix of shape n_obs `×` n_vars. Rows correspond to cells and columns to genes. Rows represent two or more time points, where replicates of the same time point are consecutive in order. tp key name of observation annotation `.obs` representing time points Returns ------- Updates `.uns` with `timepoint_connections` Example ------- >>> import scanpy as sc >>> import scanpy.external as sce **Load** `AnnData` A sample with real data is available `here <https://github.com/dpeerlab/Harmony/tree/master/data>`_. Random data sets of three time points with two replicates each: >>> adata_ref = sc.datasets.pbmc3k() >>> start = [596, 615, 1682, 1663, 1409, 1432] >>> adatas = [adata_ref[i : i + 1000] for i in start] >>> sample_names = [ "sa1_Rep1", "sa1_Rep2", "sa2_Rep1", "sa2_Rep2", "sa3_Rep1", "sa3_Rep2", ] >>> timepoints = [i.split("_")[0] for i in sample_names] >>> for ad, sn, tp in zip(adatas, sample_names, timepoints): ad.obs["time_points"] = tp ad.obs["sample_name"] = sn >>> adata = adatas[0].concatenate(*adatas[1:], join="outer") Normalize and filter for highly expressed genes >>> sc.pp.normalize_total(adata, target_sum=10000) >>> sc.pp.log1p(adata) >>> sc.pp.highly_variable_genes(adata, n_top_genes=1000, subset=True) Run harmony_timeseries >>> d = sce.tl.harmony_timeseries(data=adata, tp="time_points") **Harmony augmented affinity matrix** >>> aug_aff, aff = d.harmony_timeseries.core.augmented_affinity_matrix( data_df=adata.to_df(), timepoints=adata.obs["time_points"], timepoint_connections=adata.uns["timepoint_connections"], ) **Visualization using force directed layouts** >>> layout = d.harmony_timeseries.plot.force_directed_layout( affinity_matrix=aug_aff, cell_names=adata.obs.index ) Use any of Scanpy or Harmony methods for plotting. Example: >>> d.harmony_timeseries.plot.plot_timepoints( layout=layout, timepoints=adata.obs.time_points ) For further demonstration of Harmony visualizations please follow this notebook `Harmony_sample_notebook.ipynb <https://github.com/dpeerlab/Harmony/blob/master/notebooks/ Harmony_sample_notebook.ipynb>`_. It provides a comprehensive guide to draw *gene expression trends*, amongst other things. """ logg.info("Harmony augmented affinity matrix") class _wrapper_cls(object): """/ A wrapper class to instantiate a new object that wraps `Harmony` as an attribute reference attached to the class, together with other attribute references. The class uses instance variables, to preprocess and generate data using the embedded harmony package. harmony accepts as input AnnData: Cells x Genes. Methods used are: - instantiation initiation - instance function to embed harmony - processing of input data """ def __init__( self, adata: AnnData, tp: str, func=None, ): """/ Parameters ---------- adata Annotated data matrix of shape n_obs `×` n_vars. Rows correspond to cells and columns to genes. Rows represent two or more time points, where replicates of the same time point are consecutive in order. tp key name of observation annotation `.obs` representing time points func function wrapper to import harmony (not to be used) """ # instantiate variables self.func = func timepoint_connections = pd.DataFrame(columns=[0, 1]) index = 0 timepoints = adata.obs[tp].unique().tolist() for i in range(len(timepoints) - 1): timepoint_connections.loc[index, :] = timepoints[i : i + 2] index += 1 adata.uns["timepoint_connections"] = timepoint_connections # load harmony_timeseries self.__call__() logg.info("harmony_timeseries loaded ...") def __call__(self): """/ Call for function to import harmony_timeseries and instantiate it as a class attribute """ self.harmony_timeseries = self.func() def wrapper_cls(df, tpoints, func=None): """/ Class wrapper to pass a function to the class alongside positional argument """ if func: return _wrapper_cls(func) else: def wrapper(f): return _wrapper_cls(df, tpoints, f) return wrapper # import Harmony and wrap it in a function passed to the wrapper class this # method allows passing positional argument of data to `_wrapper_cls` @wrapper_cls(data, tp) def _run(): import importlib try: import palantir except ImportError: raise ImportError( " please install palantir: \n\n\t" "git clone git://github.com/dpeerlab/Palantir.git\n\t" "cd Palantir\n\t" "sudo -H pip3 install .\n" ) try: harmony = importlib.import_module("harmony") except ImportError: raise ImportError( "\nplease install harmony: \n\n\t" "git clone git://github.com/dpeerlab/Harmony.git\n\t" "cd Harmony\n\t" "sudo -H pip3 install .\n" ) return harmony return _run
513
def activate_new_user( username, password, created_by, created_via, first_name=None, last_name=None, is_domain_admin=True, domain=None, ip=None, atypical_user=False ): now = datetime.utcnow() new_user = WebUser.create( domain, username, password, created_by, created_via, is_admin=is_domain_admin, can_skip_domain=(not domain), ) new_user.first_name = first_name new_user.last_name = last_name new_user.email = username new_user.subscribed_to_commcare_users = False new_user.eula.signed = True new_user.eula.date = now new_user.eula.type = 'End User License Agreement' if ip: new_user.eula.user_ip = ip new_user.is_staff = False # Can't log in to admin site new_user.is_active = True new_user.is_superuser = False new_user.last_login = now new_user.date_joined = now new_user.last_password_set = now new_user.atypical_user = atypical_user new_user.save() return new_user
def activate_new_user( username, password, created_by, created_via, first_name=None, last_name=None, is_domain_admin=True, domain=None, ip=None, atypical_user=False ): now = datetime.utcnow() new_user = WebUser.create( domain, username, password, created_by, created_via, is_admin=is_domain_admin, can_skip_domain=(domain is None), ) new_user.first_name = first_name new_user.last_name = last_name new_user.email = username new_user.subscribed_to_commcare_users = False new_user.eula.signed = True new_user.eula.date = now new_user.eula.type = 'End User License Agreement' if ip: new_user.eula.user_ip = ip new_user.is_staff = False # Can't log in to admin site new_user.is_active = True new_user.is_superuser = False new_user.last_login = now new_user.date_joined = now new_user.last_password_set = now new_user.atypical_user = atypical_user new_user.save() return new_user
32,076
def main(): try: demisto_params = demisto.params() command = demisto.command() params = { 'api_url': demisto_params['url'].rstrip('/'), 'use_ssl': not demisto_params.get('insecure', False), 'threshold': int(demisto_params.get('threshold', 1)), 'create_relationships': bool(demisto_params.get('create_relationships', True)), 'max_num_of_relationships': int(demisto_params.get('max_num_of_relationships', 1)) if int( demisto_params.get('max_num_of_relationships', 1)) < 1000 else 1000, } reliability = demisto_params.get('integrationReliability', DBotScoreReliability.C) if DBotScoreReliability.is_valid_type(reliability): params['reliability'] = DBotScoreReliability.get_dbot_score_reliability_from_str(reliability) else: Exception('Please provide a valid value for the Source Reliability parameter.') # Remove proxy if not set to true in params handle_proxy() if command == 'test-module': # This is the call made when pressing the integration test button. test_module(**params) demisto.results('ok') elif command == 'url': return_results(results=url_command(**params)) elif command == 'domain': return_results(results=domain_command(**params)) elif command == 'file': return_results(results=file_command(**params)) elif command == 'urlhaus-download-sample': urlhaus_download_sample_command(**params) # Log exceptions except Exception as exc: return_error(f'Failed to execute command "{command}".\nError: {exc}', error=exc)
def main(): try: demisto_params = demisto.params() command = demisto.command() params = { 'api_url': demisto_params['url'].rstrip('/'), 'use_ssl': not demisto_params.get('insecure', False), 'threshold': int(demisto_params.get('threshold', 1)), 'create_relationships': bool(demisto_params.get('create_relationships', True)), 'max_num_of_relationships': min(1000, int(demisto_params.get('max_num_of_relationships', 10))), } reliability = demisto_params.get('integrationReliability', DBotScoreReliability.C) if DBotScoreReliability.is_valid_type(reliability): params['reliability'] = DBotScoreReliability.get_dbot_score_reliability_from_str(reliability) else: Exception('Please provide a valid value for the Source Reliability parameter.') # Remove proxy if not set to true in params handle_proxy() if command == 'test-module': # This is the call made when pressing the integration test button. test_module(**params) demisto.results('ok') elif command == 'url': return_results(results=url_command(**params)) elif command == 'domain': return_results(results=domain_command(**params)) elif command == 'file': return_results(results=file_command(**params)) elif command == 'urlhaus-download-sample': urlhaus_download_sample_command(**params) # Log exceptions except Exception as exc: return_error(f'Failed to execute command "{command}".\nError: {exc}', error=exc)
32,911
def _default_span_processors_factory( trace_filters, # type: List[TraceFilter] trace_writer, # type: TraceWriter partial_flush_enabled, # type: bool partial_flush_min_spans, # type: int appsec_enabled, # type: bool ): # type: (...) -> List[SpanProcessor] """Construct the default list of span processors to use.""" trace_processors = [] # type: List[TraceProcessor] trace_processors += [TraceTagsProcessor()] trace_processors += [TraceSamplingProcessor()] trace_processors += [TraceTopLevelSpanProcessor()] trace_processors += trace_filters span_processors = [] # type: List[SpanProcessor] if appsec_enabled: try: from .appsec.processor import AppSecSpanProcessor appsec_span_processor = AppSecSpanProcessor() span_processors.append(appsec_span_processor) except Exception as e: # DDAS-001-01 log.error( "[DDAS-001-01] " "AppSec could not start because of an unexpected error. No security activities will be collected. " "Please contact support at https://docs.datadoghq.com/help/ for help. Error details: \n%s", repr(e), ) if config._raise: raise span_processors.append( SpanAggregator( partial_flush_enabled=partial_flush_enabled, partial_flush_min_spans=partial_flush_min_spans, trace_processors=trace_processors, writer=trace_writer, ) ) return span_processors
def _default_span_processors_factory( trace_filters, # type: List[TraceFilter] trace_writer, # type: TraceWriter partial_flush_enabled, # type: bool partial_flush_min_spans, # type: int appsec_enabled, # type: bool ): # type: (...) -> List[SpanProcessor] """Construct the default list of span processors to use.""" trace_processors = [] # type: List[TraceProcessor] trace_processors += [TraceTagsProcessor()] trace_processors += [TraceSamplingProcessor()] trace_processors += [TraceTopLevelSpanProcessor()] trace_processors += trace_filters span_processors = [] # type: List[SpanProcessor] if self._appsec_enabled: try: from .appsec.processor import AppSecSpanProcessor appsec_span_processor = AppSecSpanProcessor() span_processors.append(appsec_span_processor) except Exception as e: # DDAS-001-01 log.error( "[DDAS-001-01] " "AppSec could not start because of an unexpected error. No security activities will be collected. " "Please contact support at https://docs.datadoghq.com/help/ for help. Error details: \n%s", repr(e), ) if config._raise: raise span_processors.append( SpanAggregator( partial_flush_enabled=partial_flush_enabled, partial_flush_min_spans=partial_flush_min_spans, trace_processors=trace_processors, writer=trace_writer, ) ) return span_processors
14,844
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the IO expander devices.""" global _PORT_VALUE global _I2C_ADDR global _BUS invert_logic = config.get(CONF_INVERT_LOGIC) binary_sensors = [] pins = config.get("pins") bits = config.get(CONF_BITS) _I2C_ADDR = config.get(CONF_I2CADDR) # Make 8-bits (can be 2- or 4-bits, but should always pack in a 8-bit msg) while bits % 8: bits += 1 # Increase array size _PORT_VALUE *= int(bits / 8) # Set up I2C bus connectivity _BUS = SMBus(config.get(CONF_I2CBUS)) # Write 1 to all pins to prepaire them for reading msg = i2c_msg.write(_I2C_ADDR, _PORT_VALUE) if _BUS: _BUS.i2c_rdwr(msg) else: _LOGGER.error("I2C bus %d not available!!", config.get(CONF_I2CBUS)) for pin_num, pin_name in pins.items(): binary_sensors.append(Pi4ioe5v9BinarySensor(pin_name, pin_num, invert_logic)) add_entities(binary_sensors, True)
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the IO expander devices.""" global _PORT_VALUE global _I2C_ADDR global _BUS invert_logic = config.get(CONF_INVERT_LOGIC) binary_sensors = [] pins = config[CONF_PINS] bits = config.get(CONF_BITS) _I2C_ADDR = config.get(CONF_I2CADDR) # Make 8-bits (can be 2- or 4-bits, but should always pack in a 8-bit msg) while bits % 8: bits += 1 # Increase array size _PORT_VALUE *= int(bits / 8) # Set up I2C bus connectivity _BUS = SMBus(config.get(CONF_I2CBUS)) # Write 1 to all pins to prepaire them for reading msg = i2c_msg.write(_I2C_ADDR, _PORT_VALUE) if _BUS: _BUS.i2c_rdwr(msg) else: _LOGGER.error("I2C bus %d not available!!", config.get(CONF_I2CBUS)) for pin_num, pin_name in pins.items(): binary_sensors.append(Pi4ioe5v9BinarySensor(pin_name, pin_num, invert_logic)) add_entities(binary_sensors, True)
20,425
def _patch_legacy_helpers(app_folder): files_to_patch = [] files_to_patch.extend(glob.glob("%s/scripts/*" % app_folder)) files_to_patch.extend(glob.glob("%s/scripts/.*" % app_folder)) stuff_to_replace = { # Replace # sudo yunohost app initdb $db_user -p $db_pwd # by # ynh_mysql_setup_db --db_user=$db_user --db_name=$db_user --db_pwd=$db_pwd "yunohost app initdb": { "pattern": r"(sudo )?yunohost app initdb \"?(\$\{?\w+\}?)\"?\s+-p\s\"?(\$\{?\w+\}?)\"?", "replace": r"ynh_mysql_setup_db --db_user=\2 --db_name=\2 --db_pwd=\3", "important": True, }, # Replace # sudo yunohost app checkport whaterver # by # ynh_port_available whatever "yunohost app checkport": { "pattern": r"(sudo )?yunohost app checkport", "replace": r"ynh_port_available", "important": True, }, # We can't migrate easily port-available # .. but at the time of writing this code, only two non-working apps are using it. "yunohost tools port-available": {"important": True}, # Replace # yunohost app checkurl "${domain}${path_url}" -a "${app}" # by # ynh_webpath_register --app=${app} --domain=${domain} --path_url=${path_url} "yunohost app checkurl": { "pattern": r"(sudo )?yunohost app checkurl \"?(\$\{?\w+\}?)\/?(\$\{?\w+\}?)\"?\s+-a\s\"?(\$\{?\w+\}?)\"?", "replace": r"ynh_webpath_register --app=\4 --domain=\2 --path_url=\3", "important": True, }, # Remove # Automatic diagnosis data from YunoHost # __PRE_TAG1__$(yunohost tools diagnosis | ...)__PRE_TAG2__" # "yunohost tools diagnosis": { "pattern": r"(Automatic diagnosis data from YunoHost( *\n)*)? *(__\w+__)? *\$\(yunohost tools diagnosis.*\)(__\w+__)?", "replace": r"", "important": False, }, # Old $1, $2 in backup/restore scripts... "app=$2": { "only_for": ["scripts/backup", "scripts/restore"], "pattern": r"app=\$2", "replace": r"app=$YNH_APP_INSTANCE_NAME", "important": True, }, # Old $1, $2 in backup/restore scripts... "backup_dir=$1": { "only_for": ["scripts/backup", "scripts/restore"], "pattern": r"backup_dir=\$1", "replace": r"backup_dir=.", "important": True, }, # Old $1, $2 in backup/restore scripts... "restore_dir=$1": { "only_for": ["scripts/restore"], "pattern": r"restore_dir=\$1", "replace": r"restore_dir=.", "important": True, }, # Old $1, $2 in install scripts... # We ain't patching that shit because it ain't trivial to patch all args... "domain=$1": {"only_for": ["scripts/install"], "important": True}, } for helper, infos in stuff_to_replace.items(): infos["pattern"] = ( re.compile(infos["pattern"]) if infos.get("pattern") else None ) infos["replace"] = infos.get("replace") for filename in files_to_patch: # Ignore non-regular files if not os.path.isfile(filename): continue try: content = read_file(filename) except Exception: continue replaced_stuff = False show_warning = False for helper, infos in stuff_to_replace.items(): # Ignore if not relevant for this file if infos.get("only_for") and not any( filename.endswith(f) for f in infos["only_for"] ): continue # If helper is used, attempt to patch the file if helper in content and infos["pattern"]: content = infos["pattern"].sub(infos["replace"], content) replaced_stuff = True if infos["important"]: show_warning = True # If the helper is *still* in the content, it means that we # couldn't patch the deprecated helper in the previous lines. In # that case, abort the install or whichever step is performed if helper in content and infos["important"]: raise YunohostError( "This app is likely pretty old and uses deprecated / outdated helpers that can't be migrated easily. It can't be installed anymore.", raw_msg=True, ) if replaced_stuff: # Check the app do load the helper # If it doesn't, add the instruction ourselve (making sure it's after the #!/bin/bash if it's there... if filename.split("/")[-1] in [ "install", "remove", "upgrade", "backup", "restore", ]: source_helpers = "source /usr/share/yunohost/helpers" if source_helpers not in content: content.replace("#!/bin/bash", "#!/bin/bash\n" + source_helpers) if source_helpers not in content: content = source_helpers + "\n" + content # Actually write the new content in the file write_to_file(filename, content) if show_warning: # And complain about those damn deprecated helpers logger.error( r"/!\ Packagers ! This app uses a very old deprecated helpers ... Yunohost automatically patched the helpers to use the new recommended practice, but please do consider fixing the upstream code right now ..." )
def _patch_legacy_helpers(app_folder): files_to_patch = [] files_to_patch.extend(glob.glob("%s/scripts/*" % app_folder)) files_to_patch.extend(glob.glob("%s/scripts/.*" % app_folder)) stuff_to_replace = { # Replace # sudo yunohost app initdb $db_user -p $db_pwd # by # ynh_mysql_setup_db --db_user=$db_user --db_name=$db_user --db_pwd=$db_pwd "yunohost app initdb": { "pattern": r"(sudo )?yunohost app initdb \"?(\$\{?\w+\}?)\"?\s+-p\s\"?(\$\{?\w+\}?)\"?", "replace": r"ynh_mysql_setup_db --db_user=\2 --db_name=\2 --db_pwd=\3", "important": True, }, # Replace # sudo yunohost app checkport whaterver # by # ynh_port_available whatever "yunohost app checkport": { "pattern": r"(sudo )?yunohost app checkport", "replace": r"ynh_port_available", "important": True, }, # We can't migrate easily port-available # .. but at the time of writing this code, only two non-working apps are using it. "yunohost tools port-available": {"important": True}, # Replace # yunohost app checkurl "${domain}${path_url}" -a "${app}" # by # ynh_webpath_register --app=${app} --domain=${domain} --path_url=${path_url} "yunohost app checkurl": { "pattern": r"(sudo )?yunohost app checkurl \"?(\$\{?\w+\}?)\/?(\$\{?\w+\}?)\"?\s+-a\s\"?(\$\{?\w+\}?)\"?", "replace": r"ynh_webpath_register --app=\4 --domain=\2 --path_url=\3", "important": True, }, # Remove # Automatic diagnosis data from YunoHost # __PRE_TAG1__$(yunohost tools diagnosis | ...)__PRE_TAG2__" # "yunohost tools diagnosis": { "pattern": r"(Automatic diagnosis data from YunoHost( *\n)*)? *(__\w+__)? *\$\(yunohost tools diagnosis.*\)(__\w+__)?", "replace": r"", "important": False, }, # Old $1, $2 in backup/restore scripts... "app=$2": { "only_for": ["scripts/backup", "scripts/restore"], "pattern": r"app=\$2", "replace": r"app=$YNH_APP_INSTANCE_NAME", "important": True, }, # Old $1, $2 in backup/restore scripts... "backup_dir=$1": { "only_for": ["scripts/backup", "scripts/restore"], "pattern": r"backup_dir=\$1", "replace": r"backup_dir=.", "important": True, }, # Old $1, $2 in backup/restore scripts... "restore_dir=$1": { "only_for": ["scripts/restore"], "pattern": r"restore_dir=\$1", "replace": r"restore_dir=.", "important": True, }, # Old $1, $2 in install scripts... # We ain't patching that shit because it ain't trivial to patch all args... "domain=$1": {"only_for": ["scripts/install"], "important": True}, } for helper, infos in stuff_to_replace.items(): infos["pattern"] = ( re.compile(infos["pattern"]) if infos.get("pattern") else None ) infos["replace"] = infos.get("replace") for filename in files_to_patch: # Ignore non-regular files if not os.path.isfile(filename): continue try: content = read_file(filename) except MoulinetteError: continue replaced_stuff = False show_warning = False for helper, infos in stuff_to_replace.items(): # Ignore if not relevant for this file if infos.get("only_for") and not any( filename.endswith(f) for f in infos["only_for"] ): continue # If helper is used, attempt to patch the file if helper in content and infos["pattern"]: content = infos["pattern"].sub(infos["replace"], content) replaced_stuff = True if infos["important"]: show_warning = True # If the helper is *still* in the content, it means that we # couldn't patch the deprecated helper in the previous lines. In # that case, abort the install or whichever step is performed if helper in content and infos["important"]: raise YunohostError( "This app is likely pretty old and uses deprecated / outdated helpers that can't be migrated easily. It can't be installed anymore.", raw_msg=True, ) if replaced_stuff: # Check the app do load the helper # If it doesn't, add the instruction ourselve (making sure it's after the #!/bin/bash if it's there... if filename.split("/")[-1] in [ "install", "remove", "upgrade", "backup", "restore", ]: source_helpers = "source /usr/share/yunohost/helpers" if source_helpers not in content: content.replace("#!/bin/bash", "#!/bin/bash\n" + source_helpers) if source_helpers not in content: content = source_helpers + "\n" + content # Actually write the new content in the file write_to_file(filename, content) if show_warning: # And complain about those damn deprecated helpers logger.error( r"/!\ Packagers ! This app uses a very old deprecated helpers ... Yunohost automatically patched the helpers to use the new recommended practice, but please do consider fixing the upstream code right now ..." )
45,658
def layout(): return html.Div(id='oncoprint-body', children=[ dash_bio.OncoPrint( id='oncoprint-chart', height=550, data=[] ), html.Div(id='oncoprint-control-tabs', children=[ dcc.Tabs( id='oncoprint-tabs', children=[ dcc.Tab( label='About', value='what-is', children=html.Div(className='oncoprint-tab', children=[ html.H4( "What is OncoPrint?" ), html.P( """ The OncoPrint component is used to view multiple genetic alteration events through an interactive and zoomable heatmap. It is a React/Dash port of the popular oncoPrint() function from the BioConductor R package. Under the hood, the rendering is done using Plotly.js built upon D3. Plotly's interactivity allows the user to bind clicks and hovers to genetic events, allowing the user to create complex bioinformatic apps or workflows that rely on crossfiltering. """ ), html.P( """ Read more about the component here: https://github.com/plotly/react-oncoprint """ ) ]) ), dcc.Tab( label='Data', value='data', children=html.Div(className='oncoprint-tab', children=[ html.Div([ html.Div( className='oncoprint-option-name', children='Select dataset' ), dcc.Dropdown( id='oncoprint-dropdown', className='oncoprint-select', options=[ { 'label': '{}.json'.format(ds), 'value': ds } for ds in DATASETS ], value='cBioPortalData', ), ]), html.Hr( className='oncoprint-separator' ), html.Div([ html.H4('Hover, click, or event data'), html.Div( id='oncoprint-events' ), ]) ]) ), dcc.Tab( label='View', value='view', children=html.Div(className='oncoprint-tab', children=[ html.H4('Layout'), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Overview' ), daq.ToggleSwitch( id='oncoprint-show-overview', label=['hide', 'show'], color='#009DFF', size=35, value=True ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Legend' ), daq.ToggleSwitch( id='oncoprint-show-legend', label=['hide', 'show'], color='#009DFF', size=35, value=True ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Padding' ), dcc.Slider( className='oncoprint-slider', id='oncoprint-padding-input', value=0.05, min=0, max=0.1, step=0.01, marks={ '0': '0', '0.02': '0.02', '0.04': '0.04', '0.06': '0.06', '0.08': '0.08', '0.1': '0.1', }, ), html.Br(), html.Div( 'Adjust the padding (as percentage) ' 'between two tracks.' ), ], ), html.Hr(className='oncoprint-separator'), html.Div([ html.H4('Colors'), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Track color' ), html.P( 'Change the default background ' 'color for the tracks.' ), daq.ColorPicker( id='oncoprint-tracks-color', value={'hex': '#AAAAAA'} ), ], ), html.Hr(className='oncoprint-separator'), html.H6("Mutation colors"), html.P( "Select a mutation type and a color " "to customize its look." ), html.Div(children=[ html.Div( children=[ html.Div( className='oncoprint-option-name', children='Mutation type' ), dcc.Dropdown( id='oncoprint-colorscale-mutation-dropdown', options=[ {'label': mut_type, 'value': mut_type} for mut_type in COLORSCALE_MUTATIONS_OPT ], value=COLORSCALE_MUTATIONS_OPT[0], ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Mutation color' ), daq.ColorPicker( id='oncoprint-mutation-color', value={'hex': COLORSCALE_COLORS_OPT[0]} ) ], ), ]) ]) ]) ) ] ) ]), dcc.Store(id='oncoprint-store'), ]),
def layout(): return html.Div(id='oncoprint-body', children=[ dash_bio.OncoPrint( id='oncoprint-chart', height=550, data=[] ), html.Div(id='oncoprint-control-tabs', children=[ dcc.Tabs( id='oncoprint-tabs', children=[ dcc.Tab( label='About', value='what-is', children=html.Div(className='oncoprint-tab', children=[ html.H4( "What is OncoPrint?" ), html.P( """ The OncoPrint component is used to view multiple genetic alteration events through an interactive and zoomable heatmap. It is a React/Dash port of the popular oncoPrint() function from the BioConductor R package. Under the hood, the rendering is done using Plotly.js built upon D3. Plotly's interactivity allows you to bind clicks and hovers to genetic events, allowing the user to create complex bioinformatic apps or workflows that rely on crossfiltering. """ ), html.P( """ Read more about the component here: https://github.com/plotly/react-oncoprint """ ) ]) ), dcc.Tab( label='Data', value='data', children=html.Div(className='oncoprint-tab', children=[ html.Div([ html.Div( className='oncoprint-option-name', children='Select dataset' ), dcc.Dropdown( id='oncoprint-dropdown', className='oncoprint-select', options=[ { 'label': '{}.json'.format(ds), 'value': ds } for ds in DATASETS ], value='cBioPortalData', ), ]), html.Hr( className='oncoprint-separator' ), html.Div([ html.H4('Hover, click, or event data'), html.Div( id='oncoprint-events' ), ]) ]) ), dcc.Tab( label='View', value='view', children=html.Div(className='oncoprint-tab', children=[ html.H4('Layout'), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Overview' ), daq.ToggleSwitch( id='oncoprint-show-overview', label=['hide', 'show'], color='#009DFF', size=35, value=True ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Legend' ), daq.ToggleSwitch( id='oncoprint-show-legend', label=['hide', 'show'], color='#009DFF', size=35, value=True ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Padding' ), dcc.Slider( className='oncoprint-slider', id='oncoprint-padding-input', value=0.05, min=0, max=0.1, step=0.01, marks={ '0': '0', '0.02': '0.02', '0.04': '0.04', '0.06': '0.06', '0.08': '0.08', '0.1': '0.1', }, ), html.Br(), html.Div( 'Adjust the padding (as percentage) ' 'between two tracks.' ), ], ), html.Hr(className='oncoprint-separator'), html.Div([ html.H4('Colors'), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Track color' ), html.P( 'Change the default background ' 'color for the tracks.' ), daq.ColorPicker( id='oncoprint-tracks-color', value={'hex': '#AAAAAA'} ), ], ), html.Hr(className='oncoprint-separator'), html.H6("Mutation colors"), html.P( "Select a mutation type and a color " "to customize its look." ), html.Div(children=[ html.Div( children=[ html.Div( className='oncoprint-option-name', children='Mutation type' ), dcc.Dropdown( id='oncoprint-colorscale-mutation-dropdown', options=[ {'label': mut_type, 'value': mut_type} for mut_type in COLORSCALE_MUTATIONS_OPT ], value=COLORSCALE_MUTATIONS_OPT[0], ), ], ), html.Div( children=[ html.Div( className='oncoprint-option-name', children='Mutation color' ), daq.ColorPicker( id='oncoprint-mutation-color', value={'hex': COLORSCALE_COLORS_OPT[0]} ) ], ), ]) ]) ]) ) ] ) ]), dcc.Store(id='oncoprint-store'), ]),
31,817
def main(): try: incident_ids = get_incident_ids() last_incident_occurred = get_last_incident_occurred(incident_ids) if last_incident_occurred: html_readable_output = f"<div style='text-align:center; font-size:17px; padding: 15px;'>" \ f"Last Incident Occurred</br> <div style='font-size:24px;'> " \ f"{last_incident_occurred} </div></div>" else: html_readable_output = "<div style='text-align:center; font-size:17px; padding: 15px;'>" \ "Last Incident Occurred</br> <div style='font-size:20px;'> " \ "No last incident occurred found. </div></div>" demisto.results({ 'ContentsFormat': formats['html'], 'Type': entryTypes['note'], 'Contents': html_readable_output }) except Exception as err: return_error(str(err))
def main(): try: incident_ids = get_incident_ids() last_incident_occurred = get_last_incident_occurred(incident_ids) if last_incident_occurred: html_readable_output = f"<div style='text-align:center; font-size:17px; padding: 15px;'>" \ f"Last Incident Occurred</br> <div style='font-size:24px;'> " \ f"{last_incident_occurred} </div></div>" else: html_readable_output = "<div style='text-align:center; font-size:17px; padding: 15px;'>" \ "Last Incident Occurred</br> <div style='font-size:20px;'> " \ "N/A</div></div>" demisto.results({ 'ContentsFormat': formats['html'], 'Type': entryTypes['note'], 'Contents': html_readable_output }) except Exception as err: return_error(str(err))
31,938
def checkpoint_add_objects_batch_command(client: Client, object_type: str, ipaddress, name): context_data = {} readable_output = '' ipaddress = argToList(ipaddress, ',') name = argToList(name, ',') add_list = [] for ip, n in zip(ipaddress, name): tmp_dict = {'name': n, 'ip-address': ip} add_list.append(tmp_dict) result = current_result = client.add_objects_batch(object_type, add_list) if result: context_data = {'task-id': result.get('task-id')} readable_output = tableToMarkdown('CheckPoint data for add-objects-batch command:', context_data) command_results = CommandResults( outputs_prefix='CheckPoint.add_objects_batch', outputs_key_field='uid', readable_output=readable_output, outputs=context_data, raw_response=result ) return command_results
def checkpoint_add_objects_batch_command(client: Client, object_type: str, ipaddress, name): context_data = {} readable_output = '' ipaddress = argToList(ipaddress, ',') name = argToList(name, ',') add_list = [] for ip, n in zip(ipaddress, name): tmp_dict = {'name': n, 'ip-address': ip} add_list.append(tmp_dict) result = current_result = client.add_objects_batch(object_type, add_list) if result: context_data = {'task-id': result.get('task-id')} readable_output = tableToMarkdown('CheckPoint data for add-objects-batch command:', context_data) command_results = CommandResults( outputs_prefix='CheckPoint.AddObjectBatch', outputs_key_field='uid', readable_output=readable_output, outputs=context_data, raw_response=result ) return command_results
38,441
def set_iterate(data: Dict, iterate: Optional[Dict] = None) -> Dict: """Initialize or update an iterate dictionary. Same as set_state for subfield pp.ITERATE Also checks whether pp.STATE field is set, and adds it if not, see set_state. """ if not pp.STATE in data: set_state(data) if iterate is None: iterate = {} if pp.ITERATE in data[pp.STATE]: data[pp.STATE][pp.ITERATE].update(iterate) else: data[pp.STATE][pp.ITERATE] = iterate return data
def set_iterate(data: Dict, iterate: Optional[Dict] = None) -> Dict: """Initialize or update an iterate dictionary. Same as set_state for subfield pp.ITERATE Also checks whether pp.STATE field is set, and adds it if not, see set_state. """ if not pp.STATE in data: set_state(data) iterate = iterate or {} if pp.ITERATE in data[pp.STATE]: data[pp.STATE][pp.ITERATE].update(iterate) else: data[pp.STATE][pp.ITERATE] = iterate return data
6,818
def get_permission_query_condition(user): if not user: user = frappe.session.user if user == "Administrator": return None from frappe.utils.user import UserPermissions user = UserPermissions(user) if "System Manager" in user.roles: return None reports = [ '"%s"'%report for report in user.get_all_reports().keys() ] return """`tabPrepared Report`.ref_report_doctype in ({reports})"""\ .format(reports=','.join(reports))
def get_permission_query_condition(user): if not user: user = frappe.session.user if user == "Administrator": return None from frappe.utils.user import UserPermissions user = UserPermissions(user) if "System Manager" in user.roles: return None reports = [frappe.db.escape(report) for report in user.get_all_reports().keys()] return """`tabPrepared Report`.ref_report_doctype in ({reports})"""\ .format(reports=','.join(reports))
19,845
def parse_query_string(query_string, operator=None, zero_terms=MATCH_NONE): """ This takes a query string typed in by a user and extracts the following: - Quoted terms (for phrase search) - Filters For example, the following query: `hello "this is a phrase" live:true` would be parsed into: filters: {'live': 'true'} tokens: [('hello', False), ('this is a phrase', True)] """ filters, query_string = separate_filters_from_query(query_string) is_phrase = False tokens = [] for part in query_string.split('"'): part = part.strip() if part: if is_phrase: tokens.append(Phrase(part)) else: tokens.append(PlainText(part, operator=operator or PlainText.DEFAULT_OPERATOR)) is_phrase = not is_phrase if tokens: if operator == 'or': search_query = OR(tokens) else: search_query = AND(tokens) else: search_query = zero_terms return filters, search_query
def parse_query_string(query_string, operator=None, zero_terms=MATCH_NONE): """ This takes a query string typed in by a user and extracts the following: - Quoted terms (for phrase search) - Filters For example, the following query: `hello "this is a phrase" live:true` would be parsed into: filters: {'live': 'true'} tokens: And([PlainText('hello'), Phrase('this is a phrase')]) """ filters, query_string = separate_filters_from_query(query_string) is_phrase = False tokens = [] for part in query_string.split('"'): part = part.strip() if part: if is_phrase: tokens.append(Phrase(part)) else: tokens.append(PlainText(part, operator=operator or PlainText.DEFAULT_OPERATOR)) is_phrase = not is_phrase if tokens: if operator == 'or': search_query = OR(tokens) else: search_query = AND(tokens) else: search_query = zero_terms return filters, search_query
42,060
def run(args: argparse.Namespace) -> None: kurobako_cmd = os.path.join(args.path_to_kurobako, "kurobako") subprocess.run(f"{kurobako_cmd} --version", shell=True) if not (os.path.exists(args.data_dir) and os.path.isdir(args.data_dir)): raise ValueError(f"Data directory {args.data_dir} cannot be found.") os.makedirs(args.out_dir, exist_ok=True) study_json_fn = os.path.join(args.out_dir, "studies.json") subprocess.check_call(f"echo >| {study_json_fn}", shell=True) solvers_filename = os.path.join(args.out_dir, "solvers.json") subprocess.check_call(f"echo >| {solvers_filename}", shell=True) problems_filename = os.path.join(args.out_dir, "problems.json") subprocess.check_call(f"echo >| {problems_filename}", shell=True) # Create ZDT problems cmd = f"{kurobako_cmd} problem-suite zdt | tee -a {problems_filename}" subprocess.run(cmd, shell=True) # Create NAS bench problem(C) (for Multi-Objective Settings). dataset = os.path.join(args.data_dir, "nasbench_full.bin") cmd = ( f'{kurobako_cmd} problem nasbench "{dataset}"' f"--encoding C --metrics accuracy params | tee -a {problems_filename}" ) subprocess.run(cmd, shell=True) # Create solvers. sampler_list = args.sampler_list.split() sampler_kwargs_list = args.sampler_kwargs_list.split() if len(sampler_list) != len(sampler_kwargs_list): raise ValueError( "The number of samplers does not match the given keyword arguments. \n" f"sampler_list: {sampler_list}, sampler_kwargs_list: {sampler_kwargs_list}." ) for sampler, sampler_kwargs in zip(sampler_list, sampler_kwargs_list): name = f"{args.name_prefix}_{sampler}" python_command = f"mo_runner.py {sampler} {sampler_kwargs}" cmd = ( f"{kurobako_cmd} solver --name {name} command python {python_command}" f"| tee -a {solvers_filename}" ) subprocess.run(cmd, shell=True) # Create study. cmd = ( f"{kurobako_cmd} studies --budget 1000 " f"--solvers $(cat {solvers_filename}) --problems $(cat {problems_filename}) " f"--repeats {args.n_runs} --seed {args.seed} " f"> {study_json_fn}" ) subprocess.run(cmd, shell=True) result_filename = os.path.join(args.out_dir, "results.json") cmd = ( f"cat {study_json_fn} | {kurobako_cmd} run --parallelism {args.n_jobs} " f"> {result_filename}" ) subprocess.run(cmd, shell=True) # Report report_filename = os.path.join(args.out_dir, "report.md") cmd = f"cat {result_filename} | {kurobako_cmd} report > {report_filename}" subprocess.run(cmd, shell=True) # Plot pareto-front. problem_names = ["NASBench", "ZDT1", "ZDT2", "ZDT3", "ZDT4", "ZDT5", "ZDT6"] for problem_name in problem_names: cmd = ( f"cat {result_filename} | grep {problem_name} | " f"{kurobako_cmd} plot pareto-front -o {args.out_dir}" ) subprocess.run(cmd, shell=True)
def run(args: argparse.Namespace) -> None: kurobako_cmd = os.path.join(args.path_to_kurobako, "kurobako") subprocess.run(f"{kurobako_cmd} --version", shell=True) if not (os.path.exists(args.data_dir) and os.path.isdir(args.data_dir)): raise ValueError(f"Data directory {args.data_dir} cannot be found.") os.makedirs(args.out_dir, exist_ok=True) study_json_fn = os.path.join(args.out_dir, "studies.json") subprocess.check_call(f"echo >| {study_json_fn}", shell=True) solvers_filename = os.path.join(args.out_dir, "solvers.json") subprocess.check_call(f"echo >| {solvers_filename}", shell=True) problems_filename = os.path.join(args.out_dir, "problems.json") subprocess.check_call(f"echo >| {problems_filename}", shell=True) # Create ZDT problems cmd = f"{kurobako_cmd} problem-suite zdt | tee -a {problems_filename}" subprocess.run(cmd, shell=True) # Create NAS bench problem(C) (for Multi-Objective Settings). dataset = os.path.join(args.data_dir, "nasbench_full.bin") cmd = ( f'{kurobako_cmd} problem nasbench "{dataset}"' f"--encoding C --metrics accuracy params | tee -a {problems_filename}" ) subprocess.run(cmd, shell=True) # Create solvers. sampler_list = args.sampler_list.split() sampler_kwargs_list = args.sampler_kwargs_list.split() if len(sampler_list) != len(sampler_kwargs_list): raise ValueError( "The number of samplers does not match the given keyword arguments. \n" f"sampler_list: {sampler_list}, sampler_kwargs_list: {sampler_kwargs_list}." ) for sampler, sampler_kwargs in zip(sampler_list, sampler_kwargs_list): name = f"{args.name_prefix}_{sampler}" python_command = f"mo_runner.py {sampler} {sampler_kwargs}" cmd = ( f"{kurobako_cmd} solver --name {name} command python {python_command}" f"| tee -a {solvers_filename}" ) subprocess.run(cmd, shell=True) # Create study. cmd = ( f"{kurobako_cmd} studies --budget 1000 " f"--solvers $(cat {solvers_filename}) --problems $(cat {problems_filename}) " f"--repeats {args.n_runs} --seed {args.seed} " f"> {study_json_filename}" ) subprocess.run(cmd, shell=True) result_filename = os.path.join(args.out_dir, "results.json") cmd = ( f"cat {study_json_fn} | {kurobako_cmd} run --parallelism {args.n_jobs} " f"> {result_filename}" ) subprocess.run(cmd, shell=True) # Report report_filename = os.path.join(args.out_dir, "report.md") cmd = f"cat {result_filename} | {kurobako_cmd} report > {report_filename}" subprocess.run(cmd, shell=True) # Plot pareto-front. problem_names = ["NASBench", "ZDT1", "ZDT2", "ZDT3", "ZDT4", "ZDT5", "ZDT6"] for problem_name in problem_names: cmd = ( f"cat {result_filename} | grep {problem_name} | " f"{kurobako_cmd} plot pareto-front -o {args.out_dir}" ) subprocess.run(cmd, shell=True)
10,738
def main(): parser = argparse.ArgumentParser(description=program_description) parser.add_argument( 'package', metavar='package', type=str, help='Package to inspect', ) parser.add_argument( '--format', dest='format', default='html', help='Output format; i.e. "html", "rst"', ) parser.add_argument( '--file', dest='file', default='inspector_output', help='Output filename. Defaults to "inspector_output"', ) args = parser.parse_args() package_name = args.package output_format = args.format filename = args.file write_listings(package_name, filename, output_format)
def main(): parser = argparse.ArgumentParser(description=program_description) parser.add_argument( 'package', metavar='package', type=str, help='Package to inspect', ) parser.add_argument( '--format', dest='format', default='html', help='Output format; i.e. "html", "rst"', ) parser.add_argument( '--file', dest='file', default='inspector_output', help='Output filename. Defaults to "inspector_output.<format>"', ) args = parser.parse_args() package_name = args.package output_format = args.format filename = args.file write_listings(package_name, filename, output_format)
29,414
def get_current_picture(camera_config, width, height): from motioneye import mjpgclient jpg = mjpgclient.get_jpg(camera_config['@id']) if jpg is None: return None if width is height is None: return jpg # no server-side resize needed sio = io.BytesIO(jpg) if isinstance(jpg, bytes) else io.StringIO(jpg) image = Image.open(sio) if width and width < 1: # given as percent width = int(width * image.size[0]) if height and height < 1: # given as percent height = int(height * image.size[1]) width = width and int(width) or image.size[0] height = height and int(height) or image.size[1] webcam_resolution = camera_config['@webcam_resolution'] max_width = image.size[0] * webcam_resolution / 100 max_height = image.size[1] * webcam_resolution / 100 width = min(max_width, width) height = min(max_height, height) if width >= image.size[0] and height >= image.size[1]: return jpg # no enlarging of the picture on the server side image.thumbnail((width, height), Image.CUBIC) sio = io.StringIO() image.save(sio, format='JPEG') return sio.getvalue()
def get_current_picture(camera_config, width, height): from motioneye import mjpgclient jpg = mjpgclient.get_jpg(camera_config['@id']) if jpg is None: return None if width is height is None: return jpg # no server-side resize needed sio = io.BytesIO(jpg) image = Image.open(sio) if width and width < 1: # given as percent width = int(width * image.size[0]) if height and height < 1: # given as percent height = int(height * image.size[1]) width = width and int(width) or image.size[0] height = height and int(height) or image.size[1] webcam_resolution = camera_config['@webcam_resolution'] max_width = image.size[0] * webcam_resolution / 100 max_height = image.size[1] * webcam_resolution / 100 width = min(max_width, width) height = min(max_height, height) if width >= image.size[0] and height >= image.size[1]: return jpg # no enlarging of the picture on the server side image.thumbnail((width, height), Image.CUBIC) sio = io.StringIO() image.save(sio, format='JPEG') return sio.getvalue()
32,572
def update_remote_system_command(args, params, service, auth_token, mapper): """ Pushes changes in XSOAR incident into the corresponding notable event in Splunk Server. Args: args (dict): Demisto args params (dict): Demisto params service (splunklib.client.Service): Splunk service object auth_token (str) - The authentication token to use Returns: notable_id (str): The notable id """ parsed_args = UpdateRemoteSystemArgs(args) delta = parsed_args.delta notable_id = parsed_args.remote_incident_id if parsed_args.incident_changed and delta: demisto.debug('Got the following delta keys {} to update incident corresponding to notable ' '{}'.format(str(list(delta.keys())), notable_id)) changed_data = {field: None for field in OUTGOING_MIRRORED_FIELDS} for field in delta: if field == 'owner': new_owner = mapper.get_splunk_user_by_xsoar(delta["owner"]) if mapper.should_map else None if new_owner: changed_data['owner'] = new_owner elif field in OUTGOING_MIRRORED_FIELDS: changed_data[field] = delta[field] # Close notable if relevant if parsed_args.inc_status == IncidentStatus.DONE and params.get('close_notable'): demisto.debug('Closing notable {}'.format(notable_id)) changed_data['status'] = '5' # type: ignore if any(changed_data.values()): demisto.debug('Sending update request to Splunk for notable {}, data: {}'.format(notable_id, changed_data)) base_url = 'https://' + params['host'] + ':' + params['port'] + '/' try: session_key = get_auth_session_key(service) if not auth_token else None response_info = update_notable_events( baseurl=base_url, comment=changed_data['comment'], status=changed_data['status'], urgency=changed_data['urgency'], owner=changed_data['owner'], eventIDs=[notable_id], disposition=changed_data['disposition'], auth_token=auth_token, sessionKey=session_key ) if 'success' not in response_info or not response_info['success']: demisto.error('Failed updating notable {}: {}'.format(notable_id, str(response_info))) else: demisto.debug('update-remote-system for notable {}: {}'.format(notable_id, response_info.get('message'))) except Exception as e: demisto.error('Error in Splunk outgoing mirror for incident corresponding to notable {}. ' 'Error message: {}'.format(notable_id, str(e))) else: demisto.debug("Didn't find changed data to update incident corresponding to notable {}".format(notable_id)) else: demisto.debug('Incident corresponding to notable {} was not changed.'.format(notable_id)) return notable_id
def update_remote_system_command(args, params, service, auth_token, mapper): """ Pushes changes in XSOAR incident into the corresponding notable event in Splunk Server. Args: args (dict): Demisto args params (dict): Demisto params service (splunklib.client.Service): Splunk service object auth_token (str) - The authentication token to use Returns: notable_id (str): The notable id """ parsed_args = UpdateRemoteSystemArgs(args) delta = parsed_args.delta notable_id = parsed_args.remote_incident_id if parsed_args.incident_changed and delta: demisto.debug('Got the following delta keys {} to update incident corresponding to notable ' '{}'.format(str(list(delta.keys())), notable_id)) changed_data = {field: None for field in OUTGOING_MIRRORED_FIELDS} for field in delta: if field == 'owner': new_owner = mapper.get_splunk_user_by_xsoar(delta["owner"]) if mapper.should_map else None if new_owner: changed_data['owner'] = new_owner elif field in OUTGOING_MIRRORED_FIELDS: changed_data[field] = delta[field] # Close notable if relevant if parsed_args.inc_status == IncidentStatus.DONE and params.get('close_notable'): demisto.debug('Closing notable {}'.format(notable_id)) changed_data['status'] = '5' # type: ignore if any(changed_data.values()): demisto.debug('Sending update request to Splunk for notable {}, data: {}'.format(notable_id, changed_data)) base_url = 'https://' + params['host'] + ':' + params['port'] + '/' try: session_key = get_auth_session_key(service) if not auth_token else None response_info = update_notable_events( baseurl=base_url, comment=changed_data['comment'], status=changed_data['status'], urgency=changed_data['urgency'], owner=changed_data['owner'], eventIDs=[notable_id], disposition=changed_data.get('disposition'), auth_token=auth_token, sessionKey=session_key ) if 'success' not in response_info or not response_info['success']: demisto.error('Failed updating notable {}: {}'.format(notable_id, str(response_info))) else: demisto.debug('update-remote-system for notable {}: {}'.format(notable_id, response_info.get('message'))) except Exception as e: demisto.error('Error in Splunk outgoing mirror for incident corresponding to notable {}. ' 'Error message: {}'.format(notable_id, str(e))) else: demisto.debug("Didn't find changed data to update incident corresponding to notable {}".format(notable_id)) else: demisto.debug('Incident corresponding to notable {} was not changed.'.format(notable_id)) return notable_id
3,183
def send_webhooks(installation, event, **kwargs): try: servicehook = ServiceHook.objects.get( organization_id=installation.organization_id, actor_id=installation.id, ) except ServiceHook.DoesNotExist: return if event not in servicehook.events: return # The service hook applies to all projects if there are no # ServiceHookProject records. Otherwise want to check if we # should send the webhook or not. projects = servicehook.get_projects() if not projects: resource, action = event.split('.') kwargs['resource'] = resource kwargs['action'] = action kwargs['install'] = installation request_data = AppPlatformEvent(**kwargs) safe_urlopen( url=servicehook.sentry_app.webhook_url, data=request_data.body, headers=request_data.headers, timeout=5, )
def send_webhooks(installation, event, **kwargs): try: servicehook = ServiceHook.objects.get( organization_id=installation.organization_id, actor_id=installation.id, ) except ServiceHook.DoesNotExist: return if event not in servicehook.events: return # The service hook applies to all projects if there are no # ServiceHookProject records. Otherwise we want to check if we # should send the webhook or not. projects = servicehook.get_projects() if not projects: resource, action = event.split('.') kwargs['resource'] = resource kwargs['action'] = action kwargs['install'] = installation request_data = AppPlatformEvent(**kwargs) safe_urlopen( url=servicehook.sentry_app.webhook_url, data=request_data.body, headers=request_data.headers, timeout=5, )
43,589
def read_structure(filepath, outpath="."): r"""Reads the molecular structure from a file and creates a list containing the symbol and Cartesian coordinates of the atomic species. The xyz format is supported out of the box. If Open Babel is installed, any format recognized by Open Babel is also supported. Additionally, the new file ``structure.xyz``, containing the geometry of the molecule, is created in a directory with path given by 'outpath'. **Example usage:** >>> read_structure('h2_ref.xyz') [['H', (0.0, 0.0, -0.35)], ['H', (0.0, 0.0, 0.35)]] Args: filepath (str): name of the molecular structure file in the working directory or the full path to the file if it is located in a different folder outpath (str): path to the output directory Returns: list: for each atomic species, a list containing the symbol and the Cartesian coordinates """ obabel_error_message = ( "Open Babel converter not found:\n" "Try: 'sudo apt install openbabel' " "or download it from http://openbabel.org/wiki/Main_Page \n" "and make sure you add it to the PATH environment variable." ) extension = filepath.split(".")[-1].strip().lower() file_in = filepath.strip() file_out = os.path.join(outpath, "structure.xyz") if extension != "xyz": if not _exec_exists("obabel"): raise TypeError(obabel_error_message) try: subprocess.run(["obabel", "-i" + extension, file_in, "-oxyz", "-O", file_out], check=True) except subprocess.CalledProcessError as e: raise RuntimeError( "Open Babel error. See the following Open Babel " "output for details:\n\n {}\n{}".format(e.stdout, e.stderr) ) else: copyfile(file_in, file_out) geometry = [] with open(file_out) as f: for line in f.readlines()[2:]: species, x, y, z = line.split() geometry.append([species, (float(x), float(y), float(z))]) return geometry
def read_structure(filepath, outpath="."): r"""Reads the molecular structure from a file and creates a list containing the symbol and Cartesian coordinates of the atomic species. The xyz format is supported out of the box. If Open Babel is installed, any format recognized by Open Babel is also supported. Additionally, the new file ``structure.xyz``, containing the geometry of the molecule, is created in a directory with path given by ``outpath``. **Example usage:** >>> read_structure('h2_ref.xyz') [['H', (0.0, 0.0, -0.35)], ['H', (0.0, 0.0, 0.35)]] Args: filepath (str): name of the molecular structure file in the working directory or the full path to the file if it is located in a different folder outpath (str): path to the output directory Returns: list: for each atomic species, a list containing the symbol and the Cartesian coordinates """ obabel_error_message = ( "Open Babel converter not found:\n" "Try: 'sudo apt install openbabel' " "or download it from http://openbabel.org/wiki/Main_Page \n" "and make sure you add it to the PATH environment variable." ) extension = filepath.split(".")[-1].strip().lower() file_in = filepath.strip() file_out = os.path.join(outpath, "structure.xyz") if extension != "xyz": if not _exec_exists("obabel"): raise TypeError(obabel_error_message) try: subprocess.run(["obabel", "-i" + extension, file_in, "-oxyz", "-O", file_out], check=True) except subprocess.CalledProcessError as e: raise RuntimeError( "Open Babel error. See the following Open Babel " "output for details:\n\n {}\n{}".format(e.stdout, e.stderr) ) else: copyfile(file_in, file_out) geometry = [] with open(file_out) as f: for line in f.readlines()[2:]: species, x, y, z = line.split() geometry.append([species, (float(x), float(y), float(z))]) return geometry
4,686
def calculate_rms(expected_image, actual_image): "Calculate the per-pixel errors, then compute the root mean square error." if expected_image.shape != actual_image.shape: raise _imageComparisonFailure( "_image sizes do not match expected size: {} " "actual size {}".format(expected_image.shape, actual_image.shape)) # Convert to float to avoid overflowing finite integer types. return np.sqrt(((expected_image - actual_image).astype(float) ** 2).mean())
def calculate_rms(expected_image, actual_image): "Calculate the per-pixel errors, then compute the root mean square error." if expected_image.shape != actual_image.shape: raise _imageComparisonFailure( "Image sizes do not match expected size: {} " "actual size {}".format(expected_image.shape, actual_image.shape)) # Convert to float to avoid overflowing finite integer types. return np.sqrt(((expected_image - actual_image).astype(float) ** 2).mean())
33,317
def now(): """ Let's standardize how we do "now". """ return datetime.now(timezone.utc)
def now(): """ Now now() is a standardized function to obtain "now" when you need it. """ return datetime.now(timezone.utc)
57,909
def redlock_list_scans(): """ List DevOps Scans """ group_by = demisto.args().get('group_by', 'scanId') page_size = demisto.args().get('page_size', 25) page_number = demisto.args().get('page_number', 1) sort = demisto.args().get('sort', None) filter_type = demisto.args().get('filter_type', 'relative') filter_time_amount = demisto.args().get('filter_time_amount', 1) filter_time_unit = demisto.args().get('filter_time_unit', 'day') filter_user = demisto.args().get('filter_user', None) filter_status = demisto.args().get('filter_status', None) filter_asset_type = demisto.args().get('filter_asset_type', None) filter_asset_name = demisto.args().get('filter_asset_name', None) filter_start_time = demisto.args().get('filter_start_time', None) filter_end_time = demisto.args().get('filter_end_time', None) list_filter = { 'groupBy': group_by, 'page[size]': page_size, 'page[number]': page_number, 'filter[timeType]': filter_type } if sort: list_filter['sort'] = sort if filter_type == 'relative': if filter_time_unit and filter_time_amount: list_filter['filter[timeUnit]'] = filter_time_unit list_filter['filter[timeAmount]'] = filter_time_amount else: return_error('You must specify a filter_time_unit and filter_time_amount with relative type filter') elif filter_type == 'to_now': if filter_start_time: list_filter['filter[startTime]'] = convert_date_to_unix(filter_start_time, date_format="%m/%d/%Y %H:%M:%S") else: return_error('You must specify filter_start_time with to_now type filter') elif filter_type == 'absolute': if filter_start_time and filter_end_time: list_filter['filter[startTime]'] = convert_date_to_unix(filter_start_time, date_format="%m/%d/%Y %H:%M:%S") list_filter['filter[endTime]'] = convert_date_to_unix(filter_end_time, date_format="%m/%d/%Y %H:%M:%S") else: return_error('You must specify a filter_start_time and filter_end_time with absolute type filter') if filter_user: list_filter['filter[user]'] = filter_user if filter_status: list_filter['filter[status]'] = filter_status if filter_asset_type: list_filter['filter[assetType]'] = filter_asset_type if filter_asset_name: list_filter['filter[assetName]'] = filter_asset_name response = req('GET', 'iac/v2/scans', param_data=list_filter, data={}) if ( not response or 'data' not in response or not isinstance(response['data'], list) ): demisto.results('No results found') else: items = response['data'] readable_output = [] for item in items: readable_output.append({ "ID": item.get('id'), "Name": item.get('attributes')['name'], "Type": item.get('attributes')['type'], "Scan Time": item.get('attributes')['scanTime'], "User": item.get('attributes')['user'] }) md = tableToMarkdown("Scans List:", readable_output) demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': items, 'EntryContext': {'Redlock.Scans(val.id == obj.id)': items}, 'HumanReadable': md })
def redlock_list_scans(): """ List DevOps Scans """ args = demisto.args() group_by = args.get('group_by', 'scanId') page_size = args.get('page_size', 25) page_number = args.get('page_number', 1) sort = args.get('sort', None) filter_type = args.get('filter_type', 'relative') filter_time_amount = args.get('filter_time_amount', 1) filter_time_unit = args.get('filter_time_unit', 'day') filter_user = args.get('filter_user', None) filter_status = args.get('filter_status', None) filter_asset_type = args.get('filter_asset_type', None) filter_asset_name = args.get('filter_asset_name', None) filter_start_time = args.get('filter_start_time', None) filter_end_time = args.get('filter_end_time', None) list_filter = { 'groupBy': group_by, 'page[size]': page_size, 'page[number]': page_number, 'filter[timeType]': filter_type } if sort: list_filter['sort'] = sort if filter_type == 'relative': if filter_time_unit and filter_time_amount: list_filter['filter[timeUnit]'] = filter_time_unit list_filter['filter[timeAmount]'] = filter_time_amount else: return_error('You must specify a filter_time_unit and filter_time_amount with relative type filter') elif filter_type == 'to_now': if filter_start_time: list_filter['filter[startTime]'] = convert_date_to_unix(filter_start_time, date_format="%m/%d/%Y %H:%M:%S") else: return_error('You must specify filter_start_time with to_now type filter') elif filter_type == 'absolute': if filter_start_time and filter_end_time: list_filter['filter[startTime]'] = convert_date_to_unix(filter_start_time, date_format="%m/%d/%Y %H:%M:%S") list_filter['filter[endTime]'] = convert_date_to_unix(filter_end_time, date_format="%m/%d/%Y %H:%M:%S") else: return_error('You must specify a filter_start_time and filter_end_time with absolute type filter') if filter_user: list_filter['filter[user]'] = filter_user if filter_status: list_filter['filter[status]'] = filter_status if filter_asset_type: list_filter['filter[assetType]'] = filter_asset_type if filter_asset_name: list_filter['filter[assetName]'] = filter_asset_name response = req('GET', 'iac/v2/scans', param_data=list_filter, data={}) if ( not response or 'data' not in response or not isinstance(response['data'], list) ): demisto.results('No results found') else: items = response['data'] readable_output = [] for item in items: readable_output.append({ "ID": item.get('id'), "Name": item.get('attributes')['name'], "Type": item.get('attributes')['type'], "Scan Time": item.get('attributes')['scanTime'], "User": item.get('attributes')['user'] }) md = tableToMarkdown("Scans List:", readable_output) demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': items, 'EntryContext': {'Redlock.Scans(val.id == obj.id)': items}, 'HumanReadable': md })
10,591
def _doclink(url): # assume that if it is relative, it is for docsite, ignore rest if not url.startswith("http"): url = get_versioned_doclink(url) return url
def _doclink(url): # assume that if it is relative, it is for docsite, ignore rest if not url.startswith("http") and not url.startswith(".."): url = get_versioned_doclink(url) return url
5,410
def test_prepend(): """ Test to ensure that some text appears at the beginning of a file. """ name = "/tmp/etc/motd" if salt.utils.platform.is_windows(): name = "c:\\tmp\\etc\\motd" assert not os.path.exists(os.path.split(name)[0]) source = ["salt://motd/hr-messages.tmpl"] sources = ["salt://motd/devops-messages.tmpl"] text = ["Trust no one unless you have eaten much salt with him."] ret = {"name": name, "result": False, "comment": "", "changes": {}} comt = "Must provide name to file.prepend" ret.update({"comment": comt, "name": ""}) assert filestate.prepend("") == ret comt = "source and sources are mutually exclusive" ret.update({"comment": comt, "name": name}) assert filestate.prepend(name, source=source, sources=sources) == ret mock_t = MagicMock(return_value=True) mock_f = MagicMock(return_value=False) with patch.dict( filestate.__salt__, { "file.directory_exists": mock_f, "file.makedirs": mock_t, "file.stats": mock_f, "cp.get_template": mock_f, "file.search": mock_f, "file.prepend": mock_t, }, ): comt = "The following files will be changed:\n/tmp/etc:" " directory - new\n" changes = {"/tmp/etc": {"directory": "new"}} if salt.utils.platform.is_windows(): comt = 'The directory "c:\\tmp\\etc" will be changed' changes = {"c:\\tmp\\etc": {"directory": "new"}} ret.update({"comment": comt, "name": name, "changes": changes}) assert filestate.prepend(name, makedirs=True) == ret with patch.object(os.path, "isabs", mock_f): comt = "Specified file {} is not an absolute path".format(name) ret.update({"comment": comt, "changes": {}}) assert filestate.prepend(name) == ret with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "exists", mock_t): comt = "Failed to load template file {}".format(source) ret.update({"comment": comt, "name": source, "data": []}) assert filestate.prepend(name, source=source) == ret ret.pop("data", None) ret.update({"name": name}) with patch.object( salt.utils.files, "fopen", MagicMock(mock_open(read_data="")) ): with patch.dict(filestate.__utils__, {"files.is_text": mock_f}): with patch.dict(filestate.__opts__, {"test": True}): change = {"diff": "Replace binary file"} comt = "File {} is set to be updated".format(name) ret.update( {"comment": comt, "result": None, "changes": change} ) assert filestate.prepend(name, text=text) == ret with patch.dict(filestate.__opts__, {"test": False}): comt = "Prepended 1 lines" ret.update({"comment": comt, "result": True, "changes": {}}) assert filestate.prepend(name, text=text) == ret
def test_prepend(): """ Test to ensure that some text appears at the beginning of a file. """ name = "/tmp/etc/motd" if salt.utils.platform.is_windows(): name = "c:\\tmp\\etc\\motd" assert not os.path.exists(os.path.split(name)[0]) source = ["salt://motd/hr-messages.tmpl"] sources = ["salt://motd/devops-messages.tmpl"] text = ["Trust no one unless you have eaten much salt with him."] ret = {"name": name, "result": False, "comment": "", "changes": {}} comt = "Must provide name to file.prepend" ret.update({"comment": comt, "name": ""}) assert filestate.prepend("") == ret comt = "source and sources are mutually exclusive" ret.update({"comment": comt, "name": name}) assert filestate.prepend(name, source=source, sources=sources) == ret mock_t = MagicMock(return_value=True) mock_f = MagicMock(return_value=False) with patch.dict( filestate.__salt__, { "file.directory_exists": mock_f, "file.makedirs": mock_t, "file.stats": mock_f, "cp.get_template": mock_f, "file.search": mock_f, "file.prepend": mock_t, }, ): comt = "The following files will be changed:\n/tmp/etc: directory - new\n" changes = {"/tmp/etc": {"directory": "new"}} if salt.utils.platform.is_windows(): comt = 'The directory "c:\\tmp\\etc" will be changed' changes = {"c:\\tmp\\etc": {"directory": "new"}} ret.update({"comment": comt, "name": name, "changes": changes}) assert filestate.prepend(name, makedirs=True) == ret with patch.object(os.path, "isabs", mock_f): comt = "Specified file {} is not an absolute path".format(name) ret.update({"comment": comt, "changes": {}}) assert filestate.prepend(name) == ret with patch.object(os.path, "isabs", mock_t): with patch.object(os.path, "exists", mock_t): comt = "Failed to load template file {}".format(source) ret.update({"comment": comt, "name": source, "data": []}) assert filestate.prepend(name, source=source) == ret ret.pop("data", None) ret.update({"name": name}) with patch.object( salt.utils.files, "fopen", MagicMock(mock_open(read_data="")) ): with patch.dict(filestate.__utils__, {"files.is_text": mock_f}): with patch.dict(filestate.__opts__, {"test": True}): change = {"diff": "Replace binary file"} comt = "File {} is set to be updated".format(name) ret.update( {"comment": comt, "result": None, "changes": change} ) assert filestate.prepend(name, text=text) == ret with patch.dict(filestate.__opts__, {"test": False}): comt = "Prepended 1 lines" ret.update({"comment": comt, "result": True, "changes": {}}) assert filestate.prepend(name, text=text) == ret
42,385
def main(): #Load Lightning DataModule dat = metabrick(num_workers=0) dat.setup('fit') #allows for input / output features to be configured in the model #Load Lightning Module model = surv_model(lr=1e-3, in_features=dat.in_dims, out_features=dat.out_dims) trainer = pl.Trainer(gpus = 0, num_sanity_val_steps = 0, max_epochs = 20, fast_dev_run = False) #Train model trainer.fit(model,dat) #Load model from best checkpoint & freeze print('Running in Evaluation Mode...') model.freeze() #Setup test data (prepared from lightning module) dat.setup('test') #Predict survival on testing dataset output = model(dat.x_test) surv = logistic_hazard.output2surv(output) surv_df = pd.DataFrame(surv.numpy().transpose(), dat.labtrans.cuts) ev = EvalSurv(surv_df, dat.df_test.duration.values, dat.df_test.event.values) #Print evaluation metrics print(f"Concordance: {ev.concordance_td()}")
def main(): #Load Lightning DataModule dat = metabrick(num_workers=0) dat.setup('fit') #allows for input / output features to be configured in the model #Load Lightning Module model = surv_model(lr=1e-3, in_features=dat.in_dims, out_features=dat.out_dims) trainer = pl.Trainer(gpus=0, num_sanity_val_steps=0, max_epochs=20, fast_dev_run=False) #Train model trainer.fit(model,dat) #Load model from best checkpoint & freeze print('Running in Evaluation Mode...') model.freeze() #Setup test data (prepared from lightning module) dat.setup('test') #Predict survival on testing dataset output = model(dat.x_test) surv = logistic_hazard.output2surv(output) surv_df = pd.DataFrame(surv.numpy().transpose(), dat.labtrans.cuts) ev = EvalSurv(surv_df, dat.df_test.duration.values, dat.df_test.event.values) #Print evaluation metrics print(f"Concordance: {ev.concordance_td()}")
12,994
def test_order_query_with_filter_channels_without_many_channel( orders_query_with_filter, staff_api_client, permission_manage_orders, orders, channel_USD, channel_PLN, other_channel_USD, ): # given Order.objects.create(channel=other_channel_USD) channel_usd_id = graphene.Node.to_global_id("Channel", channel_USD.pk) channel_pln_id = graphene.Node.to_global_id("Channel", channel_PLN.pk) variables = {"filter": {"channels": [channel_pln_id, channel_usd_id]}} # when response = staff_api_client.post_graphql( orders_query_with_filter, variables, permissions=(permission_manage_orders,) ) # then content = get_graphql_content(response) orders = content["data"]["orders"]["edges"] assert len(orders) == 5 assert Order.objects.non_draft().count() == 6
def test_order_query_with_filter_channels_with_many_channel( orders_query_with_filter, staff_api_client, permission_manage_orders, orders, channel_USD, channel_PLN, other_channel_USD, ): # given Order.objects.create(channel=other_channel_USD) channel_usd_id = graphene.Node.to_global_id("Channel", channel_USD.pk) channel_pln_id = graphene.Node.to_global_id("Channel", channel_PLN.pk) variables = {"filter": {"channels": [channel_pln_id, channel_usd_id]}} # when response = staff_api_client.post_graphql( orders_query_with_filter, variables, permissions=(permission_manage_orders,) ) # then content = get_graphql_content(response) orders = content["data"]["orders"]["edges"] assert len(orders) == 5 assert Order.objects.non_draft().count() == 6
13,574
def eigs(A, E=None, k=3, which='LM', b=None, l=None, maxiter=1000, tol=1e-13): """Approximate a few eigenvalues of an |Operator|. Computes `k` eigenvalues `w[i]` with corresponding eigenvectors `v[i]` which solve the eigenvalue problem .. math:: A v[i] = w[i] v[i] or the generalized eigenvalue problem .. math:: A v[i] = w[i] E v[i] if `E` is not `None`. The implementation is based on Algorithm 4.2 in [RL95]_. Parameters ---------- A The real |Operator| for which the eigenvalues are to be computed. E The |Operator| which defines the generalized eigenvalue problem. k The number of eigenvalues and eigenvectors which are to be computed. which A string specifying which `k` eigenvalues and eigenvectors to compute: - `'LM'`: select eigenvalues with largest |v[i]| - `'SM'`: select eigenvalues with smallest |v[i]| - `'LR'`: select eigenvalues with largest Re(v[i]) - `'SR'`: select eigenvalues with smallest Re(v[i]) - `'LI'`: select eigenvalues with largest Im(v[i]) - `'SI'`: select eigenvalues with smallest Im(v[i]) b Initial vector for Arnoldi iteration. Default is a random vector. l The size of the Arnoldi factorization. Default is `min(n - 1, max(2*k + 1, 20))`. maxiter The maximum number of iterations. tol The relative error tolerance for the ritz estimates. Returns ------- w A |NumPy array| which contains the computed eigenvalues. v A |VectorArray| which contains the computed eigenvectors. """ n = A.source.dim if l is None: l = np.min((n - 1, np.max((2 * k + 1, 20)))) if E is None: E = IdentityOperator(A.source) assert A.source == A.range assert E.source == A.source assert E.range == A.source assert k < n assert l > k if b is None: b = A.source.random() V, H, f = arnoldi(A, E, k, b) k0 = k i = 0 while True: i = i + 1 V, H, f = extend_arnoldi(A, E, V, H, f, l - k) ew, ev = spla.eig(H) # truncate small imaginary parts ew.imag[np.abs(ew.imag) / np.abs(ew) < 1e-12] = 0 if which == 'LM': idx = np.argsort(-np.abs(ew)) elif which == 'SM': idx = np.argsort(np.abs(ew)) elif which == 'LR': idx = np.argsort(-np.real(ew)) elif which == 'SR': idx = np.argsort(np.real(ew)) elif which == 'LI': idx = np.argsort(-np.abs(np.imag(ew))) elif which == 'SI': idx = np.argsort(np.abs(np.imag(ew))) k = k0 ews = ew[idx] evs = ev[:, idx] rres = f.l2_norm()[0] * np.abs(evs[l - 1]) / np.abs(ews) # increase k by one in order to keep complex conjugate pairs together if ews[k - 1].imag != 0 and ews[k - 1].imag + ews[k].imag < 1e-12: k = k + 1 if np.all(rres[:k] <= tol) or i >= maxiter: break # increase k in order to prevent stagnation k = np.min((l - 1, k + np.min((np.count_nonzero(rres[:k] <= tol), (l - k) // 2)))) # sort shifts for QR iteration based on their residual shifts = ews[k:l] srres = rres[k:l] idx = np.argsort(-srres) srres = srres[idx] shifts = shifts[idx] # don't use converged unwanted ritzvalues as shifts shifts = np.delete(shifts, np.where(srres == 0)) k = k + np.count_nonzero(srres == 0) if shifts[0].imag != 0 and shifts[0].imag + ews[1].imag >= 1e-12: shifts = shifts[1:] k = k + 1 H, Qs = QR_iteration(H, shifts) V = V.lincomb(Qs.T) f = V[k] * H[k, k - 1] + f * Qs[l - 1, k - 1] V = V[:k] H = H[:k, :k] return ews[:k0], V.lincomb(evs[:, :k0].T)
def eigs(A, E=None, k=3, which='LM', b=None, l=None, maxiter=1000, tol=1e-13): """Approximate a few eigenvalues of an |Operator|. Computes `k` eigenvalues `w[i]` with corresponding eigenvectors `v[i]` which solve the eigenvalue problem .. math:: A v[i] = w[i] v[i] or the generalized eigenvalue problem .. math:: A v[i] = w[i] E v[i] if `E` is not `None`. The implementation is based on Algorithm 4.2 in [RL95]_. Parameters ---------- A The real |Operator| for which the eigenvalues are to be computed. E The |Operator| which defines the generalized eigenvalue problem. k The number of eigenvalues and eigenvectors which are to be computed. which A string specifying which `k` eigenvalues and eigenvectors to compute: - `'LM'`: select eigenvalues with largest |v[i]| - `'SM'`: select eigenvalues with smallest |v[i]| - `'LR'`: select eigenvalues with largest Re(v[i]) - `'SR'`: select eigenvalues with smallest Re(v[i]) - `'LI'`: select eigenvalues with largest Im(v[i]) - `'SI'`: select eigenvalues with smallest Im(v[i]) b Initial vector for Arnoldi iteration. Default is a random vector. l The size of the Arnoldi factorization. Default is `min(n - 1, max(2*k + 1, 20))`. maxiter The maximum number of iterations. tol The relative error tolerance for the ritz estimates. Returns ------- w A |NumPy array| which contains the computed eigenvalues. v A |VectorArray| which contains the computed eigenvectors. """ n = A.source.dim if l is None: l = np.min((n - 1, np.max((2 * k + 1, 20)))) if E is None: E = IdentityOperator(A.source) assert A.source == A.range assert E.source == A.source assert E.range == A.source assert k < n assert l > k if b is None: b = A.source.random() V, H, f = arnoldi(A, E, k, b) k0 = k i = 0 while True: i = i + 1 V, H, f = extend_arnoldi(A, E, V, H, f, l - k) ew, ev = spla.eig(H) # truncate small imaginary parts ew.imag[np.abs(ew.imag) / np.abs(ew) < 1e-12] = 0 if which == 'LM': idx = np.argsort(-np.abs(ew)) elif which == 'SM': idx = np.argsort(np.abs(ew)) elif which == 'LR': idx = np.argsort(-np.real(ew)) elif which == 'SR': idx = np.argsort(ew.real) elif which == 'LI': idx = np.argsort(-np.abs(np.imag(ew))) elif which == 'SI': idx = np.argsort(np.abs(np.imag(ew))) k = k0 ews = ew[idx] evs = ev[:, idx] rres = f.l2_norm()[0] * np.abs(evs[l - 1]) / np.abs(ews) # increase k by one in order to keep complex conjugate pairs together if ews[k - 1].imag != 0 and ews[k - 1].imag + ews[k].imag < 1e-12: k = k + 1 if np.all(rres[:k] <= tol) or i >= maxiter: break # increase k in order to prevent stagnation k = np.min((l - 1, k + np.min((np.count_nonzero(rres[:k] <= tol), (l - k) // 2)))) # sort shifts for QR iteration based on their residual shifts = ews[k:l] srres = rres[k:l] idx = np.argsort(-srres) srres = srres[idx] shifts = shifts[idx] # don't use converged unwanted ritzvalues as shifts shifts = np.delete(shifts, np.where(srres == 0)) k = k + np.count_nonzero(srres == 0) if shifts[0].imag != 0 and shifts[0].imag + ews[1].imag >= 1e-12: shifts = shifts[1:] k = k + 1 H, Qs = QR_iteration(H, shifts) V = V.lincomb(Qs.T) f = V[k] * H[k, k - 1] + f * Qs[l - 1, k - 1] V = V[:k] H = H[:k, :k] return ews[:k0], V.lincomb(evs[:, :k0].T)
4,782
def test_hist_stepfilled_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, histtype='stepfilled') xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0], [2, 0], [2, 0], [1, 0], [1, 0], [0, 0]] assert (polygon.get_xy() == xy).all()
def test_hist_stepfilled_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, histtype='stepfilled') xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0], [2, 0], [2, 0], [1, 0], [1, 0], [0, 0]] assert (polygon.get_xy() == xy).all()
9,849
def member_normalize(member_spec): ''' Transforms the member module arguments into a valid WAPI struct This function will transform the arguments into a structure that is a valid WAPI structure in the format of: { key: <value>, } It will remove any arguments that are set to None since WAPI will error on that condition. The remainder of the value validation is performed by WAPI Some parameters in ib_spec are passed as a list in order to pass the validation for elements. In this function, they are converted to dictionary. ''' member_elements = ['vip_setting', 'ipv6_setting', 'lan2_port_setting', 'mgmt_port_setting', 'pre_provisioning', 'network_setting', 'v6_network_setting', 'ha_port_setting', 'lan_port_setting', 'lan2_physical_setting', 'lan_ha_port_setting', 'mgmt_network_setting', 'v6_mgmt_network_setting'] for key in member_spec.keys(): if key in member_elements and not(member_spec[key] is None): member_spec[key] = member_spec[key][0] if isinstance(member_spec[key], dict): member_spec[key] = member_normalize(member_spec[key]) elif isinstance(member_spec[key], list): for x in member_spec[key]: if isinstance(x, dict): x = member_normalize(x) elif member_spec[key] is None: del member_spec[key] return member_spec
def member_normalize(member_spec): ''' Transforms the member module arguments into a valid WAPI struct This function will transform the arguments into a structure that is a valid WAPI structure in the format of: { key: <value>, } It will remove any arguments that are set to None since WAPI will error on that condition. The remainder of the value validation is performed by WAPI Some parameters in ib_spec are passed as a list in order to pass the validation for elements. In this function, they are converted to dictionary. ''' member_elements = ['vip_setting', 'ipv6_setting', 'lan2_port_setting', 'mgmt_port_setting', 'pre_provisioning', 'network_setting', 'v6_network_setting', 'ha_port_setting', 'lan_port_setting', 'lan2_physical_setting', 'lan_ha_port_setting', 'mgmt_network_setting', 'v6_mgmt_network_setting'] for key in member_spec.keys(): if key in member_elements and member_spec[key] is not None: member_spec[key] = member_spec[key][0] if isinstance(member_spec[key], dict): member_spec[key] = member_normalize(member_spec[key]) elif isinstance(member_spec[key], list): for x in member_spec[key]: if isinstance(x, dict): x = member_normalize(x) elif member_spec[key] is None: del member_spec[key] return member_spec
52,975
def boolbox(msg="Shall I continue?", title=" ", choices=("[T]rue", "[F]alse"), image=None, default_choice='[T]rue', cancel_choice='[F]alse'): """ The ``boolbox()`` (boolean box) displays two buttons. Returns returns ``True`` if the first button is chosen. Otherwise returns ``False``. import easygui message = "What do they say?" title = "Romantic Question" if easygui.boolbox(message, title, ["They love me", "They love me not"]): easygui.msgbox('You should send them flowers.') else: easygui.msgbox('It was not meant to be.') :param str msg: The message shown in the center of the dialog window. :param str title: The window title text. :param list choices: A list or tuple of strings for the buttons' text. :param str image: The filename of an image to display in the dialog window. :param str default_choice: The text of the default selected button. :param str cancel_choice: If the user presses the 'X' close, which button should be pressed :return: `True` if first button pressed or dialog is cancelled, `False` if second button is pressed. """ if len(choices) != 2: raise AssertionError( 'boolbox() takes exactly 2 choices! Consider using indexbox() instead.' ) reply = buttonbox(msg=msg, title=title, choices=choices, image=image, default_choice=default_choice, cancel_choice=cancel_choice) if reply == choices[0]: return True # The first button (True) was selected. elif reply == choices[1]: return False # The second button (False) was selected. elif reply is None: return None # The window was closed. assert False, "The user selected an unexpected response."
def boolbox(msg="Shall I continue?", title=" ", choices=("[T]rue", "[F]alse"), image=None, default_choice='[T]rue', cancel_choice='[F]alse'): """ The ``boolbox()`` (boolean box) displays two buttons. Returns returns ``True`` if the first button is chosen. Otherwise returns ``False``. import easygui message = "What do they say?" title = "Romantic Question" if easygui.boolbox(message, title, ["They love me", "They love me not"]): easygui.msgbox('You should send them flowers.') else: easygui.msgbox('It was not meant to be.') :param str msg: The message shown in the center of the dialog window. :param str title: The window title text. :param list choices: A list or tuple of strings for the buttons' text. :param str image: The filename of an image to display in the dialog window. :param str default_choice: The text of the default selected button. :param str cancel_choice: If the user presses the 'X' close, which button should be pressed :return: ``True`` if first button pressed or dialog is cancelled, ``False`` if second button is pressed. """ if len(choices) != 2: raise AssertionError( 'boolbox() takes exactly 2 choices! Consider using indexbox() instead.' ) reply = buttonbox(msg=msg, title=title, choices=choices, image=image, default_choice=default_choice, cancel_choice=cancel_choice) if reply == choices[0]: return True # The first button (True) was selected. elif reply == choices[1]: return False # The second button (False) was selected. elif reply is None: return None # The window was closed. assert False, "The user selected an unexpected response."
19,882
def main(): """ Build the icons using Icomoon. Also optimize the svgs. """ runner = None try: args = arg_getters.get_selenium_runner_args() new_icons = get_icons_for_building(args.icomoon_json_path, args.devicon_json_path, args.token) if len(new_icons) == 0: sys.exit("No files need to be uploaded. Ending script...") print(f"There are {len(new_icons)} icons to be build. Here are they:", *new_icons, sep = "\n") print("Begin optimizing files...") optimize_svgs(new_icons, args.icons_folder_path) print("Updating the icomoon json...") update_icomoon_json(new_icons, args.icomoon_json_path) print("Start the building icons process...") icon_svgs = filehandler.get_svgs_paths( new_icons, args.icons_folder_path, icon_versions_only=True) zip_name = "devicon-v1.0.zip" zip_path = Path(args.download_path, zip_name) screenshot_folder = filehandler.create_screenshot_folder("./") runner = BuildSeleniumRunner(args.download_path, args.geckodriver_path, args.headless) runner.build_icons(args.icomoon_json_path, zip_path, icon_svgs, screenshot_folder) filehandler.extract_files(str(zip_path), args.download_path) filehandler.rename_extracted_files(args.download_path) print("Creating the release message by querying the GitHub API...") get_release_message(args.token) print("Closing the issues with the label of `in-develop`.") issues = api_handler.get_issues_by_labels(args.token, ["in-develop"]) issue_nums = [issue_num["number"] for issue_num in issues] api_handler.close_issues(args.token, issue_nums) print("Task completed.") except TimeoutException as e: util.exit_with_err("Selenium Time Out Error: \n" + str(e)) except Exception as e: util.exit_with_err(e) finally: if runner is not None: runner.close()
def main(): """ Build the icons using Icomoon. Also optimize the svgs. """ runner = None try: args = arg_getters.get_selenium_runner_args() new_icons = get_icons_for_building(args.icomoon_json_path, args.devicon_json_path, args.token) if len(new_icons) == 0: sys.exit("No files need to be uploaded. Ending script...") print(f"There are {len(new_icons)} icons to be build. Here are they:", *new_icons, sep = "\n") print("Begin optimizing files...") optimize_svgs(new_icons, args.icons_folder_path) print("Updating the icomoon json...") update_icomoon_json(new_icons, args.icomoon_json_path) print("Start the building icons process...") icon_svgs = filehandler.get_svgs_paths( new_icons, args.icons_folder_path, icon_versions_only=True) zip_name = "devicon-v1.0.zip" zip_path = Path(args.download_path, zip_name) screenshot_folder = filehandler.create_screenshot_folder("./") runner = BuildSeleniumRunner(args.download_path, args.geckodriver_path, args.headless) runner.build_icons(args.icomoon_json_path, zip_path, icon_svgs, screenshot_folder) filehandler.extract_files(str(zip_path), args.download_path) filehandler.rename_extracted_files(args.download_path) print("Creating the release message by querying the GitHub API...") get_release_message(args.token) print("Closing issues with the `in-develop` label.") issues = api_handler.get_issues_by_labels(args.token, ["in-develop"]) issue_nums = [issue_num["number"] for issue_num in issues] api_handler.close_issues(args.token, issue_nums) print("Task completed.") except TimeoutException as e: util.exit_with_err("Selenium Time Out Error: \n" + str(e)) except Exception as e: util.exit_with_err(e) finally: if runner is not None: runner.close()
46,540
def build_spec(version: str, source_files: List[str]) -> str: all_spescs = [get_spec(spec) for spec in source_files] spec_object = all_spescs[0] for value in all_spescs[1:]: spec_object = combine_spec_objects(spec_object, value) dependency_order_spec(spec_object) return objects_to_spec(spec_object, version_imports[version], version)
def build_spec(version: str, source_files: List[str]) -> str: all_specs = [get_spec(spec) for spec in source_files] spec_object = all_spescs[0] for value in all_spescs[1:]: spec_object = combine_spec_objects(spec_object, value) dependency_order_spec(spec_object) return objects_to_spec(spec_object, version_imports[version], version)
10,854
def run(manual_args=None): args = parse_args(manual_args) configure_logger(args.debug) args.text = [p.decode('utf-8') if util.PY2 and not isinstance(p, unicode) else p for p in args.text] if args.version: version_str = "{0} version {1} (Python {3})".format(jrnl.__title__, jrnl.__version__, sys.version) print(util.py2encode(version_str)) sys.exit(0) try: config = install.load_or_install_jrnl() except UserAbort as err: util.prompt("\n{}".format(err)) sys.exit(1) if args.ls: util.prnt(list_journals(config)) sys.exit(0) log.debug('Using configuration "%s"', config) original_config = config.copy() # If the first textual argument points to a journal file, # use this! journal_name = args.text[0] if (args.text and args.text[0] in config['journals']) else 'default' if journal_name is not 'default': args.text = args.text[1:] elif "default" not in config['journals']: util.prompt("No default journal configured.") util.prompt(list_journals(config)) sys.exit(1) config = util.scope_config(config, journal_name) # If the first remaining argument looks like e.g. '-3', interpret that as a limiter if not args.limit and args.text and args.text[0].startswith("-"): try: args.limit = int(args.text[0].lstrip("-")) args.text = args.text[1:] except: pass log.debug('Using journal "%s"', journal_name) mode_compose, mode_export, mode_import = guess_mode(args, config) # How to quit writing? if "win32" in sys.platform: _exit_multiline_code = "on a blank line, press Ctrl+Z and then Enter" else: _exit_multiline_code = "press Ctrl+D" if mode_compose and not args.text: if not sys.stdin.isatty(): # Piping data into jrnl raw = util.py23_read() elif config['editor']: template = "" if config['template']: try: template = open(config['template']).read() except: util.prompt("[Could not read template at '']".format(config['template'])) sys.exit(1) raw = util.get_text_from_editor(config, template) else: try: raw = util.py23_read("[Compose Entry; " + _exit_multiline_code + " to finish writing]\n") except KeyboardInterrupt: util.prompt("[Entry NOT saved to journal.]") sys.exit(0) if raw: args.text = [raw] else: mode_compose = False # This is where we finally open the journal! try: journal = Journal.open_journal(journal_name, config) except KeyboardInterrupt: util.prompt("[Interrupted while opening journal]".format(journal_name)) sys.exit(1) # Import mode if mode_import: plugins.get_importer(args.import_).import_(journal, args.input) # Writing mode elif mode_compose: raw = " ".join(args.text).strip() if util.PY2 and type(raw) is not unicode: raw = raw.decode(sys.getfilesystemencoding()) log.debug('Appending raw line "%s" to journal "%s"', raw, journal_name) journal.new_entry(raw) util.prompt("[Entry added to {0} journal]".format(journal_name)) journal.write() if not mode_compose: old_entries = journal.entries if args.on_date: args.start_date = args.end_date = args.on_date journal.filter(tags=args.text, start_date=args.start_date, end_date=args.end_date, strict=args.strict, short=args.short, starred=args.starred, exclude=args.excluded) journal.limit(args.limit) # Reading mode if not mode_compose and not mode_export and not mode_import: print(util.py2encode(journal.pprint())) # Various export modes elif args.short: print(util.py2encode(journal.pprint(short=True))) elif args.tags: print(util.py2encode(plugins.get_exporter("tags").export(journal))) elif args.export is not False: exporter = plugins.get_exporter(args.export) print(exporter.export(journal, args.output)) elif args.encrypt is not False: encrypt(journal, filename=args.encrypt) # Not encrypting to a separate file: update config! if not args.encrypt: update_config(original_config, {"encrypt": True}, journal_name, force_local=True) install.save_config(original_config) elif args.decrypt is not False: decrypt(journal, filename=args.decrypt) # Not decrypting to a separate file: update config! if not args.decrypt: update_config(original_config, {"encrypt": False}, journal_name, force_local=True) install.save_config(original_config) elif args.edit: if not config['editor']: util.prompt("[{1}ERROR{2}: You need to specify an editor in {0} to use the --edit function.]".format(install.CONFIG_FILE_PATH, ERROR_COLOR, RESET_COLOR)) sys.exit(1) other_entries = [e for e in old_entries if e not in journal.entries] # Edit old_num_entries = len(journal) edited = util.get_text_from_editor(config, journal.editable_str()) journal.parse_editable_str(edited) num_deleted = old_num_entries - len(journal) num_edited = len([e for e in journal.entries if e.modified]) prompts = [] if num_deleted: prompts.append("{0} {1} deleted".format(num_deleted, "entry" if num_deleted == 1 else "entries")) if num_edited: prompts.append("{0} {1} modified".format(num_edited, "entry" if num_deleted == 1 else "entries")) if prompts: util.prompt("[{0}]".format(", ".join(prompts).capitalize())) journal.entries += other_entries journal.sort() journal.write()
def run(manual_args=None): args = parse_args(manual_args) configure_logger(args.debug) args.text = [p.decode('utf-8') if util.PY2 and not isinstance(p, unicode) else p for p in args.text] if args.version: version_str = "{0} version {1} (Python {2})".format(jrnl.__title__, jrnl.__version__, sys.version) print(util.py2encode(version_str)) sys.exit(0) try: config = install.load_or_install_jrnl() except UserAbort as err: util.prompt("\n{}".format(err)) sys.exit(1) if args.ls: util.prnt(list_journals(config)) sys.exit(0) log.debug('Using configuration "%s"', config) original_config = config.copy() # If the first textual argument points to a journal file, # use this! journal_name = args.text[0] if (args.text and args.text[0] in config['journals']) else 'default' if journal_name is not 'default': args.text = args.text[1:] elif "default" not in config['journals']: util.prompt("No default journal configured.") util.prompt(list_journals(config)) sys.exit(1) config = util.scope_config(config, journal_name) # If the first remaining argument looks like e.g. '-3', interpret that as a limiter if not args.limit and args.text and args.text[0].startswith("-"): try: args.limit = int(args.text[0].lstrip("-")) args.text = args.text[1:] except: pass log.debug('Using journal "%s"', journal_name) mode_compose, mode_export, mode_import = guess_mode(args, config) # How to quit writing? if "win32" in sys.platform: _exit_multiline_code = "on a blank line, press Ctrl+Z and then Enter" else: _exit_multiline_code = "press Ctrl+D" if mode_compose and not args.text: if not sys.stdin.isatty(): # Piping data into jrnl raw = util.py23_read() elif config['editor']: template = "" if config['template']: try: template = open(config['template']).read() except: util.prompt("[Could not read template at '']".format(config['template'])) sys.exit(1) raw = util.get_text_from_editor(config, template) else: try: raw = util.py23_read("[Compose Entry; " + _exit_multiline_code + " to finish writing]\n") except KeyboardInterrupt: util.prompt("[Entry NOT saved to journal.]") sys.exit(0) if raw: args.text = [raw] else: mode_compose = False # This is where we finally open the journal! try: journal = Journal.open_journal(journal_name, config) except KeyboardInterrupt: util.prompt("[Interrupted while opening journal]".format(journal_name)) sys.exit(1) # Import mode if mode_import: plugins.get_importer(args.import_).import_(journal, args.input) # Writing mode elif mode_compose: raw = " ".join(args.text).strip() if util.PY2 and type(raw) is not unicode: raw = raw.decode(sys.getfilesystemencoding()) log.debug('Appending raw line "%s" to journal "%s"', raw, journal_name) journal.new_entry(raw) util.prompt("[Entry added to {0} journal]".format(journal_name)) journal.write() if not mode_compose: old_entries = journal.entries if args.on_date: args.start_date = args.end_date = args.on_date journal.filter(tags=args.text, start_date=args.start_date, end_date=args.end_date, strict=args.strict, short=args.short, starred=args.starred, exclude=args.excluded) journal.limit(args.limit) # Reading mode if not mode_compose and not mode_export and not mode_import: print(util.py2encode(journal.pprint())) # Various export modes elif args.short: print(util.py2encode(journal.pprint(short=True))) elif args.tags: print(util.py2encode(plugins.get_exporter("tags").export(journal))) elif args.export is not False: exporter = plugins.get_exporter(args.export) print(exporter.export(journal, args.output)) elif args.encrypt is not False: encrypt(journal, filename=args.encrypt) # Not encrypting to a separate file: update config! if not args.encrypt: update_config(original_config, {"encrypt": True}, journal_name, force_local=True) install.save_config(original_config) elif args.decrypt is not False: decrypt(journal, filename=args.decrypt) # Not decrypting to a separate file: update config! if not args.decrypt: update_config(original_config, {"encrypt": False}, journal_name, force_local=True) install.save_config(original_config) elif args.edit: if not config['editor']: util.prompt("[{1}ERROR{2}: You need to specify an editor in {0} to use the --edit function.]".format(install.CONFIG_FILE_PATH, ERROR_COLOR, RESET_COLOR)) sys.exit(1) other_entries = [e for e in old_entries if e not in journal.entries] # Edit old_num_entries = len(journal) edited = util.get_text_from_editor(config, journal.editable_str()) journal.parse_editable_str(edited) num_deleted = old_num_entries - len(journal) num_edited = len([e for e in journal.entries if e.modified]) prompts = [] if num_deleted: prompts.append("{0} {1} deleted".format(num_deleted, "entry" if num_deleted == 1 else "entries")) if num_edited: prompts.append("{0} {1} modified".format(num_edited, "entry" if num_deleted == 1 else "entries")) if prompts: util.prompt("[{0}]".format(", ".join(prompts).capitalize())) journal.entries += other_entries journal.sort() journal.write()
35,650
def wide_resnet101_2(weights: Optional[WideResNet101_2Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: if "pretrained" in kwargs: warnings.warn("The argument pretrained is deprecated, please use weights instead.") weights = WideResNet101_2Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None weights = WideResNet101_2Weights.verify(weights) kwargs["width_per_group"] = 64 * 2 return _resnet(BasicBlock, [3, 4, 23, 3], weights, progress, **kwargs)
def wide_resnet101_2(weights: Optional[WideResNet101_2Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: if "pretrained" in kwargs: warnings.warn("The argument pretrained is deprecated, please use weights instead.") weights = WideResNet101_2Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None weights = WideResNet101_2Weights.verify(weights) kwargs["width_per_group"] = 64 * 2 return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
42,893
def about(): """About box for Strawberry Fields. Prints the installed version numbers for SF and its dependencies, and some system info. Please include this information in bug reports. """ import sys import platform import os import numpy import scipy # a QuTiP-style infobox print('\nStrawberry Fields: a Python library for continuous variable quantum circuits.') print('Copyright 2019 Xanadu Quantum Technologies Inc.\n') print('Python version: {}.{}.{}'.format(*sys.version_info[0:3])) print('Platform info: {}'.format(platform.platform())) print('Installation path: {}'.format(os.path.dirname(__file__))) print('Strawberry Fields version: {}'.format(__version__)) print('Numpy version: {}'.format(numpy.__version__)) print('Scipy version: {}'.format(scipy.__version__)) try: import tensorflow tf_version = tensorflow.__version__ except ModuleNotFoundError: tf_version = None print('TensorFlow version: {}'.format(tf_version))
def about(): """About box for Strawberry Fields. Prints the installed version numbers for SF and its dependencies, and some system info. Please include this information in bug reports. """ import sys import platform import os import numpy import scipy # a QuTiP-style infobox print('\nStrawberry Fields: a Python library for continuous-variable quantum circuits.') print('Copyright 2019 Xanadu Quantum Technologies Inc.\n') print('Python version: {}.{}.{}'.format(*sys.version_info[0:3])) print('Platform info: {}'.format(platform.platform())) print('Installation path: {}'.format(os.path.dirname(__file__))) print('Strawberry Fields version: {}'.format(__version__)) print('Numpy version: {}'.format(numpy.__version__)) print('Scipy version: {}'.format(scipy.__version__)) try: import tensorflow tf_version = tensorflow.__version__ except ModuleNotFoundError: tf_version = None print('TensorFlow version: {}'.format(tf_version))
36,197
def generate_callout_field(): value = ' '.join(fake.words(nb=10)) return generate_field('callout', value)
def generate_callout_field(): value = Faker('sentence', nb_words=10) return generate_field('callout', value)
22,768
def generate_csr(privkey: util.Key, names: Set[str], path: str, must_staple: bool = False, strict_permissions: bool = True) -> util.CSR: """Initialize a CSR with the given private key. :param privkey: Key to include in the CSR :type privkey: :class:`certbot.util.Key` :param set names: `str` names to include in the CSR :param str path: Certificate save directory. :param boolean must_staple: If true, include the TLS Feature extension "OCSP Must Staple" :param boolean strict_permissions: If true, the CSR file will be saved with strict permissions (POSIX mode 0600). :returns: CSR :rtype: :class:`certbot.util.CSR` """ csr_pem = acme_crypto_util.make_csr( privkey.pem, names, must_staple=must_staple) # Save CSR util.make_or_verify_dir(path, 0o755, strict_permissions) csr_f, csr_filename = util.unique_file( os.path.join(path, "csr-certbot.pem"), 0o644, "wb") with csr_f: csr_f.write(csr_pem) logger.debug("Creating CSR: %s", csr_filename) return util.CSR(csr_filename, csr_pem, "pem")
def generate_csr(privkey: util.Key, names: Set[str], path: str, must_staple: bool = False, strict_permissions: bool = True) -> util.CSR: """Initialize a CSR with the given private key. :param privkey: Key to include in the CSR :type privkey: :class:`certbot.util.Key` :param set names: `str` names to include in the CSR :param str path: Certificate save directory. :param boolean must_staple: If true, include the TLS Feature extension "OCSP Must Staple" :param bool strict_permissions: If true, the CSR file will be saved with strict permissions (POSIX mode 0600). :returns: CSR :rtype: :class:`certbot.util.CSR` """ csr_pem = acme_crypto_util.make_csr( privkey.pem, names, must_staple=must_staple) # Save CSR util.make_or_verify_dir(path, 0o755, strict_permissions) csr_f, csr_filename = util.unique_file( os.path.join(path, "csr-certbot.pem"), 0o644, "wb") with csr_f: csr_f.write(csr_pem) logger.debug("Creating CSR: %s", csr_filename) return util.CSR(csr_filename, csr_pem, "pem")
29,677
def load_cluster_dump(url: str): if url.endswith(".msgpack.gz"): mode = "rb" reader = msgpack.unpack elif url.endswith(".yaml"): import yaml mode = "r" reader = yaml.safe_load else: raise ValueError(f"url ({url}) must have a .msgpack.gz or .yaml suffix") with fsspec.open(url, mode, compression="infer") as f: return reader(f)
def load_cluster_dump(url: str) -> dict: if url.endswith(".msgpack.gz"): mode = "rb" reader = msgpack.unpack elif url.endswith(".yaml"): import yaml mode = "r" reader = yaml.safe_load else: raise ValueError(f"url ({url}) must have a .msgpack.gz or .yaml suffix") with fsspec.open(url, mode, compression="infer") as f: return reader(f)
15,254
def _get_events( hass, start_day, end_day, entity_id=None, filters=None, entities_filter=None, entity_matches_only=None, ): """Get events for a period of time.""" entity_attr_cache = EntityAttributeCache(hass) context_lookup = {None: None} def yield_events(query): """Yield Events that are not filtered away.""" for row in query.yield_per(1000): event = LazyEventPartialState(row) context_lookup.setdefault(event.context_id, event) if _keep_event(hass, event, entities_filter): yield event with session_scope(hass=hass) as session: if entity_id is not None: entity_ids = [entity_id.lower()] entities_filter = generate_filter([], entity_ids, [], []) apply_sql_entities_filter = False else: entity_ids = None apply_sql_entities_filter = True old_state = aliased(States, name="old_state") query = ( session.query( Events.event_type, Events.event_data, Events.time_fired, Events.context_id, Events.context_user_id, States.state, States.entity_id, States.domain, States.attributes, ) .order_by(Events.time_fired) .outerjoin(States, (Events.event_id == States.event_id)) .outerjoin(old_state, (States.old_state_id == old_state.state_id)) # The below filter, removes state change events that do not have # and old_state, new_state, or the old and # new state. # .filter( (Events.event_type != EVENT_STATE_CHANGED) | ( (States.state_id.isnot(None)) & (old_state.state_id.isnot(None)) & (States.state.isnot(None)) & (States.state != old_state.state) ) ) # # Prefilter out continuous domains that have # ATTR_UNIT_OF_MEASUREMENT as its much faster in sql. # .filter( (Events.event_type != EVENT_STATE_CHANGED) | sqlalchemy.not_(States.domain.in_(CONTINUOUS_DOMAINS)) | sqlalchemy.not_(States.attributes.contains(UNIT_OF_MEASUREMENT_JSON)) ) .filter( Events.event_type.in_(ALL_EVENT_TYPES + list(hass.data.get(DOMAIN, {}))) ) .filter((Events.time_fired > start_day) & (Events.time_fired < end_day)) ) if entity_matches_only and entity_ids and len(entity_ids) == 1: # When entity_matches_only is provided, contexts and events that do not # contain the entity_id are not included in the logbook response. entity_id = entity_ids[0] entity_id_json = ENTITY_ID_JSON_TEMPLATE.format(entity_id) query = query.filter( ( (States.last_updated == States.last_changed) & States.entity_id.in_(entity_ids) ) | ( States.state_id.is_(None) & Events.event_data.contains(entity_id_json) ) ) elif entity_ids: query = query.filter( ( (States.last_updated == States.last_changed) & States.entity_id.in_(entity_ids) ) | (States.state_id.is_(None)) ) else: query = query.filter( (States.last_updated == States.last_changed) | (States.state_id.is_(None)) ) if apply_sql_entities_filter and filters: entity_filter = filters.entity_filter() if entity_filter is not None: query = query.filter( entity_filter | (Events.event_type != EVENT_STATE_CHANGED) ) return list( humanify(hass, yield_events(query), entity_attr_cache, context_lookup) )
def _get_events( hass, start_day, end_day, entity_id=None, filters=None, entities_filter=None, entity_matches_only=False, ): """Get events for a period of time.""" entity_attr_cache = EntityAttributeCache(hass) context_lookup = {None: None} def yield_events(query): """Yield Events that are not filtered away.""" for row in query.yield_per(1000): event = LazyEventPartialState(row) context_lookup.setdefault(event.context_id, event) if _keep_event(hass, event, entities_filter): yield event with session_scope(hass=hass) as session: if entity_id is not None: entity_ids = [entity_id.lower()] entities_filter = generate_filter([], entity_ids, [], []) apply_sql_entities_filter = False else: entity_ids = None apply_sql_entities_filter = True old_state = aliased(States, name="old_state") query = ( session.query( Events.event_type, Events.event_data, Events.time_fired, Events.context_id, Events.context_user_id, States.state, States.entity_id, States.domain, States.attributes, ) .order_by(Events.time_fired) .outerjoin(States, (Events.event_id == States.event_id)) .outerjoin(old_state, (States.old_state_id == old_state.state_id)) # The below filter, removes state change events that do not have # and old_state, new_state, or the old and # new state. # .filter( (Events.event_type != EVENT_STATE_CHANGED) | ( (States.state_id.isnot(None)) & (old_state.state_id.isnot(None)) & (States.state.isnot(None)) & (States.state != old_state.state) ) ) # # Prefilter out continuous domains that have # ATTR_UNIT_OF_MEASUREMENT as its much faster in sql. # .filter( (Events.event_type != EVENT_STATE_CHANGED) | sqlalchemy.not_(States.domain.in_(CONTINUOUS_DOMAINS)) | sqlalchemy.not_(States.attributes.contains(UNIT_OF_MEASUREMENT_JSON)) ) .filter( Events.event_type.in_(ALL_EVENT_TYPES + list(hass.data.get(DOMAIN, {}))) ) .filter((Events.time_fired > start_day) & (Events.time_fired < end_day)) ) if entity_matches_only and entity_ids and len(entity_ids) == 1: # When entity_matches_only is provided, contexts and events that do not # contain the entity_id are not included in the logbook response. entity_id = entity_ids[0] entity_id_json = ENTITY_ID_JSON_TEMPLATE.format(entity_id) query = query.filter( ( (States.last_updated == States.last_changed) & States.entity_id.in_(entity_ids) ) | ( States.state_id.is_(None) & Events.event_data.contains(entity_id_json) ) ) elif entity_ids: query = query.filter( ( (States.last_updated == States.last_changed) & States.entity_id.in_(entity_ids) ) | (States.state_id.is_(None)) ) else: query = query.filter( (States.last_updated == States.last_changed) | (States.state_id.is_(None)) ) if apply_sql_entities_filter and filters: entity_filter = filters.entity_filter() if entity_filter is not None: query = query.filter( entity_filter | (Events.event_type != EVENT_STATE_CHANGED) ) return list( humanify(hass, yield_events(query), entity_attr_cache, context_lookup) )
48,174
def GenerateOutput(target_list, target_dicts, data, params): # Map of target -> list of targets it depends on. edges = {} # Queue of targets to visit. targets_to_visit = target_list[:] while len(targets_to_visit) > 0: target = targets_to_visit.pop() if target in edges: continue edges[target] = [] for dep in target_dicts[target].get("dependencies", []): edges[target].append(dep) targets_to_visit.append(dep) try: filepath = params["generator_flags"]["output_dir"] except KeyError: filepath = "." filename = os.path.join(filepath, "dump.json") with open(filename, "w") as f: json.dump(edges, f) print("Wrote json to %s." % filename)
def GenerateOutput(target_list, target_dicts, data, params): # Map of target -> list of targets it depends on. edges = {} # Queue of targets to visit. targets_to_visit = target_list[:] while len(targets_to_visit) > 0: target = targets_to_visit.pop() if target in edges: continue edges[target] = [] for dep in target_dicts[target].get("dependencies", []): edges[target].append(dep) targets_to_visit.append(dep) try: filepath = params["generator_flags"]["output_dir"] except KeyError: filepath = "." filename = os.path.join(filepath, "dump.json") with open(filename, "w") as out_file: json.dump(edges, out_file) print("Wrote json to %s." % filename)
33,735
def push_readmes_and_tags(): if not _merge_build(): print("Not pushing because this is a PR build.") return username, password = _get_docker_creds() environment = {"DOCKER_USE": username, "DOCKER_PASS": password} for image, tag_line in DOCKER_HUB_DESCRIPTION.items(): cmd_string = (f"--file /myvol/docker/{image}/README.md " f"--short {tag_line} --debug rayproject/{image}") DOCKER_CLIENT.containers.run( "chko/docker-pushrm:1", command=cmd_string, mounts=[ docker.types.Mount(target="/myvol/", source=_get_root_dir()) ], environment=environment, remove=True, tty=True)
def push_readmes_and_tags(): if not _merge_build(): print("Not pushing readme because this is a PR build.") return username, password = _get_docker_creds() environment = {"DOCKER_USE": username, "DOCKER_PASS": password} for image, tag_line in DOCKER_HUB_DESCRIPTION.items(): cmd_string = (f"--file /myvol/docker/{image}/README.md " f"--short {tag_line} --debug rayproject/{image}") DOCKER_CLIENT.containers.run( "chko/docker-pushrm:1", command=cmd_string, mounts=[ docker.types.Mount(target="/myvol/", source=_get_root_dir()) ], environment=environment, remove=True, tty=True)
27,989
def main(args): """ Entry point for the command handling automatic fixes. TODO: Currently clang-tidy is the only tool which supports the dumping of fixit replacements. In this script we assume that the replacement dump .yaml files are in the format so clang-apply-replacement Clang tool can consume them. """ logger.setup_logger(args.verbose if 'verbose' in args else None) context = analyzer_context.get_context() if not context.replacer_binary: LOG.warning("clang-apply-replacements tool is not found") return if 'list' in args: list_fixits(args.input, args.checker_name, args.file) else: apply_fixits(args.input, args.checker_name, args.file)
def main(args): """ Entry point for the command handling automatic fixes. TODO: Currently clang-tidy is the only tool which supports the dumping of fixit replacements. In this script we assume that the replacement dump .yaml files are in the format so clang-apply-replacement Clang tool can consume them. """ logger.setup_logger(args.verbose if 'verbose' in args else None) context = analyzer_context.get_context() if not context.replacer_binary: LOG.warning("clang-apply-replacements tool is not found") LOG.error("clang-apply-replacements tool is not found") if 'list' in args: list_fixits(args.input, args.checker_name, args.file) else: apply_fixits(args.input, args.checker_name, args.file)
48,865
def replace_extra_requirement_with_provider_packages(extra: str, providers: List[str]) -> None: """ Replaces extra requirement with provider package. The intention here is that when the provider is added as dependency of extra, there is no need to add the dependencies separately. This is not needed and even harmful, because in case of future versions of the provider, the requirements might change, so hard-coding requirements from the version that was available at the release time might cause dependency conflicts in the future. Say for example that you have salesforce provider with those deps: { 'salesforce': ['simple-salesforce>=1.0.0', 'tableauserverclient'] } Initially ['salesforce'] extra has those requirements and it works like that when you install it when INSTALL_PROVIDERS_FROM_SOURCES is set to `true` (during the development). However, when the production installation is used, The dependencies are changed: { 'salesforce': ['apache-airflow-providers-salesforce'] } And then, 'apache-airflow-providers-salesforce' package has those 'install_requires' dependencies: ['simple-salesforce>=1.0.0', 'tableauserverclient'] So transitively 'salesforce' extra has all the requirements it needs and in case the provider changes its dependencies, they will transitively change as well. In the constraint mechanism we save both - provider versions and it's dependencies version, which means that installation using constraints is repeatable. For K8s, Celery and Dask which are both "Core executors" and "Providers" we have to add the base dependencies to the core as well - in order to mitigate problems where newer version of provider will have less strict limits. This should be done for both: extras and their deprecated aliases. This is not a full protection however, the way extras work, this will not add "hard" limits for airflow and the user who does not use constraints :param extra: Name of the extra to add providers to :param providers: list of provider ids """ if extra in ['cncf.kubernetes', 'kubernetes', 'celery']: EXTRAS_REQUIREMENTS[extra].extend( [get_provider_package_from_package_id(package_name) for package_name in providers] ) else: EXTRAS_REQUIREMENTS[extra] = [ get_provider_package_from_package_id(package_name) for package_name in providers ]
def replace_extra_requirement_with_provider_packages(extra: str, providers: List[str]) -> None: """ Replaces extra requirement with provider package. The intention here is that when the provider is added as dependency of extra, there is no need to add the dependencies separately. This is not needed and even harmful, because in case of future versions of the provider, the requirements might change, so hard-coding requirements from the version that was available at the release time might cause dependency conflicts in the future. Say for example that you have salesforce provider with those deps: { 'salesforce': ['simple-salesforce>=1.0.0', 'tableauserverclient'] } Initially ['salesforce'] extra has those requirements and it works like that when you install it when INSTALL_PROVIDERS_FROM_SOURCES is set to `true` (during the development). However, when the production installation is used, The dependencies are changed: { 'salesforce': ['apache-airflow-providers-salesforce'] } And then, 'apache-airflow-providers-salesforce' package has those 'install_requires' dependencies: ['simple-salesforce>=1.0.0', 'tableauserverclient'] So transitively 'salesforce' extra has all the requirements it needs and in case the provider changes its dependencies, they will transitively change as well. In the constraint mechanism we save both - provider versions and it's dependencies version, which means that installation using constraints is repeatable. For K8s, Celery and Dask which are both "Core executors" and "Providers" we have to add the base dependencies to the core as well - in order to mitigate problems where newer version of provider will have less strict limits. This should be done for both: extras and their deprecated aliases. This is not a full protection however, the way extras work, this will not add "hard" limits for Airflow and the user who does not use constraints. :param extra: Name of the extra to add providers to :param providers: list of provider ids """ if extra in ['cncf.kubernetes', 'kubernetes', 'celery']: EXTRAS_REQUIREMENTS[extra].extend( [get_provider_package_from_package_id(package_name) for package_name in providers] ) else: EXTRAS_REQUIREMENTS[extra] = [ get_provider_package_from_package_id(package_name) for package_name in providers ]
32,560
def main(): args = demisto.args() entry_id = args.get("entryid") if isinstance(entry_id, list): entry_id = entry_id[0] dictlist = demisto.executeCommand("getEntry", {"id": entry_id})[0]["Contents"] csv_final = json_to_csv(dictlist) if "filename" in demisto.args(): # Send CSV as file in War Room demisto.results(fileResult(args.get("filename"), csv_final)) else: # Send CSV to War Room demisto.results(csv_final)
def main(): args = demisto.args() entry_id = args.get("entryid") if isinstance(entry_id, list): entry_id = entry_id[0] dictlist = demisto.executeCommand("getEntry", {"id": entry_id})[0]["Contents"] csv_final = json_to_csv(dictlist) if "filename" in args: # Send CSV as file in War Room demisto.results(fileResult(args.get("filename"), csv_final)) else: # Send CSV to War Room demisto.results(csv_final)
47,878
def parse_args(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__) parser.add_argument('--demo-build-dir', type=Path, required=True, metavar='DIR', help='directory with demo binaries') parser.add_argument('--test-data-dir', type=Path, required=True, metavar='DIR', help='directory with test data') parser.add_argument('--downloader-cache-dir', type=Path, required=True, metavar='DIR', help='directory to use as the cache for the model downloader') parser.add_argument('--demos', metavar='DEMO[,DEMO...]', help='list of demos to run tests for (by default, every demo is tested)') parser.add_argument('--mo', type=Path, metavar='MO.PY', help='Model Optimizer entry point script') parser.add_argument('--device_list', required=False, default="CPU, GPU", help='List of devices to test') parser.add_argument('--report_file', type=Path, required=False, default="demo_execution_time_report.csv", help='Path to report file') return parser.parse_args()
def parse_args(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__) parser.add_argument('--demo-build-dir', type=Path, required=True, metavar='DIR', help='directory with demo binaries') parser.add_argument('--test-data-dir', type=Path, required=True, metavar='DIR', help='directory with test data') parser.add_argument('--downloader-cache-dir', type=Path, required=True, metavar='DIR', help='directory to use as the cache for the model downloader') parser.add_argument('--demos', metavar='DEMO[,DEMO...]', help='list of demos to run tests for (by default, every demo is tested)') parser.add_argument('--mo', type=Path, metavar='MO.PY', help='Model Optimizer entry point script') parser.add_argument('--device_list', required=False, default="CPU, GPU", help='List of devices to test') parser.add_argument('--report-file', type=Path, help='Path to report file') return parser.parse_args()
58,828
def scal(a, x): """Computes x *= a. (*) x will be updated. """ if x.ndim != 1: raise ValueError('x must be a 1D array (actual: {})'.format(x.ndim)) dtype = x.dtype.char if dtype == 'f': func = cublas.sscal elif dtype == 'd': func = cublas.dscal elif dtype == 'F': func = cublas.cscal elif dtype == 'D': func = cublas.zscal else: raise TypeError('invalid dtype') handle = device.get_cublas_handle() a_ptr, mode = _setup_scalar_ptr(handle, a, dtype) func(handle, x.size, a_ptr, x.data.ptr, 1) cublas.setPointerMode(handle, mode) return x
def scal(a, x): """Computes x *= a. (*) x will be updated. """ if x.ndim != 1: raise ValueError('x must be a 1D array (actual: {})'.format(x.ndim)) dtype = x.dtype.char if dtype == 'f': func = cublas.sscal elif dtype == 'd': func = cublas.dscal elif dtype == 'F': func = cublas.cscal elif dtype == 'D': func = cublas.zscal else: raise TypeError('invalid dtype') handle = device.get_cublas_handle() a_ptr, orig_mode = _setup_scalar_ptr(handle, a, dtype) func(handle, x.size, a_ptr, x.data.ptr, 1) cublas.setPointerMode(handle, orig_mode) return x
25,861
def to_kilograms(weight, unit): """ Convert the given length to kilograms. """ try: if weight < 0: raise ValueError("Weight must be a positive number") except TypeError: raise TypeError(f"Invalid value '{weight}' for weight (must be a number)") valid_units = DeviceWeightUnitChoices.values() if unit not in valid_units: raise ValueError(f"Unknown unit {unit}. Must be one of the following: {', '.join(valid_units)}") UNIT_KILOGRAM = 'kg' UNIT_GRAM = 'g' # Imperial UNIT_POUND = 'lb' UNIT_OUNCE = 'oz' if unit == DeviceWeightUnitChoices.UNIT_KILOGRAM: return weight if unit == DeviceWeightUnitChoices.UNIT_GRAM: return weight * 1000 if unit == DeviceWeightUnitChoices.UNIT_POUND: return weight * Decimal(0.453592) if unit == DeviceWeightUnitChoices.UNIT_OUNCE: return weight * Decimal(0.0283495) raise ValueError(f"Unknown unit {unit}. Must be 'kg', 'g', 'lb', 'oz'.")
def to_kilograms(weight, unit): """ Convert the given weight to kilograms. """ try: if weight < 0: raise ValueError("Weight must be a positive number") except TypeError: raise TypeError(f"Invalid value '{weight}' for weight (must be a number)") valid_units = DeviceWeightUnitChoices.values() if unit not in valid_units: raise ValueError(f"Unknown unit {unit}. Must be one of the following: {', '.join(valid_units)}") UNIT_KILOGRAM = 'kg' UNIT_GRAM = 'g' # Imperial UNIT_POUND = 'lb' UNIT_OUNCE = 'oz' if unit == DeviceWeightUnitChoices.UNIT_KILOGRAM: return weight if unit == DeviceWeightUnitChoices.UNIT_GRAM: return weight * 1000 if unit == DeviceWeightUnitChoices.UNIT_POUND: return weight * Decimal(0.453592) if unit == DeviceWeightUnitChoices.UNIT_OUNCE: return weight * Decimal(0.0283495) raise ValueError(f"Unknown unit {unit}. Must be 'kg', 'g', 'lb', 'oz'.")
20,297
def find_ldc_dmd_frontend_version(version_output: str): version_regex = re.search(r'DMD v(\d+\.\d+\.\d+)', version_output) if version_regex is not None and len(version_regex.groups()): return version_regex.groups()[0] return ''
def find_ldc_dmd_frontend_version(version_output: str) -> str: version_regex = re.search(r'DMD v(\d+\.\d+\.\d+)', version_output) if version_regex is not None and len(version_regex.groups()): return version_regex.groups()[0] return ''
29,007
def update_config_from_file(config: IslandConfigOptions, config_path: Path): try: config_from_file = load_server_config_from_file(config_path) config.update(config_from_file) logger.info(f"Server config updated from {config_path}") except OSError: logger.info(f"Server config not found in path {config_path}")
def update_config_from_file(config: IslandConfigOptions, config_path: Path): try: config_from_file = load_server_config_from_file(config_path) config.update(config_from_file) logger.info(f"Server config updated from {config_path}") except OSError: logger.error(f"Server config not found in path {config_path}")
7,175
def _get_fourier_filter(size, filter_name): """Construct the Fourier filter This computation lessens artifacts and removes a small bias as explained in [1], Chap 3. Equation 61 Parameters ---------- size: int filter size. filter_name: str, optional Filter used in frequency domain filtering. Ramp filter used by default. Filters available: ramp, shepp-logan, cosine, hamming, hann. Assign None to use no filter. Returns ------- fourier_filter: ndarray The computed Fourier filter. References ---------- .. [1] AC Kak, M Slaney, "Principles of Computerized Tomographic Imaging", IEEE Press 1988. """ n = np.concatenate((np.arange(1, size / 2 + 1, 2, dtype=np.int), np.arange(size / 2 - 1, 0, -2, dtype=np.int))) f = np.zeros(size) f[0] = 0.25 f[1::2] = -1 / (np.pi * n) ** 2 # Computing the ramp filter from the fourier transform of its # frequency domain representation lessens artifacts and removes a # small bias as explained in [1], Chap 3. Equation 61 fourier_filter = 2 * np.real(fft(f)) # ramp filter if filter_name == "ramp": pass elif filter_name == "shepp-logan": # Start from first element to avoid divide by zero omega = np.pi * fftmodule.fftfreq(size)[1:] fourier_filter[1:] *= np.sin(omega) / omega elif filter_name == "cosine": freq = np.pi * np.linspace(0, 1, size, endpoint=False) cosine_filter = fftmodule.fftshift(np.sin(freq)) fourier_filter *= cosine_filter elif filter_name == "hamming": fourier_filter *= fftmodule.fftshift(np.hamming(size)) elif filter_name == "hann": fourier_filter *= fftmodule.fftshift(np.hanning(size)) elif filter_name is None: fourier_filter[:] = 1 return fourier_filter[:, np.newaxis]
def _get_fourier_filter(size, filter_name): """Construct the Fourier filter This computation lessens artifacts and removes a small bias as explained in [1], Chap 3. Equation 61. Parameters ---------- size: int filter size. filter_name: str, optional Filter used in frequency domain filtering. Ramp filter used by default. Filters available: ramp, shepp-logan, cosine, hamming, hann. Assign None to use no filter. Returns ------- fourier_filter: ndarray The computed Fourier filter. References ---------- .. [1] AC Kak, M Slaney, "Principles of Computerized Tomographic Imaging", IEEE Press 1988. """ n = np.concatenate((np.arange(1, size / 2 + 1, 2, dtype=np.int), np.arange(size / 2 - 1, 0, -2, dtype=np.int))) f = np.zeros(size) f[0] = 0.25 f[1::2] = -1 / (np.pi * n) ** 2 # Computing the ramp filter from the fourier transform of its # frequency domain representation lessens artifacts and removes a # small bias as explained in [1], Chap 3. Equation 61 fourier_filter = 2 * np.real(fft(f)) # ramp filter if filter_name == "ramp": pass elif filter_name == "shepp-logan": # Start from first element to avoid divide by zero omega = np.pi * fftmodule.fftfreq(size)[1:] fourier_filter[1:] *= np.sin(omega) / omega elif filter_name == "cosine": freq = np.pi * np.linspace(0, 1, size, endpoint=False) cosine_filter = fftmodule.fftshift(np.sin(freq)) fourier_filter *= cosine_filter elif filter_name == "hamming": fourier_filter *= fftmodule.fftshift(np.hamming(size)) elif filter_name == "hann": fourier_filter *= fftmodule.fftshift(np.hanning(size)) elif filter_name is None: fourier_filter[:] = 1 return fourier_filter[:, np.newaxis]
32,622
def scan_start(client: Client, args: dict) -> CommandResults: """ quttera-scan-start command: initiates scan of the provided URL or domain. :type client: ``Client`e :param Client: Qutter API client :type args: ``Dict[str, Any]`` :param args: all command arguments from ``demisto.args()`` :return: ``CommandResults`` object contain the start scan response :rtype: ``CommandResults`` """ domain = args['domain'] if not domain: raise ValueError('domain is missing') start = client._api_request(domain=domain, request_type="POST", operation="scan") demisto.debug(f"Start output {start}") readable_output = f'Started scan of {domain}' if start.get('errorstr') != 'success': readable_output = f'Failed to scan domain {domain}' return CommandResults( outputs_prefix="QutteraWebsiteMalwareScanning.Start", outputs_key_field="error", outputs=start )
def scan_start(client: Client, args: dict) -> CommandResults: """ quttera-scan-start command: initiates scan of the provided URL or domain. :type client: ``Client`e :param Client: Qutter API client :type args: ``Dict[str, Any]`` :param args: all command arguments from ``demisto.args()`` :return: ``CommandResults`` object contain the start scan response :rtype: ``CommandResults`` """ domain = args.get('domain') if not domain: raise ValueError('domain is missing') start = client._api_request(domain=domain, request_type="POST", operation="scan") demisto.debug(f"Start output {start}") readable_output = f'Started scan of {domain}' if start.get('errorstr') != 'success': readable_output = f'Failed to scan domain {domain}' return CommandResults( outputs_prefix="QutteraWebsiteMalwareScanning.Start", outputs_key_field="error", outputs=start )
32,402
def validate_input(args): """ Check if the input params for the command are valid. Return an error if any :param args: dictionary of input params """ try: # we assume all the params to be non-empty, as cortex ensures it if args.get('limit') and int(args.get('limit', '1')) <= 0: raise ValueError(f"Limit should be positive, limit: {args.get('limit')}") try: if args.get('begin', None): _start_date = parser.parse(args.get('begin')).replace(tzinfo=pytz.UTC) if args.get('end', None): _end_date = parser.parse(args.get('end')).replace(tzinfo=pytz.UTC) except Exception as e: raise ValueError("Invalid date format received") if args.get('begin', None) and _start_date > datetime.now(timezone.utc): raise ValueError(f"Start date must be a date before or equal to current") if args.get('end', None) and _end_date > datetime.now(timezone.utc): raise ValueError(f"End date must be a date before or equal to current") if args.get('begin', None) and args.get('end', None) and _start_date > _end_date: raise ValueError(f"Start date cannot be after end date") if not args.get('collection', False): raise ValueError(f"Collection Name should be provided: {arg_to_number(args.get('collection', None))}") return None except Exception as e: demisto.error("Exception with validating inputs [{}]".format(e)) raise e
def validate_input(args: Dict[str, Any]): """ Check if the input params for the command are valid. Return an error if any :param args: dictionary of input params """ try: # we assume all the params to be non-empty, as cortex ensures it if args.get('limit') and int(args.get('limit', '1')) <= 0: raise ValueError(f"Limit should be positive, limit: {args.get('limit')}") try: if args.get('begin', None): _start_date = parser.parse(args.get('begin')).replace(tzinfo=pytz.UTC) if args.get('end', None): _end_date = parser.parse(args.get('end')).replace(tzinfo=pytz.UTC) except Exception as e: raise ValueError("Invalid date format received") if args.get('begin', None) and _start_date > datetime.now(timezone.utc): raise ValueError(f"Start date must be a date before or equal to current") if args.get('end', None) and _end_date > datetime.now(timezone.utc): raise ValueError(f"End date must be a date before or equal to current") if args.get('begin', None) and args.get('end', None) and _start_date > _end_date: raise ValueError(f"Start date cannot be after end date") if not args.get('collection', False): raise ValueError(f"Collection Name should be provided: {arg_to_number(args.get('collection', None))}") return None except Exception as e: demisto.error("Exception with validating inputs [{}]".format(e)) raise e
25,722
def _assert_shapes( func: C, print_specs: Sequence[ParsedArgumentSpec], check_specs: Sequence[ParsedArgumentSpec], arg_map: Mapping[str, Any], context: Dict[str, Union[int, List[Optional[int]]]], ) -> None: def _assert(condition: bool) -> None: if not condition: raise ShapeMismatchError(func, print_specs, arg_map) for arg_spec in check_specs: actual_shape = arg_spec.argument_ref.get(func, arg_map).shape if isinstance(actual_shape, tf.TensorShape) and actual_shape.rank is None: continue actual = list(actual_shape) actual_len = len(actual) actual_i = 0 expected = arg_spec.shape.dims expected_len = len(expected) n_variable_rank = sum(dim_spec.variable_rank for dim_spec in expected) assert n_variable_rank <= 1 if n_variable_rank == 0: _assert(expected_len == actual_len) else: _assert(expected_len - n_variable_rank <= actual_len) for dim_spec in expected: if dim_spec.variable_rank: assert dim_spec.variable_name is not None expected_name = dim_spec.variable_name variable_rank_len = actual_len - (expected_len - n_variable_rank) actual_dims = actual[actual_i : actual_i + variable_rank_len] actual_i += variable_rank_len expected_dims = context.get(expected_name) if expected_dims is None: expected_dims = cast(List[Optional[int]], variable_rank_len * [None]) context[expected_name] = expected_dims assert isinstance(expected_dims, list) _assert(len(expected_dims) == len(actual_dims)) for i, actual_dim in enumerate(actual_dims): if actual_dim is None: continue if expected_dims[i] is None: expected_dims[i] = actual_dim else: _assert(expected_dims[i] == actual_dim) else: actual_dim = actual[actual_i] if actual_dim is not None: if dim_spec.constant is not None: _assert(dim_spec.constant == actual_dim) else: assert dim_spec.variable_name is not None expected_dim = context.setdefault(dim_spec.variable_name, actual_dim) _assert(expected_dim == actual_dim) actual_i += 1
def _assert_shapes( func: C, print_specs: Sequence[ParsedArgumentSpec], check_specs: Sequence[ParsedArgumentSpec], arg_map: Mapping[str, Any], context: Dict[str, Union[int, List[Optional[int]]]], ) -> None: def _assert(condition: bool) -> None: if not condition: raise ShapeMismatchError(func, print_specs, arg_map) for arg_spec in check_specs: actual_shape = arg_spec.argument_ref.get(func, arg_map).shape if isinstance(actual_shape, tf.TensorShape) and actual_shape.rank is None: continue actual = list(actual_shape) actual_len = len(actual) actual_i = 0 expected = arg_spec.shape.dims expected_len = len(expected) n_variable_rank = sum(dim_spec.variable_rank for dim_spec in expected) assert n_variable_rank <= 1 if n_variable_rank == 0: _assert(expected_len == actual_len) else: _assert(expected_len - n_variable_rank <= actual_len) for dim_spec in expected: if dim_spec.variable_rank: assert dim_spec.variable_name is not None, "??" expected_name = dim_spec.variable_name variable_rank_len = actual_len - (expected_len - n_variable_rank) actual_dims = actual[actual_i : actual_i + variable_rank_len] actual_i += variable_rank_len expected_dims = context.get(expected_name) if expected_dims is None: expected_dims = cast(List[Optional[int]], variable_rank_len * [None]) context[expected_name] = expected_dims assert isinstance(expected_dims, list) _assert(len(expected_dims) == len(actual_dims)) for i, actual_dim in enumerate(actual_dims): if actual_dim is None: continue if expected_dims[i] is None: expected_dims[i] = actual_dim else: _assert(expected_dims[i] == actual_dim) else: actual_dim = actual[actual_i] if actual_dim is not None: if dim_spec.constant is not None: _assert(dim_spec.constant == actual_dim) else: assert dim_spec.variable_name is not None expected_dim = context.setdefault(dim_spec.variable_name, actual_dim) _assert(expected_dim == actual_dim) actual_i += 1
36,517
def build_c_generator( grammar: Grammar, grammar_file: str, tokens_file: str, output_file: str, compile_extension: bool = False, verbose_c_extension: bool = False, keep_asserts_in_extension: bool = True, skip_actions: bool = False, ) -> ParserGenerator: with open(tokens_file, "r") as tok_file: exact_tok, non_exac_tok = generate_token_definitions(tok_file) with open(output_file, "w") as file: gen: ParserGenerator = CParserGenerator( grammar, exact_tok, non_exac_tok, file, skip_actions=skip_actions ) gen.generate(grammar_file) if compile_extension: compile_c_extension( output_file, verbose=verbose_c_extension, keep_asserts=keep_asserts_in_extension ) return gen
def build_c_generator( grammar: Grammar, grammar_file: str, tokens_file: str, output_file: str, compile_extension: bool = False, verbose_c_extension: bool = False, keep_asserts_in_extension: bool = True, skip_actions: bool = False, ) -> ParserGenerator: with open(tokens_file, "r") as tok_file: exact_tok, non_exac_tok = generate_token_definitions(tok_file) with open(output_file, "w") as file: gen: ParserGenerator = CParserGenerator( grammar, exact_tok, non_exact_tok, file, skip_actions=skip_actions ) gen.generate(grammar_file) if compile_extension: compile_c_extension( output_file, verbose=verbose_c_extension, keep_asserts=keep_asserts_in_extension ) return gen
56,413
def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('products', sa.Column('confidentiality', sa.String(), server_default='Confidential classified', nullable=False)) # ### end Alembic commands ###
def upgrade(): op.add_column( 'products', sa.Column( 'confidentiality', sa.String(), server_default='Confidential classified', nullable=False))
32,441
def compare_tables(left: list, right: list, index_key: str = "id", ignore_keys: list = None, table_id="compare", **kwargs) -> ScriptResult: """ Given two tables, compare by keys to look for difference and return the result. :param left: Left table :param right: Right table :param index_key: Key to use as index :param ignore_keys: Keys in table dictionary to ignore in comparison :param table_id: The string identifier for the table - appears in output :param kwargs: Keyword args !no-auto-argument """ differences = [] if ignore_keys is str: ignore_keys = [ignore_keys] left = remove_dict_keys(left, ignore_keys) right = remove_dict_keys(right, ignore_keys) pairs = zip(left, right) # Calculate objects missing in right table for left_object in left: left_value = left_object.get(index_key) right_object = next((item for item in right if item.get(index_key) == left_object.get(index_key)), None) if not right_object: differences.append(Difference( key=index_key, value=left_value, description=f"{left_value} missing.", table_id=table_id )) # Calculate differences where index_key value exists in both dict_differences = [(x, y) for x, y in pairs if x != y and x.get(index_key) == y.get(index_key)] for left_dict, right_dict in dict_differences: dict_differences = compare_two_dicts(left_dict, right_dict) s = ", ".join([f"{x} different to {y}" for (x, y) in dict_differences]) differences.append(Difference( key=index_key, value=left_dict.get(index_key), description=f"{s}", table_id=table_id )) return ScriptResult( differences=differences )
def compare_tables(left: list, right: list, index_key: str = "id", ignore_keys: list = None, table_id="compare", **kwargs) -> ScriptResult: """ Given two tables, compare by keys to look for difference and return the result. :param left: Left table :param right: Right table :param index_key: Key to use as index :param ignore_keys: Keys in table dictionary to ignore in comparison :param table_id: The string identifier for the table - appears in output :param kwargs: Keyword args !no-auto-argument """ differences = [] if isinstance(ignore_keys, str): ignore_keys = [ignore_keys] left = remove_dict_keys(left, ignore_keys) right = remove_dict_keys(right, ignore_keys) pairs = zip(left, right) # Calculate objects missing in right table for left_object in left: left_value = left_object.get(index_key) right_object = next((item for item in right if item.get(index_key) == left_object.get(index_key)), None) if not right_object: differences.append(Difference( key=index_key, value=left_value, description=f"{left_value} missing.", table_id=table_id )) # Calculate differences where index_key value exists in both dict_differences = [(x, y) for x, y in pairs if x != y and x.get(index_key) == y.get(index_key)] for left_dict, right_dict in dict_differences: dict_differences = compare_two_dicts(left_dict, right_dict) s = ", ".join([f"{x} different to {y}" for (x, y) in dict_differences]) differences.append(Difference( key=index_key, value=left_dict.get(index_key), description=f"{s}", table_id=table_id )) return ScriptResult( differences=differences )
43,631
def convert_observable(qubit_observable): r"""Converts OpenFermion :class:`~.QubitOperator` operator to a Pennylane VQE observable **Example usage** >>> h_of = decompose_hamiltonian('h2', './pyscf/sto-3g/') >>> h_pl = convert_observable(h_of) >>> h_pl.coeffs [-0.04207898+0.j 0.17771287+0.j 0.17771287+0.j -0.2427428 +0.j -0.2427428 +0.j 0.17059738+0.j 0.04475014+0.j 0.04475014+0.j 0.04475014+0.j 0.04475014+0.j 0.12293305+0.j 0.16768319+0.j 0.16768319+0.j 0.12293305+0.j 0.17627641+0.j] Args: qubit_observable (QubitOperator): Observable represented as an OpenFermion `QubitOperator` Returns: (pennylane.Hamiltonian): Pennylane VQE observable """ return Hamiltonian(*_qubit_operator_to_terms(qubit_observable))
def convert_observable(qubit_observable): r"""Converts a OpenFermion :class:`~.QubitOperator` operator to a Pennylane VQE observable **Example usage** >>> h_of = decompose_hamiltonian('h2', './pyscf/sto-3g/') >>> h_pl = convert_observable(h_of) >>> h_pl.coeffs [-0.04207898+0.j 0.17771287+0.j 0.17771287+0.j -0.2427428 +0.j -0.2427428 +0.j 0.17059738+0.j 0.04475014+0.j 0.04475014+0.j 0.04475014+0.j 0.04475014+0.j 0.12293305+0.j 0.16768319+0.j 0.16768319+0.j 0.12293305+0.j 0.17627641+0.j] Args: qubit_observable (QubitOperator): Observable represented as an OpenFermion `QubitOperator` Returns: (pennylane.Hamiltonian): Pennylane VQE observable """ return Hamiltonian(*_qubit_operator_to_terms(qubit_observable))
56,044
def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() # set up weights and biases if available if is_wandb_available() and args.wandb: import wandb wandb.init(project=args.output_dir.split("/")[-1]) else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Load dataset # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # TODO support datasets from local folders dataset = load_dataset(args.dataset_name, cache_dir=args.cache_dir) # Rename column names to standardized names (only "image" and "label" need to be present) if "pixel_values" in dataset["train"].column_names: dataset = dataset.rename_columns({"pixel_values": "image"}) if "annotation" in dataset["train"].column_names: dataset = dataset.rename_columns({"annotation": "label"}) # If we don't have a validation split, split off a percentage of train as validation. args.train_val_split = None if "validation" in dataset.keys() else args.train_val_split if isinstance(args.train_val_split, float) and args.train_val_split > 0.0: split = dataset["train"].train_test_split(args.train_val_split) dataset["train"] = split["train"] dataset["validation"] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. if args.dataset_name == "scene_parse_150": repo_id = "datasets/huggingface/label-files" filename = "ade20k-id2label.json" num_labels = 150 else: repo_id = f"datasets/{args.dataset_name}" filename = "id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: k for k, v in id2label.items()} num_labels = len(id2label) # Load pretrained model and feature extractor config = AutoConfig.from_pretrained( args.model_name_or_path, num_labels=num_labels, id2label=id2label, label2id=label2id ) feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_name_or_path) model = AutoModelForSemanticSegmentation.from_pretrained( args.model_name_or_path, config=config, ) # Preprocessing the datasets # Define torchvision transforms to be applied to each image + target. # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9 # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py _train_transforms = Compose( [ ReduceLabels() if args.reduce_labels else Identity(), RandomCrop(size=feature_extractor.size), RandomHorizontalFlip(flip_prob=0.5), PILToTensor(), ConvertImageDtype(torch.float), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ] ) # Define torchvision transform to be applied to each image. # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) _val_transforms = Compose( [ ReduceLabels() if args.reduce_labels else Identity(), Resize(size=(feature_extractor.size, feature_extractor.size)), PILToTensor(), ConvertImageDtype(torch.float), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ] ) def train_transforms(example_batch): pixel_values = [] labels = [] for image, target in zip(example_batch["image"], example_batch["label"]): image, target = _train_transforms(image.convert("RGB"), target) pixel_values.append(image) labels.append(target) encoding = dict() encoding["pixel_values"] = torch.stack(pixel_values) encoding["labels"] = torch.stack(labels) return encoding def val_transforms(example_batch): pixel_values = [] labels = [] for image, target in zip(example_batch["image"], example_batch["label"]): image, target = _val_transforms(image.convert("RGB"), target) pixel_values.append(image) labels.append(target) encoding = dict() encoding["pixel_values"] = torch.stack(pixel_values) encoding["labels"] = torch.stack(labels) return encoding with accelerator.main_process_first(): train_dataset = dataset["train"].with_transform(train_transforms) eval_dataset = dataset["validation"].with_transform(val_transforms) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader( eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer optimizer = torch.optim.AdamW( list(model.parameters()), lr=args.learning_rate, betas=[args.adam_beta1, args.adam_beta2], eps=args.adam_epsilon, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Instantiate metric metric = load_metric("mean_iou") # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if completed_steps >= args.max_train_steps: break # Log all results if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0: loss.detach() if accelerator.state.num_processes > 1: loss = accelerator.gather(loss).sum() / accelerator.num_processes train_logs = { "loss": loss, "lr": torch.tensor(optimizer.param_groups[0]["lr"]), } # Evaluate (gather required) with torch.no_grad(): upsampled_logits = torch.nn.functional.interpolate( outputs.logits, size=batch["labels"].shape[-2:], mode="bilinear", align_corners=False ) predictions = upsampled_logits.argmax(dim=1) metric.add_batch( predictions=accelerator.gather(predictions), references=accelerator.gather(batch["labels"]), ) train_metrics = metric.compute( num_labels=len(id2label), ignore_index=255, reduce_labels=False, # we've already reduced the labels before ) train_logs["mean_iou"] = train_metrics["mean_iou"] train_logs["mean_accuracy"] = train_metrics["mean_accuracy"] train_logs["overall_accuracy"] = train_metrics["overall_accuracy"] log_str = "" for k, v in train_logs.items(): if isinstance(v, torch.Tensor): log_str += "| {}: {:.3e}".format(k, v.item()) else: log_str += "| {}: {:.3e}".format(k, v) if accelerator.is_local_main_process: progress_bar.write(log_str) if is_wandb_available() and args.wandb: wandb.log(train_logs) # Save model every `args.saving_steps` steps if (step + 1) % (args.gradient_accumulation_steps * args.saving_steps) == 0: if (args.push_to_hub and epoch < args.num_train_epochs - 1) or args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if (args.push_to_hub and epoch < args.num_train_epochs - 1) and accelerator.is_main_process: repo.push_to_hub( commit_message=f"Training in progress step {completed_steps}", blocking=False, auto_lfs_prune=True, ) logger.info("***** Running evaluation *****") model.eval() for step, batch in enumerate(tqdm(eval_dataloader, disable=not accelerator.is_local_main_process)): outputs = model(**batch) upsampled_logits = torch.nn.functional.interpolate( outputs.logits, size=batch["labels"].shape[-2:], mode="bilinear", align_corners=False ) predictions = upsampled_logits.argmax(dim=1) metric.add_batch( predictions=accelerator.gather(predictions), references=accelerator.gather(batch["labels"]), ) eval_metrics = metric.compute( num_labels=len(id2label), ignore_index=255, reduce_labels=False, # we've already reduced the labels before ) logger.info(f"epoch {epoch}: {eval_metrics}") if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: feature_extractor.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: feature_extractor.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment accelerator = Accelerator(log_with="wandb") if args.wandb else Accelerator() logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() # set up weights and biases if available if is_wandb_available() and args.wandb: import wandb wandb.init(project=args.output_dir.split("/")[-1]) else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Load dataset # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # TODO support datasets from local folders dataset = load_dataset(args.dataset_name, cache_dir=args.cache_dir) # Rename column names to standardized names (only "image" and "label" need to be present) if "pixel_values" in dataset["train"].column_names: dataset = dataset.rename_columns({"pixel_values": "image"}) if "annotation" in dataset["train"].column_names: dataset = dataset.rename_columns({"annotation": "label"}) # If we don't have a validation split, split off a percentage of train as validation. args.train_val_split = None if "validation" in dataset.keys() else args.train_val_split if isinstance(args.train_val_split, float) and args.train_val_split > 0.0: split = dataset["train"].train_test_split(args.train_val_split) dataset["train"] = split["train"] dataset["validation"] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. if args.dataset_name == "scene_parse_150": repo_id = "datasets/huggingface/label-files" filename = "ade20k-id2label.json" num_labels = 150 else: repo_id = f"datasets/{args.dataset_name}" filename = "id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: k for k, v in id2label.items()} num_labels = len(id2label) # Load pretrained model and feature extractor config = AutoConfig.from_pretrained( args.model_name_or_path, num_labels=num_labels, id2label=id2label, label2id=label2id ) feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_name_or_path) model = AutoModelForSemanticSegmentation.from_pretrained( args.model_name_or_path, config=config, ) # Preprocessing the datasets # Define torchvision transforms to be applied to each image + target. # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9 # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py _train_transforms = Compose( [ ReduceLabels() if args.reduce_labels else Identity(), RandomCrop(size=feature_extractor.size), RandomHorizontalFlip(flip_prob=0.5), PILToTensor(), ConvertImageDtype(torch.float), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ] ) # Define torchvision transform to be applied to each image. # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) _val_transforms = Compose( [ ReduceLabels() if args.reduce_labels else Identity(), Resize(size=(feature_extractor.size, feature_extractor.size)), PILToTensor(), ConvertImageDtype(torch.float), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ] ) def train_transforms(example_batch): pixel_values = [] labels = [] for image, target in zip(example_batch["image"], example_batch["label"]): image, target = _train_transforms(image.convert("RGB"), target) pixel_values.append(image) labels.append(target) encoding = dict() encoding["pixel_values"] = torch.stack(pixel_values) encoding["labels"] = torch.stack(labels) return encoding def val_transforms(example_batch): pixel_values = [] labels = [] for image, target in zip(example_batch["image"], example_batch["label"]): image, target = _val_transforms(image.convert("RGB"), target) pixel_values.append(image) labels.append(target) encoding = dict() encoding["pixel_values"] = torch.stack(pixel_values) encoding["labels"] = torch.stack(labels) return encoding with accelerator.main_process_first(): train_dataset = dataset["train"].with_transform(train_transforms) eval_dataset = dataset["validation"].with_transform(val_transforms) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader( eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer optimizer = torch.optim.AdamW( list(model.parameters()), lr=args.learning_rate, betas=[args.adam_beta1, args.adam_beta2], eps=args.adam_epsilon, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Instantiate metric metric = load_metric("mean_iou") # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if completed_steps >= args.max_train_steps: break # Log all results if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0: loss.detach() if accelerator.state.num_processes > 1: loss = accelerator.gather(loss).sum() / accelerator.num_processes train_logs = { "loss": loss, "lr": torch.tensor(optimizer.param_groups[0]["lr"]), } # Evaluate (gather required) with torch.no_grad(): upsampled_logits = torch.nn.functional.interpolate( outputs.logits, size=batch["labels"].shape[-2:], mode="bilinear", align_corners=False ) predictions = upsampled_logits.argmax(dim=1) metric.add_batch( predictions=accelerator.gather(predictions), references=accelerator.gather(batch["labels"]), ) train_metrics = metric.compute( num_labels=len(id2label), ignore_index=255, reduce_labels=False, # we've already reduced the labels before ) train_logs["mean_iou"] = train_metrics["mean_iou"] train_logs["mean_accuracy"] = train_metrics["mean_accuracy"] train_logs["overall_accuracy"] = train_metrics["overall_accuracy"] log_str = "" for k, v in train_logs.items(): if isinstance(v, torch.Tensor): log_str += "| {}: {:.3e}".format(k, v.item()) else: log_str += "| {}: {:.3e}".format(k, v) if accelerator.is_local_main_process: progress_bar.write(log_str) if is_wandb_available() and args.wandb: wandb.log(train_logs) # Save model every `args.saving_steps` steps if (step + 1) % (args.gradient_accumulation_steps * args.saving_steps) == 0: if (args.push_to_hub and epoch < args.num_train_epochs - 1) or args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if (args.push_to_hub and epoch < args.num_train_epochs - 1) and accelerator.is_main_process: repo.push_to_hub( commit_message=f"Training in progress step {completed_steps}", blocking=False, auto_lfs_prune=True, ) logger.info("***** Running evaluation *****") model.eval() for step, batch in enumerate(tqdm(eval_dataloader, disable=not accelerator.is_local_main_process)): outputs = model(**batch) upsampled_logits = torch.nn.functional.interpolate( outputs.logits, size=batch["labels"].shape[-2:], mode="bilinear", align_corners=False ) predictions = upsampled_logits.argmax(dim=1) metric.add_batch( predictions=accelerator.gather(predictions), references=accelerator.gather(batch["labels"]), ) eval_metrics = metric.compute( num_labels=len(id2label), ignore_index=255, reduce_labels=False, # we've already reduced the labels before ) logger.info(f"epoch {epoch}: {eval_metrics}") if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: feature_extractor.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: feature_extractor.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
42,504
def wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None): """ Compute the first Wasserstein distance between two 1D distributions. :param u_values: Values of first distribution with shape (nb_samples, feature_dim_1, ..., feature_dim_n) :type u_values: `np.ndarray` :param v_values: Values of second distribution with shape (nb_samples, feature_dim_1, ..., feature_dim_n) :type v_values: `np.ndarray` :param u_weights: Weight for each value. If None equal weights will be used. :type u_weights: `np.ndarray` :param v_weights: Weight for each value. If None equal weights will be used. :type v_weights: `np.ndarray` :return: The Wasserstein distance between the two distributions :rtype: `np.ndarray` """ from scipy.stats import wasserstein_distance assert u_values.shape == v_values.shape if u_weights is not None: assert v_weights is not None if u_weights is None: assert v_weights is None if u_weights is not None and v_weights is not None: assert u_weights.shape == v_weights.shape if u_weights is not None: assert u_values.shape[0] == u_weights.shape[0] u_values = u_values.flatten().reshape(u_values.shape[0], -1) v_values = v_values.flatten().reshape(v_values.shape[0], -1) wd = np.zeros(u_values.shape[0]) for i in range(u_values.shape[0]): if u_weights is None and v_weights is None: wd[i] = wasserstein_distance(u_values[i], v_values[i]) elif u_weights is not None and v_weights is not None: wd[i] = wasserstein_distance(u_values[i], v_values[i], u_weights[i], v_weights[i]) return wd
def wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None): """ Compute the first Wasserstein distance between two 1D distributions. :param u_values: Values of first distribution with shape (nb_samples, feature_dim_1, ..., feature_dim_n) :type u_values: `np.ndarray` :param v_values: Values of second distribution with shape (nb_samples, feature_dim_1, ..., feature_dim_n) :type v_values: `np.ndarray` :param u_weights: Weight for each value. If None equal weights will be used. :type u_weights: `np.ndarray` :param v_weights: Weight for each value. If None equal weights will be used. :type v_weights: `np.ndarray` :return: The Wasserstein distance between the two distributions :rtype: `np.ndarray` """ from scipy.stats import wasserstein_distance assert u_values.shape == v_values.shape if u_weights is not None: assert v_weights is not None if u_weights is None: assert v_weights is None if u_weights is not None and v_weights is not None: assert u_weights.shape == v_weights.shape if u_weights is not None: assert u_values.shape[0] == u_weights.shape[0] u_values = u_values.flatten().reshape(u_values.shape[0], -1) v_values = v_values.flatten().reshape(v_values.shape[0], -1) wd = np.zeros(u_values.shape[0]) for i in range(u_values.shape[0]): if u_weights is None and v_weights is None: wd[i] = wasserstein_distance(u_values[i], v_values[i]) else: wd[i] = wasserstein_distance(u_values[i], v_values[i], u_weights[i], v_weights[i]) return wd
1,343
def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. If True, for binary y_true, the score function is supposed to accpet 1d y_pred (i.e., probability of the positive class, shape ``(n_samples,)``). needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. If True, for binary y_true, the score function is supposed to accpet 1d y_pred (i.e., probability of the positive class or the decision function, shape ``(n_samples,)``). For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs)
def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. If True, for binary y_true, the score function is supposed to accpet 1d y_pred (i.e., probability of the positive class, shape ``(n_samples,)``). needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. If True, for binary y_true, the score function is supposed to accept 1d y_pred (i.e., probability of the positive class or the decision function, shape ``(n_samples,)``). For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs)
32,056
def qradar_offense_update_command(client: Client, args: Dict) -> CommandResults: """ Updates offense that corresponds to the given offense ID. possible arguments: - offense_id (Required): Update offense that corresponds to ID given. - protected: Whether the offense is protected. - follow_up: Whether the offense should be marked for follow up. - status: Status of the offense. One of 'OPEN', 'HIDDEN', 'CLOSED'. - closing_reason_id: The ID of the reason the offense was closed. full list of closing reason IDs, full list of closing reason IDs can be retrieved by 'qradar-closing-reasons' command. - assigned_to: The user whom to assign the offense to. - fields: If used, will filter all fields except for the specified ones. Use this parameter to specify which fields you would like to get back in the response. Fields that are not explicitly named are excluded. Args: client (Client): QRadar client to perform the API call. args (Dict): Demisto args. Returns: CommandResults. """ offense_id: int = int(args['offense_id']) protected = args.get('protected') follow_up = args.get('follow_up') closing_reason_name = args.get('closing_reason_name') status = args.get('status') closing_reason_id = args.get('closing_reason_id') if status == 'CLOSED' and (not closing_reason_id and not closing_reason_name): raise DemistoException( '''Closing reason ID must be provided when closing an offense. Available closing reasons can be achieved by 'qradar-closing-reasons' command.''' ) if closing_reason_name: # if this call fails raise an error and stop command execution closing_reasons_list = client.closing_reasons_list(include_deleted=True, include_reserved=True) for closing_reason in closing_reasons_list: if closing_reason.get('text') == closing_reason_name: closing_reason_id = closing_reason.get('id') if not closing_reason_id: raise DemistoException(f'Could not find closing reason name {closing_reason_name}. Please provide a valid' ' closing reason name. Closing reasons can be retrieved by running the ' 'qradar-closing-reasons command.') assigned_to = args.get('assigned_to') fields = args.get('fields') ip_enrich, asset_enrich = get_offense_enrichment(args.get('enrichment', 'None')) # if this call fails raise an error and stop command execution response = client.offense_update(offense_id, protected, follow_up, status, closing_reason_id, assigned_to, fields) enriched_outputs = enrich_offenses_result(client, response, ip_enrich, asset_enrich) final_outputs = sanitize_outputs(enriched_outputs, OFFENSE_OLD_NEW_NAMES_MAP) headers = build_headers(['ID', 'Description', 'OffenseType', 'Status', 'Severity'], set(OFFENSE_OLD_NEW_NAMES_MAP.values())) return CommandResults( readable_output=tableToMarkdown('offense Update', final_outputs, headers, removeNull=True), outputs_prefix='QRadar.Offense', outputs_key_field='ID', outputs=final_outputs, raw_response=response )
def qradar_offense_update_command(client: Client, args: Dict) -> CommandResults: """ Updates offense that corresponds to the given offense ID. possible arguments: - offense_id (Required): Update offense that corresponds to ID given. - protected: Whether the offense is protected. - follow_up: Whether the offense should be marked for follow up. - status: Status of the offense. One of 'OPEN', 'HIDDEN', 'CLOSED'. - closing_reason_id: The ID of the reason the offense was closed. full list of closing reason IDs, full list of closing reason IDs can be retrieved by 'qradar-closing-reasons' command. - assigned_to: The user whom to assign the offense to. - fields: If used, will filter all fields except for the specified ones. Use this parameter to specify which fields you would like to get back in the response. Fields that are not explicitly named are excluded. Args: client (Client): QRadar client to perform the API call. args (Dict): Demisto args. Returns: CommandResults. """ offense_id: int = int(args['offense_id']) protected = args.get('protected') follow_up = args.get('follow_up') closing_reason_name = args.get('closing_reason_name') status = args.get('status') closing_reason_id = args.get('closing_reason_id') if status == 'CLOSED' and (not closing_reason_id and not closing_reason_name): raise DemistoException( '''Closing reason ID must be provided when closing an offense. Available closing reasons can be achieved by 'qradar-closing-reasons' command.''' ) if closing_reason_name: # if this call fails, raise an error and stop command execution closing_reasons_list = client.closing_reasons_list(include_deleted=True, include_reserved=True) for closing_reason in closing_reasons_list: if closing_reason.get('text') == closing_reason_name: closing_reason_id = closing_reason.get('id') if not closing_reason_id: raise DemistoException(f'Could not find closing reason name {closing_reason_name}. Please provide a valid' ' closing reason name. Closing reasons can be retrieved by running the ' 'qradar-closing-reasons command.') assigned_to = args.get('assigned_to') fields = args.get('fields') ip_enrich, asset_enrich = get_offense_enrichment(args.get('enrichment', 'None')) # if this call fails raise an error and stop command execution response = client.offense_update(offense_id, protected, follow_up, status, closing_reason_id, assigned_to, fields) enriched_outputs = enrich_offenses_result(client, response, ip_enrich, asset_enrich) final_outputs = sanitize_outputs(enriched_outputs, OFFENSE_OLD_NEW_NAMES_MAP) headers = build_headers(['ID', 'Description', 'OffenseType', 'Status', 'Severity'], set(OFFENSE_OLD_NEW_NAMES_MAP.values())) return CommandResults( readable_output=tableToMarkdown('offense Update', final_outputs, headers, removeNull=True), outputs_prefix='QRadar.Offense', outputs_key_field='ID', outputs=final_outputs, raw_response=response )
17,662
def main(args=None): lgr.log(5, "Starting main(%r)", args) args = args or sys.argv if on_msys_tainted_paths: # Possibly present DataLadRIs were stripped of a leading / args = [_fix_datalad_ri(s) for s in args] # PYTHON_ARGCOMPLETE_OK parser = setup_parser(args, completing="_ARGCOMPLETE" in os.environ) try: import argcomplete argcomplete.autocomplete(parser) except ImportError: pass # parse cmd args lgr.debug("Parsing known args among %s", repr(args)) cmdlineargs, unparsed_args = parser.parse_known_args(args[1:]) has_func = hasattr(cmdlineargs, 'func') and cmdlineargs.func is not None if unparsed_args: if has_func and cmdlineargs.func.__self__.__name__ != 'Export': lgr.error('unknown argument{}: {}'.format( 's' if len(unparsed_args) > 1 else '', unparsed_args if len(unparsed_args) > 1 else unparsed_args[0])) cmdlineargs.subparser.print_usage() sys.exit(1) else: # store all unparsed arguments cmdlineargs.datalad_unparsed_args = unparsed_args # to possibly be passed into PBS scheduled call args_ = args or sys.argv if cmdlineargs.cfg_overrides is not None: datalad.cfg.overrides.update( _parse_overrides_from_cmdline(cmdlineargs) ) # enable overrides datalad.cfg.reload(force=True) if cmdlineargs.change_path is not None: from .common_args import change_path as change_path_opt for path in cmdlineargs.change_path: chpwd(path) args_ = strip_arg_from_argv(args_, path, change_path_opt[1]) ret = None if cmdlineargs.pbs_runner: from .helpers import run_via_pbs from .common_args import pbs_runner as pbs_runner_opt args_ = strip_arg_from_argv(args_, cmdlineargs.pbs_runner, pbs_runner_opt[1]) # run the function associated with the selected command run_via_pbs(args_, cmdlineargs.pbs_runner) elif has_func: if cmdlineargs.common_debug or cmdlineargs.common_idebug: # so we could see/stop clearly at the point of failure setup_exceptionhook(ipython=cmdlineargs.common_idebug) from datalad.interface.base import Interface Interface._interrupted_exit_code = None ret = cmdlineargs.func(cmdlineargs) else: # otherwise - guard and only log the summary. Postmortem is not # as convenient if being caught in this ultimate except try: ret = cmdlineargs.func(cmdlineargs) except InsufficientArgumentsError as exc: # if the func reports inappropriate usage, give help output ce = CapturedException(exc) ce.log(lgr, logging.ERROR, "%s", ce.format_short()) cmdlineargs.subparser.print_usage(sys.stderr) sys.exit(2) except IncompleteResultsError as exc: # rendering for almost all commands now happens 'online' # hence we are no longer attempting to render the actual # results in an IncompleteResultsError, but rather trust that # this happened before # in general we do not want to see the error again, but # present in debug output ce = CapturedException(exc) ce.log(lgr, logging.DEBUG, "could not perform all requested actions: %s", ce.format_short()) sys.exit(1) except CommandError as exc: # behave as if the command ran directly, importantly pass # exit code as is # to not duplicate any captured output in the exception # rendering, will come next exc_msg = exc.to_str(include_output=False) if exc_msg: msg = exc_msg.encode() if isinstance(exc_msg, str) else exc_msg os.write(2, msg + b"\n") if exc.stdout: os.write(1, exc.stdout.encode() if isinstance(exc.stdout, str) else exc.stdout) if exc.stderr: os.write(2, exc.stderr.encode() if isinstance(exc.stderr, str) else exc.stderr) # We must not exit with 0 code if any exception got here but # had no code defined sys.exit(exc.code if exc.code is not None else 1) except Exception as exc: ce = CapturedException(exc) ce.log(lgr, logging.ERROR, "%s", ce.format_short()) sys.exit(1) else: # just let argparser spit out its error, since there is smth wrong parser.parse_args(args) # if that one didn't puke -- we should parser.print_usage() lgr.error("Please specify the command") sys.exit(2) try: if hasattr(cmdlineargs, 'result_renderer'): cmdlineargs.result_renderer(ret, cmdlineargs) except Exception as exc: ce = CapturedException(exc) ce.log(lgr, logging.ERROR, "Failed to render results due to %s", ce.format_short()) sys.exit(1)
def main(args=None): lgr.log(5, "Starting main(%r)", args) args = args or sys.argv if on_msys_tainted_paths: # Possibly present DataLadRIs were stripped of a leading / args = [_fix_datalad_ri(s) for s in args] # PYTHON_ARGCOMPLETE_OK parser = setup_parser(args, completing="_ARGCOMPLETE" in os.environ) try: import argcomplete argcomplete.autocomplete(parser) except ImportError: pass # parse cmd args lgr.debug("Parsing known args among %s", repr(args)) cmdlineargs, unparsed_args = parser.parse_known_args(args[1:]) has_func = hasattr(cmdlineargs, 'func') and cmdlineargs.func is not None if unparsed_args: if has_func and cmdlineargs.func.__self__.__name__ != 'Export': lgr.error('unknown argument{}: {}'.format( 's' if len(unparsed_args) > 1 else '', unparsed_args if len(unparsed_args) > 1 else unparsed_args[0])) cmdlineargs.subparser.print_usage() sys.exit(1) else: # store all unparsed arguments cmdlineargs.datalad_unparsed_args = unparsed_args # to possibly be passed into PBS scheduled call args_ = args or sys.argv if cmdlineargs.cfg_overrides is not None: datalad.cfg.overrides.update( _parse_overrides_from_cmdline(cmdlineargs) ) # enable overrides datalad.cfg.reload(force=True) if cmdlineargs.change_path is not None: from .common_args import change_path as change_path_opt for path in cmdlineargs.change_path: chpwd(path) args_ = strip_arg_from_argv(args_, path, change_path_opt[1]) ret = None if cmdlineargs.pbs_runner: from .helpers import run_via_pbs from .common_args import pbs_runner as pbs_runner_opt args_ = strip_arg_from_argv(args_, cmdlineargs.pbs_runner, pbs_runner_opt[1]) # run the function associated with the selected command run_via_pbs(args_, cmdlineargs.pbs_runner) elif has_func: if cmdlineargs.common_debug or cmdlineargs.common_idebug: # so we could see/stop clearly at the point of failure setup_exceptionhook(ipython=cmdlineargs.common_idebug) from datalad.interface.base import Interface Interface._interrupted_exit_code = None ret = cmdlineargs.func(cmdlineargs) else: # otherwise - guard and only log the summary. Postmortem is not # as convenient if being caught in this ultimate except try: ret = cmdlineargs.func(cmdlineargs) except InsufficientArgumentsError as exc: # if the func reports inappropriate usage, give help output lgr.error("", exc_info=exc) cmdlineargs.subparser.print_usage(sys.stderr) sys.exit(2) except IncompleteResultsError as exc: # rendering for almost all commands now happens 'online' # hence we are no longer attempting to render the actual # results in an IncompleteResultsError, but rather trust that # this happened before # in general we do not want to see the error again, but # present in debug output ce = CapturedException(exc) ce.log(lgr, logging.DEBUG, "could not perform all requested actions: %s", ce.format_short()) sys.exit(1) except CommandError as exc: # behave as if the command ran directly, importantly pass # exit code as is # to not duplicate any captured output in the exception # rendering, will come next exc_msg = exc.to_str(include_output=False) if exc_msg: msg = exc_msg.encode() if isinstance(exc_msg, str) else exc_msg os.write(2, msg + b"\n") if exc.stdout: os.write(1, exc.stdout.encode() if isinstance(exc.stdout, str) else exc.stdout) if exc.stderr: os.write(2, exc.stderr.encode() if isinstance(exc.stderr, str) else exc.stderr) # We must not exit with 0 code if any exception got here but # had no code defined sys.exit(exc.code if exc.code is not None else 1) except Exception as exc: ce = CapturedException(exc) ce.log(lgr, logging.ERROR, "%s", ce.format_short()) sys.exit(1) else: # just let argparser spit out its error, since there is smth wrong parser.parse_args(args) # if that one didn't puke -- we should parser.print_usage() lgr.error("Please specify the command") sys.exit(2) try: if hasattr(cmdlineargs, 'result_renderer'): cmdlineargs.result_renderer(ret, cmdlineargs) except Exception as exc: ce = CapturedException(exc) ce.log(lgr, logging.ERROR, "Failed to render results due to %s", ce.format_short()) sys.exit(1)
3,410
def get_available_derived_metrics( supported_metric_ids_in_entities: Dict[MetricType, Sequence[int]], ) -> Set[str]: """ Function that takes as input a dictionary of the available ids in each entity, , and in turn goes through each derived metric, and returns back the set of the derived metrics that have data in the dataset in respect to the project filter. For instances of SingularEntityDerivedMetrics, it is enough to make sure that the constituent metric ids span a single entity and are present in the passed in dictionary. On the other hand, the available instances of CompositeEntityDerivedMetrics are computed from the found constituent instances of SingularEntityDerivedMetric """ found_derived_metrics = set() composite_entity_derived_metrics = set() for derived_metric_name, derived_metric_obj in DERIVED_METRICS.items(): try: derived_metric_obj_ids = derived_metric_obj.generate_metric_ids() except NotSupportedOverCompositeEntityException: # If we encounter a derived metric composed of constituents spanning multiple # entities then we store it in this set composite_entity_derived_metrics.add(derived_metric_obj.metric_name) continue for ids_per_entity in supported_metric_ids_in_entities.values(): if derived_metric_obj_ids.intersection(ids_per_entity) == derived_metric_obj_ids: found_derived_metrics.add(derived_metric_name) # If we find a match in ids in one entity, then skip checks across entities break for composite_derived_metric_name in composite_entity_derived_metrics: # We naively loop over singular entity derived metric constituents of a composite entity # derived metric and check if they have already been found and if that is the case, # then we add that instance of composite metric to the found derived metric. composite_derived_metric_obj = DERIVED_METRICS[composite_derived_metric_name] single_entity_constituents = set( list( composite_derived_metric_obj.naively_generate_singular_entity_constituents().values() ).pop() ) if single_entity_constituents.issubset(found_derived_metrics): found_derived_metrics.add(composite_derived_metric_obj.metric_name) return found_derived_metrics
def get_available_derived_metrics( supported_metric_ids_in_entities: Dict[MetricType, Sequence[int]], ) -> Set[str]: """ Function that takes as input a dictionary of the available ids in each entity, and in turn goes through each derived metric, and returns back the set of the derived metrics that have data in the dataset in respect to the project filter. For instances of SingularEntityDerivedMetrics, it is enough to make sure that the constituent metric ids span a single entity and are present in the passed in dictionary. On the other hand, the available instances of CompositeEntityDerivedMetrics are computed from the found constituent instances of SingularEntityDerivedMetric """ found_derived_metrics = set() composite_entity_derived_metrics = set() for derived_metric_name, derived_metric_obj in DERIVED_METRICS.items(): try: derived_metric_obj_ids = derived_metric_obj.generate_metric_ids() except NotSupportedOverCompositeEntityException: # If we encounter a derived metric composed of constituents spanning multiple # entities then we store it in this set composite_entity_derived_metrics.add(derived_metric_obj.metric_name) continue for ids_per_entity in supported_metric_ids_in_entities.values(): if derived_metric_obj_ids.intersection(ids_per_entity) == derived_metric_obj_ids: found_derived_metrics.add(derived_metric_name) # If we find a match in ids in one entity, then skip checks across entities break for composite_derived_metric_name in composite_entity_derived_metrics: # We naively loop over singular entity derived metric constituents of a composite entity # derived metric and check if they have already been found and if that is the case, # then we add that instance of composite metric to the found derived metric. composite_derived_metric_obj = DERIVED_METRICS[composite_derived_metric_name] single_entity_constituents = set( list( composite_derived_metric_obj.naively_generate_singular_entity_constituents().values() ).pop() ) if single_entity_constituents.issubset(found_derived_metrics): found_derived_metrics.add(composite_derived_metric_obj.metric_name) return found_derived_metrics
24,871
def check_config_7(machine, old_conf, new_conf): """Example code must not trigger the message Given an if construct without an elif When the body of the if ends with an if Then no message shall be triggered. """ if old_conf: if not new_conf: machine.disable() elif old_conf.value != new_conf.value: machine.disable() machine.enable(new_conf.value) else: pass
def not_triggered_if_outer_block_does_not_have_elif(machine, old_conf, new_conf): """Example code must not trigger the message Given an if construct without an elif When the body of the if ends with an if Then no message shall be triggered. """ if old_conf: if not new_conf: machine.disable() elif old_conf.value != new_conf.value: machine.disable() machine.enable(new_conf.value) else: pass
28,056
def ch_workdir(metadata: Optional[Dict]): """ Change workspace directory """ if not metadata or 'working_directory' not in metadata: return working_dir = metadata['working_directory'] try: os.chdir(working_dir) except OSError as oerr: LOG.debug(oerr) LOG.error("Working directory %s is missing.\nCan not parse reports " "safely.", working_dir) sys.exit(1)
def ch_workdir(metadata: Optional[Dict]): """ Change working directory to the one noted in metadata.json if this file exists and contains "working_directory". """ if not metadata or 'working_directory' not in metadata: return working_dir = metadata['working_directory'] try: os.chdir(working_dir) except OSError as oerr: LOG.debug(oerr) LOG.error("Working directory %s is missing.\nCan not parse reports " "safely.", working_dir) sys.exit(1)
26,259
def package_config_from_data(packages_data): if packages_data is None: packages_data = {'packages': []} try: packages = PackageConfig.from_dict(packages_data) except ValidationError as e: raise DbtProjectError( MALFORMED_PACKAGE_ERROR ) from e return packages
def package_config_from_data(packages_data): if packages_data is None: packages_data = {'packages': []} try: packages = PackageConfig.from_dict(packages_data) except ValidationError as e: raise DbtProjectError( MALFORMED_PACKAGE_ERROR.format(error=str(e)) ) from e return packages
43,265
def create_Unsupervised_graphSAGE_model(graph): generator = GraphSAGELinkGenerator(graph, batch_size=2, num_samples=[2, 2]) unsupervisedSamples = UnsupervisedSampler( graph, nodes=graph.nodes(), length=3, number_of_walks=2 ) train_gen = generator.flow(unsupervisedSamples) base_model = GraphSAGE( layer_sizes=[8, 8], generator=train_gen, bias=True, dropout=0.5 ) x_inp, x_out = base_model.build() prediction = link_classification( output_dim=1, output_act="relu", edge_embedding_method="ip" )(x_out) keras_model = Model(inputs=x_inp, outputs=prediction) return base_model, keras_model, generator, train_gen
def create_Unsupervised_graphSAGE_model(graph): generator = GraphSAGELinkGenerator(graph, batch_size=2, num_samples=[2, 2]) unsupervisedSamples = UnsupervisedSampler( graph, nodes=graph.nodes(), length=3, number_of_walks=2 ) train_gen = generator.flow(unsupervisedSamples) base_model = GraphSAGE( layer_sizes=[8, 8], generator=generator, bias=True, dropout=0.5 ) x_inp, x_out = base_model.build() prediction = link_classification( output_dim=1, output_act="relu", edge_embedding_method="ip" )(x_out) keras_model = Model(inputs=x_inp, outputs=prediction) return base_model, keras_model, generator, train_gen
24,833
def run_using_a_configuration_file( configuration_path: Union[Path, str], file_to_lint: str = __file__ ) -> Tuple[Mock, Mock, Run]: """Simulate a run with a configuration without really launching the checks.""" configuration_path = str(configuration_path) args = ["--rcfile", configuration_path, file_to_lint] # If we used `pytest.raises(SystemExit)`, the `runner` variable # would not be accessible outside the `with` block. with unittest.mock.patch("sys.exit") as mocked_exit: # Do not actually run checks, that could be slow. Do not mock # `Pylinter.check`: it calls `Pylinter.initialize` which is # needed to properly set up messages inclusion/exclusion # in `_msg_states`, used by `is_message_enabled`. check = "pylint.lint.pylinter.check_parallel" with unittest.mock.patch(check) as mocked_check_parallel: runner = Run(args) return mocked_exit, mocked_check_parallel, runner
def run_using_a_configuration_file( configuration_path: Union[Path, str], file_to_lint: str = __file__ ) -> Tuple[Mock, Mock, Run]: """Simulate a run with a configuration without really launching the checks.""" configuration_path = str(configuration_path) args = ["--rcfile", configuration_path, file_to_lint] # We do not capture the `SystemExit` as then the `runner` variable # would not be accessible outside the `with` block. with unittest.mock.patch("sys.exit") as mocked_exit: # Do not actually run checks, that could be slow. Do not mock # `Pylinter.check`: it calls `Pylinter.initialize` which is # needed to properly set up messages inclusion/exclusion # in `_msg_states`, used by `is_message_enabled`. check = "pylint.lint.pylinter.check_parallel" with unittest.mock.patch(check) as mocked_check_parallel: runner = Run(args) return mocked_exit, mocked_check_parallel, runner
49,627
def from_dict(data, npartitions=None, orient='columns', dtype=None, columns=None): """ Construct a Dask DataFrame from a Python Dictionary Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. npartitions : int, optional The number of partitions of the index to create. Note that depending on the size and index of the dataframe, the output may have fewer partitions than requested. orient : {'columns', 'index', 'tight'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. If 'tight', assume a dict with keys ['index', 'columns', 'data', 'index_names', 'column_names']. dtype: bool Data type to force, otherwise infer. columns: string, optional Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'`` or ``orient='tight'``. Examples -------- >>> import dask.dataframe as dd >>> ddf = dd.from_dict({"num1": [1, 2, 3, 4], "num2": [7, 8, 9, 10]}, npartitions=2) """ pdf = pd.DataFrame.from_dict(data, orient, dtype, columns) ddf = from_pandas(pdf, npartitions) return ddf
def from_dict(data, npartitions=None, orient='columns', dtype=None, columns=None): """ Construct a Dask DataFrame from a Python Dictionary Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. npartitions : int, optional The number of partitions of the index to create. Note that depending on the size and index of the dataframe, the output may have fewer partitions than requested. orient : {'columns', 'index', 'tight'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. If 'tight', assume a dict with keys ['index', 'columns', 'data', 'index_names', 'column_names']. dtype: bool Data type to force, otherwise infer. columns: string, optional Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'`` or ``orient='tight'``. Examples -------- >>> import dask.dataframe as dd >>> ddf = dd.from_dict({"num1": [1, 2, 3, 4], "num2": [7, 8, 9, 10]}, npartitions=2) """ pdf = pd.DataFrame.from_dict(data, orient, dtype, columns) ddf = from_pandas(pdf, npartitions) return ddf
30,778
def fetch_incidents(): last_run = demisto.getLastRun() last_incidents_ids = [] if last_run: last_fetch = last_run.get('time') last_fetch = datetime.strptime(last_fetch, TIME_FORMAT) last_incidents_ids = last_run.get('last_event_ids') else: # first time fetching last_fetch = parse_date_range(demisto.params().get('fetch_time', '3 days'), TIME_FORMAT)[0] LOG('iterating on detections, looking for more recent than {}'.format(last_fetch)) incidents = [] new_incidents_ids = [] for raw_detection in get_unacknowledged_detections(last_fetch, per_page=2): LOG('found detection #{}'.format(raw_detection['id'])) incident = detection_to_incident(raw_detection) # the rewJson is a string of dictionary e.g. - ('{"ID":2,"Type":5}') incident_id = json.loads(incident['rawJSON']).get("ID") if incident_id not in last_incidents_ids: # makes sure that the incidents wasn't fetched before incidents.append(incident) new_incidents_ids.append(incident_id) if incidents: last_fetch = max([get_time_obj(incident['occurred']) for incident in incidents]) # noqa:F812 last_run = {'time': get_time_str(last_fetch), 'last_event_ids': new_incidents_ids} return last_run, incidents
def fetch_incidents(): last_run = demisto.getLastRun() last_incidents_ids = [] if last_run: last_fetch = last_run.get('time') last_fetch = datetime.strptime(last_fetch, TIME_FORMAT) last_incidents_ids = last_run.get('last_event_ids') else: # first time fetching last_fetch = parse_date_range(demisto.params().get('fetch_time', '3 days'), TIME_FORMAT)[0] LOG('iterating on detections, looking for more recent than {}'.format(last_fetch)) incidents = [] new_incidents_ids = [] for raw_detection in get_unacknowledged_detections(last_fetch, per_page=2): LOG('found detection #{}'.format(raw_detection['id'])) incident = detection_to_incident(raw_detection) # the rewJson is a string of dictionary e.g. - ('{"ID":2,"Type":5}') incident_id = json.loads(incident.get('rawJSON')).get("ID") if incident_id not in last_incidents_ids: # makes sure that the incidents wasn't fetched before incidents.append(incident) new_incidents_ids.append(incident_id) if incidents: last_fetch = max([get_time_obj(incident['occurred']) for incident in incidents]) # noqa:F812 last_run = {'time': get_time_str(last_fetch), 'last_event_ids': new_incidents_ids} return last_run, incidents
47,157
def get_adafactor_schedule(optimizer, initial_lr=0.0): """ Get a proxy schedule for :class:`~transformers.optimization.Adafactor` Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. initial_lr (:obj:`float`, `optional`, defaults to 0.0): Initial lr Return: :class:`~transformers.optimization.Adafactor` proxy schedule object. """ return AdafactorSchedule(optimizer, initial_lr)
def get_adafactor_schedule(optimizer, initial_lr=0.0): """ Get a proxy schedule for :class:`~transformers.optimization.Adafactor` Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. initial_lr (:obj:`float`, `optional`, defaults to 0.0): Initial lr Return: :class:`~transformers.optimization.Adafactor` proxy schedule object. """ return AdafactorSchedule(optimizer, initial_lr)
24,853
def my_func(self, doc_type): # [missing-return-doc] """This is a docstring. Arguments --------- doc_type : str Numpy Returns ------- bool """ return False
def my_func(self, doc_type): # [missing-return-doc] """warn_partial_numpy_returns_type Arguments --------- doc_type : str Numpy Returns ------- bool """ return False
35,196
def kronsum(A, B, format=None): """Kronecker sum of sparse matrices A and B. Kronecker sum is matrix sum defined as sum of two Kronecker products kron(I_n, A) + kron(B, I_m), where I_n and I_m are identity matrices Args: A (cupyx.scipy.sparse.spmatrix): a sparse matrix. B (cupyx.scipy.sparse.spmatrix): a sparse matrix. format (str): the format of the returned sparse matrix. Returns: cupyx.scipy.sparse.spmatrix: Generated sparse matrix with the specified ``format``. .. seealso:: :func:`scipy.sparse.kronsum` """ A = coo.coo_matrix(A) B = coo.coo_matrix(B) if A.shape[0] != A.shape[1]: raise ValueError('A is not square matrix') if B.shape[0] != B.shape[1]: raise ValueError('B is not square matrix') dtype = sputils.upcast(A.dtype, B.dtype) L = kron(eye(B.shape[0], dtype=dtype), A, format=format) R = kron(B, eye(A.shape[0], dtype=dtype), format=format) return (L + R).asformat(format)
def kronsum(A, B, format=None): """Kronecker sum of sparse matrices A and B. Kronecker sum is matrix sum defined as sum of two Kronecker products kron(I_n, A) + kron(B, I_m), where I_n and I_m are identity matrices Args: A (cupyx.scipy.sparse.spmatrix): a sparse matrix. B (cupyx.scipy.sparse.spmatrix): a sparse matrix. format (str): the format of the returned sparse matrix. Returns: cupyx.scipy.sparse.spmatrix: Generated sparse matrix with the specified ``format``. .. seealso:: :func:`scipy.sparse.kronsum` """ A = coo.coo_matrix(A) B = coo.coo_matrix(B) if A.shape[0] != A.shape[1]: raise ValueError('A is not square matrix') if B.shape[0] != B.shape[1]: raise ValueError('B is not square matrix') dtype = sputils.upcast(A.dtype, B.dtype) L = kron(eye(B.shape[0], dtype=dtype), A, format=format) R = kron(B, eye(A.shape[0], dtype=dtype), format=format) return L + R
28,791
def cooldown(rate, per, type=BucketType.default): """A decorator that adds a cooldown to a :class:`.Command` A cooldown allows a command to only be used a specific amount of times in a specific time frame. These cooldowns can be based either on a per-guild, per-channel, per-user, per-role or global basis. Denoted by the third argument of ``type`` which must be of enum type :class:`.BucketType`. If a cooldown is triggered, then :exc:`.CommandOnCooldown` is triggered in :func:`.on_command_error` and the local error handler. A command can only have a single cooldown. Parameters ------------ rate: :class:`int` The number of times a command can be used before triggering a cooldown. per: :class:`float` The amount of seconds to wait for a cooldown when it's been triggered. type: Union[:class:`.BucketType`, Callable[:class:`.Message`, Any]] The type of cooldown to have. If callable, should return a key for the mapping. """ def decorator(func): if isinstance(func, Command): func._buckets = CooldownMapping(Cooldown(rate, per, type)) else: func.__commands_cooldown__ = Cooldown(rate, per, type) return func return decorator
def cooldown(rate, per, type=BucketType.default): """A decorator that adds a cooldown to a :class:`.Command` A cooldown allows a command to only be used a specific amount of times in a specific time frame. These cooldowns can be based either on a per-guild, per-channel, per-user, per-role or global basis. Denoted by the third argument of ``type`` which must be of enum type :class:`.BucketType`. If a cooldown is triggered, then :exc:`.CommandOnCooldown` is triggered in :func:`.on_command_error` and the local error handler. A command can only have a single cooldown. Parameters ------------ rate: :class:`int` The number of times a command can be used before triggering a cooldown. per: :class:`float` The amount of seconds to wait for a cooldown when it's been triggered. type: Union[:class:`.BucketType`, Callable[[:class:`.Context`], Any]] The type of cooldown to have. If callable, should return a key for the mapping. """ def decorator(func): if isinstance(func, Command): func._buckets = CooldownMapping(Cooldown(rate, per, type)) else: func.__commands_cooldown__ = Cooldown(rate, per, type) return func return decorator
30,625
def appendContext(key, data, dedup=False): """ Append data to the investigation context :type key: ``str`` :param key: The context path (required) :type data: ``any`` :param data: Data to be added to the context (required) :type dedup: ``bool`` :param dedup: True if de-duplication is required. Default is False. :return: No data returned :rtype: ``None`` """ if data is None: return existing = demisto.get(demisto.context(), key) if existing: if isinstance(existing, STRING_TYPES): if isinstance(data, STRING_TYPES): new_val = data + ',' + existing else: return_error("Cannot append data to the existing context - \n The data is of instance {} while the " "context in the specified path is of instance {}.".format(type(data), type(existing))) if isinstance(existing, dict): if isinstance(data, dict): existing.update(data) new_val = existing else: return_error("Cannot append data to the existing context - \n The data is of instance {} while the " "context in the specified path is of instance {}.".format(type(data), type(existing))) if isinstance(existing, list): if isinstance(data, list): existing.extend(data) else: existing.append(data) new_val = existing if dedup: new_val = list(set(new_val)) demisto.setContext(key, new_val) else: demisto.setContext(key, data)
def appendContext(key, data, dedup=False): """ Append data to the investigation context :type key: ``str`` :param key: The context path (required) :type data: ``any`` :param data: Data to be added to the context (required) :type dedup: ``bool`` :param dedup: True if de-duplication is required. Default is False. :return: No data returned :rtype: ``None`` """ if data is None: return existing = demisto.get(demisto.context(), key) if existing: if isinstance(existing, STRING_TYPES): if isinstance(data, STRING_TYPES): new_val = data + ',' + existing else: return_error("Cannot append data to the existing context - \n The data is of type {} while the " "context in the specified path is of instance {}.".format(type(data), type(existing))) if isinstance(existing, dict): if isinstance(data, dict): existing.update(data) new_val = existing else: return_error("Cannot append data to the existing context - \n The data is of instance {} while the " "context in the specified path is of instance {}.".format(type(data), type(existing))) if isinstance(existing, list): if isinstance(data, list): existing.extend(data) else: existing.append(data) new_val = existing if dedup: new_val = list(set(new_val)) demisto.setContext(key, new_val) else: demisto.setContext(key, data)
33,298
def _get_peertube_url(url): url_parsed = urlparse(url) embed_url = [x for x in url_parsed] embed_url[2] = embed_url[2].replace('/videos/watch/', '/videos/embed/') return urlunparse(embed_url)
def _get_peertube_url(url): url_parsed = urlparse(url) embed_url = list(url_parsed) embed_url[2] = embed_url[2].replace('/videos/watch/', '/videos/embed/') return urlunparse(embed_url)
33,749
def mlflow_mixin(func: Callable): """mlflow_mixin MLFlow (https://mlflow.org) Tracking is an open source library for recording and querying experiments. This Ray Tune Trainable mixin helps initialize the MLflow API for use with the ``Trainable`` class or the `@mlflow_mixin` function API. This mixin automatically configures mlflow and creates a run in the same process as each Tune trial. You can then use the mlflow API inside the your training function and it will automatically get reported to the correct run. For basic usage, just prepend your training function with the ``@mlflow_mixin`` decorator: .. code-block:: python from ray.tune.integration.mlflow import mlflow_mixin @mlflow_mixin def train_fn(config): ... mlflow.log_metric(...) You can also use Mlflow's autologging feature if using a training framework like Pytorch Lightning, XGBoost, etc. More information can be found here (https://mlflow.org/docs/latest/tracking.html#automatic -logging). .. code-block:: python from ray.tune.integration.mlflow import mlflow_mixin @mlflow_mixin def train_fn(config): mlflow.autolog() xgboost_results = xgb.train(config, ...) The Mlflow configuration is done by passing a ``mlflow`` key to the ``config`` parameter of ``tune.run()`` (see example below). The content of the ``mlflow`` config entry is used to configure Mlflow. Here are the keys you can pass in to this config entry: Args: tracking_uri (str): The tracking URI for MLflow tracking. If using Tune in a multi-node setting, make sure to use a remote server for tracking. experiment_id (str): The id of an already created MLflow experiment. All logs from all trials in ``tune.run`` will be reported to this experiment. If this is not provided, you must provide an ``experiment_name``. experiment_name (str): The name of an already created MLflow experiment. All logs from all trials in ``tune.run`` will be reported to this experiment. If this is not provided, you must provide an ``experiment_id``. Example: .. code-block:: python from ray import tune from ray.tune.integration.mlflow import mlflow_mixin import mlflow # Create the Mlflow expriment. mlflow.create_experiment("my_experiment") @mlflow_mixin def train_fn(config): for i in range(10): loss = self.config["a"] + self.config["b"] mlflow.log_metric(key="loss", value=loss}) tune.report(loss=loss, done=True) tune.run( train_fn, config={ # define search space here "a": tune.choice([1, 2, 3]), "b": tune.choice([4, 5, 6]), # mlflow configuration "mlflow": { "experiment_name": "my_experiment", "tracking_uri": mlflow.get_tracking_uri() } }) """ if mlflow is None: raise RuntimeError("mlflow has not been installed. Please `pip " "install mlflow` to use the mlflow_mixin.") func.__mixins__ = (MLFlowTrainableMixin, ) return func
def mlflow_mixin(func: Callable): """mlflow_mixin MLFlow (https://mlflow.org) Tracking is an open source library for recording and querying experiments. This Ray Tune Trainable mixin helps initialize the MLflow API for use with the ``Trainable`` class or the ``@mlflow_mixin`` function API. This mixin automatically configures MLFlow and creates a run in the same process as each Tune trial. You can then use the mlflow API inside the your training function and it will automatically get reported to the correct run. For basic usage, just prepend your training function with the ``@mlflow_mixin`` decorator: .. code-block:: python from ray.tune.integration.mlflow import mlflow_mixin @mlflow_mixin def train_fn(config): ... mlflow.log_metric(...) You can also use Mlflow's autologging feature if using a training framework like Pytorch Lightning, XGBoost, etc. More information can be found here (https://mlflow.org/docs/latest/tracking.html#automatic -logging). .. code-block:: python from ray.tune.integration.mlflow import mlflow_mixin @mlflow_mixin def train_fn(config): mlflow.autolog() xgboost_results = xgb.train(config, ...) The Mlflow configuration is done by passing a ``mlflow`` key to the ``config`` parameter of ``tune.run()`` (see example below). The content of the ``mlflow`` config entry is used to configure Mlflow. Here are the keys you can pass in to this config entry: Args: tracking_uri (str): The tracking URI for MLflow tracking. If using Tune in a multi-node setting, make sure to use a remote server for tracking. experiment_id (str): The id of an already created MLflow experiment. All logs from all trials in ``tune.run`` will be reported to this experiment. If this is not provided, you must provide an ``experiment_name``. experiment_name (str): The name of an already created MLflow experiment. All logs from all trials in ``tune.run`` will be reported to this experiment. If this is not provided, you must provide an ``experiment_id``. Example: .. code-block:: python from ray import tune from ray.tune.integration.mlflow import mlflow_mixin import mlflow # Create the Mlflow expriment. mlflow.create_experiment("my_experiment") @mlflow_mixin def train_fn(config): for i in range(10): loss = self.config["a"] + self.config["b"] mlflow.log_metric(key="loss", value=loss}) tune.report(loss=loss, done=True) tune.run( train_fn, config={ # define search space here "a": tune.choice([1, 2, 3]), "b": tune.choice([4, 5, 6]), # mlflow configuration "mlflow": { "experiment_name": "my_experiment", "tracking_uri": mlflow.get_tracking_uri() } }) """ if mlflow is None: raise RuntimeError("mlflow has not been installed. Please `pip " "install mlflow` to use the mlflow_mixin.") func.__mixins__ = (MLFlowTrainableMixin, ) return func
2,243
def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # Decision function only estimator. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert not hasattr(decision_only, 'predict_proba') Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([label.argmax() for label in Y_proba]) assert not (pred - Y_pred).any()
def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # Decision function only estimator. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert not hasattr(decision_only, 'predict_proba') Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label with the greatest predictive probability. pred = np.array([label.argmax() for label in Y_proba]) assert not (pred - Y_pred).any()
29,151
def open_file(filename, mode, encoding='utf-8', newline=None): """Open file and return a corresponding file object. Args: filename: str. The file to be opened. mode: str. Mode in which the file is opened. encoding: str. Encoding in which the file is opened. newline: None|str. Controls how universal newlines work. Returns: _io.TextIOWrapper. The file object. Raises: IOError. If the file is unable to open. """ # The try/except is needed here to unify the errors because io.open in # Python 3 throws FileNotFoundError while in Python 2 it throws an IOError. # This should be removed after we fully migrate to Python 3. try: return io.open(filename, mode, encoding=encoding, newline=newline) except: raise IOError('Unable to open file: %s' % filename)
def open_file(filename, mode, encoding='utf-8', newline=None): """Open file and return a corresponding file object. Args: filename: str. The file to be opened. mode: str. Mode in which the file is opened. encoding: str. Encoding in which the file is opened. newline: None|str. Controls how universal newlines work. Returns: _io.TextIOWrapper. The file object. Raises: IOError. If the file can't be opened. """ # The try/except is needed here to unify the errors because io.open in # Python 3 throws FileNotFoundError while in Python 2 it throws an IOError. # This should be removed after we fully migrate to Python 3. try: return io.open(filename, mode, encoding=encoding, newline=newline) except: raise IOError('Unable to open file: %s' % filename)
25,779
def define_ramp_limit_constraints(n, sns, c='Generator', commitable=True): """ Defines ramp limits for generators and links with valid ramplimit. """ test_components = ['Generator', 'Link'] assert c in test_components, 'Ramp limit constraints were only tested for Generator and Link.' rup_i = n.df(c).query('ramp_limit_up == ramp_limit_up').index rdown_i = n.df(c).query('ramp_limit_down == ramp_limit_down').index if rup_i.empty & rdown_i.empty: return fix_i = get_non_extendable_i(n, c) ext_i = get_extendable_i(n, c) p = get_var(n, c, 'p').loc[sns[1:]] p_prev = get_var(n, c, 'p').shift(1).loc[sns[1:]] active = get_activity_mask(n, c, sns[1:]) # fix up gens_i = rup_i.intersection(fix_i) if not gens_i.empty: lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i])) rhs = n.df(c).loc[gens_i].eval('ramp_limit_up * p_nom') kwargs = dict(spec='nonext.', mask=active[gens_i]) define_constraints(n, lhs, '<=', rhs, c, 'mu_ramp_limit_up', **kwargs) # ext up gens_i = rup_i.intersection(ext_i) if not gens_i.empty: limit_pu = n.df(c)['ramp_limit_up'][gens_i] p_nom = get_var(n, c, 'p_nom')[gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (-limit_pu, p_nom)) kwargs = dict(spec='ext.', mask=active[gens_i]) define_constraints(n, lhs, '<=', 0, c, 'mu_ramp_limit_up', **kwargs) # fix down gens_i = rdown_i.intersection(fix_i) if not gens_i.empty: lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i])) rhs = n.df(c).loc[gens_i].eval('-1 * ramp_limit_down * p_nom') kwargs = dict(spec='nonext.', mask=active[gens_i]) define_constraints(n, lhs, '>=', rhs, c, 'mu_ramp_limit_down', **kwargs) # ext down gens_i = rdown_i.intersection(ext_i) if not gens_i.empty: limit_pu = n.df(c)['ramp_limit_down'][gens_i] p_nom = get_var(n, c, 'p_nom')[gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_pu, p_nom)) kwargs = dict(spec='ext.', mask=active[gens_i]) define_constraints(n, lhs, '>=', 0, c, 'mu_ramp_limit_down', **kwargs) if commitable: assert c=='Generator', 'Commitable contraints were only tested for Generator.' com_i = n.df(c).query('committable').index.difference(ext_i) # com up gens_i = rup_i.intersection(com_i) if not gens_i.empty: limit_start = n.df(c).loc[gens_i].eval('ramp_limit_start_up * p_nom') limit_up = n.df(c).loc[gens_i].eval('ramp_limit_up * p_nom') status = get_var(n, c, 'status').loc[sns[1:], gens_i] status_prev = get_var(n, c, 'status').shift(1).loc[sns[1:], gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_start - limit_up, status_prev), (- limit_start, status)) kwargs = dict(spec='com.', mask=active[gens_i]) define_constraints(n, lhs, '<=', 0, c, 'mu_ramp_limit_up', **kwargs) # com down gens_i = rdown_i.intersection(com_i) if not gens_i.empty: limit_shut = n.df(c).loc[gens_i].eval('ramp_limit_shut_down * p_nom') limit_down = n.df(c).loc[gens_i].eval('ramp_limit_down * p_nom') status = get_var(n, c, 'status').loc[sns[1:], gens_i] status_prev = get_var(n, c, 'status').shift(1).loc[sns[1:], gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_down - limit_shut, status), (limit_shut, status_prev)) kwargs = dict(spec='com.', mask=active[gens_i]) define_constraints(n, lhs, '>=', 0, c, 'mu_ramp_limit_down', **kwargs)
def define_ramp_limit_constraints(n, sns, c): """ Defines ramp limits for generators and links with valid ramplimit. """ test_components = ['Generator', 'Link'] assert c in test_components, 'Ramp limit constraints were only tested for Generator and Link.' rup_i = n.df(c).query('ramp_limit_up == ramp_limit_up').index rdown_i = n.df(c).query('ramp_limit_down == ramp_limit_down').index if rup_i.empty & rdown_i.empty: return fix_i = get_non_extendable_i(n, c) ext_i = get_extendable_i(n, c) p = get_var(n, c, 'p').loc[sns[1:]] p_prev = get_var(n, c, 'p').shift(1).loc[sns[1:]] active = get_activity_mask(n, c, sns[1:]) # fix up gens_i = rup_i.intersection(fix_i) if not gens_i.empty: lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i])) rhs = n.df(c).loc[gens_i].eval('ramp_limit_up * p_nom') kwargs = dict(spec='nonext.', mask=active[gens_i]) define_constraints(n, lhs, '<=', rhs, c, 'mu_ramp_limit_up', **kwargs) # ext up gens_i = rup_i.intersection(ext_i) if not gens_i.empty: limit_pu = n.df(c)['ramp_limit_up'][gens_i] p_nom = get_var(n, c, 'p_nom')[gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (-limit_pu, p_nom)) kwargs = dict(spec='ext.', mask=active[gens_i]) define_constraints(n, lhs, '<=', 0, c, 'mu_ramp_limit_up', **kwargs) # fix down gens_i = rdown_i.intersection(fix_i) if not gens_i.empty: lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i])) rhs = n.df(c).loc[gens_i].eval('-1 * ramp_limit_down * p_nom') kwargs = dict(spec='nonext.', mask=active[gens_i]) define_constraints(n, lhs, '>=', rhs, c, 'mu_ramp_limit_down', **kwargs) # ext down gens_i = rdown_i.intersection(ext_i) if not gens_i.empty: limit_pu = n.df(c)['ramp_limit_down'][gens_i] p_nom = get_var(n, c, 'p_nom')[gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_pu, p_nom)) kwargs = dict(spec='ext.', mask=active[gens_i]) define_constraints(n, lhs, '>=', 0, c, 'mu_ramp_limit_down', **kwargs) if commitable: assert c=='Generator', 'Commitable contraints were only tested for Generator.' com_i = n.df(c).query('committable').index.difference(ext_i) # com up gens_i = rup_i.intersection(com_i) if not gens_i.empty: limit_start = n.df(c).loc[gens_i].eval('ramp_limit_start_up * p_nom') limit_up = n.df(c).loc[gens_i].eval('ramp_limit_up * p_nom') status = get_var(n, c, 'status').loc[sns[1:], gens_i] status_prev = get_var(n, c, 'status').shift(1).loc[sns[1:], gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_start - limit_up, status_prev), (- limit_start, status)) kwargs = dict(spec='com.', mask=active[gens_i]) define_constraints(n, lhs, '<=', 0, c, 'mu_ramp_limit_up', **kwargs) # com down gens_i = rdown_i.intersection(com_i) if not gens_i.empty: limit_shut = n.df(c).loc[gens_i].eval('ramp_limit_shut_down * p_nom') limit_down = n.df(c).loc[gens_i].eval('ramp_limit_down * p_nom') status = get_var(n, c, 'status').loc[sns[1:], gens_i] status_prev = get_var(n, c, 'status').shift(1).loc[sns[1:], gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_down - limit_shut, status), (limit_shut, status_prev)) kwargs = dict(spec='com.', mask=active[gens_i]) define_constraints(n, lhs, '>=', 0, c, 'mu_ramp_limit_down', **kwargs)
35,434
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates): if not len(psis) == CONTROL_N: psis = [0.0 for i in range(CONTROL_N)] curvatures = [0.0 for i in range(CONTROL_N)] curvature_rates = [0.0 for i in range(CONTROL_N)] # TODO this needs more thought, use .2s extra for now to estimate other delays delay = CP.steerActuatorDelay + .2 current_curvature = curvatures[0] psi = interp(delay, T_IDXS[:CONTROL_N], psis) next_curvature_rate = curvature_rates[0] # MPC can plan to turn the wheel and turn back before t_delay. This means # in high delay cases some corrections never even get commanded. So just use # psi to calculate a simple linearization of desired curvature curvature_diff_from_psi = psi / (max(v_ego, 1e-1) * delay) - current_curvature next_curvature = current_curvature + 2 * curvature_diff_from_psi desired_curvature = next_curvature desired_curvature_rate = next_curvature_rate max_curvature_rate = interp(v_ego, MAX_CURVATURE_RATE_SPEEDS, MAX_CURVATURE_RATES) safe_desired_curvature_rate = clip(desired_curvature_rate, -max_curvature_rate, max_curvature_rate) safe_desired_curvature = clip(desired_curvature, current_curvature - max_curvature_rate/DT_MDL, current_curvature + max_curvature_rate/DT_MDL) return safe_desired_curvature, safe_desired_curvature_rate
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates): if len(psis) != CONTROL_N: psis = [0.0 for i in range(CONTROL_N)] curvatures = [0.0 for i in range(CONTROL_N)] curvature_rates = [0.0 for i in range(CONTROL_N)] # TODO this needs more thought, use .2s extra for now to estimate other delays delay = CP.steerActuatorDelay + .2 current_curvature = curvatures[0] psi = interp(delay, T_IDXS[:CONTROL_N], psis) next_curvature_rate = curvature_rates[0] # MPC can plan to turn the wheel and turn back before t_delay. This means # in high delay cases some corrections never even get commanded. So just use # psi to calculate a simple linearization of desired curvature curvature_diff_from_psi = psi / (max(v_ego, 1e-1) * delay) - current_curvature next_curvature = current_curvature + 2 * curvature_diff_from_psi desired_curvature = next_curvature desired_curvature_rate = next_curvature_rate max_curvature_rate = interp(v_ego, MAX_CURVATURE_RATE_SPEEDS, MAX_CURVATURE_RATES) safe_desired_curvature_rate = clip(desired_curvature_rate, -max_curvature_rate, max_curvature_rate) safe_desired_curvature = clip(desired_curvature, current_curvature - max_curvature_rate/DT_MDL, current_curvature + max_curvature_rate/DT_MDL) return safe_desired_curvature, safe_desired_curvature_rate
17,419
def _plot1d(plotfunc): """ Decorator for common 2d plotting logic Also adds the 2d plot method to class _PlotMethods """ commondoc = """ Parameters ---------- darray : DataArray Must be 2 dimensional, unless creating faceted plots x : string, optional Coordinate for x axis. If None use darray.dims[1] y : string, optional Coordinate for y axis. If None use darray.dims[0] hue : string, optional Dimension or coordinate for which you want multiple lines plotted. figsize : tuple, optional A tuple (width, height) of the figure in inches. Mutually exclusive with ``size`` and ``ax``. aspect : scalar, optional Aspect ratio of plot, so that ``aspect * size`` gives the width in inches. Only used if a ``size`` is provided. size : scalar, optional If provided, create a new figure for the plot with the given size. Height (in inches) of each plot. See also: ``aspect``. ax : matplotlib.axes.Axes, optional Axis on which to plot this figure. By default, use the current axis. Mutually exclusive with ``size`` and ``figsize``. row : string, optional If passed, make row faceted plots on this dimension name col : string, optional If passed, make column faceted plots on this dimension name col_wrap : int, optional Use together with ``col`` to wrap faceted plots xscale, yscale : 'linear', 'symlog', 'log', 'logit', optional Specifies scaling for the x- and y-axes respectively xticks, yticks : Specify tick locations for x- and y-axes xlim, ylim : Specify x- and y-axes limits xincrease : None, True, or False, optional Should the values on the x axes be increasing from left to right? if None, use the default for the matplotlib function. yincrease : None, True, or False, optional Should the values on the y axes be increasing from top to bottom? if None, use the default for the matplotlib function. add_labels : bool, optional Use xarray metadata to label axes subplot_kws : dict, optional Dictionary of keyword arguments for matplotlib subplots. Only used for 2D and FacetGrid plots. **kwargs : optional Additional arguments to wrapped matplotlib function Returns ------- artist : The same type of primitive artist that the wrapped matplotlib function returns """ # Build on the original docstring plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}" # plotfunc and newplotfunc have different signatures: # - plotfunc: (x, y, z, ax, **kwargs) # - newplotfunc: (darray, *args, x, y, **kwargs) # where plotfunc accepts numpy arrays, while newplotfunc accepts a DataArray # and variable names. newplotfunc also explicitly lists most kwargs, so we # need to shorten it def signature(darray, *args, x, y, **kwargs): pass @override_signature(signature) @functools.wraps(plotfunc) def newplotfunc( darray, *args, x=None, y=None, hue=None, figsize=None, size=None, aspect=None, ax=None, row=None, col=None, col_wrap=None, xincrease=True, yincrease=True, add_legend=True, add_labels=True, subplot_kws=None, xscale=None, yscale=None, xticks=None, yticks=None, xlim=None, ylim=None, **kwargs, ): # All 2d plots in xarray share this function signature. # Method signature below should be consistent. # Handle facetgrids first if row or col: allargs = locals().copy() allargs.update(allargs.pop("kwargs")) allargs.pop("darray") allargs.pop("plotfunc") if plotfunc.__name__ == "line": return _easy_facetgrid(darray, line, kind="line", **allargs) else: raise ValueError(f"Faceting not implemented for {plotfunc.__name__}") # The allargs dict passed to _easy_facetgrid above contains args if args == (): args = kwargs.pop("args", ()) else: assert "args" not in kwargs ax = get_axis(figsize, size, aspect, ax) xplt, yplt, hueplt, hue_label = _infer_line_data(darray, x, y, hue) primitive = plotfunc(xplt, yplt, ax, *args, add_labels=add_labels, **kwargs) if add_labels: ax.set_title(darray._title_for_slice()) if hueplt is not None and add_legend: if plotfunc.__name__ == "hist": handles = primitive[-1] else: handles = primitive ax.legend( handles=handles, labels=list(hueplt.values), title=label_from_attrs(hueplt), ) _update_axes( ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim ) return primitive # For use as DataArray.plot.plotmethod @functools.wraps(newplotfunc) def plotmethod( _PlotMethods_obj, *args, x=None, y=None, figsize=None, size=None, aspect=None, ax=None, row=None, col=None, col_wrap=None, xincrease=True, yincrease=True, add_legend=True, add_labels=True, subplot_kws=None, xscale=None, yscale=None, xticks=None, yticks=None, xlim=None, ylim=None, **kwargs, ): """ The method should have the same signature as the function. This just makes the method work on Plotmethods objects, and passes all the other arguments straight through. """ allargs = locals() allargs["darray"] = _PlotMethods_obj._da allargs.update(kwargs) for arg in ["_PlotMethods_obj", "newplotfunc", "kwargs"]: del allargs[arg] return newplotfunc(**allargs) # Add to class _PlotMethods setattr(_PlotMethods, plotmethod.__name__, plotmethod) return newplotfunc
def _plot1d(plotfunc): """ Decorator for common 2d plotting logic Also adds the 2d plot method to class _PlotMethods """ commondoc = """ Parameters ---------- darray : DataArray Dataarray to plot. x : string, optional Coordinate for x axis. If None use darray.dims[1] y : string, optional Coordinate for y axis. If None use darray.dims[0] hue : string, optional Dimension or coordinate for which you want multiple lines plotted. figsize : tuple, optional A tuple (width, height) of the figure in inches. Mutually exclusive with ``size`` and ``ax``. aspect : scalar, optional Aspect ratio of plot, so that ``aspect * size`` gives the width in inches. Only used if a ``size`` is provided. size : scalar, optional If provided, create a new figure for the plot with the given size. Height (in inches) of each plot. See also: ``aspect``. ax : matplotlib.axes.Axes, optional Axis on which to plot this figure. By default, use the current axis. Mutually exclusive with ``size`` and ``figsize``. row : string, optional If passed, make row faceted plots on this dimension name col : string, optional If passed, make column faceted plots on this dimension name col_wrap : int, optional Use together with ``col`` to wrap faceted plots xscale, yscale : 'linear', 'symlog', 'log', 'logit', optional Specifies scaling for the x- and y-axes respectively xticks, yticks : Specify tick locations for x- and y-axes xlim, ylim : Specify x- and y-axes limits xincrease : None, True, or False, optional Should the values on the x axes be increasing from left to right? if None, use the default for the matplotlib function. yincrease : None, True, or False, optional Should the values on the y axes be increasing from top to bottom? if None, use the default for the matplotlib function. add_labels : bool, optional Use xarray metadata to label axes subplot_kws : dict, optional Dictionary of keyword arguments for matplotlib subplots. Only used for 2D and FacetGrid plots. **kwargs : optional Additional arguments to wrapped matplotlib function Returns ------- artist : The same type of primitive artist that the wrapped matplotlib function returns """ # Build on the original docstring plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}" # plotfunc and newplotfunc have different signatures: # - plotfunc: (x, y, z, ax, **kwargs) # - newplotfunc: (darray, *args, x, y, **kwargs) # where plotfunc accepts numpy arrays, while newplotfunc accepts a DataArray # and variable names. newplotfunc also explicitly lists most kwargs, so we # need to shorten it def signature(darray, *args, x, y, **kwargs): pass @override_signature(signature) @functools.wraps(plotfunc) def newplotfunc( darray, *args, x=None, y=None, hue=None, figsize=None, size=None, aspect=None, ax=None, row=None, col=None, col_wrap=None, xincrease=True, yincrease=True, add_legend=True, add_labels=True, subplot_kws=None, xscale=None, yscale=None, xticks=None, yticks=None, xlim=None, ylim=None, **kwargs, ): # All 2d plots in xarray share this function signature. # Method signature below should be consistent. # Handle facetgrids first if row or col: allargs = locals().copy() allargs.update(allargs.pop("kwargs")) allargs.pop("darray") allargs.pop("plotfunc") if plotfunc.__name__ == "line": return _easy_facetgrid(darray, line, kind="line", **allargs) else: raise ValueError(f"Faceting not implemented for {plotfunc.__name__}") # The allargs dict passed to _easy_facetgrid above contains args if args == (): args = kwargs.pop("args", ()) else: assert "args" not in kwargs ax = get_axis(figsize, size, aspect, ax) xplt, yplt, hueplt, hue_label = _infer_line_data(darray, x, y, hue) primitive = plotfunc(xplt, yplt, ax, *args, add_labels=add_labels, **kwargs) if add_labels: ax.set_title(darray._title_for_slice()) if hueplt is not None and add_legend: if plotfunc.__name__ == "hist": handles = primitive[-1] else: handles = primitive ax.legend( handles=handles, labels=list(hueplt.values), title=label_from_attrs(hueplt), ) _update_axes( ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim ) return primitive # For use as DataArray.plot.plotmethod @functools.wraps(newplotfunc) def plotmethod( _PlotMethods_obj, *args, x=None, y=None, figsize=None, size=None, aspect=None, ax=None, row=None, col=None, col_wrap=None, xincrease=True, yincrease=True, add_legend=True, add_labels=True, subplot_kws=None, xscale=None, yscale=None, xticks=None, yticks=None, xlim=None, ylim=None, **kwargs, ): """ The method should have the same signature as the function. This just makes the method work on Plotmethods objects, and passes all the other arguments straight through. """ allargs = locals() allargs["darray"] = _PlotMethods_obj._da allargs.update(kwargs) for arg in ["_PlotMethods_obj", "newplotfunc", "kwargs"]: del allargs[arg] return newplotfunc(**allargs) # Add to class _PlotMethods setattr(_PlotMethods, plotmethod.__name__, plotmethod) return newplotfunc
43,089
def from_xir(xir_prog): """Convert an XIR Program to a Strawberry Fields program. Args: xir_prog (xir.Program): the input XIR program object Returns: Program: corresponding Strawberry Fields program """ # only script-level statements are part of `xir_prog.statements`, which can only have integer # wires, leading to `xir_prog.wires` only containing integer wire labels num_of_modes = int(max(xir_prog.wires or [-1])) + 1 name = xir_prog.options.get("name", "xir") if num_of_modes == 0: raise ValueError( "The XIR program is empty and cannot be transformed into a Strawberry Fields program" ) prog = sfp.Program(num_of_modes, name=name) # append the quantum operations with prog.context as q: for op in xir_prog.statements: # check if operation name is in the list of # defined StrawberryFields operations. # This is used by checking against the ops.py __all__ # module attribute, which contains the names # of all defined quantum operations if op.name in ops.__all__: # get the quantum operation from the sf.ops module gate = getattr(ops, op.name) else: raise NameError(f"Quantum operation {op.name!r} not defined!") # create the list of regrefs regrefs = [q[i] for i in op.wires] if op.params: # convert symbolic expressions to symbolic expressions containing the corresponding # MeasuredParameter and FreeParameter instances. if isinstance(op.params, dict): vals = sfpar.par_convert(op.params.values(), prog) params = dict(zip(op.params.keys(), vals)) gate(**params) | regrefs # pylint:disable=expression-not-assigned else: params = [] for p in op.params: if isinstance(p, Decimal): params.append(float(p)) elif isinstance(p, Iterable): params.append(np.array(_listr(p))) else: params.append(p) params = sfpar.par_convert(params, prog) gate(*params) | regrefs # pylint:disable=expression-not-assigned else: if callable(gate): gate() | regrefs # pylint:disable=expression-not-assigned,pointless-statement else: gate | regrefs # pylint:disable=expression-not-assigned,pointless-statement prog._target = xir_prog.options.get("target", None) # pylint: disable=protected-access if "shots" in xir_prog.options: prog.run_options["shots"] = xir_prog.options["shots"] if "cutoff_dim" in xir_prog.options: prog.backend_options["cutoff_dim"] = xir_prog.options["cutoff_dim"] return prog
def from_xir(xir_prog): """Convert an XIR Program to a Strawberry Fields program. Args: xir_prog (xir.Program): the input XIR program object Returns: Program: corresponding Strawberry Fields program """ # only script-level statements are part of `xir_prog.statements`, which can only have integer # wires, leading to `xir_prog.wires` only containing integer wire labels num_of_modes = int(max(xir_prog.wires or [-1])) + 1 name = xir_prog.options.get("name", "sf_from_xir") if num_of_modes == 0: raise ValueError( "The XIR program is empty and cannot be transformed into a Strawberry Fields program" ) prog = sfp.Program(num_of_modes, name=name) # append the quantum operations with prog.context as q: for op in xir_prog.statements: # check if operation name is in the list of # defined StrawberryFields operations. # This is used by checking against the ops.py __all__ # module attribute, which contains the names # of all defined quantum operations if op.name in ops.__all__: # get the quantum operation from the sf.ops module gate = getattr(ops, op.name) else: raise NameError(f"Quantum operation {op.name!r} not defined!") # create the list of regrefs regrefs = [q[i] for i in op.wires] if op.params: # convert symbolic expressions to symbolic expressions containing the corresponding # MeasuredParameter and FreeParameter instances. if isinstance(op.params, dict): vals = sfpar.par_convert(op.params.values(), prog) params = dict(zip(op.params.keys(), vals)) gate(**params) | regrefs # pylint:disable=expression-not-assigned else: params = [] for p in op.params: if isinstance(p, Decimal): params.append(float(p)) elif isinstance(p, Iterable): params.append(np.array(_listr(p))) else: params.append(p) params = sfpar.par_convert(params, prog) gate(*params) | regrefs # pylint:disable=expression-not-assigned else: if callable(gate): gate() | regrefs # pylint:disable=expression-not-assigned,pointless-statement else: gate | regrefs # pylint:disable=expression-not-assigned,pointless-statement prog._target = xir_prog.options.get("target", None) # pylint: disable=protected-access if "shots" in xir_prog.options: prog.run_options["shots"] = xir_prog.options["shots"] if "cutoff_dim" in xir_prog.options: prog.backend_options["cutoff_dim"] = xir_prog.options["cutoff_dim"] return prog
54,381
def download_and_extract(buildpath, packagedir, pkg, args): srcpath = buildpath / packagedir if 'source' not in pkg: return srcpath if 'url' in pkg['source']: tarballname = Path(pkg['source']['url']).name tarballpath = buildpath / tarballname if not tarballpath.is_file(): try: subprocess.run([ 'wget', '-q', '-O', str(tarballpath), pkg['source']['url'] ], check=True) check_checksum(tarballpath, pkg) except Exception: tarballpath.unlink() raise if not srcpath.is_dir(): shutil.unpack_archive(str(tarballpath), str(buildpath)) for extension in ['.tar.gz', '.tgz', '.tar', '.tar.bz2', '.tbz2', '.tar.xz', '.txz', '.zip']: if tarballname.endswith(extension): tarballname = tarballname[:-len(extension)] break return buildpath / tarballname elif 'path' in pkg['source']: srcdir = Path(pkg['source']['path']) if not srcdir.is_dir(): raise ValueError("'path' must point to a path") if not srcpath.is_dir(): shutil.copytree(srcdir, srcpath) return srcpath else: raise ValueError('Incorrect source provided')
def download_and_extract(buildpath, packagedir, pkg, args): srcpath = buildpath / packagedir if 'source' not in pkg: return srcpath if 'url' in pkg['source']: tarballname = Path(pkg['source']['url']).name tarballpath = buildpath / tarballname if not tarballpath.is_file(): try: subprocess.run([ 'wget', '-q', '-O', str(tarballpath), pkg['source']['url'] ], check=True) check_checksum(tarballpath, pkg) except Exception: tarballpath.unlink() raise if not srcpath.is_dir(): shutil.unpack_archive(str(tarballpath), str(buildpath)) # strip extension e.g. .tar or .tar.gz extracted_dirname = tarballname.with_suffix('').with_suffix('') return buildpath / tarballname elif 'path' in pkg['source']: srcdir = Path(pkg['source']['path']) if not srcdir.is_dir(): raise ValueError("'path' must point to a path") if not srcpath.is_dir(): shutil.copytree(srcdir, srcpath) return srcpath else: raise ValueError('Incorrect source provided')
45,689
def ManhattanPlot( dataframe, chrm="CHR", bp="BP", p="P", snp="SNP", gene="GENE", annotation=None, logp=True, title="Manhattan Plot", showgrid=True, xlabel=None, ylabel='-log10(p)', point_size=5, showlegend=True, col=None, suggestiveline_value=-np.log10(1e-8), suggestiveline_color='#636efa', suggestiveline_width=1, genomewideline_value=-np.log10(5e-8), genomewideline_color='#EF553B', genomewideline_width=1, highlight=True, highlight_color="red", ): """Returns a figure for a manhattan plot. Keyword arguments: - dataframe (dataframe; required): A pandas dataframe which must contain at least the following three columns: - the chromosome number - genomic base-pair position - a numeric quantity to plot such as a p-value or zscore - chrm (string; default 'CHR'): A string denoting the column name for the chromosome. This column must be float or integer. Minimum number of chromosomes required is 1. If you have X, Y, or MT chromosomes, be sure to renumber these 23, 24, 25, etc. - bp (string; default 'BP'): A string denoting the column name for the chromosomal position. - p (string; default 'P'): A string denoting the column name for the float quantity to be plotted on the y-axis. This column must be numeric. This does not have to be a p-value. It can be any numeric quantity such as peak heights, bayes factors, test statistics. If it is not a p-value, make sure to set logp = FALSE. - snp (string; default 'SNP'): A string denoting the column name for the SNP names (e.g. rs number). More generally, this column could be anything that identifies each point being plotted. For example, in an Epigenomewide association study (EWAS) this could be the probe name or cg number. This column should be a character. This argument is optional, however it is necessary to specify if you want to highlight points on the plot using the highlight argument in the figure method. - gene (string; default 'GENE'): A string denoting the column name for the GENE names. This column could be a string or a float. More generally this could be any annotation information that you want to include in the plot. - annotation (string; optional): A string denoting the column name for an annotation. This column could be a string or a float. This could be any annotation information that you want to include in the plot (e.g. zscore, effect size, minor allele frequency). - logp (bool; optional): If True, the -log10 of the p-value is plotted. It isn't very useful to plot raw p-values; however, plotting the raw value could be useful for other genome-wide plots (e.g., peak heights, bayes factors, test statistics, other "scores", etc.) - title (string; default 'Manhattan Plot') The title of the graph. - showgrid (bool; default true): Boolean indicating whether gridlines should be shown. - xlabel (string; optional): Label of the x axis. - ylabel: (string; default '-log10(p)'): Label of the y axis. - point_size (number; default 5): Size of the points of the Scatter plot. - showlegend (bool; default true): Boolean indicating whether legends should be shown. - col (string; optional): A string representing the color of the points of the Scatter plot. Can be in any color format accepted by plotly_js graph_objs. - suggestiveline_value (bool | float; default 8): A value which must be False to deactivate the option, or a numerical value corresponding to the p-value at which the line should be drawn. The line has no influence on the data points. - suggestiveline_color (string; default 'grey'): Color of the suggestive line. - suggestiveline_width (number; default 2): Width of the suggestive line. - genomewideline_value (bool | float; default -log10(5e-8)): A boolean which must be False to deactivate the option, or a numerical value corresponding to the p-value above which the data points are considered significant. - genomewideline_color (string; default 'red'): Color of the genome wide line. Can be in any color format accepted by plotly_js graph_objs. - genomewideline_width (number; default 1): Width of the genome wide line. - highlight (bool; default true): turning on/off the highlighting of data points considered significant. - highlight_color (string; default 'red'): Color of the data points highlighted because they are significant Can be in any color format accepted by plotly_js graph_objs. # ... Example 1: Random Manhattan Plot ''' dataframe = pd.DataFrame( np.random.randint(0,100,size=(100, 3)), columns=['P', 'CHR', 'BP']) fig = create_manhattan(dataframe, title='XYZ Manhattan plot') plotly.offline.plot(fig, image='png') ''' """ mh = _ManhattanPlot( dataframe, chrm=chrm, bp=bp, p=p, snp=snp, gene=gene, annotation=annotation, logp=logp ) return mh.figure( title=title, showgrid=showgrid, xlabel=xlabel, ylabel=ylabel, point_size=point_size, showlegend=showlegend, col=col, suggestiveline_value=suggestiveline_value, suggestiveline_color=suggestiveline_color, suggestiveline_width=suggestiveline_width, genomewideline_value=genomewideline_value, genomewideline_color=genomewideline_color, genomewideline_width=genomewideline_width, highlight=highlight, highlight_color=highlight_color )
def ManhattanPlot( dataframe, chrm="CHR", bp="BP", p="P", snp="SNP", gene="GENE", annotation=None, logp=True, title="Manhattan Plot", showgrid=True, xlabel=None, ylabel='-log10(p)', point_size=5, showlegend=True, col=None, suggestiveline_value=-np.log10(1e-8), suggestiveline_color='#636efa', suggestiveline_width=1, genomewideline_value=-np.log10(5e-8), genomewideline_color='#EF553B', genomewideline_width=1, highlight=True, highlight_color="red", ): """Returns a figure for a manhattan plot. Keyword arguments: - dataframe (dataframe; required): A pandas dataframe which must contain at least the following three columns: - the chromosome number - genomic base-pair position - a numeric quantity to plot such as a p-value or zscore - chrm (string; default 'CHR'): A string denoting the column name for the chromosome. This column must be float or integer. Minimum number of chromosomes required is 1. If you have X, Y, or MT chromosomes, be sure to renumber these 23, 24, 25, etc. - bp (string; default 'BP'): A string denoting the column name for the chromosomal position. - p (string; default 'P'): A string denoting the column name for the float quantity to be plotted on the y-axis. This column must be numeric. This does not have to be a p-value. It can be any numeric quantity such as peak heights, bayes factors, test statistics. If it is not a p-value, make sure to set logp = FALSE. - snp (string; default 'SNP'): A string denoting the column name for the SNP names (e.g. rs number). More generally, this column could be anything that identifies each point being plotted. For example, in an Epigenomewide association study (EWAS) this could be the probe name or cg number. This column should be a character. This argument is optional, however it is necessary to specify if you want to highlight points on the plot using the highlight argument in the figure method. - gene (string; default 'GENE'): A string denoting the column name for the GENE names. This column could be a string or a float. More generally this could be any annotation information that you want to include in the plot. - annotation (string; optional): A string denoting the column name for an annotation. This column could be a string or a float. This could be any annotation information that you want to include in the plot (e.g. zscore, effect size, minor allele frequency). - logp (bool; optional): If True, the -log10 of the p-value is plotted. It isn't very useful to plot raw p-values; however, plotting the raw value could be useful for other genome-wide plots (e.g., peak heights, bayes factors, test statistics, other "scores", etc.) - title (string; default 'Manhattan Plot') The title of the graph. - showgrid (bool; default true): Boolean indicating whether gridlines should be shown. - xlabel (string; optional): Label of the x axis. - ylabel: (string; default '-log10(p)'): Label of the y axis. - point_size (number; default 5): Size of the points of the Scatter plot. - showlegend (bool; default true): Boolean indicating whether legends should be shown. - col (string; optional): A string representing the color of the points of the Scatter plot. Can be in any color format accepted by plotly_js graph_objs. - suggestiveline_value (bool | float; default 8): A value which must be False to deactivate the option, or a numerical value corresponding to the p-value at which the line should be drawn. The line has no influence on the data points. - suggestiveline_color (string; default 'grey'): Color of the suggestive line. - suggestiveline_width (number; default 2): Width of the suggestive line. - genomewideline_value (bool | float; default -log10(5e-8)): A boolean which must be False to deactivate the option, or a numerical value corresponding to the p-value above which the data points are considered significant. - genomewideline_color (string; default 'red'): Color of the genome wide line. Can be in any color format accepted by plotly_js graph_objs. - genomewideline_width (number; default 1): Width of the genome wide line. - highlight (bool; default true): turning on/off the highlighting of data points considered significant. - highlight_color (string; default 'red'): Color of the data points highlighted because they are significant Can be in any color format accepted by plotly_js graph_objs. # ... Example 1: Random Manhattan Plot ''' dataframe = pd.DataFrame( np.random.randint(0,100,size=(100, 3)), columns=['P', 'CHR', 'BP']) fig = create_manhattan(dataframe, title='XYZ Manhattan plot') plotly.offline.plot(fig, image='png') ''' """ mh = _ManhattanPlot( dataframe, chrm=chrm, bp=bp, p=p, snp=snp, gene=gene, annotation=annotation, logp=logp ) return mh.figure( title=title, showgrid=showgrid, xlabel=xlabel, ylabel=ylabel, point_size=point_size, showlegend=showlegend, col=col, suggestiveline_value=suggestiveline_value, suggestiveline_color=suggestiveline_color, suggestiveline_width=suggestiveline_width, genomewideline_value=genomewideline_value, genomewideline_color=genomewideline_color, genomewideline_width=genomewideline_width, highlight=highlight, highlight_color=highlight_color )
19,432
def get_url_and_git(args): """Get the source and git URLs to use. Use defaults if none is provided. Args: args (argparse.Namespace): The arguments given to ``spack create`` Returns: tuple(str, Optional[str]): The source and git URLs of the package """ # Possible flag combinations: # spack create or spack create -g -> args.git is None, args.url is None # spack create <url> -> args.git = '#AUTO-GIT-URL#', args.url = <url> # -- in this case, url is checked to be git-like # spack create -g <url> -> args.git = <url>, args.url is None # spack create -g [some other flag that consumes argument] <url> # -> args.git is None, args.url = <url> # spack create -g <git_url> <url> -> args.git = <git_url>, args.url = <url> # Default URLs url = 'https://www.example.com/example-1.2.3.tar.gz' git = None # No source and no git urls were provided if args.url is None and args.git is None: return url, git # Git url not set explicitly if (args.git == '#AUTO-GIT-URL#' and is_git_url(args.url)) or args.git is None: git = args.url return url, git else: url = args.url or url # Git is forced if args.git != '#AUTO-GIT-URL#': git = args.git return url, git
def get_url_and_git(args): """Get the source and git URLs to use. Use defaults if none is provided. Args: args (argparse.Namespace): The arguments given to ``spack create`` Returns: tuple(str, Optional[str]): The source and git URLs of the package """ # Possible flag combinations: # spack create or spack create -g -> args.git is None, args.url is None # spack create <url> -> args.git = '#AUTO-GIT-URL#', args.url = <url> # -- in this case, url is checked to be git-like # spack create -g <url> -> args.git = <url>, args.url is None # spack create -g [some other flag that consumes argument] <url> # -> args.git is None, args.url = <url> # spack create -g <git_url> <url> -> args.git = <git_url>, args.url = <url> # Default URLs url = 'https://www.example.com/example-1.2.3.tar.gz' git = None # No source and no git urls were provided if args.url is None and args.git is None: return url, git # Git url not set explicitly if (args.git == '#AUTO-GIT-URL#' and is_git_url(args.url)) or args.git is None: git = args.url return args.url, git else: url = args.url or url # Git is forced if args.git != '#AUTO-GIT-URL#': git = args.git return url, git
30,776
def filter_by_score(events_data: list, score: int): if score == 0: return events_data filtered_event_score = [] for event in events_data: if event.get("score") >= score: filtered_event_score.append(event) return filtered_event_score
def filter_by_score(events_data: list, score: int) -> list: if score == 0: return events_data filtered_event_score = [] for event in events_data: if event.get("score") >= score: filtered_event_score.append(event) return filtered_event_score
26,240
def dup_links(links): """Check for duplicated links""" print(f'Checking for duplicated links...') hasError = False seen = {} dupes = [] for x in links: if x in ignored_links: continue if x not in seen: seen[x] = 1 else: if seen[x] == 1: dupes.append(x) if not dupes: print(f"No duplicated links") else: print(f"Found duplicated links: {dupes}") hasError = True return hasError
def dup_links(links): """Check for duplicated links""" print(f'Checking for duplicated links...') hasError = False seen = {} dupes = [] for link in links: if x in ignored_links: continue if x not in seen: seen[x] = 1 else: if seen[x] == 1: dupes.append(x) if not dupes: print(f"No duplicated links") else: print(f"Found duplicated links: {dupes}") hasError = True return hasError
31,020
def panorama_route_lookup(dest_ip: str, virtual_router=None): """ Given the provided ip address, looks up the outgoing interface and zone on the firewall. """ if not VSYS: raise Exception("The 'panorama-route-lookup' command is only relevant for a Firewall instance.") response = panorama_get_routes(virtual_router) if 'entry' not in response['response']['result']: raise Exception("No routes returned from the Firewall.") else: routes = response['response']['result']['entry'] ip_addr = ipaddress.ip_address(dest_ip) current_match = None matched_route = None for route in routes: subnet_raw = route['destination'] subnet = ipaddress.ip_network(subnet_raw) # If the given IP address is in the subnet if ip_addr in subnet: # IF we haven't matched yet if not current_match: current_match = subnet matched_route = route # If this is a greater subnet elif subnet.prefixlen > current_match.prefixlen: current_match = subnet matched_route = route if matched_route: return matched_route else: raise Exception("Route not found.")
def panorama_route_lookup(dest_ip: str, virtual_router=None): """ Given the provided ip address, looks up the outgoing interface and zone on the firewall. """ if not VSYS: raise Exception("The 'panorama-route-lookup' command is only relevant for a Firewall instance.") response = panorama_get_routes(virtual_router) if 'entry' not in response['response']['result']: raise DemistoException("No routes returned from the Firewall.") else: routes = response['response']['result']['entry'] ip_addr = ipaddress.ip_address(dest_ip) current_match = None matched_route = None for route in routes: subnet_raw = route['destination'] subnet = ipaddress.ip_network(subnet_raw) # If the given IP address is in the subnet if ip_addr in subnet: # IF we haven't matched yet if not current_match: current_match = subnet matched_route = route # If this is a greater subnet elif subnet.prefixlen > current_match.prefixlen: current_match = subnet matched_route = route if matched_route: return matched_route else: raise Exception("Route not found.")